metadata
dict
text
stringlengths
60
3.49M
{ "source": "jmscslgroup/sparkle", "score": 3 }
#### File: sparkle/control/carfollowing.py ```python import rospy import sys, getopt import numpy as np import glob import os from geometry_msgs.msg import Twist, Pose, Point, Vector3 from std_msgs.msg import Float64 from nav_msgs.msg import Odometry class carfollowing(object): """ CAR following constructor Parameters ---------- thisvehicle: `string`, Name of the ego vehicle leadervehicle: `string`, Name of the leader vehicle Returns -------- Nothing """ def __init__(self, thisvehicle, leadervehicle, **kwargs): self.counter = 1.0 # for print log message at the time of publishing, currently we publish every 1000 steps or so. self.thisvehicle = thisvehicle self.leadervehicle= leadervehicle self.carfollowingmodel = kwargs.get("carfollowingmodel", None) rospy.init_node("car_following", anonymous=True) print("carfollowing node initialized with following vehicle [{}] and leader vehicle [{}]".format(thisvehicle, leadervehicle)) self.FirstTime = rospy.Time.now() # Capture time when this node is initialized. print("Time just after initialization is {}".format(self.FirstTime)) self.init = False self.firstMessage = {"leadervel": False, "vel": False, "distance": False, "leaderaccel": False, "accel": False, "leaderodom": False, "odom": False} # Get all rosparams self.useSensorDistance = rospy.get_param('useSensorDistance', False) self.leaderposX = rospy.get_param('leaderX_init', 0.0) self.leaderposY = rospy.get_param('leaderY_init', 0.0) self.posX = rospy.get_param('X_init', 10.0) self.posY = rospy.get_param('Y_init', 10.0) self.leaderaccel = rospy.get_param('leaderaccel_init',0.0) #initiliaze leader's acceleration self.accel = rospy.get_param('accel_init',0.0) # # initialize the vehicle's acceleration self.str_angle = rospy.get_param('str_angle', 0.0) #steering angle #print(self.leaderposY) #print(self.posY) if self.useSensorDistance: self.distance = rospy.get_param('distance_init', 9.45) #initialize the distance between the vehicle and its leader else: self.distance = np.sqrt( (self.leaderposX - self.posX)**2 + (self.leaderposY - self.posY)**2 ) #print("self.distance: {}".format(self.distance)) V_init = self.V(self.distance) self.leadervel = 0.0 #V_init#initialize leader's velocity self.vel = 0.0 #V_init #initialize velocity of this vehicle # Initialize Velocity Message self.vel_msg = Twist() self.vel_msg.linear.x = self.leadervel self.vel_msg.linear.y = 0.0 self.vel_msg.linear.z = 0.0 self.vel_msg.angular.x = 0.0 self.vel_msg.angular.y = 0.0 self.vel_msg.angular.z = self.str_angle # Initialize Acceleration Message self.accel_msg = Float64() self.accel_msg.data = 0.0 # Initialize local variables leadervel = Twist() vel =Twist() distance = Float64() leaderodom = Odometry() odom = Odometry() leaderaccel = Vector3() accel = Vector3() odom.pose.pose.position.x = self.posX odom.pose.pose.position.y = self.posY leaderodom.pose.pose.position.x = self.leaderposX leaderodom.pose.pose.position.y = self.leaderposY leadervel.linear.x = self.leadervel vel.linear.x = self.vel distance.data = self.distance leaderaccel.x = self.leaderaccel accel.x = self.accel self.agentdata = {"leadervel": leadervel , "vel": vel, "distance": distance, "leaderaccel": leaderaccel, "accel": accel, "odom": odom , "leaderodom": leaderodom} # Create Publisher self.pubvel = rospy.Publisher('cmd_vel', Twist, queue_size=1) self.pubaccel = rospy.Publisher('cmd_accel', Float64, queue_size=1) ## Create all subscribers config = ("leadervel", self.carfollowingmodel) rospy.Subscriber('leadervel', Twist, self.callback, config) config = ("vel", self.carfollowingmodel) rospy.Subscriber('vel', Twist, self.callback, config) config = ("leaderodom", self.carfollowingmodel) rospy.Subscriber('leaderodom', Odometry, self.callback, config) config = ("odom", self.carfollowingmodel) rospy.Subscriber('odom', Odometry, self.callback, config) config = ("distance", self.carfollowingmodel) rospy.Subscriber('distance', Float64, self.callback, config) config = ("leaderaccel", self.carfollowingmodel) rospy.Subscriber('leaderaccel', Point, self.callback, config) config = ("accel", self.carfollowingmodel) rospy.Subscriber('accel',Point, self.callback, config) # We also want to publish immediately after receiver a new data point self.publishNow = False def callback(self, data, args): """ Callback function to receive data from its subscriber and parse it and store in the class's dictionary variable Parameters ------------ data: `obj`, data sent by the susbscriber - type is determined during runtime type: `string`, expected type in string literal agent: `string`, expected agent who will be sending the data """ agent = args[0] carfollowingmodel = args[1] #print("carfollowingmodel: {}".format(carfollowingmodel)) if 'oldTime' not in self.__dict__: self.oldTime = rospy.Time.now() return newTime = rospy.Time.now() deltaT = newTime - self.oldTime deltaT = deltaT.to_sec() #print("callback deltaT: {}".format(deltaT)) net_deltaT = newTime - self.FirstTime net_deltaT = net_deltaT.to_sec() self.oldTime = newTime self.agentdata[agent] = data #print("\n-----------") #print("Agent is {}".format(agent)) #print("Data: {}".format(data)) #print("Args: {}".format(args)) if self.useSensorDistance: self.distance = self.agentdata["distance"] else: self.distance = np.sqrt( (self.agentdata["leaderodom"].pose.pose.position.x - self.agentdata["odom"].pose.pose.position.x)**2 + (self.agentdata["leaderodom"].pose.pose.position.y - self.agentdata["odom"].pose.pose.position.y)**2 ) self.agentdata['distance'].data = self.distance self.firstMessage[agent] = True # if all true in first message dictionary, then set self init to true if all(x is True for x in self.firstMessage.values()) and not self.init: #print("self.init: {}".format(self.init)) #print('deltaT: {}'.format(deltaT)) self.init = True return if carfollowingmodel is None: newvelocity, newaccel = self.cf_algorithm(self.L2Norm(self.agentdata['leadervel'].linear), self.L2Norm(self.agentdata['leaderaccel']), self.L2Norm(self.agentdata['vel'].linear), self.L2Norm(self.agentdata['accel']), self.agentdata['distance'].data, deltaT) else: newvelocity, newaccel = carfollowingmodel(self.L2Norm(self.agentdata['leadervel'].linear), self.L2Norm(self.agentdata['leaderaccel']), self.L2Norm(self.agentdata['vel'].linear), self.L2Norm(self.agentdata['accel']), self.agentdata['distance'].data, deltaT) self.vel_msg.linear.x = newvelocity self.vel_msg.linear.y = 0.0 self.vel_msg.linear.z = 0.0 self.vel_msg.angular.x = 0.0 self.vel_msg.angular.y = 0.0 self.vel_msg.angular.z = self.str_angle self.accel_msg.data = newaccel # We always publish right away self.publishNow =True @staticmethod def L2Norm(vector3data): """ Calculates the L2Norm of geometry_msgs Vector3 Parameters ------------- vector3data: `geometry_msgs/Vector3`, 3D Vector data whose L2 Norm is to be calculated Returns ----------- L2 norm of the 3D vector data """ magnitude = np.sqrt(vector3data.x**2 + vector3data.y**2 + vector3data.z**2) return magnitude def publish(self): if self.publishNow: self.counter = self.counter + 1 if self.counter % 100== 0: #print("PublishNow:{}".format(self.publishNow)) rospy.loginfo(rospy.get_caller_id() + " publishing new velocity {0} m/s.".format(self.vel_msg.linear.x)) self.pubvel.publish(self.vel_msg) self.pubaccel.publish(self.accel_msg) # after we publish, we ensure to wait until a new odom point arrives self.publishNow = False @staticmethod def follower_stopper(leadervel, leaderaccel, vel, accel, distance, deltaT, **kwargs): """ Implements follower stopper model Parameters ------------- leadervel: `double` , leader's velocity at current time step leaderaccel: `double`, leader's acceleration at current time step vel: `double`, current vehicle's velocity at the current time step accel: `double`, current vehicle's acceleration at the current time step distance: `double`, distance bwteen leader vehicle and current vehicle at the current time step deltaT: `double`, timestep kwargs: `dictionary`, variable argument dictionary Returns -------- Car following model returns new commanded velocity for the next time step as per followerstopper """ dx1 = 4.5 dx3 = 6.0 dx2 = (dx1 + dx3)/2.0 a1 = 1.5 a3 = 0.5 a2 = (a1 + a3)/2.0 cmd_vel = 0.0 r = 6.5 # m/s v = np.min(np.max(leadervel, 0), r) if distance <= dx1: cmd_vel = 0.0 elif (distance <=dx2) and (distance >=dx1): cmd_vel = v*((distance - dx1)/(dx2 - dx1)) elif(distance <=dx3) and (distance >=dx2): cmd_vel = v + (r-v)*((distance - dx2)/(dx3 - dx2)) elif distance > dx3: cmd_vel = r def cf_algorithm(self, leadervel, leaderaccel, vel, accel, distance, deltaT, **kwargs): """ Implements a car following model Parameters ------------- leadervel: `double` , leader's velocity at current time step leaderaccel: `double`, leader's acceleration at current time step vel: `double`, current vehicle's velocity at the current time step accel: `double`, current vehicle's acceleration at the current time step distance: `double`, distance bwteen leader vehicle and current vehicle at the current time step deltaT: `double`, timestep kwargs: `dictionary`, variable argument dictionary Returns -------- Car following model returns new commanded velocity for the next time step """ b = 5.0 # [m^2/s] ,follow-the-leader strength a = 0.5 # [1/s], optimal velocity strength nu = 2.0 #power of distance in denominator of follow-the-leader term #print("cf_algorithm leadervel: {}".format(leadervel)) #print("cf_algorithm vel: {}".format(vel)) #print("cf_algorithm distance: {}".format(distance)) accel = (b*(leadervel - vel)/(distance**nu)) + a*(self.V(distance) - vel) #print("cf_algorithm new acceleration: {}".format(accel)) # print("cf_algorithm deltaT: {}".format(deltaT)) #deltaT = 0.01 deltav = accel*deltaT newvelocity = vel + deltav #print("cf_algorithm New Velocity : {}".format(newvelocity)) return newvelocity, accel @staticmethod def V(distance): """ Optimal Velocity Function Parameters ------------- distance: `double`, current distance between the current vehicle and the leader vehicle. Returns ---------- Function returns the optimal Velocity """ #print("V Function distance", distance) d0 = 5.00 # [m] reference vehicle distance Vm = 15/3.6 # [m/s] maximum velocity for optimal velocity functios V = Vm * (np.tanh((distance/d0) - 2) + np.tanh(2))/(1 + np.tanh(2)) return V def usage(): print("carfollowing -t nebula -l magna -r 50.0") def main(argv): #print("Main of carfollowing") thisvehicle='nebula' leadervehicle='magna' rate=20.0 print('Argv: {}'.format(argv)) try: opts, args = getopt.getopt(argv, "l:r:t:", ["leadervehicle", "rate", "thisvehicle"]) except getopt.GetoptError: usage() exit.sys() for opt, arg in opts: if opt in ("-t", "--thisvehicle"): thisvehicle=arg elif opt in ("-l", "--leadervehicle"): leadervehicle=arg print('arg={}'.format(arg)) elif opt in ("-r", "-rate"): rate=arg else: usage() exit.sys() print("This Vehicle is {}.\nLeader Vehicle is {}\n".format(thisvehicle, leadervehicle)) node = carfollowing(thisvehicle, leadervehicle) rosrate = rospy.Rate(rate) while not rospy.is_shutdown(): if rospy.get_param("/execute", False): #print("Sending velocity {} m/s to {}".format(node.vel_msg.linear.x, node.thisvehicle)) node.publish() rosrate.sleep() if __name__ == '__main__': main(sys.argv[1:]) ``` #### File: src/sparkle/gazebo_rtf.py ```python import sys import rospy import csv import time import datetime import socket from os.path import expanduser from gazebo_msgs.srv import GetPhysicsProperties from gazebo_msgs.srv import SetPhysicsProperties class saveparam: def __init__(self, ns): """ """ pass def main(argv): rospy.wait_for_service('gazebo/get_physics_properties') rospy.wait_for_service('gazebo/set_physics_properties') max_update_rate = float(argv[0]) time_step = float(argv[1]) get_physics_properties_prox = rospy.ServiceProxy('gazebo/get_physics_properties', GetPhysicsProperties) physics_properties = get_physics_properties_prox() time.sleep(4) get_physics_properties_prox = rospy.ServiceProxy('gazebo/get_physics_properties', GetPhysicsProperties) physics_properties = get_physics_properties_prox() print("Current max_update_rate is {}".format( physics_properties.max_update_rate)) while(physics_properties.max_update_rate != max_update_rate): print("Max Update Rate was not set properly, terminating simulation. Please restart the simulation.") physics_properties.max_update_rate = max_update_rate physics_properties.time_step = time_step set_physics_properties_prox = rospy.ServiceProxy('gazebo/set_physics_properties', SetPhysicsProperties) set_physics_properties_prox(physics_properties.time_step, physics_properties.max_update_rate, physics_properties.gravity, physics_properties.ode_config) get_physics_properties_prox = rospy.ServiceProxy('gazebo/get_physics_properties', GetPhysicsProperties) physics_properties = get_physics_properties_prox() print("New max_update_rate is {}".format( physics_properties.max_update_rate)) if __name__ == '__main__': main(sys.argv[1:]) ``` #### File: sparkle/launch/launch.py ```python import roslaunch import time """ This class is an utility class for creating and launching roslaunch, as well as terminating it """ ''' Summary of Class layout: This class requires a ros package 'Sparkle' Attributes: 1. launchfile: The full path of the launch file 2. theta: angular separation of two consecutive vehicle on the circle and all attributes of super class Functions: 1. __init__(circumference, n_vehicles): basically a constructor ''' class launch: ''' `launch`:A class facilitating roslaunch with runtime arguments and termination Parameters ------------- launchfile: `string` Full path of the roslaunch file to be launch. Must be string. kwargs variable keyword arguments passed as run-time argument for the launch file Attributes ------------ launchfile: `string` Full path of the roslaunch file to be launch. Must be string. runtime_args: `list` A list of run time arguments to be passed to launch file execution uuid: `string` Unique Identifier for the launch parent: `roslaunch.parent.ROSLaunchParents` Length of car from bumper to bumper See Also --------- layout: superclass of `lane` ''' def __init__(self, launchfile, **kwargs): self.launchfile = launchfile try: roslaunch.rlutil.resolve_launch_arguments([self.launchfile]) except roslaunch.RLException: print("Unable to find {}".format(self.launchfile)) self.runtime_args = [] self.uuid = roslaunch.rlutil.get_or_generate_uuid(None, False) print(self.uuid) roslaunch.configure_logging(self.uuid) for key in kwargs.keys(): self.runtime_args.append("{}:={}".format(key, kwargs[key])) if len(self.runtime_args) > 0: self.parent = roslaunch.parent.ROSLaunchParent(self.uuid, [(self.launchfile, self.runtime_args)]) else: self.parent = roslaunch.parent.ROSLaunchParent(self.uuid,[self.launchfile]) def start(self): ''' Calls `start()` function to execute roslaunch ''' self.parent.start() time.sleep(5) if len(self.runtime_args) > 0: print("{} started with run-time arguments {}".format(self.launchfile, self.runtime_args)) else: print("{} started.".format(self.launchfile)) def shutdown(self): ''' Calls `shutdown()` function to terminate the execution of the launch file ''' self.parent.shutdown() print("{} Terminated.".format(self.launchfile)) ``` #### File: sparkle/log/gzstats.py ```python import signal import pandas as pd import sys, math, time, datetime import matplotlib.pyplot as pt import matplotlib.animation as animation from matplotlib import style import numpy as np from matplotlib.pyplot import cm import pickle import bagpy import seaborn as sea class gzstats(object): ''' __init__ takes file name of gz stats dump (either relative path or full path) ''' def __init__(self, statfile='Circle_Test_n_20_updateRate_1_2019-12-02-13-13-35_gzStats.txt'): self.statfile = statfile dataframe = pd.read_csv(self.statfile, sep=' ' , header=None, names=["Factor", "SimTime", "RealTime", "SimStatus"]) # delete the last two rows, they may be incomplete dataframe.drop(dataframe.tail(2).index,inplace=True) df = dataframe.replace(r'\w+\[([\S\.]+)\]', r'\1', regex=True) df['Factor'] = df['Factor'].astype('float') df['SimTime'] = df['SimTime'].astype('float') df['RealTime'] = df['RealTime'].astype('float') df['SimStatus'] = df['SimStatus'].apply(lambda x: self._status(x)) self.dataframe = df # Mean Real Time Factor throught the simulation self.rtf_avg = round(np.mean(self.dataframe['Factor']), 5) # Mean Standard Deviation of RTF throughout the Simulation self.rtf_std = round(np.std(self.dataframe['Factor']), 5) # Pause Ratio is the percentage of the time when Simulation stayed pause self.pause_ratio = round(self._calcPausePercentage(self.dataframe['SimStatus']), 5) ''' Private function to use in Sim Status Lambda ''' def _status(self, x): if(x == 'F'): x = 0.0 elif(x == 'T'): x = 1.0 else: x = None return x ''' Private function to calculate pause percentage ''' def _calcPausePercentage(self, data): return (sum(data)/len(data)) def plotRTF(self, save=True): SimTime = self.dataframe['SimTime'] RealTime = self.dataframe['RealTime'] Factor = self.dataframe['Factor'] pt.style.use('seaborn') pt.rcParams["figure.figsize"] = (18,10) pt.rcParams[ 'font.family'] = 'Roboto' pt.rcParams[ 'font.weight'] = 'bold' params = {'legend.fontsize': 12, 'legend.handlelength': 2, 'legend.loc': 'upper right'} pt.rcParams.update(params) fig, (ax1, ax2) = pt.subplots(2, 1) # Change the color and its transparency ax1.fill_between( SimTime, Factor, color="skyblue", alpha=0.2) ax1.plot(SimTime, Factor, color="Slateblue", alpha=0.6, linestyle='-', linewidth='1', marker='.', markersize = 3) ax1.set_axisbelow(True) ax1.minorticks_on() ax1.tick_params(axis="x", labelsize=14) ax1.tick_params(axis="y", labelsize=14) pt.grid(True) ax1.set_xlabel('Sim Time', fontsize=14) ax1.set_ylabel('Real Time Factor', fontsize=14) ax1.legend(['Real time factor average: ' + str(self.rtf_avg) + ', std: ' + str(self.rtf_std)]) ax1.set_title( self.statfile[0:-4]+ "\n " + "Real Time Factor vs Sim Time", fontsize=10) # Change the color and its transparency ax2.fill_between( RealTime, Factor, color="lightcoral", alpha=0.2) ax2.plot(RealTime, Factor, color="crimson", alpha=0.6, linestyle='-', linewidth='1', marker='.', markersize = 3) ax2.set_axisbelow(True) ax2.minorticks_on() ax2.tick_params(axis="x", labelsize=14) ax2.tick_params(axis="y", labelsize=14) ax2.set_xlabel('Real Time', fontsize=14) ax2.set_ylabel('Real Time Factor', fontsize=14) ax2.legend(['Real time factor average: ' + str(self.rtf_avg) + ', std: ' + str(self.rtf_std)]) ax2.set_title( self.statfile[0:-4]+ "\n" + "Real Time Factor vs Real Time", fontsize=10) pt.tight_layout() if(save== True): current_fig = pt.gcf() fileToSave = self.statfile[0:-4] pickle.dump(fig,file(fileToSave + "_RTF.pickle",'w')) current_fig.savefig(fileToSave + "_RTF.pdf", dpi = 300) pt.show() def plotSimStatus(self, save=True): SimTime = self.dataframe['SimTime'] RealTime = self.dataframe['RealTime'] SimStatus = self.dataframe['SimStatus'] pt.style.use('seaborn') pt.rcParams["figure.figsize"] = (18,10) params = {'legend.fontsize': 16, 'legend.handlelength': 2, 'legend.loc': 'upper left'} pt.rcParams.update(params) fig, (ax1, ax2) = pt.subplots(2, 1) # Change the color and its transparency ax1.plot(SimTime, SimStatus, color="Slateblue", alpha=0.6, linestyle='-', linewidth='0.5', marker='.', markersize = 10) ax1.set_axisbelow(True) ax1.minorticks_on() ax1.tick_params(axis="x", labelsize=14) ax1.tick_params(axis="y", labelsize=14) pt.grid(True) ax1.set_xlabel('Sim Time', fontsize=14) ax1.set_ylabel('Gazebo Sim Pause Status', fontsize=16) ax1.legend(['Pause percentage: ' + str(self.pause_ratio*100)+ '%']) ax1.set_title( self.statfile[0:-4]+ "\n" + "Sim Status (Pause/Unpause) vs Sim Time") # Change the color and its transparency ax2.plot(RealTime, SimStatus, color="crimson", alpha=0.6, linestyle='-', linewidth='0.5', marker='.', markersize = 10) ax2.set_axisbelow(True) ax2.minorticks_on() ax2.tick_params(axis="x", labelsize=14) ax2.tick_params(axis="y", labelsize=14) ax2.set_xlabel('Real Time', fontsize=14) ax2.set_ylabel('Gazebo Sim Pause Status', fontsize=14) ax2.legend(['Pause percentage: ' + str(self.pause_ratio*100) + '%']) ax2.set_title( self.statfile[0:-4]+ "\n" + "Sim Status (Pause/Unpause) vs Real Time") if(save== True): current_fig = pt.gcf() fileToSave = self.statfile[0:-4] pickle.dump(fig,file(fileToSave + "SimStatus.pickle",'w')) current_fig.savefig(fileToSave + "_SimStatus.pdf", dpi = 300) # pt.show() ``` #### File: sparkle/log/rosbag_record.py ```python import rospy import subprocess import os import signal class RosbagRecord: def __init__(self): rospy.init_node('bagrecorder') rospy.loginfo(rospy.get_name() + ' start') if rospy.has_param('~record_script'): self.record_script = rospy.get_param('~record_script') rospy.on_shutdown(self.stop_recording_handler) # Start recording. command = "source " + self.record_script self.p = subprocess.Popen(command, stdin=subprocess.PIPE, shell=True, cwd=self.record_folder, executable='/bin/bash') # Wait for shutdown signal to close rosbag record rospy.spin() else: rospy.signal_shutdown(rospy.get_name() + ' no record script or folder specified.') def terminate_ros_node(self, s): # Adapted from http://answers.ros.org/question/10714/start-and-stop-rosbag-within-a-python-script/ list_cmd = subprocess.Popen("rosnode list", shell=True, stdout=subprocess.PIPE) list_output = list_cmd.stdout.read() retcode = list_cmd.wait() assert retcode == 0, "List command returned %d" % retcode for str in list_output.split("\n"): if (str.startswith(s)): os.system("rosnode kill " + str) def stop_recording_handler(self): rospy.loginfo(rospy.get_name() + ' stop recording.') self.terminate_ros_node("/bagrecorder") ```
{ "source": "jmsegrev/django-class-fixtures", "score": 2 }
#### File: class_fixtures/tests/models.py ```python from django.db import models # For relationless, M2M, M2M w/through model and concrete inheritance testing class Band(models.Model): name = models.CharField(max_length=255) class MetalBand(Band): leather_pants_worn = models.BooleanField(default=True) class Musician(models.Model): name = models.CharField(max_length=100) member_of = models.ManyToManyField(Band, through='Membership') class Membership(models.Model): musician = models.ForeignKey(Musician) band = models.ForeignKey(Band) date_joined = models.DateField(null=True) instrument = models.CharField(max_length=100) class Roadie(models.Model): name = models.CharField(max_length=100) hauls_for = models.ManyToManyField(Band) # For normal FK, FK to self and non-inheritance OneToOneField testing class Company(models.Model): name = models.CharField(max_length=100) class Employee(models.Model): name = models.CharField(max_length=100) company = models.ForeignKey(Company) manager = models.ForeignKey('self', null=True) cog_in_the_machine = models.BooleanField(default=False) def save(self, *args, **kwargs): if ' corp' in self.company.name.lower(): self.cog_in_the_machine = True super(Employee, self).save(*args, **kwargs) class EmployeeHistory(models.Model): employee = models.OneToOneField(Employee) date_joined = models.DateField() # For natural key testing class CompetencyManager(models.Manager): def get_by_natural_key(self, framework, level): return self.get(framework=framework, level=level) class Competency(models.Model): LEVEL_CHOICES = ( (0, "None"), (1, "Beginner"), (2, "Intermediate"), (3, "Advanced"), (4, "Guru"), ) framework = models.CharField(max_length=100) level = models.SmallIntegerField(choices=LEVEL_CHOICES) objects = CompetencyManager() def natural_key(self): return (self.framework, self.level) class Meta(object): unique_together = (('framework', 'level')) class JobPosting(models.Model): title = models.CharField(max_length=100) main_competency = models.ForeignKey(Competency, related_name='main_competency_for') additional_competencies = models.ManyToManyField(Competency, related_name='extra_competency_for') # For initial data only, to prevent messing up object counts for other models # in tests. Due to custom routing in tests.runtests.AlternateDBTestRouter, the # schemas for these models will not be synched to the "alternate" database. class Party(models.Model): name = models.CharField(max_length=100) class Politician(models.Model): name = models.CharField(max_length=100) party = models.ForeignKey(Party) minimum_bribe = models.DecimalField(max_digits=10, decimal_places=2, null=True) # For testing dumpdata with a complex model. Skip some fields whose serialized # representation is identical to that of others, e.g. FileField == CharField. class ComprehensiveModel(models.Model): bigint = models.BigIntegerField() boolean = models.BooleanField() char = models.CharField(max_length=255) date = models.DateField() datetime = models.DateTimeField() decimal = models.DecimalField(max_digits=6, decimal_places=2) floatf = models.FloatField() integer = models.IntegerField() nullboolean = models.NullBooleanField() text = models.TextField() time = models.TimeField() ```
{ "source": "jmservera/hassio-mqtt-proxy", "score": 2 }
#### File: hassio-mqtt-proxy/tests/common.py ```python import os def get_fixture_path(filename): return os.path.join(os.path.dirname(__file__), "fixtures", filename) ```
{ "source": "jmservera/TwitterAnalyticsLambda", "score": 2 }
#### File: TwitterAnalyticsLambda/TweetIngest/send.py ```python import sys import logging import datetime import time import os import enhancedjsonencoder from azure.eventhub import EventHubClient, Sender, EventData from telemetry import Telemetry class EventHubSender(object): def __init__(self, connectionString): print("Initiating EventHubSender with "+connectionString) if not connectionString: raise ValueError("No EventHubs URL supplied.") self.address=connectionString self.client=EventHubClient.from_connection_string(connectionString) self.sender=self.client.add_sender() self.client.run() self.encoder=enhancedjsonencoder.EnhancedJSONEncoder() def __del__(self): self.sender.close() def close(self): self.__del__() def sendTweet(self,tweet): try: tweetjson= self.encoder.encode(tweet) self.sender.send(EventData(tweetjson)) Telemetry.IncrementMessages() except: raise ``` #### File: TwitterAnalyticsLambda/TweetIngest/telemetry.py ```python class __telemetry(object): def __init__(self): self._receivedTweets=0 self._sentMessages=0 @property def ReceivedTweets(self): return self._receivedTweets def IncrementTweets(self): self._receivedTweets=self._receivedTweets+1 return self._receivedTweets @property def SentMessages(self): return self._sentMessages def IncrementMessages(self): self._sentMessages=self._sentMessages+1 return self._sentMessages Telemetry=__telemetry() ```
{ "source": "jmsevillam/Herramientas-Computacionales-UniAndes", "score": 3 }
#### File: Hw4/Solution/problem2.py ```python def fac(n): if n==1 or n==0: return 1 else: return n*fac(n-1) print(fac(10)) ``` #### File: Hw4/Solution/problem5a.py ```python def decode(word1,word2,code): if len(word1)==1: code+=word1+word2 return code else: code+=word1[0]+word2[0] return decode(word1[1:],word2[1:],code) Alice='Ti rga eoe esg o h ore"ermetsCmuainls' Bob='hspormdcdsamsaefrte<NAME>ae"' print(decode(Alice,Bob,'')) ``` #### File: Hw4/Solution/problem5b.py ```python def decode(word1,word2): word='' for i in range(len(word1)): word+=word1[i]+word2[i] return word Alice='Ti rga eoe esg o h ore"ermetsCmuainls' Bob='hspormdcdsamsaefrtecus Hraina optcoae"' print(decode(Alice,Bob)) ``` #### File: Hw5/Solution/problem1.py ```python class Dog: def __init__(self,name,posx,posy): self.name=name self.posx=posx self.posy=posy self.awaken=False self.hungry=False self.counter=0 def awake(self): if self.awaken: print(self.name+' is already awaken') else: self.awaken=True print(self.name+' is no longer slept') def move(self,x1,y1): if self.hungry: print(self.name+' is hungry') elif self.awaken: self.posx+=x1 self.posy+=y1 self.counter+=1 else: print(self.name+' is slept') if self.counter>=3: self.hungry=True def feed(self): self.counter=0 self.hungry=False print(self.name+' is no longer hungry') MyDog=Dog('Lambda',0,0) print(MyDog.posx,MyDog.posy) MyDog.move(1,1) MyDog.awake() MyDog.move(1,0) print(MyDog.posx,MyDog.posy) MyDog.move(0,1) print(MyDog.posx,MyDog.posy) MyDog.move(1,1) print(MyDog.posx,MyDog.posy) MyDog.move(1,1) print(MyDog.posx,MyDog.posy) MyDog.feed() MyDog.move(1,0) print(MyDog.posx,MyDog.posy) ``` #### File: Hw5/Solution/problem2.py ```python import random class vehicle: def __init__(self,Color,Wheels,MaxVel): self.Color=Color self.Wheels=Wheels self.VMax=MaxVel def Move(self): v=random.random()*self.VMax print('The velocity is: '+str(v)) def Park(self): print('The vehicle is parked') class Bicycle(vehicle): def __init__(self,Color,Wheels,MaxVel): vehicle.__init__(self,Color,Wheels,MaxVel) def Do_some_exercise(self): print('Doing exercise') class Motorcycle(vehicle): def __init__(self,Color,Wheels,MaxVel): vehicle.__init__(self,Color,Wheels,MaxVel) def Put_Helmet(self): print("Helmet's on") class Car(vehicle): def __init__(self,Color,Wheels,MaxVel): vehicle.__init__(self,Color,Wheels,MaxVel) def Turn_on_Radio(self): print("Radio's on") b=Bicycle('Red',2,10) print(b.Color) b.Do_some_exercise() b.Move() b.Park() m=Motorcycle('black',2,10) print(m.Color) m.Put_Helmet() m.Move() m.Park() c=Car('gray',2,10) print(c.Color) c.Turn_on_Radio() c.Move() c.Park() ```
{ "source": "jmsevillam/Intro_to_Computational_Physics", "score": 3 }
#### File: Maps/Standard Map/Standard Map.py ```python import numpy as np import matplotlib.pylab as plt def std_map(theta,p,K): p=((p+K*np.sin(theta))) theta=(theta+p)%(2.0*np.pi) return theta,p N=2000 for K in np.linspace(0,20,51): print(int(K*100)) theta=np.random.random(N)*2*np.pi p=2.*np.random.random(N)-1 for t in range(1000): theta,p=std_map(theta,p,K*0.3) if K%1==0: plt.plot(theta,(p+np.pi)%(2.*np.pi),'.',color='k',markersize=0.01) if K%1==0: plt.savefig(str(int(K*100)).zfill(4)+'.png') plt.close() ``` #### File: Strange Attractors/Lorentz System/lorentz.py ```python import numpy as np class Lorentz: """This is the Lorentz Class""" def __init__(self,x,y,z,sigma,beta,rho): self.x=np.array([x]) self.y=np.array([y]) self.z=np.array([z]) self.sigma=sigma self.beta=beta self.rho=rho def time_step(self,dt): """This calculate the next step""" x1=self.x[-1] y1=self.y[-1] z1=self.z[-1] dx=self.sigma*(y1-x1) dy=x1*(self.rho-z1)-y1 dz=x1*y1-self.beta*z1 self.x=np.append(self.x,x1+dx*dt) self.y=np.append(self.y,y1+dy*dt) self.z=np.append(self.z,z1+dz*dt) ``` #### File: Strange Attractors/Lorentz System/main_lorentz.py ```python import numpy as np import matplotlib.pylab as plt from scipy.optimize import curve_fit from mpl_toolkits.mplot3d import Axes3D import lorentz as lo sis1=lo.Lorentz(1.0,1.0,1.0,10.0,8.0/3.0,28.0) sis2=lo.Lorentz(1.1,1.0,1.0,10.0,8.0/3.0,28.0) time=np.array([0]) for i in range(10000): sis1.time_step(0.01) sis2.time_step(0.01) time=np.append(time,(i+1)*0.01) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot(sis1.x,sis1.y,sis1.z,'ok',markersize=.1) ax.plot(sis2.x,sis2.y,sis2.z,'or',markersize=.1) plt.show() dis=np.sqrt((sis1.x-sis2.x)**2+(sis1.y-sis2.y)**2+(sis1.z-sis2.z)**2) def f(x,a,b): return a*np.exp(b*x) popt,pcov=curve_fit(f,time[300:800],dis[300:800]) plt.plot(time,dis) plt.plot(time,f(time,*popt)) plt.yscale('log') plt.show() ``` #### File: Electrodynamics/Poisson/2D_Poisson.py ```python import numpy as np import matplotlib.pylab as plt Tolerance=0. size=200 positive_charges=8 negative_charges=7 x_pos=np.random.randint(.05*size,.95*size,positive_charges) y_pos=np.random.randint(.05*size,.95*size,positive_charges) x_neg=np.random.randint(.05*size,.95*size,negative_charges) y_neg=np.random.randint(.05*size,.95*size,negative_charges) def geometry(mat): mat[:,0]=0 mat[:,-1]=0 mat[0,:]=0 mat[-1,:]=0 mat[x_pos,y_pos]=1 mat[x_neg,y_neg]=-1 def time_step(mat): copia=np.zeros(mat.shape) copia[1:-1,1:-1]=(mat[2:,1:-1]+mat[0:-2,1:-1]+mat[1:-1,2:]+mat[1:-1,:-2])/4. geometry(copia) diff=(np.sqrt((mat-copia)**2).sum()/(100*100)) return diff,copia mat=2*np.random.random((size,size))-1 for t in range(1000000): diff,mat=time_step(mat) if t%5000==0: print(t,diff) if diff<=Tolerance: print(t,diff) break pl=plt.imshow(mat,cmap='RdBu',vmin=-1,vmax=1) plt.colorbar(pl) plt.show() ```
{ "source": "jmsevillam/LearningML", "score": 4 }
#### File: projects/Chess/Chess.py ```python import numpy as np import matplotlib.pylab as plt def possible(x,y,board): if x<0 or y<0 or x>=N or y>=M: return False elif x+y*N in board: return False else: return True def move(x,y,board): option={1:[1,-2], 2:[-1,-2], 3:[-2,1], 4:[-2,-1], 5:[-1,2], 6:[1,2], 7:[2,-1], 8:[2,1]} i=0 while True: i+=1 index=np.random.randint(1,9) dx=x+option[index][0] dy=y+option[index][1] if possible(dx,dy,board): break elif i>20: board=[] board.append(dx+N*dy) return dx,dy,board def print_board(board,name): x=np.zeros(N*M) for i in board: x[i]=1. x[board[-1]]=2 x_plot=x.reshape((N,M)) plt.imshow(x_plot) plt.savefig(name) plt.close() N=8 M=8 x,y,board=0,0,[0] name=0 while len(board)<N*M: x,y,board=move(x,y,board) #print(board,len(board)) print_board(board,"images/"+str(name).zfill(3)) name+=1 if name==100: break ```
{ "source": "jmsfltchr/GraphSAGE", "score": 3 }
#### File: neighbour_traversal/test/test_neighbour_traversal.py ```python import unittest import grakn from grakn.service.Session.Concept.Concept import Concept, Role from grakn_graphsage.src.neighbour_traversal.neighbour_traversal import build_neighbourhood_generator, NeighbourRole, \ ConceptWithNeighbourhood, NEIGHBOUR_PLAYS, TARGET_PLAYS class TestNeighbourTraversalFromEntity(unittest.TestCase): def setUp(self): self._client = grakn.Grakn(uri="localhost:48555") self._session = self._client.session(keyspace="genealogy") def tearDown(self): self.tx.close() def _assert_type_instances_correct(self, concept_with_neighbourhood): self.assertTrue(isinstance(concept_with_neighbourhood, ConceptWithNeighbourhood)) self.assertTrue(isinstance(concept_with_neighbourhood.concept, Concept)) self.assertTrue(type(concept_with_neighbourhood.neighbourhood).__name__ in ('generator', 'chain')) neighbour_role = next(concept_with_neighbourhood.neighbourhood, None) if neighbour_role is not None: self.assertTrue(isinstance(neighbour_role, NeighbourRole)) self.assertTrue(isinstance(neighbour_role.role, Role) or neighbour_role.role == 'UNKNOWN_ROLE') self.assertIn(neighbour_role.target_or_neighbour_plays, [TARGET_PLAYS, NEIGHBOUR_PLAYS]) self.assertTrue(self._assert_type_instances_correct(neighbour_role.neighbour)) return True def test_neighbour_traversal_structure(self): self.tx = self._session.transaction(grakn.TxType.WRITE) # concept = list(tx.query("match $x isa person, has firstname {}, has surname {}; get $x;".format("Jacob", # "Young")))[0] identifier = "<NAME>" concept = list(self.tx.query("match $x isa person, has identifier '{}'; get $x;".format(identifier)))[0].get('x') concept_with_neighbourhood = build_neighbourhood_generator(self.tx, concept, 2) self._assert_type_instances_correct(concept_with_neighbourhood) # neighbour_roles = [neighbour_role for neighbour_role in concept_with_neighbourhood.neighbourhood] self.tx.close() ```
{ "source": "jmsfltchr/research", "score": 2 }
#### File: graph/thing/queries_to_graph.py ```python import warnings from functools import reduce import networkx as nx from kglib.utils.grakn.object.thing import build_thing from kglib.utils.graph.thing.concept_dict_to_graph import concept_dict_to_graph def concept_dict_from_concept_map(concept_map, tx): """ Given a concept map, build a dictionary of the variables present and the concepts they refer to, locally storing any information required about those concepts. Args: concept_map: A dict of Concepts provided by Grakn keyed by query variables Returns: A dictionary of concepts keyed by query variables """ return {variable: build_thing(grakn_concept, tx) for variable, grakn_concept in concept_map.map().items()} def combine_2_graphs(graph1, graph2): """ Combine two graphs into one. Do this by recognising common nodes between the two. Args: graph1: Graph to compare graph2: Graph to compare Returns: Combined graph """ for node, data in graph1.nodes(data=True): if graph2.has_node(node): data2 = graph2.nodes[node] if data2 != data: raise ValueError((f'Found non-matching node properties for node {node} ' f'between graphs {graph1} and {graph2}:\n' f'In graph {graph1}: {data}\n' f'In graph {graph2}: {data2}')) for sender, receiver, keys, data in graph1.edges(data=True, keys=True): if graph2.has_edge(sender, receiver, keys): data2 = graph2.edges[sender, receiver, keys] if data2 != data: raise ValueError((f'Found non-matching edge properties for edge {sender, receiver, keys} ' f'between graphs {graph1} and {graph2}:\n' f'In graph {graph1}: {data}\n' f'In graph {graph2}: {data2}')) return nx.compose(graph1, graph2) def combine_n_graphs(graphs_list): """ Combine N graphs into one. Do this by recognising common nodes between the two. Args: graphs_list: List of graphs to combine Returns: Combined graph """ return reduce(lambda x, y: combine_2_graphs(x, y), graphs_list) def build_graph_from_queries(query_sampler_variable_graph_tuples, grakn_transaction, concept_dict_converter=concept_dict_to_graph, infer=True): """ Builds a graph of Things, interconnected by roles (and *has*), from a set of queries and graphs representing those queries (variable graphs)of those queries, over a Grakn transaction Args: infer: whether to use Grakn's inference engine query_sampler_variable_graph_tuples: A list of tuples, each tuple containing a query, a sampling function, and a variable_graph grakn_transaction: A Grakn transaction concept_dict_converter: The function to use to convert from concept_dicts to a Grakn model. This could be a typical model or a mathematical model Returns: A networkx graph """ query_concept_graphs = [] for query, sampler, variable_graph in query_sampler_variable_graph_tuples: concept_maps = sampler(grakn_transaction.query(query, infer=infer)) concept_dicts = [concept_dict_from_concept_map(concept_map, grakn_transaction) for concept_map in concept_maps] answer_concept_graphs = [] for concept_dict in concept_dicts: try: answer_concept_graphs.append(concept_dict_converter(concept_dict, variable_graph)) except ValueError as e: raise ValueError(str(e) + f'Encountered processing query:\n \"{query}\"') if len(answer_concept_graphs) > 1: query_concept_graph = combine_n_graphs(answer_concept_graphs) query_concept_graphs.append(query_concept_graph) else: if len(answer_concept_graphs) > 0: query_concept_graphs.append(answer_concept_graphs[0]) else: warnings.warn(f'There were no results for query: \n\"{query}\"\nand so nothing will be added to the ' f'graph for this query') if len(query_concept_graphs) == 0: # Raise exception when none of the queries returned any results raise RuntimeError(f'The graph from queries: {[query_sampler_variable_graph_tuple[0] for query_sampler_variable_graph_tuple in query_sampler_variable_graph_tuples]}\n' f'could not be created, since none of these queries returned results') concept_graph = combine_n_graphs(query_concept_graphs) return concept_graph ```
{ "source": "jmsfltchr/typedb-client-python", "score": 2 }
#### File: concept/proto/concept_proto_reader.py ```python import grakn_protocol.protobuf.concept_pb2 as concept_proto from grakn.common.exception import GraknClientException from grakn.concept.answer.concept_map import ConceptMap from grakn.concept.thing.attribute import BooleanAttribute, LongAttribute, DoubleAttribute, StringAttribute, \ DateTimeAttribute from grakn.concept.thing.entity import Entity from grakn.concept.thing.relation import Relation from grakn.concept.type.attribute_type import BooleanAttributeType, LongAttributeType, DoubleAttributeType, \ StringAttributeType, DateTimeAttributeType, AttributeType from grakn.concept.type.entity_type import EntityType from grakn.concept.type.relation_type import RelationType from grakn.concept.type.role_type import RoleType from grakn.concept.type.thing_type import ThingType def iid(iid_proto: bytes): return "0x" + iid_proto.hex() def concept(con_proto: concept_proto.Concept): if con_proto.HasField(ConceptMap._THING): concept = thing(con_proto.thing) else: concept = type_(con_proto.type) return concept def thing(thing_proto: concept_proto.Thing): if thing_proto.encoding == concept_proto.Thing.Encoding.Value("ENTITY"): return Entity._of(thing_proto) elif thing_proto.encoding == concept_proto.Thing.Encoding.Value("RELATION"): return Relation._of(thing_proto) elif thing_proto.encoding == concept_proto.Thing.Encoding.Value("ATTRIBUTE"): return attribute(thing_proto) else: raise GraknClientException("The encoding " + thing_proto.encoding + " was not recognised.") def attribute(thing_proto: concept_proto.Thing): if thing_proto.value_type == concept_proto.AttributeType.ValueType.Value("BOOLEAN"): return BooleanAttribute._of(thing_proto) elif thing_proto.value_type == concept_proto.AttributeType.ValueType.Value("LONG"): return LongAttribute._of(thing_proto) elif thing_proto.value_type == concept_proto.AttributeType.ValueType.Value("DOUBLE"): return DoubleAttribute._of(thing_proto) elif thing_proto.value_type == concept_proto.AttributeType.ValueType.Value("STRING"): return StringAttribute._of(thing_proto) elif thing_proto.value_type == concept_proto.AttributeType.ValueType.Value("DATETIME"): return DateTimeAttribute._of(thing_proto) else: raise GraknClientException("The value type " + str(thing_proto.value_type) + " was not recognised.") def type_(type_proto: concept_proto.Type): if type_proto.encoding == concept_proto.Type.Encoding.Value("ROLE_TYPE"): return RoleType._of(type_proto) else: return thing_type(type_proto) def thing_type(type_proto: concept_proto.Type): if type_proto.encoding == concept_proto.Type.Encoding.Value("ENTITY_TYPE"): return EntityType._of(type_proto) elif type_proto.encoding == concept_proto.Type.Encoding.Value("RELATION_TYPE"): return RelationType._of(type_proto) elif type_proto.encoding == concept_proto.Type.Encoding.Value("ATTRIBUTE_TYPE"): return attribute_type(type_proto) elif type_proto.encoding == concept_proto.Type.Encoding.Value("THING_TYPE"): return ThingType(type_proto.label, type_proto.root) else: raise GraknClientException("The encoding " + str(type_proto.encoding) + " was not recognised.") def attribute_type(type_proto: concept_proto.Type): if type_proto.value_type == concept_proto.AttributeType.ValueType.Value("BOOLEAN"): return BooleanAttributeType._of(type_proto) elif type_proto.value_type == concept_proto.AttributeType.ValueType.Value("LONG"): return LongAttributeType._of(type_proto) elif type_proto.value_type == concept_proto.AttributeType.ValueType.Value("DOUBLE"): return DoubleAttributeType._of(type_proto) elif type_proto.value_type == concept_proto.AttributeType.ValueType.Value("STRING"): return StringAttributeType._of(type_proto) elif type_proto.value_type == concept_proto.AttributeType.ValueType.Value("DATETIME"): return DateTimeAttributeType._of(type_proto) elif type_proto.value_type == concept_proto.AttributeType.ValueType.Value("OBJECT"): return AttributeType(type_proto.label, type_proto.root) else: raise GraknClientException("The value type " + str(type_proto.value_type) + " was not recognised.") ``` #### File: concept/type/type.py ```python from typing import Callable, List import grakn_protocol.protobuf.concept_pb2 as concept_proto import grakn_protocol.protobuf.transaction_pb2 as transaction_proto from grakn.common.exception import GraknClientException from grakn.concept.proto import concept_proto_builder, concept_proto_reader from grakn.concept.concept import Concept, RemoteConcept class Type(Concept): def __init__(self, label: str, is_root: bool): if not label: raise GraknClientException("Label must be a non-empty string.") self._label = label self._is_root = is_root self._hash = hash(label) def get_label(self): return self._label def is_root(self): return self._is_root def is_type(self): return True def __str__(self): return type(self).__name__ + "[label:" + self.get_label() + "]" def __eq__(self, other): if other is self: return True if not other or type(self) != type(other): return False return self.get_label() == other.get_label() def __hash__(self): return self._hash class RemoteType(RemoteConcept): def __init__(self, transaction, label: str, is_root: bool): if not transaction: raise GraknClientException("Transaction must be set.") if not label: raise GraknClientException("Label must be a non-empty string.") self._transaction = transaction self._label = label self._is_root = is_root self._hash = hash((self._transaction, label)) def get_label(self): return self._label def is_root(self): return self._is_root def set_label(self, label: str): req = concept_proto.Type.Req() set_label_req = concept_proto.Type.SetLabel.Req() set_label_req.label = label req.type_set_label_req.CopyFrom(set_label_req) self._execute(req) self._label = label self._hash = hash((self._transaction, label)) def is_abstract(self): req = concept_proto.Type.Req() req.type_is_abstract_req.CopyFrom(concept_proto.Type.IsAbstract.Req()) res = self._execute(req) return res.type_is_abstract_res.abstract def is_type(self): return True def set_supertype(self, _type: Type): req = concept_proto.Type.Req() supertype_req = concept_proto.Type.SetSupertype.Req() supertype_req.type.CopyFrom(concept_proto_builder.type_(_type)) req.type_set_supertype_req.CopyFrom(supertype_req) self._execute(req) def get_supertype(self): req = concept_proto.Type.Req() req.type_get_supertype_req.CopyFrom(concept_proto.Type.GetSupertype.Req()) res = self._execute(req).type_get_supertype_res return concept_proto_reader.type_(res.type) if res.WhichOneof("res") == "type" else None def get_supertypes(self): method = concept_proto.Type.Req() method.type_get_supertypes_req.CopyFrom(concept_proto.Type.GetSupertypes.Req()) return self._type_stream(method, lambda res: res.type_get_supertypes_res.types) def get_subtypes(self): method = concept_proto.Type.Req() method.type_get_subtypes_req.CopyFrom(concept_proto.Type.GetSubtypes.Req()) return self._type_stream(method, lambda res: res.type_get_subtypes_res.types) def delete(self): method = concept_proto.Type.Req() method.type_delete_req.CopyFrom(concept_proto.Type.Delete.Req()) self._execute(method) def is_deleted(self): return not self._transaction.concepts()._get_thing_type(self.get_label()) def _type_stream(self, method: concept_proto.Type.Req, type_list_getter: Callable[[concept_proto.Type.Res], List[concept_proto.Type]]): method.label = self.get_label() request = transaction_proto.Transaction.Req() request.type_req.CopyFrom(method) return map(lambda type_proto: concept_proto_reader.type_(type_proto), self._transaction._stream(request, lambda res: type_list_getter(res.type_res))) def _thing_stream(self, method: concept_proto.Type.Req, thing_list_getter: Callable[[concept_proto.Type.Res], List[concept_proto.Thing]]): method.label = self.get_label() request = transaction_proto.Transaction.Req() request.type_req.CopyFrom(method) return map(lambda thing_proto: concept_proto_reader.thing(thing_proto), self._transaction._stream(request, lambda res: thing_list_getter(res.type_res))) def _execute(self, method: concept_proto.Type.Req): method.label = self.get_label() request = transaction_proto.Transaction.Req() request.type_req.CopyFrom(method) return self._transaction._execute(request).type_res def __str__(self): return type(self).__name__ + "[label:" + self.get_label() + "]" def __eq__(self, other): if other is self: return True if not other or type(self) != type(other): return False return self._transaction is other._transaction and self.get_label() == other.get_label() def __hash__(self): return self._hash ``` #### File: grakn/logic/logic_manager.py ```python from typing import Callable, List import grakn_protocol.protobuf.logic_pb2 as logic_proto import grakn_protocol.protobuf.transaction_pb2 as transaction_proto from grakn.logic.rule import Rule class LogicManager: def __init__(self, transaction): self._transaction = transaction def put_rule(self, label: str, when: str, then: str): req = logic_proto.LogicManager.Req() put_rule_req = logic_proto.LogicManager.PutRule.Req() put_rule_req.label = label put_rule_req.when = when put_rule_req.then = then req.put_rule_req.CopyFrom(put_rule_req) res = self._execute(req) return Rule._of(res.put_rule_res.rule) def get_rule(self, label: str): req = logic_proto.LogicManager.Req() get_rule_req = logic_proto.LogicManager.GetRule.Req() get_rule_req.label = label req.get_rule_req.CopyFrom(get_rule_req) response = self._execute(req) return Rule._of(response.get_rule_res.rule) if response.get_rule_res.WhichOneof("res") == "rule" else None def get_rules(self): method = logic_proto.LogicManager.Req() method.get_rules_req.CopyFrom(logic_proto.LogicManager.GetRules.Req()) return self._rule_stream(method, lambda res: res.get_rules_res.rules) def _execute(self, request: logic_proto.LogicManager.Req): req = transaction_proto.Transaction.Req() req.logic_manager_req.CopyFrom(request) return self._transaction._execute(req).logic_manager_res def _rule_stream(self, method: logic_proto.LogicManager.Req, rule_list_getter: Callable[[logic_proto.LogicManager.Res], List[logic_proto.Rule]]): request = transaction_proto.Transaction.Req() request.logic_manager_req.CopyFrom(method) return map(Rule._of, self._transaction._stream(request, lambda res: rule_list_getter(res.logic_manager_res))) ``` #### File: type/thingtype/thing_type_steps.py ```python from behave import * from hamcrest import * from grakn.common.exception import GraknClientException from grakn.concept.thing.thing import Thing from tests.behaviour.config.parameters import parse_bool, parse_list, RootLabel from tests.behaviour.context import Context @step("put {root_label:RootLabel} type: {type_label}") def step_impl(context: Context, root_label: RootLabel, type_label: str): if root_label == RootLabel.ENTITY: context.tx().concepts().put_entity_type(type_label) elif root_label == RootLabel.RELATION: context.tx().concepts().put_relation_type(type_label) else: raise ValueError("Unrecognised value") @step("delete {root_label:RootLabel} type: {type_label}; throws exception") def step_impl(context: Context, root_label: RootLabel, type_label: str): try: context.get_thing_type(root_label, type_label).as_remote(context.tx()).delete() assert False except GraknClientException: pass @step("delete {root_label:RootLabel} type: {type_label}") def step_impl(context: Context, root_label: RootLabel, type_label: str): context.get_thing_type(root_label, type_label).as_remote(context.tx()).delete() @step("{root_label:RootLabel}({type_label}) is null: {is_null}") def step_impl(context: Context, root_label: RootLabel, type_label: str, is_null): is_null = parse_bool(is_null) assert_that(context.get_thing_type(root_label, type_label) is None, is_(is_null)) @step("{root_label:RootLabel}({type_label}) set label: {new_label}") def step_impl(context: Context, root_label: RootLabel, type_label: str, new_label: str): context.get_thing_type(root_label, type_label).as_remote(context.tx()).set_label(new_label) @step("{root_label:RootLabel}({type_label}) get label: {get_label}") def step_impl(context: Context, root_label: RootLabel, type_label: str, get_label: str): assert_that(context.get_thing_type(root_label, type_label).as_remote(context.tx()).get_label(), is_(get_label)) @step("{root_label:RootLabel}({type_label}) set abstract: {is_abstract}") def step_impl(context: Context, root_label: RootLabel, type_label: str, is_abstract): is_abstract = parse_bool(is_abstract) thing_type = context.get_thing_type(root_label, type_label) if is_abstract: thing_type.as_remote(context.tx()).set_abstract() else: thing_type.as_remote(context.tx()).unset_abstract() @step("{root_label:RootLabel}({type_label}) is abstract: {is_abstract}") def step_impl(context: Context, root_label: RootLabel, type_label: str, is_abstract): is_abstract = parse_bool(is_abstract) assert_that(context.get_thing_type(root_label, type_label).as_remote(context.tx()).is_abstract(), is_(is_abstract)) @step("{root_label:RootLabel}({type_label}) set supertype: {super_label}; throws exception") def step_impl(context: Context, root_label: RootLabel, type_label: str, super_label: str): if root_label == RootLabel.ENTITY: entity_supertype = context.tx().concepts().get_entity_type(super_label) try: context.tx().concepts().get_entity_type(type_label).as_remote(context.tx()).set_supertype(entity_supertype) assert False except GraknClientException: pass elif root_label == RootLabel.ATTRIBUTE: attribute_supertype = context.tx().concepts().get_attribute_type(super_label) try: context.tx().concepts().get_attribute_type(type_label).as_remote(context.tx()).set_supertype(attribute_supertype) assert False except GraknClientException: pass elif root_label == RootLabel.RELATION: relation_supertype = context.tx().concepts().get_relation_type(super_label) try: context.tx().concepts().get_relation_type(type_label).as_remote(context.tx()).set_supertype(relation_supertype) assert False except GraknClientException: pass else: raise ValueError("Unrecognised value") @step("{root_label:RootLabel}({type_label}) set supertype: {super_label}") def step_impl(context: Context, root_label: RootLabel, type_label: str, super_label: str): if root_label == RootLabel.ENTITY: entity_supertype = context.tx().concepts().get_entity_type(super_label) context.tx().concepts().get_entity_type(type_label).as_remote(context.tx()).set_supertype(entity_supertype) elif root_label == RootLabel.ATTRIBUTE: attribute_supertype = context.tx().concepts().get_attribute_type(super_label) context.tx().concepts().get_attribute_type(type_label).as_remote(context.tx()).set_supertype(attribute_supertype) elif root_label == RootLabel.RELATION: relation_supertype = context.tx().concepts().get_relation_type(super_label) context.tx().concepts().get_relation_type(type_label).as_remote(context.tx()).set_supertype(relation_supertype) else: raise ValueError("Unrecognised value") @step("{root_label:RootLabel}({type_label}) get supertype: {super_label}") def step_impl(context: Context, root_label: RootLabel, type_label: str, super_label: str): supertype = context.get_thing_type(root_label, super_label) assert_that(context.get_thing_type(root_label, type_label).as_remote(context.tx()).get_supertype(), is_(supertype)) @step("{root_label:RootLabel}({type_label}) get supertypes contain") def step_impl(context: Context, root_label: RootLabel, type_label: str): super_labels = parse_list(context.table) actuals = list(map(lambda t: t.get_label(), context.get_thing_type(root_label, type_label).as_remote(context.tx()).get_supertypes())) for super_label in super_labels: assert_that(super_label, is_in(actuals)) @step("{root_label:RootLabel}({type_label}) get supertypes do not contain") def step_impl(context: Context, root_label: RootLabel, type_label: str): super_labels = parse_list(context.table) actuals = list(map(lambda t: t.get_label(), context.get_thing_type(root_label, type_label).as_remote(context.tx()).get_supertypes())) for super_label in super_labels: assert_that(super_label, not_(is_in(actuals))) @step("{root_label:RootLabel}({type_label}) get subtypes contain") def step_impl(context: Context, root_label: RootLabel, type_label: str): sub_labels = parse_list(context.table) actuals = list(map(lambda t: t.get_label(), context.get_thing_type(root_label, type_label).as_remote(context.tx()).get_subtypes())) for sub_label in sub_labels: assert_that(sub_label, is_in(actuals)) @step("{root_label:RootLabel}({type_label}) get subtypes do not contain") def step_impl(context: Context, root_label: RootLabel, type_label: str): sub_labels = parse_list(context.table) actuals = list(map(lambda t: t.get_label(), context.get_thing_type(root_label, type_label).as_remote(context.tx()).get_subtypes())) for sub_label in sub_labels: assert_that(sub_label, not_(is_in(actuals))) @step("{root_label:RootLabel}({type_label}) set owns key type: {att_type_label} as {overridden_label}; throws exception") def step_impl(context: Context, root_label: RootLabel, type_label: str, att_type_label: str, overridden_label: str): attribute_type = context.tx().concepts().get_attribute_type(att_type_label) overridden_type = context.tx().concepts().get_attribute_type(overridden_label) try: context.get_thing_type(root_label, type_label).as_remote(context.tx()).set_owns(attribute_type, overridden_type, is_key=True) assert False except GraknClientException: pass @step("{root_label:RootLabel}({type_label}) set owns key type: {att_type_label}; throws exception") def step_impl(context: Context, root_label: RootLabel, type_label: str, att_type_label: str): attribute_type = context.tx().concepts().get_attribute_type(att_type_label) try: context.get_thing_type(root_label, type_label).as_remote(context.tx()).set_owns(attribute_type, is_key=True) assert False except GraknClientException: pass @step("{root_label:RootLabel}({type_label}) set owns key type: {att_type_label} as {overridden_label}") def step_impl(context: Context, root_label: RootLabel, type_label: str, att_type_label: str, overridden_label: str): attribute_type = context.tx().concepts().get_attribute_type(att_type_label) overridden_type = context.tx().concepts().get_attribute_type(overridden_label) context.get_thing_type(root_label, type_label).as_remote(context.tx()).set_owns(attribute_type, overridden_type, is_key=True) @step("{root_label:RootLabel}({type_label}) set owns key type: {att_type_label}") def step_impl(context: Context, root_label: RootLabel, type_label: str, att_type_label: str): attribute_type = context.tx().concepts().get_attribute_type(att_type_label) context.get_thing_type(root_label, type_label).as_remote(context.tx()).set_owns(attribute_type, is_key=True) @step("{root_label:RootLabel}({type_label}) unset owns attribute type: {att_type_label}; throws exception") @step("{root_label:RootLabel}({type_label}) unset owns key type: {att_type_label}; throws exception") def step_impl(context: Context, root_label: RootLabel, type_label: str, att_type_label: str): attribute_type = context.tx().concepts().get_attribute_type(att_type_label) try: context.get_thing_type(root_label, type_label).as_remote(context.tx()).unset_owns(attribute_type) assert False except GraknClientException: pass @step("{root_label:RootLabel}({type_label}) unset owns attribute type: {att_type_label}") @step("{root_label:RootLabel}({type_label}) unset owns key type: {att_type_label}") def step_impl(context: Context, root_label: RootLabel, type_label: str, att_type_label: str): attribute_type = context.tx().concepts().get_attribute_type(att_type_label) context.get_thing_type(root_label, type_label).as_remote(context.tx()).unset_owns(attribute_type) @step("{root_label:RootLabel}({type_label}) get owns key types contain") def step_impl(context: Context, root_label: RootLabel, type_label: str): attribute_labels = parse_list(context.table) actuals = list(map(lambda t: t.get_label(), context.get_thing_type(root_label, type_label).as_remote(context.tx()).get_owns(keys_only=True))) for attribute_label in attribute_labels: assert_that(attribute_label, is_in(actuals)) @step("{root_label:RootLabel}({type_label}) get owns key types do not contain") def step_impl(context: Context, root_label: RootLabel, type_label: str): attribute_labels = parse_list(context.table) actuals = list(map(lambda t: t.get_label(), context.get_thing_type(root_label, type_label).as_remote(context.tx()).get_owns(keys_only=True))) for attribute_label in attribute_labels: assert_that(attribute_label, not_(is_in(actuals))) @step("{root_label:RootLabel}({type_label}) set owns attribute type: {att_type_label} as {overridden_label}; throws exception") def step_impl(context: Context, root_label: RootLabel, type_label: str, att_type_label: str, overridden_label: str): attribute_type = context.tx().concepts().get_attribute_type(att_type_label) overridden_type = context.tx().concepts().get_attribute_type(overridden_label) try: context.get_thing_type(root_label, type_label).as_remote(context.tx()).set_owns(attribute_type, overridden_type) assert False except GraknClientException: pass @step("{root_label:RootLabel}({type_label}) set owns attribute type: {att_type_label}; throws exception") def step_impl(context: Context, root_label: RootLabel, type_label: str, att_type_label: str): attribute_type = context.tx().concepts().get_attribute_type(att_type_label) try: context.get_thing_type(root_label, type_label).as_remote(context.tx()).set_owns(attribute_type) assert False except GraknClientException: pass @step("{root_label:RootLabel}({type_label}) set owns attribute type: {att_type_label} as {overridden_label}") def step_impl(context: Context, root_label: RootLabel, type_label: str, att_type_label: str, overridden_label: str): attribute_type = context.tx().concepts().get_attribute_type(att_type_label) overridden_type = context.tx().concepts().get_attribute_type(overridden_label) context.get_thing_type(root_label, type_label).as_remote(context.tx()).set_owns(attribute_type, overridden_type) @step("{root_label:RootLabel}({type_label}) set owns attribute type: {att_type_label}") def step_impl(context: Context, root_label: RootLabel, type_label: str, att_type_label: str): attribute_type = context.tx().concepts().get_attribute_type(att_type_label) context.get_thing_type(root_label, type_label).as_remote(context.tx()).set_owns(attribute_type) @step("{root_label:RootLabel}({type_label}) get owns attribute types contain") def step_impl(context: Context, root_label: RootLabel, type_label: str): attribute_labels = parse_list(context.table) actuals = list(map(lambda t: t.get_label(), context.get_thing_type(root_label, type_label).as_remote(context.tx()).get_owns())) for attribute_label in attribute_labels: assert_that(attribute_label, is_in(actuals)) @step("{root_label:RootLabel}({type_label}) get owns attribute types do not contain") def step_impl(context: Context, root_label: RootLabel, type_label: str): attribute_labels = parse_list(context.table) actuals = list(map(lambda t: t.get_label(), context.get_thing_type(root_label, type_label).as_remote(context.tx()).get_owns())) for attribute_label in attribute_labels: assert_that(attribute_label, not_(is_in(actuals))) @step("{root_label:RootLabel}({type_label}) set plays role: {scope}:{role_label} as {overridden_scope}:{overridden_label}; throws exception") def step_impl(context: Context, root_label: RootLabel, type_label: str, scope: str, role_label: str, overridden_scope: str, overridden_label: str): role_type = context.tx().concepts().get_relation_type(scope).as_remote(context.tx()).get_relates(role_label) overridden_type = context.tx().concepts().get_relation_type(overridden_scope).as_remote(context.tx()).get_relates(overridden_label) try: context.get_thing_type(root_label, type_label).as_remote(context.tx()).set_plays(role_type, overridden_type) assert False except GraknClientException: pass @step("{root_label:RootLabel}({type_label}) set plays role: {scope}:{role_label} as {overridden_scope}:{overridden_label}") def step_impl(context: Context, root_label: RootLabel, type_label: str, scope: str, role_label: str, overridden_scope: str, overridden_label: str): role_type = context.tx().concepts().get_relation_type(scope).as_remote(context.tx()).get_relates(role_label) overridden_type = context.tx().concepts().get_relation_type(overridden_scope).as_remote(context.tx()).get_relates(overridden_label) context.get_thing_type(root_label, type_label).as_remote(context.tx()).set_plays(role_type, overridden_type) @step("{root_label:RootLabel}({type_label}) set plays role: {scope}:{role_label}; throws exception") def step_impl(context: Context, root_label: RootLabel, type_label: str, scope: str, role_label: str): role_type = context.tx().concepts().get_relation_type(scope).as_remote(context.tx()).get_relates(role_label) try: context.get_thing_type(root_label, type_label).as_remote(context.tx()).set_plays(role_type) assert False except GraknClientException: pass @step("{root_label:RootLabel}({type_label}) set plays role: {scope}:{role_label}") def step_impl(context: Context, root_label: RootLabel, type_label: str, scope: str, role_label: str): role_type = context.tx().concepts().get_relation_type(scope).as_remote(context.tx()).get_relates(role_label) context.get_thing_type(root_label, type_label).as_remote(context.tx()).set_plays(role_type) @step("{root_label:RootLabel}({type_label}) unset plays role: {scope}:{role_label}; throws exception") def step_impl(context: Context, root_label: RootLabel, type_label: str, scope: str, role_label: str): role_type = context.tx().concepts().get_relation_type(scope).as_remote(context.tx()).get_relates(role_label) try: context.get_thing_type(root_label, type_label).as_remote(context.tx()).unset_plays(role_type) assert False except GraknClientException: pass @step("{root_label:RootLabel}({type_label}) unset plays role: {scope}:{role_label}") def step_impl(context: Context, root_label: RootLabel, type_label: str, scope: str, role_label: str): role_type = context.tx().concepts().get_relation_type(scope).as_remote(context.tx()).get_relates(role_label) context.get_thing_type(root_label, type_label).as_remote(context.tx()).unset_plays(role_type) @step("{root_label:RootLabel}({type_label}) get playing roles contain") def step_impl(context: Context, root_label: RootLabel, type_label: str): role_labels = parse_list(context.table) actuals = list(map(lambda t: t.get_scoped_label(), context.get_thing_type(root_label, type_label).as_remote(context.tx()).get_plays())) for role_label in role_labels: assert_that(role_label, is_in(actuals)) @step("{root_label:RootLabel}({type_label}) get playing roles do not contain") def step_impl(context: Context, root_label: RootLabel, type_label: str): role_labels = parse_list(context.table) actuals = list(map(lambda t: t.get_scoped_label(), context.get_thing_type(root_label, type_label).as_remote(context.tx()).get_plays())) for role_label in role_labels: assert_that(role_label, not_(is_in(actuals))) @step("thing type root get supertypes contain") def step_impl(context: Context): super_labels = parse_list(context.table) actuals = list(map(lambda t: t.get_label(), context.tx().concepts().get_root_thing_type().as_remote(context.tx()).get_supertypes())) for super_label in super_labels: assert_that(super_label, is_in(actuals)) @step("thing type root get supertypes do not contain") def step_impl(context: Context): super_labels = parse_list(context.table) actuals = list(map(lambda t: t.get_label(), context.tx().concepts().get_root_thing_type().as_remote(context.tx()).get_supertypes())) for super_label in super_labels: assert_that(super_label, not_(is_in(actuals))) @step("thing type root get subtypes contain") def step_impl(context: Context): super_labels = parse_list(context.table) actuals = list(map(lambda t: t.get_label(), context.tx().concepts().get_root_thing_type().as_remote(context.tx()).get_subtypes())) for super_label in super_labels: assert_that(super_label, is_in(actuals)) @step("thing type root get subtypes do not contain") def step_impl(context: Context): super_labels = parse_list(context.table) actuals = list(map(lambda t: t.get_label(), context.tx().concepts().get_root_thing_type().as_remote(context.tx()).get_subtypes())) for super_label in super_labels: assert_that(super_label, not_(is_in(actuals))) ```
{ "source": "jmsgrogan/MicropocketAssay", "score": 3 }
#### File: cornea/parameters/parameter_collection.py ```python import os import random from copy import deepcopy import cPickle as pickle import chaste.core from microvessel_chaste.utility import * _simulation_domains = ["Planar_2D", "Planar_2D_Finite", "Circle_2D", "Planar_3D", "Planar_3D_Finite", "Circle_3D", "Hemisphere"] class Study(): def __init__(self, work_dir, parameter_collection): self.work_dir = work_dir self.parameter_collection = parameter_collection self.range = [] self.random_realisations = 3 self.simulation_domains = _simulation_domains def get_task_list(self): task_list = [] for eachParameterSet in self.range: for idx in range(eachParameterSet[1]): if eachParameterSet[1] == 1: param_value = self.parameter_collection.get_parameter(eachParameterSet[0]).value else: param = self.parameter_collection.get_parameter(eachParameterSet[0]) param_range = (param.max - param.min)*param.value param_value = param.min*param.value + float(idx)/float(eachParameterSet[1])*param_range for eachDomain in self.simulation_domains: for jdx in range(self.random_realisations): local_collection = deepcopy(self.parameter_collection) local_collection.get_parameter("DomainType").value = eachDomain local_collection.get_parameter("RandomSeed").value = random.randint(0, 1e6) local_collection.get_parameter(eachParameterSet[0]).value = param_value simulation_path = self.work_dir + "/ParamName_" + eachParameterSet[0].replace(" ", "") + "/" simulation_path += "ParamValue_" + str(idx) + "/DomainType_" + eachDomain.replace(" ", "") + "/Run_"+str(jdx)+"/" task_list.append([simulation_path, local_collection]) return task_list class SimulationParameterCollection: def __init__(self, random_seed=1234): self.collection = {} self.random_seed = random_seed def add_parameter(self, parameter): self.collection[parameter.name] = parameter def save(self, file_name): if not os.path.exists(os.path.dirname(file_name)): os.makedirs(os.path.dirname(file_name)) with open(file_name, 'wb') as fp: pickle.dump([self.collection, self.random_seed], fp) # Human friendly version output_file = open(os.path.splitext(file_name)[0]+".csv", "w") for eachKey in self.collection.keys(): param = self.collection[eachKey] output_file.write(param.name + " , " + str(param.value) + "\n") output_file.close() def load(self, file_name): with open(file_name, 'rb') as fp: self.collection, self.random_seed = pickle.load(fp) def get_parameter(self, name): return self.collection[name] class Parameter: def __init__(self, name, value, min_val=1.0, max_val=1.0, symbol=None, nice_name=None, lit_source=None): self.name = name self.value = value self.min = min_val self.max = max_val self.value_as_string = "" self.store_value_as_string() self.symbol = symbol self.nice_name = nice_name self.lit_source = lit_source def __getstate__(self): self.store_value_as_string() d = dict(self.__dict__) del d['value'] return d def __setstate__(self, d): self.__dict__.update(d) self.update_value_from_string() def store_value_as_string(self): if hasattr(self.value, 'GetValue'): symbol = get_symbol(type(self.value)) self.value_as_string = str(self.value.GetValue()) + " " + symbol else: self.value_as_string = str(self.value) def update_value_from_string(self): split_string = self.value_as_string.split() left_string = split_string[0] if left_string == "False": self.value = False elif left_string == "True": self.value = True elif left_string in _simulation_domains: self.value = self.value_as_string else: self.value = float(left_string) if len(split_string) > 1 and (left_string not in _simulation_domains): unit_string = ''.join(split_string[1:]) self.value *= get_unit(unit_string) if __name__ == "__main__": import cornea.parameters.default_parameters work_dir = "Python/Cornea/TestParameters/" file_handler = chaste.core.OutputFileHandler(work_dir, True) collection = cornea.parameters.default_parameters.get_default_collection() collection.save(file_handler.GetOutputDirectoryFullPath()+"/parmaeters.p") collection.load(file_handler.GetOutputDirectoryFullPath()+"/parmaeters.p") for eachParameter in collection.collection.values(): print eachParameter.value ``` #### File: cornea/postprocessing/batch_postprocess_comps.py ```python import pickle import matplotlib import matplotlib.pyplot as plt import chaste from microvessel_chaste.utility import * from cornea.postprocessing.plotting_tools import * from cornea.postprocessing import plot_collection # Matplotlib global settings matplotlib.rcParams.update({'font.size': 18}) plt.locator_params(nticks=4) class PostProcessingTaskManager(object): def __init__(self, relative_work_dir): self.tasks = [] self.study_data = None self.parameters = [OutputParameter(name="Line_density"), OutputParameter(name="Tip_density"), ] self.break_indices = [] file_handler = chaste.core.OutputFileHandler(relative_work_dir, False) self.work_dir = file_handler.GetOutputDirectoryFullPath() self.load_study_data() def load_study_data(self): f = open(self.work_dir + "study_data.p", 'r') self.study_data = pickle.load(f) def setup_density_line_plots(self): for eachStudy in self.study_data["study_names"]: for eachDomain in self.study_data["domain_types"]: num_random = len(self.study_data["random_seeds"]) for idx in range(num_random): local_work_dir = get_path(self.work_dir, eachStudy, eachDomain, str(idx)) for eachParam in self.parameters: fig_dir = local_work_dir + "/density_plots/" if not os.path.exists(fig_dir): os.makedirs(fig_dir) fig_path = fig_dir + "/" + eachParam.name + ".png" task = plot_collection.DensityLinePlot(self.work_dir, eachStudy, eachDomain, idx, eachParam, fig_path) self.tasks.append(task) def setup_line_density_plot_merge(self): for eachStudy in self.study_data["study_names"]: for eachDomain in self.study_data["domain_types"]: num_random = len(self.study_data["random_seeds"]) outer_figure_paths = [] for idx in range(num_random): local_work_dir = get_path(self.work_dir, eachStudy, eachDomain, str(idx)) figure_paths = [] for eachParam in self.parameters: fig_path = local_work_dir + "/density_plots/" + eachParam.name + ".png" figure_paths.append(fig_path) merge_path = local_work_dir + "/density_plots/merge.png" outer_figure_paths.append(merge_path) task = plot_collection.MergePlots(self.work_dir, merge_path, figure_paths, merge_axis=0) self.tasks.append(task) merge_path = get_path(self.work_dir, eachStudy, eachDomain) + "/merge.png" task = plot_collection.MergePlots(self.work_dir, merge_path, outer_figure_paths, merge_axis=1) self.tasks.append(task) def setup_box_plots(self): for eachStudy in self.study_data["study_names"]: local_work_dir = get_path(self.work_dir, eachStudy) fig_dir = local_work_dir + "/box_plots/" if not os.path.exists(fig_dir): os.makedirs(fig_dir) task = plot_collection.BoxPlot(self.work_dir, eachStudy, self.study_data["domain_types"], len(self.study_data["random_seeds"]), self.parameters, fig_dir) self.tasks.append(task) def setup_pde_plots(self): for eachStudy in self.study_data["study_names"]: local_work_dir = get_path(self.work_dir, eachStudy) fig_dir = local_work_dir + "/pde_plots/" if not os.path.exists(fig_dir): os.makedirs(fig_dir) task = plot_collection.PdePlot(self.work_dir, eachStudy, self.study_data["domain_types"], len(self.study_data["random_seeds"]), self.parameters, fig_dir) self.tasks.append(task) def setup_max_tip_density_plots(self): for eachStudy in self.study_data["study_names"]: local_work_dir = get_path(self.work_dir, eachStudy) fig_dir = local_work_dir + "/max_density_plots/" if not os.path.exists(fig_dir): os.makedirs(fig_dir) task = plot_collection.MaxTipDensityPlot(self.work_dir, eachStudy, self.study_data["domain_types"], len(self.study_data["random_seeds"]), self.parameters, fig_dir) self.tasks.append(task) def setup_max_conc_plots(self): for eachStudy in self.study_data["study_names"]: local_work_dir = get_path(self.work_dir, eachStudy) fig_dir = local_work_dir + "/max_conc_plots/" if not os.path.exists(fig_dir): os.makedirs(fig_dir) task = plot_collection.MaxConcPlot(self.work_dir, eachStudy, self.study_data["domain_types"], len(self.study_data["random_seeds"]), self.parameters, fig_dir) self.tasks.append(task) def setup_front_pos_plots(self): for eachStudy in self.study_data["study_names"]: local_work_dir = get_path(self.work_dir, eachStudy) fig_dir = local_work_dir + "/front_position/" if not os.path.exists(fig_dir): os.makedirs(fig_dir) task = plot_collection.FrontPosPlot(self.work_dir, eachStudy, self.study_data["domain_types"], len(self.study_data["random_seeds"]), self.parameters, fig_dir) self.tasks.append(task) ``` #### File: cornea/postprocessing/sampling_grid.py ```python import vtk import numpy as np from microvessel_chaste.utility import * def GetDensityMetrics(file_path, domain, pc): reader = vtk.vtkXMLUnstructuredGridReader() reader.SetFileName(file_path) reader.Update() grid = reader.GetOutput() line_density = grid.GetCellData().GetArray("Line Density") line_density_volume = 0.0 total_volume = 0.0 offset = pc.get_parameter("LimbalOffset").value offset = offset.Convert(1.0e-6*metres) height = pc.get_parameter("PelletHeight").value height = height.Convert(1.0e-6*metres) for idx in range(grid.GetNumberOfCells()): points = grid.GetCell(idx).GetPoints() loc = np.zeros(3) for jdx in range(points.GetNumberOfPoints()): if jdx == 0: loc = np.array(points.GetPoint(jdx)) else: loc += np.array(points.GetPoint(jdx)) loc /= float(points.GetNumberOfPoints()) cell_volume = abs(vtk.vtkMeshQuality.HexVolume(grid.GetCell(idx))) total_volume += cell_volume cell_line_density = line_density.GetTuple1(idx) if cell_line_density >= 1.e-9: line_density_volume += cell_volume line_fraction = line_density_volume/total_volume return [line_fraction, 1.0] def DoLineSampling(file_path, domain, pc): reader = vtk.vtkXMLUnstructuredGridReader() reader.SetFileName(file_path) reader.Update() sample_spacing = 60.0 height = pc.get_parameter("PelletHeight").value height = height.Convert(1.0e-6*metres) radius = pc.get_parameter("CorneaRadius").value radius = radius.Convert(1.0e-6*metres) width = 2.0*np.pi*radius num_samples = int(height/sample_spacing) points = vtk.vtkPoints() for idx in range(num_samples): points.InsertNextPoint(width/2.0, float(idx*sample_spacing), 0.0) poly = vtk.vtkPolyData() poly.SetPoints(points) probe = vtk.vtkProbeFilter() probe.SetSourceData(reader.GetOutput()) probe.SetInputData(poly) probe.Update() results = probe.GetOutput().GetPointData().GetArray("Line Density") for idx in range(results.GetNumberOfTuples()): print "y", points.GetPoint(idx)[1], " rho ", results.GetTuple1(idx) ```
{ "source": "jmsgrogan/PyChaste", "score": 2 }
#### File: dynamic/wrapper_generators/doxygen_extractor.py ```python class doxygen_doc_extractor: """ Extracts Doxygen styled documentation from source or generates it from description. """ def __init__(self): #for caching source self.file_name = None self.source = None #__init__ def __call__(self, declaration): try: if self.file_name != declaration.location.file_name: self.file_name = declaration.location.file_name self.source = open(declaration.location.file_name).readlines() find_block_end = False doc_lines = [] for lcount in xrange(declaration.location.line-2, -1, -1): line = self.source[lcount] if not find_block_end: try: if line.rstrip()[-2:] == "*/": find_block_end = True except: pass if find_block_end: try: if line.lstrip()[:2] == "/*": find_block_end = False except: pass final_str = self.clear_str(line) if not find_block_end and self.is_code(line): break if final_str: doc_lines.insert(0, final_str) except: pass finally: if doc_lines: final_doc_lines = [ line.replace("\n","\\n") for line in doc_lines[:-1] ] final_doc_lines.append(doc_lines[-1].replace("\n","")) return '"' + ''.join(final_doc_lines) + '"' else: return '\"\"' #__call__() def clear_str(self, tmp_str): """ Replace */! by space and \brief, @fn, \param, etc """ tmp_str = tmp_str.replace("/**", "") tmp_str = tmp_str.replace("*", "") tmp_str = tmp_str.replace("*/", "") # tmp_str = reduce(clean, [tmp_str, '/','*','!',"\\brief","@brief","\\fn","@fn","\\ref","@ref", "\"", "\'", "\\c"]) # # #commands list taken form : http://www.stack.nl/~dimitri/doxygen/commands.html # replacement_list = [ # # "a", # "addindex", # "addtogroup", # "anchor", # "arg", # "attention", # "author", # # "b", # # "brief", # "bug", # # "c", # "callgraph", # "callergraph", # "category", # "class", # ("code","[Code]"), # "cond", # "copybrief", # "copydetails", # "copydoc", # "date", # "def", # "defgroup", # "deprecated", # "details", # "dir", # "dontinclude", # ("dot","[Dot]"), # "dotfile", # "e", # "else", # "elseif", # "em", # ("endcode","[/Code]"), # "endcond", # ("enddot","[/Dot]"), # "endhtmlonly", # "endif", # "endlatexonly", # "endlink", # "endmanonly", # "endmsc", # "endverbatim", # "endxmlonly", # "enum", # "example", # "exception", # "extends", # "f$", # "f[", # "f]", # "f{", # "f}", # "file", # # "fn", # "headerfile", # "hideinitializer", # "htmlinclude", # "htmlonly", # "if", # "ifnot", # "image", # "implements", # "include", # "includelineno", # "ingroup", # "internal", # "invariant", # "interface", # "latexonly", # "li", # "line", # "link", # "mainpage", # "manonly", # "memberof", # "msc", # # "n", # "name", # "namespace", # "nosubgrouping", # "note", # "overload", # # "p", # "package", # "page", # "par", # "paragraph", # "param", # "post", # "pre", # # "private (PHP only)", # # "privatesection (PHP only)", # "property", # # "protected (PHP only)", # # "protectedsection (PHP only)", # "protocol", # # "public (PHP only)", # # "publicsection (PHP only)", # # "ref", # "relates", # "relatesalso", # "remarks", # "return", # "retval", # "sa", # "section", # "see", # "showinitializer", # "since", # "skip", # "skipline", # "struct", # "subpage", # "subsection", # "subsubsection", # "test", # "throw", # ("todo","TODO"), # "tparam", # "typedef", # "union", # "until", # "var", # "verbatim", # "verbinclude", # "version", # "warning", # "weakgroup", # "xmlonly", # "xrefitem", # # "$", # # "@", # # "\", # # "&", # # "~", # # "<", # # ">", # # "#", # # "%", # ] # # for command in replacement_list: # try: # old,new = command # except ValueError: # old = command # new = command.capitalize()+":" # tmp_str = clean(tmp_str, "@"+old, new) # tmp_str = clean(tmp_str, "\\"+old, new) return tmp_str.lstrip() #clean_str() def is_code(self, tmp_str): """ Detects if tmp_str is code or not """ try: beg = tmp_str.lstrip()[:2] return beg != "//" and beg != "/*" except: pass return False #is_code() #class doxygen_doc_extractor ``` #### File: chaste/cell_based/fortests.py ```python All rights reserved. University of Oxford means the Chancellor, Masters and Scholars of the University of Oxford, having an administrative office at Wellington Square, Oxford OX1 2JD, UK. This file is part of Chaste. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the University of Oxford nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import unittest import chaste.core import chaste.cell_based def SetupNotebookTest(): simulation_time = chaste.cell_based.SimulationTime.Instance() simulation_time.SetStartTime(0.0) chaste.core.RandomNumberGenerator.Instance().Reseed(0) chaste.cell_based.CellId.ResetMaxCellId() def TearDownNotebookTest(): simulation_time = chaste.cell_based.SimulationTime.Instance() simulation_time.Destroy() chaste.core.RandomNumberGenerator.Instance().Destroy() #chaste.cell_based.CellPropertyRegistry.Instance().Clear() class AbstractCellBasedTestSuite(unittest.TestCase): def setUp(self): simulation_time = chaste.cell_based.SimulationTime.Instance() simulation_time.SetStartTime(0.0) chaste.core.RandomNumberGenerator.Instance().Reseed(0) chaste.cell_based.CellId.ResetMaxCellId() def tearDown(self): simulation_time = chaste.cell_based.SimulationTime.Instance() simulation_time.Destroy() chaste.core.RandomNumberGenerator.Instance().Destroy() #chaste.cell_based.CellPropertyRegistry.Instance().Clear() class AbstractCellBasedWithTimingsTestSuite(AbstractCellBasedTestSuite): def setUp(self): chaste.core.Timer().Reset() super(AbstractCellBasedWithTimingsTestSuite, self).setUp() def tearDown(self): super(AbstractCellBasedWithTimingsTestSuite, self).tearDown() chaste.core.Timer().Print("Test elapsed"); ```
{ "source": "jmsgrogan/Stack3D", "score": 3 }
#### File: stack3d/formats/extract_zeiss_metadata.py ```python from argparse import ArgumentParser import os import subprocess import logging import utility import ome_schema def extract_metadata(input_path, output_path): """ Extract OME metadata from the input file and write it out as a nicely formatted xml using bftools. (http://www.openmicroscopy.org/site/support/bio-formats5.3/users/comlinetools/display.html) """ bf_tools_dir = os.getenv('BFTOOLS_DIR', os.getcwd()) + "/" command = bf_tools_dir +"showinf -omexml-only -nopix " + input_path + " | " + bf_tools_dir + "xmlindent > " + output_path p = subprocess.Popen(command, shell=True) p.wait() def get_metadata_as_class(input_xml_path): """ Return the OME metadata from the input XML file as a Python class. The class is automatically generated using pyxbgen (http://pyxb.sourceforge.net/pyxbgen_cli.html) and the current OME XML Schema (https://www.openmicroscopy.org/Schemas/OME/2016-06/ome.xsd). If you need to use a newer schema you need to regenerate the file ome_schema.py by doing: pip install pyxb pyxbgen -m ome_schema -u https://www.openmicroscopy.org/Schemas/OME/2016-06/ome.xsd where the web address points to the new schema. You can then access the elements of the OME XML as instance attributes etc. """ xml = open(input_xml_path).read() image_metadata = ome_schema.CreateFromDocument(xml) return image_metadata def integer_color_to_rgb(color): """ Convert integer color to (r,g,b) """ return ((color >> 16) & 255, (color >> 8) & 255, color & 255) def print_metadata_overview(image_metadata): """ Print a reader-friendly metadata summary """ print "Number of Images: ", len(image_metadata.Image) print "Image '0' - Name: ", image_metadata.Image[0].Name print "Image '0' - Num Channels: ", image_metadata.Image[0].Pixels.SizeC print "Image '0' - Num Times: ", image_metadata.Image[0].Pixels.SizeT pixel_size_x = image_metadata.Image[0].Pixels.PhysicalSizeX pixel_size_y = image_metadata.Image[0].Pixels.PhysicalSizeY pixel_size_z = image_metadata.Image[0].Pixels.PhysicalSizeZ pixel_unit_x = image_metadata.Image[0].Pixels.PhysicalSizeXUnit pixel_unit_y = image_metadata.Image[0].Pixels.PhysicalSizeYUnit pixel_unit_z = image_metadata.Image[0].Pixels.PhysicalSizeZUnit print "Image '0' - Pixel Physical Size X: ", pixel_size_x, pixel_unit_x print "Image '0' - Pixel Physical Size Y: ", pixel_size_y, pixel_unit_y print "Image '0' - Pixel Physical Size Z: ", pixel_size_z, pixel_unit_z print "Image '0' - Pixel Size X: ", image_metadata.Image[0].Pixels.SizeX print "Image '0' - Pixel Size Y:", image_metadata.Image[0].Pixels.SizeY print "Image '0' - Pixel Size Z:", image_metadata.Image[0].Pixels.SizeZ print "Image '0' - Pixel Dimension Order: ", image_metadata.Image[0].Pixels.DimensionOrder print "Image '0' - Pixel Bits: ", image_metadata.Image[0].Pixels.SignificantBits for idx, eachChannel in enumerate(image_metadata.Image[0].Pixels.Channel): print "Image '0' - Channel " +str(idx) + " Color: ", integer_color_to_rgb(eachChannel.Color) if __name__ == "__main__": # Do setup tool_name = "extract_metadata" utility.do_setup(tool_name) logger1 = logging.getLogger('format_conversion.'+tool_name) # Suppress XML Parse warnings pyxb_logger = logging.getLogger('pyxb') pyxb_logger.setLevel(logging.CRITICAL) parser = ArgumentParser() parser.add_argument("-i", "--input_file", type=str, help='Input file in a ZEISS format.') parser.add_argument("-o", "--output_file", type=str, help='Output metadata file.') parser.add_argument("--verbose", type=bool, help='Output a simple metadata summary.') args = parser.parse_args() logger1.info('Reading Metadata At: ' + args.input_file) extract_metadata(args.input_file, args.output_file) if(args.verbose): image_metadata = get_metadata_as_class(args.output_file) print_metadata_overview(image_metadata) logger1.info('Completed Reading Metadata') ```
{ "source": "JMSHDev/regent.dev", "score": 2 }
