metadata
dict
text
stringlengths
60
3.49M
{ "source": "Jetsie/sherlock", "score": 3 }
#### File: sherlock/sherlock/notify.py ```python from result import QueryStatus class QueryNotify(): def __init__(self, result=None): self.result = result return def start(self, message=None): return def update(self, result): self.result = result def finish(self, message=None): return def __str__(self): result = str(self.result) return result class QueryNotifyPrint(QueryNotify): def __init__(self): super().__init__(None) return def start(self, message): print(f"[*] Checking username {message} on:") return def update(self, result): self.result = result if self.result.query_time is None: response_time_text = "" else: response_time_text = f" [{round(self.result.query_time * 1000)} ms]" if result.status == QueryStatus.CLAIMED: print(f"[+]{response_time_text} {self.result.site_name}: {self.result.site_url_user}") return def __str__(self): result = str(self.result) return result ``` #### File: sherlock/sherlock/result.py ```python from enum import Enum class QueryStatus(Enum): CLAIMED = "Claimed" # Username Detected AVAILABLE = "Available" # Username Not Detected UNKNOWN = "Unknown" # Error Occurred While Trying To Detect Username ILLEGAL = "Illegal" # Username Not Allowable For This Site def __str__(self): return self.value class QueryResult(): def __init__(self, username, site_name, site_url_user, status, query_time=None, context=None): self.username = username self.site_name = site_name self.site_url_user = site_url_user self.status = status self.query_time = query_time self.context = context return def __str__(self): status = str(self.status) if self.context is not None: status += f" ({self.context})" return status ```
{ "source": "jetske-beks/celp", "score": 4 }
#### File: jetske-beks/celp/recommender.py ```python from data import UTILITY, SIMILARITY, UTILITY_CATEGORIES, SIMILARITY_CATEGORIES, CITIES from operator import itemgetter import data import numpy import pandas import random import numpy def select_neighborhood(user, business): """ Selects all items with similarity > 0. """ # error handling if user not in UTILITY or business not in SIMILARITY: return pandas.Series() # get all businesses that the target user has rated rated = UTILITY[user].dropna().index # get all similarity scores of those businesses with the target scores = SIMILARITY[business].loc[rated] # drop those lower than 0 return scores[scores > 0] def weighted_mean(neighborhood, user): # error handling if neighborhood.empty: return 0 # get the user ratings for the neighborhood ratings = UTILITY[user].loc[neighborhood.index] # calculate the predicted rating return (ratings * neighborhood).sum() / neighborhood.sum() def mse(predicted): # get the difference difference = predicted['stars'] - predicted['prediction'] # return the mean square error return numpy.square(difference).sum() / len(predicted) def baseline(): data = pandas.DataFrame(index=UTILITY.index, columns=UTILITY.columns) avg = UTILITY.apply(numpy.mean) def baseline_prediction(data): # get all unique ids business_ids = data['business_id'].unique() user_ids = data['user_id'].unique() # add a 'predicted rating' column data['prediction'] = pandas.Series(numpy.nan, index=data.index) print(" * Starting predict test for %i businesses..." % len(business_ids)) # predict a rating for every business count = 0 for business in business_ids: count += 1 print(" %i" % count) for user in user_ids: # calculate neighborhood & get prediction prediction = data.loc[data['business_id'] == business, 'stars'].mean() # add to the data data.loc[(data['business_id'] == business) & (data['user_id'] == user), 'prediction'] = prediction return data def predict(data): """ Predict the ratings for all items in the data. """ # get all unique ids business_ids = data['business_id'].unique() user_ids = data['user_id'].unique() # add a 'predicted rating' column data['prediction'] = pandas.Series(numpy.nan, index=data.index) print(" * Starting predict test for %i businesses..." % len(business_ids)) # predict a rating for every business count = 0 for business in business_ids: count += 1 print(" %i" % count) for user in user_ids: # calculate neighborhood & get prediction prediction = weighted_mean(select_neighborhood(user, business), user) # add to the data data.loc[(data['business_id'] == business) & (data['user_id'] == user), 'prediction'] = prediction return data def content_prediction(user_id, business_ids, utility, similarity): """ Make prediction for all businesses based on content similarity """ ratings = utility[user_id].dropna() predictions = pandas.Series() for business in business_ids: if not business in similarity: continue sim = similarity[business] predictions.at[business] = (ratings * sim.loc[ratings.index]).mean() return predictions def recommend_collab(businesses, user, business_id=None): prediction_list = [] for business in businesses: if business['business_id'] == business_id: continue # save info about the business prediction = { 'id': business['business_id'], 'count': business['review_count'], 'avg': business['stars'], 'city': business['city'].lower() } # get prediction prediction['rating'] = weighted_mean(select_neighborhood(user['user_id'], prediction['id']), user['user_id']) prediction_list.append(prediction) sorted_list = sorted(prediction_list, key=itemgetter('city', 'rating', 'count')) return sorted_list def recommend_content(businesses, user, business_id=None, utility=None): business_ids = [b['business_id'] for b in businesses] predictions = content_prediction(user['user_id'], business_ids, UTILITY, SIMILARITY_CATEGORIES) predictions.sort_values(inplace=True); return predictions def recommend(user=None, business_id=None, city=None, n=10, method='collab'): """ Returns n recommendations as a list of dicts. Optionally takes in a user, business_id and/or city. A recommendation is a dictionary in the form of: { business_id:str stars:str name:str city:str adress:str } """ global UTILITY, SIMILARITY, UTILITY_CATEGORIES, SIMILARITY_CATEGORIES, CITIES # read in matrices if not UTILITY: UTILITY = pandas.read_pickle('utility.pkl') if not SIMILARITY: data.SIMILARITY = pandas.read_pickle('similarity.pkl') if not UTILITY_CATEGORIES: UTILITY_CATEGORIES = pandas.read_pickle('utility_content.pkl') if not SIMILARITY_CATEGORIES: SIMILARITY_CATEGORIES = pandas.read_pickle('similarity_content.pkl') # fill in user, city if not user: user = data.get_city_users('eastlake')[0] if not city: city = 'eastlake' state = data.get_state(city) cities = data.load_cities(state) # get state businesses for recommendations businesses = data.get_businesses(cities) # make predictions for all businesses in the cities if method is 'collab': predictions = recommend_collab(businesses, user, business_id) elif method is 'content': predictions = recommend_content(businesses, user) elif method is 'hybrid': predictions = recommend_hybrid(businesses, user) if predictions.empty: raise Exception("Predictions are empty!") recommend_list = [] for p in predictions[:n].index: business = [b for b in businesses if b['business_id'] == p][0] recommend_list.append({ 'business_id': p, 'stars': business['stars'], 'name': business['name'], 'city': business['city'], 'address': business['address'] }) return (recommend_list * n)[:n] if __name__ == '__main__': recommend() ```
{ "source": "jetskipenguin/Scweet", "score": 3 }
#### File: Scweet/Scweet/utils.py ```python from io import StringIO, BytesIO import os import re from time import sleep import random import chromedriver_autoinstaller from selenium import webdriver from selenium.webdriver.chrome.options import Options import datetime import pandas as pd from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from . import const import urllib from .const import get_username, get_password def get_data(card, save_images = False, save_dir = None): """Extract data from tweet card""" image_links = [] try: username = card.find_element_by_xpath('.//span').text except: return try: handle = card.find_element_by_xpath('.//span[contains(text(), "@")]').text except: return try: postdate = card.find_element_by_xpath('.//time').get_attribute('datetime') except: return try: text = card.find_element_by_xpath('.//div[2]/div[2]/div[1]').text except: text = "" try: embedded = card.find_element_by_xpath('.//div[2]/div[2]/div[2]').text except: embedded = "" try: reply_cnt = card.find_element_by_xpath('.//div[@data-testid="reply"]').text except: reply_cnt = 0 try: retweet_cnt = card.find_element_by_xpath('.//div[@data-testid="retweet"]').text except: retweet_cnt = 0 try: like_cnt = card.find_element_by_xpath('.//div[@data-testid="like"]').text except: like_cnt = 0 try: elements = card.find_elements_by_xpath('.//div[2]/div[2]//img[contains(@src, "https://pbs.twimg.com/")]') for element in elements: # modifies url to get larger image tmp = element.get_attribute('src') index = tmp.find('name') result = '' for i in range(0, index): result += tmp[i] result += 'name=large' # make large if possible if(result == 'name=large'): image_links.append(tmp) else: image_links.append(result) print("Image URL", image_links) except: image_links = [] print("Couldn't resolve URL, skipping..") try: promoted = card.find_element_by_xpath('.//div[2]/div[2]/[last()]//span').text == "Promoted" except: promoted = False if promoted: return # get a string of all emojis contained in the tweet try: emoji_tags = card.find_elements_by_xpath('.//img[contains(@src, "emoji")]') except: return emoji_list = [] for tag in emoji_tags: try: filename = tag.get_attribute('src') emoji = chr(int(re.search(r'svg\/([a-z0-9]+)\.svg', filename).group(1), base=16)) except AttributeError: continue if emoji: emoji_list.append(emoji) emojis = ' '.join(emoji_list) # tweet url try: element = card.find_element_by_xpath('.//a[contains(@href, "/status/")]') tweet_url = element.get_attribute('href') except: return tweet = (username, handle, postdate, text, embedded, emojis, reply_cnt, retweet_cnt, like_cnt, image_links, tweet_url) return tweet def init_driver(headless=True, proxy=None, show_images=False, option=None): """ initiate a chromedriver instance --option : other option to add (str) """ # create instance of web driver chromedriver_path = chromedriver_autoinstaller.install() # options options = Options() if headless is True: print("Scraping on headless mode.") options.add_argument('--disable-gpu') options.headless = True else: options.headless = False options.add_argument('log-level=3') if proxy is not None: options.add_argument('--proxy-server=%s' % proxy) print("using proxy : ", proxy) if show_images == False: prefs = {"profile.managed_default_content_settings.images": 2} options.add_experimental_option("prefs", prefs) if option is not None: options.add_argument(option) driver = webdriver.Chrome(options=options, executable_path=chromedriver_path) driver.set_page_load_timeout(100) return driver def log_search_page(driver, since, until_local, lang, display_type, words, to_account, from_account, mention_account, hashtag, filter_replies, proximity, geocode, minreplies,minlikes,minretweets,userprofile): """ Search for this query between since and until_local""" # format the <from_account>, <to_account> and <hash_tags> from_account = "(from%3A" + from_account + ")%20" if from_account is not None else "" to_account = "(to%3A" + to_account + ")%20" if to_account is not None else "" mention_account = "(%40" + mention_account + ")%20" if mention_account is not None else "" hash_tags = "(%23" + hashtag + ")%20" if hashtag is not None else "" if words is not None: if len(words)==1: words = "(" + str(''.join(words)) + ")%20" else : words = "(" + str('%20OR%20'.join(words)) + ")%20" else: words = "" if lang is not None: lang = 'lang%3A' + lang else: lang = "" until_local = "until%3A" + until_local + "%20" since = "since%3A" + since + "%20" if display_type == "Latest" or display_type == "latest": display_type = "&f=live" elif display_type == "Image" or display_type == "image": display_type = "&f=image" else: display_type = "" # filter replies if filter_replies == True: filter_replies = "%20-filter%3Areplies" else : filter_replies = "" # geo if geocode is not None: geocode = "%20geocode%3A"+geocode else: geocode="" # min number of replies if minreplies is not None: minreplies = "%20min_replies%3A"+str(minreplies) else: minreplies = "" # min number of likes if minlikes is not None: minlikes = "%20min_faves%3A"+str(minlikes) else: minlikes = "" # min number of retweets if minretweets is not None: minretweets = "%20min_retweets%3A"+str(minretweets) else: minretweets = "" # proximity if proximity == True: proximity = "&lf=on" # at the end else : proximity = "" path = 'https://twitter.com/search?q='+words+from_account+to_account+mention_account+hash_tags+until_local+since+lang+filter_replies+geocode+minreplies+minlikes+minretweets+'&src=typed_query'+display_type+proximity if(userprofile): path = userprofile driver.get(path) return path def get_last_date_from_csv(path): df = pd.read_csv(path) return datetime.datetime.strftime(max(pd.to_datetime(df["Timestamp"])), '%Y-%m-%dT%H:%M:%S.000Z') def log_in(driver, env, timeout=10): username = get_username(env) #const.USERNAME password = <PASSWORD>_password(env) #const.PASSWORD driver.get('https://twitter.com/i/flow/login') username_css = 'label input' password_css = 'label input[type="password"]' username_el = WebDriverWait(driver, timeout).until(EC.presence_of_element_located((By.CSS_SELECTOR, username_css))) sleep(1) username_el.send_keys(username) sleep(1) username_el.send_keys(Keys.RETURN) sleep(1) password_el = WebDriverWait(driver, timeout).until(EC.presence_of_element_located((By.CSS_SELECTOR, password_css))) sleep(1) password_el.send_keys(password) password_el.send_keys(Keys.RETURN) def keep_scrolling(driver, data, writer, tweet_ids, scrolling, tweet_parsed, limit, scroll, last_position, save_images = False): """ scrolling function for tweets crawling""" save_images_dir = "/images" if save_images == True: if not os.path.exists(save_images_dir): os.mkdir(save_images_dir) while scrolling and tweet_parsed < limit: sleep(random.uniform(0.5, 1.5)) # get the card of tweets page_cards = driver.find_elements_by_xpath('//article[@data-testid="tweet"]') # changed div by article for card in page_cards: tweet = get_data(card, save_images, save_images_dir) if tweet: # check if the tweet is unique tweet_id = ''.join(str(tweet[:-2])) if tweet_id not in tweet_ids: tweet_ids.add(tweet_id) data.append(tweet) last_date = str(tweet[2]) print("Tweet made at: " + str(last_date) + " is found.") writer.writerow(tweet) tweet_parsed += 1 if tweet_parsed >= limit: break scroll_attempt = 0 while tweet_parsed < limit: # check scroll position scroll += 1 print("scroll ", scroll) sleep(random.uniform(0.5, 1.5)) driver.execute_script('window.scrollTo(0, document.body.scrollHeight);') curr_position = driver.execute_script("return window.pageYOffset;") if last_position == curr_position: scroll_attempt += 1 # end of scroll region if scroll_attempt >= 2: scrolling = False break else: sleep(random.uniform(0.5, 1.5)) # attempt another scroll else: last_position = curr_position break return driver, data, writer, tweet_ids, scrolling, tweet_parsed, scroll, last_position def download_images(urls, save_dir): count = 0 for i, url_v in enumerate(urls): sleep(2) for j, url in enumerate(url_v): count += 1 print("Saving image {}".format(count)) urllib.request.urlretrieve(url, save_dir + '/' + str(i+1) + '_' + str(j+1) + ".jpg") print("Saved {} images".format(count)) ```
{ "source": "jetsmith/Estimator_Test", "score": 2 }
#### File: test_estimator/nets/vgg16.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf slim = tf.contrib.slim def slim_repeat(input_x, repeat_num, layer_type, layer_width, kernel_shape, scope, \ clip_flag=True, min_value=-128.0, max_value=128.0): net = input_x for i in range(repeat_num): net = slim.conv2d(net, layer_width, kernel_shape, scope='{0}/{0}_{1}'.format(scope, i+1)) if clip_flag: net = tf.clip_by_value(net, min_value, max_value) return net def vgg_arg_scope(weight_decay=0.0005): """Defines the VGG arg scope. Args: weight_decay: The l2 regularization coefficient. Returns: An arg_scope. """ with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(weight_decay), biases_initializer=tf.zeros_initializer()): with slim.arg_scope([slim.conv2d], padding='SAME') as arg_sc: return arg_sc def vgg16_clip(inputs, num_classes=None, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_16', fc_conv_padding='VALID', global_pool=True): """Oxford Net VGG 16-Layers version D Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. fc_conv_padding: the type of padding to use for the fully connected layer that is implemented as a convolutional layer. Use 'SAME' padding if you are applying the network in a fully convolutional manner and want to get a prediction map downsampled by a factor of 32 as an output. Otherwise, the output prediction map will be (input / 32) - 6 in case of 'VALID' padding. global_pool: Optional boolean flag. If True, the input to the classification layer is avgpooled to size 1x1, for any input size. (This is not part of the original VGG architecture.) Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the input to the logits layer (if num_classes is 0 or None). end_points: a dict of tensors with intermediate activations. """ with tf.variable_scope(scope, 'vgg_16', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=end_points_collection): net = slim_repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net = slim_repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') net = slim_repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') net = slim_repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4') net = slim.max_pool2d(net, [2, 2], scope='pool4') net = slim_repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5') net = slim.max_pool2d(net, [2, 2], scope='pool5') # # Use conv2d instead of fully_connected layers. # net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding, scope='fc6') # net = slim.dropout(net, dropout_keep_prob, is_training=is_training, # scope='dropout6') # net = slim.conv2d(net, 4096, [1, 1], scope='fc7') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict(end_points_collection) if global_pool: net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool') end_points['global_pool'] = net if num_classes: # net = slim.dropout(net, dropout_keep_prob, is_training=is_training, # scope='dropout7') #net = slim.conv2d(net, num_classes, [1, 1], # activation_fn=None, # normalizer_fn=None, # scope='fc1') if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='fc1/squeezed') end_points[sc.name + '/fc1'] = net net = slim.batch_norm(net, is_training=is_training) end_points['BN']=net return net, end_points vgg16_clip.default_image_size = 224 def vgg16_face0(inputs, num_classes=None, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_16', fc_conv_padding='VALID', global_pool=True): """Oxford Net VGG 16-Layers version D Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. fc_conv_padding: the type of padding to use for the fully connected layer that is implemented as a convolutional layer. Use 'SAME' padding if you are applying the network in a fully convolutional manner and want to get a prediction map downsampled by a factor of 32 as an output. Otherwise, the output prediction map will be (input / 32) - 6 in case of 'VALID' padding. global_pool: Optional boolean flag. If True, the input to the classification layer is avgpooled to size 1x1, for any input size. (This is not part of the original VGG architecture.) Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the input to the logits layer (if num_classes is 0 or None). end_points: a dict of tensors with intermediate activations. """ with tf.variable_scope(scope, 'vgg_16', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=end_points_collection): net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4') net = slim.max_pool2d(net, [2, 2], scope='pool4') net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5') net = slim.max_pool2d(net, [2, 2], scope='pool5') # # Use conv2d instead of fully_connected layers. # net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding, scope='fc6') # net = slim.dropout(net, dropout_keep_prob, is_training=is_training, # scope='dropout6') # net = slim.conv2d(net, 4096, [1, 1], scope='fc7') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict(end_points_collection) if global_pool: net = tf.reduce_mean(net, [1, 2], keepdims=True, name='global_pool') end_points['global_pool'] = net if num_classes: # net = slim.dropout(net, dropout_keep_prob, is_training=is_training, # scope='dropout7') net = slim.conv2d(net, 512, [1, 1], activation_fn=None, normalizer_fn=None, scope='fc1') if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='fc1/squeezed') end_points[sc.name + '/fc1'] = net #net = slim.batch_norm(net, is_training=is_training) #end_points['BN']=net return net, end_points vgg16_face0.default_image_size = 224 def vgg16_BN(inputs, num_classes=None, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_16', fc_conv_padding='VALID', global_pool=True): """Oxford Net VGG 16-Layers version D Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. fc_conv_padding: the type of padding to use for the fully connected layer that is implemented as a convolutional layer. Use 'SAME' padding if you are applying the network in a fully convolutional manner and want to get a prediction map downsampled by a factor of 32 as an output. Otherwise, the output prediction map will be (input / 32) - 6 in case of 'VALID' padding. global_pool: Optional boolean flag. If True, the input to the classification layer is avgpooled to size 1x1, for any input size. (This is not part of the original VGG architecture.) Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the input to the logits layer (if num_classes is 0 or None). end_points: a dict of tensors with intermediate activations. """ with tf.variable_scope(scope, 'vgg_16', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=end_points_collection): with slim.arg_scope([slim.conv2d], normalizer_fn=slim.batch_norm): with slim.arg_scope([slim.batch_norm], is_training=is_training, center=True, scale=True, decay=0.99): net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4') net = slim.max_pool2d(net, [2, 2], scope='pool4') net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5') net = slim.max_pool2d(net, [2, 2], scope='pool5') #net = slim.flatten(net, scope='flatten') # Use conv2d instead of fully_connected layers. #net = slim.conv2d(net, 4096, [4, 4], padding=fc_conv_padding, scope='fc6') #net = slim.dropout(net, dropout_keep_prob, is_training=is_training, # scope='dropout6') #net = slim.conv2d(net, 4096, [1, 1], scope='fc7') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict(end_points_collection) if global_pool: net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool') end_points['global_pool'] = net if num_classes: # net = slim.dropout(net, dropout_keep_prob, is_training=is_training, # scope='dropout7') net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='fc1') if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='fc1/squeezed') end_points[sc.name + '/fc1'] = net print('net shape: ', net.get_shape()) return net, end_points vgg16_BN.default_image_size = 224 def vgg16_MT(inputs, num_classes=None, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_16', fc_conv_padding='VALID', global_pool=True): """Oxford Net VGG 16-Layers version D Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. fc_conv_padding: the type of padding to use for the fully connected layer that is implemented as a convolutional layer. Use 'SAME' padding if you are applying the network in a fully convolutional manner and want to get a prediction map downsampled by a factor of 32 as an output. Otherwise, the output prediction map will be (input / 32) - 6 in case of 'VALID' padding. global_pool: Optional boolean flag. If True, the input to the classification layer is avgpooled to size 1x1, for any input size. (This is not part of the original VGG architecture.) Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the input to the logits layer (if num_classes is 0 or None). end_points: a dict of tensors with intermediate activations. """ with tf.variable_scope(scope, 'vgg_16', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=end_points_collection): with slim.arg_scope([slim.conv2d], normalizer_fn=slim.batch_norm): with slim.arg_scope([slim.batch_norm], is_training=is_training, center=True, scale=True, decay=0.99): net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4') net = slim.max_pool2d(net, [2, 2], scope='pool4') net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5') net = slim.max_pool2d(net, [2, 2], scope='pool5') #net = slim.flatten(net, scope='flatten') #Use conv2d instead of fully_connected layers. #net = slim.conv2d(net, 4096, [4, 4], padding=fc_conv_padding, scope='fc6') #net = slim.dropout(net, dropout_keep_prob, is_training=is_training, # scope='dropout6') #net = slim.conv2d(net, 4096, [1, 1], scope='fc7') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict(end_points_collection) if global_pool: net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool') end_points['global_pool'] = net logits = {} num_classes = num_classes.split(',') #for i, attribute in enumerate(['jc', 'pc', 'pt', 'age', 'gender']): for i, attribute in enumerate(['age', 'gender']): if num_classes: # net = slim.dropout(net, dropout_keep_prob, is_training=is_training, # scope='dropout7') #tmp_net = slim.fully_connected(net, # int(num_classes[i]), activation_fn=None, # normalizer_fn=None, scope= attribute + '/fc1') tmp_net = slim.conv2d(net, int(num_classes[i]), [1, 1], activation_fn=None, normalizer_fn=None, scope= attribute + '/fc1') if spatial_squeeze: logits[attribute] = tf.squeeze(tmp_net, [1, 2], name='fc1/squeezed/' + attribute) end_points[sc.name + '/fc1/' + attribute] = logits[attribute] #logits[attribute] = tmp_net return logits, end_points vgg16_MT.default_image_size = 224 def vgg16_mt_fc(inputs, num_classes=None, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_16', fc_conv_padding='VALID', global_pool=True): """Oxford Net VGG 16-Layers version D Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. fc_conv_padding: the type of padding to use for the fully connected layer that is implemented as a convolutional layer. Use 'SAME' padding if you are applying the network in a fully convolutional manner and want to get a prediction map downsampled by a factor of 32 as an output. Otherwise, the output prediction map will be (input / 32) - 6 in case of 'VALID' padding. global_pool: Optional boolean flag. If True, the input to the classification layer is avgpooled to size 1x1, for any input size. (This is not part of the original VGG architecture.) Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the input to the logits layer (if num_classes is 0 or None). end_points: a dict of tensors with intermediate activations. """ with tf.variable_scope(scope, 'vgg_16', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=end_points_collection): with slim.arg_scope([slim.conv2d, slim.fully_connected], normalizer_fn=slim.batch_norm): with slim.arg_scope([slim.batch_norm], is_training=is_training, center=True, scale=True, decay=0.99): net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') #net = slim.flatten(net, scope='flatten') #net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4') #net = slim.max_pool2d(net, [2, 2], scope='pool4') #net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5') #net = slim.max_pool2d(net, [2, 2], scope='pool5') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict(end_points_collection) if global_pool: net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool') end_points['global_pool'] = net if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='squeezed') logits = {} num_classes = num_classes.split(',') for i, attribute in enumerate(['jc', 'pc', 'pt', 'age', 'gender']): tmp_net = slim.fully_connected(net, 1024, scope= attribute + '/fc1') tmp_net = slim.dropout(tmp_net, dropout_keep_prob, is_training=is_training, scope= attribute + '/dropout1') tmp_net = slim.fully_connected(tmp_net, 1024, scope= attribute + '/fc2') if num_classes: tmp_net = slim.dropout(tmp_net, dropout_keep_prob, is_training=is_training, scope= attribute + '/dropout2') tmp_net = slim.fully_connected(tmp_net, int(num_classes[i]), activation_fn=None, normalizer_fn=None, scope= attribute + '/fc3') #if spatial_squeeze: # logits[attribute] = tf.squeeze(tmp_net, [1, 2], name='fc1/squeezed' + '/' + attribute) logits[attribute] = tmp_net end_points[sc.name + '/fc3/' + attribute] = logits[attribute] return logits, end_points vgg16_mt_fc.default_image_size = 224 def vgg16_mt_conv(inputs, num_classes=None, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_16', fc_conv_padding='VALID', global_pool=True): """Oxford Net VGG 16-Layers version D Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. fc_conv_padding: the type of padding to use for the fully connected layer that is implemented as a convolutional layer. Use 'SAME' padding if you are applying the network in a fully convolutional manner and want to get a prediction map downsampled by a factor of 32 as an output. Otherwise, the output prediction map will be (input / 32) - 6 in case of 'VALID' padding. global_pool: Optional boolean flag. If True, the input to the classification layer is avgpooled to size 1x1, for any input size. (This is not part of the original VGG architecture.) Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the input to the logits layer (if num_classes is 0 or None). end_points: a dict of tensors with intermediate activations. """ with tf.variable_scope(scope, 'vgg_16', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=end_points_collection): with slim.arg_scope([slim.conv2d], normalizer_fn=slim.batch_norm): with slim.arg_scope([slim.batch_norm], is_training=is_training, center=True, scale=True, decay=0.99): net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') logits = {} num_classes = num_classes.split(',') for i, attribute in enumerate(['jc', 'pc', 'pt', 'age', 'gender']): tmp_net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope= attribute + '/conv4') tmp_net = slim.max_pool2d(tmp_net, [2, 2], scope= attribute + '/pool4') tmp_net = slim.repeat(tmp_net, 3, slim.conv2d, 512, [3, 3], scope= attribute + '/conv5') tmp_net = slim.max_pool2d(tmp_net, [2, 2], scope=attribute + '/pool5') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict(end_points_collection) if global_pool: tmp_net = tf.reduce_mean(tmp_net, [1, 2], keep_dims=True, name=attribute + '/global_pool') end_points[attribute + '/global_pool'] = tmp_net if num_classes: #net = slim.dropout(net, dropout_keep_prob, is_training=is_training, # scope='dropout7') tmp_net = slim.conv2d(tmp_net, int(num_classes[i]), [1, 1], activation_fn=None, normalizer_fn=None, scope=attribute + '/fc1') if spatial_squeeze: tmp_net = tf.squeeze(tmp_net, [1, 2], name=attribute + '/fc1/squeezed') end_points[sc.name + '/fc1'] = tmp_net logits[attribute] = tmp_net return logits, end_points vgg16_mt_conv.default_image_size = 224 def test_net(inputs, num_classes=None, is_training=True, spatial_squeeze=True, scope='test_net', global_pool=True): with tf.variable_scope(scope, 'test_net', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.max_pool2d], outputs_collections=end_points_collection): net = slim.conv2d(inputs, 32, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net_branch = slim.conv2d(net, 64, [3, 3], scope='conv2') net_branch = slim.conv2d(net_branch, 64, [3, 3], scope='conv3') net = tf.concat([net, net_branch], 3, name='concat') print('net shape: ', net.get_shape()) net = slim.conv2d(net, 64, [3, 3], scope='conv4') net = slim.max_pool2d(net, [2, 2], scope='pool2') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict(end_points_collection) net = slim.conv2d(net, num_classes, [3, 3], activation_fn=None, scope='logit') if global_pool: net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool') end_points['global_pool'] = net if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='squeezed') end_points[sc.name + '/squeeze'] = net return net, end_points test_net.default_image_size = 64 ```
{ "source": "jetsnake/spiral_matrix", "score": 3 }
#### File: spiral_matrix/spiral_matrix/spiral_matrix.py ```python import aiohttp import re from typing import List async def get_matrix(url: str) -> List[int]: async with aiohttp.ClientSession() as session: try: async with session.get(url) as response: response.raise_for_status() matrix = await response.text() listTraversingMatrixByRows = list(map(int, filter(None, re.split('\\D+', matrix)))) n = int(len(listTraversingMatrixByRows) ** 0.5) result = [] left = 0 top = 0 right = n - 1 bottom = n - 1 while left <= right and top <= bottom: for i in range(top, bottom + 1): result.append(listTraversingMatrixByRows[left + i * n]) left += 1 for i in range(left, right + 1): result.append(listTraversingMatrixByRows[bottom * n + i]) bottom -= 1 for i in range(bottom, top - 1, -1): result.append(listTraversingMatrixByRows[right + i * n]) right -= 1 for i in range(right, left - 1, -1): result.append(listTraversingMatrixByRows[top * n + i]) top += 1 return result except aiohttp.InvalidURL as err: print("The specified URL is invalid!") print(err) except aiohttp.ClientResponseError as err: print(f"Status code: {err.status}") print(err.message) except aiohttp.ClientConnectorError as err: print(err) except aiohttp.ClientError as err: print(err) except aiohttp.ServerTimeoutError as err: print(err) except aiohttp.ServerConnectionError as err: print(err) except Exception: print("Unknown error!") ```
{ "source": "jetsonhacks/CSI-Camera", "score": 3 }
#### File: jetsonhacks/CSI-Camera/dual_camera.py ```python import cv2 import threading import numpy as np class CSI_Camera: def __init__(self): # Initialize instance variables # OpenCV video capture element self.video_capture = None # The last captured image from the camera self.frame = None self.grabbed = False # The thread where the video capture runs self.read_thread = None self.read_lock = threading.Lock() self.running = False def open(self, gstreamer_pipeline_string): try: self.video_capture = cv2.VideoCapture( gstreamer_pipeline_string, cv2.CAP_GSTREAMER ) # Grab the first frame to start the video capturing self.grabbed, self.frame = self.video_capture.read() except RuntimeError: self.video_capture = None print("Unable to open camera") print("Pipeline: " + gstreamer_pipeline_string) def start(self): if self.running: print('Video capturing is already running') return None # create a thread to read the camera image if self.video_capture != None: self.running = True self.read_thread = threading.Thread(target=self.updateCamera) self.read_thread.start() return self def stop(self): self.running = False # Kill the thread self.read_thread.join() self.read_thread = None def updateCamera(self): # This is the thread to read images from the camera while self.running: try: grabbed, frame = self.video_capture.read() with self.read_lock: self.grabbed = grabbed self.frame = frame except RuntimeError: print("Could not read image from camera") # FIX ME - stop and cleanup thread # Something bad happened def read(self): with self.read_lock: frame = self.frame.copy() grabbed = self.grabbed return grabbed, frame def release(self): if self.video_capture != None: self.video_capture.release() self.video_capture = None # Now kill the thread if self.read_thread != None: self.read_thread.join() """ gstreamer_pipeline returns a GStreamer pipeline for capturing from the CSI camera Flip the image by setting the flip_method (most common values: 0 and 2) display_width and display_height determine the size of each camera pane in the window on the screen Default 1920x1080 """ def gstreamer_pipeline( sensor_id=0, capture_width=1920, capture_height=1080, display_width=1920, display_height=1080, framerate=30, flip_method=0, ): return ( "nvarguscamerasrc sensor-id=%d ! " "video/x-raw(memory:NVMM), width=(int)%d, height=(int)%d, framerate=(fraction)%d/1 ! " "nvvidconv flip-method=%d ! " "video/x-raw, width=(int)%d, height=(int)%d, format=(string)BGRx ! " "videoconvert ! " "video/x-raw, format=(string)BGR ! appsink" % ( sensor_id, capture_width, capture_height, framerate, flip_method, display_width, display_height, ) ) def run_cameras(): window_title = "Dual CSI Cameras" left_camera = CSI_Camera() left_camera.open( gstreamer_pipeline( sensor_id=0, capture_width=1920, capture_height=1080, flip_method=0, display_width=960, display_height=540, ) ) left_camera.start() right_camera = CSI_Camera() right_camera.open( gstreamer_pipeline( sensor_id=1, capture_width=1920, capture_height=1080, flip_method=0, display_width=960, display_height=540, ) ) right_camera.start() if left_camera.video_capture.isOpened() and right_camera.video_capture.isOpened(): cv2.namedWindow(window_title, cv2.WINDOW_AUTOSIZE) try: while True: _, left_image = left_camera.read() _, right_image = right_camera.read() # Use numpy to place images next to each other camera_images = np.hstack((left_image, right_image)) # Check to see if the user closed the window # Under GTK+ (Jetson Default), WND_PROP_VISIBLE does not work correctly. Under Qt it does # GTK - Substitute WND_PROP_AUTOSIZE to detect if window has been closed by user if cv2.getWindowProperty(window_title, cv2.WND_PROP_AUTOSIZE) >= 0: cv2.imshow(window_title, camera_images) else: break # This also acts as keyCode = cv2.waitKey(30) & 0xFF # Stop the program on the ESC key if keyCode == 27: break finally: left_camera.stop() left_camera.release() right_camera.stop() right_camera.release() cv2.destroyAllWindows() else: print("Error: Unable to open both cameras") left_camera.stop() left_camera.release() right_camera.stop() right_camera.release() if __name__ == "__main__": run_cameras() ```
{ "source": "jetsonhacks/gst-explorer", "score": 2 }
#### File: jetsonhacks/gst-explorer/gst-inspector.py ```python import base64 import sys from PyQt5.QtCore import Qt from PyQt5.QtGui import QIcon, QPixmap from PyQt5.QtWidgets import (QAction, QApplication, QComboBox, QFrame, QHBoxLayout, QLabel, QLineEdit, QListWidget, QMainWindow, QMenu, QMenuBar, QSizePolicy, QSplitter, QTextEdit, QVBoxLayout) from gst_controller import Gst_Inspector_Controller from gst_model import Gst_Inspector_Model """ We use a Model, View, Controller pattern. Gst_Inspector_Model contains the data. The data is gathered from running gst-inspect-1.0 Gst_Inspector_Controller is the controller which arbitrates between the model and the view """ class Gst_Inspector_View(QMainWindow): LIST_WIDTH = 280 WINDOW_WIDTH = 960 WINDOW_HEIGHT = 540 def setup(self, controller): """ Initialize the main parts of the UI. These are two frames placed in a horizontal splitter.""" # The Left frame is the list of plugins, elements and types. left_frame = self.setup_left_frame(controller) # The right frame is a text frame which displays the detailed info of the above. right_frame = self.setup_right_frame(controller) # Make up the horizontal splitter, then add the left and right frames horizontal_splitter = QSplitter(Qt.Horizontal) horizontal_splitter.addWidget(left_frame) horizontal_splitter.addWidget(right_frame) horizontal_splitter.setChildrenCollapsible(False) # With point size 12, the list widget should be large enough to # avoid a horizontal scroller. horizontal_splitter.setSizes( [Gst_Inspector_View.LIST_WIDTH, Gst_Inspector_View.WINDOW_WIDTH-Gst_Inspector_View.LIST_WIDTH]) # Add the splitter to the main window self.setCentralWidget(horizontal_splitter) # Set the font of the window a little larger; 12 point qfont = self.font() qfont.setPointSize(12) self.setFont(qfont) # Initial layout window size self.setGeometry(100, 100, Gst_Inspector_View.WINDOW_WIDTH, Gst_Inspector_View.WINDOW_HEIGHT) self.setWindowTitle('GStreamer Inspector') self.setup_menu_bar() def setup_left_frame(self, controller: Gst_Inspector_Controller): """ The Left frame contains the list of plugins, elements and types. There is a list, a search box and a combo box which select the type of element """ left_frame = QFrame() left_vbox = QVBoxLayout() left_frame.setLayout(left_vbox) # Create the text filter box # Note: We should be able to add a Completer here also self.search_widget = QLineEdit() self.search_widget.setClearButtonEnabled(True) self.search_widget.setPlaceholderText("Search") self.search_widget.textChanged.connect( controller.on_filter_text_changed) left_vbox.addWidget(self.search_widget) # Gst type of element filter # Combo box that selects the type of Gst element to be examined filter_box = QHBoxLayout() filter_label = QLabel("Filter") filter_label.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed) filter_box.addWidget(filter_label) self.filter_combo_box = QComboBox(self) self.filter_combo_box.addItems(["All", "Plugins", "Elements", "Types"]) self.filter_combo_box.currentTextChanged.connect( controller.on_filter_box_changed) filter_box.addWidget(self.filter_combo_box) left_vbox.addLayout(filter_box) # The list of plugins, elements and types self.list_widget = QListWidget() self.list_widget.setSortingEnabled(True) self.list_widget.setMinimumWidth(280) self.list_widget.itemClicked.connect(controller.on_list_clicked) left_vbox.addWidget(self.list_widget) # A label that displays the number of items being displayed self.info_label = QLabel("") left_vbox.addWidget(self.info_label) return left_frame def setup_right_frame(self, controller): """ The right frame is a text display which displays detailed info about the plugin, element or type """ right_frame = QFrame() right_vbox = QVBoxLayout() right_frame.setLayout(right_vbox) self.element_text_edit = QTextEdit() # Use the default Terminal font # This is a monospaced font, also called fixed-pitch or fixed-width # Fixed width characters are used so that the columns 'line up' in the text self.element_text_edit.setFontFamily('Monospace') self.element_text_edit.setFontPointSize(11) self.element_text_edit.setReadOnly(True) right_vbox.addWidget(self.element_text_edit) return right_frame # For demonstration purposes, we introduce the Google "baseline_list_alt_black_24dp.png" directly # into the Python script as a binary string. This is so we don't have to depend on the file being present. def get_plugin_icon(self): """ Return an icon with the Google 'baseline_list_alt_black_24dp.png' as its image """ encoded_list_png = b'<KEY> decoded_list_png = base64.b64decode(encoded_list_png) pix_map = QPixmap() pix_map.loadFromData(decoded_list_png) icon = QIcon(pix_map) return icon def setup_menu_bar(self): """ Mostly here as a placeholder """ menuBar = QMenuBar(self) self.setMenuBar(menuBar) fileMenu = QMenu("&File", self) menuBar.addMenu(fileMenu) fileMenu.addSeparator() self.exitAction = QAction("&Exit", self) fileMenu.addAction(self.exitAction) # This closes the window, then exits the program self.exitAction.triggered.connect(self.close) def main(): app = QApplication(sys.argv) controller = Gst_Inspector_Controller( Gst_Inspector_Model(), Gst_Inspector_View()) controller.setup() sys.exit(app.exec_()) if __name__ == '__main__': main() ```
{ "source": "jetsonhacks/USB-Camera", "score": 3 }
#### File: jetsonhacks/USB-Camera/usb-camera-gst.py ```python import sys import cv2 window_title = "USB Camera" # ASSIGN CAMERA ADRESS to DEVICE HERE! pipeline = " ! ".join(["v4l2src device=/dev/video0", "video/x-raw, width=640, height=480, framerate=30/1", "videoconvert", "video/x-raw, format=(string)BGR", "appsink" ]) # Sample pipeline for H.264 video, tested on Logitech C920 h264_pipeline = " ! ".join(["v4l2src device=/dev/video0", "video/x-h264, width=1280, height=720, framerate=30/1, format=H264", "avdec_h264", "videoconvert", "video/x-raw, format=(string)BGR", "appsink sync=false" ]) def show_camera(): # Full list of Video Capture APIs (video backends): https://docs.opencv.org/3.4/d4/d15/group__videoio__flags__base.html # For webcams, we use V4L2 video_capture = cv2.VideoCapture(pipeline, cv2.CAP_GSTREAMER) if video_capture.isOpened(): try: window_handle = cv2.namedWindow( window_title, cv2.WINDOW_AUTOSIZE) # Window while True: ret_val, frame = video_capture.read() # Check to see if the user closed the window # Under GTK+ (Jetson Default), WND_PROP_VISIBLE does not work correctly. Under Qt it does # GTK - Substitute WND_PROP_AUTOSIZE to detect if window has been closed by user if cv2.getWindowProperty(window_title, cv2.WND_PROP_AUTOSIZE) >= 0: cv2.imshow(window_title, frame) else: break keyCode = cv2.waitKey(10) & 0xFF # Stop the program on the ESC key or 'q' if keyCode == 27 or keyCode == ord('q'): break finally: video_capture.release() cv2.destroyAllWindows() else: print("Error: Unable to open camera") if __name__ == "__main__": show_camera() ``` #### File: jetsonhacks/USB-Camera/usb-camera-simple.py ```python import sys import cv2 window_title = "USB Camera" def show_camera(): # ASSIGN CAMERA ADDRESS HERE camera_id = "/dev/video0" # Full list of Video Capture APIs (video backends): https://docs.opencv.org/3.4/d4/d15/group__videoio__flags__base.html # For webcams, we use V4L2 video_capture = cv2.VideoCapture(camera_id, cv2.CAP_V4L2) """ # How to set video capture properties using V4L2: # Full list of Video Capture Properties for OpenCV: https://docs.opencv.org/3.4/d4/d15/group__videoio__flags__base.html #Select Pixel Format: # video_capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'YUYV')) # Two common formats, MJPG and H264 # video_capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG')) # Default libopencv on the Jetson is not linked against libx264, so H.264 is not available # video_capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'H264')) # Select frame size, FPS: video_capture.set(cv2.CAP_PROP_FRAME_WIDTH, 640) video_capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 480) video_capture.set(cv2.CAP_PROP_FPS, 30) """ if video_capture.isOpened(): try: window_handle = cv2.namedWindow( window_title, cv2.WINDOW_AUTOSIZE ) # Window while True: ret_val, frame = video_capture.read() # Check to see if the user closed the window # Under GTK+ (Jetson Default), WND_PROP_VISIBLE does not work correctly. Under Qt it does # GTK - Substitute WND_PROP_AUTOSIZE to detect if window has been closed by user if cv2.getWindowProperty(window_title, cv2.WND_PROP_AUTOSIZE) >= 0: cv2.imshow(window_title, frame) else: break keyCode = cv2.waitKey(10) & 0xFF # Stop the program on the ESC key or 'q' if keyCode == 27 or keyCode == ord('q'): break finally: video_capture.release() cv2.destroyAllWindows() else: print("Unable to open camera") if __name__ == "__main__": show_camera() ```
{ "source": "JetStarBlues/Intel-8080-Emulator", "score": 2 }
#### File: JetStarBlues/Intel-8080-Emulator/cpu_8080.py ```python ''' From 8080 Docs... Flags 0 - carry, set when addition result overflows or rotate/shift has shifted-out a '1' 2 - parity, set when modulo 2 sum of bits is zero 4 - auxiliary carry, set when half carry occurs 6 - zero, set when result of operation is 0 7 - sign, set when MSB of result is 1 OpCodes - Destination / Source . B -> 000 . C -> 001 . D -> 010 . E -> 011 . H -> 100 . L -> 101 . Memory -> 110 . A -> 111 - Move, load, store . MOV R1,R2 -> 01DDDSSS -> 1 -> Move register to register . MOV M,R -> 01110SSS -> 2 -> Move register to memory . MOV R,M -> 01DDD110 -> 2 -> Move memory to register . MVI R,data -> 00DDD110 -> 2 -> Move immediate to register . MVI M,data -> 00110110 -> 3 -> Move immediate to memory . LXI BC,data16 -> 00000001 -> 3 -> Load immediate to register pair B & C . LXI DE,data16 -> 00010001 -> 3 -> Load immediate to register pair D & E . LXI HL,data16 -> 00100001 -> 3 -> Load immediate to register pair H & L . LXI SP,data16 -> 00110001 -> 3 -> Load immediate to stack pointer . LDA addr -> 00111010 -> 4 -> Load A direct . STA addr -> 00110010 -> 4 -> Store A direct . LHLD addr -> 00101010 -> 5 -> Load H & L direct . SHLD addr -> 00100010 -> 5 -> Store H & L direct . LDAX BC -> 00001010 -> 2 -> Load A indirect . LDAX DE -> 00011010 -> 2 -> Load A indirect . STAX BC -> 00000010 -> 2 -> Store A indirect . STAX DE -> 00010010 -> 2 -> Store A indirect . XCHG -> 11101011 -> 1 -> Exchange register pair D & E with H & L - Stack ops . PUSH BC -> 11000101 -> 3 -> Push register pair B & C on stack . PUSH DE -> 11010101 -> 3 -> Push register pair D & E on stack . PUSH HL -> 11100101 -> 3 -> Push register pair H & L on stack . PUSH PSW -> 11110101 -> 3 -> Push A and Flags on stack . POP BC -> 11000001 -> 3 -> Pop top of stack onto register pair B & C . POP DE -> 11010001 -> 3 -> Pop top of stack onto register pair D & E . POP HL -> 11100001 -> 3 -> Pop top of stack onto register pair H & L . POP PSW -> 11110001 -> 3 -> Pop top of stack onto A and Flags . XTHL -> 11100011 -> 5 -> Exchange H & L with contents of location specified by stack pointer . SPHL -> 11111001 -> 1 -> H & L to stack pointer - Jump . JMP addr -> 11000011 -> 3 -> Jump unconditional . JNZ addr -> 11000010 -> 3 -> Jump on not zero . JZ addr -> 11001010 -> 3 -> Jump on zero . JNC addr -> 11010010 -> 3 -> Jump on no carry . JC addr -> 11011010 -> 3 -> Jump on carry . JPO addr -> 11100010 -> 3 -> Jump on parity odd . JPE addr -> 11101010 -> 3 -> Jump on parity even . JP addr -> 11110010 -> 3 -> Jump on positive . JM addr -> 11111010 -> 3 -> Jump on minus . PCHL -> 11101001 -> 1 -> H & L to program counter - Call . CALL addr -> 11001101 -> 5 -> Call unconditional . CNZ addr -> 11000100 -> 3/5 -> Call on not zero . CZ addr -> 11001100 -> 3/5 -> Call on zero . CNC addr -> 11010100 -> 3/5 -> Call on no carry . CC addr -> 11011100 -> 3/5 -> Call on carry . CPO addr -> 11100100 -> 3/5 -> Call on parity odd . CPE addr -> 11101100 -> 3/5 -> Call on parity even . CP addr -> 11110100 -> 3/5 -> Call on positive . CM addr -> 11111100 -> 3/5 -> Call on minus - Return . RET -> 11001001 -> 3 -> Return unconditional . RNZ -> 11000000 -> 1/3 -> Return on not zero . RZ -> 11001000 -> 1/3 -> Return on zero . RNC -> 11010000 -> 1/3 -> Return on no carry . RC -> 11011000 -> 1/3 -> Return on carry . RPO -> 11100000 -> 1/3 -> Return on parity odd . RPE -> 11101000 -> 1/3 -> Return on parity even . RP -> 11110000 -> 1/3 -> Return on positive . RM -> 11111000 -> 1/3 -> Return on minus - Restart . RST -> 11NNN111 -> 3 -> Restart - Increment and decrement . INR R -> 00DDD100 -> 1 -> Increment register . INR M -> 00110100 -> 3 -> Increment memory . INX BC -> 00000011 -> 1 -> Increment B & C registers . INX DE -> 00010011 -> 1 -> Increment D & E registers . INX HL -> 00100011 -> 1 -> Increment H & L registers . INX SP -> 00110011 -> 1 -> Increment stack pointer . DCR R -> 00DDD101 -> 1 -> Decrement register . DCR M -> 00110101 -> 3 -> Decrement memory . DCX BC -> 00001011 -> 1 -> Decrement B & C registers . DCX DE -> 00011011 -> 1 -> Decrement D & E registers . DCX HL -> 00101011 -> 1 -> Decrement H & L registers . DCX SP -> 00111011 -> 1 -> Decrement stack pointer - Add . ADD R -> 10000SSS -> 1 -> Add register to A . ADD M -> 10000110 -> 2 -> Add memory to A . ADI data -> 11000110 -> 2 -> Add immediate to A . ADC R -> 10001SSS -> 1 -> Add register to A with carry . ADC M -> 10001110 -> 2 -> Add memory to A with carry . ACI data -> 11001110 -> 2 -> Add immediate to A with carry . DAD BC -> 00001001 -> 3 -> Add B & C to H & L . DAD DE -> 00011001 -> 3 -> Add D & E to H & L . DAD HL -> 00101001 -> 3 -> Add H & L to H & L . DAD SP -> 00111001 -> 3 -> Add stack pointer to H & L - Subtract . SUB R -> 10010SSS -> 1 -> Subtract register from A . SUB M -> 10010110 -> 2 -> Subtract memory from A . SUI data -> 11010110 -> 2 -> Subtract immediate from A . SBB R -> 10011SSS -> 1 -> Subtract register from A with borrow . SBB M -> 10011110 -> 2 -> Subtract memory from A with borrow . SBI data -> 11011110 -> 2 -> Subtract immediate from A with borrow - Logical . ANA R -> 10100SSS -> 1 -> And register with A . ANA M -> 10100110 -> 2 -> And memory with A . ANI data -> 11100110 -> 2 -> And immediate with A . XRA R -> 10101SSS -> 1 -> Exclusive or register with A . XRA M -> 10101110 -> 2 -> Exclusive or memory with A . XRI data -> 11101110 -> 2 -> Exclusive or immediate with A . ORA R -> 10110SSS -> 1 -> Or register with A . ORA M -> 10110110 -> 2 -> Or memory with A . ORI data -> 11110110 -> 2 -> Or immediate with A . CMP R -> 10111SSS -> 1 -> Compare register with A . CMP M -> 10111110 -> 2 -> Compare memory with A . CPI data -> 11111110 -> 2 -> Compare immediate with A - Rotate . RLC -> 00000111 -> 1 -> Rotate A left . RRC -> 00001111 -> 1 -> Rotate A right . RAL -> 00010111 -> 1 -> Rotate A left through carry . RAR -> 00011111 -> 1 -> Rotate A right through carry - Specials . CMA -> 00101111 -> 1 -> Complement A . CMC -> 00111111 -> 1 -> Complement carry . STC -> 00110111 -> 1 -> Set carry . DAA -> 00100111 -> x -> Decimal adjust A - Input / Output . IN port -> 11011011 -> 3 -> Input. Read byte from specified port and load to A . OUT port -> 11010011 -> 3 -> Output. Places contents of A onto data bus and the selected port number onto the address bus - Control . EI -> 11111011 -> 1 -> Enable interrupts . DI -> 11110011 -> 1 -> Disable interrupt . HLT -> 01110110 -> 1 -> Halt . NOP -> 00000000 -> 1 -> No operation - 8085 instructions . SIM -> .. -> Set interrupt mask . RIM -> .. -> Read interrupt mask . review AND/ANI operation, which sets the AC flag differently - 8051 instructions . interrupts . timers Instructions greater than 8 bits There are times when execution of instruction requires more information than 8 bits can convey. In such a case, two or three byte instructions are used. Successive instruction bytes are stored sequentially in adjacent memory locations, and the processor performs two or three fetches in succession to obtain the full instruction. The first byte retrieved is placed in the instruction register and subsequent bytes in temporary storage. The processor then proceeds with execution. Control circuitry Using clock inputs, the cc maintains proper sequence of events required to process a task. After an instruction is fetched and decoded, the cc issues appropriate signals (internal and external to CPU) for initiating proper processing action. Signals: . Data bus in (output) - indicates to external circuits that databus is in input mode . Ready (input) - indicates that valid data is available on the databus . Wait (output) - indicates CPU is in a wait_state . Write (output) - ?. Active low . Hold (input) - requests CPU to enter hold_state . Hold acknowledge (output) - indicates ... . Interrupt enable (output) - indicates content of interruptEn flipflop . Interrupts request (input) - ... . Reset (input) - when toggles to high, PC address is cleared to 0. The interruptEn and holdAck flipflops are also reset. Interrupts An interrupt request will cause the control circuitry to temporarily interrupt main program execution, jump to a special routine to service the interrupting device, then automatically return to the main program. A wait request is often issued by a memory or IO device that operates slower than the CPU. The cc will idle the CPU until the memory or IO port device frees the WAIT line. In principle, an interrupt is similar to a subroutine call, except that the jump is initiated externally rather than by the program Direct Memory Access In ordinary IO operations, the processor supervises data transfer. Info to bo be placed in memory is transferred from input device to processor, then from processor to memory (and vis a vis output). If a large quantity of data must be transferred, it's ideal to have the device interface with memory directly. To achieve this, the processor must temporarily suspend its operation during such a transfer to prevent conflict. This is achieved via a HOLD signal sent to CPU. Instruction Cycle Instruction fetch - instruction retrieved from memory (address from PC) and store in instruction register - once fetched, pc incremented Instruction decode - Instruction execution - A machine cycle is required each time the CPU accesses memory or an IO port. Thus duration of an instruction cycle consists of one machine cycle to fetch the instruction plus n machine cycles for subsequent mem / IO accesses needed to accomplish instruction. Stack pointer Decremented when data pushed onto stack, incremented when popped (i.e. grows downward) Registers PC, SP, BC, DE, HL, WZ Data bytes can be transferred from the internal bus (8bit) to a register via the register-select multiplexer. 16 bit transfers can proceed between the register array and address buffer Instruction register During an instruction fetch, the first byte of an instruction is transfered to the instruction register. This is in turn available to the instruction decoder. Data bus buffer Bidirectional 3-state Used to isolate the CPU's internal bus from the external data bus In output mode, internal bus content is loaded In input mode, external bus content is loaded Processor cycle Instruction cycle Time it takes to fetch and execute an instruction. Every instruction cycle consists of one to five machine cycles. Machine cycle Time it takes for CPU o access memory or an IO port. Fetching an instruction takes one machine cycle per byte Some instructions do not require additional machine cycles, while others do such as those reading/writing to memory/IO. Each machine cycle consists of three to five states Events with one machine cycle duration: instruction fetch, memory read, memory write, stack read, stack write, input, output, interrupt, halt States Smallest unit of processing activity. Duration is interval between two successive rising edges (i.e. one clock period) of the delta1 clock signal. Exceptions to the duration are wait_state, hold_state, and halt_state. All three depend on external events and thusly are of indeterminate length. Machine cycle identification The processor identifies the machine cycle in progress by transmitting a status byte during the first state of each machine cycle. D7 - Indicates that databus will be used for memory read D6 - Indicates address bus contains address of an input device and input data should be placed on the databus when DBIN (databusIn) is active D5 - Indicates CPU is in fetch cycle for first byte of instruction D4 - Indicates address bus contains address of an output device and the databus will contain the output data when WR (write) is active D3 - Indicates acknowledge of HALT instruction D2 - Indicates address bus holds the pushdown? address from SP D1 - When low, indicates operation in current machine cycle will be a memory write or output function. When high, memory read or input. D0 - Indicates acknowledge of interrupt request. Machine cycle 76543210 ------------- -------- Instruction fetch 10100010 Memory read 10000010 Memory write 00000000 Stack read 10000110 Stack write 00000100 Input read 01000010 Output write 00010000 Interrupt Ack 00100011 Halt Ack 10001010 Interrupt Ack while halt 00101011 State Transition Sequence ... ''' from memory import * from time import sleep class CPU(): def __init__( self, memory ): # Control signals (wip) ---------------------------------- self.halt = False # temp for now # self.hold = False # input, facilitates DMA by peripherals # IO self.IO_RD = 0 # output self.IO_WR = 0 # output # Peripherals -------------------------------------- self.memory = memory self.ioDevices = [ # index simulates port number # terminal, ] # Components --------------------------------------- self.addressBus = None # 16bit. However only using it for IO so treat as 8bit self.dataBus = None # 8bit, bidirectional self.register_AF = Register() # accumulator & flags self.register_BC = Register() # general purpose self.register_DE = Register() # general purpose self.register_HL = Register() # general purpose self.register_SP = Register() # stack pointer self.register_PC = Register() # program counter # Helpers ------------------------------------------ self.nBits = 8 self.largestPositiveInt = 2 ** ( self.nBits - 1 ) - 1 self.negativeOne = 2 ** self.nBits - 1 # two's complement self.flagALU_carry = 0 self.flagALU_parity = 0 self.flagALU_auxCarry = 0 self.flagALU_zero = 0 self.flagALU_sign = 0 self.instruction = None # Instruction decode ------------------------------- self.instructionLookup = { # Move, load, store --- # MOV R1,R2 -> 01DDDSSS -> Move register to register 0b01000000 : ( self.MOV_R1R2, ( self.register_BC, self.register_BC, True, True ) ), 0b01000001 : ( self.MOV_R1R2, ( self.register_BC, self.register_BC, True, False ) ), 0b01000010 : ( self.MOV_R1R2, ( self.register_BC, self.register_DE, True, True ) ), 0b01000011 : ( self.MOV_R1R2, ( self.register_BC, self.register_DE, True, False ) ), 0b01000100 : ( self.MOV_R1R2, ( self.register_BC, self.register_HL, True, True ) ), 0b01000101 : ( self.MOV_R1R2, ( self.register_BC, self.register_HL, True, False ) ), 0b01000111 : ( self.MOV_R1R2, ( self.register_BC, self.register_AF, True, True ) ), 0b01001000 : ( self.MOV_R1R2, ( self.register_BC, self.register_BC, False, True ) ), 0b01001001 : ( self.MOV_R1R2, ( self.register_BC, self.register_BC, False, False ) ), 0b01001010 : ( self.MOV_R1R2, ( self.register_BC, self.register_DE, False, True ) ), 0b01001011 : ( self.MOV_R1R2, ( self.register_BC, self.register_DE, False, False ) ), 0b01001100 : ( self.MOV_R1R2, ( self.register_BC, self.register_HL, False, True ) ), 0b01001101 : ( self.MOV_R1R2, ( self.register_BC, self.register_HL, False, False ) ), 0b01001111 : ( self.MOV_R1R2, ( self.register_BC, self.register_AF, False, True ) ), 0b01010000 : ( self.MOV_R1R2, ( self.register_DE, self.register_BC, True, True ) ), 0b01010001 : ( self.MOV_R1R2, ( self.register_DE, self.register_BC, True, False ) ), 0b01010010 : ( self.MOV_R1R2, ( self.register_DE, self.register_DE, True, True ) ), 0b01010011 : ( self.MOV_R1R2, ( self.register_DE, self.register_DE, True, False ) ), 0b01010100 : ( self.MOV_R1R2, ( self.register_DE, self.register_HL, True, True ) ), 0b01010101 : ( self.MOV_R1R2, ( self.register_DE, self.register_HL, True, False ) ), 0b01010111 : ( self.MOV_R1R2, ( self.register_DE, self.register_AF, True, True ) ), 0b01011000 : ( self.MOV_R1R2, ( self.register_DE, self.register_BC, False, True ) ), 0b01011001 : ( self.MOV_R1R2, ( self.register_DE, self.register_BC, False, False ) ), 0b01011010 : ( self.MOV_R1R2, ( self.register_DE, self.register_DE, False, True ) ), 0b01011011 : ( self.MOV_R1R2, ( self.register_DE, self.register_DE, False, False ) ), 0b01011100 : ( self.MOV_R1R2, ( self.register_DE, self.register_HL, False, True ) ), 0b01011101 : ( self.MOV_R1R2, ( self.register_DE, self.register_HL, False, False ) ), 0b01011111 : ( self.MOV_R1R2, ( self.register_DE, self.register_AF, False, True ) ), 0b01100000 : ( self.MOV_R1R2, ( self.register_HL, self.register_BC, True, True ) ), 0b01100001 : ( self.MOV_R1R2, ( self.register_HL, self.register_BC, True, False ) ), 0b01100010 : ( self.MOV_R1R2, ( self.register_HL, self.register_DE, True, True ) ), 0b01100011 : ( self.MOV_R1R2, ( self.register_HL, self.register_DE, True, False ) ), 0b01100100 : ( self.MOV_R1R2, ( self.register_HL, self.register_HL, True, True ) ), 0b01100101 : ( self.MOV_R1R2, ( self.register_HL, self.register_HL, True, False ) ), 0b01100111 : ( self.MOV_R1R2, ( self.register_HL, self.register_AF, True, True ) ), 0b01101000 : ( self.MOV_R1R2, ( self.register_HL, self.register_BC, False, True ) ), 0b01101001 : ( self.MOV_R1R2, ( self.register_HL, self.register_BC, False, False ) ), 0b01101010 : ( self.MOV_R1R2, ( self.register_HL, self.register_DE, False, True ) ), 0b01101011 : ( self.MOV_R1R2, ( self.register_HL, self.register_DE, False, False ) ), 0b01101100 : ( self.MOV_R1R2, ( self.register_HL, self.register_HL, False, True ) ), 0b01101101 : ( self.MOV_R1R2, ( self.register_HL, self.register_HL, False, False ) ), 0b01101111 : ( self.MOV_R1R2, ( self.register_HL, self.register_AF, False, True ) ), 0b01111000 : ( self.MOV_R1R2, ( self.register_AF, self.register_BC, True, True ) ), 0b01111001 : ( self.MOV_R1R2, ( self.register_AF, self.register_BC, True, False ) ), 0b01111010 : ( self.MOV_R1R2, ( self.register_AF, self.register_DE, True, True ) ), 0b01111011 : ( self.MOV_R1R2, ( self.register_AF, self.register_DE, True, False ) ), 0b01111100 : ( self.MOV_R1R2, ( self.register_AF, self.register_HL, True, True ) ), 0b01111101 : ( self.MOV_R1R2, ( self.register_AF, self.register_HL, True, False ) ), 0b01111111 : ( self.MOV_R1R2, ( self.register_AF, self.register_AF, True, True ) ), # MOV M,R -> 01110SSS -> Move register to memory 0b01110000 : ( self.MOV_MR, ( self.register_BC, True ) ), 0b01110001 : ( self.MOV_MR, ( self.register_BC, False ) ), 0b01110010 : ( self.MOV_MR, ( self.register_DE, True ) ), 0b01110011 : ( self.MOV_MR, ( self.register_DE, False ) ), 0b01110100 : ( self.MOV_MR, ( self.register_HL, True ) ), 0b01110101 : ( self.MOV_MR, ( self.register_HL, False ) ), 0b01110111 : ( self.MOV_MR, ( self.register_AF, True ) ), # MOV R,M -> 01DDD110 -> Move memory to register 0b01000110 : ( self.MOV_RM, ( self.register_BC, True ) ), 0b01001110 : ( self.MOV_RM, ( self.register_BC, False ) ), 0b01010110 : ( self.MOV_RM, ( self.register_DE, True ) ), 0b01011110 : ( self.MOV_RM, ( self.register_DE, False ) ), 0b01100110 : ( self.MOV_RM, ( self.register_HL, True ) ), 0b01101110 : ( self.MOV_RM, ( self.register_HL, False ) ), 0b01111110 : ( self.MOV_RM, ( self.register_AF, True ) ), # MVI R,data -> 00DDD110 -> Move immediate to register 0b00000110 : ( self.MVI_RData, ( self.register_BC, True ) ), 0b00001110 : ( self.MVI_RData, ( self.register_BC, False ) ), 0b00010110 : ( self.MVI_RData, ( self.register_DE, True ) ), 0b00011110 : ( self.MVI_RData, ( self.register_DE, False ) ), 0b00100110 : ( self.MVI_RData, ( self.register_HL, True ) ), 0b00101110 : ( self.MVI_RData, ( self.register_HL, False ) ), 0b00111110 : ( self.MVI_RData, ( self.register_AF, True ) ), # MVI M,data -> 00110110 -> Move immediate to memory 0b00110110 : ( self.MVI_MData, () ), # LXI BC,data16 -> 00000001 -> Load immediate to register pair B & C 0b00000001 : ( self.LXI_RData16, ( self.register_BC, ) ), # LXI DE,data16 -> 00010001 -> Load immediate to register pair D & E 0b00010001 : ( self.LXI_RData16, ( self.register_DE, ) ), # LXI HL,data16 -> 00100001 -> Load immediate to register pair H & L 0b00100001 : ( self.LXI_RData16, ( self.register_HL, ) ), # LXI SP,data16 -> 00110001 -> Load immediate to stack pointer 0b00110001 : ( self.LXI_RData16, ( self.register_SP, ) ), # LDA addr -> 00111010 -> Load A direct 0b00111010 : ( self.LDA_Addr, () ), # STA addr -> 00110010 -> Store A direct 0b00110010 : ( self.STA_Addr, () ), # LHLD addr -> 00101010 -> Load H & L direct 0b00101010 : ( self.LHLD_Addr, () ), # SHLD addr -> 00100010 -> Store H & L direct 0b00100010 : ( self.SHLD_Addr, () ), # LDAX BC -> 00001010 -> Load A indirect # LDAX DE -> 00011010 -> Load A indirect 0b00001010 : ( self.LDAX_R, ( self.register_BC, ) ), 0b00011010 : ( self.LDAX_R, ( self.register_DE, ) ), # STAX BC -> 00000010 -> Store A indirect # STAX DE -> 00010010 -> Store A indirect 0b00000010 : ( self.STAX_R, ( self.register_BC, ) ), 0b00010010 : ( self.STAX_R, ( self.register_DE, ) ), # XCHG -> 11101011 -> Exchange register pair D & E with H & L 0b11101011 : ( self.XCHG, () ), # Stack ops --- # PUSH BC -> 11000101 -> Push register pair B & C on stack 0b11000101 : ( self.PUSH_R, ( self.register_BC, ) ), # PUSH DE -> 11010101 -> Push register pair D & E on stack 0b11010101 : ( self.PUSH_R, ( self.register_DE, ) ), # PUSH HL -> 11100101 -> Push register pair H & L on stack 0b11100101 : ( self.PUSH_R, ( self.register_HL, ) ), # PUSH PSW -> 11110101 -> Push A and Flags on stack 0b11110101 : ( self.PUSH_PSW, () ), # POP BC -> 11000001 -> Pop top of stack onto register pair B & C 0b11000001 : ( self.POP_R, ( self.register_BC, ) ), # POP DE -> 11010001 -> Pop top of stack onto register pair D & E 0b11010001 : ( self.POP_R, ( self.register_DE, ) ), # POP HL -> 11100001 -> Pop top of stack onto register pair H & L 0b11100001 : ( self.POP_R, ( self.register_HL, ) ), # POP PSW -> 11110001 -> Pop top of stack onto A and Flags 0b11110001 : ( self.POP_PSW, () ), # XTHL -> 11100011 -> Exchange H & L with contents of location specified by stack pointer 0b11100011 : ( self.XTHL, () ), # SPHL -> 11111001 -> H & L to stack pointer 0b11111001 : ( self.SPHL, () ), # Jump --- # JMP addr -> 11000011 -> Jump unconditional 0b11000011 : ( self.JMP, () ), # JNZ addr -> 11000010 -> Jump on not zero 0b11000010 : ( self.JNZ, () ), # JZ addr -> 11001010 -> Jump on zero 0b11001010 : ( self.JZ, () ), # JNC addr -> 11010010 -> Jump on no carry 0b11010010 : ( self.JNC, () ), # JC addr -> 11011010 -> Jump on carry 0b11011010 : ( self.JC, () ), # JPO addr -> 11100010 -> Jump on parity odd 0b11100010 : ( self.JPO, () ), # JPE addr -> 11101010 -> Jump on parity even 0b11101010 : ( self.JPE, () ), # JP addr -> 11110010 -> Jump on positive 0b11110010 : ( self.JP, () ), # JM addr -> 11111010 -> Jump on minus 0b11111010 : ( self.JM, () ), # PCHL -> 11101001 -> H & L to program counter 0b11101001 : ( self.PCHL, () ), # Call --- # CALL addr -> 11001101 -> Call unconditional 0b11001101 : ( self.CALL, () ), # CNZ addr -> 11000100 -> Call on not zero 0b11000100 : ( self.CNZ, () ), # CZ addr -> 11001100 -> Call on zero 0b11001100 : ( self.CZ, () ), # CNC addr -> 11010100 -> Call on no carry 0b11010100 : ( self.CNC, () ), # CC addr -> 11011100 -> Call on carry 0b11011100 : ( self.CC, () ), # CPO addr -> 11100100 -> Call on parity odd 0b11100100 : ( self.CPO, () ), # CPE addr -> 11101100 -> Call on parity even 0b11101100 : ( self.CPE, () ), # CP addr -> 11110100 -> Call on positive 0b11110100 : ( self.CP, () ), # CM addr -> 11111100 -> Call on minus 0b11111100 : ( self.CM, () ), # Return --- # RET -> 11001001 -> Return unconditional 0b11001001 : ( self.RET, () ), # RNZ -> 11000000 -> Return on not zero 0b11000000 : ( self.RNZ, () ), # RZ -> 11001000 -> Return on zero 0b11001000 : ( self.RZ, () ), # RNC -> 11010000 -> Return on no carry 0b11010000 : ( self.RNC, () ), # RC -> 11011000 -> Return on carry 0b11011000 : ( self.RC, () ), # RPO -> 11100000 -> Return on parity odd 0b11100000 : ( self.RPO, () ), # RPE -> 11101000 -> Return on parity even 0b11101000 : ( self.RPE, () ), # RP -> 11110000 -> Return on positive 0b11110000 : ( self.RP, () ), # RM -> 11111000 -> Return on minus 0b11111000 : ( self.RM, () ), # Restart --- # RST -> 11NNN111 -> Restart 0b11000111 : ( self.RST, ( 0, ) ), 0b11001111 : ( self.RST, ( 1, ) ), 0b11010111 : ( self.RST, ( 2, ) ), 0b11011111 : ( self.RST, ( 3, ) ), 0b11100111 : ( self.RST, ( 4, ) ), 0b11101111 : ( self.RST, ( 5, ) ), 0b11110111 : ( self.RST, ( 6, ) ), 0b11111111 : ( self.RST, ( 7, ) ), # Increment and decrement --- # INR R -> 00DDD100 -> Increment register 0b00000100 : ( self.INR_R, ( self.register_BC, True ) ), 0b00001100 : ( self.INR_R, ( self.register_BC, False ) ), 0b00010100 : ( self.INR_R, ( self.register_DE, True ) ), 0b00011100 : ( self.INR_R, ( self.register_DE, False ) ), 0b00100100 : ( self.INR_R, ( self.register_HL, True ) ), 0b00101100 : ( self.INR_R, ( self.register_HL, False ) ), 0b00111100 : ( self.INR_R, ( self.register_AF, True ) ), # INR M -> 00110100 -> Increment memory 0b00110100 : ( self.INR_M, () ), # INX BC -> 00000011 -> Increment B & C registers 0b00000011 : ( self.INX_R, ( self.register_BC, ) ), # INX DE -> 00010011 -> Increment D & E registers 0b00010011 : ( self.INX_R, ( self.register_DE, ) ), # INX HL -> 00100011 -> Increment H & L registers 0b00100011 : ( self.INX_R, ( self.register_HL, ) ), # INX SP -> 00110011 -> Increment stack pointer 0b00110011 : ( self.INX_R, ( self.register_SP, ) ), # DCR R -> 00DDD101 -> Decrement register 0b00000101 : ( self.DCR_R, ( self.register_BC, True ) ), 0b00001101 : ( self.DCR_R, ( self.register_BC, False ) ), 0b00010101 : ( self.DCR_R, ( self.register_DE, True ) ), 0b00011101 : ( self.DCR_R, ( self.register_DE, False ) ), 0b00100101 : ( self.DCR_R, ( self.register_HL, True ) ), 0b00101101 : ( self.DCR_R, ( self.register_HL, False ) ), 0b00111101 : ( self.DCR_R, ( self.register_AF, True ) ), # DCR M -> 00110101 -> Decrement memory 0b00110101 : ( self.DCR_M, () ), # DCX BC -> 00001011 -> Decrement B & C registers 0b00001011 : ( self.DCX_R, ( self.register_BC, ) ), # DCX DE -> 00011011 -> Decrement D & E registers 0b00011011 : ( self.DCX_R, ( self.register_DE, ) ), # DCX HL -> 00101011 -> Decrement H & L registers 0b00101011 : ( self.DCX_R, ( self.register_HL, ) ), # DCX SP -> 00111011 -> Decrement stack pointer 0b00111011 : ( self.DCX_R, ( self.register_SP, ) ), # Add --- # ADD R -> 10000SSS -> Add register to A 0b10000000 : ( self.ADD_R, ( self.register_BC, True ) ), 0b10000001 : ( self.ADD_R, ( self.register_BC, False ) ), 0b10000010 : ( self.ADD_R, ( self.register_DE, True ) ), 0b10000011 : ( self.ADD_R, ( self.register_DE, False ) ), 0b10000100 : ( self.ADD_R, ( self.register_HL, True ) ), 0b10000101 : ( self.ADD_R, ( self.register_HL, False ) ), 0b10000111 : ( self.ADD_R, ( self.register_AF, True ) ), # ADD M -> 10000110 -> Add memory to A 0b10000110 : ( self.ADD_M, () ), # ADI data -> 11000110 -> Add immediate to A 0b11000110 : ( self.ADI_Data, () ), # ADC R -> 10001SSS -> Add register to A with carry 0b10001000 : ( self.ADC_R, ( self.register_BC, True ) ), 0b10001001 : ( self.ADC_R, ( self.register_BC, False ) ), 0b10001010 : ( self.ADC_R, ( self.register_DE, True ) ), 0b10001011 : ( self.ADC_R, ( self.register_DE, False ) ), 0b10001100 : ( self.ADC_R, ( self.register_HL, True ) ), 0b10001101 : ( self.ADC_R, ( self.register_HL, False ) ), 0b10001111 : ( self.ADC_R, ( self.register_AF, True ) ), # ADC M -> 10001110 -> Add memory to A with carry 0b10001110 : ( self.ADC_M, () ), # ACI data -> 11001110 -> Add immediate to A with carry 0b11001110 : ( self.ACI_Data, () ), # DAD BC -> 00001001 -> Add B & C to H & L 0b00001001 : ( self.DAD_R, ( self.register_BC, ) ), # DAD DE -> 00011001 -> Add D & E to H & L 0b00011001 : ( self.DAD_R, ( self.register_DE, ) ), # DAD HL -> 00101001 -> Add H & L to H & L 0b00101001 : ( self.DAD_R, ( self.register_HL, ) ), # DAD SP -> 00111001 -> Add stack pointer to H & L 0b00111001 : ( self.DAD_R, ( self.register_SP, ) ), # Subtract --- # SUB R -> 10010SSS -> Subtract register from A 0b10010000 : ( self.SUB_R, ( self.register_BC, True ) ), 0b10010001 : ( self.SUB_R, ( self.register_BC, False ) ), 0b10010010 : ( self.SUB_R, ( self.register_DE, True ) ), 0b10010011 : ( self.SUB_R, ( self.register_DE, False ) ), 0b10010100 : ( self.SUB_R, ( self.register_HL, True ) ), 0b10010101 : ( self.SUB_R, ( self.register_HL, False ) ), 0b10010111 : ( self.SUB_R, ( self.register_AF, True ) ), # SUB M -> 10010110 -> Subtract memory from A 0b10010110 : ( self.SUB_M, () ), # SUI data -> 11010110 -> Subtract immediate from A 0b11010110 : ( self.SUI_Data, () ), # SBB R -> 10011SSS -> Subtract register from A with borrow 0b10011000 : ( self.SBB_R, ( self.register_BC, True ) ), 0b10011001 : ( self.SBB_R, ( self.register_BC, False ) ), 0b10011010 : ( self.SBB_R, ( self.register_DE, True ) ), 0b10011011 : ( self.SBB_R, ( self.register_DE, False ) ), 0b10011100 : ( self.SBB_R, ( self.register_HL, True ) ), 0b10011101 : ( self.SBB_R, ( self.register_HL, False ) ), 0b10011111 : ( self.SBB_R, ( self.register_AF, True ) ), # SBB M -> 10011110 -> Subtract memory from A with borrow 0b10011110 : ( self.SBB_M, () ), # SBI data -> 11011110 -> Subtract immediate from A with borrow 0b11011110 : ( self.SBI_Data, () ), # Logical --- # ANA R -> 10100SSS -> And register with A 0b10100000 : ( self.ANA_R, ( self.register_BC, True ) ), 0b10100001 : ( self.ANA_R, ( self.register_BC, False ) ), 0b10100010 : ( self.ANA_R, ( self.register_DE, True ) ), 0b10100011 : ( self.ANA_R, ( self.register_DE, False ) ), 0b10100100 : ( self.ANA_R, ( self.register_HL, True ) ), 0b10100101 : ( self.ANA_R, ( self.register_HL, False ) ), 0b10100111 : ( self.ANA_R, ( self.register_AF, True ) ), # ANA M -> 10100110 -> And memory with A 0b10100110 : ( self.ANA_M, () ), # ANI data -> 11100110 -> And immediate with A 0b11100110 : ( self.ANI_Data, () ), # XRA R -> 10101SSS -> Exclusive or register with A 0b10101000 : ( self.XRA_R, ( self.register_BC, True ) ), 0b10101001 : ( self.XRA_R, ( self.register_BC, False ) ), 0b10101010 : ( self.XRA_R, ( self.register_DE, True ) ), 0b10101011 : ( self.XRA_R, ( self.register_DE, False ) ), 0b10101100 : ( self.XRA_R, ( self.register_HL, True ) ), 0b10101101 : ( self.XRA_R, ( self.register_HL, False ) ), 0b10101111 : ( self.XRA_R, ( self.register_AF, True ) ), # XRA M -> 10101110 -> Exclusive or memory with A 0b10101110 : ( self.XRA_M, () ), # XRI data -> 11101110 -> Exclusive or immediate with A 0b11101110 : ( self.XRI_Data, () ), # ORA R -> 10110SSS -> Or register with A 0b10110000 : ( self.ORA_R, ( self.register_BC, True ) ), 0b10110001 : ( self.ORA_R, ( self.register_BC, False ) ), 0b10110010 : ( self.ORA_R, ( self.register_DE, True ) ), 0b10110011 : ( self.ORA_R, ( self.register_DE, False ) ), 0b10110100 : ( self.ORA_R, ( self.register_HL, True ) ), 0b10110101 : ( self.ORA_R, ( self.register_HL, False ) ), 0b10110111 : ( self.ORA_R, ( self.register_AF, True ) ), # ORA M -> 10110110 -> Or memory with A 0b10110110 : ( self.ORA_M, () ), # ORI data -> 11110110 -> Or immediate with A 0b11110110 : ( self.ORI_Data, () ), # CMP R -> 10111SSS -> Compare register with A 0b10111000 : ( self.CMP_R, ( self.register_BC, True ) ), 0b10111001 : ( self.CMP_R, ( self.register_BC, False ) ), 0b10111010 : ( self.CMP_R, ( self.register_DE, True ) ), 0b10111011 : ( self.CMP_R, ( self.register_DE, False ) ), 0b10111100 : ( self.CMP_R, ( self.register_HL, True ) ), 0b10111101 : ( self.CMP_R, ( self.register_HL, False ) ), 0b10111111 : ( self.CMP_R, ( self.register_AF, True ) ), # CMP M -> 10111110 -> Compare memory with A 0b10111110 : ( self.CMP_M, () ), # CPI data -> 11111110 -> Compare immediate with A 0b11111110 : ( self.CPI_Data, () ), # Rotate --- # RLC -> 00000111 -> Rotate A left 0b00000111 : ( self.RLC, () ), # RRC -> 00001111 -> Rotate A right 0b00001111 : ( self.RRC, () ), # RAL -> 00010111 -> Rotate A left through carry 0b00010111 : ( self.RAL, () ), # RAR -> 00011111 -> Rotate A right through carry 0b00011111 : ( self.RAR, () ), # Specials --- # CMA -> 00101111 -> Complement A 0b00101111 : ( self.CMA, () ), # CMC -> 00111111 -> Complement carry 0b00111111 : ( self.CMC, () ), # STC -> 00110111 -> Set carry 0b00110111 : ( self.STC, () ), # DAA -> 00100111 -> Decimal adjust A 0b00100111 : ( self.DAA, () ), # Input / Output --- # IN port -> 11011011 -> Input 0b11011011 : ( self.IN, () ), # OUT port -> 11010011 -> Output 0b11010011 : ( self.OUT, () ), # Control --- # EI -> 11111011 -> Enable interrupts 0b11111011 : ( self.EI, () ), # DI -> 11110011 -> Disable interrupt 0b11110011 : ( self.DI, () ), # HLT -> 01110110 -> Halt 0b01110110 : ( self.HLT, () ), # NOP -> 00000000 -> No operation 0b00000000 : ( self.NOP, () ), } # Serial simulation ---------------------------------------- def receive( self ): # IN command # Bypass need for UART and get data directly from IO device ioDevice = self.ioDevices[ self.addressBus ] data = ioDevice.transmit() return data def transmit( self, data ): # OUT command # Bypass need for UART and send data directly to IO device ioDevice = self.ioDevices[ self.addressBus ] ioDevice.receive( data ) def jumpToISR( self, loc ): # Simulate interrupt handling self.RST( loc ) # Helpers -------------------------------------------------- def toWord( self, lo, hi ): return ( hi << 8 ) | lo def getUpperByte( self, x ): return ( x >> 8 ) & 0xff def getLowerByte( self, x ): return x & 0xff def read_A( self ): return self.register_AF.readUpperByte() def write_A( self, value ): self.register_AF.writeUpperByte( value ) def read_M( self, address ): return self.memory[ address ] def write_M( self, address, value ): self.memory[ address ] = value def toBin( self, x ): return bin( x )[ 2 : ].zfill( self.nBits ) def toInt( self, x ): return int( x, 2 ) def getParity( self, x ): # modulo 2 sum of bits return sum( map( int, self.toBin( x ) ) ) % 2 def negate( self, x ): # two's complement if x == 0 : return x else: return ( abs( x ) ^ self.negativeOne ) + 1 def add( self, a, b, c = 0 ): z = a + b + c # Update carry flag if z > self.negativeOne: self.flagALU_carry = 1 else: self.flagALU_carry = 0 z &= self.negativeOne # discard overflow bits # Update parity, zero, sign flags self.updateALUFlags_PZS( z ) return z def sub( self, a, b, c = 0 ): z = a + self.negate( b + c ) # Update carry flag # https://retrocomputing.stackexchange.com/a/5956/ if ( b + c ) > a: self.flagALU_carry = 1 else: self.flagALU_carry = 0 z &= self.negativeOne # discard overflow bits # Update parity, zero, sign flags self.updateALUFlags_PZS( z ) return z def and_( self, a, b ): z = a & b # Update carry flag self.flagALU_carry = 0 # Update parity, zero, sign flags self.updateALUFlags_PZS( z ) return z def or_( self, a, b ): z = a | b # Update carry flag self.flagALU_carry = 0 # Update parity, zero, sign flags self.updateALUFlags_PZS( z ) return z def xor_( self, a, b ): z = a ^ b # Update carry flag self.flagALU_carry = 0 # Update parity, zero, sign flags self.updateALUFlags_PZS( z ) return z def skip2Bytes( self ): self.fetchInstruction() self.fetchInstruction() # Flags ---------------------------------------------------- def genByteFromALUFlags( self ): # SZ0A0P1C (Order as seen in pg.4-13 of 8080 User Manual) b = self.flagALU_carry b |= self.flagALU_parity << 2 b |= self.flagALU_auxCarry << 4 b |= self.flagALU_zero << 6 b |= self.flagALU_sign << 7 return b def setALUFlagsFromByte( self, b ): self.flagALU_carry = b & 1 self.flagALU_parity = ( b >> 2 ) & 1 self.flagALU_auxCarry = ( b >> 4 ) & 1 self.flagALU_zero = ( b >> 6 ) & 1 self.flagALU_sign = ( b >> 7 ) & 1 def updateALUFlags_Register( self ): self.register_AF.writeLowerByte( self.genByteFromALUFlags() ) def updateALUFlags_Variables( self ): self.setALUFlagsFromByte( self.register_AF.readLowerByte() ) def updateALUFlags_PZS( self, value ): # Called after arithmetic or logical operation performed by ALU # i.e. flags set according to value ALU outputs self.flagALU_parity = 0 self.flagALU_zero = 0 self.flagALU_sign = 0 if self.getParity( value ) == 0: self.flagALU_parity = 1 if value == 0: self.flagALU_zero = 1 if value > self.largestPositiveInt: # two's complement self.flagALU_sign = 1 self.updateALUFlags_Register() # Run ------------------------------------------------------ def run( self ): while not self.halt: self.fetchInstruction() self.executeInstruction() print( '8080 has halted' ) def step( self ): self.fetchInstruction() self.executeInstruction() # Fetch Instruction ---------------------------------------- def fetchInstruction( self ): instructionAddress = self.register_PC.read() self.register_PC.write( instructionAddress + 1 ) # increment self.instruction = self.memory[ instructionAddress ] # print( instructionAddress, self.instruction ) return self.instruction # Execute Instruction -------------------------------------- def executeInstruction( self ): func, args = self.instructionLookup[ self.instruction ] # print( '>', func.__name__ ) # print( func, args ) func( *args ) # Move, load, store --- # MOV R1,R2 -> 01DDDSSS -> 1 -> Move register to register def MOV_R1R2( self, R1, R2, R1_upper, R2_upper ): if R1_upper: if R2_upper: R1.writeUpperByte( R2.readUpperByte() ) else: R1.writeUpperByte( R2.readLowerByte() ) else: if R2_upper: R1.writeLowerByte( R2.readUpperByte() ) else: R1.writeLowerByte( R2.readLowerByte() ) # MOV M,R -> 01110SSS -> 2 -> Move register to memory def MOV_MR( self, R, R_upper ): address = self.register_HL.read() if R_upper: self.write_M( address, R.readUpperByte() ) else: self.write_M( address, R.readLowerByte() ) # MOV R,M -> 01DDD110 -> 2 -> Move memory to register def MOV_RM( self, R, R_upper ): address = self.register_HL.read() if R_upper: R.writeUpperByte( self.read_M( address ) ) else: R.writeLowerByte( self.read_M( address ) ) # MVI R,data -> 00DDD110 -> 2 -> Move immediate to register def MVI_RData( self, R, R_upper ): byte2 = self.fetchInstruction() if R_upper: R.writeUpperByte( byte2 ) else: R.writeLowerByte( byte2 ) # MVI M,data -> 00110110 -> 3 -> Move immediate to memory def MVI_MData( self ): byte2 = self.fetchInstruction() address = self.register_HL.read() self.write_M( address, byte2 ) # LXI BC,data16 -> 00000001 -> 3 -> Load immediate to register pair B & C # LXI DE,data16 -> 00010001 -> 3 -> Load immediate to register pair D & E # LXI HL,data16 -> 00100001 -> 3 -> Load immediate to register pair H & L # LXI SP,data16 -> 00110001 -> 3 -> Load immediate to stack pointer def LXI_RData16( self, R ): byte2 = self.fetchInstruction() byte3 = self.fetchInstruction() R.writeLowerByte( byte2 ) R.writeUpperByte( byte3 ) # LDA addr -> 00111010 -> 4 -> Load A direct def LDA_Addr( self ): byte2 = self.fetchInstruction() byte3 = self.fetchInstruction() address = self.toWord( byte2, byte3 ) self.write_A( self.read_M( address ) ) # STA addr -> 00110010 -> 4 -> Store A direct def STA_Addr( self ): byte2 = self.fetchInstruction() byte3 = self.fetchInstruction() address = self.toWord( byte2, byte3 ) self.write_M( address, self.read_A() ) # LHLD addr -> 00101010 -> 5 -> Load H & L direct def LHLD_Addr( self ): byte2 = self.fetchInstruction() byte3 = self.fetchInstruction() address = self.toWord( byte2, byte3 ) self.register_HL.writeLowerByte( self.read_M( address ) ) address += 1 self.register_HL.writeUpperByte( self.read_M( address ) ) # SHLD addr -> 00100010 -> 5 -> Store H & L direct def SHLD_Addr( self ): byte2 = self.fetchInstruction() byte3 = self.fetchInstruction() address = self.toWord( byte2, byte3 ) self.write_M( address, self.register_HL.readLowerByte() ) address += 1 self.write_M( address, self.register_HL.readUpperByte() ) # LDAX BC -> 00001010 -> 2 -> Load A indirect # LDAX DE -> 00011010 -> 2 -> Load A indirect def LDAX_R( self, R ): address = R.read() self.write_A( self.read_M( address ) ) # STAX BC -> 00000010 -> 2 -> Store A indirect # STAX DE -> 00010010 -> 2 -> Store A indirect def STAX_R( self, R ): address = R.read() self.write_M( address, self.read_A() ) # XCHG -> 11101011 -> 1 -> Exchange register pair D & E with H & L def XCHG( self ): temp = self.register_HL.read() self.register_HL.write( self.register_DE.read() ) self.register_DE.write( temp ) # Stack ops --- # PUSH BC -> 11000101 -> 3 -> Push register pair B & C on stack # PUSH DE -> 11010101 -> 3 -> Push register pair D & E on stack # PUSH HL -> 11100101 -> 3 -> Push register pair H & L on stack def PUSH_R( self, R ): SP = self.register_SP.read() self.write_M( SP - 1, R.readUpperByte() ) self.write_M( SP - 2, R.readLowerByte() ) self.register_SP.write( SP - 2 ) # PUSH PSW -> 11110101 -> 3 -> Push A and Flags on stack def PUSH_PSW( self ): SP = self.register_SP.read() self.write_M( SP - 1, self.register_AF.readUpperByte() ) self.write_M( SP - 2, self.register_AF.readLowerByte() ) self.register_SP.write( SP - 2 ) # POP BC -> 11000001 -> 3 -> Pop top of stack onto register pair B & C # POP DE -> 11010001 -> 3 -> Pop top of stack onto register pair D & E # POP HL -> 11100001 -> 3 -> Pop top of stack onto register pair H & L def POP_R( self, R ): SP = self.register_SP.read() R.writeLowerByte( self.read_M( SP ) ) R.writeUpperByte( self.read_M( SP + 1 ) ) self.register_SP.write( SP + 2 ) # POP PSW -> 11110001 -> 3 -> Pop top of stack onto A and Flags def POP_PSW( self ): SP = self.register_SP.read() self.register_AF.writeLowerByte( self.read_M( SP ) ) self.register_AF.writeUpperByte( self.read_M( SP + 1 ) ) self.register_SP.write( SP + 2 ) self.updateALUFlags_Variables() # XTHL -> 11100011 -> 5 -> Exchange H & L with contents of location specified by stack pointer def XTHL( self ): SP = self.register_SP.read() temp_lo = self.read_M( SP ) temp_hi = self.read_M( SP + 1 ) self.write_M( SP, self.register_HL.readLowerByte() ) self.write_M( SP + 1, self.register_HL.readUpperByte() ) self.register_HL.writeLowerByte( temp_lo ) self.register_HL.writeUpperByte( temp_hi ) # SPHL -> 11111001 -> 1 -> H & L to stack pointer def SPHL( self ): self.register_SP.write( self.register_HL.read() ) # Jump --- # JMP addr -> 11000011 -> 3 -> Jump unconditional def JMP( self ): byte2 = self.fetchInstruction() byte3 = self.fetchInstruction() address = self.toWord( byte2, byte3 ) self.register_PC.write( address ) # JNZ addr -> 11000010 -> 3 -> Jump on not zero def JNZ( self ): if self.flagALU_zero == 0: self.JMP() else: self.skip2Bytes() # JZ addr -> 11001010 -> 3 -> Jump on zero def JZ( self ): if self.flagALU_zero == 1: self.JMP() else: self.skip2Bytes() # JNC addr -> 11010010 -> 3 -> Jump on no carry def JNC( self ): if self.flagALU_carry == 0: self.JMP() else: self.skip2Bytes() # JC addr -> 11011010 -> 3 -> Jump on carry def JC( self ): if self.flagALU_carry == 1: self.JMP() else: self.skip2Bytes() # JPO addr -> 11100010 -> 3 -> Jump on parity odd def JPO( self ): if self.flagALU_parity == 0: self.JMP() else: self.skip2Bytes() # JPE addr -> 11101010 -> 3 -> Jump on parity even def JPE( self ): if self.flagALU_parity == 1: self.JMP() else: self.skip2Bytes() # JP addr -> 11110010 -> 3 -> Jump on positive def JP( self ): if self.flagALU_sign == 0: self.JMP() else: self.skip2Bytes() # JM addr -> 11111010 -> 3 -> Jump on minus def JM( self ): if self.flagALU_sign == 1: self.JMP() else: self.skip2Bytes() # PCHL -> 11101001 -> 1 -> H & L to program counter def PCHL( self ): self.register_PC.write( self.register_HL.read() ) # Call --- # CALL addr -> 11001101 -> 5 -> Call unconditional def CALL( self ): byte2 = self.fetchInstruction() byte3 = self.fetchInstruction() # Save return address onto stack SP = self.register_SP.read() self.write_M( SP - 1, self.register_PC.readUpperByte() ) self.write_M( SP - 2, self.register_PC.readLowerByte() ) self.register_SP.write( SP - 2 ) # Goto called address address = self.toWord( byte2, byte3 ) self.register_PC.write( address ) # CNZ addr -> 11000100 -> 3/5 -> Call on not zero def CNZ( self ): if self.flagALU_zero == 0: self.CALL() else: self.skip2Bytes() # CZ addr -> 11001100 -> 3/5 -> Call on zero def CZ( self ): if self.flagALU_zero == 1: self.CALL() else: self.skip2Bytes() # CNC addr -> 11010100 -> 3/5 -> Call on no carry def CNC( self ): if self.flagALU_carry == 0: self.CALL() else: self.skip2Bytes() # CC addr -> 11011100 -> 3/5 -> Call on carry def CC( self ): if self.flagALU_carry == 1: self.CALL() else: self.skip2Bytes() # CPO addr -> 11100100 -> 3/5 -> Call on parity odd def CPO( self ): if self.flagALU_parity == 0: self.CALL() else: self.skip2Bytes() # CPE addr -> 11101100 -> 3/5 -> Call on parity even def CPE( self ): if self.flagALU_parity == 1: self.CALL() else: self.skip2Bytes() # CP addr -> 11110100 -> 3/5 -> Call on positive def CP( self ): if self.flagALU_sign == 0: self.CALL() else: self.skip2Bytes() # CM addr -> 11111100 -> 3/5 -> Call on minus def CM( self ): if self.flagALU_sign == 1: self.CALL() else: self.skip2Bytes() # Return --- # RET -> 11001001 -> 3 -> Return def RET( self ): # Goto return address saved on stack SP = self.register_SP.read() self.register_PC.writeLowerByte( self.read_M( SP ) ) self.register_PC.writeUpperByte( self.read_M( SP + 1 ) ) self.register_SP.write( SP + 2 ) # RNZ -> 11000000 -> 1/3 -> Return on not zero def RNZ( self ): if self.flagALU_zero == 0: self.RET() # RZ -> 11001000 -> 1/3 -> Return on zero def RZ( self ): if self.flagALU_zero == 1: self.RET() # RNC -> 11010000 -> 1/3 -> Return on no carry def RNC( self ): if self.flagALU_carry == 0: self.RET() # RC -> 11011000 -> 1/3 -> Return on carry def RC( self ): if self.flagALU_carry == 1: self.RET() # RPO -> 11100000 -> 1/3 -> Return on parity odd def RPO( self ): if self.flagALU_parity == 0: self.RET() # RPE -> 11101000 -> 1/3 -> Return on parity even def RPE( self ): if self.flagALU_parity == 1: self.RET() # RP -> 11110000 -> 1/3 -> Return on positive def RP( self ): if self.flagALU_sign == 0: self.RET() # RM -> 11111000 -> 1/3 -> Return on minus def RM( self ): if self.flagALU_sign == 1: self.RET() # Restart --- # RST -> 11NNN111 -> 3 -> Restart def RST( self, NNN ): # Save return address onto stack SP = self.register_SP.read() self.write_M( SP - 1, self.register_PC.readUpperByte() ) self.write_M( SP - 2, self.register_PC.readLowerByte() ) self.register_SP.write( SP - 2 ) # Goto address 8 * NNN self.register_PC.write( 8 * NNN ) # Increment and decrement --- # INR R -> 00DDD100 -> 1 -> Increment register def INR_R( self, R, R_upper ): savedCarry = self.flagALU_carry # according to docs, all condition flags affected except carry if R_upper: z = self.add( R.readUpperByte(), 1 ) R.writeUpperByte( z ) else: z = self.add( R.readLowerByte(), 1 ) R.writeLowerByte( z ) self.flagALU_carry = savedCarry self.updateALUFlags_Register() # INR M -> 00110100 -> 3 -> Increment memory def INR_M( self ): savedCarry = self.flagALU_carry # according to docs, all condition flags affected except carry address = self.register_HL.read() z = self.add( self.read_M( address ), 1 ) self.write_M( address, z ) self.flagALU_carry = savedCarry self.updateALUFlags_Register() # INX BC -> 00000011 -> 1 -> Increment B & C register pair # INX DE -> 00010011 -> 1 -> Increment D & E register pair # INX HL -> 00100011 -> 1 -> Increment H & L register pair # INX SP -> 00110011 -> 1 -> Increment stack pointer def INX_R( self, R ): z = R.read() + 1 # according to docs, no ALU flags are affected z &= 0xffff # discard overflow bits R.write( z ) # DCR R -> 00DDD101 -> 1 -> Decrement register def DCR_R( self, R, R_upper ): savedCarry = self.flagALU_carry # according to docs, all condition flags affected except carry if R_upper: z = self.sub( R.readUpperByte(), 1 ) R.writeUpperByte( z ) else: z = self.sub( R.readLowerByte(), 1 ) R.writeLowerByte( z ) self.flagALU_carry = savedCarry self.updateALUFlags_Register() # DCR M -> 00110101 -> 3 -> Decrement memory def DCR_M( self ): savedCarry = self.flagALU_carry # according to docs, all condition flags affected except carry address = self.register_HL.read() z = self.sub( self.read_M( address ), 1 ) self.write_M( address, z ) self.flagALU_carry = savedCarry self.updateALUFlags_Register() # DCX BC -> 00001011 -> 1 -> Decrement B & C register pair # DCX DE -> 00011011 -> 1 -> Decrement D & E register pair # DCX HL -> 00101011 -> 1 -> Decrement H & L register pair # DCX SP -> 00111011 -> 1 -> Decrement stack pointer def DCX_R( self, R ): curVal = R.read() # according to docs, no ALU flags are affected if curVal == 0: z = 0xffff # two's complement negative one else: z = curVal - 1 R.write( z ) # Add --- # ADD R -> 10000SSS -> 1 -> Add register to A def ADD_R( self, R, R_upper ): curVal = self.read_A() if R_upper: z = self.add( curVal, R.readUpperByte() ) else: z = self.add( curVal, R.readLowerByte() ) self.write_A( z ) # ADD M -> 10000110 -> 2 -> Add memory to A def ADD_M( self ): curVal = self.read_A() address = self.register_HL.read() z = self.add( curVal, self.read_M( address ) ) self.write_A( z ) # ADI data -> 11000110 -> 2 -> Add immediate to A def ADI_Data( self ): byte2 = self.fetchInstruction() curVal = self.read_A() z = self.add( curVal, byte2 ) self.write_A( z ) # ADC R -> 10001SSS -> 1 -> Add register to A with carry def ADC_R( self, R, R_upper ): curVal = self.read_A() if R_upper: z = self.add( curVal, R.readUpperByte(), self.flagALU_carry ) else: z = self.add( curVal, R.readLowerByte(), self.flagALU_carry ) self.write_A( z ) # ADC M -> 10001110 -> 2 -> Add memory to A with carry def ADC_M( self ): curVal = self.read_A() address = self.register_HL.read() z = self.add( curVal, self.read_M( address ), self.flagALU_carry ) self.write_A( z ) # ACI data -> 11001110 -> 2 -> Add immediate to A with carry def ACI_Data( self ): byte2 = self.fetchInstruction() curVal = self.read_A() z = self.add( curVal, byte2, self.flagALU_carry ) self.write_A( z ) # DAD BC -> 00001001 -> 3 -> Add B & C to H & L # DAD DE -> 00011001 -> 3 -> Add D & E to H & L # DAD HL -> 00101001 -> 3 -> Add H & L to H & L # DAD SP -> 00111001 -> 3 -> Add stack pointer to H & L def DAD_R( self, R ): z = self.register_HL.read() + R.read() # according to docs, only carry flag is affected if z > 0xffff: self.flagALU_carry = 1 else: self.flagALU_carry = 0 z &= 0xffff # discard overflow bits self.register_HL.write( z ) self.updateALUFlags_Register() # Subtract --- # SUB R -> 10010SSS -> 1 -> Subtract register from A def SUB_R( self, R, R_upper ): curVal = self.read_A() if R_upper: z = self.sub( curVal, R.readUpperByte() ) else: z = self.sub( curVal, R.readLowerByte() ) self.write_A( z ) # SUB M -> 10010110 -> 2 -> Subtract memory from A def SUB_M( self ): curVal = self.read_A() address = self.register_HL.read() z = self.sub( curVal, self.read_M( address ) ) self.write_A( z ) # SUI data -> 11010110 -> 2 -> Subtract immediate from A def SUI_Data( self ): byte2 = self.fetchInstruction() curVal = self.read_A() z = self.sub( curVal, byte2 ) self.write_A( z ) # SBB R -> 10011SSS -> 1 -> Subtract register from A with borrow def SBB_R( self, R, R_upper ): curVal = self.read_A() if R_upper: z = self.sub( curVal, R.readUpperByte(), self.flagALU_carry ) else: z = self.sub( curVal, R.readLowerByte(), self.flagALU_carry ) self.write_A( z ) # SBB M -> 10011110 -> 2 -> Subtract memory from A with borrow def SBB_M( self ): curVal = self.read_A() address = self.register_HL.read() z = self.sub( curVal, self.read_M( address ), self.flagALU_carry ) self.write_A( z ) # SBI data -> 11011110 -> 2 -> Subtract immediate from A with borrow def SBI_Data( self ): byte2 = self.fetchInstruction() curVal = self.read_A() z = self.sub( curVal, byte2, self.flagALU_carry ) self.write_A( z ) # Logical --- # ANA R -> 10100SSS -> 1 -> And register with A def ANA_R( self, R, R_upper ): curVal = self.read_A() if R_upper: z = self.and_( curVal, R.readUpperByte() ) else: z = self.and_( curVal, R.readLowerByte() ) self.write_A( z ) # ANA M -> 10100110 -> 2 -> And memory with A def ANA_M( self ): curVal = self.read_A() address = self.register_HL.read() z = self.and_( curVal, self.read_M( address ) ) self.write_A( z ) # ANI data -> 11100110 -> 2 -> And immediate with A def ANI_Data( self ): byte2 = self.fetchInstruction() curVal = self.read_A() z = self.and_( curVal, byte2 ) self.write_A( z ) # XRA R -> 10101SSS -> 1 -> Exclusive or register with A def XRA_R( self, R, R_upper ): curVal = self.read_A() if R_upper: z = self.xor_( curVal, R.readUpperByte() ) else: z = self.xor_( curVal, R.readLowerByte() ) self.write_A( z ) # XRA M -> 10101110 -> 2 -> Exclusive or memory with A def XRA_M( self ): curVal = self.read_A() address = self.register_HL.read() z = self.xor_( curVal, self.read_M( address ) ) self.write_A( z ) # XRI data -> 11101110 -> 2 -> Exclusive or immediate with A def XRI_Data( self ): byte2 = self.fetchInstruction() curVal = self.read_A() z = self.xor_( curVal, byte2 ) self.write_A( z ) # ORA R -> 10110SSS -> 1 -> Or register with A def ORA_R( self, R, R_upper ): curVal = self.read_A() if R_upper: z = self.or_( curVal, R.readUpperByte() ) else: z = self.or_( curVal, R.readLowerByte() ) self.write_A( z ) # ORA M -> 10110110 -> 2 -> Or memory with A def ORA_M( self ): curVal = self.read_A() address = self.register_HL.read() z = self.or_( curVal, self.read_M( address ) ) self.write_A( z ) # ORI data -> 11110110 -> 2 -> Or immediate with A def ORI_Data( self ): byte2 = self.fetchInstruction() curVal = self.read_A() z = self.or_( curVal, byte2 ) self.write_A( z ) # CMP R -> 10111SSS -> 1 -> Compare register with A def CMP_R( self, R, R_upper ): if R_upper: r = R.readUpperByte() else: r = R.readLowerByte() self.sub( self.read_A(), r ) # CMP M -> 10111110 -> 2 -> Compare memory with A def CMP_M( self ): address = self.register_HL.read() self.sub( self.read_A(), self.read_M( address ) ) # CPI data -> 11111110 -> 2 -> Compare immediate with A def CPI_Data( self ): byte2 = self.fetchInstruction() self.sub( self.read_A(), byte2 ) # Rotate --- # RLC -> 00000111 -> 1 -> Rotate A left def RLC( self ): b = self.toBin( self.read_A() ) sout = b[ 0 ] b = b[ 1 : ] + sout self.write_A( self.toInt( b ) ) self.flagALU_carry = int( sout ) self.updateALUFlags_Register() # RRC -> 00001111 -> 1 -> Rotate A right def RRC( self ): b = self.toBin( self.read_A() ) sout = b[ self.nBits - 1 ] b = sout + b[ : - 1 ] self.write_A( self.toInt( b ) ) self.flagALU_carry = int( sout ) self.updateALUFlags_Register() # RAL -> 00010111 -> 1 -> Rotate A left through carry def RAL( self ): b = self.toBin( self.read_A() ) sout = b[ 0 ] b = b[ 1 : ] + str( self.flagALU_carry ) self.write_A( self.toInt( b ) ) self.flagALU_carry = int( sout ) self.updateALUFlags_Register() # RAR -> 00011111 -> 1 -> Rotate A right through carry def RAR( self ): b = self.toBin( self.read_A() ) sout = b[ self.nBits - 1 ] b = str( self.flagALU_carry ) + b[ : - 1 ] self.write_A( self.toInt( b ) ) self.flagALU_carry = int( sout ) self.updateALUFlags_Register() # Specials --- # CMA -> 00101111 -> 1 -> Complement A def CMA( self ): self.write_A( self.read_A() ^ self.negativeOne ) # flip bits # CMC -> 00111111 -> 1 -> Complement carry def CMC( self ): self.flagALU_carry ^= 1 # flip self.updateALUFlags_Register() # STC -> 00110111 -> 1 -> Set carry def STC( self ): self.flagALU_carry = 1 self.updateALUFlags_Register() # DAA -> 00100111 -> x -> Decimal adjust A def DAA( self ): raise Exception( 'DAA instruction not implemented' ) # Input / Output --- # IN port -> 11011011 -> 3 -> Input. Read byte from specified port and load to A def IN( self ): byte2 = self.fetchInstruction() # get port number. Used to select IO device self.addressBus = byte2 # self.IO_WR = 1 # signal IO device to write to databus # self.write_A( self.dataBus ) # get data placed on databus by IO device # self.IO_WR = 0 # signal IO device to stop writing to databus data = self.receive() # simulate self.write_A( data ) # OUT port -> 11010011 -> 3 -> Output. Places contents of A onto data bus and the # selected port number onto the address bus def OUT( self ): byte2 = self.fetchInstruction() # get port number. Used to select IO device self.addressBus = byte2 # self.dataBus = self.read_A() # place contents of A onto databus # self.IO_RD = 1 # signal IO device to read from databus # sleep( 0.1 ) # wait for IO device to read?? one clock pulse?? # self.IO_RD = 0 # signal IO device to stop reading from databus # simulate data = self.read_A() self.transmit( data ) # Control --- # EI -> 11111011 -> 1 -> Enable interrupts (takes effect next instruction) def EI( self ): # self.flagCC_interruptEnable = 1 pass # DI -> 11110011 -> 1 -> Disable interrupt (takes effect immediately) def DI( self ): # self.flagCC_interruptEnable = 0 pass # HLT -> 01110110 -> 1 -> Halt def HLT( self ): # Temp for now self.halt = True print( 'HLT instruction executed' ) # NOP -> 00000000 -> 1 -> No operation def NOP( self ): pass ``` #### File: Intel-8080-Emulator/OldFiles/terminal_old.py ```python ''' ________ _________ | | | | | | | | txData | | databus | | -----------> | DEVICE | <-----------> | | | | | | rxData | | rd | | <---------- | | ------------> | UART | | | | | | | wr | | | | ------------> | | | | | | | | | | |________| |_________| ^ | | clk ''' import threading class Terminal: def __init__( self ): self.on = True self.txData = None self.rxData = None self.rxBuffer = '' # self.rxReady = 0 self.clk = 0 # self.sampleFrequency = 2 # seconds self.setupThreads() def setupThreads( self ): # Handle as threads to emulate concurrency of physical wires t1 = threading.Thread( name = 'tx_thread', target = self.transmit ) # t2 = threading.Thread( # name = 'rx_thread', # target = self.receive # ) # t3 = threading.Thread( # name = 'rxReady_thread', # target = self.sampleRxReady # ) t1.start() # t2.start() # t3.start() def sampleRxReady( self ): # TODO, instead of sampling trigger on signal while self.on: if self.clk and self.rxReady: self.receive() print( '{} has exited'.format( threading.current_thread().getName() ) ) # debug def receive( self ): # print( 'Receiving {}'.format( self.rxData ) ) # debug # Gather until newline character, then print # if self.rxData == 10: # newline # print( self.rxBuffer ) # self.rxBuffer = '' # else: # self.rxBuffer += chr( self.rxData ) print( chr( self.rxData ), end = '' ) def transmit( self ): while self.on: # Get user input try: user_input = input() # Exit conditions except EOFError: # User pressed CTRL+C or CTRL+Z self.exit() break # Append newline character (omitted by input()) # user_input += '\n' # Python input() can receive arbitrary length input from user # We want to send it out one character at a time ''' for c in user_input: # Drive TX line self.txData = c print( 'Transmitting {}'.format( c ) ) # debug # sleep( self.clockPeriod ) print( '{} has exited'.format( threading.current_thread().getName() ) ) # debug def exit( self ): self.on = False print( 'See you later!' ) # Tests ------------------------------------------ from time import sleep, time term = Terminal() # term.rxReady = 1 # term.rxData = "greetings" t_idx = 0 t_string = "Hello\nPlants\nOk" clock = 0 startTime = time() while True: elapsedTime = time() - startTime # print( elapsedTime, int( elapsedTime % 2 ) ) if elapsedTime >= 35: break if int( elapsedTime % 2 ) == 0 and t_idx < len( t_string ): # print( '.' ) term.rxData = ord( t_string[ t_idx ] ) term.receive() t_idx += 1 clock ^= 1 # tick/tock sleep( 1 ) # pulse width term.clk = clock term.exit() ``` #### File: JetStarBlues/Intel-8080-Emulator/terminal.py ```python import tkinter import threading class Terminal(): def __init__ ( self, width=400, height=400 ): self.keyBuffer = [] self.displayBuffer = '' self.K_CTRL_C = 0x03 self.K_BACKSPACE = 0x08 self.K_LF = 0x0A self.K_CR = 0x0D # used as end-of-(line,string,input) marker in TB self.K_RUB_OUT = 0x7F # backspace self.debugMode = False self.width = width self.height = height self.textColor = '#689497' self.bgColor = '#fff4dc' self.tkRoot = None self.tkTextBox = None self.tkCanvas = None self.tkCanvasFrame = None # self.tkThread = threading.Thread( # target = self.setupTkinter, # name = 'tk_thread' # ).start() # Communication ----------------------------------- def transmit ( self ): # Send data to CPU if len( self.keyBuffer ) > 0: return self.keyBuffer.pop() else: return 0 def receive ( self, data ): # Receive data from CPU self.displayCharacter( data ) def sendInterrupt ( self, isrLoc ): ''' Real procedure, set INT high send RST instr set INT low ISR code will call IN to get data ''' self.CPU.jumpToISR( isrLoc ) # Helper ------------------------------------------ def tooLazyToType ( self, filepath ): with open( filepath, 'r' ) as file: for line in file: for char in line: keyCode = ord( char ) if keyCode == self.K_LF: keyCode = self.K_CR # tiny basic expects CR as delimiter # print( char, keyCode ) self.addKeyToBuffer( keyCode ) # Keypress ---------------------------------------- def addKeyToBuffer ( self, key ): self.keyBuffer.insert( 0, key ) # self.sendInterrupt() # interrupt vs waiting for poll def handleKeypress ( self, event ): if event.char: # modifier keys like SHIFT are None? char = event.char keyCode = ord( char ) # print( char, keyCode ) if keyCode == self.K_CTRL_C: self.addKeyToBuffer( keyCode ) elif keyCode == self.K_BACKSPACE: self.addKeyToBuffer( self.K_RUB_OUT ) elif keyCode == self.K_CR or keyCode == self.K_LF: self.addKeyToBuffer( self.K_CR ) elif keyCode >= 32 and keyCode <= 126: self.addKeyToBuffer( keyCode ) else: # print( 'Key not handled - {}'.format( keyCode ) ) pass # Display ----------------------------------------- def displayCharacter ( self, keyCode ): if self.debugMode: print( 'tkRaw ->', keyCode ) if keyCode == 0: return if keyCode >= 32 and keyCode <= 126: self.displayBuffer += chr( keyCode ) elif keyCode == self.K_CR: pass elif keyCode == self.K_LF: self.displayBuffer += '\n' elif keyCode == self.K_BACKSPACE: if len( self.displayBuffer ) > 0: self.displayBuffer = self.displayBuffer[ : - 1 ] # remove from display buffer self.updateDisplay() def tk_onFrameConfigure( self, event ): # resize canvas self.tkCanvas.configure( scrollregion = self.tkCanvas.bbox( 'all' ) ) def tk_onCanvasConfigure( self, event ): # resize frame self.tkCanvas.itemconfigure( self.tkCanvasFrame, width = event.width ) def setupTkinter( self ): self.tkRoot = tkinter.Tk() self.tkRoot.title( '8080 Sim' ) self.tkCanvas = tkinter.Canvas( self.tkRoot ) self.tkCanvas.pack( side = tkinter.LEFT, expand = True, fill = 'both' ) self.tkCanvas.configure( width = self.width, height = self.height, highlightthickness = 0, bg = self.bgColor ) scrollbar = tkinter.Scrollbar( self.tkRoot ) scrollbar.pack( side = tkinter.RIGHT, fill = 'y' ) scrollbar.configure( orient = 'vertical', command = self.tkCanvas.yview ) self.tkCanvas.configure( yscrollcommand = scrollbar.set ) frame = tkinter.Frame( self.tkCanvas ) self.tkCanvasFrame = self.tkCanvas.create_window( ( 0, 0 ), window = frame, anchor = 'nw' ) self.tkTextBox = tkinter.Label( frame ) self.tkTextBox.pack( expand = True, fill = 'both' ) self.tkTextBox[ 'text' ] = self.displayBuffer self.tkTextBox.config( fg = self.textColor, bg = self.bgColor, anchor = 'nw', justify = tkinter.LEFT, wraplength = self.width - 5 ) frame.bind( '<Configure>', self.tk_onFrameConfigure ) self.tkCanvas.bind( '<Configure>', self.tk_onCanvasConfigure ) self.tkRoot.bind( '<KeyPress>', self.handleKeypress ) self.tkRoot.protocol( 'WM_DELETE_WINDOW', self.quitTkinter ) self.tkRoot.mainloop() def quitTkinter( self ): self.tkRoot.quit() print( 'Tkinter has exited' ) def updateDisplay( self ): self.tkTextBox[ 'text' ] = self.displayBuffer self.tkCanvas.yview_moveto( 1 ) # scroll to bottom (show latest) # t = Terminal() ```
{ "source": "JetStarBlues/Nand-2-Tetris", "score": 2 }
