metadata
dict
text
stringlengths
60
3.49M
{ "source": "jmlipman/RatLesNetv2", "score": 3 }
#### File: RatLesNetv2/lib/metric.py ```python import numpy as np from skimage import measure from scipy import ndimage def _border_np(y): """Calculates the border of a 3D binary map. From NiftyNet. """ return y - ndimage.binary_erosion(y) def _border_distance(y_pred, y_true): """Distance between two borders. From NiftyNet. y_pred and y_true are WHD """ border_seg = _border_np(y_pred) border_ref = _border_np(y_true) distance_ref = ndimage.distance_transform_edt(1 - border_ref) distance_seg = ndimage.distance_transform_edt(1 - border_seg) distance_border_seg = border_ref * distance_seg distance_border_ref = border_seg * distance_ref return distance_border_ref, distance_border_seg class Metric: def __init__(self, y_pred, y_true): self.y_pred = y_pred self.y_true = y_true def dice(self): """This function calculates the Dice coefficient. Args: `y_pred`: batch containing the predictions. BDWHC. `y_true`: batch containing the predictions. BDWHC. Returns: Dice coefficient. BC (B: batch, C: classes) """ num_samples = self.y_pred.shape[0] num_classes = self.y_pred.shape[1] results = np.zeros((num_samples, num_classes)) y_pred = np.argmax(self.y_pred, axis=1) y_true = np.argmax(self.y_true, axis=1) for i in range(num_samples): for c in range(num_classes): a = y_pred[i] == c b = y_true[i] == c if np.sum(b) == 0: # If no lesion in the y_true if np.sum(a) == 0: # No lesion predicted result = 1.0 else: result = (np.sum(b==0)-np.sum(a))*1.0 / np.sum(b==0) else: # Actual Dice num = 2 * np.sum(a * b) denom = np.sum(a) + np.sum(b) result = num / denom results[i, c] = result return results def hausdorff_distance(self): """Hausdorff distance. From NiftyNet. 2-classes only! """ num_samples = self.y_pred.shape[0] results = np.zeros(num_samples) for i in range(num_samples): y_pred = np.argmax(self.y_pred[i], axis=0) y_true = np.argmax(self.y_true[i], axis=0) ref_border_dist, seg_border_dist = _border_distance(y_pred, y_true) results[i] = np.max([np.max(ref_border_dist), np.max(seg_border_dist)]) return results def compactness(self): """surface^1.5 / volume """ num_samples = self.y_pred.shape[0] results = np.zeros(num_samples) for i in range(num_samples): pred = np.argmax(self.y_pred[i], axis=0) surface = np.sum(_border_np(pred)) volume = np.sum(pred) results[i] = (surface**1.5)/volume return results ``` #### File: RatLesNetv2/lib/RatLesNetv2Blocks.py ```python from torch import nn from torch.nn import Conv3d, BatchNorm3d, ReLU, Sigmoid import numpy as np import torch class ResNet(nn.Module): def __init__(self, in_filters): super(ResNet, self).__init__() self.seq = nn.Sequential( ReLU(), BatchNorm3d(in_filters), Conv3d(in_filters, in_filters, 3, padding=1), ReLU(), BatchNorm3d(in_filters), Conv3d(in_filters, in_filters, 3, padding=1) ) def forward(self, x): return x + self.seq(x) def __str__(self): return "ResNet" class Bottleneck(nn.Module): def __init__(self, in_filters, out_filters): super(Bottleneck, self).__init__() self.seq = nn.Sequential( ReLU(), BatchNorm3d(in_filters), Conv3d(in_filters, out_filters, 1) ) def forward(self, x): return self.seq(x) def __str__(self): return "Bottleneck" ```
{ "source": "jml/omnimetrics", "score": 2 }
#### File: src/omnimetrics/_database.py ```python from __future__ import annotations from dataclasses import dataclass from datetime import datetime from pprint import pprint from typing import Any, Callable, Iterable, Optional, TypeVar from appscript import app, k OMNIFOCUS = app("OmniFocus") S = TypeVar("S") T = TypeVar("T") def optional(f: Callable[[S], T], x: Optional[S]) -> Optional[T]: """Apply ``f`` to ``x`` if ``x`` is not ``None``.""" if x is None: return None return f(x) def resolve_missing_value(value: T) -> Optional[T]: return value if value != k.missing_value else None @dataclass(frozen=True) class TagReference: name: str @classmethod def from_reference(cls, tag_reference) -> TagReference: return cls(name=tag_reference.name()) @dataclass(frozen=True) class ProjectReference: name: str @classmethod def from_reference(cls, project_reference) -> ProjectReference: return cls(name=project_reference.name()) @dataclass(frozen=True) class Task: """An OmniFocus Task. See https://omni-automation.com/omnifocus/task.html """ id: str # The title of the task. name: str creation_date: datetime modification_date: datetime # If set, the Task should be completed by this date. due_date: Optional[datetime] # Returns the computed effective due date for the Task, based on its local dateDue and those of its containers. effective_due_date: Optional[datetime] next_due_date: Optional[datetime] # If set, the Task is not actionable until this date. defer_date: Optional[datetime] # Returns the computed effective defer date for the Task, based on its local deferDate and those of its containers. effective_defer_date: Optional[datetime] next_defer_date: Optional[datetime] # If set, the Task is dropped. dropped_date: Optional[datetime] # If set, the Task is completed. completion_date: Optional[datetime] primary_tag: Optional[TagReference] parent_task: Optional[TaskReference] # The estimated number of minutes this task will take to finish, or null if no estimate has been made. estimated_minutes: Optional[int] containing_project: Optional[ProjectReference] is_next: bool num_available_tasks: int num_completed_tasks: int num_tasks: int # Returns true if the task is a direct child of the inbox, but not if the task is contained by another task that is in the inbox. is_in_inbox: bool is_sequential: bool # The flagged status of the task. is_flagged: bool # True if the task has been marked completed. # Note that a task may be effectively considered completed if a containing task is marked completed. is_completed: bool is_dropped: bool is_blocked: bool # If set, the Task will be automatically marked completed when its last child Task is marked completed. is_completed_by_children: bool is_effectively_dropped: bool is_effectively_completed: bool should_use_floating_timezone: bool #repetition = "<null>" # The object holding the repetition properties for this task, or null if it is not repeating. See related documentation. #repetitionRule = "<null>"; """Missing properties. This list comes from the OmniFocus Task documentation. They are properties of the task that are not returned by the ``properties`` method. after (Task.ChildInsertionLocation r/o) • A positional indicator that reference the list posotion directly following this task instance. assignedContainer (Project, Task, or Inbox or null) • For tasks in the inbox, the tentatively assigned project or parent task, which will be applied on cleanup. attachments (Array of FileWrapper) • An array of FileWrapper objects representing the attachments associated with the task. See related documentation. before (Task.ChildInsertionLocation r/o) • A positional indicator that references the list posotion immediately preceding this task instance. beginning (Task.ChildInsertionLocation r/o) • A positional indicator that references the very start of the task’s container object. children (Array of Task r/o) • Returns all the child tasks of this task, sorted by library order. containingProject (Project or null r/o) • The Project that this Task is contained in, either as the root of the project or indirectly from a parent task. If this task is in the inbox, then this will be null. effectiveCompletedDate (Date or null r/o) • (v3.8) Returns the computed effective completion date for the Task, based on its local completionDate and those of its containers. effectiveDropDate (Date or null r/o) • (v3.8) Returns the computed effective drop date for the Task, based on its local dropDate and those of its containers. effectiveFlagged (Boolean r/o) • Returns the computed effective flagged status for the Task, based on its local flagged and those of its containers. ending (Task.ChildInsertionLocation r/o) • A positional indicator that references the position at the very end of the task’s container object. flattenedChildren (TaskArray r/o) • An alias for flattenedTasks. flattenedTasks (TaskArray r/o) • Returns a flat array of all tasks contained within this task. Tasks are sorted by their order in the database. This flat array is often used for processing the entire task hierarchy of a specific task. hasChildren (Boolean r/o) • Returns true if this task has children, more efficiently than checking if children is empty. linkedFileURLs (Array of URL r/o) • The list of file URLs linked to this task. The files at these URLs are not present in the database, rather the database holds bookmarks leading to these files. These links can be read on iOS, but not written to. note (String) • The note of the task. notifications (Array of Task.Notification r/o) • An array of the notifications that are active for this task. (see related documentation) project (Project or null r/o) • The Project that this Task is the root task of, or null if this task is in the inbox or contained by another task. sequential (Boolean) • If true, then children of this task form a dependency chain. For example, the first task blocks the second one until the first is completed. shouldUseFloatingTimeZone (Boolean) • (v3.6) When set, the dueDate and deferDate properties will use floating time zones. (Note: if a Task has no due or defer dates assigned, this property will revert to the database’s default setting.) tags (TagArray r/o) • Returns the Tags associated with this Task. taskStatus (Task.Status r/o) • Returns the current status of the task. tasks (TaskArray r/o) • Returns all the tasks contained directly in this task, sorted by their library order. """ @classmethod def from_omnifocus_task(cls, task) -> Task: properties = task.properties() try: return cls( id=properties[k.id], name=properties[k.name], creation_date=properties[k.creation_date], modification_date=properties[k.modification_date], due_date=resolve_missing_value(properties[k.due_date]), effective_due_date=resolve_missing_value(properties[k.effective_due_date]), next_due_date=resolve_missing_value(properties[k.next_due_date]), defer_date=resolve_missing_value(properties[k.defer_date]), effective_defer_date=resolve_missing_value(properties[k.effective_defer_date]), next_defer_date=resolve_missing_value(properties[k.next_defer_date]), dropped_date=resolve_missing_value(properties[k.dropped_date]), completion_date=resolve_missing_value(properties[k.completion_date]), primary_tag=optional(TagReference.from_reference, resolve_missing_value(properties[k.primary_tag])), parent_task=optional(TaskReference.from_reference, resolve_missing_value(properties[k.parent_task])), estimated_minutes=resolve_missing_value(properties[k.estimated_minutes]), containing_project=optional(ProjectReference.from_reference, resolve_missing_value(properties[k.containing_project])), is_next=properties[k.next_], num_available_tasks=properties[k.number_of_available_tasks], num_completed_tasks=properties[k.number_of_completed_tasks], num_tasks=properties[k.number_of_tasks], is_in_inbox=properties[k.in_inbox], is_sequential=properties[k.sequential], is_flagged=properties[k.flagged], is_completed=properties[k.completed], is_dropped=properties[k.dropped], is_blocked=properties[k.blocked], is_completed_by_children=properties[k.completed_by_children], is_effectively_dropped=properties[k.effectively_dropped], is_effectively_completed=properties[k.effectively_completed], should_use_floating_timezone=properties[k.should_use_floating_time_zone], ) except KeyError: pprint(properties) raise @dataclass(frozen=True) class TaskReference: id: str name: str @classmethod def from_reference(cls, task_reference) -> TaskReference: return cls(id=task_reference.id(), name=task_reference.name()) def load_tasks(omni_database: Any) -> Iterable[Task]: for task in omni_database.flattened_tasks(): yield Task.from_omnifocus_task(task) ``` #### File: src/omnimetrics/_script.py ```python import json import tempfile from dataclasses import asdict from datetime import datetime from pathlib import Path from typing import IO import click from google.cloud import bigquery, storage from omnimetrics._database import OMNIFOCUS, load_tasks @click.group() def omnimetrics(): """Top-level omnimetrics command.""" @omnimetrics.command() @click.argument("output", type=click.File("w")) def dump_file(output: IO[str]) -> None: _dump_omnifocus(output) @omnimetrics.command() @click.option("--filename", default="omnifocus-%Y%m%d-%H%M%S.json", type=str) @click.argument("directory", type=click.Path(file_okay=False, dir_okay=True, exists=True)) def dump(filename: str, directory: str) -> None: now = datetime.now() filename = now.strftime(filename) path = Path(directory).joinpath(filename) with path.open("w") as output: _dump_omnifocus(output) def _dump_omnifocus(output: IO[str]) -> None: for task in load_tasks(OMNIFOCUS.default_document): task_dict = asdict(task) output.write(json.dumps(task_dict, default=jsonify)) output.write("\n") @omnimetrics.command() @click.option("--gcs-bucket-prefix", type=str, default="") @click.option("--filename", default="omnifocus-%Y%m%d-%H%M%S.json", type=str) @click.argument("gcs-bucket", type=str) @click.argument("destination-table", type=str) def run_pipeline(gcs_bucket_prefix: str, filename: str, gcs_bucket: str, destination_table: str) -> None: """Extract data from Omnifocus and load it to GCS and BigQuery. The BigQuery destination table needs to exist, and needs to be partitioned. """ now = datetime.now() with tempfile.NamedTemporaryFile("w") as temp_file: # Extract Omnifocus data to a file _dump_omnifocus(temp_file) # Load it to GCS storage_client = storage.Client() bucket = storage_client.bucket(gcs_bucket) filename = now.strftime(filename) gcs_path = str(Path(gcs_bucket_prefix) / Path(filename)) blob = bucket.blob(gcs_path) blob.upload_from_filename(temp_file.name) # TODO: Create the table if it doesn't exist. _load_to_bigquery(gcs_bucket, gcs_path, f"{destination_table}${now.strftime('%Y%m%d')}") def _load_to_bigquery(gcs_bucket: str, gcs_path: str, destination_table: str) -> None: gcs_url = f"gs://{gcs_bucket}/{gcs_path}" bigquery_client = bigquery.Client() job = bigquery_client.load_table_from_uri( [gcs_url], destination_table, job_config=bigquery.LoadJobConfig( autodetect=True, source_format=bigquery.SourceFormat.NEWLINE_DELIMITED_JSON, schema_update_options=[ bigquery.SchemaUpdateOption.ALLOW_FIELD_ADDITION, bigquery.SchemaUpdateOption.ALLOW_FIELD_RELAXATION, ], write_disposition=bigquery.WriteDisposition.WRITE_TRUNCATE ) ) job.result() def jsonify(o): if isinstance(o, datetime): return o.isoformat() return o """ Here's what we need to do. - [x] use default_document to get the whole database - [ ] use `flattened` versions to get at the actual contents - [x] `flattened_tasks` - [ ] `flattened_folders` - [ ] `flattened_tags` - [ ] `flattened_projects` - build types for each of those flattened versions - [x] https://omni-automation.com/omnifocus/OF-API.html#Task - [ ] folder - [ ] tag - [ ] project - serialisers for each of these - [x] JSON - [ ] Avro? https://avro.apache.org/docs/1.10.0/gettingstartedpython.html - [x] Figure out how to use launchd to run a script daily - [x] https://www.launchd.info/ - [x] Put a plist file in ~/Library/LaunchAgents - [ ] Create a Terraform module that: - [ ] creates a GCP project - [x] creates a GCS bucket - [ ] creates a BigQuery dataset - [ ] Create a script that uploads the serialised, flattened things to GCS - [ ] Create another script that loads those flattened things to BigQuery - [ ] Build a dbt module that transforms the raw data into something useful - [ ] Build a DataStudio dashboard based on that data. Strategy - don't worry about serialising *everything* to start with - also don't worry about fully correctly exporting any given type - focus on getting all the pieces working end-to-end, such that we're exporting *something* from omnifocus to bigquery """ ```
{ "source": "jmlon/trafficgenerator", "score": 3 }
#### File: jmlon/trafficgenerator/parser.py ```python import logging # logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger("scene_parser") logger.setLevel(logging.INFO) scenario = { 'flows': [] } def parse_scenario(filename): with open(filename, 'rt') as fh: for line in fh: tokens = line.strip().split() # print(tokens) if len(tokens)>0 and not tokens[0].startswith('#'): first = tokens.pop(0) # print(f'||{l}||') if first.startswith("type:"): set_type(tokens) elif first.startswith("repeat:"): set_repeat(tokens) elif first.startswith("on:"): set_on(tokens) elif first.startswith("off:"): set_off(tokens) elif first.startswith("end"): set_end(tokens) return scenario def set_type(t): scenario['type'] = t.pop(0) def set_repeat(t): scenario['repeat'] = int(t.pop(0)) def set_off(t): if t.pop(0).startswith('time:'): offtime = float(t.pop(0)) scenario['flows'].append({ 'on': False, 'offtime':offtime }) def set_end(t): pass def set_on(t): quantity = on_quantity(t) interval = on_interval(t) size = on_size(t) destination = on_destination(t) flow = { 'on':True, 'quantity':quantity, 'interval':interval, 'size':size, 'dest':destination } scenario['flows'].append(flow) def on_quantity(t): token = t.pop(0) qty = {} # { 'mode':None, 'secs':None, 'packets':None } if token=="time:": qty['mode']='time' qty['secs']=float(t.pop(0)) elif token=="packet:": qty['mode']='packet' qty['packets']=int(t.pop(0)) else: logger.error('Invalid quantity') logger.debug(qty) return qty def on_interval(t): token = t.pop(0) interval = {} if token=='greedy': interval['mode']='greedy' elif token=='const': interval['mode']='const' interval['time']=float(t.pop(0)) elif token=='uniform': interval['mode']='uniform' interval['min'] = float(t.pop(0)) interval['max'] = float(t.pop(0)) elif token=='exponential': interval['mode']= 'exponential' interval['mean']= float(t.pop(0)) interval['min'] = float(t.pop(0)) interval['max'] = float(t.pop(0)) else: logger.error('Invalid interval') logger.debug(interval) return interval def on_size(t): token = t.pop(0) assert(token=='length:') token = t.pop(0) size = {} if token=='const': size['mode']='const' size['packet_size']=int(t.pop(0)) elif token=='uniform': size['mode']='uniform' size['min'] = int(t.pop(0)) size['max'] = int(t.pop(0)) elif token=='exponential': size['mode']= 'exponential' size['mean']= float(t.pop(0)) size['min'] = int(t.pop(0)) size['max'] = int(t.pop(0)) else: logger.error('Invalid size') logger.debug(size) return size def on_destination(t): token = t.pop(0) dst = {} if token=='dest:': dst['addr']=t.pop(0) dst['port']=int(t.pop(0)) dst['mac']=t.pop(0) else: logger.error('Invalid destination') return dst if __name__ == "__main__": parse_scenario('flow-10.0.0.2') #('sample_scenery') print(scenario) ```
{ "source": "jmlopez-rod/assist", "score": 3 }
#### File: assist/command/install.py ```python import sys import site import textwrap import os.path as pth DESC = """ Create the .assistrc file and source it in your .bash_profile or .bashrc file. """ def add_parser(subp, raw): """Add a parser to the main subparser. """ subp.add_parser('install', help='install assist', formatter_class=raw, description=textwrap.dedent(DESC)) def disp(msg): "Print message to stdout. " sys.stdout.write(msg) def source_assistrc(): """Source the .assistrc file in the .bashrc file. """ bash_map = { 'Darwin': '.bash_profile', 'darwin': '.bash_profile', 'Linux': '.bashrc', 'linux': '.bashrc', } platform = sys.platform try: bashrc_path = pth.expandvars('$HOME/%s' % bash_map[platform]) except KeyError: disp('Error: %s platform not supported\n' % platform) exit(2) disp('checking %s ... ' % bashrc_path) if pth.exists(bashrc_path): expr = [ 'source ~/.assistrc\n', 'source $HOME/.assistrc\n', pth.expandvars('source $HOME/.assistrc\n'), ] for content_line in open(bashrc_path, 'r'): for line in expr: if line == content_line: disp('ok\n') return with open(bashrc_path, 'a') as content_file: disp('\n including .assistrc\n') content_file.write('source ~/.assistrc\n') def append_variable(cfile, var, val): """Writes a bash command to check if a variable is missing a value.""" cfile.write('if [[ ":$%s:" != *":%s:"* ]]; then\n' % (var, val)) cfile.write(' export %s=%s:$%s\n' % (var, val, var)) cfile.write('fi\n') def assistrc(): """Create the assistrc file. """ rc_path = pth.expandvars('$HOME/.assistrc') disp('writing %s ... ' % rc_path) with open(rc_path, 'w') as rcfile: disp('\n system wide path: %s/bin\n' % sys.prefix) append_variable(rcfile, 'PATH', '%s/bin' % sys.prefix) disp(' user path: %s/bin\n' % site.getuserbase()) append_variable(rcfile, 'PATH', '%s/bin' % site.getuserbase()) path = pth.abspath(pth.dirname(__file__)+'/../include') disp(' include: %s\n' % path) append_variable(rcfile, 'C_INCLUDE_PATH', path) append_variable(rcfile, 'CPLUS_INCLUDE_PATH', path) def run(_): """Run the command. """ source_assistrc() assistrc() ```
{ "source": "jmlopez-rod/pyjoint", "score": 3 }
#### File: pyjoint/pyjoint/__main__.py ```python import argparse import textwrap from pyjoint.__version__ import VERSION def parse_options(): """Interpret the command line inputs and options. """ desc = """ pyjoint computes the miter and tilt angles of polyhedron faces. """ ver = "pyjoint %s" % VERSION epi = """ more info: http://jmlopez-rod.github.com/pyjoint version: pyjoint %s """ % VERSION raw = argparse.RawDescriptionHelpFormatter argp = argparse.ArgumentParser(formatter_class=raw, version=ver, description=textwrap.dedent(desc), epilog=textwrap.dedent(epi)) argp.add_argument('inputfile', type=str, help='input file to process') return argp.parse_args() def run(): """Run pyjoint from the command line. """ arg = parse_options() print arg if __name__ == '__main__': run() ``` #### File: pyjoint/pyjoint/__version__.py ```python VERSION_INFO = (0, 0, 0, 'alpha', 0) def get_version(version_info): """Return a PEP-386 compliant version number from version_info.""" assert len(version_info) == 5 assert version_info[3] in ('alpha', 'beta', 'rc', 'final') parts = 2 if version_info[2] == 0 else 3 main = '.'.join([str(part) for part in version_info[:parts]]) sub = '' if version_info[3] == 'alpha' and version_info[4] == 0: sub = '.dev' elif version_info[3] != 'final': mapping = {'alpha': 'a', 'beta': 'b', 'rc': 'c'} sub = mapping[version_info[3]] + str(version_info[4]) return str(main + sub) VERSION = get_version(VERSION_INFO) ```
{ "source": "JMLourier/PySyft", "score": 2 }
#### File: syft/ast/method_test.py ```python from syft.ast.callable import Callable from syft.ast.method import Method def test_method_constructor() -> None: method = Method() assert issubclass(type(method), Callable) ``` #### File: lib/torch/device_test.py ```python import torch as th # syft absolute import syft as sy from syft.core.common.uid import UID from syft.lib.python import String def test_device() -> None: device = th.device("cuda") assert device.type == "cuda" assert device.index is None def test_device_init() -> None: bob = sy.VirtualMachine(name="Bob") client = bob.get_client() torch = client.torch type_str = String("cuda:0") str_pointer = type_str.send(client) device_pointer = torch.device(str_pointer) assert type(device_pointer).__name__ == "devicePointer" assert isinstance(device_pointer.id_at_location, UID) ```
{ "source": "jmloveyj/autoSweep", "score": 3 }
#### File: jmloveyj/autoSweep/mkMap.py ```python import numpy as np import cv2 from matplotlib import pyplot as plt currentWindowId = 0 def prepareWindow(img, title, ifGray = False): global currentWindowId currentWindowId = currentWindowId +1 plt.subplot(3,3,currentWindowId) plt.title(title) plt.xticks([]) plt.yticks([]) if(ifGray): plt.imshow(img,'gray') else: plt.imshow(img) img = cv2.imread('room2.jpg') gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) bg = thresh prepareWindow(bg,"original", True) kernel = np.ones((3,3),np.uint8) #去噪音 bigObstacle = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE,kernel, iterations=2) prepareWindow(bigObstacle,"real map", True) cv2.imwrite('multiRoom.pgm',bigObstacle) greyBigObstacle = bigObstacle greyBigObstacle[bigObstacle<256] = 220 prepareWindow(greyBigObstacle,"graph",True) cv2.imwrite('room_grey.pgm',greyBigObstacle) plt.show() ```
{ "source": "jmlowe/amieclient", "score": 3 }
#### File: amieclient/packet/user.py ```python from .base import Packet, PacketInvalidData class NotifyUserModify(Packet): _packet_type = 'notify_account_inactivate' _expected_reply = [{'type': 'inform_transaction_complete', 'timeout': 30240}] _data_keys_required = [ 'ActionType', 'PersonID', ] _data_keys_not_required_in_reply = [] _data_keys_allowed = [ 'AcademicDegree', 'BusinessPhoneComment', 'BusinessPhoneExtension', 'BusinessPhoneNumber', 'City', 'Country', 'Department', 'DnList', 'Email', 'Fax', 'FirstName', 'HomePhoneComment', 'HomePhoneExtension', 'HomePhoneNumber', 'LastName', 'MiddleName', 'Organization', 'OrgCode', 'State' ] def validate_data(self, raise_on_invalid=False): action_type = self.ActionType if action_type not in ['add', 'delete', 'replace']: if raise_on_invalid: error_str = 'Invalid action type for notify_user_modify: "{}"'.format(action_type) raise PacketInvalidData(error_str) else: return False return super().validate_data(raise_on_invalid) class RequestUserModify(Packet): _packet_type = 'request_user_modify' _expected_reply = [{'type': 'inform_transaction_complete', 'timeout': 30240}] _data_keys_required = [ 'ActionType', 'PersonID', ] _data_keys_not_required_in_reply = [] _data_keys_allowed = [ 'AcademicDegree', 'BusinessPhoneComment', 'BusinessPhoneExtension', 'BusinessPhoneNumber', 'CitizenshipList', 'CitizenshipList', 'City', 'Country', 'Department', 'DnList', 'Email', 'Fax', 'FirstName', 'HomePhoneComment', 'HomePhoneExtension', 'HomePhoneNumber', 'LastName', 'MiddleName', 'NsfStatusCode', 'Organization', 'OrgCode', 'State', 'StreetAddress', 'StreetAddress2', 'Title', 'Zip', ] def validate_data(self, raise_on_invalid=False): action_type = self.ActionType if action_type not in ['add', 'delete', 'replace']: if raise_on_invalid: error_str = 'Invalid action type for request_user_modify: "{}"'.format(action_type) raise PacketInvalidData(error_str) else: return False return super().validate_data(raise_on_invalid) ```
{ "source": "jmloyola/early-classification", "score": 2 }
#### File: early-classification/src/early_text_classifier.py ```python import glob from preprocess_dataset import PreprocessDataset from context_information import ContextInformation from partial_information_classifier import PartialInformationClassifier from decision_classifier import DecisionClassifier import numpy as np from sklearn.metrics import recall_score, accuracy_score, f1_score, precision_score, confusion_matrix,\ classification_report import pprint as pp import pickle import os class EarlyTextClassifier: def __init__(self, etc_kwargs, preprocess_kwargs, cpi_kwargs, context_kwargs, dmc_kwargs, unique_labels=None, dictionary=None, verbose=True): self.dataset_path = etc_kwargs['dataset_path'] self.dataset_name = etc_kwargs['dataset_name'] self.initial_step = etc_kwargs['initial_step'] self.step_size = etc_kwargs['step_size'] self.preprocess_kwargs = preprocess_kwargs self.cpi_kwargs = cpi_kwargs self.context_kwargs = context_kwargs self.dmc_kwargs = dmc_kwargs self.cpi_kwargs['initial_step'] = self.initial_step self.cpi_kwargs['step_size'] = self.step_size self.context_kwargs['initial_step'] = self.initial_step self.context_kwargs['step_size'] = self.step_size self.dictionary = dictionary self.ci = None self.cpi = None self.dmc = None self.unique_labels = unique_labels self.is_loaded = False self.verbose = verbose self.load_model() def verboseprint(self, *args, **kwargs): if self.verbose: print(*args, **kwargs) def has_same_parameters(self, model): if (self.dataset_name == model.dataset_name) and \ (self.initial_step == model.initial_step) and \ (self.step_size == model.step_size) and \ (self.preprocess_kwargs == model.preprocess_kwargs) and \ (self.cpi_kwargs['train_dataset_percentage'] == model.cpi_kwargs['train_dataset_percentage']) and \ (self.cpi_kwargs['test_dataset_percentage'] == model.cpi_kwargs['test_dataset_percentage']) and \ (self.cpi_kwargs['doc_rep'] == model.cpi_kwargs['doc_rep']) and \ (self.cpi_kwargs['cpi_clf'].get_params() == model.cpi_kwargs['cpi_clf'].get_params()) and \ (self.context_kwargs == model.context_kwargs) and \ (self.dmc_kwargs['train_dataset_percentage'] == model.dmc_kwargs['train_dataset_percentage']) and \ (self.dmc_kwargs['test_dataset_percentage'] == model.dmc_kwargs['test_dataset_percentage']) and \ (self.dmc_kwargs['dmc_clf'].get_params() == model.dmc_kwargs['dmc_clf'].get_params()): return True else: return False def copy_attributes(self, model): self.ci = model.ci self.cpi = model.cpi self.dmc = model.dmc def load_model(self): possible_files = glob.glob(f'models/{self.dataset_name}/*.pickle') for file in possible_files: with open(file, 'rb') as f: loaded_model = pickle.load(f) if self.has_same_parameters(loaded_model): self.verboseprint('Model already trained. Loading it.') self.copy_attributes(loaded_model) self.is_loaded = True def print_params_information(self): print("Dataset name: {}".format(self.dataset_name)) print("Dataset path: {}".format(self.dataset_path)) print('-'*80) print('Pre-process params:') pp.pprint(self.preprocess_kwargs) print('-' * 80) print('CPI params:') pp.pprint(self.cpi_kwargs) print('-' * 80) print('Context Information params:') pp.pprint(self.context_kwargs) print('-' * 80) print('DMC params:') pp.pprint(self.dmc_kwargs) print('-' * 80) def preprocess_dataset(self): self.verboseprint('Pre-processing dataset') # Search dataset for the dataset, both training and test sets. train_path = glob.glob(f'{self.dataset_path}/**/{self.dataset_name}_train.txt', recursive=True)[0] test_path = glob.glob(f'{self.dataset_path}/**/{self.dataset_name}_test.txt', recursive=True)[0] prep_data = PreprocessDataset(self.preprocess_kwargs, self.verbose) self.dictionary = prep_data.build_dict(train_path) Xtrain = prep_data.transform_into_numeric_array(train_path) ytrain, self.unique_labels = prep_data.get_labels(train_path) Xtest = prep_data.transform_into_numeric_array(test_path) ytest, _ = prep_data.get_labels(test_path) self.verboseprint(f'Xtrain.shape: {Xtrain.shape}') self.verboseprint(f'ytrain.shape: {ytrain.shape}') self.verboseprint(f'Xtest.shape: {Xtest.shape}') self.verboseprint(f'ytest.shape: {ytest.shape}') return Xtrain, ytrain, Xtest, ytest def fit(self, Xtrain, ytrain): if not self.is_loaded: self.verboseprint('Training EarlyTextClassifier model') self.ci = ContextInformation(self.context_kwargs, self.dictionary, self.verbose) self.ci.get_training_information(Xtrain, ytrain) self.cpi = PartialInformationClassifier(self.cpi_kwargs, self.dictionary, self.verbose) cpi_Xtrain, cpi_ytrain, cpi_Xtest, cpi_ytest = self.cpi.split_dataset(Xtrain, ytrain) self.verboseprint(f'cpi_Xtrain.shape: {cpi_Xtrain.shape}') self.verboseprint(f'cpi_ytrain.shape: {cpi_ytrain.shape}') self.verboseprint(f'cpi_Xtest.shape: {cpi_Xtest.shape}') self.verboseprint(f'cpi_ytest.shape: {cpi_ytest.shape}') self.cpi.fit(cpi_Xtrain, cpi_ytrain) cpi_predictions, cpi_percentages = self.cpi.predict(cpi_Xtest) dmc_X, dmc_y = self.ci.generate_dmc_dataset(cpi_Xtest, cpi_ytest, cpi_predictions) self.dmc = DecisionClassifier(self.dmc_kwargs, self.verbose) dmc_Xtrain, dmc_ytrain, dmc_Xtest, dmc_ytest = self.dmc.split_dataset(dmc_X, dmc_y) self.verboseprint(f'dmc_Xtrain.shape: {dmc_Xtrain.shape}') self.verboseprint(f'dmc_ytrain.shape: {dmc_ytrain.shape}') self.verboseprint(f'dmc_Xtest.shape: {dmc_Xtest.shape}') self.verboseprint(f'dmc_ytest.shape: {dmc_ytest.shape}') self.dmc.fit(dmc_Xtrain, dmc_ytrain) dmc_prediction, _ = self.dmc.predict(dmc_Xtest) else: self.verboseprint('EarlyTextClassifier model already trained') def predict(self, Xtest, ytest): self.verboseprint('Predicting with the EarlyTextClassifier model') cpi_predictions, cpi_percentages = self.cpi.predict(Xtest) dmc_X, dmc_y = self.ci.generate_dmc_dataset(Xtest, ytest, cpi_predictions) dmc_prediction, prediction_time = self.dmc.predict(dmc_X) return cpi_percentages, cpi_predictions, dmc_prediction, prediction_time, dmc_y def time_penalization(self, k, penalization_type, time_threshold): if penalization_type == 'Losada-Crestani': return 1.0 - ((1.0 + np.exp(k - time_threshold))**(-1)) return 0.0 def score(self, y_true, cpi_prediction, cpi_percentages, prediction_time, penalization_type, time_threshold, costs, print_ouput=True): y_pred = [] k = [] num_docs = len(y_true) for i in range(num_docs): t = prediction_time[i] p = cpi_percentages[prediction_time[i]] y_pred.append(cpi_prediction[t, i]) k.append(p) y_pred = np.array(y_pred) k = np.array(k) error_score = np.zeros(num_docs) if len(self.unique_labels) > 2: for idx in range(num_docs): if y_true[idx] == y_pred[idx]: error_score[idx] = self.time_penalization(k[idx], penalization_type, time_threshold) * costs['c_tp'] else: error_score[idx] = costs['c_fn'] + np.sum(y_true == y_true[idx]) / num_docs else: for idx in range(num_docs): if (y_true[idx] == 1) and (y_pred[idx] == 1): error_score[idx] = self.time_penalization(k[idx], penalization_type, time_threshold) * costs['c_tp'] elif (y_true[idx] == 1) and (y_pred[idx] == 0): error_score[idx] = costs['c_fn'] elif (y_true[idx] == 0) and (y_pred[idx] == 1): if costs['c_fp'] == 'proportion_positive_cases': # TODO: document this case. error_score[idx] = np.sum(y_true == 1) / num_docs else: error_score[idx] = costs['c_fp'] elif (y_true[idx] == 0) and (y_pred[idx] == 0): error_score[idx] = 0 precision_etc = precision_score(y_true, y_pred, average='macro') recall_etc = recall_score(y_true, y_pred, average='macro') f1_etc = f1_score(y_true, y_pred, average='macro') accuracy_etc = accuracy_score(y_true, y_pred) ede_score = error_score.mean() confusion_matrix_etc = confusion_matrix(y_true, y_pred) if print_ouput: print(f'{"Score ETC":^50}') print('-'*50) print(f'{"Precision average=macro:":>25} {precision_etc:.3}') print(f'{"Recall average=macro:":>25} {recall_etc:.3}') print(f'{"F1 Measure average=macro:":>25} {f1_etc:.3}') print(f'{"Accuracy:":>25} {accuracy_etc:.3}') print(f'{"EDE o=":>21}{time_threshold:<3}: {ede_score:.3}') print('-' * 50) print(classification_report(y_true, y_pred, target_names=self.unique_labels)) # The reported averages are a prevalence-weighted macro-average across classes (equivalent to # precision_recall_fscore_support with average='weighted'). # 'weighted': Calculate metrics for each label, and find their average, weighted by support (the number of # true instances for each label). This alters ‘macro’ to account for label imbalance; it can result in an # F-score that is not between precision and recall. print('-' * 50) print('Confusion matrix:') pp.pprint(confusion_matrix_etc) return precision_etc, recall_etc, f1_etc, accuracy_etc, ede_score def save_model(self): if not self.is_loaded: self.verboseprint('Saving model') existing_files = glob.glob(f'models/{self.dataset_name}/*.pickle') existing_file_names = [int(os.path.splitext(os.path.basename(x))[0]) for x in existing_files] max_file_name = max(existing_file_names) if existing_files != [] else 0 file_path = f'models/{self.dataset_name}/{max_file_name + 1}.pickle' os.makedirs(os.path.dirname(file_path), exist_ok=True) with open(file_path, 'wb') as fp: pickle.dump(self, fp) else: self.verboseprint('Model already in disk') ``` #### File: early-classification/src/preprocess_dataset.py ```python import numpy as np class PreprocessDataset: def __init__(self, preprocess_kwargs, verbose=True): self.min_word_length = preprocess_kwargs['min_word_length'] self.max_number_words = preprocess_kwargs['max_number_words'] self.representation = 'word_tf' self.dictionary = None self.unique_labels = None self.verbose = verbose def verboseprint(self, *args, **kwargs): if self.verbose: print(*args, **kwargs) def read_raw_dataset(self, path): """" Read raw dataset and returns a list of tuples (label, document) for every document in the dataset. Inputs: - path: path to the file of the raw dataset Output: List of tuples (label, document) """ # Store the dataset as a list of tuples (label, document). dataset = [] i = 0 with open(path, 'r') as f: for line in f: try: label, document = line.split(maxsplit=1) except: print( 'Error while reading dataset: {}. The {}º line does not follow the form \"label\tdocument\"'.format( path, i)) continue # Remove new line character from document. document = document[:-1] dataset.append((label, document)) i = i + 1 return dataset def build_dict(self, path): """ Returns a dictionary with the words of the train dataset. The dictionary contains the most relevant words with an index indicating its position in the list of number of times each word appears. It should be noted that the value zero of the index is reserved for the words UNKOWN. Inputs: - path: path to the file containing the raw dataset. - min_word_length: minimum number of characters that every word in the new dictionary must have. - max_number_words: maximum number of words for the dictionary. Use 'all' to consider all the terms in training. - representation: document representation ['word_tf', 'word_tf_idf', 'character_3_gram_tf', 'character_3_gram_tf_idf', 'word_3_gram_tf', 'word_3_gram_tf_idf']. Output: dictionary containing the most relevant words in the corpus ordered by the amount of times they appear. """ dataset = self.read_raw_dataset(path) documents = [x[1] for x in dataset] self.verboseprint('Building dictionary') wordcount = dict() for ss in documents: words = ss.strip().lower().split() for w in words: if len(w) < self.min_word_length: continue if w not in wordcount: wordcount[w] = 1 else: wordcount[w] += 1 # Para Python 3 hace falta transformar en lista. Por ejemplo: list(wordcount.values()) counts = list(wordcount.values()) keys = list(wordcount.keys()) self.verboseprint(np.sum(counts), ' total words ', len(keys), ' unique words') # Hace un slicing del arreglo de counts ordenados. # En este caso el slicing toma todos los elementos, pero el paso es negativo, indicando que lo procesa en el orden # inverso. # numpy.argsort(counts)[::-1] es lo mismo que numpy.argsort(counts)[0:len(counts):-1] # Assume n is the number of elements in the dimension being sliced. Then, if i is not given it defaults to 0 for # k > 0 and n - 1 for k < 0 . If j is not given it defaults to n for k > 0 and -n-1 for k < 0 . If k is not given # it defaults to 1. Note that :: is the same as : and means select all indices along this axis. # https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html sorted_idx = np.argsort(counts)[::-1] worddict = dict() for idx, ss in enumerate(sorted_idx): if (self.max_number_words != 'all') and (self.max_number_words <= idx): self.verboseprint(f'Considering only {self.max_number_words} unique terms plus the UNKOWN token') break worddict[keys[ss]] = idx + 1 # leave 0 (UNK) self.dictionary = worddict return worddict def transform_into_numeric_array(self, path): """ Given the path to a dataset, this function transform a list of documents with a numpy array of shape (num_docs, max_length+1), where the words are replaced for the index given by the dictionary. Inputs: - path: path to the file containing the raw dataset. - dictionary: dictionary with the words that matter. Output: Numpy array of shape (num_docs, max_length+1) of documents with the words replaced for the index given by the dictionary. Note: The index the dictionary gives is the position of the word if we were to arrange them from more to less taking into account the number of occurrences of every words in the training dataset. The number 0 is reserved for the UNKOWN token and the number -1 is reserved to indicate the end of the document. """ dataset = self.read_raw_dataset(path) num_docs = len(dataset) seqs = [None] * num_docs max_length = 0 for idx, line in enumerate(dataset): document = line[1] words = document.strip().lower().split() seqs[idx] = [self.dictionary[w] if w in self.dictionary else 0 for w in words] length_doc = len(words) if max_length < length_doc: max_length = length_doc preprocess_dataset = -2 * np.ones((num_docs, max_length + 1), dtype=int) for idx in range(num_docs): length_doc = len(seqs[idx]) preprocess_dataset[idx, 0:length_doc] = seqs[idx] preprocess_dataset[idx, length_doc] = -1 return preprocess_dataset def get_labels(self, path): """" Read raw dataset and returns a tuple (final_labels, unique_labels). final_labels is a numpy.array of integers containing the label of every document. unique_labels is list containing every label (without repetition) ordered. Only used for the test set. Inputs: - path: path to the file of the raw dataset - unique_labels: list containing every label (without repetition) ordered. Output: tuple (final_labels, unique_labels). - final_labels is a numpy.array of integers containing the label of every document. - unique_labels is list containing every label (without repetition) ordered. """ labels = [] ul = [] if self.unique_labels is None else self.unique_labels with open(path, 'r') as f: for idx, line in enumerate(f): try: label, _ = line.split(maxsplit=1) except RuntimeWarning: # Arbitrary exception type print( 'Error while reading dataset: {}. The {}º line does not follow the form \"label\tdocument\"'.format( path, idx)) continue labels.append(label) if (self.unique_labels is None) and (label not in ul): ul.append(label) ul.sort() # Sort list of unique_labels. num_documents = len(labels) final_labels = np.empty([num_documents], dtype=int) for idx, l in enumerate(labels): final_labels[idx] = ul.index(l) self.unique_labels = ul return final_labels, ul ```
{ "source": "jml/pyhazard", "score": 2 }
#### File: jml/pyhazard/example.py ```python import random from pyrsistent import pmap # TODO: Export from public names. from hazard._client import ( get_game_info, get_round_info, join_game, play_turn, register_game, register_user, ) from hazard._rules import iter_valid_plays from hazard._client import _make_credentials """ The server running Hazard. https://haverer.jml.io/ in production. """ BASE_URL = 'http://localhost:3000' # TODO: These endpoints ought to be in the library, rather than something that # users need to know. USERS_ENDPOINT = BASE_URL + '/users' GAMES_ENDPOINT = BASE_URL + '/games' def get_game_endpoint(game): # TODO: This also should be in the library. return BASE_URL + game['url'] def get_round_endpoint(round_url): # TODO: This also should be in the library. return BASE_URL + round_url def player_info(round_info, player_id): for info in round_info['players']: if info['id'] == player_id: return info def get_status(player): if player['active']: if player['protected']: return ' (protected)' else: return '' else: return ' (eliminated)' def print_round_info(round_info): current_player = round_info['currentPlayer'] print 'Players:' for player in round_info['players']: status = get_status(player) if player['id'] == current_player: current = '* ' else: current = ' ' print '{}{}{}: {}'.format( current, player['id'], status, player['discards']) print def choose_play(hand, dealt_card, myself, others): valid_plays = list(iter_valid_plays(hand, dealt_card, myself, others)) try: return random.choice(valid_plays) except IndexError: return None def play_round(users, round_url): while True: # Figure out whose turn it is round_info = get_round_info(None, round_url) print_round_info(round_info) current_player_id = round_info.get('currentPlayer', None) if not current_player_id: return round_info['winners'] # Play as that person current_player = users[current_player_id] current_player_creds = _make_credentials(current_player) current_player_view = get_round_info(current_player_creds, round_url) # Figure out their hand dealt_card = current_player_view['dealtCard'] hand = player_info(current_player_view, current_player_id)['hand'] others = [ p['id'] for p in round_info['players'] if p['id'] != current_player_id] # Choose a play at random. play = choose_play(dealt_card, hand, current_player_id, others) print 'Playing: {}'.format(play) response = play_turn(current_player_creds, round_url, play) print 'Result: {}'.format(response) def main(): # Register two users, 'foo' and 'bar'. foo = register_user(USERS_ENDPOINT, 'foo') foo_creds = _make_credentials(foo) bar = register_user(USERS_ENDPOINT, 'bar') bar_creds = _make_credentials(bar) users = pmap({ foo['id']: foo, bar['id']: bar, }) # 'foo' creates a 2-player game game = register_game(foo_creds, GAMES_ENDPOINT, 2) game_url = get_game_endpoint(game) # 'bar' joins the game, and the game begins. join_game(bar_creds, game_url) while True: game = get_game_info(None, game_url) print 'Game: {}'.format(game) if game['state'] != 'in-progress': break current_round_url = get_round_endpoint(game['currentRound']) winners = play_round(users, current_round_url) print 'Round over. Winners: {}'.format(winners) print 'Game over. Winners: {}'.format(game['winners']) if __name__ == '__main__': main() ``` #### File: pyhazard/hazard/_client.py ```python import json import requests from pyrsistent import pmap def register_user(users_endpoint, username): data = {'username': username} result = pmap(requests.post(users_endpoint, data=json.dumps(data)).json()) return result.update(data) def _make_credentials(registration_data): return (registration_data['username'], registration_data['password']) def get_user_info(credentials, user_info_endpoint): return pmap( requests.get( user_info_endpoint, auth=credentials, headers={'Accept': 'application/json'} ).json()) # TODO: Handle errors # TODO: Encode routes in functions, rather than requiring full URLs to be # passed in. # TODO: Double check that when we play Clown we actually find out what they've # got. def register_game(credentials, game_endpoint, num_players, turn_timeout=3600): data = {'numPlayers': num_players, 'turnTimeout': turn_timeout} response = requests.post( game_endpoint, data=json.dumps(data), auth=credentials) result = response.json() result['url'] = response.headers['location'] return pmap(result) def join_game(credentials, game_endpoint): return pmap(requests.post(game_endpoint, data='', auth=credentials).json()) def get_game_info(credentials, game_endpoint): return pmap( requests.get( game_endpoint, auth=credentials, headers={'Accept': 'application/json'}, ).json()) def get_round_info(credentials, round_endpoint): return pmap( requests.get( round_endpoint, auth=credentials, headers={'Accept': 'application/json'}, ).json()) def play_turn(credentials, round_endpoint, play): # XXX: Necessary for JSON serialization. Is there a better way? if play is not None: play = dict(play.items()) return pmap( requests.post( round_endpoint, auth=credentials, data=json.dumps(play)).json()) ```
{ "source": "jml/quay-admin", "score": 2 }
#### File: quay-admin/quayadmin/_impl.py ```python import argparse import json import os import sys # We need to make sure we know where our SSL certificates are. # See https://stackoverflow.com/questions/34358935/python-treq-fails-with-twisted-openssl-error-due-to-empty-trust-store-on-windows import certifi os.environ["SSL_CERT_FILE"] = certifi.where() import attr import treq from twisted.internet.defer import gatherResults, inlineCallbacks QUAY_IO_ENDPOINT = 'https://quay.io/api/v1' QUAY_TOKEN_ENV_NAME = 'QUAY_TOKEN' @attr.s(frozen=True) class Registry(object): """A quay.io registry.""" endpoint = attr.ib(default=QUAY_IO_ENDPOINT) token = attr.ib(default=None) def _request(self, method, path, headers=None, **kwargs): url = '%s/%s' % (self.endpoint, path) headers = headers if headers else {} if self.token: headers['Authorization'] = 'Bearer %s' % (self.token,) return treq.request(method, url, headers=headers, **kwargs).addCallback(treq.json_content) @inlineCallbacks def list_repositories(self, namespace): """List all the repositories in a given namespace. Ignores pagination completely. """ repos = yield self._request( 'GET', 'repository', params={'namespace': namespace}) return [Repository(**repo) for repo in repos['repositories']] @inlineCallbacks def get_user_permissions(self, repo_spec): """Get the user permissions for a repository.""" path = 'repository/%s/permissions/user/' % (repo_spec,) perms = yield self._request('GET', path) return map(UserPermission.from_dict, perms['permissions'].values()) @inlineCallbacks def get_team_permissions(self, repo_spec): path = 'repository/%s/permissions/team/' % (repo_spec,) perms = yield self._request('GET', path) return map(TeamPermission.from_dict, perms['permissions'].values()) @attr.s(frozen=True, cmp=True) class Repository(object): """A quay.io repository.""" namespace = attr.ib() name = attr.ib() kind = attr.ib() is_starred = attr.ib() is_public = attr.ib() description = attr.ib() @property def spec(self): return '%s/%s' % (self.namespace, self.name) @classmethod def from_dict(cls, data): return cls(**data) @inlineCallbacks def get_repository_permissions(repository, registry): """Get the user and team permissions for a repository. Returns a Deferred RepositoryPermissions. """ [user_perms, team_perms] = yield gatherResults([ registry.get_user_permissions(repository.spec), registry.get_team_permissions(repository.spec), ]) return RepositoryPermissions( repository=repository, user_permissions=user_perms, team_permissions=team_perms, ) @attr.s(frozen=True) class Avatar(object): color = attr.ib() hash = attr.ib() kind = attr.ib() name = attr.ib() @attr.s(frozen=True) class Permission(object): """Base permission class.""" avatar = attr.ib() name = attr.ib() role = attr.ib() @classmethod def from_dict(cls, data): avatar_data = data.pop('avatar') avatar = Avatar(**avatar_data) return cls(avatar=avatar, **data) @attr.s(frozen=True) class UserPermission(Permission): """A permission a user has.""" is_org_member = attr.ib() is_robot = attr.ib() @attr.s(frozen=True) class TeamPermission(Permission): """A permission a team has.""" @attr.s(frozen=True) class RepositoryPermissions(object): """The permissions for a repository.""" repository = attr.ib() user_permissions = attr.ib() team_permissions = attr.ib() @classmethod def from_dict(cls, data): return cls( repository=Repository.from_dict(data['repository']), user_permissions=map(UserPermission.from_dict, data['user_permissions']), team_permissions=map(TeamPermission.from_dict, data['team_permissions']), ) @attr.s(frozen=True) class AllRepositoryPermissions(object): _repository_permissions = attr.ib() @classmethod @inlineCallbacks def from_registry(cls, registry, namespace): repos = yield registry.list_repositories(namespace) perms = yield map_concurrently(get_repository_permissions, repos, registry) return cls(perms) @classmethod def from_json_file(cls, state_file_path): with open(state_file_path, 'r') as state_file: raw_perms = json.load(state_file) return cls([RepositoryPermissions.from_dict(perm) for perm in raw_perms]) def to_json_file(self, state_file_path): with open(state_file_path, 'w') as state_file: json.dump([attr.asdict(perm) for perm in self._repository_permissions], state_file) def find_repos_with_external_users(self): repos = {} for perm in self._repository_permissions: external_users = [user for user in perm.user_permissions if not user.is_org_member] if external_users: repos[perm.repository] = external_users return repos def map_concurrently(f, xs, *args, **kwargs): """Run 'f' concurrently over each 'x' in 'xs'. Also passes through '*args' and '**kwargs'. Assumes 'f' returns Deferred values. """ deferreds = [f(x, *args, **kwargs) for x in xs] return gatherResults(deferreds) def make_argument_parser(): parser = argparse.ArgumentParser(description='Show information about quay.io permissions') parser.add_argument('namespace', type=str, help='Namespace to look in') parser.add_argument( '--from-state', type=str, help='If provided, get quay.io state from a file, rather than an API') parser.add_argument( '--api-root', type=str, default=QUAY_IO_ENDPOINT, help='Root of quay.io API. Ignored if --from-state provided.') parser.add_argument( '--dump-state', type=str, help='If provided, dump state to a file. Will overwrite file if it exists.') return parser @inlineCallbacks def main(reactor, *args): parser = make_argument_parser() config = parser.parse_args(args) if config.from_state: perms = AllRepositoryPermissions.from_json_file(config.from_state) else: quay_token = os.environ.get(QUAY_TOKEN_ENV_NAME, None) registry = Registry(endpoint=config.api_root, token=quay_token) perms = yield AllRepositoryPermissions.from_registry(registry, config.namespace) external = perms.find_repos_with_external_users() for repo, users in external.items(): print(repo.spec) for user in users: print('- %s [%s]%s' % ( user.name, user.role, ' (robot)' if user.is_robot else '', )) print() if config.dump_state: perms.to_json_file(config.dump_state) if external: sys.exit(1) def script(): """Command-line script for quay-admin.""" from twisted.internet.task import react react(main, sys.argv[1:]) ```
{ "source": "jmlrt/redis-tools", "score": 3 }
#### File: redis-tools/redistools/tools.py ```python import logging import os import time from .redis_instances import RedisInstance def get_config(): """ Get configuration from environment variables """ config = {'dry_run': os.getenv('DRY_RUN', "yes"), 'interval': int(os.getenv('INTERVAL', '30')), 'redis_endpoint': os.getenv('REDIS_ENDPOINT', 'localhost:6379'), 'redis_namespace': os.getenv('REDIS_NAMESPACE', '*'), 'redis_target_endpoint': os.getenv('REDIS_TARGET_ENDPOINT', 'none')} # Get configuration from environment variables # Logging configuration log_level = os.getenv('LOG_LEVEL', 'INFO') logging.basicConfig( format='%(name)s %(asctime)s %(levelname)s %(message)s', level=log_level ) return config def compare_keys(namespace, redis_instance, redis_target_instance): """ Compare Redis keys between source and target Redis instances """ # Get keys for both Redis source_keys = redis_instance.list_keys(namespace) target_keys = redis_target_instance.list_keys(namespace) # Get keys present only in source Redis new_keys = source_keys.difference(target_keys) if len(new_keys) > 0: logging.info('New keys: {0}'.format(new_keys)) else: logging.info('No new keys found on {0}'.format(redis_instance.get_endpoint())) return new_keys def sync(): """ Copy new keys from source Redis to target Redis """ # Initialize configuration config = get_config() # Initialize redis instances redis_instance = RedisInstance(config['redis_endpoint']) redis_target_instance = RedisInstance(config['redis_target_endpoint']) while True: new_keys = compare_keys(config['redis_namespace'], redis_instance, redis_target_instance) # Do nothing in dry run mode if config['dry_run'] != "yes": # Start copy keys only if there in new keys to copy if len(new_keys) > 0: logging.info('New key to add on {0}'.format(redis_target_instance.get_endpoint())) keys_detailed = redis_instance.get_keys(new_keys) redis_target_instance.set_keys(keys_detailed) else: logging.info('Every keys are already existing in {}'.format(redis_target_instance.get_endpoint())) # Sleep if interval is set or exit if config['interval'] > 0: time.sleep(config['interval']) else: break def monitor(): """ Monitor Redis instances :return: """ # Initialize configuration config = get_config() # Initialize source Redis Instance redis_instance = RedisInstance(config['redis_endpoint']) while True: # List keys source_keys = redis_instance.list_keys(config['redis_namespace']) logging.info('Keys for Redis Source {0}: {1}'.format(redis_instance.get_endpoint(), source_keys)) # Initialize target Redis if config['redis_target_endpoint'] != 'none': redis_target_instance = RedisInstance(config['redis_target_endpoint']) target_keys = redis_target_instance.list_keys(config['redis_namespace']) logging.info('Keys for Redis Target {0}: {1}'.format(redis_target_instance.get_endpoint(), target_keys)) # Sleep if interval is set or exit if config['interval'] > 0: time.sleep(config['interval']) else: break ```
{ "source": "jmlrt/spreadsheet-api", "score": 3 }
#### File: spreadsheet-api/spreadsheet_api/worksheet.py ```python import json from collections import namedtuple from aiogoogle import Aiogoogle from aiogoogle.auth.creds import ServiceAccountCreds SCOPES = ["https://www.googleapis.com/auth/spreadsheets.readonly"] class Worksheet: """A class representing a worksheet from a Google Spreadsheet""" def __init__(self, service_account, sid, srange, column_names): """Initialize a worksheet from a Google Spreadsheet""" self.service_account = service_account self.id = sid self.range = srange row_default_values = [""] * (len(column_names) - 1) self.row_named_tuple = namedtuple( "Row", column_names, defaults=row_default_values ) self.rows = {} async def load_sheet(self, clear=False): """Load all worksheet rows""" if clear: self.rows.clear() else: # TODO check file modification date instead # https://developers.google.com/drive/api/v3/reference/files if len(self.rows) > 0: return async for row in self.load_sheet_row(): try: key = len(self.rows) + 1 row = self.row_named_tuple(*row) self.rows[key] = row # IndexError handle error for row with 0 columns # TypeError handle error for row returning None except (IndexError, TypeError): continue async def load_sheet_row(self): """Fetch the worksheet values and return line by line""" with open(self.service_account) as f: service_account_key = json.load(f) creds = ServiceAccountCreds(scopes=SCOPES, **service_account_key) async with Aiogoogle(service_account_creds=creds) as aiogoogle: service = await aiogoogle.discover("sheets", "v4") sheet = await aiogoogle.as_service_account( service.spreadsheets.values.get(spreadsheetId=self.id, range=self.range) ) for line in sheet["values"]: yield line async def get_sheet(self): """Return all sheet rows""" await self.load_sheet() rows = [] for key in self.rows.keys(): rows.append(await self.get_row(key)) return rows async def get_row(self, key): """Return the row for a given key""" await self.load_sheet() # TODO: filter fields starting by "empty_columns" row = {} row["id"] = key # This is using the union operator for merging dict introduced in # Python 3.9 (https://peps.python.org/pep-0584/) row |= self.rows[key]._asdict() return row ```
{ "source": "jmlrt/toolbox", "score": 2 }
#### File: toolbox/python/backup_datas.py ```python from utils.files import ( create_checksum_file, compare_files, decrypt_file, encrypt_file, rename_file, shred_file, ) from utils.shell import check_command_in_path, check_environment_variable import argparse from datetime import datetime from getpass import getpass import logging import os import subprocess DATE = datetime.today() FORMATED_DATE = DATE.strftime("%Y%m%d") WORK_DIR = f"{os.environ['HOME']}/Downloads" FILES_TO_RENAME = { f"{FORMATED_DATE}_pocket_bookmarks.html": "ril_export.html", f"{FORMATED_DATE}_shaarli_bookmarks.html": f"bookmarks_all_{FORMATED_DATE}_*.html", f"{FORMATED_DATE}_firefox_bookmarks.html": f"bookmarks.html", f"{FORMATED_DATE}_firefox_bookmarks.json": f"bookmarks-{DATE.strftime('%Y-%m-%d')}.json", f"{FORMATED_DATE}_chrome_bookmarks.html": f"bookmarks_{DATE.strftime('%d_%m_%Y')}.html", f"{FORMATED_DATE}_todoist.zip": f"Todoist backup {DATE.strftime('%Y-%m-%d')}.zip", } BITWARDEN_EXPORTS = [ ("personal", "json", f"{WORK_DIR}/{FORMATED_DATE}_bitwarden_perso_export.json"), ("personal", "csv", f"{WORK_DIR}/{FORMATED_DATE}_bitwarden_perso_export.csv"), ("organization", "json", f"{WORK_DIR}/{FORMATED_DATE}_bitwarden_org_export.json"), ("organization", "csv", f"{WORK_DIR}/{FORMATED_DATE}_bitwarden_org_export.csv"), ] def backup_files(files_patterns): for file in files_patterns.keys(): try: rename_file(f"{WORK_DIR}/{files_patterns[file]}", f"{WORK_DIR}/{file}") except FileNotFoundError: logging.info(f"No file found matching {files_patterns[file]}") def encrypt_backup(file, passphrase): encrypted_file = encrypt_file(file, passphrase) # verify encrypted file decrypted_file = decrypt_file(encrypted_file, passphrase, f"{encrypted_file}.tmp") if compare_files(file, decrypted_file) is not True: raise Exception(f"{decrypted_file} hash doesn't match {file} hash") # write gpg file digest create_checksum_file(file) # shred original and tmp files shred_file(file) shred_file(decrypted_file) def export_bitwarden_secrets(): check_environment_variable("BW_SESSION", "You must be logged in to Bitwarden") gpg_passphrase = check_environment_variable("GPG_PASSPHRASE") organization_id = check_environment_variable("BW_ORGANIZATION_ID") check_command_in_path( "bw", "Please install Bitwarden CLI: https://bitwarden.com/help/article/cli/" ) def export_bitwarden_command(vault, password, file_format, file_path): bw_cmd = [ "bw", "export", password, "--output", file_path, "--format", file_format, ] if vault == "organization": bw_cmd.extend(["--organizationid", organization_id]) subprocess.run(bw_cmd) logging.info(f"Bitwarden {vault} vault exported in {file_format.upper()}") password = getpass("Enter Bitwarden password: ") for vault, file_format, file_path in BITWARDEN_EXPORTS: export_bitwarden_command(vault, password, file_format, file_path) encrypt_backup(file_path, gpg_passphrase) def rename_exports(): for file in FILES_TO_RENAME: try: rename_file(f"{WORK_DIR}/{FILES_TO_RENAME[file]}", f"{WORK_DIR}/{file}") except FileNotFoundError: logging.info(f"No file found matching {FILES_TO_RENAME[file]}") def main(): logging.basicConfig(level=logging.INFO) parser = argparse.ArgumentParser() parser.add_argument("command") command = parser.parse_args().command print(command) if command == "export-secrets": export_bitwarden_secrets() elif command == "rename-exports": rename_exports() else: logging.error("Command not found") if __name__ == "__main__": main() ``` #### File: snippets/clirunner_logging/hello.py ```python import click import logging logging.basicConfig(level=logging.INFO) @click.command() @click.argument("name") def hello(name): logging.info(f"Hello, {name}!") if __name__ == "__main__": hello() ``` #### File: snippets/clirunner_pdb/test_hello.py ```python from click.testing import CliRunner from hello import hello def test_hello_world(): runner = CliRunner() import pytest pytest.set_trace() result = runner.invoke(hello, ["world"], catch_exceptions=False) assert result.exit_code == 0 assert result.output == "Hello, world!\n" ```
{ "source": "jml/rules_haskell-old", "score": 2 }
#### File: rules_haskell-old/haskell/def.bzl ```python """Valid Haskell source files.""" HASKELL_FILETYPE = [ "hs", "lhs", ] # TODO: Once Bazel 0.6.0 is released, specify allowed fields using 'fields' # parameter. ghc_output = provider() def _haskell_toolchain(ctx): """Everything we need to build Haskell with GHC.""" # TODO: Assemble this from something like 'repositories', which fetches the # toolchain and uses that to build things, rather than assuming a system GHC # is installed. return struct( ghc_path = "ghc", ) def _dirname(path_str): if '/' in path_str: return path_str[:path_str.rfind('/')] return '' def _get_output_dir(ctx): return '/'.join([ctx.bin_dir.path, _dirname(ctx.build_file_path)]) def _path_segments(path): return [s for s in path.split('/') if s not in ('.', '')] def _declare_output_file(actions, build_dir, src_dir, src_file, extension): """Declare the output file of a GHC process. :param actions: The ``ctx.actions`` object :param build_dir: The directory BUILD is in. :param src_dir: The root of the module hierarchy :param src_file: File within 'src_dir' that's being compiled. e.g. ``$src_dir/Module/Hierarchy/Name.hs`` :param extension: The extension of the new file, either ``'.o'`` or ``'.hi'``. :return: A 'File' pointing at ``Module/Hierarchy/Name.(o|hi)`` """ src_segments = _path_segments(src_file.path) module_root = _path_segments(build_dir) + _path_segments(src_dir) if src_segments[:len(module_root)] != module_root: fail("Expected source file, %s, to be underneath source directory, %s" % (src_file, src_dir)) module_segments = src_segments[len(module_root):] if len(module_segments) == 0: fail("No source file left after trimming source directory (src_file=%s, src_dir=%s)" % (src_file, src_dir)) basename = module_segments[-1] extension_index = basename.rfind('.') if extension_index == -1: fail("Somehow got unexpected source filename, %s. Must be one of %s" % (basename, HASKELL_FILETYPE)) new_basename = basename[:extension_index] + extension new_path = '/'.join(module_segments[:-1] + [new_basename]) return actions.declare_file(new_path) def _hs_compile(toolchain, name, actions, srcs, deps, build_dir, output_dir, main_file=None, src_dir=None): """Compile a single Haskell module. To be able to use this, a reverse dependency is going to have to either 1. explicitly add the right directory to its search path with '-i', or 2. explicitly include the *.o (and maybe the *.hi?) in its args Still trying to figure out how to express "the right directory" in Bazel language. It's a directory such that the path to the *.o file looks like the Haskell module name. e.g. for module Foo.Bar.Baz, the directory, $dir, has to be something where $dir/Foo/Bar/Baz.{o,hi} exist. Not sure if I need to create a directory and use that as the -odir & -hidir for GHC, or whether I need to calculate the base directory that we're using, or whether Bazel already has that calculated for me. I haven't actually tried invoking ghc with *.o files in the args directly. Or maybe I have but I've forgotten the results. """ object_files = [] interface_files = [] for src in srcs: if src == main_file: object_files.append(actions.declare_file("Main.o")) interface_files.append(actions.declare_file("Main.hi")) else: object_files.append(_declare_output_file(actions, build_dir, src_dir, src, '.o')) interface_files.append(_declare_output_file(actions, build_dir, src_dir, src, '.hi')) output_files = object_files + interface_files import_directories = [] immediate_hs_objects = depset([]) transitive_hs_objects = depset([]) transitive_hs_interfaces = depset([]) for dep in deps: # XXX: We get duplicate directories. Should probably de-dupe them. import_directories.append('-i%s' % dep[ghc_output].import_directory) immediate_hs_objects += dep[ghc_output].hs_objects transitive_hs_objects += dep[ghc_output].transitive_hs_objects transitive_hs_interfaces += dep[ghc_output].transitive_hs_interfaces #print('srcs = %s, deps = %s, dirs = %s --> %s' % (srcs, dep_files, import_directories, output_files)) ghc_args = [ '-c', # So we just compile things, no linking '-i', # Empty the import directory list '-hide-all-packages', # Don't let the global package database infect our sacred purity # TODO: Rather than hard-coding a dependency on the base package, # allow packages to be specified as dependencies '-package base', # XXX: Infect our sacred purity ] + import_directories + [ '-odir', output_dir, '-hidir', output_dir, ] + [src.path for src in srcs] # XXX: stack also includes # -ddump-hi # -ddump-to-file # -optP-include # -optP.stack-work/.../cabal_macros.h # # - various output dir controls # - various package db controls # # Also what about... # - optimizations # - warnings # - concurrent builds (-j4) # - -threaded (I guess only relevant for executables) actions.run( inputs = srcs + (immediate_hs_objects + transitive_hs_interfaces).to_list(), outputs = output_files, executable = toolchain.ghc_path, arguments = ghc_args, progress_message = ("Compiling Haskell modules %s" % (srcs,)), mnemonic = 'HsCompile', # TODO: Figure out how we can do without this. use_default_shell_env = True, ) return ghc_output( files = depset(output_files), hs_objects = depset(object_files), hs_interfaces = depset(interface_files), transitive_hs_objects = transitive_hs_objects + depset(object_files), transitive_hs_interfaces = transitive_hs_interfaces + depset(interface_files), # XXX: Would really like to have a better answer than this. import_directory = output_dir, ) def _hs_module_impl(ctx): """A single Haskell module. At the moment this only works with a single file in srcs. Assumes that every source file is named after the module name that it contains (with dots replaced by directory separators). For example, the module Data.Person would be in the file Data/Person.hs on Unix/Linux/Mac, or Data\Person.hs on Windows. See https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/using.html#getting-started-compiling-programs """ toolchain = _haskell_toolchain(ctx) return _hs_compile( toolchain, ctx.label.name, ctx.actions, ctx.files.srcs, ctx.attr.deps, _dirname(ctx.build_file_path), _get_output_dir(ctx), src_dir=ctx.attr.src_dir) def _hs_binary_impl(ctx): """A Haskell executable.""" toolchain = _haskell_toolchain(ctx) lib_self = _hs_compile( toolchain, ctx.label.name, ctx.actions, ctx.files.srcs, ctx.attr.deps, _dirname(ctx.build_file_path), _get_output_dir(ctx), main_file=ctx.file.main_is, src_dir=ctx.attr.src_dir) # XXX: I guess we have to use ghc to link executables. ctx.actions.run( inputs = lib_self.transitive_hs_objects + ctx.files.data, outputs = [ctx.outputs.executable], executable = toolchain.ghc_path, arguments = [ "-o", ctx.outputs.executable.path, ] + [obj.path for obj in lib_self.transitive_hs_objects], use_default_shell_env = True, ) def _hs_test_impl(ctx): return _hs_binary_impl(ctx) _hs_attrs = { "srcs": attr.label_list( allow_files = HASKELL_FILETYPE, ), "deps": attr.label_list( allow_files = False, ), "data": attr.label_list( allow_files = True, ), "src_dir": attr.string( doc = 'The root of the module hierarchy', ), } _hs_binary_attrs = { "main_is": attr.label( allow_single_file = HASKELL_FILETYPE, ), } hs_library = rule( attrs = _hs_attrs, implementation = _hs_module_impl, ) hs_binary = rule( attrs = dict(_hs_attrs.items() + _hs_binary_attrs.items()), executable = True, implementation = _hs_binary_impl, ) hs_test = rule( attrs = dict(_hs_attrs.items() + _hs_binary_attrs.items()), executable = True, implementation = _hs_test_impl, test = True, ) ``` #### File: rules_haskell-old/tests/bazel_tests.bzl ```python TOOLCHAINS = [] _bazelrc = """ startup --batch build --verbose_failures build --sandbox_debug build --test_output=errors build --spawn_strategy=standalone build --genrule_strategy=standalone test --test_strategy=standalone build:isolate --fetch=False """ def _md5_sum_impl(ctx): out = ctx.new_file(ctx.label.name+".md5") ctx.actions.run_shell( inputs = ctx.files.srcs, outputs = [out], command = "md5sum %s > %s" % (' '.join([src.path for src in ctx.files.srcs]), out.path), ) return struct(files=depset([out])) md5_sum = rule( _md5_sum_impl, attrs = { "srcs": attr.label_list(allow_files = True), }, ) """Output the MD5 sums of all the given files.""" def _bazel_test_script_impl(ctx): script_content = '' workspace_content = '' subdir = "" if ctx.attr.subdir: subdir = ctx.attr.subdir + "/" # Build the bazel startup args bazelrc = ctx.new_file(subdir + ".bazelrc") args = ["--bazelrc={0}".format(bazelrc.basename), "--nomaster_blazerc"] # Add the command and any command specific args args += [ctx.attr.command] if ctx.attr.config: args += ["--config", ctx.attr.config] for ext in ctx.attr.externals: root = ext.label.workspace_root _,_,ws = root.rpartition("/") workspace_content += 'local_repository(name = "{0}", path = "{1}/{2}")\n'.format(ws, ctx.attr._execroot.path, root) # finalise the workspace file if ctx.attr.workspace: workspace_content += ctx.attr.workspace workspace_file = ctx.new_file(subdir + "WORKSPACE") ctx.file_action(output=workspace_file, content=workspace_content) # finalise the script args += ctx.attr.args + [ctx.attr.target] # TODO(jml): Maybe factor this out into separate function? Try to use # '\n'.join() rather than appending lines quadratically. script_content += 'BASE=$(pwd)\n' script_content += 'cd {0}\n'.format(ctx.label.package) script_content += 'PACKAGE=$(pwd)\n' if ctx.attr.subdir: script_content += 'cd {0}\n'.format(ctx.attr.subdir) script_content += 'cp BUILD.in BUILD.bazel\n' script_content += 'WORKSPACE=$(pwd)\n' if ctx.attr.prepare: script_content += ctx.attr.prepare script_content += 'cd $WORKSPACE\n' script_content += 'echo {0} {1}\n'.format(ctx.attr._execroot.bazel, " ".join(args)) script_content += '{0} {1}\n'.format(ctx.attr._execroot.bazel, " ".join(args)) script_content += 'result=$?\n' if ctx.attr.check: script_content += ctx.attr.check script_content += "exit $result\n" script_file = ctx.new_file(ctx.label.name+".bash") ctx.file_action(output=script_file, executable=True, content=script_content) # finalise the bazel options ctx.file_action(output=bazelrc, content=_bazelrc) return struct( files = depset([script_file]), runfiles = ctx.runfiles([workspace_file, bazelrc]) ) _bazel_test_script = rule( _bazel_test_script_impl, attrs = { "command": attr.string( mandatory = True, values = [ "build", "test", "coverage", "run", ], ), "args": attr.string_list(default = []), "subdir": attr.string(), "target": attr.string(mandatory = True), "externals": attr.label_list(allow_files = True), "data": attr.label_list(allow_files = True), "workspace": attr.string(), "prepare": attr.string(), "check": attr.string(), "config": attr.string(default = "isolate"), "_execroot": attr.label(default = Label("@test_environment//:execroot")), }, toolchains = TOOLCHAINS, ) def bazel_test(name, command = None, args=None, subdir = None, target = None, tags=[], externals=[], data=[], workspace="", prepare="", check="", config=None): """Test a Bazel rule. Runs the `bazel` executable. Args: name: The name of the test command: The Bazel subcommand to run (e.g. 'run', 'build', 'test') args: A list of arguments to pass to Bazel subdir: ??? target: ??? tags: ??? externals: ??? data: ??? workspace: Extra content to add to the WORKSPACE file used by tests. prepare: ??? check: ??? config: ??? """ script_name = name+"_script" _bazel_test_script( name = script_name, command = command, args = args, subdir = subdir, target = target, externals = externals, workspace = workspace, prepare = prepare, check = check, config = config, ) native.sh_test( name = name, size = "large", timeout = "moderate", srcs = [script_name], tags = ["local", "bazel"] + tags, data = native.glob(["**/*"]) + externals + data, ) def _test_environment_impl(ctx): execroot, _, ws = str(ctx.path(".")).rpartition("/external/") bazel = "" if "BAZEL" in ctx.os.environ: bazel = ctx.os.environ["BAZEL"] elif "BAZEL_VERSION" in ctx.os.environ: home = ctx.os.environ["HOME"] bazel = home + "/.bazel/{0}/bin/bazel".format(ctx.os.environ["BAZEL_VERSION"]) if bazel == "" or not ctx.path(bazel).exists: bazel = ctx.which("bazel") if ctx.name != ws: fail("workspace did not match, expected:", ctx.name, "got:", ws) ctx.file("WORKSPACE", """ workspace(name = "%s") """ % ctx.name) ctx.file("BUILD", """ load("@io_jml_rules_haskell//tests:bazel_tests.bzl", "execroot") execroot( name = "execroot", path = "{0}", bazel = "{1}", visibility = ["//visibility:public"], ) """.format(execroot, bazel)) _test_environment = repository_rule( attrs = {}, environ = [ "BAZEL", "BAZEL_VERSION", "HOME", ], implementation = _test_environment_impl, ) def test_environment(): _test_environment(name="test_environment") def _execroot_impl(ctx): return struct( path = ctx.attr.path, bazel = ctx.attr.bazel, ) execroot = rule( _execroot_impl, attrs = { "path": attr.string(mandatory = True), "bazel": attr.string(mandatory = True), }, ) ```
{ "source": "jml/testtools", "score": 2 }
#### File: testtools/twistedsupport/_spinner.py ```python __all__ = [ 'NoResultError', 'not_reentrant', 'ReentryError', 'Spinner', 'StaleJunkError', 'TimeoutError', 'trap_unhandled_errors', ] from fixtures import Fixture import signal from ._deferreddebug import DebugTwisted from twisted.internet import defer from twisted.internet.interfaces import IReactorThreads from twisted.python.failure import Failure from twisted.python.util import mergeFunctionMetadata class ReentryError(Exception): """Raised when we try to re-enter a function that forbids it.""" def __init__(self, function): Exception.__init__(self, "%r in not re-entrant but was called within a call to itself." % (function,)) def not_reentrant(function, _calls={}): """Decorates a function as not being re-entrant. The decorated function will raise an error if called from within itself. """ def decorated(*args, **kwargs): if _calls.get(function, False): raise ReentryError(function) _calls[function] = True try: return function(*args, **kwargs) finally: _calls[function] = False return mergeFunctionMetadata(function, decorated) def trap_unhandled_errors(function, *args, **kwargs): """Run a function, trapping any unhandled errors in Deferreds. Assumes that 'function' will have handled any errors in Deferreds by the time it is complete. This is almost never true of any Twisted code, since you can never tell when someone has added an errback to a Deferred. If 'function' raises, then don't bother doing any unhandled error jiggery-pokery, since something horrible has probably happened anyway. :return: A tuple of '(result, error)', where 'result' is the value returned by 'function' and 'error' is a list of 'defer.DebugInfo' objects that have unhandled errors in Deferreds. """ real_DebugInfo = defer.DebugInfo debug_infos = [] def DebugInfo(): info = real_DebugInfo() debug_infos.append(info) return info defer.DebugInfo = DebugInfo try: result = function(*args, **kwargs) finally: defer.DebugInfo = real_DebugInfo errors = [] for info in debug_infos: if info.failResult is not None: errors.append(info) # Disable the destructor that logs to error. We are already # catching the error here. info.__del__ = lambda: None return result, errors class TimeoutError(Exception): """Raised when run_in_reactor takes too long to run a function.""" def __init__(self, function, timeout): Exception.__init__(self, "%r took longer than %s seconds" % (function, timeout)) class NoResultError(Exception): """Raised when the reactor has stopped but we don't have any result.""" def __init__(self): Exception.__init__(self, "Tried to get test's result from Deferred when no result is " "available. Probably means we received SIGINT or similar.") class StaleJunkError(Exception): """Raised when there's junk in the spinner from a previous run.""" def __init__(self, junk): Exception.__init__(self, "There was junk in the spinner from a previous run. " "Use clear_junk() to clear it out: %r" % (junk,)) class Spinner(object): """Spin the reactor until a function is done. This class emulates the behaviour of twisted.trial in that it grotesquely and horribly spins the Twisted reactor while a function is running, and then kills the reactor when that function is complete and all the callbacks in its chains are done. """ _UNSET = object() # Signals that we save and restore for each spin. _PRESERVED_SIGNALS = [ 'SIGINT', 'SIGTERM', 'SIGCHLD', ] # There are many APIs within Twisted itself where a Deferred fires but # leaves cleanup work scheduled for the reactor to do. Arguably, many of # these are bugs. As such, we provide a facility to iterate the reactor # event loop a number of times after every call, in order to shake out # these buggy-but-commonplace events. The default is 0, because that is # the ideal, and it actually works for many cases. _OBLIGATORY_REACTOR_ITERATIONS = 0 def __init__(self, reactor, debug=False): """Construct a Spinner. :param reactor: A Twisted reactor. :param debug: Whether or not to enable Twisted's debugging. Defaults to False. """ self._reactor = reactor self._timeout_call = None self._success = self._UNSET self._failure = self._UNSET self._saved_signals = [] self._junk = [] self._debug = debug self._spinning = False def _cancel_timeout(self): if self._timeout_call: self._timeout_call.cancel() def _get_result(self): if self._failure is not self._UNSET: self._failure.raiseException() if self._success is not self._UNSET: return self._success raise NoResultError() def _got_failure(self, result): self._cancel_timeout() self._failure = result def _got_success(self, result): self._cancel_timeout() self._success = result def _fake_stop(self): """Use to replace ``reactor.stop`` while running a test. Calling ``reactor.stop`` makes it impossible re-start the reactor. Since the default signal handlers for TERM, BREAK and INT all call ``reactor.stop()``, we patch it over with ``reactor.crash()`` Spinner never calls this method. """ self._reactor.crash() def _stop_reactor(self, ignored=None): """Stop the reactor!""" # XXX: Would like to emit a warning when called when *not* spinning. if self._spinning: self._reactor.crash() self._spinning = False def _timed_out(self, function, timeout): e = TimeoutError(function, timeout) self._failure = Failure(e) self._stop_reactor() def _clean(self): """Clean up any junk in the reactor. Will always iterate the reactor a number of times equal to ``Spinner._OBLIGATORY_REACTOR_ITERATIONS``. This is to work around bugs in various Twisted APIs where a Deferred fires but still leaves work (e.g. cancelling a call, actually closing a connection) for the reactor to do. """ for i in range(self._OBLIGATORY_REACTOR_ITERATIONS): self._reactor.iterate(0) junk = [] for delayed_call in self._reactor.getDelayedCalls(): delayed_call.cancel() junk.append(delayed_call) for selectable in self._reactor.removeAll(): # Twisted sends a 'KILL' signal to selectables that provide # IProcessTransport. Since only _dumbwin32proc processes do this, # we aren't going to bother. junk.append(selectable) if IReactorThreads.providedBy(self._reactor): if self._reactor.threadpool is not None: self._reactor._stopThreadPool() self._junk.extend(junk) return junk def clear_junk(self): """Clear out our recorded junk. :return: Whatever junk was there before. """ junk = self._junk self._junk = [] return junk def get_junk(self): """Return any junk that has been found on the reactor.""" return self._junk def _save_signals(self): available_signals = [ getattr(signal, name, None) for name in self._PRESERVED_SIGNALS] self._saved_signals = [ (sig, signal.getsignal(sig)) for sig in available_signals if sig] def _restore_signals(self): for sig, hdlr in self._saved_signals: signal.signal(sig, hdlr) self._saved_signals = [] @not_reentrant def run(self, timeout, function, *args, **kwargs): """Run 'function' in a reactor. If 'function' returns a Deferred, the reactor will keep spinning until the Deferred fires and its chain completes or until the timeout is reached -- whichever comes first. :raise TimeoutError: If 'timeout' is reached before the Deferred returned by 'function' has completed its callback chain. :raise NoResultError: If the reactor is somehow interrupted before the Deferred returned by 'function' has completed its callback chain. :raise StaleJunkError: If there's junk in the spinner from a previous run. :return: Whatever is at the end of the function's callback chain. If it's an error, then raise that. """ if self._debug: debug_settings = DebugTwisted(True) else: debug_settings = Fixture() with debug_settings: junk = self.get_junk() if junk: raise StaleJunkError(junk) self._save_signals() self._timeout_call = self._reactor.callLater( timeout, self._timed_out, function, timeout) # Calling 'stop' on the reactor will make it impossible to # re-start the reactor. Since the default signal handlers for # TERM, BREAK and INT all call reactor.stop(), we'll patch it over # with crash. XXX: It might be a better idea to either install # custom signal handlers or to override the methods that are # Twisted's signal handlers. real_stop, self._reactor.stop = self._reactor.stop, self._fake_stop def run_function(): d = defer.maybeDeferred(function, *args, **kwargs) d.addCallbacks(self._got_success, self._got_failure) d.addBoth(self._stop_reactor) try: self._reactor.callWhenRunning(run_function) self._spinning = True self._reactor.run() finally: self._reactor.stop = real_stop self._restore_signals() try: return self._get_result() finally: self._clean() ```
{ "source": "jml/trial-eliot", "score": 2 }
#### File: trial-eliot/eliotreporter/_reporter.py ```python import json from eliot import add_destination from pyrsistent import PClass, field from twisted.plugin import IPlugin from twisted.trial.itrial import IReporter from zope.interface import implementer from ._types import ( ERROR, FAILURE, SKIP, TEST, UNEXPECTED_SUCCESS, make_error_message, make_expected_failure_message, ) class InvalidStateError(Exception): """ Raised when someone attempts to put an EliotReporter into an invalid state. """ # TODO: The Trial base reporter does some sort of warning capturing. It would # be good to do something similar here so that *everything* that the test # emits is captured in single, coheerent Eliot log. # TODO: Ideally we'd also capture stdout & stderr and encode those as Eliot # messages. Probably can't be done at the reporter level, but we can provide # functions for tests to be able to use that. # TODO: Should setUp, tearDown, the test itself and cleanup also be Eliot # actions? If so, that's a thing for the base test case rather than the # reporter. # TODO: Currently Eliot has support for capturing the eliot logs and dumping # them to the Twisted log, which Trial stores as _trial_temp/test.log. If # we're using something like this, then we actually want all of those log # messages to be included as part of the test action, included in the same # log. # TODO: "The value is in the output". No one is going to care about this # unless there's something that consumes the output and displays the results # as something that matters to humans. # TODO: Currently the action of a test "succeeds" whether or not the test # passes. It's unclear whether this is the right behaviour. Factors: # # - when reading eliot output, it makes it harder to see whether a test # passed or failed. # - tests can have multiple errors, if we made the action fail on test failure, # then we'd have to aggregate these errors somehow. # - aggregating the errors would mean that we either would not see them at all # until the test completes, or that we would log duplicate actions @implementer(IReporter) class EliotReporter(object): def __init__(self, stream, tbformat='default', realtime=False, publisher=None, logger=None): # TODO: Trial has a pretty confusing set of expectations for # reporters. In particular, it's not clear what it needs to construct # a reporter. It's also not clear what it expects as public # properties. The IReporter interface and the tests for the reporter # interface cover somewhat different things. self._stream = stream self.tbformat = tbformat self.shouldStop = False self.testsRun = 0 add_destination(self._write_message) self._current_test = None self._successful = True self._logger = logger def _write_message(self, message): self._stream.write(json.dumps(message) + "\n") def _ensure_test_running(self, expected_test): current = self._current_test if current and current.id() != expected_test.id(): raise InvalidStateError( 'Expected {} to be running, was {} instead'.format( expected_test, self._current_test)) def startTest(self, method): """ Report the beginning of a run of a single test method. @param method: an object that is adaptable to ITestMethod """ if self._current_test: raise InvalidStateError( 'Trying to start {}, but {} already started'.format( method, self._current_test)) self._current_test = method self._action = TEST(test=method, logger=self._logger) # TODO: This isn't using Eliot the way it was intended. Probably a # better way is to have a test case (or a testtools-style TestCase # runner!) that does all of this. self._action.__enter__() def stopTest(self, method): """ Report the status of a single test method @param method: an object that is adaptable to ITestMethod """ if not self._current_test: raise InvalidStateError( 'Trying to stop {} without starting it first'.format(method)) self._ensure_test_running(method) self._current_test = None self._action.__exit__(None, None, None) def addSuccess(self, test): """ Record that test passed. """ self._ensure_test_running(test) def addError(self, test, error): """ Record that a test has raised an unexpected exception. """ self._ensure_test_running(test) make_error_message(ERROR, error).write(self._logger) self._successful = False def addFailure(self, test, failure): """ Record that a test has failed with the given failure. """ self._ensure_test_running(test) make_error_message(FAILURE, failure).write(self._logger) self._successful = False def addExpectedFailure(self, test, failure, todo): """ Record that the given test failed, and was expected to do so. """ self._ensure_test_running(test) make_expected_failure_message(todo, failure).write(self._logger) def addUnexpectedSuccess(self, test, todo): """ Record that the given test failed, and was expected to do so. """ self._ensure_test_running(test) UNEXPECTED_SUCCESS(todo=todo).write(self._logger) def addSkip(self, test, reason): """ Record that a test has been skipped for the given reason. """ self._ensure_test_running(test) SKIP(reason=reason).write(self._logger) def wasSuccessful(self): return self._successful def stop(self): self.shouldStop = True def done(self): """ Called when the test run is complete. """ @implementer(IReporter, IPlugin) class TrialReporter(PClass): name = field() module = field() description = field() longOpt = field() shortOpt = field() klass = field() eliot_plugin = TrialReporter( name="Eliot reporter", description="Output all test results as eliot logs", longOpt="eliot", shortOpt=None, module="eliotreporter", klass="EliotReporter", ) ```
{ "source": "jml/txapply", "score": 2 }
#### File: jml/txapply/setup.py ```python import codecs import os import versioneer from setuptools import find_packages, setup def read(*parts): """ Build an absolute path from C{parts} and and return the contents of the resulting file. Assume UTF-8 encoding. """ here = os.path.abspath(os.path.dirname(__file__)) with codecs.open(os.path.join(here, *parts), 'r', 'utf-8') as f: return f.read() if __name__ == "__main__": setup( classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Topic :: Software Development :: Libraries :: Python Modules' ], description="Call functions with Deferred arguments", long_description=read('README.md'), keywords="twisted", license="MIT", name="txapply", packages=find_packages(), url="https://github.com/jml/txapply", maintainer='<NAME>', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), install_requires=[ 'Twisted', ], extras_require={ 'tests': [ 'testtools>=1.9.0', 'hypothesis>=1.18.1', ], }, ) ``` #### File: txapply/txapply/_combinators.py ```python from functools import wraps def nop(*args, **kwargs): """ Do nothing. """ def transparent(value, function, *args, **kwargs): """ Invoke ``function`` with ``value`` and other arguments, return ``value``. Use this to add a function to a callback chain without disrupting the value of the callback chain:: d = defer.succeed(42) d.addCallback(transparent, print) d.addCallback(lambda x: x == 42) """ function(value, *args, **kwargs) return value def transparently(function): """ Wrap ``function`` so that it is called, but that the first parameter is returned. """ @wraps(function) def decorated(value, *args, **kwargs): function(value, *args, **kwargs) return value return decorated def ignore(value, function, *args, **kwargs): """ Invoke ``function`` with ``*args`` and ``*kwargs``. Use this to add a function to a callback chain that just ignores the previous value in the chain:: >>> d = defer.succeed(42) >>> d.addCallback(ignore, print, 37) 37 """ return function(*args, **kwargs) def ignored(function): """ Wrap ``function`` so that it discards its first parameter. """ @wraps(function) def decorated(value, *args, **kwargs): return function(*args, **kwargs) return decorated def combine(value, function, *args, **kwargs): """ Call ``function``, return its result and ``value`` as a tuple. ``function`` is invoked with ``value``, ``*args`` and ``**kwargs`` and then we return a 2-tuple of whatever ``function`` returned and ``value``. Use this to add a function to a callback chain that combines its return value with the previous value:: >>> d = defer.succeed(42) >>> d.addCallback(combine, lambda: 47) >>> d.addCallback(print) (37, 42) """ y = function(value, *args, **kwargs) return (y, value) def combined(function): """ Wrap ``function`` so that it returns a tuple of its return value and its first parameter. """ @wraps(function) def decorated(value, *args, **kwargs): y = function(value, *args, **kwargs) return (y, value) return decorated ``` #### File: txapply/tests/test_combinators.py ```python from hypothesis import given from testtools import TestCase from testtools.matchers import Equals, Is from testtools.twistedsupport import succeeded from twisted.internet.defer import succeed from .._combinators import ( combine, combined, ignore, ignored, nop, transparent, transparently, ) from .strategies import any_value, arguments, keyword_arguments class TestNop(TestCase): """ Tests for ``nop``. """ @given(args=arguments(), kwargs=keyword_arguments()) def test_none(self, args, kwargs): """ ``nop`` always returns ``None``, regardless of what you call it with. """ self.assertThat(nop(*args, **kwargs), Is(None)) class TestTransparent(TestCase): """ Tests for ``transparent``. """ @given(first=any_value(), second=any_value(), args=arguments(), kwargs=keyword_arguments()) def test_calls_transparent_callback(self, first, second, args, kwargs): """ Even though the return value of a "transparent" callback is ignored, it *is* invoked and is passed all the arguments and keyword arguments it would have if it were a normal callback. """ log = [] def callback(value, *a, **kw): log.append((value, a, kw)) return second d = succeed(first) d.addCallback(transparent, callback, *args, **kwargs) self.assertThat(log, Equals([(first, args, kwargs)])) self.assertThat(d, succeeded(Is(first))) @given(first=any_value(), second=any_value(), args=arguments(), kwargs=keyword_arguments()) def test_decorated(self, first, second, args, kwargs): log = [] def callback(value, *a, **kw): log.append((value, a, kw)) return second d = succeed(first) d.addCallback(transparently(callback), *args, **kwargs) self.assertThat(log, Equals([(first, args, kwargs)])) self.assertThat(d, succeeded(Is(first))) class TestIgnore(TestCase): """ Tests for ``ignore``. """ @given(first=any_value(), second=any_value(), args=arguments(), kwargs=keyword_arguments()) def test_ignores_callback_value(self, first, second, *args, **kwargs): """ Callbacks added with ``ignore`` don't get passed the return value of the previous callback. """ log = [] def callback(*a, **kw): log.append((a, kw)) return second d = succeed(first) d.addCallback(ignore, callback, *args, **kwargs) self.assertThat(d, succeeded(Is(second))) self.assertThat(log, Equals([(args, kwargs)])) @given(first=any_value(), second=any_value(), args=arguments(), kwargs=keyword_arguments()) def test_decorator(self, first, second, *args, **kwargs): log = [] def callback(*a, **kw): log.append((a, kw)) return second d = succeed(first) d.addCallback(ignored(callback), *args, **kwargs) self.assertThat(d, succeeded(Is(second))) self.assertThat(log, Equals([(args, kwargs)])) class TestCombine(TestCase): """ Tests for ``combine``. """ @given(first=any_value(), second=any_value(), args=arguments(), kwargs=keyword_arguments()) def test_combines_results(self, first, second, *args, **kwargs): """ The return value of a callback added with ``combine`` is a tuple made up of the *previous* callback value and whatever the new callback returns. """ log = [] def callback(value, *a, **kw): log.append((value, a, kw)) return second d = succeed(first) d.addCallback(combine, callback, *args, **kwargs) self.assertThat(d, succeeded(Equals((second, first)))) self.assertThat(log, Equals([(first, args, kwargs)])) @given(first=any_value(), second=any_value(), args=arguments(), kwargs=keyword_arguments()) def test_decorator(self, first, second, *args, **kwargs): log = [] def callback(value, *a, **kw): log.append((value, a, kw)) return second d = succeed(first) d.addCallback(combined(callback), *args, **kwargs) self.assertThat(d, succeeded(Equals((second, first)))) self.assertThat(log, Equals([(first, args, kwargs)])) class TestComposition(TestCase): """ Make sure all this stuff can be used together. Not so much describing desired behavior as documenting actual behavior. """ @given(first=any_value(), second=any_value(), args=arguments(), kwargs=keyword_arguments()) def test_transparent_ignore(self, first, second, args, kwargs): log = [] def callback(*a, **kw): log.append((a, kw)) return second d = succeed(first) d.addCallback(transparent, ignore, callback, *args, **kwargs) self.assertThat(d, succeeded(Is(first))) self.assertThat(log, Equals([(args, kwargs)])) @given(first=any_value(), second=any_value(), args=arguments(), kwargs=keyword_arguments()) def test_transparent_combine(self, first, second, args, kwargs): log = [] def callback(value, *a, **kw): log.append((value, a, kw)) return second d = succeed(first) d.addCallback(transparent, combine, callback, *args, **kwargs) self.assertThat(d, succeeded(Is(first))) self.assertThat(log, Equals([(first, args, kwargs)])) @given(first=any_value(), second=any_value(), args=arguments(), kwargs=keyword_arguments()) def test_combine_transparent(self, first, second, args, kwargs): log = [] def callback(value, *a, **kw): log.append((value, a, kw)) return second d = succeed(first) d.addCallback(combine, transparent, callback, *args, **kwargs) self.assertThat(d, succeeded(Equals((first, first)))) self.assertThat(log, Equals([(first, args, kwargs)])) @given(first=any_value(), second=any_value(), args=arguments(), kwargs=keyword_arguments()) def test_combine_ignore(self, first, second, args, kwargs): log = [] def callback(*a, **kw): log.append((a, kw)) return second d = succeed(first) d.addCallback(combine, ignore, callback, *args, **kwargs) self.assertThat(d, succeeded(Equals((second, first)))) self.assertThat(log, Equals([(args, kwargs)])) @given(first=any_value(), second=any_value(), args=arguments(), kwargs=keyword_arguments()) def test_combine_combine(self, first, second, args, kwargs): log = [] def callback(value, *a, **kw): log.append((value, a, kw)) return second d = succeed(first) d.addCallback(combine, combine, callback, *args, **kwargs) self.assertThat(d, succeeded(Equals(((second, first), first)))) self.assertThat(log, Equals([(first, args, kwargs)])) @given(first=any_value(), second=any_value(), args=arguments(), kwargs=keyword_arguments()) def test_transparent_transparent(self, first, second, args, kwargs): log = [] def callback(value, *a, **kw): log.append((value, a, kw)) return second d = succeed(first) d.addCallback(transparent, transparent, callback, *args, **kwargs) self.assertThat(d, succeeded(Is(first))) self.assertThat(log, Equals([(first, args, kwargs)])) class TestDecoratorComposition(TestCase): """ Make sure all the decorators can be used together. Not so much describing desired behavior as documenting actual behavior. """ @given(first=any_value(), second=any_value(), args=arguments(), kwargs=keyword_arguments()) def test_transparent_ignore(self, first, second, args, kwargs): log = [] def callback(*a, **kw): log.append((a, kw)) return second d = succeed(first) d.addCallback(transparently(ignored(callback)), *args, **kwargs) self.assertThat(d, succeeded(Is(first))) self.assertThat(log, Equals([(args, kwargs)])) @given(first=any_value(), second=any_value(), args=arguments(), kwargs=keyword_arguments()) def test_transparent_combine(self, first, second, args, kwargs): log = [] def callback(value, *a, **kw): log.append((value, a, kw)) return second d = succeed(first) d.addCallback(transparently(combined(callback)), *args, **kwargs) self.assertThat(d, succeeded(Is(first))) self.assertThat(log, Equals([(first, args, kwargs)])) @given(first=any_value(), second=any_value(), args=arguments(), kwargs=keyword_arguments()) def test_combine_transparent(self, first, second, args, kwargs): log = [] def callback(value, *a, **kw): log.append((value, a, kw)) return second d = succeed(first) d.addCallback(combined(transparently(callback)), *args, **kwargs) self.assertThat(d, succeeded(Equals((first, first)))) self.assertThat(log, Equals([(first, args, kwargs)])) @given(first=any_value(), second=any_value(), args=arguments(), kwargs=keyword_arguments()) def test_combine_ignore(self, first, second, args, kwargs): log = [] def callback(*a, **kw): log.append((a, kw)) return second d = succeed(first) d.addCallback(combined(ignored(callback)), *args, **kwargs) self.assertThat(d, succeeded(Equals((second, first)))) self.assertThat(log, Equals([(args, kwargs)])) @given(first=any_value(), second=any_value(), args=arguments(), kwargs=keyword_arguments()) def test_combine_combine(self, first, second, args, kwargs): log = [] def callback(value, *a, **kw): log.append((value, a, kw)) return second d = succeed(first) d.addCallback(combined(combined(callback)), *args, **kwargs) self.assertThat(d, succeeded(Equals(((second, first), first)))) self.assertThat(log, Equals([(first, args, kwargs)])) @given(first=any_value(), second=any_value(), args=arguments(), kwargs=keyword_arguments()) def test_transparent_transparent(self, first, second, args, kwargs): log = [] def callback(value, *a, **kw): log.append((value, a, kw)) return second d = succeed(first) d.addCallback(transparently(transparently(callback)), *args, **kwargs) self.assertThat(d, succeeded(Is(first))) self.assertThat(log, Equals([(first, args, kwargs)])) ```
{ "source": "jmluang/text-to-ascii", "score": 3 }
#### File: jmluang/text-to-ascii/text-to-ascii-generator.py ```python import os try: import pyfiglet from termcolor import colored import colorama from PIL import Image from PIL import ImageDraw except ImportError as ImpErr: raise ImportError("Import couldn't find module, or couldn't find name" +\ "in module {}".format(ImpErr)) colorama.init() __ver__ = "0.1" class FontGenerator: # fonts from pyfiglet font_list = [ "3-d", "3x5", "5lineoblique", "acrobatic", "alligator", "alligator2", "alphabet", "avatar", "banner", "banner3-D", "banner3", "banner4", "barbwire", "basic", "bell", "big", "bigchief", "binary", "block", "bubble", "bulbhead", "calgphy2", "caligraphy", "catwalk", "chunky", "coinstak", "colossal", "computer", "contessa", "contrast", "cosmic", "cosmike", "cricket", "cursive", "cyberlarge", "cybermedium", "cybersmall", "diamond", "digital", "doh", "doom", "dotmatrix", "drpepper", "eftichess", "eftifont", "eftipiti", "eftirobot", "eftitalic", "eftiwall", "eftiwater", "epic", "fender", "fourtops", "fuzzy", "goofy", "gothic", "graffiti", "hollywood", "invita", "isometric1", "isometric2", "isometric3", "isometric4", "italic", "ivrit", "jazmine", "jerusalem", "katakana", "kban", "larry3d", "lcd", "lean", "letters", "linux", "lockergnome", "madrid", "marquee", "maxfour", "mike", "mini", "mirror", "mnemonic", "morse", "moscow", "nancyj-fancy", "nancyj-underlined", "nancyj", "nipples", "ntgreek", "o8", "ogre", "pawp", "peaks", "pebbles", "pepper", "poison", "puffy", "pyramid", "rectangles", "relief", "relief2", "rev", "roman", "rot13", "rounded", "rowancap", "rozzo", "runic", "runyc", "sblood", "script", "serifcap", "shadow", "short", "slant", "slide", "slscript", "small", "smisome1", "smkeyboard", "smscript", "smshadow", "smslant", "smtengwar", "speed", "stampatello", "standard", "starwars", "stellar", "stop", "straight", "tanja", "tengwar", "term", "thick", "thin", "threepoint", "ticks", "ticksslant", "tinker-toy", "tombstone", "trek", "tsalagi", "twopoint", "univers", "usaflag", "wavy", "weird" ] def __init__(self): """ Program introduction """ os.system("cls") print(colored(pyfiglet.figlet_format("Text to ASCII generator", font="slant"), "green")) print("Version: " + __ver__ + "\n") self.menu() def menu(self): """ Set a font """ error = False while True: if error != False: print error error = False else : print(colored("What kind of font do you want? ( q:exit , p:show all fonts )", "white", "on_green")) font = raw_input("> ") if font == "q": return if font == "p": self.show_all_fonts() continue if font not in self.font_list: error = "Do not have this font type, choose another one.\n" error += "All Fonts in: https://github.com/jmluang/text-to-ascii/blob/master/EXAMPLE" break self.introduction_and_generation(font) def introduction_and_generation(self, font): """ Font example. It also accepts user's text. """ while True: os.system("cls") print(pyfiglet.figlet_format("Sample Text", font=font)) print(colored("Input text to convert: ", "white", "on_green")) text = raw_input("> ") ascii_text = pyfiglet.figlet_format(text, font=font) print(ascii_text) # Loop until a user type a correct command while True: print(colored("Save? t/i/b/q (text/image/back/exit)", "white", "on_green")) command = raw_input("> ") if command in ["b", "t", "i", "q"]: if command == "b": break if command == "q": return name = raw_input("File name: ") if command == "t": file = open(name + ".txt", "w") file.write(ascii_text) file.close() elif command == "i": img = Image.new("RGB", (1, 1), (255, 255, 255)) d = ImageDraw.Draw(img) text_width, text_height = d.textsize(ascii_text) img = img.resize((text_width, text_height)) d = ImageDraw.Draw(img) d.text((0, 0), ascii_text, (0, 0, 0)) img.save(name + ".png") print(colored("Done!", "green")) os.system("pause") return def show_all_fonts(self): os.system("cls") print "-----------------------------------" for i,font in enumerate(self.font_list): print "%s" % font, if i % 10 == 0: print "\n" print "\n-----------------------------------" return def main(): font_generator = FontGenerator() if __name__ == "__main__": main() ```
{ "source": "jmmaki/BlamePipeline", "score": 3 }