#### File: api/device/models.py ```python import hashlib import random import string import logging from django.db import models LOG = logging.getLogger(__name__) class Device(models.Model): name = models.CharField(max_length=50, unique=True) customer = models.CharField(max_length=50) agent_status = models.CharField(max_length=10, default="offline") program_status = models.CharField(max_length=10, default="down") last_updated = models.DateTimeField(auto_now=True) def delete_mqtt_credentials(self): self.auth.all().delete() self.acl.all().delete() class MqttAuth(models.Model): username = models.CharField(max_length=100, unique=True) password = models.CharField(max_length=100) salt = models.CharField(max_length=10) activated = models.BooleanField(default=False) device = models.ForeignKey( Device, on_delete=models.CASCADE, related_name="auth", related_query_name="auth", null=True ) def __str__(self): return "activated" if self.activated else "not activated" @classmethod def create(cls, username, password, activated, device=None): salt = "".join(random.choice(string.ascii_letters) for _ in range(10)) password = hashlib.sha256((password + salt).encode("utf-8")).hexdigest() return MqttAuth(username=username, password=password, salt=salt, activated=activated, device=device) class MqttAcl(models.Model): allow = models.SmallIntegerField() ipaddr = models.CharField(max_length=60, null=True) username = models.CharField(max_length=100, null=True) clientid = models.CharField(max_length=100, null=True) access = models.SmallIntegerField() topic = models.CharField(max_length=100) device = models.ForeignKey( Device, on_delete=models.CASCADE, related_name="acl", related_query_name="acl", null=True ) class Telemetry(models.Model): device = models.ForeignKey( Device, on_delete=models.CASCADE, related_name="telemetry", related_query_name="telemetry" ) created_on = models.DateTimeField(auto_now_add=True) state = models.JSONField() ``` #### File: api/device/views.py ```python from rest_framework.reverse import reverse from rest_framework.decorators import action, api_view from rest_framework.views import APIView from rest_framework.viewsets import GenericViewSet from rest_framework.mixins import RetrieveModelMixin, UpdateModelMixin, DestroyModelMixin, ListModelMixin from rest_framework.response import Response from rest_framework.status import HTTP_400_BAD_REQUEST, HTTP_201_CREATED, HTTP_403_FORBIDDEN, HTTP_200_OK from rest_framework.permissions import IsAuthenticated, AllowAny from django_filters import FilterSet, DateFilter, CharFilter from device.serializers import ( DeviceSerializer, RegisterDeviceSerializer, ActivateDeviceSerializer, MqttMessageSerializer, TelemetrySerializer, ) from device.models import Device, Telemetry from device.services.device_registration import register, activate from device.services.device_state import update class DeviceViewSet(RetrieveModelMixin, UpdateModelMixin, DestroyModelMixin, ListModelMixin, GenericViewSet): queryset = Device.objects.all() serializer_class = DeviceSerializer permission_classes = [IsAuthenticated] @action(detail=False, permission_classes=[AllowAny], methods=["post"], serializer_class=RegisterDeviceSerializer) def register(self, request, *args, **kwargs): serializer = RegisterDeviceSerializer(data=request.data) if serializer.is_valid(): try: reg_result = register(serializer.data["customer_id"], serializer.data["device_id"]) if reg_result["success"]: return Response(reg_result["content"], HTTP_201_CREATED) else: return Response(reg_result["content"], HTTP_403_FORBIDDEN) except Exception as exp: return Response("Error while registering the device.", HTTP_400_BAD_REQUEST) else: return Response(serializer.errors, HTTP_400_BAD_REQUEST) @action(detail=False, permission_classes=[AllowAny], methods=["post"], serializer_class=ActivateDeviceSerializer) def activate(self, request, *args, **kwargs): serializer = ActivateDeviceSerializer(data=request.data) if serializer.is_valid(): try: act_result = activate(serializer.data["device_id"], serializer.data["password"]) if act_result["success"]: return Response(act_result["content"], HTTP_200_OK) else: return Response(act_result["content"], HTTP_403_FORBIDDEN) except Exception as exp: return Response("Error whole activating the device.", HTTP_400_BAD_REQUEST) else: return Response(serializer.errors, HTTP_400_BAD_REQUEST) def perform_destroy(self, instance): instance.delete_corresponding_credentials() instance.delete() class UpdateDeviceState(APIView): permission_classes = [AllowAny] def post(self, request, format=None): serializer = MqttMessageSerializer(data=request.data) if serializer.is_valid(): try: act_result = update(serializer.data) if act_result["success"]: return Response(act_result["content"], HTTP_200_OK) else: return Response(act_result["content"], HTTP_403_FORBIDDEN) except Exception as exp: return Response("Error while updating the device.", HTTP_400_BAD_REQUEST) else: return Response(serializer.errors, HTTP_400_BAD_REQUEST) class PingViewSet(GenericViewSet, ListModelMixin): permission_classes = [IsAuthenticated] def list(self, request, *args, **kwargs): return Response(data={"id": request.GET.get("id")}, status=HTTP_200_OK) @api_view(["GET"]) def privateapi_root(request, format=None): return Response( { "update-device": reverse("update-device", request=request, format=format), } ) class TelemetryFilter(FilterSet): start = DateFilter(field_name="created_on", lookup_expr="gte") end = DateFilter(field_name="created_on", lookup_expr="lte") device = CharFilter(field_name="device__name") class Meta: model = Telemetry fields = ("start", "end") class TelemetryViewSet(RetrieveModelMixin, UpdateModelMixin, DestroyModelMixin, ListModelMixin, GenericViewSet): queryset = Telemetry.objects.all() serializer_class = TelemetrySerializer permission_classes = [IsAuthenticated] filterset_class = TelemetryFilter ```
{ "source": "jmshen1994/SetExpan", "score": 3 }
#### File: src/dataProcessing/entityResolutionAndFilter.py ```python from textblob import Word from collections import defaultdict import sys def resolution(surfaceName): ''' input: a surface name of entity output: the "normalized" entity name process: 1) lowercase 2) lemmatization ''' tmp = [Word(ele.lower()).lemmatize() for ele in surfaceName.split()] # tmp = [ele.lower() for ele in surfaceName.split()] return " ".join(tmp) def main(corpusName, min_sup = -1): data = corpusName min_sup = int(min_sup) inputFileName = '../../data/'+data+'/intermediate/entitylist.txt' outputFileName = '../../data/'+data+'/intermediate/entity2id.txt' uniqueEntityNameFileOut = '../../data/'+data+'/intermediate/eidlist.txt' eid = 0 ename2eid = {} normalized_ename2eid = {} normalized_ename2freq = defaultdict(int) with open(inputFileName,"r") as fin: for line in fin: segs = line.strip().split("\t") ename = segs[0] freq = int(segs[1]) normalized_ename = resolution(ename) if normalized_ename in normalized_ename2eid: # already exist ename2eid[ename] = normalized_ename2eid[normalized_ename] normalized_ename2freq[normalized_ename] += freq else: # a new entity normalized_ename2eid[normalized_ename] = eid normalized_ename2freq[normalized_ename] += freq ename2eid[ename] = eid eid += 1 print("Number of entities between (potential) filtering = %s" % eid) filtered_eid = set() if min_sup != -1: print("Filtering entities with too small occurrences") for ele in normalized_ename2freq.items(): if ele[1] < min_sup: ## add the eid into the filtered set filtered_eid.add(normalized_ename2eid[ele[0]]) print("Number of filtered entities = %s" % len(filtered_eid)) with open(outputFileName,"w") as fout: for ele in sorted(ename2eid.items(), key = lambda x:x[0]): if ele[1] not in filtered_eid: fout.write(ele[0]+"\t"+str(ele[1])+"\n") with open(uniqueEntityNameFileOut,"w") as fout: for ele in sorted(normalized_ename2eid.items(), key = lambda x:x[1] ): if ele[1] not in filtered_eid: fout.write(ele[0]+"\t"+str(ele[1])+"\n") if __name__ == '__main__': corpusName = sys.argv[1] min_sup = sys.argv[2] main(corpusName, min_sup) ``` #### File: src/dataProcessing/extractFeatures.py ```python import sys import json import itertools def getSkipgrams(tokens, start, end): positions = [(-1, 1), (-2, 1), (-3, 1), (-1, 3), (-2, 2), (-1, 2)] skipgrams = [] for pos in positions: skipgrams.append(' '.join(tokens[start+pos[0]:start])+' __ '+' '.join(tokens[end+1:end+1+pos[1]])) return skipgrams def processSentence(sent): sentInfo = json.loads(sent) eidSkipgrams = {} eidTypes = {} eidPairs = [] tokens = sentInfo['tokens'] eids = set() for em in sentInfo['entityMentions']: eid = em['entityId'] typeList = em['type'].split(",") start = em['start'] end = em['end'] eids.add(eid) for type in typeList: key = (eid, type) if key in eidTypes: eidTypes[key] += 1 else: eidTypes[key] = 1 for skipgram in getSkipgrams(tokens, start, end): key = (eid, skipgram) if key in eidSkipgrams: eidSkipgrams[key] += 1 else: eidSkipgrams[key] = 1 for pair in itertools.combinations(eids, 2): eidPairs.append(frozenset(pair)) return eidSkipgrams, eidTypes, eidPairs def writeMapToFile(map, outFilename): with open(outFilename, 'w') as fout: for key in map: lkey = list(key) fout.write(str(lkey[0])+'\t'+str(lkey[1])+'\t'+str(map[key])+'\n') def updateMapFromMap(fromMap, toMap): for key in fromMap: if key in toMap: toMap[key] += fromMap[key] else: toMap[key] = fromMap[key] return toMap def updateMapFromList(fromList, toMap): for ele in fromList: if ele in toMap: toMap[ele] += 1 else: toMap[ele] = 1 return toMap def extractFeatures(dataname): outputFolder = '../../data/'+dataname+'/intermediate/' infilename = '../../data/'+dataname+'/source/sentences.json' eidSkipgramCounts = {} eidTypeCounts = {} eidPairCounts = {} with open(infilename, 'r') as fin: ct = 0 for line in fin: eidSkipgrams, eidTypes, eidPairs = processSentence(line) updateMapFromMap(eidSkipgrams, eidSkipgramCounts) updateMapFromMap(eidTypes, eidTypeCounts) updateMapFromList(eidPairs, eidPairCounts) ct += 1 if ct % 100000 == 0 and ct != 0: print('processed ' + str(ct) + ' lines') writeMapToFile(eidSkipgramCounts, outputFolder+'eidSkipgramCounts.txt') writeMapToFile(eidTypeCounts, outputFolder+'eidTypeCounts.txt') writeMapToFile(eidPairCounts, outputFolder+'eidPairCounts.txt') if __name__ == "__main__": if len(sys.argv) != 2: print('Usage: extractFeatures.py -data') exit(1) corpusName = sys.argv[1] extractFeatures(corpusName) ``` #### File: src/dataProcessing/prepareFormatForEmbed_type.py ```python import sys import json import itertools from collections import Counter from collections import defaultdict def getEid2EnameMap(inputFile): eid2ename = {} with open(inputFile,"r") as fin: for line in fin: line = line.strip() if line: segs = line.split("\t") eid = int(segs[1]) ename = "_".join(segs[0].split()) eid2ename[eid] = ename return eid2ename data=sys.argv[1] #infname = '/shared/data/zeqiuwu1/fts-summer/data/'+data+'/source/sentences.json' infname = '../../data/'+data+'/intermediate/eidTypeCounts.txt' etfname = '../../data/'+data+'/intermediate/ef.txt' tsetfname = '../../data/'+data+'/intermediate/f.txt' eidTypeCounts = defaultdict(float) typeSet = set() inputEntityMapName = '../../data/'+data+'/intermediate/entity2id.txt' eid2ename = getEid2EnameMap(inputEntityMapName) with open(infname, 'r') as fin: line_cnt = 0 for line in fin: seg = line.strip('\r\n').split('\t') eid = int(seg[0]) t = seg[1] if t not in typeSet: typeSet.add(t) eidTypeCounts[(eid,t)] += float(seg[2]) ''' for line in fin: line_cnt += 1 if (line_cnt % 100000 == 0 and line_cnt != 0): print(line_cnt) sentInfo = json.loads(line.strip('\r\n')) tokens = sentInfo['tokens'] for em in sentInfo['entityMentions']: eid = em['entityId'] types = em['type'].split(',') if len(types) < 1: continue for t in types: if t not in typeSet: typeSet.add(t) eidTypeCounts[(eid,t)] += 1 ''' print("Finish parsing data") with open(etfname, "w") as fout: for k,v in eidTypeCounts.items(): fout.write(eid2ename[k[0]] + "\t" + k[1] + "\t" + str(v) + "\n") with open(tsetfname, "w") as fout: for k in typeSet: fout.write(str(k)+"\n") ``` #### File: src/SetExpan/util.py ```python from collections import defaultdict import set_expan import eid_pair_TFIDF_selection import extract_seed_edges import extract_entity_pair_skipgrams def loadEidToEntityMap(filename): eid2ename = {} ename2eid = {} with open(filename, 'r') as fin: for line in fin: seg = line.strip('\r\n').split('\t') eid2ename[int(seg[1])] = seg[0] ename2eid[seg[0].lower()] = int(seg[1]) return eid2ename, ename2eid def loadFeaturesAndEidMap(filename): featuresetByEid = defaultdict(set) eidsByFeature = defaultdict(set) with open(filename, 'r') as fin: for line in fin: seg = line.strip('\r\n').split('\t') eid = int(seg[0]) feature = seg[1] featuresetByEid[eid].add(feature) eidsByFeature[feature].add(eid) return featuresetByEid, eidsByFeature def loadFeaturesAndEidPairMap(filename): featuresetByEidPair = defaultdict(set) eidPairsByFeature = defaultdict(set) with open(filename, 'r') as fin: for line in fin: seg = line.strip('\r\n').split('\t') eidPair = (int(seg[0]), int(seg[1])) feature = seg[2] featuresetByEidPair[eidPair].add(feature) eidPairsByFeature[feature].add(eidPair) return featuresetByEidPair, eidPairsByFeature def loadWeightByEidAndFeatureMap(filename, idx = -1): ''' Load the (eid, feature) -> strength :param filename: :param idx: The index column of weight, default is the last column :return: ''' weightByEidAndFeatureMap = {} with open(filename, 'r') as fin: for line in fin: seg = line.strip('\r\n').split('\t') eid = int(seg[0]) feature = seg[1] weight = float(seg[idx]) weightByEidAndFeatureMap[(eid, feature)] = weight return weightByEidAndFeatureMap def loadWeightByEidPairAndFeatureMap(filename, idx = -1): ''' Load the ((eid1, eid2), feature) -> strength :param filename: :param idx: The index column of weight, default is the last column :return: ''' weightByEidPairAndFeatureMap = {} with open(filename, 'r') as fin: for line in fin: seg = line.strip('\r\n').split('\t') eidPair = (int(seg[0]), int(seg[1])) feature = seg[2] weight = float(seg[idx]) weightByEidPairAndFeatureMap[(eidPair, feature)] = weight return weightByEidPairAndFeatureMap ```
{ "source": "jmshen1994/SetRank", "score": 2 }
#### File: code/SetRank/autoSetRank_TREC.py ```python import argparse import sys from collections import Counter from collections import defaultdict import itertools import time import numpy as np import math import pickle import setRank_TREC def string2dict(s): d = {ele.split(":")[0]: float(ele.split(":")[1]) for ele in s.split(",")} return d def dict2string(d): s = ",".join(str(k)+":"+str(d[k]) for k in d) return s def multiSetRank(query_words_string, query_entities_string, kb, params_set, DEBUG=False): bulk = [] for params in params_set: retrieval_query = setRank_TREC.generate_retrieval_query( query_string=query_words_string, entity_string=query_entities_string, field_weights=params, DEBUG=DEBUG ) rescore_query = setRank_TREC.generate_rescore_query( query_string=query_words_string, entity_string=query_entities_string, kb=kb, params=params, DEBUG=DEBUG ) search_body = { "size": 20, "_source": ["pmid"], "query": retrieval_query, "rescore": { "window_size": 1000, "query": { "rescore_query": rescore_query, "query_weight": 0, "rescore_query_weight": 1 } } } op_dict = {"index": setRank_TREC.FLAGS_INDEX_NAME, "type": setRank_TREC.FLAGS_TYPE_NAME} bulk.append(op_dict) bulk.append(search_body) start = time.time() resp = setRank_TREC.es.msearch(body=bulk, request_timeout=1800)["responses"] end = time.time() print("Finish retrieve %s pre-rankers' results using %s seconds" % (len(bulk)/2, (end-start))) rankings = [] for res in resp: ranking = [hit["_source"]["pmid"] for hit in res["hits"]["hits"]] rankings.append(ranking) return rankings def rankAggregate(doc_rankings, maxIters=10, distanceMetric='KT', checkConverge=False, DEBUG=False): ## Step 1: Construct the document pool docCounter = sorted(Counter(itertools.chain(*doc_rankings)).items(), key=lambda x: -x[1]) docno2docid = {} # docid aligns with the frequency of docno in all ranking list docid2docno = {} for idx, ele in enumerate(docCounter): # notice: a small docid indicates most frequent documents docno2docid[ele[0]] = idx docid2docno[idx] = ele[0] rankings = [] docid2positions = defaultdict(list) # docid -> [(position in rank list, len of rank list)] for i, doc_ranking in enumerate(doc_rankings): ranking = [] k = len(doc_ranking) # current rank list i is of length k for j, docno in enumerate(doc_ranking): docid = docno2docid[docno] ranking.append(docid) docid2positions[docid].append((i, j, k)) # current document is at position j of rank list i which is of size k rankings.append(ranking) p = len(doc_rankings) K = len(docno2docid) if DEBUG: print("Number of ranker p = %s" % p) print("Size of document pool K = %s" % K) # for _, r in enumerate(rankings): # print("Ranking list %s : \n \t\t%s" % (_, r)) # for j in sorted(docid2positions.keys()): # print(j, docid2positions[j]) # for docid in docid2docno: # print(docid, "=>", docid2docno[docid]) ## Step 2: Iteratively apply weighted rank aggregation alphas = np.ones(p) / p prev_aggregated_rank = None convergedFlag = False for iter in range(maxIters): ## weighted Borda Counting docid2scores = defaultdict(float) for docid in docid2positions: score = 0.0 for pos in docid2positions[docid]: score += (alphas[pos[0]] * (pos[2]-pos[1])) docid2scores[docid] = score aggregated_rank = [ele[0] for ele in sorted(docid2scores.items(), key = lambda x:-x[1])] docid2rank = {docid:r for r, docid in enumerate(aggregated_rank)} if DEBUG: print("Iteration: %s, aggregated list: %s" % (iter, aggregated_rank)) # print("Iteration: %s, docid2rank: %s" % (iter, docid2rank)) if aggregated_rank == prev_aggregated_rank: print("Converged at iteration %s" % iter) convergedFlag = True break else: if DEBUG and prev_aggregated_rank: # print("alpha:", alphas) differences = [] # (docno, prev_rank, current_rank) for i in range(len(prev_aggregated_rank)): if docid2rank[prev_aggregated_rank[i]] != i: differences.append((docid2docno[prev_aggregated_rank[i]], i, docid2rank[prev_aggregated_rank[i]])) for ele in differences: print("Position changed doc:", ele) prev_aggregated_rank = aggregated_rank ## confidence score alignment positions2discouts = {} consider_not_appeared_docs = False for r_id, r in enumerate(rankings): k = len(r) distance = 0.0 ## Include influence of those not appeared documents if consider_not_appeared_docs: not_appeared_docs = set(docid2rank.keys()) - set(r) # set of docids that are not appeared in current rank list for a in range(k-1): for b in range(a+1,k) : pi_a = docid2rank[r[a]] pi_b = docid2rank[r[b]] if pi_a > pi_b: # a position inversion if distanceMetric == "dKT": # discounted KT distance if (pi_a, pi_b) in positions2discouts: discount = positions2discouts[(pi_a, pi_b)] else: # change zero-index to one-index discount = (1.0 / math.log(1+pi_b+1, 2)) - (1.0 / math.log(1+pi_a+1, 2)) positions2discouts[(pi_a, pi_b)] = discount distance += (discount * 1.0) elif distanceMetric == 'KT': # normal KT distance distance += 1.0 else: print("[ERROR] Unsupported distanceMetric: %s" % distanceMetric) if consider_not_appeared_docs: for not_appeared_doc in not_appeared_docs: pi_appear = docid2rank[r[a]] pi_not_appeared_doc = docid2rank[not_appeared_doc] if pi_not_appeared_doc > pi_appear: if distanceMetric == "dKT": # discounted KT distance if (pi_not_appeared_doc, pi_appear) in positions2discouts: discount = positions2discouts[(pi_not_appeared_doc, pi_appear)] else: # change zero-index to one-index discount = (1.0 / math.log(1 + pi_appear + 1, 2)) - (1.0 / math.log(1 + pi_not_appeared_doc + 1, 2)) positions2discouts[(pi_not_appeared_doc, pi_appear)] = discount distance += (discount * 1.0) elif distanceMetric == 'KT': # normal KT distance distance += 1.0 else: print("[ERROR] Unsupported distanceMetric: %s" % distanceMetric) alphas[r_id] = math.exp(-1.0 * distance) # print("positions2discouts", positions2discouts) Z = sum(alphas) print("Iteration: %s, confidence scores normalizer = %s" % (iter, Z)) alphas = alphas / Z # print("Iteration: %s, confidence scores: %s" % (iter, alphas)) if not convergedFlag: print("Not converged after %s iterations" % maxIters) aggregated_rank_docno = [docid2docno[docid] for docid in aggregated_rank] return (alphas, aggregated_rank_docno) def rankAggregateCorpus(corpus_doc_rankings, maxIters=10, distanceMetric="KT", checkVonverge=False, DEBUG=False): p = len(corpus_doc_rankings[0]) # number of distinct rankers if DEBUG: print("Number of ranker p = %s" % p) alphas = np.ones(p) / p for iter in range(maxIters): if DEBUG: print("Iteration: %s" % iter) # print("Alphas: %s" % alphas) alpha_distances = np.zeros(p) ## go through the query set for qid, doc_rankings in enumerate(corpus_doc_rankings): ## obtain the docid docCounter = sorted(Counter(itertools.chain(*doc_rankings)).items(), key=lambda x: -x[1]) docno2docid = {} docid2docno = {} for idx, ele in enumerate(docCounter): # notice: a small docid indicates most frequent documents docno2docid[ele[0]] = idx docid2docno[idx] = ele[0] rankings = [] docid2positions = defaultdict(list) # docid -> [(position in rank list, len of rank list)] for i, doc_ranking in enumerate(doc_rankings): ranking = [] k = len(doc_ranking) # current rank list i is of length k for j, docno in enumerate(doc_ranking): docid = docno2docid[docno] ranking.append(docid) docid2positions[docid].append((i, j, k)) # current document is at position j of rank list i which is of size k rankings.append(ranking) ## weighted Borda Counting docid2scores = defaultdict(float) for docid in docid2positions: score = 0.0 for pos in docid2positions[docid]: score += (alphas[pos[0]] * (pos[2] - pos[1])) docid2scores[docid] = score aggregated_rank = [ele[0] for ele in sorted(docid2scores.items(), key=lambda x: -x[1])] docid2rank = {docid: r for r, docid in enumerate(aggregated_rank)} ## accumlate each parameter's dKT positions2discouts = {} query_distance_sum = 0 for r_id, r in enumerate(rankings): # r_id is the index of its corresponding parameter k = len(r) distance = 0.0 for a in range(k - 1): for b in range(a + 1, k): pi_a = docid2rank[r[a]] pi_b = docid2rank[r[b]] if pi_a > pi_b: # a position inversion if distanceMetric == "dKT": # discounted KT distance if (pi_a, pi_b) in positions2discouts: discount = positions2discouts[(pi_a, pi_b)] else: # change zero-index to one-index discount = (1.0 / math.log(1 + pi_b + 1, 2)) - (1.0 / math.log(1 + pi_a + 1, 2)) positions2discouts[(pi_a, pi_b)] = discount distance += (discount * 1.0) query_distance_sum += (discount * 1.0) elif distanceMetric == 'KT': # normal KT distance distance += 1.0 query_distance_sum += 1.0 else: print("[ERROR] Unsupported distanceMetric: %s" % distanceMetric) # accumlate the distance alpha_distances[r_id] += distance # if DEBUG: # print("query_distance_sum for query %s = %s" % (qid,query_distance_sum)) if DEBUG: Z_distance = sum(alpha_distances) print("Sum of distances at iteration %s = %s" % (iter, Z_distance)) # print("Distances at iteration %s = %s" % (iter, alpha_distances)) ## Adjust confidence score # alpha_distances = np.exp(-1.0 * alpha_distances) alpha_distances = 1.0 / alpha_distances Z = sum(alpha_distances) alphas = alpha_distances / Z return alphas def main(args): queries = setRank_TREC.load_query(args) kb = setRank_TREC.load_kb(args) result_all = [] ## Step 1: determine the anchor parameter and the parameters that we want to tune anchor_params = { 'title': 20.0, 'abstract': 5.0, 'title_ana': 20.0, 'abstract_ana': 5.0, 'title_mu': 1000.0, 'abstract_mu': 1000.0, 'title_ana_mu': 1000.0, 'abstract_ana_mu': 1000.0, "entity_lambda": 0.5, "type_interaction": 1.0, "consider_entity_set": 1.0, "consider_word_set" : 1.0, "consider_type":1.0, "word_dependency":1.0 } params_names = ["title", "abstract", "title_mu", "abstract_mu", "entity_lambda"] ## Step 2: fix the parameter set that we want to tune, based on the mode if args.mode == "tune" or args.mode == "tune-best-rank": params_values = [ [5.0, 10.0, 15.0, 20.0], # -> title [1.0, 3.0, 5.0, 7.0], # -> abstract [500, 1000, 1500, 2000], # -> title_mu [500, 1000, 1500, 2000], # -> abstract_mu [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8], # -> entity_lambda ] all_combinations = list(itertools.product(*params_values)) params_set = [] for ele in all_combinations: tmp_params = anchor_params.copy() for param_index, param_value in enumerate(ele): tmp_params[params_names[param_index]] = param_value params_set.append(tmp_params) elif args.mode == "rank": params_values = [ [15.0, 3.0, 15.0, 0.3, 1.0], [15.0, 3.0, 15.0, 0.3, 0.5], [15.0, 3.0, 15.0, 0.3, 1.5], [20.0, 3.0, 15.0, 0.3, 1.5], [15.0, 3.0, 15.0, 0.4, 0.5] ] params_set = [] for ele in params_values: print("ele:", ele) tmp_params = anchor_params.copy() for param_index, param_value in enumerate(ele): print("param_index", param_index, "param_value", param_value) tmp_params[params_names[param_index]] = param_value params_set.append(tmp_params) else: print("Unsupported mode: %s" % args.mode) return ## Step 3: auto model selection over either query or corpus level if args.agglevel == "query": saved_result = (int(args.load_pre_saved_rankings) == 1) ## load results from query if saved_result: print("=== Loading pre-saved ranking results ===") with open(args.pre_saved_rankings, "rb") as fin: all_docno_rankings = pickle.load(fin) # a list of docno_rankings else: print("=== Cannot load pre-saved ranking results, generate rankings from scratch ===") all_docno_rankings = {} # query_id -> docno_rankings confidence_over_all_queries = np.zeros(len(params_set)) for query in queries: query_id = query[0] query_string = query[1] query_entities_list = [] for k, v in query[2].items(): for i in range(v): query_entities_list.append(k) query_entities_string = " ".join(query_entities_list) print("=== Running query: %s (id = %s) ===" % (query_string, query_id)) if saved_result: rankings = all_docno_rankings[query_id] else: rankings = multiSetRank(query_string, query_entities_string, kb, params_set, DEBUG=False) all_docno_rankings[query_id] = rankings (confidences, aggregated_rank) = rankAggregate(rankings, DEBUG=True) confidence_over_all_queries += confidences if args.mode == "tune-best-rank": # use the best parameter to rank this query again best_parameter = params_set[np.argmax(confidences)] print("Best parameters for query %s: %s" % (query_id, best_parameter)) res = setRank_TREC.setRank(query_string, query_entities_string, kb, best_parameter) rank = 1 for hit in res['hits']['hits']: result_all.append([query_id, "Q0", hit["_source"]["docno"], str(rank), str(hit["_score"]), "autoSetRank"]) rank += 1 else: rank = 1 for docno in aggregated_rank: result_all.append([query_id, "Q0", docno, str(rank), str(100-rank), "autoSetRank"]) rank += 1 ## save results if not saved_result: with open(args.pre_saved_rankings, "wb") as fout: print("=== Save rankings for next time's usage ===") pickle.dump(all_docno_rankings, fout, protocol=pickle.HIGHEST_PROTOCOL) elif args.agglevel == "corpus": ## corpus level aggregation load_data_from_pickle = False if load_data_from_pickle: with open("all_rankings.pickle", "rb") as fin: all_docno_rankings = pickle.load(fin) else: ## step 1: obtain all query all_docno_rankings = [] for query in queries: query_id = query[0] query_string = query[1] query_entities_list = [] for k, v in query[2].items(): for i in range(v): query_entities_list.append(k) query_entities_string = " ".join(query_entities_list) print("=== Running query %s (id = %s) ===" % (query_string, query_id)) rankings = multiSetRank(query_string, query_entities_string, kb, params_set, DEBUG=False) all_docno_rankings.append(rankings) with open(args.pre_saved_rankings, "wb") as fout: pickle.dump(all_docno_rankings, fout, protocol=pickle.HIGHEST_PROTOCOL) ## step 2: rank aggregation confidence_over_all_queries = rankAggregateCorpus(all_docno_rankings, DEBUG=True) else: print("[ERROR] Unsupported agglevel configuration: %s" % args.agglevel) return params2confidence = [(params, confidence_over_all_queries[i]) for i, params in enumerate(params_set)] for ele in sorted(params2confidence, key = lambda x:-x[1])[0:10]: print("Confidence = %s, parameters = %s" % (ele[1], ele[0])) if args.mode == "query": # save results only for query level aggregation setRank_TREC.save_results(args, result_all) print("Finish saving results to path: %s" % args.output) if __name__ == "__main__": parser = argparse.ArgumentParser(prog='autoSetRank_TREC.py', description='Use rank aggregation to automatically learn parameters in setRank' 'algorithm on TREC dataset.') parser.add_argument('-query', required=False, default="../../data/TREC_BIO/trec_query.json", help='File name of test queries.') parser.add_argument('-output', required=False, default="../results/trec/auto-tune.run", help='File name of output results.') parser.add_argument('-kb', required=False, default="../../data/TREC_BIO/trec_entity_type.tsv") parser.add_argument('-mode', required=False, default="tune", help="mode can be 'tune', 'rank', 'tune-best-rank'." "tune: aggregate over all candidate parameters and save the aggregated rank list " " based on all the candidate rank lists," "rank: use topK (selected) parameters to obtain pre-ranked list and aggregate them" "tune-best-rank: first tune the query level best parameters and return the rank list for that" " query using the parameter suits it best, only works for aggLevel=query") parser.add_argument('-agglevel', required=False, default="query", help="agglevel can be 'query' or 'corpus', and it represents the level of rank aggregation") parser.add_argument('-pre_saved_rankings', required=False, default="", help="name of (previously saved OR about to be saved) ranking results") parser.add_argument('-load_pre_saved_rankings', required=False, default="0", help="set load_pre_saved_rankings to True if using presaved rankings") args = parser.parse_args() sys.exit(main(args)) ```
{ "source": "jmshi/reconnection", "score": 2 }
#### File: jmshi/reconnection/csheet3d.py ```python import athena_read as ath import matplotlib import matplotlib.pyplot as plt from matplotlib import gridspec from mpl_toolkits.axes_grid1 import make_axes_locatable import numpy as np import cPickle as pickle from my_colors import get_jhcolors ############################################ import matplotlib.gridspec as gridspec import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import matplotlib import numpy as np def plot_jhist(dv,ncells,jmax,jmaxnorm,diss,dissnorm,size,orient,theta,ntime,vsheet=False,size2=None): nframe = 2 nplot = 3 matplotlib.rcParams['figure.figsize'] = (12, 12.0*nframe/nplot) fig = plt.figure() fraction=0.046;pad=0.04 gs = gridspec.GridSpec(2, 3) # calc dissipation rate per sheet for normalization or weighted average ncelltot= float(np.sum(np.array(ncells))) diss_sheet = np.array(ncells)*np.array(diss) disstot= float(np.sum(diss_sheet)) for i in np.arange(6): if (i==0): hdata = np.array(size)[:,0] vmin=-2; vmax=0.5 #in log10 nbins = 100 xlab = r'$l/H$' # modify to plot the aspect ratio: xi/lambda hdata = np.array(size)[:,1]/np.array(size)[:,2] vmin=-0.5; vmax=3.0 #in log10 nbins = 100 xlab = r'$\xi/\lambda$' # print 'non-weighted averaged (l,xi,lambda,aspect) = (',np.average(np.array(size)[:,0]),' ,',\ np.average(np.array(size)[:,1]),' ,',\ np.average(np.array(size)[:,2]),',',\ np.average(np.array(size)[:,1]/np.array(size)[:,2]),')' print 'vol-weighted averaged (l,xi,lambda,aspect) = (',np.sum(np.array(size)[:,0]*np.array(ncells))/ncelltot,' ,',\ np.sum(np.array(size)[:,1]*np.array(ncells))/ncelltot,' ,',\ np.sum(np.array(size)[:,2]*np.array(ncells))/ncelltot,', ',\ np.sum(np.array(size)[:,1]/np.array(size)[:,2]*np.array(ncells))/ncelltot,')' print 'dis-weighted averaged (l,xi,lambda,aspect) = (',np.sum(np.array(size)[:,0]*diss_sheet)/disstot,' ,',\ np.sum(np.array(size)[:,1]*diss_sheet)/disstot,' ,',\ np.sum(np.array(size)[:,2]*diss_sheet)/disstot,', ',\ np.sum(np.array(size)[:,1]/np.array(size)[:,2]*diss_sheet)/disstot,')' index,coef=-3.2,1e-2 if (i==1): hdata = np.array(size)[:,0] vmin=-3;vmax=1 nbins = 100 xlab1 = r'$\xi$' xlab =r'$l$' xlab2 = r'$\lambda$' hdata1 = np.array(size)[:,1] hdata2 = np.array(size)[:,2] index,coef=-3.0,1e-2 if size2: print "reach size2 loop" hdata3 = np.array(size2)[:,2] if (i==2): hdata = (theta) vmin = np.log10(np.min(hdata)) vmax = np.log10(np.max(hdata)) nbins = 100 if vsheet: xlab = r'$\theta_{\nu}/\mathcal{E}_{\nu}$' print 'average theta/E_nu = ', np.average(hdata) else: xlab = r'$\theta_{\eta}/\mathcal{E}_{\eta}$' print 'average theta/E_eta = ', np.average(hdata) index,coef=-2.0,1e-5 if (i==3): hdata = (np.array(jmaxnorm)) vmin = np.log10(2) #np.log10(np.min(hdata)) vmax = np.log10(20) #np.log10(np.max(hdata)) nbins=100 if vsheet: xlab = r'$\omega_{max}/\omega_{rms}$' print 'average w_max/w_rms = ',np.average(hdata) else: xlab = r'$j_{max}/j_{rms}$' print 'average j_max/j_rms = ',np.average(hdata) if (i==4): hdata = np.array(dissnorm) vmin = np.log10(5) #np.log10(np.min(hdata)) vmax = np.log10(50) #np.log10(np.max(hdata)) nbins = 100 if vsheet: xlab = r'$\langle\varepsilon_{\nu,sh}\rangle_i /\langle\varepsilon_{\nu}\rangle$' print 'average epsilon = ', np.average(hdata) else: xlab = r'$\langle\varepsilon_{\eta,sh}\rangle_i /\langle\varepsilon_{\eta}\rangle$' print 'average epsilon = ', np.average(hdata) if (i==5): hdata = np.array(ncells)*dv #/((x[1]-x[0])**3) #vmin = -3; vmax = 0 vmin = np.log10(np.min(hdata)) vmax = np.log10(np.max(hdata)) nbins = 100 xlab = r'$v_{sh}/V$' print 'average volume fraction per sheet = ',np.average(hdata)/8.0 print 'dis-weighted average volume fraction per sheet = ',np.average(hdata*diss_sheet)\ /8.0/np.average(diss_sheet) print 'average volume fraction for all sheets = ',np.sum(hdata)/float(ntime)/8.0 print 'time averaged number of current sheets = ', len(ncells)/float(ntime) #print 'dis-weighted average volume fraction for all sheets = ',np.sum(hdata*diss_sheet)\ # /float(ntime)/8.0/(disstot) hist, bins = np.histogram(hdata, bins=np.logspace(vmin,vmax,nbins),density=1) center = 10**((np.log10(bins[:-1])+np.log10(bins[1:]))/2) if (i==1): hist1, bins1 = np.histogram(hdata1, bins=np.logspace(vmin,vmax,nbins),density=1) hist2, bins2 = np.histogram(hdata2, bins=np.logspace(vmin,vmax,nbins),density=1) if size2: hist3, bins3 = np.histogram(hdata3, bins=np.logspace(vmin,vmax,nbins),density=1) fig.add_subplot(gs[i]) if (i< 3): plt.plot(center,hist,'k-',label=xlab) #n, bins, patches = plt.hist(hdata, bins=np.logspace(vmin,vmax,nbins), \ # normed=1, facecolor='green', alpha=0.5,label=xlab) if i==1: plt.plot(center,hist1,'b-',label=xlab1) plt.plot(center,hist2,'g-',label=xlab2) #n, bins, patches = plt.hist(hdata1, bins=np.logspace(vmin,vmax,nbins), \ # normed=1, facecolor='blue', alpha=0.35,label=xlab1) if size2: plt.plot(center,hist3,'g--') plt.legend(loc=1,fontsize=20) xlab = r'$(l,\xi,\lambda)/H$' #plt.text(vmin,7000,'total counts: '+str(len(hdata)),size=20,color='g') plt.plot(center,coef*center**index,'k:') else: plt.plot(center,hist,'k-') #n, bins, patches = plt.hist(hdata, bins=np.logspace(vmin,vmax,nbins), normed=1, facecolor='blue', alpha=0.5) plt.xlabel(xlab,size=20) plt.ylabel('probability density',size=20) plt.xlim([10**vmin,10**vmax]) plt.gca().set_xscale("log") plt.gca().set_yscale("log",nonposy='clip') #if(i==5): # plt.xlim([1e4,10**4.3]) plt.tight_layout() ## only use the following for the paper def plot_jhist_2panel(dv,ncells,jmax,jmaxnorm,diss,dissnorm,size,orient,theta,ntime,vsheet=False,size2=None): nframe = 2 nplot = 1 matplotlib.rcParams['figure.figsize'] = (8.0,4.0) fig = plt.figure() fraction=0.046;pad=0.04 gs = gridspec.GridSpec(nplot, nframe) # calc dissipation rate per sheet for normalization or weighted average ncelltot= float(np.sum(np.array(ncells))) diss_sheet = np.array(ncells)*np.array(diss) disstot= float(np.sum(diss_sheet)) for i in np.arange(2): if (i==0): hdata = np.array(size)[:,0] vmin=-3;vmax=1 nbins = 100 xlab1 = r'$\xi$' xlab =r'$l$' xlab2 = r'$\lambda_2$' hdata1 = np.array(size)[:,1] hdata2 = np.array(size)[:,2] index,coef=-3.0,1e-2 if size2: print "reach size2 loop" hdata3 = np.array(size2)[:,2] xlab3 = r'$\lambda_1$' if (i==1): hdata = (theta) vmin = np.log10(np.min(hdata)) vmax = np.log10(np.max(hdata)) nbins = 100 if vsheet: xlab = r'$\theta_{\nu}/\mathcal{E}_{\nu}$' print 'average theta/E_nu = ', np.average(hdata) else: xlab = r'$\theta_{\eta}/\mathcal{E}_{\eta}$' print 'average theta/E_eta = ', np.average(hdata) index,coef=-2.0,1e-5 hist, bins = np.histogram(hdata, bins=np.logspace(vmin,vmax,nbins),density=1) center = 10**((np.log10(bins[:-1])+np.log10(bins[1:]))/2) if (i==0): hist1, bins1 = np.histogram(hdata1, bins=np.logspace(vmin,vmax,nbins),density=1) hist2, bins2 = np.histogram(hdata2, bins=np.logspace(vmin,vmax,nbins),density=1) if size2: hist3, bins3 = np.histogram(hdata3, bins=np.logspace(vmin,vmax,nbins),density=1) fig.add_subplot(gs[i]) if (i< 3): plt.plot(center,hist,'k-',label=xlab) #n, bins, patches = plt.hist(hdata, bins=np.logspace(vmin,vmax,nbins), \ # normed=1, facecolor='green', alpha=0.5,label=xlab) if i==0: plt.plot(center,hist1,'b-',label=xlab1) if size2: plt.plot(center,hist3,'r-',label=xlab3) plt.plot(center,hist2,'g-',label=xlab2) #n, bins, patches = plt.hist(hdata1, bins=np.logspace(vmin,vmax,nbins), \ # normed=1, facecolor='blue', alpha=0.35,label=xlab1) plt.legend(loc=1,fontsize=20,handlelength=1.5,handletextpad=0.05) xlab = r'$(l,\xi,\lambda)/H$' #plt.text(vmin,7000,'total counts: '+str(len(hdata)),size=20,color='g') plt.plot(center,coef*center**index,'k:') else: plt.plot(center,hist,'k-') #n, bins, patches = plt.hist(hdata, bins=np.logspace(vmin,vmax,nbins), normed=1, facecolor='blue', alpha=0.5) plt.xlabel(xlab,fontsize=20) plt.ylabel('probability density',fontsize=20) plt.xlim([10**vmin,10**vmax]) plt.gca().set_xscale("log") plt.gca().set_yscale("log",nonposy='clip') #if(i==5): # plt.xlim([1e4,10**4.3]) plt.tight_layout() def plot_jcorr(ncells,jmax,jmaxnorm,diss,dissnorm,size,orient,theta,disscut=4e-5,ntime=21,project=np.array([1,0,0]),cmap='jet',vsheet=False): """ plot the correlation between quantities within current sheet """ nframe = 3 nplot = 3 enlarge = 2 matplotlib.rcParams['figure.figsize'] = (10*enlarge, enlarge*8.0*nframe/nplot) fig = plt.figure() fraction=0.046;pad=0.04 gs = gridspec.GridSpec(nframe, nplot) mask = (theta > disscut) # calc dissipation rate per sheet for normalization or weighted average ncelltot= float(np.sum(np.array(ncells))) diss_sheet = np.array(ncells)*np.array(diss) disstot= float(np.sum(diss_sheet)) for i in np.arange(9): ####################################### # (1) orientation ####################################### if (i==0): vec2d = np.array(orient)[mask,0]#np.cross(np.array(orient)[mask,0],project) hdata_x = vec2d[:,2] hdata_y = vec2d[:,1] xlab = r'$\hat{l}_x$' ylab = r'$\hat{l}_y$' xmin,xmax = -1,1 ymin,ymax = -1,1 vec2d = np.array(orient)[:,0] vecnorm = np.average(vec2d,axis=0) vecnorm /= np.linalg.norm(vecnorm) print 'non-weighted averaged (\hat{l}) = (',vecnorm[2],' ,',\ vecnorm[1],' ,',\ vecnorm[0],')' vecnorm = np.average(np.array(ncells)*vec2d.T,axis=1)/ncelltot vecnorm /= np.linalg.norm(vecnorm) print 'vol-weighted averaged (\hat{l}) = (',vecnorm[2],' ,',\ vecnorm[1],' ,',\ vecnorm[0],')' vecnorm = np.average(diss_sheet*vec2d.T,axis=1)/disstot vecnorm /= np.linalg.norm(vecnorm) print 'dis-weighted averaged (\hat{l}) = (',vecnorm[2],' ,',\ vecnorm[1],' ,',\ vecnorm[0],')' if (i==1): vec2d = np.array(orient)[mask,1] hdata_x = vec2d[:,2] hdata_y = vec2d[:,1] xlab = r'$\hat{\xi}_x$' ylab = r'$\hat{\xi}_y$' xmin,xmax = -1,1 ymin,ymax = -1,1 vec2d = np.array(orient)[:,1] vecnorm = np.average(vec2d,axis=0) vecnorm /= np.linalg.norm(vecnorm) print 'non-weighted averaged (\hat{xi}) = (',vecnorm[2],' ,',\ vecnorm[1],' ,',\ vecnorm[0],')' vecnorm = np.average(np.array(ncells)*vec2d.T,axis=1)/ncelltot vecnorm /= np.linalg.norm(vecnorm) print 'vol-weighted averaged (\hat{xi}) = (',vecnorm[2],' ,',\ vecnorm[1],' ,',\ vecnorm[0],')' vecnorm = np.average(diss_sheet*vec2d.T,axis=1)/disstot vecnorm /= np.linalg.norm(vecnorm) print 'dis-weighted averaged (\hat{xi}) = (',vecnorm[2],' ,',\ vecnorm[1],' ,',\ vecnorm[0],')' if (i==2): vec2d = np.array(orient)[mask,2] hdata_x = vec2d[:,2] hdata_y = vec2d[:,1] xlab = r'$\hat{\lambda}_x$' ylab = r'$\hat{\lambda}_y$' xmin,xmax = -1,1 ymin,ymax = -1,1 vec2d = np.array(orient)[:,2] vecnorm = np.average(vec2d,axis=0) vecnorm /= np.linalg.norm(vecnorm) print 'non-weighted averaged (\hat{\lambda}) = (',vecnorm[2],' ,',\ vecnorm[1],' ,',\ vecnorm[0],')' vecnorm = np.average(np.array(ncells)*vec2d.T,axis=1)/ncelltot vecnorm /= np.linalg.norm(vecnorm) print 'vol-weighted averaged (\hat{\lambda}) = (',vecnorm[2],' ,',\ vecnorm[1],' ,',\ vecnorm[0],')' vecnorm = np.average(diss_sheet*vec2d.T,axis=1)/disstot vecnorm /= np.linalg.norm(vecnorm) print 'dis-weighted averaged (\hat{\lambda}) = (',vecnorm[2],' ,',\ vecnorm[1],' ,',\ vecnorm[0],')' ####################################### # (2) 2d histogram of sheet dimensions ####################################### if (i==3): hdata_x = np.array(size)[:,0] hdata_y = np.array(size)[:,1] xlab = r'$l$' ylab = r'$\xi$' xmin,xmax = -2.7,1 ymin,ymax = -2.7,0 nbin = 100 if (i==4): hdata_x = np.array(size)[:,0] hdata_y = np.array(size)[:,2] xlab = r'$l$' ylab = r'$\lambda$' xmin,xmax = -2.7,1 ymin,ymax = -2.7,0 nbin = 100 if (i==5): hdata_x = np.array(size)[:,1] hdata_y = np.array(size)[:,2] xlab = r'$\xi$' ylab = r'$\lambda$' xmin,xmax = -2.7,1 ymin,ymax = -2.7,0 nbin = 100 # modify to plot the corr btw xi/lambda and lambda hdata_x = np.array(size)[:,1] hdata_y = np.array(size)[:,1]/np.array(size)[:,2] xlab = r'$\xi$' ylab = r'$\xi/\lambda$' xmin,xmax = -3,1. ymin,ymax = 0.0, 3. #-0.5,3.0 nbin = 100 ####################################### # (3) dissipation below ####################################### if (i==6): hdata_x = np.array(size)[:,0] hdata_y = np.array(theta) xlab = r'$l$' if vsheet: ylab = r'$\theta_{\nu}/\mathcal{E}_{\nu}$' else: ylab = r'$\theta_{\eta}/\mathcal{E}_{\eta}$' ymin = np.log10(np.min(hdata_y)) ymax = np.log10(np.max(hdata_y)) xmin,xmax = -2.7,1 nbin = 100 if (i==7): hdata_x = np.array(size)[:,1] hdata_y = np.array(theta) xlab = r'$\xi$' if vsheet: ylab = r'$\theta_{\nu}/\mathcal{E}_{\nu}$' else: ylab = r'$\theta_{\eta}/\mathcal{E}_{\eta}$' ymin = np.log10(np.min(hdata_y)) ymax = np.log10(np.max(hdata_y)) xmin,xmax = -2.7,1 nbin = 100 # modify to plot corr btwn theta and aspect ratio hdata_x = np.array(size)[:,1]/np.array(size)[:,2] hdata_y = np.array(theta) xlab = r'$\xi/\lambda$' if vsheet: ylab = r'$\theta_{\nu}/\mathcal{E}_{\nu}$' else: ylab = r'$\theta_{\eta}/\mathcal{E}_{\eta}$' ymin = np.log10(np.min(hdata_y)) ymax = np.log10(np.max(hdata_y)) xmin,xmax = -0.5,2.5 nbin = 100 if (i==8): hdata_x = np.array(size)[:,2] hdata_y = np.array(theta) xlab = r'$\lambda$' if vsheet: ylab = r'$\theta_{\nu}/\mathcal{E}_{\nu}$' else: ylab = r'$\theta_{\eta}/\mathcal{E}_{\eta}$' ymin = np.log10(np.min(hdata_y)) ymax = np.log10(np.max(hdata_y)) xmin,xmax = -2.7,1 nbin = 100 if i !=-1: fig.add_subplot(gs[i],aspect='equal') else: fig.add_subplot(gs[i]) if i<3: plt.scatter(hdata_x,hdata_y,s=0.02, marker = '.' ) plt.ylim([ymin,ymax]) plt.xlim([xmin,xmax]) plt.xlabel(xlab,size=20) plt.ylabel(ylab,size=20) if i==0: # add tilt angle measured in Zhdankin paper -17.5degree tilt = -17.5/180.*np.pi rx,ry = 2.*np.sin(tilt),2.*np.cos(tilt) plt.plot([rx,-rx],[ry,-ry],'k:') elif i<6: #plt.scatter(hdata_x,hdata_y,s=0.01,marker='.') #hst are binned in the dissipation values (normalized with total dissipation) hst,xe,ye = np.histogram2d(hdata_y,hdata_x,bins=(np.logspace(ymin,ymax,nbin),\ np.logspace(xmin,xmax,nbin)),\ weights=theta) #diss_sheet/disstot) xx,yy = np.meshgrid(xe,ye) loghst = np.log10(hst+1e-12) plt.pcolormesh(yy,xx,np.transpose(loghst),vmin=-5,vmax=-1,cmap=cmap) #vmax=np.max(loghst),cmap=cmap) #print 'min/max of hst = ',np.min(loghst),np.max(loghst) #print 'sum(hst) = ',np.sum(hst) #print 'min/max of xe = ',np.min(xe),np.max(xe) #print 'min/max of ye = ',np.min(ye),np.max(ye) plt.colorbar(pad=pad,fraction=fraction*0.8) plt.xscale("log") plt.yscale("log") plt.xlim([10**xmin,10**xmax]) plt.ylim([10**ymin,10**ymax]) plt.xlabel(xlab,size=20) plt.ylabel(ylab,size=20) if vsheet: plt.title(r'$\theta_{\nu}/\mathcal{E}_{\nu}$',fontsize=15) else: plt.title(r'$\theta_{\eta}/\mathcal{E}_{\eta}$',fontsize=15) if i==3: index,coef=1.0,0.4 plt.plot(xe,coef*xe**index,'k:') #plt.title(r'$\mathrm{Histogram\ of\ d_i:}$') else: hst,xe,ye = np.histogram2d(hdata_y,hdata_x,bins=[np.logspace(ymin,ymax,nbin),\ np.logspace(xmin,xmax,nbin)],\ normed=True) xx,yy = np.meshgrid(xe,ye) loghst = np.log10(hst+1e-12) plt.pcolormesh(yy,xx,np.transpose(loghst),vmin=-3,vmax=9) #print 'min/max of hst = ',np.min(loghst),np.max(loghst) plt.colorbar(pad=pad,fraction=fraction) plt.xscale("log") plt.yscale("log") plt.xlim([10**xmin,10**xmax]) plt.ylim([10**ymin,10**ymax]) plt.xlabel(xlab,size=20) plt.ylabel(ylab,size=20) plt.title(r'$\log$'+'(PDF)',fontsize=15) if i==6: index,coef=2.0,1.5e-3 plt.plot(ye,coef*ye**index,'k:') plt.tight_layout() # linear regression #n_abovezero = np.min([len(hdata_x[hdata_x > 0]),len(hdata_y[hdata_y > 0])]) #clean_data = np.log10(np.array(zip(hdata_x[:n_abovezero],hdata_y[:n_abovezero]))) #print clean_data #coeff = np.polyfit(clean_data[:,0], clean_data[:,1], 1) #print coeff #break #yfit = 10**(coeff[0]*clean_data[:,0]+coeff[1]) #ax.plot(clean_data[:,0],yfit,'r-') # use the following to generate the figure used in the paper def plot_jcorr_4panel(ncells,jmax,jmaxnorm,diss,dissnorm,size,orient,theta,disscut=4e-5,ntime=21,project=np.array([1,0,0]),cmap='jet',vsheet=False): """ plot the correlation between quantities within current sheet """ nframe = 2 nplot = 2 enlarge = 1 matplotlib.rcParams['figure.figsize'] = (8*enlarge, enlarge*7.0*nframe/nplot) fig = plt.figure() fraction=0.046;pad=0.04 gs = gridspec.GridSpec(nframe, nplot) mask = (theta > disscut) # calc dissipation rate per sheet for normalization or weighted average ncelltot= float(np.sum(np.array(ncells))) diss_sheet = np.array(ncells)*np.array(diss) disstot= float(np.sum(diss_sheet)) for i in np.arange(4): ####################################### # (1) orientation # (1) replace it with aspect ratio vs. xi ####################################### if (i==2): #vec2d = np.array(orient)[mask,0]#np.cross(np.array(orient)[mask,0],project) #hdata_x = vec2d[:,2] #hdata_y = vec2d[:,1] #xlab = r'$\hat{l}_x$' #ylab = r'$\hat{l}_y$' #xmin,xmax = -1,1 #ymin,ymax = -1,1 # modify to plot the corr btw xi/lambda and lambda hdata_x = np.array(size)[:,1] hdata_y = np.array(size)[:,1]/np.array(size)[:,2] xlab = r'$\xi$' ylab = r'$\xi/\lambda$' xmin,xmax = -3,1. ymin,ymax = 0.0, 3. #-0.5,3.0 nbin = 100 ####################################### # (2) 2d histogram of sheet dimensions ####################################### if (i==0): hdata_x = np.array(size)[:,0] hdata_y = np.array(size)[:,1] xlab = r'$l$' ylab = r'$\xi$' xmin,xmax = -3.0,1.0 #2.7,1 ymin,ymax = -3.0,1.0 #-2.7,0 nbin = 100 if (i==1): hdata_x = np.array(size)[:,0] hdata_y = np.array(size)[:,2] xlab = r'$l$' ylab = r'$\lambda_2$' xmin,xmax = -3.0,1.0 #-2.7,1 ymin,ymax = -3.0,-1.8 #-2.7,0 nbin = 100 ####################################### # (3) dissipation below ####################################### if (i==3): hdata_x = np.array(size)[:,0] hdata_y = np.array(theta) xlab = r'$l$' if vsheet: ylab = r'$\theta_{\nu}/\mathcal{E}_{\nu}$' else: ylab = r'$\theta_{\eta}/\mathcal{E}_{\eta}$' ymin = np.log10(np.min(hdata_y)) ymax = np.log10(np.max(hdata_y)) xmin,xmax = -2.7,1 nbin = 100 #if i==2: # fig.add_subplot(gs[i] ,aspect='equal') #else: fig.add_subplot(gs[i]) #if i==2: # plt.scatter(hdata_x,hdata_y,s=0.03, marker = '.' ) # plt.ylim([ymin,ymax]) # plt.xlim([xmin,xmax]) # plt.xlabel(xlab,size=20) # plt.ylabel(ylab,size=20) # # add tilt angle measured in Zhdankin paper -17.5degree # tilt = -17.5/180.*np.pi # rx,ry = 2.*np.sin(tilt),2.*np.cos(tilt) # plt.plot([rx,-rx],[ry,-ry],'k:') #if i<2: if i<3: #plt.scatter(hdata_x,hdata_y,s=0.01,marker='.') #hst are binned in the dissipation values (normalized with total dissipation) hst,xe,ye = np.histogram2d(hdata_y,hdata_x,bins=(np.logspace(ymin,ymax,nbin),\ np.logspace(xmin,xmax,nbin)),\ weights=theta) #diss_sheet/disstot) xx,yy = np.meshgrid(xe,ye) loghst = np.log10(hst+1e-12) plt.pcolormesh(yy,xx,np.transpose(loghst),vmin=-5,vmax=-1,cmap=cmap) #vmax=np.max(loghst),cmap=cmap) #print 'min/max of hst = ',np.min(loghst),np.max(loghst) #print 'sum(hst) = ',np.sum(hst) #print 'min/max of xe = ',np.min(xe),np.max(xe) #print 'min/max of ye = ',np.min(ye),np.max(ye) plt.colorbar(pad=pad,fraction=fraction) plt.xscale("log") plt.yscale("log") plt.xlim([10**xmin,10**xmax]) plt.ylim([10**ymin,10**ymax]) plt.xlabel(xlab,size=20) plt.ylabel(ylab,size=20) if vsheet: plt.title(r'$\theta_{\nu}/\mathcal{E}_{\nu}$',fontsize=15) else: plt.title(r'$\theta_{\eta}/\mathcal{E}_{\eta}$',fontsize=15) if i==0: index,coef=1.0,0.4 plt.plot(xe,coef*xe**index,'k:') if i==1: index,coef=1./3.,0.008 xe = 10**(np.linspace(-3.0,0.4,100)) plt.plot(xe,coef*xe**index,'k:') index,coef=0.,0.0065 xe = 10**(np.linspace(-1.8,1.0,50)) plt.plot(xe,coef*xe**index,'k:') if i==2: index,coef=2./3.,85. xe = 10**(np.linspace(-3.0,0.4,100)) plt.plot(xe,coef*xe**index,'k:') index,coef=1.,160. xe = 10**(np.linspace(-1.8,1.0,50)) plt.plot(xe,coef*xe**index,'k:') #plt.title(r'$\mathrm{Histogram\ of\ d_i:}$') if i==3: hst,xe,ye = np.histogram2d(hdata_y,hdata_x,bins=[np.logspace(ymin,ymax,nbin),\ np.logspace(xmin,xmax,nbin)],\ normed=True) xx,yy = np.meshgrid(xe,ye) loghst = np.log10(hst+1e-12) plt.pcolormesh(yy,xx,np.transpose(loghst),vmin=-3,vmax=9,cmap=cmap) #print 'min/max of hst = ',np.min(loghst),np.max(loghst) plt.colorbar(pad=pad,fraction=fraction) plt.xscale("log") plt.yscale("log") plt.xlim([10**xmin,10**xmax]) plt.ylim([10**ymin,10**ymax]) plt.xlabel(xlab,size=20) plt.ylabel(ylab,size=20) plt.title(r'$\log$'+'(PDF)',fontsize=15) index,coef=2.25,2.2e-3 plt.plot(ye,coef*ye**index,'k:') plt.tight_layout() # use the following to generate the figure used in the paper def plot_jcorr_null(size,theta,size1,theta1,cmap1='hot_r',cmap='bone_r'): """ compare sheets with null and sheets w/o null draw nonull sheets first then overlay with null sheets then draw colorbar of these two.. """ matplotlib.rcParams['figure.figsize'] = (5.5,5) fig = plt.figure() fraction=0.046;pad=0.04 hdata_x = np.array(size)[:,0] hdata_y = np.array(size)[:,1] xlab = r'$l$' ylab = r'$\xi$' xmin,xmax = -3.0,1.0 #2.7,1 ymin,ymax = -3.0,1.0 #-2.7,0 nbin = 100 # 1) plot all sheets cs0 = plt.scatter(hdata_x,hdata_y,s=3,marker='s',color='b') #hst are binned in the dissipation values (normalized with total dissipation) #hst,xe,ye = np.histogram2d(hdata_y,hdata_x,bins=(np.logspace(ymin,ymax,nbin),\ # np.logspace(xmin,xmax,nbin)),\ # weights=theta) #diss_sheet/disstot) #xx,yy = np.meshgrid(xe,ye) #loghst = np.log10(hst+1e-12) #cs1 = plt.pcolormesh(yy,xx,np.transpose(loghst),vmin=-8,vmax=-4,cmap=cmap) #cbar1 = fig.colorbar(cs1,pad=pad,fraction=fraction,orientation='horizontal',ticks=[-6,-5,-4]) ##plt.colorbar(cs1,pad=pad,fraction=fraction,orientation='horizontal',location='top') #2) now plot the null sheets hdata_x = np.array(size1)[:,0] hdata_y = np.array(size1)[:,1] hst,xe,ye = np.histogram2d(hdata_y,hdata_x,bins=(np.logspace(ymin,ymax,nbin),\ np.logspace(xmin,xmax,nbin)),\ weights=theta1) #diss_sheet/disstot) xx,yy = np.meshgrid(xe,ye) loghst = np.log10(hst+1e-12) cs2 = plt.pcolormesh(yy,xx,np.transpose(loghst),vmin=-5,vmax=-1,alpha=0.8,cmap=cmap1) #plt.colorbar(cs2,pad=pad,fraction=fraction,orientation='vertical') cbar2 = fig.colorbar(cs2,pad=pad,fraction=fraction,orientation='vertical',ticks=[-5,-4,-3,-2,-1]) plt.xscale("log") plt.yscale("log") plt.xlim([10**xmin,10**xmax]) plt.ylim([10**ymin,10**ymax]) plt.xlabel(xlab,size=20) plt.ylabel(ylab,size=20) plt.title(r'$\theta_{\eta}/\mathcal{E}_{\eta}$',fontsize=20) index,coef=1.0,0.4 plt.plot(xe,coef*xe**index,'k:') plt.axes().set_aspect('equal') # script to get big Epsilon normalized with total dissipation def get_path(targname='x2y4z1r64pmre4000'): direname='/tigress/jiming/reconnect/athena/bin/' targname=targname+'/' return direname+targname def get_normtheta(targ,ts,te,tstride,eta=2.5e-4,vsheet=False,thick=False,null=False,wth=1): direname = get_path(targ) # 1. load the volume averaged data if vsheet: fname = direname+'Unstra.out2.wth.tab' else: fname = direname+'Unstra.out2.jth.tab' dtype = np.dtype([('time', 'f8'), ('jth2', 'f8'),('jsh2','f8'),('jrms2','f8')]) ahist = np.loadtxt(fname, dtype=dtype, usecols=(0,1,2,3)) tt = ahist['time'] jrms2 = ahist['jrms2'] jsh2 = ahist['jsh2'] # pick out ts to te istart,iend = 0,0 if wth==1: for i in np.arange(len(tt)): if ts == int(tt[i]): istart = i break for i in np.arange(len(tt)): if (te-1) == int(tt[i]): iend = i break else: #wth=2 where rho\omega^2 is calc instead omega alone for i in np.arange(len(tt)): if ts == int(tt[i]): istart = i for i in np.arange(len(tt)): if (te-1) == int(tt[i]): iend = i iend +=1 if iend==istart: iend+=1 tt = tt[istart:iend] jrms2 = jrms2[istart:iend] jsh2 = jsh2[istart:iend] jrms = np.sqrt(jrms2) if vsheet: print '<epsilon_{nu,sh}>/<epsilon_{nu}> = ',np.average(jsh2/jrms2) else: print '<epsilon_{eta,sh}>/<epsilon_{eta}> = ',np.average(jsh2/jrms2) # 2. now load current sheets for each frame # for each sheet we calc total dissipation # and normalize it with jrms^2 if vsheet: if wth == 1: basename='vprop.' appdname='.p' else: basename='vprop2.' appdname='.p' else: basename='jprop.' appdname='.p' if thick: basename='jprop_thick.' if null: basename='jprop_null.' first_time = True for i in np.arange(ts,te,tstride): fname = direname+basename+str(i).zfill(5)+appdname ncells,jmax,diss,size,orient = pickle.load( open(fname, "rb" ) ) if i != int(tt[i-ts]): print 'at t = ',tt[i-ts] return 0 else: # sum(eta jsh^2)/ sum(eta jrms2) dissipation rate per sheet normalized # with rms dissipation.equivalently it's theta normalized with # instantaneous total dissipation (although the number of grid cells not included here) diss =np.array(diss)/eta ncells = np.array(ncells) if first_time: dissnorm = diss/jrms2[i-ts] theta = diss*ncells/jrms2[i-ts] jmaxnorm = np.array(jmax)/jrms[i-ts] first_time = False else: dissnorm = np.hstack((dissnorm,diss/jrms2[i-ts])) theta = np.hstack((theta,diss*ncells/jrms2[i-ts])) jmaxnorm = np.hstack((jmaxnorm,np.array(jmax)/jrms[i-ts])) # print 'at t = ',tt[i-ts] # print 'jsh2 from pickled file: ',np.sum(diss*ncells)/float(np.sum(ncells)) # print 'jsh2 from tabulat file:',jsh2[i-ts] # print 'jrms2 from tabulat file:',jrms2[i-ts] return dissnorm,theta,jmaxnorm # nbin = 100; nt = te-ts+1 # jth2 = np.zeros(nbin) # cdfj2 = np.zeros(nbin) # cdfvol = np.zeros(nbin) # theta1 = get_normtheta('x2y4z1r64pm1re4000',50,51,1) # theta2 = get_normtheta('x2y4z1r64pm1re4000',50,101,1) def get_curl(fname='Unstra.out2.00008.athdf'): """load 3d bfield and calc the current density""" # --- def curl(vx,vy,vz,dx,dy,dz): [dzvx,dyvx,dxvx] = np.gradient(vx) [dzvy,dyvy,dxvy] = np.gradient(vy) [dzvz,dyvz,dxvz] = np.gradient(vz) j2 = (dyvz/dy-dzvy/dz)**2 j2 += (dzvx/dz-dxvz/dx)**2 j2 += (dxvy/dx-dyvx/dy)**2 return j2 # --- #data=ath.athdf(fname,quantities=['B1','B2','B3']) time,data=ath.athdf(fname,quantities=['Bcc1']) bx = data['Bcc1'] time,data=ath.athdf(fname,quantities=['Bcc2']) by = data['Bcc2'] time,data=ath.athdf(fname,quantities=['Bcc3']) bz = data['Bcc3'] x = data['x1f'];y = data['x2f']; z = data['x3f'] dx = dz = x[1]-x[0]; dy = y[1]-y[0] #j2 = curl(bx,by,bz,dx,dy,dz) j2 = curl(bx,by,bz,dx,dy,dz) time,data=ath.athdf(fname,quantities=['vel1']) bx = data['vel1'] time,data=ath.athdf(fname,quantities=['vel2']) by = data['vel2'] time,data=ath.athdf(fname,quantities=['vel3']) bz = data['vel3'] time,data=ath.athdf(fname,quantities=['rho']) d = data['rho'] #w2 = curl(bx,by,bz,dx,dy,dz)*data['rho'] w2 = curl(bx,by,bz,dx,dy,dz)*d return time,x,y,z,j2,w2 def plot_3slice(input_data,xslice=512,yslice=504,zslice=256,dmin=0,dmax=100,cmap='OrRd',figsize_x=6,figsize_y=8,label=None): tmp = input_data matplotlib.rcParams['figure.figsize'] = (figsize_x, figsize_y) matplotlib.rcParams['image.cmap'] = cmap gs = gridspec.GridSpec(2, 2,width_ratios=[2, 1],height_ratios=[4, 1]) ax1 = plt.subplot(gs[0]) fig1 = plt.imshow(tmp[zslice,:,:],origin='lower',extent =[-1,1,-2,2],vmin=dmin,vmax=dmax) plt.ylabel('y',fontsize=15) ax2 = plt.subplot(gs[1]) fig2 = plt.imshow(np.transpose(tmp[:,:,xslice]),origin='lower',extent=[-0.5,0.5,-2,2],vmin=dmin,vmax=dmax) ax3 = plt.subplot(gs[2]) fig3 = plt.imshow(tmp[:,yslice,:],origin='lower',extent=[-1,1,-0.5,0.5],vmin=dmin,vmax=dmax) plt.ylabel('z',fontsize=15) plt.xlabel('x',fontsize=15) ax4 = plt.subplot(gs[3]) ax4.axis('off') divider = make_axes_locatable(ax4) cax = divider.append_axes("left", size="8%", pad=0.15) ax1.tick_params(labelbottom='off') ax2.tick_params(labelleft='off') #ax2.get_yaxis().set_ticks([]) plt.colorbar(cax=cax) if label != None: ax3.text(1.8,0.08,label,fontsize=20,rotation=90) plt.tight_layout() def show_contour(x,y,input_data,dmin=0,dmax=100,cmap='OrRd',xspan=(0,0),yspan=(0,0),figsize_x=6,figsize_y=8,xlabel='x',ylabel='y'): tmp = input_data matplotlib.rcParams['figure.figsize'] = (figsize_x, figsize_y) matplotlib.rcParams['image.cmap'] = cmap #gs = gridspec.GridSpec(2, 2,width_ratios=[2, 1],height_ratios=[4, 1]) if xspan[0] == 0 and xspan[1] == 0: xmin = -1; xmax=1 else: xmin = xspan[0]; xmax=xspan[1] if yspan[0] == 0 and yspan[1] == 0: ymin = -2; ymax=2 else: ymin = yspan[0]; ymax=yspan[1] # reduce the img to required size ids=np.abs(x-xmin).argmin() ide=np.abs(x-xmax).argmin() jds=np.abs(y-ymin).argmin() jde=np.abs(y-ymax).argmin() ndim = np.shape(tmp) jde = jde if jde < ndim[0] else ndim[0]-1 ide = ide if ide < ndim[1] else ndim[1]-1 tmp = tmp[jds:jde,ids:ide] fig1 = plt.imshow(tmp,origin='lower',extent =[xmin,xmax,ymin,ymax],vmin=dmin,vmax=dmax) plt.ylabel(ylabel,fontsize=15) plt.xlabel(xlabel,fontsize=15) plt.colorbar(pad=0.05,fraction=0.05) # plot 8-panels in x-z plane (jmag,bx,by,bz,wmag/rho,vx,dvy,vz) def plot_8panel(t,x,y,j2u,w2u,b1,b2,b3,v1,v2,v3,d,xspan=(-1,1),yspan=(-0.5,0.5),yslice=502,step=10,nslice=1,isrho=False): matplotlib.rcParams['figure.figsize'] = (15,40) x1b = (x + 0.5*(x[1]-x[0]))[:-1] x3b = (y + 0.5*(y[1]-y[0]))[:-1] nx,nz = len(x1b),len(x3b) count = 1 jmin,jmax = 0,5 bmin,bmax = -2,2 vmin,vmax = -1.5,1.5 rmin,rmax = 0,2 #xspan,yspan = (0.3,0.7),(-0.5,-0.1) ncol,nrow = 4,22 left, width = .25, .5 bottom, height = .25, .5 right = left + width top = bottom + height cmap = 'seismic' #yslice= 502 #step = 10 wu = np.sqrt(w2u) wu /= np.average(wu) ju = np.sqrt(j2u) ju /= np.average(ju) for i in (np.arange(nslice)-nslice/2): ind = yslice+step*i for nvar in np.arange(8): #// j2,vx,bx,by cmap = 'seismic' if nvar == 0: var = ju[:,ind,:] #ysli(np.sqrt(j2u)/np.average(np.sqrt(j2u)))[:,yslice+step*i,:] cmap = 'OrRd' dmin,dmax = jmin,jmax label = r'$|j|$' elif nvar == 1: var = b1[:,ind,:] dmin,dmax = bmin,bmax label = r'$B_x$' elif nvar == 2: var = b2[:,ind,:] dmin,dmax = bmin,bmax label = r'$B_y$' elif nvar == 3: var = b3[:,ind,:] dmin,dmax = bmin,bmax label = r'$B_z$' elif nvar == 4: if isrho: var = d[:,ind,:] dmin,dmax = rmin,rmax label = r'$\rho$' else: var = wu[:,ind,:] #(np.sqrt(w2u)/np.average(np.sqrt(w2u)))[:,yslice+step*i,:] cmap = 'OrRd' dmin,dmax = jmin,jmax label = r'$|\omega|$' elif nvar == 5: var = v1[:,ind,:] dmin,dmax = vmin,vmax label = r'$v_x$' elif nvar == 6: var = v2[:,ind,:]+1.5*1.0*np.array(np.tile(x1b,(nz,1))) dmin,dmax = vmin,vmax label = r'$\delta v_y$' elif nvar == 7: var = v3[:,ind,:] dmin,dmax = vmin,vmax label = r'$v_z$' else: print 'out plotting bound' plt.subplot(nrow,ncol,count) show_contour(x,y,var,dmin=dmin,dmax=dmax,xspan=xspan,yspan=yspan,cmap=cmap,xlabel='x',ylabel='z') plt.text(xspan[1]-0.1,yspan[1]-0.05,label,fontsize=15) if nvar > 0: plt.tick_params(labelbottom='off') plt.tick_params(labelleft='off') count += 1 plt.tight_layout() # plot 6-panels in x-z plane (jmag,bx,by,wmag/rho,vx,dvy) def plot_6panel(t,x,y,j2u,w2u,b1,b2,v1,v2,d,xspan=(-1,1),yspan=(-0.5,0.5),yslice=502,nslice=1,isrho=False): matplotlib.rcParams['figure.figsize'] = (10,3.5) x1b = (x + 0.5*(x[1]-x[0]))[:-1] x3b = (y + 0.5*(y[1]-y[0]))[:-1] nx,nz = len(x1b),len(x3b) count = 1 jmin,jmax = 0,5 bmin,bmax = -2,2 vmin,vmax = -1.5,1.5 rmin,rmax = 0,2 #xspan,yspan = (0.3,0.7),(-0.5,-0.1) ncol,nrow = 3,2 left, width = .25, .5 bottom, height = .25, .5 right = left + width top = bottom + height cmap = 'seismic' #yslice= 502 #step = 10 wu = np.sqrt(w2u) wu /= np.average(wu) ju = np.sqrt(j2u) ju /= np.average(ju) ind = yslice for nvar in np.arange(6): #// j2,vx,bx,by cmap = 'seismic' if nvar == 0: var = ju[:,ind,:] #ysli(np.sqrt(j2u)/np.average(np.sqrt(j2u)))[:,yslice+step*i,:] cmap = 'OrRd' dmin,dmax = jmin,jmax label = r'$|j|$' elif nvar == 1: var = b1[:,ind,:] dmin,dmax = bmin,bmax label = r'$B_x$' elif nvar == 2: var = b2[:,ind,:] dmin,dmax = bmin,bmax label = r'$B_y$' elif nvar == 3: if isrho: var = d[:,ind,:] dmin,dmax = rmin,rmax label = r'$\rho$' else: var = wu[:,ind,:] #(np.sqrt(w2u)/np.average(np.sqrt(w2u)))[:,yslice+step*i,:] cmap = 'OrRd' dmin,dmax = jmin,jmax label = r'$|\omega|$' elif nvar == 4: var = v1[:,ind,:] dmin,dmax = vmin,vmax label = r'$v_x$' elif nvar == 5: var = v2[:,ind,:]+1.5*1.0*np.array(np.tile(x1b,(nz,1))) dmin,dmax = vmin,vmax label = r'$\delta v_y$' else: print 'out plotting bound' plt.subplot(nrow,ncol,count) show_contour(x,y,var,dmin=dmin,dmax=dmax,xspan=xspan,yspan=yspan,cmap=cmap,xlabel='x',ylabel='z') plt.text(xspan[1]-0.2,yspan[1]+0.1,label,fontsize=15) if nvar > 0: plt.tick_params(labelbottom='off') plt.tick_params(labelleft='off') count += 1 plt.tight_layout() def plot_exx(ncells,jmax,jmaxnorm,diss,dissnorm,size,orient,theta,disscut=4e-5,ntime=21,project=np.array([1,0,0]),cmap='jet',vsheet=False): """ plot the correlation between quantities within current sheet """ nframe = 3 nplot = 3 enlarge = 2 matplotlib.rcParams['figure.figsize'] = (10*enlarge, enlarge*8.0*nframe/nplot) fig = plt.figure() fraction=0.046;pad=0.04 gs = gridspec.GridSpec(nframe, nplot) mask = (theta > disscut) # calc dissipation rate per sheet for normalization or weighted average ncelltot= float(np.sum(np.array(ncells))) diss_sheet = np.array(ncells)*np.array(diss) disstot= float(np.sum(diss_sheet)) for i in np.arange(9): ####################################### # (1) orientation ####################################### if (i==0): vec2d = np.array(orient)[mask,0]#np.cross(np.array(orient)[mask,0],project) hdata_x = vec2d[:,2] hdata_y = vec2d[:,1] xlab = r'$\hat{l}_x$' ylab = r'$\hat{l}_y$' xmin,xmax = -1,1 ymin,ymax = -1,1 vec2d = np.array(orient)[:,0] vecnorm = np.average(vec2d,axis=0) vecnorm /= np.linalg.norm(vecnorm) print 'non-weighted averaged (\hat{l}) = (',vecnorm[2],' ,',\ vecnorm[1],' ,',\ vecnorm[0],')' vecnorm = np.average(np.array(ncells)*vec2d.T,axis=1)/ncelltot vecnorm /= np.linalg.norm(vecnorm) print 'vol-weighted averaged (\hat{l}) = (',vecnorm[2],' ,',\ vecnorm[1],' ,',\ vecnorm[0],')' vecnorm = np.average(diss_sheet*vec2d.T,axis=1)/disstot vecnorm /= np.linalg.norm(vecnorm) print 'dis-weighted averaged (\hat{l}) = (',vecnorm[2],' ,',\ vecnorm[1],' ,',\ vecnorm[0],')' if (i==1): vec2d = np.array(orient)[mask,1] hdata_x = vec2d[:,2] hdata_y = vec2d[:,1] xlab = r'$\hat{\xi}_x$' ylab = r'$\hat{\xi}_y$' xmin,xmax = -1,1 ymin,ymax = -1,1 vec2d = np.array(orient)[:,1] vecnorm = np.average(vec2d,axis=0) vecnorm /= np.linalg.norm(vecnorm) print 'non-weighted averaged (\hat{xi}) = (',vecnorm[2],' ,',\ vecnorm[1],' ,',\ vecnorm[0],')' vecnorm = np.average(np.array(ncells)*vec2d.T,axis=1)/ncelltot vecnorm /= np.linalg.norm(vecnorm) print 'vol-weighted averaged (\hat{xi}) = (',vecnorm[2],' ,',\ vecnorm[1],' ,',\ vecnorm[0],')' vecnorm = np.average(diss_sheet*vec2d.T,axis=1)/disstot vecnorm /= np.linalg.norm(vecnorm) print 'dis-weighted averaged (\hat{xi}) = (',vecnorm[2],' ,',\ vecnorm[1],' ,',\ vecnorm[0],')' if (i==2): vec2d = np.array(orient)[mask,2] hdata_x = vec2d[:,2] hdata_y = vec2d[:,1] xlab = r'$\hat{\lambda}_x$' ylab = r'$\hat{\lambda}_y$' xmin,xmax = -1,1 ymin,ymax = -1,1 vec2d = np.array(orient)[:,2] vecnorm = np.average(vec2d,axis=0) vecnorm /= np.linalg.norm(vecnorm) print 'non-weighted averaged (\hat{\lambda}) = (',vecnorm[2],' ,',\ vecnorm[1],' ,',\ vecnorm[0],')' vecnorm = np.average(np.array(ncells)*vec2d.T,axis=1)/ncelltot vecnorm /= np.linalg.norm(vecnorm) print 'vol-weighted averaged (\hat{\lambda}) = (',vecnorm[2],' ,',\ vecnorm[1],' ,',\ vecnorm[0],')' vecnorm = np.average(diss_sheet*vec2d.T,axis=1)/disstot vecnorm /= np.linalg.norm(vecnorm) print 'dis-weighted averaged (\hat{\lambda}) = (',vecnorm[2],' ,',\ vecnorm[1],' ,',\ vecnorm[0],')' ####################################### # (2) 2d histogram of sheet dimensions ####################################### if (i==3): hdata_x = np.array(size)[:,0] hdata_y = np.array(size)[:,1] xlab = r'$l$' ylab = r'$\xi$' xmin,xmax = -2.7,1 ymin,ymax = -2.7,0 nbin = 100 if (i==4): hdata_x = np.array(size)[:,0] hdata_y = np.array(size)[:,2] xlab = r'$l$' ylab = r'$\lambda$' xmin,xmax = -2.7,1 ymin,ymax = -2.7,0 nbin = 100 if (i==5): hdata_x = np.array(size)[:,1] hdata_y = np.array(size)[:,2] xlab = r'$\xi$' ylab = r'$\lambda$' xmin,xmax = -2.7,1 ymin,ymax = -2.7,0 nbin = 100 ####################################### # (3) dissipation below ####################################### if (i==6): hdata_x = np.array(size)[:,0] hdata_y = np.array(theta) xlab = r'$l$' if vsheet: ylab = r'$\theta_{\nu}/\mathcal{E}_{\nu}$' else: ylab = r'$\theta_{\eta}/\mathcal{E}_{\eta}$' ymin = np.log10(np.min(hdata_y)) ymax = np.log10(np.max(hdata_y)) xmin,xmax = -2.7,1 nbin = 100 if (i==7): hdata_x = np.array(size)[:,1] hdata_y = np.array(theta) xlab = r'$\xi$' if vsheet: ylab = r'$\theta_{\nu}/\mathcal{E}_{\nu}$' else: ylab = r'$\theta_{\eta}/\mathcal{E}_{\eta}$' ymin = np.log10(np.min(hdata_y)) ymax = np.log10(np.max(hdata_y)) xmin,xmax = -2.7,1 nbin = 100 if (i==8): hdata_x = np.array(size)[:,2] hdata_y = np.array(theta) xlab = r'$\lambda$' if vsheet: ylab = r'$\theta_{\nu}/\mathcal{E}_{\nu}$' else: ylab = r'$\theta_{\eta}/\mathcal{E}_{\eta}$' ymin = np.log10(np.min(hdata_y)) ymax = np.log10(np.max(hdata_y)) xmin,xmax = -2.7,1 nbin = 100 fig.add_subplot(gs[i],aspect='equal') if i<3: plt.scatter(hdata_x,hdata_y,s=0.02, marker = '.' ) plt.ylim([ymin,ymax]) plt.xlim([xmin,xmax]) plt.xlabel(xlab,size=20) plt.ylabel(ylab,size=20) if i==0: # add tilt angle measured in Zhdankin paper -17.5degree tilt = -17.5/180.*np.pi rx,ry = 2.*np.sin(tilt),2.*np.cos(tilt) plt.plot([rx,-rx],[ry,-ry],'k:') elif i<6: #plt.scatter(hdata_x,hdata_y,s=0.01,marker='.') #hst are binned in the dissipation values (normalized with total dissipation) hst,xe,ye = np.histogram2d(hdata_y,hdata_x,bins=(np.logspace(ymin,ymax,nbin),\ np.logspace(xmin,xmax,nbin)),\ weights=theta) #diss_sheet/disstot) xx,yy = np.meshgrid(xe,ye) #return hst, xe,ye,xx,yy loghst = np.log10(hst+1e-12) #plt.pcolormesh(yy,xx,np.transpose(loghst),vmin=-5,vmax=-1,cmap=cmap) plt.plot(xe,np.log10(np.sum(hst*xx[:-1],axis=0)+1e-12)) #print 'min/max of hst = ',np.min(loghst),np.max(loghst) #print 'sum(hst) = ',np.sum(hst) #print 'min/max of xe = ',np.min(xe),np.max(xe) #print 'min/max of ye = ',np.min(ye),np.max(ye) #plt.colorbar(pad=pad,fraction=fraction*0.8) plt.xscale("log") plt.yscale("log") plt.xlim([10**xmin,10**xmax]) #plt.ylim([10**ymin,10**ymax]) plt.xlabel(xlab,size=20) #plt.ylabel(ylab,size=20) #if vsheet: # plt.title(r'$\theta_{\nu}/\mathcal{E}_{\nu}$',fontsize=15) #else: # plt.title(r'$\theta_{\eta}/\mathcal{E}_{\eta}$',fontsize=15) #if i==3: # index,coef=1.0,0.4 # plt.plot(xe,coef*xe**index,'k:') #plt.title(r'$\mathrm{Histogram\ of\ d_i:}$') else: hst,xe,ye = np.histogram2d(hdata_y,hdata_x,bins=[np.logspace(ymin,ymax,nbin),\ np.logspace(xmin,xmax,nbin)],\ normed=True) xx,yy = np.meshgrid(xe,ye) loghst = np.log10(hst+1e-12) plt.pcolormesh(yy,xx,np.transpose(loghst),vmin=-3,vmax=9) #print 'min/max of hst = ',np.min(loghst),np.max(loghst) plt.colorbar(pad=pad,fraction=fraction) plt.xscale("log") plt.yscale("log") plt.xlim([10**xmin,10**xmax]) plt.ylim([10**ymin,10**ymax]) plt.xlabel(xlab,size=20) plt.ylabel(ylab,size=20) plt.title(r'$\log$'+'(PDF)',fontsize=15) if i==6: index,coef=2.0,1.5e-3 plt.plot(ye,coef*ye**index,'k:') plt.tight_layout() ``` #### File: jmshi/reconnection/dump_hist2d.py ```python import numpy as np import my_athena_read as myath import os import sys def dump_hist2d(targname,ts=0,te=5,resol=64,pres=1.0,nx=256,nz=64,nvar=3): direname='/tigress/jiming/reconnect/athena/bin/' basename='Unstra.out2.' appdname='athdf' dumprate = 0.5 # in unit of orbits nframe = te-ts+1 have = np.zeros((nz,nframe,nvar)) zave = np.zeros((nx,nframe,nvar)) tave = np.zeros(nframe) for i in range(ts,te+1): fname = direname+targname+'/'+basename+str(i).zfill(5)+'.'+appdname if os.path.isfile(fname): time,data = myath.athdf(fname,quantities=['Bcc1','Bcc2','Bcc3','rho']) tave[i]=time have[:,i,0] = np.average(data['rho'],axis=(1,2)) # rho have[:,i,1] = np.average(data['Bcc2'],axis=(1,2)) # By have[:,i,2] = np.average(-data['Bcc2']*data['Bcc1'],axis=(1,2))/pres # maxwell stress zave[:,i,0] = np.average(data['rho'],axis=(0,1)) # rho zave[:,i,1] = np.average(data['Bcc2'],axis=(0,1)) # By zave[:,i,2] = np.average(-data['Bcc2']*data['Bcc1'],axis=(0,1))/pres # maxwell stress # dump have/zave data fmt = '%.15e' halfcellwidth=(data['x1f'][-1:]-data['x1v'])[0] xx = data['x1f'][:-1]+halfcellwidth zz = data['x3f'][:-1]+halfcellwidth dst = direname+targname+'/'+'tmp/' if not os.path.exists(dst): os.makedirs(dst) np.savetxt(dst+'xx.dat',xx,fmt=fmt) np.savetxt(dst+'zz.dat',zz,fmt=fmt) np.savetxt(dst+'tt.dat',tave,fmt=fmt) for i in range(nvar): np.savetxt(dst+'have'+str(i).zfill(2)+'.dat',have[...,i],fmt=fmt) np.savetxt(dst+'zave'+str(i).zfill(2)+'.dat',zave[...,i],fmt=fmt) return if __name__=='__main__': if len(sys.argv)>=4: ts=int(sys.argv[2]) te=int(sys.argv[3]) else: ts=0;te=100 print "use ts=0 te=100 for the calc" print "plz specify ts/te if other than that" resol=64;pres=1.0;nx=4*64;nz=64*1;nvar=3 targ = sys.argv[ 1 ]; if(targ[0:6]=='x2y4z1'): Lx,Lz=2,1 if(targ[0:6]=='x4y4z1'): Lx,Lz=4,1 if(targ[0:6]=='x2y8z1'): Lx,Lz=2,1 if(targ[6:9]=='r64'): resol=64 if(targ[6:10]=='r128'): resol=128 if(targ[6:10]=='r256'): resol=256 if(targ[6:10]=='r512'): resol=512 if(targ[0:8]=='adb.r256'): resol=256 Lx,Ly,Lz = 2,4,1 nx=resol*Lx nz=resol*Lz print 'calculating have/zave for '+targ+' within ts= '+str(ts)+' te= '+str(te) dump_hist2d(targ,ts=ts,te=te,resol=resol,nx=nx,nz=nz,nvar=nvar) ``` #### File: jmshi/reconnection/my_colors.py ```python import matplotlib # in python import matplotlib.pyplot as plt import numpy as np def get_jhcolors(debug=False): ct = np.loadtxt('jhcolors.tab') cm = matplotlib.colors.ListedColormap(ct/255.0) if debug: plt.imshow([[-1,1],[1,-1]], cmap=cm) # for example plt.colorbar(pad=0.01,fraction=0.045,orientation='vertical') return cm ``` #### File: jmshi/reconnection/oldathena_read.py ```python import numpy as np #======================================================================================= def vtk(filename): """Read .vtk files and return dict of arrays of data.""" # Python module import struct # Read raw data with open(filename, 'r') as data_file: raw_data = data_file.read() # Skip header current_index = 0 current_char = raw_data[current_index] # while current_char == '#': # while current_char != '\n': # current_index += 1 # current_char = raw_data[current_index] # current_index += 1 # current_char = raw_data[current_index] # Skip the first line while current_char != '\n': current_index += 1 current_char = raw_data[current_index] #print current_char # Extract time info from the second line after time=... while current_char != '=': current_index += 1 current_char = raw_data[current_index] #print current_char stime = "" while current_char != ' ': current_index += 1 current_char = raw_data[current_index] stime += current_char current_index += 1 current_char = raw_data[current_index] time = float(stime) #print 'time = ',time while current_char != '\n': current_index += 1 current_char = raw_data[current_index] current_index += 1 # Function for skipping though the file def skip_string(expected_string): expected_string_len = len(expected_string) if raw_data[current_index:current_index+expected_string_len] != expected_string: raise AthenaError('File not formatted as expected') return current_index+expected_string_len # Read metadata current_index = skip_string('BINARY\nDATASET RECTILINEAR_GRID\nDIMENSIONS ') end_of_line_index = current_index + 1 while raw_data[end_of_line_index] != '\n': end_of_line_index += 1 face_dimensions = map(int, raw_data[current_index:end_of_line_index].split(' ')) current_index = end_of_line_index + 1 # Function for reading interface locations def read_faces(letter, num_faces): identifier_string = '{0}_COORDINATES {1} float\n'.format(letter,num_faces) begin_index = skip_string(identifier_string) format_string = '>' + 'f'*num_faces end_index = begin_index + 4*num_faces vals = np.array(struct.unpack(format_string, raw_data[begin_index:end_index])) return vals,end_index+1 # Read interface locations x_faces,current_index = read_faces('X', face_dimensions[0]) y_faces,current_index = read_faces('Y', face_dimensions[1]) z_faces,current_index = read_faces('Z', face_dimensions[2]) # Prepare to read quantities defined on grid cell_dimensions = np.array([max(dim-1,1) for dim in face_dimensions]) num_cells = cell_dimensions.prod() current_index = skip_string('CELL_DATA {0}\n'.format(num_cells)) if raw_data[current_index:current_index+1] == '\n': current_index = skip_string('\n') # extra newline inserted by join script data = {} # Function for reading scalar data def read_cell_scalars(): begin_index = skip_string('SCALARS ') end_of_word_index = begin_index + 1 while raw_data[end_of_word_index] != ' ': end_of_word_index += 1 array_name = raw_data[begin_index:end_of_word_index] string_to_skip = 'SCALARS {0} float\nLOOKUP_TABLE default\n'.format(array_name) begin_index = skip_string(string_to_skip) format_string = '>' + 'f'*num_cells end_index = begin_index + 4*num_cells data[array_name] = struct.unpack(format_string, raw_data[begin_index:end_index]) dimensions = tuple(cell_dimensions[::-1]) data[array_name] = np.array(data[array_name]).reshape(dimensions) return end_index+1 # Function for reading vector data def read_cell_vectors(): begin_index = skip_string('VECTORS ') end_of_word_index = begin_index + 1 while raw_data[end_of_word_index] != '\n': end_of_word_index += 1 array_name = raw_data[begin_index:end_of_word_index] string_to_skip = 'VECTORS {0}\n'.format(array_name) array_name = array_name[:-6] # remove ' float' begin_index = skip_string(string_to_skip) format_string = '>' + 'f'*num_cells*3 end_index = begin_index + 4*num_cells*3 data[array_name] = struct.unpack(format_string, raw_data[begin_index:end_index]) dimensions = tuple(np.append(cell_dimensions[::-1],3)) data[array_name] = np.array(data[array_name]).reshape(dimensions) return end_index+1 # Read quantities defined on grid while current_index < len(raw_data): expected_string = 'SCALARS' expected_string_len = len(expected_string) if raw_data[current_index:current_index+expected_string_len] == expected_string: current_index = read_cell_scalars() continue expected_string = 'VECTORS' expected_string_len = len(expected_string) if raw_data[current_index:current_index+expected_string_len] == expected_string: current_index = read_cell_vectors() continue raise AthenaError('File not formatted as expected') return time,x_faces,y_faces,z_faces,data #======================================================================================= def athdf(filename, data=None, quantities=None): """Read .athdf files and populate dict of arrays of data.""" # Python module for reading hdf5 files import h5py # Open file with h5py.File(filename, 'r') as f: # Create list of all quantities if none given if data is not None: quantities = data.values() elif quantities is None: quantities = f[u'MeshBlock0'].keys() quantities = [q for q in quantities \ if q != u'x1f' and q != u'x2f' and q != u'x3f'] # Get block count, dimensions, and sizes num_blocks = len(f.keys()) dims = 0 block_size = [] coords = [u'x1f',u'x2f',u'x3f'] for key in coords: if key in f[u'MeshBlock0'].keys(): dims += 1 block_size.append(len(f[u'MeshBlock0'][key][:]) - 1) coords = coords[:dims] # Order blocks edges = np.empty((num_blocks,dims)) for block_num,block_name in zip(range(num_blocks),f.keys()): for dim,coord in zip(range(dims),coords): edges[block_num,dim] = f[block_name][coord][0] edges_unique = [] for dim in range(dims): edges_unique.append(set(edges[:,dim])) indices = np.empty((num_blocks,3,2), dtype=int) for block_num in range(num_blocks): for dim in range(dims): num_prior = sum(edge < edges[block_num,dim] for edge in edges_unique[dim]) indices[block_num,dim,0] = num_prior * block_size[dim] indices[block_num,dim,1] = (num_prior+1) * block_size[dim] for dim in range(dims,3): indices[block_num,dim,0] = 0 indices[block_num,dim,1] = 1 # Prepare arrays if needed nx1 = block_size[0] * len(edges_unique[0]) nx2 = block_size[1] * len(edges_unique[1]) if dims >= 2 else 1 nx3 = block_size[2] * len(edges_unique[2]) if dims >= 3 else 1 if data is None: data = {} for q in quantities: data[q] = np.empty((nx3,nx2,nx1)) data[u'x1f'] = np.empty(nx1+1) if dims >= 2: data[u'x2f'] = np.empty(nx2+1) if dims >= 3: data[u'x3f'] = np.empty(nx3+1) # Read interface data for n,block_name in zip(range(num_blocks),f.keys()): for dim,coord in zip(range(dims),coords): need_interfaces = True for dim_other in range(dims): if dim_other == dim: continue if indices[n,dim_other,0] != 0: need_interfaces = False if not need_interfaces: continue data[coord][indices[n,dim,0]:indices[n,dim,1]] = f[block_name][coord][:-1] if indices[n,dim,1] == block_size[dim] * len(edges_unique[dim]): data[coord][indices[n,dim,1]] = f[block_name][coord][-1] # Read value data for n,block_name in zip(range(num_blocks),f.keys()): kl = indices[n,2,0] ku = indices[n,2,1] jl = indices[n,1,0] ju = indices[n,1,1] il = indices[n,0,0] iu = indices[n,0,1] for q in quantities: data[q][kl:ku,jl:ju,il:iu] = f[block_name][q][:] return data #======================================================================================= class AthenaError(RuntimeError): """General exception class for Athena++ read functions.""" pass ``` #### File: jmshi/reconnection/time_track.py ```python import matplotlib import matplotlib.pyplot as plt import numpy as np #import athena4_read as ath import athena_read as ath import scipy.ndimage.measurements as measurements import scipy.ndimage.morphology as morphology import cPickle as pickle import time import multiprocessing as mp from itertools import product import sys #from scipy.interpolate import RegularGridInterpolator from skimage.transform import resize from collections import defaultdict from sklearn.decomposition import PCA def loadData(fname): jlist_sorted = pickle.load( open(fname, "rb" ) ) return jlist_sorted def track(varlist): tstamp = varlist[0] rank = varlist[1] # rank of jsheet under investigation js0 = varlist[2] # content of the jsheet at the rank ts,te = varlist[3],varlist[4] # time frames to lookup dt = np.pi*0.001 fdir = '/tigress/jiming/reconnect/athena/bin/' basename = 'box.' rank +=1 tstride = 1 size = len(js0) js_track = [] js_track += js0 #set initial jsheet dict js_time = [] js_time += [ts*dt] #set initial jsheet time #fname = fdir+targ+'/'+basename+str(ts).zfill(5)+'.tab' #fhandler1=open(fname,'a') # for print outs for frame in np.arange(ts+1,te+1,tstride): fname = fdir+targ+'/'+basename+str(frame).zfill(5)+'.vtk.jlist.p' jlist = loadData(fname) js_self,js_merg,js_tag =[],[],[] #set seg. of jsheet to zero nself,nmerg = 0,0 upper = max([num for num,item in enumerate(jlist) if len(item)>=1000]) for js in jlist[0:upper]: js0_in_js = set(js0).intersection(set(js)) inside = len(js0_in_js) outside = len(js)-inside if inside > outside: # successor found; append list; count+1 js_self += [js] js_tag += [frame*dt] nself += 1 elif inside >0: #potential merger; start counting js_merg += [js] js_tag += [frame*dt] nmerg += 1 else: pass if js_merg == []: lenmergmax = 0 else: lenmergmax = max([len(item) for item in js_merg]) if js_self == []: lenselfmax = 0 lenselfsec = 0 else: sorted_self = sorted(js_self,key=len) lenselfmax = len(sorted_self[-1]) #max([len(item) for item in js_self]) if len(js_self)>=2: lenselfsec = len(sorted_self[-2]) else: lenselfsec = 0 if nself == 1 and nmerg == 0: # single successor keep tracking #js_track += js_self #js_time += [dt*frame] js0 = js_self[0] # set current jsheet as initial for next step elif nself == 1 and nmerg > 0: # incoming sheet to merge #js_track += js_self #js_time += js_tag #js_track += js_merg flag = 0 tmp = np.array([tstamp,rank-1,flag,size,(frame-ts),nself,lenselfmax,lenselfsec,nmerg,lenmergmax],dtype='i') #np.savetxt(fhandler1,tmp,fmt='%i %i %i %f %i %i %i %i') #print 'jsheet = ',rank-1, size,' merged @Dt = ',frame*dt,'nself,nmerg = ',nself,nmerg print tmp break # break out the ts+1:te+1 loop, go to next init jsheet elif nself >1: # self-disruption #js_track += js_self #js_track += js_merg #js_time += js_tag if lenselfsec >=800: flag = 1 tmp = np.array([tstamp,rank-1,flag,size,(frame-ts),nself,lenselfmax,lenselfsec,nmerg,lenmergmax],dtype='i') #print 'jsheet = ',rank-1, size, 'self-des @ Dt = ',frame*dt, 'nself,nmerg = ',nself,nmerg print tmp break else: js0 = sorted_self[-1] elif nself==0 & nmerg==1: #somehow large displacement occurs js0 = js_merg[0] else: flag = 2 tmp = np.array([tstamp,rank-1,flag,size,(frame-ts),nself,lenselfmax,lenselfsec,nmerg,lenmergmax],dtype='i') #print '[warning] rank,size,nself,nmerg,time = ',rank-1,size,nself,nmerg,frame*dt print tmp break return #print 'rank,size,nself,nmerg,time = ',rank-1,size,nself,nmerg,frame*dt if __name__=='__main__': if len( sys.argv ) < 4: print "Please specify input targ,ts,te,tstride" exit( ) targ = sys.argv[1] #targ = x2y4z1r64pm1re4000 ts,te,tstride = int(sys.argv[2]),int(sys.argv[3]),int(sys.argv[4]) dt = np.pi*0.001 rank = 0 fdir = '/tigress/jiming/reconnect/athena/bin/' basename = 'box.' frame=ts fname = fdir+targ+'/'+basename+str(frame).zfill(5)+'.vtk.jlist.p' jlist_sorted = loadData(fname) print 'ts= ',ts p = mp.Pool(processes=6) varlist = [[ts,rank,jlist_sorted[rank],ts,te] for rank in range(0,6)] result = p.map(track,tuple(varlist)) # for js0 in jlist_sorted[0:2]: # only analyze top 10 # varlist = [rank,js0,ts,te] # track(varlist) # rank +=1 #size = len(js0) #js_track = [] #js_track += js0 #set initial jsheet dict #js_time = [] #js_time += [ts*dt] #set initial jsheet time #for frame in np.arange(ts+1,te+1,tstride): # fname = fdir+targ+'/'+basename+str(frame).zfill(5)+'.vtk.jlist.p' # jlist = loadData(fname) # js_self,js_merg,js_tag =[],[],[] #set seg. of jsheet to zero # nself,nmerg = 0,0 # for js in jlist[0:100]: # js0_in_js = set(js0).intersection(set(js)) # inside = len(js0_in_js) # outside = len(js)-inside # if inside >= outside: # successor found; append list; count+1 # js_self += js # js_tag += [frame*dt] # nself += 1 # elif inside >0: #potential merger; start counting # js_merg += js # js_tag += [frame*dt] # nmerg += 1 # else: # pass # # if nself == 1 and nmerg == 0: # single successor keep tracking # js_track += js_self # js_time += [dt*frame] # js0 = js_self # set current jsheet as initial for next step # elif nself == 1 and nmerg > 0: # incoming sheet to merge # js_track += js_self # js_time += js_tag # js_track += js_merg # print 'jsheet = ',rank-1, size,' merged @Dt = ',frame*dt,'nself,nmerg = ',nself,nmerg # break # break out the ts+1:te+1 loop, go to next init jsheet # elif nself >1: # self-disruption # js_track += js_self # js_track += js_merg # js_time += js_tag # print 'jsheet = ',rank-1, size, 'self-des @ Dt = ',frame*dt, 'nself,nmerg = ',nself,nmerg # break # else: # print '[warning] rank,size,nself,nmerg,time = ',rank-1,size,nself,nmerg,frame*dt # break #print 'rank,size,nself,nmerg,time = ',rank-1,size,nself,nmerg,frame*dt # end of the script ```
{ "source": "jmshnds/eventstore_grpc", "score": 2 }