#### File: JetStarBlues/Nand-2-Tetris/commonHelpers.py ```python import Components._0__globalConstants as GC '''----------------------------- Main -----------------------------------''' negativeOne = 2 ** GC.N_BITS - 1 largestInt = 2 ** ( GC.N_BITS - 1 ) - 1 def trim( x ): return x & negativeOne # discard overflow bits def negate( x ): return trim( ( x ^ negativeOne ) + 1 ) # twos complement def isNegative( x ): return x > largestInt def toBinary( x, N ): return bin( x )[ 2 : ].zfill( N ) # return '{:b}'.format( x ).zfill( N ) ``` #### File: Nand-2-Tetris/Components/_4__flipFlops.py ```python import threading, time from random import random # Hack computer from ._x__components import * '''--------------------------- Flip flops ---------------------------''' class JKFlipFlop(): def __init__( self ): # Assign random start values # Truer to indeterminate startup state # http://forum.allaboutcircuits.com/threads/sr-latch-initial-output-values.80855/ self.q0 = 0 if random() >= 0.5 else 1 self._q0 = not_( self.q0 ) # Output. Initialize with random value self.q1 = 0 if random() >= 0.5 else 1 self._q1 = not_( self.q1 ) # Faux mechanical delay self.propogationDelay = CLOCK_HALF_PERIOD * 0.2 #seconds def doTheThing( self, e, j, k ): # https://pymotw.com/2/threading/ # execute only after delay... t = threading.Timer( self.propogationDelay, self.doTheThing_, args = ( e, j, k ) ) t.setName( 'jkff_thread' ) t.start() def doTheThing_( self, e, j, k ): # print( "executing ", threading.currentThread().getName() ) # r = and_( e, k ) s = and_( e, j ) # feedback to prevent 'invalid' r = and_( r, self.q0 ) s = and_( s, self._q0 ) # self.q1 = nor_( r, self._q0 ) self._q1 = nor_( s, self.q0 ) # do it twice (write requires twice) # see math/logic here https://youtu.be/XETZoRYdtkw self.q0 = self.q1; self._q0 = self._q1; self.q1 = nor_( r, self._q0 ); self._q1 = nor_( s, self.q0 ); # Set cur to prev in prep for next call self.q0 = self.q1 self._q0 = self._q1 def clear( self ): self.q1 = 0 self._q1 = 1 def set( self ): self.q1 = 1 self._q1 = 0 class DFlipFlop(): def __init__( self ): # Assign random start values # Truer to indeterminate startup state # http://forum.allaboutcircuits.com/threads/sr-latch-initial-output-values.80855/ self.q0 = 0 if random() >= 0.5 else 1 self._q0 = not_( self.q0 ) # Output. Initialize with random value self.q1 = 0 if random() >= 0.5 else 1 self._q1 = not_( self.q1 ) # Faux mechanical delay self.propogationDelay = CLOCK_HALF_PERIOD * 0.2 #seconds def doTheThing( self, e, clr, sett, d ): # execute only after delay... t = threading.Timer( self.propogationDelay, self.doTheThing_, args = ( e, clr, sett, d ) ) t.setName( 'dff_thread' ) t.start() def doTheThing_( self, e, clear_, set_, d ): if clear_: self.clear() return elif set_: self.set() return # r = and_( e, not_( d ) ) s = and_( e, d ) # self.q1 = nor_( r, self._q0 ) self._q1 = nor_( s, self.q0 ) # do it twice (write requires twice) # see math/logic here https://youtu.be/XETZoRYdtkw self.q0 = self.q1; self._q0 = self._q1; self.q1 = nor_( r, self._q0 ); self._q1 = nor_( s, self.q0 ); # Set cur to prev in prep for next call self.q0 = self.q1 self._q0 = self._q1 def read( self ): return self.q1 def clear( self ): self.q1 = 0 self._q1 = 1 def set( self ): self.q1 = 1 self._q1 = 0 ``` #### File: Nand-2-Tetris/Components/_6__counter.py ```python from ._x__components import * '''----------------------------- Counter -----------------------------''' class CounterN_(): ''' N bit counter if rst(t-1) : out(t) = 0 elif write(t-1) : out(t) = in(t-1) elif inc(t-1) : out(t) = out(t-1) + 1 else : out(t) = out(t-1) ''' def __init__( self, N ): self.N = N self.register = RegisterN_( N ) def doTheThing( self, clk, rst, x, write, inc ): change = or3_( write, inc, rst ) d = muxN_( # Reset self.N, zeroN_( self.N ), muxN_( # Jump self.N, x, muxN_( # Increment self.N, incrementN_( self.N, self.register.read() ), self.register.read(), inc ), write ), rst ) self.register.write( clk, d, change ) def read( self ): return self.register.read() def readDecimal( self ): return self.register.readDecimal() ``` #### File: Nand-2-Tetris/Components/_7__cpu.py ```python import math # Hack computer from ._x__components import * import Assembler.disassembler as dis '''------------------------------- CPU -------------------------------''' ''' Instruction - FEDCBA9876543210 // msb to lsb 0123456789ABCDEF // array indexing F . 0 -> TECS instruction type (C if 1, @ if 0) E . 1 -> op D . 2 -> op C . 3 -> op B . 4 -> op A . 5 -> op 9 . 6 -> xSel 8 . 7 -> xSel 7 . 8 -> ySel 6 . 9 -> ySel 5 . A -> dst 4 . B -> dst 3 . C -> dst 2 . D -> jmp 1 . E -> jmp 0 . F -> jmp x/y sel 0 D 1 A 2 B 3 M dst 0 NULL 1 D 2 A 3 B 4 M 5 unused 6 unused 7 unused jmp 0 NULL 1 JGT 2 JEQ 3 JGE 4 JLT 5 JNE 6 JLE 7 JMP ''' class CPU_(): ''' Fetches and executes program instructions ''' def __init__( self, N ): self.debugMode = False self.N = N # Program counter self.programCounter = CounterN_( 2 * N ) # TODO...this can be 26 instead # Microstep counter nStepsPerInstruction = 4 nBitsInCounter = 2 # int( math.log( nStepsPerInstruction, 2 ) ) self.microCounter = CounterN_( nBitsInCounter ) # Microcode ROM nControlSignals = 18 nInstructionTypes = 8 # self.nBitsInInstructionType = 3 # math.ceil( math.log( nInstructionTypes, 2 ) ) nEntriesMicrocodeROM = nInstructionTypes * nStepsPerInstruction self.microcodeROM = ROMXN_( nEntriesMicrocodeROM, nControlSignals ) # ALU ROM nEntriesALUROM = 32 nBitsInFxSel = 4 nBitsInFxFlags = 5 self.ALUROM = ROMXN_( nEntriesALUROM, nBitsInFxSel + nBitsInFxFlags ) self.initInternalROM() # Registers self.A_register = RegisterN_( N ) self.D_register = RegisterN_( N ) self.B_register = RegisterN_( N ) self.AA_register = RegisterN_( N ) self.instruction_register = RegisterN_( N ) self.IOInput_register = RegisterN_( N ) self.ABkp_register = RegisterN_( N ) self.DBkp_register = RegisterN_( N ) self.BBkp_register = RegisterN_( N ) self.AABkp_register = RegisterN_( N ) self.instructionBkp_register = RegisterN_( N ) self.PCBkp_register = RegisterN_( 2 * N ) # Flip flops self.interruptsEnabled_ff = DFlipFlop() self.interruptAcknowledged_ff = DFlipFlop() self.backupEnabled_ff = DFlipFlop() # Instruction decode self.TECSInstrType = 0 self.op = 1 self.xSel = 6 self.ySel = 8 self.dst = 10 self.jmp = 13 self.nBitsInOp = 5 # Instruction types self.i_Aimmed = ( 1, 1, 0, 0, 0 ) self.i_AAimmed = ( 1, 1, 0, 0, 1 ) self.i_dstEqCmpJmp = ( 1, 1, 0, 1, 0 ) self.i_dstEqIOBus = ( 1, 1, 0, 1, 1 ) self.i_intAck = ( 1, 1, 1, 0, 0 ) self.i_reti = ( 1, 1, 1, 0, 1 ) self.i_nop = ( 1, 1, 1, 1, 0 ) self.i_halt = ( 1, 1, 1, 1, 1 ) # Location of ISRHandler in program self.ISRHandlerAddress = self.intToBitArray( 0, 2 * N ) # TODO # Miscellaneous self.zero = self.intToBitArray( 0, N ) self.AA_registerMask = ( 0, ) * 6 + ( 1, ) * 10 # ??? # Temp debug self.instructionTypeLookup = { ( 1, 1, 0, 0, 0 ) : 'i_Aimmed', ( 1, 1, 0, 0, 1 ) : 'i_AAimmed', ( 1, 1, 0, 1, 0 ) : 'i_dstEqCmpJmp', ( 1, 1, 0, 1, 1 ) : 'i_dstEqIOBus', ( 1, 1, 1, 0, 0 ) : 'i_intAck', ( 1, 1, 1, 0, 1 ) : 'i_reti', ( 1, 1, 1, 1, 0 ) : 'i_nop', ( 1, 1, 1, 1, 1 ) : 'i_halt', } self.ALUFxLookup = { ( 0, 0, 0, 0, 0 ) : '0', ( 0, 0, 0, 0, 1 ) : '1', ( 0, 0, 0, 1, 0 ) : '-1', ( 0, 0, 0, 1, 1 ) : 'x', ( 0, 0, 1, 0, 0 ) : '! x', ( 0, 0, 1, 0, 1 ) : '- x', ( 0, 0, 1, 1, 0 ) : 'x + 1', ( 0, 0, 1, 1, 1 ) : 'x - 1', ( 0, 1, 0, 0, 0 ) : 'x + y', ( 0, 1, 0, 0, 1 ) : 'x - y', ( 0, 1, 0, 1, 0 ) : 'x & y', ( 0, 1, 0, 1, 1 ) : 'x | y', ( 0, 1, 1, 0, 0 ) : 'x ^ y', ( 0, 1, 1, 0, 1 ) : 'x >> y', ( 0, 1, 1, 1, 0 ) : 'x << y', ( 0, 1, 1, 1, 1 ) : 'x * y', ( 1, 0, 0, 0, 0 ) : 'x / y', } self.xyLookup = { ( 0, 0 ) : 'D', ( 0, 1 ) : 'A', ( 1, 0 ) : 'B', ( 1, 1 ) : 'M', } def intToBitArray( self, x, N ): z = bin( x )[ 2 : ].zfill( N ) return tuple( map( int, z ) ) def bitArrayToBinaryString( self, x ): return ''.join( map( str, x ) ) def bitArrayToInt( self, x ): return int( ''.join( map( str, x ) ), 2 ) def initInternalROM( self ): # Microcode ROM ''' | i_Aimmed | i_AAimmed | i_dstEqCmpJmp | i_dstEqIOBus | i_intAck | i_reti | i_nop | i_halt | | 0 1 2 3 | 0 1 2 3 | 0 1 2 3 | 0 1 2 3 | 0 1 2 3 | 0 1 2 3 | 0 1 2 3 | 0 1 2 3 | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ c_cInst | 0 0 0 0 | 0 0 0 0 | 0 1 0 0 | 0 1 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | c_ARegisterWr | 0 1 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | c_ARegisterInSel_instructionRegister | 0 1 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | c_AARegisterWr | 0 0 0 0 | 0 1 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | c_instructionRegisterWr | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | c_PCIncrement | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | c_PCWr | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 1 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | c_PCInSel_ISRHandler | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 1 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | c_readIODatabus | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 1 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | c_dstInSel_IOInputRegister | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 1 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | c_enableInterrupts | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 1 0 | 0 0 0 0 | 0 0 0 0 | c_disableInterrupts | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 1 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | c_acknowledgeInterrupt | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 1 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | c_servicedInterrupt | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 1 0 | 0 0 0 0 | 0 0 0 0 | c_enableRegisterBackup | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 1 0 | 0 0 0 0 | 0 0 0 0 | c_disableRegisterBackup | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 1 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | c_restoreRegisters | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 1 0 0 | 0 0 0 0 | 0 0 0 0 | c_halt | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 1 1 1 | ''' # i_Aimmed self.microcodeROM.write( 1, ( 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 0 ) self.microcodeROM.write( 1, ( 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 1 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 2 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 3 ) # i_AAimmed self.microcodeROM.write( 1, ( 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 4 ) self.microcodeROM.write( 1, ( 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 5 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 6 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 7 ) # i_dstEqCmpJmp self.microcodeROM.write( 1, ( 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 8 ) self.microcodeROM.write( 1, ( 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 9 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 10 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 11 ) # i_dstEqIOBus self.microcodeROM.write( 1, ( 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 12 ) self.microcodeROM.write( 1, ( 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 13 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 14 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 15 ) # i_intAck self.microcodeROM.write( 1, ( 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 16 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0 ), 1, 17 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 18 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 19 ) # i_reti self.microcodeROM.write( 1, ( 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 20 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ), 1, 21 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0 ), 1, 22 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 23 ) # i_nop self.microcodeROM.write( 1, ( 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 24 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 25 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 26 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 27 ) # i_halt self.microcodeROM.write( 1, ( 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 28 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ), 1, 29 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ), 1, 30 ) self.microcodeROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ), 1, 31 ) # ALU ROM ''' op fsel flags composite ----- ---- ----- ---------- 0 add zx, zy 0000 10100 1 add zx, nx, zy, ny, no 0000 11111 - 1 add zx, nx, zy 0000 11100 x and zy, ny 0001 00110 ! x and zy, ny, no 0001 00111 - x add zy, ny, no 0000 00111 x + 1 add nx, zy, ny, no 0000 01111 x - 1 add zy, ny 0000 00110 x + y add 0000 00000 x - y add nx, no 0000 01001 x & y and 0001 00000 x | y and nx, ny, no 0001 01011 x ^ y xor 0010 00000 x >> y lsr 0011 00000 x << y lsl 0100 00000 x * y mul 0101 00000 x / y div 0110 00000 ''' self.ALUROM.write( 1, ( 0, 0, 0, 0, 1, 0, 1, 0, 0 ), 1, 0 ) self.ALUROM.write( 1, ( 0, 0, 0, 0, 1, 1, 1, 1, 1 ), 1, 1 ) self.ALUROM.write( 1, ( 0, 0, 0, 0, 1, 1, 1, 0, 0 ), 1, 2 ) self.ALUROM.write( 1, ( 0, 0, 0, 1, 0, 0, 1, 1, 0 ), 1, 3 ) self.ALUROM.write( 1, ( 0, 0, 0, 1, 0, 0, 1, 1, 1 ), 1, 4 ) self.ALUROM.write( 1, ( 0, 0, 0, 0, 0, 0, 1, 1, 1 ), 1, 5 ) self.ALUROM.write( 1, ( 0, 0, 0, 0, 0, 1, 1, 1, 1 ), 1, 6 ) self.ALUROM.write( 1, ( 0, 0, 0, 0, 0, 0, 1, 1, 0 ), 1, 7 ) self.ALUROM.write( 1, ( 0, 0, 0, 0, 0, 0, 0, 0, 0 ), 1, 8 ) self.ALUROM.write( 1, ( 0, 0, 0, 0, 0, 1, 0, 0, 1 ), 1, 9 ) self.ALUROM.write( 1, ( 0, 0, 0, 1, 0, 0, 0, 0, 0 ), 1, 10 ) self.ALUROM.write( 1, ( 0, 0, 0, 1, 0, 1, 0, 1, 1 ), 1, 11 ) self.ALUROM.write( 1, ( 0, 0, 1, 0, 0, 0, 0, 0, 0 ), 1, 12 ) self.ALUROM.write( 1, ( 0, 0, 1, 1, 0, 0, 0, 0, 0 ), 1, 13 ) self.ALUROM.write( 1, ( 0, 1, 0, 0, 0, 0, 0, 0, 0 ), 1, 14 ) self.ALUROM.write( 1, ( 0, 1, 0, 1, 0, 0, 0, 0, 0 ), 1, 15 ) self.ALUROM.write( 1, ( 0, 1, 1, 0, 0, 0, 0, 0, 0 ), 1, 16 ) def compareOp( self, a, b ): # if a == b, a ^ b == 0 # submodule, dry c = xorN_( self.nBitsInOp, a, b ) d = not_( orNto1_( self.nBitsInOp, c ) ) return d def doTheThing( self, computer, # ... clk, # input RESET, # input interruptRequested, # input IODatabus # bidirectional ): ''' . Everything happens at once/simultaneously . Assumes all memory modules can be read asynchronously ''' # Alias - data_memory = computer.data_memory program_memory = computer.program_memory # Constants - # Always increment microCounter microCounterIn = self.zero microCounterWr = 0 microCounterIncrement = 1 # Read memory - D_registerOut = self.D_register.read() A_registerOut = self.A_register.read() B_registerOut = self.B_register.read() AA_registerOut = self.AA_register.read() instruction_registerOut = self.instruction_register.read() IOInput_registerOut = self.IOInput_register.read() ABkp_registerOut = self.ABkp_register.read() DBkp_registerOut = self.DBkp_register.read() BBkp_registerOut = self.BBkp_register.read() AABkp_registerOut = self.AABkp_register.read() instructionBkp_registerOut = self.instructionBkp_register.read() PCBkp_registerOut = self.PCBkp_register.read() # interruptsEnabled = self.interruptsEnabled_ff.read() # interruptAcknowledged = self.interruptAcknowledged_ff.read() # backupEnabled = self.backupEnabled_ff.read() instruction = instruction_registerOut lowerAddress = A_registerOut upperAddress = AA_registerOut dataMemoryOut = data_memory.read( lowerAddress ) instructionAddress = self.programCounter.read() microStep = self.microCounter.read() if self.debugMode: print( 'instruction {}'.format( self.bitArrayToBinaryString( instruction ) ) ) print( ' {}'.format( dis.disassemble( self.bitArrayToBinaryString( instruction ) ) ) ) print( 'instructionAddress {}'.format( self.programCounter.readDecimal() ) ) print( 'microStep {}'.format( self.bitArrayToInt( microStep ) ) ) programMemoryOut = program_memory.read( self.programCounter.read() ) # Decode - interruptsEnabled = 1 # TODO, fix me! op = instruction[ self.op : self.op + self.nBitsInOp ] isAimmed = not_( instruction[ self.TECSInstrType ] ) iDecode2 = muxN_( self.nBitsInOp, op, # 11xxx (special op) self.i_dstEqCmpJmp, # everything else ('dst=cmp;jmp') and_( instruction[ self.op ], instruction[ self.op + 1 ] ) ) iDecode1 = muxN_( self.nBitsInOp, self.i_Aimmed, # '@' instruction iDecode2, isAimmed ) instructionType = muxN_( self.nBitsInOp, self.i_intAck, # interrupt acknowledge iDecode1, and_( interruptRequested, interruptsEnabled ) ) microAddress = instructionType[ 2 : ] + microStep # 3bits(8) + 2bits(4) microInstruction = self.microcodeROM.read( microAddress ) if self.debugMode: print( 'instructionType {} {}'.format( instructionType, self.instructionTypeLookup[ instructionType ] ) ) if instructionType == self.i_dstEqCmpJmp: print( ' alu op {}'.format( self.ALUFxLookup[ op ] ) ) # Control signals - c_cInst = microInstruction[ 0 ] c_ARegisterWr = microInstruction[ 1 ] c_ARegisterInSel_instructionRegister = microInstruction[ 2 ] c_AARegisterWr = microInstruction[ 3 ] c_instructionRegisterWr = microInstruction[ 4 ] c_PCIncrement = microInstruction[ 5 ] c_PCWr = microInstruction[ 6 ] c_PCInSel_ISRHandler = microInstruction[ 7 ] c_readIODatabus = microInstruction[ 8 ] c_dstInSel_IOInputRegister = microInstruction[ 9 ] c_enableInterrupts = microInstruction[ 10 ] c_disableInterrupts = microInstruction[ 11 ] c_acknowledgeInterrupt = microInstruction[ 12 ] c_servicedInterrupt = microInstruction[ 13 ] c_enableRegisterBackup = microInstruction[ 14 ] c_disableRegisterBackup = microInstruction[ 15 ] c_restoreRegisters = microInstruction[ 16 ] c_halt = microInstruction[ 17 ] if self.debugMode: print( 'controlSignals ', end='' ) if c_cInst: print( 'c_cInst', end = ' | ' ) if c_ARegisterWr: print( 'c_ARegisterWr', end = ' | ' ) if c_ARegisterInSel_instructionRegister: print( 'c_ARegisterInSel_instructionRegister', end = ' | ' ) if c_AARegisterWr: print( 'c_AARegisterWr', end = ' | ' ) if c_instructionRegisterWr: print( 'c_instructionRegisterWr', end = ' | ' ) if c_PCIncrement: print( 'c_PCIncrement', end = ' | ' ) if c_PCWr: print( 'c_PCWr', end = ' | ' ) if c_PCInSel_ISRHandler: print( 'c_PCInSel_ISRHandler', end = ' | ' ) if c_readIODatabus: print( 'c_readIODatabus', end = ' | ' ) if c_dstInSel_IOInputRegister: print( 'c_dstInSel_IOInputRegister', end = ' | ' ) if c_enableInterrupts: print( 'c_enableInterrupts', end = ' | ' ) if c_disableInterrupts: print( 'c_disableInterrupts', end = ' | ' ) if c_acknowledgeInterrupt: print( 'c_acknowledgeInterrupt', end = ' | ' ) if c_servicedInterrupt: print( 'c_servicedInterrupt', end = ' | ' ) if c_enableRegisterBackup: print( 'c_enableRegisterBackup', end = ' | ' ) if c_disableRegisterBackup: print( 'c_disableRegisterBackup', end = ' | ' ) if c_restoreRegisters: print( 'c_restoreRegisters', end = ' | ' ) if c_halt: print( 'c_halt', end = ' | ' ) print() # Hold value over time (via register), but switch immediately with control signal ''' en | 100x dis | 001x regOut | x110 desired | 110x ''' interruptsEnabled = and_( or_( c_enableInterrupts, self.interruptsEnabled_ff.read() ), not_( c_disableInterrupts ) ) interruptAcknowledged = and_( or_( c_acknowledgeInterrupt, self.interruptAcknowledged_ff.read() ), not_( c_servicedInterrupt ) ) backupEnabled = and_( or_( c_enableRegisterBackup, self.backupEnabled_ff.read() ), not_( c_disableRegisterBackup ) ) # x,y select - x = muxN4to1_( self.N, dataMemoryOut, B_registerOut, A_registerOut, D_registerOut, instruction[ self.xSel + 0 ], instruction[ self.xSel + 1 ] ) y = muxN4to1_( self.N, dataMemoryOut, B_registerOut, A_registerOut, D_registerOut, instruction[ self.ySel + 0 ], instruction[ self.ySel + 1 ] ) # ALU - ALU_control = self.ALUROM.read( op ) ALU_out = ALU_( self.N, x, y, ALU_control ) z = ALU_out[ 0 ] # result of computation zr = ALU_out[ 1 ] # result is zero ng = ALU_out[ 2 ] # result is negative if self.debugMode: # print( 'ALU_control {}'.format( ALU_control ) ) print( 'x {} {} {}'.format( x, self.xyLookup[ instruction[ self.xSel : self.xSel + 2 ] ], self.bitArrayToInt( x ) ) ) print( 'y {} {} {}'.format( y, self.xyLookup[ instruction[ self.ySel : self.ySel + 2 ] ], self.bitArrayToInt( y ) ) ) print( 'z {} {}'.format( z, self.bitArrayToInt( z ) ) ) # Jump - jump = mux8to1_( 1, # JMP or_( zr, ng ), # JLE not_( zr ), # JNE ng, # JLT not_( ng ), # JGE zr, # JEQ not_( or_( zr, ng ) ), # JGT 0, # NULL instruction[ self.jmp + 0 ], instruction[ self.jmp + 1 ], instruction[ self.jmp + 2 ] ) # Write data select - D_registerIn = muxN4to1_( self.N, self.zero, DBkp_registerOut, IOInput_registerOut, z, c_restoreRegisters, c_dstInSel_IOInputRegister ) B_registerIn = muxN4to1_( self.N, self.zero, BBkp_registerOut, IOInput_registerOut, z, c_restoreRegisters, c_dstInSel_IOInputRegister ) A_registerIn = muxN8to1_( self.N, self.zero, self.zero, self.zero, instruction, self.zero, ABkp_registerOut, IOInput_registerOut, z, c_ARegisterInSel_instructionRegister, c_restoreRegisters, c_dstInSel_IOInputRegister ) AA_registerIn = andN_( self.N, instruction, self.AA_registerMask ) IOInput_registerIn = bufferN_( self.N, IODatabus, c_readIODatabus ) dataMemoryIn = muxN_( self.N, IOInput_registerOut, z, c_dstInSel_IOInputRegister ) PCIn = muxN4to1_( self.N * 2, self.zero + self.zero, PCBkp_registerOut, self.zero + self.ISRHandlerAddress, upperAddress + lowerAddress, c_restoreRegisters, c_PCInSel_ISRHandler ) # Write dst select - dst = decoder3to8_( # returns ( q7, q6, q5, q4, q3, q2, q1, q0 ) instruction[ self.dst + 0 ], instruction[ self.dst + 1 ], instruction[ self.dst + 2 ], ) D_registerWr = and_( dst[ 7 - 1 ], c_cInst ) A_registerWr = or_( and_( dst[ 7 - 2 ], c_cInst ), c_ARegisterWr ) B_registerWr = and_( dst[ 7 - 3 ], c_cInst ) dataMemoryWr = and_( dst[ 7 - 4 ], c_cInst ) PCWr = or_( and_( jump, c_cInst ), c_PCWr ) # Write memory - self.D_register.write ( clk, D_registerIn, D_registerWr ) self.A_register.write ( clk, A_registerIn, A_registerWr ) self.B_register.write ( clk, B_registerIn, B_registerWr ) self.AA_register.write ( clk, AA_registerIn, c_AARegisterWr ) self.instruction_register.write ( clk, programMemoryOut, c_instructionRegisterWr ) self.IOInput_register.write ( clk, IOInput_registerIn, c_readIODatabus ) self.DBkp_register.write ( clk, D_registerIn, and_( backupEnabled, D_registerWr ) ) self.ABkp_register.write ( clk, A_registerIn, and_( backupEnabled, A_registerWr ) ) self.BBkp_register.write ( clk, B_registerIn, and_( backupEnabled, B_registerWr ) ) self.AABkp_register.write ( clk, AA_registerOut, and_( backupEnabled, c_AARegisterWr ) ) self.instructionBkp_register.write( clk, instruction_registerOut, and_( backupEnabled, c_instructionRegisterWr ) ) self.PCBkp_register.write ( clk, instructionAddress, and_( backupEnabled, c_instructionRegisterWr ) ) self.interruptsEnabled_ff.doTheThing ( clk, c_disableInterrupts, or_( RESET, c_enableInterrupts ), 0 ) self.interruptAcknowledged_ff.doTheThing( clk, or_( RESET, c_servicedInterrupt ), c_acknowledgeInterrupt, 0 ) self.backupEnabled_ff.doTheThing ( clk, c_disableRegisterBackup, or_( RESET, c_enableRegisterBackup ), 0 ) data_memory.write( clk, dataMemoryIn, dataMemoryWr, lowerAddress ) if self.debugMode: print( 'dataMemoryWr {}'.format( dataMemoryWr ) ) print( 'dataMemoryIn {} {}'.format( dataMemoryIn, self.bitArrayToInt( dataMemoryIn ) ) ) # print( 'lowerAddress', lowerAddress ) self.programCounter.doTheThing( clk, RESET, PCIn, PCWr, c_PCIncrement ) self.microCounter.doTheThing( clk, RESET, microCounterIn, microCounterWr, microCounterIncrement ) if self.debugMode: print( 'ARegOut {}'.format( self.A_register.readDecimal() ) ) print( 'DRegOut {}'.format( self.D_register.readDecimal() ) ) print( 'BRegOut {}'.format( self.B_register.readDecimal() ) ) # print( 'mem_16 ', data_memory.readDecimal( 16 ) ) # print( 'mem_17 ', data_memory.readDecimal( 17 ) ) # print( 'mem_0 ', data_memory.readDecimal( 0 ) ) # print( 'mem_1 ', data_memory.readDecimal( 1 ) ) print() # Set output signals - computer.halted = c_halt ``` #### File: Nand-2-Tetris/Emulators/pythonNBitArithmetic.py ```python class NBitArithmetic (): ''' Emulate N-bit arithmetic using Python's standard arithmetic Used by the VM and HL emulators ''' def __init__ ( self, N ): self.N = N # Keep in sync with 'commonHelpers.py' self.negativeOne = 2 ** N - 1 self.largestInt = 2 ** ( N - 1 ) - 1 # Keep in sync with 'commonHelpers.py' def trim( self, x ): return x & self.negativeOne # discard overflow bits def negate( self, x ): return self.trim( ( x ^ self.negativeOne ) + 1 ) # twos complement def isNegative( self, x ): return x > self.largestInt # Arithmetic and logic def _not( self, a ): return a ^ self.negativeOne # flip bits def _neg( self, a ): return self.negate( a ) def _and( self, a, b ): return a & b def _or( self, a, b ): return a | b def _xor( self, a, b ): return a ^ b def _lsl( self, a, b ): return self.trim( a << b ) def _lsr( self, a, b ): return a >> b # logical shift (assuming a is positive) def _add( self, a, b ): return self.trim( a + b ) def _sub( self, a, b ): return self.trim( a + self.negate( b ) ) def _mul( self, a, b ): return self.trim( a * b ) def _div( self, a, b ): # Divide using absolutes and add signs after aIsNeg = self.isNegative( a ) bIsNeg = self.isNegative( b ) # Get absolute values if aIsNeg: a = self.negate( a ) if bIsNeg: b = self.negate( b ) # Divide value = a // b # If opposite signs, negate answer if aIsNeg ^ bIsNeg: value = self.negate( value ) return value def _eq ( self, a, b ): d = self._sub( a, b ) return d == 0 def _ne ( self, a, b ): d = self._sub( a, b ) return d != 0 # For gt, gte, lt, lte see discussion here, # http://nand2tetris-questions-and-answers-forum.32033.n3.nabble.com/Greater-or-less-than-when-comparing-numbers-with-different-signs-td4031520.html # Code based on @cadet1620's answer def _lt ( self, a, b ): # return ng # simple, but inaccurate for opposite signs if self.isNegative( a ): if not self.isNegative( b ): return True # aIsNeg and bIsNeg else: if self.isNegative( b ): return False # aIsNotNeg and bIsNotNeg # same signs d = self._sub( a, b ) # won't oveflow if self.isNegative( d ): return True else: return False def _lte ( self, a, b ): # return zr or ng # simple, but inaccurate for opposite signs if self.isNegative( a ): if not self.isNegative( b ): return True # aIsNeg and bIsNeg else: if self.isNegative( b ): return False # aIsNotNeg and bIsNotNeg # same signs d = self._sub( a, b ) # won't oveflow if self.isNegative( d ): return True else: return d == 0 def _gt ( self, a, b ): # return not( zr or ng ) # simple, but inaccurate for opposite signs return not self._lte( a, b ) def _gte ( self, a, b ): # return not( ng ) # simple, but inaccurate for opposite signs return not self._lt( a, b ) ``` #### File: Nand-2-Tetris/Emulators/vmEmulator.py ```python import re import time import yappi # Hack computer import Components from commonHelpers import * from .pythonNBitArithmetic import * # Configure computer --------------- # VMX file containing all necessary program code programPath = '' debugPath = 'Debug/VMEmulator/' # Folder where logs go debugMode = False runYappiProfile = False # Setup computer ------------------- nBits = Components.N_BITS ALU = NBitArithmetic( nBits ) PC = 0 PC_prev = 0 PC_jump = False RAM = [ 0 ] * ( 2 ** 16 ) ROM = [] # Psuedo ROM, loaded with VM code clock = None io = None startTime = None sysHalt = None yieldToExternal = False # Suspend tick static_segment_start = Components.STATIC_START static_segment_end = Components.STATIC_END stack_segment_start = Components.STACK_END heap_segment_start = Components.HEAP_START heap_segment_end = Components.HEAP_END # Setup pointers ------------------- SP = 0 LCL = 1 ARG = 2 THIS = 3 THAT = 4 TEMP = 5 # GP = 13 STATIC = 16 # IO Helpers ------------------------ class RAMWrapper(): def __init__( self, ram ): self.ram = ram def read( self, address ): return self.ram[ address ] def write( self, clk, x, write, address ): if clk == 1 and write == 1: self.ram[ address ] = x # VM Helpers ------------------------ # unaryOps = [ 'not', 'neg' ] # binaryOps = [ 'and', 'or', 'add', 'sub', 'xor', 'lsl', 'lsr' ] # comparisonOps = [ 'eq', 'gt', 'lt', 'gte', 'lte', 'ne' ] # operations = [ unaryOps + binaryOps + comparisonOps ] unaryOps = set( [ 'not', 'neg' ] ) binaryOps = set( [ 'and', 'or', 'add', 'sub', 'xor', 'lsl', 'lsr', 'mul', 'div' ] ) comparisonOps = set( [ 'eq', 'gt', 'lt', 'gte', 'lte', 'ne' ] ) operations = unaryOps | binaryOps | comparisonOps # Set marginally faster to lookup than list addressLookup = {} staticLookup = {} # VM instructions ------------------- def executeInstruction( cmd ): cmdType = cmd[ 0 ] if cmdType == 'push': push( cmd[ 1 ], cmd[ 2 ], cmd ) elif cmdType == 'pop': pop( cmd[ 1 ], cmd[ 2 ], cmd ) elif cmdType in operations: operation( cmdType ) elif cmdType == 'goto': goto( cmd[ 1 ] ) elif cmdType == 'if-goto': ifgoto( cmd[ 1 ] ) elif cmdType == 'call': call( cmd[ 1 ], cmd[ 2 ] ) elif cmdType == 'return': ret() elif cmdType == 'label': label( cmd[ 1 ] ) elif cmdType == 'function': function( cmd[ 1 ], cmd[ 2 ] ) else: raise Exception( "Don't know how to execute the command - {}".format( cmd ) ) def push( seg, index, cmd ): addr = RAM[ SP ] if seg == 'constant': RAM[ addr ] = index elif seg == 'pointer': if index == 0: RAM[ addr ] = RAM[ THIS ] else: RAM[ addr ] = RAM[ THAT ] elif seg == 'static': RAM[ addr ] = RAM[ staticLookup[ cmd[ 3 ] ] ] elif seg == 'temp': RAM[ addr ] = RAM[ TEMP + index ] elif seg == 'argument': RAM[ addr ] = RAM[ RAM[ ARG ] + index ] elif seg == 'local': RAM[ addr ] = RAM[ RAM[ LCL ] + index ] elif seg == 'this': RAM[ addr ] = RAM[ RAM[ THIS ] + index ] elif seg == 'that': RAM[ addr ] = RAM[ RAM[ THAT ] + index ] else: raise Exception( 'Unknown segment - {}'.format( seg ) ) # Update SP RAM[ SP ] += 1 # if RAM[ SP ] >= heap_segment_start: # raiseException( 'Stack overflow' ) def pop( seg, index, cmd ): addr = RAM[ SP ] - 1 value = RAM[ addr ] if seg == 'pointer': if index == 0: RAM[ THIS ] = value else: RAM[ THAT ] = value elif seg == 'static': RAM[ staticLookup[ cmd[ 3 ] ] ] = value elif seg == 'temp': RAM[ TEMP + index ] = value elif seg == 'argument': RAM[ RAM[ ARG ] + index ] = value elif seg == 'local': RAM[ RAM[ LCL ] + index ] = value elif seg == 'this': RAM[ RAM[ THIS ] + index ] = value elif seg == 'that': RAM[ RAM[ THAT ] + index ] = value else: raise Exception( 'Unknown segment - {}'.format( seg ) ) # Update SP RAM[ SP ] -= 1 def operation( op ): if op in unaryOps: addr = RAM[ SP ] - 1 a = RAM[ addr ] if op == 'not': RAM[ addr ] = ALU._not( a ) elif op == 'neg': RAM[ addr ] = ALU._neg( a ) elif op in binaryOps: addr_a = RAM[ SP ] - 2 addr_b = RAM[ SP ] - 1 a = RAM[ addr_a ] b = RAM[ addr_b ] value = None if op == 'and': value = ALU._and( a, b ) elif op == 'or': value = ALU._or( a, b ) elif op == 'xor': value = ALU._xor( a, b ) elif op == 'lsl': value = ALU._lsl( a, b ) elif op == 'lsr': value = ALU._lsr( a, b ) elif op == 'add': value = ALU._add( a, b ) elif op == 'sub': value = ALU._sub( a, b ) elif op == 'mul': value = ALU._mul( a, b ) elif op == 'div': value = ALU._div( a, b ) RAM[ addr_a ] = value # Update SP RAM[ SP ] -= 1 elif op in comparisonOps: addr_a = RAM[ SP ] - 2 addr_b = RAM[ SP ] - 1 a = RAM[ addr_a ] b = RAM[ addr_b ] value = None if op == 'eq': value = ALU._eq( a, b ) elif op == 'ne': value = ALU._ne( a, b ) elif op == 'gt': value = ALU._gt( a, b ) elif op == 'gte': value = ALU._gte( a, b ) elif op == 'lt': value = ALU._lt( a, b ) elif op == 'lte': value = ALU._lte( a, b ) if value: RAM[ addr_a ] = negativeOne # 111111 so that !True = 00000 else: RAM[ addr_a ] = 0 # Update SP RAM[ SP ] -= 1 def goto( loc ): global PC global PC_jump PC = addressLookup[ loc ] PC_jump = True def ifgoto( loc ): global PC global PC_jump addr = RAM[ SP ] - 1 value = RAM[ addr ] if value != 0: # if value: PC = addressLookup[ loc ] PC_jump = True # Update SP RAM[ SP ] -= 1 def call( fxName, nArgs ): addr = RAM[ SP ] # Save return position RAM[ addr ] = PC + 1 addr += 1 # Save segment pointers RAM[ addr ] = RAM[ LCL ] addr += 1 RAM[ addr ] = RAM[ ARG ] addr += 1 RAM[ addr ] = RAM[ THIS ] addr += 1 RAM[ addr ] = RAM[ THAT ] addr += 1 # Set ARG pointer RAM[ ARG ] = RAM[ SP ] - nArgs # Set LCL pointer RAM[ LCL ] = addr # Set SP RAM[ SP ] = addr # Goto function goto( fxName ) def ret(): global PC global PC_jump global yieldToExternal # Save current LCL pointer curLCL = RAM[ LCL ] # Save return address retAddr = RAM[ curLCL - 5 ] # Copy return value into arg0 addr_a = RAM[ ARG ] addr_r = RAM[ SP ] - 1 RAM[ addr_a ] = RAM[ addr_r ] # Reposition SP for caller (to just after return value) RAM[ SP ] = addr_a + 1 # Restore segment pointers of caller curLCL -= 1 RAM[ THAT ] = RAM[ curLCL ] curLCL -= 1 RAM[ THIS ] = RAM[ curLCL ] curLCL -= 1 RAM[ ARG ] = RAM[ curLCL ] curLCL -= 1 RAM[ LCL ] = RAM[ curLCL ] # Jump to return position PC = retAddr PC_jump = True yieldToExternal = False # temp... def label( loc ): pass def function( fxName, nLocals ): global yieldToExternal # print( 'curFx - ', fxName ) # Init locals to zeros for i in range( nLocals ): addr = RAM[ LCL ] + i RAM[ addr ] = 0 RAM[ SP ] += nLocals # If exists, execute python equivalent if fxName in OSWrappers: yieldToExternal = True OSWrappers[ fxName ]() # OS Wrappers ----------------------- # Sys --- def Sys_wait(): # Retrieve args --- argBase = RAM[ ARG ] duration = RAM[ argBase ] # Subroutine body --- ''' if ( duration <= 0 ) { Sys.error( 1 ); // Sys.raiseException( 'Sys.wait duration must be greater than zero' ); } ''' if duration <= 0: print( 'ERROR: Sys.wait duration must be greater than zero' ) # Halt program haltOnError() return # print( 'About to sleep for {} ms'.format( duration ) ) time.sleep( duration / 1000 ) # convert msec to sec # Return --- push( 'constant', 0, None ) ret() # --- OSWrappers = { 'Sys.wait' : Sys_wait } # Load program ---------------------- cmdPattern = ''' ^ # from beginning of string .*? # select all characters until (?=\/\/|[\r\n]) # reach start of a comment or the string's end ''' cmdPattern = re.compile( cmdPattern, re.X ) def extractCmd( line ): found = re.search( cmdPattern, line ) # select everything that is not a comment if found: cmd = found.group( 0 ) cmd = cmd.strip() # remove leading and trailing whitespace return cmd.split( ' ' ) # split on spaces else: return None def extractProgram( inputFilePath ): addr = 0 curFx = '' curClass = '' freeAddress = static_segment_start with open( inputFilePath, 'r' ) as file: for line in file: cmd = extractCmd( line ) if cmd: cmdType = cmd[ 0 ] if cmdType == 'function': curFx = cmd[ 1 ] curClass = curFx.split( '.' )[ 0 ] addressLookup[ cmd[ 1 ] ] = addr cmd[ 2 ] = int( cmd[ 2 ] ) # cast nLocals to int ROM.append( cmd ) elif cmdType == 'label' or cmdType == 'goto' or cmdType == 'if-goto': # Make labels globally unique newLabel = '{}_{}'.format( curFx, cmd[ 1 ] ) if cmdType == 'label': addressLookup[ newLabel ] = addr ROM.append( [ cmdType, newLabel ] ) elif cmdType == 'push' or cmdType == 'pop': cmd[ 2 ] = int( cmd[ 2 ] ) # cast index to int if cmd[ 1 ] == 'static': # Make static references globally unique if len( cmd ) == 4: # 'push/pop static index className' vs 'push/pop static index' className = cmd[ 3 ] else: className = curClass refName = '{}_{}'.format( className, cmd[ 2 ] ) if refName not in staticLookup: if freeAddress <= static_segment_end: staticLookup[ refName ] = freeAddress freeAddress += 1 else: raise Exception( 'Ran out of static space' ) if len( cmd ) == 4: # 'push/pop static index className' vs 'push/pop static index' cmd[ 3 ] = refName else: cmd += [ refName ] ROM.append( cmd ) elif cmdType == 'call': cmd[ 2 ] = int( cmd[ 2 ] ) # cast nArgs to int ROM.append( cmd ) else: ROM.append( cmd ) addr += 1 # Debug ----------------------------- def updateWithDebug(): update() if breakpoint(): clock.stop() # print( 'Breakpoint reached' ) print( 'Breakpoint reached after {} clock cycles'.format( clock.currentCycle ) ) print( 'Took {} seconds to reach breakpoint'.format( time.time() - startTime ) ) debug2File() def breakpoint(): # pass return PC == sysHalt # return PC == addressLookup[ 'GFX.fillRect' ] # return clock.currentCycle == 384381 def debug2File(): filePath = debugPath + str( clock.currentCycle ) with open( filePath, 'w' ) as file: file.write( '{} ------------'.format( PC_prev ) + '\n' ) file.write( ' '.join( map( str, ROM[ PC_prev ] ) ) + '\n' ) file.write( '' + '\n' ) file.write( 'SP {}'.format( RAM[ 0 ] ) + '\n' ) file.write( 'LCL {}'.format( RAM[ 1 ] ) + '\n' ) file.write( 'ARG {}'.format( RAM[ 2 ] ) + '\n' ) file.write( 'THIS {}'.format( RAM[ 3 ] ) + '\n' ) file.write( 'THAT {}'.format( RAM[ 4 ] ) + '\n' ) file.write( 'TMP0 {}'.format( RAM[ 5 ] ) + '\n' ) file.write( 'TMP1 {}'.format( RAM[ 6 ] ) + '\n' ) file.write( 'TMP2 {}'.format( RAM[ 7 ] ) + '\n' ) file.write( 'TMP3 {}'.format( RAM[ 8 ] ) + '\n' ) file.write( 'TMP4 {}'.format( RAM[ 9 ] ) + '\n' ) file.write( 'TMP5 {}'.format( RAM[ 10 ] ) + '\n' ) file.write( 'TMP6 {}'.format( RAM[ 11 ] ) + '\n' ) file.write( 'TMP7 {}'.format( RAM[ 12 ] ) + '\n' ) file.write( 'GP0 {}'.format( RAM[ 13 ] ) + '\n' ) file.write( 'GP1 {}'.format( RAM[ 14 ] ) + '\n' ) file.write( 'GP2 {}'.format( RAM[ 15 ] ) + '\n' ) file.write( '' + '\n' ) # static file.write( 'Static' + '\n' ) for i in range( static_segment_start, stack_segment_start ): file.write( '\t{:<3} {}'.format( i, RAM[ i ] ) + '\n' ) file.write( '' + '\n' ) # stack sp = RAM[ 0 ] file.write( 'Stack' + '\n' ) for i in range( stack_segment_start, sp ): file.write( '\t{:<4} {}'.format( i, RAM[ i ] ) + '\n' ) file.write( '\t{:<4} .. ({})'.format( sp, RAM[ sp ] ) + '\n' ) file.write( '' + '\n' ) # heap file.write( 'Heap' + '\n' ) for i in range( heap_segment_start, heap_segment_end + 1 ): file.write( '\t{:<5} {}'.format( i, RAM[ i ] ) + '\n' ) file.write( '' + '\n' ) def dumpROMnAddresses(): # Dump ROM with open( debugPath + 'romDump', 'w' ) as file: for e in ROM: file.write( ' '.join( map( str, e ) ) + '\n' ) # Dump addresses with open( debugPath + 'addressDump', 'w' ) as file: # Dump generated label addresses for kv in sorted( addressLookup.items(), key = lambda x : x[ 1 ] ): file.write( '{:<5} - {}\n'.format( kv[ 1 ], kv[ 0 ] ) ) file.write( '\n\n' ) # Dump generated static addresses for kv in sorted( staticLookup.items(), key = lambda x : x[ 1 ] ): file.write( '{:<3} - {}\n'.format( kv[ 1 ], kv[ 0 ] ) ) # Computer -------------------------- def haltOnError(): global PC global yieldToExternal PC = sysHalt # end program yieldToExternal = True # prevent tick if debugMode: debug2File() update() def setup(): global clock global io global startTime global sysHalt # if not Components.PERFORMANCE_MODE: raise Exception( 'The VM Emulator only works when GC.PERFORMANCE_MODE is True' ) # Setup RAM RAM[ SP ] = 256 RAM[ LCL ] = 256 RAM[ ARG ] = 256 RAM[ THIS ] = 9999 RAM[ THAT ] = 9999 # Setup ROM startTime = time.time() extractProgram( programPath ) print( 'Completed ROM flash. Took {0:.2f} seconds.'.format( time.time() - startTime ) ) if debugMode: # Dump ROM and addresses dumpROMnAddresses() # Retrive location sysHalt = addressLookup[ 'Sys.halt' ] # Initialize clock clock = Components.Clock() # Setup callbacks if debugMode: clock.callbackRising = updateWithDebug else: clock.callbackRising = update # Initialize IO io = Components.IO( nBits, RAMWrapper( RAM ) ) def tick(): global PC global PC_prev global PC_jump PC_prev = PC # helps with debugging # Fetch instruction instruction = ROM[ PC ] # print( '{} - {}'.format( PC, instruction ) ) # Execute instruction executeInstruction( instruction ) # Increment PC if PC_jump == False: PC += 1 else: PC_jump = False ''' Kinda hacky, workaround for different clocks. Make IO screen updates run on CPU clock. ''' io.updateScreen() def update(): if not yieldToExternal: tick() # Handle exit via IO if io.hasExited: if debugMode: debug2File() clock.stop() print( 'See you later!' ) # Profile... temp if runYappiProfile: yappi.get_func_stats().print_all() # Stop running when reach Sys.halt if PC == sysHalt: # Stop clock clock.stop() # Stop (lower) screen update io.maxFps = 1 # lowest can go is 1 FPS print( 'Sys.halt reached. Took {0:.2f} seconds.'.format( time.time() - startTime ) ) # Profile... temp if runYappiProfile: yappi.get_func_stats().print_all() # Run ------------------------------- def run( programPath_ ): global programPath # Specify program if programPath_: programPath = programPath_ # Setup setup() # Profile... temp if runYappiProfile: yappi.start() # Start IO io.runAsThread() # Start clock clock.run() print( 'Program has started' ) startTime = time.time() ``` #### File: v1.0/Assembler/vm2asm.py ```python ''' TODO - optimize for 'x+1', 'x-1', 0, 1, -1 ''' # == Imports ======================================================= # Built ins import re import os # == Main ========================================================== # -- Lookup tables --------------------------------- segmentPointer = { 'argument' : '@ARG', 'local' : '@LCL', 'this' : '@THIS', 'that' : '@THAT', } unaryOps = { 'not' : '!', 'neg' : '-', } binaryOps = { 'and' : '&', 'or' : '|', 'add' : '+', 'sub' : '-', 'xor' : '^', 'lsr' : '>>', 'lsl' : '<<', } comparisonOps = { 'eq' : 'JEQ', 'gt' : 'JGT', 'lt' : 'JLT', 'gte' : 'JGE', 'lte' : 'JLE', 'ne' : 'JNE', } # operations = unaryOps + binaryOps + comparisonOps operations = dict( unaryOps ) operations.update( binaryOps ) operations.update( comparisonOps ) # -- Extraction ------------------------------------- # With regex -- # Select everything that is not a comment cmdPattern = ''' ^ # from beginning of string .*? # select all characters until (?=\/\/|[\r\n]) # reach start of a comment or the string's end ''' cmdPattern = re.compile( cmdPattern, re.X ) # def extractCmd_wRe( line ): def extractCmd( line ): found = re.search( cmdPattern, line ) # select everything that is not a comment if found: cmd = found.group( 0 ) cmd = cmd.strip() # remove leading and trailing whitespace return cmd.split( ' ' ) # split on spaces else: return None # Without regex -- def strip ( s ): # Remove leading and trailing whitespace whitespace = ' \t\r\n\f' start = 0 end = len( s ) - 1 while s[ start ] in whitespace: start += 1 while s[ end ] in whitespace: end -= 1 return s[ start : end + 1 ] def split ( s, sep ): # Split into substirings using sep (single char) as delimiter items = [] i = 0 sLen = len( s ) while i < sLen: item = '' while i < sLen and s[ i ] != sep: item += s[i] i += 1 items.append( item ) i += 1 # skip sep if s[ sLen - 1 ] == sep: items.append( '' ) # make return length consistent return items # s = 'pants' # s = "----" # s = 'pants-are-cool' # s = 'pants-are--cool' # s = 'pants--are-cool-----' # print( split( s, '-' ) ) # print( s.split( '-' ) ) def extractCmd_woutRe( line ): # def extractCmd( line ): s = '' i = 0 tok = line[ i ] # Select everything that is not a comment while tok != '\n' and tok != '/': s += tok i += 1 tok = line[ i ] if i: s = strip( s ) # remove leading and trailing whitespace return split( s, ' ' ) # split on spaces else: return None # -- Translation ------------------------------------- class Feed(): def __init__( self, cmdList ): self.pos = 0 self.cmdList = cmdList self.end = len( cmdList ) def next( self ): if self.eof( self.pos ): return None else: cmd = self.cmdList[ self.pos ] self.pos += 1 return cmd def peek( self ): if self.eof( self.pos ): return None return self.cmdList[ self.pos ] def peekpeek( self ): if self.eof( self.pos + 1 ): return None return self.cmdList[ self.pos + 1 ] def eof( self, pos ): return pos >= self.end class Compiler(): def __init__( self ): # Set SP self.SP = 256 # Set corresponding RAM addresses self.TEMP = 5 # 5..12 self.GP = 13 # 13..15 # Track scope self.curClassName = None self.curFunctionName = None # Use generic functions self.useGenerics = True # Include comments in generated asm file self.debug = False # Skip cmd self.skip = False self.skip2 = False def setup( self ): self.compCount = 0 # track jump positions of comparison operations self.returnPosCount = 0 # track return positions of calls self.returnGenericPosCount = 0 # track return positions of generic ASM calls def compile( self, cmds, debug = False ): self.debug = debug self.setup() out = [] out.append( self.compile_bootstrap() ) for className in cmds: if self.debug: out.append( '\n// === {} ===\n'.format( className ) ) out.append( self.compile_topLevel( className, cmds[ className ] ) ) return self.a2s( out ) def compile_topLevel( self, className, cmdList ): self.curClassName = className self.input = Feed( cmdList ) return self.compile_statements() # -------------------------------------- def a2s( self, a ): # Return newline delimited string return '\n'.join( a ) def at( self, x ): return '@' + str( x ) def atTemp( self, index ): return self.at( self.TEMP + index ) def atGP( self, index ): return self.at( self.GP + index ) # def atStatic( self, index ): def atStatic( self, index, className = None ): return '@{}.{}'.format( self.curClassName, index ) # TODO, support for static access outside class # return '@{}.{}'.format( className, index ) def label( self, loc ): return '({})'.format( loc ) def pushDToStack( self ): s = [] # Push it to stack s.append( '@SP' ) s.append( 'A = M' ) # set A reg to address held by SP s.append( 'M = D' ) # set value at said address # Increment address held by SP s.append( '@SP' ) s.append( 'M = M + 1' ) return self.a2s( s ) def popStackToD( self ): s = [] # Decrement address held by SP, and get the value s.append( '@SP' ) s.append( 'AM = M - 1' ) s.append( 'D = M' ) return self.a2s( s ) # -------------------------------------- def compile_statements( self, exitCondition = None ): s = [] while True: cmd = self.input.next() if cmd: if self.skip2: self.skip = True self.skip2 = False continue # go to next iteration if self.skip: self.skip = False continue # go to next iteration if self.debug: s.append( '// {}'.format( ' '.join( cmd ) ) ) s.append( self.compile_statement( cmd ) ) else: break return self.a2s( s ) def compile_statement( self, cmd ): cmdType = cmd[0] if cmdType == 'push': cmd2 = self.input.peek() if ( cmd2 and cmd2[0] == 'pop' and ( cmd2[1] == 'pointer' or cmd2[1] == 'static' or cmd2[1] == 'temp' ) ): # 'compile_push_pop' generates less code than seperate 'compile_push' and 'compile_pop' self.skip = True return self.compile_push_pop( cmd[1], int( cmd[2] ), cmd2[1], int( cmd2[2] ) ) # elif cmd2 and cmd2[0] in binaryOps: elif ( cmd2 and cmd2[0] in binaryOps and cmd2[0] != 'lsl' and cmd2[0] != 'lsr' ): cmd3 = self.input.peekpeek() if cmd3 and cmd3[0] == 'if-goto': # compile_push_binaryOp_ifgoto generates less code than seperate # 'compile_push', 'compile_operation', and 'compile_ifgoto' self.skip2 = True return self.compile_push_binaryOp_ifgoto( cmd[1], int( cmd[2] ), cmd2[0], cmd3[1] ) else: # compile_push_binaryOp generates less code than seperate 'compile_push' and 'compile_operation' self.skip = True return self.compile_push_binaryOp( cmd[1], int( cmd[2] ), cmd2[0] ) elif cmd2 and cmd2[0] in comparisonOps: cmd3 = self.input.peekpeek() if cmd3 and cmd3[0] == 'if-goto': # compile_push_comparisonOp_ifgoto generates less code than seperate # 'compile_push', 'compile_operation', and 'compile_ifgoto' self.skip2 = True return self.compile_push_comparisonOp_ifgoto( cmd[1], int( cmd[2] ), cmd2[0], cmd3[1] ) else: # compile_push_comparisonOp generates less code than seperate 'compile_push' and 'compile_operation' self.skip = True return self.compile_push_comparisonOp( cmd[1], int( cmd[2] ), cmd2[0] ) else: return self.compile_push( cmd[1], int( cmd[2] ) ) elif cmdType == 'pop': return self.compile_pop( cmd[1], int( cmd[2] ) ) elif cmdType in operations: cmd2 = self.input.peek() if cmd2 and cmd2[0] == 'if-goto': # compile_yyyyOp_ifgoto generates less code than seperate compile_operation' and 'compile_ifgoto' self.skip = True if cmdType in unaryOps: return self.compile_unaryOp_ifgoto( cmdType, cmd2[1] ) elif cmdType in binaryOps: return self.compile_binaryOp_ifgoto( cmdType, cmd2[1] ) elif cmdType in comparisonOps: return self.compile_comparisonOp_ifgoto( cmdType, cmd2[1] ) else: return self.compile_operation( cmdType ) elif cmdType == 'label': return self.compile_label( cmd[1] ) elif cmdType == 'goto': return self.compile_goto( cmd[1] ) elif cmdType == 'if-goto': return self.compile_ifgoto( cmd[1] ) elif cmdType == 'call': return self.compile_call( cmd[1], int( cmd[2] ) ) elif cmdType == 'function': return self.compile_function( cmd[1], int( cmd[2] ) ) elif cmdType == 'return': return self.compile_return() else: raise Exception( "Don't know how to compile the command - {}".format( cmd ) ) def compile_push_( self, seg, index ): s = [] # Get value from segment if seg == 'constant': s.append( self.at( index ) ) s.append( 'D = A' ) elif seg == 'pointer': if index == 0: s.append( '@THIS' ) else: s.append( '@THAT' ) s.append( 'D = M' ) elif seg == 'static': s.append( self.atStatic( index ) ) s.append( 'D = M' ) elif seg == 'temp': s.append( self.atTemp( index ) ) s.append( 'D = M' ) else: # arg, local, this, that if index == 0: s.append( segmentPointer[ seg ] ) s.append( 'A = M' ) else: s.append( self.at( index ) ) s.append( 'D = A' ) s.append( segmentPointer[ seg ] ) s.append( 'A = M + D' ) s.append( 'D = M' ) return self.a2s( s ) def compile_push( self, seg, index ): s = [] # Get value from segment s.append( self.compile_push_( seg, index ) ) # Push it to stack s.append( self.pushDToStack() ) return self.a2s( s ) def compile_pop( self, seg, index ): s = [] if seg == 'pointer' or seg == 'static' or seg == 'temp': # Get value from stack s.append( self.popStackToD() ) # Get target address if seg == 'pointer': if index == 0: s.append( '@THIS' ) else: s.append( '@THAT' ) elif seg == 'static': s.append( self.atStatic( index ) ) elif seg == 'temp': s.append( self.atTemp( index ) ) # Pop value to target address s.append( 'M = D' ) else: # arg, local, this, that # Get target address if index == 0: s.append( segmentPointer[ seg ] ) s.append( 'D = M' ) else: s.append( self.at( index ) ) s.append( 'D = A' ) s.append( segmentPointer[ seg ] ) s.append( 'D = M + D' ) # Save address to temporary location s.append( self.atGP( 0 ) ) s.append( 'M = D' ) # Get value from stack s.append( self.popStackToD() ) # Pop value to target address s.append( self.atGP( 0 ) ) s.append( 'A = M' ) s.append( 'M = D' ) return self.a2s( s ) def compile_push_pop( self, seg1, index1, seg2, index2 ): s = [] # Get value from segment s.append( self.compile_push_( seg1, index1 ) ) # Get target address if seg2 == 'pointer': if index2 == 0: s.append( '@THIS' ) else: s.append( '@THAT' ) elif seg2 == 'static': s.append( self.atStatic( index2 ) ) elif seg2 == 'temp': s.append( self.atTemp( index2 ) ) else: raise Exception( "Shouldn't reach here" ) # Pop value to target address s.append( 'M = D' ) return self.a2s( s ) def compile_operation( self, op ): ''' 12 12 12 7 sub -> 4 neg -> -4 3 SP SP SP ''' s = [] if op in unaryOps: s.append( '@SP' ) s.append( 'A = M - 1' ) s.append( 'M = {} M'.format( unaryOps[ op ] ) ) elif op in binaryOps: if op == 'lsl' or op == 'lsr': # Workaround for available shift instructions ( D << M or D >> M ) # Get prev value s.append( self.popStackToD() ) # D = prev_val s.append( self.atGP( 0 ) ) s.append( 'M = D' ) # Temp[1] = prev_val # Get prevprev value s.append( '@SP' ) s.append( 'A = M - 1' ) # aReg = prevprev_addr s.append( 'D = M' ) # D = prevprev_val # Apply op s.append( self.atGP( 0 ) ) s.append( 'D = D {} M'.format( binaryOps[ op ] ) ) # D = prevprev_val op prev_val s.append( '@SP' ) s.append( 'A = M - 1' ) # aReg = prevprev_addr s.append( 'M = D' ) # stack = D else: # Get prev value s.append( self.popStackToD() ) # D = prev_val # Get prevprev value s.append( 'A = A - 1' ) # aReg = prevprev_addr # Apply op s.append( 'M = M {} D'.format( binaryOps[ op ] ) ) # stack = prevprev_val op prev_val elif op in comparisonOps: s.append( self.compile_comparisonOp( op ) ) return self.a2s( s ) def compile_push_binaryOp( self, seg, index, op ): s = [] # Get value from segment s.append( self.compile_push_( seg, index ) ) # Get prevprev value s.append( '@SP' ) s.append( 'A = M - 1' ) # aReg = prevprev_addr # Apply op s.append( 'M = M {} D'.format( binaryOps[ op ] ) ) # stack = prevprev_val op segment_val return self.a2s( s ) def compile_push_binaryOp_ifgoto( self, seg, index, op, loc ): s = [] # Get value from segment s.append( self.compile_push_( seg, index ) ) # Get prevprev value, and # decrement address held by SP (this would usually be done by ifgoto when retrieving comparison result) s.append( '@SP' ) s.append( 'AM = M - 1' ) # aReg = prevprev_addr # Apply op s.append( 'D = M {} D'.format( binaryOps[ op ] ) ) # stack = prevprev_val op segment_val # Conditional jump s.append( self.compile_ifgoto_( loc ) ) return self.a2s( s ) def compile_binaryOp_ifgoto( self, op, loc ): # Only one line saved by doing this instead of using popStackToD in ifgoto s = [] # Get prev value s.append( self.popStackToD() ) # D = prev_val # Get prevprev value s.append( 'A = A - 1' ) # aReg = prevprev_addr # Apply op s.append( 'D = M {} D'.format( binaryOps[ op ] ) ) # stack = prevprev_val op prev_val # Decrement address held by SP (this would usually be done by ifgoto when retrieving comparison result) s.append( '@SP' ) s.append( 'M = M - 1' ) # Conditional jump s.append( self.compile_ifgoto_( loc ) ) return self.a2s( s ) def compile_unaryOp_ifgoto( self, op, loc ): # Three lines saved by doing this instead of using popStackToD in ifgoto s = [] # Apply op, and # decrement address held by SP (this would usually be done by ifgoto when retrieving comparison result) s.append( '@SP' ) s.append( 'AM = M - 1' ) s.append( 'D = {} M'.format( unaryOps[ op ] ) ) # Conditional jump s.append( self.compile_ifgoto_( loc ) ) return self.a2s( s ) ''' def compile_comparisonOp_( self, op ): s = [] cTrue = 'comp_true{}'.format( self.compCount ) cEnd = 'comp_end{}'.format( self.compCount ) self.compCount += 1 # Compare s.append( 'D = M - D' ) # D = prevprev_val - prev_val s.append( self.at( cTrue ) ) s.append( 'D ; {}'.format( comparisonOps[ op ] ) ) # False s.append( 'D = 0' ) s.append( self.at( cEnd ) ) s.append( '0 ; JMP' ) # True s.append( self.label( cTrue ) ) s.append( 'D = 1' ) # End/continue s.append( self.label( cEnd ) ) def compile_comparisonOp( self, op ): s = [] # Get prev value s.append( self.popStackToD() ) # D = prev_val # Get prevprev value s.append( 'A = A - 1' ) # aReg = prevprev_addr # Compare s.append( self.compile_comparisonOp_( op ) ) # Update stack s.append( '@SP' ) s.append( 'A = M - 1' ) s.append( 'M = D' ) return self.a2s( s ) ''' def compile_comparisonOp2_generic( self, op ): # TODO - Change gt, gte, lt, lte to reflect, # http://nand2tetris-questions-and-answers-forum.32033.n3.nabble.com/Greater-or-less-than-when-comparing-numbers-with-different-signs-td4031520.html s = [] # Diff self.atTemp( 2 ) # b 'D = M' self.atTemp( 1 ) # a s.append( 'D = M - D' ) # Diff is zero self.at( '..._true{}' ) 'D ; JEQ' self.atTemp( 3 ) 'M = 0' self.at( '..._end{}' ) '0 ; JMP' self.label( '..._true{}' ) self.atTemp( 3 ) 'M = - 1' self.label( '..._end{}' ) # Diff is negative self.at( '..._true{}' ) 'D ; JLT' self.atTemp( 4 ) 'M = 0' self.at( '..._end{}' ) '0 ; JMP' self.label( '..._true{}' ) self.atTemp( 4 ) 'M = - 1' self.label( '..._end{}' ) # a is negative self.atTemp( 1 ) 'D = M' self.at( '..._true{}' ) 'D ; JLT' self.atTemp( 1 ) 'M = 0' self.at( '..._end{}' ) self.label( '..._true{}' ) self.atTemp( 1 ) 'M = - 1' self.label( '..._end{}' ) # b is negative self.atTemp( 2 ) 'D = M' self.at( '..._true{}' ) 'D ; JLT' self.atTemp( 2 ) 'M = 0' self.at( '..._end{}' ) self.label( '..._true{}' ) self.atTemp( 2 ) 'M = - 1' self.label( '..._end{}' ) # Signs are opposite self.atTemp( 1 ) 'D = M' self.atTemp( 2 ) 'M = M ^ D' if op == 'gt': # if opposite signs self.atTemp( 2 ) 'D = M' self.at( '..false1' ) 'D ; JEQ' # true1 self.atTemp( 1 ) 'D = M' self.at( '..false2' ) 'D : JEQ' #true2 'D = 0' self.at( '..end2' ) '0 ; JMP' #false2 self.label( '..false2' ) 'D = - 1' #end2 self.label( '..end2' ) self.at( '..end1' ) '0 ; JMP' # false1 self.label( '..false1' ) self.atTemp( 3 ) 'D = M' self.atTemp( 4 ) 'D = M | D' 'D = ! D' # end1 self.label( '..end1' ) # _ if aIsNeg : value = 0 # _ else : value = -1 # else : value = ! ( zr | ng ) elif op == 'gte': pass elif op == 'lt': pass elif op == 'lte': pass return self.a2s( s ) def compile_comparisonOp( self, op ): s = [] if op == 'eq' or op == 'ne': # Get prev value s.append( self.popStackToD() ) # D = prev_val # Get prevprev value s.append( 'A = A - 1' ) # aReg = prevprev_addr # Compare s.append( self.compile_comparisonOp_( op ) ) else: # Get prev value s.append( self.popStackToD() ) # D = prev_val self.atTemp( 2 ) # b 'M = D' # Get prevprev value '@SP' 'A = M - 1' # aReg = prevprev_addr 'D = M' self.atTemp( 1 ) # a 'M = D' # Compare s.append( self.compile_comparisonOp2_( op ) ) # Update stack s.append( '@SP' ) s.append( 'A = M - 1' ) s.append( 'M = D' ) return self.a2s( s ) def compile_push_comparisonOp( self, seg, index, op ): s = [] # Get value from segment s.append( self.compile_push_( seg, index ) ) # Get prevprev value s.append( '@SP' ) s.append( 'A = M - 1' ) # aReg = prevprev_addr # Compare s.append( self.compile_comparisonOp_( op ) ) # Update stack s.append( '@SP' ) s.append( 'A = M - 1' ) s.append( 'M = D' ) return self.a2s( s ) def compile_push_comparisonOp_ifgoto( self, seg, index, op, loc ): s = [] # Get value from segment s.append( self.compile_push_( seg, index ) ) # Get prevprev value s.append( '@SP' ) s.append( 'A = M - 1' ) # aReg = prevprev_addr # Compare s.append( self.compile_comparisonOp_( op ) ) # Decrement address held by SP (this would usually be done by ifgoto when retrieving comparison result) s.append( '@SP' ) s.append( 'M = M - 1' ) # Conditional jump s.append( self.compile_ifgoto_( loc ) ) return self.a2s( s ) def compile_comparisonOp_ifgoto( self, op, loc ): # Only one line saved by doing this instead of using popStackToD in ifgoto. # However, also save 3 lines by not pushing comparison result onto stack s = [] # Get prev value s.append( self.popStackToD() ) # D = prev_val # Get prevprev value s.append( 'A = A - 1' ) # aReg = prevprev_addr # Compare s.append( self.compile_comparisonOp_( op ) ) # Decrement address held by SP (this would usually be done by ifgoto when retrieving comparison result) s.append( '@SP' ) s.append( 'M = M - 1' ) # Conditional jump s.append( self.compile_ifgoto_( loc ) ) return self.a2s( s ) def compile_label( self, loc ): return self.label( '{}.{}'.format( self.curFunctionName, loc ) ) def compile_goto( self, loc ): s = [] s.append( self.at( '{}.{}'.format( self.curFunctionName, loc ) ) ) s.append( '0 ; JMP' ) return self.a2s( s ) def compile_ifgoto_( self, loc ): s = [] # Jump only when cond != 0 i.e. when true s.append( self.at( '{}.{}'.format( self.curFunctionName, loc ) ) ) s.append( 'D ; JNE' ) return self.a2s( s ) def compile_ifgoto( self, loc ): s = [] # Condition s.append( self.popStackToD() ) # Conditional jump s.append( self.compile_ifgoto_( loc ) ) return self.a2s( s ) def compile_call( self, fxName, nArgs ): if self.useGenerics: return self.compile_call_generic( fxName, nArgs ) else: return self.compile_call_inline( fxName, nArgs ) def compile_call_inline( self, fxName, nArgs ): s = [] returnPos = 'returnPosition{}'.format( self.returnPosCount ) self.returnPosCount += 1 # Save return position s.append( self.at( returnPos ) ) s.append( 'D = A' ) s.append( self.pushDToStack() ) # Save segment pointers for ptr in [ 'LCL', 'ARG', 'THIS', 'THAT' ]: # get current val s.append( self.at( ptr ) ) s.append( 'D = M' ) # push to stack s.append( self.pushDToStack() ) # Set ARG # ARG = SP - ( nArgs + 5 ) s.append( self.at( nArgs + 5 ) ) s.append( 'D = A' ) s.append( '@SP' ) s.append( 'D = M - D' ) s.append( '@ARG' ) s.append( 'M = D' ) # Set LCL s.append( '@SP' ) s.append( 'D = M' ) s.append( '@LCL' ) s.append( 'M = D' ) # Goto function s.append( self.at( fxName ) ) s.append( '0 ; JMP' ) # Create label for returnAddress s.append( self.label( returnPos ) ) return self.a2s( s ) def compile_call_generic( self, fxName, nArgs ): s = [] # Save fx position at R14 s.append( self.at( fxName ) ) s.append( 'D = A' ) s.append( self.atGP( 1 ) ) s.append( 'M = D' ) # Save nArgs at R15 s.append( self.at( nArgs ) ) s.append( 'D = A' ) s.append( self.atGP( 2 ) ) s.append( 'M = D' ) # Save return position returnPos = '$_returnFromGenericFunction{}'.format( self.returnGenericPosCount ) self.returnGenericPosCount += 1 s.append( self.at( returnPos ) ) s.append( 'D = A' ) # Goto genericCall function s.append( self.at( '$_genericCall' ) ) s.append( '0 ; JMP' ) # Create return position s.append( self.label( returnPos ) ) return self.a2s( s ) def compile_call_bootstrap( self ): s = [] # Create label s.append( self.label( '$_genericCall' ) ) # Save return position s.append( self.pushDToStack() ) # Save segment pointers for ptr in [ 'LCL', 'ARG', 'THIS', 'THAT' ]: # get current val s.append( self.at( ptr ) ) s.append( 'D = M' ) # push to stack s.append( self.pushDToStack() ) # Set ARG # ARG = SP - ( nArgs + 5 ) s.append( self.atGP( 2 ) ) # get nArgs from R15 s.append( 'D = M' ) s.append( self.at( 5 ) ) s.append( 'D = D + A' ) # nArgs + 5 s.append( '@SP' ) s.append( 'D = M - D' ) s.append( '@ARG' ) s.append( 'M = D' ) # Set LCL s.append( '@SP' ) s.append( 'D = M' ) s.append( '@LCL' ) s.append( 'M = D' ) # Goto function s.append( self.atGP( 1 ) ) # get fx position from R14 s.append( 'A = M' ) s.append( '0 ; JMP' ) return self.a2s( s ) def compile_function( self, fxName, nLocals ): s = [] self.curFunctionName = fxName # Create label s.append( self.label( fxName ) ) # Init locals to zeros if nLocals == 1: s.append( '@SP' ) s.append( 'A = M' ) s.append( 'M = 0' ) s.append( '@SP' ) s.append( 'M = M + 1' ) elif nLocals > 1: s.append( '@SP' ) s.append( 'A = M' ) s.append( 'M = 0' ) for i in range( nLocals - 1 ): s.append( '@SP' ) s.append( 'AM = M + 1' ) s.append( 'M = 0' ) s.append( '@SP' ) s.append( 'M = M + 1' ) return self.a2s( s ) def compile_return( self ): if self.useGenerics: return self.compile_return_generic() else: return self.compile_return_inline() def compile_return_inline( self ): s = [] curLCL = 'curLCL_' + self.curFunctionName # Save current LCL s.append( '@LCL' ) s.append( 'D = M' ) s.append( self.at( curLCL ) ) s.append( 'M = D' ) # Save return address, @(curLCL - 5) s.append( self.at( 5 ) ) s.append( 'A = D - A' ) s.append( 'D = M' ) s.append( self.atGP( 0 ) ) s.append( 'M = D' ) # Copy return value onto arg0 s.append( '@SP' ) s.append( 'A = M - 1' ) s.append( 'D = M' ) s.append( '@ARG' ) s.append( 'A = M' ) s.append( 'M = D' ) # Reposition SP for caller (to just after return value) s.append( '@ARG' ) s.append( 'D = M' ) s.append( '@SP' ) s.append( 'M = D + 1' ) # Restore segment pointers of caller s.append( self.at( curLCL ) ) s.append( 'A = M - 1' ) s.append( 'D = M' ) s.append( '@THAT' ) s.append( 'M = D' ) segs = [ None, None, 'THIS', 'ARG', 'LCL' ] for i in range( 2, 5 ): s.append( self.at( i ) ) s.append( 'D = A' ) s.append( self.at( curLCL ) ) s.append( 'A = M - D' ) s.append( 'D = M' ) s.append( self.at( segs[i] ) ) s.append( 'M = D' ) # Jump to return position s.append( self.atGP( 0 ) ) s.append( 'A = M' ) s.append( '0 ; JMP' ) return self.a2s( s ) def compile_return_generic( self ): s = [] # Goto genericReturn function s.append( self.at( '$_genericReturn' ) ) s.append( '0 ; JMP' ) return self.a2s( s ) def compile_return_bootstrap( self ): s = [] curLCL = 'curLCL' # Create label s.append( self.label( '$_genericReturn' ) ) # Save current LCL s.append( '@LCL' ) s.append( 'D = M' ) s.append( self.at( curLCL ) ) s.append( 'M = D' ) # Save return address, @(curLCL - 5) s.append( self.at( 5 ) ) s.append( 'A = D - A' ) s.append( 'D = M' ) s.append( self.atGP( 0 ) ) s.append( 'M = D' ) # Copy return value onto arg0 s.append( '@SP' ) s.append( 'A = M - 1' ) s.append( 'D = M' ) s.append( '@ARG' ) s.append( 'A = M' ) s.append( 'M = D' ) # Reposition SP for caller (to just after return value) s.append( '@ARG' ) s.append( 'D = M' ) s.append( '@SP' ) s.append( 'M = D + 1' ) # Restore segment pointers of caller # s.append( 'A = D - 1' ) s.append( self.at( curLCL ) ) s.append( 'A = M - 1' ) s.append( 'D = M' ) s.append( '@THAT' ) s.append( 'M = D' ) segs = [ None, None, 'THIS', 'ARG', 'LCL' ] for i in range( 2, 5 ): s.append( self.at( i ) ) s.append( 'D = A' ) s.append( self.at( curLCL ) ) s.append( 'A = M - D' ) s.append( 'D = M' ) s.append( self.at( segs[i] ) ) s.append( 'M = D' ) # Jump to return position s.append( self.atGP( 0 ) ) s.append( 'A = M' ) s.append( '0 ; JMP' ) return self.a2s( s ) # -------------------------------------- def compile_bootstrap( self ): # Present in every asm file generated s = [] # Setup pointers if self.debug: s.append( '// --- Begin pointer setup' ) s.append( '\n// set SP' ) s.append( self.at( self.SP ) ) s.append( 'D = A' ) s.append( '@SP' ) s.append( 'M = D' ) if self.debug: s.append( '\n// set LCL' ) s.append( '@LCL' ) s.append( 'M = D' ) if self.debug: s.append( '\n// set ARG' ) s.append( '@ARG' ) s.append( 'M = D' ) if self.debug: s.append( '\n// set THIS' ) s.append( self.at( 9999 ) ) # arbitrary s.append( 'D = A' ) s.append( '@THIS' ) s.append( 'M = D' ) if self.debug: s.append( '\n// set THAT' ) s.append( '@THAT' ) s.append( 'M = D' ) if self.debug: s.append( '\n// --- end pointer setup\n' ) # Insert call to Sys.init if self.debug: s.append( '\n// --- Call Sys.init()' ) s.append( '@Sys.init' ) s.append( '0 ; JMP' ) if self.debug: s.append( '' ) # Insert generic functions # Generate often used and generic code once. # Based on @cadet1620's idea and code # http://nand2tetris-questions-and-answers-forum.32033.n3.nabble.com/What-is-a-reasonable-amount-of-assembly-code-to-implement-gt-lt-eq-td4030839.html if self.useGenerics: if self.debug: s.append( '\n// --- Begin generic functions' ) s.append( '\n// genericReturn' ) s.append( self.compile_return_bootstrap() ) if self.debug: s.append( '\n// genericCall' ) s.append( self.compile_call_bootstrap() ) if self.debug: s.append( '\n// --- end generic functions\n' ) return self.a2s( s ) # -- Run ------------------------------------------ def genASMFile_single( inputFilePath, outputFilePath, debug = False ): compiler = Compiler() # init compiler fileName = inputFilePath.split( '/' )[ -1 ] className = fileName[ : -3 ] vmCode = { className : [] } # Read with open( inputFilePath, 'r' ) as file: for line in file: cmd = extractCmd( line ) if cmd: vmCode[ className ].append( cmd ) # Translate asmCode = compiler.compile( vmCode, debug ) # Write with open( outputFilePath, 'w' ) as file: file.write( asmCode ) file.write( '\n' ) print( 'Done' ) def getVMFilesFromDir( dirPath ): fileNames = os.listdir( dirPath ) filePaths = [] for fileName in fileNames: if fileName[ -2 : ] == 'vm': filePath = dirPath + '/' + fileName filePaths.append( filePath ) return filePaths def genASMFile( inputDirPath, debug = False, libraryPaths = None ): ''' Translate the vm code in a directory to assembly code, and generate a single outputFile containing the translated code ''' # Init compiler compiler = Compiler() # Get input file paths inputFilePaths = getVMFilesFromDir( inputDirPath ) if libraryPaths: inputFilePaths.extend( libraryPaths ) # Read vmCode = {} for inputFilePath in inputFilePaths: className = re.search( '\w+(?=\.vm)', inputFilePath ).group( 0 ) if className in vmCode: raise Exception( 'Error: More than one class is named {}\n\t{}\n'.format( className, '\n\t'.join( inputFilePaths ) ) ) print( ' - Translating {}'.format( inputFilePath ) ) vmCode[ className ] = [] with open( inputFilePath, 'r' ) as file: for line in file: cmd = extractCmd( line ) if cmd: vmCode[ className ].append( cmd ) # Translate asmCode = compiler.compile( vmCode, debug ) # Write outputFilePath = inputDirPath + '/Main.asm' with open( outputFilePath, 'w' ) as file: file.write( asmCode ) file.write( '\n' ) # print( 'Done' ) # inputFilePath = '' # outputFilePath = '' # genASMFile_single( inputFilePath, outputFilePath ) # inputDirPath = '' # genASMFile( inputDirPath ) ``` #### File: v1.0/Components/_9__inputOutput_performance.py ```python import threading import pygame, numpy from math import ceil # Hack computer from ._x__components import * from commonHelpers import * '''------------------------------- I/O -------------------------------''' class IO(): ''' Input and output devices ''' ''' Currently consists of, input: keyboard, mouse ouput: screen ''' ''' Input devices bypass I/O interrupt handling by CPU as they write directly to main_memory. In the physical implementation, only the CPU would have access to main_memory requiring the use of interrupt handling logic. See, www.cs.umd.edu/class/sum2003/cmsc311/Notes/IO/extInt.html ''' def __init__( self, N, main_memory ): # General --- self.N = N self.main_memory = main_memory self.hasExited = False # Pygame --- self.maxFps = SCREEN_FPS self.surface = None self.clock = None # Screen --- self.width = 512 self.height = 256 self.screenMemStart = SCREEN_MEMORY_MAP self.newContent = False # 1Bit color mode --- self.fgColor = self.hex2rgb( SCREEN_FOREGROUND_COLOR ) self.bgColor = self.hex2rgb( SCREEN_BACKGROUND_COLOR ) self.colors = { '0' : self.bgColor, '1' : self.fgColor } self.nRegistersPerRow = self.width // self.N self.nPixelsPerWord = self.N self.screenMemEnd = self.screenMemStart + self.height * self.nRegistersPerRow; # 4Bit color mode --- if COLOR_MODE_4BIT: self.colors = {} for key, value in COLOR_PALETTE_4BIT.items(): self.colors[ key ] = self.hex2rgb( value ) self.fgColor = self.colors[ '0111' ] self.bgColor = self.colors[ '0000' ] self.nRegistersPerRow *= 4 self.nPixelsPerWord = 4 self.screenMemEnd = self.screenMemStart + self.height * self.nRegistersPerRow; # Pixel array --- # Pygame 'blit_array' expects a numpy array with [x][y] indexing (i.e. [column][row]) self.pixelArray = numpy.full( ( self.width, self.height, 3 ), self.bgColor ) # np( nCols, nRows, z ) self.curColor = self.fgColor # Initialize Pygame --- # threading.Thread( # target = self.initPygame, # name = 'io_thread' # ).start() def hex2rgb( self, h ): r = int( h[ -6 : -4 ], 16 ) g = int( h[ -4 : -2 ], 16 ) b = int( h[ -2 : ], 16 ) return( r, g, b ) def runAsThread( self ): threading.Thread( target = self.initPygame, name = 'io_thread' ).start() def initPygame( self ): pygame.init() pygame.display.set_caption( 'Hack Computer' ) icon = pygame.image.load( 'Components/favicon.png' ) pygame.display.set_icon( icon ) pygame.display.set_mode( ( self.width, self.height ) ) self.surface = pygame.display.get_surface() self.clock = pygame.time.Clock() # Init background self.surface.fill( self.bgColor ) pygame.display.flip() # Start loop self.run() def quitPygame( self ): pygame.quit() self.hasExited = True print( 'Exited Pygame' ) def run( self ): while not self.hasExited: # Poll input devices (mouse, keyboard) for event in pygame.event.get(): if event.type == pygame.QUIT: # click X self.quitPygame() return if event.type == pygame.KEYDOWN: if event.key == 27: # Escape self.quitPygame() return else: modifier = pygame.key.get_mods() self.handleKeyPressed( event.key, modifier ) if event.type == pygame.KEYUP: self.handleKeyReleased() if event.type == pygame.MOUSEBUTTONDOWN: self.handleMousePressed( event.button, event.pos ) if event.type == pygame.MOUSEBUTTONUP: self.handleMouseReleased( event.button ) # Update screen self.updateScreen() # Tick self.clock.tick( self.maxFps ) # Screen ---------------------------------------------------- def updateScreen( self ): if self.newContent: # update only if there's a change # Blit pixel values pygame.surfarray.blit_array( self.surface, self.pixelArray ) # Update display pygame.display.flip() self.newContent = False def setColor( self, colorCode ): if COLOR_MODE_4BIT: key = toBinary( colorCode, 4 ) if not key in self.colors: raise Exception( 'Color selection is not valid' ) self.curColor = self.colors[ key ] # temp else: key = str( colorCode ) if not key in self.colors: raise Exception( 'Color selection is not valid - {}'.format( colorCode ) ) self.curColor = self.colors[ key ] # temp def drawPixel( self, x, y ): ''' Update only the relevant pixel ''' # Check if coordinates are valid if( x < 0 or x >= self.width or y < 0 or y >= self.height ): raise Exception( 'drawPixel received invalid argument(s): ( {}, {} )'.format( x, y ) ) # Draw pixel self.pixelArray[ x ][ y ] = self.curColor # self.surface.set_at( ( x, y ), self.curColor ) # Mark screen for update self.newContent = True def flood( self, x, y, len ): ''' Write words to display RAM Assumes display RAM allocates one register per pixel ''' for i in range( len ): self.pixelArray[ x ][ y ] = self.curColor x += 1 if ( x == self.width ): x = 0 y += 1 def drawFastVLine( self, x, y, h ): # I can easily make this fast for numpy array, but what would be hardware equivalent? pass def drawFastHLine( self, x, y, w ): # Check if coordinates are valid if( w <= 0 or x < 0 or ( x + w ) > self.width or y < 0 or y > self.height ): raise Exception( 'drawFastHLine received invalid argument(s): ( {}, {}, {} )'.format( x, y, w ) ) # Draw line self.flood( x, y, w ) # Mark screen for update self.newContent = True def fillScreen( self ): self.flood( 0, 0, self.width * self.height ) # Mark screen for update self.newContent = True def getPixel( self, x, y ): # Check if coordinates are valid if( x < 0 or x >= self.width or y < 0 or y >= self.height ): raise Exception( 'getPixel received invalid argument(s): ( {}, {} )'.format( x, y ) ) # Get color color = self.pixelArray[ x ][ y ] # Lookup colorCode for key, value in self.colors.items(): if value == color: colorCode = key # Write to memory self.main_memory.write( 1, colorCode, 1, SCREEN_MEMORY_MAP ) # TODO, get better location def replaceMainWithDisplayMemory( self, x, y, w, h ): #TODO pass def replaceDisplayWithMainMemory( self, x, y, w, h ): # Slow because iterating per pixel to convert between the two representations # Check if coordinates are valid if( w <= 0 or h <= 0 or x < 0 or ( x + w ) > self.width or y < 0 or ( y + h ) > self.height ): raise Exception( 'replaceDisplayWithMainMemory received invalid argument(s): ( {}, {}, {}, {} )'.format( x, y, w, h ) ) # Replace if( w == self.width and h == self.height ): if COLOR_MODE_4BIT: self.getPixelsFromMain_4BitMode_fast( x, y, w, h ) else: self.getPixelsFromMain_1BitMode_fast( x, y, w, h ) else: if COLOR_MODE_4BIT: self.getPixelsFromMain_4BitMode( x, y, w, h ) else: self.getPixelsFromMain_1BitMode( x, y, w, h ) # Mark screen for update self.newContent = True def getPixelsFromMain_1BitMode( self, x, y, w, h ): startX = x endX = x + w startWord = startX // self.nPixelsPerWord endWord = ceil( endX / self.nPixelsPerWord ) startWordOffset = startX % 16 endWordOffset = endX % 16 regIdx = self.screenMemStart + ( y * self.nRegistersPerRow ) for y in range( y, y + h ): x = startX word = startWord for word in range( startWord, endWord + 1 ): register = self.main_memory.read( regIdx + word ) register = toBinary( register, self.N ) for i in range( self.nPixelsPerWord ): if word == startWord and i < startWordOffset: continue # skip elif word == endWord and i >= endWordOffset: break # done with word pixel = register[ i ] color = self.colors[ pixel ] # look up corresponding color self.pixelArray[ x ][ y ] = color x += 1 regIdx += self.nRegistersPerRow def getPixelsFromMain_1BitMode_fast( self ): x = 0 y = 0 for regIdx in range( self.screenMemStart, self.screenMemEnd ): register = self.main_memory.read( regIdx ) register = toBinary( register, self.N ) for i in range( self.N ): pixel = register[ i ] color = self.colors[ pixel ] # look up corresponding color self.pixelArray[ x ][ y ] = color x += 1 if ( x == self.width ): x = 0 y += 1 def getPixelsFromMain_4BitMode( self, x, y, w, h ): # TODO, and test! pass def getPixelsFromMain_4BitMode_fast( self ): x = 0 y = 0 for idx in range( self.screenMemStart, self.screenMemEnd ): register = self.main_memory.read( idx ) register = toBinary( register, self.N ) for i in range( 0, self.N, 4 ): pixel = register[ i : i + 4 ] color = self.colors[ pixel ] # look up corresponding color self.pixelArray[ x ][ y ] = color x += 1 if ( x == self.width ): x = 0 y += 1 # Mouse ----------------------------------------------------- def handleMousePressed( self, button, pos ): ''' If mouse button is pressed, write 1 and update mouseX and mouseY ''' # print( 'Mouse pressed', pos ) if button == 1: # left button # Write to memory # clk, data, write, address self.main_memory.write( 1, 1, 1, MOUSE_MEMORY_MAP ) self.main_memory.write( 1, pos[ 0 ], 1, MOUSEX_MEMORY_MAP ) self.main_memory.write( 1, pos[ 1 ], 1, MOUSEY_MEMORY_MAP ) def handleMouseReleased( self, button ): ''' If mouse button is released, write 0 ''' # if button == 1: # left button # # Write to memory # self.main_memory.write( 1, 0, 1, MOUSE_MEMORY_MAP ) pass # Too fast, cleared long before Hack program has chance to see # Keyboard -------------------------------------------------- def handleKeyPressed( self, key, modifier ): ''' If key is pressed, write keyCode ''' # Lookup keyCode keyCode = self.lookupKey( key, modifier ) print( 'Key pressed', key, modifier, keyCode ) # Write to memory self.main_memory.write( 1, keyCode, 1, KBD_MEMORY_MAP ) def handleKeyReleased( self ): ''' If key is released, write 0 ''' # Write to memory # self.main_memory.write( 1, 0, 1, KBD_MEMORY_MAP ) pass # Too fast, cleared long before Hack program has chance to see def lookupKey( self, key, modifier ): # If valid, return relevant keyCode if key in lookup_keys: # Handle shift modified presses if modifier == 3 : if key in lookup_shiftModifiedKeys: return lookup_shiftModifiedKeys[ key ][ 0 ] else: ''' Ideally shift modifer would be 0 when shift key pressed alone. However not the case. Sometimes it's 0 sometimes it's set (1 or 2). Not sure how to work around. For now, ignoring all shift key presses where shift modifier is set. TLDR, shift key will not register consistently unless used as a modifier ''' return 0 # Handle caps_lock modified presses elif modifier == 8192: if key in range( 97, 123 ): # is a letter return lookup_shiftModifiedKeys[ key ][ 0 ] else: return lookup_keys[ key ][ 0 ] else: return lookup_keys[ key ][ 0 ] else: return 0 ''' Pygame keyConstants www.pygame.org/docs/ref/key.html ''' lookup_keyModifiers = [ 0, # None 1, # Shift_left 2, # Shift_right 3, # Shift 8192, # Caps 64, # Ctrl_left 128, # Ctrl_right 192, # Ctrl 256, # Alt_left 512, # Alt_right 768, # Alt # 1024, # Meta_left # 2048, # Meta_right # 3072, # Meta # 4096, # Num # 16384, # Mode ] lookup_keys = { # Pygame_keyConstant : [ Hack_keyCode, ASCII_character ] 32 : [ 32 , ' ' ], # Space 39 : [ 39 , "'" ], # Quote right 44 : [ 44 , ',' ], # Comma 45 : [ 45 , '-' ], # Minus 46 : [ 46 , '.' ], # Period 47 : [ 47 , '/' ], # Slash 48 : [ 48 , '0' ], 49 : [ 49 , '1' ], 50 : [ 50 , '2' ], 51 : [ 51 , '3' ], 52 : [ 52 , '4' ], 53 : [ 53 , '5' ], 54 : [ 54 , '6' ], 55 : [ 55 , '7' ], 56 : [ 56 , '8' ], 57 : [ 57 , '9' ], 59 : [ 59 , ';' ], # Semicolon 61 : [ 61 , '=' ], # Equal 91 : [ 91 , '[' ], # Bracket left 92 : [ 92 , '\\' ], # Backslash 93 : [ 93 , ']' ], # Bracket right 96 : [ 96 , '`' ], # Quote left 97 : [ 97 , 'a' ], 98 : [ 98 , 'b' ], 99 : [ 99 , 'c' ], 100 : [ 100 , 'd' ], 101 : [ 101 , 'e' ], 102 : [ 102 , 'f' ], 103 : [ 103 , 'g' ], 104 : [ 104 , 'h' ], 105 : [ 105 , 'i' ], 106 : [ 106 , 'j' ], 107 : [ 107 , 'k' ], 108 : [ 108 , 'l' ], 109 : [ 109 , 'm' ], 110 : [ 110 , 'n' ], 111 : [ 111 , 'o' ], 112 : [ 112 , 'p' ], 113 : [ 113 , 'q' ], 114 : [ 114 , 'r' ], 115 : [ 115 , 's' ], 116 : [ 116 , 't' ], 117 : [ 117 , 'u' ], 118 : [ 118 , 'v' ], 119 : [ 119 , 'w' ], 120 : [ 120 , 'x' ], 121 : [ 121 , 'y' ], 122 : [ 122 , 'z' ], 9 : [ 127 , None ], # Tab 13 : [ 128 , None ], # Enter 8 : [ 129 , None ], # Backspace 276 : [ 130 , None ], # Arrow left 273 : [ 131 , None ], # Arraw up 275 : [ 132 , None ], # Arrow right 274 : [ 133 , None ], # Arrow down 278 : [ 134 , None ], # Home 279 : [ 135 , None ], # End 280 : [ 136 , None ], # Page up 281 : [ 137 , None ], # Page down 277 : [ 138 , None ], # Insert 127 : [ 139 , None ], # Delete 27 : [ 140 , None ], # Escape 282 : [ 141 , None ], # F1 283 : [ 142 , None ], # F2 284 : [ 143 , None ], # F3 285 : [ 144 , None ], # F4 286 : [ 145 , None ], # F5 287 : [ 146 , None ], # F6 288 : [ 147 , None ], # F7 289 : [ 148 , None ], # F8 290 : [ 149 , None ], # F9 291 : [ 150 , None ], # F10 292 : [ 151 , None ], # F11 293 : [ 152 , None ], # F12 304 : [ 153 , None ], # Shift left 303 : [ 154 , None ], # Shift right 306 : [ 155 , None ], # Control left 305 : [ 156 , None ], # Control right 308 : [ 157 , None ], # Alt left 307 : [ 158 , None ], # Alt right 268 : [ 42 , '*' ], # keypad asterisk 270 : [ 43 , '+' ], # keypad plus 269 : [ 45 , '-' ], # keypad minus 266 : [ 46 , '.' ], # keypad period 267 : [ 47 , '/' ], # keypad slash 256 : [ 48 , '0' ], # keypad 0 257 : [ 49 , '1' ], # keypad 1 258 : [ 50 , '2' ], # keypad 2 259 : [ 51 , '3' ], # keypad 3 260 : [ 52 , '4' ], # keypad 4 261 : [ 53 , '5' ], # keypad 5 262 : [ 54 , '6' ], # keypad 6 263 : [ 55 , '7' ], # keypad 7 264 : [ 56 , '8' ], # keypad 8 265 : [ 57 , '9' ], # keypad 9 271 : [ 128 , None ], # keypad enter } lookup_shiftModifiedKeys = { # Pygame_keyConstant : [ Hack_keyCode, ASCII_character ] 49 : [ 33 , '!' ], # Exclamation, S + 1 39 : [ 34 , '"' ], # Quote double, S + Quote right 51 : [ 35 , '#' ], # Number sign, S + 3 52 : [ 36 , '$' ], # Dollar, S + 4 53 : [ 37 , '%' ], # Percent, S + 5 55 : [ 38 , '&' ], # Ampersand, S + 7 57 : [ 40 , '(' ], # Parenthesis left, S + 9 48 : [ 41 , ')' ], # Parenthesis right, S + 0 56 : [ 42 , '*' ], # Asterisk, S + 8 61 : [ 43 , '+' ], # Plus, S + Equal 59 : [ 58 , ':' ], # Colon, S + Semicolon 44 : [ 60 , '<' ], # Less, S + Comma 46 : [ 62 , '>' ], # Greater, S + Period 47 : [ 63 , '?' ], # Question, S + Slash 50 : [ 64 , '@' ], # At, S + 2 97 : [ 65 , 'A' ], 98 : [ 66 , 'B' ], 99 : [ 67 , 'C' ], 100 : [ 68 , 'D' ], 101 : [ 69 , 'E' ], 102 : [ 70 , 'F' ], 103 : [ 71 , 'G' ], 104 : [ 72 , 'H' ], 105 : [ 73 , 'I' ], 106 : [ 74 , 'J' ], 107 : [ 75 , 'K' ], 108 : [ 76 , 'L' ], 109 : [ 77 , 'M' ], 110 : [ 78 , 'N' ], 111 : [ 79 , 'O' ], 112 : [ 80 , 'P' ], 113 : [ 81 , 'Q' ], 114 : [ 82 , 'R' ], 115 : [ 83 , 'S' ], 116 : [ 84 , 'T' ], 117 : [ 85 , 'U' ], 118 : [ 86 , 'V' ], 119 : [ 87 , 'W' ], 120 : [ 88 , 'X' ], 121 : [ 89 , 'Y' ], 122 : [ 90 , 'Z' ], 54 : [ 94 , '^' ], # Caret, S + 6 45 : [ 95 , '_' ], # Underscore, S + Minus 91 : [ 123 , '{' ], # Brace left, S + Bracket left 92 : [ 124 , '|' ], # Bar, S + Backslash 93 : [ 125 , '}' ], # Brace right, S + Bracket right 96 : [ 126 , '~' ], # Tilde, S + Quote left } ``` #### File: compiler/hl2py/hl2py.py ```python ''' Python class not same as Jack class... this does not refer to same thing as self this . Array idx 0 . Object instance field 0 self . ??? Need some kind of custom Python class that emulates Jack class ''' ''' For perfomance, bypass vm language Generate equivalent python code ex. def fxName ( arg0, arg1 ): ... Use arithmetic class for functions ex. ALU = NBitArith ( N ) ... z = ALU._add( x, y ) Python/HL emulator . RAM as array . ... ''' # TODO: tab levels 'ALU = NBitArithmetic( nBits )' def compile_classDeclaration ( self, exp ): s = '' className = exp[ 'name' ] s += 'class {}:\n'.format( className ) s += '\n' # constant declarations for constant in exp[ 'constDec' ]: s += '\t{} = {}\n'.format( constant[ 'name' ], constant[ 'value' ] ) # static declarations for static in exp[ 'varDec' ]: s += '\t{} = None\n'.format( static[ 'name' ] ) # s += '\n' # subroutine declarations for subDec in exp[ 'subDec' ]: s += self.compile_subroutineDeclaration( subDec ) return s def compile_subroutineDeclaration ( self, exp ): s = '' fxType = exp[ 'fx_type' ] fxName = exp[ 'name' ] params = [] for param in exp[ 'params' ]: params.append( param[ 'name' ] ) ''' Super kludgy 1) Treat quirky 'Array.new' as 'constructor' instead of 'function' Kludgy because any code that seeks to exploit behaviour similarly will not work ... no __init__ unless 'constructor' 2) Overwriting whole function so that can change 'return DataMemory.alloc( size )' to self.base = DataMemory.alloc( size ) This means any changes in Array.new code need to be mirrored here ''' if self.curClassName == 'Array' and fxName == 'new': s += '\tdef __init__ ( self, size ):\n' s += '\t\n' s += '\t\tif ALU._lte( size, 0 ):\n' s += '\t\n' s += '\t\t\tSys.error( 2 )\n' s += '\t\n' s += '\t\tself.base = DataMemory.alloc( size )\n' s += '\n' return s # def if fxType == 'method': s += 'def {} ( self{} ):\n'.format( fxName, ( ', ' + ', '.join( params ) ) if params else '' ) elif fxType == 'constructor': # TODO... check multiple constructors in class??? s += 'def __init__ ( self{} ):\n'.format( ( ', ' + ', '.join( params ) ) if params else '' ) elif fxType == 'function': s += 'def {} ({}):\n'.format( fxName, ( ' ' + ', '.join( params ) + ' ' ) if params else '' ) s += '\n' # local constant declarations for constant in exp[ 'constDec' ]: s += '\t{} = {}\n'.format( constant[ 'name' ], constant[ 'value' ] ) # local variable declarations for local in exp[ 'varDec' ]: s += '\t{} = None\n'.format( local[ 'name' ] ) s += '\n' # statements s += self.compile_statements( exp[ 'statements' ] ) return s def compile_statements ( self, statements ): s = '' if statements: for statement in statements: s += self.compile_statement( statement ) return s def compile_statement ( self, exp ): if exp[ 'type' ] == 'subroutineCall' : return self.compile_subroutineCall( exp ) elif exp[ 'type' ] == 'assignment' : return self.compile_letStatement( exp ) elif exp[ 'type' ] == 'whileStatement' : return self.compile_whileStatement( exp ) elif exp[ 'type' ] == 'ifStatement' : return self.compile_ifStatement( exp ) elif exp[ 'type' ] == 'forStatement' : return self.compile_forStatement( exp ) elif exp[ 'type' ] == 'returnStatement' : return self.compile_returnStatement( exp ) elif exp[ 'type' ] == 'breakStatement' : return self.compile_breakStatement( exp ) elif exp[ 'type' ] == 'continueStatement' : return self.compile_continueStatement( exp ) else: raise Exception ( "Error: Don't know how to compile the statement " + exp[ 'type' ] ) def compile_subroutineCall ( self, exp ): s = '' subName = exp[ 'name' ] if '.' not in subName: # Method of current class subName = 'self.' + subName # Kludgy workaround for use of 'this' to reference an array's base address if subName == 'DataMemory.dealloc': if self.curClassName == 'Array': # replace 'this' keyword with 'self.base' s = 'DataMemory.dealloc( self.base )' else: # ignore all other calls (typically by object instances to dispose self) s = '' return # args args = exp[ 'args' ] s_args = [] if args: for expr in args: s.append( self.compile_expression( expr ) ) s = '{}({})'.format( subName, ( ' ' + ', '.join( s_args ) + ' ' ) if args else '' ) return s def compile_letStatement ( self, exp ): s = '' return s .... ALUFxLookup_unary = { '!' : '_not', '~' : '_not', '-' : '_neg' } ALUFxLookup_binary = { # logic '&' : '_and', '|' : '_or', '^' : '_xor', # arithmetic '+' : '_add', '-' : '_sub', '*' : '_mul', '/' : '_div', '>>' : '_lsr', '<<' : '_lsl', '%' : ?, # comparison '=' : '_eq', '==' : '_eq', '>' : '_gt', '<' : '_lt', '>=' : '_gte', '<=' : '_lte', '!=' : '_ne' } def compile_binaryOp ( self, op, a, b ): if op in ALUFxLookup_binary(): ALUFx = ALUFxLookup_binary[ op ] return 'ALU.{}( {}, {} )'.format( ALUFx, a, b ) elif op == '%': return 'Math.mod( {}, {} )'.format( a, b ) else: raise Exception ( "Error: Don't know how to compile the binaryOp " + op ) def compile_expression ( self, exp ): s = '' if exp == None: return '' elif isinstance( exp, dict ): return self.compile_expressionTerm( exp ) else: s_a = self.compile_expression( exp[ 0 ] ) for i in range( 1, len( exp ), 2 ): s_b = self.compile_expression( exp[ i + 1 ] ) s_ab = self.compile_binaryOp( exp[ i ][ 'value' ], s_a, s_b ) s += s_ab s_a = s_ab return s def compile_expressionTerm ( self, exp ): s = '' expType = exp[ 'type' ] expValue = exp[ 'value' ] if expType == 'integerConstant': s = exp[ 'value' ] elif expType == 'stringConstant': 'String()' ... ?? for c in expValue: '?.appendChar( {} )'.format( ord( c ) ) elif expType == 'charConstant': s = str( ord( expValue ) ) # Ascii code elif expType == 'keywordConstant': if expValue == 'true': s = 'ALU.negativeOne' elif expValue == 'false' or expValue == 'null': s = '0' elif expValue == 'this': ... self? elif expType == 'identifier': name = exp[ 'name' ] arrIdx = exp[ 'arrIdx' ] if arrIdx: s_idx = self.compile_expression( arrIdx ) s = '{}[ {} ]'.format( name, s_idx ) ... ??? else: s = name elif expType == 'subroutineCall': return self.compile_subroutineCall( exp ) elif expType == 'unaryOp': s_operand = self.compile_expression( exp[ 'operand' ] ) op = exp[ 'op' ] ALUFx = ALUFxLookup_unary[ op ] s = 'ALU.{}( {} )'.format( ALUFx, s_operand ) else: raise Exception ( "Error: Don't know how to compile the expressionTerm " + expType ) return s ``` #### File: OtherExperiments/Components/comparator.py ```python ''''''''''''''' imports ''''''''''''''''''''''''''''' # Built ins import sys # Computer files sys.path.append('../../Modules') from _1__elementaryGates import * from _2__arithmeticGates import * ''''''''''''''''''''''''' main ''''''''''''''''''''''''' # https://en.wikipedia.org/wiki/Digital_comparator ''' doesn't work when comparing (1)negative to (0)positive numbers as under 2's complement, negative will always be larger positive range(0, 2**(n-1)) negative range(2**(n-1), 2**n) MSB doubles as sign... maybe could use to make a workaround ? =/ ''' # -- using logic gates --- # 1Bit def comp_( a, b ): eq = xnor_( a, b ) # a == b lt = and_( not_(a), b ) # a < b gt = and_( a, not_(b) ) # a > b return( eq, lt, gt ) # nBit def compN_( N, a, b ): # individual comps = [] for i in range(N): comps.append( comp_( a[i], b[i] ) ) # print(comps) # equal eqB = [ c[0] for c in comps ] eq = andNto1_( eqB ) # print( eq, eqB ) # less than parts = [] for i in range(N): part = eqB[:i] # print(part) part.insert( 0, comps[i][1] ) parts.append( andNto1_( part ) ) lt = orNto1_( parts ) # greater than gt = xnor_( eq, lt ) # return( eq, lt, gt ) # --- using mux --- # 1Bit def comp2_( a, b ): eq = mux4to1_( 1, 0, 0, 1, a, b ) # a == b lt = mux4to1_( 0, 1, 0, 0, a, b ) # a < b gt = mux4to1_( 0, 0, 1, 0, a, b ) # a > b return( eq, lt, gt ) # nBit def compN2_( N, a, b ): ''' Exact same as compN_(), just swap comp_() with comp2_() ''' pass ''''''''''''''''''''''''' test ''''''''''''''''''''''''' def dec2BinN( N, x ): if x < 0: x = 2**N - abs(x) # two's complement negation b = bin(x)[2:] # strip leading '0b' return b.zfill( N ) # pad with zeros as needed testVals = [ [ 1, 0, 1 ], [10, 15, 4 ], [-5, -8, 3+1], [-7, -7, 3+1], [-9, 0, 4+1], # fails [55, 80, 7 ] ] for vals in testVals: # for i in range(3): # vals = testVals[i] v1 = vals[0] v2 = vals[1] N = vals[2] expected = [ v1 == v2, v1 < v2, v1 > v2 ] result = compN_( N, dec2BinN( N, v1 ), dec2BinN( N, v2 ) ) print( expected[0] == result[0], ">", expected[0], result[0] ) print( expected[1] == result[1], ">", expected[1], result[1] ) print( expected[2] == result[2], ">", expected[2], result[2] ) print( "---" ) ``` #### File: OtherExperiments/FSMs/sequenceDetector6a_HLP.py ```python ''''''''''''''''''' Helpers ''''''''''''''''''''''''''''''''' class StackFSM(): ''' http://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--gamedev-11867 ''' def __init__(self): self.stack = [] def getCurrentState(self): if len(self.stack) > 0 : return self.stack[-1] else: return None def popState(self): self.stack.pop() def pushState(self, state): if self.getCurrentState() != state : self.stack.append(state) def update(self): currentStateFunction = self.getCurrentState() if currentStateFunction != None : currentStateFunction() ''''''''''''''''''''''''' Main ''''''''''''''''''''''''''''''''' # FSM as shown in notes class Thing(): # detect 101 or 110 or 011 def __init__(self): self.sManager = StackFSM() self.sManager.pushState(self.state0) self.input = None def update(self): self.sManager.update() def state0(self): print("reset") if self.input : self.sManager.popState() self.sManager.pushState(self.state2) else : self.sManager.popState() self.sManager.pushState(self.state1) def state1(self): print("detected 0") if self.input : self.sManager.popState() self.sManager.pushState(self.state4) else : self.sManager.popState() self.sManager.pushState(self.state3) def state2(self): print("detected 1") if self.input : self.sManager.popState() self.sManager.pushState(self.state6) else : self.sManager.popState() self.sManager.pushState(self.state5) def state3(self): print("detected 00") if self.input : self.sManager.popState() self.sManager.pushState(self.state4) else : self.sManager.popState() self.sManager.pushState(self.state3) def state4(self): print("detected 01") if self.input : print("detected 011") self.sManager.popState() self.sManager.pushState(self.state6) else : self.sManager.popState() self.sManager.pushState(self.state5) def state5(self): print("detected 10") if self.input : print("detected 101") self.sManager.popState() self.sManager.pushState(self.state4) else : self.sManager.popState() self.sManager.pushState(self.state3) def state6(self): print("detected 11") if self.input : self.sManager.popState() self.sManager.pushState(self.state6) else : print("detected 110") self.sManager.popState() self.sManager.pushState(self.state5) class Thing_stateReduced(): # detect 101 or 110 or 011 def __init__(self): self.sManager = StackFSM() self.sManager.pushState(self.state0) self.input = None def update(self): self.sManager.update() def state0(self): print("reset") if self.input : self.sManager.popState() self.sManager.pushState(self.state2) else : self.sManager.popState() self.sManager.pushState(self.state1) def state1(self): print("detected 0") if self.input : self.sManager.popState() self.sManager.pushState(self.state4) else : self.sManager.popState() self.sManager.pushState(self.state3) def state2(self): print("detected 1") if self.input : self.sManager.popState() self.sManager.pushState(self.state6) else : self.sManager.popState() self.sManager.pushState(self.state5) def state4(self): print("detected 01") if self.input : print("detected 011") self.sManager.popState() self.sManager.pushState(self.state6) else : self.sManager.popState() self.sManager.pushState(self.state5) def state5(self): print("detected 10") if self.input : print("detected 101") self.sManager.popState() self.sManager.pushState(self.state4) else : self.sManager.popState() self.sManager.pushState(self.state1) def state6(self): print("detected 11") if self.input : self.sManager.popState() self.sManager.pushState(self.state6) else : print("detected 110") self.sManager.popState() self.sManager.pushState(self.state5) ''''''''''''''''''''''''' Run ''''''''''''''''''''''''''''''''' sequence = [1,1,0,1,0,1,1,0,1,1,0,1,0,0,1,1,0] # sequence = [0,0,1,1,1,0,1,1,0,1,0,0,1,1,0] # sequence.reverse() thing = Thing() for input in sequence: thing.input = input thing.update() print( input ) print("\n---") thing2 = Thing_stateReduced() for input in sequence: thing2.input = input thing2.update() print( input ) ``` #### File: OtherExperiments/ShiftRegisters/ringCounter.py ```python ''''''''''''''' imports ''''''''''''''''''''''''''''' # Built ins import sys # Computer files sys.path.append('../../Modules') from _1__elementaryGates import * from _2__arithmeticGates import * from _3__clock import * from _4__flipFlops import * ''''''''''''''''''''''''' helpers ''''''''''''''''''''''''' def toString(array): return ''.join( map(str, array) ) def toDecimal(bitSeq): return int(bitSeq, 2) ''''''''''''''''''''''''' main ''''''''''''''''''''''''' clock = Clock() nStages = 4 dff = [] for i in range(nStages): dff.append( DFlipFlop() ) # start with '1000' for i in range(nStages): dff[i].clear() dff[0].preset() n_iterations = 0 def SR(clk): # Shift dff[0].doTheThing( clk, dff[3].q1 ) dff[1].doTheThing( clk, dff[0].q1 ) dff[2].doTheThing( clk, dff[1].q1 ) dff[3].doTheThing( clk, dff[2].q1 ) global n_iterations n_iterations += 1 if n_iterations >= 100: clock.stop() # stop the clock def record(): print( toString( [dff[0].q1, dff[1].q1, dff[2].q1, dff[3].q1] ) ) ''''''''''''''''''''''''' run ''''''''''''''''''''''''' # Things to execute on clock edges def callOnRising(): SR( clock.value ) def callOnFalling(): record() clock.callbackRising = callOnRising clock.callbackFalling = callOnFalling if __name__ == '__main__': # Start program clock.run() ``` #### File: PlayArea/shifters/shift16.py ```python def shiftRight16_( x, y ): ''' 16 bit barrel shifter (right) ''' N = 16 t0 = [ None ] * N t1 = [ None ] * N t2 = [ None ] * N t3 = [ None ] * N y = y[::-1] # make life simpler by matching array access to MSB-to-LSB format # for i in range( N - 1, 0, -1 ): t0[i] = mux_( x[ i - 1 ], x[i], y[0] ) t0[0] = mux_( 0, x[0], y[0] ) # for i in range( N - 1, 1, -1 ): t1[i] = mux_( t0[ i - 2 ], t0[i], y[1] ) t1[1] = mux_( 0, t0[1], y[1] ) t1[0] = mux_( 0, t0[0], y[1] ) # for i in range( N - 1, 3, -1 ): t2[i] = mux_( t1[ i - 4 ], t1[i], y[2] ) t2[3] = mux_( 0, t1[3], y[2] ) t2[2] = mux_( 0, t1[2], y[2] ) t2[1] = mux_( 0, t1[1], y[2] ) t2[0] = mux_( 0, t1[0], y[2] ) # for i in range( N - 1, 7, -1 ): t3[i] = mux_( t2[ i - 8 ], t2[i], y[3] ) t3[7] = mux_( 0, t2[7], y[3] ) t3[6] = mux_( 0, t2[6], y[3] ) t3[5] = mux_( 0, t2[5], y[3] ) t3[4] = mux_( 0, t2[4], y[3] ) t3[3] = mux_( 0, t2[3], y[3] ) t3[2] = mux_( 0, t2[2], y[3] ) t3[1] = mux_( 0, t2[1], y[3] ) t3[0] = mux_( 0, t2[0], y[3] ) # return t3 def shiftLeft16_( x, y ): ''' 16 bit barrel shifter (left) ''' N = 16 t0 = [ None ] * N t1 = [ None ] * N t2 = [ None ] * N t3 = [ None ] * N y = y[::-1] # make life simpler by matching array access to MSB-to-LSB format # t0[N - 1] = mux_( 0, x[N - 1], y[0] ) for i in range( N - 2, -1, -1 ): t0[i] = mux_( x[ i + 1 ], x[i], y[0] ) # t1[ N - 1 ] = mux_( 0, t0[ N - 1 ], y[1] ) t1[ N - 2 ] = mux_( 0, t0[ N - 2 ], y[1] ) for i in range( N - 3, -1, -1 ): t1[i] = mux_( t0[ i + 2 ], t0[i], y[1] ) # t2[ N - 1 ] = mux_( 0, t1[ N - 1 ], y[2] ) t2[ N - 2 ] = mux_( 0, t1[ N - 2 ], y[2] ) t2[ N - 3 ] = mux_( 0, t1[ N - 3 ], y[2] ) t2[ N - 4 ] = mux_( 0, t1[ N - 4 ], y[2] ) for i in range( N - 5, -1, -1 ): t2[i] = mux_( t1[ i + 4 ], t1[i], y[2] ) # t3[ N - 1 ] = mux_( 0, t2[ N - 1 ], y[3] ) t3[ N - 2 ] = mux_( 0, t2[ N - 2 ], y[3] ) t3[ N - 3 ] = mux_( 0, t2[ N - 3 ], y[3] ) t3[ N - 4 ] = mux_( 0, t2[ N - 4 ], y[3] ) t3[ N - 5 ] = mux_( 0, t2[ N - 5 ], y[3] ) t3[ N - 6 ] = mux_( 0, t2[ N - 6 ], y[3] ) t3[ N - 7 ] = mux_( 0, t2[ N - 7 ], y[3] ) t3[ N - 8 ] = mux_( 0, t2[ N - 8 ], y[3] ) for i in range( N - 9, -1, -1 ): t3[i] = mux_( t2[ i + 8 ], t2[i], y[3] ) # return t3 ```
{ "source": "jetstream5500/FFT", "score": 3 }
#### File: FFT/src/spectogram.py ```python import sys import argparse import sounddevice as sd import queue import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation import r2fft from random import * # Global queue q = queue.Queue() data = np.zeros((512,512)).tolist() im = None def audio_callback(indata, frames, time, status): #print(len(indata)) """This is called (from a separate thread) for each audio block.""" if status: print(status, file=sys.stderr) #fancy slicing?? #print(indata[::1, 0]) q.put(indata[::1, 0]) #print(q) def update_spectogram(frame): while True: if q.qsize() > 16: #print(q.qsize()) a = im.get_array() data_seg = [] for i in range(16): data_seg.extend(q.get_nowait()) fft_data = abs(r2fft.fft(data_seg))[::16] #print(len(fft_data)) #for i in range(512): # a[i] = fft_data a = np.append(a[1:],fft_data) im.set_array(a) im.set_clim(vmax=np.amax(a)) else: break return [im] if __name__ == '__main__': parser = argparse.ArgumentParser(description="Description") parser.add_argument( '-l', '--list-devices', action='store_true', help='show list of audio devices and exit') parser.add_argument( '-d', '--device', type=int, help='input device (numeric ID or substring)') #parser.add_argument( # '-w', '--window', type=float, default=200, metavar='DURATION', # help='visible time slot (default: %(default)s ms)') parser.add_argument( '-i', '--interval', type=float, default=100, help='minimum time between plot updates (default: %(default)s ms)') #parser.add_argument( # '-b', '--blocksize', type=int, help='block size (in samples)') parser.add_argument( '-r', '--samplerate', type=float, help='sampling rate of audio device') #parser.add_argument( # '-n', '--downsample', type=int, default=10, metavar='N', # help='display every Nth sample (default: %(default)s)') #parser.add_argument( # 'channels', type=int, default=[1], nargs='*', metavar='CHANNEL', # help='input channels to plot (default: the first)') args = parser.parse_args() if args.list_devices: print(sd.query_devices()) parser.exit(0) if args.samplerate is None: device_info = sd.query_devices(args.device, 'input') args.samplerate = device_info['default_samplerate'] print(args) stream = sd.InputStream( device=args.device, channels=1, samplerate=args.samplerate, callback=audio_callback) fig = plt.figure() im = plt.imshow(data, animated=True, vmin=0, vmax=1) ani = animation.FuncAnimation(fig, update_spectogram, interval=args.interval, blit=True) with stream: print('Recording started...') plt.show() ```
{ "source": "Jet-Streaming/gyp", "score": 2 }
#### File: test/mac/gyptest-app-error.py ```python """ Verifies that invalid strings files cause the build to fail. """ import TestCmd import TestGyp import sys if sys.platform == 'darwin': expected_error = 'Old-style plist parser: missing semicolon in dictionary' saw_expected_error = [False] # Python2 has no "nonlocal" keyword. def match(a, b): if a == b: return True if not TestCmd.is_List(a): a = a.split('\n') if not TestCmd.is_List(b): b = b.split('\n') if expected_error in '\n'.join(a) + '\n'.join(b): saw_expected_error[0] = True return True return False test = TestGyp.TestGyp(formats=['ninja', 'make', 'xcode'], match=match) test.run_gyp('test-error.gyp', chdir='app-bundle') test.build('test-error.gyp', test.ALL, chdir='app-bundle') # Ninja pipes stderr of subprocesses to stdout. if test.format in ['ninja', 'xcode-ninja'] \ and expected_error in test.stdout(): saw_expected_error[0] = True if saw_expected_error[0]: test.pass_test() else: test.fail_test() ```
{ "source": "jetstreamin/sqlitebiter", "score": 2 }
#### File: jetstreamin/sqlitebiter/setup.py ```python import io import os.path import sys import setuptools MODULE_NAME = "sqlitebiter" REPOSITORY_URL = "https://github.com/thombashi/{:s}".format(MODULE_NAME) REQUIREMENT_DIR = "requirements" ENCODING = "utf8" pkg_info = {} def need_pytest(): return set(["pytest", "test", "ptr"]).intersection(sys.argv) def get_release_command_class(): try: from releasecmd import ReleaseCommand except ImportError: return {} return {"release": ReleaseCommand} with open(os.path.join(MODULE_NAME, "__version__.py")) as f: exec(f.read(), pkg_info) with io.open("README.rst", encoding=ENCODING) as fp: long_description = fp.read() with io.open(os.path.join("docs", "pages", "introduction", "summary.txt"), encoding=ENCODING) as f: summary = f.read().strip() with open(os.path.join(REQUIREMENT_DIR, "requirements.txt")) as f: install_requires = [line.strip() for line in f if line.strip()] with open(os.path.join(REQUIREMENT_DIR, "test_requirements.txt")) as f: tests_requires = [line.strip() for line in f if line.strip()] with open(os.path.join(REQUIREMENT_DIR, "docs_requirements.txt")) as f: docs_requires = [line.strip() for line in f if line.strip()] build_exe_requires = ["pyinstaller>=3.4"] build_wheel_requires = ["twine", "wheel"] build_requires = build_exe_requires + build_wheel_requires SETUPTOOLS_REQUIRES = ["setuptools>=38.3.0"] PYTEST_RUNNER_REQUIRES = ["pytest-runner"] if need_pytest() else [] setuptools.setup( name=MODULE_NAME, version=pkg_info["__version__"], url=REPOSITORY_URL, author=pkg_info["__author__"], author_email=pkg_info["__email__"], description=summary, include_package_data=True, keywords=[ "SQLite", "converter", "CSV", "Excel", "Google Sheets", "HTML", "JSON", "LTSV", "TSV", ], license=pkg_info["__license__"], long_description=long_description, packages=setuptools.find_packages(exclude=['test*']), project_urls={ "Documentation": "https://{:s}.rtfd.io/".format(MODULE_NAME), "Download": "{:s}/releases".format(REPOSITORY_URL), "Source": REPOSITORY_URL, "Tracker": "{:s}/issues".format(REPOSITORY_URL), }, python_requires=">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*", install_requires=SETUPTOOLS_REQUIRES + install_requires, setup_requires=SETUPTOOLS_REQUIRES + PYTEST_RUNNER_REQUIRES, tests_require=tests_requires, extras_require={ "build": build_requires, "buildexe": build_exe_requires, "buildwhl": build_wheel_requires, "docs": docs_requires, "gs": ["gspread", "oauth2client", "pyOpenSSL"], "mediawiki": ["pypandoc"], "release": ["releasecmd>=0.0.18,<0.1.0"], "test": tests_requires, }, classifiers=[ "Development Status :: 4 - Beta", "Environment :: Console", "Framework :: Jupyter", "Intended Audience :: Information Technology", "License :: OSI Approved :: MIT License", "Operating System :: MacOS", "Operating System :: Microsoft", "Operating System :: Microsoft :: Windows", "Operating System :: POSIX", "Operating System :: POSIX :: Linux", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Topic :: Database", ], entry_points={ "console_scripts": [ "sqlitebiter=sqlitebiter.sqlitebiter:cmd", ], }, cmdclass=get_release_command_class()) ``` #### File: sqlitebiter/sqlitebiter/_common.py ```python from __future__ import absolute_import, unicode_literals from ._clrm import bright, cyan, green DEFAULT_DUP_COL_HANDLER = "rename" class ResultLogger(object): @property def verbosity_level(self): return self.__verbosity_level def __init__(self, logger, schema_extractor, result_counter, verbosity_level): self.__logger = logger self.__schema_extractor = schema_extractor self.__result_counter = result_counter self.__verbosity_level = verbosity_level def logging_success(self, source, table_name, is_create_table): table_schema = self.__schema_extractor.fetch_table_schema(table_name.strip()) self.__result_counter.inc_success(is_create_table) self.__logger.info( "convert '{source:s}' to '{table_info:s}' table".format( source=cyan(source), table_info=bright( green( table_schema.dumps( output_format="text", verbosity_level=self.__verbosity_level ) ) ), ) ) ``` #### File: sqlitebiter/sqlitebiter/_counter.py ```python from __future__ import absolute_import, unicode_literals from ._const import ExitCode class ResultCounter(object): @property def success_count(self): return self.__success_count @property def fail_count(self): return self.__fail_count @property def skip_count(self): return self.__skip_count @property def total_count(self): return self.success_count + self.fail_count + self.skip_count @property def created_table_count(self): return self.__create_table_count def __init__(self): self.__create_table_count = 0 self.__success_count = 0 self.__fail_count = 0 self.__skip_count = 0 def __repr__(self): return "results: " + ", ".join( [ "success={:d}".format(self.__success_count), "failed={:d}".format(self.__fail_count), "skip={:s}".format(self.__skip_count), "return_code={:d}".format(self.get_return_code()), ] ) def inc_success(self, is_create_table): self.__success_count += 1 if is_create_table: self.__create_table_count += 1 def inc_fail(self): self.__fail_count += 1 def inc_skip(self): self.__skip_count += 1 def get_return_code(self): if self.__success_count > 0: return ExitCode.SUCCESS if self.__fail_count > 0: return ExitCode.FAILED_CONVERT return ExitCode.NO_INPUT ``` #### File: sqlitebiter/subcommand/_gs.py ```python from __future__ import absolute_import, unicode_literals import msgfy import pytablereader as ptr import six from ._base import SourceInfo, TableConverter class GoogleSheetsConverter(TableConverter): def convert(self, credentials, title): logger = self._logger result_counter = self._result_counter source_id = self._fetch_next_source_id() loader = ptr.GoogleSheetsTableLoader() loader.source = credentials loader.title = title # if typepy.is_null_string(loader.source): # loader.source = app_config_mgr.load().get( # ConfigKey.GS_CREDENTIALS_FILE_PATH) try: for table_data in loader.load(): logger.debug("loaded table_data: {}".format(six.text_type(table_data))) sqlite_tabledata = self.normalize_table(table_data) source_info = SourceInfo( base_name=title, dst_table=sqlite_tabledata.table_name, format_name="google sheets", source_id=source_id, ) try: self._table_creator.create( sqlite_tabledata, self._index_list, source_info=source_info ) SourceInfo.insert(source_info) except (ptr.ValidationError, ptr.DataError): result_counter.inc_fail() except ptr.OpenError as e: logger.error(msgfy.to_error_message(e)) result_counter.inc_fail() except (ptr.ValidationError, ptr.DataError) as e: logger.error( "invalid credentials data: path={}, message={}".format(credentials, str(e)) ) result_counter.inc_fail() except ptr.APIError as e: logger.error(msgfy.to_error_message(e)) result_counter.inc_fail() ```
{ "source": "jetsunwhitton/pico-ner-relations", "score": 2 }
#### File: pico-ner-relations/scripts/custom_functions.py ```python from functools import partial from pathlib import Path from typing import Iterable, Callable import spacy from spacy.training import Example from spacy.tokens import DocBin, Doc from spacy.language import Language # make the factory work from scripts.rel_pipe import make_relation_extractor # make the config work from scripts.rel_model import create_relation_model, create_classification_layer, create_instances, create_tensors from scripts.entity_ruler import custom_entity_ruler @Language.component("custom_sentencizer") def custom_sentencizer(doc): for i, token in enumerate(doc[:-2]): # Define sentence start if . + not numeric (e.g decimal point) token after if token.text == "." and not doc[i + 1].text.isnumeric(): doc[i + 1].is_sent_start = True else: # Explicitly set sentence start to False otherwise, to tell # the parser to leave those tokens alone doc[i + 1].is_sent_start = False return doc # This function was sourced from the spaCy relation component # template: https://github.com/explosion/projects/tree/v3/tutorials @spacy.registry.readers("Gold_ents_Corpus.v1") def create_docbin_reader(file: Path) -> Callable[["Language"], Iterable[Example]]: return partial(read_files, file) # This function was adapated from the spaCy relation component # template: https://github.com/explosion/projects/tree/v3/tutorials def read_files(file: Path, nlp: "Language") -> Iterable[Example]: """Custom reader that keeps the tokenization of the gold data, and also adds the gold PICO annotations as we do not attempt to predict these.""" doc_bin = DocBin().from_disk(file) docs = doc_bin.get_docs(nlp.vocab) for gold in docs: pred = Doc( nlp.vocab, words=[t.text for t in gold], spaces=[t.whitespace_ for t in gold], ) pred.ents = gold.ents yield Example(pred, gold) ``` #### File: pico-ner-relations/scripts/demo.py ```python import spacy_streamlit, spacy, operator import streamlit as st from spacy import displacy from spacy.pipeline import merge_entities # make the factory work from rel_pipe import make_relation_extractor, score_relations # make the config work from rel_model import create_relation_model, create_classification_layer, create_instances, create_tensors from tabulate import relation_extraction, tabulate_pico_entities import base64 # set page config st.set_page_config( page_title="RCT-ART", page_icon="logo.jpg" ) st.sidebar.image("logo.jpg") st.sidebar.markdown("RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into tables through jointly extracting intervention, outcome and outcome measure entities and their relations. ") st.sidebar.subheader("Current constraints:") st.sidebar.markdown(""" - Only abstracts from studies with 2 trial arms - Must be a sentence with study results - Sentence must contain at least least one intervention (e.g. drug name), outcome description (e.g. blood pressure) and non-comparative outcome measure) """) st.title("Demo") st.header("Randomised Controlled Trial Abstract Result Tabulator") ner_model = "trained_models/biobert/ner/all_domains/model-best" rel_model = "trained_models/biobert/rel/all_domains/model-best" default_text = "Somnolence , the most frequently reported adverse event , was noted in 72.5 % versus 7.7 % of subjects ( risperidone vs placebo ) and seemed manageable with dose/dose-schedule modification ." st.subheader("Enter result sentence for analysis") text = st.text_area("Input should follow constraints outlined in sidebar", default_text, height=200) nlp = spacy.load("trained_models/biobert/ner/all_domains/model-best") ent_doc = nlp(text) st.subheader("NER analysis") spacy_streamlit.visualize_ner( ent_doc, labels=["INTV", "OC", "MEAS"], show_table=False, title=False ) rel_doc = relation_extraction(rel_model,[ent_doc])[0] deps = {"words": [],"arcs": []} for tok in rel_doc: deps["words"].append({"text": tok.text, "tag": tok.ent_type_}) for key in rel_doc._.rel: rel = rel_doc._.rel[key] # get relation pred_rel = max(rel.items(), key=operator.itemgetter(1)) # selects relation type with highest probability if pred_rel[1] > 0.5: # includes relation if above set threshold for probability if key[0] > key[1] and rel_doc[key[1]].ent_type_ != "MEAS": deps["arcs"].append({"start": key[1], "end": key[0], "label": pred_rel[0], "dir": "right"}) elif key[0] > key[1]: deps["arcs"].append({"start": key[1], "end": key[0], "label": pred_rel[0], "dir": "left"}) elif rel_doc[key[1]].ent_type_ != "MEAS": deps["arcs"].append({"start": key[0], "end": key[1], "label": pred_rel[0], "dir": "left"}) else: deps["arcs"].append({"start": key[0], "end": key[1], "label": pred_rel[0], "dir": "right"}) html = displacy.render(deps, style="dep", manual=True, options={'distance':80}) st.subheader("RE analysis") st.write(spacy_streamlit.util.get_svg(html), unsafe_allow_html=True) heading_properties = [('font-size', '16px')] cell_properties = [('font-size', '16px')] dfstyle = [dict(selector="th", props=heading_properties),dict(selector="td", props=cell_properties)] df = tabulate_pico_entities(rel_doc) print(rel_doc._.rel) #df.style.set_table_styles([cell_hover, index_names, headers]) st.subheader("Tabulation") st.table(df.style.set_table_styles(dfstyle)) def get_table_download_link(df): """Generates a link allowing the data in a given panda dataframe to be downloaded in: dataframe out: href string """ csv = df.to_csv(index=False) b64 = base64.b64encode(csv.encode()).decode() # some strings <-> bytes conversions necessary here href = f'<a href="data:file/csv;base64,{b64}" download="result_sentence.csv">Download csv file</a>' return href st.markdown(get_table_download_link(df), unsafe_allow_html=True) ``` #### File: pico-ner-relations/scripts/evaluate.py ```python import spacy, operator, csv, os from spacy.tokens import DocBin, Doc from spacy.training.example import Example from spacy.scorer import Scorer,PRFScore from spacy.vocab import Vocab # make the factory work from rel_pipe import make_relation_extractor, score_relations # make the config work from rel_model import create_relation_model, create_classification_layer, create_instances, create_tensors def ner_evaluate(ner_model_path,test_data): """ Evaluates NER scores of model on test data, can output to console and/or file""" print("|| Loading model for NER task") nlp = spacy.load(ner_model_path) doc_bin = DocBin(store_user_data=True).from_disk(test_data) docs = doc_bin.get_docs(nlp.vocab) examples = [] for gold in docs: pred = nlp(gold.text) examples.append(Example(pred, gold)) print("|| Evaluating NER task performance") print(nlp.evaluate(examples)) outfile.write("NER_evaluation\n") outfile.write(f"{nlp.evaluate(examples)}\n") # This function was extensively adapted from the spaCy relation component # template: https://github.com/explosion/projects/tree/v3/tutorials # it can now be used to evaluate joint entity--relation extraction performance def joint_ner_rel_evaluate(ner_model_path, rel_model_path, test_data, print_details: bool): """Evaluates joint performance of ner and rel extraction model, as well as the rel model alone if only rel model provided""" if ner_model_path != None: print("|| Loading models for joint task") ner = spacy.load(ner_model_path) print("|| Evaluating joint task performance") else: print("|| Loading models for rel task") print("|| Evaluating rel task performance") rel = spacy.load(rel_model_path) doc_bin = DocBin(store_user_data=True).from_disk(test_data) docs = doc_bin.get_docs(rel.vocab) examples = [] for gold in docs: pred = Doc( rel.vocab, words=[t.text for t in gold], spaces=[t.whitespace_ for t in gold], ) if ner_model_path != None: pred.ents = ner(gold.text).ents else: pred.ents = gold.ents for name, proc in rel.pipeline: pred = proc(pred) examples.append(Example(pred, gold)) # Print the gold and prediction, if gold label is not 0 if print_details: print() print(f"Text: {gold.text}") print(f"gold_spans: {[(e.start, e.text, e.label_) for e in gold.ents]}") print(f"pred_spans: {[(e.start, e.text, e.label_) for e in pred.ents]}") gold_ents = [e.text for e in gold.ents] assessed_ents = [] for value, rel_dict in pred._.rel.items(): try: gold_labels = [k for (k, v) in gold._.rel[value].items() if v == 1.0] if gold_labels: print( f" pair: {value} --> gold labels: {gold_labels} --> predicted values: {rel_dict}" ) except KeyError: pred_rel = max(rel_dict.items(),key=operator.itemgetter(1)) if pred_rel[1] > 0.5: print("Relation mapped with wrong entity pair") else: parent_ent = list(filter(lambda x: x.start == value[0], pred.ents))[0].text child_ent = list(filter(lambda x: x.start == value[1], pred.ents))[0].text if parent_ent not in assessed_ents: if parent_ent in gold_ents: print(parent_ent," Correct entity and correctly didn't map relation") else: print(parent_ent," incorrect entity") assessed_ents.append(parent_ent) if child_ent not in assessed_ents: if child_ent in gold_ents: print(child_ent, "Correct entity and correctly didn't map relation") else: print(child_ent, "incorrect entity") assessed_ents.append(child_ent) print() thresholds = [0.000, 0.050, 0.100, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999] print() print("Results of the trained model:") #outfile.write() task = False if ner_model_path != None: task = True _score_and_format(examples, thresholds, task) def _score_and_format(examples, thresholds, task): """outputs rel and joint performance scores, to console and/or txt file""" #if task: #outfile.write("Joint\n") #else: #outfile.write("Rel alone\n") for threshold in thresholds: r = score_relations(examples, threshold) results = {k: "{:.2f}".format(v * 100) for k, v in r.items()} print(f"threshold {'{:.2f}'.format(threshold)} \t {results}") #outfile.write(f"threshold {'{:.2f}'.format(threshold)} \t {results}\n") def evaluate_result_tables(gold_path, predicted_path, strict = True): """ Evaluates performance of model on tabulation task, compares prediction tables vs gold tables, can output to console and/or txt file""" print("|| Evaluating table task performance") prf = PRFScore() examples = [] for gold_csv, pred_csv in zip(os.listdir(gold_path), os.listdir(predicted_path)): gold_open = open(os.path.join(gold_path, gold_csv), newline='') pred_open = open(os.path.join(predicted_path, pred_csv), newline='') gold_list = [d for d in csv.DictReader(gold_open)] pred_list = [d for d in csv.DictReader(pred_open)] for gold, pred in zip(gold_list,pred_list): del gold[''] del pred[''] examples.append({"gold":gold,"pred":pred}) continue if gold_list == []: continue # empty lists in gold are error in data and should be skipped if pred_list == []: # empty lists in pred are false negatives if not empty in gold for gold in gold_list: del gold[''] examples.append({"gold": gold, "pred": {}}) if strict: # assess table with exact entity matches for example in examples: if not example["pred"]: prf.fn += 1 else: if example["pred"] == example["gold"]: prf.tp += 1 else: prf.fp += 1 else: # assess tables with less strict entity criteria -- gold/pred entity boundary overlap for example in examples: relaxed_match = True if not example["pred"]: prf.fn += 1 # empty prediction --> false negative else: for pval, gval in zip(example["pred"].values(), example["gold"].values()): if gval not in pval and pval not in gval: relaxed_match = False if relaxed_match: prf.tp += 1 else: prf.fp += 1 output = {"rel_micro_p": prf.precision, "rel_micro_r": prf.recall, "rel_micro_f": prf.fscore,} outfile.write("Table_evaluation") if strict: outfile.write("strict\n") else: outfile.write("relaxed\n") outfile.write(f"{output}\n") print(output) def create_ner_confusion_matrix(model_path, test_path): from sklearn.metrics import confusion_matrix from sklearn.metrics import ConfusionMatrixDisplay import matplotlib.pyplot as plt ner = spacy.load(model_path) doc_bin = DocBin(store_user_data=True).from_disk(test_path) gold_docs = list(doc_bin.get_docs(ner.vocab)) pred_docs = [ner(gold_doc.text) for gold_doc in gold_docs] gold_array = [] pred_array = [] for gold_doc, pred_doc in zip(gold_docs, pred_docs): for g_tok,p_tok in zip(gold_doc, pred_doc): if g_tok.ent_type_ == '': gold_array.append("NO_ENT") else: gold_array.append(g_tok.ent_type_) if p_tok.ent_type_ == '': pred_array.append("NO_ENT") else: pred_array.append(p_tok.ent_type_) cm = confusion_matrix(gold_array, pred_array, labels=["OC","INTV","MEAS","NO_ENT"], sample_weight=None, normalize='true') disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=["OC","INTV","MEAS","NO_ENT"]) font = {'family': 'normal', 'weight': 'normal', 'size': 24} plt.rc('font', **font) fig, ax = plt.subplots(figsize=(12, 12)) disp = disp.plot(include_values=True, cmap=plt.cm.Blues, ax=ax, xticks_rotation='vertical') plt.show() def create_rel_confusion_matrix(model_path, test_path): from sklearn.metrics import confusion_matrix from sklearn.metrics import ConfusionMatrixDisplay import matplotlib.pyplot as plt from scripts.tabulate import relation_extraction vocab = Vocab() doc_bin = DocBin(store_user_data=True).from_disk(test_path) for_pred = list(doc_bin.get_docs(vocab)) pred_docs = relation_extraction(model_path, for_pred) doc_bin = DocBin(store_user_data=True).from_disk(test_path) gold_docs = list(doc_bin.get_docs(vocab)) pred_array, pred_keys, gold_keys, gold_array = [], [], [], [] for pred_doc, gold_doc in zip(pred_docs,gold_docs): for pkey, p_rel_dict in pred_doc._.rel.items(): pred_keys.append(pkey) if pkey in gold_doc._.rel.keys(): gold_keys.append(pkey) gold_rel = gold_doc._.rel[pkey] # get relation max_gold = max(gold_rel.items(), key=operator.itemgetter(1)) # selects highest probability relation if max_gold[1] > 0.5: # includes relation if above set threshold for probability gold_array.append(max_gold[0]) else: gold_array.append("NO_RE") pred_rel = pred_doc._.rel[pkey] # get relation max_pred = max(pred_rel.items(), key=operator.itemgetter(1)) # selects highest probability relation if max_pred[1] > 0.5: # includes relation if above set threshold for probability pred_array.append(max_pred[0]) else: pred_array.append("NO_RE") cm = confusion_matrix(gold_array, pred_array, labels=["A1_RES", "A2_RES", "OC_RES", "NO_RE"], sample_weight=None, normalize='true') disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=["A1_RES", "A2_RES", "OC_RES", "NO_RE"]) font = {'family': 'normal', 'weight': 'normal', 'size': 24} plt.rc('font', **font) fig, ax = plt.subplots(figsize=(12, 12)) disp = disp.plot(include_values=True, cmap=plt.cm.Blues, ax=ax, xticks_rotation='vertical') plt.show() if __name__ == "__main__": # some of these paths require trained models to be in place already doc_path = "../datasets/preprocessed/out_of_domain/solid_tumour_cancer_as_test/test.spacy" gold_table_path = "../datasets/preprocessed/all_domains/gold_tables" pred_table_path = "../output_tables/all_domains_" model_bases = ["biobert","scibert","roberta"] # evaluate different model-bases for model_base in model_bases: outfile = open(f"../evaluation_results/{model_base}.txt", "w") # assess ner performance ner_evaluate(f"../trained_models/biobert/ner/all_domains/model-best",doc_path) # assess rel performance joint_ner_rel_evaluate(None,f"../trained_models/biobert/rel/all_domains/model-best",doc_path,False) # assess joint performance joint_ner_rel_evaluate(None, f"../trained_models/rel/all_domains/model-best",doc_path,True) # assess table strict performance evaluate_result_tables(gold_table_path, f"{pred_table_path}{model_base}", strict=True) # assess table relaxed performance evaluate_result_tables(gold_table_path, f"{pred_table_path}{model_base}", strict=False) outfile.close() create_ner_confusion_matrix("../trained_models/ner/all_domains/model-best", doc_path) create_rel_confusion_matrix("../trained_models/rel/all_domains/model-best", doc_path) ``` #### File: pico-ner-relations/scripts/preprocessing.py ```python import json, random, os, ast from spacy.tokens import DocBin, Doc from spacy.vocab import Vocab from wasabi import Printer def merge_jsonl(jsonl_dirs, output_path): """Merges gold standard JSONL files from different disease area domains""" merge_list = [] for path in jsonl_dirs: loaded = open(path,"r").read() merge_list += loaded.split("\n") with open(output_path, "w") as output: for dict in merge_list: if dict == "\n": pass else: try: dict = json.loads(dict) output.write(json.dumps(dict) + "\n") except: print(dict) output.close() # This function was adapted from the spaCy relation component # template: https://github.com/explosion/projects/tree/v3/tutorials def annotations_to_spacy(json_loc): """Converts Prodigy annotations into doc object with custom rel attribute.""" msg = Printer() MAP_LABELS = { "A1_RES": "A1_RES", "A2_RES": "A2_RES", "OC_RES": "OC_RES", } try: Doc.set_extension("rel", default={}) except ValueError: print("Rel extension already set on doc") vocab = Vocab() docs = [] with open(json_loc, "r", encoding="utf8") as jsonfile: for line in jsonfile: example = json.loads(line) span_starts = set() if example["answer"] == "accept": try: # Parse the tokens words = [t["text"] for t in example["tokens"]] spaces = [t["ws"] for t in example["tokens"]] doc = Doc(vocab, words=words, spaces=spaces) # Parse the PICO entities spans = example["spans"] entities = [] span_end_to_start = {} for span in spans: entity = doc.char_span( span["start"], span["end"], label=span["label"] ) span_end_to_start[span["token_end"]] = span["token_start"] entities.append(entity) span_starts.add(span["token_start"]) doc.ents = entities # Parse the PICO relations rels = {} for x1 in span_starts: for x2 in span_starts: rels[(x1, x2)] = {} relations = example["relations"] for relation in relations: # swaps tokens to correct relation positions start = span_end_to_start[relation["head"]] end = span_end_to_start[relation["child"]] label = relation["label"] label = MAP_LABELS[label] if label not in rels[(start, end)]: rels[(start, end)][label] = 1.0 # The annotation is complete, so fill in zero's where the data is missing for x1 in span_starts: for x2 in span_starts: for label in MAP_LABELS.values(): if label not in rels[(x1, x2)]: rels[(x1, x2)][label] = 0.0 doc._.rel = rels try: pmid = ast.literal_eval(example["user_data"]) doc.user_data["pmid"] = pmid["pmid"] except KeyError: pass # pmids have not been added to glaucoma dataset docs.append(doc) except KeyError as e: msg.fail(f"Skipping doc because of key error") print(len(docs)) return docs def train_dev_test_split(docs,output_dir): """ Splits spaCy docs collection into train test and dev datasets based on pmid :param docs: list :return: train dev and test spacy files for model training and testing """ pmid_set = set() with_pmid = [] without_pmid = [] for doc in docs: try: pmid_set.add(doc.user_data["pmid"]) with_pmid.append(doc) except KeyError: # primarily for glaucoma dataset in instance of this study without_pmid.append(doc) pmid_list = list(pmid_set) random.shuffle(pmid_list) # randomise pmids before train, dev, test split l = len(pmid_list) train = pmid_list[0:int(l * 0.7)] dev = pmid_list[int(l * 0.7):int(l * 0.8)] w_train, w_dev, w_test = [],[],[] for doc in with_pmid: if doc.user_data["pmid"] in train: w_train.append(doc) elif doc.user_data["pmid"] in dev: w_dev.append(doc) else: w_test.append(doc) random.shuffle(without_pmid) # randomise sentences without pubmed ids for dividing across sets l = len(without_pmid) wo_train = without_pmid[0:int(l * 0.7)] wo_dev = without_pmid[int(l * 0.7):int(l * 0.8)] wo_test = without_pmid[int(l * 0.8):] joined_train = w_train + wo_train joined_dev = w_dev + wo_dev joined_test = w_test + wo_test docbin = DocBin(docs=joined_train, store_user_data=True) docbin.to_disk(f"{output_dir}/train.spacy") print(f"{len(joined_train)} training sentences") docbin = DocBin(docs=joined_dev, store_user_data=True) docbin.to_disk(f"{output_dir}/dev.spacy") print(f"{len(joined_dev)} dev sentences") docbin = DocBin(docs=joined_test, store_user_data=True) docbin.to_disk(f"{output_dir}/test.spacy") print(f"{len(joined_test)} test sentences") def stratify_train_examples(doc_path, strats): """Stratifies input docs and binaries them into new spacy files""" vocab = Vocab() doc_bin = DocBin(store_user_data=True).from_disk(doc_path) docs = list(doc_bin.get_docs(vocab)) l = len(docs) for strat in strats: if str(strat)[-2] != "0": name = str(strat)[-1] + "0%" else: name = str(strat)[-1] + "%" doc_strat = docs[:int(l*strat)] docbin = DocBin(docs=doc_strat, store_user_data=True) docbin.to_disk(f"../datasets/preprocessed/all_domains/training_stratifications/" f"train_strat_{name}.spacy") def out_of_domain_split(doc_dirs, exclude): """excludes one domain from full domain train and dev sets for use as test set""" merged_docs = [] vocab = Vocab() for dir in doc_dirs: for files in os.listdir(dir): doc_bin = DocBin(store_user_data=True).from_disk(f"{dir}/{files}") merged_docs += list(doc_bin.get_docs(vocab)) l = len(merged_docs) train = merged_docs[0:int(l * 0.9)] dev = merged_docs[int(l * 0.9):] test = [] test_dir = f"../datasets/preprocessed/{exclude}/results_only" for files in os.listdir(test_dir): doc_bin = DocBin(store_user_data=True).from_disk(f"{test_dir}/{files}") test += list(doc_bin.get_docs(vocab)) docbin = DocBin(docs=train, store_user_data=True) docbin.to_disk(f"../datasets/preprocessed/out_of_domain/{exclude}_as_test/train.spacy") print(f"{len(train)} training sentences") docbin = DocBin(docs=dev, store_user_data=True) docbin.to_disk(f"../datasets/preprocessed/out_of_domain/{exclude}_as_test/dev.spacy") print(f"{len(dev)} dev sentences") docbin = DocBin(docs=test, store_user_data=True) docbin.to_disk(f"../datasets/preprocessed/out_of_domain/{exclude}_as_test/test.spacy") print(f"{len(test)} test sentences") def cap_docs(doc_dirs, names, cap): """Caps number of examples in datasets for comparison, outputting both individual sets and merged sets for incremental evaluation""" vocab = Vocab() merged_docs = [] merged_names = "" count = 0 for docs, name in zip(doc_dirs, names): doc_bin = DocBin(store_user_data=True).from_disk(docs) capped = list(doc_bin.get_docs(vocab))[:cap-1] random.shuffle(capped) l = len(capped) train = capped[:int(l*0.7)] dev = capped[int(l*0.8):int(l*0.9)] test = capped[int(l*0.9):] capped_train = DocBin(docs=train, store_user_data=True) capped_train.to_disk(f"../datasets/preprocessed/capped_for_comparison/{name}/train.spacy") capped_dev = DocBin(docs=dev, store_user_data=True) capped_dev.to_disk(f"../datasets/preprocessed/capped_for_comparison/{name}/dev.spacy") capped_test = DocBin(docs=test, store_user_data=True) capped_test.to_disk(f"../datasets/preprocessed/capped_for_comparison/{name}/test.spacy") # output merged sets of capped docs for incremental domain increase evaluation merged_docs += capped merged_names += name + "_" if count > 0: random.shuffle(merged_docs) train = merged_docs[:int(len(merged_docs)*0.9)] dev = merged_docs[int(len(merged_docs)*0.9):] merged_train = DocBin(docs= train, store_user_data=True) merged_train.to_disk(f"../datasets/preprocessed/capped_mix/{merged_names[:-1]}/train.spacy") merged_dev = DocBin(docs=dev, store_user_data=True) merged_dev.to_disk(f"../datasets/preprocessed/capped_mix/{merged_names[:-1]}/dev.spacy") count += 1 if __name__ == "__main__": gold_dir = "../datasets/gold_result_annotations" cardiovascular = f"{gold_dir}/cardiovascular_disease/cardiovascular_disease_gold.jsonl" glaucoma = f"{gold_dir}/glaucoma/glaucoma_gold.jsonl" merge_all_list = [f'../datasets/gold_result_annotations/{domain}/{domain}_gold.jsonl' for domain in os.listdir("../datasets/gold_result_annotations") if domain != "all_domains"] stratify_train_examples("../datasets/preprocessed/all_domains/results_only/train.spacy",[0.05,0.5]) merge_jsonl(merge_all_list, "../datasets/gold_result_annotations/all_domains/all_domains_gold.jsonl") for domain in os.listdir("../datasets/gold_result_annotations"): docs = annotations_to_spacy(f"../datasets/gold_result_annotations/{domain}/{domain}_gold.jsonl") train_dev_test_split(docs,(f"../datasets/preprocessed/{domain}/results_only")) names = ["glaucoma","cardiovascular_disease","solid_tumour_cancer"] docs = ["../datasets/preprocessed/out_of_domain/glaucoma_as_test/test.spacy", "../datasets/preprocessed/out_of_domain/cardiovascular_disease_as_test/test.spacy", "../datasets/preprocessed/out_of_domain/solid_tumour_cancer_as_test/test.spacy"] cap_docs(docs,names, 72) ```
{ "source": "jettan/form2fit", "score": 3 }