#### File: blamepipeline/preprocess/match_article_entry.py ```python from collections import defaultdict import argparse from blamepipeline.preprocess.dataloader import Dataset case1, case2 = 0, 0 def match_data(source): dataset = Dataset(source) articles = dataset.get_articles() entries = dataset.get_entries() date_articles = defaultdict(list) for article in articles: date_articles[article['date']].append(article) print('{} dates of {} articles loaded.'.format(len(date_articles), len(articles))) print('{} entries loaded.'.format(len(entries))) title_match = 0 subtitle_match = 0 pairs = [] def matches(entry_title, article_title): if not entry_title or len(entry_title) < 10: return False elif entry_title and article_title and entry_title == article_title: return True elif entry_title and entry_title in article_title: return True return False for entry in entries: for article in date_articles[entry['date']]: if matches(entry['title'], article['title']): title_match += 1 pairs.append((entry, article)) break elif matches(entry['title'], article['subtitle']): subtitle_match += 1 pairs.append((entry, article)) break print('title match:', title_match) print('subtitle match:', subtitle_match) return pairs def main(args): if args.source == 'all': sources = ['FOX'] else: sources = [args.source.upper()] for source in sources: print(source) pairs = match_data(source) print('matched pairs:', len(pairs)) print('---') global case1, case2 print(f'{case1}, {case2}') if __name__ == '__main__': parser = argparse.ArgumentParser(description='match articles and entries') parser.add_argument('--source', type=str, choices=['all', 'fox'], default='all') args = parser.parse_args() main(args) ``` #### File: blamepipeline/tokenizers/__init__.py ```python import os import blamepipeline import spacy from blamepipeline import tokenizers try: from spacy.spacy_tokenizer import SpacyTokenizer except ImportError: pass DEFAULTS = { } def set_default(key, value): global DEFAULTS DEFAULTS[key] = value from blamepipeline.tokenizers.corenlp_tokenizer import CoreNLPTokenizer # Spacy is optional def get_class(name): if name == 'spacy': return SpacyTokenizer if name == 'corenlp': return CoreNLPTokenizer raise RuntimeError('Invalid tokenizer: %s' % name) ``` #### File: script/simplebaseline/run.py ```python import argparse import json import os import sys import logging import subprocess from collections import defaultdict from termcolor import colored import random import numpy as np from tqdm import tqdm import torch from blamepipeline import DATA_DIR as DATA_ROOT from blamepipeline.simplebaseline import BaselineModel from blamepipeline.simplebaseline import utils, config logger = logging.getLogger() # ------------------------------------------------------------------------------ # Training arguments. # ------------------------------------------------------------------------------ # Defaults DATA_DIR = os.path.join(DATA_ROOT, 'datasets') LOG_DIR = os.path.join(DATA_ROOT, 'models/simplebaseline') def str2bool(v): return v.lower() in ('yes', 'true', 't', '1', 'y') def add_train_args(parser): """Adds commandline arguments pertaining to training a model. These are different from the arguments dictating the model architecture. """ parser.register('type', 'bool', str2bool) # Runtime environment runtime = parser.add_argument_group('Environment') runtime.add_argument('--random-seed', type=int, default=712, help=('Random seed for all numpy/torch/cuda ' 'operations (for reproducibility)')) # Files files = parser.add_argument_group('Filesystem') files.add_argument('--data-dir', type=str, default=DATA_DIR, help='Directory of training/validation data') files.add_argument('--log-dir', type=str, default=LOG_DIR, help='Directory for saved models/checkpoints/logs') files.add_argument('--train-file', type=str, default='samples-directed-train.json', help='train file') files.add_argument('--dev-file', type=str, default='samples-directed-dev.json', help='dev file') files.add_argument('--test-file', type=str, default='samples-directed-test.json', help='test file') files.add_argument('--aggressiveness-file', type=str, default='aggressiveness.txt') files.add_argument('--blame-lexicons', type=str, default='blame_lexicons.txt') # General general = parser.add_argument_group('General') general.add_argument('--metrics', type=str, choices=['precision', 'recall', 'F1', 'acc'], help='metrics to display when training', nargs='+', default=['precision', 'recall', 'F1', 'acc']) general.add_argument('--valid-metric', type=str, default='F1', help='The evaluation metric used for model selection') def set_defaults(args): """Make sure the commandline arguments are initialized properly.""" # Check critical files exist args.train_file = os.path.join(args.data_dir, args.train_file) if not os.path.isfile(args.train_file): raise IOError(f'No such file: {args.train_file}') if args.dev_file: args.dev_file = os.path.join(args.data_dir, args.dev_file) if not os.path.isfile(args.dev_file): raise IOError(f'No such file: {args.dev_file}') if args.test_file: args.test_file = os.path.join(args.data_dir, args.test_file) if not os.path.isfile(args.test_file): raise IOError(f'No such file: {args.test_file}') if args.blame_lexicons: args.blame_lexicons = os.path.join(args.data_dir, args.blame_lexicons) if not os.path.isfile(args.blame_lexicons): raise IOError(f'No such file {args.blame_lexicons}') # Set log file names # Set model directory subprocess.call(['mkdir', '-p', args.log_dir]) args.log_file = os.path.join(args.log_dir, 'baseline.txt') if args.aggressiveness_file: args.aggressiveness_file = os.path.join(args.data_dir, args.aggressiveness_file) return args def evaluate(pred, true, eps=1e-9): true_positive = (pred * true).sum().item() precision = true_positive / (pred.sum().item() + eps) recall = true_positive / (true.sum().item() + eps) F1 = 2 * (precision * recall) / (precision + recall + eps) acc = (pred == true).sum().item() / len(pred) return {'precision': precision, 'recall': recall, 'F1': F1, 'acc': acc} def validate(args, data_loader, model, mode): """Run one full validation. """ eval_time = utils.Timer() # Make predictions examples = 0 preds = [] trues = [] for ex in tqdm(data_loader, total=len(data_loader), desc=f'validate {mode}'): batch_size = len(ex[-1]) inputs = ex[:-1] pred = model.predict(inputs) true = ex[-1] preds += pred trues += true # If getting train accuracies, sample max 10k examples += batch_size if mode == 'train' and examples >= 1e4: break metrics = evaluate(np.array(preds), np.array(trues)) logger.info(f'{mode} valid: ' + f'examples = {examples} | valid time = {eval_time.time():.2f} (s).') logger.info(' | '.join([f'{k}: {metrics[k]*100:.2f}%' for k in metrics])) return {args.valid_metric: metrics[args.valid_metric]} # ------------------------------------------------------------------------------ # Main. # ------------------------------------------------------------------------------ def main(args): # -------------------------------------------------------------------------- # DATA logger.info('-' * 100) logger.info('Load data files') train_exs = utils.load_data(args.train_file) logger.info(f'Num train examples = {len(train_exs)}') if args.dev_file: dev_exs = utils.load_data(args.dev_file) logger.info(f'Num dev examples = {len(dev_exs)}') else: dev_exs = [] logger.info('No dev data. Randomly choose 10% of train data to validate.') if args.test_file: test_exs = utils.load_data(args.test_file) logger.info(f'Num test examples = {len(test_exs)}') else: test_exs = [] logger.info('No test data. Use 10 fold cv to evaluate.') logger.info(f'Total {len(train_exs) + len(dev_exs) + len(test_exs)} examples.') logger.info(f'Loading blame lexicons from {args.blame_lexicons}...') with open(args.blame_lexicons) as f: lexicons = [w.strip().lower() for w in f.read().strip().split(' or ')] logging.info(f'{len(lexicons)} blame lexicons loaded.') # ------------------------------------------------------------------------- # PRINT CONFIG logger.info('-' * 100) logger.info('CONFIG:\n%s' % json.dumps(vars(args), indent=4, sort_keys=True)) # -------------------------------------------------------------------------- # DATA ITERATORS logger.info('-' * 100) logger.info('Make data loaders') if args.test_file: aggressiveness = {} if args.aggressiveness_file: with open(args.aggressiveness_file) as f: for line in f: entity, score = line.split(':') score = float(score) aggressiveness[entity] = score model = BaselineModel(config.get_model_args(args), lexicons, aggressiveness=aggressiveness) train_loader, dev_loader, test_loader = utils.split_loader(train_exs, test_exs, args, model, dev_exs=dev_exs) # Validate train validate(args, train_loader, model, mode='train') # Validate dev validate(args, dev_loader, model, mode='dev') # validate test result = validate(args, test_loader, model, mode='test') logger.info('-' * 100) logger.info(f'Test {args.valid_metric}: {result[args.valid_metric]*100:.2f}%') else: # 10-cross cv results = [] samples_fold = [np.random.randint(10) for _ in range(len(train_exs))] fold_samples = defaultdict(list) for sample_idx, sample_fold in enumerate(samples_fold): fold_samples[sample_fold].append(sample_idx) model = BaselineModel(config.get_model_args(args), lexicons) for fold in range(10): fold_info = f'for fold {fold}' if fold is not None else '' logger.info(colored(f'Starting training {fold_info}...', 'blue')) train_loader, dev_loader = utils.split_loader_cv( train_exs, args, model, fold_samples[fold]) result = validate(args, dev_loader, model, mode='dev') results.append(result[args.valid_metric]) # logger.debug(colored('DEBUG: Run for 1 folds. Stop.', 'red')) # break result = np.mean(results).item() logger.info('-' * 100) logger.info(f'CV {args.valid_metric}: {result*100:.2f}%') if __name__ == '__main__': # Parse cmdline args and setup environment parser = argparse.ArgumentParser( 'Run Blame Extractor Baseline', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) add_train_args(parser) config.add_model_args(parser) args = parser.parse_args() set_defaults(args) # Set random state random.seed(args.random_seed) np.random.seed(args.random_seed) torch.manual_seed(args.random_seed) # Set logging logger.setLevel(logging.DEBUG) fmt = logging.Formatter('%(asctime)s: [ %(message)s ]', '%m/%d/%Y %I:%M:%S %p') console = logging.StreamHandler() console.setFormatter(fmt) logger.addHandler(console) if args.log_file: logfile = logging.FileHandler(args.log_file, 'w') logfile.setFormatter(fmt) logger.addHandler(logfile) logger.info('COMMAND: %s' % ' '.join(sys.argv)) # Run! main(args) ``` #### File: venv/bin/pydev.py ```python import argparse import logging import subprocess import os from os import path from pathlib import Path import glob from typing import List import re import sys from pydantic import BaseModel import colorama class Plugin(BaseModel): path: str name: str url: str = None description: str = None def docker_works() -> bool: logging.debug('running docker --help to make sure docker is installed') process = subprocess.run("docker --help", stdout=subprocess.PIPE, stderr=subprocess.PIPE) logging.debug(f'docker --help return code: %s', process.returncode) return process.returncode == 0 def get_context_info() -> dict: return { 'PYDEV_PROJECT_ROOT': os.getcwd() } def stop_plugin(plugin: Plugin): logging.debug(f'Shutting down plugin: {plugin.name}') env = {**os.environ.copy(), **get_context_info()} process = subprocess.run(f"docker-compose -f {plugin.path} down --remove-orphans", stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env) logging.debug('shutdown complete with return code: %s', process.returncode) if process.returncode != 0: logging.debug('stdout: %s', process.stdout) logging.error(process.stderr) def start_plugin(plugin: Plugin): logging.debug(f'Starting plugin: {plugin.name}') env = {**os.environ.copy(), **get_context_info()} process = subprocess.run(f"docker-compose -f {plugin.path} up -d", stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env) logging.debug('start complete with return code: %s', process.returncode) if process.returncode != 0: logging.debug('stdout: %s', process.stdout) logging.error(process.stderr) def get_plugins(plugins_dir: str) -> List[Plugin]: logging.debug('Searching for plugins in %s', plugins_dir) plugin_files = glob.glob(path.join(plugins_dir, '*.yml')) plugin_files = plugin_files + glob.glob(path.join(plugins_dir, '*.yaml')) plugin_files = list(set(plugin_files)) logging.debug('Plugin files: %s', plugin_files) plugins = [] for plugin_file in plugin_files: name, ext = os.path.splitext(os.path.basename(plugin_file)) comment_lines = [] with open(plugin_file) as f: for line in f: if line.startswith('#'): comment_lines.append(line) else: break url = None description = None for line in comment_lines: matches = re.findall(r'^\s*#\s*url:\s*(.*?)\s*$', line) if matches and len(matches) == 1: url = matches[0] matches = re.findall(r'^\s*#\s*description:\s*(.*?)\s*$', line) if matches and len(matches) == 1: description = matches[0] plugins.append(Plugin( name=name, path=plugin_file, url=url, description=description )) return plugins def docker_compose_works() -> bool: logging.debug('running docker-compose --help to make sure it is installed') process = subprocess.run("docker-compose --help", stdout=subprocess.PIPE, stderr=subprocess.PIPE) logging.debug(f'docker-compose --help return code: %s', process.returncode) return process.returncode == 0 def main(plugins_dir: str, verify: bool = False, *args, **kwargs): if verify: if not docker_works(): logging.error('Docker does not seem to be installed, terminating') exit(1) if not docker_compose_works(): logging.error('Docker compose does not seem to be installed, terminating') exit(1) logging.debug('Creating plugins dir at %s', plugins_dir) os.makedirs(plugins_dir, exist_ok=True) plugins = get_plugins(plugins_dir) logging.debug('Found %s plugins', len(plugins)) colorama.init(autoreset=True) for plugin in plugins: sys.stdout.write(f'Stopping {plugin.name}... ') stop_plugin(plugin) print(colorama.Fore.GREEN + 'Done') logging.debug('Plugin %s stopped', plugin.name) for plugin in plugins: sys.stdout.write(f'Starting {plugin.name}... ') start_plugin(plugin) print(colorama.Fore.GREEN + 'Done') print('pydev is up and running!') for plugin in plugins: if plugin.url: print(f'\t{plugin.name} - {plugin.url}') else: print(f'\t{plugin.name}') if plugin.description: print(f'\t\t{plugin.description}') if __name__ == '__main__': parser = argparse.ArgumentParser() argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter, prog='pydev', description=''' A tool for deploying a local containerised python development environment, with a full web interface''', epilog=''' Notes: * You need to have docker installed (You can use Docker for windows as well) * You need to install docker-compose ''' ) parser.add_argument('-p', '--plugins', dest='plugins_dir', type=str, help='The path to the pydev plugins directory, containing docker-compose files', required=False, default=path.join(Path.home(), '.pydev')) parser.add_argument('--no-verify', action='store_false', dest='verify', default=True, help='If specified the installation of docker & docker-compose will not be verified') parser.add_argument('-l', '--log-level', dest='log_level', choices=['DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL'], default='INFO', help='Sets the log level') args = parser.parse_args() logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=getattr(logging, args.log_level)) logging.debug(f'args: {vars(args)}') main(**vars(args)) ```
{ "source": "jmmaloney3/gapstat", "score": 3 }
#### File: gapstat/src/gapstat.py ```python import math import numpy as np from random import randint from sklearn.base import BaseEstimator, ClusterMixin, TransformerMixin from sklearn.cluster import KMeans from sklearn.exceptions import NotFittedError from sklearn.metrics.pairwise import euclidean_distances from sklearn.preprocessing import LabelEncoder from sklearn.utils import check_array from sklearn.utils import check_X_y from sklearn.utils.validation import column_or_1d from sklearn.utils.validation import check_is_fitted class GapStatClustering(BaseEstimator, ClusterMixin, TransformerMixin): """A clusterer that uses the gap statistic to estimate the optimal number of clusters. For details on the gap statistic method for estimating the optimal number of clusters see [1]_. Parameters ---------- base_clusterer : object or None, optional (default=None) The base clusterer to use to cluster the data. If None, then the base clusterer is K-Means. max_k : int, optional, default: 10 The maximum number of clusters to consider when estimating the optimal number of clusters for the data set. B1 : int, optional, default: 10 The number of null reference data sets that are generated and clustered in order to estimate the optimal number of clusters for the data set. B2 : int, optional, default: 1 The number of times the input data set is clustered in order to estimate the average pooled with-in cluster sum of squares. This can be used to improve the stability of the results. Attributes ---------- n_clusters_ : int The estimate of the optimal number of clusters identified using the gap statistic method. labels_ : Labels of each point Examples -------- >>> from gapstat import GapStatClustering >>> from sklearn.cluster import AgglomerativeClustering >>> from sklearn.datasets import make_blobs >>> X,_ = make_blobs(n_samples=16, centers=[[4,4],[-4,4],[-4,-4],[4,-4]], ... n_features=2, random_state=2) >>> >>> gstat_km = GapStatClustering(max_k=5).fit(X) >>> gstat_km.n_clusters_ 4 >>> gstat_km.labels_ array([0, 0, 3, 1, 2, 0, 3, 2, 2, 1, 3, 0, 1, 2, 1, 3]) >>> gstat_km.predict([[-3, -3], [3, 3]]) array([4, 3], dtype=int32) >>> >>> gstat_ac = GapStatClustering(base_clusterer=AgglomerativeClustering(), ... max_k=5).fit(X) >>> gstat_ac.n_clusters_ 4 >>> gstat_ac.labels_ array([3, 3, 2, 0, 1, 3, 2, 1, 1, 0, 2, 3, 0, 1, 0, 2]) References ---------- .. [1] <NAME>. , <NAME>. and <NAME>. (2001), Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63: 411-423. doi:10.1111/1467-9868.00293 """ def __init__(self, base_clusterer=None, max_k=10, B1=10, B2=1): # create default base clusterer if necessary self.base_clusterer = _check_clusterer(base_clusterer) self.max_k = max_k self.B1 = B1 self.B2 = B2 def fit(self, X, y=None): """Compute the clustering. The gap statistic method is used to estimate the optimal number of clusters. TO DO: allow optional fit parameters to be passed to the base clusterer Parameters ---------- X : array-like, sparse matrix or dataframe,shape=[n_samples,n_features] The observations to cluster. y : Ignored not used, present here for API consistency by convention. Raises ------ NotFittedError If the data set contains more clusters than k_max. """ n_clusters, labels = \ gapstat(X, clusterer=self.base_clusterer, max_k=self.max_k, B1=self.B1, B2=self.B2) if ((n_clusters is None) | (labels is None)): msg = "The estimated optimal number of clusters is greater than " \ "max_k=%d" raise NotFittedError(msg % self.max_k) else: self.n_clusters_, self.labels_ = (n_clusters, labels) return self def fit_predict(self, X, y=None): """Compute the clustering and return the cluster label for each observation. Convenience method; equivalent to calling fit(X) followed by predict(X). TO DO: allow optional fit parameters to be passed to the base clusterer Parameters ---------- X : array-like, sparse matrix or dataframe,shape=[n_samples,n_features] The observations to cluster. y : Ignored not used, present here for API consistency by convention. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. Raises ------ NotFittedError If the data set contains more clusters than k_max. """ return self.fit(X).labels_ def fit_transform(self, X, y=None): """Compute the clustering and transform X to cluster-distance space. Equivalent to fit(X).transform(X), but more efficiently implemented. If the base clusterer does not implement the trnsform() method then X is return untransformed. TO DO: allow optional fit parameters to be passed to the base clusterer Parameters ---------- X : array-like, sparse matrix or dataframe,shape=[n_samples,n_features] New data to transform. y : Ignored not used, present here for API consistency by convention. Returns ------- X_new : array, shape [n_samples, k] X transformed in the new space. Raises ------ NotFittedError If the data set contains more clusters than k_max. AttributeError If the base_clusterer does not implement transform(). """ # make sure the base cluster implements transform() # -- raises AttributeError if it doesn't getattr(self.base_clusterer, 'transform') # fit the data and then call transform return self.fit(X).transform(X) def transform(self, X): """Transform X to a cluster-distance space. In the new space, each dimension is the distance to the cluster centers. Note that even if X is sparse, the array returned by `transform` will typically be dense. If the base clusterer does not implement the trnsform() method then X is return untransformed. Parameters ---------- X : array-like, sparse matrix or dataframe,shape=[n_samples,n_features] New data to transform. Returns ------- X_new : array, shape [n_samples, k] X transformed in the new space. Raises ------ NotFittedError If the estimator has not been fitted to a data set. AttributeError If the base_clusterer does not implement transform(). """ check_is_fitted(self) # call transform on the base clusterer return self.base_clusterer.transform(X) def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : array-like, sparse matrix or dataframe,shape=[n_samples,n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. Raises ------ NotFittedError If the estimator has not been fitted to a data set. AttributeError If the base_clusterer does not implement predict(). """ check_is_fitted(self) # call predict on the base clusterer return self.base_clusterer.predict(X) def gapstat(X, clusterer=None, max_k=10, B1=10, B2=1, calcStats=False): """Gap statistic clustering algorithm. Uses the gap statistic method to estimate the optimal number of clusters and uses that estimate to generate a clustering. TO DO: Provide a way to pass additionl parameters to the base clusterer. Parameters ---------- X : array-like, sparse matrix or dataframe, shape (n_samples, n_features) The observations to cluster. clusterer : object or None, optional (default=None) The base clusterer to use to cluster the data. If None, then the base clusterer is K-Means. max_k : int, optional, default: 10 The maximum number of clusters to consider when estimating the optimal number of clusters for the data set. B1 : int, optional, default: 10 The number of null reference data sets that are generated and clustered in order to estimate the optimal number of clusters for the data set. B2 : int, optional, default: 1 The numbe of times the input data set is clustered in order to estimate the average pooled with-in cluster sum of squares. This can be used to improve the stability of the results. calcStats : boolean, optional, default: False Calculate and return the statistics for all values of k from 1 through max_k. The statistics include W, log(W), log(W*), gap and standard error. Otherwise, stop when the estimated optimal k is determined and only return n_clusters and labels. Returns ------- n_clusters : int The estimate of the optimal number of clusters identified using the gap statistic method. labels : int array, shape = [n_samples] The labels identifying the cluster that each sample belongs to. label[i] is the index of the cluster for the i-th observation. The clustering includes n_clusters clusters. stats : dict, optional When calcStats is true, the statistics are returned in a dictionary with three entries: data, index and columns. The data entry is a numpy two-dimensional array that includes the statistics described below. The index and columns entries provide additional information that can be used to create a pandas dataframe containing the statistics. Each row of the data matrix provides the following statistics for each value of k considered: W : The mean pooled within-cluter sum of squares around the cluster means for the input data set. The value returned for each value of k is the mean of B2 clusterings. log(W) : the logarithm of W (see above) log(W*) : The expectation of log(W) under an appropriate null reference distribution of the data. This is calculated as the mean log pooled within-cluter sum of squares around the cluster means for B2 generated null reference data sets. Gap : The gap statistic calculated as log(W*) - log(W). Std Err : The standard error of log(W*). Examples -------- >>> from gapstat import gapstat >>> from sklearn.cluster import AgglomerativeClustering >>> from sklearn.datasets import make_blobs >>> >>> X,_ = make_blobs(n_samples=16, centers=[[4,4],[-4,4],[-4,-4],[4,-4]], ... n_features=2, random_state=2) >>> >>> k, labels = gapstat(X, clusterer=AgglomerativeClustering(), ... max_k=5) >>> k 4 >>> labels array([3, 3, 2, 0, 1, 3, 2, 1, 1, 0, 2, 3, 0, 1, 0, 2]) """ # validate input parameters if max_k <= 0: # TO DO: also check if it is an integer raise ValueError("Maximum number of clusters to consider should be " "a positive integer, got %d instead" % max_k) if B1 <= 0: # TO DO: also check if it is an integer raise ValueError("The number of null reference data sets to generate " "should be a positive integer, got %d instead" % B1) if B2 <= 0: # TO DO: also check if it is an integer raise ValueError("The number of times to cluster the data set to find " "a stable W value should be a positive integer, got " "%d instead" % B2) # check the clusterer and create a default clusterer if necessary clusterer = _check_clusterer(clusterer) # to determine whether a particular value of k is optimal # requires calculating the gap statistic for k+1, so # interate through all values of k up to max_k+1 # check that the number of samples is consistent with (max_k+1) X, _, _ = _check_inputs(X=X, k=max_k+1) # create arrays to hold statistics # -- "pooled within-cluster sum of squares around cluster means" W = np.zeros(max_k+1) log_W = np.empty(max_k+1) log_W[:] = np.nan # -- "expected W_k under a null reference distribution of the data" log_W_star = np.empty(max_k+1) log_W_star[:] = np.nan # -- the gap statistic gap = np.empty(max_k+1) gap[:] = np.nan # -- standard error s = np.empty(max_k+1) s[:] = np.nan # -- labels for each value of k labels = np.full((max_k+1, X.shape[0]), -1) # labels for each b # -- the estimated optimal number of clusters k_hat = None # if max_k is too small then k_hat will be None for k in range(max_k+1): # calculate W and log(W) # -- k is zero-basd iterator, num clusters is one greater W[k], log_W[k], labels[k, :] = _calc_W(X, k+1, clusterer=clusterer, B=B2) # calculate log(W*) and the standard error # -- k is zero-basd iterator, num clusters is one greater log_W_star[k], s[k] = _calc_exp_W(X, k+1, clusterer=clusterer, B=B1) # calculate the gap statistic for k gap[k] = log_W_star[k] - log_W[k] # if W for ref data is less than W for input matrix # then set gap to zero and see if adding more clusters # reduces the value of W for the input matrix if (gap[k] < 0): gap[k] = 0 # determine whether the previous value of k is the estimated optimal # number of clusters # -- (1) make sure the optimal has not been found # -- (2) make sure there is a previous value (k-1) for comparison # -- (3) make sure clustering of X is actually better than the # -- clustering of null ref data # -- (4) use gap statistic to determine if optimal k has been found if ((k_hat is None) & # (1) (k > 0) & # (2) (gap[k-1] != 0) & # (3) (gap[k-1] >= (gap[k] - s[k]))): # (4) # found an estimate of the optimal number of clusters! # -- # k is zero-based iteration index, num of clusters is +1 k_hat = k # previous value of k is the estimate: ((k-1)+1) = k # if we are not calculating statistics then stop if (not calcStats): break # -- end for k # fit the clusterer using the estimated optimal k & # identify labels for optimal k if (k_hat is not None): # fit the clusterer using k_hat as the number of clusters clusterer.set_params(n_clusters=k_hat) k_hat_labels = clusterer.fit_predict(X) else: k_hat_labels = None # return the results if (calcStats): stats = {} # create array of k values (index) stats["index"] = np.arange(1,max_k+2) # create an array of column headers (columns) stats["columns"] = np.array(["W", "log(W)", "log(W*)", "Gap", "Std Err"]) # create a multi-dimensional array with the statistics (data) stats["data"] = np.stack((W, log_W, log_W_star, gap, s), axis=1) return k_hat, k_hat_labels, stats else: return k_hat, k_hat_labels # end function def gapstat_score(X, labels, k=None, clusterer=None, B=10, calcStats=False): """Compute the gap statistic score (metric) for the given clustering. The gap statistic is the difference between the log of the pooled within-cluster sum of squares for the candiate clustering and the expectation of that value under an apprpriate null reference distribution. For more details on the gap statistic see [1]_. Parameters ---------- X : array [n_samples_a, n_features] The observations that were clustered. labels : array, shape = [n_samples] Predicted labels for each observation. k : int, optional, default: None The number of clusters in the clustering. If set to None then the number of clusters will be calculated based on the supplied labels. clusterer : object or None, optional (default=None) The clusterer to use to cluster the null referece data sets. If None, then the base clusterer is K-Means. B : int, optional, default: 10 The number of null reference data sets that are generated and clustered in order to estimate the optimal number of clusters for the data set. calcStats : boolean, optional, default: False Calculate and return the underlying statistics used to calculate the gap statistic score. The statistics include W, log(W), log(W*), and standard error. Otherwise, only the gap statistic score is returned. Returns ------- gap : float The value of the gap statistic for the clustering. W : float, optional The mean pooled within-cluter sum of squares around the cluster means for the provided clustering. This is only returned when calcStats is True. log_W : float, optional log(W). This is only returned when calcStats is True. log_W_star : float, optional The expectation of log(W) under an appropriate null reference distribution of the data. This is calculated as the mean log pooled within-cluter sum of squares around the cluster means for B generated null reference data sets. This is only returned when calcStats is True. s : float, optional The standard error of log(W*). This is only returned when calcStats is True. Examples -------- >>> from gapstat import gapstat >>> from sklearn.cluster import AgglomerativeClustering >>> from sklearn.datasets import make_blobs >>> >>> X,_ = make_blobs(n_samples=16, centers=[[4,4],[-4,4],[-4,-4],[4,-4]], ... n_features=2, random_state=2) >>> >>> ac = AgglomerativeClustering().fit(X) >>> gapstat_score(X, ac.labels_) -0.6028585939536981 References ---------- .. [1] <NAME>. , <NAME>. and <NAME>. (2001), Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63: 411-423. doi:10.1111/1467-9868.00293 """ if B <= 0: # TO DO: also check if it is an integer raise ValueError("The number of null reference data sets to generate " "should be a positive integer, got %d instead" % B) # check that the inputs are valid and consistent X, labels, k = _check_inputs(X=X, y=labels, k=k) # check the clusterer and create a default clusterer if necessary clusterer = _check_clusterer(clusterer) # calculate W for supplied clustering W = _pooled_within_cluster_sum_of_squares(X, labels, k) log_W = _safeLog(W) # calculate log(W*) and standard error log_W_star, s = _calc_exp_W(X, k, clusterer, B) # calculate the gap statistic for the clustering gap = log_W_star - log_W if (calcStats): return gap, W, log_W, log_W_star, s else: return gap def _calc_W(X, k, clusterer=None, B=1): """Calculate the expected pooled within-in cluster sum of squares for the data set and the specified number of clusters k. Parameters ---------- X : array [n_samples_a, n_features] The observations that were clustered. k : int The number of clusters to use when clustering the data sets. clusterer : object or None, optional (default=None) The clusterer to use to cluster the data set. If None, then the clusterer is K-Means. B : int, optional, default: 10 The number of times the data set should be clustered in order to determine an average pooled within cluster sum of squares. This helps smooth out random differences introduced by random starting states for some clusterers. Returns ------- W : float The mean pooled with-in cluster sum of squares for the B clusterings that were generated. log_W : float The mean log(W) for the B clusterings that were generated labels : array [n_samples] The mode of the labels generated for each of the B clusterings that were generated """ # check the clusterer and create a default clusterer if necessary clusterer = _check_clusterer(clusterer) # handle degenerate case when there is 1 sample per cluster if (k == X.shape[0]): # return: # -- W: one sample per cluster, so W is zero # -- log(W): log(0) is undefined, return NaN # -- labels: return unique label for each sample return 0.0, np.nan, np.array(range(k)) # cluster the data set B times and calculate the average W # arrays to hold stats for the B iterations W = np.zeros(B) log_W = np.empty(B) log_W[:] = np.nan labels = np.full((B, X.shape[0]), -1) # labels for each b # set the number for clusters in the clustered data set clusterer.set_params(n_clusters=k) for b in range(B): # generate clusters labels[b, :] = clusterer.fit_predict(X) # calculate W and log(W) for the b-th iteration W[b] = _pooled_within_cluster_sum_of_squares(X, labels[b, :], k) log_W[b] = _safeLog(W[b]) # -- end for b # find the mean of W and log(W) for the B clusterings avg_W = np.sum(W)/B avg_log_W = np.sum(log_W)/B # randomly select one of the clusterings to return i = randint(0, B-1) ret_labels = labels[i, :] return avg_W, avg_log_W, ret_labels def _calc_exp_W(X, k, clusterer=None, B=10): """Calculate the expected pooled within-in cluster sum of squares for the null reference disribution for the data set and the specified number of clusters k. Parameters ---------- X : array [n_samples, n_features] The observations that were clustered. k : int The number of clusters to use when clustering the null ref data sets. clusterer : object or None, optional (default=None) The clusterer to use to cluster the null referece data sets. If None, then the clusterer is K-Means. B : int, optional, default: 10 The number of null reference data sets that are generated and clustered in order to calculate the null reference pooled within cluster sum of squares. Returns ------- log_W_star : float The expected pooled within-in cluster sum of squares for the null reference disribution. std_err : float The standard error for the means of the B null reference data sets """ # check the clusterer and create a default clusterer if necessary clusterer = _check_clusterer(clusterer) n_samples, n_features = X.shape # handle degenerate case when there is 1 sample per cluster if (k == n_samples): # return: # -- log(W*): W* is 0, log(0) is undefined, return NaN # -- standard error: return NaN return np.nan, np.nan # calculate min & max for samples X_min = X.min(axis=0) X_max = X.max(axis=0) # generate B null ref sets, custer each set and calcualte the statistic # arrays to hold stats for the B null ref data sets for current k null_ref_W = np.zeros(B) # value of W* for the B null ref sets log_null_ref_W = np.empty(B) # value of log(W*) for the B null ref sets log_null_ref_W[:] = np.nan # set the number for clusters in the clustered data set clusterer.set_params(n_clusters=k) for b in range(B): # generate a new "null reference data set" null_ref = _gen_null_ref(n_samples, n_features, X_min, X_max) # generate clusters for the "null reference data set" labels = clusterer.fit_predict(null_ref) # calculate W* and log(W*) for the b-th null reference data set null_ref_W[b] = _pooled_within_cluster_sum_of_squares(null_ref, labels, k) log_null_ref_W[b] = _safeLog(null_ref_W[b]) # -- end for b # end generation and clustering of B null ref data sets # find the mean of log(W*) for the B ref data set samples log_W_star = np.sum(log_null_ref_W)/B # log(W*) (aka, l_bar) # calculate the standard deviation sd = math.sqrt(np.mean(np.power(log_null_ref_W - log_W_star, 2))) # calculate the standard error s = sd*math.sqrt(1 + 1/B) return log_W_star, s def _gen_null_ref(n_samples, n_features, f_min, f_max): """Generate a data set with the specified number of samples and values for features chosen from a uniform distributions with the specified minimum and maximum values. Parameters ---------- n_samples : int The number of samples to generate. n_features : int The number of features to generate. f_min : arrray, float [n_features] The minimum values for the features. f_max : array, float [n_features] The maximum value for the features. Returns ------- null_ref : array, float [ n_sample, n_features ] The generated samples. """ # create 2D array to hold null reference data set null_ref = np.empty((n_samples, n_features)) null_ref[:] = np.nan # generate a "null reference data set" for f in range(n_features): null_ref[:, f] = np.random.uniform(low=f_min[f], high=f_max[f], size=n_samples) # null ref set generated --- return null_ref def _check_clusterer(clusterer=None): """Check that the clusterer is a valid clusterer (it implements the required methods). If no cluster is provided, create a default clusterer. Parameters ---------- clusterer : object or None, optional (default=None) The clusterer to use to cluster the data sets. If None, then the clusterer is K-Means. Returns ------- clusterer : object The supplied clusterer or a default clusterer if none was provided. """ if (clusterer is None): # create default clusterer if necessary # default Cluster is KMeans clusterer = KMeans() else: # make sure base clusterer implements set_params() getattr(clusterer, 'set_params') # make sure base clusterer implements fit_predict() getattr(clusterer, 'fit_predict') # make sure base clusterer has n_clusters attribute getattr(clusterer, 'n_clusters') return clusterer def _check_inputs(X=None, y=None, k=None): """Input validation for gapstat. Depending on the inputs provided, use one or more of the following validation utilities to validate the inputs: sklearn.utils.check_array() sklearn.utils.check_X_y() sklearn.utils.validation.column_or_1d() In addition, if k is provided, validate the following: 0 < k <= X.shape[0] k == number of unique value in y Parameters ---------- X : array [n_samples, n_features], optional The data set to be clustered y : array-like, shape=[n_samples], optional The labels identifying the cluster that each sample belongs to. k : int The number of clusters. Returns ------- X_converted : object The converted and validated X. y_converted : object The converted and validated y. k_validated: int The calculated or validated k. """ if (X is None) & (y is None): raise ValueError("One of 'X' or 'y' must not be 'None'") n_labels = None if (y is not None): le = LabelEncoder() y = le.fit_transform(y) n_labels = len(le.classes_) if (X is not None) & (y is not None): X, y = check_X_y(X, y) if (k is not None): if (not 0 < k <= X.shape[0]): raise ValueError("Number of clusters (k) is %d. Valid values " "are 1 to n_samples (inclusive)" % k) if (n_labels != k): raise ValueError("Number of unique labels (%d) does not equal " "the number of clusters (k=%d)." % (n_labels, k)) else: # (k is None) k = n_labels if (X is not None) & (y is None): X = check_array(X) if (k is not None) & (not 0 < k <= X.shape[0]): raise ValueError("Number of clusters (k) is %d. Valid values " "are 1 to n_samples=%d (inclusive)" % (k, X.shape[0])) if (X is None) & (y is not None): y = column_or_1d(y) if (k is not None) & (n_labels != k): raise ValueError("Number of unique labels (%d) does not equal the " "number of clusters (k=%d)." % (n_labels, k)) else: k = n_labels return X, y, k def _pooled_within_cluster_sum_of_squares(X, labels, k): """Calculate the pooled within-cluster sum of squares (W) for the clustering defined by the specified labels. Parameters ---------- X : array-like, sparse matrix or dataframe, shape=[n_samples, n_features] The observations that were clustered. labels : array-like, shape=[n_samples] The labels identifying the cluster that each sample belongs to. k: integer The number of unique labels - number of clusters. """ n_samples, _ = X.shape # initialize W to zero W = 0 # -- iterate over the clusters and calculate the pairwise distances for # -- the points for c_label in range(k): c_k = X[labels == c_label] d_k = euclidean_distances(c_k, c_k, squared=True) n_k = len(c_k) # multiply by 0.5 because each distance is included in the sum twice W = W + (0.5*d_k.sum())/(2*n_k) # return the result return W # end pooled_within_cluster_sum_of_squares def _safeLog(x): """Return the log of the specified number. If the number is zero (or close to zero) return NaN. Parameters ========== x : float Returns ======= log_x : float The value of log(x) or np.nan if x is zero. """ if (math.isclose(x, 0.0)): # return a very small number return np.nan else: return math.log(x) def _get_column_indices(X): """Get the column indices for the input matrix. Determines the data type of the input matrix and uses the appropriate method to retrieve the column indices. """ try: # this will fail if X is not a pandas DataFrame return list(X.columns) except AttributeError: pass # X is an array-like return list(range(X.shape[1])) # -- end function ```
{ "source": "jmmaloney4/renovate-helm-releases", "score": 2 }
#### File: jmmaloney4/renovate-helm-releases/test_renovate.py ```python from click.testing import CliRunner from renovate import cli def test_renovate(): runner = CliRunner() result = runner.invoke(cli, ['--cluster-path', './tests/']) assert result.exit_code == 0 if __name__ == '__main__': test_renovate() ```
{ "source": "jmmarino723/pyprotocol", "score": 3 }
#### File: jmmarino723/pyprotocol/Parser.py ```python import logging from time import sleep from queue import Queue from protocol.package.package import Package def worker(input_queue: Queue, ouput_queue: Queue): while True: payload = input_queue.get() pack = Package(payload=payload, size=payload.length()) logging.info(f"Package added to Queue {pack.dict()}") ouput_queue.put(pack.dict()) ```
{ "source": "Jmmaroli/eqn-gen", "score": 2 }
#### File: eqn-gen/lib/analyze_model.py ```python import time import itertools import multiprocessing import numpy as np from joblib import Parallel, delayed from scipy.optimize import curve_fit import pyprind # Progress bar import torch import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import mat4py import os from lib.evaluate_function import evaluate_function # Format of function parameters. FORMAT = '%.3e' def analyze_model(analysis_parameters, model_dictionary, input_data, output_data, input_mask=1): functions = analysis_parameters["functions"] sweep_initial = analysis_parameters["sweep_initial"] sweep_detailed = analysis_parameters["sweep_detailed"] contrib_thresh = analysis_parameters["contrib_thresh"] contrib_thresh_omit = analysis_parameters["contrib_thresh_omit"] use_f_weight = analysis_parameters["use_f_weight"] seed = analysis_parameters["seed"] np.random.seed(seed) verbose = analysis_parameters["verbose"] visual = analysis_parameters["visual"] save_visual = analysis_parameters["save_visual"] # Check inputs for validity. if sweep_initial < 1: print("ERROR: analyze_model parameter sweep_initial must be >= 1") return None, None if sweep_detailed < 100: print("ERROR: analyze_model parameter sweep_detailed must be >= 100") return None, None # Function for indexing the large impulse array. def array_to_int(num_list): # [1,2,3] str_list = map(str, num_list) # ['1','2','3'] num_str = ''.join(str_list) # '123' num = int(num_str, 2) # 123 return num model = model_dictionary["model"] history = model_dictionary["model_parameters"]["history"] history_eff = model_dictionary["history_eff"] mu_x = model_dictionary["mu_x"] sig_x = model_dictionary["sig_x"] mu_y = model_dictionary["mu_y"] sig_y = model_dictionary["sig_y"] input_channels = model_dictionary["input_channels"] output_channels = model_dictionary["output_channels"] input_range = model_dictionary["input_range"] input_shift = model_dictionary["input_shift"] # Establish tensor types of certain variables for computation. mu_y_t = torch.tensor(mu_y, dtype=torch.float) sig_y_t = torch.tensor(sig_y, dtype=torch.float) # Get the current data output folder if saving data and plots. if save_visual == True: if not os.path.exists('./output'): os.mkdir('./output') analysis_dir_count = 1 while os.path.exists('./output/analysis_{}'.format(analysis_dir_count)): analysis_dir_count = analysis_dir_count + 1 os.mkdir('./output/analysis_{}'.format(analysis_dir_count)) # Generate every possible combination of impulses. if history < history_eff: history_eff = history combination_count = pow(2, input_channels*(history_eff)) combinations = [x for x in range(0, input_channels*(history_eff))] impulse_array = np.zeros([combination_count, input_channels, history]) # Loop through every combination of subsets of constituants for combination_id in range(0, len(combinations)+1): for subset in itertools.combinations(combinations, combination_id): impulse = np.zeros([1, 1, input_channels*(history_eff)]) for element in subset: impulse[0, 0, input_channels*(history_eff)-1-element] = 1 index = array_to_int(impulse[0, 0, :].astype(int)) impulse_shaped = np.reshape(impulse, [input_channels, history_eff]) # Add buffer elements to account for a history longer than scope. impulse_array[index, :, (history-history_eff):history] = impulse_shaped # Generate the impulse sweep set for creating multiples of impulses. if sweep_initial != 1: impulse_sweep_set = 2*np.random.rand(sweep_initial, input_channels, history)-1 # Bound sweep set to be within range of the original input data. for i in range(0, input_channels): min_value = input_range[i][0] max_value = input_range[i][1] impulse_sweep_set[:, i, :] = impulse_sweep_set[:, i, :]*(max_value-min_value)+min_value # Obtain the output for input impulses. print("Exciting model...") model.cpu() if sweep_initial != 1: impulse_response = np.zeros([combination_count, output_channels, sweep_initial]) else: impulse_response = np.zeros([combination_count, output_channels, 1]) batch_idx = 1 batch_size_analyze = 256 progress_bar = pyprind.ProgBar(len(range(0, combination_count, batch_size_analyze)), monitor=True) # Calculate the bias at the zero point. model_input = np.copy(impulse_array[0:1, :, :]) bias = model(torch.tensor((model_input-mu_x)/sig_x, dtype=torch.float))*sig_y_t+mu_y_t # Calculate the response from all impulse combinations. for i in range(0, combination_count, batch_size_analyze): if i + batch_size_analyze > combination_count: # Handle the last batch. impulse = impulse_array[i:] if sweep_initial > 1: for j in range(0, sweep_initial): mult = impulse_sweep_set[j, :, :] model_input = mult*impulse*input_mask output = (model(torch.tensor((model_input-mu_x)/sig_x, dtype=torch.float))*sig_y_t+mu_y_t).detach().cpu().numpy() impulse_response[i:, :, j] = output else: model_input = impulse*input_mask output = (model(torch.tensor((model_input-mu_x)/sig_x, dtype=torch.float))*sig_y_t+mu_y_t).detach().cpu().numpy() impulse_response[i:, :, 0] = output else: # Handle a standard size batch. impulse = impulse_array[i:(i+batch_size_analyze)] if sweep_initial > 1: for j in range(0, sweep_initial): mult = impulse_sweep_set[j, :, :] model_input = mult*impulse*input_mask output = (model(torch.tensor((model_input-mu_x)/sig_x, dtype=torch.float))*sig_y_t+mu_y_t).detach().cpu().numpy() impulse_response[i:(i+batch_size_analyze), :, j] = output else: model_input = impulse*input_mask output = (model(torch.tensor((model_input-mu_x)/sig_x, dtype=torch.float))*sig_y_t+mu_y_t).detach().cpu().numpy() impulse_response[i:(i+batch_size_analyze), :, 0] = output batch_idx += 1 progress_bar.update() #impulse_response = impulse_response.detach().numpy() time.sleep(0.5) # Allows progress bar to finish printing elapsed time. print() def process_subcombination(subcombination): sub_impulse = np.zeros([input_channels*history]) # Determine index of combination in impulse_response for element in subcombination: sub_impulse[input_channels*history-1-element] = 1 sub_index = array_to_int(sub_impulse.astype(int)) # Loop through all subcombinations subsub_indices = [] for l in range(0, len(subcombination)+1): for subsubcombination in itertools.combinations(subcombination, l): if subcombination != subsubcombination: subsub_impulse = np.zeros([input_channels*history]) # Determine index of subcombination in impulse_response for element in subsubcombination: subsub_impulse[input_channels*history-1-element] = 1 subsub_index = array_to_int(subsub_impulse.astype(int)) subsub_indices.append(subsub_index) return sub_index, subsub_indices # Analyze responses (note: progress bar is not linear with computation time) print("Analyzing responses...") progress_bar = pyprind.ProgBar(combination_count, monitor=True) num_cores = multiprocessing.cpu_count() for combination_id in range(0, len(combinations)+1): # Loop all combinations results = Parallel(n_jobs=num_cores)(delayed(process_subcombination)(subcombination) \ for subcombination in itertools.combinations(combinations, combination_id)) for each in results: sub_index = each[0] subsub_indices = each[1] for subsub_index in subsub_indices: impulse_response[sub_index, :, :] = impulse_response[sub_index, :, :] - \ impulse_response[subsub_index, :, :] progress_bar.update() time.sleep(0.5) # Allows progress bar to finish printing elapsed time. print() # Examine the impulse response for all combinations and generate a function. print("Estimating system equation...") # Create a mask of relevant inputs for later model retraining. new_mask = np.zeros([input_channels, history]) # Create a sweep set for curve fitting. fit_sweep_set = np.random.rand(sweep_detailed, input_channels, history) for i in range(0, input_channels): min_value = input_range[i][0] max_value = input_range[i][1] fit_sweep_set[:, i, :] = fit_sweep_set[:, i, :]*(max_value-min_value)+min_value model_function = [] for channel_id in range(0, output_channels): # Function for the output channel is a sum of product functions. channel_function = [] # Get the magnitude average point value of each product function contribution. Z = np.sum(abs(impulse_response[:, channel_id, :]), 1)/sweep_initial # Get the variance of each product function. S = np.var(impulse_response[:, channel_id, :], 1) total_variance = sum(S) # Get indices of responses from largest to smallest. response_indices = np.flip(np.argsort(Z), 0) # Get indices of variances from largest to smallest. variance_indices = np.flip(np.argsort(S), 0) # Identify the top responses. if verbose: print("############################################################") print("Estimate of channel " + str(channel_id+1)) print("############################################################") candidate_limit = min(25, len(response_indices)) sig_indexes = [] for k in range(0, candidate_limit): sig_index = response_indices[k] sig_response = Z[sig_index] z_sorted = np.flip(np.sort(Z[1:], 0), 0) contribution_magnitude = sig_response/sum(z_sorted) if contribution_magnitude > contrib_thresh: sig_indexes.append(sig_index) for k in range(0, candidate_limit): sig_index = variance_indices[k] sig_variance = S[sig_index] contribution_variance = sig_variance/total_variance if contribution_variance > contrib_thresh and sig_index not in sig_indexes: sig_indexes.append(sig_index) # Estimate equations for top responses. for sig_index in sig_indexes: sig_response = Z[sig_index] sig_variance = S[sig_index] sig_impulse = impulse_array[sig_index:sig_index+1, :, :] if verbose: print("Response ID " + str(sig_index) + " contribution:") # Process a product function if the response is significant. # Significance is % contribution to total magnitude or variance. # Bias is not included in magnitude significance. z_sorted = np.flip(np.sort(Z[1:], 0), 0) contribution_magnitude = sig_response/sum(z_sorted) contribution_variance = sig_variance/total_variance if sig_index is not 0: if verbose: print("Magnitude : " + str('%.1f'%(contribution_magnitude*100)) + "%") if verbose: print("Variance : " + str('%.1f'%(contribution_variance*100)) + "%") else: if verbose: print("Bias contribution omitted from calculation.") if verbose: print("============================================================") if contribution_magnitude > contrib_thresh or contribution_variance > contrib_thresh: # Determine the arguments of the product function. arg_list = [] for input_id in range(0, input_channels): for element_id, element in enumerate(sig_impulse[0, input_id, :].astype(int)): if element == 1: delay = history - 1 - element_id arg_list.append({"input_channel": input_id, "delay": delay}) new_mask[input_id, element_id] = 1 # Create the product function template string. f_list = [] f_str = "f(" for _, arg in enumerate(arg_list): f_list.append("x" + str(arg["input_channel"]+1) + "(k-" + str(arg["delay"]) + ")") for arg_num, arg_str in enumerate(f_list): f_str = f_str + arg_str if arg_num < len(f_list)-1: f_str = f_str + "," if len(arg_list) == 0: f_str = f_str + "0" f_str = f_str + ")" # Estimate the product function. def fcn_empty(_): return 0 def txt_empty(_): return "" dct_empty = { "txt": "?", "txt_fcn": txt_empty, "fcn": fcn_empty, "upper": [], "lower": [], "weight": 1.0 } product_function = { "arg_list": arg_list, "template_string": f_str, "estimate_string": "f(?)", "parameters": [], "function": dct_empty, "shift": [] } if len(arg_list) > 0: # Obtain sample points for curve fitting. x_data = np.zeros([sweep_detailed, input_channels, history]) y_data = np.zeros([sweep_detailed, output_channels]) for idx in range(0, sweep_detailed): mult = fit_sweep_set[idx, :, :] model_input = mult*sig_impulse*input_mask x_data[idx, :, :] = model_input y_data[idx, :] = (model(torch.tensor((model_input-mu_x)/sig_x, dtype=torch.float))).detach().numpy()*sig_y+mu_y # Recursively subtract contributions from product functions of arguments. contribution_list = [] for idf in range(0, len(arg_list)): new_contributions = [] for arg_combination in itertools.combinations(arg_list, idf): arg_impulse = np.zeros([sweep_detailed, input_channels, history]) for arg in arg_combination: arg_impulse[:, arg["input_channel"], history-1-arg["delay"]] = 1 model_input = arg_impulse * fit_sweep_set output = (model(torch.tensor((model_input-mu_x)/sig_x, dtype=torch.float))).detach().numpy()*sig_y+mu_y for contribution in contribution_list: output = output - contribution new_contributions.append(output) contribution_list[0:0] = new_contributions for contribution in contribution_list: y_data = y_data - contribution # Format data for curve fitting arg_count = len(arg_list) x_data_fit = np.zeros([arg_count, sweep_detailed]) y_data_fit = np.zeros([sweep_detailed]) arg = 0 for i in range(0, input_channels): for j in range(0, history): if sig_impulse[0, i, j] == 1: x_data_fit[arg, :] = x_data[:, i, j] y_data_fit[:] = y_data[:, channel_id] product_function["shift"].append(input_shift[i]) arg = arg + 1 # Plot 2D and 3D data for visual inspection. if save_visual == True or visual == True: if arg_count == 1: plt.figure() plt.scatter(x_data_fit[0], y_data_fit, marker='.') plt.title(product_function["template_string"]) plt.xlabel(f_list[0]) if save_visual == True: plt.savefig('./output/analysis_{}/{}.pdf'.format(analysis_dir_count, \ product_function["template_string"])) pltDict = {"x": x_data_fit[0].tolist(), "y": y_data_fit.tolist()} mat4py.savemat('./output/analysis_{}/{}.mat'.format(analysis_dir_count, \ product_function["template_string"]), pltDict) if visual == True: plt.show() if arg_count == 2: plt.figure() ax = plt.axes(projection='3d') ax.scatter3D(x_data_fit[0], x_data_fit[1], y_data_fit, c=y_data_fit, marker='o') ax.set_title(product_function["template_string"]) ax.set_xlabel(f_list[0]) ax.set_ylabel(f_list[1]) if save_visual == True: plt.savefig('./output/analysis_{}/{}.pdf'.format(analysis_dir_count, \ product_function["template_string"])) pltDict = {"x": x_data_fit[0].tolist(), "y": x_data_fit[1].tolist(), "z": y_data_fit.tolist()} mat4py.savemat('./output/analysis_{}/{}.mat'.format(analysis_dir_count, \ product_function["template_string"]), pltDict) if visual == True: plt.show() # Estimate the product function using curve fitting. if arg_count in functions: candidate_functions = functions[arg_count] else: candidate_functions = [] product_function["estimate_string"] = product_function["template_string"] best_fit = 100 for f in candidate_functions: try: popt, pcov = curve_fit(f["fcn"], x_data_fit, y_data_fit, bounds=(f["lower"], f["upper"]), maxfev=250000) pcount = len(popt) err = y_data_fit-f["fcn"](x_data_fit, *popt) # Compute root mean squared error. rmse = np.sqrt(sum(pow(err, 2))/sweep_detailed) # Compute mean average error. mae = np.mean(abs(err)) # Compute one standard deviation errors (just the normal std). #std = np.sqrt(np.diag(pcov)) if verbose: print("Fit for " + f["txt_fcn"](arg_list, product_function["shift"], *popt)) print("MAE : " + str(FORMAT%mae)) print("RMSE : " + str(FORMAT%rmse)) #print("STD : " + str(std)) f_weight = 1.0 if use_f_weight == True: f_weight = f["weight"] if mae/f_weight < best_fit: best_fit = mae/f_weight product_function["parameters"] = popt product_function["function"] = f product_function["estimate_string"] = f["txt_fcn"](arg_list, product_function["shift"], *popt) if verbose: print("Current best fit for Response " + str(sig_index)) if verbose: print() # Perform curve fitting with different parameter initializations in attempt to improve fit. fit_iterations = 5*pcount for _ in range(1, fit_iterations): pinit = np.random.rand(pcount)*(np.array(f["upper"])-np.array(f["lower"])) \ + np.array(f["lower"]) popt_new, pcov = curve_fit(f["fcn"], x_data_fit, y_data_fit, bounds=(f["lower"], f["upper"]), p0=pinit, maxfev=10000) err = y_data_fit-f["fcn"](x_data_fit, *popt_new) # Compute root mean squared error. rmse = np.sqrt(sum(pow(err, 2))/sweep_detailed) # Compute mean average error. mae = np.mean(abs(err)) if mae/f_weight < 0.999*best_fit: best_fit = mae/f_weight product_function["parameters"] = popt_new product_function["function"] = f product_function["estimate_string"] = f["txt_fcn"](arg_list, product_function["shift"], *popt_new) if verbose: print("Revised fit for " + f["txt_fcn"](arg_list, product_function["shift"], *popt_new)) print("MAE : " + str(FORMAT%mae)) print("RMSE : " + str(FORMAT%rmse)) print("Current best fit for Response " + str(sig_index)) print() except Exception as e: if best_fit == 100: product_function["estimate_string"] = product_function["template_string"] if verbose: print("Warning: Fit could not be estimated for " + f["txt"] + ",") print(" " + str(e)) print("") else: # Handle constant bias at the zero point. channel_bias = bias[0, channel_id].detach().numpy() channel_bias_str = str('%.3f'%channel_bias) product_function["parameters"] = [channel_bias] def fcn_bias(x, a): return a def txt_bias(argList, argShift, a): return str('%.3f'%a) dct_bias = { "txt": "a", "fcn": fcn_bias, "txt_fcn": txt_bias, "upper": [2*channel_bias], "lower": [0], "weight": 1.0 } product_function["function"] = dct_bias product_function["estimate_string"] = channel_bias_str if verbose: print("Constant " + channel_bias_str) print() # Check if the candidate product function improves the accuracy of the model. if sig_index > 0: current_function = [channel_function] candidate_function = [channel_function + [product_function]] current_metrics = evaluate_function(current_function, input_data, output_data[:, channel_id:channel_id+1]) candidate_metrics = evaluate_function(candidate_function, input_data, output_data[:, channel_id:channel_id+1]) # Include product functions that are above a threshold and improve the overall MAE. if candidate_metrics[0]["MAE"] > current_metrics[0]["MAE"]: if verbose: print("Warning: Candidate product function worsens overall MAE.") print(" MAE increases from " + str(FORMAT%current_metrics[0]["MAE"])+\ " to " + str(FORMAT%candidate_metrics[0]["MAE"]) + ".") if contribution_magnitude < contrib_thresh_omit \ and contribution_variance < contrib_thresh_omit: if verbose: print(" Candidate product function omitted.") else: channel_function.append(product_function) if verbose: print(" Candidate product function added.") else: if verbose: print("Overall MAE declines from " + str(FORMAT%current_metrics[0]["MAE"]) \ + " to " + str(FORMAT%candidate_metrics[0]["MAE"]) + ".") channel_function.append(product_function) else: channel_function.append(product_function) else: # Stop building the channel equation. if verbose: print("Insignificant product function response.") print() print("############################################################") print("Channel " + str(channel_id+1) + " function completed.") print("############################################################") break if verbose: print() # Print the completed equation for the current output channel. if verbose: print("System equation") if verbose: print("============================================================") # Print the function template for the current output channel. y_str = "y" + str(channel_id+1) + "[k] = " for idf, product_function in enumerate(channel_function): y_str = y_str + product_function["template_string"] if idf < len(channel_function) - 1: y_str = y_str + " + " print(y_str) y_str = "y" + str(channel_id+1) + "[k] = " for idf, product_function in enumerate(channel_function): if product_function["estimate_string"] != None: y_str = y_str + product_function["estimate_string"] if idf < len(channel_function) - 1: y_str = y_str + " + " print(y_str) print() model_function.append(channel_function) return model_function, new_mask # Future work: Use better fit metric than weighted MAE. # https://autarkaw.org/2008/07/05/finding-the-optimum-polynomial-order-to-use-for-regression/ ```
{ "source": "JM-Maynard/12stepsCFD", "score": 4 }
#### File: 12stepsCFD/JM_code/Step3_CFL_Condition.py ```python import numpy #numpy is a library for array operations akin to MATLAB from matplotlib import pyplot #matplotlib is 2D plotting library def linearconv(nx): dx = 2.0 / (nx - 1) nt = 20 #nt is the number of timesteps we want to calculate dt = .025 #dt is the amount of time each timestep covers (delta t) c = 1 u = numpy.ones(nx) #defining a numpy array which is nx elements long with every value equal to 1. u[int(.5/dx):int(1 / dx + 1)] = 2 #setting u = 2 between 0.5 and 1 as per our I.C.s un = numpy.ones(nx) #initializing our placeholder array, un, to hold the values we calculate for the n+1 timestep for n in range(nt): #iterate through time un = u.copy() ##copy the existing values of u into un for i in range(1, nx): u[i] = un[i] - c * dt / dx * (un[i] - un[i-1]) pyplot.figure() pyplot.plot(numpy.linspace(0, 2, nx), u); # Now let's examine the results of our linear convection problem with an increasingly fine mesh. linearconv(41) #convection using 41 grid points linearconv(61) linearconv(71) linearconv(85) # In[8]: def linearconv(nx): dx = 2.0 / (nx - 1) nt = 20 #nt is the number of timesteps we want to calculate c = 1 # this is the wave speed sigma = .5 # This is the condition on the CFL number dt = sigma * dx u = numpy.ones(nx) u[int(.5/dx):int(1 / dx + 1)] = 2 un = numpy.ones(nx) for n in range(nt): #iterate through time un = u.copy() ##copy the existing values of u into un for i in range(1, nx): u[i] = un[i] - c * dt / dx * (un[i] - un[i-1]) pyplot.figure() pyplot.plot(numpy.linspace(0, 2, nx), u) linearconv(41) linearconv(61) linearconv(81) linearconv(101) linearconv(121) # Notice that as the number of points `nx` increases, the wave convects a shorter and shorter distance. # The number of time iterations we have advanced the solution at is held constant at `nt = 20`, # but depending on the value of `nx` and the corresponding values of `dx` and `dt`, a shorter time window is being examined overall. # It's possible to do rigurous analysis of the stability of numerical schemes, in some cases. #Watch Prof. Barba's presentation of this topic in **Video Lecture 9** on You Tube. ```
{ "source": "jmmccray/pycryptobot", "score": 2 }
#### File: models/telegram/actions.py ```python import os import json import subprocess # import logging import csv from datetime import datetime from time import sleep from models.telegram.helper import TelegramHelper from models.telegram.settings import SettingsEditor # # Enable logging # logging.basicConfig( # format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=logging.INFO # ) # logger = logging.getLogger(__name__) class TelegramActions: ''' Telegram Bot Action Class ''' def __init__(self, datafolder, tg_helper: TelegramHelper) -> None: self.datafolder = datafolder self.helper = tg_helper self.settings = SettingsEditor(datafolder, tg_helper) def _get_margin_text(self, market): ''' Get marin text ''' light_icon, margin_icon = ( "\U0001F7E2" if "-" not in self.helper.data["margin"] else "\U0001F534", "\U0001F973" if "-" not in self.helper.data["margin"] else "\U0001F97A", ) result = ( f"{light_icon} <b>{market}</b> (<i>{self.helper.data['exchange']}</i>)\n" f"{margin_icon} Margin: {self.helper.data['margin']} " f"\U0001F4B0 P/L: {self.helper.data['delta']}\n" f"TSL Trg: {self.helper.data['trailingstoplosstriggered']} " f"TSL Change: {float(self.helper.data['change_pcnt_high']).__round__(4)}\n" # f"TPL Trg: {self.helper.data['preventlosstriggered']} " # f"TPL Change: {float(self.helper.data['change_pcnt_high']).__round__(4)}\n" ) return result @staticmethod def _get_uptime(date: str): ''' Get uptime ''' now = str(datetime.now()) # If date passed from datetime.now() remove milliseconds if date.find(".") != -1: date_time = date.split(".")[0] date = date_time if now.find(".") != -1: date_time = now.split(".", maxsplit=1)[0] now = date_time now = now.replace("T", " ") now = f"{now}" # Add time in case only a date is passed in # new_date_str = f"{date} 00:00:00" if len(date) == 10 else date date = date.replace("T", " ") if date.find("T") != -1 else date # Add time in case only a date is passed in new_date_str = f"{date} 00:00:00" if len(date) == 10 else date started = datetime.strptime(new_date_str, "%Y-%m-%d %H:%M:%S") now = datetime.strptime(now, "%Y-%m-%d %H:%M:%S") duration = now - started duration_in_s = duration.total_seconds() hours = divmod(duration_in_s, 3600)[0] duration_in_s -= 3600 * hours minutes = divmod(duration_in_s, 60)[0] return f"{round(hours)}h {round(minutes)}m" def start_open_orders(self, update, context): ''' Start bots for open trades (data.json) ''' self.helper.logger.info("called start_open_orders") query = update.callback_query if query is not None: query.answer() self.helper.send_telegram_message( update, "<b>Starting markets with open trades..</b>", context=context ) else: self.helper.send_telegram_message( update, "<b>Starting markets with open trades..</b>", context=context ) # update.effective_message.reply_html("<b>Starting markets with open trades..</b>") self.helper.read_data() for market in self.helper.data["opentrades"]: if not self.helper.is_bot_running(market): # update.effective_message.reply_html(f"<i>Starting {market} crypto bot</i>") self.helper.start_process( market, self.helper.data["opentrades"][market]["exchange"], "", "scanner", ) sleep(10) self.helper.send_telegram_message(update, "<i>Markets have been started</i>", context=context) # update.effective_message.reply_html("<i>Markets have been started</i>") sleep(1) self.get_bot_info(update, context) def sell_response(self, update, context): """create the manual sell order""" query = update.callback_query self.helper.logger.info("called sell_response - %s", query.data) if query.data.__contains__("all"): self.helper.send_telegram_message( update, "<b><i>Initiating sell orders..</i></b>", context=context ) for market in self.helper.get_active_bot_list("active"): while self.helper.read_data(market) is False: sleep(0.2) if "margin" in self.helper.data and self.helper.data["margin"] != " ": while self.helper.read_data(market) is False: sleep(0.2) if "botcontrol" in self.helper.data: self.helper.data["botcontrol"]["manualsell"] = True self.helper.write_data(market) self.helper.send_telegram_message( update, f"Selling: {market}\n<i>Please wait for sale notification...</i>", context=context ) sleep(0.2) else: while ( self.helper.read_data(query.data.replace("confirm_sell_", "")) is False ): sleep(0.2) if "botcontrol" in self.helper.data: self.helper.data["botcontrol"]["manualsell"] = True self.helper.write_data(query.data.replace("confirm_sell_", "")) self.helper.send_telegram_message( update, f"Selling: {query.data.replace('confirm_sell_', '').replace('.json','')}" "\n<i>Please wait for sale notification...</i>", context=context ) def buy_response(self, update, context): """create the manual buy order""" query = update.callback_query self.helper.logger.info("called buy_response - %s", query.data) # if self.helper.read_data(query.data.replace("confirm_buy_", "")): while self.helper.read_data(query.data.replace("confirm_buy_", "")) is False: sleep(0.2) if "botcontrol" in self.helper.data: self.helper.data["botcontrol"]["manualbuy"] = True self.helper.write_data(query.data.replace("confirm_buy_", "")) self.helper.send_telegram_message( update, f"Buying: {query.data.replace('confirm_buy_', '').replace('.json','')}" "\n<i>Please wait for sale notification...</i>", context=context ) def show_config_response(self, update): """display config settings based on exchanged selected""" self.helper.read_config() # with open(os.path.join(self.helper.config_file), "r", encoding="utf8") as json_file: # self.helper.config = json.load(json_file) query = update.callback_query self.helper.logger.info("called show_config_response - %s", query.data) if query.data == "ex_scanner": pbot = self.helper.config[query.data.replace("ex_", "")] else: pbot = self.helper.config[query.data.replace("ex_", "")]["config"] self.helper.send_telegram_message( update, query.data.replace("ex_", "") + "\n" + json.dumps(pbot, indent=4) ) def get_bot_info(self, update, context): ''' Get running bot information ''' count = 0 for file in self.helper.get_active_bot_list(): output = "" count += 1 while self.helper.read_data(file) is False: sleep(0.2) output = output + f"\U0001F4C8 <b>{file} ({self.helper.data['exchange']})</b> " last_modified = datetime.now() - datetime.fromtimestamp( os.path.getmtime( os.path.join(self.datafolder, "telegram_data", f"{file}.json") ) ) icon = "\U0001F6D1" # red dot if last_modified.seconds > 90 and last_modified.seconds != 86399: output = f"{output} {icon} <b>Status</b>: <i>defaulted</i>" elif ( "botcontrol" in self.helper.data and "status" in self.helper.data["botcontrol"] ): if self.helper.data["botcontrol"]["status"] == "active": icon = "\U00002705" # green tick if self.helper.data["botcontrol"]["status"] == "paused": icon = "\U000023F8" # pause icon if self.helper.data["botcontrol"]["status"] == "exit": icon = "\U0000274C" # stop icon output = f"{output} {icon} <b>Status</b>: <i> {self.helper.data['botcontrol']['status']}</i>" output = f"{output} \u23F1 <b>Uptime</b>: <i> {self._get_uptime(self.helper.data['botcontrol']['started'])}</i>\n" else: output = f"{output} {icon} <b>Status</b>: <i>stopped</i> " if count == 1: self.helper.send_telegram_message(update, output, context=context) else: update.effective_message.reply_html(f"{output}") sleep(0.2) if count == 0: self.helper.send_telegram_message(update, f"<b>Bot Count ({count})</b>", context=context) else: update.effective_message.reply_html(f"<b>Bot Count ({count})</b>") def get_margins(self, update): ''' Get margins ''' query = update.callback_query self.helper.send_telegram_message(update, "<i>Getting Margins..</i>") closed_output = [] open_output = [] closed_count = 0 open_count = 0 # print(self.helper.get_active_bot_list()) for market in self.helper.get_active_bot_list(): while self.helper.read_data(market) is False: sleep(0.2) closed_output_text = "" open_output_text = "" if "margin" in self.helper.data: if "margin" in self.helper.data and self.helper.data["margin"] == " ": closed_output_text = closed_output_text + f"<b>{market}</b>" closed_output_text = ( closed_output_text + f"\n<i>{self.helper.data['message']}</i>\n" ) closed_output.append(closed_output_text) closed_count += 1 elif len(self.helper.data) > 2: open_output_text = open_output_text + self._get_margin_text(market) open_output.append(open_output_text) open_count += 1 if ( query.data.__contains__("orders") or query.data.__contains__("all") ) and open_count > 0: for output in open_output: update.effective_message.reply_html(f"{output}") sleep(0.5) elif ( query.data.__contains__("orders") or query.data.__contains__("all") ) and open_count == 0: update.effective_message.reply_html("<b>No open orders found.</b>") if ( query.data.__contains__("pairs") or query.data.__contains__("all") ) and closed_count > 0: for output in closed_output: update.effective_message.reply_html(f"{output}") sleep(1) elif ( query.data.__contains__("pairs") or query.data.__contains__("all") ) and closed_count == 0: update.effective_message.reply_html("<b>No active pairs found.</b>") def start_market_scan( self, update, context, use_default_scanner: bool = True, scanmarkets: bool = True, startbots: bool = True, debug: bool = False, ): ''' Start market scanner/screener ''' # Check whether using the scanner or the screener - use correct config file etc if use_default_scanner is True: scanner_config_file = "scanner.json" scanner_script_file = "scanner.py" elif use_default_scanner is False: scanner_config_file = "screener.json" scanner_script_file = "screener.py" self.helper.logger.info("called start_market_scan - %s", scanner_script_file) try: with open(f"{scanner_config_file}", encoding="utf8") as json_file: config = json.load(json_file) except IOError as err: self.helper.send_telegram_message( update, f"<i>{scanner_config_file} config error</i>\n{err}", context=context ) return # If a bulk load file for the exchange exists - start up all the bulk bots for this for ex in config: for quote in config[ex]["quote_currency"]: if os.path.exists( os.path.join( self.datafolder, "telegram_data", f"{ex}_bulkstart.csv" ) ): update.effective_message.reply_html( f"<i>Found bulk load CSV file for {ex}... Loading pairs</i>" ) try: with open( os.path.join( self.datafolder, "telegram_data", f"{ex}_bulkstart.csv" ), newline="", encoding="utf-8", ) as csv_obj: csv_file = csv.DictReader(csv_obj) for row in csv_file: # update.effective_message.reply_html(row["market"]) if ( "market" in row and row["market"] is not None and quote in row["market"] ): # Start the process disregarding bot limits for the moment update.effective_message.reply_html( f"Bulk Starting {row['market']} on {ex}..." ) self.helper.start_process( row["market"], ex, "", "scanner" ) sleep(7) except IOError: pass else: # No Bulk Start File Found pass if scanmarkets: if bool(self.helper.settings["notifications"]["enable_screener"]): reply = "<i>Gathering market data\nplease wait...</i> \u23F3" self.helper.send_telegram_message(update, reply, context=context) try: self.helper.logger.info("Starting Market Scanner") subprocess.getoutput(f"python3 {scanner_script_file}") except Exception as err: update.effective_message.reply_html("<b>scanning failed.</b>") self.helper.logger.error(err) raise if bool(self.helper.settings["notifications"]["enable_screener"]): update.effective_message.reply_html("<b>Scan Complete.</b>") # Watchdog process - check for hung bots and force restart them if bool(self.helper.settings["notifications"]["enable_screener"]): update.effective_message.reply_html("<i>Fido checking for hung bots..</i>") for file in self.helper.get_hung_bot_list(): ex = self.helper.get_running_bot_exchange(file) self.helper.stop_running_bot(file, "exit", True) sleep(3) os.remove(os.path.join(self.datafolder, "telegram_data", f"{file}.json")) sleep(1) if bool(self.helper.settings["notifications"]["enable_screener"]): update.effective_message.reply_html( f"Restarting {file} as it appears to have hung..." ) self.helper.start_process(file, ex, "", "scanner") sleep(1) if not startbots: if bool(self.helper.settings["notifications"]["enable_screener"]): update.effective_message.reply_html( "<b>Operation Complete (0 started)</b>" ) return # Check to see if the bot would be restarted anyways from the scanner # and dont stop to maintain trailingbuypcnt etc scanned_bots = [] for ex in config: for quote in config[ex]["quote_currency"]: try: with open( os.path.join( self.datafolder, "telegram_data", f"{ex}_{quote}_output.json", ), "r", encoding="utf8", ) as json_file: data = json.load(json_file) for row in data: if data[row]["atr72_pcnt"] is not None: if ( data[row]["atr72_pcnt"] >= self.helper.config["scanner"]["atr72_pcnt"] ): scanned_bots.append(row) except: pass if bool(self.helper.settings["notifications"]["enable_screener"]): update.effective_message.reply_html("<i>stopping bots..</i>") active_bots_list = self.helper.get_active_bot_list() open_order_bot_list = self.helper.get_active_bot_list_with_open_orders() for file in active_bots_list: if (file not in scanned_bots) or (file not in open_order_bot_list): self.helper.stop_running_bot(file, "exit") sleep(3) else: if bool(self.helper.settings["notifications"]["enable_screener"]): update.effective_message.reply_html( f"Not stopping {file} - in scanner list, or has open order..." ) botcounter = 0 runningcounter = len(self.helper.get_active_bot_list()) maxbotcount = ( self.helper.config["scanner"]["maxbotcount"] if "maxbotcount" in self.helper.config["scanner"] else 0 ) self.helper.read_data() for ex in config: if maxbotcount > 0 and (botcounter + runningcounter) >= maxbotcount: break for quote in config[ex]["quote_currency"]: if bool(self.helper.settings["notifications"]["enable_screener"]): update.effective_message.reply_html( f"Starting {ex} ({quote}) bots..." ) self.helper.logger.info("%s - (%s)", ex, quote) if not os.path.isfile( os.path.join( self.datafolder, "telegram_data", f"{ex}_{quote}_output.json" ) ): continue with open( os.path.join( self.datafolder, "telegram_data", f"{ex}_{quote}_output.json" ), "r", encoding="utf8", ) as json_file: data = json.load(json_file) outputmsg = f"<b>{ex} ({quote})</b> \u23F3 \n" msg_cnt = 1 for row in data: if debug: self.helper.logger.info("%s", row) if maxbotcount > 0 and (botcounter + runningcounter) >= maxbotcount: break if self.helper.config["scanner"]["enableleverage"] is not False and ( str(row).__contains__(f"DOWN{quote}") or str(row).__contains__(f"UP{quote}") or str(row).__contains__(f"3L-{quote}") or str(row).__contains__(f"3S-{quote}") ): if msg_cnt == 1: if bool( self.helper.settings["notifications"]["enable_screener"] ): update.effective_message.reply_html( f"Ignoring {ex} ({quote}) "\ "Leverage Pairs (enableleverage is disabled)..." ) msg_cnt += 1 continue if row in self.helper.data["scannerexceptions"]: outputmsg = ( outputmsg + f"*** {row} found on scanner exception list ***\n" ) else: if data[row]["atr72_pcnt"] is not None: if ( data[row]["atr72_pcnt"] >= self.helper.config["scanner"]["atr72_pcnt"] ): if ( self.helper.config["scanner"]["enable_buy_next"] and data[row]["buy_next"] ): outputmsg = ( outputmsg + f"<i><b>{row}</b> //--// "\ f"<b>atr72_pcnt:</b> {data[row]['atr72_pcnt']}% //--//"\ f" <b>buy_next:</b> {data[row]['buy_next']}</i>\n" ) self.helper.start_process(row, ex, "", "scanner") botcounter += 1 elif not self.helper.config["scanner"][ "enable_buy_next" ]: outputmsg = ( outputmsg + f"<i><b>{row}</b> //--// "\ f"<b>atr72_pcnt:</b> {data[row]['atr72_pcnt']}%</i>\n" ) self.helper.start_process(row, ex, "", "scanner") botcounter += 1 if debug is False: sleep(6) if bool(self.helper.settings["notifications"]["enable_screener"]): update.effective_message.reply_html(f"{outputmsg}") # if bool(self.helper.settings["notifications"]["enable_screener"]): update.effective_message.reply_html( f"<b>{scanner_config_file.replace('.json', '').capitalize()} " \ f"Operation Complete.</b><i>\n- {botcounter} started"\ f"\n- {runningcounter + botcounter} running</i>" ) def delete_response(self, update): """delete selected bot""" query = update.callback_query self.helper.logger.info("called delete_response - %s", query.data) write_ok, try_cnt = False, 0 while not write_ok and try_cnt <= 5: try_cnt += 1 self.helper.read_data() self.helper.data["markets"].pop(str(query.data).replace("delete_", "")) write_ok = self.helper.write_data() if not write_ok: sleep(1) self.helper.send_telegram_message( update, f"<i>Deleted {str(query.data).replace('delete_', '')} crypto bot</i>", ) def remove_exception_callback(self, update): """remove bot exception """ query = update.callback_query self.helper.logger.info("called remove_exception_callback") write_ok, try_cnt = False, 0 while not write_ok and try_cnt <= 5: try_cnt += 1 self.helper.read_data() self.helper.data["scannerexceptions"].pop( str(query.data).replace("delexcep_", "") ) write_ok = self.helper.write_data() if not write_ok: sleep(1) self.helper.send_telegram_message( update, f"<i>Removed {str(query.data).replace('delexcep_', '')} from exception list. bot</i>", ) ```
{ "source": "jmmcd/networkx", "score": 4 }
#### File: examples/advanced/plot_parallel_betweenness.py ```python from multiprocessing import Pool import time import itertools import matplotlib.pyplot as plt import networkx as nx def chunks(l, n): """Divide a list of nodes `l` in `n` chunks""" l_c = iter(l) while 1: x = tuple(itertools.islice(l_c, n)) if not x: return yield x def betweenness_centrality_parallel(G, processes=None): """Parallel betweenness centrality function""" p = Pool(processes=processes) node_divisor = len(p._pool) * 4 node_chunks = list(chunks(G.nodes(), int(G.order() / node_divisor))) num_chunks = len(node_chunks) bt_sc = p.starmap( nx.betweenness_centrality_source, zip([G] * num_chunks, [True] * num_chunks, [None] * num_chunks, node_chunks), ) # Reduce the partial solutions bt_c = bt_sc[0] for bt in bt_sc[1:]: for n in bt: bt_c[n] += bt[n] return bt_c if __name__ == "__main__": G_ba = nx.barabasi_albert_graph(1000, 3) G_er = nx.gnp_random_graph(1000, 0.01) G_ws = nx.connected_watts_strogatz_graph(1000, 4, 0.1) for G in [G_ba, G_er, G_ws]: print("") print("Computing betweenness centrality for:") print(nx.info(G)) print("\tParallel version") start = time.time() bt = betweenness_centrality_parallel(G) print("\t\tTime: %.4F" % (time.time() - start)) print("\t\tBetweenness centrality for node 0: %.5f" % (bt[0])) print("\tNon-Parallel version") start = time.time() bt = nx.betweenness_centrality(G) print("\t\tTime: %.4F seconds" % (time.time() - start)) print("\t\tBetweenness centrality for node 0: %.5f" % (bt[0])) print("") nx.draw(G_ba) plt.show() ``` #### File: approximation/tests/test_clique.py ```python import networkx as nx from networkx.algorithms.approximation import max_clique from networkx.algorithms.approximation import clique_removal from networkx.algorithms.approximation import large_clique_size def is_independent_set(G, nodes): """Returns True if and only if `nodes` is a clique in `G`. `G` is a NetworkX graph. `nodes` is an iterable of nodes in `G`. """ return G.subgraph(nodes).number_of_edges() == 0 def is_clique(G, nodes): """Returns True if and only if `nodes` is an independent set in `G`. `G` is an undirected simple graph. `nodes` is an iterable of nodes in `G`. """ H = G.subgraph(nodes) n = len(H) return H.number_of_edges() == n * (n - 1) // 2 class TestCliqueRemoval(object): """Unit tests for the :func:`~networkx.algorithms.approximation.clique_removal` function. """ def test_trivial_graph(self): G = nx.trivial_graph() independent_set, cliques = clique_removal(G) assert is_independent_set(G, independent_set) assert all(is_clique(G, clique) for clique in cliques) # In fact, we should only have 1-cliques, that is, singleton nodes. assert all(len(clique) == 1 for clique in cliques) def test_complete_graph(self): G = nx.complete_graph(10) independent_set, cliques = clique_removal(G) assert is_independent_set(G, independent_set) assert all(is_clique(G, clique) for clique in cliques) def test_barbell_graph(self): G = nx.barbell_graph(10, 5) independent_set, cliques = clique_removal(G) assert is_independent_set(G, independent_set) assert all(is_clique(G, clique) for clique in cliques) class TestMaxClique(object): """Unit tests for the :func:`networkx.algorithms.approximation.max_clique` function. """ def test_null_graph(self): G = nx.null_graph() assert len(max_clique(G)) == 0 def test_complete_graph(self): graph = nx.complete_graph(30) # this should return the entire graph mc = max_clique(graph) assert 30 == len(mc) def test_maximal_by_cardinality(self): """Tests that the maximal clique is computed according to maximum cardinality of the sets. For more information, see pull request #1531. """ G = nx.complete_graph(5) G.add_edge(4, 5) clique = max_clique(G) assert len(clique) > 1 G = nx.lollipop_graph(30, 2) clique = max_clique(G) assert len(clique) > 2 def test_large_clique_size(): G = nx.complete_graph(9) nx.add_cycle(G, [9, 10, 11]) G.add_edge(8, 9) G.add_edge(1, 12) G.add_node(13) assert large_clique_size(G) == 9 G.remove_node(5) assert large_clique_size(G) == 8 G.remove_edge(2, 3) assert large_clique_size(G) == 7 ``` #### File: isomorphism/tests/test_isomorphism.py ```python import networkx as nx from networkx.algorithms import isomorphism as iso class TestIsomorph: @classmethod def setup_class(cls): cls.G1 = nx.Graph() cls.G2 = nx.Graph() cls.G3 = nx.Graph() cls.G4 = nx.Graph() cls.G1.add_edges_from([[1, 2], [1, 3], [1, 5], [2, 3]]) cls.G2.add_edges_from([[10, 20], [20, 30], [10, 30], [10, 50]]) cls.G3.add_edges_from([[1, 2], [1, 3], [1, 5], [2, 5]]) cls.G4.add_edges_from([[1, 2], [1, 3], [1, 5], [2, 4]]) def test_could_be_isomorphic(self): assert iso.could_be_isomorphic(self.G1, self.G2) assert iso.could_be_isomorphic(self.G1, self.G3) assert not iso.could_be_isomorphic(self.G1, self.G4) assert iso.could_be_isomorphic(self.G3, self.G2) def test_fast_could_be_isomorphic(self): assert iso.fast_could_be_isomorphic(self.G3, self.G2) def test_faster_could_be_isomorphic(self): assert iso.faster_could_be_isomorphic(self.G3, self.G2) def test_is_isomorphic(self): assert iso.is_isomorphic(self.G1, self.G2) assert not iso.is_isomorphic(self.G1, self.G4) ``` #### File: algorithms/node_classification/utils.py ```python def _propagate(P, F, B): """Propagate labels by one step Parameters ---------- P : scipy sparse matrix, shape = [n_samples, n_samples] Propagation matrix F : numpy array, shape = [n_samples, n_classes] Label matrix B : numpy array, shape = [n_samples, n_classes] Base matrix Returns ---------- F_new : array, shape = [n_samples, n_classes] Label matrix """ F_new = P.dot(F) + B return F_new def _get_label_info(G, label_name): """Get and return information of labels from the input graph Parameters ---------- G : Network X graph label_name : string Name of the target label Returns ---------- labels : numpy array, shape = [n_labeled_samples, 2] Array of pairs of labeled node ID and label ID label_dict : numpy array, shape = [n_classes] Array of labels i-th element contains the label corresponding label ID `i` """ import numpy as np labels = [] label_to_id = {} lid = 0 for i, n in enumerate(G.nodes(data=True)): if label_name in n[1]: label = n[1][label_name] if label not in label_to_id: label_to_id[label] = lid lid += 1 labels.append([i, label_to_id[label]]) labels = np.array(labels) label_dict = np.array([label for label, _ in sorted( label_to_id.items(), key=lambda x:x[1])]) return (labels, label_dict) def _init_label_matrix(n_samples, n_classes): """Create and return zero matrix Parameters ---------- n_samples : integer The number of nodes (samples) on the input graph n_classes : integer The number of classes (distinct labels) on the input graph Returns ---------- F : numpy array, shape = [n_samples, n_classes] Label matrix """ import numpy as np F = np.zeros((n_samples, n_classes)) return F def _predict(F, label_dict): """Predict labels by learnt label matrix Parameters ---------- F : numpy array, shape = [n_samples, n_classes] Learnt (resulting) label matrix label_dict : numpy array, shape = [n_classes] Array of labels i-th element contains the label corresponding label ID `i` Returns ---------- predicted : numpy array, shape = [n_samples] Array of predicted labels """ import numpy as np predicted_label_ids = np.argmax(F, axis=1) predicted = label_dict[predicted_label_ids].tolist() return predicted ``` #### File: algorithms/tests/test_distance_measures.py ```python from random import Random import pytest import networkx as nx from networkx import convert_node_labels_to_integers as cnlti class TestDistance: def setup_method(self): G = cnlti(nx.grid_2d_graph(4, 4), first_label=1, ordering="sorted") self.G = G def test_eccentricity(self): assert nx.eccentricity(self.G, 1) == 6 e = nx.eccentricity(self.G) assert e[1] == 6 sp = dict(nx.shortest_path_length(self.G)) e = nx.eccentricity(self.G, sp=sp) assert e[1] == 6 e = nx.eccentricity(self.G, v=1) assert e == 6 # This behavior changed in version 1.8 (ticket #739) e = nx.eccentricity(self.G, v=[1, 1]) assert e[1] == 6 e = nx.eccentricity(self.G, v=[1, 2]) assert e[1] == 6 # test against graph with one node G = nx.path_graph(1) e = nx.eccentricity(G) assert e[0] == 0 e = nx.eccentricity(G, v=0) assert e == 0 pytest.raises(nx.NetworkXError, nx.eccentricity, G, 1) # test against empty graph G = nx.empty_graph() e = nx.eccentricity(G) assert e == {} def test_diameter(self): assert nx.diameter(self.G) == 6 def test_radius(self): assert nx.radius(self.G) == 4 def test_periphery(self): assert set(nx.periphery(self.G)) == set([1, 4, 13, 16]) def test_center(self): assert set(nx.center(self.G)) == set([6, 7, 10, 11]) def test_bound_diameter(self): assert nx.diameter(self.G, usebounds=True) == 6 def test_bound_radius(self): assert nx.radius(self.G, usebounds=True) == 4 def test_bound_periphery(self): result = set([1, 4, 13, 16]) assert set(nx.periphery(self.G, usebounds=True)) == result def test_bound_center(self): result = set([6, 7, 10, 11]) assert set(nx.center(self.G, usebounds=True)) == result def test_radius_exception(self): G = nx.Graph() G.add_edge(1, 2) G.add_edge(3, 4) pytest.raises(nx.NetworkXError, nx.diameter, G) def test_eccentricity_infinite(self): with pytest.raises(nx.NetworkXError): G = nx.Graph([(1, 2), (3, 4)]) e = nx.eccentricity(G) def test_eccentricity_undirected_not_connected(self): with pytest.raises(nx.NetworkXError): G = nx.Graph([(1, 2), (3, 4)]) e = nx.eccentricity(G, sp=1) def test_eccentricity_directed_weakly_connected(self): with pytest.raises(nx.NetworkXError): DG = nx.DiGraph([(1, 2), (1, 3)]) nx.eccentricity(DG) class TestResistanceDistance: @classmethod def setup_class(cls): global np global sp_sparse np = pytest.importorskip('numpy') scipy = pytest.importorskip('scipy') sp_sparse = pytest.importorskip('scipy.sparse') def setup_method(self): G = nx.Graph() G.add_edge(1, 2, weight=2) G.add_edge(2, 3, weight=4) G.add_edge(3, 4, weight=1) G.add_edge(1, 4, weight=3) self.G = G def test_laplacian_submatrix(self): from networkx.algorithms.distance_measures import _laplacian_submatrix M = sp_sparse.csr_matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32) N = sp_sparse.csr_matrix([[5, 6], [8, 9]], dtype=np.float32) Mn, Mn_nodelist = _laplacian_submatrix(1, M, [1, 2, 3]) assert Mn_nodelist == [2, 3] assert np.allclose(Mn.toarray(), N.toarray()) def test_laplacian_submatrix_square(self): with pytest.raises(nx.NetworkXError): from networkx.algorithms.distance_measures import _laplacian_submatrix M = sp_sparse.csr_matrix([[1, 2], [4, 5], [7, 8]], dtype=np.float32) _laplacian_submatrix(1, M, [1, 2, 3]) def test_laplacian_submatrix_matrix_node_dim(self): with pytest.raises(nx.NetworkXError): from networkx.algorithms.distance_measures import _laplacian_submatrix M = sp_sparse.csr_matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32) _laplacian_submatrix(1, M, [1, 2, 3, 4]) def test_resistance_distance(self): rd = nx.resistance_distance(self.G, 1, 3, 'weight', True) test_data = 1/(1/(2+4) + 1/(1+3)) assert round(rd, 5) == round(test_data, 5) def test_resistance_distance_noinv(self): rd = nx.resistance_distance(self.G, 1, 3, 'weight', False) test_data = 1/(1/(1/2+1/4) + 1/(1/1+1/3)) assert round(rd, 5) == round(test_data, 5) def test_resistance_distance_no_weight(self): rd = nx.resistance_distance(self.G, 1, 3) assert round(rd, 5) == 1 def test_resistance_distance_neg_weight(self): self.G[2][3]['weight'] = -4 rd = nx.resistance_distance(self.G, 1, 3, 'weight', True) test_data = 1/(1/(2+-4) + 1/(1+3)) assert round(rd, 5) == round(test_data, 5) def test_multigraph(self): G = nx.MultiGraph() G.add_edge(1, 2, weight=2) G.add_edge(2, 3, weight=4) G.add_edge(3, 4, weight=1) G.add_edge(1, 4, weight=3) rd = nx.resistance_distance(G, 1, 3, 'weight', True) assert np.isclose(rd, 1/(1/(2+4) + 1/(1+3))) def test_resistance_distance_div0(self): with pytest.raises(ZeroDivisionError): self.G[1][2]['weight'] = 0 nx.resistance_distance(self.G, 1, 3, 'weight') def test_resistance_distance_not_connected(self): with pytest.raises(nx.NetworkXError): self.G.add_node(5) nx.resistance_distance(self.G, 1, 5) def test_resistance_distance_same_node(self): with pytest.raises(nx.NetworkXError): nx.resistance_distance(self.G, 1, 1) def test_resistance_distance_nodeA_not_in_graph(self): with pytest.raises(nx.NetworkXError): nx.resistance_distance(self.G, 9, 1) def test_resistance_distance_nodeB_not_in_graph(self): with pytest.raises(nx.NetworkXError): nx.resistance_distance(self.G, 1, 9) class TestBarycenter(object): """Test :func:`networkx.algorithms.distance_measures.barycenter`.""" def barycenter_as_subgraph(self, g, **kwargs): """Return the subgraph induced on the barycenter of g""" b = nx.barycenter(g, **kwargs) assert isinstance(b, list) assert set(b) <= set(g) return g.subgraph(b) def test_must_be_connected(self): pytest.raises(nx.NetworkXNoPath, nx.barycenter, nx.empty_graph(5)) def test_sp_kwarg(self): # Complete graph K_5. Normally it works... K_5 = nx.complete_graph(5) sp = dict(nx.shortest_path_length(K_5)) assert nx.barycenter(K_5, sp=sp) == list(K_5) # ...but not with the weight argument for u, v, data in K_5.edges.data(): data['weight'] = 1 pytest.raises(ValueError, nx.barycenter, K_5, sp=sp, weight='weight') # ...and a corrupted sp can make it seem like K_5 is disconnected del sp[0][1] pytest.raises(nx.NetworkXNoPath, nx.barycenter, K_5, sp=sp) def test_trees(self): """The barycenter of a tree is a single vertex or an edge. See [West01]_, p. 78. """ prng = Random(0xdeadbeef) for i in range(50): RT = nx.random_tree(prng.randint(1, 75), prng) b = self.barycenter_as_subgraph(RT) if len(b) == 2: assert b.size() == 1 else: assert len(b) == 1 assert b.size() == 0 def test_this_one_specific_tree(self): """Test the tree pictured at the bottom of [West01]_, p. 78.""" g = nx.Graph({ 'a': ['b'], 'b': ['a', 'x'], 'x': ['b', 'y'], 'y': ['x', 'z'], 'z': ['y', 0, 1, 2, 3, 4], 0: ['z'], 1: ['z'], 2: ['z'], 3: ['z'], 4: ['z']}) b = self.barycenter_as_subgraph(g, attr='barycentricity') assert list(b) == ['z'] assert not b.edges expected_barycentricity = {0: 23, 1: 23, 2: 23, 3: 23, 4: 23, 'a': 35, 'b': 27, 'x': 21, 'y': 17, 'z': 15 } for node, barycentricity in expected_barycentricity.items(): assert g.nodes[node]['barycentricity'] == barycentricity # Doubling weights should do nothing but double the barycentricities for edge in g.edges: g.edges[edge]['weight'] = 2 b = self.barycenter_as_subgraph(g, weight='weight', attr='barycentricity2') assert list(b) == ['z'] assert not b.edges for node, barycentricity in expected_barycentricity.items(): assert g.nodes[node]['barycentricity2'] == barycentricity*2 ``` #### File: algorithms/tests/test_smallworld.py ```python import pytest numpy = pytest.importorskip('numpy') import random from networkx import random_reference, lattice_reference, sigma, omega import networkx as nx rng = random.Random(0) rng = 42 def test_random_reference(): G = nx.connected_watts_strogatz_graph(50, 6, 0.1, seed=rng) Gr = random_reference(G, niter=1, seed=rng) C = nx.average_clustering(G) Cr = nx.average_clustering(Gr) assert C > Cr pytest.raises(nx.NetworkXError, random_reference, nx.Graph()) pytest.raises(nx.NetworkXNotImplemented, random_reference, nx.DiGraph()) H = nx.Graph(((0, 1), (2, 3))) Hl = random_reference(H, niter=1, seed=rng) def test_lattice_reference(): G = nx.connected_watts_strogatz_graph(50, 6, 1, seed=rng) Gl = lattice_reference(G, niter=1, seed=rng) L = nx.average_shortest_path_length(G) Ll = nx.average_shortest_path_length(Gl) assert Ll > L pytest.raises(nx.NetworkXError, lattice_reference, nx.Graph()) pytest.raises(nx.NetworkXNotImplemented, lattice_reference, nx.DiGraph()) H = nx.Graph(((0, 1), (2, 3))) Hl = lattice_reference(H, niter=1) def test_sigma(): Gs = nx.connected_watts_strogatz_graph(50, 6, 0.1, seed=rng) Gr = nx.connected_watts_strogatz_graph(50, 6, 1, seed=rng) sigmas = sigma(Gs, niter=1, nrand=2, seed=rng) sigmar = sigma(Gr, niter=1, nrand=2, seed=rng) assert sigmar < sigmas def test_omega(): Gl = nx.connected_watts_strogatz_graph(50, 6, 0, seed=rng) Gr = nx.connected_watts_strogatz_graph(50, 6, 1, seed=rng) Gs = nx.connected_watts_strogatz_graph(50, 6, 0.1, seed=rng) omegal = omega(Gl, niter=1, nrand=1, seed=rng) omegar = omega(Gr, niter=1, nrand=1, seed=rng) omegas = omega(Gs, niter=1, nrand=1, seed=rng) print("omegas, omegal, omegar") print(omegas, omegal, omegar) assert omegal < omegas and omegas < omegar ``` #### File: traversal/tests/test_dfs.py ```python import networkx as nx class TestDFS: @classmethod def setup_class(cls): # simple graph G = nx.Graph() G.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4), (3, 4)]) cls.G = G # simple graph, disconnected D = nx.Graph() D.add_edges_from([(0, 1), (2, 3)]) cls.D = D def test_preorder_nodes(self): assert (list(nx.dfs_preorder_nodes(self.G, source=0)) == [0, 1, 2, 4, 3]) assert list(nx.dfs_preorder_nodes(self.D)) == [0, 1, 2, 3] def test_postorder_nodes(self): assert (list(nx.dfs_postorder_nodes(self.G, source=0)) == [3, 4, 2, 1, 0]) assert list(nx.dfs_postorder_nodes(self.D)) == [1, 0, 3, 2] def test_successor(self): assert (nx.dfs_successors(self.G, source=0) == {0: [1], 1: [2], 2: [4], 4: [3]}) assert nx.dfs_successors(self.D) == {0: [1], 2: [3]} def test_predecessor(self): assert (nx.dfs_predecessors(self.G, source=0) == {1: 0, 2: 1, 3: 4, 4: 2}) assert nx.dfs_predecessors(self.D) == {1: 0, 3: 2} def test_dfs_tree(self): exp_nodes = sorted(self.G.nodes()) exp_edges = [(0, 1), (1, 2), (2, 4), (4, 3)] # Search from first node T = nx.dfs_tree(self.G, source=0) assert sorted(T.nodes()) == exp_nodes assert sorted(T.edges()) == exp_edges # Check source=None T = nx.dfs_tree(self.G, source=None) assert sorted(T.nodes()) == exp_nodes assert sorted(T.edges()) == exp_edges # Check source=None is the default T = nx.dfs_tree(self.G) assert sorted(T.nodes()) == exp_nodes assert sorted(T.edges()) == exp_edges def test_dfs_edges(self): edges = nx.dfs_edges(self.G, source=0) assert list(edges) == [(0, 1), (1, 2), (2, 4), (4, 3)] edges = nx.dfs_edges(self.D) assert list(edges) == [(0, 1), (2, 3)] def test_dfs_labeled_edges(self): edges = list(nx.dfs_labeled_edges(self.G, source=0)) forward = [(u, v) for (u, v, d) in edges if d == 'forward'] assert forward == [(0, 0), (0, 1), (1, 2), (2, 4), (4, 3)] def test_dfs_labeled_disconnected_edges(self): edges = list(nx.dfs_labeled_edges(self.D)) forward = [(u, v) for (u, v, d) in edges if d == 'forward'] assert forward == [(0, 0), (0, 1), (2, 2), (2, 3)] def test_dfs_tree_isolates(self): G = nx.Graph() G.add_node(1) G.add_node(2) T = nx.dfs_tree(G, source=1) assert sorted(T.nodes()) == [1] assert sorted(T.edges()) == [] T = nx.dfs_tree(G, source=None) assert sorted(T.nodes()) == [1, 2] assert sorted(T.edges()) == [] class TestDepthLimitedSearch: @classmethod def setup_class(cls): # a tree G = nx.Graph() nx.add_path(G, [0, 1, 2, 3, 4, 5, 6]) nx.add_path(G, [2, 7, 8, 9, 10]) cls.G = G # a disconnected graph D = nx.Graph() D.add_edges_from([(0, 1), (2, 3)]) nx.add_path(D, [2, 7, 8, 9, 10]) cls.D = D def test_dls_preorder_nodes(self): assert list(nx.dfs_preorder_nodes(self.G, source=0, depth_limit=2)) == [0, 1, 2] assert list(nx.dfs_preorder_nodes(self.D, source=1, depth_limit=2)) == ([1, 0]) def test_dls_postorder_nodes(self): assert list(nx.dfs_postorder_nodes(self.G, source=3, depth_limit=3)) == [1, 7, 2, 5, 4, 3] assert list(nx.dfs_postorder_nodes(self.D, source=2, depth_limit=2)) == ([3, 7, 2]) def test_dls_successor(self): result = nx.dfs_successors(self.G, source=4, depth_limit=3) assert ({n: set(v) for n, v in result.items()} == {2: {1, 7}, 3: {2}, 4: {3, 5}, 5: {6}}) result = nx.dfs_successors(self.D, source=7, depth_limit=2) assert ({n: set(v) for n, v in result.items()} == {8: {9}, 2: {3}, 7: {8, 2}}) def test_dls_predecessor(self): assert (nx.dfs_predecessors(self.G, source=0, depth_limit=3) == {1: 0, 2: 1, 3: 2, 7: 2}) assert (nx.dfs_predecessors(self.D, source=2, depth_limit=3) == {8: 7, 9: 8, 3: 2, 7: 2}) def test_dls_tree(self): T = nx.dfs_tree(self.G, source=3, depth_limit=1) assert sorted(T.edges()) == [(3, 2), (3, 4)] def test_dls_edges(self): edges = nx.dfs_edges(self.G, source=9, depth_limit=4) assert list(edges) == [(9, 8), (8, 7), (7, 2), (2, 1), (2, 3), (9, 10)] def test_dls_labeled_edges(self): edges = list(nx.dfs_labeled_edges(self.G, source=5, depth_limit=1)) forward = [(u, v) for (u, v, d) in edges if d == 'forward'] assert forward == [(5, 5), (5, 4), (5, 6)] def test_dls_labeled_disconnected_edges(self): edges = list(nx.dfs_labeled_edges(self.G, source=6, depth_limit=2)) forward = [(u, v) for (u, v, d) in edges if d == 'forward'] assert forward == [(6, 6), (6, 5), (5, 4)] ``` #### File: classes/tests/test_filters.py ```python import pytest import networkx as nx class TestFilterFactory(object): def test_no_filter(self): nf = nx.filters.no_filter assert nf() assert nf(1) assert nf(2, 1) def test_hide_nodes(self): f = nx.classes.filters.hide_nodes([1, 2, 3]) assert not f(1) assert not f(2) assert not f(3) assert f(4) assert f(0) assert f('a') pytest.raises(TypeError, f, 1, 2) pytest.raises(TypeError, f) def test_show_nodes(self): f = nx.classes.filters.show_nodes([1, 2, 3]) assert f(1) assert f(2) assert f(3) assert not f(4) assert not f(0) assert not f('a') pytest.raises(TypeError, f, 1, 2) pytest.raises(TypeError, f) def test_hide_edges(self): factory = nx.classes.filters.hide_edges f = factory([(1, 2), (3, 4)]) assert not f(1, 2) assert not f(3, 4) assert not f(4, 3) assert f(2, 3) assert f(0, -1) assert f('a', 'b') pytest.raises(TypeError, f, 1, 2, 3) pytest.raises(TypeError, f, 1) pytest.raises(TypeError, f) pytest.raises(TypeError, factory, [1, 2, 3]) pytest.raises(ValueError, factory, [(1, 2, 3)]) def test_show_edges(self): factory = nx.classes.filters.show_edges f = factory([(1, 2), (3, 4)]) assert f(1, 2) assert f(3, 4) assert f(4, 3) assert not f(2, 3) assert not f(0, -1) assert not f('a', 'b') pytest.raises(TypeError, f, 1, 2, 3) pytest.raises(TypeError, f, 1) pytest.raises(TypeError, f) pytest.raises(TypeError, factory, [1, 2, 3]) pytest.raises(ValueError, factory, [(1, 2, 3)]) def test_hide_diedges(self): factory = nx.classes.filters.hide_diedges f = factory([(1, 2), (3, 4)]) assert not f(1, 2) assert not f(3, 4) assert f(4, 3) assert f(2, 3) assert f(0, -1) assert f('a', 'b') pytest.raises(TypeError, f, 1, 2, 3) pytest.raises(TypeError, f, 1) pytest.raises(TypeError, f) pytest.raises(TypeError, factory, [1, 2, 3]) pytest.raises(ValueError, factory, [(1, 2, 3)]) def test_show_diedges(self): factory = nx.classes.filters.show_diedges f = factory([(1, 2), (3, 4)]) assert f(1, 2) assert f(3, 4) assert not f(4, 3) assert not f(2, 3) assert not f(0, -1) assert not f('a', 'b') pytest.raises(TypeError, f, 1, 2, 3) pytest.raises(TypeError, f, 1) pytest.raises(TypeError, f) pytest.raises(TypeError, factory, [1, 2, 3]) pytest.raises(ValueError, factory, [(1, 2, 3)]) def test_hide_multiedges(self): factory = nx.classes.filters.hide_multiedges f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)]) assert not f(1, 2, 0) assert not f(1, 2, 1) assert f(1, 2, 2) assert f(3, 4, 0) assert not f(3, 4, 1) assert not f(4, 3, 1) assert f(4, 3, 0) assert f(2, 3, 0) assert f(0, -1, 0) assert f('a', 'b', 0) pytest.raises(TypeError, f, 1, 2, 3, 4) pytest.raises(TypeError, f, 1, 2) pytest.raises(TypeError, f, 1) pytest.raises(TypeError, f) pytest.raises(TypeError, factory, [1, 2, 3]) pytest.raises(ValueError, factory, [(1, 2)]) pytest.raises(ValueError, factory, [(1, 2, 3, 4)]) def test_show_multiedges(self): factory = nx.classes.filters.show_multiedges f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)]) assert f(1, 2, 0) assert f(1, 2, 1) assert not f(1, 2, 2) assert not f(3, 4, 0) assert f(3, 4, 1) assert f(4, 3, 1) assert not f(4, 3, 0) assert not f(2, 3, 0) assert not f(0, -1, 0) assert not f('a', 'b', 0) pytest.raises(TypeError, f, 1, 2, 3, 4) pytest.raises(TypeError, f, 1, 2) pytest.raises(TypeError, f, 1) pytest.raises(TypeError, f) pytest.raises(TypeError, factory, [1, 2, 3]) pytest.raises(ValueError, factory, [(1, 2)]) pytest.raises(ValueError, factory, [(1, 2, 3, 4)]) def test_hide_multidiedges(self): factory = nx.classes.filters.hide_multidiedges f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)]) assert not f(1, 2, 0) assert not f(1, 2, 1) assert f(1, 2, 2) assert f(3, 4, 0) assert not f(3, 4, 1) assert f(4, 3, 1) assert f(4, 3, 0) assert f(2, 3, 0) assert f(0, -1, 0) assert f('a', 'b', 0) pytest.raises(TypeError, f, 1, 2, 3, 4) pytest.raises(TypeError, f, 1, 2) pytest.raises(TypeError, f, 1) pytest.raises(TypeError, f) pytest.raises(TypeError, factory, [1, 2, 3]) pytest.raises(ValueError, factory, [(1, 2)]) pytest.raises(ValueError, factory, [(1, 2, 3, 4)]) def test_show_multidiedges(self): factory = nx.classes.filters.show_multidiedges f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)]) assert f(1, 2, 0) assert f(1, 2, 1) assert not f(1, 2, 2) assert not f(3, 4, 0) assert f(3, 4, 1) assert not f(4, 3, 1) assert not f(4, 3, 0) assert not f(2, 3, 0) assert not f(0, -1, 0) assert not f('a', 'b', 0) pytest.raises(TypeError, f, 1, 2, 3, 4) pytest.raises(TypeError, f, 1, 2) pytest.raises(TypeError, f, 1) pytest.raises(TypeError, f) pytest.raises(TypeError, factory, [1, 2, 3]) pytest.raises(ValueError, factory, [(1, 2)]) pytest.raises(ValueError, factory, [(1, 2, 3, 4)]) ``` #### File: classes/tests/test_reportviews.py ```python import pytest import networkx as nx # Nodes class TestNodeView(object): @classmethod def setup_class(cls): cls.G = nx.path_graph(9) cls.nv = cls.G.nodes # NodeView(G) def test_pickle(self): import pickle nv = self.nv pnv = pickle.loads(pickle.dumps(nv, -1)) assert nv == pnv assert nv.__slots__ == pnv.__slots__ def test_str(self): assert str(self.nv) == "[0, 1, 2, 3, 4, 5, 6, 7, 8]" def test_repr(self): assert repr(self.nv) == "NodeView((0, 1, 2, 3, 4, 5, 6, 7, 8))" def test_contains(self): G = self.G.copy() nv = G.nodes assert 7 in nv assert 9 not in nv G.remove_node(7) G.add_node(9) assert 7 not in nv assert 9 in nv def test_getitem(self): G = self.G.copy() nv = G.nodes G.nodes[3]['foo'] = 'bar' assert nv[7] == {} assert nv[3] == {'foo': 'bar'} def test_iter(self): nv = self.nv for i, n in enumerate(nv): assert i == n inv = iter(nv) assert next(inv) == 0 assert iter(nv) != nv assert iter(inv) == inv inv2 = iter(nv) next(inv2) assert list(inv) == list(inv2) # odd case where NodeView calls NodeDataView with data=False nnv = nv(data=False) for i, n in enumerate(nnv): assert i == n def test_call(self): nodes = self.nv assert nodes is nodes() assert nodes is not nodes(data=True) assert nodes is not nodes(data='weight') class TestNodeDataView(object): @classmethod def setup_class(cls): cls.G = nx.path_graph(9) cls.nv = cls.G.nodes.data() # NodeDataView(G) cls.ndv = cls.G.nodes.data(True) cls.nwv = cls.G.nodes.data('foo') def test_viewtype(self): nv = self.G.nodes ndvfalse = nv.data(False) assert nv is ndvfalse assert nv is not self.ndv def test_pickle(self): import pickle nv = self.nv pnv = pickle.loads(pickle.dumps(nv, -1)) assert nv == pnv assert nv.__slots__ == pnv.__slots__ def test_str(self): msg = str([(n, {}) for n in range(9)]) assert str(self.ndv) == msg def test_repr(self): msg = "NodeDataView({0: {}, 1: {}, 2: {}, 3: {}, " + \ "4: {}, 5: {}, 6: {}, 7: {}, 8: {}})" assert repr(self.ndv) == msg def test_contains(self): G = self.G.copy() nv = G.nodes.data() nwv = G.nodes.data('foo') G.nodes[3]['foo'] = 'bar' assert (7, {}) in nv assert (3, {'foo': 'bar'}) in nv assert (3, 'bar') in nwv assert (7, None) in nwv # default nwv_def = G.nodes(data='foo', default='biz') assert (7, 'biz') in nwv_def assert (3, 'bar') in nwv_def def test_getitem(self): G = self.G.copy() nv = G.nodes G.nodes[3]['foo'] = 'bar' assert nv[3] == {'foo': 'bar'} # default nwv_def = G.nodes(data='foo', default='biz') assert nwv_def[7], 'biz' assert nwv_def[3] == 'bar' def test_iter(self): G = self.G.copy() nv = G.nodes.data() ndv = G.nodes.data(True) nwv = G.nodes.data('foo') for i, (n, d) in enumerate(nv): assert i == n assert d == {} inv = iter(nv) assert next(inv) == (0, {}) G.nodes[3]['foo'] = 'bar' # default for n, d in nv: if n == 3: assert d == {'foo': 'bar'} else: assert d == {} # data=True for n, d in ndv: if n == 3: assert d == {'foo': 'bar'} else: assert d == {} # data='foo' for n, d in nwv: if n == 3: assert d == 'bar' else: assert d is None # data='foo', default=1 for n, d in G.nodes.data('foo', default=1): if n == 3: assert d == 'bar' else: assert d == 1 def test_nodedataview_unhashable(): G = nx.path_graph(9) G.nodes[3]['foo'] = 'bar' nvs = [G.nodes.data()] nvs.append(G.nodes.data(True)) H = G.copy() H.nodes[4]['foo'] = {1, 2, 3} nvs.append(H.nodes.data(True)) # raise unhashable for nv in nvs: pytest.raises(TypeError, set, nv) pytest.raises(TypeError, eval, 'nv | nv', locals()) # no raise... hashable Gn = G.nodes.data(False) set(Gn) Gn | Gn Gn = G.nodes.data('foo') set(Gn) Gn | Gn class TestNodeViewSetOps(object): @classmethod def setup_class(cls): cls.G = nx.path_graph(9) cls.G.nodes[3]['foo'] = 'bar' cls.nv = cls.G.nodes def n_its(self, nodes): return {node for node in nodes} def test_len(self): G = self.G.copy() nv = G.nodes assert len(nv) == 9 G.remove_node(7) assert len(nv) == 8 G.add_node(9) assert len(nv) == 9 def test_and(self): # print("G & H nodes:", gnv & hnv) nv = self.nv some_nodes = self.n_its(range(5, 12)) assert nv & some_nodes == self.n_its(range(5, 9)) assert some_nodes & nv == self.n_its(range(5, 9)) def test_or(self): # print("G | H nodes:", gnv | hnv) nv = self.nv some_nodes = self.n_its(range(5, 12)) assert nv | some_nodes == self.n_its(range(12)) assert some_nodes | nv == self.n_its(range(12)) def test_xor(self): # print("G ^ H nodes:", gnv ^ hnv) nv = self.nv some_nodes = self.n_its(range(5, 12)) nodes = {0, 1, 2, 3, 4, 9, 10, 11} assert nv ^ some_nodes == self.n_its(nodes) assert some_nodes ^ nv == self.n_its(nodes) def test_sub(self): # print("G - H nodes:", gnv - hnv) nv = self.nv some_nodes = self.n_its(range(5, 12)) assert nv - some_nodes == self.n_its(range(5)) assert some_nodes - nv == self.n_its(range(9, 12)) class TestNodeDataViewSetOps(TestNodeViewSetOps): @classmethod def setup_class(cls): cls.G = nx.path_graph(9) cls.G.nodes[3]['foo'] = 'bar' cls.nv = cls.G.nodes.data('foo') def n_its(self, nodes): return {(node, 'bar' if node == 3 else None) for node in nodes} class TestNodeDataViewDefaultSetOps(TestNodeDataViewSetOps): @classmethod def setup_class(cls): cls.G = nx.path_graph(9) cls.G.nodes[3]['foo'] = 'bar' cls.nv = cls.G.nodes.data('foo', default=1) def n_its(self, nodes): return {(node, 'bar' if node == 3 else 1) for node in nodes} # Edges Data View class TestEdgeDataView(object): @classmethod def setup_class(cls): cls.G = nx.path_graph(9) cls.eview = nx.reportviews.EdgeView def test_pickle(self): import pickle ev = self.eview(self.G)(data=True) pev = pickle.loads(pickle.dumps(ev, -1)) assert list(ev) == list(pev) assert ev.