#### File: eventstore_grpc/eventstore_grpc/client.py ```python import abc import grpc from eventstore_grpc import mixins, connection from eventstore_grpc import options, discovery from typing import List, Union class ClientBase(abc.ABC): """Handles EventStoreDB operations.""" def __init__( self, connection_string: str, ): """Initializes the EventStoreDBClient. Args: connection_string: the string to connect to the gRPC channel. """ self._connection_string = connection_string self._connection = connection.Connection.from_connection_string( connection_string ) self.channel = self._connection.channel def __repr__(self): return f"{self.__class__.__name__}('{self._connection_string}')" def close(self): if getattr(self, "_subscriptions_manager", None): self.unsubscribe_all() self.channel.close() class EventStoreDBClient( mixins.Streams, mixins.Projections, mixins.Users, mixins.Operations, mixins.Gossip, mixins.Persistent, mixins.Subscriptions, ClientBase, ): pass ``` #### File: eventstore_grpc/eventstore_grpc/event_data.py ```python import abc import uuid from typing import Any, Dict, Callable import json class EventData(abc.ABC): """Events abstract class. When appending events to EventStoreDB they must first all be wrapped in an Event object. This allow you to specify the content of the event, the type of event and whether its in JSON format. In it's simplest form you need to three following arguments. * `event_id`: this takes the format of `Uuid` and is used to uniquely identify the event your are trying to append. If two events with the same `Uuid` are appended to the same stream in quick succession, EventStoreDB will only append one copy of the event to the stream. * `type`: an event type should be supplied for each event. This is a unique string used to identify the type of event you are saving. It is common to see the explicit event code type name used as the type as it makes serializing and de-serializing of the event easy. However we recommend against this as it couples the storage to the type and will make it more difficult if you need to version the event at a later date. * `data`: representation of your event data. It is recommended that you store your events as JSON objects as this will allow you to make use of all of EventStoreDB's functionality such as projections. Ultimately though, you can save it using whatever format you like as eventually, it will be stored as encoded bytes. * `metadata`: it is common to need to store additional information along side your event that is part of the event itself. This can be correlation Id's, timestamps, access information, etc. EventStoreDB allows you to store a separate byte array containing this information to keep it separate. * `is_json`: a simple boolean field to tell EventStoreDB if the event is stored as a json, `True` by default. """ def __init__( self, event_id: uuid.UUID, type: str, data: Any, metadata: Any, is_json: bool = True, ): self.event_id = event_id self.type = type self.data = data self.metadata = metadata self.is_json = is_json def __repr__(self): return f"{self.__class__.__name__}(**{self.__dict__!r})" def __str__(self): return f"{self.type} => {self.data}" @property def data_content_type(self): return "application/json" if self.is_json else "application/octet-stream" @property def serialized_metadata(self): return json.dumps(self.metadata).encode() @property @abc.abstractmethod def serialized_data(self): raise NotImplementedError @classmethod @abc.abstractmethod def deserialize_data(cls, data: str): raise NotImplementedError class JSONEventData(EventData): """An Event carrying data as a JSON payload.""" def __init__( self, type: str, data: Dict, # TODO: should be JSON-able. metadata: Any = None, event_id: uuid.UUID = None, ): if event_id is None: event_id = uuid.uuid4() if metadata is None: metadata = {} super().__init__(event_id, type, data, metadata, True) @property def serialized_data(self): return json.dumps(self.data).encode() @classmethod def deserialize_data(cls, data: str): return json.loads(data) ``` #### File: eventstore_grpc/mixins/persistent.py ```python from typing import Union, Optional, Dict, Callable from eventstore_grpc import constants, persistent from eventstore_grpc.proto import persistent_pb2, persistent_pb2_grpc class Persistent: """Handles Persistent operations.""" def create_persistent_subscription( self, stream: str, group_name: str, resolve_link_to_s: bool = False, from_revision: Union[int, str] = constants.START, extra_statistics: bool = False, message_timeout_ms: int = 30000, checkpoint_after_ms: int = 2000, max_retry_count: int = 10, min_checkpoint_count: int = 10, max_checkpoint_count: int = 1000, max_subscriber_count: Union[str, int] = 0, live_buffer_size: int = 20, history_buffer_size: int = 500, strategy: str = "ROUND_ROBIN", **kwargs ) -> persistent_pb2.CreateResp: stub = persistent_pb2_grpc.PersistentSubscriptionsStub(self.channel) result = persistent.create_persistent_subscription( stub=stub, stream=stream, group_name=group_name, resolve_link_to_s=resolve_link_to_s, from_revision=from_revision, extra_statistics=extra_statistics, message_timeout_ms=message_timeout_ms, checkpoint_after_ms=checkpoint_after_ms, max_retry_count=max_retry_count, min_checkpoint_count=min_checkpoint_count, max_checkpoint_count=max_checkpoint_count, max_subscriber_count=max_subscriber_count, live_buffer_size=live_buffer_size, history_buffer_size=history_buffer_size, strategy=strategy, **kwargs, ) return result def update_persistent_subscription( self, resolve_link_to_s: bool = False, from_revision: Union[str, int] = constants.START, extra_statistics: bool = False, message_timeout_ms: int = 30000, checkpoint_after_ms: int = 2000, max_retry_count: int = 10, min_checkpoint_count: int = 10, max_checkpoint_count: int = 1000, max_subscriber_count: Union[str, int] = 0, live_buffer_size: int = 20, history_buffer_size: int = 500, strategy: str = "ROUND_ROBIN", **kwargs ) -> persistent_pb2.UpdateResp: stub = persistent_pb2_grpc.PersistentSubscriptionsStub(self.channel) result = persistent.update_persistent_subscription( stub, resolve_link_to_s=resolve_link_to_s, from_revision=from_revision, extra_statistics=extra_statistics, message_timeout_ms=message_timeout_ms, checkpoint_after_ms=checkpoint_after_ms, max_retry_count=max_retry_count, min_checkpoint_count=min_checkpoint_count, max_checkpoint_count=max_checkpoint_count, max_subscriber_count=max_subscriber_count, live_buffer_size=live_buffer_size, history_buffer_size=history_buffer_size, strategy=strategy, **kwargs, ) return result def delete_persistent_subscription( self, stream: str, group: str ) -> persistent_pb2.DeleteResp: stub = persistent_pb2_grpc.PersistentSubscriptionsStub(self.channel) result = persistent.delete_persistent_subscription( stub=stub, stream=stream, group=group ) return result ``` #### File: eventstore_grpc/mixins/streams.py ```python from typing import Union, List, Dict from eventstore_grpc.streams import append, read, delete, tombstone from eventstore_grpc import event_data, constants from eventstore_grpc.proto import streams_pb2_grpc class Streams: """Handles streams operations.""" def append_to_stream( self, stream: str, expected_version: Union[str, int], events: Union[event_data.EventData, List[event_data.EventData]], user_credentials: append.UserCredentials = None, **kwargs ): """Appends new events to a stream.""" stub = streams_pb2_grpc.StreamsStub(self.channel) result = append.append_to_stream( stub, stream=stream, expected_version=expected_version, events=events, user_credentials=user_credentials, **kwargs ) return result def read_from_stream( self, stream: str, count: int = None, from_revision: Union[int, str] = constants.START, options: dict = None, **kwargs ): """Reads events from a stream.""" options = options or {} options.update( {"from_revision": from_revision} ) # TODO: Also the functional api should use from_revision as a param. (and maybe all the options?) stub = streams_pb2_grpc.StreamsStub(self.channel) result = read.read_from_stream( stub, stream=stream, count=count, options=options, **kwargs ) return result def read_from_all( self, from_position: Union[Dict[str, int], str] = constants.START, count: int = None, direction: str = None, **kwargs ): stub = streams_pb2_grpc.StreamsStub(self.channel) result = read.read_from_all( stub, from_position=from_position, count=count, direction=direction, **kwargs ) return result def delete_stream(self, stream: str, expected_version: Union[int, str], **kwargs): """Deletes a stream.""" stub = streams_pb2_grpc.StreamsStub(self.channel) result = delete.delete_stream( stub, stream=stream, expected_version=expected_version, **kwargs ) return result def tombstone_stream( self, stream: str, expected_version: Union[int, str], **kwargs ): """Tombstones a stream.""" stub = streams_pb2_grpc.StreamsStub(self.channel) result = tombstone.tombstone_stream( stub, stream=stream, expected_version=expected_version, **kwargs ) return result ``` #### File: eventstore_grpc/operations/resign_node.py ```python from eventstore_grpc.proto import operations_pb2, operations_pb2_grpc, shared_pb2 def resign_node(stub: operations_pb2_grpc.OperationsStub, **kwargs) -> shared_pb2.Empty: """Resign Node.""" return stub.ResignNode(shared_pb2.Empty(), **kwargs) ``` #### File: eventstore_grpc/options/base_options.py ```python import dataclasses from typing import Dict, Optional, List, Tuple import base64 import grpc @dataclasses.dataclass class BaseOptions: credentials: Optional[Dict[str, str]] = None requires_leader: Optional[bool] = None @property def metadata(self): return as_metadata(self.credentials, self.requires_leader) def as_metadata( credentials: Optional[Dict[str, str]] = None, requires_leader: Optional[bool] = None ) -> Optional[List[Optional[Tuple[str, str]]]]: """Returns a valid grpc "metadata" object.""" metadata = [] if credentials is not None: if all(elm in ["username", "password"] for elm in credentials): token = f"{credentials['username']}:{credentials['password']}" token = base64.b64encode(token.encode("ascii")).decode("ascii") auth = ("authorization", f"Bearer {token}") metadata.append(auth) if requires_leader is not None: req_leader = ("requires-leader", str(requires_leader).lower()) metadata.append(req_leader) return metadata if metadata else None class EventStoreDBMetadataPlugin(grpc.AuthMetadataPlugin): def __init__( self, username: str = None, password: str = None, requires_leader: bool = None ): self._username = username self._password = password self._requires_leader = requires_leader self._metadata = None @staticmethod def _compile_token(username: str, password: str): if username.strip() and password.strip(): _key = f"{username}:{password}".encode("ascii") token = base64.b64encode(_key).decode("ascii") return ("authorization", f"Basic {token}") @staticmethod def _compile_requires_leader(requires_leader: bool): if requires_leader is not None: return ("requires-leader", str(requires_leader).lower()) def compile(self): metadata = [] compiled_token = self._compile_token(self._username, self._password) compiled_requires_leader = self._compile_requires_leader(self._requires_leader) if compiled_token: # good place to use the walrus op here :) metadata.append(compiled_token) if compiled_requires_leader: metadata.append(compiled_requires_leader) if metadata: self._metadata = tuple(metadata) return self def __call__(self, context, callback): self.compile() callback(self._metadata, None) def as_credentials( username: Optional[str] = None, password: Optional[str] = None, requires_leader: Optional[bool] = None, ) -> grpc.AuthMetadataPlugin: return grpc.metadata_call_credentials( EventStoreDBMetadataPlugin(username, password, requires_leader), EventStoreDBMetadataPlugin.__name__, ) ``` #### File: eventstore_grpc/persistent/create.py ```python from typing import Union from eventstore_grpc.proto import persistent_pb2, persistent_pb2_grpc, shared_pb2 from eventstore_grpc import constants def create_persistent_subscription( stub: persistent_pb2_grpc.PersistentSubscriptionsStub, stream: str, group_name: str, resolve_link_to_s: bool = False, from_revision: Union[int, str] = constants.START, extra_statistics: bool = False, message_timeout_ms: int = 30000, checkpoint_after_ms: int = 2000, max_retry_count: int = 10, min_checkpoint_count: int = 10, max_checkpoint_count: int = 1000, max_subscriber_count: Union[str, int] = 0, live_buffer_size: int = 20, history_buffer_size: int = 500, strategy: str = "ROUND_ROBIN", **kwargs ) -> persistent_pb2.CreateResp: """Creates a persistent subscription.""" request = persistent_pb2.CreateReq() options = persistent_pb2.CreateReq.Options() identifier = shared_pb2.StreamIdentifier() request_settings = persistent_pb2.CreateReq.Settings() request_settings.resolve_links = resolve_link_to_s if isinstance(from_revision, int): request_settings.revision = from_revision elif from_revision == constants.START: request_settings.revision = 0 request_settings.extra_statistics = extra_statistics request_settings.message_timeout_ms = message_timeout_ms request_settings.checkpoint_after_ms = checkpoint_after_ms request_settings.max_retry_count = max_retry_count request_settings.min_checkpoint_count = min_checkpoint_count request_settings.max_checkpoint_count = max_checkpoint_count if isinstance(max_subscriber_count, int): request_settings.max_subscriber_count = max_subscriber_count elif max_checkpoint_count == "UNLIMITED": request_settings.max_subscriber_count = 0 request_settings.live_buffer_size = live_buffer_size request_settings.history_buffer_size = history_buffer_size if strategy == "DISPATCH_TO_SINGLE": request_settings.named_consumer_strategy = ( persistent_pb2.CreateReq.DispatchToSingle ) elif strategy == "PINNED": request_settings.named_consumer_strategy = persistent_pb2.CreateReq.Pinned elif strategy == "ROUND_ROBIN": request_settings.named_consumer_strategy = persistent_pb2.CreateReq.RoundRobin identifier.streamName = stream.encode() options.group_name = group_name options.stream_identifier.CopyFrom(identifier) options.settings.CopyFrom(request_settings) request.options.CopyFrom(options) response = stub.Create(request, **kwargs) return response ``` #### File: eventstore_grpc/persistent/delete.py ```python from eventstore_grpc.proto import persistent_pb2, persistent_pb2_grpc, shared_pb2 def delete_persistent_subscription( stub: persistent_pb2_grpc.PersistentSubscriptionsStub, stream: str, group: str ) -> persistent_pb2.DeleteResp: """Deletes a persistent subscription.""" request = persistent_pb2.DeleteReq() options = persistent_pb2.DeleteReq.Options() identifier = shared_pb2.StreamIdentifier() identifier.streamName = stream.encode() options.stream_identifier.CopyFrom(identifier) options.group_name = group request.options.CopyFrom(options) response = stub.Delete(request) return response ``` #### File: eventstore_grpc/projections/create_transient.py ```python from eventstore_grpc.proto import projections_pb2, projections_pb2_grpc, shared_pb2 def create_transient_projection( stub: projections_pb2_grpc.ProjectionsStub, name: str, query: str, **kwargs, ) -> projections_pb2.CreateResp: """Creates a one time projection.""" request = projections_pb2.CreateReq() options = projections_pb2.CreateReq.Options() transient = projections_pb2.CreateReq.Options.Transient() transient.name = name options.transient.CopyFrom(transient) options.query = query request.options.CopyFrom(options) response = stub.Create(request, **kwargs) return response ``` #### File: eventstore_grpc/projections/disable.py ```python from eventstore_grpc.proto import projections_pb2, projections_pb2_grpc def disable_projection( stub: projections_pb2_grpc.ProjectionsStub, name: str, write_checkpoint: bool = True, **kwargs ) -> projections_pb2.DisableResp: """Disables a projection.""" request = projections_pb2.DisableReq() options = projections_pb2.DisableReq.Options() options.name = name options.write_checkpoint = write_checkpoint request.options.CopyFrom(options) response = stub.Disable(request, **kwargs) return response ``` #### File: eventstore_grpc/projections/reset.py ```python from eventstore_grpc.proto import projections_pb2, projections_pb2_grpc def reset_projection( stub: projections_pb2_grpc.ProjectionsStub, name: str, write_checkpoint: bool = True, **kwargs ) -> projections_pb2.ResetResp: """Resets a projection.""" request = projections_pb2.ResetReq() options = projections_pb2.ResetReq.Options() options.name = name options.write_checkpoint = write_checkpoint request.options.CopyFrom(options) response = stub.Reset(request, **kwargs) return response ``` #### File: eventstore_grpc/projections/update.py ```python from typing import Optional from eventstore_grpc.proto import projections_pb2, projections_pb2_grpc, shared_pb2 def update_projection( stub: projections_pb2_grpc.ProjectionsStub, name: str, query: str, track_emitted_streams: Optional[bool] = None, **kwargs, ) -> projections_pb2.UpdateResp: """Updates a projection.""" request = projections_pb2.UpdateReq() options = projections_pb2.UpdateReq.Options() options.name = name options.query = query if track_emitted_streams is None: options.no_emit_options.CopyFrom(shared_pb2.Empty()) else: options.emit_enabled = track_emitted_streams request.options.CopyFrom(options) response = stub.Update(request, **kwargs) return response ``` #### File: jmshnds/eventstore_grpc/run_threading_experiment.py ```python import logging import time import random import sys import threading from eventstore_grpc.subscription import Subscription logging.basicConfig(level=logging.DEBUG) SLOW_DOWN = False STOP_FIRST_THREAD = False if "--stop-first-thread" in sys.argv: STOP_FIRST_THREAD = True if "--slow-down" in sys.argv: SLOW_DOWN = True def some_stream(): counter = 0 while True: if counter == 10: break counter += 1 yield counter if SLOW_DOWN: time.sleep(random.randint(2,10)) class Counter: def __init__(self): self.count = 0 def increment(self): self.count += 1 def update(self, value: int): self.count = value counter = Counter() def some_handler(element, current_thread: threading.Thread = None, *args, **kwargs): """Handles the elment received from the stream.""" current_value = counter.count if SLOW_DOWN: time.sleep(random.randint(1,5)) counter.update(current_value + 1) print(f"\033[92mHandling iteration number {element:^3} \033[38;5;226m[{name:^20}]\033[92m-[\033[38;5;117m{counter.count:^4}\033[92m] [{id(counter)}]\033[0m") number_of_streams = 10 stream_names = [f"thread_stream_{i}" for i in range(number_of_streams)] subscriptions = {} for stream_name in stream_names: subscription = Subscription(some_stream, some_handler, name=stream_name) if stream_name in subscriptions: registered_subscription = subscriptions[stream_name] registered_subscription.subscribed = False subscriptions[stream_name] = subscription subscriptions[stream_name].start() if STOP_FIRST_THREAD: first_thread = "thread_stream_0" if SLOW_DOWN: time.sleep(random.randint(2,5)) subscriptions[first_thread].subscribed = False ``` #### File: eventstore_grpc/tests/conftest.py ```python import pathlib import pytest import time import grpc from eventstore_grpc import gossip, as_credentials, EventStoreDBClient from eventstore_grpc.proto import gossip_pb2_grpc CERTS = pathlib.Path(__file__).parent / "certs" pytest_plugins = ("docker_compose",) def pytest_configure(): CERTS.mkdir(parents=True, exist_ok=True) def pytest_unconfigure(): for elm in CERTS.iterdir(): if elm.is_dir(): for file in elm.iterdir(): file.unlink() elm.rmdir() else: elm.unlink() CERTS.rmdir() @pytest.fixture(scope="session", autouse=True) def wait_for_ready(session_scoped_container_getter): target = "localhost:2112" # Cluster nodes are at ports 2111, 2112. with open(CERTS / "ca" / "ca.crt", "rb") as f: root_certificates = f.read() credentials = grpc.ssl_channel_credentials(root_certificates=root_certificates) with grpc.secure_channel(target, credentials=credentials) as channel: stub = gossip_pb2_grpc.GossipStub(channel) count = 0 while True: count += 1 print("\033[38;5;220mTrying to reach cluster...\033[0m", end="\r") if count > 10: break try: result = gossip.read(stub) except: time.sleep(3) continue if all(member.is_alive for member in result.members): break time.sleep(10) print("\033[38;5;42mEventStore DB Cluster is up and running! ✨\033[0m") @pytest.fixture def secure_cluster_connection_string(): rc = CERTS / "ca" / "ca.crt" print(f"rc => {rc}") return f"esdb://localhost:2111,localhost:2112?tls&rootCertificate={rc}" @pytest.fixture def insecure_single_connection_string(): return "esdb://localhost:2113" @pytest.fixture(params=["cluster"]) def connection_string( request, secure_cluster_connection_string, insecure_single_connection_string ): if request.param == "single": return insecure_single_connection_string elif request.param == "cluster": return secure_cluster_connection_string else: return None @pytest.fixture def credentials(): return as_credentials(username="admin", password="<PASSWORD>") @pytest.fixture def secure_client(secure_cluster_connection_string): return EventStoreDBClient(secure_cluster_connection_string) @pytest.fixture def insecure_client(insecure_single_connection_string): return EventStoreDBClient(insecure_single_connection_string) @pytest.fixture def client(connection_string): return EventStoreDBClient(connection_string) ```
{ "source": "jmshnds/PySnake", "score": 3 }
#### File: jmshnds/PySnake/food.py ```python from gameObject import GameObject class Food(GameObject): def __init__(self, x, y): super().__init__(x, y) # Represents if the food can be eaten or not self.isPoison = False def draw(self, draw, screen, color, shape): draw.rect(screen, color, (shape[0]*self.x, shape[1]*self.y, shape[2], shape[3])) ```
{ "source": "jmsierra/ansible-oracle-collection", "score": 3 }
#### File: plugins/modules/role.py ```python DOCUMENTATION = ''' --- module: jmsierra.oracle.role short_description: Manage users/roles in an Oracle database description: - Manage grants/privileges in an Oracle database - Handles role/sys privileges at the moment. - It is possible to add object privileges as well, but they are not considered when removing privs at the moment. version_added: "0.2.0" options: hostname: description: - The Oracle database host required: false default: localhost port: description: - The listener port number on the host required: false default: 1521 service_name: description: - The database service name to connect to required: true user: description: - The Oracle user name to connect to the database required: true password: description: - The Oracle user password for '<PASSWORD>' required: true mode: description: - The mode with which to connect to the database required: true default: normal choices: ['normal','sysdba'] role: description: - The role that should get grants added/removed required: false default: null state: description: - The intended state of the priv (present=added to the user, absent=removed from the user). default: present choices: ['present','absent'] notes: - cx_Oracle needs to be installed requirements: [ "cx_Oracle" ] author: - <NAME>, <EMAIL>, @oravirt - https://github.com/jmsierra ''' EXAMPLES = ''' ''' try: import cx_Oracle except ImportError: cx_oracle_exists = False else: cx_oracle_exists = True def clean_string(item): item = item.replace("'","").replace(", ",",").lstrip(" ").rstrip(",").replace("[","").replace("]","") return item def clean_list(item): item = [p.replace("'","").replace(", ",",").lstrip(" ").rstrip(",").replace("[","").replace("]","") for p in item] return item # Check if the user/role exists def check_role_exists(module, msg, cursor, role, auth): if not(role): module.fail_json(msg='Error: Missing role name', changed=False) return False role = clean_string(role) #sql = 'select count(*) from dba_roles where role = upper(\'%s\')' % role sql = 'select lower(role), lower(authentication_type) from dba_roles where role = upper(\'%s\')' % role try: cursor.execute(sql) result = cursor.fetchone() except cx_Oracle.DatabaseError as exc: error, = exc.args msg[0] = error.message+ 'sql: ' + sql return False if result is not None: msg[0] = 'The role (%s) already exists' % role return True # Create the role def create_role(module, msg, cursor, role, auth, auth_conf): if not(role) or not (auth): module.fail_json(msg='Error: Missing role name', changed=False) return False # This is the default role creation sql = 'create role %s ' % role if auth == 'password': if not auth_conf: module.fail_json(msg='Missing password', changed=False) return False else: sql += 'identified by %s' % auth_conf if auth == 'application': if not (auth_conf): module.fail_json(msg='Missing authentication package (schema.name)', changed=False) return False else: sql += 'identified using %s' % auth_conf if auth == 'external': sql += 'identified externally ' if auth == 'global': sql += 'identified globally' try: cursor.execute(sql) except cx_Oracle.DatabaseError as exc: error, = exc.args msg[0] = 'Blergh, something went wrong while creating the role - %s sql: %s' % (error.message, sql) return False msg[0] = 'The role (%s) has been created successfully, authentication: %s' % (role, auth) return True def modify_role(module, msg, cursor, role, auth, auth_conf): if not(role) or not (auth): module.fail_json(msg='Error: Missing role name', changed=False) return False sql = 'alter role %s ' % (role) currauth = get_role_specs(module, msg, cursor, role) if currauth.lower() == auth.lower(): module.exit_json(msg='The role (%s) already exists' % role, changed=False) else: if auth == 'none': sql += ' not identified ' if auth == 'password': if not auth_conf: module.fail_json(msg='Missing password for authentication_type %s' % (auth), changed=False) return False else: sql += ' identified by %s' % auth_conf if auth == 'application': if not (auth_conf): module.fail_json(msg='Missing authentication package (schema.name)', changed=False) return False else: sql += 'identified using %s' % auth_conf if auth == 'external': sql += 'identified externally ' if auth == 'global': sql += 'identified globally' try: cursor.execute(sql) except cx_Oracle.DatabaseError as exc: error, = exc.args msg[0] = 'Blergh, something went wrong while altering the role - %s sql: %s' % (error.message, sql) return False msg[0] = 'The role (%s) has been changed successfully, authentication: %s, previous: %s' % (role, auth, currauth) return True def get_role_specs(module, msg, cursor, role): sql = 'select lower(authentication_type) from dba_roles where role = upper(\'%s\')' % role try: cursor.execute(sql) result = (cursor.fetchall()[0][0]) except cx_Oracle.DatabaseError as exc: error, = exc.args msg[0] = 'Blergh, something went wrong while getting the role auth scheme - %s sql: %s' % (error.message, sql) module.fail_json(msg=msg[0], changed=False) return False #module.exit_json(msg='Result: %s, sql: %s' % (result, sql), changed=False) return result # Create the role def drop_role(module, msg, cursor, role): if not(role): module.fail_json(msg='Error: Missing role name', changed=False) return False sql = 'drop role %s' % role try: cursor.execute(sql) except cx_Oracle.DatabaseError as exc: error, = exc.args msg[0] = 'Blergh, something went wrong while dropping the role - %s sql: %s' % (error.message, sql) return False msg[0] = 'The role (%s) has been successfully dropped' % role return True def main(): msg = [''] module = AnsibleModule( argument_spec = dict( hostname = dict(default='localhost'), port = dict(default=1521), service_name = dict(required=True), user = dict(required=False), password = dict(required=False, no_log=True), mode = dict(default='normal', choices=["normal","sysdba"]), role = dict(default=None), state = dict(default="present", choices=["present", "absent"]), auth = dict(default='none', choices=["none", "password", "external", "global", "application"]), auth_conf = dict(default=None) )) hostname = module.params["hostname"] port = module.params["port"] service_name = module.params["service_name"] user = module.params["user"] password = module.params["password"] mode = module.params["mode"] role = module.params["role"] state = module.params["state"] auth = module.params["auth"] auth_conf = module.params["auth_conf"] if not cx_oracle_exists: module.fail_json(msg="The cx_Oracle module is required. 'pip install cx_Oracle' should do the trick. If cx_Oracle is installed, make sure ORACLE_HOME & LD_LIBRARY_PATH is set") wallet_connect = '/@%s' % service_name try: if (not user and not password ): # If neither user or password is supplied, the use of an oracle wallet is assumed if mode == 'sysdba': connect = wallet_connect conn = cx_Oracle.connect(wallet_connect, mode=cx_Oracle.SYSDBA) else: connect = wallet_connect conn = cx_Oracle.connect(wallet_connect) elif (user and password ): if mode == 'sysdba': dsn = cx_Oracle.makedsn(host=hostname, port=port, service_name=service_name) connect = dsn conn = cx_Oracle.connect(user, password, dsn, mode=cx_Oracle.SYSDBA) else: dsn = cx_Oracle.makedsn(host=hostname, port=port, service_name=service_name) connect = dsn conn = cx_Oracle.connect(user, password, dsn) elif (not(user) or not(password)): module.fail_json(msg='Missing username or password for cx_Oracle') except cx_Oracle.DatabaseError as exc: error, = exc.args msg[0] = 'Could not connect to database - %s, connect descriptor: %s' % (error.message, connect) module.fail_json(msg=msg[0], changed=False) cursor = conn.cursor() if state == 'present': if not check_role_exists(module, msg, cursor, role, auth): if create_role(module, msg, cursor, role, auth, auth_conf): module.exit_json(msg=msg[0], changed=True) else: module.fail_json(msg=msg[0], changed=False) elif modify_role(module, msg, cursor, role, auth, auth_conf): module.exit_json(msg=msg[0], changed=True) else: module.fail_json(msg=msg[0], changed=False) elif state == 'absent': if check_role_exists(module, msg, cursor, role, auth): if drop_role(module, msg, cursor, role): module.exit_json(msg=msg[0], changed=True) else: module.exit_json(msg='The role (%s) doesn\'t exist' % role, changed=False) module.exit_json(msg=msg[0], changed=False) from ansible.module_utils.basic import * if __name__ == '__main__': main() ``` #### File: plugins/modules/user.py ```python DOCUMENTATION = ''' --- module: jmsierra.oracle.user short_description: Manage users/schemas in an Oracle database description: - Manage users/schemas in an Oracle database - Can be run locally on the controlmachine or on a remote host version_added: "0.2.0" options: hostname: description: - The Oracle database host required: false default: localhost port: description: - The listener port number on the host required: false default: 1521 service_name: description: - The database service name to connect to required: true user: description: - The Oracle user name to connect to the database required: false password: description: - The Oracle user password for '<PASSWORD>' required: false mode: description: - The mode with which to connect to the database required: false default: normal choices: ['normal','sysdba'] schema: description: - The schema that you want to manage required: false default: None schema_password: description: - The password for the new schema. i.e '..identified by password' required: false default: null schema_password_hash: description: - The password hash for the new schema. i.e '..identified by values 'XXXXXXX' required: false default: None default_tablespace: description: - The default tablespace for the new schema. The tablespace must exist required: false default: None default_temp_tablespace: description: - The default tablespace for the new schema. The tablespace must exist required: false default: None update_password: description: - always will update passwords if they differ. on_create will only set the password for newly created users. required: false default: always choices: ['always','on_create'] authentication_type: description: - The type of authentication for the user. required: false default: password choices: ['password','external','global'] profile: description: - The profile for the user required: false default: None state: description: - Whether the user should exist. Absent removes the user, locked/unlocked locks or unlocks the user required: False default: present choices: ['present','absent','locked','unlocked'] notes: - cx_Oracle needs to be installed requirements: [ "cx_Oracle" ] author: - <NAME>, <EMAIL>, @oravirt - https://github.com/jmsierra ''' EXAMPLES = ''' # Create a new schema on a remote db by running the module on the controlmachine (i.e: delegate_to: localhost) oracle_user: hostname=remote-db-server service_name=orcl user=system password=manager schema=myschema schema_password=<PASSWORD> default_tablespace=test state=present # Create a new schema on a remote db oracle_user: hostname=localhost service_name=orcl user=system password=<PASSWORD> schema=myschema schema_password=<PASSWORD> default_tablespace=test state=present # Drop a schema on a remote db oracle_user: hostname=localhost service_name=orcl user=system password=<PASSWORD> schema=myschema state=absent ''' try: import cx_Oracle except ImportError: cx_oracle_exists = False else: cx_oracle_exists = True def clean_string(item): item = item.replace("'","").replace(", ",",").lstrip(" ").rstrip(",").replace("[","").replace("]","") return item def clean_list(item): item = [p.replace("'","").replace(", ",",").lstrip(" ").rstrip(",").replace("[","").replace("]","") for p in item] return item # Check if the user/schema exists def check_user_exists(msg, cursor, schema): sql = 'select count(*) from dba_users where username = upper(\'%s\')' % schema try: cursor.execute(sql) result = cursor.fetchone() except cx_Oracle.DatabaseError as exc: error, = exc.args msg = error.message+ 'sql: ' + sql module.fail_json(msg=msg) if result is not None: msg = 'The schema (%s) already exists' % schema return True # Create the user/schema def create_user(module, cursor, schema, schema_password, schema_password_hash, default_tablespace, default_temp_tablespace, profile, authentication_type, state, container, container_data): total_sql = [] if not (schema): msg = 'Error: Missing schema name' return False if not (schema_password) and authentication_type == 'password': if not (schema_password_hash): msg = 'Error: Missing schema password or password hash' module.fail_json(msg=msg, Changed=False) if authentication_type == 'password': if (schema_password_hash): sql = 'create user %s identified by values \"%s\" ' % (schema, schema_password_hash) else: sql = 'create user %s identified by \"%s\" '% (schema, schema_password) elif authentication_type == 'global': sql = 'create user %s identified globally ' % (schema) elif authentication_type == 'external': sql = 'create user %s identified externally ' % (schema) if (default_tablespace): sql += 'default tablespace %s '% default_tablespace sql += 'quota unlimited on %s '% default_tablespace if (default_temp_tablespace): sql += 'temporary tablespace %s '% default_temp_tablespace if (profile): sql += ' profile %s' % profile if container: sql += ' container=%s' % (container) if state == 'locked': sql += ' account lock' if state == 'expired': sql += ' password expire' if state == 'expired & locked': sql += ' account lock password expire' total_sql.append(sql) if container_data: altersql = 'alter user %s set container_data=%s container=current' % (schema, container) total_sql.append(altersql) # module.exit_json(msg=total_sql, changed=True) for a in total_sql: execute_sql(module, cursor, a) return True # Get the current password hash for the user def get_user_password_hash(module, cursor, schema): sql = 'select password from sys.user$ where name = upper(\'%s\')' % schema try: cursor.execute(sql) pwhashresult = cursor.fetchone()[0] except cx_Oracle.DatabaseError as exc: error, = exc.args msg = error.message+ ': sql: ' + sql module.fail_json(msg=msg) return pwhashresult # Modify the user/schema def modify_user(module, cursor, schema, schema_password, schema_password_hash, default_tablespace, default_temp_tablespace, update_password, profile, authentication_type, state, container_data): sql_get_curr_def = 'select lower(account_status)' sql = 'alter user %s' % schema if update_password == 'always': if authentication_type == 'password': if schema_password_hash: sql += ' identified by values \'%s\'' % (schema_password_hash) elif schema_password: sql += ' identified by %s ' % (schema_password) elif authentication_type == 'external': sql += ' identified externally ' sql_get_curr_def += ' ,lower(authentication_type)' elif authentication_type == 'global': sql += ' identified globally ' sql_get_curr_def += ' ,lower(authentication_type)' if default_tablespace: sql += ' default tablespace %s' % default_tablespace sql += ' quota unlimited on %s '% default_tablespace sql_get_curr_def += ' ,lower(default_tablespace)' if default_temp_tablespace: sql += ' temporary tablespace %s ' % default_temp_tablespace sql_get_curr_def += ' ,lower(temporary_tablespace)' if profile: sql += ' profile %s ' % profile sql_get_curr_def += ' ,lower(profile)' want_account_status = '' if state == 'present' or state == 'unlocked': want_account_status = 'open' sql += ' account unlock' elif state == 'locked': want_account_status = state sql += ' account lock' elif state == 'expired': want_account_status = state sql += ' password expire' elif state == 'expired & locked': want_account_status = state sql += ' account lock password expire' wanted_list = [] wanted_list.append(want_account_status) if authentication_type != 'password' and update_password == '<PASSWORD>': wanted_list.append(authentication_type) if default_tablespace: wanted_list.append(default_tablespace) if default_temp_tablespace: wanted_list.append(default_temp_tablespace) if profile: wanted_list.append(profile) sql_get_curr_def += ' from dba_users where username = upper(\'%s\')' % schema if update_password == '<PASSWORD>': old_pw_hash = get_user_password_hash(module, cursor, schema) wanted_list = [x.lower() for x in wanted_list] curr_defaults = execute_sql_get(module, cursor, sql_get_curr_def) curr_defaults = [list(t) for t in curr_defaults] if (schema_password_hash): if update_password == '<PASSWORD>': # if (wanted_list in curr_defaults) and (old_pw_hash == schema_password_hash): # # Everything is kosher, exit changed=False # module.exit_json(msg='The schema (%s) is in the intented state' % (schema), changed=False) # else: # # Make the change and exit changed=True execute_sql(module, cursor, sql) module.exit_json(msg='Successfully altered the user (%s)' % (schema), changed=True) else: if (wanted_list in curr_defaults): module.exit_json(msg='The schema (%s) is in the intented state' % (schema), changed=False) else: # Make the change and exit changed=Truecontainer = module.params["container"] execute_sql(module, cursor, sql) module.exit_json(msg='Successfully altered the user (%s)' % (schema), changed=True) else: if (wanted_list in curr_defaults): if update_password == '<PASSWORD>': ## DISABLING THE PRE/POST-CHECK # change everything and compare hash pre/post. If same => exit change=False else exit change=True execute_sql(module, cursor, sql) # new_pw_hash = get_user_password_hash(module, cursor, schema) # if new_pw_hash == old_pw_hash: # module.exit_json(msg='The schema (%s) is in the intented state' % (schema), changed=False) # else: module.exit_json(msg='Successfully altered the user (%s)' % (schema), changed=True) else: module.exit_json(msg='The schema (%s) is in the intented state' % (schema), changed=False) else: # do the complete change -> exit with change=True # module.exit_json(msg=sql) execute_sql(module, cursor, sql) module.exit_json(msg='Successfully altered the user (%s, %s)' % (schema, sql), changed=True) return True # Run the actual modification def execute_sql(module, cursor, sql): try: cursor.execute(sql) except cx_Oracle.DatabaseError as exc: error, = exc.args msg = 'Blergh, something went wrong while executing sql - %s sql: %s' % (error.message, sql) module.fail_json(msg=msg, changed=False) return True def execute_sql_get(module, cursor, sql): try: cursor.execute(sql) result = cursor.fetchall() except cx_Oracle.DatabaseError as exc: error, = exc.args msg = error.message+ ': sql: ' + sql module.fail_json(msg=msg) return result # Drop the user def drop_user(module, cursor, schema): black_list = ['sys','system','dbsnmp'] if schema.lower() in black_list: msg = 'Trying to drop an internal user: %s. Not allowed' % schema return False sql = 'drop user %s cascade' % schema try: cursor.execute(sql) except cx_Oracle.DatabaseError as exc: error, = exc.args msg = 'Blergh, something went wrong while dropping the schema - %s sql: %s' % (error.message, sql) module.fail_json(msg=msg) return True def main(): msg = [''] module = AnsibleModule( argument_spec = dict( oracle_home = dict(required=False, aliases=['oh']), hostname = dict(default='localhost'), port = dict(default=1521), service_name = dict(required=True, aliases = ['tns']), user = dict(required=False), password = dict(required=False, no_log=True), mode = dict(default='normal', choices=["normal","sysdba"]), schema = dict(default=None,aliases=['name']), schema_password = dict(default=None, no_log=True), schema_password_hash = dict(default=None, no_log=True), state = dict(default="present", choices=["present", "absent", "locked", "unlocked", "expired", "expired & locked"]), default_tablespace = dict(default=None), default_temp_tablespace = dict(default=None), update_password = dict(default='always', choices=['on_create','always']), profile = dict(default=None), authentication_type = dict(default='password', choices=['password','external','global']), container = dict(default=None), container_data = dict(default=None) ), mutually_exclusive=[['schema_password', 'schema_password_hash']] ) oracle_home = module.params["oracle_home"] hostname = module.params["hostname"] port = module.params["port"] service_name = module.params["service_name"] user = module.params["user"] password = module.params["password"] mode = module.params["mode"] schema = module.params["schema"] schema_password = module.params["schema_password"] schema_password_hash = module.params["schema_password_hash"] state = module.params["state"] default_tablespace = module.params["default_tablespace"] default_temp_tablespace = module.params["default_temp_tablespace"] update_password = module.params["update_password"] profile = module.params["profile"] authentication_type = module.params["authentication_type"] container = module.params["container"] container_data = module.params["container_data"] if not cx_oracle_exists: module.fail_json(msg="The cx_Oracle module is required. 'pip install cx_Oracle' should do the trick. If cx_Oracle is installed, make sure ORACLE_HOME & LD_LIBRARY_PATH is set") if oracle_home is not None: os.environ['ORACLE_HOME'] = oracle_home.rstrip('/') #os.environ['LD_LIBRARY_PATH'] = ld_library_path elif 'ORACLE_HOME' in os.environ: oracle_home = os.environ['ORACLE_HOME'] wallet_connect = '/@%s' % service_name try: if (not user and not password ): # If neither user or password is supplied, the use of an oracle wallet is assumed if mode == 'sysdba': connect = wallet_connect conn = cx_Oracle.connect(wallet_connect, mode=cx_Oracle.SYSDBA) else: connect = wallet_connect conn = cx_Oracle.connect(wallet_connect) elif (user and password ): if mode == 'sysdba': dsn = cx_Oracle.makedsn(host=hostname, port=port, service_name=service_name) connect = dsn conn = cx_Oracle.connect(user, password, dsn, mode=cx_Oracle.SYSDBA) else: dsn = cx_Oracle.makedsn(host=hostname, port=port, service_name=service_name) connect = dsn conn = cx_Oracle.connect(user, password, dsn) elif (not(user) or not(password)): module.fail_json(msg='Missing username or password for cx_Oracle') except cx_Oracle.DatabaseError as exc: error, = exc.args msg = 'Could not connect to database - %s, connect descriptor: %s' % (error.message, connect) module.fail_json(msg=msg, changed=False) cursor = conn.cursor() if state not in ('absent'): if not check_user_exists(msg, cursor, schema): if create_user(module, cursor, schema, schema_password, schema_password_hash, default_tablespace, default_temp_tablespace, profile, authentication_type, state, container, container_data): msg = 'The schema %s has been created successfully' % (schema) module.exit_json(msg=msg, changed=True) else: modify_user(module, cursor, schema, schema_password, schema_password_hash, default_tablespace, default_temp_tablespace, update_password, profile, authentication_type, state, container_data) # elif state in ('unlocked','locked', ''): # if not check_user_exists(msg, cursor, schema): # # if create_user(module, cursor, schema, schema_password, schema_password_hash, default_tablespace, default_temp_tablespace, profile, authentication_type, state, container): # msg = 'The schema %s doesn\'t exist' % schema # module.fail_json(msg=msg, changed=False) # else: # modify_user(module, cursor, schema, schema_password, schema_password_hash, default_tablespace, default_temp_tablespace, update_password, profile, authentication_type, state) elif state == 'absent': if check_user_exists(msg, cursor, schema): if drop_user(module, cursor, schema): msg = 'The schema (%s) has been dropped successfully' % schema module.exit_json(msg=msg, changed=True) else: module.exit_json(msg='The schema (%s) doesn\'t exist' % schema, changed=False) module.exit_json(msg='Undhandled exit', changed=False) from ansible.module_utils.basic import * if __name__ == '__main__': main() ```
{ "source": "jmsimons/email_scheduler", "score": 3 }
#### File: email_scheduler/email_scheduler/scheduler_app.py ```python import time, schedule from smtplib import SMTP_SSL from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText class EmailScheduler: def __init__(self, config): self.config = config pass def run(self): try: while True: time.sleep(5) schedule.run_pending() except KeyboardInterrupt: print("EmailScheduler is shutting down, goodbye!") def add_email_event(self, filename): with open(f"messages/{filename}") as f: line = f.readline().strip() # print(line) recipient = line.split("::")[1] subject = f.readline().split("::")[1] f.readline() # Burn line containing message:: message = f.read() print(f"Scheduling Message:\nTo: {recipient}, Subject: {subject}\n{message}" ) schedule.every().monday.at("23:16").do(self.send_email, recipient, subject, message) def send_email(self, recipients, subject, message): with SMTP_SSL("smtp.gmail.com", 465) as smtp: smtp.login(self.config["email"], self.config["password"]) for recipient in recipients: email_msg = MIMEMultipart() email_msg["From"] = self.config["email"] email_msg["To"] = recipient email_msg["Subject"] = subject email_body = MIMEText(message) email_msg.attach(email_body) email_msg = email_msg.as_string() try: smtp.sendmail(self.config["email"], recipient, email_msg) print(f"{time.time()} - Sent message to {recipient}") except: print(f"{time.time()} - Error sending message to {recipient}") ```
{ "source": "jmsimons/flask_template", "score": 2 }
#### File: jmsimons/flask_template/run.py ```python import os from webapp import app def setup_webapp_db(): # TODO: Move this function into setup from webapp import db, bcrypt, User # from webapp.models import User, Project print('Building webapp database...') hashed_password = bcrypt.generate_password_hash("<PASSWORD>").decode('utf-8') db.create_all() db.session.add(User(username = "admin", email = "<EMAIL>", password = <PASSWORD>)) db.session.commit() db.session.close() if __name__ == '__main__': if os.path.exists('webapp/assets/webapp.db'): # TODO: remove after moving db_setup into setup routine print("No database detected") # setup_webapp_db() print('Webapp running with PID:', os.getpid()) app.run(debug = True, host = '0.0.0.0', port = 5000) # TODO: while True: RunProcessManager and other backend-tasks ``` #### File: flask_template/webapp/prepare_functions.py ```python from webapp import login_manager, mail, db_manager def compile_expense_miles(): pass def prep_expense_summary(user_id, year): expense_miles = db_manager.get_user_expense_miles(user_id) cash_expenses = 0 user_vehicles = db_manager.get_user_vehicles(user_id = user_id) for vehicle in user_vehicles: vehicle_expenses = db_manager.get_vehicle_expenses(vehicle["id"]) if vehicle_expenses: cash_expenses += sum([i["amount"] for i in vehicle_expenses]) return {"total_cash": cash_expenses, "total_miles": expense_miles} ``` #### File: flask_template/webapp/user_functions.py ```python from flask import url_for from flask_mail import Message from webapp import login_manager, mail, db_manager from webapp.models import User # User-management functions @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) def send_reset_email(user): token = user.get_reset_token() message = Message('Password Reset Request', sender = '<EMAIL>', recipients = [user.email]) body = 'To reset your password, visit the following link:\n{}\n\nIf you did not make this request then simply ignore this email and no change will be made.\n' message.body = body.format(url_for('reset_token', token = token, _external = True)) mail.send(message) def send_admin_invite(name, email): token = db_manager.add_admin_invite() message = Message('Admin Invite Notice', sender = '<EMAIL>', recipients = [email]) body = "Hello {} You've been invited to become an admin! To sign up, visit the following link:\n{}\n\nIf you suspect that you have recieved this message in error, please ignore it.\n" message.body = body.format(name, url_for('register_user', token = token, _external = True)) mail.send(message) ```
{ "source": "jmsimons/LURKlandia", "score": 3 }
#### File: LURKlandia/MAINland/fd_test.py ```python import threading, select, pickle, os, struct class Q: def __init__(self): ### Q object that uses a threading Lock and bytes pipe file for put() and get() ### self.lock = threading.Lock() self.rq, self.wq = os.pipe() # Pipe returns two file descriptors, this class's fileno and read mothods reference self.fq, where the put method references self.wq # def put(self, item): ## writes 2-byte length for subsefquent pickle object written ## with self.lock: item = pickle.dumps(item) bytes_to_write = struct.pack('<h', len(item)) print(bytes_to_write) os.write(self.wq, bytes_to_write) os.write(self.wq, item) def get(self): ## Reads 2-bytes for subsequent pickle object to read ## with self.lock: bytes_to_read = struct.unpack('<h', os.read(self.rq, 2))[0] print(bytes_to_read) data = os.read(self.rq, bytes_to_read) print(data) item = pickle.loads(data) return item def fileno(self): fno = self.rq return fno q = Q() def select_loop(pollable_file): ### Watches for activity on pollable_file ### while True: print('Loop start...') readers, _, _ = select.select([pollable_file], [], []) for r in readers: print('Reading...') item = r.get()['text'] print(item) if item == None: break # Breaks out of while loop when {'item': None} # Loads three dictionaries to q # q.put({'text': 'Hell'}) q.put({'text': 'O'}) q.put({'text': 'World'}) # Starts thread # thread = threading.Thread(target = select_loop, args = (q, )) # Passes in q to select_loop as pollable_file # thread.start() # Loads 100 more sets of the same three dictionaries to q # for i in range(100): q.put({'text': 'Hell'}) q.put({'text': 'O'}) q.put({'text': 'World'}) # Loads dictionary which signals thread to terminate # q.put({'text': None}) thread.join() ``` #### File: LURKlandia/MAINland/game.py ```python from game_components import Character, Room, Loot # from models import Session, Room, Connection, Monster, Loot from player import Player from LURKp import LURKprot from random import randint import queue, threading, time, models class Game: def __init__(self): self.settings = { 'landlord': 'Mr. Rowanitz', 'start_stat_limit': 100, 'start_room': 1, 'returning_room': 5, 'stash_player_after': 600 } self.actions = { 2: self.change_room, 3: self.stage_fight, 4: self.stage_pvp_fight, 5: self.loot, 6: self.start_player, 12: self.stash_player } self.rooms = {} self.players = {} self.queue = queue.Queue() # Queue of dictionaries to process in game_loop # self.remove = queue.Queue() # Queue of Player objects to stash on socket error # self.load_map() self.lurk = LURKprot() self.thread = threading.Thread(target = self.game_loop) self.thread.start() def load_map(self): ### Loads Rooms, Connections, Monsters, and Lootables from database ### session = models.Session() rooms = session.query(models.Room).all() connections = session.query(models.Connection).all() monsters = session.query(models.Monster).all() lootables = session.query(models.Loot).all() for room in rooms: number, name, desc = room.id, room.name, room.description self.rooms[number] = Room(number, name, desc) for connection in connections: room1, room2 = connection.room1, connection.room1 self.rooms[room1].connections.append(room2) for monster in monsters: name, attack, defense, regen, health, gold, room, desc = monster.name, monster.attack, monster.defense, monster.regen, monster.health, monster.gold, monster.room, monster.description self.rooms[room].monsters[name] = Character(name, attack, True, True, True, True, True, defense, regen, health, gold, room, desc) for lootable in lootables: room, name, value, rewards, message = lootable.room, lootable.name, lootable.value, lootable.rewards, lootable.message self.rooms[room].lootables.append(Loot(room, name, value, rewards, message)) def game_loop(self): while True: game_queue_size = self.queue.qsize() if game_queue_size: print('Processing', game_queue_size, 'actions...') for _ in range(game_queue_size): action = self.queue.get() # Return a tuple of (player.name, message_dict) action_type = action[1]['type'] self.route[action_type](action) remove_queue_size = self.remove.qsize() if remove_queue_size: print('Processing', remove_queue_size, 'removals...') for _ in range(remove_queue_size): player, time_added = self.remove.get() if time.time() - time_added >= self.settings['stash_player_after']: self.stash_player((player, {})) def new_conn(self, conn): ### Passes conn to static method LURKprot.decode(), returns success or failure on player creation ### message_dict = LURKprot.decode(conn = conn) if message_dict and 'type' in message_dict and message_dict['type'] == 10: self.new_player(conn, message_dict) return True else: return False def new_player(self, conn, characer_dict): ### Checks availability of name or innactive Player object, creates/updates Player or responds with error message ### name = characer_dict['name'] if name in self.players: try: players[name].conn.send(bytes(1)) # attempt writing to the socket to see if it's alive except: print('Found existing player with broken conn, replacing conn...') self.players[name].conn = conn return error_message = self.lurk.get_err_message(2) self.lurk.encode(error_message, conn = conn) # elif player in database: # This will check long-term player storage else: stats_total = sum(characer_dict['attack'], characer_dict['defense'], characer_dict['regen']) stats_limit = self.settings['start_stat_limit'] if stats_total == stats_limit: self.players[name] = Player(self, conn, characer_dict = characer_dict) else: for stat in ('attack', 'defense', 'regen'): # recalculates each stat as a ratio and multiplies it by the game stat limit # characer_dict[stat] = characer_dict[stat] / stats_total * stats_limit stats_total = sum(characer_dict['attack'], characer_dict['defense'], characer_dict['regen']) stats_delta = stats_limit - stats_total print(stats_delta) for i in [i for i in range(stats_delta)][::-1]: for stat in ('attack', 'defense', 'regen'): if not i: break characer_dict[stat] += 1 * (i / abs(i)) self.players[name] = Player(self, conn, characer_dict = characer_dict) def start_player(self, action): ### Updates player.character to indicate 'started' and adds player to the appropriate room ### name, message_dict = action player = self.players[name] player.character.started = True player.character.room = self.settings['start_room'] self.rooms[self.settings['start_room']].append(name) def stash_player(self, action): ### Removes Player object from players and current room, adds or updates player record in long-term storage ### name, message_dict = action fair_well = self.lurk.get_chat_message(self.settings['landlord'], name, 'Sad to see you going so sooooon. Fair well!') self.players[name].send_queue.put(fair_well) self.players[name].character.started = False self.players[name].character.ready = False self.players[name].active = False def change_room(self, action): ### Checks that new room is a connection of current room, removes player from current room and adds to new room ### name, message_dict = action player = self.players[name] new_room = message_dict['room'] current_room = player.character['room'] if new_room in self.rooms[current_room].connections: self.rooms[current_room].remove(player) self.update_room(current_room) self.rooms[new_room].append(player) self.update_room(new_room) player.character.room = new_room def update_room(self, room): ### Sends updated characters, connections, and other info to all players in room ### current_room = self.rooms[room].get_dict() player_characters = [self.players[i].character.get_dict() for i in self.rooms[room].players] monster_characters = [i.get_dict() for i in self.rooms[room].monsters.values()] connecting_rooms = [self.rooms[i].get_dict() for i in self.rooms[room].connections.values()] for player in self.rooms[room].players: self.players[player].send_queue.put(current_room) for update_list in (player_characters, monster_characters, connecting_rooms): self.players[player].send_queue.put(update_list) def process_fight(self, room, players_list, monsters_list = None): ### Calculates attack and damage taken for each character's turn, finally calls self.update_room ### if monsters_list: # whole room fight for character in players_list: # Each player attacks first attack = character['attack'] for character in monsters_list: if character['health'] > 0: calc_attack = randint(int(attack * 0.75), int(attack * 1.25)) # consider moving this above the for loop if functionality is slow # damage_taken = calc_attack - character['defense'] self.rooms[room].monsters[character['name']].health -= damage_taken for character in monsters_list: # Then monsters attack attack = character['attack'] for character in players_list: calc_attack = randint(int(attack * 0.5), attack) # consider moving this above the for loop if functionality is slow # damage_taken = calc_attack - character['defense'] self.players[character['name']].character.health -= damage_taken else: # pvp fight player1, player2 = players_list calc_attack = randint(int(player1['attack'] * 0.75), int(player1['attack'] * 1.25)) damage_taken = calc_attack - player2['defense'] self.players[player2['name']].character.health -= damage_taken calc_attack = randint(int(player2['attack'] * 0.75), int(player2['attack'] * 1.25)) damage_taken = calc_attack - player1['defense'] self.players[player1['name']].character.health -= damage_taken self.update_room(room) def stage_fight(self, action): ### Prepares character list for room, passes characters to calculate_attack ### name, message_dict = action room = self.players[name].character.room if self.rooms[room].monsters: players_list = self.rooms[room].players.copy() players_list.remove(name) players_list.insert(0, name) players_list = [self.players[i].character.get_fight_stats() for i in players_list] players_list = [i for i in players_list if i and i['health'] > 0] monsters_list = [i.get_fight_stats() for i in self.rooms[room].monster.values()] self.process_fight(room, players_list, monsters_list) else: message_dict = self.lurk.get_err_message(3) self.players[name].send_queue.put(message_dict) def stage_pvp_fight(self, action): ### Commences attack sequence, calculating attack and damage taken for each character's turn, and finally calls self.update_room ### name, message_dict = action target = message_dict['name'] room = message_dict['room'] if target in self.rooms[room].players: players_list = [name, target] players_list = [self.players[i].character.get_fight_stats() for i in players_list] self.process_fight(room, players_list) else: message_dict = self.lurk.get_err_message(6) # text = 'Target player not in room' self.players[name].send_queue.put(message_dict) def loot(self, action): name, message_dict = action target = message_dict['name'] if self.players[name].character.room == self.players[target].character.room: self.players[name].character.gold += self.players[target].character.gold else: message_dict = self.lurk.get_err_message(6) self.players[name].send_queue.put(message_dict) ``` #### File: LURKlandia/MAINland/LURKland.py ```python from game import Game import socket, select, logging host = socket.gethostname() port = 5050 def setup_logging(): FORMAT = '%(asctime)-15s %(clientip)s %(user)-8s %(message)s' logging.basicConfig(filename = f'LURK.log', level = logging.DEBUG) def main(server_conn): game = Game() conns = [server_conn] new_conns = list() while True: ### The main process should only handle initial connections, passing subsequent messages into game ### print(f'Listening for conns: {new_conns}') for i in new_conns: conns.append(i) readers, _, _ = select.select(conns, [], []) #.extend(new_conns) for reader in readers: if reader == server_conn: conn, addr = server_conn.accept() print("New Client; Address:", addr, "Conn:", conn) logging.log("New Client; Address:", addr, "Conn:", conn) new_conns.append(conn) else: if game.new_conn(reader): new_conns.remove(reader) if __name__ == '__main__': setup_logging() s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) while port <= 5054: try: s.bind((host, port)) break except socket.error as e: print('Error binding port:', str(e)) port += 1 s.listen(5) print(f'Listening on port: {port}') main(s) ``` #### File: LURKlandia/Multiprocessing/LURKland.py ```python from game import Game from client_manager import ClientManager import socket, select, logging, os from multiprocessing import Pipe, Process, Queue host = '0.0.0.0' port = 5050 def setup_logging(): FORMAT = '%(asctime)-15s %(clientip)s %(user)-8s %(message)s' logging.basicConfig(filename = 'LURK.log', level = logging.DEBUG) def spawn_game_process(game_queue, client_queue): p = Process(target = Game, args = (game_queue, client_queue), daemon = True) p.start() print('Conn Process PID:', os.getpid()) print('Game Process PID:', p.pid) def main(server_conn): game_queue = Queue() client_queue = Queue() spawn_game_process(game_queue, client_queue) conns = [] attempts = [] client_manager = ClientManager(game_queue, client_queue) conns.append(server_conn) while True: ### The main process should only handle initial connections, passing subsequent messages into game ### # print(f'Listening for conns: {conns}') readers, _, _ = select.select(conns, [], []) #.extend(new_conns) for reader in readers: if reader == server_conn: conn, addr = server_conn.accept() print("New Client; Address:", addr, "Conn:", conn) logging.log(logging.INFO, f"New Client Address: {addr}") conns.insert(0, conn) attempts.insert(0, 0) client_manager.greet_conn(conn) else: index = conns.index(reader) attempts[index] += 1 if client_manager.approve_conn(reader): conns.pop(index) attempts.pop(index) elif attempts[index] == 5: print('Closing conn after 5 attemps:', reader) conns.pop(index) attempts.pop(index) if __name__ == '__main__': setup_logging() s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) while port <= 5054: try: s.bind((host, port)) break except socket.error as e: print('Error binding port:', str(e)) port += 1 s.listen(10) print(f'Listening on: {host}:{port}') # TODO: add logic that kills the child process(es) main(s) ``` #### File: LURKlandia/Multiprocessing/player.py ```python import threading, multiprocessing, select, pickle, os, struct, time from LURKp import LURKprot from game_components import Character class Q: def __init__(self): ### Queue object that uses a threading Lock and bytes pipe file for put() and get() ### self.lock = multiprocessing.Lock() self.rq, self.wq = os.pipe() # Pipe returns two file descriptors, this class's fileno and read mothods reference self.fq, where the put method references self.wq # def put(self, item): ## writes 2-byte length for subsefquent pickle object written ## with self.lock: item = pickle.dumps(item) bytes_to_write = struct.pack('<H', len(item)) os.write(self.wq, bytes_to_write) os.write(self.wq, item) def get(self): ## Reads 2-byte length for subsequent pickle object read ## with self.lock: bytes_to_read = struct.unpack('<H', os.read(self.rq, 2))[0] data = os.read(self.rq, bytes_to_read) item = pickle.loads(data) return item def fileno(self): ## Returns the read file descriptor ## fno = self.rq return fno class Player: ### This class holds Player data and processes incoming and outgoing socket communication in its own thread ### def __init__(self, client_man_object, name, conn): # !!! Never update self.character from within this class's thread, only from game thread !!! # self.name = name self.send_queue = Q() self.client_manager = client_man_object self.new_thread(conn) def new_thread(self, conn): self.conn = conn self.lurk = LURKprot(conn = conn) self.thread = threading.Thread(target = self.conn_loop, name = f'{self.name}_thread') self.active = True self.thread.start() def conn_loop(self): ### Routes incoming message to other player or game queue, outgoing message to conn, or flags self.conn as broken ### print('Conn Loop Started:', threading.current_thread().name) while self.active: readers, _, errors = select.select([self.conn, self.send_queue], [], [self.conn]) # Writers should be a file which can be polled or watched for reader in readers: if reader == self.conn: message_dict = self.lurk.decode() # print(message_dict) if message_dict and message_dict['type'] in (1, 2, 3, 4, 5, 6, 12): # print('Incoming from', self.character.name, message_dict) self.client_manager.game_queue.put((self.name, message_dict)) else: self.active = False print(f'Problem data from {self.name}: {message_dict}') else: message_dict = reader.get() # print('Outgoing to', self.character.name, message_dict) self.lurk.encode(message_dict) for error in errors: print('Error in', self.name, error) self.active = False # self.game.remove.put((self.name, time.time())) print(self.name, 'conn_loop ended!') ```
{ "source": "jmsimons/time_keeper_gui", "score": 2 }
#### File: time_keeper_gui/timekeeper/ReportEdit.py ```python from tkinter import ttk, Tk, StringVar, END, N, S, E, W, NORMAL, DISABLED from tkinter.scrolledtext import ScrolledText import time, clipboard from timekeeper.grid_table import GridTable from timekeeper.Export import Export from timekeeper.Popups import PopConfirm, EntryBox class ReportEditApp(): ### 'Report hours' and 'edit jobs/shifts' application window gui elements, data, and methods ### def __init__(self, db, **kwargs): self.db = db self.root = Tk() self.root.title('Report and Edit') # self.root.geometry("600x400") self.root.resizable(False, False) self.container = ttk.Frame(self.root) self.frame = ttk.Frame(self.container) self.grid_configure() filter_label = ttk.Label(self.frame, text = "Filter:") self.view_selection = StringVar(self.root) self.job_selection = StringVar(self.root) self.start_selection = StringVar(self.root) self.end_selection = StringVar(self.root) self.export_selection = StringVar(self.root) self.build_menus() self.search_input = ttk.Entry(self.frame, width = 16)#, placeholder = 'Search Notes...' self.totals_label = ttk.Label(self.frame, text = 'Hours: \tShifts:') self.table_frame = ttk.Frame(self.frame) self.build_table(**kwargs) self.build_date_select() export_options = ('Text', 'PDF') self.export_menu = ttk.OptionMenu(self.frame, self.export_selection, 'Export', *export_options) self.view_shift_button = ttk.Button(self.frame, text = 'View/Edit Shift', command = self.view_item) filter_label.grid(column = 1, row = 1, sticky = W, pady = 5) self.view_menu.grid(column = 2, row = 1, sticky = E) self.job_menu.grid(column = 1, columnspan = 2, row = 2, sticky = (W, E)) self.search_input.grid(column = 5, row = 2, sticky = (W, E)) self.totals_label.grid(column = 1, columnspan = 5, row = 4, sticky = W, pady = 5) self.table_frame.grid(column = 1, columnspan = 5, row = 5, sticky = (N, S, E, W)) self.export_menu.grid(column = 1, columnspan = 2, row = 6, sticky = W) self.view_shift_button.grid(column = 5, row = 6, sticky = E, pady = 5) self.frame.grid(column = 0, row = 0, padx = 5, sticky = (N, S, E, W)) self.container.grid(column = 0, row = 0, sticky = (N, S, E, W)) self.view_menu.bind("<ButtonRelease-1>", self.build_table) self.job_menu.bind("<ButtonRelease-1>", self.filter_data) self.per_start_menu.bind("<ButtonRelease-1>", self.filter_data) self.per_end_menu.bind("<ButtonRelease-1>", self.filter_data) self.search_input.bind('<KeyRelease>', self.filter_data) self.search_input.bind("<Return>", self.filter_data) self.export_menu.bind("<ButtonRelease-1>", self.export) def grid_configure(self): # TODO: this isn't working, trying to figure out why. The goal is to set fixed column-widths so that the ui doesn't redraw when a widget changes size. self.root.columnconfigure(0, weight = 0) self.container.columnconfigure(0, weight = 0) self.frame.columnconfigure(0, weight = 0) self.frame.columnconfigure(1, weight = 1) self.frame.columnconfigure(2, weight = 2) self.frame.columnconfigure(3, weight = 2) self.frame.columnconfigure(4, weight = 2) self.frame.columnconfigure(5, weight = 2) def build_menus(self): self.job_choices = ['All Jobs'] + self.db.report_jobs() self.job_menu = ttk.OptionMenu(self.frame, self.job_selection, 'All Jobs', *self.job_choices) self.job_menu.config(width = 10) self.view_choices = ("Shifts", "Tasks", "Jobs") self.view_menu = ttk.OptionMenu(self.frame, self.view_selection, self.view_choices[0], *self.view_choices) self.job_menu.config(width = 5) def build_table(self, event = None, **kwargs): self.table_view = ttk.Treeview(self.table_frame, selectmode = 'browse') vbar = ttk.Scrollbar(self.table_frame, orient = 'vertical', command = self.table_view.yview) self.table_view.config(yscrollcommand = vbar.set) self.table_view.grid(column = 1, columnspan = 1, row = 1, sticky = (N, S, E, W)) vbar.grid(column = 2, row = 1, sticky = (N, S)) view_selection = self.view_selection.get() if view_selection == self.view_choices[0]: self.job_menu.config(state = NORMAL) self.shifts_table() elif view_selection == self.view_choices[1]: self.job_menu.config(state = NORMAL) self.tasks_table() elif view_selection == self.view_choices[2]: # self.job_menu set to 'All Jobs' self.job_menu.config(state = DISABLED) self.jobs_table() self.tid_lookup = {} self.get_rows(**kwargs) self.populate_table() self.table_view.bind("<Double-Button-1>", self.view_item) def shifts_table(self): self.table_view['columns'] = ('1', '2', '3', '4', '5') self.table_view['show'] = 'headings' self.table_view.column('1', width = 120, anchor = 'w') self.table_view.column('2', width = 80, anchor = 'w') self.table_view.column('3', width = 70, anchor = 'w') self.table_view.column('4', width = 40, anchor = 'w') self.table_view.column('5', width = 150, anchor = 'w') self.table_view.heading('1', text = 'Job') self.table_view.heading('2', text = 'Date') self.table_view.heading('3', text = 'Start') self.table_view.heading('4', text = 'Hours') self.table_view.heading('5', text = 'Notes') def tasks_table(self): self.table_view['columns'] = ('1', '2', '3', '4') self.table_view['show'] = 'headings' self.table_view.column('1', width = 120, anchor = 'w') self.table_view.column('2', width = 80, anchor = 'w') self.table_view.column('3', width = 100, anchor = 'w') self.table_view.column('4', width = 160, anchor = 'w') self.table_view.heading('1', text = 'Job') self.table_view.heading('2', text = 'Date') self.table_view.heading('3', text = 'Created') self.table_view.heading('4', text = 'Title') def jobs_table(self): self.table_view['columns'] = ('1', '2', '3', '4', '5') self.table_view['show'] = 'headings' self.table_view.column('1', width = 120, anchor = 'w') self.table_view.column('2', width = 90, anchor = 'w') self.table_view.column('3', width = 90, anchor = 'w') self.table_view.column('4', width = 80, anchor = 'center') self.table_view.column('5', width = 80, anchor = 'center') self.table_view.heading('1', text = 'Job') self.table_view.heading('2', text = 'Date') self.table_view.heading('3', text = 'Created') self.table_view.heading('4', text = 'Shifts') self.table_view.heading('5', text = 'Hours') def build_date_select(self): format = '%Y/%m/%d' # TODO: Replace 17 hour offset with time zone setting from config start = int(self.shifts[0]['start'] / 86400) * 86400 - (17 * 3600) end = int(time.time() / 86400 + 1) * 86400 - (17 * 3600) + (24 * 3600) + 1 self.seconds_range = [i for i in range(start, end, 86400)][::-1] self.date_range = [time.strftime(format, time.localtime(i)) for i in self.seconds_range] self.per_start_menu = ttk.OptionMenu(self.frame, self.start_selection, self.date_range[0], *self.date_range) self.per_end_menu = ttk.OptionMenu(self.frame, self.end_selection, self.date_range[0], *self.date_range) self.start_selection.set(self.date_range[-1]) self.end_selection.set(self.date_range[0]) self.per_start_menu.grid(column = 3, row = 2, sticky = (W, E)) self.per_end_menu.grid(column = 4, row = 2, sticky = (W, E)) def filter_data(self, event = None): job_name = self.job_selection.get() if job_name == self.job_choices[0]: job_name = None period_start = self.start_selection.get() period_start = self.seconds_range[self.date_range.index(period_start)] period_end = self.end_selection.get() period_end = self.seconds_range[self.date_range.index(period_end)] search_term = self.search_input.get() if search_term.strip() == '': search_term = None self.clear_table() self.get_rows(job_name = job_name, period_start = period_start, period_end = period_end, search_term = search_term) self.populate_table() def get_rows(self, **kwargs): view_selection = self.view_selection.get() if view_selection == self.view_choices[0]: self.get_shifts(**kwargs) elif view_selection == self.view_choices[1]: self.get_tasks(**kwargs) elif view_selection == self.view_choices[2]: self.get_jobs() if not "job_name" in kwargs or not kwargs["job_name"]: job_name = 'All Jobs' else: job_name = kwargs["job_name"] self.job_selection.set(job_name) self.total_shifts = len(self.shifts) self.total_hours = sum([i['hours'] for i in self.shifts]) self.total_hours = round(self.total_hours, 2) def get_shifts(self, **kwargs): self.shifts = self.db.report_shifts(**kwargs) self.table_items = [] for shift in self.shifts: if len(shift['notes']) < 20: notes = shift['notes'] else: notes = shift['notes'][:20].split('\n')[0] start = shift['str_start'].split() self.table_items.append((shift["id"], (shift['job'], start[0], start[1], shift['hours'], notes))) def get_tasks(self, **kwargs): tasks = self.db.report_tasks(**kwargs) self.table_items = [(i["id"], (i["job_name"], i["time_created"].split()[0], i["time_created"].split()[1], i["title"])) for i in tasks] def get_jobs(self): jobs = self.db.report_jobs(return_dict = True, return_details = True) self.table_items = [] for job in jobs: self.table_items.append((job["id"], (job["name"], job["created"].split()[0], job["created"].split()[1], job["total_shifts"], job["total_hours"]))) def populate_table(self): self.totals_label['text'] = f'Hours: {self.total_hours}\tShifts: {self.total_shifts}' for item in self.table_items[::-1]: tid = self.table_view.insert('', 'end', values = item[1]) self.tid_lookup[tid] = item[0] def clear_table(self): for tid in self.tid_lookup: self.table_view.delete(tid) self.tid_lookup = {} def export(self, event = None): doc_type = self.export_selection.get() self.export_selection.set('Export') job_selection = self.job_selection.get() period_start = self.start_selection.get() period_end = self.end_selection.get() search_term = self.search_input.get() if search_term in ('', ' '): search_term = None export_shifts = [i for i in self.shifts] for shift in export_shifts: shift["tasks"] = self.db.report_tasks(shift_id = shift["id"]) Export(doc_type, job_selection, period_start, period_end, search_term, self.total_hours, export_shifts) def view_item(self, event = None): try: tid = self.table_view.focus() except: return item_type = self.view_selection.get().lower().rstrip('s') item_id = self.tid_lookup[tid] if item_type == "shift": item = self.db.get_shift(item_id) elif item_type == "task": item = self.db.get_task(item_id) elif item_type == "job": # return item = self.db.get_job(item_id) item_view = ViewEditPane(self, item_type, item) item_view.root.mainloop() class ViewEditPane(): def __init__(self, ReportEdit, item_type, item_dict): self.report_edit = ReportEdit self.item_type = item_type self.item = item_dict self.root = Tk() title = f"{item_type.capitalize()} Record" self.root.title(title) self.root.resizable(False, False) # self.root.overrideredirect(True) self.edit_selection = StringVar(self.root) self.container = ttk.Frame(self.root) self.frame = ttk.Frame(self.container) self.edit_frame = ttk.Frame(self.frame) if self.item_type == "shift": self.load_shift() elif self.item_type == "task": self.load_task() elif self.item_type == "job": self.load_job() self.notes = ScrolledText(self.frame, width = 60, height = 15, relief = 'sunken') delete_button_text = f"Delete {item_type.capitalize()}" self.delete_button = ttk.Button(self.edit_frame, text = delete_button_text, command = self.delete_prompt) self.done_button = ttk.Button(self.frame, text = 'Done', command = self.root.destroy) self.edit_menu = ttk.OptionMenu(self.edit_frame, self.edit_selection, 'Edit', *self.edit_options) self.notes.grid(column = 1, columnspan = 2, row = 4, sticky = (N, S, E, W), pady = 5) self.edit_menu.grid(column = 1, row = 1, sticky = W) self.delete_button.grid(column = 2, row = 1, sticky = E) self.done_button.grid(column = 2, row = 5, sticky = E) self.edit_frame.grid(column = 1, row = 5, sticky = W) self.frame.grid(column = 0, row = 0, padx = 5, pady = 5) self.container.grid() self.notes.config(state = NORMAL) self.notes.delete('1.0', END) self.notes.insert(END, self.item['notes']) self.notes.config(state = DISABLED) self.root.bind("<Command-c>", self.copy_notes) self.edit_menu.bind("<ButtonRelease-1>", self.edit_item) def load_shift(self): ## Load Shift view elements ## self.job_label = ttk.Label(self.frame, text = f"Job:\t{self.item['job']}") self.start_label = ttk.Label(self.frame, text = f"Start:\t{self.item['str_start']}") self.end_label = ttk.Label(self.frame, text = f"End:\t{self.item['str_end']}") self.break_label = ttk.Label(self.frame, text = f"Break:\t{self.item['break']} (minutes)") self.hours_label = ttk.Label(self.frame, text = f"Hours:\t{self.item['hours']}") self.job_label.grid(column = 1, row = 1, sticky = W, ipadx = 2) self.start_label.grid(column = 1, row = 2, sticky = W, ipadx = 5, pady = 2) self.end_label.grid(column = 1, row = 3, sticky = W, ipadx = 5, ipady = 0) self.break_label.grid(column = 2, row = 2, sticky = W, ipadx = 5, ipady = 0) self.hours_label.grid(column = 2, row = 3, sticky = W, ipadx = 5, ipady = 0) self.edit_options = ('Job', 'Start', 'End', 'Break', 'Notes') def load_task(self): ## Load Task view elements ## completion_status = "Complete" if self.item["complete"] else "Incomplete" self.job_label = ttk.Label(self.frame, text = f"Job:\t{self.item['job_name']}") self.time_created_label = ttk.Label(self.frame, text = f"Created:\t{self.item['time_created']}") self.completion_status_label = ttk.Label(self.frame, text = f"Status:\t{completion_status}") self.job_label.grid(column = 1, row = 1, sticky = W, ipadx = 2) self.time_created_label.grid(column = 1, row = 2, sticky = W, ipadx = 2) self.completion_status_label.grid(column = 2, row = 2, sticky = W, ipadx = 2) self.edit_options = ("Title", "Notes") def load_job(self): ## Load Job view elements ## self.job_label = ttk.Label(self.frame, text = f"Name:\t{self.item['name']}") self.time_created_label = ttk.Label(self.frame, text = f"Created:\t{self.item['created']}") self.total_shifts_label = ttk.Label(self.frame, text = f"Shifts:\t{self.item['total_shifts']}") self.total_hours_label = ttk.Label(self.frame, text = f"Total Hours:\t{self.item['total_hours']}") self.export_button = ttk.Button(self.frame, text = 'Export Records', command = self.load_job) self.job_label.grid(column = 1, row = 1, sticky = W, ipadx = 2) self.time_created_label.grid(column = 1, row = 2, sticky = W, ipadx = 2) self.total_shifts_label.grid(column = 1, row = 3, sticky = W, ipadx = 2) self.total_hours_label.grid(column = 2, row = 3, sticky = W, ipadx = 2) self.export_button.grid(column = 2, row = 1, sticky = E, ipadx = 2) self.edit_options = ("Name", "Notes") def edit_item(self, event): key = self.edit_selection.get().lower() if key == 'edit': return self.edit_selection.set('Edit') if self.item_type == "shift": if key in ('start', 'end'): key = 'str_' + key elif self.item_type == "task": pass elif self.item_type == "job": pass entry = EntryBox(self.save_property, key, self.item[key]) entry.root.mainloop() def save_property(self, key, value): if self.item_type == "shift": self.item = self.report_edit.db.update_shift_field(self.item['id'], key, value) self.load_shift() elif self.item_type == "task": self.item = self.report_edit.db.update_task_field(self.item['id'], key, value) self.load_task() elif self.item_type == "job": self.item = self.report_edit.db.update_job_field(self.item['id'], key, value) self.load_job() self.report_edit.filter_data() def copy_notes(self, event = None): clipboard.copy(self.notes.get(1.0, END)) print('Notes Copied') def delete_prompt(self): popup = PopConfirm("Permanently delete shift?", self.delete_shift) popup.root.mainloop() def delete_shift(self): self.report_edit.db.remove_shift(self.item['id']) self.root.destroy() self.report_edit.filter_data() ```
{ "source": "jmsimons/VScope", "score": 3 }
#### File: VScope/main/load_project.py ```python def dict(project_path): ### Loads dictionary data from project/assets directory ### project_dict = {} with open('{}/assets/project_dict.txt'.format(project_path)) as f: for line in f: key, value = line.rstrip().split('::') if value == "False": value = False elif value == "True": value = True elif value == "None": value = None else: try: value = int(value) except: pass project_dict[key] = value return project_dict ``` #### File: VScope/main/pickle_utils.py ```python import pickle def dump(object, filepath): with open(filepath, 'wb') as wb: pickle.dump(object, wb) def load(filepath): with open(filepath, 'rb') as rb: return pickle.load(rb) project_dict = {'name':None, # Project Name 'orgn':None, # Project Organism 'path':None, # Path to main project directory (default: .../vscope/projects) 'temp':None, # (Optional) Path to temporary project dir, points to a faster storage medium 'repo':None, # Reads data repository (Local, fastq-dump, wget, upload) 'acc':None, # Accession/Samples list contains sample ID's for each sample in project 'ref':None, # Reference genome file (.fa, .fasta, .fas) 'ver':None, # Reference genome version # (ie 7.0.1) 'gff':None, # Reference genome exons file (.gff, .gff3) 'gtf':None, # Reference genome exons file (.gtf) 'grp':None, # Group size for final analysis 'sub':True, # Subtraction boolean (Perform Subtraction?) 'anno':True, # Post-subtraction SnpEff annotation 'proc':1, # Number of concurrent samples 'dlay':0, # Number of minutes to delay between sample launches 'thds':1, # Number of additional threads to use for assembly and other tasks } # dump(project_dict, '../project_dict.pkl') ``` #### File: VScope/main/sample.py ```python import os, time, subprocess from sys import exit class sample: ### Data and methods for managing workflow on a single sample ### def __init__(self, sample, project_dict, config): # Define Class Attributes # self.config = config self.proj_dict = project_dict self.name = sample self.threads = self.proj_dict['thds'] if self.threads == 'Auto': self.threads = self.config['CPU_CORES'] proj_path = project_dict['path'].rstrip('/') if self.proj_dict['temp']: self.aln_path = '{}/{}/aln'.format(self.proj_dict['temp'].rstrip('/'), self.name) # Static aln directory path # else: self.aln_path = '{}/{}/aln'.format(proj_path, self.name) # Static aln directory path # self.out_path = '{}/{}/out'.format(proj_path, self.name) # Static output directory path # self.reference = '{}/reference/{}'.format(proj_path, self.proj_dict['ref']) self.files = {'fastq':[], 'gz':[], 'sam':[], 'bam':[], 'cram':[], 'txt':[], 'bai':[], 'vcf':[]} # Set-up/Check Sample Environment # if not os.path.exists(self.aln_path): # Sets up sample aln directory # os.makedirs(self.aln_path) if not os.path.exists(self.out_path): # Sets up sample out directory # os.makedirs(self.out_path) os.chdir('{}/{}'.format(proj_path, self.name)) print('Working in...', os.getcwd()) self.refresh_complete() # Update internal completed files list # for key in self.files: # Scans for existing files by extension (ignores log files) # self.add_file(key) self.write('Sample initialized!') def write(self, string, output_file = '', nl = 1): ### Writes to log files, log file name referenced from self.stages ### while nl: string += '\n' nl -= 1 if output_file == 'complete': output = string else: format = '%Y/%m/%d %H:%M:%S' stamp = time.strftime(format, time.localtime(time.time())) output = '>{} {}'.format(stamp, string) if not output_file: output_file = '{}.log'.format(self.name) else: output_file = '{}.{}.log'.format(self.name, output_file) with open(output_file, 'a+') as f: f.write(output) def add_file(self, ext): ### Adds files of a given extension to their respective lists and the master complete.log list ### print('Scanning for {} files'.format(ext)) dirs = (self.out_path, self.aln_path) for dir in dirs: for f in sorted(os.listdir(dir)): if f[0] != '.': f = f.split('.') n, e = f[0], f[-1] if len(f) == 3: n = '{}.{}'.format(n, f[1]) if e in ext: if n not in self.files[e]: if 'ign' not in n: print('Adding {}.{}'.format(n, e)) self.write('Adding {}.{}'.format(n, e)) self.files[e].append(n) if '{}.{}'.format(n, e) not in self.complete: # adds new files to complete.log # self.write('{}.{}'.format(n, e), output_file = 'complete') self.files[ext].sort() self.refresh_complete() def refresh_complete(self): ### Creates/updates complete.log file and internal master complete list ### self.complete = [] if not os.path.exists('{}.complete.log'.format(self.name)): self.write('', nl = 0, output_file = 'complete') with open('{}.complete.log'.format(self.name)) as f: for line in f: self.complete.append(line.strip()) def process(self, stage_desc, command, output_file): ### Executes a shell command and waits for completion, writes stdout and stderr to specified log file, exits program on non-0 return code ### self.write(stage_desc) print('Executing:', command) pipe = subprocess.PIPE try: proc = subprocess.run(command, shell = True, stdout = pipe, stderr = pipe) # starts shell process, returns 0 if successful # except: self.exit('Halt: Sample Interupted!') print('[{!r} exited with {}]'.format(command, proc.returncode)) self.write('[{!r} exited with {}]'.format(command, proc.returncode)) if proc.stdout: self.write('[stdout]\n{}'.format(proc.stdout.decode()), output_file = output_file) if proc.stderr: self.write('[stderr]\n{}'.format(proc.stderr.decode()), output_file = output_file) if proc.returncode: # proc.returncode evaluates to True if non-zero # self.exit('Halt: Process exited with error!') # exit called with error # def exit(self, code = 0): if code: ### Process returncode is non-0 or KeyboardInterupt, called from process() upon error, deletes unfinished files ### dirs = (self.out_path, self.aln_path) for dir in dirs: for f in sorted(os.listdir(dir)): if f[0] != '.': # Ignores filenames that start with '.' # f = f.split('.') n, e = f[0], f[-1] if len(f) == 3: n = '{}.{}'.format(n, f[1]) if e != 'log': # Ignores log files # if n+'.'+e not in self.complete: # Removes from dir if not listed in self.files (assumed to be incomplete) # f = '{}.{}'.format(n, e) print('Removing {}'.format(f)) self.write('Removing {}'.format(f)) os.remove('{}/{}'.format(dir, f)) print(code) self.write(code) exit() # sys.exit() when called with error # else: ### Successful completion of workflow ### print('{} workflow complete.'.format(self.name)) self.write('{} workflow complete.'.format(self.name)) file_list = [] # Retained files list returned to the calling script # for key in self.files: for file in self.files[key]: file_list.append('{}.{}'.format(file, key)) return file_list ``` #### File: VScope/webapp/routes.py ```python import time from flask import render_template, flash, redirect, url_for, request from flask_login import login_user, current_user, logout_user, login_required from werkzeug.utils import secure_filename from webapp import app, config, db, bcrypt, send_reset_email from webapp.models import User, Project from webapp.forms import RegisterUser, Login, RequestResetForm, ResetPasswordForm, ProjectSetupA, ProjectSetupB, ProjectSetupC, ConfirmSetup, StartStopProject, ArchiveRemove, AnnotateReport from webapp.collect_data import list_file, list_ext, get_projects, get_archive, project_dict, sample_status, status_list from webapp.project_actions import setup_project, run_project, stop_project, run_subtraction, run_annotation, run_analysis, archive_project, remove_project ### User Authentication Web Routes ### @app.route('/register_user', methods = ['GET', 'POST']) def register_user(): form = RegisterUser() if form.validate_on_submit(): hashed_password = <PASSWORD>.generate_password_hash(form.password.data).decode('utf-8') user = User(username = form.username.data, email = form.email.data, password = <PASSWORD>) db.session.add(user) db.session.commit() return render_template('register_user.html', title = 'Register User', form = form) @app.route('/login', methods = ['GET', 'POST']) def login(): if current_user.is_authenticated: return redirect(url_for('home')) form = Login() if form.validate_on_submit(): user = User.query.filter_by(email = form.email.data).first() if user and bcrypt.check_password_hash(user.password, form.password.data): login_user(user, remember = form.remember.data) return redirect(url_for('home')) flash('Login Unsuccessful. Please check email and password.') return render_template('login.html', title = 'Login', form = form) @app.route('/logout') def logout(): logout_user() return redirect(url_for('home')) # @app.route('/manage_users') # @login_required # def manage_users(): # users = User.query.all() # return render_template('users.html', users = users) @app.route('/search_user') @login_required def search_user(): form = SearchUser() return render_template('search_user.html', form = form) @app.route('/user_details/<user>') @login_required def manage_users(user): users = User.query.all() return render_template('users.html', users = users) @app.route('/reset_password', methods = ['GET', 'POST']) def reset_request(): form = RequestResetForm() if form.validate_on_submit(): user = User.query.filter_by(email = form.email.data).first() send_reset_email(user) flash('An email has been sent with instructions to reset your password', 'info') return redirect(url_for('login')) return render_template('reset_request.html', title = 'Reset Password', form = form) @app.route('/reset_password/reset_password/<token>', methods = ['GET', 'POST']) def reset_token(token): user = User.verify_reset_token(token) if not user: flash('That is an invalid or expired token', 'warning') return redirect(url_for('reset_request')) form = ResetPasswordForm() if form.validate_on_submit(): hashed_password = bcrypt.generate_password_hash(form.password.data).decode('utf-8') user.password = <PASSWORD> db.session.commit() flash('Your password has been updated! You can now log in', 'success') return redirect(url_for('login')) return render_template('reset_token.html', title = 'Reset Password', form = form) ### Main App Web Routes ### @app.route('/') @login_required def home(): projects = get_projects() return render_template('home.html', projects = projects) @app.route('/<project_id>', methods = ['GET', 'POST']) @login_required def project(project_id): form = StartStopProject() project = get_projects()[project_id] if request.method == 'POST': if form.start.data: if run_project(project['path']): flash('Project Running', 'info') time.sleep(2) elif form.stop.data: if stop_project(project): flash('Project Stopped', 'info') time.sleep(2) return redirect(url_for('project', project_id = project_id)) processing = status_list(project) return render_template('project.html', title = 'Project Dashboard', project = project, processing = processing, form = form) @app.route('/<project_id>/<sample>') @login_required def sample(project_id, sample): print('Sample:', sample) projects = get_projects() project = projects[project_id] status = sample_status(project['path'], sample) logs = list_ext(project['path'], sample, 'log') return render_template('sample.html', title = 'Sample Dashboard', project = project, sample = status, logs = logs) @app.route('/view/<project_id>/<document>') @app.route('/view/<project_id>/<sample>/<document>') @login_required def file_view(project_id, document, sample = None): projects = get_projects() project = projects[project_id] title = document if sample: document = list_file('{}/{}/{}'.format(project['path'], sample, document)) else: document = list_file('{}/{}'.format(project['path'], document)) return render_template('file_view.html', title = title, document = document, sample = sample) @app.route('/<project_id>/accession') @login_required def accession(project_id): projects = get_projects() project = projects[project_id] title = '{} Samples'.format(project_id) accession = list_file('{}/assets/{}'.format(project['path'], 'accession.txt')) return render_template('accession.html', title = title, project_id = project_id, accession = accession) @app.route('/project_setup', methods = ['GET', 'POST']) @login_required def project_setup_A(): form = ProjectSetupA() if form.validate_on_submit(): project_id = form.project_name.data project = Project(project_id) project.organism = form.organism.data db.session.add(project) db.session.commit() return redirect(url_for('project_setup_B', project_id = project_id)) return render_template('proj_setup_A.html', title = 'New Project', form = form) @app.route('/project_setup-<project_id>', methods = ['GET', 'POST']) @login_required def project_setup_B(project_id): global config form = ProjectSetupB() if form.validate_on_submit(): project = Project.query.filter_by(name = project_id).first() project.reads_path = form.sample_path.data project.exons_ver = form.ex_version.data acc_filename = form.accession.data.filename project.accession = acc_filename form.accession.data.save('{}/Stage/{}'.format(config['BASE_PATH'], acc_filename)) ref_filename = form.reference.data.filename project.reference = ref_filename form.reference.data.save('{}/Stage/{}'.format(config['BASE_PATH'], ref_filename)) exon_filename = form.exons.data.filename project.exons = exon_filename form.exons.data.save('{}/Stage/{}'.format(config['BASE_PATH'], exon_filename)) db.session.commit() if form.submit1.data: setup_project(project) time.sleep(1) return redirect(url_for('project', project_id = project_id)) elif form.submit2.data: return redirect(url_for('project_setup_C')) return render_template('proj_setup_B.html', title = 'New Project', form = form) @app.route('/project_setup--<project_id>', methods = ['GET', 'POST']) @login_required def project_setup_C(project_id): form = ProjectSetupC() if request.method == 'POST': project = Project.query.filter_by(name = project_id).first() project.concurrent = form.processes.data project.threads = form.threads.data project.delay = form.time_delay.data project.active = True db.session.add(project) db.session.commit() setup_project(project) time.sleep(2) return redirect(url_for('project', project_id = project_id)) return render_template('proj_setup_C.html', title = 'New Project', form = form) # @app.route('/confirm_setup-<project_id>', methods = ['GET', 'POST']) # @login_required # def confirm_setup(project_id): # global config # form = ConfirmSetup() # form_data = new.get_dict() # if request.method == 'POST': # pass # return render_template('confirm_setup.html', form = form, form_data = form_data) @app.route('/<project_id>/archive_remove', methods = ['GET', 'POST']) @login_required def archive_remove(project_id): form = ArchiveRemove() if form.validate_on_submit(): project = get_projects()[project_id] if form.archive.data: archive_project(project['path']) flash('{} has been added to archived projects.'.format(project_id), 'info') if form.remove.data: remove_project(project_id) flash('{} has been removed from active projects.'.format(project_id), 'info') return redirect(url_for('home')) return redirect(url_for('project', project_id = project_id)) return render_template('archive_remove.html', project_id = project_id, form = form) @app.route('/archived_projects') @login_required def archive(): projects = get_archive() return render_template('archive.html', projects = projects) @app.route('/<project_id>/annotate_report/', methods = ['GET', 'POST']) @login_required def annotate_report(project_id): form = AnnotateReport() if request.method == 'POST': project = get_projects()[project_id] # print(request.form) if 'annotate' in request.form: # print('Annotating Project VCFs') run_annotation(project['path']) elif 'analyse' in request.form: print('Analysing Quality Threshold Impact to Variant Spectrum') run_analysis(project['path']) elif 'filter' in request.form: print('Filtering Variants at a Threshold of:', request.form['quality']) print('Removing Common Variants') run_subtraction(project['path'], request.form['quality']) return render_template('annotate_report.html', project_id = project_id, form = form) ```
{ "source": "jmsking/pykube", "score": 2 }