#### File: form2fit/benchmark/metrics.py ```python import cv2 import numpy as np from form2fit.code.utils.pointcloud import transform_xyz def rotational_error(R1, R2): r, _ = cv2.Rodrigues(R1.dot(R2.T)) return np.degrees(np.linalg.norm(r)) def translational_error(t1, t2): return np.linalg.norm(t1 - t2) def compute_ADD(pose_true, pred_pose, obj_xyz): """Computes the Average Distance Metric (ADD) [1]. [1]: https://arxiv.org/pdf/1711.00199.pdf """ obj_xyz_pred = transform_xyz(obj_xyz, pred_pose) obj_xyz_true = transform_xyz(obj_xyz, pose_true) return np.linalg.norm(obj_xyz_pred - obj_xyz_true, axis=1).mean() def reprojection_error(pose_true, pred_pose, obj_xyz, view_bounds, pixel_size): obj_xyz_pred = transform_xyz(obj_xyz, pred_pose) obj_xyz_true = transform_xyz(obj_xyz, pose_true) obj_xyz_pred[:, 0] = (obj_xyz_pred[:, 0] - view_bounds[0, 0]) / pixel_size obj_xyz_pred[:, 1] = (obj_xyz_pred[:, 1] - view_bounds[1, 0]) / pixel_size obj_idx_pred = obj_xyz_pred[:, [1, 0]] obj_xyz_true[:, 0] = (obj_xyz_true[:, 0] - view_bounds[0, 0]) / pixel_size obj_xyz_true[:, 1] = (obj_xyz_true[:, 1] - view_bounds[1, 0]) / pixel_size obj_idx_true = obj_xyz_true[:, [1, 0]] return np.linalg.norm(obj_idx_true - obj_idx_pred, axis=1).mean() ``` #### File: code/gui/main.py ```python import argparse import os import sys import glob import pickle import torch import torch.nn as nn import numpy as np import matplotlib.cm as cm from form2fit import config from form2fit.code.ml.models import * from form2fit.code.ml.dataloader import get_corr_loader from form2fit.code.utils import ml, misc from PyQt5.QtGui import * from PyQt5.QtWidgets import * from PyQt5.QtCore import * class Debugger(QDialog): """A PyQt5 GUI for debugging a descriptor network. """ USE_CUDA = True WINDOW_WIDTH = 1500 WINDOW_HEIGHT = 1000 WINDOW_TITLE = "Debug Descriptor Network" def __init__(self, args): super().__init__() self._foldername = args.foldername self._dtype = args.dtype self._num_desc = args.num_desc self._background_subtract = args.background_subtract self._augment = args.augment self._num_channels = args.num_channels self._init_loader_and_network() self._reset() self._init_UI() self.show() def _init_loader_and_network(self): """Initializes the data loader and network. """ self._dev = torch.device("cuda" if Debugger.USE_CUDA and torch.cuda.is_available() else "cpu") self._data = get_corr_loader( self._foldername, batch_size=1, sample_ratio=1, dtype=self._dtype, shuffle=False, num_workers=0, augment=self._augment, num_rotations=20, background_subtract=config.BACKGROUND_SUBTRACT[self._foldername], num_channels=self._num_channels, ) self._net = CorrespondenceNet(self._num_channels, self._num_desc, 20).to(self._dev) self._net.eval() stats = self._data.dataset.stats self._color_mean = stats[0][0] self._color_std = stats[0][1] self._resolve_data_dims() def _resolve_data_dims(self): """Reads the image dimensions from the data loader. """ x, _, _ = next(iter(self._data)) self._h, self._w = x.shape[2:] self._c = 3 self._zeros = np.zeros((self._h, self._w, self._c), dtype="uint8") self.xs = None self.xt = None def _reset(self): """Resets the GUI. """ def _he_init(m): if isinstance(m, (nn.Conv2d, nn.Linear)): nn.init.kaiming_normal_(m.weight, mode="fan_in") self._is_switch = False self._pair_idx = 0 self._dloader = iter(self._data) self._get_network_names() self._net.apply(_he_init) def _get_network_names(self): """Reads all saved model weights. """ self.weights_dir = os.path.join(config.weights_dir, "matching") filenames = glob.glob(os.path.join(self.weights_dir, "*.tar")) self._model_names = [os.path.basename(x).split(".")[0] for x in filenames] def _load_selected_network(self, name): """Loads a trained network. """ if name: self._model_name = name state_dict = torch.load(os.path.join(self.weights_dir, name + ".tar"), map_location=self._dev) self._net.load_state_dict(state_dict['model_state']) self._set_prediction_text("{} was loaded...".format(name)) def _init_UI(self): """Initializes the UI. """ self.setWindowTitle(Debugger.WINDOW_TITLE) # self.setFixedSize(Debugger.WINDOW_WIDTH, Debugger.WINDOW_HEIGHT) self._create_menu() self._create_main() self._create_progress() self._all_layout = QVBoxLayout(self) self._all_layout.addLayout(self._menu_layout) self._all_layout.addLayout(self._main_layout) self._all_layout.addLayout(self._progress_layout) def _create_menu(self): """Creates the top horizontal menu bar. """ # buttons next_button = QPushButton("Next Pair", self) next_button.clicked.connect(self._next_click) reset_button = QPushButton("Reset", self) reset_button.clicked.connect(self._reset_click) sample_button = QPushButton("Sample", self) sample_button.clicked.connect(self._sample_click) colorize_button = QPushButton("Rotation Error", self) colorize_button.clicked.connect(self._colorize_click) self._switch_button = QPushButton("View RGB", self) self._switch_button.clicked.connect(self._switch_click) # boxes self._is_correct_box = QLabel(self) self._networks_box = QComboBox(self) self._networks_box.addItems([""] + self._model_names) self._networks_box.activated[str].connect(self._load_selected_network) self._networks_box_label = QLabel("Network Name", self) self._networks_box_label.setBuddy(self._networks_box) # add to layout self._menu_layout = QHBoxLayout() self._menu_layout.addWidget(self._networks_box_label) self._menu_layout.addWidget(self._networks_box) self._menu_layout.addWidget(next_button) self._menu_layout.addWidget(sample_button) self._menu_layout.addWidget(colorize_button) self._menu_layout.addWidget(self._is_correct_box) self._menu_layout.addStretch(1) self._menu_layout.addWidget(self._switch_button) self._menu_layout.addWidget(reset_button) def _create_main(self): """Creates the main layout. """ vbox_left = QVBoxLayout() grid_right = QGridLayout() self._target_widget = QLabel(self) self._source_widget = QLabel(self) self._grid_widgets = [QLabel(self) for _ in range(20)] self._draw_target(init=True) self._draw_source(init=True) vbox_left.addWidget(self._target_widget) vbox_left.addWidget(self._source_widget) self._target_widget.mousePressEvent = self._get_mouse_pos self._draw_rotations(init=True) for col in range(5): for row in range(4): grid_right.addWidget(self._grid_widgets[col * 4 + row], col, row) self._main_layout = QHBoxLayout() self._main_layout.addLayout(vbox_left) self._main_layout.addLayout(grid_right) def _create_progress(self): """A progress bar for the data loader. """ self._progress_bar = QProgressBar(self) self._progress_bar.setRange(0, len(self._dloader)) self._progress_bar.setValue(0) self._progress_layout = QHBoxLayout() self._progress_layout.addWidget(self._progress_bar) self._advance_progress_bar() def _draw_target(self, uv=None, init=False): img_target = self._zeros.copy() if init else self._xt_np.copy() if uv is not None: img_target[uv[0] - 1 : uv[0] + 1, uv[1] - 1 : uv[1] + 1] = [255, 0, 0] self._target_img = QImage( img_target.data, self._w, self._h, self._c * self._w, QImage.Format_RGB888 ) self._target_pixmap = QPixmap.fromImage(self._target_img) self._target_widget.setPixmap(self._target_pixmap) self._target_widget.setScaledContents(True) def _draw_source(self, uvs=None, init=False): if uvs is None: img_source = self._zeros.copy() if init else self._xs_np.copy() else: img_source = self._xt_np.copy() colors = [[0, 255, 0], [0, 0, 255], [255, 0, 0]] color_names = ["green", "blue", "red"] for i in range(3): mask = np.where(uvs[:, 2] == i)[0] idxs = uvs[mask] img_source[idxs[:, 0], idxs[:, 1]] = colors[i] self._source_img = QImage( img_source.data, self._w, self._h, self._c * self._w, QImage.Format_RGB888 ) self._source_pixmap = QPixmap.fromImage(self._source_img) self._source_widget.setPixmap(self._source_pixmap) self._source_widget.setScaledContents(True) def _draw_rotations(self, init=False, heatmap=True): def _hist_eq(img): from skimage import exposure img_cdf, bin_centers = exposure.cumulative_distribution(img) return np.interp(img, bin_centers, img_cdf) for col in range(5): for row in range(4): offset = col * 4 + row if init: img = self._zeros.copy() else: if heatmap: img = self.heatmaps[offset].copy() img = img / img.max() img = _hist_eq(img) img = np.uint8(cm.viridis(img) * 255)[..., :3] img = img.copy() else: img = misc.rotate_img(self._xs_np, -(360 / 20) * offset, center=(self.center[1], self.center[0])) img = img.copy() if offset == self._uv[-1]: img[ self._uv[0] - 1 : self._uv[0] + 1, self._uv[1] - 1 : self._uv[1] + 1, ] = [255, 0, 0] self._add_border_clr(img, [255, 0, 0]) if offset == self.best_rot_idx: self._add_border_clr(img, [0, 255, 0]) self._img = QImage( img.data, self._w, self._h, self._c * self._w, QImage.Format_RGB888 ) pixmap = QPixmap.fromImage(self._img) self._grid_widgets[offset].setPixmap(pixmap) self._grid_widgets[offset].setScaledContents(True) def _switch_click(self): if not self._is_switch: self._switch_button.setText("Heatmap View") self._is_switch = True self._draw_rotations(heatmap=False) else: self._switch_button.setText("RGB View") self._is_switch = False self._draw_rotations(heatmap=True) def _next_click(self): if self._pair_idx == len(self._dloader): self.close() else: self._get_next_data() self._draw_target() self._draw_source() self._draw_rotations(init=True) self._advance_progress_bar() def _reset_click(self): self._reset() self._networks_box.setCurrentIndex(0) self._draw_target(init=True) self._draw_source(init=True) self._draw_rotations(init=True) self._advance_progress_bar() def _colorize_click(self): filename = os.path.join( config.rot_stats_dir, self._model_name, self._dtype, str(self._pair_idx - 1), "rot_color.npy", ) pixel_colors = np.load(filename) self._draw_source(pixel_colors) def _set_prediction_text(self, msg): self._is_correct_box.setText(msg) def _sample_click(self): if self._pair_idx > 0: self._forward_network() rand_idx = np.random.choice(np.arange(len(self.target_pixel_idxs))) u_rand, v_rand = self.target_pixel_idxs[rand_idx] self._draw_target([u_rand, v_rand]) u_s, v_s = self.source_pixel_idxs[rand_idx] target_vector = self.out_t[:, :, u_rand, v_rand] outs_flat = self.outs.view(self.outs.shape[0], self.outs.shape[1], -1) target_vector_flat = target_vector.unsqueeze_(2).repeat( (outs_flat.shape[0], 1, outs_flat.shape[2]) ) diff = outs_flat - target_vector_flat dist = diff.pow(2).sum(1).sqrt() self.heatmaps = dist.view(dist.shape[0], self._h, self._w).cpu().numpy() predicted_best_idx = dist.min(dim=1)[0].argmin() is_correct = predicted_best_idx == self.best_rot_idx msg = "Correct!" if is_correct else "Wrong!" self._set_prediction_text(msg) min_val = self.heatmaps[predicted_best_idx].argmin() u_min, v_min = misc.make2d(min_val, self._w) self._uv = [u_min, v_min, predicted_best_idx] self._draw_rotations(heatmap=not self._is_switch) else: print("[!] You must first click next to load a data sample.") def _get_mouse_pos(self, event): v = event.pos().x() u = event.pos().y() u = int(u * (self._h / self._target_widget.height())) v = int(v * (self._w / self._target_widget.width())) uv = [u, v] if self.xs is not None and self.xt is not None: self._forward_network() row_idx = np.where((self.target_pixel_idxs == uv).all(axis=1))[0] if row_idx.size != 0: row_idx = row_idx[0] self._draw_target(uv) u_s, v_s = self.source_pixel_idxs[row_idx] target_vector = self.out_t[:, :, uv[0], uv[1]] outs_flat = self.outs.view(self.outs.shape[0], self.outs.shape[1], -1) target_vector_flat = target_vector.unsqueeze_(2).repeat( (outs_flat.shape[0], 1, outs_flat.shape[2]) ) diff = outs_flat - target_vector_flat dist = diff.pow(2).sum(1).sqrt() self.heatmaps = dist.view(dist.shape[0], self._h, self._w).cpu().numpy() predicted_best_idx = dist.min(dim=1)[0].argmin() is_correct = predicted_best_idx == self.best_rot_idx msg = "Correct!" if is_correct else "Wrong!" self._set_prediction_text(msg) min_val = self.heatmaps[predicted_best_idx].argmin() u_min, v_min = misc.make2d(min_val, self._w) self._uv = [u_min, v_min, predicted_best_idx] self._draw_rotations(heatmap=not self._is_switch) def _get_next_data(self): """Grabs a fresh pair of source and target data points. """ self._pair_idx += 1 self.imgs, labels, center = next(self._dloader) self.center = center[0] label = labels[0] self.xs, self.xt = self.imgs[:, :self._num_channels, :, :], self.imgs[:, self._num_channels:, :, :] if self._num_channels == 4: self._xs_np = ml.tensor2ndarray(self.xs[:, :3], [self._color_mean * 3, self._color_std * 3]) self._xt_np = ml.tensor2ndarray(self.xt[:, :3], [self._color_mean * 3, self._color_std * 3]) else: self._xs_np = ml.tensor2ndarray(self.xs[:, :1], [self._color_mean, self._color_std], False) self._xt_np = ml.tensor2ndarray(self.xt[:, :1], [self._color_mean, self._color_std], False) self._xs_np = np.uint8(cm.viridis(self._xs_np) * 255)[..., :3] self._xt_np = np.uint8(cm.viridis(self._xt_np) * 255)[..., :3] source_idxs = label[:, 0:2] target_idxs = label[:, 2:4] rot_idx = label[:, 4] is_match = label[:, 5] self.best_rot_idx = rot_idx[0].item() mask = (is_match == 1) & (rot_idx == self.best_rot_idx) self.source_pixel_idxs = source_idxs[mask].numpy() self.target_pixel_idxs = target_idxs[mask].numpy() def _forward_network(self): """Forwards the current source-target pair through the network. """ self.imgs = self.imgs.to(self._dev) with torch.no_grad(): self.outs, self.out_t = self._net(self.imgs, *self.center) self.outs = self.outs[0] def _advance_progress_bar(self): """Advances the progress bar. """ curr_val = self._pair_idx max_val = self._progress_bar.maximum() self._progress_bar.setValue(curr_val + (max_val - curr_val) / 100) def _add_border_clr(self, img, color): """Adds a border color to an image. """ img[0 : self._h - 1, 0:10] = color # left img[0:10, 0 : self._w - 1] = color # top img[self._h - 11 : self._h - 1, 0 : self._w - 1] = color img[0 : self._h - 1, self._w - 11 : self._w - 1] = color return img if __name__ == "__main__": def str2bool(s): return s.lower() in ["1", "true"] parser = argparse.ArgumentParser(description="Descriptor Network Visualizer") parser.add_argument("foldername", type=str) parser.add_argument("--dtype", type=str, default="valid") parser.add_argument("--num_desc", type=int, default=64) parser.add_argument("--num_channels", type=int, default=2) parser.add_argument("--background_subtract", type=tuple, default=None) parser.add_argument("--augment", type=str2bool, default=False) args, unparsed = parser.parse_known_args() app = QApplication(sys.argv) window = Debugger(args) window.show() sys.exit(app.exec_()) ``` #### File: ml/dataloader/placement.py ```python import glob import logging import multiprocessing import os import pickle import cv2 import matplotlib.pyplot as plt import numpy as np import torch from pathlib import Path from PIL import Image from skimage.draw import circle from torch.utils.data import DataLoader, Dataset from torchvision import transforms from walle.core import RotationMatrix from form2fit import config from form2fit.code.utils import misc class PlacementDataset(Dataset): """The placement network dataset. """ def __init__(self, root, sample_ratio, stateless, augment, background_subtract, num_channels, radius): """Initializes the dataset. Args: root: (str) Root directory path. sample_ratio: (float) The ratio of negative to positive labels. stateless: (bool) Whether to use just the current placement point and ignore all the ones from the previous objects in the sequence. augment: (bool) Whether to apply data augmentation. background_subtract: (bool) Whether to apply background subtraction. num_channels: (int) 4 clones the grayscale image to produce an RGB image. """ self._root = root self._sample_ratio = sample_ratio self._augment = augment self._stateless = stateless self._background_subtract = background_subtract self._num_channels = num_channels self.radius = radius # figure out how many data samples we have self._get_filenames() stats = pickle.load(open(os.path.join(Path(self._root).parent, "mean_std.p"), "rb")) if self._num_channels == 4: self._c_norm = transforms.Normalize(mean=stats[0][0] * 3, std=stats[0][1] * 3) else: self._c_norm = transforms.Normalize(mean=stats[0][0], std=stats[0][1]) self._d_norm = transforms.Normalize(mean=stats[1][0], std=stats[1][1]) self._transform = transforms.ToTensor() def __len__(self): return len(self._filenames) def _get_filenames(self): self._filenames = glob.glob(os.path.join(self._root, "*/")) self._filenames.sort(key=lambda x: int(x.split("/")[-2])) def _load_state(self, name): """Loads the raw state variables. """ # load the list of suction points placement_points = np.loadtxt(os.path.join(name, "placement_points.txt"), ndmin=2) # we just want the current timestep place point placement_points = np.round(placement_points) if self._stateless: placement_points = placement_points[-1:] # load heightmaps c_height = np.asarray(Image.open(os.path.join(name, "final_color_height.png"))) d_height = np.asarray(Image.open(os.path.join(name, "final_depth_height.png"))) c_height_i = np.asarray(Image.open(os.path.join(name, "init_color_height.png"))) d_height_i = np.asarray(Image.open(os.path.join(name, "init_depth_height.png"))) # convert depth to meters d_height_i = (d_height_i * 1e-3).astype("float32") d_height = (d_height * 1e-3).astype("float32") # load kit mask kit_mask = np.load(os.path.join(name, "curr_kit_plus_hole_mask.npy")) return c_height, d_height, placement_points, kit_mask, c_height_i, d_height_i def _split_heightmap(self, height): """Splits a heightmap into a source and target. For placement, we just need the source heightmap. """ half = height.shape[1] // 2 self._half = half height_s = height[:, half:].copy() return height_s def _sample_negative(self, positives): """Randomly samples negative pixel indices. """ max_val = self._H * self._W num_pos = len(positives) num_neg = int(num_pos * self._sample_ratio) positives = np.round(positives).astype("int") positives = positives[:, :2] positives = np.ravel_multi_index((positives[:, 0], positives[:, 1]), (self._H, self._W)) if self._sample_ratio < 70: negative_indices = [] while len(negative_indices) < num_neg: negative = np.random.randint(0, max_val) if negative not in positives: negative_indices.append(negative) else: allowed = list(set(np.arange(0, max_val)) - set(positives.ravel())) np.random.shuffle(allowed) negative_indices = allowed[:num_neg] negative_indices = np.unravel_index(negative_indices, (self._H, self._W)) return negative_indices def _sample_free_negative(self, kit_mask): """Randomly samples negative pixel indices. """ max_val = self._H * self._W num_neg = int(100 * self._sample_ratio) negative_indices = [] while len(negative_indices) < num_neg: negative_indices.append(np.random.randint(0, max_val)) negative_indices = np.vstack(np.unravel_index(negative_indices, (self._H, self._W))).T idxs = np.random.choice(np.arange(len(kit_mask)), size=30, replace=False) inside = kit_mask[idxs] negative_indices = np.vstack([negative_indices, inside]) return negative_indices def _sample_translation(self, corrz, angle): aff_1 = np.eye(3) aff_1[:2, 2] = [-self._uc, -self._vc] aff_2 = RotationMatrix.rotz(-angle) aff_3 = np.eye(3, 3) aff_3[:2, 2] = [self._uc, self._vc] affine = aff_3 @ aff_2 @ aff_1 affine = affine[:2, :] corrs = [] for corr in corrz: ones = np.ones((len(corr), 1)) corrs.append((affine @ np.hstack((corr, ones)).T).T) max_vv = corrs[0][:, 1].max() max_vu = corrs[0][corrs[0][:, 1].argmax()][0] min_vv = corrs[0][:, 1].min() min_vu = corrs[0][corrs[0][:, 1].argmin()][0] max_uu = corrs[0][:, 0].max() max_uv = corrs[0][corrs[0][:, 0].argmax()][1] min_uu = corrs[0][:, 0].min() min_uv = corrs[0][corrs[0][:, 0].argmin()][1] for t in corrs[1:]: if t[:, 1].max() > max_vv: max_vv = t[:, 1].max() max_vu = t[t[:, 1].argmax()][0] if t[:, 1].min() < min_vv: min_vv = t[:, 1].min() min_vu = t[t[:, 1].argmin()][0] if t[:, 0].max() > max_uu: max_uu = t[:, 0].max() max_uv = t[t[:, 0].argmax()][1] if t[:, 0].min() < min_uu: min_uu = t[:, 0].min() min_uv = t[t[:, 0].argmin()][1] tu = np.random.uniform(-min_vv + 10, self._W - max_vv - 10) tv = np.random.uniform(-min_uu + 10, self._H - max_uu - 10) return tu, tv def __getitem__(self, idx): name = self._filenames[idx] # load state c_height, d_height, positives, kit_mask, c_height_i, d_height_i = self._load_state(name) # split heightmap into source and target c_height = self._split_heightmap(c_height) d_height = self._split_heightmap(d_height) c_height_i = self._split_heightmap(c_height_i) d_height_i = self._split_heightmap(d_height_i) self._H, self._W = c_height.shape[:2] pos_placement = [] for pos in positives: rr, cc = circle(pos[0], pos[1], self.radius) pos_placement.append(np.vstack([rr, cc]).T) pos_placement = np.concatenate(pos_placement) # offset placement point to adjust for splitting pos_placement[:, 1] = pos_placement[:, 1] - self._half kit_mask[:, 1] = kit_mask[:, 1] - self._half # center of rotation is the center of the kit self._uc = int((kit_mask[:, 0].max() + kit_mask[:, 0].min()) // 2) self._vc = int((kit_mask[:, 1].max() + kit_mask[:, 1].min()) // 2) if self._augment: shape = (self._W, self._H) angle = np.radians(np.random.uniform(0, 360)) tu, tv = self._sample_translation([kit_mask], angle) aff_1 = np.eye(3) aff_1[:2, 2] = [-self._vc, -self._uc] aff_2 = RotationMatrix.rotz(angle) aff_2[:2, 2] = [tu, tv] aff_3 = np.eye(3, 3) aff_3[:2, 2] = [self._vc, self._uc] affine = aff_3 @ aff_2 @ aff_1 affine = affine[:2, :] c_height = cv2.warpAffine(c_height, affine, shape, flags=cv2.INTER_NEAREST) d_height = cv2.warpAffine(d_height, affine, shape, flags=cv2.INTER_NEAREST) aff_1[:2, 2] = [-self._uc, -self._vc] aff_2 = RotationMatrix.rotz(-angle) aff_2[:2, 2] = [tv, tu] aff_3[:2, 2] = [self._uc, self._vc] affine = aff_3 @ aff_2 @ aff_1 affine = affine[:2, :] pos_placement = (affine @ np.hstack((pos_placement, np.ones((len(pos_placement), 1)))).T).T kit_mask = (affine @ np.hstack((kit_mask, np.ones((len(kit_mask), 1)))).T).T # update center of rotation self._uc = int((kit_mask[:, 0].max() + kit_mask[:, 0].min()) // 2) self._vc = int((kit_mask[:, 1].max() + kit_mask[:, 1].min()) // 2) if self._background_subtract is not None: idxs = np.vstack(np.where(d_height > self._background_subtract[0])).T mask = np.zeros_like(d_height) mask[idxs[:, 0], idxs[:, 1]] = 1 mask = misc.largest_cc(np.logical_not(mask)) idxs = np.vstack(np.where(mask == 1)).T c_height[idxs[:, 0], idxs[:, 1]] = 0 d_height[idxs[:, 0], idxs[:, 1]] = 0 idxs = np.vstack(np.where(d_height_i > self._background_subtract[0])).T mask = np.zeros_like(d_height) mask[idxs[:, 0], idxs[:, 1]] = 1 mask = misc.largest_cc(np.logical_not(mask)) idxs = np.vstack(np.where(mask == 1)).T c_height_i[idxs[:, 0], idxs[:, 1]] = 0 d_height_i[idxs[:, 0], idxs[:, 1]] = 0 if self._num_channels == 2: c_height = c_height[..., np.newaxis] c_height_i = c_height_i[..., np.newaxis] else: # clone the gray channel 3 times c_height = np.repeat(c_height[..., np.newaxis], 3, axis=-1) c_height_i = np.repeat(c_height_i[..., np.newaxis], 3, axis=-1) # convert heightmaps tensors c_height = self._c_norm(self._transform(c_height)) d_height = self._d_norm(self._transform(d_height[..., np.newaxis])) c_height_i = self._c_norm(self._transform(c_height_i)) d_height_i = self._d_norm(self._transform(d_height_i[..., np.newaxis])) # concatenate height and depth into a 4-channel tensor # img_tensor = torch.cat([c_height, d_height], dim=0) img_tensor_i = torch.cat([c_height_i, d_height_i], dim=0) img_tensor = torch.cat([c_height, d_height], dim=0) img_tensor = torch.stack([img_tensor_i, img_tensor], dim=0) # add columns of 1 (positive labels) pos_label = np.hstack((pos_placement, np.ones((len(pos_placement), 1)))) # generate negative labels neg_placement = np.vstack(self._sample_negative(pos_label)).T neg_label = np.hstack((neg_placement, np.zeros((len(neg_placement), 1)))) # stack positive and negative into a single array label = np.vstack((pos_label, neg_label)) neg_placement_i = self._sample_free_negative(kit_mask) neg_label_i = np.hstack((neg_placement_i, np.zeros((len(neg_placement_i), 1)))) label_tensor_i = torch.LongTensor(neg_label_i) label_tensor_f = torch.LongTensor(label) label_tensor = [label_tensor_i, label_tensor_f] # convert suction points to tensors # label_tensor = torch.LongTensor(label) return img_tensor, label_tensor def get_placement_loader( foldername, dtype="train", batch_size=1, sample_ratio=1.0, shuffle=True, stateless=True, augment=False, background_subtract=None, num_channels=2, radius=2, num_workers=4, use_cuda=True, ): """Returns a dataloader over the `Placement` dataset. Args: foldername: (str) The name of the folder containing the data. dtype: (str) Whether to use the train, validation or test partition. batch_size: (int) The number of data samples in a batch. sample_ratio: (float) The ratio of negative to positive labels. shuffle: (bool) Whether to shuffle the dataset at the end of every epoch. stateless: (bool) Whether to use just the current placement point and ignore all the ones from the previous objects in the sequence. augment: (bool) Whether to apply data augmentation. background_subtract: (bool) Whether to apply background subtraction. num_workers: (int) How many processes to use. Each workers is responsible for loading a batch. use_cuda: (bool) Whether to use the GPU. """ def _collate_fn(batch): """A custom collate function. This is to support variable length suction labels. """ # imgs = [b[0] for b in batch] # labels = [b[1] for b in batch] # imgs = torch.stack(imgs, dim=0) # return [imgs, labels] imgs = [b[0] for b in batch] labels = [b[1] for b in batch] imgs = torch.cat(imgs, dim=0) labels = [l for sublist in labels for l in sublist] return [imgs, labels] num_workers = min(num_workers, multiprocessing.cpu_count()) root = os.path.join(config.ml_data_dir, foldername, dtype) dataset = PlacementDataset( root, sample_ratio, stateless, augment, background_subtract, num_channels, radius, ) loader = DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, collate_fn=_collate_fn, pin_memory=True, num_workers=num_workers, ) return loader ``` #### File: code/utils/pointcloud.py ```python from functools import reduce import numpy as np def transform_xyzrgb(xyzrgb, transform): """Applies a rigid transform to a colored pointcloud. Args: xyzrgb: (ndarray) The colored pointcloud of shape (N, 6). transform: (ndarray) The rigid transform of shape (4, 4). Returns: xyzrgb_t: (ndarray) The transformed colored pointcloud. """ num_pts = xyzrgb.shape[0] xyz = xyzrgb[:, :3] rgb = xyzrgb[:, 3:] xyz_h = np.hstack([xyz, np.ones((num_pts, 1))]) xyz_t = (transform @ xyz_h.T).T xyzrgb_t = np.hstack([xyz_t[:, :3], rgb]) return xyzrgb_t def transform_xyzg(xyzg, transform): """Applies a rigid transform to a grayscale pointcloud. Args: xyzg: (ndarray) The grayscale pointcloud of shape (N, 4). transform: (ndarray) The rigid transform of shape (4, 4). Returns: xyzg_t: (ndarray) The transformed colored pointcloud. """ num_pts = xyzg.shape[0] xyz = xyzg[:, :3] g = xyzg[:, 3:] xyz_h = np.hstack([xyz, np.ones((num_pts, 1))]) xyz_t = (transform @ xyz_h.T).T xyzg_t = np.hstack([xyz_t[:, :3], g]) return xyzg_t def transform_xyz(xyz, transform): """Applies a rigid transform to a pointcloud. Args: xyz: (ndarray) The pointcloud of shape (N, 3). transform: (ndarray) The rigid transform of shape (4, 4). Returns: (ndarray) The transformed pointcloud. """ xyz_h = np.hstack([xyz, np.ones((xyz.shape[0], 1))]) xyz_t = (transform @ xyz_h.T).T xyz_t = xyz_t[:, :3] return xyz_t def deproject(uv, depth, intr, extr): """2D -> 3D. """ z = depth[uv[:, 0], uv[:, 1]] zero_zs = z == 0.0 z = z[~zero_zs] uv = uv[~zero_zs] x = z * (uv[:, 1] - intr[0, 2]) / intr[0, 0] y = z * (uv[:, 0] - intr[1, 2]) / intr[1, 1] xyz = np.vstack([x, y, z]).T xyz_tr = transform_xyz(xyz, extr) return xyz_tr ```
{ "source": "jettbui/JettBot-py", "score": 3 }
#### File: JettBot-py/cogs/customization.py ```python import discord from discord.ext import commands class Customization(commands.Cog): def __init__(self, client): self.client = client @commands.Cog.listener() async def on_ready(self): print("Customization commands loaded.") @commands.command() async def status(self, ctx, *, args): activity = discord.Game(name=args) await self.client.change_presence(status=discord.Status.online, activity=activity) await ctx.send(f"Status changed to '{args}'") @status.error async def handleStatusError(self, ctx, error): if isinstance(error, commands.MissingRequiredArgument): await ctx.send("Missing argument; must specify the status message to be set.\n" "Usage: !status <message>") elif isinstance(error, commands.BadArgument): await ctx.send("Invalid argument.") def setup(client): client.add_cog(Customization(client)) ``` #### File: JettBot-py/cogs/fun.py ```python import discord import random from discord.ext import commands class Fun(commands.Cog): def __init__(self, client): self.client = client @commands.Cog.listener() async def on_ready(self): print("Fun commands loaded.") @commands.command(aliases=["8ball"]) async def _8ball(self, ctx, *, question): responses = ["For sure.", "YEP", "Probably.", "I think so.", "Maybe... maybe not.", "I don't even know.", "Probably not.", "I don't think so.", "NO."] await ctx.send(f"**Magic 8Ball**\nQuestion: _{question}_\n<:8ball:734976384782565447>: {random.choice(responses)}") @_8ball.error async def handle8BallError(self, ctx, error): if isinstance(error, commands.MissingRequiredArgument): await ctx.send("Missing argument; must specify a question.\n" "Usage: !8ball <question>") @commands.command(aliases=["coin"]) async def flip(self, ctx): responses = ["<:orange_circle:735583801249497138> Heads.", "<:blue_circle:735725260321718302> Tails."] await ctx.send(f"**Flip a Coin**\n{random.choice(responses)}") @commands.command(aliases=["dice"]) async def roll(self, ctx): responses = ["<:one:735714655934349385> Rolled a one.", "<:two:735714655934349385> Rolled a two.", "<:three:735714655934349385> Rolled a three.", "<:four:735714655934349385> Rolled a four.", "<:five:735714655934349385> Rolled a five.", "<:six:735714655934349385> Rolled a six."] await ctx.send(f"**Roll the Dice**\n{random.choice(responses)}") def setup(client): client.add_cog(Fun(client)) ``` #### File: JettBot-py/cogs/informational.py ```python import discord from discord.ext import commands class Informational(commands.Cog): FOOTER = "JettBot by <NAME>, © 2020" THUMBNAIL = 'https://cdn.discordapp.com/avatars/734847208154857493/30a1820b464b373e85a9a2f66233d7e4.png' INVITE = 'https://discord.com/api/oauth2/authorize?client_id=734847208154857493&permissions=8&scope=bot' def __init__(self, client): self.client = client @commands.Cog.listener() async def on_ready(self): print("Informational commands loaded.") @commands.command() async def about(self, ctx): embed = discord.Embed( title="JettBot", description="A simple and straightforward Discord bot for your Discord server.", colour=discord.Colour.blue() ) embed.set_thumbnail( url=Informational.THUMBNAIL) embed.add_field(name="Author", value="<NAME>", inline=False) embed.add_field(name="Invite Link", value=Informational.INVITE, inline=False) await ctx.send(embed=embed) @commands.command() async def help(self, ctx, category=None): author = ctx.message.author # user to send help message to if category == None: general_embed = discord.Embed( title="Commands", color=discord.Color.blurple() ) general_embed.set_footer(text=Informational.FOOTER) general_embed.set_author(name="JettBot", icon_url=Informational.THUMBNAIL) general_embed.add_field(name="Customization", value="!help customization", inline=True) general_embed.add_field(name="Fun", value="!help fun", inline=True) general_embed.add_field(name="Informational", value="!help informational", inline=True) general_embed.add_field(name="Moderation", value="!help moderation", inline=True) general_embed.add_field(name="Utility", value="!help utility", inline=True) await author.send(embed=general_embed) elif category == "customization": customization_embed = discord.Embed( title="Customization Commands", color=discord.Color.blue() ) customization_embed.set_footer(text=Informational.FOOTER) customization_embed.set_author(name="JettBot", icon_url=Informational.THUMBNAIL) customization_embed.add_field(name="!status <message>", value="Changes the status of the bot to the given argument", inline=True) await author.send(embed=customization_embed) elif category == "fun": fun_embed = discord.Embed( title="Fun Commands", color=discord.Color.magenta() ) fun_embed.set_footer(text=Informational.FOOTER) fun_embed.set_author(name='JettBot', icon_url=Informational.THUMBNAIL) fun_embed.add_field(name="!8ball <question>", value="Ask the magic 8ball a question", inline=True) fun_embed.add_field(name="!flip", value="Flip a coin", inline=True) fun_embed.add_field(name="!roll", value="Roll a dice", inline=True) await author.send(embed=fun_embed) elif category == "informational": informational_embed = discord.Embed( title="Informational Commands", color=discord.Color.teal() ) informational_embed.set_footer(text=Informational.FOOTER) informational_embed.set_author(name='JettBot', icon_url=Informational.THUMBNAIL) informational_embed.add_field(name="!about", value="Sends information about JettBot", inline=True) informational_embed.add_field(name="!help", value="Sends available commands for JettBot", inline=True) await author.send(embed=informational_embed) elif category == "moderation": moderation_embed = discord.Embed( title="Moderation Commands", color=discord.Color.green() ) moderation_embed.set_footer(text=Informational.FOOTER) moderation_embed.set_author(name='JettBot', icon_url=Informational.THUMBNAIL) moderation_embed.add_field(name="!ban <user>", value="Ban a user from the server", inline=False) moderation_embed.add_field(name="Requires Permissions:", value="Ban Members", inline=False) moderation_embed.add_field(name="!clear <amount>", value="Clears a given number of messages in the current channel", inline=False) moderation_embed.add_field(name="Requires Permissions:", value="Manage Messages", inline=False) moderation_embed.add_field(name="!kick <user>", value="Kick a user from the server", inline=False) moderation_embed.add_field(name="Requires Permissions:", value="Kick Members", inline=False) await author.send(embed=moderation_embed) elif category == "utility": utility_embed = discord.Embed( title="Utility Commands", color=discord.Color.purple() ) utility_embed.set_footer(text=Informational.FOOTER) utility_embed.set_author(name='JettBot', icon_url=Informational.THUMBNAIL) utility_embed.add_field(name="!echo <message>", value="Repeats message in the given argument", inline=True) utility_embed.add_field(name="!latency", value="Returns the latency of the bot", inline=True) utility_embed.add_field(name="!ping", value="Returns a ping message", inline=True) await author.send(embed=utility_embed) else: await author.send("Invalid argument, use '!help' for more info.") @commands.command() async def whomadeyou(self, ctx): if ctx.message.author.id == 80<PASSWORD>: await ctx.send("You, <@80509831487692800>") else: await ctx.send(f"Not you, <@{ctx.message.author.id}>") def setup(client): client.add_cog(Informational(client)) ```
{ "source": "JettChenT/CommentAnalysis_En", "score": 3 }
#### File: JettChenT/CommentAnalysis_En/getcomment.py ```python import re, os, json import googleapiclient.discovery from urllib.parse import urlparse, parse_qs with open("key", "r") as f: APIKEY = f.readline() with open("config.json", "r") as f: cfg = json.load(f) COMMENTSMAX = cfg["commentsMax"] # youtube api stuff def getCommentJson(vId): # Disable OAuthlib's HTTPS verification when running locally. # *DO NOT* leave this option enabled in production. os.environ["OAUTHLIB_INSECURE_TRANSPORT"] = "1" api_service_name = "youtube" api_version = "v3" DEVELOPER_KEY = APIKEY youtube = googleapiclient.discovery.build( api_service_name, api_version, developerKey=DEVELOPER_KEY ) request = youtube.commentThreads().list( part="replies", maxResults=COMMENTSMAX, order="relevance", videoId=vId ) response = request.execute() return response # the getcomment function def getVideoId(value): """a function to get the id of a youtube video(copied from stackoverflow)""" query = urlparse("//" + value) if query.netloc == "youtu.be": return query.path[1:] if query.netloc in ("www.youtube.com", "youtube.com"): if query.path == "/watch": p = parse_qs(query.query) return p["v"][0] if query.path[:7] == "/embed/": return query.path.split("/")[2] if query.path[:3] == "/v/": return query.path.split("/")[2] # fail? return None def getcomment(url): VideoId = getVideoId(url) if VideoId == None: print("fail!!") return [], 0 commentJson = getCommentJson(VideoId) print(commentJson) ```
{ "source": "JettChenT/Encrypto", "score": 3 }
#### File: JettChenT/Encrypto/app.py ```python import re from fastapi import FastAPI, Response, status from fastapi.middleware.cors import CORSMiddleware from starlette.responses import RedirectResponse from encryptMessage import Encryptor from pydantic import BaseModel app = FastAPI(title="The encryptii api") enc = Encryptor() origins = [ "http://127.0.0.1", "http://localhost:3000", "https://.*" ] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) class encryptINP(BaseModel): msg: str auto_destroy: bool = False emoji: bool = False class decryptINP(BaseModel): dec: str destroy: bool = True @app.get("/", status_code=status.HTTP_307_TEMPORARY_REDIRECT) async def routePage(): response = RedirectResponse(url="/docs") return response @app.get("/ping") def pingpong(): return {"ping": "pong"} @app.post("/encrypt", status_code=status.HTTP_201_CREATED) async def encryption(pmt: encryptINP): msg = pmt.msg encrypted = enc.encrypt(msg, pmt.emoji) resp = {"encrypted": encrypted} return resp @app.get("/encrypt", status_code=status.HTTP_201_CREATED) async def getEncryption(msg: str): encrypted = enc.encrypt(msg) resp = {"encrypted": encrypted} return resp @app.post("/decrypt", status_code=status.HTTP_200_OK) async def decryption(pmt: decryptINP, response: Response): dec = pmt.dec.encode() des = pmt.destroy d = enc.decrypt(dec, des) if d == -1: response.status_code = status.HTTP_404_NOT_FOUND return {"msg": "Message does not exist or was destroyed"} else: return {"msg": str(d)} @app.get("/decrypt", status_code=status.HTTP_200_OK) async def getDecryption(dec: str, response: Response, des: bool = True): dec = dec.encode() d = enc.decrypt(dec, des) if d == -1: response.status_code = status.HTTP_404_NOT_FOUND return {"msg": "Message does not exist or was destroyed"} else: return {"msg": str(d)} ``` #### File: JettChenT/Encrypto/test.py ```python import random import pprint from fastapi.testclient import TestClient from app import app client = TestClient(app) def getRandLetter(): return chr(random.randint(ord("a"), ord("z"))) def getRandWord(): wlen = 10 wlst = [getRandLetter() for _ in range(wlen)] word = "".join(wlst) return word def dec(curWrd): diffList = [] prm = {"msg": curWrd} rsp = client.post("/encrypt", json={"msg": curWrd}).json() encrypted = rsp["encrypted"] diffList.append(len(encrypted) / len(curWrd)) prm = {"dec": encrypted, "destroy": "True"} rbp = client.post("/decrypt", json=prm).json() pprint.pprint(rbp) decrypted = rbp["msg"] return decrypted def test_answer(): curWrd = getRandWord() assert dec(curWrd) == curWrd ```
{ "source": "JettChenT/realthink", "score": 4 }
#### File: HighA/Algorithm/binTree.py ```python class CLS_node(): """ A Node in binary tree """ def __init__(self,v,l,r): self.value = v self.left = l self.right = r def __str__(self): if self.left == None and self.right == None: return str(self.value) elif self.left == None: return str(self.value)+str(self.right) elif self.right == None: return str(self.left)+str(self.value) else: return str(self.left)+str(self.value)+strself.right) class CLS_tree(): """ The binary tree """ def __init__(self,r): self.root = r self.widLst = [0 for _ in range(self.dep(self.root))] def sortInsert(self,node,start): # print(start) if node.value>start.value: if start.right==None: start.right = node else: self.sortInsert(node,start.right) else: if start.left==None: start.left = node else: self.sortInsert(node,start.left) # print(root) return def dep(self,start,dept=1): if start == None: return dept ld = self.dep(start.left,dept+1) rd = self.dep(start.right,dept+1) if ld>rd: return ld else: return rd def wid(self,start,dept=0): # print(dept) if(dept==0): self.widLst = [0 for _ in range(self.dep(self.root))] if start == None: return self.widLst[dept]+=1 ld = self.wid(start.left,dept+1) rd = self.wid(start.right,dept+1) return max(self.widLst) def __repr__(self): return str(root) ``` #### File: HighA/Algorithm/quicksort.py ```python from random import randint lis = [] for i in range(100): lis.append(randint(0,100)) def quick_one(lis): """ the first item of the list is the key, all items that are less than the key will be on the left of the key, all items that are larger will be on the right of the key, returns the list and the index of the key. """ nList = lis.copy() key = lis[0] keyI = 0 pMin = 0 pMax = len(lis)-1 while(pMin!=pMax): while pMax>keyI: if nList[pMax]<=key: nList[pMax],nList[keyI] = nList[keyI],nList[pMax] keyI = pMax break pMax-=1 while pMin<keyI: if nList[pMin]>key: nList[pMin],nList[keyI] = nList[keyI],nList[pMin] keyI = pMin break pMin+=1 return nList,keyI def quick_onePy(lis): """python styled quick one""" key = lis[0] smLis = [] bgLis = [] for n in lis[1:]: if n<=key: smLis.append(n) else: bgLis.append(n) return smLis+[key]+bgLis,len(smLis) def quick_sortPy(lis): """ quick sort with recursion, python styled """ nLis = lis.copy() if len(lis) <= 1: return lis else: nLis,keyI = quick_onePy(nLis) return quick_sort(nLis[:keyI])+[nLis[keyI]]+quick_sort(nLis[keyI+1:]) def quick_sort(lis): """ quick sort with recursion """ nLis = lis.copy() if len(lis) <= 1: return lis else: nLis,keyI = quick_one(nLis) # print(quick_sort(nLis[:keyI])+[nLis[keyI]]+quick_sort(nLis[keyI+1:])) return quick_sort(nLis[:keyI])+[nLis[keyI]]+quick_sort(nLis[keyI+1:]) def quick_oneNR(lis,pMin,keyI,pMax): nList = lis.copy() key = lis[keyI] while(pMin!=pMax): while pMax>keyI: if nList[pMax]<=key: nList[pMax],nList[keyI] = nList[keyI],nList[pMax] keyI = pMax break pMax-=1 while pMin<keyI: if nList[pMin]>key: nList[pMin],nList[keyI] = nList[keyI],nList[pMin] keyI = pMin break pMin+=1 # print(nList) return nList,keyI def quick_sortNR(lis): """quick sort without recursion""" mem = [(0,0,len(lis)-1)] c = 1 while len(mem)!=0: p = 0 # print(c) c+=1 # print(mem[p]) lis,keyI = quick_oneNR(lis,mem[p][0],mem[p][0],mem[p][2]) if len(lis) == 0: # print("break") break else: if (keyI-1)-mem[p][0]>0: mem.append((mem[p][0],mem[p][0],keyI-1)) if (mem[p][-1])-(keyI+1)>0: mem.append((keyI+1,keyI+1,mem[p][-1])) mem.pop(p) # print("ed") # print("out of while loop") return lis print(lis) nlis = quick_sortNR(lis) print("done") print(nlis) if nlis==sorted(lis): print("YAY!") ``` #### File: HighA/Function/main.py ```python import pygame,random,math # A program that draws a function # Some basic settings PRECISION = 0.1 WIDTH,HEIGHT = 1024,768 SCALE = 50 BG_COLOR = (0,0,0) START_X = 0-WIDTH//SCALE//2 AXIS_COLOR = (225,225,225) pointColor = (92,167,86) LINE_COLOR = (random.randint(0,225),random.randint(0,225),random.randint(0,225)) ORIG_POINT = (WIDTH//2,HEIGHT//2) # FUNCTION: draw a point def disText(text,scr,x,y,font,color): print(text) textSurface = font.render(text,False,color) screen.blit(textSurface,(x,y)) def draw_point(screen,c,x,y): nx = int(ORIG_POINT[0]+x*SCALE) ny = int(ORIG_POINT[1]+y*SCALE) global lastx,lasty # print(nx,ny) pygame.draw.line(screen,pointColor,(lastx,lasty),(nx,ny)) lastx,lasty = nx,ny return def cal(x,fn): if fn == 0: return 0-x elif fn == 1: return 0-x*0.5 elif fn == 2: return 0-math.cos(x) elif fn == 3: return 0-x**2 else: return None # init curX = START_X pygame.init() screen = pygame.display.set_mode((WIDTH,HEIGHT)) clock = pygame.time.Clock() screen.fill(BG_COLOR) fontScore = pygame.font.Font(None,10) fn = 0 lastx,lasty = START_X,cal(curX,fn) while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() elif event.type == pygame.KEYDOWN: if event.key == pygame.K_a: curX = START_X fn = (fn+1)%4 lastx,lasty = START_X,cal(curX,fn) pointColor = (random.randint(0,255),random.randint(0,255),random.randint(0,255)) # screen.fill(BG_COLOR) for n in range(-50,50): nx = int(ORIG_POINT[0]+n*SCALE) ny = int(ORIG_POINT[1]+n*SCALE) disText(str(n),screen,nx,HEIGHT//2,fontScore,(255,255,255)) disText(str(n),screen,WIDTH//2,ny,fontScore,(255,255,255)) pygame.draw.line(screen,(255,255,255),(0,HEIGHT//2),(WIDTH,HEIGHT//2)) pygame.draw.line(screen,(255,255,255),(WIDTH//2,0),(WIDTH//2,HEIGHT)) pygame.draw.line(screen,(255,255,255),(WIDTH//2-20,30),(WIDTH//2,0)) pygame.draw.line(screen,(255,255,255),(WIDTH//2+20,30),(WIDTH//2,0)) pygame.draw.line(screen,(255,255,255),(WIDTH-20,HEIGHT//2+20),(WIDTH,HEIGHT//2)) pygame.draw.line(screen,(255,255,255),(WIDTH-20,HEIGHT//2-20),(WIDTH,HEIGHT//2)) curY = cal(curX,fn) print(curX,curY) draw_point(screen,pointColor,curX,curY) curX+=PRECISION pygame.display.update() # clock.tick(60) ``` #### File: HighA/LodeRunner/read.py ```python from PIL import Image from pprint import pprint import math def get_image(im): if type(im) == str: image = Image.open(im,'r') else: image = im width, height = image.size pixel_values = list(image.getdata()) # if image.mode == 'RGB': # channels = 3 # elif image.mode == 'L': # channels = 1 # else: # print("Unknown mode: %s" % image.mode) # return None # # pixel_values = numpy.array(pixel_values).reshape((width, height, channels)) return pixel_values def get_size(image_path): """Get a numpy array of an image so that one can access values[x][y].""" image = Image.open(image_path, 'r') width, height = image.size return width,height def avgCl(lst): """return the average RGB of a RGB list""" c1=c2=c3=0 n = len(lst) for c in lst: c1+=c[0] c2+=c[1] c3+=c[2] c1,c2,c3=c1/n,c2/n,c3/n return [c1,c2,c3] def dist(x1,y1,z1,x2,y2,z2): return math.sqrt((x2-x1)**2+(y2-y1)**2+(z2-z1)**2) def blockDist(block1,block2): return dist(block1.avg[0],block1.avg[1],block1.avg[2],block2.avg[0],block2.avg[1],block2.avg[2]) def find(lst,num): for i in range(len(lst)): if lst[i]==num: return i return None def reco(blst,target): dislist = [] for b in blst: dislist.append(blockDist(b,target)) return str(blst[find(dislist,min(dislist))]) class block(object): def __init__(self,url,rstr=''): self.url = url self.pixel_values = get_image(url) self.avg = avgCl(self.pixel_values) self.rstr = rstr def __repr__(self): return self.url def __str__(self): return self.rstr box = block('./blocks/box.bmp','B') floor = block('./blocks/floor.bmp','#') ground = block('./blocks/ground.bmp','=') ladder = block('./blocks/ladder.bmp','H') bar = block('./blocks/bar.bmp','-') police = block('./blocks/lp02.bmp','P') runner = block('./blocks/lr01.bmp','R') vground = block('./blocks/vground.bmp','.') void = block('./blocks/void.bmp',' ') # test = block('./blocks/test.png') # print(test) blockList = [box,floor,ground,ladder,bar,police,runner,vground,void] # print(reco(blockList,test)) im = Image.open('./blocks/level06.png') sampleBlock = Image.open('./blocks/floor.bmp') print(sampleBlock.size) print(im.size) nMap = [[0 for n in range(im.size[1]//sampleBlock.size[1])]for _ in range(im.size[0]//sampleBlock.size[0])] cnt = 0 print(im.size[0]//sampleBlock.size[0]) fout = open('./maps/level06.txt','w') for y in range(im.size[1]//sampleBlock.size[1]): tstr = '' for x in range(im.size[0]//sampleBlock.size[0]): cnt+=1 area = (x*sampleBlock.size[0],y*sampleBlock.size[1],x*sampleBlock.size[0]+sampleBlock.size[0],y*sampleBlock.size[1]+sampleBlock.size[1]) nimg = im.crop(box=area) nimg.save('./tmp/block{c}.bmp'.format(c=cnt),'BMP') # pprint(get_image(im)) nBlock = block(nimg) # print(cnt) # if cnt==34: # print(reco(blockList,nBlock),end='') tstr+=reco(blockList,nBlock) tstr+='\n' fout.write(tstr) fout.close() ``` #### File: MidC/games/app.py ```python import pygame import sys from random import randint,random SCREEN_WIDTH, SCREEN_HEIGHT = 1024, 768 # The definition of class CLS_disk class CLS_disk(object): group = [] def __init__(self, rect, color, speedX, speedY): self.rect = pygame.Rect(rect) self.color = color self.speedX, self.speedY, self.accY = speedX, speedY, 0.02 CLS_disk.group.append(self) def run(self): self.speedY += self.accY self.rect.x += self.speedX self.rect.y += self.speedY def draw(self, scr): pygame.draw.ellipse(scr, self.color, self.rect, 0) # the definition of class CLS_gun class CLS_gun(object): def __init__(self, x, y, r): self.x, self.y, self.r = x, y, r self.score = 0 self.diskNum = 20 self.bulletNum = 0 self.fireTime = 0 def update(self): self.fireTime *= (1-(pygame.time.get_ticks() - self.fireTime > 100)) def draw(self, scr): self.update() x, y, r = self.x, self.y, self.r pygame.draw.circle(scr, (225, 225, 224), (x, y), r, 1) pygame.draw.circle(scr, (225, 225, 225), (x, y), int(r*0.4), 1) pygame.draw.line(scr, (225, 225, 225), (x-r, y), (x+r, y), 1) pygame.draw.line(scr, (225, 225, 225), (x, y-r), (x, y+1), 1) if self.fireTime > 0: pygame.draw.polygon(scr, (225, 0, 0), [ (x-int(r*0.4), y-4), (x-int(r*0.4), y+4),(x,y)], 0) pygame.draw.polygon(scr, (225, 0, 0), [ (x+int(r*0.4), y-4), (x-int(r*0.4), y-4),(x,y)], 0) def RT_draw(screen,data,clrList,x0,y0,w,scale): for dy in range(len(data)): line = data[dy] for dx in range(w): clr = clrList[line&1] tx,ty = x0+(w-dx-1)*scale,y0+dy*scale if scale > 1: pygame.draw.rect(screen,clr,(tx,ty,scale,scale),0) else: screen.set_at((s,y),clr) line = line >>1 return # run pygame.init() aData = [0x04,0x0a,0x11,0x11,0x1f,0x11,0x11,0x00] brickData = [0xff,0x04,0x04,0x04,0xff,0x80,0x80,0x80] brickColor = [[64,64,64],[225,127,80]] brickScale = 4 treeData =[0x02,0x15,0x07,0x19,0x2e,0x1f,0xfb,0x6e] treeColor = [[0,50,0],[0,120,0]] treeScale = 4 screen = pygame.display.set_mode((SCREEN_WIDTH,SCREEN_HEIGHT)) clock = pygame.time.Clock() font = pygame.font.Font(None, 32) pygame.mouse.set_visible(False) gun = CLS_gun(SCREEN_WIDTH//2,SCREEN_HEIGHT//2,30) t0 = pygame.time.get_ticks() t1 = randint(0,3000)+3000 while True: for event in pygame.event.get(): if event.type == pygame.MOUSEBUTTONDOWN and gun.bulletNum>0: gun.bulletNum-=1 i=0 gun.fireTime = pygame.time.get_ticks() while i<len(CLS_disk.group): d = CLS_disk.group[i] if d.rect.collidepoint(gun.x,gun.y): CLS_disk.group.pop(i) gun.score+=1 gun.diskNum+=2 i+=1 if event.type == pygame.MOUSEMOTION: gun.x,gun.y= event.pos if event.type == pygame.QUIT: pygame.quit() if pygame.time.get_ticks()-t0 > t1 and gun.diskNum>0: gun.diskNum -= 1 gun.bulletNum = 2 w = randint(40,80) h = w//2 disk = CLS_disk((0,SCREEN_HEIGHT,w,h),(0,225,0),random()+1.5,random()-4.5) t0 = pygame.time.get_ticks() t1 = randint(0,3000)+3000 if random()<0.3: disk = CLS_disk((SCREEN_WIDTH,SCREEN_HEIGHT,w,h),(255,0,0),random()-2.5,random()-4.5) screen.fill((0,0,225)) for x in range(0,SCREEN_WIDTH,32): for y in range((SCREEN_HEIGHT//4)*3,SCREEN_HEIGHT,32): RT_draw(screen,brickData,brickColor,x,y,8,4) for x in range(0,SCREEN_WIDTH,32): for y in range(SCREEN_HEIGHT//2,SCREEN_HEIGHT//4*3,32): RT_draw(screen,treeData,treeColor,x,y,8,4) for disk in CLS_disk.group: disk.run() disk.draw(screen) gun.draw(screen) img = font.render('score:'+str(gun.score)+' disks:'+str(gun.diskNum),True,(240,0,140)) screen.blit(img,(0,0)) pygame.display.update() clock.tick(300) ``` #### File: MidC/games/editor.py ```python import pygame,sys SCREEN_WIDTH,SCREEN_HEIGHT = 1000,700 def RT_draw(screen,data,clrList,x0,y0,w,scale): for dy in range(len(data)): line = data[dy] for dx in range(w): clr = clrList[line&1] tx,ty = x0+(w-dx-1)*scale,y0+dy*scale if scale > 1: pygame.draw.rect(screen,clr,(tx,ty,scale,scale),0) else: screen.set_at((x,y),clr) line = line >>1 return def RT_block_read(fn): with open (fn,'r') as f: txtLine = f.readlines()[0] dataList = txtLine.split() block = [int(dataList[p],16) for p in range(len(dataList))] return block def RT_block_init(fn,cList,dm,scale): pic = pygame.Surface.Surface(dm*scale, dm*scale) blockList = RT_block_read(fn) if blockList == None: return None RT_draw(pic,blockList,cList,0,0,dm,scale) return pic class CLS_step(object): def __init__(self,dx,dy): self.dx, self.dy = dx,dy return class CLS_stack(object): def __init__(self): self.nList = [] return def PUSH(self,step): self.nList.append(step) return def POP(self): if len(self.nList) == 0: return None step= self.nList[-1] self.nList.pop() return step class CLS_grid(object): def __init__(self,x0,y0,n,scale,d,cList=[(0,0,0),(255,255,255)]): self.x0,self.y0 = x0,y0 self.n, self.scale = n,scale self.data = [[0 for x in range(n)] for y in range(n)] self.block=['0']*n self.cList = cList self.d = d return def draw(self,scr): lineC=(255,255,255) x0,y0,scl = self.x0,self.y0,self.scale d=self.n*scl + 1 pygame.draw.line(scr, lineC, (x0,y0+d), (x0+d,y0+d), 1) pygame.draw.line(scr, lineC, (x0+d,y0), (x0+d,y0+d), 1) for y in range(self.n): n=0 for x in range(self.n): n+=2**(self.n-x-1)*self.data[y][x] gx,gy = x*self.scale, y*self.scale pygame.draw.line(scr, lineC, (x0+gx,y0+gy),\ (x0+gx,y0+gy+scl), 1) pygame.draw.line(scr, lineC, (x0+gx, y0+gy),\ (x0+gx+scl,y0+gy), 1) pygame.draw.rect(scr, self.cList[self.data[y][x]], (x0+gx+1,y0+gy+1,scl-1,scl-1), 0) screen.set_at((x+100,y+40),cList[grid.data[y][x]]) self.block[y]=hex(n) img = font.render(self.block[y],True,lineC) bx,by = 500,y*self.scale+150 screen.blit(img,(bx,by)) return def mousedown(self,mx,my): x,y = (mx-15)//self.scale,(my-15)//self.scale-self.d if 0<=x<self.n and 0<=y<self.n: self.data[y][x] = 1-self.data[y][x] def save(self,fname): # save # generate bytestr byteStr = ' '.join(self.block) with open(fname,'w') as f: f.write(byteStr) return def clear(self): self.data = [[0 for x in range(self.n)] for y in range(self.n)] return # init pygame.init() screen = pygame.display.set_mode((SCREEN_WIDTH,SCREEN_HEIGHT)) font = pygame.font.Font(None, 32) cList = [(0,0,0),(0,255,255)] grid = CLS_grid(20,120,16,20,5,cList) grid.draw(screen) stack = CLS_stack() clock = pygame.time.Clock() # main program while True: screen.fill((0,0,0)) grid.draw(screen) pygame.display.update() for event in pygame.event.get(): if event.type == pygame.MOUSEBUTTONUP and event.button == 1: mx,my = event.pos[0],event.pos[1] grid.mousedown(mx,my) step = CLS_step(mx,my) stack.PUSH(step) elif event.type == pygame.KEYDOWN: if event.key == pygame.K_s: print('saved😊😊') grid.save('demo.txt') elif event.key == pygame.K_c: print("cleared") grid.clear() elif event.key == pygame.K_z: last_step = stack.POP() if last_step != None: grid.mousedown(last_step.dx,last_step.dy) elif event.key == pygame.K_p: grid.clear() for step in stack.nList: grid.mousedown(step.dx,step.dy) clock.tick(10) pygame.display.update() elif event.type == pygame.QUIT: pygame.quit() ```
{ "source": "jett/couchbase-lite-C", "score": 2 }
#### File: python/CouchbaseLite/Blob.py ```python from ._PyCBL import ffi, lib from .Collections import * from .common import * class Blob (object): def __init__(self, data, *, contentType =None, fdict =None): if fdict != None: super.__init__(lib.CBLBlob_Get(fdict), "Dict is not a Blob") else: super.__init__(lib.CBLBlob_CreateWithData(contentType, asSlice(data)), "Failed to create Blob") @property def digest(self): return pystr(lib.CBLBlob_Digest(self._ref)) @property def length(self): return lib.CBLBlob_Length(self._ref) @property def contentType(self): return pystr(lib.CBLBlob_ContentType(self._ref)) @property def data(self): if "_data" in self.__dict__: return self._data elif self.digest != None: sliceResult = lib.CBLBlob_LoadContent(self._ref, gError) # OPT: This copies the bytes result = sliceResultToBytes(sliceResult) lib.FLSliceResult_Release(sliceResult) return result else: return None def __repr__(self): r = "Blob[" if self.contentType != None: r += self.contentType if self.length != None: if self.contentType != None: r += ", " r += self.length + " bytes" return r + "]" def _jsonEncodable(self): return decodeFleeceDict( lib.CBLBlob_Properties(self._ref), depth=99 ) ```
{ "source": "jett-crowdis/deTiN", "score": 2 }
#### File: deTiN/deTiN/deTiN.py ```python import argparse import os import sys import numpy as np import pandas as pd from itertools import compress import copy import deTiN_utilities as du import deTiN_SSNV_based_estimate as dssnv import deTiN_aSCNA_based_estimate as dascna import numpy.ma as ma class input: """class which holds the required detin somatic data prior to model""" def __init__(self, args, ascna_probe_number_filter=200, ascna_SNP_number_filter=20, coverage_threshold=15, SSNV_af_threshold=0.15, aSCNA_variance_threshold=0.025): # related to inputs from command line self.call_stats_file = args.mutation_data_path self.seg_file = args.cn_data_path self.tumor_het_file = args.tumor_het_data_path self.normal_het_file = args.normal_het_data_path self.exac_db_file = args.exac_data_path self.indel_file = args.indel_data_path self.indel_type = args.indel_data_type self.only_ascnas = args.only_ascnas if type(args.weighted_classification): self.weighted_classification = bool(args.weighted_classification) else: self.weighted_classification = args.weighted_classification if type(args.mutation_prior) == str: self.mutation_prior = float(args.mutation_prior) else: self.mutation_prior = args.mutation_prior if type(args.TiN_prior) == str: self.TiN_prior = float(args.TiN_prior) else: self.TiN_prior = args.TiN_prior if type(args.resolution) == str: self.resolution = int(args.resolution) else: self.resolution = args.resolution self.output_path = args.output_dir self.output_name = args.output_name if type(args.use_outlier_removal) == str: if args.use_outlier_removal.lower() == 'false': self.use_outlier_removal = False else: self.use_outlier_removal = True else: self.use_outlier_removal = args.use_outlier_removal if type(args.aSCNA_threshold) == str: self.aSCNA_thresh = float(args.aSCNA_threshold) else: self.aSCNA_thresh = args.aSCNA_threshold try: self.ascna_probe_number_filter = float(args.ascna_probe_number_filter) except AttributeError: self.ascna_probe_number_filter = ascna_probe_number_filter try: self.ascna_SNP_number_filter = float(args.ascna_SNP_number_filter) except AttributeError: self.ascna_SNP_number_filter = ascna_SNP_number_filter try: self.coverage_threshold = float(args.coverage_threshold) except AttributeError: self.coverage_threshold = coverage_threshold try: self.SSNV_af_threshold = float(args.SSNV_af_threshold) except AttributeError: self.SSNV_af_threshold = SSNV_af_threshold try: self.aSCNA_variance_threshold = float(args.aSCNA_variance_threshold) except AttributeError: self.aSCNA_variance_threshold = aSCNA_variance_threshold try: self.CancerHotSpotsBED = args.cancer_hot_spots except AttributeError: self.aSCNA_variance_threshold = 'NA' # related to inputs from class functions self.call_stats_table = [] self.seg_table = [] self.het_table = [] self.candidates = [] self.indel_table = [] self.skew = 0.5 def read_call_stats_file(self): fields = ['contig', 'position', 'ref_allele', 'alt_allele', 'tumor_name', 'normal_name', 't_alt_count', 't_ref_count' , 'n_alt_count', 'n_ref_count', 'failure_reasons', 'judgement','t_lod_fstar'] fields_type = {'contig': str, 'position': np.int, 'ref_allele': str, 'alt_allele': str, 'tumor_name': str, 'normal_name': str, 't_alt_count': np.int, 't_ref_count': np.int, 'n_alt_count': np.int, 'n_ref_count': np.int, 'failure_reasons': str, 'judgement': str} try: self.call_stats_table = pd.read_csv(self.call_stats_file, '\t', index_col=False, comment='#', usecols=fields, dtype=fields_type) except (ValueError, LookupError): try: fields = ['contig', 'position', 'ref_allele', 'alt_allele', 'tumor_name', 'normal_name', 't_alt_count', 't_ref_count' , 'n_alt_count', 'n_ref_count', 'failure_reasons', 'judgement'] self.call_stats_table = pd.read_csv(self.call_stats_file, '\t', index_col=False, comment='#', usecols=fields, dtype=fields_type) except (ValueError, LookupError): print('Error reading call stats skipping first two rows and trying again') self.call_stats_table = pd.read_csv(self.call_stats_file, '\t', index_col=False, comment='#', skiprows=2, usecols=fields, dtype=fields_type) if type(self.call_stats_table['contig'][0]) == str: self.call_stats_table['Chromosome'] = du.chr2num(np.array(self.call_stats_table['contig'])) else: self.call_stats_table['Chromosome'] = np.array(self.call_stats_table['contig']) - 1 self.call_stats_table = self.call_stats_table[np.isfinite(self.call_stats_table['Chromosome'])] self.call_stats_table['genomic_coord_x'] = du.hg19_to_linear_positions( np.array(self.call_stats_table['Chromosome']), np.array(self.call_stats_table['position'])) self.n_calls_in = len(self.call_stats_table) self.call_stats_table.reset_index(inplace=True, drop=True) def read_het_file(self): t_het_header = du.read_file_header(self.tumor_het_file) n_het_header = du.read_file_header(self.normal_het_file) cols_t_type = {t_het_header[0]: str} cols_n_type = {n_het_header[0]: str} tumor_het_table = pd.read_csv(self.tumor_het_file, '\t', index_col=False, low_memory=False, comment='#', dtype=cols_t_type) normal_het_table = pd.read_csv(self.normal_het_file, '\t', index_col=False, low_memory=False, comment='#', dtype=cols_n_type) tumor_het_table = du.fix_het_file_header(tumor_het_table) normal_het_table = du.fix_het_file_header(normal_het_table) tumor_het_table['Chromosome'] = du.chr2num(np.array(tumor_het_table['CONTIG'])) normal_het_table['Chromosome'] = du.chr2num(np.array(normal_het_table['CONTIG'])) tumor_het_table = tumor_het_table[np.isfinite(tumor_het_table['Chromosome'])] tumor_het_table['genomic_coord_x'] = du.hg19_to_linear_positions(np.array(tumor_het_table['Chromosome']), np.array(tumor_het_table['POSITION'])) normal_het_table = normal_het_table[np.isfinite(normal_het_table['Chromosome'])] normal_het_table['genomic_coord_x'] = du.hg19_to_linear_positions(np.array(normal_het_table['Chromosome']), np.array(normal_het_table['POSITION'])) tumor_het_table['AF'] = np.true_divide(tumor_het_table['ALT_COUNT'], tumor_het_table['ALT_COUNT'] + tumor_het_table['REF_COUNT']) normal_het_table['AF'] = np.true_divide(normal_het_table['ALT_COUNT'], normal_het_table['ALT_COUNT'] + normal_het_table['REF_COUNT']) self.het_table = pd.merge(normal_het_table, tumor_het_table, on='genomic_coord_x', suffixes=('_N', '_T')) def read_seg_file(self): if self.seg_file == 'NULL': self.seg_table = pd.DataFrame(index=[0],columns=['Chromosome','Start.bp','End.bp','n_probes','length','f','tau','genomic_coord_start','genomic_coord_end']) self.het_table = pd.DataFrame(index=[0],columns=['seg_id','tau','f','d','AF_T','AF_N','Chromosome','genomic_coord_x','ALT_COUNT_N' 'ALT_COUNT_T','REF_COUNT_N','REF_COUNT_T']) else: seg_header = du.read_file_header(self.seg_file) cols_seg_type = {seg_header[0]: str} self.seg_table = pd.read_csv(self.seg_file, '\t', index_col=False, low_memory=False, comment='#', dtype=cols_seg_type) self.seg_table = du.fix_seg_file_header(self.seg_table) self.seg_table['Chromosome'] = du.chr2num(np.array(self.seg_table['Chromosome'])) self.seg_table['genomic_coord_start'] = du.hg19_to_linear_positions(np.array(self.seg_table['Chromosome']), np.array(self.seg_table['Start.bp'])) self.seg_table['genomic_coord_end'] = du.hg19_to_linear_positions(np.array(self.seg_table['Chromosome']), np.array(self.seg_table['End.bp'])) def annotate_call_stats_with_allelic_cn_data(self): f_acs = np.zeros([self.n_calls_in, 1]) + 0.5 tau = np.zeros([self.n_calls_in, 1]) + 2 for i, r in self.seg_table.iterrows(): f_acs[np.logical_and(np.array(self.call_stats_table['genomic_coord_x']) >= r['genomic_coord_start'], np.array(self.call_stats_table['genomic_coord_x']) <= r['genomic_coord_end'])] = r.f tau[np.logical_and(np.array(self.call_stats_table['genomic_coord_x']) >= r['genomic_coord_start'], np.array(self.call_stats_table['genomic_coord_x']) <= r[ 'genomic_coord_end'])] = r.tau + 0.001 self.call_stats_table['tau'] = tau self.call_stats_table['f_acs'] = f_acs def annotate_het_table(self): seg_id = np.zeros([len(self.het_table), 1]) - 1 tau = np.zeros([len(self.het_table), 1]) + 2 f = np.zeros([len(self.het_table), 1]) + 0.5 for seg_index, seg in self.seg_table.iterrows(): het_index = np.logical_and(self.het_table['genomic_coord_x'] >= seg['genomic_coord_start'], self.het_table['genomic_coord_x'] <= seg['genomic_coord_end']) ix = list(compress(range(len(het_index)), het_index)) seg_id[ix] = seg_index tau[ix] = seg['tau'] f[ix] = seg['f'] self.het_table['seg_id'] = seg_id self.het_table['tau'] = tau self.het_table['f'] = f d = np.ones([len(self.het_table), 1]) d[np.array(self.het_table['AF_T'] <= 0.5, dtype=bool)] = -1 self.skew = 0.5 self.het_table['d'] = d def read_and_preprocess_SSNVs(self): self.read_call_stats_file() self.read_seg_file() self.annotate_call_stats_with_allelic_cn_data() if not self.indel_file == 'None': if not self.indel_type == 'None': self.indel_table = du.read_indel_vcf(self.indel_file, self.seg_table, self.indel_type) else: print('Warning: if indels are provided you must also specify indel data source using --indel_data_type') print('no indels will be returned') self.indel_file = 'None' self.indel_type = 'None' def read_and_preprocess_aSCNAs(self): self.read_seg_file() self.read_het_file() self.seg_table = du.filter_segments_based_on_size_f_and_tau(self.seg_table, self.aSCNA_thresh, self.ascna_probe_number_filter) self.annotate_het_table() self.het_table = du.remove_sites_near_centromere_and_telomeres(self.het_table) def read_and_preprocess_data(self): self.read_and_preprocess_SSNVs() self.read_and_preprocess_aSCNAs() class output: """ combined from deTiN's models reclassified SSNVs based on TiN estimate are labeled KEEP in judgement column self.SSNVs['judgement'] == KEEP confidence intervals (CI_tin_high/low) represent 95% interval """ def __init__(self, input, ssnv_based_model, ascna_based_model): # previous results self.input = input self.ssnv_based_model = ssnv_based_model self.ascna_based_model = ascna_based_model # useful outputs self.SSNVs = input.candidates self.joint_log_likelihood = np.zeros([self.input.resolution, 1]) self.joint_posterior = np.zeros([self.input.resolution, 1]) self.CI_tin_high = [] self.CI_tin_low = [] self.TiN = [] self.p_null = 1 # variables self.TiN_range = np.linspace(0, 1, num=self.input.resolution) self.TiN_int = 0 # threshold for accepting variants based on the predicted somatic assignment # if p(S|TiN) exceeds threshold we keep the variant. self.threshold = 0.5 # defines whether to remove events based on predicted exceeding predicted allele fractions # if Beta_cdf(predicted_normal_af;n_alt_count+1,n_ref_count+1) <= 0.01 we remove the variant self.use_outlier_threshold = input.use_outlier_removal if self.input.indel_file != 'None': if self.input.indel_table.isnull().values.sum() == 0: self.indels = self.input.indel_table def calculate_joint_estimate(self): # do not use SSNV based estimate if it exceeds 0.3 (this estimate can be unreliable at high TiNs due to # germline events) if self.ssnv_based_model.TiN <= 0.3 and ~np.isnan(self.ascna_based_model.TiN): if len(self.ascna_based_model.centroids) > 1: reselect_cluster = np.argmin(np.abs(self.ascna_based_model.centroids / 100 - self.ssnv_based_model.TiN)) self.ascna_based_model.TiN_likelihood = self.ascna_based_model.cluster_TiN_likelihoods[reselect_cluster] print('reselected cluster based on SSNVs') # combine independent likelihoods self.joint_log_likelihood = self.ascna_based_model.TiN_likelihood + self.ssnv_based_model.TiN_likelihood # normalize likelihood to calculate posterior self.joint_posterior = np.exp(self.ascna_based_model.TiN_likelihood + self.ssnv_based_model.TiN_likelihood - np.nanmax( self.ascna_based_model.TiN_likelihood + self.ssnv_based_model.TiN_likelihood)) self.joint_posterior = np.true_divide(self.joint_posterior, np.nansum(self.joint_posterior)) self.CI_tin_low = self.TiN_range[next(x[0] for x in enumerate( np.cumsum(np.ma.masked_array(np.true_divide(self.joint_posterior, np.nansum(self.joint_posterior))))) if x[1] > 0.025)] self.CI_tin_high = self.TiN_range[ next(x[0] for x in enumerate(np.cumsum( np.ma.masked_array(np.true_divide(self.joint_posterior, np.nansum(self.joint_posterior))))) if x[1] > 0.975)] self.TiN_int = np.nanargmax(self.joint_posterior) self.TiN = self.TiN_range[self.TiN_int] zero_tin_ssnv_model = copy.deepcopy(self.ssnv_based_model) zero_tin_ssnv_model.TiN = 0 zero_tin_ssnv_model.expectation_of_z_given_TiN() zero_tin_ssnv_model.maximize_TiN_likelihood() zero_total_l = zero_tin_ssnv_model.TiN_likelihood + self.ascna_based_model.TiN_likelihood zero_total_l = np.exp(zero_total_l - np.nanmax(zero_total_l)) self.p_null = np.true_divide(zero_total_l,np.nansum(zero_total_l))[0] print('joint TiN estimate = ' + str(self.TiN)) # use only ssnv based model elif ~np.isnan(self.ascna_based_model.TiN): # otherwise TiN estimate is = to aSCNA estimate print('SSNV based TiN estimate exceed 0.3 using only aSCNA based estimate') self.joint_log_likelihood = self.ascna_based_model.TiN_likelihood self.joint_posterior = np.exp( self.ascna_based_model.TiN_likelihood - np.nanmax(self.ascna_based_model.TiN_likelihood)) self.joint_posterior = np.true_divide(self.joint_posterior, np.nansum(self.joint_posterior)) self.CI_tin_low = self.TiN_range[next(x[0] for x in enumerate( np.cumsum(np.ma.masked_array(np.true_divide(self.joint_posterior, np.nansum(self.joint_posterior))))) if x[1] > 0.025)] self.CI_tin_high = self.TiN_range[ next(x[0] for x in enumerate(np.cumsum( np.ma.masked_array(np.true_divide(self.joint_posterior, np.nansum(self.joint_posterior))))) if x[1] > 0.975)] self.TiN_int = np.nanargmax(self.joint_posterior) self.TiN = self.TiN_range[self.TiN_int] self.p_null = self.joint_posterior[0] # use only aSCNA based estimate elif ~np.isnan(self.ssnv_based_model.TiN) and self.ssnv_based_model.TiN <= 0.3: print('No aSCNAs only using SSNV based model') self.joint_log_likelihood = self.ssnv_based_model.TiN_likelihood self.joint_posterior = np.exp( self.ssnv_based_model.TiN_likelihood - np.nanmax(self.ssnv_based_model.TiN_likelihood)) self.joint_posterior = np.true_divide(self.joint_posterior, np.nansum(self.joint_posterior)) self.CI_tin_low = self.TiN_range[next(x[0] for x in enumerate( np.cumsum(np.ma.masked_array(np.true_divide(self.joint_posterior, np.nansum(self.joint_posterior))))) if x[1] > 0.025)] self.CI_tin_high = self.TiN_range[ next(x[0] for x in enumerate(np.cumsum( np.ma.masked_array(np.true_divide(self.joint_posterior, np.nansum(self.joint_posterior))))) if x[1] > 0.975)] self.TiN_int = np.nanargmax(self.joint_posterior) self.TiN = self.TiN_range[self.TiN_int] zero_tin_ssnv_model = copy.deepcopy(self.ssnv_based_model) zero_tin_ssnv_model.TiN = 0 zero_tin_ssnv_model.expectation_of_z_given_TiN() zero_tin_ssnv_model.maximize_TiN_likelihood() zero_total_l = zero_tin_ssnv_model.TiN_likelihood zero_total_l = np.exp(zero_total_l - np.nanmax(zero_total_l)) self.p_null = np.true_divide(zero_total_l, np.nansum(zero_total_l))[0] else: print('insuffcient data to generate TiN estimate.') self.CI_tin_high = 0 self.CI_tin_low = 0 self.joint_posterior = np.zeros([self.input.resolution, 1]) self.joint_posterior[0] = 1 self.TiN_int = 0 self.TiN = 0 self.p_null = 1 pH1 = self.joint_posterior[self.TiN_int] #print(self.joint_posterior) #print(self.p_null) # code to deal with underflows if ma.is_masked(self.p_null): self.p_null = 0 pH0 = self.p_null p_model = np.true_divide(self.input.TiN_prior * pH1, (self.input.TiN_prior * pH1) + ((1 - self.input.TiN_prior) * pH0)) if p_model < 0.5 or ~np.isfinite(p_model): print('insufficient evidence to justify TiN > 0') self.joint_posterior = np.zeros([self.input.resolution, 1]) self.joint_posterior[0] = 1 self.TiN_int = 0 self.TiN = 0 self.CI_tin_high = 0 self.CI_tin_low = 0 def reclassify_mutations(self): # calculate p(Somatic | given joint TiN estimate) if self.input.weighted_classification == True: numerator = np.zeros(len(self.ssnv_based_model.p_TiN_given_S)) denominator = np.zeros(len(self.ssnv_based_model.p_TiN_given_S)) for idx, p in enumerate(self.joint_posterior): if p > 0.001: num_iter = (p * self.ssnv_based_model.p_somatic * self.ssnv_based_model.p_TiN_given_S[:, idx]) numerator = numerator + num_iter denom_iter = num_iter + p * (np.array( [1 - self.ssnv_based_model.p_somatic] * np.nan_to_num( self.ssnv_based_model.p_TiN_given_G[:, idx]))) denominator = denominator + denom_iter else: numerator = self.ssnv_based_model.p_somatic * np.expand_dims( self.ssnv_based_model.p_TiN_given_S[:, self.TiN_int], 1) denominator = numerator + np.array( [1 - self.ssnv_based_model.p_somatic] * np.expand_dims( np.nan_to_num(self.ssnv_based_model.p_TiN_given_G[:, self.TiN_int]), 1)) self.SSNVs.loc[:, ('p_somatic_given_TiN')] = np.nan_to_num(np.true_divide(numerator, denominator)) # expected normal allele fraction given TiN and tau af_n_given_TiN = np.multiply(self.ssnv_based_model.tumor_f, self.ssnv_based_model.CN_ratio[:, self.TiN_int]) # probability of normal allele fraction less than or equal to predicted fraction self.SSNVs.loc[:, 'p_outlier'] = self.ssnv_based_model.rv_normal_af.cdf(af_n_given_TiN + 0.01) if self.TiN_int == 0: print('Estimated 0 TiN no SSNVs will be recovered outputing deTiN statistics for each site') elif self.use_outlier_threshold: # remove outliers mutations p(af_n >= E[af_n|TiN]) < 0.05 self.SSNVs['judgement'][np.logical_and(self.SSNVs['p_somatic_given_TiN'] > self.threshold, self.SSNVs['p_outlier'] >= 0.01)] = 'KEEP' else: self.SSNVs['judgement'][self.SSNVs['p_somatic_given_TiN'] > self.threshold] = 'KEEP' if self.input.indel_file != 'None': if self.input.indel_table.isnull().values.sum() == 0: indel_model = dssnv.model(self.input.indel_table, self.input.mutation_prior, self.input.resolution) indel_model.generate_conditional_ps() self.indels = self.input.indel_table numerator = indel_model.p_somatic * np.expand_dims(indel_model.p_TiN_given_S[:, self.TiN_int], 1) denominator = numerator + np.array( [1 - indel_model.p_somatic] * np.expand_dims(np.nan_to_num( indel_model.p_TiN_given_G[:, self.TiN_int]), 1)) af_n_given_TiN = np.multiply(indel_model.tumor_f, indel_model.CN_ratio[:, self.TiN_int]) self.indels.loc[:, ('p_somatic_given_TiN')] = np.nan_to_num(np.true_divide(numerator, denominator)) self.indels.loc[:, 'p_outlier'] = indel_model.rv_normal_af.cdf(af_n_given_TiN) if self.TiN_int == 0: print('Estimated 0 TiN no indels will be recovered outputing deTiN statistics for each site') elif self.use_outlier_threshold: # remove outliers mutations p(af_n >= E[af_n|TiN]) < 0.05 self.indels['filter'][np.logical_and(self.indels['p_somatic_given_TiN'] > self.threshold, self.indels['p_outlier'] >= 0.01)] = 'PASS' else: self.indels['filter'][self.indels['p_somatic_given_TiN'] > self.threshold] = 'PASS' elif self.input.indel_table.isnull().values.sum() > 0: self.indels = self.input.indel_table __version__ = '1.0' def main(): """ deTiN pipeline. Method operates in two stages (1) estimating tumor in normal via candidate SSNVs and SCNAS. (2) Performing variant re-classification using bayes rule. """ parser = argparse.ArgumentParser(description='Estimate tumor in normal (TiN) using putative somatic' ' events see Taylor-Weiner & Stewart et al. 2017') # input files parser.add_argument('--mutation_data_path', help='Path to mutation candidate SSNV data.' 'Supported formats: MuTect call-stats', required=False, default = 'NULL') parser.add_argument('--cn_data_path', help='Path to copy number data.' 'Supported format: AllelicCapseg .seg file. Generated by GATK4 AllelicCNV.', required=False, default='NULL') parser.add_argument('--tumor_het_data_path', help='Path to heterozygous site allele count data in tumor. Generated by GATK4 GetBayesianHetCoverage.' 'Required columns: CONTIG,POS,REF_COUNT and ALT_COUNT', required=False, default='NULL') parser.add_argument('--normal_het_data_path', help='Path to heterozygous site allele count data in normal. Generated by GATK4 GetBayesianHetCoverage' 'Required columns: CONTIG,POS,REF_COUNT and ALT_COUNT', required=False, default = 'NULL') parser.add_argument('--exac_data_path', help='Path to exac af > 0.01 pickle. Can be generated by downloading ExAC VCF and running build_exac_pickle', required=False) parser.add_argument('--indel_data_path', help='Path to candidate indels data.' 'Supported formats: Strelka / MuTect2 VCFs', required=False, default='None') parser.add_argument('--indel_data_type', help='MuTect2 or Strelka' 'Caller used to generate indels', required=False, default='None') # output related arguments parser.add_argument('--output_name', required=True, help='sample name') parser.add_argument('--output_dir', help='directory to put plots and TiN solution', required=False, default='.') # model related parameters parser.add_argument('--mutation_prior', help='prior expected ratio of somatic mutations to rare germline events' , required=False, default=0.05) parser.add_argument('--aSCNA_threshold', help='minor allele fraction threshold for calling aSCNAs.' , required=False, default=0.1) parser.add_argument('--TiN_prior', help='expected frequency of TiN contamination in sequencing setting used for model selection', required=False, default=0.5) parser.add_argument('--use_outlier_removal', help='remove sites from recovered SSNVs where allele fractions significantly exceed predicted fraction', required=False, default=True) parser.add_argument('--resolution', help='number of TiN bins to consider default = 101 corresponds to 0.01 TiN levels' , required=False, default=101) parser.add_argument('--weighted_classification', help='integrate variant classification over all values of TiN' , required=False, default=False) parser.add_argument('--ascna_probe_number_filter', help='number of probes to require for an aSCNA to be considered' , required=False, default=200) parser.add_argument('--ascna_SNP_number_filter', help='number of probes to require for an aSCNA to be considered' , required=False, default=20) parser.add_argument('--coverage_threshold', help='number of reads required to use a site for TiN estimation', required=False, default=15) parser.add_argument('--SSNV_af_threshold', help='fraction of alternate alleles required for site to be used ' 'for SSNV TiN estimation', required=False, default=.2) parser.add_argument('--aSCNA_variance_threshold', help='variance of segment allele shift tolerated before removing segment ' 'as artifact', required=False, default=0.025) parser.add_argument('--cancer_hot_spots', help='Optional BED file of cancer hot spot mutations which the user has a stronger prior on being somatic e.g. BRAF v600E mutations.' 'The format of this file is Chromosome\tPosition\tProbability. Note this will override the mutation prior at these locations' , required=False, default='NA') parser.add_argument('--only_ascnas', help='only use ascna data for TiN estimation',required=False, action='store_true') args = parser.parse_args() if args.cn_data_path == 'NULL' and args.mutation_data_path == 'NULL': print('One of CN data or SSNV data are required.') sys.exit() elif args.cn_data_path =='NULL': di = input(args) di.read_and_preprocess_SSNVs() di.candidates = du.select_candidate_mutations(di.call_stats_table, di.exac_db_file) n_calls_pre = np.sum(di.candidates['judgement'] == "KEEP") ssnv_based_model = dssnv.model(di.candidates, di.mutation_prior, di.resolution, di.SSNV_af_threshold, di.coverage_threshold, di.CancerHotSpotsBED, skew = di.skew) ssnv_based_model.perform_inference() ascna_based_model = dascna.model(di.seg_table, di.het_table, di.resolution) ascna_based_model.TiN = np.nan elif args.mutation_data_path=='NULL': di = input(args) di.read_and_preprocess_aSCNAs() di.candidates = pd.DataFrame(index=[0],columns=['contig', 'position', 'ref_allele', 'alt_allele', 'tumor_name', 'normal_name', 't_alt_count','t_ref_count', 'n_alt_count', 'n_ref_count', 'failure_reasons', 'judgement','genomic_coord_x','f_acs','tau']) ssnv_based_model = dssnv.model(di.candidates, di.mutation_prior, di.resolution, di.SSNV_af_threshold, di.coverage_threshold, di.CancerHotSpotsBED) ssnv_based_model.TiN = np.nan ascna = False # identify aSCNAs and filter hets if len(di.seg_table) > 0: di.aSCNA_hets = du.ensure_balanced_hets(di.seg_table, di.het_table) if len(di.aSCNA_hets) > 0: di.aSCNA_segs, di.convergent_segs = du.identify_aSCNAs(di.seg_table, di.aSCNA_hets, di.aSCNA_thresh, di.ascna_SNP_number_filter, di.aSCNA_variance_threshold) if len(di.aSCNA_segs) > 0: ascna_based_model = dascna.model(di.aSCNA_segs, di.aSCNA_hets, di.resolution) ascna_based_model.perform_inference() ascna = True if not ascna: ascna_based_model = dascna.model(di.seg_table, di.het_table, di.resolution) ascna_based_model.TiN = np.nan else: di = input(args) di.read_and_preprocess_data() # identify candidate mutations based on MuTect flags. # kept sites are flagged as KEEP or rejected for normal lod and/or alt_allele_in_normal di.candidates = du.select_candidate_mutations(di.call_stats_table, di.exac_db_file) n_calls_pre = np.sum(di.candidates['judgement'] == "KEEP") # generate SSNV based model using candidate sites ssnv_based_model = dssnv.model(di.candidates, di.mutation_prior, di.resolution, di.SSNV_af_threshold, di.coverage_threshold, di.CancerHotSpotsBED) ssnv_based_model.perform_inference() if di.only_ascnas == True: ssnv_based_model.TiN = np.nan print('Only using aSCNA data') ascna = False # identify aSCNAs and filter hets if len(di.seg_table) > 0: di.aSCNA_hets = du.ensure_balanced_hets(di.seg_table, di.het_table) if len(di.aSCNA_hets) > 0: di.aSCNA_segs,di.convergent_segs = du.identify_aSCNAs(di.seg_table, di.aSCNA_hets, di.aSCNA_thresh, di.ascna_SNP_number_filter, di.aSCNA_variance_threshold) if len(di.aSCNA_segs) > 0: ascna_based_model = dascna.model(di.aSCNA_segs, di.aSCNA_hets, di.resolution) ascna_based_model.perform_inference() ascna = True if not ascna: ascna_based_model = dascna.model(di.seg_table, di.het_table, di.resolution) ascna_based_model.TiN = np.nan # combine models and reclassify mutations do = output(di, ssnv_based_model, ascna_based_model) do.calculate_joint_estimate() if len(do.SSNVs)>1: do.reclassify_mutations() do.SSNVs.drop('Chromosome', axis=1, inplace=True) n_calls_post = np.sum(do.SSNVs['judgement']=="KEEP") n_calls_added = n_calls_post - n_calls_pre # make output directory if needed if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # write deTiN reclassified SSNVs do.SSNVs.to_csv(path_or_buf=do.input.output_path + '/' + do.input.output_name + '.deTiN_SSNVs.txt', sep='\t', index=None) if not di.indel_file == 'None': #if 'Chromosome' in do.indels.columns: do.indels.drop('Chromosome', axis=1, inplace=True) do.indels.to_csv(path_or_buf=do.input.output_path + '/' + do.input.output_name + '.deTiN_indels.txt', sep='\t', index=None) # write plots if not np.isnan(ascna_based_model.TiN): do.ascna_based_model.segs['Chromosome'] = do.ascna_based_model.segs['Chromosome'] + 1 do.ascna_based_model.segs.to_csv(path_or_buf=do.input.output_path + '/' + do.input.output_name + '.deTiN_aSCNAs.txt', sep='\t', index=None) du.plot_kmeans_info(ascna_based_model, do.input.output_path, do.input.output_name) du.plot_TiN_models(do) du.plot_aSCNA_het_data(do) if not np.isnan(ssnv_based_model.TiN): du.plot_SSNVs(do) # write TiN and CIs file = open(do.input.output_path + '/' + do.input.output_name + '.TiN_estimate.txt', 'w') file.write('%s' % (do.TiN)) file.close() file = open(do.input.output_path + '/' + do.input.output_name + '.TiN_estimate_CI.txt', 'w') file.write('%s - %s' % (str(do.CI_tin_low), str(do.CI_tin_high))) file.close() file = open(do.input.output_path + '/' + do.input.output_name + '.number_of_SSNVs_added.txt','w') file.write('%s\n'% int(n_calls_added)) if __name__ == "__main__": main() ``` #### File: deTiN/deTiN/deTiN_utilities.py ```python import numpy as np import sys from scipy.stats import beta from scipy.stats import fisher_exact from itertools import compress import gzip import random import pandas as pd import matplotlib import pickle matplotlib.use('agg') import matplotlib.pyplot as plt from scipy.special import gammaln random.seed(1) def beta_binomial_pdf(x,n,a,b): x = x.reshape(-1,1) n = n.reshape(-1,1) return gammaln(n+1) + gammaln(x+a) + gammaln(n-x+b) + gammaln(a+b) - \ (gammaln(x+1) + gammaln(n-x+1) + gammaln(a) + gammaln(b) + gammaln(n+a+b)) def is_number(s): try: float(s) return True except ValueError: return False def is_member(a, b): # based on the matlab is_member function # code from stackoverflow user <NAME> bind = {} for i, elt in enumerate(b): if elt not in bind: bind[elt] = i return [bind.get(itm, np.nan) for itm in a] def chr2num(chr): if chr[0][0:2] == 'ch': chr = [c[3:] for c in chr] # convert chromosome from strings to ints chr = ['23' if x == 'X' else x for x in chr] chr = ['24' if x == 'Y' else x for x in chr] chr = ['25' if x == 'M' else x for x in chr] chr = ['25' if x == 'MT' else x for x in chr] chromosomes = np.array(range(1, 26)) return np.array(is_member(chr, chromosomes.astype(np.str))) def remove_sites_near_centromere_and_telomeres(het_table): positions = het_table['genomic_coord_x'] centromere_positions = [125000001, 1718373143, 1720573143, 1867507890, 1869607890, 1984214406, 1986714406, 2101066301, 2102666301, 2216036179, 2217536179, 2323085719, 2326285719, 2444417111, 2446417111, 2522371864, 2524171864, 2596767074, 2598567074, 2683844322, 2685944322, 339750621, 342550621, 2744173305, 2746073305, 2792498825, 2794798825, 2841928720, 2844428720, 580349994, 583449994, 738672424, 740872424, 927726700, 930026700, 1121241960, 1123541960, 1291657027, 1293557027, 1435895690, 1438395690, 1586459712, 1588159712] lengths = np.array([249250621, 243199373, 198022430, 191154276, 180915260, 171115067, 159138663, 146364022, 141213431, 135534747, 135006516, 133851895, 115169878, 107349540, 102531392, 90354753, 81195210, 78077248, 59128983, 63025520, 48129895, 51304566, 155270560, 59373566, 16569]) # chromosome lengths from genome-mysql.cse.ucsc.edu telomere_positions = np.append(1, np.cumsum(lengths)) distance_centromere = np.zeros([len(positions), len(centromere_positions)]) distance_telomere = np.zeros([len(positions), len(telomere_positions)]) for i, centromere in enumerate(centromere_positions): distance_centromere[:, i] = np.abs(positions - centromere) distance_centromere = np.min(distance_centromere, axis=1) for i, telomere in enumerate(telomere_positions): distance_telomere[:, i] = np.abs(positions - telomere) distance_telomere = np.min(distance_telomere, axis=1) het_table = het_table[np.logical_and(distance_centromere > 5000000, distance_telomere > 5000000)] het_table.reset_index(inplace=True, drop=True) return het_table def filter_hets_based_on_coverage(het_table, depth = 10): het_table = het_table[np.logical_and(het_table['READ_DEPTH_N'] > depth, het_table['READ_DEPTH_T'] > depth)] het_table.reset_index(inplace=True, drop=True) return het_table def filter_segments_based_on_size_f_and_tau(seg_table, aSCNA_thresh, n_probes = 200): seg_table = seg_table[np.logical_and.reduce(np.array([np.array(seg_table['f']) < 0.5 - aSCNA_thresh, seg_table['n_probes'] > n_probes, seg_table['tau'] > 0]))] seg_table.reset_index(inplace=True, drop=True) return seg_table def alternate_file_headers(): headers = {'alternate_headers_position' : ['Start', 'Start_bp', 'start','position','pos','POS','Start_position'], 'alternate_headers_start_position' : ['Start', 'Start_bp', 'start','position','pos','POS','Start_position','START'], 'alternate_headers_end_position' : ['End', 'End_bp', 'end','END'], 'alternate_headers_chromosome' : ['Contig', 'chrom', 'CONTIG', 'chr', 'Chrom', 'CHROMOSOME','Chromosome','contig'], 'alternate_headers_f' : ['f_acs', 'MAF_Post_Mode','MINOR_ALLELE_FRACTION_POSTERIOR_50'], 'alternate_headers_tau' : ['CN', 'Segment_Mean_Post_Mode','LOG2_COPY_RATIO_POSTERIOR_50'], 'alternate_headers_alt_count' : ['t_alt_count', 'n_alt_count', 'alt_count', 'i_t_alt_count', 'i_n_alt_count'], 'alternate_headers_ref_count' : ['t_ref_count', 'n_ref_count', 'ref_count', 'i_t_ref_count', 'i_n_ref_count'], 'alternate_headers_n_probes': ['n_probes','NUM_POINTS_COPY_RATIO','Num_Targets']} return headers def read_file_header(text_file): headers = alternate_file_headers() with open(text_file, 'rt') as f: for header_lines, line in enumerate(f): line = line.strip() if not line[0] == '#': break file_head = line.split('\t') try : headers['alternate_headers_chromosome'].index(file_head[0]) except ValueError: sys.exit('The first column of all input files should be chromosome: could not find any of the chromosome headers in the first column of '+ text_file) return file_head def identify_aSCNAs(seg_table, het_table, aSCNA_thresh = 0.1, n_snps = 20, var_thresh = 0.025): # identify aSCNAs based on minor allele fraction of segments mu_af_n = np.mean(het_table['AF_N']) f_detin = np.zeros([len(seg_table), 1]) f_variance = np.zeros([len(seg_table), 1]) n_snps_above_mu = np.zeros([len(seg_table), 1]) n_snps_below_mu = np.zeros([len(seg_table), 1]) fishers_p_convergent_seg = np.ones([len(seg_table), 1]) thresh_snps = np.round(np.true_divide(n_snps,2)) for seg_id, seg in seg_table.iterrows(): seg_hets = het_table[het_table['seg_id'] == seg_id] f_detin[seg_id] = mu_af_n - np.mean(np.abs(seg_hets['AF_T'] - mu_af_n)) f_variance[seg_id] = np.var(np.abs(seg_hets['AF_T'] - mu_af_n)) n_snps_above_mu[seg_id] = np.sum(seg_hets['AF_T'] > mu_af_n) n_snps_below_mu[seg_id] = np.sum(seg_hets['AF_T'] <= mu_af_n) try: fe_tuple = fisher_exact([[np.sum(np.logical_and(seg_hets['AF_T'] > mu_af_n, seg_hets['AF_N'] > mu_af_n)), np.sum(np.logical_and(seg_hets['AF_T'] > mu_af_n, seg_hets['AF_N'] <= mu_af_n))], [np.sum(np.logical_and(seg_hets['AF_T'] <= mu_af_n, seg_hets['AF_N'] > mu_af_n)), np.sum(np.logical_and(seg_hets['AF_T'] <= mu_af_n, seg_hets['AF_N'] <= mu_af_n))]], 'less') fishers_p_convergent_seg[seg_id] = fe_tuple[1] except ValueError: fishers_p_convergent_seg[seg_id] = 1 seg_table['f_detin'] = f_detin seg_table['f_variance'] = f_variance seg_table['n_snps_above_mu'] = n_snps_above_mu seg_table['n_snps_below_mu'] = n_snps_below_mu seg_table['fishers_p_convergent_seg'] = fishers_p_convergent_seg if any((seg_table['fishers_p_convergent_seg'] * len(seg_table)) < 0.05): segs = (seg_table['fishers_p_convergent_seg'] * len(seg_table)) < 0.05 ix = list(compress(range(len(segs)), segs)) print('identified convergent aSCNA in normal on chromosomes:' + str(np.unique(seg_table['Chromosome'][ix] + 1))) convergent_segs = seg_table[seg_table['fishers_p_convergent_seg'] * len(seg_table) <= 0.05] else: convergent_segs = None aSCNAs = seg_table[ np.logical_and.reduce(np.array([np.array(seg_table['fishers_p_convergent_seg'] * len(seg_table)) > 0.05, seg_table['n_snps_above_mu'] > thresh_snps, seg_table['n_snps_below_mu'] > thresh_snps, seg_table['f_detin'] <= 0.5 - aSCNA_thresh, seg_table['f_variance'] < var_thresh]))] return aSCNAs,convergent_segs def ensure_balanced_hets(seg_table, het_table): seg_table['aSCNA'] = np.zeros([len(seg_table), 1]) aSCNA_hets = [] for seg_id, seg in seg_table.iterrows(): seg_hets = het_table[het_table['seg_id'] == seg_id] if np.sum(seg_hets['d'] == -1) > 10 and np.sum(seg_hets['d'] == 1) > 10: if sum(seg_hets['AF_T'] > 0.5) < sum(seg_hets['AF_T'] <= 0.5): sites = seg_hets['AF_T'] <= 0.5 index = list(compress(range(len(sites)), sites)) ixs = random.sample(index, (sum(seg_hets['AF_T'] <= 0.5) - sum(seg_hets['AF_T'] > 0.5))) seg_hets = seg_hets.drop(seg_hets.index[ixs]) seg_hets.reset_index(inplace=True, drop=True) if sum(seg_hets['AF_T'] > 0.5) > sum(seg_hets['AF_T'] <= 0.5): sites = seg_hets['AF_T'] > 0.5 index = list(compress(range(len(sites)), sites)) ixs = random.sample(index, (sum(seg_hets['AF_T'] > 0.5) - sum(seg_hets['AF_T'] <= 0.5))) seg_hets = seg_hets.drop(seg_hets.index[ixs]) seg_hets.reset_index(inplace=True, drop=True) if len(aSCNA_hets) == 0: aSCNA_hets = seg_hets else: aSCNA_hets = pd.concat([aSCNA_hets, seg_hets]) aSCNA_hets.reset_index(inplace=True, drop=True) return aSCNA_hets def plot_kmeans_info(ascna_based_model, output_path, sample_name): # method for plotting clustering results of aSCNA TiN estimates X = np.array(ascna_based_model.segs['TiN_MAP']) X_low = np.array(ascna_based_model.segs['TiN_ci_l']) X_high = np.array(ascna_based_model.segs['TiN_ci_h']) Y = np.array(ascna_based_model.segs['Chromosome']) kIdx = int(np.max(ascna_based_model.cluster_assignment)) K = range(1, 4) # variance explained by incorporating additional clusters fig = plt.figure() ax = fig.add_subplot(111) ax.plot(K, ascna_based_model.sum_squared_distance, 'b.-') ax.plot(K[kIdx], ascna_based_model.sum_squared_distance[kIdx], marker='o', markersize=12, markeredgewidth=2, markeredgecolor='r', markerfacecolor='None') plt.grid(True) plt.xlabel('Number of clusters') plt.ylabel('Average within-cluster sum of squares') plt.title('KMeans residual') plt.xticks([1,2,3]) fig.set_dpi(150) fig.savefig(output_path + '/' + sample_name + '_KmeansEval_plot.png', bbox_inches='tight') # scatter plot of TiN estimates per segment by chromosome location and cluster fig = plt.figure() ax = fig.add_subplot(111) clr = ['b', 'g', 'r'] if len(X) > 1: for i in range(K[kIdx]): ind = (ascna_based_model.cluster_assignment == i) ax.errorbar(X[ind], Y[ind], xerr=[X[ind]-X_low[ind],X_high[ind]-X[ind]] , c=clr[i], label='Cluster %d' % i,ls='None',marker='.') else: ax.errorbar(X,Y+1,xerr=[X-X_low,X_high-X],c='b',label='Cluster 1',ls='None',marker='.') plt.xlabel('MAP tumor in normal estimate (%)') plt.ylabel('Chromosome') plt.title('Cluster by chromosome and TiN') plt.yticks(np.arange(min(Y) , max(Y) + 2, 2.0)) plt.xticks(np.arange(0, max(X) + 1, np.max([np.round(np.true_divide(np.max(X), 10)), 1]))) ax.set_xlim([-2, np.max(X) + 2]) fig.set_dpi(150) fig.savefig(output_path + '/' + sample_name + '_KmeansEval_scatter_plot.png', bbox_inches='tight') def plot_aSCNA_het_data(do): fig, ax = plt.subplots(1, 1) ax.plot(do.input.het_table['genomic_coord_x'], do.input.het_table['AF_T'], c=[0.5, 0.5, 0.5], marker='.', ls='None', ms=1, alpha=0.5) tumor_af = ax.plot(do.ascna_based_model.hets['genomic_coord_x'], do.ascna_based_model.hets['AF_T'], c=[0, 0, 1], marker='.', ls='None', ms=5) normal_af = ax.plot(do.ascna_based_model.hets['genomic_coord_x'], do.ascna_based_model.hets['AF_N'], c=[1, 0, 0], marker='.', ls='None', ms=5) fig.set_dpi(300) chrs = hg19_to_linear_positions(np.linspace(0, 23, 24), np.ones([23])) for c in chrs: ax.plot([c, c], [0, 1], 'k--') plt.legend(handles=[tumor_af[0], normal_af[0]],labels=['Tumor', 'Normal']) ax.set_xticks((chrs[1:] + chrs[:-1]) / 2) ax.set_xticklabels((np.linspace(1, 24, 24, dtype=int)), size=5, rotation=90) ax.set_yticks(np.linspace(0, 1, 5)) ax.set_yticklabels(np.linspace(0, 1, 5), size=5) ax.set_xlabel('Chromosomes') ax.set_ylabel('Allele fraction') fig.set_dpi(150) fig.savefig(do.input.output_path + '/' + do.input.output_name + '_TiN_hets_aSCNA_model.png', bbox_inches='tight') fig.savefig(do.input.output_path + '/' + do.input.output_name + '_TiN_hets_aSCNA_model.eps', bbox_inches='tight') def plot_TiN_models(do): fig, ax = plt.subplots(1, 1) TiN_range = np.linspace(0, 1, num=do.input.resolution) if ~np.isnan(do.ascna_based_model.TiN): ascna = ax.plot(TiN_range, np.true_divide(np.exp( do.ascna_based_model.TiN_likelihood - np.nanmax(do.ascna_based_model.TiN_likelihood)), np.nansum(np.exp(do.ascna_based_model.TiN_likelihood - np.nanmax( do.ascna_based_model.TiN_likelihood)))) , 'r--', lw=1) ssnv = ax.plot(TiN_range, np.true_divide( np.exp(do.ssnv_based_model.TiN_likelihood - np.nanmax(do.ssnv_based_model.TiN_likelihood)), np.nansum( np.exp(do.ssnv_based_model.TiN_likelihood - np.nanmax(do.ssnv_based_model.TiN_likelihood)))) , 'b--', lw=1) joint = ax.plot(TiN_range, do.joint_posterior , 'k-', lw=2) plt.xlabel('Tumor in normal estimate') plt.ylabel('p(TiN=x)') plt.title('TiN estimate posterior') if ~np.isnan(do.ascna_based_model.TiN): plt.legend(handles=[ascna[0], ssnv[0], joint[0]], labels=['aSCNA', 'SSNV', 'Joint Est.']) else: plt.legend(handles=[ssnv[0], joint[0]], labels=['SSNV', 'Joint Est.']) fig.set_dpi(150) fig.savefig(do.input.output_path + '/' + do.input.output_name + '_TiN_models_plot.png', bbox_inches='tight') def plot_SSNVs(do): fig, ax = plt.subplots(1, 1) TiN_fit = ax.plot(np.linspace(0, 1, do.input.resolution), np.multiply(do.TiN, np.linspace(0, 1, do.input.resolution)), '--', lw=1, alpha=1, color='#1D1D1D') background = ax.plot(do.ssnv_based_model.tumor_f, do.ssnv_based_model.normal_f , '.', lw=0.1, alpha=0.75, color=[0.75, 0.75, 0.75]) nod_kept = np.logical_and(do.SSNVs['judgement'] == 'KEEP', do.SSNVs.isnull()['failure_reasons']).values cis = do.ssnv_based_model.rv_normal_af.interval(0.6825) kept_def = ax.plot(do.ssnv_based_model.tumor_f[nod_kept], do.ssnv_based_model.normal_f[nod_kept], 'b.', lw=0.1) d_kept = np.logical_and(do.SSNVs['judgement'] == 'KEEP', ~do.SSNVs.isnull()['failure_reasons']).values yerr_low = do.ssnv_based_model.normal_f[d_kept] - cis[0][d_kept] yerr_low[yerr_low<0] = 0 detin_kept = ax.errorbar(do.ssnv_based_model.tumor_f[d_kept], do.ssnv_based_model.normal_f[d_kept], yerr=[yerr_low, cis[1][d_kept] - do.ssnv_based_model.normal_f[d_kept]], fmt='r.', capsize=2) plt.xlabel('Tumor AF') plt.ylabel('Normal AF') plt.title('SSNVs considered and recovered') plt.legend(handles=[background[0], kept_def[0], detin_kept[0], TiN_fit[0]], labels=['Candidate Sites', 'Called w/o deTiN ', 'deTiN recovered', 'TiN_fit']) fig.set_dpi(300) fig.savefig(do.input.output_path + '/' + do.input.output_name + '_SSNVs_plot.png', bbox_inches='tight') fig.savefig(do.input.output_path + '/' + do.input.output_name + '_SSNVs_plot.eps', format='eps', bbox_inches='tight') def select_candidate_mutations(call_stats_table, exac_db_file): # filter sites in call stats table to those only rejected for presence in the normal failure_reasons = np.array(call_stats_table['failure_reasons']) candidate_sites = call_stats_table[np.logical_or.reduce(np.array([np.array(call_stats_table['judgement']) == 'KEEP', failure_reasons == 'normal_lod,alt_allele_in_normal', failure_reasons == 'alt_allele_in_normal']))] candidate_sites['t_depth'] = candidate_sites['t_alt_count'] + candidate_sites['t_ref_count'] candidate_sites['n_depth'] = candidate_sites['n_alt_count'] + candidate_sites['n_ref_count'] candidate_sites.reset_index(inplace=True, drop=True) candidate_sites = remove_exac_sites_from_call_stats(candidate_sites, exac_db_file) candidate_sites.reset_index(inplace=True, drop=True) return candidate_sites def hg19_to_linear_positions(chromosome, position, **keyword_parameters): # type: (nparray, nparray,string) -> nparray """ Change chromosome-position to continuous linear coordinates """ if ('build' in keyword_parameters): build = keyword_parameters['build'] else: build = 'hg19' if build == 'hg19': L = np.array([249250621, 243199373, 198022430, 191154276, 180915260, 171115067, 159138663, 146364022, 141213431, 135534747, 135006516, 133851895, 115169878, 107349540, 102531392, 90354753, 81195210, 78077248, 59128983, 63025520, 48129895, 51304566, 155270560, 59373566, 16569]) # chromosome lengths from genome-mysql.cse.ucsc.edu if build == 'hg38': L = np.array([248956422,242193529,198295559,190214555,181538259,170805979,159345973, 145138636,138394717,133797422,135086622,133275309,114364328,107043718, 101991189,90338345,83257441,80373285,58617616,64444167,46709983,50818468, 156040895,57227415,16569]) C = np.append(1, np.cumsum(L)) x = np.array([chromosome[int(i)] for i in np.arange(0, len(position))],dtype=int) return C[x] + position def fix_het_file_header(het_file): # allowing flexibility in het file headers to accommodate changing versions of GATK4 and other CN tools # in order to add support for your het file headers please modify the alternate header lists above headers = alternate_file_headers() required_headers = ['CONTIG', 'POSITION', 'ALT_COUNT', 'REF_COUNT'] if np.sum(np.isfinite((is_member(required_headers, het_file.columns)))) == 4: return het_file else: missing_idx = np.where(~np.isfinite((is_member(required_headers, het_file.columns)))) for i in missing_idx[0]: if required_headers[i] == 'POSITION': if np.sum(np.isfinite(is_member(headers['alternate_headers_position'], het_file.columns))) == 0 or np.sum( np.isfinite(is_member(headers['alternate_headers_position'], het_file.columns))) > 1: sys.exit('missing required header POSITION and could not replace with POS,position, or pos!') else: idx_replace = np.where(np.isfinite(is_member(headers['alternate_headers_position'], het_file.columns))) het_file.rename(columns={headers['alternate_headers_position'][idx_replace[0][0]]: 'POSITION'}, inplace=True) print('changing header of het file from ' + headers['alternate_headers_position'][ idx_replace[0][0]] + ' to POSITION') if required_headers[i] == 'CONTIG': if np.sum(np.isfinite(is_member(headers['alternate_headers_chromosome'], het_file.columns))) == 0 or np.sum( np.isfinite(is_member(headers['alternate_headers_chromosome'], het_file.columns))) > 1: sys.exit( 'missing required header CONTIG and could not replace with any one of CHR, chrom, Chromosome, chr, Chrom!') else: idx_replace = np.where(np.isfinite(is_member(headers['alternate_headers_chromosome'], het_file.columns))) het_file.rename(columns={headers['alternate_headers_chromosome'][idx_replace[0][0]]: 'CONTIG'}, inplace=True) print('changing header of het file from ' + headers['alternate_headers_chromosome'][ idx_replace[0][0]] + ' to CONTIG') if required_headers[i] == 'ALT_COUNT': if np.sum(np.isfinite(is_member(headers['alternate_headers_alt_count'], het_file.columns))) == 0 or np.sum( np.isfinite(is_member(headers['alternate_headers_alt_count'], het_file.columns))) > 1: sys.exit( 'missing required header ALT_COUNT and could not replace with any one of t_alt_count, n_alt_count, alt_count') else: idx_replace = np.where(np.isfinite(is_member(headers['alternate_headers_alt_count'], het_file.columns))) het_file.rename(columns={headers['alternate_headers_alt_count'][idx_replace[0][0]]: 'ALT_COUNT'}, inplace=True) print('changing header of het file from ' + headers['alternate_headers_alt_count'][ idx_replace[0][0]] + ' to ALT_COUNT') if required_headers[i] == 'REF_COUNT': if np.sum(np.isfinite(is_member(headers['alternate_headers_ref_count'], het_file.columns))) == 0 or np.sum( np.isfinite(is_member(headers['alternate_headers_ref_count'], het_file.columns))) > 1: sys.exit( 'missing required header ALT_COUNT and could not replace with any one of t_ref_count, n_ref_count, ref_count') else: idx_replace = np.where(np.isfinite(is_member(headers['alternate_headers_ref_count'], het_file.columns))) het_file.rename(columns={headers['alternate_headers_ref_count'][idx_replace[0][0]]: 'REF_COUNT'}, inplace=True) print('changing header of het file from ' + headers['alternate_headers_ref_count'][ idx_replace[0][0]] + ' to REF_COUNT') return het_file def fix_seg_file_header(seg_file): # allowing flexibility in seg file headers to accommodate changing versions of GATK4 and other CN tools # in order to add support for your seg file headers please modify the alternate header lists above headers = alternate_file_headers() required_headers = ['Chromosome', 'Start.bp', 'End.bp', 'f', 'tau','n_probes'] if np.sum(np.isfinite((is_member(required_headers, seg_file.columns)))) == 5: return seg_file else: missing_idx = np.where(~np.isfinite((is_member(required_headers, seg_file.columns)))) for i in missing_idx[0]: if required_headers[i] == 'Start.bp': if np.sum(np.isfinite(is_member(headers['alternate_headers_start_position'], seg_file.columns))) == 0 or np.sum( np.isfinite(is_member(headers['alternate_headers_start_position'], seg_file.columns))) > 1: sys.exit('missing required header Start.bp and could not replace with Start or Start_bp') else: idx_replace = np.where(np.isfinite(is_member(headers['alternate_headers_start_position'], seg_file.columns))) seg_file.rename(columns={headers['alternate_headers_start_position'][idx_replace[0][0]]: 'Start.bp'}, inplace=True) print('changing header of seg file from ' + headers['alternate_headers_start_position'][ idx_replace[0][0]] + ' to Start.bp') if required_headers[i] == 'End.bp': if np.sum(np.isfinite(is_member(headers['alternate_headers_end_position'], seg_file.columns))) == 0 or np.sum( np.isfinite(is_member(headers['alternate_headers_end_position'], seg_file.columns))) > 1: sys.exit('missing required header End.bp and could not replace with End or End_bp') else: idx_replace = np.where(np.isfinite(is_member(headers['alternate_headers_end_position'], seg_file.columns))) seg_file.rename(columns={headers['alternate_headers_end_position'][idx_replace[0][0]]: 'End.bp'}, inplace=True) print('changing header of seg file from ' + headers['alternate_headers_end_position'][ idx_replace[0][0]] + ' to End.bp') if required_headers[i] == 'Chromosome': if np.sum(np.isfinite(is_member(headers['alternate_headers_chromosome'], seg_file.columns))) == 0 or np.sum( np.isfinite(is_member(headers['alternate_headers_chromosome'], seg_file.columns))) > 1: sys.exit( 'missing required header Chromosome and could not replace with any other header') else: idx_replace = np.where(np.isfinite(is_member(headers['alternate_headers_chromosome'], seg_file.columns))) seg_file.rename(columns={headers['alternate_headers_chromosome'][idx_replace[0][0]]: 'Chromosome'}, inplace=True) print('changing header of seg file from ' + headers['alternate_headers_chromosome'][ idx_replace[0][0]] + ' to Chromosome') if required_headers[i] == 'f': if np.sum(np.isfinite(is_member(headers['alternate_headers_f'], seg_file.columns))) == 0 or np.sum( np.isfinite(is_member(headers['alternate_headers_f'], seg_file.columns))) > 1: sys.exit( 'missing required header f and could not replace with any one of f_acs') else: idx_replace = np.where(np.isfinite(is_member(headers['alternate_headers_f'], seg_file.columns))) seg_file.rename(columns={headers['alternate_headers_f'][idx_replace[0][0]]: 'f'}, inplace=True) print('changing header of seg file from ' + headers['alternate_headers_f'][idx_replace[0][0]] + ' to f') if required_headers[i] == 'tau': if np.sum(np.isfinite(is_member(headers['alternate_headers_tau'], seg_file.columns))) == 0 or np.sum( np.isfinite(is_member(headers['alternate_headers_tau'], seg_file.columns))) > 1: sys.exit( 'missing required header tau and could not replace with any one of CN') else: idx_replace = np.where(np.isfinite(is_member(headers['alternate_headers_tau'], seg_file.columns))) seg_file.rename(columns={headers['alternate_headers_tau'][idx_replace[0][0]]: 'tau'}, inplace=True) if headers['alternate_headers_tau'][idx_replace[0][0]] == 'LOG2_COPY_RATIO_POSTERIOR_50': print('transforming log2 data tau column to 2 centered: 2^(CNratio)+1') seg_file['tau'] = np.power(2,seg_file['tau'])+1 print('changing header of seg file from ' + headers['alternate_headers_tau'][idx_replace[0][0]] + ' to tau') if required_headers[i] == 'n_probes': if np.sum(np.isfinite(is_member(headers['alternate_headers_n_probes'], seg_file.columns))) == 0 or np.sum( np.isfinite(is_member(headers['alternate_headers_n_probes'], seg_file.columns))) > 1: sys.exit( 'missing required header n_probes and could not replace with any one of alternates') else: idx_replace = np.where(np.isfinite(is_member(headers['alternate_headers_n_probes'], seg_file.columns))) seg_file.rename(columns={headers['alternate_headers_n_probes'][idx_replace[0][0]]: 'n_probes'}, inplace=True) print('changing header of seg file from ' + headers['alternate_headers_n_probes'][idx_replace[0][0]] + ' to n_probes') return seg_file def read_indel_vcf(vcf,seg_table,indel_type): content = [] if vcf[-2:] == 'gz': with gzip.open(vcf, 'r') as f: content = f.readlines() else: with open(vcf) as f: content = f.readlines() cols_type = {0: str} for line in content: if line[0] == '#' and line[1] != '#': headerline = line.split('\t') break if indel_type.lower() == 'strelka': indel_table = pd.read_csv(vcf, sep='\t', comment='#', header=None, low_memory=False, dtype=cols_type) indel_table.rename(columns={0: 'contig', 1: 'position',2:'ID',3:'REF',4:'ALT',5:'QUAL',7:'INFO', 8: 'format', 6: 'filter', 9: headerline[9].lower(), 10: headerline[10][0:-1].lower()}, inplace=True) counts_format = indel_table['format'][0].split(':') depth_ix = counts_format.index('DP') alt_indel_ix = counts_format.index('TIR') ref_indel_ix = counts_format.index('TAR') indel_table = indel_table[np.isfinite(is_member(indel_table['filter'], ['PASS', 'QSI_ref']))] indel_table.reset_index(inplace=True, drop=True) elif indel_type.lower() == 'mutect2': indel_table = pd.read_csv(vcf, sep='\t', comment='#', header=None, low_memory=False, dtype=cols_type) # CHROM POS ID REF ALT QUAL FILTER INFO FORMAT TUMOR NORMAL normal_sample = 'normal' tumor_sample = 'tumor' for line in content: if line[0:15] == '##normal_sample': normal_sample = line.split('=')[1][0:-1] if line[0:14] == '##tumor_sample': tumor_sample = line.split('=')[1][0:-1] if tumor_sample == 'tumor' and normal_sample == 'normal': indel_table.rename( columns={0: 'contig', 1: 'position', 2: 'ID', 3: 'REF', 4: 'ALT', 5: 'QUAL', 7: 'INFO', 8: 'format', 6: 'filter', 9: 'tumor', 10: 'normal'}, inplace=True) else: if tumor_sample == headerline[9]: indel_table.rename( columns={0: 'contig', 1: 'position', 2: 'ID', 3: 'REF', 4: 'ALT', 5: 'QUAL', 7: 'INFO', 8: 'format', 6: 'filter', 9: 'tumor', 10: 'normal'}, inplace=True) elif tumor_sample == headerline[10][0:-1]: indel_table.rename( columns={0: 'contig', 1: 'position', 2: 'ID', 3: 'REF', 4: 'ALT', 5: 'QUAL', 7: 'INFO', 8: 'format', 6: 'filter', 9: 'normal', 10: 'tumor'}, inplace=True) else: print('failed to read MuTect 2 indels VCF') sys.exit() counts_format = indel_table['format'][0].split(':') depth_ix = counts_format.index('AD') indel_table = indel_table[np.isfinite(is_member(indel_table['filter'], ['PASS', 'alt_allele_in_normal','artifact_in_normal']))] indel_table.reset_index(inplace=True, drop=True) elif indel_type.lower() == 'sanger': indel_table = pd.read_csv(vcf, sep='\t', comment='#', header=None, low_memory=False, dtype=cols_type) # CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NORMAL TUMOUR indel_table.rename(columns={0: 'contig', 1: 'position',2:'ID',3:'REF',4:'ALT',5:'QUAL',7:'INFO',8: 'format', 6: 'filter', 9: headerline[9].lower(), 10: headerline[10][0:-1].lower()}, inplace=True) b1 = np.logical_or.reduce([indel_table['filter'] == 'F012', indel_table['filter'] == 'F012;F015']) b2 = np.logical_or.reduce([indel_table['filter'] == 'PASS', indel_table['filter'] == 'F015']) indel_table = indel_table[np.logical_or.reduce([b1, b2])] indel_table.reset_index(inplace=True,drop=True) format_string = indel_table['format'][0].split(':') total_depth_idx = [format_string.index('PR'), format_string.index('NR')] alt_count_idx = [format_string.index('PU'), format_string.index('NU')] # parsing format line and file to determine required alt and ref columns # we use "tier 1" read counts for varaints n_depth = np.zeros([len(indel_table), 1]) n_alt_count = np.zeros([len(indel_table), 1]) n_ref_count = np.zeros([len(indel_table), 1]) t_depth = np.zeros([len(indel_table), 1]) t_alt_count = np.zeros([len(indel_table), 1]) t_ref_count = np.zeros([len(indel_table), 1]) for index, row in indel_table.iterrows(): spl_n = row['normal'].split(':') spl_t = row['tumor'].split(':') if indel_type.lower() == 'strelka': n_depth[index] = int(spl_n[depth_ix]) n_alt_count[index] = int(spl_n[alt_indel_ix].split(',')[0]) n_ref_count[index] = int(spl_n[ref_indel_ix].split(',')[0]) t_depth[index] = int(spl_t[depth_ix]) t_alt_count[index] = int(spl_t[alt_indel_ix].split(',')[0]) t_ref_count[index] = int(spl_t[ref_indel_ix].split(',')[0]) if indel_type.lower() == 'mutect2': n_alt_count[index] = int(spl_n[depth_ix].split(',')[1]) n_ref_count[index] = int(spl_n[depth_ix].split(',')[0]) n_depth[index] = n_alt_count[index]+n_ref_count[index] t_alt_count[index] = int(spl_t[depth_ix].split(',')[1]) t_ref_count[index] = int(spl_t[depth_ix].split(',')[0]) t_depth[index] = t_alt_count[index] + t_ref_count[index] if indel_type.lower() == 'sanger': n_depth[index] = np.sum([int(spl_n[i]) for i in total_depth_idx]) n_alt_count[index] = np.sum([int(spl_n[i]) for i in alt_count_idx]) n_ref_count[index] = n_depth[index] - n_alt_count[index] t_depth[index] = np.sum([int(spl_t[i]) for i in total_depth_idx]) t_alt_count[index] = np.sum([int(spl_t[i]) for i in alt_count_idx]) t_ref_count[index] = t_depth[index] - t_alt_count[index] if len(indel_table) == 0: indel_table = pd.DataFrame(index=[0],columns=['contig', 'position','ID','REF','ALT','QUAL','INFO','format', 'filter',headerline[9].lower(), headerline[10][0:-1].lower(), 't_depth','t_alt_count','t_ref_count','n_alt_count','n_depth','n_ref_count','tau','f_acs','Chromosome','genomic_coord_x']) else: indel_table['t_depth'] = t_alt_count + t_ref_count indel_table['t_alt_count'] = t_alt_count indel_table['t_ref_count'] = t_ref_count indel_table['n_depth'] = n_alt_count + n_ref_count indel_table['n_alt_count'] = n_alt_count indel_table['n_ref_count'] = n_ref_count # only consider sites which were rejected as germline or were passed if type(indel_table['contig'][0]) == str : indel_table['Chromosome'] = chr2num(indel_table['contig']) else: indel_table['Chromosome'] = indel_table['contig']-1 # add linear position field and consider only sites which are rejected as germline i.e. PASS or QSI_ref indel_table = indel_table[np.isfinite(indel_table['Chromosome'])] indel_table.reset_index(inplace=True, drop=True) indel_table['genomic_coord_x'] = hg19_to_linear_positions(indel_table['Chromosome'], indel_table['position']) # annotate with acs data f_acs = np.zeros([len(indel_table), 1]) + 0.5 tau = np.zeros([len(indel_table), 1]) + 2 for i, r in seg_table.iterrows(): f_acs[np.logical_and(np.array(indel_table['genomic_coord_x']) >= r['genomic_coord_start'], np.array(indel_table['genomic_coord_x']) <= r['genomic_coord_end'])] = r.f tau[np.logical_and(np.array(indel_table['genomic_coord_x']) >= r['genomic_coord_start'], np.array(indel_table['genomic_coord_x']) <= r[ 'genomic_coord_end'])] = r.tau + 0.001 indel_table['tau'] = tau indel_table['f_acs'] = f_acs return indel_table def build_exac_pickle(exac_file): # create ExAC site dictionary from VCF file exac_site_info = {} print('Filtering ExAC sites from candidate mutations') with gzip.open(exac_file, "rb") as vcf_file: for line_index, line in enumerate(vcf_file): if line_index % 10000 == 0: print('processed ' + str(line_index) + ' ExAC sites') spl = line.strip("\n").split("\t") # line is a comment if line[0] == '#': continue site = spl[0] + '_' + spl[1] info = spl[7] info_dict = {} info_dict['ref_allele'] = spl[3] info_dict['alt_allele'] = spl[4] for field in info.strip("\n").split(";"): if field.split("=")[0] not in ['AC', 'AF']: continue try: info_dict[field.split("=")[0]] = field.split("=")[1] except: pass # print 'bad field:', field # select only sites where population allele fractions exceeds 0.01 if np.sum(np.array(info_dict['AF'].split(','), dtype=float)) >= 0.01: exac_site_info[site] = info_dict with open('exac.pickle', 'wb') as handle: pickle.dump(exac_site_info, handle, protocol=pickle.HIGHEST_PROTOCOL) def remove_exac_sites_from_call_stats(call_stats_table, exac_file): # use ExAC vcf to filter likely germline variants out of candidate sites with open(exac_file, 'rb') as handle: exac_dict = pickle.load(handle) keep = np.ones_like(call_stats_table['position'], dtype=bool) for index, row in call_stats_table.iterrows(): key = str(row['contig']) + '_' + str(row['position']) if row['judgement'] == 'REJECT': try: exac_dict[key] # print 'removing site '+ key+ ' minor allele fraction = ' + str(exac_dict[key]['AF']) keep[index] = False except KeyError: pass return call_stats_table[keep] ```
{ "source": "Jette16/spacy-course", "score": 3 }
#### File: exercises/de/exc_03_10_02.py ```python from spacy.lang.de import German from spacy.tokens import Span nlp = German() # Definiere die Methode def to_html(span, tag): # Verpacke den Text der Span in einem HTML-Tag und gebe ihn zurück return f"<{tag}>{span.text}</{tag}>" # Registriere die Span-Erweiterung "to_html" mit der Methode to_html ____.____(____, ____=____) # Verarbeite den Text und rufe die Methode to_html mit dem Tag "strong" auf doc = nlp("<NAME>, dies ist ein Satz.") span = doc[0:2] print(____) ``` #### File: exercises/de/solution_03_10_01.py ```python from spacy.lang.de import German from spacy.tokens import Doc nlp = German() # Definiere die Getter-Funktion def get_has_number(doc): # Gebe zurück, ob einer der Tokens im Doc True für token.like_num zurückgibt return any(token.like_num for token in doc) # Registriere die Doc-Erweiterung "has_number" mit Getter-Funktion get_has_number Doc.set_extension("has_number", getter=get_has_number) # Verarbeite den Text und drucke den Wert des Attributs has_number doc = nlp("Das Museum war ab 2012 fünf Jahre lang geschlossen.") print("has_number:", doc._.has_number) ``` #### File: exercises/de/test_01_02_02.py ```python def test(): import spacy.tokens import spacy.lang.de assert isinstance( nlp, spacy.lang.de.German ), "Das nlp-Objekt sollte eine Instanz der Klasse German sein." assert isinstance( doc, spacy.tokens.Doc ), "Hast du den Text mit dem nlp-Objekt verarbeitet und ein Doc erstellt?" assert "print(doc.text)" in __solution__, "Hast du doc.text gedruckt?" __msg__.good("Gut gemacht!") ``` #### File: exercises/de/test_01_03_02.py ```python def test(): assert ( doc.text == "Ich mag niedliche Katzen und Faultiere." ), "Bist du dir sicher, dass du den Text korrekt verarbeitet hast?" assert ( niedliche_katzen == doc[2:4] ), "Bist du dir sicher, dass du die korrekte Span für niedliche_katzen ausgewählt hast?" assert ( niedliche_katzen_und_faultiere == doc[2:6] ), "Bist du dir sicher, dass du die korrekte Span für niedliche_katzen_und_faultiere ausgewählt hast?" __msg__.good("Gut gemacht!") ``` #### File: exercises/de/test_01_07.py ```python def test(): assert "spacy.load" in __solution__, "Rufst du spacy.load auf?" assert nlp.meta["lang"] == "de", "Lädst du das korrekte Modell?" assert nlp.meta["name"] == "core_news_sm", "Lädst du das korrekte Modell?" assert "nlp(text)" in __solution__, "Verarbeitest du den Text korrekt?" assert "print(doc.text)" in __solution__, "Druckst du den Text des Doc?" __msg__.good( "Gut gemacht! Jetzt wo du das Laden von Modellen geübt hast, lass uns " "mal ein paar ihrer Vorhersagen anschauen." ) ``` #### File: exercises/de/test_02_09.py ```python def test(): assert ( 'spacy.load("en_core_web_md")' in __solution__ ), "Lädst du das mittelgroße Modell?" assert "doc[1].vector" in __solution__, "Greifst du auf den richtigen Vector zu?" __msg__.good( "Bravo! In der nächsten Übung wirst du spaCy benutzen, um mithilfe von " "Wortvektoren Ähnlichkeiten von Dokumenten, Spans und Tokens zu berechnen." ) ``` #### File: exercises/de/test_02_10_02.py ```python def test(): assert ( "token1.similarity(token2)" or "token2.similarity(token1)" in __solution__ ), "Vergleichst du die Ähnlichkeit der zwei Tokens?" assert ( 0 <= float(similarity) <= 1 ), "Der Ähnlichkeitswert muss eine Zahl zwischen 0 und 1 sein. Hast du ihn korrekt berechnet?" __msg__.good("Prima!") ``` #### File: exercises/de/test_03_09_01.py ```python def test(): assert Token.has_extension( "is_country" ), "Hast du die Token-Erweiterung korrekt registriert?" ext = Token.get_extension("is_country") assert ext[0] == False, "Hast du den default-Wert korrekt angegeben?" country_values = [False, False, False, True, False] assert [ t._.is_country for t in doc ] == country_values, "Hast du den Wert für den richtigen Token geändert?" assert ( "print([(token.text, token._.is_country)" in __solution__ ), "Druckst du die richtigen Token-Attribute?" __msg__.good("Gut gemacht!") ``` #### File: exercises/de/test_03_11.py ```python def test(): assert Span.has_extension( "wikipedia_url" ), "Hast du die Span-Erweiterung korrekt registriert?" ext = Span.get_extension("wikipedia_url") assert ext[2] is not None, "Hast du die Getter-Funktion korrekt angegeben?" assert ( "getter=get_wikipedia_url" in __solution__ ), "Hast du die Funktion get_wikipedia_url as Getter-Funktion angegeben?" assert ( "(ent.text, ent._.wikipedia_url)" in __solution__ ), "Greifst du auf das richtige Attribut zu?" assert ( doc.ents[-1]._.wikipedia_url == "https://de.wikipedia.org/w/index.php?search=David_Bowie" ), "Es scheint, als ob der Wert des Attributs nicht korrekt ist." __msg__.good( "Sehr schön! Du hast nun eine Pipeline-Komponente, die vom Modell " "vorhergesagte Entitäten verwendet, um Wikipedia-URLs zu generieren und " "diese als benutzerdefiniertes Attribut hinzufügt. Versuche mal, den Link " "in deinem Browser zu öffnen und schau, was passiert!" ) ``` #### File: exercises/de/test_03_12.py ```python def test(): assert ( len(nlp.pipeline) == 1 and nlp.pipe_names[0] == "countries_component" ), "Hast du die Komponente korrekt hinzugefügt?" assert Span.has_extension( "capital" ), "Hast du die Span-Erweiterung korrekt registriert?" ext = Span.get_extension("capital") assert ( ext[2] is not None ), "Hast du die Funktion get_capital als Getter-Funktion angegeben?" assert ( "(ent.text, ent.label_, ent._.capital)" in __solution__ ), "Druckst du die richtigen Attribute?" assert ( len(doc.ents) == 2 ), "Es sieht so aus, als ob die Entitäten nicht korrekt hinzugefügt wurden?" assert ( doc.ents[0]._.capital == "Prag" and doc.ents[1]._.capital == "Bratislava" ), "Das Attribut capital scheint nicht korrekt zu funktionieren." __msg__.good( "Bravo! Dies ist ein gutes Beispiel dafür, wie du strukturierte Daten " "zu deiner spaCy-Pipeline hinzufügen kannst." ) ``` #### File: exercises/de/test_04_03.py ```python def test(): assert len(pattern1) == 2, "pattern1 sollte zwei Tokens beschreiben." assert len(pattern2) == 2, "pattern2 sollte zwei Tokens beschreiben." assert ( len(pattern1[0]) == 1 ), "Der erste Token von pattern1 sollte ein einziges Attribut beschreiben." assert any( pattern1[0].get(l) == "iphone" for l in ("LOWER", "lower") ), "Der erste Token von pattern1 sollte die kleingeschriebene Form von 'iphone' beschreiben." assert ( len(pattern1[1]) == 1 ), "Der zweite Token von pattern1 sollte ein einziges Attribut beschreiben." assert any( pattern1[1].get(l) == "x" for l in ("LOWER", "lower") ), "Der zweite Token von pattern1 sollte die kleingeschriebene form von 'x' beschreiben." assert ( len(pattern2[0]) == 1 ), "Der erste Token von pattern2 sollte ein einziges Attribut beschreiben." assert any( pattern2[0].get(l) == "iphone" for l in ("LOWER", "lower") ), "Der erste Token von pattern2 sollte die kleingeschriebene Form von 'iphone' beschreiben." assert ( len(pattern2[1]) == 1 ), "Der zweite Token von pattern2 sollte ein einziges Attribute beschreiben." assert any( pattern2[1].get(l) == True for l in ("IS_DIGIT", "is_digit") ), "Der zweite Token von pattern2 sollte eine Ziffer beschreiben." __msg__.good( "Super! Lass uns nun diese Patterns verwenden, um schnell ein paar " "Trainingsdaten für unser Modell zu erstellen." ) ``` #### File: exercises/de/test_04_07.py ```python def test(): assert "nlp.begin_training()" in __solution__, "Hast du nlp.begin_training aufgerufen?" assert ( "range(10)" in __solution__ ), "Trainierst du mit der richten Anzahl an Iterationen?" assert ( "spacy.util.minibatch(TRAINING_DATA" in __solution__ ), "Verwendest du die minibatch Hilfsfunktion, um Batches zu erstellen?" assert ( "text for text" in __solution__ and "entities for text" in __solution__ ), "Teilst du die Texte und Annotationen korrekt auf?" assert "nlp.update" in __solution__, "Aktualisierst du das Modell mit den Beispielen?" __msg__.good( 'Gut gemacht – du hast erfolgreich dein erstes spaCy-Modell trainiert. ' 'Die Zahlen, die du hier siehst werden auch "loss" genannt und bezeichnen ' 'quasi die Arbeit, die der Optimizer noch zu erledigen hat. Je niedriger ' 'die Zahl, desto besser. Im echten Leben würdest du normalerweise *viel ' 'mehr* Daten verwenden als hier, idealerweise ein paar Hundert oder sogar ' 'ein paar Tausend Beispiele.' ) ``` #### File: exercises/de/test_04_11_01.py ```python def test(): assert ( len(TRAINING_DATA) == 3 ), "Irgendetwas scheint mit deinen Daten nicht zu stimmen. Erwartet werden 3 Beispiele." assert all( len(entry) == 2 and isinstance(entry[1], dict) for entry in TRAINING_DATA ), "Die Trainingsdaten haben nicht das richtige Format. Erwartet wird eine Liste von Tuples, bestehend aus Text und einem Dictionary als zweites Element." ents = [entry[1].get("entities", []) for entry in TRAINING_DATA] assert len(ents[0]) == 2, "Das erste Beispiel sollte zwei Entitäten enhalten." ent_0_0 = (0, 6, "WEBSITE") ent_0_1 = (11, 18, "WEBSITE") assert ( ents[0][0] == ent_0_0 ), "Überprüfe nochmal die erste Entität im ersten Beispiel." assert ( ents[0][1] == ent_0_1 ), "Überprüfe nochmal die zweite Entität im ersten Beispiel." assert len(ents[1]) == 1, "Das zweite Beispiel sollte eine Entität enthalten." assert ents[1] == [ (28, 35, "WEBSITE",) ], "Überprüfe nochmal die Entität im zweiten Beispiel." assert len(ents[2]) == 1, "Das dritte Beispiel sollte eine Entität enthalten." assert ents[2] == [ (15, 21, "WEBSITE",) ], "Überprüfe nochmal die Entität im dritten Beispiel." __msg__.good("Sehr schön!") ``` #### File: exercises/en/test_01_12_03.py ```python def test(): assert ( len(pattern) == 3 ), "The pattern should describe three tokens (three dictionaries)." assert ( isinstance(pattern[0], dict) and isinstance(pattern[1], dict) and isinstance(pattern[2], dict) ), "Each entry in a pattern should be a dictionary." assert ( len(pattern[0]) == 1 and len(pattern[1]) == 1 ), "The first two pattern entries should have only one key." assert len(pattern[2]) == 2, "The third pattern entry should have two keys." assert any( pattern[0].get(key) == "ADJ" for key in ["pos", "POS"] ), "Are you matching on the first token's part-of-speech tag with the correct label?" assert any( pattern[1].get(key) == "NOUN" for key in ["pos", "POS"] ), "Are you matching on the second token's part-of-speech tag with the correct label?" assert any( pattern[2].get(key) == "NOUN" for key in ["pos", "POS"] ), "Are you matching on the third token's part-of-speech tag with the correct label?" assert ( pattern[2].get("OP") == "?" ), "Are you using the correct operator for the third token?" __msg__.good( "Great work – those were some pretty complex patterns! Let's move on " "to the next chapter and take a look at how to use spaCy for more " "advanced text analysis." ) ``` #### File: exercises/en/test_02_14.py ```python def test(): assert ( "from spacy.matcher import PhraseMatcher" in __solution__ ), "Did you import the PhraseMatcher correctly?" assert ( "PhraseMatcher(nlp.vocab)" in __solution__ ), "Did you initialize the PhraseMatcher correctly?" assert "matcher(doc)" in __solution__, "Did you call the matcher on the doc?" assert len(matches) == 2, "Incorrect number of matches – expected 2." __msg__.good("Well done! Let's use this matcher to add some custom entities.") ``` #### File: exercises/en/test_03_12.py ```python def test(): assert ( len(nlp.pipeline) == 1 and nlp.pipe_names[0] == "countries_component" ), "Did you add the component correctly?" assert Span.has_extension("capital"), "Did you set the extension on the span?" ext = Span.get_extension("capital") assert ext[2] is not None, "Did you register get_capital as the getter?" assert ( "(ent.text, ent.label_, ent._.capital)" in __solution__ ), "Are you printing the correct attributes?" assert len(doc.ents) == 2, "Looks like the entities didn't get set correctly?" assert ( doc.ents[0]._.capital == "Prague" and doc.ents[1]._.capital == "Bratislava" ), "Looks like the capital attribute isn't working correctly." __msg__.good( "Well done! This is a great example of how you can add structured " "data to your spaCy pipeline." ) ``` #### File: exercises/en/test_03_14_01.py ```python def test(): assert ( "for doc in nlp.pipe(TEXTS)" in __solution__ ), "Are you iterating over docs yielded by nlp.pipe?" __msg__.good("Nice!") ``` #### File: exercises/en/test_04_04.py ```python def test(): assert ( "for doc in nlp.pipe(TEXTS)" in __solution__ ), "Are you calling nlp.pipe on the texts?" assert ( "TRAINING_DATA.append" in __solution__ ), "Are you appending to the TRAINING_DATA?" assert ( len(TRAINING_DATA) == 6 ), "Looks like the training data isn't correct. Expected 6 examples." for entry in TRAINING_DATA: assert ( len(entry) == 2 and isinstance(entry[0], str) and isinstance(entry[1], dict) and "entities" in entry[1] ), "Looks like examples have the wrong format. It should be a tuple with a text and a dict with the key 'entities'." assert TRAINING_DATA[0][1]["entities"] == [ (20, 28, "GADGET") ], "Double-check the entities in example 1." assert TRAINING_DATA[1][1]["entities"] == [ (0, 8, "GADGET") ], "Double-check the entities in example 2." assert TRAINING_DATA[2][1]["entities"] == [ (28, 36, "GADGET") ], "Double-check the entities in example 3." assert TRAINING_DATA[3][1]["entities"] == [ (4, 12, "GADGET") ], "Double-check the entities in example 4." assert TRAINING_DATA[4][1]["entities"] == [ (0, 9, "GADGET"), (13, 21, "GADGET"), ], "Double-check the entities in example 5." assert ( TRAINING_DATA[5][1]["entities"] == [] ), "Double-check the entities in example 6." __msg__.good( "Well done! Before you train a model with the data, you always want " "to double-check that your matcher didn't identify any false " "positives. But that process is still much faster than doing " "*everything* manually." ) ``` #### File: exercises/en/test_04_11_02.py ```python def test(): assert ( len(TRAINING_DATA) == 3 ), "Looks like there's something wrong with the data. Expected 3 examples." assert all( len(entry) == 2 and isinstance(entry[1], dict) for entry in TRAINING_DATA ), "Incorrect training data format. Expected a list of tuples where the second element is a dict." ents = [entry[1].get("entities", []) for entry in TRAINING_DATA] assert all(len(e) == 2 for e in ents), "Expected all examples to have two entities" assert any( e == (0, 9, "PERSON") for e in ents[1] ), "Did you label the PERSON correctly?" assert any( e == (15, 29, "PERSON") for e in ents[2] ), "Did you label the PERSON correctly?" __msg__.good( "Good job! After including both examples of the new WEBSITE " "entities, as well as existing entity types like PERSON, the model " "now performs much better." ) ``` #### File: exercises/es/exc_03_06.py ```python import spacy # Define el componente personalizado def length_component(doc): # Obtén la longitud del doc doc_length = ____ print(f"Este documento tiene {doc_length} tokens.") # Devuelve el doc ____ # Carga el modelo pequeño de español nlp = spacy.load("es_core_news_sm") # Añade el componente en el primer lugar del pipeline e imprime # los nombres de los pipes en pantalla ____.____(____) print(nlp.pipe_names) # Procesa un texto doc = ____ ``` #### File: exercises/es/test_01_02_02.py ```python def test(): import spacy.tokens import spacy.lang.de assert isinstance( nlp, spacy.lang.de.German ), "El objeto nlp debería ser un instance de la clase de alemán." assert isinstance( doc, spacy.tokens.Doc ), "¿Procesaste el texto con el objeto nlp para crear un doc?" assert "print(doc.text)" in __solution__, "¿Imprimiste en pantalla el doc.text?" __msg__.good("Sehr gut! :)") ``` #### File: exercises/es/test_01_03_02.py ```python def test(): assert ( doc.text == "Me gustan las panteras negras y los leones." ), "¿Procesaste el texto correctamente?" assert ( panteras_negras == doc[3:5] ), "¿Seleccionaste el span correcto para 'panteras_negras'?" assert ( panteras_negras_y_leones == doc[3:8] ), "¿Seleccionaste el span correcto para 'panteras_negras_y_leones'?" __msg__.good("¡Buen trabajo!") ``` #### File: exercises/es/test_01_08_02.py ```python def test(): assert "for ent in doc.ents" in __solution__, "¿Estás iterando sobre las entidades?" assert ( "print(ent.text, ent.label_)" in __solution__ ), "¿Estás imprimiendo en pantalla el texto y el label?" __msg__.good( "¡Muy buen trabajo! Hasta ahora el modelo a estado correcto todas las veces. " "En el siguiente ejercicio verás que sucede cuando el modelo se equivoca " "y cómo ajustarlo." ) ``` #### File: exercises/es/test_01_11.py ```python def test(): import spacy.matcher assert isinstance( matcher, spacy.matcher.Matcher ), "¿Estás inicializando el matcher correctamente?" assert ( "Matcher(nlp.vocab)" in __solution__ ), "¿Estás inicializando el matcher correctamente con el vocabulario compartido?" assert ( len(pattern) == 2 ), "El patrón debería describir dos tokens (dos diccionarios)." assert isinstance(pattern[0], dict) and isinstance( pattern[1], dict ), "Cada entrada en el patrón debería ser un diccionario." assert ( len(pattern[0]) == 1 and len(pattern[1]) == 1 ), "Cada entrada en el patrón debería tener solo un key." assert any( pattern[0].get(key) == "adidas" for key in ["text", "TEXT"] ), "¿Estás encontrando el texto del token?" assert any( pattern[1].get(key) == "zx" for key in ["text", "TEXT"] ), "¿Estás encontrando el texto del token?" assert ( 'matcher.add("ADIDAS_ZX_PATTERN"' in __solution__ ), "¿Estás añadiendo el patrón correctamente?" assert ( "matches = matcher(doc)" in __solution__ ), "¿Estás llamando al matcher sobre el doc?" __msg__.good( "¡Bien hecho! Encontraste un resultado exitosamente: los tokens en doc[14:16] " 'que describen el span de "adidas ZX".' ) ``` #### File: exercises/es/test_02_05_02.py ```python def test(): assert ( "from spacy.tokens import Doc" in __solution__ ), "¿Estás importando la clase Doc correctamente?" assert ( len(spaces) == 5 ), "Parece que el número de espacios no concuerda con el número de palabras." assert all(isinstance(s, bool) for s in spaces), "Los espacios tienen que ser booleanos." assert [int(s) for s in spaces] == [0, 0, 1, 0, 0], "¿Están correctos los espacios?" assert doc.text == "¡Vamos, empieza!", "¿Creaste el Doc correctamente?" __msg__.good("¡Bien!") ``` #### File: exercises/es/test_03_09_01.py ```python def test(): assert Token.has_extension( "is_country" ), "¿Registraste la extensión en el token?" ext = Token.get_extension("is_country") assert ext[0] == False, "¿Añadiste correctamente el valor por defecto?" country_values = [False, False, True, False] assert [ t._.is_country for t in doc ] == country_values, "¿Cambiaste el valor en el token correcto?" assert ( "print([(token.text, token._.is_country)" in __solution__ ), "¿Estás imprimiendo en pantalla los atributos del token correctos?" __msg__.good("¡Bien hecho!") ``` #### File: exercises/es/test_03_16_02.py ```python def test(): assert ( 'with nlp.disable_pipes("tagger", "parser")' in __solution__ or 'with nlp.disable_pipes("parser", "tagger")' in __solution__ ), "¿Estás usando nlp.disable_pipes con los componentes correctos?" __msg__.good( "¡Perfecto! Ahora que has practicado los consejos y trucos de rendimiento, " "puedes pasar al siguiente capítulo y entrenar modelos de redes neuronales de spaCy." ) ``` #### File: exercises/fr/exc_03_11.py ```python import spacy from spacy.tokens import Span nlp = spacy.load("fr_core_news_sm") def get_wikipedia_url(span): # Retourne une URL Wikipédia si le span possède un des libellés if ____ in ("PER", "ORG", "GPE", "LOCATION"): entity_text = span.text.replace(" ", "_") return "https://fr.wikipedia.org/w/index.php?search=" + entity_text # Définis l'extension de Span wikipedia_url avec le getter get_wikipedia_url ____.____(____, ____=____) doc = nlp( "Pendant plus de cinquante ans depuis ses tout premiers enregistrements " "jusqu'à son dernier album, <NAME> a toujours été à l'avant-garde " "de la culture contemporaine." ) for ent in doc.ents: # Affiche le text et l'URL Wikipédia de l'entité print(____, ____) ``` #### File: exercises/fr/solution_03_06.py ```python import spacy # Définis le composant personnalisé def length_component(doc): # Obtiens la longueur du doc doc_length = len(doc) print(f"Ce document comporte {doc_length} tokens.") # Retourne le doc return doc # Charge le petit modèle français nlp = spacy.load("fr_core_news_sm") # Ajoute le composant en premier dans le pipeline # et affiche les noms des composants nlp.add_pipe(length_component, first=True) print(nlp.pipe_names) # Traite un texte doc = nlp("Ceci est une phrase.") ``` #### File: exercises/fr/solution_03_09_02.py ```python from spacy.lang.fr import French from spacy.tokens import Token nlp = French() # Définis la fonction getter qui prend en argument un token # et retourne son texte inversé def get_reversed(token): return token.text[::-1] # Déclare l'extension de propriété de Token "reversed" # avec le getter get_reversed Token.set_extension("reversed", getter=get_reversed) # Traite le texte et affiche l'attribut inversé pour chaque token doc = nlp("Toutes les généralisations sont fausses, celle-ci aussi.") for token in doc: print("reversed :", token._.reversed) ``` #### File: exercises/fr/test_02_06.py ```python def test(): assert ( "import Doc, Span" or "import Span, Doc" in __solution__ ), "As-tu correctement importé Doc et Span ?" assert doc.text == "<NAME> <NAME>", "As-tu correctement créé le Doc ?" assert span.text == "<NAME>", "As-tu correctement créé le span ?" assert span.label_ == "PERSON", "As-tu ajouté le label PERSON au span?" assert "doc.ents =" in __solution__, "As-tu réécrit doc.ents ?" assert len(doc.ents) == 1, "As-tu ajouté le span à doc.ents ?" assert ( list(doc.ents)[0].text == "<NAME>" ), "As-tu ajouté le span à doc.ents ?" __msg__.good( "Parfait ! Savoir créer manuellement des objets de spaCy et modifier " "les entités sera utile plus tard quand tu créeras tes propres " "pipelines d'extraction d'informations." ) ``` #### File: exercises/fr/test_02_07.py ```python def test(): assert "token_texts" not in __solution__, "As-tu supprimé la variable token_texts ?" assert "pos_tags" not in __solution__, "As-tu supprimé la variable pos_tags ?" assert ( "token.pos_ ==" in __solution__ ), "Vérifies-tu si l'étiquette de partie de discours du token est un nom propre ?" assert ( "token.i + 1" in __solution__ or "token.i+1" in __solution__ ), "Utilises-tu l'attribut index du token pour vérifier le token suivant ?" __msg__.good( "Excellent travail ! Si la solution fonctionne bien ici pour l'exemple " "donné, il y a encore des choses qui peuvent être améliorées. Si le " "doc se termine par un nom propre, doc[token.i + 1] va générer une " "erreur. Pour être certain de pouvoir généraliser, tu devrais d'abord " "vérifier si token.i + 1 < len(doc)." ) ``` #### File: exercises/fr/test_02_10_01.py ```python def test(): assert ( "doc1.similarity(doc2)" or "doc2.similarity(doc1)" in __solution__ ), "Compares-tu la similarité entre les deux docs ?" assert ( 0 <= float(similarity) <= 1 ), "La valeur de similarité doit être un nombre flottant. L'as-tu calculé correctement ?" __msg__.good("Bien joué !") ``` #### File: exercises/fr/test_02_15.py ```python def test(): assert ( "list(doc.ents) + [span]" in __solution__ ), "As-tu ajouté le span à doc.ents ?" assert ( "span_root_head = span.root.head" in __solution__ ), "Obtiens-tu la tête du token racine du span ?" assert ( "print(span_root_head.text" in __solution__ ), "Affiches-tu le texte de la tête de la racine du span ?" ents = [ent for ent in doc.ents if ent.label_ == "GPE"] assert len(ents) == 19, "Nombre incorrect d'entités. Attendu 19." __msg__.good( "Bien joué ! Maintenant que tu as pratiqué la combinaison de " "prédictions avec des extractions basées sur des règles, tu es prêt " "pour le chapitre 3, qui va tout t'apprendre sur les pipelines de " "traitement de spaCy." ) ``` #### File: exercises/fr/test_03_14_01.py ```python def test(): assert ( "for doc in nlp.pipe(TEXTS)" in __solution__ ), "Itères-tu sur les docs générés par nlp.pipe ?" __msg__.good("Joli !") ``` #### File: exercises/fr/test_04_03.py ```python def test(): assert len(pattern1) == 2, "pattern1 doit décrire deux tokens." assert len(pattern2) == 2, "pattern2 doit décrire deux tokens." assert ( len(pattern1[0]) == 1 ), "Le premier token de pattern1 nécessite un attribut seulement." assert any( pattern1[0].get(l) == "iphone" for l in ("LOWER", "lower") ), "Le premier token de pattern1 doit rechercher 'iphone' en minuscules." assert ( len(pattern1[1]) == 1 ), "Le second token de pattern1 nécessite un attribut seulement." assert any( pattern1[1].get(l) == "x" for l in ("LOWER", "lower") ), "Le second token de pattern1 doit rechercher 'x' en minuscules." assert ( len(pattern2[0]) == 1 ), "Le premier token de pattern2 nécessite un attribut seulement." assert any( pattern2[0].get(l) == "iphone" for l in ("LOWER", "lower") ), "Le premier token de pattern2 doit rechercher 'iphone' en minuscules." assert ( len(pattern2[1]) == 1 ), "Le second token de pattern2 nécessite un attribut seulement." assert any( pattern2[1].get(l) == True for l in ("IS_DIGIT", "is_digit") ), "Le second token de pattern2 doit rechercher un nombre." __msg__.good( "Bien ! Mainteant utilisons ces motifs pour démarrer rapidement un " "apprentissage de données pour notre modèle." ) ``` #### File: exercises/fr/test_general.py ```python import spacy from spacy.matcher import Matcher import pytest @pytest.fixture def nlp(): return spacy.load("fr_core_news_sm") def test_01_08_02_predictions(nlp): text = "Apple a été créée en 1976 par <NAME>, <NAME> et <NAME>." doc = nlp(text) ents = [(ent.text, ent.label_) for ent in doc.ents] assert len(ents) == 4 assert ents[0] == ("Apple", "ORG") assert ents[1] == ("<NAME>", "PER") assert ents[2] == ("<NAME>", "PER") assert ents[3] == ("<NAME>", "PER") def test_01_09_predictions(nlp): text = "Le constructeur Citröen présente la e-Méhari Courrèges au public." doc = nlp(text) ents = [(ent.text, ent.label_) for ent in doc.ents] assert len(ents) == 1 assert ents[0] == ("Citröen", "MISC") assert doc[5].ent_type == 0 assert doc[6].ent_type == 0 def test_slides_01_03(nlp): doc = nlp("Avant elle mangeait des pâtes. Désormais elle mange des légumes.") pattern = [{"LEMMA": "manger", "POS": "VERB"}, {"POS": "DET"}, {"POS": "NOUN"}] matcher = Matcher(nlp.vocab) matcher.add("TEST", None, pattern) matches = [doc[start:end].text for _, start, end in matcher(doc)] assert matches == ["mangeait des pâtes", "mange des légumes"] def test_03_16_02_predictions(nlp): text = ( "Le groupe aéronautique Airbus construit des avions et des " "hélicoptères vendus dans le monde entier. Le siège opérationnel du " "groupe est situé en France à Toulouse dans la région Occitanie." ) doc = nlp(text) assert [ent.text for ent in doc.ents] == ["Airbus", "France", "Toulouse", "Occitanie"] ``` #### File: exercises/ja/test_01_03_02.py ```python def test(): assert doc.text == "私はツリーカンガルーとイルカが好きです。", "テキストをちゃんと処理しましたか?" assert tree_kangaroos == doc[2:4], "ツリーカンガルーのスパンを選択しましたか?" assert ( tree_kangaroos_and_dolphins == doc[2:6] ), "ツリーカンガルーとイルカのスパンを選択しましたか?" __msg__.good("よくできました!") ``` #### File: exercises/ja/test_01_04.py ```python def test(): assert "if token.like_num" in __solution__, "トークンのlike_num属性を調べましたか?" assert 'next_token.text == "%"' in __solution__, "次のトークンが%記号であるかどうかを調べましたか?" assert next_token.text == "%", "次のトークンが%記号であるかどうかを調べましたか?" __msg__.good("よくできました!今見たように、トークンとその属性を使うことで非常に強力な解析が可能です。") ``` #### File: exercises/ja/test_02_09.py ```python def test(): assert 'spacy.load("ja_core_news_md")' in __solution__, "中サイズのモデルをロードしましたか?" assert "doc[7].vector" in __solution__, "正しいベクトルを取得しましたか?" __msg__.good("Well done!次章では、単語ベクトルを用いたdoc、スパン、トークン間の類似度の予測を行います。") ``` #### File: exercises/ja/test_02_14.py ```python def test(): assert ( "from spacy.matcher import PhraseMatcher" in __solution__ ), "PhraseMatcherをちゃんとインポートしましたか?" assert "PhraseMatcher(nlp.vocab)" in __solution__, "PhraseMatcherをきちんと初期化しましたか?" assert "matcher(doc)" in __solution__, "docに対してMatcherを呼び出しましたか?" assert len(matches) == 2, "matchesの数がただしくありません。正しくは2です。" __msg__.good("Well done!このmatcherを使って、カスタムの固有表現を追加してみましょう。") ``` #### File: exercises/pt/test_01_07.py ```python def test(): assert "spacy.load" in __solution__, "Você está usando spacy.load?" assert nlp.meta["lang"] == "en", "Você está carregando o modelo correto?" assert nlp.meta["name"] == "core_web_sm", "Você está carregando o modelo correto?" assert "nlp(text)" in __solution__, "Você está processando o texto corretamente?" assert "print(doc.text)" in __solution__, "Você está imprimindo o texto do documento Doc?" __msg__.good( "Muito bem! Agora que você já exercitou como carregar modelos, vamos dar" "uma olhada nas previsões." ) ``` #### File: exercises/pt/test_01_09.py ```python def test(): assert "in doc.ents" in __solution__, "Você está iterando nas entidades?" assert iphone_x.text == "iPhone X", "Verifique se iphone_x aponta para o intervalo de tokens correto." __msg__.good( "Perfeito! É claro que você não precisa fazer tudo isso manualmente. No " "próximo exercício, você vai conhecer o comparador baseado em regras da spaCy, " "que poderá ajudá-lo a encontrar determinadas palavras e frases em um texto." ) ``` #### File: exercises/pt/test_01_11.py ```python def test(): import spacy.matcher assert isinstance( matcher, spacy.matcher.Matcher ), "Você está inicializando o Comparador corretamente?" assert ( "Matcher(nlp.vocab)" in __solution__ ), "Você está inicializando o Comparador corretamente com o vocabulário compartilhado?" assert ( len(pattern) == 2 ), "A expressão deve descrever dois tokens (dois dicionários)." assert isinstance(pattern[0], dict) and isinstance( pattern[1], dict ), "Cada item da expressão deve conter um dicionário." assert ( len(pattern[0]) == 1 and len(pattern[1]) == 1 ), "Cada item na expressão deve conter apenas uma chave." assert any( pattern[0].get(key) == "iPhone" for key in ["text", "TEXT"] ), "Você está fazendo a comparação com o texto do token?" assert any( pattern[1].get(key) == "X" for key in ["text", "TEXT"] ), "Você está fazendo a comparação com o texto do token?" assert ( 'matcher.add("IPHONE_X_PATTERN"' in __solution__ ), "Você está adicionando a expressão corretamente?" assert ( "matches = matcher(doc)" in __solution__ ), "Você está chamando o Comparador passando o doc como parâmetro?" __msg__.good( "Parabéns! Você identificou uma correspondência com sucesso: dois tokens " "em doc[1:3] que correspondem a partição 'iPhone X'. " ) ``` #### File: exercises/pt/test_02_02_02.py ```python def test(): assert ( person_hash == nlp.vocab.strings["PERSON"] ), "Você atribuiu o código hash corretamente?" assert ( 'nlp.vocab.strings["PERSON"]' in __solution__ ), "Você atribuiu o código hash corretamente?" assert person_string == "PERSON", "Você selecionou a string corretamente?" assert ( "nlp.vocab.strings[person_hash]" in __solution__ ), "Você obteve a string a partir do código hash?" __msg__.good("Good job!") ``` #### File: exercises/pt/test_02_05_02.py ```python def test(): assert ( "from spacy.tokens import Doc" in __solution__ ), "Você fez a importação da classe Doc corretamente?" assert ( len(spaces) == 5 ), "Parece que o número de espaços não coincide com o número de palavras..." assert all(isinstance(s, bool) for s in spaces), "Os espaços devem ser boleanos." assert [int(s) for s in spaces] == [0, 1, 1, 0, 0], "Os espaços estão corretos?" assert doc.text == "Go, get started!", "Tem certeza que você criou o Doc corretamente?" __msg__.good("Bom!") ``` #### File: exercises/pt/test_02_10_01.py ```python def test(): assert ( "doc1.similarity(doc2)" or "doc2.similarity(doc1)" in __solution__ ), "Você está comparando a similaridade entre os dois documentos?" assert ( 0 <= float(similarity) <= 1 ), "O valor da similaridade deve ser um número de ponto flutuante. Você fez este cálculo corretamente?" __msg__.good("Muito bem!") ``` #### File: exercises/pt/test_03_10_01.py ```python def test(): assert Doc.has_extension("has_number"), "Você registrou a extensão no doc?" ext = Doc.get_extension("has_number") assert ext[2] is not None, "Você definiu o getter corretamente?" assert ( "getter=get_has_number" in __solution__ ), "Você atribuiu a função get_has_number como a função getter?" assert "doc._.has_number" in __solution__, "Você está acessando o atributo personalizado?" assert doc._.has_number, "Parece que a função getter está retornando o valor errado." __msg__.good("Bom trabalho!") ``` #### File: exercises/pt/test_03_14_03.py ```python def test(): assert ( "patterns = list(nlp.pipe(people))" in __solution__ ), "Você está usando nlp.pipe envolvido em uma lista (list)?" __msg__.good( "Bom trabalho! Vamos seguir agora com um exemplo prático que " "usa nlp.pipe para processar documentos com metadados adicionais." ) ``` #### File: exercises/pt/test_04_04.py ```python def test(): assert ( "for doc in nlp.pipe(TEXTS)" in __solution__ ), "Você está chamando nlp.pipe passando TEXTS como parâmetros?" assert ( "TRAINING_DATA.append" in __solution__ ), "Você está adicionando novos dados aos dados de treinamento (TRAINING_DATA)?" assert ( len(TRAINING_DATA) == 6 ), "Parece que os dados de treinamento não estão corretos. Deveria haver 6 exemplos." for entry in TRAINING_DATA: assert ( len(entry) == 2 and isinstance(entry[0], str) and isinstance(entry[1], dict) and "entities" in entry[1] ), "Parece que os exemplos estão em um formato errado. Deve ser uma tupla com o texto e um dicionário com a chave 'entities'." assert TRAINING_DATA[0][1]["entities"] == [ (20, 28, "GADGET") ], "Verifique as entidades do exemplo 1." assert TRAINING_DATA[1][1]["entities"] == [ (0, 8, "GADGET") ], "Verifique as entidades do exemplo 2." assert TRAINING_DATA[2][1]["entities"] == [ (28, 36, "GADGET") ], "Verifique as entidades do exemplo 3." assert TRAINING_DATA[3][1]["entities"] == [ (4, 12, "GADGET") ], "Verifique as entidades do exemplo 4." assert TRAINING_DATA[4][1]["entities"] == [ (0, 9, "GADGET"), (13, 21, "GADGET"), ], "Verifique as entidades do exemplo 5." assert ( TRAINING_DATA[5][1]["entities"] == [] ), "Verifique as entidades do exemplo 6." __msg__.good( "Muito bem! Antes de treinar um modelo com alguns dados, você deve sempre " "confirmar se seu comparador não identificou nenhum falso positivo. " "Mas ainda assim, este processo é bem mais rápido do que fazer *tudo* " "manualmente." ) ``` #### File: exercises/pt/test_04_11_02.py ```python def test(): assert ( len(TRAINING_DATA) == 3 ), "Parece que há algo errado com os dados de treinamento. O esperado são 3 exemplos." assert all( len(entry) == 2 and isinstance(entry[1], dict) for entry in TRAINING_DATA ), "Dados do treinamento com formato errado. Esperado uma lista de tuplas com um dicionário como segundo elemento." ents = [entry[1].get("entities", []) for entry in TRAINING_DATA] assert all(len(e) == 2 for e in ents), "Todos os exemplos devem conter duas entidades." assert any( e == (0, 9, "PERSON") for e in ents[1] ), "Você rotulou a entidade PERSON corretamente?" assert any( e == (15, 29, "PERSON") for e in ents[2] ), "Você rotulou a entidade PERSON corretamente?" __msg__.good( "Bom trabalho! Depois de incluir ambos os exemplos na nova entidade " "WEBSITE, bem como exemplos para a entidade existemte PERSON, o " "modelo agora está com uma performance bem melhor." ) ``` #### File: exercises/zh/exc_03_06.py ```python import spacy # 定义定制化组件 def length_component(doc): # 获取doc的长度 doc_length = ____ print(f"This document is {doc_length} tokens long.") # 返回这个doc ____ # 读取小规模的中文模型 nlp = spacy.load("zh_core_web_sm") # 将组件加入到流程的最前面,打印流程组件名 ____.____(____) print(nlp.pipe_names) # 处理一段文本 doc = ____ ``` #### File: exercises/zh/test_01_02_04.py ```python def test(): import spacy.tokens import spacy.lang.es assert isinstance( nlp, spacy.lang.zh.Chinese ), "nlp应该是中文类的一个实例。" assert isinstance( doc, spacy.tokens.Doc ), "你用nlp实例处理过文本并且创建了一个doc吗?" assert "print(doc.text)" in __solution__, "你打印doc.text了吗?" __msg__.good("Perfecto! 我们现在继续试试documents,spans和tokens.") ``` #### File: exercises/zh/test_02_06.py ```python def test(): assert ( "import Doc, Span" or "import Span, Doc" in __solution__ ), "你有正确导入Doc和Span吗?" assert doc.text == "我喜欢周杰伦", "你有正确创建Doc吗?" assert span.text == "周杰伦", "有正确创建span吗?" assert span.label_ == "PERSON", "你有把标签PERSON加到span中吗?" assert "doc.ents =" in __solution__, "你有覆盖doc.ents吗?" assert len(doc.ents) == 1, "你有把span加入到doc.ents吗?" assert ( list(doc.ents)[0].text == "周杰伦" ), "你有把span加入到doc.ents吗?" __msg__.good( "完美!之后我们学习编码信息提取流程的时候,我们就会发现" "手动创建spaCy的实例并改变其中的实体会非常方便有用。" ) ``` #### File: exercises/zh/test_03_10_02.py ```python def test(): assert Span.has_extension("to_html"), "你有在span上注册这个扩展吗?" ext = Span.get_extension("to_html") assert ext[1] is not None, "你有正确设置这个方法吗?" assert "method=to_html" in __solution__, "你有把to_html设置成为方法吗?" assert ( 'span._.to_html("strong")' in __solution__ ), "你有读取到定制化属性了吗?" assert ( span._.to_html("strong") == "<strong>大家好</strong>" ), "貌似这个方法返回的值是错误的。" __msg__.good( "完美!下一个练习中我们要结合使用定制化属性与定制化的模型组件。" ) ``` #### File: exercises/zh/test_03_14_02.py ```python def test(): assert ( "docs = list(nlp.pipe(TEXTS))" in __solution__ ), "你有用list将nlp.pipe的结果变为列表吗?" __msg__.good("美美哒!") ``` #### File: exercises/zh/test_03_14_03.py ```python def test(): assert ( "patterns = list(nlp.pipe(people))" in __solution__ ), "你有用list将nlp.pipe的结果变为列表吗?" __msg__.good( "干得漂亮!接下来我们看一个实际例子,用nlp.pipe来处理文档生成更多的元数据。" ) ```
{ "source": "jettej/Python", "score": 4 }