__slots__ == pev.__slots__ def modify_edge(self, G, e, **kwds): G._adj[e[0]][e[1]].update(kwds) def test_str(self): ev = self.eview(self.G)(data=True) rep = str([(n, n + 1, {}) for n in range(8)]) assert str(ev) == rep def test_repr(self): ev = self.eview(self.G)(data=True) rep = "EdgeDataView([(0, 1, {}), (1, 2, {}), " + \ "(2, 3, {}), (3, 4, {}), " + \ "(4, 5, {}), (5, 6, {}), " + \ "(6, 7, {}), (7, 8, {})])" assert repr(ev) == rep def test_iterdata(self): G = self.G.copy() evr = self.eview(G) ev = evr(data=True) ev_def = evr(data='foo', default=1) for u, v, d in ev: pass assert d == {} for u, v, wt in ev_def: pass assert wt == 1 self.modify_edge(G, (2, 3), foo='bar') for e in ev: assert len(e) == 3 if set(e[:2]) == {2, 3}: assert e[2] == {'foo': 'bar'} checked = True else: assert e[2] == {} assert checked for e in ev_def: assert len(e) == 3 if set(e[:2]) == {2, 3}: assert e[2] == 'bar' checked_wt = True else: assert e[2] == 1 assert checked_wt def test_iter(self): evr = self.eview(self.G) ev = evr() for u, v in ev: pass iev = iter(ev) assert next(iev) == (0, 1) assert iter(ev) != ev assert iter(iev) == iev def test_contains(self): evr = self.eview(self.G) ev = evr() if self.G.is_directed(): assert (1, 2) in ev and (2, 1) not in ev else: assert (1, 2) in ev and (2, 1) in ev assert not (1, 4) in ev assert not (1, 90) in ev assert not (90, 1) in ev def test_len(self): evr = self.eview(self.G) ev = evr(data='foo') assert len(ev) == 8 assert len(evr(1)) == 2 assert len(evr([1, 2, 3])) == 4 assert len(self.G.edges(1)) == 2 assert len(self.G.edges()) == 8 assert len(self.G.edges) == 8 H = self.G.copy() H.add_edge(1, 1) assert len(H.edges(1)) == 3 assert len(H.edges()) == 9 assert len(H.edges) == 9 class TestOutEdgeDataView(TestEdgeDataView): @classmethod def setup_class(cls): cls.G = nx.path_graph(9, create_using=nx.DiGraph()) cls.eview = nx.reportviews.OutEdgeView def test_repr(self): ev = self.eview(self.G)(data=True) rep = "OutEdgeDataView([(0, 1, {}), (1, 2, {}), " + \ "(2, 3, {}), (3, 4, {}), " + \ "(4, 5, {}), (5, 6, {}), " + \ "(6, 7, {}), (7, 8, {})])" assert repr(ev) == rep def test_len(self): evr = self.eview(self.G) ev = evr(data='foo') assert len(ev) == 8 assert len(evr(1)) == 1 assert len(evr([1, 2, 3])) == 3 assert len(self.G.edges(1)) == 1 assert len(self.G.edges()) == 8 assert len(self.G.edges) == 8 H = self.G.copy() H.add_edge(1, 1) assert len(H.edges(1)) == 2 assert len(H.edges()) == 9 assert len(H.edges) == 9 class TestInEdgeDataView(TestOutEdgeDataView): @classmethod def setup_class(cls): cls.G = nx.path_graph(9, create_using=nx.DiGraph()) cls.eview = nx.reportviews.InEdgeView def test_repr(self): ev = self.eview(self.G)(data=True) rep = "InEdgeDataView([(0, 1, {}), (1, 2, {}), " + \ "(2, 3, {}), (3, 4, {}), " + \ "(4, 5, {}), (5, 6, {}), " + \ "(6, 7, {}), (7, 8, {})])" assert repr(ev) == rep class TestMultiEdgeDataView(TestEdgeDataView): @classmethod def setup_class(cls): cls.G = nx.path_graph(9, create_using=nx.MultiGraph()) cls.eview = nx.reportviews.MultiEdgeView def modify_edge(self, G, e, **kwds): G._adj[e[0]][e[1]][0].update(kwds) def test_repr(self): ev = self.eview(self.G)(data=True) rep = "MultiEdgeDataView([(0, 1, {}), (1, 2, {}), " + \ "(2, 3, {}), (3, 4, {}), " + \ "(4, 5, {}), (5, 6, {}), " + \ "(6, 7, {}), (7, 8, {})])" assert repr(ev) == rep class TestOutMultiEdgeDataView(TestOutEdgeDataView): @classmethod def setup_class(cls): cls.G = nx.path_graph(9, create_using=nx.MultiDiGraph()) cls.eview = nx.reportviews.OutMultiEdgeView def modify_edge(self, G, e, **kwds): G._adj[e[0]][e[1]][0].update(kwds) def test_repr(self): ev = self.eview(self.G)(data=True) rep = "OutMultiEdgeDataView([(0, 1, {}), (1, 2, {}), " + \ "(2, 3, {}), (3, 4, {}), " + \ "(4, 5, {}), (5, 6, {}), " + \ "(6, 7, {}), (7, 8, {})])" assert repr(ev) == rep class TestInMultiEdgeDataView(TestOutMultiEdgeDataView): @classmethod def setup_class(cls): cls.G = nx.path_graph(9, create_using=nx.MultiDiGraph()) cls.eview = nx.reportviews.InMultiEdgeView def test_repr(self): ev = self.eview(self.G)(data=True) rep = "InMultiEdgeDataView([(0, 1, {}), (1, 2, {}), " + \ "(2, 3, {}), (3, 4, {}), " + \ "(4, 5, {}), (5, 6, {}), " + \ "(6, 7, {}), (7, 8, {})])" assert repr(ev) == rep # Edge Views class TestEdgeView(object): @classmethod def setup_class(cls): cls.G = nx.path_graph(9) cls.eview = nx.reportviews.EdgeView def test_pickle(self): import pickle ev = self.eview(self.G) pev = pickle.loads(pickle.dumps(ev, -1)) assert ev == pev assert ev.__slots__ == pev.__slots__ def modify_edge(self, G, e, **kwds): G._adj[e[0]][e[1]].update(kwds) def test_str(self): ev = self.eview(self.G) rep = str([(n, n + 1) for n in range(8)]) assert str(ev) == rep def test_repr(self): ev = self.eview(self.G) rep = "EdgeView([(0, 1), (1, 2), (2, 3), (3, 4), " + \ "(4, 5), (5, 6), (6, 7), (7, 8)])" assert repr(ev) == rep def test_call(self): ev = self.eview(self.G) assert id(ev) == id(ev()) assert id(ev) == id(ev(data=False)) assert id(ev) != id(ev(data=True)) assert id(ev) != id(ev(nbunch=1)) def test_data(self): ev = self.eview(self.G) assert id(ev) != id(ev.data()) assert id(ev) == id(ev.data(data=False)) assert id(ev) != id(ev.data(data=True)) assert id(ev) != id(ev.data(nbunch=1)) def test_iter(self): ev = self.eview(self.G) for u, v in ev: pass iev = iter(ev) assert next(iev) == (0, 1) assert iter(ev) != ev assert iter(iev) == iev def test_contains(self): ev = self.eview(self.G) edv = ev() if self.G.is_directed(): assert (1, 2) in ev and (2, 1) not in ev assert (1, 2) in edv and (2, 1) not in edv else: assert (1, 2) in ev and (2, 1) in ev assert (1, 2) in edv and (2, 1) in edv assert not (1, 4) in ev assert not (1, 4) in edv # edge not in graph assert not (1, 90) in ev assert not (90, 1) in ev assert not (1, 90) in edv assert not (90, 1) in edv def test_len(self): ev = self.eview(self.G) num_ed = 9 if self.G.is_multigraph() else 8 assert len(ev) == num_ed H = self.G.copy() H.add_edge(1, 1) assert len(H.edges(1)) == 3 + H.is_multigraph() - H.is_directed() assert len(H.edges()) == num_ed + 1 assert len(H.edges) == num_ed + 1 def test_and(self): # print("G & H edges:", gnv & hnv) ev = self.eview(self.G) some_edges = {(0, 1), (1, 0), (0, 2)} if self.G.is_directed(): assert some_edges & ev, {(0, 1)} assert ev & some_edges, {(0, 1)} else: assert ev & some_edges == {(0, 1), (1, 0)} assert some_edges & ev == {(0, 1), (1, 0)} return def test_or(self): # print("G | H edges:", gnv | hnv) ev = self.eview(self.G) some_edges = {(0, 1), (1, 0), (0, 2)} result1 = {(n, n + 1) for n in range(8)} result1.update(some_edges) result2 = {(n + 1, n) for n in range(8)} result2.update(some_edges) assert (ev | some_edges) in (result1, result2) assert (some_edges | ev) in (result1, result2) def test_xor(self): # print("G ^ H edges:", gnv ^ hnv) ev = self.eview(self.G) some_edges = {(0, 1), (1, 0), (0, 2)} if self.G.is_directed(): result = {(n, n + 1) for n in range(1, 8)} result.update({(1, 0), (0, 2)}) assert ev ^ some_edges == result else: result = {(n, n + 1) for n in range(1, 8)} result.update({(0, 2)}) assert ev ^ some_edges == result return def test_sub(self): # print("G - H edges:", gnv - hnv) ev = self.eview(self.G) some_edges = {(0, 1), (1, 0), (0, 2)} result = {(n, n + 1) for n in range(8)} result.remove((0, 1)) assert ev - some_edges, result class TestOutEdgeView(TestEdgeView): @classmethod def setup_class(cls): cls.G = nx.path_graph(9, nx.DiGraph()) cls.eview = nx.reportviews.OutEdgeView def test_repr(self): ev = self.eview(self.G) rep = "OutEdgeView([(0, 1), (1, 2), (2, 3), (3, 4), " + \ "(4, 5), (5, 6), (6, 7), (7, 8)])" assert repr(ev) == rep class TestInEdgeView(TestEdgeView): @classmethod def setup_class(cls): cls.G = nx.path_graph(9, nx.DiGraph()) cls.eview = nx.reportviews.InEdgeView def test_repr(self): ev = self.eview(self.G) rep = "InEdgeView([(0, 1), (1, 2), (2, 3), (3, 4), " + \ "(4, 5), (5, 6), (6, 7), (7, 8)])" assert repr(ev) == rep class TestMultiEdgeView(TestEdgeView): @classmethod def setup_class(cls): cls.G = nx.path_graph(9, nx.MultiGraph()) cls.G.add_edge(1, 2, key=3, foo='bar') cls.eview = nx.reportviews.MultiEdgeView def modify_edge(self, G, e, **kwds): if len(e) == 2: e = e + (0,) G._adj[e[0]][e[1]][e[2]].update(kwds) def test_str(self): ev = self.eview(self.G) replist = [(n, n + 1, 0) for n in range(8)] replist.insert(2, (1, 2, 3)) rep = str(replist) assert str(ev) == rep def test_repr(self): ev = self.eview(self.G) rep = "MultiEdgeView([(0, 1, 0), (1, 2, 0), (1, 2, 3), (2, 3, 0), " + \ "(3, 4, 0), (4, 5, 0), (5, 6, 0), (6, 7, 0), (7, 8, 0)])" assert repr(ev) == rep def test_call(self): ev = self.eview(self.G) assert id(ev) == id(ev(keys=True)) assert id(ev) == id(ev(data=False, keys=True)) assert id(ev) != id(ev(keys=False)) assert id(ev) != id(ev(data=True)) assert id(ev) != id(ev(nbunch=1)) def test_data(self): ev = self.eview(self.G) assert id(ev) != id(ev.data()) assert id(ev) == id(ev.data(data=False, keys=True)) assert id(ev) != id(ev.data(keys=False)) assert id(ev) != id(ev.data(data=True)) assert id(ev) != id(ev.data(nbunch=1)) def test_iter(self): ev = self.eview(self.G) for u, v, k in ev: pass iev = iter(ev) assert next(iev) == (0, 1, 0) assert iter(ev) != ev assert iter(iev) == iev def test_iterkeys(self): G = self.G evr = self.eview(G) ev = evr(keys=True) for u, v, k in ev: pass assert k == 0 ev = evr(keys=True, data="foo", default=1) for u, v, k, wt in ev: pass assert wt == 1 self.modify_edge(G, (2, 3, 0), foo='bar') ev = evr(keys=True, data=True) for e in ev: assert len(e) == 4 print('edge:', e) if set(e[:2]) == {2, 3}: print(self.G._adj[2][3]) assert e[2] == 0 assert e[3] == {'foo': 'bar'} checked = True elif set(e[:3]) == {1, 2, 3}: assert e[2] == 3 assert e[3] == {'foo': 'bar'} checked_multi = True else: assert e[2] == 0 assert e[3] == {} assert checked assert checked_multi ev = evr(keys=True, data='foo', default=1) for e in ev: if set(e[:2]) == {1, 2} and e[2] == 3: assert e[3] == 'bar' if set(e[:2]) == {1, 2} and e[2] == 0: assert e[3] == 1 if set(e[:2]) == {2, 3}: assert e[2] == 0 assert e[3] == 'bar' assert len(e) == 4 checked_wt = True assert checked_wt ev = evr(keys=True) for e in ev: assert len(e) == 3 elist = sorted([(i, i + 1, 0) for i in range(8)] + [(1, 2, 3)]) assert sorted(list(ev)) == elist # test order of arguments:graph, nbunch, data, keys, default ev = evr((1, 2), 'foo', True, 1) for e in ev: if set(e[:2]) == {1, 2}: assert e[2] in {0, 3} if e[2] == 3: assert e[3] == 'bar' else: # e[2] == 0 assert e[3] == 1 if G.is_directed(): assert len(list(ev)) == 3 else: assert len(list(ev)) == 4 def test_or(self): # print("G | H edges:", gnv | hnv) ev = self.eview(self.G) some_edges = {(0, 1, 0), (1, 0, 0), (0, 2, 0)} result = {(n, n + 1, 0) for n in range(8)} result.update(some_edges) result.update({(1, 2, 3)}) assert ev | some_edges == result assert some_edges | ev == result def test_sub(self): # print("G - H edges:", gnv - hnv) ev = self.eview(self.G) some_edges = {(0, 1, 0), (1, 0, 0), (0, 2, 0)} result = {(n, n + 1, 0) for n in range(8)} result.remove((0, 1, 0)) result.update({(1, 2, 3)}) assert ev - some_edges, result assert some_edges - ev, result def test_xor(self): # print("G ^ H edges:", gnv ^ hnv) ev = self.eview(self.G) some_edges = {(0, 1, 0), (1, 0, 0), (0, 2, 0)} if self.G.is_directed(): result = {(n, n + 1, 0) for n in range(1, 8)} result.update({(1, 0, 0), (0, 2, 0), (1, 2, 3)}) assert ev ^ some_edges == result assert some_edges ^ ev == result else: result = {(n, n + 1, 0) for n in range(1, 8)} result.update({(0, 2, 0), (1, 2, 3)}) assert ev ^ some_edges == result assert some_edges ^ ev == result def test_and(self): # print("G & H edges:", gnv & hnv) ev = self.eview(self.G) some_edges = {(0, 1, 0), (1, 0, 0), (0, 2, 0)} if self.G.is_directed(): assert ev & some_edges == {(0, 1, 0)} assert some_edges & ev == {(0, 1, 0)} else: assert ev & some_edges == {(0, 1, 0), (1, 0, 0)} assert some_edges & ev == {(0, 1, 0), (1, 0, 0)} class TestOutMultiEdgeView(TestMultiEdgeView): @classmethod def setup_class(cls): cls.G = nx.path_graph(9, nx.MultiDiGraph()) cls.G.add_edge(1, 2, key=3, foo='bar') cls.eview = nx.reportviews.OutMultiEdgeView def modify_edge(self, G, e, **kwds): if len(e) == 2: e = e + (0,) G._adj[e[0]][e[1]][e[2]].update(kwds) def test_repr(self): ev = self.eview(self.G) rep = "OutMultiEdgeView([(0, 1, 0), (1, 2, 0), (1, 2, 3), (2, 3, 0),"\ + " (3, 4, 0), (4, 5, 0), (5, 6, 0), (6, 7, 0), (7, 8, 0)])" assert repr(ev) == rep class TestInMultiEdgeView(TestMultiEdgeView): @classmethod def setup_class(cls): cls.G = nx.path_graph(9, nx.MultiDiGraph()) cls.G.add_edge(1, 2, key=3, foo='bar') cls.eview = nx.reportviews.InMultiEdgeView def modify_edge(self, G, e, **kwds): if len(e) == 2: e = e + (0,) G._adj[e[0]][e[1]][e[2]].update(kwds) def test_repr(self): ev = self.eview(self.G) rep = "InMultiEdgeView([(0, 1, 0), (1, 2, 0), (1, 2, 3), (2, 3, 0), "\ + "(3, 4, 0), (4, 5, 0), (5, 6, 0), (6, 7, 0), (7, 8, 0)])" assert repr(ev) == rep # Degrees class TestDegreeView(object): GRAPH = nx.Graph dview = nx.reportviews.DegreeView @classmethod def setup_class(cls): cls.G = nx.path_graph(6, cls.GRAPH()) cls.G.add_edge(1, 3, foo=2) cls.G.add_edge(1, 3, foo=3) def test_pickle(self): import pickle deg = self.G.degree pdeg = pickle.loads(pickle.dumps(deg, -1)) assert dict(deg) == dict(pdeg) def test_str(self): dv = self.dview(self.G) rep = str([(0, 1), (1, 3), (2, 2), (3, 3), (4, 2), (5, 1)]) assert str(dv) == rep dv = self.G.degree() assert str(dv) == rep def test_repr(self): dv = self.dview(self.G) rep = "DegreeView({0: 1, 1: 3, 2: 2, 3: 3, 4: 2, 5: 1})" assert repr(dv) == rep def test_iter(self): dv = self.dview(self.G) for n, d in dv: pass idv = iter(dv) assert iter(dv) != dv assert iter(idv) == idv assert next(idv) == (0, dv[0]) assert next(idv) == (1, dv[1]) # weighted dv = self.dview(self.G, weight='foo') for n, d in dv: pass idv = iter(dv) assert iter(dv) != dv assert iter(idv) == idv assert next(idv) == (0, dv[0]) assert next(idv) == (1, dv[1]) def test_nbunch(self): dv = self.dview(self.G) dvn = dv(0) assert dvn == 1 dvn = dv([2, 3]) assert sorted(dvn) == [(2, 2), (3, 3)] def test_getitem(self): dv = self.dview(self.G) assert dv[0] == 1 assert dv[1] == 3 assert dv[2] == 2 assert dv[3] == 3 dv = self.dview(self.G, weight='foo') assert dv[0] == 1 assert dv[1] == 5 assert dv[2] == 2 assert dv[3] == 5 def test_weight(self): dv = self.dview(self.G) dvw = dv(0, weight='foo') assert dvw == 1 dvw = dv(1, weight='foo') assert dvw == 5 dvw = dv([2, 3], weight='foo') assert sorted(dvw) == [(2, 2), (3, 5)] dvd = dict(dv(weight='foo')) assert dvd[0] == 1 assert dvd[1] == 5 assert dvd[2] == 2 assert dvd[3] == 5 def test_len(self): dv = self.dview(self.G) assert len(dv) == 6 class TestDiDegreeView(TestDegreeView): GRAPH = nx.DiGraph dview = nx.reportviews.DiDegreeView def test_repr(self): dv = self.G.degree() rep = "DiDegreeView({0: 1, 1: 3, 2: 2, 3: 3, 4: 2, 5: 1})" assert repr(dv) == rep class TestOutDegreeView(TestDegreeView): GRAPH = nx.DiGraph dview = nx.reportviews.OutDegreeView def test_str(self): dv = self.dview(self.G) rep = str([(0, 1), (1, 2), (2, 1), (3, 1), (4, 1), (5, 0)]) assert str(dv) == rep dv = self.G.out_degree() assert str(dv) == rep def test_repr(self): dv = self.G.out_degree() rep = "OutDegreeView({0: 1, 1: 2, 2: 1, 3: 1, 4: 1, 5: 0})" assert repr(dv) == rep def test_nbunch(self): dv = self.dview(self.G) dvn = dv(0) assert dvn == 1 dvn = dv([2, 3]) assert sorted(dvn) == [(2, 1), (3, 1)] def test_getitem(self): dv = self.dview(self.G) assert dv[0] == 1 assert dv[1] == 2 assert dv[2] == 1 assert dv[3] == 1 dv = self.dview(self.G, weight='foo') assert dv[0] == 1 assert dv[1] == 4 assert dv[2] == 1 assert dv[3] == 1 def test_weight(self): dv = self.dview(self.G) dvw = dv(0, weight='foo') assert dvw == 1 dvw = dv(1, weight='foo') assert dvw == 4 dvw = dv([2, 3], weight='foo') assert sorted(dvw) == [(2, 1), (3, 1)] dvd = dict(dv(weight='foo')) assert dvd[0] == 1 assert dvd[1] == 4 assert dvd[2] == 1 assert dvd[3] == 1 class TestInDegreeView(TestDegreeView): GRAPH = nx.DiGraph dview = nx.reportviews.InDegreeView def test_str(self): dv = self.dview(self.G) rep = str([(0, 0), (1, 1), (2, 1), (3, 2), (4, 1), (5, 1)]) assert str(dv) == rep dv = self.G.in_degree() assert str(dv) == rep def test_repr(self): dv = self.G.in_degree() rep = "InDegreeView({0: 0, 1: 1, 2: 1, 3: 2, 4: 1, 5: 1})" assert repr(dv) == rep def test_nbunch(self): dv = self.dview(self.G) dvn = dv(0) assert dvn == 0 dvn = dv([2, 3]) assert sorted(dvn) == [(2, 1), (3, 2)] def test_getitem(self): dv = self.dview(self.G) assert dv[0] == 0 assert dv[1] == 1 assert dv[2] == 1 assert dv[3] == 2 dv = self.dview(self.G, weight='foo') assert dv[0] == 0 assert dv[1] == 1 assert dv[2] == 1 assert dv[3] == 4 def test_weight(self): dv = self.dview(self.G) dvw = dv(0, weight='foo') assert dvw == 0 dvw = dv(1, weight='foo') assert dvw == 1 dvw = dv([2, 3], weight='foo') assert sorted(dvw) == [(2, 1), (3, 4)] dvd = dict(dv(weight='foo')) assert dvd[0] == 0 assert dvd[1] == 1 assert dvd[2] == 1 assert dvd[3] == 4 class TestMultiDegreeView(TestDegreeView): GRAPH = nx.MultiGraph dview = nx.reportviews.MultiDegreeView def test_str(self): dv = self.dview(self.G) rep = str([(0, 1), (1, 4), (2, 2), (3, 4), (4, 2), (5, 1)]) assert str(dv) == rep dv = self.G.degree() assert str(dv) == rep def test_repr(self): dv = self.G.degree() rep = "MultiDegreeView({0: 1, 1: 4, 2: 2, 3: 4, 4: 2, 5: 1})" assert repr(dv) == rep def test_nbunch(self): dv = self.dview(self.G) dvn = dv(0) assert dvn == 1 dvn = dv([2, 3]) assert sorted(dvn) == [(2, 2), (3, 4)] def test_getitem(self): dv = self.dview(self.G) assert dv[0] == 1 assert dv[1] == 4 assert dv[2] == 2 assert dv[3] == 4 dv = self.dview(self.G, weight='foo') assert dv[0] == 1 assert dv[1] == 7 assert dv[2] == 2 assert dv[3] == 7 def test_weight(self): dv = self.dview(self.G) dvw = dv(0, weight='foo') assert dvw == 1 dvw = dv(1, weight='foo') assert dvw == 7 dvw = dv([2, 3], weight='foo') assert sorted(dvw) == [(2, 2), (3, 7)] dvd = dict(dv(weight='foo')) assert dvd[0] == 1 assert dvd[1] == 7 assert dvd[2] == 2 assert dvd[3] == 7 class TestDiMultiDegreeView(TestMultiDegreeView): GRAPH = nx.MultiDiGraph dview = nx.reportviews.DiMultiDegreeView def test_repr(self): dv = self.G.degree() rep = "DiMultiDegreeView({0: 1, 1: 4, 2: 2, 3: 4, 4: 2, 5: 1})" assert repr(dv) == rep class TestOutMultiDegreeView(TestDegreeView): GRAPH = nx.MultiDiGraph dview = nx.reportviews.OutMultiDegreeView def test_str(self): dv = self.dview(self.G) rep = str([(0, 1), (1, 3), (2, 1), (3, 1), (4, 1), (5, 0)]) assert str(dv) == rep dv = self.G.out_degree() assert str(dv) == rep def test_repr(self): dv = self.G.out_degree() rep = "OutMultiDegreeView({0: 1, 1: 3, 2: 1, 3: 1, 4: 1, 5: 0})" assert repr(dv) == rep def test_nbunch(self): dv = self.dview(self.G) dvn = dv(0) assert dvn == 1 dvn = dv([2, 3]) assert sorted(dvn) == [(2, 1), (3, 1)] def test_getitem(self): dv = self.dview(self.G) assert dv[0] == 1 assert dv[1] == 3 assert dv[2] == 1 assert dv[3] == 1 dv = self.dview(self.G, weight='foo') assert dv[0] == 1 assert dv[1] == 6 assert dv[2] == 1 assert dv[3] == 1 def test_weight(self): dv = self.dview(self.G) dvw = dv(0, weight='foo') assert dvw == 1 dvw = dv(1, weight='foo') assert dvw == 6 dvw = dv([2, 3], weight='foo') assert sorted(dvw) == [(2, 1), (3, 1)] dvd = dict(dv(weight='foo')) assert dvd[0] == 1 assert dvd[1] == 6 assert dvd[2] == 1 assert dvd[3] == 1 class TestInMultiDegreeView(TestDegreeView): GRAPH = nx.MultiDiGraph dview = nx.reportviews.InMultiDegreeView def test_str(self): dv = self.dview(self.G) rep = str([(0, 0), (1, 1), (2, 1), (3, 3), (4, 1), (5, 1)]) assert str(dv) == rep dv = self.G.in_degree() assert str(dv) == rep def test_repr(self): dv = self.G.in_degree() rep = "InMultiDegreeView({0: 0, 1: 1, 2: 1, 3: 3, 4: 1, 5: 1})" assert repr(dv) == rep def test_nbunch(self): dv = self.dview(self.G) dvn = dv(0) assert dvn == 0 dvn = dv([2, 3]) assert sorted(dvn) == [(2, 1), (3, 3)] def test_getitem(self): dv = self.dview(self.G) assert dv[0] == 0 assert dv[1] == 1 assert dv[2] == 1 assert dv[3] == 3 dv = self.dview(self.G, weight='foo') assert dv[0] == 0 assert dv[1] == 1 assert dv[2] == 1 assert dv[3] == 6 def test_weight(self): dv = self.dview(self.G) dvw = dv(0, weight='foo') assert dvw == 0 dvw = dv(1, weight='foo') assert dvw == 1 dvw = dv([2, 3], weight='foo') assert sorted(dvw) == [(2, 1), (3, 6)] dvd = dict(dv(weight='foo')) assert dvd[0] == 0 assert dvd[1] == 1 assert dvd[2] == 1 assert dvd[3] == 6 ``` #### File: networkx/generators/classic.py ```python import itertools import networkx as nx from networkx.classes import Graph from networkx.exception import NetworkXError from itertools import accumulate from networkx.utils import nodes_or_number from networkx.utils import pairwise __all__ = ['balanced_tree', 'barbell_graph', 'binomial_tree', 'complete_graph', 'complete_multipartite_graph', 'circular_ladder_graph', 'circulant_graph', 'cycle_graph', 'dorogovtsev_goltsev_mendes_graph', 'empty_graph', 'full_rary_tree', 'ladder_graph', 'lollipop_graph', 'null_graph', 'path_graph', 'star_graph', 'trivial_graph', 'turan_graph', 'wheel_graph'] # ------------------------------------------------------------------- # Some Classic Graphs # ------------------------------------------------------------------- def _tree_edges(n, r): if n == 0: return # helper function for trees # yields edges in rooted tree at 0 with n nodes and branching ratio r nodes = iter(range(n)) parents = [next(nodes)] # stack of max length r while parents: source = parents.pop(0) for i in range(r): try: target = next(nodes) parents.append(target) yield source, target except StopIteration: break def full_rary_tree(r, n, create_using=None): """Creates a full r-ary tree of n vertices. Sometimes called a k-ary, n-ary, or m-ary tree. "... all non-leaf vertices have exactly r children and all levels are full except for some rightmost position of the bottom level (if a leaf at the bottom level is missing, then so are all of the leaves to its right." [1]_ Parameters ---------- r : int branching factor of the tree n : int Number of nodes in the tree create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. Returns ------- G : networkx Graph An r-ary tree with n nodes References ---------- .. [1] An introduction to data structures and algorithms, <NAME>, Birkhauser Boston 2001, (page 225). """ G = empty_graph(n, create_using) G.add_edges_from(_tree_edges(n, r)) return G def balanced_tree(r, h, create_using=None): """Returns the perfectly balanced `r`-ary tree of height `h`. Parameters ---------- r : int Branching factor of the tree; each node will have `r` children. h : int Height of the tree. create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. Returns ------- G : NetworkX graph A balanced `r`-ary tree of height `h`. Notes ----- This is the rooted tree where all leaves are at distance `h` from the root. The root has degree `r` and all other internal nodes have degree `r + 1`. Node labels are integers, starting from zero. A balanced tree is also known as a *complete r-ary tree*. """ # The number of nodes in the balanced tree is `1 + r + ... + r^h`, # which is computed by using the closed-form formula for a geometric # sum with ratio `r`. In the special case that `r` is 1, the number # of nodes is simply `h + 1` (since the tree is actually a path # graph). if r == 1: n = h + 1 else: # This must be an integer if both `r` and `h` are integers. If # they are not, we force integer division anyway. n = (1 - r ** (h + 1)) // (1 - r) return full_rary_tree(r, n, create_using=create_using) def barbell_graph(m1, m2, create_using=None): """Returns the Barbell Graph: two complete graphs connected by a path. For $m1 > 1$ and $m2 >= 0$. Two identical complete graphs $K_{m1}$ form the left and right bells, and are connected by a path $P_{m2}$. The `2*m1+m2` nodes are numbered `0, ..., m1-1` for the left barbell, `m1, ..., m1+m2-1` for the path, and `m1+m2, ..., 2*m1+m2-1` for the right barbell. The 3 subgraphs are joined via the edges `(m1-1, m1)` and `(m1+m2-1, m1+m2)`. If `m2=0`, this is merely two complete graphs joined together. This graph is an extremal example in David Aldous and <NAME>'s e-text on Random Walks on Graphs. """ if m1 < 2: raise NetworkXError( "Invalid graph description, m1 should be >=2") if m2 < 0: raise NetworkXError( "Invalid graph description, m2 should be >=0") # left barbell G = complete_graph(m1, create_using) if G.is_directed(): raise NetworkXError("Directed Graph not supported") # connecting path G.add_nodes_from(range(m1, m1 + m2 - 1)) if m2 > 1: G.add_edges_from(pairwise(range(m1, m1 + m2))) # right barbell G.add_edges_from((u, v) for u in range(m1 + m2, 2 * m1 + m2) for v in range(u + 1, 2 * m1 + m2)) # connect it up G.add_edge(m1 - 1, m1) if m2 > 0: G.add_edge(m1 + m2 - 1, m1 + m2) return G def binomial_tree(n): """Returns the Binomial Tree of order n. The binomial tree of order 0 consists of a single vertex. A binomial tree of order k is defined recursively by linking two binomial trees of order k-1: the root of one is the leftmost child of the root of the other. Parameters ---------- n : int Order of the binomial tree. Returns ------- G : NetworkX graph A binomial tree of $2^n$ vertices and $2^n - 1$ edges. """ G = nx.empty_graph(1) N = 1 for i in range(n): edges = [(u + N, v + N) for (u, v) in G.edges] G.add_edges_from(edges) G.add_edge(0, N) N *= 2 return G @nodes_or_number(0) def complete_graph(n, create_using=None): """ Return the complete graph `K_n` with n nodes. Parameters ---------- n : int or iterable container of nodes If n is an integer, nodes are from range(n). If n is a container of nodes, those nodes appear in the graph. create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. Examples -------- >>> G = nx.complete_graph(9) >>> len(G) 9 >>> G.size() 36 >>> G = nx.complete_graph(range(11, 14)) >>> list(G.nodes()) [11, 12, 13] >>> G = nx.complete_graph(4, nx.DiGraph()) >>> G.is_directed() True """ n_name, nodes = n G = empty_graph(n_name, create_using) if len(nodes) > 1: if G.is_directed(): edges = itertools.permutations(nodes, 2) else: edges = itertools.combinations(nodes, 2) G.add_edges_from(edges) return G def circular_ladder_graph(n, create_using=None): """Returns the circular ladder graph $CL_n$ of length n. $CL_n$ consists of two concentric n-cycles in which each of the n pairs of concentric nodes are joined by an edge. Node labels are the integers 0 to n-1 """ G = ladder_graph(n, create_using) G.add_edge(0, n - 1) G.add_edge(n, 2 * n - 1) return G def circulant_graph(n, offsets, create_using=None): """Generates the circulant graph $Ci_n(x_1, x_2, ..., x_m)$ with $n$ vertices. Returns ------- The graph $Ci_n(x_1, ..., x_m)$ consisting of $n$ vertices $0, ..., n-1$ such that the vertex with label $i$ is connected to the vertices labelled $(i + x)$ and $(i - x)$, for all $x$ in $x_1$ up to $x_m$, with the indices taken modulo $n$. Parameters ---------- n : integer The number of vertices the generated graph is to contain. offsets : list of integers A list of vertex offsets, $x_1$ up to $x_m$, as described above. create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. Examples -------- Many well-known graph families are subfamilies of the circulant graphs; for example, to generate the cycle graph on n points, we connect every vertex to every other at offset plus or minus one. For n = 10, >>> import networkx >>> G = networkx.generators.classic.circulant_graph(10, [1]) >>> edges = [ ... (0, 9), (0, 1), (1, 2), (2, 3), (3, 4), ... (4, 5), (5, 6), (6, 7), (7, 8), (8, 9)] ... >>> sorted(edges) == sorted(G.edges()) True Similarly, we can generate the complete graph on 5 points with the set of offsets [1, 2]: >>> G = networkx.generators.classic.circulant_graph(5, [1, 2]) >>> edges = [ ... (0, 1), (0, 2), (0, 3), (0, 4), (1, 2), ... (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] ... >>> sorted(edges) == sorted(G.edges()) True """ G = empty_graph(n, create_using) for i in range(n): for j in offsets: G.add_edge(i, (i - j) % n) G.add_edge(i, (i + j) % n) return G @nodes_or_number(0) def cycle_graph(n, create_using=None): """Returns the cycle graph $C_n$ of cyclically connected nodes. $C_n$ is a path with its two end-nodes connected. Parameters ---------- n : int or iterable container of nodes If n is an integer, nodes are from `range(n)`. If n is a container of nodes, those nodes appear in the graph. create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. Notes ----- If create_using is directed, the direction is in increasing order. """ n_orig, nodes = n G = empty_graph(nodes, create_using) G.add_edges_from(pairwise(nodes)) G.add_edge(nodes[-1], nodes[0]) return G def dorogovtsev_goltsev_mendes_graph(n, create_using=None): """Returns the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph. n is the generation. See: arXiv:/cond-mat/0112143 by Dorogovtsev, Goltsev and Mendes. """ G = empty_graph(0, create_using) if G.is_directed(): raise NetworkXError("Directed Graph not supported") if G.is_multigraph(): raise NetworkXError("Multigraph not supported") G.add_edge(0, 1) if n == 0: return G new_node = 2 # next node to be added for i in range(1, n + 1): # iterate over number of generations. last_generation_edges = list(G.edges()) number_of_edges_in_last_generation = len(last_generation_edges) for j in range(0, number_of_edges_in_last_generation): G.add_edge(new_node, last_generation_edges[j][0]) G.add_edge(new_node, last_generation_edges[j][1]) new_node += 1 return G @nodes_or_number(0) def empty_graph(n=0, create_using=None, default=nx.Graph): """Returns the empty graph with n nodes and zero edges. Parameters ---------- n : int or iterable container of nodes (default = 0) If n is an integer, nodes are from `range(n)`. If n is a container of nodes, those nodes appear in the graph. create_using : Graph Instance, Constructor or None Indicator of type of graph to return. If a Graph-type instance, then clear and use it. If None, use the `default` constructor. If a constructor, call it to create an empty graph. default : Graph constructor (optional, default = nx.Graph) The constructor to use if create_using is None. If None, then nx.Graph is used. This is used when passing an unknown `create_using` value through your home-grown function to `empty_graph` and you want a default constructor other than nx.Graph. Examples -------- >>> G = nx.empty_graph(10) >>> G.number_of_nodes() 10 >>> G.number_of_edges() 0 >>> G = nx.empty_graph("ABC") >>> G.number_of_nodes() 3 >>> sorted(G) ['A', 'B', 'C'] Notes ----- The variable create_using should be a Graph Constructor or a "graph"-like object. Constructors, e.g. `nx.Graph` or `nx.MultiGraph` will be used to create the returned graph. "graph"-like objects will be cleared (nodes and edges will be removed) and refitted as an empty "graph" with nodes specified in n. This capability is useful for specifying the class-nature of the resulting empty "graph" (i.e. Graph, DiGraph, MyWeirdGraphClass, etc.). The variable create_using has three main uses: Firstly, the variable create_using can be used to create an empty digraph, multigraph, etc. For example, >>> n = 10 >>> G = nx.empty_graph(n, create_using=nx.DiGraph) will create an empty digraph on n nodes. Secondly, one can pass an existing graph (digraph, multigraph, etc.) via create_using. For example, if G is an existing graph (resp. digraph, multigraph, etc.), then empty_graph(n, create_using=G) will empty G (i.e. delete all nodes and edges using G.clear()) and then add n nodes and zero edges, and return the modified graph. Thirdly, when constructing your home-grown graph creation function you can use empty_graph to construct the graph by passing a user defined create_using to empty_graph. In this case, if you want the default constructor to be other than nx.Graph, specify `default`. >>> def mygraph(n, create_using=None): ... G = nx.empty_graph(n, create_using, nx.MultiGraph) ... G.add_edges_from([(0, 1), (0, 1)]) ... return G >>> G = mygraph(3) >>> G.is_multigraph() True >>> G = mygraph(3, nx.Graph) >>> G.is_multigraph() False See also create_empty_copy(G). """ if create_using is None: G = default() elif hasattr(create_using, '_adj'): # create_using is a NetworkX style Graph create_using.clear() G = create_using else: # try create_using as constructor G = create_using() n_name, nodes = n G.add_nodes_from(nodes) return G def ladder_graph(n, create_using=None): """Returns the Ladder graph of length n. This is two paths of n nodes, with each pair connected by a single edge. Node labels are the integers 0 to 2*n - 1. """ G = empty_graph(2 * n, create_using) if G.is_directed(): raise NetworkXError("Directed Graph not supported") G.add_edges_from(pairwise(range(n))) G.add_edges_from(pairwise(range(n, 2 * n))) G.add_edges_from((v, v + n) for v in range(n)) return G @nodes_or_number([0, 1]) def lollipop_graph(m, n, create_using=None): """Returns the Lollipop Graph; `K_m` connected to `P_n`. This is the Barbell Graph without the right barbell. Parameters ---------- m, n : int or iterable container of nodes (default = 0) If an integer, nodes are from `range(m)` and `range(m,m+n)`. If a container, the entries are the coordinate of the node. The nodes for m appear in the complete graph $K_m$ and the nodes for n appear in the path $P_n$ create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. Notes ----- The 2 subgraphs are joined via an edge (m-1, m). If n=0, this is merely a complete graph. (This graph is an extremal example in <NAME> and Jim Fill's etext on Random Walks on Graphs.) """ m, m_nodes = m n, n_nodes = n M = len(m_nodes) N = len(n_nodes) if isinstance(m, int): n_nodes = [len(m_nodes) + i for i in n_nodes] if M < 2: raise NetworkXError( "Invalid graph description, m should be >=2") if N < 0: raise NetworkXError( "Invalid graph description, n should be >=0") # the ball G = complete_graph(m_nodes, create_using) if G.is_directed(): raise NetworkXError("Directed Graph not supported") # the stick G.add_nodes_from(n_nodes) if N > 1: G.add_edges_from(pairwise(n_nodes)) # connect ball to stick if M > 0 and N > 0: G.add_edge(m_nodes[-1], n_nodes[0]) return G def null_graph(create_using=None): """Returns the Null graph with no nodes or edges. See empty_graph for the use of create_using. """ G = empty_graph(0, create_using) return G @nodes_or_number(0) def path_graph(n, create_using=None): """Returns the Path graph `P_n` of linearly connected nodes. Parameters ---------- n : int or iterable If an integer, node labels are 0 to n with center 0. If an iterable of nodes, the center is the first. create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. """ n_name, nodes = n G = empty_graph(nodes, create_using) G.add_edges_from(pairwise(nodes)) return G @nodes_or_number(0) def star_graph(n, create_using=None): """ Return the star graph The star graph consists of one center node connected to n outer nodes. Parameters ---------- n : int or iterable If an integer, node labels are 0 to n with center 0. If an iterable of nodes, the center is the first. create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. Notes ----- The graph has n+1 nodes for integer n. So star_graph(3) is the same as star_graph(range(4)). """ n_name, nodes = n if isinstance(n_name, int): nodes = nodes + [n_name] # there should be n+1 nodes first = nodes[0] G = empty_graph(nodes, create_using) if G.is_directed(): raise NetworkXError("Directed Graph not supported") G.add_edges_from((first, v) for v in nodes[1:]) return G def trivial_graph(create_using=None): """ Return the Trivial graph with one node (with label 0) and no edges. """ G = empty_graph(1, create_using) return G def turan_graph(n, r): r""" Return the Turan Graph The Turan Graph is a complete multipartite graph on $n$ vertices with $r$ disjoint subsets. It is the graph with the edges for any graph with $n$ vertices and $r$ disjoint subsets. Given $n$ and $r$, we generate a complete multipartite graph with $r-(n \mod r)$ partitions of size $n/r$, rounded down, and $n \mod r$ partitions of size $n/r+1$, rounded down. Parameters ---------- n : int The number of vertices. r : int The number of partitions. Must be less than or equal to n. Notes ----- Must satisfy $1 <= r <= n$. The graph has $(r-1)(n^2)/(2r)$ edges, rounded down. """ if not 1 <= r <= n: raise NetworkXError("Must satisfy 1 <= r <= n") partitions = [n // r] * (r - (n % r)) + [n // r + 1] * (n % r) G = complete_multipartite_graph(*partitions) return G @nodes_or_number(0) def wheel_graph(n, create_using=None): """ Return the wheel graph The wheel graph consists of a hub node connected to a cycle of (n-1) nodes. Parameters ---------- n : int or iterable If an integer, node labels are 0 to n with center 0. If an iterable of nodes, the center is the first. create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. Node labels are the integers 0 to n - 1. """ n_name, nodes = n if n_name == 0: G = empty_graph(0, create_using) return G G = star_graph(nodes, create_using) if len(G) > 2: G.add_edges_from(pairwise(nodes[1:])) G.add_edge(nodes[-1], nodes[1]) return G def complete_multipartite_graph(*subset_sizes): """Returns the complete multipartite graph with the specified subset sizes. Parameters ---------- subset_sizes : tuple of integers or tuple of node iterables The arguments can either all be integer number of nodes or they can all be iterables of nodes. If integers, they represent the number of vertices in each subset of the multipartite graph. If iterables, each is used to create the nodes for that subset. The length of subset_sizes is the number of subsets. Returns ------- G : NetworkX Graph Returns the complete multipartite graph with the specified subsets. For each node, the node attribute 'subset' is an integer indicating which subset contains the node. Examples -------- Creating a complete tripartite graph, with subsets of one, two, and three vertices, respectively. >>> import networkx as nx >>> G = nx.complete_multipartite_graph(1, 2, 3) >>> [G.nodes[u]['subset'] for u in G] [0, 1, 1, 2, 2, 2] >>> list(G.edges(0)) [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)] >>> list(G.edges(2)) [(2, 0), (2, 3), (2, 4), (2, 5)] >>> list(G.edges(4)) [(4, 0), (4, 1), (4, 2)] >>> G = nx.complete_multipartite_graph('a', 'bc', 'def') >>> [G.nodes[u]['subset'] for u in sorted(G)] [0, 1, 1, 2, 2, 2] Notes ----- This function generalizes several other graph generator functions. - If no subset sizes are given, this returns the null graph. - If a single subset size `n` is given, this returns the empty graph on `n` nodes. - If two subset sizes `m` and `n` are given, this returns the complete bipartite graph on `m + n` nodes. - If subset sizes `1` and `n` are given, this returns the star graph on `n + 1` nodes. See also -------- complete_bipartite_graph """ # The complete multipartite graph is an undirected simple graph. G = Graph() if len(subset_sizes) == 0: return G # set up subsets of nodes try: extents = pairwise(accumulate((0,) + subset_sizes)) subsets = [range(start, end) for start, end in extents] except TypeError: subsets = subset_sizes # add nodes with subset attribute # while checking that ints are not mixed with iterables try: for (i, subset) in enumerate(subsets): G.add_nodes_from(subset, subset=i) except TypeError: raise NetworkXError("Arguments must be all ints or all iterables") # Across subsets, all vertices should be adjacent. # We can use itertools.combinations() because undirected. for subset1, subset2 in itertools.combinations(subsets, 2): G.add_edges_from(itertools.product(subset1, subset2)) return G ``` #### File: generators/tests/test_small.py ```python import pytest import networkx as nx from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic is_isomorphic = graph_could_be_isomorphic """Generators - Small ===================== Some small graphs """ null = nx.null_graph() class TestGeneratorsSmall(): def test_make_small_graph(self): d = ["adjacencylist", "Bull Graph", 5, [[2, 3], [1, 3, 4], [1, 2, 5], [2], [3]]] G = nx.make_small_graph(d) assert is_isomorphic(G, nx.bull_graph()) # Test small graph creation error with wrong ltype d[0] = "erroneouslist" pytest.raises(nx.NetworkXError, nx.make_small_graph, graph_description=d) def test__LCF_graph(self): # If n<=0, then return the null_graph G = nx.LCF_graph(-10, [1, 2], 100) assert is_isomorphic(G, null) G = nx.LCF_graph(0, [1, 2], 3) assert is_isomorphic(G, null) G = nx.LCF_graph(0, [1, 2], 10) assert is_isomorphic(G, null) # Test that LCF(n,[],0) == cycle_graph(n) for a, b, c in [(5, [], 0), (10, [], 0), (5, [], 1), (10, [], 10)]: G = nx.LCF_graph(a, b, c) assert is_isomorphic(G, nx.cycle_graph(a)) # Generate the utility graph K_{3,3} G = nx.LCF_graph(6, [3, -3], 3) utility_graph = nx.complete_bipartite_graph(3, 3) assert is_isomorphic(G, utility_graph) def test_properties_named_small_graphs(self): G = nx.bull_graph() assert G.number_of_nodes() == 5 assert G.number_of_edges() == 5 assert sorted(d for n, d in G.degree()) == [1, 1, 2, 3, 3] assert nx.diameter(G) == 3 assert nx.radius(G) == 2 G = nx.chvatal_graph() assert G.number_of_nodes() == 12 assert G.number_of_edges() == 24 assert list(d for n, d in G.degree()) == 12 * [4] assert nx.diameter(G) == 2 assert nx.radius(G) == 2 G = nx.cubical_graph() assert G.number_of_nodes() == 8 assert G.number_of_edges() == 12 assert list(d for n, d in G.degree()) == 8 * [3] assert nx.diameter(G) == 3 assert nx.radius(G) == 3 G = nx.desargues_graph() assert G.number_of_nodes() == 20 assert G.number_of_edges() == 30 assert list(d for n, d in G.degree()) == 20 * [3] G = nx.diamond_graph() assert G.number_of_nodes() == 4 assert sorted(d for n, d in G.degree()) == [2, 2, 3, 3] assert nx.diameter(G) == 2 assert nx.radius(G) == 1 G = nx.dodecahedral_graph() assert G.number_of_nodes() == 20 assert G.number_of_edges() == 30 assert list(d for n, d in G.degree()) == 20 * [3] assert nx.diameter(G) == 5 assert nx.radius(G) == 5 G = nx.frucht_graph() assert G.number_of_nodes() == 12 assert G.number_of_edges() == 18 assert list(d for n, d in G.degree()) == 12 * [3] assert nx.diameter(G) == 4 assert nx.radius(G) == 3 G = nx.heawood_graph() assert G.number_of_nodes() == 14 assert G.number_of_edges() == 21 assert list(d for n, d in G.degree()) == 14 * [3] assert nx.diameter(G) == 3 assert nx.radius(G) == 3 G = nx.hoffman_singleton_graph() assert G.number_of_nodes() == 50 assert G.number_of_edges() == 175 assert list(d for n, d in G.degree()) == 50 * [7] assert nx.diameter(G) == 2 assert nx.radius(G) == 2 G = nx.house_graph() assert G.number_of_nodes() == 5 assert G.number_of_edges() == 6 assert sorted(d for n, d in G.degree()) == [2, 2, 2, 3, 3] assert nx.diameter(G) == 2 assert nx.radius(G) == 2 G = nx.house_x_graph() assert G.number_of_nodes() == 5 assert G.number_of_edges() == 8 assert sorted(d for n, d in G.degree()) == [2, 3, 3, 4, 4] assert nx.diameter(G) == 2 assert nx.radius(G) == 1 G = nx.icosahedral_graph() assert G.number_of_nodes() == 12 assert G.number_of_edges() == 30 assert (list(d for n, d in G.degree()) == [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]) assert nx.diameter(G) == 3 assert nx.radius(G) == 3 G = nx.krackhardt_kite_graph() assert G.number_of_nodes() == 10 assert G.number_of_edges() == 18 assert (sorted(d for n, d in G.degree()) == [1, 2, 3, 3, 3, 4, 4, 5, 5, 6]) G = nx.moebius_kantor_graph() assert G.number_of_nodes() == 16 assert G.number_of_edges() == 24 assert list(d for n, d in G.degree()) == 16 * [3] assert nx.diameter(G) == 4 G = nx.octahedral_graph() assert G.number_of_nodes() == 6 assert G.number_of_edges() == 12 assert list(d for n, d in G.degree()) == 6 * [4] assert nx.diameter(G) == 2 assert nx.radius(G) == 2 G = nx.pappus_graph() assert G.number_of_nodes() == 18 assert G.number_of_edges() == 27 assert list(d for n, d in G.degree()) == 18 * [3] assert nx.diameter(G) == 4 G = nx.petersen_graph() assert G.number_of_nodes() == 10 assert G.number_of_edges() == 15 assert list(d for n, d in G.degree()) == 10 * [3] assert nx.diameter(G) == 2 assert nx.radius(G) == 2 G = nx.sedgewick_maze_graph() assert G.number_of_nodes() == 8 assert G.number_of_edges() == 10 assert sorted(d for n, d in G.degree()) == [1, 2, 2, 2, 3, 3, 3, 4] G = nx.tetrahedral_graph() assert G.number_of_nodes() == 4 assert G.number_of_edges() == 6 assert list(d for n, d in G.degree()) == [3, 3, 3, 3] assert nx.diameter(G) == 1 assert nx.radius(G) == 1 G = nx.truncated_cube_graph() assert G.number_of_nodes() == 24 assert G.number_of_edges() == 36 assert list(d for n, d in G.degree()) == 24 * [3] G = nx.truncated_tetrahedron_graph() assert G.number_of_nodes() == 12 assert G.number_of_edges() == 18 assert list(d for n, d in G.degree()) == 12 * [3] G = nx.tutte_graph() assert G.number_of_nodes() == 46 assert G.number_of_edges() == 69 assert list(d for n, d in G.degree()) == 46 * [3] # Test create_using with directed or multigraphs on small graphs pytest.raises(nx.NetworkXError, nx.tutte_graph, create_using=nx.DiGraph) MG = nx.tutte_graph(create_using=nx.MultiGraph) assert sorted(MG.edges()) == sorted(G.edges()) ``` #### File: networkx/testing/test.py ```python def run(verbosity=1, doctest=False): """Run NetworkX tests. Parameters ---------- verbosity: integer, optional Level of detail in test reports. Higher numbers provide more detail. doctest: bool, optional True to run doctests in code modules """ import pytest pytest_args = ['-l'] if verbosity and int(verbosity) > 1: pytest_args += ["-" + "v"*(int(verbosity)-1)] if doctest: pytest_args += ["--doctest-modules"] pytest_args += ["--pyargs", "networkx"] try: code = pytest.main(pytest_args) except SystemExit as exc: code = exc.code return (code == 0) if __name__ == "__main__": run() ``` #### File: networkx/utils/rcm.py ```python from collections import deque from operator import itemgetter import networkx as nx from ..utils import arbitrary_element __author__ = """\n""".join(['<NAME> <<EMAIL>>']) __all__ = ['cuthill_mckee_ordering', 'reverse_cuthill_mckee_ordering'] def cuthill_mckee_ordering(G, heuristic=None): """Generate an ordering (permutation) of the graph nodes to make a sparse matrix. Uses the Cuthill-McKee heuristic (based on breadth-first search) [1]_. Parameters ---------- G : graph A NetworkX graph heuristic : function, optional Function to choose starting node for RCM algorithm. If None a node from a pseudo-peripheral pair is used. A user-defined function can be supplied that takes a graph object and returns a single node. Returns ------- nodes : generator Generator of nodes in Cuthill-McKee ordering. Examples -------- >>> from networkx.utils import cuthill_mckee_ordering >>> G = nx.path_graph(4) >>> rcm = list(cuthill_mckee_ordering(G)) >>> A = nx.adjacency_matrix(G, nodelist=rcm) Smallest degree node as heuristic function: >>> def smallest_degree(G): ... return min(G, key=G.degree) >>> rcm = list(cuthill_mckee_ordering(G, heuristic=smallest_degree)) See Also -------- reverse_cuthill_mckee_ordering Notes ----- The optimal solution the the bandwidth reduction is NP-complete [2]_. References ---------- .. [1] <NAME> and <NAME>. Reducing the bandwidth of sparse symmetric matrices, In Proc. 24th Nat. Conf. ACM, pages 157-172, 1969. http://doi.acm.org/10.1145/800195.805928 .. [2] <NAME>. 1997. The Algorithm Design Manual. Springer-Verlag New York, Inc., New York, NY, USA. """ for c in nx.connected_components(G): for n in connected_cuthill_mckee_ordering(G.subgraph(c), heuristic): yield n def reverse_cuthill_mckee_ordering(G, heuristic=None): """Generate an ordering (permutation) of the graph nodes to make a sparse matrix. Uses the reverse Cuthill-McKee heuristic (based on breadth-first search) [1]_. Parameters ---------- G : graph A NetworkX graph heuristic : function, optional Function to choose starting node for RCM algorithm. If None a node from a pseudo-peripheral pair is used. A user-defined function can be supplied that takes a graph object and returns a single node. Returns ------- nodes : generator Generator of nodes in reverse Cuthill-McKee ordering. Examples -------- >>> from networkx.utils import reverse_cuthill_mckee_ordering >>> G = nx.path_graph(4) >>> rcm = list(reverse_cuthill_mckee_ordering(G)) >>> A = nx.adjacency_matrix(G, nodelist=rcm) Smallest degree node as heuristic function: >>> def smallest_degree(G): ... return min(G, key=G.degree) >>> rcm = list(reverse_cuthill_mckee_ordering(G, heuristic=smallest_degree)) See Also -------- cuthill_mckee_ordering Notes ----- The optimal solution the the bandwidth reduction is NP-complete [2]_. References ---------- .. [1] <NAME> and <NAME>. Reducing the bandwidth of sparse symmetric matrices, In Proc. 24th Nat. Conf. ACM, pages 157-72, 1969. http://doi.acm.org/10.1145/800195.805928 .. [2] <NAME>. 1997. The Algorithm Design Manual. Springer-Verlag New York, Inc., New York, NY, USA. """ return reversed(list(cuthill_mckee_ordering(G, heuristic=heuristic))) def connected_cuthill_mckee_ordering(G, heuristic=None): # the cuthill mckee algorithm for connected graphs if heuristic is None: start = pseudo_peripheral_node(G) else: start = heuristic(G) visited = {start} queue = deque([start]) while queue: parent = queue.popleft() yield parent nd = sorted(list(G.degree(set(G[parent]) - visited)), key=itemgetter(1)) children = [n for n, d in nd] visited.update(children) queue.extend(children) def pseudo_peripheral_node(G): # helper for cuthill-mckee to find a node in a "pseudo peripheral pair" # to use as good starting node u = arbitrary_element(G) lp = 0 v = u while True: spl = dict(nx.shortest_path_length(G, v)) l = max(spl.values()) if l <= lp: break lp = l farthest = (n for n, dist in spl.items() if dist == l) v, deg = min(G.degree(farthest), key=itemgetter(1)) return v ```
{ "source": "jmmease/ipyplotly", "score": 2 }
#### File: ipyplotly/codegen/utils.py ```python import importlib import inspect import textwrap from typing import List, Dict from io import StringIO from yapf.yapflib.yapf_api import FormatCode from ipyplotly.basevalidators import BaseValidator, CompoundValidator, CompoundArrayValidator def format_source(validator_source): formatted_source, _ = FormatCode(validator_source, style_config={'based_on_style': 'google', 'DEDENT_CLOSING_BRACKETS': True, 'COLUMN_LIMIT': 119}) return formatted_source custom_validator_datatypes = { 'layout.image.source': 'ipyplotly.basevalidators.ImageUriValidator', 'frame.data': 'ipyplotly.validators.DataValidator', 'frame.layout': 'ipyplotly.validators.LayoutValidator' } class PlotlyNode: # Constructor # ----------- def __init__(self, plotly_schema, node_path=(), parent=None): self.plotly_schema = plotly_schema if isinstance(node_path, str): node_path = (node_path,) self.node_path = node_path # Compute children if isinstance(self.node_data, dict): self._children = [self.__class__(self.plotly_schema, node_path=self.node_path + (c,), parent=self) for c in self.node_data if c and c[0] != '_'] else: self._children = [] # Parent self._parent = parent def __repr__(self): return self.dir_str # Abstract methods # ---------------- @property def node_data(self) -> dict: raise NotImplementedError() @property def description(self) -> str: raise NotImplementedError() @property def base_datatype_class(self): raise NotImplementedError # Names # ----- @property def base_name(self): raise NotImplementedError() @property def plotly_name(self) -> str: if len(self.node_path) == 0: return self.base_name else: return self.node_path[-1] @property def name_pascal_case(self) -> str: return self.plotly_name.title().replace('_', '') @property def name_undercase(self) -> str: if not self.plotly_name: # Empty plotly_name return self.plotly_name # Lowercase leading char # ---------------------- name1 = self.plotly_name[0].lower() + self.plotly_name[1:] # Replace capital chars by underscore-lower # ----------------------------------------- name2 = ''.join([('' if not c.isupper() else '_') + c.lower() for c in name1]) return name2 @property def name_property(self) -> str: return self.plotly_name + ('s' if self.is_array_element else '') @property def name_validator(self) -> str: return self.name_pascal_case + ('s' if self.is_array_element else '') + 'Validator' @property def name_base_validator(self) -> str: if self.dir_str in custom_validator_datatypes: validator_base = f"{custom_validator_datatypes[self.dir_str]}" else: validator_base = f"ipyplotly.basevalidators.{self.datatype_pascal_case}Validator" return validator_base def get_constructor_params_docstring(self, indent=12, extra_nodes=[]): assert self.is_compound buffer = StringIO() subtype_nodes = self.child_datatypes + extra_nodes for subtype_node in subtype_nodes: raw_description = subtype_node.description subtype_description = '\n'.join(textwrap.wrap(raw_description, subsequent_indent=' ' * (indent + 4), width=80 - (indent + 4))) buffer.write('\n' + ' ' * indent + subtype_node.name_property) buffer.write('\n' + ' ' * (indent + 4) + subtype_description) return buffer.getvalue() @property def validator_instance(self) -> BaseValidator: module_parts = self.name_base_validator.split('.') module_path = '.'.join(module_parts[:-1]) cls_name = module_parts[-1] validators_module = importlib.import_module(module_path) validator_class_list = [cls for _, cls in inspect.getmembers(validators_module, inspect.isclass) if cls.__name__ == cls_name] if not validator_class_list: raise ValueError(f"Unknown base validator '{self.name_base_validator}'") validator_class = validator_class_list[0] args = dict(plotly_name=self.name_property, parent_name=self.parent_dir_str) if validator_class == CompoundValidator: data_class_str = f"<class ipyplotly.datatypes.{self.parent_dir_str}.{self.name_class}>" extra_args = {'data_class': data_class_str, 'data_docs': self.get_constructor_params_docstring()} elif validator_class == CompoundArrayValidator: element_class_str = f"<class ipyplotly.datatypes.{self.parent_dir_str}.{self.name_class}>" extra_args = {'element_class': element_class_str, 'element_docs': self.get_constructor_params_docstring()} else: extra_args = {n.name_undercase: n.node_data for n in self.simple_attrs} # Add extra properties if self.datatype == 'color': # Check for colorscale sibling colorscale_node_list = [node for node in self.parent.child_datatypes if node.datatype == 'colorscale'] if colorscale_node_list: colorscale_path = colorscale_node_list[0].dir_str extra_args['colorscale_path'] = repr(colorscale_path) return validator_class(**args, **extra_args) @property def name_class(self) -> str: return self.name_pascal_case # Datatypes # --------- @property def datatype(self) -> str: if self.is_array_element: return 'compound_array' elif self.is_compound: return 'compound' elif self.is_simple: return self.node_data.get('valType') else: return 'literal' @property def datatype_pascal_case(self) -> str: return self.datatype.title().replace('_', '') @property def is_compound(self) -> bool: return isinstance(self.node_data, dict) and not self.is_simple and self.plotly_name != 'impliedEdits' @property def is_literal(self) -> bool: return isinstance(self.node_data, str) @property def is_simple(self) -> bool: return isinstance(self.node_data, dict) and 'valType' in self.node_data @property def is_array(self) -> bool: return isinstance(self.node_data, dict) and \ self.node_data.get('role', '') == 'object' and \ 'items' in self.node_data @property def is_array_element(self): if self.parent and self.parent.parent: return self.parent.parent.is_array else: return False @property def is_datatype(self) -> bool: return self.is_simple or self.is_compound # Node path # --------- def tidy_dir_path(self, p): return p @property def dir_path(self) -> List[str]: res = [self.base_name] if self.base_name else [] for i, p in enumerate(self.node_path): if p == 'items' or \ (i < len(self.node_path) - 1 and self.node_path[i+1] == 'items'): # e.g. [parcoords, dimensions, items, dimension] -> [parcoords, dimension] pass else: res.append(self.tidy_dir_path(p)) return res # Node path strings # ----------------- @property def dir_str(self) -> str: return '.'.join(self.dir_path) @property def parent_dir_str(self) -> str: return '.'.join(self.dir_path[:-1]) @property def pkg_str(self) -> str: path_str = '' for p in self.dir_path: path_str += '.' + p return path_str # Children # -------- @property def children(self) -> List['PlotlyNode']: return self._children @property def simple_attrs(self) -> List['PlotlyNode']: if not self.is_simple: raise ValueError(f"Cannot get simple attributes of the simple object '{self.dir_str}'") return [n for n in self.children if n.plotly_name not in ['valType', 'description', 'role']] @property def parent(self) -> 'PlotlyNode': return self._parent @property def child_datatypes(self) -> List['PlotlyNode']: """ Returns ------- children: list of TraceNode """ # if self.is_array: # items_child = [c for c in self.children if c.plotly_name == 'items'][0] # return items_child.children # else: nodes = [] for n in self.children: if n.is_array: nodes.append(n.children[0].children[0]) elif n.is_datatype: nodes.append(n) return nodes @property def child_compound_datatypes(self) -> List['PlotlyNode']: return [n for n in self.child_datatypes if n.is_compound] @property def child_simple_datatypes(self) -> List['PlotlyNode']: return [n for n in self.child_datatypes if n.is_simple] @property def child_literals(self) -> List['PlotlyNode']: return [n for n in self.children if n.is_literal] # Static helpers # -------------- @staticmethod def get_all_compound_datatype_nodes(plotly_schema, node_class) -> List['PlotlyNode']: nodes = [] nodes_to_process = [node_class(plotly_schema)] while nodes_to_process: node = nodes_to_process.pop() if not node.is_array: nodes.append(node) nodes_to_process.extend(node.child_compound_datatypes) return nodes @staticmethod def get_all_trace_layout_nodes(plotly_schema) -> Dict[str, 'LayoutNode']: trace_names = plotly_schema['traces'].keys() datatype_nodes = {} nodes_to_process = [TraceLayoutNode(plotly_schema, trace_name) for trace_name in trace_names] while nodes_to_process: parent_node = nodes_to_process.pop() for node in parent_node.child_simple_datatypes: datatype_nodes[node.dir_str] = node return datatype_nodes class TraceNode(PlotlyNode): # Constructor # ----------- def __init__(self, plotly_schema, node_path=(), parent=None): super().__init__(plotly_schema, node_path, parent) @property def base_datatype_class(self): if len(self.node_path) == 0: return 'BaseTraceType' else: return 'BaseTraceHierarchyType' @property def base_name(self): return 'trace' # Raw data # -------- @property def node_data(self) -> dict: if not self.node_path: node_data = self.plotly_schema['traces'] else: node_data = self.plotly_schema['traces'][self.node_path[0]]['attributes'] for prop_name in self.node_path[1:]: node_data = node_data[prop_name] return node_data # Description # ----------- @property def description(self) -> str: if len(self.node_path) == 0: desc = "" elif len(self.node_path) == 1: desc = self.plotly_schema['traces'][self.node_path[0]]['meta'].get('description', '') else: desc = self.node_data.get('description', '') if isinstance(desc, list): desc = ''.join(desc) return desc class LayoutNode(PlotlyNode): # Constructor # ----------- def __init__(self, plotly_schema, node_path=(), parent=None): super().__init__(plotly_schema, node_path, parent) @property def base_datatype_class(self): if len(self.node_path) == 0: return 'BaseLayoutType' else: return 'BaseLayoutHierarchyType' @property def base_name(self): return '' @property def plotly_name(self) -> str: if len(self.node_path) == 0: return self.base_name elif len(self.node_path) == 1: return 'layout' # override 'layoutAttributes' else: return self.node_path[-1] def tidy_dir_path(self, p): return 'layout' if p == 'layoutAttributes' else p # Description # ----------- @property def description(self) -> str: desc = self.node_data.get('description', '') if isinstance(desc, list): desc = ''.join(desc) return desc # Raw data # -------- @property def node_data(self) -> dict: node_data = self.plotly_schema['layout'] for prop_name in self.node_path: node_data = node_data[prop_name] return node_data class TraceLayoutNode(LayoutNode): # Constructor # ----------- def __init__(self, plotly_schema, trace_name=None, node_path=(), parent=None): # Handle trace name assert parent is not None or trace_name is not None if parent is not None: trace_name = parent.trace_name self.trace_name = trace_name super().__init__(plotly_schema, node_path, parent) @property def base_name(self): return 'layout' @property def plotly_name(self) -> str: if len(self.node_path) == 0: return self.base_name else: return self.node_path[-1] # Raw data # -------- @property def node_data(self) -> dict: try: node_data = (self.plotly_schema['traces'] [self.trace_name]['layoutAttributes']) for prop_name in self.node_path: node_data = node_data[prop_name] except KeyError: node_data = [] return node_data class FrameNode(PlotlyNode): # Constructor # ----------- def __init__(self, plotly_schema, node_path=(), parent=None): super().__init__(plotly_schema, node_path, parent) @property def base_datatype_class(self): return 'BaseFrameHierarchyType' @property def base_name(self): return '' @property def plotly_name(self) -> str: if len(self.node_path) < 2: return self.base_name elif len(self.node_path) == 2: return 'frame' # override 'frames_entry' else: return self.node_path[-1] def tidy_dir_path(self, p): return 'frame' if p == 'frames_entry' else p # Description # ----------- @property def description(self) -> str: desc = self.node_data.get('description', '') if isinstance(desc, list): desc = ''.join(desc) return desc # Raw data # -------- @property def node_data(self) -> dict: node_data = self.plotly_schema['frames'] for prop_name in self.node_path: node_data = node_data[prop_name] return node_data ``` #### File: ipyplotly/ipyplotly/callbacks.py ```python import typing as typ class InputState: def __init__(self, ctrl=None, alt=None, shift=None, meta=None, button=None, buttons=None, **_): self._ctrl = ctrl self._alt = alt self._meta = meta self._shift = shift self._button = button self._buttons = buttons def __repr__(self): return """\ InputState(ctrl={ctrl}, alt={alt}, shift={shift}, meta={meta}, button={button}, buttons={buttons})""" @property def alt(self) -> bool: """ Whether alt key pressed Returns ------- bool """ return self._alt @property def ctrl(self) -> bool: """ Whether ctrl key pressed Returns ------- bool """ return self._ctrl @property def shift(self) -> bool: """ Whether shift key pressed Returns ------- bool """ return self._shift @property def meta(self) -> bool: """ Whether meta key pressed Returns ------- bool """ return self._meta @property def button(self) -> int: """ Integer code for the button that was pressed on the mouse to trigger the event - 0: Main button pressed, usually the left button or the un-initialized state - 1: Auxiliary button pressed, usually the wheel button or the middle button (if present) - 2: Secondary button pressed, usually the right button - 3: Fourth button, typically the Browser Back button - 4: Fifth button, typically the Browser Forward button Returns ------- int """ return self._button @property def buttons(self) -> int: """ Integer code for which combination of buttons are pressed on the mouse when the event is triggered. - 0: No button or un-initialized - 1: Primary button (usually left) - 2: Secondary button (usually right) - 4: Auxilary button (usually middle or mouse wheel button) - 8: 4th button (typically the "Browser Back" button) - 16: 5th button (typically the "Browser Forward" button) Combinations of buttons are represented as the decimal form of the bitmask of the values above. For example, pressing both the primary (1) and auxilary (4) buttons will result in a code of 5 Returns ------- int """ return self._buttons class Points: def __init__(self, point_inds=None, xs=None, ys=None, trace_name=None, trace_index=None): self._point_inds = point_inds self._xs = xs self._ys = ys self._trace_name = trace_name self._trace_index = trace_index @property def point_inds(self) -> typ.List[int]: return self._point_inds @property def xs(self) -> typ.List: return self._xs @property def ys(self) -> typ.List: return self._ys @property def trace_name(self) -> str: return self._trace_name @property def trace_index(self) -> int: return self._trace_index class BoxSelector: def __init__(self, xrange=None, yrange=None, **_): self._type = 'box' self._xrange = xrange self._yrange = yrange @property def type(self) -> str: return self._type @property def xrange(self) -> typ.Tuple[float, float]: return self._xrange @property def yrange(self) -> typ.Tuple[float, float]: return self._yrange class LassoSelector: def __init__(self, xs=None, ys=None, **_): self._type = 'lasso' self._xs = xs self._ys = ys @property def type(self) -> str: return self._type @property def xs(self) -> typ.List[float]: return self._xs @property def ys(self) -> typ.List[float]: return self._ys ``` #### File: ipyplotly/ipyplotly/serializers.py ```python from traitlets import Undefined import numpy as np def _py_to_js(v, widget_manager): # print('_py_to_js') # print(v) if isinstance(v, dict): return {k: _py_to_js(v, widget_manager) for k, v in v.items()} elif isinstance(v, (list, tuple)): return [_py_to_js(v, widget_manager) for v in v] elif isinstance(v, np.ndarray): if v.ndim == 1 and v.dtype.kind in ['u', 'i', 'f']: # (un)signed integer or float return {'buffer': memoryview(v), 'dtype': str(v.dtype), 'shape': v.shape} else: return v.tolist() else: if v is Undefined: return '_undefined_' else: return v def _js_to_py(v, widget_manager): # print('_js_to_py') # print(v) if isinstance(v, dict): return {k: _js_to_py(v, widget_manager) for k, v in v.items()} elif isinstance(v, (list, tuple)): return [_js_to_py(v, widget_manager) for v in v] elif isinstance(v, str) and v == '_undefined_': return Undefined else: return v custom_serializers = { 'from_json': _js_to_py, 'to_json': _py_to_js } ``` #### File: datatypes/properties/test_compound_property.py ```python from unittest import mock import pytest from ipyplotly.basedatatypes import BasePlotlyType from ipyplotly.basevalidators import CompoundValidator # Fixtures # -------- @pytest.fixture() def plotly_obj(): # ### Setup plotly obj (make fixture eventually) ### plotly_obj = BasePlotlyType('plotly_obj') # Add validator validator = mock.Mock(spec=CompoundValidator, wraps=CompoundValidator('prop1', 'plotly_obj', data_class=mock.Mock, data_docs='')) plotly_obj._validators['prop1'] = validator # Mock out _send_update plotly_obj._send_update = mock.Mock() return plotly_obj # Validation # ---------- def test_set_invalid_property(plotly_obj): with pytest.raises(KeyError) as failure: plotly_obj['bogus'] = 'Hello' def test_get_invalid_property(plotly_obj): with pytest.raises(KeyError) as failure: p = plotly_obj['bogus'] # Orphan # ------ @pytest.mark.xfail def test_set_get_compound_property(plotly_obj): # Setup value # ----------- v = mock.Mock() d = {'a': 23} type(v)._data = mock.PropertyMock(return_value=d) # Perform set_prop # ---------------- plotly_obj['prop1'] = v # Mutate d # -------- # Just to make sure we copy data on assignment d['a'] = 1 # Object Assertions # ----------------- # ### test get object is a copy ### assert plotly_obj['prop1'] is not v # ### _send_update sent ### plotly_obj._send_update.assert_called_once_with('prop1', {'a': 23}) # ### _orphan_data configured properly ### assert plotly_obj._orphan_data == {'prop1': {'a': 23}} # ### _data is mapped to _orphan_data assert plotly_obj._props is plotly_obj._orphan_data # ### validator called properly ### plotly_obj._validators['prop1'].validate_coerce.assert_called_once_with(v) # Value Assertions # ---------------- # ### Parent set to plotly_obj assert v._parent is plotly_obj # ### Orphan data cleared ### v._orphan_data.clear.assert_called_once() # With parent # ----------- @pytest.mark.xfail def test_set_get_property_with_parent(plotly_obj, parent): # Setup value # ----------- v = mock.Mock() d = {'a': 23} type(v)._data = mock.PropertyMock(return_value=d) # Setup parent # ------------ plotly_obj._parent = parent # Perform set_prop # ---------------- plotly_obj['prop1'] = v # Parent Assertions # ----------------- parent._get_child_props.assert_called_with(plotly_obj) # Object Assertions # ----------------- # ### test get object is a copy ### assert plotly_obj['prop1'] is not v # ### _send_update sent ### plotly_obj._send_update.assert_called_once_with('prop1', d) # ### orphan data cleared ### assert plotly_obj._orphan_data == {} # ### _data bound to parent dict ### assert parent._get_child_props(plotly_obj) is plotly_obj._props # ### validator called properly ### plotly_obj._validators['prop1'].validate_coerce.assert_called_once_with(v) # Value Assertions # ---------------- # ### Parent set to plotly_obj assert v._parent is plotly_obj # ### Orphan data cleared ### v._orphan_data.clear.assert_called_once() ``` #### File: test/validators/test_dataarray_validator.py ```python import pytest from ipyplotly.basevalidators import DataArrayValidator import numpy as np # Fixtures # -------- @pytest.fixture() def validator(): return DataArrayValidator('prop', 'parent') # Tests # ----- # ### Acceptance ### @pytest.mark.parametrize('val', [ [], [1], np.array([2, 3, 4]), [''], (), ('Hello, ', 'world!') ]) def test_validator_acceptance(val, validator: DataArrayValidator): coerce_val = validator.validate_coerce(val) assert isinstance(coerce_val, np.ndarray) assert np.array_equal(coerce_val, val) # ### Rejection ### @pytest.mark.parametrize('val', [ 'Hello', 23, set(), {}, ]) def test_rejection(val, validator: DataArrayValidator): with pytest.raises(ValueError) as validation_failure: validator.validate_coerce(val) assert 'Invalid value' in str(validation_failure.value) ``` #### File: test/validators/test_string_validator.py ```python import pytest from ipyplotly.basevalidators import StringValidator import numpy as np # Fixtures # -------- @pytest.fixture() def validator(): return StringValidator('prop', 'parent') @pytest.fixture() def validator_values(): return StringValidator('prop', 'parent', values=['foo', 'BAR', '']) @pytest.fixture() def validator_no_blanks(): return StringValidator('prop', 'parent', no_blank=True) @pytest.fixture def validator_aok(): return StringValidator('prop', 'parent', array_ok=True) @pytest.fixture def validator_aok_values(): return StringValidator('prop', 'parent', values=['foo', 'BAR', '', 'baz'], array_ok=True) @pytest.fixture() def validator_no_blanks_aok(): return StringValidator('prop', 'parent', no_blank=True, array_ok=True) # Array not ok # ------------ # ### Acceptance ### @pytest.mark.parametrize('val', ['bar', 'HELLO!!!', 'world!@#$%^&*()', '']) def test_acceptance(val, validator: StringValidator): assert validator.validate_coerce(val) == val # ### Rejection by value ### @pytest.mark.parametrize('val', [(), [], [1, 2, 3], set(), np.nan, np.pi]) def test_rejection(val, validator: StringValidator): with pytest.raises(ValueError) as validation_failure: validator.validate_coerce(val) assert 'Invalid value' in str(validation_failure.value) # Valid values # ------------ @pytest.mark.parametrize('val', ['foo', 'BAR', '']) def test_acceptance_values(val, validator_values: StringValidator): assert validator_values.validate_coerce(val) == val @pytest.mark.parametrize('val', ['FOO', 'bar', 'other', '1234']) def test_rejection_values(val, validator_values: StringValidator): with pytest.raises(ValueError) as validation_failure: validator_values.validate_coerce(val) assert 'Invalid value'.format(val=val) in str(validation_failure.value) assert "['foo', 'BAR', '']" in str(validation_failure.value) # ### No blanks ### @pytest.mark.parametrize('val', ['bar', 'HELLO!!!', 'world!@#$%^&*()']) def test_acceptance_no_blanks(val, validator_no_blanks: StringValidator): assert validator_no_blanks.validate_coerce(val) == val @pytest.mark.parametrize('val', ['']) def test_rejection_no_blanks(val, validator_no_blanks: StringValidator): with pytest.raises(ValueError) as validation_failure: validator_no_blanks.validate_coerce(val) assert 'A non-empty string' in str(validation_failure.value) # Array ok # -------- # ### Acceptance ### @pytest.mark.parametrize('val', ['foo', 'BAR', '', 'baz']) def test_acceptance_aok_scalars(val, validator_aok: StringValidator): assert validator_aok.validate_coerce(val) == val @pytest.mark.parametrize('val', ['foo', ['foo'], np.array(['BAR', ''], dtype='object'), ['baz', 'baz', 'baz']]) def test_acceptance_aok_list(val, validator_aok: StringValidator): coerce_val = validator_aok.validate_coerce(val) if isinstance(val, (list, np.ndarray)): assert np.array_equal(coerce_val, np.array(val, dtype=coerce_val.dtype)) else: assert coerce_val == val # ### Rejection by type ### @pytest.mark.parametrize('val', [['foo', ()], ['foo', 3, 4], [3, 2, 1]]) def test_rejection_aok(val, validator_aok: StringValidator): with pytest.raises(ValueError) as validation_failure: validator_aok.validate_coerce(val) assert 'Invalid element(s)' in str(validation_failure.value) # ### Rejection by value ### @pytest.mark.parametrize('val', [['foo', 'bar'], ['3', '4'], ['BAR', 'BAR', 'hello!']]) def test_rejection_aok_values(val, validator_aok_values: StringValidator): with pytest.raises(ValueError) as validation_failure: validator_aok_values.validate_coerce(val) assert 'Invalid element(s)' in str(validation_failure.value) # ### No blanks ### @pytest.mark.parametrize('val', ['123', ['bar', 'HELLO!!!'], ['world!@#$%^&*()']]) def test_acceptance_no_blanks_aok(val, validator_no_blanks_aok: StringValidator): coerce_val = validator_no_blanks_aok.validate_coerce(val) if isinstance(val, (list, np.ndarray)): assert np.array_equal(coerce_val, np.array(val, dtype=coerce_val.dtype)) else: assert coerce_val == val @pytest.mark.parametrize('val', ['', ['foo', 'bar', ''], ['']]) def test_rejection_no_blanks_aok(val, validator_no_blanks_aok: StringValidator): with pytest.raises(ValueError) as validation_failure: validator_no_blanks_aok.validate_coerce(val) assert 'A non-empty string' in str(validation_failure.value) ```
{ "source": "jmmedel/Python3-Data-Structure-References", "score": 4 }
#### File: Python3_Data_Structure/09_Node/02_Node.py ```python class daynames: def __init__(self, dataval=None): self.dataval = dataval self.nextval = None e1 = daynames('Mon') e2 = daynames('Wed') e3 = daynames('Tue') e4 = daynames('Thu') e1.nextval = e3 e3.nextval = e2 e2.nextval = e4 thisvalue = e1 while thisvalue: print(thisvalue.dataval) thisvalue = thisvalue.nextval """ When the above code is executed, it produces the following result. Mon Tue Wed Thu The additional operations like insertion and deletion can be done by implementing appropriate methods by using this node containers in the general data structures like linked lists and trees. So we study them in the next chapters. """ ``` #### File: Python3_Data_Structure/10_Python_Linked_Lists/02_Linked_Lists.py ```python class Node: def __init__(self, dataval=None): self.dataval = dataval self.nextval = None class SLinkedList: def __init__(self): self.headval = None def listprint(self): printval = self.headval while printval is not None: print (printval.dataval) printval = printval.nextval list = SLinkedList() list.headval = Node("Mon") e2 = Node("Tue") e3 = Node("Wed") # Link first Node to second node list.headval.nextval = e2 # Link second Node to third node e2.nextval = e3 list.listprint() """ When the above code is executed, it produces the following result: Mon Tue Wed """ ``` #### File: Python3_Data_Structure/14_Python_Advance_Linked_List/02_Linked_List.py ```python class Node: def __init__(self, data): self.data = data self.next = None self.prev = None # Create the doubly linked list class doubly_linked_list: def __init__(self): self.head = None # Define the push method to add elements def push(self, NewVal): NewNode = Node(NewVal) NewNode.next = self.head if self.head is not None: self.head.prev = NewNode self.head = NewNode # Define the insert method to insert the element def insert(self, prev_node, NewVal): if prev_node is None: return NewNode = Node(NewVal) NewNode.next = prev_node.next prev_node.next = NewNode NewNode.prev = prev_node if NewNode.next is not None: NewNode.next.prev = NewNode # Define the method to print the linked list def listprint(self, node): while (node is not None): print(node.data), last = node node = node.next dllist = doubly_linked_list() dllist.push(12) dllist.push(8) dllist.push(62) dllist.insert(dllist.head.next, 13) dllist.listprint(dllist.head) """ When the above code is executed, it produces the following result − 62 8 13 12 """ ``` #### File: Python3_Data_Structure/14_Python_Advance_Linked_List/03_Linked_List.py ```python class Node: def __init__(self, data): self.data = data self.next = None self.prev = None # Create the doubly linked list class class doubly_linked_list: def __init__(self): self.head = None # Define the push method to add elements at the begining def push(self, NewVal): NewNode = Node(NewVal) NewNode.next = self.head if self.head is not None: self.head.prev = NewNode self.head = NewNode # Define the append method to add elements at the end def append(self, NewVal): NewNode = Node(NewVal) NewNode.next = None if self.head is None: NewNode.prev = None self.head = NewNode return last = self.head while (last.next is not None): last = last.next last.next = NewNode NewNode.prev = last return # Define the method to print def listprint(self, node): while (node is not None): print(node.data), last = node node = node.next dllist = doubly_linked_list() dllist.push(12) dllist.append(9) dllist.push(8) dllist.push(62) dllist.append(45) dllist.listprint(dllist.head) """ When the above code is executed, it produces the following result − 62 8 12 9 45 Please note the position of the elements 9 and 45 for the append operation. """ ``` #### File: Python3_Data_Structure/27_Sorting_Algorithms/01_Bubble_Sort.py ```python def bubblesort(list): # Swap the elements to arrange in order for iter_num in range(len(list)-1,0,-1): for idx in range(iter_num): if list[idx]>list[idx+1]: temp = list[idx] list[idx] = list[idx+1] list[idx+1] = temp list = [19,2,31,45,6,11,121,27] bubblesort(list) print(list) """ When the above code is executed, it produces the following result − [2, 6, 11, 19, 27, 31, 45, 121] """ ```
{ "source": "jmmedel/Python-Reference", "score": 4 }
#### File: Python-Reference/22_Inheritance/Inheritance3.py ```python """ Example Use the Student class to create an object, and then execute the printname method: """ class Person: def __init__(self, fname, lname): self.firstname = fname self.lastname = lname def printname(self): print(self.firstname, self.lastname) class Student(Person): pass x = Student("Mike", "Olsen") x.printname() ```
{ "source": "jmmedina00/PyRSServer", "score": 3 }
#### File: PyRSServer/rsserver/nodes.py ```python import pathlib import os.path import json import markdown import xml.dom.minidom as minidom from datetime import datetime, timezone, timedelta import rsserver.server class RSSConstructorException(Exception): """Exception thrown during RSS object generating. This exception is thrown when, for example, the structure requirements for building an item object or a feed object aren't met. """ pass class RSSFeed: """Represents a whole RSS feed. Attributes: info (dict): The feed's information, loaded from server_info.json items (list of RSSItem): The feed's items. """ def __init__(self, path): """Loads all the feed's date from the specified path. The feed's info gets loaded from a `server_info.json`, and the items get loaded from the items folder. Args: path (str): The path for loading all the information from. """ if os.path.isdir(path): path_info = path + "/server_info.json" path_items = path + "/items" if os.path.isfile(path_info) and os.path.isdir(path_items): file_info = open(path_info) self.info = json.load(file_info) self.items = [] plib_items = pathlib.Path(path_items) for file in plib_items.iterdir(): if file.is_dir(): pathtoitem = full_path(file) self.items.append(RSSItem(pathtoitem)) self.items.sort() else: raise RSSConstructorException("Required information is missing") else: raise RSSConstructorException("Please specify a directory") def generatedoc(self): """Generates the DOM document xml.dom.minidom is used through the whole process, since CDATA nodes are required inside description nodes in items, due to the fact that the content gets translated from Markdown to HTML. Returns: xml.dom.minidom.Document: The feed's document """ document = minidom.Document() root = document.createElement("rss") root.setAttribute("version", "2.0") document.appendChild(root) cont = document.createElement("channel") root.appendChild(cont) title = document.createElement("title") title.appendChild(document.createTextNode(self.info["title"])) cont.appendChild(title) link = document.createElement("link") link.appendChild(document.createTextNode( "http://" + rsserver.server.address + ":" + str(rsserver.server.port) )) cont.appendChild(link) description = document.createElement("description") description.appendChild(document.createTextNode(self.info["description"])) cont.appendChild(description) for item in self.items: node = item.getnode(document) cont.appendChild(node) return document class RSSItem: """Represents a single item inside an RSS feed. Attributes: name (str): The name of the original folder. info (dict): The item's information, sourced from JSON file. content (str): The item's content, written in Markdown. """ def __init__(self, path): """ Loads the required files from the selected folder, then stores their content. Note: For initializing, the files `info.json` and `content.md` are required. Args: path (str): The folder's path to be loaded. Raises: RSSConstructorException: If the path doesn't exist, is not a folder, or doesn't contain the required files. """ path_info = path + "/info.json" path_content = path + "/content.md" parts = path.split("/") self.name = parts[len(parts) - 1] if os.path.isfile(path_info) and os.path.isfile(path_content): file_info = open(path_info) file_content = open(path_content) self.info = json.load(file_info) self.content = file_content.read() file_info.close() file_content.close() else: raise RSSConstructorException("Needed files not found.") def __gt__(self, other): """For ordering items by reverse date. The first items to appear in a RSS feed are the most recent ones. Thus, they are ordered from newest to oldest, Args: other (RSSItem): The other item to compare Returns: True if the other's date is more recent, False otherwise """ self_date = dateobj(self.info["date"], self.info["time"], self.info["timezone"]) other_date = dateobj(other.info["date"], other.info["time"], other.info["timezone"]) return self_date < other_date def renderHTML(self): """Generates a HTML document with the contents of the item. The item's "link" could be attempted to open in a browser (which is the original intention of the <link> node), so generating a simple page might fill the gap. The HTML code is constructed with strings because Markdown function returns a string, and there was no incentive to make a XHTML document from scratch. Returns: A basic HTML document for displaying in a web browser. """ title = self.info["title"] body = "<h1>" + title + "</h1>" body += markdown.markdown(self.content) head = "<meta charset='UTF-8'>" #Getting feed's name back from server_info.json base_info_path = rsserver.server.base_directory + "/server_info.json" base_info = open(base_info_path) base_info_dict = json.load(base_info) base_info.close() title += " - " + base_info_dict["title"] head += "<title>" + title +"</title>" return "<html><head>" + head + "</head><body>" + body + "</body></html>" def getnode(self, document): """Generates a node for a document. It uses all the values gathered in the info dictionary to build the nodes, so having all keys and values set correctly is necessary for this method to work correctly. Args: document (xml.dom.minidom.Document): The document to which the final node will be added Returns: xml.dom.minidom.Element: This item's node """ link = "http://" + rsserver.server.address + ":" link += str(rsserver.server.port) + "/" + self.name node = document.createElement("item") title = document.createElement("title") title_text = document.createTextNode(self.info["title"]) title.appendChild(title_text) node.appendChild(title) #Link nodes, which use the same text node link_text = document.createTextNode(link) link_node = document.createElement("link") link_node.appendChild(link_text.cloneNode(True)) guid = document.createElement("guid") guid.setAttribute("isPermaLink", "true") guid.appendChild(link_text) node.appendChild(link_node) node.appendChild(guid) description = document.createElement("description") content = document.createCDATASection(markdown.markdown(self.content)) description.appendChild(content) node.appendChild(description) pubdate = document.createElement("pubDate") pubdate.appendChild(document.createTextNode(genedate(self.info))) node.appendChild(pubdate) for c in self.info["categories"]: category = document.createElement("category") category.appendChild(document.createTextNode(c)) node.appendChild(category) return node def full_path(path): """Support function, reassembles a path from a Path object. Used for reconstructing a directory Path object's original path. Args; path (pathlib.Path): The path object. Returns: str: Its original path. """ result = "" if isinstance(path, pathlib.Path): parts = path.parts for x in parts: result += x + "/" return result[0:len(result)-1] def dateobj(stringdate, stringtime, stringtz): """Support function, creates a datetime object from an item's info attribute. Generates a full datetime object with date, time and timezone information from the item's dictionary. Args: stringdate (str): The string representing the date in the format YYYY-MM-DD (Y: year, M: month, D: day) stringtime (str): The string representing the time in the format HH:MM:SS (H: hours, M: minutes, S: seconds) stringtz (str): The string representing the timezone in the format xHHMM (x: Plus (+) or minus (-) symbol, H: hours, M: minutes) Returns: datetime.datetime: A datetime object with the required data filled """ tz_multipliers = {"+": 1, "-": -1} date_num = [int(n) for n in stringdate.split("-")] time_num = [int(n) for n in stringtime.split(":")] tz_hours = int(stringtz[1:3]) * tz_multipliers[stringtz[0]] tz_minutes = int(stringtz[3:5]) * tz_multipliers[stringtz[0]] delta = timedelta(hours=tz_hours, minutes=tz_minutes) return datetime(date_num[0], date_num[1], date_num[2], time_num[0], time_num[1], time_num[2], tzinfo=timezone(delta)) def genedate(info): """Generates RFC 822 compliant date string Creates, from an item's info attribute, the string required for the pubDate node, which must be compliant with the standard RFC 822: https://www.w3.org/Protocols/rfc822/#z28 Args: info (dict): A dictionary sourced from an item object Returns: The pubDate string """ days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"] months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"] obj = dateobj(info["date"], info["time"], info["timezone"]) pubdate = days[obj.weekday()] + ", " + str(obj.day) pubdate += " " + months[obj.month - 1] + " " + str(obj.year) pubdate += " " + info["time"] + " " + info["timezone"] return pubdate ```
{ "source": "jmmelis/DipteraTrack", "score": 2 }
#### File: jmmelis/DipteraTrack/diptera_track_ui.py ```python from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(1140, 683) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setMinimumSize(QtCore.QSize(1124, 674)) self.centralwidget.setObjectName("centralwidget") self.verticalLayout_5 = QtWidgets.QVBoxLayout(self.centralwidget) self.verticalLayout_5.setObjectName("verticalLayout_5") self.tabs = QtWidgets.QTabWidget(self.centralwidget) self.tabs.setObjectName("tabs") self.ses_par_tab = QtWidgets.QWidget() self.ses_par_tab.setObjectName("ses_par_tab") self.verticalLayout_4 = QtWidgets.QVBoxLayout(self.ses_par_tab) self.verticalLayout_4.setObjectName("verticalLayout_4") self.widget = QtWidgets.QWidget(self.ses_par_tab) self.widget.setMinimumSize(QtCore.QSize(0, 551)) self.widget.setObjectName("widget") self.folder_select_tree = QtWidgets.QTreeView(self.widget) self.folder_select_tree.setGeometry(QtCore.QRect(9, 30, 571, 321)) self.folder_select_tree.setMinimumSize(QtCore.QSize(451, 0)) self.folder_select_tree.setObjectName("folder_select_tree") self.label = QtWidgets.QLabel(self.widget) self.label.setGeometry(QtCore.QRect(9, 9, 128, 16)) self.label.setObjectName("label") self.label_3 = QtWidgets.QLabel(self.widget) self.label_3.setGeometry(QtCore.QRect(600, 0, 124, 16)) self.label_3.setObjectName("label_3") self.line = QtWidgets.QFrame(self.widget) self.line.setGeometry(QtCore.QRect(590, 20, 511, 20)) self.line.setFrameShape(QtWidgets.QFrame.HLine) self.line.setFrameShadow(QtWidgets.QFrame.Sunken) self.line.setObjectName("line") self.label_2 = QtWidgets.QLabel(self.widget) self.label_2.setGeometry(QtCore.QRect(600, 30, 91, 16)) self.label_2.setObjectName("label_2") self.ses_folder_label = QtWidgets.QLabel(self.widget) self.ses_folder_label.setGeometry(QtCore.QRect(620, 50, 471, 20)) self.ses_folder_label.setObjectName("ses_folder_label") self.label_5 = QtWidgets.QLabel(self.widget) self.label_5.setGeometry(QtCore.QRect(600, 90, 141, 16)) self.label_5.setObjectName("label_5") self.bckg_folder_label = QtWidgets.QLabel(self.widget) self.bckg_folder_label.setGeometry(QtCore.QRect(620, 110, 281, 20)) self.bckg_folder_label.setObjectName("bckg_folder_label") self.line_2 = QtWidgets.QFrame(self.widget) self.line_2.setGeometry(QtCore.QRect(580, 30, 20, 561)) self.line_2.setFrameShape(QtWidgets.QFrame.VLine) self.line_2.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_2.setObjectName("line_2") self.label_7 = QtWidgets.QLabel(self.widget) self.label_7.setGeometry(QtCore.QRect(600, 130, 291, 16)) self.label_7.setObjectName("label_7") self.cal_folder_label = QtWidgets.QLabel(self.widget) self.cal_folder_label.setGeometry(QtCore.QRect(620, 150, 381, 20)) self.cal_folder_label.setObjectName("cal_folder_label") self.label_9 = QtWidgets.QLabel(self.widget) self.label_9.setGeometry(QtCore.QRect(600, 200, 291, 16)) self.label_9.setObjectName("label_9") self.mov_folder1_label = QtWidgets.QLabel(self.widget) self.mov_folder1_label.setGeometry(QtCore.QRect(620, 220, 371, 20)) self.mov_folder1_label.setObjectName("mov_folder1_label") self.mov_folder2_label = QtWidgets.QLabel(self.widget) self.mov_folder2_label.setGeometry(QtCore.QRect(620, 240, 371, 20)) self.mov_folder2_label.setObjectName("mov_folder2_label") self.mov_folder3_label = QtWidgets.QLabel(self.widget) self.mov_folder3_label.setGeometry(QtCore.QRect(620, 260, 371, 20)) self.mov_folder3_label.setObjectName("mov_folder3_label") self.mov_folder4_label = QtWidgets.QLabel(self.widget) self.mov_folder4_label.setGeometry(QtCore.QRect(620, 280, 371, 20)) self.mov_folder4_label.setObjectName("mov_folder4_label") self.mov_folder5_label = QtWidgets.QLabel(self.widget) self.mov_folder5_label.setGeometry(QtCore.QRect(620, 300, 371, 20)) self.mov_folder5_label.setObjectName("mov_folder5_label") self.mov_folder6_label = QtWidgets.QLabel(self.widget) self.mov_folder6_label.setGeometry(QtCore.QRect(620, 320, 371, 20)) self.mov_folder6_label.setObjectName("mov_folder6_label") self.mov_folder7_label = QtWidgets.QLabel(self.widget) self.mov_folder7_label.setGeometry(QtCore.QRect(620, 340, 371, 20)) self.mov_folder7_label.setObjectName("mov_folder7_label") self.mov_folder8_label = QtWidgets.QLabel(self.widget) self.mov_folder8_label.setGeometry(QtCore.QRect(620, 360, 371, 20)) self.mov_folder8_label.setObjectName("mov_folder8_label") self.label_18 = QtWidgets.QLabel(self.widget) self.label_18.setGeometry(QtCore.QRect(600, 390, 301, 20)) self.label_18.setObjectName("label_18") self.cam_folder1_label = QtWidgets.QLabel(self.widget) self.cam_folder1_label.setGeometry(QtCore.QRect(620, 410, 371, 20)) self.cam_folder1_label.setObjectName("cam_folder1_label") self.cam_folder2_label = QtWidgets.QLabel(self.widget) self.cam_folder2_label.setGeometry(QtCore.QRect(620, 430, 371, 20)) self.cam_folder2_label.setObjectName("cam_folder2_label") self.cam_folder3_label = QtWidgets.QLabel(self.widget) self.cam_folder3_label.setGeometry(QtCore.QRect(620, 450, 371, 20)) self.cam_folder3_label.setObjectName("cam_folder3_label") self.cam_folder4_label = QtWidgets.QLabel(self.widget) self.cam_folder4_label.setGeometry(QtCore.QRect(620, 470, 371, 20)) self.cam_folder4_label.setObjectName("cam_folder4_label") self.ses_folder_rbtn = QtWidgets.QRadioButton(self.widget) self.ses_folder_rbtn.setGeometry(QtCore.QRect(600, 50, 21, 21)) self.ses_folder_rbtn.setObjectName("ses_folder_rbtn") self.bckg_folder_rbtn = QtWidgets.QRadioButton(self.widget) self.bckg_folder_rbtn.setGeometry(QtCore.QRect(600, 110, 21, 21)) self.bckg_folder_rbtn.setObjectName("bckg_folder_rbtn") self.cal_folder_rbtn = QtWidgets.QRadioButton(self.widget) self.cal_folder_rbtn.setGeometry(QtCore.QRect(600, 150, 21, 21)) self.cal_folder_rbtn.setObjectName("cal_folder_rbtn") self.mov_folder1_rbtn = QtWidgets.QRadioButton(self.widget) self.mov_folder1_rbtn.setGeometry(QtCore.QRect(600, 220, 21, 21)) self.mov_folder1_rbtn.setObjectName("mov_folder1_rbtn") self.mov_folder2_rbtn = QtWidgets.QRadioButton(self.widget) self.mov_folder2_rbtn.setGeometry(QtCore.QRect(600, 240, 21, 21)) self.mov_folder2_rbtn.setObjectName("mov_folder2_rbtn") self.mov_folder3_rbtn = QtWidgets.QRadioButton(self.widget) self.mov_folder3_rbtn.setGeometry(QtCore.QRect(600, 260, 21, 21)) self.mov_folder3_rbtn.setObjectName("mov_folder3_rbtn") self.mov_folder4_rbtn = QtWidgets.QRadioButton(self.widget) self.mov_folder4_rbtn.setGeometry(QtCore.QRect(600, 280, 21, 21)) self.mov_folder4_rbtn.setObjectName("mov_folder4_rbtn") self.mov_folder5_rbtn = QtWidgets.QRadioButton(self.widget) self.mov_folder5_rbtn.setGeometry(QtCore.QRect(600, 300, 21, 21)) self.mov_folder5_rbtn.setObjectName("mov_folder5_rbtn") self.mov_folder6_rbtn = QtWidgets.QRadioButton(self.widget) self.mov_folder6_rbtn.setGeometry(QtCore.QRect(600, 320, 21, 21)) self.mov_folder6_rbtn.setObjectName("mov_folder6_rbtn") self.mov_folder7_rbtn = QtWidgets.QRadioButton(self.widget) self.mov_folder7_rbtn.setGeometry(QtCore.QRect(600, 340, 21, 21)) self.mov_folder7_rbtn.setObjectName("mov_folder7_rbtn") self.mov_folder8_rbtn = QtWidgets.QRadioButton(self.widget) self.mov_folder8_rbtn.setGeometry(QtCore.QRect(600, 360, 21, 21)) self.mov_folder8_rbtn.setObjectName("mov_folder8_rbtn") self.cam_folder1_rbtn = QtWidgets.QRadioButton(self.widget) self.cam_folder1_rbtn.setGeometry(QtCore.QRect(600, 410, 21, 21)) self.cam_folder1_rbtn.setObjectName("cam_folder1_rbtn") self.cam_folder2_rbtn = QtWidgets.QRadioButton(self.widget) self.cam_folder2_rbtn.setGeometry(QtCore.QRect(600, 430, 21, 21)) self.cam_folder2_rbtn.setObjectName("cam_folder2_rbtn") self.cam_folder3_rbtn = QtWidgets.QRadioButton(self.widget) self.cam_folder3_rbtn.setGeometry(QtCore.QRect(600, 450, 21, 21)) self.cam_folder3_rbtn.setObjectName("cam_folder3_rbtn") self.cam_folder4_rbtn = QtWidgets.QRadioButton(self.widget) self.cam_folder4_rbtn.setGeometry(QtCore.QRect(600, 470, 21, 21)) self.cam_folder4_rbtn.setObjectName("cam_folder4_rbtn") self.cam_folder5_rbtn = QtWidgets.QRadioButton(self.widget) self.cam_folder5_rbtn.setGeometry(QtCore.QRect(600, 490, 21, 21)) self.cam_folder5_rbtn.setObjectName("cam_folder5_rbtn") self.cam_folder6_rbtn = QtWidgets.QRadioButton(self.widget) self.cam_folder6_rbtn.setGeometry(QtCore.QRect(600, 510, 21, 21)) self.cam_folder6_rbtn.setObjectName("cam_folder6_rbtn") self.cam_folder5_label = QtWidgets.QLabel(self.widget) self.cam_folder5_label.setGeometry(QtCore.QRect(620, 490, 371, 20)) self.cam_folder5_label.setObjectName("cam_folder5_label") self.cam_folder6_label = QtWidgets.QLabel(self.widget) self.cam_folder6_label.setGeometry(QtCore.QRect(620, 510, 371, 20)) self.cam_folder6_label.setObjectName("cam_folder6_label") self.label_25 = QtWidgets.QLabel(self.widget) self.label_25.setGeometry(QtCore.QRect(600, 540, 201, 16)) self.label_25.setObjectName("label_25") self.frame_name_rbtn = QtWidgets.QRadioButton(self.widget) self.frame_name_rbtn.setGeometry(QtCore.QRect(600, 560, 21, 21)) self.frame_name_rbtn.setObjectName("frame_name_rbtn") self.frame_name_label = QtWidgets.QLabel(self.widget) self.frame_name_label.setGeometry(QtCore.QRect(620, 560, 391, 20)) self.frame_name_label.setObjectName("frame_name_label") self.label_27 = QtWidgets.QLabel(self.widget) self.label_27.setGeometry(QtCore.QRect(930, 80, 161, 20)) self.label_27.setObjectName("label_27") self.bck_img_fmt_box = QtWidgets.QComboBox(self.widget) self.bck_img_fmt_box.setGeometry(QtCore.QRect(1020, 100, 79, 23)) self.bck_img_fmt_box.setObjectName("bck_img_fmt_box") self.label_28 = QtWidgets.QLabel(self.widget) self.label_28.setGeometry(QtCore.QRect(930, 130, 161, 20)) self.label_28.setObjectName("label_28") self.cal_img_fmt_box = QtWidgets.QComboBox(self.widget) self.cal_img_fmt_box.setGeometry(QtCore.QRect(1020, 150, 79, 23)) self.cal_img_fmt_box.setObjectName("cal_img_fmt_box") self.label_29 = QtWidgets.QLabel(self.widget) self.label_29.setGeometry(QtCore.QRect(970, 540, 131, 20)) self.label_29.setObjectName("label_29") self.frame_img_fmt_box = QtWidgets.QComboBox(self.widget) self.frame_img_fmt_box.setGeometry(QtCore.QRect(1020, 560, 79, 23)) self.frame_img_fmt_box.setObjectName("frame_img_fmt_box") self.line_4 = QtWidgets.QFrame(self.widget) self.line_4.setGeometry(QtCore.QRect(10, 460, 571, 16)) self.line_4.setFrameShape(QtWidgets.QFrame.HLine) self.line_4.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_4.setObjectName("line_4") self.line_5 = QtWidgets.QFrame(self.widget) self.line_5.setGeometry(QtCore.QRect(10, 580, 1091, 20)) self.line_5.setFrameShape(QtWidgets.QFrame.HLine) self.line_5.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_5.setObjectName("line_5") self.label_30 = QtWidgets.QLabel(self.widget) self.label_30.setGeometry(QtCore.QRect(250, 470, 151, 16)) self.label_30.setObjectName("label_30") self.start_frame_spin = QtWidgets.QSpinBox(self.widget) self.start_frame_spin.setGeometry(QtCore.QRect(120, 490, 91, 24)) self.start_frame_spin.setObjectName("start_frame_spin") self.label_31 = QtWidgets.QLabel(self.widget) self.label_31.setGeometry(QtCore.QRect(10, 490, 101, 16)) self.label_31.setObjectName("label_31") self.label_32 = QtWidgets.QLabel(self.widget) self.label_32.setGeometry(QtCore.QRect(10, 520, 101, 16)) self.label_32.setObjectName("label_32") self.trig_frame_spin = QtWidgets.QSpinBox(self.widget) self.trig_frame_spin.setGeometry(QtCore.QRect(120, 520, 91, 24)) self.trig_frame_spin.setObjectName("trig_frame_spin") self.label_33 = QtWidgets.QLabel(self.widget) self.label_33.setGeometry(QtCore.QRect(10, 550, 101, 16)) self.label_33.setObjectName("label_33") self.end_frame_spin = QtWidgets.QSpinBox(self.widget) self.end_frame_spin.setGeometry(QtCore.QRect(120, 550, 91, 24)) self.end_frame_spin.setObjectName("end_frame_spin") self.label_34 = QtWidgets.QLabel(self.widget) self.label_34.setGeometry(QtCore.QRect(250, 490, 91, 16)) self.label_34.setObjectName("label_34") self.trig_mode_box = QtWidgets.QComboBox(self.widget) self.trig_mode_box.setGeometry(QtCore.QRect(350, 490, 111, 23)) self.trig_mode_box.setObjectName("trig_mode_box") self.line_3 = QtWidgets.QFrame(self.widget) self.line_3.setGeometry(QtCore.QRect(10, 350, 571, 16)) self.line_3.setFrameShape(QtWidgets.QFrame.HLine) self.line_3.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_3.setObjectName("line_3") self.label_4 = QtWidgets.QLabel(self.widget) self.label_4.setGeometry(QtCore.QRect(250, 360, 101, 16)) self.label_4.setObjectName("label_4") self.mdl_loc_rbtn = QtWidgets.QRadioButton(self.widget) self.mdl_loc_rbtn.setGeometry(QtCore.QRect(10, 400, 21, 21)) self.mdl_loc_rbtn.setObjectName("mdl_loc_rbtn") self.mdl_loc_label = QtWidgets.QLabel(self.widget) self.mdl_loc_label.setGeometry(QtCore.QRect(40, 400, 541, 21)) self.mdl_loc_label.setObjectName("mdl_loc_label") self.label_10 = QtWidgets.QLabel(self.widget) self.label_10.setGeometry(QtCore.QRect(10, 380, 171, 16)) self.label_10.setObjectName("label_10") self.label_11 = QtWidgets.QLabel(self.widget) self.label_11.setGeometry(QtCore.QRect(10, 420, 141, 16)) self.label_11.setObjectName("label_11") self.mdl_name_rbtn = QtWidgets.QRadioButton(self.widget) self.mdl_name_rbtn.setGeometry(QtCore.QRect(10, 440, 21, 21)) self.mdl_name_rbtn.setObjectName("mdl_name_rbtn") self.mdl_name_label = QtWidgets.QLabel(self.widget) self.mdl_name_label.setGeometry(QtCore.QRect(40, 440, 541, 21)) self.mdl_name_label.setObjectName("mdl_name_label") self.label_6 = QtWidgets.QLabel(self.widget) self.label_6.setGeometry(QtCore.QRect(600, 170, 101, 16)) self.label_6.setObjectName("label_6") self.cal_file_label = QtWidgets.QLabel(self.widget) self.cal_file_label.setGeometry(QtCore.QRect(710, 170, 291, 20)) self.cal_file_label.setObjectName("cal_file_label") self.label_8 = QtWidgets.QLabel(self.widget) self.label_8.setGeometry(QtCore.QRect(600, 70, 101, 16)) self.label_8.setObjectName("label_8") self.ses_name_label = QtWidgets.QLabel(self.widget) self.ses_name_label.setGeometry(QtCore.QRect(700, 70, 381, 20)) self.ses_name_label.setObjectName("ses_name_label") self.reset_selection_push_btn = QtWidgets.QPushButton(self.widget) self.reset_selection_push_btn.setGeometry(QtCore.QRect(470, 0, 101, 23)) self.reset_selection_push_btn.setObjectName("reset_selection_push_btn") self.start_session_push_btn = QtWidgets.QPushButton(self.widget) self.start_session_push_btn.setGeometry(QtCore.QRect(1010, 600, 85, 23)) self.start_session_push_btn.setObjectName("start_session_push_btn") self.save_settings_push_btn = QtWidgets.QPushButton(self.widget) self.save_settings_push_btn.setGeometry(QtCore.QRect(870, 600, 131, 23)) self.save_settings_push_btn.setObjectName("save_settings_push_btn") self.load_settings_file_label = QtWidgets.QLabel(self.widget) self.load_settings_file_label.setGeometry(QtCore.QRect(40, 600, 671, 21)) self.load_settings_file_label.setObjectName("load_settings_file_label") self.load_settings_push_btn = QtWidgets.QPushButton(self.widget) self.load_settings_push_btn.setGeometry(QtCore.QRect(720, 600, 141, 23)) self.load_settings_push_btn.setObjectName("load_settings_push_btn") self.load_settings_rbtn = QtWidgets.QRadioButton(self.widget) self.load_settings_rbtn.setGeometry(QtCore.QRect(10, 600, 21, 21)) self.load_settings_rbtn.setObjectName("load_settings_rbtn") self.verticalLayout_4.addWidget(self.widget) self.tabs.addTab(self.ses_par_tab, "") self.focal_grid_tab = QtWidgets.QWidget() self.focal_grid_tab.setObjectName("focal_grid_tab") self.gridLayout_2 = QtWidgets.QGridLayout(self.focal_grid_tab) self.gridLayout_2.setObjectName("gridLayout_2") self.widget_2 = QtWidgets.QWidget(self.focal_grid_tab) self.widget_2.setObjectName("widget_2") self.gridLayout_7 = QtWidgets.QGridLayout(self.widget_2) self.gridLayout_7.setObjectName("gridLayout_7") self.line_9 = QtWidgets.QFrame(self.widget_2) self.line_9.setFrameShape(QtWidgets.QFrame.HLine) self.line_9.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_9.setObjectName("line_9") self.gridLayout_7.addWidget(self.line_9, 0, 0, 2, 8) self.label_16 = QtWidgets.QLabel(self.widget_2) self.label_16.setObjectName("label_16") self.gridLayout_7.addWidget(self.label_16, 1, 2, 2, 3) self.line_6 = QtWidgets.QFrame(self.widget_2) self.line_6.setFrameShape(QtWidgets.QFrame.HLine) self.line_6.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_6.setObjectName("line_6") self.gridLayout_7.addWidget(self.line_6, 2, 0, 1, 2) self.label_12 = QtWidgets.QLabel(self.widget_2) self.label_12.setObjectName("label_12") self.gridLayout_7.addWidget(self.label_12, 3, 2, 1, 1) self.nx_spin = QtWidgets.QSpinBox(self.widget_2) self.nx_spin.setObjectName("nx_spin") self.gridLayout_7.addWidget(self.nx_spin, 3, 3, 1, 1) spacerItem = QtWidgets.QSpacerItem(928, 213, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout_7.addItem(spacerItem, 3, 4, 7, 4) self.label_13 = QtWidgets.QLabel(self.widget_2) self.label_13.setObjectName("label_13") self.gridLayout_7.addWidget(self.label_13, 4, 2, 1, 1) self.ny_spin = QtWidgets.QSpinBox(self.widget_2) self.ny_spin.setObjectName("ny_spin") self.gridLayout_7.addWidget(self.ny_spin, 4, 3, 1, 1) self.label_14 = QtWidgets.QLabel(self.widget_2) self.label_14.setObjectName("label_14") self.gridLayout_7.addWidget(self.label_14, 5, 2, 1, 1) self.nz_spin = QtWidgets.QSpinBox(self.widget_2) self.nz_spin.setObjectName("nz_spin") self.gridLayout_7.addWidget(self.nz_spin, 5, 3, 1, 1) self.label_15 = QtWidgets.QLabel(self.widget_2) self.label_15.setObjectName("label_15") self.gridLayout_7.addWidget(self.label_15, 6, 2, 1, 1) self.ds_spin = QtWidgets.QDoubleSpinBox(self.widget_2) self.ds_spin.setObjectName("ds_spin") self.gridLayout_7.addWidget(self.ds_spin, 6, 3, 1, 1) self.label_17 = QtWidgets.QLabel(self.widget_2) self.label_17.setObjectName("label_17") self.gridLayout_7.addWidget(self.label_17, 7, 2, 1, 1) self.x0_spin = QtWidgets.QDoubleSpinBox(self.widget_2) self.x0_spin.setObjectName("x0_spin") self.gridLayout_7.addWidget(self.x0_spin, 7, 3, 1, 1) self.label_19 = QtWidgets.QLabel(self.widget_2) self.label_19.setObjectName("label_19") self.gridLayout_7.addWidget(self.label_19, 8, 2, 1, 1) self.y0_spin = QtWidgets.QDoubleSpinBox(self.widget_2) self.y0_spin.setObjectName("y0_spin") self.gridLayout_7.addWidget(self.y0_spin, 8, 3, 1, 1) self.label_20 = QtWidgets.QLabel(self.widget_2) self.label_20.setObjectName("label_20") self.gridLayout_7.addWidget(self.label_20, 9, 2, 1, 1) self.z0_spin = QtWidgets.QDoubleSpinBox(self.widget_2) self.z0_spin.setObjectName("z0_spin") self.gridLayout_7.addWidget(self.z0_spin, 9, 3, 1, 1) self.line_7 = QtWidgets.QFrame(self.widget_2) self.line_7.setFrameShape(QtWidgets.QFrame.HLine) self.line_7.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_7.setObjectName("line_7") self.gridLayout_7.addWidget(self.line_7, 10, 0, 1, 7) spacerItem1 = QtWidgets.QSpacerItem(696, 48, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout_7.addItem(spacerItem1, 10, 7, 2, 1) self.calc_vox_btn = QtWidgets.QPushButton(self.widget_2) self.calc_vox_btn.setObjectName("calc_vox_btn") self.gridLayout_7.addWidget(self.calc_vox_btn, 11, 0, 1, 4) self.vox_progress_bar = QtWidgets.QProgressBar(self.widget_2) self.vox_progress_bar.setMinimumSize(QtCore.QSize(211, 0)) self.vox_progress_bar.setProperty("value", 24) self.vox_progress_bar.setObjectName("vox_progress_bar") self.gridLayout_7.addWidget(self.vox_progress_bar, 11, 5, 1, 2) self.line_8 = QtWidgets.QFrame(self.widget_2) self.line_8.setFrameShape(QtWidgets.QFrame.HLine) self.line_8.