#### File: pykube/tests/test_config.py ```python import os from pathlib import Path from unittest.mock import MagicMock import pytest from . import TestCase from pykube import config from pykube import exceptions BASEDIR = Path("tests") GOOD_CONFIG_FILE_PATH = BASEDIR / "test_config.yaml" DEFAULTUSER_CONFIG_FILE_PATH = BASEDIR / "test_config_default_user.yaml" def test_from_service_account_no_file(tmpdir): with pytest.raises(FileNotFoundError): config.KubeConfig.from_service_account(path=str(tmpdir)) def test_from_service_account(tmpdir): namespace_file = Path(tmpdir) / "namespace" token_file = Path(tmpdir) / "token" ca_file = Path(tmpdir) / "ca.crt" with namespace_file.open("w") as fd: fd.write("mynamespace") with token_file.open("w") as fd: fd.write("mytok") with ca_file.open("w") as fd: fd.write("myca") os.environ["KUBERNETES_SERVICE_HOST"] = "127.0.0.1" os.environ["KUBERNETES_SERVICE_PORT"] = "9443" cfg = config.KubeConfig.from_service_account(path=str(tmpdir)) assert cfg.doc["clusters"][0]["cluster"] == { "server": "https://127.0.0.1:9443", "certificate-authority": str(ca_file), } assert cfg.doc["users"][0]["user"]["token"] == "<PASSWORD>" assert cfg.namespace == "mynamespace" def test_from_url(): cfg = config.KubeConfig.from_url("http://localhost:8080") assert cfg.doc["clusters"][0]["cluster"] == {"server": "http://localhost:8080"} assert "users" not in cfg.doc @pytest.fixture def kubeconfig(tmpdir): kubeconfig = tmpdir.join("kubeconfig") kubeconfig.write( """ apiVersion: v1 clusters: - cluster: {server: 'https://localhost:9443'} name: test contexts: - context: {cluster: test, user: test} name: test current-context: test kind: Config preferences: {} users: - name: test user: {token: <PASSWORD>} """ ) return kubeconfig @pytest.mark.parametrize( "kubeconfig_env,expected_path", [(None, "~/.kube/config"), ("/some/path", "/some/path")], ) def test_from_default_kubeconfig( kubeconfig_env, expected_path, monkeypatch, kubeconfig ): mock = MagicMock() mock.return_value.expanduser.return_value = Path(kubeconfig) monkeypatch.setattr(config, "Path", mock) if kubeconfig_env is None: monkeypatch.delenv("KUBECONFIG", raising=False) else: monkeypatch.setenv("KUBECONFIG", kubeconfig_env) cfg = config.KubeConfig.from_file() mock.assert_called_with(expected_path) assert cfg.doc["clusters"][0]["cluster"] == {"server": "https://localhost:9443"} class TestConfig(TestCase): def setUp(self): self.cfg = config.KubeConfig.from_file(GOOD_CONFIG_FILE_PATH) def tearDown(self): self.cfg = None def test_init(self): """ Test Config instance creation. """ # Ensure that a valid creation works self.assertEqual(GOOD_CONFIG_FILE_PATH, self.cfg.filepath) # Ensure that if a file does not exist the creation fails self.assertRaises( exceptions.PyKubeError, config.KubeConfig.from_file, "doesnotexist" ) def test_set_current_context(self): """ Verify set_current_context works as expected. """ self.cfg.set_current_context("new_context") self.assertEqual("new_context", self.cfg.current_context) def test_clusters(self): """ Verify clusters works as expected. """ self.assertEqual( {"server": "http://localhost"}, self.cfg.clusters.get("thecluster", None) ) def test_users(self): """ Verify users works as expected. """ self.assertEqual("data", self.cfg.users.get("admin", None)) def test_contexts(self): """ Verify contexts works as expected. """ self.assertEqual( {"cluster": "thecluster", "user": "admin"}, self.cfg.contexts.get("thename", None), ) def test_cluster(self): """ Verify cluster works as expected. """ # Without a current_context this should fail try: cluster = self.cfg.cluster self.fail( "cluster was found without a current context set: {}".format(cluster) ) except exceptions.PyKubeError: # We should get an error pass self.cfg.set_current_context("thename") self.assertEqual({"server": "http://localhost"}, self.cfg.cluster) def test_user(self): """ Verify user works as expected. """ # Without a current_context this should fail try: user = self.cfg.user self.fail("user was found without a current context set: {}".format(user)) except exceptions.PyKubeError: # We should get an error pass self.cfg.set_current_context("thename") self.assertEqual("data", self.cfg.user) def test_default_user(self): """ User can sometimes be specified as 'default' with no corresponding definition """ test_config = config.KubeConfig.from_file(DEFAULTUSER_CONFIG_FILE_PATH) test_config.set_current_context("a_context") self.assertIsNotNone(test_config.user) def test_namespace(self): self.cfg.set_current_context("thename") self.assertEqual("default", self.cfg.namespace) self.cfg.set_current_context("context_with_namespace") self.assertEqual("foospace", self.cfg.namespace) ``` #### File: pykube/tests/test_session.py ```python import copy import logging import tempfile from pathlib import Path from . import TestCase BASE_CONFIG = { "clusters": [ {"name": "test-cluster", "cluster": {"server": "http://localhost:8080"}} ], "contexts": [ { "name": "test-cluster", "context": {"cluster": "test-cluster", "user": "test-user"}, } ], "users": [{"name": "test-user", "user": {}}], "current-context": "test-cluster", } _log = logging.getLogger(__name__) class TestSession(TestCase): def setUp(self): self.config = copy.deepcopy(BASE_CONFIG) def test_build_session_auth_provider(self): """Test that HTTPClient correctly parses the auth-provider config. Observed in GKE with kubelet v1.3. """ self.config.update( { "users": [ { "name": "test-user", "user": { "auth-provider": { "config": { "access-token": "<PASSWORD>", "expiry": "2016-08-24T16:19:17.19878675-07:00", }, }, }, }, ] } ) gcloud_content = """ { "client_id": "myclientid", "client_secret": "myclientsecret", "refresh_token": "<PASSWORD>", "type": "authorized_user" } """ _log.info("Built config: %s", self.config) try: tmp = Path(tempfile.mktemp()) with tmp.open("w") as f: f.write(gcloud_content) # TODO: this no longer works due to refactoring, GCP session handling is now done in KubernetesHTTPAdapter # session = pykube.session.GCPSession(pykube.KubeConfig(doc=self.config), tmp) # self.assertEquals(session.oauth.token['access_token'], 'abc') # self.assertEquals(session.oauth.token['refresh_token'], 'myrefreshtoken') # self.assertEquals(session.credentials.get('client_id'), 'myclientid') # self.assertEquals(session.credentials.get('client_secret'), 'myclientsecret') finally: if tmp.exists(): tmp.unlink() ```
{ "source": "jmskinner/pii_firewall", "score": 2 }
#### File: pii_firewall/local_threading/worker.py ```python from multiprocessing import Process from work_strategies.work_strategy_factory import WorkerStrategyFactory from work_strategies.work_base_strategy import WorkerNullStrategy class Worker(Process): def __init__(self, task_queue,write_queue,signal_queue,w_id): super(Worker, self).__init__() self.task_queue = task_queue self.write_queue = write_queue self.signal_queue = signal_queue self.exec_strategy = WorkerNullStrategy() self.current_task = None self.id = w_id def __reassign_strategy(self, task): self.exec_strategy = WorkerStrategyFactory.make_strategy(task) def run(self): for task in iter(self.task_queue.get, None): print(f"Worker {self.id} is working on a {task.domain} task at {task.in_endpoint}..") if not WorkerStrategyFactory.check_strategy(self.exec_strategy, task): self.__reassign_strategy(task) try: self.exec_strategy.execute(self, task) except Exception: pass print(f"Worker {self.id} is shutting down now") self.signal_queue.put(1) ``` #### File: jmskinner/pii_firewall/pii_firewall.py ```python import mimetypes import os import threading from local_threading.worker import Worker from local_threading.writer import Writer from multiprocessing import Queue from tasking.task import Task from pathlib import Path class PIIFirewall: def __init__(self, config): self.runtime_config = config['runtime_config'] self.task_config = config['task_config'] self.task_queue = Queue() self.write_queue = Queue() self.worker_signals = Queue() self.writer_signals = Queue() self.max_num_workers = self.runtime_config['max_cpus'] self.max_num_writers = self.runtime_config['max_threads'] def run(self): reader_threads = [] for endpoint in self.runtime_config['endpoints']: input_src, output_dest = endpoint.split("-->") input_src = input_src.strip() output_dest = output_dest.strip() if os.path.isdir(input_src): all_files = self.__get_all_files_endpoint(input_src) reader_thread = threading.Thread(target=self.__ingest_files, args=(all_files, output_dest)) reader_threads.append(reader_thread) else: print("Not a directory, skipping for now") # spin up all the readers for reader_thread in reader_threads: reader_thread.start() # spin up all the workers worker_processes = [] for worker_id in range(self.max_num_workers): # note that this is process not a queque worker = Worker(self.task_queue, self.write_queue, self.worker_signals, worker_id) worker_processes.append(worker) worker.start() # spin up writers writer_threads = [] for writer_id in range(self.max_num_writers): # note that this is thread not a process writer = Writer(self.write_queue,self.writer_signals,writer_id) writer_threads.append(writer) writer.start() # wait for readers to be done for reader_thread in reader_threads: reader_thread.join() # let the workers know they can shutdown for worker in range(self.max_num_workers): self.task_queue.put(None) # wait while the workers finish for worker in worker_processes: worker.join() # once all the workers are done we let the writers know for writer in range(self.max_num_writers): self.write_queue.put(None) # we make main thread wait while the writers finish for writer in writer_threads: writer.join() def __get_mime_type(self, filename): return mimetypes.guess_type(filename)[0].split("/") def __get_all_files_endpoint(self, input_src): all_files = [] for path, subdirs, files in os.walk(input_src): for name in files: if name[0] != ".": all_files.append(os.path.join(path, name)) return all_files def __ingest_files(self, all_files, dest): for in_endpoint in all_files: domain, file_type = self.__get_mime_type(in_endpoint) out_endpoint, profile_endpoint = self.__make_output_dest(domain, file_type, in_endpoint, dest) task = Task(domain, file_type, in_endpoint, out_endpoint,profile_endpoint,self.task_config) self.task_queue.put(task) print(f"Task at {task.in_endpoint} was placed on queue") def __make_output_dest(self, domain, file_type, file_name, dest): left_index = file_name.rfind("/") right_index = file_name.rfind(".") ext = file_name[right_index:] title = file_name[left_index+1:right_index] dir_path = os.path.join(dest,"data",domain,file_type) pro_path = os.path.join(dest,"profiles",domain,file_type) Path(dir_path).mkdir(parents=True, exist_ok=True) Path(pro_path).mkdir(parents=True, exist_ok=True) out_path = os.path.join(dir_path,title+"_post_pii_" + ext) profile_path = os.path.join(pro_path,title+".json") return out_path,profile_path ``` #### File: pii_firewall/work_strategies/work_pdf_strategy.py ```python from urllib.request import urlopen from work_strategies.work_base_strategy import WorkerBaseStrategy from pdf2image import convert_from_path, convert_from_bytes from presidio_image_redactor import ImageRedactorEngine from threading import Lock,Thread, Semaphore from PIL import Image, ImageChops from presidio_image_redactor.image_analyzer_engine import ImageAnalyzerEngine class WorkerPDFStrategy(WorkerBaseStrategy): hyperthread_image_processing = True ## if we wanted to limit this across classes we could change this to active and remove it from the constructor # thread_semaphore = Semaphore(5) def __init__(self,domain, task_type): super().__init__(domain, task_type) self.my_lock = Lock() self.image_analyzer = ImageAnalyzerEngine() self.text_redactor = ImageRedactorEngine() self.thread_semaphore = None def _fetch(self, task): try: if task.in_is_local: task.data = convert_from_path(task.in_endpoint) else: data = urlopen(task.in_endpoint).read() task.data = convert_from_bytes(data, 'rb') except Exception: print(f'Error reading pdf from source: {task.in_endpoint}') return task def _process(self, task): redacted_images = {} local_threads = [] pdf_img_list = [] # self.thread_semaphore = Semaphore(task.config['max_thread_per_task']+1) # print(task.config['max_thread_per_task']) # In case we have a large doc, don't spin up too many threads for pos,image in enumerate(task.data): # self.thread_semaphore.acquire() thread = Thread(target=self._redact_an_image, args=(image,pos,redacted_images,task)) local_threads.append(thread) for thread in local_threads: thread.start() # wait for the threads to finish for thread in local_threads: thread.join() # reassemble the doc in proper order for num, page in sorted(redacted_images.items()): pdf_img_list.append(page) task.data = pdf_img_list return task def _push(self, worker, task): print(f"Worker {worker.id} pushed task at {task.in_endpoint}") worker.write_queue.put(task) def _redact_an_image(self,img,key,output,task): self.my_lock.acquire() try: temp = ImageChops.duplicate(img) image_result = self.image_analyzer.analyze(temp) if len(image_result) > 0: task.profile["page"+str(key)] = str(image_result) output[key] = self.text_redactor.redact(img, self.REDACT_COLOR) except Exception: print(f"Incompatible PDF type occured on page {key+1} in the doc located at {task.in_endpoint}... ignoring this page") self.my_lock.release() # self.thread_semaphore.release() finally: self.my_lock.release() # self.thread_semaphore.release() ``` #### File: pii_firewall/write_strategies/write_image_strategy.py ```python from write_strategies.write_base_strategy import WriterBaseStrategy import json class WriterImageStrategy(WriterBaseStrategy): def _write_data(self, task): task.data.save(task.out_endpoint) def _write_profile(self, task): with open(task.profile_endpoint, "w") as outfile: json.dump(task.profile, outfile) ```
{ "source": "jms/klickbrick", "score": 2 }
#### File: features/steps/hello.py ```python import subprocess from behave import * use_step_matcher("re") @when("the user run klickbrick 'hello'") def step_impl(context): """ :type context: behave.runner.Context """ args = "poetry run klickbrick hello".split() context.response = subprocess.run(args, capture_output=True, text=True).stdout @then("the CLI prints 'Hello World'") def step_impl(context): """ :type context: behave.runner.Context """ assert "Hello World\n" == context.response ``` #### File: klickbrick/klickbrick/klickbrick.py ```python import argparse import sys from typing import List, Any from klickbrick.script import greeting class Klickbrick: def __init__(self, arguments: List[Any]): self.parser = argparse.ArgumentParser(prog="klickbrick", usage="%(prog)s [options]") self.subparsers = self.parser.add_subparsers(help="sub-command help") self.subparsers.dest = "hello" self.subparsers.required = True hello_parser = self.subparsers.add_parser(name="hello", description="A friendly Hello World") hello_parser.add_argument("-n", "--name", type=str, default="World") toolchain_parser = self.subparsers.add_parser(name="onboard", description="Toolchain commands") toolchain_parser.add_argument("--dry-run", type=str) toolchain_parser.add_argument("--name", type=str, required=True) toolchain_parser.add_argument("--email", type=str, required=True) toolchain_parser.add_argument("--commit-template", type=str) options = self.parser.parse_args(arguments) # type: argparse.Namespace getattr(self, arguments[0])(options.name) @staticmethod def hello(name: str): print(greeting(name)) @staticmethod def onboard(name: str, email: str): """ git tasks: git config --global user.name "<NAME>" git config --global user.email <EMAIL> git config --global init.defaultBranch main git config --global commit.template ~/.gitmessage.txt :param name: :param email: :return: """ commit_template: str = "~/.gitmessage.txt" pass def main(): Klickbrick(sys.argv[1:]) if __name__ == '__main__': main() ```
{ "source": "jmsl31/coverage.py", "score": 3 }
#### File: coverage.py/lab/genpy.py ```python import collections from itertools import cycle, product import random import re import sys import coverage from coverage.parser import PythonParser class PythonSpinner(object): """Spin Python source from a simple AST.""" def __init__(self): self.lines = [] self.lines.append("async def func():") self.indent = 4 @property def lineno(self): return len(self.lines) + 1 @classmethod def generate_python(cls, ast): spinner = cls() spinner.gen_python_internal(ast) return "\n".join(spinner.lines) def add_line(self, line): g = "g{}".format(self.lineno) self.lines.append(' ' * self.indent + line.format(g=g, lineno=self.lineno)) def add_block(self, node): self.indent += 4 self.gen_python_internal(node) self.indent -= 4 def maybe_block(self, node, nodei, keyword): if len(node) > nodei and node[nodei] is not None: self.add_line(keyword + ":") self.add_block(node[nodei]) def gen_python_internal(self, ast): for node in ast: if isinstance(node, list): op = node[0] if op == "if": self.add_line("if {g}:") self.add_block(node[1]) self.maybe_block(node, 2, "else") elif op == "for": self.add_line("for x in {g}:") self.add_block(node[1]) self.maybe_block(node, 2, "else") elif op == "while": self.add_line("while {g}:") self.add_block(node[1]) self.maybe_block(node, 2, "else") elif op == "try": self.add_line("try:") self.add_block(node[1]) # 'except' clauses are different, because there can be any # number. if len(node) > 2 and node[2] is not None: for except_node in node[2]: self.add_line("except Exception{}:".format(self.lineno)) self.add_block(except_node) self.maybe_block(node, 3, "else") self.maybe_block(node, 4, "finally") elif op == "with": self.add_line("with {g} as x:") self.add_block(node[1]) else: raise Exception("Bad list node: {!r}".format(node)) else: op = node if op == "assign": self.add_line("x = {lineno}") elif op in ["break", "continue"]: self.add_line(op) elif op == "return": self.add_line("return") elif op == "yield": self.add_line("yield {lineno}") else: raise Exception("Bad atom node: {!r}".format(node)) def weighted_choice(rand, choices): """Choose from a list of [(choice, weight), ...] options, randomly.""" total = sum(w for c, w in choices) r = rand.uniform(0, total) upto = 0 for c, w in choices: if upto + w >= r: return c upto += w assert False, "Shouldn't get here" class RandomAstMaker(object): def __init__(self, seed): self.r = random.Random() self.r.seed(seed) self.depth = 0 self.bc_allowed = set() def roll(self, prob=0.5): return self.r.random() <= prob def choose(self, choices): """Roll the dice to choose an option.""" return weighted_choice(self.r, choices) STMT_CHOICES = [ [("if", 10), ("for", 10), ("try", 10), ("while", 3), ("with", 10), ("assign", 20), ("return", 1), ("yield", 0)], [("if", 10), ("for", 10), ("try", 10), ("while", 3), ("with", 10), ("assign", 40), ("return", 1), ("yield", 0), ("break", 10), ("continue", 10)], [("if", 10), ("for", 10), ("try", 10), ("while", 3), ("with", 10), ("assign", 40), ("return", 1), ("yield", 0), ("break", 10), ("continue", 10)], [("if", 10), ("for", 10), ("try", 10), ("while", 3), ("with", 10), ("assign", 40), ("return", 1), ("yield", 0), ("break", 10), ("continue", 10)], [("if", 10), ("for", 10), ("try", 10), ("while", 3), ("with", 10), ("assign", 40), ("return", 1), ("yield", 0), ("break", 10), ("continue", 10)], # Last element has to have no compound statements, to limit depth. [("assign", 10), ("return", 1), ("yield", 0), ("break", 10), ("continue", 10)], ] def make_body(self, parent): body = [] choices = self.STMT_CHOICES[self.depth] self.depth += 1 nstmts = self.choose([(1, 10), (2, 25), (3, 10), (4, 10), (5, 5)]) for _ in range(nstmts): stmt = self.choose(choices) if stmt == "if": body.append(["if", self.make_body("if")]) if self.roll(): body[-1].append(self.make_body("ifelse")) elif stmt == "for": old_allowed = self.bc_allowed self.bc_allowed = self.bc_allowed | set(["break", "continue"]) body.append(["for", self.make_body("for")]) self.bc_allowed = old_allowed if self.roll(): body[-1].append(self.make_body("forelse")) elif stmt == "while": old_allowed = self.bc_allowed self.bc_allowed = self.bc_allowed | set(["break", "continue"]) body.append(["while", self.make_body("while")]) self.bc_allowed = old_allowed if self.roll(): body[-1].append(self.make_body("whileelse")) elif stmt == "try": else_clause = self.make_body("try") if self.roll() else None old_allowed = self.bc_allowed self.bc_allowed = self.bc_allowed - set(["continue"]) finally_clause = self.make_body("finally") if self.roll() else None self.bc_allowed = old_allowed if else_clause: with_exceptions = True elif not else_clause and not finally_clause: with_exceptions = True else: with_exceptions = self.roll() if with_exceptions: num_exceptions = self.choose([(1, 50), (2, 50)]) exceptions = [self.make_body("except") for _ in range(num_exceptions)] else: exceptions = None body.append( ["try", self.make_body("tryelse"), exceptions, else_clause, finally_clause] ) elif stmt == "with": body.append(["with", self.make_body("with")]) elif stmt == "return": body.append(stmt) break elif stmt == "yield": body.append("yield") elif stmt in ["break", "continue"]: if stmt in self.bc_allowed: # A break or continue immediately after a loop is not # interesting. So if we are immediately after a loop, then # insert an assignment. if not body and (parent in ["for", "while"]): body.append("assign") body.append(stmt) break else: stmt = "assign" if stmt == "assign": # Don't put two assignments in a row, there's no point. if not body or body[-1] != "assign": body.append("assign") self.depth -= 1 return body def async_alternatives(source): parts = re.split(r"(for |with )", source) nchoices = len(parts) // 2 #print("{} choices".format(nchoices)) def constant(s): return [s] def maybe_async(s): return [s, "async "+s] choices = [f(x) for f, x in zip(cycle([constant, maybe_async]), parts)] for result in product(*choices): source = "".join(result) yield source def compare_alternatives(source): all_all_arcs = collections.defaultdict(list) for i, alternate_source in enumerate(async_alternatives(source)): parser = PythonParser(alternate_source) arcs = parser.arcs() all_all_arcs[tuple(arcs)].append((i, alternate_source)) return len(all_all_arcs) def show_a_bunch(): longest = "" for i in range(100): maker = RandomAstMaker(i) source = PythonSpinner.generate_python(maker.make_body("def")) try: print("-"*80, "\n", source, sep="") compile(source, "<string>", "exec") except Exception as ex: print("Oops: {}\n{}".format(ex, source)) if len(source) > len(longest): longest = source def show_alternatives(): for i in range(1000): maker = RandomAstMaker(i) source = PythonSpinner.generate_python(maker.make_body("def")) nlines = len(source.splitlines()) if nlines < 15: nalt = compare_alternatives(source) if nalt > 1: print("--- {:3} lines, {:2} alternatives ---------".format(nlines, nalt)) print(source) if __name__ == "__main__": show_alternatives() ``` #### File: coverage.py/lab/show_pyc.py ```python import binascii import dis import marshal import struct import sys import time import types def show_pyc_file(fname): f = open(fname, "rb") magic = f.read(4) moddate = f.read(4) modtime = time.asctime(time.localtime(struct.unpack('<L', moddate)[0])) print("magic %s" % (binascii.hexlify(magic))) print("moddate %s (%s)" % (binascii.hexlify(moddate), modtime)) if sys.version_info >= (3, 3): # 3.3 added another long to the header (size). size = f.read(4) print("pysize %s (%d)" % (binascii.hexlify(size), struct.unpack('<L', size)[0])) code = marshal.load(f) show_code(code) def show_py_file(fname): text = open(fname).read().replace('\r\n', '\n') show_py_text(text, fname=fname) def show_py_text(text, fname="<string>"): code = compile(text, fname, "exec") show_code(code) CO_FLAGS = [ ('CO_OPTIMIZED', 0x00001), ('CO_NEWLOCALS', 0x00002), ('CO_VARARGS', 0x00004), ('CO_VARKEYWORDS', 0x00008), ('CO_NESTED', 0x00010), ('CO_GENERATOR', 0x00020), ('CO_NOFREE', 0x00040), ('CO_COROUTINE', 0x00080), ('CO_ITERABLE_COROUTINE', 0x00100), ('CO_ASYNC_GENERATOR', 0x00200), ('CO_GENERATOR_ALLOWED', 0x01000), ('CO_FUTURE_DIVISION', 0x02000), ('CO_FUTURE_ABSOLUTE_IMPORT', 0x04000), ('CO_FUTURE_WITH_STATEMENT', 0x08000), ('CO_FUTURE_PRINT_FUNCTION', 0x10000), ('CO_FUTURE_UNICODE_LITERALS', 0x20000), ('CO_FUTURE_BARRY_AS_BDFL', 0x40000), ('CO_FUTURE_GENERATOR_STOP', 0x80000), ] def show_code(code, indent='', number=None): label = "" if number is not None: label = "%d: " % number print("%s%scode" % (indent, label)) indent += ' ' print("%sname %r" % (indent, code.co_name)) print("%sargcount %d" % (indent, code.co_argcount)) print("%snlocals %d" % (indent, code.co_nlocals)) print("%sstacksize %d" % (indent, code.co_stacksize)) print("%sflags %04x: %s" % (indent, code.co_flags, flag_words(code.co_flags, CO_FLAGS))) show_hex("code", code.co_code, indent=indent) dis.disassemble(code) print("%sconsts" % indent) for i, const in enumerate(code.co_consts): if type(const) == types.CodeType: show_code(const, indent+' ', number=i) else: print(" %s%d: %r" % (indent, i, const)) print("%snames %r" % (indent, code.co_names)) print("%svarnames %r" % (indent, code.co_varnames)) print("%sfreevars %r" % (indent, code.co_freevars)) print("%scellvars %r" % (indent, code.co_cellvars)) print("%sfilename %r" % (indent, code.co_filename)) print("%sfirstlineno %d" % (indent, code.co_firstlineno)) show_hex("lnotab", code.co_lnotab, indent=indent) def show_hex(label, h, indent): h = binascii.hexlify(h) if len(h) < 60: print("%s%s %s" % (indent, label, h.decode('ascii'))) else: print("%s%s" % (indent, label)) for i in range(0, len(h), 60): print("%s %s" % (indent, h[i:i+60].decode('ascii'))) def flag_words(flags, flag_defs): words = [] for word, flag in flag_defs: if flag & flags: words.append(word) return ", ".join(words) def show_file(fname): if fname.endswith('pyc'): show_pyc_file(fname) elif fname.endswith('py'): show_py_file(fname) else: print("Odd file:", fname) def main(args): if args[0] == '-c': show_py_text(" ".join(args[1:]).replace(";", "\n")) else: for a in args: show_file(a) if __name__ == '__main__': main(sys.argv[1:]) ```
{ "source": "jmslagmay/apoleid", "score": 3 }
#### File: fingerprinting/get_rssi/station.py ```python import socket, select, string, sys import cflib.drivers.crazyradio as crazyradio from time import sleep #def get_rssi(sock, cradio, station_no): def get_rssi(sock, station_no): cradio = crazyradio.Crazyradio() cradio.set_data_rate(cradio.DR_2MPS) cradio.set_channel(70) count = 0 #delay = (float(station_no) - 1) / 10 #delay = (float(station_no) - 1) delay = (station_no - 1) * 2 #addr = 0xff - station_no - 1 #print (delay) #print (addr) rss = 0 total = 0 #cradio = crazyradio.Crazyradio() #cradio.set_data_rate(cradio.DR_2MPS) #cradio.set_channel(70) #RSS_list = [] sleep(delay) while count < 100: pk = cradio.send_packet([0xff, ]) if pk.ack and len(pk.data) > 2 and \ pk.data[0] & 0xf3 == 0xf3 and pk.data[1] == 0x01: #print("RSSI: -{}dBm".format(pk.data[2])) #print ("RSSI: %d" % pk.data[2]) count += 1 rss = pk.data[2] #RSS_list.append(rss) #print("hello") total += 1 else: #print("No RSS") count += 1 #print("hi") #rss = 10000 drone = 0 #check if there is a drone present if total > 1: drone = 1 print("Drone detected") else: drone = 0 print("No drone") count = 0 rss = 0 x = 20 #get x no. of RSS then average if drone: #for i in range (0, len(RSS_list)): # rss_sum += RSS_list[i] #rss = int(rss_sum / len(RSS_list)) while count < x: pk = cradio.send_packet([0xff, ]) if pk.ack and len(pk.data) > 2 and \ pk.data[0] & 0xf3 == 0xf3 and pk.data[1] == 0x01: count += 1 rss += pk.data[2] rss = rss / x rss = int(rss) else: rss = 10000 cradio.close() print("RSSI: %d" % rss) return rss #main function if __name__ == "__main__": if(len(sys.argv) < 3) : print ('Usage : python3 filename hostname port') sys.exit() host = sys.argv[1] port = int(sys.argv[2]) station_no = int(input("Station No: ")) #channel = 70 + station_no s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.settimeout(2) # connect to remote host try : s.connect((host, port)) except : print ('Unable to connect') sys.exit() print ('Connected to remote host. Start sending messages') try: while 1: socket_list = [s] # Get the list sockets which are readable read_sockets, write_sockets, error_sockets = select.select(socket_list , [], []) for sock in read_sockets: #incoming message from remote server if sock == s: rcv_data = sock.recv(4096) data = rcv_data.decode('ascii') if not data : print ('\nDisconnected from chat server') sys.exit() else : #sys.stdout.write(data) #print(data) if " " in data: parsed_data = data.split(" ") if parsed_data[0] == "get_rssi": #print ("GET RSSI!!!!!!!!!!!") #print (str(station_no) + " rss " + "35") #cradio = crazyradio.Crazyradio() #cradio.set_data_rate(cradio.DR_2MPS) #cradio.set_channel(70) #rss = get_rssi(sock, cradio, station_no) rss = get_rssi(sock, station_no) reply = "rss " + str(station_no) + " " + str(rss) s.send(reply.encode('ascii')) else: print (data) else: if data == "get_rssi": #cradio = crazyradio.Crazyradio() #cradio.set_data_rate(cradio.DR_2MPS) #cradio.set_channel(70) #rss = get_rssi(sock, cradio, station_no) rss = get_rssi(sock, station_no) reply = "rss " + str(station_no) + " " + str(rss) s.send(reply.encode('ascii')) else: print (data) #user entered a message else : #msg = sys.stdin.readline() msg = input("") #print (len(msg)) s.send(msg.encode('ascii')) if msg == "/quit\n": print ('Disconnecting from server...') break except KeyboardInterrupt: msg = '/quit\n' s.send(msg.encode('ascii')) print ('Disconnecting from server...') print ('\nDisconnected from chat server') s.close() ```
{ "source": "jmsmdy/decentralized-electronic-health-record", "score": 2 }
#### File: backend/records/fields.py ```python from django.forms import MultiValueField, ChoiceField from .widgets import BootstrapMultiBinaryRadio class MultiBinaryField(MultiValueField): widget = BootstrapMultiBinaryRadio default_error_messages = { 'invalid_date': 'Enter a valid date.', 'invalid_time': 'Enter a valid time.', } def __init__(self, *, choices=None, **kwargs): errors = self.default_error_messages.copy() if 'error_messages' in kwargs: errors.update(kwargs['error_messages']) localize = kwargs.get('localize', False) fields = tuple([ChoiceField(choices=[('yes', 'Yes'), ('no', 'No'), ('unknown', "I don't know")]) for choice in choices]) super().__init__(fields, **kwargs) def compress(self, data_list): if data_list: # Raise a validation error if time or date is empty # (possible if SplitDateTimeField has required=False). for data in data_list: if data in self.empty_values: raise ValidationError(self.error_messages['invalid_date'], code='invalid_date') result = '---'.join(data_list) return result return None ```
{ "source": "jmsmg/jmsmg.github.io", "score": 3 }
#### File: python/k-digital training/quarter.py ```python import math def quarterYear(month): return math.ceil( month / 3.0 ) print(quarterYear(6)) ```
{ "source": "jmsnur/mytaxi-test", "score": 2 }
#### File: site-packages/mysqlx/authentication.py ```python import hashlib import struct from .compat import PY3, UNICODE_TYPES, hexlify class MySQL41AuthPlugin(object): def __init__(self, username, password): self._username = username self._password = password.encode("<PASSWORD>") \ if isinstance(password, UNICODE_TYPES) else password def name(self): return "MySQL 4.1 Authentication Plugin" def auth_name(self): return "MYSQL41" def xor_string(self, hash1, hash2): """Encrypt/Decrypt function used for password encryption in authentication, using a simple XOR. """ if PY3: xored = [h1 ^ h2 for (h1, h2) in zip(hash1, hash2)] else: xored = [ord(h1) ^ ord(h2) for (h1, h2) in zip(hash1, hash2)] return struct.pack("20B", *xored) def build_authentication_response(self, data): """Hashing for MySQL 4.1 authentication """ if self._password: h1 = hashlib.sha1(self._password).digest() h2 = hashlib.sha1(h1).digest() auth_response = self.xor_string( h1, hashlib.sha1(data + h2).digest()) return "{0}\0{1}\0*{2}\0".format("", self._username, hexlify(auth_response)) else: return "{0}\0{1}\0".format("", self._username) ``` #### File: site-packages/mysqlx/dbdoc.py ```python import json import uuid from .compat import STRING_TYPES class DbDoc(object): """Represents a generic document in JSON format. Args: value (object): The value can be a JSON string or a dict. Raises: ValueError: If ``value`` type is not a basestring or dict. """ def __init__(self, value): # TODO: Handle exceptions. What happens if it doesn't load properly? if isinstance(value, dict): self.__dict__ = value elif isinstance(value, STRING_TYPES): self.__dict__ = json.loads(value) else: raise ValueError("Unable to handle type: {0}".format(type(value))) def __getitem__(self, index): return self.__dict__[index] def keys(self): return self.__dict__.keys() def ensure_id(self): if "_id" not in self.__dict__: self.__dict__["_id"] = uuid.uuid4().hex return self.__dict__["_id"] def __str__(self): return json.dumps(self.__dict__) ```
{ "source": "JMSoler7/database", "score": 3 }
#### File: JMSoler7/database/main.py ```python from faker import Faker class Person(): name = Faker().name() def __str__(self): self.name = Faker().name() return self.name if __name__ == "__main__": people = [] for i in range(10): people.append(Person()) for person in people: print person.name ```
{ "source": "JMSoler7/django-mptt-admin", "score": 2 }
#### File: django_mptt_example/tests/test_util.py ```python from uuid import UUID from django.test import TestCase from django_mptt_admin.util import get_tree_queryset, get_tree_from_queryset, get_javascript_value, serialize_id from ..models import Country from .utils import read_testdata class UtilTestCase(TestCase): def setUp(self): super(UtilTestCase, self).setUp() read_testdata() def test_get_tree_queryset(self): # get default queryset qs = get_tree_queryset(Country) self.assertEqual(len(qs), 257) self.assertEqual(qs[0].name, 'root') # subtree qs = get_tree_queryset(Country, node_id=Country.objects.get(name='Europe').id) self.assertEqual(len(qs), 50) self.assertEqual(qs[0].name, u'Åland Islands') # max_level 1 qs = get_tree_queryset(Country, max_level=1) self.assertEqual(len(qs), 8) self.assertEqual(qs[0].name, 'root') # max_level True qs = get_tree_queryset(Country, max_level=True) self.assertEqual(len(qs), 8) # exclude root qs = get_tree_queryset(Country, include_root=False) self.assertEqual(len(qs), 256) self.assertEqual(qs[0].name, 'Africa') def test_get_tree_from_queryset(self): tree = get_tree_from_queryset(get_tree_queryset(Country)) root = tree[0] self.assertEqual(root['name'], 'root') continents = root['children'] self.assertEqual(len(continents), 7) self.assertEqual(continents[0]['name'], 'Africa') african_countries = continents[0]['children'] self.assertEqual(african_countries[0]['name'], 'Algeria') # format label tree = get_tree_from_queryset(get_tree_queryset(Country), item_label_field_name='code') root = tree[0] continents = root['children'] african_countries = continents[0]['children'] self.assertEqual(african_countries[0]['name'], 'DZ') def test_get_javascript_value(self): self.assertEqual(get_javascript_value(True), 'true') self.assertEqual(get_javascript_value(False), 'false') self.assertEqual(get_javascript_value(10), '10') def test_serialize_id(self): self.assertEqual(serialize_id(10), 10) self.assertEqual(serialize_id('10'), '10') self.assertEqual( serialize_id(UUID('7b6dd6ba55fb400ca0f59cde381c987f')), '7b6dd6ba-55fb-400c-a0f5-9cde381c987f' ) ``` #### File: django_mptt_example/tests/test_views.py ```python from django.contrib.admin.options import IS_POPUP_VAR from django.contrib.auth.models import User from django_webtest import WebTest from ..models import Country from .utils import read_testdata SCRIPT_JS_NAMESPACE = 'script[src="/static/django_mptt_admin/jquery_namespace.js"]' SCRIPT_JS_DJANGO_MPTT_ADMIN = 'script[src="/static/django_mptt_admin/django_mptt_admin.js"]' class DjangoMpttAdminWebTests(WebTest): def setUp(self): super(DjangoMpttAdminWebTests, self).setUp() USERNAME = 'admin' PASSWORD = 'p' self.admin = User.objects.create_superuser(USERNAME, '<EMAIL>', PASSWORD) self.login(USERNAME, PASSWORD) read_testdata() def test_tree_view(self): # - get countries admin page countries_page = self.app.get('/django_mptt_example/country/') tree_element = countries_page.pyquery('#tree') # check savestate key self.assertEqual(tree_element.attr('data-save_state'), 'django_mptt_example_country') # check url json_url = tree_element.attr('data-url') self.assertEqual(json_url, '/django_mptt_example/country/tree_json/') self.assertEqual(tree_element.attr('data-csrf-cookie-name'), 'csrftoken') # check that js is included self.assertEqual(len(countries_page.pyquery(SCRIPT_JS_NAMESPACE)), 1) self.assertEqual(len(countries_page.pyquery(SCRIPT_JS_DJANGO_MPTT_ADMIN)), 1) def test_load_json(self): base_url = '/django_mptt_example/country/tree_json/' # -- load json json_data = self.app.get(base_url).json self.assertEqual(len(json_data), 1) root = json_data[0] self.assertEqual(root['name'], 'root') self.assertEqual(len(root['children']), 7) africa_id = Country.objects.get(name='Africa').id africa = root['children'][0] change_url = '/django_mptt_example/country/{0:d}/change/'.format(africa_id) self.assertEqual( africa, dict( name='Africa', id=africa_id, url=change_url, move_url='/django_mptt_example/country/{0:d}/move/'.format(africa_id), load_on_demand=True, ) ) # no children loaded beyond level 1 self.assertFalse(hasattr(africa, 'children')) # -- load subtree json_data = self.app.get('{0!s}?node={1:d}'.format(base_url, africa_id)).json self.assertEqual(len(json_data), 58) self.assertEqual(json_data[0]['name'], 'Algeria') # -- issue 8; selected node does not exist self.app.get('{0!s}?selected_node=9999999'.format(base_url)) def test_grid_view(self): # - get grid page grid_page = self.app.get('/django_mptt_example/country/grid/') # get first row row_index = 0 first_row = grid_page.pyquery('#result_list tbody tr').eq(row_index) # 'name' column self.assertEqual(first_row.find('td').eq(1).text(), 'Afghanistan') # 'code' column self.assertEqual(first_row.find('th').text(), 'AF') # link to edit page afghanistan_id = Country.objects.get(name='Afghanistan').id change_url = '/django_mptt_example/country/{0:d}/change/'.format(afghanistan_id) self.assertEqual(first_row.find('a').attr('href'), change_url) # check that js is not included self.assertEqual(len(grid_page.pyquery(SCRIPT_JS_NAMESPACE)), 0) self.assertEqual(len(grid_page.pyquery(SCRIPT_JS_DJANGO_MPTT_ADMIN)), 0) def test_move_view(self): def get_continents(): return ','.join(c.name for c in Country.objects.filter(level=1).order_by('lft')) def do_move(source_id, target_id, position): countries_page = self.app.get('/django_mptt_example/country/') csrf_token = countries_page.form['csrfmiddlewaretoken'].value response = self.app.post( '/django_mptt_example/country/{0:d}/move/'.format(source_id), params=dict( csrfmiddlewaretoken=csrf_token, target_id=target_id, position=position, ) ) self.assertEqual(response.json, dict(success=True)) # setup bouvet_island = Country.objects.get(code='BV') oceania = Country.objects.get(name='Oceania') self.assertEqual(bouvet_island.parent.name, 'Antarctica') # - move Bouvet Island under Oceania do_move(bouvet_island.id, oceania.id, 'inside') bouvet_island = Country.objects.get(code='BV') self.assertEqual(bouvet_island.parent.name, 'Oceania') # - move Antartica before Africa self.assertEqual(get_continents(), 'Africa,Antarctica,Asia,Europe,North America,Oceania,South America') do_move( Country.objects.get(name='Antarctica', level=1).id, Country.objects.get(name='Africa').id, 'before' ) self.assertEqual(get_continents(), 'Antarctica,Africa,Asia,Europe,North America,Oceania,South America') # move Antarctica after Europe do_move( Country.objects.get(name='Antarctica', level=1).id, Country.objects.get(name='Europe').id, 'after' ) self.assertEqual(get_continents(), 'Africa,Asia,Europe,Antarctica,North America,Oceania,South America') # unknown position self.assertRaisesMessage( Exception, 'Unknown position', lambda: do_move( Country.objects.get(name='Antarctica', level=1).id, Country.objects.get(name='Europe').id, 'unknown' ) ) def login(self, username, password): login_page = self.app.get('/login/') form = login_page.form form['username'] = username form['password'] = password form.submit() response = self.app.get('/') self.assertEqual(response.context['user'].username, username) def test_popup(self): # popup must return grid view grid_page = self.app.get('/django_mptt_example/country/?{0!s}=true'.format(IS_POPUP_VAR)) first_row = grid_page.pyquery('#result_list tbody tr').eq(0) self.assertEqual(first_row.find('td').eq(0).text(), 'Afghanistan') def test_permissions(self): # admin2 doesn't have access because he's no superuser admin2 = User.objects.create_user('admin2', '<EMAIL>', 'p') admin2.is_staff = True admin2.save() self.app.get('/logout/') self.login('admin2', 'p') # tree view self.app.get('/django_mptt_example/country/', status=403) def test_filter(self): # - tree view with all continents countries_page = self.app.get('/django_mptt_example/country/') self.assertEqual( countries_page.pyquery('#changelist-filter li a').text(), "All Africa Antarctica Asia Europe North America Oceania South America" ) # - filter on 'Europe' countries_page = self.app.get('/django_mptt_example/country/?continent=Europe') tree_div = countries_page.pyquery('#tree') self.assertEqual(tree_div.attr('data-url'), '/django_mptt_example/country/tree_json/?continent=Europe') self.assertEqual( tree_div.attr('data-insert_at_url'), '/django_mptt_example/country/add/?_changelist_filters=continent%3DEurope' ) # test json data # add `selected_node` parameter json_data = self.app.get('/django_mptt_example/country/tree_json/?continent=Europe&selected_node=2').json self.assertEqual(len(json_data), 1) root = json_data[0] self.assertEqual(root['name'], 'Europe') self.assertEqual(len(root['children']), 50) country_node = root['children'][0] self.assertEqual( country_node['url'], "/django_mptt_example/country/{0!s}/change/?_changelist_filters=continent%3DEurope".format(country_node['id']) ) # check urls object_tool_buttons = countries_page.pyquery('.object-tools a') self.assertEqual(len(object_tool_buttons), 2) self.assertEqual( object_tool_buttons.eq(0).attr('href'), '/django_mptt_example/country/add/?_changelist_filters=continent%3DEurope' ) self.assertEqual( object_tool_buttons.eq(1).attr('href'), '/django_mptt_example/country/grid/?continent=Europe' ) # - grid view; filter on 'Europe' grid_page = self.app.get('/django_mptt_example/country/grid/?continent=Europe') object_tool_buttons = grid_page.pyquery('.object-tools a') self.assertEqual(len(object_tool_buttons), 2) self.assertEqual( object_tool_buttons.eq(0).attr('href'), '/django_mptt_example/country/add/?_changelist_filters=continent%3DEurope' ) self.assertEqual( object_tool_buttons.eq(1).attr('href'), '/django_mptt_example/country/?continent=Europe' ) ``` #### File: django_mptt_example/tests/utils.py ```python import os from django.core import serializers def read_testdata(): fixture_filename = os.path.join(os.path.dirname(__file__), 'testdata/countries.json') with open(fixture_filename) as f: for obj in serializers.deserialize("json", f.read()): obj.save() ```
{ "source": "jmsplank/phdhelper", "score": 2 }
#### File: phdhelper/suMMSary/suMMSary.py ```python import numpy as np import pyspedas from phdhelper.helpers import title_print from phdhelper.helpers.CONSTANTS import c, k_B, m_e, m_i, mu_0, q from pytplot import data_quants import matplotlib.pyplot as plt from datetime import datetime as dt from cached_property import cached_property class EventHandler: FPI = None FPI_DIST = None FSM = None FGM = None trange = None probe = None def load_FGM(self): self.FGM = pyspedas.mms.fgm( trange=self.trange, probe=self.probe, data_rate="brst" ) def load_FSM(self): raise NotImplementedError() def load_FPI_DIST(self): self.FPI_DIST = pyspedas.mms.fpi( trange=self.trange, probe=self.probe, data_rate="brst", datatype="dis-dist", ) def load_FPI(self): self.FPI = pyspedas.mms.fpi( trange=self.trange, probe=self.probe, data_rate="brst" ) @staticmethod def get_tplot_data(var_str, sl=None, time=False): if not time: if sl is None: # Get all data return data_quants[var_str].values else: return data_quants[var_str].values[sl] else: if sl is None: # Get all data return data_quants[var_str].coords["time"].values else: return data_quants[var_str].coords["time"].values[sl] class TimeMMS(EventHandler): def __init__(self, kw): self.kw = kw @cached_property def timestamp(self): return self.get_tplot_data(self.kw, time=True) @cached_property def date_time(self): return np.array([dt.utcfromtimestamp(t) for t in self.timestamp]) def date_string(self, fmt="%H:%M"): return np.array([dt.strftime(t, fmt) for t in self.date_time]) class Species(EventHandler): def __init__(self, kw) -> None: self.kw = kw @cached_property def value(self): return self.get_tplot_data(self.kw) @cached_property def time(self): return TimeMMS(self.kw) def plot(self): plt.plot(self.value) def __repr__(self): return ( f"Species({self.kw})" "Available properties:" " value" "Available methods:" " plot" ) class MultiSpecies: def __init__(self, ion_kw: str, electron_kw: str) -> None: self.ion_kw = ion_kw self.electron_kw = electron_kw @cached_property def ion(self): return Species(self.ion_kw) @cached_property def electron(self): return Species(self.electron_kw) class Event(EventHandler): def __init__( self, trange: str, required_instruments: str, probe: str = "1" ) -> None: self.trange = trange self.required_instruments = required_instruments.upper() self.probe = probe if "FGM" in required_instruments: self.load_FGM() if "FPI" in required_instruments: self.load_FPI() if "FSM" in required_instruments: self.load_FSM() if "FPI_DIST" in required_instruments: self.load_FPI_DIST() @cached_property def B(self): return Species(f"mms{self.probe}_fgm_b_gse_brst_l2") @cached_property def v(self): return MultiSpecies( f"mms{self.probe}_dis_bulkv_gse_brst", f"mms{self.probe}_des_bulkv_gse_brst", ) @cached_property def T(self): return MultiSpecies( f"mms{self.probe}_dis_temppara_brst", f"mms{self.probe}_dis_tempperp_brst", ) @cached_property def E(self): return MultiSpecies( f"mms{self.probe}_dis_energyspectr_omni_brst", f"mms{self.probe}_des_energyspectr_omni_brst", ) # @property # def v_0(self, species="i"): # title_print("Calculating background flow speed") # species = self.Species(species) # if species.ion: # self.v_0_i = np.mean(np.linalg.norm(self.v_i, axis=1)) # if species.elec: # self.v_0_e = np.mean(np.linalg.norm(self.v_e, axis=1)) # @property # def v_A(self): # title_print("Calculating Alfven speed") # self.v_A = self.mean_B / np.sqrt(mu_0 * self.number_density_i) / 1e3 # @property # def number_density(self, species="i"): # species = self.Species(species) # if species.ion: # self.number_density_i = ( # self.get_tplot_data(f"mms{self.probe}_dis_numberdensity_brst") * 1e6 # ).mean() # if species.elec: # self.number_density_e = ( # self.get_tplot_data(f"mms{self.probe}_des_numberdensity_brst") * 1e6 # ).mean() # @property # def beta(self, species="i"): # title_print("Calculating plasma betas") # species = self.Species(species) # magPress = self.mean_B ** 2 / (2 * mu_0) # if species.ion: # self.beta_i = ( # self.number_density_i * k_B * self.T_i[:, 0].mean() # ) / magPress # if species.elec: # self.beta_e = ( # self.number_density_e * k_B * self.T_e[:, 0].mean() # ) / magPress # @property # def rho(self, species="i"): # title_print("Calculating gyroradius") # species = self.Species(species) # if species.ion: # i_thermal_velocity = np.sqrt(self.T_i[:, 1].mean() * 2 * q / m_i) / 1e3 # i_gyrofrequency = q * self.mean_B / m_i # self.rho_i = i_thermal_velocity / i_gyrofrequency # if species.elec: # e_thermal_velocity = np.sqrt(self.T_i[:, 1].mean() * 2 * q / m_e) / 1e3 # e_gyrofrequency = q * self.mean_B / m_e # self.rho_e = e_thermal_velocity / e_gyrofrequency # @property # def p(self, species="i"): # title_print("Calculating Intertial length") # species = self.Species(species) # if species.ion: # i_plasma_frequency = 1.32e3 * np.sqrt(self.number_density_i) # self.p_i = c / i_plasma_frequency # self.p_i /= 1e3 # if species.elec: # e_plasma_frequency = 5.64e4 * np.sqrt(self.number_density_e) # self.p_e = c / e_plasma_frequency # self.p_e /= 1e3 # @property # def time(self, var="B"): # title_print("Getting time arrays") # var = var.split("|") # if "B" in var: # self.time_B = self.get_tplot_data( # f"mms{self.probe}_fgm_b_gse_brst_l2", time=True # ) # if "V" in var: # self.time_V = self.get_tplot_data( # f"mms{self.probe}_dis_bulkv_gse_brst", time=True # ) # if "e" in var: # self.time_e = self.get_tplot_data( # f"mms{self.probe}_des_temppara_brst", time=True # ) ```
{ "source": "jms/potential-bassoon", "score": 2 }
#### File: srl/services/parse.py ```python from django.conf import settings import string from math import floor alphabet = '0123456789ABCDEFGHJKLMNPQRSTUVWXYZ_abcdefghijkmnopqrstuvwxyz' def encode(url_id): return numtosxgf(url_id, settings.SHORT_URL_MAX_LEN) def decode(code): return sxgtonum(code) # http://faruk.akgul.org/blog/tantek-celiks-newbase60-in-python-and-java/ # encode number to base60 def numtosxg(n): s = '' char_list = alphabet if not isinstance(n, (int,)) or n == 0: return '0' while n > 0: n, i = divmod(n, 60) s = char_list[i] + s return s # number to base60, padding chars (string length) def numtosxgf(n, f): s = numtosxg(n) if not isinstance(f, (int,)): f = 1 f -= len(s) while f > 0: s = '0' + s f -= 1 return s # convert string to number base60 def sxgtonum(s): n = 0 j = len(s) for i in range(0, j): c = ord(s[i]) if 48 <= c <= 57: c -= 48 elif 65 <= c <= 72: c -= 55 elif c == 73 or c == 108: # typo capital I, lowercase l to 1 c = 1 elif 74 <= c <= 78: c -= 56 elif c == 79: # error correct typo capital O to 0 c = 0 elif 80 <= c <= 90: c -= 57 elif c == 95: c = 34 elif 97 <= c <= 107: c -= 62 elif 109 <= c <= 122: c -= 63 else: c = 0 # treat all other noise as 0 n = 60 * n + c return n def to_base62(num, b=62): if b <= 0 or b > 62: return 0 base = string.digits + string.ascii_letters r = num % b res = base[r] q = floor(num / b) while q: r = q % b q = floor(q / b) res = base[int(r)] + res return res def to_base10(num, b=62): base = string.digits + string.ascii_letters limit = len(num) res = 0 for i in range(limit): res = b * res + base.find(num[i]) return res ```
{ "source": "jmspring/active-learning-detect", "score": 2 }
#### File: active-learning-detect/db/postgres-client.py ```python import sys import string import pg8000 import random import os import time import logging sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from functions.pipeline.shared.db_access import ImageTagDataAccess from functions.pipeline.shared.db_provider import PostGresProvider, DatabaseInfo from functions.pipeline.shared.db_access.db_access_v2 import generate_test_image_infos def get_transformed_id_to_url_map(id_to_url_map): updated_image_id_url_map = {} for image_id, old_url in id_to_url_map.items(): replaced_path = old_url.replace('new-uploads','perm-uploads') file_name_to_replace = extract_image_name_no_suffix(replaced_path) transformed_path = replaced_path.replace(file_name_to_replace,str(image_id)) updated_image_id_url_map[image_id] = transformed_path return updated_image_id_url_map def pretty_print_audit_history(conn, list_of_image_ids): if(len(list_of_image_ids) > 0): cursor = conn.cursor() image_ids_as_strings = [str(i) for i in list_of_image_ids] images_to_audit = '{0}'.format(', '.join(image_ids_as_strings)) query = ("SELECT a.imageid,c.originalimagename, b.tagstatename, d.username, a.ArchiveDtim FROM image_tagging_state_audit a " "JOIN tagstate b ON a.tagstateid = b.tagstateid " "JOIN image_info c on a.imageid = c.imageid " "JOIN user_info d on a.modifiedbyuser = d.userid " "WHERE a.ImageId in ({0}) " "ORDER BY a.ImageId,ArchiveDtim ASC") cursor.execute(query.format(images_to_audit)) row = cursor.fetchone() print() if(row != None): print("ImageId\tImgName\tTagState\tUser\tLoggedTime") while row: print("{0}\t{1}\t{2}\t{3}\t{4}".format(str(row[0]),str(row[1]),str(row[2]),str(row[3]),str(row[4]))) row = cursor.fetchone() else: print("No images!") def extract_image_name_no_suffix(url): start_idx = url.rfind('/')+1 end_idx = url.rfind('.') return url[start_idx:end_idx] def extract_image_id_from_urls(list_of_image_urls): extracted_image_ids = [] for url in list_of_image_urls: extracted_id = int(extract_image_name_no_suffix(url)) extracted_image_ids.append(extracted_id) return extracted_image_ids def main(num_of_images,user_name): try: if(os.getenv("DB_HOST") is None or os.getenv("DB_USER") is None or os.getenv("DB_NAME") is None or os.getenv("DB_PASS") is None): print("Please set environment variables for DB_HOST, DB_USER, DB_NAME, DB_PASS") return if(num_of_images < 5 or num_of_images > 20): print("Number of images should be between 5 and 20") return if(not user_name): print("User name cannot be empty or whitespace") return ################################################################# # Below we simulate the following scenarios: # Creating a User # Onboarding of new images # Checking out images to tag # Checking in images that have or have not been tagged ################################################################# db_config = DatabaseInfo(os.getenv("DB_HOST"),os.getenv("DB_NAME"),os.getenv("DB_USER"),os.getenv("DB_PASS")) pg = PostGresProvider(db_config) data_access = ImageTagDataAccess(pg) user_id = data_access.create_user(user_name) NUMBER_OF_IMAGES = num_of_images # Simulate new images from VOTT getting created in some blob store mocked_images = generate_test_image_infos(NUMBER_OF_IMAGES) print() print("***\tSubject matter experts use the CLI to upload new images...") time.sleep(1) print() # Simulate the data access layer creating entries in the DB for the new images # and returning a map of the original image url to generaled image id url_to_image_id_map = data_access.add_new_images(mocked_images, user_id) print() print("***\tBehind the scenes Az Functions move the images to a new blob location") time.sleep(1) print() #Invert the above map since the client will now be using the image id as a key image_to_url = {v: k for k, v in url_to_image_id_map.items()} # Simulates when the client has moved images to a new blob store container # and creates a payload for the data access layer with a map for image id to new urls updated_image_id_url_map = get_transformed_id_to_url_map(image_to_url) # Simulates the call the client makes to the data access layer # with the new payload. Image urls get updated in the DB data_access.update_image_urls(updated_image_id_url_map, user_id) print() print("***\tThe newly uploaded images are now onboarded with a 'ready to tag' state. See audit history") print() time.sleep(1) # Prints the audit history of the generated of all the newly onboarded # images involved in the simulation to prove the state tracking for onboarding. image_ids = list(updated_image_id_url_map.keys()) pretty_print_audit_history(pg.get_connection(),image_ids) time.sleep(3) print() print("***\tSubject matter experts use the CLI to retrieve images in a 'ready to tag' state") time.sleep(2) print() list_of_image_urls = data_access.get_images_for_tagging(NUMBER_OF_IMAGES, user_id) print() print("***\tLet's wait for image taggers to get through the set of images....") time.sleep(5) print() print("***\tDone! Though the subject matter experts didn't complete tagging all images") time.sleep(2) print() ''' print("***\tRegardless the SMEs use the CLI to post the VOTT json results") print() # Since we rename the original image name to a integer that matchs the DB image id # we need to extract out the image ids. Below this code is simulates extracting # image ids from the VOTT JSON extracted_image_ids = extract_image_id_from_urls(list_of_image_urls) # Let assume 3 images got tagged and 2 images did not. The client will # call corresponding methods to update tagged and untagged states completed_tagged_ids = [] incomplete_tagged_ids = [] num_of_incomplete = NUMBER_OF_IMAGES/5 for idx, img_id in enumerate(extracted_image_ids): if(idx > num_of_incomplete): completed_tagged_ids.append(img_id) else: incomplete_tagged_ids.append(img_id) data_access.update_tagged_images(completed_tagged_ids,user_id) data_access.update_incomplete_images(incomplete_tagged_ids,user_id) print() print("***\tVOTT json results are posted. Lets take a look at the audit history") time.sleep(2) # Finally lets look at the audit history again. We expect to see some images as tagged # and some as incomplete print() pretty_print_audit_history(pg.get_connection(),image_ids) print() print("Success!") ''' #__verify_connect_to_db(get_connection()) #get_unvisited_items(get_connection(),count_of_images) except Exception as e: print(e) if __name__ == "__main__": #print(sys.path) console = logging.StreamHandler() log = logging.getLogger() log.setLevel(logging.getLevelName('DEBUG')) log.addHandler(console) if (len(sys.argv) != 3): print("Usage: {0} (Number of Images) (User Name)".format(sys.argv[0])) else: main(int(sys.argv[1]), str(sys.argv[2])) ``` #### File: shared/onboarding/__init__.py ```python import os import logging from enum import Enum from datetime import datetime import time import asyncio TIMEOUT_SECONDS = 1 class CopyStatus(Enum): SUCCESS = "success", PENDING = "pending", ABORTED = "aborted", FAILED = "failed", TIMEOUT = "timeout" # custom status class DeleteStatus(Enum): SUCCESS = "success", PENDING = "pending", ABORTED = "aborted", FAILED = "failed", TIMEOUT = "timeout" # custom status # Initiates copy of images from temporary to permanent storage, and checks the status of each operation. # Returns two dictionaries, copy_succeeded_dict and copy_error_dict, in the format {sourceURL : destinationURL }. def copy_images_to_permanent_storage(image_id_url_map, copy_source, copy_destination, blob_service): copy_initiated_dict = {} # Dictionary of images for which copy was successfully initiated copy_error_dict = {} # Dictionary of images for which some error/exception occurred # Create new blob names for key, value in image_id_url_map.items(): original_blob_url = key # original_blob_name = original_blob_url.split("/")[-1] file_extension = os.path.splitext(original_blob_url)[1] image_id = value new_blob_name = (str(image_id) + file_extension) # Create the destination blob URL destination_blob_path = blob_service.make_blob_url(copy_destination, new_blob_name) # Copy blob from temp storage to permanent storage logging.info("Now initiating copy of image from temporary to permanent storage...") # Log source and destination paths for debugging logging.info("Source path: " + original_blob_url) logging.info("Destination path: " + destination_blob_path) try: blob_service.copy_blob(copy_destination, new_blob_name, original_blob_url) logging.info("Done.") # Add to list of items for which we need to check status if copy was initiated successfully copy_initiated_dict[original_blob_url] = destination_blob_path except Exception as e: logging.error("ERROR: Exception thrown during copy attempt: " + str(e)) copy_error_dict[original_blob_url] = destination_blob_path # Wait a few seconds before checking status time.sleep(TIMEOUT_SECONDS) copy_succeeded_dict = {} # Dictionary of copy operations that were successful # Get copy status of each item. If status is succeeded, add to success list. Otherwise, add to error list. for key, value in copy_initiated_dict.items(): target_blob_properties = blob_service.get_blob_properties(copy_destination, value.split("/")[-1]) copy_properties = target_blob_properties.properties.copy # logging.info("Copy status of image" + value.split("/")[-1] + " is: " + copy_properties.status) # Debugging # if copy_properties.status == CopyStatus.SUCCESS: # Note: Want to remove hard-coding, but this line does not work if copy_properties.status == "success": copy_succeeded_dict[key] = value else: copy_error_dict[key] = value # Debugging # logging.info("copy_succeeded_dict:") # for key, value in copy_succeeded_dict.items(): # logging.info("Key: " + key + " Value: " + value) # logging.info("copy_error_dict:") # for key, value in copy_error_dict.items(): # logging.info("Key: " + key + " Value: " + value) return copy_succeeded_dict, copy_error_dict # Initiates deletion of images from temporary storage, and then checks whether the images still exist in the container. # Returns two dictionaries, delete_succeeded_dict and delete_error_dict, in the format {sourceURL : destinationURL }. def delete_images_from_temp_storage(delete_images_dict, delete_location, blob_service): delete_initiated_dict = {} # Dictionary of images for which delete was successfully initiated delete_error_dict = {} # Dictionary of images for which some error/exception occurred # Delete blobs from container for key, value in delete_images_dict.items(): logging.info("Now initiating delete of image from temp storage...") logging.info("Image to be deleted: " + key) try: blob_service.delete_blob(delete_location, key.split("/")[-1]) logging.info("Done.") # Add to list of items to check status if delete was initiated successfully delete_initiated_dict[key] = value except Exception as e: logging.error("ERROR: Exception thrown during delete attempt: " + str(e)) delete_error_dict[key] = value # Wait a few seconds before checking status time.sleep(TIMEOUT_SECONDS) delete_succeeded_dict = {} # Dictionary of delete operations that were successful # List blobs in the source container. For each image in delete_initiated_dict, if the blob no longer exists, # add to delete_succeeded_dict. If the blob still exists, add to delete_error_dict. blob_list = blob_service.list_blobs(delete_location) for key, value in delete_initiated_dict.items(): blob_name = key.split('/')[-1] if blob_name in blob_list: delete_error_dict[key] = value else: delete_succeeded_dict[key] = value return delete_succeeded_dict, delete_error_dict ```
{ "source": "jmspring/azure_blob_examples", "score": 2 }
#### File: jmspring/azure_blob_examples/container_copy.py ```python import json import os import sys import uuid import time from datetime import datetime, timedelta from azure.storage.blob import BlockBlobService, ContainerPermissions def main(): # get command line args account = sys.argv[1] secret = sys.argv[2] srcContainer = sys.argv[3] files = sys.argv[4:] # generate container name destContainer = str(uuid.uuid4()).replace('-', '') try: # connect to blob store bs = BlockBlobService(account_name=account, account_key=secret) # create and setup container, by default a container is private bs.create_container(destContainer) bs.set_container_acl(destContainer) # perform blob copy copyStartTime = int(round(time.time() * 1000)) copyProps = {} for f in files: srcUrl = 'https://{}.blob.core.windows.net/{}/{}'.format(account, srcContainer, f) cp = bs.copy_blob(destContainer, f, srcUrl) copyProps[f] = cp # wait for copy to finish while len(copyProps.keys()) > 0: for f, prop in copyProps.items(): bp = bs.get_blob_properties(destContainer, f) copyProps[f] = None if bp.properties.copy.status is not 'pending' else bp copyProps = { k:v for k, v in copyProps.items() if v } # copy completed copyEndTime = int(round(time.time() * 1000)) print('Blob copy completed in {}ms'.format(copyEndTime - copyStartTime), file=sys.stderr) # generate SAS token, read only, valid for an hour token = bs.generate_container_shared_access_signature(destContainer, ContainerPermissions.READ | ContainerPermissions.LIST, datetime.utcnow() + timedelta(hours=1)) # return information result = { 'storage_account': account, 'container': destContainer, 'sas_token': token } print(json.dumps(result, indent=4, sort_keys=True)) except Exception as e: print(e, file=sys.stderr) if __name__ == "__main__": main() ```
{ "source": "jmspring/azure-scripts", "score": 2 }
#### File: resource-custodian/ResourceCustodian/__init__.py ```python import datetime import logging import datetime import os import sys from azure.common.credentials import ServicePrincipalCredentials from azure.mgmt.resource import ResourceManagementClient from azure.monitor import MonitorClient import azure.functions as func def main(mytimer: func.TimerRequest) -> None: utc_timestamp = datetime.datetime.utcnow().replace( tzinfo=datetime.timezone.utc).isoformat() # setup clients subscription_id = os.environ['AZURE_SUBSCRIPTION_ID'] credentials = ServicePrincipalCredentials( client_id=os.environ['AZURE_CLIENT_ID'], secret=os.environ['AZURE_CLIENT_SECRET'], tenant=os.environ['AZURE_TENANT_ID'] ) rgClient = ResourceManagementClient(credentials, subscription_id) mClient = MonitorClient(credentials, subscription_id) # retrieve resource groups filter_prefix=os.environ['AZURE_RESOURCE_GROUP_PREFIX'] matcthing_resource_groups = [] for item in rgClient.resource_groups.list(): if item.name.lower().startswith(filter_prefix): matcthing_resource_groups.append(item.name) # check create date for each resource group inactivity_window=int(os.environ['AZURE_RESOURCE_GROUP_INACTIVITY']) inactivity_date = datetime.datetime.today() - datetime.timedelta(minutes=inactivity_window) groups_to_remove = [] for rg in matcthing_resource_groups: filter = " and ".join([ "eventTimestamp ge {}".format(inactivity_date), "resourceGroupName eq '{}'".format(rg) ]) select = ",".join([ "eventTimestamp", "eventName", "operationName", "resourceGroupName" ]) activity_logs = mClient.activity_logs.list( filter=filter, select=select ) group_active = False; for log in activity_logs: group_active = True break if not group_active: groups_to_remove.append(rg) # remove groups async_handles = [] for rg in groups_to_remove: logging.info("deleting resource group: {}".format(rg)) async_handles.append(rgClient.resource_groups.delete(rg)) for handle in async_handles: handle.wait() logging.info('Resource Custodian ran at %s', utc_timestamp) ```
{ "source": "jmspring/deis_certificate_manager", "score": 3 }
#### File: jmspring/deis_certificate_manager/deis_certificate_manager.py ```python import requests import sys import time import json import threading from os import environ import atexit from flask import Flask from flask import Response from flask import request from deis_rest_client import DeisRestClient # globals shutdownRequested = False certhandlerThread = None stats = { 'applications': { 'already_configured': [], 'certificate_added': [], 'problem': [] } } def environment_variables(): env = { 'deisUrl': environ.get('DEIS_CONTROLLER_URL', None), 'deisUsername': environ.get('DEIS_USERNAME', None), 'deisPassword': environ.get('DEIS_PASSWORD', None), 'domainName': environ.get('DEIS_APPLICATION_DOMAIN_NAME', None), 'letsEncryptEmail': environ.get('LETS_ENCRYPT_CERTIFICATE_EMAIL', None), 'letsEncryptServer': environ.get('LETS_ENCRYPT_SERVER', None), 'workerImage': environ.get('DEIS_CERTIFICATE_WORKER_IMAGE', None), 'proxies': environ.get('HTTP_PROXIES', None), } return env def required_environment_vars_set(env): if env['deisUrl'] != None and \ env['deisUsername'] != None and \ env['deisPassword'] != None and \ env['domainName'] != None and \ env['letsEncryptEmail'] != None and \ env['letsEncryptServer'] != None and \ env['workerImage'] != None: return True return False def mask_sensitive_environment_variables(env): for key in env.keys(): if 'PASSWORD' in key.upper(): env[key] = '********' return env def wait_for_cert_worker(worker, domain, timeout=30, proxies=None): ready = False start = time.time() while not ready: r = requests.get('http://' + worker + '.' + domain + '/', proxies=proxies) if r.status_code == 200: ready = True elif time.time() - start > timeout: break else: time.sleep(1) return ready def request_certificate(worker, domain, proxies=None): r = requests.get('http://' + worker + '.' + domain + '/generate_cert', proxies=proxies) if r.status_code != 201: print 'Error requesting certificate: {}'.format(r.status_code) return None return r.json() def all_certificate_domains(certs): domains = list((certs[cert]['domains']) for cert in certs) return [domain for subdomains in domains for domain in subdomains] def all_application_domains(client, apps): result = [] for app in apps: domains = client.list_domains(app) if domains and domains['count'] > 0: r = list((domain['domain']) for domain in domains['results']) result.extend(r) return result def is_certificate_needed(client, fqdn, certs, apps): app = fqdn[:fqdn.index('.')] # does the app already have a certificate? if app in certs: # is the app properly configured? cert = certs[app] # does the certificate contain the fqdn in it's domain? if cert['domains'] and len(cert['domains']) > 0: if fqdn in cert['domains']: domains = client.list_domains(app) if not domains: raise SystemError('Unable to list domains for app {}'.format(app)) else: if domains['count'] > 0: if fqdn in list((domain['domain']) for domain in domains['results']): return False else: raise SystemError('Domain {} not associated with application {}'.format(fqdn, app)) else: raise SystemError('No domains for application {}'.format(app)) else: raise SystemError('FQDN ({}) not in certificate domains.'.format(fqdn)) else: raise SystemError('Certificate with name {} contains no domains.'.format(app)) # make sure an existing domain with the same fqdn doesn't exist domains = all_certificate_domains(certs) if domains and len(domains) > 0: if fqdn in domains: SystemError('Domain ({}) already associated with another certificate.'.format(fqdn)) domains = all_application_domains(client, apps) if fqdn in domains: # make sure the fqdn isn't associated with the correct app domains = client.list_domains(app) if fqdn in domains: return True else: SystemError('Domain ({}) already associated with another application.'.format(app)) return True def applications(client): result = None apps = client.list_applications() if apps and apps['count'] > 0: result = dict((app['id'], app) for app in apps['results']) return result def certificates(client): result = None certs = client.list_certs() if certs and certs['count'] > 0: result = dict((cert['name'], cert) for cert in certs['results']) return result def get_certificate_for_application(client, fqdn, letsEncryptEmail, letsEncryptServer, workerImage, proxies = None): error = None certinfo = None domainName = fqdn[fqdn.index('.') + 1:] # create an application for the worker process app = client.create_application() if app: appid = app['id'] # create the configuration for the application config = { 'APPLICATION_FQDN': fqdn, 'LETS_ENCRYPT_EMAIL': letsEncryptEmail, 'LETS_ENCRYPT_SERVER': letsEncryptServer } if client.create_config(appid, config): # assign the domain to the worker app if client.add_domain(appid, fqdn): # deploy the worker application if client.deploy_application(appid, workerImage): # the worker image can take awhile to be ready, so try # waiting for awhile until it comes up if wait_for_cert_worker(appid, domainName, proxies=proxies): certinfo = request_certificate(appid, domainName, proxies) if not certinfo: error = SystemError('Unable to retrieve certificate for {}'.format(appid)) else: error = SystemError('Timeout waiting for certificate worker task.') else: error = SystemError('Unable to deploy certificate worker task.') else: error = SystemError('Unable to assign domain {} to worker task {}'.format(fqdn, appid)) else: error = SystemError('Unable to set config for app {}'.format(appid)) # clean up if not client.destroy_application(appid): error = SystemError('Unable to destroy worker application: {}'.format(appid)) else: error = SystemError('Unable to create application for worker process.') if certinfo: return certinfo else: if error: return error else: return SystemError('An undefined error occurred while trying to get certificate.`') def install_certificate_for_app(client, fqdn, cert, key): app = fqdn[0:fqdn.index('.')] error = None # add certificate to the application if client.add_certificate(app, cert, key): # add the domain to the application if client.add_domain(app, fqdn): # add the domain to the certificate if client.add_domain_to_certificate(app, fqdn): return True else: error = SystemError('Unable to add domain {} to certificate {}'.format(fqdn, app)) else: error = SystemError('Unable to add domain {} to app {}.'.format(fqdn, app)) else: error = SystemError('Unable to add certificate {}.'.format(app)) return error def application_already_handled(app): global stats if app in stats['applications']['already_configured'] or \ app in stats['applications']['problem'] or \ app in stats['applications']['certificate_added']: return True return False def application_check_loop(): global shutdownRequested env = {} environment_ready = False client = None last_run = 0 while not shutdownRequested: if not environment_ready: env = environment_variables() if required_environment_vars_set(env): client = DeisRestClient(env['deisUrl'], \ env['deisUsername'], \ env['deisPassword'], \ env['proxies']) client.login() environment_ready = True continue else: # check every ten seconds if time.time() >= 10000: last_run = time.time() apps = applications(client) certs = certificates(client) for app in apps: # has the application already been handled? if application_already_handled(app): continue fqdn = '{}.{}'.format(app, env['domainName']) try: needcert = is_certificate_needed(client, fqdn, certs, apps) if not needcert: stats['applications']['already_configured'].append(app) continue except SystemError as se: print 'Error: {}'.format(se) stats['applications']['problem'].append(app) continue # get the certificate for the application cert = get_certificate_for_application(client, \ fqdn, \ env['letsEncryptEmail'], \ env['letsEncryptServer'], \ env['workerImage'], \ proxies=env['proxies']) if type(cert) is not dict: stats['applications']['problem'].append(app) print 'Error: {}'.format(cert) continue # install the certificate r = install_certificate_for_app(client, fqdn, cert['cert'], cert['key']) if type(r) is not bool: stats['applications']['problem'].append(app) print 'Error: {}'.format(r) else: stats['applications']['certificate_added'].append(app) time.sleep(0.25) def shutdown_server(): global certhandlerThread global shutdownRequested shutdownRequested = True # shutdown flask func = request.environ.get('werkzeug.server.shutdown') if func is None: raise RuntimeError('Not running with the Werkzeug Server') func() # wait for difference thread to shut down if certhandlerThread: t = certhandlerThread certhandlerThread = None t.join() def create_app(): app = Flask(__name__) @app.route('/config') def config(): masked_env = mask_sensitive_environment_variables(environment_variables()) output = json.dumps(masked_env, indent=4) + '\n' return Response(output, mimetype='text/plain') @app.route('/shutdown') def shutdown(): shutdown_server() return Response('ok\n', mimetype='text/plain') @app.route('/stats') def stats(): global stats output = '{}\n'.format(json.dumps(stats, sort_keys=True, indent=4, separators=(',', ': '))) return Response(output, mimetype='text/plain') def interrupt(): global certhandlerThread global shutdownRequested shutdownRequested = True if certhandlerThread: certhandlerThread.join() certhandlerThread = None def start_handler(): global certhandlerThread certhandlerThread = threading.Thread(target=application_check_loop) certhandlerThread.start() start_handler() atexit.register(interrupt) return app if __name__ == '__main__': app = create_app() # Bind to PORT if defined, otherwise default to 5000. port = int(environ.get('PORT', 5000)) app.run(host='0.0.0.0', port=port) ``` #### File: jmspring/deis_certificate_manager/deis_rest_client.py ```python import requests class DeisRestClient: username = None password = <PASSWORD> token = None baseUrl = None proxies = None def __init__(self, baseUrl, username, password, proxies = None): self.baseUrl = baseUrl if self.baseUrl.endswith('/'): self.baseUrl = self.baseUrl[:-1] self.username = username self.password = password if proxies: self.proxies = proxies def login(self): if self.username == None or self.password == None or self.baseUrl == None: return False r = requests.post(self.baseUrl + '/v2/auth/login/', json = { 'username': self.username, 'password': self.password }, proxies = self.proxies) if r.status_code != 200: return False self.token = r.json()['token'] return True def list_applications(self): if not self.token: if not self.login(): return None r = requests.get(self.baseUrl + '/v2/apps/', headers={ 'authorization': 'token ' + self.token }, proxies = self.proxies) if r.status_code != 200: return False return r.json() def application_detail(self, application): if not self.token: if not self.login(): return None r = requests.get(self.baseUrl + '/v2/apps/' + application + '/', headers={ 'authorization': 'token ' + self.token }, proxies = self.proxies) if r.status_code != 200: return False return r.json() def create_application(self): if not self.token: if not self.login(): return None r = requests.post(self.baseUrl + '/v2/apps/', headers={ 'authorization': 'token ' + self.token }, proxies = self.proxies) if r.status_code != 201: return None return r.json() def destroy_application(self, app): if not self.token: if not self.login(): return None r = requests.delete(self.baseUrl + '/v2/apps/' + app + '/', headers={ 'authorization': 'token ' + self.token }, proxies = self.proxies) if r.status_code != 204: return False return True def deploy_application(self, app, image): if not self.token: if not self.login(): return None r = requests.post(self.baseUrl + '/v2/apps/' + app + '/builds/', headers={ 'authorization': 'token ' + self.token }, json={ 'image': image }, proxies = self.proxies) if r.status_code != 201: return None return r.json() def create_config(self, app, config): if not self.token: if not self.login(): return None r = requests.post(self.baseUrl + '/v2/apps/' + app + '/config/', headers={ 'authorization': 'token ' + self.token }, json={ 'values': config }, proxies = self.proxies) if r.status_code != 201: return None return r.json() def list_certs(self): if not self.token: if not self.login(): return None r = requests.get(self.baseUrl + '/v2/certs/', headers={ 'authorization': 'token ' + self.token }, proxies = self.proxies) if r.status_code != 200: return False return r.json() def list_domains(self, app): if not self.token: if not self.login(): return None r = requests.get(self.baseUrl + '/v2/apps/' + app + '/domains/', headers={ 'authorization': 'token ' + self.token }, proxies = self.proxies) if r.status_code != 200: return False return r.json() def add_domain(self, app, domain): if not self.token: if not self.login(): return None r = requests.post(self.baseUrl + '/v2/apps/' + app + '/domains/', headers={ 'authorization': 'token ' + self.token }, json = { 'domain': domain }, proxies = self.proxies) if r.status_code != 201: return False return True def remove_domain(self, app, domain): if not self.token: if not self.login(): return None r = requests.delete(self.baseUrl + '/v2/apps/' + app + '/domain/' + domain, headers={ 'authorization': 'token ' + self.token }, proxies = self.proxies) if r.status_code != 204: return False return True def add_certificate(self, name, cert, key): if not self.token: if not self.login(): return None r = requests.post(self.baseUrl + '/v2/certs/', headers={ 'authorization': 'token ' + self.token }, json = { 'name': name, 'certificate': cert, 'key': key }, proxies = self.proxies) if r.status_code != 201: return False return True def add_domain_to_certificate(self, cert, domain): if not self.token: if not self.login(): return None r = requests.post(self.baseUrl + '/v2/certs/' + cert + '/domain/', headers={ 'authorization': 'token ' + self.token }, json = { 'domain': domain }, proxies = self.proxies) if r.status_code != 201: return False return True def get_certificate(self, cert): if not self.token: if not self.login(): return None r = requests.get(self.baseUrl + '/v2/certs/' + cert, headers={ 'authorization': 'token ' + self.token }, proxies = self.proxies) if r.status_code != 200: return False return r.json() ```
{ "source": "JMS-Software-Development/django-sockpuppet", "score": 2 }
#### File: management/commands/_base.py ```python from pathlib import Path from django.apps import apps from django.core.management.base import BaseCommand, CommandError class BaseGenerateCommand(BaseCommand): def lookup_app_path(self, app_name): try: config = apps.get_app_config(app_name) except LookupError as e: raise CommandError(str(e)) module_path = config.module.__path__[0] return module_path def call_stdout(self, msg, _type="WARNING"): style = getattr(self.style, _type) self.stdout.write(style(msg)) def create_file(self, folder, filename, contents): if folder == "": base_path = Path.cwd() else: base_path = self.module_path filepath = base_path / folder / filename if filepath.exists(): partial_path = "/".join(filepath.parts[-4:]) self.call_stdout( "{} already exists, so it will be skipped".format(partial_path) ) return try: filepath.parent.mkdir(parents=True) except FileExistsError: pass with filepath.open(mode="w") as f: f.write(contents) ``` #### File: management/commands/generate_reflex.py ```python import keyword from pathlib import Path from django.core.management import CommandError from django.template.loader import get_template from ._base import BaseGenerateCommand from ...utils import pascalcase TEMPLATES = { "_reflex.py": "sockpuppet/scaffolds/reflex.py", "_controller.js": "sockpuppet/scaffolds/controller.js", ".js": "sockpuppet/scaffolds/application.js", ".py": "sockpuppet/scaffolds/view.py", ".html": "sockpuppet/scaffolds/template.html", } class Command(BaseGenerateCommand): help = "Scaffold for reflex. Includes javascript and python." def add_arguments(self, parser): parser.add_argument( "app_name", nargs=1, type=str, help="The app where the generated files should be placed", ) parser.add_argument( "reflex_name", nargs="?", type=str, help="The name of the reflex and javascript controller", default="example", ) parser.add_argument( "--javascript", dest="javascript", action="store_true", help="Include this to generate a setup than includes javascript with controllers", ) parser.set_defaults(javascript=False) def handle(self, *args, **options): app_name = options["app_name"][0] reflex_name = options["reflex_name"].lower() using_javascript = options["javascript"] if not reflex_name.isidentifier(): raise CommandError( f"The reflex name ({reflex_name}) must be a valid Python identifier." ) if reflex_name == "_": raise CommandError("The reflex name must not be a single underscore.") if reflex_name in keyword.kwlist: raise CommandError( f"The reflex name ({reflex_name}) can't be a Python keyword." ) module_path = self.lookup_app_path(app_name) self.module_path = Path(module_path) paths = [ (False, "reflexes", "_reflex.py"), (True, "javascript", ".js"), (True, "javascript/controllers", "_controller.js"), (False, "views", ".py"), (False, "templates", ".html"), ] for without_js, path, suffix in paths: template_name = TEMPLATES[suffix] template = get_template(template_name) rendered = template.render( { "class_name": pascalcase(reflex_name), "reflex_name": reflex_name, "using_javascript": using_javascript, } ) if without_js and not using_javascript: # skipping these templates continue self.create_file(path, "{}{}".format(reflex_name, suffix), rendered) self.create_file("views", "__init__.py", "") self.create_file("reflexes", "__init__.py", "") self.call_stdout("Scaffolding generated!", _type="SUCCESS") if (self.module_path / "views.py").exists(): msg = "We created a views directory which means that you need to move your initial views there" self.call_stdout("") self.call_stdout(msg, _type="WARNING") self.call_stdout("Last step is to add the view to urls.py", _type="SUCCESS") ``` #### File: django-sockpuppet/sockpuppet/utils.py ```python try: from lxml import etree from io import StringIO from lxml.cssselect import CSSSelector HAS_LXML = True except ImportError: HAS_LXML = False from bs4 import BeautifulSoup def pascalcase(value: str) -> str: """capitalizes the first letter of each _-separated component. This method preserves already pascalized strings.""" components = value.split("_") if len(components) == 1: return value[0].upper() + value[1:] else: components[0] = components[0][0].upper() + components[0][1:] return "".join(x.title() for x in components) def camelcase(value: str) -> str: """capitalizes the first letter of each _-separated component except the first one. This method preserves already camelcased strings.""" components = value.split("_") if len(components) == 1: return value[0].lower() + value[1:] else: components[0] = components[0][0].lower() + components[0][1:] return components[0].lower() + "".join(x.title() for x in components[1:]) def camelize_value(value): """camelizes all keys/values in a given dict or list""" if isinstance(value, list): value = [camelize_value(val) for val in value] elif isinstance(value, dict): value = {camelcase(key): camelize_value(val) for key, val in value.items()} return value def _lxml_selectors(html, selectors): parser = etree.HTMLParser() document = etree.parse(StringIO(html), parser) selectors = [CSSSelector(selector) for selector in selectors] selectors = [selector for selector in selectors if selector(document)] return document, selectors def _bs_selectors(html, selectors): document = BeautifulSoup(html) selectors = [selector for selector in selectors if document.select(selector)] return document, selectors def get_document_and_selectors(html, selectors): if HAS_LXML: return _lxml_selectors(html, selectors) return _bs_selectors(html, selectors) def parse_out_html(document, selector): if HAS_LXML: return "".join( [ etree.tostring(e, method="html").decode("utf-8") for e in selector(document) ] ) return "".join([e.decode_contents() for e in document.select(selector)]) ```
{ "source": "jmsstudio/practice-python", "score": 4 }