#### File: jettej/Python/ceasar_cipher.py ```python alpha = range(ord("A"), ord("Z")+1) # Ceasar Cipher for x in alpha: print(chr(x), end = "; ") print("") for x in alpha[5:]: print(chr(x), end = "; ") print("") def create_ceaser_wheel(displacement = 0): global alpha wheel = {" ": " "} index = 0 for x in alpha[displacement:]: wheel[chr(alpha[index])] = chr(x) index += 1 for x in alpha[0:displacement]: wheel[chr(alpha[index])] = chr(x) index += 1 return wheel def encrypt(text, displacement): wheel = create_ceaser_wheel(displacement) for l in text: print(wheel[l.upper()], end = " " ) print("") print(create_ceaser_wheel(10)) text = input("Type some text to be encrypted: ") for x in range(0,26): encrypt(text, x) ``` #### File: Python/challenge1/challenge.py ```python import socket import select import sys import pickle import codecs import time from _thread import * def send_data(sock,data,delimitter=b"!##2?3##!!!##!!!"): data=pickle.dumps(data) send_da=codecs.encode(data,"base64").strip()+delimitter sock.sendall(send_da) return 0 def rcv_data(sock,delimitter=b"!##2?3##!!!##!!!"): data=b"" while not data.endswith(delimitter): data+=sock.recv(2048) data=codecs.decode(data[:-len(delimitter)],"base64") data=pickle.loads(data) return data ############################################### class client(): def __init__(self,ip_address="localhost", port=10000): self.server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.ip_address = ip_address self.port = port self.server.connect((self.ip_address, self.port)) print(rcv_data(self.server)) def login(self,username,password): send_data(self.server,"LOGIN:-:"+username+":#:"+password) print(rcv_data(self.server)) def getusers(self): send_data(self.server,"GETUSERS:-:xxxx") print(rcv_data(self.server)) def score(self): send_data(self.server,"SCORE:-:xxxx") print(rcv_data(self.server)) def question(self,num): send_data(self.server,"QUESTION:-:"+str(num)) print(rcv_data(self.server)) def answer(self,num,ans): send_data(self.server,"ANSWER:-:"+str(num)+":#:"+str(ans)) print(rcv_data(self.server)) def data(self,num): send_data(self.server,"DATA:-:"+str(num)) rcv=rcv_data(self.server) # print(str(rcv_data(self.server))) return rcv def close(self): self.server.close() ```
{ "source": "jettify/aiocluster", "score": 2 }
#### File: aiocluster/aioc/gossiper.py ```python import time from .state import ( make_compaund, Alive, Suspect, add_msg_size, NodeMeta, EventType, NodeStatus) from .dissemination_queue import DisseminationQueue __all__ = ('Gossiper',) MAX_UDP_PACKET_SIZE = 508 class Gossiper: def __init__(self, mlist, listener, lclock): self._mlist = mlist retransmit_mult = self._mlist.config.retransmit_mult self._queue = DisseminationQueue(self._mlist, retransmit_mult) self._listener = listener self._suspicions = {} self._lclock = lclock @property def queue(self): return self._queue async def gossip(self, udp_server): for node_meta in self._mlist.select_gossip_nodes(): raw_payloads = self.queue.get_update_up_to(MAX_UDP_PACKET_SIZE) if not raw_payloads: return raw = add_msg_size(make_compaund(*raw_payloads)) host, port = node_meta.node addr = (host, int(port)) udp_server.send_raw_message(addr, raw) def alive(self, message, waiter=None): a = message node = a.node node_meta = self._mlist.node_meta(a.node) if node_meta is None: new_node_meta = NodeMeta( node, a.incarnation, a.meta, NodeStatus.ALIVE, time.time(), False) self._mlist.update_node(new_node_meta) self._listener.notify(EventType.JOIN, node) else: # TODO: check corner case here if a.incarnation <= node_meta.incarnation: return new_node_meta = node_meta._replace( incarnation=a.incarnation, meta=a.meta, status=NodeStatus.ALIVE, state_change=time.time()) self._mlist.update_node(new_node_meta) self._suspicions.pop(a.node, None) self.queue.put(message, waiter=waiter) self._listener.notify(EventType.UPDATE, new_node_meta) def dead(self, message, waiter=None): node = message.node node_meta = self._mlist.node_meta(node) if node_meta is None: set_waiter(waiter) return if message.incarnation <= node_meta.incarnation: set_waiter(waiter) return is_local = message.node == self._mlist.local_node if node_meta.status == NodeStatus.DEAD and not is_local: set_waiter(waiter) return node_meta = node_meta._replace( status=NodeStatus.DEAD, incarnation=message.incarnation, state_change=time.time()) self._mlist.update_node(node_meta) self.queue.put(message, waiter=waiter) self._listener.notify(EventType.LEAVE, node_meta.node) def suspect(self, message: Suspect, waiter=None): s = message node = self._mlist.node_meta(s.node) if node is None: set_waiter(waiter) return if s.incarnation < node.incarnation: set_waiter(waiter) return if s.node in self._suspicions: suspicion = self._suspicions[s.node] suspicion.confirm(s.sender) self.queue.put(message, waiter=waiter) return if s.node == self._mlist.local_node: self.refute(s) return suspicion = Suspicion(message.sender, ) self._mlist.update_node(node) self.queue.put(message, waiter=waiter) self._listener.notify(EventType.UPDATE, node) def merge(self, message): for n in message.nodes: if n.status == NodeStatus.ALIVE: a = Alive(message.sender, n.node, n.incarnation, n.meta) self.alive(a) elif n.status in (NodeStatus.DEAD, NodeStatus.SUSPECT): # TODO: fix incorrect from_node address s = Suspect(message.sender, n.node, n.incarnation) self.suspect(s) def refute(self, msg): incarnation = self._lclock.next_incarnation() if msg.incarnation >= incarnation: incarnation = self._lclock.skip_incarnation(msg.incarnation) node_meta = self._mlist.local_node_meta a = Alive(node_meta.node, node_meta.node, incarnation, node_meta.meta) self.queue.put(a, waiter=None) def set_waiter(fut): if (fut is not None) and (not fut.cancelled()): fut.set_result(True) ``` #### File: aiocluster/tests/test_serialization.py ```python from aioc.state import (encode_message, decode_message, encode_messages, decode_messages) from aioc.state import (Ping, Suspect, Node, IndirectPingReq, AckResp, NackResp, Alive, Dead, PushPull, NodeMeta ) def test_basic(): messages = [ Ping(Node("host", 9001), 1, Node("host", 9001)), IndirectPingReq(Node("host", 9001), 1, Node("host", 9001), True), AckResp(Node("host", 9001), 1, "data"), NackResp(Node("host", 9001), 1), Suspect(Node("host", 9001), Node("host", 9001), 1), Alive(Node("host", 9001), Node("host", 9001), 1, "data"), Dead(Node("host", 9001), 1, Node("host", 9001), Node("host", 9001)), PushPull(Node("host", 9001), [NodeMeta(Node("host", 9001), 1, "data", "ALIVE", 0)], True) ] for msg in messages: raw_msg = encode_message(msg) decoded_msg = decode_message(raw_msg) assert decoded_msg == msg def test_compaund(): ping = Ping(Node("host", 9001), 1, Node("host", 9001)) ack = AckResp(Node("host", 9001), 1, "data") raw_msg = encode_messages(ping, ack) ms = decode_messages(raw_msg) assert [ping, ack] == ms ```
{ "source": "jettify/aiogearman", "score": 2 }
#### File: aiogearman/tests/test_client.py ```python from ._testutil import GearmanTest, run_until_complete from aiogearman import create_client class ClientTest(GearmanTest): @run_until_complete def test_client_ctor(self): client = yield from create_client(loop=self.loop) job = yield from client.submit(b'rev', b'submit', unique_id=1) yield from self.worker.do_job() result = yield from job.wait_result() self.assertEqual(result, job.result) self.assertEqual(result, b'timbus') self.assertTrue('Gearman' in client.__repr__()) @run_until_complete def test_job_handle_attributes(self): client = yield from create_client(loop=self.loop) job = yield from client.submit(b'rev', b'submit', unique_id=1) self.assertEqual(job.function, b'rev') self.assertEqual(job.data, b'submit') self.assertEqual(job.unique_id, 1) self.assertTrue(job.job_id, 3) with self.assertRaises(RuntimeError): print(job.result) self.assertTrue(str(job.job_id) in job.__repr__()) yield from self.worker.do_job() result = yield from job.wait_result() self.assertEqual(result, job.result) self.assertEqual(result, b'timbus') self.assertTrue('Gearman' in client.__repr__()) @run_until_complete def test_client_submit_high(self): client = yield from create_client(loop=self.loop) job = yield from client.submit_high(b'rev', b'submit_high', unique_id=4) yield from self.worker.do_job() result = yield from job.wait_result() self.assertEqual(result, b'hgih_timbus') @run_until_complete def test_client_submit_low(self): client = yield from create_client(loop=self.loop) job = yield from client.submit_low(b'rev', b'submit_low', unique_id=5) yield from self.worker.do_job() result = yield from job.wait_result() self.assertEqual(result, b'wol_timbus') @run_until_complete def test_client_submit_bg(self): client = yield from create_client(loop=self.loop) job = yield from client.submit_bg(b'rev', b'submit_bg', unique_id=6) yield from self.worker.do_job() self.assertTrue(job) @run_until_complete def test_client_submit_high_bg(self): client = yield from create_client(loop=self.loop) job = yield from client.submit_high_bg(b'rev', b'submit_high_bg', unique_id=7) yield from self.worker.do_job() self.assertTrue(job) @run_until_complete def test_client_submit_low_bg(self): client = yield from create_client(loop=self.loop) job = yield from client.submit_low_bg(b'rev', b'submit_low', unique_id=8) yield from self.worker.do_job() self.assertTrue(job) @run_until_complete def test_send_work_data_couple_of_times(self): client = yield from create_client(loop=self.loop) job = yield from client.submit(b'foobar', b'submit_low', unique_id=9) yield from self.worker.do_job() result = yield from job.wait_result() self.assertEqual(result, [b'foo', b'baz', b'bar']) self.assertTrue(job.result, [b'foo', b'baz', b'bar']) ``` #### File: aiogearman/tests/test_connection.py ```python import asyncio from unittest import mock from ._testutil import BaseTest, run_until_complete from aiogearman.consts import ECHO_REQ, ECHO_RES, REQ from aiogearman.connection import create_connection, GearmanConnection from aiogearman.utils import encode_command class ConnectionTest(BaseTest): @run_until_complete def test_connect(self): conn = yield from create_connection(loop=self.loop) self.assertTrue(conn._loop, self.loop) packet_type, data = yield from conn.execute(ECHO_REQ, b'foo') self.assertEqual(packet_type, ECHO_RES) self.assertEqual(data, b'foo') conn.close() @run_until_complete def test_connection_ctor_global_loop(self): asyncio.set_event_loop(self.loop) conn = yield from create_connection() self.assertEqual(conn.loop, self.loop) self.assertEqual(conn.host, 'localhost') self.assertEqual(conn.port, 4730) self.assertEqual(conn.closed, False) self.assertTrue('Gearman' in conn.__repr__()) conn.close() conn.close() self.assertEqual(conn.closed, True) @run_until_complete def test_connect_close(self): conn = yield from create_connection(loop=self.loop) self.assertTrue(conn._loop, self.loop) resp_fut1 = conn.execute(ECHO_REQ, b'foo') resp_fut2 = conn.execute(ECHO_REQ, b'foo') conn.close() self.assertTrue(resp_fut1.cancelled) self.assertTrue(resp_fut2.cancelled) @run_until_complete def test_execute_cancel_future(self): conn = yield from create_connection(loop=self.loop) self.assertTrue(conn._loop, self.loop) resp_fut1 = conn.execute(ECHO_REQ, b'foo') resp_fut1.cancel() packet_type, data = yield from conn.execute(ECHO_REQ, b'foo') conn.close() self.assertEqual(packet_type, ECHO_RES) self.assertEqual(data, b'foo') def test_encode_command(self): res = encode_command(REQ, ECHO_RES, 'foo', 3.14) expected = b'\x00REQ\x00\x00\x00\x11\x00\x00\x00\x08foo\x003.14' self.assertEqual(res, expected) res = encode_command(REQ, ECHO_RES, b'foo', bytearray(b'Q')) expected = b'\x00REQ\x00\x00\x00\x11\x00\x00\x00\x05foo\x00Q' self.assertEqual(res, expected) with self.assertRaises(TypeError): encode_command(REQ, ECHO_RES, object()) @run_until_complete def test_osserror(self): conn = GearmanConnection(loop=self.loop) @asyncio.coroutine def invoke_osserror(*a, **kw): yield from asyncio.sleep(0.1, loop=self.loop) raise OSError # setup reader reader = mock.MagicMock() reader.readexactly.return_value = invoke_osserror() reader.at_eof.return_value = False writer = mock.MagicMock() conn._reader = reader conn._writer = writer conn._read_task = asyncio.async(conn._read_data(), loop=self.loop) with self.assertRaises(ConnectionError): yield from conn.execute(ECHO_RES, 'foo') ``` #### File: aiogearman/tests/_testutil.py ```python import asyncio import unittest from functools import wraps from aiogearman import create_worker from aiogearman.worker import Job def run_until_complete(fun): if not asyncio.iscoroutinefunction(fun): fun = asyncio.coroutine(fun) @wraps(fun) def wrapper(test, *args, **kw): loop = test.loop ret = loop.run_until_complete(fun(test, *args, **kw)) return ret return wrapper class BaseTest(unittest.TestCase): """Base test case for unittests. """ def setUp(self): asyncio.set_event_loop(None) self.loop = asyncio.new_event_loop() def tearDown(self): self.loop.close() del self.loop class GearmanTest(BaseTest): def setUp(self): super().setUp() self.worker = self.loop.run_until_complete(self._create_worker()) def tearDown(self): self.worker.close() super().tearDown() @asyncio.coroutine def _create_worker(self): worker = yield from create_worker(loop=self.loop) class RevJob(Job): @asyncio.coroutine def function(self, data): return data[::-1] class FooJob(Job): @asyncio.coroutine def function(self, data): yield from self.send_work_data('foo') yield from self.send_work_data('baz') return 'bar' yield from worker.register_function(b'rev', RevJob) yield from worker.register_function(b'foobar', FooJob) return worker ```
{ "source": "jettify/aionsq", "score": 2 }
#### File: aionsq/aionsq/consumer.py ```python import asyncio import random from collections import deque import time from aionsq.http import NsqLookupd from aionsq.nsq import create_nsq from aionsq.utils import RdyControl class NsqConsumer: """Experiment purposes""" def __init__(self, nsqd_tcp_addresses=None, lookupd_http_addresses=None, max_in_flight=42, loop=None): self._nsqd_tcp_addresses = nsqd_tcp_addresses or [] self._lookupd_http_addresses = lookupd_http_addresses or [] self._max_in_flight = max_in_flight self._loop = loop or asyncio.get_event_loop() self._queue = asyncio.Queue(loop=self._loop) self._connections = {} self._idle_timeout = 10 self._rdy_control = None self._max_in_flight = max_in_flight self._is_subscribe = False self._redistribute_timeout = 5 # sec self._lookupd_poll_time = 30 # sec @asyncio.coroutine def connect(self): if self._lookupd_http_addresses: self._lookupd_task = asyncio.Task(self._lookupd(), loop=self._loop) if self._nsqd_tcp_addresses: for host, port in self._nsqd_tcp_addresses: conn = yield from create_nsq(host, port, queue=self._queue, loop=self._loop) self._connections[conn.id] = conn self._rdy_control = RdyControl(idle_timeout=self._idle_timeout, max_in_flight=self._max_in_flight, loop=self._loop) self._rdy_control.add_connections(self._connections) @asyncio.coroutine def _poll_lookupd(self, host, port): conn = NsqLookupd(host, port, loop=self.loop) res = yield from conn.lookup('foo') for producer in res['producers']: host = producer['broadcast_address'] port = producer['tcp_port'] conn = yield from create_nsq(host, port, queue=self._queue, loop=self._loop) self._connections[conn.id] = conn conn.close() @asyncio.coroutine def subscribe(self, topic, channel): self._is_subscribe = True for conn in self._connections.values(): yield from conn.sub(topic, channel) self._redistribute_task = asyncio.Task(self._redistribute(), loop=self._loop) def wait_messages(self): if not self._is_subscribe: raise ValueError('You must subscribe to the topic first') while self._is_subscribe: fut = asyncio.async(self._queue.get(), loop=self._loop) yield fut def is_starved(self): conns = self._connections.values() return any(conn.is_starved() for conn in conns) @asyncio.coroutine def _redistribute(self): while self._is_subscribe: self._rdy_control.redistribute() yield from asyncio.sleep(self._redistribute_timeout, loop=self._loop) @asyncio.coroutine def _lookupd(self): while self._is_subscribe: yield from asyncio.sleep(self._redistribute_timeout, loop=self._loop) host, port = random.choice(self._lookupd_http_addresses) yield from self._poll_lookupd(host, port) ``` #### File: aionsq/http/base.py ```python import asyncio import json import aiohttp from .http_exceptions import HTTP_EXCEPTIONS, NsqHttpException from ..utils import _convert_to_str class NsqHTTPConnection: """XXX""" def __init__(self, host='127.0.0.1', port=4150, *, loop): self._loop = loop self._endpoint = (host, port) self._connector = aiohttp.TCPConnector(resolve=True, loop=loop) self._base_url = 'http://{0}:{1}/'.format(*self._endpoint) self._request = aiohttp.request @property def endpoint(self): return 'http://{0}:{1}'.format(*self._endpoint) def close(self): self._connector.close() @asyncio.coroutine def perform_request(self, method, url, params, body): _body = _convert_to_str(body) if body else body url = self._base_url + url resp = yield from self._request(method, url, params=params, data=_body, loop=self._loop, connector=self._connector) resp_body = yield from resp.text() try: response = json.loads(resp_body) except ValueError: return resp_body if not (200 <= resp.status <= 300): extra = None try: extra = json.loads(resp_body) except ValueError: pass exc_class = HTTP_EXCEPTIONS.get(resp.status, NsqHttpException) raise exc_class(resp.status, resp_body, extra) return response['data'] def __repr__(self): cls_name = self.__class__.__name__ return '<{}: {}>'.format(cls_name, self._endpoint) ``` #### File: aionsq/http/nsqd.py ```python import asyncio from .base import NsqHTTPConnection from ..utils import _convert_to_str class Nsqd(NsqHTTPConnection): """ :see: http://nsq.io/components/nsqd.html """ @asyncio.coroutine def ping(self): """Monitoring endpoint. :returns: should return `"OK"`, otherwise raises an exception. """ return self.perform_request('GET', 'ping', None, None) @asyncio.coroutine def info(self): """Returns version information.""" resp = yield from self.perform_request('GET', 'info', None, None) return resp @asyncio.coroutine def stats(self): """Returns version information.""" resp = yield from self.perform_request( 'GET', 'stats', {'format': 'json'}, None) return resp @asyncio.coroutine def pub(self, topic, message): """Returns version information.""" resp = yield from self.perform_request( 'POST', 'pub', {'topic': topic}, message) return resp @asyncio.coroutine def mpub(self, topic, *messages): """Returns version information.""" assert len(messages), "Specify one or mor message" _msgs = [_convert_to_str(m) for m in messages] msgs = '\n'.join(_msgs) resp = yield from self.perform_request( 'POST', 'mpub', {'topic': topic}, msgs) return resp @asyncio.coroutine def create_topic(self, topic): resp = yield from self.perform_request( 'POST', 'topic/create', {'topic': topic}, None) return resp @asyncio.coroutine def delete_topic(self, topic): resp = yield from self.perform_request( 'POST', 'topic/delete', {'topic': topic}, None) return resp @asyncio.coroutine def create_channel(self, topic, channel): resp = yield from self.perform_request( 'POST', 'channel/create', {'topic': topic, 'channel': channel}, None) return resp @asyncio.coroutine def delete_channel(self, topic, channel): resp = yield from self.perform_request( 'GET', 'channel/delete', {'topic': topic, 'channel': channel}, None) return resp @asyncio.coroutine def empty_topic(self, topic): resp = yield from self.perform_request( 'GET', 'topic/empty', {'topic': topic}, None) return resp @asyncio.coroutine def topic_pause(self, topic): resp = yield from self.perform_request( 'GET', 'topic/pause', {'topic': topic}, None) return resp @asyncio.coroutine def topic_unpause(self, topic): resp = yield from self.perform_request( 'GET', 'topic/unpause', {'topic': topic}, None) return resp @asyncio.coroutine def pause_channel(self, channel, topic): resp = yield from self.perform_request( 'GET', 'channel/pause', {'topic': topic, 'channel': channel}, None) return resp @asyncio.coroutine def unpause_channel(self, channel, topic): resp = yield from self.perform_request( 'GET', '/channel/unpause', {'topic': topic, 'channel': channel}, None) return resp @asyncio.coroutine def debug_pprof(self): resp = yield from self.perform_request( 'GET', 'debug/pprof', None, None) return resp @asyncio.coroutine def debug_pprof_profile(self): resp = yield from self.perform_request( 'GET', 'debug/pprof/profile', None, None) return resp @asyncio.coroutine def debug_pprof_goroutine(self): resp = yield from self.perform_request( 'GET', '/debug/pprof/goroutine', None, None) return resp @asyncio.coroutine def debug_pprof_heap(self): resp = yield from self.perform_request( 'GET', '/debug/pprof/heap', None, None) return resp @asyncio.coroutine def debug_pprof_block(self): resp = yield from self.perform_request( 'GET', '/debug/pprof/block', None, None) return resp @asyncio.coroutine def debug_pprof_threadcreate(self): resp = yield from self.perform_request( 'GET', '/debug/pprof/threadcreate', None, None) return resp ``` #### File: aionsq/aionsq/nsq.py ```python import asyncio from . import consts import time from .log import logger from .utils import retry_iterator from .connection import create_connection from .consts import TOUCH, REQ, FIN, RDY, CLS, MPUB, PUB, SUB, AUTH @asyncio.coroutine def create_nsq(host='127.0.0.1', port=4150, loop=None, queue=None, heartbeat_interval=30000, feature_negotiation=True, tls_v1=False, snappy=False, deflate=False, deflate_level=6, sample_rate=0): # TODO: add parameters type and value validation queue = queue or asyncio.Queue(loop=loop) conn = Nsq(host=host, port=port, queue=queue, heartbeat_interval=heartbeat_interval, feature_negotiation=feature_negotiation, tls_v1=tls_v1, snappy=snappy, deflate=deflate, deflate_level=deflate_level, sample_rate=sample_rate, loop=loop) yield from conn.connect() return conn class Nsq: def __init__(self, host='127.0.0.1', port=4150, loop=None, queue=None, heartbeat_interval=30000, feature_negotiation=True, tls_v1=False, snappy=False, deflate=False, deflate_level=6, sample_rate=0): # TODO: add parameters type and value validation self._config = { "deflate": deflate, "deflate_level": deflate_level, "sample_rate": sample_rate, "snappy": snappy, "tls_v1": tls_v1, "heartbeat_interval": heartbeat_interval, 'feature_negotiation': feature_negotiation, } self._host = host self._port = port self._conn = None self._loop = loop self._queue = queue or asyncio.Queue(loop=self._loop) self._status = consts.INIT self._reconnect = True self._rdy_state = 0 self._last_message = None self._on_rdy_changed_cb = None self._last_rdy = 0 @asyncio.coroutine def connect(self): self._conn = yield from create_connection(self._host, self._port, self._queue, loop=self._loop) self._conn._on_message = self._on_message yield from self._conn.identify(**self._config) self._status = consts.CONNECTED def _on_message(self, msg): # should not be coroutine # update connections rdy state self.rdy_state = int(self.rdy_state) - 1 self._last_message = time.time() if self._on_rdy_changed_cb is not None: self._on_rdy_changed_cb(self.id) return msg @property def rdy_state(self): return self._rdy_state @rdy_state.setter def rdy_state(self, value): self._rdy_state = value @property def in_flight(self): return self._conn.in_flight @property def last_message(self): return self._last_message @asyncio.coroutine def reconnect(self): timeout_generator = retry_iterator(init_delay=0.1, max_delay=10.0) while not (self._status == consts.CONNECTED): try: yield from self.connect() except ConnectionError: logger.error("Can not connect to: {}:{} ".format( self._host, self._port)) else: self._status = consts.CONNECTED t = next(timeout_generator) yield from asyncio.sleep(t, loop=self._loop) @asyncio.coroutine def execute(self, command, *args, data=None): if self._state <= consts.CONNECTED and self._reconnect: yield from self.reconnect() response = self._conn.execute(command, *args, data=data) return response @property def id(self): return self._conn.endpoint def wait_messages(self): while True: future = asyncio.async(self._queue.get(), loop=self._loop) yield future @asyncio.coroutine def auth(self, secret): """ :param secret: :return: """ return (yield from self._conn.execute(AUTH, data=secret)) @asyncio.coroutine def sub(self, topic, channel): """ :param topic: :param channel: :return: """ return (yield from self._conn.execute(SUB, topic, channel)) @asyncio.coroutine def pub(self, topic, message): """ :param topic: :param message: :return: """ return (yield from self._conn.execute(PUB, topic, data=message)) @asyncio.coroutine def mpub(self, topic, message, *messages): """ :param topic: :param message: :param messages: :return: """ msgs = [message] + list(messages) return (yield from self._conn.execute(MPUB, topic, data=msgs)) @asyncio.coroutine def rdy(self, count): """ :param count: :return: """ if not isinstance(count, int): raise TypeError('count argument must be int') self._last_rdy = count self.rdy_state = count return (yield from self._conn.execute(RDY, count)) @asyncio.coroutine def fin(self, message_id): """ :param message_id: :return: """ return (yield from self._conn.execute(FIN, message_id)) @asyncio.coroutine def req(self, message_id, timeout): """ :param message_id: :param timeout: :return: """ return (yield from self._conn.execute(REQ, message_id, timeout)) @asyncio.coroutine def touch(self, message_id): """ :param message_id: :return: """ return (yield from self._conn.execute(TOUCH, message_id)) @asyncio.coroutine def cls(self): """ :return: """ yield from self._conn.execute(CLS) self.close() def close(self): self._conn.close() def is_starved(self): if self._queue.qsize(): starved = False else: starved = (self.in_flight > 0 and self.in_flight >= (self._last_rdy * 0.85)) return starved def __repr__(self): return '<Nsq{}>'.format(self._conn.__repr__()) ``` #### File: aionsq/aionsq/selectors.py ```python import abc import random class AbstractSelector(metaclass=abc.ABCMeta): @abc.abstractmethod def select(self, connections): pass # pragma: no cover class RandomSelector(AbstractSelector): def select(self, connections): return random.choice(connections) class RoundRobinSelector(AbstractSelector): def __init__(self): self._current = 0 def select(self, connections): self._current += 1 if self._current >= len(connections): self._current = 0 return connections[self._current] ``` #### File: aionsq/tests/test_producer.py ```python from ._testutils import run_until_complete, BaseTest from aionsq.producer import create_producer class NsqTCPProducerTest(BaseTest): @run_until_complete def test_publish(self): endpoints = [('127.0.0.1', 4150)] config = {'tls_v1': False} nsq_producer = yield from create_producer(endpoints, config, loop=self.loop) ok = yield from nsq_producer.publish('baz', 'producer msg') self.assertEqual(ok, b'OK') @run_until_complete def test_mpublish(self): endpoints = [('127.0.0.1', 4150)] config = {'tls_v1': False} nsq_producer = yield from create_producer(endpoints, config, loop=self.loop) messages = ['baz:1', b'baz:2', 3.14, 42] ok = yield from nsq_producer.mpublish('baz', *messages) self.assertEqual(ok, b'OK') ``` #### File: aionsq/tests/_testutils.py ```python import asyncio import unittest from functools import wraps def run_until_complete(fun): if not asyncio.iscoroutinefunction(fun): fun = asyncio.coroutine(fun) @wraps(fun) def wrapper(test, *args, **kw): loop = test.loop ret = loop.run_until_complete(fun(test, *args, **kw)) return ret return wrapper class BaseTest(unittest.TestCase): """Base test case for unittests. """ def setUp(self): asyncio.set_event_loop(None) self.loop = asyncio.new_event_loop() def tearDown(self): self.loop.close() del self.loop ```
{ "source": "jettify/dclock", "score": 3 }
#### File: dclock/dclock/vector.py ```python class Vector: __slots__ = ('_vector', ) def __init__(self) -> None: pass def __repr__(self): return "{}('{}')".format(self.__class__.__name__, str(self._vector)) ``` #### File: dclock/tests/test_lamport.py ```python import pytest from dclock import Lamport def test_basic(): lclock = Lamport() assert lclock.time() == 0 lclock.increment() assert lclock.time() == 1 other = Lamport(10) lclock.witness(other) assert other.time() == 10 assert lclock.time() == 11 other2 = Lamport(5) lclock.witness(other2) assert lclock.time() == 12 assert other2.time() == 5 assert lclock.__repr__() == "Lamport('12')" def test_errors(): with pytest.raises(ValueError): Lamport(-1) ```
{ "source": "jettify/isoforest", "score": 2 }
#### File: isoforest/py-isoforest/setup.py ```python import os import re from setuptools import find_packages, setup from setuptools_rust import Binding, RustExtension install_requires = [] def _read(f): with open(os.path.join(os.path.dirname(__file__), f)) as f_: return f_.read().strip() def _read_version(): regexp = re.compile(r"^__version__\W*=\W*'([\d.abrc]+)'") init_py = os.path.join( os.path.dirname(__file__), 'isoforest', '__init__.py' ) with open(init_py) as f: for line in f: match = regexp.match(line) if match is not None: return match.group(1) raise RuntimeError('Cannot find version in isoforest/__init__.py') classifiers = [ 'License :: OSI Approved :: Apache Software License', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Operating System :: OS Independent', 'Development Status :: 3 - Alpha', 'Topic :: Scientific/Engineering :: Artificial Intelligence', ] keywords = ['isolation forest', 'linfa'] project_urls = { 'Website': 'https://github.com/jettify/isoforest', 'Documentation': 'https://isoforest.readthedocs.io', 'Issues': 'https://github.com/jettify/isoforest/issues', } setup( name='isoforest', version=_read_version(), description=('isoforest'), long_description='\n\n'.join((_read('README.rst'), _read('CHANGES.rst'))), long_description_content_type='text/x-rst', classifiers=classifiers, platforms=['POSIX'], author='<NAME>', author_email='<EMAIL>', url='https://github.com/jettify/isoforest', download_url='https://pypi.org/project/isoforest/', license='Apache 2', packages=['isoforest'], install_requires=install_requires, keywords=keywords, include_package_data=True, project_urls=project_urls, python_requires='>=3.6.0', rust_extensions=[ RustExtension("isoforest._isoforest", binding=Binding.PyO3) ], # rust extensions are not zip safe, just like C-extensions. zip_safe=False, ) ```
{ "source": "jettify/mlserve", "score": 3 }
#### File: multiple/toxic_lr/toxic_lr.py ```python import json import pandas as pd import numpy as np import cloudpickle from sklearn.base import BaseEstimator, TransformerMixin from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score from sklearn.multioutput import MultiOutputClassifier from sklearn.pipeline import Pipeline from mlserve import build_schema def read_data(dataset_path): class_names = ['toxic', 'severe_toxic', 'obscene', 'insult', 'identity_hate'] train = pd.read_csv(dataset_path).fillna(' ') train_text = train[['comment_text']] train_targets = train[class_names] return train_text, train_targets class ColumnSelector(BaseEstimator, TransformerMixin): def __init__(self, key): self.key = key def fit(self, x, y=None): return self def transform(self, df): return df[self.key] dataset_path = 'data/train.csv' train, targets = read_data(dataset_path) original = pd.concat([train, targets], axis=1) seed = 1234 word_vectorizer = TfidfVectorizer( sublinear_tf=True, strip_accents='unicode', analyzer='word', token_pattern=r'\w{1,}', stop_words='english', ngram_range=(1, 1), max_features=10000, ) logistic = LogisticRegression(C=0.1, solver='sag', random_state=seed) classifier = MultiOutputClassifier(logistic) pipeline = Pipeline(steps=[ ('selector', ColumnSelector(key='comment_text')), ('word_tfidf', word_vectorizer), ('logistic', classifier) ]) pipeline.fit(train, targets) scores = cross_val_score( pipeline, train, targets, cv=5, scoring='roc_auc') score = np.mean(scores) print(score) print('Writing model') with open('toxic_lr.pkl', 'wb') as f: cloudpickle.dump(pipeline, f) print('Writing dataset schema') schema = build_schema(original) with open('toxic_lr.json', 'w') as f: json.dump(schema, f, indent=4, sort_keys=True) ``` #### File: mlserve/mlserve/utils.py ```python import json import os import trafaret as t import yaml from dataclasses import dataclass, asdict from pathlib import Path from typing import Any, List, Dict ModelMeta = t.Dict( { t.Key('name'): t.String, t.Key('description'): t.String, t.Key('model_path'): t.String, t.Key('data_schema_path'): t.String, t.Key('target'): t.String | t.List(t.String), t.Key('loader', default='pickle'): t.Enum('pickle', 'joblib'), } ) # TODO: rename to something more general ModelConfig = t.Dict({ t.Key('host', default='127.0.0.1'): t.String, t.Key('port', default=9000): t.Int[0: 65535], t.Key('workers', default=2): t.Int[1:127], t.Key('models'): t.List(ModelMeta), }) ServerConfigTrafaret = t.Dict({ t.Key('host', default='127.0.0.1'): t.String, t.Key('port', default=9000): t.Int[0: 65535], t.Key('workers', default=2): t.Int[1:127], }).ignore_extra('*') @dataclass(frozen=True) class ServerConfig: host: str port: int workers: int @dataclass(frozen=True) class ModelDescriptor: name: str description: str target: List[str] features: List[str] schema: Dict[Any, Any] model_path: Path model_size: int data_schema_path: Path schema_size: int loader: str def asdict(self) -> Dict[str, Any]: return asdict(self) def load_model_config(fname: Path) -> Dict[str, Any]: with open(fname, 'rt') as f: raw_data = yaml.safe_load(f) data: Dict[str, Any] = ModelConfig(raw_data) return data def load_models(model_conf: List[Dict[str, str]]) -> List[ModelDescriptor]: result: List[ModelDescriptor] = [] for m in model_conf: with open(m['data_schema_path'], 'rb') as f: schema = json.load(f) _target = m['target'] target: List[str] = _target if isinstance(_target, list) else [_target] schema = drop_columns(schema, target) schema_size = os.path.getsize(m['data_schema_path']) model_size = os.path.getsize(m['model_path']) features = list(schema['schema']['properties'].keys()) model_desc = ModelDescriptor( name=m['name'], description=m['description'], target=target, features=features, schema=schema, model_path=Path(m['model_path']), model_size=model_size, data_schema_path=Path(m['data_schema_path']), schema_size=schema_size, loader=m['loader'], ) result.append(model_desc) return result def drop_columns(schema: Dict[str, Any], columns: List[str]) -> Dict[str, Any]: for col in columns: schema['schema']['properties'].pop(col, None) schema['ui_schema'].pop(col, None) schema['example_data'].pop(col, None) if col in schema['schema']['required']: schema['schema']['required'].remove(col) return schema ```
{ "source": "jettify/mung", "score": 3 }
#### File: mung/examples/catb2.py ```python import pandas as pd import numpy as np from itertools import combinations from catboost import CatBoostClassifier train_df = pd.read_csv('input/train.csv') test_df = pd.read_csv('input/test.csv') print('read complete') labels = train_df.target test_id = test_df.ID selected_features = [ 'v10', 'v12', 'v14', 'v21', 'v22', 'v24', 'v30', 'v31', 'v34', 'v38', 'v40', 'v47', 'v50', 'v52', 'v56', 'v62', 'v66', 'v72', 'v75', 'v79', 'v91', 'v112', 'v113', 'v114', 'v129' ] # drop some of the features that were not selected train_df = train_df[selected_features] test_df = test_df[selected_features] import ipdb ipdb.set_trace() train_df.fillna(-9999, inplace=True) test_df.fillna(-9999, inplace=True) # update the list of categorical features cat_features_ids = np.where(train_df.apply(pd.Series.nunique) < 30000)[0].tolist() char_features = list(train_df.columns[train_df.dtypes == np.object]) char_features_without_v22 = list(train_df.columns[(train_df.dtypes == np.object) & (train_df.columns != 'v22')]) cmbs = list(combinations(char_features, 2)) + list(map(lambda x: ("v22",) + x, combinations(char_features_without_v22, 2))) def concat_columns(df, columns): value = df[columns[0]].astype(str) + ' ' for col in columns[1:]: value += df[col].astype(str) + ' ' return value # add new features based on combinations/interactions for cols in cmbs: train_df["".join(cols)] = concat_columns(train_df, cols) test_df["".join(cols)] = concat_columns(test_df, cols) # add new engineered features to the list of categorical features in dataframe cat_features_ids += range(len(selected_features), train_df.shape[1]) clf = CatBoostClassifier( learning_rate=0.1, iterations=1000, random_seed=0, # logging_level='Silent' ) print('start training') clf.fit(train_df, labels, cat_features=cat_features_ids) prediction = clf.predict_proba(test_df)[:,1] pd.DataFrame( {'ID':test_id, 'PredictedProb':prediction} ).to_csv( 'submission_improved.csv', index=False ) ``` #### File: mung/mung/utils.py ```python import numpy as np import pandas as pd import lightgbm as lgb from sklearn.compose import make_column_transformer from sklearn.datasets import load_boston as sk_load_boston from sklearn.impute import SimpleImputer from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OrdinalEncoder from sklearn.utils import shuffle def make_advesarial_dataset(X_train, X_train_new, seed=None): # add warning # assert X_train.shape == X_train_new.shape y_train_new = np.zeros(X_train_new.shape[0]) y_train = np.ones(X_train.shape[0]) X = np.concatenate((X_train, X_train_new), axis=0) y = np.concatenate((y_train, y_train_new), axis=0) X, y = shuffle(X, y, random_state=seed) return X, y def advesarial_validator( X_train, X_train_new, categorical_features=None, seed=None): X, y = make_advesarial_dataset(X_train, X_train_new, seed=seed) params = { 'n_estimators': [100, 200, 300], 'random_state': [seed], 'learning_rate': [0.1, 0.01], 'categorical_feature': [categorical_features], } clf = lgb.LGBMClassifier(objective='binary', metric='auc') grid = GridSearchCV(clf, params, scoring='roc_auc', cv=3) grid_result = grid.fit(X, y) return grid_result.best_score_ def load_boston(seed=None): boston = sk_load_boston() X, y = shuffle(boston.data, boston.target, random_state=seed) X = X.astype(np.float32) offset = int(X.shape[0] * 0.6) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] return X_train, y_train, X_test, y_test def load_adult(seed=None): dtypes = [ ('Age', 'float32'), ('Workclass', 'category'), ('fnlwgt', 'float32'), ('Education', 'category'), ('Education-Num', 'float32'), ('Marital Status', 'category'), ('Occupation', 'category'), ('Relationship', 'category'), ('Race', 'category'), ('Sex', 'category'), ('Capital Gain', 'float32'), ('Capital Loss', 'float32'), ('Hours per week', 'float32'), ('Country', 'category'), ('Target', 'category'), ] raw_data = pd.read_csv( 'tests/data/adult.data', names=[d[0] for d in dtypes], na_values=['?', ' ?', ' ?'], dtype=dict(dtypes), skipinitialspace=True, ) # redundant with Education-Num exclude = ['Education', 'fnlwgt', 'Target'] X = raw_data.drop(exclude, axis=1) y = (raw_data['Target'] == '>50K').astype(int) cats = [d[0] for d in dtypes if d[1] == 'category' and d[0] not in exclude] nums = [d[0] for d in dtypes if d[1] != 'category' and d[0] not in exclude] pipeline = make_pipeline( SimpleImputer(strategy='constant', fill_value='na'), OrdinalEncoder(), ) X = X[nums + cats] transformer = make_column_transformer( (pipeline, cats), remainder='passthrough', sparse_threshold=0, ) X = transformer.fit_transform(X) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.6, random_state=seed) return X_train, X_test, y_train, y_test ```
{ "source": "jettify/pytorch-inspect", "score": 2 }
#### File: pytorch-inspect/tests/test_basic.py ```python import io import torch from torch_inspect import inspect, summary from torch_inspect.inspect import LayerInfo as L, NetworkInfo def test_inspect(simple_model): bs = 2 # default batch size r = inspect(simple_model, (1, 32, 32)) expected = [ L('Conv2d-1', [bs, 1, 32, 32], [bs, 6, 30, 30], 60, 0), L('Conv2d-2', [bs, 6, 15, 15], [bs, 16, 13, 13], 880, 0), L('Linear-3', [bs, 576], [bs, 120], 69240, 0), L('Linear-4', [bs, 120], [bs, 84], 10164, 0), L('Linear-5', [bs, 84], [bs, 10], 850, 0), ] assert r == expected bsize = 10 r = inspect( simple_model, (1, 32, 32), input_dtype=torch.FloatTensor, input_initializer=torch.zeros, batch_size=bsize, ) expected = [ L('Conv2d-1', [bsize, 1, 32, 32], [bsize, 6, 30, 30], 60, 0), L('Conv2d-2', [bsize, 6, 15, 15], [bsize, 16, 13, 13], 880, 0), L('Linear-3', [bsize, 576], [bsize, 120], 69240, 0), L('Linear-4', [bsize, 120], [bsize, 84], 10164, 0), L('Linear-5', [bsize, 84], [bsize, 10], 850, 0), ] assert r == expected def test_inspect_multi_input(multi_input_net): bs = 10 r = inspect(multi_input_net, [(1, 16, 16), (1, 28, 28)], batch_size=bs) expected = [ L('Conv2d-1', [bs, 1, 16, 16], [bs, 1, 16, 16], 10, 0), L('ReLU-2', [bs, 1, 16, 16], [bs, 1, 16, 16], 0, 0), L('Conv2d-3', [bs, 1, 28, 28], [bs, 1, 28, 28], 10, 0), L('ReLU-4', [bs, 1, 28, 28], [bs, 1, 28, 28], 0, 0), ] assert r == expected expected_summary = """ ---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [2, 6, 30, 30] 60 Conv2d-2 [2, 16, 13, 13] 880 Linear-3 [2, 120] 69,240 Linear-4 [2, 84] 10,164 Linear-5 [2, 10] 850 ================================================================ Total params: 81,194 Trainable params: 81,194 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 0.01 Forward/backward pass size (MB): 0.13 Params size (MB): 0.31 Estimated Total Size (MB): 0.44 ---------------------------------------------------------------- """ def test_summary(simple_model): with io.StringIO() as buf: summary( simple_model, [(1, 32, 32)], input_dtype=torch.FloatTensor, input_initializer=torch.zeros, file=buf, flush=True, ) r = buf.getvalue() assert r == expected_summary def test_inspect_net_with_batch_norm(netbatchnorm): bs = 10 r = inspect(netbatchnorm, (20,), batch_size=bs) expected = [ L('Linear-1', [bs, 20], [bs, 15], 300, 0), L('BatchNorm1d-2', [bs, 15], [bs, 15], 30, 30), L('Linear-3', [bs, 15], [bs, 15], 225, 0), L('BatchNorm1d-4', [bs, 15], [bs, 15], 30, 30), L('Linear-5', [bs, 15], [bs, 1], 16, 0), ] assert r == expected with io.StringIO() as buf: network_info = summary(netbatchnorm, (20,), file=buf, batch_size=bs) expected_info = NetworkInfo(661, 601, 80 * bs, 488 * bs, 2644, 8324) assert expected_info == network_info def test_simpleconv(simpleconv): bs = 2 r = inspect(simpleconv, [(1, 16, 16), (1, 28, 28)], batch_size=bs) expected = [ L('Conv2d-1', [bs, 1, 16, 16], [bs, 1, 16, 16], 10, 0), L('ReLU-2', [bs, 1, 16, 16], [bs, 1, 16, 16], 0, 0), L('Conv2d-3', [bs, 1, 28, 28], [bs, 1, 28, 28], 10, 0), L('ReLU-4', [bs, 1, 28, 28], [bs, 1, 28, 28], 0, 0), ] assert r == expected def test_autoencoder(autoencoder): bs = 10 r = inspect(autoencoder, [(3, 32, 32)], batch_size=bs) expected = [ L('Conv2d-1', [bs, 3, 32, 32], [bs, 6, 28, 28], 456, 0), L('ReLU-2', [bs, 6, 28, 28], [bs, 6, 28, 28], 0, 0), L('Conv2d-3', [bs, 6, 28, 28], [bs, 16, 24, 24], 2416, 0), L('ReLU-4', [bs, 16, 24, 24], [bs, 16, 24, 24], 0, 0), L('ConvTranspose2d-5', [bs, 16, 24, 24], [bs, 6, 28, 28], 2406, 0), L('ReLU-6', [bs, 6, 28, 28], [bs, 6, 28, 28], 0, 0), L('ConvTranspose2d-7', [bs, 6, 28, 28], [bs, 3, 32, 32], 453, 0), L('ReLU-8', [bs, 3, 32, 32], [bs, 3, 32, 32], 0, 0), L('Sigmoid-9', [bs, 3, 32, 32], [bs, 3, 32, 32], 0, 0), ] assert r == expected def test_rnn(rnn): bs = 12 r = inspect(rnn, [(6, 3)], batch_size=bs, input_initializer=torch.zeros) expected = [ L('RNN-1', [bs, 6, 3], [[bs, 6, 5], [3, bs, 5]], 170, 0), L('Linear-2', [6 * bs, 5], [6 * bs, 1], 6, 0), ] assert r == expected def test_multi_input_net2(multi_input_net2): bs = 10 r = inspect(multi_input_net2, [(3, 128, 1024), (4,)], batch_size=bs) expected = [ L('Conv2d-1', [10, 3, 128, 1024], [10, 64, 128, 1024], 1792, 0), L('MaxPool2d-2', [10, 64, 128, 1024], [10, 64, 64, 512], 0, 0), L('Conv2d-3', [10, 64, 64, 512], [10, 96, 64, 512], 55392, 0), L('MaxPool2d-4', [10, 96, 64, 512], [10, 96, 32, 256], 0, 0), L('Conv2d-5', [10, 96, 32, 256], [10, 128, 32, 256], 110720, 0), L('MaxPool2d-6', [10, 128, 32, 256], [10, 128, 16, 128], 0, 0), L('Conv2d-7', [10, 128, 16, 128], [10, 192, 16, 128], 221376, 0), L('AdaptiveAvgPool2d-8', [10, 192, 16, 128], [10, 192, 1, 1], 0, 0), L('Linear-9', [10, 192], [10, 64], 12352, 0), L('Linear-10', [10, 64], [10, 4], 260, 0), ] assert r == expected expected_info = NetworkInfo( 401892, 401892, 62914560, 1289769280, 1607568, 1354291408 ) with io.StringIO() as buf: net_info = summary( multi_input_net2, [(3, 128, 1024), (4,)], batch_size=bs, file=buf ) assert net_info == expected_info def test_lstm_model(lstm_model): bs = 10 r = inspect( lstm_model, [(1, 28)], batch_size=bs, input_initializer=torch.zeros ) out = [[10, 1, 100], [[1, 10, 100], [1, 10, 100]]] expected = [ L('LSTM-1', [10, 1, 28], out, 52000, 0), L('Linear-2', [10, 100], [10, 10], 1010, 0), ] assert r == expected def test_lstm_tagger_with_embedding(lstm_tagger): bs = 10 r = inspect( lstm_tagger, [(1, 1)], batch_size=bs, input_initializer=torch.zeros, input_dtype=torch.LongTensor, ) expected = [ L('Embedding-1', [bs, 1, 1], [bs, 1, 1, 6], 30, 0), L('LSTM-2', [bs, 1, 6], [[bs, 1, 6], [[1, 1, 6], [1, 1, 6]]], 336, 0), L('Linear-3', [bs, 6], [bs, 3], 21, 0), ] assert r == expected ```
{ "source": "jettify/uddsketch-py", "score": 2 }
#### File: jettify/uddsketch-py/setup.py ```python import os from setuptools import find_packages, setup def _read(f): with open(os.path.join(os.path.dirname(__file__), f)) as f_: return f_.read().strip() classifiers = [ "License :: OSI Approved :: Apache Software License", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Operating System :: OS Independent", "Development Status :: 3 - Alpha", "Topic :: Scientific/Engineering", "Topic :: Software Development :: Libraries", ] keywords = ["uddsketch", "ddsketch"] project_urls = { "Website": "https://github.com/jettify/uddsketch", "Documentation": "https://uddsketch.readthedocs.io", "Issues": "https://github.com/jettify/uddsketch/issues", } setup( name="uddsketch", description=("uddsketch"), long_description="\n\n".join((_read("README.rst"), _read("CHANGES.rst"))), long_description_content_type="text/x-rst", classifiers=classifiers, platforms=["POSIX"], author="<NAME>", author_email="<EMAIL>", url="https://github.com/jettify/uddsketch-py", download_url="https://pypi.org/project/uddsketch/", license="Apache 2", packages=find_packages(exclude=("tests",)), install_requires=[], setup_requires=[ "setuptools>=45", "setuptools_scm", "setuptools_scm_git_archive", "wheel", ], keywords=keywords, zip_safe=True, include_package_data=True, project_urls=project_urls, python_requires=">=3.7.0", use_scm_version=True, ) ``` #### File: uddsketch-py/uddsketch/__init__.py ```python import math from dataclasses import dataclass from typing import Dict, Optional, Union from ._version import version as _version __all__ = ("UDDSketch",) __version__ = _version @dataclass class _Entry: count: int next_bucket: Optional[int] class _Store: def __init__(self) -> None: self._store: Dict[int, _Entry] = {} self._head: Optional[int] = None self._tail: Optional[int] = None self._count: int = 0 @property def num_values(self) -> int: return self._count def add_to_bucket(self, bucket: int, count: int = 1) -> None: self._count += count next_ = self._head if not self._store: self._store[bucket] = _Entry(count, None) self._head = bucket self._tail = bucket elif bucket in self._store: self._store[bucket].count += count else: if self._head is not None and bucket < self._head: self._store[bucket] = _Entry(count, self._head) self._head = bucket else: prev = next_ while next_ is not None and bucket > next_: prev = next_ next_ = self._store[next_].next_bucket assert prev is not None # nosec for mypy self._store[prev].next_bucket = bucket self._store[bucket] = _Entry(count, next_) if next_ is None: self._tail = bucket def bucket_at_count( self, count: Union[int, float], lower: bool = True ) -> int: assert self._tail is not None # nosec for mypy next_ = self._head running_count = 0 if count >= self.num_values: return self._tail while next_ is not None: entry = self._store[next_] running_count += entry.count if lower and running_count >= count: return next_ elif not lower and running_count > count: return next_ next_ = entry.next_bucket return self._tail def compact(self): return def _value_to_bucket(value: float, gamma: float) -> int: value = math.fabs(value) return math.ceil(math.log(value, gamma)) def _bucket_to_value(alpha: float, gamma: float, bucket: int) -> float: return (1.0 + alpha) * gamma ** (bucket - 1) def _compact_bucket(bucket): return (bucket + 1 if bucket > 0 else bucket) // 2 class UDDSketch: def __init__( self, max_buckets: int = 256, initial_error: float = 0.01 ) -> None: self._max_buckets: int = max_buckets self._initial_error: float = initial_error self._alpha: float = initial_error self._gamma: float = (1.0 + initial_error) / (1.0 - initial_error) self._compactions = 0 self._values_sum: float = 0 self._running_mean: float = 0 self._min = float("inf") self._max = float("-inf") # storage self._neg_storage = _Store() self._zero_counts = 0 self._pos_storage = _Store() def min(self): return self._min def max(self): return self._max @property def num_values(self): return ( self._neg_storage.num_values + self._pos_storage.num_values + self._zero_counts ) def add(self, value: float, count: int = 1) -> None: self._values_sum += value * count # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Online old_count = self.num_values new_count = old_count + count self._running_mean = (self._running_mean * old_count) / new_count + ( value * count ) / new_count self._min = min(self._min, value) self._max = max(self._max, value) if value > 0.0: bucket = _value_to_bucket(value, self._gamma) self._pos_storage.add_to_bucket(bucket, count=count) elif value < 0.0: bucket = _value_to_bucket(value, self._gamma) self._neg_storage.add_to_bucket(bucket, count=count) else: self._zero_counts += count @property def num_compactions(self) -> int: return self._compactions def max_error(self) -> float: return self._initial_error def quantile(self, q: float) -> float: if not (q >= 0 and q <= 1): raise ValueError("Quantile should be value from 0 to 1.") rank = q * (self.num_values) val: float if self._neg_storage.num_values > rank: reversed_rank = self._neg_storage.num_values - rank bucket = self._neg_storage.bucket_at_count( reversed_rank, lower=False ) val = -_bucket_to_value(self._alpha, self._gamma, bucket) elif self._neg_storage.num_values + self._zero_counts > rank: val = 0.0 else: pos_count = rank - ( self._neg_storage.num_values + self._zero_counts ) bucket = self._pos_storage.bucket_at_count(pos_count, lower=True) val = _bucket_to_value(self._alpha, self._gamma, bucket) return val def median(self) -> float: return self.quantile(0.5) def mean(self) -> float: return self._running_mean def std(self) -> float: return self._values_sum / self.num_values def merge(self, other: "UDDSketch") -> "UDDSketch": return self ```
{ "source": "JettJones/test-py-retry", "score": 3 }
#### File: test-py-retry/tests/test_retrying.py ```python import functools import time import unittest from unittest.mock import patch import retrying from util import no_error, fail_n, timed_retry, FakeTime class TestRetrying(unittest.TestCase): def test_retry(self): """ Timing with retry. """ r = retrying.retry(no_error) timed_retry(r) def test_n_retry(self): """ Retries a fixed number of times. """ r = retrying.retry(stop_max_attempt_number=10)(fail_n(9)) fake_time = FakeTime() with fake_time: r() self.assertEqual(fake_time.mock_sleep.calls, 9) def test_backoff(self): """ Retries with exponential backoff. """ r = retrying.retry(wait_exponential_multiplier=1000)(fail_n(9)) fake_time = FakeTime() with fake_time: r() self.assertGreaterEqual(fake_time.mock_sleep.total, 2**9 - 1) def test_deadline(self): """ Retry limit based on total time. """ r = retrying.retry(stop_max_delay=1000, wait_fixed=200)(fail_n(5)) fake_time = FakeTime() with fake_time: r() self.assertGreaterEqual(fake_time.mock_sleep.total, 1.0) ```
{ "source": "jettom/JtSpider", "score": 3 }
#### File: JtSpider/book_spiderbook/1.4.3.1.py ```python from gevent import monkey; monkey.patch_all() import gevent import urllib.request, urllib.error, urllib.parse def run_task(urlP): print('Visit --> %s' % urlP) try: response = urllib.request.urlopen(urlP) data = response.read() print('%d bytes received from %s.' % (len(data), urlP)) except Exception as e: print(e) if __name__ == '__main__': urls = ['https://github.com/', 'https://www.python.org/', 'http://www.cnblogs.com/'] greenlets = [gevent.spawn(run_task, url) for url in urls] gevent.joinall(greenlets) #TODO RUN ERROR ''' Visit --> https://github.com/ Visit --> https://www.python.org/ Visit --> http://www.cnblogs.com/ <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:726)> <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:726)> <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:726)> Process finished with exit code 0 ''' ``` #### File: jettom/JtSpider/csdn.py ```python import re # import urllib2 import urllib.request, urllib.error, urllib.parse import sys import imp class GetHtmlPage(): def __init__(self, strPage): self.strPapge = strPage def GetPage(self): # req = urllib2.Request(self.strPapge) req = urllib.request.Request(self.strPapge) rep = req.add_header("User-Agent", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.122 Safari/537.36 SE 2.X MetaSr 1.0") try: # cn = urllib2.urlopen(req) cn = urllib.request.urlopen(req) page = cn.read() uPage = page.decode("utf-8") cn.close() return uPage except urllib.error.URLError as e: print('URLError:', e.code) return except urllib.error.HTTPError as e: print('HTTP Error:' + e.reason) return return rep class RePage(): def GetReText(self, page, recode): # print(page,recode) rePage = re.findall(recode, page, re.S) for m in rePage: print(m) return rePage class SaveText(): def Save(self, text, tilte): try: t = "blog\\" + tilte + ".html" f = file(t, "a") f.write(text) f.close() except IOError as e: print(e.message) if __name__ == "__main__": s = SaveText() print(1111111) imp.reload(sys) # sys.setdefaultencoding( "utf-8" ) page = GetHtmlPage("http://blog.csdn.net/u013088062/article/list/1") htmlPage = page.GetPage() reServer = RePage() reBlog = reServer.GetReText(htmlPage, r'<a href="(.+?)">.*?(\s.+?)</a>') print(reBlog) for ref in reBlog: print(ref) pageHeard = "http://blog.csdn.net/" strPage = pageHeard + ref[0] tilte = ref[1].replace('<font color="red">[TOP]</font>', "") tilte = tilte.replace("\r\n", "").lstrip().rstrip() # htmlPage = GetHtmlPage(strPage) htmlPageData = htmlPage.GetPage() reBlogText = reServer.GetReText(htmlPageData, '<div id="article_content" class="article_content">(.+?)</div>') # for s1 in reBlogText: s1 = '<meta charset="UTF-8">\n' + s1 s.Save(s1, tilte) ``` #### File: JtSpider/data/getNetease.py ```python def get_all_today_cap_from_163(): """ 从网易财经,获取每支股票当日的流通市值和总市值,与新浪财经获取的数据进行合并 :return: df['SYMBOL', 'MCAP', 'TCAP'] """ def deal_content(count): """ 从网易财经获取数据,并进行处理,形成dict :param count:股票数量 :return: """ # 网易财经的“神奇网址”, # 对应的浏览器用网是:http://quotes.money.163.com/old/#query=EQA&DataType=HS_RANK&sort=PERCENT&order=desc&count=24&page=0 url = r'http://quotes.money.163.com/hs/service/diyrank.php?host=http%3A%2F%2Fquotes.money.163.com%2' \ r'Fhs%2Fservice%2Fdiyrank.php&page=0&query=STYPE%3AEQA&fields=NO%2CSYMBOL%2CNAME%2CPRICE%2CPE' \ r'RCENT%2CUPDOWN%2CFIVE_MINUTE%2COPEN%2CYESTCLOSE%2CHIGH%2CLOW%2CVOLUME%2CTURNOVER%2CHS%2CLB%' \ r'2CWB%2CZF%2CPE%2CMCAP%2CTCAP%2CMFSUM%2CMFRATIO.MFRATIO2%2CMFRATIO.MFRATIO10%2CSNAME%2CCODE%' \ rf'2CANNOUNMT%2CUVSNEWS&sort=SYMBOL&order=asc&count={count}&type=query' ctn = get_content_from_internet(url) # 原始信息,是bytes类型,需要转换成str ctn = ctn.decode('gbk') # decode,bytes转str;encode,str转bytes类型 ctn = ctn.strip() # 去掉文本前后的空格、回车等 # 将内容是dict的字符串,转换为dict(loads会自动转换为最适合的python数据类型) ctn = json.loads(ctn) # ********形成dict的数据具体内容见本帖后“附2”的说明 return ctn page_count = deal_content(count=2)['total'] # 只取2条记录,获取共有多少支股票 time.sleep(1) content = deal_content(page_count) # 一次性获取全部股票,4000+支股票日线数据 k_lines = content['list'] df = pd.DataFrame(k_lines) # ********只取了三列数据,学友可以修改本行代码,选择更多的数据留存 # --------若要使用更多数据,请修改些处-----,开始处------------------------------------------- df = df[['SYMBOL', 'MCAP', 'TCAP']] # 股票代码、流通市值、总市值 rename_dict = {'SYMBOL': '股票代码_m', 'MCAP': '流通市值', 'TCAP': '总市值'} # --------若要使用更多数据,请修改些处-----,结束处------------------------------------------- df.rename(columns=rename_dict, inplace=True) return df # 主程序 if __name__ == '__main__': if is_today_trading_day() is False: print('今天不是交易日,不需要更新股票数据,退出程序') exit() # 判断当前时间是否超过15点 if datetime.now().hour < 16: # 保险起见可以小于16点 print('今天股票尚未收盘,不更新股票数据,退出程序') exit() df_sina = get_all_today_stock_data_from_sina_marketcenter() # 课程代码 df_sina['股票代码_m'] = df_sina['股票代码'].str[2:] df_163 = get_all_today_cap_from_163() # 合并表 df = pd.merge(left=df_sina, right=df_163, on='股票代码_m', how='left', indicator=True, sort=True) df.drop(['股票代码_m', '_merge'], axis=1, inplace=True) # 对数据进行存储 for i in df.index: t = df.iloc[i:i+1, :] stock_code = t.iloc[0]['股票代码'] # 构建存储文件路径 path = r'e:\data\stockDB\D_candles\\' + stock_code + '.csv' # 文件存在,不是新股 if os.path.exists(path): t.to_csv(path, header=None, index=False, mode='a') # 文件不存在,说明是新股 else: # 先将头文件输出 t.to_csv(path, index=False, mode='a') print(stock_code) ''' {'count': 2, 'list': [{'CODE': '1000001', 'FIVE_MINUTE': 0.0028360748723767, 'HIGH': 18.34, 'HS': 0.0049360011082477, 'LB': 0.94584803647406, 'LOW': 17.7, 'MCAP': 348527486471.88, 'MFRATIO': {'MFRATIO10': 116564000000, 'MFRATIO2': 22398000000}, 'MFSUM': 1.33, 'NAME': '平安银行', 'NO': 1, 'OPEN': 17.71, 'PE': 13.503759398496, 'PERCENT': 0.018718, 'PRICE': 17.96, 'SNAME': '平安银行', 'SYMBOL': '000001', 'TCAP': 348530290836.08, 'TURNOVER': 1727488481.5, 'UPDOWN': 0.33, 'VOLUME': 95786863, 'WB': -0.4374377768793, 'YESTCLOSE': 17.63, 'ZF': 0.036301758366421}, {'CODE': '1000002', 'FIVE_MINUTE': 0.00035778175313065, 'HIGH': 28.15, 'HS': 0.0063518461181229, 'LB': 0.82576904894833, 'LOW': 27.81, 'MCAP': 272569228819.99, 'MFRATIO': {'MFRATIO10': 241491467190.53, 'MFRATIO2': 19862827129.73}, 'MFSUM': 3.58, 'NAME': '<NAME>', 'NO': 2, 'OPEN': 28, 'PE': 7.8296089385475, 'PERCENT': 0.002862, 'PRICE': 28.03, 'SNAME': '万科A', 'SYMBOL': '000002', 'TCAP': 325645033594.03, 'TURNOVER': 1728820912.73, 'UPDOWN': 0.08, 'VOLUME': 61766600, 'WB': -0.26104545492617, 'YESTCLOSE': 27.95, 'ZF': 0.01216457960644}], 'order': 'asc', 'page': 0, 'pagecount': 2042, 'time': '2020-11-03 23:10:46', 'total': 4083} ''' ```
{ "source": "jettom/numpy-unittest-100", "score": 3 }
#### File: jettom/numpy-unittest-100/test_array_slicing.py ```python import unittest import numpy as np from numpy.testing import assert_array_equal class TestArraySlicing(unittest.TestCase): def test_slicing_1d(self): vector = np.arange(10) assert_array_equal(vector[2:5], np.array([2, 3, 4])) def test_slicing_1d_with_step(self): vector = np.arange(10) assert_array_equal(vector[0:10:2], np.array([0, 2, 4, 6, 8])) def test_slicing_1d_reverse(self): vector = np.arange(10) assert_array_equal(vector[::-1], np.array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])) def test_slicing_2d(self): metrix = np.arange(9).reshape(3, 3) assert_array_equal(metrix[0:2, 0:2], np.array([[0, 1], [3, 4]])) if __name__ == '__main__': unittest.main() ``` #### File: jettom/numpy-unittest-100/test_array_ufunc.py ```python import unittest import numpy as np from numpy.testing import assert_array_equal class TestArrayUfunc(unittest.TestCase): def test_abs(self): vector = np.array([-1, 1, -7]) assert_array_equal(np.abs(vector), np.array([1, 1, 7])) def test_sqrt(self): vector = np.array([9, 16, 25]) assert_array_equal(np.sqrt(vector), np.array([3, 4, 5])) def test_sort(self): vector = np.array([1, 6, 2, 3, 8, 1]) assert_array_equal(np.sort(vector), np.array([1, 1, 2, 3, 6, 8])) def test_argsort(self): vector = np.array([2, 6, 1]) assert_array_equal(np.argsort(vector), np.array([2, 0, 1])) def test_add(self): A = np.array([0, 1, 2]) B = np.array([2, -1, 4]) assert_array_equal(np.add(A, B), np.array([2, 0, 6])) def test_subtract(self): A = np.array([0, 1, 2]) B = np.array([2, -1, 4]) assert_array_equal(np.subtract(A, B), np.array([-2, 2, -2])) def test_maximum(self): A = np.array([0, 1, 2]) B = np.array([2, -1, 4]) assert_array_equal(np.maximum(A, B), np.array([2, 1, 4])) if __name__ == '__main__': unittest.main() ```
{ "source": "jettpettus/modularizationandtesting", "score": 3 }
#### File: project_2_packages/iv_jett/iv_standard_error.py ```python import numpy as np from iv_jett.iv_init import projection_matrix def calculate_resid(Z, X, Y, beta_iv, nocons = False): if nocons == False: X_constant = np.ones((N, 1)) X = np.hstack((X_constant, X)) resid = Y - X @ beta_iv return resid def calculate_sigma(Z, X, Y, beta_iv, nocons = False): ''' Description: Estimates the variance of the errors. Inputs: Z (matrix) -- Instrumental Variables X (matrix) -- Endogenous Variables Y (matrix) -- Outcome Variable beta_iv -- IV results nocons -- Option for constant (default False) ''' N = Z.shape[0] if nocons == False: X_constant = np.ones((N, 1)) X = np.hstack((X_constant, X)) resid = Y - X @ beta_iv sigma_iv = (1/N) * np.transpose(resid) @ resid return np.sqrt(sigma_iv) def calculate_var_beta(sigma, X, Z, resid, nocons = False, robust = False): ''' Description: Calculates the variance of beta, the IV estimator Inputs: sigma Z (matrix) -- Instrumental Variables X (matrix) -- Endogenous Variables nocons -- Option for constant (default False) Ouputs: se_beta (array) -- Standard error ''' N = Z.shape[0] if nocons == False: X_constant = np.ones((N, 1)) X = np.hstack((X_constant, X)) Z_constant = np.ones((N, 1)) Z = np.hstack((Z_constant, Z)) if robust == False: var_beta = (np.asscalar(sigma**2) * np.identity(X.shape[1])) @ np.linalg.inv(np.transpose(X) @ projection_matrix(Z) @ X) se_beta = np.sqrt(np.diag(var_beta)) if robust == True: resid_sq = resid @ np.transpose(resid) print("resid sq:") print(resid_sq) sandwich_bread = np.linalg.inv(np.transpose(Z) @ X) var_beta = (sandwich_bread @ np.transpose(Z) @ np.diag(np.diag(resid_sq)) @ Z @ sandwich_bread) print("var_beta") print(var_beta) se_beta = np.sqrt(np.diag(var_beta)) return se_beta ```
{ "source": "jettro/semi-website", "score": 3 }
#### File: semi-website/script/createSitemap.py ```python from bs4 import BeautifulSoup import requests from urllib.request import urlopen import re from datetime import datetime LOADEDLINKS = [] def getLinks(i): global LOADEDLINKS url = i.split('#')[0] if url not in LOADEDLINKS: if ('.jpg' in url) or ('.zip' in url) or ('.svg' in url): return LOADEDLINKS.append(url) try: request = urlopen('https://www.semi.technology' + url) except: return if request.status is 200: soup = BeautifulSoup(request.read(), "lxml") for link in soup.findAll('a'): link = link.get('href') if link is not None: if ('https://' not in link) and ('http://' not in link) and ('mailto:' not in link) and ('javascript:' not in link): link = link.split('#')[0] if link.startswith('/'): getLinks(link) elif link.startswith('./'): getLinks(link.replace('./', '/')) elif link != '': getLinks(url+link) # Get the links getLinks("/") # create sitemap sitemap = open('sitemap.xml', 'w+') sitemap.write('<?xml version="1.0" encoding="UTF-8"?><urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">'+"\n") for link in LOADEDLINKS: sitemap.write('<url>'+"\n") sitemap.write('<loc>https://semi.technology'+link+'</loc>'+"\n") sitemap.write('<lastmod>'+datetime.today().strftime('%Y-%m-%d')+'</lastmod>'+"\n") sitemap.write('</url>'+"\n") sitemap.write('</urlset>') # post links to the wayback machine for link in LOADEDLINKS: url = 'https://www.semi.technology' + link request = requests.post(url = 'https://pragma.archivelab.org', json = { 'url': url }) print(request.status_code, url) print('DONE') ```
{ "source": "Jettsteel/terminal-todo", "score": 4 }
#### File: terminal-todo/src/db.py ```python import sqlite3 import os from datetime import * import locale import shutil # date and welcome locale.setlocale(locale.LC_ALL, '') today = datetime.today().strftime('%d-%m-%B').split('-') print(f'Boas vindas ao terminal todo! Hoje é dia {today[0]} de {today[2]}!') ## useful functions # convert tuple to string def toString(tuple): if type(tuple) == str: return tuple.replace('(', '').replace(')', '').replace(',', '').replace("'", "") else: return str(tuple).replace('(', '').replace(')', '').replace(',', '').replace("'", "") # convert date words to numbers def toDate(date): td = [['today', 'hoje', 'hj'], ['amanha', 'amanhã', 'amnh', 'tomorrow'], ['semana que vem']] if date in td[0]: date = today[0] elif date in td[1]: date = str(int(today[0]) + 1) elif date in td[2]: date = str(int(today[0]) + 7) return date def toNotDate(date): if date == today[0]: return 'hoje' elif date == str(int(today[0]) + 1): return 'amanhã' elif date == str(int(today[0]) + 7): return 'semana que vem' else: return date # database creation cur = os.path.abspath(os.getcwd()) if not os.path.isfile(f'{cur}/db.sqlite'): open(f'{cur}/db.sqlite', 'x') else: pass # database setup database = sqlite3.connect('db.sqlite') db = database.cursor() db.execute("""CREATE TABLE IF NOT EXISTS dates ( dates_id INTEGER PRIMARY KEY AUTOINCREMENT, date TEXT );""") db.execute("""CREATE TABLE IF NOT EXISTS items ( dates_id INTEGER, item TEXT );""") # database for done items if not os.path.isfile(f'{cur}/itemsdone.sqlite'): open(f'{cur}/itemsdone.sqlite', 'x') else: pass _database = sqlite3.connect('itemsdone.sqlite') _db = _database.cursor() _db.execute('CREATE TABLE IF NOT EXISTS done (date TEXT, item TEXT)') # function for adding items do done db def doneDatabase(date, item): if date and item: _db.execute('INSERT INTO done VALUES (?, ?)', (date.replace("'", ''), str(item),)) _database.commit() else: return 0 # init function def init(): # delete todos from dates before today db.execute(f"SELECT dates_id FROM dates WHERE date < ?", (today[0],)) date1_id = toString(db.fetchone()) db.execute("DELETE FROM items WHERE dates_id = ?", (date1_id,)) db.execute('DELETE FROM dates WHERE date < ?', (today[0],)) database.commit() # print all todos for today db.execute(f"SELECT dates_id FROM dates WHERE date = ?", (today[0],)) date2_id = toString(db.fetchone()) db.execute('SELECT item FROM items WHERE dates_id = ?', (date2_id,)) i = db.fetchall() if i: print('Items para hoje: ') for row in range(len(i)): sla = toString(i[row]) print(f"- {sla}") else: print('Sem itens para hoje!') init() ## functions # add item to database def addItem(dater, item): date = toDate(dater) db.execute(f'SELECT * FROM dates WHERE date = ?', (date,)) data = db.fetchall() if len(data) == 0: print('Data não encontrada, criando uma nova...') db.execute(f"INSERT INTO dates VALUES (NULL, ?)", (date,)) db.execute(f"SELECT dates_id FROM dates WHERE date = ?", (date,)) date_id = db.fetchall()[0][0] db.execute(f"INSERT INTO items VALUES (?, ?)", (str(date_id), str(item),)) print(f"Item adicionado, criada data {date}") else: db.execute(f"SELECT dates_id FROM dates WHERE date = ?", (date,)) date_id = db.fetchall()[0][0] db.execute(f"INSERT INTO items VALUES (?, ?)", (str(date_id), str(item),)) print(f"Adicionado item a data {date}") database.commit() # done item - basically remove item from database def doneItem(item): db.execute(f'SELECT * FROM items WHERE item = ?', (item,)) data = db.fetchall()[0] if data: print(f'Item encontrado! Excluindo item...') db.execute('SELECT dates_id FROM items WHERE item = ?', (item,)) date_id = db.fetchone()[0] db.execute('SELECT date FROM dates WHERE dates_id = ?', (date_id,)) dat = toString(db.fetchone()) doneDatabase(dat, item) db.execute('DELETE FROM items WHERE item = ?', (item,)) print('Item excluído!') else: print('Item não encontrado...') database.commit() # show all todos from specific date def showItems(dater): date = toDate(dater) db.execute('SELECT dates_id FROM dates WHERE date = ?', (date,)) row = db.fetchall() if row: print(f'Itens para {toNotDate(date)}:\n') list = toString(row[0]) db.execute('SELECT item FROM items WHERE dates_id = ?', (list,)) item = db.fetchall() for i in range(len(item)): _item = toString(item[i]) print(f"- {_item}") else: print('Data não existente') # show all todos and their date def showAll(): db.execute('SELECT dates_id FROM dates') d = db.fetchall() if d: for i in range(len(d)): list = d[i][0] db.execute('SELECT date FROM dates WHERE dates_id = ?', str(list,)) date = toString(db.fetchone()) print(f"\nTodos do dia {toNotDate(date)}:") db.execute('SELECT item FROM items WHERE dates_id = ?', str(list,)) it = db.fetchall() for row in range(len(it)): list = toString(it[row]) print(f"- {list}") else: print('Ainda não há nenhum item!') # show all done todos def showDone(): _db.execute('SELECT date FROM done') daate = _db.fetchall() def parseDuplicated(): lista = [] for i in range(len(daate)): lista.append(toString(daate[i])) return list(dict.fromkeys(lista)) _date = parseDuplicated() for i in range(len(_date)): _db.execute("SELECT item FROM done WHERE date = ?", (str(_date[i]),)) _item = _db.fetchall() print(f'\nItems feitos de {toNotDate(_date[i])}') for row in range(len(_item)): itt = toString(_item[row]) print(f"- {itt}") # reset entire aplication to default def resetDefault(): os.remove(f'{cur}/db.sqlite') os.remove(f'{cur}/itemsdone.sqlite') shutil.rmtree(f'{cur}/__pycache__', ignore_errors=True) ``` #### File: terminal-todo/src/main.py ```python from db import addItem, doneItem, showItems, showAll, showDone, resetDefault # main function def main(): yes = ['sim', 'si', 'sisi', 'yes', 'yeah', 'yep', 'aye'] def anyMore(): answer = input('\nAlgo mais? \n> ') if answer in yes: main() else: exit() command = input('\nO que deseja fazer? Para saber dos comandos, use help:\n> ').split() # help command if command[0] == 'help': print(''' use "todo" + data da sua atividade + item a fazer!\n use "done" + item que você finalizou!\n "show" + data para ver TODOs de tal data!\n "showall" para ver todos os TODOs!\n "showdone" para ver todos os TODOs finalizados!\n "reset" para resetar a aplicação! ''') main() # add todo command elif command[0] == 'todo': item = '' for i in range(2, len(command)): item += f"{command[i]} " addItem(command[1], item) anyMore() # done todo command elif command[0] == 'done': item = '' for i in range(1, len(command)): item += f"{command[i]} " doneItem(item) anyMore() # show todo from specific date command elif command[0] == 'show': showItems(command[1]) anyMore() # show all todos command elif command[0] == 'showall': showAll() anyMore() # show all done todos elif command[0] == 'showdone': showDone() anyMore() # reset to default command elif command[0] == 'reset': st = 'Tem certeza? Digite "sim eu tenho" para excluir as databases: \n> ' if input(st) == 'sim eu tenho': resetDefault() print('Aplicação resetada!') exit() else: print('Ok, não excluirei!\n') anyMore() # command not recognized else: if input('Não entendi. Quer tentar novamente?\n> ') in yes: main() else: exit() main() ```
{ "source": "jetuk/cython-sundials", "score": 3 }
#### File: examples/cvode/testCvAdvDiff_bnd.py ```python from pySundials.cvode import Cvode from pySundials.sundials import NvectorNdarrayFloat64 import numpy as np # Problem Constants XMAX =2.0 # domain boundaries YMAX =1.0 MX =10 # mesh dimensions MY =5 NEQ =MX*MY # number of equations ATOL =1.0e-5 # scalar absolute tolerance T0 =0.0 # initial time T1 =0.1 # first output time DTOUT =0.1 # output time increment NOUT =10 # number of output times ZERO =0.0 HALF =0.5 ONE =1.0 TWO =2.0 FIVE =5.0 # User-defined vector access macro IJth """ IJth is defined in order to isolate the translation from the mathematical 2-dimensional structure of the dependent variable vector to the underlying 1-dimensional storage. IJth(vdata,i,j) references the element in the vdata array for u at mesh point (i,j), where 1 <= i <= MX, 1 <= j <= MY. The vdata array is obtained via the macro call vdata = NV_DATA_S(v), where v is an N_Vector. The variables are ordered by the y index j, then by the x index i. """ class AdvDiff(Cvode): """ UserData (contains grid constants) """ def __init__(self, dx, dy, hdcoef, hacoef, vdcoef, **kwds): Cvode.__init__(self, **kwds) self.dx = dx self.dy = dy self.hdcoef = hdcoef self.hacoef = hacoef self.vdcoef = vdcoef def RhsFn(self, t, u, udot): """ f routine. Compute f(t,u). """ # Extract needed constants from data hordc = self.hdcoef horac = self.hacoef verdc = self.vdcoef # Loop over all grid points. for j in range(MY): for i in range(MX): # Extract u at x_i, y_j and four neighboring points uij = u.data[i,j] udn = ZERO if j == 0 else u.data[i,j-1] uup = ZERO if j == MY-1 else u.data[i,j+1] ult = ZERO if i == 0 else u.data[i-1,j] urt = ZERO if i == MX-1 else u.data[i+1,j] # Set diffusion and advection terms and load into udot hdiff = hordc*(ult - TWO*uij + urt) hadv = horac*(urt - ult) vdiff = verdc*(uup - TWO*uij + udn) udot.data[i,j] = hdiff + hadv + vdiff return 0 def RootFn(self, t, y, gout): """ g routine. Compute functions g_i(t,y) for i = 0,1. """ y1 = y.data[0]; y3 = y.data[2] gout[0] = y1 - 0.0001 gout[1] = y3 - 0.01 return 0 def DlsBandJacFn(self, N, mupper, mlower, t, y, fy, J, tmp1, tmp2, tmp3): """ Jacobian routine. Compute J(t,u). The components of f = udot that depend on u(i,j) are f(i,j), f(i-1,j), f(i+1,j), f(i,j-1), f(i,j+1), with df(i,j)/du(i,j) = -2 (1/dx^2 + 1/dy^2) df(i-1,j)/du(i,j) = 1/dx^2 + .25/dx (if i > 1) df(i+1,j)/du(i,j) = 1/dx^2 - .25/dx (if i < MX) df(i,j-1)/du(i,j) = 1/dy^2 (if j > 1) df(i,j+1)/du(i,j) = 1/dy^2 (if j < MY) """ hordc = self.hdcoef horac = self.hacoef verdc = self.vdcoef for j in range(MY): for i in range(MX): k = j + i*MY #kthCol = BAND_COL(J,k); # set the kth column of J #BAND_COL_ELEM(kthCol,k,k) = -TWO*(verdc+hordc); #if (i != 1) BAND_COL_ELEM(kthCol,k-MY,k) = hordc + horac; #if (i != MX) BAND_COL_ELEM(kthCol,k+MY,k) = hordc - horac; #if (j != 1) BAND_COL_ELEM(kthCol,k-1,k) = verdc; #if (j != MY) BAND_COL_ELEM(kthCol,k+1,k) = verdc;: J[k,k] = -TWO*(verdc*hordc) if i != 0: J[k-MY,k] = hordc + horac if i != MX-1: J[k+MY,k] = hordc - horac if j != 0: J[k-1,k] = verdc if j != MY-1: J[k+1,k] = verdc return 0 def SetIC(self, u): """ Load initial profile into u vector """ for j in range(MY): y = (j+1)*self.dy for i in range(MX): x = (i+1)*self.dx u.data[i,j] = x*(XMAX - x)*y*(YMAX - y)*np.exp(FIVE*x*y) def PrintOutput(self, t, umax): """ Print current value """ nst = self.numSteps print "At t = %4.2f max.norm(u) =%14.6e nst = %4ld" % (t, umax, nst) def PrintFinalStats(self, ): """ Get and print some final statistics """ print "\nFinal Statistics:" print "nst = %-6ld nfe = %-6ld nsetups = %-6ld nfeLS = %-6ld nje = %ld" % ( self.numSteps, self.numRhsEvals, self.numLinSolvSetups, self.numRhsEvals, self.dlsNumJacEvals) print "nni = %-6ld ncfn = %-6ld netf = %ld\n " % ( self.numNonlinSolvIters, self.numNonlinSolvConvFails, self.numErrTestFails) def PrintHeader(reltol, abstol, umax): """ Print first lines of output (problem description) """ print "\n2-D Advection-Diffusion Equation" print "Mesh dimensions = %d X %d" % (MX, MY) print "Total system size = %d" % NEQ print "Tolerance parameters: reltol = %g abstol = %g\n" % (reltol, abstol) print "At t = %g max.norm(u) =%14.6e " %(T0, umax) if __name__ == '__main__': # Create a serial vector u = NvectorNdarrayFloat64( (MX,MY) ) reltol = ZERO # Set the tolerances abstol = ATOL dx = XMAX/(MX+1); # Set grid coefficients in data dy = YMAX/(MY+1); # Call CVodeCreate to create the solver memory and specify the # Backward Differentiation Formula and the use of a Newton iteration cvode_mem = AdvDiff(dx, dy, ONE/(dx*dx), HALF/(TWO*dx), ONE/(dy*dy), multistep='bdf', iteration='newton') cvode_mem.SetIC(u) # Initialize u vector # Call CVodeInit to initialize the integrator memory and specify the # user's right hand side function in u'=f(t,u), the inital time T0, and # the initial dependent variable vector u. cvode_mem.initSolver( T0, u ) # Call CVodeSStolerances to specify the scalar relative tolerance # and scalar absolute tolerance cvode_mem.setTolerances(reltol, abstol) # Call CVBand to specify the CVBAND band linear solver # Set the user-supplied Jacobian routine Jac cvode_mem.setupBandLinearSolver( NEQ, MY, MY, user_jac=True) # In loop over output points: call CVode, print results, test for errors umax = u.MaxNorm() PrintHeader(reltol, abstol, umax); tout = T1 for iout in range(NOUT): flag, t = cvode_mem.Solve(tout, u) umax = u.MaxNorm() cvode_mem.PrintOutput(t, umax,) tout += DTOUT cvode_mem.PrintFinalStats() # Print some final statistics ```
{ "source": "jetuk/pypet", "score": 2 }
#### File: jetuk/pypet/setup.py ```python import numpy def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('pypet', parent_package, top_path) config.add_extension('_sol_ufunc', ['pypet/_sol_ufunc.c']) config.add_extension('_pet_ufunc', ['pypet/_pet_ufunc.c']) return config if __name__ == "__main__": from numpy.distutils.core import setup setup( name='pypet', version='0.1dev', description='Python Potential Evapotranspiration functions.', author='<NAME>', author_email='<EMAIL>', packages=['pypet', ], configuration=configuration ) ```
{ "source": "jet-universe/particle_transformer", "score": 3 }
#### File: particle_transformer/networks/example_PCNN.py ```python import torch import torch.nn as nn class ResNetUnit(nn.Module): r"""Parameters ---------- in_channels : int Number of channels in the input vectors. out_channels : int Number of channels in the output vectors. strides: tuple Strides of the two convolutional layers, in the form of (stride0, stride1) """ def __init__(self, in_channels, out_channels, strides=(1, 1), **kwargs): super(ResNetUnit, self).__init__(**kwargs) self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=strides[0], padding=1) self.bn1 = nn.BatchNorm1d(out_channels) self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3, stride=strides[1], padding=1) self.bn2 = nn.BatchNorm1d(out_channels) self.relu = nn.ReLU() self.dim_match = True if not in_channels == out_channels or not strides == (1, 1): # dimensions not match self.dim_match = False self.conv_sc = nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=strides[0] * strides[1], bias=False) def forward(self, x): identity = x x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) # print('resnet unit', identity.shape, x.shape, self.dim_match) if self.dim_match: return identity + x else: return self.conv_sc(identity) + x class ResNet(nn.Module): r"""Parameters ---------- features_dims : int Input feature dimensions. num_classes : int Number of output classes. conv_params : list List of the convolution layer parameters. The first element is a tuple of size 1, defining the transformed feature size for the initial feature convolution layer. The following are tuples of feature size for multiple stages of the ResNet units. Each number defines an individual ResNet unit. fc_params: list List of fully connected layer parameters after all EdgeConv blocks, each element in the format of (n_feat, drop_rate) """ def __init__(self, features_dims, num_classes, conv_params=[(32,), (64, 64), (64, 64), (128, 128)], fc_params=[(512, 0.2)], for_inference=False, **kwargs): super(ResNet, self).__init__(**kwargs) self.conv_params = conv_params self.num_stages = len(conv_params) - 1 self.fts_conv = nn.Sequential( nn.BatchNorm1d(features_dims), nn.Conv1d( in_channels=features_dims, out_channels=conv_params[0][0], kernel_size=3, stride=1, padding=1), nn.BatchNorm1d(conv_params[0][0]), nn.ReLU()) # define ResNet units for each stage. Each unit is composed of a sequence of ResNetUnit block self.resnet_units = nn.ModuleDict() for i in range(self.num_stages): # stack units[i] layers in this stage unit_layers = [] for j in range(len(conv_params[i + 1])): in_channels, out_channels = (conv_params[i][-1], conv_params[i + 1][0]) if j == 0 \ else (conv_params[i + 1][j - 1], conv_params[i + 1][j]) strides = (2, 1) if (j == 0 and i > 0) else (1, 1) unit_layers.append(ResNetUnit(in_channels, out_channels, strides)) self.resnet_units.add_module('resnet_unit_%d' % i, nn.Sequential(*unit_layers)) # define fully connected layers fcs = [] for idx, layer_param in enumerate(fc_params): channels, drop_rate = layer_param in_chn = conv_params[-1][-1] if idx == 0 else fc_params[idx - 1][0] fcs.append(nn.Sequential(nn.Linear(in_chn, channels), nn.ReLU(), nn.Dropout(drop_rate))) fcs.append(nn.Linear(fc_params[-1][0], num_classes)) if for_inference: fcs.append(nn.Softmax(dim=1)) self.fc = nn.Sequential(*fcs) def forward(self, points, features, lorentz_vectors, mask): # x: the feature vector, (N, C, P) if mask is not None: features = features * mask x = self.fts_conv(features) for i in range(self.num_stages): x = self.resnet_units['resnet_unit_%d' % i](x) # (N, C', P'), P'<P due to kernal_size>1 or stride>1 # global average pooling x = x.mean(dim=-1) # (N, C') # fully connected x = self.fc(x) # (N, out_chn) return x def get_model(data_config, **kwargs): conv_params = [(32,), (64, 64), (64, 64), (128, 128)] fc_params = [(512, 0.2)] pf_features_dims = len(data_config.input_dicts['pf_features']) num_classes = len(data_config.label_value) model = ResNet(pf_features_dims, num_classes, conv_params=conv_params, fc_params=fc_params) model_info = { 'input_names': list(data_config.input_names), 'input_shapes': {k: ((1,) + s[1:]) for k, s in data_config.input_shapes.items()}, 'output_names': ['softmax'], 'dynamic_axes': {**{k: {0: 'N', 2: 'n_' + k.split('_')[0]} for k in data_config.input_names}, **{'softmax': {0: 'N'}}}, } return model, model_info def get_loss(data_config, **kwargs): return torch.nn.CrossEntropyLoss() ```
{ "source": "jetwang/pygame-scratch", "score": 3 }
#### File: src/pygamescratch/sprite.py ```python import random from pygamescratch.pygs import * class Sprite(object): def __init__(self, sprite_name, center_x=0, center_y=0): """ 定义一个角色对象 :param sprite_name: 角色名称,该名称也对应default_sprite_image_folder定义的文件夹下面的角色图片所在的文件夹 :param center_x: :param center_y: """ pygs._sprites_max_id = pygs._sprites_max_id + 1 self.id = sprite_name + str(pygs._sprites_max_id) self.sprite_name = sprite_name self.size = 100 self.direction = 0 self.timer_start = time.perf_counter() self.event_watcher = {} self.costume = {} self.text = None self.text_end_time = None self.showing = True sprite_image_name = sprite_name if not os.path.exists(sprite_image_name): sprite_image_name = pygs.default_sprite_image_folder + sprite_image_name for file_name in os.listdir(sprite_image_name): file_name_key = os.path.splitext(file_name)[0] self.costume[file_name_key] = os.path.join(sprite_image_name, file_name) # open(os.path.join(name,file_name), 'r') current_costume = list(self.costume.items())[0] self.current_costume_key = current_costume[0] self.current_costume_value = current_costume[1] self.image = pygame.image.load(self.current_costume_value).convert_alpha() self.rect = self.image.get_rect() # rect(1,2,3,4) # self.sprite.get_rect() width = self.rect.width height = self.rect.height self.rect.x = center_x - width / 2 self.rect.y = center_y - height / 2 self.center_x = center_x # 存这个浮点数的原因是,pygame里面的坐标是整数,如果改变坐标的值小于1,那么里面的坐标实际上不会移动 self.center_y = center_y # 还有一个原因是,坐标都是角色左上角的位置,但是角度计算都是计算角色中心点,存这2个值方便计算 self.rotate_angle = 0 pygs.sprites_in_game[self.id] = self self.event(EVENT_SPRITE_CREATED, self) def move(self, steps): """ 根据角色的direction(这是一个角度)移动,会根据direction计算出x和y分别移动的像素值 :param steps: :return: """ direction_pi = math.pi * (self.direction / 180) # to π steps_x = steps * math.cos(direction_pi) steps_y = steps * math.sin(direction_pi) self.go_to(self.center_x + steps_x, self.center_y + steps_y) def turn_right(self, degrees): """ 向右旋转 :param degrees: :return: """ self.turn(-degrees) def turn_left(self, degrees): """ 向左旋转 :param degrees: :return: """ self.turn(degrees) def go_to(self, new_x, new_y): """ 移到新的坐标 :param new_x: :param new_y: :return: """ self.set_x_to(new_x) self.set_y_to(new_y) def go_to_random_position(self): """ 移到窗口内随机位置 :return: """ random_x = random.randint(0, pygs.max_x) random_y = random.randint(0, pygs.max_y) self.go_to(random_x, random_y) def go_to_mouse_pointer(self): """ 移到鼠标所在位置 :return: """ self.go_to(pygs.mouse_position[0], pygs.mouse_position[1]) def point(self, direction): """ 指向特定角度,正右为0度,按照顺时针累加,正上为-90度,正下90度,正左为180度或-180度。 :param direction: :return: """ self.direction = direction def point_to(self, center_x, center_y): """ 指向特定坐标 :param center_x: :param center_y: :return: """ direction_pi = math.atan2(center_y - self.center_y, center_x - self.center_x) self.direction = (direction_pi * 180) / math.pi def point_to_sprite(self, target_sprite): """ 指定特定角色 :param target_sprite: :return: """ self.point_to(target_sprite.center_x, target_sprite.center_y) def point_towards_mouse_pointer(self): """ 指向鼠标所在位置 :return: """ mouse_x = pygs.mouse_position[0] mouse_y = pygs.mouse_position[1] self.point_to(mouse_x, mouse_y) def change_x_by(self, change_x): """ 调整x坐标 :param change_x: 要调整的值 :return: """ self.center_x = self.center_x + change_x self._adjust_position() def set_x_to(self, new_x): """ 设置x坐标 :param new_x: 要设置的新值 :return: """ self.center_x = new_x self._adjust_position() def change_y_by(self, change_y): """ 调整y坐标 :param change_y: 要调整的值 :return: """ self.center_y = self.center_y + change_y self._adjust_position() def set_y_to(self, new_y): """ 设置y坐标 :param new_y: 要设置的新值 :return: """ self.center_y = new_y self._adjust_position() def touching_edge(self): """ 判断是否在边缘 :return: """ if self.rect.x >= pygs.max_x - self.rect.width or self.rect.x <= 0 or self.rect.y >= pygs.max_y - self.rect.height or self.rect.y <= 0: return True return False def bounce_if_on_edge(self): """ 如果碰到边缘就反弹 :return: """ if self.rect.x >= pygs.max_x - self.rect.width: self.direction = 180 - self.direction elif self.rect.x <= 0: self.direction = 180 - self.direction elif self.rect.y >= pygs.max_y - self.rect.height: self.direction = - self.direction elif self.rect.y <= 0: self.direction = - self.direction def _adjust_position(self): max_center_x = pygs.max_x - self.rect.width / 2 max_center_y = pygs.max_y - self.rect.height / 2 if self.center_x > max_center_x: self.center_x = max_center_x if self.center_x < self.rect.width / 2: self.center_x = self.rect.width / 2 if self.center_y > max_center_y: self.center_y = max_center_y if self.center_y < self.rect.height / 2: self.center_y = self.rect.height / 2 self.rect.x = self.center_x - self.rect.width / 2 self.rect.y = self.center_y - self.rect.height / 2 def flip(self): """ 翻转 :return: """ self.sprite = pygame.transform.flip(self.sprite, True, False) def turn(self, degrees): self.rotate_angle += degrees self.direction = self.direction + degrees # Looks def say(self, text_str, size=20, color=(128, 128, 128), bg_color=None): """ 角色标注,可以在角色旁边显示一段文字 :param text_str: 文字内容 :param size: 字体大小 :param color: 字体颜色 :param bg_color: 字体背景颜色 :return: """ self.say_for_seconds(text_str, None, size, color, bg_color) def say_for_seconds(self, text_str, secs=2, size=20, color=(128, 128, 128), bg_color=None): """ 角色标注,可以在角色旁边显示一段文字, 若干秒后会消失 :param text_str: 文字内容 :param secs: 存在秒数 :param size: 字体大小 :param color: 字体颜色 :param bg_color: 字体背景颜色 :return: """ font = pygame.font.Font(pygs.default_font_name, size) text_image = font.render(str(text_str), True, color) # ,(128,128,128) self.text = {"text": text_str, "size": size, "text_image": text_image, "bg_color": bg_color} if secs is not None: self.text_end_time = time.perf_counter() + secs else: self.text_end_time = None def switch_costume_to(self, name): """ 切换造型 :param name: 造型名称(也就是图片去掉扩展名的名称) :return: """ if name != self.current_costume_key: self.current_costume_key = name self.current_costume_value = self.costume.get(name) new_sprite = pygame.image.load(self.current_costume_value).convert_alpha() self.image = new_sprite self.set_size_to(self.size) def next_costume(self): """ 下一个造型 :return: """ keys = list(self.costume.keys()) size = len(keys) index = keys.index(self.current_costume_key) if index >= size - 1: index = 0 else: index = index + 1 self.switch_costume_to(keys[index]) def set_size_to(self, num): """ 修改大小 :param num: 新的大小,100就是100%,1就是缩放为1% :return: """ proto_rect = self.image.get_rect() width = proto_rect.width height = proto_rect.height new_width = int(width * (num / 100)) new_height = int(height * (num / 100)) self.image = pygame.transform.smoothscale(self.image, (new_width, new_height)) self.rect.width = new_width self.rect.height = new_height self.rect.x = self.center_x - new_width / 2 self.rect.y = self.center_y - new_height / 2 self.size = num def change_size_by(self, size_by): """ 调整大小 :param size_by: 调整的数量 :return: """ new_size = self.size + size_by if new_size > 0: self.set_size_to(new_size) def show(self): """ 显示 :return: """ self.showing = True def hide(self): """ 隐藏 :return: """ self.showing = False def action(self): """ 角色在每帧的活动情况,比如如果希望角色不断移动1步,就可以重载这个方法,里面加入self.move(1)的代码 :return: """ pass def goto_front_layer(self): """ 显示在前面 :return: """ s = pygs.sprites_in_game[self.id] del pygs.sprites_in_game[self.id] pygs.sprites_in_game[self.id] = s def goto_back_layer(self): """ 显示在后面 :return: """ s = pygs.sprites_in_game[self.id] del pygs.sprites_in_game[self.id] new_dict = OrderedDict() new_dict[self.id] = s for k, v in list(pygs.sprites_in_game.items()): new_dict[k] = v sprites_in_game = new_dict # Events def regist_event(self, event_name, func): """ 监听事件 :param event_name: 事件名称 :param func: 事件发生时,调用的函数 :return: """ if event_name in self.event_watcher: functions = self.event_watcher.get(event_name) functions.append(func) else: self.event_watcher[event_name] = [func] def when_start(self, func): """ 监听游戏启动事件 :param func: :return: """ self.regist_event(EVENT_START, func) def when_key_pressed(self, key_name, func): """ 监听键盘按住事件 :param key_name: 键名 :param func: :return: """ self.regist_event(pygs._get_key_down_event_name(key_name), func) def when_key_up(self, key_name, func): """ 监听键盘松开事件 :param key_name: 键名 :param func: :return: """ self.regist_event(pygs._get_key_up_event_name(key_name), func) def when_created(self, func): """ 监听角色创建事件 :param func: :return: """ self.regist_event(EVENT_SPRITE_CREATED, func) def broadcast(self, event_name): """ 广播事件 :param event_name: :return: """ pygs.global_event(event_name) # Sensing def get_touching_sprite(self, sprite_name=None): """ 获取接触到的角色 :param sprite_name: 接触的角色名称 :return: """ sprites = [] for sprite in list(pygs.sprites_in_game.values()): if sprite.id != self.id: if sprite_name is None or sprite.sprite_name == sprite_name: if pygame.Rect.colliderect(self.rect, sprite.rect) and pygame.sprite.collide_mask(self, sprite): sprites.append(sprite) return sprites def get_closest_sprite_by_name(self, sprite_name): """ 获取最近的特定角色 :param sprite_name: 角色名称 :return: """ sprites = pygs.get_sprites_by_name(sprite_name) return self.get_closest_sprite(sprites) def get_closest_sprite(self, sprites): """ 从角色列表中找出离自己最近的 :param sprites: 角色列表 :return: """ min_distance = 9999 closest_sprite = None self_point = (self.center_x, self.center_y) for sprite in sprites: distance = pygs.get_distance(self_point, (sprite.center_x, sprite.center_y)) if min_distance > distance: min_distance = distance closest_sprite = sprite return closest_sprite def reset_timer(self): """ 重置定时器 :return: """ self.timer_start = time.perf_counter() def timer(self): """ 上次定时后到目前的秒数 :return: """ return time.perf_counter() - self.timer_start def event(self, event_name, *args, **kwargs): """ 触发事件 :param event_name: :param args: :param kwargs: :return: """ if event_name in self.event_watcher: functions = self.event_watcher.get(event_name) for func in functions: func(*args, **kwargs) def delete(self): """ 删除自己 :return: """ self.hide() if self.id in pygs.sprites_in_game.keys(): del pygs.sprites_in_game[self.id] pygs.delete_delay_function_by_object(self) ``` #### File: src/sample-planefight/friend_plane.py ```python from global_var import * from hero_bullet import HeroBullet from pygamescratch import * from pygamescratch.sprite import Sprite class FriendPlane(Sprite): def __init__(self, center_x, center_y): Sprite.__init__(self, "friendplane", center_x, center_y) self.hp = 10 self.set_size_to(60) self.switch_costume_to("a") self.immune = False self.move_speed = 3 pygs.play_sound("callfriend.wav") pygs.schedule(g.friend_change_direction_wait, self.change_direction, None) pygs.schedule(g.friend_fire_wait, self.friend_fire, None) def friend_fire(self): if g.hero is None or g.hero.hp <= 0: return if self.hp <= 0: return if self.showing: enemy_planes = g.get_enemies() if len(enemy_planes) > 0: target_position = enemy_planes[0].rect.center pygs.play_sound("hero_fire.wav") self.single_fire(self.rect.midtop, target_position, enemy_planes[0]) pygs.schedule(g.friend_fire_wait, self.friend_fire, None) def single_fire(self, start_position, target_position, target_enemy): hero_bullet = HeroBullet(start_position[0], start_position[1], BULLET_TYPE_FRIEND, target_sprite=target_enemy) hero_bullet.point_to(target_position[0], target_position[1]) def friend_down(self): pygs.play_sound("boom.wav") self.switch_costume_to("down") pygs.schedule(0.2, self.delete, None) def got_hit(self): self.immune = True pygs.play_sound("hit.wav") self.hp = self.hp - 1 if self.hp <= 0: pygs.schedule(0.2, self.friend_down, None) self.switch_costume_to("hp0") else: pygs.schedule(1, self.recover, None) def recover(self): self.immune = False def action(self): if self.hp <= 0: return self.move(self.move_speed) self.bounce_if_on_edge() enemy_bullets = self.get_touching_sprite("enemybullet") for enemy_bullet in enemy_bullets: if enemy_bullet and not enemy_bullet.hit() and not self.immune: enemy_bullet.hit_plane() self.got_hit() self.say(str(self.hp), 11, (51, 173, 255)) if self.immune: self.showing = not self.showing else: self.show() def change_direction(self): if self.hp <= 0: return closest_enemy_bullet = self.get_closest_sprite_by_name("enemybullet") if closest_enemy_bullet: distance = pygs.get_distance(closest_enemy_bullet.rect.center, (self.center_x, self.center_y)) if distance <= 100: if closest_enemy_bullet.center_x >= self.center_x: # 如果子弹在右边 if self.rect.x > pygs.max_x / 4: # 如果友机左边还有余地 self.point(180) else: self.point(0) elif closest_enemy_bullet.center_x <= self.center_x: # 如果子弹在左边 if self.rect.x < pygs.max_x / 4: # 如果友机右边还有余地 self.point(0) else: self.point(180) pygs.schedule(g.friend_change_direction_wait, self.change_direction, None) ```
{ "source": "jetyang2005/elastalert", "score": 2 }
#### File: elastalert/elastalert/db_method.py ```python from db_sqlconn import Mysql import config import yaml import json import util_switch def get_rules_from_db(conf, args): # 申请资源 mysql = Mysql(conf) rules = [] sql_rules = "select * from link_rules" result = mysql.getAll(sql_rules) if result: for row in result: # query_ruletypesdictvalue_sql = "select dict_name as rule_type from link_dict_entry " \ # "where dict_type_code = 'alertRuletypes' and dict_code = %s" # query_ruletypesdictvalue_param = [row["rule_type"]] # rule_type = mysql.getOne(query_ruletypesdictvalue_sql, query_ruletypesdictvalue_param) # query_alertdictvalue_sql = "select dict_name as rule_type from link_dict_entry " \ # "where dict_type_code = 'alertRuletypes' and dict_code = %s" # query_dictvalue_param = [row["rule_type"]] # rule_type = mysql.getOne(query_alertdictvalue_sql, query_dictvalue_param) query_alertperson_sql = "select * from ( " \ " select u.id as user_id,u.user_name as user_name ,u.email as user_email " \ "from LINK_RULE_RECEIVER a ,link_role r,link_user_role ur,link_user u " \ "where a.RULE_RECEIVER_TYPE='0' and a.RULE_RECEIVER_ID = r.id and r.id = ur.role_id " \ " and ur.user_id=u.id and a.rule_id = %s " \ "union " \ "select a.RULE_RECEIVER_ID as user_id,c.user_name as user_name,c.email as user_email " \ "from LINK_RULE_RECEIVER a join link_user c on a.RULE_RECEIVER_ID=c.id " \ "where a.RULE_RECEIVER_TYPE=1 and a.rule_id = %s " \ ") alertpersons " query_alertperson_param = [row['id'], row['id']] alertpersons = mysql.getAll(query_alertperson_sql, query_alertperson_param) #数据库查询的接收者 emails=[] for alertemail in alertpersons: emails.append(alertemail['user_email']) #print "数组=========",emails """if row['rule_type'] == 'frequency': rule = frequency_rule(conf, row) #frequency规则模板填充数据""" row['user_email']= emails for case in util_switch.switch(row['rule_type']): if case('frequency'): rule = frequency_rule(conf, row) config.load_options(rule, conf, '', args) config.load_modules(rule, args) rule['alertpersons'] = alertpersons rule['rule_id'] = row['id'] rule['rule_type'] = row['rule_type'] rules.append(rule) break if case('spike'): rule = spike_rule(conf, row) config.load_options(rule, conf, '', args) config.load_modules(rule, args) rule['alertpersons'] = alertpersons rule['rule_id'] = row['id'] rule['rule_type'] = row['rule_type'] rules.append(rule) break if case(): # 默认 print "switch something else!" """ config.load_options(rule, conf, '', args) config.load_modules(rule, args) rule['alertpersons'] = alertpersons rule['rule_id'] = row['id'] rule['rule_type'] =row['rule_type'] rules.append(rule)""" # 释放资源 mysql.dispose() return rules def frequency_rule(conf, row): rule = {'index': '', 'name': '', 'realert': {'minutes': 1}, 'from_addr': conf['from_addr'], 'smtp_host': conf['smtp_host'], 'smtp_port': conf['smtp_port'], 'smtp_auth_file': '', 'num_events': 1, 'alert': ['db','email'], 'filter': [{'query': {'query_string': {'query': 'field6:Exception'}}}], 'email_reply_to': '', 'rule_file': '', 'timeframe': {'minutes': 1}, 'type': 'frequency', 'email': ['<EMAIL>']} #rule_filter_str = row["rule_filter"].replace("\n", "").strip()/Users/yangwm/log/elastalert/example_rules/example_frequency.yaml rule_extend_str = row["rule_extend"].replace("\n", "").strip() #rule_filter = json.loads(rule_filter_str) rule_extend = json.loads(rule_extend_str) alert_way = row['rule_alerts'] rule['alert'] = alert_way.split(',') rule['alert_way'] = row['rule_alerts'] rule['name'] = row["rule_name"] rule['index'] = row["rule_index"] rule['realert'] = rule_extend['realert'] rule['num_events'] = rule_extend['num_events'] rule['timeframe'] = rule_extend['timeframe'] rule['type'] = 'frequency' rule['filter'] = rule_extend['filter'] rule['email'] = row['user_email'] print "frequency=========%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s" % ( row["id"], row["rule_name"], row["rule_type"], row["rule_index"], row["rule_desc"], row["rule_alerts"], row["rule_filter"], row["rule_extend"], row["rule_seq"]) return rule def spike_rule(conf, row): rule = {'index': '', 'name': '', 'realert': {'minutes': 1}, 'from_addr': conf['from_addr'], 'smtp_host': conf['smtp_host'], 'smtp_port': conf['smtp_port'], 'smtp_auth_file': '', 'num_events': 1, 'alert': ['db','email'], 'filter': [{'query': {'query_string': {'query': '_id:AVwGceqjqjtyRJ_Calx5'}},'type':{'value':'spike'}}], 'email_reply_to': '', 'rule_file': '', 'timeframe': {'minutes':1}, 'type': 'spike', 'spike_height': 1, 'threshold_cur':1, 'spike_type': 'up', 'email': ['<EMAIL>']} rule_extend_str = row["rule_extend"].replace("\n", "").strip() rule_extend = json.loads(rule_extend_str) rule['filter'] = rule_extend['filter'] rule['name'] = row["rule_name"] rule['index'] = row["rule_index"] alert_way = row['rule_alerts'] rule['alert'] = alert_way.split(',') rule['alert_way'] = row['rule_alerts'] rule['email']=row['user_email'] rule['spike_height'] = rule_extend['spike_height'] rule['threshold_cur'] = rule_extend['threshold_cur'] rule['spike_type'] = rule_extend['spike_type'] rule['timeframe'] = rule_extend['timeframe'] print "spike=============%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s" % ( row["id"], row["rule_name"], row["rule_type"], row["rule_index"], row["rule_desc"], row["rule_alerts"], row["rule_filter"], row["rule_extend"], row["rule_seq"]) return rule def cardinality_rule(conf, row): rule = {'index': '', 'name': '', 'realert': {'minutes': 1}, 'from_addr': conf['from_addr'], 'smtp_host': conf['smtp_host'], 'smtp_port': conf['smtp_port'], 'smtp_auth_file': '', 'num_events': 1, 'alert': ['db'], 'filter': [{'query': {'query_string': {'query': 'field6:Exception'}}}], 'email_reply_to': '', 'rule_file': 'example_rules/example_frequency.yaml', 'timeframe': {'minutes': 1}, 'type': 'frequency', 'email': ['<EMAIL>']} return rule def change_rule(conf, row): rule = {'index': '', 'name': '', 'realert': {'minutes': 1}, 'from_addr': conf['from_addr'], 'smtp_host': conf['smtp_host'], 'smtp_port': conf['smtp_port'], 'smtp_auth_file': '', 'num_events': 1, 'alert': ['db'], 'filter': [{'query': {'query_string': {'query': 'field6:Exception'}}}], 'email_reply_to': '', 'rule_file': 'example_rules/example_frequency.yaml', 'timeframe': {'minutes': 1}, 'type': 'frequency', 'email': ['<EMAIL>']} return rule def new_term_rule(conf, row): rule = {'index': '', 'name': '', 'realert': {'minutes': 1}, 'from_addr': conf['from_addr'], 'smtp_host': conf['smtp_host'], 'smtp_port': conf['smtp_port'], 'smtp_auth_file': '', 'num_events': 1, 'alert': ['db'], 'filter': [{'query': {'query_string': {'query': 'field6:Exception'}}}], 'email_reply_to': '', 'rule_file': 'example_rules/example_frequency.yaml', 'timeframe': {'minutes': 1}, 'type': 'frequency', 'email': ['<EMAIL>']} return rule def opsgenie_frequency_rule(conf, row): rule = {'index': '', 'name': '', 'realert': {'minutes': 1}, 'from_addr': conf['from_addr'], 'smtp_host': conf['smtp_host'], 'smtp_port': conf['smtp_port'], 'smtp_auth_file': '', 'num_events': 1, 'alert': ['db'], 'filter': [{'query': {'query_string': {'query': 'field6:Exception'}}}], 'email_reply_to': '', 'rule_file': 'example_rules/example_frequency.yaml', 'timeframe': {'minutes': 1}, 'type': 'frequency', 'email': ['<EMAIL>']} return rule def percentage_match_rule(conf, row): rule = {'index': '', 'name': '', 'realert': {'minutes': 1}, 'from_addr': conf['from_addr'], 'smtp_host': conf['smtp_host'], 'smtp_port': conf['smtp_port'], 'smtp_auth_file': '', 'num_events': 1, 'alert': ['db'], 'filter': [{'query': {'query_string': {'query': 'field6:Exception'}}}], 'email_reply_to': '', 'rule_file': 'example_rules/example_frequency.yaml', 'timeframe': {'minutes': 1}, 'type': 'frequency', 'email': ['<EMAIL>']} return rule def single_metric_rule(conf, row): rule = {'index': '', 'name': '', 'realert': {'minutes': 1}, 'from_addr': conf['from_addr'], 'smtp_host': conf['smtp_host'], 'smtp_port': conf['smtp_port'], 'smtp_auth_file': '', 'num_events': 1, 'alert': ['db'], 'filter': [{'query': {'query_string': {'query': 'field6:Exception'}}}], 'email_reply_to': '', 'rule_file': 'example_rules/example_frequency.yaml', 'timeframe': {'minutes': 1}, 'type': 'frequency', 'email': ['<EMAIL>']} return rule ``` #### File: elastalert/samples/ImportDataFromSqlserver.py ```python import pymssql from Python_Elasticsearch import ElasticsearchOperate from Process_Stat import Process_Stat import logging import sys import time reload(sys) sys.setdefaultencoding( "utf-8" ) class MSSQL: """ 对pymssql的简单封装 pymssql库,该库到这里下载:http://www.lfd.uci.edu/~gohlke/pythonlibs/#pymssql 使用该库时,需要在Sql Server Configuration Manager里面将TCP/IP协议开启 用法: """ def __init__(self, host, user, pwd, db): # 日志基本配置,将日志文件输出到当前目录下的elastticsearch_sample.log文件中 logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S', filename='sqlserver_import_logger.log', filemode='w') self.sqlserver_import_logger = logging.getLogger('MSSQL') self.host = host self.user = user self.pwd = <PASSWORD> self.db = db def __GetConnect(self): """ 得到连接信息 返回: conn.cursor() """ if not self.db: raise(NameError,"没有设置数据库信息") self.conn = pymssql.connect(host=self.host,user=self.user,password=<PASSWORD>,database=self.db,charset="utf8") cur = self.conn.cursor() if not cur: raise(NameError,"连接数据库失败") else: return cur def ExecQuery(self, sql): """ 执行查询语句 返回的是一个包含tuple的list,list的元素是记录行,tuple的元素是每行记录的字段 调用示例: ms = MSSQL(host="localhost",user="sa",pwd="<PASSWORD>",db="PythonWeiboStatistics") resList = ms.ExecQuery("SELECT id,NickName FROM WeiBoUser") for (id,NickName) in resList: print str(id),NickName """ cur = self.__GetConnect() cur.execute(sql) resList = cur.fetchall() # 查询完毕后必须关闭连接 self.conn.close() return resList def ExecNonQuery(self, sql): """ 执行非查询语句 调用示例: cur = self.__GetConnect() cur.execute(sql) self.conn.commit() self.conn.close() """ cur = self.__GetConnect() cur.execute(sql) self.conn.commit() self.conn.close() def main(): # ms = MSSQL(host="localhost",user="sa",pwd="<PASSWORD>",db="PythonWeiboStatistics") # #返回的是一个包含tuple的list,list的元素是记录行,tuple的元素是每行记录的字段 # ms.ExecNonQuery("insert into WeiBoUser values('2','3')") ms = MSSQL(host="10.0.0.29", user="sa", pwd="<PASSWORD>", db="ZHONGZI") # 流程定义表 processdefineList = ms.ExecQuery( "select processdefname, processchname, versionsign,createtime from link_processdefine") processdefines = [] for (processdefname, processchname, versionsign, createtime) in processdefineList: esdata = {"_index": "index_stat_processdefine", "_type": "type_stat_processdefine", "_source": { "processdefname": processdefname, "processchname": processchname, "versionsign": versionsign, "createtime": str(createtime), } } processdefines.append(esdata) # 流程实例表 process_processinstList = ms.ExecQuery("select processinstid, processinstname, processdefname, processchname, versionsign,currentstate, createtime, endtime, subtime from link_processinst") process_processinsts = [] for (processinstid, processinstname, processdefname, processchname, versionsign, currentstate, createtime, endtime, subtime) in process_processinstList: esdata = {"_index": "index_stat_process_processinst", "_type": "type_stat_process_processinst", "_source": { "processinstid": processinstid, "processinstname": processinstname, "processdefname": processdefname, "processchname": processchname, "versionsign": versionsign, "currentstate": currentstate, "createtime": str(createtime), "endtime": str(endtime), "subtime": subtime } } process_processinsts.append(esdata) #环节实例表 activityinstList = ms.ExecQuery("select processinstid, processinstname, processdefname, processchname, versionsign,activityinstid,activityinstname, currentstate, createtime, endtime, subtime from link_activityinst") activityinsts = [] for (processinstid, processinstname, processdefname, processchname, versionsign,activityinstid,activityinstname, currentstate, createtime, endtime, subtime) in activityinstList: esdata = {"_index": "index_stat_process_activityinst", "_type": "type_stat_process_activityinst", "_source": { "processinstid": processinstid, "processinstname": processinstname, "processdefname": processdefname, "processchname": processchname, "versionsign": versionsign, "activityinstid": activityinstid, "activityinstname": activityinstname, "currentstate": currentstate, "createtime": str(createtime), "endtime": str(endtime), "subtime": subtime } } activityinsts.append(esdata) #工作项表 workitemList = ms.ExecQuery("select processinstid, processinstname, processdefname, processchname,workitemid,workitemname,istimeout,timeoutnum,activityinstid,activityinstname, currentstate, createtime, endtime, userid,orgid,orgname from link_workitem") workitems = [] for (processinstid, processinstname, processdefname, processchname,workitemid,workitemname,istimeout,timeoutnum,activityinstid,activityinstname, currentstate, createtime, endtime, userid,orgid,orgname) in workitemList: esdata = {"_index": "index_stat_process_workitem", "_type": "type_stat_process_workitem", "_source": { "processinstid": processinstid, "processinstname": processinstname, "processdefname": processdefname, "processchname": processchname, "workitmeid": workitemid, "workitemname": workitemname, "istimeout": istimeout, "timeoutnum": timeoutnum, "currentstate": currentstate, "activityinstid": activityinstid, "activityinstname": activityinstname, "createtime": str(createtime), "endtime": str(endtime), "userid": userid, "orgid": orgid, "orgname": orgname } } workitems.append(esdata) process_stat = Process_Stat() process_stat.create_index() process_stat.create_data(processdefines) process_stat.create_data(process_processinsts) process_stat.create_data(activityinsts) process_stat.create_data(workitems) process_stat.query_count("index_stat_process_activityinst", "type_stat_process_activityinst") process_stat.query_count("index_stat_process_processinst", "type_stat_process_processinst") process_stat.query_count("index_stat_processdefine", "type_stat_processdefine") process_stat.query_count("index_stat_process_workitem", "type_stat_process_workitem") if __name__ == '__main__': main() ``` #### File: elastalert/samples/Python_Elasticsearch.py ```python from elasticsearch import Elasticsearch from elasticsearch import helpers import logging import xlrd import datetime import sys reload(sys) sys.setdefaultencoding( "utf-8" ) class ElasticsearchOperate(): def __init__(self): # 日志基本配置,将日志文件输出到当前目录下的elastticsearch_sample.log文件中 logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S', filename='elastticsearch_sample.log', filemode='w') # 将日志打印在屏幕上 console = logging.StreamHandler() console.setLevel(logging.INFO) formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s') console.setFormatter(formatter) logging.getLogger('').addHandler(console) self.elastalert_logger = logging.getLogger('elasticsearch_test') # 连接elasticsearch self.es = Elasticsearch([{'host': 'localhost', 'port': 9200}]) def queryData(self, query): # extra_args = {'_source_include': ['@timestamp', '*']} # # query = {'sort': [{'@timestamp': {'order': 'asc'}}], # 'query': # {'bool': # {'filter': # {'bool': # {'must': # [{'range': # {'@timestamp': {'gt': '2017-04-06T14:30:00.860000+08:00', # 'lte': '2017-04-06T14:31:00.860000+08:00'}}}, # {u'query_string': {u'query': u'field6:Exception'} # # } # ] # } # } # } # } # } res = self.es.search(scroll='30s', index='index-student', size=10000, body=query, ignore_unavailable=True) self.elastalert_logger.info(str(res).decode("unicode_escape").encode("utf8")) def create_index(self): if self.es.indices.exists(index='index-student') is not True: test_index_mapping = {"mappings": { "type_student": { "properties": { "studentNo": { "type": "string", "index": "not_analyzed" }, "name": { "type": "string", "index": "analyzed", "analyzer": "ik" }, "male": { "type": "string", "index": "not_analyzed" }, "age": { "type": "integer" }, "birthday": { "type": "date", "format": "yyyy-MM-dd" }, "address": { "type": "string", "index": "analyzed", "analyzer": "ik" }, "classNo": { "type": "string", "index": "not_analyzed " }, "isLeader": { "type": "boolean" } } } } } self.es.indices.create(index="index-student", ignore=400, body=test_index_mapping) def create_data(self, esdatas): self.elastalert_logger.info(str(esdatas).decode("unicode_escape").encode("utf8")) helpers.bulk(self.es, esdatas) def init_data(self): data = xlrd.open_workbook('/Users/yangwm/log/elasticsearch_data.xls') # 打开xls文件 table = data.sheets()[0] # 打开第一张表 esdatas = [] nrows = table.nrows # 获取表的行数 for i in range(nrows): # 循环逐行打印 if i == 0: # 跳过第一行) continue rows = table.row_values(i) esdata = { "_index": "index-student", "_type": "type_student", "_id": i, "_source": { "studentNo": str(rows[0]), "name": str(rows[1]), "male": str(rows[2]), "age": int(rows[3]), "birthday": xlrd.xldate.xldate_as_datetime(rows[4], 1), "classNo": str(rows[5]), "address": str(rows[6]), "isLeader": rows[7] } } esdatas.append(esdata) #print str(esdatas) helpers.bulk(self.es, esdatas) esclient = ElasticsearchOperate() esclient.create_index() #esclient.init_data() # query_str = { # "query": { # "match_all": {} # } # } # # esclient.queryData(query_str) # query_str_withpage = { # "query": { # "match_all": {} # }, # "from": 2, # "size": 4, # "sort": { # "studentNo": { # "order": "asc" # } # } # } # # esclient.queryData(query_str_withpage) # term_str_query = { # "query": { # "term": { # "name": "关羽" # } # } # } # # esclient.queryData(term_str_query) bool_str_query = {"query": { "bool": { "must": [ { "term": { "classNo": "2.0" } }, { "term": { "isLeader": "1" } } ] } } } esclient.queryData(bool_str_query) ```
{ "source": "jetyey/M2-Tweet_Sentiment_extraction", "score": 4 }
#### File: data/dataset/normalize_dataset.py ```python import sys import pandas as pd def usage(): return "Usage: python normalize_dataset.py dataset.csv\nWe assume label column name being \"sentiment\" " #Verifying number of arguments if(len(sys.argv)!=2): sys.exit(usage()) #Normalizing x between -1 and 1, given the maximum and the minimum value of our sentiment labels def normalize(x,xmin,xmax): moy = float(xmin+xmax)/2 r = float(xmax - xmin) / 2 normalized = (x - moy) / r return normalized #Loading csv data - Add the following parameter for "stanford-sentiment-treebank.train.csv" ==> encoding="ISO-8859-1" dataset = pd.read_csv(sys.argv[1],sep =";") """ print("Before normalization: ") print(dataset) """ #Getting maximum/min value on the sentiment column minval = dataset.sentiment.min() maxval = dataset.sentiment.max() #Normalizing the dataset between -1 and 1 dataset.sentiment = normalize(dataset.sentiment,minval, maxval); """ print("\nAfter normalization:") print(dataset) """ newfile = "normalized_"+sys.argv[1] dataset.to_csv(newfile, sep=';', encoding='utf-8') print("Saved as: "+newfile) ``` #### File: M2-Tweet_Sentiment_extraction/Prediction/tweet_classification.py ```python from Prediction import model2 from model.processing import Process import tensorflow as tf #model , architecture , pre_process , model_inputs = tweet_classification.get_model_instance (model_name , embed_model) def get_model_instance(model_name, embedding_model, keep_prob=1.0, label_size=2, n_word=40, n_char=33 ): """ Get model instance, preprocessing, and input format :param model_name: :param embedding_model: :param float learning_rate: learning rate :param float gradient_clip: (option) max norm for gradient clipping :param float keep_prob: (option) keep probability for dropout. :param float batch_norm: (option) decaying parameter for batch normalization :param int label_size: output label size :param int n_word: word size (word sequence is pad by this value) :param int n_char: character size (character sequence is pad by this value) :return: """ # set up pre processing _pre_process = Process("embed", {"length_word": n_word, "dim": embedding_model.vector_size, "model": embedding_model , "path": "./data/random_dict.json"}) if model_name == "cnn_char": _model = model2.CharCNN _pre_process = [Process("onehot", {"length_word": n_word, "length_char": n_char}), _pre_process] _net = {"input_char": [n_word, n_char, _pre_process[0].char_dict_size], "input_word": [n_word, embedding_model.vector_size], "label_size": label_size, "char_embed_dim": 5, "char_cnn_unit": 10, "char_cnn_kernel": 3, # character embedding "word_embed_dim": 30, "cnn_unit": 300, "cnn_kernel": 5, "hidden_unit": 300} _model_inputs = model2.InputFormat.char_word elif model_name == "lstm_char": _model = model2.CharLSTM _pre_process = [Process("onehot", {"length_word": n_word, "length_char": n_char}), _pre_process] _net = {"input_char": [n_word, n_char, _pre_process[0].char_dict_size], "input_word": [n_word, embedding_model.vector_size], "label_size": label_size, "char_embed_dim": 5, "char_cnn_unit": 10, "char_cnn_kernel": 3, # character embedding "n_hidden_1": 64, "n_hidden_2": 128, "n_hidden_3": 256} _model_inputs = model2.InputFormat.char_word elif model_name == "cnn_gap": _net = {"input_word": [n_word, embedding_model.vector_size, 1], "label_size": label_size} _model = model2.GapCNN _model_inputs = model2.InputFormat.word_3d elif model_name == "lstm": _net = {"input_word": [n_word, embedding_model.vector_size], "label_size": label_size, "n_hidden_1": 64, "n_hidden_2": 128, "n_hidden_3": 256} _model = model2.LSTM _model_inputs = model2.InputFormat.basic else: raise ValueError("unknown model!") #model_instance = _model(network_architecture=_net , keep_prob=keep_prob) return _net, _pre_process, _model_inputs ```
{ "source": "jetyun/zergling", "score": 2 }