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_8.setObjectName("line_8") self.gridLayout_7.addWidget(self.line_8, 12, 0, 2, 8) self.label_49 = QtWidgets.QLabel(self.widget_2) self.label_49.setObjectName("label_49") self.gridLayout_7.addWidget(self.label_49, 13, 1, 2, 6) spacerItem2 = QtWidgets.QSpacerItem(804, 48, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout_7.addItem(spacerItem2, 14, 6, 2, 2) self.label_50 = QtWidgets.QLabel(self.widget_2) self.label_50.setObjectName("label_50") self.gridLayout_7.addWidget(self.label_50, 15, 1, 1, 3) self.pixel_size_spin = QtWidgets.QDoubleSpinBox(self.widget_2) self.pixel_size_spin.setObjectName("pixel_size_spin") self.gridLayout_7.addWidget(self.pixel_size_spin, 15, 4, 1, 2) spacerItem3 = QtWidgets.QSpacerItem(1079, 267, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout_7.addItem(spacerItem3, 16, 0, 1, 8) self.gridLayout_2.addWidget(self.widget_2, 0, 0, 1, 1) self.tabs.addTab(self.focal_grid_tab, "") self.model_scale_tab = QtWidgets.QWidget() self.model_scale_tab.setObjectName("model_scale_tab") self.verticalLayout_2 = QtWidgets.QVBoxLayout(self.model_scale_tab) self.verticalLayout_2.setObjectName("verticalLayout_2") self.widget_3 = QtWidgets.QWidget(self.model_scale_tab) self.widget_3.setObjectName("widget_3") self.gridLayout_3 = QtWidgets.QGridLayout(self.widget_3) self.gridLayout_3.setObjectName("gridLayout_3") self.rawFrameView = ScaleModelWidget(self.widget_3) self.rawFrameView.setMinimumSize(QtCore.QSize(1091, 511)) self.rawFrameView.setObjectName("rawFrameView") self.gridLayout_3.addWidget(self.rawFrameView, 0, 0, 1, 1) self.widget_4 = QtWidgets.QWidget(self.widget_3) self.widget_4.setMinimumSize(QtCore.QSize(1091, 0)) self.widget_4.setMaximumSize(QtCore.QSize(16777215, 101)) self.widget_4.setObjectName("widget_4") self.gridLayout = QtWidgets.QGridLayout(self.widget_4) self.gridLayout.setObjectName("gridLayout") self.label_22 = QtWidgets.QLabel(self.widget_4) self.label_22.setObjectName("label_22") self.gridLayout.addWidget(self.label_22, 0, 0, 1, 1) self.scaleTable = QtWidgets.QTableWidget(self.widget_4) self.scaleTable.setMinimumSize(QtCore.QSize(411, 81)) self.scaleTable.setObjectName("scaleTable") self.scaleTable.setColumnCount(0) self.scaleTable.setRowCount(0) self.gridLayout.addWidget(self.scaleTable, 0, 1, 4, 1) spacerItem4 = QtWidgets.QSpacerItem(248, 78, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout.addItem(spacerItem4, 0, 2, 4, 1) self.raw_mov_spin = QtWidgets.QSpinBox(self.widget_4) self.raw_mov_spin.setObjectName("raw_mov_spin") self.gridLayout.addWidget(self.raw_mov_spin, 1, 0, 1, 1) self.load_scale_btn = QtWidgets.QPushButton(self.widget_4) self.load_scale_btn.setObjectName("load_scale_btn") self.gridLayout.addWidget(self.load_scale_btn, 1, 3, 2, 1) self.save_scale_btn = QtWidgets.QPushButton(self.widget_4) self.save_scale_btn.setObjectName("save_scale_btn") self.gridLayout.addWidget(self.save_scale_btn, 1, 4, 2, 1) self.raw_frame_spin = QtWidgets.QSpinBox(self.widget_4) self.raw_frame_spin.setObjectName("raw_frame_spin") self.gridLayout.addWidget(self.raw_frame_spin, 3, 0, 1, 1) self.set_model_btn = QtWidgets.QPushButton(self.widget_4) self.set_model_btn.setObjectName("set_model_btn") self.gridLayout.addWidget(self.set_model_btn, 1, 5, 2, 1) self.label_21 = QtWidgets.QLabel(self.widget_4) self.label_21.setObjectName("label_21") self.gridLayout.addWidget(self.label_21, 2, 0, 1, 1) self.gridLayout_3.addWidget(self.widget_4, 1, 0, 1, 1) self.verticalLayout_2.addWidget(self.widget_3) self.tabs.addTab(self.model_scale_tab, "") self.model_view_tab = QtWidgets.QWidget() self.model_view_tab.setObjectName("model_view_tab") self.horizontalLayout = QtWidgets.QHBoxLayout(self.model_view_tab) self.horizontalLayout.setObjectName("horizontalLayout") self.model_param_disp = QtWidgets.QWidget(self.model_view_tab) self.model_param_disp.setObjectName("model_param_disp") self.gridLayout_4 = QtWidgets.QGridLayout(self.model_param_disp) self.gridLayout_4.setObjectName("gridLayout_4") self.label_23 = QtWidgets.QLabel(self.model_param_disp) self.label_23.setMinimumSize(QtCore.QSize(114, 621)) self.label_23.setObjectName("label_23") self.gridLayout_4.addWidget(self.label_23, 0, 0, 1, 1) self.horizontalLayout.addWidget(self.model_param_disp) self.model_view_window = ModelViewWidget(self.model_view_tab) self.model_view_window.setMinimumSize(QtCore.QSize(971, 631)) self.model_view_window.setFrameShape(QtWidgets.QFrame.StyledPanel) self.model_view_window.setFrameShadow(QtWidgets.QFrame.Raised) self.model_view_window.setObjectName("model_view_window") self.horizontalLayout.addWidget(self.model_view_window) self.tabs.addTab(self.model_view_tab, "") self.segment_tab = QtWidgets.QWidget() self.segment_tab.setObjectName("segment_tab") self.verticalLayout = QtWidgets.QVBoxLayout(self.segment_tab) self.verticalLayout.setObjectName("verticalLayout") self.seg_view = ImageSegmentWidget(self.segment_tab) self.seg_view.setMinimumSize(QtCore.QSize(1101, 481)) self.seg_view.setObjectName("seg_view") self.verticalLayout.addWidget(self.seg_view) self.seg_widget = QtWidgets.QWidget(self.segment_tab) self.seg_widget.setMinimumSize(QtCore.QSize(1122, 90)) self.seg_widget.setMaximumSize(QtCore.QSize(16777215, 141)) self.seg_widget.setObjectName("seg_widget") self.gridLayout_5 = QtWidgets.QGridLayout(self.seg_widget) self.gridLayout_5.setObjectName("gridLayout_5") self.label_40 = QtWidgets.QLabel(self.seg_widget) self.label_40.setObjectName("label_40") self.gridLayout_5.addWidget(self.label_40, 0, 0, 1, 1) self.label_24 = QtWidgets.QLabel(self.seg_widget) self.label_24.setObjectName("label_24") self.gridLayout_5.addWidget(self.label_24, 0, 1, 1, 1) self.label_26 = QtWidgets.QLabel(self.seg_widget) self.label_26.setObjectName("label_26") self.gridLayout_5.addWidget(self.label_26, 0, 2, 1, 1) self.label_35 = QtWidgets.QLabel(self.seg_widget) self.label_35.setObjectName("label_35") self.gridLayout_5.addWidget(self.label_35, 0, 3, 1, 1) self.label_36 = QtWidgets.QLabel(self.seg_widget) self.label_36.setObjectName("label_36") self.gridLayout_5.addWidget(self.label_36, 0, 4, 1, 1) self.label_37 = QtWidgets.QLabel(self.seg_widget) self.label_37.setObjectName("label_37") self.gridLayout_5.addWidget(self.label_37, 0, 5, 1, 1) self.label_38 = QtWidgets.QLabel(self.seg_widget) self.label_38.setObjectName("label_38") self.gridLayout_5.addWidget(self.label_38, 0, 6, 1, 1) self.label_39 = QtWidgets.QLabel(self.seg_widget) self.label_39.setObjectName("label_39") self.gridLayout_5.addWidget(self.label_39, 0, 7, 1, 1) self.line_10 = QtWidgets.QFrame(self.seg_widget) self.line_10.setFrameShape(QtWidgets.QFrame.VLine) self.line_10.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_10.setObjectName("line_10") self.gridLayout_5.addWidget(self.line_10, 0, 8, 4, 1) self.label_43 = QtWidgets.QLabel(self.seg_widget) self.label_43.setObjectName("label_43") self.gridLayout_5.addWidget(self.label_43, 0, 9, 1, 2) self.line_11 = QtWidgets.QFrame(self.seg_widget) self.line_11.setFrameShape(QtWidgets.QFrame.VLine) self.line_11.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_11.setObjectName("line_11") self.gridLayout_5.addWidget(self.line_11, 0, 12, 4, 1) spacerItem5 = QtWidgets.QSpacerItem(176, 110, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout_5.addItem(spacerItem5, 0, 13, 4, 1) spacerItem6 = QtWidgets.QSpacerItem(88, 81, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout_5.addItem(spacerItem6, 0, 14, 3, 1) self.seg_mov_spin = QtWidgets.QSpinBox(self.seg_widget) self.seg_mov_spin.setObjectName("seg_mov_spin") self.gridLayout_5.addWidget(self.seg_mov_spin, 1, 0, 1, 1) self.seg_frame_spin = QtWidgets.QSpinBox(self.seg_widget) self.seg_frame_spin.setObjectName("seg_frame_spin") self.gridLayout_5.addWidget(self.seg_frame_spin, 1, 1, 1, 1) self.body_thresh_spin = QtWidgets.QSpinBox(self.seg_widget) self.body_thresh_spin.setObjectName("body_thresh_spin") self.gridLayout_5.addWidget(self.body_thresh_spin, 1, 2, 1, 1) self.wing_thresh_spin = QtWidgets.QSpinBox(self.seg_widget) self.wing_thresh_spin.setObjectName("wing_thresh_spin") self.gridLayout_5.addWidget(self.wing_thresh_spin, 1, 3, 1, 1) self.sigma_spin = QtWidgets.QDoubleSpinBox(self.seg_widget) self.sigma_spin.setObjectName("sigma_spin") self.gridLayout_5.addWidget(self.sigma_spin, 1, 4, 1, 1) self.K_spin = QtWidgets.QSpinBox(self.seg_widget) self.K_spin.setObjectName("K_spin") self.gridLayout_5.addWidget(self.K_spin, 1, 5, 1, 1) self.min_body_spin = QtWidgets.QSpinBox(self.seg_widget) self.min_body_spin.setObjectName("min_body_spin") self.gridLayout_5.addWidget(self.min_body_spin, 1, 6, 1, 1) self.min_wing_spin = QtWidgets.QSpinBox(self.seg_widget) self.min_wing_spin.setObjectName("min_wing_spin") self.gridLayout_5.addWidget(self.min_wing_spin, 1, 7, 1, 1) self.label_44 = QtWidgets.QLabel(self.seg_widget) self.label_44.setObjectName("label_44") self.gridLayout_5.addWidget(self.label_44, 1, 9, 1, 1) self.mask_cam_nr_spin = QtWidgets.QSpinBox(self.seg_widget) self.mask_cam_nr_spin.setObjectName("mask_cam_nr_spin") self.gridLayout_5.addWidget(self.mask_cam_nr_spin, 1, 10, 1, 2) self.label_45 = QtWidgets.QLabel(self.seg_widget) self.label_45.setObjectName("label_45") self.gridLayout_5.addWidget(self.label_45, 2, 9, 1, 1) self.mask_seg_nr_spin = QtWidgets.QSpinBox(self.seg_widget) self.mask_seg_nr_spin.setObjectName("mask_seg_nr_spin") self.gridLayout_5.addWidget(self.mask_seg_nr_spin, 2, 10, 1, 2) self.seg_update_btn = QtWidgets.QPushButton(self.seg_widget) self.seg_update_btn.setObjectName("seg_update_btn") self.gridLayout_5.addWidget(self.seg_update_btn, 3, 0, 1, 2) self.add_mask_btn = QtWidgets.QPushButton(self.seg_widget) self.add_mask_btn.setObjectName("add_mask_btn") self.gridLayout_5.addWidget(self.add_mask_btn, 3, 9, 1, 1) self.reset_mask_btn = QtWidgets.QPushButton(self.seg_widget) self.reset_mask_btn.setObjectName("reset_mask_btn") self.gridLayout_5.addWidget(self.reset_mask_btn, 3, 11, 1, 1) self.continue_btn = QtWidgets.QPushButton(self.seg_widget) self.continue_btn.setObjectName("continue_btn") self.gridLayout_5.addWidget(self.continue_btn, 3, 14, 1, 1) self.verticalLayout.addWidget(self.seg_widget) self.tabs.addTab(self.segment_tab, "") self.pcl_view_tab = QtWidgets.QWidget() self.pcl_view_tab.setObjectName("pcl_view_tab") self.verticalLayout_6 = QtWidgets.QVBoxLayout(self.pcl_view_tab) self.verticalLayout_6.setObjectName("verticalLayout_6") self.pcl_view = BBoxWidget(self.pcl_view_tab) self.pcl_view.setMinimumSize(QtCore.QSize(1121, 521)) self.pcl_view.setFrameShape(QtWidgets.QFrame.StyledPanel) self.pcl_view.setFrameShadow(QtWidgets.QFrame.Raised) self.pcl_view.setObjectName("pcl_view") self.verticalLayout_6.addWidget(self.pcl_view) self.widget_5 = QtWidgets.QWidget(self.pcl_view_tab) self.widget_5.setMinimumSize(QtCore.QSize(1101, 111)) self.widget_5.setObjectName("widget_5") self.gridLayout_8 = QtWidgets.QGridLayout(self.widget_5) self.gridLayout_8.setObjectName("gridLayout_8") self.label_41 = QtWidgets.QLabel(self.widget_5) self.label_41.setObjectName("label_41") self.gridLayout_8.addWidget(self.label_41, 0, 0, 1, 1) self.flight_select_btn_group = QtWidgets.QGroupBox(self.widget_5) self.flight_select_btn_group.setObjectName("flight_select_btn_group") self.gridLayout_6 = QtWidgets.QGridLayout(self.flight_select_btn_group) self.gridLayout_6.setObjectName("gridLayout_6") self.tethered_radio_btn = QtWidgets.QRadioButton(self.flight_select_btn_group) self.tethered_radio_btn.setObjectName("tethered_radio_btn") self.gridLayout_6.addWidget(self.tethered_radio_btn, 0, 0, 1, 1) self.free_radio_btn = QtWidgets.QRadioButton(self.flight_select_btn_group) self.free_radio_btn.setObjectName("free_radio_btn") self.gridLayout_6.addWidget(self.free_radio_btn, 1, 0, 1, 1) self.gridLayout_8.addWidget(self.flight_select_btn_group, 0, 1, 4, 1) self.label_47 = QtWidgets.QLabel(self.widget_5) self.label_47.setObjectName("label_47") self.gridLayout_8.addWidget(self.label_47, 0, 2, 1, 1) self.label_51 = QtWidgets.QLabel(self.widget_5) self.label_51.setObjectName("label_51") self.gridLayout_8.addWidget(self.label_51, 0, 3, 1, 1) spacerItem7 = QtWidgets.QSpacerItem(456, 90, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout_8.addItem(spacerItem7, 0, 4, 4, 1) self.view_select_group = QtWidgets.QGroupBox(self.widget_5) self.view_select_group.setObjectName("view_select_group") self.verticalLayout_3 = QtWidgets.QVBoxLayout(self.view_select_group) self.verticalLayout_3.setObjectName("verticalLayout_3") self.pcl_view_btn = QtWidgets.QRadioButton(self.view_select_group) self.pcl_view_btn.setObjectName("pcl_view_btn") self.verticalLayout_3.addWidget(self.pcl_view_btn) self.bbox_view_btn = QtWidgets.QRadioButton(self.view_select_group) self.bbox_view_btn.setObjectName("bbox_view_btn") self.verticalLayout_3.addWidget(self.bbox_view_btn) self.model_view_btn = QtWidgets.QRadioButton(self.view_select_group) self.model_view_btn.setObjectName("model_view_btn") self.verticalLayout_3.addWidget(self.model_view_btn) self.gridLayout_8.addWidget(self.view_select_group, 0, 5, 4, 1) self.pcl_mov_spin = QtWidgets.QSpinBox(self.widget_5) self.pcl_mov_spin.setObjectName("pcl_mov_spin") self.gridLayout_8.addWidget(self.pcl_mov_spin, 1, 0, 1, 1) self.stroke_bound_spin = QtWidgets.QSpinBox(self.widget_5) self.stroke_bound_spin.setObjectName("stroke_bound_spin") self.gridLayout_8.addWidget(self.stroke_bound_spin, 1, 2, 1, 1) self.wing_pitch_bound_spin = QtWidgets.QSpinBox(self.widget_5) self.wing_pitch_bound_spin.setObjectName("wing_pitch_bound_spin") self.gridLayout_8.addWidget(self.wing_pitch_bound_spin, 1, 3, 1, 1) self.label_42 = QtWidgets.QLabel(self.widget_5) self.label_42.setObjectName("label_42") self.gridLayout_8.addWidget(self.label_42, 2, 0, 1, 1) self.label_48 = QtWidgets.QLabel(self.widget_5) self.label_48.setObjectName("label_48") self.gridLayout_8.addWidget(self.label_48, 2, 2, 1, 1) self.label_46 = QtWidgets.QLabel(self.widget_5) self.label_46.setObjectName("label_46") self.gridLayout_8.addWidget(self.label_46, 2, 3, 1, 1) self.pcl_frame_spin = QtWidgets.QSpinBox(self.widget_5) self.pcl_frame_spin.setObjectName("pcl_frame_spin") self.gridLayout_8.addWidget(self.pcl_frame_spin, 3, 0, 1, 1) self.dev_bound_spin = QtWidgets.QSpinBox(self.widget_5) self.dev_bound_spin.setObjectName("dev_bound_spin") self.gridLayout_8.addWidget(self.dev_bound_spin, 3, 2, 1, 1) self.sphere_radius_spin = QtWidgets.QDoubleSpinBox(self.widget_5) self.sphere_radius_spin.setObjectName("sphere_radius_spin") self.gridLayout_8.addWidget(self.sphere_radius_spin, 3, 3, 1, 1) self.verticalLayout_6.addWidget(self.widget_5) self.tabs.addTab(self.pcl_view_tab, "") self.opt_tab = QtWidgets.QWidget() self.opt_tab.setObjectName("opt_tab") self.verticalLayout_7 = QtWidgets.QVBoxLayout(self.opt_tab) self.verticalLayout_7.setObjectName("verticalLayout_7") self.opt_widget = QtWidgets.QWidget(self.opt_tab) self.opt_widget.setObjectName("opt_widget") self.verticalLayout_8 = QtWidgets.QVBoxLayout(self.opt_widget) self.verticalLayout_8.setObjectName("verticalLayout_8") self.contour_view = ContourViewWidget(self.opt_widget) self.contour_view.setObjectName("contour_view") self.verticalLayout_8.addWidget(self.contour_view) self.opt_settings_widget = QtWidgets.QWidget(self.opt_widget) self.opt_settings_widget.setMinimumSize(QtCore.QSize(0, 120)) self.opt_settings_widget.setObjectName("opt_settings_widget") self.gridLayout_9 = QtWidgets.QGridLayout(self.opt_settings_widget) self.gridLayout_9.setObjectName("gridLayout_9") self.label_52 = QtWidgets.QLabel(self.opt_settings_widget) self.label_52.setObjectName("label_52") self.gridLayout_9.addWidget(self.label_52, 0, 0, 1, 1) self.label_54 = QtWidgets.QLabel(self.opt_settings_widget) self.label_54.setObjectName("label_54") self.gridLayout_9.addWidget(self.label_54, 0, 1, 1, 1) spacerItem8 = QtWidgets.QSpacerItem(849, 78, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout_9.addItem(spacerItem8, 0, 2, 3, 1) self.init_view_check = QtWidgets.QCheckBox(self.opt_settings_widget) self.init_view_check.setObjectName("init_view_check") self.gridLayout_9.addWidget(self.init_view_check, 0, 3, 1, 1) self.opt_mov_spin = QtWidgets.QSpinBox(self.opt_settings_widget) self.opt_mov_spin.setObjectName("opt_mov_spin") self.gridLayout_9.addWidget(self.opt_mov_spin, 1, 0, 1, 1) self.alpha_spin = QtWidgets.QDoubleSpinBox(self.opt_settings_widget) self.alpha_spin.setObjectName("alpha_spin") self.gridLayout_9.addWidget(self.alpha_spin, 1, 1, 1, 1) self.dest_view_check = QtWidgets.QCheckBox(self.opt_settings_widget) self.dest_view_check.setObjectName("dest_view_check") self.gridLayout_9.addWidget(self.dest_view_check, 1, 3, 2, 1) self.label_53 = QtWidgets.QLabel(self.opt_settings_widget) self.label_53.setObjectName("label_53") self.gridLayout_9.addWidget(self.label_53, 2, 0, 1, 1) self.opt_frame_spin = QtWidgets.QSpinBox(self.opt_settings_widget) self.opt_frame_spin.setObjectName("opt_frame_spin") self.gridLayout_9.addWidget(self.opt_frame_spin, 3, 0, 1, 1) self.src_view_check = QtWidgets.QCheckBox(self.opt_settings_widget) self.src_view_check.setObjectName("src_view_check") self.gridLayout_9.addWidget(self.src_view_check, 3, 3, 1, 1) self.verticalLayout_8.addWidget(self.opt_settings_widget) self.verticalLayout_7.addWidget(self.opt_widget) self.tabs.addTab(self.opt_tab, "") self.verticalLayout_5.addWidget(self.tabs) MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) self.tabs.setCurrentIndex(6) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "DipteraTrack")) self.label.setText(_translate("MainWindow", "Select session folder:")) self.label_3.setText(_translate("MainWindow", "Session parameters")) self.label_2.setText(_translate("MainWindow", "Session folder:")) self.ses_folder_label.setText(_translate("MainWindow", "...")) self.label_5.setText(_translate("MainWindow", "Background folder:")) self.bckg_folder_label.setText(_translate("MainWindow", "...")) self.label_7.setText(_translate("MainWindow", "Calibration folder:")) self.cal_folder_label.setText(_translate("MainWindow", "...")) self.label_9.setText(_translate("MainWindow", "Movie folders:")) self.mov_folder1_label.setText(_translate("MainWindow", "...")) self.mov_folder2_label.setText(_translate("MainWindow", "...")) self.mov_folder3_label.setText(_translate("MainWindow", "...")) self.mov_folder4_label.setText(_translate("MainWindow", "...")) self.mov_folder5_label.setText(_translate("MainWindow", "...")) self.mov_folder6_label.setText(_translate("MainWindow", "...")) self.mov_folder7_label.setText(_translate("MainWindow", "...")) self.mov_folder8_label.setText(_translate("MainWindow", "...")) self.label_18.setText(_translate("MainWindow", "Camera folders:")) self.cam_folder1_label.setText(_translate("MainWindow", "...")) self.cam_folder2_label.setText(_translate("MainWindow", "...")) self.cam_folder3_label.setText(_translate("MainWindow", "...")) self.cam_folder4_label.setText(_translate("MainWindow", "...")) self.ses_folder_rbtn.setText(_translate("MainWindow", "RadioButton")) self.bckg_folder_rbtn.setText(_translate("MainWindow", "RadioButton")) self.cal_folder_rbtn.setText(_translate("MainWindow", "RadioButton")) self.mov_folder1_rbtn.setText(_translate("MainWindow", "RadioButton")) self.mov_folder2_rbtn.setText(_translate("MainWindow", "RadioButton")) self.mov_folder3_rbtn.setText(_translate("MainWindow", "RadioButton")) self.mov_folder4_rbtn.setText(_translate("MainWindow", "RadioButton")) self.mov_folder5_rbtn.setText(_translate("MainWindow", "RadioButton")) self.mov_folder6_rbtn.setText(_translate("MainWindow", "RadioButton")) self.mov_folder7_rbtn.setText(_translate("MainWindow", "RadioButton")) self.mov_folder8_rbtn.setText(_translate("MainWindow", "RadioButton")) self.cam_folder1_rbtn.setText(_translate("MainWindow", "RadioButton")) self.cam_folder2_rbtn.setText(_translate("MainWindow", "RadioButton")) self.cam_folder3_rbtn.setText(_translate("MainWindow", "RadioButton")) self.cam_folder4_rbtn.setText(_translate("MainWindow", "RadioButton")) self.cam_folder5_rbtn.setText(_translate("MainWindow", "RadioButton")) self.cam_folder6_rbtn.setText(_translate("MainWindow", "RadioButton")) self.cam_folder5_label.setText(_translate("MainWindow", "...")) self.cam_folder6_label.setText(_translate("MainWindow", "...")) self.label_25.setText(_translate("MainWindow", "Frame name:")) self.frame_name_rbtn.setText(_translate("MainWindow", "RadioButton")) self.frame_name_label.setText(_translate("MainWindow", "...")) self.label_27.setText(_translate("MainWindow", "Background image format:")) self.label_28.setText(_translate("MainWindow", "Calibration image format:")) self.label_29.setText(_translate("MainWindow", "Frame image format:")) self.label_30.setText(_translate("MainWindow", "Trigger settings")) self.label_31.setText(_translate("MainWindow", "start frame nr:")) self.label_32.setText(_translate("MainWindow", "trigger frame nr:")) self.label_33.setText(_translate("MainWindow", "end frame nr:")) self.label_34.setText(_translate("MainWindow", "Trigger mode:")) self.label_4.setText(_translate("MainWindow", "Model settings")) self.mdl_loc_rbtn.setText(_translate("MainWindow", "RadioButton")) self.mdl_loc_label.setText(_translate("MainWindow", "...")) self.label_10.setText(_translate("MainWindow", "Model location:")) self.label_11.setText(_translate("MainWindow", "Model name:")) self.mdl_name_rbtn.setText(_translate("MainWindow", "RadioButton")) self.mdl_name_label.setText(_translate("MainWindow", "...")) self.label_6.setText(_translate("MainWindow", "Calibration file:")) self.cal_file_label.setText(_translate("MainWindow", "...")) self.label_8.setText(_translate("MainWindow", "Session name:")) self.ses_name_label.setText(_translate("MainWindow", "...")) self.reset_selection_push_btn.setText(_translate("MainWindow", "reset selection")) self.start_session_push_btn.setText(_translate("MainWindow", "start session")) self.save_settings_push_btn.setText(_translate("MainWindow", "save parameter file")) self.load_settings_file_label.setText(_translate("MainWindow", "...")) self.load_settings_push_btn.setText(_translate("MainWindow", "load parameter file")) self.load_settings_rbtn.setText(_translate("MainWindow", "RadioButton")) self.tabs.setTabText(self.tabs.indexOf(self.ses_par_tab), _translate("MainWindow", "Movie selection")) self.label_16.setText(_translate("MainWindow", "Voxel grid parameters:")) self.label_12.setText(_translate("MainWindow", "Nx:")) self.label_13.setText(_translate("MainWindow", "Ny:")) self.label_14.setText(_translate("MainWindow", "Nz:")) self.label_15.setText(_translate("MainWindow", "ds:")) self.label_17.setText(_translate("MainWindow", "x0:")) self.label_19.setText(_translate("MainWindow", "y0:")) self.label_20.setText(_translate("MainWindow", "z0:")) self.calc_vox_btn.setText(_translate("MainWindow", "calculate voxel grid")) self.label_49.setText(_translate("MainWindow", "Camera parameters:")) self.label_50.setText(_translate("MainWindow", "pixel size (mm):")) self.tabs.setTabText(self.tabs.indexOf(self.focal_grid_tab), _translate("MainWindow", "Voxel grid")) self.label_22.setText(_translate("MainWindow", "Movie nr:")) self.load_scale_btn.setText(_translate("MainWindow", "load model scale")) self.save_scale_btn.setText(_translate("MainWindow", "save model scale")) self.set_model_btn.setText(_translate("MainWindow", "set model scale")) self.label_21.setText(_translate("MainWindow", "Frame:")) self.tabs.setTabText(self.tabs.indexOf(self.model_scale_tab), _translate("MainWindow", "Scale model")) self.label_23.setText(_translate("MainWindow", "Model parameters:")) self.tabs.setTabText(self.tabs.indexOf(self.model_view_tab), _translate("MainWindow", "Model view")) self.label_40.setText(_translate("MainWindow", "movie nr:")) self.label_24.setText(_translate("MainWindow", "frame:")) self.label_26.setText(_translate("MainWindow", "body threshold")) self.label_35.setText(_translate("MainWindow", "wing threshold")) self.label_36.setText(_translate("MainWindow", "sigma")) self.label_37.setText(_translate("MainWindow", "K")) self.label_38.setText(_translate("MainWindow", "min body area")) self.label_39.setText(_translate("MainWindow", "min wing area")) self.label_43.setText(_translate("MainWindow", "Set image mask:")) self.label_44.setText(_translate("MainWindow", "cam nr:")) self.label_45.setText(_translate("MainWindow", "segment nr:")) self.seg_update_btn.setText(_translate("MainWindow", "update")) self.add_mask_btn.setText(_translate("MainWindow", "add to mask")) self.reset_mask_btn.setText(_translate("MainWindow", "reset")) self.continue_btn.setText(_translate("MainWindow", "continue")) self.tabs.setTabText(self.tabs.indexOf(self.segment_tab), _translate("MainWindow", "Segmentation")) self.label_41.setText(_translate("MainWindow", "movie nr:")) self.tethered_radio_btn.setText(_translate("MainWindow", "tethered flight")) self.free_radio_btn.setText(_translate("MainWindow", "free flight")) self.label_47.setText(_translate("MainWindow", "stroke angle bound:")) self.label_51.setText(_translate("MainWindow", "wing pitch angle bound:")) self.pcl_view_btn.setText(_translate("MainWindow", "pcl view")) self.bbox_view_btn.setText(_translate("MainWindow", "bbox view")) self.model_view_btn.setText(_translate("MainWindow", "model view")) self.label_42.setText(_translate("MainWindow", "frame nr:")) self.label_48.setText(_translate("MainWindow", "deviation angle bound:")) self.label_46.setText(_translate("MainWindow", "sphere radius:")) self.tabs.setTabText(self.tabs.indexOf(self.pcl_view_tab), _translate("MainWindow", "Pointcloud view")) self.label_52.setText(_translate("MainWindow", "movie nr:")) self.label_54.setText(_translate("MainWindow", "alpha:")) self.init_view_check.setText(_translate("MainWindow", "initial state")) self.dest_view_check.setText(_translate("MainWindow", "destination contour")) self.label_53.setText(_translate("MainWindow", "frame nr:")) self.src_view_check.setText(_translate("MainWindow", "source contour")) self.tabs.setTabText(self.tabs.indexOf(self.opt_tab), _translate("MainWindow", "Contour optimization")) from BoundingBoxWidget import BBoxWidget from ContourViewWidget import ContourViewWidget from ImageSegmentWidget import ImageSegmentWidget from ModelViewWidget import ModelViewWidget from ScaleModelWidget import ScaleModelWidget if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_()) ```
{ "source": "jmmelis/FlyMatch", "score": 2 }
#### File: jmmelis/FlyMatch/FlyMatch.py ```python from __future__ import print_function import sys #import vtk from PyQt5 import Qt from PyQt5.QtCore import QObject, pyqtSignal, pyqtSlot from PyQt5.QtWidgets import QMainWindow, QApplication, QWidget, QAction, QTreeView, QFileSystemModel, QTableWidget, QTableWidgetItem, QVBoxLayout, QFileDialog import pyqtgraph as pg from pyqtgraph.Qt import QtCore, QtGui, QtWidgets import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import math #import pickle import os import os.path import math import copy import time #from vtk.qt.QVTKRenderWindowInteractor import QVTKRenderWindowInteractor from session_select import Ui_Session_Dialog from fly_match_ui import Ui_MainWindow class CheckableDirModel(QtGui.QDirModel): def __init__(self, parent=None): QtGui.QDirModel.__init__(self, None) self.checks = {} def data(self, index, role=QtCore.Qt.DisplayRole): if role != QtCore.Qt.CheckStateRole: return QtGui.QDirModel.data(self, index, role) else: if index.column() == 0: return self.checkState(index) def flags(self, index): return QtGui.QDirModel.flags(self, index) | QtCore.Qt.ItemIsUserCheckable def checkState(self, index): if index in self.checks: return self.checks[index] else: return QtCore.Qt.Unchecked def setData(self, index, value, role): if (role == QtCore.Qt.CheckStateRole and index.column() == 0): self.checks[index] = value self.emit(QtCore.SIGNAL("dataChanged(QModelIndex,QModelIndex)"), index, index) return True return QtGui.QDirModel.setData(self, index, value, role) # QDialog clasess: class SelectFolderWindow(QtGui.QDialog, Ui_Session_Dialog): def __init__(self, directory, parent=None): super(SelectFolderWindow,self).__init__(parent) self.setupUi(self) self.folder_name = None self.folder_path = None self.file_model = QFileSystemModel() self.directory = directory self.file_model.setRootPath(directory) self.folder_tree.setModel(self.file_model) self.folder_tree.setRootIndex(self.file_model.index(self.directory)); self.folder_tree.clicked.connect(self.set_session_folder) def update_file_model(self,new_dir): self.directory = new_dir self.file_model.setRootPath(new_dir) def set_session_folder(self, index): indexItem = self.file_model.index(index.row(), 0, index.parent()) self.folder_name = self.file_model.fileName(indexItem) self.folder_path = self.file_model.filePath(indexItem) self.selected_session.setText(self.folder_path) # Main GUI class: class FlyMatch(QtWidgets.QMainWindow, Ui_MainWindow, QObject): def __init__(self, parent=None): super(FlyMatch,self).__init__(parent) self.setupUi(self) self.N_mov = 1 self.N_cam = 3 self.start_frame = 0 self.end_frame = 16375 self.session_path = '' self.session_folder = '' self.mov_folder = '' self.output_path = '' self.output_folder = '' self.select_seq_window = SelectFolderWindow('/media/flyami/flyami_hdd_1') self.select_seq_window.setWindowTitle("Select sequence folder") self.select_mov_window = SelectFolderWindow('/media/flyami/flyami_hdd_1') self.select_mov_window.setWindowTitle("Select movie folder") self.select_movie() self.select_frame() def select_movie(self): # Select session folder self.seq_select_btn.clicked.connect(self.select_seq_callback) # Select movie folder self.mov_select_btn.clicked.connect(self.select_mov_callback) def select_frame(self): self.load_frames_btn.clicked.connect(self.load_frames) def load_frames(self): self.model_fit() def select_seq_callback(self): self.select_seq_window.exec_() self.session_path = str(self.select_seq_window.folder_path) print(self.session_path) self.session_folder = str(self.select_seq_window.folder_name) self.seq_disp.setText(self.session_folder) self.select_mov_window.update_file_model(self.session_path) #self.select_out_window.update_file_model(self.session_path) def select_mov_callback(self): self.select_mov_window.exec_() self.mov_folder = str(self.select_mov_window.folder_name) print(self.mov_folder) self.mov_disp.setText(self.mov_folder) def model_fit(self): self.frame_viewer.set_session_folder(self.session_path) self.frame_viewer.set_mov_folder(self.mov_folder) # Set calibration folder: self.cal_file = self.session_path + '/calibration/cam_calib.txt' self.frame_viewer.set_calibration_loc(self.cal_file,0.040,0.5,175.0) # Create manual tracking directory: #self.frame_viewer.create_manual_track_dir() # Load model: #self.frame_viewer.load_model(1) # Frame spin: self.frame_spin.setMinimum(self.start_frame) self.frame_spin.setMaximum(self.end_frame) self.frame_spin.setValue(self.start_frame) self.frame_viewer.add_frame(self.start_frame) self.frame_spin.valueChanged.connect(self.frame_viewer.update_frame) # Add state displays: self.frame_viewer.set_display_state_L(self.state_L_table) self.frame_viewer.set_display_state_R(self.state_R_table) # Add graphs self.frame_viewer.add_graphs() self.frame_viewer.setMouseCallbacks() # uv_correction: self.frame_viewer.set_u_cam_1_spin(self.u_cam1_spin) self.frame_viewer.set_v_cam_1_spin(self.v_cam1_spin) self.frame_viewer.set_u_cam_2_spin(self.u_cam2_spin) self.frame_viewer.set_v_cam_2_spin(self.v_cam2_spin) self.frame_viewer.set_u_cam_3_spin(self.u_cam3_spin) self.frame_viewer.set_v_cam_3_spin(self.v_cam3_spin) self.save_uv_shift_btn.clicked.connect(self.frame_viewer.save_uv_shift) # self.frame_viewer.set_scale_L_spin(self.L_scale_spin) self.frame_viewer.set_ry_L_spin(self.ry_L_spin) self.frame_viewer.set_b1_L_spin(self.b1_L_spin) self.reset_L_btn.clicked.connect(self.frame_viewer.reset_L) # self.frame_viewer.set_scale_R_spin(self.R_scale_spin) self.frame_viewer.set_ry_R_spin(self.ry_R_spin) self.frame_viewer.set_b1_R_spin(self.b1_R_spin) self.reset_R_btn.clicked.connect(self.frame_viewer.reset_R) # Save label: self.save_lbl_btn.clicked.connect(self.frame_viewer.save_frame) # ------------------------------------------------------------------------------------------------- def appMain(): app = QtWidgets.QApplication(sys.argv) mainWindow = FlyMatch() mainWindow.show() app.exec_() # ------------------------------------------------------------------------------------------------- if __name__ == '__main__': appMain() ```
{ "source": "jmmelis/FlyTrackApp", "score": 2 }
#### File: FlyTrackApp/FlyTrackApp/flight_tracker_vis_class.py ```python import vtk import sys import os import time import numpy as np # flight tracker visualization class class FlightTrackerVisualization: def __init__(self): # window parameters self.window_name = "Model" self.background = (0.1,0.2,0.4) self.window_sz = (600, 600) # stl model parameters self.model_name = "" self.stl_list = [] self.model_loc = "" self.stl_src = [] self.stl_actors = [] # point parameters self.pointcloud_list = [] # Create the Renderer, RenderWindow, and RenderWindowInteractor self.ren = vtk.vtkRenderer() self.ren_win = vtk.vtkRenderWindow() self.ren_win.AddRenderer(self.ren) self.iren = vtk.vtkRenderWindowInteractor() self.iren.SetRenderWindow(self.ren_win) # Set the background color and window size self.ren_win.SetWindowName(self.window_name) self.ren.SetBackground(*self.background) self.ren_win.SetSize(*self.window_sz) # Render self.iren.Initialize() self.ren.ResetCameraClippingRange() self.ren_win.Render() def load_model(self,model_name,model_loc,stl_list): self.model_name = model_name self.stl_list = stl_list self.model_loc = model_loc + '/' + model_name self.ren_win.SetWindowName(model_name) os.chdir(self.model_loc) for stl_file in stl_list: sr = vtk.vtkSTLReader() sr.SetFileName(stl_file) self.stl_src.append(sr) stl_mapper = vtk.vtkPolyDataMapper() stl_mapper.ScalarVisibilityOff() stl_mapper.SetInputConnection(sr.GetOutputPort()) stl_actor = vtk.vtkActor() stl_actor.SetMapper(stl_mapper) self.stl_actors.append(stl_actor) stl_props = stl_actor.GetProperty() stl_actor.SetPosition(0,0,0) stl_props.SetInterpolationToGouraud() stl_mapper.Update() self.ren.AddActor(stl_actor) self.ren_win.Render() def set_state_model(self,state,parents,scale): for i in range(state.shape[1]): old_val = -1 j = 0 transformation = vtk.vtkTransform() while parents[i,j] > old_val: ind = parents[i,j] elem_mat = vtk.vtkMatrix4x4() elem_mat.SetElement(0,0,(2.0*state[0,ind]**2-1.0+2.0*state[1,ind]**2)) elem_mat.SetElement(0,1,(2.0*state[1,ind]*state[2,ind]+2.0*state[0,ind]*state[3,ind])) elem_mat.SetElement(0,2,(2.0*state[1,ind]*state[3,ind]-2.0*state[0,ind]*state[2,ind])) elem_mat.SetElement(1,0,(2.0*state[1,ind]*state[2,ind]-2.0*state[0,ind]*state[3,ind])) elem_mat.SetElement(1,1,(2.0*state[0,ind]**2-1.0+2.0*state[2,ind]**2)) elem_mat.SetElement(1,2,(2.0*state[2,ind]*state[3,ind]+2.0*state[0,ind]*state[1,ind])) elem_mat.SetElement(2,0,(2.0*state[1,ind]*state[3,ind]+2.0*state[0,ind]*state[2,ind])) elem_mat.SetElement(2,1,(2.0*state[2,ind]*state[3,ind]-2.0*state[0,ind]*state[1,ind])) elem_mat.SetElement(2,2,(2.0*state[0,ind]**2-1.0+2.0*state[3,ind]**2)) elem_mat.SetElement(0,3,state[4,ind]*scale[ind]) elem_mat.SetElement(1,3,state[5,ind]*scale[ind]) elem_mat.SetElement(2,3,state[6,ind]*scale[ind]) transformation.Concatenate(elem_mat) old_val = parents[i,j] j+=1 self.stl_actors[i].SetUserMatrix(transformation.GetMatrix()) self.ren_win.Render() def add_pointcloud(self,pcl_in): N = pcl_in.shape[1] #points = vtk.vtkPointSource() points = vtk.vtkPoints() points.SetNumberOfPoints(N) polydata = vtk.vtkPolyData() for i in range(N): points.InsertNextPoint(pcl_in[:,i]) #points.SetRadius(0.005) polydata.SetPoints(points) mapper = vtk.vtkPolyDataMapper() mapper.SetInputData(polydata) #mapper.SetInputData(points) #mapper.SetInputConnection(points.GetOutputPort()) actor = vtk.vtkActor() actor.SetMapper(mapper) self.ren.AddActor(actor) #for i in range(N_points): # #point = vtk.vtkSphereSource() # #point.SetCenter(pcl_in[:,i]) # #point.SetRadius(0.005) # point = vtk.vtkPointSource() # point.SetCenter(pcl_in[:,i]) # point.SetNumberOfPoints(1); # mapper = vtk.vtkPolyDataMapper() # mapper.ScalarVisibilityOff() # mapper.SetInputConnection(point.GetOutputPort()) # actor = vtk.vtkActor() # actor.SetMapper(mapper) # props = actor.GetProperty() # self.ren.AddActor(actor) def start_interaction_window(self): self.ren_win.Render() self.iren.Start() def kill_interaction_window(self): del self.ren_win, self.iren def load_pointcloud(self,pointCloud,pcl_in): for k in range(pcl_in.shape[1]): point = pcl_in[:,k] pointCloud.addPoint(point) return pointCloud def show_pointcloud(self,pcl_in): pointCloud = self.VtkPointCloud(np.amax(pcl_in[3,:])) pointCloud = self.load_pointcloud(pointCloud,pcl_in) self.ren.AddActor(pointCloud.vtkActor) def show_bboxes(self,corner_points): N_boxes = corner_points.shape[1] for i in range(N_boxes): corner_mat = np.empty([8,3]) for j in range(8): corner_mat[j,0] = corner_points[j*3,i] corner_mat[j,1] = corner_points[j*3+1,i] corner_mat[j,2] = corner_points[j*3+2,i] box = self.BoundingBox() box.addBox(corner_mat) self.ren.AddActor(box.vtkActor) class VtkPointCloud: def __init__(self,scalar_range): self.vtkPolyData = vtk.vtkPolyData() self.clearPoints() mapper = vtk.vtkPolyDataMapper() mapper.SetInputData(self.vtkPolyData) mapper.SetColorModeToDefault() mapper.SetScalarRange(0.0,scalar_range) mapper.SetScalarVisibility(1) self.vtkActor = vtk.vtkActor() self.vtkActor.SetMapper(mapper) def addPoint(self,point): pointID = self.vtkPoints.InsertNextPoint(point[0:3]) self.vtkDepth.InsertNextValue(point[3]) self.vtkCells.InsertNextCell(1) self.vtkCells.InsertCellPoint(pointID) self.vtkCells.Modified() self.vtkPoints.Modified() self.vtkDepth.Modified() def clearPoints(self): self.vtkPoints = vtk.vtkPoints() self.vtkCells = vtk.vtkCellArray() self.vtkDepth = vtk.vtkDoubleArray() self.vtkDepth.SetName('DepthArray') self.vtkPolyData.SetPoints(self.vtkPoints) self.vtkPolyData.SetVerts(self.vtkCells) self.vtkPolyData.GetPointData().SetScalars(self.vtkDepth) self.vtkPolyData.GetPointData().SetActiveScalars('DepthArray') class BoundingBox: def __init__(self): self.mapper = vtk.vtkPolyDataMapper() self.vtkActor = vtk.vtkActor() self.vtkActor.SetMapper(self.mapper) def addBox(self,corner_points): # Add a bounding box points = vtk.vtkPoints() points.SetNumberOfPoints(8) points.SetPoint(0,corner_points[0,0],corner_points[0,1],corner_points[0,2]) points.SetPoint(1,corner_points[1,0],corner_points[1,1],corner_points[1,2]) points.SetPoint(2,corner_points[2,0],corner_points[2,1],corner_points[2,2]) points.SetPoint(3,corner_points[3,0],corner_points[3,1],corner_points[3,2]) points.SetPoint(4,corner_points[4,0],corner_points[4,1],corner_points[4,2]) points.SetPoint(5,corner_points[5,0],corner_points[5,1],corner_points[5,2]) points.SetPoint(6,corner_points[6,0],corner_points[6,1],corner_points[6,2]) points.SetPoint(7,corner_points[7,0],corner_points[7,1],corner_points[7,2]) lines = vtk.vtkCellArray() lines.InsertNextCell(5) lines.InsertCellPoint(0) lines.InsertCellPoint(1) lines.InsertCellPoint(2) lines.InsertCellPoint(3) lines.InsertCellPoint(0) lines.InsertNextCell(5) lines.InsertCellPoint(4) lines.InsertCellPoint(5) lines.InsertCellPoint(6) lines.InsertCellPoint(7) lines.InsertCellPoint(4) lines.InsertNextCell(5) lines.InsertCellPoint(0) lines.InsertCellPoint(4) lines.InsertCellPoint(7) lines.InsertCellPoint(3) lines.InsertCellPoint(0) lines.InsertNextCell(5) lines.InsertCellPoint(1) lines.InsertCellPoint(5) lines.InsertCellPoint(6) lines.InsertCellPoint(2) lines.InsertCellPoint(1) lines.InsertNextCell(5) lines.InsertCellPoint(0) lines.InsertCellPoint(1) lines.InsertCellPoint(5) lines.InsertCellPoint(4) lines.InsertCellPoint(0) lines.InsertNextCell(5) lines.InsertCellPoint(3) lines.InsertCellPoint(2) lines.InsertCellPoint(6) lines.InsertCellPoint(7) lines.InsertCellPoint(3) polygon = vtk.vtkPolyData() polygon.SetPoints(points) polygon.SetLines(lines) self.mapper.SetInputData(polygon) self.mapper.Update() ```
{ "source": "jmmeneguel/sd-maskrcnn", "score": 2 }
#### File: sd_maskrcnn/envs/physics_engine.py ```python import abc import os import time import trimesh import pybullet import numpy as np import shutil import pkg_resources from autolab_core import RigidTransform, Logger from pyrender import Scene, Viewer, Mesh, Node, PerspectiveCamera from .constants import GRAVITY_ACCEL class PhysicsEngine(metaclass=abc.ABCMeta): """ Abstract Physics Engine class """ def __init__(self): # set up logger self._logger = Logger.get_logger(self.__class__.__name__) @abc.abstractmethod def reset(self): pass @abc.abstractmethod def step(self): pass @abc.abstractmethod def start(self): pass @abc.abstractmethod def stop(self): pass class PybulletPhysicsEngine(PhysicsEngine): """ Wrapper for pybullet physics engine that is tied to a single ID """ def __init__(self, urdf_cache_dir, debug=False): PhysicsEngine.__init__(self) self._physics_client = None self._debug = debug self._urdf_cache_dir = urdf_cache_dir if not os.path.isabs(self._urdf_cache_dir): self._urdf_cache_dir = os.path.join(os.getcwd(), self._urdf_cache_dir) if not os.path.exists(os.path.join(self._urdf_cache_dir, 'plane')): os.makedirs(os.path.join(self._urdf_cache_dir, 'plane')) shutil.copy(pkg_resources.resource_filename('sd_maskrcnn', 'data/plane/plane.urdf'), os.path.join(self._urdf_cache_dir, 'plane', 'plane.urdf')) shutil.copy(pkg_resources.resource_filename('sd_maskrcnn', 'data/plane/plane_convex_piece_0.obj'), os.path.join(self._urdf_cache_dir, 'plane', 'plane_convex_piece_0.obj')) def add(self, obj, static=False): # create URDF urdf_filename = os.path.join(self._urdf_cache_dir, obj.key, '{}.urdf'.format(obj.key)) urdf_dir = os.path.dirname(urdf_filename) if not os.path.exists(urdf_filename): try: os.makedirs(urdf_dir) except: self._logger.warning('Failed to create dir %s. The object may have been created simultaneously by another process' %(urdf_dir)) self._logger.info('Exporting URDF for object %s' %(obj.key)) # Fix center of mass (for rendering) and density and export geometry = obj.mesh.copy() geometry.apply_translation(-obj.mesh.center_mass) trimesh.exchange.export.export_urdf(geometry, urdf_dir) com = obj.mesh.center_mass pose = self._convert_pose(obj.pose, com) obj_t = pose.translation obj_q_wxyz = pose.quaternion obj_q_xyzw = np.roll(obj_q_wxyz, -1) try: obj_id = pybullet.loadURDF(urdf_filename, obj_t, obj_q_xyzw, useFixedBase=static, physicsClientId=self._physics_client) except: raise Exception('Failed to load %s' %(urdf_filename)) if self._debug: self._add_to_scene(obj) self._key_to_id[obj.key] = obj_id self._key_to_com[obj.key] = com def get_velocity(self, key): obj_id = self._key_to_id[key] return pybullet.getBaseVelocity(obj_id, physicsClientId=self._physics_client) def get_pose(self, key): obj_id = self._key_to_id[key] obj_t, obj_q_xyzw = pybullet.getBasePositionAndOrientation(obj_id, physicsClientId=self._physics_client) obj_q_wxyz = np.roll(obj_q_xyzw, 1) pose = RigidTransform(rotation=obj_q_wxyz, translation=obj_t, from_frame='obj', to_frame='world') pose = self._deconvert_pose(pose, self._key_to_com[key]) return pose def remove(self, key): obj_id = self._key_to_id[key] pybullet.removeBody(obj_id, physicsClientId=self._physics_client) self._key_to_id.pop(key) self._key_to_com.pop(key) if self._debug: self._remove_from_scene(key) def step(self): pybullet.stepSimulation(physicsClientId=self._physics_client) if self._debug: time.sleep(0.04) self._update_scene() def reset(self): if self._physics_client is not None: self.stop() self.start() def start(self): if self._physics_client is None: self._physics_client = pybullet.connect(pybullet.DIRECT) pybullet.setGravity(0, 0, -GRAVITY_ACCEL, physicsClientId=self._physics_client) self._key_to_id = {} self._key_to_com = {} if self._debug: self._create_scene() self._viewer = Viewer(self._scene, use_raymond_lighting=True, run_in_thread=True) def stop(self): if self._physics_client is not None: pybullet.disconnect(self._physics_client) self._physics_client = None if self._debug: self._scene = None self._viewer.close_external() while self._viewer.is_active: pass def __del__(self): self.stop() del self def _convert_pose(self, pose, com): new_pose = pose.copy() new_pose.translation = pose.rotation.dot(com) + pose.translation return new_pose def _deconvert_pose(self, pose, com): new_pose = pose.copy() new_pose.translation = pose.rotation.dot(-com) + pose.translation return new_pose def _create_scene(self): self._scene = Scene() camera = PerspectiveCamera(yfov=0.833, znear=0.05, zfar=3.0, aspectRatio=1.0) cn = Node() cn.camera = camera pose_m = np.array([[0.0,1.0,0.0,0.0], [1.0,0.0,0.0,0.0], [0.0,0.0,-1.0,0.88], [0.0,0.0,0.0,1.0]]) pose_m[:,1:3] *= -1.0 cn.matrix = pose_m self._scene.add_node(cn) self._scene.main_camera_node = cn def _add_to_scene(self, obj): self._viewer.render_lock.acquire() n = Node(mesh=Mesh.from_trimesh(obj.mesh), matrix=obj.pose.matrix, name=obj.key) self._scene.add_node(n) self._viewer.render_lock.release() def _remove_from_scene(self, key): self._viewer.render_lock.acquire() if self._scene.get_nodes(name=key): self._scene.remove_node(next(iter(self._scene.get_nodes(name=key)))) self._viewer.render_lock.release() def _update_scene(self): self._viewer.render_lock.acquire() for key in self._key_to_id.keys(): obj_pose = self.get_pose(key).matrix if self._scene.get_nodes(name=key): next(iter(self._scene.get_nodes(name=key))).matrix = obj_pose self._viewer.render_lock.release() ```
{ "source": "jmmerrell/jmmerrell.github.io", "score": 3 }
#### File: jmmerrell.github.io/movie_random_forest/movie_project.py ```python from __future__ import print_function import pandas as pd import random import math from scipy.linalg import toeplitz import statsmodels.api as sm from statsmodels.formula.api import ols from datetime import datetime as dt import numpy as np import matplotlib.pyplot as plt from statsmodels.iolib.table import (SimpleTable, default_txt_fmt) df= pd.read_csv('C:\\Users\\merre\\Desktop\\jmmerrell.github.io\\movie_random_forest\\movie_data.txt', sep="|", header=0) df.columns = ["date","movie","studio","genre","basedon","actionanim","factfict","budget","thrcount","threngag","fisrtweeknd","domgross","infdomgross","intgross","totgross","direct","compose","act1","act2","act3","act4","act5","act6","act7","act8","act9","act10","act11","act12","act13","act14","act15","act16","act17","act18","act19","act20","rating","franch"] df['date'] = pd.to_datetime(df['date']) cols = df.columns[list(range(7,15))] df[cols] = df[cols].apply(pd.to_numeric, errors='coerce', axis=1) ###order data by date df = df.sort_values(by=['date'], ascending=True) ###Drop all movies with no inflation adjusted gross and without actors df= df.loc[(df['infdomgross'] > 0) & (df['act1'].isnull() == False)] ###Create inflation adjusted budget df['infbudget'] = df['infdomgross']/df['domgross']*df['budget'] ####Create a new dataframe with only new movies df2 = df.loc[df['date']>='2000-01-01'] print(df2) # df['Date'] = pd.to_datetime(df['Date']) # df['month'] = df['Date'].dt.month # df['winter'] = np.where(df['month'].isin([12,1,2,3]) , 1, 0) # df['summer']= np.where(df['month'].isin([7,8,9,10]), 1, 0) # plt.plot(df.Date, df.PowerBill) # plt.show() # temps = np.array([32,31,36,44.5,52,61,69.5,77.5,76,66.5,53.5,41.5]) # temps = abs(temps-65) # temps = [temps]*4 # temps = np.concatenate(temps) # temps = temps.tolist() # temps2 = temps[:3] # temps = temps+temps2 # df['temp'] = temps # df['solar_winter'] = np.where((df['Solar']=='Y')&(df['winter']==1) , 1, 0) # df['solar_summer'] = np.where((df['Solar']=='Y')&(df['summer']==1) , 1, 0) # df['summer_temp'] = df['temp']*df['summer'] # df['winter_temp'] = df['temp']*df['winter'] # nsims=100 # out = [0.0]*(nsims*53) # out = np.reshape(out,(nsims,53)) # # for i in range(0,nsims): # rowz = np.random.choice(df.shape[0], 5, replace=False) # train = df.ix[set(range(1, df.shape[0])).difference(rowz)] # test = df.ix[rowz] # ols_resid = sm.OLS.from_formula('PowerBill ~ C(Solar) + C(solar_winter) + C(solar_summer) + summer_temp + winter_temp', data=df).fit().resid # resid_fit = sm.OLS(endog=list(ols_resid[1:]), exog=sm.add_constant(ols_resid[:-1])).fit() # rho = resid_fit.params[1] # toeplitz(range(5)) # order = toeplitz(range(train.shape[0])) # sigma = rho**order # gls_model = sm.GLS.from_formula('PowerBill ~ C(Solar) + C(solar_winter) + C(solar_summer) + summer_temp + winter_temp', data=train, sigma=sigma) # gls_results = gls_model.fit() # preds=gls_results.predict(test) # out[i][0]=np.mean(test['PowerBill']-preds) # out[i][1]=math.sqrt(np.mean((test['PowerBill']-preds)**2)) # out[i][(rowz+1)]=preds # # def column(matrix, i): # return [row[i] for row in matrix] # print(np.mean(column(out,0))) # print(np.mean(column(out,1))) ```
{ "source": "jmmey/arrismodemmon", "score": 3 }
#### File: jmmey/arrismodemmon/main.py ```python import os import re import time import json import requests from bs4 import BeautifulSoup as bs from influxdb import InfluxDBClient MEASURE_RE = r'\W*\d*\.\d*' TRUST_SSL = True """ Influx DB Account Set environment variables for "INFLUX_USER" and "INFLUX_PASS", but if you do not want to set them add your account information in the variables below. """ DB_USERNAME = '' DB_PASSWORD = '' DB_SERVER_NAME = '' DB_INFLUX_NAME = '' """ If environment variables exist use those if not use the above variable settings. """ DB_USER = os.getenv("INFLUX_USER") if os.getenv("INFLUX_USER") else DB_USERNAME DB_PASS = <PASSWORD>("<PASSWORD>") if os.getenv("INFLUX_PASS") else DB_PASSWORD DB_HOST = os.getenv("INFLUX_HOST") if os.getenv("INFLUX_HOST") else DB_SERVER_NAME DB_NAME = os.getenv("INFLUX_DB_NAME") if os.getenv("INFLUX_DB_NAME") else DB_INFLUX_NAME def modem_url_request(url='http://192.168.100.1'): """ Makes http request to Arris modem web page. Returns page content """ try: r = requests.get(url).content except: r = 'failed' if r == 'failed': return 'failed' else: return r def parse_html(content): soup = bs(content, 'html.parser') return soup def modem_status_table(table): status_table = table.find_all('table', class_='simpleTable') return status_table def modem_ds_table_rows(data): ds = data[1] ds = ds.find_all('tr')[2:] return ds def modem_us_table_rows(data): us = data[-1].find_all('tr')[2:] return us def strip_table_row_tags(data): channel_data = [] for i in data: row = [td for td in i.stripped_strings] channel_data.append(row) return channel_data def prep_influx_json(ds, us): modem_data = [] DATA_TIME = time.strftime('%Y-%m-%dT%H:%M:%SZ', time.gmtime()) # Downstream Data for row in ds: channel = row[0] power = re.match(MEASURE_RE, row[5]).group(0) snr = re.match(MEASURE_RE, row[6]).group(0) ds_data_power = { 'measurement': 'modem_rf_stats', 'tags': {'direction': 'downstream', 'channel': channel, 'measure': 'power'}, 'time': DATA_TIME, 'fields': {'power': power} } ds_data_snr = { 'measurement': 'modem_rf_stats', 'tags': {'direction': 'downstream', 'channel': channel, 'measure': 'snr'}, 'time': DATA_TIME, 'fields': {'snr': snr} } modem_data.append(ds_data_power) modem_data.append(ds_data_snr) # Upstream Data for row in us: channel = row[0] power = re.match(MEASURE_RE, row[-1]).group(0) us_data = { 'measurement': 'modem_rf_stats', 'tags': {'direction': 'upstream', 'channel': channel, 'measure': 'power'}, 'time': DATA_TIME, 'fields': {'power': power} } modem_data.append(us_data) json_body = json.dumps(modem_data) return json_body def write_influxdb_data(data): client = InfluxDBClient( host=DB_HOST, port=8086, username=DB_USER, password=<PASSWORD>, ssl=True, verify_ssl=TRUST_SSL ) db_write = client.write_points( data, time_precision=None, database=DB_NAME, protocol='json' ) if db_write == True: return True else: return "Error" def main(): """ main program """ req = modem_url_request() if req == 'failed': pass else: html = parse_html(req) data_tables = modem_status_table(html) ds_rows = modem_ds_table_rows(data_tables) us_rows = modem_us_table_rows(data_tables) ds_rows_clean = strip_table_row_tags(ds_rows) us_rows_clean = strip_table_row_tags(us_rows) json_body = prep_influx_json(ds_rows_clean, us_rows_clean) json_body = json.loads(json_body) write_influxdb_data(json_body) if __name__ == '__main__': while True: main() time.sleep(300) ```
{ "source": "jmmiddour/DSPT7-Twitoff", "score": 3 }
#### File: jmmiddour/DSPT7-Twitoff/hello.py ```python from flask import Flask app = Flask(__name__) @app.route('/') # The website for the app. def hello_world(): return 'Hello, World!' @app.route('/new_page') # The website for the app. def new_page(): return 'This is another page' # If you add this, you can run the flask app as: # `python hello.py` in the terminal # This only works well if you have a one file app. # Not useful for multi file being ran as a package. if __name__ == '__main__': app.run(debug=True) # If debug=True it will restart the Flask app automatically # when you save the .py file. ``` #### File: DSPT7-Twitoff/twitoff/app.py ```python from os import getenv from flask import Flask, render_template, request from .db_model import DB, User from .twitter import add_user_tweepy, add_user_history, update_all_users from .predict import predict_user def create_app(): ''' Create and configure an instance of my Flask application ''' app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = getenv('DATABASE_URL') app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False DB.init_app(app) # Connect FLask app to the SQLAlchemy database @app.route('/') # The home page for the app. def root(): # This is the defining the root directory/home page of the app. return render_template('base.html', title='Welcome to TwitOff', users=User.query.all()) @app.route('/user', methods=['POST']) # Adds data from a form to Database @app.route('/user/<name>', methods=['GET']) # Displays data from Database def add_or_update_user(name=None, message=''): name = name or request.values['user_name'] try: if request.method == 'POST': add_user_tweepy(name) message = f'User {name} has successfully been added to the Database!' # This will pull the tweet atributes for the user just specified: tweets = User.query.filter(User.username == name).one().tweet except Exception as e: print(f'Error adding {name}: ERROR = {e}') tweets = [] return render_template('user.html', title=f'User: {name}', tweets=tweets, message=message) @app.route('/compare', methods=['POST']) def compare(message=''): user1 = request.values['user1'] user2 = request.values['user2'] tweet_text = request.values['tweet_text'] if user1 == user2: message = "Can not compare a user to themselves." else: prediction = predict_user(user1, user2, tweet_text) message = f""" @{user1 if prediction else user2} is more likey to tweet this than @{user2 if prediction else user1}. """ return render_template('predict.html', title='Your Prediction', users=User.query.all(), **locals()) @app.route('/reset_my_DB') def reset(): DB.drop_all() DB.create_all() return render_template('base.html', title='Reset Database', message=f'The database has been reset.', users=User.query.all()) @app.route('/update') def update(): update_all_users() return render_template('base.html', title='Updated Tweets', message='All Tweets have been Updated!', users=User.query.all()) return app ## The following code was from module 1 and is no longer needed: # @app.route('/add_user/<username>/<followers>') # # ^-- Will allow to enter information to the route and commit it to the DB. # def add_user(username, followers): # user = User(username=username, followers=followers) # DB.session.add(user) # Adds data to "staging area" to be saved to DB. # DB.session.commit() # Saves new data to the database. # return f'{username} has been added to the Database!' # @app.route('/add_tweet/<user_id>/<tweet>') # def tweet(user_id, tweet): # new_tweet = Tweet(user_id=user_id, tweet=tweet) # DB.session.add(new_tweet) # DB.session.commit() # return f'{tweet} has been added to the DB!' # return app # The code to run this app: # export FLASK_APP=twitoff:APP # ^-- twitoff=directory, APP=defined function in the __init__.py file # flask run ```
{ "source": "jmmiddour/DS-Unit-3-Sprint-2-SQL-and-Databases", "score": 4 }
#### File: DS-Unit-3-Sprint-2-SQL-and-Databases/module1-introduction-to-sql/rpg_queries.py ```python import pandas as pd import sqlite3 # Create a connection to the Database: conn = sqlite3.connect('rpg_db.sqlite3') # Look at the connection to verify it is connected: conn # Create a function to get data from a SQLite Data Base: def get_data(query, conn): ''' This function will retrive the data from a SQLite data base and turn it into a pandas DataFrame for easier readablility and to make it easier to work with. ''' # Instanstiate the cursor object and get the results: cursor = conn.cursor() results = cursor.execute(query).fetchall() # Get the columns from the cursor object: cols = list(map(lambda x: x[0], cursor.description)) # Assign it to a pandas DataFrame: df = pd.DataFrame(data=results, columns=cols) return df # Q1: How many total Characters are there? q1 = get_data('''SELECT COUNT(character_id) as Total_Observations, COUNT(DISTINCT character_id) as Total_Number_of_Charaters FROM charactercreator_character''', conn) print('--> How many total Characters are there?\n', q1, '\n') # Q2: How many of each specific subclass? q2 = get_data('''SELECT COUNT(DISTINCT charact.character_id) AS Total_Characters, COUNT(DISTINCT cleric.character_ptr_id) AS Cleric_Type, COUNT(DISTINCT fighter.character_ptr_id) AS Fighter_Type, COUNT(DISTINCT mage.character_ptr_id) AS Mage_Type, COUNT(DISTINCT thief.character_ptr_id) AS Thief_Type FROM charactercreator_character AS charact LEFT JOIN charactercreator_cleric AS cleric ON cleric.character_ptr_id = charact.character_id LEFT JOIN charactercreator_fighter AS fighter ON fighter.character_ptr_id = charact.character_id LEFT JOIN charactercreator_mage AS mage ON mage.character_ptr_id = charact.character_id LEFT JOIN charactercreator_thief AS thief ON thief.character_ptr_id = charact.character_id ''', conn) print('--> How many of each specific subclass?\n', q2, '\n') # Q3: How many total Items? q3 = get_data('''SELECT COUNT(item_id) as Total_Observations, COUNT(DISTINCT item_id) as Total_Number_of_Items FROM armory_item''', conn) print('--> How many total Items?\n', q3, '\n') # Q4: How many of the Items are weapons? How many are not? q4 = get_data('''SELECT COUNT(arm.item_id) AS Total_Number_of_Items, COUNT(DISTINCT wep.item_ptr_id) AS Total_Weapons, (COUNT(arm.item_id) - COUNT(DISTINCT wep.item_ptr_id)) AS Total_Non_Weapons FROM armory_item AS arm LEFT JOIN armory_weapon AS wep ON arm.item_id = wep.item_ptr_id''', conn) print('--> How many of the Items are weapons? How many are not?\n', q4, '\n') # Q5: How many Items does each character have? (Return first 20 rows) q5 = get_data('''SELECT ch.character_id AS Character_ID, ch.name AS Character_Name, COUNT(DISTINCT inv.item_id) AS Total_Items FROM charactercreator_character AS ch LEFT JOIN charactercreator_character_inventory AS inv ON inv.character_id = ch.character_id GROUP BY Character_Name LIMIT 20''', conn) print('--> How many Items does each\ character have? (Return first 20 rows)\n', q5, '\n') # Q6: How many Weapons does each character have? (Return first 20 rows) q6 = get_data('''SELECT ch.character_id AS Character_ID, ch.name AS Character_Name, COUNT(DISTINCT inv.item_id) AS Total_Items, COUNT(DISTINCT wep.item_ptr_id) AS Total_Weapons FROM charactercreator_character AS ch LEFT JOIN charactercreator_character_inventory AS inv ON inv.character_id = ch.character_id LEFT JOIN armory_item AS arm ON arm.item_id = inv.character_id LEFT JOIN armory_weapon AS wep ON wep.item_ptr_id = arm.item_id GROUP BY Character_Name LIMIT 20''', conn) print('--> How many Weapons does each\ character have? (Return first 20 rows)\n', q6, '\n') # Q7: On average, how many Items does each Character have? q7 = get_data(''' SELECT AVG(Total_Items) AS Average_Items_Per_Character FROM (SELECT ch.character_id AS Character_ID, ch.name AS Character_Name, COUNT(DISTINCT inv.item_id) AS Total_Items FROM charactercreator_character AS ch LEFT JOIN charactercreator_character_inventory AS inv ON inv.character_id = ch.character_id GROUP BY Character_Name);''', conn) print('--> On average, how many Items does each\ Character have?\n', q7, '\n') # Q8: On average, how many Weapons does each character have? q8 = get_data(''' SELECT AVG(Total_Weapons) AS Avgerage_Weapons_Per_Character FROM (SELECT ch.character_id AS Character_ID, ch.name AS Character_Name, COUNT(DISTINCT inv.item_id) AS Total_Items, COUNT(DISTINCT wep.item_ptr_id) AS Total_Weapons FROM charactercreator_character AS ch LEFT JOIN charactercreator_character_inventory AS inv ON inv.character_id = ch.character_id LEFT JOIN armory_item AS arm ON arm.item_id = inv.character_id LEFT JOIN armory_weapon AS wep ON wep.item_ptr_id = arm.item_id GROUP BY Character_Name);''', conn) print('--> On average, how many Weapons does each\ character have?\n', q8) ```
{ "source": "jmmiddour/Lambdata-jmmiddour", "score": 4 }
#### File: Lambdata-jmmiddour/lambdata_jmmiddour/dspt7_utilities.py ```python def get_business_info(business, city, state): ''' This function will scrape the yellowpages website and will return a list of the information, such as name, phone number, street address, city, state, and zip code for those businesses. Parameters: ----------- business : type or name of business city : name of the city where the business is located state : the 2 character abbrivation for the state in which the business is located. Returns: -------- DataFrame with information scraped from the yellowpages website, based on the parameters entered into the function. ''' # Import libraries needed: import pandas as pd import requests from bs4 import BeautifulSoup # Set the url to pull the data from: url = f'https://www.yellowpages.com/search?search_terms={business}&geo_location_terms={city}%2C+{state}&s=distance' # Create a get request: response = requests.get(url) # Check the status code to verify it is 200. This lets you know if there is # an error reaching the website based on the code: if response.status_code == 200: # Use beautiful soup to parse everything: soup = BeautifulSoup(response.content, 'html.parser') # Get the data from the location within the webpage: information = soup.find_all('div', class_="info") data = {'Name': [], 'Phone_No': [], 'Street': [], 'City_State_Zip': []} for info in information: # Get all the attribrutes we need: name = info.find('a', class_="business-name").span name = name.text if name else None phone = info.find('div', class_='phones phone primary') phone = phone.text if phone else None street = info.find('div', class_='street-address') street = street.text if street else None area = info.find('div', class_='locality') area = area.text if area else None # Store the values in a data object: data['Name'].append(name) data['Phone_No'].append(phone) data['Street'].append(street) data['City_State_Zip'].append(area) else: print('There is an error, the website can not be reached.') # Turn data collected into a pandas dataframe: business_info = pd.DataFrame(data, columns=['Name', 'Phone_No', 'Street', 'City_State_Zip']) return business_info # Function #2: def address_split(df, col1, col2): ''' This function will take an address column with the number address and street name and split it into two seperate columns. It will also split a column with city, state, and zip code into 3 seperate columns. Parameters: ----------- df : The name of your DataFrame col1 : The column with the address you want to split. col2 : The column with the city, state, and zip code. Returns: -------- DataFrame with 3 more columns. There will be 5 columns total with address values. Once the columns are split, this function will also remove the original columns. ''' # Split the address column into 2 seperate columns: df[['Address_No', 'Street_Name']] = df[col1].str.split(n=1, expand=True) # Split the city, state, and zip into 3 seperate columns: df[['City', 'State', 'Zip_Code']] = df[col2].str.rsplit(n=2, expand=True) # Remove , from city column: df['City'] = df['City'].str.replace(',', '') # Remove the orginal columns to create a clean dataframe: df.drop(columns=[col1, col2], inplace=True) return df if __name__ == "__main__": df = get_business_info('fast food', 'jacksonville', 'fl') print(f'DataFrame after running function 1:\n', df.head(), '\n') df2 = address_split(df, 'Street', 'City_State_Zip') print(f'DataFrame after running function 2:\n', df2.head()) ```
{ "source": "jmmille/Cardinal", "score": 2 }
#### File: bin/scout-cli/scout_ssid.py ```python import scout_auth import scout_env import time # SCOUT SSID COMMAND FUNCTIONS def scoutCreateSsid24(ip, username, password, ssid, wpa2Pass, vlan, bridgeGroup, radioSub, gigaSub): """Function that deploys a 2.4GHz SSID to an AP using user provided arguments. """ scoutSsh = scout_auth.sshInfo(ip=ip, username=username, password=password) jinjaEnv = scout_env.scoutJinjaEnv() commandDebug = scout_env.scoutEnv() ssid = ssid wpa2Pass = wpa2Pass vlan = vlan bridgeGroup = bridgeGroup radioSub = radioSub gigaSub = gigaSub cmdTemplate = jinjaEnv.get_template("scout_create_ssid_24") cmds = cmdTemplate.render(password=password,ssid=ssid,wpa2Pass=wpa2Pass,vlan=vlan,bridgeGroup=bridgeGroup,radioSub=radioSub,gigaSub=gigaSub) scoutCommands = cmds.splitlines() channel = scoutSsh.invoke_shell() print("INFO: Deploying 2.4GHz SSID {0} to {1}...".format(ssid,ip)) for command in scoutCommands: channel.send('{}\n'.format(command)) if commandDebug == "on": commands = channel.recv(65535) print(commands) time.sleep(.10) scoutSsh.close() def scoutCreateSsid5(ip, username, password, ssid, wpa2Pass, vlan, bridgeGroup, radioSub, gigaSub): """Function that deploys a 5GHz SSID to an AP using user provided arguments. """ scoutSsh = scout_auth.sshInfo(ip=ip, username=username, password=password) jinjaEnv = scout_env.scoutJinjaEnv() commandDebug = scout_env.scoutEnv() ssid = ssid wpa2Pass = wpa2Pass vlan = vlan bridgeGroup = bridgeGroup radioSub = radioSub gigaSub = gigaSub cmdTemplate = jinjaEnv.get_template("scout_create_ssid_5") cmds = cmdTemplate.render(password=password,ssid=ssid,wpa2Pass=wpa2Pass,vlan=vlan,bridgeGroup=bridgeGroup,radioSub=radioSub,gigaSub=gigaSub) scoutCommands = cmds.splitlines() channel = scoutSsh.invoke_shell() print("INFO: Deploying 5GHz SSID {0} to {1}...".format(ssid,ip)) for command in scoutCommands: channel.send('{}\n'.format(command)) if commandDebug == "on": commands = channel.recv(65535) print(commands) time.sleep(.10) scoutSsh.close() def scoutCreateSsid24Radius(ip, username, password, ssid, vlan, bridgeGroup, radioSub, gigaSub, radiusIp, sharedSecret, authPort, acctPort, radiusTimeout, radiusGroup, methodList): """Function that deploys a 2.4GHz 802.1x SSID to an AP using user provided arguments. """ scoutSsh = scout_auth.sshInfo(ip=ip, username=username, password=password) jinjaEnv = scout_env.scoutJinjaEnv() commandDebug = scout_env.scoutEnv() ssid = ssid vlan = vlan bridgeGroup = bridgeGroup radioSub = radioSub gigaSub = gigaSub radiusIp = radiusIp sharedSecret = sharedSecret authPort = authPort acctPort = acctPort radiusTimeout = radiusTimeout radiusGroup = radiusGroup methodList = methodList cmdTemplate = jinjaEnv.get_template("scout_create_radius_ssid_24") cmds = cmdTemplate.render(password=password,ssid=ssid,vlan=vlan,bridgeGroup=bridgeGroup,radioSub=radioSub,gigaSub=gigaSub,radiusIp=radiusIp,sharedSecret=sharedSecret,authPort=authPort,acctPort=acctPort,radiusTimeout=radiusTimeout,radiusGroup=radiusGroup,methodList=methodList) scoutCommands = cmds.splitlines() channel = scoutSsh.invoke_shell() print("INFO: Deploying 2.4GHz RADIUS SSID {0} to {1}...".format(ssid,ip)) for command in scoutCommands: channel.send('{}\n'.format(command)) if commandDebug == "on": commands = channel.recv(65535) print(commands) time.sleep(.10) scoutSsh.close() def scoutCreateSsid5Radius(ip, username, password, ssid, vlan, bridgeGroup, radioSub, gigaSub, radiusIp, sharedSecret, authPort, acctPort, radiusTimeout, radiusGroup, methodList): """Function that deploys a 5GHz 802.1x SSID to an AP using user provided arguments. """ scoutSsh = scout_auth.sshInfo(ip=ip,username=username,password=password) jinjaEnv = scout_env.scoutJinjaEnv() commandDebug = scout_env.scoutEnv() ssid = ssid vlan = vlan bridgeGroup = bridgeGroup radioSub = radioSub gigaSub = gigaSub radiusIp = radiusIp sharedSecret = sharedSecret authPort = authPort acctPort = acctPort radiusTimeout = radiusTimeout radiusGroup = radiusGroup methodList = methodList cmdTemplate = jinjaEnv.get_template("scout_create_radius_ssid_5") cmds = cmdTemplate.render(password=password,ssid=ssid,vlan=vlan,bridgeGroup=bridgeGroup,radioSub=radioSub,gigaSub=gigaSub,radiusIp=radiusIp,sharedSecret=sharedSecret,authPort=authPort,acctPort=acctPort,radiusTimeout=radiusTimeout,radiusGroup=radiusGroup,methodList=methodList) scoutCommands = cmds.splitlines() channel = scoutSsh.invoke_shell() print("INFO: Deploying 5GHz RADIUS SSID {0} to {1}...".format(ssid,ip)) for command in scoutCommands: channel.send('{}\n'.format(command)) if commandDebug == "on": commands = channel.recv(65535) print(commands) time.sleep(.10) scoutSsh.close() def scoutDeleteSsid24(ip, username, password, ssid, vlan, radioSub, gigaSub): """Function that deletes an existing 2.4GHz SSID from an AP. """ scoutSsh = scout_auth.sshInfo(ip=ip, username=username, password=password) jinjaEnv = scout_env.scoutJinjaEnv() commandDebug = scout_env.scoutEnv() ssid = ssid vlan = vlan radioSub = radioSub gigaSub = gigaSub cmdTemplate = jinjaEnv.get_template("scout_delete_ssid_24") cmds = cmdTemplate.render(password=password,ssid=ssid,vlan=vlan,radioSub=radioSub,gigaSub=gigaSub) scoutCommands = cmds.splitlines() channel = scoutSsh.invoke_shell() print("INFO: Removing 2.4GHz SSID {0} from {1}...".format(ssid,ip)) for command in scoutCommands: channel.send('{}\n'.format(command)) if commandDebug == "on": commands = channel.recv(65535) print(commands) time.sleep(.10) scoutSsh.close() def scoutDeleteSsid5(ip, username, password, ssid, vlan, radioSub, gigaSub): """Function that deletes an existing 5GHz SSID from an AP. """ scoutSsh = scout_auth.sshInfo(ip=ip, username=username, password=password) jinjaEnv = scout_env.scoutJinjaEnv() commandDebug = scout_env.scoutEnv() ssid = ssid vlan = vlan radioSub = radioSub gigaSub = gigaSub cmdTemplate = jinjaEnv.get_template("scout_delete_ssid_5") cmds = cmdTemplate.render(password=password,ssid=ssid,vlan=vlan,radioSub=radioSub,gigaSub=gigaSub) scoutCommands = cmds.splitlines() channel = scoutSsh.invoke_shell() print("INFO: Removing 5GHz SSID {0} from {1}...".format(ssid,ip)) for command in scoutCommands: channel.send('{}\n'.format(command)) if commandDebug == "on": commands = channel.recv(65535) print(commands) time.sleep(.10) scoutSsh.close() ```
{ "source": "jmmille/pork-chop", "score": 3 }
#### File: pork-chop/modules/stonks.py ```python import requests import re import json #from bs4 import BeautifulSoup def stonks_handler(message): '''Pork Chop gives you stock info by scraping yahoo finance''' url = 'https://finance.yahoo.com/quote/' symbol = message.split()[1] if symbol: url += symbol else: return '!stonks <symbol>' response = requests.get(url) if url != response.url: return 'Could not get ' + symbol + ' price' stock_html = response.text price = re.search(r'regularMarketPrice.*?({.*?})', stock_html) change = re.search(r'regularMarketChangePercent.*?({.*?})', stock_html) if price: price = json.loads(price.group(1))['raw'] change = json.loads(change.group(1))['raw'] reply = '$' + str(price) + ' / ' + ('' if change < 0 else '+') + '{:.2f}'.format(change) + '%' if change < 0: return reply + ' 📉' return reply + ' 📈' return 'Could not get ' + symbol + ' price' ``` #### File: pork-chop/modules/turn.py ```python import json def turn_handler(message): message = message.strip().split() if len(message) > 1: # list turns if message[1] == 'list': return turnList() # turn a user writeTurn(message[1:]) return f"{''.join(message[1:])} got turned." return "specify a user with !turn <user> or use !turn list" def writeTurn(user): user = ' '.join(user).lower() with open('data/turnHistory.json', 'r') as f: history = json.load(f) if user in history: history[user] = int(history[user]) + 1 else: history[user] = '1' with open('data/turnHistory.json', 'w') as f: json.dump(history, f) def turnList(): with open('data/turnHistory.json', 'r') as f: history = json.load(f) return "\n".join( f"{name} {num}" for name, num in history.items()) ```
{ "source": "JMMirza/MovieRecomSys", "score": 3 }
#### File: JMMirza/MovieRecomSys/movie_recommendation.py ```python import pandas as pd import numpy as np import sys from scipy.sparse import csr_matrix from sklearn.neighbors import NearestNeighbors import matplotlib.pyplot as plt import seaborn as sns movies = pd.read_csv("movies.csv") ratings = pd.read_csv("ratings.csv") movies = pd.read_csv("movies.csv") ratings = pd.read_csv("ratings.csv") ratings.head() """# movies.head()""" final_dataset = ratings.pivot(index='movieId',columns='userId',values='rating') final_dataset.head() final_dataset.fillna(0,inplace=True) final_dataset.head() no_user_voted = ratings.groupby('movieId')['rating'].agg('count') no_movies_voted = ratings.groupby('userId')['rating'].agg('count') no_user_voted = ratings.groupby('movieId')['rating'].agg('count') no_movies_voted = ratings.groupby('userId')['rating'].agg('count') f,ax = plt.subplots(1,1,figsize=(16,4)) # ratings['rating'].plot(kind='hist') plt.scatter(no_user_voted.index,no_user_voted,color='mediumseagreen') plt.axhline(y=10,color='r') plt.xlabel('MovieId') plt.ylabel('No. of users voted') # plt.show() final_dataset = final_dataset.loc[no_user_voted[no_user_voted > 10].index,:] f,ax = plt.subplots(1,1,figsize=(16,4)) plt.scatter(no_movies_voted.index,no_movies_voted,color='mediumseagreen') plt.axhline(y=50,color='r') plt.xlabel('UserId') plt.ylabel('No. of votes by user') # plt.show() final_dataset=final_dataset.loc[:,no_movies_voted[no_movies_voted > 50].index] final_dataset sample = np.array([[0,0,3,0,0],[4,0,0,0,2],[0,0,0,0,1]]) sparsity = 1.0 - ( np.count_nonzero(sample) / float(sample.size) ) # print(sparsity) csr_sample = csr_matrix(sample) # print(csr_sample) csr_data = csr_matrix(final_dataset.values) final_dataset.reset_index(inplace=True) knn = NearestNeighbors(metric='cosine', algorithm='brute', n_neighbors=20, n_jobs=-1) knn = NearestNeighbors(metric='cosine', algorithm='brute', n_neighbors=20, n_jobs=-1) knn.fit(csr_data) # def get_movie_recommendation(movie_name): def get_movie_recommendation(movie_name): n_movies_to_reccomend = 10 movie_list = movies[movies['title'].str.contains(movie_name)] if len(movie_list): movie_idx= movie_list.iloc[0]['movieId'] movie_idx = final_dataset[final_dataset['movieId'] == movie_idx].index[0] distances , indices = knn.kneighbors(csr_data[movie_idx],n_neighbors=n_movies_to_reccomend+1) rec_movie_indices = sorted(list(zip(indices.squeeze().tolist(),distances.squeeze().tolist())),\ key=lambda x: x[1])[:0:-1] recommend_frame = [] for val in rec_movie_indices: movie_idx = final_dataset.iloc[val[0]]['movieId'] idx = movies[movies['movieId'] == movie_idx].index recommend_frame.append({'Title':movies.iloc[idx]['title'].values[0],'Distance':val[1]}) df = pd.DataFrame(recommend_frame,index=range(1,n_movies_to_reccomend+1)) print(df) else: print ("No movies found. Please check your input") get_movie_recommendation(sys.argv[1]) # get_movie_recommendation('Memento') ```
{ "source": "jmmjsolutions/covid19-au-nsw", "score": 2 }
#### File: covid19-au-nsw/application/assets.py ```python from flask_assets import Environment, Bundle def compile_assets(app): """Configure & compile asset bundles.""" assets = Environment(app) # ToDo ``` #### File: covid19-au-nsw/scripts/get_lga_geojson.py ```python import os.path import urllib import json from geojson_precision import coord_precision as process_features NSW_LGA_GEOJSON_URL = "https://data.gov.au/geoserver/nsw-local-government-areas/wfs?request=GetFeature&typeName=ckan_f6a00643_1842_48cd_9c2f_df23a3a1dc1e&outputFormat=json" def get_lga_geojson(): """Load NSW Local Govt Area boundaries. Download from data.gov.au if file does not exist. Return geojson object.""" import json lga_path = "data/nsw-lga.geojson" lga_exists = False # Check if there is a downloaded copy of NSW LGA Geojson data if not os.path.isfile(lga_path): try: print("Download NSW LGA dataset %s...", (NSW_LGA_GEOJSON_URL,)) req = urllib.request.urlopen(NSW_LGA_GEOJSON_URL) CHUNK = 256 * 10240 with open(lga_path, "wb") as fp: while True: chunk = req.read(CHUNK) if not chunk: break fp.write(chunk) except Exception as e: # Download failed, not the end of the world, # so return an empty features list return [] # Open LGA GeoJson file and load data lga_path = "data/nsw-lga-6dp.geojson" with open(lga_path) as f: geojson = json.load(f) return geojson["features"] if __name__ == "__main__": lga_geojson = get_lga_geojson() print( json.dumps( { "type": "FeatureCollection", "features": list(process_features(lga_geojson, 6)), } ) ) ``` #### File: jmmjsolutions/covid19-au-nsw/wsgi.py ```python from application import create_app app = create_app() def main(): app.run(host='0.0.0.0', port=5100, debug=True) if __name__ == "__main__": main() ```
{ "source": "jmmjsolutions/fixerio_for_pdr", "score": 2 }
#### File: fixerio_for_pdr/tests/test_fixer_for_pdr_base.py ```python import os from datetime import datetime, timedelta import pandas as pd import pytest from fixerio_for_pdr import Fixer TEST_API_KEY = "af3f0000fffefddc5d48f5879c0fefe" # Not a real key TEST_ENV_API_KEY = os.getenv("FIXERIO_API_KEY") class TestFixerBase(object): @classmethod def setup_class(cls): pass @pytest.mark.skipif( TEST_ENV_API_KEY is not None, reason="The environment variable FIXERIO_API_KEY is set, so Fixer would use it as the api key.", ) def test_fixer_raises_exception_on_missing_api_key(self): """ GIVEN the fixerio api key is not set in the environment or passed as a parameter WHEN creating a Fixer instance THEN the ValueError exception must be raised """ with pytest.raises(ValueError): fixer = Fixer() def test_fixer_uses_api_key_from_env(self): """ GIVEN the fixerio api key is set in the environment variable FIXERIO_API_KEY WHEN creating a Fixer instance THEN a Fixer instance will be created """ os.environ["FIXERIO_API_KEY"] = TEST_API_KEY fixer = Fixer() assert fixer.api_key == TEST_API_KEY def test_fixer_uses_api_key_variable(self): """ GIVEN the fixerio api key passed as a keyword argument WHEN creating a Fixer instance THEN a Fixer instance will be created """ fixer = Fixer(api_key=TEST_API_KEY) assert fixer.api_key == TEST_API_KEY def test_fixer_sets_base_url(self): """ GIVEN the fixerio api key passed as a keyword argument WHEN creating a Fixer instance THEN a Fixer instance url property equals the fixer.io data api url """ fixer = Fixer() assert fixer.url == "http://data.fixer.io/api/" def test_fixer_sets_start_date_to_today(self): """ GIVEN no start date WHEN creating a Fixer instance THEN the Fixer instance start date property equals UTC today """ fixer = Fixer() assert fixer.start == datetime.utcnow().date() def test_fixer_sets_start_date_to_start_parameter(self): """ GIVEN a start date WHEN creating a Fixer instance THEN the Fixer instance start date property equals the supplied start date """ start_date = datetime.utcnow().date() - timedelta(days=5) fixer = Fixer(start=start_date) assert fixer.start == start_date ```
{ "source": "jmmk/boxes", "score": 3 }
#### File: jmmk/boxes/boxes.py ```python from PySide import QtCore, QtGui import ConfigParser import keybinder import signal import sys import os from windows import WindowHelper CONFIG = os.path.expanduser('~/.boxes') DEFAULTS = { 'grid_columns': 8, 'grid_rows': 4, 'hotkey': 'Alt+R', 'background_color': 'rgba(75, 77, 81, 255)', 'box_background_color': 'rgba(100, 106, 116, 204)', 'selected_box_background_color': 'rgba(50, 53, 58, 204)' } class SelectionGrid(QtGui.QFrame): reset_grid = QtCore.Signal() highlight_selection = QtCore.Signal() def __init__(self, desktop): super(SelectionGrid, self).__init__() dimensions = desktop.availableGeometry() self.screen_width = dimensions.width() self.screen_height = dimensions.height() self.windows = WindowHelper() self.load_config() keybinder.bind(self.settings['hotkey'], self.toggle) self.construct_grid() self.init_grid_ui() def construct_grid(self): self.grid = QtGui.QGridLayout(self) for i in range(1, self.settings['grid_rows'] + 1): for j in range(1, self.settings['grid_columns'] + 1): grid_box = GridBox(self, i, j) self.grid.addWidget(grid_box, i, j) def mousePressEvent(self, event): if event.button() == QtCore.Qt.LeftButton: grid_box = self.childAt(event.x(), event.y()) color = self.settings['selected_box_background_color'] grid_box.setStyleSheet('background-color: {color};border:none;'.format(color=color)) row, col = self.get_box_position(grid_box) self.current_selection = { 'start_row': row, 'start_col': col } def mouseReleaseEvent(self, event): if event.button() == QtCore.Qt.LeftButton: self.windows.resize_window(*self.calculate_resize()) self.hide() self.reset_grid.emit() def mouseMoveEvent(self, event): if event.buttons() & QtCore.Qt.LeftButton: grid_box = self.childAt(event.x(), event.y()) if grid_box: row, col = self.get_box_position(grid_box) self.current_selection['outer_x'] = col self.current_selection['outer_y'] = row self.highlight_selection.emit() def calculate_resize(self): y1 = self.current_selection['start_row'] y2 = self.current_selection['outer_y'] x1 = self.current_selection['start_col'] x2 = self.current_selection['outer_x'] start_x, end_x = sorted((x1, x2)) start_y, end_y = sorted((y1, y2)) box_size_x = self.screen_width / self.settings['grid_columns'] box_size_y = self.screen_height / self.settings['grid_rows'] x_pos = (start_x - 1) * box_size_x y_pos = (start_y - 1) * box_size_y size_x = box_size_x * (end_x - start_x + 1) size_y = box_size_y * (end_y - start_y + 1) return (self.active_window_id, x_pos, y_pos, size_x, size_y) def get_box_position(self, grid_box): index = self.grid.indexOf(grid_box) row, col, __, __ = self.grid.getItemPosition(index) return (row, col) def init_grid_ui(self): w = self.settings['grid_window_width'] h = self.settings['grid_window_height'] x = (self.screen_width - w) / 2 y = (self.screen_height - h) / 2 self.setGeometry(x, y, w, h) self.setWindowTitle('boxes') self.setWindowFlags(QtCore.Qt.FramelessWindowHint) color = self.settings['background_color'] self.setStyleSheet( 'background-color: {color};' 'border-radius: 5px;' .format(color=color) ) def show_grid(self): self.active_window_id = self.windows.get_active_window() self.show() def toggle(self): if self.isVisible(): self.hide() else: self.show_grid() def load_config(self): self.settings = DEFAULTS self.settings['grid_window_width'] = self.screen_width / 3.5 self.settings['grid_window_height'] = self.screen_height / 3.5 if os.path.isfile(CONFIG): cfg = ConfigParser.ConfigParser() with open(CONFIG) as f: cfg.readfp(f) for option in self.settings: method = 'getint' if type(self.settings[option]) == int else 'get' try: self.settings[option] = getattr(cfg, method)('Grid', option) except: continue class GridBox(QtGui.QFrame): def __init__(self, parent, row, col): super(GridBox, self).__init__(parent) parent.reset_grid.connect(self.reset_defaults) parent.highlight_selection.connect(self.on_selection_update) self.row = row self.col = col self.bg_color = parent.settings['box_background_color'] self.selected_bg_color = parent.settings['selected_box_background_color'] self.parent = parent self.setFrameShape(QtGui.QFrame.StyledPanel) self.setStyleSheet('background-color: {color};border:none;'.format(color=self.bg_color)) def reset_defaults(self): self.setStyleSheet('background-color: {color};border:none;'.format(color=self.bg_color)) def on_selection_update(self): start_x = self.parent.current_selection['start_col'] start_y = self.parent.current_selection['start_row'] outer_x = self.parent.current_selection['outer_x'] outer_y = self.parent.current_selection['outer_y'] x_bounds = sorted((start_x, outer_x)) y_bounds = sorted((start_y, outer_y)) selected_x = x_bounds[0] <= self.col <= x_bounds[1] selected_y = y_bounds[0] <= self.row <= y_bounds[1] if selected_x and selected_y: self.setStyleSheet('background-color: {color};border:none;'.format(color=self.selected_bg_color)) else: self.reset_defaults() def main(): signal.signal(signal.SIGINT, signal.SIG_DFL) app = QtGui.QApplication([]) desktop = app.desktop() grid = SelectionGrid(desktop) sys.exit(app.exec_()) if __name__ == '__main__': main() ```
{ "source": "jmmL/misc", "score": 4 }
#### File: jmmL/misc/credit_card_validator.py ```python import unittest class MyCreditCardTests(unittest.TestCase): def test_bad_sum(self): self.assertFalse(credit_card_check("2768 3424 2345 2358")) def test_invalid_format(self): self.assertFalse(credit_card_check("0000000000000000")) self.assertFalse(credit_card_check("1876 0954 325009182")) self.assertFalse(credit_card_check(" 5555 5555 5555 5555")) self.assertFalse(credit_card_check("0000 0000 0000 000")) self.assertFalse(credit_card_check("")) self.assertFalse(credit_card_check("0000 0000")) self.assertFalse(credit_card_check("0123 4567 89AB EFGH")) self.assertFalse(credit_card_check("0000 000000000000")) self.assertFalse(credit_card_check(9384349532970121)) def test_true_cards(self): self.assertTrue(credit_card_check("9384 3495 3297 0121")) self.assertTrue(credit_card_check("0123 4567 8902 4568")) def check_length(card_number): """ Checks that the length of the str card_number is 19 exactly :param card_number: str :return: bool """ if len(card_number) == 19: return True else: return False def check_digits(card_number): """ Checks that the first 4 chars of the str card_number are digits followed by the 5th char being a space, and so on. Returns True if these conditions are met, and otherwise returns False :param card_number: str :return: bool """ for i in range(0, len(card_number)): # The first 4 chars must be digits (and so on) if (i + 1) % 5 > 0 and not card_number[i].isdigit(): print("Char wasn't a digit") return False # Every 5th char must be a space elif (i + 1) % 5 == 0 and not card_number[i].isspace(): print("Char wasn't a space") return False else: return True def check_sum(card_number): """ This function will return true if the sum of all digits in the string card_number is evenly divisible by a magic_number, 10 :param card_number: str :return: bool """ total = 0 magic_number = 10 for i in range(0, len(card_number)): if card_number[i].isdigit(): total += int(card_number[i]) # If the sum of all digits is evenly divisible by 10 (the magic number), then return True, else return False if total % magic_number == 0: return True else: print("Sum was not evenly divisible by %i (total: %s)" % (magic_number, total)) return False def credit_card_check(card_number): """ Validates card numbers to ensure they are of the form "#### #### #### ####" where each # is a digit and the sum of all digits is divisible evenly by 10 :param card_number: str :return: bool """ # Check that we've been given a card number in the right type (a string) if type(card_number) is not str: return False else: return check_length(card_number) and check_digits(card_number) and check_sum(card_number) def main(): print(credit_card_check("9384 3495 3297 0121")) if __name__ == "__main__": main() ```
{ "source": "jmm-montiel/Auto-PyTorch", "score": 2 }
#### File: components/lr_scheduler/lr_schedulers.py ```python from autoPyTorch.utils.config_space_hyperparameter import add_hyperparameter, get_hyperparameter import numpy as np import math import torch import torch.optim.lr_scheduler as lr_scheduler from torch.optim import Optimizer import ConfigSpace as CS import ConfigSpace.hyperparameters as CSH __author__ = "<NAME>, <NAME> and <NAME>" __version__ = "0.0.1" __license__ = "BSD" class AutoNetLearningRateSchedulerBase(object): def __new__(cls, optimizer, config): """Get a new instance of the scheduler Arguments: cls {class} -- Type of scheduler optimizer {Optmizer} -- A PyTorch Optimizer config {dict} -- Sampled lr_scheduler config Returns: AutoNetLearningRateSchedulerBase -- The learning rate scheduler object """ scheduler = cls._get_scheduler(cls, optimizer, config) if not hasattr(scheduler, "allows_early_stopping"): scheduler.allows_early_stopping = True if not hasattr(scheduler, "snapshot_before_restart"): scheduler.snapshot_before_restart = False return scheduler def _get_scheduler(self, optimizer, config): raise ValueError('Override the method _get_scheduler and do not call the base class implementation') @staticmethod def get_config_space(): return CS.ConfigurationSpace() class SchedulerNone(AutoNetLearningRateSchedulerBase): def _get_scheduler(self, optimizer, config): return NoScheduling(optimizer=optimizer) class SchedulerStepLR(AutoNetLearningRateSchedulerBase): """ Step learning rate scheduler """ def _get_scheduler(self, optimizer, config): return lr_scheduler.StepLR(optimizer=optimizer, step_size=config['step_size'], gamma=config['gamma'], last_epoch=-1) @staticmethod def get_config_space( step_size=(1, 10), gamma=(0.001, 0.9) ): cs = CS.ConfigurationSpace() add_hyperparameter(cs, CSH.UniformIntegerHyperparameter, 'step_size', step_size) add_hyperparameter(cs, CSH.UniformFloatHyperparameter, 'gamma', gamma) return cs class SchedulerExponentialLR(AutoNetLearningRateSchedulerBase): """ Exponential learning rate scheduler """ def _get_scheduler(self, optimizer, config): return lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=config['gamma'], last_epoch=-1) @staticmethod def get_config_space( gamma=(0.8, 0.9999) ): cs = CS.ConfigurationSpace() add_hyperparameter(cs, CSH.UniformFloatHyperparameter, 'gamma', gamma) return cs class SchedulerReduceLROnPlateau(AutoNetLearningRateSchedulerBase): """ Reduce LR on plateau learning rate scheduler """ def _get_scheduler(self, optimizer, config): return lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, factor=config['factor'], patience=config['patience']) @staticmethod def get_config_space( factor=(0.05, 0.5), patience=(3, 10) ): cs = CS.ConfigurationSpace() add_hyperparameter(cs, CSH.UniformFloatHyperparameter, 'factor', factor) add_hyperparameter(cs, CSH.UniformIntegerHyperparameter, 'patience', patience) return cs class SchedulerAdaptiveLR(AutoNetLearningRateSchedulerBase): """ Adaptive cosine learning rate scheduler """ def _get_scheduler(self, optimizer, config): return AdaptiveLR(optimizer=optimizer, T_max=config['T_max'], T_mul=config['T_mult'], patience=config['patience'], threshold=config['threshold']) @staticmethod def get_config_space( T_max=(300,1000), patience=(2,5), T_mult=(1.0,2.0), threshold=(0.001, 0.5) ): cs = CS.ConfigurationSpace() add_hyperparameter(cs, CSH.UniformIntegerHyperparameter, 'T_max', T_max) add_hyperparameter(cs, CSH.UniformIntegerHyperparameter, 'patience', patience) add_hyperparameter(cs, CSH.UniformFloatHyperparameter, 'T_mult', T_mult) add_hyperparameter(cs, CSH.UniformFloatHyperparameter, 'threshold', threshold) return cs class AdaptiveLR(object): def __init__(self, optimizer, mode='min', T_max=30, T_mul=2.0, eta_min=0, patience=3, threshold=0.1, min_lr=0, eps=1e-8, last_epoch=-1): if not isinstance(optimizer, Optimizer): raise TypeError('{} is not an Optimizer'.format( type(optimizer).__name__)) self.optimizer = optimizer if last_epoch == -1: for group in optimizer.param_groups: group.setdefault('initial_lr', group['lr']) else: for i, group in enumerate(optimizer.param_groups): if 'initial_lr' not in group: raise KeyError("param 'initial_lr' is not specified " "in param_groups[{}] when resuming an optimizer".format(i)) self.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups)) self.last_epoch = last_epoch if isinstance(min_lr, list) or isinstance(min_lr, tuple): if len(min_lr) != len(optimizer.param_groups): raise ValueError("expected {} min_lrs, got {}".format( len(optimizer.param_groups), len(min_lr))) self.min_lrs = list(min_lr) else: self.min_lrs = [min_lr] * len(optimizer.param_groups) self.T_max = T_max self.T_mul = T_mul self.eta_min = eta_min self.current_base_lrs = self.base_lrs self.metric_values = [] self.threshold = threshold self.patience = patience self.steps = 0 def step(self, metrics, epoch=None): if epoch is None: epoch = self.last_epoch + 1 self.last_epoch = epoch self.metric_values.append(metrics) if len(self.metric_values) > self.patience: self.metric_values = self.metric_values[1:] if max(self.metric_values) - metrics > self.threshold: self.current_base_lrs = self.get_lr() self.steps = 0 else: self.steps += 1 self.last_metric_value = metrics for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()): param_group['lr'] = lr def get_lr(self): ''' Override this method to the existing get_lr() of the parent class ''' if self.steps >= self.T_max: self.T_max = self.T_max * self.T_mul self.current_base_lrs = self.base_lrs self.metric_values = [] self.steps = 0 return [self.eta_min + (base_lr - self.eta_min) * (1 + math.cos(math.pi * self.steps / self.T_max)) / 2 for base_lr in self.current_base_lrs] class SchedulerCyclicLR(AutoNetLearningRateSchedulerBase): """ Cyclic learning rate scheduler """ def _get_scheduler(self, optimizer, config): maf = config['max_factor'] mif = config['min_factor'] cl = config['cycle_length'] r = maf - mif def l(epoch): if int(epoch//cl) % 2 == 1: lr = mif + (r * (float(epoch % cl)/float(cl))) else: lr = maf - (r * (float(epoch % cl)/float(cl))) return lr return lr_scheduler.LambdaLR(optimizer=optimizer, lr_lambda=l, last_epoch=-1) @staticmethod def get_config_space( max_factor=(1.0, 2), min_factor=(0.001, 1.0), cycle_length=(3, 10) ): cs = CS.ConfigurationSpace() add_hyperparameter(cs, CSH.UniformFloatHyperparameter, 'max_factor', max_factor) add_hyperparameter(cs, CSH.UniformFloatHyperparameter, 'min_factor', min_factor) add_hyperparameter(cs, CSH.UniformIntegerHyperparameter, 'cycle_length', cycle_length) return cs class SchedulerCosineAnnealingWithRestartsLR(AutoNetLearningRateSchedulerBase): """ Cosine annealing learning rate scheduler with warm restarts """ def _get_scheduler(self, optimizer, config): scheduler = CosineAnnealingWithRestartsLR(optimizer, T_max=config['T_max'], T_mult=config['T_mult'],last_epoch=-1) scheduler.allows_early_stopping = False scheduler.snapshot_before_restart = True return scheduler @staticmethod def get_config_space( T_max=(1, 20), T_mult=(1.0, 2.0) ): cs = CS.ConfigurationSpace() add_hyperparameter(cs, CSH.UniformIntegerHyperparameter, 'T_max', T_max) add_hyperparameter(cs, CSH.UniformFloatHyperparameter, 'T_mult', T_mult) return cs class NoScheduling(): def __init__(self, optimizer): self.optimizer = optimizer def step(self, epoch): return def get_lr(self): try: return [self.optimizer.defaults["lr"]] except: return [None] class CosineAnnealingWithRestartsLR(torch.optim.lr_scheduler._LRScheduler): r"""Copyright: pytorch Set the learning rate of each parameter group using a cosine annealing schedule, where :math:`\eta_{max}` is set to the initial lr and :math:`T_{cur}` is the number of epochs since the last restart in SGDR: .. math:: \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})(1 + \cos(\frac{T_{cur}}{T_{max}}\pi)) When last_epoch=-1, sets initial lr as lr. It has been proposed in `SGDR: Stochastic Gradient Descent with Warm Restarts`_. This implements the cosine annealing part of SGDR, the restarts and number of iterations multiplier. Args: optimizer (Optimizer): Wrapped optimizer. T_max (int): Maximum number of iterations. T_mult (float): Multiply T_max by this number after each restart. Default: 1. eta_min (float): Minimum learning rate. Default: 0. last_epoch (int): The index of last epoch. Default: -1. .. _SGDR\: Stochastic Gradient Descent with Warm Restarts: https://arxiv.org/abs/1608.03983 """ def __init__(self, optimizer, T_max, eta_min=0, last_epoch=-1, T_mult=1): self.T_max = T_max self.T_mult = T_mult self.restart_every = T_max self.eta_min = eta_min self.restarts = 0 self.restarted_at = 0 super().__init__(optimizer, last_epoch) def restart(self): self.restart_every *= self.T_mult self.restarted_at = self.last_epoch def cosine(self, base_lr): return self.eta_min + (base_lr - self.eta_min) * (1 + math.cos(math.pi * self.step_n / self.restart_every)) / 2 @property def step_n(self): return self.last_epoch - self.restarted_at def get_lr(self): if self.step_n >= self.restart_every: self.restart() return [self.cosine(base_lr) for base_lr in self.base_lrs] def needs_checkpoint(self): return self.step_n + 1 >= self.restart_every class SchedulerAlternatingCosineLR(AutoNetLearningRateSchedulerBase): """ Alternating cosine learning rate scheduler """ def _get_scheduler(self, optimizer, config): scheduler = AlternatingCosineLR(optimizer, T_max=config['T_max'], T_mul=config['T_mult'], amplitude_reduction=config['amp_reduction'], last_epoch=-1) return scheduler @staticmethod def get_config_space( T_max=(1, 20), T_mult=(1.0, 2.0), amp_reduction=(0.1,1) ): cs = CS.ConfigurationSpace() add_hyperparameter(cs, CSH.UniformIntegerHyperparameter, 'T_max', T_max) add_hyperparameter(cs, CSH.UniformFloatHyperparameter, 'T_mult', T_mult) add_hyperparameter(cs, CSH.UniformFloatHyperparameter, 'amp_reduction', amp_reduction) return cs class AlternatingCosineLR(torch.optim.lr_scheduler._LRScheduler): def __init__(self, optimizer, T_max, T_mul=1, amplitude_reduction=0.9, eta_min=0, last_epoch=-1): ''' Here last_epoch actually means last_step since the learning rate is decayed after each batch step. ''' self.T_max = T_max self.T_mul = T_mul self.eta_min = eta_min self.cumulative_time = 0 self.amplitude_mult = amplitude_reduction self.base_lr_mult = 1 self.frequency_mult = 1 self.time_offset = 0 self.last_step = 0 super(AlternatingCosineLR, self).__init__(optimizer, last_epoch) def get_lr(self): ''' Override this method to the existing get_lr() of the parent class ''' if self.last_epoch >= self.T_max: self.T_max = self.T_max * self.T_mul self.time_offset = self.T_max / 2 self.last_epoch = 0 self.base_lr_mult *= self.amplitude_mult self.frequency_mult = 2 self.cumulative_time = 0 return [self.eta_min + (base_lr * self.base_lr_mult - self.eta_min) * (1 + math.cos(math.pi * (self.time_offset + self.cumulative_time) / self.T_max * self.frequency_mult)) / 2 for base_lr in self.base_lrs] ``` #### File: pipeline/nodes/ensemble.py ```python __author__ = "<NAME>, <NAME> and <NAME>" __version__ = "0.0.1" __license__ = "BSD" import os from autoPyTorch.pipeline.base.pipeline_node import PipelineNode from autoPyTorch.utils.config.config_option import ConfigOption from autoPyTorch.pipeline.nodes.metric_selector import MetricSelector, AutoNetMetric, no_transform from autoPyTorch.pipeline.nodes import OneHotEncoding, OptimizationAlgorithm from autoPyTorch.pipeline.nodes.metric_selector import AutoNetMetric from autoPyTorch.utils.ensemble import build_ensemble, read_ensemble_prediction_file, combine_predictions, combine_test_predictions, \ ensemble_logger, start_server from hpbandster.core.result import logged_results_to_HBS_result import json import asyncio from hpbandster.core.nameserver import nic_name_to_host import time def predictions_for_ensemble(y_true, y_pred): return y_pred class EnableComputePredictionsForEnsemble(PipelineNode): """Put this Node in the training pipeline after the metric selector node""" def fit(self, pipeline_config, additional_metrics, refit, loss_penalty): if refit or pipeline_config["ensemble_size"] == 0 or loss_penalty > 0: return dict() return {'additional_metrics': additional_metrics + [ AutoNetMetric(name="predictions_for_ensemble", metric=predictions_for_ensemble, loss_transform=no_transform, ohe_transform=no_transform)]} class SavePredictionsForEnsemble(PipelineNode): """Put this Node in the training pipeline after the training node""" def fit(self, pipeline_config, loss, info, refit, loss_penalty): if refit or pipeline_config["ensemble_size"] == 0 or loss_penalty > 0: return {"loss": loss, "info": info} if "val_predictions_for_ensemble" in info: predictions = info["val_predictions_for_ensemble"] del info["val_predictions_for_ensemble"] else: raise ValueError("You need to specify some kind of validation for ensemble building") del info["train_predictions_for_ensemble"] combinator = { "combinator": combine_predictions, "data": predictions } if not "test_predictions_for_ensemble" in info: return {"loss": loss, "info": info, "predictions_for_ensemble": combinator} test_combinator = { "combinator": combine_test_predictions, "data": info["test_predictions_for_ensemble"] } del info["test_predictions_for_ensemble"] return {"loss": loss, "info": info, "predictions_for_ensemble": combinator, "test_predictions_for_ensemble": test_combinator} def predict(self, Y): return {"Y": Y} def get_pipeline_config_options(self): options = [ ConfigOption("ensemble_server_credentials", default=None) ] return options class BuildEnsemble(PipelineNode): """Put this node after the optimization algorithm node""" def fit(self, pipeline_config, optimized_hyperparameter_config, budget, loss, info, refit=None): if refit or pipeline_config["ensemble_size"] == 0 or pipeline_config["task_id"] not in [-1, 1]: return {"optimized_hyperparameter_config": optimized_hyperparameter_config, "budget": budget} filename = os.path.join(pipeline_config["result_logger_dir"], 'predictions_for_ensemble.npy') optimize_metric = self.pipeline[MetricSelector.get_name()].metrics[pipeline_config["optimize_metric"]] y_transform = self.pipeline[OneHotEncoding.get_name()].complete_y_tranformation result = logged_results_to_HBS_result(pipeline_config["result_logger_dir"]) all_predictions, labels, model_identifiers, _ = read_ensemble_prediction_file(filename=filename, y_transform=y_transform) ensemble_selection, ensemble_configs = build_ensemble(result=result, optimize_metric=optimize_metric, ensemble_size=pipeline_config["ensemble_size"], all_predictions=all_predictions, labels=labels, model_identifiers=model_identifiers, only_consider_n_best=pipeline_config["ensemble_only_consider_n_best"], sorted_initialization_n_best=pipeline_config["ensemble_sorted_initialization_n_best"]) return {"optimized_hyperparameter_config": optimized_hyperparameter_config, "budget": budget, "ensemble": ensemble_selection, "ensemble_configs": ensemble_configs, "loss": loss, "info": info } def predict(self, Y): return {"Y": Y} def get_pipeline_config_options(self): options = [ ConfigOption("ensemble_size", default=3, type=int, info="Build a ensemble of well performing autonet configurations. 0 to disable."), ConfigOption("ensemble_only_consider_n_best", default=0, type=int, info="Only consider the n best models for ensemble building."), ConfigOption("ensemble_sorted_initialization_n_best", default=0, type=int, info="Initialize ensemble with n best models.") ] return options class EnsembleServer(PipelineNode): """Put this node in front of the optimization algorithm node""" def fit(self, pipeline_config, result_loggers, shutdownables, refit=False): if refit or pipeline_config["ensemble_size"] == 0: return dict() es_credentials_file = os.path.join(pipeline_config["working_dir"], "es_credentials_%s.json" % pipeline_config["run_id"]) # start server if pipeline_config["task_id"] != 1 or pipeline_config["run_worker_on_master_node"]: host = nic_name_to_host(OptimizationAlgorithm.get_nic_name(pipeline_config)) host, port, process = start_server(host) pipeline_config["ensemble_server_credentials"] = (host, port) shutdownables = shutdownables + [process] result_loggers = [ensemble_logger(directory=pipeline_config["result_logger_dir"], overwrite=True)] + result_loggers return {"result_loggers": result_loggers, "shutdownables": shutdownables} ``` #### File: pipeline/nodes/optimization_algorithm.py ```python import numpy as np import os import time import shutil import netifaces import traceback import logging from hpbandster.core.nameserver import NameServer, nic_name_to_host from hpbandster.core.result import logged_results_to_HBS_result from autoPyTorch.pipeline.base.sub_pipeline_node import SubPipelineNode from autoPyTorch.pipeline.base.pipeline import Pipeline from autoPyTorch.pipeline.nodes import MetricSelector from autoPyTorch.utils.config.config_option import ConfigOption, to_bool from autoPyTorch.utils.config.config_condition import ConfigCondition from autoPyTorch.core.hpbandster_extensions.bohb_ext import BOHBExt from autoPyTorch.core.hpbandster_extensions.hyperband_ext import HyperBandExt from autoPyTorch.core.worker import AutoNetWorker from autoPyTorch.components.training.budget_types import BudgetTypeTime, BudgetTypeEpochs, BudgetTypeTrainingTime import copy class OptimizationAlgorithm(SubPipelineNode): def __init__(self, optimization_pipeline_nodes): """OptimizationAlgorithm pipeline node. It will run either the optimization algorithm (BOHB, Hyperband - defined in config) or start workers Each worker will run the provided optimization_pipeline and will return the output of the pipeline_result_node to the optimization algorithm Train: The optimization_pipeline will get the following inputs: {hyperparameter_config, pipeline_config, X_train, Y_train, X_valid, Y_valid, budget, budget_type} The pipeline_result_node has to provide the following outputs: - 'loss': the optimization value (minimize) - 'info': dict containing info for the respective training process Predict: The optimization_pipeline will get the following inputs: {pipeline_config, X} The pipeline_result_node has to provide the following outputs: - 'Y': result of prediction for 'X' Note: predict will not call the optimization algorithm Arguments: optimization_pipeline {Pipeline} -- pipeline that will be optimized (hyperparamter) pipeline_result_node {PipelineNode} -- pipeline node that provides the results of the optimization_pieline """ super(OptimizationAlgorithm, self).__init__(optimization_pipeline_nodes) self.algorithms = {"bohb": BOHBExt, "hyperband": HyperBandExt} self.budget_types = dict() self.budget_types["time"] = BudgetTypeTime self.budget_types["epochs"] = BudgetTypeEpochs self.budget_types["training_time"] = BudgetTypeTrainingTime def fit(self, pipeline_config, X_train, Y_train, X_valid, Y_valid, result_loggers, dataset_info, shutdownables, refit=None): """Run the optimization algorithm. Arguments: pipeline_config {dict} -- The configuration of the pipeline. X_train {array} -- The data Y_train {array} -- The data X_valid {array} -- The data Y_valid {array} -- The data result_loggers {list} -- List of loggers that log the result dataset_info {DatasetInfo} -- Object with information about the dataset shutdownables {list} -- List of objects that need to shutdown when optimization is finished. Keyword Arguments: refit {dict} -- dict containing information for refitting. None if optimization run should be started. (default: {None}) Returns: dict -- Summary of optimization run. """ logger = logging.getLogger('autonet') res = None run_id, task_id = pipeline_config['run_id'], pipeline_config['task_id'] # Use tensorboard logger if pipeline_config['use_tensorboard_logger'] and not refit: import tensorboard_logger as tl directory = os.path.join(pipeline_config['result_logger_dir'], "worker_logs_" + str(task_id)) os.makedirs(directory, exist_ok=True) tl.configure(directory, flush_secs=5) # Only do refitting if (refit is not None): logger.info("Start Refitting") loss_info_dict = self.sub_pipeline.fit_pipeline( hyperparameter_config=refit["hyperparameter_config"], pipeline_config=pipeline_config, X_train=X_train, Y_train=Y_train, X_valid=X_valid, Y_valid=Y_valid, budget=refit["budget"], rescore=refit["rescore"], budget_type=self.budget_types[pipeline_config['budget_type']], optimize_start_time=time.time(), refit=True, hyperparameter_config_id=None, dataset_info=dataset_info) logger.info("Done Refitting") return {'optimized_hyperparameter_config': refit["hyperparameter_config"], 'budget': refit['budget'], 'loss': loss_info_dict['loss'], 'info': loss_info_dict['info']} # Start Optimization Algorithm try: ns_credentials_dir, tmp_models_dir, network_interface_name = self.prepare_environment(pipeline_config) # start nameserver if not on cluster or on master node in cluster if task_id in [1, -1]: NS = self.get_nameserver(run_id, task_id, ns_credentials_dir, network_interface_name) ns_host, ns_port = NS.start() if task_id != 1 or pipeline_config["run_worker_on_master_node"]: self.run_worker(pipeline_config=pipeline_config, run_id=run_id, task_id=task_id, ns_credentials_dir=ns_credentials_dir, network_interface_name=network_interface_name, X_train=X_train, Y_train=Y_train, X_valid=X_valid, Y_valid=Y_valid, dataset_info=dataset_info, shutdownables=shutdownables) # start BOHB if not on cluster or on master node in cluster res = None if task_id in [1, -1]: self.run_optimization_algorithm(pipeline_config=pipeline_config, run_id=run_id, ns_host=ns_host, ns_port=ns_port, nameserver=NS, task_id=task_id, result_loggers=result_loggers, dataset_info=dataset_info, logger=logger) res = self.parse_results(pipeline_config) except Exception as e: print(e) traceback.print_exc() finally: self.clean_up(pipeline_config, ns_credentials_dir, tmp_models_dir) if res: return res return {'optimized_hyperparameter_config': dict(), 'budget': 0, 'loss': float('inf'), 'info': dict()} def predict(self, pipeline_config, X): """Run the predict pipeline. Arguments: pipeline_config {dict} -- The configuration of the pipeline X {array} -- The data Returns: dict -- The predicted values in a dictionary """ result = self.sub_pipeline.predict_pipeline(pipeline_config=pipeline_config, X=X) return {'Y': result['Y']} # OVERRIDE def get_pipeline_config_options(self): options = [ ConfigOption("run_id", default="0", type=str, info="Unique id for each run."), ConfigOption("task_id", default=-1, type=int, info="ID for each worker, if you run AutoNet on a cluster. Set to -1, if you run it locally."), ConfigOption("algorithm", default="bohb", type=str, choices=list(self.algorithms.keys()), info="Algorithm to use for config sampling."), ConfigOption("budget_type", default="time", type=str, choices=list(self.budget_types.keys())), ConfigOption("min_budget", default=lambda c: self.budget_types[c["budget_type"]].default_min_budget, type=float, depends=True, info="Min budget for fitting configurations."), ConfigOption("max_budget", default=lambda c: self.budget_types[c["budget_type"]].default_max_budget, type=float, depends=True, info="Max budget for fitting configurations."), ConfigOption("max_runtime", default=lambda c: ((-int(np.log(c["min_budget"] / c["max_budget"]) / np.log(c["eta"])) + 1) * c["max_budget"]) if c["budget_type"] == "time" else float("inf"), type=float, depends=True, info="Total time for the run."), ConfigOption("num_iterations", default=lambda c: (-int(np.log(c["min_budget"] / c["max_budget"]) / np.log(c["eta"])) + 1) if c["budget_type"] == "epochs" else float("inf"), type=float, depends=True, info="Number of successive halving iterations."), ConfigOption("eta", default=3, type=float, info='eta parameter of Hyperband.'), ConfigOption("min_workers", default=1, type=int), ConfigOption("working_dir", default=".", type="directory"), ConfigOption("network_interface_name", default=self.get_default_network_interface_name(), type=str), ConfigOption("memory_limit_mb", default=1000000, type=int), ConfigOption("use_tensorboard_logger", default=False, type=to_bool), ConfigOption("run_worker_on_master_node", default=True, type=to_bool), ConfigOption("use_pynisher", default=True, type=to_bool) ] return options # OVERRIDE def get_pipeline_config_conditions(self): def check_runtime(pipeline_config): return pipeline_config["budget_type"] != "time" or pipeline_config["max_runtime"] >= pipeline_config["max_budget"] return [ ConfigCondition.get_larger_equals_condition("max budget must be greater than or equal to min budget", "max_budget", "min_budget"), ConfigCondition("When time is used as budget, the max_runtime must be larger than the max_budget", check_runtime) ] def get_default_network_interface_name(self): """Get the default network interface name Returns: str -- The default network interface name """ try: return netifaces.gateways()['default'][netifaces.AF_INET][1] except: return 'lo' def prepare_environment(self, pipeline_config): """Create necessary folders and get network interface name Arguments: pipeline_config {dict} -- The configuration of the pipeline Returns: tuple -- path to created directories and network interface namei """ if not os.path.exists(pipeline_config["working_dir"]) and pipeline_config['task_id'] in [1, -1]: try: os.mkdir(pipeline_config["working_dir"]) except: pass tmp_models_dir = os.path.join(pipeline_config["working_dir"], "tmp_models_" + str(pipeline_config['run_id'])) ns_credentials_dir = os.path.abspath(os.path.join(pipeline_config["working_dir"], "ns_credentials_" + str(pipeline_config['run_id']))) network_interface_name = self.get_nic_name(pipeline_config) if os.path.exists(tmp_models_dir) and pipeline_config['task_id'] in [1, -1]: shutil.rmtree(tmp_models_dir) # not used right now if os.path.exists(ns_credentials_dir) and pipeline_config['task_id'] in [1, -1]: shutil.rmtree(ns_credentials_dir) return ns_credentials_dir, tmp_models_dir, network_interface_name def clean_up(self, pipeline_config, tmp_models_dir, ns_credentials_dir): """Remove created folders Arguments: pipeline_config {dict} -- The pipeline config tmp_models_dir {[type]} -- The path to the temporary models (not used right now) ns_credentials_dir {[type]} -- The path to the nameserver credentials """ if pipeline_config['task_id'] in [1, -1]: # Delete temporary files if os.path.exists(tmp_models_dir): shutil.rmtree(tmp_models_dir) if os.path.exists(ns_credentials_dir): shutil.rmtree(ns_credentials_dir) def get_nameserver(self, run_id, task_id, ns_credentials_dir, network_interface_name): """Get the namesever object Arguments: run_id {str} -- The id of the run task_id {int} -- An id for the worker ns_credentials_dir {str} -- Path to ns credentials network_interface_name {str} -- The network interface name Returns: NameServer -- The NameServer object """ if not os.path.isdir(ns_credentials_dir): try: os.mkdir(ns_credentials_dir) except: pass return NameServer(run_id=run_id, nic_name=network_interface_name, working_directory=ns_credentials_dir) def get_optimization_algorithm_instance(self, config_space, run_id, pipeline_config, ns_host, ns_port, loggers, previous_result=None): """Get an instance of the optimization algorithm Arguments: config_space {ConfigurationSpace} -- The config space to optimize. run_id {str} -- An Id for the current run. pipeline_config {dict} -- The configuration of the pipeline. ns_host {str} -- Nameserver host. ns_port {int} -- Nameserver port. loggers {list} -- Loggers to log the results. Keyword Arguments: previous_result {Result} -- A previous result to warmstart the search (default: {None}) Returns: Master -- An optimization algorithm. """ optimization_algorithm = self.algorithms[pipeline_config["algorithm"]] kwargs = {"configspace": config_space, "run_id": run_id, "eta": pipeline_config["eta"], "min_budget": pipeline_config["min_budget"], "max_budget": pipeline_config["max_budget"], "host": ns_host, "nameserver": ns_host, "nameserver_port": ns_port, "result_logger": combined_logger(*loggers), "ping_interval": 10**6, "working_directory": pipeline_config["working_dir"], "previous_result": previous_result} hb = optimization_algorithm(**kwargs) return hb def parse_results(self, pipeline_config): """Parse the results of the optimization run Arguments: pipeline_config {dict} -- The configuration of the pipeline. Raises: RuntimeError: An Error occurred when parsing the results. Returns: dict -- Dictionary summarizing the results """ try: res = logged_results_to_HBS_result(pipeline_config["result_logger_dir"]) id2config = res.get_id2config_mapping() incumbent_trajectory = res.get_incumbent_trajectory(bigger_is_better=False, non_decreasing_budget=False) except Exception as e: raise RuntimeError("Error parsing results. Check results.json and output for more details. An empty results.json is usually caused by a misconfiguration of AutoNet.") if (len(incumbent_trajectory['config_ids']) == 0): return dict() final_config_id = incumbent_trajectory['config_ids'][-1] final_budget = incumbent_trajectory['budgets'][-1] best_run = [r for r in res.get_runs_by_id(final_config_id) if r.budget == final_budget][0] return {'optimized_hyperparameter_config': id2config[final_config_id]['config'], 'budget': final_budget, 'loss': best_run.loss, 'info': best_run.info} def run_worker(self, pipeline_config, run_id, task_id, ns_credentials_dir, network_interface_name, X_train, Y_train, X_valid, Y_valid, dataset_info, shutdownables): """ Run the AutoNetWorker Arguments: pipeline_config {dict} -- The configuration of the pipeline run_id {str} -- An id for the run task_id {int} -- An id for the worker ns_credentials_dir {str} -- path to nameserver credentials network_interface_name {str} -- the name of the network interface X_train {array} -- The data Y_train {array} -- The data X_valid {array} -- The data Y_valid {array} -- The data dataset_info {DatasetInfo} -- Object describing the dataset shutdownables {list} -- A list of objects that need to shutdown when the optimization is finished """ if not task_id == -1: time.sleep(5) while not os.path.isdir(ns_credentials_dir): time.sleep(5) host = nic_name_to_host(network_interface_name) worker = AutoNetWorker(pipeline=self.sub_pipeline, pipeline_config=pipeline_config, X_train=X_train, Y_train=Y_train, X_valid=X_valid, Y_valid=Y_valid, dataset_info=dataset_info, budget_type=self.budget_types[pipeline_config['budget_type']], max_budget=pipeline_config["max_budget"], host=host, run_id=run_id, id=task_id, shutdownables=shutdownables, use_pynisher=pipeline_config["use_pynisher"]) worker.load_nameserver_credentials(ns_credentials_dir) # run in background if not on cluster worker.run(background=(task_id <= 1)) def run_optimization_algorithm(self, pipeline_config, run_id, ns_host, ns_port, nameserver, task_id, result_loggers, dataset_info, logger): """ Arguments: pipeline_config {dict} -- The configuration of the pipeline run_id {str} -- An id for the run ns_host {str} -- Nameserver host. ns_port {int} -- Nameserver port. nameserver {[type]} -- The nameserver. task_id {int} -- An id for the worker result_loggers {[type]} -- [description] dataset_info {DatasetInfo} -- Object describing the dataset logger {list} -- Loggers to log the results. """ config_space = self.pipeline.get_hyperparameter_search_space(dataset_info=dataset_info, **pipeline_config) logger.info("[AutoNet] Start " + pipeline_config["algorithm"]) # initialize optimization algorithm if pipeline_config['use_tensorboard_logger']: result_loggers.append(tensorboard_logger()) HB = self.get_optimization_algorithm_instance(config_space=config_space, run_id=run_id, pipeline_config=pipeline_config, ns_host=ns_host, ns_port=ns_port, loggers=result_loggers) # start algorithm min_num_workers = pipeline_config["min_workers"] if task_id != -1 else 1 reduce_runtime = pipeline_config["max_budget"] if pipeline_config["budget_type"] == "time" else 0 HB.run_until(runtime=(pipeline_config["max_runtime"] - reduce_runtime), n_iterations=pipeline_config["num_iterations"], min_n_workers=min_num_workers) HB.shutdown(shutdown_workers=True) nameserver.shutdown() @staticmethod def get_nic_name(pipeline_config): """Get the nic name from the pipeline config""" return pipeline_config["network_interface_name"] or (netifaces.interfaces()[1] if len(netifaces.interfaces()) > 1 else "lo") def clean_fit_data(self): super(OptimizationAlgorithm, self).clean_fit_data() self.sub_pipeline.root.clean_fit_data() class tensorboard_logger(object): def __init__(self): self.start_time = time.time() self.incumbent = float('inf') def new_config(self, config_id, config, config_info): pass def __call__(self, job): import tensorboard_logger as tl # id = job.id budget = job.kwargs['budget'] # config = job.kwargs['config'] timestamps = job.timestamps result = job.result exception = job.exception time_step = int(timestamps['finished'] - self.start_time) if result is not None: tl.log_value('BOHB/all_results', result['loss'] * -1, time_step) if result['loss'] < self.incumbent: self.incumbent = result['loss'] tl.log_value('BOHB/incumbent_results', self.incumbent * -1, time_step) class combined_logger(object): def __init__(self, *loggers): self.loggers = loggers def new_config(self, config_id, config, config_info): for logger in self.loggers: logger.new_config(config_id, config, config_info) def __call__(self, job): for logger in self.loggers: logger(job) ```
{ "source": "jmmnn/MiniMonitor", "score": 3 }