#### File: jmsstudio/practice-python/guess_the_number.py ```python import random import simplegui range_limit = 100 def new_game(): # initialize global variables global secret_number, range_limit, num_guess print "=== GUESS THE NUMBER ===" num_guess = 0 secret_number = random.randrange(0, range_limit) def range100(): # changes the range to [0,100) and starts a new game global range_limit, max_guesses range_limit = 100 max_guesses = 7 new_game() def range1000(): # changes the range to [0,1000) and starts a new game global range_limit, max_guesses range_limit = 1000 max_guesses = 10 new_game() def input_guess(guess): # main game logic global secret_number, max_guesses, num_guess num_guess += 1 _guess = int(guess) print "Guess was " + str(_guess) if num_guess > max_guesses: print "Game over - number of guesses exceeded " + str(max_guesses) new_game() else: if _guess > secret_number: print "Higher" elif _guess < secret_number: print "Lower" else: print "Correct" new_game() frame = simplegui.create_frame("Guess the number", 200, 300) frame.add_button("Reset - Range [0-100)", range100) frame.add_button("Reset - Range [0-1000)", range1000) frame.add_input("Guess the number", input_guess, 40) frame.start() range100() ```
{ "source": "jmstadt/cell_segmentation", "score": 2 }
#### File: jmstadt/cell_segmentation/app.py ```python from fastai.vision import * from fastai.metrics import error_rate from flask import Flask, request, url_for, flash from werkzeug import secure_filename from flask import send_from_directory import numpy as np import os from os import rename, listdir from PIL import Image import class_def from class_def import SegLabelListCustom from class_def import SegItemListCustom path = '' export_file_url = 'https://www.dropbox.com/s/bjszupvu7a15ccb/cell_export.pkl?dl=1' export_file_name = 'cell_export.pkl' def down_load_file(filename, url): """ Download an URL to a file """ with open(filename, 'wb') as fout: response = requests.get(url, stream=True) response.raise_for_status() # Write response data to file for block in response.iter_content(4096): fout.write(block) def download_if_not_exists(filename, url): """ Download a URL to a file if the file does not exist already. Returns ------- True if the file was downloaded, False if it already existed """ if not os.path.exists(filename): down_load_file(filename, url) return True return False download_if_not_exists(export_file_name, export_file_url) class SegLabelListCustom(SegmentationLabelList): def open(self, fn): return open_mask(fn, div=True) class SegItemListCustom(SegmentationItemList): _label_cls = SegLabelListCustom learn = load_learner(path, export_file_name) UPLOAD_FOLDER = '' ALLOWED_EXTENSIONS = set(['jpg', 'png']) app = Flask(__name__) app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER def allowed_file(filename): return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS @app.route('/', methods=['GET', 'POST']) def upload_file(): if request.method == 'POST': # check if the post request has the file part if 'file' not in request.files: flash('No file part') return redirect(request.url) file = request.files['file'] # if user does not select file, browser also # submit an empty part without filename if file.filename == '': flash('No selected file') return redirect(request.url) if file and allowed_file(file.filename): filename = secure_filename(file.filename) #filename = file.filename file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename)) image = open_image(filename) image_url = url_for('uploaded_file', filename=filename) think = learn.predict(image) think_np = np.array(think[1]) think_np.shape = (256,256) think_np = think_np.astype(int) think_np[think_np > 0] = 255 think_im = Image.fromarray((think_np).astype('uint8'), mode='L') think_im.save(os.path.join(app.config['UPLOAD_FOLDER'], 'think2_im.png')) think_im_url = url_for('uploaded_file', filename='think2_im.png') print(think_im_url) #image.show(y=learn.predict(image)[0]) return '''<h1>The cell image is:</h1> <img src= "{}" height = "85" width="200"/> <h1>The cell segmentation is:</h1> <img src= "{}" height = "85" width="200"/>'''.format(image_url, think_im_url) return ''' <!doctype html> <title>Upload new File</title> <h1>Upload an image of Cells</h1> <form method=post enctype=multipart/form-data> <input type=file name=file> <input type=submit value=Upload> </form> ''' @app.route('/uploads/#') def uploaded_file(filename): return send_from_directory(app.config['UPLOAD_FOLDER'], filename) ```
{ "source": "jmstadt/Employee_Turnover_Prediction", "score": 3 }
#### File: jmstadt/Employee_Turnover_Prediction/app.py ```python from fastai.tabular import * from flask import Flask, request import requests import os.path path = '' export_file_url = 'https://www.dropbox.com/s/w55aizavo8ntqps/HR_data_Employee_Turnover_export.pkl?dl=1' export_file_name = 'HR_data_Employee_Turnover_export.pkl' def down_load_file(filename, url): """ Download an URL to a file """ with open(filename, 'wb') as fout: response = requests.get(url, stream=True) response.raise_for_status() # Write response data to file for block in response.iter_content(4096): fout.write(block) def download_if_not_exists(filename, url): """ Download a URL to a file if the file does not exist already. Returns ------- True if the file was downloaded, False if it already existed """ if not os.path.exists(filename): down_load_file(filename, url) return True return False download_if_not_exists(export_file_name, export_file_url) learn = load_learner(path, export_file_name) app = Flask(__name__) @app.route('/predict', methods=['GET', 'POST']) def upload(): if request.method == 'POST': #this block is only entered when the form is submitted satisfaction_level = request.form.get('satisfaction_level') last_evaluation = request.form.get('last_evaluation') number_project = request.form.get('number_project') average_montly_hours = request.form.get('average_montly_hours') time_spend_company = request.form.get('time_spend_company') Work_accident = request.form.get('Work_accident') promotion_last_5years = request.form.get('promotion_last_5years') sales = request.form.get('sales') salary = request.form.get('salary') inf_df = pd.DataFrame(columns=['satisfaction_level','last_evaluation', 'number_project', 'average_montly_hours', 'time_spend_company', 'Work_accident', 'promotion_last_5years', 'sales', 'salary']) inf_df.loc[0] = [satisfaction_level, last_evaluation, number_project, average_montly_hours, time_spend_company, Work_accident, promotion_last_5years, sales, salary] inf_df['satisfaction_level'] = inf_df['satisfaction_level'].astype(float) inf_df['last_evaluation'] = inf_df['last_evaluation'].astype(float) inf_df['number_project'] = inf_df['number_project'].astype(int) inf_df['average_montly_hours'] = inf_df['average_montly_hours'].astype(int) inf_df['time_spend_company'] = inf_df['time_spend_company'].astype(int) inf_df['Work_accident'] = inf_df['Work_accident'].astype(int) inf_df['promotion_last_5years'] = inf_df['promotion_last_5years'].astype(int) inf_row = inf_df.iloc[0] pred = learn.predict(inf_row) return '''<h3>The input Satisfaction Level is: {}</h3> <h3>The input Last Evaluation is: {}</h3> <h3>The input Number of Projects is: {}</h3> <h3>The input Average Monthly Hours are: {}</h3> <h3>The input Number of Years Employed is: {}</h3> <h3>The input on whether the employee had a work accident is (0 for No, 1 for Yes): {}</h3> <h3>The input on whether the employee has been promoted in the last 5 years (0 for No, 1 for Yes) is: {}</h3> <h3>The input Department is: {}</h3> <h3>The input Salary Level is: {}</h3> <h1>The employee risk of leaving (Category 1 for Yes, Category 0 for No): {}</h1>'''.format(satisfaction_level, last_evaluation, number_project, average_montly_hours, time_spend_company, Work_accident, promotion_last_5years, sales, salary, pred ) return '''<form method="POST"> <h1>Predicting whether an employee is at risk of leaving</h1> Satisfaction Level, enter a two digit decimal number between 0 and 1: <input type="number" name="satisfaction_level" step=0.01 min=0 max =1 required="required"><br> Last Evaluation, enter a two digit decimal number between 0 and 1: <input type="number" name="last_evaluation" step=0.01 min=0 max =1 required="required"><br> How many projects has the employee worked? enter a number between 0 and 9: <input type="number" name="number_project" step=1 min=0 max =9 required="required"><br> What is the average number of hours the employee works per month? <input type="number" name ="average_montly_hours" step=1 min=1 max=310 required="required"<br><br> How many years has the employee been employed? <input type="number" name ="time_spend_company" step=1 min=0 max=50 required="required"<br><br> Has the employee had a work accident (0 for No, 1 for Yes)? <input type="number" name ="Work_accident" step=1 min=0 max=1 required="required"<br><br> Has the employee been promoted in the last 5 years? (0 for No, 1 for Yes) <input type="number" name ="promotion_last_5years" step=1 min=0 max=1 required="required"<br><br> Select the employee's Department: <select name="sales"> <option value="sales">sales</option> <option value="accounting">accounting</option> <option value="hr">hr</option> <option value="technical">technical</option> <option value="support">support</option> <option value="management">management</option> <option value="IT">IT</option> <option value="product_mng">product_mng</option> <option value="marketing">marketing</option> <option value="RandD">RandD</option> </select><br> Is the employee's salary low, medium, or high?: <select name="salary"> <option value="low">low</option> <option value="medium">medium</option> <option value="high">high</option> </select><br> <input type="submit" value="Submit"><br> </form>''' #if __name__ == '__main__': # app.run(port=5000, debug=False) ```
{ "source": "jmstar85/rl_practice", "score": 3 }
#### File: rl_practice/dqn_mario/agent.py ```python import tensorflow as tf import numpy as np from network import DQN from replay_buffer import ReplayBuffer class DQNAgent: def __init__(self, sess, state_size, action_size): self.sess = sess self.state_size = state_size self.action_size = action_size # hyper parameter self.batch_size = 32 self.discount_factor = 0.99 self.learning_rate = 0.00025 # epsilon self.s_epsilon = 1.0 self.e_epsilon = 0.01 self.n_epsilon_decay = 100000 self.epsilon = self.s_epsilon # replay buffer self.buffer = ReplayBuffer(50000) # place holder self.actions = tf.placeholder(tf.int32, shape=None) self.targets = tf.placeholder(tf.float32, shape=None) # network self.policy_net = DQN(self.state_size, self.action_size, net_name="policy_net") self.target_net = DQN(self.state_size, self.action_size, net_name="target_net") self.sess.run(tf.global_variables_initializer()) self.update_target_network() # optimizer self.loss_op, self.train_op = self._build_op() def _build_op(self): """신경망 학습을 위한 Loss function과 Optimaizer를 정의합니다.""" def select_action(self, state): """epsilon-greedy로 action을 선택합니다.""" def update_model(self): """학습 네트워크를 학습합니다.""" def update_target_network(self): """학습 네트웍의 변수의 값들을 타겟 네트웍으로 복사해서 타겟 네트웍의 값들을 최신으로 업데이트합니다.""" def save_model(self, filename): """Save model.""" saver = tf.train.Saver() path = "./save/" + filename + ".ckpt" save_path = saver.save(self.sess, path) print("[Model saved in path: %s !!!]" % save_path) def load_model(self, filename): """Load model.""" saver = tf.train.Saver() path = "./save/" + filename + ".ckpt" saver.restore(self.sess, path) print("[Model restored !!!]") ``` #### File: rl_practice/dqn_mario/wrapper.py ```python import numpy as np from collections import deque import gym import cv2 IMG_SIZE = 84 def _process_frame_mario(frame): if frame is not None: # for future meta implementation img = np.reshape(frame, [240, 256, 3]).astype(np.float32) img = img[:, :, 0] * 0.299 + img[:, :, 1] * 0.587 + img[:, :, 2] * 0.114 x_t = np.expand_dims(cv2.resize(img, (IMG_SIZE, IMG_SIZE)), axis=-1) x_t.astype(np.uint8) else: x_t = np.zeros((IMG_SIZE, IMG_SIZE, 1)) return x_t class ProcessFrameMario(gym.Wrapper): def __init__(self, env=None): super(ProcessFrameMario, self).__init__(env) self.observation_space = gym.spaces.Box(low=0, high=255, shape=(1, IMG_SIZE, IMG_SIZE)) self.prev_time = 400 self.prev_stat = 0 self.prev_score = 0 self.prev_dist = 40 def _step(self, action): ''' Implementing custom rewards Time = -0.1 Distance = +1 or 0 Player Status = +/- 5 Score = 2.5 x [Increase in Score] Done = +50 [Game Completed] or -50 [Game Incomplete] ''' obs, reward, done, info = self.env.step(action) return _process_frame_mario(obs), reward, done, info def _reset(self): return _process_frame_mario(self.env.reset()) def change_level(self, level): self.env.change_level(level) class BufferSkipFrames(gym.Wrapper): def __init__(self, env=None, skip=4, shape=(IMG_SIZE, IMG_SIZE)): super(BufferSkipFrames, self).__init__(env) self.counter = 0 self.observation_space = gym.spaces.Box(low=0, high=255, shape=(IMG_SIZE, IMG_SIZE, 4)) self.skip = skip self.buffer = deque(maxlen=self.skip) def _step(self, action): obs, reward, done, info = self.env.step(action) counter = 1 total_reward = reward self.buffer.append(obs) for i in range(self.skip - 1): if not done: obs, reward, done, info = self.env.step(action) total_reward += reward counter += 1 self.buffer.append(obs) else: self.buffer.append(obs) frame = np.stack(self.buffer, axis=0) frame = np.reshape(frame, (IMG_SIZE, IMG_SIZE, 4)) return frame, total_reward, done, info def _reset(self): self.buffer.clear() obs = self.env.reset() for i in range(self.skip): self.buffer.append(obs) frame = np.stack(self.buffer, axis=0) frame = np.reshape(frame, (IMG_SIZE, IMG_SIZE, 4)) return frame def change_level(self, level): self.env.change_level(level) class NormalizedEnv(gym.ObservationWrapper): def __init__(self, env=None): super(NormalizedEnv, self).__init__(env) self.state_mean = 0 self.state_std = 0 self.alpha = 0.9999 self.num_steps = 0 def _observation(self, observation): if observation is not None: # for future meta implementation self.num_steps += 1 self.state_mean = self.state_mean * self.alpha + \ observation.mean() * (1 - self.alpha) self.state_std = self.state_std * self.alpha + \ observation.std() * (1 - self.alpha) unbiased_mean = self.state_mean / (1 - pow(self.alpha, self.num_steps)) unbiased_std = self.state_std / (1 - pow(self.alpha, self.num_steps)) return (observation - unbiased_mean) / (unbiased_std + 1e-8) else: return observation def change_level(self, level): self.env.change_level(level) class EpisodicLifeEnv(gym.Wrapper): def __init__(self, env): """Make end-of-life == end-of-episode, but only reset on true game over. Done by DeepMind for the DQN and co. since it helps value estimation. """ gym.Wrapper.__init__(self, env) self.lives = 0 self.done = True def step(self, action): obs, reward, done, info = self.env.step(action) self.done = done # check current lives, make loss of life terminal, # then update lives to handle bonus lives lives = info['life'] if lives < self.lives and lives > 0: # for Qbert sometimes we stay in lives == 0 condtion for a few frames # so its important to keep lives > 0, so that we only reset once # the environment advertises done. self.done = True self.lives = lives return obs, reward, self.done, info def reset(self, **kwargs): """Reset only when lives are exhausted. This way all states are still reachable even though lives are episodic, and the learner need not know about any of this behind-the-scenes. """ if self.done: obs = self.env.reset(**kwargs) else: # no-op step to advance from terminal/lost life state obs, _, _, _ = self.env.step(0) self.lives = self.env.unwrapped._life return obs def wrap_mario(env): # assert 'SuperMarioBros' in env.spec.id env = ProcessFrameMario(env) env = NormalizedEnv(env) env = BufferSkipFrames(env) env = EpisodicLifeEnv(env) return env ```
{ "source": "jmstevens/aesopbot", "score": 3 }
#### File: features/genius/song_structure.py ```python import itertools import os import pickle import re import json # from nltk.corpus import stopwords artists = ['<NAME>','Drake','Chance The Rapper','<NAME>','Logic','Future','Chief Keef','Eminem','Kanye West','JAY-Z','Big Sean', 'Lil Uzi Vert','Tyler, The Creator','Earl Sweatshirt','2 Chainz','G-Eazy','ScHoolboy Q','Young Thug','<NAME>$$', 'Wu Tang Clan', 'Flatbush Zombies','A$AP Rocky','A$AP Ferg','Dumbfoundead','<NAME>','Waka Flocka Flame','Nas','A Tribe Called Quest','Vic Mensa', '$UICIDEBOY$','<NAME>','<NAME>','<NAME>','<NAME>','<NAME>','Yonas','<NAME>','<NAME>', 'Three 6 Mafia','<NAME>','RiFF RAFF','<NAME>','<NAME>','Tyga','<NAME>','<NAME>','<NAME>','<NAME>','Migos','Rihanna', '<NAME>','21 Savage','<NAME>','<NAME>','<NAME>','XXXTENTACION','Lil Pump','Ski Mask the Slump God','<NAME>', 'SmokePurpp','A Boogie Wit Da Hoodie','Playboi Carti','Ugly God','Wiz Khalifa','<NAME>','Beyoncé','<NAME>','Meek Mill', 'Aesop Rock'] def get_lyrics_file(): with open('data/raw/artist_lyrics.json') as f: data = json.load(f) return data def get_verses(data): verse_lines = list() for k in data['artists']: for v in k['songs']: song = v['lyrics'] lines = song.splitlines() for l in range(len(lines)): title = [x.lower() for x in lines[l].replace('[', '').replace(']', '').split()] if '[' in lines[l] and 'verse' in title: section_lines = [] count = l + 1 done = False while count < len(lines) and not done: if '[' not in lines[count]: if lines[count] != '': section_lines.append(lines[count]) count += 1 else: done = True verse_lines.append(section_lines) return verse_lines def clean_verses(verses): verses_list = [] bad_characters = ['"',"'",'_','(',')','$',',','.','?','!','—','%','='] for song in verses: verses = list() for line in song: if line == '\n': continue if '[' in line: continue new_word = [] separate = line.split() words = [] for word in separate: for character in word: character = character.lower() if character not in bad_characters: new_word.append(character) w = ''.join(new_word) # if w not in total_stop_words: words.append(w) new_word = [] if words != []: words = words + ['<eol>'] verses.append(words) verses = verses + ['<eov>'] verses_list.append(verses) return verses_list def segment_to_verses(verse_list): verses = [] for i in clean: verse = '' for j in i: if isinstance(j, list): verse = verse + ' ' + ' '.join(j) else: verse = verse + ' ' + j verses.append(verse) return verses # with open('data/raw/artist_lyrics.json') as f: # data = json.load(f) # # verse_lines = list() # for k in data['artists']: # for v in k['songs']: # song = v['lyrics'] # lines = song.splitlines() # for l in range(len(lines)): # title = [x.lower() for x in lines[l].replace('[', '').replace(']', '').split()] # if '[' in lines[l] and 'verse' in title: # section_lines = [] # count = l + 1 # done = False # while count < len(lines) and not done: # if '[' not in lines[count]: # if lines[count] != '': # section_lines.append(lines[count]) # count += 1 # else: # done = True # verse_lines.append(section_lines) # # # # # def get_verses(all_lyrics,artist): #finds total verses, hooks, bridges, choruses written by a specific artist one_song_verse_lines = [] one_song_chorus_lines = [] one_song_hook_lines = [] one_song_bridge_lines = [] total_verse_lines = [] total_chorus_lines = [] total_hook_lines = [] total_bridge_lines = [] total_lines = [] Songs = {} with open('data/raw/artist_lyrics.json') as f: data = json.load(f) verse_lines = list() for k in data['artists']: for v in k['songs']: song = v['lyrics'] lines = song.splitlines() for l in range(len(lines)): title = [x.lower() for x in lines[l].replace('[', '').replace(']', '').split()] if '[' in lines[l] and 'verse' in title: section_lines = [] count = l + 1 done = False while count < len(lines) and not done: if '[' not in lines[count]: if lines[count] != '': section_lines.append(lines[count]) count += 1 else: done = True verse_lines.append(section_lines) all_lyrics = data['artists'] for _artist in all_lyrics: for artist,songs in _artist.items(): for _song in songs: print(_song) if isinstance(_song, dict): song_title = _song['title'] song_lyrics = _song['lyrics'] art = _song['artist'] clean_title = song_title.replace('(','').replace('.','').split() if art == artist and 'Ft' not in clean_title: lines = song_lyrics.splitlines() for l in range(len(lines)): title = [x.lower() for x in lines[l].replace('[', '').replace(']', '').split()] if '[' in lines[l] and 'verse' in title: section_lines = [] count = l + 1 done = False while count < len(lines) and not done: if '[' not in lines[count]: if lines[count] != '': section_lines.append(lines[count]) count += 1 else: done = True total_verse_lines.append(section_lines) one_song_verse_lines.append(section_lines) print(section_lines) elif '[' in lines[l] and 'chorus' in title: section_lines = [] count = l + 1 done = False while count < len(lines) and not done: if '[' not in lines[count]: if lines[count] != '': section_lines.append(lines[count]) count += 1 else: done = True total_chorus_lines.append(section_lines) one_song_chorus_lines.append(section_lines) elif '[' in lines[l] and 'hook' in title: section_lines = [] count = l + 1 done = False while count < len(lines) and not done: if '[' not in lines[count]: if lines[count] != '': section_lines.append(lines[count]) count += 1 else: done = True total_hook_lines.append(section_lines) one_song_hook_lines.append(section_lines) elif '[' in lines[l] and 'bridge' in title: section_lines = [] count = l + 1 done = False while count < len(lines) and not done: if '[' not in lines[count]: if lines[count] != '': section_lines.append(lines[count]) count += 1 else: done = True total_bridge_lines.append(section_lines) one_song_bridge_lines.append(section_lines) artist_first_name = artist.split()[0].lower() total_lines = [] one_song_verse_lines = [] one_song_chorus_lines = [] one_song_hook_lines = [] one_song_bridge_lines = [] if 'Ft' in clean_title: lines = song_lyrics.splitlines() for l in range(len(lines)): title = [x.lower() for x in lines[l].replace('[','').replace(']','').replace('-','').replace(':','').split()] if '[' in lines[l] and 'verse' in title and artist_first_name in title: section_lines = [] count = l + 1 done = False while count < len(lines) and not done: if '[' not in lines[count]: if lines[count] != '': section_lines.append(lines[count]) count += 1 else: done = True total_verse_lines.append(section_lines) one_song_verse_lines.append(section_lines) elif '[' in lines[l] and 'chorus' in title and artist_first_name in title: section_lines = [] count = l + 1 done = False while count < len(lines) and not done: if '[' not in lines[count]: if lines[count] != '': section_lines.append(lines[count]) count+=1 else: done = True total_chorus_lines.append(section_lines) one_song_chorus_lines.append(section_lines) elif '[' in lines[l] and 'hook' in title and artist_first_name in title: section_lines = [] count = l + 1 done = False while count < len(lines) and not done: if '[' not in lines[count]: if lines[count] != '': section_lines.append(lines[count]) count+=1 else: done = True total_hook_lines.append(section_lines) one_song_hook_lines.append(section_lines) if len(one_song_verse_lines) > 0: total_lines.append(total_verse_lines) if len(one_song_chorus_lines) > 0: total_lines.append(total_chorus_lines) if len(one_song_hook_lines) > 0: total_lines.append(total_hook_lines) if len(one_song_bridge_lines) > 0: total_lines.append(total_bridge_lines) if len(total_lines) > 0: Songs[song_title] = list(itertools.chain.from_iterable(total_lines)) #FIXME: Songs has all duplicates Lines = {'Verses':total_verse_lines,'Choruses':total_chorus_lines,'Hooks':total_hook_lines,'Bridges':total_bridge_lines} return Lines, Songs def clean_name(song_title): return re.sub(r'[^\x00-\x7F]+', ' ', song_title) def clean_song_titles(song_dict): keys = [x.replace(u'\xa0', u' ').replace(u'\u200b',u'') for x in song_dict.keys()] new_keys = [] featured_artists = [] for k in keys: if '(' in k: if 'ft' in k.lower(): new_k = k.split('(')[0][:-1] featured_artists.append(k.split('(')[1][:-1]) new_keys.append(new_k) else: new_keys.append(k) else: new_keys.append(k) return new_keys,featured_artists def make_one_list(song_lyrics): sentence_list = [] bad_characters = ['"',"'",'_','(',')','$',',','.','?','!','—'] bad_words = ['it', 'the', 'you', 'they', 'she', 'he', 'this', 'my', 'to', 'me', 'in', 'like', 'yeah', "you're", "that's", "really", "couldn't", 'youre','get','want','come','uh','put','got','one','im', 'ran','em','right','gon','need','take','dont','every', 'turn','back','lets','better','look','see','til', 'aint','tryna','oh','still','yo',"don't","i'm",'gotta', 'know','go','yuh'] stopword = set(stopwords.words('english')) total_stop_words = bad_words + list(stopword) lines = song_lyrics.splitlines() for line in lines: if line == '\n': continue if '[' in line: continue new_word = [] separate = line.split() words = [] for word in separate: for character in word: character = character.lower() if character not in bad_characters: new_word.append(character) w = ''.join(new_word) if w not in total_stop_words: words.append(w) new_word = [] if words != []: sentence_list.append(words) return sentence_list def Get_Artist_Lyrics(artist): song_lyrics_path = 'Song Lyrics/' artist_dict = {} for root,dirs,files in os.walk(song_lyrics_path): for f in files: name = root + f artist_dict[f.replace('_',' ')] = name all_lyrics = {} for art,path in artist_dict.items(): with open(path,'rb') as f: all_lyrics[art] = pickle.load(f) Lines, Songs = get_verses(all_lyrics,artist) return Lines, Songs, all_lyrics def Get_Lyrics(): song_lyrics_path = 'data/raw/' artist_dict = {} for root,dirs,files in os.walk(song_lyrics_path): for f in files: name = root + f artist_dict[f.replace('_',' ')] = name json.loads(song_lyrics_path) all_lyrics = [] for art,path in artist_dict.items(): with open(path,'rb') as f: lyrics = pickle.load(f) for title,song_lyrics in lyrics.items(): lyrics = make_one_list(song_lyrics) all_lyrics+=lyrics return all_lyrics def Get_All_Lyrics(all_lyrics): sentence_list = [] bad_characters = ['"',"'",'_','(',')','$',',','.','?','!','—'] for artist,songs in all_lyrics.items(): for title,song in songs.items(): new_word = [] separate = song.split() words = [] for word in separate: for character in word: character = character.lower() if character not in bad_characters: new_word.append(character) words.append(''.join(new_word)) new_word = [] sentence_list.append(words) return sentence_list def get_song_structures(artist): Lines, Songs, All_lyrics = Get_Artist_Lyrics(artist) song_structures = {} for section, lines in Lines.items(): rhyming_sections = [] for lines_ in lines: rhyming_words = [line.split()[-2:] for line in lines_ ] rhyming_sections.append(rhyming_words) song_structures[section] = rhyming_sections return song_structures song_structures = get_song_structures('Kendrick Lamar') ``` #### File: src/models/aesop_gpt2.py ```python import math import tensorflow import tensorflow as tf import tensorflow_datasets as tfds import tensorflow_addons as tfa import json import os import time from ftfy import fix_text #:os.chdir('../') import pickle import numpy as np import string, os from gensim.models import KeyedVectors import gensim.downloader as api from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, Input, Dropout, LSTM, Activation, Bidirectional from tensorflow.keras.layers import Embedding from tensorflow.keras.preprocessing import sequence from tensorflow.keras.initializers import glorot_uniform from tensorflow.keras.callbacks import LambdaCallback, ModelCheckpoint from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences import tensorflow.keras.utils as ku from sklearn.model_selection import train_test_split import random import sys from datetime import date from collections import Counter import matplotlib.pyplot as plt from src.features.build import Lyrics from src.features.transform_data import Transform from random import shuffle from tensorflow.python.framework import tensor_shape from tokenizers import CharBPETokenizer, BertWordPieceTokenizer from transformers import GPT2Model, GPT2Config, GPT2Tokenizer physical_devices = tf.config.list_physical_devices('GPU') tf.config.experimental.set_memory_growth(physical_devices[0], enable=True) def clean_text(txt): txt = "".join(v for v in txt if v not in string.punctuation).lower() txt = txt.encode("utf8").decode("ascii",'ignore') return txt def split_input_target(chunk): input_text = chunk[:-1] target_text = chunk[1:] return input_text, target_text def load_data(): data_dir = 'data/processed/verses.txt' with open(data_dir, "r") as fp: # Unpickling lyrics = fp.read() lyrics_clean = clean_text(lyrics) def word_based(): _t = Lyrics(32,10000) #arr = _t.verse_lines corpus = _t.lyrics tokenizer = Tokenizer() def get_sequence_of_tokens(corpus): ## tokenization tokenizer.fit_on_texts(corpus) total_words = len(tokenizer.word_index) + 1 # convert data to sequence of tokens input_sequences = [] for line in corpus: token_list = tokenizer.texts_to_sequences([line])[0] for i in range(1, len(token_list)): n_gram_sequence = token_list[:i+1] input_sequences.append(n_gram_sequence) return input_sequences, total_words inp_sequences, total_words = get_sequence_of_tokens(corpus) num_words = total_words print(inp_sequences[:10]) input_sequences = inp_sequences max_sequence_len = max([len(x) for x in input_sequences]) #input_sequences = np.array(pad_sequences(input_sequences, maxlen=max_sequence_len+1, padding='pre')) predictors, label = input_sequences[:,:-1],input_sequences[:,-1] return tokenizer, num_words, tf.data.from_tensor_slices((predictors, label)) # In[ ]: # def tf_encode(pt, en): # result_pt, result_en = tf.py_function(encode, [pt, en], [tf.int64, tf.int64]) # result_pt.set_shape([None]) # result_en.set_shape([None]) # # return result_pt, result_en # # # def filter_max_length(x, y, max_length=MAX_LENGTH): # return tf.logical_and(tf.size(x) <= max_length, # tf.size(y) <= max_length) # # def fetch_dataset(train_dataset, val_dataset, batch_size, padded_shapes=([-1], [-1]), epoch=25, buffer_size=10000): # train_dataset = train_dataset.map(tf_encode) # train_dataset = train_dataset.filter(filter_max_length) # # cache the dataset to memory to get a speedup while reading from it. # train_dataset = train_dataset.cache() # train_dataset = train_dataset.shuffle(buffer_size).padded_batch(batch_size) # train_dataset = train_dataset.repeat(epoch) # train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE) # # # val_dataset = val_dataset.map(tf_encode) # val_dataset = val_dataset.filter(filter_max_length).padded_batch(batch_size) # return train_dataset, val_dataset def verse_pairs_approach(target_vocab_size=2**12): _t = Transform() arr = [i for i in _t.verse_lines if len(i) > 0] dataset = list() for verse in arr: if max([len(i.split()) for i in verse]) > 1 and max([len(i.split()) for i in verse]) < 25: chunk_number = len(verse) // 4 # chunks = [verse[x:x+chunk_number] for x in range(0, len(verse), chunk_number)] if chunk_number != 0: chunks = ['<START> ' + ''.join([ j + ' <NEWLINE> ' for j in verse[x:x+chunk_number]]) + ' <END>' for x in range(0, len(verse), chunk_number)] chunks = [chunk for chunk in chunks if len(chunk.split('<NEWLINE>')) > 2] dataset.append((chunks[:2], chunks[2:])) # for i in arr: # tmp = [ ' <NEWLINE> '.join([clean_text(j[0]), clean_text(j[1])]) for j in zip(i[0::2],i[1::2])] # dataset.append([z for z in zip(tmp[0::2], tmp[1::2])]) example = [x[0] for x in dataset] target = [x[1] for x in dataset] print(example[:2], target[:2]) X_train, X_test, y_train, y_test = train_test_split(example, target, test_size=0.10, shuffle=True) len(X_train) train_examples = tf.data.Dataset.from_tensor_slices((X_train, y_train)) val_examples = tf.data.Dataset.from_tensor_slices((X_test, y_test)) tokenizer_pt = tfds.features.text.SubwordTextEncoder.build_from_corpus( (pt.numpy() for pt, en in train_examples), target_vocab_size=target_vocab_size, reserved_tokens=['<UNK>','<NEWLINE>','<START>','<END>'])#, reserved_tokens=['<UNK>']) tokenizer_en = tfds.features.text.SubwordTextEncoder.build_from_corpus( (en.numpy() for pt, en in train_examples), target_vocab_size=target_vocab_size,reserved_tokens=['<UNK>','<NEWLINE>','<START>','<END>']) #reserved_tokens=['<UNK>']) BUFFER_SIZE = 15000 BATCH_SIZE = 32 def encode(lang1, lang2): lang1 = [tokenizer_pt.vocab_size] + tokenizer_pt.encode(lang1.numpy()) + [tokenizer_pt.vocab_size+1] lang2 = [tokenizer_en.vocab_size] + tokenizer_en.encode(lang2.numpy()) + [tokenizer_en.vocab_size+1] return lang1, lang2 def tf_encode(pt, en): result_pt, result_en = tf.py_function(encode, [pt, en], [tf.int64, tf.int64]) result_pt.set_shape([None]) result_en.set_shape([None]) return result_pt, result_en MAX_LENGTH = 125 def filter_max_length(x, y, max_length=MAX_LENGTH): return tf.logical_and(tf.size(x) <= max_length, tf.size(y) <= max_length) train_dataset = train_examples.map(tf_encode) train_dataset = train_dataset.filter(filter_max_length) # cache the dataset to memory to get a speedup while reading from it. train_dataset = train_dataset.cache() train_dataset = train_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE) train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE) val_dataset = val_examples.map(tf_encode) val_dataset = val_dataset.filter(filter_max_length).padded_batch(BATCH_SIZE) return train_dataset, val_dataset, tokenizer_en, tokenizer_pt def verse_by_verse(test_size=.10, shuffle=False, target_vocab_size=2**12): _t = Transform() arr = _t.verse_lines dataset = list() for verse in arr: x = verse[0::2] y = verse[1::2] #[print(i) for i in zip(x, y)] # dataset += #print(dataset[0]) if shuffle: np.random.shuffle(dataset) train = dataset[:round(len(dataset) * test_size)] test = dataset[round(len(dataset) * test_size):] train_examples = tf.data.Dataset.from_tensor_slices(train) val_examples = tf.data.Dataset.from_tensor_slices(test) tokenizer_en = tfds.features.text.SubwordTextEncoder.build_from_corpus( (en.numpy() for pt, en in train_examples), target_vocab_size=target_vocab_size) tokenizer_pt = tfds.features.text.SubwordTextEncoder.build_from_corpus( (pt.numpy() for pt, en in train_examples), target_vocab_size=target_vocab_size) return train_examples, val_examples, tokenizer_en, tokenizer_pt def fill_in_the_blank(test_size=.10, shuffle=False, target_vocab_size=2**12): _t = Transform() arr = _t.verse_lines data_dir = 'data/processed/verses.txt' with open(data_dir, "rb") as fp: # Unpickling lyrics = pickle.load(fp) arr = [[j for j in i.split(' \n ') if len(j) > 1 and '\n\n' != j] for i in list(np.array(lyrics)) if len(i.split(' \n ')) > 0]#tokenizer = BertWordPieceTokenizer() #tokenizer.train(['data/processed/verses_encoded.txt']) tokenizer = GPT2Tokenizer.from_pretrained('gpt2') #special_tokens_dict = {'bos_token':'|START|', 'eos_token':'|END|', 'unk_token':'|UNK|', 'sep_token':'|SEP|', 'pad_token':'|PAD|', 'cls_token':'|CLS|', 'mask_token':'|MASK|'} #num_added_toks = tokenizer.add_special_tokens(special_tokens_dict) #print('We have added', num_added_toks, 'tokens') #model.resize_token_embeddings(len(tokenizer)) #tokenizer.add_tokens(['<START>','<END>']) dataset = list() for verse in arr: num_times = random.randint(1, 5) try: if max([len(i.split()) for i in verse]) > 1 and max([len(i.split()) for i in verse]) < 50: chunk_number = len(verse) // 3 chunks = [verse[x:x+chunk_number] for x in range(0, len(verse), chunk_number)] #chunks = ['<START> ' + ''.join([ j for j in verse[x:x+chunk_number]]) for x in range(0, len(verse), chunk_number)] #chunks = [chunk for chunk in chunks if len(chunk.split('<NEWLINE>')) > 2] chunk_list = [' '.join(chunk_verse).split() for chunk_verse in chunks] for chunk in chunk_list: for _ in range(0, num_times,1): mask = np.random.random(len(chunk)) mask_bool = random.uniform(.3, .4) mask_x = mask > mask_bool mask_y = mask < mask_bool x = '<START> ' + ' '.join(['[MASK]' if not x else chunk[i] for i, x in enumerate(mask_x)]) + ' <END>' #x = ' '.join(np.array(verse)[mask_x].tolist()) #y = ' '.join(np.array(chunk).tolist()) #$y = ' '.join(['' if not x else chunk[i] for i, x in enumerate(mask_y)]) #y = '|<GAP>|'.join(['' if not x else chunk[i] for i, x in enumerate(mask_y)]) y = '<START> ' + ' '.join(['[MASK]' if x else chunk[i] for i, x in enumerate(mask_x)]) + ' <END>' # = ' '.join([np.array(i)[mask_y] for i in chunk]) # x = ' '.join(np.array(chunk)[mask_x].tolist()) # y = ' '.join(np.array(chunk)[mask_y].tolist()) #x = ' '.join([' ' if not x else chunk.split(' ')[i] for i, x in enumerate(mask_x)]) #x = ' '.join([' ' if not x else chunk.split(' ')[i] for i, x in enumerate(mask_x)]) #y = chunk dataset.append((x, y)) except ValueError: pass print(dataset[0]) example = np.array(pad_sequences([tokenizer.encode(x[0]) for x in dataset], padding='post')) target = np.array(pad_sequences([tokenizer.encode(x[1]) for x in dataset], padding='post')) # target = [tokenizer.encode(x[1]).ids for x in dataset] print(len(dataset)) print(dataset[0]) X_train, X_test, y_train, y_test = train_test_split(example, target, test_size=0.10, shuffle=True) train_examples = tf.data.Dataset.from_tensor_slices((X_train, y_train)) val_examples = tf.data.Dataset.from_tensor_slices((X_test, y_test)) #tokenizer_pt = tfds.features.text.SubwordTextEncoder.build_from_corpus( # (pt.numpy() for pt, en in train_examples), target_vocab_size=target_vocab_size)#, reserved_tokens=['<UNK>']) #tokenizer_en = tfds.features.text.SubwordTextEncoder.build_from_corpus( # (en.numpy() for pt, en in train_examples), target_vocab_size=target_vocab_size)#,reserved_tokens=['<UNK>']) BUFFER_SIZE = 15000 BATCH_SIZE = 64 def encode(lang1, lang2): lang1 = [tokenizer.get_vocab_size()] + tokenizer.encode(lang1.numpy()).ids + [tokenizer.get_vocab_size()+1] lang2 = [tokenizer.get_vocab_size()] + tokenizer.encode(lang2.numpy()).ids + [tokenizer.get_vocab_size()+1] return lang1, lang2 # def tf_encode(pt, en): result_pt, result_en = tf.py_function(encode, [pt, en], [tf.int64, tf.int64]) result_pt.set_shape([None]) result_en.set_shape([None]) # return result_pt, result_en # MAX_LENGTH = 125 # # # def filter_max_length(x, y, max_length=MAX_LENGTH): return tf.logical_and(tf.size(x) <= max_length, tf.size(y) <= max_length) #train_dataset = train_examples.map(tf_encode) #train_dataset = train_dataset.filter(filter_max_length) # cache the dataset to memory to get a speedup while reading from it. train_dataset = train_examples.cache() # train_dataset = train_dataset.repeat(25) train_dataset = train_dataset.shuffle(BUFFER_SIZE).padded(BATCH_SIZE) train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE) #val_dataset = val_examples.map(tf_encode) val_dataset = val_examples.padded_batch(BATCH_SIZE) return train_dataset, val_dataset, tokenizer#, tokenizer_pt def window_based(test_size=.10, shuffle=False, target_vocab_size=2**12): test_size = 1 - test_size dataset = list() _t = Lyrics(32, 1000) data_dir = 'data/processed/verses_encoded.txt' with open(data_dir, "r") as fp: # Unpickling lyrics = fp.read() tokenizer = BertWordPieceTokenizer() tokenizer.train(['data/processed/verses_encoded.txt']) tokenizer.add_tokens(['<START>','<END>','<NEWLINE>']) arr = [[clean_text(j).replace('newline','<NEWLINE>').replace('start','<START>').replace('end','<END>') for j in i.split(' \n ') if len(j) > 1 and '\n\n' != j] for i in list(np.array(lyrics.split('\n\n'))) if len(i.split(' \n ')) > 0] # print(arr) # for verse in arr: # chunk_number = len(verse) // 5 # if chunk_number > 0: # chunks = ['<START> ' + ''.join([ j.replace('\n','').replace('\n\n','') + ' <NEWLINE> ' for j in verse[x:x+chunk_number]]) + ' <END>' for x in range(0, len(verse), chunk_number)] # chunks = [chunk for chunk in chunks if len(chunk.split('<NEWLINE>')) > 2] # print() # dataset.append(chunks) # train = dataset train = [y for x in arr for y in x] train = [tokenizer.encode(i).ids for i in train] train = [y for x in train for y in x] # train.split('<NEWLINE>') # print(train) # train = ' <EOV> '.join(dataset) # print(train) # tokenizer.add_tokens(['<START>','<END>','<NEWLINE>','<EOV>']) # target = _t.target # target = [x[1] for x in dataset] # print(len(dataset)) # X_train, X_test, y_train, y_test = train_test_split(example, target, test_size=0.10, shuffle=True) # train_dataset = tf.data.Dataset.from_tensor_slices((X_train, y_train)) # print(len(dataset)) # np.random.shuffle(dataset) # train_test = dataset[:round(len(dataset) * test_size)] # train = train_test[:round(len(train_test) * test_size)] # test = train_test[round(len(train_test) * test_size):] # val = dataset[round(len(dataset) * test_size):] # train_dataset = tf.data.Dataset.from_tensor_slices(train) # tokenizer = BertWordPieceTokenizer("data/processed/vocab.txt", lowercase=True) # tokenizer = tfds.features.text.SubwordTextEncoder.build_from_corpus((en.numpy() for en in train_dataset), target_vocab_size=target_vocab_size, reserved_tokens=['<UNK>','<NEWLINE>','<START>','<END>']) train_dataset = tf.data.Dataset.from_tensor_slices(train) seq_length = 40 # examples_per_epoch = len(train.split())//(seq_length+1) # data = [i for i in flattened_list if len(i) < 100] sequences = train_dataset.batch(seq_length+1, drop_remainder=True) dataset = sequences.map(split_input_target) # Batch size BATCH_SIZE = 128 # Buffer size to shuffle the dataset # (TF data is designed to work with possibly infinite sequences, # so it doesn't attempt to shuffle the entire sequence in memory. Instead, # it maintains a buffer in which it shuffles elements). BUFFER_SIZE = 20000 dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE) dataset = dataset.repeat(50) dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) print(dataset) return dataset, tokenizer def simple_method(sequence_size, testSetRatio=0.15): testSetRatio = 1-testSetRatio data_dir = 'data/processed/verses_test.txt' with open(data_dir, "rb") as fp: # Unpickling lyrics = pickle.load(fp) arr = [' <NEWLINE> '.join([clean_text(j) for j in i.split(' \n ') if len(j) > 1 and '\n\n' != j]) for i in list(np.array(lyrics)) if len(i.split(' \n ')) > 0] #tokenizer = BertWordPieceTokenizer() #tokenizer.train(['data/processed/verses_encoded.txt']) tokenizer = GPT2Tokenizer.from_pretrained('gpt2-xl') #tokenizer.train(['data/processed/verses_encoded.txt']) special_tokens_dict = {'eos_token':'<END>','sep_token':'<NEWLINE>','bos_token':'<START>'} num_added_toks = tokenizer.add_special_tokens(special_tokens_dict) print(tokenizer.encode(' <NEWLINE> ')) tokenizer.save_pretrained('src/data/tokenizers') dataset = list() for verse in arr: tmp = list() verse = ' <START> ' + verse + ' <END> ' verse_split = verse.split(' <NEWLINE> ') for line in verse_split: tmp = tmp + tokenizer.encode(line + ' <NEWLINE>', add_prefix_space=True) if tmp: dataset.append(tmp) print(dataset[0]) # dataset = [[item for sublist in verse.split(' \n ') for tokenizer.encode(item, add_prefix_space=True) in sublist] for verse in arr] np.random.shuffle(dataset) verse_length = [len(verse) for verse in dataset] verse_average = sum(verse_length) / len(verse_length) print(f'Average number of words in a verse {verse_average}') # dataset = dataset[ train = dataset[:round(len(dataset) * testSetRatio)] test = dataset[round(len(dataset) * testSetRatio):] print(f'train size {len(train)}') print(f'test size {len(test)}') trainTensor = simple_pipeline(train, sequence_size) testTensor = simple_pipeline(test, sequence_size) return trainTensor, testTensor, tokenizer def simple_pipeline(dataset, sequence_size): dataset = [y for x in dataset for y in x] assert isinstance(dataset[0], int) print(f'number of tokens {len(dataset)}: \n{dataset[:5]}') train = tf.data.Dataset.from_tensor_slices(dataset) train = train.window(sequence_size, drop_remainder=True) for window in train.take(5): print(list(window.as_numpy_iterator())) train = train.flat_map(lambda window: window.batch(sequence_size)) train = train.shuffle(10000).batch(64) train = train.map(lambda windows: (windows[:,:-1], windows[:,1:])) # train = train.cache() train = train.prefetch(tf.data.experimental.AUTOTUNE) return train def gelu(x): with tf.name_scope("gelu"): cdf = 0.35 * (1.0 + tf.tanh((np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))) return x * cdf def shape_as_list_2(x): return [int(i) for i in tf.shape(x)] def get_padding_mask(seq): with tf.name_scope("Padding_Mask"): seq = tf.cast(tf.math.equal(seq, 0), tf.float32) # add extra dimensions to add the padding # to the attention logits. return seq[:, tf.newaxis, tf.newaxis, :] # (batch_size, 1, 1, seq_len) def attention_mask(size): with tf.name_scope("attention_mask"): mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0) return mask # (seq_len, seq_len) def create_masks(inp): with tf.name_scope("attn_masking"): # Encoder padding mask att_mask = attention_mask(tf.shape(inp)[1]) # Used in the 2nd attention block in the decoder. # This padding mask is used to mask the encoder outputs. padding_mask = get_padding_mask(inp) mask = tf.maximum(padding_mask, att_mask) return mask def scaled_dot_product_attention(q, k, v, training, mask=None): """ Calculate the attention weights. q, k, v must have matching leading dimensions. k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v. The mask has different shapes depending on its type(padding or look ahead) but it must be broadcastable for addition. Args: q: query shape == (..., seq_len_q, depth) k: key shape == (..., seq_len_k, depth) v: value shape == (..., seq_len_v, depth_v) mask: Float tensor with shape broadcastable to (..., seq_len_q, seq_len_k). Defaults to None. Returns: output, attention_weights """ matmul_qk = tf.matmul(q, k, transpose_b=True) #(..., seq_len, seq_len_k) # scale matmul_qk if self.scale: dk = tf.cast(tf.shape(k)[-1], tf.float32) scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) # add the mask to the scaled tensor if mask is not None: scaled_attention_logits += (mask * -1e9) # softmax is normalized on the last axis (seq_len_k) for scores to add up to 1 attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) output = tf.matmul(attention_weights, v) return output, attention_weights def print_out(q, k, v): temp_out, temp_attn = scaled_dot_product_attention( q, k, v, None ) print('Attention weights are:') print(temp_attn) print('Output is:') print(temp_out) class MultiHeadAttention(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, att_dropout=0.4, residual_dropout=0.45, scale=True): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.d_model = d_model self.att_dropout = att_dropout self.residual_dropout=residual_dropout self.scale=scale assert d_model % self.num_heads == 0 self.depth = d_model // self.num_heads self.c_attn = Conv1d(self.d_model, self.d_model * 3) self.c_proj = Conv1d(self.d_model, self.d_model) def multihead_attention(self, q, k, v, training, mask=None): """ Calculate the attention weights. q, k, v must have matching leading dimensions. k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v. The mask has different shapes depending on its type(padding or look ahead) but it must be broadcastable for addition. Args: q: query shape == (..., seq_len_q, depth) k: key shape == (..., seq_len_k, depth) v: value shape == (..., seq_len_v, depth_v) mask: Float tensor with shape broadcastable to (..., seq_len_q, seq_len_k). Defaults to None. Returns: output, attention_weights """ matmul_qk = tf.matmul(q, k, transpose_b=True) #(..., seq_len, seq_len_k) # scale matmul_qk if self.scale: dk = tf.cast(tf.shape(k)[-1], tf.float32) matmul_qk = matmul_qk / tf.math.sqrt(dk) # add the mask to the scaled tensor if mask is not None: matmul_qk += (mask * -1e9) # softmax is normalized on the last axis (seq_len_k) for scores to add up to 1 attention_weights = tf.nn.softmax(matmul_qk, axis=-1) if training: attention_weights = tf.nn.dropout(attention_weights, rate=self.att_dropout, name="attn_dropout") # (..., seq_len_q, seq_len_k) output = tf.matmul(attention_weights, v) return output, attention_weights def split_heads(self, x): """Split the last dimension into (num_heads, depth). Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth) """ batch_size = tf.shape(x)[0] x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth)) return tf.transpose(x, perm=[0, 2, 1, 3]) def merge_heads(self, x): batch_size = tf.shape(x)[0] scaled_attention = tf.transpose(x, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, num_heads, depth) merged = tf.reshape(scaled_attention, (batch_size, -1, self.d_model)) return merged def call(self, x, mask=None, past_layer=None, training=True): x = self.c_attn(x) query, key, value = tf.split(x, 3, axis=2) query = self.split_heads(query) # (batch_size, seq_len, d_model) key = self.split_heads(key) # (batch_size, seq_len, d_model) value = self.split_heads(value) # (batch_size, seq_len, d_model) if past_layer is not None: past_key, past_value = tf.unstack(past_layer, axis=1) key = tf.concat([past_key, key], axis=-2) value = tf.concat([past_value, value], axis=2) present = tf.stack([key, value], axis=1) scaled_attention, attention_weights = self.multihead_attention(query, key, value, training, mask) concat_attention = self.merge_heads(scaled_attention) output = self.c_proj(concat_attention) if training: output = tf.nn.dropout(output, rate=self.residual_dropout, name="resit_dropout") return output, present class EmbeddingLayer(tf.keras.layers.Layer): def __init__(self, vocab_size, embedding_size, initializer=None, stddev=0.01, mean=0.0): super(EmbeddingLayer, self).__init__() self.vocab_size = vocab_size self.embedding_size = embedding_size self.stddev = stddev self.mean = mean self.initializer = initializer if self.initializer is None: self.initializer = tf.random_normal_initializer(mean=self.mean, stddev=self.stddev) def build(self, input_shape): with tf.name_scope("embedding_weights"): self.embedding_weights = self.add_weight("weights", shape=[self.vocab_size, self.embedding_size], dtype="float32", initializer=self.initializer ) super(EmbeddingLayer, self).build(input_shape) def call(self, inputs, mode="embedding", scale=False): if mode == "embedding": return self.embedding(inputs, scale=scale) elif mode == "projection": return self.projection(inputs) else: raise ValueError("mode {} is not valid.".format(mode)) def embedding(self, inputs, scale=False): with tf.name_scope("embedding"): # Create binary mask of size [batch_size, length] mask = tf.cast(tf.not_equal(inputs, 0), tf.float32) inputs = tf.cast(inputs, tf.int32) embeddings = tf.nn.embedding_lookup(self.embedding_weights, inputs) embeddings *= tf.expand_dims(mask, -1) # Scale embedding by the sqrt of the hidden size if scale: embeddings *= self.embedding_size ** 0.5 return embeddings def projection(self, inputs): with tf.name_scope("output_layer"): batch_size = tf.shape(inputs)[0] seq_len = tf.shape(inputs)[1] h_flat = tf.reshape(inputs, [-1, self.embedding_size]) logits = tf.matmul(h_flat, self.embedding_weights, transpose_b=True) return tf.reshape(logits, [batch_size, seq_len, self.vocab_size]) class PositionEmbeddingLayer(tf.keras.layers.Layer): def __init__(self, position_seq, pos_embedding_size, trainable=True, stddev=0.02, mean=0.0): super(PositionEmbeddingLayer, self).__init__() self.position_seq = position_seq self.hidden_size = pos_embedding_size self.trainable = trainable self.stddev = stddev self.mean = mean if trainable: self.position_embedding = EmbeddingLayer(self.position_seq, self.hidden_size, stddev=self.stddev, mean=self.mean) def call(self, inputs, start=1): with tf.name_scope("pos_embedding"): if self.trainable: batch_size = tf.shape(inputs)[0] batch_seq = tf.shape(inputs)[1] positions = tf.reshape(tf.tile(tf.range(start, batch_seq + start), [batch_size]), [batch_size, batch_seq]) positions = tf.cast(positions, tf.int32) position_mask = tf.cast(tf.not_equal(inputs, 0), tf.int32) positions *= position_mask return self.position_embedding(positions) else: return self.get_position_sinusoid(self.position_seq) @staticmethod def get_position_sinusoid(seq_len, hidden_size, min_timescale=1.0, max_timescale=1.0e4): position = tf.cast(tf.range(seq_len), tf.float32) num_timescales = hidden_size // 2 log_timescale_increment = ( math.log(float(max_timescale) / float(min_timescale)) / (tf.cast(num_timescales, tf.float32) - 1)) inv_timescales = min_timescale * tf.exp( tf.cast(tf.range(num_timescales), tf.float32) * -log_timescale_increment) scaled_time = tf.expand_dims(position, 1) * tf.expand_dims(inv_timescales, 0) signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1) return signal class Conv1d(tf.keras.layers.Layer): def __init__(self, hidden_size, filter_size, weights_init_stdev=0.02, weights_mean=0.0, bias_init=0.0): super(Conv1d, self).__init__() self.weights_init_stdev = weights_init_stdev self.weights_mean = weights_mean self.bias_init = bias_init self.hidden_size = hidden_size self.filter_size = filter_size def build(self, input_shape): self.weight = self.add_weight( "cov1d_weights", shape=[self.hidden_size, self.filter_size], dtype=tf.float32, initializer=tf.random_normal_initializer( stddev=self.weights_init_stdev, mean=self.weights_mean)) self.bias = self.add_weight("conv1d_biases", shape=[self.filter_size], initializer=tf.constant_initializer(self.bias_init)) super(Conv1d, self).build(input_shape) def call(self, inputs): output_shape = [tf.shape(inputs)[0], tf.shape(inputs)[1]] + [self.filter_size] inputs = tf.reshape(inputs, [-1, self.hidden_size]) # shape [batch, seq , features] => [batch*seq, features] outputs = tf.matmul(inputs, self.weight) + self.bias outputs = tf.reshape(outputs, output_shape) # Reshape => [batch, seq, filter_size] return outputs class FeedForward(tf.keras.layers.Layer): def __init__(self, hidden_size, filter_size, dropout_rate=0.45, activation=tf.nn.relu): super(FeedForward, self).__init__() self.hidden_size = hidden_size self.filter_size = filter_size self.activation = activation self.dropout_rate = dropout_rate self.dense_layer = Conv1d(self.hidden_size, self.filter_size) self.output_dense_layer = Conv1d(self.filter_size, self.hidden_size) def call(self, x, training=False): output = self.dense_layer(x) output = self.activation(output) output = self.output_dense_layer(output) if training: output = tf.nn.dropout(output, rate=self.dropout_rate, name="feed_forward_dropout") return output class LayerNormalization(tf.keras.layers.Layer): def __init__(self, hidden_size): super(LayerNormalization, self).__init__() self.hidden_size = hidden_size def build(self, input_shape): self.gamma = self.add_weight( "layer_norm_scale", shape=[self.hidden_size], dtype="float32", initializer=tf.ones_initializer(), experimental_autocast=False) self.beta = self.add_weight( "layer_norm_bias", shape=[self.hidden_size], dtype="float32", initializer=tf.zeros_initializer(), experimental_autocast=False) super(LayerNormalization, self).build(input_shape) def call(self, x, epsilon=1e-6, input_dtype=tf.float32): mean = tf.reduce_mean(x, axis=[-1], keepdims=True) variance = tf.reduce_mean(tf.square(x - mean), axis=[-1], keepdims=True) normalized = (x - mean) * tf.math.rsqrt(variance + epsilon) return tf.cast(normalized * self.gamma + self.beta, input_dtype) def argmax(logits): return tf.argmax(logits) def top_k_logits(logits, k): if k == 0: return logits values, _ = tf.nn.top_k(logits, k=k) min_values = values[:, -1] return tf.where( logits < min_values, tf.ones_like(logits, dtype=logits.dtype) * -1e10, logits ) # Nucleas Sampling (https://arxiv.org/pdf/1904.09751.pdf) def top_p_logits(logits, p): """Took from OpenAI GPT-2 Implememtation""" batch = tf.shape(logits)[0] sorted_logits = tf.sort(logits, direction='DESCENDING', axis=-1) cumulative_probs = tf.cumsum(tf.nn.softmax(sorted_logits, axis=-1), axis=-1) indices = tf.stack([ tf.range(0, batch), tf.maximum(tf.reduce_sum(tf.cast(cumulative_probs <= p, tf.int32), axis=-1) - 1, 0), ], axis=-1) min_values = tf.gather_nd(sorted_logits, indices) return tf.where( logits < min_values, tf.ones_like(logits) * -1e10, logits, ) train_step_signature = [ tf.TensorSpec(shape=(None, None), dtype=tf.int32, name="Inputs"), tf.TensorSpec(shape=(None, None), dtype=tf.int32, name="Targets"), tf.TensorSpec(shape=(None), dtype=tf.int32, name="Step") ] test_step_signature = [ tf.TensorSpec(shape=(None, None), dtype=tf.int32, name="Inputs"), tf.TensorSpec(shape=(None, None), dtype=tf.int32, name="Targets"), tf.TensorSpec(shape=(None), dtype=tf.int32, name="Step") ] class Gpt2(tf.keras.Model): def __init__(self, num_layers, d_model, num_heads, dff, max_seq_len, vocab_size, tokenizer, optimizer="adam", learning_rate=0.005, rev_embedding_projection=True): super(Gpt2, self).__init__() self.rev_embedding_projection = rev_embedding_projection self.num_layers = num_layers self.num_heads = num_heads self.dff = dff self.max_seq_len = max_seq_len self.vocab_size = vocab_size self.d_model = d_model self.tokenizer = tokenizer self.learning_rate = learning_rate self.optimizer_t = optimizer self.dataset = None self.mirrored_strategy = None self.embedding = EmbeddingLayer( self.vocab_size, self.d_model) self.pos_embedding = PositionEmbeddingLayer( self.max_seq_len, self.d_model) self.decoder_layers = [DecoderLayer(self.d_model, self.num_heads, self.dff) for _ in range(self.num_layers)] self.layer_norm = LayerNormalization(self.d_model) if not self.rev_embedding_projection: self.output_layer = OutputLayer(self.vocab_size) self.loss_object = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=True, reduction='none') self.accuracy_object = tf.keras.metrics.SparseCategoricalAccuracy( name='accuracy') self.train_step_signature = [ tf.TensorSpec(shape=(None, None), dtype=tf.int32)] self.test_step_signature = [ tf.TensorSpec(shape=(None, None), dtype=tf.int32)] def call(self, x, training=True, past=None): x = tf.cast(x, tf.int32) batch, sequence = tf.shape(x)[0], tf.shape(x)[1] if past is None: pasts = [None] * self.num_layers else: pasts = past assert len(pasts) == self.num_layers att_mask = create_masks(x) past_length = 1 if past is None else tf.shape(past)[-2] with tf.name_scope("embeddings"): embedded_x = self.embedding(x) hidden_states = embedded_x + self.pos_embedding(x, start=past_length) presents = [] for decoder_layer, past in zip(self.decoder_layers, pasts): hidden_states, present = decoder_layer(hidden_states, training, att_mask, past=past) presents.append(present) hidden_states = self.layer_norm(hidden_states) if self.rev_embedding_projection: logits = self.embedding(hidden_states, mode="projection") else: logits = self.output_layer(hidden_states) return logits, presents @staticmethod def get_padded_accuracy(labels, logits): with tf.name_scope("padded_accuracy"): weights = tf.cast(tf.not_equal(labels, 0), tf.float32) outputs = tf.cast(tf.argmax(logits, axis=-1), tf.int32) padded_labels = tf.cast(labels, tf.int32) nonpad_seq = tf.math.count_nonzero(weights, dtype=tf.dtypes.float32, ) acc = tf.cast(tf.equal(outputs, padded_labels), tf.float32) accuracy = tf.reduce_sum(tf.cast(acc * weights, tf.float32)) / nonpad_seq return tf.cast(accuracy, tf.float32) def create_optimizer(self): optimizer = self.optimizer_t.lower() with tf.name_scope("optimizer"): if optimizer == "adam": self.optimizer = tf.keras.optimizers.Adam(self.learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9) elif optimizer == "adadelta": self.optimizer = tf.keras.optimizers.Adadelta(self.learning_rate) elif optimizer == "rms": self.optimizer = tf.keras.optimizers.RMSprop(self.learning_rate) else: self.optimizer = tf.keras.optimizers.SGD(self.learning_rate) return self.optimizer def get_loss(self, real, pred): with tf.name_scope("loss_layer"): mask = tf.math.logical_not(tf.math.equal(real, 0)) loss_ = self.loss_object(real, pred) with tf.name_scope("loss_masking"): mask = tf.cast(mask, dtype=loss_.dtype) loss_ *= mask loss_ = tf.reduce_sum(loss_, axis=1) sequence_avg_loss = loss_ / tf.reduce_sum(mask, axis=1) return sequence_avg_loss def create_checkpoint_manager(self, checkpoint_path, max_to_keep=5, load_model=True): with tf.name_scope('checkpoint_manager'): ckpt = tf.train.Checkpoint(optimizer=self.optimizer, model=self) self.ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=max_to_keep) if load_model: # If want to load trained weights ckpt.restore(self.ckpt_manager.latest_checkpoint) print('Latest checkpoint restored...............') else: print("Initializing model from scratch..........") def load_model(self, filepath): ckpt = tf.train.Checkpoint(model=self) ckpt_manager = tf.train.CheckpointManager(ckpt, filepath, max_to_keep=5) ckpt.restore(ckpt_manager.latest_checkpoint) print("Model Restored..........................") def create_summary_writer(self, summary_path): train_summary_path = summary_path + "/train" test_summary_path = summary_path + "/test" with tf.name_scope('summary'): self.train_writer = tf.summary.create_file_writer(train_summary_path) self.test_writer = tf.summary.create_file_writer(test_summary_path) return self.train_writer, self.test_writer @tf.function(input_signature=train_step_signature) def train_step(self, inputs, targets, step, grad_clip=True, clip_value=2.5): with tf.GradientTape() as tape: predictions, _ = self(inputs, training=True) loss = tf.reduce_mean(self.get_loss(targets, predictions)) with tf.name_scope("gradients"): gradients = tape.gradient(loss, self.trainable_variables) if grad_clip: gradients = [(tf.clip_by_value(grad, -clip_value, clip_value)) for grad in gradients] self.optimizer.apply_gradients(zip(gradients, self.trainable_variables)) accuracy = self.get_padded_accuracy(targets, predictions) with tf.name_scope("summary_writer"): with self.train_writer.as_default(): tf.summary.scalar("loss", loss, step=tf.cast(step, tf.int64)) tf.summary.scalar("accuracy", accuracy, step=tf.cast(step, tf.int64)) return loss, accuracy @tf.function(input_signature=test_step_signature) def test_step(self, inputs, targets, step, grad_clip=True, clip_value=2.5): with tf.GradientTape() as tape: predictions, _ = self(inputs, training=False) test_loss = tf.reduce_mean(self.get_loss(targets, predictions)) test_accuracy = self.get_padded_accuracy(targets, predictions) with tf.name_scope("summary_writer"): with self.test_writer.as_default(): tf.summary.scalar("test_loss", test_loss, step=tf.cast(step, tf.int64)) tf.summary.scalar("test_accuracy", test_accuracy, step=tf.cast(step, tf.int64)) return test_loss, test_accuracy def fit(self, train_dataset, test_dataset, EPOCHS=50): for epoch in range(EPOCHS): tf.summary.trace_on(graph=True, profiler=True) print('EPOCH :{}'.format(epoch)) if not epoch == 0: step = epoch * step test_step = epoch * test_step tf.summary.trace_on(graph=True, profiler=True) for (step, (inputs, targets)) in enumerate(train_dataset): train_loss, train_acc = self.train_step(inputs, targets, step) if step % 100 == 0: print('Step {} Train_Loss {:.4f} Train_Accuracy {:.4f}'.format( step, train_loss, train_acc)) if step == 25: with self.train_writer.as_default(): tf.summary.trace_export( name="gpt-2", step=step, profiler_outdir='logs/train') if step % 5000 == 0: ckpt_save_path = self.ckpt_manager.save() print('Saving checkpoint for step {} at {}'.format(step, ckpt_save_path)) # tf.summary.trace_on(graph=True, profiler=True) for (test_step, (inputs, targets)) in enumerate(test_dataset): test_loss, test_acc = self.test_step(inputs, targets, test_step) if not epoch == 0: test_step = epoch * test_step if test_step % 100 == 0: print('Step {} Test_Loss {:.4f} Test_Accuracy {:.4f}'.format( test_step, test_loss, test_acc)) if test_step == 25: with self.test_writer.as_default(): tf.summary.trace_export( name="gpt2_test", step=test_step, profiler_outdir='logs/test') def beam_search(self, predictions, top_k=25): #start with an empty sequence with zero score output_sequences = [([], 0)] #looping through all the predictions for token_probs in predictions: new_sequences = [] #append new tokens to old sequences and re-score for old_seq, old_score in output_sequences: for char_index in range(len(token_probs)): new_seq = old_seq + [char_index] #considering log-likelihood for scoring new_score = old_score + math.log(token_probs[char_index]) new_sequences.append((new_seq, new_score)) #sort all new sequences in the de-creasing order of their score output_sequences = sorted(new_sequences, key = lambda val: val[1], reverse = True) #select top-k based on score # *Note- best sequence is with the highest score output_sequences = output_sequences[:top_k] return output_sequences def sample_sequence(self,seq_len, context=None,temperature=.96, top_k=25, top_p=.95, nucleus_sampling=True): # vocab_size=2**15 # model_gen = Gpt2(num_layers=self.num_layers, d_model=self.d_model, num_heads=self.num_heads, dff=self.dff, max_seq_len=self.max_seq_len, vocab_size=self.tokenizer.get_vocab_size(), tokenizer=self.tokenizer, optimizer="adam") # model_gen.create_optimizer() # model_gen.create_checkpoint_manager('checkpoint') bos=self.tokenizer.bos_token_id#.encode('<START>')#.ids[0] eos=self.tokenizer.eos_token_id#.ids[0] if context == None: print("Give some context to model.................") return context_str = context context = tf.expand_dims(([bos] + self.tokenizer.encode(context)), 0) # context = tf.expand_dims(([bos] + [self.tokenizer.encode(context)]), 0) prev = context print(prev) output = context past = None for i in range(seq_len): #context = tf.expand_dims((self.tokenicontext).ids), 0) #prev = context #output = context past = None logits, past = self(prev, training=False, past=past) # print(logits) #logits = (tf.nn.softmax(logits[-1, -5:, :].numpy(),axis=-1) / tf.cast(1.25, tf.float32)).numpy() logits = logits[:,-1,:] / tf.cast(temperature, tf.float32) #predictions = beam_search_decoder(logits, 5) #np.random.shuffle(predictions) #print([self.tokenizer.decode(i) for i in predictions]) #predictions = predictions[0][0] # print(logits) logits = top_k_logits(logits, k=top_k) # print(logits) if nucleus_sampling: logits = top_p_logits(logits, p=top_p) samples = tf.random.categorical(logits, num_samples=1, dtype=tf.int32) if tf.equal(samples, eos): print("Predicted end of sequence.") break # print("shape.........") # print(tf.shape(output)) # print(tf.shape(samples)) #context_str = context_str + ' ' + self.tokenizer.decode(predictions) #context = tf.expand_dims(([bos] + self.tokenizer.encode(context_str), 0)) prev = samples output = tf.concat([output, samples], axis=-1) # print(tf.shape(output)) # print(output) # print("--------------------------") result = tf.squeeze(output, axis=0) pred = [int(i) for i in result] generated_seq = self.tokenizer.decode([i for i in pred[1:]]) #generated_seq = generated_seq.replace("|SEP|", "\n") generated_seq = ' '.join(generated_seq.split()) generated_seq = generated_seq.replace("<NEWLINE>", "\n").replace("<|>","\n").replace("<|NEWLINE|NEWLINE|>","\n").replace("<|NEWLINE|NEWLINE|NEWLINE|>","\n") return generated_seq from math import log from numpy import array from numpy import argmax # beam search def beam_search_decoder(data, k): sequences = [[list(), 0.0]] # walk over each step in sequence for row in data: all_candidates = list() # expand each current candidate for i in range(len(sequences)): seq, score = sequences[i] for j in range(len(row)): candidate = [seq + [j], score - log(row[j])] all_candidates.append(candidate) # order all candidates by score ordered = sorted(all_candidates, key=lambda tup:tup[1]) # select k best sequences = ordered[:k] return sequences class OutputLayer(tf.keras.layers.Layer): def __init__(self, output_dim, proj_weights=None, kernel_initializer=None): super(OutputLayer, self).__init__() self.proj_weights = proj_weights self.output_dim = output_dim self.layer_weights = None self.kernel_initializer = kernel_initializer def build(self, input_shape): if self.proj_weights is None: input_dim = tensor_shape.dimension_value(input_shape[-1]) self.layer_weights = self.add_weight( 'output_layer_weights', shape=[input_dim, self.output_dim], initializer=self.kernel_initializer, trainable=True) super(OutputLayer, self).build(input_shape) def call(self, x): batch, sequence, d_model = tf.shape(x)[0], tf.shape(x)[1], tf.shape(x)[-1] with tf.name_scope("residual_conn"): x = x + out out = self.feed_forward(self.layer_norm2(x), training=training) # (batch_size, input_seq_len, d_model) with tf.name_scope("residual_conn"): x = x + out return x, present class DecoderLayer(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, dff, dr_rate=0.45): super(DecoderLayer, self).__init__() self.d_model = d_model self.num_heads = num_heads self.dff = dff self.dr_rate = dr_rate self.mha = MultiHeadAttention(self.d_model, self.num_heads) self.feed_forward = FeedForward(self.d_model, self.dff, self.dr_rate) self.layer_norm1 = LayerNormalization(self.d_model) self.layer_norm2 = LayerNormalization(self.d_model) def call(self, x, training, mask, past=None): out, present = self.mha(self.layer_norm1(x), mask=mask, past_layer=past, training=training) # (batch_size, input_seq_len, d_model) with tf.name_scope("residual_conn"): x = x + out out = self.feed_forward(self.layer_norm2(x), training=training) # (batch_size, input_seq_len, d_model) with tf.name_scope("residual_conn"): x = x + out return x, present def run(): sequence_size = 12 trainTensor, testTensor, tokenizer = simple_method(sequence_size) model = Gpt2(6, 512, 8, 512, sequence_size, vocab_size=tokenizer.vocab_size+3, tokenizer=tokenizer, optimizer='adam') opt = model.create_optimizer() model.create_checkpoint_manager('checkpoint') model.create_summary_writer('logs') model.compile(loss=model.loss_object, optimizer=opt) model.fit(trainTensor, testTensor) # model.save('aesop') ```
{ "source": "jmstriegel/ESP8266_Weather_Station", "score": 3 }
#### File: appengine_service/api/station.py ```python import webapp2 import time from datetime import datetime import re import json from google.appengine.api import memcache CACHETIME = 120 class UpdateHandler(webapp2.RequestHandler): def post(self): self.response.headers['Content-Type'] = 'text/json' data = { 't': int(time.time()), '10_0': validPMData(self.request.get('pm10_0')), '2_5': validPMData(self.request.get('pm2_5')), '1_0': validPMData(self.request.get('pm1_0')), 'rssi': validRSSI(self.request.get('rssi')), 'ip': self.request.remote_addr, } device_id = validID(self.request.get('id')) key = 'device:%s' % device_id rawdata = memcache.get(key) devicedata = { 'id': device_id, 'latest': {}, 'history': [] } if (rawdata is not None): devicedata = json.loads(rawdata) timebin = getTimeBinMinute(data['t']) devicedata['history'] = flushHistory(devicedata['history'], timebin) devicedata['history'].append(data) devicedata['latest'] = data memcache.set(key, json.dumps(devicedata), CACHETIME) key = 'activedevices' rawdata = memcache.get(key) devices = {} if (rawdata is not None): devices = json.loads(rawdata) devices[device_id] = data['t'] devices = removeExpiredDevices(devices) memcache.set(key, json.dumps(devices), CACHETIME) result = { 't': data['t'] } self.response.out.write(json.dumps(result)) class ListHandler(webapp2.RequestHandler): def get(self): self.response.headers['Content-Type'] = 'text/json' devices = {} key = 'activedevices' rawdata = memcache.get(key) if (rawdata is not None): devices = json.loads(rawdata) devices = removeExpiredDevices(devices) device_arr = [] for device_id, t in devices.iteritems(): device_arr.append(device_id) response = { 'devices': device_arr } self.response.out.write(json.dumps(response)) class StatusHandler(webapp2.RequestHandler): def get(self): self.response.headers['Content-Type'] = 'text/json' device_id = validID(self.request.get('id')) key = 'device:%s' % device_id rawdata = memcache.get(key) devicedata = { 'id': device_id, 'latest': {}, 'history': [] } now = int(time.time()) timediff = -1 if (rawdata is not None): devicedata = json.loads(rawdata) timediff = now - devicedata['latest']['t'] result = { 'id': device_id, 'latest': devicedata['latest'], 't': now, 'recency': timediff } self.response.out.write(json.dumps(result)) def getTimeBinMinute(timestamp): d = datetime.fromtimestamp(timestamp) return d.strftime('%Y%m%d%H%M') def flushHistory(history, currenttimebin): bins = {} pruned = [] for data in history: timebin = getTimeBinMinute(data['t']) if timebin == currenttimebin: pruned.append(data) else: if timebin not in bins: bins[timebin] = [] bins[timebin].append(data) # TODO: arrays in bins should be averaged and stored return pruned def removeExpiredDevices(devices): newdata = {} cutoff = int(time.time()) - CACHETIME for device_id, t in devices.iteritems(): if(t > cutoff): newdata[device_id] = t return newdata def validPMData(data): if (data is None or data == ""): return -1 else: return int(data) def validRSSI(data): if (data is None or data == ""): return 0 else: return int(data) def validID(data): if (data is None or data == ""): return "default" else: return str(data) app = webapp2.WSGIApplication( [ ('/api/station/update', UpdateHandler), ('/api/station/list', ListHandler), ('/api/station/status', StatusHandler) ], debug=True ) ``` #### File: ESP8266_Weather_Station/appengine_service/index.py ```python import json import os import pickle import webapp2 from google.appengine.ext.webapp import template class IndexHandler( webapp2.RequestHandler ): def get( self ): self.response.headers['Content-Type'] = 'text/html' tmpl = os.path.join(os.path.dirname(__file__), 'views/index.html') tmplvars = { 'device_id': '' } device_id = self.request.get('id') if device_id is not None: tmplvars['device_id'] = device_id self.response.out.write(template.render(tmpl, tmplvars)) app = webapp2.WSGIApplication( [ ('/', IndexHandler) ], debug=True ) ```
{ "source": "jmsull/gzpt", "score": 2 }
#### File: gzpt/gzpt/utils.py ```python from nbodykit.cosmology import Planck15 import numpy as np from scipy.interpolate import InterpolatedUnivariateSpline as ius #true utils def W_TH(k,R): '''Top hat window Input: wavenumber k - arraylike position r - arraylike option (k,r) - for Fourier or configuration space top hat R - the filtering scale ''' x=k*R return (3/x**3)*(np.sin(x) - x*np.cos(x)) def W_TH_real(r,R): '''Top hat window Input: position r - arraylike R - the filtering scale ''' V = 4*np.pi/3 *R**3 if(len(r)>0): indicator = np.ones(r.shape) indicator[r>R] =0 return indicator/V else: if(r>R): return 0. else: return 1/V def Nk(k,L=3200.): """Number of k modes for a given box size. Default is cc box size.""" kf = 2.*np.pi/L vf = (kf)**3 dk = kf #fftpower uses fundamental mode for dk by default Nk = (4*np.pi*k**2 * dk)/vf return Nk def match(rlow,xlow,rhigh,xhigh,mp=10,extrap=1,npts=100,bare=False): """For plotting 2pcfs - interpolate small-scale pair counts and large scale FFT grid 2PCF""" """Output is r^2 xi """ rlow,xlow = rlow[rlow>0],xlow[rlow>0] #check if zero because sometimes that happens for nbodykit 2pcf m = mp #match_point rconc,xconc = np.concatenate([rlow[rlow<m],rhigh[rhigh>=m]]),np.concatenate([xlow[rlow<m],xhigh[rhigh>=m]]) r = np.logspace(np.log10(rlow.min()),np.log10(rhigh.max()),npts) s = ius(rconc,rconc**2 * xconc,ext=extrap)(r) if(bare): #return multiplied by r^2 by default s = s/r**2 return r,s def Delta(z,mdef,cosmo=Planck15): if(mdef=='vir'): '''Bryan + Norman 1998 fit''' xv = 1- cosmo.Omega_m(z) return ((18*np.pi**2 - 82*xv -39*xv**2)/(1-xv) * cosmo.rho_crit(z)*1e10) elif(mdef=='200m'): return 200*cosmo.rho_m(z)*1e10 elif(mdef=='200c'): return 200*cosmo.rho_crit(z)*1e10 elif(mdef=='Lag'): return cosmo.rho_m(z)*1e10 elif(mdef=='exc'): "Approx. Baldauf++ 13 fitting value for z=0" return 30*cosmo.rho_m(z)*1e10 else: print("Mass definition not avaliable!") raise ValueError def rDelta(M,z,mdef='vir',cosmo=Planck15): "Choosing vir since closest to what M_FoF finds with ll=0.2 (White 2000 Table 1)" return ((3/(4*np.pi*Delta(z,mdef,cosmo)))*M)**(1/3) def mDelta(r,z,mdef='vir',cosmo=Planck15): return 4/3 *np.pi*Delta(z,mdef,cosmo)*r**3 @np.vectorize def sigma(M,z,mdef,P=None,kmin=1e-5,kmax=1e2,num_pts=100,cosmo=Planck15): ''' Get sigma from P using trapezoidal rule Input: M: Mass defining smoothing scale z: redshift mdef: choice of mass definition for smoothing window optional P: Power spectrum callable, if none use linear kmin: lower integration range kmax: upper integration range num_pts: points to use in integration ''' growth = (1/(1+z)) if P is None: kk,Pkk = np.loadtxt('/Users/jsull/Cosmology_Codes/flowpm/flowpm/data/Planck15_a1p00.txt',unpack=True) def P(k): return np.interp(k,kk,Pkk) k = np.logspace(np.log10(kmin),np.log10(kmax),num_pts) """using EdS growth""" def I(k): I = k**2 * P(k) * np.abs(W_TH(k,rDelta(M,z,mdef)))**2 return I Ig = growth*np.sqrt((1/(2*np.pi**2))* np.trapz(I(k),x=k)) return Ig ``` #### File: jmsull/gzpt/setup.py ```python from setuptools import setup from io import open # read the contents of the README file #with open('README.md', "r") as f: # long_description = f.read() def find_version(path): with open(path, 'r') as fp: file = fp.read() import re match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", file, re.M) if match: return match.group(1) raise RuntimeError("Version not found") setup(name='gzpt', version = find_version("gzpt/__init__.py"), description='Hybrid Analytic Model for Matter and Tracer Two-point Correlators', # long_description="See README.md",#long_description, url='https://github.com/jmsull/gzpt', author='<NAME>', author_email='<EMAIL>', license='MIT', packages=['gzpt'], install_requires=['wheel', 'numpy>=1.16.5', 'scipy','pyfftw'], tests_require=['numpy>=1.16.5','scipy','pyfftw'], extras_require={ 'testing': ["numpy"], }, python_requires='>=3', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Topic :: Scientific/Engineering :: Physics' ], keywords='cosmology') ```
{ "source": "jmsung/APC", "score": 3 }