#### File: zergling/spiders/jetyun.py ```python import copy import six import json import time import logging import base64 from urlparse import urlparse from lxml import etree from scrapy.linkextractors import LinkExtractor from scrapy.spiders import Rule from scrapy.http import Request, HtmlResponse from scrapy_redis.spiders import RedisCrawlSpider from scrapy_redis.utils import bytes_to_str from goose import Goose from goose.text import StopWordsChinese from ..items import ZerglingItem logger = logging.getLogger(__name__) class JetyunSpider(RedisCrawlSpider): name = 'jetyun' def __init__(self, *a, **kw): pass def _build_request(self, rule, link, config_json): r = Request(url=link.url, callback=self._response_downloaded) r.meta.update(rule=rule, link_text=link.text, config_json=config_json) return r def _requests_to_follow(self, response): if not isinstance(response, HtmlResponse): return seen = set() config_json = response.meta.get('config_json', None) if not config_json: logger.info("response.meta['config_json'] is null =====_requests_to_follow====== %s" % response.meta) return else: m_rules = self._compile_rules(config_json) for n, rule in enumerate(m_rules): links = [lnk for lnk in rule.link_extractor.extract_links(response) if lnk not in seen] if links and rule.process_links: links = rule.process_links(links) for link in links: seen.add(link) r = self._build_request(n, link, config_json) yield rule.process_request(r) def _response_downloaded(self, response): config_json = response.meta.get('config_json', None) if config_json: m_rules = self._compile_rules(config_json) rule = m_rules[response.meta['rule']] else: logger.info("self._rules: %s============response meta not find rules ,use self._rules=============response.meta: %s" % (self._rules, response.meta)) return return self._parse_response(response, rule.callback, rule.cb_kwargs, rule.follow) def make_request_from_data(self, data): config_json = json.loads(bytes_to_str(data, self.redis_encoding)) url = config_json["start_url"] r = self.make_requests_from_url(url) r.meta.update(config_json=config_json) return r def parse_item(self, response): g = Goose({'stopwords_class': StopWordsChinese}) article = g.extract(raw_html=response.body) item = ZerglingItem() infos = article.infos config_json = response.meta.get('config_json', None) for k in config_json: if k != "collections" and k != "start_url" and k != "extracts" and k != "follows": item[k] = config_json[k] item["platform"] = 1 item["url"] = response.url.encode('utf-8') collections = config_json["collections"] for c in collections: name = str(c["name"]) value = None if c.has_key("xpath") and c["xpath"]: value = response.xpath(c["xpath"]).extract() if c.has_key("css") and c["css"]: value = response.css(c["css"]).extract() if c.has_key("callback") and c["callback"]: try: exec c["callback"] ret = callback(value, item, infos) if ret : value = ret except Exception as e: value = None logger.error("callback exec error: %s" % e) # raise e else: if value and len(value) >= 1 : value = value[0] infos[name] = value try: infos['raw_html'] = base64.b64encode(article.raw_html) except Exception as e: logger.error("raw_html can't base64 encode, url: %s . error: %s" % (item["url"], e)) item["datas"] = infos item["crawled_at"] = int(time.time()) logger.info("%s============parse_item=============%s" % (config_json, item["url"])) yield item def _compile_rules(self, config_json): extract_links = config_json["extracts"] follow_links = config_json["follows"] rules = () if extract_links: if follow_links: rules +=( Rule(LinkExtractor(allow=( follow_links ))), ) rules += ( Rule(LinkExtractor(allow=( extract_links )), callback='parse_item'), ) def get_method(method): if callable(method): return method elif isinstance(method, six.string_types): return getattr(self, method, None) _rules = [copy.copy(r) for r in rules] for rule in _rules: rule.callback = get_method(rule.callback) rule.process_links = get_method(rule.process_links) rule.process_request = get_method(rule.process_request) return _rules ```
{ "source": "jetz/sqlmapcli", "score": 3 }
#### File: sqlmapcli/sqlmapcli/logs.py ```python import sys import logging def get_logger(name): """ config logger Args: name (str): logger name Returns: object: logger """ # suppress requests library's log logging.getLogger("requests").setLevel(logging.WARNING) log_fmt = '[%(asctime)s @%(filename)s:%(lineno)d <%(levelname)s>] %(message)s' # noqa logging.basicConfig( level=logging.INFO, format=log_fmt, datefmt='%Y-%m-%d %H:%M:%S', stream=sys.stdout ) return logging.getLogger(name) ``` #### File: sqlmapcli/sqlmapcli/task.py ```python import time from urllib.parse import urljoin import requests from .logs import get_logger from .exceptions import TaskStatusError, TaskResultError, TaskLogError logger = get_logger('sqlmapcli') class TaskStatus(object): """ Task status constant """ READY = 'not running' RUNNING = 'running' FINISHED = 'terminated' class Task(object): def __init__(self, id, options, addr): """ Create a task object. Args: id (str): task id from remote sqlmapapi server. options (dict): options used to run task, see `curl http://<host>:<port>/option/<taskid>/list`. addr (str): remote sqlmapapi server address. """ self.id = id self.addr = addr self.options = options or {} # always store url target in task object self.url = self.options.get('url', None) def __str__(self): return '<Task#%s>' % self.id def __repr__(self): return str(self) def _request(self, path, method='GET'): """ Used to request remote sqlmapapi server. Args: path (str): url path for request. method (str): GET or POST for different request. Returns: dict if successful, None otherwirse. """ try: url, method = urljoin(self.addr, path), method.upper() if method == 'GET': r = requests.get(url).json() elif method == 'POST': r = requests.post(url, json=self.options).json() except requests.RequestException as e: logger.error('Fail to %s %s: %s' % (method, path, e)) return None if r.get('success'): return r else: logger.error('Fail to %s %s: %s' % (method, path, r.get('message'))) # noqa return None def set_option(self, key, value): """ Set option for task. Options can be set when client create task, or call `set_option` after task is created but not start. Args: key (str): option name. value (str): option value. Returns: Task: for chained call, eg. `task.set_option(key, value).set_option(key, value)`. """ self.options[key] = value if key == 'url': self.url = value return self def get_option(self, key): """ Get task option. Args: key (str): option name. Returns: str: option value. """ return self.options.get(key) def update_options(self, options): """ Update some options at same time. Args: options (dict): options that to update. """ self.options.update(options) if 'url' in options: self.url = options.get('url') def list_options(self): """ Get options that manually set. Returns: dict: options that user set. """ return self.options def start(self, url=None, options=None): """ Task start to run. Args: url (str): target url to scan by sqlmap, this is a shorthand for set option with key `url` options (Optional[dict]): shorthand, set options for task, alternative to `set_option` or `update_options` or set options when create task. Returns: str: engineid, maybe useful in future. """ if options: self.update_options(options) if url: self.url = url self.set_option('url', url) r = self._request('/scan/%s/start' % self.id, 'POST') self.engineid = r.get("engineid") if r else None return self.engineid def stop(self): """ Stop running task. Returns: bool: True if stop successfully, False otherwise. """ r = self._request('/scan/%s/stop' % self.id) return bool(r) def kill(self): """ Kill running task unconditionally. Returns: bool: True if Kill successfully, False otherwise. """ r = self._request('/scan/%s/kill' % self.id) return bool(r) def status(self): """ Task currenty status, ready, running or finished. Returns: dict: include status and retcode. Raises: TaskStatusError: status exception. """ r = self._request('/scan/%s/status' % self.id) if r: status, retcode = r.get('status'), r.get('returncode') return {'status': status, 'retcode': retcode} else: raise TaskStatusError("Can't get status") @property def ready(self): """ shorthand for task status. Returns: bool: True if task is created but not start, False otherwise. """ try: r = self.status() return r.get('status') == TaskStatus.READY except TaskStatusError as e: logger.error('Fail to GET task<%s> status: %s', self.id, e) return False @property def running(self): """ shorthand for task status. Returns: bool: True if task start but not finished, False otherwise. """ try: r = self.status() return r.get('status') == TaskStatus.RUNNING except TaskStatusError as e: logger.error('Fail to GET task<%s> status: %s', self.id, e) return False @property def finished(self): """ shorthand for task status. Returns: bool: True if task is finished, False otherwise. """ try: r = self.status() return r.get('status') == TaskStatus.FINISHED except TaskStatusError as e: logger.error('Fail to GET task<%s> status: %s', self.id, e) return False def get_result(self): """ Get task result. Returns: dict: task data. Raises: TaskResultError: task result exception. """ r = self._request('/scan/%s/data' % self.id) if r: return r.get('data') else: raise TaskResultError("Can't get result") def get_log(self, start=None, end=None): """ Get task log. Args: start (int): start index of log list. end (int): end index of log list. Returns: dict: task log data. Raises: TaskLogError: task log exception. """ if start and end: r = self._request('/scan/%s/log/%s/%s' % (self.id, start, end)) else: r = self._request('/scan/%s/log' % self.id) if r: return r.get('log') else: raise TaskLogError("Can't get log") def run(self, url=None, options=None, interval=5): """ Shorthand for call `start`, `status` and `get_result` Args: url (str): target url to scan by sqlmap, this is a shorthand for set option with key `url` options (Optional[dict]): shorthand, set options for task, alternative to `set_option` or `update_options` or set options when create task. interval (int): interval time toquery task status, seconds default. Returns: dict if successfully, None otherwise. """ self.start(url, options) while self.running: time.sleep(interval) try: r = self.get_result() except TaskResultError as e: logger.error('Fail to GET task<%s> result: %s', self.id, e) return None return r ```
{ "source": "jeubanks/vera-life360", "score": 3 }
#### File: jeubanks/vera-life360/vera.py ```python import urllib.request, urllib.parse, urllib.error, json import sys import hashlib #import sha import base64 import http.client import time import requests class Time(object): """ Time object represents a time value in a 24-hour day i.e. a value we might normally represent HH:MM:SS. """ def __init__(self, h=0, m=0, s=0, after_sunrise=False, after_sunset=False): """ Constructs a new Time object. :param h: Hour value :param m: Minute value :param s: Seconds value :param after_sunrise: True if value is relative to sunrise :param after_sunset: True if the time value is relative to sunset """ assert (after_sunrise and after_sunset) == False, \ "Must not specify both after_sunrise and after_sunset" self.time = (h, m, s) self.after_sunrise = after_sunrise self.after_sunset = after_sunset def output(self): """ Formats the time value in a format suitable for LUUP comms. """ if self.after_sunrise: return "%02d:%02d:%02dR" % self.time if self.after_sunset: return "%02d:%02d:%02dT" % self.time return "%02d:%02d:%02d" % self.time def parse(s): """ Converts LUUP time values to a Time object. :param s: Value from LUUP comms. """ rise = False set = False if s[-1:] == "R": rise = True s = s[:-1] elif s[-1:] == "T": set = True s = s[:-1] x = s.split(":") if len(x) == 1: x.append("0") if len(x) == 2: x.append("0") return Time(int(x[0]), int(x[1]), int(x[2]), after_sunrise=rise, after_sunset=set) parse = staticmethod(parse) def __str__(self): return str(self.__dict__) def __eq__(self, obj): return self.__dict__ == obj.__dict__ and type(self) == type(obj) class Timer(object): """ Base class for a timer value. There are four types of timer implemented in the four subclasses. """ def parse(s): """ Converts LUUP timer values to a Timer object. :param s: Value from LUUP comms. """ if s["type"] == 1: return IntervalTimer.parse(s) if s["type"] == 2: return DayOfWeekTimer.parse(s) if s["type"] == 3: return DayOfMonthTimer.parse(s) if s["type"] == 4: return AbsoluteTimer.parse(s) raise RuntimeError("Parsing timer not implemented.") parse = staticmethod(parse) def __str__(self): return str(self.__dict__) def __eq__(self, obj): return self.__dict__ == obj.__dict__ class DayOfWeekTimer(Timer): """ Represents a daily timer which fires at a specific point in a 24-hour day. The timer can be restricted so that it only operates on certain days in the week. """ def __init__(self, id=None, name=None, days=None, time=None): """ Creates a DayOfWeekTimer object. :param id: Integer identifier for the timer. :param name: A human-readable name. :param days: A string containing comma-separated digits representing the days of the week, 1=Monday etc. :param time: A Time object representing the time. """ self.id = id self.name = name self.days = days self.time = time def output(self): """ Formats the time value in a format suitable for LUUP comms. """ return { "id": self.id, "name": self.name, "type": 2, "enabled": 1, "days_of_week": self.days, "time": self.time.output() } def parse(s): """ Converts LUUP day-of-week timer values to a DayOfWeekTimer object. :param s: Value from LUUP comms. """ t = DayOfWeekTimer() t.id = s.get("id", None) t.name = s.get("name", None) t.days = s.get("days_of_week", None) if "time" in s: t.time = Time.parse(s["time"]) else: t.time = None return t parse = staticmethod(parse) class DayOfMonthTimer(Timer): """ Represents a daily timer which fires at a specific point in a 24-hour day. The timer can be restricted so that it only operates on certain days in the month. """ def __init__(self, id=None, name=None, days=None, time=None): """ Creates a new DayOfMonthTimer. :param id: Integer identifier for the timer. :param name: A human-readable name. :param days: A string containing comma-separated digits representing the days of the month, 1=1st etc. :param time: A Time object representing the time. """ self.id = id self.name = name self.days = days self.time = time def output(self): """ Formats the time value in a format suitable for LUUP comms. """ return { "id": self.id, "name": self.name, "type": 3, "enabled": 1, "days_of_month": self.days, "time": self.time.output() } def parse(s): """ Converts LUUP day-of-month timer values to a DayOfMonthTimer object. :param s: Value from LUUP comms. """ t = DayOfMonthTimer() t.id = s.get("id", None) t.name = s.get("name", None) t.days = s.get("days_of_month", None) if "time" in s: t.time = Time.parse(s["time"]) else: t.time = None return t parse = staticmethod(parse) class IntervalTimer(Timer): """ A timer describing a regularly occuring event, whose period can be described in terms of a number of seconds, minutes, hours or days. """ def __init__(self, id=None, name=None, seconds=0, minutes=0, hours=0, days=0): """ Create a new IntervalTimer object. :param id: Integer identified for timer. :param name: Human-readable name for the timer. :param seconds: Interval value in seconds. :param minutes: Interval value in minutes. :param hours: Interval value in hours. :param days: Interval value in days. """ specd = 0 if seconds != 0: specd = specd + 1 if minutes != 0: specd = specd + 1 if hours != 0: specd = specd + 1 if days != 0: specd = specd + 1 assert specd < 2, \ "Should specify only one of seconds, minutes, hours and days" self.id = id self.name = name (self.seconds, self.minutes, self.hours, self.days) = \ (seconds, minutes, hours, days) def output(self): """ Formats the value in a format suitable for LUUP comms. """ if self.days > 0: interval = "%dd" % self.days if self.hours > 0: interval = "%dh" % self.hours if self.minutes > 0: interval = "%dm" % self.minutes else: interval = "%ds" % self.seconds return { "id": self.id, "name": self.name, "type": 1, "enabled": 1, "interval": interval } def parse(s): """ Converts LUUP interval timer values to a IntervalTimer object. :param s: Value from LUUP comms. """ t = IntervalTimer() t.id = s.get("id", None) t.name = s.get("name", None) if "interval" in s: ival = s["interval"] if ival[-1:] == "s": t.seconds = int(ival[:-1]) if ival[-1:] == "m": t.minutes = int(ival[:-1]) if ival[-1:] == "h": t.hours = int(ival[:-1]) if ival[-1:] == "d": t.days = int(ival[:-1]) return t parse = staticmethod(parse) class AbsoluteTimer(Timer): """ Describes a timer which fires only once, at a described point in time. """ def __init__(self, id=None, name=None, year=None, month=None, date=None, hours=0, minutes=0, seconds=0): """ Creates an AbsoluteTimer object. :param id: Identified for the timer. :param name: Human-readble name for the timer. :param year: Absolute year value, 4-digit. :param month: Absolute month value, 1-12. :param date: Absolute date value, 1-31. :param hours: Hour value. :param minutes: Minute value. :param seconds: Seconds value. """ self.id, self.name = id, name (self.year, self.month, self.date) = (year, month, date) (self.hours, self.minutes, self.seconds) = (hours, minutes, seconds) def output(self): """ Formats the timer value in a format suitable for LUUP comms. """ time = "%04d-%02d-%02d %02d:%02d:%02d" % (self.year, self.month, \ self.date, self.hours, self.minutes, self.seconds) return { "id": self.id, "name": self.name, "type": 4, "enabled": 1, "abstime": time } def parse(s): """ Converts LUUP absolute timer values to an AbsoluteTimer object. :param s: Value from LUUP comms. """ t = AbsoluteTimer() t.id = s.get("id", None) t.name = s.get("name", None) if "abstime" in s: parts = s["abstime"].split(" ") if len(parts) != 2: raise RuntimeError("Invalid date format") dateparts = parts[0].split("-") timeparts = parts[1].split(":") if len(dateparts) != 3: raise RuntimeError("Invalid date format") if len(timeparts) != 3: raise RuntimeError("Invalid date format") t.year = int(dateparts[0]) t.month = int(dateparts[1]) t.date = int(dateparts[2]) t.hours = int(timeparts[0]) t.minutes = int(timeparts[1]) t.seconds = int(timeparts[2]) return t parse = staticmethod(parse) class Trigger(Timer): """ Describes a device-initiated event for triggering a scene. """ def __init__(self, id=None, name=None, device=None, template=None, args=None, start=None, stop=None, days_of_week=None): """ Creates a Trigger object. :param id: Trigger identifier. :param name: Human-readable name. :param device: Device object identifying the device which is to initiate the scene :param template: is the template function for the device :param args: is a sequence of arguments :param start: a Time object specifying the start time for the period for which this trigger is valid. :param end: a Time object specifying the end time for which this trigger is valid :param days_of_week: days for which this trigger applies. """ self.id, self.name = id, name self.device = device self.template = template if args == None: self.args = [] else: self.args = args self.start, self.stop = start, stop self.days_of_week = days_of_week def output(self): """ Formats the value in a format suitable for LUUP comms. """ args = [] for i in range(0, len(self.args)): args.append({"id": i + 1, "value": self.args[i]}) val = { "id": self.id, "device": self.device.id, "enabled": 1, "name": self.name, "template": self.template, "arguments": args } if self.start != None and self.stop != None: val["start"] = self.start.output() val["stop"] = self.stop.output() if self.days_of_week != None: val["days_of_week"] = self.days_of_week return val def parse(vera, s): """ Converts LUUP trigger values to a Trigger object. :param vera: Vera object. :param s: Value from LUUP comms. """ t = Trigger() t.id = s.get("id", None) t.template = s.get("template", None) t.name = s.get("name", None) t.days_of_week = s.get("days_of_week", None) if "arguments" in s: for i in s["arguments"]: if 'value' in i: t.args.append(i["value"]) if "device" in s: t.device = vera.get_device_by_id(s["device"]) else: t.device = None if "start" in s: t.start = Time.parse(s["start"]) else: t.start = None if "stop" in s: t.stop = Time.parse(s["stop"]) else: t.stop = None return t parse = staticmethod(parse) def __str__(self): return str(self.__dict__) def __eq__(self, obj): return self.__dict__ == obj.__dict__ and type(self) == type(obj) class Job(object): """ Represents a job, typically used to implement an action. """ def __init__(self): """ Creates a Job object. """ pass def get_status(self): """ Gets the job status, returns a tuple. First element is job code, second element is human-readable meaning of the job code. """ url = "data_request?id=jobstatus&job=%d&plugin=zwave" % self.id return self.vera.get(url) def is_complete(self): """ Tests whether the job has completed. :return: True if the job is complete, False otherwise. """ status = self.get_status() return status["status"] == 4 def is_pending(self): """ Tests whether the job is stilling pending completion. :return: True if the job is still pending completion, False otherwise. """ status = self.get_status() return status["status"] == 3 def __str__(self): return str(self.__dict__) def __eq__(self, obj): if type(self) != type(obj): return False return self.__dict__ == obj.__dict__ class Action(object): """ Base class describing an action. """ def invoke(self): """ Invoke an action :return: a Job object, describing the job implementing the action. """ raise RuntimeError("Not implemented") def parse(vera, s): """ Converts LUUP action values to an Action object. :param vera: A Vera object. :param s: Value from LUUP comms. """ if s["service"] == "urn:upnp-org:serviceId:TemperatureSetpoint1": return SetpointAction.parse(vera, s) if s["service"] == "urn:upnp-org:serviceId:Dimming1": return DimmerAction.parse(vera, s) if s["service"] == "urn:upnp-org:serviceId:SwitchPower1": return SwitchAction.parse(vera, s) if s["service"] == "urn:upnp-org:serviceId:HVAC_UserOperatingMode1": return HeatingAction.parse(vera, s) if s["service"] == "urn:upnp-org:serviceId:RGBController1": return RGBAction.parse(vera, s) raise RuntimeError("Don't know how to handle service %s" % \ s["service"]) parse = staticmethod(parse) def __str__(self): return str(self.__dict__) def __eq__(self, obj): return self.__dict__ == obj.__dict__ and type(self) == type(obj) class SetpointAction(Action): """ An action, which changes the 'set point' of a thermostat. Note that when this action is applied to a battery-powered device, the result may not be applied until the device does a rendezvous with the controller. """ def __init__(self, device=None, value=None): """ Creates a SetpointAction object. :param device: Device object specifying the device :param value: set-point value, a float """ self.device = device self.value = value def output(self): """ Formats the value in a format suitable for LUUP comms. """ return { "device": self.device.id, "action": "SetCurrentSetpoint", "arguments": [ { "name": "NewCurrentSetpoint", "value": self.value } ], "service": "urn:upnp-org:serviceId:TemperatureSetpoint1" } def invoke(self): """ Immediately invoke the action :return: a Job object, describing the job implementing the action. """ base="data_request?id=action" action = "SetCurrentSetpoint" svc = "urn:upnp-org:serviceId:TemperatureSetpoint1" path = "%s&DeviceNum=%d&serviceId=%s&action=%s&NewCurrentSetpoint=%f&output_format=json" \ % (base, self.device.id, svc, action, self.value) status = self.device.vera.get(path) job = Job() job.id = int(status["u:SetCurrentSetpointResponse"]["JobID"]) job.vera = self.device.vera return job def parse(vera, s): """ Converts LUUP SetCurrentSetpoint action values to a SetpointAction object. :param s: Value from LUUP comms. """ ha = SetpointAction() ha.device = vera.get_device_by_id(s["device"]) ha.value = s["arguments"][0]["value"] return ha parse = staticmethod(parse) class SwitchAction(Action): """ Action which operates against a standard power switch which has on/off semantics. """ def __init__(self, device=None, value=None): """ Creates a SwitchAction object. :param device: Device object describing the device to apply :param value: boolean value for switch """ self.device = device self.value = value def output(self): """ Formats the value in a format suitable for LUUP comms. """ return { "device": self.device.id, "action": "SetTarget", "arguments": [ { "name": "newTargetValue", "value": self.value } ], "service": "urn:upnp-org:serviceId:SwitchPower1" } def invoke(self): """ Implements the defined action. :return: a Job object, describing the job implementing the action. """ if self.value: value = 1 else: value = 0 base="data_request?id=action" action = "SetTarget" svc = "urn:upnp-org:serviceId:SwitchPower1" path = "%s&DeviceNum=%d&serviceId=%s&action=%s&newTargetValue=%d&output_format=json" \ % (base, self.device.id, svc, action, value) status = self.device.vera.get(path) job = Job() job.id = int(status["u:SetTargetResponse"]["JobID"]) job.vera = self.device.vera return job def parse(vera, s): """ Converts LUUP SetTarget values to a SwitchAction object. :param s: Value from LUUP comms. """ ha = SwitchAction() ha.device = vera.get_device_by_id(s["device"]) ha.value = s["arguments"][0]["value"] return ha parse = staticmethod(parse) class VSwitchAction(Action): """ Action which operates against a standard power switch which has on/off semantics. """ def __init__(self, device=None, value=None): """ Creates a VSwitchAction object. :param device: Device object describing the device to apply :param value: boolean value for switch """ self.device = device self.value = value def output(self): """ Formats the value in a format suitable for LUUP comms. """ return { "device": self.device.id, "action": "SetTarget", "arguments": [ { "name": "newTargetValue", "value": self.value } ], "service": "urn:upnp-org:serviceId:VSwitch1" } def invoke(self): """ Implements the defined action. :return: a Job object, describing the job implementing the action. """ if self.value: value = 1 else: value = 0 base="data_request?id=action" action = "SetTarget" svc = "urn:upnp-org:serviceId:VSwitch1" path = "%s&DeviceNum=%d&serviceId=%s&action=%s&newTargetValue=%d&output_format=json" \ % (base, self.device.id, svc, action, value) status = self.device.vera.get(path) job = Job() job.id = status["u:SetTargetResponse"]["OK"] job.vera = self.device.vera return job def parse(vera, s): """ Converts LUUP SetTarget values to a SwitchAction object. :param s: Value from LUUP comms. """ ha = SwitchAction() ha.device = vera.get_device_by_id(s["device"]) ha.value = s["arguments"][0]["value"] return ha parse = staticmethod(parse) class DimmerAction(Action): """ Action which changes the dim level of a dimmer device """ def __init__(self, device=None, value=None): """ Creates a DimmerAction object. :param device: a Device object specifying the device to be affected :param value: Dim value, integer 0-100 """ self.device = device self.value = value def output(self): """ Formats the value in a format suitable for LUUP comms. """ return { "device": self.device.id, "action": "SetLoadLevelTarget", "arguments": [ { "name": "newTargetValue", "value": self.value } ], "service": "urn:upnp-org:serviceId:Dimming1" } def invoke(self): """ Invokes the action, affecting the specified device. :return: a Job object, describing the job implementing the action. """ base="data_request?id=action" action = "SetLoadLevelTarget" svc = "urn:upnp-org:serviceId:Dimming1" path = "%s&DeviceNum=%d&serviceId=%s&action=%s&newTargetValue=%d&output_format=json" \ % (base, self.device.id, svc, action, self.value) status = self.device.vera.get(path) job = Job() job.id = int(status["u:SetLoadLevelTargetResponse"]["JobID"]) job.vera = self.device.vera return job def parse(vera, s): """ Converts LUUP values to a DimmerAction object. :param s: Value from LUUP comms. """ ha = DimmerAction() ha.device = vera.get_device_by_id(s["device"]) ha.value = s["arguments"][0]["value"] return ha parse = staticmethod(parse) class HeatingAction(Action): """ Action which changes the operational mode of a heating device """ def __init__(self, device=None, value=None): """ Creates a HeatingAction device. :param device: a Device object specifying the device to be affected :param value: string, one of: Off, HeatOn """ self.device = device self.value = value def output(self): """ Formats the time value in a format suitable for LUUP comms. """ return { "device": self.device.id, "action": "SetModeTarget", "arguments": [ { "name": "NewModeTarget", "value": self.value } ], "service": "urn:upnp-org:serviceId:HVAC_UserOperatingMode1" } def invoke(self): """ Invokes the action, affecting the specified device. :return: a Job object, describing the job implementing the action. """ base="data_request?id=action" action = "SetModeTarget" svc = "urn:upnp-org:serviceId:HVAC_UserOperatingMode1" path = "%s&DeviceNum=%d&serviceId=%s&action=%s&NewModeTarget=%s&output_format=json" \ % (base, self.device.id, svc, action, self.value) status = self.device.vera.get(path) job = Job() job.id = int(status["u:SetModeTargetResponse"]["JobID"]) job.vera = self.device.vera return job def parse(vera, s): """ Converts LUUP values to a HeatingAction object. :param s: Value from LUUP comms. """ ha = HeatingAction() ha.device = vera.get_device_by_id(s["device"]) ha.value = s["arguments"][0]["value"] return ha parse = staticmethod(parse) class RGBAction(Action): """ Action which operates against a colour controller which has 5 channels """ def __init__(self, device=None, value=None): """ Creates a RGAction object. :param device: Device object describing the device to apply :param value: value for color """ self.device = device self.value = value def output(self): """ Formats the value in a format suitable for LUUP comms. """ return { "device": self.device.id, "action": "SetColor", "arguments": [ { "name": "newColorTargetValue", "value": self.value } ], "service": "urn:upnp-org:serviceId:RGBController1" } def invoke(self): """ Implements the defined action. :return: a Job object, describing the job implementing the action. """ base="data_request?id=action" action = "SetColorTarget" svc = "urn:upnp-org:serviceId:RGBController1" path = "%s&DeviceNum=%d&serviceId=%s&action=%s&newColorTargetValue=%s&transitionDuration=0&transitionNbSteps=10&output_format=json" \ % (base, self.device.id, svc, action, self.value) status = self.device.vera.get(path) job = Job() job.id = int(status["u:SetColorTargetResponse"]["JobID"]) job.vera = self.device.vera return job def parse(vera, s): """ Converts LUUP SetTarget values to a RGBAction object. :param s: Value from LUUP comms. """ sa = RGBAction() sa.device = vera.get_device_by_id(s["device"]) sa.value = s["arguments"][0]["value"] return sa parse = staticmethod(parse) class SceneAction(Action): """ Action which runs a scene """ def __init__(self, vera=None, id=None): """ Creates a RGAction object. :param device: Device object describing the device to apply :param value: value for color """ self.vera = vera self.id = id def output(self): """ Formats the value in a format suitable for LUUP comms. """ return { "action": "RunScene", "arguments": [ { "name": "SceneNum", "value": self.id } ], "service": "urn:micasaverde-com:serviceId:HomeAutomationGateway1" } def invoke(self): """ Implements the defined action. :return: a Job object, describing the job implementing the action. """ base="data_request?id=action" action = "RunScene" svc = "urn:micasaverde-com:serviceId:HomeAutomationGateway1" path = "%s&serviceId=%s&action=%s&SceneNum=%d&output_format=json" \ % (base, svc, action, self.id) status = self.vera.get(path) if status["u:RunSceneResponse"]["OK"] != "OK": return False return True def parse(vera, s): """ Converts LUUP SetTarget values to a RGBAction object. :param s: Value from LUUP comms. """ sa = RGBAction() sa.vera = vera sa.value = s["arguments"][0]["value"] return sa parse = staticmethod(parse) class Group(object): """ A list of Action objects plus a delay time for when the actions are applied, """ def __init__(self, delay=None, actions=None): """ Creates an Group object :param delay: delay in seconds :param actions: sequence of Action objects """ self.delay = delay self.actions = actions if self.actions == None: self.actions = [] def output(self): """ Formats the time value in a format suitable for LUUP comms. """ acts = [] for i in self.actions: acts.append(i.output()) return { "delay": self.delay, "actions": acts } def parse(vera, s): """ Converts LUUP group value to an Group object. :param s: Value from LUUP comms. """ aset = Group() aset.delay = s.get("delay", 0) if "actions" in s: for i in s["actions"]: aset.actions.append(Action.parse(vera, i)) return aset parse = staticmethod(parse) def __str__(self): return str(self.__dict__) def __eq__(self, obj): return self.__dict__ == obj.__dict__ and type(self) == type(obj) class SceneDefinition(object): def __init__(self, name=None, triggers=None, modes=None, timers=None, actions=None, room=None): self.name = name if triggers != None: self.triggers = triggers else: self.triggers = [] self.modes = modes if timers != None: self.timers = timers else: self.timers = [] if actions != None: self.actions = actions else: self.actions = [] self.room = room def output(self): """ Formats the time value in a format suitable for LUUP comms. """ triggers = [] for i in self.triggers: triggers.append(i.output()) timers = [] for i in self.timers: timers.append(i.output()) actions = [] for i in self.actions: actions.append(i.output()) val = { "name": self.name, "triggers": triggers, "triggers_operator": "OR", "timers": timers, "groups": actions, "users": "", } if self.modes != None: val["modeStatus"] = self.modes.output() if self.room != None: val["room"] = self.room.id return val def parse(vera, s): """ Converts LUUP scene to a SceneDefinition object. :param s: Value from LUUP comms. """ sd = SceneDefinition() sd.name = s["name"] for i in s["triggers"]: sd.triggers.append(Trigger.parse(vera, i)) if "timers" in s: for i in s["timers"]: sd.timers.append(Timer.parse(i)) if "groups" in s: for i in s["groups"]: sd.actions.append(Group.parse(vera, i)) if "room" in s: if s["room"] == 0: sd.room = None else: sd.room = vera.get_room_by_id(s["room"]) if "modeStatus" in s: sd.modes = Modes.parse(vera, s["modeStatus"]) return sd parse = staticmethod(parse) def __str__(self): return str(self.__dict__) def __eq__(self, obj): return self.__dict__ == obj.__dict__ and type(self) == type(obj) class Modes(object): """ Describes the set of modes for which a scene will be valid """ def __init__(self, home=False, away=False, night=False, vacation=False): """ Creates a Modes object :param home: True for scene to be valid in home mode :param away: True for scene to be valid in away mode :param night: True for scene to be valid in night mode :param vacation: True for scene to be valid in vacation mode """ self.home, self.away, self.night = home, away, night self.vacation = vacation def output(self): """ Formats the value in a format suitable for LUUP comms. """ val = "" if self.home: val = "1" if self.away: if val != "": val = val + "," val = val + "2" if self.night: if val != "": val = val + "," val = val + "3" if self.vacation: if val != "": val = val + "," val = val + "4" return val def parse(vera, s): """ Converts LUUP modeSet values to a Mode object. :param vera: A vera object. :param s: Value from LUUP comms. """ x = s.split(",") y = {} for i in x: y[i] = True m = Modes() m.home = y.get(0, None) m.away = y.get(1, None) m.night = y.get(2, None) m.vacation = y.get(3, None) parse = staticmethod(parse) def __str__(self): return str(self.__dict__) def __eq__(self, obj): return self.__dict__ == obj.__dict__ and type(self) == type(obj) class Device(object): """ Describes a LUUP device """ def __init__(self): """ Creates a Device object """ pass def get_variable(self, svc, var): """ Queries the LUUP engine for the value of a variable. :param svc: LUUP service :param var: Variable name. """ action = "variableget" path = "data_request?id=%s&DeviceNum=%d&serviceId=%s&Variable=%s" \ % (action, self.id, svc, var) return self.vera.get(path) def get_switch(self): """ Get the current state of a power switch device. Returns a boolean value. """ svc = "urn:upnp-org:serviceId:SwitchPower1" if not svc in self.services: raise RuntimeError("Device doesn't support the service") status = self.get_variable(svc, "Status") return status == 1 def get_vswitch(self): """ Get the current state of a virtual power switch device. Returns a boolean value. """ svc = "urn:upnp-org:serviceId:VSwitch1" if not svc in self.services: raise RuntimeError("Device doesn't support the service") status = self.get_variable(svc, "Status") return status == 1 def get_rgb(self): """ Get the current state of an RGB device. Returns a string. """ svc = "urn:upnp-org:serviceId:RGBController1" if not svc in self.services: raise RuntimeError("Device doesn't support the service") # Strip off hash. return self.get_variable(svc, "Color")[1:] def get_dimmer(self): """ Get the current state of a dimmer device. Returns an integer in the range 0-100. """ svc = "urn:upnp-org:serviceId:Dimming1" if not svc in self.services: raise RuntimeError("Device doesn't support the service") return self.get_variable(svc, "LoadLevelStatus") def get_temperature(self): """ Get the current value of a temperature sensor device. Returns a floating point value. The temperature scale in use is dependent on device configuration. """ svc = "urn:upnp-org:serviceId:TemperatureSensor1" if not svc in self.services: raise RuntimeError("Device doesn't support the service") return self.get_variable(svc, "CurrentTemperature") def get_humidity(self): """ Get the current value of a humidity sensor device. Returns a integer value representing % relative humidity. """ svc = "urn:micasaverde-com:serviceId:HumiditySensor1" if not svc in self.services: raise RuntimeError("Device doesn't support the service") return self.get_variable(svc, "CurrentLevel") def get_lux(self): """ Get the current value of a light sensor device. Returns a integer value representing % of lighting. """ svc = "urn:micasaverde-com:serviceId:LightSensor1" if not svc in self.services: raise RuntimeError("Device doesn't support the service") return self.get_variable(svc, "CurrentLevel") def get_kwh(self): """ Get the current value of the energy meter in kwh. Returns a integer value with current kilowatts being used. """ svc = "urn:micasaverde-com:serviceId:EnergyMetering1" if not svc in self.services: raise RuntimeError("Device doesn't support the service") return self.get_variable(svc, "KWH") def get_kwh_reading(self): """ Get the current reading of the energy meter in kwh. Returns a integer value with to date kilowatts being used. """ svc = "urn:micasaverde-com:serviceId:EnergyMetering1" if not svc in self.services: raise RuntimeError("Device doesn't support the service") return self.get_variable(svc, "KWHReading") def get_watt(self): """ Get the current value of the energy meter in watts. Returns a integer value with current wattage being used. """ svc = "urn:micasaverde-com:serviceId:EnergyMetering1" if not svc in self.services: raise RuntimeError("Device doesn't support the service") return self.get_variable(svc, "Watts") def get_setpoint(self): """ Get the 'set point' of a thermostat device. This is the temperature at which the device is configured to turn on heating. """ svc = "urn:upnp-org:serviceId:TemperatureSetpoint1" if not svc in self.services: raise RuntimeError("Device doesn't support the service") return self.get_variable(svc, "CurrentSetpoint") def get_heating(self): """ Get the operating mode of a heating device. Valid values are: Off, HeatOn. """ svc = "urn:upnp-org:serviceId:HVAC_UserOperatingMode1" if not svc in self.services: raise RuntimeError("Device doesn't support the service") return self.get_variable(svc, "ModeStatus") def get_battery(self): """ Get the battery capacity of a battery-powered device. Is a % value, 0-100. """ svc = "urn:micasaverde-com:serviceId:HaDevice1" if not svc in self.services: raise RuntimeError("Device doesn't support the service") return self.get_variable(svc, "BatteryLevel") def set_switch(self, value): """ Changes the setting of a switch device. :param value: new value, boolean """ act = SwitchAction(self, value) return act.invoke() def set_vswitch(self, value): """ Changes the setting of a switch device. :param value: new value, boolean """ act = VSwitchAction(self, value) return act.invoke() def set_rgb(self, value): """ Changes the setting of an RGB device. :param value: new value, string in form #aabbccddee """ act = RGBAction(self, value) return act.invoke() def set_dimmer(self, value): """ Changes the setting of a dimmer device. :param value: new value, 0-100. """ act = DimmerAction(self, value) return act.invoke() def set_setpoint(self, value): """ Changes the set point of a thermostat device. :param value: new value, float. """ act = SetpointAction(self, value) return act.invoke() def set_heating(self, value): """ Changes the operating mode of a heating device. :param value: new value, string, valid values are: Off HeatOn. """ act = HeatingAction(self, value) return act.invoke() def __str__(self): return str(self.__dict__) def __eq__(self, obj): return self.__dict__ == obj.__dict__ and type(self) == type(obj) def __str__(self): return str(self.__dict__) def __eq__(self, obj): return self.__dict__ == obj.__dict__ and type(self) == type(obj) class Scene(object): """ Represents a scene, once it is configured into the LUUP engine. """ def __init__(self): """ Creates a Scene object. """ pass def delete(self): """ Calls the LUUP engine to delete this scene. """ self.vera.delete_scene(self) def __str__(self): return str(self.__dict__) def __eq__(self, obj): return self.__dict__ == obj.__dict__ and type(self) == type(obj) def run(self): self.vera.run_scene(self.id) class Room(object): """ Represents a room, configured into the LUUP engine. """ def __init__(self): pass def __str__(self): return str(self.__dict__) def __eq__(self, obj): if type(self) != type(obj): return False return self.__dict__ == obj.__dict__ class Vera(object): """ Vera represents a connection to a Vera device's LUUP engine. """ def __init__(self): """ Creates a new Vera object. """ self.update_state() def update_state(self): """ Queries the LUUP engine for user_data state, and updates the local copy. """ ud = self.get('data_request?id=user_data&output_format=json') self.user_data = ud self.rooms = {} for i in self.user_data["rooms"]: s = Room() s.vera = self s.id = int(i["id"]) s.name = i["name"] self.rooms[s.id] = s self.devices = {} for i in self.user_data["devices"]: d = Device() d.vera = self d.id = int(i["id"]) d.name = i["name"] if "manufacturer" in i: d.manufacturer = i["manufacturer"] else: d.manufacturer = None if "model" in i: d.model = i["model"] else: d.model = None d.services = set() for st in i["states"]: d.services.add(st["service"]) d.device_type = i["device_type"] if "device_file" in i: d.device_file = i["device_file"] if "device_json" in i: d.device_json = i["device_json"] if "invisible" in i and int(i["invisible"]) > 0: d.invisible = True else: d.invisible = False if "room" in i and int(i["room"]) in self.rooms: d.room = self.rooms[int(i["room"])] else: d.room = None self.devices[d.id] = d self.scenes = {} for i in self.user_data["scenes"]: s = Scene() s.vera = self s.id = int(i["id"]) s.name = i["name"] if 'room' in i and int(i["room"]) in self.rooms: s.room = self.rooms[int(i["room"])] else: s.room = None s.definition = SceneDefinition.parse(self, i) self.scenes[s.id] = s def get_room_by_id(self, id): """ Return a Room object if one exists matching the provided ID. :param id: Room ID, an integer :return: A Room object """ if not isinstance(id, int): id = int(id) if id in self.rooms: return self.rooms[id] raise RuntimeError("Room not known") def get_room(self, name): """ Return a Room object if one exists with the provided room name. :param name: Room name. :return: A Room object """ for i in self.rooms: if self.rooms[i].name == name: return self.rooms[i] raise RuntimeError("Room '%s' not known" % name) def get_device(self, name, room=None): """ Return a Device object if one exists with the provided device name. Optionally, a room object can be specified to restrict the search for the device to that room. :param name: Device name. :param room: Optional Rooom object. :return: A Device object """ for i in self.devices: if self.devices[i].name == name: if room == None or self.devices[i].room == room: return self.devices[i] raise RuntimeError("Device '%s' not known" % name) def get_device_by_id(self, id): """ Return a Device object if one exists matching the provided ID. :param id: Device ID, an integer :return: A Device object """ if not isinstance(id, int): id = int(id) for i in self.devices: if self.devices[i].id == id: return self.devices[i] raise RuntimeError("Device not found") def get_devices(self): """ Return a sequence of devices. :return: A sequence of Device objects. """ devices = [] for i in self.devices: devices.append(self.devices[i]) return devices def get_scenes(self): """ Returns a list of scenes. :return: A sequence of Scene objects. """ scenes = [] for i in self.scenes: scenes.append(self.scenes[i]) return scenes def get_rooms(self): """ Returns a list of rooms. :return: A sequence of Room objects. """ rooms = [] for i in self.rooms: rooms.append(self.rooms[i]) return rooms def get(self, path): """ Performs an HTTP/S 'GET' for a LUUP resource, which is returned. :param path: Relative path for the resource e.g. data_request?id=alive :return: The resource. If the underlying resource is JSON, this is converted to Python dict. """ raise RuntimeError("Not implemented") def get_user_data(self): """ Returns the user_data. Doesn't fetch, this is a local copy. :return: user_data as a Python dict. """ return self.user_data def get_sdata(self): """ Fetches the sdata from the LUUP engine. :return: sdata as a dict. """ payload = self.get('data_request?id=sdata&output_format=json') return payload def get_file(self, path): """ Fetches a file from the Vera device. :param path: filename. :return: file contents """ file = self.get('data_request?id=file&parameters=%s' % path) return file def get_status(self): """ Gets Vera status. :return: status value. """ payload = self.get('data_request?id=status&output_format=json') return payload def get_scene(self, id): """ Fetches a scene from the LUUP device. You probably want to use get_scenes, to access Scene objects. :param id: scene ID. :return: scene as Python dict, not a Scene object. """ if not isinstance(id, int): id = int(id) payload = self.get('data_request?id=scene&action=list&scene=%d&output_format=json' % id) return payload def delete_scene(self, s): """ Deletes a Scene from Vera. :param s: A Scene object """ return self.get('data_request?id=scene&action=delete&scene=%s' % s.id) def create_scene(self, s): """ Creates a Scene object from a SceneDefinition object. :param s: SceneDefinition object. """ s = json.dumps(s.output()) # URL-encoding. Vera not happy with Python's standard # URL-encoding. s = Vera.urlencode(s) payload = self.get('data_request?id=scene&action=create&json=%s' % s) return payload def run_scene(self, id): """ Run a scene by ID. :param id: Scene number. """ act = SceneAction(self, id) return act.invoke() def __str__(self): return str(self.__dict__) def __eq__(self, obj): return self.__dict__ == obj.__dict__ and type(self) == type(obj) def urlencode(s): # URL-encoding. Vera not happy with Python's standard # URL-encoding. s = s.replace("%", "%25") s = s.replace(":", "%3a") s = s.replace("+", "%2b") s = s.replace("&", "%26") s = s.replace("{", "%7b") s = s.replace("}", "%7d") s = s.replace("'", "%27") s = s.replace('"', "%22") s = s.replace("?", "%3f") s = s.replace(" ", "%20") s = s.replace("/", "%2f") return s urlencode = staticmethod(urlencode) def get_weather(self): """ Gets the weather status for the current location. :returns: a tuple of two items, first item is a floating point local temperature, second is a human-readable outlook. """ city = self.user_data["weatherSettings"]["weatherCity"] country = self.user_data["weatherSettings"]["weatherCountry"] host = "weather.mios.com" temp_scale = "C" url = "http://%s/?tempFormat=%s&cityWeather=%s&countryWeather=%s" % \ (host, temp_scale, Vera.urlencode(city), Vera.urlencode(country)) weather = self.proxy_get(url) return (float(weather["temp"]), weather["text"]) def all_switches(self, value): """ Implement a state change to all switches. :param value: The value to apply to all switches, a boolean. :return: a Job object, describing the job implementing the action. """ if value: value = 1 else: value = 0 base="data_request?id=action" action = "SetTarget" svc = "urn:upnp-org:serviceId:SwitchPower1" path = "%s&Category=%d&serviceId=%s&action=%s&newTargetValue=%d&output_format=json" \ % (base, 3, svc, action, value) status = self.get(path) job = Job() job.id = int(status["u:SetTargetResponse"]["JobID"]) job.vera = self return job def all_dimmers(self, value): """ Implement a state change to all dimmer devices. :param value: The value to apply to all devices, an integer 0-100. :return: a Job object, describing the job implementing the action. """ base="data_request?id=action" action = "SetLoadLevelTarget" svc = "urn:upnp-org:serviceId:Dimming1" path = "%s&Category=%d&serviceId=%s&action=%s&newTargetValue=%d&output_format=json" \ % (base, 2, svc, action, value) status = self.get(path) job = Job() job.id = int(status["u:SetTargetResponse"]["JobID"]) job.vera = self return job def all_lights(self, value): """ Implement a state change to all light devices. :param value: The value to apply to all switches, a value 0-100. :return: a Job object, describing the job implementing the action. """ if value: value = 1 else: value = 0 base="data_request?id=action" action = "SetTarget" svc = "urn:upnp-org:serviceId:SwitchPower1" path = "%s&Category=%d&serviceId=%s&action=%s&newTargetValue=%d&output_format=json" \ % (base, 999, svc, action, value) status = self.get(path) job = Job() job.id = int(status["u:SetTargetResponse"]["JobID"]) job.vera = self return job def all_heating(self, value): """ Implement a state change to all heating devices. :param value: The value to apply to all switches, a string. :return: a Job object, describing the job implementing the action. """ base="data_request?id=action" action = "SetModeTarget" svc = "urn:upnp-org:serviceId:HVAC_UserOperatingMode1" path = "%s&Category=%d&serviceId=%s&action=%s&NewModeTarget=%s&output_format=json" \ % (base, 5, svc, action, value) status = self.get(path) job = Job() job.id = int(status["u:SetModeTargetResponse"]["JobID"]) job.vera = self return job class VeraLocal(Vera): """ Represents a connection to a local Vera device. """ def __init__(self, host, port = 3480): """ Connects to a local Vera device on the local network. :param host: string containing hostname or IP address. :param port: port number. """ self.host = host self.port = port Vera.__init__(self) def get(self, path): """ Performs an HTTP/S 'GET' for a LUUP resource, which is returned. :param path: Relative path for the resource e.g. data_request?id=alive :return: The resource. If the underlying resource is JSON, this is converted to Python dict. """ base = 'http://%s:%d' % (self.host, self.port) url = '%s/%s' % (base, path) conn = urllib.request.urlopen(url) payload = conn.read() try: payload = json.loads(payload) except: pass conn.close() return payload def proxy_get(self, url): url = Vera.urlencode(url) url = "http://%s/cgi-bin/cmh/proxy.sh?url=%s" % \ (self.host, url) response = requests.get(url) try: return response.json() except: pass return response.text class VeraRemote(Vera): def get_session_token(self, server): """ Get a session token for subsequent operations on a server. You shouldn't need to call this. :param server: the server. :return: session token string. """ headers = {"MMSAuth": self.auth_token, "MMSAuthSig": self.auth_sig} url = "https://%s/info/session/token" % server session_token = self.session.get(url, headers=headers).text return session_token def __init__(self, user, password, device): """ Connects to a remote Vera device through the relay servers. :param user: username. :param password: password. :param device: device ID """ self.user = user self.password = password self.device = device self.session = requests.session() # Hard-coded auth seed seed = "oZ7QE6LcLJp6fiWzdqZc" # Get auth tokens sha1p = sha.new(user.lower() + password + seed) sha1p = sha1p.hexdigest() auth_server = "vera-us-oem-autha11.mios.com" url = "https://%s/autha/auth/username/%s?SHA1Password=%s&PK_Oem=1" % \ (auth_server, user.lower(), sha1p) response = self.session.get(url).json() self.server_account = response["Server_Account"] self.auth_token = response["Identity"] self.auth_sig = response["IdentitySignature"] # Get account number account_info = json.loads(base64.b64decode(self.auth_token)) pk_account = account_info["PK_Account"] sys.stderr.write("Account number: %s\n" % pk_account) # Get session token for server account session_token = self.get_session_token(self.server_account) # Get devices headers = { "MMSSession": session_token } url = "https://%s/account/account/account/%s/devices" % \ (self.server_account, str(pk_account)) devices = self.session.get(url, headers=headers).json() # Work out server device server_device = None for i in devices["Devices"]: if i["PK_Device"] == device: server_device = i["Server_Device"] if server_device == None: raise RuntimeError("Device %s not known.\n" % device) sys.stderr.write("Server device: %s\n" % server_device) # Get session token on server_device session_token = self.get_session_token(server_device) # Get server_relay headers = { "MMSSession": session_token } url = "https://" + server_device + "/device/device/device/" + \ str(device) relay_info = self.session.get(url, headers=headers).json() self.relay = relay_info["Server_Relay"] sys.stderr.write("Server relay: %s\n" % self.relay) # Get session token on server_relay self.session_token = self.get_session_token(self.relay) Vera.__init__(self) sys.stderr.write("Connected to remote device.\n") def get(self, path): """ Performs an HTTP/S 'GET' for a LUUP resource, which is returned. :param path: Relative path for the resource e.g. data_request?id=alive :return: The resource. If the underlying resource is JSON, this is converted to Python dict. """ headers = { "MMSSession": self.session_token } url = "https://%s/relay/relay/relay/device/%s/port_3480/%s" % \ (self.relay, str(self.device), path) response = requests.get(url, headers=headers) try: return response.json() except: pass return response.text def proxy_get(self, url): url = Vera.urlencode(url) headers = { "MMSSession": self.session_token } url = "https://%s/relay/relay/proxy?url=%s" % (self.relay, url) response = requests.get(url, headers=headers) try: return response.json() except: pass return response.text #http://control/cgi-bin/cmh/proxy.sh?url=http%3A%2F%2Fweather.mios.com%2F%3FtempFormat%3DC%26cityWeather%3DCheltenham%2520England%26countryWeather%3DUnited%2520Kingdom def connect(config="LUUP-AUTH.json"): """ Gets Vera connection information from a file, and connects to a Vera. :param config: filename :return: a Vera object on successful connection. """ config = json.loads(open(config, "r").read()) if "local" in config: return VeraLocal(config["local"]["address"]) else: user = config["remote"]["user"] password = config["remote"]["password"] device = config["remote"]["device"] return VeraRemote(user, password, device) ```
{ "source": "jeugregg/newspaper-crawler", "score": 3 }
#### File: newspaper_crawler/crawling_jobs/base_crawling_job.py ```python import feedparser from scrapy.crawler import CrawlerRunner from twisted.internet import reactor from ..database import Database class BaseCrawlingJob(): """Base class for newspaper crawling process. Attributes: has_database (boolean): whether or not the crawler has a database. db (Database object, optional): allows to interact with the crawler database (cf. database module). newspaper (string): name of the scraped newspaper. NewspaperSpider (Class inheriting from scrapy.Spider): defines how to scrape the newspaper. rss_feeds (list): rss urls where to find newspaper new articles. """ def __init__(self, has_database): self.has_database = has_database if self.has_database: self.db = Database(db_name="newspaper_db") else: self.db = None def crawl(self, delay=3600): """Crawls newspaper articles not crawled yet every `x` seconds. Args: delay (int): delay in seconds before next crawling job. Defaults to 1 hour. """ urls_to_crawl = self.get_urls_to_crawl() if len(urls_to_crawl) > 0: runner = CrawlerRunner() runner.crawl(self.NewspaperSpider, start_urls=urls_to_crawl, db=self.db) reactor.callLater(delay, self.crawl) def get_urls_to_crawl(self): """Returns a list of the newspaper urls not crawled yet.""" urls = [] for rss_feed in self.rss_feeds: parsed_rss_feed = feedparser.parse(rss_feed) for post in parsed_rss_feed.entries: url = post.link if url.split(".")[1] == self.newspaper: with open("urls_met.txt", "r") as f: urls_met = f.read().split("\n") if url not in urls_met: entry = "\n{}".format(url) with open("urls_met.txt", "a", encoding="utf-8") as f: f.write(entry) urls.append(url) return urls ``` #### File: newspaper_crawler/loaders/lemonde_loader.py ```python from scrapy.loader.processors import Compose from scrapy.loader.processors import Join from .base_loader import BaseLoader class LeMondeLoader(BaseLoader): def clean_date(rawdata): return rawdata[: 10] def clean_author(rawdata): return rawdata.replace(" Par ", "") def clean_description(rawdata): return rawdata[2: -1] date_in = Compose(lambda v: v[0], clean_date) author_out = Compose(Join(", "), clean_author) description_out = Compose(Join(", "), clean_description) ``` #### File: newspaper_crawler/loaders/liberation_loader.py ```python import re from scrapy.loader.processors import Compose from scrapy.loader.processors import Join from .base_loader import BaseLoader class LiberationLoader(BaseLoader): def clean_date(rawdata): date = re.sub("[^0-9-]", "", rawdata) date = date[0:len(date)-6] date = date.replace("-", "/") date = date.split("/") date[2], date[0] = date[0], date[2] date = "/".join(date) return date def clean_title(rawdata): return rawdata[0].replace(" - Libération", "") def clean_author(rawdata): return rawdata.replace(" LIBERATION", "") date_in = Compose(lambda v: v[0], clean_date) title_in = Compose(clean_title) author_out = Compose(Join(", "), clean_author) ``` #### File: newspaper_crawler/spiders/base_spider.py ```python import unicodedata import scrapy import json import abc from datetime import datetime class BaseSpider(scrapy.Spider, abc.ABC): """Base spider, defines how to scrape a newspaper website. See Scrapy documentation for more information: 'https://docs.scrapy.org/en/latest/topics/spiders.html' Attributes: dirname (string): directory name where the articles (jsons) are stored. newspaper (string): name of the scraped newspaper. db: (Database object, optional): allows to interact with the crawler database (cf. database module). start_urls (list): urls to crawl. custom_settings (dict): configuration when running the spider. article_count (int): number of articles scraped by the instance. """ custom_settings = {"DOWNLOAD_DELAY": 2} article_count = 0 @abc.abstractmethod def parse(self, response): """Parses an article before processing and saving it. Args: response (scrapy Response object): the http response of the scraped web page. """ def load_item(self, loader, response): """Extracts and processes informations from an article. Args: loader (scrapy Loader object): able to scrape data from a response. response (scrapy Response object): the http response of the scraped web page. Returns: item (scrapy Item object): populated with scraped and processed data. """ loader.add_value("title", response.css("title::text").extract_first()) loader.add_value("theme", response.url) loader.add_value("url", response.url) item = loader.load_item() return item def save(self, newspaper, item): """Saves scraped data into json files and in database if asked. Args: newspaper (string): name of the newspaper. item (scrapy Item object): populated with scraped and processed data. """ missing_keys = list(set(item.fields.keys()) - set(item.keys())) for missing_key in missing_keys: item[missing_key] = "" if len(item["body"]) > 2100: if item["date"] == "": time = datetime.now() item["date"] = "{}/{}/{}".format(time.day, time.month, time.year) self.article_count += 1 filename = "{} #{}.json".format(newspaper, self.article_count) filepath = "pressarticles/{}/{}".format(self.dirname, filename) with open(filepath, "w", encoding="utf-8") as f: json.dump(dict(item), f, indent=4) self.log("Saved file {}".format(filename)) if self.db != None: self.db.insert_article( url=item["url"], source=newspaper, author=item["author"], title=item["title"], theme=item["theme"], description=item["description"], date_published=item["date"], body=item['body'], ) ```
{ "source": "jeui123/pyrelay", "score": 3 }
#### File: pyrelay/Data/SlotObjectData.py ```python class SlotObjectData: def __init__(self, objectId=0, slotId=0, objectType=0): self.objectId = objectId self.slotId = slotId self.objectType = objectType def read(self, reader): self.objectId = reader.readInt32() self.slotId = reader.readInt32() self.objectType = reader.readInt32() def write(self, writer): writer.writeInt32(self.objectId) writer.writeInt32(self.slotId) writer.writeInt32(self.objectType) def __str__(self): return "{} {} {}".format(self.objectId, self.slotId, self.objectType) def clone(self): return SlotObjectData(self.objectId, self.slotId, self.objectType) ``` #### File: Networking/Packets/PacketTypes.py ```python import Networking.Packets.Incoming as Incoming import Networking.Packets.Outgoing as Outgoing class PacketTypes: def __init__(self): for file in dir(Incoming): if "Packet" in file: file = file.replace("Packet", "") self.__dict__[file.upper()] = file.upper() for file in dir(Outgoing): if "Packet" in file: file = file.replace("Packet", "") self.__dict__[file.upper()] = file.upper() ```
{ "source": "jeury301/algo-stanford", "score": 4 }
#### File: algo-stanford/scratch-code/n_square_sorts.py ```python def selection_sort(arr): """Refresher implementation of selection sort - in-place & stable. :param arr: List of integers to sort :return: Sorted list """ for i in range(len(arr)): min = i # selecting index of smallest number for j in range(i, len(arr)): if arr[j] < arr[min]: min = j # swaping current index with smallest number arr[i], arr[min] = arr[min], arr[i] return arr def insertion_sort(arr): """Refresher implementation of inserstion sort - in-place & stable. :param arr: List to be sorted. :return: Sorted list. """ for i in range(1, len(arr)): tmp = arr[i] j = i # find the position for insertion for j in range(i, len(arr)): # the position is found if the prev element is smaller than current if arr[j - 1] < tmp: break # shift to the right arr[j] = arr[j - 1] arr[j] = tmp return arr def bubble_sort(arr): """Refresher implementation of buble-sort - in-place & stable. :param arr: List to be sorted. :return: Sorted list. """ for i in range(len(arr)): for j in range(len(arr) - 1): # check if elements are in relative out-of-order if arr[j] > arr[j + 1]: # swapping adjacent elements arr[j], arr[j + 1] = arr[j + 1], arr[j] return arr if __name__ == "__main__": arr = [23, 12, 3, 9, 7, 1, 13, 10] print("original", arr) print("selection-sort", selection_sort(arr)) print("insertion-sort", insertion_sort(arr)) print("bubble-sort", bubble_sort(arr)) ```
{ "source": "jeury301/code-fights", "score": 3 }
#### File: intro/a. 4. adjacent-elements-product/adjacent_elements_product.py ```python def adjacentElementsProduct(inputArray): first, second = 0, 1 lp = inputArray[first]*inputArray[second] for index in range(2, len(inputArray)): first = second second = index new_lp = inputArray[first]*inputArray[second] if new_lp > lp: lp = new_lp return lp ``` #### File: intro/b. 15. add-border/add_border.py ```python def addBorder(picture): rows, cols = len(picture), len(picture[0]) final = ["*"*(cols+2)] * (rows + 2) for i, x in enumerate(picture): final[i+1] = "*" + x + "*" return final ``` #### File: intro/c. 20. array-maximal-adjacent-difference/array_maximal_adjacent_difference.py ```python def arrayMaximalAdjacentDifference(inputArray): k = inputArray[:] return max([abs(k[i]-k[i - 1]) for i in range(1, len(k))]) ``` #### File: intro/d. 30. circle-of-numbers/circle_of_numbers.py ```python def circleOfNumbers(n, firstNumber): return firstNumber + n/2 if firstNumber + n/2 < n else firstNumber - n/2 ``` #### File: intro/d. 31. deposit-profit/deposit_profit.py ```python def depositProfit(deposit, rate, threshold): d, y = deposit, 0 while(d < threshold): d, y= d + (d*rate)/100, y+1 print(rate, d, y) return y ``` #### File: intro/d. 39. knapsack-light/knapsack_light.py ```python def knapsackLight(value1, weight1, value2, weight2, maxW): w, v = [weight1, weight2], [value1, value2] k_w, k_v= ({weight1:value1, weight2:value2}, {value1:weight1, value2:weight2}) if sum(w) <= maxW: return sum(v) if k_v.get(max(v)) <= maxW: return max(v) if k_w.get(maxW): return k_w.get(maxW) if min(w) > maxW: return 0 ``` #### File: intro/e. 42. bishop-and-pawn/bishop_and_pawn.py ```python def bishopAndPawn(bishop, pawn): trans = {chr(ord("a")+i):i for i in range(8)} b_pos, p_pos = (trans[bishop[0]]*8 + int(bishop[1]), trans[pawn[0]]*8 + int(pawn[1])) print(b_pos, p_pos) if p_pos > b_pos: b_pos = b_pos+8*abs(int(pawn[1])-int(bishop[1]))+int(pawn[1])-int(bishop[1]) else: b_pos = b_pos-8*abs(int(pawn[1])-int(bishop[1]))+int(pawn[1])-int(bishop[1]) return b_pos == p_pos ``` #### File: intro/e. 44. find-email-domain/find_email_domain.py ```python def findEmailDomain(address): tokens = address.split("@") return "" if len(tokens) < 2 else tokens[len(tokens)-1] ``` #### File: intro/e. 45. build-palindrome/build_palindrome.py ```python def buildPalindrome(st): k = [i for i in st] to_append = [] while(checkPalin(k) is False): to_append.append(k[0]) k = k[1:] to_append = "".join(to_append[::-1]) return st + to_append def checkPalin(t): for i in range(len(t)): if t[i] != t[len(t) - (i + 1)]: return False return True ``` #### File: intro/f. 52. longest-word/longest_word.py ```python def longestWord(text): tokens = "".join([i if i.isalnum() else " " for i in text]).split(" ") clean_tokens = ["".join([i for i in x if i.isalnum()]) for x in tokens] return sorted(clean_tokens, key=len)[::-1][0] ``` #### File: intro/f. 53. valid-time/valid_time.py ```python def validTime(time): tokens = time.split(":") hours, mins = tokens[0], tokens[1] if int(hours) < 0 or int(hours) > 23: return False if int(mins) < 0 or int(mins) > 59: return False return True ``` #### File: intro/f. 57. file-naming/file_naming.py ```python def fileNaming(names): seen = set() times = {} output = [] for x in names: if x not in seen: output.append(x) seen.add(x) times[x] = 1 else: to_add = x + "("+str(times[x])+")" times[x] += 1 while to_add in seen: to_add = x + "("+str(times[x])+")" times[x] += 1 output.append(to_add) seen.add(to_add) times[to_add] = 1 return output ```
{ "source": "jeury301/ml-coursera", "score": 4 }
#### File: practice/python-ml/matrix_ops.py ```python import numpy as np def transpose(M): rows, cols = len(M), len(M[0]) N = build_matrix(cols,rows) for i in range(cols): for j in range(rows): N[i][j] = M[j][i] return N def build_matrix(rows, cols): return [[0 for j in range(cols)] for i in range(rows)] if __name__ == "__main__": A = [[1, 2, 0],[3, 5, 9]] print("A: ") print(np.matrix(A)) B = transpose(A) print("B: ") print(np.matrix(B)) ```
{ "source": "jeury301/njit-advising-system", "score": 2 }
#### File: app/controllers/majors.py ```python from ferris import Controller, scaffold, route, localize from app.models.major import Major from ferris.components.flash_messages import FlashMessages from datetime import datetime, timedelta from google.appengine.ext import deferred from app.services import advising_services import httplib2, logging, json, time, math class Majors(Controller): class Meta: prefixes = ('cron',) components = (scaffold.Scaffolding,FlashMessages,) @route def list(self): self.context['majors'] = Major.get_majors() @route def view_major(self, major_key): major = self.util.decode_key(major_key).get() #self.meta.change_view('JSON') self.context['major_description'] = json.loads(major.major_description) self.context['discipline'] = major.discipline @route def cron_update_majors(self): deferred.defer(advising_services.update_majors) return 200 ``` #### File: app/models/major.py ```python from ferris import BasicModel from google.appengine.ext import ndb class Major(BasicModel): college = ndb.StringProperty(); department = ndb.StringProperty(); link = ndb.StringProperty(); degree_level = ndb.StringProperty(); discipline = ndb.StringProperty(); major_description = ndb.JsonProperty() # The full metadata of the major in JSON format parsed = ndb.BooleanProperty() @classmethod def get_majors(cls): """ Retrieves all majors, ordered by discipline """ return cls.query().order(cls.discipline) @classmethod def get_major_for_discipline(cls, discipline): return cls.query(cls.discipline==discipline) @classmethod def add_new(cls, form_data): new_major = Major( college = form_data['college'], department = form_data['department'], link = form_data['link'], degree_level = form_data['degree_level'], discipline = form_data['discipline'], major_description = form_data['major_description'], parsed = form_data['parsed'] ) new_major.put() return new_major ```
{ "source": "jeury301/Python-Game", "score": 3 }
#### File: jeury301/Python-Game/game.py ```python import pygame import math import random from pygame.locals import * def main(): """Main game execution """ game_init() # initializing game load_resources() # loading game resources game_loop() # looping through game def game_init(): """Initializing game """ # initializing global variables global screen, width, height, keys, playerpos, accuracy, arrows global badtimer,badtimer1, badguys, healthvalue # initializing game and game-related variables pygame.init() width, height = 640, 480 # screen width and height keys = [False, False, False, False] # game keys (WASD) playerpos=[100,100] # player position accuracy =[0,0] # player's accuracy arrows = [] # arrows badtimer=100 # timer to decrease for bad guys to appear badtimer1=0 # timer to increase for bad guys to appear/disappear badguys=[[640,100]] # bad guys initial opsition healthvalue=194 # health value screen = pygame.display.set_mode((width, height)) def load_resources(): """Loading game resources """ # initializing global variables global player, grass, castle, arrow, gameover global badguyimg, badguyimg1, healthbar, health, youwin global shoot, hit, enemy # initializing mixer pygame.mixer.init() # loading resources player = pygame.image.load("resources/images/dude.png") grass = pygame.image.load("resources/images/grass.png") castle = pygame.image.load("resources/images/castle.png") arrow = pygame.image.load("resources/images/bullet.png") healthbar = pygame.image.load("resources/images/healthbar.png") health = pygame.image.load("resources/images/health.png") badguyimg1 = pygame.image.load("resources/images/badguy.png") gameover = pygame.image.load("resources/images/gameover.png") youwin = pygame.image.load("resources/images/youwin.png") hit = pygame.mixer.Sound("resources/audio/explode.wav") enemy = pygame.mixer.Sound("resources/audio/enemy.wav") shoot = pygame.mixer.Sound("resources/audio/shoot.wav") badguyimg = badguyimg1 # setting up music hit.set_volume(0.05) enemy.set_volume(0.05) shoot.set_volume(0.05) pygame.mixer.music.load('resources/audio/moonlight.wav') pygame.mixer.music.play(-1, 0.0) pygame.mixer.music.set_volume(0.25) def draw_grass(): """Drawing grass to the screen """ # referencing global variables global width, height, grass, screen # iterating over width/grass_width for x in range(width/grass.get_width() + 1): # iterating over height/grass_height for y in range(height/grass.get_height()+1): # drawing grass on screen screen.blit(grass,(x*100,y*100)) def draw_castle(): """Drawing castle """ # referencing global variable(s) global castle, screen y_castle = 30 # drawing castle(s) on the screen for x in range(4): screen.blit(castle, (0,y_castle)) y_castle += 105 def draw_player(): """Drawing player with z rotation """ # referencing global variables global player, playerpos, playerpos1 # calculazing z rotation value position = pygame.mouse.get_pos() # getting mouse position # calculating angle between mouse and player tan(angle) = (y2-y1)/(x2-x1) # angle = arctan((y2-y1)/(x2-x1)) # angle is in radians angle = math.atan2( position[1]-(playerpos[1]+32), position[0]-(playerpos[0]+26) ) angle_degress = 360-angle*57.29 # player rotation playerrot = pygame.transform.rotate(player, angle_degress) # player new position playerpos1 = ( playerpos[0]-playerrot.get_rect().width/2, playerpos[1]-playerrot.get_rect().height/2) # drawing player on the screen screen.blit(playerrot, playerpos1) def draw_arrows(): """Drawing the arrows fired by the player """ # referencing global variables global arrow, arrows # updating arrows position with velocity components for bullet in arrows: index=0 # velocity vector components: # x-component: cos(angle) * acceleration # y-compoent: sin(angle) * acceleration velx=math.cos(bullet[0])*10 # x-component of the velocity vector vely=math.sin(bullet[0])*10 # y-value of the velocity vector # adding velocities to the arrows position components bullet[1]+=velx bullet[2]+=vely # removing arrow from screen if bullet[1]<-64 or bullet[1]>640 or bullet[2]<-64 or bullet[2]>480: arrows.pop(index) index+=1 # drawing arrows on screen for projectile in arrows: arrow1 = pygame.transform.rotate(arrow, 360-projectile[0]*57.29) screen.blit(arrow1, (projectile[1], projectile[2])) def draw_bad_guys(): """Drawing bad guys """ # referencing global variables global badtimer, badtimer1, badguys, badguyimg global healthvalue, accuracy, arrows, hit, enemy # check if its time to add a new bad guy to the screen if badtimer == 0: # ok, its tim to add a new bad guy # adding a bad guy from any y-coordinate from the right of the screen # with boundaries badguys.append([640, random.randint(50,430)]) # reduce time for bad guys to appear badtimer=100-(badtimer1*2) # check for another timer if badtimer1>=35: badtimer1=35 else: badtimer1+=5 index=0 for badguy in badguys: # remove bad guys if they went off-screen if badguy[0]<-64: badguys.pop(index) # reduce bad guys x-position (move to the left) badguy[0]-=5 # use this variable to modify bad guys speed # blowing up castle badrect=pygame.Rect(badguyimg.get_rect()) badrect.top=badguy[1] badrect.left=badguy[0] if badrect.left<64: # hit castle sound hit.play() healthvalue -= random.randint(5,20) badguys.pop(index) # keeping track of current arrow index1=0 # checking for collision between bad guys and arrows for bullet in arrows: bullrect=pygame.Rect(arrow.get_rect()) # arrow rect bullrect.left=bullet[1] # left? bullrect.top=bullet[2] # top? # checking for collision between arrow and badguy if badrect.colliderect(bullrect): # enemy sound enemy.play() # a collision happened, increase accuracy? accuracy[0]+=1 # removing bad guy and arrow from screen badguys.pop(index) arrows.pop(index1) index1+=1 # keeping track of current bad guy index+=1 # drawing bad guys for badguy in badguys: screen.blit(badguyimg, badguy) def draw_clock(): """Drawing a timer """ # creating a font with size font = pygame.font.Font(None, 24) # rendering a text containing the current time survivedtext = font.render( (str((90000-pygame.time.get_ticks())/60000)+ ":"+str((90000-pygame.time.get_ticks())/1000%60).zfill(2)), True,(0,0,0)) # retrieving rect for text textRect = survivedtext.get_rect() # positioning text on top right corner textRect.topright=[635,5] # drawing text onto the screen screen.blit(survivedtext, textRect) def draw_health(): """Drawing health bar """ # referencing global variables global healthbar, health, healthvalue # drawing health bar screen.blit(healthbar, (5,5)) for health1 in range(healthvalue): # according to how much value left, draw health screen.blit(health, (health1+8,8)) def check_for_end(): """Checking for the end of game """ # referencing global variables global running, exitcode, accuracy, gameover, accuracy_str # check if game needs to end if pygame.time.get_ticks()>=90000: # time has elapsed running=0 exitcode=1 if healthvalue<=0: # player health is gone running=0 exitcode=0 if accuracy[1]!=0: accuracy_str=accuracy[0]*1.0/accuracy[1]*100 else: accuracy_str=0 def end_game(): """Ending game """ # referencing global variables global accuracy_str, gameover, youwin # check if player won/lost if exitcode==0: # player lost pygame.font.init() font = pygame.font.Font(None, 24) # creating font # rendering text text = font.render("Accuracy: "+str(accuracy_str)+"%", True, (255,0,0)) textRect = text.get_rect() textRect.centerx = screen.get_rect().centerx textRect.centery = screen.get_rect().centery+24 screen.blit(gameover, (0,0)) screen.blit(text, textRect) # adding text to screen else: # player won pygame.font.init() font = pygame.font.Font(None, 24) # creating font # rendering text text = font.render("Accuracy: "+str(accuracy_str)+"%", True, (0,255,0)) textRect = text.get_rect() textRect.centerx = screen.get_rect().centerx textRect.centery = screen.get_rect().centery+24 screen.blit(youwin, (0,0)) screen.blit(text, textRect) # adding text to screen pygame.display.flip() # giving user the ability to quit game while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() exit(0) def game_events(): """Checking for game events """ # referencing global variables global keys, playerpos, accuracy, arrows, playerpos1, shoot # loop through events for event in pygame.event.get(): # check if the event is the X button if event.type == pygame.QUIT: # if it is, quit the game pygame.quit() exit(0) # checking for key down keyboard events if event.type == pygame.KEYDOWN: if event.key == K_w: # 'w' key was pressed down keys[0] = True if event.key == K_a: # 'a' key was pressed down keys[1] = True if event.key == K_s: # 's' key was pressed down keys[2] = True if event.key == K_d: # 'd' key was pressed down keys[3] = True # checking for key up keyboard events if event.type == pygame.KEYUP: if event.key == K_w: # 'w' key was pressed up keys[0] = False if event.key == K_a: # 'a' key was pressed up keys[1] = False if event.key == K_s: # 's' key was pressed up keys[2] = False if event.key == K_d: # 'd' key was pressed up keys[3] = False # checking if mouse was clicked AKA an arrow was fired! if event.type == pygame.MOUSEBUTTONDOWN: # shoot sound shoot.play() position = pygame.mouse.get_pos() # mouse position accuracy[1]+=1 # increase y accuracy # calculating the arrow rotation based on the rotated player # position and the cursor position. # This rotation value is stored in the arrows array. # arrow = (angle, x, y) arrows.append( [math.atan2( position[1]-(playerpos1[1]+32), position[0]-(playerpos1[0]+26)), playerpos1[0]+32,playerpos1[1]+32]) # updating player position based on which key was pressed # AKA moving player if keys[0]: playerpos[1]-=5 elif keys[2]: playerpos[1]+=5 if keys[1]: playerpos[0]-=5 elif keys[3]: playerpos[0]+=5 def game_loop(): """Infinite game loop """ # referencing global variables global screen, badtimer # initializing global variables global running, exitcode running = 1 # use to determine if player wins or loses exitcode = 0 # use to determine if game should be finished # keeping looping through game while running: # clear screen before drawing it again screen.fill(0) draw_grass() # drawing grass draw_castle() # drawing castle(s) draw_player() # drawing player draw_arrows() # drawing arrows draw_bad_guys() # drawing bad guys draw_clock() # drawing a clock draw_health() # drawing health! pygame.display.flip() # update the screen game_events() # loading game events # updating bad time for guys to appear badtimer-=1 # checking for end game check_for_end() # ending game end_game() if __name__ == "__main__": main() ```
{ "source": "jeury301/python-morsels", "score": 4 }
#### File: python-morsels/14. lstrip/lstrip_solutions.py ```python def v0_lstrip(iterable, strip_value): """Return iterable with strip_value items removed from beginning.""" stripped = [] is_beginning = True for item in iterable: if is_beginning: if item != strip_value: is_beginning = False else: continue stripped.append(item) return stripped def v1_lstrip(iterable, strip_value): """Return iterable with strip_value items removed from beginning.""" stripped = [] is_beginning = True for item in iterable: if is_beginning and item == strip_value: continue is_beginning = False stripped.append(item) return stripped def v2_lstrip(iterable, strip_value): """Return iterable with strip_value items removed from beginning.""" stripped = [] iterator = iter(iterable) try: item = next(iterator) while item == strip_value: item = next(iterator) stripped.append(item) except StopIteration: pass else: for item in iterator: stripped.append(item) return stripped def v3_lstrip(iterable, strip_value): """Return iterable with strip_value items removed from beginning.""" stripped = [] iterator = iter(iterable) for item in iterator: if not item == strip_value: stripped.append(item) break for item in iterator: stripped.append(item) return stripped from itertools import dropwhile def v4_lstrip(iterable, strip_value): """Return iterable with strip_value items removed from beginning.""" stripped = [] def is_strip_value(value): return value == strip_value for item in dropwhile(is_strip_value, iterable): stripped.append(item) return stripped def v5_lstrip(iterable, strip_value): """Return iterable with strip_value items removed from beginning.""" def is_strip_value(value): return value == strip_value return dropwhile(is_strip_value, iterable) def v6_lstrip(iterable, strip_value): """Return iterable with strip_value items removed from beginning. Bonus 1: We're supposed to make lstrip return an iterator. """ iterator = iter(iterable) for item in iterator: if item != strip_value: yield item break for item in iterator: yield item def v6_lstrip(iterable, strip_value): """Return iterable with strip_value items removed from beginning.""" iterator = iter(iterable) for item in iterator: if item != strip_value: yield item break yield from iterator def v7_lstrip(iterable, strip_value): """Return iterable with strip_value items removed from beginning. Bonus 2: we're supposed to optionally accept a function as our strip value and call that function to determine whether values should be removed. """ iterator = iter(iterable) for item in iterator: if (callable(strip_value) and not strip_value(item) or not callable(strip_value) and item != strip_value): yield item break yield from iterator def v8_lstrip(iterable, strip_value): """Return iterable with strip_value items removed from beginning.""" iterator = iter(iterable) if callable(strip_value): predicate = strip_value else: def predicate(value): return value == strip_value for item in iterator: if not predicate(item): yield item break yield from iterator def v9_lstrip(iterable, strip_value): """Return iterable with strip_value items removed from beginning.""" if callable(strip_value): predicate = strip_value else: def predicate(value): return value == strip_value return dropwhile(predicate, iterable) ``` #### File: python-morsels/17. deep_add/deep_add.py ```python from datetime import timedelta from decimal import Decimal def deep_add(to_add, start=0): """Adding up all numbers from a nested list of numbers """ global sum global data_type data_type = Decimal sum = None d_deep_add(to_add) d_deep_add(start) if data_type == timedelta: return timedelta(sum) return sum def d_deep_add(to_add): global sum, data_type try: for x in iter(to_add): d_deep_add(x) except TypeError as te: if type(to_add) == list: for x in to_add: d_deep_add(x) else: data_type = type(to_add) if type(to_add) == timedelta: to_add = to_add.days if not sum: sum = to_add else: sum += to_add if __name__ == '__main__': print(deep_add([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])) print(deep_add([1, [2, [3, 4], [], [[5, 6], [7, 8]]]])) print(deep_add([[], []])) ``` #### File: python-morsels/17. deep_add/test_deep_add.py ```python from decimal import Decimal from datetime import timedelta from fractions import Fraction import unittest from deep_add import deep_add class DeepAddTests(unittest.TestCase): """Tests for deep_add.""" def test_shallow(self): self.assertEqual(deep_add([1, 2, 3, 4]), 10) def test_with_empty_lists(self): self.assertEqual(deep_add([1, [2, 3, []], [], 4]), 10) self.assertEqual(deep_add([]), 0) def test_deeply_nested_iterables(self): self.assertEqual(deep_add([[1, 2], [3, [4, [[[5]], 6]]]]), 21) def test_non_numeric_types(self): with self.assertRaises(TypeError): deep_add([1, [2, None]]) def test_other_numeric_types(self): self.assertEqual(deep_add([1.0, [3, 1.5]]), 5.5) self.assertEqual(deep_add([1.0, [3j]]), 1+3j) self.assertEqual(deep_add([Decimal('5.6'), 2]), Decimal('7.6')) self.assertEqual(deep_add([[Fraction(1)], Fraction(2)]), Fraction(3)) # To test the Bonus part of this exercise, comment out the following line <EMAIL> def test_other_iterables(self): numbers = [1, 2, 3, 4] cubes_and_squares = ((n, (n**3, n**2)) for n in numbers) self.assertEqual(deep_add(cubes_and_squares), 140) self.assertEqual(deep_add([(1, 2), [3, {4, 5}]]), 15) # To test the Bonus part of this exercise, comment out the following line <EMAIL> def test_start_value(self): numbers = [1, 2, 3, 4] self.assertEqual(deep_add(numbers, 0), 10) self.assertEqual(deep_add(numbers, 1), 11) self.assertEqual(deep_add(numbers, start=1), 11) self.assertEqual(deep_add([[], []], start=-10), -10) # To test the Bonus part of this exercise, comment out the following line <EMAIL> def test_pseudonumeric_types(self): self.assertEqual(deep_add([timedelta(1)], timedelta(0)), timedelta(1)) class Num: def __init__(self, val=0): self.val = val def __add__(self, other): if isinstance(other, Num): return Num(self.val + other.val) else: return Num(self.val + other) __radd__ = __add__ def __eq__(self, other): return self.val == other.val self.assertEqual(deep_add([[Num(1)], Num(2)]), Num(3)) if __name__ == "__main__": unittest.main() ``` #### File: python-morsels/1. numeric_range/test_numeric_range.py ```python numeric_range/test_numeric_range.py import unittest from numeric_range import numeric_range class NumericRangeTests(unittest.TestCase): """Tests for numeric_range.""" def test_ordered_numbers(self): self.assertEqual(numeric_range([0, 1, 2, 3, 4]), 4) def test_with_out_of_order_numbers(self): self.assertEqual(numeric_range([10, 8, 7, 5.0, 3, 6, 2]), 8) def test_single_item(self): self.assertEqual(numeric_range([10]), 0) def test_same_item_multiple_times(self): self.assertEqual(numeric_range([8, 8, 8]), 0) self.assertEqual(numeric_range([7, 5, 6, 5, 7]), 2) def test_negative_numbers(self): self.assertEqual(numeric_range([-10, -8, -7, -5, -3]), 7) def test_mixed_types(self): with self.assertRaises(TypeError): numeric_range(['a', 2]) def test_very_large_numbers(self): self.assertEqual(numeric_range([2**1000, -2**1000]), 2**1001) # To test the Bonus part of this exercise, comment out the following line <EMAIL> def test_returns_zero_for_empty_list(self): self.assertEqual(numeric_range([]), 0) # To test the Bonus part of this exercise, comment out the following line <EMAIL> def test_with_non_lists(self): self.assertEqual(numeric_range((89, 17, 70, 9)), 80) self.assertEqual(numeric_range({8, 7, 5, 3, 9, 6, 2}), 7) self.assertEqual(numeric_range(n**2 for n in range(1, 4)), 8) self.assertEqual(numeric_range(n for n in []), 0) if __name__ == "__main__": unittest.main() ``` #### File: python-morsels/4. compact/compact.py ```python def compact_0(iterable): """Return new iterable with adjacent duplicate values removed.""" deduped = [] previous = object() for item in iterable: if item != previous: deduped.append(item) previous = item return deduped def compact(iterable): from itertools import groupby return ( item for item, group in groupby(iterable) ) print(compact([None, None, 3, 4])) ``` #### File: python-morsels/6. matrix_from_string/matrix.py ```python def matrix_from_string(mtx_str): """Turning a string into it's matrix representation. This function accepts a string representation of a matrix, and turns it into an actual matrix. This function uses \n as a delimiter for the rows, and ignores any extra spaces. Turned into a one-liner comprehension, it's equivalent was commented out. Args: mtx_str: A string representation of a matrix Returns: An actual matrix for the string """ # mtx_rows = mtx_str.split("\n") # final_matrix = [] # # for row in mtx_rows: # if row.replace(" ", "") != "": # mtx_row = [float(col) for col in row.strip().split(" ") if col != ""] # final_matrix.append(mtx_row) # return final_matrix return ([[float(col) for col in row.strip().split(" ") if col != ""] for row in mtx_str.split("\n") if row.replace(" ", "") != ""]) ``` #### File: python-morsels/9. is_anagram/anagram_solutions.py ```python def v0_is_anagram(word1, word2): """Return True if the given words are anagrams. That won't work for words that have the same letters but they occur a different number of times. """ return set(word1) == set(word2) def count_letters(word): letters = {} for char in word: letters.setdefault(char, 0) letters[char] += 1 return letters def v1_is_anagram(word1, word2): """Return True if the given words are anagrams. Instead of set, we could make a function that accepts a string and returns a dictionary of character counts for the string. """ return count_letters(word1) == count_letters(word2) from collections import Counter def v2_is_anagram(word1, word2): """Return True if the given words are anagrams. Using Counter which does exactly the same as count_letters. """ return Counter(word1) == Counter(word2) def v3_is_anagram(word1, word2): """Return True if the given words are anagrams. Using the built-in python function - sorted. """ return sorted(word1) == sorted(word2) def v4_is_anagram(word1, word2): """Return True if the given words are anagrams. Normalizing the words by lower-casing them. """ word1, word2 = word1.lower(), word2.lower() return sorted(word1) == sorted(word2) def v5_is_anagram(word1, word2): """Return True if the given words are anagrams. Solving the first bonus: make sure we ignore spaces. """ word1, word2 = word1.lower(), word2.lower() return Counter(word1.replace(' ', '')) == Counter(word2.replace(' ', '')) def v6_is_anagram(word1, word2): """Return True if the given words are anagrams. Solving the second bonus: ignoring extra stuff. """ word1, word2 = word1.lower(), word2.lower() alphabet = 'abcdefghijklmnopqrstuvwxyz' letters1 = sorted(c for c in word1 if c in alphabet) letters2 = sorted(c for c in word2 if c in alphabet) return letters1 == letters2 def v7_is_anagram(word1, word2): """Return True if the given words are anagrams. Replacing the alphabet. """ word1, word2 = word1.lower(), word2.lower() letters1 = sorted(c for c in word1 if c.isalpha()) letters2 = sorted(c for c in word2 if c.isalpha()) return letters1 == letters2 def letters_in(string): """Return sorted list of letters in given string.""" return sorted( char for char in string.lower() if char.isalpha() ) def v8_is_anagram(word1, word2): """Return True if the given words are anagrams. Moving sorted(...) into a function - for clean up purposes """ return letters_in(word1) == letters_in(word2) def count_letters(string): """Return sorted list of letters in given string.""" return Counter( char for char in string.lower() if char.isalpha() ) def v9_is_anagram(word1, word2): """Return True if the given words are anagrams. Using Counter instead of sorted. """ return count_letters(word1) == count_letters(word2) import unicodedata def remove_accents(string): """Return decomposed form of the given string.""" return unicodedata.normalize('NFKD', string) def letters_in(string): """Return sorted list of letters in given string.""" string = remove_accents(string.lower()) return sorted( char for char in string if char.isalpha() ) def v10_is_anagram(word1, word2): """Return True if the given words are anagrams. Last bonus: removing accents. """ return letters_in(word1) == letters_in(word2) ```
{ "source": "jeury301/text-classifier", "score": 3 }
#### File: classifiers/samples/loader.py ```python import csv def load_data(path): """Loads data from csv file. :param path: Path to file. :returns: List of tuples containing the training data """ data = [] with open(path, 'r') as dt: d_csv = csv.reader(dt, delimiter=',') for row in d_csv: data.append((row[1],row[0])) return data[1:] ``` #### File: feature-engineering/samples/statistical_features.py ```python from sklearn.feature_extraction.text import TfidfVectorizer def compute_tf_idf(corpus): """Computing term frequency (tf) - inverse document frequency (idf). :param corpus: List of documents. :returns: tf-idf of corpus. """ return TfidfVectorizer().fit_transform(corpus) if __name__ == '__main__': sample_corpus = [ 'This is sample document.', 'another random document.', 'third sample document text' ] print(compute_tf_idf(sample_corpus)) ``` #### File: nlp_problems/samples/text_matching.py ```python import fuzzy import math from collections import Counter def get_cosine(vec1, vec2): """Computing cosine similarities between 2 vectors. Code from: https://www.analyticsvidhya.com/blog/2017/01/ultimate-guide-to-understand-implement-natural-language-processing-codes-in-python/ :param vec1: Vector representation of first string. :param vec2: Vector representation of second string. :returns: COSINE SIMILARITY """ common = set(vec1.keys()) & set(vec2.keys()) numerator = sum([vec1[x] * vec2[x] for x in common]) sum1 = sum([vec1[x]**2 for x in vec1.keys()]) sum2 = sum([vec2[x]**2 for x in vec2.keys()]) denominator = math.sqrt(sum1) * math.sqrt(sum2) if not denominator: return 0.0 else: return float(numerator) / denominator def text_to_vector(text): words = text.split() return Counter(words) def phonetic_matching(s1, s2): """Computing the phonetic sound of 2 strings and using LD to compute its similarity. :param s1: First string. :param s2: A second string. :returns: The LD between the 2 string phonetic representations. """ soundex = fuzzy.Soundex(4) return levenshtein_distance(soundex(s1),soundex(s2)) def levenshtein_distance(s1, s2): """Computing the Levenshtein Distance between two strings. The Levenshtein Distance consists of the minimum number of edits needed to transform one string into the other. Code from: https://www.analyticsvidhya.com/blog/2017/01/ultimate-guide-to-understand-implement-natural-language-processing-codes-in-python/ :param s1: First string. :param s2: A second string. :returns: The LD between the 2 strings. """ if len(s1) > len(s2): s1,s2 = s2,s1 distances = range(len(s1) + 1) for index2,char2 in enumerate(s2): newDistances = [index2+1] for index1,char1 in enumerate(s1): if char1 == char2: newDistances.append(distances[index1]) else: newDistances.append(1 + min((distances[index1], distances[index1+1], newDistances[-1]))) distances = newDistances return distances[-1] if __name__ == '__main__': while True: s1 = input("> Enter string 1: ") s2 = input("> Enter string 2: ") print("LD Phonetic Distance", phonetic_matching(s1, s2)) print("Cosine similarity", get_cosine(text_to_vector(s1), text_to_vector(s2))) ``` #### File: preprocessing/samples/noise_removal.py ```python def noise_removal_w_list(input_text): """Removing noise from text using a list of noise words. :param input_text: Noisy text. :return: Clean text. """ # noise to be removed noise_words = ["is", "a", "this", "..."] # converting sentence into words words = input_text.split() # noise-free words noise_free_words = [word for word in words if word not in noise_words] # building noise-free text return " ".join(noise_free_words) def noise_removal_w_regex(input_text): """Removing noise from using using regular expression. :param input_text: Noisy text. :return: Clean text. """ import re # pattern to remove hashtagged words eg. #this r_pattern = "#[\w]*" # matches iterator matches = re.finditer(r_pattern, input_text) for i in matches: # removing each match from original input text input_text = re.sub(i.group().strip(),'', input_text) # removing inner extra spaces return re.sub(' +',' ',input_text) if __name__ == '__main__': while True: text = input("> ") print("noise-removal-with-list", noise_removal_w_list(text)) print("noise-remove-with-regex", noise_removal_w_regex(text)) ``` #### File: preprocessing/samples/object_standarization.py ```python def look_up_words(input_text): """Replacing social media slangs with more standarized words. :param input_text: Slanged social media text. :return: Standarized text. """ # look-up dictionary social_media_look_up = { 'rt':'Retweet', 'dm':'direct message', "awsm" : "awesome", "luv" :"love" } # words in sentence words = input_text.split() # standarize each word using look-up table return " ".join([social_media_look_up.get(word.lower(),word) for word in words]) if __name__ == '__main__': while True: text = input("> ") print("standarized-text",look_up_words(text)) ```
{ "source": "jeusgao/jobot_factory_nlp_simple", "score": 2 }
#### File: jobot_factory_nlp_simple/gui/embeded_configuration.py ```python import os from .components import get_default def embed_conf(c2=None, _dic=None, _embeded_model_params=None, _base_model_params=None, DIC_Models=None, _key=None): _embeded_model_value_params = _embeded_model_params.get(_key) if _embeded_model_params else None _dic_value = {} _options, _default = get_default(_embeded_model_value_params, DIC_Models, 'model_type') _dic_value['model_type'] = c2.selectbox('model type', _options, _options.index(_default)) _options, _default = get_default(_embeded_model_value_params, _base_model_params, 'base') _dic_value['base'] = c2.selectbox('base model', _options, _options.index(_default)) _dic[_key] = _dic_value _dic = {k: v for k, v in sorted(_dic.items(), key=lambda x: x[0])} return _dic def pretrained_conf(c2=None, _key=None, _dic=None, _pretrained_model_params=None, DIC_Bases=None): _pretrained_model_value_params = _pretrained_model_params.get(_key) if _pretrained_model_params else None _dic_value = {} _options, _default = get_default(_pretrained_model_value_params, DIC_Bases, 'base_code') _dic_value['base_code'] = c2.selectbox('base type', _options, _options.index(_default)) _options = tuple(os.walk('hub/bases'))[0][1] _default = _options[0] if _pretrained_model_value_params: _default = _pretrained_model_value_params.get('base_params').get('fn_config').split('/')[-2] _base_path = c2.selectbox('base model', _options, _options.index(_default)) _dic_value['base_params'] = { 'fn_config': f'hub/bases/{_base_path}/bert_config.json', 'fn_base_model': f'hub/bases/{_base_path}/bert_model.ckpt', 'training': c2.radio('is base training', [True, False], index=1), 'trainable': c2.radio('is base trainable', [True, False], index=0), } _dic[_key] = _dic_value _dic = {k: v for k, v in sorted(_dic.items(), key=lambda x: x[0])} return _dic ``` #### File: jobot_factory_nlp_simple/gui/layer_configuration.py ```python import os from .components import get_default def inputs_conf(c2, st, _default, _inputs, _dic_inputs_types): _num_inputs = c2.number_input('numer of inputs:', min_value=0, max_value=20, value=_default, step=1) ls = [] for i in range(_num_inputs): with c2.beta_expander(f"Input No. {i}"): _options = ['Pretrained', 'Embeded', 'Layer'] _default = _inputs[i].get('inputs_type', 'Pretrained') if i < len( _inputs) and _inputs[i] else _options[0] _inputs_type = st.selectbox( 'select inputs source', _options, _options.index(_default), key=f'inputs source_{i}' ) _dic_inputs_type = _dic_inputs_types.get(_inputs_type) _options = list(_dic_inputs_type.keys()) if _dic_inputs_type else [''] _cur = _inputs[i].get('inputs') if i < len(_inputs) else None _default = _options.index(_cur) if i < len(_inputs) and _cur and _cur in _options else 0 _layer_inputs = st.selectbox( 'select inputs', _options, _default, key=f'inputs_{i}', ) if len(_layer_inputs.strip()): ls.append({'inputs_type': _inputs_type, 'inputs': _layer_inputs}) return ls def layer_conf(c2, st, _dic, _dic_inputs_types, _key, _model_layer_params, DIC_Layers, _options=None): _dic_value = {} _model_layer_value_params = _model_layer_params.get(_key) if _model_layer_params else None _options, _default = get_default(_model_layer_value_params, DIC_Layers, 'layer') _dic_value['layer'] = c2.selectbox('model layer', _options, _options.index(_default)) _default = _model_layer_value_params.get('params', '') if _model_layer_value_params else None _layer_params = c2.text_input('layer params', _default) if not len(_layer_params.strip()) or _layer_params == 'None': _layer_params = None if _layer_params: if '{' in _layer_params or '[' in _layer_params: try: _dic_value['params'] = eval(_layer_params) except Exception as err: c2.error(f'{err}, Check your input please...') else: _dic_value['params'] = _layer_params _inputs = _model_layer_value_params.get('layer_inputs', []) if _model_layer_value_params else [] _default = len(_inputs) if _inputs else 0 ls = inputs_conf(c2, st, _default, _inputs, _dic_inputs_types) _dic_value['layer_inputs'] = ls _dic[_key] = _dic_value _dic = {k: v for k, v in sorted(_dic.items(), key=lambda x: x[0])} return _dic def add_layer(c2, st, _dic_inputs_types, _model_layer_params, DIC_Layers): _key = c2.text_input('Input a new name:', '').strip() if not len(_key): return False, 'Input a name please.' if _model_layer_params and _key in _model_layer_params: return False, f'Duplcated name - [{_key}] .' _dic = {k: v for k, v in _model_layer_params.items()} if _model_layer_params else {} _dic = layer_conf(c2, st, _dic, _dic_inputs_types, _key, _model_layer_params, DIC_Layers) return True, _dic ``` #### File: jeusgao/jobot_factory_nlp_simple/init_params.py ```python import os import json from utils import ( DIC_DataLoaders, DIC_Resolvers, ) from modules import( DIC_Funcs, DIC_Inits, DIC_Losses, DIC_Metrics, DIC_Layers, DIC_Bases, DIC_Models, DIC_Optimizers, DIC_Tokenizers, DIC_Generators_for_train, DIC_Generators_for_pred, ) def _get_dic(_dic): _d = {} for k, v in _dic.items(): _d[k] = {} _d[k]['func'] = '' if isinstance(v, dict) and v.get('params'): _d[k]['params'] = v.get('params') return _d _dics = { 'DIC_Funcs': _get_dic(DIC_Funcs), 'DIC_Inits': _get_dic(DIC_Inits), 'DIC_Losses': _get_dic(DIC_Losses), 'DIC_Metrics': _get_dic(DIC_Metrics), 'DIC_Layers': _get_dic(DIC_Layers), 'DIC_Bases': _get_dic(DIC_Bases), 'DIC_Optimizers': _get_dic(DIC_Optimizers), 'DIC_Tokenizers': _get_dic(DIC_Tokenizers), 'DIC_DataLoaders': _get_dic(DIC_DataLoaders), 'DIC_Generators_for_train': _get_dic(DIC_Generators_for_train), 'DIC_Generators_for_pred': _get_dic(DIC_Generators_for_pred), 'DIC_Resolvers': _get_dic(DIC_Resolvers), 'DIC_Models': _get_dic(DIC_Models), } def env_init(): with open('params_templates.json', 'w') as f: json.dump(_dics, f, ensure_ascii=False, indent=2) if not os.path.exists('hub/bases'): os.makedirs('hub/base') if not os.path.exists('hub/models'): os.makedirs('hub/models') if not os.path.exists('data'): os.mkdir('data') if __name__ == '__main__': env_init() print('System initialized.') ``` #### File: jobot_factory_nlp_simple/modules/embedding.py ```python import os import codecs import numpy as np from keras_bert import load_trained_model_from_checkpoint from backend import keras from modules import tokenizer_zh class EmbedModel(object): def __init__(self, dict_path, config_path, checkpoint_path, maxlen=32): self.maxlen = maxlen self.token_dict, self.tokenizer = tokenizer_zh(fn_vocab=dict_path) base = load_trained_model_from_checkpoint( config_path, checkpoint_path, seq_len=maxlen, training=False, trainable=False, ) self.model = keras.models.Model(base.input, base.output) self.model.compile(loss='sparse_categorical_crossentropy', optimizer='adam') def get_embed(self, texts): X, X_seg = [], [] for t in texts: x, x_seg = self.tokenizer.encode(t[:self.maxlen - 2]) X.append(x) X_seg.append(x_seg) X = keras.preprocessing.sequence.pad_sequences(X, value=0, padding='post', maxlen=self.maxlen) X_seg = keras.preprocessing.sequence.pad_sequences(X_seg, value=0, padding='post', maxlen=self.maxlen) embs = self.model.predict([X, X_seg]) return embs ``` #### File: jeusgao/jobot_factory_nlp_simple/predictor.py ```python import os import pickle from builders import model_builder from modules import DIC_Generators_for_pred from utils import DIC_Resolvers, task_init from backend import V_TF def _get_params( model_bases_params=None, model_common_params=None, model_embeded_params=None, model_inputs_params=None, model_layer_params=None, model_outputs_params=None, model_optimizer_params=None, params_data=None, params_train=None, params_pred=None, ): return model_bases_params, model_common_params, model_embeded_params, model_inputs_params, model_layer_params, model_outputs_params, model_optimizer_params, params_data, params_train, params_pred class Predictor(object): def __init__(self, api_name): task_path = f'hub/models/{api_name}' fn_model, dic_task_params = task_init(task_path, is_train=False) model_bases_params, model_common_params, model_embeded_params, model_inputs_params, model_layer_params, model_outputs_params, model_optimizer_params, params_data, params_train, params_pred = _get_params( **dic_task_params) if model_common_params.TF_KERAS == 1: os.environ["TF_KERAS"] = '1' self.labeler = None self.maxlen = model_common_params.maxlen self.ML = model_common_params.ML self.is_pair = model_common_params.is_pair self.activation = params_data.activation self.is_sequence = params_data.is_sequence fn_labeler = params_data.fn_labeler if fn_labeler: fn_labeler = f'{task_path}/{fn_labeler}' if os.path.exists(fn_labeler): self.labeler = pickle.load(open(fn_labeler, 'rb')) self.data_generator = DIC_Generators_for_pred.get(params_data.data_generator_for_pred).get('func') self.resolver = DIC_Resolvers.get(params_pred.resolver).get('func') params_model = {} params_model['maxlen'] = self.maxlen params_model['ML'] = self.ML params_model['tokenizer_code'] = 'tokenizer_zh' params_model['tokenizer_params'] = {'fn_vocab': 'hub/bases/rbtl3/vocab.txt'} params_model['obj_common'] = model_common_params params_model['dic_bases'] = model_bases_params params_model['dic_embeds'] = model_embeded_params params_model['list_inputs'] = model_inputs_params params_model['dic_layers'] = model_layer_params params_model['dic_outputs'] = model_outputs_params params_model['obj_optimizer'] = model_optimizer_params self.tokenizer, self.token_dict, self.model = model_builder(is_predict=True, **params_model) # self.model.summary() self.model.load_weights(fn_model) def predict(self, inputs, from_api=True): if self.is_pair: if len(inputs) < 2: return {'result': 'Not enough inputs.'} elif len(inputs) > 1: inputs = ['.'.join(inputs)] if len(inputs) < 1: return {'result': 'Inputs invalid.'} data_input = self.data_generator( data=inputs, tokenizer=self.tokenizer, token_dict=self.token_dict, maxlen=self.maxlen, ML=self.ML, is_sequence=self.is_sequence, ) pred = self.model.predict(data_input) rst = self.resolver(pred, inputs, from_api=from_api, activation=self.activation, labeler=self.labeler, is_sequence=self.is_sequence) return rst models = tuple(os.walk('hub/models'))[0][1] DIC_Predictors = { k: Predictor(k) for k in models if os.path.exists(f'hub/models/{k}/model.h5') } def main(api_name, input1, input2=None, from_api=True): if not len(input1.strip()): return {'result': 'Empty input(s).'} inputs = [input1] if input2 and len(input2.strip()): inputs.append(input2) predictor = DIC_Predictors.get(api_name) rst = predictor.predict(inputs, from_api=from_api) return rst ``` #### File: jobot_factory_nlp_simple/utils/resolvers.py ```python import os import numpy as np def _get_output(word, kw_type, pos_start): return { 'oriFrag': word, 'type': kw_type, 'beginPos': pos_start, 'endPos': pos_start + len(word) } def _get_label_sequence(id2label, preds, text): output = [] word, kw_type, word, pos_start = '', '', '', 0 for i, p in enumerate(preds): l = id2label.get(p, 'O') if len(l) > 1: if 'B-' in l: if word: output.append(_get_output(word, kw_type, pos_start)) word = '' pos_start = i kw_type = l[2:] word = text[i] if 'I-' in l: kw_type = l[2:] word += text[i] else: if word: output.append(_get_output(word, kw_type, pos_start)) word = '' if len(word): output.append(_get_output(word, kw_type, pos_start)) return output def _resolve_sequence( pred, text, id2label=None, ): text = text[0] print(pred[0].argmax(axis=-1).tolist()[:len(text)]) _max_ner = pred[0].argmax(axis=-1).tolist()[:len(text)] rst_ner = _get_label_sequence(id2label, _max_ner, text) return rst_ner def resolve(pred, text, from_api=True, activation='sigmoid', labeler=None, is_sequence=False, threshold=0.7): rst = None score = None if is_sequence: id2label = None if labeler: id2label = {v: k for k, v in labeler.items()} else: return {'result': 'Labeler not found.'} rst = _resolve_sequence( pred, text, id2label=id2label, ) else: if activation == 'sigmoid': pred = np.asarray(pred).reshape(-1) rst = 0 if pred[0] < threshold else 1 score = float(pred[0]) else: rst = int(pred.argmax(-1)[0]) score = float(np.asarray(pred).reshape(-1)[rst]) if labeler: rst = labeler.get(rst, 0) return {'result': rst, 'score': score} def resolve_spo(pred, text, from_api=True, **params): text = text[0] pred_words = pred[0][0].argmax(axis=-1).tolist()[:len(text)] words, word, pos = {}, '', 0 for i, p in enumerate(pred_words): if p > 0: if p == 1: pos = i if len(word): words[i - len(word)] = word word = text[i] else: word += text[i] elif len(word): words[pos] = word word = '' if len(word) > 0: words[pos] = word pred_rels = pred[1][0].argmax(axis=-1).tolist() rels = [] for i, (_max, scores) in enumerate(zip(pred_rels[:len(text)], pred[1][0][:len(text)])): for j, m in enumerate(_max): if m > 0: if not j == i and words.get(i) and words.get(j): _score = scores[j, m].tolist() rels.append({ 'from_word': words.get(j), 'from_pos': j, 'to_word': words.get(i), 'to_pos': i, 'score': _score, 'tensors': {} if from_api else { # 'object': np.mean(pred[2][0][j:j + len(words.get(j))], axis=0).tolist(), # 'subject': np.mean(pred[2][0][i:i + len(words.get(i))], axis=0).tolist(), 'object': pred[2][0][j:j + len(words.get(j))].tolist(), 'subject': pred[2][0][i:i + len(words.get(i))].tolist(), } }) return {'text': text, 'words': words, 'rels': rels} ```
{ "source": "jeuvreyl/viewer-django", "score": 2 }
#### File: viewer/contents/views.py ```python from __future__ import absolute_import, unicode_literals from django.core.urlresolvers import reverse from django.views.generic import DetailView, ListView, UpdateView from .models import UploadedFile from braces.views import LoginRequiredMixin class UploadedFileDetail(LoginRequiredMixin, DetailView): model = UploadedFile slug_field = 'slug' slug_url_kwarg = 'slug' class UploadedFileUpdate(LoginRequiredMixin, UpdateView): model = UploadedFile fields = ['file_name', ] # send the user back to the detail page after a successful update def get_success_url(self): return reverse("contents:detail", kwargs={"slug": self.object.slug}) class UploadedFileList(LoginRequiredMixin, ListView): model = UploadedFile slug_field = 'slug' slug_url_kwarg = 'slug' ``` #### File: users/tests/test_models.py ```python from test_plus.test import TestCase class TestUser(TestCase): def setUp(self): user = self.make_user() user.first_name = 'first_name' user.last_name = 'last_name' self.user = user def test__str__(self): self.assertEqual( self.user.__str__(), "testuser" # This is the default username for self.make_user() ) def test_get_absolute_url(self): self.assertEqual( self.user.get_absolute_url(), '/users/testuser/' ) def test_get_short_name(self): self.assertEqual( self.user.get_short_name(), 'last_name' ) def test_get_full_name(self): self.assertEqual( self.user.get_full_name(), 'first_name last_name' ) ```
{ "source": "jeuxcing/j5e", "score": 3 }
#### File: j5e/game/DummyGame.py ```python from j5e.hardware.led_strip import Grid, GridDims from threading import Thread class Game(Thread): def __init__(self, grid): super().__init__() self.grid = grid self.ended = False def run(self): while not self.ended: for line_idx in range(Grid.SIZE): for seg_idx in range(Grid.SIZE-1): for led_idx in range(24): if self.ended: break self.grid.set_color(GridDims.ROW, line_idx, seg_idx, led_idx, (0, 40, 0)) self.grid.set_color(GridDims.COL, line_idx, seg_idx, led_idx, (0, 40, 0)) self.grid.set_color(GridDims.RING, line_idx, seg_idx, led_idx//2, (0, 40, 0)) time.sleep(0.3) self.grid.set_color(GridDims.ROW, line_idx, seg_idx, led_idx, (0, 0, 0)) self.grid.set_color(GridDims.COL, line_idx, seg_idx, led_idx, (0, 0, 0)) self.grid.set_color(GridDims.RING, line_idx, seg_idx, led_idx//2, (0, 0, 0)) def stop(self): self.ended = True ``` #### File: j5e/game/Timer.py ```python from threading import Thread from multiprocessing import Event from j5e.game.Agents import Lemming class Timer(Thread): def __init__(self): Thread.__init__(self) self.stopped = Event() self.elements=[] def add(self,el): self.elements.append(el) def run(self): i=0 while not self.stopped.wait(0.2): print(i,' : ') for element in self.elements: element.go() if isinstance(element,Lemming) and element.active==False: self.elements.remove(element) if True not in [isinstance(ele,Lemming) for ele in self.elements] : self.stopped.set() i+=1 ```
{ "source": "jevad/pythonMonteCarloPi", "score": 4 }
#### File: jevad/pythonMonteCarloPi/pi_parallel.py ```python from random import uniform as uniform import sys import multiprocessing as mp import timeit """ Recall from elementary geometry that the area of the unit circle (the circle of radius 1) is pi. We calculate pi by using Ulam's Monte Carlo method to calculate the area of the unit circle. For more information on the Monte Carlo method, the Wikipedia article, as of this date, is good: https://en.wikipedia.org/wiki/Monte_Carlo_method . Our algorithm uses the Python standard library random number generator, random. Python random uses a Mersenne Twister algorithm to generate pseudorandom numbers. The Mersenne Twister is a good algorithm for our purposes. The number of iterations run is user-adjustable. The more iterations run, the more accurate the result will be. The number of processes to be used is also user adjustable. Using more or fewer processes will not affect the result, but will change performance characteristics. """ def count_is_in_cirle(iteration_count): """ We count the number of random points from the unit square, running from -1 to 1 (inclusive, horizontally and vertically), that also fall in the unit circle. That value is returned. iteration_count is the number of iterations that are run. Our algorithm uses the Python standard library random number generator, random. See the module docs. """ # We are using the map-reduce pattern here. Per usual Python style, # we use a generator (lazy list comprehension) instead of map(), and # sum() instead of a reduce() on addition. Thus, we create a # generator with the result (1 or 0) for each iteration, then sum up # the results contained in the generator. # # Our algorithm: For each of a given number of iterations, determine # if a random point in the [-1, 1] square is in the unit circle or # not. If it is in the circle, it contributes 1 to a sum, the total # number of randompoints in the unit circle. def one_if_in_circle(x, y): """ Given a coordinate, x, y, we return 1 if the coordinate is in the unit circle; otherwise, we return 0. Points on the circle are considered in the circle. """ return 1 if (x*x + y*y) <= 1 else 0 return (sum( (one_if_in_circle(uniform(-1.0, 1.0), uniform(-1.0, 1.0)) for i in range(iteration_count)) )) def calc_pi(iteration_count, cores_usage): """ We calculate pi using Ulam's Monte Carlo method. See the module documentation. The calculated value of pi is returned. We use a process pool to offer the option of spreading the calculation across more then one core. iteration_count is the number of iterations that are run. cores_usage is the number of processes to use. """ # We're using a multiprocessing pool here, to take advantage of # multi-core CPUs. # Calculate stuff for the pool. pool_size = cores_usage iterations_per_process = iteration_count // pool_size work_list = [iterations_per_process] * pool_size work_list[0] += iteration_count % pool_size # Set up the pool. calc_pool = mp.Pool(pool_size) # Use the pool to obtain random points in the unit circle. # We'll let the system determine the chunk size. in_circle_total = sum(calc_pool.map( count_is_in_cirle, work_list)) # Finish the calculation. in_circle_total, divided by the total # number of iterations, is the area of the unit circle # relative to the [-1, 1] square. Multiply by 4, which is the area # of the [-1, 1] square, to get the area of the unit circle. # .NOTE. If you modify this program to run in Python 2.7, remember # to modify this calculation to use floating point division (or # import division from future). return 4 * in_circle_total / iteration_count def calc_pi_and_time_it_too(count, cores_usage): """ This is like calling calc_pi, but it also returns the elapsed time in a tuple: (calculated value of pi, elapsed time). iteration_count is the number of iterations that are run. cores_usage is the number of processes to use. """ # Q. Why is this so complicated? # A. The way Python handles time is inconsistent. Rather than fixing # that problem, the powers that be in the Python world created # a new standard library class, Timeit, to workaround the problem # that they should have fixed. However, Timeit is poorly designed, # so we have to jump through some hoops to get it to do what we # want it to do which is time a function call that returns a result # without also timing I/O. result = 0 def wrapper(): nonlocal result result = calc_pi(count, cores_usage) etim = timeit.timeit(wrapper, number=1) return (result, etim) if __name__ == "__main__": """ The first argument is the number of iterations to run -- make it a positive integer. If no first argument is given a default of 1000000 is used. The second argument is the number of CPU cores to use, which should be a positive integer. If no argument is given, then the value returned by max(1, multiprocessing.cpu_count() - 1) is used. """ count = int(sys.argv[1]) if (sys.argv and 2 <= len(sys.argv)) else 1000000 cores_usage = (int(sys.argv[2]) if (sys.argv and 3 <= len(sys.argv)) else max(1, mp.cpu_count() - 1)) (result, etim) = calc_pi_and_time_it_too(count, cores_usage) print("PI ({}): {}".format(count, result)) print(" elapsed ({}): {}".format(cores_usage, etim)); ```
{ "source": "jevancc/ece276a-color-segmentation", "score": 3 }
#### File: ece276a-color-segmentation/tools/labeltool.py ```python import os import cv2 import argparse import numpy as np from matplotlib import pyplot as plt from roipoly import MultiRoi parser = argparse.ArgumentParser(description='Label stop sign image') parser.add_argument('-i', nargs=1, help='input image path', dest='input', required=True) args = parser.parse_args() IMG_FILE = args.input[0] img = cv2.imread(IMG_FILE) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) COLORS = [('COLOR_STOP_SIGN_RED', 'red'), ('COLOR_OTHER_RED', 'orangered'), ('COLOR_BROWN', 'brown'), ('COLOR_ORANGE', 'orange'), ('COLOR_BLUE', 'cyan'), ('COLOR_OTHER', 'black')] rois = [] color_pixels = {} all_color_mask = np.zeros(img.shape[:-1]) def prompt_is_ok(msg): print(msg, end='') answer = input() return answer == 'y' for color, roi_color in COLORS: is_ok = False if not prompt_is_ok(f'Do you want to label color {color}? [y/n]: '): color_pixels[color] = np.array([]) continue while not is_ok: print(f'Labeling color {color} ...') fig = plt.figure() plt.imshow(img, interpolation='nearest', cmap='Greys') plt.title(f'Add ROI for Color:{color}') multiroi = MultiRoi(color_cycle=(roi_color,)) tmask = np.zeros(img.shape[:-1]) for name, roi in multiroi.rois.items(): mask = roi.get_mask(cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)) tmask += mask masked_img = img.copy() masked_img[tmask == 0, :] = 0 plt.imshow(masked_img) plt.show() is_ok = prompt_is_ok(f'Is color {color} labeled correctly? [y/n]: ') if not is_ok: print(f'Please label color {color} again.') else: rois.extend(multiroi.rois.values()) pixels = img[tmask != 0, :].reshape(-1, 3) color_pixels[color] = pixels data = {**color_pixels} if prompt_is_ok(f'Do you want to label stop signs region? [y/n]: '): is_ok = False while not is_ok: print(f'Labeling stop signs ...') fig = plt.figure() plt.imshow(img, interpolation='nearest', cmap='Greys') plt.title(f'Add ROI for stop signs') multiroi = MultiRoi(color_cycle=('g',)) tmask = np.zeros(img.shape[:-1]) for name, roi in multiroi.rois.items(): mask = roi.get_mask(cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)) tmask += mask masked_img = img.copy() masked_img[tmask == 0, :] = 0 plt.imshow(masked_img) plt.show() is_ok = prompt_is_ok(f'Are stop signs labeled correctly? [y/n]: ') if not is_ok: print(f'Please label stop signs again.') else: rois.extend(multiroi.rois.values()) tmask[tmask != 0] = 1 stop_sign_mask = tmask stop_sign_roi = multiroi data['MASK_STOP_SIGN'] = stop_sign_mask else: data['MASK_STOP_SIGN'] = np.zeros(img.shape[:-1]) img_name = os.path.splitext(IMG_FILE)[0] plt.figure() plt.imshow(img) for roi in rois: roi.display_roi() plt.axis('off') plt.savefig(f'{img_name}-roi.png', bbox_inches='tight') plt.title('Labeling Result') plt.show() np.savez(f'{img_name}.npz', **data) ```
{ "source": "jevancc/ece276a-visual-inertial-slam", "score": 2 }
#### File: ece276a-visual-inertial-slam/src/mapping.py ```python import itertools import numpy as np import scipy.linalg from .utils import * from .robot import * class EKFLandmarkMapping: def __init__(self, n_landmarks, robot_cam_T_imu, robot_cam_intrinsic_calib, robot_cam_baseline, process_noise_covariance=None, observation_noise_covariance=None, prior_pose_covariance=None, prior_landmark_covariance=None): if prior_landmark_covariance is None: prior_landmark_covariance = 5e-3 * np.eye(3) if prior_pose_covariance is None: prior_pose_covariance = 1e-3 * np.eye(6) if observation_noise_covariance is None: observation_noise_covariance = 100 * np.eye(4) if process_noise_covariance is None: process_noise_covariance = 1e-3 * np.eye(6) self.xU = np.eye(4) self.W = process_noise_covariance self.n_landmarks = n_landmarks self._n_initialized = 0 self._initialized_maxid = 0 self._initialized_mask = np.zeros((n_landmarks), dtype=bool) self.xm = np.zeros((n_landmarks, 3)) self.P = np.kron(np.eye(n_landmarks), prior_landmark_covariance) self.V = observation_noise_covariance self.oTi = robot_cam_T_imu K = robot_cam_intrinsic_calib self.b = robot_cam_baseline self.M = np.block([[K[:2, :], np.array([[0, 0]]).T], [K[:2, :], np.array([[-K[0, 0] * self.b, 0]]).T]]) @property def initialized_maxid(self): return self._initialized_maxid @property def n_initialized(self): return self._n_initialized @property def xUp(self): return self.xU[:3, 3].reshape(-1, 1) @property def oTw(self): return self.oTi @ self.xU def predict(self, u, tau): F = scipy.linalg.expm(-tau * wedge(u)) self.xU = F @ self.xU def _make_zmap(self, z): assert z.ndim == 2 and z.shape[0] == 4 return np.array(np.where(z.sum(axis=0) > -4), dtype=np.int32).reshape(-1) def _init_landmark(self, z, zmap): mask = np.invert(self._initialized_mask[zmap]) zmap = zmap[mask] if zmap.size > 0: wTo = np.linalg.inv(self.oTw) self._initialized_mask[zmap] = True z = z[:, zmap] M = self.M b = self.b wcoord = np.ones((4, zmap.size)) wcoord[0, :] = (z[0, :] - M[0, 2]) * b / (z[0, :] - z[2, :]) wcoord[1, :] = (z[1, :] - M[1, 2]) * (-M[2, 3]) / (M[1, 1] * (z[0, :] - z[2, :])) wcoord[2, :] = -M[2, 3] / (z[0, :] - z[2, :]) wcoord = wTo @ wcoord self.xm[zmap, :] = wcoord[:3, :].T self._n_initialized = np.sum(self._initialized_mask) self._initialized_maxid = max(zmap.max() + 1, self._initialized_maxid) def _make_H(self, z, zmap): n_observations = zmap.size n_updates = self._initialized_maxid P = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]], dtype=np.float64) xm = np.hstack([self.xm[zmap, :], np.ones((n_observations, 1))]) H = np.zeros((n_observations * 4, n_updates * 3)) for i in range(n_observations): obi = zmap[i] H[i * 4:(i + 1) * 4, obi * 3:(obi + 1) * 3] = self.M @ dpidq(self.oTw @ xm[i, :].reshape(-1, 1)) @ self.oTw @ P.T return H def _make_xm_P(self, z, zmap): n_observations = zmap.size n_updates = self._initialized_maxid xm = self.xm[:n_updates, :] P = self.P[:n_updates * 3, :n_updates * 3] return xm, P def _make_z(self, z, zmap): return z[:, zmap].reshape(-1, 1, order='F') def _make_predicted_z(self, z, zmap): n_observations = zmap.size xm = np.hstack([self.xm[zmap, :], np.ones((n_observations, 1))]) zp = self.M @ pi(self.oTw @ xm.T) return zp.reshape(-1, 1, order='F') def _update_value_xm_P(self, xm, P, zmap): n_observations = zmap.size n_updates = self._initialized_maxid self.xm[:n_updates, :] = xm self.P[:n_updates * 3, :n_updates * 3] = P def update(self, z): zmap = self._make_zmap(z) if zmap.size > 0: n_observations = zmap.size self._init_landmark(z, zmap) H = self._make_H(z, zmap) xm, P = self._make_xm_P(z, zmap) zp = self._make_predicted_z(z, zmap) z = self._make_z(z, zmap) V = np.kron(np.eye(n_observations), self.V) PHT = P @ H.T K = np.linalg.solve((H @ PHT + V).T, PHT.T).T xm += (K @ (z - zp)).reshape(-1, 3) P = (np.eye(K.shape[0]) - K @ H) @ P self._update_value_xm_P(xm, P, zmap) ``` #### File: ece276a-visual-inertial-slam/src/robot.py ```python import numpy as np def wedge(x): assert x.size in [3, 6] x = x.reshape(-1) if x.size == 3: return np.array([[0, -x[2], x[1]], [x[2], 0, -x[0]], [-x[1], x[0], 0]]) elif x.size == 6: return np.block([[wedge(x[3:]), x[:3].reshape(-1, 1)], [np.array([0, 0, 0, 0])]]) def cwedge(x): assert x.size == 6 x = x.reshape(-1) return np.block([[wedge(x[3:]), wedge(x[:3])], [np.zeros((3, 3)), wedge(x[3:])]]) def cdot(x): x = x.reshape(-1) assert x.size == 4 and x[-1] == 1 return np.block([[np.eye(3), -wedge(x[:3])], [np.zeros((1, 6))]]) def pi(q): assert q.ndim == 2 and q.shape[0] == 4 return q / q[2, :] def dpidq(q): assert q.size == 4 q = q.reshape(-1) return (1 / q[2]) * np.array([[1, 0, -q[0] / q[2], 0], [0, 1, -q[1] / q[2], 0], [0, 0, 0, 0], [0, 0, -q[3] / q[2], 1]]) ```
{ "source": "jevandezande/chem_translate", "score": 4 }
#### File: chem_translate/chem_translate/unicode_convertor.py ```python from .convertor import Convertor class UnicodeConvertor(Convertor): """ Converts a string to unicode >>> UnicodeConvertor.convert("H2O + NH3 -> OH- + NH4+") 'H₂O + NH₃ -> OH⁻ + NH₄⁺' """ @classmethod def subscript_number(cls, number: str) -> str: """ Converts a number to subscript >>> UnicodeConvertor.subscript_number("123") '₁₂₃' """ return str.translate(number, UNICODE_SUBSCRIPT_TRANSLATION) @classmethod def superscript_number_charge(cls, number: str, charge: str) -> str: """ Converts a number and charge to superscript >>> UnicodeConvertor.superscript_number_charge("123", "-") '¹²³⁻' >>> UnicodeConvertor.superscript_number_charge("", "+") '⁺' """ out = str.translate(number, UNICODE_SUPERSCRIPT_TRANSLATION) if number else "" return out + str.translate(charge, UNICODE_CHARGES_TRANSLATION) UNICODE_SUPERSCRIPT_TRANSLATION = {ord(str(i)): v for i, v in enumerate("⁰¹²³⁴⁵⁶⁷⁸⁹")} UNICODE_SUBSCRIPT_TRANSLATION = {ord(str(i)): v for i, v in enumerate("₀₁₂₃₄₅₆₇₈₉")} UNICODE_CHARGES_TRANSLATION = {ord("+"): "⁺", ord("-"): "⁻"} ```
{ "source": "jevandezande/dsc", "score": 3 }