#### File: jmmnn/MiniMonitor/miniMonitor.py ```python import pandas as pd import smtplib import time #### Mailer Config#### server = smtplib.SMTP('smtp.gmail.com', 587) #can use 'localhost' without port or authentication server.starttls() server.login("<EMAIL>", "YourPassword") #enter your gmail credentials ##### Monitoring task def myMonitor (csvLogFile): try: df = pd.read_csv(csvLogFile, sep='\t', encoding = "ISO-8859-1") #csv to dataframe except: print("Error reading the file") errors = df[df['Status'] == "FinishedFail"] ###For testing: #FinishedSuccess #FinishedFail #randomMessage #print(df[df['Status'] == "FinishedFail"]) if len(errors.index) > 0: print ('these are the # of errors: ' , len(errors.index)) messageBody = str(errors.TaskName) try: server.sendmail("<EMAIL>", "<EMAIL>", messageBody) server.quit() print('Message sent!') except: print('failure to connect to mail server') else: print('No errors found, no message sent.') #### Execute the monitor every 60 seconds. while True: myMonitor('NYVM0571_TaskExecution_Scheduler.txt') time.sleep(60) ```
{ "source": "jmmogollon/Orbital", "score": 2 }
#### File: jmmogollon/Orbital/solarsys.py ```python from controls import * def main(): solarsystem = solarSystem() # set what is displayed by default solarsystem.setDefaultFeatures(INNERPLANET|ORBITS|SATELLITE|LABELS|OUTERPLANET|LIT_SCENE) solarsystem.addTo(makeEcliptic(solarsystem, color.white)) solarsystem.addTo(planet(solarsystem, 'mercury', color.green, INNERPLANET, INNERPLANET, PLANET_SZ_CORRECTION)) solarsystem.addTo(planet(solarsystem, 'venus', color.yellow, INNERPLANET, INNERPLANET, PLANET_SZ_CORRECTION)) earth = planet(solarsystem, 'earth', color.cyan, INNERPLANET, INNERPLANET, PLANET_SZ_CORRECTION) solarsystem.addTo(earth) mars = planet(solarsystem, 'mars', color.red, INNERPLANET, INNERPLANET, PLANET_SZ_CORRECTION) solarsystem.addTo(mars) solarsystem.addTo(planet(solarsystem, 'jupiter', color.magenta, OUTERPLANET, GASGIANT, PLANET_SZ_CORRECTION)) solarsystem.addTo(planet(solarsystem, 'saturn', color.cyan, OUTERPLANET, GASGIANT, PLANET_SZ_CORRECTION)) solarsystem.addTo(planet(solarsystem, 'uranus', color.yellow, OUTERPLANET, GASGIANT, PLANET_SZ_CORRECTION)) solarsystem.addTo(planet(solarsystem, 'neptune', color.orange, OUTERPLANET, GASGIANT, PLANET_SZ_CORRECTION)) pluto = planet(solarsystem, 'pluto', color.green, DWARFPLANET, DWARFPLANET, DWARFPLANET_SZ_CORRECTION) #OUTERPLANET, DWARFPLANET) solarsystem.addTo(pluto) solarsystem.setRings(solarsystem, "saturn", [((0.8,0.8,0.8), 0.9), ((0.5,0.5,0.5), 0.2)]) #[color.gray(0.7), (0.5,0.5,0.5)]) solarsystem.setRings(solarsystem, "uranus", [((0.1,0.1,0.8), 0.1), ((0.2,0.2,0.7), 0.3)]) # generate DWARF planets solarsystem.addTo(dwarfPlanet(solarsystem, 'eris', color.yellow)) solarsystem.addTo(dwarfPlanet(solarsystem, 'makemake', color.magenta)) solarsystem.addTo(dwarfPlanet(solarsystem, 'sedna', color.orange)) solarsystem.addTo(dwarfPlanet(solarsystem, 'haumea', color.white)) # generate satellites solarsystem.addTo(satellite(solarsystem, 'moon', color.white, earth)) #solarsystem.addTo(satellite(solarsystem, 'phobos', color.red, mars)) #solarsystem.addTo(satellite(solarsystem, 'deimos', color.white, mars)) #solarsystem.addTo(satellite(solarsystem, 'charon', color.white, pluto)) # generate Belts solarsystem.addTo(makeBelt(solarsystem, 'kuiper', 'Kuiper Belt', KUIPER_BELT, color.cyan, 2, 4)) solarsystem.addTo(makeBelt(solarsystem, 'asteroid', 'Asteroid Belt', ASTEROID_BELT, color.white, 2, 2)) solarsystem.addTo(makeBelt(solarsystem, 'inneroort', 'Inner Oort Cloud', INNER_OORT_CLOUD, color.white, 2, 5)) solarsystem.addJTrojans(makeJtrojan(solarsystem, 'jupiterTrojan', 'Jupiter Trojans', JTROJANS, color.green, 2, 5, 'jupiter')) MAX_OBJECTS = 1000 loadBodies(solarsystem, PHA, "200m+PHA_orbital_elements.txt", MAX_OBJECTS) loadBodies(solarsystem, BIG_ASTEROID,"200km+asteroids_orbital_elements.txt", MAX_OBJECTS) loadBodies(solarsystem, COMET, "200m+comets_orbital_elements.txt", MAX_OBJECTS) loadBodies(solarsystem, TRANS_NEPT, "transNeptunian_objects.txt", MAX_OBJECTS) #loadBodies(solarsystem, SATELLITE, "satellites.txt", MAX_OBJECTS) solarsystem.drawAllBodiesTrajectory() glbRefresh(solarsystem, False) # Start control window print wx.version() #print julian(1, 1, 2000) ex = wx.App(False) cw = controlWindow(solarsystem) cw.Show() while True: sleep(2) if __name__ == '__main__' : main() ```
{ "source": "jmmshn/api", "score": 2 }
#### File: mp_api/charge_density/client.py ```python from mp_api.core.client import BaseRester, MPRestError from mp_api.tasks.client import TaskRester class ChargeDensityRester(BaseRester): suffix = "charge_density" def get_charge_density_from_material_id(self, material_id: str): """ Get charge density data for a given Materials Project ID. Arguments: material_id (str): Materials project ID Returns: chgcar (dict): Pymatgen CHGCAR object. """ result = self._make_request( "{}/?fields=data&all_fields=false".format(material_id) ) if result.get("data", None) is not None: return result["data"] else: raise MPRestError("No document found") def get_calculation_details(self, material_id: str): """ Get charge density calculations details for a given Materials Project ID. Arguments: material_id (str): Materials project ID Returns: calc_details (dict): Dictionary containing INCAR, POSCAR, and KPOINTS data for the DFT calculation. """ base_endpoint = "/".join(self.endpoint.split("/")[0:3]) task_rester = TaskRester(api_key=self.api_key, endpoint=base_endpoint) result = task_rester.get_task_from_material_id( material_id, fields=["task_id", "orig_inputs"] ).get("data")[0] task_rester.session.close() return result ``` #### File: mp_api/dielectric/client.py ```python from typing import List, Optional, Tuple from collections import defaultdict from mp_api.core.client import BaseRester, MPRestError import warnings class DielectricRester(BaseRester): suffix = "dielectric" def get_dielectric_from_material_id(self, material_id: str): """ Get dielectric data for a given Materials Project ID. Arguments: material_id (str): Materials project ID Returns: results (Dict): Dictionary containing dielectric data. """ result = self._make_request("{}/?all_fields=true".format(material_id)) if len(result.get("data", [])) > 0: return result else: raise MPRestError("No document found") def search_dielectric_docs( self, e_total: Optional[Tuple[float, float]] = None, e_ionic: Optional[Tuple[float, float]] = None, e_static: Optional[Tuple[float, float]] = None, n: Optional[Tuple[float, float]] = None, num_chunks: Optional[int] = None, chunk_size: int = 100, fields: Optional[List[str]] = None, ): """ Query equations of state docs using a variety of search criteria. Arguments: e_total (Tuple[float,float]): Minimum and maximum total dielectric constant to consider. e_ionic (Tuple[float,float]): Minimum and maximum ionic dielectric constant to consider. e_static (Tuple[float,float]): Minimum and maximum electronic dielectric constant to consider. n (Tuple[float,float]): Minimum and maximum refractive index to consider. num_chunks (int): Maximum number of chunks of data to yield. None will yield all possible. chunk_size (int): Number of data entries per chunk. fields (List[str]): List of fields in EOSDoc to return data for. Default is material_id only. Yields: ([dict]) List of dictionaries containing data for entries defined in 'fields'. Defaults to Materials Project IDs only. """ query_params = defaultdict(dict) # type: dict if chunk_size <= 0 or chunk_size > 100: warnings.warn("Improper chunk size given. Setting value to 100.") chunk_size = 100 if e_total: query_params.update({"e_total_min": e_total[0], "e_total_max": e_total[1]}) if e_ionic: query_params.update({"e_ionic_min": e_ionic[0], "e_ionic_max": e_ionic[1]}) if e_static: query_params.update( {"e_static_min": e_static[0], "e_static_max": e_static[1]} ) if n: query_params.update({"n_min": n[0], "n_max": n[1]}) if fields: query_params.update({"fields": ",".join(fields)}) query_params = { entry: query_params[entry] for entry in query_params if query_params[entry] is not None } query_params.update({"limit": chunk_size, "skip": 0}) count = 0 while True: query_params["skip"] = count * chunk_size results = self.query(query_params).get("data", []) if not any(results) or (num_chunks is not None and count == num_chunks): break count += 1 yield results ``` #### File: mp_api/dielectric/resources.py ```python from mp_api.core.resource import Resource from mp_api.dielectric.models import DielectricDoc from mp_api.core.query_operator import PaginationQuery, SortQuery, SparseFieldsQuery from mp_api.dielectric.query_operators import DielectricQuery def dielectric_resource(dielectric_store): resource = Resource( dielectric_store, DielectricDoc, query_operators=[ DielectricQuery(), SortQuery(), PaginationQuery(), SparseFieldsQuery( DielectricDoc, default_fields=["task_id", "last_updated"] ), ], tags=["Dielectric"], ) return resource ``` #### File: mp_api/dois/client.py ```python from mp_api.core.client import BaseRester, MPRestError class DOIRester(BaseRester): suffix = "doi" def get_eos_from_material_id(self, material_id: str): """ Get DOI and reference data for a given Materials Project ID. Arguments: material_id (str): Materials project ID Returns: results (Dict): Dictionary containing DOI and reference data of state data. """ result = self._make_request("{}/?all_fields=true".format(material_id)) if len(result.get("data", [])) > 0: return result else: raise MPRestError("No document found") ``` #### File: mp_api/electrodes/models.py ```python from monty.json import MontyDecoder from pymatgen.core.periodic_table import ElementBase from typing import Dict, List from datetime import datetime from pydantic import BaseModel, Field, validator from mp_api.materials.models import Structure class WorkingIon(ElementBase): Li = "Li" Ca = "Ca" Mg = "Mg" class VoltageStep(BaseModel): """ Data for individual voltage steps. Note: Each voltage step is represented as a sub_electrode (ConversionElectrode/InsertionElectrode) object to gain access to some basic statistics about the voltage step """ max_delta_volume: str = Field( None, description="Volume changes in % for a particular voltage step using: " "max(charge, discharge) / min(charge, discharge) - 1", ) average_voltage: float = Field( None, description="The average voltage in V for a particular voltage step.", ) min_voltage: float = Field( None, description="The min voltage in V for a particular voltage step.", ) capacity_grav: float = Field(None, description="Gravimetric capacity in mAh/g.") capacity_vol: float = Field(None, description="Volumetric capacity in mAh/cc.") energy_grav: float = Field( None, description="Gravimetric energy (Specific energy) in Wh/kg." ) energy_vol: float = Field( None, description="Volumetric energy (Energy Density) in Wh/l." ) fracA_charge: float = Field( None, description="Atomic fraction of the working ion in the charged state." ) fracA_discharge: float = Field( None, description="Atomic fraction of the working ion in the discharged state." ) class InsertionVoltageStep(VoltageStep): """ Features specific to insertion electrode """ stability_charge: float = Field( None, description="The energy above hull of the charged material." ) stability_discharge: float = Field( None, description="The energy above hull of the discharged material." ) class InsertionElectrodeDoc(InsertionVoltageStep): task_id: str = Field(None, description="The id for this battery document.") host_structure: Structure = Field( None, description="Host structure (structure without the working ion)", ) voltage_pairs: List[InsertionVoltageStep] = Field( None, description="Returns all the Voltage Steps", ) working_ion: WorkingIon = Field( None, description="The working ion as an Element object", ) num_steps: float = Field( None, description="The number of distinct voltage steps in from fully charge to " "discharge based on the stable intermediate states", ) max_voltage_step: float = Field( None, description="Maximum absolute difference in adjacent voltage steps" ) last_updated: datetime = Field( None, description="Timestamp for the most recent calculation for this Material document", ) # Make sure that the datetime field is properly formatted @validator("last_updated", pre=True) def last_updated_dict_ok(cls, v): return MontyDecoder().process_decoded(v) class ConversionVoltageStep(VoltageStep): """ Features specific to conversion electrode """ reactions: Dict = Field( None, description="The reaction the characterizes that particular voltage step." ) class ConversionElectrode(ConversionVoltageStep): task_id: str = Field(None, description="The id for this battery document.") adj_pairs: List[ConversionVoltageStep] = Field( None, description="Returns all the adjacent Voltage Steps", ) working_ion: WorkingIon = Field( None, description="The working ion as an Element object", ) num_steps: float = Field( None, description="The number of distinct voltage steps in from fully charge to " "discharge based on the stable intermediate states", ) max_voltage_step: float = Field( None, description="Maximum absolute difference in adjacent voltage steps" ) last_updated: datetime = Field( None, description="Timestamp for the most recent calculation for this Material document", ) # Make sure that the datetime field is properly formatted @validator("last_updated", pre=True) def last_updated_dict_ok(cls, v): return MontyDecoder().process_decoded(v) ``` #### File: mp_api/gb/client.py ```python from typing import List, Optional, Tuple from collections import defaultdict import warnings from mp_api.core.client import BaseRester from mp_api.gb.models import GBTypeEnum class GBRester(BaseRester): suffix = "gb" def search_gb_docs( self, task_ids: Optional[List[str]] = None, gb_energy: Optional[Tuple[float, float]] = None, separation_energy: Optional[Tuple[float, float]] = None, rotation_angle: Optional[Tuple[float, float]] = None, sigma: Optional[int] = None, type: Optional[GBTypeEnum] = None, chemsys: Optional[str] = None, num_chunks: Optional[int] = None, chunk_size: int = 100, fields: Optional[List[str]] = None, ): """ Query grain boundary docs using a variety of search criteria. Arguments: task_ids (List[str]): List of Materials Project IDs to query with. gb_energy (Tuple[float,float]): Minimum and maximum grain boundary energy in J/m³ to consider. separation_energy (Tuple[float,float]): Minimum and maximum work of separation energy in J/m³ to consider. rotation_angle (Tuple[float,float]): Minimum and maximum rotation angle in degrees to consider. sigma (int): Sigma value of grain boundary. type (GBTypeEnum): Grain boundary type. chemsys (str): Dash-delimited string of elements in the material. num_chunks (int): Maximum number of chunks of data to yield. None will yield all possible. chunk_size (int): Number of data entries per chunk. fields (List[str]): List of fields in GBDoc to return data for. Default is material_id only. Yields: ([dict]) List of dictionaries containing data for entries defined in 'fields'. Defaults to Materials Project IDs and last updated data. """ query_params = defaultdict(dict) # type: dict if chunk_size <= 0 or chunk_size > 100: warnings.warn("Improper chunk size given. Setting value to 100.") chunk_size = 100 if task_ids: query_params.update({"task_ids": ",".join(task_ids)}) if gb_energy: query_params.update( {"gb_energy_min": gb_energy[0], "gb_energy_max": gb_energy[1]} ) if separation_energy: query_params.update( { "w_sep_energy_min": separation_energy[0], "w_sep_energy_max": separation_energy[1], } ) if rotation_angle: query_params.update( { "rotation_angle_min": rotation_angle[0], "rotation_angle_max": rotation_angle[1], } ) if sigma: query_params.update({"sigma": sigma}) if type: query_params.update({"type": type}) if chemsys: query_params.update({"chemsys": chemsys}) if fields: query_params.update({"fields": ",".join(fields)}) query_params = { entry: query_params[entry] for entry in query_params if query_params[entry] is not None } query_params.update({"limit": chunk_size, "skip": 0}) count = 0 while True: query_params["skip"] = count * chunk_size results = self.query(query_params).get("data", []) if not any(results) or (num_chunks is not None and count == num_chunks): break count += 1 yield results ``` #### File: mp_api/gb/models.py ```python from typing import List, Optional from pydantic import BaseModel, Field, validator from enum import Enum from datetime import datetime from monty.json import MontyDecoder from mp_api.materials.models.core import Lattice, PeriodicSite, Structure class GBTypeEnum(Enum): """ Grain boundary types """ tilt = "tilt" twist = "twist" class GrainBoundary(BaseModel): """ Model for a pymatgen grain boundary object """ charge: Optional[float] = Field(None, description="Total charge") lattice: Lattice = Field(None, description="Lattice for this structure") sites: List[PeriodicSite] = Field( None, description="List of sites in this structure" ) init_cell: Structure = Field( None, description="Initial bulk structure to form the GB" ) rotation_axis: List[int] = Field(None, description="Rotation axis") rotation_angle: float = Field(None, description="Rotation angle in degrees") gb_plane: List[int] = Field(None, description="Grain boundary plane") join_plane: List[int] = Field( None, description="Joining plane of the second grain", ) vacuum_thickness: float = Field( None, description="The thickness of vacuum inserted between two grains of the GB", ) ab_shit: List[float] = Field( None, description="The relative shift along a, b vectors" ) oriented_unit_cell: Structure = Field( None, description="Oriented unit cell of the bulk init_cell" ) class Config: extra = "allow" class GBDoc(BaseModel): """ Model for a document containing grain boundary data """ task_id: str = Field( None, description="The Materials Project ID of the material. This comes in the form: mp-******", ) sigma: int = Field( None, description="Sigma value of the boundary", ) type: GBTypeEnum = Field( None, description="Grain boundary type", ) rotation_axis: List[int] = Field( None, description="Rotation axis", ) gb_plane: List[int] = Field( None, description="Grain boundary plane", ) rotation_angle: float = Field( None, description="Rotation angle in degrees", ) gb_energy: float = Field( None, description="Grain boundary energy in J/m^2", ) initial_structure: GrainBoundary = Field( None, description="Initial grain boundary structure" ) final_structure: GrainBoundary = Field( None, description="Final grain boundary structure" ) pretty_formula: str = Field(None, description="Reduced formula of the material") w_sep: float = Field(None, description="Work of separation in J/m^2") cif: str = Field(None, description="CIF file of the structure") chemsys: str = Field( None, description="Dash-delimited string of elements in the material" ) last_updated: datetime = Field( None, description="Timestamp for the most recent calculation for this Material document", ) # Make sure that the datetime field is properly formatted @validator("last_updated", pre=True) def last_updated_dict_ok(cls, v): return MontyDecoder().process_decoded(v) ``` #### File: mp_api/materials/query_operators.py ```python from typing import Optional from fastapi import Query from mp_api.core.query_operator import STORE_PARAMS, QueryOperator from mp_api.materials.utils import formula_to_criteria from mp_api.materials.models.core import CrystalSystem from pymatgen.core.periodic_table import Element from collections import defaultdict class FormulaQuery(QueryOperator): """ Factory method to generate a dependency for querying by formula with wild cards """ def query( self, formula: Optional[str] = Query( None, description="Query by formula including anonymized formula or by including wild cards", ), elements: Optional[str] = Query( None, description="Query by elements in the material composition as a comma-separated list", ), ) -> STORE_PARAMS: crit = {} if formula: crit.update(formula_to_criteria(formula)) if elements: element_list = [Element(e) for e in elements.strip().split(",")] crit["elements"] = {"$all": [str(el) for el in element_list]} return {"criteria": crit} class DeprecationQuery(QueryOperator): """ Method to generate a deprecation state query """ def query( self, deprecated: Optional[bool] = Query( None, description="Whether the material is marked as deprecated", ), ) -> STORE_PARAMS: crit = {} if deprecated: crit.update({"deprecated": deprecated}) return {"criteria": crit} class MinMaxQuery(QueryOperator): """ Method to generate a query for quantities with a definable min and max """ def query( self, nsites_max: Optional[int] = Query( None, description="Maximum value for the number of sites", ), nsites_min: Optional[int] = Query( None, description="Minimum value for the number of sites", ), volume_max: Optional[float] = Query( None, description="Maximum value for the cell volume", ), volume_min: Optional[float] = Query( None, description="Minimum value for the cell volume", ), density_max: Optional[float] = Query( None, description="Maximum value for the density", ), density_min: Optional[float] = Query( None, description="Minimum value for the density", ), ) -> STORE_PARAMS: crit = defaultdict(dict) # type: dict entries = { "nsites": [nsites_min, nsites_max], "volume": [volume_min, volume_max], "density": [density_min, density_max], } # type: dict for entry in entries: if entries[entry][0]: crit[entry]["$gte"] = entries[entry][0] if entries[entry][1]: crit[entry]["$lte"] = entries[entry][1] return {"criteria": crit} class SymmetryQuery(QueryOperator): """ Method to generate a query on symmetry information """ def query( self, crystal_system: Optional[CrystalSystem] = Query( None, description="Crystal system of the material", ), spacegroup_number: Optional[int] = Query( None, description="Space group number of the material", ), spacegroup_symbol: Optional[str] = Query( None, description="Space group symbol of the material", ), ) -> STORE_PARAMS: crit = {} # type: dict if crystal_system: crit.update({"symmetry.crystal_system": str(crystal_system.value)}) if spacegroup_number: crit.update({"symmetry.number": spacegroup_number}) if spacegroup_symbol: crit.update({"symmetry.symbol": spacegroup_symbol}) return {"criteria": crit} class MultiTaskIDQuery(QueryOperator): """ Method to generate a query for different task_ids """ def query( self, task_ids: Optional[str] = Query( None, description="Comma-separated list of task_ids to query on" ), ) -> STORE_PARAMS: crit = {} if task_ids: crit.update({"task_ids": {"$in": task_ids.split(",")}}) return {"criteria": crit} ``` #### File: mp_api/molecules/resources.py ```python from mp_api.core.resource import Resource from mp_api.molecules.models import MoleculesDoc from mp_api.core.query_operator import PaginationQuery, SortQuery, SparseFieldsQuery from mp_api.molecules.query_operators import ( MoleculeBaseQuery, MoleculeElementsQuery, MoleculeFormulaQuery, ) from mp_api.search.query_operators import SearchTaskIDsQuery def molecules_resource(molecules_store): resource = Resource( molecules_store, MoleculesDoc, query_operators=[ MoleculeBaseQuery(), MoleculeElementsQuery(), MoleculeFormulaQuery(), SearchTaskIDsQuery(), SortQuery(), PaginationQuery(), SparseFieldsQuery(MoleculesDoc, default_fields=["task_id"]), ], tags=["Molecules"], ) return resource ``` #### File: mp_api/robocrys/resources.py ```python from fastapi import Query from mp_api.core.resource import Resource from mp_api.robocrys.models import RobocrysDoc def robo_resource(robo_store): def custom_robo_prep(self): async def query_robo_text( keywords: str = Query( ..., description="Comma delimited string keywords to search robocrystallographer description text with", ), skip: int = Query(0, description="Number of entries to skip in the search"), limit: int = Query( 100, description="Max number of entries to return in a single query. Limited to 100", ), ): pipeline = [ { "$search": { "index": "description", "regex": { "query": [word + ".*" for word in keywords.split(",")], "path": "description", "allowAnalyzedField": True, }, } }, { "$project": { "_id": 0, "task_id": 1, "description": 1, "condensed_structure": 1, "last_updates": 1, "search_score": {"$meta": "searchScore"}, } }, {"$sort": {"search_score": -1}}, {"$skip": skip}, {"$limit": limit}, ] self.store.connect() data = list(self.store._collection.aggregate(pipeline, allowDiskUse=True)) response = {"data": data} return response self.router.get( "/text_search/", response_model=self.response_model, response_model_exclude_unset=True, response_description="Find robocrystallographer documents through text search.", tags=self.tags, )(query_robo_text) resource = Resource( robo_store, RobocrysDoc, tags=["Robocrystallographer"], custom_endpoint_funcs=[custom_robo_prep], enable_default_search=False, ) return resource ``` #### File: mp_api/substrates/client.py ```python from typing import List, Optional, Tuple from collections import defaultdict import warnings from mp_api.core.client import BaseRester class SubstratesRester(BaseRester): suffix = "substrates" def search_substrates_docs( self, film_id: Optional[str] = None, substrate_id: Optional[str] = None, substrate_formula: Optional[str] = None, film_orientation: Optional[List[int]] = None, substrate_orientation: Optional[List[int]] = None, area: Optional[Tuple[float, float]] = None, energy: Optional[Tuple[float, float]] = None, num_chunks: Optional[int] = None, chunk_size: int = 100, fields: Optional[List[str]] = None, ): """ Query equations of state docs using a variety of search criteria. Arguments: film_id (str): Materials Project ID of the film material. substrate_id (str): Materials Project ID of the substrate material. substrate_formula (str): Reduced formula of the substrate material. film_orientation (List[int]): Vector indicating the surface orientation of the film material. substrate_orientation (List[int]): Vector indicating the surface orientation of the substrate material. area (Tuple[float,float]): Minimum and maximum volume in Ų to consider for the minimim coincident interface area range. energy (Tuple[float,float]): Minimum and maximum energy in meV to consider for the elastic energy range. num_chunks (int): Maximum number of chunks of data to yield. None will yield all possible. chunk_size (int): Number of data entries per chunk. fields (List[str]): List of fields in SubstratesDoc to return data for. Default is the film_id and substrate_id only. Yields: ([dict]) List of dictionaries containing data for entries defined in 'fields'. Defaults to Materials Project IDs for the film and substrate only. """ query_params = defaultdict(dict) # type: dict if chunk_size <= 0 or chunk_size > 100: warnings.warn("Improper chunk size given. Setting value to 100.") chunk_size = 100 if film_id: query_params.update({"film_id": film_id}) if substrate_id: query_params.update({"substrate_id": substrate_id}) if substrate_formula: query_params.update({"substrate_formula": substrate_formula}) if film_orientation: query_params.update( {"film_orientation": ",".join([str(i) for i in film_orientation])} ) if substrate_orientation: query_params.update( { "substrate_orientation": ",".join( [str(i) for i in substrate_orientation] ) } ) if area: query_params.update({"area_min": area[0], "area_max": area[1]}) if energy: query_params.update({"energy_min": energy[0], "energy_max": energy[1]}) if fields: query_params.update({"fields": ",".join(fields)}) query_params = { entry: query_params[entry] for entry in query_params if query_params[entry] is not None } query_params.update({"limit": chunk_size, "skip": 0}) count = 0 while True: query_params["skip"] = count * chunk_size results = self.query(query_params).get("data", []) if not any(results) or (num_chunks is not None and count == num_chunks): break count += 1 yield results ``` #### File: mp_api/surface_properties/client.py ```python from typing import List, Optional, Tuple from collections import defaultdict import warnings from mp_api.core.client import BaseRester, MPRestError class SurfacePropertiesRester(BaseRester): suffix = "surface_properties" def get_surface_properties_from_material_id(self, material_id: str): """ Get surface properties data for a given Materials Project ID. Arguments: material_id (str): Materials project ID Returns: results (Dict): Dictionary containing surface properties data. """ result = self._make_request("{}/?all_fields=true".format(material_id)) if len(result.get("data", [])) > 0: return result else: raise MPRestError("No document found") def search_surface_properties_docs( self, weighted_surface_energy: Optional[Tuple[float, float]] = None, weighted_work_function: Optional[Tuple[float, float]] = None, surface_energy_anisotropy: Optional[Tuple[float, float]] = None, shape_factor: Optional[Tuple[float, float]] = None, has_reconstructed: Optional[bool] = None, num_chunks: Optional[int] = None, chunk_size: int = 100, fields: Optional[List[str]] = None, ): """ Query surface properties docs using a variety of search criteria. Arguments: weighted_surface_energy (Tuple[float,float]): Minimum and maximum weighted surface energy in J/m² to consider. weighted_work_function (Tuple[float,float]): Minimum and maximum weighted work function in eV to consider. surface_energy_anisotropy (Tuple[float,float]): Minimum and maximum surface energy anisotropy values to consider. shape_factor (Tuple[float,float]): Minimum and maximum shape factor values to consider. has_reconstructed (bool): Whether the entry has any reconstructed surfaces. num_chunks (int): Maximum number of chunks of data to yield. None will yield all possible. chunk_size (int): Number of data entries per chunk. fields (List[str]): List of fields in EOSDoc to return data for. Default is material_id only. Yields: ([dict]) List of dictionaries containing data for entries defined in 'fields'. Defaults to Materials Project IDs only. """ query_params = defaultdict(dict) # type: dict if chunk_size <= 0 or chunk_size > 100: warnings.warn("Improper chunk size given. Setting value to 100.") chunk_size = 100 if weighted_surface_energy: query_params.update( { "weighted_surface_energy_min": weighted_surface_energy[0], "weighted_surface_energy_max": weighted_surface_energy[1], } ) if weighted_work_function: query_params.update( { "weighted_work_function_min": weighted_work_function[0], "weighted_work_function_max": weighted_work_function[1], } ) if surface_energy_anisotropy: query_params.update( { "surface_anisotropy_min": surface_energy_anisotropy[0], "surface_anisotropy_max": surface_energy_anisotropy[1], } ) if shape_factor: query_params.update( { "shape_factor_min": shape_factor[0], "shape_factor_max": shape_factor[1], } ) if has_reconstructed: query_params.update({"has_reconstructed": has_reconstructed}) if fields: query_params.update({"fields": ",".join(fields)}) query_params = { entry: query_params[entry] for entry in query_params if query_params[entry] is not None } query_params.update({"limit": chunk_size, "skip": 0}) count = 0 while True: query_params["skip"] = count * chunk_size results = self.query(query_params).get("data", []) if not any(results) or (num_chunks is not None and count == num_chunks): break count += 1 yield results ``` #### File: mp_api/synthesis/query_operators.py ```python from typing import Optional from fastapi import Query from mp_api.core.query_operator import STORE_PARAMS, QueryOperator from pymatgen.core import Composition from collections import defaultdict class SynthFormulaQuery(QueryOperator): """ Method to generate a query for synthesis data using a chemical formula """ def query( self, formula: Optional[str] = Query( None, description="Chemical formula of the material.", ), ) -> STORE_PARAMS: crit = defaultdict(dict) # type: dict if formula: reduced_formula = Composition(formula).get_reduced_formula_and_factor()[0] crit["formula"] = reduced_formula return {"criteria": crit} ``` #### File: mp_api/wulff/resources.py ```python from mp_api.core.resource import Resource from mp_api.wulff.models import WulffDoc from mp_api.core.query_operator import PaginationQuery, SparseFieldsQuery def wulff_resource(wulff_store): resource = Resource( wulff_store, WulffDoc, query_operators=[ PaginationQuery(), SparseFieldsQuery(WulffDoc, default_fields=["task_id"]), ], tags=["Surface Properties"], enable_default_search=False, ) return resource ``` #### File: mp_api/xas/client.py ```python from typing import List, Optional from pymatgen.core.periodic_table import Element from mp_api.core.client import BaseRester, MPRestError from mp_api.xas.models import Edge, XASType class XASRester(BaseRester): suffix = "xas" def get_available_elements( self, edge: Optional[Edge] = None, spectrum_type: Optional[XASType] = None, absorbing_element: Optional[Element] = None, required_elements: Optional[List[Element]] = None, ): return [str(e) for e in Element] def get_xas_doc(self, xas_id: str): # TODO do some checking here for sub-components query_params = {"all_fields": True} result = self._query_resource(query_params, suburl=xas_id) if len(result.get("data", [])) > 0: return result["data"][0] else: raise MPRestError("No document found") def search_xas_docs( self, edge: Optional[Edge] = None, absorbing_element: Optional[Element] = None, required_elements: Optional[List[Element]] = None, formula: Optional[str] = None, task_ids: Optional[List[str]] = None, num_chunks: Optional[int] = None, chunk_size: int = 100, fields: Optional[List[str]] = None, ): query_params = { "edge": str(edge.value) if edge else None, "absorbing_element": str(absorbing_element) if absorbing_element else None, "formula": formula, } # type: dict if task_ids is not None: query_params["task_ids"] = ",".join(task_ids) if required_elements: query_params["elements"] = ",".join([str(el) for el in required_elements]) if fields is not None: query_params["fields"] = ",".join(fields) query_params.update({"limit": chunk_size, "skip": 0}) count = 0 while True: query_params["skip"] = count * chunk_size results = self._query_resource(query_params).get("data", []) if not any(results) or (num_chunks is not None and count == num_chunks): break count += 1 yield results def count_xas_docs( self, edge: Optional[Edge] = None, absorbing_element: Optional[Element] = None, required_elements: Optional[List[Element]] = None, formula: Optional[str] = None, ): query_params = { "edge": str(edge.value) if edge else None, "absorbing_element": str(absorbing_element) if absorbing_element else None, "formula": formula, } if required_elements: query_params["elements"] = ",".join([str(el) for el in required_elements]) query_params["limit"] = "1" result = self._query_resource(query_params) return result.get("meta", {}).get("total", 0) ``` #### File: mp_api/xas/resources.py ```python from mp_api.core.resource import Resource from mp_api.xas.models import XASDoc from mp_api.core.query_operator import PaginationQuery, SortQuery, SparseFieldsQuery from mp_api.materials.query_operators import FormulaQuery from mp_api.xas.query_operator import XASQuery, XASTaskIDQuery def xas_resource(xas_store): resource = Resource( xas_store, XASDoc, query_operators=[ FormulaQuery(), XASQuery(), XASTaskIDQuery(), SortQuery(), PaginationQuery(), SparseFieldsQuery( XASDoc, default_fields=[ "xas_id", "task_id", "edge", "absorbing_element", "formula_pretty", "spectrum_type", "last_updated", ], ), ], tags=["XAS"], ) return resource ``` #### File: tests/core/test_xray_middleware.py ```python import asyncio from aws_xray_sdk import global_sdk_config import pytest from starlette.applications import Starlette from starlette.requests import Request from starlette.responses import PlainTextResponse from starlette.exceptions import HTTPException from starlette.testclient import TestClient from starlette.routing import Route from starlette.middleware import Middleware from aws_xray_sdk.core.emitters.udp_emitter import UDPEmitter from aws_xray_sdk.core.async_context import AsyncContext from aws_xray_sdk.core.models import http from .xray_utils import get_new_stubbed_recorder from mp_api.core.xray_middleware import XRayMiddleware class CustomStubbedEmitter(UDPEmitter): """ Custom stubbed emitter which stores all segments instead of the last one """ def __init__(self, daemon_address="127.0.0.1:2000"): super(CustomStubbedEmitter, self).__init__(daemon_address) self.local = [] def send_entity(self, entity): self.local.append(entity) def pop(self): try: return self.local.pop(0) except IndexError: return None class ServerTest(object): async def handle_ok(self, request: Request) -> PlainTextResponse: """ Handle / request """ if "content_length" in request.query_params: headers = {"Content-Length": request.query_params["content_length"]} else: headers = None return PlainTextResponse(content="ok", headers=headers) async def handle_error(self, request: Request) -> PlainTextResponse: """ Handle /error which returns a 404 """ return PlainTextResponse(content="not found", status_code=404) async def handle_unauthorized(self, request: Request) -> PlainTextResponse: """ Handle /unauthorized which returns a 401 """ raise HTTPException(status_code=401) async def handle_exception(self, request: Request) -> PlainTextResponse: """ Handle /exception which raises a KeyError """ return {}["key"] async def handle_delay(self, request: Request) -> PlainTextResponse: """ Handle /delay request """ await asyncio.sleep(0.3, loop=self._loop) return PlainTextResponse(content="ok") @pytest.fixture def recorder(): """ Clean up context storage before and after each test run """ loop = asyncio.get_event_loop() xray_recorder = get_new_stubbed_recorder() xray_recorder.configure( service="test", sampling=False, context=AsyncContext(loop=loop) ) xray_recorder.clear_trace_entities() yield xray_recorder global_sdk_config.set_sdk_enabled(True) xray_recorder.clear_trace_entities() @pytest.fixture def client(recorder): test_object = ServerTest() routes = [ Route("/", test_object.handle_ok), Route("/error", test_object.handle_error), Route("/exception", test_object.handle_exception), Route("/unauthorized", test_object.handle_unauthorized), Route("/delay", test_object.handle_delay), ] app = Starlette( routes=routes, middleware=[Middleware(XRayMiddleware, recorder=recorder)] ) return TestClient(app=app) def test_ok_reg(client, recorder): """ Test a normal response :param client: AioHttp test client fixture :param loop: Eventloop fixture :param recorder: X-Ray recorder fixture """ resp = client.get("/") assert resp.status_code == 200 segment = recorder.emitter.pop() assert not segment.in_progress request = segment.http["request"] response = segment.http["response"] assert request["method"] == "GET" assert request["url"] == "http://testserver/" assert response["status"] == 200 def test_ok_x_forwarded_for(client, recorder): """ Test a normal response with x_forwarded_for headers :param test_client: AioHttp test client fixture :param loop: Eventloop fixture :param recorder: X-Ray recorder fixture """ resp = client.get("/", headers={"X-Forwarded-For": "foo"}) assert resp.status_code == 200 segment = recorder.emitter.pop() assert segment.http["request"]["client_ip"] == "foo" assert segment.http["request"]["x_forwarded_for"] def test_ok_content_length(client, recorder): """ Test a normal response with content length as response header :param test_client: AioHttp test client fixture :param loop: Eventloop fixture :param recorder: X-Ray recorder fixture """ resp = client.get("/?content_length=100") assert resp.status_code == 200 segment = recorder.emitter.pop() assert segment.http["response"]["content_length"] == 100 def test_error(client, recorder): """ Test a 4XX response :param test_client: AioHttp test client fixture :param loop: Eventloop fixture :param recorder: X-Ray recorder fixture """ resp = client.get("/error") assert resp.status_code == 404 segment = recorder.emitter.pop() assert not segment.in_progress assert segment.error request = segment.http["request"] response = segment.http["response"] assert request["method"] == "GET" assert request["url"] == "http://testserver/error" assert request["client_ip"] == "testclient:50000" assert response["status"] == 404 def test_exception(client, recorder): """ Test handling an exception :param test_client: AioHttp test client fixture :param loop: Eventloop fixture :param recorder: X-Ray recorder fixture """ exc = None try: client.get("/exception") except Exception as e: exc = e assert exc is not None segment = recorder.emitter.pop() assert not segment.in_progress assert segment.fault request = segment.http["request"] response = segment.http["response"] exception = segment.cause["exceptions"][0] assert request["method"] == "GET" assert request["url"] == "http://testserver/exception" assert request["client_ip"] == "testclient:50000" assert response["status"] == 500 assert exception.type == "KeyError" def test_unhauthorized(client, recorder): """ Test a 401 response :param test_client: AioHttp test client fixture :param loop: Eventloop fixture :param recorder: X-Ray recorder fixture """ resp = client.get("/unauthorized") assert resp.status_code == 401 segment = recorder.emitter.pop() assert not segment.in_progress assert segment.error request = segment.http["request"] response = segment.http["response"] assert request["method"] == "GET" assert request["url"] == "http://testserver/unauthorized" assert request["client_ip"] == "testclient:50000" assert response["status"] == 401 def test_response_trace_header(client, recorder): resp = client.get("/") xray_header = resp.headers[http.XRAY_HEADER] segment = recorder.emitter.pop() expected = "Root=%s" % segment.trace_id assert expected in xray_header @pytest.mark.asyncio async def test_concurrent(client, recorder): """ Test multiple concurrent requests :param test_client: AioHttp test client fixture :param loop: Eventloop fixture :param recorder: X-Ray recorder fixture """ recorder.emitter = CustomStubbedEmitter() async def get_delay(): resp = await client.get("/delay") assert resp.status_code == 200 await asyncio.wait( [ get_delay(), get_delay(), get_delay(), get_delay(), get_delay(), get_delay(), get_delay(), get_delay(), get_delay(), ] ) # Ensure all ID's are different ids = [item.id for item in recorder.emitter.local] assert len(ids) == len(set(ids)) def test_disabled_sdk(client, recorder): """ Test a normal response when the SDK is disabled. :param test_client: AioHttp test client fixture :param loop: Eventloop fixture :param recorder: X-Ray recorder fixture """ global_sdk_config.set_sdk_enabled(False) resp = client.get("/") assert resp.status_code == 200 segment = recorder.emitter.pop() assert not segment ```
{ "source": "jmmshn/custodian", "score": 2 }
#### File: custodian/cp2k/interpreter.py ```python from pymatgen.io.cp2k.inputs import Cp2kInput from custodian.ansible.actions import FileActions, DictActions from custodian.ansible.interpreter import Modder from custodian.cp2k.utils import cleanup_input __author__ = "<NAME>" __version__ = "1.0" __email__ = "<EMAIL>" __date__ = "October 2021" class Cp2kModder(Modder): """ Cp2kModder is a lightweight class for applying modifications to cp2k input files. It also supports modifications that are file operations (e.g. copying). """ def __init__(self, filename="cp2k.inp", actions=None, strict=True, ci=None): """ Initializes a Modder for Cp2kInput sets Args: filename (str): name of cp2k input file to modify. This file will be overwritten if actions are applied. actions ([Action]): A sequence of supported actions. See :mod:`custodian.ansible.actions`. Default is None, which means DictActions and FileActions are supported. strict (bool): Indicating whether to use strict mode. In non-strict mode, unsupported actions are simply ignored without any errors raised. In strict mode, if an unsupported action is supplied, a ValueError is raised. Defaults to True. ci (Cp2kInput): A Cp2kInput object from the current directory. Initialized automatically if not passed (but passing it will avoid having to reparse the directory). """ self.ci = ci or Cp2kInput.from_file(filename) self.filename = filename actions = actions or [FileActions, DictActions] super().__init__(actions, strict) def apply_actions(self, actions): """ Applies a list of actions to the CP2K Input Set and rewrites modified files. Args: actions [dict]: A list of actions of the form {'file': filename, 'action': moddermodification} or {'dict': cp2k_key, 'action': moddermodification} """ modified = [] for a in actions: if "dict" in a: k = a["dict"] modified.append(k) Cp2kModder._modify(a["action"], self.ci) elif "file" in a: self.modify(a["action"], a["file"]) self.ci = Cp2kInput.from_file(self.filename) else: raise ValueError(f"Unrecognized format: {a}") cleanup_input(self.ci) self.ci.write_file(self.filename) @staticmethod def _modify(modification, obj): """ Note that modify makes actual in-place modifications. It does not return a copy. Args: modification (dict): Modification must be {action_keyword : settings}. E.g., {'_set': {'Hello':'Universe', 'Bye': 'World'}} obj (dict/str/object): Object to modify depending on actions. For example, for DictActions, obj will be a dict to be modified. For FileActions, obj will be a string with a full pathname to a file. """ modification = list(modification.items()) if isinstance(modification, dict) else modification for action, settings in modification: try: getattr(obj, action[1:])(settings) except KeyError: continue ``` #### File: custodian/cp2k/jobs.py ```python from __future__ import unicode_literals, division import subprocess import os import shutil import logging from monty.shutil import decompress_dir from monty.os.path import zpath from pymatgen.io.cp2k.inputs import Cp2kInput, Keyword from custodian.custodian import Job from custodian.cp2k.interpreter import Cp2kModder from custodian.cp2k.utils import restart, cleanup_input logger = logging.getLogger(__name__) __author__ = "<NAME>" __version__ = "1.0" CP2K_INPUT_FILES = ["cp2k.inp"] CP2K_OUTPUT_FILES = ["cp2k.out"] class Cp2kJob(Job): """ A basic cp2k job. Just runs whatever is in the directory. But conceivably can be a complex processing of inputs etc. with initialization. """ def __init__( self, cp2k_cmd, input_file="cp2k.inp", output_file="cp2k.out", stderr_file="std_err.txt", suffix="", final=True, backup=True, settings_override=None, restart=False, ): """ This constructor is necessarily complex due to the need for flexibility. For standard kinds of runs, it's often better to use one of the static constructors. The defaults are usually fine too. Args: cp2k_cmd (list): Command to run cp2k as a list of args. For example, if you are using mpirun, it can be something like ["mpirun", "cp2k.popt"] input_file (str): Name of the file to use as input to CP2K executable. Defaults to "cp2k.inp" output_file (str): Name of file to direct standard out to. Defaults to "cp2k.out". stderr_file (str): Name of file to direct standard error to. Defaults to "std_err.txt". suffix (str): A suffix to be appended to the final output. E.g., to rename all CP2K output from say cp2k.out to cp2k.out.relax1, provide ".relax1" as the suffix. final (bool): Indicating whether this is the final cp2k job in a series. Defaults to True. backup (bool): Whether to backup the initial input files. If True, the input file will be copied with a ".orig" appended. Defaults to True. settings_override ([actions]): A list of actions. See the Cp2kModder in interpreter.py restart (bool): Whether to run in restart mode, i.e. this a continuation of a previous calculation. Default is False. """ self.cp2k_cmd = cp2k_cmd self.input_file = input_file self.ci = None self.output_file = output_file self.stderr_file = stderr_file self.final = final self.backup = backup self.suffix = suffix self.settings_override = settings_override if settings_override else [] self.restart = restart def setup(self): """ Performs initial setup for Cp2k in three stages. First, if custodian is running in restart mode, then the restart function will copy the restart file to self.input_file, and remove any previous WFN initialization if present. Second, any additional user specified settings will be applied. Lastly, a backup of the input file will be made for reference. """ decompress_dir(".") self.ci = Cp2kInput.from_file(zpath(self.input_file)) cleanup_input(self.ci) if self.restart: restart( actions=self.settings_override, output_file=self.output_file, input_file=self.input_file, no_actions_needed=True, ) if self.settings_override or self.restart: modder = Cp2kModder(filename=self.input_file, actions=[], ci=self.ci) modder.apply_actions(self.settings_override) if self.backup: shutil.copy(self.input_file, f"{self.input_file}.orig") def run(self): """ Perform the actual CP2K run. Returns: (subprocess.Popen) Used for monitoring. """ # TODO: cp2k has bizarre in/out streams. Some errors that should go to std_err are not sent anywhere... cmd = list(self.cp2k_cmd) cmd.extend(["-i", self.input_file]) cmdstring = " ".join(cmd) logger.info(f"Running {cmdstring}") with open(self.output_file, "w") as f_std, open(self.stderr_file, "w", buffering=1) as f_err: # use line buffering for stderr return subprocess.Popen(cmd, stdout=f_std, stderr=f_err, shell=False) # TODO double jobs, file manipulations, etc. should be done in atomate in the future # and custodian should only run the job itself def postprocess(self): """ Postprocessing includes renaming and gzipping where necessary. """ fs = os.listdir(".") if os.path.exists(self.output_file): if self.suffix != "": os.mkdir(f"run{self.suffix}") for f in fs: if "json" in f: continue if not os.path.isdir(f): if self.final: shutil.move(f, f"run{self.suffix}/{f}") else: shutil.copy(f, f"run{self.suffix}/{f}") # Remove continuation so if a subsequent job is run in # the same directory, will not restart this job. if os.path.exists("continue.json"): os.remove("continue.json") def terminate(self): """ Terminate cp2k """ for k in self.cp2k_cmd: if "cp2k" in k: try: os.system(f"killall {k}") except Exception: pass @classmethod def gga_static_to_hybrid( cls, cp2k_cmd, input_file="cp2k.inp", output_file="cp2k.out", stderr_file="std_err.txt", backup=True, settings_override_gga=None, settings_override_hybrid=None, ): """ A bare gga to hybrid calculation. Removes all unecessary features from the gga run, and making it only a ENERGY/ENERGY_FORCE depending on the hybrid run. """ job1_settings_override = [ { "dict": input_file, "action": { "_unset": {"FORCE_EVAL": {"DFT": "XC"}}, "_set": {"GLOBAL": {"PROJECT_NAME": "GGA", "RUN_TYPE": "ENERGY_FORCE"}}, }, }, { "dict": input_file, "action": {"_set": {"FORCE_EVAL": {"DFT": {"XC": {"XC_FUNCTIONAL": {"PBE": {}}}}}}}, }, ] job1 = Cp2kJob( cp2k_cmd, input_file=input_file, output_file=output_file, backup=backup, stderr_file=stderr_file, final=False, suffix="1", settings_override=job1_settings_override, ) ci = Cp2kInput.from_file(zpath(input_file)) r = ci["global"].get("run_type", Keyword("RUN_TYPE", "ENERGY_FORCE")).values[0] if r in ["ENERGY", "WAVEFUNCTION_OPTIMIZATION", "WFN_OPT", "ENERGY_FORCE"]: # no need for double job return [job1] job2_settings_override = [ { "dict": input_file, "action": { "_set": { "FORCE_EVAL": { "DFT": { "XC": { "HF": { "SCREENING": { "SCREEN_ON_INITIAL_P": True, "SCREEN_P_FORCES": True, } } }, "WFN_RESTART_FILE_NAME": "GGA-RESTART.wfn", } }, "GLOBAL": {"RUN_TYPE": r}, }, }, } ] job2 = Cp2kJob( cp2k_cmd, input_file=input_file, output_file=output_file, backup=backup, stderr_file=stderr_file, final=True, suffix="2", restart=False, settings_override=job2_settings_override, ) return [job1, job2] @classmethod def double_job( cls, cp2k_cmd, input_file="cp2k.inp", output_file="cp2k.out", stderr_file="std_err.txt", backup=True ): """ This creates a sequence of two jobs. The first of which is an "initialization" of the wfn. Using this, the "restart" function can be exploited to determine if a diagonalization job can/would benefit from switching to OT scheme. If not, then the second job remains a diagonalization job, and there is minimal overhead from restarting. """ job1 = Cp2kJob( cp2k_cmd, input_file=input_file, output_file=output_file, backup=backup, stderr_file=stderr_file, final=False, suffix="1", settings_override={}, ) ci = Cp2kInput.from_file(zpath(input_file)) r = ci["global"].get("run_type", Keyword("RUN_TYPE", "ENERGY_FORCE")).values[0] if r not in ["ENERGY", "WAVEFUNCTION_OPTIMIZATION", "WFN_OPT"]: job1.settings_override = [ {"dict": input_file, "action": {"_set": {"GLOBAL": {"RUN_TYPE": "ENERGY_FORCE"}}}} ] job2 = Cp2kJob( cp2k_cmd, input_file=input_file, output_file=output_file, backup=backup, stderr_file=stderr_file, final=True, suffix="2", restart=True, ) job2.settings_override = [{"dict": input_file, "action": {"_set": {"GLOBAL": {"RUN_TYPE": r}}}}] return [job1, job2] @classmethod def pre_screen_hybrid( cls, cp2k_cmd, input_file="cp2k.inp", output_file="cp2k.out", stderr_file="std_err.txt", backup=True ): """ Build a job where the first job is an unscreened hybrid static calculation, then the second one uses the wfn from the first job as a restart to do a screened calculation. """ job1_settings_override = [ { "dict": input_file, "action": { "_set": { "FORCE_EVAL": { "DFT": { "XC": { "HF": { "SCREENING": { "SCREEN_ON_INITIAL_P": False, "SCREEN_P_FORCES": False, } } } } }, "GLOBAL": {"RUN_TYPE": "ENERGY_FORCE"}, } }, } ] job1 = Cp2kJob( cp2k_cmd, input_file=input_file, output_file=output_file, backup=backup, stderr_file=stderr_file, final=False, suffix="1", settings_override=job1_settings_override, ) ci = Cp2kInput.from_file(zpath(input_file)) r = ci["global"].get("run_type", Keyword("RUN_TYPE", "ENERGY_FORCE")).values[0] if r in ["ENERGY", "WAVEFUNCTION_OPTIMIZATION", "WFN_OPT", "ENERGY_FORCE"]: # no need for double job return [job1] job2_settings_override = [ { "dict": input_file, "action": { "_set": { "FORCE_EVAL": { "DFT": { "XC": { "HF": { "SCREENING": { "SCREEN_ON_INITIAL_P": True, "SCREEN_P_FORCES": True, } } }, "WFN_RESTART_FILE_NAME": "UNSCREENED_HYBRID-RESTART.wfn", } }, "GLOBAL": {"RUN_TYPE": r}, }, }, } ] job2 = Cp2kJob( cp2k_cmd, input_file=input_file, output_file=output_file, backup=backup, stderr_file=stderr_file, final=True, suffix="2", restart=False, settings_override=job2_settings_override, ) return [job1, job2] ``` #### File: custodian/cp2k/utils.py ```python import os import itertools from collections import deque from pymatgen.io.cp2k.inputs import Cp2kInput from pymatgen.io.cp2k.outputs import Cp2kOutput def restart(actions, output_file, input_file, no_actions_needed=False): """ Helper function. To discard old restart if convergence is already good, and copy the restart file to the input file. Restart also supports switching back and forth between OT and diagonalization as needed based on convergence behavior. If OT is not being used and a band gap exists, then OT will be activated. Args: actions (list): list of actions that the handler is going to return to custodian. If no actions are present, then non are added by this function output_file (str): the cp2k output file name. input_file (str): the cp2k input file name. """ if actions or no_actions_needed: o = Cp2kOutput(output_file) ci = Cp2kInput.from_file(input_file) restart_file = o.filenames.get("restart") restart_file = restart_file[-1] if restart_file else None if ci.check("force_eval/dft"): wfn_restart = ci["force_eval"]["dft"].get("wfn_restart_file_name") else: wfn_restart = None # If convergence is already pretty good, or we have moved to a new ionic step, # discard the old WFN if wfn_restart: conv = get_conv(output_file) if (conv and conv[-1] <= 1e-5) or restart_file: actions.append( {"dict": input_file, "action": {"_unset": {"FORCE_EVAL": {"DFT": "WFN_RESTART_FILE_NAME"}}}} ) # If issues arose after some ionic steps and corrections are possible # then switch the restart file to the input file. if restart_file: actions.insert( 0, { "file": os.path.abspath(restart_file), "action": {"_file_copy": {"dest": os.path.abspath(input_file)}}, }, ) # TODO Not sure I like this solution def cleanup_input(ci): """ Intention is to use this to remove problematic parts of the input file. (1) The "POTENTIAL" section within KIND cannot be empty, but the number sequences used inside do not play nice with the input parser """ if not hasattr(ci, "subsections") or not ci.subsections: return if any(k.upper() == "POTENTIAL" for k in ci.subsections): ci.subsections.pop("POTENTIAL") for k, v in ci.subsections.items(): cleanup_input(v) def activate_ot(actions, ci): """ Activate OT scheme. actions (list): list of actions that are being applied. Will be modified in-place ci (Cp2kInput): Cp2kInput object, used to coordinate settings """ eps_scf = ci["force_eval"]["dft"]["scf"]["eps_scf"] ot_actions = [ { "dict": "cp2k.inp", "action": [ ( "_unset", {"FORCE_EVAL": {"DFT": "SCF"}}, ) ], }, { "dict": "cp2k.inp", "action": [ ( "_set", { "FORCE_EVAL": { "DFT": { "SCF": { "MAX_SCF": 20, "OT": { "ENERGY_GAP": 0.01, "ALGORITHM": "STRICT", "PRECONDITIONER": "FULL_ALL", "MINIMIZER": "DIIS", "LINESEARCH": "2PNT", }, "OUTER_SCF": {"MAX_SCF": 20, "EPS_SCF": eps_scf}, } } } }, ) ], }, ] actions.extend(ot_actions) def activate_diag(actions): """ Activate diagonalization actions (list): list of actions that are being applied. Will be modified in-place """ diag_actions = [ {"dict": "cp2k.inp", "action": ("_unset", {"FORCE_EVAL": {"DFT": {"SCF": "OT"}}})}, {"dict": "cp2k.inp", "action": ("_unset", {"FORCE_EVAL": {"DFT": {"SCF": "OUTER_SCF"}}})}, { "dict": "cp2k.inp", "action": ( "_set", { "FORCE_EVAL": { "DFT": { "SCF": { "MAX_SCF": 200, "ADDED_MOS": 100, # TODO needs to be dynamic value "MAX_DIIS": 15, "DIAGONALIZATION": {}, "MIXING": {"ALPHA": 0.05}, "SMEAR": {"ELEC_TEMP": 300, "METHOD": "FERMI_DIRAC"}, } } } }, ), }, ] actions.extend(diag_actions) def can_use_ot(output, ci, minimum_band_gap=0.1): """ Check whether OT can be used: OT should not already be activated The output should show that the system has a band gap that is greater than minimum_band_gap Args: output (Cp2kOutput): cp2k output object for determining band gap ci (Cp2kInput): cp2k input object for determining if OT is already active minimum_band_gap (float): the minimum band gap for OT """ output.parse_dos() if ( not ci.check("FORCE_EVAL/DFT/SCF/OT") and not ci.check("FORCE_EVAL/DFT/KPOINTS") and output.band_gap and output.band_gap > minimum_band_gap ): return True return False def tail(filename, n=10): """ Returns the last n lines of a file as a list (including empty lines) """ with open(filename) as f: t = deque(f, n) if t: return t return [""] * n def get_conv(outfile): """ Helper function to get the convergence info from SCF loops Args: outfile (str): output file to parse Returns: returns convergence info (change in energy between SCF steps) as a single list (flattened across outer scf loops). """ out = Cp2kOutput(outfile, auto_load=False, verbose=False) out.parse_scf_opt() return list(itertools.chain.from_iterable(out.data["convergence"])) ```
{ "source": "jmmshn/emmet", "score": 3 }
#### File: emmet/core/stubs.py ```python from typing import Dict import pymatgen.core.structure from pydantic import BaseModel from pymatgen.core.periodic_table import Element """ The stub names are kept in sync with the actual classes so they show up correctly in the JSON Schema. They are imported here in as Stubbed classes to prevent name clashing """ class StubComposition(BaseModel): """A dictionary mapping element to total quantity""" __root__: Dict[Element, float] @classmethod # type: ignore def get_validators(cls): yield validate_composition def validate_composition(cls, v): if isinstance(v, pymatgen.core.structure.Composition): return v return pymatgen.core.structure.Composition(**v) pymatgen.core.structure.Composition.__pydantic_model__ = StubComposition pymatgen.core.structure.Composition.__get_validators__ = get_validators ``` #### File: tests/emmet-builders/test_vasp.py ```python import pytest from maggma.stores import JSONStore, MemoryStore from emmet.builders.vasp.task_validator import TaskValidator intermediate_stores = ["validation"] @pytest.fixture(scope="session") def tasks_store(test_dir): return JSONStore(test_dir / "test_si_tasks.json.gz") @pytest.fixture(scope="session") def validation_store(): return MemoryStore() def test_validator(tasks_store, validation_store): builder = TaskValidator(tasks=tasks_store, task_validation=validation_store) builder.run() assert validation_store.count() == tasks_store.count() assert validation_store.count({"valid": True}) == tasks_store.count() ``` #### File: tests/emmet-core/test_xrd.py ```python import pytest from pymatgen.analysis.diffraction.xrd import WAVELENGTHS from pymatgen.core import Element, Lattice, Structure from emmet.core.spectrum import SpectrumDoc from emmet.core.structure import StructureMetadata from emmet.core.symmetry import CrystalSystem, SymmetryData from emmet.core.xrd import Edge, XRDDoc @pytest.fixture def structure(): test_latt = Lattice.cubic(3.0) test_struc = Structure(lattice=test_latt, species=["Fe"], coords=[[0, 0, 0]]) return test_struc @pytest.mark.parametrize("target", list(WAVELENGTHS.keys())) def test_target_detection(structure, target): doc = XRDDoc.from_structure( structure=structure, spectrum_id="test-1", material_id="test-1", wavelength=WAVELENGTHS[target], ) target_element = Element(target[:2]) target_edge = Edge(target[2:]) assert doc.target == target_element assert doc.edge == target_edge @pytest.mark.parametrize("target", list(WAVELENGTHS.keys())) def test_from_target(structure, target): target_element = Element(target[:2]) target_edge = Edge(target[2:]) doc = XRDDoc.from_target( structure=structure, material_id="test-1", target=target_element, edge=target_edge, ) assert doc.target == target_element assert doc.edge == target_edge def test_schema(): XRDDoc.schema() ``` #### File: emmet-core/vasp/test_materials.py ```python import json import pytest from monty.io import zopen from emmet.core.vasp.calc_types import TaskType from emmet.core.vasp.material import MaterialsDoc from emmet.core.vasp.task import TaskDocument @pytest.fixture def test_tasks(test_dir): with zopen(test_dir / "test_si_tasks.json.gz") as f: tasks = json.load(f) tasks = [TaskDocument(**t) for t in tasks] return tasks def test_make_mat(test_tasks): material = MaterialsDoc.from_tasks(test_tasks) assert material.formula_pretty == "Si" assert len(material.task_ids) == 4 assert len(material.entries) == 1 bad_task_group = [ task for task in test_tasks if task.task_type != TaskType.Structure_Optimization ] with pytest.raises(Exception): MaterialsDoc.from_tasks(bad_task_group) def test_schema(): MaterialsDoc.schema() ```
{ "source": "jmmshn/fireworks", "score": 3 }
#### File: features/tests/test_introspect.py ```python import unittest from fireworks.features.introspect import flatten_to_keys, separator_str __author__ = "<NAME> <<EMAIL>>" class IntrospectTest(unittest.TestCase): def test_flatten_dict(self): self.assertEqual( set(flatten_to_keys({"d": {"e": {"f": 4}, "f": 10}}, max_recurs=1)), {f"d{separator_str}<TRUNCATED_OBJECT>"} ) self.assertEqual( set(flatten_to_keys({"d": {"e": {"f": 4}, "f": 10}}, max_recurs=2)), {f"d.e{separator_str}<TRUNCATED_OBJECT>", f"d.f{separator_str}10"}, ) self.assertEqual( set(flatten_to_keys({"d": {"e": {"f": 4}, "f": 10}}, max_recurs=3)), {f"d.e.f{separator_str}4", f"d.f{separator_str}10"}, ) self.assertEqual( set(flatten_to_keys({"d": [[0, 1], [2, 3]]}, max_recurs=5)), {f"d{separator_str}<TRUNCATED_OBJECT>"} ) self.assertEqual( set(flatten_to_keys({"d": [1, 2, 3]}, max_recurs=2)), {f"d{separator_str}1", f"d{separator_str}2", f"d{separator_str}3"}, ) self.assertEqual( set(flatten_to_keys({"d": {"e": [0, 1]}}, max_recurs=2)), {f"d.e{separator_str}0", f"d.e{separator_str}1"} ) ``` #### File: scripts/tests/test_mlaunch_run.py ```python import pytest from fireworks.scripts.mlaunch_run import mlaunch __author__ = "<NAME> <<EMAIL>>" @pytest.mark.parametrize("arg", ["-v", "--version"]) def test_mlaunch_report_version(capsys, arg): """Test mlaunch CLI version flag.""" with pytest.raises(SystemExit): ret_code = mlaunch([arg]) assert ret_code == 0 stdout, stderr = capsys.readouterr() assert stdout.startswith("mlaunch v") assert stderr == "" def test_mlaunch_config_file_flags(): """Test mlaunch CLI throws errors on missing config file flags.""" num_jobs = "1" with pytest.raises(FileNotFoundError, match="launchpad_file '' does not exist!"): mlaunch([num_jobs, "-l", ""]) with pytest.raises(FileNotFoundError, match="fworker_file 'missing_file' does not exist!"): mlaunch([num_jobs, "-w", "missing_file"]) ``` #### File: scripts/tests/test_rlaunch_run.py ```python import pytest from fireworks.scripts.rlaunch_run import rlaunch __author__ = "<NAME> <<EMAIL>>" @pytest.mark.parametrize("arg", ["-v", "--version"]) def test_rlaunch_report_version(capsys, arg): """Test rlaunch CLI version flag.""" with pytest.raises(SystemExit): ret_code = rlaunch([arg]) assert ret_code == 0 stdout, stderr = capsys.readouterr() assert stdout.startswith("rlaunch v") assert stderr == "" def test_rlaunch_config_file_flags(): """Test rlaunch CLI throws errors on missing config file flags.""" with pytest.raises(FileNotFoundError, match="launchpad_file '' does not exist!"): rlaunch(["-l", ""]) with pytest.raises(FileNotFoundError, match="fworker_file 'missing_file' does not exist!"): rlaunch(["-w", "missing_file"]) ``` #### File: fireworks/tests/master_tests.py ```python from fireworks.user_objects.queue_adapters.common_adapter import CommonAdapter from fireworks.utilities.fw_serializers import load_object """ Master tests for FireWorks - generally used to ensure that installation was \ completed properly. """ from fireworks import Firework, FWAction from fireworks.core.firework import Workflow from fireworks.user_objects.firetasks.script_task import ScriptTask __author__ = "<NAME>" __copyright__ = "Copyright 2013, The Materials Project" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __date__ = "Jan 9, 2013" import unittest class TestImports(unittest.TestCase): """ Make sure that required external libraries can be imported """ def test_imports(self): pass # test that MongoClient is available (newer pymongo) class BasicTests(unittest.TestCase): """ Make sure that required external libraries can be imported """ def test_fwconnector(self): fw1 = Firework(ScriptTask.from_str('echo "1"')) fw2 = Firework(ScriptTask.from_str('echo "1"')) wf1 = Workflow([fw1, fw2], {fw1.fw_id: fw2.fw_id}) self.assertEqual(wf1.links, {fw1.fw_id: [fw2.fw_id], fw2.fw_id: []}) wf2 = Workflow([fw1, fw2], {fw1: fw2}) self.assertEqual(wf2.links, {fw1.fw_id: [fw2.fw_id], fw2.fw_id: []}) wf3 = Workflow([fw1, fw2]) self.assertEqual(wf3.links, {fw1.fw_id: [], fw2.fw_id: []}) def test_parentconnector(self): fw1 = Firework(ScriptTask.from_str('echo "1"')) fw2 = Firework(ScriptTask.from_str('echo "1"'), parents=fw1) fw3 = Firework(ScriptTask.from_str('echo "1"'), parents=[fw1, fw2]) self.assertEqual( Workflow([fw1, fw2, fw3]).links, {fw1.fw_id: [fw2.fw_id, fw3.fw_id], fw2.fw_id: [fw3.fw_id], fw3.fw_id: []} ) self.assertRaises(ValueError, Workflow, [fw1, fw3]) # can't make this class SerializationTests(unittest.TestCase): @staticmethod def get_data(obj_dict): modname = "fireworks.user_objects.queue_adapters.common_adapter" classname = "CommonAdapter" mod = __import__(modname, globals(), locals(), [classname], 0) if hasattr(mod, classname): cls_ = getattr(mod, classname) return cls_.from_dict(obj_dict) def test_serialization_details(self): # This detects a weird bug found in early version of serializers pbs = CommonAdapter("PBS") self.assertTrue(isinstance(pbs, CommonAdapter)) self.assertTrue(isinstance(self.get_data(pbs.to_dict()), CommonAdapter)) self.assertTrue(isinstance(load_object(pbs.to_dict()), CommonAdapter)) self.assertTrue(isinstance(self.get_data(pbs.to_dict()), CommonAdapter)) # repeated test on purpose! def test_recursive_deserialize(self): my_dict = { "update_spec": {}, "mod_spec": [], "stored_data": {}, "exit": False, "detours": [], "additions": [ { "updated_on": "2014-10-14T00:56:27.758673", "fw_id": -2, "spec": {"_tasks": [{"use_shell": True, "_fw_name": "ScriptTask", "script": ['echo "1"']}]}, "created_on": "2014-10-14T00:56:27.758669", "name": "Unnamed FW", } ], "defuse_children": False, } FWAction.from_dict(my_dict) if __name__ == "__main__": unittest.main() ``` #### File: user_objects/queue_adapters/common_adapter.py ```python import copy """ This module implements a CommonAdaptor that supports standard PBS and SGE queues. """ import getpass import os import re import stat import subprocess from fireworks.queue.queue_adapter import Command, QueueAdapterBase from fireworks.utilities.fw_serializers import serialize_fw from fireworks.utilities.fw_utilities import log_exception, log_fancy __author__ = "<NAME>, <NAME>, <NAME>, <NAME>, <NAME>" __copyright__ = "Copyright 2012, The Materials Project" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __date__ = "Dec 12, 2012" class CommonAdapter(QueueAdapterBase): """ An adapter that works on most PBS (including derivatives such as TORQUE), SGE, and SLURM queues. """ _fw_name = "CommonAdapter" default_q_commands = { "PBS": {"submit_cmd": "qsub", "status_cmd": "qstat"}, "SGE": {"submit_cmd": "qsub", "status_cmd": "qstat"}, "Cobalt": {"submit_cmd": "qsub", "status_cmd": "qstat"}, "SLURM": {"submit_cmd": "sbatch", "status_cmd": "squeue"}, "LoadLeveler": {"submit_cmd": "llsubmit", "status_cmd": "llq"}, "LoadSharingFacility": {"submit_cmd": "bsub", "status_cmd": "bjobs"}, "MOAB": {"submit_cmd": "msub", "status_cmd": "showq"}, } def __init__(self, q_type, q_name=None, template_file=None, timeout=None, **kwargs): """ :param q_type: The type of queue. Right now it should be either PBS, SGE, SLURM, Cobalt or LoadLeveler. :param q_name: A name for the queue. Can be any string. :param template_file: The path to the template file. Leave it as None (the default) to use Fireworks' built-in templates for PBS and SGE, which should work on most queues. :param timeout: The amount of seconds to wait before raising an error when checking the number of jobs in the queue. Default 5 seconds. :param **kwargs: Series of keyword args for queue parameters. """ if q_type not in CommonAdapter.default_q_commands: raise ValueError( f"{q_type} is not a supported queue type. CommonAdaptor supports {list(self.default_q_commands.keys())}" ) self.q_type = q_type self.template_file = ( os.path.abspath(template_file) if template_file is not None else CommonAdapter._get_default_template_file(q_type) ) self.q_name = q_name or q_type self.timeout = timeout or 5 self.update(dict(kwargs)) self.q_commands = copy.deepcopy(CommonAdapter.default_q_commands) if "_q_commands_override" in self: self.q_commands[self.q_type].update(self["_q_commands_override"]) def _parse_jobid(self, output_str): if self.q_type == "SLURM": # The line can contain more text after the id. # Match after the standard "Submitted batch job" string re_string = r"Submitted batch job\s+(\d+)" elif self.q_type == "LoadLeveler": # Load Leveler: "llsubmit: The job "abc.123" has been submitted" re_string = r"The job \"(.*?)\" has been submitted" elif self.q_type == "Cobalt": # 99% of the time you just get: # Cobalt: "199768" # but there's a version that also includes project and queue # information on preceding lines and both of those might # contain a number in any position. re_string = r"(\b\d+\b)" else: # PBS: "1234.whatever", # SGE: "Your job 44275 ("jobname") has been submitted" # Cobalt: "199768" re_string = r"(\d+)" m = re.search(re_string, output_str) if m: return m.group(1) raise RuntimeError("Unable to parse jobid") def _get_status_cmd(self, username): status_cmd = [self.q_commands[self.q_type]["status_cmd"]] if self.q_type == "SLURM": # by default, squeue lists pending and running jobs # -p: filter queue (partition) # -h: no header line # -o: reduce output to user only (shorter string to parse) status_cmd.extend(['-o "%u"', "-u", username, "-h"]) if self.get("queue"): status_cmd.extend(["-p", self["queue"]]) elif self.q_type == "LoadSharingFacility": # use no header and the wide format so that there is one line per job, and display only running and # pending jobs status_cmd.extend(["-p", "-r", "-o", "jobID user queue", "-noheader", "-u", username]) elif self.q_type == "Cobalt": header = "JobId:User:Queue:Jobname:Nodes:Procs:Mode:WallTime:State:RunTime:Project:Location" status_cmd.extend(["--header", header, "-u", username]) elif self.q_type == "SGE": status_cmd.extend(["-u", username]) if self.get("queue"): status_cmd.extend(["-q", self["queue"]]) elif self.q_type == "MOAB": status_cmd.extend(["-w", f"user={username}"]) # no queue restriction command known for QUEST supercomputer, i.e., -p option doesn't work else: status_cmd.extend(["-u", username]) return status_cmd def _parse_njobs(self, output_str, username): # TODO: what if username is too long for the output and is cut off? # WRS: I may come back to this after confirming that Cobalt # strictly follows the PBS standard and replace the splitting # with a regex that would solve length issues if self.q_type == "SLURM": # subtract one due to trailing '\n' and split behavior return len(output_str.split("\n")) - 1 if self.q_type == "LoadLeveler": if "There is currently no job status to report" in output_str: return 0 else: # last line is: "1 job step(s) in query, 0 waiting, ..." return int(output_str.split("\n")[-2].split()[0]) if self.q_type == "LoadSharingFacility": # Count the number of lines which pertain to the queue cnt = 0 for line in output_str.split("\n"): if line.endswith(self["queue"]): cnt += 1 return cnt if self.q_type == "SGE": # want only lines that include username; # this will exclude e.g. header lines return len([l for l in output_str.split("\n") if username in l]) if self.q_type == "MOAB": # want only lines that include username; # this will exclude e.g. header lines return len([l for l in output_str.split("\n") if username in l]) count = 0 for l in output_str.split("\n"): if l.lower().startswith("job"): if self.q_type == "Cobalt": # Cobalt capitalzes headers l = l.lower() header = l.split() if self.q_type == "PBS": # PBS has a ridiculous two word "Job ID" in header state_index = header.index("S") - 1 queue_index = header.index("Queue") - 1 else: state_index = header.index("state") queue_index = header.index("queue") if username in l: toks = l.split() if toks[state_index] != "C": # note: the entire queue name might be cutoff from the output if long queue name # so we are only ensuring that our queue matches up until cutoff point if "queue" in self and self["queue"][0 : len(toks[queue_index])] in toks[queue_index]: count += 1 return count def submit_to_queue(self, script_file): """ submits the job to the queue and returns the job id :param script_file: (str) name of the script file to use (String) :return: (int) job_id """ if not os.path.exists(script_file): raise ValueError(f"Cannot find script file located at: {script_file}") queue_logger = self.get_qlogger(f"qadapter.{self.q_name}") submit_cmd = self.q_commands[self.q_type]["submit_cmd"] # submit the job try: if self.q_type == "Cobalt": # Cobalt requires scripts to be executable os.chmod(script_file, stat.S_IRWXU | stat.S_IRGRP | stat.S_IXGRP) cmd = [submit_cmd, script_file] # For most of the queues handled by common_adapter, it's best to simply submit the file name # as an argument. LoadSharingFacility doesn't handle the header section (queue name, nodes, etc) # when taking file arguments, so the file needs to be passed as stdin to make it work correctly. if self.q_type == "LoadSharingFacility": with open(script_file) as inputFile: p = subprocess.Popen([submit_cmd], stdin=inputFile, stdout=subprocess.PIPE, stderr=subprocess.PIPE) else: p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) p.wait() # retrieve the returncode. PBS returns 0 if the job was successful if p.returncode == 0: try: job_id = self._parse_jobid(p.stdout.read().decode()) queue_logger.info(f"Job submission was successful and job_id is {job_id}") return job_id except Exception as ex: # probably error parsing job code log_exception( queue_logger, f"Could not parse job id following {submit_cmd} due to error {str(ex)}..." ) else: # some qsub error, e.g. maybe wrong queue specified, don't have permission to submit, etc... msgs = [ f"Error in job submission with {self.q_name} file {script_file} and cmd {cmd}", f"The error response reads: {p.stderr.read()}", ] log_fancy(queue_logger, msgs, "error") except Exception: # random error, e.g. no qsub on machine! log_exception(queue_logger, f"Running the command: {submit_cmd} caused an error...") def get_njobs_in_queue(self, username=None): """ returns the number of jobs currently in the queue for the user :param username: (str) the username of the jobs to count (default is to autodetect) :return: (int) number of jobs in the queue """ queue_logger = self.get_qlogger(f"qadapter.{self.q_name}") # initialize username if username is None: username = getpass.getuser() # run qstat qstat = Command(self._get_status_cmd(username)) p = qstat.run(timeout=self.timeout) # parse the result if p[0] == 0: njobs = self._parse_njobs(p[1], username) queue_logger.info(f"The number of jobs currently in the queue is: {njobs}") return njobs # there's a problem talking to qstat server? msgs = ["Error trying to get the number of jobs in the queue", f"The error response reads: {p[2]}"] log_fancy(queue_logger, msgs, "error") return None @staticmethod def _get_default_template_file(q_type): return os.path.join(os.path.dirname(__file__), f"{q_type}_template.txt") @serialize_fw def to_dict(self): d = dict(self) # _fw_* names are used for the specific instance variables. d["_fw_q_type"] = self.q_type if self.q_name != self.q_type: d["_fw_q_name"] = self.q_name if self.template_file != CommonAdapter._get_default_template_file(self.q_type): d["_fw_template_file"] = self.template_file d["_fw_timeout"] = self.timeout return d @classmethod def from_dict(cls, m_dict): return cls( q_type=m_dict["_fw_q_type"], q_name=m_dict.get("_fw_q_name"), template_file=m_dict.get("_fw_template_file"), timeout=m_dict.get("_fw_timeout"), **{k: v for k, v in m_dict.items() if not k.startswith("_fw")}, ) ``` #### File: fireworks/utilities/visualize.py ```python from typing import Any, Dict from monty.dev import requires from fireworks import Firework, Workflow from fireworks.features.fw_report import state_to_color try: from graphviz import Digraph except ImportError: Digraph = None def plot_wf( wf, depth_factor=1.0, breadth_factor=2.0, labels_on=True, numerical_label=False, text_loc_factor=1.0, save_as=None, style="rD--", markersize=10, markerfacecolor="blue", fontsize=12, ): """ Generate a visual representation of the workflow. Useful for checking whether the firework connections are in order before launching the workflow. Args: wf (Workflow): workflow object. depth_factor (float): adjust this to stretch the plot in y direction. breadth_factor (float): adjust this to stretch the plot in x direction. labels_on (bool): whether to label the nodes or not. The default is to label the nodes using the firework names. numerical_label (bool): set this to label the nodes using the firework ids. text_loc_factor (float): adjust the label location. save_as (str): save the figure to the given name. style (str): marker style. markersize (int): marker size. markerfacecolor (str): marker face color. fontsize (int): font size for the node label. """ try: import matplotlib.pyplot as plt except ImportError: raise SystemExit("Install matplotlib. Exiting.") keys = sorted(wf.links.keys(), reverse=True) n_root_nodes = len(wf.root_fw_ids) # set (x,y) coordinates for each node in the workflow links points_map = {} # root nodes for i, k in enumerate(wf.root_fw_ids): points_map.update({k: ((-0.5 * n_root_nodes + i) * breadth_factor, (keys[0] + 1) * depth_factor)}) # the rest for k in keys: for i, j in enumerate(wf.links[k]): if not points_map.get(j, None): points_map[j] = ((i - len(wf.links[k]) / 2.0) * breadth_factor, k * depth_factor) # connect the dots for k in keys: for i in wf.links[k]: plt.plot( [points_map[k][0], points_map[i][0]], [points_map[k][1], points_map[i][1]], style, markersize=markersize, markerfacecolor=markerfacecolor, ) if labels_on: label1 = wf.id_fw[k].name label2 = wf.id_fw[i].name if numerical_label: label1 = str(k) label2 = str(i) plt.text( points_map[k][0] * text_loc_factor, points_map[k][1] * text_loc_factor, label1, fontsize=fontsize ) plt.text( points_map[i][0] * text_loc_factor, points_map[i][1] * text_loc_factor, label2, fontsize=fontsize ) plt.axis("scaled") plt.axis("off") if save_as: plt.savefig(save_as) @requires( Digraph is not None, "graphviz package required for wf_to_graph.\n" "Follow the installation instructions here: https://github.com/xflr6/graphviz", ) def wf_to_graph(wf: Workflow, dag_kwargs: Dict[str, Any] = {}, wf_show_tasks: bool = True) -> Digraph: """Renders a graph representation of a workflow or firework. Workflows are rendered as the control flow of the firework, while Fireworks are rendered as a sequence of Firetasks. Copied from https://git.io/JO6L8. Args: workflow (Workflow | Firework): Workflow or Firework to be rendered. dag_kwargs (dict[str, Any]): Arguments passed to Digraph.attr(). Defaults to {}. wf_show_tasks (bool): When rendering a Workflow, whether to show each Firetask in the graph. Defaults to False. Returns: Digraph: The Workflow or Firework directed acyclic graph. """ if not isinstance(wf, (Workflow, Firework)): raise ValueError(f"expected instance of Workflow or Firework, got {wf}") if isinstance(wf, Workflow) and not wf_show_tasks: # if we're rendering a Workflow and not showing tasks, we render the graph from left to right # by default dag_kwargs["rankdir"] = dag_kwargs.get("rankdir", "LR") # Directed Acyclic Graph dag = Digraph(comment=wf.name) dag.attr(**dag_kwargs) dag.node_attr.update(shape="box") dag.graph_attr["fontname"] = "helvetica" dag.node_attr["fontname"] = "helvetica" dag.edge_attr["fontname"] = "helvetica" if isinstance(wf, Workflow): for fw in wf: color = state_to_color[fw.state] dag.node(name=str(fw.fw_id), label=fw.name, color=color, fontname="helvetica") if not wf_show_tasks: continue subgraph = Digraph(name=f"tasks_{fw.fw_id}") subgraph.attr(color=color) for idx, task in enumerate(fw.tasks): # Clean up names name = task.fw_name.replace("{", "").replace("}", "") name = name.split(".")[-1] node_id = f"{fw.fw_id}-{idx}" subgraph.node(name=node_id, label=name, style="dashed") if idx == 0: subgraph.edge(str(fw.fw_id), node_id) else: subgraph.edge(f"{fw.fw_id}-{idx-1}", node_id) dag.subgraph(subgraph) for start, targets in wf.links.items(): for target in targets: dag.edge(str(start), str(target)) elif isinstance(wf, Firework): for idx, task in enumerate(wf.tasks): # Clean up names name = task.fw_name.replace("{", "").replace("}", "") name = name.split(".")[-1] dag.node(str(idx), label=name) if idx >= 1: dag.edge(str(idx - 1), str(idx)) return dag if __name__ == "__main__": import atomate.vasp.workflows as wf_mod from pymatgen.core import Lattice, Structure struct = Structure(Lattice.cubic(3), ["S"], [[0, 0, 0]]) wf = wf_mod.wf_bandstructure_hse(struct) for item in dir(wf_mod): if item.startswith("wf_"): try: wf = getattr(wf_mod, item)(struct) except TypeError: continue dag = wf_to_graph(wf) # add wf name as plot title above the graph dag.attr(label=item, fontsize="20", labelloc="t") dag.view() # dag.format = "png" # default format is PDF # dag.render(f"docs_rst/_static/wf_graphs/{item}") ```
{ "source": "jmmshn/jobflow", "score": 2 }
#### File: src/jobflow/settings.py ```python from pathlib import Path from maggma.stores import MemoryStore from pydantic import BaseSettings, Field, root_validator from jobflow import JobStore DEFAULT_CONFIG_FILE_PATH = Path("~/.jobflow.yaml").expanduser().as_posix() __all__ = ["JobflowSettings"] class JobflowSettings(BaseSettings): """ Settings for jobflow. The default way to modify these is to modify ~/.jobflow.yaml. Alternatively, the environment variable ``JOBFLOW_CONFIG_FILE`` can be set to point to a yaml file with jobflow settings. Lastly, the variables can be modified directly though environment variables by using the "JOBFLOW" prefix. E..g., ``JOBFLOW_JOB_STORE=path/to/jobstore.file``. **Allowed JOB_STORE formats** If the store is not supplied, a ``MemoryStore`` will be used. Can be specified in multiple formats. The simplest format is the yaml dumped version of the store, generated using: >>> import yaml >>> yaml.dump(store.as_dict()) Alternatively, the store can be specified as the keys docs_store, additional_stores and any other keyword arguments supported by the :obj:`JobStore` constructor. The docs_store and additional stores are specified by the ``type`` key which must match a Maggma ``Store`` subclass, and the remaining keys are passed to the store constructor. For example, the following file would create a :obj:`JobStore` with a ``MongoStore`` for docs and a ``GridFSStore`` or ``S3Store`` as an additional store for data. GridFSStore example: .. code-block:: yaml docs_store: type: MongoStore database: jobflow_unittest collection_name: outputs host: localhost port: 27017 additional_stores: data: type: GridFSStore database: jobflow_unittest collection_name: outputs_blobs host: localhost port: 27017 S3Store example (Note: the ``key`` field must be set to ``blob_uuid``): .. code-block:: yaml docs_store: type: MongoStore database: jobflow_unittest collection_name: outputs host: localhost port: 27017 additional_stores: data: type: S3Store bucket: output_blobs key: blob_uuid index: type: MongoStore database: jobflow_unittest collection_name: output_blobs_index host: localhost port: 27017 key: blob_uuid Lastly, the store can be specified as a file name that points to a file containing the credentials in any format supported by :obj:`.JobStore.from_file`. """ CONFIG_FILE: str = Field( DEFAULT_CONFIG_FILE_PATH, description="File to load alternative defaults from." ) # general settings JOB_STORE: JobStore = Field( default_factory=lambda: JobStore(MemoryStore()), description="Default JobStore to use when running locally or using FireWorks. " "See the :obj:`JobflowSettings` docstring for more details on the " "accepted formats.", ) DIRECTORY_FORMAT: str = Field( "%Y-%m-%d-%H-%M-%S-%f", description="Date stamp format used to create directories", ) class Config: """Pydantic config settings.""" env_prefix = "jobflow_" @root_validator(pre=True) def load_default_settings(cls, values): """ Load settings from file or environment variables. Loads settings from a root file if available and uses that as defaults in place of built in defaults. This allows setting of the config file path through environment variables. """ from monty.serialization import loadfn config_file_path: str = values.get("CONFIG_FILE", DEFAULT_CONFIG_FILE_PATH) new_values = {} if Path(config_file_path).exists(): new_values.update(loadfn(config_file_path)) store = new_values.get("JOB_STORE") if isinstance(store, str): new_values["JOB_STORE"] = JobStore.from_file(store) elif isinstance(store, dict) and store.get("@class") == "JobStore": new_values["JOB_STORE"] = JobStore.from_dict(store) elif isinstance(store, dict): new_values["JOB_STORE"] = JobStore.from_dict_spec(store) new_values.update(values) return new_values ```
{ "source": "jmmshn/mp_dash_boards", "score": 2 }
#### File: dashboards/soap_explorer/soap_cluster.py ```python from typing import List from monty.serialization import loadfn import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output from dash_mp_components import Simple3DScene from pymatgen import Site import crystal_toolkit # noqa: F401 from pymatgen.analysis.graphs import MoleculeGraph from pymatgen.core.structure import Molecule import os import pandas as pd import plotly.express as px dir_path = os.path.dirname(os.path.realpath(__file__)) DUMMY_SPECIES = "Si" df_res = pd.read_pickle('df_res.pkl') cluster_fig = fig = px.scatter(df_res, x="x", y='y', width=1000, height=900, color='DBSCAN_lab', hover_name='index', title="Clusters of Similar Sites") external_stylesheets = ["https://codepen.io/chriddyp/pen/bWLwgP.css"] def get_dbs(db_names: List[str], db_file: str = dir_path + "/./db_info.pub.json") -> List: """Read the db_file and get the databases corresponding to <<db_name>> Args: db_name (List[str]): A list of names of the database we want db_file (str): The db_file we are reading from Returns: MongograntStore: the store we need to access """ db_dict = loadfn(db_file) stores = [] for j_name in db_names: if j_name not in db_dict: raise ValueError( f"The store named {j_name} is missing from the db_file") stores.append(db_dict[j_name]) return stores soap_site_db, = get_dbs(["soap_site_descriptors"]) app = dash.Dash(__name__, external_stylesheets=external_stylesheets) # App layout app.layout = html.Div( [ dcc.Graph(id="cluster-plot", figure=fig), html.Pre(id="debug", children=""), Simple3DScene( id='site', sceneSize=400, settings={'extractAxis': True}, axisView='SW', data={} ), ] ) @app.callback(Output('debug', 'children'), [Input('cluster-plot', 'clickData')]) def debug(data): if data is None: return 'NONE' return data["points"][0]["hovertext"] @app.callback(Output('site', 'data'), [Input('cluster-plot', 'clickData')]) def get_sites_scene(data): if data is None: return {} task_id, n = data["points"][0]["hovertext"].split("+") with soap_site_db as db: doc = db.query_one({'task_id': task_id}) scene = get_m_graph_from_site_data(doc['site_data'][int(n)]).get_scene() scene.name = "site" return scene def get_m_graph_from_site_data(s_data): mol = Molecule.from_sites([Site.from_dict(isite) for isite in s_data['local_graph']['sites']]) mg = MoleculeGraph.with_empty_graph(mol) for i in range(1, len(mg)): mg.add_edge(0, i) return mg if __name__ == "__main__": app.run_server(debug=True) # %% ```
{ "source": "JMMull/personalWebsite", "score": 3 }
#### File: personalWeb/core/SPARQL.py ```python from urllib2 import urlopen from SPARQLWrapper import SPARQLWrapper, JSON, RDF, XML, Wrapper class Results(): def __init__(self, results): self.variables = results['head']['vars'] resultlst = [] for result in results['results']['bindings']: dct = {} for var in results['head']['vars']: dct[var] = result[var]['value'] resultlst.append(dct) self.results = resultlst def __str__(self): string = '' for result in self.results: for var in self.variables: string += '{} : {}\t'.format(var, result[var]) string += '\n' return string class Endpoint(): def __init__(self, url, allgraphs, guri): self.url = url self.allgraphs = allgraphs self.graphuri = guri def __str__(self): return 'SPARQL Endpoint: {}'.format(self.url) def query(self, query_string): ''' Derived from http://stackoverflow.com/questions/28455850/sparql-query-json-error-from-bncf-endpoint ''' if self.allgraphs: sparql = SPARQLWrapper(self.url) else: sparql = SPARQLWrapper(self.url, defaultGraph=self.graphuri) sparql.setReturnFormat(JSON) sparql.setQuery(query_string) request = sparql._createRequest() request.add_header('Accept', 'application/sparql-results+json') response = urlopen(request) res = Wrapper.QueryResult((response, sparql.returnFormat)) results = res.convert() return Results(results).results ``` #### File: personalWeb/core/virtuoso.py ```python import os import sys import urllib import subprocess as _sp import personal_web.core.SPARQL as query sys.path.append(os.path.abspath('../..')) class Repository(): def __init__(self, user, password, store, graphuri, endpoint, allgraphs): self.usr = user self.pwd = password self.store = store self.gpuri = graphuri self.endpoint = endpoint self.allgraphs = allgraphs def __str__(self): return 'User: {}\nPass: {}\nStore: {}\nGraph URI: {}'.format( self.usr, self.pwd, self.store, self.gpuri) def update_graph(self, new_graph): self.gpuri = new_graph def add_data(self, infile, overwrite=False): if overwrite == False: rqmethod = 'POST' elif overwrite == True: rqmethod = 'PUT' else: raise Exception('Invalid argument given for keyword "overwrite".') command = [ 'curl', '--digest', '--user', '{}:{}'.format(self.usr, self.pwd), '--verbose', '--url', '{}?graph-uri={}'.format(self.store, self.gpuri), '-X', rqmethod, '-T', '{}'.format(infile) ] _sp.call(command) def query(self): command = [ 'curl', '--digest', '--user', '{}:{}'.format(self.usr, self.pwd), '--verbose', '--url', '{}?graph-uri={}'.format(self.store, self.gpuri) ] print command _sp.call(command) def delete(self): command = [ 'curl', '--digest', '--user', '{}:{}'.format(self.usr, self.pwd), '--verbose', '--url', '{}?graph-uri={}'.format(self.store, self.gpuri), '-X' 'DELETE'] _sp.call(command) def sparql_query(self, q): print self.allgraphs endpoint = query.Endpoint(self.endpoint, self.allgraphs, self.gpuri) lst = [] start = 0 while True: run = False while run == False: try: qrun = q + '\n OFFSET {}'.format(start) results = endpoint.query(qrun) lst += results run = True except Exception as E: if str(E) == 'HTTP Error 500: SPARQL Request Failed': pass else: raise Exception() if len(results) < 10000: break start += 10000 return lst ```
{ "source": "jmmv/markdown2social", "score": 2 }
#### File: markdown2social/markdown2social/__init__.py ```python import logging import os import sys # Program name to use for log messages. PROGRAM_NAME = os.path.basename(sys.argv[0]) def _build_logger(): """Instantiates a global logger for the program. Returns: Logger. The logger instance to use for the application. """ handler = logging.StreamHandler() formatter = logging.Formatter(PROGRAM_NAME + ': %(levelname)s: %(message)s') handler.setFormatter(formatter) logger = logging.getLogger(PROGRAM_NAME) logger.addHandler(handler) logger.setLevel(logging.WARNING) return logger # Global logger instance for the application. LOGGER = _build_logger() ```
{ "source": "jmnatzaganian/mHTM", "score": 2 }