#### File: APC/scripts/anisotropy.py ```python """"""""""""""""""""""""""""""""""""""""""""""""""""""""""" Created by <NAME> (<EMAIL>) Anisotropy data analysis The equation for the curve as published by Marchand et al. in Nature Cell Biology in 2001 is as follows: y = a + (b-a) / [(c(x+K)/K*d)+1], where a is the anisotropy without protein, b is anisotropy with protein, c is the Kd for ligand, d is the total concentration of protein. """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" from __future__ import division, print_function, absolute_import import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from pathlib import Path import os import shutil from timeit import default_timer as timer from scipy.stats import norm from scipy.optimize import curve_fit from scipy.optimize import minimize from inspect import currentframe, getframeinfo fname = getframeinfo(currentframe()).filename # current file name current_dir = Path(fname).resolve().parent # User input ---------------------------------------------------------------- red_x = np.array([100, 50, 25, 12.5, 6.25, 3.125, 1.56, 0]) red_y = np.array([0.179, 0.186, 0.19, 0.195, 0.2, 0.212, 0.222, 0.248]) red_p = np.array([0.191, 0.248, 0.05, 1]) black_x = np.array([100, 50, 25, 18.75, 14.1, 10.5, 7.9, 5.9, 0]) black_y = np.array([0.204, 0.225, 0.248, 0.26, 0.268, 0.271, 0.274, 0.277, 0.278]) black_p = np.array([0.183, 0.278, 1.5, 16]) # --------------------------------------------------------------------------- def red_anisotropy(x, K): a = red_p[0] b = red_p[1] c = red_p[2] d = red_p[3] return a+(b-a)/((c*(x+K)/(K*d))+1) def black_anisotropy(x, K): a = black_p[0] b = black_p[1] c = black_p[2] d = black_p[3] return a+(b-a)/((c*(x+K)/(K*d))+1) def main(): red_p, _ = curve_fit(red_anisotropy, red_x, red_y, p0=[0.078]) black_p, _ = curve_fit(black_anisotropy, black_x, black_y, p0=[0.1]) # Plot the result fit_x = np.linspace(0, 100, 1000) fig, (ax1, ax2) = plt.subplots(figsize=(20, 10), ncols=2, nrows=1, dpi=300) ax1.plot(red_x, red_y, 'ro', ms=10) ax1.plot(fit_x, red_anisotropy(fit_x, red_p), 'r', lw=2) ax1.set_xlabel('[dark D] um') ax1.set_ylabel('Anisotropy') ax1.set_title('Red K = %f' %(red_p)) ax1.set_ylim([0.15, 0.3]) ax2.plot(black_x, black_y, 'ko', ms=10) ax2.plot(fit_x, black_anisotropy(fit_x, black_p), 'k', lw=2) ax2.set_xlabel('[dark D] um') ax2.set_ylabel('Anisotropy') ax2.set_title('Black K = %f' %(black_p)) ax2.set_ylim([0.15, 0.3]) fig.savefig('plot_anisotropy.png') plt.close(fig) if __name__ == "__main__": main() ``` #### File: scripts/archive/hmm_processive ([email protected]).py ```python from __future__ import division, print_function, absolute_import import numpy as np import matplotlib.pyplot as plt import scipy from hmmlearn import hmm import time # User parameters n_sample = 2 n_frame = 200 SNR = 10 time_bound = 10 time_unbound = 20 print("Number of sample = %d" %(n_sample)) print("Number of frame = %d" %(n_frame)) print("SNR = %d\n" %(SNR)) print("Time bound (true) = %.1f" %(time_bound)) print("Time unbound (true) = %.1f\n" %(time_unbound)) def icdf(data, time): data = np.array(data) cdf = np.zeros(len(time)) for i in time: cdf[i] = sum(data <= time[i]) icdf = 1 - cdf/max(cdf) icdf = icdf - min(icdf) + 0.001 return icdf def outliers(data, m = 5.): data = np.array(data) d = np.abs(data - np.median(data)) mdev = np.median(d) s = d/mdev if mdev else 0. return s > m def Gaussian(m, s, x): return np.exp(-(x-m)**2/(2*s**2))/(2*np.pi*s**2)**0.5 def LL_G(param, x): [m, s] = param return np.sum(np.log(Gaussian(m, s, x))) def MLE_G(x): m = np.mean(x) s = np.std(x) fun = lambda *args: -LL_G(*args) p0 = [m, s] result = scipy.optimize.minimize(fun, p0, args=(x)) return result def Exp3(m, a, b, x): return abs(a)*np.exp(-x/abs(m)) + b def Exp2(m, b, x): return np.exp(-x/abs(m)) + b def Exp1(m, x): return np.exp(-x/abs(m)) def Exp_pdf(m, x): return np.exp(-x/abs(m))/abs(m) def LL_E(param, x): [m] = param return np.sum(np.log(Exp_pdf(m, x))) def MLE_E(x): m = np.mean(x) fun = lambda *args: -LL_E(*args) p0 = [m] result = scipy.optimize.minimize(fun, p0, args=(x)) return result def get_dwell(X): t_ub = [] t_bu = [] Z = [i for i in X] # stop if only bound or unbound state if max(Z) == min(Z): return [], [] for i in range(n_frame-1): if Z[i] == 0 and Z[i+1] == 1: # time at binding t_ub.append(i) elif Z[i] == 1 and Z[i+1] == 0: # time at unbinding t_bu.append(i) else: pass # Either binding or unbinding is zero event if len(t_bu)*len(t_ub) == 0: return [], [] t_ub = np.array(t_ub) t_bu = np.array(t_bu) if t_ub[0] < t_bu[0]: # if binding starts first t_b = t_bu - t_ub[:len(t_bu)] if len(t_ub) > 1: t_u = t_ub[1:] - t_bu[:len(t_ub[1:])] else: return t_b, [] else: # if unbinding starts first t_u = t_ub - t_bu[:len(t_ub)] if len(t_bu) > 1: t_b = t_bu[1:] - t_ub[:len(t_bu[1:])] else: return [], t_u return t_b, t_u class Data: # Initialize an object with the parameters def __init__(self, n_sample, n_frame, SNR, time_bound, time_unbound): self.n_sample = n_sample self.n_frame = n_frame self.SNR = SNR self.time_bound = time_bound self.time_unbound = time_unbound # Build a HMM model and simulate n_sample traces def generate(self): # Build an HMM instance and set parameters self.model = hmm.GaussianHMM(n_components=2, covariance_type="full") # The transition probability matrix tp_ub = 1/self.time_unbound tp_uu = 1 - tp_ub tp_bu = 1/self.time_bound tp_bb = 1 - tp_bu # Set the parameters to generate samples self.model.startprob_ = np.array([0.5, 0.5]) self.model.transmat_ = np.array([[tp_uu, tp_ub], [tp_bu, tp_bb]]) self.model.means_ = np.array([[0], [1]]) self.model.covars_ = np.tile(np.identity(1), (2, 1, 1)) / self.SNR**2 # Generate list of n_samples and concatenate them self.X = [None] * self.n_sample self.Z_true = [None] * self.n_sample self.X_conc = np.empty(shape=(0, 1)) self.Z_true_conc = np.empty(shape=(0, 1)) for i in range(self.n_sample): self.X[i], Z = self.model.sample(self.n_frame) self.Z_true[i] = Z.reshape(self.n_frame, 1) self.X_conc = np.concatenate((self.X_conc, self.X[i]), axis=0) self.Z_true_conc = np.concatenate((self.Z_true_conc, self.Z_true[i]), axis=0) # HMM prediction def predict(self): # Set a new model for traidning self.remodel = hmm.GaussianHMM(n_components=2, covariance_type="full", n_iter=100) # Set initial parameters for training self.remodel.startprob_ = np.array([0.5, 0.5]) self.remodel.transmat_ = np.array([[0.5, 0.5], [0.5, 0.5]]) self.remodel.means_ = np.array([0, 1]) self.remodel.covars_ = np.tile(np.identity(1), (2, 1, 1)) / self.SNR**2 self.Z_predict = [None] * self.n_sample self.converged = [None] * self.n_sample self.X_mean = [None] * self.n_sample self.X_var = [None] * self.n_sample self.SNR = np.zeros(self.n_sample) self.tp = [None] * self.n_sample self.tp_ub = np.zeros(self.n_sample) self.tp_bu = np.zeros(self.n_sample) self.tb_HMM = np.zeros(self.n_sample) self.tu_HMM = np.zeros(self.n_sample) for i in range(n_sample): # Estimate model parameters (training) self.remodel.fit(self.X[i]) # Find most likely state sequence corresponding to X Z_predict = self.remodel.predict(self.X[i]) Z_predict = Z_predict.reshape(self.n_frame, 1) X_mean = self.remodel.means_ # Mean X_var = self.remodel.covars_ # Covariance ### Simplify the following tp = self.remodel.transmat_ # Transition probability self.converged[i] = self.remodel.monitor_.converged # Check convergence self.SNR[i] = (abs(X_mean[1][0]-X_mean[0][0])/(np.mean(X_var))**0.5) # Assign them such that X[state==0]=0 and X[state==1]=1 if X_mean[0] <= X_mean[1]: self.Z_predict[i] = Z_predict self.X_mean[i] = [X_mean[0][0], X_mean[1][0]] self.X_var[i] = [X_var[0][0][0], X_var[1][0][0]] self.tp[i] = [[tp[0][0], tp[0][1]], [tp[1][0], tp[1][1]]] else: self.Z_predict[i] = 1 - Z_predict self.X_mean[i] = [X_mean[1][0], X_mean[0][0]] self.X_var[i] = [X_var[1][0][0], X_var[0][0][0]] self.tp[i] = [[tp[1][1], tp[1][0]], [tp[0][1], tp[0][0]]] # HMM estimate of bound (tb) and unbound time (tu) self.tp_ub[i] = self.tp[i][0][1] + 1/n_frame # Transition prob from unbound to bound self.tp_bu[i] = self.tp[i][1][0] + 1/n_frame # Transition prob from bound to unbound self.tb_HMM[i] = 1/self.tp_bu[i] # Bound time self.tu_HMM[i] = 1/self.tp_ub[i] # Unbound time # Check the convergence print("%.1f %% converged." %(sum([int(i) for i in self.converged])/self.n_sample*100)) # Label only good data cond1 = np.array(self.tb_HMM) <= n_frame*0.5 # cond1 = ~outliers(self.tb_HMM) cond2 = np.array(self.tu_HMM) <= n_frame*0.5 # cond2 = ~outliers(self.tu_HMM) cond3 = ~outliers(self.SNR) self.good_data = cond1 & cond2 & cond3 # Log transition probability self.log_tp_ub = np.log10(np.array(self.tp_ub[self.good_data])) self.log_tp_bu = np.log10(np.array(self.tp_bu[self.good_data])) # MLE fitting with a Gaussian function result_bu = MLE_G(self.log_tp_bu) result_ub = MLE_G(self.log_tp_ub) self.m_b, self.s_b = result_bu["x"] self.m_u, self.s_u = result_ub["x"] self.tb_MLE = 1/10**(self.m_b) self.tu_MLE = 1/10**(self.m_u) error_tb = 100*(self.tb_MLE/self.time_bound-1) error_tu = 100*(self.tu_MLE/self.time_unbound-1) print("Time bound (MLE) = %.1f (%.1f %%)" %(self.tb_MLE, error_tb)) print("Time unbound (MLE) = %.1f (%.1f %%) \n" %(self.tu_MLE, error_tu)) # # ---------------------------------------------------------------------- # # HMM prediction with concatenated data # self.remodel.fit(self.X_conc) # Fit (train) to find the parameters # Z_predict_conc = self.remodel.predict(self.X_conc) # Predict the most likely trajectory # self.Z_predict_conc = Z_predict_conc.reshape(self.n_frame*self.n_sample, 1) # self.converged_conc = self.remodel.monitor_.converged # Check the convergence # self.tp_conc = self.remodel.transmat_ # Transition probability # # Reorder state number such that X[Z=0] < X[Z=1] # if self.X_conc[Z_predict_conc == 0].mean() > self.X_conc[Z_predict_conc == 1].mean(): # self.Z_predict_conc = 1 - self.Z_predict_conc # self.tp_conc = np.array([[self.tp_conc[1][1], self.tp_conc[1][0]], # [self.tp_conc[0][1], self.tp_conc[0][0]]])# # # self.tp_bu_conc = self.tp_conc[1][0] + 1/n_frame # Transition prob from unbound to bound # self.tp_ub_conc = self.tp_conc[0][1] + 1/n_frame # Transition prob from bound to unbound # self.tb_HMM_conc = 1/self.tp_bu_conc # Bound time # self.tu_HMM_conc = 1/self.tp_ub_conc # Unbound time # error_tb = 100*(self.tb_HMM_conc/self.time_bound-1) # error_tu = 100*(self.tu_HMM_conc/self.time_unbound-1) # print("HMM_concatenated is %s" %(["not converged.", "converged."][int(self.converged_conc)])) # print("Time bound (HMM, conc) = %.1f (%.1f %%)" %(self.tb_HMM_conc, error_tb)) # print("Time unbound (HMM, conc) = %.1f (%.1f %%)\n" %(self.tu_HMM_conc, error_tu)) def threshold(self): self.Z_Threshold = [None] * self.n_sample self.X_Threshold = [None] * self.n_sample for i in range(self.n_sample): self.Z_Threshold[i] = np.zeros(self.n_frame) for j in range(self.n_frame): if self.X[i][j] > 0.5: self.Z_Threshold[i][j] = 1 # self.Z_Threshold[i][self.X[i]>0.5] = 1 # self.X_Threshold[i][self.Z_Threshold[i]==0] = np.mean(self.X[i][self.Z_Threshold[i]==0]) # self.X_Threshold[i][self.Z_Threshold[i]==1] = np.mean(self.X[i][self.Z_Threshold[i]==1]) def analyze_pdf(self): dwell_b = [] dwell_u = [] for i in range(self.n_sample): if self.good_data[i]: tb, tu = get_dwell(self.Z_predict[i]) dwell_b.extend(tb) dwell_u.extend(tu) dwell_b = np.array(dwell_b) dwell_u = np.array(dwell_u) self.dwell_b = dwell_b[dwell_b < self.n_frame*0.5] self.dwell_u = dwell_u[dwell_u < self.n_frame*0.5] self.dwell_b_min = 0#np.min(self.dwell_b) self.dwell_u_min = 0#np.min(self.dwell_u) # MLE fitting with an Exponential function result_b = MLE_E(self.dwell_b - self.dwell_b_min) result_u = MLE_E(self.dwell_u - self.dwell_u_min) self.tb_pdf = float(result_b["x"]) + self.dwell_b_min self.tu_pdf = float(result_u["x"]) + self.dwell_u_min error_tb = 100*(self.tb_pdf/self.time_bound-1) error_tu = 100*(self.tu_pdf/self.time_unbound-1) print("Time bound (PDF) = %.1f (%.1f %%)" %(self.tb_pdf, error_tb)) print("Time unbound (PDF) = %.1f (%.1f %%) \n" %(self.tu_pdf, error_tu)) def analyze_icdf(self): self.t_b = np.arange(max(self.dwell_b)) self.t_u = np.arange(max(self.dwell_u)) # Inverse cumulative distrubution function from dwell time data self.icdf_b = icdf(self.dwell_b, self.t_b) self.icdf_u = icdf(self.dwell_u, self.t_u) p_b = [self.tb_pdf, 1, 0] p_u = [self.tu_pdf, 1, 0] # Curve fit of the icdf # p_b, c_b = scipy.optimize.curve_fit(Exp3, t_b[10:30], icdf_b[10:30], p0=p_b)#, [m_b, 1, 0])#, sigma = 1/icdf_b**0.5) # p_u, c_u = scipy.optimize.curve_fit(Exp3, t_u[10:30], icdf_u[10:30], p0=p_u)#, sigma = 1/icdf_u**0.5) self.p_b, self.c_b = scipy.optimize.curve_fit(lambda t,a,b,c: b*np.exp(-t/a)+c, self.t_b, self.icdf_b, p0=p_b)#, sigma=1/icdf_b**0.5) self.p_u, self.c_u = scipy.optimize.curve_fit(lambda t,a,b,c: b*np.exp(-t/a)+c, self.t_u, self.icdf_u, p0=p_u)#, sigma=1/icdf_u**0.5) print('Time bound (icdf) = %.1f (%.1f %%)' %(self.p_b[0], 100*(self.p_b[0]/time_bound-1))) print('Time unbound (icdf) = %.1f (%.1f %%) \n' %(self.p_u[0], 100*(self.p_u[0]/time_unbound-1))) def plot_trace(self): fig = plt.figure('trace', clear=True) for i in range(1): # Mean values for true and predicted states X_true = np.zeros((n_frame,1)) X_predict = np.zeros((n_frame,1)) X_threshold = np.zeros((n_frame,1)) for j in range(2): X_true[self.Z_true[i]==j] = self.X[i][self.Z_true[i]==j].mean() X_predict[self.Z_predict[i]==j] = self.X[i][self.Z_predict[i]==j].mean() X_threshold[self.Z_Threshold[i]==j] = self.X[i][self.Z_Threshold[i]==j].mean() # Percent of error percent_error = sum(abs(self.Z_true[i] - self.Z_predict[i]))/self.n_frame*100 # Plot the sampled data sp = fig.add_subplot(2, 4, i+1) sp.plot(self.X[i], "k", label="observations", ms=1, lw=1, alpha=0.5) sp.plot(X_true, "b", label="states", lw=2, alpha=1) sp.plot(X_predict, "r", label="predictions", lw=2, alpha=1) sp.set_ylabel('Intensity') # sp.set_title("SNR = %.1f, HMM" % (self.SNR[i])) #show both signal and noise sp.set_title("SNR = %.1f, Error = %.1f %%" % (self.SNR[i], percent_error)) #show both signal and noise # sp = fig.add_subplot(2, 1, i+2) # sp.plot(self.X[i], "k", label="observations", ms=1, lw=1, alpha=0.5) # sp.plot(X_true, "b", label="states", lw=2, alpha=1) # sp.plot(X_threshold, "r", label="threshold", lw=2, alpha=1) # sp.set_xlabel('Frame') # sp.set_ylabel('Intensity') # sp.set_title("SNR = %.1f, Threshoding" % (self.SNR[i])) #show both signal and noise # sp.set_title("SNR = %.1f, Error = %.1f %%" % (self.SNR[i], percent_error)) #show both signal and noise plt.show() def plot_cluster(self): fig = plt.figure('cluster', clear=True) sp = fig.add_subplot(231) sp.hist(self.SNR, bins ='scott', color='k', histtype='step', lw=1) sp.hist(self.SNR[self.good_data], bins ='scott', color='r', histtype='step', lw=1) sp.set_title('SNR') sp = fig.add_subplot(232) sp.hist(self.tb_HMM, bins ='scott', color='k', histtype='step', lw=1) sp.hist(self.tb_HMM[self.good_data], bins ='scott', color='r', histtype='step', lw=1) sp.set_title('Time bound (True = %.1f)' %(self.time_bound)) sp = fig.add_subplot(233) sp.hist(self.tu_HMM, bins ='scott', color='k', histtype='step', lw=1) sp.hist(self.tu_HMM[self.good_data], bins ='scott', color='r', histtype='step', lw=1) sp.set_title('Time unbound (True = %.1f)' %(self.time_unbound)) sp = fig.add_subplot(234) sp.plot(self.SNR, self.tb_HMM, 'k.', alpha=0.5) sp.plot(self.SNR[self.good_data], self.tb_HMM[self.good_data], 'r.', alpha=0.5) sp.set_xlabel('SNR') sp.set_ylabel('Time bound') sp = fig.add_subplot(235) sp.plot(self.SNR, self.tu_HMM, 'k.', alpha=0.5) sp.plot(self.SNR[self.good_data], self.tu_HMM[self.good_data], 'r.', alpha=0.5) sp.set_xlabel('SNR') sp.set_ylabel('Time unbound') sp = fig.add_subplot(236) sp.plot(self.tb_HMM, self.tu_HMM, 'k.', alpha=0.5) sp.plot(self.tb_HMM[self.good_data], self.tu_HMM[self.good_data], 'r.', alpha=0.5) sp.set_xlabel('Time bound') sp.set_ylabel('Time unbound') plt.show() def plot_HMM(self): fig = plt.figure('HMM', clear=True) sp = fig.add_subplot(121) sp.hist(self.log_tp_bu, bins ='scott', color='k', histtype='step', density='True', lw=1) x = np.linspace(min(self.log_tp_bu), max(self.log_tp_bu), 100) sp.plot(x, Gaussian(self.m_b, self.s_b, x), 'r', lw=2) sp.axvline(x=self.m_b, color='k', linestyle='dotted', lw=1) sp.set_xlabel('Log10(TP_bu)') error_b = 100*(self.tb_MLE/time_bound-1) sp.set_title("Bound time = %.1f (%.1f %%)" %(self.tb_MLE, error_b)) sp = fig.add_subplot(122) sp.hist(self.log_tp_ub, bins ='scott', color='k', histtype='step', density='True', lw=1) x = np.linspace(min(self.log_tp_ub), max(self.log_tp_ub), 100) sp.plot(x, Gaussian(self.m_u, self.s_u, x), 'r', lw=2) sp.axvline(x=self.m_u, color='k', linestyle='dotted', lw=1) sp.set_xlabel('Log10(TP_ub)') error_u = 100*(self.tu_MLE/time_unbound-1) sp.set_title("Unbound time = %.1f (%.1f %%)" %(self.tu_MLE, error_u)) plt.show() def plot_pdf(self): # Plot the result fig = plt.figure('PDF', clear=True) sp = fig.add_subplot(121) sp.hist(self.dwell_b - self.dwell_b_min, bins=np.linspace(0,max(self.dwell_b),20), color='k', histtype='step', density='True', lw=1) sp.plot(self.t_b, Exp_pdf(self.tb_pdf, self.t_b), 'r', lw=1) sp.set_xlim([0, max(self.dwell_b)]) sp.set_xlabel('Frames') sp.set_ylabel('Probability') error_b = 100*(self.tb_pdf/time_bound-1) sp.set_title('Time bound (PDF) = %.1f (%.1f %%)' %(self.tb_pdf, error_b)) sp = fig.add_subplot(122) sp.hist(self.dwell_u - self.dwell_u_min, bins=np.linspace(0,max(self.dwell_u),20), color='k', histtype='step', density='True', lw=1) sp.plot(self.t_u, Exp_pdf(self.tu_pdf, self.t_u), 'r', lw=1) sp.set_xlim([0, max(self.dwell_u)]) sp.set_xlabel('Frames') sp.set_ylabel('Probability') error_u = 100*(self.tu_pdf/time_unbound-1) sp.set_title('Time unbound (PDF) = %.1f (%.1f %%)' %(self.tu_pdf, error_u)) plt.show() def plot_icdf(self): fig = plt.figure('ICDF', clear=True) sp = fig.add_subplot(121) sp.plot(self.t_b, self.icdf_b, 'ko', ms=2) sp.plot(self.t_b, Exp3(self.p_b[0], self.p_b[1], self.p_b[2], self.t_b), 'r', lw=1) sp.set_xlim([0, max(self.t_b)]) sp.set_ylim([0, 1]) sp.set_xlabel('Frames') sp.set_ylabel('Pobability') sp.set_title('Time bound (icdf) = %.1f (%.1f %%)' %(self.p_b[0], 100*(self.p_b[0]/self.time_bound-1))) sp = fig.add_subplot(122) sp.plot(self.t_u, self.icdf_u, 'ko', ms=2) sp.plot(self.t_u, Exp3(self.p_u[0], self.p_u[1], self.p_u[2], self.t_u), 'r', lw=1) sp.set_xlim([0, max(self.t_u)]) sp.set_ylim([0, 1]) sp.set_xlabel('Frames') sp.set_ylabel('Probability') sp.set_title('Time unbound (icdf) = %.1f (%.1f %%)' %(self.p_u[0], 100*(self.p_u[0]/self.time_unbound-1))) def main(n_sample, n_frame, SNR, time_bound, time_unbound): start_time = time.time() # Initialize data = Data(n_sample, n_frame, SNR, time_bound, time_unbound) # Generate list of data array data.generate() # Predict from list of data array data.predict() # Test thresholding data.threshold() # PDF analysis # data.analyze_pdf() # ICDF analysis # data.analyze_icdf() # Plot the result data.plot_trace() # data.plot_cluster() data.plot_HMM() data.plot_pdf() # data.plot_icdf() print("Calculation time = %d (s)" %(time.time()-start_time)) if __name__ == "__main__": main(n_sample, n_frame, SNR, time_bound, time_unbound) # To do # Independent signal generation # Cutoff > Median estimat # TP = Beta distribution ```
{ "source": "jmsung/codewars", "score": 4 }
#### File: codewars/scripts/myfunc.py ```python def sign(n): """ Return sign 1 (n >= 0) or -1 (n < 0) """ if not (isinstance(n, float) or isinstance(n, int)): raise ValueError("Input must be real number.") import math return math.copysign(1, n) def num2lst(n): """ Convert from a multiple digit number to a list of single digit """ return [int(i) if n > 0 else -int(i) for i in str(abs(n))] def lst2num(lst): """ Convert from a list of single digits to a multiple digit number """ # check all the element have the same sign if not all(sign(element) == sign(lst[0]) for element in lst if element != 0): raise ValueError("All the element in lst must have the same sign.") num = int("".join([str(abs(i)) for i in lst])) return num if sign(lst[0]) > 0 else -num def list_same_digit(n): """ Return the sorted list of the same digits from the input number Parameters ---------- n (int): An int number Return ------ digits (list of int): combination of digits """ pass def sum_squared(x): """ Return the sum of the squared elements Parameters ---------- x (list): List of numbers Return ------ ss (float): sum of the squared """ ss = sum(map(lambda i : i * i, x)) # ss = sum([i**2 for i in x]) return ss ```
{ "source": "jmsung/trap_analysis", "score": 3 }
#### File: scripts/Analysis/trap_func.py ```python import numpy as np import scipy import os import shutil def step(t, tb, tu, Ab, Au, s1, s2): return (Ab-Au) * (scipy.special.erf(s1*(t-tb)) - scipy.special.erf(s2*(t-tu)))/2 + Au def sine(t, f, A, ph, b): # Sine function return A * np.sin(2*np.pi*f*t - ph) + b def triangle(t, f, A, ph, b): t = 2 * np.pi * f * t - ph + np.pi/2 t, w = np.asarray(t), np.asarray(0.5) w = np.asarray(w + (t - t)) t = np.asarray(t + (w - w)) if t.dtype.char in ['fFdD']: ytype = t.dtype.char else: ytype = 'd' y = np.zeros(t.shape, ytype) # width must be between 0 and 1 inclusive mask1 = (w > 1) | (w < 0) np.place(y, mask1, np.nan) # take t modulo 2*pi tmod = np.mod(t, 2 * np.pi) # on the interval 0 to width*2*pi function is # tmod / (pi*w) - 1 mask2 = (1 - mask1) & (tmod < w * 2 * np.pi) tsub = np.extract(mask2, tmod) wsub = np.extract(mask2, w) np.place(y, mask2, tsub / (np.pi * wsub) - 1) # on the interval width*2*pi to 2*pi function is # (pi*(w+1)-tmod) / (pi*(1-w)) mask3 = (1 - mask1) & (1 - mask2) tsub = np.extract(mask3, tmod) wsub = np.extract(mask3, w) np.place(y, mask3, (np.pi * (wsub + 1) - tsub) / (np.pi * (1 - wsub))) return A*y + b def trapzoid(t, f, A, ph, b, m): t = 2 * np.pi * f * t - ph + np.pi/2 t, w = np.asarray(t), np.asarray(0.5) w = np.asarray(w + (t - t)) t = np.asarray(t + (w - w)) if t.dtype.char in ['fFdD']: ytype = t.dtype.char else: ytype = 'd' y = np.zeros(t.shape, ytype) # width must be between 0 and 1 inclusive mask1 = (w > 1) | (w < 0) np.place(y, mask1, np.nan) # take t modulo 2*pi tmod = np.mod(t, 2 * np.pi) # on the interval 0 to width*2*pi function is # tmod / (pi*w) - 1 mask2 = (1 - mask1) & (tmod < w * 2 * np.pi) tsub = np.extract(mask2, tmod) wsub = np.extract(mask2, w) np.place(y, mask2, tsub / (np.pi * wsub) - 1) # on the interval width*2*pi to 2*pi function is # (pi*(w+1)-tmod) / (pi*(1-w)) mask3 = (1 - mask1) & (1 - mask2) tsub = np.extract(mask3, tmod) wsub = np.extract(mask3, w) np.place(y, mask3, (np.pi * (wsub + 1) - tsub) / (np.pi * (1 - wsub))) y[y > A*m] = A*m y[y < -A*m] = -A*m return A*y + b def square(t, f, A, ph, b): duty = 0.5 t = 2 * np.pi * f * t - ph t, w = np.asarray(t), np.asarray(duty) w = np.asarray(w + (t - t)) t = np.asarray(t + (w - w)) if t.dtype.char in ['fFdD']: ytype = t.dtype.char else: ytype = 'd' y = np.zeros(t.shape, ytype) # width must be between 0 and 1 inclusive mask1 = (w > 1) | (w < 0) np.place(y, mask1, np.nan) # on the interval 0 to duty*2*pi function is 1 tmod = np.mod(t, 2 * np.pi) mask2 = (1 - mask1) & (tmod < w * 2 * np.pi) np.place(y, mask2, 1) # on the interval duty*2*pi to 2*pi function is # (pi*(w+1)-tmod) / (pi*(1-w)) mask3 = (1 - mask1) & (1 - mask2) np.place(y, mask3, -1) return A*y + b def exp(F, t0, dF): dF = abs(dF) return t0*np.exp(-F/dF) def running_mean(x, N = 10): # Running mean cumsum = np.cumsum(np.insert(x, 0, 0)) x0 = (cumsum[N:] - cumsum[:-N]) / float(N) x1 = np.mean(x[:N])*np.ones(int(N/2)) x2 = np.mean(x[-N:])*np.ones(int(N/2)) return np.concatenate((x1, x0, x2)) def running_std(x, N = 11): # Running mean s = np.ones(len(x))*100 s[:int(N/2)] = np.std(x[:int(N/2)]) s[-int(N/2):] = np.std(x[-int(N/2):]) for i in range(len(x)-(N-1)): s[i+int(N/2)] = np.std(x[i:N+i]) if any(x == 100): print('wrong') return s def reject_outliers(data, m = 2.): d = np.abs(data - np.median(data)) mdev = np.median(d) s = d/mdev if mdev else 0. return data[s < m] def find_outliers(data, m = 5): d = np.abs(data - np.median(data)) mdev = np.median(d) cutoff = np.median(data) + m*mdev i_outliers = data > cutoff return cutoff, i_outliers def make_folder(name): path = os.path.join(os.getcwd(), name) if os.path.exists(path): shutil.rmtree(path) os.makedirs(path) else: os.makedirs(path) return path ``` #### File: scripts/Calibration/Calibration_BrightNoise.py ```python from __future__ import division, print_function, absolute_import import numpy as np from numpy.fft import fft import matplotlib.pyplot as plt from nptdms import TdmsFile from scipy.optimize import curve_fit, minimize from scipy.stats import norm import os import shutil ### User input ################################## # First you need to change directory (cd) to where the file is located # Update the file name files = ['Dark_Power000', 'Bright_Power010', 'Bright_Power020', 'Bright_Power030', 'Bright_Power040', 'Bright_Power050', 'Bright_Power060', 'Bright_Power070', 'Bright_Power080', 'Bright_Power090', 'Bright_Power099', 'Bright_Power100'] f_sample = 20000 # Sampling frequency (Hz) dt = 1/f_sample # Time interval during sampling (s) t_total = 100 # Total time (s) N_total = int(f_sample * t_total) # Total number of data # I use 1 sec window for PSD and do averaging of them t_window = 0.1 # Time for one window in sec N_window = int(f_sample * t_window) # Num of data in a window df = 1/t_window # Freq interval for a window N_avg = int(t_total / t_window) # Num of windows for averaging ############################################### class Data: def __init__(self, fname, power): self.fname = fname self.power = power def read(self): # File information below tdms_file = TdmsFile(self.fname+'.tdms') # Reads a tdms file. group_name = "Trap" # Get the group name channels = tdms_file.group_channels(group_name) # Get the channel object self.ch = np.zeros((len(channels), N_total)) # Make a 2D array (ch, timetrace) for trap data for i, channel in enumerate(channels): self.ch[i,] = channel.data[range(N_total)] self.x = self.ch[0] - np.mean(self.ch[0]) self.y = self.ch[1] - np.mean(self.ch[1]) self.s = self.ch[2] def analyze(self): x = self.x.reshape((N_avg, N_window)) y = self.y.reshape((N_avg, N_window)) s = self.s.reshape((N_avg, N_window)) PSD_X = np.zeros((N_avg, int(N_window/2)-1)) PSD_Y = np.zeros((N_avg, int(N_window/2)-1)) PSD_S = np.zeros((N_avg, int(N_window/2)-1)) PSD_XY = np.zeros((N_avg, int(N_window/2)-1)) for j in range(N_avg): # per window PSD_X0 = np.abs(fft(x[j]))**2/t_window PSD_Y0 = np.abs(fft(y[j]))**2/t_window PSD_S0 = np.abs(fft(s[j]))**2/t_window PSD_XY0 = fft(x[j])*np.conj(fft(y[j]))/t_window PSD_XY0 = PSD_XY0/(PSD_X0*PSD_Y0)**0.5 PSD_X[j] = PSD_X0[1:int(N_window/2)] PSD_Y[j] = PSD_Y0[1:int(N_window/2)] PSD_S[j] = PSD_S0[1:int(N_window/2)] PSD_XY[j] = PSD_XY0[1:int(N_window/2)] self.PSD_X = np.mean(PSD_X, axis=0) self.PSD_Y = np.mean(PSD_Y, axis=0) self.PSD_S = np.mean(PSD_S, axis=0) self.PSD_XY = np.mean(PSD_XY, axis=0) self.f = df * np.arange(1, N_window/2) def plot(self): # PSD # PSD fitting (log-log) # PSD (lin) t = dt * np.arange(N_window) fig = plt.figure(1, figsize = (20, 10), dpi=300) sp = fig.add_subplot(221) sp.loglog(self.f, self.PSD_X, 'k', lw=1) # sp.set_ylim([1e-12, 5e-9]) sp.set_xlabel('Frequency (Hz)') sp.set_ylabel('PSD_X (V^2/s)') sp = fig.add_subplot(222) sp.loglog(self.f, self.PSD_Y, 'k', lw=1) # sp.set_ylim([1e-12, 5e-9]) sp.set_xlabel('Frequency (Hz)') sp.set_ylabel('PSD_Y (V^2/s)') sp = fig.add_subplot(223) sp.plot(self.f, self.PSD_XY, 'k', lw=1) # sp.set_ylim([1e-12, 5e-9]) sp.set_xlabel('Frequency (Hz)') sp.set_ylabel('PSD_XY') sp = fig.add_subplot(224) sp.loglog(self.f, self.PSD_S, 'k', lw=1) # sp.set_ylim([1e-12, 5e-9]) sp.set_xlabel('Frequency (Hz)') sp.set_ylabel('PSD_S (V^2/s)') sp.set_title('Trap power = %d %%' %(self.power)) fig.savefig(self.fname) plt.close(fig) def main(): for fname in files: print(fname) power = int(fname[-3:]) data = Data(fname, power) data.read() data.analyze() data.plot() if __name__ == "__main__": main() ``` #### File: scripts/Calibration/Calibration_Height.py ```python from __future__ import division, print_function, absolute_import import numpy as np import matplotlib.pyplot as plt import Calibration_Bead import Calibration_Bead_Hydro from scipy.optimize import curve_fit files = [['X_H0100', 'X_H0200', 'X_H0300', 'X_H0400', 'X_H0500', 'X_H0600', 'X_H0700', 'X_H0800', 'X_H0900', 'X_H1000', 'X_H1100', 'X_H1200', 'X_H1300', 'X_H1400', 'X_H1500'], ['Y_H0100', 'Y_H0200', 'Y_H0300', 'Y_H0400', 'Y_H0500', 'Y_H0600', 'Y_H0700', 'Y_H0800', 'Y_H0900', 'Y_H1000', 'Y_H1100', 'Y_H1200', 'Y_H1300', 'Y_H1400', 'Y_H1500']] files = [['X_H0200', 'X_H0300', 'X_H0400', 'X_H0500', 'X_H0600', 'X_H0700', 'X_H0800', 'X_H0900', 'X_H1000', 'X_H1100', 'X_H1200', 'X_H1300', 'X_H1400', 'X_H1500'], ['Y_H0200', 'Y_H0300', 'Y_H0400', 'Y_H0500', 'Y_H0600', 'Y_H0700', 'Y_H0800', 'Y_H0900', 'Y_H1000', 'Y_H1100', 'Y_H1200', 'Y_H1300', 'Y_H1400', 'Y_H1500']] #files = [['X_H0100', 'X_H0500', 'X_H0900'], # ['Y_H0100', 'Y_H0500', 'Y_H0900']] R = 430 fd = 50 Ad = 50 power = 100 def Faxen(H, offset, B): h = H+offset x = 1 - 9*R/16/h + (R**3)/8/(h**3) - 45*(R**4)/256/(h**4) - (R**5)/16/(h**5) return B/x def main(): fig = plt.figure(10, figsize = (20, 10), dpi=300) for i in range(2): h = np.zeros(len(files[i])) b = np.zeros(len(files[i])) db = np.zeros(len(files[i])) k = np.zeros(len(files[i])) dk = np.zeros(len(files[i])) r = np.zeros(len(files[i])) dr = np.zeros(len(files[i])) for j in range(len(files[i])): fname = files[i][j] axis = fname[0] h[j] = int(fname[-4:])+R print(fname) print(h[j]) b[j], db[j], k[j], dk[j], r[j], dr[j] = Calibration_Bead_Hydro.main(fname, axis, power, fd, Ad, h[j]) # b[j], db[j], k[j], dk[j], r[j], dr[j] = Calibration_Bead.main(fname, axis, power, fd, Ad) # Beta * Kappa bk = b*k dbk = bk*((db/b)**2 + (dk/k)**2)**0.5 mbk = np.average(bk, weights = 1/dbk**2) # Beta mb = np.average(b, weights = 1/db**2) # Kappa mk = np.average(k, weights = 1/dk**2) # Stoke ratio p_r, cov = curve_fit(Faxen, h, r, p0=[0, 3], sigma=dr) offset = p_r[0] ratio = p_r[1] h = h + offset x = np.linspace(min(h)-10, max(h)+100, 100) r_fit = Faxen(x, 0, ratio) sp = fig.add_subplot(2,4,4*i+1) sp.axhline(y=mb, color='k', linestyle='solid', linewidth=1) sp.axvline(x=R, color='k', linestyle='dashed', linewidth=1) sp.errorbar(h, b, yerr=db, fmt='o', ecolor='k', color='k') sp.set_xlim((0, max(h)+100)) sp.set_xlabel('Bead center to surface [nm]') sp.set_ylabel('Beta [nm/V]') sp.set_title('Beta [nm/V] = %d +/- %d' %(mb, np.std(b))) sp = fig.add_subplot(2,4,4*i+2) sp.errorbar(h, k, yerr=dk, fmt='o', ecolor='k', color='k') sp.axvline(x=R, color='k', linestyle='dashed', linewidth=1) sp.axhline(y=mk, color='k', linestyle='solid', linewidth=1) sp.set_xlim((0, max(h)+100)) sp.set_xlabel('Bead center to surface [nm]') sp.set_ylabel('Kappa [pN/nm]') sp.set_title('Kappa [pN/nm] = %.3f +/- %.3f' %(mk, np.std(k))) sp = fig.add_subplot(2,4,4*i+3) sp.errorbar(h, b*k, yerr=dbk, fmt='o', ecolor='k', color='k') sp.axvline(x=R, color='k', linestyle='dashed', linewidth=1) sp.axhline(y=mbk, color='k', linestyle='solid', linewidth=1) sp.set_xlim((0, max(h)+100)) sp.set_xlabel('Bead center to surface [nm]') sp.set_ylabel('Beta*Kappa [pN/V]') sp.set_title('Beta*Kappa [pN/V] = %.1f +/- %.1f' %(mbk, np.std(dbk))) sp = fig.add_subplot(2,4,4*i+4) sp.plot(x, r_fit, 'r') sp.errorbar(h, r, yerr=dr, fmt='o', ecolor='k', color='k') sp.axvline(x=R, color='k', linestyle='dashed', linewidth=1) sp.axhline(y=ratio, color='r', linestyle='dashed', linewidth=1) sp.axhline(y=1, color='k', linestyle='solid', linewidth=1) sp.set_xlim((0, max(h)+100)) sp.set_xlabel('Bead center to surface [nm]') sp.set_ylabel('Stoke ratio') sp.set_title('Stoke ratio = %.1f, Offset = %.1f nm' %(ratio, offset)) fig.savefig('Calibration result.png') plt.close(fig) if __name__ == "__main__": main() ``` #### File: scripts/HFS/HFS_event_detection.py ```python import numpy as np import os from pylab import * from scipy import convolve from scipy.optimize import leastsq from operator import itemgetter from itertools import groupby #-------------------------- USER INPUT ------------------------------ # Sampling frequency fsample=40000.0 # [Hz] # Molecule 1 mol1={} mol1['directory']='C:/Users/chaoliu/Documents/Spudich Lab/trap harmonic force spectroscopy/HFS/aGFP' mol1['datadir']='Antibody1' mol1['cal_b1']=149.0 # Calibration factor [nm/V] 114.0 mol1['cal_b2']=80.0 # Calibration factor [nm/V] 63.0 mol1['cal_k1']=0.114 # Trap strength [pN/nm] 0.21 mol1['cal_k2']=0.0679 # Trap strength [pN/nm] 0.13 mol1['fd']=100.0 # Oscillation frequency [Hz] mol1['phasecut']=1 # Threshold for the phase [rad] 1.0 mol1['ampthreshold1']=10.0 # Threshold for the amplitude [nm] 10.0 mol1['ampthreshold2']=20.0 # Threshold for the amplitude [nm] 6.0 ## Molecule 2 #mol2={} #mol2['directory']='Molecule_2' #mol2['datadir']='Cal1_M2' #mol2['cal_b1']= #mol2['cal_b2']= #mol2['cal_k1']= #mol2['cal_k2']= #mol2['fd']= #mol2['phasecut']= #mol2['ampthreshold1']= #mol2['ampthreshold2']= # List of molecules to be analyzed molecules=[mol1] # [mol1, mol2, ...] #-------------------------- END USER INPUT -------------------------- # Auxiliary function def mergeevents(events): merged=True while any(merged): mergedevents=[] merged=repeat(False,len(events)-1) n=0 while n<len(events): if n<len(events)-1 and (events[n+1][0]-events[n][1] < 500): mergedevents.append((events[n][0],events[n+1][1])) merged[n]=True n+=2 else: mergedevents.append((events[n][0],events[n][1])) n+=1 events=mergedevents return events # Close all figures at startup close('all') nevents_all=0 for mol in molecules: # Get all parameters for the relevant molecule directory=mol['directory'] datadir=mol['datadir'] cal_b1=mol['cal_b1'] cal_b2=mol['cal_b2'] cal_k1=mol['cal_k1'] cal_k2=mol['cal_k2'] fd=mol['fd'] phase_threshold=mol['phasecut'] amp_threshold1=mol['ampthreshold1'] amp_threshold2=mol['ampthreshold2'] print directory # Make results directory if it does not exist resultsdir=directory+'/Results_WaveletAnalysis' #_test8 if not os.path.exists(resultsdir): os.mkdir(resultsdir) # Make list of all real data arrays in data directory datafiles=os.listdir(directory+'/'+datadir) if '.DS_Store' in datafiles: datafiles=datafiles[1:] if 'processed.txt' in datafiles: datafiles.pop() # Sort datafiles according to numeric value datafiles.sort(key=lambda s: int(s.rsplit('.')[0])) # Plot plotcolors=['black','gray'] highlightcolors=['yellow','cyan'] # Period of stage osciallation T=fsample/fd # [data points] # List to store binding times, row is event number and columns contain at1,at2,det1,det2 bindingtimes_all=[] F0_all=[] dF_all=[] bindingtimes_all_Fourier=[] F0_all_Fourier=[] dF_all_Fourier=[] avchi2_all=[] nevent_save=0 # Loop over datafiles for datafile in datafiles: print 'Analyzing '+datafile # List for tuples of start and end positions of events allevents=[] # Load data from data file data = np.load(directory+'/'+datadir+'/'+datafile) # Correct for arbitrary, fixed calibration performed in script # reading binary data from trap output files data[:,1]*=(cal_b1/(80.0)) data[:,2]*=(cal_b2/(80.0)) # Position data from the two beads data1=data[:,1] data2=data[:,2] # Loop over the two beads for beadnumber in [1,2]: events=[] # Loop over all data in for datai in range(0,int((shape(data)[0]/10000.0))): #print 1.0*datai/int((shape(data)[0]/10000.0)), datafile, directory # Array of time in units of data points t=np.arange(datai*10000,(datai+1)*10000) # Fit sine-function to piezo position, to determine phase, assuming known period T parsinit=array([20.0,0.0,0.0]) pars=leastsq(lambda pars: data[t,5]-(pars[0]*sin(t*2*pi/T+pars[1])+pars[2]),parsinit)[0] # Coerce amplitude into positive number if pars[0]<0.0: piezoamp=abs(pars[0]) piezophase=pars[1]+pi else: piezoamp=pars[0] piezophase=pars[1] # Eliminate 2*pi degeneracy piezophase=mod(piezophase,2*pi) # Fitted sine function and its corresponding cosine piezofit=piezoamp*sin(t*2*pi/T+piezophase)+pars[2] piezofit2=piezoamp*sin(t*2*pi/T+piezophase+pi/2.0)+pars[2] # Calculate wavelet-sine and wavelet-cosine transforms # and in turn the amplitude and phase of the signals pdata1=data[t,beadnumber]*(piezofit-mean(piezofit)) pdata2=data[t,beadnumber]*(piezofit2-mean(piezofit2)) pdata=sqrt(pdata1**2+pdata2**2) y=convolve(pdata,ones(T)/T,mode='valid') tsub=t[0]+arange(len(y))+(T-1)/2.0 y1=2*convolve(pdata1,ones(T)/T,mode='valid') y2=2*convolve(pdata2,ones(T)/T,mode='valid') y=sqrt(y1**2+y2**2) yamp=y/abs(piezoamp) test=zeros(len(y)) for n in range(len(y)): if y1[n]>0.0 and y2[n]>0.0: test[n]=arctan(y2[n]/y1[n]) elif y1[n]<0.0 and y2[n]>0.0: test[n]=arctan(y2[n]/y1[n])+pi elif y1[n]>0.0 and y2[n]<0.0: test[n]=arctan(y2[n]/y1[n]) elif y1[n]<0.0 and y2[n]<0.0: test[n]=arctan(y2[n]/y1[n])-pi yphase=test # Locate events using phase and amplitude if beadnumber==1: binding1=yamp > amp_threshold1 else: binding1=yamp > amp_threshold2 binding2=yphase < phase_threshold # Require that both criteria are satisfied simultaneously binding=binding1*binding2 # Get binding times tbinding=tsub[binding] tbinding=tbinding.astype(int) # Find groups of consecutive time points groups=[] for k, g in groupby(enumerate(tbinding), lambda (i,x):i-x): groups.append(map(itemgetter(1), g)) for element in groups: tbinding=element events.append((tbinding[0],tbinding[-1])) # Merge events if they happen to be located over # a 10,000 data point break in the sequence n=0 tempevents=[] while n < len(events)-1: if mod(events[n][1]-10000+int(T/2+1),10000)==0 and \ mod(events[n+1][0]-int(T/2-1),10000)==0: tempevents.append((events[n][0],events[n+1][1])) n+=2 else: tempevents.append(events[n]) n+=1 events=tempevents if events!=[]: allevents+=events events=allevents events.sort(key=lambda tup: tup[0]) # Merge events from the two beads if they overlap in time if events!=[]: merged=True while any(merged): mergedevents=[] merged=repeat(False,len(events)-1) n=0 while n<len(events): if n<len(events)-1 and (events[n+1][0]<events[n][1]): mergedevents.append((events[n][0],max(events[n+1][1],events[n][1]))) merged[n]=True n+=2 else: mergedevents.append((events[n][0],events[n][1])) n+=1 events=mergedevents # Ignore a possible early event if events[0][0]< 5*T: events=events[1:] nevents_all+=len(events) # Loop over possible events for nevent in range(len(events)): event=events[nevent] # Test if threshold criteria is passed for more than one period if event[1]-event[0]>T: try: bindingtimes_Fourier=[] F0_Fourier=[] dF_Fourier=[] dFcor_Fourier=[] phi_Fourier=[] avchi2=[] # Prepare to plot results for duration of event +/- 25 periods figure(1,figsize=(16,10)) starttime=event[0] endtime=event[1] tevent=np.arange(starttime,endtime) tplot=np.arange(max(0,starttime-25*int(T)),min(endtime+25*int(T),shape(data)[0])) # Plot position of bead 1 subplot(511) plot(tplot,data[tplot,1],linestyle='-',color='k',markersize=1,linewidth=0.5) plot(tevent,data[tevent,1],'y-',markersize=1,linewidth=1.0) # Plot position of bead 2 subplot(512) plot(tplot,data[tplot,2],linestyle='-',color='gray',markersize=1,linewidth=0.5) plot(tevent,data[tevent,2],'c-',markersize=1,linewidth=1.0) # Plot position of piezo-stage parsinit=array([20.0,0.0,0.0]) pars=leastsq(lambda pars: data[tplot,5]-(pars[0]*sin(tplot*2*pi/T+pars[1])+pars[2]),parsinit)[0] if pars[0]<0.0: piezoamp=abs(pars[0]) piezophase=pars[1]+pi else: piezoamp=pars[0] piezophase=pars[1] piezophase=mod(piezophase,2*pi) piezofit=piezoamp*sin(tplot*2*pi/T+piezophase)+pars[2] piezofit2=piezoamp*sin(tplot*2*pi/T+piezophase+pi/2.0)+pars[2] subplot(513) plot(tplot,data[tplot,5],'k-',markersize=1,linewidth=0.5) plot(tplot,piezofit,'g-',markersize=1,linewidth=1.0) # Redo analysis for approved events (not optimal) for beadnumber in [1,2]: if beadnumber==1: cal_k=cal_k1 yampthreshold=amp_threshold1 elif beadnumber==2: cal_k=cal_k2 yampthreshold=amp_threshold2 t=tplot pdata1=data[t,beadnumber]*(piezofit-mean(piezofit)) pdata2=data[t,beadnumber]*(piezofit2-mean(piezofit2)) pdata=sqrt(pdata1**2+pdata2**2) y=convolve(pdata,ones(T)/T,mode='valid') tsub=t[0]+arange(len(y))+(T-1)/2.0 y1=2*convolve(pdata1,ones(T)/T,mode='valid') y2=2*convolve(pdata2,ones(T)/T,mode='valid') y=sqrt(y1**2+y2**2) yamp=y/abs(piezoamp) test=zeros(len(y)) for n in range(len(y)): if y1[n]>0.0 and y2[n]>0.0: test[n]=arctan(y2[n]/y1[n]) elif y1[n]<0.0 and y2[n]>0.0: test[n]=arctan(y2[n]/y1[n])+pi elif y1[n]>0.0 and y2[n]<0.0: test[n]=arctan(y2[n]/y1[n]) elif y1[n]<0.0 and y2[n]<0.0: test[n]=arctan(y2[n]/y1[n])-pi yphase=test # Calculate period to use for averaging select=(tsub>starttime+T/2.0)*(tsub<endtime-T/2.0) # Calculate average amplitude and phase of bound state boundamplevel=mean(yamp[select]) boundphaselevel=mean(yphase[select]) # Plot thresholds subplot(514) plot(tsub,yamp,linestyle='-',color=plotcolors[beadnumber-1]) hlines(amp_threshold1,tplot[0],tplot[-1],linestyle='dotted') hlines(amp_threshold2,tplot[0],tplot[-1],linestyle='dotted') plot(tsub[select],yamp[select],color=highlightcolors[beadnumber-1],linestyle='-',markersize=1,linewidth=1.0) hlines(boundamplevel,starttime,endtime,linestyle='dashed',color='black') subplot(515) plot(tsub,yphase,linestyle='-',color=plotcolors[beadnumber-1]) plot(tsub[select],yphase[select],color=highlightcolors[beadnumber-1],linestyle='-',markersize=1,linewidth=1.0) hlines(phase_threshold,tplot[0],tplot[-1],linestyle='dotted') hlines(boundphaselevel,starttime,endtime,linestyle='dashed',color='black') ylim(-pi,pi) # Find surrounding intervals that do not overlap with other events tunbound1=max(starttime-25*int(T),0) if nevent>=1 and tunbound1<events[nevent-1][1]: tunbound1=events[nevent-1][1] tunbound2=min(endtime+25*int(T),shape(data)[0]) if nevent<=len(events)-2 and tunbound2>events[nevent+1][0]: tunbound2=events[nevent+1][0] tunbound_before=arange(tunbound1,starttime-int(T)) tunbound_after=arange(endtime+int(T),tunbound2) tunbound=arange(max(starttime-4*int(T),0),min(endtime+4*int(T),shape(data)[0])) tunbound_fit=append(tunbound_before,tunbound_after) # Determine parameters using wavelets deltax=mean(yamp[select]) phi=mean(yphase[select]) dF_Fourier.append(mean(yamp[select])*cal_k) phi_Fourier.append(mean(yphase[select])) # Find average amplitude of unbound states select1=(tsub>tunbound1)*(tsub<starttime-T) select2=(tsub>endtime+T)*(tsub<tunbound2) select=np.logical_or(select1,select2) unboundamplevel=mean(yamp[select]) # Locate interval of increasing amplitude select=(tsub>starttime-T)*(tsub<min(starttime+T/2.0,(starttime+endtime)/2.0)) rise=yamp[select] trise=tsub[select] t1s=[] zero_crossings = np.where(np.diff(np.sign(rise-(boundamplevel+unboundamplevel)/2.0)))[0] for element in zero_crossings: vlines(element,-10,10) t1s.append(trise[element]) # Binding times are calculated as full-width-at-half-max # In case of multiple candidate times for binding, use the one closest to initial value t1_Fourier=t1s[argmin(abs((t1s-starttime)))] # Save binding time bindingtimes_Fourier.append(t1_Fourier) # Locate interval of decreasing amplitude select=(tsub>max(endtime-T/2.0,(starttime+endtime)/2.0))*(tsub<endtime+T) fall=yamp[select] tfall=tsub[select] t2s=[] zero_crossings = np.where(np.diff(np.sign(fall-(boundamplevel+unboundamplevel)/2.0)))[0] for element in zero_crossings: vlines(element,-10,10) t2s.append(tfall[element]) # Binding times are calculated as full-width-at-half-max # In case of multiple candidate times for binding, use the one closest to initial value t2_Fourier=t2s[argmin(abs((t2s-endtime)))] for panel in [511,512]: subplot(panel) if beadnumber==1: vlines(t1_Fourier,ylim()[0],ylim()[1],linestyle='dashed',color='k') vlines(t2_Fourier,ylim()[0],ylim()[1],linestyle='dashed',color='k') elif beadnumber==2: vlines(t1_Fourier,ylim()[0],ylim()[1],linestyle='dashed',color='gray') vlines(t2_Fourier,ylim()[0],ylim()[1],linestyle='dashed',color='gray') # Save unbinding time bindingtimes_Fourier.append(t2_Fourier) # Fit harmonic function to binding region parsinit=array([20.0,piezophase,0.0]) pars=leastsq(lambda pars: data[tevent,beadnumber]-(pars[0]*sin(tevent*2*pi/T+pars[1])+pars[2]),parsinit)[0] subplot(510+beadnumber) sinebinding=pars[0]*sin(tunbound*2*pi/T+pars[1])+pars[2] plot(tunbound,sinebinding,'g-',lw=1.0) # Coerce amplitude into a positive number and adjust phase accordingly if pars[0]<0.0: amp_bound=abs(pars[0]) phase_bound=pars[1]+pi else: amp_bound=pars[0] phase_bound=pars[1] piezophase=mod(piezophase,2*pi) offset_bound=pars[2] # Calculate average chi-squared for the bound state t12=np.arange(int(t1_Fourier),int(t2_Fourier)) dev=data[t12,beadnumber]-(amp_bound*sin(t12*2*pi/T+phase_bound)+offset_bound) ssdev=sum(dev**2) avssdev=ssdev/(t2_Fourier-t1_Fourier) avchi2.append(avssdev) # Fit sine-function to early detached state figure(1) parsinit=array([5.0,piezophase,0.0]) pars=leastsq(lambda pars: data[tunbound_fit,beadnumber]-(pars[0]*sin(tunbound_fit*2*pi/T+pars[1])+pars[2]),parsinit)[0] subplot(510+beadnumber) sineunbound_fit=pars[0]*sin(tunbound_fit*2*pi/T+pars[1])+pars[2] sineunbound=pars[0]*sin(tunbound*2*pi/T+pars[1])+pars[2] sineunbound_before=pars[0]*sin(tunbound_before*2*pi/T+pars[1])+pars[2] sineunbound_after=pars[0]*sin(tunbound_after*2*pi/T+pars[1])+pars[2] plot(tunbound_before,sineunbound_before,'b-',lw=2.0) plot(tunbound_after,sineunbound_after,'b-',lw=2.0) tmed=arange(starttime-T,endtime+T) sineunbound_med=pars[0]*sin(tmed*2*pi/T+pars[1])+pars[2] plot(tmed,sineunbound_med,'b--',lw=2.0) if pars[0]<0.0: amp_unbound=abs(pars[0]) phase_unbound=pars[1]+pi else: amp_unbound=pars[0] phase_unbound=pars[1] offset_unbound=pars[2] # Determine F0 from raw trajectory t=tplot pdata=data[t,beadnumber] y=convolve(pdata,ones(T)/T,mode='valid') tsub=t[0]+arange(len(y))+(T-1)/2.0 subplot(510+beadnumber) if endtime-starttime>T: select=(tsub>starttime+T/2.0)*(tsub<endtime-T/2.0) else: select=(tsub>starttime)*(tsub<endtime) boundlevel=mean(y[select]) hlines(boundlevel,starttime,endtime,color='k',linestyle='dashed') select1=(tsub>tunbound1)*(tsub<starttime-T) select2=(tsub>endtime+T)*(tsub<tunbound2) select=np.logical_or(select1,select2) unboundlevel=mean(y[select]) F0_Fourier.append((boundlevel-unboundlevel)*cal_k) # Polish the plots for panel in [511,512,513,514,515]: subplot(panel) tlim=np.arange(max(0,starttime-5*int(T)),min(endtime+5*int(T),shape(data)[0])) xlim(tlim[0],tlim[-1]) if panel==511: text(xlim()[0]+0.95*(xlim()[1]-xlim()[0]),ylim()[1]-20,str(round(avchi2[0],2))) elif panel==512: text(xlim()[0]+0.95*(xlim()[1]-xlim()[0]),ylim()[1]-20,str(round(avchi2[1],2))) subplot(511) ylabel('$x_1$ (nm)') subplot(512) ylabel('$x_2$ (nm)') subplot(513) ylabel('$x_\mathrm{stage}$ (nm)') subplot(514) ylabel('Amplitude (nm)') subplot(515) ylabel('Phase (rad)') xlabel('Time (frames)') # Save the diagnostics figure savefig(resultsdir+'/'+'event'+str(nevent_save)+'.png') close('all') F0_all_Fourier.append(F0_Fourier) dF_all_Fourier.append(dF_Fourier) bindingtimes_all_Fourier.append(bindingtimes_Fourier) avchi2_all.append(avchi2) nevent_save+=1 except (IndexError,ValueError,TypeError,RuntimeError): pass # Save the results to files np.savetxt(directory+'/'+'bindingtimes_Wavelet.txt',bindingtimes_all_Fourier) np.savetxt(directory+'/'+'F0_Wavelet.txt',F0_all_Fourier) np.savetxt(directory+'/'+'dF_Wavelet.txt',dF_all_Fourier) np.savetxt(directory+'/'+'avchi2.txt',avchi2_all) ```
{ "source": "jmsutariya/cube-tracker", "score": 3 }
#### File: cube-tracker/rubikscolorresolver/base.py ```python from math import ceil, sqrt import sys if sys.version_info < (3, 4): raise SystemError("Must be using Python 3.4 or higher") def is_micropython(): return sys.implementation.name == "micropython" if is_micropython(): from ucollections import OrderedDict else: from collections import OrderedDict # @timed_function def get_lab_distance(lab1, lab2): """ http://www.w3resource.com/python-exercises/math/python-math-exercise-79.php In mathematics, the Euclidean distance or Euclidean metric is the "ordinary" (i.e. straight-line) distance between two points in Euclidean space. With this distance, Euclidean space becomes a metric space. The associated norm is called the Euclidean norm. """ return sqrt(((lab1.L - lab2.L) ** 2) + ((lab1.a - lab2.a) ** 2) + ((lab1.b - lab2.b) ** 2)) edge_color_pair_map = { # Up (white) "Gr/Wh": "Gr/Wh", "Wh/Gr": "Gr/Wh", "Bu/Wh": "Bu/Wh", "Wh/Bu": "Bu/Wh", "OR/Wh": "OR/Wh", "Wh/OR": "OR/Wh", "Rd/Wh": "Rd/Wh", "Wh/Rd": "Rd/Wh", # Left (orange) "Gr/OR": "Gr/OR", "OR/Gr": "Gr/OR", "Bu/OR": "Bu/OR", "OR/Bu": "Bu/OR", # Right (red) "Gr/Rd": "Gr/Rd", "Rd/Gr": "Gr/Rd", "Bu/Rd": "Bu/Rd", "Rd/Bu": "Bu/Rd", # Down (yellow) "Gr/Ye": "Gr/Ye", "Ye/Gr": "Gr/Ye", "Bu/Ye": "Bu/Ye", "Ye/Bu": "Bu/Ye", "OR/Ye": "OR/Ye", "Ye/OR": "OR/Ye", "Rd/Ye": "Rd/Ye", "Ye/Rd": "Rd/Ye", } class ListMissingValue(Exception): pass # @timed_function def find_index_for_value(list_foo, target, min_index): for (index, value) in enumerate(list_foo): if value == target and index >= min_index: return index raise ListMissingValue("Did not find %s in list %s".format(target, list_foo)) # @timed_function def get_swap_count(listA, listB, debug=False): """ How many swaps do we have to make in listB for it to match listA Example: A = [1, 2, 3, 0, 4] B = [3, 4, 1, 0, 2] would require 2 swaps """ A_length = len(listA) B_length = len(listB) swaps = 0 index = 0 if A_length != B_length: #log.info("listA %s" % " ".join(listA)) #log.info("listB %s" % " ".join(listB)) assert False, "listA (len %d) and listB (len %d) must be the same length" % ( A_length, B_length, ) #if debug: # log.info("INIT") # log.info("listA: %s" % " ".join(listA)) # log.info("listB: %s" % " ".join(listB)) # log.info("") while listA != listB: if listA[index] != listB[index]: listA_value = listA[index] listB_index_with_A_value = find_index_for_value( listB, listA_value, index + 1 ) tmp = listB[index] listB[index] = listB[listB_index_with_A_value] listB[listB_index_with_A_value] = tmp swaps += 1 #if debug: # log.info("index %d, swaps %d" % (index, swaps)) # log.info("listA: %s" % " ".join(listA)) # log.info("listB: %s" % " ".join(listB)) # log.info("") index += 1 #if debug: # log.info("swaps: %d" % swaps) # log.info("") return swaps class LabColor(object): # @timed_function def __init__(self, L, a, b, red, green, blue): self.L = L self.a = a self.b = b self.red = red self.green = green self.blue = blue def __str__(self): return "Lab (%s, %s, %s)" % (self.L, self.a, self.b) def __repr__(self): return self.__str__() def __lt__(self, other): if self.L != other.L: return self.L < other.L if self.a != other.a: return self.a < other.a return self.b < other.b # @timed_function def rgb2lab(inputColor): (red, green, blue) = inputColor # XYZ -> Standard-RGB # https://www.easyrgb.com/en/math.php var_R = red / 255 var_G = green / 255 var_B = blue / 255 if var_R > 0.04045: var_R = pow(((var_R + 0.055) / 1.055), 2.4) else: var_R = var_R / 12.92 if var_G > 0.04045: var_G = pow(((var_G + 0.055) / 1.055), 2.4) else: var_G = var_G / 12.92 if var_B > 0.04045: var_B = pow(((var_B + 0.055) / 1.055), 2.4) else: var_B = var_B / 12.92 var_R = var_R * 100 var_G = var_G * 100 var_B = var_B * 100 X = var_R * 0.4124 + var_G * 0.3576 + var_B * 0.1805 Y = var_R * 0.2126 + var_G * 0.7152 + var_B * 0.0722 Z = var_R * 0.0193 + var_G * 0.1192 + var_B * 0.9505 reference_X = 95.047 reference_Y = 100.0 reference_Z = 108.883 # XYZ -> CIE-L*ab # //www.easyrgb.com/en/math.php var_X = X / reference_X var_Y = Y / reference_Y var_Z = Z / reference_Z if var_X > 0.008856: var_X = pow(var_X, 1 / 3) else: var_X = (7.787 * var_X) + (16 / 116) if var_Y > 0.008856: var_Y = pow(var_Y, 1 / 3) else: var_Y = (7.787 * var_Y) + (16 / 116) if var_Z > 0.008856: var_Z = pow(var_Z, 1 / 3) else: var_Z = (7.787 * var_Z) + (16 / 116) L = (116 * var_Y) - 16 a = 500 * (var_X - var_Y) b = 200 * (var_Y - var_Z) # log.info("RGB ({}, {}, {}), L {}, a {}, b {}".format(red, green, blue, L, a, b)) return LabColor(L, a, b, red, green, blue) class Square(object): def __init__(self, side, cube, position, red, green, blue): #self.cube = cube self.side = side self.position = position self.rgb = (red, green, blue) self.lab = rgb2lab((red, green, blue)) self.color_name = None self.side_name = None # ULFRBD def __str__(self): return "{}{}-{}".format(self.side, self.position, self.color_name) def __repr__(self): return self.__str__() def __lt__(self, other): return self.position < other.position class Side(object): def __init__(self, cube, width, name): self.cube = cube self.name = name # U, L, etc self.color = None self.squares = OrderedDict() self.width = width self.squares_per_side = width * width self.center_squares = [] self.edge_squares = [] self.corner_squares = [] self.wing_partner = {} if self.name == "U": index = 0 elif self.name == "L": index = 1 elif self.name == "F": index = 2 elif self.name == "R": index = 3 elif self.name == "B": index = 4 elif self.name == "D": index = 5 self.min_pos = (index * self.squares_per_side) + 1 self.max_pos = (index * self.squares_per_side) + self.squares_per_side # If this is a cube of odd width (3x3x3) then define a mid_pos if self.width % 2 == 0: self.mid_pos = None else: self.mid_pos = (self.min_pos + self.max_pos) / 2 self.corner_pos = ( self.min_pos, self.min_pos + self.width - 1, self.max_pos - self.width + 1, self.max_pos, ) self.edge_pos = [] self.edge_north_pos = [] self.edge_west_pos = [] self.edge_south_pos = [] self.edge_east_pos = [] self.center_pos = [] for position in range(self.min_pos, self.max_pos): if position in self.corner_pos: pass # Edges at the north elif position > self.corner_pos[0] and position < self.corner_pos[1]: self.edge_pos.append(position) self.edge_north_pos.append(position) # Edges at the south elif position > self.corner_pos[2] and position < self.corner_pos[3]: self.edge_pos.append(position) self.edge_south_pos.append(position) elif (position - 1) % self.width == 0: west_edge = position east_edge = west_edge + self.width - 1 # Edges on the west self.edge_pos.append(west_edge) self.edge_west_pos.append(west_edge) # Edges on the east self.edge_pos.append(east_edge) self.edge_east_pos.append(east_edge) # Center squares for x in range(west_edge + 1, east_edge): self.center_pos.append(x) def __str__(self): return "side-{}".format(self.name) def __repr__(self): return self.__str__() # @timed_function def set_square(self, position, red, green, blue): self.squares[position] = Square(self, self.cube, position, red, green, blue) if position in self.center_pos: self.center_squares.append(self.squares[position]) elif position in self.edge_pos: self.edge_squares.append(self.squares[position]) elif position in self.corner_pos: self.corner_squares.append(self.squares[position]) else: raise Exception("Could not determine egde vs corner vs center") # @timed_function def calculate_wing_partners(self): for (pos1, pos2) in self.cube.all_edge_positions: if pos1 >= self.min_pos and pos1 <= self.max_pos: self.wing_partner[pos1] = pos2 elif pos2 >= self.min_pos and pos2 <= self.max_pos: self.wing_partner[pos2] = pos1 # @timed_function def get_wing_partner(self, wing_index): try: return self.wing_partner[wing_index] except KeyError: #log.info("wing_partner\n%s\n".format(self.wing_partner)) raise class RubiksColorSolverGenericBase(object): def __init__(self, width): self.width = width self.height = width self.squares_per_side = self.width * self.width self.orbits = int(ceil((self.width - 2) / 2.0)) self.state = [] self.orange_baseline = None self.red_baseline = None self.all_edge_positions = [] self.write_debug_file = False if self.width % 2 == 0: self.even = True self.odd = False else: self.even = False self.odd = True #if not os.path.exists(HTML_DIRECTORY): # os.makedirs(HTML_DIRECTORY) self.sides = { "U": Side(self, self.width, "U"), "L": Side(self, self.width, "L"), "F": Side(self, self.width, "F"), "R": Side(self, self.width, "R"), "B": Side(self, self.width, "B"), "D": Side(self, self.width, "D"), } self.sideU = self.sides["U"] self.sideL = self.sides["L"] self.sideF = self.sides["F"] self.sideR = self.sides["R"] self.sideB = self.sides["B"] self.sideD = self.sides["D"] self.side_order = ("U", "L", "F", "R", "B", "D") self.pos2side = {} self.pos2square = {} # U and B for (pos1, pos2) in zip(self.sideU.edge_north_pos, reversed(self.sideB.edge_north_pos)): self.all_edge_positions.append((pos1, pos2)) # U and L for (pos1, pos2) in zip(self.sideU.edge_west_pos, self.sideL.edge_north_pos): self.all_edge_positions.append((pos1, pos2)) # U and F for (pos1, pos2) in zip(self.sideU.edge_south_pos, self.sideF.edge_north_pos): self.all_edge_positions.append((pos1, pos2)) # U and R for (pos1, pos2) in zip(self.sideU.edge_east_pos, reversed(self.sideR.edge_north_pos)): self.all_edge_positions.append((pos1, pos2)) # F and L for (pos1, pos2) in zip(self.sideF.edge_west_pos, self.sideL.edge_east_pos): self.all_edge_positions.append((pos1, pos2)) # F and R for (pos1, pos2) in zip(self.sideF.edge_east_pos, self.sideR.edge_west_pos): self.all_edge_positions.append((pos1, pos2)) # F and D for (pos1, pos2) in zip(self.sideF.edge_south_pos, self.sideD.edge_north_pos): self.all_edge_positions.append((pos1, pos2)) # L and B for (pos1, pos2) in zip(self.sideL.edge_west_pos, self.sideB.edge_east_pos): self.all_edge_positions.append((pos1, pos2)) # L and D for (pos1, pos2) in zip(self.sideL.edge_south_pos, reversed(self.sideD.edge_west_pos)): self.all_edge_positions.append((pos1, pos2)) # R and D for (pos1, pos2) in zip(self.sideR.edge_south_pos, self.sideD.edge_east_pos): self.all_edge_positions.append((pos1, pos2)) # R and B for (pos1, pos2) in zip(self.sideR.edge_east_pos, self.sideB.edge_west_pos): self.all_edge_positions.append((pos1, pos2)) # B and D for (pos1, pos2) in zip(reversed(self.sideB.edge_south_pos), self.sideD.edge_south_pos): self.all_edge_positions.append((pos1, pos2)) for side in self.sides.values(): side.calculate_wing_partners() self.calculate_pos2side() # @timed_function def calculate_pos2side(self): for side in self.sides.values(): for x in range(side.min_pos, side.max_pos + 1): self.pos2side[x] = side # @timed_function def calculate_pos2square(self): for side in self.sides.values(): for (position, square) in side.squares.items(): self.pos2square[position] = square # @timed_function def print_cube(self): data = [] for x in range(3 * self.height): data.append([]) color_codes = {"OR": 90, "Rd": 91, "Gr": 92, "Ye": 93, "Bu": 94, "Wh": 97} for side_name in self.side_order: side = self.sides[side_name] if side_name == "U": line_number = 0 prefix = (" " * self.width * 3) + " " elif side_name in ("L", "F", "R", "B"): line_number = self.width prefix = "" else: line_number = self.width * 2 prefix = (" " * self.width * 3) + " " # rows for y in range(self.width): data[line_number].append(prefix) # cols for x in range(self.width): color_name = side.squares[ side.min_pos + (y * self.width) + x ].color_name color_code = color_codes.get(color_name) if color_name is None: color_code = 97 data[line_number].append("\033[%dmFo\033[0m" % color_code) else: data[line_number].append( "\033[%dm%s\033[0m" % (color_code, color_name) ) line_number += 1 output = [] for row in data: output.append(" ".join(row)) print("Cube\n\n%s\n" % "\n".join(output)) #log.info("Cube\n\n%s\n" % "\n".join(output)) # @timed_function def cube_for_kociemba_strict(self): #log.info("color_to_side_name:\n{}\n".format(self.color_to_side_name)) data = [] for side in (self.sideU, self.sideR, self.sideF, self.sideD, self.sideL, self.sideB): for x in range(side.min_pos, side.max_pos + 1): square = side.squares[x] data.append(square.side_name) return data # @timed_function def validate_edge_orbit(self, orbit_id): if self.width == 2: from rubikscolorresolver.cube_333 import edge_orbit_wing_pairs elif self.width == 3: from rubikscolorresolver.cube_333 import edge_orbit_wing_pairs elif self.width == 4: from rubikscolorresolver.cube_444 import edge_orbit_wing_pairs elif self.width == 5: from rubikscolorresolver.cube_555 import edge_orbit_wing_pairs elif self.width == 6: from rubikscolorresolver.cube_666 import edge_orbit_wing_pairs elif self.width == 7: from rubikscolorresolver.cube_777 import edge_orbit_wing_pairs valid = True # We need to see which orange/red we can flip that will make the edges valid wing_pair_counts = {} for (square1_position, square2_position) in edge_orbit_wing_pairs[orbit_id]: square1 = self.pos2square[square1_position] square2 = self.pos2square[square2_position] wing_pair_string = ", ".join( sorted([square1.color_name, square2.color_name]) ) # log.info("orbit {}: ({}, {}) is ({})".format(orbit_id, square1_position, square2_position, wing_pair_string)) if wing_pair_string not in wing_pair_counts: wing_pair_counts[wing_pair_string] = 0 wing_pair_counts[wing_pair_string] += 1 # Are all counts the same? target_count = None for (_wing_pair, count) in wing_pair_counts.items(): if target_count is None: target_count = count else: if count != target_count: valid = False break #if not valid: # log.info("wing_pair_counts:\n{}\n".format(wing_pair_counts)) # log.warning("valid: {}".format(valid)) # assert valid, "Cube is invalid" return valid # @timed_function def find_corners_by_color(self): green_white_corners = [] green_yellow_corners = [] blue_white_corners = [] blue_yellow_corners = [] if self.width == 2: from rubikscolorresolver.cube_222 import corner_tuples elif self.width == 3: from rubikscolorresolver.cube_333 import corner_tuples elif self.width == 4: from rubikscolorresolver.cube_444 import corner_tuples elif self.width == 5: from rubikscolorresolver.cube_555 import corner_tuples elif self.width == 6: from rubikscolorresolver.cube_666 import corner_tuples elif self.width == 7: from rubikscolorresolver.cube_777 import corner_tuples for corner_tuple in corner_tuples: corner_colors = [] for position in corner_tuple: #square = self.pos2square[position] #corner_colors.add(square.color_name) corner_colors.append(self.pos2square[position].color_name) if "Gr" in corner_colors: if "Wh" in corner_colors: green_white_corners.append(corner_tuple) elif "Ye" in corner_colors: green_yellow_corners.append(corner_tuple) elif "Bu" in corner_colors: if "Wh" in corner_colors: blue_white_corners.append(corner_tuple) elif "Ye" in corner_colors: blue_yellow_corners.append(corner_tuple) return ( green_white_corners, green_yellow_corners, blue_white_corners, blue_yellow_corners, ) # @timed_function def find_edges_by_color(self, orbit_id): if self.width == 2: from rubikscolorresolver.cube_333 import edge_orbit_wing_pairs elif self.width == 3: from rubikscolorresolver.cube_333 import edge_orbit_wing_pairs elif self.width == 4: from rubikscolorresolver.cube_444 import edge_orbit_wing_pairs elif self.width == 5: from rubikscolorresolver.cube_555 import edge_orbit_wing_pairs elif self.width == 6: from rubikscolorresolver.cube_666 import edge_orbit_wing_pairs elif self.width == 7: from rubikscolorresolver.cube_777 import edge_orbit_wing_pairs green_red_orange_color_names = ("Gr", "Rd", "OR") blue_red_orange_color_names = ("Bu", "Rd", "OR") white_red_orange_color_names = ("Wh", "Rd", "OR") yellow_red_orange_color_names = ("Ye", "Rd", "OR") green_red_or_orange_edges = [] blue_red_or_orange_edges = [] white_red_or_orange_edges = [] yellow_red_or_orange_edges = [] for (square_index, partner_index) in edge_orbit_wing_pairs[orbit_id]: square = self.pos2square[square_index] partner = self.pos2square[partner_index] if ( square.color_name in green_red_orange_color_names and partner.color_name in green_red_orange_color_names ): if square.color_name == "Gr": green_red_or_orange_edges.append((square, partner)) else: green_red_or_orange_edges.append((partner, square)) elif ( square.color_name in blue_red_orange_color_names and partner.color_name in blue_red_orange_color_names ): if square.color_name == "Bu": blue_red_or_orange_edges.append((square, partner)) else: blue_red_or_orange_edges.append((partner, square)) elif ( square.color_name in white_red_orange_color_names and partner.color_name in white_red_orange_color_names ): if square.color_name == "Wh": white_red_or_orange_edges.append((square, partner)) else: white_red_or_orange_edges.append((partner, square)) elif ( square.color_name in yellow_red_orange_color_names and partner.color_name in yellow_red_orange_color_names ): if square.color_name == "Ye": yellow_red_or_orange_edges.append((square, partner)) else: yellow_red_or_orange_edges.append((partner, square)) return ( green_red_or_orange_edges, blue_red_or_orange_edges, white_red_or_orange_edges, yellow_red_or_orange_edges, ) # @timed_function def sanity_check_edges_red_orange_count_for_orbit(self, target_orbit_id): if (self.width == 4 or self.width == 6 or (self.width == 5 and target_orbit_id == 0)): high_low_edge_per_color = self.get_high_low_per_edge_color(target_orbit_id) else: high_low_edge_per_color = None def fix_orange_vs_red_for_color(target_color, target_color_red_or_orange_edges): if len(target_color_red_or_orange_edges) == 2: red_orange_permutations = (("OR", "Rd"), ("Rd", "OR")) elif len(target_color_red_or_orange_edges) == 4: # 4!/(2!*2!) = 6 red_orange_permutations = ( ("OR", "OR", "Rd", "Rd"), ("OR", "Rd", "OR", "Rd"), ("OR", "Rd", "Rd", "OR"), ("Rd", "Rd", "OR", "OR"), ("Rd", "OR", "Rd", "OR"), ("Rd", "OR", "OR", "Rd"), ) else: raise Exception( "There should be either 2 or 4 but we have %s" % target_color_red_or_orange_edges ) min_distance = None min_distance_permutation = None for red_orange_permutation in red_orange_permutations: distance = 0 for (index, (target_color_square, partner_square)) in enumerate(target_color_red_or_orange_edges): red_orange = red_orange_permutation[index] if red_orange == "OR": distance += sqrt(((partner_square.lab.L - self.orange_baseline.L) ** 2) + ((partner_square.lab.a - self.orange_baseline.a) ** 2) + ((partner_square.lab.b - self.orange_baseline.b) ** 2)) elif red_orange == "Rd": distance += sqrt(((partner_square.lab.L - self.red_baseline.L) ** 2) + ((partner_square.lab.a - self.red_baseline.a) ** 2) + ((partner_square.lab.b - self.red_baseline.b) ** 2)) else: raise Exception(red_orange) partner_square.color_name = red_orange partner_square.side_name = self.color_to_side_name[partner_square.color_name] if (self.width == 4 or self.width == 6 or (self.width == 5 and target_orbit_id == 0)): for (index, (target_color_square, partner_square)) in enumerate(target_color_red_or_orange_edges): red_orange = red_orange_permutation[index] edge_color_pair = edge_color_pair_map[ "%s/%s" % ( target_color_square.color_name, partner_square.color_name, ) ] # log.info("high_low_edge_per_color\n%s".format(high_low_edge_per_color)) if len(high_low_edge_per_color[edge_color_pair]) != 2: # log.warning("*" * 40) # log.warning("edge_color_pair %s high_low is %s" % (edge_color_pair, high_low_edge_per_color[edge_color_pair])) # log.warning("*" * 40) distance += 999 if min_distance is None or distance < min_distance: min_distance = distance min_distance_permutation = red_orange_permutation ''' log.info( "target edge %s, red_orange_permutation %s, distance %s (NEW MIN)" % (target_color, ",".join(red_orange_permutation), distance) ) else: log.info( "target edge %s, red_orange_permutation %s, distance %s)" % (target_color, ",".join(red_orange_permutation), distance) ) log.info("min_distance_permutation %s" % ",".join(min_distance_permutation)) ''' for (index, (target_color_square, partner_square)) in enumerate(target_color_red_or_orange_edges): if partner_square.color_name != min_distance_permutation[index]: ''' log.warning( "change %s edge partner %s from %s to %s" % ( target_color, partner_square, partner_square.color_name, min_distance_permutation[index], ) ) ''' partner_square.color_name = min_distance_permutation[index] partner_square.side_name = self.color_to_side_name[ partner_square.color_name ] ''' else: log.info( "%s edge partner %s is %s" % (target_color, partner_square, partner_square.color_name) ) log.info("\n\n") ''' ( green_red_or_orange_edges, blue_red_or_orange_edges, white_red_or_orange_edges, yellow_red_or_orange_edges, ) = self.find_edges_by_color(target_orbit_id) #log.info( # "orbit %s green_red_or_orange_edges %s" # % (target_orbit_id, green_red_or_orange_edges) #) fix_orange_vs_red_for_color("green", green_red_or_orange_edges) #log.info( # "orbit %s blue_red_or_orange_edges %s" # % (target_orbit_id, blue_red_or_orange_edges) #) fix_orange_vs_red_for_color("blue", blue_red_or_orange_edges) #log.info( # "orbit %s white_red_or_orange_edges %s" # % (target_orbit_id, white_red_or_orange_edges) #) fix_orange_vs_red_for_color("white", white_red_or_orange_edges) #log.info( # "orbit %s yellow_red_or_orange_edges %s" # % (target_orbit_id, yellow_red_or_orange_edges) #) fix_orange_vs_red_for_color("yellow", yellow_red_or_orange_edges) self.validate_edge_orbit(target_orbit_id) # @timed_function def get_high_low_per_edge_color(self, target_orbit_id): if self.width == 4: from rubikscolorresolver.cube_444 import edge_orbit_wing_pairs, highlow_edge_values elif self.width == 5: from rubikscolorresolver.cube_555 import edge_orbit_wing_pairs, highlow_edge_values elif self.width == 6: from rubikscolorresolver.cube_666 import edge_orbit_wing_pairs, highlow_edge_values else: raise Exception("Add support for %sx%sx%s" % (self.width, self.width, self.width)) high_low_per_edge_color = { "Gr/Wh": set(), "Bu/Wh": set(), "OR/Wh": set(), "Rd/Wh": set(), "Gr/OR": set(), "Bu/OR": set(), "Gr/Rd": set(), "Bu/Rd": set(), "Gr/Ye": set(), "Bu/Ye": set(), "OR/Ye": set(), "Rd/Ye": set(), } for (square_index, partner_index) in edge_orbit_wing_pairs[target_orbit_id]: square = self.pos2square[square_index] partner = self.pos2square[partner_index] if self.width == 4: highlow = highlow_edge_values[(square_index, partner_index, square.side_name, partner.side_name)] elif self.width == 5: highlow = highlow_edge_values[(square_index, partner_index, square.side_name, partner.side_name)] elif self.width == 6: highlow = highlow_edge_values[(square_index, partner_index, square.side_name, partner.side_name)] edge_color_pair = edge_color_pair_map["%s/%s" % (square.color_name, partner.color_name)] high_low_per_edge_color[edge_color_pair].add(highlow) # log.info("high_low_per_edge_color for orbit %d\n%s" % (target_orbit_id, high_low_per_edge_color)) # log.info("") return high_low_per_edge_color # @timed_function def sanity_check_edge_squares(self): for orbit_id in range(self.orbits): self.sanity_check_edges_red_orange_count_for_orbit(orbit_id) # @timed_function def assign_green_white_corners(self, green_white_corners): # log.info("Gr/Wh corner tuples %s".format(green_white_corners)) valid_green_orange_white = ( ["Gr", "OR", "Wh"], ["Wh", "Gr", "OR"], ["OR", "Wh", "Gr"], ) valid_green_white_red = ( ["Gr", "Wh", "Rd"], ["Rd", "Gr", "Wh"], ["Wh", "Rd", "Gr"], ) for (corner1_index, corner2_index, corner3_index) in green_white_corners: corner1 = self.pos2square[corner1_index] corner2 = self.pos2square[corner2_index] corner3 = self.pos2square[corner3_index] color_seq = [x.color_name for x in (corner1, corner2, corner3)] # If this is the case we must flip the orange to red or vice versa if ( color_seq not in valid_green_orange_white and color_seq not in valid_green_white_red ): if corner1.color_name == "OR": corner1.color_name = "Rd" #log.warning( # "change Gr/Wh corner partner %s from OR to Rd" % corner1 #) elif corner1.color_name == "Rd": corner1.color_name = "OR" #log.warning( # "change Gr/Wh corner partner %s from Rd to OR" % corner1 #) elif corner2.color_name == "OR": corner2.color_name = "Rd" #log.warning( # "change Gr/Wh corner partner %s from OR to Rd" % corner2 #) elif corner2.color_name == "Rd": corner2.color_name = "OR" #log.warning( # "change Gr/Wh corner partner %s from Rd to OR" % corner2 #) elif corner3.color_name == "OR": corner3.color_name = "Rd" #log.warning( # "change Gr/Wh corner partner %s from OR to Rd" % corner3 #) elif corner3.color_name == "Rd": corner3.color_name = "OR" #log.warning( # "change Gr/Wh corner partner %s from Rd to OR" % corner3 #) # @timed_function def assign_green_yellow_corners(self, green_yellow_corners): valid_green_yellow_orange = ( ["Gr", "Ye", "OR"], ["OR", "Gr", "Ye"], ["Ye", "OR", "Gr"], ) valid_green_red_yellow = ( ["Gr", "Rd", "Ye"], ["Ye", "Gr", "Rd"], ["Rd", "Ye", "Gr"], ) for (corner1_index, corner2_index, corner3_index) in green_yellow_corners: corner1 = self.pos2square[corner1_index] corner2 = self.pos2square[corner2_index] corner3 = self.pos2square[corner3_index] color_seq = [x.color_name for x in (corner1, corner2, corner3)] # If this is the case we must flip the orange to red or vice versa if ( color_seq not in valid_green_yellow_orange and color_seq not in valid_green_red_yellow ): if corner1.color_name == "OR": corner1.color_name = "Rd" #log.warning( # "change Gr/Ye corner partner %s from OR to Rd" % corner1 #) elif corner1.color_name == "Rd": corner1.color_name = "OR" #log.warning( # "change Gr/Ye corner partner %s from Rd to OR" % corner1 #) elif corner2.color_name == "OR": corner2.color_name = "Rd" #log.warning( # "change Gr/Ye corner partner %s from OR to Rd" % corner2 #) elif corner2.color_name == "Rd": corner2.color_name = "OR" #log.warning( # "change Gr/Ye corner partner %s from Rd to OR" % corner2 #) elif corner3.color_name == "OR": corner3.color_name = "Rd" #log.warning( # "change Gr/Ye corner partner %s from OR to Rd" % corner3 #) elif corner3.color_name == "Rd": corner3.color_name = "OR" #log.warning( # "change Gr/Ye corner partner %s from Rd to OR" % corner3 #) # @timed_function def assign_blue_white_corners(self, blue_white_corners): # log.info("Bu/Wh corner tuples %s".format(blue_white_corners)) valid_blue_white_orange = ( ["Bu", "Wh", "OR"], ["OR", "Bu", "Wh"], ["Wh", "OR", "Bu"], ) valid_blue_red_white = ( ["Bu", "Rd", "Wh"], ["Wh", "Bu", "Rd"], ["Rd", "Wh", "Bu"], ) for (corner1_index, corner2_index, corner3_index) in blue_white_corners: corner1 = self.pos2square[corner1_index] corner2 = self.pos2square[corner2_index] corner3 = self.pos2square[corner3_index] color_seq = [x.color_name for x in (corner1, corner2, corner3)] # If this is the case we must flip the orange to red or vice versa if ( color_seq not in valid_blue_white_orange and color_seq not in valid_blue_red_white ): if corner1.color_name == "OR": corner1.color_name = "Rd" #log.warning( # "change Bu/Wh corner partner %s from OR to Rd" % corner1 #) elif corner1.color_name == "Rd": corner1.color_name = "OR" #log.warning( # "change Bu/Wh corner partner %s from Rd to OR" % corner1 #) elif corner2.color_name == "OR": corner2.color_name = "Rd" #log.warning( # "change Bu/Wh corner partner %s from OR to Rd" % corner2 #) elif corner2.color_name == "Rd": corner2.color_name = "OR" #log.warning( # "change Bu/Wh corner partner %s from Rd to OR" % corner2 #) elif corner3.color_name == "OR": corner3.color_name = "Rd" #log.warning( # "change Bu/Wh corner partner %s from OR to Rd" % corner3 #) elif corner3.color_name == "Rd": corner3.color_name = "OR" #log.warning( # "change Bu/Wh corner partner %s from Rd to OR" % corner3 #) # @timed_function def assign_blue_yellow_corners(self, blue_yellow_corners): valid_blue_yellow_red = ( ["Bu", "Ye", "Rd"], ["Rd", "Bu", "Ye"], ["Ye", "Rd", "Bu"], ) valid_blue_orange_yellow = ( ["Bu", "OR", "Ye"], ["Ye", "Bu", "OR"], ["OR", "Ye", "Bu"], ) for (corner1_index, corner2_index, corner3_index) in blue_yellow_corners: corner1 = self.pos2square[corner1_index] corner2 = self.pos2square[corner2_index] corner3 = self.pos2square[corner3_index] color_seq = [x.color_name for x in (corner1, corner2, corner3)] # If this is the case we must flip the orange to red or vice versa if ( color_seq not in valid_blue_yellow_red and color_seq not in valid_blue_orange_yellow ): if corner1.color_name == "OR": corner1.color_name = "Rd" #log.warning( # "change Bu/Ye corner partner %s from OR to Rd" % corner1 #) elif corner1.color_name == "Rd": corner1.color_name = "OR" #log.warning( # "change Bu/Ye corner partner %s from Rd to OR" % corner1 #) elif corner2.color_name == "OR": corner2.color_name = "Rd" #log.warning( # "change Bu/Ye corner partner %s from OR to Rd" % corner2 #) elif corner2.color_name == "Rd": corner2.color_name = "OR" #log.warning( # "change Bu/Ye corner partner %s from Rd to OR" % corner2 #) elif corner3.color_name == "OR": corner3.color_name = "Rd" #log.warning( # "change Bu/Ye corner partner %s from OR to Rd" % corner3 #) elif corner3.color_name == "Rd": corner3.color_name = "OR" #log.warning( # "change Bu/Ye corner partner %s from Rd to OR" % corner3 #) # @timed_function def sanity_check_corner_squares(self): (green_white_corners, green_yellow_corners, blue_white_corners, blue_yellow_corners) = self.find_corners_by_color() self.assign_green_white_corners(green_white_corners) self.assign_green_yellow_corners(green_yellow_corners) self.assign_blue_white_corners(blue_white_corners) self.assign_blue_yellow_corners(blue_yellow_corners) # @timed_function def get_corner_swap_count(self, debug=False): needed_corners = ["BLU", "BRU", "FLU", "FRU", "DFL", "DFR", "BDL", "BDR"] to_check = [ ( self.sideU.corner_pos[0], self.sideL.corner_pos[0], self.sideB.corner_pos[1], ), # ULB ( self.sideU.corner_pos[1], self.sideR.corner_pos[1], self.sideB.corner_pos[0], ), # URB ( self.sideU.corner_pos[2], self.sideL.corner_pos[1], self.sideF.corner_pos[0], ), # ULF ( self.sideU.corner_pos[3], self.sideF.corner_pos[1], self.sideR.corner_pos[0], ), # UFR ( self.sideD.corner_pos[0], self.sideL.corner_pos[3], self.sideF.corner_pos[2], ), # DLF ( self.sideD.corner_pos[1], self.sideF.corner_pos[3], self.sideR.corner_pos[2], ), # DFR ( self.sideD.corner_pos[2], self.sideL.corner_pos[2], self.sideB.corner_pos[3], ), # DLB ( self.sideD.corner_pos[3], self.sideR.corner_pos[3], self.sideB.corner_pos[2], ), # DRB ] current_corners = [] for (square_index1, square_index2, square_index3) in to_check: square1 = self.pos2square[square_index1] square2 = self.pos2square[square_index2] square3 = self.pos2square[square_index3] corner_str = "".join( sorted([square1.side_name, square2.side_name, square3.side_name]) ) current_corners.append(corner_str) return get_swap_count(needed_corners, current_corners, debug) # @timed_function def corner_swaps_even(self, debug=False): if self.get_corner_swap_count(debug) % 2 == 0: return True return False # @timed_function def corner_swaps_odd(self, debug=False): if self.get_corner_swap_count(debug) % 2 == 1: return True return False # @timed_function def get_edge_swap_count(self, orbit, debug=False): needed_edges = [] to_check = [] # Upper for square_index in self.sideU.edge_north_pos: to_check.append(square_index) needed_edges.append("UB") break for square_index in reversed(self.sideU.edge_west_pos): to_check.append(square_index) needed_edges.append("UL") break for square_index in reversed(self.sideU.edge_south_pos): to_check.append(square_index) needed_edges.append("UF") break for square_index in self.sideU.edge_east_pos: to_check.append(square_index) needed_edges.append("UR") break # Left for square_index in reversed(self.sideL.edge_west_pos): to_check.append(square_index) needed_edges.append("LB") break for square_index in self.sideL.edge_east_pos: to_check.append(square_index) needed_edges.append("LF") break # Right for square_index in reversed(self.sideR.edge_west_pos): to_check.append(square_index) needed_edges.append("RF") break for square_index in self.sideR.edge_east_pos: to_check.append(square_index) needed_edges.append("RB") break # Down for square_index in self.sideD.edge_north_pos: to_check.append(square_index) needed_edges.append("DF") break for square_index in reversed(self.sideD.edge_west_pos): to_check.append(square_index) needed_edges.append("DL") break for square_index in reversed(self.sideD.edge_south_pos): to_check.append(square_index) needed_edges.append("DB") break for square_index in self.sideD.edge_east_pos: to_check.append(square_index) needed_edges.append("DR") break current_edges = [] for square_index in to_check: side = self.pos2side[square_index] partner_index = side.get_wing_partner(square_index) square1 = self.pos2square[square_index] square2 = self.pos2square[partner_index] if square1.side_name in ("U", "D"): wing_str = square1.side_name + square2.side_name elif square2.side_name in ("U", "D"): wing_str = square2.side_name + square1.side_name elif square1.side_name in ("L", "R"): wing_str = square1.side_name + square2.side_name elif square2.side_name in ("L", "R"): wing_str = square2.side_name + square1.side_name else: raise Exception( "Could not determine wing_str for (%s, %s)" % (square1, square2) ) current_edges.append(wing_str) #if debug: # log.info("current edges: %s" % " ".join(current_edges)) return get_swap_count(needed_edges, current_edges, debug) # @timed_function def edge_swaps_even(self, orbit, debug): if self.get_edge_swap_count(orbit, debug) % 2 == 0: return True return False # @timed_function def edge_swaps_odd(self, orbit, debug): if self.get_edge_swap_count(orbit, debug) % 2 == 1: return True return False # @timed_function def validate_all_corners_found(self): needed_corners = ["BLU", "BRU", "FLU", "FRU", "DFL", "DFR", "BDL", "BDR"] to_check = [ ( self.sideU.corner_pos[0], self.sideL.corner_pos[0], self.sideB.corner_pos[1], ), # ULB ( self.sideU.corner_pos[1], self.sideR.corner_pos[1], self.sideB.corner_pos[0], ), # URB ( self.sideU.corner_pos[2], self.sideL.corner_pos[1], self.sideF.corner_pos[0], ), # ULF ( self.sideU.corner_pos[3], self.sideF.corner_pos[1], self.sideR.corner_pos[0], ), # UFR ( self.sideD.corner_pos[0], self.sideL.corner_pos[3], self.sideF.corner_pos[2], ), # DLF ( self.sideD.corner_pos[1], self.sideF.corner_pos[3], self.sideR.corner_pos[2], ), # DFR ( self.sideD.corner_pos[2], self.sideL.corner_pos[2], self.sideB.corner_pos[3], ), # DLB ( self.sideD.corner_pos[3], self.sideR.corner_pos[3], self.sideB.corner_pos[2], ), # DRB ] current_corners = [] for (square_index1, square_index2, square_index3) in to_check: square1 = self.pos2square[square_index1] square2 = self.pos2square[square_index2] square3 = self.pos2square[square_index3] corner_str = "".join( sorted([square1.side_name, square2.side_name, square3.side_name]) ) current_corners.append(corner_str) # We need a way to validate all of the needed_corners are present and # if not, what do we flip so that we do have all of the needed corners? for corner in needed_corners: if corner not in current_corners: raise Exception("corner {} is missing".format(corner)) # @timed_function def validate_odd_cube_midge_vs_corner_parity(self): """ http://www.ryanheise.com/cube/parity.html When considering the permutation of all edges and corners together, the overall parity must be even, as dictated by laws of the cube. However, when considering only edges or corners alone, it is possible for their parity to be either even or odd. To obey the laws of the cube, if the edge parity is even then the corner parity must also be even, and if the edge parity is odd then the corner parity must also be odd. """ if self.even: return # TODO add support for 555 and 777 if self.width != 3: return debug = False ref_get_lab_distance = get_lab_distance try: edges_even = self.edge_swaps_even(None, debug) corners_even = self.corner_swaps_even(debug) if edges_even == corners_even: return #log.warning( # "edges_even %s != corners_even %s, swap most ambiguous orange or red edges to create valid parity" # % (edges_even, corners_even) #) except ListMissingValue: #log.warning( # "Either edges or corners are off, swap most ambiguous orange or red edges to create valid parity" #) pass # Reasonable assumptions we can make about why our parity is off: # - we have a red vs orange backwards somewhere # - the error will be made on an edge, not a corner. Corners are much easier to get # correct because once you have correctly IDed green, white, blue and yellow you # can figure out which corner squares are red and which are orange. Green, white, # yellow and blue are easy to get correct so it is extremely rare for us to mislabel # a corner green_orange_position = None green_red_position = None blue_orange_position = None blue_red_position = None for side in (self.sideU, self.sideL, self.sideF, self.sideR, self.sideB, self.sideD): for square in side.edge_squares: partner_position = side.get_wing_partner(square.position) partner = self.pos2square[partner_position] if square.color_name == "Gr" and partner.color_name == "OR": green_orange_position = partner_position elif square.color_name == "Gr" and partner.color_name == "Rd": green_red_position = partner_position elif square.color_name == "Bu" and partner.color_name == "OR": blue_orange_position = partner_position elif square.color_name == "Bu" and partner.color_name == "Rd": blue_red_position = partner_position #log.debug("green_orange_position %s".format(green_orange_position)) #log.debug("green_red_position %s".format(green_red_position)) #log.debug("blue_orange_position %s".format(blue_orange_position)) #log.debug("blue_red_position %s".format(blue_red_position)) square_green_orange = self.pos2square[green_orange_position] square_green_red = self.pos2square[green_red_position] square_blue_orange = self.pos2square[blue_orange_position] square_blue_red = self.pos2square[blue_red_position] # To correct the parity we can swap orange/red for the green edges or # we can swap orange/red for the blue edges. Which will result in the # lowest color distance with our orange/red baselines? distance_swap_green_edge = 0 distance_swap_green_edge += ref_get_lab_distance(square_blue_orange.lab, self.orange_baseline) distance_swap_green_edge += ref_get_lab_distance(square_blue_red.lab, self.red_baseline) distance_swap_green_edge += ref_get_lab_distance(square_green_orange.lab, self.red_baseline) distance_swap_green_edge += ref_get_lab_distance(square_green_red.lab, self.orange_baseline) distance_swap_blue_edge = 0 distance_swap_blue_edge += ref_get_lab_distance(square_green_orange.lab, self.orange_baseline) distance_swap_blue_edge += ref_get_lab_distance(square_green_red.lab, self.red_baseline) distance_swap_blue_edge += ref_get_lab_distance(square_blue_orange.lab, self.red_baseline) distance_swap_blue_edge += ref_get_lab_distance(square_blue_red.lab, self.orange_baseline) #log.info("distance_swap_green_edge %s" % distance_swap_green_edge) #log.info("distance_swap_blue_edge %s" % distance_swap_blue_edge) if distance_swap_green_edge < distance_swap_blue_edge: ''' log.warning( "edge parity correction: change %s from %s to Rd" % (square_green_orange, square_green_orange.color_name) ) log.warning( "edge parity correction: change %s from %s to OR" % (square_green_red, square_green_red.color_name) ) ''' square_green_orange.color_name = "Rd" square_green_red.color_name = "OR" square_green_orange.side_name = self.color_to_side_name[square_green_orange.color_name] square_green_red.side_name = self.color_to_side_name[square_green_red.color_name] else: ''' log.warning( "edge parity correction: change %s from %s to Rd" % (square_blue_orange, square_blue_orange.color_name) ) log.warning( "edge parity correction: change %s from %s to OR" % (square_blue_red, square_blue_red.color_name) ) ''' square_blue_orange.color_name = "Rd" square_blue_red.color_name = "OR" square_blue_orange.side_name = self.color_to_side_name[square_blue_orange.color_name] square_blue_red.side_name = self.color_to_side_name[square_blue_red.color_name] edges_even = self.edge_swaps_even(None, debug) corners_even = self.corner_swaps_even(debug) assert edges_even == corners_even, ( "parity is still broken, edges_even %s, corners_even %s" % (edges_even, corners_even) ) ```
{ "source": "jmsv/ety-python", "score": 3 }
#### File: ety/data/generate.py ```python import csv import hashlib import os import io import json import gc import requests import six from clint.textui import progress def prepare(source_dir): """ Create data source directory if not exists """ if not os.path.exists(source_dir): os.makedirs(source_dir) def download_dataset(url, dl_path): """ Download filtered etymwn from jmsv.me mirror, displaying progress bar """ r = requests.get(url, stream=True) with open(dl_path, "wb") as f: total_length = int(r.headers.get("content-length")) chunk_size = 4096 for chunk in progress.bar( r.iter_content(chunk_size=chunk_size), expected_size=(total_length / chunk_size) + 1, ): if chunk: f.write(chunk) f.flush() print("Downloaded to " + dl_path) def verify_local_data(url, dl_path): """ Compare actual file checksum with expected served checksum Return bool determines whether or not data is (re)downloaded :return: True if local file matches, otherwise False """ try: with open(dl_path, "rb") as f: # Local file checksum actual = hashlib.md5(f.read()).hexdigest() except EnvironmentError: # Return False if file doesn't exit return False expected = requests.get("%s.checksum" % url).text.strip() return actual == expected def fix_anomalous_lang_code(code): if code == "wit": return "wnw" return code def split_elements(compound): """ Split source tsv elements at colon e.g.: 'rel:etymology' => ['rel', 'etymology'] :return: Elements as list """ elements = [fix_anomalous_lang_code(e.strip()) for e in compound.split(":")] if len(elements) == 2: return elements return [fix_anomalous_lang_code(elements[0]), ":".join(elements[1:])] def generate_json(source_path, dir): """ Reads source tsv and restructures data as described: https://github.com/jmsv/ety-python/issues/24 """ result = {} print("Loading source tsv") with io.open(source_path, "r", newline="", encoding="utf-8") as source: reader = csv.reader(source, delimiter="\t") source_rows = list(reader) gc.collect() print("Structuring data") for row in progress.bar(source_rows): source_lang, source_word = split_elements(row[0]) if source_lang not in result: result[source_lang] = {} if source_word not in result[source_lang]: result[source_lang][source_word] = [] dest_lang, dest_word = split_elements(row[2]) result[source_lang][source_word].append({dest_word: dest_lang}) del source_lang, source_word, dest_lang, dest_word # Save data to seperate files for languages, may be required in the future # print('Saving language files') # for key in progress.bar(result): # with io.open(os.path.join(dir, 'data/ety-%s.json' % key), 'w') as f: # f.write(json.dumps(result[key], sort_keys=False)) # Save data print("Writing etymologies file") with io.open(os.path.join(dir, "etymologies.json"), "w") as f: json.dump(result, f) def main(): """ Define paths, download data if required, generate json dataset """ dir = os.path.dirname(os.path.realpath(__file__)) source_dir = os.path.join(dir, "source") source_path = os.path.join(source_dir, "etymwn.tsv") source_url = "https://data.jmsv.me/etymwn-filtered.tsv" # Exit if not Python 3 if not six.PY3: print("Script should be run as Python 3, exiting") exit(1) prepare(source_dir) # (Re)download data if required if not verify_local_data(source_url, source_path): print("Downloading source data") download_dataset(source_url, source_path) # If checksum still doesn't match, exit if verify_local_data(source_url, source_path): print("Verified local source data") else: print("Error verifying local source data, exiting") exit(1) else: print("Verified local source data") generate_json(source_path, dir) print("Done") if __name__ == "__main__": main() ```
{ "source": "jmsv/hackthemidlands18", "score": 3 }
#### File: hackthemidlands18/siege-weapon/main.py ```python import serial import serial.tools.list_ports import time import paho.mqtt.client as mqtt class Device: def __init__(self, details): self.ser = serial.Serial(details) def close(self): self.ser.close() def write(self, message): self.ser.write(message) class SerialDevices: @staticmethod def select_device(details): return details @staticmethod def list_devices(): return serial.tools.list_ports.comports() class Motor(Device): def __init__(self, device): Device.__init__(self, device) def rotate(self, direction, sleep_time): self.write(str.encode(str(direction))) time.sleep(sleep_time) self._stop() pass def _stop(self): self.write(str.encode(str(0))) def main(): mqttc = mqtt.Client() mqttc.connect( 'broker.mqttdashboard.com', 1883, 60 ) device_list = SerialDevices.list_devices() device = Motor( SerialDevices.select_device(device_list[0].device) ) # Our actions def on_connect(client, userdata, flags, rc): # subscribe to the channel client.subscribe('covhack/superior-siege-weapon') def on_message(client, userdata, msg): device.rotate(1, 15) mqttc.on_connect = on_connect mqttc.on_message = on_message mqttc.loop_forever() if __name__ == "__main__": main() ```
{ "source": "jmsv/jameshash", "score": 4 }
#### File: jmsv/jameshash/tests.py ```python import unittest from jameshash import hash_password, check_password, merge_lists, largest_prime_factor class CheckHashes(unittest.TestCase): def test_hash_password(self): """ Checks hashes are as expected for password/username input """ self.assertEqual( hash_password("password", "username"), "<PASSWORD>" ) self.assertEqual( hash_password("password1", "username"), "<PASSWORD>" ) self.assertEqual( hash_password("<PASSWORD>", "username"), "<PASSWORD>" ) def test_check_password(self): """ Checks password/username/hash checker returns correct True/False """ # Check True is returned for correct password/username/hash self.assertTrue(check_password( "<PASSWORD>", "<PASSWORD>_", "<PASSWORD>") ) # Check False is returned for wrong password/username/hash self.assertFalse(check_password( "guessed password", "<PASSWORD>_", "<PASSWORD>") ) self.assertFalse(check_password( "<PASSWORD>", "<PASSWORD>", "<PASSWORD>") ) def test_merge_lists(self): """ Test method to merge to lists together in format: [1, 2, 3, 4, 5, 6] & ['a', 'b', 'c'] => [1, 'a', 2, 'b', 3, 'c', 4, 5, 6] """ self.assertEqual( merge_lists([1, 2, 3, 4, 5], ['a', 'b', 'c']), [1, 'a', 2, 'b', 3, 'c', 4, 5] ) self.assertEqual( merge_lists(['a', 'b', 'c', 'd', 'e'], ['x', 'y', 'z']), ['a', 'x', 'b', 'y', 'c', 'z', 'd', 'e'] ) def test_largest_prime_factor(self): """ Test method that calculates a numbers largest prime factor :return: """ self.assertEqual(largest_prime_factor(35), 7) # High-value test cases from: # http://www.javascripter.net/math/calculators/primefactorscalculator.htm self.assertEqual(largest_prime_factor(39865), 67) self.assertEqual(largest_prime_factor(9007199254740991), 20394401) self.assertEqual(largest_prime_factor(9007199254740993), 28059810762433) if __name__ == '__main__': unittest.main() ```
{ "source": "jmsv/rockstar-py", "score": 3 }