#### File: dsc/calorimeter/plot.py ```python import numpy as np from itertools import cycle import matplotlib import matplotlib.pyplot as plt from .tools import y_at_x def plotter( scans, title=None, style=None, baseline_subtracted=False, set_zero=False, normalized=False, smoothed=False, peaks=None, derivative=None, plot=None, xlim=None, xticks=None, xticks_minor=True, xlabel=None, ylim=None, yticks=None, yticks_minor=True, ylabel=None, colors=None, markers=None, linestyles=None, derivative_colors=None, derivative_markers=None, derivative_linestyles=None, legend=True, savefig=None ): """ Plot a list of Scans. :param scans: list of Scans to plot :param title: title of the plot :param style: plot-style (currently does nothing) :param baseline_subtracted: amount to subtract, if True, use the lowest value from each Scan :param set_zero: set x-value (or range of values) at which y (or y average) is set to 0 :param normalized: normalize all of the curves at given point (or highest if True) :param smoothed: number of points with which to smooth :param peaks: dictionary of peak picking parameters :param derivative: whether to plot scan derivatives (True or `only`) :param plot: (figure, axis) on which to plot, generates new figure if None :param x*: x-axis setup parameters :param y*: y-axis setup parameters :param colors: colors to plot the Scans :param markers: markers to plot the Scans :param linestyles: linestyles to plot the Scans :param derivative_colors: colors to plot the derivatives :param derivative_markers: markers to plot the derivatives :param derivative_linestyles: linestyles to plot the derivatives :param legend: boolean to plot legend :param savefig: where to save the figure :return: figure and axes """ assert all(isinstance(s, type(scans[0])) for s in scans[1:]) assert not (baseline_subtracted and set_zero) if baseline_subtracted: scans = [s.baseline_subtracted(baseline_subtracted) for s in scans] elif set_zero: try: x, x2 = set_zero except (TypeError, ValueError): x, x2 = set_zero, None scans = [s.set_zero(x, x2) for s in scans] if normalized is True: scans = [s / max(s.temps) for s in scans] elif normalized is not False: scans = [s / y_at_x(normalized, s.time, s.temps) for s in scans] if smoothed: scans = [s.smoothed(smoothed) for s in scans] if plot is None: fig, ax = plt.subplots() else: fig, ax = plot setup_axis(ax, style, title, xlim, xticks, xticks_minor, xlabel, ylim, yticks, yticks_minor, ylabel) if derivatives == 'only': scans = [scan.derivative() for scan in scans] plot_scans(scans, style, ax, markers=markers, linestyles=linestyles, colors=colors, peaks=peaks) if derivative is True: if derivative_colors is None: if colors is not None: derivative_colors = colors else: plt.gca().set_prop_cycle(None) if derivative_linestyles is None: derivative_linestyles = '--' plot_scans( [scan.derivative() for scan in scans], style, ax, markers=markers, linestyles=derivative_linestyles, colors=derivative_colors, peaks=peaks ) if legend: ax.legend() if savefig: fig.savefig(savefig) return fig, ax def plot_scans(scans, style, ax, colors=None, markers=None, linestyles=None, peaks=None): """ Plot Scans on an axis. :param scans: the Scans to be plotted :param ax: the axis on which to plot :param style: plot-style (currently does nothing) :param colors: the colors to use :param markers: the markers to use at each point on the plot :param linestyles: the styles of line to use :param peaks: peak highlighting parameters """ colors = cycle_values(colors) markers = cycle_values(markers) linestyles = cycle_values(linestyles) for scan, color, marker, linestyle in zip(scans, colors, markers, linestyles): plot_scan(scan, style, ax, color=color, marker=marker, linestyle=linestyle, peaks=peaks) def plot_scan(scan, style, ax, color=None, marker=None, linestyle=None, peaks=None): """ Plot a Scan on an axis. :param scan: the Scan to be plotted :param ax: the axis on which to plot :param style: plot-style (currently does nothing) :param color: the color to use :param marker: the marker to use at each point on the plot :param linestyle: the style of line to use :param peaks: peak highlighting parameters """ ax.plot( scan.temps, scan.heat_flows, label=scan.name, color=color, marker=marker, linestyle=linestyle, ) if peaks: peak_defaults = { 'format': '4.1f', 'labels': True, 'marks': 'x', 'print': True, } peaks = peak_defaults if peaks is True else {**peak_defaults, **peaks} peak_indices, _ = scan.peaks(True, prominence=peaks['prominence']) peak_xs, peak_ys = scan.temps[peak_indices], scan.heat_flow[peak_indices] if peaks['marks']: ax.scatter(peak_xs, peak_ys, color=color, marker=peaks['marks']) if peaks['labels']: for x, y in zip(peak_xs, peak_ys): ax.text(x, y, f'{{:{peaks["format"]}}}'.format(x), verticalalignment='bottom') if peaks['print']: print(' X Y') for x, y in zip(peak_xs, peak_ys): print(f'{x:>9.3f} {y:>9.3f}') def setup_axis( ax, style=None, title=None, xlim=None, xticks=None, xticks_minor=True, xlabel=None, ylim=None, yticks=None, yticks_minor=True, ylabel=None, ): """ Setup the axis labels and limits. Autogenerates based on style for any variable set to None. :param ax: axis to setup :param style: plot-style (currently does nothing) :param title: title of the axis :param `*lim`: limits for `*-axis` values :param `*ticks`: `*-axis` ticks :param `*ticks_minor`: `*-axis` minor ticks :param `*label`: label for the `*-axis` """ # update values that are None up = lambda v, d: d if v is None else v # make ticks multiples of the tick width make_ticks = lambda start, end, tw: np.arange(int(start/tw)*tw, int(end/tw + 1)*tw, tw) backwards = False if xlim is not None: xticks = up(xticks, make_ticks(*xlim, 10)) xlabel = up(xlabel, 'Temperature (°C)') ylabel = up(ylabel, 'Heat Flow (mW)') ax.set_title(title) if xticks is not None: ax.set_xticks(xticks) if xticks_minor is True: ax.xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator()) elif xticks_minor is not None: xticks_minor *= 1 if not backwards else -1 ax.xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator(xticks_minor)) if yticks is not None: ax.set_yticks(yticks) if yticks_minor is True: ax.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator()) elif yticks_minor is not None: ax.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator(yticks_minor)) if xlim is not None: ax.set_xlim(*xlim) if ylim is not None: ax.set_ylim(*ylim) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) def cycle_values(values): """ Make a cycle iterator of values. :param values: a value or list of values to be cycled. :return: iterator of cycled values """ if not isinstance(values, list): values = [values] return cycle(values) ``` #### File: dsc/calorimeter/tools.py ```python import csv import itertools import numpy as np from glob import glob def read_csv(inp, header=True): """ Reads a csv file. :param inp: input file :param header: inp contains a header :return: :titles: titles of the columns :xs: x-values (1- or 2-dim np.array) :ys: y-values (1- or 2-dim np.array, matches x) """ titles = None try: with open(inp) as f: reader = csv.reader(f) if header: titles = next(reader) xs, ys = [], [] for x, *y in reader: xs.append(float(x)) ys.append([float(y_val) for y_val in y]) except ValueError as e: raise ValueError(f'Error reading value in {inp}.') from e ys = np.array(ys).T xs = np.array(xs) if titles is None: titles = [''] * len(xs) return titles, xs, ys def read_csvs(inps, header=True): """ Read an iterable of CSVs (or only one if a string). :param inps: input file(s) to read :param header: inp contains a header :return: titles, xs, ys """ titles = [] if isinstance(inps, str): titles, xs_list, ys_list = read_csv(inps, header) titles = titles[1:] xs_list = (np.ones(ys_list.shape) * xs_list) else: xs_list, ys_list = [], [] for inp in inps: ts, xs, ys = read_csv(inp, header) xs = (np.ones(ys.shape) * xs) titles.extend(ts[1:]) if ys.shape[1] == 1: xs_list.append(xs) ys_list.append(ys) else: for x_vals, y_vals in zip(xs, ys): xs_list.append(x_vals) ys_list.append(y_vals) xs = np.array(xs_list) ys = np.array(ys_list) # Sanity checks assert len(xs) == len(ys) assert len(ys) == len(titles) return titles, xs, ys def glob_read_csvs(inps, header=True): """ Use glob to find CSVs and then reads them. :param inps: a string or list of strings that can be read by glob :param header: inp contains a header :return: titles, xs, ys, file_names """ if isinstance(inps, str): inps = [inps] file_names = list(itertools.chain(*(glob(inp) for inp in inps))) titles, xs, ys = read_csvs(file_names) return titles, np.array(xs), np.array(ys), file_names def y_at_x(x_point, xs, ys): """ Determine the y-value at a specified x. If in between xs, choose the first past it. Assumes xs are ordered. :param x_point: x-value for which the y-value is desired :param xs: x-values :param ys: y-values :return: desired y-value """ if len(xs) != len(ys): raise ValueError(f'xs and ys must be of the same length, got: {len(xs)} and {len(ys)}') return ys[index_of_x(x_point, xs)] def index_of_x(x_point, xs): """ Determine the index of value(s) in an ordered list. If in between xs, choose the first past it (larger). Assumes xs are ordered. :param x_point: value(s) to find :param xs: list to search in :return: index of the nearest x_point """ # If in reverse order revd = False if xs[0] > xs[-1]: xs = xs[::-1] revd = True try: x_iter = iter(x_point) except TypeError: x_iter = [x_point] for x in x_iter: if x < xs[0] or x > xs[-1]: raise IndexError(f'x_point not in xs, x_point: {x}, xs: ({xs[0]}→{xs[-1]})') if revd: return len(xs) - np.searchsorted(xs, x_point) - 1 return np.searchsorted(xs, x_point) def integrate(xs, ys, x_range=None): """ Integrate a set of ys on the xs. Note: if x_range does not fall exactly on values in x, it finds the next largest x value. :param xs: x-values :param ys: y-values :param x_range: range of x_values to integrate over :return: integration """ if len(xs) != len(ys): raise ValueError(f'xs and ys must be of the same length, got: {len(xs)} and {len(ys)}') if x_range is not None: begin, end = x_range if begin < xs[0]: raise IndexError(f'x_range starts before first value in xs ({begin} > {xs[0]}') start = index_of_x(begin, xs) finish = index_of_x(end, xs) xs = xs[start:finish + 1] ys = ys[start:finish + 1] return np.trapz(ys, xs) def smooth_curve(ys, box_pts=True): """ Smooth a curve. Assumes that the ys are uniformly distributed. Returns output of length `max(ys, box_pts)`, boundary effects are visible. Note: ys must be > box_pts :param ys: points to smooth :param box_pts: number of data points to convolve, if True, use 3 :return: smoothed points """ if box_pts is True: box_pts = 3 box = np.ones(box_pts) / box_pts return np.convolve(ys, box, mode='same') def cull(vals, n): """ Cull `vals` to have `n` "evenly" spaced values. If not evenly divisible, spread them out as evenly as possible. :var vals: the values to cull :var n: number of values to keep :yield: culled values """ yield from (vals[i] for i in np.linspace(0.5, len(vals) - 0.5, n, dtype=int)) ``` #### File: dsc/tests/test_plot.py ```python import sys import matplotlib.pyplot as plt sys.path.insert(0, '..') from calorimeter.plot import cycle_values, plotter, setup_axis from calorimeter.scan import scans_from_csvs def setup(): pass def teardown(): pass def test_setup_axis(): fig, ax = plt.subplots() setup_axis(ax) setup_axis(ax, None, xticks=range(100), xlim=(0, 100)) def test_cycle_values(): assert next(cycle_values(None)) is None assert next(cycle_values(1)) == 1 it = cycle_values([0, 1, 2]) assert next(it) == 0 assert next(it) == 1 assert next(it) == 2 assert next(it) == 0 def test_plotter(tmp_path): scans = scans_from_csvs('tests/files/6HAW158.csv', 'tests/files/7HAW008-2.csv') fig, ax = plt.subplots() plotter( scans, title='Hello World', style=None, baseline_subtracted=True, set_zero=False, normalized=False, smoothed=False, peaks=None, plot=(fig, ax), xlim=(0, 50), xticks_minor=True, yticks_minor=2, legend=True, colors=None, markers=None, linestyles=None, savefig=f'{tmp_path}/my_scans_figure.svg', ) ```
{ "source": "jevandezande/elongation", "score": 3 }
#### File: elongation/elongation/elongation.py ```python import itertools import numpy as np from datetime import datetime from scipy import signal from .tools import (MyIter, compare_dictionaries, read_key_value, smooth_curve, try_to_num) class Elongation: def __init__(self, xs, ys, gauge_length, sample_width, sample_thickness, name=None): """ Container for elongation data. :param xs: elongation (in units of strain) :param ys: force (in Newtons) :param gauge_length: length of sample (in meters) :param sample width: width of sample (in meters) :param sample_thickness: thickness of sample (in meters) :param name: optional name for the Elongation """ assert len(xs) == len(ys) self.xs = np.array(xs) self.ys = np.array(ys) self.gauge_length = gauge_length # m self.sample_width = sample_width # m self.sample_thickness = sample_thickness # m self.name = name def __eq__(self, other): """ Check if two Elongation objects are equivalent. :param other: other Elongation object to compare with """ return isinstance(other, Elongation)\ and len(self.xs) == len(other.xs)\ and all(self.xs == other.xs) and all(self.ys == other.ys)\ and self.gauge_length == other.gauge_length\ and self.sample_width == other.sample_width\ and self.sample_thickness == other.sample_thickness\ and self.name == other.name def copy(self): """ Make a copy of the Elongation object. """ return self.__class__( self.xs.copy(), self.ys.copy(), self.gauge_length, self.sample_width, self.sample_thickness, self.name ) def write(self, file_name, style=None): """ Write Elongation object to file. :param file_name: file to write to. :param style: format to write to (guesses based on file extension if None) """ write_elongation(self, file_name, style=style) @property def max(self): """ Determine the max strain and coordinate stress. :return: stress, max_strain """ max_i = np.nanargmax(self.ys) return self.xs[max_i], self.ys[max_i] @property def cross_section(self): """ Cross sectional area of the material. :return: cross_section in m² """ return self.sample_thickness*self.sample_width # m x m = m² def smoothed(self, box_pts=True): """ Generate a smoothed version of the Elongation. :param box_pts: number of data points to convolve, if True, use default :return: smoothed Elongation """ elong = self.copy() elong.ys = smooth_curve(self.ys, box_pts) return elong def cropped(self, start=None, end=None, shifted=True): """ Crop the Elongation by x-value. :param start: x-value at which to start :param end: x-value at which to end :return: cropped Elongation object """ start_i, end_i, i = None, None, 0 if start is not None: for i, val in enumerate(self.xs): if val > start: start_i = i break if end is not None: for i, val in enumerate(self.xs[i:], start=i): if val > end: end_i = i + 1 break return self.cropped_index(start_i, end_i, shifted) def cropped_index(self, start_i=None, end_i=None, shifted=True): """ Crop the Elongation by index. :param start_i: index at which to start :param end_i: index at which to end :param shifted: shift the x-values so that they start at 0 """ xs = self.xs[start_i:end_i] ys = self.ys[start_i:end_i] if shifted: xs = xs - xs[0] return self.__class__(xs, ys, self.gauge_length, self.sample_width, self.sample_thickness, self.name) def cleaned(self, start_threshold=0.01, end_threshold=0.25, shifted=True): """ Remove the slack at the beginning and post-break at the end. :param start_threshold: threshold of max for starting :param end_threshold: threshold of max for break """ start_i, end_i = None, None max_i = np.nanargmax(self.ys) max_y = self.ys[max_i] if start_threshold is not None: # includes the value before threshold is met for i, y in enumerate(self.ys[1:]): if y > max_y*start_threshold: start_i = i break if end_threshold is not None: for i, y in enumerate(self.ys[max_i:], start=max_i): if y < max_y*end_threshold: end_i = i break return self.cropped_index(start_i, end_i, shifted) @property def youngs_modulus(self, x_limit=None): """ Determine the Young's modulus of the Elongation. Modulus is calculated as the peak of the derivative of the stress strain curve. :return: Young's modulus (units of Pa) """ if x_limit is not None: raise NotImplementedError('Limits on x not yet implemented, see youngs_modulus_array().') return max(self.youngs_modulus_array) @property def youngs_modulus_array(self): """ Determine the Young's modulus at all points on the Elongation. :return: Young's modulus array (units of Pa) """ return self.derivative()/self.cross_section # N/ΔL · L₀/A def derivative(self): """ :return: derivative """ return np.diff(self.ys)/np.diff(self.xs) # ΔN/ΔL · L₀ def peaks(self, **kwargs): """ Finds the location of peaks in the Elongation. Utilizes scipy.signal.find_peaks and the parameters therein. :param **kwargs: kwargs for scipy.signal.find_peaks :return: peak x-values, properties """ peaks, properties = self.peak_indices(**kwargs) return self.xs[peaks], properties def peak_indices(self, **kwargs): """ Finds the location of peaks in the Elongation. Utilizes scipy.signal.find_peaks and the parameters therein. :param **kwargs: kwargs for scipy.signal.find_peaks :return: peak indices, properties """ kwarg_defaults = { 'width': 5, # ensure small spikes are ignored } kwarg_defaults.update(kwargs) return signal.find_peaks(self.ys, **kwarg_defaults) def break_index(self, **kwargs): """ Determine the strain index of break. Break is defined herein as the last peak in the stress/strain curve. :param **kwargs: see peaks() :return: index of break """ return self.peak_indices(**kwargs)[0][-1] def break_elongation(self, **kwargs): return self.xs[self.break_index(**kwargs)] def break_load(self, **kwargs): return self.ys[self.break_index(**kwargs)] def break_strength(self, **kwargs): return self.break_load(**kwargs)/self.cross_section def yield_index(self, **kwargs): """ Determine the location and force at yield. Yield is defined herein as the first peak in the stress/strain curve. :param **kwargs: see peaks() :return: index of yield """ return self.peak_indices(**kwargs)[0][0] def yield_elongation(self, **kwargs): return self.xs[self.yield_index(**kwargs)] def yield_load(self, **kwargs): return self.ys[self.yield_index(**kwargs)] def yield_strength(self, **kwargs): return self.yield_load(**kwargs)/self.cross_section def write_elongation(elongation, file_name, style=None): """ Write Elongation object to file. :param: Elongation object :param file_name: name of the file to be written to :param style: format to write to (guesses based on file extension if None) """ style = file_name.split('.')[-1] if style is None else style if style == 'csv': write_csv(elongation, file_name) elif style == 'prn': raise NotImplementedError() else: raise NotImplementedError() def write_csv(elongation, file_name): """ Write Elongation object to a csv file. :param: Elongation object :param file_name: name of the file to be written to """ e = elongation with open(file_name, 'w') as f: f.write(f"""\ Break Load, {e.break_load()} Break Strength, {e.break_strength()} Break Elongation, {e.break_elongation()} Yield Load, {e.yield_load()} Yield Strength, {e.yield_strength()} Yield Elongation, {e.yield_elongation()} Gauge Length, {e.gauge_length} Sample Width, {e.sample_width} Sample Thickness, {e.sample_thickness} Points %, N""") for x, y in zip(e.xs, e.ys): f.write(f'\n{x:>8.4f}, {y:>8.4f}') def read_elongations(file_names): """ Read an iterable of elongation files. :param file_names: name of elongation files :return: list of Elongation objects. """ return list(itertools.chain(*(read_elongation(f) for f in file_names))) def read_elongation(file_name): """ Read an elongation file. :param file_name: name of the file :return: list of Elongation objects """ extension = file_name.split('.')[-1] if extension == 'prn': return read_prn(file_name) elif extension == 'csv': return read_csv(file_name) else: raise NotImplementedError(f'Reading {extension} files is not yet implemented.') def read_prn(file_name): """ Read a prn file. :param file_name: name of the file :return: list of Elongation objects ``` prn:13| subtype = MT2500 Doc={MT2500:14| Film={12.1| Test_Mode = tensile Setup_Name = - Unit_System = SI Graph_Mode = stress/strain Sample_Length = 60.00 CrossheadVlcty = 540 VelocityUnitId = 1 CrossheadSpeed = 21.2598 Loadcell_Mode = Tension Loadcell_Type = "SM Series" Start_Threshold = 0.10 Stop_Threshold = 0.10 Auto_Stop = True Auto_Return = True ExtnsnResetOnStart = False Yield_Type = 0 COF_Sled_Load = 200.00 } Test_Info={2| Color = e Order_Id = d Technician = a Test_Method = b Sample_Conditioning = f Test_Conditions = g Product_Name = c Test_Direction = up } Test_Data=( {6| Crosshead_speed = 0.787 X_unit = Secs. Y_unit = Newtons Sample_Thkness = 1.000 Sample_Width = 1.000 Grip_Separation = 6.000 Start_Threshhold = 0.100 Stop_Threshhold = 0.100 Number_Of_Points = 2344 Points = [ 0.1800, 0.0000 ... 6.1130, -1.2009 ] }, {6| ... } ) Test_Results=( {6| TestDate = 21 Aug, 2019 Length_Cnvrsn = 0.333333 Force_Cnvrsn = 1.000000 LoadCell_Capacity = 100 LoadCell_CpctyUnit = 1 LoadCell_BitsOfReso = 14 Analysis={ATensile:1| Slack_time = 0.000000 SampleThickness = 1.0000 BreakLoad = 16.9010 BreakStrength = 16900.9524 BreakElongation = 77.8917 BreakPctElongation = 1298.1944 YieldStrength1 = 5199.9639 YieldLoad1 = 5.2000 } }, {6| ... } ) } ``` """ with open(file_name) as f: f = MyIter(f) try: assert next(f).strip() == 'prn:13|' assert next(f).strip() == 'subtype = MT2500' assert next(f).strip() == 'Doc={MT2500:14|' assert next(f).strip() == 'Film={12.1|' film_data = {} for line in f: if '}' in line: break key, value = read_key_value(line) film_data[key] = value assert next(f).strip() == 'Test_Info={2|' test_info = {} for line in f: if '}' in line: break key, value = read_key_value(line) test_info[key] = value assert next(f).strip() == 'Test_Data=(' test_data = [] for i, line in enumerate(f): if line.strip() != '{6|': break test_data.append({}) for line in f: if '[' in line: break key, value = read_key_value(line) test_data[i][key] = try_to_num(value) xs, ys = [], [] for line in f: if ']' in line: break x, y = line.split(',') xs.append(x) ys.append(y) test_data[i]['xs'] = np.array(xs, dtype='float') test_data[i]['ys'] = np.array(ys, dtype='float') assert int(test_data[i]['Number_Of_Points']) == len(xs) assert next(f).strip()[0] == '}' # may have a comma assert 'Test_Results=(' == next(f).strip() test_results = [] for i, line in enumerate(f): if line.strip() != '{6|': break test_results.append({}) for line in f: if '}' in line: break key, value = read_key_value(line) test_results[i][key] = try_to_num(value) assert next(f).strip()[0] == '}' # may include comma except AssertionError as e: print(f._index, f._line) raise data_remove = ['Number_Of_Points'] results_swaps = [ ('TestDate', 'date'), ('Length_Cnvrsn', 'length_conversion'), ('Force_Cnvrsn', 'force_conversion'), ('LoadCell_Capacity', 'loadcell_capacity'), ('LoadCell_CpctyUnit', 'loadcell_capacity_unit'), ('LoadCell_BitsOfReso', 'loadcell_bits_of_resolution'), ('Slack_time', 'slack_time'), ('BreakStrength', 'break_strength'), ('BreakElongation', 'break_elongation'), ('BreakPctElongation', 'break_percent_elongation'), ('YieldStrength1', 'yield_strength'), ('YieldLoad1', 'yield_load'), ('SampleThickness', 'thickness'), ('BreakLoad', 'break_load'), ] results_remove = ['Analysis'] data_swaps = [ ('X_unit', 'x_units'), ('Y_unit', 'y_units'), ('Crosshead_speed', 'crosshead_speed'), ('Sample_Thkness', 'sample_thickness'), ('Sample_Width', 'sample_width'), ('Grip_Separation', 'gauge_length'), ('Start_Threshhold', 'start_threshhold'), ('Stop_Threshhold', 'stop_threshhold'), ] elongations = [] assert len(test_data) == len(test_results) for data, results in zip(test_data, test_results): for original, to in data_swaps: data[to] = data.pop(original) for original, to in results_swaps: results[to] = results.pop(original) for key in data_remove: data.pop(key) for key in results_remove: results.pop(key) if data['x_units'] == 'Secs.': data['x_units'] = 's' if data['y_units'] == 'Newtons': data['y_units'] = 'N' if results['date']: results['date'] = datetime.strptime(results['date'], '%d %b, %Y') xs = data['xs']*float(data['crosshead_speed']) elongations.append( Elongation( xs, data['ys'], float(data['gauge_length']) / 1e3, # mm → m float(data['sample_width']) / 1e3, # mm → m float(data['sample_thickness']) / 1e3, # mm → m None ) ) return elongations def read_csv(file_name): """ Read a csv file. :param file_name: name of the file :return: list of Elongation objects (currently only a single item in list). """ data = {} with open(file_name) as f: f = MyIter(f) try: for line in f: if not line.strip(): continue if line == 'Points\n': break key, val = read_key_value(line, separator=',') key = key.lower().replace(' ', '_') data[key] = val x_units, y_units = next(f).split(',') data['x_units'], data['y_units'] = x_units.strip(), y_units.strip() xs, ys = [], [] for line in f: x, y = line.split(',') xs.append(float(x.strip())) ys.append(float(y.strip())) except Exception as e: print(f'Error on line {f._index}') print(f._line) raise e elong = Elongation( np.array(xs), np.array(ys), float(data['gauge_length']), float(data['sample_width']), float(data['sample_thickness']) ) return [elong] if __name__ == "__main__": elongs = read_prn('../test/test_files/test1.prn') elongs = read_elongation('../test/test_files/test1.prn') elong = elongs[0] elong.write('a.csv') open('a.out', 'w').write(str(elong.__dict__)) ``` #### File: elongation/elongation/tools.py ```python import numpy as np import more_itertools as mit class MyIter(mit.peekable): """ Simple class for making it easier to debug the parsing of files. Extends more-itertools.peekable: _index: index of currently read line _line: currently read line """ def __init__(self, iterable): self._index = 0 self._line = None super().__init__(iterable) def __next__(self): self._line = super().__next__() self._index += 1 return self._line def read_key_value(line, separator='='): """ Read a key and value from a line. Only splits on first instance of separator. :param line: string of text to read. :param separator: key-value separator """ key, value = line.split(separator, 1) return key.strip(), value.strip() def try_to_num(in_str): """ Convert string to a number if possible. :param: in_str :return: int, float, or original string """ for f in (int, float): try: return f(in_str) except ValueError as e: pass return in_str def compare_dictionaries(dict1, dict2): """ Recursively compare two dictionaries. :return: True if exactly the same, False if not """ if len(dict1) != len(dict2): return False for key in dict1: try: val1, val2 = dict1[key], dict2[key] if val1 != val2: # different values return False except KeyError: # different keys return False except ValueError: # non-comparable types if isinstance(val1, dict): if not compare_dictionaries(val1, val2): return False elif any(val1 != val2): # Compare all values return False return True def smooth_curve(ys, box_pts=True): """ Smooth a curve. Assumes that the ys are uniformly distributed. Returns output of length `max(ys, box_pts)`, boundary effects are visible. :param ys: points to smooth :param box_pts: number of data points to convolve, if True, use 3 :return: smoothed points """ if box_pts is True: box_pts = 3 box = np.ones(box_pts) / box_pts return np.convolve(ys, box, mode='same') ```
{ "source": "jevandezande/mo_diagrams", "score": 3 }
#### File: mo_diagrams/mo_diagrams/orbitals.py ```python from __future__ import annotations from dataclasses import dataclass from typing import Iterator, Optional @dataclass class _OrbitalBase: # default argument rearrangement with dataclasses requires separate class energy: float @dataclass class _MOBase: energy: float atomic_orbitals: list[AtomicOrbital] coefficients: list[float] @dataclass(order=True) class Orbital(_OrbitalBase): label: str = "" def __repr__(self) -> str: label = f" {self.label}".rstrip() return f"<{type(self).__name__}:{label} {self.energy}>" def copy(self) -> Orbital: return Orbital( self.energy, self.label, ) @dataclass(order=True) class AtomicOrbital(Orbital): atom: Optional[str | int] = None def __repr__(self) -> str: label = f" {self.atom} {self.label}".rstrip() return f"<{type(self).__name__}:{label} {self.energy}>" def copy(self) -> AtomicOrbital: return AtomicOrbital( self.energy, self.label, self.atom, ) @dataclass(order=True) class MolecularOrbital(Orbital, _MOBase): """ A combination of atomic orbitals """ label: str = "" def __str__(self) -> str: return ( type(self).__name__ + ":\n" + f"{self.energy}" + "\n" + (self.label + "\n" if self.label else "") + "\n".join(f" {c:>6.3f} {ao!r}" for ao, c in self) ) def __iter__(self) -> Iterator[tuple[AtomicOrbital, float]]: yield from zip(self.atomic_orbitals, self.coefficients) def copy(self) -> MolecularOrbital: return MolecularOrbital( self.energy, self.atomic_orbitals, self.coefficients, self.label, ) @property def norm(self) -> float: """ Frobenius norm of the coefficients """ return sum(c ** 2 for _, c in self) ** 0.5 @property def normalized_coefficients(self) -> list[float]: return [c / self.norm for _, c in self] def normalized(self) -> MolecularOrbital: """ Generates a MolecularOrbital with normalized atomic orbital coefficients """ copy = self.copy() copy.coefficients = self.normalized_coefficients return copy if __name__ == "__main__": orb1 = Orbital(1) orb2 = Orbital(2.0) print(repr(orb1)) print(repr(orb2)) print() ao1 = AtomicOrbital(1) ao2 = AtomicOrbital(2, "2s") print(repr(ao1)) print(repr(ao2)) print() mo1 = MolecularOrbital(1, [ao1], [1]) mo2 = MolecularOrbital(2.0, [ao1, ao2], [1, 2.0], "HF") print(str(mo1)) print(str(mo2)) print() ```
{ "source": "jevandezande/orbital_diagrams", "score": 3 }
#### File: orbital_diagrams/orbitals/combo_orbital.py ```python from dataclasses import dataclass, field from typing import Iterator from ._base_orbital import BaseOrbital @dataclass class ComboOrbital(BaseOrbital): orbs: list[BaseOrbital] weights: list[float] = field(default_factory=list) def __post_init__(self): orbs, weights = self.orbs, self.weights if len(orbs) != len(weights): raise ValueError( f"Received mismatched orbitals and weights: {len(orbs)=} != {len(weights)=}" ) if weights is None: self.weights = [1 / len(orbs) ** 0.5] * len(orbs) else: norm = sum(w ** 2 for w in self.weights) ** 0.5 if norm <= 0: raise ValueError("Weights cannot all be 0.") self.weights = [w / norm for w in weights] def __iter__(self) -> Iterator[tuple[BaseOrbital, float]]: yield from zip(self.orbs, self.weights) def __str__(self) -> str: return "<ComboOrbital " + " ".join(f"{w:+5.2f} {orb}" for orb, w in self) + ">" ``` #### File: orbital_diagrams/orbitals/orbital_group.py ```python from dataclasses import dataclass from typing import Iterator from ._base_orbital import BaseOrbital @dataclass class OrbitalGroup(BaseOrbital): orbs: list[BaseOrbital] def __len__(self) -> int: return len(self.orbs) def __getitem__(self, index): return self.orbs[index] def __iter__(self) -> Iterator[BaseOrbital]: yield from self.orbs def __str__(self) -> str: return f"<{type(self).__name__} {self.orbs}>" ``` #### File: orbital_diagrams/tests/test_plot.py ```python import matplotlib.pyplot as plt from pytest import mark, raises from orbital_diagrams.api import EnergyOrbital from orbital_diagrams.orbitals._base_orbital import BaseOrbital from orbital_diagrams.plot import cycle_values, plotter, setup_axis, subplots def test_setup_axis(): fig, ax = plt.subplots() setup_axis(ax, None, xticks=range(100), xlim=(0, 100)) setup_axis(ax, "BaseOrbital") setup_axis(ax, "EnergyOrbital") setup_axis(ax, "ComboOrbital") setup_axis(ax, "ComboEnergyOrbital") setup_axis(ax, "ComboOrbitalGroup") setup_axis(ax, "ComboEnergyOrbitalGroup") with raises(NotImplementedError): setup_axis(ax, "None") def test_subplots(): assert len(subplots("BaseOrbital")) == 2 assert len(subplots("EnergyOrbital")[1]) == 1 assert subplots("ComboOrbital", 1, 4)[1].shape == (1, 4) assert subplots("ComboEnergyOrbital", 3, 5)[1].shape == (3, 5) @mark.xfail def test_plotter(tmp_path): fig, ((ax,),) = subplots("BaseOrbital") plotter( [BaseOrbital(), BaseOrbital(), BaseOrbital()], title="Hello World", style="BaseOrbital", plot=(fig, ax), xlim=(0, 2), xticks_minor=True, yticks_minor=2, legend=True, colors=None, markers=None, linestyles=None, savefig=f"{tmp_path}/BaseOrbitals.png", ) plotter( [EnergyOrbital(-1), EnergyOrbital(-2), EnergyOrbital(-3)], title="World", style="EnergyOrbital", plot=None, xlim=None, xticks=None, xticks_minor=1, yticks_minor=True, legend=False, alphas=[0.9, 0.1], colors=["b", "k"], markers="x", linestyles=["-", ":"], savefig=f"{tmp_path}/", ) plotter( [], title="Hello", style=type(BaseOrbital()).__name__, plot=None, xlim=None, xticks=None, legend=True, colors=None, markers=None, linestyles=None, savefig=f"{tmp_path}/", ) plotter( [], title="Hello", style=None, plot=None, xlim=(0, 10), xticks=None, legend=False, colors=None, markers="+", linestyles="--", savefig=f"{tmp_path}/", ) plotter( [], title="Hello", style=None, plot=None, xlim=(0, 10), xticks=None, ylim=(0, 10), yticks=(0, 5, 10), yticks_minor=True, legend=False, colors=None, alphas=0.5, markers="+", linestyles="--", savefig=f"{tmp_path}/", ) with raises(NotImplementedError): plotter([], style="QWERTY") def test_cycle_values(): assert next(cycle_values(None)) is None assert next(cycle_values(1)) == 1 it = cycle_values([0, 1, 2]) assert next(it) == 0 assert next(it) == 1 assert next(it) == 2 assert next(it) == 0 ```
{ "source": "jevandezande/scripts", "score": 3 }
#### File: scripts/qgrep/convergence.py ```python import numpy as np from collections import OrderedDict class Step: """ An object that stores a geometry convergence step :param params: convergence parameters :param criteria: criteria for convergence """ def __init__(self, params, criteria): self.__dict__.update(params) self.params = params self.criteria = criteria def __str__(self): out = '' for (key, value), criterion in zip(self.params.items(), self.criteria): # integers if key in ['scf_steps']: pass out += f'{value:> 9.2e}' out += '*' if abs(value) < criterion else ' ' out += f'|{value:> 7d}' return out class Convergence: def __init__(self, steps, criteria, program='orca'): """ Stores multiple geometry convergence steps :param steps: list of Steps :param criteria: criteria for convergence :param program: the program the results are from """ self.steps = steps self.criteria = criteria self.program = program def __iter__(self): yield from self.steps def __str__(self): if self.program == 'orca': header = " Δ energy RMS grad MAX grad RMS step MAX Step | SCF Steps\n" else: raise NotImplementedError('Convergence currently only implemented for ORCA') line = '-'*66 + '\n' out = header + line for i, step in enumerate(self): out += f'{i:>3}: ' for (key, value), criterion in zip(step.params.items(), step.criteria): # integers if key in ['scf_steps']: pass else: star = ' ' if abs(value) < criterion and not (i == 0 and key == 'delta_e'): star = '*' out += f'{value:> 9.2e}{star}' out += f'|{step.scf_steps:> 7d}\n' return out + line + ' ' + (' {:> 9.2e}'*len(self.criteria)).format(*self.criteria) def plot(self, show=True): """ Generate a plot of the convergence :param show: show the plot """ from matplotlib import pyplot as plt f, (ax0, ax1) = plt.subplots(1, 2, sharex='col') f.suptitle('Convergence', fontsize=16) plt.xlabel('Step') x = range(len(self.steps)) ax0.set_yscale('symlog', linthreshy=1e-5) ax0.set_title(r'$\Delta$ Energy') ax0.plot(x, self.delta_e, label='Energy') ax0.legend() ax1.set_ylim(0, 1) ax1.set_yscale('symlog', linthreshy=1e-4) ax1.set_title('Convergence Parameters') ax1.plot(x, self.rms_grad, 'b-', label='RMS Grad') ax1.plot(x, self.max_grad, 'b--', label='Max Grad') ax1.plot(x, self.rms_step, 'r-', label='RMS Step') ax1.plot(x, self.max_step, 'r--', label='Max Step') # TODO: generalize for more than ORCA ax1.plot(x, [self.criteria[1]]*len(self.steps), 'k-') ax1.plot(x, [self.criteria[1]]*len(self.steps), 'b*') ax1.plot(x, [self.criteria[2]]*len(self.steps), 'k--') ax1.plot(x, [self.criteria[2]]*len(self.steps), 'b*') ax1.plot(x, [self.criteria[3]]*len(self.steps), 'k-') ax1.plot(x, [self.criteria[3]]*len(self.steps), 'r*') ax1.plot(x, [self.criteria[4]]*len(self.steps), 'k--') ax1.plot(x, [self.criteria[4]]*len(self.steps), 'r*') ax1.legend() if show: plt.show() @property def delta_e(self): return np.array([step.delta_e for step in self.steps]) @property def rms_e(self): return np.array([step.rms_e for step in self.steps]) @property def max_grad(self): return np.array([step.max_grad for step in self.steps]) @property def rms_grad(self): return np.array([step.rms_grad for step in self.steps]) @property def max_step(self): return np.array([step.max_step for step in self.steps]) @property def rms_step(self): return np.array([step.rms_step for step in self.steps]) ``` #### File: qgrep/population/nbo.py ```python import re import numpy as np from itertools import zip_longest from collections import defaultdict from more_itertools import peekable class NAOs: """Natural Atomic Orbitals""" def __init__(self, lines): """ """ self.vals = NAOs.read(lines) def __len__(self): return len(self.vals) def __iter__(self): for ao_vals in self.vals: yield ao_vals def __sub__(self, other): """ Difference of two NAO objects """ raise NotImplementedError @staticmethod def read(lines): """ Reads the lines of a NAO output NAO Atom No lang Type(AO) Occupancy Energy --------------------------------------------------------- 1 C 1 s Cor( 1s) 1.99916 -10.15626 2 C 1 s Val( 2s) 0.94193 -0.30622 """ start = -1 for i, line in enumerate(lines): if line.strip() == 'NAO Atom No lang Type(AO) Occupancy Energy': start = i + 2 if start == -1: raise Exception('Cannot find the start of NAO') vals = [] atom = '' for line in lines[start:]: if not line.strip(): continue try: idx, atom, num, orb, orb_type, *shell, occupancy, energy = line.split() except ValueError as e: break if not shell: orb_type, shell = orb_type.split('(') else: shell = shell[0] orb_type = orb_type.strip('(') shell = shell.strip(')') vals.append([atom, int(num), orb, orb_type, shell, float(occupancy), float(energy)]) return vals class NPA: """Natural Population Analysis class""" def __init__(self, atoms=None, charges=None, lines=''): """ :param atoms: a list of atoms :param charges: numpy array of charges per atom (charge, core, valence, rydberg, total) :param lines: line of an output file to read """ if atoms is None and charges is None and lines: self.atoms, self.charges = self.read(lines) else: self.atoms = atoms self.charges = charges def __eq__(self, other): """ Uses np.allclose """ return self.atoms == other.atoms and np.allclose(self.charges, other.charges) def __iter__(self): """ Iterate over atoms and charges, each time returning an array of a single atom with charges """ for atom, atom_charges in zip(self.atoms, self.charges): yield atom, atom_charges def __len__(self): """ Number of atoms """ return len(self.atoms) def __getitem__(self, index): """ Get the atom and charges corresponding to the index """ return [self.atoms[index]] + self.charges[index] def __setitem__(self, index, value): """ Set the atom and charges corresponding to the index """ if len(value) != 6: raise SyntaxError('Invalid number of charges') self.atoms[index] = value[0] self.charges[index] = value[1:] def __str__(self): """ Return a string resmbling the NPA output """ ret = 'Idx Atom Charge Core Valence Rydberg Total\n' line_form = '{:>3} {:<5}' + ' {: >8.5f}' * 5 + '\n' for i, (atom, charge) in enumerate(zip(self.atoms, self.charges)): ret += line_form.format(i, atom, *charge) return ret def __sub__(self, other): """ Subtract two NPA objects of different sizes """ return self._combine(other, '-') def __add__(self, other): """ Add two NPA objects """ return self._combine(other, '+') def _combine(self, other, form): """ Add or subtract two NPA objects """ if form not in ['+', '-']: raise ValueError("form must be '+' or '-'") atoms = [] charges = [] # Allow combination even if the dimensions don't match for (atom1, charges1), (atom2, charges2) in zip_longest(self, other, fillvalue=['', np.zeros(5)]): atoms.append(f'{atom1:>2}{form}{atom2:<2}') if form == '-': charges.append(charges1 - charges2) else: charges.append(charges1 + charges2) if form == '-': return NPA_Diff(atoms, charges) return NPA_Sum(atoms, charges) def append(self, atom, *vals): """ Append an atom and charges to the population analysis """ self.atoms.append(atom) if not len(vals) == 5: raise SyntaxError('Invalid number of charges') self.charges = np.array(list(self.charges).append(list(vals))) @staticmethod def read(lines): """Read the natural population analysis from an output file Summary of Natural Population Analysis: Natural Population Natural --------------------------------------------- Atom No Charge Core Valence Rydberg Total -------------------------------------------------------------------- Fe 1 -0.57877 17.97641 8.54310 0.05926 26.57877 C 2 0.60637 1.99951 3.34225 0.05187 5.39363 O 3 -0.42097 1.99976 6.38932 0.03189 8.42097 ... """ # Find the NPA Section start = -1 for i, line in enumerate(lines): if line == ' Atom No Charge Core Valence Rydberg Total\n': start = i + 2 break if start == -1: raise Exception('Unable to find the start of NPA analysis') npa = [] atoms = [] # Interpret the NPA for line in lines[start:]: if line[:50] == " " + "=" * 49: break atom, num, *others = line.split() atoms.append(atom) num = int(num) charge, core, valence, rydberg, total, *ns = map(float, others) npa.append([charge, core, valence, rydberg, total]) return atoms, np.array(npa) class NPA_Diff(NPA): """ NPA class without restrictions on population Currently exactly the same """ class NPA_Sum(NPA): """ NPA class without restrictions on population Currently exactly the same """ pass class Orbital: """ Base class for all orbitals """ def __init__(self, occupation, atom, atom_n): """ :param occupation: orbital occupation :param atom: the primary atom of the orbital (more atoms allowed in subclasses) :param atom_n: index of the primary atom """ self.occupation = occupation self.atom = atom self.atom_n = int(atom_n) self.type = self.__class__.__name__ def __repr__(self): return f'<{self.type} {self.atom}{self.atom_n}>' def __str__(self): return f'{self.type:4} {self.occupation:>7.5f} {self.atom_n:>3} {self.atom:2}' class LP(Orbital): """ Lone Pair """ pass class CR(Orbital): """Core Orbital""" pass class LV(Orbital): """ TODO: Figure out what type of orbital this is """ pass class RY(Orbital): """Rydberg Orbital""" pass class RYs(Orbital): """Rydberg* Orbital""" def __init__(self): super().__init__(occupation, atom, atom_n) self.type = "RY*" class NBO(Orbital): """ Natural Bond Orbital """ def __init__(self, occupation, atom1, atom1_n, atom2, atom2_n, hybrids, densities): """ :param occupation: orbital occupation :param atom1: the first atom in the NBO :param atom1_n: index of the first atom :param atom2: the second atom in the NBO :param atom2_n: index of the second atom :param hybrids: hybridization of both atoms :param densities: densities of both atoms """ super().__init__(occupation, atom1, atom1_n) self.atom2 = atom2 self.atom2_n = int(atom2_n) self.hybrids = hybrids self.densities = densities def __repr__(self): return f'<NBO {self.atom1}{self.atom1_n}--{self.atom2}{self.atom2_n}>' def __str__(self): return f'{self.type:4} {self.occupation:>7.5f} {self.atom_n:>3} {self.atom:2}--{self.atom2_n:>3} {self.atom:2}' class NBOs(NBO): def __init__(self): super().__init__(occupation, atom1, atom1_n, atom2, atom2_n) self.type = "NBO*" class NBOSet: """Natural Bond Orbital class""" def __init__(self, file_iter): """ :param file_iter: file to be read from an output file """ self.orbitals = self.read(file_iter) def __str__(self): out = 'Index Type Occup atom Other info \n' for i, nbo in enumerate(self.orbitals): out += f'{i:>5} {nbo}\n' return out def bond_orders(self): """ Determines the bond orders of all bonds based on (occ x BD - occ x BD*)/2 """ bos = defaultdict(int) for orbital in self.orbitals: if isinstance(orbital, NBOs): bos[(orbital.atom_n, orbital.atom2_n)] -= orbital.occupation/2 elif isinstance(orbital, NBO): bos[(orbital.atom_n, orbital.atom2_n)] += orbital.occupation/2 return bos @staticmethod def read(file_iter): """ Read the Natural Bond Orbital Analysis 1. (1.92050) BD ( 1)Fe 1- C 2 ( 32.17%) 0.5672*Fe 1 s( 33.10%)p 0.00( 0.02%)d 2.02( 66.88%) f 0.00( 0.00%) 0.0000 0.0000 -0.0044 0.5753 0.0022 ... 36. (2.00000) CR ( 1)Fe 1 s(100.00%) 1.0000 -0.0000 0.0000 -0.0000 0.0000 ... 72. (1.79971) LP ( 1)Fe 1 s( 0.00%)p 0.00( 0.00%)d 1.00(100.00%) f 0.00( 0.00%) 0.0000 0.0000 -0.0000 0.0001 -0.0001 ... 90. (0.01241) RY*( 1)Fe 1 s( 0.00%)p 1.00( 3.05%)d31.77( 96.89%) f 0.02( 0.06%) 0.0000 0.0000 0.0000 0.0000 0.0005 ... 618. (0.67669) BD*( 1)Fe 1- C 2 ( 67.83%) 0.8236*Fe 1 s( 33.10%)p 0.00( 0.02%)d 2.02( 66.88%) f 0.00( 0.00%) ... """ file_iter = peekable(iter(file_iter)) for line in file_iter: if line == ' (Occupancy) Bond orbital / Coefficients / Hybrids\n': break try: file_iter.peek() except StopIteration: raise Exception('Could not find NBO section.') single_center = {'CR': CR, 'LP': LP, 'LV': LV, 'RY': RY, 'RY*': RYs} orbitals = [] while line: # Start of a new block for parsing if re.search('\s*\d+\. \(', line): idx, occup, nbo_type, *other = line.split() idx = int(idx[:-1]) occup = float(occup[1:-1]) nbo_type = nbo_type.strip('(') atom_re = ' ?(\w{1,2})\s+(\d+)' hybridicity_regex = '(\w)\s*(\d+\.\d+)\(\s*(\d+\.\d+)' if nbo_type in ['BD', 'BD*']: """ 4. (1.99999) BD ( 1) H 1- O 2 ( 41.34%) 0.6429* H 1 s(100.00%) 1.0000 ( 58.66%) 0.7659* O 2 s( 12.16%)p 7.22( 87.84%) 0.0000 0.3487 0.0000 -0.0650 -0.9350 """ regex = fr'\( ?(\d+)\){atom_re}-{atom_re}' number, atom1, atom1_n, atom2, atom2_n = re.search(regex, line).groups() regex = fr'\(\s*(\d+\.\d+)%\)\s+(-?\d\.\d+)\*{atom_re}\s+(\w)\(\s*(\d+\.\d+)' # For each atom block within the BD/BD* # while not re.search('\s*\d+\.\s', file_iter.peek()): hybrids = [] densities = [] # TODO: Figure out what this actually is # TODO: Adapt for three atom bonds? for i in range(2): line = next(file_iter) percent, val, atom, atom_n, orbital1, percent = re.search(regex, line).groups() assert (atom in [atom1, atom2]) and (atom_n in [atom1_n, atom2_n]) hybrids.append([(orbital1, 1.0, float(percent))]) finder = lambda l: re.findall(hybridicity_regex, l) matches = finder(line) while matches: for orbital, hybridicity, percent in matches: hybrids[i].append((orbital, float(hybridicity), float(percent))) matches = finder(file_iter.peek()) if not matches: break next(file_iter) densities.append([]) line = file_iter.peek() while line[:40] == ' '*40: densities[i] += map(float, re.findall('-?\d\.\d+', line)) next(file_iter) line = file_iter.peek() orbitals.append(NBO(occup, atom1, atom1_n, atom2, atom2_n, hybrids, densities)) # [idx, occup, nbo_type, int(number), atom1, int(atom1_n), atom2, int(atom2_n), hybrids, densities]) elif nbo_type in single_center: """90. (0.01241) RY*( 1)Fe 1 s( 0.00%)p 1.00( 3.05%)d31.77( 96.89%)""" regex = fr'\( ?(\d+)\){atom_re}\s+(\w)\(\s*(\d+\.\d+)' try: number, atom, atom_n, orbital1, percent = re.search(regex, line).groups() hybrids = [(orbital1, 1.0, float(percent))] finder = lambda l: re.findall(hybridicity_regex, l) matches = finder(line) + finder(file_iter.peek()) for orbital, hybridicity, percent in matches: hybrids.append((orbital, float(hybridicity), float(percent))) except Exception as e: raise ValueError from e orbitals.append(single_center[nbo_type](occup, atom, atom_n)) else: raise Exception(f'Cannot parse nbo type {nbo_type}') line = next(file_iter).strip() return orbitals ``` #### File: qgrep/population/orbital_pop.py ```python import re import numpy as np from re import search from copy import deepcopy am_types = 'spdfghi' class OrbitalPopulation: """Löwdin Orbital Population class (OP for short)""" def __init__(self, file_name='', orb_list=None, method='lowdin'): if file_name: self.orb_list = self.read(file_name) elif orb_list is not None: self.orb_list = orb_list else: self.orb_list = [] def __eq__(self, other): return self.orb_list == other.orb_list def __iter__(self): for orb in self.orb_list: yield orb def __len__(self): return len(self.orb_list) def __getitem__(self, index): return self.orb_list[index] def __setitem__(self, index, value): if not isinstance(value, Orbital): raise SyntaxError(f'Must be an Orbital, got: {type(value)}') self.orb_list[index] = value def __str__(self): return '\n\n'.join([f'{orb}' for orb in self.orb_list]) def __sub__(self, other): # TODO: Fix MOrbital indexing problem if len(self) != len(other): Warning(f'Differing number of orbitals ({len(self)} != {len(other)}), ' 'output will be truncated') min_len = min(len(self), len(other)) orb_list = [s - o for s, o in zip(self[:min_len], other[:min_len][:min_len])] return OrbitalPopulation(orb_list=orb_list) def csv(self): return '\n\n'.join([orb.csv() for orb in self.orb_list]) def write(self, file_name, format='str'): """ Write to a file """ if format == 'str': out = f'{self}' elif format == 'csv': out = self.csv() elif format == 'latex': out = '\n\n'.join([orb.latex() for orb in self.orb_list]) else: raise SyntaxError(f'Invalid write format: {format}') if file_name == 'stdout': print(out) else: with open(file_name, 'w') as f: f.write(out) def sorted(self, key='contribution'): """ Generates a sorted ROP """ if key == 'index': sort_key = lambda x: x.index elif key == 'atom': sort_key = lambda x: x.atom elif key == 'ao': sort_key = lambda x: x.ao elif key == 'contribution': sort_key = lambda x: x.val elif key == 'spin': sort_key = lambda x: x.spin else: raise SyntaxError(f'Invalid key given to sorted: {key}') orb_list = [] for mo in self.orb_list: contribs = sorted(mo.contributions, key=sort_key, reverse=True) orb_list.append(MOrbital(mo.index, mo.spin, mo.energy, mo.occupation, contribs)) return OrbitalPopulation(orb_list=orb_list) @property def homo(self): """ Returns the index of the HOMO Does not work for UHF (the HOMO is not well defined) WARNING: 0-indexed """ for i, orb in enumerate(self): if orb.occupation < 2: return i - 1 return None @property def lumo(self): """ Returns the index of the LUMO WARNING: 0-indexed """ for i, orb in enumerate(self): if orb.occupation == 0: return i return None @property def somo(self): """ Returns the indices of the SOMO's WARNING: 0-indexed """ somos = [] for i, orb in enumerate(self): if orb.occupation == 1: somos.append(i) return somos def append(self, orbital): """ Append another orbital """ if not isinstance(orbital, MOrbital): raise SyntaxError(f'You may only append Orbitals, got: type{orbital}') self.orb_list.append(orbital) def atom_contract(self): """ Contracts all atom AO_Contributions together (i.e. adds) """ return OrbitalPopulation(orb_list=[orb.atom_contract() for orb in self]) def am_contract(self): """ Contracts all AO_Contributions of the same am together (i.e. adds) """ return OrbitalPopulation(orb_list=[orb.am_contract() for orb in self]) def crop(self, max_num=5, min_num=2, cutoff=5): """ Make an ROP that removes the smallest contributors """ orb_list = [] for mo in self.orb_list: contribs = [] for contrib in sorted(mo.contributions, key=lambda x: x.val, reverse=True): if contrib.val < cutoff and len(contribs) >= min_num: break contribs.append(contrib) if len(contribs) == max_num: break orb_list.append(MOrbital(mo.index, mo.spin, mo.energy, mo.occupation, contribs)) return OrbitalPopulation(orb_list=orb_list) def range(self, low, high): """ Make an OP with a restricted range of orbitals """ return OrbitalPopulation(orb_list=self.orb_list[low:high]) @staticmethod def read(file_name, method='lowdin'): """Read the orbital populations""" if file_name.split('.')[-1] == 'csv': return OrbitalPopulation._read_csv(file_name, method=method) else: return OrbitalPopulation._read_orca(file_name, method=method) @staticmethod def _read_orca(file_name, method='lowdin'): """Löwdin ------------------------------------------ LOEWDIN REDUCED ORBITAL POPULATIONS PER MO ------------------------------------------- THRESHOLD FOR PRINTING IS 0.1% SPIN UP 0 1 2 3 4 5 -482.78209 -235.47558 -62.42906 -56.24347 -56.24238 -56.24235 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 -------- -------- -------- -------- -------- -------- 0 Mn s 0.0 100.0 0.0 0.0 0.0 0.0 25 Br s 100.0 0.0 100.0 0.0 0.0 0.0 25 Br pz 0.0 0.0 0.0 0.0 100.0 0.0 25 Br px 0.0 0.0 0.0 1.5 0.0 98.5 25 Br py 0.0 0.0 0.0 98.5 0.0 1.5 ... Three blank lines """ orb_list = [] spin = None lowdin_re = r'''LOEWDIN REDUCED ORBITAL POPULATIONS PER MO.*?\n\n\n''' if method == 'lowdin': orb_pop_re = lowdin_re else: raise NotImplementedError('Only Löwdin Reduced Orbital Population Analysis is implemented') with open(file_name) as f: output = f.read() matches = re.findall(orb_pop_re, output, re.MULTILINE + re.DOTALL) first = True if matches: match = matches[-1].strip() blocks = match.split('\n\n') for block in blocks: lines = block.splitlines() # Remove excess from the first block if first: lines = lines[3:] first = False # If open shell, an extra line is printed if lines[0] == 'SPIN UP': spin = 1 lines = lines[1:] elif lines[0] == 'SPIN DOWN': spin = -1 lines = lines[1:] # Parse out the header indexes = map(int, lines[0].split()) orb_es = map(float, lines[1].split()) occs = map(float, lines[2].split()) # Generate orbitals (occupations added in next section) orbs = [MOrbital(idx, spin, orb_e, occ) for idx, orb_e, occ in zip(indexes, orb_es, occs)] # Parse out the orbital contributions for line in lines[4:]: index, atom, ao, *vals = line.split() index = int(index) vals = map(float, vals) for i, val in enumerate(vals): # If there is occupation, this deletes all the appearances of 0.0 # Due to rounding, the occupations will not add up to 100 if val > 0: orbs[i].contributions.append(AO_Contrib(index, atom, ao, val, spin)) orb_list += orbs else: raise Exception('Unable to find the start of Reduced Orbital Population analysis') return orb_list @staticmethod def _read_csv(file_name, method='lowdin'): """Read the CSV output by the OrbitalPopulation class""" with open(file_name) as f: csv = f.read() orb_list = [] for block in csv.split('\n\n'): lines = block.strip().splitlines() mo_index, spin, orb_e, occ = lines[0].split(',') mo_index, orb_e, occ = int(mo_index), float(orb_e), round(float(occ)) aocs = [] for line in lines[1:]: index, atom, ao, val = line.split(',') aocs.append(AO_Contrib(int(index), atom.strip(), ao.strip(), float(val), spin)) orb_list.append(MOrbital(mo_index, spin, orb_e, occ, aocs)) return orb_list class MOrbital: """ Simple orbital class that holds the contributions from AOs as well as a little more necessary information """ def __init__(self, index=0, spin=None, energy=0, occupation=0, contributions=None): self.index = index self.spin = spin self.energy = energy self.occupation = occupation self.contributions = contributions if contributions is not None else [] def __eq__(self, other): """ Checks if all values are equal """ if self.index == other.index \ and np.isclose(self.energy, other.energy) \ and np.isclose(self.occupation, other.occupation) \ and len(self) == len(other): for s, o in zip(self.contributions, other.contributions): if not s == o: return False return True return False def __len__(self): return len(self.contributions) def __repr__(self): return f'<MO {self.index}{self.gspin} {self.energy: >8.5f} [{self.occupation}]>' def __str__(self): contrib_str = '\n'.join([f'{contrib}' for contrib in self.contributions]) return f'{self.index: >2d}{self.gspin} {self.energy: >8.5f} {self.occupation:>3.2f}\n{contrib_str}' def __sub__(self, other): if len(self) != len(other): Warning('The MOrbitals are of different lengths.') # raise ValueError('The MOrbitals are of different lengths.') min_len = min(len(self), len(other)) index = self.index if self.index == other.index else 0 energy = self.energy - other.energy occupation = self.occupation - other.occupation contributions = [] for s, o in zip(self.contributions[:min_len], other.contributions[:min_len]): contributions.append(s - o) # Only appends from one list (the other is maxed out and returns an empty list) contributions += self.contributions[min_len:] + other.contributions[min_len:] spin = self.spin if self.spin == other.spin else None return MOrbital(index, spin, energy, occupation, contributions) @property def gspin(self): if self.spin == 1: return 'α' elif self.spin == -1: return 'β' return '' def csv(self): ao_contrib_str = '\n'.join([ao_contrib.csv() for ao_contrib in self.contributions]) return f'{self.index: >2d}, {self.gspin}, {self.energy: > 7.5f}, {self.occupation:>3.2f}\n{ao_contrib_str}' def latex(self): """ Make into a latex tabular """ aoc_latex = f'{self.index:>2d} {self.energy: > 6.4f} {self.occupation:>3.2f}\n' aoc_latex += '\\begin{tabular}{r l r r}\n Index & Atom & AO & val \\\\ \\hline\n' for aoc in self.contributions: aoc_latex += f'{aoc.index:>6d} & {aoc.atom:<4s} & {aoc.ao:<3s} & {aoc.val:>4.1f} \\\\\n' aoc_latex += '\\end{tabular}' return aoc_latex def atom_contract(self): """ Contracts all atom AO_Contributions together (i.e. adds) """ # Dictionary of contracted ao_contributions atoms = {} for aoc in self.contributions: index, val = aoc.index, aoc.val if index in atoms: atoms[index].val += val else: aoc = deepcopy(aoc) aoc.ao = '' atoms[index] = aoc # Sort by atom index contribs = sorted(atoms.values(), key=lambda x: x.index) return MOrbital(self.index, None, self.energy, self.occupation, contribs) def am_contract(self): """ Contracts all AO_Contributions of the same am together (i.e. adds) """ # Dictionary of contracted ao_contributions atoms = {} for aoc in self.contributions: # First non-number corresponds to the am index, am, val = aoc.index, aoc.ao[0], aoc.val if (index, am) in atoms: atoms[(index, am)].val += val else: aoc = deepcopy(aoc) aoc.ao = am atoms[(index, am)] = aoc # Sort by atom index and then am_type key = lambda x: (x.index, am_types.index(x.ao[0])) contribs = sorted(atoms.values(), key=key) return MOrbital(self.index, None, self.energy, self.occupation, contribs) def atom_sum(self, atom): """ Sum over all the contributions from an atom """ val = 0 if isinstance(atom, str): for ao_contrib in self.contributions: if ao_contrib.atom == atom: val += ao_contrib.val elif isinstance(atom, int): for ao_contrib in self.contributions: if ao_contrib.index == atom: val += ao_contrib.val else: raise SyntaxError(f'Atom specifier must be either an int or str, got: {type(atom)}') return val def orbital_type_sum(self, atom, am_type): """ Sum over all the contributions from am_type on the specified atom """ if am_type not in am_types: raise Exception(f'Invalid am_type, got: {am_type}, expected {am_types}') val = 0 if isinstance(atom, str): for ao_contrib in self.contributions: if ao_contrib.atom == atom and ao_contrib.ao[0] == am_type: val += ao_contrib.val elif isinstance(atom, int): for ao_contrib in self.contributions: if ao_contrib.index == atom and ao_contrib.ao[0] == am_type: val += ao_contrib.val else: raise SyntaxError('Atom specifier must be either an int or str.') return val class AO_Contrib: """ Simple class containing an AO and its contribution to an MOrbital """ def __init__(self, index, atom, ao, val, spin=None): self.index = index self.atom = atom self.ao = ao self.val = val self.spin = spin def __repr__(self): return f'<AOC {self.index}{self.gspin} {self.atom} {self.ao} [{self.val}]>' def __eq__(self, other): """ Use np.allclose or almost_equal??? """ if not isinstance(other, AO_Contrib): return False if self.index == other.index \ and self.atom == other.atom \ and self.ao == other.ao \ and self.val == other.val: return True return False def __str__(self): return f'{self.index:>2d} {self.atom:<2s} {self.ao:<4s}: {self.val:>4.1f}' @property def am(self): return search('[a-z]', self.ao).group() @property def gspin(self): if self.spin == 1: return 'α' elif self.spin == -1: return 'β' return '' def __sub__(self, other): index = self.index if self.index == other.index else 0 atom = self.atom if self.atom == other.atom else '' ao = self.ao if self.ao == other.ao else '' val = self.val - other.val return AO_Contrib(index, atom, ao, val) def csv(self): return f'{self.index:>2d}, {self.atom:<2s}, {self.ao:<4s}, {self.val:>4.1f}' class Group_Contrib: """ Simple class containing a group of atoms and their contribution to a MOrbital """ def __init__(self, index, group, val): self.index = index self.group = group self.val = val def __eq__(self, other): """ Use np.allclose or almost_equal??? """ if not isinstance(other, Group_Contrib): return False if self.index == other.index \ and self.group == other.group \ and self.val == other.val: return True return False def __str__(self): return f'{self.index:>2d} {self.group:<10}: {self.val:>4.1f}' def __sub__(self, other): index = self.index if self.index == other.index else 0 group = self.group if self.group == other.group else '' val = self.val - other.val return Group_Contrib(index, atom, ao, val) ``` #### File: scripts/qgrep/queues.py ```python import re import getpass import subprocess import os.path from collections import OrderedDict, defaultdict from xml.etree import ElementTree from .helper import colors from itertools import zip_longest from configparser import ConfigParser config_file = os.path.join(os.path.expanduser("~"), '.qgrepconfig') config = ConfigParser() config.read(config_file) BAR = colors.purple + '│' + colors.normal JOB_ID_LENGTH = 7 NAME_LENGTH = 22 SMALL_QUEUE = 3 if 'queues' in config: JOB_ID_LENGTH = max(config['queues'].getint('job_id_length', 7), 4) NAME_LENGTH = max(config['queues'].getint('name_length', 22), 8) SMALL_QUEUE = max(config['queues'].getint('small_queue', 3), 1) COLUMN_WIDTH = 11 + JOB_ID_LENGTH + NAME_LENGTH class Queues: def __init__(self, omit=None): self.omit = omit if omit else [] self.queues = {} self.grid_engine, self.tree = self.qxml() self.find_sizes(omit=self.omit) self.parse_tree(omit=self.omit) def __str__(self): """ Make the tree into a printable form """ return self.print() def __eq__(self, other): """ Check if queues are equivalent """ if len(self.queues) != len(other.queues): return False for my_queue, other_queue in zip(self.queues.values(), other.queues.values()): if my_queue != other_queue: return False return True def __ne__(self, other): return not self == other # noinspection PyPep8 def print(self, numjobs=50, person=None): """ Print the queues in a nice table """ # Form header (without small queues) large_num = sum([size > SMALL_QUEUE for size in self.sizes.values()]) # Horizontal line (uses box drawing characters) top_line = '\033[95m' + '┌' + '┬'.join(['─'*(COLUMN_WIDTH - 1)]*large_num) + '┐' + '\033[0m\n' mid_line = '\033[95m' + '├' + '┼'.join(['─'*(COLUMN_WIDTH - 1)]*large_num) + '┤' + '\033[0m\n' bot_line = '\033[95m' + '└' + '┴'.join(['─'*(COLUMN_WIDTH - 1)]*large_num) + '┘' + '\033[0m\n' out = top_line name_form = '{} ({:2d}/{:2d}/{:2d})' # Print a nice header for name, queue in sorted(self.queues.items()): # Print small queues near the end if queue.size <= SMALL_QUEUE: continue out += BAR + ('{:^' + f'{COLUMN_WIDTH-1}' + '}').format(name_form.format(name, queue.used, queue.avail, queue.queued)) out += BAR + '\n' + mid_line header = BAR + 'ID'.center(JOB_ID_LENGTH) + ' USER ' + 'Job Name'.center(NAME_LENGTH) + ' ST' out += header*large_num + BAR + '\n' + mid_line if person is True: person = getpass.getuser() # Remove small queues for later use job_list = [] small_queues = [] for name, queue in sorted(self.queues.items()): if queue.size <= SMALL_QUEUE: if queue.size > 0: small_queues.append(queue) continue job_list.append(queue.person_jobs(person).values()) blank = BAR + ' '*(COLUMN_WIDTH-1) for i, job_row in enumerate(zip_longest(*job_list)): if i >= numjobs: # Add how many more jobs are running in each queue for queue in job_list: if len(queue) > numjobs: out += BAR + ('{:^' + f'{COLUMN_WIDTH + 7}' + '}').format(f'\033[1m{len(queue) - numjobs: >+5} jobs\033[0m') else: out += blank out += BAR + '\n' break for job in job_row: out += BAR + f'{job}' if job else blank out += BAR + '\n' out += mid_line if small_queues else bot_line # Display small queues below other queues for i, queue in enumerate(small_queues): out += queue.print_inline(len(self.sizes) - large_num, None, person) + '\n' out += mid_line if i < len(small_queues) - 1 else bot_line # Remove newline character out = out[:-1] return out @staticmethod def qxml(): """ Produce an xml ElementTree object containing all the queued jobs Sample output from SGE: <?xml version='1.0'?> <job_info xmlns:xsd="http://gridengine.sunsource.net/source/browse/*checkout*/gridengine/source/dist/util/resources/schemas/qstat/qstat.xsd?revision=1.11"> <queue_info> <Queue-List> <name><EMAIL></name> ... </Queue-List> <Queue-List> <name><EMAIL></name> ... <job_list state="running"> <JB_job_number>113254</JB_job_number> <JB_name>optg</JB_name> <JB_owner>mullinax</JB_owner> <state>r</state> <JAT_start_time>2015-05-11T15:52:49</JAT_start_time> <hard_req_queue>large.q<hard_req_queue> ... </job_list> </Queue-List> ... </queue_info> <job_info> <job_list state="pending"> <JB_job_number>112742</JB_job_number> <JB_name>CH3ONO2</JB_name> <JB_owner>meghaanand</JB_owner> <state>qw</state> <JB_submission_time>2015-05-08T16:30:25</JB_submission_time> <hard_req_queue>large.q<hard_req_queue> ... </job_list> </job_info> ... </job_info> Sample output from PBS: <Data> <Job> <Job_Id>77816.icqc</Job_Id> <Job_Name>e7_cas2_ddci3_tighter</Job_Name> <Job_Owner>sivalingam@icmaster1</Job_Owner> <resources_used> <cput>21002:04:52</cput> <energy_used>0</energy_used> <mem>60978424kb</mem> <vmem>73997480kb</vmem> <walltime>2630:02:36</walltime> </resources_used> <job_state>R</job_state> <queue>batch</queue> <server>control</server> <Checkpoint>u</Checkpoint> <ctime>1488149683</ctime> <Error_Path>zeusln1:/home/sivalingam/s4/e7_cas2_ddci3_tighter.err</Error_Path> <exec_host>izeusbn13/8-11+izeusbn12/11-12+izeusbn11/12-13</exec_host> <Hold_Types>n</Hold_Types> <Join_Path>oe</Join_Path> <Keep_Files>n</Keep_Files> <Mail_Points>a</Mail_Points> <mtime>1488149684</mtime> <Output_Path>zeus1:/home/sivalingam/s4/e7_cas2_ddci3_tighter.o77816</Output_Path> <Priority>0</Priority> <qtime>1488149683</qtime> <Rerunable>False</Rerunable> <Resource_List> <nodect>8</nodect> <nodes>8</nodes> <walltime>8760:00:00</walltime> </Resource_List> <session_id>3716</session_id> <Shell_Path_List>/bin/zsh</Shell_Path_List> <euser>sivalingam</euser> <egroup>gl-ag orca</egroup> <queue_type>E</queue_type> <etime>1488149683</etime> <submit_args>-j oe -e /home/sivalingam/s4/e7_cas2_ddci3_tighter.err -N e7_cas2_ddci3_tighter -r n e7_cas2_ddci3_tighter.job</submit_args> <start_time>1488149684</start_time> <Walltime> <Remaining>22067782</Remaining> </Walltime> <start_count>1</start_count> <fault_tolerant>False</fault_tolerant> <job_radix>0</job_radix> <submit_host>zeus1</submit_host> </Job> ... </Data> """ cmds = [('sge', 'qstat -u "*" -r -f -xml'), ('pbs', 'qstat -x -t')] for grid_engine, cmd in cmds: try: xml = subprocess.check_output(cmd, shell=True, stderr=subprocess.DEVNULL) return grid_engine, ElementTree.fromstring(xml) except FileNotFoundError as e: raise Exception("Could not find qstat") except subprocess.CalledProcessError as e: pass raise Exception('Could not generate XML, only PBS and SGE currently supported.') def parse_tree(self, omit=None): """ Parse the xml tree from qxml """ omit = omit if omit else [] if self.grid_engine == 'sge': self.queues = OrderedDict() for child in self.tree: # Running jobs are arranged by node/queue if child.tag == 'queue_info': for node in child: # <Queue-List> # <name><EMAIL></name> name = node.find('name').text.split('@')[0] # If we don't want to display the queue if name in omit: continue if name not in self.queues: self.queues[name] = Queue(self.sizes[name], name) for job_xml in node.iterfind('job_list'): job = Job(job_xml, self.grid_engine) self.queues[name].running[job.id] = job # Queued jobs elif child.tag == 'job_info': for job_xml in child: job = Job(job_xml, self.grid_engine) name = job.queue.split('@')[0] if name in omit: continue if name not in self.queues: self.queues[name] = Queue(self.sizes[name], name) self.queues[name].queueing[job.id] = job elif self.grid_engine == 'pbs': self.queues = OrderedDict() for job_xml in self.tree: job = Job(job_xml, self.grid_engine) queue = job.queue if job.state == 'c' or queue in omit: continue if queue not in self.queues: self.queues[queue] = Queue(self.sizes[queue], queue) if job.state == 'r': self.queues[queue].running[job.id] = job else: try: self.queues[queue].queueing[job.id] = job except: print(job) raise else: raise Exception('Could not read XML, only PBS and SGE currently supported.') def find_sizes(self, omit=None): """ Find the sizes of the queues """ omit = omit if omit else [] self.sizes = {} if self.grid_engine == 'sge': """Sample output from 'qstat -g c': CLUSTER QUEUE CQLOAD USED RES AVAIL TOTAL aoACDS cdsuE -------------------------------------------------------------------------------- all.q -NA- 0 0 0 0 0 0 gen3.q 0.00 0 0 0 16 0 16 gen4.q 0.26 31 0 13 48 0 4 gen5.q 0.50 4 0 0 4 0 0 gen6.q 0.39 19 0 0 19 0 1 """ qstat_queues_cmd = "qstat -g c" out = subprocess.check_output(qstat_queues_cmd, shell=True) for line in out.splitlines()[2:]: line = line.decode('UTF-8') if 'all.q' == line[:5]: continue queue, cqload, used, res, avail, total, aoacds, cdsue = line.split() if queue not in omit: self.sizes[queue] = int(used) + int(avail) elif self.grid_engine == 'pbs': """sample output from pbsnodes: izeussn153 state = job-exclusive power_state = Running np = 16 properties = small ntype = cluster jobs = 0-15/86886.icqc status = rectime=1498123346,macaddr=40:f2:e9:c6:22:60,cpuclock=Fixed,varattr=,jobs=86886.icqc(cput=65375153,energy_used=0,mem=118685472kb,vmem=133127908kb,walltime=4154720,session_id=3357),state=free,netload=75804699166624,gres=,loadave=16.00,ncpus=16,physmem=131338172kb,availmem=176492292kb,totmem=265555896kb,idletime=10974874,nusers=1,nsessions=1,sessions=3357,uname=Linux zeussn153 3.10.0-229.el7.x86_64 #1 SMP Fri Mar 6 11:36:42 UTC 2015 x86_64,opsys=linux mom_service_port = 15002 mom_manager_port = 15003 """ out = subprocess.check_output('pbsnodes', shell=True).decode('utf-8').strip() for job in out.split('\n\n'): try: queue = re.search('properties = (.*)', job).group(1) except AttributeError as e: queue = 'batch' if queue == 'big': queue = 'batch' if queue not in omit: if queue in self.sizes: self.sizes[queue] += 1 else: self.sizes[queue] = 1 else: raise Exception('Could not read queue sizes, only PBS and SGE currently supported.') class Queue: """ A class that contains Jobs that are running and queued """ def __init__(self, size, name='', running=None, queueing=None): """ Initialize a queue with its jobs :param running: an OrderedDict of Jobs that are running :param queueing: an OrderedDict of Jobs that are queueing """ self.size = size self.name = name if running is None: self.running = OrderedDict() else: self.running = running if queueing is None: self.queueing = OrderedDict() else: self.queueing = queueing def __eq__(self, other): if len(self) != len(other): return False for s, o in zip(self.jobs.values(), other.jobs.values()): if s != o: return False return True def __ne__(self, other): return not self == other def __len__(self): return len(self.running) + len(self.queueing) def __list__(self): """Make a list of all the Jobs in the queue""" return list(self.running.values()) + list(self.queueing.values()) def __str__(self): """Make a string with each job on a new line""" return self.print() def print(self, numlines=50, person=False): if person: jobs = self.person_jobs(person) else: jobs = self.jobs out = '\n'.join(list(map(str, jobs.values()))[:numlines]) if numlines < len(self): out += f'\n+{len(self) - numlines} jobs' return out def print_inline(self, width, max_num=None, person=False): """Print jobs inline""" if person: jobs = self.person_jobs(person) else: jobs = self.jobs used_avail_queued = f'{self.name} ({self.used:2d}/{self.avail:2d}/{self.queued:2d})' out = BAR + ('{:^' + f'{COLUMN_WIDTH-1}' + '}').format(used_avail_queued) + BAR for i, job in enumerate(jobs.values()): if not (max_num is None) and i >= max_num: break if not (i + 1) % width: out += f'\n {BAR}' out += f'{job} {BAR}' # Add blank spots to fill out to end if (len(jobs) + 1) % width: out += (' '*COLUMN_WIDTH*(width - (len(jobs) + 1) % width))[:-1] + BAR return out def set(self, job_id, job, position): """ Set a job in the specified position (running or queueing) """ if position == 'running': self.running[job_id] = job elif position == 'queueing': self.queueing[job_id] = job else: raise Exception("Invalid position, must be either running or" "queueing.") @property def used(self): return len(self.running) @property def avail(self): return self.size - self.used @property def queued(self): return len(self.queueing) @property def jobs(self): """ Makes an OrderedDict of all the running and queueing Jobs """ ret = OrderedDict() # OrderedDicts cannot be readily combined for k, v in sorted(self.running.items()): ret[k] = v for k, v in sorted(self.queueing.items()): ret[k] = v return ret def person_jobs(self, person): """Return an OrderedDict of Jobs with the specified owner""" if not person: return self.jobs ret = OrderedDict() for job in self.jobs.values(): if job.owner == person: ret[job.id] = job return ret class Job: """ A simple class that contains important information about a job and prints it nicely """ def __init__(self, job_xml, grid_engine): self.id, self.name, self.state, self.owner, self.queue, self.workdir = Job.read_job_xml(job_xml, grid_engine) # self.id, self.name, self.state, self.owner, self.queue, self.workdir, (self.nodect, self.nodes) = Job.read_job_xml(job_xml, grid_engine) def __eq__(self, other): if self.id == other.id and \ self.name == other.name and \ self.state == other.state and \ self.owner == other.owner and \ self.queue == other.queue: return True return False def __ne__(self, other): return not self == other def __str__(self): """Print a short description of the job, with color""" job_form = '{:>' + f'{JOB_ID_LENGTH}' + 'd} {:<5s} {:<' + f'{NAME_LENGTH}' + 's} {}{:2s}' + colors.normal # Color queue status by type, use red if unrecognized job_colors = defaultdict(lambda: colors.red, {'r': colors.green, 'qw': colors.blue}) # Bold the person's jobs if self.owner == getpass.getuser(): owner = colors.bold + f'{self.owner:5.5s}' + colors.normal else: owner = f'{self.owner:5.5s}' return job_form.format(int(self.id), owner, self.name[:NAME_LENGTH], job_colors[self.state], self.state[:2]) # + str(self.nodes) + ', ' + str(self.nodect) @staticmethod def read_job_xml(job_xml, grid_engine): """ Read the xml of qstat and find the necessary variables """ if grid_engine == 'sge': jid = int(job_xml.find('JB_job_number').text) tasks = job_xml.find('tasks') # If there are multiple tasks with the same id, make the id a float # with the task number being the decimal if tasks is not None: # If it is a range of jobs, e.g. 17-78:1, just take the first task = tasks.text.split('-')[0] # If not a range, this does nothing # SGE is being cute and comma separates two numbers if sequential task = task.split(',')[0] jid += int(task) / 10 ** len(task) name = job_xml.find('JB_name').text state = job_xml.get('state').lower() owner = job_xml.find('JB_owner').text state2 = job_xml.find('state').text try: queue = job_xml.find('hard_req_queue').text except AttributeError as e: queue = 'debug.q' if (state == 'running' and state2 != 'r') or \ (state == 'pending' and state2 != 'qw'): pass return jid, name, state2, owner, queue elif grid_engine == 'pbs': jid = job_xml.find('Job_Id').text.split('.')[0] try: jid = int(jid) except ValueError as e: # Must be part of a job_array jid, task_id = jid[:-1].split('[') if task_id: jid = float(jid + '.' + task_id) else: # -t must not be supported jid = int(jid) name = job_xml.find('Job_Name').text state = job_xml.find('job_state').text.lower() owner = job_xml.find('Job_Owner').text.split('@')[0] queue = job_xml.find('queue').text resource_list = job_xml.find('Resource_List') nodect, nodes = resource_list.find('nodect').text, resource_list.find('nodes').text workdir = None try: variables = job_xml.find('Variable_List').text.split(',') variables = dict(kv.split('=') for kv in variables) workdir = variables['PBS_O_WORKDIR'] except AttributeError: pass return jid, name, state, owner, queue, workdir # return jid, name, state, owner, queue, workdir, (nodect, nodes) else: raise Exception('Could not read XML, only PBS and SGE currently supported.') ``` #### File: scripts/qgrep/redundant.py ```python import re from more_itertools import collapse class RedundantInternals: """Redundant Internal Coordinates""" def __init__(self, lines): self.bond_vals, self.angle_vals, self.linear_vals, self.dihredal_vals = RedundantInternals.read(lines) def print(self, bonds=True, angles=False, dihedrals=False): """ Print values """ out = '' if bonds: for *atoms, final in self.bond_vals: f = '-'.join(['{:>3} {:<2}']*int(len(atoms))) + f' = {final:> 5.4f}\n' out += f.format(*collapse(atoms)) if angles: for val in self.angle_vals + self.linear_vals: pass if dihedrals: for val in self.dihedral_vals: pass return out def diffs(self, other, thresh=(3, 2, 2)): """ Difference between two sets of redundant internals Warning, must be exactly the same numbering of the geometry :param thresh: list of threshold values for comparison printing if thresh[i] = None, no cutting will be done """ def check(vals1, vals2, thresh=3): mismatch = 0 for (*atoms1, final1), (*atoms2, final2) in zip(vals1, vals2): if atoms1 != atoms2: mismatch += 1 continue if thresh is None or abs(final2 - final1) > 10**-thresh: f = '-'.join(['{:>3} {:<2}']*int(len(atoms1))) + (' = {:> 5.' + f'{thresh}' + 'f}').format(final2 - final1) print(f.format(*collapse(atoms1))) return mismatch print('Bonds') mismatch = check(self.bond_vals, other.bond_vals, thresh=thresh[0]) print(f'Bond Mismatch: {mismatch}') #print('\nAngles') #mistmatch = check(self.angle_vals, other.angle_vals, thresh=thresh[1]) #print(f'Angle Mismatch: {mismatch}') def diff_metric(self, other, metric='sad'): mismatch = 0 diff = 0 for (*atoms1, final1), (*atoms2, final2) in zip(self.bond_vals, other.bond_vals): if atoms1 != atoms2: mismatch += 1 continue # Sum of absolute deviation if metric == 'sad': diff += abs(final2 - final1) print(diff) print(f'Bond Mismatch: {mismatch}') def read(lines, sort=True): """ Parse the Redundant Internal Coordinates from an Orca output file TODO: Make work for Dihedrals """ """ --------------------------------------------------------------------------- Redundant Internal Coordinates --- Optimized Parameters --- (Angstroem and degrees) Definition OldVal dE/dq Step FinalVal ---------------------------------------------------------------------------- 1. B(O 1,C 0) 1.4658 -0.000017 0.0000 1.4658 37. A(C 4,C 0,C 17) 113.60 -0.000000 -0.00 113.60 92. L(C 21,C 22,N 23,C 24, 2) 179.99 -0.000002 0.00 179.99 97. D(C 2,O 1,C 0,C 4) -0.02 -0.000001 0.00 -0.02 """ start = -1 for i, line in enumerate(reversed(lines)): if line.strip() == '--- Optimized Parameters ---': start = len(lines) - i + 4 break if start == -1: raise Exception('Cannot find the start of the redundant internals') regex = r'\d+\.\s+(\w)\((\w+)\s+(\d+),(\w+)\s+(\d+)(,\w+\s+\d+)?(,\w+\s+\d+)?(,\s*\d+)?\)\s+(-?\d+\.\d+)\s+(-?\d+\.\d+)\s+(-?\d+\.\d+)\s+(\d+\.\d+)' bond_vals = [] angle_vals = [] linear_vals = [] dihedral_vals = [] for line in lines[start:]: line = line.strip() if line[0] == '-': break try: t, atom1, idx1, atom2, idx2, atom_idx3, atom_idx4, other, old, slope, step, final = re.search(regex, line).groups() except AttributeError as e: pass if atom_idx3: atom3, idx3 = atom_idx3[1:].split() if atom_idx4: atom4, idx4 = atom_idx4[1:].split() if other: other = other[1:].strip() if t == 'B': pair1, pair2 = sorted(((int(idx1), atom1), (int(idx2), atom2))) bond_vals.append([pair1, pair2, float(final)]) elif t == 'A': pair1, pair2, pair3 = sorted(((int(idx1), atom1), (int(idx2), atom2), (int(idx3), atom3))) angle_vals.append([pair1, pair2, pair3, float(final)]) elif t == 'L': pair1, pair2, pair3, pair4 = sorted(((int(idx1), atom1), (int(idx2), atom2), (int(idx3), atom3), (int(idx4), atom4))) linear_vals.append([pair1, pair2, pair3, pair4, other, float(final)]) elif t == 'D': pair1, pair2, pair3, pair4 = sorted(((int(idx1), atom1), (int(idx2), atom2), (int(idx3), atom3), (int(idx4), atom4))) dihedral_vals.append([pair1, pair2, pair3, pair4, float(final)]) else: raise ValueError('Cannot identify coordinate type') #bond_vals = sorted(bond_vals) #angle_vals = sorted(angle_vals) #linear_vals = sorted(linear_vals) #dihedral_vals = sorted(dihedral_vals) return bond_vals, angle_vals, linear_vals, dihedral_vals ``` #### File: tests/cfour/cfour_unittest.py ```python import unittest from sys import path path.insert(0, '../..') from qgrep import cfour class TestCFour(unittest.TestCase): """Tests the cfour class""" def setUp(self): """Read in the necessary files""" files = ['h2o.out', 'h2o.xyz'] self.files = {} for file in files: with open(file, 'r') as f: self.files[file] = f.readlines() def test_get_geom(self): """Testing get_geom""" h2o_xyz = cfour.get_geom(self.files['h2o.out'], geom_type='xyz') self.assertEqual(self.files['h2o.xyz'], h2o_xyz) def test_check_convergence(self): """Testing check_convergence""" raise NotImplementedError def test_get_energy(self): """Testing get_energy""" raise NotImplementedError def test_get_freqs(self): """Testing get_freqs""" raise NotImplementedError def test_plot(self): """Testing plot""" raise NotImplementedError def test_convert_zmatrix(self): """Test convert_zmatrix""" raise NotImplementedError def test_get_molecule(self): """Testing get_molecule""" raise NotImplementedError if __name__ == '__main__': unittest.main() h2o_xyz = cfour.get_geom(open('h2o.out').readlines(), geom_type='xyz') print(h2o_xyz) ``` #### File: scripts/tests/molecule_unittest.py ```python import os import unittest import numpy as np from sys import path from numpy.testing import assert_almost_equal path.insert(0, '..') from qgrep.molecule import Molecule class TestMolecule(unittest.TestCase): """Tests the Molecule class""" def setUp(self): """Set up for every test""" self.water_geom = [['H', [0, 0, 0]], ['O', [0, 0, 1]], ['H', [0, 1, 1]]] self.water = Molecule(self.water_geom) def test_len(self): """Testing __len__""" self.assertEqual(len(self.water), 3) def test_getsetdeleqinsert(self): """Test getting, setting and deleting atoms""" self.assertEqual(self.water[0][0], 'H') assert_almost_equal(self.water[0][1], np.array([0, 0, 0])) del self.water[1] self.assertEqual(self.water[1][0], 'H') assert_almost_equal(self.water[1][1], np.array([0, 1, 1])) self.water[0] = ['H', [0, 0, 0]] self.water[1] = ['H', [0, -1, 1]] self.assertEqual(self.water[1][0], 'H') assert_almost_equal(self.water[1][1], np.array([0, -1, 1])) self.water.insert(1, 'O', [0, 0, 1]) self.assertEqual(self.water[1][0], 'O') assert_almost_equal(self.water[1][1], np.array([0, 0, 1])) self.assertEqual(self.water[2][0], 'H') assert_almost_equal(self.water[2][1], np.array([0, -1, 1])) new_water = Molecule([['H', [0, 0, 0]], ['O', [0, 0, 1]], ['H', [0, -1, 1]]]) self.assertEqual(self.water, new_water) def test_str(self): """Testing __str__""" water_string = """\ H 0.00000000 0.00000000 0.00000000 O 0.00000000 0.00000000 1.00000000 H 0.00000000 1.00000000 1.00000000""" self.assertEqual(str(self.water), water_string) def test_check_atom(self): """Test check_atom throws errors correctly""" atom, xyz = ['H', [0, 1, 2]] self.assertTrue(Molecule.check_atom(atom, xyz)) self.assertRaises(SyntaxError, Molecule.check_atom, [[]], 'a') self.assertRaises(TypeError, Molecule.check_atom, [[1, 2, 3]]) self.assertRaises(SyntaxError, Molecule.check_atom, [[0, 1, 2, 3]], 'a') self.assertRaises(SyntaxError, Molecule.check_atom, ['H', [1]], ['a', [3]]) def test_check_geom(self): """Test check_geom throws errors correctly""" self.assertTrue(Molecule.check_geom(self.water_geom)) # Zero-length geometries are valid self.assertTrue(Molecule.check_geom([])) self.assertRaises(ValueError, Molecule.check_geom, [[[1, 2, 3]]]) self.assertRaises(TypeError, Molecule.check_geom, ['H'], [[[0, 1, 2, 3]]]) def test_read_write_geometry(self): """Testing read and write""" geom_file = 'geom.xyz.tmp' self.water.write(geom_file, True) mol = Molecule.read_from(geom_file) mol.name = 'H2O' self.assertEqual(mol.geom, self.water.geom) mol.write(geom_file, style='latex') latex_geom = '''\ \\begin{verbatim} H 0.000000 0.000000 0.000000 O 0.000000 0.000000 1.000000 H 0.000000 1.000000 1.000000 \\end{verbatim}''' with open(geom_file) as f: out_tex = f.read() self.assertEqual(latex_geom, out_tex) os.remove(geom_file) def test_com(self): """ Test the center of mass """ water_com = np.array([0, 0.05595744, 0.94404256]) assert_almost_equal(self.water.center_of_mass(), water_com) # Translations should shift the center of mass the same amount translation = [7, 8, 9] self.water.xyz += translation assert_almost_equal(self.water.center_of_mass(), water_com + translation) def test_moi_tensor(self): """ Test the moment of inertia tensor """ water_moi_tensor = np.array([ [ 1.9028595, 0 , 0 ], [ 0 , 0.9514297, -0.0563953], [ 0 , -0.0563953, 0.9514297] ]) assert_almost_equal(self.water.moment_of_inertia_tensor(), water_moi_tensor) # Translations should not change moi tensor self.water.xyz += [7, 8, 9] assert_almost_equal(self.water.moment_of_inertia_tensor(), water_moi_tensor) def test_reorder(self): """ Test the reordering of atoms """ w1 = self.water w2 = w1.reorder([1, 0, 2]) assert w1[0][0] == w2[1][0] assert all(w1[0][1] == w2[1][1]) assert w1[1][0] == w2[0][0] assert all(w1[1][1] == w2[0][1]) assert w1[2][0] == w2[2][0] assert all(w1[2][1] == w2[2][1]) if __name__ == '__main__': unittest.main() ``` #### File: population/orb_pop/orb_pop_unittest.py ```python import os import unittest import numpy as np from sys import path from numpy.testing import assert_almost_equal path.insert(0, '../../../') from qgrep.population.orbital_pop import (AO_Contrib, Group_Contrib, MOrbital, OrbitalPopulation as OP) class TestOrbPop(unittest.TestCase): def test_read_write(self): op = OP('H2O.dat') ao_contrib = AO_Contrib(1, 'O', 'px', 100.0) self.assertEqual(op.orb_list[4].contributions[0], ao_contrib) c1 = AO_Contrib(0, 'H', 's', 19.6) c2 = AO_Contrib(1, 'O', 'pz', 30.4) c3 = AO_Contrib(1, 'O', 'py', 30.4) c4 = AO_Contrib(2, 'H', 's', 19.6) contributions = [c1, c2, c3, c4] mo = MOrbital(2, None, -0.49905, 2, contributions) self.assertEqual(op[2], mo) op.write('tmp.csv', 'csv') op_dup = OP('tmp.csv') self.assertEqual(op, op_dup) os.remove('tmp.csv') # Test UKS open shell op = OP('H2O+.dat') ao_contrib = AO_Contrib(1, 'O', 'px', 100.0, 1) self.assertEqual(op.orb_list[3].contributions[0], ao_contrib) def test_homo_lumo_somo(self): op = OP('H2O.dat') self.assertEqual(op.homo, 4) self.assertEqual(op.lumo, 5) self.assertEqual(op.somo, []) def test_atom_contract(self): op = OP('H2O.dat') atom_contract = op.atom_contract() self.assertEqual(atom_contract[5].contributions[0].val, 34.1) self.assertEqual(atom_contract[8].contributions[1].val, 11.5) def test_am_contract(self): op = OP('H2O.dat') am_contract = op.am_contract() self.assertEqual(am_contract[5].contributions[0].val, 34.1) self.assertEqual(am_contract[8].contributions[2].val, 9.8) def test_sub(self): # Blank - Blank == Blank self.assertEqual(OP() - OP(), OP()) # A - Blank == A h2o = OP('H2O.dat') # Uses blank list of properly indexed orbitals blank = OP(orb_list=[MOrbital(i, None, 0, 0, []) for i in range(13)]) self.assertEqual(h2o - blank, h2o) # A - B h2s = OP('H2S.dat') # TODO: fix indexing problem for subtraction #(h2o.atom_contract() - h2s.atom_contract()).write('h2o_h2s.csv') class TestOrbital(unittest.TestCase): def setUp(self): self.orb1 = MOrbital() self.orb1_dup = MOrbital() self.aoc1 = AO_Contrib(1, 'Mn', 'px', 0.3) self.aoc1_dup = AO_Contrib(1, 'Mn', 'px', 0.3) self.aoc2 = AO_Contrib(2, 'O', 'f-1', 0.5) self.aoc3 = AO_Contrib(2, 'O', 'f+2', 0.2) self.orb2 = MOrbital(1, None, -0.34, 1.00, [self.aoc1, self.aoc2, self.aoc3]) self.orb3 = MOrbital(1, None, -0.14, 0.50, [self.aoc2, self.aoc1, self.aoc3]) def test_init(self): self.assertTrue(self.orb1 == self.orb1_dup) self.assertFalse(self.orb1 == self.orb2) self.assertEqual(self.orb2.atom_sum(2), 0.7) self.assertEqual(self.orb2.atom_sum('F'), 0.0) self.assertEqual(self.orb2.orbital_type_sum(1, 'd'), 0) self.assertEqual(self.orb2.orbital_type_sum(9, 'p'), 0) self.assertEqual(self.orb2.orbital_type_sum(2, 'f'), 0.7) def test_sub(self): # Blank - Blank == Blank self.assertEqual(self.orb1 - self.orb1_dup, self.orb1) # A - Blank == A self.assertEqual((self.orb2 - self.orb1).contributions, self.orb2.contributions) # A - B aoc_1_2 = self.aoc1 - self.aoc2 aoc_2_1 = self.aoc2 - self.aoc1 aoc_3_3 = self.aoc3 - self.aoc3 orb_2_3 = MOrbital(1, None, -0.20, 0.50, [aoc_1_2, aoc_2_1, aoc_3_3]) self.assertEqual((self.orb2 - self.orb3).contributions, orb_2_3.contributions) class TestAO_Contrib(unittest.TestCase): def setUp(self): self.aoc1 = AO_Contrib(1, 'Mn', 'px', 0.3) self.aoc1_dup = AO_Contrib(1, 'Mn', 'px', 0.3) self.aoc2 = AO_Contrib(2, 'O', 'f-1', 0.5) self.aoc3 = AO_Contrib(2, 'O', 'f+2', 0.2) def test_init(self): self.assertTrue(self.aoc1 == self.aoc1_dup) self.assertFalse(self.aoc1 == self.aoc2) def test_sub(self): # A - A = O contribution aoc0 = AO_Contrib(1, 'Mn', 'px', 0.0) self.assertEqual(self.aoc1 - self.aoc1_dup, aoc0) aoc_1_2 = AO_Contrib(0, '', '', -0.2) self.assertEqual(self.aoc1 - self.aoc2, aoc_1_2) class TestGroup_Contrib(unittest.TestCase): def test_Group_Contrib(self): group_contrib1 = Group_Contrib(1, ['Mn', 'Br'], 0.3) group_contrib1_dup = Group_Contrib(1, ['Mn', 'Br'], 0.3) group_contrib2 = Group_Contrib(2, [], 0.5) group_contrib3 = Group_Contrib(2, ['Mn', 'Cs', 'Mo'], 0.2) self.assertTrue(group_contrib1 == group_contrib1_dup) self.assertFalse(group_contrib1 == group_contrib2) if __name__ == '__main__': unittest.main() ```
{ "source": "jevandezande/spectra", "score": 2 }
#### File: spectra/spectra/reaction_kinetics.py ```python from __future__ import annotations from datetime import datetime from glob import glob from itertools import zip_longest from pathlib import Path from typing import Iterable, Optional, Sequence import matplotlib.pyplot as plt import numpy as np from .conv_spectrum import ConvSpectrum from .plot import plotter, subplots from .progress import plot_spectra_progress from .tools import cull def plot_reaction_kinetics( # noqa: C901 reactions: Sequence[str], folder: str, names: Optional[Sequence] = None, title: str = "", verbose: bool = False, rounds: Iterable[int] | str = "all", colors: Optional[Sequence[str]] = None, linestyles: Optional[Iterable] = None, combo_plot: str | bool = True, spectra_norms: Optional[Iterable] = None, spectra_smooth: int | bool = False, spectra_plot: bool = True, spectra_cull_number: int = 8, spectra_style: str = "IR", spectra_xlim: Optional[tuple[float, float]] = None, spectra_xticks: Optional[tuple[float, float]] = None, spectra_xlabel: Optional[str] = None, spectra_ylabel: Optional[str] = None, kinetics_norms: Iterable | str | bool = True, kinetics_smooth: int | bool = False, kinetics_xmax: float = 60, kinetics_x_units: str = "minutes", kinetics_ylim: Optional[tuple[float, float]] = None, kinetics_dot_colors: Optional[str] = None, baseline_region: tuple[float, float] = (2500, 2600), integration_x_points: tuple[float, float] = (2100, 2400), savefig: Optional[str] = None, ): """ Plot a graph of the reaction kinetics for multiple reactions. Note: the returned axes object is not squeezed. :param reactions: Names of the reactions (correspond to the folder) :param folder: location of the reaction folders :param names: Names for the reactions, if `None`, defaults to `reactions` :param title: title of the plot :param verbose: print the reactions name and dots for each round of the reaction. :param rounds: list of rounds to display, or 'all' :param colors: colors for the reactions :param linestyles: linestyles for the rounds :param combo_plot: plot all on a final plot, {True, False, 'only'} :param spectra_norms: arguments for spectra.normed() to run on all spectra :param spectra_*: parameters for kinetics plot :param kinetics_norms: if true, normalize start to 1. If list, normalize by values. :param kinetics_*: parameters for kinetics plot :param baseline_region: region for baseline correction of spectra :param integration_x_points: x_points to integrate over for reaction kinetics :param savefig: (where to) save the figure :return: fig, axes """ if names is None: names = reactions if colors is None: colors = [f"C{i}" for i in range(len(reactions))] elif len(colors) != len(reactions): raise ValueError(f"len(colors)={len(colors)} != len(reactions)={len(reactions)}") if linestyles is None: linestyles = ("-", "--", ":", "-.", (0, (4, 1, 1, 1, 1, 1))) if not isinstance(rounds, str): ls_iter = iter(linestyles) linestyles = [next(ls_iter) if i + 1 in rounds else None for i in range(max(rounds))] # Setup figures height = len(reactions) + int(combo_plot) if combo_plot != "only" else 1 width = 1 + int(spectra_plot) fig, axes = subplots(spectra_style, height, width, figsize=(10, 6)) axes1, axes2 = axes.T if spectra_plot else ([None] * len(axes), axes.T[0]) time_divisor = { "seconds": 1, "minutes": 60, "hours": 60 * 60, "days": 60 * 60 * 24, }[kinetics_x_units] if not isinstance(kinetics_norms, Iterable): kinetics_norms = [kinetics_norms] * len(reactions) reaction_iterator = zip_longest( reactions, names, kinetics_norms, colors, axes1[: len(reactions)], axes2[: len(reactions)], ) for reaction, name, kinetics_norm, color, ax1, ax2 in reaction_iterator: if verbose: print(reaction, end=" ") half_lives = [] if combo_plot != "only": plt.text( 0.5, 0.5, name, horizontalalignment="center", verticalalignment="center", transform=ax2.transAxes, ) for i, linestyle in enumerate(linestyles, start=1): if rounds != "all" and i not in rounds: continue # Read in spectra inputs = tuple(glob(f"{folder}/{reaction}/Round {i}/*.CSV")) if not inputs: break if verbose: print(".", end="") # Get times and names from timestamps in input name # e.g. 'Mon Sep 09 10-26-50 2019 (GMT-04-00).CSV' strp = lambda x: datetime.strptime(x, "%a %b %d %H-%M-%S %Y") times_iter = (strp(inp.split("/")[-1].split(" (")[0]) for inp in inputs) # Sort the inputs by the timestamps timestamps, inputs = zip(*sorted(zip(times_iter, inputs))) times = [(time - timestamps[0]).total_seconds() / time_divisor for time in timestamps] spectra: list[ConvSpectrum] = [] for time, inp in zip(times, inputs): s, *others = ConvSpectrum.from_csvs(inp) assert isinstance(s, ConvSpectrum) if len(others) != 0: raise ValueError(f"Multiple spectra in a CSV is not supported. File={inp}") if spectra_smooth: s = s.smoothed(spectra_smooth) if baseline_region: s = s.set_zero(*baseline_region) if spectra_norms: s = s.normed(*spectra_norms) s.name = f"{name} {time:.1f} {kinetics_x_units}" s.time = time assert isinstance(s, ConvSpectrum) spectra.append(s) if i == 1 and spectra_plot: # Only plot a subset of the spectra to avoid cluttering the figure if len(spectra) < spectra_cull_number: to_plot = spectra else: to_plot = list(cull(spectra, spectra_cull_number)) if combo_plot != "only": plotter( to_plot, baseline_subtracted=False, normalized=False, title=None, plot=(fig, ax1), legend=False, smoothed=False, style=spectra_style, xlim=None, xticks=None, colors=None, markers=None, ) # Plot result on last graph if combo_plot: plotter( [spectra[-1]], baseline_subtracted=False, normalized=False, title=None, plot=(fig, axes[-1][0]), legend=False, smoothed=False, style=spectra_style, xlim=None, xticks=None, colors=None, markers=None, ) # Plot progress half_life = None if combo_plot != "only": _, half_life, _, _ = plot_spectra_progress( spectra, times, integration_x_points, x_units=kinetics_x_units, plot=(fig, ax2), label=f"{i}", color=color, linestyle=linestyle, smooth=kinetics_smooth, norm=kinetics_norm, dot_colors=kinetics_dot_colors, ) if combo_plot: _, half_life, _, _ = plot_spectra_progress( spectra, times, integration_x_points, x_units=kinetics_x_units, plot=(fig, axes[-1][-1]), label=f"{name} - {i}", color=color, linestyle=linestyle, smooth=kinetics_smooth, norm=kinetics_norm, dot_colors=kinetics_dot_colors, ) if half_life is not None: half_lives.append(half_life) # TODO: Perhaps 1/(Σ 1/half_life) ??? half_life = float(np.average(half_lives)) if half_life > 0 and combo_plot != "only": plt.text( 0.5, 0.8, f"$t_{{1/2}} = {int(round(half_life))}$ {kinetics_x_units}", horizontalalignment="center", verticalalignment="center", transform=ax2.transAxes, ) if verbose: print(f" t_1/2={half_life:6.2f} {kinetics_x_units}") # Setup axes for i, (ax1, ax2) in enumerate(zip(axes1, axes2)): ax2.legend() if spectra_plot: ax2.yaxis.set_label_position("right") ax2.yaxis.set_ticks_position("right") ax2.set_xlim(0, kinetics_xmax) ax2.set_ylim(0, kinetics_ylim) if combo_plot: ax2.legend([plt.Line2D([0, 1], [0, 0], color=color) for color in colors], names) if title: fig.suptitle(title) if savefig is True: Path("plots").mkdir(exist_ok=True) fig.savefig(f"plots/{title}.svg") elif savefig: fig.savefig(savefig) return fig, axes ``` #### File: spectra/spectra/tools.py ```python from __future__ import annotations import csv import itertools from glob import glob from typing import TYPE_CHECKING, Generator, Iterable, Optional, Sequence import numpy as np from numpy.typing import ArrayLike from scipy import constants if TYPE_CHECKING: from ._abc_spectrum import Spectrum def read_csv(inp: str, header: bool = True) -> tuple[list[str], np.ndarray, np.ndarray]: """ Reads a CSV file. :param inp: input file :param header: inp contains a header :return: :titles: titles of the columns :xs: x-values (1- or 2-dim np.ndarray) :ys: y-values (1- or 2-dim np.ndarray, matches x) """ try: with open(inp) as f: reader = csv.reader(f) titles = next(reader) if header else None xs, ys = [], [] for x, *y in reader: xs.append(float(x)) ys.append([float(y_val) for y_val in y]) except ValueError as e: raise ValueError(f"Error reading value in {inp}.") from e xs_array = np.array(xs) ys_array = np.array(ys).T if titles is None: titles = [""] * len(xs) return titles, xs_array, ys_array def read_csvs(inps: Iterable[str] | str, header: bool = True) -> tuple[list[str], np.ndarray, np.ndarray]: """ Read CSV(s) :param inps: input file(s) to read :param header: inp contains a header :return: titles, xs, ys """ titles: list[str] = [] if isinstance(inps, str): titles, xs, ys = read_csv(inps, header) titles = titles[1:] xs = np.ones(ys.shape) * xs else: xs_list, ys_list = [], [] for inp in inps: ts, xs, ys = read_csv(inp, header) xs = np.ones(ys.shape) * xs titles.extend(ts[1:]) if ys.shape[1] == 1: xs_list.append(xs) ys_list.append(ys) else: for x_vals, y_vals in zip(xs, ys): xs_list.append(x_vals) ys_list.append(y_vals) xs = np.array(xs_list) ys = np.array(ys_list) # Sanity checks assert len(xs) == len(ys) assert len(ys) == len(titles) return titles, xs, ys def glob_read_csvs( inps: Iterable[str] | str, header: bool = True ) -> tuple[list[str], np.ndarray, np.ndarray, list[str]]: """ Use glob to find CSV(s) and then reads them. :param inps: a string or list of strings that can be read by glob :param header: inp contains a header :return: titles, xs, ys, file_names """ if isinstance(inps, str): inps = [inps] file_names = list(itertools.chain(*(glob(inp) for inp in inps))) titles, xs, ys = read_csvs(file_names) return titles, np.array(xs), np.array(ys), file_names def y_at_x(x_points: Iterable[float] | float, xs: ArrayLike, ys: ArrayLike) -> np.ndarray | float: """ Determine the y-value at a specified x. If in between xs, choose the first past it. Assumes xs are ordered. :param x_points: x-value(s) for which the y-value is desired :param xs: x-values :param ys: y-values :return: desired y-value """ xs = np.asarray(xs) ys = np.asarray(ys) if len(xs) != len(ys): raise ValueError(f"Mismatched lengths: {len(xs)=} and {len(ys)=}") return ys[index_of_x(x_points, xs)] def index_of_x(x_points: Iterable[float] | float, xs: np.ndarray) -> np.ndarray | int: """ Determine the index of value(s) in an ordered list. If in between xs, choose the first past it (larger). Assumes xs are ordered. :param x_points: value(s) to find :param xs: list to search in :return: index of the nearest x_point """ # If in reverse order revd = xs[0] > xs[-1] if revd: xs = xs[::-1] x_iter = x_points if isinstance(x_points, Iterable) else [x_points] for x in x_iter: if x < xs[0] or x > xs[-1]: raise IndexError(f"x_points not in xs, x_points: {x}, xs: ({xs[0]}→{xs[-1]})") return np.searchsorted(xs, x_points) if not revd else len(xs) - np.searchsorted(xs, x_points) - 1 # type: ignore def integrate(xs: np.ndarray, ys: np.ndarray, x_range: Optional[tuple[float, float]] = None) -> float: """ Integrate a set of ys on the xs. Note: if x_range does not fall exactly on values in x, it finds the next largest x value. :param xs: x-values :param ys: y-values :param x_range: range of x_values to integrate over :return: integration """ if len(xs) != len(ys): raise ValueError(f"xs and ys must be of the same length, got: {len(xs)} and {len(ys)}") if x_range is not None: begin, end = x_range if begin < xs[0]: raise IndexError(f"x_range starts before first value in xs ({begin} > {xs[0]}") start = index_of_x(begin, xs) finish = index_of_x(end, xs) if TYPE_CHECKING: assert isinstance(start, int) assert isinstance(finish, int) xs = xs[start : finish + 1] ys = ys[start : finish + 1] return np.trapz(ys, xs) def smooth_curve(ys: Sequence[float] | np.ndarray, box_pts: int | bool = True) -> np.ndarray: """ Smooth a curve. Assumes that the ys are uniformly distributed. Returns output of length `max(ys, box_pts)`, boundary effects are visible. Note: ys must be > box_pts :param ys: points to smooth :param box_pts: number of data points to convolve, if True, use 3 :return: smoothed points """ if box_pts is True: box_pts = 3 box = np.ones(box_pts) / box_pts return np.convolve(ys, box, mode="same") def cull(vals: Sequence, n: int) -> Generator: """ Cull `vals` to have `n` "evenly" spaced values. If not evenly divisible, spread them out as evenly as possible. :var vals: the values to cull :var n: number of values to keep :yield: culled values """ yield from (vals[i] for i in np.linspace(0.5, len(vals) - 0.5, n, dtype=int)) def boltzmann_factors(energies: Sequence[float], T: float = 300) -> np.ndarray: """ Compute the Boltzmann factors. :param energies: energies in Hartree with which to generate weights :param T: temperature, defaults to 300 """ if T <= 0: raise ZeroDivisionError(f"T must be greater than 0, got: {T=}") kBT = constants.k * T / constants.physical_constants["Hartree energy"][0] zeroed_energies = np.asarray(energies) - min(energies) factors = np.exp(-zeroed_energies / kBT) return factors / factors.sum() def boltzmann_weighted( spectra: Sequence[Spectrum], energies: Sequence[float], T: float = 300, rename: bool | str = False ) -> Spectrum: """ Combine spectra via Boltzmann weighting. :param spectra: spectra to combine :param energies: energies of the spectra :param T: temperature for weighting, defaults to room temperature :param rename: rename the resulting spectrum """ assert len(spectra) > 0 assert len(spectra) == len(energies) spectrum = sum(s * f for s, f in zip(spectra, boltzmann_factors(energies, T))) if TYPE_CHECKING: assert isinstance(spectrum, Spectrum) if rename: spectrum.name = "Boltzmann Spectrum" if isinstance(rename, bool) else rename return spectrum ``` #### File: spectra/tests/test_sticks_spectrum.py ```python import numpy as np import pytest from numpy.testing import assert_almost_equal as aae from spectra import SticksSpectrum def setup(): pass def teardown(): pass def test_init(): energies, intensities = np.arange(10), np.arange(10) s1 = SticksSpectrum("Hello World", energies, intensities, units="ms", style="IR", y_shift=-5, time=9) aae(s1.energies, energies) aae(s1.intensities, intensities) assert s1.units == "ms" assert s1.style == "IR" assert s1.y_shift == -5 assert s1.time == 9 def test_iter(): energies, intensities = np.arange(10), np.arange(10) s1 = SticksSpectrum("Hello World", energies, intensities) assert all(e == i for e, i in s1) def test_eq(): energies, intensities = np.arange(10), np.arange(10) s1 = SticksSpectrum("S1", energies, intensities) s2 = SticksSpectrum("S1", energies, intensities) s3 = SticksSpectrum("S1", energies, intensities, style="MS") s4 = SticksSpectrum("S4", energies, intensities) s5 = SticksSpectrum("S5", energies, intensities, y_shift=6) assert s1 == s2 assert s1 != s3 assert s1 != s4 assert s1 != s5 def test_len(): energies, intensities = np.arange(10), np.arange(10) s1 = SticksSpectrum("S1", energies, intensities) s2 = SticksSpectrum("S1", energies, intensities) assert len(s1) == len(energies) assert len(s2) == len(energies) def test_str(): energies, intensities = np.arange(10), np.arange(10) s1 = SticksSpectrum("Hello World", energies, intensities) assert str(s1) == "<SticksSpectrum: Hello World>" def test_add_sub(): energies1, intensities1 = np.arange(10), np.arange(10) energies2, intensities2 = np.arange(20), np.arange(20) s1 = SticksSpectrum("Hello World", energies1, intensities1) s1 + s1 s2 = 1 + s1 s3 = s2 - 1 s4 = 1 - s3 s5 = s1 - s1 s6 = s1 - s2 s7 = SticksSpectrum("Hello Big World", energies2, intensities2) s1 + s7 s1 - s7 s = s1.copy() s.energies += 1 s + s1 s - s1 assert s1.name == "Hello World" assert s2.name == "Hello World + 1" assert s3.name == "Hello World + 1 – 1" assert s4.name == "1 – Hello World + 1 – 1" assert s5.name == "Hello World – Hello World" assert s6.name == "Hello World – Hello World + 1" aae(s1.energies, s2.energies) aae(s1.energies, s3.energies) aae(s1.energies, s4.energies) aae(s3.intensities, s1.intensities) def test_abs(): energies, intensities1, intensities2 = np.arange(10), np.arange(10), np.arange(10) intensities2[5:] = -intensities2[5:] s1 = SticksSpectrum("S1", energies, intensities1) s2 = SticksSpectrum("S2", energies, intensities2) assert s1 != s2 assert any(s1.intensities != s2.intensities) aae(s1.intensities, abs(s2).intensities) def test_mul(): energies, intensities = np.arange(10), np.arange(10) s1 = SticksSpectrum("S1", energies, intensities) s1 * s1 def test_div(): energies, intensities = np.arange(10), np.arange(10) s1 = SticksSpectrum("S1", energies, intensities) div = s1 / s1 aae(div.energies, range(10)) aae(div.intensities, [np.nan] + [1] * 9) def test_copy(): energies, intensities = np.arange(1, 11), np.arange(1, 11) s1 = SticksSpectrum("Hello World", energies, intensities) s2 = s1.copy() assert s1 == s2 assert id(s1) != id(s2) def test_domain(): energies, intensities = np.arange(10), np.arange(10) s1 = SticksSpectrum("Hello World", energies, intensities) assert s1.domain == (0, 9) @pytest.mark.xfail(raises=NotImplementedError) def test_smoothed(): energies, intensities = np.arange(10), np.arange(10) s1 = SticksSpectrum("Hello World", energies, intensities) s1.smoothed() def test_baseline_subtracted(): energies, intensities = np.arange(1, 11), np.arange(1, 11) s1 = SticksSpectrum("Hello World", energies, intensities) s2 = s1.baseline_subtracted() s3 = s1.baseline_subtracted(9) aae(s1.intensities - 1, s2.intensities) aae(s1.intensities - 9, s3.intensities) @pytest.mark.xfail(raises=NotImplementedError) def test_set_zero(): energies, intensities = np.arange(10), np.arange(10) s1 = SticksSpectrum("Hello World", energies, intensities) s1.set_zero(99) def test_sliced(): energies, intensities = np.arange(10), np.arange(10) s1 = SticksSpectrum("Hello World", energies, intensities) s1.sliced() def test_from_csvs(tmp_path): test_csv = f"{tmp_path}/test.csv" with open(test_csv, "w") as f: f.write("x,A,B\n0,2,4\n1,3,5") SticksSpectrum.from_csvs(test_csv) SticksSpectrum.from_csvs("tests/files/xrd.csv") @pytest.mark.xfail(raises=NotImplementedError) def test_norm(): energies, intensities = np.arange(10), np.arange(10) s1 = SticksSpectrum("Hello World", energies, intensities) s1.norm() def test_normed(): energies, intensities = np.arange(10), np.arange(10) s1 = SticksSpectrum("Hello World", energies, intensities) s1.normed() @pytest.mark.xfail(raises=NotImplementedError) def test_peaks(): energies, intensities = np.arange(10), np.arange(10) s1 = SticksSpectrum("Hello World", energies, intensities) s1.peaks() def test_min_max(): s1 = SticksSpectrum.from_csvs("tests/files/spectrum1.csv")[0] assert min(s1) == (5, 0) assert max(s1) == (25, 0) assert s1.min == (16, -10) assert s1.max == (13, 21) @pytest.mark.xfail(raises=NotImplementedError) def test_correlation(): energies, intensities = np.arange(10), np.arange(10) s1 = SticksSpectrum("Hello World", energies, intensities) s1.correlation(s1) def test_convert(): energies, intensities = np.arange(10), np.arange(10) s1 = SticksSpectrum("Hello World", energies, intensities) s1.convert(2, npoints=100) s1.convert(2, npoints=100, energy_lim=(-5, 50)) ```
{ "source": "jevenzh/NeMo", "score": 2 }
#### File: examples/asr/jasper_eval.py ```python import argparse import copy import os import pickle import numpy as np from ruamel.yaml import YAML import nemo import nemo.collections.asr as nemo_asr from nemo.collections.asr.helpers import post_process_predictions, post_process_transcripts, word_error_rate from nemo.utils import logging def main(): parser = argparse.ArgumentParser(description='Jasper') # model params parser.add_argument("--model_config", type=str, required=True) parser.add_argument("--eval_datasets", type=str, required=True) parser.add_argument("--load_dir", type=str, required=True) # run params parser.add_argument("--local_rank", default=None, type=int) parser.add_argument("--batch_size", default=64, type=int) parser.add_argument("--amp_opt_level", default="O1", type=str) # store results parser.add_argument("--save_logprob", default=None, type=str) # lm inference parameters parser.add_argument("--lm_path", default=None, type=str) parser.add_argument('--alpha', default=2.0, type=float, help='value of LM weight', required=False) parser.add_argument( '--alpha_max', type=float, help='maximum value of LM weight (for a grid search in \'eval\' mode)', required=False, ) parser.add_argument( '--alpha_step', type=float, help='step for LM weight\'s tuning in \'eval\' mode', required=False, default=0.1 ) parser.add_argument('--beta', default=1.5, type=float, help='value of word count weight', required=False) parser.add_argument( '--beta_max', type=float, help='maximum value of word count weight (for a grid search in \ \'eval\' mode', required=False, ) parser.add_argument( '--beta_step', type=float, help='step for word count weight\'s tuning in \'eval\' mode', required=False, default=0.1, ) parser.add_argument("--beam_width", default=128, type=int) args = parser.parse_args() batch_size = args.batch_size load_dir = args.load_dir if args.local_rank is not None: if args.lm_path: raise NotImplementedError( "Beam search decoder with LM does not currently support evaluation on multi-gpu." ) device = nemo.core.DeviceType.AllGpu else: device = nemo.core.DeviceType.GPU # Instantiate Neural Factory with supported backend neural_factory = nemo.core.NeuralModuleFactory( backend=nemo.core.Backend.PyTorch, local_rank=args.local_rank, optimization_level=args.amp_opt_level, placement=device, ) if args.local_rank is not None: logging.info('Doing ALL GPU') yaml = YAML(typ="safe") with open(args.model_config) as f: jasper_params = yaml.load(f) vocab = jasper_params['labels'] sample_rate = jasper_params['sample_rate'] eval_datasets = args.eval_datasets eval_dl_params = copy.deepcopy(jasper_params["AudioToTextDataLayer"]) eval_dl_params.update(jasper_params["AudioToTextDataLayer"]["eval"]) del eval_dl_params["train"] del eval_dl_params["eval"] data_layer = nemo_asr.AudioToTextDataLayer( manifest_filepath=eval_datasets, sample_rate=sample_rate, labels=vocab, batch_size=batch_size, **eval_dl_params, ) N = len(data_layer) logging.info('Evaluating {0} examples'.format(N)) data_preprocessor = nemo_asr.AudioToMelSpectrogramPreprocessor( sample_rate=sample_rate, **jasper_params["AudioToMelSpectrogramPreprocessor"] ) jasper_encoder = nemo_asr.JasperEncoder( feat_in=jasper_params["AudioToMelSpectrogramPreprocessor"]["features"], **jasper_params["JasperEncoder"] ) jasper_decoder = nemo_asr.JasperDecoderForCTC( feat_in=jasper_params["JasperEncoder"]["jasper"][-1]["filters"], num_classes=len(vocab) ) greedy_decoder = nemo_asr.GreedyCTCDecoder() logging.info('================================') logging.info(f"Number of parameters in encoder: {jasper_encoder.num_weights}") logging.info(f"Number of parameters in decoder: {jasper_decoder.num_weights}") logging.info(f"Total number of parameters in model: " f"{jasper_decoder.num_weights + jasper_encoder.num_weights}") logging.info('================================') # Define inference DAG audio_signal_e1, a_sig_length_e1, transcript_e1, transcript_len_e1 = data_layer() processed_signal_e1, p_length_e1 = data_preprocessor(input_signal=audio_signal_e1, length=a_sig_length_e1) encoded_e1, encoded_len_e1 = jasper_encoder(audio_signal=processed_signal_e1, length=p_length_e1) log_probs_e1 = jasper_decoder(encoder_output=encoded_e1) predictions_e1 = greedy_decoder(log_probs=log_probs_e1) eval_tensors = [log_probs_e1, predictions_e1, transcript_e1, transcript_len_e1, encoded_len_e1] # inference evaluated_tensors = neural_factory.infer(tensors=eval_tensors, checkpoint_dir=load_dir) greedy_hypotheses = post_process_predictions(evaluated_tensors[1], vocab) references = post_process_transcripts(evaluated_tensors[2], evaluated_tensors[3], vocab) wer = word_error_rate(hypotheses=greedy_hypotheses, references=references) logging.info("Greedy WER {:.2f}%".format(wer * 100)) # Convert logits to list of numpy arrays logprob = [] for i, batch in enumerate(evaluated_tensors[0]): for j in range(batch.shape[0]): logprob.append(batch[j][: evaluated_tensors[4][i][j], :].cpu().numpy()) if args.save_logprob: with open(args.save_logprob, 'wb') as f: pickle.dump(logprob, f, protocol=pickle.HIGHEST_PROTOCOL) # language model if args.lm_path: if args.alpha_max is None: args.alpha_max = args.alpha # include alpha_max in tuning range args.alpha_max += args.alpha_step / 10.0 if args.beta_max is None: args.beta_max = args.beta # include beta_max in tuning range args.beta_max += args.beta_step / 10.0 beam_wers = [] logprobexp = [np.exp(p) for p in logprob] for alpha in np.arange(args.alpha, args.alpha_max, args.alpha_step): for beta in np.arange(args.beta, args.beta_max, args.beta_step): logging.info('================================') logging.info(f'Infering with (alpha, beta): ({alpha}, {beta})') beam_search_with_lm = nemo_asr.BeamSearchDecoderWithLM( vocab=vocab, beam_width=args.beam_width, alpha=alpha, beta=beta, lm_path=args.lm_path, num_cpus=max(os.cpu_count(), 1), input_tensor=False, ) beam_predictions = beam_search_with_lm(log_probs=logprobexp, log_probs_length=None, force_pt=True) beam_predictions = [b[0][1] for b in beam_predictions[0]] lm_wer = word_error_rate(hypotheses=beam_predictions, references=references) logging.info("Beam WER {:.2f}%".format(lm_wer * 100)) beam_wers.append(((alpha, beta), lm_wer * 100)) logging.info('Beam WER for (alpha, beta)') logging.info('================================') logging.info('\n' + '\n'.join([str(e) for e in beam_wers])) logging.info('================================') best_beam_wer = min(beam_wers, key=lambda x: x[1]) logging.info('Best (alpha, beta): ' f'{best_beam_wer[0]}, ' f'WER: {best_beam_wer[1]:.2f}%') if __name__ == "__main__": main() ``` #### File: nemo/core/neural_modules.py ```python __all__ = ['WeightShareTransform', 'NeuralModule', 'ModuleType'] import uuid from abc import abstractmethod from collections import namedtuple from enum import Enum from inspect import getargvalues, getfullargspec, stack from os import path from typing import Any, Dict, List, Optional, Set, Tuple from ruamel.yaml import YAML from nemo.core import NeuralModuleFactory, OperationMode from nemo.core.neural_interface import NeuralInterface from nemo.core.neural_types import NeuralPortNameMismatchError, NeuralType, NmTensor from nemo.package_info import __version__ as nemo_version from nemo.utils import logging from nemo.utils.decorators.deprecated import deprecated from nemo.utils.neural_graph.connection import StepModulePort YAML = YAML(typ='safe') class ModuleType(Enum): """ Back-end independent module types """ module = 0 datalayer = 1 trainable = 2 loss = 3 nontrainable = 4 class WeightShareTransform(Enum): """When sharing parameters, what kind of transform to apply.""" SAME = 0 TRANSPOSE = 1 PretrainedModelInfo = namedtuple( "PretrainedModleInfo", ("pretrained_model_name", "description", "parameters", "location"), ) class NeuralModule(NeuralInterface): """ Abstract class that every Neural Module must inherit from. """ def __init__(self, name=None): # Initialize the inferface. super().__init__() # Retrieve dictionary of parameters (keys, values) passed to init. self._init_params = self.__extract_init_params() # Get object UUID. self._uuid = str(uuid.uuid4()) # Register module and store the generated name. self._name = self._app_state.register_module(self, name) # Set "module" type as default. self._type = ModuleType.module # Set "both" as default operation mode. self._operation_mode = OperationMode.both # Get default factory. self._factory = NeuralModuleFactory.get_default_factory() # Set module properties from factory else use defaults self._placement = self._factory.placement # If one needs to change that should override it manually. # Optimization level. self._opt_level = self._factory.optim_level @property def init_params(self) -> Dict[str, Any]: """ Property returning parameters used to instantiate the module. Returns: Dictionary containing parameters used to instantiate the module. """ return self._init_params def __extract_init_params(self) -> Dict[str, Any]: """ Retrieves the dictionary of of parameters (keys, values) passed to constructor of a class derived (also indirectly) from the Neural Module class. Returns: Dictionary containing parameters passed to init(). """ # Get names of arguments of the original module init method. to_set_params = getfullargspec(type(self).__init__).args to_set_params.remove("self") # Create empty list of init params. init_params = {} # Get the frame "call context". for frame in stack()[1:]: # Get the call arguments. localvars = getargvalues(frame[0]) # Fill the parameters with call_args. for key in to_set_params: if key in localvars.args: init_params[key] = localvars.locals[key] # Remove all set keys. for key in init_params.keys(): if key in to_set_params: to_set_params.remove(key) # Check if we have set everything. if len(to_set_params) == 0: break # Make sure that we collected ALL (and ONLY) the signature params - if not, then there is a BUG! if len(to_set_params) != 0: raise ValueError( "Could not collect all the signature params! " F"Please file a bug on GitHub with the current stacktrace so that it can be resolved." ) # print("! init_params of {}: {}\n".format(type(self).__name__, init_params)) # Return parameters. return init_params def __validate_params(self, params: Dict[str, Any]) -> bool: """ Checks whether dictionary contains parameters being primitive types (string, int, float etc.) or (lists of)+ primitive types. Args: params: dictionary of parameters. Returns: True if all parameters were ok, False otherwise. """ ok = True # Iterate over parameters and check them one by one. for key, variable in params.items(): if not self.__is_of_allowed_type(variable): logging.warning( "Parameter '{}' contains a variable '{}' of type '{}' which is not allowed.".format( key, variable, type(variable) ) ) ok = False # Return the result. return ok def __is_of_allowed_type(self, var) -> bool: """ A recursive function that checks if a given variable is of allowed type. Args: pretrained_model_name (str): name of pretrained model to use in order. Returns: True if all parameters were ok, False otherwise. """ # Special case: None is also allowed. if var is None: return True var_type = type(var) # If this is list - check its elements. if var_type == list: for list_var in var: if not self.__is_of_allowed_type(list_var): return False # If this is dict - check its elements. elif var_type == dict: for _, dict_var in var.items(): if not self.__is_of_allowed_type(dict_var): return False elif var_type not in (str, int, float, bool): return False # Well, seems that everything is ok. return True def export_to_config(self, config_file: str): """ A function that exports module "configuration" (i.e. init parameters) to a YAML file. Args: config_file: path (absolute or relative) and name of the config file (YML) Raises: ValueError: An error occurred and parameters coudn't be exported. """ # Greate an absolute path. abs_path_file = path.expanduser(config_file) # Serialize the module. to_export = self.serialize() # All parameters are ok, let's export. with open(abs_path_file, 'w') as outfile: YAML.dump(to_export, outfile) logging.info( "Configuration of module `{}` ({}) exported to {}".format(self.name, type(self).__name__, abs_path_file) ) def serialize(self) -> Dict[str, Any]: """ A method serializing the whole Neural module (into a dictionary). Returns: Dictionary containing a "serialized" module. """ # Create a dictionary representing the serialized object. serialized_module = {} # Add "header" with module "specification". serialized_module["header"] = self.__serialize_header() # Add init parameters. serialized_module["init_params"] = self._serialize_configuration() # Return the dictionary. return serialized_module def __serialize_header(self) -> Dict[str, Any]: """ A protected method that creates a header stored later in the configuration file. Returns: Dictionary containing a header with module specification. """ # Get module "full specification". module_full_spec = str(self.__module__) + "." + str(self.__class__.__qualname__) module_class_name = type(self).__name__ # print(module_full_spec) # Check whether module belongs to a collection. spec_list = module_full_spec.split(".") # Do not check Neural Modules from unit tests. if spec_list[0] == "tests": # Set collection variables. collection_type = "tests" collection_version = None else: # Check if component belongs to any collection if len(spec_list) < 3 or (spec_list[0] != "nemo" and spec_list[1] != "collection"): logging.warning( "Module `{}` does not belong to any collection. This won't be allowed in the next release.".format( module_class_name ) ) collection_type = "unknown" collection_version = None else: # Ok, set collection. collection_type = spec_list[2] collection_version = None # TODO: to be SET! # print(getattr("nemo.collections.nlp", __version__)) # Create a "header" with module "specification". header = { "nemo_core_version": nemo_version, "collection_type": collection_type, "collection_version": collection_version, # "class": module_class_name, # Operating only on full_spec now. "full_spec": module_full_spec, } return header def _serialize_configuration(self) -> Dict[str, Any]: """ A function that serializes the module "configuration (i.e. init parameters) to a dictionary. ..note: Thus functions should be overloaded when writing a custom module import/export. Returns: A "serialized" dictionary with module configuration. Raises: A ValueError exception in case then parameters coudn't be exported. """ # Check if generic export will work. if not self.__validate_params(self._init_params): raise ValueError( "Generic configuration export enables to use of parameters of primitive types (string, int, float) " F"or (lists of/dicts of) primitive types. Please implement your own custom `export_to_config()` and " F"`import_from_config()` methods for your custom Module class." ) # In this case configuration = init parameters. return self._init_params @classmethod def import_from_config( cls, config_file: str, section_name: str = None, name: str = None, overwrite_params: Dict = {} ) -> 'NeuralModule': """ Class method importing the configuration file. Raises an ImportError exception when config file is invalid or incompatible (when called from a particular class). Args: config_file: path (absolute or relative) and name of the config file (YML) section_name: section in the configuration file storing module configuration (optional, DEFAULT: None) name: name of the module that will overwrite the name in the `init_params` (optional, DEFAULT: None) overwrite_params: Dictionary containing parameters that will be added to or overwrite (!) the default init parameters loaded from the configuration file (the module "init_params" section). Returns: Instance of the created NeuralModule object. """ logging.info("Loading configuration of a new Neural Module from the `{}` file".format(config_file)) # Validate the content of the configuration file (its header). loaded_config = cls.__validate_config_file(config_file, section_name) # "Deserialize" the module. obj = cls.deserialize(loaded_config, name, overwrite_params) # Return the new module. return obj @classmethod def __validate_config_file(cls, config_file: str, section_name: str = None) -> Dict[str, Any]: """ Class method validating whether the config file has a proper content (sections, specification etc.). Raises an ImportError exception when config file is invalid or incompatible (when called from a particular class). Args: config_file: path (absolute or relative) and name of the config file (YML) section_name: section in the configuration file storing module configuration (optional, DEFAULT: None) Returns: A loaded configuration file (dictionary). """ # Greate an absolute path. abs_path_file = path.expanduser(config_file) # Open the config file. with open(abs_path_file, 'r') as stream: loaded_config = YAML.load(stream) # Check section. if section_name is not None: if section_name not in loaded_config: raise ImportError( "The loaded config `{}` doesn't contain the indicated `{}` section".format( config_file, section_name ) ) # Section exists - use only it for configuration. loaded_config = loaded_config[section_name] # Make sure that the config is valid. if "header" not in loaded_config: raise ImportError("The loaded config `{}` doesn't contain the `header` section".format(config_file)) if "init_params" not in loaded_config: raise ImportError("The loaded config `{}` doesn't contain the `init_params` section".format(config_file)) # Parse the "full specification". spec_list = loaded_config["header"]["full_spec"].split(".") # Check if config contains data of a compatible class. if cls.__name__ != "NeuralModule" and spec_list[-1] != cls.__name__: txt = "The loaded file `{}` contains configuration of ".format(config_file) txt = txt + "`{}` thus cannot be used for instantiation of an object of type `{}`".format( spec_list[-1], cls.__name__ ) raise ImportError(txt) # Success - return configuration. return loaded_config @classmethod def deserialize( cls, configuration: Dict[str, Any], name: str = None, overwrite_params: Dict[str, Any] = {} ) -> 'NeuralModule': """ Class method instantianting the neural module object based on the configuration (dictionary). Args: configuration: Dictionary containing proper "header" and "init_params" sections. name: name of the module that will overwrite the name in the `init_params` (optional, DEFAULT: None) overwrite_params: Dictionary containing parameters that will be added to or overwrite (!) the default init parameters loaded from the configuration file (the module "init_params" section). Returns: Instance of the created NeuralModule object. """ # Deserialize header - get object class. module_class = cls.__deserialize_header(configuration["header"]) # Update parameters with additional ones. configuration["init_params"].update(overwrite_params) # Override module name in init_params using the logic: # * section_name if not none overrides init_params.name first (skipped for now, TOTHINK!) # * name (if None) overrides init_params.name if name is not None: configuration["init_params"]["name"] = name # Get init parameters. init_params = cls._deserialize_configuration(configuration["init_params"]) # Create the module instance. new_module = module_class(**init_params) logging.info( "Instantiated a new Neural Module named `{}` of type `{}`".format( new_module.name, type(new_module).__name__ ) ) # Return the module instance. return new_module @classmethod def __deserialize_header(cls, serialized_header: Dict[str, Any]): """ Method deserializes the header and extracts the module class. Args: serialized_header: Dictionary containing module header. Returns: Class of the module to be created. """ # Parse the "full specification". spec_list = serialized_header["full_spec"].split(".") # Get module class from the "full specification". mod_obj = __import__(spec_list[0]) for spec in spec_list[1:]: mod_obj = getattr(mod_obj, spec) # Return "class". return mod_obj @classmethod def _deserialize_configuration(cls, serialized_init_params: Dict[str, Any]): """ A function that deserializes the module "configuration (i.e. init parameters). ..note: Thus functions should be overloaded when writing a custom module import/export. Args: serialized_init_params: List of init parameters loaded from the file. Returns: A "deserialized" list with init parameters. """ # In this case configuration = init parameters. return serialized_init_params @property @abstractmethod def input_ports(self) -> Dict[str, NeuralType]: """ Returns definitions of module input ports Returns: A dictionary containing module's input ports (names, NeuralTypes) mapping. """ @property @abstractmethod def output_ports(self) -> Dict[str, NeuralType]: """ Returns definitions of module output ports Returns: A dictionary containing module's output ports (names, NeuralTypes) mapping. """ @property def _disabled_deployment_input_ports(self) -> Set[str]: """Returns names of input ports that will not be included in an export Returns: A (set) of module's input port names that are not exportable """ return set([]) @property def _disabled_deployment_output_ports(self) -> Set[str]: """Returns names of output ports that will not be included in an export Returns: A (set) of module's output port names that are not exportable """ return set([]) def _prepare_for_deployment(self) -> None: """Patch the module if required to prepare for deployment """ return @property def operation_mode(self): """ Returns the operation mode. """ return self._operation_mode @property def type(self): """ Returns the type of module. """ return self._type @operation_mode.setter def operation_mode(self, operation_mode: OperationMode): """ Sets the operation mode. """ self._operation_mode = operation_mode @staticmethod def pretrained_storage(): return '' def __call__(self, **kwargs): """This method allows objects to be called with their port names Args: kwargs: Input ports and their values. For example: ... mymodule1 = Subclass1_of_NeuralModule(...) mymodule2 = Subclass2_of_NeuralModule(...) ... out_port1, out_port2 = mymodule1(input_port1=value1, input_port2=value2, input_port3=value3) out_port11 = mymodule2(input_port1=out_port2) ... Returns: NmTensor object or tuple of NmTensor objects """ # print(" Neural Module:__call__") # Set the operation mode of the outer graph. self.operation_mode = self._app_state.active_graph.operation_mode # The input and output ports definitions can potentially depend on the operation mode! # Record the operation (i.e. add a single module). step_number = self._app_state.active_graph.record_step(self) ###### PROCESS INPUTS. ###### # Iterate through all passed parameters. for port_name, port_content in kwargs.items(): # Make sure that passed arguments corresponds to one of the input port names. if port_name not in self.input_ports.keys(): raise NeuralPortNameMismatchError(port_name) # At that point the input can be one of three types: # * NeuralGraph -> bind port using the default name and type. # * GraphInput -> check definition, if ok bind port. # * NmTensor -> check definition, add self as a "consumer" of a tensor (produced by other module). # Check what was actually passed. if type(port_content).__name__ == "NeuralGraph": # Make sure that port_content is the currently active graph! if port_content is not self._app_state.active_graph: raise ConnectionError("Ports can be bound only by passing the active graph object!") # Create an alias so the logic will be more clear. active_graph = port_content # This case: we are nesting one graph into another and must bind input port of one graph in another! # So generally we must "copy" the of thus module to graog (the inverted logic!). # Copy the port "definition" (i.e. is NeuralType) using the same port name. active_graph.inputs[port_name] = self.input_ports[port_name] # Bind the neural graph input port, i.e. remember that a given graph port should pass data # to THIS module-port (when it finally will be connected). active_graph.inputs[port_name].bind(StepModulePort(step_number, self.name, port_name)) # Please note that there are no "consumers" here - this is a "pure binding". elif type(port_content).__name__ == "GraphInput": # Check if GraphInput belongs to the active graph ! own_port = False for gcontent in self._app_state.active_graph.inputs.values(): if gcontent is port_content: own_port = True break if not own_port: raise NeuralPortNameMismatchError(port_name) # Compare input port definition with the received definition. self.input_ports[port_name].compare_and_raise_error( self.__class__.__name__, port_name, port_content.ntype ) # Bind the neural graph input port, i.e. remember that a given graph port should pass data # to THIS module-port (when it finally will be connected). port_content.bind(StepModulePort(step_number, self.name, port_name)) # Please note that there are no "consumers" here - this is a "pure binding". elif type(port_content) is NmTensor: # Compare input port definition with the received definition. self.input_ports[port_name].compare_and_raise_error(self.__class__.__name__, port_name, port_content) # Ok, the goal here is to actually "connect": add self (module) as "consumer" to the input tensor. port_content.add_consumer(StepModulePort(step_number, self.name, port_name)) else: raise TypeError( "Input '{}' must be of one of three types: NeuralGraph, GraphInput or NmTensor".format(port_name) ) ###### PRODUCE OUTPUTS. ###### output_port_defs = self.output_ports # Create output tensors. if len(output_port_defs) == 1: # Get port name and type. out_name = list(output_port_defs)[0] out_type = output_port_defs[out_name] # Create a single returned tensor. results = NmTensor(producer=self, producer_args=kwargs, output_port_name=out_name, ntype=out_type,) # Bind the "default" output ports. self._app_state.active_graph.bind_outputs(results) else: # Create output tensors. output_tensors = [] for out_name, out_type in output_port_defs.items(): output_tensors.append( NmTensor(producer=self, producer_args=kwargs, output_port_name=out_name, ntype=out_type,) ) # Create a named tuple type enabling to access outputs by attributes (e.g. out.x). output_class_name = f'{self.__class__.__name__}Output' result_type = namedtuple(typename=output_class_name, field_names=output_port_defs.keys()) # Create the returned tuple object. results = result_type(*output_tensors) # Bind the output tensors. self._app_state.active_graph.bind_outputs(output_tensors) # Return the results. return results def __str__(self): return self.__class__.__name__ @abstractmethod def get_weights(self) -> Optional[Dict[(str, bool)]]: """Returns NeuralModule's weights copy. Returns: Dictionary of name -> (weights, trainable)""" pass @abstractmethod def set_weights( self, name2weight: Dict[(str, Tuple[str, bool])], name2name_and_transform: Dict[(str, Tuple[str, WeightShareTransform])] = None, ): """Sets weight from given values. For every named weight in name2weight, if weight with the same name is found in the model, it will be set to found value. WARNING: This will NOT tie weights. It will copy values. If ``name2name_and_transform`` is provided then if will set weights using name mapping and transform. For example, suppose ``objec1.X = 3x5 weight``. Then, if ``name2name_and_transform['X']=('Y', WeightShareTransform.TRANSPOSE)`` and ``Y`` is 5x3 weight and ``name2weight['Y']=Y. Then: ``object1.set_weights(name2weight, name2name_and_transform)`` will set object1.X=transpose(Y). Args: name2weight (dict): dictionary of name to (weight, trainable). Typically this is output of get_weights method. name2name_and_transform: mapping from name -> (name, transform) """ pass @staticmethod def list_pretrained_models() -> Optional[List[PretrainedModelInfo]]: """List all available pre-trained models (e.g. weights) for this NM. Returns: A list of PretrainedModelInfo tuples. The pretrained_model_name field of the tuple can be used to retrieve pre-trained model's weights (pass it as pretrained_model_name argument to the module's constructor) """ return None def get_config_dict_and_checkpoint(self, pretrained_model_name): """WARNING: This part is work in progress""" return None @abstractmethod def tie_weights_with( self, module, weight_names=List[str], name2name_and_transform: Dict[(str, Tuple[str, WeightShareTransform])] = None, ): """Ties weights between self and module. For every weight name in weight_names, if weight with the same name is found in self, it will be tied with a same weight from ``module``. WARNING: Once weights are tied, updates to one weights's weights will affect other module's weights. If ``name2name_and_transform`` is provided then if will set weights using name mapping and transform. For example, suppose ``objec1.X = 3x5 weights`` and ``object2.Y = 5x3 weights``. Then these weights can be tied like this: .. code-block:: python object1.tie_weights_with(object2, weight_names=['X'], name2name_and_transform = { 'X': ('Y', WeightShareTransform.TRANSPOSE)}) Args: module: with which module to tie weights weight_names (List[str]): list of self weights' names name2name_and_transform: mapping from name -> (name, transform) """ pass def is_trainable(self) -> bool: """ Checks if NeuralModule is trainable. A NeuralModule is trainable IFF it contains at least one trainable weight Returns: True if module has trainable weights, False otherwise """ weights = self.get_weights() if weights is None: return False for name, w in weights.items(): if w[1]: return True return False @abstractmethod def save_to(self, path: str): """Save module state to file. Args: path (string): path to while where to save. """ pass @abstractmethod def restore_from(self, path: str): """Restore module's state from file. Args: path (string): path to where to restore from. """ pass @abstractmethod def freeze(self, weights: Set[str] = None): """Freeze weights Args: weights (set): set of weight names to freeze If None, all weights are freezed. """ pass @abstractmethod def unfreeze(self, weights: Set[str] = None): """Unfreeze weights Args: weights (set): set of weight names to unfreeze If None, all weights are unfreezed. """ pass @property def placement(self): """Module's placement. Currently CPU or GPU. DataParallel and ModelParallel will come later. Returns: (DeviceType) Device where NM's weights are located """ return self._placement @property @deprecated(version=0.11) def local_parameters(self) -> Optional[Dict]: """Get module's parameters Returns: module's parameters """ return self._init_params # return self._local_parameters @property def unique_instance_id(self): """A unique instance id for this object Returns: A uniq uuid which can be used to identify this object """ return self._uuid @property def factory(self): """ Neural module factory which created this module Returns: NeuralModuleFactory instance or None """ return self._factory @property @abstractmethod def num_weights(self): """Number of module's weights """ pass ```
{ "source": "Jeverett3000/codeapp", "score": 2 }