#### File: car_evaluation/encoder/errors.py ```python __docformat__ = 'epytext' # Native imports import textwrap def wrap_error(msg): """ Wraps an error message such that it will get displayed properly. @param msg: The error to display. @return: A string containing the formatted message. """ return '\n ' + '\n '.join(textwrap.wrap(msg, 77)) class BaseException(Exception): """ Base class for exception handling in this program. """ def __str__(self): """ Allows for the exception to throw the message even if it wasn't caught. @return: The error message. """ return self.msg class InvalidSequence(BaseException): """ Exception raised if an item is not a supported sequence. """ def __init__(self, seq, method): """ Initialize this class. @param seq: The failed sequence object. @param method: The method that was missing. """ self.msg = wrap_error('The object, {0}, is not a supported sequence. ' 'The object must have a "{1}" method.'.format(seq, method)) class UnsupportedFunction(BaseException): """ Exception raised if an unsupported function is called, i.e. a user tried to do something he / she shouldn't be doing with that specific object. """ def __init__(self, class_name, function_name): """ Initialize this class. @param class_name: The class name of the caller. @param function_name: The function name of the caller. """ self.msg = wrap_error('The object, {0}, does not support the function ' '{1}. Please check your usage and try again.'.format(class_name, function_name)) class BitMissMatch(BaseException): """ Exception raised if the expected number of bits does not equal the supplied number of bits. """ def __init__(self, expected, acutal): """ Initialize this class. @param expected: The number of expected bits. @param actual: The actual number of bits. """ self.msg = wrap_error('The encoder expected {0} bit(s), but {1} bit(s)' ' were supplied. Please ensure that you are passing the correct' ' number of bits.'.format(expected, acutal)) ``` #### File: car_evaluation/encoder/__init__.py ```python __docformat__ = 'epytext' # Program imports from base import Encoder from scalar import Scalar from multi import Multi from category import Category from errors import BaseException, wrap_error ############################################################################### ########## Exception Handling ############################################################################### class UnsupportedEncoder(BaseException): """ Exception if the specified encoder is not supported. """ def __init__(self, name): """ Initialize this class. @param name: The name of the encoder. """ self.msg = wrap_error('The desired encoder, {0}, is not supported. ' 'Please request a valid encoder.'.format(name)) ############################################################################### ########## Functions ############################################################################### def get_encoder(type, **kargs): """ Creates an encoder of the appropriate type and returns an instance of it. @param type: The type of encoder to create. The supported types are: "unity", "threshold", "scalar", "category", and "multi". @param kargs: Any keyword arguments to pass to the encoder. @return: An encoder instance. @raise UnsupportedEncoder: Raised if the requested encoder is not supported. """ t = type.lower() if t == 'unity': return Unity(**kargs) elif t == 'threshold': return Threshold(**kargs) elif t == 'scalar': return Scalar(**kargs) elif t == 'multi': return Multi(**kargs) elif t == 'category': return Category(**kargs) else: raise UnsupportedEncoder(t) def is_finite(encoder): """ Determine if the encoder has a finite number of bins. Technically all encoders do, but this refers to those that have a feasibly finite number of bins. For example, a scalar encoder with 100 bins has a small number of bins (100), thus it is finite. A unity encoder with only 10 bits has a large number of bins (10!), thus it is not finite. @param encoder: An encoder instance. """ t = type(encoder).__name__.lower() if t == 'scalar' or t == 'category': return True return False ``` #### File: dev/mnist_novelty_detection/OneVsRest.py ```python import os import numpy as np from sklearn.svm import OneClassSVM, LinearSVC from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier from joblib import Parallel, delayed from mHTM.datasets.loader import load_mnist, MNISTCV from mHTM.metrics import SPMetrics from mHTM.region import SPRegion def main(): """ Use a linear SVM for multi-class classification. One vs the rest : 77.61% Default : 77.61% One vs one : 85.07% """ seed = 123456789 np.random.seed(seed) ntrain, ntest = 800, 200 (tr_x, tr_y), (te_x, te_y) = load_mnist() x, y = np.vstack((tr_x, te_x)), np.hstack((tr_y, te_y)) cv = MNISTCV(tr_y, te_y, ntrain, ntest, 1, seed) for tr, te in cv: clf = OneVsRestClassifier(LinearSVC(random_state=seed), -1) clf.fit(x[tr], y[tr]) print clf.score(x[te], y[te]) clf = LinearSVC(random_state=seed) clf.fit(x[tr], y[tr]) print clf.score(x[te], y[te]) clf = OneVsOneClassifier(LinearSVC(random_state=seed), -1) clf.fit(x[tr], y[tr]) print clf.score(x[te], y[te]) def main2(): """ Use one class SVM for multi-class classification Accuracy = 71.45% """ # Initializations seed = 123456789 np.random.seed(seed) ntrain, ntest = 800, 200 (tr_x, tr_y), (te_x, te_y) = load_mnist() tr, te = [], [] for i in xrange(10): tr.append(np.random.permutation(tr_x[tr_y == i])[:ntrain]) te.append(np.random.permutation(te_x[te_y == i])[:ntest]) # Train the classifiers and get their results clfs = [] for i in xrange(10): clf = OneClassSVM(kernel='linear', nu=0.1, random_state=seed) clf.fit(tr[i]) clfs.append(clf) # Test the classifiers te_x = np.vstack(te) te_y = np.hstack([np.array([i] * ntest) for i in xrange(10)]) results = np.zeros((10, len(te_y))) for i in xrange(10): results[i] = clfs[i].decision_function(te_x).flatten() + \ np.random.uniform(0.1, 0.2, len(te_y)) print np.sum(np.argmax(results, 0) == te_y) / float(len(te_y)) def _main3(params, x): """ Used by main3 to do the SP training in parallel. @param params: The configuration parameters for the SP. @param x: The data to train the SP on. @return: The SP instance, as well as its predictions on the training data. """ clf = SPRegion(**params) clf.fit(x) y = np.mean(clf.predict(x), 0) y[y >= 0.5] = 1 y[y < 1] = 0 return clf, y def _main3_2(clf, x, base_result, seed): """ Used by main3 to do the SP testing in parallel. @param clf: An instance of the classifier @param x: The data to test the SP on. @param base_result: The SP's base result. @param seed: Seed for random number generator @return: The SP's overlap results. """ np.random.seed(seed) metrics = SPMetrics() y = clf.predict(x) result = np.zeros(len(y)) for i, yi in enumerate(y): yt = np.vstack((base_result, yi)) result[i] = metrics.compute_overlap(yt) # Tie-breaker result += np.random.uniform(0.001, 0.002, len(y)) return result def main3(log_dir): """ Use one class SP for multi-class classification Accuracy = 49.8% """ # Initializations seed = 123456789 np.random.seed(seed) ntrain, ntest = 800, 200 (tr_x, tr_y), (te_x, te_y) = load_mnist() tr, te = [], [] for i in xrange(10): tr.append(np.random.permutation(tr_x[tr_y == i])[:ntrain]) te.append(np.random.permutation(te_x[te_y == i])[:ntest]) params = { 'ninputs': 784, 'trim': 1e-4, 'disable_boost': True, 'seed': seed, 'pct_active': None, 'random_permanence': True, 'pwindow': 0.5, 'global_inhibition': True, 'ncolumns': 784, 'nactive': 78, 'nsynapses': 100, 'seg_th': 0, 'syn_th': 0.5, 'pinc': 0.001, 'pdec': 0.001, 'nepochs': 10, 'log_dir': log_dir } metrics = SPMetrics() # Train the classifiers clfs = [] base_results = [] for clf, y in Parallel(n_jobs=-1)(delayed(_main3)(params, tr[i]) for i in xrange(10)): clfs.append(clf) base_results.append(y) # Test the classifiers te_x = np.vstack(te) te_y = np.hstack([np.array([i] * ntest) for i in xrange(10)]) results = np.array(Parallel(n_jobs=-1)(delayed(_main3_2)(clfs[i], te_x, base_results[i], seed) for i in xrange(10))) print np.sum(np.argmax(results, 0) == te_y) / float(len(te_y)) if __name__ == '__main__': # main() # main2() main3(os.path.join(os.path.expanduser('~'), 'scratch', 'mnist_novelty_classification', 'r1')) ``` #### File: dev/parameter_exploration/parser.py ```python __docformat__ = 'epytext' # Native imports import csv, json, os, re, cPickle # Third party imports import numpy as np import matplotlib.pyplot as plt # Program imports from mHTM.plot import plot_error, compute_err def natural_sort(items): """ Sort a set of strings in the format that a human would. @param items: The list of items to sort. @return: A new list with the sorted items. """ convert = lambda text: int(text) if text.isdigit() else text.lower() alphanum_key = lambda key : [convert(c) for c in re.split('([0-9]+)', key)] return sorted(items, key = alphanum_key) def get_sorted_dirs(paths): """ Get all of the directories, sorted from the provided set of paths. @param paths: The paths to sort. @return: The sorted directories. """ return natural_sort([path for path in paths if os.path.isdir(path)]) def get_results(base_path, config_keys, x=None, y=None): """ Get the results for the experiment. @param base_path: The full path to the directory containing the runs. @param config_keys: The keys in the config to read. @param x: If not None add the data to this structure. @param y: If not None add the data to this structure. @return: The results and the base paths """ # Store the independent variables if x is None: x = [[] for _ in config_keys] # Store the dependent variables # -- fit_time, learn_fit_time, pred_fit_time, input_uniqueness, # input_overlap, input_correlation, sp_uniqueness, sp_overlap, # sp_correlation if y is None: y = [[],[],[],[],[],[],[],[],[]] # Get the data prev_param_iteration = None for path in sorted(os.listdir(base_path)): # Only work with valid runs try: param_iteration, _ = [int(item) for item in path.split('-')] except ValueError: continue ##### # Independent variables ##### # Get the JSON config with open(os.path.join(base_path, path, 'config.json'), 'rb') as f: config = json.load(f) # Get the data for i, key in enumerate(config_keys): x[i].append(config[key]) ##### # Dependent variables ##### # Read in the results data = [] with open(os.path.join(base_path, path, 'stats.csv'), 'rb') as f: reader = csv.reader(f) for row in reader: data.append(float(row[1])) # Add to data structure if prev_param_iteration == param_iteration: for i, d in enumerate(data): y[i][-1].append(d) else: prev_param_iteration = param_iteration for i, d in enumerate(data): y[i].append([d]) return x, y def main(root_dir): """ Parse out the experiment data into a user-friendly format. @param root_dir: The root of the directory tree. CAUTION: Known bug - If only one folder exists, this code will not produce the output. """ # Experiment map # -- Folder name, parameter names, experiment name experiment_map = { 'nactive': [['nactive'], 'nactive'], 'ncols1': [['ncolumns'], 'ncols'], 'ncols2': [['ncolumns'], 'ncols'], 'ncols3': [['ncolumns'], 'ncols'], 'ncols4': [['ncolumns'], 'ncols'], 'ncols5': [['ncolumns'], 'ncols'], 'ncols6': [['ncolumns'], 'ncols'], 'ncols7': [['ncolumns'], 'ncols'], 'ncols8': [['ncolumns'], 'ncols'], 'ncols9': [['ncolumns'], 'ncols'], 'ncols10': [['ncolumns'], 'ncols'], 'nepochs': [['nepochs'], 'nepochs'], 'nsynapses': [['nsynapses'], 'nsynapses'], 'pct_active': [['pct_active'], 'pct_active'], 'pdec': [['pdec'], 'pdec'], 'pinc': [['pinc'], 'pinc'], 'pwindow': [['pwindow'], 'pwindow'], 'seg_th': [['seg_th'], 'seg_th'] } # Initial name of base experiment prev_name = None x = y = None # Process all of the items for dir in get_sorted_dirs([os.path.join(root_dir, p) for p in os.listdir(root_dir)]): parameter_names, experiment_name = experiment_map[ os.path.basename(dir)] # Get the data if experiment_name == prev_name: x, y = get_results(dir, parameter_names, x, y) else: # Save the results if not ((x is None) and (y is None)): with open(os.path.join(root_dir, '{0}.pkl'.format(prev_name)), 'wb') as f: cPickle.dump((x, y), f, cPickle.HIGHEST_PROTOCOL) # Get the new data x, y = get_results(dir, parameter_names) prev_name = experiment_name def main2(base_path): """ @param base_path: Full path to pickle file to work with. """ # Mapping of independent variables to indexes data_index = { 'fit_time':0, 'learn_fit_time':1, 'pred_fit_time':2, 'input_uniqueness':3, 'input_overlap':4, 'input_correlation':5, 'sp_uniqueness':6, 'sp_overlap':7, 'sp_correlation':8 } # Get the data with open(base_path, 'rb') as f: x, y = cPickle.load(f) x = sorted(set(x[-1])) # For now work with 1D # Pull out data for this plot y1 = (y[data_index['input_uniqueness']], y[data_index['sp_uniqueness']]) y2 = (y[data_index['input_overlap']], y[data_index['sp_overlap']]) y3 = (y[data_index['input_correlation']], y[data_index['sp_correlation']]) # Refactor the data x_series = (x, x, x) med = lambda y: np.median(y, axis=1) * 100 err = lambda y: compute_err(y, axis=1) * 100 y1_series = map(med, y1) y1_errs = map(err, y1) y2_series = map(med, y2) y2_errs = map(err, y2) y3_series = map(med, y3) y3_errs = map(err, y3) # Make the main plot fig = plt.figure(figsize=(21, 20), facecolor='white') ax = fig.add_subplot(111) ax.spines['top'].set_color('none') ax.spines['bottom'].set_color('none') ax.spines['left'].set_color('none') ax.spines['right'].set_color('none') ax.tick_params(labelcolor='w', top='off', bottom='off', left='off', right='off') # Make subplots ax1 = fig.add_subplot(311) plot_error(show=False, legend=False, ax=ax1, title='Uniqueness', x_series=x_series, y_series=y1_series, y_errs=y1_errs, ylim=(-5, 105)) ax2 = fig.add_subplot(312, sharex=ax1, sharey=ax1) plot_error(show=False, legend=False, ax=ax2, title='Overlap', x_series=x_series, y_series=y2_series, y_errs=y2_errs, ylim=(-5, 105)) ax3 = fig.add_subplot(313, sharex=ax1, sharey=ax1) plot_error(show=False, legend=False, ax=ax3, title='Correlation', x_series=x_series, y_series=y3_series, y_errs=y3_errs, ylim=(-5, 105)) plt.tight_layout(h_pad=2) plt.show() if __name__ == '__main__': #### # Parse #### # results_dir = os.path.join(os.path.expanduser('~'), 'results') # experiment_name = 'first_order' # inhibition_types = ('global', 'local') # for inhibition_type in inhibition_types: # root_dir = os.path.join(results_dir, experiment_name, inhibition_type) # main(root_dir) #### # Plot #### results_dir = os.path.join(os.path.expanduser('~'), 'scratch') experiment_name = 'first_order' inhibition_type = 'global' root_dir = os.path.join(results_dir, experiment_name, inhibition_type) for experiment in (os.listdir(root_dir)): print experiment base_path = os.path.join(root_dir, experiment) main2(base_path) ``` #### File: src/examples/sp_simple.py ```python __docformat__ = 'epytext' # Native imports import os # Third party imports import numpy as np # Program imports from mHTM.region import SPRegion from mHTM.datasets.loader import SPDataset from mHTM.metrics import SPMetrics from mHTM.plot import plot_line def main(): """ Program entry. Build an SP using SPDataset and see how it performs. """ # Params nsamples, nbits, pct_active = 500, 100, 0.4 seed = 123456789 base_path = os.path.join(os.path.expanduser('~'), 'scratch', 'sp_simple') kargs = { 'ninputs': nbits, 'ncolumns': 200, 'nactive': 50, 'global_inhibition': True, 'trim': 1e-4, 'disable_boost': True, 'seed': seed, 'nsynapses': 75, 'seg_th': 15, 'syn_th': 0.5, 'pinc': 0.001, 'pdec': 0.001, 'pwindow': 0.5, 'random_permanence': True, 'nepochs': 10, 'log_dir': os.path.join(base_path, '1-1') } # Build items to store results npoints = 25 pct_noises = np.linspace(0, 1, npoints, False) uniqueness_sp, uniqueness_data = np.zeros(npoints), np.zeros(npoints) similarity_sp, similarity_data = np.zeros(npoints), np.zeros(npoints) similarity_sp1, similarity_data1 = np.zeros(npoints), np.zeros(npoints) similarity_sp0, similarity_data0 = np.zeros(npoints), np.zeros(npoints) dissimilarity_sp, dissimilarity_data = np.zeros(npoints), np.zeros(npoints) overlap_sp, overlap_data = np.zeros(npoints), np.zeros(npoints) correlation_sp, correlation_data = np.zeros(npoints), np.zeros(npoints) # Metrics metrics = SPMetrics() # Vary input noise for i, pct_noise in enumerate(pct_noises): print 'Iteration {0} of {1}'.format(i + 1, npoints) # Build the dataset ds = SPDataset(nsamples=nsamples, nbits=nbits, pct_active=pct_active, pct_noise=pct_noise, seed=seed) # Get the dataset stats uniqueness_data[i] = metrics.compute_uniqueness(ds.data) similarity_data[i] = metrics.compute_total_similarity(ds.data, confidence_interval=0.9) similarity_data1[i] = metrics.compute_one_similarity(ds.data, confidence_interval=0.9) similarity_data0[i] = metrics.compute_zero_similarity(ds.data, confidence_interval=0.9) dissimilarity_data[i] = metrics.compute_dissimilarity(ds.data, confidence_interval=0.9) overlap_data[i] = metrics.compute_overlap(ds.data) correlation_data[i] = 1 - metrics.compute_distance(ds.data) # Build the SP sp = SPRegion(**kargs) # Train the region sp.fit(ds.data) # Get the SP's output SDRs sp_output = sp.predict(ds.data) # Get the stats uniqueness_sp[i] = metrics.compute_uniqueness(sp_output) similarity_sp[i] = metrics.compute_total_similarity(sp_output, confidence_interval=0.9) similarity_sp1[i] = metrics.compute_one_similarity(sp_output, confidence_interval=0.9) similarity_sp0[i] = metrics.compute_zero_similarity(sp_output, confidence_interval=0.9) dissimilarity_sp[i] = metrics.compute_dissimilarity(sp_output, confidence_interval=0.9) overlap_sp[i] = metrics.compute_overlap(sp_output) correlation_sp[i] = 1 - metrics.compute_distance(sp_output) # Make some plots print 'Showing uniqueness - 0% is ideal' plot_line([pct_noises * 100, pct_noises * 100], [uniqueness_data * 100, uniqueness_sp * 100], series_names=('Raw Data', 'SP Output'), x_label='% Noise', y_label='Uniqueness [%]', xlim=False, ylim=(-5, 105), out_path=os.path.join(base_path, 'uniqueness.png'), show=True) print 'Showing total similarity - 100% is ideal' plot_line([pct_noises * 100, pct_noises * 100], [similarity_data * 100, similarity_sp * 100], series_names=('Raw Data', 'SP Output'), x_label='% Noise', y_label='Total similarity [%]', xlim=False, ylim=(-5, 105), out_path=os.path.join(base_path, 'similarity.png'), show=True) print 'Showing similarity of "1" bits - 100% is ideal' plot_line([pct_noises * 100, pct_noises * 100], [similarity_data1 * 100, similarity_sp1 * 100], series_names=('Raw Data', 'SP Output'), x_label='% Noise', y_label="Similarity of '1's [%]", xlim=False, ylim=(-5, 105), out_path=os.path.join(base_path, 'one_similarity.png'), show=True) print 'Showing similarity of "0" bits - 100% is ideal' plot_line([pct_noises * 100, pct_noises * 100], [similarity_data0 * 100, similarity_sp0 * 100], series_names=('Raw Data', 'SP Output'), x_label='% Noise', y_label="Similarity of '0's [%]", xlim=False, ylim=(-5, 105), out_path=os.path.join(base_path, 'zero_similarity.png'), show=True) print 'Showing dissimilarity - 0% is ideal' plot_line([pct_noises * 100, pct_noises * 100], [dissimilarity_data * 100, dissimilarity_sp * 100], series_names=('Raw Data', 'SP Output'), x_label='% Noise', y_label="Dissimilarity [%]", xlim=False, ylim=(-5, 105), out_path=os.path.join(base_path, 'dissimilarity.png'), show=True) print 'Showing average normalized overlap - 100% is ideal' plot_line([pct_noises * 100, pct_noises * 100], [overlap_data * 100, overlap_sp * 100], series_names=('Raw Data', 'SP Output'), x_label='% Noise', y_label="% Normalized Overlap", xlim=False, ylim=(-5, 105), out_path=os.path.join(base_path, 'overlap.png'), show=True) print 'Showing % average sample correlation coefficient - 100% is ideal' plot_line([pct_noises * 100, pct_noises * 100], [correlation_data * 100, correlation_sp * 100], series_names=('Raw Data', 'SP Output'), x_label='% Noise', y_label="% Correlation", xlim=False, ylim=(-5, 105), out_path=os.path.join(base_path, 'correlation.png'), show=True) print '*** All data saved in "{0}" ***'.format(base_path) if __name__ == '__main__': main() ```
{ "source": "jmnel/bactrian", "score": 3 }
#### File: bactrian/bactrian/expression.py ```python def bractify(arg): from .numeric_types import Float, Integer if isinstance(arg, float): return Float(arg) if isinstance(arg, int): return Integer(arg) else: return arg class Expression: def __init__(self): pass def __mul__(self, rhs): return Mul(self, rhs) def __rmul__(self, lhs): return Mul(lhs, self) def __add__(self, rhs): return Add(self, rhs) def __radd__(self, lhs): return Add(rhs, self) def __sub__(self, rhs): return Add(self, Mul(-1, rhs)) def __rsub__(self, lhs): return Add(Mul(-1, lhs), self) def __neg__(self): return Mul(-1, self) def __lt__(self, rhs): from .relation import LessThanStrict return LessThanStrict(self, rhs) def __gt__(self, rhs): from .relation import GreaterThanStrict return GreaterThanStrict(self, rhs) def __le__(self, rhs): from .relation import LessThan return LessThan(self, rhs) def __ge__(self, rhs): from .relation import GreaterThan return GreaterThan(self, rhs) def __eq__(self, rhs): from .relation import EqualTo return EqualTo(self, rhs) def __ne__(self, rhs): from .relation import NotEqualTo return NotEqualTo(self, rhs) def parse_symbol_times_scalar(expr): from .symbol import Symbol if (not isinstance(expr, Mul)) and (not isinstance(expr, Symbol)): raise TypeError('Failed to parse expression: \"%s\" must be type Mul or Symbol' % str(expr)) if isinstance(expr, Symbol): return (1, expr) is__symbol = list(map(lambda a : isinstance(a, Symbol), expr.args)) is__numeric = list(map(lambda a : isinstance(a, Numeric), expr.args)) symbol_count = is__symbol.count(True) numeric_count = is__symbol.count(True) if symbol_count != 1: # Should these 2 exceptions be TypeError instead? raise ValueError('Failed to parse expression: \"%s\" must contain exactly one of type Smybol' % str(expr)) if numeric_count != len(expr.args)-1: raise ValueError('Failed to parse expression: \"%s\" must contain n-1 of type Numeric' % str(expr)) coef, symb = 1, None for i, arg in enumerate(expr.args): if is_symbol[i]: assert (not is_numeric[i]), ('not is_numeric[%d]' % i) symb = arg else: assert is_numeric[i] ('is_numeric[%d]' % i) coef *= arg.value return (coef, symb) def parse_linear_combination(expr): from .symbol import Symbol if isinstance(expr, Symbol): return [(1, expr)] if isinstance(expr, Mul): return [parse_symbol_times_scalar(expr)] elif isinstance(expr, Add): return [parse_symbol_times_scalar(t) for t in expr.args] else: raise TypeError('Failed to parse linear combination: \"%s\" is not type Add or Mul' % str(expr)) from .add import Add from .mul import Mul ``` #### File: bactrian/bactrian/simplify.py ```python from .expression import Expression, bractify def simplify(expr): from .add import Add from .mul import Mul from .numeric_types import Numeric if isinstance(expr, Mul): non_numerics = list() coef = 1 for a in expr.args: if isinstance(a, Numeric): coef *= a.value else: non_numerics.append(a) lhs = (bractify(coef), ) rhs = tuple(non_numerics) return Mul(lhs + rhs) elif isinstance(expr, Add): non_numerics = list() coef = 0 for a in expr.args: if isinstance(a, Numeric): coef += a.value else: non_numerics.append(a) lhs = (bractify(coef), ) rhs = tuple(non_numerics) return Add(lhs + rhs) else: return expr ```
{ "source": "jmnel/binance-client", "score": 2 }
#### File: binance-client/src/client.py ```python import sqlite3 from pprint import pprint import json from pathlib import Path from time import perf_counter, sleep import multiprocessing as mp #from multiprocessing import Pipe, Process #from multiprocessing.connection import Connection from multiprocessing.connection import Connection from enum import Enum from collections import namedtuple import matplotlib matplotlib.use('module://matplotlib-backend-kitty') import matplotlib.pyplot as plt import settings from api import get_aggregate_trades N = settings.NUM_WORKERS DB_PATH = settings.DATA_DIRECTORY / settings.DATABASE_NAME class MessageType(Enum): STOP = 0 WAIT_UPDATE = 1 AGG_TRADES_REQUEST = 2 AGG_TRADES_RESULT = 3 Message = namedtuple('Message', 'type args') def prep_database(): if DB_PATH.exists(): DB_PATH.unlink() db = sqlite3.connect(DB_PATH) db.execute(''' CREATE TABLE trades_BTCUSDT( id INTEGER PRIMARY KEY, timestamp UNSIGNED INT, price FLOAT, quantity FLOAT);''') db.close() def write_buffer(buff): buff_2 = list() if len(buff) > 0: for b in buff: if b is not None: if len(b) > 0: if len(buff_2) > 0: assert buff_2[-1][0] + 1 == b[0][0] buff_2.extend(b) if len(buff_2) > 0: db = sqlite3.connect(DB_PATH) db.executemany('INSERT INTO trades_BTCUSDT(id, timestamp, price, quantity) VALUES(?, ?, ?, ?)', buff_2) db.commit() db.close() # print(f'wrote {len(buff_2)} rows') def proc(worker_idx: int, child_conn: Connection): weight = 0. prev_time = perf_counter() while True: while not child_conn.poll(): sleep(1) msg = child_conn.recv() if msg.type == MessageType.STOP: # print(f'recevied stop') break elif msg.type == MessageType.AGG_TRADES_REQUEST: while True: wave, symbol, from_id = msg.args # print(f'w={wave}, s={symbol}, idx={from_id}') t_start = perf_counter() try: result = get_aggregate_trades(symbol, from_id) except: print(f'{worker_idx} : Request timed out.') sleep(2) continue print(f'requst took {perf_counter() - t_start}') if result.status == 200: true_weight = result.used_weight data = result.data if len(data) == 0: last_id = -1 else: last_id = data[-1][0] child_conn.send(Message(MessageType.AGG_TRADES_RESULT, (wave, true_weight, data, from_id, last_id))) break else: print(f'failed: {result.status}') sleep(10) elif msg.type == MessageType.WAIT_UPDATE: weight = msg.args[0] # print(f'{worker_idx} : new weight={weight}') new_time = perf_counter() elapsed = new_time - prev_time prev_time = new_time weight = weight - settings.WEIGHT_DECAY * elapsed # print('worker done') def main(): prep_database() parent_conn, child_conn = tuple(zip(*(mp.Pipe() for _ in range(settings.NUM_WORKERS)))) workers = tuple(mp.Process(target=proc, args=(i, child_conn[i],)) for i in range(settings.NUM_WORKERS)) for w in workers: w.start() # parent_conn[2].send(Message(MessageType.WAIT_UPDATE, (12,))) sleep(2) wave = 0 next_idx = 0 # next_idx = 381084197 + 1002 * 500 # next_idx = int(382082680 - 1e9) # print(next_idx) # exit() weight = 0.0 busy = [False, ] * N # q = 2000 p = 0 buff = list(None for _ in range(N)) weights = list() should_stop = False is_stopping = False iterations = 0 prev_wave = 0 while True: if iterations % 100 == 0 and wave != prev_wave: print('Wave {}: Weight: {}, Progress: {:.1f}, Next ID: {}'.format( wave + 1, weight, 100. * (next_idx / 382116257), next_idx)) prev_wave = wave iterations += 1 weight_updated = False weight_i = [0, ] * N # Check children for messages. for i in range(N): if parent_conn[i].poll(): msg = parent_conn[i].recv() if msg.type == MessageType.AGG_TRADES_RESULT: wave_i, true_weight, data, from_id, last_id = msg.args if wave_i == wave: weight_i[i] = true_weight print(f'{i} : {wave_i}, {from_id} -> {last_id} : {true_weight}') busy[i] = False assert buff[i] is None # assert data[0][0] == from_id # assert data[-1][0] == last_id if len(data) < 1002: should_stop = True # print('reached end') buff[i] = data p += 1 if all(map(lambda b: b is not None, buff)): # print(f'writing buffer') write_buffer(buff) # for idx in range(N - 1): # assert buff[idx][-1][0] + 1 == buff[idx + 1][0][0] buff = list(None for _ in range(N)) # if p >= q: # print('done') # break if not any(busy): weight = max(weight_i) # weight_updated = True # wave += 1 t_0 = perf_counter() while weight >= 1000: # print(f'waiting {weight}') t_1 = perf_counter() t_d = t_1 - t_0 t_0 = t_1 weight = max(0, weight - settings.WEIGHT_DECAY * t_d) # print(f'new weight: {weight}') # sleep(0.002) wave += 1 for i in range(N): parent_conn[i].send(Message(MessageType.AGG_TRADES_REQUEST, (wave, 'BTCUSDT', next_idx))) sleep(1) next_idx += 1002 busy[i] = True weights.append(weight) # if p % N == 0: # plt.plot(weights) # plt.show() if should_stop and not is_stopping: sleep(10) is_stopping = True print('should stop') continue if is_stopping: print('Done') c = len(tuple(filter(lambda e: e is not None, buff))) # print(f'{c} left in buffer') write_buffer(buff) break # for i in range(NUM_WORKERS): # parent_conn[i % 4].send(Message(MessageType.AGG_TRADES_REQUEST, ('BTCTUSD', next_idx))) # result = parent_conn[i % 4].recv() # args = result.args # print(f'{next_idx} -> {args[-1]+1}') # print(f'len: {args[-1] - next_idx}') # print(f'true len: {len(result.args[1])}') # t0 = args[1][0][0] # t1 = args[1][-1][0] # print(f'{t0} -> {t1}') # print() # next_idx = args[-1] + 1 sleep(2) for idx in range(settings.NUM_WORKERS): parent_conn[idx].send(Message(MessageType.STOP, None)) sleep(2) # while not parent_conn.poll(): # print('waiting') # sleep(0.5) # x = parent_conn.recv() # p.kill() # print(x) main() ```
{ "source": "jmnel/combinatorial-optimization", "score": 3 }
#### File: src/problem1_b2/adj_graph.py ```python import numpy as np from pathlib import Path from graphviz import Digraph # import ..settings def draw_adj_graph(arcs, filename: str, output_dir: Path): g = Digraph('G', filename=filename, directory=output_dir, format='pdf') g.attr(rankdir='LR') for i in range(len(arcs) - 1): for j in range(len(arcs[i])): if arcs[i][j]: g.edge(str(j + 1), str(i + 1)) for j in range(len(arcs[-1])): if arcs[-1][j]: g.edge(str(j + 1), 'Done') g.render() ``` #### File: midterm/old/play.py ```python from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib import cm import numpy as np import random a, b, c, d = -2, 2, -1, 3 def f(x, y): return -(1-x)**2 - 100*(y-x**2)**2 fig = plt.figure() # ax = fig.gca(projection='3d') ax = fig.gca() x = np.arange(-2, 2, 0.1) y = np.arange(-1, 3, 0.1) x, y = np.meshgrid(x, y) r = np.sqrt(x**2 + y**2) # zline = np.linspace(100.0, 100.0, 100) # xline = np.linspace(-2.0, 2.0, 100) # yline = np.linspace(-2.0, 2.0, 100) z = np.zeros(x.shape) for i in range(x.shape[0]): for j in range(x.shape[1]): z[i, j] = -(1.-x[i, j])**2 - 100.*(y[i, j]-x[i, j]**2)**2 ax.contourf(x, y, -np.power(-z, 1/5), cmap='gnuplot2') # ax.plot(xline, yline, 'blue') ax.scatter([1.0], [1.0], c='red') grid3 = np.array([ [f(a + i*(b-a)/99., c + j*(d-c)/99.) for j in range(100)] for i in range(100)]) class TempScheduler: def __init__(self, temp0): self.temp0 = temp0 self.temp = temp0 self.k = 0 self.alpha = 4.01 self.n = 10000 def step(self): # self.temp = self.temp0 / (1. + self.alpha + np.log(1. + self.k)) self.temp = self.temp0 * ((self.n - self.k) / self.n)**2 # self.temp = max(0, self.temp0 - 0.1 * self.k) self.k += 1 return self.temp def temp_final(self): return 0.0 def simulated_annealing(grid): # def temp_schedule(t): # return max(0., 100. * np.exp(-0.005 * t)) temp_scheduler = TempScheduler(80.0) n = (0, 0) # t = 0 # te # temp0 = 10. history = list() # temp = temp0 # temp_final = 0.6 while True: temp = temp_scheduler.step() history.append(n) # print(f'iteration {t}') # temp = max(0.999 * temp, 1e-12) # alpha = 1.01 # temp = temp0 / (1. + alpha * np.log(1. + t)) print(f'temp={temp}') e_current = grid[n] i, j = n if temp <= temp_scheduler.temp_final(): print('Solution found:') print(' x* = ({}, {})'.format(i, j)) print(' f(x*) = {}'.format(e_current)) return (n, grid[n], history) children = [(i-1, j), (i, j-1), (i+1, j), (i, j+1)] children = tuple(filter( lambda c: c[0] >= 0 and c[1] >= 0 and c[0] < grid.shape[0] and c[1] < grid.shape[1], children)) successor = children[random.randint(0, len(children) - 1)] # print(successor) e_successor = grid[successor] e_delta = e_successor - e_current if e_delta > 0.0: n = successor else: jump_prob = np.exp(e_delta / temp) if np.random.uniform(0., 1.) < jump_prob: n = successor # t += 1 n_max, f_max, hist = simulated_annealing(grid3) xline = np.array([a + h[0]*(b-a)/99. for h in hist]) yline = np.array([c + h[1]*(d-c)/99. for h in hist]) grid_max = np.amax(grid3) grid_ij_max = np.where(grid3 == grid_max) print(grid_max) print(grid_ij_max) grid_xy_max = (a + grid_ij_max[0]*(b-a)/99., c + grid_ij_max[1]*(d-c)/99.) print(grid_xy_max) foo_max = (a + n_max[0]*(b-a)/99., c + n_max[1]*(d-c)/99.) ax.scatter([foo_max[0]], [foo_max[1]]) ax.plot(xline, yline, linewidth=0.5, color='gray') plt.show() ``` #### File: test/NEL_Jacques-212588109-midterm1/dj38_solution.py ```python import numpy as np import matplotlib matplotlib.use('GTK3Cairo') import matplotlib.pyplot as plt from dj38_loader import DJ38Loader from tsp_solver import tsp_solve def solve_dj38(): """Solves TSP for 'dj38' dataset.""" print('Solving TSP with \'dj38\' dataset...') # Download and get citiy coordinates form dataset. cities = DJ38Loader().dataset num_cities = len(cities) print(f' Found {num_cities} cities.') # Create initial tour by enumerating cities and append first element. initial_tour = tuple(i for i in range(num_cities)) + (0,) print(' Running 2-opt TSP solver...\n') optim_tour, _ = tsp_solve(cities) initial_tour_points = np.array([cities[i] for i in initial_tour]) optim_tour_points = np.array([cities[i] for i in optim_tour]) fig, ax = plt.subplots() ax.plot(initial_tour_points[:, 0], initial_tour_points[:, 1], 'red', linewidth=0.8, zorder=-30) ax.scatter(cities[:, 0], cities[:, 1], c='blue') ax.set_xlabel('x') ax.set_ylabel('y') plt.savefig(fname='figures/figure4-1.svg') plt.cla() ax.plot(optim_tour_points[:, 0], optim_tour_points[:, 1], 'red', linewidth=0.8, zorder=-30) ax.scatter(cities[:, 0], cities[:, 1], c='blue') ax.set_xlabel('x') ax.set_ylabel('y') plt.savefig(fname='figures/figure4-2.svg') # plt.show() solve_dj38() ``` #### File: combinatorial-optimization/midterm/time_utils.py ```python def time_human_readible(t: float): if t > 60: return '{:.1f} minutes'.format(t / 60.) elif t >= 1.0: return '{:.2f}s'.format(t) elif t > 1e-3: return '{:.0f}ms'.format(t * 1e3) elif t > 1e-6: return '{:.0f}μs'.format(t * 1e6) else: return '{}s'.format(t) ``` #### File: workshop3/src/test_minimax.py ```python from time import perf_counter from typing import Tuple from random import shuffle from minimax import minimax_search from common.time_utils import time_hr from common.ticktack import * def test_minimax_random_state(): num_trials = 10 epochs = 200 for n in range(9): t_avg = 0. minimax_calls_avg = 0 util_fn_evals_avg = 0 for trial in range(num_trials): init_state = list(range(9)) shuffle(init_state) init_state = init_state[:n] init_state = tuple(init_state) t_start = perf_counter() _, _, stats = minimax_search(init_state, util_fn=score_weighted, expand_fn=expand_basic, randomize=True) t_avg += perf_counter() - t_start util_fn_evals_avg += stats['util_fn_evals'] minimax_calls_avg += stats['minimax_calls'] t_avg /= num_trials util_fn_evals_avg /= num_trials minimax_calls_avg /= num_trials print( f'For n={n} available states, avg. statistics over {num_trials} runs:') print(f' running time: {time_hr(t_avg)}') print( f' minimax calls: {minimax_calls_avg}, util function calls: {util_fn_evals_avg}\n') ```
{ "source": "jmnel/dataapi-client", "score": 2 }
#### File: dataapi_client/topk/export.py ```python import requests import json from pprint import pprint import sqlite3 from typing import Sequence, Union, Optional import datetime from datetime import datetime from ..api import ApiConfig ENDPOINT_BASE = 'https://data.jmnel.com/api/v1/' ENDPOINT_AUTH = ENDPOINT_BASE + 'topk/authenticate?api={}' ENDPOINT_EXPORT = ENDPOINT_BASE + 'topk/import/' def export_topk(date: Union[str, datetime.date], symbols: Sequence[str], api_key: Optional[str] = None, overwrite: bool = False, blocking: bool = True, verbose: bool = False): """ Export top-k prediction to the data server. Args: date: Date of prediction. symbols: List of predicted symbols. api_key: API key for authentication. overwrite: Overwrite existing predictions. blocking: Wait for IB symbol lookup before returning if true. verbose: Generate verbose output. Returns: """ if api_key is None or api_key == '': if ApiConfig.api_key is None or ApiConfig.api_key == '': raise ValueError('dataapi-client: API key not provided') else: api_key = ApiConfig.api_key if not blocking: raise NotImplementedError('dataapi-client: non-blocking requests not implemented yet.') session = requests.Session() if verbose: print('dataapi-client: session created') try: auth_result = session.get(ENDPOINT_AUTH.format(api_key)) if verbose: print('dataapi-client: authenticated') except Exception as e: raise ConnectionError('dataapi-client: failed to connect to server: {e}') if not auth_result.ok: raise ValueError(f'dataapi - client: authentification failed; {auth_result.reason}') if isinstance(date, str): try: datetime.strptime(date, '%Y-%m-%d') except: raise ValueError(f'{date} is not in %Y-%m-%d format') else: date = datetime.strftime('%Y-%m-%d') json_data = {'api': api_key, 'date': date, 'overwrite': overwrite, 'symbols': symbols} session.headers['referer'] = ENDPOINT_AUTH data = {'csrfmiddlewaretoken': session.cookies['csrftoken'], 'json_data': json.dumps(json_data)} if verbose: print('dataapi-client: exporting top-k symbols') response = session.post(ENDPOINT_EXPORT, data=data) # print(response.content) response_json = json.loads(response.content) if verbose: print('dataapi-client: response:') pprint(response_json) return response_json ```
{ "source": "jmnel/datapipeline", "score": 2 }
#### File: src/iex/update.py ```python from pymongo import MongoClient from confluent_kafka import Consumer, Producer from nameko.extensions import Entrypoint class Updater(Entrypoint): name = 'service' def __init__(self): pass def setup(self): pass def start(self): self.container.spawn_managed_thread(self.run, identifier='Updater.run') def run(self): pass def stop(self): pass #updater = Updater.decorator ```
{ "source": "jmnel/dromedary-welcome", "score": 3 }
#### File: dromedary-welcome/src/help_browser.py ```python import os from PySide2.QtWidgets import (QWidget, QPushButton, QTextBrowser, QHBoxLayout, QVBoxLayout, QDialog) from PySide2.QtCore import Qt, Slot class HelpBrowser(QWidget): instance = None # Class variable instance of help browser documentation_path = '' # Documentation path def __init__(self, parent=None): # def __init__(self, path, page, parent=None): # We don't pass parent to superclass, because we don't want help browser to be a child of # main window. We handle closing help browser when main window closes manually. super(HelpBrowser,self).__init__() # Set needed widget attributes. WA_DeleteOnClose is needed so that closing main window also # closes instance of help browser. self.setAttribute(Qt.WA_DeleteOnClose) # Destroy widget when window is closed. self.setAttribute(Qt.WA_GroupLeader) # Create home, back, and close buttons. self.home_button = QPushButton(self.tr('&Home')) self.back_button = QPushButton(self.tr('&Back')) self.close_button = QPushButton(self.tr('Close')) self.close_button.setShortcut(self.tr('Esc')) # Layout home, back, and close buttons. self.button_layout = QHBoxLayout() self.button_layout.addWidget(self.home_button) self.button_layout.addWidget(self.back_button) self.button_layout.addStretch() self.button_layout.addWidget(self.close_button) # Create basic layout containing QTextBrowser. self.text_browser = QTextBrowser() self.main_layout = QVBoxLayout() self.main_layout.addLayout(self.button_layout) self.main_layout.addWidget(self.text_browser) self.setLayout(self.main_layout) # Connect button signals self.home_button.clicked.connect(self.text_browser.home) self.back_button.clicked.connect(self.text_browser.backward) self.close_button.clicked.connect(self.close) # Calls static function to clear help browser instance reference. self.destroyed.connect(HelpBrowser.on_close) # Close help browser on parent is_closing signal. parent.is_closing.connect(self.close) # Navigates to page in documentation path. def goto_page(self, page): page_file_path = os.path.join(HelpBrowser.documentation_path, page) self.text_browser.setSource(page_file_path) # Sets documenation path. @staticmethod def set_documentation_path(path): HelpBrowser.documentation_path = path # Unsets help browser instance reference. This gets called when help browser is destroyed. @staticmethod def on_close(): if HelpBrowser.instance != None: HelpBrowser.instance = None # Creates and shows help browser window, stores instance in class variable, and navigates to # page in documentation path. @staticmethod def show_page(page, parent=None): if HelpBrowser.instance == None: HelpBrowser.instance = HelpBrowser(parent) HelpBrowser.instance.resize(500,400) HelpBrowser.instance.show() HelpBrowser.instance.goto_page(page) ```
{ "source": "jmnel/math4171", "score": 3 }
#### File: arcplot/pythonscripts/foo.py ```python print("loading") def bar(a,b,c): print("hi") print(a) print(b) print(c) return #from mpl_toolkits.mplot3d import Axes3D #import matplotlib.pyplot as plt #from matplotlib import cm #from matplotlib.ticker import LinearLocator, FormatStrFormatter #import numpy as np #fig = plt.figure() #ax = fig.gca(projection='3d') ## Make data. #X = np.arange(-5, 5, 0.05) #Y = np.arange(-5, 5, 0.05) #X, Y = np.meshgrid(X, Y) #R = np.sqrt(X**2 + Y**2) #Z = np.sin(R) ## Plot the surface. #surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, #linewidth=0, antialiased=True) ## Customize the z axis. #ax.set_zlim(-1.01, 1.01) #ax.zaxis.set_major_locator(LinearLocator(10)) #ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) ## Add a color bar which maps values to colors. ##fig.colorbar(surf, shrink=0.5, aspect=5) #plt.show() ```
{ "source": "jmnel/pyfintools", "score": 3 }
#### File: pyfintools/plot/geometry.py ```python import numpy as np class Point(np.ndarray): def __new__(cls, x, y, *args, **kwargs): return super(Point, cls).__new__(cls, *args, shape=(3,), **kwargs) def __init__(self, x, y): self[0:3] = [x, y, 1] @property def x(self): return self[0] @x.setter def x(self, value): self.x = value @property def y(self): return self[1] @y.setter def y(self, value): self.y = value @property def xy(self): return self[:2] def __str__(self): return 'Point( x={}, y={} )'.format(*self[:2]) class Rect: def __init__(self, position: Point, scale: Point): self.position = position self.scale = scale def __str__(self): return 'Rect( position={}, scale={} )'.format(self.position, self.scale) def __getitem__(self, idx): if idx > 1: raise StopIteration if idx == 0: return self.position else: return self.scale ``` #### File: pyfintools/plot/plot.py ```python from typing import List, Union, Tuple import pandas as pd from .figure import Figure from .axes import Axes from .ohlcv import TickVolume, TickCandles def subplots(num_rows: int, num_cols: int): fig = Figure() axes = list() for i in range(num_rows): axes.append(list()) for j in range(num_cols): ax = Axes() axes[-1].append(ax) fig.axes = axes if num_cols == 1 and num_rows == 1: return fig, axes[0][0] elif num_rows == 1: return fig, axes[0] elif num_cols == 1: return fig, list(a[0] for a in axes) return fig, axes def ohlcv_plot(data: pd.DataFrame): fig, axes = subplots(2, 1) axes[0].plot_series.append(TickCandles(data)) axes[1].plot_series.append(TickVolume(data)) # fig.set_title(f'{model.contract} {model.date}') fig.layout() fig.draw() return fig, axes # print(buff.getvalue().decode('utf-8')) ```
{ "source": "jmnel/simulated-annealing", "score": 3 }
#### File: jmnel/simulated-annealing/multistart.py ```python from typing import Callable, Dict import numpy as np import scipy.optimize as optim from gradient_descent import grad_descent from zoo import Zoo def multistart(f: Callable, jac: Callable, domain: np.array, max_iterations: int = 200, tau: float = 1e-4, rho: float = 0.8, eps: float = 1e-3, tol: float = 1e-7, ls_method: Callable = optim.minimize, ls_kwargs: Dict = dict(), polish: bool = True, polish_method: Callable = optim.minimize, polish_kwargs: Dict = dict()): """ Globally minimizes a function f on region S by repeatly running LS from uniformly sampled points in S. Args: f: The function to mininmize jac: Gradient of f domain: Search region S on which to minimize f max_iterations: Maximum number of global iterations tau: Stopping tolerance of LS method rho: Double-box rule search parameter eps: Epsilon below which to consider two local minima as the same polish: Improve final solution by one last LS tol: Tolerance of polish Returns: np.array, float, int Solution x, f(x), and global iterations n """ if 'tol' not in ls_kwargs: ls_kwargs['tol'] = tau if 'tol' not in polish_kwargs: polish_kwargs['tol'] = tol dims = domain.shape[1] s_min = domain[0] s_max = domain[1] s_size = s_max - s_min s2_min = s_min - 0.5 * (np.power(2., 1. / dims) - 1.) * s_size s2_max = s_max + 0.5 * (np.power(2., 1. / dims) - 1.) * s_size s2_size = s2_max - s2_min m_n = 0 x_minima = list() deltas = list() result = optim.OptimizeResult() result.nfev = 0 result.njev = 0 x_best = None f_best = float('inf') for n in range(1, max_iterations): # Generate points in S2 and discard ones not in S. while True: x = np.random.uniform(size=dims) * s2_size + s2_min in_s = all([s_min[i] <= x[i] and x[i] <= s_max[i] for i in range(dims)]) m_n += 1 if in_s: break # Perform LS with generated initial point in S. # x_ls=grad_descent(f, x, grad, tol = tau, max_iterations = 400) ls_result = ls_method(f, x0=x, jac=jac, **ls_kwargs) x_ls = ls_result.x result.nfev += ls_result.nfev result.njev += ls_result.njev f_ls = f(x_ls) result.nfev += 1 # LS results which escape S are discared. if any([x_ls[i] < s_min[i] or x_ls[i] > s_max[i] for i in range(dims)]): continue delta = n / m_n deltas.append(delta) sigma_2 = np.var(deltas) if f_ls < f_best: f_best = f_ls x_best = x_ls result.x = x_best result.fun = f_best result.jac = ls_result.jac min_is_new = True for i, x_min_other in enumerate(x_minima): if np.linalg.norm(x_ls - x_min_other) <= eps: min_is_new = False break if min_is_new: sigma_2_last = sigma_2 x_minima.append(x_ls) # Otherwise, no new local minimum was found. else: # Check double-box stop rule. if sigma_2 < rho * sigma_2_last: break if polish: polish_result = polish_method(f, x0=x_best, jac=jac, **polish_kwargs) result.nfev += polish_result.nfev result.njev += polish_result.njev result.fun = polish_result.fun result.jac = polish_result.jac result.x = polish_result.x # x=grad_descent(f, x_best, tol = tol, max_iterations = 400) return result ``` #### File: jmnel/simulated-annealing/results1.py ```python import numpy as np import matplotlib # matplotlib.use('module://matplotlib-backend-kitty') matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.patches as patches from zoo import Zoo from sa import simulated_annealing objectives = [Zoo().get('branin').make_explicit(), Zoo().get('goldstein_price').make_explicit()] NUM_RUNS = 4 GAMMA = 0.01 for obj in objectives: f, grad = obj.f, obj.grad domain, plt_domain = np.array(obj.domain), np.array(obj.domain_plot) DOM_DIM = 2 L0 = 10 L = DOM_DIM * L0 DELTA = 0.1 EPS = 1e-4 CHI = 0.9 SMOOTHING = 0.01 T = 0.1 def callback(iteration, x, chain, c): x_hist.extend(chain) c_hist.append(c) xlim = plt_domain[:, 0] ylim = plt_domain[:, 1] n_samples = 200 x_plt, y_plt = np.linspace(*xlim, n_samples), np.linspace(*ylim, n_samples) mx, my = np.meshgrid(x_plt, y_plt) z = np.power(f([mx, my]), 0.1) fig, ax = plt.subplots(1, 1) ax.contourf(x_plt, y_plt, z, levels=50, cmap='viridis') colors = plt.cm.twilight(np.linspace(0, 1, NUM_RUNS + 1)) temps = list() for idx_run in range(NUM_RUNS + 1): c_hist = list() x_hist = list() res = simulated_annealing(f, grad, domain=domain, l0=L0, delta=DELTA, stop_eps=EPS, chi=CHI, smoothing=SMOOTHING, descent_affinity=T, callback=callback) x_smooth = res[0] x_smooth_hist = [x_smooth, ] temps.append(c_hist) for x_i in reversed(x_hist): x_smooth = GAMMA * x_i + (1. - GAMMA) * x_smooth x_smooth_hist.append(x_smooth) ax.scatter([res[0][0], ], [res[0][1], ], c=np.array(colors[idx_run]).reshape((1, 4))) ax.plot(*tuple(zip(*x_smooth_hist)), color=colors[idx_run], linewidth=0.6) ax.set_xlabel(r'$x_1$') ax.set_ylabel(r'$x_2$') fig.savefig(f'figures/fig51-{obj.name}.pdf', dpi=200) fig, ax = plt.subplots(1, 1) for c_hist in temps: ax.plot(np.arange(len(c_hist)), c_hist) ax.set_xlabel(r'Iteration $n$') ax.set_ylabel(r'Temperature $c^{(n)}$') fig.savefig(f'figures/fig52-{obj.name}.pdf', dpi=200) ``` #### File: jmnel/simulated-annealing/step_size.py ```python from typing import Callable import numpy as np import scipy.optimize as optim def armijo_step(f: Callable, l0: float, jac: Callable, alpha: float, rho: float): """ Calculates the maximum Armijo step size such that the Goldstein condition is still satisfied. Args: f Function objective value along search direction. jac: Derivative of f with respect to t. l0: Initial base step size. alpha: Armijo parameters. rho: Growth factor. Returns: OptimizeResult Armijo max step size. """ k0 = 0 l = l0 * np.power(rho, k0) f0 = f(0.) jac0 = jac(0.) for k in range(k0, 100): l_new = l0 * np.power(rho, k) if f(l_new) > f0 + alpha * l_new * jac0: result = optim.OptimizeResult(x=l, success=True, status=0, message='found optimal step size', nfev=1 + k, njev=1, nit=k) return result l = l_new result = optim.OptimizeResult(x=l, success=False, status=-1, message='max iterations exceeded', nfev=100 + 1, njev=1, nit=k) return result def gss(f: Callable, a: float, b: float, tol: float = 1e-12): """ Find minimum of function with Golden-section search. Args: f: Function to minimize. a: Left bracket of search interval. b: Right bracket of search interval. tol: Desired tolerance. Returns: float Minimizer of f. """ INV_PHI = 0.5 * (np.sqrt(5.) - 1.) INV_PHI_2 = 0.5 * (3. - np.sqrt(5.)) a, b = min(a, b), max(a, b) h = b - a if h <= tol: return optim.OptimizeResult(x=0.5 * (a + b), success=True, status=0, message='found optimal value', nfev=0, njev=0, nit=0) # return 0.5 * (a + b) n = int(np.ceil(np.log(tol / h) / np.log(INV_PHI))) nfev = 0 c = a + INV_PHI_2 * h d = a + INV_PHI * h fc = f(c) fd = f(d) nfev += 2 for k in range(n - 1): if fc < fd: b = d d = c fd = fc h = INV_PHI * h c = a + INV_PHI_2 * h fc = f(c) nfev += 1 else: a = c c = d fc = fd h = INV_PHI * h d = a + INV_PHI * h fd = f(d) nfev += 1 if fc < fd: assert (d - a) <= tol # x = 0.5 * (a + d) else: assert (b - c) <= tol # x = 0.5 * (c + b) return optim.OptimizeResult(x=0.5 * (a + d) if fc < fd else 0.5 * (c + b), success=True, status=0, message='found optimal value', nfev=nfev, njev=0, nit=n) ``` #### File: jmnel/simulated-annealing/utils.py ```python import numpy as np def grad_approx(f, x, tau=1e-14): x1, x2 = x return np.array([ (f([x1 + 0.5 * tau, x2]) - f([x1 - 0.5 * tau, x2])) / tau, (f([x1, x2 + 0.5 * tau]) - f([x1, x2 - 0.5 * tau])) / tau]) ``` #### File: simulated-annealing/zoo/rosenbrock.py ```python import sympy as sym from .benchmark import Benchmark class Rosenbrock(Benchmark): def __init__(self): super().__init__() self.name = 'Rosenbrock' self.name_short = 'RB' self.dims = 2 x = sym.IndexedBase('x') i = sym.Idx('i') x1, x2 = x[1], x[2] self.x = [x1, x2] a, b = sym.symbols('a b') self.params = {'a': [a, 1.], 'b': [b, sym.pi * 4] } self.expr = (a - x1)**2 + b * (x2 - x1**2)**2 self.xmin = [[a, a**2], ] self.domain = [[-2., -1.], [2., 2.]] self.domain_plot = [[-2., -2.], [3., 3.]] ``` #### File: simulated-annealing/zoo/schubert.py ```python from pprint import pprint import sympy as sym sym.init_printing(use_latex=True) import numpy as np from .benchmark import Benchmark class Schubert(Benchmark): def __init__(self, case: str): super().__init__() if case not in {'p3', 'p8', 'p16', 'p22'}: raise ValueError('case must be one of p3, p8, p16, or p22') self.name = f"schubert {case}" def u(x_i, a, k, m): return sym.Piecewise( (k * (x_i - a)**m, sym.Gt(x_i, a)), (0, sym.And(sym.Ge(x[i], -a), sym.Le(x[i], a))), (k * (-x_i - a)**m, sym.Lt(x_i, -a)) ) a, k, m = sym.symbols('a k m') if case == 'p3': n = 2 x = sym.IndexedBase('x') self.x = [x[i] for i in range(0, n)] i = sym.Idx('i') term1 = sym.Sum(i * sym.cos((i + 1) * x[0] + 1), (i, 0, 4)) term2 = sym.Sum(i * sym.cos((i + 1) * x[1] + 1), (i, 0, 4)) self.expr = term1 * term2 + u(x[0], a, k, m) + u(x[1], a, k, m) self.params = {'a': [a, 10.], 'k': [k, 100.], 'm': [m, 2]} self.xmin = None self.domain = [-10. * np.ones(n), 10. * np.ones(n)] self.domain_plot = self.domain elif case == 'p8': n = 3 x = sym.IndexedBase('x') self.x = [x[i] for i in range(0, n)] y = sym.IndexedBase('y') i = sym.Idx('i') k_1, k_2 = sym.symbols('k_1 k_2') pprint(y) self.expr = (sym.pi / n) * ( k_1 * sym.sin(sym.pi * y[0])**2 + sym.Sum((y[i] - k_2)**2 * (1. + k_1 * sym.sin(sym.pi * y[i + 1])**2), (i, 0, n - 2)) + (y[n - 1] - k_2)**2) \ + sym.Sum(u(x[i], a, k, m), (i, 0, n - 1)) y_subs = {y[i]: 1. + 0.25 * (x[i] + 1.) for i in range(n)} self.expr = self.expr.doit().subs(y_subs) self.params = {'a': [a, 10.], 'k': [k, 100.], 'm': [m, 4], 'k_1': [k_1, 10.], 'k_2': [k_2, 1.]} self.xmin = [[1., 1., 1.], ] self.domain = [-10. * np.ones(n), 10. * np.ones(n)] self.domain_plot = None self.dims = n ```
{ "source": "jmnich/UFP_Regulator_Simulations", "score": 3 }
#### File: UFP_Regulator_Simulations/FUZZY_V4/Field.py ```python class Field: """ Store data related to one filed of the reaction table. """ def __init__(self, index, initial_value, max_value, min_value): self.current_value = initial_value self.dummy_value = initial_value self.max = max_value self.min = min_value self.checked_mid = False self.checked_top = False self.checked_bot = False self.related_index = index def setNewValue(self, new_value): self.current_value = new_value def getCurrentValue(self): return self.current_value def getNextValue(self): if not self.checked_bot: self.checked_bot = True self.dummy_value = self.current_value - 1 if self.dummy_value < self.min: self.dummy_value = self.min return self.dummy_value elif not self.checked_mid: self.checked_mid = True self.dummy_value = self.current_value return self.dummy_value elif not self.checked_top: self.checked_top = True self.dummy_value = self.current_value + 1 if self.dummy_value > self.max: self.dummy_value = self.max return self.dummy_value def allChecked(self): if self.checked_bot and self.checked_mid and self.checked_top: return True else: return False def resetCheckFlags(self): self.checked_bot = False self.checked_mid = False self.checked_top = False ``` #### File: UFP_Regulator_Simulations/FUZZY_V4/ReactionZone.py ```python class ReactionZone: """ Store a block of 9 reactions. """ def __init__(self, indexes, reactions_array): self.reactions_array = reactions_array self.contained_indexes = indexes def getFields(self): list_of_fields = [] for index in self.contained_indexes: list_of_fields.append(self.reactions_array[index]) return list_of_fields ``` #### File: UFP_Regulator_Simulations/FUZZY_V5/FuzzyRegulator.py ```python import MembershipFunction class FuzzyRegulator: def __init__(self, min_thrust, max_thrust, reactions): self.min_thrust = min_thrust self.max_thrust = max_thrust self.recommended_left = 0.0 self.recommended_right = 0.0 self.lastErr = 0.0 self.recently_used_rules = [] # prepare membership functions for input parameters self.angle_err = {} self.angle_err[4] = MembershipFunction.MembershipFunction(False, True, 1.0 / 15.0, 60.0) self.angle_err[3] = MembershipFunction.MembershipFunction(False, False, 1.0 / 15.0, 45.0) self.angle_err[2] = MembershipFunction.MembershipFunction(False, False, 1.0 / 15.0, 25.0) self.angle_err[1] = MembershipFunction.MembershipFunction(False, False, 1.0 / 10.0, 10.0) self.angle_err[0] = MembershipFunction.MembershipFunction(False, False, 1.0 / 10.0, 0.0) self.angle_err[-1] = MembershipFunction.MembershipFunction(False, False, 1.0 / 10.0, -10.0) self.angle_err[-2] = MembershipFunction.MembershipFunction(False, False, 1.0 / 15.0, -25.0) self.angle_err[-3] = MembershipFunction.MembershipFunction(False, False, 1.0 / 15.0, -45.0) self.angle_err[-4] = MembershipFunction.MembershipFunction(True, False, 1.0 / 15.0, -60.0) self.ang_vel = {} self.ang_vel[4] = MembershipFunction.MembershipFunction(False, True, 1.0 / 7.5, 30.0) self.ang_vel[3] = MembershipFunction.MembershipFunction(False, False, 1.0 / 7.5, 22.5) self.ang_vel[2] = MembershipFunction.MembershipFunction(False, False, 1.0 / 7.5, 12.5) self.ang_vel[1] = MembershipFunction.MembershipFunction(False, False, 1.0 / 5.0, 5.0) self.ang_vel[0] = MembershipFunction.MembershipFunction(False, False, 1.0 / 5.0, 0.0) self.ang_vel[-1] = MembershipFunction.MembershipFunction(False, False, 1.0 / 5.0, -5.0) self.ang_vel[-2] = MembershipFunction.MembershipFunction(False, False, 1.0 / 7.5, -12.5) self.ang_vel[-3] = MembershipFunction.MembershipFunction(False, False, 1.0 / 7.5, -22.5) self.ang_vel[-4] = MembershipFunction.MembershipFunction(True, False, 1.0 / 7.5, -30.0) # prepare membership functions for output thrust recommendations span = max_thrust - min_thrust factor = span / 8.0 self.thr_reco = {} self.thr_reco[8] = MembershipFunction.MembershipFunction(False, False, factor, max_thrust) self.thr_reco[7] = MembershipFunction.MembershipFunction(False, False, factor, min_thrust + span / 8.0 * 7) self.thr_reco[6] = MembershipFunction.MembershipFunction(False, False, factor, min_thrust + span / 8.0 * 6) self.thr_reco[5] = MembershipFunction.MembershipFunction(False, False, factor, min_thrust + span / 8.0 * 5) self.thr_reco[4] = MembershipFunction.MembershipFunction(False, False, factor, min_thrust + span / 8.0 * 4) self.thr_reco[3] = MembershipFunction.MembershipFunction(False, False, factor, min_thrust + span / 8.0 * 3) self.thr_reco[2] = MembershipFunction.MembershipFunction(False, False, factor, min_thrust + span / 8.0 * 2) self.thr_reco[1] = MembershipFunction.MembershipFunction(False, False, factor, min_thrust + span / 8.0 * 1) self.thr_reco[0] = MembershipFunction.MembershipFunction(False, False, factor, min_thrust) # prepare rulebase self.rules = [] z = 0 for verse in range(9): for column in range(9): self.rules.append(Rule(verse - 4, column - 4, reactions[z])) z += 1 print(str(z) + " rules loaded") def calcNewThrusts(self, angle, ang_vel, desired_angle): self.lastErr = desired_angle - angle self.recently_used_rules.clear() # fuzzyfication of the input fuzzy_angle = [] for fuzzy_state in self.angle_err: pertinence = self.angle_err[fuzzy_state].getMembershipFactor(angle) if pertinence > 0.0: # is a member fuzzy_angle.append(FuzzyInput(fuzzy_state, pertinence)) fuzzy_vel = [] for fuzzy_state in self.ang_vel: pertinence = self.ang_vel[fuzzy_state].getMembershipFactor(ang_vel) if pertinence > 0.0: # is a member fuzzy_vel.append(FuzzyInput(fuzzy_state, pertinence)) # gather recommendations from rules and save used rules recommendations = [] for r in range(len(self.rules)): for ang in fuzzy_angle: for vel in fuzzy_vel: if self.rules[r].angle == ang.input_value and \ self.rules[r].angular_velocity == vel.input_value: # rule is on recommendations.append(Recommendation(self.rules[r].recommended_thrust, min(ang.pertinence, vel.pertinence))) self.recently_used_rules.append([r, min(ang.pertinence, vel.pertinence)]) # defuzzyfication total_val = 0.0 total_pertinence = 0.0 for reco in recommendations: abs_rec = abs(reco.recommended_thrust) center = self.thr_reco[abs_rec].central_boundary if reco.recommended_thrust >= 0: # left thruster total_val += center * reco.pertinence else: # right thruster total_val -= center * reco.pertinence total_pertinence += reco.pertinence # center-average calculation final_recommendation = total_val / total_pertinence # safety check if final_recommendation > self.max_thrust: final_recommendation = self.max_thrust # elif final_recommendation < self.min_thrust: # final_recommendation = self.min_thrust # !!! bug # save results to proper fields if final_recommendation == 0.0: # thrusters disabled self.recommended_left = self.min_thrust self.recommended_right = self.min_thrust elif final_recommendation > 0: # left thruster active self.recommended_left = final_recommendation self.recommended_right = self.min_thrust elif final_recommendation < 0: # right thruster active self.recommended_right = -final_recommendation self.recommended_left = self.min_thrust def getRightThrust(self): return self.recommended_right def getLeftThrust(self): return self.recommended_left def getLastErr(self): return self.lastErr class Recommendation: def __init__(self, thrust_level, pertinence): self.recommended_thrust = thrust_level self.pertinence = pertinence class FuzzyInput: def __init__(self, input_value, pertinence): self.input_value = input_value self.pertinence = pertinence class Rule: def __init__(self, angle, angular_velocity, recommended_thrust): self.angle = angle self.angular_velocity = angular_velocity self.recommended_thrust = recommended_thrust ``` #### File: UFP_Regulator_Simulations/PID/PIDRegulator.py ```python class PIDRegulator: def __init__(self, proportional, integral, derivative, min_thrust, max_thrust): self.p = proportional self.d = derivative self.i = integral self.max_thrust = max_thrust self.min_thrust = min_thrust self.errSum = 0.0 self.lastErr = 0.0 self.recommended_left = 0.0 self.recommended_right = 0.0 def calcNewThrusts(self, angle, desired_angle, interval): err = desired_angle - angle; Derr = (err - self.lastErr) / interval self.lastErr = err self.errSum += err * interval r_recommendation = self.p * err + self.d * Derr + self.i * self.errSum r_recommendation = -r_recommendation if r_recommendation < self.min_thrust: r_recommendation = self.min_thrust elif r_recommendation > self.max_thrust: r_recommendation = self.max_thrust self.recommended_right = r_recommendation l_recommendation = self.p * err + self.d * Derr + self.i * self.errSum if l_recommendation < self.min_thrust: l_recommendation = self.min_thrust elif l_recommendation > self.max_thrust: l_recommendation = self.max_thrust self.recommended_left = l_recommendation def getRightThrust(self): return self.recommended_right def getLeftThrust(self): return self.recommended_left def getLastErr(self): return self.lastErr ```
{ "source": "jmnickerson05/Udacity_ImageClassifier_CLI", "score": 3 }
#### File: jmnickerson05/Udacity_ImageClassifier_CLI/predict.py ```python import torch from torchvision import datasets, transforms, models import PIL import torch.nn.functional as nnf import pandas as pd, argparse, json import matplotlib.pyplot as plt def main(): parser = argparse.ArgumentParser() parser.add_argument('image_path') parser.add_argument('checkpoint', default='cli_checkpoint.pth') parser.add_argument('--top_k', default=5) parser.add_argument('--category_names', default='cat_to_name.json') parser.add_argument('--gpu', default=True) parser.add_argument('--show_plots', default=False) global args args = parser.parse_args() model = load_model() if not args.show_plots: predict(image_path=args.image_path, model=model, topk=args.top_k) else: predict_and_plot(model, args.image_path) def load_model(): model = torch.load('cli_checkpoint.pth', ((lambda storage, loc: storage.cuda()) if (torch.cuda.is_available() and args.gpu is True) else 'cpu')) model.eval() return model def process_image(image_path): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array ''' return transforms.Compose([ transforms.Resize(255), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])(PIL.Image.open(image_path)) def predict(image_path, model, topk=5): # Transform cat_to_name = json.loads(open(args.category_names, 'r').read()) actual_category = cat_to_name[image_path.split('/')[2]] device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") inputs = process_image(image_path).unsqueeze(0) model.eval() model, inputs = model.to(device), inputs.to(device) prob = nnf.softmax(model(inputs), dim=1) top_p, top_class = prob.topk(topk, dim = 1) pred = pd.DataFrame({'probability': top_p.cpu().detach().numpy()[0], 'category': top_class.cpu().detach().numpy()[0]}) ppred = pred.sort_values(by='probability', ascending=False)[ ['category', 'probability'] ] pred['name'] = pred.category.apply( lambda x: cat_to_name[str(int(x))] ) pred['category'] = pred['category'].astype(int) print('\n','*'*30, f'\nACTUAL FLOWER NAME: {actual_category}\n', '*'*30) print(pred) return pred def imshow(image, ax=None, title=None): """Imshow for Tensor.""" if ax is None: fig, ax = plt.subplots() # PyTorch tensors assume the color channel is the first dimension # but matplotlib assumes is the third dimension image = image.numpy().transpose((1, 2, 0)) # Undo preprocessing mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) image = std * image + mean # Image needs to be clipped between 0 and 1 or it looks like noise when displayed image = np.clip(image, 0, 1) ax.imshow(image) return ax def predict_and_plot(model, img_path): cat_to_name = json.loads(open(args.category_names, 'r').read()) imshow(process_image(img_path)) pred = predict(img_path, model) pred = pred.sort_values(by='probability', ascending=False)[ ['category', 'probability'] ] pred['name'] = pred.category.apply( lambda x: cat_to_name[str(int(x))] ) pred['category'] = pred['category'].astype(int) print(pred) ax = (pred.sort_values(by='probability', ascending=False) .plot.barh(x='name', y='probability')) ax.invert_yaxis() main() ``` #### File: jmnickerson05/Udacity_ImageClassifier_CLI/train.py ```python from workspace_utils import active_session import torch from torch import nn, optim from torchvision import datasets, transforms, models import os, copy, time, json, argparse def main(): parser = argparse.ArgumentParser() parser.add_argument('data_directory') parser.add_argument('--save_dir', default='.') parser.add_argument('--learning_rate', default=0.01) parser.add_argument('--epochs', default=25) parser.add_argument('--gpu', default=True) # NOPE -- Not sure I would just change models on the fly in the real world. # parser.add_argument('--arch', default='vgg16') # IS THIS NEEDED? # parser.add_argument('--hidden_units', default=512) global args args = parser.parse_args() model = initialize_model(num_classes=102, feature_extract=True)[0] train_and_save(model) # Adapted From: https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html def set_parameter_requires_grad(model, feature_extracting): if feature_extracting: for param in model.parameters(): param.requires_grad = False def initialize_model(num_classes, feature_extract, use_pretrained=True): model_ft = None input_size = 0 model_ft = models.vgg16_bn(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.classifier[6].in_features model_ft.classifier[6] = nn.Linear(num_ftrs, num_classes) input_size = 224 return model_ft, input_size # Adapted From: https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False): since = time.time() val_acc_history = [] best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 device = torch.device("cuda:0" if (torch.cuda.is_available() and args.gpu is True) else "cpu") print(device) model.to(device) for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) for phase in ['train', 'valid']: if phase == 'train': model.train() else: model.eval() running_loss = 0.0 running_corrects = 0 for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase == 'train'): if is_inception and phase == 'train': # From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958 outputs, aux_outputs = model(inputs) loss1 = criterion(outputs, labels) loss2 = criterion(aux_outputs, labels) loss = loss1 + 0.4 * loss2 else: outputs = model(inputs) loss = criterion(outputs, labels) _, preds = torch.max(outputs, 1) if phase == 'train': loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / len(dataloaders[phase].dataset) epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset) print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc)) if phase == 'valid' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) if phase == 'valid': val_acc_history.append(epoch_acc) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights model.load_state_dict(best_model_wts) return model, val_acc_history # Adapted From: https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html def train_and_save(model): with active_session(): data_dir = args.data_directory data_transforms = {'train': transforms.Compose([transforms.RandomRotation(30), transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'test': transforms.Compose([transforms.Resize(255), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'valid': transforms.Compose([transforms.Resize(255), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) } image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'test', 'valid']} dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=8, shuffle=True, num_workers=4) for x in ['train', 'valid']} feature_extract = True params_to_update = model.parameters() print("Params to learn:") if feature_extract: params_to_update = [] for name, param in model.named_parameters(): if param.requires_grad == True: params_to_update.append(param) print("\t", name) else: for name, param in model.named_parameters(): if param.requires_grad == True: print("\t", name) optimizer_ft = optim.SGD(params_to_update, lr=args.learning_rate, momentum=0.9) criterion = nn.CrossEntropyLoss() model, hist = train_model(model, dataloaders_dict, num_epochs=args.epochs, criterion=criterion, optimizer=optimizer_ft) # Uncomment this to save the model during an unattended run torch.save(model, f'{args.save_dir}/cli_checkpoint.pth') main() ```
{ "source": "jmniederle/misgan", "score": 3 }
#### File: misgan/src/celeba_generator.py ```python import torch import torch.nn as nn import torch.nn.functional as F def add_mask_transformer(self, temperature=.66, hard_sigmoid=(-.1, 1.1)): """ hard_sigmoid: False: use sigmoid only True: hard thresholding (a, b): hard thresholding on rescaled sigmoid """ self.temperature = temperature self.hard_sigmoid = hard_sigmoid if hard_sigmoid is False: self.transform = lambda x: torch.sigmoid(x / temperature) elif hard_sigmoid is True: self.transform = lambda x: F.hardtanh( x / temperature, 0, 1) else: a, b = hard_sigmoid self.transform = lambda x: F.hardtanh( torch.sigmoid(x / temperature) * (b - a) + a, 0, 1) def dconv_bn_relu(in_dim, out_dim): return nn.Sequential( nn.ConvTranspose2d(in_dim, out_dim, 5, 2, padding=2, output_padding=1, bias=False), nn.BatchNorm2d(out_dim), nn.ReLU()) # Must sub-class ConvGenerator to provide transform() class ConvGenerator(nn.Module): def __init__(self, latent_size=128): super().__init__() dim = 64 self.l1 = nn.Sequential( nn.Linear(latent_size, dim * 8 * 4 * 4, bias=False), nn.BatchNorm1d(dim * 8 * 4 * 4), nn.ReLU()) self.l2_5 = nn.Sequential( dconv_bn_relu(dim * 8, dim * 4), dconv_bn_relu(dim * 4, dim * 2), dconv_bn_relu(dim * 2, dim), nn.ConvTranspose2d(dim, self.out_channels, 5, 2, padding=2, output_padding=1)) def forward(self, input): net = self.l1(input) net = net.view(net.shape[0], -1, 4, 4) net = self.l2_5(net) return self.transform(net) class ConvDataGenerator(ConvGenerator): def __init__(self, latent_size=128): self.out_channels = 3 super().__init__(latent_size=latent_size) self.transform = lambda x: torch.sigmoid(x) class ConvMaskGenerator(ConvGenerator): def __init__(self, latent_size=128, temperature=.66, hard_sigmoid=(-.1, 1.1)): self.out_channels = 1 super().__init__(latent_size=latent_size) add_mask_transformer(self, temperature, hard_sigmoid) ``` #### File: misgan/src/masked_celeba.py ```python import torch from torchvision import datasets, transforms import numpy as np from PIL import Image class MaskedCelebA(datasets.ImageFolder): def __init__(self, data_dir='celeba-data', image_size=64, random_seed=0): transform = transforms.Compose([ transforms.CenterCrop(108), transforms.Resize(size=image_size, interpolation=Image.BICUBIC), transforms.ToTensor(), # transforms.Normalize(mean=(.5, .5, .5), std=(.5, .5, .5)), ]) super().__init__(data_dir, transform) self.rnd = np.random.RandomState(random_seed) self.image_size = image_size self.generate_masks() def __getitem__(self, index): image, label = super().__getitem__(index) return image, self.mask[index], label, index def __len__(self): return super().__len__() class BlockMaskedCelebA(MaskedCelebA): def __init__(self, block_len=None, *args, **kwargs): self.block_len = block_len super().__init__(*args, **kwargs) def generate_masks(self): d0_len = d1_len = self.image_size d0_min_len = 12 d0_max_len = d0_len - d0_min_len d1_min_len = 12 d1_max_len = d1_len - d1_min_len n_masks = len(self) self.mask = [None] * n_masks self.mask_info = [None] * n_masks for i in range(n_masks): if self.block_len is None: d0_mask_len = self.rnd.randint(d0_min_len, d0_max_len) d1_mask_len = self.rnd.randint(d1_min_len, d1_max_len) else: d0_mask_len = d1_mask_len = self.block_len d0_start = self.rnd.randint(0, d0_len - d0_mask_len + 1) d1_start = self.rnd.randint(0, d1_len - d1_mask_len + 1) mask = torch.zeros((d0_len, d1_len), dtype=torch.uint8) mask[d0_start:(d0_start + d0_mask_len), d1_start:(d1_start + d1_mask_len)] = 1 self.mask[i] = mask self.mask_info[i] = d0_start, d1_start, d0_mask_len, d1_mask_len class IndepMaskedCelebA(MaskedCelebA): def __init__(self, obs_prob=.2, obs_prob_high=None, *args, **kwargs): self.prob = obs_prob self.prob_high = obs_prob_high super().__init__(*args, **kwargs) def generate_masks(self): imsize = self.image_size prob = self.prob prob_high = self.prob_high n_masks = len(self) self.mask = [None] * n_masks for i in range(n_masks): if prob_high is None: p = prob else: p = self.rnd.uniform(prob, prob_high) self.mask[i] = torch.ByteTensor(imsize, imsize).bernoulli_(p) ``` #### File: misgan/src/misgan.py ```python import torch import torch.optim as optim from torch.utils.data import DataLoader import time import pylab as plt import seaborn as sns from collections import defaultdict from plot import plot_samples from utils import CriticUpdater, mkdir, mask_data use_cuda = torch.cuda.is_available() device = torch.device('cuda' if use_cuda else 'cpu') def misgan(args, data_gen, mask_gen, data_critic, mask_critic, data, output_dir, checkpoint=None): n_critic = args.n_critic gp_lambda = args.gp_lambda batch_size = args.batch_size nz = args.n_latent epochs = args.epoch plot_interval = args.plot_interval save_interval = args.save_interval alpha = args.alpha tau = args.tau gen_data_dir = mkdir(output_dir / 'img') gen_mask_dir = mkdir(output_dir / 'mask') log_dir = mkdir(output_dir / 'log') model_dir = mkdir(output_dir / 'model') data_loader = DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True) n_batch = len(data_loader) data_noise = torch.FloatTensor(batch_size, nz).to(device) mask_noise = torch.FloatTensor(batch_size, nz).to(device) # Interpolation coefficient eps = torch.FloatTensor(batch_size, 1, 1, 1).to(device) # For computing gradient penalty ones = torch.ones(batch_size).to(device) lrate = 1e-4 # lrate = 1e-5 data_gen_optimizer = optim.Adam( data_gen.parameters(), lr=lrate, betas=(.5, .9)) mask_gen_optimizer = optim.Adam( mask_gen.parameters(), lr=lrate, betas=(.5, .9)) data_critic_optimizer = optim.Adam( data_critic.parameters(), lr=lrate, betas=(.5, .9)) mask_critic_optimizer = optim.Adam( mask_critic.parameters(), lr=lrate, betas=(.5, .9)) update_data_critic = CriticUpdater( data_critic, data_critic_optimizer, eps, ones, gp_lambda) update_mask_critic = CriticUpdater( mask_critic, mask_critic_optimizer, eps, ones, gp_lambda) start_epoch = 0 critic_updates = 0 log = defaultdict(list) if checkpoint: data_gen.load_state_dict(checkpoint['data_gen']) mask_gen.load_state_dict(checkpoint['mask_gen']) data_critic.load_state_dict(checkpoint['data_critic']) mask_critic.load_state_dict(checkpoint['mask_critic']) data_gen_optimizer.load_state_dict(checkpoint['data_gen_opt']) mask_gen_optimizer.load_state_dict(checkpoint['mask_gen_opt']) data_critic_optimizer.load_state_dict(checkpoint['data_critic_opt']) mask_critic_optimizer.load_state_dict(checkpoint['mask_critic_opt']) start_epoch = checkpoint['epoch'] critic_updates = checkpoint['critic_updates'] log = checkpoint['log'] with (log_dir / 'gpu.txt').open('a') as f: print(torch.cuda.device_count(), start_epoch, file=f) def save_model(path, epoch, critic_updates=0): torch.save({ 'data_gen': data_gen.state_dict(), 'mask_gen': mask_gen.state_dict(), 'data_critic': data_critic.state_dict(), 'mask_critic': mask_critic.state_dict(), 'data_gen_opt': data_gen_optimizer.state_dict(), 'mask_gen_opt': mask_gen_optimizer.state_dict(), 'data_critic_opt': data_critic_optimizer.state_dict(), 'mask_critic_opt': mask_critic_optimizer.state_dict(), 'epoch': epoch + 1, 'critic_updates': critic_updates, 'log': log, 'args': args, }, str(path)) sns.set() start = time.time() epoch_start = start for epoch in range(start_epoch, epochs): sum_data_loss, sum_mask_loss = 0, 0 for real_data, real_mask, _, _ in data_loader: # Assume real_data and mask have the same number of channels. # Could be modified to handle multi-channel images and # single-channel masks. real_mask = real_mask.float()[:, None] real_data = real_data.to(device) real_mask = real_mask.to(device) masked_real_data = mask_data(real_data, real_mask, tau) # Update discriminators' parameters data_noise.normal_() mask_noise.normal_() fake_data = data_gen(data_noise) fake_mask = mask_gen(mask_noise) masked_fake_data = mask_data(fake_data, fake_mask, tau) update_data_critic(masked_real_data, masked_fake_data) update_mask_critic(real_mask, fake_mask) sum_data_loss += update_data_critic.loss_value sum_mask_loss += update_mask_critic.loss_value critic_updates += 1 if critic_updates == n_critic: critic_updates = 0 # Update generators' parameters for p in data_critic.parameters(): p.requires_grad_(False) for p in mask_critic.parameters(): p.requires_grad_(False) data_gen.zero_grad() mask_gen.zero_grad() data_noise.normal_() mask_noise.normal_() fake_data = data_gen(data_noise) fake_mask = mask_gen(mask_noise) masked_fake_data = mask_data(fake_data, fake_mask, tau) data_loss = -data_critic(masked_fake_data).mean() data_loss.backward(retain_graph=True) data_gen_optimizer.step() mask_loss = -mask_critic(fake_mask).mean() (mask_loss + data_loss * alpha).backward() mask_gen_optimizer.step() for p in data_critic.parameters(): p.requires_grad_(True) for p in mask_critic.parameters(): p.requires_grad_(True) mean_data_loss = sum_data_loss / n_batch mean_mask_loss = sum_mask_loss / n_batch log['data loss', 'data_loss'].append(mean_data_loss) log['mask loss', 'mask_loss'].append(mean_mask_loss) for (name, shortname), trace in log.items(): fig, ax = plt.subplots(figsize=(6, 4)) ax.plot(trace) ax.set_ylabel(name) ax.set_xlabel('epoch') fig.savefig(str(log_dir / f'{shortname}.png'), dpi=300) plt.close(fig) if plot_interval > 0 and (epoch + 1) % plot_interval == 0: print(f'[{epoch:4}] {mean_data_loss:12.4f} {mean_mask_loss:12.4f}') filename = f'{epoch:04d}.png' data_gen.eval() mask_gen.eval() with torch.no_grad(): data_noise.normal_() mask_noise.normal_() data_samples = data_gen(data_noise) plot_samples(data_samples, str(gen_data_dir / filename)) mask_samples = mask_gen(mask_noise) plot_samples(mask_samples, str(gen_mask_dir / filename)) data_gen.train() mask_gen.train() if save_interval > 0 and (epoch + 1) % save_interval == 0: save_model(model_dir / f'{epoch:04d}.pth', epoch, critic_updates) epoch_end = time.time() time_elapsed = epoch_end - start epoch_time = epoch_end - epoch_start epoch_start = epoch_end with (log_dir / 'time.txt').open('a') as f: print(epoch, epoch_time, time_elapsed, file=f) save_model(log_dir / 'checkpoint.pth', epoch, critic_updates) print(output_dir) ``` #### File: misgan/src/mnist_imputer.py ```python import torch import torch.nn as nn import torch.nn.functional as F # Must sub-class Imputer to provide fc1 class Imputer(nn.Module): def __init__(self, arch=(784, 784)): super().__init__() # self.fc1 = nn.Linear(784, arch[0]) self.fc2 = nn.Linear(arch[0], arch[1]) self.fc3 = nn.Linear(arch[1], arch[0]) self.fc4 = nn.Linear(arch[0], 784) self.transform = lambda x: torch.sigmoid(x).view(-1, 1, 28, 28) def forward(self, input, data, mask): net = input.view(input.size(0), -1) net = F.relu(self.fc1(net)) net = F.relu(self.fc2(net)) net = F.relu(self.fc3(net)) net = self.fc4(net) net = self.transform(net) # return data * mask + net * (1 - mask) # NOT replacing observed part with input data for computing # autoencoding loss. return net class ComplementImputer(Imputer): def __init__(self, arch=(784, 784)): super().__init__(arch=arch) self.fc1 = nn.Linear(784, arch[0]) def forward(self, input, mask, noise): net = input * mask + noise * (1 - mask) return super().forward(net, input, mask) class MaskImputer(Imputer): def __init__(self, arch=(784, 784)): super().__init__(arch=arch) self.fc1 = nn.Linear(784 * 2, arch[0]) def forward(self, input, mask, noise): batch_size = input.size(0) net = torch.cat( [(input * mask + noise * (1 - mask)).view(batch_size, -1), mask.view(batch_size, -1)], 1) return super().forward(net, input, mask) class FixedNoiseDimImputer(Imputer): def __init__(self, arch=(784, 784)): super().__init__(arch=arch) self.fc1 = nn.Linear(784 * 3, arch[0]) def forward(self, input, mask, noise): batch_size = input.size(0) net = torch.cat([(input * mask).view(batch_size, -1), mask.view(batch_size, -1), noise.view(batch_size, -1)], 1) return super().forward(net, input, mask) ``` #### File: misgan/src/unet.py ```python import torch import torch.nn as nn # Code adapted from https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix # # Defines the submodule with skip connection. # X -------------------identity---------------------- X # |-- downsampling -- |submodule| -- upsampling --| class UnetSkipConnectionBlock(nn.Module): def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d): super().__init__() self.outermost = outermost use_bias = norm_layer == nn.InstanceNorm2d if input_nc is None: input_nc = outer_nc downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) downrelu = nn.LeakyReLU(0.2, True) if norm_layer is not None: downnorm = norm_layer(inner_nc) upnorm = norm_layer(outer_nc) uprelu = nn.ReLU(True) if outermost: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1) down = [downconv] up = [uprelu, upconv] model = down + [submodule] + up elif innermost: upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv] up = [uprelu, upconv] if norm_layer is not None: up.append(upnorm) model = down + up else: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv] up = [uprelu, upconv] if norm_layer is not None: down.append(downnorm) up.append(upnorm) model = down + [submodule] + up self.model = nn.Sequential(*model) def forward(self, x): if self.outermost: return self.model(x) else: return torch.cat([x, self.model(x)], 1) ```
{ "source": "jmnote/kubeyaml", "score": 2 }
#### File: kubeyaml/src/lib.py ```python import yaml def read_yaml(filepath): f = open(filepath, "r") y = yaml.safe_load(f) f.close() return y ```
{ "source": "jmnybl/finnish-srl", "score": 3 }
#### File: jmnybl/finnish-srl/conllu2sdp.py ```python import sys ID,FORM,LEMMA,UPOS,POS,FEAT,HEAD,DEPREL,DEPS,MISC=range(10) SID,SFORM,SLEMMA,SPLEMMA,SPOS,SPPOS,SFEAT,SPFEAT,SHEAD,SPHEAD,SDEPREL,SPDEPREL,PREDICATE,SENSE,ARG=range(15) from collections import defaultdict def read_conllu(f): comments=[] tokens=[] predicates={} # key: predicate_id, value: sense arguments=defaultdict(list) # key: argument_id (token[ID]), value: (predicate_id,role) for line in f: line=line.strip() if not line: # new sentence if tokens: yield comments,tokens,predicates,arguments comments,tokens,predicates,arguments=[],[],{},defaultdict(list) elif line.startswith("#"): comments.append(line) else: #normal line cols=line.split("\t") tokens.append(cols) # senses if "PBSENSE" in cols[MISC]: for m in cols[MISC].split("|"): if m.startswith("PBSENSE"): sense=m.split("=",1)[-1] predicates[cols[ID]]=sense # ID (str) based indexing, not list based # arguments if "PBArg" in cols[DEPS]: for a in cols[DEPS].split("|"): if "PBArg" in a: idx,arg=a.split(":",1) # idx is predicate token[ID] arguments[cols[ID]].append((idx,arg)) else: if tokens: yield comments,tokens,predicates,arguments def read_sdp(f): comments=[] tokens=[] predicates={} # key: predicate_id, value: sense arguments=defaultdict(list) # key: argument_id (token[ID]), value: (predicate_id,role) tmp_preds=[] for line in f: line=line.strip() if not line: # empty line continue if line.startswith("1\t") and len(tokens)>0: # new sentence, yield current # turn predicated counters into real token IDs new_arguments={} for key in arguments: new_arguments[key]=[] for pred_c,role in arguments[key]: new_arguments[key].append((tmp_preds[pred_c],role)) # yield comments,tokens,predicates,new_arguments comments,tokens,predicates,arguments,tmp_preds=[],[],{},defaultdict(list),[] cols=line.split("\t") tokens.append(cols) # senses if "Y" in cols[PREDICATE]: # this is predicate tmp_preds.append(cols[ID]) sense=cols[SENSE] predicates[cols[ID]]=sense # ID (str) based indexing, not list based # arguments for i in range(ARG,len(cols)): if cols[i]!="_": # this is argument pred_counter=i-ARG # 0-based counter of predicates arguments[cols[ID]].append((pred_counter,cols[i])) # key is the ID of the argument word (str), value is the counter of the predicate (int) and the role else: if tokens: # turn predicated counters into real token IDs new_arguments={} for key in arguments: new_arguments[key]=[] for pred_c,role in arguments[key]: new_arguments[key].append((tmp_preds[pred_c],role)) # yield comments,tokens,predicates,new_arguments def print_sdp_line(i,cols,predicates,predicate_counter,arguments): new_cols=["_"]*(14+len(predicates)) for c,u in zip([ID,FORM,LEMMA,UPOS,FEAT,HEAD,DEPREL], [SID,SFORM,SLEMMA,SPOS,SFEAT,SHEAD,SDEPREL]): new_cols[u]=cols[c] if cols[ID] in predicates: new_cols[PREDICATE]="Y" new_cols[SENSE]=predicates[cols[ID]] if cols[ID] in arguments: for pidx,role in arguments[cols[ID]]: p_count=predicate_counter[pidx] new_cols[14+p_count]=role print("\t".join(new_cols)) def print_sdp(fname): f=open(fname, "rt", encoding="utf-8") for comments,tokens,predicates,arguments in read_conllu(f): predicate_counter={} for key, val in sorted(predicates.items(),key=lambda x: int(x[0])): predicate_counter[key]=len(predicate_counter) for i,token in enumerate(tokens): print_sdp_line(i,token,predicates,predicate_counter,arguments) print("") def print_conllu_line(i,cols,predicates,arguments): # TODO: do not eat deps new_cols=["_"]*10 for c,u in zip([ID,FORM,LEMMA,UPOS,FEAT,HEAD,DEPREL], [SID,SFORM,SLEMMA,SPOS,SFEAT,SHEAD,SDEPREL]): new_cols[c]=cols[u] if cols[SID] in predicates: new_cols[MISC]="PBSENSE="+predicates[cols[SID]] # sense if cols[SID] in arguments: args=[h+":PBArg_"+r for h,r in arguments[cols[SID]]] new_cols[DEPS]="|".join(sorted(args)) print("\t".join(new_cols)) def print_conllu(fname): f=open(fname, "rt", encoding="utf-8") for comments,tokens,predicates,arguments in read_sdp(f): for i,token in enumerate(tokens): print_conllu_line(i,token,predicates,arguments) print("") if __name__=="__main__": import argparse parser = argparse.ArgumentParser(description='') g=parser.add_argument_group("Reguired arguments") g.add_argument('-f', '--file', type=str, required=True, help='File name') g.add_argument('-r', '--reversed', action='store_true', default=False, help='Reverse the process --> read sdp and print conllu') args = parser.parse_args() if args.reversed: print("Reading sdp and printing conllu",file=sys.stderr) print_conllu(args.file) else: print("Reading conllu and printing sdp",file=sys.stderr) print_sdp(args.file) ``` #### File: jmnybl/finnish-srl/model.py ```python from keras.models import Model, model_from_json from keras.layers import Dense, Input, Reshape, Flatten, concatenate, Bidirectional, TimeDistributed, RepeatVector from keras.layers.recurrent import LSTM from keras.layers.embeddings import Embedding from keras import optimizers import keras.backend as K from keras.layers.core import Lambda from keras.engine.topology import Layer from keras.callbacks import Callback from collections import Counter from math import ceil import sys import gzip import numpy as np import random import lwvlib import json # parameters word_embedding_size=200 recurrent_inner=512 stack=1 def read_pretrained_vectors(vocabulary,vector_model,max_words=1000000): print("Loading pretrained word embeddings from "+vector_model) model=lwvlib.load(vector_model,max_words,max_words) vectors=np.zeros((len(vocabulary),model.vectors.shape[1]),np.float) for word,idx in vocabulary.items(): if idx==0 or idx==1 or idx==2: continue # mask and unk and end midx=model.get(word) if midx is not None: vectors[idx]=model.vectors[midx] # TODO: normalize? return vectors # Implements a layer which picks the predicate word from the lstm sequence # Input shape: (minibatch,1), (minibatch, max_sequence, lstm_width) # Output shape: (minibatch, 1, lstm_width) #def vector_from_sequence(inputs): # p,lstm=inputs[0],inputs[1] # v=lstm[:,1,:] # print(K.shape(v)[1]) # return Flatten()(v) #is=Lambda(vector_from_sequence,vector_from_sequence_dim)([i,lstms[-1]]) #concat_lstm_sense=concatenate([lstms[-1],is],axis=-1) #def vector_from_sequence_dim(lstm_input_shape): # return (lstm_input_shape[1][0],30,lstm_input_shape[1][2]) def build_model(vs,max_sent_len_words): print("Building model",file=sys.stderr) # inputs input_words=Input(shape=(max_sent_len_words,),name="input_words") input_predicate=Input(shape=(max_sent_len_words,),name="predicate_vector") # vector where predicate word is 1. other words are zero input_predicate_sense=Input(shape=(max_sent_len_words,),name="predicate_sense") # vector where predicate word is 1. other words are zero # embeddings pretrained=read_pretrained_vectors(vs.words,"/home/jmnybl/word_embeddings/pb34_wf_200_v2.bin") # word_embeddings=Embedding(vs.vocab_size, word_embedding_size, name="word_embeddings", mask_zero=False, weights=[pretrained])(input_words) binary=Embedding(3, 1, name="binary_embeddings", mask_zero=False, weights=[np.array([0.0,0.0,1.0]).reshape((3,1))], trainable=False)(input_predicate) sense_embeddings=Embedding(len(vs.predicate_senses), word_embedding_size, name="sense_embeddings", mask_zero=False)(input_predicate_sense) # concatenate word embeddings and predicate vector concat_embedding=concatenate([word_embeddings,binary],axis=-1) lstms=[concat_embedding] # recurrent for _ in range(stack): if len(lstms)>1: lstm_in=concatenate(lstms,axis=-1) else: lstm_in=lstms[0] lstm_out=Bidirectional(LSTM(recurrent_inner,name="bilstm",return_sequences=True, activation="relu"), merge_mode="ave")(lstm_in) lstms.append(lstm_out) concat_lstm_sense=concatenate([lstms[-1],sense_embeddings],axis=-1) # softmax predictions=TimeDistributed(Dense(len(vs.argument_roles),activation="softmax",name="prediction_layer"))(concat_lstm_sense) model=Model(inputs=[input_words,input_predicate,input_predicate_sense], outputs=[predictions]) # adam=optimizers.Adam(beta_2=0.9) model.compile(optimizer="adam",loss='categorical_crossentropy',metrics=['accuracy']) print(model.summary()) from keras.utils import plot_model plot_model(model,to_file="model.png",show_shapes=True) return model def load_model(model_name): with open(model_name+".json", "rt", encoding="utf-8") as f: model=model_from_json(f.read()) model.load_weights(model_name+".h5") return model ``` #### File: jmnybl/finnish-srl/predict.py ```python from data_reader import Vocabulary, transform_data, load_vocabularies, FORM, Corpus from model import build_model, load_model import numpy as np import sys def predict(args): # ARGUMENTS test_file=args.data minibatch=64 max_sent_len_words=30 print("fsdfdfsdfs",file=sys.stderr) ## VOCABULARY vs=load_vocabularies(args.model_name+"-vocab.pickle") corpus=Corpus(test_file,test_time=True) sentences,x,y=transform_data(corpus,vs,max_sent_len_words,test_time=True) print(len(sentences),flush=True,file=sys.stderr) model=load_model(args.model_name) predictions=model.predict(x,batch_size=64,verbose=1) from collections import defaultdict # reconstruct file last_sentence=None for (sent_id,predicate_id),pred in zip(sentences,predictions): if last_sentence!=None and sent_id!=last_sentence.id: # new sentence corpus.sentences[last_sentence.id]=last_sentence last_sentence=corpus.sentences[sent_id] last_sentence.arguments=defaultdict(list) # clear arguments to be sure there is nothing elif last_sentence==None: last_sentence=corpus.sentences[sent_id] # add predicted arguments for this predicate # predicate_id is the token[ID] of the current predicate labels=[vs.idx2label[np.argmax(t)] for t in pred] for i,r in enumerate(labels): # i is now token counter, r is predicted role if r!="<MASK>" and r!="None": last_sentence.arguments[str(i+1)].append((predicate_id,r)) corpus.save(args.output) if __name__=="__main__": import argparse parser = argparse.ArgumentParser(description='') g=parser.add_argument_group("Reguired arguments") g.add_argument('-d', '--data', type=str, required=True, help='Training file') g.add_argument('-m', '--model_name', type=str, required=True, help='Name of the saved model') g.add_argument('-o', '--output', type=str, required=True, help='Output file name') args = parser.parse_args() predict(args) ``` #### File: jmnybl/finnish-srl/train.py ```python from data_reader import Vocabulary, transform_data, save_vocabularies, Corpus from model import build_model from keras.callbacks import ModelCheckpoint def train(args): # ARGUMENTS training_file=args.data minibatch=64 max_sent_len_words=30 epochs=args.epochs corpus=Corpus(training_file,test_time=False) ## VOCABULARY vs=Vocabulary() vs.build(corpus,min_count_word=args.min_count_word,min_count_sense=args.min_count_sense) sentences,x,y=transform_data(corpus,vs,max_sent_len_words) model=build_model(vs,max_sent_len_words) # save model json model_json = model.to_json() with open(args.model_name+".json", "w") as json_file: json_file.write(model_json) save_vocabularies(vs,args.model_name+"-vocab.pickle") # +".{epoch:02d}.h5" save_cb=ModelCheckpoint(filepath=args.model_name+".h5", monitor='val_loss', verbose=1, save_best_only=True, mode='auto') model.fit(x,y,batch_size=minibatch,epochs=epochs,verbose=1,validation_split=0.1,callbacks=[save_cb]) if __name__=="__main__": import argparse parser = argparse.ArgumentParser(description='') g=parser.add_argument_group("Reguired arguments") g.add_argument('-d', '--data', type=str, required=True, help='Training file') g.add_argument('-m', '--model_name', type=str, required=True, help='Name of the saved model') g.add_argument('--min_count_word', type=int, default=2, help='Frequency threshold, how many times a word must occur to be included in the vocabulary? (default %(default)d)') g.add_argument('--min_count_sense', type=int, default=2, help='Frequency threshold, how many times a verb sense must occur to be included in the vocabulary? (default %(default)d)') g.add_argument('--epochs', type=int, default=10, help='Number of training epochs') args = parser.parse_args() train(args) ```
{ "source": "jmnybl/inflect-words", "score": 2 }
#### File: jmnybl/inflect-words/predict.py ```python from __future__ import division from builtins import bytes import os import argparse import math import codecs import torch import sys sys.path.insert(0,os.getcwd()+"/OpenNMT-py") import onmt import onmt.IO import opts from itertools import takewhile, count try: from itertools import zip_longest except ImportError: from itertools import izip_longest as zip_longest parser = argparse.ArgumentParser(description='translate.py') opts.add_md_help_argument(parser) opts.translate_opts(parser) opt = parser.parse_args() if opt.batch_size != 1: print("WARNING: -batch_size isn't supported currently, " "we set it to 1 for now!") opt.batch_size = 1 def report_score(name, score_total, words_total): print("%s AVG SCORE: %.4f, %s PPL: %.4f" % ( name, score_total / words_total, name, math.exp(-score_total/words_total))) def get_src_words(src_indices, index2str): words = [] raw_words = (index2str[i] for i in src_indices) words = takewhile(lambda w: w != onmt.IO.PAD_WORD, raw_words) return " ".join(words) def read_word_statistics(fname, min_freq=25): words={} for line in open(fname, "rt", encoding="utf-8"): line=line.strip() count,word=line.split() if int(count)<min_freq: return words words[word]=int(count) return words def score_beam(predictions, scores, word_statistics): rescored=[] for p,sc in zip(predictions, scores): count=word_statistics.get(p,0) rescored.append((p,sc,count)) # if [p for p,s in rescored+tmp][0] != predictions[0]: # print(src_words,"---",predictions[0],"---",[p for p,s in rescored+tmp][0]) # print(predictions) # print([p for p,s in rescored+tmp]) # print() return [p for p,s,c in sorted(rescored,key=lambda x:x[2], reverse=True)], [s for p,s,c in sorted(rescored,key=lambda x:x[2], reverse=True)], [c for p,s,c in sorted(rescored,key=lambda x:x[2], reverse=True)] def main(): dummy_parser = argparse.ArgumentParser(description='train.py') opts.model_opts(dummy_parser) dummy_opt = dummy_parser.parse_known_args([])[0] opt.cuda = opt.gpu > -1 if opt.cuda: torch.cuda.set_device(opt.gpu) translator = onmt.Translator(opt, dummy_opt.__dict__) out_file = codecs.open(opt.output, 'w', 'utf-8') pred_score_total, pred_words_total = 0, 0 gold_score_total, gold_words_total = 0, 0 if opt.dump_beam != "": import json translator.initBeamAccum() withAttention=len(opt.save_attention) > 0 if withAttention: if opt.n_best>1: print("-save_attention works only with -n_best 1 right now. Attention weights are not saved!") withAttention=False else: print("saving attention weights to",opt.save_attention) attn_file=open(opt.save_attention,"wt") data = onmt.IO.ONMTDataset(opt.src, opt.tgt, translator.fields, None) word_statistics=read_word_statistics("/home/jmnybl/finnish_vocab") test_data = onmt.IO.OrderedIterator( dataset=data, device=opt.gpu, batch_size=opt.batch_size, train=False, sort=False, shuffle=False) counter = count(1) for batch in test_data: pred_batch, gold_batch, pred_scores, gold_scores, attn, src \ = translator.translate(batch, data) pred_score_total += sum(score[0] for score in pred_scores) pred_words_total += sum(len(x[0]) for x in pred_batch) if opt.tgt: gold_score_total += sum(gold_scores) gold_words_total += sum(len(x) for x in batch.tgt[1:]) # z_batch: an iterator over the predictions, their scores, # the gold sentence, its score, and the source sentence for each # sentence in the batch. It has to be zip_longest instead of # plain-old zip because the gold_batch has length 0 if the target # is not included. z_batch = zip_longest( pred_batch, gold_batch, pred_scores, gold_scores, attn, (sent.squeeze(1) for sent in src.split(1, dim=1))) for pred_sents, gold_sent, pred_score, gold_score, attention, src_sent in z_batch: n_best_preds = ["".join(pred)+"\t"+str(score) for pred,score in zip(pred_sents[:opt.n_best],pred_score[:opt.n_best])] #n_best_preds, scores, counts = score_beam(n_best_preds, pred_score[:opt.n_best], word_statistics) out_file.write('\n'.join(n_best_preds)) out_file.write('\n') out_file.flush() sent_number = next(counter) if withAttention: best_pred = n_best_preds[0] best_score = pred_score[0] words = get_src_words( src_sent, translator.fields["src"].vocab.itos) print(" ||| ".join([str(sent_number),best_pred,str(best_score),words,str(len(words.split(" ")))+" "+str(len(best_pred.split(" ")))]),file=attn_file) for y in attention: for i,v in enumerate(y.cpu().numpy()): print(" ".join(str(x) for x in v),file=attn_file) if opt.verbose: words = get_src_words( src_sent, translator.fields["src"].vocab.itos) os.write(1, bytes('\nSENT %d: %s\n' % (sent_number, words), 'UTF-8')) best_pred = n_best_preds[0] best_score = pred_score[0] os.write(1, bytes('PRED %d: %s\n' % (sent_number, best_pred), 'UTF-8')) print("PRED SCORE: %.4f" % best_score) if opt.tgt: tgt_sent = ' '.join(gold_sent) os.write(1, bytes('GOLD %d: %s\n' % (sent_number, tgt_sent), 'UTF-8')) print("GOLD SCORE: %.4f" % gold_score) if len(n_best_preds) > 1: print('\nBEST HYP:') for score, sent in zip(pred_score, n_best_preds): os.write(1, bytes("[%.4f] %s\n" % (score, sent), 'UTF-8')) report_score('PRED', pred_score_total, pred_words_total) if opt.tgt: report_score('GOLD', gold_score_total, gold_words_total) if opt.dump_beam: json.dump(translator.beam_accum, codecs.open(opt.dump_beam, 'w', 'utf-8')) if withAttention: attn_file.close() if __name__ == "__main__": main() ```
{ "source": "jmnybl/keras-models", "score": 3 }
#### File: jmnybl/keras-models/generate.py ```python from __future__ import print_function from keras.models import Model, model_from_json from keras.layers import Dense, Activation, Dropout, Input, Embedding from keras.layers import CuDNNLSTM as LSTM from keras.optimizers import RMSprop, Adam from keras.utils.data_utils import get_file from keras.callbacks import ModelCheckpoint import numpy as np import random import sys import re ### Only needed for me, not to block the whole GPU, you don't need this stuff import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.3 set_session(tf.Session(config=config)) ### ---end of weird stuff ## helper functions from nltk.tokenize import word_tokenize # turns text into list of words def load_vocabulary(file_name): import json with open(file_name, "rt", encoding="utf-8") as f: vocab=json.load(f) return vocab def load_model(model_file, weight_file): with open(model_file, "rt", encoding="utf-8") as f: model=model_from_json(f.read()) model.load_weights(weight_file) return model vocab_file="generation-vocab.json" model_file="generation-model.json" weight_file="generation-weights.h5" vocab, _ = load_vocabulary(vocab_file) model = load_model(model_file, weight_file) print("Vocabulary size:", len(vocab)) inversed_vocab = {value: key for key, value in vocab.items()} print("Inversed vocabulary size:", len(inversed_vocab)) print(vocab, inversed_vocab) context_size=50 embedding_size=50 batch_size=150 def sample(preds, temperature=1.0): # helper function to sample an index from a probability array preds = np.asarray(preds).astype('float64') preds = np.log(preds) / temperature exp_preds = np.exp(preds) preds = exp_preds / np.sum(exp_preds) probas = np.random.multinomial(1, preds, 1) return np.argmax(probas) # generate while True: print() print('-' * 50) text = input("Seed for generation:").strip() for diversity in [0.2, 0.5, 1.0, 1.2]: print() print('----- diversity:', diversity) generated = [] for c in text: generated.append(c) print('----- Generating with seed: "' + "".join(generated) + '"') sys.stdout.write("".join(generated)) sentence=generated # vectorize seed generate_X=np.zeros((1,context_size)) for i,c in enumerate(sentence): generate_X[0,i]=vocab.get(c,vocab["<UNKNOWN>"]) for i in range(200): # predict preds = model.predict(generate_X, verbose=0)[0] next_index = sample(preds, diversity) next_char = inversed_vocab[next_index] generated += [next_char] sentence=generated[len(generated)-context_size:] # vectorize new seed generate_X=np.zeros((1,context_size)) for i,c in enumerate(sentence): generate_X[0,i]=vocab.get(c,vocab["<UNKNOWN>"]) sys.stdout.write(next_char) sys.stdout.flush() sys.stdout.write("\n") sys.stdout.flush() print() ``` #### File: jmnybl/keras-models/skipgram-ns.py ```python from keras.models import Model from keras.layers import Dense, Input, Reshape, Flatten, dot, RepeatVector, concatenate from keras.layers.embeddings import Embedding from keras import optimizers import sys import gzip import numpy as np import keras.backend as K from keras.layers.core import Lambda from collections import Counter class Vocabulary(object): def __init__(self,data=None): self.words=None def build(self,training_file,min_count=5,estimate=0): # min_count: discard words that appear less than X times # estimate: estimate vocabulary using X words, 0 for read all word_counter=0 c=Counter() tmp=[] for line in gzip.open(training_file,"rt",encoding="utf-8"): for word in line.strip().split(" "): word_counter+=1 tmp.append(word) if word_counter%1000000==0: print(word_counter,"words",file=sys.stderr) if len(tmp)>100000: c.update(tmp) tmp=[] if estimate!=0 and word_counter>=estimate: break if len(tmp)>0: c.update(tmp) words={"<MASK>":0,"<UNK>":1} for w,count in c.most_common(): if count<min_count: break words[w]=len(words) self.words=words self.vocab_size=len(self.words) self.inverted_words={} for key,idx in self.words.items(): self.inverted_words[idx]=key print("Vocabulary created with {w} words.".format(w=self.vocab_size),file=sys.stderr) self.total_word_count=word_counter def word_idx(self,word): return self.words.get(word,self.words["<UNK>"]) def make_sampling_table(): # TODO: make a proper sampling table with probabilities and all pass def sample_negatives(self,current_word,negatives): negative_samples = np.random.randint(1,self.vocab_size,negatives) while current_word in negative_samples: negative_samples = np.random.randint(1,self.vocab_size,negatives) return negative_samples def infinite_iterator(fname, vs, window, negatives, batch_size, max_iterations=10): focus_words=[] target_words=[] targets=[] iterations=0 while True: print("Iteration:",iterations,file=sys.stderr) if iterations==max_iterations: if len(examples)>0: yield {"focus_word":np.array(focus_words),"target_words":np.array(target_words)}, np.array(targets) break for line in gzip.open(fname,"rt",encoding="utf-8"): words=line.strip().split(" ") for i in range(0,len(words)): # i is a focus word now focus_word=vs.word_idx(words[i]) if focus_word==vs.word_idx("<UNK>"): if np.random.random_sample() < 0.8: # 80% change to drop <UNK> training example continue for j in range(max(0,i-window),min(len(words),i+window+1)): if i==j: continue target_word=vs.word_idx(words[j]) negative_sample=vs.sample_negatives(focus_word,negatives) focus_words.append(focus_word) target_words.append([target_word]+list(negative_sample)) targets.append([1.0]+[0.0]*negatives) if len(focus_words)==batch_size: yield {"focus_word":np.array(focus_words),"target_words":np.array(target_words)}, np.array(targets) focus_words=[] target_words=[] targets=[] iterations+=1 def train(args): # SETTINGS minibatch=400 embedding_size=args.embedding_size window_size=args.window negative_size=args.negatives training_file=args.data steps_per_epoch=10000 ## VOCABULARY vs=Vocabulary() vs.build(training_file,min_count=args.min_count,estimate=args.estimate_vocabulary) data_iterator=infinite_iterator(training_file,vs,window_size,negative_size,minibatch) ## MODEL # input focus_input=Input(shape=(1,), name="focus_word") target_input=Input(shape=(negative_size+1,), name="target_words") # Embeddings focus_embeddings=Embedding(vs.vocab_size, embedding_size, name="word_embeddings")(focus_input) repeated=RepeatVector(negative_size+1)(Flatten()(focus_embeddings)) context_embeddings=Embedding(vs.vocab_size,embedding_size, name="context_embeddings")(target_input) def my_dot(l): return K.sum(l[0]*l[1],axis=-1,keepdims=True) def my_dot_dim(input_shape): return (input_shape[0][0],input_shape[0][1],1) dot_out=Lambda(my_dot,my_dot_dim)([repeated,context_embeddings]) sigmoid_layer=Dense(1, activation='sigmoid') s_out=Flatten()(sigmoid_layer(dot_out)) model=Model(inputs=[focus_input,target_input], outputs=[s_out]) adam=optimizers.Adam(beta_2=0.9) model.compile(optimizer=adam,loss='binary_crossentropy') print(model.summary()) from keras.utils import plot_model plot_model(model,to_file=args.model_name+".png",show_shapes=True) model.fit_generator(data_iterator,steps_per_epoch=steps_per_epoch,epochs=args.epochs,verbose=1) def save_embeddings(model, name, vs): # save word embeddings and vocabulary with open(name, 'wt') as f: embedding_w=model.get_weights()[0] print(vs.vocab_size,embedding_size,file=f) for i in range(0,vs.vocab_size): print(vs.inverted_words[i]," ".join(str(x) for x in embedding_w[i]),file=f) save_embeddings(model,args.model_name,vs) if __name__=="__main__": import argparse parser = argparse.ArgumentParser(description='') g=parser.add_argument_group("Reguired arguments") g.add_argument('-d', '--data', type=str, required=True, help='Training data file (gzipped)') g.add_argument('-m', '--model_name', type=str, required=True, help='Name of the saved model (in .txt format)') g.add_argument('--min_count', type=int, default=2, help='Frequency threshold, how many times an ngram must occur to be included? (default %(default)d)') g.add_argument('--window', type=int, default=5, help='Window size, default is 5 words to the left and 5 words to the right') g.add_argument('--embedding_size', type=int, default=200, help='Dimensionality of the trained vectors') g.add_argument('--negatives', type=int, default=5, help='How many negatives to sample, default=5') g.add_argument('--epochs', type=int, default=10, help='Number of training epochs') g.add_argument('--estimate_vocabulary', type=int, default=0, help='Estimate vocabulary using x words, default=0 (all).') args = parser.parse_args() train(args) ```
{ "source": "jmnybl/text-generation", "score": 3 }
#### File: jmnybl/text-generation/inp.py ```python import sys def is_new_doc(comments): for c in comments: if c.startswith("# fname"): return True return False def get_documents(fname): if fname.endswith(".gz"): import gzip f=gzip.open(fname, "rt") else: f=open(fname) current_doc=[] current_metadata=None for comm, sent in get_sentences(f): if comm and is_new_doc(comm): # new document starts if current_doc: yield current_doc, current_metadata current_doc, current_metadata = [], None current_doc.append((comm,sent)) else: if current_doc: yield current_doc, current_metadata f.close() def get_sentences(f): """conllu reader""" sent=[] comment=[] for line in f: line=line.strip() if not line: # new sentence if sent: yield comment,sent comment=[] sent=[] elif line.startswith("#"): comment.append(line) else: #normal line sent.append(line.split("\t")) else: if sent: yield comment, sent if __name__=="__main__": # test for i, (document, doc_meta) in enumerate(get_documents("/home/ginter/text-generation/all_stt.conllu.gz")): print("Document:",i) for comm,sent in document: if comm: print(comm) print(sent) print() break ```
{ "source": "J-Mo63/contact-register", "score": 3 }