#### File: rockstar-py/rockstarpy/command_line.py ```python import sys import argparse from rockstarpy import convert parser = argparse.ArgumentParser(description="Python transpiler for the esoteric language Rockstar") input_group = parser.add_mutually_exclusive_group(required=True) input_group.add_argument('--input', action='store', help='Input file (.rock)') input_group.add_argument('--stdin', action='store_true', help='Stream in stdin') output_group = parser.add_mutually_exclusive_group(required=True) output_group.add_argument('--output', action='store', help='Output file (.py)', default='output.py') output_group.add_argument('--stdout', action='store_true', help='Stream to stdout') parser.add_argument('-v', action='version', help='Version', version='1.3.6') args = parser.parse_args() def command_line(): # connnect input if args.stdin: lyrics = sys.stdin else: lyrics = open(args.input, 'r') # connect output if args.stdout: enc = False output = sys.stdout else: enc = True output = open(args.output, 'wb', 0) # Read, Convert, Write, loop for line in lyrics: output.write( encode( convert.convert_line(line), enc ) ) # close input if not args.stdin: lyrics.close() # close output if not args.stdout: output.close() def encode(line, enc): if enc: return line.encode() return line ``` #### File: rockstar-py/rockstarpy/convert.py ```python import re global ident global regex_variables global most_recently_named ident = 0 regex_variables = r'\b(?:(?:[Aa]n?|[Tt]he|[Mm]y|[Yy]our) [a-z]+|[A-Z][A-Za-z]+(?: [A-Z][A-Za-z]+)*)\b' most_recently_named = '' simple_subs = { '(':'#', ')':'', 'Give back':'return', 'Take it to the top':'continue', 'Break it down':'break', ' false ':' False ', ' wrong ':' False ', ' no ':' False ', ' lies ':' False ', ' null ':' False ', ' nothing ':' False ', ' nowhere ':' False ', ' nobody ':' False ', ' empty ':' False ', ' gone ':' False ', ' mysterious ':' False ', ' true ':' True ', ' right ':' True ', ' yes ':' True ', ' ok ':' True ', ' plus ':' + ', ' with ':' + ', ' minus ':' - ', ' without ':' - ', ' times ':' * ', ' of ':' * ', ' over ':' / ', ' is higher than ':' > ', ' is greater than ':' > ', ' is bigger than ':' > ', ' is stronger than ':' > ', ' is lower than ':' < ', ' is less than ':' < ', ' is smaller than ':' < ', ' is weaker than ':' < ', ' is as high as ':' >= ', ' is as great as ':' >= ', ' is as big as ':' >= ', ' is as strong as ':' >= ', ' is as low as ':' <= ', ' is as little as ':' <= ', ' is as small as ':' <= ', ' is as weak as ':' <= ', ' is not ':' != ', ' ain\'t ':' != ', 'Until ':'while not ', 'While ':'while ' } def get_comments(line): if '(' in line: line, comment = line.split('(') comment = ' #' + comment.strip(')\n ') else: comment = '' return line, comment def create_function(line): global ident match = re.match(r'\b({0}) takes ({0}(?: and {0})*)\b'.format(regex_variables), line) if match: ident += 1 line = 'def {}({}):'.format(match.group(1), match.group(2).replace(' and', ',')) return line def create_while(line): global ident if line.startswith('while '): line = line.replace(' is ', ' == ') line += ':' ident += 1 return line def create_if(line): global ident match = re.match(r'If .*', line) if match: ident += 1 line = line.replace(' is ', ' == ') line = line.replace('If', 'if') line += ':' return line def find_poetic_number_literal(line): poetic_type_literals_keywords = ['true', 'false', 'nothing', 'nobody', 'nowhere', 'empty', 'wrong', 'gone', 'no', 'lies', 'right', 'yes', 'ok', 'mysterious'] match = re.match(r'\b({})(?: is|\'s| was| were) (.+)'.format(regex_variables), line) if match and match.group(2).split()[0] not in poetic_type_literals_keywords: line = '{} = '.format(match.group(1)) for word_number in match.group(2).split(): period = '.' if word_number.endswith('.') else '' alpha_word = re.sub('[^A-Za-z]', '', word_number) line += str(len(alpha_word) % 10) + period return line def find_proper_variables(line): match_list = re.findall(r'\b[A-Z][A-Za-z]+(?: [A-Z][A-Za-z]+)*\b', line) if match_list: for match in match_list: line = line.replace(match, match.replace(' ', '_')) return line def find_common_variables(line): match_list = re.findall(r'\b([Aa]n?|[Tt]he|[Mm]y|[Yy]our) ([a-z]+)\b', line) if match_list: for match in match_list: line = line.replace(' '.join(match), '{}_{}'.format(*match).lower()) return line def find_named(line): match = re.match(r'([A-Za-z]+(?:_[A-Za-z]+)*) [+-]?= .+', line) if match: return match.group(1) def get_strings(line): says_match = re.match(r'({}) says (.*)'.format(regex_variables), line) if says_match: line = says_match.group(1) + ' = "{}"' return line, says_match.group(2) quotes_match = re.match(r'([^\"]* )(\".*\"(?:, ?\".*\")*)([^\"]*)', line) if quotes_match: line = quotes_match.group(1) + '{}' + quotes_match.group(3) return line, quotes_match.group(2) return line, None def convert_line(line): global ident global most_recently_named if line == '\n': ident = ident - 1 if ident > 0 else 0 return '' else: line_ident = ' ' * ident line, comments = get_comments(line) line, line_strings = get_strings(line) py_line = find_poetic_number_literal(line) for key in simple_subs: py_line = py_line.strip() py_line += ' ' py_line = py_line.replace(key, simple_subs[key]) py_line = py_line.strip('\n ,.;') most_recently_named_keywords = [' it ', ' he ', ' she ', ' him ', ' her ', ' them ', ' they ', ' ze ', ' hir ', ' zie ', ' zir ', ' xe ', ' xem ', ' ve ', ' ver '] for keyword in most_recently_named_keywords: py_line = py_line.replace(keyword, ' {} '.format(most_recently_named)) py_line = create_function(py_line) py_line = create_while(py_line) py_line = create_if(py_line) line_ident = ' ' * (ident - 1) if py_line == 'Else' else line_ident py_line = 'else:' if py_line == 'Else' else py_line py_line = re.sub(r'Put (.*) into ({})'.format(regex_variables), r'\g<2> = \g<1>', py_line) py_line = re.sub(r'Build ({}) up'.format(regex_variables), r'\g<1> += 1', py_line) py_line = re.sub(r'Knock ({}) down'.format(regex_variables), r'\g<1> -= 1', py_line) py_line = re.sub(r'Listen to ({})'.format(regex_variables), r'\g<1> = input()', py_line) py_line = re.sub(r'(?:Say|Shout|Whisper|Scream) (.*)', r'print(\g<1>)', py_line) py_line = py_line.replace(' is ', ' = ', 1) py_line = re.sub(r'({0}) taking ((?:{0}|\"[^\"]*\"|[0-9]+)(?:, ?(?:{0}|\"[^\"]*\"|[0-9]+))*)'.format(regex_variables), r'\g<1>(\g<2>)', py_line) py_line = find_proper_variables(py_line) py_line = find_common_variables(py_line) line_named = find_named(py_line) most_recently_named = line_named if line_named else most_recently_named py_line = py_line.format(line_strings) if line_strings else py_line return line_ident + py_line + comments + '\n' ``` #### File: rockstar-py/tests/run_tests.py ```python import os import sys import difflib sys.path=[os.path.dirname(os.path.dirname(os.path.realpath(__file__)))]+sys.path from rockstarpy import convert def check_files_identical(expected, actual): diff = difflib.unified_diff( expected, actual, fromfile='expected', tofile='actual', ) line = None for line in diff: print(line, end='') if line is not None: print() assert False, "There are differences" def main(): files = os.listdir('.') rock_files = filter(lambda f: f.split(".")[-1] in ['rock','rockstar','lyrics'] , files) py_files = set(filter(lambda f: f.endswith('.py'), files)) for rock_file in rock_files: print("testing", rock_file) file_name = os.path.splitext(rock_file)[0] # take off extension py_file = file_name + ".py" assert py_file in py_files, "Did not create a corrosponding expected output for " + rock_file converted_code = '' with open(rock_file, 'r') as rockstar_file: for line in rockstar_file: converted_code += convert.convert_line(line) with open(file_name +".py", 'r') as expected: expected_code = expected.read() check_files_identical(expected_code, converted_code) if __name__ == '__main__': main() ```
{ "source": "jmsv/specsavers", "score": 3 }
#### File: specsavers/specsavers/api.py ```python import requests from requests_html import HTMLSession def retry_on_token_failure(func): def wrapper(*args, **kwargs): try: result = func(*args, **kwargs) except AuthenticationError: api = args[0] api.__class__.__token = api.fetch_token() result = func(*args) return result return wrapper class AuthenticationError(Exception): ... class Api: base_url = "https://www.specsavers.co.uk" __token = "" def __init__(self): if not self.__class__.__token: self.__class__.__token = self.fetch_token() def fetch_token(self): html = self.fetch_booking_page() script_tags = html.find("script") token_script = [ element for element in script_tags if "data-integrity" in element.attrs] if not token_script: return "" return token_script[0].attrs["data-integrity"] def fetch_booking_page(self): page = HTMLSession().get(f"{self.base_url}/book/nottingham") return page.html def store_exists(self, store_name): store_page = requests.head(f"{self.base_url}/book/{store_name}") if store_page.status_code == 200: return True else: return False @retry_on_token_failure def fetch_store_details(self, store_name): url = (f"{self.base_url}/appointment/api/v1/store" f"?url-name={store_name}") store_details = self.__make_request(url) try: return store_details.json() except json.decoder.JSONDecodeError: return {} @retry_on_token_failure def fetch_appointments(self, store, date, kind): url = (f"{self.base_url}/appointment/api/v1/appointment/" f"slot?epos={store.epos}&business-type=opticians&" f"appointment-type={kind}" f"&date-from={date.iso8601().split('T')[0]}") appointment_details = self.__make_request(url) try: return appointment_details.json() except json.decoder.JSONDecodeError: return {} def __make_request(self, url): request = requests.get( url, headers={"X-Access-Token": self.__token}) if request.status_code == 401: raise AuthenticationError("Unable to authenticate.") return request def list_of_store_names(self, latitude, longitude): html = self.fetch_store_select_page(latitude, longitude) store_divs = html.find(".store-name") return [ div.find("a", first=True).attrs["href"].replace("/stores/", "") for div in store_divs] def fetch_store_select_page(self, latitude, longitude): page = HTMLSession().get( f"{self.base_url}/stores/select-a-store/x" f"/{latitude},{longitude}") return page.html ``` #### File: specsavers/tests/test_api.py ```python import unittest from requests_html import HTML class TestApi(unittest.TestCase): def setUp(self): from specsavers.api import Api self.test_token = ( "<KEY> "<KEY>" "iwiZXhwIjoxNTIzNzA4MDU5fQ.2U5GYS_SbZq" "4bEUpTA6Em0l4XF3jrMtjBOZyCxZMe3Q") Api._Api__token = self.test_token with open("tests/page_book.html", "r") as book: self.booking_page = book.read() with open("tests/page_store_select.html", "r") as store_select: self.store_select_page = store_select.read() Api.fetch_booking_page = lambda *_: HTML(html=self.booking_page) Api.fetch_store_select_page = \ lambda *_: HTML(html=self.store_select_page) self.api = Api() def test_getting_token_from_html(self): token = self.api.fetch_token() self.assertEqual(token, self.test_token) def test_parsing_for_store_names(self): store_names = self.api.list_of_store_names(1234, 5678) self.assertEqual(store_names, ["woolwich", "barking", "eastham"]) def test_(self): ... ``` #### File: specsavers/tests/test_store.py ```python import unittest from tests import MockApi class TestStore(unittest.TestCase): def setUp(self): import specsavers self.specsavers = specsavers self.specsavers.Store.api = MockApi self.specsavers.StoreList.api = MockApi def test_no_fetching_details_on_search(self): store = self.specsavers.Store("nottingham", from_search=True) self.assertEqual(store.json, {}) def test_details_fetched_once_attr_accessed(self): store = self.specsavers.Store("nottingham", from_search=True) store.business_type self.assertEqual(store.business_type, "opticians") def test_store_has_attributes(self): store = self.specsavers.Store("nottingham") self.assertIn("business_type", dir(store)) def test_store_has_attributes_once_attr_accessed(self): store = self.specsavers.Store("nottingham", from_search=True) store.epos self.assertIn("business_type", dir(store)) def test_find_gets_store(self): store = self.specsavers.find("nottingham") self.assertIsInstance(store, self.specsavers.Store) def test_locate_gets_store_list(self): store_list = self.specsavers.locate( latitude=51.507879, longitude=0.087732) self.assertIsInstance(store_list, self.specsavers.StoreList) def test_store_list_indexable(self): store_list = self.specsavers.locate( latitude=51.507879, longitude=0.087732) store = store_list[0] self.assertIsInstance(store, self.specsavers.Store) def test_store_list_sliceable(self): store_list = self.specsavers.locate( latitude=51.507879, longitude=0.087732) store_slice = store_list[0:1] self.assertIsInstance(store_slice, self.specsavers.StoreList) def test_store_list_lookupable(self): store_list = self.specsavers.locate( latitude=51.507879, longitude=0.087732) store = store_list["woolwich"] self.assertIsInstance(store, self.specsavers.Store) def test_store_list_iterable(self): store_list = self.specsavers.locate( latitude=51.507879, longitude=0.087732) for store in store_list: self.assertTrue(True) def test_store_iterating_no_details(self): store_list = self.specsavers.locate( latitude=51.507879, longitude=0.087732) for store in store_list: self.assertEqual(store.json, {}) def test_store_list_items_keep_fetched_data(self): store_list = self.specsavers.locate( latitude=51.507879, longitude=0.087732) # NOTE: This test doesn't fetch the Store object from the StoreList, # it instead accesses the object by index. This test ensures # that the Store correctly keeps it's information once fetched. self.assertEqual(store_list[0].json, {}) store_list[0].epos self.assertTrue( store_list[0].json, f"{store_list[0]} does not have json populated") def test_getting_appointments(self): store = self.specsavers.Store("nottingham") appointments = store.appointments("2018-04-15") from specsavers.appointment import Appointment self.assertIsInstance(appointments[0], Appointment) ```
{ "source": "jmsv/weighted-dict", "score": 3 }
#### File: jmsv/weighted-dict/tests.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import random import unittest from collections import Counter from weightedDict import WeightedDict class TestWeightedDict(unittest.TestCase): # Usage example def test_main(self): random.seed(42) wdict = WeightedDict() wdict['dog'] = 38.2 wdict['cat'] = 201.7 wdict['cow'] = 222.3 wdict['ostrich'] = 0. wdict['cow'] = 31.5 # Change the weight for cow wdict['unicorn'] = 0.01 wdict['wolf'] = 128.1 wdict['bear'] = 12.1 wdict['aardvark'] = 9.1 print(wdict['dog']) print(wdict.sample()) print(wdict.keys()) wdict.pop('cat') # Remove the cat dasum = 0. tallies = {} num_samples = 100000 for i in wdict: tallies[i] = 0 for _ in range(num_samples): tallies[wdict.sample()] += 1 for i in wdict: dasum += wdict[i] for i in wdict: print(i, tallies[i], '%.2f' % (num_samples * wdict[i] / dasum)) print(wdict) # A more rigorous test def test_big(self): random.seed(42) dstr = 'bcdefghijklmnopqrstuvwxyz' data = {i: j for i, j in zip(dstr, [x + 1 for x in range(len(dstr))])} foo = WeightedDict() for i in dstr: foo[i] = data[i] # Check the sampling bar = Counter() dnum = 10000 for _ in range(dnum): bar[foo.sample()] += 1 den = sum(data.values()) vals = {i: int(dnum * (j / den)) for i, j in data.items()} self.assertEqual(set(vals.keys()), set(bar.keys())) dsum = 0 for i in sorted(vals): dif = abs(vals[i] - bar[i]) dsum += dif print(i, vals[i], bar[i]) print('Total percent from max: ' + str(100 * float(dsum) / dnum) + '%') self.assertLess((100 * float(dsum) / dnum), 10) # Check insert and deletion consistency. data2 = data.copy() for ii in range(30000): foo.check_tree() toggle = random.choice(dstr) print(ii, toggle, dstr) if toggle not in data2: data2[toggle] = data[toggle] foo[toggle] = data[toggle] else: data2.pop(toggle) foo.pop(toggle) self.assertEqual(tuple(foo.keys()), tuple(sorted(data2.keys()))) for i, j in data2.items(): self.assertLess(abs(foo[i] - j), .000000001) # Test emptying the tree if ii % 10000 == 0: dkeys = foo.keys() random.shuffle(dkeys) for toggle in dkeys: foo.check_tree() data2.pop(toggle) foo.pop(toggle) self.assertEqual( tuple(foo.keys()), tuple(sorted(data2.keys()))) for i, j in data2.items(): self.assertLess(abs(foo[i] - j), .000000001) print(foo) print('Success. Yay!') # Note that the test output isn't identical across Python versions (2 # & 3) because random.seed has changed. We could use version=1, but # that's not compatible with Python 2. if __name__ == "__main__": unittest.main() ```
{ "source": "JMSwag/flask-sse", "score": 3 }
#### File: flask-sse/tests/test_message.py ```python import pytest from flask_sse import Message def test_empty_message(): with pytest.raises(TypeError): m = Message() def test_simple_data(): m = Message("foo") assert m.data == "foo" assert m.type == None assert m.id == None assert m.retry == None assert m.to_dict() == {"data": "foo"} assert repr(m) == "Message('foo')" assert str(m) == 'data:foo\n\n' def test_data_dict(): m = Message({"message": "Hello!"}) assert m.data == {"message": "Hello!"} assert m.type == None assert m.id == None assert m.retry == None assert m.to_dict() == {"data": {"message": "Hello!"}} assert repr(m) == "Message({'message': 'Hello!'})" assert str(m) == 'data:{"message": "Hello!"}\n\n' def test_multiline_data(): m = Message("foo\nbar") assert m.data == "foo\nbar" assert m.type == None assert m.id == None assert m.retry == None assert m.to_dict() == {"data": "foo\nbar"} assert repr(m) == "Message('foo\\nbar')" assert str(m) == 'data:foo\ndata:bar\n\n' def test_all_args(): m = Message("foo", type="example", id=5, retry=500) assert m.data == "foo" assert m.type == "example" assert m.id == 5 assert m.retry == 500 assert m.to_dict() == { "data": "foo", "type": "example", "id": 5, "retry": 500, } assert repr(m) == "Message('foo', type='example', id=5, retry=500)" assert str(m) == 'event:example\ndata:foo\nid:5\nretry:500\n\n' def test_equality(): m1 = Message("abc") m2 = Message("abc") assert m1 == m2 m3 = Message("abc", type="example") assert m1 != m3 m4 = Message("def") assert m1 != m4 ```
{ "source": "jmswaney/tif2jp2", "score": 2 }
#### File: tif2jp2/src/tif_downsampler.py ```python import tkinter as tk from tkinter import filedialog from tkinter import ttk from pathlib import Path import tifffile # from PIL import Image import multiprocessing from skimage.measure import block_reduce from raw import raw_imread DOWNSAMPLE_OPTIONS = ['2', '4', '8'] def save_as_downsampled(arg_dict): input_path = arg_dict['input_path'] output_path = arg_dict['output_path'] tif_path = arg_dict['tif_path'] downsample_factor = arg_dict['downsample_factor'] if str(tif_path).endswith('.tif*'): tif_img = tifffile.imread(str(tif_path)) else: tif_img = raw_imread(str(tif_path)) downsampled_tif = block_reduce(tif_img, block_size=(downsample_factor, downsample_factor)) downsampled_tif = downsampled_tif.astype(tif_img.dtype) # img = Image.fromarray(tif_img) output_subdir = output_path.joinpath(tif_path.relative_to(input_path).parent) output_subdir.mkdir(parents=True, exist_ok=True) downsampled_filename = tif_path.stem + '.tif' downsampled_path = output_subdir.joinpath(downsampled_filename) tifffile.imsave(str(downsampled_path), downsampled_tif, compress=1) # img.save(downsampled_path, quality_mode='rates', quality_layers=[20]) class MainApplication(tk.Frame): def __init__(self, parent, *args, **kwargs): super().__init__(parent, *args, **kwargs) self.parent = parent self.build_elements() def build_elements(self): self.parent.title('tif_downsampler') # Setup the grid layout self.parent.rowconfigure(5, weight=1) self.parent.columnconfigure(5, weight=1) self.grid(sticky=tk.W + tk.E + tk.N + tk.S) # Add an extry box for the input directory self.input_entry = tk.Entry(self, width=60) self.input_entry.grid(row=1, column=1, padx=2, pady=2, sticky=tk.W) self.input_entry.insert(0, 'Browse to the root image directory with tifs -->') # Add a progress bar self.progress_bar = ttk.Progressbar(self, length=360, mode='determinate') self.progress_bar.grid(row=2, column=1, padx=2, pady=2, sticky=tk.E) # Create variables to store the directories self.input_path = None self.output_path = None # Make a browse button self.browse_btn = tk.Button(self, text='Browse', width=10, command=self.get_directory) self.browse_btn.grid(row=1, column=2, sticky=tk.W) # Make a convert button self.convert_btn = tk.Button(self, text='Convert', width=10, command=self.convert) self.convert_btn.grid(row=2, column=2, sticky=tk.W) # Give options for downsampling self.downsample_factor = tk.StringVar(self.parent) self.downsample_factor.set(DOWNSAMPLE_OPTIONS[0]) self.dropdown = tk.OptionMenu(self.parent, self.downsample_factor, *DOWNSAMPLE_OPTIONS) self.dropdown.grid(row=0, column=3, sticky=tk.W) def set_entry_text(self, text): self.input_entry.delete(0, tk.END) self.input_entry.insert(0, text) def get_directory(self): browse_str = filedialog.askdirectory(parent=self.parent, title='Please select the root image directory') in_p = Path(browse_str) if in_p.exists(): self.set_entry_text(str(in_p)) self.input_path = in_p def convert(self): if self.input_path is not None and self.input_path.exists() and self.input_path.is_dir(): self.output_path = Path(self.input_path.parent).joinpath(str(self.input_path)+'_downsampled') self.output_path.mkdir(exist_ok=True) tif_paths = list(self.input_path.glob('**/*.tif*')) nb_tifs = len(tif_paths) if nb_tifs == 0: tif_paths = list(self.input_path.glob('**/*.raw')) self.progress_bar['value'] = 0 self.progress_bar['maximum'] = nb_tifs-1 arg_dicts = [] for i, tif_path in enumerate(tif_paths): arg_dict = { 'input_path': self.input_path, 'output_path': self.output_path, 'tif_path': tif_path, 'downsample_factor': int(self.downsample_factor.get()), } arg_dicts.append(arg_dict) nb_cpu = multiprocessing.cpu_count() nb_processes = max(1, nb_cpu-1) with multiprocessing.Pool(processes=nb_processes) as p: for i, _ in enumerate(p.imap_unordered(save_as_downsampled, arg_dicts)): self.progress_bar['value'] = i self.parent.update() if __name__ == '__main__': multiprocessing.freeze_support() root = tk.Tk() app = MainApplication(root) root.mainloop() ```
{ "source": "jmswen/eden", "score": 2 }
#### File: eden/cli/config.py ```python import binascii import collections import datetime import errno import fcntl import json import os import shutil import stat import tempfile import types import typing from pathlib import Path from typing import Any, Dict, List, Mapping, Optional, Tuple, Type, Union, cast import eden.thrift import facebook.eden.ttypes as eden_ttypes import toml from . import configinterpolator, configutil, util from .util import EdenStartError, HealthStatus, print_stderr, readlink_retry_estale # Use --etcEdenDir to change the value used for a given invocation # of the eden cli. DEFAULT_ETC_EDEN_DIR = "/etc/eden" # These are INI files that hold config data. # CONFIG_DOT_D is relative to DEFAULT_ETC_EDEN_DIR, or whatever the # effective value is for that path CONFIG_DOT_D = "config.d" # USER_CONFIG is relative to the HOME dir for the user USER_CONFIG = ".edenrc" # These paths are relative to the user's client directory. CLIENTS_DIR = "clients" CONFIG_JSON = "config.json" # These are files in a client directory. CLONE_SUCCEEDED = "clone-succeeded" MOUNT_CONFIG = "config.toml" SNAPSHOT = "SNAPSHOT" SNAPSHOT_MAGIC = b"eden\x00\x00\x00\x01" DEFAULT_REVISION = { # supported repo name -> default bookmark "git": "refs/heads/master", "hg": ".", } SUPPORTED_REPOS = DEFAULT_REVISION.keys() REPO_FOR_EXTENSION = {".git": "git", ".hg": "hg"} # Create a readme file with this name in the mount point directory. # The intention is for this to contain instructions telling users what to do if their # Eden mount is not currently mounted. NOT_MOUNTED_README_PATH = "README_EDEN.txt" # The path under /etc/eden where site-specific contents for the not-mounted README can # be found. NOT_MOUNTED_SITE_SPECIFIC_README_PATH = "NOT_MOUNTED_README.txt" # The default contents for the not-mounted README if a site-specific template # is not found. NOT_MOUNTED_DEFAULT_TEXT = """\ This directory is the mount point for a virtual checkout managed by Eden. If you are seeing this file that means that your repository checkout is not currently mounted. This could either be because the edenfs daemon is not currently running, or it simply does not have this checkout mounted yet. You can run "eden doctor" to check for problems with Eden and try to have it automatically remount your checkouts. """ assert sorted(REPO_FOR_EXTENSION.values()) == sorted(SUPPORTED_REPOS) class UsageError(Exception): pass class CheckoutConfig(typing.NamedTuple): """Configuration for an Eden checkout. A checkout stores its config in config.toml it its state directory (.eden/clients/<checkout_name>/config.toml) - backing_repo: The path where the true repo resides on disk. For mercurial backing repositories this does not include the final ".hg" directory component. - scm_type: "hg" or "git" - bind_mounts: dict where keys are private pathnames under ~/.eden where the files are actually stored and values are the relative pathnames in the EdenFS mount that maps to them. """ backing_repo: Path scm_type: str bind_mounts: Dict[str, str] default_revision: str class EdenInstance: """This class contains information about a particular edenfs instance. It provides APIs for communicating with edenfs over thrift and for examining and modifying the list of checkouts managed by this edenfs instance. """ def __init__( self, config_dir: Union[Path, str, None], etc_eden_dir: Union[Path, str, None], home_dir: Union[Path, str, None], interpolate_dict: Optional[Dict[str, str]] = None, ) -> None: self._etc_eden_dir = Path(etc_eden_dir or DEFAULT_ETC_EDEN_DIR) self._home_dir = Path(home_dir) if home_dir is not None else util.get_home_dir() self._user_config_path = self._home_dir / USER_CONFIG self._interpolate_dict = interpolate_dict # TODO: We should eventually read the default config_dir path from the config # files rather than always using ~/local/.eden # # We call resolve() to resolve any symlinks in the config directory location. # This is particularly important when starting edenfs, since edenfs in some # cases will try to access this path as root (e.g., when creating bind mounts). # In some cases this path may traverse symlinks that are readable as the # original user but not as root: this can happen if the user has a home # directory on NFS, which may not be readable as root. if config_dir: self._config_dir = Path(config_dir) elif os.name == "nt": self._config_dir = self._home_dir / ".eden" else: self._config_dir = self._home_dir / "local" / ".eden" self._config_dir = self._config_dir.resolve(strict=False) def __repr__(self) -> str: return f"EdenInstance({self._config_dir!r})" @property def state_dir(self) -> Path: return self._config_dir def _loadConfig(self) -> configutil.EdenConfigParser: """ to facilitate templatizing a centrally deployed config, we allow a limited set of env vars to be expanded. ${HOME} will be replaced by the user's home dir, ${USER} will be replaced by the user's login name. These are coupled with the equivalent code in eden/fs/config/CheckoutConfig.cpp and must be kept in sync. """ parser = configutil.EdenConfigParser( interpolation=configinterpolator.EdenConfigInterpolator( self._config_variables ) ) for path in self.get_rc_files(): try: toml_cfg = _load_toml_config(path) except FileNotFoundError: # Ignore missing config files. Eg. user_config_path is optional continue parser.read_dict(toml_cfg) return parser @property def _config_variables(self) -> Dict[str, str]: return ( self._interpolate_dict if self._interpolate_dict is not None else { "USER": os.environ.get("USER", ""), "USER_ID": str(os.getuid()), "HOME": str(self._home_dir), } ) def get_rc_files(self) -> List[Path]: result: List[Path] = [] config_d = self._etc_eden_dir / CONFIG_DOT_D try: rc_entries = os.listdir(config_d) except OSError as ex: if ex.errno != errno.ENOENT: raise rc_entries = [] for name in rc_entries: if name.endswith(".toml"): result.append(config_d / name) result.sort() result.append(self._user_config_path) return result def get_repository_list( self, parser: Union[configutil.EdenConfigParser, "ConfigUpdater", None] = None ) -> List[str]: result = [] if not parser: parser = self._loadConfig() for section in parser.sections(): header = section.split(" ") if len(header) == 2 and header[0] == "repository": result.append(header[1]) return sorted(result) def get_config_value(self, key: str, default: str) -> str: parser = self._loadConfig() section, option = key.split(".", 1) return parser.get_str(section, option, default=default) def should_use_experimental_systemd_mode(self) -> bool: # TODO(T33122320): Delete this environment variable when systemd is properly # integrated. env_var_value = os.getenv("EDEN_EXPERIMENTAL_SYSTEMD") if env_var_value == "1": return True if env_var_value == "0": return False if self._loadConfig().get_bool( "service", "experimental_systemd", default=False ): return True return False def get_fallback_systemd_xdg_runtime_dir(self) -> str: xdg_runtime_dir = self.get_config_value( "service.fallback_systemd_xdg_runtime_dir", default="" ) if xdg_runtime_dir == "": user_id = self._config_variables["USER_ID"] xdg_runtime_dir = f"/run/user/{user_id}" return xdg_runtime_dir def print_full_config(self, file: typing.TextIO) -> None: parser = self._loadConfig() data: Dict[str, Mapping[str, str]] = {} for section in parser.sections(): data[section] = parser.get_section_str_to_any(section) toml.dump(data, file) # pyre-ignore[T39129461] def find_config_for_alias(self, alias: str) -> Optional[CheckoutConfig]: """Looks through the existing config files and searches for a [repository <alias>] section that defines a config: - If no such section is found, returns None. - If the appropriate section is found, returns a CheckoutConfig if all of the fields for the config data are present and well-formed. - Otherwise, throws an Exception. """ parser = self._loadConfig() repository_header = f"repository {alias}" if not parser.has_section(repository_header): return None bind_mounts_header = f"bindmounts {alias}" if parser.has_section(bind_mounts_header): # Convert the EdenConfigParser section into a dict so it is JSON # serializable for the `eden info` command. bind_mounts = dict(parser.get_section_str_to_str(bind_mounts_header)) else: bind_mounts = {} scm_type = parser.get_str(repository_header, "type", default="") if not scm_type: raise Exception(f'repository "{alias}" missing key "type".') if scm_type not in SUPPORTED_REPOS: raise Exception(f'repository "{alias}" has unsupported type.') path = parser.get_str(repository_header, "path", default="") if not path: raise Exception(f'repository "{alias}" missing key "path".') default_revision = ( parser.get_str(repository_header, "default-revision", default="") or parser.get_str("clone", "default-revision", default="") or DEFAULT_REVISION[scm_type] ) return CheckoutConfig( backing_repo=Path(path), scm_type=scm_type, bind_mounts=bind_mounts, default_revision=default_revision, ) def get_mount_paths(self) -> List[str]: """Return the paths of the set mount points stored in config.json""" return [str(path) for path in self._get_directory_map().keys()] def get_all_client_config_info(self) -> Dict[str, collections.OrderedDict]: info = {} for path in self.get_mount_paths(): info[path] = self.get_client_info(path) return info def get_thrift_client(self) -> eden.thrift.EdenClient: return eden.thrift.create_thrift_client(str(self._config_dir)) def get_client_info(self, path: Union[Path, str]) -> collections.OrderedDict: path = Path(path).resolve(strict=False) client_dir = self._get_client_dir_for_mount_point(path) checkout = EdenCheckout(self, path, client_dir) checkout_config = checkout.get_config() snapshot = checkout.get_snapshot() return collections.OrderedDict( [ ("bind-mounts", checkout_config.bind_mounts), ("mount", str(path)), ("scm_type", checkout_config.scm_type), ("snapshot", snapshot), ("client-dir", str(client_dir)), ] ) def add_repository( self, name: str, repo_type: str, source: str, with_buck: bool = False ) -> None: # Check if repository already exists with ConfigUpdater(self._user_config_path) as config: if name in self.get_repository_list(config): raise UsageError( """\ repository %s already exists. You will need to edit the ~/.edenrc config file \ by hand to make changes to the repository or remove it.""" % name ) # Create a directory for client to store repository metadata bind_mounts = {} if with_buck: bind_mount_name = "buck-out" bind_mounts[bind_mount_name] = "buck-out" # Add repository to INI file config["repository " + name] = {"type": repo_type, "path": source} if bind_mounts: config["bindmounts " + name] = bind_mounts config.save() def clone( self, checkout_config: CheckoutConfig, path: str, snapshot_id: str ) -> None: if path in self._get_directory_map(): raise Exception( """\ mount path %s is already configured (see `eden list`). \ Do you want to run `eden mount %s` instead?""" % (path, path) ) # Create the mount point directory self._create_mount_point_dir(path) # Create client directory clients_dir = self._get_clients_dir() clients_dir.mkdir(parents=True, exist_ok=True) client_dir = self._create_client_dir_for_path(clients_dir, path) # Store snapshot ID checkout = EdenCheckout(self, Path(path), Path(client_dir)) if snapshot_id: checkout.save_snapshot(snapshot_id) else: raise Exception("snapshot id not provided") # Create bind mounts directories bind_mounts_dir = os.path.join(client_dir, "bind-mounts") util.mkdir_p(bind_mounts_dir) for mount in checkout_config.bind_mounts: util.mkdir_p(os.path.join(bind_mounts_dir, mount)) checkout.save_config(checkout_config) # Prepare to mount mount_info = eden_ttypes.MountArgument( mountPoint=os.fsencode(path), edenClientPath=os.fsencode(client_dir) ) with self.get_thrift_client() as client: client.mount(mount_info) self._post_clone_checkout_setup(checkout, snapshot_id) # Add mapping of mount path to client directory in config.json self._add_path_to_directory_map(Path(path), os.path.basename(client_dir)) def _create_mount_point_dir(self, path: str) -> None: # Create the directory try: os.makedirs(path) except OSError as e: if e.errno != errno.EEXIST: raise # If the path already exists, make sure it is an empty directory. # listdir() will throw its own error if the path is not a directory. if len(os.listdir(path)) > 0: raise OSError(errno.ENOTEMPTY, os.strerror(errno.ENOTEMPTY), path) # Populate the directory with a file containing instructions about how to get # Eden to remount the checkout. If Eden is not running or does not have this # checkout mounted users will see this file. help_path = Path(path) / NOT_MOUNTED_README_PATH site_readme_path = self._etc_eden_dir / NOT_MOUNTED_SITE_SPECIFIC_README_PATH help_contents: Optional[str] = NOT_MOUNTED_DEFAULT_TEXT try: # Create a symlink to the site-specific readme file. This helps ensure that # users will see up-to-date contents if the site-specific file is updated # later. with site_readme_path.open("r") as f: try: help_path.symlink_to(site_readme_path) help_contents = None except OSError as ex: # EPERM can indicate that the underlying filesystem does not support # symlinks. Read the contents from the site-specific file in this # case. We will copy them into the file instead of making a # symlink. if ex.errno == errno.EPERM: help_contents = f.read() else: raise except OSError as ex: if ex.errno == errno.ENOENT: # If the site-specific readme file does not exist use default contents help_contents = NOT_MOUNTED_DEFAULT_TEXT else: raise if help_contents is not None: with help_path.open("w") as f: f.write(help_contents) os.fchmod(f.fileno(), 0o444) def _create_client_dir_for_path(self, clients_dir: Path, path: str) -> Path: """Tries to create a new subdirectory of clients_dir based on the basename of the specified path. Tries appending an increasing sequence of integers to the basename if there is a collision until it finds an available directory name. """ basename = os.path.basename(path) if basename == "": raise Exception("Suspicious attempt to clone into: %s" % path) i = 0 while True: if i == 0: dir_name = basename else: dir_name = f"{basename}-{i}" client_dir = clients_dir / dir_name try: client_dir.mkdir() return client_dir except OSError as e: if e.errno == errno.EEXIST: # A directory with the specified name already exists: try # again with the next candidate name. i += 1 continue raise def _post_clone_checkout_setup( self, checkout: "EdenCheckout", commit_id: str ) -> None: # First, check to see if the post-clone setup has been run successfully # before. clone_success_path = checkout.state_dir / CLONE_SUCCEEDED is_initial_mount = not clone_success_path.is_file() if is_initial_mount and checkout.get_config().scm_type == "hg": from . import hg_util hg_util.setup_hg_dir(checkout, commit_id) clone_success_path.touch() def mount(self, path: Union[Path, str]) -> int: # Load the config info for this client, to make sure we # know about the client. path = Path(path).resolve(strict=False) client_dir = self._get_client_dir_for_mount_point(path) checkout = EdenCheckout(self, path, client_dir) # Call checkout.get_config() for the side-effect of it raising an # Exception if the config is in an invalid state. checkout.get_config() # Make sure the mount path exists path.mkdir(parents=True, exist_ok=True) # Check if it is already mounted. try: root = path / ".eden" / "root" target = readlink_retry_estale(root) if Path(target) == path: print_stderr( f"ERROR: Mount point in use! {path} is already mounted by Eden." ) return 1 else: # If we are here, MOUNT/.eden/root is a symlink, but it does not # point to MOUNT. This suggests `path` is a subdirectory of an # existing mount, though we should never reach this point # because _get_client_dir_for_mount_point() above should have # already thrown an exception. We return non-zero here just in # case. print_stderr( f"ERROR: Mount point in use! " f"{path} is already mounted by Eden as part of {root}." ) return 1 except OSError as ex: err = ex.errno if err != errno.ENOENT and err != errno.EINVAL: raise # Ask eden to mount the path mount_info = eden_ttypes.MountArgument( mountPoint=bytes(path), edenClientPath=bytes(client_dir) ) with self.get_thrift_client() as client: client.mount(mount_info) return 0 def unmount(self, path: str) -> None: """Ask edenfs to unmount the specified checkout.""" with self.get_thrift_client() as client: # In some cases edenfs can take a long time unmounting while it waits for # inodes to become unreferenced. Ideally we should have edenfs timeout and # forcibly clean up the mount point in this situation. # # For now at least time out here so the CLI commands do not hang in this # case. client._socket.setTimeout(15000) client.unmount(os.fsencode(path)) def destroy_mount(self, path: Union[Path, str]) -> None: """Delete the specified mount point from the configuration file and remove the mount directory, if it exists. This should normally be called after unmounting the mount point. """ path = Path(path) shutil.rmtree(self._get_client_dir_for_mount_point(path)) self._remove_path_from_directory_map(path) # Delete the mount point # It should normally contain the readme file that we put there, but nothing # else. We only delete these specific files for now rather than using # shutil.rmtree() to avoid deleting files we did not create. # # Previous versions of Eden made the mount point directory read-only # as part of "eden clone". Make sure it is writable now so we can clean it up. path.chmod(0o755) try: (path / NOT_MOUNTED_README_PATH).unlink() except OSError as ex: if ex.errno != errno.ENOENT: raise path.rmdir() def check_health(self, timeout: Optional[float] = None) -> HealthStatus: """ Get the status of the edenfs daemon. Returns a HealthStatus object containing health information. """ return util.check_health( lambda: self.get_thrift_client(), self._config_dir, timeout=timeout ) def get_edenfs_start_cmd( self, daemon_binary: str, extra_args: Optional[List[str]] = None, takeover: bool = False, gdb: bool = False, gdb_args: Optional[List[str]] = None, strace_file: Optional[str] = None, foreground: bool = False, ) -> Tuple[List[str], Dict[str, str]]: """Get the command and environment to use to start edenfs.""" if gdb and strace_file is not None: raise EdenStartError("cannot run eden under gdb and " "strace together") # Compute the command. cmd = [ daemon_binary, "--edenfs", "--edenDir", str(self._config_dir), "--etcEdenDir", str(self._etc_eden_dir), "--configPath", str(self._user_config_path), ] if gdb: gdb_args = gdb_args or [] cmd = ["gdb"] + gdb_args + ["--args"] + cmd foreground = True if strace_file is not None: cmd = ["strace", "-fttT", "-o", strace_file] + cmd if extra_args: cmd.extend(extra_args) if self.should_use_experimental_systemd_mode(): # TODO(T33122320): Delete this after making 'eden restart' and other # callers support systemd mode. (--foreground should never set # --experimentalSystemd.) cmd.append("--experimentalSystemd") if takeover: cmd.append("--takeover") if foreground: cmd.append("--foreground") eden_env = self._build_eden_environment() # Run edenfs using sudo, unless we already have root privileges, # or the edenfs binary is setuid root. if os.geteuid() != 0: s = os.stat(daemon_binary) if not (s.st_uid == 0 and (s.st_mode & stat.S_ISUID)): # We need to run edenfs under sudo sudo_cmd = ["/usr/bin/sudo"] # Add environment variable settings # Depending on the sudo configuration, these may not # necessarily get passed through automatically even when # using "sudo -E". for key, value in eden_env.items(): sudo_cmd.append("%s=%s" % (key, value)) cmd = sudo_cmd + cmd return cmd, eden_env def get_log_path(self) -> Path: return self._config_dir / "logs" / "edenfs.log" def _build_eden_environment(self) -> Dict[str, str]: # Reset $PATH to the following contents, so that everyone has the # same consistent settings. path_dirs = ["/opt/facebook/hg/bin", "/usr/local/bin", "/bin", "/usr/bin"] eden_env = {"PATH": ":".join(path_dirs)} # Preserve the following environment settings preserve = [ "USER", "LOGNAME", "HOME", "EMAIL", "NAME", "ASAN_OPTIONS", # When we import data from mercurial, the remotefilelog extension # may need to SSH to a remote mercurial server to get the file # contents. Preserve SSH environment variables needed to do this. "SSH_AUTH_SOCK", "SSH_AGENT_PID", "KRB5CCNAME", ] for name, value in os.environ.items(): # Preserve any environment variable starting with "TESTPILOT_". # TestPilot uses a few environment variables to keep track of # processes started during test runs, so it can track down and kill # runaway processes that weren't cleaned up by the test itself. # We want to make sure this behavior works during the eden # integration tests. # Similarly, we want to preserve EDENFS_ env vars which are # populated by our own test infra to relay paths to important # build artifacts in our build tree. if name.startswith("TESTPILOT_") or name.startswith("EDENFS_"): eden_env[name] = value elif name in preserve: eden_env[name] = value else: # Drop any environment variable not matching the above cases pass return eden_env def get_checkout_config_for_path(self, path: str) -> Optional[CheckoutConfig]: client_link = os.path.join(path, ".eden", "client") try: client_dir = readlink_retry_estale(client_link) except OSError: return None checkout = EdenCheckout(self, Path(path), Path(client_dir)) return checkout.get_config() def get_checkouts(self) -> List["EdenCheckout"]: """Return information about all configured checkouts defined in Eden's configuration file.""" dir_map = self._get_directory_map() checkouts: List[EdenCheckout] = [] clients_dir = Path(self._get_clients_dir()) for mount_path, client_name in dir_map.items(): checkout_data_dir = clients_dir / client_name checkouts.append(EdenCheckout(self, mount_path, checkout_data_dir)) return checkouts def _get_directory_map(self) -> Dict[Path, str]: """ Parse config.json which holds a mapping of mount paths to their respective client directory and return contents in a dictionary. """ directory_map = self._config_dir / CONFIG_JSON try: with directory_map.open() as f: data = json.load(f) except OSError as ex: if ex.errno != errno.ENOENT: raise data = {} except json.JSONDecodeError: raise Exception(f"invalid JSON data found in {directory_map}") if not isinstance(data, dict): raise Exception(f"invalid data found in {directory_map}") result: Dict[Path, str] = {} for k, v in data.items(): if not isinstance(k, str) or not isinstance(v, str): raise Exception(f"invalid data found in {directory_map}") result[Path(k)] = v return result def _add_path_to_directory_map(self, path: Path, dir_name: str) -> None: config_data = self._get_directory_map() if path in config_data: raise Exception("mount path %s already exists." % path) config_data[path] = dir_name self._write_directory_map(config_data) def _remove_path_from_directory_map(self, path: Path) -> None: config_data = self._get_directory_map() if path in config_data: del config_data[path] self._write_directory_map(config_data) def _write_directory_map(self, config_data: Dict[Path, str]) -> None: json_data = {str(path): name for path, name in config_data.items()} directory_map = self._config_dir / CONFIG_JSON with directory_map.open("w") as f: json.dump(json_data, f, indent=2, sort_keys=True) f.write("\n") def _get_client_dir_for_mount_point(self, path: Path) -> Path: # The caller is responsible for making sure the path is already # a normalized, absolute path. assert path.is_absolute() config_data = self._get_directory_map() if path not in config_data: raise Exception(f"could not find mount path {path}") return self._get_clients_dir() / config_data[path] def _get_clients_dir(self) -> Path: return self._config_dir / CLIENTS_DIR def get_server_build_info(self) -> Dict[str, str]: with self.get_thrift_client() as client: try: return client.getRegexExportedValues("^build_.*") except AttributeError: # on macOS currently, we don't know about getRegexExportedValues return {} def get_uptime(self) -> datetime.timedelta: now = datetime.datetime.now() with self.get_thrift_client() as client: since_in_seconds = client.aliveSince() since = datetime.datetime.fromtimestamp(since_in_seconds) return now - since class ConfigUpdater(object): """ A helper class to safely update an eden config file. This acquires a lock on the config file, reads it in, and then provide APIs to save it back. This ensures that another process cannot change the file in between the time that we read it and when we write it back. This also saves the file to a temporary name first, then renames it into place, so that the main config file is always in a good state, and never has partially written contents. """ def __init__(self, path: Path) -> None: self.path = path self._lock_path = self.path.with_suffix(".lock") self._lock_file: Optional[typing.TextIO] = None self.config = configutil.EdenConfigParser() # Acquire a lock. # This makes sure that another process can't modify the config in the # middle of a read-modify-write operation. (We can't stop a user # from manually editing the file while we work, but we can stop # other eden CLI processes.) self._acquire_lock() try: toml_cfg = _load_toml_config(self.path) self.config.read_dict(toml_cfg) except FileNotFoundError: pass def __enter__(self) -> "ConfigUpdater": return self def __exit__( self, exc_type: Optional[Type[BaseException]], exc_value: Optional[BaseException], exc_traceback: Optional[types.TracebackType], ) -> bool: self.close() return False def __del__(self) -> None: self.close() def sections(self) -> List[str]: return self.config.sections() def __setitem__(self, key: str, value: Dict[str, Any]) -> None: self.config[key] = value def _acquire_lock(self) -> None: while True: self._lock_file = typing.cast(typing.TextIO, open(self._lock_path, "w+")) fcntl.flock(self._lock_file.fileno(), fcntl.LOCK_EX) # The original creator of the lock file will unlink it when # it is finished. Make sure we grab the lock on the file still on # disk, and not an unlinked file. st1 = os.fstat(self._lock_file.fileno()) st2 = os.lstat(self._lock_path) if st1.st_dev == st2.st_dev and st1.st_ino == st2.st_ino: # We got the real lock return # We acquired a lock on an old deleted file. # Close it, and try to acquire the current lock file again. self._lock_file.close() self._lock_file = None continue def _unlock(self) -> None: assert self._lock_file is not None # Remove the file on disk before we unlock it. # This way processes currently waiting in _acquire_lock() that already # opened our lock file will see that it isn't the current file on disk # once they acquire the lock. os.unlink(self._lock_path) self._lock_file.close() self._lock_file = None def close(self) -> None: if self._lock_file is not None: self._unlock() def save(self) -> None: if self._lock_file is None: raise Exception("Cannot save the config without holding the lock") try: st = os.stat(self.path) perms = st.st_mode & 0o777 except OSError as ex: if ex.errno != errno.ENOENT: raise perms = 0o644 # Write the contents to a temporary file first, then atomically rename # it to the desired destination. This makes sure the .edenrc file # always has valid contents at all points in time. prefix = USER_CONFIG + ".tmp." dirname = self.path.parent tmpf = tempfile.NamedTemporaryFile( "w", dir=str(dirname), prefix=prefix, delete=False ) try: toml_config = self.config.to_raw_dict() toml_data = toml.dumps(typing.cast(Mapping[str, Any], toml_config)) tmpf.write(toml_data) tmpf.close() os.chmod(tmpf.name, perms) os.rename(tmpf.name, self.path) except BaseException: # Remove temporary file on error try: os.unlink(tmpf.name) except Exception: pass raise class EdenCheckout: """Information about a particular Eden checkout.""" def __init__(self, instance: EdenInstance, path: Path, state_dir: Path) -> None: self.instance = instance self.path = path self.state_dir = state_dir self._config: Optional[CheckoutConfig] = None def __repr__(self) -> str: return f"EdenCheckout({self.instance!r}, {self.path!r}, {self.state_dir!r})" def get_relative_path(self, path: Path, already_resolved: bool = False) -> Path: """Compute the relative path to a given location inside an eden checkout. If the checkout is currently mounted this function is able to correctly resolve paths that refer into the checkout via alternative bind mount locations. e.g. if the checkout is located at "/home/user/foo/eden_checkout" but "/home/user" is also bind-mounted to "/data/user" this will still be able to correctly resolve an input path of "/data/user/foo/eden_checkout/test" """ if not already_resolved: path = path.resolve(strict=False) # First try using path.relative_to() # This should work in the common case try: return path.relative_to(self.path) except ValueError: pass # path.relative_to() may fail if the checkout is bind-mounted to an alternate # location, and the input path points into it using the bind mount location. # In this case search upwards from the input path looking for the checkout root. try: path_stat = path.lstat() except OSError as ex: raise Exception( f"unable to stat {path} to find relative location inside " f"checkout {self.path}: {ex}" ) try: root_stat = self.path.lstat() except OSError as ex: raise Exception(f"unable to stat checkout at {self.path}: {ex}") if (path_stat.st_dev, path_stat.st_ino) == (root_stat.st_dev, root_stat.st_ino): # This is the checkout root return Path() # pyre-fixme[22]: The cast is redundant. curdir = cast(Path, path.parent) path_parts = [path.name] while True: stat = curdir.lstat() if (stat.st_dev, stat.st_ino) == (root_stat.st_dev, root_stat.st_ino): path_parts.reverse() return Path(*path_parts) if curdir.parent == curdir: raise Exception( f"unable to determine relative location of {path} " f"inside {self.path}" ) path_parts.append(curdir.name) # pyre-fixme[22]: The cast is redundant. curdir = typing.cast(Path, curdir.parent) def get_config(self) -> CheckoutConfig: if self._config is None: self._config = self._read_config() return self._config def save_config(self, checkout_config: CheckoutConfig) -> None: # Store information about the mount in the config.toml file. config_data = { "repository": { "path": str(checkout_config.backing_repo), "type": checkout_config.scm_type, }, "bind-mounts": checkout_config.bind_mounts, } with self._config_path().open("w") as f: # pyre-fixme[6]: Expected `_Writable` for 2nd param but got `IO[]`. toml.dump(config_data, f) # Update our local config cache self._config = checkout_config def _config_path(self) -> Path: return self.state_dir / MOUNT_CONFIG def _read_config(self) -> CheckoutConfig: """Returns CheckoutConfig or raises an Exception if the config.toml under self.state_dir is not properly formatted or does not exist. """ config_path = self._config_path() config = _load_toml_config(config_path) repo_field = config.get("repository") if isinstance(repo_field, dict): repository = repo_field else: raise Exception(f"{config_path} is missing [repository]") def get_field(key: str) -> str: value = repository.get(key) if isinstance(value, str): return value raise Exception(f"{config_path} is missing {key} in " "[repository]") scm_type = get_field("type") if scm_type not in SUPPORTED_REPOS: raise Exception( f'repository "{config_path}" has unsupported type ' f'"{scm_type}"' ) bind_mounts = {} bind_mounts_dict = config.get("bind-mounts") if bind_mounts_dict is not None: if not isinstance(bind_mounts_dict, dict): raise Exception( f"{config_path} has an invalid " "[bind-mounts] section" ) for key, value in bind_mounts_dict.items(): if not isinstance(value, str): raise Exception( f"{config_path} has invalid value in " f"[bind-mounts] for {key}: {value} " "(string expected)" ) bind_mounts[key] = value return CheckoutConfig( backing_repo=Path(get_field("path")), scm_type=scm_type, bind_mounts=bind_mounts, default_revision=( repository.get("default-revision") or DEFAULT_REVISION[scm_type] ), ) def get_snapshot(self) -> str: """Return the hex version of the parent hash in the SNAPSHOT file.""" snapshot_path = self.state_dir / SNAPSHOT with snapshot_path.open("rb") as f: assert f.read(8) == SNAPSHOT_MAGIC return binascii.hexlify(f.read(20)).decode("utf-8") def save_snapshot(self, commid_id: str) -> None: """Write a new parent commit ID into the SNAPSOHT file.""" snapshot_path = self.state_dir / SNAPSHOT assert len(commid_id) == 40 commit_bin = binascii.unhexlify(commid_id) # TODO: It would be nicer to write this out atomically using a temporary file # followed by a rename. snapshot_path.write_bytes(SNAPSHOT_MAGIC + commit_bin) def find_eden( path: Union[str, Path], etc_eden_dir: Optional[str] = None, home_dir: Optional[str] = None, state_dir: Optional[str] = None, ) -> Tuple[EdenInstance, Optional[EdenCheckout], Optional[Path]]: """Look up the EdenInstance and EdenCheckout for a path. If the input path points into an Eden checkout, this returns a tuple of (EdenInstance, EdenCheckout, rel_path), where EdenInstance contains information for the edenfs instance serving this checkout, EdenCheckout contains information about the checkout, and rel_path contains the relative location of the input path inside the checkout. The checkout does not need to be currently mounted for this to work. If the input path does not point inside a known Eden checkout, this returns (EdenInstance, None, None) """ if isinstance(path, str): path = Path(path) path = path.resolve(strict=False) # First check to see if this looks like a mounted checkout eden_state_dir = None checkout_root = None checkout_state_dir = None try: eden_socket_path = readlink_retry_estale(path.joinpath(path, ".eden", "socket")) eden_state_dir = os.path.dirname(eden_socket_path) checkout_root = Path(readlink_retry_estale(path.joinpath(".eden", "root"))) checkout_state_dir = Path( readlink_retry_estale(path.joinpath(".eden", "client")) ) except OSError: # We will get an OSError if any of these symlinks do not exist # Fall through and we will handle this below. pass if eden_state_dir is None: # Use the state directory argument supplied by the caller. # If this is None the EdenInstance constructor will pick the correct location. eden_state_dir = state_dir elif state_dir is not None: # We found a state directory from the checkout and the user also specified an # explicit state directory. Make sure they match. _check_same_eden_directory(Path(eden_state_dir), Path(state_dir)) instance = EdenInstance( eden_state_dir, etc_eden_dir=etc_eden_dir, home_dir=home_dir ) checkout: Optional[EdenCheckout] = None rel_path: Optional[Path] = None if checkout_root is None: all_checkouts = instance._get_directory_map() for checkout_path_str, checkout_name in all_checkouts.items(): checkout_path = Path(checkout_path_str) try: rel_path = path.relative_to(checkout_path) except ValueError: continue checkout_state_dir = instance.state_dir.joinpath(CLIENTS_DIR, checkout_name) checkout = EdenCheckout(instance, checkout_path, checkout_state_dir) break else: # This path does not appear to be inside a known checkout checkout = None rel_path = None elif checkout_state_dir is None: all_checkouts = instance._get_directory_map() checkout_name_value = all_checkouts.get(checkout_root) if checkout_name_value is None: raise Exception(f"unknown checkout {checkout_root}") checkout_state_dir = instance.state_dir.joinpath( CLIENTS_DIR, checkout_name_value ) checkout = EdenCheckout(instance, checkout_root, checkout_state_dir) rel_path = checkout.get_relative_path(path, already_resolved=True) else: checkout = EdenCheckout(instance, checkout_root, checkout_state_dir) rel_path = checkout.get_relative_path(path, already_resolved=True) return (instance, checkout, rel_path) def _check_same_eden_directory(found_path: Path, path_arg: Path) -> None: s1 = found_path.lstat() s2 = path_arg.lstat() if (s1.st_dev, s1.st_ino) != (s2.st_dev, s2.st_ino): raise Exception( f"the specified directory is managed by the edenfs instance at " f"{found_path}, which is different from the explicitly requested " f"instance at {path_arg}" ) def _verify_mount_point(mount_point: str) -> None: if os.path.isdir(mount_point): return parent_dir = os.path.dirname(mount_point) if os.path.isdir(parent_dir): os.mkdir(mount_point) else: raise Exception( ( "%s must be a directory in order to mount a client at %s. " + "If this is the correct location, run `mkdir -p %s` to create " + "the directory." ) % (parent_dir, mount_point, parent_dir) ) _TomlConfigDict = Mapping[str, Mapping[str, Any]] def _load_toml_config(path: Path) -> _TomlConfigDict: return typing.cast(_TomlConfigDict, toml.load(str(path))) ``` #### File: eden/cli/daemon.py ```python import asyncio import errno import getpass import os import pathlib import signal import subprocess import sys from typing import Dict, List, NoReturn, Optional, Tuple from .config import EdenInstance from .logfile import forward_log_file from .systemd import ( EdenFSSystemdServiceConfig, SystemdConnectionRefusedError, SystemdFileNotFoundError, SystemdServiceFailedToStartError, SystemdUserBus, edenfs_systemd_service_name, print_service_status_using_systemctl_for_diagnostics_async, ) from .util import ShutdownError, poll_until, print_stderr def wait_for_process_exit(pid: int, timeout: float) -> bool: """Wait for the specified process ID to exit. Returns True if the process exits within the specified timeout, and False if the timeout expires while the process is still alive. """ def process_exited() -> Optional[bool]: if did_process_exit(pid): return True else: return None try: poll_until(process_exited, timeout=timeout) return True except TimeoutError: return False def wait_for_shutdown(pid: int, timeout: float, kill_timeout: float = 5.0) -> bool: """Wait for a process to exit. If it does not exit within `timeout` seconds kill it with SIGKILL. Returns True if the process exited on its own or False if it only exited after SIGKILL. Throws a ShutdownError if we failed to kill the process with SIGKILL (either because we failed to send the signal, or if the process still did not exit within kill_timeout seconds after sending SIGKILL). """ # Wait until the process exits on its own. if wait_for_process_exit(pid, timeout): return True # client.shutdown() failed to terminate the process within the specified # timeout. Take a more aggressive approach by sending SIGKILL. print_stderr( "error: sent shutdown request, but edenfs did not exit " "within {} seconds. Attempting SIGKILL.", timeout, ) sigkill_process(pid, timeout=kill_timeout) return False def sigkill_process(pid: int, timeout: float = 5.0) -> None: """Send SIGKILL to a process, and wait for it to exit. If timeout is greater than 0, this waits for the process to exit after sending the signal. Throws a ShutdownError exception if the process does not exit within the specified timeout. Returns successfully if the specified process did not exist in the first place. This is done to handle situations where the process exited on its own just before we could send SIGKILL. """ try: os.kill(pid, signal.SIGKILL) except OSError as ex: if ex.errno == errno.ESRCH: # The process exited before the SIGKILL was received. # Treat this just like a normal shutdown since it exited on its # own. return elif ex.errno == errno.EPERM: raise ShutdownError( "Received EPERM when sending SIGKILL. " "Perhaps edenfs failed to drop root privileges properly?" ) else: raise if timeout <= 0: return if not wait_for_process_exit(pid, timeout): raise ShutdownError( "edenfs process {} did not terminate within {} seconds of " "sending SIGKILL.".format(pid, timeout) ) def is_zombie_process(pid: int) -> bool: try: with open(f"/proc/{pid}/stat", "rb") as proc_stat: line = proc_stat.read() pieces = line.split() if len(pieces) > 2 and pieces[2] == b"Z": return True except (FileNotFoundError, ProcessLookupError): pass return False def did_process_exit(pid: int) -> bool: try: os.kill(pid, 0) except OSError as ex: if ex.errno == errno.ESRCH: # The process has exited return True # EPERM is okay (and means the process is still running), # anything else is unexpected elif ex.errno != errno.EPERM: raise if is_zombie_process(pid): return True # Still running return False def _find_default_daemon_binary() -> Optional[str]: # By default, we look for the daemon executable in the corresponding libexec # directory. script_dir = os.path.dirname(os.path.abspath(sys.argv[0])) candidate = os.path.normpath(os.path.join(script_dir, "../libexec/eden/edenfs")) permissions = os.R_OK | os.X_OK if os.access(candidate, permissions): return candidate # This is where the binary will be found relative to this file when it is # run out of buck-out in debug mode. candidate = os.path.normpath(os.path.join(script_dir, "../fs/service/edenfs")) if os.access(candidate, permissions): return candidate else: return None class DaemonBinaryNotFound(Exception): def __init__(self) -> None: super().__init__("unable to find edenfs executable") def _find_daemon_binary(explicit_daemon_binary: Optional[str]) -> str: if explicit_daemon_binary is not None: return explicit_daemon_binary daemon_binary = _find_default_daemon_binary() if daemon_binary is None: raise DaemonBinaryNotFound() return daemon_binary def exec_daemon( instance: EdenInstance, daemon_binary: Optional[str] = None, edenfs_args: Optional[List[str]] = None, takeover: bool = False, gdb: bool = False, gdb_args: Optional[List[str]] = None, strace_file: Optional[str] = None, foreground: bool = False, ) -> NoReturn: """Execute the edenfs daemon. This method uses os.exec() to replace the current process with the edenfs daemon. It does not return on success. It may throw an exception on error. """ try: cmd, env = _get_daemon_args( instance=instance, daemon_binary=daemon_binary, edenfs_args=edenfs_args, takeover=takeover, gdb=gdb, gdb_args=gdb_args, strace_file=strace_file, foreground=foreground, ) except DaemonBinaryNotFound as e: print_stderr(f"error: {e}") os._exit(1) os.execve(cmd[0], cmd, env) # Throw an exception just to let mypy know that we should never reach here # and will never return normally. raise Exception("execve should never return") def start_daemon( instance: EdenInstance, daemon_binary: Optional[str] = None, edenfs_args: Optional[List[str]] = None, ) -> int: """Start the edenfs daemon.""" try: cmd, env = _get_daemon_args( instance=instance, daemon_binary=daemon_binary, edenfs_args=edenfs_args ) except DaemonBinaryNotFound as e: print_stderr(f"error: {e}") return 1 return subprocess.call(cmd, env=env) def start_systemd_service( instance: EdenInstance, daemon_binary: Optional[str] = None, edenfs_args: Optional[List[str]] = None, ) -> int: try: daemon_binary = _find_daemon_binary(daemon_binary) except DaemonBinaryNotFound as e: print_stderr(f"error: {e}") return 1 service_config = EdenFSSystemdServiceConfig( eden_dir=instance.state_dir, edenfs_executable_path=pathlib.Path(daemon_binary), extra_edenfs_arguments=edenfs_args or [], ) service_config.write_config_file() service_name = edenfs_systemd_service_name(instance.state_dir) xdg_runtime_dir = _get_systemd_xdg_runtime_dir(config=instance) startup_log_path = service_config.startup_log_file_path startup_log_path.write_bytes(b"") with forward_log_file(startup_log_path, sys.stderr.buffer) as log_forwarder: loop = asyncio.get_event_loop() async def start_service_async() -> int: with SystemdUserBus( event_loop=loop, xdg_runtime_dir=xdg_runtime_dir ) as systemd: service_name_bytes = service_name.encode() active_state = await systemd.get_unit_active_state_async( service_name_bytes ) if active_state == b"active": print_stderr("error: edenfs systemd service is already running") await print_service_status_using_systemctl_for_diagnostics_async( service_name=service_name, xdg_runtime_dir=xdg_runtime_dir ) return 1 await systemd.start_service_and_wait_async(service_name_bytes) return 0 try: start_task = loop.create_task(start_service_async()) loop.create_task(log_forwarder.poll_forever_async()) return loop.run_until_complete(start_task) except (SystemdConnectionRefusedError, SystemdFileNotFoundError): print_stderr( f"error: The systemd user manager is not running. Run the " f"following command to\n" f"start it, then try again:\n" f"\n" f" sudo systemctl start user@{getpass.getuser()}.service" ) return 1 except SystemdServiceFailedToStartError as e: print_stderr(f"error: {e}") return 1 finally: log_forwarder.poll() def _get_systemd_xdg_runtime_dir(config: EdenInstance) -> str: xdg_runtime_dir = os.getenv("XDG_RUNTIME_DIR") if xdg_runtime_dir is None: xdg_runtime_dir = config.get_fallback_systemd_xdg_runtime_dir() print_stderr( f"warning: The XDG_RUNTIME_DIR environment variable is not set; " f"using fallback: {xdg_runtime_dir!r}" ) return xdg_runtime_dir def _get_daemon_args( instance: EdenInstance, daemon_binary: Optional[str] = None, edenfs_args: Optional[List[str]] = None, takeover: bool = False, gdb: bool = False, gdb_args: Optional[List[str]] = None, strace_file: Optional[str] = None, foreground: bool = False, ) -> Tuple[List[str], Dict[str, str]]: """Get the command and environment to use to start edenfs.""" daemon_binary = _find_daemon_binary(daemon_binary) return instance.get_edenfs_start_cmd( daemon_binary, edenfs_args, takeover=takeover, gdb=gdb, gdb_args=gdb_args, strace_file=strace_file, foreground=foreground, ) ``` #### File: cli/doctor/check_filesystems.py ```python import os import subprocess import sys import tempfile from pathlib import Path from typing import List, Set from eden.cli.config import EdenInstance from eden.cli.doctor.problem import Problem, ProblemSeverity, ProblemTracker def check_using_nfs_path(tracker: ProblemTracker, mount_path: Path) -> None: check_shared_path(tracker, mount_path) def check_eden_directory(tracker: ProblemTracker, instance: EdenInstance) -> None: if not is_nfs_mounted(str(instance.state_dir)): return msg = ( f"Eden's state directory is on an NFS file system: {instance.state_dir}\n" f" This will likely cause performance problems and/or other errors." ) # On FB devservers the default Eden state directory path is ~/local/.eden # Normally ~/local is expected to be a symlink to local disk (for users who are # still using NFS home directories in the first place). The most common cause of # the Eden state directory being on NFS is for users that somehow have a regular # directory at ~/local rather than a symlink. Suggest checking this as a # remediation. remediation = ( "The most common cause for this is if your ~/local symlink does not point " "to local disk. Make sure that ~/local is a symlink pointing to local disk " "and then restart Eden." ) tracker.add_problem(Problem(msg, remediation)) def get_shared_path(mount_path: Path) -> Path: return mount_path / ".hg" / "sharedpath" def read_shared_path(tracker: ProblemTracker, shared_path: Path) -> str: try: return shared_path.read_text() except (FileNotFoundError, IsADirectoryError): raise except Exception as e: tracker.add_problem(Problem(f"Failed to read .hg/sharedpath: {e}")) raise def check_shared_path(tracker: ProblemTracker, mount_path: Path) -> None: shared_path = get_shared_path(mount_path) try: dst_shared_path = read_shared_path(tracker, shared_path) except Exception: return if is_nfs_mounted(dst_shared_path): msg = ( f"The Mercurial data directory for {shared_path} is at" f" {dst_shared_path} which is on a NFS filesystem." f" Accessing files and directories in this repository will be slow." ) problem = Problem(msg, severity=ProblemSeverity.ADVICE) tracker.add_problem(problem) def fstype_for_path(path: str) -> str: if sys.platform == "linux2": try: args = ["stat", "-fc", "%T", "--", path] return subprocess.check_output(args).decode("ascii").strip() except subprocess.CalledProcessError: return "unknown" return "unknown" def is_nfs_mounted(path: str) -> bool: return fstype_for_path(path) == "nfs" def get_mountpt(path) -> str: if not os.path.exists(path): return path path = os.path.realpath(path) path_stat = os.lstat(path) while True: parent = os.path.dirname(path) parent_stat = os.lstat(parent) if parent == path or parent_stat.st_dev != path_stat.st_dev: return path path, path_stat = parent, parent_stat def get_mount_pts_set( tracker: ProblemTracker, mount_paths: List[str], instance: EdenInstance ) -> Set[str]: eden_locations = [str(instance.state_dir), tempfile.gettempdir()] for mount_path in mount_paths: try: eden_repo_path = read_shared_path( tracker, get_shared_path(Path(mount_path)) ) except Exception: continue eden_locations.append(eden_repo_path) try: hg_cache_dir = subprocess.check_output( ["hg", "config", "remotefilelog.cachepath"], cwd=mount_path, env=dict(os.environ, HGPLAIN="1"), ) except subprocess.CalledProcessError: continue eden_locations.append(hg_cache_dir.decode("utf-8").rstrip("\n")) # Set is used to skip duplicate mount folders return {get_mountpt(eden_location) for eden_location in eden_locations} def check_disk_usage( tracker: ProblemTracker, mount_paths: List[str], instance: EdenInstance ) -> None: prob_advice_space_used_ratio_threshold = 0.90 prob_error_absolute_space_used_threshold = 1024 * 1024 * 1024 # 1GB eden_mount_pts_set = get_mount_pts_set(tracker, mount_paths, instance) for eden_mount_pt in eden_mount_pts_set: if eden_mount_pt and os.path.exists(eden_mount_pt): disk_status = os.statvfs(eden_mount_pt) avail = disk_status.f_frsize * disk_status.f_bavail size = disk_status.f_frsize * disk_status.f_blocks if size == 0: continue used = size - avail used_percent = float(used) / size message = ( "Eden lazily loads your files and needs enough disk space to " "store these files when loaded." ) extra_message = instance.get_config_value( "doctor.low-disk-space-message", "" ) if extra_message: message = f"{message} {extra_message}" if avail <= prob_error_absolute_space_used_threshold: tracker.add_problem( Problem( f"{eden_mount_pt} " f"has only {str(avail)} bytes available. " f"{message}", severity=ProblemSeverity.ERROR, ) ) elif used_percent >= prob_advice_space_used_ratio_threshold: tracker.add_problem( Problem( f"{eden_mount_pt} " f"is {used_percent:.2%} full. " f"{message}", severity=ProblemSeverity.ADVICE, ) ) ``` #### File: cli/doctor/check_hg.py ```python import abc import binascii import os import subprocess from pathlib import Path from typing import Dict, List, Optional, Tuple, Type import eden.dirstate import facebook.eden.ttypes as eden_ttypes from eden.cli import hg_util from eden.cli.config import EdenCheckout from eden.cli.doctor.problem import FixableProblem, ProblemTracker, UnexpectedCheckError from thrift.Thrift import TApplicationException class HgChecker: errors: List[str] = [] def __init__(self, checkout: EdenCheckout) -> None: self.checkout = checkout def check(self) -> bool: self.errors = self.check_for_error() return not self.errors @abc.abstractmethod def check_for_error(self) -> List[str]: """Check for errors. Returns a list of errors, or an empty list if no problems were found. """ raise NotImplementedError() @abc.abstractmethod def repair(self) -> None: raise NotImplementedError() class HgFileChecker(HgChecker): def __init__(self, checkout: EdenCheckout, name: str) -> None: super().__init__(checkout) self.name = name self.problem: Optional[str] = None @property def path(self) -> Path: return self.checkout.path / ".hg" / self.name @property def short_path(self) -> str: return os.path.join(".hg", self.name) def check_for_error(self) -> List[str]: try: data = self.path.read_bytes() except IOError as ex: return [f"error reading {self.short_path}: {ex}"] return self.check_data(data) def check_data(self, data: bytes) -> List[str]: return [] class DirstateChecker(HgFileChecker): _null_commit_id = 20 * b"\x00" _old_snapshot: Optional[bytes] = None _old_dirstate_parents: Optional[Tuple[bytes, bytes]] = None _tuples_dict: Dict[bytes, Tuple[str, int, int]] = {} _copymap: Dict[bytes, bytes] = {} _new_parents: Optional[Tuple[bytes, bytes]] = None def __init__(self, checkout: EdenCheckout) -> None: super().__init__(checkout, "dirstate") def check_for_error(self) -> List[str]: errors: List[str] = [] self._get_old_dirstate_info(errors) self._get_old_snapshot(errors) self._new_parents = self._select_new_parents(errors) # If we need to update state make sure we reported an error if ( self._new_parents != self._old_dirstate_parents or self._new_parents[0] != self._old_snapshot ): assert errors return errors def _get_old_dirstate_info(self, errors: List[str]) -> None: # Read the data from the dirstate file try: with self.path.open("rb") as f: parents, tuples_dict, copymap = eden.dirstate.read(f, str(self.path)) self._old_dirstate_parents = parents self._tuples_dict = {os.fsencode(k): v for k, v in tuples_dict.items()} self._copymap = {os.fsencode(k): os.fsencode(v) for k, v in copymap.items()} except IOError as ex: errors.append(f"error reading {self.short_path}: {ex}") return except eden.dirstate.DirstateParseException as ex: errors.append(f"error parsing {self.short_path}: {ex}") return # Make sure the commits are valid, and discard them otherwise old_p0 = self._check_commit(errors, parents[0], "mercurial's p0 commit") old_p1 = self._check_commit(errors, parents[1], "mercurial's p1 commit") if old_p0 is None: self._old_dirstate_parents = None else: if old_p1 is None: old_p1 = self._null_commit_id self._old_dirstate_parents = (old_p0, old_p1) def _get_old_snapshot(self, errors: List[str]) -> None: # Get the commit ID from the snapshot file try: snapshot_hex = self.checkout.get_snapshot() self._old_snapshot = binascii.unhexlify(snapshot_hex) except Exception as ex: errors.append(f"error parsing Eden snapshot ID: {ex}") return self._old_snapshot = self._check_commit( errors, self._old_snapshot, "Eden's snapshot file" ) def _check_commit( self, errors: List[str], commit: bytes, name: str ) -> Optional[bytes]: if self._is_commit_hash_valid(commit): return commit commit_hex = self._commit_hex(commit) errors.append(f"{name} points to a bad commit: {commit_hex}") return None def _select_new_parents(self, errors: List[str]) -> Tuple[bytes, bytes]: if self._old_snapshot is None and self._old_dirstate_parents is None: last_resort = self._get_last_resort_commit() return (last_resort, self._null_commit_id) elif self._old_dirstate_parents is None: assert self._old_snapshot is not None # to make mypy happy return (self._old_snapshot, self._null_commit_id) else: if ( self._old_snapshot is not None and self._old_snapshot != self._old_dirstate_parents[0] ): p0_hex = self._commit_hex(self._old_dirstate_parents[0]) snapshot_hex = self._commit_hex(self._old_snapshot) errors.append( f"mercurial's parent commit is {p0_hex}, but Eden's internal " f"parent commit is {snapshot_hex}" ) return self._old_dirstate_parents def repair(self) -> None: # If the .hg directory was missing entirely check_for_error() won't have been # called yet. Call it now to compute self._new_parents if self._new_parents is None: self.check_for_error() assert self._new_parents is not None if self._new_parents != self._old_dirstate_parents: with self.path.open("wb") as f: eden.dirstate.write( f, self._new_parents, self._tuples_dict, self._copymap ) if self._new_parents[0] != self._old_snapshot: parents = eden_ttypes.WorkingDirectoryParents(parent1=self._new_parents[0]) if self._new_parents[1] != self._null_commit_id: parents.parent2 = self._new_parents[1] with self.checkout.instance.get_thrift_client() as client: client.resetParentCommits(bytes(self.checkout.path), parents) def _commit_hex(self, commit: bytes) -> str: return binascii.hexlify(commit).decode("utf-8") def _is_commit_hash_valid(self, commit_hash: bytes) -> bool: # The null commit ID is always valid if commit_hash == self._null_commit_id: return True try: with self.checkout.instance.get_thrift_client() as client: client.getScmStatusBetweenRevisions( bytes(self.checkout.path), commit_hash, commit_hash ) return True except (TApplicationException, eden_ttypes.EdenError) as ex: if "RepoLookupError: unknown revision" in str(ex): return False raise def _get_last_resort_commit(self) -> bytes: try: return get_tip_commit_hash(self.checkout.path) except Exception: return self._null_commit_id class HgrcChecker(HgFileChecker): def __init__(self, checkout: EdenCheckout) -> None: super().__init__(checkout, "hgrc") def repair(self) -> None: hgrc_data = hg_util.get_hgrc_data(self.checkout) self.path.write_text(hgrc_data) class RequiresChecker(HgFileChecker): def __init__(self, checkout: EdenCheckout) -> None: super().__init__(checkout, "requires") def check_data(self, data: bytes) -> List[str]: requirements = data.splitlines() if b"eden" not in requirements: return [".hg/requires file does not include Eden as a requirement"] return [] def repair(self) -> None: hgrc_data = hg_util.get_requires_data(self.checkout) self.path.write_text(hgrc_data) class SharedPathChecker(HgFileChecker): def __init__(self, checkout: EdenCheckout) -> None: super().__init__(checkout, "sharedpath") def check_data(self, data: bytes) -> List[str]: # TODO: make sure the sharedpath file points to a valid .hg directory that # does not use Eden itself. However, we can't fix errors about the sharedpath # file pointing to a bad repo, so those should probably be reported as # completely separate problems to the ProblemTracker. # # backing_repo = Path(os.fsdecode(data)) return [] def repair(self) -> None: backing_hg_dir = hg_util.get_backing_hg_dir(self.checkout) self.path.write_bytes(bytes(backing_hg_dir)) class SharedChecker(HgFileChecker): def __init__(self, checkout: EdenCheckout) -> None: super().__init__(checkout, "shared") def check_data(self, data: bytes) -> List[str]: # This file normally contains "bookmarks" for most users, but its fine # if users don't have anything here if they don't want to share bookmarks. # Therefore we don't do any other validation of the contents of this file. return [] def repair(self) -> None: self.path.write_text("bookmarks\n") class BookmarksChecker(HgFileChecker): def __init__(self, checkout: EdenCheckout) -> None: super().__init__(checkout, "bookmarks") def repair(self) -> None: self.path.touch() class BranchChecker(HgFileChecker): def __init__(self, checkout: EdenCheckout) -> None: super().__init__(checkout, "branch") def repair(self) -> None: self.path.write_text("default\n") def get_tip_commit_hash(repo: Path) -> bytes: # Try to get the tip commit ID. If that fails, use the null commit ID. args = ["hg", "log", "-T", "{node}", "-r", "tip"] env = dict(os.environ, HGPLAIN="1") result = subprocess.run( args, env=env, cwd=str(repo), check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) return binascii.unhexlify(result.stdout.strip()) def check_hg(tracker: ProblemTracker, checkout: EdenCheckout) -> None: checker_classes: List[Type[HgChecker]] = [ DirstateChecker, HgrcChecker, RequiresChecker, SharedPathChecker, SharedChecker, BookmarksChecker, BranchChecker, ] checkers = [checker_class(checkout) for checker_class in checker_classes] hg_path = checkout.path / ".hg" if not os.path.exists(hg_path): description = f"Missing hg directory: {checkout.path}/.hg" tracker.add_problem(HgDirectoryError(checkout, checkers, description)) return bad_checkers: List[HgChecker] = [] for checker in checkers: try: if checker.check(): continue bad_checkers.append(checker) except Exception: tracker.add_problem(UnexpectedCheckError()) if bad_checkers: msg = ( f"No contents present in hg directory: {checkout.path}/.hg" if len(bad_checkers) == len(checkers) else None ) tracker.add_problem(HgDirectoryError(checkout, bad_checkers, msg)) class HgDirectoryError(FixableProblem): def __init__( self, checkout: EdenCheckout, checkers: List[HgChecker], description: Optional[str] = None, ) -> None: self._checkout = checkout self._checkers = checkers self._description = description def description(self) -> str: if self._description is not None: return self._description all_errors = [] for checker in self._checkers: all_errors.extend(checker.errors) problems = "\n ".join(all_errors) return ( f"Found inconsistent/missing data in {self._checkout.path}/.hg:\n " + problems ) def dry_run_msg(self) -> str: return f"Would repair hg directory contents for {self._checkout.path}" def start_msg(self) -> str: return f"Repairing hg directory contents for {self._checkout.path}" def perform_fix(self) -> None: hg_path = self._checkout.path / ".hg" # Make sure the hg directory exists hg_path.mkdir(exist_ok=True) for checker in self._checkers: checker.repair() ``` #### File: cli/doctor/check_rogue_edenfs.py ```python import shlex from typing import List from eden.cli import process_finder from eden.cli.doctor.problem import Problem, ProblemSeverity, ProblemTracker def check_many_edenfs_are_running( tracker: ProblemTracker, process_finder: process_finder.ProcessFinder ) -> None: rogue_pids_list = process_finder.find_rogue_pids() if len(rogue_pids_list) > 0: rogue_pids_problem = ManyEdenFsRunning(rogue_pids_list) tracker.add_problem(rogue_pids_problem) class ManyEdenFsRunning(Problem): _rogue_pids_list: List[process_finder.ProcessID] def __init__(self, rogue_pids_list): self._rogue_pids_list = list(sorted(rogue_pids_list)) self.set_manual_remediation_message() def description(self) -> str: return ( "Many edenfs processes are running. " "Please keep only one for each config directory." ) def severity(self) -> ProblemSeverity: return ProblemSeverity.ADVICE def set_manual_remediation_message(self) -> None: if self._rogue_pids_list is not None: kill_command = ["kill", "-9"] kill_command.extend(map(str, self._rogue_pids_list)) self._remediation = " ".join(map(shlex.quote, kill_command)) ``` #### File: doctor/test/disk_usage_test.py ```python import collections import typing from typing import List, Optional from unittest.mock import patch import eden.cli.doctor as doctor from eden.cli.config import EdenInstance from eden.cli.doctor.problem import ProblemBase, ProblemTracker from eden.cli.doctor.test.lib.fake_eden_instance import FakeEdenInstance from eden.cli.doctor.test.lib.testcase import DoctorTestBase class DiskUsageTest(DoctorTestBase): def _mock_disk_usage(self, blocks, avail, frsize=1024) -> None: """Mock test for disk usage.""" mock_statvfs_patcher = patch("eden.cli.doctor.os.statvfs") mock_statvfs = mock_statvfs_patcher.start() self.addCleanup(lambda: mock_statvfs.stop()) statvfs_tuple = collections.namedtuple("statvfs", "f_blocks f_bavail f_frsize") mock_statvfs.return_value = statvfs_tuple(blocks, avail, frsize) mock_getmountpt_and_deviceid_patcher = patch( "eden.cli.doctor.check_filesystems.get_mountpt" ) mock_getmountpt_and_deviceid = mock_getmountpt_and_deviceid_patcher.start() self.addCleanup(lambda: mock_getmountpt_and_deviceid.stop()) mock_getmountpt_and_deviceid.return_value = "/" def _check_disk_usage( self, instance: Optional[FakeEdenInstance] = None ) -> List[ProblemBase]: problem_collector = ProblemCollector() if instance is None: instance = FakeEdenInstance(self.make_temporary_directory()) doctor.check_filesystems.check_disk_usage( tracker=problem_collector, mount_paths=["/"], instance=typing.cast(EdenInstance, instance), ) return problem_collector.problems def test_low_free_absolute_disk_is_major(self): self._mock_disk_usage(blocks=100000000, avail=500000) problems = self._check_disk_usage() self.assertEqual( problems[0].description(), "/ has only 512000000 bytes available. " "Eden lazily loads your files and needs enough disk " "space to store these files when loaded.", ) self.assertEqual(problems[0].severity(), doctor.ProblemSeverity.ERROR) def test_low_percentage_free_but_high_absolute_free_disk_is_minor(self): self._mock_disk_usage(blocks=100000000, avail=2000000) problems = self._check_disk_usage() self.assertEqual( problems[0].description(), "/ is 98.00% full. " "Eden lazily loads your files and needs enough disk " "space to store these files when loaded.", ) self.assertEqual(problems[0].severity(), doctor.ProblemSeverity.ADVICE) def test_high_percentage_free_but_small_disk_is_major(self): self._mock_disk_usage(blocks=800000, avail=500000) problems = self._check_disk_usage() self.assertEqual( problems[0].description(), "/ has only 512000000 bytes available. " "Eden lazily loads your files and needs enough disk " "space to store these files when loaded.", ) self.assertEqual(problems[0].severity(), doctor.ProblemSeverity.ERROR) def test_disk_usage_normal(self): self._mock_disk_usage(blocks=100000000, avail=50000000) problems = self._check_disk_usage() self.assertEqual(len(problems), 0) def test_issue_includes_custom_message_from_config(self) -> None: self._mock_disk_usage(blocks=100000000, avail=500000) instance = FakeEdenInstance( self.make_temporary_directory(), config={ "doctor.low-disk-space-message": "Ask your administrator for help." }, ) problems = self._check_disk_usage(instance=instance) self.assertEqual( problems[0].description(), "/ has only 512000000 bytes available. " "Eden lazily loads your files and needs enough disk " "space to store these files when loaded. Ask your administrator " "for help.", ) self._mock_disk_usage(blocks=100000000, avail=2000000) instance = FakeEdenInstance( self.make_temporary_directory(), config={ "doctor.low-disk-space-message": "Ask your administrator for help." }, ) problems = self._check_disk_usage(instance=instance) self.assertEqual( problems[0].description(), "/ is 98.00% full. " "Eden lazily loads your files and needs enough disk " "space to store these files when loaded. Ask your administrator " "for help.", ) class ProblemCollector(ProblemTracker): problems: List[ProblemBase] def __init__(self) -> None: super().__init__() self.problems = [] def add_problem(self, problem: ProblemBase) -> None: self.problems.append(problem) ``` #### File: test/lib/fake_process_finder.py ```python import errno import os from pathlib import Path from typing import Dict, List, Union from eden.cli import process_finder class FakeProcessFinder(process_finder.LinuxProcessFinder): def __init__(self, tmp_dir: str) -> None: self.proc_path = Path(tmp_dir) self._file_contents: Dict[Path, Union[bytes, Exception]] = {} def add_process(self, pid: int, cmdline: List[str]) -> None: pid_dir = self.proc_path / str(pid) pid_dir.mkdir() command = os.path.basename(cmdline[0]) (pid_dir / "comm").write_bytes(command.encode("utf-8") + b"\n") cmdline_bytes = b"".join((arg.encode("utf-8") + b"\0") for arg in cmdline) (pid_dir / "cmdline").write_bytes(cmdline_bytes) def add_edenfs(self, pid: int, eden_dir: str, set_lockfile: bool = True) -> None: if set_lockfile: self.set_file_contents(Path(eden_dir) / "lock", f"{pid}\n".encode("utf-8")) cmdline = [ "/usr/bin/edenfs", "--edenfs", "--edenDir", eden_dir, "--etcEdenDir", "/etc/eden", "--configPath", "/home/user/.edenrc", ] self.add_process(pid, cmdline) def set_file_contents(self, path: Union[Path, str], contents: bytes) -> None: self._file_contents[Path(path)] = contents def set_file_exception(self, path: Union[Path, str], exception: Exception) -> None: self._file_contents[Path(path)] = exception def read_lock_file(self, path: Path) -> bytes: contents = self._file_contents.get(path, None) if contents is None: raise FileNotFoundError(errno.ENOENT, str(path)) if isinstance(contents, Exception): raise contents return contents ``` #### File: test/lib/testcase.py ```python import binascii import unittest from typing import Tuple import eden.cli.doctor as doctor import eden.dirstate from eden.cli.config import EdenCheckout from eden.cli.test.lib.output import TestOutput from eden.test_support.temporary_directory import TemporaryDirectoryMixin from .fake_process_finder import FakeProcessFinder class DoctorTestBase(unittest.TestCase, TemporaryDirectoryMixin): def create_fixer(self, dry_run: bool) -> Tuple[doctor.ProblemFixer, TestOutput]: out = TestOutput() if not dry_run: fixer = doctor.ProblemFixer(out) else: fixer = doctor.DryRunFixer(out) return fixer, out def assert_results( self, fixer: doctor.ProblemFixer, num_problems: int = 0, num_fixed_problems: int = 0, num_failed_fixes: int = 0, num_manual_fixes: int = 0, ) -> None: self.assertEqual(num_problems, fixer.num_problems) self.assertEqual(num_fixed_problems, fixer.num_fixed_problems) self.assertEqual(num_failed_fixes, fixer.num_failed_fixes) self.assertEqual(num_manual_fixes, fixer.num_manual_fixes) def assert_dirstate_p0(self, checkout: EdenCheckout, commit: str) -> None: dirstate_path = checkout.path / ".hg" / "dirstate" with dirstate_path.open("rb") as f: parents, _tuples_dict, _copymap = eden.dirstate.read(f, str(dirstate_path)) self.assertEqual(binascii.hexlify(parents[0]).decode("utf-8"), commit) def make_process_finder(self) -> FakeProcessFinder: return FakeProcessFinder(self.make_temporary_directory()) ``` #### File: eden/cli/overlay.py ```python import contextlib import errno import fcntl import logging import os import shutil import stat import struct import tempfile import time import typing from pathlib import Path from typing import BinaryIO, Iterator, Optional, Tuple from facebook.eden.overlay.ttypes import OverlayDir, OverlayEntry class InvalidOverlayFile(Exception): pass class NoSuchOverlayFile(Exception): def __init__(self, inode_number: int) -> None: super().__init__(f"inode {inode_number} is not materialized in the overlay") self.inode_number = inode_number class InodeLookupError(Exception): def __init__(self, msg: str, errnum: int) -> None: super().