#### File: site-packages/setuptools_rust/test.py ```python import os import sys import subprocess from distutils.cmd import Command from distutils.errors import CompileError, DistutilsFileError, DistutilsExecError import semantic_version from .extension import RustExtension from .utils import rust_features, get_rust_version MIN_VERSION = semantic_version.Spec(">=1.15") class test_rust(Command): """Run cargo test""" description = "test Rust extensions" user_options = [] def run_for_extension(self, ext: RustExtension): # Make sure that if pythonXX-sys is used, it builds against the current # executing python interpreter. bindir = os.path.dirname(sys.executable) env = os.environ.copy() env.update( { # disables rust's pkg-config seeking for specified packages, # which causes pythonXX-sys to fall back to detecting the # interpreter from the path. "PYTHON_2.7_NO_PKG_CONFIG": "1", "PATH": bindir + os.pathsep + os.environ.get("PATH", ""), } ) if not os.path.exists(ext.path): raise DistutilsFileError( f"can't find Rust extension project file: {ext.path}" ) features = set(ext.features) features.update(rust_features(ext=False, binding=ext.binding)) # test cargo command feature_args = ["--features", " ".join(features)] if features else [] args = ( ["cargo", "test", "--manifest-path", ext.path] + feature_args + list(ext.args or []) ) # Execute cargo command print(" ".join(args)) try: subprocess.check_output(args, env=env) except subprocess.CalledProcessError as e: raise CompileError( "cargo failed with code: %d\n%s" % (e.returncode, e.output.decode("utf-8")) ) except OSError: raise DistutilsExecError( "Unable to execute 'cargo' - this package " "requires Rust to be installed and " "cargo to be on the PATH" ) else: print(f"test completed for '{ext.name}' extension") ```
{ "source": "jeverling/flask-mongoalchemy", "score": 3 }
#### File: books_collection/collection/documents.py ```python from collection import db from flaskext.mongoalchemy import BaseQuery import re class BookQuery(BaseQuery): def starting_with(self, letter): regex = r'^' + letter return self.filter({'title' : re.compile(regex, re.IGNORECASE)}) class Book(db.Document): query_class = BookQuery title = db.StringField() year = db.IntField() ``` #### File: books_collection/collection/__init__.py ```python from flask import Flask from flaskext.mongoalchemy import MongoAlchemy import string app = Flask(__name__) app.config['MONGOALCHEMY_DATABASE'] = 'books_collection' app.config['SECRET_KEY'] = 'very secret, do you believe?' app.config['DEBUG'] = True db = MongoAlchemy(app) @app.context_processor def put_letters_on_request(): return { 'letters' : string.ascii_uppercase } from views import * ``` #### File: flask-mongoalchemy/tests/test_mongodb_uri.py ```python from tests import BaseTestCase from flask import Flask from nose.tools import assert_equals class MongoDBURITestCase(BaseTestCase): "MongoDB URI generation" def setup(self): self.app = Flask(__name__) self.app.config['MONGOALCHEMY_DATABASE'] = 'test' def should_use_localhost_for_server_and_27017_for_port_when_only_the_database_name_was_specified(self): from flaskext.mongoalchemy import _get_mongo_uri assert_equals(_get_mongo_uri(self.app), 'mongodb://localhost:27017') def should_be_able_to_generate_an_uri_using_only_the_username_without_password(self): self.app.config['MONGOALCHEMY_USER'] = 'luke' from flaskext.mongoalchemy import _get_mongo_uri assert_equals(_get_mongo_uri(self.app), 'mongodb://luke@localhost:27017') def should_be_able_to_generate_an_uri_using_an_username_and_a_password(self): self.app.config['MONGOALCHEMY_USER'] = 'luke' self.app.config['MONGOALCHEMY_PASSWORD'] = '<PASSWORD>' from flaskext.mongoalchemy import _get_mongo_uri assert_equals(_get_mongo_uri(self.app), 'mongodb://luke:father@localhost:27017') def should_be_able_to_use_not_only_localhost_for_server_and_27017_for_port(self): self.app.config['MONGOALCHEMY_SERVER'] = 'database.lukehome.com' self.app.config['MONGOALCHEMY_PORT'] = '42' from flaskext.mongoalchemy import _get_mongo_uri assert_equals(_get_mongo_uri(self.app), 'mongodb://database.lukehome.com:42') def should_be_able_to_generate_an_uri_with_options(self): self.app.config['MONGOALCHEMY_SERVER'] = 'database.lukehome.com' self.app.config['MONGOALCHEMY_OPTIONS'] = 'safe=true' from flaskext.mongoalchemy import _get_mongo_uri assert_equals(_get_mongo_uri(self.app), 'mongodb://database.lukehome.com:27017/?safe=true') ```
{ "source": "jeverling/pdm", "score": 2 }
#### File: pdm/cli/options.py ```python from __future__ import annotations import argparse import os from typing import Any, Callable, Sequence from click import secho from pdm._types import Protocol class ActionCallback(Protocol): def __call__( self, parser: argparse.ArgumentParser, namespace: argparse.Namespace, values: str | Sequence[Any] | None, option_string: str | None, ) -> None: ... class Option: """A reusable option object which delegates all arguments to parser.add_argument(). """ def __init__(self, *args: Any, **kwargs: Any) -> None: self.args = args self.kwargs = kwargs def add_to_parser(self, parser: argparse._ActionsContainer) -> None: parser.add_argument(*self.args, **self.kwargs) def add_to_group(self, group: argparse._ArgumentGroup) -> None: group.add_argument(*self.args, **self.kwargs) class CallbackAction(argparse.Action): def __init__(self, *args: Any, callback: ActionCallback, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.callback = callback def __call__( self, parser: argparse.ArgumentParser, namespace: argparse.Namespace, values: str | Sequence[Any] | None, option_string: str | None = None, ) -> None: return self.callback(parser, namespace, values, option_string=option_string) class ArgumentGroup(Option): """A reusable argument group object which can call `add_argument()` to add more arguments. And itself will be registered to the parser later. """ def __init__( self, name: str = None, is_mutually_exclusive: bool = False, required: bool = None, ) -> None: self.name = name self.options: list[Option] = [] self.required = required self.is_mutually_exclusive = is_mutually_exclusive def add_argument(self, *args: Any, **kwargs: Any) -> None: if args and isinstance(args[0], Option): self.options.append(args[0]) else: self.options.append(Option(*args, **kwargs)) def add_to_parser(self, parser: argparse._ActionsContainer) -> None: group: argparse._ArgumentGroup if self.is_mutually_exclusive: group = parser.add_mutually_exclusive_group(required=self.required) else: group = parser.add_argument_group(self.name) for option in self.options: option.add_to_group(group) def add_to_group(self, group: argparse._ArgumentGroup) -> None: self.add_to_parser(group) def deprecated(message: str, type_: type = str) -> Callable[[Any], Any]: """Prints deprecation message for the argument""" def wrapped_type(obj: Any) -> Any: secho(f"DEPRECATED: {message}", fg="red", err=True) return type_(obj) return wrapped_type verbose_option = Option( "-v", "--verbose", action="count", default=0, help="-v for detailed output and -vv for more detailed", ) dry_run_option = Option( "--dry-run", action="store_true", default=False, help="Show the difference only and don't perform any action", ) pep582_option = Option( "--pep582", const="AUTO", metavar="SHELL", nargs="?", help="Print the command line to be eval'd by the shell", ) install_group = ArgumentGroup("Install options") install_group.add_argument( "--no-editable", action="store_true", dest="no_editable", help="Install non-editable versions for all packages", ) install_group.add_argument( "--no-self", action="store_true", dest="no_self", help="Don't install the project itself", ) def no_isolation_callback( parser: argparse.ArgumentParser, namespace: argparse.Namespace, values: str | Sequence[Any] | None, option_string: str | None, ) -> None: os.environ["PDM_BUILD_ISOLATION"] = "no" no_isolation_option = Option( "--no-isolation", dest="build_isolation", action=CallbackAction, nargs=0, help="Do not isolate the build in a clean environment", callback=no_isolation_callback, ) install_group.options.append(no_isolation_option) groups_group = ArgumentGroup("Dependencies selection") groups_group.add_argument( "-s", "--section", dest="groups", metavar="GROUP", action="append", help="(DEPRECATED) alias of `--group`", default=[], type=deprecated( "`-s/--section` is deprecated in favor of `-G/--group` " "and will be removed in the next minor release." ), ) groups_group.add_argument( "-G", "--group", dest="groups", metavar="GROUP", action="append", help="Select group of optional-dependencies " "or dev-dependencies(with -d). Can be supplied multiple times, " 'use ":all" to include all groups under the same species.', default=[], ) groups_group.add_argument( "--no-default", dest="default", action="store_false", default=True, help="Don't include dependencies from the default group", ) dev_group = ArgumentGroup("dev", is_mutually_exclusive=True) dev_group.add_argument( "-d", "--dev", default=True, dest="dev", action="store_true", help="Select dev dependencies", ) dev_group.add_argument( "--prod", "--production", dest="dev", action="store_false", help="Unselect dev dependencies", ) groups_group.options.append(dev_group) save_strategy_group = ArgumentGroup("save_strategy", is_mutually_exclusive=True) save_strategy_group.add_argument( "--save-compatible", action="store_const", dest="save_strategy", const="compatible", help="Save compatible version specifiers", ) save_strategy_group.add_argument( "--save-wildcard", action="store_const", dest="save_strategy", const="wildcard", help="Save wildcard version specifiers", ) save_strategy_group.add_argument( "--save-exact", action="store_const", dest="save_strategy", const="exact", help="Save exact version specifiers", ) update_strategy_group = ArgumentGroup("update_strategy", is_mutually_exclusive=True) update_strategy_group.add_argument( "--update-reuse", action="store_const", dest="update_strategy", const="reuse", help="Reuse pinned versions already present in lock file if possible", ) update_strategy_group.add_argument( "--update-eager", action="store_const", dest="update_strategy", const="eager", help="Try to update the packages and their dependencies recursively", ) project_option = Option( "-p", "--project", dest="project_path", help="Specify another path as the project root, " "which changes the base of pyproject.toml and __pypackages__", ) global_option = Option( "-g", "--global", dest="global_project", action="store_true", help="Use the global project, supply the project root with `-p` option", ) clean_group = ArgumentGroup("clean", is_mutually_exclusive=True) clean_group.add_argument( "--clean", action="store_true", dest="clean", help="clean unused packages" ) clean_group.add_argument( "--no-clean", action="store_false", dest="clean", help="don't clean unused packages" ) sync_group = ArgumentGroup("sync", is_mutually_exclusive=True) sync_group.add_argument( "--sync", action="store_true", dest="sync", help="sync packages" ) sync_group.add_argument( "--no-sync", action="store_false", dest="sync", help="don't sync packages" ) packages_group = ArgumentGroup("Package Arguments") packages_group.add_argument( "-e", "--editable", dest="editables", action="append", help="Specify editable packages", default=[], ) packages_group.add_argument("packages", nargs="*", help="Specify packages") ignore_python_option = Option( "-I", "--ignore-python", action="store_true", help="Ignore the Python path saved in the pdm.toml config", ) ``` #### File: pdm/tests/test_integration.py ```python import pytest from pdm.utils import cd @pytest.mark.integration @pytest.mark.parametrize("python_version", ["2.7", "3.6", "3.7", "3.8", "3.9"]) def test_basic_integration(python_version, project_no_init, invoke): """An e2e test case to ensure PDM works on all supported Python versions""" project = project_no_init project.root.joinpath("foo.py").write_text("import django\n") additional_args = ["--no-self"] if python_version == "2.7" else [] invoke(["init"], input="\ny\n\n\n\n\n\n>=2.7\n", obj=project, strict=True) invoke(["use", "-f", python_version], obj=project, strict=True) project._environment = None invoke(["add", "django"] + additional_args, obj=project, strict=True) with cd(project.root): invoke(["run", "python", "foo.py"], obj=project, strict=True) if python_version != "2.7": invoke(["build", "-v"], obj=project, strict=True) invoke(["remove", "-v", "django"] + additional_args, obj=project, strict=True) result = invoke(["list"], obj=project, strict=True) assert not any( line.strip().lower().startswith("django") for line in result.output.splitlines() ) @pytest.mark.integration def test_actual_list_freeze(project, invoke): project.meta["requires-python"] = ">=3.6" invoke(["add", "click==7.1.2"], obj=project, strict=True) r = invoke(["list", "--freeze"], obj=project) assert "click==7.1.2" in r.output ```
{ "source": "JevexEndo/mw4-banners", "score": 3 }
#### File: mw4-banners/generate/mcuuid.py ```python import random import struct from uuid import UUID class MCUUID(UUID): rng = random.Random(x="Mapwreck 4") def __init__(self) -> None: super().__init__(int=self.rng.getrandbits(128), version=4) @property def nbt(self) -> str: return "[I;{},{},{},{}]".format( struct.unpack(">i", bytes.fromhex(self.hex[0:8]))[0], struct.unpack(">i", bytes.fromhex(self.hex[8:16]))[0], struct.unpack(">i", bytes.fromhex(self.hex[16:24]))[0], struct.unpack(">i", bytes.fromhex(self.hex[24:32]))[0], ) ```
{ "source": "JevgenijsGalaktionovs/AntBot", "score": 3 }
#### File: dns_main/src/demonstration.py ```python import time from math import radians from service_router import * from locomotion import * from math import asin, pi, atan2 #, positionN, \ # velocityAll, accelerationAll, positionAll, readFSR from kinematics import Kinematics K=Kinematics() threshold = 30 stepSize = 50 riser = 163 thread = 266 def terminate(): ee_xyz, servopos = K.doFkine(readPos()) if abs(ee_xyz[2]-ee_xyz[5]) < 20: if abs(ee_xyz[8]-ee_xyz[11]) < 20: if abs(ee_xyz[8]-ee_xyz[2]) < 50: print("yeay im on top of stairs") return True else: return False def standUpForStairs(): standup_pos = [2048, 2048, 1296, 2048, 2048, 1296, 2048, 2048, 1296, 2048, 2048, 1296, 2048, 2048, 1296, 2048, 2048, 1296] front_standup = list_combine(leg[1] + leg[2], standup_pos) rear_standup = list_combine(leg[5] + leg[6], standup_pos) middle_standup = list_combine(leg[3] + leg[4], standup_pos) positionN(front_standup) time.sleep(1) positionN(rear_standup) time.sleep(1) positionN(middle_standup) time.sleep(1) def correctMiddleLegs(z): Up = [0, 0, z] LiftUp = calc_motion(Up) pos = list() pos.extend(LiftUp[12:18]) pos.extend(LiftUp[18:24]) positionN(pos) leg_case = [3,4] check_position_error_legs(80, 20, pos, leg_case) ServoCentering=[7,2048,10,2048] positionN(ServoCentering) time.sleep(1) Down = [0, 0, -z] LiftDown = calc_motion(Down) pos1 = list() pos1.extend(LiftDown[12:18]) pos1.extend(LiftDown[18:24]) positionN(pos1) leg_case = [3,4] check_position_error_legs(80, 20, pos1, leg_case) def initialDistance(distance): all_pos = readPos() ee_xyz, servopos = K.doFkine(all_pos) dist2FirstStep_1 = distance dist2FirstStep_2 = distance dist2FirstStep_3 = distance + ee_xyz[1] - ee_xyz[7] dist2FirstStep_4 = distance + ee_xyz[1] - ee_xyz[10] dist2FirstStep_5 = distance + ee_xyz[1] - ee_xyz[13] dist2FirstStep_6 = distance + ee_xyz[1] - ee_xyz[16] dist2FirstStep = dist2FirstStep_1, dist2FirstStep_2, dist2FirstStep_3, dist2FirstStep_4, dist2FirstStep_5, dist2FirstStep_6 print dist2FirstStep return dist2FirstStep def initConfig_legs(depth): maxy = 344.74638441867046 r = 392.55798277243395 - 141.33 #maximumy - y_offset of leg one miny = 181.0804846109524 phai = asin((depth-miny)/r) * 2048/pi # change of coxa in steps #print(int(phai)) if depth < maxy: standup_pos = [ 1536 + int(phai), 2048, 1296, 2560 - int(phai), 2048, 1296, 2048 , 2048, 1296, 2048 , 2048, 1296, 2560 - int(phai), 2048, 1296, 1536 + int(phai), 2048, 1296] lift_up = [2048, 2448,1296,2048,2448,1296, 2048, 2448,1296,2048,2448,1296, 2048, 2448,1296,2048,2448,1296] print(standup_pos) front_liftup = list_combine(leg[2] + leg[5],lift_up) positionN(front_liftup) time.sleep(2) front_standup = list_combine(leg[2] + leg[5], standup_pos) positionN(front_standup) time.sleep(1) rear_liftup = list_combine(leg[1] + leg[6],lift_up) positionN(rear_liftup) time.sleep(1) rear_standup = list_combine(leg[1] + leg[6], standup_pos) positionN(rear_standup) time.sleep(1) rear_standup = list_combine(leg[5] + leg[6], standup_pos) positionN(rear_standup) time.sleep(1) ee_xyz, servopos = K.doFkine(readPos()) return maxy - ee_xyz[1] def correctRotation(depth,riser): slope = atan2(riser,depth)*180/pi gamma, beta = K.get_orientation([1,5,6]) new_gamma = slope - gamma parallelGait(0,0,int(new_gamma-4),0,0,0) time.sleep(3) print("Slope is:", new_gamma) def moveForward(x, y, z, alpha, beta, gamma, distance): Forward = [x, y, z] Up = [0, 0, z] Down = [x, y, 0] Push = [0, 0, 0] HalfForward = [0.5*x, 0.5*y, z] HalfUp = [ 0, 0, z] HalfDown = [0.5*x, 0.5*y, 0] PushBackwards = calc_motion(Push) LiftUp = calc_motion(Up) LiftDown = calc_motion(Down) PutForward = calc_motion(Forward) HalfLiftUp = calc_motion(HalfUp) HalfLiftDown = calc_motion(HalfDown) HalfPutForward = calc_motion(HalfForward) while distance > 0.75 * stepSize: if distance > 1.5 * stepSize: pos = list() pos.extend(LiftUp[6:12]) pos.extend(LiftUp[12:18]) pos.extend(LiftUp[30:36]) positionN(pos) leg_case = [2,3,6] check_position_error_legs(20, 30, pos, leg_case) pos1 = list() pos1.extend(PutForward[6:12]) pos1.extend(PutForward[12:18]) pos1.extend(PutForward[30:36]) positionN(pos1) leg_case = [2,3,6] check_position_error_legs(20, 30, pos1, leg_case) pos2 = list() pos2.extend(LiftDown[6:12]) pos2.extend(LiftDown[12:18]) pos2.extend(LiftDown[30:36]) positionN(pos2) leg_case = [2,3,6] check_position_error_legs(20, 30, pos2, leg_case) pos3 = list() pos3.extend(LiftUp[0:6]) pos3.extend(PushBackwards[6:12]) pos3.extend(PushBackwards[12:18]) pos3.extend(LiftUp[18:24]) pos3.extend(LiftUp[24:30]) pos3.extend(PushBackwards[30:36]) positionN(pos3) check_position_error(40, 50, pos3) pos4 = list() pos4.extend(PushBackwards[0:6]) pos4.extend(PushBackwards[18:24]) pos4.extend(PushBackwards[24:30]) positionN(pos4) leg_case = [1,4,5] check_position_error_legs(20, 30, pos4, leg_case) distance = distance - stepSize else: pos = list() pos.extend(HalfLiftUp[6:12]) pos.extend(HalfLiftUp[12:18]) pos.extend(HalfLiftUp[30:36]) positionN(pos) leg_case = [2,3,6] check_position_error_legs(20, 30, pos, leg_case) pos1 = list() pos1.extend(HalfPutForward[6:12]) pos1.extend(HalfPutForward[12:18]) pos1.extend(HalfPutForward[30:36]) positionN(pos1) leg_case = [2,3,6] check_position_error_legs(20, 30, pos1, leg_case) pos2 = list() pos2.extend(HalfLiftDown[6:12]) pos2.extend(HalfLiftDown[12:18]) pos2.extend(HalfLiftDown[30:36]) positionN(pos2) leg_case = [2,3,6] check_position_error_legs(20, 30, pos2, leg_case) pos3 = list() pos3.extend(HalfLiftUp[0:6]) pos3.extend(PushBackwards[6:12]) pos3.extend(PushBackwards[12:18]) pos3.extend(HalfLiftUp[18:24]) pos3.extend(HalfLiftUp[24:30]) pos3.extend(PushBackwards[30:36]) positionN(pos3) check_position_error(80, 50, pos3) pos4 = list() pos4.extend(PushBackwards[0:6]) pos4.extend(PushBackwards[18:24]) pos4.extend(PushBackwards[24:30]) positionN(pos4) leg_case = [1,4,5] check_position_error_legs(20, 30, pos4, leg_case) distance = distance - (0.5 *stepSize) time.sleep(0.5) return distance def walkUp(distanceToStair, x, stepSize, threshold, riser, alpha, beta, gamma): orientation = [alpha,beta,gamma] Forward = [x, stepSize, threshold] Up = [0, 0, threshold] Down = [x, stepSize, 0] Push = [0, 0, 0] UpForward = [x, stepSize, threshold+riser] StepUp = [0, 0, threshold+riser] StepDownFirst = [x, stepSize, threshold/2+riser] StepDownSecond = [x, 0, threshold/2+riser] PushBackwards = calc_motion(Push,orientation) LiftUp = calc_motion(Up,orientation) LiftDown = calc_motion(Down,orientation) PutForward = calc_motion(Forward,orientation) StepUpForward = calc_motion(UpForward,orientation) StepUpUp = calc_motion(StepUp,orientation) StepDownDownFirst = calc_motion(StepDownFirst,orientation) StepDownDownSecond = calc_motion(StepDownSecond,orientation) pos = [] ##Lift_Up_First_Leg for i in range(len(distanceToStair)): if i == 0 or i == 3 or i == 4: if distanceToStair[i] < stepSize: pos.extend(StepUpUp[i*6 : i*6+6]) else: pos.extend(LiftUp[i*6 : i*6+6]) positionN(pos) leg_case = [1,4,5] check_position_error_legs(140, 30, pos, leg_case) pos = [] ##Put_Forward_First_Leg for i in range(len(distanceToStair)): if i == 0 or i == 3 or i == 4: if distanceToStair[i] < stepSize: pos.extend(StepUpForward[i*6 : i*6+6]) else: pos.extend(PutForward[i*6 : i*6+6]) positionN(pos) leg_case = [1,4,5] check_position_error_legs(140, 30, pos, leg_case) pos = [] ##Step_Down_First_leg for i in range(len(distanceToStair)): if i == 0 or i == 3 or i == 4: if distanceToStair[i] < stepSize: pos.extend(StepDownDownFirst[i*6 : i*6+6]) else: pos.extend(LiftDown[i*6 : i*6+6]) positionN(pos) leg_case = [1,4,5] check_position_error_legs(140, 30, pos, leg_case) pos = [] check_contact() ######################################################################################################### UpNothing = [0, 0, 0] UpUpNothing = calc_motion(UpNothing) UpPushBackwards = [0, -stepSize, 0] StepUpPushBackwards = calc_motion(UpPushBackwards) ##Lift_Up_Second_Leg for i in range(len(distanceToStair)): if i == 1 or i == 2 or i == 5: if distanceToStair[i] < stepSize: pos.extend(StepUpUp[i*6 : i*6+6]) else: pos.extend(LiftUp[i*6 : i*6+6]) positionN(pos) leg_case = [2,3,6] check_position_error_legs(120, 30, pos, leg_case) pos = [] ##Put_Forward_Second_Leg for i in range(len(distanceToStair)): if i == 0 or i == 3 or i == 4: if distanceToStair[i] < stepSize: pos.extend(StepUpPushBackwards[i*6 : i*6+6]) else: pos.extend(StepUpPushBackwards[i*6 : i*6+6]) positionN(pos) leg_case = [1,4,5] check_position_error_legs(120, 30, pos, leg_case) pos = [] ##Step_Down_Second_leg for i in range(len(distanceToStair)): if i == 1 or i == 2 or i == 5: if distanceToStair[i] < stepSize: pos.extend(StepDownDownSecond[i*6 : i*6+6]) else: pos.extend(PushBackwards[i*6 : i*6+6]) positionN(pos) leg_case = [2,3,6] check_position_error_legs(120, 30, pos, leg_case) pos = [] check_contact() distanceToStair = [i - stepSize for i in distanceToStair] def updateDistance(distanceToStair, stepSize): distanceToStair = [i - stepSize for i in distanceToStair] for i in range(len(distanceToStair)): if distanceToStair[i] < 0: distanceToStair[i] = distanceToStair[i] + thread print distanceToStair return distanceToStair def rotateAndTranslate(riser,climbed_stairs_front, climbed_stairs_rear): gamma, beta = K.get_orientation([1, 5, 6]) parallelGait(0, -beta, -gamma, 0, 0, 0) time.sleep(2) a = K.calc_translationStairs(riser,climbed_stairs_front, climbed_stairs_rear) parallelGait(0, 0, 0, 0, a[1], a[0]) time.sleep(2) return beta , gamma def moveForwardOnStair(x, y, z, alpha, beta, gamma, distance): initialDistance = distance orientation = [alpha, beta, gamma] Forward = [x, y, z] Up = [0, 0, z] Down = [x, y, 0] Push = [0, 0, 0] HalfForward = [0.5*x, 0.5*y, z] HalfUp = [0, 0, z] HalfDown = [0.5*x, 0.5*y, 0] PushBackwards = calc_motion(Push, orientation) LiftUp = calc_motion(Up, orientation) LiftDown = calc_motion(Down, orientation) PutForward = calc_motion(Forward, orientation) HalfLiftUp = calc_motion(HalfUp, orientation) HalfLiftDown = calc_motion(HalfDown, orientation) HalfPutForward = calc_motion(HalfForward, orientation) print (distance) while distance > 0.75 * stepSize: if distance > 1.5 * stepSize: pos = list() pos.extend(LiftUp[6:12]) pos.extend(LiftUp[12:18]) pos.extend(LiftUp[30:36]) positionN(pos) leg_case = [2,3,6] check_position_error_legs(20, 30, pos, leg_case) pos1 = list() pos1.extend(PutForward[6:12]) pos1.extend(PutForward[12:18]) pos1.extend(PutForward[30:36]) positionN(pos1) leg_case = [2,3,6] check_position_error_legs(20, 30, pos1, leg_case) pos2 = list() pos2.extend(LiftDown[6:12]) pos2.extend(LiftDown[12:18]) pos2.extend(LiftDown[30:36]) positionN(pos2) leg_case = [2,3,6] check_position_error_legs(20, 30, pos2, leg_case) pos3 = list() pos3.extend(LiftUp[0:6]) pos3.extend(PushBackwards[6:12]) pos3.extend(PushBackwards[12:18]) pos3.extend(LiftUp[18:24]) pos3.extend(LiftUp[24:30]) pos3.extend(PushBackwards[30:36]) positionN(pos3) check_position_error(20, 50, pos3) pos4 = list() pos4.extend(PushBackwards[0:6]) pos4.extend(PushBackwards[18:24]) pos4.extend(PushBackwards[24:30]) positionN(pos4) leg_case = [1,4,5] check_position_error_legs(20, 30, pos4, leg_case) distance = distance - stepSize else: pos = list() pos.extend(HalfLiftUp[6:12]) pos.extend(HalfLiftUp[12:18]) pos.extend(HalfLiftUp[30:36]) positionN(pos) leg_case = [2,3,6] check_position_error_legs(20, 30, pos, leg_case) pos1 = list() pos1.extend(HalfPutForward[6:12]) pos1.extend(HalfPutForward[12:18]) pos1.extend(HalfPutForward[30:36]) positionN(pos1) leg_case = [2,3,6] check_position_error_legs(20, 30, pos1, leg_case) pos2 = list() pos2.extend(HalfLiftDown[6:12]) pos2.extend(HalfLiftDown[12:18]) pos2.extend(HalfLiftDown[30:36]) positionN(pos2) leg_case = [2,3,6] check_position_error_legs(20, 30, pos2, leg_case) pos3 = list() pos3.extend(HalfLiftUp[0:6]) pos3.extend(PushBackwards[6:12]) pos3.extend(PushBackwards[12:18]) pos3.extend(HalfLiftUp[18:24]) pos3.extend(HalfLiftUp[24:30]) pos3.extend(PushBackwards[30:36]) positionN(pos3) check_position_error(20, 50, pos3) pos4 = list() pos4.extend(PushBackwards[0:6]) pos4.extend(PushBackwards[18:24]) pos4.extend(PushBackwards[24:30]) positionN(pos4) leg_case = [1,4,5] check_position_error_legs(20, 30, pos4, leg_case) distance = distance - (0.5 *stepSize) time.sleep(0.5) return distance def walkUpAllLegs(distanceToStair, x, stepSize, threshold, riser, alpha, beta, gamma): orientation = [alpha,beta,gamma] Forward = [x, stepSize, threshold] Up = [0, 0, threshold] Down = [x, stepSize, 0] Push = [0, 0, 0] UpForward = [x, stepSize, threshold+riser] StepUp = [0, 0, threshold+riser] StepDownFirst = [x, stepSize, threshold/2+riser] StepDownSecond = [x, 0, threshold/2+riser] PushBackwards = calc_motion(Push,orientation) LiftUp = calc_motion(Up,orientation) LiftDown = calc_motion(Down,orientation) PutForward = calc_motion(Forward,orientation) StepUpForward = calc_motion(UpForward,orientation) StepUpUp = calc_motion(StepUp,orientation) StepDownDownFirst = calc_motion(StepDownFirst,orientation) StepDownDownSecond = calc_motion(StepDownSecond,orientation) pos = [] ##Lift_Up_First_Leg for i in range(len(distanceToStair)): if i == 4: pos.extend(StepUpUp[i*6 : i*6+6]) positionN(pos) leg_case = [5] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Put_Forward_First_Leg for i in range(len(distanceToStair)): if i == 4: pos.extend(StepUpForward[i*6 : i*6+6]) positionN(pos) leg_case = [5] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Step_Down_First_leg for i in range(len(distanceToStair)): if i == 4: pos.extend(StepDownDownFirst[i*6 : i*6+6]) positionN(pos) leg_case = [5] check_position_error_legs(120, 20, pos, leg_case) pos = [] check_contact() UpNothing = [0, 0, 0] UpUpNothing = calc_motion(UpNothing) ######################################################################################################### ##Lift_Up_Second_Leg for i in range(len(distanceToStair)): if i == 5: pos.extend(StepUpUp[i*6 : i*6+6]) positionN(pos) leg_case = [6] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Put_Forward_Second_Leg for i in range(len(distanceToStair)): if i == 5: pos.extend(StepUpForward[i*6 : i*6+6]) positionN(pos) leg_case = [6] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Step_Down_Second_leg for i in range(len(distanceToStair)): if i ==5: pos.extend(StepDownDownFirst[i*6 : i*6+6]) positionN(pos) leg_case = [6] check_position_error_legs(120, 20, pos, leg_case) pos = [] check_contact() distanceToStair = [i - stepSize for i in distanceToStair] parallelGait(0,0,0,0,0,riser/2) time.sleep(2) UpNothing = [0, 0, 0] UpUpNothing = calc_motion(UpNothing) Forward = [x, stepSize, threshold] Up = [0, 0, threshold] Down = [x, stepSize, 0] Push = [0, 0, 0] UpForward = [x, stepSize, threshold+riser] StepUp = [0, 0, threshold+riser] StepDownFirst = [x, stepSize, threshold/2+riser] StepDownSecond = [x, 0, threshold/2+riser] PushBackwards = calc_motion(Push,orientation) LiftUp = calc_motion(Up,orientation) LiftDown = calc_motion(Down,orientation) PutForward = calc_motion(Forward,orientation) StepUpForward = calc_motion(UpForward,orientation) StepUpUp = calc_motion(StepUp,orientation) StepDownDownFirst = calc_motion(StepDownFirst,orientation) StepDownDownSecond = calc_motion(StepDownSecond,orientation) ########################################################################### ##Lift_Up_First_Leg for i in range(len(distanceToStair)): if i == 2: pos.extend(StepUpUp[i*6 : i*6+6]) positionN(pos) leg_case = [3] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Put_Forward_First_Leg for i in range(len(distanceToStair)): if i == 2: pos.extend(StepUpForward[i*6 : i*6+6]) positionN(pos) leg_case = [3] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Step_Down_First_leg for i in range(len(distanceToStair)): if i == 2: pos.extend(StepDownDownFirst[i*6 : i*6+6]) positionN(pos) leg_case = [3] check_position_error_legs(120, 20, pos, leg_case) pos = [] check_contact() UpNothing = [0, 0, 0] UpUpNothing = calc_motion(UpNothing) ######################################################################################################### ##Lift_Up_Second_Leg for i in range(len(distanceToStair)): if i == 3: pos.extend(StepUpUp[i*6 : i*6+6]) positionN(pos) leg_case = [4] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Put_Forward_Second_Leg for i in range(len(distanceToStair)): if i == 3: pos.extend(StepUpForward[i*6 : i*6+6]) UpNothing = [0, 0, 0] UpUpNothing = calc_motion(UpNothing) positionN(pos) leg_case = [4] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Step_Down_Second_leg for i in range(len(distanceToStair)): if i ==3: pos.extend(StepDownDownFirst[i*6 : i*6+6]) positionN(pos) leg_case = [4] check_position_error_legs(120, 20, pos, leg_case) pos = [] check_contact() distanceToStair = [i - stepSize for i in distanceToStair] parallelGait(0,0,0,0,0,riser/2) time.sleep(2) UpNothing = [0, 0, 0] UpUpNothing = calc_motion(UpNothing) Forward = [x, stepSize, threshold] Up = [0, 0, threshold] Down = [x, stepSize, 0] Push = [0, 0, 0] UpForward = [x, stepSize, threshold+riser] StepUp = [0, 0, threshold+riser] StepDownFirst = [x, stepSize, threshold/2+riser] StepDownSecond = [x, 0, threshold/2+riser] PushBackwards = calc_motion(Push,orientation) LiftUp = calc_motion(Up,orientation) LiftDown = calc_motion(Down,orientation) PutForward = calc_motion(Forward,orientation) StepUpForward = calc_motion(UpForward,orientation) StepUpUp = calc_motion(StepUp,orientation) StepDownDownFirst = calc_motion(StepDownFirst,orientation) StepDownDownSecond = calc_motion(StepDownSecond,orientation) ########################################################################### ##Lift_Up_First_Leg for i in range(len(distanceToStair)): if i == 0: pos.extend(StepUpUp[i*6 : i*6+6]) positionN(pos) leg_case = [1] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Put_Forward_First_Leg for i in range(len(distanceToStair)): if i == 0: pos.extend(StepUpForward[i*6 : i*6+6]) positionN(pos) leg_case = [1] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Step_Down_First_leg for i in range(len(distanceToStair)): if i == 0: pos.extend(StepDownDownFirst[i*6 : i*6+6]) positionN(pos) leg_case = [1] check_position_error_legs(120, 20, pos, leg_case) pos = [] check_contact() UpNothing = [0, 0, 0] UpUpNothing = calc_motion(UpNothing) ######################################################################################################### ##Lift_Up_Second_Leg for i in range(len(distanceToStair)): if i == 1: pos.extend(StepUpUp[i*6 : i*6+6]) positionN(pos) leg_case = [2] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Put_Forward_Second_Leg for i in range(len(distanceToStair)): if i == 1: pos.extend(StepUpForward[i*6 : i*6+6]) positionN(pos) leg_case = [2] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Step_Down_Second_leg for i in range(len(distanceToStair)): if i ==1: pos.extend(StepDownDownFirst[i*6 : i*6+6]) positionN(pos) leg_case = [2] check_position_error_legs(120, 20, pos, leg_case) pos = [] check_contact() distanceToStair = [i - stepSize for i in distanceToStair] timeToTerminate = terminate() if timeToTerminate == True: timeToContinue = True return timeToContinue def moveUpOnlyLastLegs(distanceToStair, x, stepSize, threshold, riser, alpha, beta, gamma): orientation = [alpha,beta,gamma] Forward = [x, stepSize, threshold] Up = [0, 0, threshold] Down = [x, stepSize, 0] Push = [0, 0, 0] UpForward = [x, stepSize, threshold+riser] StepUp = [0, 0, threshold+riser] StepDownFirst = [x, stepSize, threshold/2+riser] StepDownSecond = [x, 0, threshold/2+riser] PushBackwards = calc_motion(Push,orientation) LiftUp = calc_motion(Up,orientation) LiftDown = calc_motion(Down,orientation) PutForward = calc_motion(Forward,orientation) StepUpForward = calc_motion(UpForward,orientation) StepUpUp = calc_motion(StepUp,orientation) StepDownDownFirst = calc_motion(StepDownFirst,orientation) StepDownDownSecond = calc_motion(StepDownSecond,orientation) pos = [] ##Lift_Up_First_Leg for i in range(len(distanceToStair)): if i == 4: pos.extend(StepUpUp[i*6 : i*6+6]) positionN(pos) leg_case = [5] check_position_error_legs(80, 20, pos, leg_case) pos = [] ##Put_Forward_First_Leg for i in range(len(distanceToStair)): if i == 4: pos.extend(StepUpForward[i*6 : i*6+6]) positionN(pos) leg_case = [5] check_position_error_legs(80, 20, pos, leg_case) pos = [] ##Step_Down_First_leg for i in range(len(distanceToStair)): if i == 4: pos.extend(StepDownDownFirst[i*6 : i*6+6]) positionN(pos) leg_case = [5] check_position_error_legs(80, 20, pos, leg_case) pos = [] check_contact() UpNothing = [0, 0, 0] UpUpNothing = calc_motion(UpNothing) ######################################################################################################### ##Lift_Up_Second_Leg for i in range(len(distanceToStair)): if i == 5: pos.extend(StepUpUp[i*6 : i*6+6]) positionN(pos) leg_case = [6] check_position_error_legs(80, 20, pos, leg_case) pos = [] ##Put_Forward_Second_Leg for i in range(len(distanceToStair)): if i == 5: pos.extend(StepUpForward[i*6 : i*6+6]) positionN(pos) leg_case = [6] check_position_error_legs(80, 20, pos, leg_case) pos = [] ##Step_Down_Second_leg for i in range(len(distanceToStair)): if i ==5: pos.extend(StepDownDownFirst[i*6 : i*6+6]) positionN(pos) leg_case = [6] check_position_error_legs(80, 20, pos, leg_case) pos = [] check_contact() distanceToStair = [i - stepSize for i in distanceToStair] parallelGait(0,0,0,0,0,riser/2) time.sleep(2) def translateAboveRiser(): ee_xyz, servopos = K.doFkine(readPos()) legZPlancement = abs(ee_xyz[8]+ee_xyz[11])/2 print("first leg placement in z is" , legZPlancement) if legZPlancement-riser < 70: translationZ = riser + 70 - legZPlancement parallelGait(0,0,0,0,0,translationZ) time.sleep(3) def rememberRemember(): ee_xyz, servopos = K.doFkine(readPos()) return servopos def StairClimbingDemo(): torque(0) pwm_list = [800]*18 pwmAll(pwm_list) scaler_acc = [20] * 18 scaler_vel = [20] * 18 velocityAll(scaler_vel) accelerationAll(scaler_acc) torque(1) standUpForStairs() print(stepSize) ## Move forward to the first step on the stair. 700 = mm. Assuming the robot is placed at this distance raw_input("Press something to move forward") distanceToStair = initialDistance(moveForward(0, stepSize, threshold, 0, 0, 0, 250)) #distanceToStair = 25.0, 25.0, 376.80185049724594, 376.02627441364115, 723.417427577023, 722.8063562905638 raw_input("Rotate coxas to get by thread distance") initConfig_legs(thread) time.sleep(3) #####Testing new stuff raw_input("Translate by half of the riser") parallelGait(0,0,0,0,0,riser/2+20) time.sleep(2) raw_input("Start climbing up") distanceToStair = 25.0, 25.0, 305.0, 305.0, 629.9592456137348, 629.7755305462598 walkUp(distanceToStair,0, stepSize*2, threshold, riser, 0,0,0) raw_input("Move Forward on stairs") distance = moveForwardOnStair(0, stepSize, threshold, 0, 0, 0, thread/2+stepSize) raw_input("Translate by half of the riser") parallelGait(0,0,0,0,0,riser/2) time.sleep(2) distanceToStair = 25.0, 25.0, 25.0, 25.0, 629.9592456137348, 629.7755305462598 raw_input("Again climb up") walkUp(distanceToStair,0, stepSize*2, threshold, riser, 0,0,0) raw_input("If needed translate above the riser and adjust the rotation") translateAboveRiser() stairs = True #rememberState = True #storedPosition = [] while stairs is True: correctRotation(thread,riser) time.sleep(2) raw_input("Correcting middle legs") correctMiddleLegs(20) raw_input("Move forwards on stairs") distance = moveForwardOnStair(0, stepSize, threshold, 0, 0, 0, riser+stepSize) distanceToStair = 25.0, 25.0, 25.0, 25.0, 25.9592456137348, 25.7755305462598 raw_input("Walk up all legs") checkForTermination = walkUpAllLegs(distanceToStair,0, stepSize*2, threshold, riser, 0,0,0) correctRotation(thread,riser) time.sleep(1) parallelGait(0,0,0,0,50,0) time.sleep(2) parallelGait(0,0,0,0,50,0) time.sleep(2) translateAboveRiser() raw_input("Exit program") if checkForTermination == True: break time.sleep(2) parallelGait(0,0,0,0,50,0) time.sleep(2) parallelGait(0,0,0,0,50,0) time.sleep(2) moveForwardOnStair(0, stepSize, threshold, 0, 0, 0, riser+stepSize) distanceToStair = 25.0, 25.0, 25.0, 25.0, 25.0, 25.0 moveUpOnlyLastLegs(distanceToStair,0,stepSize,threshold,riser,0,0,0) moveForward(0, stepSize, threshold, 0, 0, 0, 550) StairClimbingDemo() ``` #### File: dns_main/src/keyboard_interface.py ```python import time from math import radians from service_router import * from locomotion import * from demonstration import * class _Getch: """Gets a single character from standard input. Does not echo to the screen.""" def __init__(self): try: self.impl = _GetchWindows() except ImportError: self.impl = _GetchUnix() def __call__(self): return self.impl() class _GetchUnix: def __init__(self): import tty, sys def __call__(self): import sys, tty, termios fd = sys.stdin.fileno() old_settings = termios.tcgetattr(fd) try: tty.setraw(sys.stdin.fileno()) ch = sys.stdin.read(1) finally: termios.tcsetattr(fd, termios.TCSADRAIN, old_settings) return ch class _GetchWindows: def __init__(self): import msvcrt def __call__(self): import msvcrt return msvcrt.getch() getch = _Getch() def Stand_up(): torque(0) pwm_list = [800] * 18 # Setting PWM to "high" max is 885 pwmAll(pwm_list) scaler_acc = [20] * 18 # Setting Acceleration to "low" scaler_vel = [20] * 18 # Setting Velocity to "low" velocityAll(scaler_vel) accelerationAll(scaler_acc) torque(1) standup_pos = [2048, 2048, 1296, 2048, 2048, 1296, 2048, 2048, 1296, 2048, 2048, 1296, 2048, 2048, 1296, 2048, 2048, 1296] front_standup = list_combine(leg[1] + leg[2], standup_pos) rear_standup = list_combine(leg[5] + leg[6], standup_pos) middle_standup = list_combine(leg[3] + leg[4], standup_pos) positionN(front_standup) time.sleep(1) positionN(rear_standup) time.sleep(1) positionN(middle_standup) time.sleep(1) def move(PushBackwards, LiftUp, LiftDown, PutForward): pos = list() pos.extend(LiftUp[6:12]) pos.extend(LiftUp[12:18]) pos.extend(LiftUp[30:36]) positionN(pos) leg_case = [2,3,6] check_position_error_legs(20, 60, pos, leg_case) pos1 = list() pos1.extend(PutForward[6:12]) pos1.extend(PutForward[12:18]) pos1.extend(PutForward[30:36]) positionN(pos1) leg_case = [2,3,6] check_position_error_legs(20, 60, pos1, leg_case) pos2 = list() pos2.extend(LiftDown[6:12]) pos2.extend(LiftDown[12:18]) pos2.extend(LiftDown[30:36]) positionN(pos2) leg_case = [2,3,6] check_position_error_legs(20, 60, pos2, leg_case) pos3 = list() pos3.extend(LiftUp[0:6]) pos3.extend(PushBackwards[6:12]) pos3.extend(PushBackwards[12:18]) pos3.extend(LiftUp[18:24]) pos3.extend(LiftUp[24:30]) pos3.extend(PushBackwards[30:36]) positionN(pos3) check_position_error(40, 80, pos3) pos4 = list() pos4.extend(PushBackwards[0:6]) pos4.extend(PushBackwards[18:24]) pos4.extend(PushBackwards[24:30]) positionN(pos4) leg_case = [1,4,5] check_position_error_legs(20, 60, pos4, leg_case) def TactileCheck(LiftTactile): pos5 = list() pos5.extend(LiftTactile[0:6]) positionN(pos5) leg_case = [1] check_position_error_legs(40, 20, pos5, leg_case) checkContactWithoutControlSystem() def ChangeVelocity(x): torque(0) scaler_acc = [20+x] * 18 #Setting Acceleration to "low" scaler_vel = [20+x] * 18 #Setting Velocity to "low" velocityAll(scaler_vel) accelerationAll(scaler_acc) torque(1) print("Acc is", scaler_acc[0]) standup_pos = [2048, 2048, 1296, 2048, 2048, 1296, 2048, 2048, 1296, 2048, 2048, 1296, 2048, 2048, 1296, 2048, 2048, 1296] positionAll(standup_pos) time.sleep(0.10) return x def Demo(): stairs = True x = 20 PushF, LiftF, DownF, ForwardF, LiftBW, DownBW, ForwardBW, LiftLE, DownLE, ForwardLE, LiftRI, DownRI, ForwardRI, LiftTactile = CalculationMotions() while stairs is True: KeyboardControl() getch = _Getch() print ("Please enter something: ") choice = getch() if choice == "i": print("Increase speed") x += 10 x = ChangeVelocity(x) elif choice == "k": print("Decrease speed") x -= 10 x = ChangeVelocity(x) elif choice == "w": move(PushF, LiftF, DownF, ForwardF) print("Move Forward") elif choice == "a": print("Move Left") move(PushF, LiftLE, DownLE, ForwardLE) elif choice == "s": print("Move backwards") move(PushF, LiftBW, DownBW, ForwardBW) elif choice == "d": print("Move right") move(PushF, LiftRI, DownRI, ForwardRI) elif choice == "t": print("Rotate Clockwise") yawRotation(10) elif choice == "y": print("Rotate CounterClockwise") yawRotation(-10) elif choice == "v": print("Dance") DanceStar() elif choice == "b": print("Tactile") TactileCheck(LiftTactile) elif choice == "c": print("CameraDemo") CameraDemo() elif choice == "m": print("StairClimbingDemo") StairClimbingDemo() elif choice == "z": print("Torque on") torque(1) elif choice == "x": print("Torque off") torque(0) else: print("") print(" Enter number from 0 to 4!") print(" You entered: %s" % choice) print(" Try again in 3 seconds.") time.sleep(3) def CalculationMotions(): Forward = [0, 50, 40] Up = [0, 0, 40] Down = [0, 50, 0] Push = [0, 0, 0] PushF = calc_motion(Push) LiftF = calc_motion(Up) DownF = calc_motion(Down) ForwardF = calc_motion(Forward) ForwardB = [0, -50, 40] UpB = [0, 0, 40] DownB = [0, -50, 0] LiftBW = calc_motion(UpB) DownBW = calc_motion(DownB) ForwardBW = calc_motion(ForwardB) ForwardL = [-50, 0, 40] UpL = [0, 0, 40] DownL = [-50, 0, 0] LiftLE = calc_motion(UpL) DownLE = calc_motion(DownL) ForwardLE = calc_motion(ForwardL) ForwardR = [50, 0, 40] UpR = [0, 0, 40] DownR = [50, 0, 0] LiftRI = calc_motion(UpR) DownRI = calc_motion(DownR) ForwardRI = calc_motion(ForwardR) UpTac = [0, 0, 120] LiftTactile = calc_motion(UpTac) return PushF, LiftF, DownF, ForwardF, LiftBW, DownBW, ForwardBW, LiftLE, DownLE, ForwardLE, LiftRI, DownRI, ForwardRI, LiftTactile def KeyboardControl(): print(" _________________________________________________ ") print(" | Keyboard Control: |") print(" | For Movement: |") print(" | |") print(" | w |") print(" | a s d |") print(" | |") print(" | Increse/decrease speed |") print(" | |") print(" | i/k |") print(" | |") print(" | Rotate clockwise/counterclockwise |") print(" | |") print(" | t/y |") print(" | Torque(z/x) |") print(" | Dance(v) |") print(" | CameraDemo(c) |") print(" | Tactile(b) |") print(" | StairClimbingDemo(m) |") print(" |_________________________________________________|") def parallelGaitCalc(alpha, beta, gamma, dist_x, dist_y, dist_z): alpha_rad = radians(alpha) beta_rad = radians(beta) gamma_rad = radians(gamma) current_pos = readPos() next_pos = K.doIkineRotationEuler(current_pos, alpha_rad, beta_rad, gamma_rad, dist_x, dist_y, dist_z) return next_pos def CameraDemo(): clear_view_stairs() time.sleep(1) stair_dimensions=getAllStairsInfo() print(stair_dimensions) def DanceStar(): t = 0.5 ##<NAME> A1=parallelGaitCalc(0, 5, 0, 0, 0, 0) A2=parallelGaitCalc(0, 10, 0, 0, 0, 0) A3=parallelGaitCalc(0, 10, 5, 0, 0, 0) A4=parallelGaitCalc(0, 10, 10, 0, 0, 0) A5=parallelGaitCalc(0, 5, 10, 0, 0, 0) A6=parallelGaitCalc(0, 0, 10, 0, 0, 0) A7=parallelGaitCalc(0, 0, 5, 0, 0, 0) A8=parallelGaitCalc(0, 0, 0, 0, 0, 0) U0=parallelGaitCalc(0, 0, 0, 0, 0, 0) U1=parallelGaitCalc(0, 0, 0, 0, 0, 50) U2=parallelGaitCalc(0, 0, 0, 0, 0, 100) L1=parallelGaitCalc(0, 0, 0, -30, 0, 100) L1=parallelGaitCalc(0, 0, 0, -60, 0, 100) L2=parallelGaitCalc(0, 0, 0, -60, -30, 100) L3=parallelGaitCalc(0, 0, 0, -60, -60, 100) L4=parallelGaitCalc(0, 0, 0, -30, -60, 100) L5=parallelGaitCalc(0, 0, 0, 0, -60, 100) L6=parallelGaitCalc(0, 0, 0, 0, -30, 100) R1= parallelGaitCalc(-15, 0, 0, 0, 0, 0) R2= parallelGaitCalc(15, 0, 0, 0, 0, 0) R3= parallelGaitCalc(0, 0, 0, 0, 0, 100) R4= parallelGaitCalc(20, 0, 0, 0, 0, 0) positionAll(A1) time.sleep(t) positionAll(A2) time.sleep(t) positionAll(A3) time.sleep(t) positionAll(A4) time.sleep(t) positionAll(A5) time.sleep(t) positionAll(A6) time.sleep(t) positionAll(A7) time.sleep(t) positionAll(A8) time.sleep(t) positionAll(U1) time.sleep(2*t) positionAll(U2) time.sleep(2*t) positionAll(L1) time.sleep(2*t) positionAll(L2) time.sleep(2*t) positionAll(L3) time.sleep(2*t) positionAll(L4) time.sleep(2*t) positionAll(L5) time.sleep(2*t) positionAll(L6) time.sleep(2*t) positionAll(U2) time.sleep(2*t) positionAll(U1) time.sleep(2*t) positionAll(U0) time.sleep(2*t) positionAll(R1) time.sleep(4*t) positionAll(R2) time.sleep(4*t) positionAll(R3) time.sleep(4*t) positionAll(R4) time.sleep(4*t) positionAll(U0) torque(0) pwm_list = [800]*18 pwmAll(pwm_list) scaler_acc = [3] * 18 scaler_vel = [3] * 18 velocityAll(scaler_vel) accelerationAll(scaler_acc) #time.sleep(1) torque(1) standUpForStairs() time.sleep(4) Demo() ``` #### File: dns_main/src/kinematics.py ```python from math import pi, cos, sin, atan2, acos, sqrt, pow, radians, asin from math_calc import * from service_router import readPos class LegConsts(object): ''' Class object to store characteristics of each leg ''' def __init__(self, x_off, y_off, z_off, ang_off, leg_nr): self.x_off = x_off # X offset from body origin to first servo (mm) self.y_off = y_off # Y offset from body origin to first servo (mm) self.z_off = z_off # Z offset from body origin to first servo (mm) self.ang_off = ang_off # Angular offset from body origin to first servo (mm) self.f_ang_off = radians(13.33) # Angular offset of Femur self.t_ang_off = radians(-25.90) # Angular offset of Tibia self.c_len = 66.50 # Link length of Coxa (mm) self.f_len = 144.40 # Link length of Femur (mm) self.t_len = 287 # Link length of Tibia (mm) self.leg_nr = leg_nr # Leg Number class Kinematics(object): ''' Class object to compute various types of kinematics data for AntBot ''' # Origin to coxa: x_off, y_off, z_off, ang_off, name leg1 = LegConsts(70.5, 122.225, -14.9, - pi / 3, "Leg 1") leg2 = LegConsts(-70.5, 122.225, -14.9, -2 * pi / 3, "Leg 2") leg3 = LegConsts(141.33, 0, -14.9, 0, "Leg 3") leg4 = LegConsts(-141.33, 0, -14.9, pi, "Leg 4") leg5 = LegConsts(70.5, -122.225, -14.9, pi / 3, "Leg 5") leg6 = LegConsts(-70.5, -122.225, -14.9, 2 * pi / 3, "Leg 6") leg_list = [leg1, leg2, leg3, leg4, leg5, leg6] ################ # Public methods ################ def doFkine(self, all_positions): ''' Function: computes forward kinematics Parameter: all_positions: list with 18 values of servo positions in steps from ID1 to ID18 Return: ee_xyz: list of x,y,z coordinates for all 6 legs servoPos: servo positions in radians ''' servoPos = self.step_to_rad(all_positions) ee_xyz = [] j = 0 for i in xrange(0, 16, 3): ee_xyz.extend(self.calc_fkine(servoPos[i:i + 3], self.leg_list[j])) j += 1 return ee_xyz, servoPos def doIkine(self, all_positions, x, y, z, body_orient=None, leg=None, auto=None): ''' Function: computes inverse kinematics Parameters: all_positions: list with 18 values of servo positions in steps from ID1 to ID18; x,y,z: desired change in x,y,z coordinates (same for all legs) body_orient: list of 3 integers meaning alpha,beta,gamma rotation in degrees leg: list with integers meaning leg numbers to compute inverse for them only Return: list of 18 integers with servo steps ''' ee_xyz, servoPos = self.doFkine(all_positions) thetas = [] j = 0 if isinstance(leg, int): leg = [leg] elif isinstance(leg, tuple): leg = list(leg) elif isinstance(body_orient, tuple): body_orient = list(body_orient) if body_orient: # Optional parameter. Compute inverse with body orientation body_orient = [radians(d) for d in body_orient] alpha_rad, beta_rad, gama_rad = body_orient[0], body_orient[1], body_orient[2] x = (cos(gama_rad) * sin(beta_rad) * z + sin(gama_rad) * sin(beta_rad) * y + x * cos(beta_rad)) \ * cos(alpha_rad) - sin(alpha_rad) * (cos(gama_rad) * y - sin(gama_rad) * z) y = (cos(gama_rad) * sin(beta_rad) * z + sin(gama_rad) * sin(beta_rad) * y + x * cos(beta_rad)) \ * sin(alpha_rad) + cos(alpha_rad) * (cos(gama_rad) * y - sin(gama_rad) * z) z = -sin(beta_rad) * x + cos(beta_rad) * sin(gama_rad) * y + cos(beta_rad) * cos(gama_rad) * z if leg: # Optional parameter. Compute inverse for a specific leg/s. for i in range(len(leg)): j = leg[i] - 1 thetas.extend(self.calc_ikine(x, y, z, ee_xyz[j * 3:j * 3 + 3], self.leg_list[j])) else: # Compute inverse for all legs if not leg specified. for i in xrange(0, 16, 3): thetas.extend(self.calc_ikine(x, y, z, ee_xyz[i:i + 3], self.leg_list[j])) j += 1 result = [int(each_theta) for each_theta in self.rad_to_step(thetas)] return result def doIkineRotationEuler(self, all_positions, alpha_rad, beta_rad, gama_rad, dist_x, dist_y, dist_z): ''' Function: computes inverse kinematics and body rotation (Parallel kinematics) Parameters: all_positions: list with 18 values of servo positions in steps from ID1 to ID18; alpha,beta,gama: # for leg in range(6): # 6 legs # if leg in leg_list: # new_pos.extend(K.calc_ikine(x, y, z, ee_xyz[leg:leg + 3], K.leg_list[leg])) # else: # new_pos.append(current_pos[3 * leg]) # new_pos.append(current_pos[3 * leg + 1]) # new_pos.append(current_pos[3 * leg + 2])ers with servo steps ''' final_eexyz, ee_xyz = self.calc_rot_matrix(all_positions, alpha_rad, beta_rad, gama_rad) thetas = [] j = 0 for i in xrange(0, 16, 3): thetas.extend(self.calc_ikine(final_eexyz[i] - dist_x, final_eexyz[i + 1] - dist_y, final_eexyz[i + 2] - dist_z, ee_xyz[i:i + 3], self.leg_list[j])) j += 1 result = [int(each_theta) for each_theta in self.rad_to_step(thetas)] return result def printForward(self, all_positions): ''' Function: Prints x,y,z coordinates of each leg Parameters: all_positions: list with 18 values of servo positions in steps from ID1 to ID18; ''' ee_list, theta_list = self.doFkine(all_positions) RoundedCoords = ['%.4f' % elem for elem in ee_list] print "" print "X,Y,Z coordinates of Leg end-points: " print " " + str(["X ", " Y ", " Z "]) print "Leg 1: " + str(RoundedCoords[0:3]) print "Leg 2: " + str(RoundedCoords[3:6]) print "Leg 3: " + str(RoundedCoords[6:9]) print "Leg 4: " + str(RoundedCoords[9:12]) print "Leg 5: " + str(RoundedCoords[12:15]) print "Leg 6: " + str(RoundedCoords[15:18]) print "" def printInverse(self, all_positions, x, y, z): ''' Function: Prints servo positions, in radians, needed to reach the position Parameters: theta_list: 18 servo positions in radians. ''' theta_list = self.doIkine(all_positions, x, y, z) RoundedThetas = ['%.4f' % elem for elem in theta_list] print "" print "Theta angles of each servo:" print " " + str(["Coxa ", "Femur ", "Tibia"]) print "Leg 1: " + str(RoundedThetas[0:3]) print "Leg 2: " + str(RoundedThetas[3:6]) print "Leg 3: " + str(RoundedThetas[6:9]) print "Leg 4: " + str(RoundedThetas[9:12]) print "Leg 5: " + str(RoundedThetas[12:15]) print "Leg 6: " + str(RoundedThetas[15:18]) print "" def printKinematics(self, all_positions, x, y, z): self.printForward(all_positions) self.printInverse(all_positions, x, y, z) ################# # Private methods ################# def calc_fkine(self, servoPos, leg): theta1 = servoPos[0] - leg.ang_off theta2 = servoPos[1] + leg.f_ang_off theta3 = servoPos[2] + leg.t_ang_off ee_z = leg.f_len * sin(theta2) + leg.t_len * sin(theta3 + theta2) + leg.z_off ee_x = leg.x_off + cos(theta1) * (leg.c_len + leg.f_len * cos(theta2) + leg.t_len * cos(theta3 + theta2)) ee_y = leg.y_off + sin(theta1) * (leg.c_len + leg.f_len * cos(theta2) + leg.t_len * cos(theta3 + theta2)) return [ee_x, ee_y, ee_z] def calc_ikine(self, x, y, z, ee_xyz, leg, auto=None): init_X = ee_xyz[0] init_Y = ee_xyz[1] init_Z = ee_xyz[2] X = init_X + (x) - leg.x_off Y = init_Y + (y) - leg.y_off Z = init_Z + (z) - leg.z_off theta1 = atan2(Y, X) + leg.ang_off if theta1 < -pi: theta1 += 2 * pi if theta1 > pi: theta1 -= 2 * pi new_x = cos(leg.ang_off) * X - sin(leg.ang_off) * Y new_y = sin(leg.ang_off) * X + cos(leg.ang_off) * Y final_x = cos(theta1) * new_x + sin(theta1) * new_y - leg.c_len s = sqrt(pow(final_x, 2) + pow(Z, 2)) try: t3_term = (-pow(s, 2) + pow(leg.f_len, 2) + pow(leg.t_len, 2)) / (2 * leg.f_len * leg.t_len) t3 = pi - acos(t3_term) except ValueError: print "Cannot compute acos(", t3_term, ") for ", leg.leg_nr if auto is None: if t3_term < 0: t3 = pi - acos(-0.99) else: t3 = pi - acos(0.99) else: return -1 theta3 = -t3 - leg.t_ang_off theta2 = -(-atan2(Z, final_x) - atan2(leg.t_len * sin(t3), leg.f_len + leg.t_len * cos(t3)) + leg.f_ang_off) if auto is not None: if (theta2 > 1.8 or theta2 < -1.8) or (theta3 < -2.2 or theta3 > 2.2): return -1 return [theta1, theta2, theta3] def calc_rot_displacement(self, alpha_rad, beta_rad, gama_rad, ee_xyz): pre_x = ee_xyz[0] pre_y = ee_xyz[1] pre_z = ee_xyz[2] r_term1 = (cos(gama_rad) * sin(beta_rad) * pre_z + sin(gama_rad) * sin(beta_rad) * pre_y + pre_x * cos(beta_rad)) r_term2 = (cos(gama_rad) * pre_y - sin(gama_rad) * pre_z) r_x = r_term1 * cos(alpha_rad) - r_term2 * sin(alpha_rad) - pre_x r_y = r_term1 * sin(alpha_rad) + r_term2 * cos(alpha_rad) - pre_y r_z = - sin(beta_rad) * pre_x + cos(beta_rad) * sin(gama_rad) * pre_y + cos(beta_rad) * cos(gama_rad) * pre_z - pre_z return [r_x, r_y, r_z] def calc_rot_matrix(self, all_positions, alpha_rad, beta_rad, gama_rad): ee_xyz, servoPos = self.doFkine(all_positions) rot_val_list = [] for i in xrange(0, 16, 3): rot_val_list.extend(self.calc_rot_displacement(alpha_rad, beta_rad, gama_rad, ee_xyz[i:i + 3])) return rot_val_list, ee_xyz def rad_to_step(self, pos_rads): return [i / pi * 2048 + 2048 for i in pos_rads] def step_to_rad(self, pos_steps): return [(((x / 2047.5) - 1) * pi) for x in pos_steps] def make_poligonCorners(self, all_positions, leg_list): if leg_list is int: leg_list = [leg_list] xyz_polygon = [] ee_xyz, servoPos = self.doFkine(all_positions) newEe_xyz = [ee_xyz[0], ee_xyz[1], ee_xyz[2], ee_xyz[3], ee_xyz[4], ee_xyz[5], ee_xyz[9], ee_xyz[10], ee_xyz[11], ee_xyz[15], ee_xyz[16], ee_xyz[17], ee_xyz[12], ee_xyz[13], ee_xyz[14], ee_xyz[6], ee_xyz[7], ee_xyz[8]] for i in range(len(leg_list)): j = leg_list[i] - 1 xyz_polygon.extend((newEe_xyz[j * 3:j * 3 + 3])) return xyz_polygon def make_polygonLines(self, leg_list, ee_xyz): print("leglistLins", leg_list) line = [] for i in range(len(ee_xyz / 3)): j = i - 1 line.extend = [ee_xyz[3 * j + 3] - ee_xyz[3 * j], ee_xyz[3 * j + 4] - ee_xyz[3 * j + 1], ee_xyz[3 * j + 5] - ee_xyz[3 * j + 2]] return line def check_stabilty(self, t_poly=None): ee_xyz, servoPos = self.doFkine(readPos()) tac = [False, True, False, True, True, False] leg_list = [] for i in range(len(tac)): if tac[i] is True: leg_list.extend([i + 1]) poly_lines, poly_points = self.make_polygonLines(leg_list, ee_xyz) print("lines", poly_lines) if tac[1] is True and tac[2] is True and tac[5]is True: # gamma, beta = 10,20 #self.get_orientation(tac) # n = [0,-sin(beta),cos(beta)] print("im not here") P1 = [ee_xyz[3], ee_xyz[4], 1] P2 = [ee_xyz[6], ee_xyz[7], 1] P3 = [ee_xyz[15], ee_xyz[16], 1] print(P1, P2, P3) elif tac[0] is True and tac[3] is True and tac[4] is True: print("im here") P1 = [ee_xyz[0], ee_xyz[1], 1] P3 = [ee_xyz[9], ee_xyz[10], 1] P2 = [ee_xyz[12], ee_xyz[13], 1] print(P1, P2, P3) k = 1 # dotProduct(n,P1) x = 0 y = 1 z = 2 lambda_1 = ((P2[x] * P3[y] - P2[y] * P3[x]) * k) / (P1[x] * P2[y] * P3[z] - P1[x] * P2[z] * P3[y] - P1[y] * P2[x] * P3[z] + P1[y] * P2[z] * P3[x] + P1[z] * P2[x] * P3[y] - P1[z] * P2[y] * P3[x]) lambda_2 = -((P1[x] * P3[y] - P1[y] * P3[x]) * k) / (P1[x] * P2[y] * P3[z] - P1[x] * P2[z] * P3[y] - P1[y] * P2[x] * P3[z] + P1[y] * P2[z] * P3[x] + P1[z] * P2[x] * P3[y] - P1[z] * P2[y] * P3[x]) lambda_3 = ((P1[x] * P2[y] - P1[y] * P2[x]) * k) / (P1[x] * P2[y] * P3[z] - P1[x] * P2[z] * P3[y] - P1[y] * P2[x] * P3[z] + P1[y] * P2[z] * P3[x] + P1[z] * P2[x] * P3[y] - P1[z] * P2[y] * P3[x]) if lambda_1 > 0.1 and lambda_2 > 0.1 and lambda_3 > 0.1 and lambda_3 > 0.1: if lambda_1 < 0.9 and lambda_2 < 0.9 and lambda_3 < 0.9: if lambda_1 + lambda_2 + lambda_3 == 1: inside = True side1 = subtract(P1, P2) side2 = subtract(P3, P2) side3 = subtract(P1, P3) G = [0, 0, 1] P2_G = subtract(G, P2) P3_G = subtract(G, P3) margin_s1 = sqrt(pow(dotProduct(P2_G, unit_vec(side1)), 2) + dotProduct(P2_G, P2_G)) margin_s2 = sqrt(pow(dotProduct(P2_G, unit_vec(side2)), 2) + dotProduct(P2_G, P2_G)) margin_s3 = sqrt(pow(dotProduct(P3_G, unit_vec(side3)), 2) + dotProduct(P3_G, P3_G)) stability_margin = min(margin_s1, margin_s2, margin_s3) print(stability_margin, inside) return stability_margin, inside def get_orientation(self, leg_list): ee_xyz, servoPos = self.doFkine(readPos()) p1 = ee_xyz[3 * (leg_list[0] - 1):3 * (leg_list[0] - 1) + 3] p2 = ee_xyz[3 * (leg_list[1] - 1):3 * (leg_list[1] - 1) + 3] p3 = ee_xyz[3 * (leg_list[2] - 1):3 * (leg_list[2] - 1) + 3] p21 = subtract(p2, p1) p23 = subtract(p2, p3) normz = crossProduct(p21, p23) beta = atan2(normz[0], normz[2]) * 180 / pi gamma = -atan2(normz[1], normz[2]) * 180 / pi return gamma, beta def calc_translationStairs(self, riser, climbed_stairs_front, climbed_stairs_rear): # gamma, beta = self.get_orientation([1,5,6]) ee_xyz, servopos = self.doFkine(readPos()) dist_y = abs(ee_xyz[1] - ee_xyz[13]) riser_diff = (climbed_stairs_front - climbed_stairs_rear) * riser omega = asin(riser_diff / dist_y) * 180 / pi AB = -ee_xyz[14] + 30 AC = AB / cos(omega * pi / 180) BC = AC * sin(omega * pi / 180) BE = sqrt(pow(ee_xyz[12], 2) + pow(ee_xyz[11], 2)) - 141.33 CE = BE - BC CD = BC * CE / AC if AC + CD <= riser_diff: trans_z_g = riser_diff - AC - CD + 10 translation_z = trans_z_g * cos(omega * pi / 180) translation_y = trans_z_g * sin(omega * pi / 180) else: translation_z = 0 translation_y = 0 return [translation_z, translation_y] ``` #### File: dns_main/src/stair_climbing_algorithm.py ```python import time from math import radians from service_router import * from locomotion import * from math import asin, pi, atan2 from kinematics import Kinematics from math_calc import vector_length K = Kinematics() def terminate(): ee_xyz, servopos = K.doFkine(readPos()) if abs(ee_xyz[2]-ee_xyz[5]) < 50: if abs(ee_xyz[8]-ee_xyz[11]) < 50: if abs(ee_xyz[8]-ee_xyz[2]) < riser/2: print("yeay im on top of stairs") return True else: return False def standUpForStairs(): standup_pos = [2048, 2048, 1296, 2048, 2048, 1296, 2048, 2048, 1296, 2048, 2048, 1296, 2048, 2048, 1296, 2048, 2048, 1296] front_standup = list_combine(leg[1] + leg[2], standup_pos) rear_standup = list_combine(leg[5] + leg[6], standup_pos) middle_standup = list_combine(leg[3] + leg[4], standup_pos) positionN(front_standup) time.sleep(1) positionN(rear_standup) time.sleep(1) positionN(middle_standup) time.sleep(1) def correctMiddleLegs(z): Up = [0, 0, z] LiftUp = calc_motion(Up) pos = list() pos.extend(LiftUp[12:18]) pos.extend(LiftUp[18:24]) positionN(pos) leg_case = [3,4] check_position_error_legs(80, 20, pos, leg_case) ServoCentering=[7,2048,10,2048] positionN(ServoCentering) time.sleep(1) Down = [0, 0, -z] LiftDown = calc_motion(Down) pos1 = list() pos1.extend(LiftDown[12:18]) pos1.extend(LiftDown[18:24]) positionN(pos1) leg_case = [3,4] check_position_error_legs(80, 20, pos1, leg_case) def initialDistance(distance): all_pos = readPos() ee_xyz, servopos = K.doFkine(all_pos) dist2FirstStep_1 = distance dist2FirstStep_2 = distance dist2FirstStep_3 = distance + ee_xyz[1] - ee_xyz[7] dist2FirstStep_4 = distance + ee_xyz[1] - ee_xyz[10] dist2FirstStep_5 = distance + ee_xyz[1] - ee_xyz[13] dist2FirstStep_6 = distance + ee_xyz[1] - ee_xyz[16] dist2FirstStep = dist2FirstStep_1, dist2FirstStep_2, dist2FirstStep_3, dist2FirstStep_4, dist2FirstStep_5, dist2FirstStep_6 print dist2FirstStep return dist2FirstStep def initConfig_legs(depth): maxy = 344.74638441867046 r = 392.55798277243395 - 141.33 #maximumy - y_offset of leg one miny = 181.0804846109524 phai = asin((depth-miny)/r) * 2048/pi # change of coxa in steps #print(int(phai)) if depth < maxy: standup_pos = [ 1536 + int(phai), 2048, 1296, 2560 - int(phai), 2048, 1296, 2048 , 2048, 1296, 2048 , 2048, 1296, 2560 - int(phai), 2048, 1296, 1536 + int(phai), 2048, 1296] # lift_up = [2048, 2448,1296,2048,2448,1296, # 2048, 2448,1296,2048,2448,1296, # 2048, 2448,1296,2048,2448,1296] #print(standup_pos) # front_liftup = list_combine(leg[2] + leg[5],lift_up) # positionN(front_liftup) # time.sleep(2) front_standup = list_combine(leg[1] + leg[2], standup_pos) positionN(front_standup) time.sleep(1) # rear_liftup = list_combine(leg[1] + leg[6],lift_up) # positionN(rear_liftup) # time.sleep(1) rear_standup = list_combine(leg[3] + leg[4], standup_pos) positionN(rear_standup) time.sleep(1) rear_standup = list_combine(leg[5] + leg[6], standup_pos) positionN(rear_standup) time.sleep(1) ee_xyz, servopos = K.doFkine(readPos()) return maxy - ee_xyz[1] def correctRotation(depth, riser): slope = atan2(riser,depth)*180/pi gamma, beta = K.get_orientation([1,5,6]) new_gamma = slope - gamma parallelGait(0,0,int(new_gamma-3),0,0,0) #-3 should be 0 but seems to help to keep the robot parallel time.sleep(3) print("Slope is:", new_gamma) def moveForward(x, y, z, alpha, beta, gamma, distance): Forward = [x, y, z] Up = [0, 0, z] Down = [x, y, 0] Push = [0, 0, 0] HalfForward = [0.5*x, 0.5*y, z] HalfUp = [ 0, 0, z] HalfDown = [0.5*x, 0.5*y, 0] PushBackwards = calc_motion(Push) LiftUp = calc_motion(Up) LiftDown = calc_motion(Down) PutForward = calc_motion(Forward) HalfLiftUp = calc_motion(HalfUp) HalfLiftDown = calc_motion(HalfDown) HalfPutForward = calc_motion(HalfForward) while distance > 0.75 * stepSize: if distance > 1.5 * stepSize: pos = list() pos.extend(LiftUp[6:12]) pos.extend(LiftUp[12:18]) pos.extend(LiftUp[30:36]) positionN(pos) leg_case = [2,3,6] check_position_error_legs(20, 30, pos, leg_case) pos1 = list() pos1.extend(PutForward[6:12]) pos1.extend(PutForward[12:18]) pos1.extend(PutForward[30:36]) positionN(pos1) leg_case = [2,3,6] check_position_error_legs(20, 30, pos1, leg_case) pos2 = list() pos2.extend(LiftDown[6:12]) pos2.extend(LiftDown[12:18]) pos2.extend(LiftDown[30:36]) positionN(pos2) leg_case = [2,3,6] check_position_error_legs(20, 30, pos2, leg_case) pos3 = list() pos3.extend(LiftUp[0:6]) pos3.extend(PushBackwards[6:12]) pos3.extend(PushBackwards[12:18]) pos3.extend(LiftUp[18:24]) pos3.extend(LiftUp[24:30]) pos3.extend(PushBackwards[30:36]) positionN(pos3) check_position_error(40, 50, pos3) pos4 = list() pos4.extend(PushBackwards[0:6]) pos4.extend(PushBackwards[18:24]) pos4.extend(PushBackwards[24:30]) positionN(pos4) leg_case = [1,4,5] check_position_error_legs(20, 30, pos4, leg_case) distance = distance - stepSize else: pos = list() pos.extend(HalfLiftUp[6:12]) pos.extend(HalfLiftUp[12:18]) pos.extend(HalfLiftUp[30:36]) positionN(pos) leg_case = [2,3,6] check_position_error_legs(20, 30, pos, leg_case) pos1 = list() pos1.extend(HalfPutForward[6:12]) pos1.extend(HalfPutForward[12:18]) pos1.extend(HalfPutForward[30:36]) positionN(pos1) leg_case = [2,3,6] check_position_error_legs(20, 30, pos1, leg_case) pos2 = list() pos2.extend(HalfLiftDown[6:12]) pos2.extend(HalfLiftDown[12:18]) pos2.extend(HalfLiftDown[30:36]) positionN(pos2) leg_case = [2,3,6] check_position_error_legs(20, 30, pos2, leg_case) pos3 = list() pos3.extend(HalfLiftUp[0:6]) pos3.extend(PushBackwards[6:12]) pos3.extend(PushBackwards[12:18]) pos3.extend(HalfLiftUp[18:24]) pos3.extend(HalfLiftUp[24:30]) pos3.extend(PushBackwards[30:36]) positionN(pos3) check_position_error(80, 50, pos3) pos4 = list() pos4.extend(PushBackwards[0:6]) pos4.extend(PushBackwards[18:24]) pos4.extend(PushBackwards[24:30]) positionN(pos4) leg_case = [1,4,5] check_position_error_legs(20, 30, pos4, leg_case) distance = distance - (0.5 *stepSize) time.sleep(0.5) return distance def walkUp(distanceToStair, x, stepSize, threshold, riser, alpha, beta, gamma): orientation = [alpha,beta,gamma] Forward = [x, stepSize, threshold] Up = [0, 0, threshold] Down = [x, stepSize, 0] Push = [0, 0, 0] UpForward = [x, stepSize, threshold+riser] StepUp = [0, 0, threshold+riser] StepDownFirst = [x, stepSize, threshold/2+riser] StepDownSecond = [x, 0, threshold/2+riser] PushBackwards = calc_motion(Push,orientation) LiftUp = calc_motion(Up,orientation) LiftDown = calc_motion(Down,orientation) PutForward = calc_motion(Forward,orientation) StepUpForward = calc_motion(UpForward,orientation) StepUpUp = calc_motion(StepUp,orientation) StepDownDownFirst = calc_motion(StepDownFirst,orientation) StepDownDownSecond = calc_motion(StepDownSecond,orientation) pos = [] ##Lift_Up_First_Leg_group for i in range(len(distanceToStair)): if i == 0 or i == 3 or i == 4: if distanceToStair[i] < stepSize: pos.extend(StepUpUp[i*6 : i*6+6]) else: pos.extend(LiftUp[i*6 : i*6+6]) positionN(pos) leg_case = [1,4,5] check_position_error_legs(120, 30, pos, leg_case) pos = [] ##Put_Forward_First_Leg_group for i in range(len(distanceToStair)): if i == 0 or i == 3 or i == 4: if distanceToStair[i] < stepSize: pos.extend(StepUpForward[i*6 : i*6+6]) else: pos.extend(PutForward[i*6 : i*6+6]) positionN(pos) leg_case = [1,4,5] check_position_error_legs(120, 30, pos, leg_case) pos = [] ##Step_Down_First_leg_group for i in range(len(distanceToStair)): if i == 0 or i == 3 or i == 4: if distanceToStair[i] < stepSize: pos.extend(StepDownDownFirst[i*6 : i*6+6]) else: pos.extend(LiftDown[i*6 : i*6+6]) positionN(pos) leg_case = [1,4,5] check_position_error_legs(120, 30, pos, leg_case) pos = [] check_contact() ######################################################################################################### UpNothing = [0, 0, 0] UpUpNothing = calc_motion(UpNothing) UpPushBackwards = [0, -stepSize, 0] StepUpPushBackwards = calc_motion(UpPushBackwards) ##Lift_Up_Second_Leg_group for i in range(len(distanceToStair)): if i == 1 or i == 2 or i == 5: if distanceToStair[i] < stepSize: pos.extend(StepUpUp[i*6 : i*6+6]) else: pos.extend(LiftUp[i*6 : i*6+6]) positionN(pos) leg_case = [2,3,6] check_position_error_legs(120, 30, pos, leg_case) pos = [] ##Put_Forward_Second_Leg_group for i in range(len(distanceToStair)): if i == 0 or i == 3 or i == 4: if distanceToStair[i] < stepSize: pos.extend(StepUpPushBackwards[i*6 : i*6+6]) else: pos.extend(StepUpPushBackwards[i*6 : i*6+6]) positionN(pos) leg_case = [1,4,5] check_position_error_legs(120, 30, pos, leg_case) pos = [] ##Step_Down_Second_leg_group for i in range(len(distanceToStair)): if i == 1 or i == 2 or i == 5: if distanceToStair[i] < stepSize: pos.extend(StepDownDownSecond[i*6 : i*6+6]) else: pos.extend(PushBackwards[i*6 : i*6+6]) positionN(pos) leg_case = [2,3,6] check_position_error_legs(120, 30, pos, leg_case) pos = [] check_contact() distanceToStair = [i - stepSize for i in distanceToStair] def updateDistance(distanceToStair, stepSize): distanceToStair = [i - stepSize for i in distanceToStair] for i in range(len(distanceToStair)): if distanceToStair[i] < 0: distanceToStair[i] = distanceToStair[i] + thread print distanceToStair return distanceToStair def rotateAndTranslate(riser,climbed_stairs_front, climbed_stairs_rear): gamma, beta = K.get_orientation([1, 5, 6]) parallelGait(0, -beta, -gamma, 0, 0, 0) time.sleep(2) a = K.calc_translationStairs(riser,climbed_stairs_front, climbed_stairs_rear) parallelGait(0, 0, 0, 0, a[1], a[0]) time.sleep(2) return beta , gamma def moveForwardOnStair(x, y, z, alpha, beta, gamma, distance): initialDistance = distance orientation = [alpha, beta, gamma] Forward = [x, y, z] Up = [0, 0, z] Down = [x, y, 0] Push = [0, 0, 0] HalfForward = [0.5*x, 0.5*y, z] HalfUp = [0, 0, z] HalfDown = [0.5*x, 0.5*y, 0] PushBackwards = calc_motion(Push, orientation) LiftUp = calc_motion(Up, orientation) LiftDown = calc_motion(Down, orientation) PutForward = calc_motion(Forward, orientation) HalfLiftUp = calc_motion(HalfUp, orientation) HalfLiftDown = calc_motion(HalfDown, orientation) HalfPutForward = calc_motion(HalfForward, orientation) print (distance) while distance > 0.75 * stepSize: if distance > 1.5 * stepSize: pos = list() pos.extend(LiftUp[6:12]) pos.extend(LiftUp[12:18]) pos.extend(LiftUp[30:36]) positionN(pos) leg_case = [2,3,6] check_position_error_legs(20, 30, pos, leg_case) pos1 = list() pos1.extend(PutForward[6:12]) pos1.extend(PutForward[12:18]) pos1.extend(PutForward[30:36]) positionN(pos1) leg_case = [2,3,6] check_position_error_legs(20, 30, pos1, leg_case) pos2 = list() pos2.extend(LiftDown[6:12]) pos2.extend(LiftDown[12:18]) pos2.extend(LiftDown[30:36]) positionN(pos2) leg_case = [2,3,6] check_position_error_legs(20, 30, pos2, leg_case) pos3 = list() pos3.extend(LiftUp[0:6]) pos3.extend(PushBackwards[6:12]) pos3.extend(PushBackwards[12:18]) pos3.extend(LiftUp[18:24]) pos3.extend(LiftUp[24:30]) pos3.extend(PushBackwards[30:36]) positionN(pos3) check_position_error(20, 50, pos3) pos4 = list() pos4.extend(PushBackwards[0:6]) pos4.extend(PushBackwards[18:24]) pos4.extend(PushBackwards[24:30]) positionN(pos4) leg_case = [1,4,5] check_position_error_legs(20, 30, pos4, leg_case) distance = distance - stepSize else: pos = list() pos.extend(HalfLiftUp[6:12]) pos.extend(HalfLiftUp[12:18]) pos.extend(HalfLiftUp[30:36]) positionN(pos) leg_case = [2,3,6] check_position_error_legs(20, 30, pos, leg_case) pos1 = list() pos1.extend(HalfPutForward[6:12]) pos1.extend(HalfPutForward[12:18]) pos1.extend(HalfPutForward[30:36]) positionN(pos1) leg_case = [2,3,6] check_position_error_legs(20, 30, pos1, leg_case) pos2 = list() pos2.extend(HalfLiftDown[6:12]) pos2.extend(HalfLiftDown[12:18]) pos2.extend(HalfLiftDown[30:36]) positionN(pos2) leg_case = [2,3,6] check_position_error_legs(20, 30, pos2, leg_case) pos3 = list() pos3.extend(HalfLiftUp[0:6]) pos3.extend(PushBackwards[6:12]) pos3.extend(PushBackwards[12:18]) pos3.extend(HalfLiftUp[18:24]) pos3.extend(HalfLiftUp[24:30]) pos3.extend(PushBackwards[30:36]) positionN(pos3) check_position_error(20, 50, pos3) pos4 = list() pos4.extend(PushBackwards[0:6]) pos4.extend(PushBackwards[18:24]) pos4.extend(PushBackwards[24:30]) positionN(pos4) leg_case = [1,4,5] check_position_error_legs(20, 30, pos4, leg_case) distance = distance - (0.5 *stepSize) time.sleep(0.5) return distance def walkUpAllLegs(distanceToStair, x, stepSize, threshold, riser, alpha, beta, gamma): orientation = [alpha,beta,gamma] Forward = [x, stepSize, threshold] Up = [0, 0, threshold] Down = [x, stepSize, 0] Push = [0, 0, 0] UpForward = [x, stepSize, threshold+riser] StepUp = [0, 0, threshold+riser] StepDownFirst = [x, stepSize, threshold/2+riser] StepDownSecond = [x, 0, threshold/2+riser] PushBackwards = calc_motion(Push,orientation) LiftUp = calc_motion(Up,orientation) LiftDown = calc_motion(Down,orientation) PutForward = calc_motion(Forward,orientation) StepUpForward = calc_motion(UpForward,orientation) StepUpUp = calc_motion(StepUp,orientation) StepDownDownFirst = calc_motion(StepDownFirst,orientation) StepDownDownSecond = calc_motion(StepDownSecond,orientation) pos = [] ##Lift_Up_Fifth_Leg for i in range(len(distanceToStair)): if i == 4: pos.extend(StepUpUp[i*6 : i*6+6]) positionN(pos) leg_case = [5] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Put_Forward_Fifth_Leg for i in range(len(distanceToStair)): if i == 4: pos.extend(StepUpForward[i*6 : i*6+6]) positionN(pos) leg_case = [5] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Step_Down_Fifth_leg for i in range(len(distanceToStair)): if i == 4: pos.extend(StepDownDownFirst[i*6 : i*6+6]) positionN(pos) leg_case = [5] check_position_error_legs(120, 20, pos, leg_case) pos = [] check_contact() UpNothing = [0, 0, 0] UpUpNothing = calc_motion(UpNothing) ######################################################################################################### ##Lift_Up_Sixth_Leg for i in range(len(distanceToStair)): if i == 5: pos.extend(StepUpUp[i*6 : i*6+6]) positionN(pos) leg_case = [6] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Put_Forward_Sixth_Leg for i in range(len(distanceToStair)): if i == 5: pos.extend(StepUpForward[i*6 : i*6+6]) positionN(pos) leg_case = [6] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Step_Down_Sixth_leg for i in range(len(distanceToStair)): if i ==5: pos.extend(StepDownDownFirst[i*6 : i*6+6]) positionN(pos) leg_case = [6] check_position_error_legs(120, 20, pos, leg_case) pos = [] check_contact() distanceToStair = [i - stepSize for i in distanceToStair] parallelGait(0,0,0,0,0,riser/2) time.sleep(2) UpNothing = [0, 0, 0] UpUpNothing = calc_motion(UpNothing) Forward = [x, stepSize, threshold] Up = [0, 0, threshold] Down = [x, stepSize, 0] Push = [0, 0, 0] UpForward = [x, stepSize, threshold+riser] StepUp = [0, 0, threshold+riser] StepDownFirst = [x, stepSize, threshold/2+riser] StepDownSecond = [x, 0, threshold/2+riser] PushBackwards = calc_motion(Push,orientation) LiftUp = calc_motion(Up,orientation) LiftDown = calc_motion(Down,orientation) PutForward = calc_motion(Forward,orientation) StepUpForward = calc_motion(UpForward,orientation) StepUpUp = calc_motion(StepUp,orientation) StepDownDownFirst = calc_motion(StepDownFirst,orientation) StepDownDownSecond = calc_motion(StepDownSecond,orientation) ########################################################################### ##Lift_Up_Third_Leg for i in range(len(distanceToStair)): if i == 2: pos.extend(StepUpUp[i*6 : i*6+6]) positionN(pos) leg_case = [3] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Put_Forward_Third_Leg for i in range(len(distanceToStair)): if i == 2: pos.extend(StepUpForward[i*6 : i*6+6]) positionN(pos) leg_case = [3] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Step_Down_Third_leg for i in range(len(distanceToStair)): if i == 2: pos.extend(StepDownDownFirst[i*6 : i*6+6]) positionN(pos) leg_case = [3] check_position_error_legs(120, 20, pos, leg_case) pos = [] check_contact() UpNothing = [0, 0, 0] UpUpNothing = calc_motion(UpNothing) ######################################################################################################### ##Lift_Up_Forth_Leg for i in range(len(distanceToStair)): if i == 3: pos.extend(StepUpUp[i*6 : i*6+6]) positionN(pos) leg_case = [4] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Put_Forward_Forth_Leg for i in range(len(distanceToStair)): if i == 3: pos.extend(StepUpForward[i*6 : i*6+6]) UpNothing = [0, 0, 0] UpUpNothing = calc_motion(UpNothing) positionN(pos) leg_case = [4] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Step_Down_Forth_leg for i in range(len(distanceToStair)): if i ==3: pos.extend(StepDownDownFirst[i*6 : i*6+6]) positionN(pos) leg_case = [4] check_position_error_legs(120, 20, pos, leg_case) pos = [] check_contact() distanceToStair = [i - stepSize for i in distanceToStair] parallelGait(0,0,0,0,0,riser/2) time.sleep(2) UpNothing = [0, 0, 0] UpUpNothing = calc_motion(UpNothing) Forward = [x, stepSize, threshold] Up = [0, 0, threshold] Down = [x, stepSize, 0] Push = [0, 0, 0] UpForward = [x, stepSize, threshold+riser] StepUp = [0, 0, threshold+riser] StepDownFirst = [x, stepSize, threshold/2+riser] StepDownSecond = [x, 0, threshold/2+riser] PushBackwards = calc_motion(Push,orientation) LiftUp = calc_motion(Up,orientation) LiftDown = calc_motion(Down,orientation) PutForward = calc_motion(Forward,orientation) StepUpForward = calc_motion(UpForward,orientation) StepUpUp = calc_motion(StepUp,orientation) StepDownDownFirst = calc_motion(StepDownFirst,orientation) StepDownDownSecond = calc_motion(StepDownSecond,orientation) ########################################################################### ##Lift_Up_First_Leg for i in range(len(distanceToStair)): if i == 0: pos.extend(StepUpUp[i*6 : i*6+6]) positionN(pos) leg_case = [1] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Put_Forward_First_Leg for i in range(len(distanceToStair)): if i == 0: pos.extend(StepUpForward[i*6 : i*6+6]) positionN(pos) leg_case = [1] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Step_Down_First_leg for i in range(len(distanceToStair)): if i == 0: pos.extend(StepDownDownFirst[i*6 : i*6+6]) positionN(pos) leg_case = [1] check_position_error_legs(120, 20, pos, leg_case) pos = [] check_contact() UpNothing = [0, 0, 0] UpUpNothing = calc_motion(UpNothing) ######################################################################################################### ##Lift_Up_Second_Leg for i in range(len(distanceToStair)): if i == 1: pos.extend(StepUpUp[i*6 : i*6+6]) positionN(pos) leg_case = [2] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Put_Forward_Second_Leg for i in range(len(distanceToStair)): if i == 1: pos.extend(StepUpForward[i*6 : i*6+6]) positionN(pos) leg_case = [2] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Step_Down_Second_leg for i in range(len(distanceToStair)): if i ==1: pos.extend(StepDownDownFirst[i*6 : i*6+6]) positionN(pos) leg_case = [2] check_position_error_legs(120, 20, pos, leg_case) pos = [] check_contact() distanceToStair = [i - stepSize for i in distanceToStair] timeToTerminate = terminate() if timeToTerminate == True: timeToContinue = True return timeToContinue def moveUpOnlyLastLegs(distanceToStair, x, stepSize, threshold, riser, alpha, beta, gamma): orientation = [alpha,beta,gamma] Forward = [x, stepSize, threshold] Up = [0, 0, threshold] Down = [x, stepSize, 0] Push = [0, 0, 0] UpForward = [x, stepSize, threshold+riser] StepUp = [0, 0, threshold+riser] StepDownFirst = [x, stepSize, threshold/2+riser] StepDownSecond = [x, 0, threshold/2+riser] PushBackwards = calc_motion(Push,orientation) LiftUp = calc_motion(Up,orientation) LiftDown = calc_motion(Down,orientation) PutForward = calc_motion(Forward,orientation) StepUpForward = calc_motion(UpForward,orientation) StepUpUp = calc_motion(StepUp,orientation) StepDownDownFirst = calc_motion(StepDownFirst,orientation) StepDownDownSecond = calc_motion(StepDownSecond,orientation) pos = [] ##Lift_Up_Fifth_Leg for i in range(len(distanceToStair)): if i == 4: pos.extend(StepUpUp[i*6 : i*6+6]) positionN(pos) leg_case = [5] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Put_Forward_Fifth_Leg for i in range(len(distanceToStair)): if i == 4: pos.extend(StepUpForward[i*6 : i*6+6]) positionN(pos) leg_case = [5] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Step_Down_Fifth_leg for i in range(len(distanceToStair)): if i == 4: pos.extend(StepDownDownFirst[i*6 : i*6+6]) positionN(pos) leg_case = [5] check_position_error_legs(120, 20, pos, leg_case) pos = [] check_contact() UpNothing = [0, 0, 0] UpUpNothing = calc_motion(UpNothing) ######################################################################################################### ##Lift_Up_Sixth_Leg for i in range(len(distanceToStair)): if i == 5: pos.extend(StepUpUp[i*6 : i*6+6]) positionN(pos) leg_case = [6] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Put_Forward_Sixth_Leg for i in range(len(distanceToStair)): if i == 5: pos.extend(StepUpForward[i*6 : i*6+6]) positionN(pos) leg_case = [6] check_position_error_legs(120, 20, pos, leg_case) pos = [] ##Step_Down_Sixth_leg for i in range(len(distanceToStair)): if i ==5: pos.extend(StepDownDownFirst[i*6 : i*6+6]) positionN(pos) leg_case = [6] check_position_error_legs(120, 20, pos, leg_case) pos = [] check_contact() distanceToStair = [i - stepSize for i in distanceToStair] parallelGait(0,0,0,0,0,riser/2) time.sleep(2) def translateAboveRiser(): ee_xyz, servopos = K.doFkine(readPos()) legZPlancement = abs(ee_xyz[8]+ee_xyz[11])/2 print("first leg placement in z is" , legZPlancement) if legZPlancement-riser < 70: translationZ = riser + 70 - legZPlancement parallelGait(0,0,0,0,0,translationZ) time.sleep(3) #####################STAIR CLIMBING ALGORITHM STARTS HERE######################### torque(0) pwm_list = [800]*18 #Setting PWM to "high" max is 885 pwmAll(pwm_list) scaler_acc = [20] * 18 #Setting Acceleration to "low" scaler_vel = [20] * 18 #Setting Velocity to "low" velocityAll(scaler_vel) accelerationAll(scaler_acc) torque(1) threshold = 50 # Set z threshold (step up) stepSize = 50 # Set Step Size riser = 163 # Enter your riser height or obtain by camera thread = 284 # Enter your thread depth or obtain by camera initConfig_legs(thread) # Rotates the coxa servos to cause the displacement of a thread depth between the leg pairs time.sleep(3) ## Move forward to the first step on the stair. 700 = mm. Assuming the robot is placed at this distance #distanceToStairInitial = initialDistance(moveForward(0, stepSize, threshold, 0, 0, 0, 550)) ##For testing put the first legs next to the riser with the distance of approx 25mm distance = 25 distanceToStairInitial = initialDistance(distance) # Gets the y value of each legs with respect to the first leg parallelGait(0,0,0,0,0,riser/2) # Translate the body by half of the riser time.sleep(2) walkUp(distanceToStairInitial,0, stepSize*2, threshold, riser, 0,0,0) # Walks up with the leg within the step size (leg 1,2)of a riser by tripod moveForwardOnStair(0, stepSize, threshold, 0, 0, 0, thread) # Moves forward on the stairs by the riser depth parallelGait(0,0,0,0,0,riser/2) time.sleep(2) # Update distances by substracting the riser to 2nd and 3rd legpair distanceToStairs = distanceToStairInitial[0], distanceToStairInitial[1], distanceToStairInitial[2]-thread, distanceToStairInitial[3]-thread, distanceToStairInitial[4]-thread,distanceToStairInitial[5]-thread walkUp(distanceToStair,0, stepSize*2, threshold, riser, 0,0,0) # Walks up with the leg within the step size (leg 1,2,3,4 )of a riser by tripod translateAboveRiser() # Body is translated above the riser, unless the body is already above stairs = True # Update distances by substracting the riser to the 3rd legpair distanceToStairs = distanceToStairs[0], distanceToStairs[1], distanceToStairs[2], distanceToStairs[3], distanceToStairs[4]-thread, distanceToStairs[5]-thread while stairs is True: stepSize = 50 correctRotation(thread,riser) # Correcting the rotation by the negative slope of the stairs to keep the body horizontal time.sleep(2) correctMiddleLegs(20) # Corrects possible errors that tend to affect the coxa joint moveForwardOnStair(0, stepSize, threshold, 0, 0, 0, riser+stepSize) stability_margin, stability_bool = check_stabilty() # Checking for stability if stability_margin > stepSize: checkForTermination = walkUpAllLegs(distanceToStair,0, stepSize*2, threshold, riser, 0,0,0) #Walking up with all legs by wave gait and check if the robot is ontop of the stairs if checkForTermination == True: break #If the robot is ontop then go out of while loop correctRotation(thread,riser) time.sleep(1) parallelGait(0,0,0,0,50,0) #translate the body forward time.sleep(2) parallelGait(0,0,0,0,50,0) time.sleep(2) translateAboveRiser() else: stepSize = stability_margin checkForTermination = walkUpAllLegs(distanceToStair,0, stepSize*2, threshold, riser, 0,0,0 if checkForTermination == True: break correctRotation(thread,riser) time.sleep(1) parallelGait(0,0,0,0,50,0) time.sleep(2) parallelGait(0,0,0,0,50,0) time.sleep(2) translateAboveRiser() # This part is executed if the algorithm is terminated by checking if the front legs dosnt change level when it tries to get to next level time.sleep(2) parallelGait(0,0,0,0,50,0) time.sleep(2) parallelGait(0,0,0,0,50,0) time.sleep(2) moveForwardOnStair(0, stepSize, threshold, 0, 0, 0, riser) moveUpOnlyLastLegs(distanceToStair,0,stepSize,threshold,riser,0,0,0) # Only lifts the rear legs by wave gait above the last riser moveForward(0, stepSize, threshold, 0, 0, 0, 550) # Move forward ```
{ "source": "jevgienij/pypokertools", "score": 2 }
#### File: pypokertools/tests/test_properties.py ```python from pypokertools.pokertools import flop, hand, holecards from pypokertools.properties.flop import ( has_2flush, has_3straight, has_gutshot, has_pair, has_threeofakind, is_monotone, is_rainbow, ) from pypokertools.properties.hand import ( is_flush, is_fourofakind, is_fullhouse, is_nopair, is_onepair, is_pair_or_better, is_straight, is_straightflush, is_threeofakind, is_twopair, is_twopair_or_better, ) from pypokertools.properties.holecards import ( has_one_gap, has_two_gap, is_connected, is_pair, is_suited, ) #------------------------------------------------------------------------------ # Hand properties def test_is_straightflush(): assert is_straightflush(hand('4h 5h 6h 7h 8h')) assert is_straightflush(hand('As Ks Qs Js Ts')) assert not is_straightflush(hand('4c 5h 6h 7h 8h')) assert not is_straightflush(hand('Ad Ks Qs Js Ts')) def test_is_fourofakind(): assert is_fourofakind(hand('4h 4d 4s 4c Ac')) assert is_fourofakind(hand('Ac As Ah Ad 2d')) assert not is_fourofakind(hand('4c 5h 6h 7h 8h')) assert not is_fourofakind(hand('Ad Ks Qs Js Ts')) def test_is_fullhouse(): assert is_fullhouse(hand('4h 4d 4s 5h 5d')) assert is_fullhouse(hand('Ac As Ah 2c 2s')) assert not is_fullhouse(hand('4h 4d 4s 7h 8h')) assert not is_fullhouse(hand('Ad As Ah 2c Kd')) def test_is_flush(): assert is_flush(hand('4d 5d 8d Jd Qd')) assert is_flush(hand('Ac 8c 7c 5c 2c')) assert not is_flush(hand('4h 4s 5s 7s 8s')) assert not is_flush(hand('Ad 7d 6d 3d 2h')) def test_is_straight(): assert is_straight(hand('4h 5d 6s 7h 8d')) assert is_straight(hand('Ac 2s 3h 4c 5s')) assert is_straight(hand('Tc Js Qh Kc As')) assert not is_straight(hand('4h 5d 6s 7h 9h')) assert not is_straight(hand('Ad 2s 3h 4c 6d')) def test_is_threeofakind(): assert is_threeofakind(hand('4h 4d 4s 5h 6d')) assert is_threeofakind(hand('Ac As Ah 2c Ks')) assert not is_threeofakind(hand('4h 4d 7s 7h 8h')) assert not is_threeofakind(hand('Ad 2s 3s 4s 5s')) def test_is_twopair(): assert is_twopair(hand('4h 4d 5s 5h 6d')) assert is_twopair(hand('Ac As 2h 2c Ks')) assert not is_twopair(hand('4h 4d 5s 7h 8h')) assert not is_twopair(hand('Ad As 2h Qc Kd')) def test_is_onepair(): assert is_onepair(hand('4h 4d 5s 6h 7d')) assert is_onepair(hand('Ac As 2h Qc Ks')) assert not is_onepair(hand('4h 4d 4s 7h 8h')) assert not is_onepair(hand('Ad 2s 3h 4c 6d')) def test_is_nopair(): assert is_nopair(hand('4h 7d 9s Jh Ad')) assert is_nopair(hand('Ac 2s 3h 4c 6s')) assert not is_nopair(hand('4h 4d 4s 7h 8h')) assert not is_nopair(hand('As Ks Qs Js Ts')) def test_is_pair_or_better(): assert is_pair_or_better(hand('Ad Ac 7s 6s 5s')) assert is_pair_or_better(hand('Ad Ac Kd Kc 2h')) assert is_pair_or_better(hand('Ad Ac As 6c 5c')) assert is_pair_or_better(hand('Ad Kh Qs Jc Td')) assert is_pair_or_better(hand('Ad 8d 7d 6d 5d')) assert is_pair_or_better(hand('Ad Ac As 5d 5c')) assert is_pair_or_better(hand('Ad Ac As Ah 5c')) assert is_pair_or_better(hand('Ad Kd Qd Jd Td')) assert not is_pair_or_better(hand('Ad Kd Qd Jd 3c')) assert not is_pair_or_better(hand('Ts 9s 7c 6s 5s')) def test_is_twopair_or_better(): assert is_twopair_or_better(hand('Ad Ac Kd Kc 2h')) assert is_twopair_or_better(hand('Ad Ac As 6c 5c')) assert is_twopair_or_better(hand('Ad Kh Qs Jc Td')) assert is_twopair_or_better(hand('Ad 8d 7d 6d 5d')) assert is_twopair_or_better(hand('Ad Ac As 5d 5c')) assert is_twopair_or_better(hand('Ad Ac As Ah 5c')) assert is_twopair_or_better(hand('Ad Kd Qd Jd Td')) assert not is_twopair_or_better(hand('Ad Ac 7s 6s 5s')) assert not is_twopair_or_better(hand('Ad Kd Qd Jd 3c')) assert not is_twopair_or_better(hand('Ts 9s 7c 6s 5s')) #------------------------------------------------------------------------------ # Flop properties def test_is_rainbow(): assert is_rainbow(flop('Ah Td 3c')) assert is_rainbow(flop('Ah Ks 3c')) assert is_rainbow(flop('Ah Td 3s')) assert not is_rainbow(flop('Kd 5d 2d')) assert not is_rainbow(flop('Kd 8d 6s')) assert not is_rainbow(flop('Ks Qh 2s')) def test_is_monotone(): assert is_monotone(flop('Ah Th 3h')) assert is_monotone(flop('Ac Tc 3c')) assert is_monotone(flop('Ks Qs 2s')) assert not is_monotone(flop('Ah Td 3c')) assert not is_monotone(flop('As Ts 3d')) assert not is_monotone(flop('Ks Qd 2s')) def test_has_pair(): assert has_pair(flop('Ah Ad 3c')) assert has_pair(flop('Ah 3d 3c')) assert has_pair(flop('Th Td 3c')) assert not has_pair(flop('Ah Td 3c')) assert not has_pair(flop('As Ts 3s')) assert not has_pair(flop('Ks Qd 2s')) def test_has_threeofakind(): assert has_threeofakind(flop('Ah Ad Ac')) assert has_threeofakind(flop('Th Td Tc')) assert has_threeofakind(flop('3h 3d 3c')) assert not has_threeofakind(flop('Ah Td 3c')) assert not has_threeofakind(flop('As Ts 3s')) assert not has_threeofakind(flop('Ks Qd 2s')) def test_has_3straight(): assert has_3straight(flop('Ah 2d 3c')) assert has_3straight(flop('Jh Td 9c')) assert has_3straight(flop('Ks Qd Js')) assert not has_3straight(flop('Ah Td 3c')) assert not has_3straight(flop('As Ts 3s')) assert not has_3straight(flop('Ts 9s 7c')) def test_has_gutshot(): assert has_gutshot(flop('Ts 9s 7c')) assert has_gutshot(flop('Ah 2d 4c')) assert has_gutshot(flop('Ah 3d 4c')) assert not has_gutshot(flop('Ah Td 3c')) assert not has_gutshot(flop('As Ts 3s')) assert not has_gutshot(flop('Ts 9s 8c')) def test_has_2flush(): assert has_2flush(flop('Ah Th 3c')) assert has_2flush(flop('Ah Td 3d')) assert has_2flush(flop('Ks Qd 2s')) assert not has_2flush(flop('Ah Th 3h')) assert not has_2flush(flop('Ah Td 3c')) assert not has_2flush(flop('Ks Td Th')) #------------------------------------------------------------------------------ # Holecards properties def test_is_pair(): assert is_pair(holecards('Ad Ac')) assert is_pair(holecards('Ts Td')) assert is_pair(holecards('2c 2d')) assert not is_pair(holecards('Ks Qs')) assert not is_pair(holecards('Ac 2d')) assert not is_pair(holecards('Td 9d')) def test_is_suited(): assert is_suited(holecards('Ad Kd')) assert is_suited(holecards('Ad 2d')) assert is_suited(holecards('Ts 9s')) assert not is_suited(holecards('Ad Kc')) assert not is_suited(holecards('Ah 2s')) assert not is_suited(holecards('Tc 9h')) def test_is_connected(): assert is_connected(holecards('Ad 2c')) assert is_connected(holecards('Ad Kc')) assert is_connected(holecards('Jh Th')) assert not is_connected(holecards('Ad Qc')) assert not is_connected(holecards('4h 2h')) assert not is_connected(holecards('Jc 9c')) def test_has_one_gap(): assert has_one_gap(holecards('Ad Qd')) assert has_one_gap(holecards('Ad 3c')) assert has_one_gap(holecards('Ts 8h')) assert not has_one_gap(holecards('Ad Kd')) assert not has_one_gap(holecards('Ad 2c')) assert not has_one_gap(holecards('Ts 9h')) def test_has_two_gap(): assert has_two_gap(holecards('Ad Jd')) assert has_two_gap(holecards('Ad 4c')) assert has_two_gap(holecards('Ts 7h')) assert not has_two_gap(holecards('Ad Qd')) assert not has_two_gap(holecards('Ad 3c')) assert not has_two_gap(holecards('Ts 8h')) ```
{ "source": "jevgienij/pytessy", "score": 2 }
#### File: pytessy/src/pytessy.py ```python import ctypes import ctypes.util from os import chdir, environ, getcwd from os.path import abspath, dirname, isabs, isdir, isfile, join from sys import platform from distutils.spawn import find_executable import numpy as np class PyTessyError(Exception): """ PyTessyError class ------------------ Empty subclass of Exception to throw module-specific errors. """ pass class TesseractHandler(object): """ TesseractHandler class ---------------------- Handles raw Tesseract-OCR calls with limited functionality only. """ _lib = None _api = None class TessBaseAPI(ctypes._Pointer): """ TessBaseAPI ----------- Empty ctypes._Pointer subclass to serve as TessBaseAPI handler pointer. """ _type_ = type('_TessBaseAPI', (ctypes.Structure,), {}) def __init__(self, lib_path=None, data_path=None, language='eng'): """ Initializes Tesseract-OCR api handler object instance ----------------------------------------------------- @Params: lib_path (string) [optional] Path to Tesseract-OCR library. data_path (string) [optional] Path to Tesseract-OCR data files. language (string) [optional] Language code to work with. """ if self._lib is None: self.setup_lib(lib_path) self._api = self._lib.TessBaseAPICreate() if self._lib.TessBaseAPIInit3(self._api, data_path.encode('ascii'), language.encode('ascii')): raise PyTessyError('Failed to initialize Tesseract-OCR library.') def get_text(self): """ Gets text as utf-8 decoded string --------------------------------- @Return: (string) Text read by Tesseract-OCR as utf-8 string. """ self._check_setup() result = self._lib.TessBaseAPIGetUTF8Text(self._api) if result: return result.decode('utf-8') def get_text_raw(self): """ Gets text as raw bytes data --------------------------- @Return: (bytes) Text read by Tesseract-OCR as raw bytes. """ self._check_setup() return self._lib.TessBaseAPIGetUTF8Text(self._api) def set_image(self, imagedata, width, height, bytes_per_pixel, bytes_per_line, resolution): """ Sets image to read ------------------ @Params: imagedata (ctypes.int array) Raw imagedata to read. width (int) Width of the image. height (int) Height of the image. bytes_per_pixel (int) Number of bytes that represents a pixel. bytes_per_line (int) Number of bytes in a line. resolution (int) Resolution of the image in dpi. """ self._check_setup() self._lib.TessBaseAPISetImage(self._api, imagedata, width, height, bytes_per_pixel, bytes_per_line) self._lib.TessBaseAPISetSourceResolution(self._api, resolution) def set_psm(self, psm): """ Sets Page Segmentation Mode, as per TessPageSegMode enum: ------------------ @Params: psm (int) Page Segmentation Mode, as per TessPageSegMode enum: typedef enum TessPageSegMode { PSM_OSD_ONLY, PSM_AUTO_OSD, PSM_AUTO_ONLY, PSM_AUTO, PSM_SINGLE_COLUMN, PSM_SINGLE_BLOCK_VERT_TEXT, PSM_SINGLE_BLOCK, PSM_SINGLE_LINE, PSM_SINGLE_WORD, PSM_CIRCLE_WORD, PSM_SINGLE_CHAR, PSM_SPARSE_TEXT, PSM_SPARSE_TEXT_OSD, PSM_RAW_LINE, PSM_COUNT } TessPageSegMode; https://github.com/UB-Mannheim/tesseract/blob/master/include/tesseract/capi.h """ self._check_setup() self._lib.TessBaseAPISetPageSegMode(self._api, psm) def get_psm(self): """ Gets Page Segmentation Mode, as per TessPageSegMode enum: ------------------ @Return: psm (int) Page Segmentation Mode, as per TessPageSegMode enum: typedef enum TessPageSegMode { PSM_OSD_ONLY, PSM_AUTO_OSD, PSM_AUTO_ONLY, PSM_AUTO, PSM_SINGLE_COLUMN, PSM_SINGLE_BLOCK_VERT_TEXT, PSM_SINGLE_BLOCK, PSM_SINGLE_LINE, PSM_SINGLE_WORD, PSM_CIRCLE_WORD, PSM_SINGLE_CHAR, PSM_SPARSE_TEXT, PSM_SPARSE_TEXT_OSD, PSM_RAW_LINE, PSM_COUNT } TessPageSegMode; https://github.com/UB-Mannheim/tesseract/blob/master/include/tesseract/capi.h """ self._check_setup() return self._lib.TessBaseAPIGetPageSegMode(self._api) def set_variable(self, key, val): """ Set the value of an internal parameter. Supply the name of the parameter and the value as a string, just as you would in a config file. Eg set_variable("tessedit_char_blacklist", "xyz"); to ignore x, y and z. Or set_variable("classify_bln_numeric_mode", "1"); to set numeric-only mode. SetVariable may be used before Init, but settings will revert to defaults on End(). @Params: key (str) Variable name val (str) Variable value @Return: (bool) ``False`` if the name lookup failed. """ self._check_setup() return self._lib.TessBaseAPISetVariable(self._api, key.encode('ascii'), val.encode('ascii')) def mean_text_conf(self): """ @Return: (int) average confidence value between 0 and 100. """ self._check_setup() return self._lib.TessBaseAPIMeanTextConf(self._api) @classmethod def setup_lib(cls, lib_path=None): """ Binds Tesseract-OCR library to the handler ------------------------------------------ @Params: (string) [optional] Path to Tesseract-OCR library. @Raises: PyTessyError If ctypes cannot find Tesseract-OCR library. """ if cls._lib is not None: return lib_path = ctypes.util.find_library(lib_path) if lib_path is None: raise PyTessyError('Ctypes couldn\'t find Tesseract-OCR library') cls._lib = lib = ctypes.CDLL(lib_path) lib.TessBaseAPICreate.restype = cls.TessBaseAPI # handle lib.TessBaseAPIDelete.restype = None # void lib.TessBaseAPIDelete.argtypes = (cls.TessBaseAPI,) # handle lib.TessBaseAPIInit3.argtypes = (cls.TessBaseAPI, # handle ctypes.c_char_p, # datapath ctypes.c_char_p) # language lib.TessBaseAPISetImage.restype = None # void lib.TessBaseAPISetImage.argtypes = (cls.TessBaseAPI, # handle ctypes.c_void_p, # imagedata ctypes.c_int, # width ctypes.c_int, # height ctypes.c_int, # bytes_per_pixel ctypes.c_int) # bytes_per_line lib.TessBaseAPIGetUTF8Text.restype = ctypes.c_char_p # text lib.TessBaseAPIGetUTF8Text.argtypes = (cls.TessBaseAPI, ) # handle lib.TessBaseAPISetSourceResolution.restype = None # void lib.TessBaseAPISetSourceResolution.argtypes = (cls.TessBaseAPI, # handle ctypes.c_int) # ppi lib.TessBaseAPISetPageSegMode.restype = None lib.TessBaseAPISetPageSegMode.argtypes = (cls.TessBaseAPI, # handle ctypes.c_int) # mode lib.TessBaseAPIGetPageSegMode.restype = ctypes.c_int # mode lib.TessBaseAPIGetPageSegMode.argtypes = (cls.TessBaseAPI,) # handle lib.TessBaseAPISetVariable.restype = ctypes.c_bool # bool lib.TessBaseAPISetVariable.argtypes = (cls.TessBaseAPI, # handle ctypes.c_char_p, # name ctypes.c_char_p) # value lib.TessBaseAPIMeanTextConf.restype = ctypes.c_int # int lib.TessBaseAPIMeanTextConf.argtypes = (cls.TessBaseAPI,) # handle def _check_setup(self): """ Checks whether Tesseract-OCR is set up or not --------------------------------------------- @Raises: PyTessyError If library handler not yet configured. PyTessyError If api handler not yet configured. """ if not self._lib: raise PyTessyError('Tesseract handler library not configured.') if not self._api: raise PyTessyError('Tesseract handler api not created.') def __del__(self): """ Disconnects TessBaseAPI when instance is deleted ------------------------------------------------ """ if not self._lib or not self._api: return if not getattr(self, 'closed', False): self._lib.TessBaseAPIDelete(self._api) self.closed = True class PyTessy(object): """ PyTessy ------- Provides user-friendly and fast Tesseract-OCR interface. """ DEFAULT_HORIZONTAL_DPI = 96 TESSDATA_DIRNAME = 'tessdata' TESSERACT_DIRNAME = 'Tesseract-OCR' TESSERACT_DEFAULT_HORIZONTAL_DPI = 70 VERSION = '0.0.1' def __init__(self, tesseract_path=None, api_version=None, lib_path=None, data_path=None, language='eng', verbose_search=False): """ Initializes PyTessy instance ---------------------------- @Params: tesseract_path (string) [optional] Path (directory's name) to Tesseract-OCR library. api_version (string) [optional] Api version suffix string (should be compatible with Tesseract-OCR 3). lib_path (string) [optional] Exact path to the Tesseract-OCR library. to data directory (usually "tessdata"). data_path (string) [optional] Path (directory's name) to data directory (usually "tessdata"). language (string) [optional] Language code to use. verbose_search (boolean) [optional] Whether to display library searching process or not. @Raises: NotImplementedError If the operating system is not implemented yet (linux, macOS). You can avoid this error by giving exact path of Tesseract-OCR library. NotImplementedError If the operating system will be never implemented. You can avoid this error by giving exact path of Tesseract-OCR library. FileNotFoundError If the given exact library path doesn't point to existing file. FileNotFoundError If failed to found library with search process. FileNotFoundError If cannot found "tessdata" directory. """ run_path = dirname(abspath(getcwd())) no_lib = True if lib_path is not None: if isfile(lib_path): no_lib = False else: raise FileNotFoundError('PyTessy: lib_path: "{}" doesn\'t exist.' .format(lib_path)) if no_lib: if verbose_search: verbose = lambda *pa, **pk: print(*pa, **pk) else: verbose = lambda *pa, **pk: None if platform.startswith('win'): verbose('PyTessy v{} on {} searching for Tesseract-OCR library...' .format(PyTessy.VERSION, platform)) if api_version is None: lib_name = 'libtesseract-5' else: lib_name = 'libtesseract{}'.format(api_version) verbose('--- Target library name: {}'.format(lib_name)) if tesseract_path is not None: dirs = [tesseract_path, run_path, join(run_path, PyTessy.TESSERACT_DIRNAME)] else: dirs = [run_path, join(run_path, PyTessy.TESSERACT_DIRNAME)] if 'PROGRAMFILES' in environ: dirs.append(join(environ['PROGRAMFILES'], PyTessy.TESSERACT_DIRNAME)) if 'PROGRAMFILES(X86)' in environ: dirs.append(join(environ['PROGRAMFILES(X86)'], PyTessy.TESSERACT_DIRNAME)) for dir_ in dirs: test = join(dir_, '{}.dll'.format(lib_name)) if isfile(test): lib_path = test verbose(' {} SUCCESS.'.format(test)) break else: verbose(' {} FAILED.'.format(test)) if lib_path is None: raise FileNotFoundError('Cannot locate Tesseract-OCR library.') elif platform.startswith('linux'): find_program = find_executable('tesseract') if len(find_program) == 0: raise FileNotFoundError('Cannot locate Tesseract-OCR library.') else: lib_path = 'tesseract' data_path = "/usr/share/tessdata/" elif platform.startswith('darwin'): raise NotImplementedError('PyTessy: Library search on MacOS is not implemented yet.') else: raise NotImplementedError('PyTessy: Library search on this system is not implemented.') tess_path = dirname(abspath(lib_path)) no_tessdata = True if data_path is not None: if isdir(data_path): no_tessdata = False if no_tessdata: for test_path in [run_path, join(run_path, PyTessy.TESSERACT_DIRNAME), tess_path]: test_path = join(test_path, PyTessy.TESSDATA_DIRNAME) if isdir(test_path): data_path = test_path break if data_path is None: raise FileNotFoundError('PyTessy: Couldn\'t find "tessdata" directory.') orig_path = getcwd() chdir(tess_path) self._tess = TesseractHandler(lib_path=lib_path, data_path=data_path, language=language) chdir(orig_path) def justread(self, raw_image_ctypes, width, height, bytes_per_pixel, bytes_per_line, resolution=96, psm=None): """ Reads text as utf-8 string from raw image data without any check ---------------------------------------------------------------- @Params: raw_image_ctypes (ctypes int array) Raw image data. width (int) Image width. height (int) Image height. bytes_per_pixel (int) Number of bytes per pixel. bytes_per_line (int) Number of bytes per line. resolution (int) [optional] Resolution in dpi. Default: 96. psm (int) [optional] Page Segmentation Mode as per TessPageSegMode enum (see set_psm method) @Return: (string) Text read by Tesseract-OCR as utf-8 string. """ if psm is None: psm = self.get_psm() self._tess.set_psm(psm) self._tess.set_image(raw_image_ctypes, width, height, bytes_per_pixel, bytes_per_line, resolution) return self._tess.get_text() def justread_raw(self, raw_image_ctypes, width, height, bytes_per_pixel, bytes_per_line, resolution=96, psm=None): """ Reads text as raw bytes data from raw image data without any check ------------------------------------------------------------------ @Params: raw_image_ctypes (ctypes int array) Raw image data. width (int) Image width. height (int) Image height. bytes_per_pixel (int) Number of bytes per pixel. bytes_per_line (int) Number of bytes per line. resolution (int) [optional] Resolution in dpi. Default: 96. psm (int) [optional] Page Segmentation Mode as per TessPageSegMode enum (see set_psm method) @Return: (bytes) Text read by Tesseract-OCR as raw bytes data. """ if psm is None: psm = self.get_psm() self._tess.set_psm(psm) self._tess.set_image(raw_image_ctypes, width, height, bytes_per_pixel, bytes_per_line, resolution) return self._tess.get_text_raw() def read(self, imagedata, width, height, bytes_per_pixel, resolution=96, raw=False, psm=None): """ Reads text from image data -------------------------- @Params: imagedata (ctypes int array) Raw image data. width (int) Image width. height (int) Image height. bytes_per_pixel (int) Number of bytes per pixel. resolution (int) [optional] Resolution in dpi. Default: 96. raw (boolean) [optional] Whether to read in raw or utf-8 mode. psm (int) [optional] Page Segmentation Mode as per TessPageSegMode enum (see set_psm method) @Return: (bytes) or (string) Text read by Tesseract-OCR """ if psm is None: psm = self.get_psm() bytes_per_line = width * bytes_per_pixel if raw: return self.justread_raw(imagedata, width, height, bytes_per_pixel, bytes_per_line, resolution, psm) else: return self.justread(imagedata, width, height, bytes_per_pixel, bytes_per_line, resolution, psm) def readnp(self, imagedata: np.ndarray, resolution=96, raw=False, psm=None): """ Reads text from image data contained in a numpy ndarray -------------------------- @Params: imagedata (np.ndarray) Raw image data in a numpy ndarray. resolution (int) [optional] Resolution in dpi. Default: 96. raw (boolean) [optional] Whether to read in raw or utf-8 mode. psm (int) [optional] Page Segmentation Mode as per TessPageSegMode enum (see set_psm method) @Return: (bytes) or (string) Text read by Tesseract-OCR """ if len(imagedata.shape) == 2: # greyscale picture height, width = imagedata.shape bytes_per_pixel = 1 elif len(imagedata.shape) == 3: # 24 or 32 bits color picture height, width, bytes_per_pixel = imagedata.shape else: raise PyTessyError('imagedata should be 3- or 2- dimensional numpy ndarray') if psm is None: psm = self.get_psm() return self.read(imagedata.ctypes, width, height, bytes_per_pixel, resolution, raw, psm) def set_psm(self, psm): """ Sets Page Segmentation Mode, as per TessPageSegMode enum: ------------------ @Params: psm (int) Page Segmentation Mode, as per TessPageSegMode enum """ self._tess.set_psm(psm) def get_psm(self): """ Gets Page Segmentation Mode, as per TessPageSegMode enum: ------------------ @Return: psm (int) Page Segmentation Mode, as per TessPageSegMode enum """ return self._tess.get_psm() def set_variable(self, key, val): """ Set the value of an internal parameter. Supply the name of the parameter and the value as a string, just as you would in a config file. Eg set_variable("tessedit_char_blacklist", "xyz"); to ignore x, y and z. Or set_variable("classify_bln_numeric_mode", "1"); to set numeric-only mode. SetVariable may be used before Init, but settings will revert to defaults on End(). @Params: key (str) Variable name val (str) Variable value @Return: (bool) ``False`` if the name lookup failed. """ return self._tess.set_variable(key, val) def mean_text_conf(self): """ @Return: (int) average confidence value between 0 and 100. """ return self._tess.mean_text_conf() if __name__ == '__main__': print('This is a module not a script.') ```
{ "source": "JevinJ/Bittrex-Notify", "score": 3 }
#### File: Bittrex-Notify/src/fasttick.py ```python import config import misc def heartbeat(): """ Processes data from Bittrex into a simpler dictionary, calls the save function on it, deletes the oldest saved dictionary(if it's out of lookback range), and finally creates a list of the best coins to be used in tkinter listboxes. :return: A list containing triples of (coin name, increase rate, volume) """ data = misc.retrieve_data() # Processing for saving latest data from Bittrex API latest_data = {} for d in data.get('result', {}): name = d.get('Market', {}).get('MarketCurrencyLong', '') last_price = d.get('Summary', {}).get('Last', 0.0) last_vol = d.get('Summary', {}).get('BaseVolume', 0.0) base_currency = d.get('Market', {}).get('BaseCurrency', '') if base_currency == 'BTC' and last_price >= \ config.FASTTICK_MIN_PRICE and last_vol >= config.FASTTICK_MIN_VOL: latest_data[name] = {'Summary': d['Summary']} # Processing all data within 9 ticks + latest and returning # rate for output in GUI prev_data = list(misc.open_pickles('fasttick_history', config.FASTTICK_LOOKBACK)) prev_data.append(latest_data) ticker_data = [] if prev_data: for name in latest_data: prev_changes = [] for i in range(len(prev_data)-1): old_price = float(prev_data[i].get(name, {}).get('Summary', {}).get('Last', 0.0)) new_price = float(prev_data[i+1].get(name, {}).get('Summary', {}).get('Last', 0.0)) if old_price != 0: change = (((new_price - old_price) / old_price) * 100) prev_changes.append(change) if prev_changes: volume = float(latest_data.get(name, {}).get('Summary', {}).get('BaseVolume', 0.0)) average_rate = float((sum(prev_changes) / len(prev_changes))) if average_rate >= config.FASTTICK_MIN_RATE: ticker_data.append((name, average_rate, volume)) misc.save_pickle(latest_data, 'fasttick_history') misc.delete_ancient_pickles('fasttick_history', config.FASTTICK_LOOKBACK) return ticker_data ``` #### File: Bittrex-Notify/src/GUIfasttick.py ```python import tkinter as tk from time import sleep from playsound import playsound import config import fasttick from helpmessage import fasttick_help_message import misc from tickerwindow import TickerWindow class GUIfasttick(TickerWindow): def __init__(self, app): super().__init__(app) misc.delete_ancient_pickles('fasttick_history') self.draw_labels() self.draw_buttons() self.draw_lists() self.draw_timer() self.timer_update() def draw_labels(self): self.labelName.grid(row=3, column=0, sticky='NSWE') self.labelChange.config(text='Rate') self.labelChange.grid(row=3, column=1, sticky='NSWE') self.labelVol.grid(row=3, column=2, sticky='NSWE') self.labelBuf.grid(row=3, rowspan=2, column=3, columnspan=2, sticky='NSWE') def draw_buttons(self): self.sortByName.grid(row=4, column=0, sticky='NSWE') self.sortByChange.grid(row=4, column=1, sticky='NSWE') self.sortByVol.grid(row=4, column=2, sticky='NSWE') self.notifyBell.grid(row=4, column=3, sticky='NSWE') self.help.grid(row=3, column=4, sticky='E') def on_click_help(self): helpWindow = tk.Toplevel() helpWindow.title('Help') frameBuf = tk.Frame(helpWindow, width=192, bg=config.MAIN_BG) frameBuf.grid(row=0, rowspan=4, column=0, columnspan=3) message = tk.Message(frameBuf, bg=config.MAIN_BG, fg=config.TEXT_COLOR, width=192, text=fasttick_help_message) message.grid(row=0, columnspan=3) dismissButton = tk.Button(frameBuf, text='Dismiss', command=helpWindow.destroy) dismissButton.grid(row=1, column=1) def draw_lists(self): self.yScroll.grid(row=5, column=3, sticky='NSWE') self.listName.grid(row=5, column=0, sticky='NSWE') self.listChange.grid(row=5, column=1, sticky='NSWE') self.listVol.grid(row=5, column=2, sticky='NSWE') def draw_timer(self): self.timerLabel.grid(row=5, column=4, ipadx=8) self.timerFrame.grid(row=5, column=4, columnspan=3) self.timerDisp.grid(row=5, column=4) self.timerValue = config.FASTTICK_RATE def timer_update(self): if self.timerValue == 3: self.async = self.pool.apply_async(fasttick.heartbeat) if self.timerValue == 0: while True: if self.async.ready(): break for i in range(1, 4): if self.async.ready(): break self.timerDisp.config(text=f'{"." * i}', font=('', 20)) self.app.update() sleep(1) self.ticker_data = self.async.get() self.sort_ticker() if self.notifyIsActive and self.ticker_data: playsound('media/notification_sound.mp3') self.timerValue = config.FASTTICK_RATE values = divmod(self.timerValue, 60) minutes = values[0] seconds = values[1] self.timerDisp.config(text=f'{minutes}:{seconds:0>2}', font=('', 20)) self.timerValue -= 1 self.app.after(1000, self.timer_update) ``` #### File: Bittrex-Notify/src/tickerwindow.py ```python from multiprocessing import pool import tkinter as tk import config class TickerWindow: """ Template class for a ticker window. All/most of the code here is "backend" and widgets are not drawn via tk.grid(). This is intended to be inherited in the GUI classes where objects will be drawn and functions/widgets overridden if needed. Args: app(the main tkinter object) Required Overrides(inside child object): on_click_help(needs custom dialogue in help windows) timer_update(needs different values/behavior for countdown timers) timerValue(set to maximum timer rate value) Required widget draw(grid()) calls(inside child object): labelName labelChange labelVol labelBuf sortByName sortByChange sortByVol notifyBell help yScroll listName listChange listVol timerLabel timerFrame timerDisp """ def __init__(self, app): self.app = app self.pool = pool.ThreadPool(processes=1) self.async = pool.AsyncResult self.ticker_data = [] self.create_labels() self.create_buttons() self.create_lists() self.create_timer() def create_labels(self): color_options = {'bg': config.MAIN_BG, 'fg': config.TEXT_COLOR} self.labelName = tk.Label(text='Market Name', **color_options) self.labelChange = tk.Label(text='Change', **color_options) self.labelVol = tk.Label(text='Volume', **color_options) self.labelBuf = tk.Frame(width=120, height=42, bg=config.MAIN_BG) def create_buttons(self): color_options = {'bg': config.MAIN_BG, 'activebackground': config.CLICKED_BG} self.sortByName = tk.Button(relief='raised', image=self.app.noArrow, command=lambda: self.on_click_sort('sortByName'), **color_options) self.sortByChange = tk.Button(relief='raised', image=self.app.downArrow, command=lambda: self.on_click_sort('sortByChange'), **color_options) self.sortByVol = tk.Button(relief='raised', image=self.app.noArrow, command=lambda: self.on_click_sort('sortByVol'), **color_options) self.buttons = {'sortByName': ['none', 0], 'sortByChange': ['desc', 1], 'sortByVol': ['none', 2]} self.notifyBell = tk.Button(relief='raised', image=self.app.notifyBell, command=lambda: self.on_click_notif(), **color_options) self.notifyIsActive = False self.help = tk.Button(relief='flat', image=self.app.questionMark, command=lambda: self.on_click_help(), **color_options) def on_click_sort(self, pressed_name): for b_name in self.buttons: if b_name == pressed_name: sort_direction = self.buttons[b_name][0] if sort_direction == 'desc': self.buttons[b_name][0] = 'asc' getattr(self, b_name).config(image=self.app.upArrow) self.ticker_data.sort(key=lambda x: x[self.buttons[b_name][1]]) if sort_direction == 'asc' or sort_direction == 'none': self.buttons[b_name][0] = 'desc' getattr(self, b_name).config(image=self.app.downArrow) self.ticker_data.sort(key=lambda x: x[self.buttons[b_name][1]], reverse=True) else: self.buttons[b_name][0] = 'none' getattr(self, b_name).config(image=self.app.noArrow) self.display_ticker() def on_click_notif(self): if self.notifyBell.cget('relief') == 'raised': self.notifyBell.config(relief='sunken') self.notifyIsActive = True else: self.notifyBell.config(relief='raised') self.notifyIsActive = False def on_click_help(self): pass def create_lists(self): self.yScroll = tk.Scrollbar(orient=tk.VERTICAL, command=self.on_vsb) color_options = {'bg': config.LIGHT_BG, 'fg': config.TEXT_COLOR, 'selectbackground': config.LIGHT_BG, 'selectforeground': config.TEXT_COLOR, 'highlightcolor': config.LIGHT_BG, 'highlightbackground': config.LIGHT_BG} self.listName = tk.Listbox(activestyle='none', relief='sunken', yscrollcommand=self.yScroll.set, width=40, height=6, **color_options) self.listName.bind('<MouseWheel>', self.on_mouse_wheel) self.listChange = tk.Listbox(activestyle='none', relief='sunken', yscrollcommand=self.yScroll.set, width=8, height=6, **color_options) self.listChange.bind('<MouseWheel>', self.on_mouse_wheel) self.listVol = tk.Listbox(activestyle='none', relief='sunken', yscrollcommand=self.yScroll.set, width=8, height=6, **color_options) self.listVol.bind('<MouseWheel>', self.on_mouse_wheel) def on_vsb(self, *args): self.listName.yview(*args) self.listChange.yview(*args) self.listVol.yview(*args) def on_mouse_wheel(self, event): if event.delta < 0: self.listName.yview('scroll', 1, 'units') self.listChange.yview('scroll', 1, 'units') self.listVol.yview('scroll', 1, 'units') if event.delta > 0: self.listName.yview('scroll', -1, 'units') self.listChange.yview('scroll', -1, 'units') self.listVol.yview('scroll', -1, 'units') return 'break' def create_timer(self): self.timerLabel = tk.Label(text='Time until update:', bg=config.MAIN_BG, fg=config.TEXT_COLOR) self.timerFrame = tk.LabelFrame(width=120, height=120, bg=config.MAIN_BG) self.timerDisp = tk.Label(font=('', 20), bg=config.MAIN_BG, fg=config.TEXT_COLOR) self.timerValue = 0 def timer_update(self): pass def sort_ticker(self): if self.ticker_data: for b_name in self.buttons: if self.buttons[b_name][0] == 'desc': self.ticker_data.sort(key=lambda x: x[self.buttons[b_name][1]], reverse=True) if self.buttons[b_name][0] == 'asc': self.ticker_data.sort(key=lambda x: x[self.buttons[b_name][1]]) self.display_ticker() def display_ticker(self): self.listName.delete(0, tk.END) self.listChange.delete(0, tk.END) self.listVol.delete(0, tk.END) for i in self.ticker_data: self.listName.insert(tk.END, f'{i[0]}') self.listChange.insert(tk.END, f'+{i[1]:.02f}%') self.listVol.insert(tk.END, f'{i[2]:.02f}') self.app.update() ```
{ "source": "jevinskie/litedram", "score": 2 }