#### File: contact-register/contactregister/contactregister_test.py ```python from contextlib import redirect_stdout from models.Contact import Contact from display import html import contactregister import unittest import helpers import json import glob import csv import os import io class ContactRegisterTestCase(unittest.TestCase): def tearDown(self): files = glob.glob('../data/*') for f in files: os.remove(f) contactregister.contacts = [] class AddContact(ContactRegisterTestCase): def test_add_single(self): contactregister.add_contact("<NAME>", "123 Hello Rd", "+614090000") self.assertEqual(1, len(contactregister.contacts)) def test_add_multi(self): contactregister.add_contact("<NAME>", "125 Welcome Plc", "+614090002") contactregister.add_contact("<NAME>", "124 Goodbye St", "+614090001") self.assertEqual(2, len(contactregister.contacts)) class ListContacts(ContactRegisterTestCase): def test_list_empty(self): self.assertEqual(0, len(contactregister.get_all_contacts())) def test_list_single(self): contactregister.contacts.append(Contact("<NAME>", "123 Hello Rd", "+614090000")) self.assertEqual(1, len(contactregister.get_all_contacts())) def test_list_multi(self): contactregister.contacts.append(Contact("<NAME>", "125 Welcome Plc", "+614090002")) contactregister.contacts.append(Contact("<NAME>", "124 Goodbye St", "+614090001")) self.assertEqual(2, len(contactregister.get_all_contacts())) class SearchContacts(ContactRegisterTestCase): def test_search_empty(self): self.assertEqual(0, len(contactregister.search_contacts("name=Jon*"))) def test_search_one(self): jon_jon = Contact("<NAME>", "123 Hello Rd", "+614090000") contactregister.contacts.append(jon_jon) matches = contactregister.search_contacts("name=Jon*") self.assertEqual(1, len(matches)) self.assertEqual([jon_jon], matches) self.assertEqual(0, len(contactregister.search_contacts("name=Bon*"))) self.assertEqual(1, len(contactregister.search_contacts("address=12? Hello*"))) self.assertEqual(1, len(contactregister.search_contacts("name=Jon*, address=12? Hello*"))) self.assertEqual(1, len(contactregister.search_contacts("phone=+6*"))) self.assertEqual(0, len(contactregister.search_contacts("phone=+6*, address = 124*"))) def test_search_multi(self): jon_jon = Contact("<NAME>", "123 Hello Rd", "+614090000") ron_ron = Contact("<NAME>", "125 Welcome Plc", "+614090002") jon_bon = Contact("<NAME>", "124 Goodbye St", "+614090001") contactregister.contacts.extend([jon_jon, ron_ron, jon_bon]) matches = contactregister.search_contacts("address=12*") self.assertEqual(3, len(matches)) self.assertEqual([jon_jon, ron_ron, jon_bon], matches) self.assertEqual(3, len(contactregister.search_contacts("name=*on*"))) self.assertEqual(2, len(contactregister.search_contacts("name=Jon*"))) self.assertEqual(1, len(contactregister.search_contacts("name=Jon*, phone = *01"))) self.assertEqual(2, len(contactregister.search_contacts("address = *el*"))) class DisplayContacts(ContactRegisterTestCase): @staticmethod def get_text_display_output(): f = io.StringIO() with redirect_stdout(f): contactregister.display_contacts("text") return f.getvalue() @staticmethod def get_html_format(elements=""): return '<html>\n\t<head>\n\t\t<title>Data Value</title>\n\t</head>\n\t<body>\n' \ f'\t\t<h1>All Contacts</h1>\n\t\t<ul>\n{elements}\n\t\t</ul>\n\t</body>\n</html>' @staticmethod def get_html_file_output(): with open("../data/contacts.html", 'r', newline='') as file: return file.read() def test_display_text_empty(self): output = DisplayContacts.get_text_display_output() self.assertEqual("name address phone\n" "------ --------- -------\n", output) def test_display_text_single(self): contactregister.contacts.append(Contact("<NAME>", "123 Hello Rd", "+614090000")) output = DisplayContacts.get_text_display_output() self.assertEqual("name address phone\n" "------- ------------ ----------\n" "<NAME> 123 Hello Rd +614090000\n", output) def test_display_text_multi(self): contactregister.contacts.append(Contact("<NAME>", "125 Welcome Plc", "+614090002")) contactregister.contacts.append(Contact("<NAME>", "124 Goodbye St", "+614090001")) output = DisplayContacts.get_text_display_output() self.assertEqual("name address phone\n" "------- --------------- ----------\n" "<NAME> 125 Welcome Plc +614090002\n" "<NAME> 124 Goodbye St +614090001\n", output) def test_display_html_empty(self): contactregister.display_contacts("html") self.assertEqual(DisplayContacts.get_html_format(), DisplayContacts.get_html_file_output()) def test_display_html_single(self): jon_jon = Contact("<NAME>", "123 Hello Rd", "+614090000") contactregister.contacts.append(jon_jon) contactregister.display_contacts("html") self.assertEqual(DisplayContacts.get_html_format(html.contacts_to_list_items([jon_jon])), DisplayContacts.get_html_file_output()) def test_display_html_multi(self): jon_jon = Contact("<NAME>", "123 Hello Rd", "+614090000") ron_ron = Contact("<NAME>", "125 Welcome Plc", "+614090002") contactregister.contacts.extend([jon_jon, ron_ron]) contactregister.display_contacts("html") self.assertEqual(DisplayContacts.get_html_format(html.contacts_to_list_items([jon_jon, ron_ron])), DisplayContacts.get_html_file_output()) class ExportContacts(ContactRegisterTestCase): @staticmethod def get_json_file_output(): with open("../data/contacts.json", 'r', newline='') as file: return json.load(file) @staticmethod def get_csv_file_output(): with open("../data/contacts.csv", 'r', newline='') as file: return file.read() def test_export_json_empty(self): contactregister.export_contacts("json") self.assertEqual([], ExportContacts.get_json_file_output()) def test_export_json_single(self): jon_jon = Contact("<NAME>", "123 Hello Rd", "+614090000") contactregister.contacts.append(jon_jon) contactregister.export_contacts("json") self.assertEqual([jon_jon.to_dict()], ExportContacts.get_json_file_output()) def test_export_json_multi(self): jon_jon = Contact("<NAME>", "123 Hello Rd", "+614090000") ron_ron = Contact("<NAME>", "125 Welcome Plc", "+614090002") contactregister.contacts.extend([jon_jon, ron_ron]) contactregister.export_contacts("json") self.assertEqual([jon_jon.to_dict(), ron_ron.to_dict()], ExportContacts.get_json_file_output()) def test_export_csv_empty(self): contactregister.export_contacts("csv") self.assertEqual('"name","address","phone"\r\n', ExportContacts.get_csv_file_output()) def test_export_csv_single(self): jon_jon = Contact("<NAME>", "123 Hello Rd", "+614090000") contactregister.contacts.append(jon_jon) contactregister.export_contacts("csv") self.assertEqual('"name","address","phone"\r\n' '"<NAME>","123 Hello Rd","+614090000"\r\n', ExportContacts.get_csv_file_output()) def test_export_csv_multi(self): jon_jon = Contact("<NAME>", "124 Hello Rd", "+614090000") ron_ron = Contact("<NAME>", "125 Welcome Plc", "+614090002") contactregister.contacts.extend([jon_jon, ron_ron]) contactregister.export_contacts("csv") self.assertEqual('"name","address","phone"\r\n' '"<NAME>","124 Hello Rd","+614090000"\r\n' '"<NAME>","125 Welcome Plc","+614090002"\r\n', ExportContacts.get_csv_file_output()) class ImportContacts(ContactRegisterTestCase): @staticmethod def create_json_file_with(contacts): helpers.try_create_dir("../data/") with open("../data/contacts.json", 'w', newline='') as file: json.dump([contact.to_dict() for contact in contacts], file, indent=4) @staticmethod def create_csv_file_with(contacts): helpers.try_create_dir("../data/") with open("../data/contacts.csv", 'w', newline='') as file: writer = csv.writer(file, quoting=csv.QUOTE_ALL) writer.writerow(Contact.supported_search_fields) [writer.writerow(contact.to_list()) for contact in contacts] def test_import_json_empty(self): ImportContacts.create_json_file_with([]) contactregister.import_contacts("json") self.assertEqual(0, len(contactregister.contacts)) def test_import_json_single(self): jon_jon = Contact("<NAME>", "123 Hello Rd", "+614090000") ImportContacts.create_json_file_with([jon_jon]) contactregister.import_contacts("json") self.assertEqual(1, len(contactregister.contacts)) def test_import_json_multi(self): jon_jon = Contact("<NAME>", "124 Hello Rd", "+614090000") ron_ron = Contact("<NAME>", "125 Welcome Plc", "+614090002") ImportContacts.create_json_file_with([jon_jon, ron_ron]) contactregister.import_contacts("json") self.assertEqual(2, len(contactregister.contacts)) def test_import_csv_empty(self): ImportContacts.create_csv_file_with([]) contactregister.import_contacts("csv") self.assertEqual(0, len(contactregister.contacts)) def test_import_csv_single(self): jon_jon = Contact("<NAME>", "123 Hello Rd", "+614090000") ImportContacts.create_csv_file_with([jon_jon]) contactregister.import_contacts("csv") self.assertEqual(1, len(contactregister.contacts)) def test_import_csv_multi(self): jon_jon = Contact("<NAME>", "124 Hello Rd", "+614090000") ron_ron = Contact("<NAME>", "125 Welcome Plc", "+614090002") ImportContacts.create_csv_file_with([jon_jon, ron_ron]) contactregister.import_contacts("csv") self.assertEqual(2, len(contactregister.contacts)) if __name__ == '__main__': unittest.main() ``` #### File: contact-register/contactregister/helpers.py ```python import errno import os def get_module_files(file) -> [str]: """ A helper function to return the names of all non-system .py files (not __init__, __main__, etc.) in a given module ... Parameters ---------- file : str the __file__ attribute of the specified module ... Returns ------- [str] the list of module file names """ # Get the directory of the file dir_path = os.path.dirname(os.path.realpath(file)) # Get all files in the directory and filter out Python standard module files module_files = list(filter(lambda x: not x.startswith("__"), os.listdir(dir_path))) # Return filenames stripped of extension return [filename.strip('.py') for filename in module_files] def display_command_options(options, title="Options:") -> None: """ A helper function to enumerate a list of options to the user ... Parameters ---------- options : str a list of options to visually enumerate for the user title : str a title for the command option display (default is "Options:") """ # Display the title, followed by a list of enumerated options print(title) [print(f'{i}: {options[i]}') for i in range(0, len(options))] def get_option_selection(options, prompt="Option: ") -> str: """ A helper function to get integer input from the user based on a provided list of enumerated options ... Parameters ---------- options : str a list of options that the user may select prompt : str a prompt to display (default is "Option: ") ... Returns ------- str the option name as a string """ # Loop until receiving valid input selected_option = None while selected_option is None: try: # Get user input as an integer selected_option = int(input(prompt).strip()) # Handle out of bounds case if not (-1 < selected_option < len(options)): selected_option = None print("Input value is out of range, try again") # Handle non-integer case except ValueError: print("Input value not a valid integer, try again") # Return the selected option by name return options[selected_option] class QueryFilter: """A container class for query data""" def __init__(self, field, pattern): """ Initialises the class with relevant parameters ... Parameters ---------- field : str the field on which to perform the query pattern : str the pattern to perform the query with Returns ------- QueryFilter a new QueryFilter object """ self.field = field.strip() self.pattern = pattern.strip() def parse_query_filters(query) -> [QueryFilter]: """ A helper function to parse a query string as a list of query filter objects ... Parameters ---------- query : str a comma-separated query string in the format of field=name ... Returns ------- [QueryFilter] a list of sanitised QueryFilter objects """ filters = [] # Split the queries by comma into a list of lists split an equals sign for query_filter in [query_field.split("=", 1) for query_field in query.split(",")]: # Create a new QueryFilter object from the field and pattern on each query filters.append(QueryFilter(query_filter[0], query_filter[1])) return filters def try_create_dir(directory_path) -> None: """ A helper function to try create a directory ... Parameters ---------- directory_path : str the string directory path to try create """ try: # Create the specified directory os.makedirs(directory_path) except OSError as e: # Handle file existing case if e.errno != errno.EEXIST: raise class UnknownQueryField(Exception): """Raised when searched query field is unknown""" def __init__(self, field_name): """ Initialises the class with relevant parameters ... Parameters ---------- field_name : str the name of offending field Returns ------- UnknownQueryField a new UnknownQueryField object """ self.field = field_name class MalformedQuery(Exception): """Raised when parsed query is malformed""" def __init__(self, query): """ Initialises the class with relevant parameters ... Parameters ---------- query : str the value of the malformed query Returns ------- MalformedQuery a new MalformedQuery object """ self.query = query class NonexistentFile(Exception): """Raised when attempting to import a nonexistent file""" def __init__(self, filepath): """ Initialises the class with relevant parameters ... Parameters ---------- filepath : str the missing filepath Returns ------- NonexistentFile a new NonexistentFile object """ self.filepath = filepath ```
{ "source": "J-Mo63/usdmanager", "score": 2 }
#### File: usdmanager/plugins/__init__.py ```python from Qt.QtCore import QObject class Plugin(QObject): """ Classes in modules in the plugins directory that inherit from Plugin will be automatically initialized when the main window loads. """ def __init__(self, parent, **kwargs): """ Initialize the plugin. :Parameters: parent : `UsdMngrWindow` Main window """ super(Plugin, self).__init__(parent, **kwargs) ```
{ "source": "jmoch1214/gcpy", "score": 3 }
#### File: gcpy/tests/test_units.py ```python import pytest import numpy as np from gcpy.units import * def test_adjust_units(): for v in ['kg/m2/s', 'kgm-2s-1', 'kgm^-2s^-1']: assert adjust_units(v) == 'kg/m2/s' for v in ['kgC/m2/s', 'kgCm-2s-1', 'kgCm^-2s^-1', 'kgc/m2/s', 'kgcm-2s-1', 'kgcm^-2s^-1']: assert adjust_units(v) == 'kgC/m2/s' for v in ['molec/cm2/s', 'moleccm-2s-1', 'moleccm^-2s^-1']: assert adjust_units(v) == 'molec/cm2/s' for v in ['atoms C/cm2/s', 'atomsC/cm2/s']: assert adjust_units(v) == 'atomsC/cm2/s' ``` #### File: gcpy/gcpy/units.py ```python import numpy as np import xarray as xr def adjust_units(units): ''' Creates a consistent unit string that will be used in the unit conversion routines below. Args: units : str Input unit string. Returns: adjusted_units: str Output unit string, adjusted to a consistent value. Remarks: Unit list is incomplete -- currently is geared to units from common model diagnostics (e.g. kg/m2/s, kg, and variants). Examples: >>> import gcpy >>> print(gcpy.adjust_units('kg/m2/s')) kg/m2/s >>> print(gcpy.adjust_units('kg m-2 s-1')) kg/m2/s >>> print(gcpy.adjust_units('kg m^-2 s^-1)) kg/m2/s ''' # Strip all spaces in the unit string units_squeezed = units.replace(' ', '') if units_squeezed in ['kg/m2/s', 'kgm-2s-1', 'kgm^-2s^-1']: unit_desc = 'kg/m2/s' elif units_squeezed in ['kgC/m2/s', 'kgCm-2s-1', 'kgCm^-2s^-1', 'kgc/m2/s', 'kgcm-2s-1', 'kgcm^-2s^-1']: unit_desc = 'kgC/m2/s' elif units_squeezed in [ 'molec/cm2/s', 'moleccm-2s-1', 'moleccm^-2s^-1']: unit_desc = 'molec/cm2/s' else: unit_desc = units_squeezed return unit_desc def convert_kg_to_target_units(data_kg, target_units, kg_to_kgC): ''' Converts a data array from kg to one of several types of target units. Args: data_kg : numpy ndarray Input data array, in units of kg. target_units : str String containing the name of the units to which the "data_kg" argument will be converted. Examples: 'Tg', 'Tg C', 'Mg', 'Mg C', 'kg, 'kg C', etc. kg_to_kg_C : float Conversion factor from kg to kg carbon. Returns: data : numpy ndarray Ouptut data array, converted to the units specified by the 'target_units' argument. Remarks: At present, only those unit conversions corresponding to the GEOS-Chem benchmarks have been implemented. This is an internal routine, which is meant to be called directly from convert_units. ''' # Convert to target unit if target_units == 'Tg': data = data_kg * 1e-9 elif target_units == 'Tg C': data = data_kg * kg_to_kgC * 1.0e-9 elif target_units == 'Gg': data = data_kg * 1e-6 elif target_units == 'Gg C': data = data_kg * kg_to_kgC * 1.0e-6 elif target_units == 'Mg': data = data_kg * 1e-3 elif target_units == 'Mg C': data = data_kg * kg_to_kgC * 1.0e-3 elif target_unit == 'kg': data = data_kg elif target_unit == 'kg C': data = data_kg * kg_to_kgC elif target_unit == 'g': data = data_kg * 1e3 elif target_unit == 'g C': data = data_kg * kg_to_kgC * 1.0e3 else: msg = 'Target units {} are not yet supported! {}'.format(target_units) raise ValueError(msg) # Return converted data return data def convert_units(dr, species_name, species_properties, target_units, interval=None, area_m2=None, delta_p=None, box_height=None): ''' Converts data stored in an xarray DataArray object from its native units to a target unit. Args: ----- dr : xarray DataArray Data to be converted from native units to target units. species_name : str Name of the species corresponding to the data stored in "dr". species_properties : dict Dictionary containing species properties (e.g. molecular weights and other metadata) for the given species. target_units : str Units to which the data will be converted. Keyword Args (optional): ------------------------ interval : float The length of the averaging period in seconds. area_m2 : xarray DataArray Surface area in square meters delta_p : xarray DataArray Delta-pressure between top and bottom edges of grid box (dry air) in hPa box_height : xarray DataArray Grid box height in meters Returns: -------- dr_new : xarray DataArray Data converted to target units. Remarks: -------- At present, only certain types of unit conversions have been implemented (corresponding to the most commonly used unit conversions for model benchmark output). Example: -------- >>> import.gcpy >>> import xarray as xr >>> import json >>> ds = xr.open_dataset("myfile.nc") >>> dr = ds["CO"] >>> properties = json.load(open(species_database.json)) >>> dr_new = convert_units(dr, "CO", properties.get("CO"), "Tg", interval=86400.0, ds["AREA"]) ''' # Get species molecular weight information mw_g = species_properties.get('MW_g') emitted_mw_g = species_properties.get('EmMW_g') moles_C_per_mole_species = species_properties.get('MolecRatio') # ============================== # Compute conversion factors # ============================== # Physical constants Avo = 6.022140857e+23 # molec/mol mw_air = 28.97 # g/mole dry air g0 = 9.80665 # m/s2 # Get a consistent value for the units string # (ignoring minor differences in formatting) units = adjust_units(dr.units) # Error checks if units == 'molmol-1dry' and area_m2 is None: raise ValueError('Conversion from {} to () for {} requires area_m2 as input'.format(unit,target_unit,species_name)) if units == 'molmol-1dry' and delta_p is None: raise ValueError('Conversion from {} to () for {} requires delta_p as input'.format(unit,target_unit,species_name)) if 'g' in target_units and mw_g is None: raise ValueError('Conversion from () to {} for {} requires MW_g definition in species_database.json'.format(unit,target_unit,species_name)) # Conversion factor for kg species to kg C kg_to_kgC = (emitted_mw_g * moles_C_per_mole_species) / mw_g # Mass of dry air in kg (required when converting from v/v) if units == 'molmol-1dry': air_mass = delta_p * 100.0 / g0 * area_m2 # Conversion factor for v/v to kg # v/v * kg dry air / g/mol dry air * g/mol species = kg species if units == 'molmol-1dry' and 'g' in target_units: vv_to_kg = air_mass / mw_air * mw_g # Conversion factor for v/v to molec/cm3 # v/v * kg dry air * mol/g dry air * molec/mol dry air / # (area_m2 * box_height ) * 1m3/10^6cm3 = molec/cm3 if units == 'molmol-1dry' and 'molec' in target_units: vv_to_MND = air_mass / mw_air * Avo / ( area_m2 * box_height) / 1e6 # ============================== # Compute target units # ============================== if units == 'kg/m2/s': data_kg = dr.values * area_m2.values * interval data = convert_kg_to_target_units(data_kg, target_units, kg_to_kgC) elif units == 'kgC/m2/s': data_kg = dr.values * area_m2.values * interval / kg_to_kgC data = convert_kg_to_target_units(data_kg, target_units, kg_to_kgC) elif units == 'kg': data_kg = dr.values data = convert_kg_to_target_units(data_kg, target_units, kg_to_kgC) elif units == 'kgC': data_kg = dr.values / kg_to_kgC data = convert_kg_to_target_units(data_kg, target_units, kg_to_kgC) # elif units == 'molec/cm2/s': # # Implement later # elif units == 'atomsC/cm2/s': # implement later elif units == 'molmol-1dry': if 'g' in target_units: data_kg = dr.values * vv_to_kg data = convert_kg_to_target_units(data_kg, target_units, kg_to_kgC) elif 'molec' in target_units: data = dr.values * vv_to_MND else: raise ValueError('Units ({}) in variable {} are not supported'.format(units, species_name)) # ============================== # Return result # ============================== # Create a new DataArray. This will be exactly the same as the old # DataArray, except that the data will have been converted to the # target_units, and the units string will have been adjusted accordingly. dr_new = xr.DataArray(data, name=dr.name, coords=dr.coords, dims=dr.dims, attrs=dr.attrs) dr_new.attrs['units'] = target_units # Return to calling routine return dr_new ```
{ "source": "jmodelcxc/eng_archive", "score": 2 }
#### File: Ska/engarchive/converters.py ```python from __future__ import print_function, division, absolute_import import logging import numpy import sys from collections import OrderedDict from six.moves import zip import numpy as np import Ska.Numpy from Chandra.Time import DateTime import Ska.tdb from . import units MODULE = sys.modules[__name__] logger = logging.getLogger('engarchive') class NoValidDataError(Exception): pass class DataShapeError(Exception): pass def quality_index(dat, colname): """Return the index for `colname` in `dat`""" colname = colname.split(':')[0] return list(dat.dtype.names).index(colname) def numpy_converter(dat): return Ska.Numpy.structured_array(dat, colnames=dat.dtype.names) def convert(dat, content): # Zero-length file results in `dat is None` if dat is None: raise NoValidDataError try: converter = getattr(MODULE, content.lower()) except AttributeError: converter = numpy_converter return converter(dat) def generic_converter(prefix=None, add_quality=False, aliases=None): """Convert an input FITS recarray assuming that it has a TIME column. If ``add_prefix`` is set then add ``content_`` as a prefix to the data column names. If ``add_quality`` is set then add a QUALITY column with all values False. """ def _convert(dat): colnames = dat.dtype.names colnames_out = [x.upper() for x in colnames] if aliases: colnames_out = [aliases.get(x, x).upper() for x in colnames_out] if prefix: # Note to self: never change an enclosed reference, i.e. don't do # prefix = prefix.upper() + '_' # You will lose an hour again figuring this out if so. PREFIX = prefix.upper() + '_' colnames_out = [(x if x in ('TIME', 'QUALITY') else PREFIX + x) for x in colnames_out] arrays = [dat.field(x) for x in colnames] if add_quality: descrs = [(x,) + y[1:] for x, y in zip(colnames_out, dat.dtype.descr)] quals = numpy.zeros((len(dat), len(colnames) + 1), dtype=numpy.bool) descrs += [('QUALITY', numpy.bool, (len(colnames) + 1,))] arrays += [quals] else: descrs = [(name, array.dtype.str, array.shape[1:]) for name, array in zip(colnames_out, arrays)] return numpy.rec.fromarrays(arrays, dtype=descrs) return _convert def get_bit_array(dat, in_name, out_name, bit_index): bit_indexes = [int(bi) for bi in bit_index.split(',')] bit_index = max(bit_indexes) if dat[in_name].shape[1] < bit_index: raise DataShapeError('column {} has shape {} but need at least {}' .format(in_name, dat[in_name].shape[1], bit_index + 1)) if len(bit_indexes) > 1: mult = 1 out_array = np.zeros(len(dat), dtype=np.uint32) # no more than 32 bit indexes for bit_index in reversed(bit_indexes): # Note: require casting mult and 0 to uint32 because recent versions of numpy # disallow in-place adding of int64 to uint32. out_array += np.where(dat[in_name][:, bit_index], np.uint32(mult), np.uint32(0)) mult *= 2 else: try: tscs = Ska.tdb.msids[out_name].Tsc scs = {tsc['LOW_RAW_COUNT']: tsc['STATE_CODE'] for tsc in tscs} except (KeyError, AttributeError): scs = ['OFF', 'ON '] # CXC telemetry stores state code vals with trailing spaces so all match # in length. Annoying, but reproduce this here for consistency so # fetch Msid.raw_vals does the right thing. max_len = max(len(sc) for sc in scs.values()) fmtstr = '{:' + str(max_len) + 's}' scs = [fmtstr.format(val) for key, val in scs.items()] out_array = np.where(dat[in_name][:, bit_index], scs[1], scs[0]) return out_array def generic_converter2(msid_cxc_map, default_dtypes=None): """Convert an input FITS recarray assuming that it has a TIME column. Use the ``msid_cxc_map`` to define the list of output eng archive MSIDs (keys) and the corresponding colnames in the CXC archive FITS file (values). The CXC values can contain an optional bit specifier in the form <colname>:<N> where N is the bit selector referenced from 0 as the leftmost bit. :param msid_cxc_map: dict of out_name => in_name mapping """ def _convert(dat): # Make quality bool array with entries for TIME, QUALITY, then all other cols out_names = ['TIME', 'QUALITY'] + list(msid_cxc_map.keys()) out_quality = np.zeros(shape=(len(dat), len(out_names)), dtype=np.bool) out_arrays = {'TIME': dat['TIME'], 'QUALITY': out_quality} for out_name, in_name in msid_cxc_map.items(): if ':' in in_name: in_name, bit_index = in_name.split(':') out_array = get_bit_array(dat, in_name, out_name, bit_index) quality = dat['QUALITY'][:, quality_index(dat, in_name)] else: if in_name in dat.dtype.names: out_array = dat[in_name] quality = dat['QUALITY'][:, quality_index(dat, in_name)] else: # Handle column that is intermittently available in `dat` by using the # supplied default dtype. Quality is True (missing) everywhere. out_array = np.zeros(shape=len(dat), dtype=default_dtypes[out_name]) quality = True assert out_array.ndim == 1 out_arrays[out_name] = out_array out_quality[:, out_names.index(out_name)] = quality out = Ska.Numpy.structured_array(out_arrays, out_names) return out return _convert orbitephem0 = generic_converter('orbitephem0', add_quality=True) lunarephem0 = generic_converter('lunarephem0', add_quality=True) solarephem0 = generic_converter('solarephem0', add_quality=True) orbitephem1 = generic_converter('orbitephem1', add_quality=True) lunarephem1 = generic_converter('lunarephem1', add_quality=True) solarephem1 = generic_converter('solarephem1', add_quality=True) angleephem = generic_converter(add_quality=True) def parse_alias_str(alias_str, invert=False): aliases = OrderedDict() for line in alias_str.strip().splitlines(): cxcmsid, msid = line.split()[:2] if invert: aliases[msid] = cxcmsid else: aliases[cxcmsid] = msid return aliases ALIASES = {'simdiag': """ RAMEXEC 3SDSWELF SEA CSC Exectuting from RAM DSTACKPTR 3SDPSTKP SEA Data Stack Ptr TSCEDGE 3SDTSEDG TSC Tab Edge Detection Flags FAEDGE 3SDFAEDG FA Tab Edge Detection Flags MJFTIME 3SDMAJFP Major Frame Period Time Measured by SEA MRMDEST 3SDRMOVD Most Recent Motor Move Destination TSCTABADC 3SDTSTSV TSC Tab Position Sensor A/D converter FATABADC 3SDFATSV FA Tab Position Sensor A/D Converter AGRNDADC 3SDAGV Analog Ground A/D Converter Reading P15VADC 3SDP15V +15V Power Supply A/D Converter Reading P5VADC 3SDP5V +5V Power Supply A/D Converter Reading N15VADC 3SDM15V -15V Power Supply A/D Converter Reading FLEXATEMPADC 3SDFLXAT Flexture A Thermistor A/D Converter FLEXBTEMPADC 3SDFLXBT Flexture B Thermistor A/D Converter FLEXCTEMPADC 3SDFLXCT Flexture C Thermistor A/D Converter TSCMTRTEMPADC 3SDTSMT TSC Motor Thermistor A/D Converter FAMTRTEMPADC 3SDFAMT FA Motor Thermistor A/D Converter PSUTEMPADC 3SDPST SEA Power Supply Thermistor A/D Converter BOXTEMPADC 3SDBOXT SEA Box Thermistor A/D Converter RAMFAILADDR 3SDRMFAD RAM Most Recent detected Fail Address TSCTABWID 3SDTSTBW TSC Most Recent detected Tab Width FATABWID 3SDFATBW FA Most Recent detected Tab Width SYNCLOSS 3SDSYRS Process Reset Due Synchronization Loss WARMRESET 3SDWMRS Processor Warm Reset TSCHISTO 3SDTSP TSC Most Recent PWM Histogram FAHISTO 3SDFAP FA Most Recent PWM Histogram INVCMDCODE 3SDINCOD SEA Invalid CommandCode """, 'sim_mrg': """ TLMUPDATE 3SEATMUP "Telemtry Update Flag" SEAIDENT 3SEAID "SEA Identification Flag" SEARESET 3SEARSET "SEA Reset Flag" PROMFAIL 3SEAROMF "SEA PROM Checksum Flag" INVCMDGROUP 3SEAINCM "SEA Invalid Command Group Flag" TSCMOVING 3TSCMOVE "TSC In Motion Flag" FAMOVING 3FAMOVE "FA In Motion Flag" FAPOS 3FAPOS "FA Position" TSCPOS 3TSCPOS "TSC Postion" PWMLEVEL 3MRMMXMV "Max Power Motor Volt recent move" LDRTMECH 3LDRTMEK "Last Detected Reference Mechanism Tab" LDRTNUM 3LDRTNO "Last Detected Reference Tab Number" LDRTRELPOS 3LDRTPOS "Last Detected Reference Relative Postion" FLEXATEMP 3FAFLAAT "Flexture A Temperature" FLEXBTEMP 3FAFLBAT "Flexture B Temperature" FLEXCTEMP 3FAFLCAT "Flexture C Temperature" TSCMTRTEMP 3TRMTRAT "TSC Motor Temperature" FAMTRTEMP 3FAMTRAT "FA Motor Temperature" PSUTEMP 3FAPSAT "SEA Power Supply Temperature" BOXTEMP 3FASEAAT "SEA Box Temperature" STALLCNT 3SMOTSTL "SEA Motor Stall Counter" TAB2AUTOPOS 3STAB2EN "SEA Tab 2 Auto Position Update Status" MTRDRVRLY 3SMOTPEN "SEA Motor Driver Power Relay status" MTRSELRLY 3SMOTSEL "SEA Motor Selection Relay Status" HTRPWRRLY 3SHTREN "SEA Heater Power Relay Status" RAMFAIL 3SEARAMF "SEA RAM Failure Detected Flag" MTROVRCCNT 3SMOTOC "Motor Drive Overcurrent Counter" PENDCMDCNT 3SPENDC "SEA Pending Command Count" FLEXATSET 3SFLXAST "Flexture A Temperature Setpoint" FLEXBTSET 3SFLXBST "Flexture B Temperature Setpoint" FLEXCTSET 3SFLXCST "Flexture C Temperature Setpoint" """, 'hrc0ss': """ TLEVART 2TLEV1RT VLEVART 2VLEV1RT SHEVART 2SHEV1RT TLEVART 2TLEV2RT VLEVART 2VLEV2RT SHEVART 2SHEV2RT """, 'hrc0hk': """ SCIDPREN:0,1,2,3,8,9,10 HRC_SS_HK_BAD P24CAST:7 224PCAST P15CAST:7 215PCAST N15CAST:7 215NCAST SPTPAST 2SPTPAST SPBPAST 2SPBPAST IMTPAST 2IMTPAST IMBPAST 2IMBPAST MTRSELCT:3 2NYMTAST MTRSELCT:4 2PYMTAST MTRSELCT:5 2CLMTAST MTRSELCT:6 2DRMTAST MTRSELCT:7 2ALMTAST MTRSTATR:0 2MSMDARS MTRSTATR:1 2MDIRAST MTRSTATR:2 2MSNBAMD MTRSTATR:3 2MSNAAMD MTRSTATR:4 2MSLBAMD MTRSTATR:5 2MSLAAMD MTRSTATR:6 2MSPRAMD MTRSTATR:7 2MSDRAMD MTRCMNDR:0 2MCMDARS MTRCMNDR:2 2MCNBAMD MTRCMNDR:3 2MCNAAMD MTRCMNDR:4 2MCLBAMD MTRCMNDR:5 2MCLAAMD MTRCMNDR:6 2MCPRAMD MTRCMNDR:7 2MDRVAST SCTHAST 2SCTHAST MTRITMP:1 2SMOIAST MTRITMP:2 2SMOTAST MTRITMP:5 2DROTAST MTRITMP:6 2DROIAST MLSWENBL:3 2SFLGAST MLSWENBL:4 2OSLSAST MLSWENBL:5 2OPLSAST MLSWENBL:6 2CSLSAST MLSWENBL:7 2CPLSAST MLSWSTAT:2 2OSLSADT MLSWSTAT:3 2OSLSAAC MLSWSTAT:4 2OPLSAAC MLSWSTAT:5 2CSLSADT MLSWSTAT:6 2CSLSAAC MLSWSTAT:7 2CPLSAAC FCPUAST 2FCPUAST FCPVAST 2FCPVAST CBHUAST 2CBHUAST CBLUAST 2CBLUAST CBHVAST 2CBHVAST CBLVAST 2CBLVAST WDTHAST 2WDTHAST SCIDPREN:4 2CLMDAST SCIDPREN:5 2FIFOAVR SCIDPREN:6 2OBNLASL SCIDPREN:7 2SPMDASL SCIDPREN:11 2EBLKAVR SCIDPREN:12 2CBLKAVR SCIDPREN:13 2ULDIAVR SCIDPREN:14 2WDTHAVR SCIDPREN:15 2SHLDAVR HVPSSTAT:0 2SPONST HVPSSTAT:1 2SPCLST HVPSSTAT:2 2S1ONST HVPSSTAT:3 2IMONST HVPSSTAT:4 2IMCLST HVPSSTAT:5 2S2ONST S1HVST 2S1HVST S2HVST 2S2HVST C05PALV 2C05PALV C15PALV 2C15PALV C15NALV 2C15NALV C24PALV 2C24PALV IMHVLV 2IMHVLV IMHBLV 2IMHBLV SPHVLV 2SPHVLV SPHBLV 2SPHBLV S1HVLV 2S1HVLV S2HVLV 2S2HVLV PRBSCR 2PRBSCR PRBSVL 2PRBSVL ULDIALV 2ULDIALV LLDIALV 2LLDIALV FEPRATM 2FEPRATM CALPALV 2CALPALV GRDVALV 2GRDVALV RSRFALV 2RSRFALV SPINATM 2SPINATM IMINATM 2IMINATM LVPLATM 2LVPLATM SPHVATM 2SPHVATM IMHVATM 2IMHVATM SMTRATM 2SMTRATM FE00ATM 2FE00ATM CE00ATM 2CE00ATM CE01ATM 2CE01ATM """, } CXC_TO_MSID = {key: parse_alias_str(val) for key, val in ALIASES.items()} MSID_TO_CXC = {key: parse_alias_str(val, invert=True) for key, val in ALIASES.items()} def sim_mrg(dat): """ Custom converter for SIM_MRG. There is a bug in CXCDS L0 SIM decom wherein the 3LDRTMEK MSID is incorrectly assigned (TSC and FA are reversed). The calibration of 3LDRTPOS from steps to mm is then also wrong because it uses the FA conversion instead of TSC. This function fixes 3LDRTMEK, then backs out the (incorrect) 3LDRTPOS steps to mm conversion and re-does it correctly using the TSC conversion. Note that 3LDRTMEK is (by virtue of the way mission operations run) always "TSC". """ # Start with the generic converter out = generic_converter(aliases=CXC_TO_MSID['sim_mrg'])(dat) # Now do the fixes. FOT mech has stated that 3LDRTMEK is always 'FA' # in practice. bad = out['3LDRTMEK'] == b'FA ' if np.count_nonzero(bad): out['3LDRTMEK'][bad] = b'TSC' pos_tsc_steps = units.converters['mm', 'FASTEP'](out['3LDRTPOS'][bad]) out['3LDRTPOS'][bad] = units.converters['TSCSTEP', 'mm'](pos_tsc_steps) return out simdiag = generic_converter(aliases=CXC_TO_MSID['simdiag']) hrc0ss = generic_converter2(MSID_TO_CXC['hrc0ss']) def hrc0hk(dat): # Read the data and allow for missing columns in input L0 HK file. default_dtypes = {'2CE00ATM': 'f4', '2CE01ATM': 'f4'} out = generic_converter2(MSID_TO_CXC['hrc0hk'], default_dtypes)(dat) # Set all HRC HK data columns to bad quality where HRC_SS_HK_BAD is not zero # First three columns are TIME, QUALITY, and HRC_SS_HK_BAD -- do not filter these. bad = out['HRC_SS_HK_BAD'] > 0 if np.any(bad): out['QUALITY'][bad, 3:] = True logger.info('Setting {} readouts of all HRC HK telem to bad quality (bad SCIDPREN)' .format(np.count_nonzero(bad))) # Detect the secondary-science byte-shift anomaly by finding out-of-range 2SMTRATM values. # For those bad frames: # - Set bit 10 (from LSB) of HRC_SS_HK_BAD # - Set all analog MSIDs (2C05PALV and later in the list) to bad quality bad = (out['2SMTRATM'] < -20) | (out['2SMTRATM'] > 50) if np.any(bad): out['HRC_SS_HK_BAD'][bad] |= 2 ** 10 # 1024 analogs_index0 = list(out.dtype.names).index('2C05PALV') out['QUALITY'][bad, analogs_index0:] = True logger.info('Setting {} readouts of analog HRC HK telem to bad quality (bad 2SMTRATM)' .format(np.count_nonzero(bad))) return out def obc4eng(dat): """ At 2014:342:XX:XX:XX, patch PR-361 was applied which transitioned 41 OBA thermistors to read out in wide-mode. After this time the data in the listed OOBTHRxx MSIDs became invalid while the OOBTHRxx_WIDE MSIDs became valid. This converter simply copies the *_WIDE values to the original MSIDs after the time of patch activation. The *_WIDE MSIDs are not available in the eng archive (by the _WIDE names). """ # MSIDs OOBTHR<msid_num> that went to _WIDE after the patch, which was done in parts A # and B. msid_nums = {'a': '08 09 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29'.split(), 'b': '30 31 33 34 35 36 37 38 39 40 41 44 45 46 49 50 51 52 53 54'.split(), 'c': '02 03 04 05 06 07'.split() } # Convert using the baseline converter out = numpy_converter(dat) # The patch times below correspond to roughly the middle of the major frame where # patches A and B were applied, respectively. patch_times = {'a': DateTime('2014:342:16:29:30').secs, 'b': DateTime('2014:342:16:32:45').secs, 'c': DateTime('2017:312:16:11:16').secs} for patch in ('a', 'b', 'c'): # Set a mask defining times after the activation of wide-range telemetry in PR-361 mask = out['TIME'] > patch_times[patch] if np.any(mask): for msid_num in msid_nums[patch]: msid = 'OOBTHR' + msid_num msid_wide = msid + '_WIDE' print('Fixing MSID {}'.format(msid)) out[msid][mask] = out[msid_wide][mask] q_index = quality_index(out, msid) q_index_wide = quality_index(out, msid_wide) out['QUALITY'][mask, q_index] = out['QUALITY'][mask, q_index_wide] return out def tel2eng(dat): """ At 2014:342:XX:XX:XX, patch PR-361 was applied which transitioned 41 OBA thermistors to read out in wide-mode. As 4OAVOBAT is an average of all these MSIDs and calculated on board, only the wide version of this MSID is valid after this patch is applied. This converter simply copies the 4OAVOBAT_WIDE values after the time of patch activation to 4OAVOBAT. 4OAVOBAT_WIDE is not available in the eng archive (by the _WIDE name). """ # Convert using the baseline converter out = numpy_converter(dat) # 4OAVOBAT is modified by both patches since it is an average of MSIDs in both parts of the # patch. Use the second time value as this is when the process is complete. See obc4eng() for # both times and further details. patch_time = DateTime('2014:342:16:32:45').secs mask = out['TIME'] > patch_time if np.any(mask): print('Fixing MSID 4OAVOBAT') out['4OAVOBAT'][mask] = out['4OAVOBAT_WIDE'][mask] q_index = quality_index(out, '4OAVOBAT') q_index_wide = quality_index(out, '4OAVOBAT_WIDE') out['QUALITY'][mask, q_index] = out['QUALITY'][mask, q_index_wide] return out def acisdeahk(dat): """Take the archive ACIS-0 DEA HKP data and convert to a format that is consistent with normal eng0 files. ACIS-0 housekeeping has data stored in query-records, one row per DEA statistic query. Gather all the time-synced queries corresponding to columns for the acis0hkp table and put into a single row. Write out to temp files and modify self->{arch_files}. """ logger.info('Converting acisdeahk data to eng0 format') cols = _get_deahk_cols() col_query_ids = tuple(x['query_id'] for x in cols) col_names = tuple(x['name'].upper() for x in cols) # Filter only entries with ccd_id >= 10 which indicates data from the I/F control dat = pyfits_to_recarray(dat) rows = dat[dat['CCD_ID'] >= 10] if len(rows) == 0: raise NoValidDataError() # Go through input data one row (query) at a time and assemble contemporaneous # queries into a single row with a column for each query value. # Collect each assembled row into %data_out for writing to a FITS bin table block_idxs = 1 + numpy.flatnonzero(numpy.abs(rows['TIME'][1:] - rows['TIME'][:-1]) > 0.001) block_idxs = numpy.hstack([[0], block_idxs, [len(rows)]]) query_val_tus = rows['QUERY_VAL_TU'] query_vals = rows['QUERY_VAL'] query_ids = rows['QUERY_ID'] times = rows['TIME'] outs = [] for i0, i1 in zip(block_idxs[:-1], block_idxs[1:]): # Map query_id to an index into rows for each row in the block id_idxs = dict((query_ids[i], i) for i in range(i0, i1)) # Make tuples of the values and qual flags corresponding to each DEAHK_COLUMN bads = tuple(query_id not in id_idxs for query_id in col_query_ids) vals = tuple((0.0 if bad else query_vals[id_idxs[query_id]]) for bad, query_id in zip(bads, col_query_ids)) val_tus = tuple((0 if bad else query_val_tus[id_idxs[query_id]]) for bad, query_id in zip(bads, col_query_ids)) # Now have another pass at finding bad values. Take these out now so the # 5min and daily stats are not frequently corrupted. bads = tuple(True if (val_tu == 65535 or numpy.isnan(val)) else bad for bad, val, val_tu in zip(bads, vals, val_tus)) quality = (False, False) + bads outs.append((times[i0], quality) + vals) dtype = [('TIME', numpy.float64), ('QUALITY', numpy.bool, (len(col_names) + 2,))] dtype += [(col_name, numpy.float32) for col_name in col_names] return numpy.rec.fromrecords(outs, dtype=dtype) def _get_deahk_cols(): out = [ { "query_id": 1, "name": "tmp_bep_pcb", "unit": "K", "descr": "DPA Thermistor 1 - BEP PC Board" }, { "query_id": 2, "name": "tmp_bep_osc", "unit": "K", "descr": "DPA Thermistor 2 - BEP Oscillator" }, { "query_id": 3, "name": "tmp_fep0_mong", "unit": "K", "descr": "DPA Thermistor 3 - FEP 0 Mongoose" }, { "query_id": 4, "name": "tmp_fep0_pcb", "unit": "K", "descr": "DPA Thermistor 4 - FEP 0 PC Board" }, { "query_id": 5, "name": "tmp_fep0_actel", "unit": "K", "descr": "DPA Thermistor 5 - FEP 0 ACTEL" }, { "query_id": 6, "name": "tmp_fep0_ram", "unit": "K", "descr": "DPA Thermistor 6 - FEP 0 RAM" }, { "query_id": 7, "name": "tmp_fep0_fb", "unit": "K", "descr": "DPA Thermistor 7 - FEP 0 Frame Buf" }, { "query_id": 8, "name": "tmp_fep1_mong", "unit": "K", "descr": "DPA Thermistor 8 - FEP 1 Mongoose" }, { "query_id": 9, "name": "tmp_fep1_pcb", "unit": "K", "descr": "DPA Thermistor 9 - FEP 1 PC Board" }, { "query_id": 10, "name": "tmp_fep1_actel", "unit": "K", "descr": "DPA Thermistor 10 - FEP 1 ACTEL" }, { "query_id": 11, "name": "tmp_fep1_ram", "unit": "K", "descr": "DPA Thermistor 11 - FEP 1 RAM" }, { "query_id": 12, "name": "tmp_fep1_fb", "unit": "K", "descr": "DPA Thermistor 12 - FEP 1 Frame Buf" }, { "query_id": 15, "name": "fptemp_12", "unit": "K", "descr": "Focal Plane Temp. Board 12" }, { "query_id": 16, "name": "fptemp_11", "unit": "K", "descr": "Focal Plane Temp. Board 11" }, { "query_id": 17, "name": "dpagndref1", "unit": "V", "descr": "DPA Ground Reference 1" }, { "query_id": 18, "name": "dpa5vhka", "unit": "V", "descr": "DPA 5V Housekeeping A" }, { "query_id": 19, "name": "dpagndref2", "unit": "V", "descr": "DPA Ground Reference 2" }, { "query_id": 20, "name": "dpa5vhkb", "unit": "V", "descr": "DPA 5V Housekeeping B" }, { "query_id": 25, "name": "dea28volta", "unit": "V", "descr": "Primary Raw DEA 28V DC" }, { "query_id": 26, "name": "dea24volta", "unit": "V", "descr": "Primary Raw DEA 24V DC" }, { "query_id": 27, "name": "deam15volta", "unit": "V", "descr": "Primary Raw DEA -15.5V" }, { "query_id": 28, "name": "deap15volta", "unit": "V", "descr": "Primary Raw DEA +15.5V" }, { "query_id": 29, "name": "deam6volta", "unit": "V", "descr": "Primary Raw DEA -6V DC" }, { "query_id": 30, "name": "deap6volta", "unit": "V", "descr": "Primary Raw DEA +6V DC" }, { "query_id": 31, "name": "rad_pcb_a", "descr": "Relative Dose Rad. Monitor Side A" }, { "query_id": 32, "name": "gnd_1", "unit": "V", "descr": "Interface Ground Reference" }, { "query_id": 33, "name": "dea28voltb", "unit": "V", "descr": "Backup Raw DEA 28V DC" }, { "query_id": 34, "name": "dea24voltb", "unit": "V", "descr": "Backup DEA 24V DC" }, { "query_id": 35, "name": "deam15voltb", "unit": "V", "descr": "Backup DEA -15.5V DC" }, { "query_id": 36, "name": "deap15voltb", "unit": "V", "descr": "Backup DEA +15.5V DC" }, { "query_id": 37, "name": "deam6voltb", "unit": "V", "descr": "Backup DEA -6V DC" }, { "query_id": 38, "name": "deap6voltb", "unit": "V", "descr": "Backup DEA +6V DC" }, { "query_id": 39, "name": "rad_pcb_b", "descr": "Relative Dose Rad. Monitor Side B" }, { "query_id": 40, "name": "gnd_2", "unit": "V", "descr": "Ground" } ] return out def pyfits_to_recarray(dat): dtypes = [] colnames = dat.dtype.names for colname in colnames: col = dat.field(colname) if col.dtype.isnative: dtype = (colname, col.dtype) else: dtype = (colname, col.dtype.type) if len(col.shape) > 1: dtype = dtype + tuple(col.shape[1:]) dtypes.append(dtype) # Now define a new recarray and copy the original data # Note: could use numpy.empty to generate a structured array. out = numpy.recarray(len(dat), dtype=dtypes) for colname in colnames: out[colname][:] = dat.field(colname) return out ``` #### File: engarchive/derived/eps.py ```python from . import base class DerivedParameterEps(base.DerivedParameter): content_root = 'eps' # -------------------------------------------- class DP_BATT1_TAVE(DerivedParameterEps): """Battery 1 Average Temperature. Derived from average of all three battery temperature sensors. Telemetry 16x / MF """ rootparams = ['TB1T1', 'TB1T2', 'TB1T3'] time_step = 2.05 def calc(self, data): BATT1_TAVE = (data['TB1T1'].vals + data['TB1T2'].vals + data['TB1T3'].vals) / 3 return BATT1_TAVE # -------------------------------------------- class DP_BATT2_TAVE(DerivedParameterEps): """Battery 2 Average Temperature. Derived from average of all three battery temperature sensors. Telemetry 16x / MF """ rootparams = ['TB2T1', 'TB2T2', 'TB2T3'] time_step = 2.05 def calc(self, data): BATT2_TAVE = (data['TB2T1'].vals + data['TB2T2'].vals + data['TB2T3'].vals) / 3 return BATT2_TAVE # -------------------------------------------- class DP_BATT3_TAVE(DerivedParameterEps): """Battery 3 Average Temperature. Derived from average of all three battery temperature sensors. Telemetry 16x / MF """ rootparams = ['TB3T1', 'TB3T2', 'TB3T3'] time_step = 2.05 def calc(self, data): BATT3_TAVE = (data['TB3T1'].vals + data['TB3T2'].vals + data['TB3T3'].vals) / 3 return BATT3_TAVE # -------------------------------------------- class DP_EPOWER1(DerivedParameterEps): """Bus Power = ELBI_LOW * ELBV Telemetry 8x / MF """ rootparams = ['ELBI_LOW', 'ELBV'] time_step = 4.1 def calc(self, data): EPOWER1 = (data['ELBI_LOW'].vals * data['ELBV'].vals) return EPOWER1 # -------------------------------------------- class DP_MYSAPOW(DerivedParameterEps): """-Y Solar Array Power = ESAMYI * ELBV Telemetry 8x / MF """ rootparams = ['ESAMYI', 'ELBV'] time_step = 4.1 def calc(self, data): MYSAPOW = (data['ESAMYI'].vals * data['ELBV'].vals) return MYSAPOW # -------------------------------------------- class DP_PYSAPOW(DerivedParameterEps): """+Y Solar Array Power = ESAPYI * ELBV Telemetry 8x / MF """ rootparams = ['ESAPYI', 'ELBV'] time_step = 4.1 def calc(self, data): PYSAPOW = (data['ESAPYI'].vals * data['ELBV'].vals) return PYSAPOW ``` #### File: Ska/engarchive/fix_bad_values.py ```python import argparse import itertools import contextlib import numpy as np import tables import scipy.stats.mstats import pyyaks.context import pyyaks.logger from Ska.engarchive import fetch import Ska.engarchive.file_defs as file_defs from Chandra.Time import DateTime ft = fetch.ft opt = None msid_files = None logger = None @contextlib.contextmanager def _set_msid_files_basedir(datestart): """ If datestart is before 2000:001:00:00:00 then use the 1999 archive files. """ try: cache_basedir = msid_files.basedir if datestart < fetch.DATE2000_LO: # Note: don't use os.path.join because ENG_ARCHIVE and basedir must # use linux '/' convention but this might be running on Windows. msid_files.basedir = msid_files.basedir + '/1999' yield finally: msid_files.basedir = cache_basedir def get_opt(): parser = argparse.ArgumentParser(description='Fix bad values in eng archive') parser.add_argument('--msid', type=str, help='MSID name') parser.add_argument('--start', help='Start time of bad values') parser.add_argument('--stop', help='Stop time of bad values') parser.add_argument('--value', help='Update with <value> instead of setting as bad') parser.add_argument("--run", action="store_true", help="Actually modify files (dry run is the default)") parser.add_argument("--data-root", default=".", help="Engineering archive root directory for MSID and arch files") args = parser.parse_args() return args def calc_stats_vals(msid, rows, indexes, interval): quantiles = (1, 5, 16, 50, 84, 95, 99) cols_stats = ('index', 'n', 'val') n_out = len(rows) - 1 msid_dtype = msid.vals.dtype msid_is_numeric = not msid_dtype.name.startswith('string') # Predeclare numpy arrays of correct type and sufficient size for accumulating results. out = dict(index=np.ndarray((n_out,), dtype=np.int32), n=np.ndarray((n_out,), dtype=np.int32), val=np.ndarray((n_out,), dtype=msid_dtype), ) if msid_is_numeric: cols_stats += ('min', 'max', 'mean') out.update(dict(min=np.ndarray((n_out,), dtype=msid_dtype), max=np.ndarray((n_out,), dtype=msid_dtype), mean=np.ndarray((n_out,), dtype=np.float32),)) if interval == 'daily': cols_stats += ('std',) + tuple('p%02d' % x for x in quantiles) out['std'] = np.ndarray((n_out,), dtype=msid_dtype) out.update(('p%02d' % x, np.ndarray((n_out,), dtype=msid_dtype)) for x in quantiles) i = 0 for row0, row1, index in itertools.izip(rows[:-1], rows[1:], indexes[:-1]): vals = msid.vals[row0:row1] times = msid.times[row0:row1] n_vals = len(vals) if n_vals > 0: out['index'][i] = index out['n'][i] = n_vals out['val'][i] = vals[n_vals // 2] if msid_is_numeric: if n_vals <= 2: dts = np.ones(n_vals, dtype=np.float64) else: dts = np.empty(n_vals, dtype=np.float64) dts[0] = times[1] - times[0] dts[-1] = times[-1] - times[-2] dts[1:-1] = ((times[1:-1] - times[:-2]) + (times[2:] - times[1:-1])) / 2.0 negs = dts < 0.0 if np.any(negs): times_dts = [(DateTime(t).date, dt) for t, dt in zip(times[negs], dts[negs])] logger.warning('WARNING - negative dts in {} at {}' .format(msid.MSID, times_dts)) # Clip to range 0.001 to 300.0. The low bound is just there # for data with identical time stamps. This shouldn't happen # but in practice might. The 300.0 represents 5 minutes and # is the largest normal time interval. Data near large gaps # will get a weight of 5 mins. dts.clip(0.001, 300.0, out=dts) sum_dts = np.sum(dts) out['min'][i] = np.min(vals) out['max'][i] = np.max(vals) out['mean'][i] = np.sum(dts * vals) / sum_dts if interval == 'daily': # biased weighted estimator of variance (N should be big enough) # http://en.wikipedia.org/wiki/Mean_square_weighted_deviation sigma_sq = np.sum(dts * (vals - out['mean'][i]) ** 2) / sum_dts out['std'][i] = np.sqrt(sigma_sq) quant_vals = scipy.stats.mstats.mquantiles(vals, np.array(quantiles) / 100.0) for quant_val, quantile in zip(quant_vals, quantiles): out['p%02d' % quantile][i] = quant_val i += 1 return np.rec.fromarrays([out[x][:i] for x in cols_stats], names=cols_stats) def fix_stats_h5(msid, tstart, tstop, interval): dt = {'5min': 328, 'daily': 86400}[interval] ft['msid'] = msid ft['interval'] = interval datestart = DateTime(tstart).date with _set_msid_files_basedir(datestart): stats_file = msid_files['stats'].abs logger.info('Updating stats file {}'.format(stats_file)) index0 = int(tstart // dt) index1 = int(tstop // dt) + 1 indexes = np.arange(index0, index1 + 1, dtype=np.int32) times = indexes * dt logger.info('Indexes = {}:{}'.format(index0, index1)) logger.info('Fetching {} data between {} to {}'.format(msid, DateTime(times[0] - 500).date, DateTime(times[-1] + 500).date)) dat = fetch.Msid(msid, times[0] - 500, times[-1] + 500) # Check within each stat interval? if len(dat.times) == 0: logger.info('Skipping: No values within interval {} to {}' .format(DateTime(times[0] - 500).date, DateTime(times[-1] + 500).date)) return rows = np.searchsorted(dat.times, times) vals_stats = calc_stats_vals(dat, rows, indexes, interval) try: h5 = tables.openFile(stats_file, 'a') table = h5.root.data row0, row1 = np.searchsorted(table.col('index'), [index0, index1]) for row_idx, vals_stat in itertools.izip(range(row0, row1), vals_stats): if row1 - row0 < 50 or row_idx == row0 or row_idx == row1 - 1: logger.info('Row index = {}'.format(row_idx)) logger.info(' ORIGINAL: %s', table[row_idx]) logger.info(' UPDATED : %s', vals_stat) if opt.run: table[row_idx] = tuple(vals_stat) finally: h5.close() logger.info('') def fix_msid_h5(msid, tstart, tstop): """ Fix the msid full-resolution HDF5 data file """ logger.info('Fixing MSID {} h5 file'.format(msid)) row_slice = fetch.get_interval(ft['content'].val, tstart, tstop) # Load the time values and find indexes corresponding to start / stop times ft['msid'] = 'TIME' filename = msid_files['data'].abs logger.info('Reading TIME file {}'.format(filename)) h5 = tables.openFile(filename) times = h5.root.data[row_slice] h5.close() # Index values that need to be fixed are those within the specified time range, offset by # the beginning index of the row slice. fix_idxs = np.flatnonzero((tstart <= times) & (times <= tstop)) + row_slice.start # Open the msid HDF5 data file and set the corresponding quality flags to True (=> bad) ft['msid'] = msid filename = msid_files['msid'].abs logger.info('Reading msid file {}'.format(filename)) h5 = tables.openFile(filename, 'a') try: if opt.value is not None: # Set data to <value> over the specified time range i0, i1 = fix_idxs[0], fix_idxs[-1] + 1 logger.info('Changing {}.data[{}:{}] to {}' .format(msid, i0, i1, opt.value)) if opt.run: h5.root.data[i0:i1] = opt.value else: for idx in fix_idxs: quality = h5.root.quality[idx] if quality: logger.info('Skipping idx={} because quality is already True'.format(idx)) continue if len(fix_idxs) < 100 or idx == fix_idxs[0] or idx == fix_idxs[-1]: logger.info('{}.data[{}] = {}'.format(msid, idx, h5.root.data[idx])) logger.info('Changing {}.quality[{}] from {} to True' .format(msid, idx, quality)) if opt.run: h5.root.quality[idx] = True finally: h5.close() logger.info('') def main(): global opt global msid_files global logger opt = get_opt() # Set up infrastructure to directly access HDF5 files msid_files = pyyaks.context.ContextDict('msid_files', basedir=(opt.data_root or file_defs.msid_root)) msid_files.update(file_defs.msid_files) # Set up fetch so it reads from opt.data_root fetch.msid_files.basedir = opt.data_root # Set up logging loglevel = pyyaks.logger.INFO logger = pyyaks.logger.get_logger(name='fix_bad_values', level=loglevel, format="%(message)s") logger.info('** If something gets corrupted then there is the NetApp snapshot for recovery **') logger.info('') if not opt.run: logger.info('** DRY RUN **') logger.info('') msid = opt.msid.upper() ft['content'] = fetch.content[msid] # Get the relevant row slice covering the requested time span for this content type tstart = DateTime(opt.start).secs - 0.001 stop = DateTime(opt.stop or opt.start) tstop = stop.secs + 0.001 # First fix the HDF5 file with full resolution MSID data # Need to potentially set basedir for 1999 data. with _set_msid_files_basedir(DateTime(tstart).date): fix_msid_h5(msid, tstart, tstop) # Now fix stats files fix_stats_h5(msid, tstart, tstop, '5min') fix_stats_h5(msid, tstart, tstop, 'daily') if __name__ == '__main__': main() ``` #### File: Ska/engarchive/lazy.py ```python class LazyDict(dict): def __init__(self, load_func, *args, **kwargs): self._load_func = load_func self._args = args self._kwargs = kwargs self._loaded = False super().__init__() def load(self): if not self._loaded: self.update(self._load_func(*self._args, **self._kwargs)) self._loaded = True # Clear these out so pickling always works (pickling a func can fail) self._load_func = None self._args = None self._kwargs = None def __getitem__(self, item): try: return super().__getitem__(item) except KeyError: self.load() return super().__getitem__(item) def __contains__(self, item): self.load() return super().__contains__(item) def keys(self): self.load() return super().keys() def values(self): self.load() return super().values() def items(self): self.load() return super().items() def __len__(self): self.load() return super().__len__() def get(self, key, default=None): self.load() return super().get(key, default) ``` #### File: engarchive/tests/test_intervals.py ```python import numpy as np import pytest from Chandra.Time import DateTime from .. import fetch, utils try: import kadi.events HAS_EVENTS = True except ImportError: HAS_EVENTS = False # Use dwells for some interval filter tests # # In [2]: print events.dwells.filter('2012:001', '2012:002') # <Dwell: start=2012:001:16:07:27.515 dur=1834> # <Dwell: start=2012:001:17:27:28.615 dur=3182> # <Dwell: start=2012:001:18:41:12.515 dur=29295> # <Dwell: start=2012:002:02:58:11.817 dur=387> # <Dwell: start=2012:002:03:23:45.217 dur=3835> # <Dwell: start=2012:002:04:59:00.617 dur=18143> # [('2012:001:12:00:00.000', '2012:001:15:50:03.040'), # ('2012:001:16:07:27.515', '2012:001:16:38:01.240'), # ('2012:001:17:27:28.615', '2012:001:18:20:30.215'), # ('2012:001:18:41:12.515', '2012:002:02:49:27.017'), # ('2012:002:02:58:11.817', '2012:002:03:04:39.267'), # ('2012:002:03:23:45.217', '2012:002:04:27:39.742'), # ('2012:002:04:59:00.617', '2012:002:10:01:23.118'), # ('2012:002:10:38:21.218', '2012:002:12:00:00.000')] @pytest.mark.skipif("not HAS_EVENTS") def test_fetch_MSID_intervals(): """ Show that fetching an MSID with start=<some intervals> is exactly the same as fetching over the time range and selecting <some intervals>. """ # Interval with a bad quality point around 2012:175:02:10:021.981 start, stop = '2012:175:02:00:00', '2012:175:03:00:00' for filter_bad in (True, False): for stat in (None, '5min'): dat = fetch.MSID('tephin', start, stop, filter_bad=filter_bad, stat=stat) dat.select_intervals(kadi.events.dwells) dat2 = fetch.MSID('tephin', kadi.events.dwells.intervals(start, stop), filter_bad=filter_bad, stat=stat) assert np.all(dat.bads == dat2.bads) assert dat.colnames == dat2.colnames for attr in dat.colnames: assert np.all(getattr(dat, attr) == getattr(dat2, attr)) @pytest.mark.skipif("not HAS_EVENTS") def test_fetch_MSIDset_intervals(): """ Show that fetching an MSIDset with start=<some intervals> is exactly the same as fetching over the time range and selecting <some intervals>. """ # Interval with a bad quality point around 2012:175:02:10:021.981 start, stop = '2012:175:02:00:00', '2012:175:03:00:00' msids = ['tephin', 'aopcadmd'] for filter_bad in (True, False): for stat in (None, '5min'): dat = fetch.MSIDset(msids, start, stop, filter_bad=filter_bad, stat=stat) for msid in msids: dat[msid].select_intervals(kadi.events.dwells) dat2 = fetch.MSIDset(msids, kadi.events.dwells.intervals(start, stop), filter_bad=filter_bad, stat=stat) for msid in msids: dm = dat[msid] dm2 = dat2[msid] assert np.all(dm.bads == dm2.bads) assert dm.colnames == dm2.colnames for attr in dm.colnames: assert np.all(getattr(dm, attr) == getattr(dm2, attr)) @pytest.mark.skipif("not HAS_EVENTS") def test_select_remove_interval(): """ Test basic select and remove intervals functionality. Do this with two inputs: (1) a QueryEvent object, (2) a table with 'datestart' and 'datestop' cols. The latter is obtained from kadi.events.dwells.intervals, but this is the same format as the output from logical_intervals(). """ start, stop = '2012:002:02:00:00', '2012:002:04:00:00' dat = fetch.MSID('tephin', start, stop) intervals = kadi.events.dwells.intervals(start, stop) for filt in (kadi.events.dwells, intervals): dat_r = dat.remove_intervals(filt, copy=True) dat_s = dat.select_intervals(filt, copy=True) assert len(dat) == len(dat_r) + len(dat_s) assert len(dat) == 219 assert len(dat_r) == 51 assert len(dat_s) == 168 dates_r = DateTime(dat_r.times).date assert dates_r[0] == '2012:002:02:49:39.317' # First after '2012:002:02:49:27.017' assert dates_r[15] == '2012:002:02:57:51.317' # Gap '2012:002:02:58:11.817' assert dates_r[16] == '2012:002:03:04:57.717' # to '2012:002:03:04:39.267' assert dates_r[50] == '2012:002:03:23:32.917' # last before '2012:002:03:23:45.217' assert set(dat_r.times).isdisjoint(dat_s.times) @pytest.mark.skipif("not HAS_EVENTS") def test_remove_subclassed_eventquery_interval(): """ Test remove intervals functionality with an EventQuery subclass (LttBadsEventQuery). """ start, stop = '2010:002:02:00:00', '2013:002:04:00:00' dat = fetch.MSID('tephin', start, stop, stat='daily') assert len(dat) == 1096 dat.remove_intervals(kadi.events.ltt_bads) assert len(dat) == 1026 @pytest.mark.skipif("not HAS_EVENTS") def test_remove_intervals_stat(): start, stop = '2012:002:12:00:00', '2012:003:12:00:00' for stat in (None, '5min'): intervals = kadi.events.dwells.intervals(start, stop) for filt in (kadi.events.dwells, intervals): dat = fetch.MSID('tephin', start, stop) dat.remove_intervals(filt) attrs = [attr for attr in ('vals', 'mins', 'maxes', 'means', 'p01s', 'p05s', 'p16s', 'p50s', 'p84s', 'p95s', 'p99s', 'midvals') if hasattr(dat, attr)] for attr in attrs: assert len(dat) == len(getattr(dat, attr)) @pytest.mark.skipif("not HAS_EVENTS") def test_select_remove_all_interval(): """ Select or remove all data points via an event that entirely spans the MSID data. """ dat = fetch.Msid('tephin', '2012:001:20:00:00', '2012:001:21:00:00') dat_r = dat.remove_intervals(kadi.events.dwells, copy=True) dat_s = dat.select_intervals(kadi.events.dwells, copy=True) assert len(dat) == 110 assert len(dat_r) == 0 assert len(dat_s) == 110 def test_msid_logical_intervals(): """ Test MSID.logical_intervals() """ dat = fetch.Msid('aopcadmd', '2013:001:00:00:00', '2013:001:02:00:00') # default complete_intervals=True intervals = dat.logical_intervals('==', 'NPNT') assert len(intervals) == 1 assert np.all(intervals['datestart'] == ['2013:001:01:03:37.032']) assert np.all(intervals['datestop'] == ['2013:001:01:26:13.107']) # Now with incomplete intervals on each end intervals = dat.logical_intervals('==', 'NPNT', complete_intervals=False) assert len(intervals) == 3 assert np.all(intervals['datestart'] == ['2012:366:23:59:59.932', '2013:001:01:03:37.032', '2013:001:01:59:06.233']) assert np.all(intervals['datestop'] == ['2013:001:00:56:07.057', '2013:001:01:26:13.107', '2013:001:01:59:59.533']) def test_util_logical_intervals(): """ Test utils.logical_intervals() """ dat = fetch.Msidset(['3tscmove', 'aorwbias', 'coradmen'], '2012:190:12:00:00', '2012:205:12:00:00') dat.interpolate(32.8) # Sample MSIDs onto 32.8 second intervals (like 3TSCMOVE) scs107 = ((dat['3tscmove'].vals == 'T') & (dat['aorwbias'].vals == 'DISA') & (dat['coradmen'].vals == 'DISA')) scs107s = utils.logical_intervals(dat.times, scs107) scs107s['duration'].format = '{:.1f}' assert (scs107s['datestart', 'datestop', 'duration'].pformat() == [' datestart datestop duration', '--------------------- --------------------- --------', '2012:194:20:00:48.052 2012:194:20:04:37.652 229.6', '2012:196:21:07:52.852 2012:196:21:11:42.452 229.6', '2012:201:11:46:03.252 2012:201:11:49:52.852 229.6']) def test_util_logical_intervals_gap(): """ Test the max_gap functionality """ times = np.array([1, 2, 3, 200, 201, 202]) bools = np.ones(len(times), dtype=bool) out = utils.logical_intervals(times, bools, complete_intervals=False, max_gap=10) assert np.allclose(out['tstart'], [0.5, 197.5]) assert np.allclose(out['tstop'], [5.5, 202.5]) out = utils.logical_intervals(times, bools, complete_intervals=False) assert np.allclose(out['tstart'], [0.5]) assert np.allclose(out['tstop'], [202.5]) def test_msid_state_intervals(): """ Test MSID.state_intervals() - basic aliveness and regression test """ expected = [' datestart datestop val ', '--------------------- --------------------- ----', '2012:366:23:59:59.932 2013:001:00:56:07.057 NPNT', '2013:001:00:56:07.057 2013:001:01:03:37.032 NMAN', '2013:001:01:03:37.032 2013:001:01:26:13.107 NPNT', '2013:001:01:26:13.107 2013:001:01:59:06.233 NMAN', '2013:001:01:59:06.233 2013:001:01:59:59.533 NPNT'] dat = fetch.Msid('aopcadmd', '2013:001:00:00:00', '2013:001:02:00:00') intervals = dat.state_intervals()['datestart', 'datestop', 'val'] assert intervals.pformat() == expected intervals = utils.state_intervals(dat.times, dat.vals)['datestart', 'datestop', 'val'] assert intervals.pformat() == expected ``` #### File: engarchive/tests/test_sync.py ```python import sys import os import pickle import shutil from pathlib import Path import pytest import numpy as np import Ska.DBI import tables from Chandra.Time import DateTime from .. import fetch from .. import update_client_archive, update_server_sync from ..utils import STATS_DT, set_fetch_basedir pytestmark = pytest.mark.skipif(sys.maxsize <= 2 ** 32, reason="tests for 64-bit only") # Covers safe mode and IRU swap activities around 2018:283. This is a time # with rarely-seen telemetry. START, STOP = '2018:281', '2018:293' # Content types and associated MSIDs that will be tested CONTENTS = {'acis4eng': ['1WRAT'], # [float] 'dp_pcad32': ['DP_SYS_MOM_TOT'], # Derived parameter [float] 'orbitephem0': ['ORBITEPHEM0_X'], # Heavily overlapped [float] 'cpe1eng': ['6GYRCT1', '6RATE1'], # Safe mode, [int, float] 'pcad13eng': ['ASPAGYC2A'], # PCAD subformat and rarely sampled [int] 'sim_mrg': ['3TSCMOVE', '3TSCPOS'], # [str, float] 'simcoor': ['SIM_Z_MOVED'], # [bool] } LOG_LEVEL = 50 # quiet def make_linked_local_archive(outdir, content, msids): """ Create a hard-link version of archive containing only necessary files. In this way the sync repo creation is done for only required MSIDs. :param content: content type :param msids: list of MSIDs in that content type :param outdir: temporary output directory :return: None """ basedir_in = Path(fetch.msid_files.basedir) / 'data' # Was: Path(os.environ['SKA']) / 'data' / 'eng_archive' / 'data' but that # doesn't respect possible ENG_ARCHIVE override basedir_out = Path(outdir) / 'data' if basedir_out.exists(): shutil.rmtree(basedir_out) (basedir_out / content).mkdir(parents=True) (basedir_out / content / '5min').mkdir() (basedir_out / content / 'daily').mkdir() for file in 'archfiles.db3', 'colnames.pickle', 'TIME.h5': shutil.copy(basedir_in / content / file, basedir_out / content / file) for msid in msids: file = f'{msid}.h5' try: os.link(basedir_in / content / file, basedir_out / content / file) except OSError: os.symlink(basedir_in / content / file, basedir_out / content / file) try: os.link(basedir_in / content / '5min' / file, basedir_out / content / '5min' / file) except OSError: os.symlink(basedir_in / content / '5min' / file, basedir_out / content / '5min' / file) try: os.link(basedir_in / content / 'daily' / file, basedir_out / content / 'daily' / file) except OSError: os.symlink(basedir_in / content / 'daily' / file, basedir_out / content / 'daily' / file) def make_sync_repo(outdir, content): """Create a new sync repository with data root ``outdir`` (which is assumed to be clean). This also assumes the correct fetch.msid_files.basedir is set to point at a copy of the cheta archfile that contains requisite data. """ date_start = (DateTime(START) - 8).date date_stop = (DateTime(STOP) + 2).date print(f'Updating server sync for {content}') args = [f'--sync-root={outdir}', f'--date-start={date_start}', f'--date-stop={date_stop}', f'--log-level={LOG_LEVEL}', f'--content={content}'] update_server_sync.main(args) def make_stub_archfiles(date, basedir_ref, basedir_stub): archfiles_def = (Path(fetch.__file__).parent / 'archfiles_def.sql').read_text() with set_fetch_basedir(basedir_ref): filename = fetch.msid_files['archfiles'].abs with Ska.DBI.DBI(dbi='sqlite', server=filename) as db: filetime = DateTime(date).secs # Last archfile that starts before date. last_row = db.fetchone(f'select * from archfiles ' f'where filetime < {filetime} ' f'order by filetime desc' ) with set_fetch_basedir(basedir_stub): filename = fetch.msid_files['archfiles'].abs if os.path.exists(filename): os.unlink(filename) with Ska.DBI.DBI(dbi='sqlite', server=filename, autocommit=False) as db: db.execute(archfiles_def) db.insert(last_row, 'archfiles') db.commit() return last_row['rowstart'], last_row['rowstop'] def make_stub_stats_col(msid, stat, row1, basedir_ref, basedir_stub, date_stop): # Max allowed tstop. tstop = DateTime(date_stop).secs with set_fetch_basedir(basedir_ref): fetch.ft['msid'] = 'TIME' file_time = fetch.msid_files['msid'].abs fetch.ft['msid'] = msid fetch.ft['interval'] = stat file_stats_ref = fetch.msid_files['stats'].abs if not Path(file_stats_ref).exists(): return with set_fetch_basedir(basedir_stub): file_stats_stub = fetch.msid_files['stats'].abs with tables.open_file(file_time, 'r') as h5: # Pad out tstop by DT in order to be sure that all records before a long # gap get found. This comes into play for pcad13eng which is in PCAD subformat only. # In addition, do not select data beyond tstop (date_stop), which is the # stub file end time. This is mostly for ephemeris data, where one archfile covers # many weeks (6?) of data. tstop = min(h5.root.data[row1 - 1] + STATS_DT[stat], tstop) # Need at least 10 days of real values in stub file to start sync tstart = tstop - 10 * 86400 with tables.open_file(file_stats_ref, 'r') as h5: tbl = h5.root.data times = (tbl.col('index') + 0.5) * STATS_DT[stat] stat_row0, stat_row1 = np.searchsorted(times, [tstart, tstop]) # Back up a bit to ensure getting something since an MSID that is not # typically sampled (because of subformat for instance) may show up # in full data with quality=True everywhere # and thus have no stats samples. stat_row0 -= 5 tbl_rows = np.zeros(stat_row1, dtype=tbl.dtype) tbl_rows[stat_row0:stat_row1] = tbl[stat_row0:stat_row1] # returns np.ndarray (structured array) Path(file_stats_stub).parent.mkdir(exist_ok=True, parents=True) filters = tables.Filters(complevel=5, complib='zlib') with tables.open_file(file_stats_stub, mode='a', filters=filters) as stats: stats.create_table(stats.root, 'data', tbl_rows, f'{stat} sampling', expectedrows=1e5) stats.root.data.flush() def make_stub_h5_col(msid, row0, row1, basedir_ref, basedir_stub): fetch.ft['msid'] = msid with set_fetch_basedir(basedir_ref): file_ref = fetch.msid_files['data'].abs if not Path(file_ref).exists(): return with tables.open_file(file_ref, 'r') as h5: data_stub = h5.root.data[row0:row1] qual_stub = h5.root.quality[row0:row1] n_rows = len(h5.root.data) data_fill = np.zeros(row0, dtype=data_stub.dtype) qual_fill = np.ones(row0, dtype=qual_stub.dtype) # True => bad with set_fetch_basedir(basedir_stub): file_stub = fetch.msid_files['data'].abs if os.path.exists(file_stub): os.unlink(file_stub) filters = tables.Filters(complevel=5, complib='zlib') with tables.open_file(file_stub, mode='w', filters=filters) as h5: h5shape = (0,) + data_stub.shape[1:] h5type = tables.Atom.from_dtype(data_stub.dtype) h5.create_earray(h5.root, 'data', h5type, h5shape, title=msid, expectedrows=n_rows) h5.create_earray(h5.root, 'quality', tables.BoolAtom(), (0,), title='Quality', expectedrows=n_rows) with tables.open_file(file_stub, mode='a') as h5: h5.root.data.append(data_fill) h5.root.data.append(data_stub) h5.root.quality.append(qual_fill) h5.root.quality.append(qual_stub) def make_stub_colnames(basedir_ref, basedir_stub): """ Copy colnames.pickle to the stub dir. Also get the list of MSIDs that are actually in the reference archive. """ with set_fetch_basedir(basedir_ref): file_ref = fetch.msid_files['colnames'].abs with set_fetch_basedir(basedir_stub): file_stub = fetch.msid_files['colnames'].abs shutil.copy(file_ref, file_stub) with open(file_stub, 'rb') as fh: msids = pickle.load(fh) return msids def make_stub_content(content=None, date=None, basedir_ref=None, basedir_stub=None, msids=None, msids_5min=None, msids_daily=None): # If no content then require msids has been passed if content is None: content = fetch.content[msids[0].upper()] for msid in msids: assert fetch.content[msid.upper()] == content print(f'Making stub archive for {content}') fetch.ft['content'] = content with set_fetch_basedir(basedir_stub): dirname = Path(fetch.msid_files['contentdir'].abs) if dirname.exists(): shutil.rmtree(dirname) dirname.mkdir(parents=True) row0, row1 = make_stub_archfiles(date, basedir_ref, basedir_stub) msids_ref = make_stub_colnames(basedir_ref, basedir_stub) if msids is None: msids = msids_ref msids = msids.copy() if 'TIME' not in msids: msids.append('TIME') if msids_5min is None: msids_5min = msids if msids_daily is None: msids_daily = msids for msid in msids: make_stub_h5_col(msid, row0, row1, basedir_ref, basedir_stub) for msid in msids_5min: make_stub_stats_col(msid, '5min', row1, basedir_ref, basedir_stub, date) for msid in msids_daily: make_stub_stats_col(msid, 'daily', row1, basedir_ref, basedir_stub, date) def check_content(outdir, content, msids=None): outdir = Path(outdir) if outdir.exists(): shutil.rmtree(outdir) print() print(f'Test dir: {outdir}') if msids is None: msids = CONTENTS[content] basedir_ref = outdir / 'orig' basedir_test = outdir / 'test' basedir_ref.mkdir(parents=True) basedir_test.mkdir(parents=True) # Make a local hard-link copy of select parts (content and msids) of the # "official" cheta archive data (nominally $SKA/data/engarchive) in basedir_ref. # This hard-link repo servers as the source for making the sync repo so this # is faster/lighter. make_linked_local_archive(basedir_ref, content, msids) # Make the sync repo, using basedir_ref as input data and outputting the # sync/ dir to basedir_test. with set_fetch_basedir(basedir_ref): make_sync_repo(basedir_test, content) # Make stubs of archive content, meaning filled with mostly zeros until about # before before test start date, then some real data to get the sync'ing going. make_stub_content(content, date=DateTime(START) - 2, basedir_stub=basedir_test, basedir_ref=basedir_ref, msids=msids) date_stop = (DateTime(STOP) + 2).date print(f'Updating client archive {content}') with set_fetch_basedir(basedir_test): update_client_archive.main([f'--content={content}', f'--log-level={LOG_LEVEL}', f'--date-stop={date_stop}', f'--data-root={basedir_test}', f'--sync-root={basedir_test}']) print(f'Checking {content} {msids}') for stat in None, '5min', 'daily': for msid in msids: fetch.times_cache['key'] = None with set_fetch_basedir(basedir_test): dat_stub = fetch.Msid(msid, START, STOP, stat=stat) fetch.times_cache['key'] = None with set_fetch_basedir(basedir_ref): dat_orig = fetch.Msid(msid, START, STOP, stat=stat) for attr in dat_orig.colnames: assert np.all(getattr(dat_stub, attr) == getattr(dat_orig, attr)) @pytest.mark.parametrize('content', list(CONTENTS)) def test_sync(tmpdir, content): check_content(tmpdir, content) # Clean up if test successful (otherwise check_content raises) if Path(tmpdir).exists(): shutil.rmtree(tmpdir) ```
{ "source": "jmoehler/CityDistance", "score": 4 }
#### File: jmoehler/CityDistance/distanceCalc.py ```python from math import cos, acos, pi, sqrt, sin class City: def __init__(self, name, lat, lon, temp): self.name = name self.lat = lat self.lon = lon self.temp = temp def describe(self): print("Die Koordinaten von %s sind %f Lat und %f Lon. Die Temperatur beträgt %.1f Grad Celcius." %(self.name, self.lat, self.lon, self.temp)) def info(self): print("Die Koordinaten von %s sind %.1f Lat und %.1f Lon." %(self.name, self.lat, self.lon)) def __str__(self): return "Die Koordinaten von %s sind %.1f Lat und %.1f Lon." %(self.name, self.lat, self.lon) def __repr__(self): return self.__str__() def diffGamma(alpha, beta): # differenz von winkel alpha zu Winkel beta dGamma = alpha - beta dGammaRad = pi / 180 * dGamma # Erdradius in km r = 6378 # länge auf lat berechnen return r*sqrt(2*(1-cos(dGammaRad))) def distanceBase(dilat, dilon): # insgesammte länge berechnen return sqrt(dilon**2 + dilat**2) def distance(city1, city2): dilat = diffGamma(city1.lat, city2.lat) dilon = diffGamma(city1.lon, city2.lon) return distanceBase(dilat, dilon) def tempDiff(city1, city2): return abs(city1.temp - city2.temp) ``` #### File: jmoehler/CityDistance/distanceDict.py ```python from distance import distanceCalc from City import City distDict = {} def calcOnce(alleCities): leng = len(alleCities) for i in range(0,leng): for j in range(0, leng): c1 = alleCities[i] c2 = alleCities[j] dist = distanceCalc(c1, c2) nameCon = c1.name + c2.name distDict[nameCon] = dist def distance(nameA, nameB): nameCon = nameA.name + nameB.name distDicta = distDict[nameCon] return distDicta ```
{ "source": "jmohr/conrad", "score": 3 }
#### File: conrad/adapter/base.py ```python import logging import pyodbc from abc import ABCMeta, abstractmethod, abstractproperty from conrad.utils import plural logger = logging.getLogger(__name__) class Base(object): """ This is a base DB adapter, for a database which implements the Python DBAPI2.0 spec. Much more testing needs to be done with this, as it currently has only been tested with the ODBC subclass. In theory, though, you should be able to create your own adapter by subclassing this, and defining the connect() method for whatever database you are trying to connect to. Just have it set self.cursor and self.connection, and you should be good to go. You can override any of the other methods if your database is non-standard or if the module doesn't fully implement DBAPI2.0. """ __metaclass__ = ABCMeta def __init__(self, *args, **kwargs): logger.debug('Initializing Base DB adapter') if not (args or kwargs): logger.debug('No args or kwargs defined') else: logger.debug('Calling connect with args: {} and kwargs: {}'.format( args, kwargs)) self.connect(*args, **kwargs) @abstractmethod def connect(self, *args, **kwargs): return @abstractmethod def find(self, resource, conditions={}): return @abstractmethod def create(self, resource, attributes={}): return @abstractmethod def update(self, resource, attributes={}, conditions={}): return @abstractmethod def delete(self, resource, conditions={}): return @classmethod def result_dict(cls, results): return dict(results) ``` #### File: units/adapter/test_base_adapter.py ```python from conrad.adapter import Base class TestBase(object): def test_methods(self): for method in ['connect', 'find', 'update', 'create', 'delete', 'result_dict']: assert hasattr(Base, method), 'Base is missing method {}'.format( method) def test_result_dict(self): test_tuple = (('one', 111), ('two', 222), ('three', 333)) d = Base.result_dict(test_tuple) for k, v in test_tuple: assert d.has_key(k), 'result is missing key "{}"'.format(k) assert d[k] == v, 'result[{}] is not {}'.format(k, v) ``` #### File: test/units/test_condition.py ```python from conrad import query class TestCondition(object): def test_attrs(self): for module_attr in ['gt', 'lt', 'gte', 'lte']: errmsg = 'condition does not have attr {}'.format(module_attr) assert hasattr(query, module_attr), errmsg assert hasattr(query.Condition, 'statement') class TestGreaterThan(object): def test_class(self): print query.lt print query.Condition assert issubclass(query.lt, query.Condition) def test_sqlgen(self): gt = query.gt(5) assert gt.statement == '{name} > {placeholder}' assert 5 == gt.variable class TestLessThan(object): def test_sqlgen(self): lt = query.lt(5) assert lt.statement == '{name} < {placeholder}' assert 5 == lt.variable class TestGreaterThanOrEqualTo(object): def test_sqlgen(self): gte = query.gte(5) assert gte.statement == '{name} >= {placeholder}' assert 5 == gte.variable class TestLessThanOrEqualTo(object): def test_sqlgen(self): lte = query.lte(5) assert lte.statement == '{name} <= {placeholder}' assert 5 == lte.variable class TestConditionFilterIntegration(object): def test_filtering(self): q = query.Select('test_table').filter(name=query.lte(25)) assert q.variables == [25], 'q.variables is {}, should be [25]'.format(q.variables) assert 'name <= ?' in q.statement def test_filter_chaining(self): q = query.Select('test_table').filter(name=query.gt('foobar')).filter(age=query.lte(33)) assert 33 in q.variables, q.variables assert 'foobar' in q.variables assert 'name > ?' in q.statement assert 'age <= ?' in q.statement ```
{ "source": "jmoiron/daneel", "score": 3 }
#### File: daneel/plugins/weblib.py ```python import re import requests import urlparse import traceback import json from lxml.cssselect import CSSSelector as cs from lxml.html import document_fromstring from daneel import utils ua = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_2) AppleWebKit/537.31 (KHTML, like Gecko) Chrome/26.0.1410.43 Safari/537.31" def text(selector, html): res = cs(selector)(html) if not res: return "" if res and len(res) == 1: return res[0].text_content().strip() res = map(lambda x: x.text_content().strip(), res) return "".join(res) def first(selector, html): res = cs(selector)(html) if not res or not len(res): return None return res[0] def get_summary(url): """Get a summary for a url.""" if "yelp.com" in url: return "Yelp is not supported because they IP blocked the server daneel runs on." page = requests.get(url, headers={'User-Agent': ua}) try: content = page.text except: content = page.content content = utils.utf8_damnit(content) return summarize(content, url) def summarize(content, url=""): """Return a summary for an html document. If a URL is passed, it may be treated specially to give better results, eg. twitter will return the tweet.""" html = document_fromstring(content) if url: parsed = urlparse.urlparse(url) if parsed.netloc.endswith("twitter.com") and "status" in url: tweet = text(".permalink-tweet .tweet-text", html) try: username = cs(".permalink-tweet")(html)[0].attrib["data-screen-name"] return "@%s: %s" % (username, tweet) except: return tweet # try to return opengraph description or title first, then just the <title> ogdesc = first("meta[property=\"og:description\"]", html) if ogdesc: return utils.maxlen(ogdesc.attrib["content"]) ogtitle = first("meta[property=\"og:title\"]", html) if ogtitle: return utils.maxlen(ogtitle.attrib["content"]) return text("title", html) def shorten_url(url): gurl = "https://www.googleapis.com/urlshortener/v1/url" data = json.dumps({"longUrl": url}) resp = requests.post(gurl, data, headers={"Content-Type": "application/json"}) if resp.json and "id" in resp.json: return resp.json["id"] return None url_re = re.compile(r"(https?://[^ ]+)") def find_urls(message): """Finds urls in a message. Returns a list of URLs, or an empty list if none are found. Only looks for http & https schemes.""" urls = url_re.findall(message) return [url.rstrip(',') for url in urls] ```
{ "source": "jmojoo/MLMO", "score": 3 }
#### File: MLMO/utils/image_dataset.py ```python import os import cv2 try: from PIL import Image available = True except ImportError as e: available = False _import_error = e import six import numpy as np from chainercv import transforms import chainer from chainer.dataset import dataset_mixin def _read_image_as_array(path, dtype): image = cv2.imread(path) return image def _postprocess_image(image): if image.ndim == 2: # image is greyscale image = image[..., None] return image class Transform(object): def __init__(self, args, augment=False, ensemble=False): self.extractor = args.extractor self.augment = augment self.dataset = args.dataset self.ensemble = ensemble if 'alexnet' in self.extractor: self.size = (227, 227) elif 'darknet-19' in self.extractor: self.size = (320, 320) elif 'vgg16' in self.extractor: self.size = (224, 224) def __call__(self, in_data): img = in_data img = img.astype(np.float32) # if img.max() > 1: # img /= 255.0 if img.shape[0] in (1, 3): img = np.transpose(img, (1, 2, 0)) if img.shape[2] == 1: img = np.broadcast_to(img, (img.shape[0], img.shape[1], 3)) if 'alexnet' in self.extractor or 'vgg16' in self.extractor: img = cv2.resize(img, (256, 256)) if 'alexnet' in self.extractor: if img.max() <= 1: img *= 255.0 # img = img[:, :, ::-1] # RGB -> BGR # unnecessary if loaded using opencv mean_bgr = np.array([104, 117, 123], dtype=np.float32) img -= mean_bgr elif 'darknet-19' in self.extractor: if img.max() > 1: img /= 255.0 elif 'vgg16' in self.extractor: if img.max() <= 1: img *= 255.0 mean_bgr = np.array([103.939, 116.779, 123.68], dtype=np.float32) img -= mean_bgr if img.shape[2] == 3: img = np.transpose(img, (2, 0, 1)) augment = chainer.global_config.train and self.augment if augment: if np.random.randint(2): img = transforms.random_flip( img, x_random=True, y_random=False) if self.ensemble: img = transforms.ten_crop(img, self.size) else: img = transforms.resize(img, self.size) # return img class ImageDataset(dataset_mixin.DatasetMixin): """Dataset of images built from a list of paths to image files. This dataset reads an external image file on every call of the :meth:`__getitem__` operator. The paths to the image to retrieve is given as either a list of strings or a text file that contains paths in distinct lines. Each image is automatically converted to arrays of shape ``channels, height, width``, where ``channels`` represents the number of channels in each pixel (e.g., 1 for grey-scale images, and 3 for RGB-color images). .. note:: **This dataset requires the Pillow package being installed.** In order to use this dataset, install Pillow (e.g. by using the command ``pip install Pillow``). Be careful to prepare appropriate libraries for image formats you want to use (e.g. libpng for PNG images, and libjpeg for JPG images). .. warning:: **You are responsible for preprocessing the images before feeding them to a model.** For example, if your dataset contains both RGB and grayscale images, make sure that you convert them to the same format. Otherwise you will get errors because the input dimensions are different for RGB and grayscale images. Args: paths (str or list of strs): If it is a string, it is a path to a text file that contains paths to images in distinct lines. If it is a list of paths, the ``i``-th element represents the path to the ``i``-th image. In both cases, each path is a relative one from the root path given by another argument. root (str): Root directory to retrieve images from. dtype: Data type of resulting image arrays. ``chainer.config.dtype`` is used by default (see :ref:`configuration`). """ def __init__(self, paths, root='.', dtype=None): _check_pillow_availability() if isinstance(paths, six.string_types): with open(paths) as paths_file: paths = [path.strip() for path in paths_file] self._paths = paths self._root = root self._dtype = chainer.get_dtype(dtype) def __len__(self): return len(self._paths) def get_path(self, i): return self._paths[i] def get_example(self, i): path = os.path.join(self._root, self._paths[i]) image = _read_image_as_array(path, self._dtype) return _postprocess_image(image) def _check_pillow_availability(): if not available: raise ImportError('PIL cannot be loaded. Install Pillow!\n' 'The actual import error is as follows:\n' + str(_import_error)) ```
{ "source": "jmoldon/hcg_hi_pipeline", "score": 2 }
#### File: jmoldon/hcg_hi_pipeline/clean_image.py ```python import imp, numpy, glob, shutil imp.load_source('common_functions','common_functions.py') import common_functions as cf def noise_est(config,logger): """ Makes an estimate of the theortically expected noise level for each science target. Input: config = The parameters read from the configuration file. (Ordered dictionary) Output: noise = Estimate of the theortical noise in Jy/beam. (List of Floats) """ logger.info('Starting making noise estimation.') targets = config['calibration']['target_names'][:] calib = config['calibration'] if calib['mosaic']: targets = list(set(calib['target_names'])) cln_param = config['clean'] src_dir = config['global']['src_dir']+'/' noise = [] for target in targets: msmd.open(src_dir+target+'.split.contsub') N = msmd.nantennas() t_int = msmd.effexposuretime()['value'] t_unit = msmd.effexposuretime()['unit'] if t_unit != 's' and 'sec' not in t_unit: logger.warning('Integration time units are not in seconds. Estimated noise may be incorrect.') ch_wid = numpy.mean(msmd.chanwidths(0)) #Note: The above line may cause issues if different spectral windows #have very difference frequency resolutions corr_eff = cln_param['corr_eff'] SEFD = cln_param['sefd'] N_pol = 2. f_smo = 1. if config_raw.has_option('importdata','hanning'): if config['importdata']['hanning']: if not config['importdata']['mstransform']: f_smo = 8./3. else: if not config_raw.has_option('importdata','chanavg'): f_smo = 8./3. else: Nchan = float(config['importdata']['chanavg']) if Nchan > 1.: f_smo = Nchan/((Nchan-2.) + 2.*(9./16.) + 2.*(1./16.)) else: f_smo = 8./3. noise.append(SEFD/(corr_eff*numpy.sqrt(f_smo*N_pol*N*(N-1.)*t_int*ch_wid))) logger.info('Effective integration time for {0}: {1} {2}'.format(target,int(t_int),msmd.effexposuretime()['unit'])) logger.info('Expected rms noise for {0}: {1} Jy/beam'.format(target,SEFD/(corr_eff*numpy.sqrt(f_smo*N_pol*N*(N-1.)*t_int*ch_wid)))) msmd.close() logger.info('Completed making noise estimation.') return noise def image(config,config_raw,config_file,logger): """ Generates a clean (continuum subtracted) image of each science target. Checks that the CLEANing scales and line emission channels are set (may prompt user if in interactive mode). Makes varies check on the ratio of pixel size to beam size and the scales and the maximum baseline (may prompt user if in interactive mode). Exports the final images as fits cubes (after regridding to J2000 if necessary). Input: config = The parameters read from the configuration file. (Ordered dictionary) config_raw = The instance of the parser. config_file = Path to configuration file. (String) """ noises = noise_est(config,logger) cln_param = config['clean'] if config_raw.has_option('clean','noise'): noises = cln_param['noise'][:] logger.info('Noise level(s) set manually as {0} Jy.'.format(noises)) calib = config['calibration'] contsub = config['continuum_subtraction'] rest_freq = config['global']['rest_freq'] targets = calib['target_names'][:] fields = calib['targets'][:] for i in range(len(targets)): target = targets[i] if 'spw' in target: inx = target.index('.spw') target_name = target[:inx] if target_name in calib['target_names'][i-1]: fields.insert(i,fields[i-1]) if calib['mosaic']: targets = list(set(targets)) src_dir = config['global']['src_dir']+'/' img_dir = config['global']['img_dir']+'/' cf.makedir('./'+img_dir,logger) logger.info('Starting generation of clean image(s).') reset_cln = False reset_cln = False if len(cln_param['line_ch']) == 0 or len(cln_param['line_ch']) != len(targets): if not interactive: logger.critical('The number of line channel ranges provided does not match the number of targets.') logger.info('Pixel sizes: {}'.format(cln_param['line_ch'])) logger.info('Targets: {}'.format(targets)) sys.exit(-1) reset_cln = True if len(cln_param['line_ch']) < len(targets): logger.warning('There are more target fields than channel ranges. Appending blank ranges.') while len(cln_param['line_ch']) < len(targets): cln_param['line_ch'].append('') elif len(cln_param['line_ch']) > len(targets): logger.warning('There are more channel ranges than target fields.') logger.info('Current channel ranges: {}'.format(cln_param['line_ch'])) logger.warning('The channel range list will now be truncated to match the number of targets.') cln_param['line_ch'] = cln_param['line_ch'][:len(targets)] elif interactive: print('Current image channels set as:') for i in range(len(cln_param['line_ch'])): print('{0}: {1}'.format(targets[i],cln_param['line_ch'][i])) resp = str(raw_input('Do you want revise the channels that will be imaged (y/n): ')) if resp.lower() in ['yes','ye','y']: reset_cln = True if reset_cln and interactive: print('For each target enter the channels you want to image in the following format:\nspwID:min_ch~max_ch') for i in range(len(targets)): print('Note: The continuum channels for this target were set to: {}'.format(contsub['linefree_ch'][i])) cln_param['line_ch'][i] = cf.uinput('Channels to image for {}: '.format(targets[i]), cln_param['line_ch'][i]) logger.info('Setting image channels for {0} as: {1}.'.format(targets[i], cln_param['line_ch'][i])) logger.info('Updating config file to set channels to be imaged.') config_raw.set('clean','line_ch',cln_param['line_ch']) configfile = open(config_file,'w') config_raw.write(configfile) configfile.close() logger.info('Line emission channels set as: {}.'.format(cln_param['line_ch'])) logger.info('For the targets: {}.'.format(targets)) if numpy.any(cln_param['multiscale']): algorithm = 'multiscale' logger.info('Setting CLEAN algorithm to MS-CLEAN.') if not numpy.all(cln_param['multiscale']): logger.info('However, some targets will still use Hogbom CLEAN.') reset_cln = False if cln_param['beam_scales'] == []: reset_cln = True logger.warning('MS-CLEAN scales not set.') elif 0 not in cln_param['beam_scales']: logger.warning('MS-CLEAN scales do not include point sources. This is highly recommended.') if interactive: resp = str(raw_input('Do you want revise MS-CLEAN scales (y/n): ')) if resp.lower() in ['yes','ye','y']: reset_cln = True else: logger.info('Adding point source to MS-CLEAN scales.') cln_param['beam_scales'].append(0) reset_cln = True if reset_cln: if interactive: print('Current scales set to: {} beam diameters.'.format(cln_param['beam_scales'])) cln_param['beam_scales'] = cf.uinput('Enter new scales: ', cln_param['beam_scales']) logger.info('Setting MS-CLEAN scales as {} beams.'.format(cln_param['beam_scales'])) logger.info('Updating config file to set MS-CLEAN scales.') config_raw.set('clean','scales',cln_param['beam_scales']) configfile = open(config_file,'w') config_raw.write(configfile) configfile.close() reset_cln = False scales = cln_param['beam_scales'] else: algorithm = 'hogbom' logger.info('Setting CLEAN algorithm to Hogbom.') scales = None for i in range(len(targets)): target = targets[i] field = fields[i] if numpy.all(cln_param['multiscale']): ms_clean = True algorithm = 'multiscale' elif type(cln_param['multiscale']) != type(True): ms_clean = cln_param['multiscale'][i] if ms_clean: algorithm = 'multiscale' else: algorithm = 'hogbom' else: ms_clean = False algorithm = 'hogbom' logger.info('Starting {} image.'.format(target)) reset_cln = False ia.open(img_dir+target+'.dirty.image') rest_beam = ia.restoringbeam() ia.close() if rest_beam['minor']['unit'] not in cln_param['pix_size'][i]: logger.error('The pixel size and beam size have diffent units.') if ms_clean: logger.error('MS-CLEAN scales will likely be incorrect.') logger.info('Pixel size: {}'.format(cln_param['pix_size'][i])) logger.info('Beam size units: {}'.format(rest_beam['minor']['unit'])) pix_size = cln_param['pix_size'][i] pix_size = float(pix_size[:pix_size.find(rest_beam['minor']['unit'])]) if pix_size > 0.2*rest_beam['minor']['value']: logger.warning('There are fewer than 5 pixels across the beam minor axis. Consider decreasing the pixel size.') if interactive: print('Beam dimensions:') print('Major: {0:.2f} {1}'.format(rest_beam['major']['value'],rest_beam['major']['unit'])) print('Minor: {0:.2f} {1}'.format(rest_beam['minor']['value'],rest_beam['minor']['unit'])) print('Pixel size: {}'.format(cln_param['pix_size'])) resp = str(raw_input('Do you want revise the pixel size (y/n): ')) if resp.lower() in ['yes','ye','y']: reset_cln = True if reset_cln and interactive: print('Enter the desired pixel size:') cln_param['pix_size'][i] = cf.uinput('Pixel size for {}: '.format(target), cln_param['pix_size'][i]) logger.info('Setting pixel size for {0} as: {1}.'.format(target, cln_param['pix_size'][i])) resp = str(raw_input('Would you also like to revise the image size: ')) if resp.lower() in ['yes','ye','y']: cln_param['im_size'][i] = cf.uinput('Image size for {}: '.format(target), cln_param['im_size'][i]) logger.info('Setting image size for {0} as: {1}.'.format(target, cln_param['im_size'][i])) logger.info('Updating config file to set pixel (image) size.') config_raw.set('clean','pix_size',cln_param['pix_size']) config_raw.set('clean','im_size',cln_param['im_size']) configfile = open(config_file,'w') config_raw.write(configfile) configfile.close() reset_cln = False if cln_param['automask_sl'] == '': cln_param['automask_sl'] == 2.0 logger.warning('Automasking sidelobe threshold not set. Using default value: {}'.format(cln_param['automask_sl'])) if cln_param['automask_ns'] == '': cln_param['automask_ns'] == 4.25 logger.warning('Automasking noise threshold not set. Using default value: {}'.format(cln_param['automask_ns'])) if cln_param['automask_lns'] == '': cln_param['automask_lns'] == 1.5 logger.warning('Automasking low noise threshold not set. Using default value: {}'.format(cln_param['automask_lns'])) if cln_param['automask_mbf'] == '': cln_param['automask_mbf'] == 0.3 logger.warning('Automasking minimum beam fraction not set. Using default value: {}'.format(cln_param['automask_mbf'])) if cln_param['automask_neg'] == '': cln_param['automask_neg'] == 15.0 logger.warning('Automasking negative threshold not set. Using default value: {}'.format(cln_param['automask_neg'])) logger.info('Automasking parameters set as:') logger.info('sidelobethreshold = {}'.format(cln_param['automask_sl'])) logger.info('noisethreshold = {}'.format(cln_param['automask_ns'])) logger.info('lownoisethreshold = {}'.format(cln_param['automask_lns'])) logger.info('minbeamfraction = {}'.format(cln_param['automask_mbf'])) logger.info('negativethreshold = {}'.format(cln_param['automask_neg'])) if ms_clean: pix_size = cln_param['pix_size'][i] pix_size = float(pix_size[:pix_size.find(rest_beam['minor']['unit'])]) pix_per_beam = rest_beam['major']['value']/pix_size scales = cln_param['beam_scales'] scales = list(numpy.array(numpy.array(scales)*pix_per_beam,dtype='int')) B_min = au.getBaselineLengths('{0}{1}.split.contsub'.format(src_dir,target), sort=True)[0][1] msmd.open('{0}{1}.split.contsub'.format(src_dir,target)) spws = msmd.spwsforfield(field) f_min = None for spw in spws: if f_min == None or f_min > min(msmd.chanfreqs(spw=spw,unit='Hz')): f_min = min(msmd.chanfreqs(spw=spw,unit='Hz')) msmd.close() max_scale = 180.*3600.*299792458./(1.2*numpy.pi*f_min*B_min) logger.info('The maximum recoverable scale for {0} is {1} arcsec.'.format(target,int(max_scale))) if 'arcsec' not in cln_param['pix_size'][i]: logger.warning('Pixel size not in arcsec. Maximum scale not checked.') else: pix_size = cln_param['pix_size'][i] pix_size = float(pix_size[:pix_size.find('arcsec')]) if max(scales)*pix_size > max_scale: logger.warning('Some MS-CLEAN scale(s) is (are) larger than largest recoverable angular scales.') logger.info('Removing offending scales.') scales = list(set(numpy.where(numpy.array(scales)*pix_size <= max_scale,scales,0))) logger.info('CLEANing with scales of {} pixels.'.format(scales)) logger.info('CLEANing {0} to a threshold of {1} Jy.'.format(target,noises[i]*cln_param['thresh'])) if cln_param['automask']: mask = 'auto-multithresh' else: mask = 'pb' gridder = 'wproject' if calib['mosaic']: for target_name in targets: inx = [j for j in range(len(calib['target_names'])) if target_name in calib['target_names'][j]] fields = numpy.array(calib['targets'],dtype='str')[inx] field = ','.join(fields) gridder = 'mosaic' command = "tclean(vis='{0}{1}'+'.split.contsub', field='{2}', spw='{3}', imagename='{4}{1}', cell='{5}', imsize=[{6},{6}], specmode='cube', outframe='bary', veltype='radio', restfreq='{7}', gridder='{8}', wprojplanes=-1, pblimit=0.1, normtype='flatnoise', deconvolver='{9}', scales={10}, restoringbeam='common', pbcor=True, weighting='briggs', robust={11}, niter=100000, gain=0.1, threshold='{12}Jy', usemask='{13}', phasecenter='{14}', sidelobethreshold={15}, noisethreshold={16}, lownoisethreshold={17}, minbeamfrac={18}, negativethreshold={19}, cyclefactor=2.0,interactive=False)".format(src_dir,target,field,cln_param['line_ch'][i],img_dir,cln_param['pix_size'][i],cln_param['im_size'][i],rest_freq,gridder,algorithm,scales,cln_param['robust'],noises[i]*cln_param['thresh'],mask,cln_param['phasecenter'],cln_param['automask_sl'],cln_param['automask_ns'],cln_param['automask_lns'],cln_param['automask_mbf'],cln_param['automask_neg']) logger.info('Executing command: '+command) exec(command) cf.check_casalog(config,config_raw,logger,casalog) logger.info('CLEANing finished. Image cube saved as {}.'.format(target+'.image')) ia.open(img_dir+target+'.dirty.image') coords = ia.coordsys() coord_chn = False if 'J2000' not in coords.referencecode()[0]: coord_chn = True logger.info('Coordinate system not J2000. Image will be regridded.') command = "imregrid(imagename='{0}{1}'+'.image', template='J2000', output='{0}{1}'+'.image.J2000', asvelocity=True, interpolation='linear', decimate=10, overwrite=True)".format(img_dir,target) logger.info('Executing command: '+command) exec(command) cf.check_casalog(config,config_raw,logger,casalog) logger.info('{} regridded in J2000 coordinates.'.format(target+'.image.J2000')) command = "imregrid(imagename='{0}{1}'+'.image.pbcor', template='J2000', output='{0}{1}'+'.image.pbcor.J2000', asvelocity=True, interpolation='linear', decimate=10, overwrite=True)".format(img_dir,target) logger.info('Executing command: '+command) exec(command) cf.check_casalog(config,config_raw,logger,casalog) logger.info('{} regridded in J2000 coordinates.'.format(target+'.image.pbcor.J2000')) coords.done() ia.close() fitsname = target+'_HI.fits' logger.info('Saving image cube as {}'.format(fitsname)) if coord_chn: imagename = target+'.image.J2000' else: imagename = target+'.image' command = "exportfits(imagename='{0}{1}', fitsimage='{0}{2}', velocity=True,optical=False,overwrite=True,dropstokes=True,stokeslast=True,history=True,dropdeg=True)".format(img_dir,imagename,fitsname) logger.info('Executing command: '+command) exec(command) cf.check_casalog(config,config_raw,logger,casalog) fitsname = target+'_HI.pbcor.fits' logger.info('Saving primary beam corrected image cube as {}'.format(fitsname)) if coord_chn: imagename = target+'.image.pbcor.J2000' else: imagename = target+'.image.pbcor' command = "exportfits(imagename='{0}{1}', fitsimage='{0}{2}', velocity=True,optical=False,overwrite=True,dropstokes=True,stokeslast=True,history=True,dropdeg=True)".format(img_dir,imagename,fitsname) logger.info('Executing command: '+command) exec(command) cf.check_casalog(config,config_raw,logger,casalog) coord_chn = False logger.info('Completed generation of clean image(s).') # Read configuration file with parameters config_file = sys.argv[-1] config,config_raw = cf.read_config(config_file) interactive = config['global']['interactive'] # Set up your logger logger = cf.get_logger(LOG_FILE_INFO = '{}.log'.format(config['global']['project_name']), LOG_FILE_ERROR = '{}_errors.log'.format(config['global']['project_name'])) # Set up your logger # Define MS file name msfile = '{0}.ms'.format(config['global']['project_name']) #Remove previous image files targets = config['calibration']['target_names'] img_path = config['global']['img_dir']+'/' cf.check_casaversion(logger) logger.info('Deleting any existing clean image(s).') for target in targets: del_list = [img_path+target+'.mask',img_path+target+'.model',img_path+target+'.pb',img_path+target+'.psf',img_path+target+'.residual',img_path+target+'.sumwt',img_path+target+'.weight'] del_list.extend(glob.glob(img_path+'{}.image*'.format(target))) if len(del_list) > 0: for file_path in del_list: try: shutil.rmtree(file_path) except OSError: pass del_list = [img_path+target+'_HI.fits',img_path+target+'_HI.pbcor.fits'] for file_path in del_list: try: os.remove(file_path) except OSError: pass #Make clean image image(config,config_raw,config_file,logger) #Review and backup parameters file cf.diff_pipeline_params(config_file,logger) cf.backup_pipeline_params(config_file,logger) ``` #### File: jmoldon/hcg_hi_pipeline/moment_zero.py ```python import imp, numpy, glob, shutil imp.load_source('common_functions','common_functions.py') import common_functions as cf def noise_est(config,logger): """ Makes an estimate of the theortically expected noise level for each science target. Input: config = The parameters read from the configuration file. (Ordered dictionary) Output: noise = Estimate of the theortical noise in Jy/beam. (List of Floats) """ logger.info('Starting making noise estimation.') targets = config['calibration']['target_names'][:] calib = config['calibration'] if calib['mosaic']: targets = list(set(calib['target_names'])) cln_param = config['clean'] src_dir = config['global']['src_dir']+'/' noise = [] for target in targets: msmd.open(src_dir+target+'.split.contsub') N = msmd.nantennas() t_int = msmd.effexposuretime()['value'] t_unit = msmd.effexposuretime()['unit'] if t_unit != 's' and 'sec' not in t_unit: logger.warning('Integration time units are not in seconds. Estimated noise may be incorrect.') ch_wid = numpy.mean(msmd.chanwidths(0)) #Note: The above line may cause issues if different spectral windows #have very difference frequency resolutions corr_eff = cln_param['corr_eff'] SEFD = cln_param['sefd'] N_pol = 2. f_smo = 1. if config_raw.has_option('importdata','hanning'): if config['importdata']['hanning']: if not config['importdata']['mstransform']: f_smo = 8./3. else: if not config_raw.has_option('importdata','chanavg'): f_smo = 8./3. else: Nchan = float(config['importdata']['chanavg']) if Nchan > 1.: f_smo = Nchan/((Nchan-2.) + 2.*(9./16.) + 2.*(1./16.)) else: f_smo = 8./3. noise.append(SEFD/(corr_eff*numpy.sqrt(f_smo*N_pol*N*(N-1.)*t_int*ch_wid))) logger.info('Effective integration time for {0}: {1} {2}'.format(target,int(t_int),msmd.effexposuretime()['unit'])) logger.info('Expected rms noise for {0}: {1} Jy/beam'.format(target,SEFD/(corr_eff*numpy.sqrt(N_pol*N*(N-1.)*t_int*ch_wid)))) msmd.close() logger.info('Completed making noise estimation.') return noise def moment0(config,config_raw,config_file,logger): """ Generates a moment zero map of each science target. Input: config = The parameters read from the configuration file. (Ordered dictionary) config_raw = The instance of the parser. config_file = Path to configuration file. (String) """ noises = noise_est(config,logger) cln_param = config['clean'] calib = config['calibration'] if config_raw.has_option('clean','noise'): noises = cln_param['noise'][:] logger.info('Noise level(s) set manually as {0} Jy.'.format(noises)) moment = config['moment'] thresh = moment['mom_thresh'] chans = moment['mom_chans'] targets = config['calibration']['target_names'] if calib['mosaic']: targets = list(set(targets)) img_dir = config['global']['img_dir']+'/' mom_dir = config['global']['mom_dir']+'/' cf.makedir('./'+mom_dir,logger) change_made = False if len(chans) == 0 or len(chans) != len(targets): if len(chans) < len(targets): logger.warning('There are more target fields than channel ranges for moments.') while len(chans) < len(targets): chans.append('') elif len(chans) > len(targets): logger.warning('There are more moment channel ranges than target fields.') logger.info('Current channel ranges: {}'.format(chans)) logger.warning('The channel range list will now be truncated to match the number of targets.') chans = chans[:len(targets)] change_made = True if interactive: print('Current moment channel ranges set as:') print(chans) print('For the targets:') print(targets) resp = '' while (resp.lower() not in ['yes','ye','y']) and (resp.lower() not in ['no','n']) : resp = str(raw_input('Do you want to revise these channel ranges (y/n): ')) if resp.lower() in ['yes','ye','y']: change_made = True print('Please specify the channel ranges in the format: chan1~chan2.') for i in range(len(chans)): chans[i] = cf.uinput('Enter channel range for target {}: '.format(targets[i]), chans[i]) else: pass if change_made: logger.info('Updating config file to set new moment channel ranges.') config_raw.set('moment','mom_chans',chans) configfile = open(config_file,'w') config_raw.write(configfile) configfile.close() logger.info('Starting generation of moment map(s).') J2000 = False img_list = glob.glob(img_dir+'*.image.J2000') if len(img_list) > 0: J2000 = True for i in range(len(targets)): if J2000: imagename = targets[i]+'.image.J2000' else: imagename = targets[i]+'.image' command = "immoments(imagename='{0}{1}',includepix=[{2},{3}],chans='{4}',outfile='{5}{6}.mom0')".format(img_dir,imagename,thresh*noises[i],thresh*1E6*noises[i],chans[i],mom_dir,targets[i]) logger.info('Executing command: '+command) exec(command) cf.check_casalog(config,config_raw,logger,casalog) command = "exportfits(imagename='{0}{1}.mom0', fitsimage='{0}{1}.mom0.fits',overwrite=True,dropstokes=True,stokeslast=True,history=True,dropdeg=True)".format(mom_dir,targets[i]) logger.info('Executing command: '+command) exec(command) cf.check_casalog(config,config_raw,logger,casalog) logger.info('Completed generation of moment map(s).') # Read configuration file with parameters config_file = sys.argv[-1] config,config_raw = cf.read_config(config_file) interactive = config['global']['interactive'] # Set up your logger logger = cf.get_logger(LOG_FILE_INFO = '{}.log'.format(config['global']['project_name']), LOG_FILE_ERROR = '{}_errors.log'.format(config['global']['project_name'])) # Set up your logger # Define MS file name msfile = '{0}.ms'.format(config['global']['project_name']) #Remove previous moment files cf.check_casaversion(logger) targets = config['calibration']['target_names'] mom_path = config['global']['mom_dir']+'/' logger.info('Deleting any existing moment(s).') for target in targets: del_list = glob.glob(mom_path+'*.mom0') if len(del_list) > 0: for file_path in del_list: try: shutil.rmtree(file_path) except OSError: pass del_list = glob.glob(mom_path+'*.mom0.fits') for file_path in del_list: try: os.remove(file_path) except OSError: pass #Make moment maps moment0(config,config_raw,config_file,logger) ```
{ "source": "jmoldon/multilambda_catalogs", "score": 3 }
#### File: jmoldon/multilambda_catalogs/multilambda_catalogs.py ```python import os import argparse from astropy.coordinates import SkyCoord from astroquery.skyview import SkyView from astropy import units as u import requests import astropy def get_url(coords, surveys, radius=None, width=None, height=None): print('Reading urls') urls = [] valid_surveys = [] missing_surveys = [] for survey in surveys: url = SkyView.get_image_list(position=coords, survey=survey, radius=radius, width=width, height=height) if url != []: if requests.get(url[0]).status_code != 404: urls.append(url) valid_surveys.append(survey) print('OK: ', survey) else: missing_surveys.append(survey) print('Failed: ', survey) for u,s in zip(urls, valid_surveys): print(u,s) return urls, valid_surveys, missing_surveys def filter_available(urls): print('Checking file availability') status = [requests.get(url).status_code for url in urls] available = [s!=404 for s in status] return available def download_image(coords, surveys, name='field', radius=None, width=None, height=None): print('Getting fitsfiles') fitsfiles = SkyView.get_images(position=coords, survey=surveys, radius=radius, width=width, height=height) os.system('mkdir catalogs') for fitsfile, survey in zip(fitsfiles, surveys): print('Writing to file: {0} ...'.format(survey), end='') filename = f'./catalogs/{name}_{survey}.fits'.replace(' ', '_') try: fitsfile[0].writeto(filename, overwrite=True) print('...Done') except astropy.io.fits.verify.VerifyError: print('...Failed') def generate_png(name, casa): casa_command = f'{casa} --nologger --nologfile --nogui -c fits2png.py ./catalogs/{name}' print('Trying to execute casa command:') print(casa_command) try: os.system(casa_command) except: print('Could not execute CASA script. Try specifying casa executable with -casa /path/to/bin/casa') def get_args(): '''This function parses and returns arguments passed in''' # Assign description to the help doc description = 'Select dataset' parser = argparse.ArgumentParser(description=description) parser.add_argument('-n', '--name', dest='name', help='Name prefix for output images', default='field') parser.add_argument('-ra', dest='ra', help='R.A. coordinates in format 00:00:00.0') parser.add_argument('-de', dest='de', help='Dec. coordinates in format +00:00:00.0') parser.add_argument('-r', '--radius', dest='radius', help='Search radius in armin', default=35.) parser.add_argument('--png', dest='png', action='store_true') parser.add_argument('--no-png', dest='png', action='store_false') parser.set_defaults(png=True) parser.add_argument('-c', '--casa', dest='casa', help='casa version to use', default='casa') #default_surveys = ["NVSS","VLA FIRST (1.4 GHz)", "WENSS", "TGSS ADR1", "VLSSr", "SDSSr", "DSS", "2MASS-H"] default_surveys = ["NVSS","VLA FIRST (1.4 GHz)", "WENSS", "TGSS ADR1", "VLSSr", "SDSSr", "DSS"] parser.add_argument('-s', '--surveys', dest='surveys', type=str, nargs='+', help='Whispace separated list of surveys', default=default_surveys) args = parser.parse_args() return args if __name__ == '__main__': args = get_args() name = args.name coords = SkyCoord(args.ra, args.de, unit=(u.hourangle, u.deg), frame='icrs') radius = float(args.radius)*u.arcmin surveys = args.surveys print(surveys) urls, valid_surveys, missing_surveys = get_url(coords=coords, surveys=surveys, radius=radius) download_image(coords=coords, surveys=valid_surveys, radius=radius, name=name) casa = args.casa if png: generate_png(name, casa) # https://astroquery.readthedocs.io/en/latest/skyview/skyview.html # https://docs.astropy.org/en/stable/coordinates/ # https://astroquery.readthedocs.io/en/latest/skyview/skyview.html # https://github.com/aframosp/Review-Photcode/blob/96f2ddcafa73ce9148b11d4cab8be22a7a47c4c7/SkyView_Galaxies.ipynb # https://github.com/andreww5au/Prosp/blob/849cdbdf0cebfbd76c5b9484cdb76e12a0a7556d/skyviewint.py ```
{ "source": "jmoldon/test_iaa_skyview", "score": 3 }
#### File: jmoldon/test_iaa_skyview/iaa_skyview_func.py ```python import warnings warnings.filterwarnings('ignore') import sys import os from astroquery.skyview import SkyView from astropy.coordinates import SkyCoord import astropy.units as u import aplpy import matplotlib.pyplot as plt from astropy.io import fits import astropy def coords_from_name(field_name): """Get ra, dec coordinates from a field name using astropy Args: field_name (str): Field name, e.g. 'M101' Returns: (float, float): ra, dec in degrees Example: >>> coords_from_name('M101') (210.80242917, 54.34875) """ coords = SkyCoord.from_name(field_name) return coords def call_skyview_simple(survey, source_name, fov=1): """Call Skyview to download data from a survey based on input parameters Args: survey (str): name of survey, from https://skyview.gsfc.nasa.gov/current/cgi/survey.pl source (str): name of astronomical source fov (float): FOV in degrees Examples: >>> call_skyview('DSS', 'M31', 2.) >>> call_skyview('NVSS', NGC6670, 0.5) """ coords = coords_from_name(source_name) outname = f'{source_name}_{survey}_{fov}d.fits' images = SkyView.get_images(coords, survey, coordinates='J2000', projection='Car', pixels=500, height=fov*u.deg, width=fov*u.deg) fitsname = f'images/{source_name}_{survey}_{fov}d.fits' try: images[0][0].writeto(fitsname, overwrite=True) except astropy.io.fits.verify.VerifyError: print('Data not available') pass return fitsname def plot_fits(fits_name, plot_title=None, cmap_name='viridis', colorbar=True, contour=True): """Make a PNG plot out of a FITS file Args: fits_name (str): path of fits file plot_title (str): plot title, default is name of the fits file cmap_name (str): name of colormap, default is viridis colorbar (bool): include colorbar, default is True contour (bool): include contour, default is True """ f = aplpy.FITSFigure(fits_name, figsize=(10, 8)) if plot_title == None: plot_title = fits_name.replace('.fits', '') plt.title(plot_title) f.show_colorscale(cmap=cmap_name, stretch='linear') f.ticks.set_color('k') if colorbar: f.add_colorbar() if 'BMAJ' in fits.open(fits_name)[0].header: f.add_beam() print(f'Adding beam for {fits_name}') if contour: f.show_contour() output_name = fits_name.replace('.fits', '.png') plt.savefig(output_name, dpi=200, bbox_inches='tight') def main_func(source_name, survey, fov): if not os.path.isdir('images'): os.mkdir('images') fitsname = call_skyview_simple(survey, source_name, fov) plot_fits(fitsname, plot_title=None, cmap_name='viridis', colorbar=True) if __name__ == '__main__': #warnings.filterwarnings('ignore', category=AstropyDeprecationWarning, append=True) #warnings.simplefilter('ignore', AstropyDeprecationWarning) main_func(sys.argv[1], sys.argv[2], float(sys.argv[3])) ```
{ "source": "jmoles/trail-viewer", "score": 3 }
#### File: GATools/test/test_DBUtils.py ```python import os import unittest from DBUtils import DBUtils class TestDatabaseUtils(unittest.TestCase): def setUp(self): self.pgdb = DBUtils(password=os.environ['PSYCOPG2_DB_PASS']) def testNetworkList(self): net_s, net_i, net_l = self.pgdb.fetchNetworksList() # Verify that the list of networks are equal. self.assertEqual( len(net_i), len(net_l), "Length of network list doesn't match number of integers.") # Verify that the net_s is a single string self.assertEqual( type(net_s), str, "Network string is not a single string.") net_s_2, net_i_2 = self.pgdb.fetchNetworkCmdPrettyPrint() # Verify that the values returned by these two functions # are identical. self.assertEqual( net_s, net_s_2, "Network strings for command prompt don't match!") self.assertEqual( net_i, net_i_2, "List of valid network integers don't match.") if __name__ == '__main__': unittest.main() ```
{ "source": "jmolinaso/bitcli", "score": 2 }
#### File: bitcli/tests/test_main.py ```python from bitcli.main import BitCLITest def test_bitcli(tmp): with BitCLITest() as app: res = app.run() print(res) raise Exception def test_command1(tmp): argv = ['command1'] with BitCLITest(argv=argv) as app: app.run() ```
{ "source": "jmolinski/advent-of-code-2017", "score": 3 }
#### File: advent-of-code-2017/day-14/main.py ```python from functools import reduce import operator as op from itertools import count def reverse_sublist(lst, pos, sublen): tail, head = max(pos + sublen - 256, 0), min(256, pos + sublen) new = list(reversed(lst[pos:head] + lst[:tail])) lst[:tail], lst[pos:head] = new[head - pos:], new[:head - pos] def knot_hash(lengths, rounds=1): lst, position = list(range(256)), 0 for skip_size, length in enumerate(lengths * rounds): reverse_sublist(lst, position, length) position = (position + length + skip_size) % 256 return lst def make_dense_hash(lst): hashed = [reduce(op.xor, lst[i: i + 16]) for i in range(0, 256, 16)] return ''.join(f'{c:02x}' for c in hashed) def hash_binary(hash): return ''.join(f'{int(c, 16):04b}' for c in hash) def count_regions(memory): regions = 0 for i, row in memory.items(): while '1' in row.values(): hide_group(i, [k for k in row.keys() if row[k] == '1'][0], memory) regions += 1 return regions def hide_group(x, y, memory): memory[x][y] = '0' for x_v, y_v in ((1, 0), (0, 1), (-1, 0), (0, -1)): if memory.get(x + x_v, {}).get(y + y_v, '0') == '1': hide_group(x + x_v, y + y_v, memory) key_string = open('data.txt', 'r').read() mem_rows = [[ord(c) for c in l] + [17, 31, 73, 47, 23] for l in [f'{key_string}-{i}' for i in range(128)]] mem_rows = [list(hash_binary(make_dense_hash(knot_hash(r, rounds=64)))) for r in mem_rows] enumerated_mem_rows = dict(enumerate(dict(enumerate(r)) for r in mem_rows)) answer_part_1 = sum(r.count('1') for r in mem_rows) answer_part_2 = count_regions(enumerated_mem_rows) print(answer_part_1, answer_part_2) ``` #### File: advent-of-code-2017/day-21/main.py ```python from itertools import chain, product from functools import reduce puzzle_data = open('data.txt', 'r').read() initial = ('.#.', '..#', '###',) raw_patterns = [ tuple([r for r in rows]) for rows in [[x.strip() for x in p.split('=>')] for p in puzzle_data.split('\n')] ] def rotate_90(matrix): return tuple(zip(*matrix[::-1])) def flip(matrix): return tuple(tuple(r[::-1]) for r in matrix) def pattern_combinations(pattern): pattern = tuple([tuple(p) for p in pattern.split('/')]) modifiers_combinations = chain.from_iterable( product([flip, rotate_90], repeat=i) for i in range(4) ) comb = [reduce(lambda p, m: m(p), modifiers, pattern) for modifiers in modifiers_combinations] return ['/'.join(''.join(r) for r in m) for m in comb] def enrich_patterns(original): eneriched = dict() for input_pattern, output_pattern in original: eneriched.update( dict.fromkeys( pattern_combinations(input_pattern), output_pattern) ) return eneriched def split_into_chunks(l, chunk_size): return [l[i:i + chunk_size] for i in range(0, len(l), chunk_size)] def split_grid(grid): side_size = len(grid) split_size = 2 if side_size % 2 == 0 else 3 chunks = split_into_chunks(grid, split_size) chunks = [tuple('/'.join([r for r in rows]) for rows in zip(*[split_into_chunks(x, split_size) for x in grid_part])) for grid_part in chunks] return chunks def merge_grid(subgrids): grid = [tuple(zip(*[x.split('/') for x in row])) for row in subgrids] grid = [tuple(''.join(subrow) for subrow in row) for row in grid] return tuple(chain.from_iterable(grid)) def run_simulation(grid, mapping, rounds=1): for _ in range(rounds): grid = merge_grid( tuple((mapping[subgrid] for subgrid in subgrids_row)) for subgrids_row in split_grid(grid) ) return grid patterns = enrich_patterns(raw_patterns) p1_grid = run_simulation(initial, patterns, rounds=5) p2_grid = run_simulation(initial, patterns, rounds=18) answer_part_1 = ''.join(p1_grid).count('#') answer_part_2 = ''.join(p2_grid).count('#') print(answer_part_1, answer_part_2) ```
{ "source": "jmolinski/advent-of-code-2018", "score": 3 }
#### File: advent-of-code-2018/day-16/main.py ```python from collections import defaultdict import re def exec_op(fn): def op(reg, a, b, c): nreg = [x for x in reg] # because lists are mutable nreg[c] = fn(reg, a, b) return nreg return op OPERATIONS = { "addr": exec_op(lambda reg, x, y: reg[x] + reg[y]), "addi": exec_op(lambda reg, x, y: reg[x] + y), "mulr": exec_op(lambda reg, x, y: reg[x] * reg[y]), "muli": exec_op(lambda reg, x, y: reg[x] * y), "banr": exec_op(lambda reg, x, y: reg[x] & reg[y]), "bani": exec_op(lambda reg, x, y: reg[x] & y), "borr": exec_op(lambda reg, x, y: reg[x] | reg[y]), "bori": exec_op(lambda reg, x, y: reg[x] | y), "setr": exec_op(lambda reg, x, y: reg[x]), "seti": exec_op(lambda reg, x, y: x), "gtir": exec_op(lambda reg, x, y: int(x > reg[y])), "gtri": exec_op(lambda reg, x, y: int(reg[x] > y)), "gtrr": exec_op(lambda reg, x, y: int(reg[x] > reg[y])), "eqir": exec_op(lambda reg, x, y: int(x == reg[y])), "eqri": exec_op(lambda reg, x, y: int(reg[x] == y)), "eqrr": exec_op(lambda reg, x, y: int(reg[x] == reg[y])), } def part1(): with open("data_registers.txt") as f: data = list([x.strip() for x in f.readlines()]) over_2_possible = 0 all_poss = defaultdict(set) for i in range(len(data) // 4 + 1): l1, l2, l3, *_ = data[i * 4 :] reg = list(map(int, re.findall(r"\d", l1))) result = list(map(int, re.findall(r"\d", l3))) op, a, b, c = map(int, l2.split()) poss = [k for k, fn in OPERATIONS.items() if result == fn(reg, a, b, c)] over_2_possible += int(len(poss) > 2) for p in poss: all_poss[p].add(op) op_map = {} while all_poss: k, v = [(k, v) for k, v in all_poss.items() if len(v) == 1][0] op_map[list(v)[0]] = k del all_poss[k] all_poss = {k: (rest - set(v)) for k, rest in all_poss.items()} return over_2_possible, op_map def part2(op_map): with open("data_program.txt") as f: reg = [0, 0, 0, 0] for l2 in f.readlines(): op, a, b, c = map(int, l2.split()) opnam = op_map[op] reg = OPERATIONS[opnam](reg, a, b, c) return reg[0] over_2, op_mapping = part1() reg_0 = part2(op_mapping) print("1)", over_2, "\n2)", reg_0) ``` #### File: advent-of-code-2018/day-18/main.py ```python from collections import defaultdict from copy import deepcopy with open("data.txt") as f: data = defaultdict(lambda: defaultdict(lambda: None)) for x, r in enumerate(f.readlines()): r = r.strip() for y, c in enumerate(r): data[x][y] = c size = len(data) def adjecent(x, y, data): adj = [] for dx in (-1, 0, 1): for dy in (-1, 0, 1): if dx == 0 and dy == 0: continue adj.append(data[x + dx][y + dy]) return [z for z in adj if z] def hash_board(d): return hash("".join(["".join(r.values()) for r in d.values()])) def run_sim(minutes, find_cycle=False): board = deepcopy(data) m = defaultdict(list) for minute in range(minutes): if find_cycle: m[hash_board(board)].append(minute) new_board = deepcopy(board) for x in range(size): for y in range(size): adj = adjecent(x, y, board) field = board[x][y] if field == "." and adj.count("|") >= 3: new_board[x][y] = "|" elif field == "|" and adj.count("#") >= 3: new_board[x][y] = "#" elif field == "#" and ("#" not in adj or "|" not in adj): new_board[x][y] = "." board = new_board if find_cycle: if any(len(v) > 1 for v in m.values()): return [v for v in m.values() if len(v) > 1][0] wood = sum(a == "|" for r in board.values() for a in r.values()) lumb = sum(a == "#" for r in board.values() for a in r.values()) return wood * lumb def part2(): cycle_data = run_sim(minutes=1000, find_cycle=True) cycle_start = min(cycle_data) cycle_len = max(cycle_data) - min(cycle_data) minute = 1000 * 1000 * 1000 minute = cycle_start + ((minute - cycle_start) % cycle_len) return run_sim(minutes=minute) print("1)", run_sim(minutes=10), "\n2)", part2()) ``` #### File: advent-of-code-2018/day-19/main.py ```python from collections import defaultdict import re def read_data(): with open("data.txt") as f: ip = int(f.readline().split()[1]) data = [] for l in f.readlines(): op, a, b, c = l.strip().split() data.append([op, int(a), int(b), int(c)]) return ip, data def exec_op(fn): def op(reg, a, b, c): nreg = [x for x in reg] # because lists are mutable nreg[c] = fn(reg, a, b) return nreg return op OPERATIONS = { "addr": exec_op(lambda reg, x, y: reg[x] + reg[y]), "addi": exec_op(lambda reg, x, y: reg[x] + y), "mulr": exec_op(lambda reg, x, y: reg[x] * reg[y]), "muli": exec_op(lambda reg, x, y: reg[x] * y), "banr": exec_op(lambda reg, x, y: reg[x] & reg[y]), "bani": exec_op(lambda reg, x, y: reg[x] & y), "borr": exec_op(lambda reg, x, y: reg[x] | reg[y]), "bori": exec_op(lambda reg, x, y: reg[x] | y), "setr": exec_op(lambda reg, x, y: reg[x]), "seti": exec_op(lambda reg, x, y: x), "gtir": exec_op(lambda reg, x, y: int(x > reg[y])), "gtri": exec_op(lambda reg, x, y: int(reg[x] > y)), "gtrr": exec_op(lambda reg, x, y: int(reg[x] > reg[y])), "eqir": exec_op(lambda reg, x, y: int(x == reg[y])), "eqri": exec_op(lambda reg, x, y: int(reg[x] == y)), "eqrr": exec_op(lambda reg, x, y: int(reg[x] == reg[y])), } def run_simulation(reg): ip_reg, data = read_data() ip = 0 while ip < len(data): op, a, b, c = data[ip] reg[ip_reg] = ip reg = OPERATIONS[op](reg, a, b, c) ip = reg[ip_reg] ip += 1 return reg[0] part1 = run_simulation(reg=[0, 0, 0, 0, 0, 0]) # part2 = run_simulation(reg=[1, 0, 0, 0, 0, 0]) print( "1)", part1, "\n2)", "proper simulation would take forever, check part2_solution.py" ) ``` #### File: advent-of-code-2018/day-22/main.py ```python from collections import defaultdict with open("data.txt") as f: DEPTH = int(f.readline().split()[1]) TARGET = list(map(int, f.readline().strip().split()[1].split(","))) # (0, 0) (1, 0) (2, 0) (3, 0) # (0, 1) (1, 1) (2, 1) (3, 1) # (0, 2) (1, 2) (2, 2) (3, 2) N, S, W, E = (0, -1), (0, 1), (-1, 0), (1, 0) def find_node(node_grid, x, y, dir=(0, 0)): dx, dy = dir nx, ny = x + dx, y + dy return node_grid.get(nx, dict()).get(ny, None) class Node: def __init__(self, x, y, c="@"): self.x = x self.y = y self.c = c self.geo_ind_cache = -1 def link_nei(self, node_grid): fn = lambda dir: find_node(node_grid, self.x, self.y, dir) self.n = fn(N) self.s = fn(S) self.w = fn(W) self.e = fn(E) self.adj = [x for x in [self.n, self.s, self.w, self.e] if x] def __repr__(self): return f"N({self.x}, {self.y}, {self.c})" def geo_index(self): if self.geo_ind_cache != -1: return self.geo_ind_cache geo_ind = -1 if self.x == self.y == 0: geo_ind = 0 elif self.x == TARGET[0] and self.y == TARGET[1]: geo_ind = 0 elif self.y == 0: geo_ind = self.x * 16807 elif self.x == 0: geo_ind = self.y * 48271 else: geo_ind = self.w.erosion_level() * self.n.erosion_level() self.geo_ind_cache = geo_ind return geo_ind def erosion_level(self): return (self.geo_index() + DEPTH) % 20183 def determine_type(self): t = self.erosion_level() % 3 if t == 0: self.c = "." if t == 1: self.c = "=" if t == 2: self.c = "|" self.acc_tools = {".": "ct", "=": "cn", "|": "tn"}[self.c] def make_grid(): nodes = [] nodes_grid = defaultdict(dict) for y in range(TARGET[1] + 50): for x in range(TARGET[0] * 6): n = Node(x, y) nodes_grid[x][y] = n nodes.append(n) for n in nodes: n.link_nei(nodes_grid) for n in nodes: n.determine_type() return nodes_grid def calc_risk(nodes_grid): risk = 0 risk_map = {".": 0, "=": 1, "|": 2} for x in range(TARGET[0] + 1): for y in range(TARGET[1] + 1): risk += risk_map.get(nodes_grid[x][y].c, 0) return risk def quickest_path_time(nodes_grid): past_workers = [] workers = [(0, 0, "t", 0)] # x y tool time paths = dict() found_target = False time_to_target = -1 while workers: new_workers = [] for x, y, tool, time in workers: if not (paths.get((x, y, tool), 10e9) > time): past_workers.append((x, y, tool, time)) continue paths[(x, y, tool)] = time if found_target and time > time_to_target: past_workers.append((x, y, tool, time)) continue if x == TARGET[0] and y == TARGET[1]: past_workers.append((x, y, tool, time)) if found_target: time_to_target = min(time_to_target, time) else: found_target = True time_to_target = time continue # spawn new workers this_node = nodes_grid[x][y] for n in this_node.adj: if tool in n.acc_tools: new_workers.append((n.x, n.y, tool, time + 1)) else: for acc_tool in n.acc_tools: new_workers.append((n.x, n.y, acc_tool, time + 8)) workers = new_workers times = [t for x, y, _, t in past_workers if x == TARGET[0] and y == TARGET[1]] return times[-2] def run_simulation(): nodes_grid = make_grid() nodes_grid[TARGET[0]][TARGET[1]].acc_tools = "t" return calc_risk(nodes_grid), quickest_path_time(nodes_grid) part1, part2 = run_simulation() print("1)", part1, "\n2)", part2) ``` #### File: advent-of-code-2018/day-9/main.py ```python from collections import defaultdict as ddict class Marble: def __init__(self, v, prev, next): self.v = v self.prev = prev self.next = next def add_next(self, v): m = Marble(v, self, self.next) self.next.prev = m self.next = m return m def remove(self): self.prev.next = self.next self.next.prev = self.prev return self def calc_max_score(players, last): pp = ddict(int) m0, m1 = Marble(0, None, None), Marble(1, None, None) m0.next, m0.prev = m1, m1 m1.next, m1.prev = m0, m0 curr = m1 for i in range(2, last + 1): pid = i % players if i % 23 == 0: pp[pid] += i rem = curr.prev.prev.prev.prev.prev.prev.prev.remove() pp[pid] += rem.v curr = rem.next else: curr = curr.next.add_next(i) return max(pp.items(), key=lambda x: x[1])[1] players, last = 423, 71944 print("1)", calc_max_score(players, last)) print("2)", calc_max_score(players, last * 100)) ```
{ "source": "jmolinski/advent-of-code-2019", "score": 3 }
#### File: advent-of-code-2019/day-11/solution.py ```python from __future__ import annotations from typing import Any, Callable, List, NoReturn, Optional, Tuple class CPU: def __init__(self, vm: VM) -> None: self.vm = vm self.mem = vm.mem self.operations = { 1: (self.op_1, 4), 2: (self.op_2, 4), 3: (self.op_3, 2), 4: (self.op_4, 2), 5: (self.op_5, 2), 6: (self.op_6, 3), 7: (self.op_7, 4), 8: (self.op_8, 4), 99: (self.op_99, 0), 9: (self.op_9, 2), } self.relative_base = 0 def run(self, op: int) -> Callable[[int, List[int]], int]: def wrapper(pos: int, modes: List[int]) -> int: fn, length = self.operations[op] ret = fn(pos, modes) return pos + length if ret is None else ret return wrapper def mode_aware_get(self, mode: int, pos: int) -> int: if mode == 0: return self.mem[self.mem[pos]] elif mode == 1: return self.mem[pos] else: # mode 2 return self.mem[self.relative_base + self.mem[pos]] def mode_aware_set(self, mode: int, pos: int, val: int) -> None: if mode == 0: self.mem[self.mem[pos]] = val elif mode == 1: raise ValueError else: # mode 2 self.mem[self.relative_base + self.mem[pos]] = val def op_1(self, pos: int, modes: List[int]) -> None: a = self.mode_aware_get(modes[0], pos + 1) b = self.mode_aware_get(modes[1], pos + 2) self.mode_aware_set(modes[2], pos + 3, a + b) def op_2(self, pos: int, modes: List[int]) -> None: a = self.mode_aware_get(modes[0], pos + 1) b = self.mode_aware_get(modes[1], pos + 2) self.mode_aware_set(modes[2], pos + 3, a * b) def op_3(self, pos: int, modes: List[int]) -> Optional[int]: if not self.vm.inputs: if self.vm.halt_on_empty_input: self.vm.halt = True return pos self.mode_aware_set(modes[0], pos + 1, self.vm.inputs.pop(0)) return None def op_4(self, pos: int, modes: List[int]) -> None: a = self.mode_aware_get(modes[0], pos + 1) self.vm.outputs.append(a) def op_5(self, pos: int, modes: List[int]) -> int: a = self.mode_aware_get(modes[0], pos + 1) b = self.mode_aware_get(modes[1], pos + 2) return b if a != 0 else pos + 3 def op_6(self, pos: int, modes: List[int]) -> int: a = self.mode_aware_get(modes[0], pos + 1) b = self.mode_aware_get(modes[1], pos + 2) return b if a == 0 else pos + 3 def op_7(self, pos: int, modes: List[int]) -> None: a = self.mode_aware_get(modes[0], pos + 1) b = self.mode_aware_get(modes[1], pos + 2) self.mode_aware_set(modes[2], pos + 3, 1 if a < b else 0) def op_8(self, pos: int, modes: List[int]) -> None: a = self.mode_aware_get(modes[0], pos + 1) b = self.mode_aware_get(modes[1], pos + 2) self.mode_aware_set(modes[2], pos + 3, 1 if a == b else 0) def op_9(self, pos: int, modes: List[int]) -> None: a = self.mode_aware_get(modes[0], pos + 1) self.relative_base += a def op_99(self, pos: int, modes: List[int]) -> NoReturn: raise StopIteration class VM: def __init__(self, mem: List[int], *, halt_on_empty_input=False) -> None: self.mem = mem[:] self.mem = self.mem + [0 for _ in range(20000)] self.inputs: List[int] = [] self.halt_on_empty_input = halt_on_empty_input self.halt = False self.outputs: List[int] = [] self.p = 0 self.is_finished = False self.cpu = CPU(self) def exec( self, inputs: List[int], *, init_p: int = 0 ) -> Tuple[List[int], List[int]]: self.inputs += inputs self.p = init_p try: while True: self.p = self.run_op(self.p) if self.halt: return self.mem, self.outputs except StopIteration: self.is_finished = True return self.mem, self.outputs def resume(self, inputs: List[int]) -> Tuple[List[int], List[int]]: self.halt = False return self.exec(inputs, init_p=self.p) def run_op(self, p: int) -> int: opcode = "0000" + str(self.mem[p]) op = int(opcode[-2:]) modes = [int(opcode[-3]), int(opcode[-4]), int(opcode[-5])] return self.cpu.run(op)(p, modes) def clear_output(self) -> None: self.outputs = [] BLACK, WHITE = 0, 1 def run_robot(inp: List[int], starting_color: int) -> dict: # Board indexing: # (1, 0) (1, 1) # (0, 0) (0, 1) up, down, left, right = (1, 0), (-1, 0), (0, -1), (0, 1) right_turn = {up: right, right: down, down: left, left: up} left_turn = {up: left, left: down, down: right, right: up} position = (0, 0) move_vector = up tile_colors = {position: starting_color} vm = VM(inp, halt_on_empty_input=True) vm.exec(inputs=[]) while not vm.is_finished: vm.clear_output() _, [color_to_paint, turn_direction] = vm.resume( inputs=[tile_colors.get(position, BLACK)] ) tile_colors[position] = color_to_paint move_vector = (left_turn if turn_direction == 0 else right_turn)[move_vector] position = (position[0] + move_vector[0], position[1] + move_vector[1]) return tile_colors def part1(inp: List[int]) -> int: return len(run_robot(inp, BLACK)) def part2(inp: List[int]) -> None: tiles = run_robot(inp, WHITE) min_x, max_x = min(x for (y, x) in tiles), max(x for (y, x) in tiles) min_y, max_y = min(y for (y, x) in tiles), max(y for (y, x) in tiles) for y in range(max_y, min_y - 1, -1): for x in range(min_x, max_x + 1): color = " " if tiles.get((y, x)) == WHITE: color = "[X]" print(color, end="") print() def main() -> None: with open("input.txt") as f: inp = list(map(int, f.read().strip().split(","))) print("Part 1:", part1(inp)) print("Part 2:") part2(inp) main() ``` #### File: advent-of-code-2019/day-12/solution.py ```python import itertools import math from typing import Dict, Iterable, List, Set, Tuple, cast def vec_sum(a: Iterable[int], b: Iterable[int]) -> Tuple[int, int, int]: return cast(Tuple[int, int, int], tuple([x + y for (x, y) in zip(a, b)])) def lcm(a: int, b: int) -> int: return abs(a * b) // math.gcd(a, b) def mkchange(a: int, b: int) -> int: if a > b: return -1 if a == b: return 0 return 1 def umoon( moon: Tuple[int, int, int], moon_vel: Tuple[int, int, int], moons: Set[Tuple[int, int, int]], ) -> Tuple[int, int, int]: x, y, z = moon xc, yc, zc = moon_vel for m in moons: dx, dy, dz = m xc, yc, zc = xc + mkchange(x, dx), yc + mkchange(y, dy), zc + mkchange(z, dz) return (xc, yc, zc) def update_velocities( v_m: Dict[Tuple[int, int, int], Tuple[int, int, int]] ) -> Dict[Tuple[int, int, int], Tuple[int, int, int]]: ks = set(v_m.keys()) mp = {m: ks - {m} for m in ks} return {m: umoon(m, v_m[m], mp[m]) for m in mp} def energy(m: Tuple[int, int, int], v: Tuple[int, int, int]) -> int: (x, y, z), (a, b, c) = m, v pot = abs(x) + abs(y) + abs(z) kin = abs(a) + abs(b) + abs(c) return pot * kin def part1(inp: List[Tuple[int, int, int]]) -> int: v_m = {m: (0, 0, 0) for m in inp} for step in range(1000): v_m = update_velocities(v_m) v_m = {vec_sum(m, v): v for (m, v) in v_m.items()} # apply velocity return sum(energy(m, k) for m, k in v_m.items()) def coordinate_repeats_after(inp: Iterable[int]) -> int: v_m = [(m, 0) for m in inp] first = tuple(v_m) for step in itertools.count(1): v_m = [ (m, v + sum(mkchange(m, dx) for dx in moons)) for ((m, v), moons) in [(m, [x[0] for x in v_m if x != m]) for m in v_m] ] v_m = [(m + v, v) for (m, v) in v_m] # apply velocity if first == tuple(v_m) and step > 1: return step return -1 def part2(inp: List[Tuple[int, int, int]]) -> int: coords = list(itertools.chain.from_iterable(inp)) x, y, z = coords[::3], coords[1::3], coords[2::3] return lcm( coordinate_repeats_after(x), lcm(coordinate_repeats_after(y), coordinate_repeats_after(z)), ) def main() -> None: inp = [(16, -11, 2), (0, -4, 7), (6, 4, -10), (-3, -2, -4)] print("Part 1:", part1(inp)) print("Part 2:", part2(inp)) main() ``` #### File: advent-of-code-2019/day-14/solution.py ```python from __future__ import annotations from typing import Callable def calculate_cost( recipes: dict[str, tuple[int, dict[str, int]]], wanted_fuel: int ) -> int: ore = 0 have = {name: 0 for name in recipes} have["FUEL"] = -wanted_fuel while any(v < 0 for v in have.values()): for name in have: while have[name] < 0: output, ingredients = recipes[name] times = (-have[name]) // output if times * output < (-have[name]): times += 1 have[name] += output * times for iname, iamount in ingredients.items(): if iname == "ORE": ore += iamount * times else: have[iname] -= iamount * times return ore def input_pair(s: str) -> tuple[str, int]: num, name = s.strip().split() return name.strip(), int(num) def binsearch( value: int, fun: Callable[[int], int], low: int = 0, high: int = 100_000_000 ) -> int: midpoint = (low + high) // 2 v_midpoint = fun(midpoint) if v_midpoint < value <= fun(midpoint + 1): return midpoint if v_midpoint > value: return binsearch(value, fun, low, midpoint) return binsearch(value, fun, midpoint, high) def main() -> None: with open("input.txt") as f: inp = [[a.strip() for a in l.split("=>")] for l in f.read().strip().split("\n")] recipes = {} for inputs, output in inp: name, amount = input_pair(output) recipes[name] = (amount, dict(input_pair(i) for i in inputs.split(","))) print("Part 1:", calculate_cost(recipes, wanted_fuel=1)) print( "Part 2:", binsearch(1_000_000_000_000, lambda a: calculate_cost(recipes, wanted_fuel=a)), ) main() ``` #### File: advent-of-code-2019/day-1/solution.py ```python from typing import List def required_fuel(mass: int) -> int: return max((mass // 3) - 2, 0) def part1(inp: List[int]) -> int: return sum(required_fuel(module) for module in inp) def part2(inp: List[int]) -> int: def fuel_for_module(m): last_added = fuel = required_fuel(m) while (to_add := required_fuel(last_added)) > 0: fuel += to_add last_added = to_add return fuel return sum(fuel_for_module(m) for m in inp) def main() -> None: with open("input.txt") as f: inp = list(map(int, f.read().split())) print("Part 1:", part1(inp)) print("Part 2:", part2(inp)) main() ``` #### File: advent-of-code-2019/day-2/solution.py ```python from typing import List, NoReturn def op_1(l: List[int], pos: int) -> int: a = l[l[pos + 1]] b = l[l[pos + 2]] l[l[pos + 3]] = a + b return 4 def op_2(l: List[int], pos: int) -> int: a = l[l[pos + 1]] b = l[l[pos + 2]] l[l[pos + 3]] = a * b return 4 def op_99(l: List[int], pos: int) -> NoReturn: raise StopIteration class VM: operations = { 1: op_1, 2: op_2, 99: op_99, } def __init__(self, l: List[int]) -> None: self.l = l[:] def exec(self, noun: int, verb: int) -> List[int]: self.l[1] = noun self.l[2] = verb p = 0 try: while True: p = self.run_op(p) except StopIteration: return self.l def run_op(self, p: int) -> int: return p + self.operations[self.l[p]](self.l, p) def part1(inp: List[int]) -> int: return VM(inp).exec(12, 2)[0] def part2(inp: List[int]) -> int: for noun in range(100): for verb in range(100): if VM(inp).exec(noun, verb)[0] == 19690720: return 100 * noun + verb raise ValueError def main() -> None: with open("input.txt") as f: inp = list(map(int, f.read().strip().split(","))) print("Part 1:", part1(inp)) print("Part 2:", part2(inp)) main() ``` #### File: advent-of-code-2019/day-3/solution.py ```python from typing import List, Tuple, Set, Dict def add_vec(v1: Tuple[int, int], v2: Tuple[int, int]) -> Tuple[int, int]: return v1[0] + v2[0], v1[1] + v2[1] def map_moves(steps: List[Tuple[str, int]]) -> Dict[Tuple[int, int], int]: movement_vec = { "U": (1, 0), "D": (-1, 0), "R": (0, 1), "L": (0, -1), } pos, step = (0, 0), 1 visited: Dict[Tuple[int, int], int] = {} for direction, length in steps: for i in range(1, length + 1): pos = add_vec(pos, movement_vec[direction]) visited[pos] = visited.get(pos, step) step += 1 return visited def part1(inp: List[List[Tuple[str, int]]]) -> int: cable1, cable2, *a = inp path1, path2 = map_moves(cable1), map_moves(cable2) intersections = set(path1.keys()) & set(path2.keys()) distances = [abs(a) + abs(b) for (a, b) in intersections] return min(distances) def part2(inp: List[List[Tuple[str, int]]]) -> int: cable1, cable2, *a = inp path1, path2 = map_moves(cable1), map_moves(cable2) combined_steps = { length + path2[position] for position, length in path1.items() if position in path2 } return min(combined_steps) def main() -> None: with open("input.txt") as f: inp = [ list(map(lambda o: (o[0], int(o[1:])), x.strip().split(","))) for x in f.readlines() ] print("Part 1:", part1(inp)) print("Part 2:", part2(inp)) main() ```
{ "source": "jmolinski/djangorestframework-stubs", "score": 2 }
#### File: djangorestframework-stubs/scripts/ignored.py ```python MOCK_OBJECTS = ['MockRequest', 'MockView', 'MockTimezone', 'MockLazyStr', 'MockQueryset'] IGNORED_ERRORS = [ *MOCK_OBJECTS, 'Need type annotation for', 'URLPattern', # moved in django 2.0+ 'URLResolver', # moved in django 2.0+ 'Invalid signature "def (self: Any) -> Any"', 'already defined on line', 'already defined (possibly by an import)', # 'variable has type Module', # 'Invalid base class', # 'Invalid type "self"', # re.compile(r'Item "None" of "Optional\[[a-zA-Z0-9]+\]" has no attribute'), # 'Optional[List[_Record]]', # '"Callable[..., Any]" has no attribute "initkwargs"', # 'Cannot assign to a type', # 'Cannot assign to a method', # '"Type[NonTimeThrottle]" has no attribute "called"', # 'BaseTokenAuthTests', # re.compile(r'Dict entry [0-9] has incompatible type "[a-zA-Z]+": "None"; expected "object": "bool"'), # 'Incompatible types in assignment (expression has type "None", variable has type "List[Any]")', # 'Value of type "Optional[str]" is not indexable', # 'Argument 1 to "QueryDict" has incompatible type "Dict[<nothing>, <nothing>]";' # 'Argument "queryset" to "BaseUniqueForValidator" has incompatible type "object"; expected "QuerySet[Any]"', # 'has incompatible type "Dict[<nothing>, <nothing>]"; expected "Request"', # 'Argument 1 to "render" has incompatible type "Dict[<nothing>, <nothing>]"; expected "HttpRequest"', 'Cannot infer type of lambda', '"type" has no attribute', ] ```
{ "source": "jmolinski/synacor-challenge", "score": 2 }
#### File: synacor-challenge/python/vm_structs.py ```python from collections import namedtuple Token = namedtuple('Token', 'raw, value, stbyte, ndbyte') OP_ARITY = { 0: 0, 1: 2, 2: 1, 3: 1, 4: 3, 5: 3, 6: 1, 7: 2, 8: 2, 9: 3, 10: 3, 11: 3, 12: 3, 13: 3, 14: 2, 15: 2, 16: 2, 17: 1, 18: 0, 19: 1, 20: 1, 21: 0 } class TokenTree: @classmethod def from_bytes(clx, b): return TokenTree(clx.tokenize(b)) @staticmethod def parse_token(b): value = int.from_bytes(b, byteorder='little') stbyte, ndbyte = (value << 8) >> 8, (value >> 8) return Token(b, value, stbyte, ndbyte) @classmethod def tokenize(clx, rawcode, token_len=2): return [clx.parse_token(rawcode[i:i + token_len]) for i in range(0, len(rawcode), token_len)] def __init__(self, tokens, start=0): self.tokens = tokens self.position = 0 def get_op_with_args(self): op = self.take(1)[0] args = self.take(OP_ARITY[op.value]) return op, args def take(self, n=1): r = self.tokens[self.position:self.position + n] self.position += n return r def check(self, n=1): return self.tokens[self.position:self.position + n] def has_next(self): return self.position != len(self.tokens) def nth(self, n): return self.tokens[n] def jump_to(self, p): self.position = p def update_token(self, pos, val): stbyte, ndbyte = (val << 8) >> 8, (val >> 8) self.tokens[pos] = Token(b'', val, stbyte, ndbyte) class Memory: def __init__(self): self.stack = [] self.registers = {} ```
{ "source": "jmolinski/traktpy", "score": 2 }
#### File: tests/inferfaces_tests/test_comments.py ```python import pytest from tests.test_data.comments import ( ATTACHED_SHOW, COMMENT, LIKED_USER, TRENDING_COMMENTS, ) from tests.test_data.movies import MOVIE1 from tests.test_data.shows import SHOW from tests.utils import get_last_req, mk_mock_client from trakt.core.exceptions import ArgumentError from trakt.core.json_parser import parse_tree from trakt.core.paths.response_structs import Comment, Sharing PAG_H = {"X-Pagination-Page-Count": 1} @pytest.fixture def comments_client(): return mk_mock_client( { r".*comments/.*/item.*": [ATTACHED_SHOW, 200], r".*comments/.*/likes.*": [[LIKED_USER], 200, PAG_H], r".*comments/trending.*": [TRENDING_COMMENTS, 200, PAG_H], r".*comments/recent.*": [TRENDING_COMMENTS, 200, PAG_H], r".*comments/updates.*": [TRENDING_COMMENTS, 200, PAG_H], } ) def test_post_comment(): client = mk_mock_client({".*comments.*": [COMMENT, 201]}) text = "a b c d e f" # at least 5 words sharing = Sharing(twitter=True) comment = client.comments.post_comment( item=123, comment=text, spoiler=True, sharing=sharing ) assert comment.id == COMMENT["id"] def test_get_comment(): client = mk_mock_client({".*comments.*": [COMMENT, 200]}) comment = parse_tree(COMMENT, Comment) comment = client.comments.get_comment(id=comment) assert comment.user.name == COMMENT["user"]["name"] def test_update_comment(): client = mk_mock_client({".*comments.*": [COMMENT, 200]}) with pytest.raises(ArgumentError): client.comments.update_comment(id=123, comment="a b") comment = client.comments.update_comment(id=123, comment="a b c d e f") assert comment.replies == COMMENT["replies"] def test_delete_comment(): client = mk_mock_client({".*comments.*": [{}, 204]}) client.comments.delete_comment(id=123) assert get_last_req(client.http)["method"] == "DELETE" def test_get_replies(): client = mk_mock_client({".*comments.*": [[COMMENT], 200, PAG_H]}) comments = list(client.comments.get_replies(id=123)) assert comments[0].id == COMMENT["id"] def test_post_reply(): client = mk_mock_client({".*comments.*": [COMMENT, 201]}) reply = client.comments.post_reply(id=123, comment="a b c d e f") assert reply.id == COMMENT["id"] def test_get_item(comments_client): item = comments_client.comments.get_item(id=123) assert item.type == "show" assert item.show.ids.trakt == SHOW["ids"]["trakt"] def test_get_users(comments_client): likes = list(comments_client.comments.get_likes(id=123)) assert likes[0].user.username == LIKED_USER["user"]["username"] def test_like_comment(): client = mk_mock_client({".*comments.*": [{}, 200]}) client.comments.like_comment(id=50) assert get_last_req(client.http)["method"] == "POST" def test_remove_like(): client = mk_mock_client({".*comments.*": [{}, 204]}) client.comments.remove_like(id=50) assert get_last_req(client.http)["method"] == "DELETE" def test_trending(comments_client): comments = list(comments_client.comments.get_trending(include_replies=True)) assert comments[0].type == "movie" def test_recently_created(comments_client): comments = list(comments_client.comments.get_recently_created(sort="newest")) assert comments[0].movie.title == MOVIE1["title"] def test_recently_updated(comments_client): comments = list(comments_client.comments.get_recently_updated(type="movies")) assert comments[0].comment.id == TRENDING_COMMENTS[0]["comment"]["id"] ``` #### File: tests/inferfaces_tests/test_movies.py ```python import pytest from tests.test_data.comments import COMMENTS from tests.test_data.lists import LIST from tests.test_data.movies import ( ALIASES, ANTICIPATED_MOVIES, BOX_OFFICE, EXTENDED_MOVIE, MOVIE_STATS, MOVIES, PLAYED_MOVIES, RATINGS, RELATED_MOVIES, RELEASES, TRANSLATIONS, TRENDING_MOVIES, UPDATED_MOVIES, ) from tests.test_data.people import MOVIE_ALL_PEOPLE from tests.test_data.user import USER from tests.utils import mk_mock_client from trakt.core.exceptions import ArgumentError @pytest.fixture def movies_client(): PAG_H = {"X-Pagination-Page-Count": 1} return mk_mock_client( { r".*movies/trending.*": [TRENDING_MOVIES, 200, PAG_H], r".*movies/popular.*": [MOVIES, 200, PAG_H], r".*movies/played.*": [PLAYED_MOVIES, 200, PAG_H], r".*movies/watched.*": [PLAYED_MOVIES, 200, PAG_H], r".*movies/collected.*": [PLAYED_MOVIES, 200, PAG_H], r".*movies/anticipated.*": [ANTICIPATED_MOVIES, 200, PAG_H], r".*movies/boxoffice.*": [BOX_OFFICE, 200], r".*movies/updates.*": [UPDATED_MOVIES, 200, PAG_H], r".*movies/.*/aliases.*": [ALIASES, 200], r".*movies/.*/releases.*": [RELEASES, 200], r".*movies/.*/translations.*": [TRANSLATIONS, 200], r".*movies/.*/comments.*": [COMMENTS, 200, PAG_H], r".*movies/.*/lists.*": [[LIST], 200, PAG_H], r".*movies/.*/people.*": [MOVIE_ALL_PEOPLE, 200, PAG_H], r".*movies/.*/ratings.*": [RATINGS, 200], r".*movies/.*/related.*": [RELATED_MOVIES, 200, PAG_H], r".*movies/.*/stats.*": [MOVIE_STATS, 200], r".*movies/.*/watching.*": [[USER], 200], } ) def test_trending(movies_client): movies = list(movies_client.movies.get_trending()) assert len(movies) == 2 assert movies[0].watchers == TRENDING_MOVIES[0]["watchers"] def test_popular(movies_client): movies = list(movies_client.movies.get_popular()) assert len(movies) == 2 assert movies[0].title == MOVIES[0]["title"] def test_played(movies_client): movies = list(movies_client.movies.get_most_played(countries="us", period="weekly")) assert len(movies) == 2 assert movies[0].watcher_count == PLAYED_MOVIES[0]["watcher_count"] with pytest.raises(ArgumentError): movies_client.movies.get_most_played(countries="xyz") with pytest.raises(ArgumentError): movies_client.movies.get_most_played(period="xyz") def test_watched(movies_client): movies = list(movies_client.movies.get_most_watched(genres="de")) assert movies[0].play_count == PLAYED_MOVIES[0]["play_count"] def test_collected(movies_client): movies = list(movies_client.movies.get_most_collected(period="all")) assert movies[0].movie.title == PLAYED_MOVIES[0]["movie"]["title"] def test_anticipated(movies_client): movies = list(movies_client.movies.get_most_anticipated()) assert movies[0].list_count == ANTICIPATED_MOVIES[0]["list_count"] def test_box_office(movies_client): movies = list(movies_client.movies.get_box_office()) assert movies[0].revenue == BOX_OFFICE[0]["revenue"] def test_updated(movies_client): movies = list(movies_client.movies.get_recently_updated(start_date="2012-05-05")) assert movies[0].movie.title == UPDATED_MOVIES[0]["movie"]["title"] with pytest.raises(ArgumentError): movies_client.movies.get_recently_updated(start_date="2012-14-5") def test_summary(): client = mk_mock_client({".*movies.*": [EXTENDED_MOVIE, 200]}) movie = client.movies.get_summary(movie=123, extended=True) assert movie.homepage == EXTENDED_MOVIE["homepage"] def test_aliases(movies_client): aliases = movies_client.movies.get_aliases(movie=123) assert aliases[0].title == ALIASES[0]["title"] def test_releases(movies_client): releases = movies_client.movies.get_releases(movie=123, country="us") assert releases[0].release_type == RELEASES[0]["release_type"] def test_translations(movies_client): translations = movies_client.movies.get_translations(movie=123, language="de") assert translations[0].title == TRANSLATIONS[0]["title"] def test_comments(movies_client): with pytest.raises(ArgumentError): movies_client.movies.get_comments(movie=123, sort="xtz") comments = list(movies_client.movies.get_comments(movie=123)) assert comments[0].comment == COMMENTS[0]["comment"] def test_lists(movies_client): lists = list(movies_client.movies.get_lists(movie=123)) assert lists[0].comment_count == LIST["comment_count"] def test_get_people(movies_client): people = movies_client.movies.get_people(movie=123) assert people.cast[0].character == MOVIE_ALL_PEOPLE["cast"][0]["character"] def test_ratings(movies_client): ratings = movies_client.movies.get_ratings(movie=123) assert ratings.rating == RATINGS["rating"] def test_related(movies_client): related = list(movies_client.movies.get_related(movie=123)) assert related[0].title == RELATED_MOVIES[0]["title"] def test_stats(movies_client): stats = movies_client.movies.get_stats(movie=123) assert stats.watchers == MOVIE_STATS["watchers"] def test_watching(movies_client): watching = list(movies_client.movies.get_users_watching(movie=123)) assert watching[0].name == USER["name"] ``` #### File: tests/inferfaces_tests/test_people.py ```python import pytest from tests.test_data.lists import LIST from tests.test_data.people import MOVIE_CREDITS, PERSON, SHOW_CREDITS from tests.utils import mk_mock_client from trakt.core.exceptions import ArgumentError from trakt.core.json_parser import parse_tree from trakt.core.models import Person def test_get_person(): client = mk_mock_client({r".*people.*": [PERSON, 200]}) person = parse_tree(PERSON, Person) with pytest.raises(ArgumentError): client.people.get_person(person=0.5) assert client.people.get_person(person=person.ids.trakt).name == PERSON["name"] assert client.people.get_person(person=person).name == PERSON["name"] def test_get_movie_credits(): client = mk_mock_client({r".*people.*": [MOVIE_CREDITS, 200]}) credits = client.people.get_movie_credits(person=123) assert credits.cast[0].character == MOVIE_CREDITS["cast"][0]["character"] def test_get_show_credits(): client = mk_mock_client({r".*people.*": [SHOW_CREDITS, 200]}) credits = client.people.get_show_credits(person=123) expected = SHOW_CREDITS["crew"]["production"][0]["job"] assert credits.crew.production[0].job == expected def test_get_lists(): client = mk_mock_client({r".*people.*": [[LIST], 200]}) lists = list(client.people.get_lists(person=123)) assert len(lists) == 1 assert lists[0].name == LIST["name"] ``` #### File: tests/inferfaces_tests/test_scrobble.py ```python import pytest from tests.test_data.scrobble import EPISODE, MOVIE1, RESP_EPISODE, RESP_MOVIE, SHOW from tests.utils import mk_mock_client from trakt.core.exceptions import ArgumentError from trakt.core.json_parser import parse_tree from trakt.core.models import Episode, Movie, Show def test_start_scrobble_movie(): client = mk_mock_client({".*scrobble.*": [RESP_MOVIE, 201]}) movie = parse_tree(MOVIE1, Movie) episode = parse_tree(EPISODE, Episode) with pytest.raises(ArgumentError): client.scrobble.start_scrobble(progress=5) with pytest.raises(ArgumentError): client.scrobble.start_scrobble(progress=5, episode=episode, movie=movie) resp = client.scrobble.start_scrobble(movie=movie, progress=5) assert resp.movie.title == MOVIE1["title"] def test_start_scrobble_episode(): client = mk_mock_client({".*scrobble.*": [RESP_EPISODE, 201]}) episode = parse_tree(EPISODE, Episode) show = parse_tree(SHOW, Show) resp = client.scrobble.start_scrobble(episode=episode, show=show, progress=5) assert resp.show.title == SHOW["title"] def test_pause_scrobble_movie(): client = mk_mock_client({".*scrobble.*": [RESP_MOVIE, 201]}) movie = parse_tree(MOVIE1, Movie) episode = parse_tree(EPISODE, Episode) with pytest.raises(ArgumentError): client.scrobble.pause_scrobble(progress=5) with pytest.raises(ArgumentError): client.scrobble.pause_scrobble(progress=5, episode=episode, movie=movie) resp = client.scrobble.pause_scrobble(movie=movie, progress=5) assert resp.movie.title == MOVIE1["title"] def test_pause_scrobble_episode(): client = mk_mock_client({".*scrobble.*": [RESP_EPISODE, 201]}) resp = client.scrobble.pause_scrobble(episode=123, show=123, progress=5) assert resp.show.title == SHOW["title"] def test_stop_scrobble_movie(): client = mk_mock_client({".*scrobble.*": [RESP_MOVIE, 201]}) with pytest.raises(ArgumentError): client.scrobble.stop_scrobble(progress=5) with pytest.raises(ArgumentError): client.scrobble.stop_scrobble(progress=5, episode=123, movie=123) resp = client.scrobble.stop_scrobble(movie=123, progress=5) assert resp.movie.title == MOVIE1["title"] def test_stop_scrobble_episode(): client = mk_mock_client({".*scrobble.*": [RESP_EPISODE, 201]}) resp = client.scrobble.stop_scrobble(episode=123, show=123, progress=5) assert resp.show.title == SHOW["title"] ``` #### File: core/components/cache.py ```python from __future__ import annotations from datetime import datetime, timedelta from enum import Enum from typing import TYPE_CHECKING, Any, Dict if TYPE_CHECKING: # pragma: no cover from trakt.api import TraktApi class CacheLevel(Enum): NO = "no" BASIC = "basic" FULL = "full" class CacheManager: client: TraktApi _cache: Dict[FrozenRequest, datetime] CACHE_LEVELS = (CacheLevel.NO, CacheLevel.BASIC, CacheLevel.FULL) def __init__(self, client: TraktApi) -> None: self.client = client self._cache = {} def accepted_level(self, level: CacheLevel) -> bool: max_allowed = CacheLevel(self.client.config["cache"]["cache_level"]) if level == CacheLevel.NO: return False elif level == CacheLevel.BASIC: return max_allowed in {CacheLevel.BASIC, CacheLevel.FULL} else: # "full" return max_allowed == CacheLevel.FULL def get(self, wanted: FrozenRequest) -> FrozenRequest: if not self.has(wanted): raise LookupError("Request not in cache") return [r for r in self._cache.keys() if r == wanted][0] def set(self, req: FrozenRequest) -> None: cache_timeout = self.client.config["cache"]["timeout"] valid_till = datetime.now() + timedelta(seconds=cache_timeout) self._cache[req] = valid_till def has(self, req: FrozenRequest) -> bool: if req not in self._cache: return False valid_till = self._cache[req] if datetime.now() > valid_till: del self._cache[req] return False return True class FrozenRequest: def __init__( self, path: str, query_args: Dict[str, str], headers: Dict[str, str], response: Any = None, ) -> None: self.path = path self.query_args = query_args self.headers = headers self.response = response @property def _unique_id(self) -> str: qargs_repr = repr(sorted(self.query_args.items())) headers_repr = repr(sorted(self.headers.items())) return self.path + qargs_repr + headers_repr def __hash__(self): return hash(self._unique_id) def __eq__(self, other: Any) -> bool: if isinstance(other, FrozenRequest): return self._unique_id == other._unique_id return False # pragma: no cover ``` #### File: paths/endpoint_mappings/comments.py ```python from __future__ import annotations from dataclasses import asdict from typing import TYPE_CHECKING, Dict, List, Optional, Union from trakt.core.models import Episode, Movie, Season, Show from trakt.core.paths.path import Path from trakt.core.paths.response_structs import ( Comment, CommentAndItem, CommentItemOnly, CommentLiker, CommentResponse, Sharing, ) from trakt.core.paths.suite_interface import SuiteInterface from trakt.core.paths.validators import ( AuthRequiredValidator, PerArgValidator, Validator, ) if TYPE_CHECKING: # pragma: no cover from trakt.core.executors import PaginationIterator COMMENT_TEXT_VALIDATOR = PerArgValidator( "comment", lambda c: isinstance(c, str) and len(c.split(" ")) > 4 ) COMMENT_ID_VALIDATOR = PerArgValidator("id", lambda c: isinstance(c, int)) COMMENT_TYPES = ["all", "reviews", "shouts"] MEDIA_TYPES = ["all", "movies", "shows", "seasons", "episodes", "lists"] TRENDING_RECENT_UPDATED_VALIDATORS: List[Validator] = [ PerArgValidator("comment_type", lambda c: c in COMMENT_TYPES), PerArgValidator("type", lambda c: c in MEDIA_TYPES), PerArgValidator("include_replies", lambda i: isinstance(i, bool)), ] class CommentsI(SuiteInterface): name = "comments" paths = { "post_comment": Path( "comments", CommentResponse, methods=["POST"], validators=[AuthRequiredValidator(), COMMENT_TEXT_VALIDATOR], ), "get_comment": Path("comments/!id", Comment, validators=[COMMENT_ID_VALIDATOR]), "update_comment": Path( "comments/!id", Comment, methods="PUT", validators=[COMMENT_ID_VALIDATOR, COMMENT_TEXT_VALIDATOR], ), "delete_comment": Path( "comments/!id", {}, methods="DELETE", validators=[COMMENT_ID_VALIDATOR] ), "get_replies": Path( "comments/!id/replies", [Comment], validators=[COMMENT_ID_VALIDATOR], pagination=True, ), "post_reply": Path( "comments/!id/replies", Comment, validators=[ AuthRequiredValidator(), COMMENT_ID_VALIDATOR, COMMENT_TEXT_VALIDATOR, ], ), "get_item": Path( "comments/!id/item", CommentItemOnly, validators=[COMMENT_ID_VALIDATOR], extended=["full"], ), "get_likes": Path( "comments/!id/likes", [CommentLiker], validators=[COMMENT_ID_VALIDATOR], pagination=True, ), "like_comment": Path( "comments/!id/like", {}, methods=["POST"], validators=[AuthRequiredValidator(), COMMENT_ID_VALIDATOR], ), "remove_like": Path( "comments/!id/like", {}, methods=["DELETE"], validators=[AuthRequiredValidator(), COMMENT_ID_VALIDATOR], ), "get_trending": Path( "comments/trending/?comment_type/?type", [CommentAndItem], validators=TRENDING_RECENT_UPDATED_VALIDATORS, pagination=True, extended=["full"], ), "get_recently_created": Path( "comments/recent/?comment_type/?type", [CommentAndItem], validators=TRENDING_RECENT_UPDATED_VALIDATORS, pagination=True, extended=["full"], ), "get_recently_updated": Path( "comments/updates/?comment_type/?type", [CommentAndItem], validators=TRENDING_RECENT_UPDATED_VALIDATORS, pagination=True, extended=["full"], ), } def post_comment( self, *, item: Union[str, int, Movie, Season, Show, Episode], comment: str, spoiler: bool = False, sharing: Optional[Union[Sharing, Dict[str, bool]]] = None, **kwargs ) -> CommentResponse: body: Dict[str, Union[str, int, Dict[str, bool]]] = { "item_id": self._generic_get_id(item), "comment": comment, "spoiler": spoiler, } if sharing: if isinstance(sharing, Sharing): sharing = asdict(sharing) body["sharing"] = sharing return self.run("post_comment", **kwargs, body=body, comment=comment) def get_comment(self, *, id: Union[Comment, str, int], **kwargs) -> Comment: id = int(self._generic_get_id(id)) return self.run("get_comment", **kwargs, id=id) def update_comment( self, *, id: Union[Comment, str, int], comment: str, spoiler: bool = False, **kwargs ) -> Comment: body = {"id": self._generic_get_id(id), "comment": comment, "spoiler": spoiler} return self.run("update_comment", **kwargs, body=body, id=id, comment=comment) def delete_comment(self, *, id: Union[Comment, str, int], **kwargs) -> None: id = int(self._generic_get_id(id)) self.run("delete_comment", **kwargs, id=id) def get_replies( self, *, id: Union[Comment, str, int], **kwargs ) -> PaginationIterator[Comment]: id = int(self._generic_get_id(id)) return self.run("get_replies", **kwargs, id=id) def post_reply( self, *, id: Union[Comment, str, int], comment: str, spoiler: bool = False, **kwargs ) -> PaginationIterator[Comment]: id = int(self._generic_get_id(id)) body = {"comment": comment, "spoiler": spoiler} return self.run("post_reply", **kwargs, id=id, body=body, comment=comment) def get_item(self, *, id: Union[Comment, str, int], **kwargs) -> CommentItemOnly: id = int(self._generic_get_id(id)) return self.run("get_item", **kwargs, id=id) def get_likes( self, *, id: Union[Comment, str, int], **kwargs ) -> List[CommentLiker]: id = int(self._generic_get_id(id)) return self.run("get_likes", **kwargs, id=id) def like_comment(self, *, id: Union[Comment, str, int], **kwargs) -> None: id = int(self._generic_get_id(id)) self.run("like_comment", **kwargs, id=id) def remove_like(self, *, id: Union[Comment, str, int], **kwargs) -> None: id = int(self._generic_get_id(id)) self.run("remove_like", **kwargs, id=id) def get_trending( self, *, comment_type: str = "all", type: str = "all", include_replies: bool = False, **kwargs ) -> List[CommentAndItem]: return self.run( "get_trending", **kwargs, comment_type=comment_type, type=type, include_replies=include_replies ) def get_recently_created( self, *, comment_type: str = "all", type: str = "all", include_replies: bool = False, **kwargs ) -> List[CommentAndItem]: return self.run( "get_recently_created", **kwargs, comment_type=comment_type, type=type, include_replies=include_replies ) def get_recently_updated( self, *, comment_type: str = "all", type: str = "all", include_replies: bool = False, **kwargs ) -> List[CommentAndItem]: return self.run( "get_recently_updated", **kwargs, comment_type=comment_type, type=type, include_replies=include_replies ) ``` #### File: paths/endpoint_mappings/scrobble.py ```python from typing import Any, Dict, Optional, Union from trakt.core.exceptions import ArgumentError from trakt.core.models import Episode, Movie from trakt.core.paths.path import Path from trakt.core.paths.response_structs import EpisodeScrobble, MovieScrobble, Show from trakt.core.paths.suite_interface import SuiteInterface from trakt.core.paths.validators import AuthRequiredValidator, PerArgValidator PROGRESS_VALIDATOR = PerArgValidator( "progress", lambda p: isinstance(p, (int, float)) and 100 >= p >= 0 ) class ScrobbleI(SuiteInterface): name = "scrobble" base_paths = { "start_scrobble_movie": ["start", MovieScrobble], "start_scrobble_episode": ["start", EpisodeScrobble], "pause_scrobble_movie": ["pause", MovieScrobble], "pause_scrobble_episode": ["pause", EpisodeScrobble], "stop_scrobble_movie": ["stop", MovieScrobble], "stop_scrobble_episode": ["stop", EpisodeScrobble], } def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) for k, r in self.base_paths.items(): self.paths[k] = self._make_path(*r) def _make_path(self, resource_path: str, return_type: Any) -> Path: return Path( self.name + "/" + resource_path, return_type, validators=[AuthRequiredValidator(), PROGRESS_VALIDATOR], ) def start_scrobble( self, *, movie: Optional[Union[Movie, Dict[str, Any]]] = None, episode: Optional[Union[Episode, Dict[str, Any]]] = None, show: Optional[Union[Show, Dict[str, Any]]] = None, progress: float, **kwargs: Any, ) -> Union[MovieScrobble, EpisodeScrobble]: if movie and episode: raise ArgumentError("you must provide exactly one of: [episode, movie]") if movie: return self.start_scrobble_movie(movie=movie, progress=progress, **kwargs) elif episode: return self.start_scrobble_episode( episode=episode, show=show, progress=progress, **kwargs ) else: raise ArgumentError("you must provide exactly one of: [episode, movie]") def start_scrobble_movie( self, *, movie: Union[Movie, Dict[str, Any]], progress: float, **kwargs ) -> MovieScrobble: data = self._prepare_movie_data(movie=movie, progress=progress) return self.run("start_scrobble_movie", **kwargs, body=data, progress=progress) def start_scrobble_episode( self, *, episode: Union[Episode, Dict[str, Any]], progress: float, **kwargs ) -> EpisodeScrobble: data = self._prepare_episode_data(episode, progress, show=kwargs.get("show")) return self.run( "start_scrobble_episode", **kwargs, body=data, progress=progress ) def pause_scrobble( self, *, movie: Optional[Union[Movie, Dict[str, Any]]] = None, episode: Optional[Union[Episode, Dict[str, Any]]] = None, show: Optional[Union[Show, Dict[str, Any]]] = None, **kwargs: Any, ) -> Union[MovieScrobble, EpisodeScrobble]: if movie and episode: raise ArgumentError("you must provide exactly one of: [episode, movie]") if movie: return self.pause_scrobble_movie(movie=movie, **kwargs) elif episode: return self.pause_scrobble_episode(episode=episode, show=show, **kwargs) else: raise ArgumentError("you must provide exactly one of: [episode, movie]") def pause_scrobble_movie( self, *, movie: Union[Movie, Dict[str, Any]], progress: float, **kwargs ) -> MovieScrobble: data = self._prepare_movie_data(movie=movie, progress=progress) return self.run("pause_scrobble_movie", **kwargs, body=data, progress=progress) def pause_scrobble_episode( self, *, episode: Union[Episode, Dict[str, Any]], progress: float, **kwargs ) -> EpisodeScrobble: data = self._prepare_episode_data(episode, progress, show=kwargs.get("show")) return self.run( "pause_scrobble_episode", **kwargs, body=data, progress=progress ) def stop_scrobble( self, *, movie: Optional[Union[Movie, Dict[str, Any]]] = None, episode: Optional[Union[Episode, Dict[str, Any]]] = None, show: Optional[Union[Show, Dict[str, Any]]] = None, **kwargs: Any, ) -> Union[MovieScrobble, EpisodeScrobble]: if movie and episode: raise ArgumentError("you can either provide episode or movie, not both") if movie: return self.stop_scrobble_movie(movie=movie, **kwargs) elif episode: return self.stop_scrobble_episode(episode=episode, show=show, **kwargs) else: raise ArgumentError("missing both episode and movie arguments") def stop_scrobble_movie( self, *, movie: Union[Movie, Dict[str, Any]], progress: float, **kwargs ) -> MovieScrobble: data = self._prepare_movie_data(movie=movie, progress=progress) return self.run("stop_scrobble_movie", **kwargs, body=data, progress=progress) def stop_scrobble_episode( self, *, episode: Union[Episode, Dict[str, Any]], progress: float, **kwargs ) -> EpisodeScrobble: data = self._prepare_episode_data(episode, progress, show=kwargs.get("show")) return self.run("stop_scrobble_episode", **kwargs, body=data, progress=progress) def _prepare_episode_data( self, episode: Union[Episode, Dict[str, Any]], progress: float, show: Optional[Union[Show, int, str]] = None, ) -> Dict[str, Any]: data: Dict[str, Any] = {"progress": progress} if isinstance(episode, Episode): episode = {"ids": {"trakt": self._generic_get_id(episode)}} data["episode"] = episode if show: if isinstance(show, Show): data["show"] = {"ids": {"trakt": self._generic_get_id(show)}} else: data["show"] = show return data def _prepare_movie_data( self, progress: float, movie: Union[Movie, Dict[str, Any]] ) -> Dict[str, Any]: data: Dict[str, Any] = {"progress": progress} if isinstance(movie, Movie): data["movie"] = {"ids": {"trakt": self._generic_get_id(movie)}} else: data["movie"] = movie return data ```
{ "source": "jmolinski/youtube-rss", "score": 2 }
#### File: platforma/platforma/send_draft.py ```python import io import subprocess import xmlrpc import xmlrpc.client from datetime import datetime from typing import Optional from django.conf import settings from django.utils.text import slugify import requests from PIL import Image from platforma.platforma import models from platforma.platforma.services import get_file_data def send_drafts(): if not settings.DRAFTS_ENABLED: return # posortuj tak zeby najstarsze lecialy najpierw eps = models.Episode.objects.filter(draft_posted=False) eps = [e for e in eps if e.is_visible()] eps_dates = [(e, get_file_data(e.get_filename())["upload_date"]) for e in eps] eps = [e[0] for e in sorted(eps_dates, key=lambda x: x[1])] for ep in eps: if ep.is_visible(): send_draft(ep) def image_to_byte_array(image, format="jpeg"): byte_stream = io.BytesIO() image.save(byte_stream, format=format) return byte_stream.getvalue() def get_cropped_image_bytes(url): r = requests.get(url, stream=True) if not r.status_code == 200: return try: image = Image.open(io.BytesIO(r.content)) w, h = image.size w_ratio = w / 846 resized = image.resize((int(w // w_ratio), int(h // w_ratio))) cropped = resized.crop((0, 0, 846, 256)) # moze sie wywalic return image_to_byte_array(cropped) except Exception as e: print("Failed to crop thumbnail") print("Error datails:", str(e), repr(e)) return def upload_thumbnail(thumbnail_url, episode, client): if not thumbnail_url: print("No thumbnail data for episode", episode.youtube_id) return thumbnail_url = thumbnail_url.replace("hqdefault.jpg", "maxresdefault.jpg") cropped_img = get_cropped_image_bytes(thumbnail_url) if cropped_img: try: ret = client.wp.uploadFile( 0, settings.NR_USERNAME, settings.NR_PASSWD, { "name": episode.youtube_id + "_img.jpg", "type": "image/jpeg", "bits": xmlrpc.client.Binary(cropped_img), }, ) print("Uploaded thumbnail for", episode.youtube_id) return ret except: print("Failed to upload thumbnail for", episode.youtube_id) def upload_mp3_file_to_remote_server(episode, ep_data): date = f"{ep_data['day']:02d}_{ep_data['month']:02d}_{ep_data['year']:04}" slugified_title = slugify(ep_data["title"]) remote_name = f"{slugified_title}-{date}-nr-yt-{episode.youtube_id}.mp3" episode.remote_filename = remote_name episode.save() try: ret = subprocess.call( [ "scp", "-o", "StrictHostKeyChecking=no", f"/app/shared/media/{episode.get_filename()}", f"<EMAIL>:~/audycje/automat/{remote_name}", ], shell=False, ) if ret != 0: raise ValueError( f"Error: scp returncode={ret} for episode {episode.get_filename()}" ) return ret except: print("Error uploading file", episode.get_filename(), "to remote server") raise def prepare_wordpress_post_content(episode, ep_data, img_data): date = f"{ep_data['day']:02d}.{ep_data['month']:02d}.{ep_data['year']:04}" original_title = ep_data["title"] current_time = datetime.today().strftime("%Y-%m-%d-%H:%M:%S") original_description = ep_data["description"].split("Donejty na")[ 0 ] # cut the footer about tipanddonation padded_description = ( original_description.strip() if original_description.strip() else "" ) if not padded_description: padded_description = "<!-- brak opisu na youtube (tylko stopka o donejtach) -->" description = ( "<!--Tekst w takich smiesznych nawiasach NIE JEST WIDOCZNY dla sluchaczy-->\n\n" "<!--Oryginalny opis audycji na YT-->\n" f"{padded_description}\n\n" "<!--Data publikacji na YT-->\n" f"Data publikacji na YT: {date}\n" "<!--Link do audycji na YT-->\n" f'YouTube: <a href="https://www.youtube.com/watch?v={episode.youtube_id}">klik</a>\n' "\n\n" f"<!--Tagi z youtube: {str(ep_data.get('tags', []) or 'BRAK TAGOW')}-->\n" "<!--Przed publikacja audycji zaznacz kategorie (np. Luzne Gatki) " "i sprawdz, czy automatycznie wygenerowana miniaturka jest akceptowalna-->\n\n" "<!--Prosze NIE usuwac identyfikatora, jest uzywany przez bota-->\n" f"<!--ID###{episode.youtube_id} nr-yt==v0.0.3 {current_time}###-->\n" ) content = { "post_type": "post", "post_title": original_title, # "post_excerpt": "test_excerpt", "post_content": description, "post_format": "standard", "post_status": "publish", "comment_status": "open", "custom_fields": [ { "key": "enclosure", "value": f"https://archiwum.nocneradio.pl/automat/{episode.remote_filename}\n\naudio/mpeg", }, ], } if img_data and "attachment_id" in img_data: content["post_thumbnail"] = int(img_data["attachment_id"]) return content def send_new_post_to_wordpress(episode, client, ep_data, img_data): try: content = prepare_wordpress_post_content(episode, ep_data, img_data) except Exception as e: print("Problem preparing post data for draft", episode.youtube_id) print("Error datails:", str(e), repr(e)) return try: client.wp.newPost(0, settings.NR_USERNAME, settings.NR_PASSWD, content) except Exception as e: print("Problem submitting draft post for", episode.youtube_id) print("Error datails:", str(e), repr(e)) else: print("Submitted draft for", episode.youtube_id) episode.draft_posted = True episode.save() def send_draft(episode: models.Episode): print("Submitting draft", episode.youtube_id) if episode.hidden or episode.draft_posted: print("Aborting sending draft for", episode.youtube_id) episode.hidden = True episode.save() client = xmlrpc.client.ServerProxy("http://nocneradio.pl/xmlrpc.php") ep_data = get_file_data(episode.get_filename()) try: img_data: Optional[dict] = upload_thumbnail( ep_data["thumbnail"], episode, client ) upload_mp3_file_to_remote_server(episode, ep_data) send_new_post_to_wordpress(episode, client, ep_data, img_data) except Exception as e: print("Problem submitting draft post for", episode.youtube_id) print("Error datails:", str(e), repr(e)) finally: episode.hidden = False episode.save() ``` #### File: platforma/platforma/services.py ```python import json import os from django.conf import settings from platforma.platforma import models from django.shortcuts import get_object_or_404 def audio_format_to_mime(fmt): if fmt == "mp3": return "audio/mpeg" return "audio/" + fmt def get_saved_only_ids(): for root, dirs, files in os.walk("/app/shared/media/"): for file in files: if file.count(".") == 1 and "download" not in file: yield file.split(".")[0] def get_file_data(filename): video_id, ext = filename.split(".") path_vid, path_info = ( os.path.join("/app/shared/media", filename), os.path.join("/app/shared/media", video_id + ".info.json"), ) with open(path_info) as info_f: parsed_info = json.loads(info_f.read()) x = parsed_info["upload_date"] yr, mnth, day = map(int, [x[:4], x[4:6], x[6:]]) raw_thumbnail = parsed_info.get("thumbnails", [{"url": "https://example.com"}])[0][ "url" ] thumbnail = ( raw_thumbnail if ".jpg" not in raw_thumbnail else (raw_thumbnail.split(".jpg")[0] + ".jpg") ) thumbnail = thumbnail.replace("hqdefault.jpg", "maxresdefault.jpg") return { "media_url": settings.NR_FEED_DOMAIN + "feeds/media/" + filename, "size": os.path.getsize(path_vid), "id": video_id, "title": parsed_info["title"], "upload_date": parsed_info["upload_date"], "url": parsed_info["webpage_url"], "filesize_raw": parsed_info["filesize"], "filltitle": parsed_info["fulltitle"], "channel_id": parsed_info["channel_id"], "description": parsed_info["description"], "thumbnail": thumbnail, "extension": ext, "duration": parsed_info["duration"], "sortby": (parsed_info["upload_date"], parsed_info["duration"]), "year": yr, "month": mnth, "day": day, "tags": parsed_info.get("tags", []), } def remove_file_and_mark_as_to_download(youtube_id: str) -> bool: episode = get_object_or_404(models.Episode, youtube_id=youtube_id) if not episode or not episode.file_downloaded: return False remove_episode_files(episode) episode.file_downloaded = False episode.draft_posted = False episode.save() return True def remove_episode_files(episode: models.Episode) -> None: vid_path = os.path.join("/app/shared/media/", episode.youtube_id + ".mp3") metadata_path = os.path.join( "/app/shared/media/", episode.youtube_id + ".info.json" ) print("Removing video:", vid_path, metadata_path) os.remove(vid_path) os.remove(metadata_path) ```
{ "source": "jmollard/typhon", "score": 2 }
#### File: arts/workspace/workspace.py ```python import ctypes as c import numpy as np import ast from ast import iter_child_nodes, parse, NodeVisitor, Call, Attribute, Name, \ Expression, Expr, FunctionDef, Starred, Module, expr from inspect import getsource, getclosurevars from contextlib import contextmanager from copy import copy from functools import wraps import os from typhon.arts.workspace.api import arts_api, VariableValueStruct, \ data_path_push, data_path_pop, \ include_path_push, include_path_pop from typhon.arts.workspace.methods import WorkspaceMethod, workspace_methods from typhon.arts.workspace.variables import WorkspaceVariable, group_names, group_ids, \ workspace_variables from typhon.arts.workspace.agendas import Agenda from typhon.arts.workspace import variables as V from typhon.arts.workspace.output import CoutCapture from typhon.arts.workspace.utility import unindent imports = dict() ################################################################################ # ARTS Agenda Macro ################################################################################ class Include: """Simple helper class to handle INCLUDE statements in agenda definitions. Attributes: agenda: The included controlfile or agenda as typhon.arts.workspace.agenda.Agenda object. """ def __init__(self, agenda): """ Create include from argument. Args: agenda (str, Agenda): Argument to the INCLUDE statement. This can either be a string or an Agenda object. """ if type(agenda) == str: if not agenda in imports: self.agenda = Agenda.parse(agenda) imports[agenda] = self.agenda else: self.agenda = imports[agenda] elif type(agenda) == Agenda: self.agenda = agenda else: raise Exception("agenda argument must be either a controlfile" " name or a typhon.arts.workspace.agenda.Agenda object.") def arts_agenda(func): """ Parse python method as ARTS agenda This decorator can be used to define ARTS agendas using python function syntax. The function should have one arguments which is assumed to be a Workspace instance. All expressions inside the function must be calls to ARTS WSMs. The result is an Agenda object that can be used to copied into a named ARTS agenda Example: >>> @arts_agenda >>> def inversion_iterate_agenda(ws): >>> ws.x2artsStandard() >>> ws.atmfields_checkedCalc() >>> ws.atmgeom_checkedCalc() >>> ws.yCalc() >>> ws.VectorAddVector(ws.yf, ws.y, ws.y_baseline) >>> ws.jacobianAdjustAfterIteration() >>> >>> ws.Copy(ws.inversion_iterate_agenda, inversion_iterate_agenda) """ source = getsource(func) source = unindent(source) ast = parse(source) func_ast = ast.body[0] if not type(func_ast) == FunctionDef: raise Exception("ARTS agenda definition can only decorate function definiitons.") args = func_ast.args.args try: arg_name = func_ast.args.args[0].arg except: raise Exception("Agenda definition needs workspace arguments.") ws = Workspace() context = copy(func.__globals__) context.update({arg_name : ws}) # Add resolved non-local variables from closure. nls, _, _, _ = getclosurevars(func) context.update(nls) # # Helper functions # callback_body = [] def callback_make_fun(body): """ Helper function that creates a wrapper function around python code to be executed withing an ARTS agenda. """ m = Module(body) def callback(ptr): try: context[arg_name].ptr = ptr eval(compile(m , "<unknown>", 'exec'), context) except Exception as e: print(r"Exception in Python callback:\n", e) context[arg_name].ptr = None callback_body = [] return callback def eval_argument(expr): """ Evaluate argument of workspace method call. """ if not hasattr(expr, "lineno"): setattr(expr, "lineno", 0) return eval(compile(Expression(expr), "<unknown>", 'eval'), context) # Create agenda a_ptr = arts_api.create_agenda(func.__name__.encode()) agenda = Agenda(a_ptr) illegal_statement_exception = Exception( "Agenda definitions may only contain calls to WSMs of the" "workspace argument " + arg_name + " or INCLUDE statements.") # # Here the body of the function definition is traversed. Cases # that are treated specieal are INCLUDE statements and calls # of workspace methods. Remaining statements are accumulated # in callback_body and then added to the agenda as a single callback. # for e in func_ast.body: if not isinstance(e, Expr): callback_body += [e] continue else: call = e.value if not isinstance(call, Call): callback_body += [e] continue # Include statement if type(call.func) == Name: if not call.func.id == "INCLUDE": callback_body += [e] else: args = [] for a in call.args: args.append(eval_argument(a)) include = Include(*args) if len(callback_body) > 0: agenda.add_callback(callback_make_fun(callback_body)) callback_body = [] arts_api.agenda_append(agenda.ptr, include.agenda.ptr) else: att = call.func.value if not att.id == arg_name: callback_body += [e] continue # Extract method name. name = call.func.attr # m is not a workspace method if not name in workspace_methods: callback_body += [e] continue # m is a workspace method. m = workspace_methods[name] args = [ws, m] for a in call.args: # Handle starred expression if type(a) == Starred: bs = eval_argument(a.value) for b in bs: args.append(b) continue args.append(eval_argument(a)) # Extract keyword arguments kwargs = dict() for k in call.keywords: kwargs[k.arg] = eval( compile(Expression(k.value), "<unknown>", 'eval'), context) # Add function to agenda if len(callback_body) > 0: agenda.add_callback(callback_make_fun(callback_body)) callback_body = [] agenda.add_method(*args, **kwargs) # Check if there's callback code left to add to the agenda. if len(callback_body) > 0: agenda.add_callback(callback_make_fun(callback_body)) callback_body = [] return agenda ################################################################################ # Workspace Method Wrapper Class ################################################################################ class WSMCall: """ Wrapper class for workspace methods. This is necessary to be able to print the method doc as __repr__, which doesn't work for python function objects. Attributes: ws: The workspace object to which the method belongs. m: The WorkspaceMethod object """ def __init__(self, ws, m): self.ws = ws self.m = m self.__doc__ = m.__doc__ def __call__(self, *args, **kwargs): self.m.call(self.ws, *args, **kwargs) def __repr__(self): return repr(self.m) ################################################################################ # The Workspace Class ################################################################################ class Workspace: """ The Workspace class represents an ongoing ARTS simulation. Each Workspace object holds its own ARTS workspace and can be used to execute ARTS workspace methods or access workspace variables. All workspace methods taken from workspace_methods in the methods module are added as attributed on creation and are thus available as class methods. Attributes: ptr(ctypes.c_void_p): object pointing to the ArtsWorkspace instance of the ARTS C API _vars(dict): Dictionary holding local variables that have been created interactively using the one of Create ARTS WSMs. """ def __init__(self, verbosity=1, agenda_verbosity=0): """ The init function just creates an instance of the ArtsWorkspace class of the C API and sets the ptr attributed to the returned handle. It also adds all workspace methods as attributes to the object. Parameters: verbosity (int): Verbosity level (0-3), 1 by default agenda_verbosity (int): Verbosity level for agendas (0-3), 0 by default """ self.__dict__["_vars"] = dict() self.ptr = arts_api.create_workspace(verbosity, agenda_verbosity) self.workspace_size = arts_api.get_number_of_variables() for name in workspace_methods: m = workspace_methods[name] setattr(self, m.name, WSMCall(self, m)) self.__verbosity_init__() def __del__(self): """ Cleans up the C API. """ if not self.ptr is None: if not arts_api is None: arts_api.destroy_workspace(self.ptr) def __getstate__(self): return None def __setstate__(self): pass def __verbosity_init__(self): """ Executes verbosityInit WSM directly through the ARTS api to suppress output. """ wsm = workspace_methods["verbosityInit"] (m_id, args_out, args_in, ts) = wsm._parse_output_input_lists(self, [], {}) arg_out_ptr = c.cast((c.c_long * len(args_out))(*args_out), c.POINTER(c.c_long)) arg_in_ptr = c.cast((c.c_long * len(args_in))(*args_in), c.POINTER(c.c_long)) with CoutCapture(self, silent = True): e_ptr = arts_api.execute_workspace_method(self.ptr, m_id, len(args_out), arg_out_ptr, len(args_in), arg_in_ptr) for t in ts[::-1]: t.erase() def create_variable(self, group, name): """ Create a workspace variable. Args: group: The group name of the variable to create. name: The name of the variable to create. If None, the ARTS API will assign a unique name. """ if not name is None: name = name.encode() group_id = group_ids[group] ws_id = arts_api.add_variable(self.ptr, group_id, name) v = arts_api.get_variable(ws_id) wsv = WorkspaceVariable(ws_id, v.name.decode(), group_names[group_id], "User defined variable.", self) self._vars[wsv.name] = wsv return wsv def add_variable(self, var): """ This will try to copy a given python variable to the ARTS workspace and return a WorkspaceVariable object representing this newly created variable. Types are natively supported by the C API are int, str, [str], [int], and numpy.ndarrays. These will be copied directly into the newly created WSV. In addition to that all typhon ARTS types the can be stored to XML can be set to a WSV, but in this case the communication will happen through the file systs (cf. WorkspaceVariable.from_typhon). The user should not have to call this method explicitly, but instead it is used by the WorkspaceMethod call function to transfer python variable arguments to the ARTS workspace. Args: var: Python variable of type int, str, [str], [int] or np.ndarray which should be copied to the workspace. """ if type(var) == WorkspaceVariable: return var # Create WSV in ARTS Workspace group = group_names[WorkspaceVariable.get_group_id(var)] wsv = self.create_variable(group, None) # Set WSV value using the ARTS C API s = VariableValueStruct(var) if s.ptr: e = arts_api.set_variable_value(self.ptr, wsv.ws_id, wsv.group_id, s) if e: arts_api.erase_variable(self.ptr, wsv.ws_id, wsv.group_id) raise Exception("Setting of workspace variable through C API " " failed with the " + "following error:\n" + e.decode("utf8")) # If the type is not supported by the C API try to write the type to XML # and read into ARTS workspace. else: try: wsv.from_typhon(var) except: raise Exception("Could not add variable since + " + str(type(var)) + " is neither supported by " + "the C API nor typhon XML IO.") self._vars[wsv.name] = wsv return wsv def __dir__(self): return {**self._vars, **workspace_variables, **self.__dict__} def __getattr__(self, name): """ Lookup the given variable in the local variables and the ARTS workspace. Args: name(str): Name of the attribute (variable) Raises: ValueError: If the variable is not found. """ group_id = None if name in self._vars: var = self._vars[name] var.update() return var else: i = arts_api.lookup_workspace_variable(name.encode()) if i < 0: raise AttributeError("No workspace variable " + str(name) + " found.") vs = arts_api.get_variable(i) group_id = vs.group description = vs.description.decode("utf8") # Get its symbolic representation wsv = WorkspaceVariable(i, name, group_names[group_id], description, self) return wsv def __setattr__(self, name, value): """ Set workspace variable. This will lookup the workspace variable name and try to set it to value. Args: name(str): Name of the attribute (variable) value(obj): The value to set the workspace variable to. Raises: ValueError: If the variable is not found or if value cannot uniquely converted to a value of a workspace variable. """ try: v = self.__getattr__(name) except: self.__dict__[name] = value return None # Handle empty list or None values. if value is None or (isinstance(value, list) and not value): arts_api.set_variable_value(self.ptr, v.ws_id, v.group_id, VariableValueStruct.empty()) return None if type(value) == Agenda: arts_api.set_variable_value(self.ptr, v.ws_id, v.group_id, VariableValueStruct(value)) return None t = self.add_variable(value) if not t.group_id == v.group_id: raise Exception("Incompatible groups: Workspace variable " + name + " of group " + group_names[v.group_id] + " and value " + str(value) + " of group " + group_names[t.group_id] + ".") self.Copy(v, t) # Remove t only if it wasn't an existing WSV already before. if not type(value) == WorkspaceVariable: t.erase() def execute_agenda(self, agenda): """ Execute agenda on workspace. Args: agenda (typhon.arts.workspace.agenda.Agenda): Agenda object to execute. Raises: ValueError: If argument is not of type typhon.arts.workspace.agenda.Agenda """ value_error = ValueError("Argument must be of type agenda.") if not type(agenda) is Agenda: raise value_error include_path_push(os.getcwd()) data_path_push(os.getcwd()) agenda.execute(self) include_path_pop() data_path_pop() def execute_controlfile(self, name): """ Execute controlfile or agenda on workspace. This method looks recursively for a controlfile with the given name in the current directory and the arts include path. If such a file has been found it will be parsed and executed on the workspace. Args: name(str): Name of the controlfile Raises: Exception: If parsing of the controlfile fails. Returns: The controlfile as parsed Agenda object. """ if not name in imports: agenda = Agenda.parse(name) imports[name] = agenda else: agenda = imports[name] self.execute_agenda(agenda) return agenda ``` #### File: typhon/oem/error.py ```python from typhon.oem import common __all__ = [ 'smoothing_error', 'retrieval_noise', ] def smoothing_error(x, x_a, A): """Return the smoothing error through the averaging kernel. Parameters: x (ndarray): Atmospherice profile. x_a (ndarray): A priori profile. A (ndarray): Averaging kernel matrix. Returns: ndarray: Smoothing error due to correlation between layers. """ return A @ (x - x_a) def retrieval_noise(K, S_a, S_y, e_y): """Return the retrieval noise. Parameters: K (np.array): Simulated Jacobians. S_a (np.array): A priori error covariance matrix. S_y (np.array): Measurement covariance matrix. e_y (ndarray): Total measurement error. Returns: ndarray: Retrieval noise. """ return common.retrieval_gain_matrix(K, S_a, S_y) @ e_y ``` #### File: typhon/typhon/trees.py ```python from collections import Iterable import pandas as pd import numba import numpy as np from sklearn.neighbors import BallTree, KDTree __all__ = [ "IntervalTree", "RangeTree", ] class IntervalTreeNode: """Helper class for IntervalTree. """ def __init__(self, center_point, center, left, right): self.center_point = center_point self.center = np.asarray(center) self.left = left self.right = right class IntervalTree: """Tree to implement fast 1-dimensional interval searches. Based on the description in Wikipedia (https://en.wikipedia.org/wiki/Interval_tree#Centered_interval_tree) and the GitHub repository by tylerkahn (https://github.com/tylerkahn/intervaltree-python). Examples: Check 1000 intervals on 1000 other intervals: .. code-block:: python import numpy as np from typhon.trees import IntervalTree intervals = np.asarray([np.arange(1000)-0.5, np.arange(1000)+0.5]).T tree = IntervalTree(intervals) query_intervals = [[i-1, i+1] for i in range(1000)] results = tree.query(query_intervals) """ def __init__(self, intervals): """Creates an IntervalTree object. Args: intervals: A list or numpy.array containing the intervals (list of two numbers). """ if not isinstance(intervals, np.ndarray): intervals = np.asarray(intervals) # Check the intervals whether they are valid: self.left = np.min(intervals) self.right = np.max(intervals) # We want to return the indices of the intervals instead of their # actual bounds. But the original indices will be lost due resorting. # Hence, we add the original indices to the intervals themselves. indices = np.arange(intervals.shape[0]).reshape(intervals.shape[0], 1) indexed_intervals = np.hstack([intervals, indices]) self.root = self._build_tree(np.sort(indexed_intervals, axis=0)) def __contains__(self, item): if isinstance(item, (tuple, list)): return bool(self._query(item, self.root, check_extreme=True)) else: return bool(self._query_point(item, self.root, check_extreme=True)) # @numba.jit def _build_tree(self, intervals): if not intervals.any(): return None center_point = self._get_center(intervals) # Sort the intervals into bins center = intervals[(intervals[:, 0] <= center_point) & (intervals[:, 1] >= center_point)] left = intervals[intervals[:, 1] < center_point] right = intervals[intervals[:, 0] > center_point] return IntervalTreeNode( center_point, center, self._build_tree(left), self._build_tree(right) ) @staticmethod def _get_center(intervals): return intervals[int(intervals.shape[0]/2), 0] @staticmethod def interval_overlaps(interval1, interval2): """Checks whether two intervals overlap each other. Args: interval1: A tuple of two numbers: the lower and higher bound of the first interval. interval2: A tuple of two numbers: the lower and higher bound of the second interval. Returns: True if the intervals overlap. """ return interval1[0] <= interval2[1] and interval1[1] >= interval2[0] @staticmethod def interval_contains(interval, point): """Checks whether a point lies in a interval. Args: interval: A tuple of two numbers: the lower and higher bound of the first interval. point: The point (just a number) Returns: True if point lies in the interval. """ return interval[0] <= point <= interval[1] # @numba.jit def query(self, intervals): """Find all overlaps between this tree and a list of intervals. Args: intervals: A list of intervals. Each interval is a tuple/list of two elements: its lower and higher boundary. Returns: List of lists which contain the overlapping intervals of this tree for each element in `intervals`. """ return [self._query(interval, self.root, check_extreme=True) for interval in intervals] # @numba.jit def _query(self, query_interval, node, check_extreme=False): # Check this special case: the bounds of the query interval lie outside # of the bounds of this tree: if (check_extreme and IntervalTree.interval_contains(query_interval, self.left) and IntervalTree.interval_contains(query_interval, self.right)): return [] # TODO: Return all intervals # Let's start with the centered intervals intervals = [int(interval[2]) for interval in node.center if IntervalTree.interval_overlaps(interval, query_interval)] if query_interval[0] <= node.center_point and node.left is not None: intervals.extend(self._query(query_interval, node.left)) if query_interval[1] >= node.center_point and node.right is not None: intervals.extend(self._query(query_interval, node.right)) return intervals # @numba.jit def query_points(self, points): """Find all intervals of this tree which contain one of those points. Args: points: A list of points. Returns: List of lists which contain the enclosing intervals of this tree for each element in `points`. """ return [self._query_point(point, self.root, check_extreme=True) for point in points] # @numba.jit def _query_point(self, point, node, check_extreme=False): # Check this special case: the query point lies outside of the bounds # of this tree: if check_extreme \ and not IntervalTree.interval_contains( (self.left, self.right), point): return [] # Let's start with the centered intervals intervals = [int(interval[2]) for interval in node.center if IntervalTree.interval_contains(interval, point)] if point < node.center_point and node.left is not None: intervals.extend(self._query_point(point, node)) if point > node.center_point and node.right is not None: intervals.extend(self._query_point(point, node)) return intervals class RangeTree: def __init__(self, points, shuffle=True, tree_class=None): # KD- or ball trees have a very poor building performance for sorted # data (such as from SEVIRI) as discussed in this issue: # https://github.com/scikit-learn/scikit-learn/issues/7687 # Hence, we shuffle the data points before inserting them. if shuffle: self.shuffler = np.arange(points.shape[0]) np.random.shuffle(self.shuffler) points = points[self.shuffler] else: # The user does not want to shuffle self.shuffler = None if tree_class is None or tree_class == "Ball": tree_class = BallTree elif tree_class == "KD": tree_class = KDTree tree_points = np.column_stack([points, np.zeros_like(points)]) self.tree = tree_class(tree_points) def query_radius(self, points, r): query_points = np.column_stack([points, np.zeros_like(points)]) jagged_pairs = self.tree.query_radius(query_points, r) # Build the list of pairs: pairs = np.array([ [build_point, query_point] for query_point, build_points in enumerate(jagged_pairs) for build_point in build_points ]).T if self.shuffler is None: return pairs else: # We shuffled the build points in the beginning, so the current # indices in the second row (the collocation indices from the build # points) are not correct pairs[0, :] = self.shuffler[pairs[0, :]] return pairs ```
{ "source": "jmoller93/1cpn-model", "score": 2 }
#### File: test/integ_tests/1cpn_inte_test.py ```python import numpy as np import os, glob, sys import subprocess import math import copy def ener_conserve(): if not os.path.isfile("energy.dat"): print("No energy file cannot test system") return False d=np.loadtxt("energy.dat") d_ener = d[:,2] etot0 =d[0,2] tol = 1E-1*etot0 for i in range(len(d_ener)): etot = d_ener[i] if (np.abs(etot - etot0) > tol): print "TEST FAILED! etot difference at step %d is %f!" %(d[i,0], np.abs(etot-etot0)) return False return True def mom_conserve(): if not os.path.isfile("traj-angmom.dump"): print("No momentum file found. Cannot test system") return True f = open("traj-angmom.dump",'r') lines = f.readlines() momentum = 0.0 momentum_0 = 0.0 flag = 0 for line in lines: q = line.split() if len(q) == 12: #Calculate system and individual angular momentum #L = R x P + sum(I_i * w_i) mass = float(q[8]) if flag == 0: momentum_0 = momentum_0 + mass*(float(q[9]) + float(q[10]) + float(q[11])) else: momentum = momentum + mass*(float(q[9]) + float(q[10]) + float(q[11])) # Check after each frame for the system elif 'TIMESTEP' in line: if abs(momentum-momentum_0) > 1E-3: print("Warning system is not conserving momentum (%f)\n" % abs(momentum-momentum_0)) return False #Reinitialize everything momentum = 0.0 if flag == 0: flag = 1 return True def amom_conserve(): if not os.path.isfile("traj-angmom.dump"): print("No momentum file found. Cannot test system") return True f = open("traj-angmom.dump",'r') lines = f.readlines() ang_mom = 0.0 mtot = 0 natoms = int(lines[3]) com = np.zeros(3) v_com = np.zeros(3) v = [] r = [] flag = 0 for line in lines: q = line.split() if len(q) == 12: #Calculate system and individual angular momentum #L = R x P + sum(I_i * w_i) ang_mom = ang_mom + float(q[5]) + float(q[6]) + float(q[7]) mass = float(q[8]) v.append(np.array([float(q[9]),float(q[10]),float(q[11])])) r.append(np.array([float(q[2]),float(q[3]),float(q[4])])) com = com + r[-1]*mass v_com = v_com + v[-1]*mass mtot = mtot + mass # Check after each frame for the system elif 'TIMESTEP' in line and mtot != 0: com = com*1.0/mtot v_com = v_com*1.0/mtot #Calculate initial angular momentum if flag == 0: ang_mom_0 = ang_mom for i in range(0,natoms): ang_mom_0 = ang_mom_0 + np.sum(mass*np.cross(r[i]-com,v[i]-v_com)) ang_mom = ang_mom_0 flag = 1 else: for i in range(0,natoms): ang_mom = ang_mom + np.sum(mass*np.cross(r[i]-com,v[i]-v_com)) if abs(ang_mom-ang_mom_0) > 1E-3: print("Warning system is not conserving angular momentum (%f)\n" % abs(ang_mom-ang_mom_0)) return False #Reinitialize everything mtot = 0.0 com = 0.0*com v_com = 0.0*v_com ang_mom = 0.0 v = [] r = [] return True def onecpn_test(indir,lammpsfile): if not os.path.isfile("%s" % (lammpsfile)): print("Executable file (%s) does not exist" % lammpsfile) sys.exit(1) #Run lammps stdout = open('stdout.txt','wb') stderr = open('stderr.txt','wb') subprocess.call(["lmp_mpi", "-in", lammpsfile],stdout=stdout,stderr=stderr) ener_test = ener_conserve() mom_test = mom_conserve() amom_test = amom_conserve() if ener_test and mom_test and amom_test: print("%s conserves necessary observable quantities. Continuing..." % indir) else: if not ener_test: print("%s does not conserve energy" % indir) sys.exit(2) if not mom_test: print("Warning: %s does not conserve momentum" % indir) sys.exit(3) if not amom_test: print("Warning: %s does not conserve angular momentum" % indir) #sys.exit(4) print("Running 1CPN integration tests") #Currently only providing this option for the mpi version of lammps #Will probably throw an option to change later lammps_exec = "lmp_serial" #Run all tests in the directory owd = os.getcwd() for (dirpath,dirnames,filenames) in os.walk("."): for file in filenames: if 'in.zewdie' in file or 'in.wlc' in file or 'in.1cpn' in file: os.chdir(dirpath) test = onecpn_test(dirpath,file) os.chdir(owd) print("Tests have now finished") ``` #### File: utils/blender/mesh_zewdie.py ```python from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np from stl import mesh '''This is a helper script to generate a zewdie isosurface given a set of parameters. the isosurface is written to zewdie.stl and is read in by import_dump.py when vizualizing 1CPN in blender''' import pdb # define zewdie parameters # these are parameters from first fit to 3spn data ps0 = 45.3796835435872 ps000 = 0.905835010046335 pscc2 = -0.458169670802355 ps220 = 1.74891489040291 ps222 = -1.33065657833228 ps224 = 1.03998788841889 pe0 = 43.2151374522855 pe000 = 0.128604190793286 pecc2 = -0.431844707607592 pe220 = 0.915662953592864 pe222 = 1.72160108874421 pe224 = 4.74995077023779 # these are parameters from Kepper2008, Stehr2008 #ps0 = 1.0; ps000 = 1.6957; pscc2 = -0.7641; ps220 = -0.1480; ps222 = -0.2582; ps224 = 0.5112; #pe0 = 1.0; pe000 = 1.9152; pecc2 = 2.7322; pe220 = 1.2633; pe222 = 2.3440; pe224 = 1.0101; #Zewdie #ps0 = 1.0; ps000 = 2.34 ; pscc2 = -1.52 ; ps220 = -0.64 ; ps222 = -0.69 ; ps224 = 1.97 ; #pe0 = 1.0; pe000 = 2.24 ; pecc2 = 3.58 ; pe220 = 3.16 ; pe222 = 4.29 ; pe224 = 1.30 ; def zewdie(rn,f0,f1,f2): # Business time S000 = 1.; S202 = (3*f1*f1 - 1)/(2.*np.sqrt(5)); S022 = (3*f2*f2 - 1)/(2.*np.sqrt(5)); S220 = (3*f0*f0 - 1)/(2.*np.sqrt(5)); S222 = (2 - 3*f1*f1 - 3*f2*f2 - 3*f0*f0 + 9*f0*f1*f2)/np.sqrt(70); S224 = (1 + 2*f0*f0 - 5*f1*f1 - 5*f2*f2 - 20*f0*f1*f2 + 35*f1*f1*f2*f2)/(4.*np.sqrt(70)); sig = ps0*(S000*ps000 + S220*ps220 + S222*ps222 + S224*ps224 + (S022 + S202)*pscc2); eps = pe0*(S000*pe000 + S220*pe220 + S222*pe222 + S224*pe224 + (S022 + S202)*pecc2); U = 4*eps*(pow(ps0,12)/pow(ps0 + rn - sig,12) - pow(ps0,6)/pow(ps0 + rn - sig,6)); return U def find_zero(phi1,phi2,theta): '''Return r that zeros the function at given phi''' # parameters r=ps0*5.0; dr = 1; factor = 0.1 TOLERENCE = 1e-6 #find zero f1 = np.cos(phi1) f2 = np.cos(phi2) f0 = np.cos(theta) eprev = -1; while True: e = zewdie(r,1.0,f1,f2) if (e > 0): if (e < TOLERENCE): break else: r = r+dr # go back a step dr = dr*factor # shrink step size r = r-dr return r def main(): nphi = 40 ntheta = 20 surf_xy = np.zeros((nphi,2)) n= (nphi-2)*(ntheta) + 2 #n= ntheta*nphi surf_xyz = np.zeros((n,3)) phis = np.linspace(0,np.pi,nphi) #thetas = np.linspace(0,2*np.pi,ntheta,endpoint=False) thetas = np.linspace(0,2*np.pi,ntheta) # this removed striping count = 0; for i in range(nphi): phi = phis[i] r = find_zero(phi,phi,0) r *= 0.5 surf_xy[i,0] = r*np.cos(phi) surf_xy[i,1] = r*np.sin(phi) for j in range(ntheta): theta = thetas[j] surf_xyz[count,0] = r*np.cos(phi) surf_xyz[count,1] = r*np.sin(phi)*np.cos(theta) surf_xyz[count,2] = r*np.sin(phi)*np.sin(theta) count += 1 if i == 0 or i == nphi-1: break ## now get facets facets = [] for i in range(nphi-1): for j in range(ntheta): if i == 0: #triangles at pole if j != ntheta -1: a = 0 b = a+j+1 c = b+1 #else: # a = 0 # b = a+j+1 # c = a+0+1 facets.append([a,b,c]) elif i==nphi-2: # triangles at pole if j != ntheta -1: a = (i-1)*ntheta + j + 1 + 1 b = a - 1 c = n-1 #else: # a = (i-1)*ntheta + j + 1 # b = (i-1)*ntheta + 0 + 1 # c = n-1 facets.append([a,b,c]) elif j == ntheta - 1: # wrap in shape b = (i-1)*ntheta + j + 1 a = (i-1)*ntheta + 0 + 1 c = i*ntheta + j + 1 d = i*ntheta + 0 + 1 #facets.append([a,b,d]) #draw 2 triangles #facets.append([b,c,d]) else: a = (i-1)*ntheta + j + 1 b = a + 1 c = i*ntheta + j + 1 + 1 d = c - 1 facets.append([a,b,c]) #draw 2 triangles facets.append([a,c,d]) #np.savetxt('surf_xy.dat',surf_xy) #np.savetxt('surf_xyz.dat',surf_xyz) # write stl mesh data = np.zeros(len(facets),dtype=mesh.Mesh.dtype) for i in range(len(facets)): a = surf_xyz[facets[i][0]] b = surf_xyz[facets[i][1]] c = surf_xyz[facets[i][2]] tmp = np.append(np.append(a,b),c) tmp = np.reshape(tmp,(3,3)) data['vectors'][i] = tmp mymesh = mesh.Mesh(data) mymesh.save('zewdie.stl') #plot #x,y,z = surf_xyz[:,0], surf_xyz[:,1], surf_xyz[:,2] #fig = plt.figure() #ax = fig.add_subplot(111,projection='3d') #ax.scatter(x,y,z) #ax.set_xlabel('x') #ax.set_ylabel('y') #plt.show() if __name__ == "__main__": main() ```
{ "source": "jmolloy1/instawizardry", "score": 3 }
#### File: instawizardry/where the magic happens/AddRow.py ```python import sys import csv with open('Posts.csv','r') as postFile: posts = csv.writer(postFile) def AddRow(row): with open('Posts.csv','w') as postFile: posts = csv.writer(postFile) print(row) posts.writerow([row]) ```
{ "source": "jmolloy/pedigree", "score": 2 }
#### File: scripts/installer/Installer.py ```python import os import hashlib import shutil import curses import curses.wrapper from progressBar import progressBar # Something went wrong during installation class InstallerException(Exception): def __init__(self, value): self.parameter = value def __str__(self): return repr(self.parameter) class Installer: def __init__(self, stdscr, package, filesdir = "./files", installdir = "./install"): self.stdscr = stdscr self.filesdir = filesdir self.installdir = installdir self.packageName = package def setupCurses(self): self.titlewin = self.stdscr.subwin(1, 80, 0, 0) self.mainwin = self.stdscr.subwin(23, 80, 1, 0) self.progwin = self.stdscr.subwin(10, 60, 6, 10) self.statwin = self.stdscr.subwin(1, 80, 24, 0) self.progBar = progressBar(0, 100, 56) curses.init_pair(1, curses.COLOR_BLACK, curses.COLOR_WHITE) curses.init_pair(2, curses.COLOR_WHITE, curses.COLOR_CYAN) curses.init_pair(3, curses.COLOR_YELLOW, curses.COLOR_WHITE) curses.init_pair(4, curses.COLOR_RED, curses.COLOR_WHITE) self.titlewin.bkgd(' ', curses.color_pair(1)) self.statwin.bkgd(' ', curses.color_pair(1)) self.mainwin.bkgd(' ', curses.color_pair(2)) self.titlewin.addstr(0, 0, "Installing " + self.packageName) self.statwin.addstr(0, 0, "Copying files...") self.resetProgWin() self.stdscr.refresh() def resetProgWin(self): self.progwin.clear() self.progwin.bkgd(' ', curses.color_pair(1)) self.progwin.box() self.stdscr.move(24, 79) def statusUpdate(self, msg): self.statwin.clear() self.statwin.addstr(0, 1, msg) self.statwin.refresh() def drawAlert(self, msg, title, colour_pair): # split the message into more manageable chunks msgLines = msg.rstrip().split("\n") height = len(msgLines) + 4 errwin = self.mainwin.subwin(height, 50, (24 / 2) - (height / 2), 15) errwin.overlay(self.progwin) errwin.clear() errwin.bkgd(' ', curses.color_pair(1)) errwin.box() errwin.addstr(0, 2, " " + title + " ", curses.color_pair(colour_pair)) self.statusUpdate("Press ENTER to acknowledge") y = 2 for i in msgLines: if(len(i) > 50): firstPart = i[0:46] secondPart = i[46:] errwin.addstr(y, 2, firstPart) y += 1 errwin.addstr(y, 2, secondPart) else: errwin.addstr(y, 2, i) y += 1 errwin.refresh() # Wait for ENTER while 1: c = self.stdscr.getch() if(c == 13 or c == 10): break self.mainwin.clear() self.mainwin.refresh() self.resetProgWin() def drawError(self, msg, title = "Error"): self.drawAlert(msg, title, 4) def drawWarning(self, msg, title = "Warning"): self.drawAlert(msg, title, 3) def drawProgress(self, action, fileName, progress): self.progwin.addstr(1, 2, action + ", please wait...") self.progwin.addstr(3, 2, fileName) self.progBar.updateAmount(progress) self.progwin.addstr(5, 2, str(self.progBar)) self.progwin.refresh() self.resetProgWin() def InstallerPage(self, msg): introwin = self.mainwin.subwin(20, 70, 3, 5) introwin.clear() introwin.box() introwin.bkgd(' ', curses.color_pair(1)) msgLines = msg.split("\n") msgNum = len(msgLines) y = (20 / 2) - (msgNum / 2) for i in msgLines: introwin.addstr(y, (70 / 2) - (len(i) / 2), i) y += 1 introwin.refresh() self.waitForKeyPress() self.mainwin.clear() self.mainwin.refresh() def introPage(self): msg = "Welcome to the " + self.packageName + " installation!" msg += "\n\n\n" msg += "The next steps will guide you through the installation of " + self.packageName + "." msg += "\n\n" msg += "Press ENTER to continue." self.InstallerPage(msg) def done(self): msg = self.packageName + " is now installed!" msg += "\n\n\n" msg += "Remove the CD from the disk drive and press any key to reboot." self.InstallerPage(msg) def selectDest(self): pass def installFiles(self): # Open the file listing. This file contains information about each file that # we are to install. try: fileList = open(self.filesdir + "/filelist.txt") except: # Pass it up to the caller self.drawError("Couldn't open file list for reading.") raise self.statusUpdate("Please wait...") # Start copying files fileLines = fileList.read().rstrip().split("\n") nFiles = len(fileLines) currFileNum = 0 myProgress = 0 for line in fileLines: # Remove trailing whitespace and split on spaces # File format: # <source path> <dest path> <md5> <compulsory> line = line.rstrip() set = line.split(" ") if(len(set) != 4): self.drawError("Bad set in file list:\n" + line + "\nThis set only has " + str(len(set)) + " entries") continue # Create directory structure if required dirSplit = set[1].split("/") dirSplit = dirSplit[1:-1] if(len(dirSplit) > 0): currPath = "/" for dir in dirSplit: os.mkdir(self.installdir + currPath) # Update the progress currFileNum += 1 myProgress = (currFileNum / float(nFiles)) * 100.0 self.drawProgress("Copying files", self.installdir + set[1], myProgress) # Some files are meant to be empty, but present if(len(set[0]) == 0): f = open(self.installdir + set[1], "w") f.close() continue # Copy the file shutil.copy(self.filesdir + set[0], self.installdir + set[1]) # MD5 the newly copied file newFile = open(self.installdir + set[1]) hex = hashlib.md5(newFile.read()).hexdigest() newFile.close() # Ensure the MD5 matches if(hex != set[2]): if(set[3] == "yes"): self.drawError("Compulsory file failed verification:\n" + self.installdir + set[1]) raise else: self.drawWarning("File " + str(currFileNum) + " failed verification, continuing anyway:\n" + self.installdir + set[1]) fileList.close() self.statusUpdate("Copy complete.") def postInstall(self): self.statusUpdate("Please wait...") # Files copied, run post-install scripts now try: postInstallFile = open(self.filesdir + "/postinstall.txt") contents = postInstallFile.read() contents.rstrip() if(len(contents)): num = 0 for line in contents.split("\n"): num += 1 self.drawProgress("Running script", line, (num / float(len(contents))) * 100.0) try: p = os.popen(line) print p.read() p.close() except: self.drawWarning("Post-install script '" + str(line) + "' failed, continuing") else: raise postInstallFile.close() except: self.statusUpdate("Post-install scripts complete.") def waitForKeyPress(self): self.stdscr.getch() ``` #### File: pedigree/scripts/manage_users.py ```python import os, sys, sqlite3, getpass scriptdir = os.path.dirname(os.path.realpath(__file__)) imagedir = os.path.realpath(scriptdir + "/../images/local") usersdir = os.path.join(imagedir, "users") configdb = os.path.realpath(scriptdir + "/../build/config.db") # TODO: build dir is not always 'build' # Try to connect to the database try: conn = sqlite3.connect(configdb) except: print "Configuration database is not available. Please run 'scons build/config.db'." exit(2) # Check for an existing users directory if not os.path.exists(usersdir): os.mkdir(usersdir) def ignore(): pass def getnextuid(): q = conn.execute("select uid from users order by uid desc limit 1") u = q.fetchone() return u[0] + 1 def safe_input(): try: line = raw_input("> ") except KeyboardInterrupt: print # a newline conn.close() exit(1) return line def main_menu(funcmap): print "Select an option below:" print "1. Add a new user" print "2. Change the password of an existing user" print "3. Change attributes of an existing user" print "4. Delete user" print "5. Exit" option = 0 while True: line = safe_input() try: option = int(line) except ValueError: print "Please enter a number." continue if not option in funcmap.keys(): print "Please enter a valid option." continue break funcmap[option]() userattrs = [["fullname", "New User", False], ["groupname", "users", False], ["homedir", "/users/user", False], ["shell", "/applications/bash", False], ["password", "", True]] def adduser(): print "Please type the username for the new user." username = safe_input() # Make sure the user does not exist. q = conn.execute("select uid from users where username=?", [username]) user = q.fetchone() if not user is None: print "User '%s' already exists." % (username,) return uid = getnextuid() newattrs = [uid, username] # Get all attributes for attr in userattrs: if attr[2]: while True: # Secure. a = getpass.getpass("%s: " % (attr[0],)) b = getpass.getpass("Confirm %s: " % (attr[0],)) if not a == b: print "Passwords do not match." else: newattrs += [a] break else: data = raw_input("%s [default=%s]: " % (attr[0], attr[1])) if data == "": data = attr[1] newattrs += [data] # Insert. conn.execute("insert into users (uid, username, fullname, groupname, homedir, shell, password) values (?, ?, ?, ?, ?, ?, ?)", newattrs) conn.commit() # Home directory. homedir = newattrs[4][1:] os.mkdir(os.path.join(imagedir, homedir)) print "Created user '%s'" % (username,) def validuser(username): # Check for a valid user in the database. q = conn.execute("select uid, password from users where username=?", [username]) user = q.fetchone() if user is None: print "The user '%s' does not exist." % (username,) return False return True def changepassword(): print "Please type the username of the user for which you want to change password." username = safe_input() # Check for a valid user in the database. if not validuser(username): return # Confirm the password print "Changing password for '%s'..." % (username,) curr = getpass.getpass("Current password: ") if curr == user[1]: new = getpass.getpass("New password: ") # Commit to the DB conn.execute("update users set password=? where uid=?", [new, user[0]]) conn.commit() else: print "Incorrect password." print "Changed password for user '%s'" % (username,) def changeattr(): print "Please type the username of the user for which you want to change attributes." username = safe_input() # Check for a valid user in the database. if not validuser(username): return newattrs = [] def dict_factory(cursor, row): d = {} for idx, col in enumerate(cursor.description): d[col[0]] = row[idx] return d old_factory = conn.row_factory conn.row_factory = dict_factory q = conn.execute("select uid, fullname, groupname, homedir, shell from users where username=?", [username]) user = q.fetchone() # Get all attributes n = 0 for attr in userattrs: if not attr[2]: data = raw_input("%s [current=%s]: " % (attr[0], user[attr[0]])) if data == "": data = user[attr[0]] newattrs += [data] n += 1 newattrs += [user["uid"]] # Update. conn.execute("update users set fullname=?, groupname=?, homedir=?, shell=? where uid=?", newattrs) conn.commit() # Create home directory in case it changed. homedir = newattrs[2] if True or (not homedir == user["homedir"]): oldhome = os.path.join(imagedir, user["homedir"][1:]) newhome = os.path.join(imagedir, homedir[1:]) if not os.path.exists(oldhome): os.mkdir(newhome) else: os.rename(oldhome, newhome) conn.row_factory = old_factory def deleteuser(): print "Please type the username for the user to delete." username = safe_input() # Check for a valid user in the database. if not validuser(username): return # Delete the user. conn.execute("delete from users where uid=?", [user[0]]) conn.commit() print "Deleted user '%s'" % (username,) options = {1 : adduser, 2 : changepassword, 3 : changeattr, 4 : deleteuser, 5 : ignore} main_menu(options) conn.close() ```