#### File: litedram/frontend/fifo.py ```python import math from migen import * from litex.soc.interconnect import stream from litedram.common import LiteDRAMNativePort from litedram.frontend import dma # Helpers ------------------------------------------------------------------------------------------ def _inc(signal, modulo): if modulo == 2**len(signal): return signal.eq(signal + 1) else: return If(signal == (modulo - 1), signal.eq(0) ).Else( signal.eq(signal + 1) ) # LiteDRAMFIFOCtrl --------------------------------------------------------------------------------- class _LiteDRAMFIFOCtrl(Module): def __init__(self, base, depth): self.base = base self.depth = depth self.level = Signal(max=depth+1) # # # # To write buffer self.writable = Signal() self.write_address = Signal(max=depth) # From write buffer self.write = Signal() # To read buffer self.readable = Signal() self.read_address = Signal(max=depth) # From read buffer self.read = Signal() # # # produce = self.write_address consume = self.read_address self.sync += [ If(self.write, _inc(produce, depth) ), If(self.read, _inc(consume, depth) ), If(self.write & ~self.read, self.level.eq(self.level + 1), ).Elif(self.read & ~self.write, self.level.eq(self.level - 1) ) ] self.comb += [ self.writable.eq(self.level < depth), self.readable.eq(self.level > 0) ] # LiteDRAMFIFOWriter ------------------------------------------------------------------------------- class _LiteDRAMFIFOWriter(Module): def __init__(self, data_width, port, ctrl, fifo_depth=32): self.sink = sink = stream.Endpoint([("data", data_width)]) # # # self.submodules.writer = writer = dma.LiteDRAMDMAWriter(port, fifo_depth=fifo_depth) self.comb += [ writer.sink.valid.eq(sink.valid & ctrl.writable), writer.sink.address.eq(ctrl.base + ctrl.write_address), writer.sink.data.eq(sink.data), If(writer.sink.valid & writer.sink.ready, sink.ready.eq(1) ), If(port.wdata.valid & port.wdata.ready, ctrl.write.eq(1) ), ] # LiteDRAMFIFOReader ------------------------------------------------------------------------------- class _LiteDRAMFIFOReader(Module): def __init__(self, data_width, port, ctrl, fifo_depth=32): self.source = source = stream.Endpoint([("data", data_width)]) # # # self.submodules.reader = reader = dma.LiteDRAMDMAReader(port, fifo_depth=fifo_depth) self.comb += [ reader.sink.valid.eq(ctrl.readable), reader.sink.address.eq(ctrl.base + ctrl.read_address), If(reader.sink.valid & reader.sink.ready, ctrl.read.eq(1) ) ] self.comb += reader.source.connect(source) # _LiteDRAMFIFO ------------------------------------------------------------------------------------ class _LiteDRAMFIFO(Module): """LiteDRAM frontend that allows to use DRAM as a FIFO""" def __init__(self, data_width, base, depth, write_port, read_port, writer_fifo_depth = 32, reader_fifo_depth = 32): assert isinstance(write_port, LiteDRAMNativePort) assert isinstance(read_port, LiteDRAMNativePort) self.sink = stream.Endpoint([("data", data_width)]) self.source = stream.Endpoint([("data", data_width)]) # # # self.submodules.ctrl = _LiteDRAMFIFOCtrl(base, depth) self.submodules.writer = _LiteDRAMFIFOWriter(data_width, write_port, self.ctrl, writer_fifo_depth) self.submodules.reader = _LiteDRAMFIFOReader(data_width, read_port, self.ctrl, reader_fifo_depth) self.comb += [ self.sink.connect(self.writer.sink), self.reader.source.connect(self.source) ] # LiteDRAMFIFO ------------------------------------------------------------------------------------- class LiteDRAMFIFO(Module): """LiteDRAM FIFO with optional/automatic Bypass. Description ----------- ┌──────────┐ ┌──────────┐ Sink │ Pre- │ Bypass │ Post- │ Source ─────────► FIFO ├────────► FIFO ├───────► └────┬─────┘ └─────▲────┘ │ │ ┌────▼─────┐ ┌─────┴────┐ │ Pre- │ │ Post- │ │Converter │ │Converter │ └────┬─────┘ └─────▲────┘ │ │ │ ┌─────────────┐ │ │ │ DRAM │ │ └──► FIFO ├───┘ └──────┬──────┘ │ ▼ DRAM The DRAM FIFO allows creation of very large FIFO with storage in DRAM. The data-width of the input/output streams is automatically adapted to the DRAM's data-width with the Pre/Post con- verters and the module switches seamlessly between 2 modes: - 1) Bypass mode. - 2) DRAM mode. 1) The module is initialized in Bypass mode, connecting the its Sink to its Source. Backpressure from the Source is propagated from the Source to the Post-FIFO, Pre-FIFO and the Sink. ┌──────────┐ ┌──────────┐ Sink │ Pre- │ Bypass │ Post- │ Source ─────────► FIFO ├────────► FIFO ├───────► └──────────┘ └──────────┘ Backpressure ◄───────────────────── Once the Post-FIFO is full and the Pre-FIFO has enough data to form a DRAM Word, the module switches to DRAM mode. 2) In DRAM mode, the Bypass connection is disabled and Pre-FIFO's Source is redirected to Pre-Converter's Sink. Once Pre-Converter has a full DRAM word, the word can be written to the DRAM FIFO's Sink ┌──────────┐ ┌──────────┐ Sink │ Pre- │ │ Post- │ Source ─────────► FIFO │ │ FIFO ├───────► └────┬─────┘ └─────▲────┘ │ │ ┌────▼─────┐ ┌─────┴────┐ │ Pre- │ │ Post- │ │Converter │ │Converter │ └────┬─────┘ └─────▲────┘ │ │ │ ┌─────────────┐ │ │ │ DRAM │ │ └──► FIFO ├───┘ └──────┬──────┘ │ ▼ DRAM This data from DRAM FIFO will be generated back on the DRAM FIFO's Source and connected to the Post-Converter to re-generate the data with the correct data-width. Data will then be generated on the Source. Once we no longer have data in the Pre-Converter/DRAM FIFO/Post-Converter path and Pre-FIFO's level is below threshold, the modules switches back to Bypass mode. """ def __init__(self, data_width, base, depth, write_port, read_port, with_bypass=False, writer_fifo_depth = 32, reader_fifo_depth = 32): assert isinstance(write_port, LiteDRAMNativePort) assert isinstance(read_port, LiteDRAMNativePort) self.sink = stream.Endpoint([("data", data_width)]) self.source = stream.Endpoint([("data", data_width)]) # # # # Parameters. # ----------- assert write_port.data_width == read_port.data_width port_data_width = write_port.data_width assert data_width <= port_data_width data_width_ratio = port_data_width//data_width if not with_bypass: assert data_width_ratio == 1 pre_fifo_depth = 2*data_width_ratio # FIXME: Adjust. post_fifo_depth = 2*data_width_ratio # FIXME: Adjust. # Submodules. # ----------- # Pre-FIFO. self.submodules.pre_fifo = pre_fifo = stream.SyncFIFO([("data", data_width)], pre_fifo_depth) # Pre-Converter. self.submodules.pre_converter = pre_converter = stream.Converter(data_width, port_data_width) # DRAM-FIFO. self.submodules.dram_fifo = dram_fifo = _LiteDRAMFIFO( data_width = port_data_width, base = base, depth = depth, write_port = write_port, read_port = read_port, writer_fifo_depth = writer_fifo_depth, reader_fifo_depth = reader_fifo_depth, ) # Post-Converter. self.submodules.post_converter = post_converter = stream.Converter(port_data_width, data_width) # Post-FIFO. self.submodules.post_fifo = post_fifo = stream.SyncFIFO([("data", data_width)], post_fifo_depth) # Data-Flow. # ---------- bypass = Signal() store = Signal() count = Signal(8) self.comb += [ # Sink --> Pre-FIFO. self.sink.connect(pre_fifo.sink), # Bypass / DRAM. If(with_bypass & bypass, # Pre-FIFO --> Post-FIFO. pre_fifo.source.connect(post_fifo.sink), ).Else( # Pre-FIFO --> Pre-Converter. If(store | (not with_bypass), pre_fifo.source.connect(pre_converter.sink), ), # Post-Converter --> Post-FIFO. post_converter.source.connect(post_fifo.sink) ), # Pre-Converter --> DRAM-FIFO. pre_converter.source.connect(dram_fifo.sink), # DRAM-FIFO --> Post-Converter. dram_fifo.source.connect(post_converter.sink), # Post-FIFO --> Source. post_fifo.source.connect(self.source) ] # FSM. # ---- if with_bypass: can_store = Signal() self.comb += can_store.eq(pre_fifo.level > data_width_ratio) self.submodules.fsm = fsm = FSM(reset_state="BYPASS") fsm.act("BYPASS", bypass.eq(1), # Switch to DRAM mode when enough data to store a DRAM word. If(can_store, NextValue(store, 1), NextValue(count, 0), NextState("DRAM") ) ) data_inc = Signal() data_dec = Signal() data_cnt = Signal(int(math.log2(depth + writer_fifo_depth + reader_fifo_depth) + 1)) self.sync += data_cnt.eq(data_cnt + data_inc - data_dec) fsm.act("DRAM", # Increment DRAM Data Count on Pre-Converter's Sink cycle. data_inc.eq(pre_converter.sink.valid & pre_converter.sink.ready), # Decrement DRAM Data Count on Post-Converter's Source cycle. data_dec.eq(post_converter.source.valid & post_converter.source.ready), # Update store. If(data_inc, NextValue(count, count + 1), If(count == (data_width_ratio - 1), NextValue(count, 0), NextValue(store, can_store), ) ), # Maintain DRAM Data Count. NextValue(data_cnt, data_cnt + data_inc - data_dec), # Switch back to Bypass mode when DRAM Data count If((can_store == 0) & (data_cnt == 0), NextState("BYPASS") ) ) ```
{ "source": "jevinskie/litex", "score": 2 }
#### File: build/sim/cocotb.py ```python from pathlib import Path import os import sys import subprocess from shutil import which from migen.fhdl.structure import _Fragment from litex import get_data_mod from litex.build import tools from litex.build.generic_platform import * import rpyc from rpyc.core.service import ClassicService from rpyc.utils.server import ThreadedServer, ThreadPoolServer import cocotb pydev_host = os.environ.get('PYDEV_HOST', None) pydev_port = os.environ.get('PYDEV_PORT', None) if pydev_port is not None: import pydevd pydevd.settrace(pydev_host, port=int(pydev_port), suspend=False) class SimService(rpyc.Service): exposed_platform = None exposed_soc = None exposed_ns = None def exposed_call_on_server(self, func): res = None res = func(self.exposed_platform, self.exposed_soc, self.exposed_ns) return res class SimServer: def __init__(self, socket_path: str): self.socket_path = socket_path try: os.remove(socket_path) except FileNotFoundError: pass self.srv = ThreadPoolServer(SimService, socket_path=socket_path, protocol_config={"allow_all_attrs": True}) rpyc.lib.spawn(lambda: self.srv.start()) def __del__(self): self.srv.close() os.remove(self.socket_path) def start_sim_server(socket_path=None): if cocotb.top is None and socket_path is None: return elif socket_path is not None: server = SimServer(socket_path) return server elif cocotb.top is not None and socket_path is None: socket_path = f'{os.environ["MODULE"]}.pipe' return rpyc.utils.factory.unix_connect(socket_path) else: raise RuntimeError def _generate_sim_makefile(build_dir: str, build_name: str, sources: list[str], module, sim_top = None): assert all([lambda src: src[1] == "verilog"]) toplevel = build_name if sim_top: toplevel = sim_top.stem sources.append((str(sim_top), "verilog")) module_dir = Path(module.__file__).parent makefile_contents = f""" SIM = icarus TOPLEVEL_LANG = verilog VERILOG_SOURCES += {' '.join(map(lambda src: src[0], sources))} # TOPLEVEL is the name of the toplevel module in your Verilog or VHDL file TOPLEVEL = {toplevel} # MODULE is the basename of the Python test file MODULE = {build_name} export PYTHONPATH := {module_dir}:$(PTYHONPATH):{':'.join(sys.path)} DUMP_VCD = 1 # include cocotb's make rules to take care of the simulator setup include $(shell cocotb-config --makefiles)/Makefile.sim """ tools.write_to_file("Makefile", makefile_contents, force_unix=True) def _run_sim(build_name: str, platform, soc, namespace): socket_path = f'{build_name}.pipe' local_sim_server = start_sim_server(socket_path) local_sim_server.srv.service.exposed_platform = platform local_sim_server.srv.service.exposed_soc = soc local_sim_server.srv.service.exposed_ns = namespace try: import pydevd pydevd_setup = pydevd.SetupHolder.setup if pydevd_setup is not None: host, port = pydevd.dispatch() os.environ['PYDEV_HOST'] = host os.environ['PYDEV_PORT'] = str(port) print(f'set environ to host: {host} port: {port}') except ImportError: pass try: r = subprocess.call(["make"]) if r != 0: raise OSError("Subprocess failed") except: pass # stop_sim_server(local_sim_server) class SimCocotbToolchain: def build(self, platform, fragment, build_dir = "build", build_name = "cocotb", build = True, run = False, threads = 1, verbose = True, sim_config = None, coverage = False, opt_level = "O0", trace = False, trace_fst = False, trace_start = 0, trace_end = -1, trace_exit = False, sim_end = -1, sim_top = None, regular_comb = False, module = None, soc = None): if sim_top: sim_top = Path(sim_top) sim_top = sim_top.resolve() # Create build directory os.makedirs(build_dir, exist_ok=True) cwd = os.getcwd() os.chdir(build_dir) # Finalize design if not isinstance(fragment, _Fragment): fragment = fragment.get_fragment() platform.finalize(fragment) # Generate verilog v_output = platform.get_verilog(fragment, name = build_name, dummy_signal = True, regular_comb = False, blocking_assign = True) named_sc, named_pc = platform.resolve_signals(v_output.ns) v_file = build_name + ".v" if build: v_output.write(v_file) platform.add_source(v_file) # Generate cocotb makefile _generate_sim_makefile(build_dir, build_name, platform.sources, module, sim_top) # Run if run: _run_sim(build_name, platform, soc, v_output.ns) os.chdir(cwd) if build: return v_output.ns ``` #### File: soc/cores/altera_adc.py ```python from migen import * from migen.genlib.cdc import PulseSynchronizer from litex.soc.interconnect.csr import * # ------------------------------------------------------------------ # -- fiftyfivenm_adcblock parameterized megafunction component declaration # -- Generated with 'mega_defn_creator' loader - do not edit # ------------------------------------------------------------------ # component fiftyfivenm_adcblock # generic ( # analog_input_pin_mask : natural := 0; # clkdiv : natural := 1; # device_partname_fivechar_prefix : string := "none"; # enable_usr_sim : natural := 0; # is_this_first_or_second_adc : natural := 1; # lpm_hint : string := "UNUSED"; # lpm_type : string := "fiftyfivenm_adcblock"; # prescalar : natural := 0; # pwd : natural := 0; # reference_voltage_sim : natural := 65536; # refsel : natural := 0; # reserve_block : string := "false"; # simfilename_ch0 : string := "simfilename_ch0"; # simfilename_ch1 : string := "simfilename_ch1"; # simfilename_ch10 : string := "simfilename_ch10"; # simfilename_ch11 : string := "simfilename_ch11"; # simfilename_ch12 : string := "simfilename_ch12"; # simfilename_ch13 : string := "simfilename_ch13"; # simfilename_ch14 : string := "simfilename_ch14"; # simfilename_ch15 : string := "simfilename_ch15"; # simfilename_ch16 : string := "simfilename_ch16"; # simfilename_ch2 : string := "simfilename_ch2"; # simfilename_ch3 : string := "simfilename_ch3"; # simfilename_ch4 : string := "simfilename_ch4"; # simfilename_ch5 : string := "simfilename_ch5"; # simfilename_ch6 : string := "simfilename_ch6"; # simfilename_ch7 : string := "simfilename_ch7"; # simfilename_ch8 : string := "simfilename_ch8"; # simfilename_ch9 : string := "simfilename_ch9"; # testbits : natural := 66; # tsclkdiv : natural := 1; # tsclksel : natural := 0 ); # port( # chsel : in std_logic_vector(4 downto 0) := (others => '0'); # clk_dft : out std_logic; # clkin_from_pll_c0 : in std_logic := '0'; # dout : out std_logic_vector(11 downto 0); # eoc : out std_logic; # soc : in std_logic := '0'; # tsen : in std_logic := '0'; # usr_pwd : in std_logic := '0' # ); # end component; class Max10ADC(Module, AutoCSR): def __init__(self, adc_num: int): self.adc_num = adc_num self.chsel = CSRStorage(5) self.dout = CSRStatus(12) self.dout_sig = Signal(12) self.clk_dft = Signal() self.soc = CSRStorage() self.soc_adc = Signal() self.eoc = CSRStatus() self.eoc_sig = Signal() self.tsen = CSRStorage() self.user_pwd = CSRStorage() self.submodules.soc_ps = PulseSynchronizer("sys", "adc") self.submodules.eoc_ps = PulseSynchronizer("adc", "sys") self.comb += [ # self.soc_adc.eq(self.soc_ps.o), # self.soc_adc.eq(self.soc.storage), self.eoc_ps.i.eq(self.eoc_sig), self.eoc.status.eq(self.eoc_sig), ] self.adc_clk_cnt = Signal(8) self.sync.adc += self.adc_clk_cnt.eq(self.adc_clk_cnt + 1) self.submodules.ctrl_fsm = ResetInserter()(FSM(name="ctrl_fsm")) self.ctrl_fsm.act("IDLE", If(self.soc.storage, NextState("WAIT_FOR_EOC"), ) ) self.idle_flag = self.ctrl_fsm.ongoing("IDLE") # self.ctrl_fsm.act("START", # self.soc_ps.i.eq(1), # NextState("WAIT_FOR_EOC"), # ) # self.start_flag = self.ctrl_fsm.ongoing("START") self.ctrl_fsm.act("WAIT_FOR_EOC", self.soc_adc.eq(1), If(self.eoc_sig, NextValue(self.dout.status, self.dout_sig), NextState("WAIT_FOR_SOC_LOW"), ), ) self.wait_for_eoc_flag = self.ctrl_fsm.ongoing("WAIT_FOR_EOC") self.ctrl_fsm.act("WAIT_FOR_SOC_LOW", If(self.soc.storage == 0, NextState("IDLE"), ), ) self.wait_for_soc_low_flag = self.ctrl_fsm.ongoing("WAIT_FOR_SOC_LOW") adcblock = Instance("fiftyfivenm_adcblock", name = f"adcblock{adc_num}", i_chsel = self.chsel.storage, i_soc = self.soc_adc, i_clkin_from_pll_c0 = ClockSignal("adc"), i_tsen = self.tsen.storage, i_usr_pwd = self.user_pwd.storage, o_dout = self.dout_sig, o_clk_dft = self.clk_dft, o_eoc = self.eoc_sig, p_clkdiv = 0, ) self.specials += adcblock for item in adcblock.items: if isinstance(item, Instance.Parameter): item.value.print_plain = True print('wow') ``` #### File: soc/cores/identifier.py ```python from migen import * # Identifier --------------------------------------------------------------------------------------- class Identifier(Module): def __init__(self, ident): contents = list(ident.encode()) l = len(contents) if l > 255: raise ValueError("Identifier string must be 255 characters or less") contents.append(0) def next_pow2(x): return 1 << (x - 1).bit_length() self.mem = Memory(8, next_pow2(len(contents)), init=contents) def get_memories(self): return [(True, self.mem)] ``` #### File: soc/cores/spi.py ```python import math from migen import * from migen.genlib.cdc import MultiReg from litex.soc.interconnect.csr import * from litex.soc.cores.uart import RS232PHYModel from litex.soc.interconnect import stream # SPI Master --------------------------------------------------------------------------------------- class SPIMaster(Module, AutoCSR): """4-wire SPI Master Provides a simple and minimal hardware SPI Master with CPOL=0, CPHA=0 and build time configurable data_width and frequency. """ pads_layout = [("clk", 1), ("cs_n", 1), ("mosi", 1), ("miso", 1)] def __init__(self, pads, data_width, sys_clk_freq, spi_clk_freq, with_csr=True, mode="raw"): assert mode in ["raw", "aligned"] if pads is None: pads = Record(self.pads_layout) if not hasattr(pads, "cs_n"): pads.cs_n = Signal() assert len(pads.cs_n) <= 16 self.pads = pads self.data_width = data_width self.start = Signal() self.length = Signal(8) self.done = Signal() self.irq = Signal() self.mosi = Signal(data_width) self.miso = Signal(data_width) self.cs = Signal(len(pads.cs_n), reset=1) self.cs_mode = Signal() self.loopback = Signal() self.clk_divider = Signal(16, reset=math.ceil(sys_clk_freq/spi_clk_freq)) if with_csr: self.add_csr() # # # clk_enable = Signal() xfer_enable = Signal() count = Signal(max=data_width) mosi_latch = Signal() miso_latch = Signal() # Clock generation ------------------------------------------------------------------------- clk_divider = Signal(16) clk_rise = Signal() clk_fall = Signal() self.comb += clk_rise.eq(clk_divider == (self.clk_divider[1:] - 1)) self.comb += clk_fall.eq(clk_divider == (self.clk_divider - 1)) self.sync += [ clk_divider.eq(clk_divider + 1), If(clk_rise, pads.clk.eq(clk_enable), ).Elif(clk_fall, clk_divider.eq(0), pads.clk.eq(0), ) ] # Control FSM ------------------------------------------------------------------------------ self.submodules.fsm = fsm = FSM(reset_state="IDLE") fsm.act("IDLE", self.done.eq(1), If(self.start, self.done.eq(0), mosi_latch.eq(1), NextState("START") ) ) fsm.act("START", NextValue(count, 0), If(clk_fall, xfer_enable.eq(1), NextState("RUN") ) ) fsm.act("RUN", clk_enable.eq(1), xfer_enable.eq(1), If(clk_fall, NextValue(count, count + 1), If(count == (self.length - 1), NextState("STOP") ) ) ) fsm.act("STOP", xfer_enable.eq(1), If(clk_rise, miso_latch.eq(1), self.irq.eq(1), NextState("IDLE") ) ) # Chip Select generation ------------------------------------------------------------------- if hasattr(pads, "cs_n"): for i in range(len(pads.cs_n)): # CS set when enabled and (Xfer enabled or Manual CS mode selected). cs = (self.cs[i] & (xfer_enable | (self.cs_mode == 1))) # CS Output/Invert. self.sync += pads.cs_n[i].eq(~cs) # Master Out Slave In (MOSI) generation (generated on spi_clk falling edge) ---------------- mosi_data = Signal(data_width) mosi_array = Array(mosi_data[i] for i in range(data_width)) mosi_sel = Signal(max=data_width) self.sync += [ If(mosi_latch, mosi_data.eq(self.mosi), mosi_sel.eq((self.length-1) if mode == "aligned" else (data_width-1)), ).Elif(clk_fall, If(xfer_enable, pads.mosi.eq(mosi_array[mosi_sel])), mosi_sel.eq(mosi_sel - 1) ), ] # Master In Slave Out (MISO) capture (captured on spi_clk rising edge) -------------------- miso = Signal() miso_data = Signal(data_width) self.sync += [ If(clk_rise, If(self.loopback, miso_data.eq(Cat(pads.mosi, miso_data)) ).Else( miso_data.eq(Cat(pads.miso, miso_data)) ) ) ] self.sync += If(miso_latch, self.miso.eq(miso_data)) def add_csr(self, with_cs=True, with_loopback=True): # Control / Status. self._control = CSRStorage(description="SPI Control.", fields=[ CSRField("start", size=1, offset=0, pulse=True, description="SPI Xfer Start (Write ``1`` to start Xfer)."), CSRField("length", size=8, offset=8, description="SPI Xfer Length (in bits).") ]) self._status = CSRStatus(description="SPI Status.", fields=[ CSRField("done", size=1, offset=0, description="SPI Xfer Done (when read as ``1``).") ]) self.comb += [ self.start.eq(self._control.fields.start), self.length.eq(self._control.fields.length), self._status.fields.done.eq(self.done), ] # MOSI/MISO. self._mosi = CSRStorage(self.data_width, reset_less=True, description="SPI MOSI data (MSB-first serialization).") self._miso = CSRStatus(self.data_width, description="SPI MISO data (MSB-first de-serialization).") self.comb += [ self.mosi.eq(self._mosi.storage), self._miso.status.eq(self.miso), ] # Chip Select. if with_cs: self._cs = CSRStorage(description="SPI CS Chip-Select and Mode.", fields=[ CSRField("sel", size=len(self.cs), offset=0, reset=1, values=[ ("``0b0..001``", "Chip ``0`` selected for SPI Xfer."), ("``0b1..000``", "Chip ``N`` selected for SPI Xfer.") ]), CSRField("mode", size=1, offset=16, reset=0, values=[ ("``0b0``", "Normal operation (CS handled by Core)."), ("``0b1``", "Manual operation (CS handled by User, direct recopy of ``sel``), useful for Bulk transfers.") ]), ]) self.comb += [ self.cs.eq(self._cs.fields.sel), self.cs_mode.eq(self._cs.fields.mode) ] # Loopback. if with_loopback: self._loopback = CSRStorage(description="SPI Loopback Mode.", fields=[ CSRField("mode", size=1, values=[ ("``0b0``", "Normal operation."), ("``0b1``", "Loopback operation (MOSI to MISO).") ]) ]) self.comb += self.loopback.eq(self._loopback.fields.mode) def add_clk_divider(self): self._clk_divider = CSRStorage(16, description="SPI Clk Divider.", reset=self.clk_divider.reset) self.comb += self.clk_divider.eq(self._clk_divider.storage) # SPI Slave ---------------------------------------------------------------------------------------- class SPISlave(Module): """4-wire SPI Slave Provides a simple and minimal hardware SPI Slave with CPOL=0, CPHA=0 and build time configurable data_width. """ pads_layout = [("clk", 1), ("cs_n", 1), ("mosi", 1), ("miso", 1)] def __init__(self, pads, data_width): if pads is None: pads = Record(self.pads_layout) if not hasattr(pads, "cs_n"): pads.cs_n = Signal() self.pads = pads self.data_width = data_width self.start = Signal() # o, Signal a start of SPI Xfer. self.length = Signal(8) # o, Signal the length of the SPI Xfer (in bits). self.done = Signal() # o, Signal that SPI Xfer is done/inactive. self.irq = Signal() # o, Signal the end of a SPI Xfer. self.mosi = Signal(data_width) # i, Data to send on SPI MOSI. self.miso = Signal(data_width) # o, Data received on SPI MISO. self.loopback = Signal() # i, Loopback enable. # # # clk = Signal() cs = Signal() mosi = Signal() miso = Signal() # IOs <--> Internal (input resynchronization) ---------------------------------------------- self.specials += [ MultiReg(pads.clk, clk), MultiReg(~pads.cs_n, cs), MultiReg(pads.mosi, mosi), ] self.comb += pads.miso.eq(miso) # Clock detection -------------------------------------------------------------------------- clk_d = Signal() clk_rise = Signal() clk_fall = Signal() self.sync += clk_d.eq(clk) self.comb += clk_rise.eq(clk & ~clk_d) self.comb += clk_fall.eq(~clk & clk_d) # Control FSM ------------------------------------------------------------------------------ self.submodules.fsm = fsm = FSM(reset_state="IDLE") fsm.act("IDLE", If(cs, self.start.eq(1), NextValue(self.length, 0), NextState("XFER") ).Else( self.done.eq(1) ) ) fsm.act("XFER", If(~cs, self.irq.eq(1), NextState("IDLE") ), NextValue(self.length, self.length + clk_rise) ) # Master In Slave Out (MISO) generation (generated on spi_clk falling edge) ---------------- miso_data = Signal(data_width) self.sync += [ If(self.start, miso_data.eq(self.miso) ).Elif(cs & clk_fall, miso_data.eq(Cat(Signal(), miso_data[:-1])) ) ] self.comb += [ If(self.loopback, miso.eq(mosi) ).Else( miso.eq(miso_data[-1]), ) ] # Master Out Slave In (MOSI) capture (captured on spi_clk rising edge) --------------------- self.sync += [ If(cs & clk_rise, self.mosi.eq(Cat(mosi, self.mosi[:-1])) ) ] # Simulation SPI Master ---------------------------------------------------------------------------- class SPIMasterStreamer(Module): def __init__(self, pads, sys_clk_freq: int, spi_clk_freq: int): self.submodules.master = SPIMaster(pads, 8, sys_clk_freq, spi_clk_freq, with_csr=False) self.sink = stream.Endpoint([("data", 8)]) # module input self.source = stream.Endpoint([("data", 8)]) # Module output self.idle_flag = Signal() self.xfer_from_master_flag = Signal() self.xfer_to_stream_flag = Signal() self.cs_sw = Signal() self.first_byte = Signal() self.last_byte = Signal() self.comb += [ self.master.cs.eq(self.cs_sw), self.master.cs_mode.eq(1), # self.master.loopback.eq(1), ] # Control FSM ------------------------------------------------------------------------------ self.submodules.fsm = fsm = FSM(reset_state="IDLE") fsm.act("IDLE", self.idle_flag.eq(1), self.sink.ready.eq(1), If(self.sink.first, NextValue(self.cs_sw, 1), NextValue(self.first_byte, 1), ), If(self.sink.last, NextValue(self.last_byte, 1), ), If(self.sink.valid, self.master.start.eq(1), NextState("XFER_FROM_MASTER") ), ) fsm.act("XFER_FROM_MASTER", self.xfer_from_master_flag.eq(1), If(self.master.irq, NextState("XFER_TO_STREAM"), ), ) fsm.act("XFER_TO_STREAM", self.xfer_to_stream_flag.eq(1), self.source.valid.eq(1), self.source.first.eq(self.first_byte), self.source.last.eq(self.last_byte), If(self.source.ready, NextState("IDLE"), If(self.first_byte, NextValue(self.first_byte, 0), ), If(self.last_byte, NextValue(self.cs_sw, 0), NextValue(self.last_byte, 0), ), ), ) self.comb += [ self.master.length.eq(8), self.master.mosi.eq(self.sink.payload.data), self.source.payload.data.eq(self.master.miso), ] class SimSPIMaster(Module): def __init__(self, phy: RS232PHYModel, pads, sys_clk_freq: int, spi_clk_freq: int): self.phy = phy self.submodules.spi_streamer = SPIMasterStreamer(pads, sys_clk_freq, spi_clk_freq) self.comb += self.spi_streamer.source.connect(self.phy.sink) self.comb += self.phy.source.connect(self.spi_streamer.sink) ```
{ "source": "jevinskie/pcie-mitm", "score": 2 }
#### File: test/avalon_mm_gpio/sim.py ```python import argparse from migen import * from litex.gen.fhdl.utils import get_signals from litex.build.generic_platform import * from litex.build.sim import SimPlatform from litex.build.sim.config import SimConfig from litex.build.sim.verilator import verilator_build_args, verilator_build_argdict from litex.soc.interconnect import avalon from litex.soc.interconnect import wishbone from litex.soc.integration.soc_core import * from litex.soc.integration.builder import * from liteeth.phy.model import LiteEthPHYModel from litescope import LiteScopeAnalyzer from pcie_mitm.ip.gpio import AvalonMMGPIO # IOs ---------------------------------------------------------------------------------------------- _io = [ ("sys_clk", 0, Pins(1)), ("sys_rst", 0, Pins(1)), ("serial", 0, Subsignal("source_valid", Pins(1)), Subsignal("source_ready", Pins(1)), Subsignal("source_data", Pins(8)), Subsignal("sink_valid", Pins(1)), Subsignal("sink_ready", Pins(1)), Subsignal("sink_data", Pins(8)), ), ("eth_clocks", 0, Subsignal("tx", Pins(1)), Subsignal("rx", Pins(1)), ), ("eth", 0, Subsignal("source_valid", Pins(1)), Subsignal("source_ready", Pins(1)), Subsignal("source_data", Pins(8)), Subsignal("sink_valid", Pins(1)), Subsignal("sink_ready", Pins(1)), Subsignal("sink_data", Pins(8)), ), # Leds. ("user_led", 0, Pins(1)), ("user_led", 1, Pins(1)), ("user_led", 2, Pins(1)), ("user_led", 3, Pins(1)), ("user_led", 4, Pins(1)), ("user_led", 5, Pins(1)), ("user_led", 6, Pins(1)), ("user_led", 7, Pins(1)), ] # Platform ----------------------------------------------------------------------------------------- class Platform(SimPlatform): def __init__(self): SimPlatform.__init__(self, "SIM", _io) # Bench SoC ---------------------------------------------------------------------------------------- class SimSoC(SoCCore): def __init__(self, sys_clk_freq = None, trace=False, **kwargs): platform = Platform() sys_clk_freq = int(sys_clk_freq) # SoCCore ---------------------------------------------------------------------------------- SoCCore.__init__(self, platform, clk_freq=sys_clk_freq, ident = "Avalon-MM GPIO WB bridge test simulation", **kwargs) self.add_constant("CONFIG_DISABLE_DELAYS", 1) # CRG -------------------------------------------------------------------------------------- self.submodules.crg = CRG(platform.request("sys_clk")) # Trace ------------------------------------------------------------------------------------ self.platform.add_debug(self, reset=0) # Etherbone -------------------------------------------------------------------------------- self.submodules.ethphy = LiteEthPHYModel(self.platform.request("eth")) self.add_etherbone(phy=self.ethphy, ip_address = "192.168.42.50", buffer_depth=16*4096-1) # Leds ------------------------------------------------------------------------------------- led_pads = platform.request_all("user_led") if False: self.submodules.leds = LedChaser( pads = led_pads, sys_clk_freq = sys_clk_freq) else: self.submodules.led_gpio = AvalonMMGPIO(self.platform) for src, sink in zip(self.led_gpio.out_port, led_pads): self.comb += sink.eq(src) self.led_gpio_wb = wishbone.Interface(adr_width=2) self.add_memory_region("gpio", 0x9000_0000, length=4*4, type="io") self.add_wb_slave(0x9000_0000, self.led_gpio_wb) self.submodules.led_gpio_avmm2wb = avalon.AvalonMM2Wishbone(self.led_gpio.avmm, self.led_gpio_wb) if True: analyzer_signals = set([ *get_signals(led_pads), *get_signals(self.led_gpio), *get_signals(self.led_gpio_wb), *get_signals(self.led_gpio_avmm2wb), ]) analyzer_signals_denylist = set([ ]) analyzer_signals -= analyzer_signals_denylist analyzer_signals = list(analyzer_signals) self.submodules.analyzer = LiteScopeAnalyzer(analyzer_signals, depth = 64*1, register = True, clock_domain = "sys", samplerate = sys_clk_freq, csr_csv = "analyzer.csv") # Main --------------------------------------------------------------------------------------------- def main(): parser = argparse.ArgumentParser(description="LiteEth Bench Simulation") parser.add_argument("--sys-clk-freq", default=200e6, help="System clock frequency (default: 200MHz)") parser.add_argument("--debug-soc-gen", action="store_true", help="Don't run simulation") builder_args(parser) soc_core_args(parser) verilator_build_args(parser) args = parser.parse_args() sim_config = SimConfig() sim_config.add_clocker("sys_clk", freq_hz=args.sys_clk_freq) sim_config.add_module("serial2console", "serial") sim_config.add_module("ethernet", "eth", args={"interface": "tap0", "ip": "192.168.42.100"}) soc_kwargs = soc_core_argdict(args) builder_kwargs = builder_argdict(args) verilator_build_kwargs = verilator_build_argdict(args) soc_kwargs['sys_clk_freq'] = int(args.sys_clk_freq) soc_kwargs['uart_name'] = 'sim' # soc_kwargs['cpu_type'] = 'None' soc_kwargs['cpu_type'] = 'femtorv' # slow soc_kwargs['cpu_variant'] = 'quark' builder_kwargs['csr_csv'] = 'csr.csv' soc = SimSoC( trace=args.trace, trace_reset_on=int(float(args.trace_start)) > 0 or int(float(args.trace_end)) > 0, **soc_kwargs) if not args.debug_soc_gen: builder = Builder(soc, **builder_kwargs) for i in range(2): build = (i == 0) run = (i == 1) builder.build( build=build, run=run, sim_config=sim_config, **verilator_build_kwargs, ) if __name__ == "__main__": main() ``` #### File: test/avalon_mm_gpio/test_smart_base_literals.py ```python import math def _ent_dec(buf): """Get the entropy of a decimal byte-string [0-9]""" freqs = [0] * 10 norm_buf = [] for b in buf: if ord('0') <= b <= ord('9'): norm_buf.append(b - ord('0')) else: raise ValueError(f"not a decimal digit: '{chr(b)}'") for b in norm_buf: freqs[b] += 1 num_bytes = len(norm_buf) freqs = map(lambda cnt: cnt / num_bytes, freqs) ent = 0 nsyms = 0 for freq in freqs: if freq == 0: continue nsyms += 1 ent += freq * math.log2(freq) if ent: # avoid -0.0 ent = -ent return ent, nsyms def _ent_hex(buf): """Get the entropy of a decimal byte-string [0-9a-z]""" freqs = [0] * 16 norm_buf = [] if buf.startswith(b'0x'): buf = buf[2:] for b in buf: if ord('0') <= b <= ord('9'): norm_buf.append(b - ord('0')) elif ord('a') <= b <= ord('f'): norm_buf.append(b - ord('a') + 10) else: raise ValueError(f"not a hex digit: '{chr(b)}'") for b in norm_buf: freqs[b] += 1 num_bytes = len(norm_buf) freqs = map(lambda cnt: cnt / num_bytes, freqs) ent = 0 nsyms = 0 for freq in freqs: if freq == 0: continue nsyms += 1 ent += freq * math.log2(freq) if ent: # avoid -0.0 ent = -ent return ent, nsyms def _is_pretty_base_hex(n): if n < 0: n = -n if n == 0: return False if math.log10(n) == int(math.log10(n)): return False if math.log2(n) == int(math.log2(n)) and n >= 16: return True d = str(n).encode('utf8') h = hex(n).encode('utf8')[2:] dl, hl = len(d), len(h) ed, nsymsd = _ent_dec(d) eh, nsymsh = _ent_hex(h) frac_unique_d = nsymsd / dl frac_unique_h = nsymsh / hl if frac_unique_d < frac_unique_h: return False elif frac_unique_h < frac_unique_d: return True if n < 1000: return False if ed < eh: return False elif eh < ed: return True return False for n in (1, 4, 9, 10, 11, 12, 13, 14, 15, 16, 42, 99, 100, 101, 243, 256, 1000, 1024, 4000, 4096, 1223334444, 603979776): is_hex = _is_pretty_base_hex(n) base_fmt = ":x" if is_hex else ":d" fmt = "n: {} n hex: {} smrt_ltrl: {}{" + base_fmt + "}" print(fmt.format(n, hex(n), "0x" if is_hex else "", n)) ```
{ "source": "jevinskie/poetry-core", "score": 3 }
#### File: core/version/parser.py ```python from pathlib import Path from typing import TYPE_CHECKING from typing import Any from typing import Optional if TYPE_CHECKING: from lark import Lark from lark import Tree class Parser: def __init__( self, grammar: Path, parser: str = "lalr", debug: bool = False ) -> None: self._grammar = grammar self._parser = parser self._debug = debug self._lark: Optional["Lark"] = None def parse(self, text: str, **kwargs: Any) -> "Tree": from lark import Lark if self._lark is None: self._lark = Lark.open( grammar_filename=self._grammar, parser=self._parser, debug=self._debug ) return self._lark.parse(text=text, **kwargs) ``` #### File: tests/json/test_poetry_schema.py ```python from typing import Dict import pytest from poetry.core.json import validate_object @pytest.fixture def base_object() -> Dict: return { "name": "myapp", "version": "1.0.0", "description": "Some description.", "dependencies": {"python": "^3.6"}, "dev-dependencies": {}, } @pytest.fixture def multi_url_object() -> Dict: return { "name": "myapp", "version": "1.0.0", "description": "Some description.", "dependencies": { "python": [ { "url": "https://download.pytorch.org/whl/cpu/torch-1.4.0%2Bcpu-cp37-cp37m-linux_x86_64.whl", "platform": "linux", }, {"path": "../foo", "platform": "darwin"}, ] }, "dev-dependencies": {}, } def test_path_dependencies(base_object: Dict): base_object["dependencies"].update({"foo": {"path": "../foo"}}) base_object["dev-dependencies"].update({"foo": {"path": "../foo"}}) assert len(validate_object(base_object, "poetry-schema")) == 0 def test_multi_url_dependencies(multi_url_object: Dict): assert len(validate_object(multi_url_object, "poetry-schema")) == 0 def test_multiline_description(base_object: Dict): bad_description = "Some multi-\nline string" base_object["description"] = bad_description errors = validate_object(base_object, "poetry-schema") assert len(errors) == 1 assert errors[0] == f"[description] {bad_description!r} does not match '^[^\\n]*$'" ```
{ "source": "jevinskie/ps3mfw-ng", "score": 3 }
#### File: ps3mfw/tools/ps3mfw.py ```python import argparse def real_main(args): print(f"args: {args}") def main(): parser = argparse.ArgumentParser(description="ps3mfw") parser.add_argument( "--in-pup", type=str, help="Input PUP FW file", metavar="IN_PUP" ) parser.add_argument( "--out-pup", type=str, help="Output PUP FW file", metavar="OUT_PUP" ) parser.add_argument( "--out-dir", type=str, help="Output directory", metavar="OUT_DIR" ) real_main(parser.parse_args()) return 0 ``` #### File: tests/ps3mfw/test_certfile.py ```python import importlib.resources from contextlib import nullcontext from pathlib import Path import pytest from ps3mfw.certfile import CertFile from ps3mfw.io_extras import HTTPFile from ps3mfw.pup import PUPFS from .http_ranges_server import http_server CWD = Path(__file__).parent def test_certfile_ps3swu(): pytest.skip() with http_server(directory=CWD): # with nullcontext(): # url = "https://archive.org/download/ps3updat-cex-3.55/ps3updat-cex-3.55.pup" url = "http://localhost:38080/ps3updat-cex-3.55.pup" pupfh = HTTPFile(url) # pup_path = importlib.resources.files(__package__) / "ps3updat-cex-3.55.pup" # FIXME: missing refcnt incr? PUPFS(open()) doesn't work, closed file error # pupfh = open(pup_path, 'rb') pupfs = PUPFS(pupfh) slf_fh = pupfs.open("/ps3swu.self", "rb") slf = CertFile.parse_stream(slf_fh) # print(slf) def test_certfile_default_spp(): spp_path = importlib.resources.files(__package__) / "default.spp" # FIXME: missing refcnt incr? PUPFS(open()) doesn't work, closed file error sppfh = open(spp_path, "rb") spp = CertFile.parse_stream(sppfh) print(spp) ```
{ "source": "jevinskie/pycuse", "score": 2 }
#### File: pycuse/pycuse/cuse.py ```python from typing import Final, Sequence from ._cuse import ffi, lib CUSE_UNRESTRICTED_IOCTL: Final[int] = 1 << 0 def cstr_array(strs: Sequence[str]): cstrs = [ffi.new("char[]", s.encode("utf-8")) for s in strs] res = ffi.new(f"char*[{len(strs)}]", cstrs) return res class CUSEDev: def __init__(self, name: str, fg: bool = True, debug: bool = True): args = [f"pycuse-{name}"] if fg: args.append("-f") if debug: args.append("-d") ci = ffi.new("struct cuse_info *") print(ci) cargs = cstr_array(args) print(cargs) ci.flags = CUSE_UNRESTRICTED_IOCTL ci.dev_info_argc = 1 ci.dev_info_argv = cstr_array([f"DEVNAME={name}"]) ops = ffi.new("struct cuse_lowlevel_ops *") lib.cuse_lowlevel_main(len(args), cargs, ci, ops, ffi.NULL) ```
{ "source": "jevinskie/pypci", "score": 2 }
#### File: pypci/pypci/pci.py ```python from ._native import lib, ffi from .device import PciDevice, PciClass from .filter import PciFilter from typing import MutableMapping, Iterator, Iterable, Tuple, Optional import enum class PciParameters(MutableMapping[str, str]): def __init__(self, pci: 'Pci'): self._pci = pci def __iter__(self) -> Iterator[str]: pacc = self._pci._pacc if pacc is None: return ret = [] param = lib.pci_walk_params(pacc, ffi.NULL) while param != ffi.NULL: ret.append(ffi.string(param.param).decode('utf-8')) param = lib.pci_walk_params(pacc, param) for p in ret: yield p def items(self) -> Iterable[Tuple[str, str]]: def gen(): pacc = self._pci._pacc if pacc is None: return ret = [] param = lib.pci_walk_params(pacc, ffi.NULL) while param != ffi.NULL: k, v, h = ffi.string(param.param).decode('utf-8'),\ ffi.string(param.value).decode('utf-8'),\ ffi.string(param.help).decode('utf-8') cls = type(k, (tuple,), dict(__doc__=h)) ret.append(cls((k, v))) param = lib.pci_walk_params(pacc, param) for p in ret: yield p return list(gen()) def __len__(self): return sum(1 for _ in self) def __getitem__(self, key: str) -> str: pacc = self._pci._pacc if pacc is None: raise KeyError(key) key_ = key.encode('utf-8') + b'\0' ret = lib.pci_get_param(pacc, ffi.from_buffer(key_)) if ret == ffi.NULL: raise KeyError(key) return ffi.string(ret).decode('utf-8') def __setitem__(self, key: str, val: str): pacc = self._pci._pacc if pacc is None: raise KeyError(key) key_ = key.encode('utf-8') + b'\0' val_ = val.encode('utf-8') + b'\0' if lib.pci_set_param(pacc, ffi.from_buffer(key_), ffi.from_buffer(val_)) != 0: raise KeyError(key) def __delitem__(self, key: str): raise KeyError(key) def __repr__(self): return repr(dict(self.items())) PciAccessType = enum.IntFlag('PciAccessType', dict( (''.join(x.capitalize() for x in k.split('_')[2:]), getattr(lib, k)) for k in dir(lib) if k.startswith('PCI_ACCESS_'))) PciLookupMode = enum.IntFlag('PciLookupMode', dict( (''.join(x.capitalize() for x in k.split('_')[2:]), getattr(lib, k)) for k in dir(lib) if k.startswith('PCI_LOOKUP_'))) class Pci: def __init__(self): self._pacc = lib.pci_alloc() lib.pci_init(self._pacc) def close(self): if self._pacc is not None: self._pacc, pacc = None, self._pacc lib.pci_cleanup(pacc) def __del__(self): self.close() def scan_bus(self): lib.pci_scan_bus(self._pacc) def get_dev(self, domain: int, bus: int, dev: int, func: int) -> PciDevice: return PciDevice(self, lib.pci_get_dev(self._pacc, domain, bus, dev, func)) @staticmethod def lookup_method(name: str) -> int: name_ = name.encode('utf-8') + b'\0' return lib.pci_lookup_method(ffi.from_buffer(name_)) @staticmethod def get_method_name(index: int) -> str: return ffi.string(lib.pci_get_method_name(index)) @property def parameters(self) -> PciParameters: return PciParameters(self) def filter(self) -> PciFilter: filt = ffi.new('struct pci_filter *') lib.pci_filter_init(self._pacc, filt) return PciFilter(filt) def lookup_name(self, flags: PciLookupMode, *args: int) -> Optional[str]: buf = ffi.new('char[512]') ret = lib.pci_lookup_name(self._pacc, buf, 512, flags.value, *iter(ffi.cast('int', arg) for arg in args)) if ret == ffi.NULL: return None else: return ffi.string(ret).decode('utf-8') def lookup(self, vendor_id: Optional[int] = None, device_id: Optional[int] = None, subvendor_id: Optional[int] = None, subdev_id: Optional[int] = None, class_id: Optional[PciClass] = None, progif: Optional[int] = None, flags: PciLookupMode = PciLookupMode(0)): return PciLookupName(self, vendor_id, device_id, subvendor_id, subdev_id, class_id, progif, flags) @property def method(self) -> PciAccessType: return PciAccessType(self._pacc.method) @method.setter def method(self, val: PciAccessType): self._pacc.method = val.value @property def writeable(self) -> bool: return self._pacc.writeable != 0 @writeable.setter def writeable(self, val: bool): self._pacc.writeable = 1 if val else 0 @property def buscentric(self) -> bool: return self._pacc.buscentric != 0 @buscentric.setter def buscentric(self, val: bool): self._pacc.buscentric = 1 if val else 0 @property def id_file_name(self) -> str: return ffi.string(self._pacc.id_file_name).decode('utf-8') @id_file_name.setter def id_file_name(self, val: str): self._id_file_name = val.encode('utf-8') + b'\0' self._pacc.id_file_name = ffi.from_buffer(self._id_file_name) self._pacc.free_id_name = 0 @property def numeric_ids(self) -> bool: return self._pacc.numeric_ids != 0 @numeric_ids.setter def numeric_ids(self, val: bool): self._pacc.numeric_ids = 1 if val else 0 @property def id_lookup_mode(self) -> PciLookupMode: return PciLookupMode(self._pacc.id_lookup_mode) @id_lookup_mode.setter def id_lookup_mode(self, val: PciLookupMode): self._pacc.id_lookup_mode = val.value @property def debugging(self) -> bool: return self._pacc.debugging != 0 @debugging.setter def debugging(self, val: bool): self._pacc.debugging = 1 if val else 0 @property def devices(self) -> Iterable[PciDevice]: dev = self._pacc.devices while dev != ffi.NULL: yield self.get_dev(dev.domain, dev.bus, dev.dev, dev.func) dev = dev.next class PciLookupName: def __init__(self, pci: Pci, vendor_id: Optional[int] = None, device_id: Optional[int] = None, subvendor_id: Optional[int] = None, subdev_id: Optional[int] = None, class_id: Optional[PciClass] = None, progif: Optional[int] = None, flags: PciLookupMode = PciLookupMode(0)): self._pci = pci self.vendor_id = vendor_id self.device_id = device_id self.subvendor_id = subvendor_id self.subdev_id = subdev_id self.class_id = class_id self.progif = progif self.flags = flags @property def vendor(self) -> str: "(vendorID) -> vendor" if self.vendor_id is None: raise ValueError("vendor_id is not specified") return self._pci.lookup_name(self.flags & ~0xffff | PciLookupMode.Vendor, self.vendor_id) @property def device(self) -> str: "(vendorID, deviceID) -> device" if self.vendor_id is None: raise ValueError("vendor_id is not specified") if self.device_id is None: raise ValueError("device_id is not specified") return self._pci.lookup_name(self.flags & ~0xffff | PciLookupMode.Device, self.vendor_id, self.device_id) @property def vendor_device(self) -> str: "(vendorID, deviceID) -> combined vendor and device" if self.vendor_id is None: raise ValueError("vendor_id is not specified") if self.device_id is None: raise ValueError("device_id is not specified") return self._pci.lookup_name(self.flags & ~0xffff | PciLookupMode.Vendor | PciLookupMode.Device, self.vendor_id, self.device_id) @property def subsystem_vendor(self) -> str: "(subvendorID) -> subsystem vendor" if self.subvendor_id is None: raise ValueError("subvendor_id is not specified") return self._pci.lookup_name(self.flags & ~0xffff | PciLookupMode.Subsystem | PciLookupMode.Device, self.subvendor_id) @property def subsystem_device(self) -> str: "(vendorID, deviceID, subvendorID, subdevID) -> subsystem device" if self.vendor_id is None: raise ValueError("subvendor_id is not specified") if self.device_id is None: raise ValueError("device_id is not specified") if self.subvendor_id is None: raise ValueError("subvendor_id is not specified") if self.subdev_id is None: raise ValueError("subdev_id is not specified") return self._pci.lookup_name(self.flags & ~0xffff | PciLookupMode.Subsystem | PciLookupMode.Device, self.vendor_id, self.device_id, self.subvendor_id, self.subdev_id) @property def subsystem_vendor_device(self) -> str: "(vendorID, deviceID, subvendorID, subdevID) -> combined subsystem v+d" if self.vendor_id is None: raise ValueError("subvendor_id is not specified") if self.device_id is None: raise ValueError("device_id is not specified") if self.subvendor_id is None: raise ValueError("subvendor_id is not specified") if self.subdev_id is None: raise ValueError("subdev_id is not specified") return self._pci.lookup_name(self.flags & ~0xffff | PciLookupMode.Subsystem | PciLookupMode.Vendor | PciLookupMode.Device, self.vendor_id, self.device_id, self.subvendor_id, self.subdev_id) @property def generic_subsystem(self) -> str: "(subvendorID, subdevID) -> generic subsystem" if self.subvendor_id is None: raise ValueError("subvendor_id is not specified") if self.subdev_id is None: raise ValueError("subdev_id is not specified") return self._pci.lookup_name(self.flags & ~0xffff | PciLookupMode.Subsystem | PciLookupMode.Vendor | PciLookupMode.Device, -1, -1, self.subvendor_id, self.subdev_id) @property def pci_class(self) -> str: "(classID) -> class" if self.class_id is None: raise ValueError("class_id is not specified") return self._pci.lookup_name(self.flags & ~0xffff | PciLookupMode.Class, self.class_id) @property def programming_interface(self) -> str: "(classID, progif) -> programming interface" if self.class_id is None: raise ValueError("class_id is not specified") if self.progif is None: raise ValueError("progif is not specified") return self._pci.lookup_name(self.flags & ~0xffff | PciLookupMode.Class | PciLookupMode.Progif, self.class_id, self.progif) ```
{ "source": "jevinskie/pypcode-emu", "score": 2 }
#### File: pypcode-emu/pypcode_emu/ntypes.py ```python import operator from typing import Type import nativetypes as nt from bidict import bidict uint1 = nt.nint_type("uint1", 1, False) int1 = nt.nint_type("int1", 1, True) size2uintN = bidict({0: uint1, 1: nt.uint8, 2: nt.uint16, 4: nt.uint32, 8: nt.uint64}) size2intN = bidict({1: int1, 2: nt.int16, 4: nt.int32, 8: nt.int64}) def uintN(nbytes: int) -> Type[nt.nint]: return size2uintN[nbytes] def intN(nbytes: int) -> Type[nt.nint]: return size2intN[nbytes] def as_u(self: nt.nint): if self.v < 0: return nt.nint((1 << self.b) + self.v, self.b, False) return nt.nint(self.v, self.b, False) nt.nint.as_u = property(as_u) def as_s(self: nt.nint): if self.s: return self return nt.nint(self.v, self.b, True) nt.nint.as_s = property(as_s) def sext(self: nt.nint, nbits: int): return nt.nint(self.as_s.v, nbits, True) nt.nint.sext = sext def zext(self: nt.nint, nbits: int): return nt.nint(self.as_u.v, nbits, False) nt.nint.zext = zext def asr(self: nt.nint, nbits: int): return nt.nint((self.as_s >> nbits).v, self.b, True) nt.nint.asr = asr nt.nint.CMP_MAP = { ">": "gt", "<": "lt", "==": "eq", "!=": "ne", ">=": "ge", "<=": "le", } def cmp(self: nt.nint, cmp: str, other: nt.nint) -> nt.uint8: signed = cmp.startswith("s") if signed: a, b = self.as_s, other.as_s else: a, b = self.as_u, other.as_u cmp = cmp.lstrip("s") py_op_name = f"__{nt.nint.CMP_MAP[cmp]}__" op_func = getattr(operator, py_op_name) return nt.uint8(1 if op_func(a, b) else 0) nt.nint.cmp = cmp def strict_eq(self: nt.nint, other: nt.nint) -> bool: return self.v == other.v and self.b == other.b and self.s == other.s nt.nint.strict_eq = strict_eq def comp_time_eq(self: nt.nint, other: nt.nint) -> bool: return self.strict_eq(other) nt.nint.comp_time_eq = comp_time_eq def nint_hash(self: nt.nint) -> int: return hash((self.v, self.b, self.s)) nt.nint.__hash__ = nint_hash exported_attrs_names = list( filter(lambda n: not n.startswith("__") and not n.endswith("__"), dir(nt)) ) exported_attrs = [getattr(nt, n) for n in exported_attrs_names] exported_attrs = [*exported_attrs, uint1, int1] exported_attrs_names = [*exported_attrs_names, "uint1", "int1"] for n, a in zip(exported_attrs_names, exported_attrs): globals()[n] = a nint = nt.nint uint8, int8 = nt.uint8, nt.int8 uint16, int16 = nt.uint16, nt.uint16 uint32, int32 = nt.uint32, nt.int32 uint64, int64 = nt.uint64, nt.int64 __all__ = tuple(exported_attrs_names) ``` #### File: pypcode_emu/tools/pypcode_emu_llvm_tool.py ```python import argparse from pypcode_emu.llvm import LLVMELFLifter def real_main(args): lifter = LLVMELFLifter( args.elf, args.exe, entry=args.entry, bb_override=args.bb_addr, asan=args.asan, msan=args.msan, opt=args.O, trace=args.trace, arg0=args.arg0, inline=args.inline, assertions=args.assertions, ) lifter.lift() # try: # lifter.lift() # except Exception as e: # print("IR Module:") # print(str(lifter.m)) # print(f"lifting error: {e}") def main() -> int: parser = argparse.ArgumentParser(description="pypcode-emu") parser.add_argument("elf", help="Input ELF file", metavar="ELF") parser.add_argument("exe", help="Output executable", metavar="EXE") parser.add_argument("-e", "--entry", help="Entry point", metavar="ENTRY") parser.add_argument( "-0", "--arg0", type=lambda n: int(n, 0), default=0, help="Argument 0", metavar="ARG0", ) parser.add_argument("-t", "--trace", help="Enable tracing", action="store_true") parser.add_argument("-i", "--inline", help="Enable inlining", action="store_true") parser.add_argument( "-A", "--no-assert", dest="assertions", help="Disable Assertions", action="store_false", ) parser.add_argument("--asan", help="Enable Address Sanitizer", action="store_true") parser.add_argument("--msan", help="Enable Memory Sanitizer", action="store_true") parser.add_argument( "-O", default="z", help="Optimization level", metavar="OPT_LEVEL" ) parser.add_argument( "-b", "--bb-addr", help="Basic block address override", type=lambda n: int(n, 0), action="append", metavar="BB", ) args = parser.parse_args() real_main(args) return 0 if __name__ == "__main__": main() ``` #### File: pypcode-emu/pypcode_emu/utils.py ```python import shutil import subprocess import sys from typing import Callable from bidict import bidict def first(iterable, default=None): for item in iterable: return item return default def first_where(iterable, pred, default=None): return first((x for x in iterable if pred(x)), default=default) def first_where_key_is(iterable, key, val, default=None): return first_where(iterable, lambda x: x[key] == val, default=default) def first_where_attr_is(iterable, key, val, default=None): return first_where(iterable, lambda x: getattr(x, key) == val, default=default) def run_cmd(*args, log: bool = True): args = (*args,) if log: print(f"run_cmd args: {' '.join(map(str, args))}", file=sys.stderr) r = subprocess.run(list(map(str, args)), capture_output=True) if r.returncode != 0: sys.stderr.buffer.write(r.stdout) sys.stderr.buffer.write(r.stderr) raise subprocess.CalledProcessError(r.returncode, args, r.stdout, r.stderr) try: r.out = r.stdout.decode() except UnicodeDecodeError: pass return r def gen_cmd(bin_name: str) -> Callable: bin_path = shutil.which(bin_name) assert bin_path is not None return lambda *args, **kwargs: run_cmd(bin_path, *args, **kwargs) class UniqueBiDict(bidict): """bidict with additional requirement that keys must be disjoint from items""" def __getitem__(self, item): a = self._fwdm.get(item, None) b = self._invm.get(item, None) if a is None and b is None: raise KeyError(item) assert (a is None) ^ (b is None) return a if b is None else b ``` #### File: pypcode-emu/scripts/inh_test.py ```python from __future__ import annotations from typing import Optional from icecream import ic from wrapt import ObjectProxy class Const: constant: str def __init__(self, val): self.constant = str(val) def __add__(self, other: Const) -> Const: assert isinstance(other, Const) return type(self)(f"{self} C+ {other}") def __str__(self) -> str: return f"C:{self.constant}" def __repr__(self) -> str: return f"Const({self.constant})" def __int__(self) -> int: return int(self.constant) class VarVal: name: str def __init__(self, name: str): self.name = name def __str__(self) -> str: return f"V:{self.name}" def __repr__(self) -> str: return f"VarVal({self.name})" def __add__(self, other) -> VarVal: return type(self)(f"{self} VV+ {other}") class IntVal(ObjectProxy): _self_concrete: Optional[int] def __init__(self, v): if isinstance(v, IntVal) and isinstance(v, ObjectProxy): v = v.__wrapped__ super().__init__(v) try: self._self_concrete = int(v) except (ValueError, TypeError): self._self_concrete = None def __repr__(self) -> str: return f"IntVal({self})" @property def concrete(self) -> Optional[int]: return self._self_concrete @property def is_const(self): return isinstance(self, Const) def __add__(self, other: IntVal): if self.is_const and other.is_const: return type(self)(self.__wrapped__ + other) return type(self)(f"{self} IV+ {other}") c42 = Const(42) ic(c42) c1 = Const(1) ic(c1) c43 = c1 + c42 ic(c43) vva = VarVal("a") ic(vva) va = IntVal(vva) ic(va) ic(va.is_const) try: int(va) assert False except: pass vunk = va + c42 ic(vunk) ic(vunk.is_const) v42 = IntVal(c42) ic(v42) ic(int(v42)) ic(v42.is_const) v1 = IntVal(c1) ic(v1) ic(int(v1)) ic(v1.is_const) v43 = v1 + v42 ic(v43) try: ic(int(v43)) assert False except ValueError: pass ic(v43.is_const) v42_2 = IntVal(v42) ic(v42_2) ``` #### File: pypcode-emu/scripts/z3_sandbox.py ```python import nativetypes as ntypes import z3 def scarry_ntypes(in1, in2): res = in1 + in2 a = (in1 >> (in1.b - 1)) & 1 b = (in2 >> (in2.b - 1)) & 1 r = (res >> (res.b - 1)) & 1 r ^= a a ^= b a ^= 1 r &= a return r def test_ntypes(): nt_127 = ntypes.int8(127) nt_1 = ntypes.int8(1) nt_n1 = ntypes.int8(-1) nt_n128 = ntypes.int8(-128) r = scarry_ntypes(nt_127, nt_1) print(r) r = scarry_ntypes(nt_n128, nt_n1) print(r) r = scarry_ntypes(nt_n128, nt_1) print(r) def scarry_z3(in1, in2): res = in1 + in2 a = (in1 >> (in1.size() - 1)) & 1 b = (in2 >> (in2.size() - 1)) & 1 r = (res >> (res.size() - 1)) & 1 r ^= a a ^= b a ^= 1 r &= a return r def test_z3(): nt_127 = z3.BitVecVal(127, 8) nt_1 = z3.BitVecVal(1, 8) nt_n1 = z3.BitVecVal(-1, 8) nt_n128 = z3.BitVecVal(-128, 8) r = scarry_z3(nt_127, nt_1) print(r) print() print(z3.simplify(r)) print("\n\n") r = scarry_z3(nt_n128, nt_n1) print(r) print() print(z3.simplify(r)) print("\n\n") r = scarry_z3(nt_n128, nt_1) print(r) print() print(z3.simplify(r)) print("\n\n") in1 = z3.BitVec("in1", 8) in2 = z3.BitVec("in2", 8) r = scarry_z3(in1, in2) print(r) print() print(z3.simplify(r)) print("\n\n") test_ntypes() print("\n\n\n====================\n\n\n") test_z3() ```
{ "source": "jevonearth/b2bua", "score": 2 }
#### File: b2bua/sippy/Cli_session.py ```python from twisted.internet.protocol import Protocol import sys, traceback class Cli_session(Protocol): command_cb = None rbuffer = None wbuffer = None cb_busy = False expect_lf = True raddr = None def __init__(self): self.rbuffer = '' self.wbuffer = '' #def connectionMade(self): # print self.transport.getPeer() # self.transport.loseConnection() def dataReceived(self, data): #print 'Cli_session::dataReceived', self, data if len(data) == 0: return self.rbuffer += data self.pump_rxdata() def pump_rxdata(self): while self.rbuffer != None and len(self.rbuffer) > 0: if self.cb_busy: return if self.rbuffer.find('\n') == -1 and self.expect_lf: return parts = self.rbuffer.split('\n', 1) if len(parts) == 1: parts = (parts[0], '') cmd, self.rbuffer = parts cmd = cmd.strip() if len(cmd) > 0: try: self.cb_busy = self.command_cb(self, cmd) except: print 'Cli_session: unhandled exception when processing incoming data' print '-' * 70 traceback.print_exc(file = sys.stdout) print '-' * 70 def done(self): self.cb_busy = False self.pump_rxdata() def send(self, data): if isinstance(data, unicode): data = data.encode('ascii') return self.transport.write(data) def close(self): return self.transport.loseConnection() ``` #### File: b2bua/sippy/Rtp_proxy_client_local.py ```python from Rtp_proxy_client_stream import Rtp_proxy_client_stream import socket class Rtp_proxy_client_local(Rtp_proxy_client_stream): is_local = True def __init__(self, global_config, address = '/var/run/rtpproxy.sock', \ bind_address = None, nworkers = 1): Rtp_proxy_client_stream.__init__(self, global_config = global_config, \ address = address, bind_address = bind_address, nworkers = nworkers, \ family == socket.AF_UNIX) if __name__ == '__main__': from twisted.internet import reactor def display(*args): print args reactor.crash() r = Rtp_proxy_client_local({'_sip_address':'1.2.3.4'}) r.send_command('VF 123456', display, 'abcd') reactor.run(installSignalHandlers = 1) r.shutdown() ``` #### File: b2bua/sippy/SdpMedia.py ```python class MTAudio(object): pass class MTOther(object): pass class SdpMedia(object): type = None stype = None port = None transport = None formats = None def __init__(self, body = None, cself = None): if body != None: params = body.split() self.stype = params[0] if self.stype.lower() == 'audio': self.type = MTAudio else: self.type = MTOther self.port = int(params[1]) self.transport = params[2] if self.type == MTAudio: self.formats = [int(x) for x in params[3:]] else: self.formats = params[3:] else: self.type = cself.type self.stype = cself.stype self.port = cself.port self.transport = cself.transport self.formats = cself.formats[:] def __str__(self): rval = '%s %d %s' % (self.stype, self.port, self.transport) if self.type == MTAudio: for format in self.formats: rval += ' %d' % format else: for format in self.formats: rval += ' %s' % format return rval def localStr(self, local_addr = None, local_port = None): return str(self) def getCopy(self): return SdpMedia(cself = self) ``` #### File: b2bua/sippy/SipWWWAuthenticate.py ```python from random import random from hashlib import md5 from time import time from SipGenericHF import SipGenericHF from SipConf import SipConf class SipWWWAuthenticate(SipGenericHF): hf_names = ('www-authenticate',) realm = None nonce = None def __init__(self, body = None, realm = None, nonce = None): SipGenericHF.__init__(self, body) if body != None: return self.parsed = True if nonce == None: ctime = time() nonce = md5(str((random() * 1000000000L) + ctime)).hexdigest() + hex(int(ctime))[2:] if realm == None: realm = SipConf.my_address self.realm = realm self.nonce = nonce def parse(self): parts = self.body.split(' ', 1)[1].strip().split('"') if len(parts) % 2 != 0 and len(parts[-1]) == 0: parts.pop() while len(parts) > 0: parts1 = [x.strip().split('=', 1) for x in parts.pop(0).strip(' ,=').split(',')] if len(parts) > 0: parts1[-1].append(parts.pop(0)) for name, value in parts1: if name == 'realm': self.realm = value elif name == 'nonce': self.nonce = value self.parsed = True def __str__(self): return self.localStr() def localStr(self, local_addr = None, local_port = None): if not self.parsed: return self.body if local_addr != None and 'my' in dir(self.realm): return 'Digest realm="%s",nonce="%s"' % (local_addr, self.nonce) return 'Digest realm="%s",nonce="%s"' % (self.realm, self.nonce) def getCopy(self): if not self.parsed: return self.__class__(self.body) return self.__class__(realm = self.realm, nonce = self.nonce) def getCanName(self, name, compact = False): return 'WWW-Authenticate' def getRealm(self): return self.realm def getNonce(self): return self.nonce ``` #### File: b2bua/tests/MyConfigParser_tests.py ```python import unittest from sippy.MyConfigParser import MyConfigParser class TestMyConfigParser(unittest.TestCase): def TestParamHandling(self): m = MyConfigParser() m['_foo'] = 'bar' m['b2bua_socket'] = 'bar1' m['acct_enable'] = True m['auth_enable'] = 'False' self.assertTrue(m.has_key('_foo')) self.assertEqual(m['_foo'], 'bar') self.assertEqual(m['b2bua_socket'], 'bar1') self.assertEqual(m.get('_foo'), 'bar') self.assertEqual(m.get('b2bua_socket'), 'bar1') self.assertEqual(m.get('general', 'b2bua_socket'), 'bar1') self.assertTrue(m.get('acct_enable')) self.assertFalse(m.get('auth_enable')) m.check_and_set('keepalive_ans', '15') self.assertEqual(m['keepalive_ans'], 15) self.assertIsInstance(m.get('keepalive_ans'), int) m.check_and_set('pass_header', 'a') m.check_and_set('pass_header', 'b') self.assertEqual(m['pass_headers'], 'a,b') self.assertEqual(m['_pass_headers'][0], 'a') self.assertEqual(m['_pass_headers'][1], 'b') m.check_and_set('accept_ips', '1.2.3.4, 5.6.7.8') self.assertEqual(m['_accept_ips'][0], '1.2.3.4') self.assertEqual(m['_accept_ips'][1], '5.6.7.8') self.assertEqual(m.check_and_set('hrtb_ival', "1"), None) self.assertEqual(m['hrtb_ival'], 1) self.assertEqual(m.get('hrtb_ival'), 1) # Test that get method returns correct type self.assertIsInstance(m.get('hrtb_ival'), float) # Test that access by index returns correct type self.assertIsInstance(m['hrtb_ival'], float) with self.assertRaises(KeyError): m.check_and_set('non_existant_key', "1") def TestSipPortValidation(self): m = MyConfigParser() with self.assertRaises(ValueError): m.check_and_set('sip_port', "-1") with self.assertRaises(ValueError): m.check_and_set('sip_port', "0") with self.assertRaises(ValueError): m.check_and_set('sip_port', "65536") self.assertEquals(m.check_and_set('sip_port', "1"), None) self.assertEquals(m.check_and_set('sip_port', "65535"), None) def TestMaxCreditTime(self): m = MyConfigParser() with self.assertRaises(ValueError): m.check_and_set('max_credit_time', "-1") def TestMaxKeepAlive(self): m = MyConfigParser() with self.assertRaises(ValueError): m.check_and_set('keepalive_ans', "-1") ```
{ "source": "jevonxu/CSDI", "score": 2 }
#### File: jevonxu/CSDI/diff_models.py ```python import torch import torch.nn as nn import torch.nn.functional as F import math def get_torch_trans(heads=8, layers=1, channels=64): encoder_layer = nn.TransformerEncoderLayer( d_model=channels, nhead=heads, dim_feedforward=64, activation="gelu" ) return nn.TransformerEncoder(encoder_layer, num_layers=layers) def Conv1d_with_init(in_channels, out_channels, kernel_size): layer = nn.Conv1d(in_channels, out_channels, kernel_size) nn.init.kaiming_normal_(layer.weight) return layer class DiffusionEmbedding(nn.Module): def __init__(self, num_steps, embedding_dim=128, projection_dim=None): super().__init__() if projection_dim is None: projection_dim = embedding_dim self.register_buffer( "embedding", self._build_embedding(num_steps, embedding_dim / 2), persistent=False, ) self.projection1 = nn.Linear(embedding_dim, projection_dim) self.projection2 = nn.Linear(projection_dim, projection_dim) def forward(self, diffusion_step): x = self.embedding[diffusion_step] x = self.projection1(x) x = F.silu(x) x = self.projection2(x) x = F.silu(x) return x def _build_embedding(self, num_steps, dim=64): steps = torch.arange(num_steps).unsqueeze(1) # (T,1) frequencies = 10.0 ** (torch.arange(dim) / (dim - 1) * 4.0).unsqueeze(0) # (1,dim) table = steps * frequencies # (T,dim) table = torch.cat([torch.sin(table), torch.cos(table)], dim=1) # (T,dim*2) return table class diff_CSDI(nn.Module): def __init__(self, config, inputdim=2): super().__init__() self.channels = config["channels"] self.diffusion_embedding = DiffusionEmbedding( num_steps=config["num_steps"], embedding_dim=config["diffusion_embedding_dim"], ) self.input_projection = Conv1d_with_init(inputdim, self.channels, 1) self.output_projection1 = Conv1d_with_init(self.channels, self.channels, 1) self.output_projection2 = Conv1d_with_init(self.channels, 1, 1) nn.init.zeros_(self.output_projection2.weight) self.residual_layers = nn.ModuleList( [ ResidualBlock( side_dim=config["side_dim"], channels=self.channels, diffusion_embedding_dim=config["diffusion_embedding_dim"], nheads=config["nheads"], ) for _ in range(config["layers"]) ] ) def forward(self, x, cond_info, diffusion_step): B, inputdim, K, L = x.shape x = x.reshape(B, inputdim, K * L) x = self.input_projection(x) x = F.relu(x) x = x.reshape(B, self.channels, K, L) diffusion_emb = self.diffusion_embedding(diffusion_step) skip = [] for layer in self.residual_layers: x, skip_connection = layer(x, cond_info, diffusion_emb) skip.append(skip_connection) x = torch.sum(torch.stack(skip), dim=0) / math.sqrt(len(self.residual_layers)) x = x.reshape(B, self.channels, K * L) x = self.output_projection1(x) # (B,channel,K*L) x = F.relu(x) x = self.output_projection2(x) # (B,1,K*L) x = x.reshape(B, K, L) return x class ResidualBlock(nn.Module): def __init__(self, side_dim, channels, diffusion_embedding_dim, nheads): super().__init__() self.diffusion_projection = nn.Linear(diffusion_embedding_dim, channels) self.cond_projection = Conv1d_with_init(side_dim, 2 * channels, 1) self.mid_projection = Conv1d_with_init(channels, 2 * channels, 1) self.output_projection = Conv1d_with_init(channels, 2 * channels, 1) self.time_layer = get_torch_trans(heads=nheads, layers=1, channels=channels) self.feature_layer = get_torch_trans(heads=nheads, layers=1, channels=channels) def forward_time(self, y, base_shape): B, channel, K, L = base_shape if L == 1: return y y = y.reshape(B, channel, K, L).permute(0, 2, 1, 3).reshape(B * K, channel, L) y = self.time_layer(y.permute(2, 0, 1)).permute(1, 2, 0) y = y.reshape(B, K, channel, L).permute(0, 2, 1, 3).reshape(B, channel, K * L) return y def forward_feature(self, y, base_shape): B, channel, K, L = base_shape if K == 1: return y y = y.reshape(B, channel, K, L).permute(0, 3, 1, 2).reshape(B * L, channel, K) y = self.feature_layer(y.permute(2, 0, 1)).permute(1, 2, 0) y = y.reshape(B, L, channel, K).permute(0, 2, 3, 1).reshape(B, channel, K * L) return y def forward(self, x, cond_info, diffusion_emb): B, channel, K, L = x.shape base_shape = x.shape x = x.reshape(B, channel, K * L) diffusion_emb = self.diffusion_projection(diffusion_emb).unsqueeze(-1) # (B,channel,1) y = x + diffusion_emb y = self.forward_time(y, base_shape) y = self.forward_feature(y, base_shape) # (B,channel,K*L) y = self.mid_projection(y) # (B,2*channel,K*L) _, cond_dim, _, _ = cond_info.shape cond_info = cond_info.reshape(B, cond_dim, K * L) cond_info = self.cond_projection(cond_info) # (B,2*channel,K*L) y = y + cond_info gate, filter = torch.chunk(y, 2, dim=1) y = torch.sigmoid(gate) * torch.tanh(filter) # (B,channel,K*L) y = self.output_projection(y) residual, skip = torch.chunk(y, 2, dim=1) x = x.reshape(base_shape) residual = residual.reshape(base_shape) skip = skip.reshape(base_shape) return (x + residual) / math.sqrt(2.0), skip ``` #### File: jevonxu/CSDI/main_model.py ```python import numpy as np import torch import torch.nn as nn from diff_models import diff_CSDI class CSDI_base(nn.Module): def __init__(self, target_dim, config, device): super().__init__() self.device = device self.target_dim = target_dim self.emb_time_dim = config["model"]["timeemb"] self.emb_feature_dim = config["model"]["featureemb"] self.is_unconditional = config["model"]["is_unconditional"] self.target_strategy = config["model"]["target_strategy"] self.emb_total_dim = self.emb_time_dim + self.emb_feature_dim if self.is_unconditional == False: self.emb_total_dim += 1 # for conditional mask self.embed_layer = nn.Embedding( num_embeddings=self.target_dim, embedding_dim=self.emb_feature_dim ) config_diff = config["diffusion"] config_diff["side_dim"] = self.emb_total_dim input_dim = 1 if self.is_unconditional == True else 2 self.diffmodel = diff_CSDI(config_diff, input_dim) # parameters for diffusion models self.num_steps = config_diff["num_steps"] if config_diff["schedule"] == "quad": self.beta = np.linspace( config_diff["beta_start"] ** 0.5, config_diff["beta_end"] ** 0.5, self.num_steps ) ** 2 elif config_diff["schedule"] == "linear": self.beta = np.linspace( config_diff["beta_start"], config_diff["beta_end"], self.num_steps ) self.alpha_hat = 1 - self.beta self.alpha = np.cumprod(self.alpha_hat) self.alpha_torch = torch.tensor(self.alpha).float().to(self.device).unsqueeze(1).unsqueeze(1) def time_embedding(self, pos, d_model=128): pe = torch.zeros(pos.shape[0], pos.shape[1], d_model).to(self.device) position = pos.unsqueeze(2) div_term = 1 / torch.pow( 10000.0, torch.arange(0, d_model, 2).to(self.device) / d_model ) pe[:, :, 0::2] = torch.sin(position * div_term) pe[:, :, 1::2] = torch.cos(position * div_term) return pe def get_randmask(self, observed_mask): rand_for_mask = torch.rand_like(observed_mask) * observed_mask rand_for_mask = rand_for_mask.reshape(len(rand_for_mask), -1) for i in range(len(observed_mask)): sample_ratio = np.random.rand() # missing ratio num_observed = observed_mask[i].sum().item() num_masked = round(num_observed * sample_ratio) rand_for_mask[i][rand_for_mask[i].topk(num_masked).indices] = -1 cond_mask = (rand_for_mask > 0).reshape(observed_mask.shape).float() return cond_mask def get_hist_mask(self, observed_mask, for_pattern_mask=None): if for_pattern_mask is None: for_pattern_mask = observed_mask if self.target_strategy == "mix": rand_mask = self.get_randmask(observed_mask) cond_mask = observed_mask.clone() for i in range(len(cond_mask)): mask_choice = np.random.rand() if self.target_strategy == "mix" and mask_choice > 0.5: cond_mask[i] = rand_mask[i] else: # draw another sample for histmask (i-1 corresponds to another sample) cond_mask[i] = cond_mask[i] * for_pattern_mask[i - 1] return cond_mask def get_side_info(self, observed_tp, cond_mask): B, K, L = cond_mask.shape time_embed = self.time_embedding(observed_tp, self.emb_time_dim) # (B,L,emb) time_embed = time_embed.unsqueeze(2).expand(-1, -1, K, -1) feature_embed = self.embed_layer( torch.arange(self.target_dim).to(self.device) ) # (K,emb) feature_embed = feature_embed.unsqueeze(0).unsqueeze(0).expand(B, L, -1, -1) side_info = torch.cat([time_embed, feature_embed], dim=-1) # (B,L,K,*) side_info = side_info.permute(0, 3, 2, 1) # (B,*,K,L) if self.is_unconditional == False: side_mask = cond_mask.unsqueeze(1) # (B,1,K,L) side_info = torch.cat([side_info, side_mask], dim=1) return side_info def calc_loss_valid( self, observed_data, cond_mask, observed_mask, side_info, is_train ): loss_sum = 0 for t in range(self.num_steps): # calculate loss for all t loss = self.calc_loss( observed_data, cond_mask, observed_mask, side_info, is_train, set_t=t ) loss_sum += loss.detach() return loss_sum / self.num_steps def calc_loss( self, observed_data, cond_mask, observed_mask, side_info, is_train, set_t=-1 ): B, K, L = observed_data.shape if is_train != 1: # for validation t = (torch.ones(B) * set_t).long().to(self.device) else: t = torch.randint(0, self.num_steps, [B]).to(self.device) current_alpha = self.alpha_torch[t] # (B,1,1) noise = torch.randn_like(observed_data) noisy_data = (current_alpha ** 0.5) * observed_data + (1.0 - current_alpha) ** 0.5 * noise total_input = self.set_input_to_diffmodel(noisy_data, observed_data, cond_mask) predicted = self.diffmodel(total_input, side_info, t) # (B,K,L) target_mask = observed_mask - cond_mask residual = (noise - predicted) * target_mask num_eval = target_mask.sum() loss = (residual ** 2).sum() / (num_eval if num_eval > 0 else 1) return loss def set_input_to_diffmodel(self, noisy_data, observed_data, cond_mask): if self.is_unconditional == True: total_input = noisy_data.unsqueeze(1) # (B,1,K,L) else: cond_obs = (cond_mask * observed_data).unsqueeze(1) noisy_target = ((1 - cond_mask) * noisy_data).unsqueeze(1) total_input = torch.cat([cond_obs, noisy_target], dim=1) # (B,2,K,L) return total_input def impute(self, observed_data, cond_mask, side_info, n_samples): B, K, L = observed_data.shape imputed_samples = torch.zeros(B, n_samples, K, L).to(self.device) for i in range(n_samples): # generate noisy observation for unconditional model if self.is_unconditional == True: noisy_obs = observed_data noisy_cond_history = [] for t in range(self.num_steps): noise = torch.randn_like(noisy_obs) noisy_obs = (self.alpha_hat[t] ** 0.5) * noisy_obs + self.beta[t] ** 0.5 * noise noisy_cond_history.append(noisy_obs * cond_mask) current_sample = torch.randn_like(observed_data) for t in range(self.num_steps - 1, -1, -1): if self.is_unconditional == True: diff_input = cond_mask * noisy_cond_history[t] + (1.0 - cond_mask) * current_sample diff_input = diff_input.unsqueeze(1) # (B,1,K,L) else: cond_obs = (cond_mask * observed_data).unsqueeze(1) noisy_target = ((1 - cond_mask) * current_sample).unsqueeze(1) diff_input = torch.cat([cond_obs, noisy_target], dim=1) # (B,2,K,L) predicted = self.diffmodel(diff_input, side_info, torch.tensor([t]).to(self.device)) coeff1 = 1 / self.alpha_hat[t] ** 0.5 coeff2 = (1 - self.alpha_hat[t]) / (1 - self.alpha[t]) ** 0.5 current_sample = coeff1 * (current_sample - coeff2 * predicted) if t > 0: noise = torch.randn_like(current_sample) sigma = ( (1.0 - self.alpha[t - 1]) / (1.0 - self.alpha[t]) * self.beta[t] ) ** 0.5 current_sample += sigma * noise imputed_samples[:, i] = current_sample.detach() return imputed_samples def forward(self, batch, is_train=1): ( observed_data, observed_mask, observed_tp, gt_mask, for_pattern_mask, _, ) = self.process_data(batch) if is_train == 0: cond_mask = gt_mask elif self.target_strategy != "random": cond_mask = self.get_hist_mask( observed_mask, for_pattern_mask=for_pattern_mask ) else: cond_mask = self.get_randmask(observed_mask) side_info = self.get_side_info(observed_tp, cond_mask) loss_func = self.calc_loss if is_train == 1 else self.calc_loss_valid return loss_func(observed_data, cond_mask, observed_mask, side_info, is_train) def evaluate(self, batch, n_samples): ( observed_data, observed_mask, observed_tp, gt_mask, _, cut_length, ) = self.process_data(batch) with torch.no_grad(): cond_mask = gt_mask target_mask = observed_mask - cond_mask side_info = self.get_side_info(observed_tp, cond_mask) samples = self.impute(observed_data, cond_mask, side_info, n_samples) for i in range(len(cut_length)): # to avoid double evaluation target_mask[i, ..., 0 : cut_length[i].item()] = 0 return samples, observed_data, target_mask, observed_mask, observed_tp class CSDI_PM25(CSDI_base): def __init__(self, config, device, target_dim=36): super(CSDI_PM25, self).__init__(target_dim, config, device) def process_data(self, batch): observed_data = batch["observed_data"].to(self.device).float() observed_mask = batch["observed_mask"].to(self.device).float() observed_tp = batch["timepoints"].to(self.device).float() gt_mask = batch["gt_mask"].to(self.device).float() cut_length = batch["cut_length"].to(self.device).long() for_pattern_mask = batch["hist_mask"].to(self.device).float() observed_data = observed_data.permute(0, 2, 1) observed_mask = observed_mask.permute(0, 2, 1) gt_mask = gt_mask.permute(0, 2, 1) for_pattern_mask = for_pattern_mask.permute(0, 2, 1) return ( observed_data, observed_mask, observed_tp, gt_mask, for_pattern_mask, cut_length, ) class CSDI_Physio(CSDI_base): def __init__(self, config, device, target_dim=35): super(CSDI_Physio, self).__init__(target_dim, config, device) def process_data(self, batch): observed_data = batch["observed_data"].to(self.device).float() observed_mask = batch["observed_mask"].to(self.device).float() observed_tp = batch["timepoints"].to(self.device).float() gt_mask = batch["gt_mask"].to(self.device).float() observed_data = observed_data.permute(0, 2, 1) observed_mask = observed_mask.permute(0, 2, 1) gt_mask = gt_mask.permute(0, 2, 1) cut_length = torch.zeros(len(observed_data)).long().to(self.device) for_pattern_mask = observed_mask return ( observed_data, observed_mask, observed_tp, gt_mask, for_pattern_mask, cut_length, ) ```
{ "source": "JevonYang/stock-technical-analysis", "score": 2 }
#### File: stock-technical-analysis/Statistics/financial_analysis.py ```python import akshare as ak import pandas as pd import matplotlib.pyplot as plt from pandas.tseries.offsets import YearEnd import threading import os from utils.config import project_dir CACHE_DIR = "../tmp/finance_reports" def cache_dir() -> str: return os.path.join(os.path.join(project_dir(), 'tmp', 'finance_reports')) def error_file_dir() -> str: return os.path.join(os.path.join(project_dir(), 'tmp', 'errors', 'finance.txt')) def convert_float(value) -> float: try: return float(value) except Exception: return 0 def finance_info(stock_code) -> pd.DataFrame: data_file = os.path.join(cache_dir(), stock_code + '.csv') try: stock_financial_analysis_indicator_df = pd.read_csv(data_file, index_col=0) except FileNotFoundError: stock_financial_analysis_indicator_df = ak.stock_financial_analysis_indicator(stock=stock_code) stock_financial_analysis_indicator_df.to_csv(data_file) stock_financial_analysis_indicator_df.index = pd.to_datetime(stock_financial_analysis_indicator_df.index) stock_financial_analysis_indicator_df['净资产报酬率(%)'] = stock_financial_analysis_indicator_df['净资产报酬率(%)'].apply( convert_float) stock_financial_analysis_indicator_df['资产报酬率(%)'] = stock_financial_analysis_indicator_df['资产报酬率(%)'].apply( convert_float) stock_financial_analysis_indicator_df['总资产净利润率(%)'] = stock_financial_analysis_indicator_df['总资产净利润率(%)'].apply( convert_float) stock_financial_analysis_indicator_df['主营业务利润率(%)'] = stock_financial_analysis_indicator_df['主营业务利润率(%)'].apply( convert_float) stock_financial_analysis_indicator_df['净利润增长率(%)'] = stock_financial_analysis_indicator_df['净利润增长率(%)'].apply( convert_float) stock_financial_analysis_indicator_df['净资产增长率(%)'] = stock_financial_analysis_indicator_df['净资产增长率(%)'].apply( convert_float) stock_financial_analysis_indicator_df['总资产增长率(%)'] = stock_financial_analysis_indicator_df['总资产增长率(%)'].apply( convert_float) return stock_financial_analysis_indicator_df def financial_info_plot(stock_code, y=None): if y is None: y = ['净资产报酬率(%)', '资产报酬率(%)', '净资产增长率(%)', '总资产增长率(%)'] finance_info(stock_code=stock_code)[lambda x: x.index.month == 12].head(5).plot.bar(use_index=True, y=y) plt.show() def save_finance_reports(classify_index_code): sw_index_df = ak.sw_index_cons(index_code=classify_index_code) for index, stock in sw_index_df.iterrows(): try: finance_info(stock['stock_code']) except Exception: f = open(error_file_dir, 'a') f.write(stock['stock_code'] + '\n') f.close() """ 指数代码 指数名称 0 801010 农林牧渔 1 801020 采掘 2 801030 化工 3 801040 钢铁 4 801050 有色金属 5 801080 电子 6 801110 家用电器 7 801120 食品饮料 8 801130 纺织服装 9 801140 轻工制造 10 801150 医药生物 11 801160 公用事业 12 801170 交通运输 13 801180 房地产 14 801200 商业贸易 15 801210 休闲服务 16 801230 综合 17 801710 建筑材料 18 801720 建筑装饰 19 801730 电气设备 20 801740 国防军工 21 801750 计算机 22 801760 传媒 23 801770 通信 24 801780 银行 25 801790 非银金融 26 801880 汽车 27 801890 机械设备 """ if __name__ == '__main__': df = finance_info(stock_code="600760") df['date'] = df.index # print(df[lambda x: x.index.month == 12].head(5)['净资产收益率(%)']) # print(df[lambda x: x.index.month == 12].head(5)['资产报酬率(%)']) # print(df[lambda x: x.index.month == 12].head(5)['净资产增长率(%)']) # print(df[lambda x: x.index.month == 12].head(5)['总资产增长率(%)']) # df = df[['净资产报酬率(%)']] # print(df) # df[lambda x: x.index.month == 12].head(5).plot.bar(use_index=True) # plt.show() import seaborn as sns df = df[lambda x: x.index.month == 12].head(5)[['date', '净资产报酬率(%)', '资产报酬率(%)', '净资产增长率(%)', '总资产增长率(%)']] df.reset_index(drop=True, inplace=True) print(df) df.plot.bar(use_index=False, x="date", y=['净资产报酬率(%)', '资产报酬率(%)', '净资产增长率(%)', '总资产增长率(%)']) # ax = sns.lineplot(x="date", y="净资产报酬率(%)", data=df) plt.show() # ax.show() # sw_index_spot_df = ak.sw_index_spot() # # for index, row in sw_index_spot_df.iterrows(): # save_finance_reports(classify_index_code=row['指数代码']) ``` #### File: stock-technical-analysis/utils/config.py ```python import configparser import os cf = configparser.ConfigParser() cf.read("../config.ini") def tushare_token(): return cf.get("tushare", "token") def databases(): db_type = cf.get("database", "type") host = cf.get("database", "host") port = cf.get("database", "port") user = cf.get("database", "user") password = cf.get("database", "password") db = cf.get("database", "db") charset = cf.get("database", "charset") return '%s://%s:%s@%s:%s/%s?charset=%s' % (db_type, user, password, host, port, db, charset) def project_dir(project_name=None): """ 获取当前项目根路径 :param project_name: :return: 根路径 """ PROJECT_NAME = 'stock-technical-analysis' if project_name is None else project_name project_path = os.path.abspath(os.path.dirname(__file__)) root_path = project_path[:project_path.find("{}\\".format(PROJECT_NAME)) + len("{}\\".format(PROJECT_NAME))] return root_path if __name__ == '__main__': print(project_dir()) ``` #### File: stock-technical-analysis/utils/save_db.py ```python from sqlalchemy import create_engine from utils import config engine = create_engine(config.databases(), encoding='utf8') def save_to_db(dataframe, table_name, index=False): dataframe.to_sql(table_name, con=engine, if_exists='append', index=index) ```
{ "source": "JevyanJ/awstriggers", "score": 2 }
#### File: awstriggers/awstriggers/exceptions.py ```python class WrongInputException(Exception): msg = 'Wrong trigger. This is not a {}.' def __init__(self, trigger_type): super(WrongInputException, self).__init__( self.msg.format(trigger_type) ) ```
{ "source": "JevyanJ/Streamlabs-Chatbox-Currency-Ranking", "score": 2 }
#### File: JevyanJ/Streamlabs-Chatbox-Currency-Ranking/Currency-Ranking_StreamlabsSystem.py ```python import os import re import codecs import json from System.Collections.Generic import List # --------------------------- # [Required] Script Information # --------------------------- ScriptName = "Currerncy Ranking" Website = "twitch.tv/jevyanj" Description = "Currency Ranking" Creator = "JevyanJ" Version = "1.0.0" # --------------------------- # Define Global Variables # --------------------------- settings = {} configFile = "config.json" command = "!test" output = "web/index.html" templates = { "index": "templates/index.template", "category": "templates/category.template" } def Init(): global settings # Load settings path = os.path.dirname(__file__) try: with codecs.open( os.path.join(path, configFile), encoding='utf-8-sig', mode='r') as file: settings = json.load(file, encoding='utf-8-sig') except Exception: settings = { "black_list": "", "min_points": 0 } process() return def Execute(data): # Only uncomment to launch updating with a command # if data.GetParam(0) == '!currency-ranking-test': # process() # Parent.SendStreamMessage('Ranking file updated') return def ReloadSettings(jsonData): Init() return def OpenOutput(): path_out = os.path.join(os.path.dirname(os.path.abspath(__file__)), "web").replace("\\", "/") location = os.path.join(os.path.dirname(__file__), "output.txt") with open(location, 'w') as f: f.write(path_out) os.startfile(location) return def Tick(): process() return ############################################################################### def log(message): Parent.Log(command, str(message)) return def process(): """Main process """ users = getStreamlabsUsers() ranking = prepareRanking(users) order = getOrderRanking(users) writeRanking(ranking, order) def equalRankin(ranking, other): """Compare two rankings Args: ranking (List<CurrencyUsers>) other (List<CurrencyUsers>) Return: Boolean. True if both ranking are equals. """ if not other or not ranking: return False if len(ranking) != len(other): return False for user in ranking: user_other = next( (item for item in other if item.UserId == user.UserId), None) if not user_other or user_other.TimeWatched != user.TimeWatched: return False return True def getStreamlabsUsers(): """Return all users with streamlabs format Return: List<CurrencyUsers> CurrencyUsers: string UserId string UserName long Points long TimeWatched (In Minutes) string Rank """ top = Parent.GetTopHours(-1) users = top.keys() mylist = List[str](users) users = Parent.GetCurrencyUsers(mylist) # Filter list black_list = settings["black_list"].split(",") regex = settings["black_list_regex"] if not regex: regex = "-" black_list_regex = re.compile(regex) black_list = list(map(str.strip, black_list)) users = [ u for u in users if ( u.UserName not in black_list and not bool(black_list_regex.match(u.UserName)) and u.TimeWatched >= int(settings["min_time"]) )] return users def prepareRanking(users): """Prepare ranking with a CurrencyUsers list Args: users (List<CurrencyUsers>): List of streamlabs users Return: Dict: { 'rank1': [user1, user2,...], 'rank2': [...] } """ output = {} for user in users: if user.Rank in output.keys(): output[user.Rank].append("{}".format(user.UserName)) else: output[user.Rank] = [user.UserName] return output def getOrderRanking(users): """Return a ranking ordered list. Args: users (List<CurrencyUsers>): List of streamlabs users Return: List<str> """ usersSorted = sorted( users, key=lambda d: d.TimeWatched, reverse=True) ranking = [] for user in usersSorted: if user.Rank not in ranking: ranking.append(user.Rank) return ranking def writeRanking(rankings, order): """Write ranking on a file Args: ranking (Dict) """ location = os.path.join(os.path.dirname(__file__), output) category_file = os.path.join( os.path.dirname(__file__), templates["category"]) file = open(category_file, mode='r') category_template = file.read() file.close() rankings_txt = "" for ranking in order: users = rankings[ranking] ranking_users = "" for user in users: ranking_users += "<p>{}</p>\n".format(user) rankings_txt += category_template.format( NAME="{}".format(str.upper(ranking)), ELEMENTS=ranking_users) index_file = os.path.join( os.path.dirname(__file__), templates["index"]) file = open(index_file, mode='r') index_template = file.read() file.close() with open(location, 'w') as f: f.write(index_template.format(RANKING=rankings_txt)) ```
{ "source": "jevyzhu/pieterraform", "score": 2 }
#### File: pieterraform/pieterraform/level1.py ```python from typing import List import logging from .runner_base import CmdRunnerBase from .terraform import Terraform from .argument_base import ArgumentBase from .positional_base import PositionalBase from .common_args import TfCommonArgs, TfVarArgs from .option_base import OptionBase class TfCmdRunner(CmdRunnerBase): def run(self) -> Terraform: return super().run() class TfVersion(TfCmdRunner): def __init__(self, parent_cmder: Terraform, logger: logging = None): TfCmdRunner.__init__(self, parent_cmder, "version", logger) class TfInit(TfCmdRunner, ArgumentBase, TfCommonArgs): def __init__(self, parent_cmder: Terraform, logger: logging = None): TfCmdRunner.__init__(self, parent_cmder, "init", logger) ArgumentBase.__init__(self) TfCommonArgs.__init__(self) @OptionBase.option("-upgrade=false") def no_upgrade(self): pass @OptionBase.option("--reconfigure=true") def reconfigure(self): pass @ArgumentBase.param("-backend-config") def backend_config(self, value: str): return value class TfPlan(TfCmdRunner, TfVarArgs): def __init__(self, parent_cmder: Terraform, logger: logging = None): TfCmdRunner.__init__(self, parent_cmder, "plan", logger) TfVarArgs.__init__(self) @OptionBase.option("-destroy") def destroy(self): pass @ArgumentBase.param("-out") def out(self, value: str): return value @ArgumentBase.param("-state") def statefile(self, value: str): return value class TfApply(TfCmdRunner, TfVarArgs): def __init__(self, parent_cmder: Terraform, logger: logging = None): TfCmdRunner.__init__(self, parent_cmder, "apply", logger) TfVarArgs.__init__(self) @PositionalBase.positional def use_plan(self, value: str): return value @ArgumentBase.param("-state") def statefile(self, value: str): return value class TfDestroy(TfCmdRunner, TfVarArgs): def __init__(self, parent_cmder: Terraform, logger: logging = None): TfCmdRunner.__init__(self, parent_cmder, "destroy", logger) TfVarArgs.__init__(self) @OptionBase.option("-auto-approve") def auto_approve(self): pass @ArgumentBase.param("-state") def statefile(self, value: str): return value class TfOutput(TfCmdRunner, TfCommonArgs): def __init__(self, parent_cmder: Terraform, logger: logging = None): TfCmdRunner.__init__(self, parent_cmder, "output", logger) TfCommonArgs.__init__(self) @ArgumentBase.param("-state") def statefile(self, value: str): return value @OptionBase.option("-json=True") def json(self): pass ``` #### File: pieterraform/pieterraform/tf_state.py ```python import json import pathlib from argparse import Namespace class TfState: def __init__(self, state_file_path: str): self.output = Namespace() with open(state_file_path, "r") as f: outputs = json.load(f)["outputs"] for key in outputs: value = outputs[key]["value"] setattr(self.output, key, value) ```
{ "source": "jevzirwin/redirectDetective", "score": 3 }
#### File: redirectangular/src/app.py ```python from flask import Flask, render_template, request import requests #Create instance of Flask App app = Flask(__name__) #Define Route and Content of that page @app.route("/") def home(): return render_template("index.html") @app.route("/detect") def detect_redirects(): url = request.args.get('url') r = requests.get(url) str_response = '' for i, response in enumerate(r.history, 1): print(i, response.url) str_response += str(i) + ' ' + response.url + '<br/>' # print ("redirects to {} with a status code of {} ".format(r.url,r.status_code)) str_response += ("redirects to {} with a status code of {} ".format(r.url,r.status_code)) return str_response #Define route 2 and content #Define route 3 and content #Running and Controlling the script if (__name__ =="__main__"): app.run(host='0.0.0.0', port=5000) ```
{ "source": "jewang/gesture-tutorial", "score": 3 }
#### File: jewang/gesture-tutorial/gesture_detector.py ```python import busio import time import datetime import pandas as pd from Adafruit_BNO055 import BNO055 import utils import os import collections from sklearn.externals import joblib import subprocess import shlex model = joblib.load('/home/pi/dev/gesture/models/167pt_model.joblib') SOUNDS = { 'flippendo': 'sounds/flippendo.ogg', 'wingardium': 'sounds/wingardium.mp3' } def play(gesture): subprocess.run(shlex.split('omxplayer /home/pi/dev/gesture/{} -o alsa:hw:1,0 &'.format(SOUNDS[gesture]))) def read_sensors(bno): vector = bno._read_vector(BNO055.BNO055_ACCEL_DATA_X_LSB_ADDR, 22) accel = [s / 100. for s in vector[:3]] mag = [s / 16. for s in vector[3:6]] gyro = [s / 900. for s in vector[6:9]] euler = [s / 16. for s in vector[9:12]] quaternion = [s / QUATERNION_SCALE for s in vector[12:16]] lin_accel = [s / 100. for s in vector[16:19]] gravity = [s / 100. for s in vector[19:22]] return accel + mag + gyro + euler + quaternion + lin_accel + gravity SAMPLE_RATE_HZ = 100 QUATERNION_SCALE = (1.0 / (1 << 14)) CHECK_TIME_INCREMENT_MS = 200 SAMPLE_SIZE_MS = 1500 bno = BNO055.BNO055(serial_port='/dev/serial0', rst=18) # Initialize the BNO055 and stop if something went wrong. if not bno.begin(): raise RuntimeError('Failed to initialize BNO055! Is the sensor connected?') # Print system status and self test result. status, self_test, error = bno.get_system_status() print('System status: {0}'.format(status)) print('Self test result (0x0F is normal): 0x{0:02X}'.format(self_test)) # Print out an error if system status is in error mode. if status == 0x01: print('System error: {0}'.format(error)) print('See datasheet section 4.3.59 for the meaning.') i = 0 header = ["time_ms"] + utils.get_sensor_headers() data = collections.deque(maxlen=int(SAMPLE_SIZE_MS / 10)) #10 Hz print('Starting operation') start = datetime.datetime.now() elapsed_ms = 0 last_classified = 0 last_classification = "negative_trim" while True: row = [elapsed_ms] + read_sensors(bno) data.append(row) if elapsed_ms - last_classified >= CHECK_TIME_INCREMENT_MS and len(data) == data.maxlen: df = pd.DataFrame(list(data), columns=header) features = utils.get_model_features(df) prediction = model.predict([features])[0] #print(int(elapsed_ms), prediction) if prediction != 'negative_trim':# and last_classification != prediction: print("========================>", prediction) play(prediction) data.clear() last_classified = elapsed_ms last_classification = prediction elapsed_ms = (datetime.datetime.now() - start).total_seconds() * 1000 #if elapsed_ms > 10000: # break ```
{ "source": "jewdev/Skillz-ColdeMaster-2022", "score": 3 }
#### File: jewdev/Skillz-ColdeMaster-2022/MyBot.py ```python from penguin_game import * def do_turn(game): my_icebergs_count = len(game.get_my_icebergs()) for iceberg in game.get_my_icebergs(): if iceberg.can_upgrade() and iceberg.upgrade_cost + 10 < iceberg.penguin_amount: iceberg.upgrade() else: if my_icebergs_count < 3: for neutral_iceberg in game.get_neutral_icebergs(): if not already_sent(game, neutral_iceberg): if iceberg.can_send_penguins(neutral_iceberg, neutral_iceberg.penguin_amount + 1): iceberg.send_penguins( neutral_iceberg, neutral_iceberg.penguin_amount + 1) else: for enemyIceberg in game.get_enemy_icebergs(): send_enemy(iceberg, enemyIceberg) for enemy_group in game.get_enemy_penguin_groups(): if enemy_group.destination in game.get_my_icebergs(): counter_attack(enemy_group.destination, enemy_group.source, enemy_group.penguin_amount, game.get_my_icebergs()) def already_sent(game, dest): for group in game.get_my_penguin_groups(): if group.destination == dest: return True return False def send_enemy(source, dest): amount = dest.penguins_per_turn * \ source.get_turns_till_arrival(dest) + dest.penguin_amount + 1 if source.can_send_penguins(dest, amount): source.send_penguins(dest, amount) return True return False def counter_attack(my_iceberg, source, enemy_amount, icebergs): penguin_amount = my_iceberg.penguin_amount if enemy_amount < my_iceberg.penguin_amount: neighbor = find_closest(icebergs, my_iceberg) if my_iceberg.can_send_penguins(source, my_iceberg.penguin_amount - 1): my_iceberg.send_penguins(source, my_iceberg.penguin_amount - 1) if neighbor.can_send_penguins(my_iceberg, enemy_amount-penguin_amount): neighbor.send_penguins(my_iceberg, enemy_amount-penguin_amount) else: neighbor = find_closest(icebergs, my_iceberg) my_amount = source.get_turns_till_arrival( my_iceberg) * my_iceberg.penguins_per_turn + my_iceberg.penguin_amount if neighbor.can_send_penguins(my_iceberg, enemy_amount-my_amount + 1): neighbor.send_penguins(my_iceberg, enemy_amount-my_amount + 1) def find_closest(my_icebergs, iceberg): min = 100000000 for my_iceberg in my_icebergs: if my_iceberg.get_turns_till_arrival(iceberg) < min and not iceberg == my_iceberg: min = my_iceberg.get_turns_till_arrival(iceberg) minIceberg = my_iceberg return minIceberg ```
{ "source": "jewee/ops-cli", "score": 2 }
#### File: ops/cli/helmfile.py ```python import logging import os import sys from ops.cli.parser import SubParserConfig from ops.hierarchical.composition_config_generator import CompositionConfigGenerator logger = logging.getLogger(__name__) class HelmfileParserConfig(SubParserConfig): def get_name(self): return 'helmfile' def get_help(self): return 'Wrap common helmfile tasks using hierarchical configuration support' def configure(self, parser): parser.add_argument( '--helmfile-path', type=str, default=None, help='Dir to where helmfile.yaml is located') return parser def get_epilog(self): return ''' Examples: # Run helmfile sync ops data/env=dev/region=va6/project=ee/cluster=experiments/composition=helmfiles helmfile sync # Run helmfile sync for a single chart ops data/env=dev/region=va6/project=ee/cluster=experiments/composition=helmfiles helmfile --selector chart=nginx-controller sync # Run helmfile sync with concurrency flag ops data/env=dev/region=va6/project=ee/cluster=experiments/composition=helmfiles helmfile --selector chart=nginx-controller sync --concurrency=1 ''' class HelmfileRunner(CompositionConfigGenerator, object): def __init__(self, ops_config, cluster_config_path, execute): super(HelmfileRunner, self).__init__(["helmfiles"]) logging.basicConfig(level=logging.INFO) self.ops_config = ops_config self.cluster_config_path = cluster_config_path self.execute = execute def run(self, args, extra_args): config_path_prefix = os.path.join(self.cluster_config_path, '') default_helmfiles = '../ee-k8s-infra/compositions/helmfiles' args.helmfile_path = default_helmfiles if args.helmfile_path is None else os.path.join( args.helmfile_path, '') compositions = self.get_sorted_compositions(config_path_prefix) if len(compositions) == 0 or compositions[0] != "helmfiles": raise Exception( "Please provide the full path to composition=helmfiles") composition = compositions[0] conf_path = self.get_config_path_for_composition( config_path_prefix, composition) data = self.generate_helmfile_config(conf_path, args) self.setup_kube_config(data) command = self.get_helmfile_command(args, extra_args) return dict(command=command) def setup_kube_config(self, data): if data['helm']['global']['clusterType'] == 'eks': cluster_name = data['helm']['global']['fqdn'] aws_profile = data['helm']['global']['aws']['profile'] region = data['helm']['global']['region']['location'] file_location = self.generate_eks_kube_config( cluster_name, aws_profile, region) os.environ['KUBECONFIG'] = file_location else: logger.warning('currently only eks type clusters supported') sys.exit(1) def generate_eks_kube_config(self, cluster_name, aws_profile, region): file_location = self.get_tmp_file() cmd = "aws eks update-kubeconfig --name {} --profile {} --region {} --kubeconfig {}".format(cluster_name, aws_profile, region, file_location) return_code = self.execute(dict(command=cmd)) if return_code != 0: raise Exception( "Unable to generate EKS kube config. Exit code was {}".format(return_code)) return file_location @staticmethod def get_tmp_file(): import tempfile with tempfile.NamedTemporaryFile(delete=False) as tmp_file: return tmp_file.name def generate_helmfile_config(self, path, args): output_file = args.helmfile_path + "/hiera-generated.yaml" logger.info('Generating helmfiles config %s', output_file) try: excluded_keys = self.ops_config["compositions"]["excluded_config_keys"]["helmfile"] except KeyError: excluded_keys = [] try: filtered_keys = self.ops_config["compositions"]["filtered_output_keys"]["helmfile"] except KeyError: filtered_keys = [] return self.config_generator.generate_config(config_path=path, filters=filtered_keys, exclude_keys=excluded_keys, output_format="yaml", output_file=output_file, print_data=True) def get_helmfile_command(self, args, extra_args): helmfile_args = ' '.join(extra_args) return "cd {helmfile_path} && helmfile {helmfile_args}".format( helmfile_path=args.helmfile_path, helmfile_args=helmfile_args) ``` #### File: ops/cli/packer.py ```python import logging from ops.cli.parser import SubParserConfig from . import aws logger = logging.getLogger(__name__) class PackerParserConfig(SubParserConfig): def get_name(self): return 'packer' def get_help(self): return 'Wrap common packer tasks and inject variables from a cluster file' def configure(self, parser): parser.add_argument('subcommand', help='build | validate', type=str) return parser def get_epilog(self): return ''' Examples: # Validate a packer file ops clusters/centos7.yaml packer validate # Build a packer file ops clusters/centos7.yaml packer build ''' class PackerRunner(object): def __init__(self, root_dir, cluster_config): self.cluster_config = cluster_config self.root_dir = root_dir def run(self, args, extra_args): logger.info("Found extra_args %s", extra_args) config_all = self.cluster_config.all() packer_variables = config_all['packer']['variables'] if config_all['packer']['clouds'] is not None: if 'aws' in config_all['packer']['clouds']: profile_name = config_all['packer']['clouds']['aws']['boto_profile'] packer_variables['aws_access_key'] = aws.acess_key( profile_name) packer_variables['aws_secret_key'] = aws.secret_key( profile_name) else: # add other cloud logic here pass variables = '' for key, value in packer_variables.items(): variables += " -var '%s=%s' " % (key, value) if args.subcommand == 'build': command = 'packer build %s %s' % ( variables, config_all['packer']['template']) if args.subcommand == 'validate': command = 'packer validate %s %s' % ( variables, config_all['packer']['template']) return dict( command=command ) ``` #### File: ops/cli/terraform.py ```python import os import hashlib import logging from ops.cli.parser import SubParserConfig from ops.terraform.terraform_cmd_generator import TerraformCommandGenerator from ops.hierarchical.composition_config_generator import TerraformConfigGenerator from distutils.version import StrictVersion from ops import validate_ops_version import pkg_resources logger = logging.getLogger(__name__) class TerraformParserConfig(SubParserConfig): def get_name(self): return 'terraform' def get_help(self): return 'Wrap common terraform tasks with full templated configuration support' def configure(self, parser): parser.add_argument('subcommand', help='apply | console | destroy | import | output | plan | ' 'refresh | show | taint | template | untaint | validate', type=str) parser.add_argument( '--var', help='the output var to show', type=str, default='') parser.add_argument('--module', help='for use with "taint", "untaint" and "import". ' 'The module to use. e.g.: vpc', type=str) parser.add_argument('--resource', help='for use with "taint", "untaint" and "import".' 'The resource to target. e.g.: aws_instance.nat', type=str) parser.add_argument('--name', help='for use with "import". The name or ID of the imported resource. ' 'e.g.: i-abcd1234', type=str) parser.add_argument('--plan', help='for use with "show", ' 'show the plan instead of the statefile', action='store_true') parser.add_argument('--state-location', help='control how the remote states are used', choices=['local', 'remote', 'any'], default='any', type=str) parser.add_argument('--force-copy', help='for use with "plan" to do force state change ' 'automatically during init phase', action='store_true') parser.add_argument('--template-location', help='for use with "template". The folder where to save the tf files, ' 'without showing', type=str) parser.add_argument('--skip-refresh', help='for use with "plan". Skip refresh of statefile', action='store_false', dest='do_refresh') parser.set_defaults(do_refresh=True) parser.add_argument('--raw-output', help='for use with "plan". Show raw plan output without piping through ' 'terraform landscape - https://github.com/coinbase/terraform-landscape ' '(if terraform landscape is not enabled in opsconfig.yaml ' 'this will have no impact)', action='store_true', dest='raw_plan_output') parser.set_defaults(raw_plan_output=False) parser.add_argument('--path-name', help='in case multiple terraform paths are defined, ' 'this allows to specify which one to use when running terraform', type=str) parser.add_argument( '--terraform-path', type=str, default=None, help='Path to terraform files') parser.add_argument('--skip-plan', help='for use with "apply"; runs terraform apply without running a plan first', action='store_true') parser.add_argument('--auto-approve', help='for use with "apply". Proceeds with the apply without' 'waiting for user confirmation.', action='store_true') parser.add_argument( 'terraform_args', type=str, nargs='*', help='Extra terraform args') return parser def get_epilog(self): return ''' Examples: # Create/update a new cluster with Terraform ops clusters/qe1.yaml terraform plan ops clusters/qe1.yaml terraform apply # Run Terraform apply without running a plan first ops clusters/qe1.yaml terraform apply --skip-plan # Get rid of a cluster and all of its components ops clusters/qe1.yaml terraform destroy # Retrieve all output from a previously created Terraform cluster ops clusters/qe1.yaml terraform output # Retrieve a specific output from a previously created Terraform cluster ops clusters/qe1.yaml terraform output --var nat_public_ip # Refresh a statefile (no longer part of plan) ops clusters/qe1.yaml terraform refresh # Taint a resource- forces a destroy, then recreate on next plan/apply ops clusters/qe1.yaml terraform taint --module vpc --resource aws_instance.nat # Untaint a resource ops clusters/qe1.yaml terraform untaint --module vpc --resource aws_instance.nat # Show the statefile in human-readable form ops clusters/qe1.yaml terraform show # Show the plan in human-readable form ops clusters/qe1.yaml terraform show --plan # View parsed jinja on the terminal ops clusters/qe1.yaml terraform template # Import an unmanaged existing resource to a statefile ops clusters/qe1.yaml terraform import --module vpc --resource aws_instance.nat --name i-abcd1234 # Use the Terraform Console on a cluster ops clusters/qe1.yaml terraform console # Validate the syntax of Terraform files ops clusters/qe1.yaml terraform validate # Specify which terraform path to use ops clusters/qe1.yaml terraform plan --path-name terraformFolder1 # Run terraform v2 integration ops data/env=dev/region=va6/project=ee/cluster=experiments terraform plan ''' class TerraformRunner(object): def __init__(self, root_dir, cluster_config_path, cluster_config, inventory_generator, ops_config, template, execute): self.cluster_config_path = cluster_config_path self.cluster_config = cluster_config self.root_dir = root_dir self.inventory_generator = inventory_generator self.ops_config = ops_config self.template = template self.execute = execute def check_ops_version(self): # Check if the cluster_config has a strict requirement of OPS version # But only if 'ops_min_version' is specified. Not all clusters configs # enforce this if "terraform" in self.cluster_config.conf: if "ops_min_version" in self.cluster_config.conf["terraform"]: ops_min_version = str( self.cluster_config.conf["terraform"]["ops_min_version"]) validate_ops_version(ops_min_version) def run(self, args, extra_args): logger.info("Found extra_args %s", extra_args) self.check_ops_version() terraform_config_path = os.environ.get( "TF_CLI_CONFIG_FILE", self.ops_config.terraform_config_path ) os.environ["TF_CLI_CONFIG_FILE"] = terraform_config_path logger.info("Set TF_CLI_CONFIG_FILE=%s", terraform_config_path) if os.path.isdir(self.cluster_config_path): return self.run_v2_integration(args) else: return self.run_v1_integration(args) def run_v1_integration(self, args): return self.run_composition(args, self.cluster_config) def run_composition(self, args, config): generator = TerraformCommandGenerator(self.root_dir, config, self.inventory_generator, self.ops_config, self.template) return generator.generate(args) def run_v2_integration(self, args): logging.basicConfig(level=logging.INFO) config_path = os.path.join(self.cluster_config_path, '') terraform_path = '../ee-k8s-infra/' if args.terraform_path is None else os.path.join( args.terraform_path, '') terraform_path = '{}compositions/terraform/'.format(terraform_path) ops_config = self.cluster_config.ops_config.config composition_order = ops_config["compositions"]["order"]["terraform"] excluded_config_keys = ops_config["compositions"]["excluded_config_keys"] tf_config_generator = TerraformConfigGenerator( composition_order, excluded_config_keys) reverse_order = "destroy" == args.subcommand compositions = tf_config_generator.get_sorted_compositions( config_path, reverse=reverse_order) if len(compositions) == 0: raise Exception( "No terraform compositions were detected in {}.".format(config_path)) return self.run_v2_compositions( args, config_path, tf_config_generator, terraform_path, compositions) def run_v2_compositions(self, args, config_path, tf_config_generator, terraform_path, compositions): should_finish = False return_code = 0 for composition in compositions: if should_finish: logger.info( "Skipping 'terraform %s' for composition '%s' because of previous failure.", args.subcommand, composition) continue logger.info("Running composition: %s", composition) tf_config_generator.generate_files( config_path, terraform_path, composition) command = self.run_v2_composition( args, terraform_path, composition) return_code = self.execute(command) if return_code != 0: should_finish = True logger.error( "Command finished with nonzero exit code for composition '%s'." "Will skip remaining compositions.", composition ) return return_code def run_v2_composition(self, args, terraform_path, composition): config = self.cluster_config config['terraform'] = {} config['terraform']["path"] = "{}{}".format( terraform_path, composition) config['terraform']["variables_file"] = "variables.tfvars.json" cluster_id = hashlib.md5( self.cluster_config_path.encode('utf-8')).hexdigest()[:6] config['cluster'] = "auto_generated_{}".format(cluster_id) return self.run_composition(args, config) ```
{ "source": "jewelben/IC-Project", "score": 4 }
#### File: IC-Project/Problem-1/huffman_encode.py ```python class heapnode: def __init__(self,frequency,symbols,left=None,right=None): self.frequency=frequency self.symbols=symbols self.left=left self.right=right self.bits='' # Function that creates our huffman tree by taking our priority queue as input and outputs the root node # We first sort the queue by frequency and define the parent of these leafnode, with frequency as the sum of # the frequncies of the first two nodes of our sorted priority queue. We then pop off those two nodes # and push our newnode into our queue and sort it again. We repeat this process till the size of our priority queue is 1. def huffmantree(leafnodes): while len(leafnodes) > 1: # sorting our queue leafnodes.sort(key=lambda x:x.frequency) left=leafnodes[0] right=leafnodes[1] # Defining the flags variables and pointers of our nodes left.bits=0 right.bits=1 # defining our new parent node of our huffman tree newHeapNode=heapnode(left.frequency+right.frequency,None,left,right) # popping the first two elements and pushing our parent node leafnodes.remove(left) leafnodes.remove(right) leafnodes.append(newHeapNode) # returning our final root node return leafnodes[0] # A function that creates a dictionary that stores our symbols as our key and its codeword as its keyvalue def EncodeTable(encode,Treenode,bitstring=''): # codeword variable stores our code word, where as we move down the tree the corresponding bit gets concatenated codeword=bitstring+str(Treenode.bits) # if the left node isn't NULL, we recursively call the function to traverse the tree till we can go any further # and then check if we can go to the right while going back ( this is basically similar to DFS of a tree) if(Treenode.left!=None): EncodeTable(encode,Treenode.left,codeword) if(Treenode.right!=None): EncodeTable(encode,Treenode.right,codeword) # if we both left and right children are NULL, that means we have reached the leafnode and we # have found its corresponding codeword else: encode[Treenode.symbols]=codeword return encode ```
{ "source": "JewelBoyz/dfk", "score": 3 }
#### File: quest/utils/utils.py ```python FAIL_ON_NOT_FOUND = False types = { 1: "attemptBased", #2: "timeBased", #3: "well", } def parse_type(id): value = types.get(id, None) if FAIL_ON_NOT_FOUND and value is None: raise Exception("Quest type not found") return value def parse_quests(raw_quests): if raw_quests is None: return None quests = [] for rq in raw_quests: quests.append(parse_quest(rq)) return quests def parse_quest(raw_quest): if raw_quest is None: return None quest = {} quest['id'] = raw_quest[0] quest['address'] = raw_quest[1] quest['heroes'] = raw_quest[2] quest['player'] = raw_quest[3] quest['startTime'] = raw_quest[4] quest['startBlock'] = raw_quest[5] quest['completeAtTime'] = raw_quest[6] quest['attempts'] = raw_quest[7] quest['type'] = parse_type(raw_quest[8]) return quest ```
{ "source": "jewelc/sslcommerz", "score": 2 }
#### File: templates/pages/order_details.py ```python import frappe from frappe import _ from erpnext.e_commerce.doctype.e_commerce_settings.e_commerce_settings import show_attachments def get_context(context): context.no_cache = 1 context.show_sidebar = True context.doc = frappe.get_doc("Sales Order", frappe.form_dict.name) if hasattr(context.doc, "set_indicator"): context.doc.set_indicator() if show_attachments(): context.attachments = get_attachments(frappe.form_dict.doctype, frappe.form_dict.name) context.parents = frappe.form_dict.parents context.title = frappe.form_dict.name context.payment_ref = frappe.db.get_value("Payment Request", {"reference_name": frappe.form_dict.name}, "name") context.enabled_checkout = frappe.get_doc("E Commerce Settings").enable_checkout default_print_format = frappe.db.get_value('Property Setter', dict(property='default_print_format', doc_type=frappe.form_dict.doctype), "value") if default_print_format: context.print_format = default_print_format else: context.print_format = "Standard" if not frappe.has_website_permission(context.doc): frappe.throw(_("Not Permitted"), frappe.PermissionError) # check for the loyalty program of the customer customer_loyalty_program = frappe.db.get_value("Customer", context.doc.customer, "loyalty_program") if customer_loyalty_program: from erpnext.accounts.doctype.loyalty_program.loyalty_program import ( get_loyalty_program_details_with_points, ) loyalty_program_details = get_loyalty_program_details_with_points(context.doc.customer, customer_loyalty_program) context.available_loyalty_points = int(loyalty_program_details.get("loyalty_points")) context.flow_status = "Placed" pick_list = frappe.db.get_all("Pick List Item",filters={"sales_order":frappe.form_dict.name,'docstatus':1}) if pick_list: if len(pick_list) == len(context.doc.items): context.flow_status = "In Progress" delivery_notes = frappe.db.get_all("Delivery Note Item",filters={"against_sales_order":frappe.form_dict.name,'docstatus':1}) frappe.log_error(delivery_notes,"delivery_notes") if len(delivery_notes) == len(context.doc.items): context.flow_status = "Delivery In Progress" closed_delivery_notes = frappe.db.sql("""SELECT DI.name FROM `tabDelivery Note Item` DI INNER JOIN `tabDelivery Note` D ON DI.parent = D.name WHERE D.status ='Closed' AND DI.against_sales_order = %(order_id)s AND D.docstatus = 1 """,{"order_id":frappe.form_dict.name},as_dict=1) if len(closed_delivery_notes) == len(context.doc.items): context.flow_status = "Delivered" def get_attachments(dt, dn): return frappe.get_all("File", fields=["name", "file_name", "file_url", "is_private"], filters = {"attached_to_name": dn, "attached_to_doctype": dt, "is_private":0}) ```
{ "source": "Jewel-Hong/SC-projects", "score": 4 }
#### File: SC101Assignment/SC101_Assignment0/class_reviews.py ```python def main(): """ TODO: Get the maximum, minimum and average score of class SC001 and SC101 respectively. """ cl = input('Which class? ').upper() if cl == '-1': print('No class scores were entered') else: score = int(input('Score: ')) n0 = 0 n1 = 0 max001 = float('NaN') min001 = float('NaN') avg001 = float('NaN') max101 = float('NaN') min101 = float('NaN') avg101 = float('NaN') if cl == 'SC001': n0 += 1 max001 = score min001 = score avg001 = float(score) elif cl == 'SC101': n1 += 1 max101 = score min101 = score avg101 = float(score) while True: cl = input('Which class? ').upper() if cl == '-1': break else: score = int(input('Score: ')) if cl == 'SC001': if n0 == 0: n0 += 1 max001 = score min001 = score avg001 = float(score) else: n0 += 1 max001 = maximum(score, max001) min001 = minimum(score, min001) avg001 = avg(score, avg001, n0) elif cl == 'SC101': if n1 == 0: n1 += 1 max101 = score min101 = score avg101 = float(score) else: n1 += 1 max101 = maximum(score, max101) min101 = minimum(score, min101) avg101 = avg(score, avg101, n1) result(max001, min001, avg001, max101, min101, avg101, n0, n1) def result(max001, min001, avg001, max101, min101, avg101, n0, n1): """ :param max001: int, the maximum among scores of SC001 :param min001: int, the minimum among scores of SC001 :param avg001: float, the average among scores of SC001 :param max101: int, the maximum among scores of SC101 :param min101: int, the minimum among scores of SC101 :param avg101: float, the average among scores of SC101 :param n0: int, the number of the scores of SC001 :param n1: int, the number of the scores of SC101 TODO: print the result """ equal() print('SC001', end='') equal() if n0 == 0: print('\nNo score for SC001') else: print('\nMax (001): ' + str(max001)) print('Min (001): ' + str(min001)) print('Avg (001): ' + str(avg001)) equal() print('SC101', end='') equal() if n1 == 0: print('\nNo score for SC101') else: print('\nMax (101): ' + str(max101)) print('Min (101): ' + str(min101)) print('Avg (101): ' + str(avg101)) def equal(): """ TODO: print 13 equals continuously """ for i in range(13): print('=', end='') def maximum(a, b): """ :param a: int, any number :param b: int, any number :return: the bigger one """ if a >= b: return a else: return b def minimum(a, b): """ :param a: int, any number :param b: int, any number :return: the smaller one """ if a <= b: return a else: return b def avg(new, avg, times): """ :param new: int, the new score :param avg: float, the average of score of the class :param times: int, numbers of the scores of the class :return: float, the new average """ new_avg = (avg * (times - 1) + new) / times return new_avg ##### DO NOT EDIT THE CODE BELOW THIS LINE ##### if __name__ == '__main__': main() ``` #### File: SC101Assignment/SC101_Assignment0/coin_flip_runs.py ```python import random as r def main(): """ TODO: Print the result of coin-flipping that fits the number of runs. """ print('Let\'s flip a coin!') num_run = int(input('Number of runs: ')) ht = ('H', 'T') result = r.choice(ht) while True: result += r.choice(ht) if finish(result, num_run): break print(result[0: len(result)-1]) def finish(result, num_run): """ :param result: str, the string that composed randomly by H and T :param num_run: int, the number of runs that the player decided :return: bool, return when the result fits the number of runs """ n = 0 for i in range(len(result)-2): if result[i] == result[i+1] and result[i+1] != result[i+2]: n += 1 if n == num_run: return True ###### DO NOT EDIT CODE BELOW THIS LINE ###### if __name__ == "__main__": main() ``` #### File: SC101_Assignment1/SC101_Assignment1/my_drawing.py ```python from campy.graphics.gobjects import GOval, GRect, GLabel from campy.graphics.gwindow import GWindow def main(): """ TODO: Literally busy to death... """ bg = GWindow(width=500, height=400) face = GOval(300, 250, x=100, y=100) face.filled = True face.fill_color = 'beige' face.color = 'grey' reye1 = GOval(50, 50, x=150, y=220) reye1.filled = True reye1.fill_color = 'grey' reye1.color = 'grey' reye2 = GOval(30, 30, x=155, y=225) reye2.filled = True reye2.fill_color = 'white' reye2.color = 'grey' reye3 = GOval(10, 10, x=160, y=230) reye3.filled = True reye3.fill_color = 'grey' reye3.color = 'grey' leye1 = GOval(50, 50, x=300, y=220) leye1.filled = True leye1.fill_color = 'grey' leye1.color = 'grey' leye2 = GOval(30, 30, x=305, y=225) leye2.filled = True leye2.fill_color = 'white' leye2.color = 'grey' leye3 = GOval(10, 10, x=310, y=230) leye3.filled = True leye3.fill_color = 'grey' leye3.color = 'grey' mouth = GRect(120, 20, x=200, y=280) mouth.filled = True mouth.fill_color = 'grey' mouth.color = 'grey' label = GLabel('KILL ME...') label.font = '-30' label.color = 'grey' bg.add(face) bg.add(reye1) bg.add(reye2) bg.add(reye3) bg.add(leye1) bg.add(leye2) bg.add(leye3) bg.add(mouth) bg.add(label, x=500-label.width, y=400) if __name__ == '__main__': main() ``` #### File: SC101Assignment/SC101_Assignment5/anagram.py ```python FILE = 'dictionary.txt' # This is the filename of an English dictionary EXIT = '-1' # Controls when to stop the loop # Global variable dict_lst = [] anagrams = [] def main(): read_dictionary() print(f'Welcome to stanCode "Anagram Generator" (or {EXIT} to quit)') while True: s = input('Find anagrams for: ') if s == EXIT: break else: print('Searching...') find_anagrams(s) print(f'{len(anagrams)} anagrams: {anagrams}') anagrams.clear() def read_dictionary(): with open(FILE, 'r') as f: for word in f: global dict_lst dict_lst.append(word.strip()) def find_anagrams(s): """ :param s (str): the word to find the anagrams """ find_anagrams_helper(s, []) def find_anagrams_helper(s, index_lst): cur_s = '' for i in index_lst: cur_s += s[i] if has_prefix(cur_s): if len(cur_s) == len(s): if cur_s in dict_lst and cur_s not in anagrams: print(f'Found: {cur_s}') anagrams.append(cur_s) print('Searching...') else: for i in range(len(s)): if i not in index_lst: index_lst.append(i) find_anagrams_helper(s, index_lst) index_lst.pop() def has_prefix(sub_s): """ :param sub_s (str): the sub-string to be checked whether there is a word started with it :return (bool): True/ False """ for word in dict_lst: if word.startswith(sub_s): return True return False if __name__ == '__main__': main() ``` #### File: SC101Lecture_code/SC101_week1/whack_a_mole.py ```python from campy.graphics.gwindow import GWindow from campy.graphics.gobjects import GLabel from campy.graphics.gimage import GImage from campy.gui.events.mouse import onmouseclicked from campy.gui.events.timer import pause import random # Constants control the diameter of the window WINDOW_WIDTH = 900 WINDOW_HEIGHT = 600 # Constant controls the pause time of the animation DELAY = 550 # Global variables window = GWindow(width=WINDOW_WIDTH, height=WINDOW_HEIGHT) score = 0 score_label = GLabel('Score: ' + str(score)) # TODO: def main(): onmouseclicked(remove_mole) score_label.font = '-50' window.add(score_label, x=0, y=score_label.height) while True: mole = GImage('mole.png') mole.x = random.randint(0, window.width - mole.width) mole.y = random.randint(0, window.height - mole.height) window.add(mole) pause(DELAY) def remove_mole(m): global score maybe_mole = window.get_object_at(m.x, m.y) if maybe_mole is not None and maybe_mole is not score_label: window.remove(maybe_mole) score += 1 score_label.text = 'Score: ' + str(score) if __name__ == '__main__': main() ``` #### File: SC101Lecture_code/SC101_week2/pypal_starter.py ```python from pypal import Pypal def main(): bank = Pypal('Jewel', money=10000, withdraw_limit=6000) bank.withdraw(7000) bank.withdraw(5000) bank.withdraw(6000) name = bank.set_name('Guagua') bank.withdraw(3000) money = bank.get_money() print(name, money) if __name__ == '__main__': main() ``` #### File: SC101Lecture_code/SC101_week4/draw_basic.py ```python import tkinter as tk # provided function, this code is complete def make_canvas(width, height): """ Creates and returns a drawing canvas of the given int size, ready for drawing. """ top = tk.Tk() top.minsize(width=width + 10, height=height + 10) canvas = tk.Canvas(top, width=width, height=height) canvas.pack() canvas.xview_scroll(6, "units") # hack so (0, 0) works correctly canvas.yview_scroll(6, "units") return canvas def main(): w = make_canvas(1000, 500) w.create_line(0, 0, 1000, 500, width=5, fill='red') w.create_text(0, 0, text='SC101', anchor=tk.NW, font='times 80') tk.mainloop() #告訴電腦不要關掉視窗 if __name__ == '__main__': main() ``` #### File: SC101Lecture_code/SC101_week4/factorial.py ```python def main(): # print(factorial(0)) # 1 # print(factorial(1)) # 1 # print(factorial(5)) # 120 # print(factorial(10)) # 3628800 print(m(37, 12)+m(14, 10)) def m(a, b): if a < b: return a else: return m(a-b, b) # def factorial(n): # if n == 0: # return 1 # else: # ans = n * factorial(n-1) # return ans if __name__ == '__main__': main() ``` #### File: SC101Lecture_code/SC101_week4/web_crawler_directors.py ```python import requests from bs4 import BeautifulSoup def main(): url = 'http://www.imdb.com/chart/top' response = requests.get(url) html = response.text soup = BeautifulSoup(html) ######################### items = soup.find_all('td', {'class': 'titleColumn'}) d = {} for item in items: dir = item.a['title'].split(',')[0] # 去掉 (dir.) i = dir.find('(') dir = dir[:i] if dir in d: d[dir] += 1 else: d[dir] = 1 for dir, times in sorted(d.items(), key=lambda t: t[1]): print(f'{dir} -> {times}') ######################### if __name__ == '__main__': main() ``` #### File: SC101Lecture_code/SC101_week5/cantor_set_drawing.py ```python from campy.graphics.gobjects import GLine from campy.graphics.gwindow import GWindow from campy.gui.events.timer import pause # Constants SPACE = 40 # The space between levels START_X = 50 # The starting x of the line START_Y = 50 # The starting y of the line START_WIDTH = 729 # The lenth of cantor set level 1 LEVEL = 5 # The level of the cantor set DELAY = 100 # The pause time in miliseconds # Global Variables window = GWindow(width=1000, height=700) # The canvas to draw lines on def main(): cantor_set(START_X, START_Y, START_WIDTH, LEVEL) def cantor_set(x, y, width, level): if level == 0: pass else: line = GLine(x, y, x + width, y) window.add(line) cantor_set(x, y + SPACE, width / 3, level - 1) cantor_set(x + (2 / 3) * width, y + SPACE, width / 3, level - 1) pause(DELAY) if __name__ == '__main__': main() ``` #### File: SC101Lecture_code/SC101_week6/linked_list.py ```python class ListNode: def __init__(self, data, pointer): # value & next 為慣用語 self.value = data self.next = pointer def main(): # Way 1 node1 = ListNode(('A', 3), None) node2 = ListNode(('B', 5), None) node1.next = node2 node3 = ListNode(('C', 7), None) node2.next = node3 # Way 2 node3 = ListNode(('C', 7), None) node2 = ListNode(('B', 5), node3) node1 = ListNode(('A', 3), node2) linked_list = node1 traversal(linked_list) def traversal(linked_list): cur = linked_list while cur is not None: print(cur.value) cur = cur.next if __name__ == '__main__': main() ```