__init__(msg) self.errno = errnum class OverlayHeader: LENGTH = 64 VERSION_1 = 1 TYPE_DIR = b"OVDR" TYPE_FILE = b"OVFL" STRUCT_FORMAT = ">4sIQQQQQQ8s" @classmethod def parse(cls, data: bytes, type: Optional[bytes] = None) -> "OverlayHeader": # A 0-length file is somewhat common on unclean reboot, # so use a separate exception message for this case. if len(data) == 0: raise InvalidOverlayFile("zero-sized overlay file") if len(data) < cls.LENGTH: raise InvalidOverlayFile( "overlay file is too short to contain a header: length={len(data)}" ) ( header_id, version, atime_sec, atime_nsec, ctime_sec, ctime_nsec, mtime_sec, mtime_nsec, padding, ) = struct.unpack(cls.STRUCT_FORMAT, data) if header_id not in (cls.TYPE_DIR, cls.TYPE_FILE): raise InvalidOverlayFile( "overlay file is too short to contain a header: length={len(data)}" ) if version != cls.VERSION_1: raise InvalidOverlayFile(f"unsupported overlay file version {version}") return OverlayHeader( header_id, version, atime_sec, atime_nsec, ctime_sec, ctime_nsec, mtime_sec, mtime_nsec, ) def __init__( self, type: bytes, version: int, atime_sec: int = 0, atime_nsec: int = 0, ctime_sec: int = 0, ctime_nsec: int = 0, mtime_sec: int = 0, mtime_nsec: int = 0, padding: bytes = b"\0\0\0\0\0\0\0\0", ) -> None: self.type = type self.version = version self.atime_sec = atime_sec self.atime_nsec = atime_nsec self.ctime_sec = ctime_sec self.ctime_nsec = ctime_nsec self.mtime_sec = mtime_sec self.mtime_nsec = mtime_nsec self.padding = padding @property def atime(self) -> float: return self.atime_sec + (self.atime_nsec / 1000000000.0) @atime.setter def atime(self, value: float) -> None: self.atime_sec = int(value) self.atime_nsec = int((value - self.atime_sec) * 1000000000) @property def ctime(self) -> float: return self.ctime_sec + (self.ctime_nsec / 1000000000.0) @ctime.setter def ctime(self, value: float) -> None: self.ctime_sec = int(value) self.ctime_nsec = int((value - self.ctime_sec) * 1000000000) @property def mtime(self) -> float: return self.mtime_sec + (self.mtime_nsec / 1000000000.0) @mtime.setter def mtime(self, value: float) -> None: self.mtime_sec = int(value) self.mtime_nsec = int((value - self.mtime_sec) * 1000000000) def serialize(self) -> bytes: return struct.pack( self.STRUCT_FORMAT, self.type, self.version, self.atime_sec, self.atime_nsec, self.ctime_sec, self.ctime_nsec, self.mtime_sec, self.mtime_nsec, self.padding, ) class Overlay: ROOT_INODE_NUMBER = 1 NEXT_INODE_NUMBER_PATH = "next-inode-number" def __init__(self, path: str) -> None: self.path = path @contextlib.contextmanager def try_lock(self) -> Iterator[bool]: info_path = os.path.join(self.path, "info") try: lock_file = open(info_path, "rb") except OSError: yield False return try: fcntl.flock(lock_file.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB) yield True except OSError: yield False finally: # Release the lock once the yield returns lock_file.close() def get_path(self, inode_number: int) -> str: dir_name = "{:02x}".format(inode_number % 256) return os.path.join(self.path, dir_name, str(inode_number)) def open_overlay_file(self, inode_number: int) -> BinaryIO: try: return typing.cast(BinaryIO, open(self.get_path(inode_number), "rb")) except OSError as ex: if ex.errno == errno.ENOENT: raise NoSuchOverlayFile(inode_number) raise def read_header(self, f: BinaryIO) -> OverlayHeader: data = f.read(OverlayHeader.LENGTH) return OverlayHeader.parse(data) def check_header( self, f: BinaryIO, inode_number: int, expected_type: bytes ) -> OverlayHeader: data = f.read(OverlayHeader.LENGTH) header = OverlayHeader.parse(data) if header.type != expected_type: raise InvalidOverlayFile( f"unexpected type for inode {inode_number} in overlay: " f"expected {expected_type!r} but found {header.type!r}" ) return header def read_dir_inode(self, inode_number: int) -> OverlayDir: return self.read_dir_inode_tuple(inode_number)[1] def read_dir_inode_tuple( self, inode_number: int ) -> Tuple[OverlayHeader, OverlayDir]: with self.open_overlay_file(inode_number) as f: header = self.check_header(f, inode_number, OverlayHeader.TYPE_DIR) data = f.read() return (header, self.parse_dir_inode_data(data)) def parse_dir_inode_data(self, data: bytes) -> OverlayDir: from thrift.util import Serializer from thrift.protocol import TCompactProtocol # Initialize entries to the empty dictionary. # This value will be used if the serialized data does not have any value # for this field. tree_data = OverlayDir(entries={}) protocol_factory = TCompactProtocol.TCompactProtocolFactory() Serializer.deserialize(protocol_factory, data, tree_data) return tree_data def open_file_inode(self, inode_number: int) -> BinaryIO: return self.open_file_inode_tuple(inode_number)[1] def open_file_inode_tuple( self, inode_number: int ) -> Tuple[OverlayHeader, BinaryIO]: """Open the overlay file for the specified inode number. Returns the header information and a file object opened to the start of the file inode contents. """ f = self.open_overlay_file(inode_number) try: header = self.check_header(f, inode_number, OverlayHeader.TYPE_FILE) except Exception: f.close() raise return (header, f) def lookup_path(self, path: Path) -> Optional[int]: """ Lookup a path in the overlay. Returns the inode number corresponding to the path, if the path is materialized. - If an inode number is found for this path, returns the inode number. - If one of the parent directories is not materialized, returns None. Without checking the source control data we cannot tell if this logical path exists or not. - If this path or one of its parent directories does not exist throws an InodeLookupError May throw other exceptions on error. """ assert not path.is_absolute() if not path.parts: return self.ROOT_INODE_NUMBER parent_inode_number = self.ROOT_INODE_NUMBER index = 0 while True: parent_dir = self.read_dir_inode(parent_inode_number) desired = path.parts[index] index += 1 entries = [] if parent_dir.entries is None else parent_dir.entries.items() entry: Optional[OverlayEntry] = None for name, entry in entries: # noqa: ignore=B007 if name == desired: break if entry is None: raise InodeLookupError(f"{path} does not exist", errno.ENOENT) if index >= len(path.parts): return entry.inodeNumber if entry.mode is None or stat.S_IFMT(entry.mode) != stat.S_IFDIR: non_dir_path = os.path.sep.join(path.parts[:index]) raise InodeLookupError( f"error looking up {path}: {non_dir_path} is not a directory", errno.ENOTDIR, ) if entry.hash: # This directory along the chain is not materialized return None parent_inode_number = entry.inodeNumber def extract_file( self, inode_number: int, output_path: Path, mode: int, remove: bool = False ) -> None: """Copy the specified file inode out of the overlay. If remove=True the data for this inode will be removed from the overlay after it has been extracted. """ with self.open_overlay_file(inode_number) as inf: header = self.read_header(inf) if header.type != OverlayHeader.TYPE_FILE: raise Exception( f"expected inode {inode_number} to be a regular file; " f"found unexpected type {header.type!r}" ) output_path.parent.mkdir(parents=True, exist_ok=True) file_type = stat.S_IFMT(mode) if file_type == stat.S_IFLNK: contents = inf.read() os.symlink(contents, bytes(output_path)) elif file_type == stat.S_IFREG: with output_path.open("wb") as outf: shutil.copyfileobj(inf, outf) # type: ignore # Note: the file permissions bits are now stored in the inode table # rather than the overlay. The mode bits in the overlay will # reflect the correct file type only. Always extract orphan inodes # with permissions 0o600 (read+write to owner only). os.fchmod(outf.fileno(), 0o600) else: # We don't copy out sockets, fifos, or other unusual file types. # These shouldn't have any actual file contents anyway. logging.debug( f"skipping inode {inode_number} at {output_path} with " f"unsupported file type {file_type:#o}" ) path = Path(self.get_path(inode_number)) path.unlink() def extract_dir( self, inode_number: int, output_path: Path, remove: bool = False ) -> None: """Recursively copy the specified directory inode out of the overlay. All of its materialized children will be copied out. Children that still have the same contents as a committed source control object will not be copied out. If remove=True the data for the extracted inodes will be removed from the overlay after they have been extracted. """ data = self.read_dir_inode(inode_number) for name, entry in data.entries.items(): overlay_path = Path(self.get_path(entry.inodeNumber)) if not overlay_path.exists(): # Skip children that do not exist in the overlay. # Note that we explicitly check for existence of the child even if # entry.hash is set (i.e., if the inode is not materialized): # # - Non-materialized directories can have data in the overlay if they # contain allocated inode numbers. We still recurse into the # directory in this case. This makes sure we remove the overlay files # when remove=True, and also ensures that we will find any # materialized file data inside this subdirectory if Eden crashed in # the middle of trying to materialize a file but before it marked the # parent directories materialized. # - Even for files we can have the same race on crash: eden may have # crashed while materializing a file before it could mark the parent # directories materialized. (In theory the file contents should still # be the same as the source control state in this case, but it seems # better to err on the safe side and extract it anyway.) continue entry_output_path = output_path.joinpath(name) file_type = stat.S_IFMT(entry.mode) if file_type == stat.S_IFDIR: self.extract_dir(entry.inodeNumber, entry_output_path, remove=remove) else: self.extract_file( entry.inodeNumber, entry_output_path, entry.mode, remove=remove ) if remove: path = Path(self.get_path(inode_number)) path.unlink() def write_empty_file(self, inode_number: int) -> None: self._write_inode(inode_number, OverlayHeader.TYPE_FILE, b"") def write_empty_dir(self, inode_number: int) -> None: from thrift.util import Serializer from thrift.protocol import TCompactProtocol empty_tree = OverlayDir() protocol_factory = TCompactProtocol.TCompactProtocolFactory() contents = typing.cast( bytes, Serializer.serialize(protocol_factory, empty_tree) ) self._write_inode(inode_number, OverlayHeader.TYPE_DIR, contents) def _write_inode(self, inode_number: int, header_type: bytes, body: bytes) -> None: now_sec = int(time.time()) header = OverlayHeader( type=header_type, version=OverlayHeader.VERSION_1, atime_sec=now_sec, mtime_sec=now_sec, ctime_sec=now_sec, ) header_data = header.serialize() path = Path(self.get_path(inode_number)) path.write_bytes(header_data + body) def read_next_inode_number(self) -> Optional[int]: file_path = os.path.join(self.path, self.NEXT_INODE_NUMBER_PATH) try: with open(file_path, "rb") as f: data = f.read() except FileNotFoundError: return None if len(data) != 8: raise Exception( f"invalid data in {self.NEXT_INODE_NUMBER_PATH} file: " f"expected file to contain 8 bytes, but is {len(data)} " f"bytes" ) return struct.unpack("@Q", data)[0] def write_next_inode_number(self, next_inode: int) -> None: contents = struct.pack("@Q", next_inode) file_path = os.path.join(self.path, self.NEXT_INODE_NUMBER_PATH) fd, tmp_path = tempfile.mkstemp( prefix=self.NEXT_INODE_NUMBER_PATH, dir=self.path ) try: os.write(fd, contents) os.fdatasync(fd) os.fchmod(fd, 0o644) os.rename(tmp_path, file_path) except Exception: try: os.unlink(tmp_path) except Exception: pass raise ``` #### File: eden/cli/rage.py ```python import getpass import io import socket import subprocess import traceback from pathlib import Path from typing import IO from . import ( debug as debug_mod, doctor as doctor_mod, filesystem, mtab, process_finder, stats as stats_mod, ui as ui_mod, ) from .config import EdenInstance def print_diagnostic_info(instance: EdenInstance, out: IO[bytes]) -> None: out.write(b"User : %s\n" % getpass.getuser().encode()) out.write(b"Hostname : %s\n" % socket.gethostname().encode()) print_rpm_version(out) health_status = instance.check_health() if health_status.is_healthy(): out.write(b"\n") debug_mod.do_buildinfo(instance, out) out.write(b"uptime: ") debug_mod.do_uptime(instance, out) print_eden_doctor_report(instance, out) print_tail_of_log_file(instance.get_log_path(), out) print_running_eden_process(out) if health_status.is_healthy() and health_status.pid is not None: print_edenfs_process_tree(health_status.pid, out) out.write(b"\nList of mount points:\n") mountpoint_paths = [] for key in sorted(instance.get_mount_paths()): key_bytes = key.encode() out.write(key_bytes) mountpoint_paths.append(key_bytes) for key, val in instance.get_all_client_config_info().items(): out.write(b"\nMount point info for path %s:\n" % key.encode()) for k, v in val.items(): out.write("{:>10} : {}\n".format(k, v).encode()) if health_status.is_healthy(): with io.StringIO() as stats_stream: stats_mod.do_stats_general(instance, out=stats_stream) out.write(stats_stream.getvalue().encode()) def print_rpm_version(out: IO[bytes]) -> None: try: queryformat = "%{VERSION}" output = subprocess.check_output(["rpm", "-q", "--qf", queryformat, "fb-eden"]) out.write(b"Rpm Version : %s\n" % output) except Exception as e: out.write(b"Error getting the Rpm version : %s\n" % str(e).encode()) def print_eden_doctor_report(instance: EdenInstance, out: IO[bytes]) -> None: dry_run = True doctor_output = io.StringIO() try: doctor_rc = doctor_mod.cure_what_ails_you( instance=instance, dry_run=dry_run, mount_table=mtab.new(), fs_util=filesystem.LinuxFsUtil(), process_finder=process_finder.new(), out=ui_mod.PlainOutput(doctor_output), ) out.write( b"\neden doctor --dry-run (exit code %d):\n%s\n" % (doctor_rc, doctor_output.getvalue().encode()) ) except Exception: out.write(b"\nUnexpected exception thrown while running eden doctor checks:\n") out.write(traceback.format_exc().encode("utf-8") + b"\n") def print_tail_of_log_file(path: Path, out: IO[bytes]) -> None: try: out.write(b"\nMost recent Eden logs:\n") LOG_AMOUNT = 20 * 1024 with path.open("rb") as logfile: size = logfile.seek(0, io.SEEK_END) logfile.seek(max(0, size - LOG_AMOUNT), io.SEEK_SET) data = logfile.read() out.write(data) except Exception as e: out.write(b"Error reading the log file: %s\n" % str(e).encode()) def print_running_eden_process(out: IO[bytes]) -> None: try: out.write(b"\nList of running Eden processes:\n") output = subprocess.check_output( ["ps", "-eo", "pid,ppid,comm,start_time,etime"] ) output = output.decode() lines = output.split("\n") format_str = "{:>20} {:>20} {:>10} {:>20} {:>20}\n" out.write( format_str.format( "Pid", "PPid", "Command", "Start Time", "Elapsed Time" ).encode() ) for line in lines: if "edenfs" in line: word = line.split() out.write(format_str.format(*word).encode()) except Exception as e: out.write(b"Error getting the eden processes: %s\n" % str(e).encode()) def print_edenfs_process_tree(pid: int, out: IO[bytes]) -> None: try: out.write(b"\nedenfs process tree:\n") output = subprocess.check_output( ["ps", "f", "-o", "pid,s,comm,start_time,etime,cputime,drs", "-s", str(pid)] ) out.write(output) except Exception as e: out.write(b"Error getting edenfs process tree: %s\n" % str(e).encode()) ``` #### File: eden/cli/stats_print.py ```python from typing import TextIO def write_heading(heading: str, out: TextIO) -> None: border = "*" * len(heading) out.write(_center_strip_right(border, 80)) out.write(_center_strip_right(heading, 80)) out.write(_center_strip_right(border, 80) + "\n") def write_mem_status_table(fuse_counters, out: TextIO) -> None: format_str = "{:>40} {:^1} {:<20}" keys = [ "memory_free", "memory_free_percent", "memory_usage", "memory_usage_percent", ] for key in keys: if key.endswith("_percent"): value = "%d%s" % (fuse_counters[key], "%") else: value = "%f(GB)" % (fuse_counters[key] / (10 ** 6)) centered_text = format_str.format(key.replace("_", " "), ":", value) out.write(centered_text.rstrip() + "\n") LATENCY_FORMAT_STR = "{:<12} {:^4} {:^10} {:>10} {:>15} {:>10} {:>10}\n" # Prints a record of latencies with avg, 50'th,90'th and 99'th percentile. def write_latency_record(operation: str, matrix, out: TextIO) -> None: border = "-" * 80 percentile = {0: "avg", 1: "p50", 2: "p90", 3: "p99"} for i in range(len(percentile)): operation_name = "" if i == int(len(percentile) / 2): operation_name = operation out.write( LATENCY_FORMAT_STR.format( operation_name, "|", percentile[i], matrix[i][0], matrix[i][1], matrix[i][2], matrix[i][3], ) ) out.write(border + "\n") def write_latency_table(table, out: TextIO) -> None: out.write( LATENCY_FORMAT_STR.format( "SystemCall", "|", "Percentile", "Last Minute", "Last 10 Minutes", "Last Hour", "All Time", ) ) border = "-" * 80 out.write(border + "\n") for key in table: write_latency_record(key, table[key], out) def write_table(table, heading: str, out: TextIO) -> None: key_width = max([len(heading)] + list(map(len, table.keys()))) + 2 format_str = "{:<{}}{:>15}{:>15}{:>15}{:>15}\n" out.write( format_str.format( heading, key_width, "Last Minute", "Last 10m", "Last Hour", "All Time" ) ) border = "-" * (key_width + 60) out.write(border + "\n") for key in table: value = table[key] out.write( format_str.format(key, key_width, value[0], value[1], value[2], value[3]) ) def _center_strip_right(text: str, width: int) -> str: """Returns a string with sufficient leading whitespace such that `text` would be centered within the specified `width` plus a trailing newline.""" space = (width - len(text)) // 2 return space * " " + text + "\n" def format_size(size: int) -> str: if size > 1000000000: return "{:.1f} GB".format(size / 1000000000) if size > 1000000: return "{:.1f} MB".format(size / 1000000) if size > 1000: return "{:.1f} KB".format(size / 1000) if size > 0: return "{} B".format(size) return "0" ``` #### File: eden/cli/stats.py ```python import argparse import io import logging import os import sys import textwrap from typing import Dict, List, Optional, cast from . import cmd_util, stats_print, subcmd as subcmd_mod from .config import EdenInstance from .subcmd import Subcmd stats_cmd = subcmd_mod.Decorator() log = logging.getLogger("eden.cli.stats") DiagInfoCounters = Dict[str, int] Table = Dict[str, List[int]] Table2D = Dict[str, List[List[Optional[str]]]] # TODO: https://github.com/python/typeshed/issues/1240 stdoutWrapper = cast(io.TextIOWrapper, sys.stdout) # Shows information like memory usage, list of mount points and number of inodes # loaded, unloaded, and materialized in the mount points, etc. def do_stats_general( instance: EdenInstance, out: io.TextIOWrapper = stdoutWrapper ) -> None: with instance.get_thrift_client() as client: stat_info = client.getStatInfo() private_bytes = stats_print.format_size(stat_info.privateBytes) resident_bytes = stats_print.format_size(stat_info.vmRSSBytes) if stat_info.blobCacheStats is not None: blob_cache_size = stats_print.format_size( stat_info.blobCacheStats.totalSizeInBytes ) blob_cache_entry_count = stat_info.blobCacheStats.entryCount else: blob_cache_size = None blob_cache_entry_count = None out.write( textwrap.dedent( f"""\ edenfs memory usage ▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔ private bytes: {private_bytes} ({resident_bytes} resident) """ ) ) if blob_cache_size is not None and blob_cache_entry_count is not None: out.write(f"blob cache: {blob_cache_size} in {blob_cache_entry_count} blobs\n") out.write( textwrap.dedent( f"""\ active mounts ▔▔▔▔▔▔▔▔▔▔▔▔▔ """ ) ) inode_info = stat_info.mountPointInfo for key in inode_info: info = inode_info[key] mount_path = os.fsdecode(key) in_memory = info.loadedInodeCount files = info.loadedFileCount trees = info.loadedTreeCount if stat_info.mountPointJournalInfo is None: journal = None else: journal = stat_info.mountPointJournalInfo.get(key) if journal is None: journalLine = "" else: entries = journal.entryCount mem = journal.memoryUsage journalLine = ( f"- Journal entry count: {entries} " f"(memory usage: {stats_print.format_size(mem)})\n" ) out.write( textwrap.dedent( f"""\ {mount_path} - Inodes in memory: {in_memory} ({trees} trees, {files} files) - Unloaded, tracked inodes: {info.unloadedInodeCount} - Loaded and materialized inodes: {info.materializedInodeCount} {journalLine} """ ) ) @stats_cmd("memory", "Show memory statistics for Eden") class MemoryCmd(Subcmd): def run(self, args: argparse.Namespace) -> int: out = sys.stdout stats_print.write_heading("Memory Stats for EdenFS", out) instance = cmd_util.get_eden_instance(args) with instance.get_thrift_client() as client: diag_info = client.getStatInfo() stats_print.write_mem_status_table(diag_info.counters, out) # print memory counters heading = "Average values of Memory usage and availability" out.write("\n\n %s \n\n" % heading.center(80, " ")) mem_counters = get_memory_counters(diag_info.counters) stats_print.write_table(mem_counters, "", out) return 0 # Returns all the memory counters in ServiceData in a table format. def get_memory_counters(counters: DiagInfoCounters) -> Table: table: Table = {} index = {"60": 0, "600": 1, "3600": 2} for key in counters: if key.startswith("memory") and key.find(".") != -1: tokens = key.split(".") memKey = tokens[0].replace("_", " ") if memKey not in table.keys(): table[memKey] = [0, 0, 0, 0] if len(tokens) == 2: table[memKey][3] = counters[key] else: table[memKey][index[tokens[2]]] = counters[key] return table @stats_cmd("io", "Show information about the number of I/O calls") class IoCmd(Subcmd): def setup_parser(self, parser: argparse.ArgumentParser) -> None: parser.add_argument( "-A", "--all", action="store_true", default=False, help="Show status for all the system calls", ) def run(self, args: argparse.Namespace) -> int: out = sys.stdout stats_print.write_heading("Counts of I/O operations performed in EdenFs", out) instance = cmd_util.get_eden_instance(args) with instance.get_thrift_client() as client: diag_info = client.getStatInfo() # If the arguments has --all flag, we will have args.all set to # true. fuse_counters = get_fuse_counters(diag_info.counters, args.all) stats_print.write_table(fuse_counters, "SystemCall", out) return 0 # Filters Fuse counters from all the counters in ServiceData and returns a # printable form of the information in a table. If all_flg is true we get the # counters for all the system calls, otherwise we get the counters of the # system calls which are present in the list syscalls, which is a list of # frequently called io system calls. def get_fuse_counters(counters: DiagInfoCounters, all_flg: bool) -> Table: table: Table = {} index = {"60": 0, "600": 1, "3600": 2} # list of io system calls, if all flag is set we return counters for all the # systems calls, else we return counters for io systemcalls. syscalls = [ "open", "read", "write", "symlink", "readlink", "mkdir", "mknod", "opendir", "readdir", "rmdir", ] for key in counters: if key.startswith("fuse") and key.find(".count") >= 0: tokens = key.split(".") syscall = tokens[1][:-3] # _us if not all_flg and syscall not in syscalls: continue if syscall not in table.keys(): table[syscall] = [0, 0, 0, 0] if len(tokens) == 3: table[syscall][3] = int(counters[key]) else: table[syscall][index[tokens[3]]] = int(counters[key]) return table def insert_latency_record( table: Table2D, value: int, operation: str, percentile: str, period: Optional[str] ) -> None: period_table = {"60": 0, "600": 1, "3600": 2} percentile_table = {"avg": 0, "p50": 1, "p90": 2, "p99": 3} def with_microsecond_units(i: int) -> str: if i: return str(i) + " \u03BCs" # mu for micro else: return str(i) + " " if operation not in table.keys(): # pyre-ignore[6]: T38220626 table[operation] = [ ["" for _ in range(len(percentile_table))] for _ in range(len(period_table) + 1) ] pct_index = percentile_table[percentile] if period: period_index = period_table[period] else: period_index = len(period_table) table[operation][pct_index][period_index] = with_microsecond_units(value) @stats_cmd("latency", "Show information about the latency of I/O calls") class LatencyCmd(Subcmd): def setup_parser(self, parser: argparse.ArgumentParser) -> None: parser.add_argument( "-A", "--all", action="store_true", default=False, help="Show status for all the system calls", ) def run(self, args: argparse.Namespace) -> int: out = sys.stdout instance = cmd_util.get_eden_instance(args) with instance.get_thrift_client() as client: diag_info = client.getStatInfo() table = get_fuse_latency(diag_info.counters, args.all) stats_print.write_heading( "Latencies of I/O operations performed in EdenFs", out ) stats_print.write_latency_table(table, out) return 0 # Returns all the latency information in ServiceData in a table format. # If all_flg is true we get the counters for all the system calls, otherwise we # get the counters of the system calls which are present in the list syscalls, # which is a list of frequently called io system calls. def get_fuse_latency(counters: DiagInfoCounters, all_flg: bool) -> Table2D: table: Table2D = {} syscalls = [ "open", "read", "write", "symlink", "readlink", "mkdir", "mknod", "opendir", "readdir", "rmdir", ] for key in counters: if key.startswith("fuse") and key.find(".count") == -1: tokens = key.split(".") syscall = tokens[1][:-3] if not all_flg and syscall not in syscalls: continue percentile = tokens[2] period = None if len(tokens) > 3: period = tokens[3] insert_latency_record(table, counters[key], syscall, percentile, period) return table @stats_cmd( "hgimporter", "Show the number of requests to hg-debugedenimporthelper", aliases=[ "debugedenimporthelper", "hg-debugedenimporthelper", "hg", "hg-import", "hg-importer", "hgimport", ], ) class HgImporterCmd(Subcmd): def run(self, args: argparse.Namespace) -> int: out = sys.stdout stats_print.write_heading( "Counts of HgImporter requests performed in EdenFS", out ) instance = cmd_util.get_eden_instance(args) with instance.get_thrift_client() as client: counters = client.getCounters() hg_importer_counters = get_hg_importer_counters(counters) stats_print.write_table(hg_importer_counters, "HgImporter Request", out) return 0 def get_hg_importer_counters(counters: DiagInfoCounters) -> Table: zero = [0, 0, 0, 0] table: Table = { "cat_file": zero, "fetch_tree": zero, "manifest": zero, "manifest_node_for_commit": zero, "prefetch_files": zero, } for key in counters: segments = key.split(".") if ( len(segments) == 3 and segments[0] == "hg_importer" and segments[2] == "count" ): call_name = segments[1] last_minute = counters[key + ".60"] last_10_minutes = counters[key + ".600"] last_hour = counters[key + ".3600"] all_time = counters[key] table[call_name] = [last_minute, last_10_minutes, last_hour, all_time] return table @stats_cmd("thrift", "Show the number of received thrift calls") class ThriftCmd(Subcmd): def run(self, args: argparse.Namespace) -> int: out = sys.stdout stats_print.write_heading("Counts of Thrift calls performed in EdenFs", out) instance = cmd_util.get_eden_instance(args) with instance.get_thrift_client() as client: counters = client.getCounters() thrift_counters = get_thrift_counters(counters) stats_print.write_table(thrift_counters, "Thrift Call", out) return 0 def get_thrift_counters(counters: DiagInfoCounters) -> Table: table: Table = {} for key in counters: segments = key.split(".") if ( len(segments) == 5 and segments[:2] == ["thrift", "EdenService"] and segments[-2:] == ["num_calls", "sum"] ): call_name = segments[2] last_minute = counters[key + ".60"] last_10_minutes = counters[key + ".600"] last_hour = counters[key + ".3600"] all_time = counters[key] table[call_name] = [last_minute, last_10_minutes, last_hour, all_time] return table @stats_cmd("thrift-latency", "Show the latency of received thrift calls") class ThriftLatencyCmd(Subcmd): def run(self, args: argparse.Namespace) -> int: out = sys.stdout instance = cmd_util.get_eden_instance(args) with instance.get_thrift_client() as client: diag_info = client.getStatInfo() table = get_thrift_latency(diag_info.counters) stats_print.write_heading( "Latency of Thrift processing time performed in EdenFs", out ) stats_print.write_latency_table(table, out) return 0 def get_thrift_latency(counters: DiagInfoCounters) -> Table2D: table: Table2D = {} for key in counters: if key.startswith("thrift.EdenService.") and key.find("time_process_us") != -1: tokens = key.split(".") if len(tokens) < 5: continue method = tokens[2] percentile = tokens[4] period = None if len(tokens) > 5: period = tokens[5] insert_latency_record(table, counters[key], method, percentile, period) return table @stats_cmd("hg-latency", "Show the latency of hg backing store") class HgBackingStoreLatencyCmd(Subcmd): def run(self, args: argparse.Namespace) -> int: return backing_store_latency("hg", args) @stats_cmd("mononoke", "Show the latency of mononoke backing store") class MononokeBackingStoreLatencyCmd(Subcmd): def run(self, args: argparse.Namespace) -> int: return backing_store_latency("mononoke", args) def backing_store_latency(store: str, args: argparse.Namespace) -> int: out = sys.stdout instance = cmd_util.get_eden_instance(args) with instance.get_thrift_client() as client: diag_info = client.getStatInfo() table = get_store_latency(diag_info.counters, store) stats_print.write_heading( "Latency of {} backing store operations in EdenFs".format(store), out ) stats_print.write_latency_table(table, out) return 0 def get_store_latency(counters: DiagInfoCounters, store: str) -> Table2D: table: Table2D = {} for key in counters: if key.startswith("store.{}".format(store)) and key.find(".count") == -1: tokens = key.split(".") method = tokens[2] percentile = tokens[3] period = None if len(tokens) > 4: period = tokens[4] insert_latency_record(table, counters[key], method, percentile, period) return table class StatsCmd(Subcmd): NAME = "stats" HELP = "Prints statistics information for eden" def setup_parser(self, parser: argparse.ArgumentParser) -> None: self.add_subcommands(parser, stats_cmd.commands) def run(self, args: argparse.Namespace) -> int: instance = cmd_util.get_eden_instance(args) do_stats_general(instance) return 0 ``` #### File: cli/test/config_test.py ```python import configparser import io import os import unittest from pathlib import Path import toml import toml.decoder from eden.test_support.environment_variable import EnvironmentVariableMixin from eden.test_support.temporary_directory import TemporaryDirectoryMixin from .. import config as config_mod, configutil, util from ..config import EdenInstance from ..configinterpolator import EdenConfigInterpolator from ..configutil import EdenConfigParser, UnexpectedType def get_toml_test_file_invalid(): cfg_file = """ [core thisIsNotAllowed] """ return cfg_file def get_toml_test_file_defaults(): cfg_file = """ [core] systemIgnoreFile = "/etc/eden/gitignore" ignoreFile = "/home/${USER}/.gitignore" [clone] default-revision = "master" [rage] reporter = 'arc paste --title "eden rage from $(hostname)" --conduit-uri=https://phabricator.intern.facebook.com/api/' """ return cfg_file def get_toml_test_file_fbsource_repo(): cfg_file = """ ["repository fbsource"] type = "hg" path = "/data/users/${USER}/fbsource" ["bindmounts fbsource"] fbcode-buck-out = "fbcode/buck-out" buck-out = "buck-out" """ return cfg_file def get_toml_test_file_user_rc(): cfg_file = """ [core] ignoreFile = "/home/${USER}/.gitignore-override" edenDirectory = "/home/${USER}/.eden" ["repository fbsource"] type = "hg" path = "/data/users/${USER}/fbsource-override" ["bindmounts fbsource"] fbcode-buck-out = "fbcode/buck-out-override" ["repository git"] type = "git" path = "/home/${USER}/src/git/.git" """ return cfg_file class TomlConfigTest( unittest.TestCase, TemporaryDirectoryMixin, EnvironmentVariableMixin ): def setUp(self) -> None: self._test_dir = self.make_temporary_directory() self._user = "bob" self._state_dir = os.path.join(self._test_dir, ".eden") self._etc_eden_dir = os.path.join(self._test_dir, "etc/eden") self._config_d = os.path.join(self._test_dir, "etc/eden/config.d") self._home_dir = os.path.join(self._test_dir, "home", self._user) self._interpolate_dict = { "USER": self._user, "USER_ID": "42", "HOME": self._home_dir, } os.mkdir(self._state_dir) util.mkdir_p(self._config_d) util.mkdir_p(self._home_dir) self.unset_environment_variable("EDEN_EXPERIMENTAL_SYSTEMD") def copy_config_files(self) -> None: path = os.path.join(self._config_d, "defaults.toml") with open(path, "w") as text_file: text_file.write(get_toml_test_file_defaults()) path = os.path.join(self._config_d, "fbsource.repo.toml") with open(path, "w") as text_file: text_file.write(get_toml_test_file_fbsource_repo()) path = os.path.join(self._home_dir, ".edenrc") with open(path, "w") as text_file: text_file.write(get_toml_test_file_user_rc()) def assert_core_config(self, cfg: EdenInstance) -> None: self.assertEqual( cfg.get_config_value("rage.reporter", default=""), 'arc paste --title "eden rage from $(hostname)" --conduit-uri=https://phabricator.intern.facebook.com/api/', ) self.assertEqual( cfg.get_config_value("core.ignoreFile", default=""), f"/home/{self._user}/.gitignore-override", ) self.assertEqual( cfg.get_config_value("core.systemIgnoreFile", default=""), "/etc/eden/gitignore", ) self.assertEqual( cfg.get_config_value("core.edenDirectory", default=""), f"/home/{self._user}/.eden", ) def assert_git_repo_config(self, cfg: EdenInstance) -> None: cc = cfg.find_config_for_alias("git") assert cc is not None self.assertEqual(cc.backing_repo, Path(f"/home/{self._user}/src/git/.git")) self.assertEqual(cc.scm_type, "git") self.assertEqual(cc.bind_mounts, {}) self.assertEqual(cc.default_revision, "master") def assert_fbsource_repo_config(self, cfg: EdenInstance) -> None: cc = cfg.find_config_for_alias("fbsource") assert cc is not None self.assertEqual( cc.backing_repo, Path(f"/data/users/{self._user}/fbsource-override") ) self.assertEqual(cc.scm_type, "hg") self.assertEqual( cc.bind_mounts, {"fbcode-buck-out": "fbcode/buck-out-override", "buck-out": "buck-out"}, ) self.assertEqual(cc.default_revision, "master") def test_load_config(self) -> None: self.copy_config_files() cfg = self.get_config() # Check the various config sections self.assert_core_config(cfg) exp_repos = ["fbsource", "git"] self.assertEqual(cfg.get_repository_list(), exp_repos) self.assert_fbsource_repo_config(cfg) self.assert_git_repo_config(cfg) # Check if test is for toml or cfg by cfg._user_toml_cfg exp_rc_files = [ Path(self._config_d) / "defaults.toml", Path(self._config_d) / "fbsource.repo.toml", Path(self._home_dir) / ".edenrc", ] self.assertEqual(cfg.get_rc_files(), exp_rc_files) def test_no_dot_edenrc(self) -> None: self.copy_config_files() os.remove(os.path.join(self._home_dir, ".edenrc")) cfg = self.get_config() cfg._loadConfig() exp_repos = ["fbsource"] self.assertEqual(cfg.get_repository_list(), exp_repos) self.assertEqual( cfg.get_config_value("rage.reporter", default=""), 'arc paste --title "eden rage from $(hostname)" --conduit-uri=https://phabricator.intern.facebook.com/api/', ) self.assertEqual( cfg.get_config_value("core.ignoreFile", default=""), f"/home/{self._user}/.gitignore", ) self.assertEqual( cfg.get_config_value("core.systemIgnoreFile", default=""), "/etc/eden/gitignore", ) cc = cfg.find_config_for_alias("fbsource") assert cc is not None self.assertEqual(cc.backing_repo, Path(f"/data/users/{self._user}/fbsource")) self.assertEqual(cc.scm_type, "hg") self.assertEqual( cc.bind_mounts, {"fbcode-buck-out": "fbcode/buck-out", "buck-out": "buck-out"}, ) self.assertEqual(cc.default_revision, "master") def test_add_existing_repo(self) -> None: self.copy_config_files() cfg = self.get_config() with self.assertRaisesRegex( config_mod.UsageError, "repository fbsource already exists. You will need to edit " "the ~/.edenrc config file by hand to make changes to the " "repository or remove it.", ): cfg.add_repository("fbsource", "hg", f"/data/users/{self._user}/fbsource") def test_add_repo(self) -> None: self.copy_config_files() cfg = self.get_config() cfg.add_repository("fbandroid", "hg", f"/data/users/{self._user}/fbandroid") # Lets reload our config cfg = self.get_config() # Check the various config sections self.assert_core_config(cfg) exp_repos = ["fbandroid", "fbsource", "git"] self.assertEqual(cfg.get_repository_list(), exp_repos) self.assert_fbsource_repo_config(cfg) self.assert_git_repo_config(cfg) # Check the newly added repo cc = cfg.find_config_for_alias("fbandroid") assert cc is not None self.assertEqual(cc.backing_repo, Path(f"/data/users/{self._user}/fbandroid")) self.assertEqual(cc.scm_type, "hg") self.assertEqual(cc.bind_mounts, {}) self.assertEqual(cc.default_revision, "master") def test_missing_type_option_in_repository_is_an_error(self) -> None: self.write_user_config( """ ["repository myrepo"] path = "/tmp/myrepo" """ ) with self.assertRaises(Exception) as expectation: cfg = self.get_config() cfg.find_config_for_alias("myrepo") self.assertEqual( str(expectation.exception), 'repository "myrepo" missing key "type".' ) def test_invalid_type_option_in_repository_is_an_error(self) -> None: self.write_user_config( """ ["repository myrepo"] type = "invalidrepotype" path = "/tmp/myrepo" """ ) with self.assertRaises(Exception) as expectation: cfg = self.get_config() cfg.find_config_for_alias("myrepo") self.assertEqual( str(expectation.exception), 'repository "myrepo" has unsupported type.' ) def test_empty_type_option_in_repository_is_an_error(self) -> None: self.write_user_config( """ ["repository myrepo"] type = "" path = "/tmp/myrepo" """ ) with self.assertRaises(Exception) as expectation: cfg = self.get_config() cfg.find_config_for_alias("myrepo") self.assertEqual( str(expectation.exception), 'repository "myrepo" missing key "type".' ) def test_missing_path_option_in_repository_is_an_error(self) -> None: self.write_user_config( """ ["repository myrepo"] type = "hg" """ ) with self.assertRaises(Exception) as expectation: cfg = self.get_config() cfg.find_config_for_alias("myrepo") self.assertEqual( str(expectation.exception), 'repository "myrepo" missing key "path".' ) def test_empty_path_option_in_repository_is_an_error(self) -> None: self.write_user_config( """ ["repository myrepo"] type = "hg" path = "" """ ) with self.assertRaises(Exception) as expectation: cfg = self.get_config() cfg.find_config_for_alias("myrepo") self.assertEqual( str(expectation.exception), 'repository "myrepo" missing key "path".' ) def test_toml_error(self) -> None: self.copy_config_files() self.write_user_config(get_toml_test_file_invalid()) cfg = self.get_config() with self.assertRaises(toml.decoder.TomlDecodeError): cfg._loadConfig() def test_get_config_value_returns_default_if_section_is_missing(self) -> None: self.assertEqual( self.get_config().get_config_value( "missing_section.test_option", default="test default" ), "test default", ) def test_get_config_value_returns_default_if_option_is_missing(self) -> None: self.write_user_config( """[test_section] other_option = "test value" """ ) self.assertEqual( self.get_config().get_config_value( "test_section.missing_option", default="test default" ), "test default", ) def test_get_config_value_returns_value_for_string_option(self) -> None: self.write_user_config( """[test_section] test_option = "test value" """ ) self.assertEqual( self.get_config().get_config_value( "test_section.test_option", default="test default" ), "test value", ) def test_experimental_systemd_is_disabled_by_default(self) -> None: self.assertFalse(self.get_config().should_use_experimental_systemd_mode()) def test_experimental_systemd_is_enabled_with_environment_variable(self) -> None: self.set_environment_variable("EDEN_EXPERIMENTAL_SYSTEMD", "1") self.assertTrue(self.get_config().should_use_experimental_systemd_mode()) def test_experimental_systemd_is_enabled_with_user_config_setting(self) -> None: self.write_user_config( """[service] experimental_systemd = true """ ) self.assertTrue(self.get_config().should_use_experimental_systemd_mode()) def test_experimental_systemd_environment_variable_overrides_config(self) -> None: self.set_environment_variable("EDEN_EXPERIMENTAL_SYSTEMD", "1") self.write_user_config( f"""[service] experimental_systemd = false """ ) self.assertTrue(self.get_config().should_use_experimental_systemd_mode()) self.set_environment_variable("EDEN_EXPERIMENTAL_SYSTEMD", "0") self.write_user_config( f"""[service] experimental_systemd = true """ ) self.assertFalse(self.get_config().should_use_experimental_systemd_mode()) def test_empty_experimental_systemd_environment_variable_does_not_override_config( self ) -> None: self.set_environment_variable("EDEN_EXPERIMENTAL_SYSTEMD", "") self.write_user_config( f"""[service] experimental_systemd = true """ ) self.assertTrue(self.get_config().should_use_experimental_systemd_mode()) self.set_environment_variable("EDEN_EXPERIMENTAL_SYSTEMD", "") self.write_user_config( f"""[service] experimental_systemd = false """ ) self.assertFalse(self.get_config().should_use_experimental_systemd_mode()) def test_user_id_variable_is_set_to_process_uid(self) -> None: config = self.get_config_without_stub_variables() self.write_user_config( """ [testsection] testoption = "My user ID is ${USER_ID}." """ ) self.assertEqual( config.get_config_value("testsection.testoption", default=""), f"My user ID is {os.getuid()}.", ) def test_default_fallback_systemd_xdg_runtime_dir_is_run_user_uid(self) -> None: self.assertEqual( self.get_config().get_fallback_systemd_xdg_runtime_dir(), "/run/user/42" ) def test_configured_fallback_systemd_xdg_runtime_dir_expands_user_and_user_id( self ) -> None: self.write_user_config( """ [service] fallback_systemd_xdg_runtime_dir = "/var/run/${USER}/${USER_ID}" """ ) self.assertEqual( self.get_config().get_fallback_systemd_xdg_runtime_dir(), "/var/run/bob/42" ) def test_printed_config_is_valid_toml(self) -> None: self.write_user_config( """ [clone] default-revision = "master" """ ) printed_config = io.StringIO() self.get_config().print_full_config(file=printed_config) printed_config.seek(0) parsed_config = toml.load(printed_config) self.assertIn("clone", parsed_config) self.assertEqual(parsed_config["clone"].get("default-revision"), "master") def test_printed_config_expands_variables(self) -> None: self.write_user_config( """ ["repository fbsource"] type = "hg" path = "/data/users/${USER}/fbsource" """ ) printed_config = io.StringIO() self.get_config().print_full_config(file=printed_config) self.assertIn("/data/users/bob/fbsource", printed_config.getvalue()) def test_printed_config_writes_booleans_as_booleans(self) -> None: self.write_user_config( """ [service] experimental_systemd = true """ ) printed_config = io.StringIO() self.get_config().print_full_config(file=printed_config) self.assertRegex(printed_config.getvalue(), r"experimental_systemd\s*=\s*true") def get_config(self) -> EdenInstance: return EdenInstance( self._state_dir, self._etc_eden_dir, self._home_dir, self._interpolate_dict ) def get_config_without_stub_variables(self) -> EdenInstance: return EdenInstance( self._state_dir, self._etc_eden_dir, self._home_dir, interpolate_dict=None ) def write_user_config(self, content: str) -> None: path = os.path.join(self._home_dir, ".edenrc") with open(path, "w") as text_file: text_file.write(content) class EdenConfigParserTest(unittest.TestCase): unsupported_value = {"dict of string to string": ""} def test_loading_config_with_unsupported_type_is_not_an_error(self) -> None: parser = EdenConfigParser() parser.read_dict({"test_section": {"test_option": self.unsupported_value}}) def test_querying_bool_returns_bool(self) -> None: for value in [True, False]: with self.subTest(value=value): parser = EdenConfigParser() parser.read_dict({"test_section": {"test_option": value}}) self.assertEqual( parser.get_bool("test_section", "test_option", default=True), value ) self.assertEqual( parser.get_bool("test_section", "test_option", default=False), value ) def test_querying_bool_with_non_boolean_value_fails(self) -> None: for value in ["not a boolean", "", "true", "True", 0]: with self.subTest(value=value): parser = EdenConfigParser() parser.read_dict({"test_section": {"test_option": value}}) with self.assertRaises(UnexpectedType) as expectation: parser.get_bool("test_section", "test_option", default=False) # pyre-fixme[16]: `_E` has no attribute `section`. self.assertEqual(expectation.exception.section, "test_section") # pyre-fixme[16]: `_E` has no attribute `option`. self.assertEqual(expectation.exception.option, "test_option") # pyre-fixme[16]: `_E` has no attribute `value`. self.assertEqual(expectation.exception.value, value) # pyre-fixme[16]: `_E` has no attribute `expected_type`. self.assertEqual(expectation.exception.expected_type, bool) def test_querying_bool_with_value_of_unsupported_type_fails(self) -> None: parser = EdenConfigParser() parser.read_dict({"test_section": {"test_option": self.unsupported_value}}) with self.assertRaises(UnexpectedType) as expectation: parser.get_bool("test_section", "test_option", default=False) # pyre-fixme[16]: `_E` has no attribute `section`. self.assertEqual(expectation.exception.section, "test_section") # pyre-fixme[16]: `_E` has no attribute `option`. self.assertEqual(expectation.exception.option, "test_option") # pyre-fixme[16]: `_E` has no attribute `value`. self.assertEqual(expectation.exception.value, self.unsupported_value) # pyre-fixme[16]: `_E` has no attribute `expected_type`. self.assertEqual(expectation.exception.expected_type, bool) def test_querying_str_with_non_string_value_fails(self) -> None: parser = EdenConfigParser() parser.read_dict({"test_section": {"test_option": True}}) with self.assertRaises(UnexpectedType) as expectation: parser.get_str("test_section", "test_option", default="") # pyre-fixme[16]: `_E` has no attribute `section`. self.assertEqual(expectation.exception.section, "test_section") # pyre-fixme[16]: `_E` has no attribute `option`. self.assertEqual(expectation.exception.option, "test_option") # pyre-fixme[16]: `_E` has no attribute `value`. self.assertEqual(expectation.exception.value, True) # pyre-fixme[16]: `_E` has no attribute `expected_type`. self.assertEqual(expectation.exception.expected_type, str) def test_querying_section_str_to_str_returns_mapping(self) -> None: parser = EdenConfigParser() parser.read_dict({"test_section": {"a": "a value", "b": "b value"}}) section = parser.get_section_str_to_str("test_section") self.assertCountEqual(section, {"a", "b"}) self.assertEqual(section["a"], "a value") self.assertEqual(section["b"], "b value") def test_querying_section_str_to_any_fails_if_option_has_unsupported_type( self ) -> None: parser = EdenConfigParser() parser.read_dict({"test_section": {"unsupported": self.unsupported_value}}) with self.assertRaises(UnexpectedType) as expectation: parser.get_section_str_to_any("test_section") # pyre-fixme[16]: `_E` has no attribute `section`. self.assertEqual(expectation.exception.section, "test_section") # pyre-fixme[16]: `_E` has no attribute `option`. self.assertEqual(expectation.exception.option, "unsupported") # pyre-fixme[16]: `_E` has no attribute `value`. self.assertEqual(expectation.exception.value, self.unsupported_value) # pyre-fixme[16]: `_E` has no attribute `expected_type`. self.assertIsNone(expectation.exception.expected_type) def test_querying_section_str_to_any_interpolates_options(self) -> None: parser = EdenConfigParser( interpolation=EdenConfigInterpolator({"USER": "alice"}) ) parser.read_dict({"test_section": {"test_option": "hello ${USER}"}}) section = parser.get_section_str_to_any("test_section") self.assertEqual(section.get("test_option"), "hello alice") def test_querying_section_str_to_any_returns_any_supported_type(self) -> None: parser = EdenConfigParser() parser.read_dict( { "test_section": { "bool_option": True, "string_array_option": ["hello", "world"], "string_option": "hello", } } ) section = parser.get_section_str_to_any("test_section") self.assertEqual(section["bool_option"], True) self.assertEqual(list(section["string_array_option"]), ["hello", "world"]) self.assertEqual(section["string_option"], "hello") def test_querying_section_str_to_str_with_non_string_value_fails(self) -> None: parser = EdenConfigParser() parser.read_dict({"test_section": {"a": False}}) with self.assertRaises(UnexpectedType) as expectation: parser.get_section_str_to_str("test_section") # pyre-fixme[16]: `_E` has no attribute `section`. self.assertEqual(expectation.exception.section, "test_section") # pyre-fixme[16]: `_E` has no attribute `option`. self.assertEqual(expectation.exception.option, "a") # pyre-fixme[16]: `_E` has no attribute `value`. self.assertEqual(expectation.exception.value, False) # pyre-fixme[16]: `_E` has no attribute `expected_type`. self.assertEqual(expectation.exception.expected_type, str) def test_querying_section_str_to_str_of_missing_section_fails(self) -> None: parser = EdenConfigParser() parser.read_dict({"test_section": {"a": "a value"}}) with self.assertRaises(configparser.NoSectionError) as expectation: parser.get_section_str_to_str("not_test_section") section: str = expectation.exception.section # type: ignore self.assertEqual(section, "not_test_section") def test_querying_strs_with_empty_array_returns_empty_sequence(self) -> None: parser = EdenConfigParser() parser.read_dict({"test_section": {"test_option": []}}) self.assertEqual( list( parser.get_strs( "test_section", "test_option", default=["default value"] ) ), [], ) def test_querying_strs_with_array_of_strings_returns_strs(self) -> None: parser = EdenConfigParser() parser.read_dict({"test_section": {"test_option": ["first", "second", "3rd"]}}) self.assertEqual( list(parser.get_strs("test_section", "test_option", default=[])), ["first", "second", "3rd"], ) def test_querying_strs_with_array_of_non_strings_fails(self) -> None: parser = EdenConfigParser() parser.read_dict({"test_section": {"test_option": [123]}}) with self.assertRaises(UnexpectedType) as expectation: parser.get_strs("test_section", "test_option", default=[]) # pyre-fixme[16]: `_E` has no attribute `section`. self.assertEqual(expectation.exception.section, "test_section") # pyre-fixme[16]: `_E` has no attribute `option`. self.assertEqual(expectation.exception.option, "test_option") # pyre-fixme[16]: `_E` has no attribute `value`. self.assertEqual(expectation.exception.value, [123]) # pyre-fixme[16]: `_E` has no attribute `expected_type`. self.assertEqual(expectation.exception.expected_type, configutil.Strs) def test_querying_missing_value_as_strs_returns_default(self) -> None: parser = EdenConfigParser() parser.read_dict({"test_section": {"bogus_option": []}}) self.assertEqual( list( parser.get_strs( "test_section", "missing_option", default=["default value"] ) ), ["default value"], ) def test_str_sequences_are_interpolated(self) -> None: parser = EdenConfigParser( interpolation=EdenConfigInterpolator({"USER": "alice"}) ) parser.read_dict( { "test_section": { "test_option": ["sudo", "-u", "${USER}", "echo", "Hello, ${USER}!"] } } ) self.assertEqual( list(parser.get_strs("test_section", "test_option", default=[])), ["sudo", "-u", "alice", "echo", "Hello, alice!"], ) def test_unexpected_type_error_messages_are_helpful(self) -> None: self.assertEqual( 'Expected boolean for service.experimental_systemd, but got string: "true"', str( UnexpectedType( section="service", option="experimental_systemd", value="true", expected_type=bool, ) ), ) self.assertEqual( "Expected string for repository myrepo.path, but got boolean: true", str( UnexpectedType( section="repository myrepo", option="path", value=True, expected_type=str, ) ), ) self.assertRegex( str( UnexpectedType( section="section", option="option", value={}, expected_type=None ) ), r"^Unexpected dict for section.option: \{\s*\}$", ) self.assertEqual( "Expected array of strings for service.command, but got array: [ 123,]", str( UnexpectedType( section="service", option="command", value=[123], expected_type=configutil.Strs, ) ), ) ``` #### File: cli/test/interp_test.py ```python import configparser import unittest from .. import configinterpolator class InterpolatorTest(unittest.TestCase): def test_basic_subs(self): defaults = {"USER": "wez", "RECURSIVE": "a${RECURSIVE}b"} parser = configparser.ConfigParser( interpolation=configinterpolator.EdenConfigInterpolator(defaults) ) parser.add_section("section") parser.set("section", "user", "${USER}") parser.set("section", "rec", "${RECURSIVE}") parser.set("section", "simple", "value") self.assertEqual("wez", parser.get("section", "user")) self.assertEqual("value", parser.get("section", "simple")) self.assertEqual("a${RECURSIVE}b", parser.get("section", "rec")) actual = {} for section in parser.sections(): actual[section] = dict(parser.items(section)) expect = { "section": {"user": "wez", "simple": "value", "rec": "a${RECURSIVE}b"} } self.assertEqual(expect, actual) ``` #### File: cli/test/tabulate_test.py ```python import unittest from eden.cli.tabulate import tabulate eol = "" class TabulateTest(unittest.TestCase): def test_tabulate(self): output = tabulate( ["a", "b", "c"], rows=[ {"a": "a_1", "b": "b_1", "c": "see_1"}, {"a": "a_two", "b": "b_2", "c": "c_2"}, ], ) self.assertEqual( output, f"""\ A B C {eol} a_1 b_1 see_1{eol} a_two b_2 c_2 {eol}""", ) def test_tabulate_header_labels(self): output = tabulate( ["a", "b", "c"], rows=[ {"a": "a_1", "b": "b_1", "c": "see_1"}, {"a": "a_two", "b": "b_2", "c": "c_2"}, ], header_labels={ "a": "Col1", "b": "bee", # omitting c so that we can test defaulting }, ) self.assertEqual( output, f"""\ Col1 bee C {eol} a_1 b_1 see_1{eol} a_two b_2 c_2 {eol}""", ) ``` #### File: fs/service/client.py ```python from __future__ import absolute_import, division, print_function, unicode_literals import os from typing import Any, Optional, cast # noqa: F401 from facebook.eden import EdenService from thrift.protocol.THeaderProtocol import THeaderProtocol from thrift.Thrift import TApplicationException from thrift.transport.THeaderTransport import THeaderTransport from thrift.transport.TTransport import TTransportException from .windows_thrift import EdenTSocket SOCKET_PATH = "socket" class EdenNotRunningError(Exception): def __init__(self, eden_dir): # type: (str) -> None msg = "edenfs daemon does not appear to be running: tried %s" % eden_dir super(EdenNotRunningError, self).__init__(msg) self.eden_dir = eden_dir # Monkey-patch EdenService.EdenError's __str__() behavior to just return the # error message. By default it returns the same data as __repr__(), which is # ugly to show to users. def _eden_thrift_error_str(ex): # type: (EdenService.EdenError) -> str return ex.message # TODO: https://github.com/python/mypy/issues/2427 cast(Any, EdenService.EdenError).__str__ = _eden_thrift_error_str class EdenClient(EdenService.Client): """ EdenClient is a subclass of EdenService.Client that provides a few additional conveniences: - Smarter constructor - Implement the context manager __enter__ and __exit__ methods, so it can be used in with statements. """ def __init__(self, eden_dir=None, socket_path=None): # type: (Optional[str], Optional[str]) -> None if socket_path is not None: self._socket_path = socket_path elif eden_dir is not None: self._socket_path = os.path.join(eden_dir, SOCKET_PATH) else: raise TypeError("one of eden_dir or socket_path is required") self._socket = EdenTSocket(unix_socket=self._socket_path) # We used to set a timeout here, but picking the right duration is hard, # and safely retrying an arbitrary thrift call may not be safe. So we # just leave the client with no timeout. # self.set_timeout(60) self.set_timeout(None) transport = THeaderTransport(self._socket) self._transport = transport # type: Optional[THeaderTransport] self._protocol = THeaderProtocol(transport) super(EdenClient, self).__init__(self._protocol) def __enter__(self): # type: () -> EdenClient self.open() return self def __exit__(self, exc_type, exc_value, exc_traceback): # type: (Any, Any, Any) -> Optional[bool] self.close() return False def open(self): # type: () -> None try: assert self._transport is not None self._transport.open() except TTransportException as ex: self.close() if ex.type == TTransportException.NOT_OPEN: raise EdenNotRunningError(self._socket_path) raise def close(self): # type: () -> None if self._transport is not None: self._transport.close() self._transport = None def shutdown(self): # type: () -> None self.initiateShutdown( "EdenClient.shutdown() invoked with no reason by pid=%s uid=%s" % (os.getpid(), os.getuid()) ) def initiateShutdown(self, reason): # type: (str) -> None """Helper for stopping the server. To swing through the transition from calling the base shutdown() method with context to the initiateShutdown() method with a reason, we want to try the latter method first, falling back to the old way to handle the case where we deploy a newer client while an older server is still running on the local system.""" try: super().initiateShutdown(reason) except TApplicationException as ex: if ex.type == TApplicationException.UNKNOWN_METHOD: # Running an older server build, fall back to the old shutdown # method with no context super().shutdown() else: raise def set_timeout(self, timeout): # type: (Optional[float]) -> None if timeout is None: timeout_ms = None else: timeout_ms = timeout * 1000 self.set_timeout_ms(timeout_ms) def set_timeout_ms(self, timeout_ms): # type: (Optional[float]) -> None self._socket.setTimeout(timeout_ms) def create_thrift_client(eden_dir=None, socket_path=None): # type: (Optional[str], Optional[str]) -> EdenClient """Construct a thrift client to speak to the running eden server instance associated with the specified mount point. @return Returns a context manager for EdenService.Client. """ return EdenClient(eden_dir=eden_dir, socket_path=socket_path) ``` #### File: eden/integration/chown_test.py ```python import grp import os import pwd from .lib import repobase, testcase class ChownTest(testcase.EdenRepoTest): nobody_uid: int nobody_gid: int def populate_repo(self) -> None: self.repo.write_file("README.md", "tbd\n") self.repo.write_file("proj/src/main.c", "int main() { return 0; }\n") self.repo.write_file("proj/src/lib.c", "void foo() {}\n") self.repo.write_file("proj/src/include/lib.h", "#pragma once\nvoid foo();\n") self.repo.write_file( "proj/test/test.sh", "#!/bin/bash\necho test\n", mode=0o755 ) self.repo.write_file("doc/foo.txt", "foo\n") self.repo.write_file("doc/bar.txt", "bar\n") self.repo.symlink("proj/doc", "../doc") self.repo.commit("Initial commit.") def create_repo(self, name: str) -> repobase.Repository: return self.create_hg_repo("main") def setup_eden_test(self) -> None: super().setup_eden_test() self.nobody_uid = pwd.getpwnam("nobody").pw_uid self.nobody_gid = grp.getgrnam("nobody").gr_gid def assert_path(self, path: str): stat = os.lstat(path) self.assertEqual( stat.st_uid, self.nobody_uid, f"{stat.st_uid} uid does not match expected \ {self.nobody_uid} for path {path}", ) self.assertEqual( stat.st_gid, self.nobody_gid, f"{stat.st_gid} gid does not match expected \ {self.nobody_gid} for path {path}", ) def assert_chown_worked(self, mount: str) -> None: for root, dirs, files in os.walk(mount, followlinks=False): # Avoid checking anything in .eden since the # symlinks don't have o+r permissions if root.endswith(".eden"): continue for d in dirs: self.assert_path(os.path.join(root, d)) for f in files: self.assert_path(os.path.join(root, f)) def run_chown(self, mount: str) -> None: self.eden.run_cmd("chown", mount, str(self.nobody_uid), str(self.nobody_gid)) def test_chown(self) -> None: self.run_chown(self.mount) self.assert_chown_worked(self.mount) def test_chown_with_overlay(self) -> None: with open(os.path.join(self.mount, "notinrepo"), "w") as f: f.write("created\n") self.run_chown(self.mount) self.assert_chown_worked(self.mount) def test_chown_with_bindmount(self) -> None: edenrc = os.path.join(os.environ["HOME"], ".edenrc") with open(edenrc, "w") as f: f.write( """\ ["repository {repo_name}"] path = "{repo_path}" type = "{repo_type}" ["bindmounts {repo_name}"] buck-out = "buck-out" """.format( repo_name=self.repo_name, repo_path=self.repo.get_canonical_root(), repo_type=self.repo.get_type(), ) ) basename = "eden_mount" tmp_mount = os.path.join(self.tmp_dir, basename) self.eden.run_cmd("clone", self.repo_name, tmp_mount) with open(os.path.join(tmp_mount, "buck-out", "bindmountedfile"), "w") as f: f.write("created\n") self.run_chown(tmp_mount) self.assert_chown_worked(tmp_mount) ``` #### File: eden/integration/glob_test.py ```python from typing import List, Optional from facebook.eden.ttypes import EdenError, GlobParams from .lib import testcase @testcase.eden_repo_test class GlobTest(testcase.EdenRepoTest): def populate_repo(self) -> None: self.repo.write_file("hello", "hola\n") self.repo.write_file("adir/file", "foo!\n") self.repo.write_file("bdir/file", "bar!\n") self.repo.write_file("bdir/otherfile", "foo!\n") self.repo.symlink("slink", "hello") self.repo.write_file("cdir/subdir/new.txt", "and improved") self.repo.write_file("ddir/notdotfile", "") self.repo.write_file("ddir/subdir/notdotfile", "") self.repo.write_file("ddir/subdir/.dotfile", "") self.repo.write_file("java/com/example/package.html", "") self.repo.write_file("java/com/example/Example.java", "") self.repo.write_file("java/com/example/foo/Foo.java", "") self.repo.write_file("java/com/example/foo/bar/Bar.java", "") self.repo.write_file("java/com/example/foo/bar/baz/Baz.java", "") self.repo.commit("Commit 1.") def setUp(self) -> None: super().setUp() self.client = self.get_thrift_client() self.client.open() self.addCleanup(self.client.close) def test_exact_path_component_match(self) -> None: self.assert_glob(["hello"], [b"hello"]) self.assert_glob(["ddir/subdir/.dotfile"], [b"ddir/subdir/.dotfile"]) def test_wildcard_path_component_match(self) -> None: self.assert_glob(["hel*"], [b"hello"]) self.assert_glob(["ad*"], [b"adir"]) self.assert_glob(["a*/file"], [b"adir/file"]) def test_no_accidental_substring_match(self) -> None: self.assert_glob(["hell"], [], msg="No accidental substring match") def test_match_all_files_in_directory(self) -> None: self.assert_glob(["bdir/*"], [b"bdir/file", b"bdir/otherfile"]) def test_match_all_files_in_directory_with_dotfile(self) -> None: self.assert_glob(["ddir/subdir/*"], [b"ddir/subdir/notdotfile"]) def test_overlapping_globs(self) -> None: self.assert_glob( ["adir/*", "**/file"], [b"adir/file", b"bdir/file"], msg="De-duplicate results from multiple globs", ) def test_recursive_wildcard_prefix(self) -> None: self.assert_glob(["**/file"], [b"adir/file", b"bdir/file"]) def test_recursive_wildcard_suffix(self) -> None: self.assert_glob(["adir/**"], [b"adir/file"]) self.assert_glob(["adir/**/*"], [b"adir/file"]) def test_recursive_wildcard_suffix_with_dotfile(self) -> None: self.assert_glob( ["ddir/**"], [b"ddir/notdotfile", b"ddir/subdir", b"ddir/subdir/notdotfile"] ) self.assert_glob( ["ddir/**"], [ b"ddir/subdir", b"ddir/subdir/.dotfile", b"ddir/notdotfile", b"ddir/subdir/notdotfile", ], include_dotfiles=True, ) self.assert_glob( ["ddir/**/*"], [b"ddir/notdotfile", b"ddir/subdir", b"ddir/subdir/notdotfile"], ) self.assert_glob( ["ddir/**/*"], [ b"ddir/subdir", b"ddir/subdir/.dotfile", b"ddir/notdotfile", b"ddir/subdir/notdotfile", ], include_dotfiles=True, ) def test_qualified_recursive_wildcard(self) -> None: self.assert_glob( ["java/com/**/*.java"], [ b"java/com/example/Example.java", b"java/com/example/foo/Foo.java", b"java/com/example/foo/bar/Bar.java", b"java/com/example/foo/bar/baz/Baz.java", ], ) self.assert_glob( ["java/com/example/*/*.java"], [b"java/com/example/foo/Foo.java"] ) def test_malformed_query(self) -> None: with self.assertRaises(EdenError) as ctx: self.client.glob(self.mount_path_bytes, ["adir["]) self.assertIn("unterminated bracket sequence", str(ctx.exception)) with self.assertRaises(EdenError) as ctx: self.client.globFiles(GlobParams(self.mount_path_bytes, ["adir["], True)) self.assertIn("unterminated bracket sequence", str(ctx.exception)) def assert_glob( self, globs: List[str], expected_matches: List[bytes], include_dotfiles: bool = False, msg: Optional[str] = None, ) -> None: params = GlobParams(self.mount_path_bytes, globs, include_dotfiles) self.assertCountEqual( expected_matches, self.client.globFiles(params).matchingFiles, msg=msg ) # Also verify behavior of legacy Thrift API. if include_dotfiles: self.assertCountEqual( expected_matches, self.client.glob(self.mount_path_bytes, globs), msg=msg, ) ``` #### File: integration/hg/debug_hg_get_dirstate_tuple_test.py ```python from textwrap import dedent from eden.integration.lib import hgrepo from .lib.hg_extension_test_base import EdenHgTestCase, hg_test @hg_test class DebugHgGetDirstateTupleTest(EdenHgTestCase): def populate_backing_repo(self, repo: hgrepo.HgRepository) -> None: repo.write_file("hello", "hola\n") repo.write_file("dir/file", "blah\n") repo.commit("Initial commit.") def test_get_dirstate_tuple_normal_file(self) -> None: output = self.eden.run_cmd( "debug", "hg_get_dirstate_tuple", self.get_path("hello") ) expected = dedent( """\ hello status = Normal mode = 0o100644 mergeState = NotApplicable """ ) self.assertEqual(expected, output) ``` #### File: integration/hg/files_test.py ```python import os import subprocess from typing import List from eden.integration.lib import hgrepo from .lib.hg_extension_test_base import EdenHgTestCase, hg_test @hg_test class FilesTest(EdenHgTestCase): def populate_backing_repo(self, repo: hgrepo.HgRepository) -> None: repo.write_file("README.md", "docs\n") repo.write_file("LICENSE", "legal legal\n") repo.write_file("src/main.cpp", "code\n") repo.write_file("src/lib.cpp", "more code\n") repo.write_file("src/stuff.cpp", "more code\n") repo.write_file("src/util.py", "utils\n") repo.write_file("src/lib/module.cpp", "module\n") repo.write_file("src/lib/foo.cpp", "foo\n") repo.write_file("src/include/stuff.h", "header\n") repo.write_file("test/test1.py", "test\n") repo.write_file("test/test2.py", "test\n") repo.commit("Initial commit.") def _assert_files(self, args: List[str], expected: List[str], cwd=None) -> None: stdout = self.hg("files", *args, cwd=cwd) results = stdout.splitlines() # `hg files` currently produces results in sorted order, # so we check for exact ordering here. self.assertEqual(expected, results) def test_all_files(self) -> None: self._assert_files( [], [ "LICENSE", "README.md", "src/include/stuff.h", "src/lib.cpp", "src/lib/foo.cpp", "src/lib/module.cpp", "src/main.cpp", "src/stuff.cpp", "src/util.py", "test/test1.py", "test/test2.py", ], ) def test_globs(self) -> None: self._assert_files( ["glob:src/*.cpp"], ["src/lib.cpp", "src/main.cpp", "src/stuff.cpp"] ) self._assert_files( ["glob:**.cpp"], [ "src/lib.cpp", "src/lib/foo.cpp", "src/lib/module.cpp", "src/main.cpp", "src/stuff.cpp", ], ) def test_subdirectory(self) -> None: self._assert_files( [], [ "../LICENSE", "../README.md", "include/stuff.h", "lib.cpp", "lib/foo.cpp", "lib/module.cpp", "main.cpp", "stuff.cpp", "util.py", "../test/test1.py", "../test/test2.py", ], cwd=os.path.join(self.repo.path, "src"), ) self._assert_files( ["."], [ "include/stuff.h", "lib.cpp", "lib/foo.cpp", "lib/module.cpp", "main.cpp", "stuff.cpp", "util.py", ], cwd=os.path.join(self.repo.path, "src"), ) self._assert_files( ["glob:*.cpp"], ["lib.cpp", "main.cpp", "stuff.cpp"], cwd=os.path.join(self.repo.path, "src"), ) def test_bad_matches(self) -> None: # No matches at all should return 1 proc = self.repo.run_hg( "files", "foobar", stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=False, ) self.assertEqual(proc.stdout, b"") self.assertEqual(proc.stderr, b"") self.assertEqual(proc.returncode, 1) # Some matching and some non-matching patterns returns 0 # and does not print any diagnostics about the non-matching patterns. proc = self.repo.run_hg( "files", "foobar", "test", stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=False, ) self.assertEqual(proc.stdout, b"test/test1.py\ntest/test2.py\n") self.assertEqual(proc.stderr, b"") self.assertEqual(proc.returncode, 0) def test_files_with_changes(self) -> None: self.write_file("src/new.cpp", "new file\n") self.hg("add", "src/new.cpp") self.hg("rm", "src/lib/foo.cpp") self.write_file("src/untracked.cpp", "should not be included\n") self._assert_files( [], [ "LICENSE", "README.md", "src/include/stuff.h", "src/lib.cpp", "src/lib/module.cpp", "src/main.cpp", "src/new.cpp", "src/stuff.cpp", "src/util.py", "test/test1.py", "test/test2.py", ], ) self._assert_files( ["glob:**.cpp"], [ "src/lib.cpp", "src/lib/module.cpp", "src/main.cpp", "src/new.cpp", "src/stuff.cpp", ], ) ``` #### File: integration/hg/histedit_test.py ```python import os from eden.integration.lib import hgrepo from .lib.hg_extension_test_base import EdenHgTestCase, hg_test from .lib.histedit_command import HisteditCommand @hg_test class HisteditTest(EdenHgTestCase): _commit1: str _commit2: str _commit3: str def populate_backing_repo(self, repo: hgrepo.HgRepository) -> None: repo.write_file("first", "") self._commit1 = repo.commit("first commit") repo.write_file("second", "") self._commit2 = repo.commit("second commit") repo.write_file("third", "") self._commit3 = repo.commit("third commit") def test_stop_at_earlier_commit_in_the_stack_without_reordering(self) -> None: commits = self.repo.log() self.assertEqual([self._commit1, self._commit2, self._commit3], commits) # histedit, stopping in the middle of the stack. histedit = HisteditCommand() histedit.pick(self._commit1) histedit.stop(self._commit2) histedit.pick(self._commit3) # We expect histedit to terminate with a nonzero exit code in this case. with self.assertRaises(hgrepo.HgError) as context: histedit.run(self) head = self.repo.log(revset=".")[0] expected_msg = ( "Changes committed as %s. " "You may amend the changeset now." % head[:12] ) self.assertIn(expected_msg, str(context.exception)) # Verify the new commit stack and the histedit termination state. # Note that the hash of commit[0] is unpredictable because Hg gives it a # new hash in anticipation of the user amending it. parent = self.repo.log(revset=".^")[0] self.assertEqual(self._commit1, parent) self.assertEqual(["first commit", "second commit"], self.repo.log("{desc}")) # Make sure the working copy is in the expected state. self.assert_status_empty(op="histedit") self.assertSetEqual( {".eden", ".hg", "first", "second"}, set(os.listdir(self.repo.get_canonical_root())), ) self.hg("histedit", "--continue") self.assertEqual( ["first commit", "second commit", "third commit"], self.repo.log("{desc}") ) self.assert_status_empty() self.assertSetEqual( {".eden", ".hg", "first", "second", "third"}, set(os.listdir(self.repo.get_canonical_root())), ) def test_reordering_commits_without_merge_conflicts(self) -> None: self.assertEqual( ["first commit", "second commit", "third commit"], self.repo.log("{desc}") ) # histedit, reordering the stack in a conflict-free way. histedit = HisteditCommand() histedit.pick(self._commit2) histedit.pick(self._commit3) histedit.pick(self._commit1) histedit.run(self) self.assertEqual( ["second commit", "third commit", "first commit"], self.repo.log("{desc}") ) self.assert_status_empty() self.assertSetEqual( {".eden", ".hg", "first", "second", "third"}, set(os.listdir(self.repo.get_canonical_root())), ) def test_drop_commit_without_merge_conflicts(self) -> None: self.assertEqual( ["first commit", "second commit", "third commit"], self.repo.log("{desc}") ) # histedit, reordering the stack in a conflict-free way. histedit = HisteditCommand() histedit.pick(self._commit1) histedit.drop(self._commit2) histedit.pick(self._commit3) histedit.run(self) self.assertEqual(["first commit", "third commit"], self.repo.log("{desc}")) self.assert_status_empty() self.assertSetEqual( {".eden", ".hg", "first", "third"}, set(os.listdir(self.repo.get_canonical_root())), ) def test_roll_two_commits_into_parent(self) -> None: self.assertEqual( ["first commit", "second commit", "third commit"], self.repo.log("{desc}") ) # histedit, reordering the stack in a conflict-free way. histedit = HisteditCommand() histedit.pick(self._commit1) histedit.roll(self._commit2) histedit.roll(self._commit3) histedit.run(self) self.assertEqual(["first commit"], self.repo.log("{desc}")) self.assert_status_empty() self.assertSetEqual( {".eden", ".hg", "first", "second", "third"}, set(os.listdir(self.repo.get_canonical_root())), ) def test_abort_after_merge_conflict(self) -> None: self.write_file("will_have_confict.txt", "original\n") self.hg("add", "will_have_confict.txt") commit4 = self.repo.commit("commit4") self.write_file("will_have_confict.txt", "1\n") commit5 = self.repo.commit("commit5") self.write_file("will_have_confict.txt", "2\n") commit6 = self.repo.commit("commit6") histedit = HisteditCommand() histedit.pick(commit4) histedit.pick(commit6) histedit.pick(commit5) original_commits = self.repo.log() with self.assertRaises(hgrepo.HgError) as context: histedit.run(self, ancestor=commit4) expected_msg = ( "Fix up the change (pick %s)\n" % commit6[:12] ) + " (hg histedit --continue to resume)" self.assertIn(expected_msg, str(context.exception)) self.assert_status({"will_have_confict.txt": "M"}, op="histedit") self.assert_file_regex( "will_have_confict.txt", """\ <<<<<<< local: .* original ======= 2 >>>>>>> histedit: .* """, ) self.hg("histedit", "--abort") self.assertEqual("2\n", self.read_file("will_have_confict.txt")) self.assertListEqual( original_commits, self.repo.log(), msg="The original commit hashes should be restored by the abort.", ) self.assert_status_empty() ``` #### File: integration/hg/non_eden_operation_test.py ```python import os from eden.integration.hg.lib.hg_extension_test_base import EdenHgTestCase, hg_test from eden.integration.lib import hgrepo @hg_test class NonEdenOperationTest(EdenHgTestCase): def populate_backing_repo(self, repo: hgrepo.HgRepository) -> None: repo.write_file("hello.txt", "hola") def test_hg_clone_non_eden_repo_within_eden_repo(self): """Regression test to ensure that running `hg` commands from an Eden-backed Hg repo on a non-Eden-backed Hg repo work as expected.""" non_eden_hg_repo = os.path.join(self.tmp_dir, "non-eden-hg-repo") os.mkdir(non_eden_hg_repo) # Create the non-Eden Hg repo. self.hg("init", cwd=non_eden_hg_repo) first_file = os.path.join(non_eden_hg_repo, "first.txt") with open(first_file, "w") as f: f.write("First file in non-Eden-backed Hg repo.\n") self.hg( "commit", "--config", "ui.username=<NAME> <<EMAIL>>", "-Am", "first commit", cwd=non_eden_hg_repo, ) # Run `hg clone` from the Eden repo. clone_of_non_eden_hg_repo = os.path.join(self.tmp_dir, "clone-target") self.hg( "clone", non_eden_hg_repo, clone_of_non_eden_hg_repo, cwd=self.repo.path ) dest_first_file = os.path.join(clone_of_non_eden_hg_repo, "first.txt") with open(dest_first_file, "r") as f: contents = f.read() self.assertEqual("First file in non-Eden-backed Hg repo.\n", contents) ``` #### File: integration/hg/status_test.py ```python import os from eden.integration.lib.hgrepo import HgRepository from .lib.hg_extension_test_base import EdenHgTestCase, hg_test @hg_test("Flatmanifest", "Treemanifest", "TreeOnly") class StatusTest(EdenHgTestCase): def populate_backing_repo(self, repo: HgRepository) -> None: repo.write_file("hello.txt", "hola") repo.write_file("subdir/file.txt", "contents") repo.commit("Initial commit.") def test_status(self) -> None: """Test various `hg status` states in the root of an Eden mount.""" self.assert_status_empty() self.touch("world.txt") self.assert_status({"world.txt": "?"}) self.hg("add", "world.txt") self.assert_status({"world.txt": "A"}) self.rm("hello.txt") self.assert_status({"hello.txt": "!", "world.txt": "A"}) with open(self.get_path("hello.txt"), "w") as f: f.write("new contents") self.assert_status({"hello.txt": "M", "world.txt": "A"}) self.hg("forget", "hello.txt") self.assert_status({"hello.txt": "R", "world.txt": "A"}) self.assertEqual("new contents", self.read_file("hello.txt")) self.hg("rm", "hello.txt") self.assert_status({"hello.txt": "R", "world.txt": "A"}) # If the file is already forgotten, `hg rm` does not remove it from # disk. self.assertEqual("new contents", self.read_file("hello.txt")) self.hg("add", "hello.txt") self.assert_status({"hello.txt": "M", "world.txt": "A"}) self.assertEqual("new contents", self.read_file("hello.txt")) self.hg("rm", "--force", "hello.txt") self.assert_status({"hello.txt": "R", "world.txt": "A"}) self.assertFalse(os.path.exists(self.get_path("hello.txt"))) def test_manual_revert(self) -> None: self.assert_status_empty() self.write_file("dir1/a.txt", "original contents\n") self.hg("add", "dir1/a.txt") self.repo.commit("create a.txt") self.assert_status_empty() self.write_file("dir1/a.txt", "updated contents\n") self.repo.commit("modify a.txt") self.assert_status_empty() self.write_file("dir1/a.txt", "original contents\n") self.repo.commit("revert a.txt") self.assert_status_empty() def test_truncation_upon_open_modifies_file(self) -> None: fd = os.open(os.path.join(self.mount, "subdir/file.txt"), os.O_TRUNC) try: self.assert_status({"subdir/file.txt": "M"}) finally: os.close(fd) def test_truncation_after_open_modifies_file(self) -> None: fd = os.open(os.path.join(self.mount, "subdir/file.txt"), os.O_WRONLY) try: os.ftruncate(fd, 0) self.assert_status({"subdir/file.txt": "M"}) finally: os.close(fd) def test_partial_truncation_after_open_modifies_file(self) -> None: fd = os.open(os.path.join(self.mount, "subdir/file.txt"), os.O_WRONLY) try: os.ftruncate(fd, 1) self.assert_status({"subdir/file.txt": "M"}) finally: os.close(fd) # Define a separate TestCase class purely to test with different initial # repository contents. @hg_test class StatusRevertTest(EdenHgTestCase): commit1: str commit2: str commit3: str commit4: str def populate_backing_repo(self, repo: HgRepository) -> None: repo.write_file("dir1/a.txt", "original contents of a\n") repo.write_file("dir1/b.txt", "b.txt\n") repo.write_file("dir1/c.txt", "c.txt\n") repo.write_file("dir2/x.txt", "x.txt\n") repo.write_file("dir2/y.txt", "y.txt\n") self.commit1 = repo.commit("Initial commit.") repo.write_file("dir1/a.txt", "updated contents of a\n", add=False) self.commit2 = repo.commit("commit 2") repo.write_file("dir1/b.txt", "updated b\n", add=False) self.commit3 = repo.commit("commit 3") repo.write_file("dir1/a.txt", "original contents of a\n") self.commit4 = repo.commit("commit 4") def test_reverted_contents(self) -> None: self.assert_status_empty() # Read dir1/a.txt so it is loaded by edenfs self.read_file("dir1/a.txt") # Reset the state from commit4 to commit1 without actually doing a # checkout. dir1/a.txt has the same contents in commit4 as in commit1, # but different blob hashes. self.hg("reset", "--keep", self.commit1) # Only dir1/b.txt should be reported as modified. # dir1/a.txt should not show up in the status output. self.assert_status({"dir1/b.txt": "M"}) ``` #### File: integration/hg/storage_engine_test.py ```python import abc import os from eden.integration.lib import hgrepo from .lib.hg_extension_test_base import EdenHgTestCase, hg_test from .lib.histedit_command import HisteditCommand class _Hidden: # This _Hidden class exists soley to hide the abstract StorageEngineTest class from # the unittest framework, so it does not find it during test discovery. The # unittest code is unfortunately not smart enough to skip abstract classes. class StorageEngineTest(EdenHgTestCase, metaclass=abc.ABCMeta): _commit1: str _commit2: str _commit3: str # These tests were originally copied from histedit_test.py. It doesn't # matter which tests are used as long as commits are created and checked out # and a realistic workflow is verified against each storage engine. def populate_backing_repo(self, repo: hgrepo.HgRepository) -> None: repo.write_file("first", "") self._commit1 = repo.commit("first commit") repo.write_file("second", "") self._commit2 = repo.commit("second commit") repo.write_file("third", "") self._commit3 = repo.commit("third commit") @abc.abstractmethod def select_storage_engine(self) -> str: raise NotImplementedError() def test_stop_at_earlier_commit_in_the_stack_without_reordering(self) -> None: commits = self.repo.log() self.assertEqual([self._commit1, self._commit2, self._commit3], commits) # histedit, stopping in the middle of the stack. histedit = HisteditCommand() histedit.pick(self._commit1) histedit.stop(self._commit2) histedit.pick(self._commit3) # We expect histedit to terminate with a nonzero exit code in this case. with self.assertRaises(hgrepo.HgError) as context: histedit.run(self) head = self.repo.log(revset=".")[0] expected_msg = ( "Changes committed as %s. " "You may amend the changeset now." % head[:12] ) self.assertIn(expected_msg, str(context.exception)) # Verify the new commit stack and the histedit termination state. # Note that the hash of commit[0] is unpredictable because Hg gives it a # new hash in anticipation of the user amending it. parent = self.repo.log(revset=".^")[0] self.assertEqual(self._commit1, parent) self.assertEqual(["first commit", "second commit"], self.repo.log("{desc}")) # Make sure the working copy is in the expected state. self.assert_status_empty(op="histedit") self.assertSetEqual( {".eden", ".hg", "first", "second"}, set(os.listdir(self.repo.get_canonical_root())), ) self.hg("histedit", "--continue") self.assertEqual( ["first commit", "second commit", "third commit"], self.repo.log("{desc}"), ) self.assert_status_empty() self.assertSetEqual( {".eden", ".hg", "first", "second", "third"}, set(os.listdir(self.repo.get_canonical_root())), ) # Each LocalStore implementation may complete its futures from different # threads. Verify that Eden works the same with all of them. @hg_test class HisteditMemoryStorageEngineTest(_Hidden.StorageEngineTest): def select_storage_engine(self) -> str: return "memory" @hg_test class HisteditSQLiteStorageEngineTest(_Hidden.StorageEngineTest): def select_storage_engine(self) -> str: return "sqlite" @hg_test class HisteditRocksDBStorageEngineTest(_Hidden.StorageEngineTest): def select_storage_engine(self) -> str: return "rocksdb" ``` #### File: integration/hg/update_test.py ```python import logging import os import threading import unittest from textwrap import dedent from typing import Dict, List, Set from eden.integration.hg.lib.hg_extension_test_base import EdenHgTestCase, hg_test from eden.integration.lib import hgrepo @hg_test class UpdateTest(EdenHgTestCase): commit1: str commit2: str commit3: str def edenfs_logging_settings(self) -> Dict[str, str]: return { "eden.fs.inodes.TreeInode": "DBG5", "eden.fs.inodes.CheckoutAction": "DBG5", "eden.fs.inodes.CheckoutContext": "DBG5", } def populate_backing_repo(self, repo: hgrepo.HgRepository) -> None: repo.write_file("hello.txt", "hola") repo.write_file(".gitignore", "ignoreme\n") repo.write_file("foo/.gitignore", "*.log\n") repo.write_file("foo/bar.txt", "test\n") repo.write_file("foo/subdir/test.txt", "test\n") self.commit1 = repo.commit("Initial commit.") repo.write_file("foo/.gitignore", "*.log\n/_*\n") self.commit2 = repo.commit("Update foo/.gitignore") repo.write_file("foo/bar.txt", "updated in commit 3\n") self.commit3 = repo.commit("Update foo/.gitignore") def test_update_clean_reverts_modified_files(self) -> None: """Test using `hg update --clean .` to revert file modifications.""" self.assert_status_empty() self.write_file("hello.txt", "saluton") self.assert_status({"hello.txt": "M"}) self.repo.update(".", clean=True) self.assertEqual("hola", self.read_file("hello.txt")) self.assert_status_empty() def test_update_clean_removes_added_and_removed_statuses(self) -> None: """Test using `hg update --clean .` in the presence of added and removed files.""" self.write_file("bar/some_new_file.txt", "new file\n") self.hg("add", "bar/some_new_file.txt") self.hg("remove", "foo/bar.txt") self.assertFalse(os.path.isfile(self.get_path("foo/bar.txt"))) self.assert_status({"foo/bar.txt": "R", "bar/some_new_file.txt": "A"}) self.repo.update(".", clean=True) self.assert_status({"bar/some_new_file.txt": "?"}) self.assertTrue(os.path.isfile(self.get_path("foo/bar.txt"))) self.assert_dirstate_empty() def test_update_with_gitignores(self) -> None: """ Test `hg update` with gitignore files. This exercises the normal checkout and ignore logic, but also exercises some additional interesting cases: The `hg status` calls cause eden to create FileInode objects for the .gitignore files, even though they have never been requested via FUSE APIs. When we update them via checkout, this triggers FUSE inode invalidation events. We want to make sure the invalidation doesn't cause any errors even though the kernel didn't previously know that these inode objects existed. """ # Call `hg status`, which causes eden to internally create FileInode # objects for the .gitignore files. self.assert_status_empty() self.write_file("foo/subdir/test.log", "log data") self.write_file("foo/_data", "data file") self.assert_status_empty( check_ignored=False, msg="test.log and _data should be ignored" ) self.assert_status({"foo/subdir/test.log": "I", "foo/_data": "I"}) # Call `hg update` to move from commit2 to commit1, which will # change the contents of foo/.gitignore. This will cause edenfs # to send an inode invalidation event to FUSE, but FUSE never knew # about this inode in the first place. edenfs should ignore the # resulting ENOENT error in response to the invalidation request. self.repo.update(self.commit1) self.assert_status({"foo/_data": "?"}, check_ignored=False) self.assert_status({"foo/subdir/test.log": "I", "foo/_data": "?"}) self.assertEqual("*.log\n", self.read_file("foo/.gitignore")) self.assertEqual("test\n", self.read_file("foo/bar.txt")) def test_update_with_new_commits(self) -> None: """ Test running `hg update` to check out commits that were created after the edenfs daemon originally started. This makes sure edenfs can correctly import new commits that appear in the backing store repository. """ new_contents = "New contents for bar.txt\n" self.backing_repo.write_file("foo/bar.txt", new_contents) new_commit = self.backing_repo.commit("Update foo/bar.txt") self.assert_status_empty() self.assertNotEqual(new_contents, self.read_file("foo/bar.txt")) self.repo.update(new_commit) self.assertEqual(new_contents, self.read_file("foo/bar.txt")) self.assert_status_empty() def test_reset(self) -> None: """ Test `hg reset` """ self.assert_status_empty() self.assertEqual("updated in commit 3\n", self.read_file("foo/bar.txt")) self.repo.reset(self.commit2, keep=True) self.assert_status({"foo/bar.txt": "M"}) self.assertEqual("updated in commit 3\n", self.read_file("foo/bar.txt")) self.repo.update(self.commit2, clean=True) self.assert_status_empty() self.assertEqual("test\n", self.read_file("foo/bar.txt")) def test_update_replace_untracked_dir(self) -> None: """ Create a local untracked directory, then run "hg update -C" to checkout a commit where this directory exists in source control. """ self.assert_status_empty() # Write some new files in the eden working directory self.mkdir("new_project") self.write_file("new_project/newcode.c", "test\n") self.write_file("new_project/Makefile", "all:\n\techo done!\n") self.write_file("new_project/.gitignore", "*.o\n") self.write_file("new_project/newcode.o", "\x00\x01\x02\x03\x04") # Add the same files to a commit in the backing repository self.backing_repo.write_file("new_project/newcode.c", "test\n") self.backing_repo.write_file("new_project/Makefile", "all:\n\techo done!\n") self.backing_repo.write_file("new_project/.gitignore", "*.o\n") new_commit = self.backing_repo.commit("Add new_project") # Check the status before we update self.assert_status( { "new_project/newcode.o": "I", "new_project/newcode.c": "?", "new_project/Makefile": "?", "new_project/.gitignore": "?", } ) # Now run "hg update -C new_commit" self.repo.update(new_commit, clean=True) self.assert_status({"new_project/newcode.o": "I"}) def test_update_with_merge_flag_and_conflict(self) -> None: self.write_file("foo/bar.txt", "changing yet again\n") with self.assertRaises(hgrepo.HgError) as context: self.hg("update", ".^", "--merge") self.assertIn( b"1 conflicts while merging foo/bar.txt! " b"(edit, then use 'hg resolve --mark')", # pyre-fixme[16]: `_E` has no attribute `stderr`. context.exception.stderr, ) self.assert_status({"foo/bar.txt": "M"}, op="merge") self.assert_file_regex( "foo/bar.txt", """\ <<<<<<< working copy: .* changing yet again ======= test >>>>>>> destination: .* """, ) def test_merge_update_added_file_with_same_contents_in_destination(self) -> None: base_commit = self.repo.get_head_hash() file_contents = "new file\n" self.write_file("bar/some_new_file.txt", file_contents) self.hg("add", "bar/some_new_file.txt") self.write_file("foo/bar.txt", "Modify existing file.\n") new_commit = self.repo.commit("add some_new_file.txt") self.assert_status_empty() self.repo.update(base_commit) self.assert_status_empty() self.write_file("bar/some_new_file.txt", file_contents) self.hg("add", "bar/some_new_file.txt") self.assert_status({"bar/some_new_file.txt": "A"}) # Note the update fails even though some_new_file.txt is the same in # both the working copy and the destination. with self.assertRaises(hgrepo.HgError) as context: self.repo.update(new_commit) # pyre-fixme[16]: `_E` has no attribute `stderr`. self.assertIn(b"abort: conflicting changes", context.exception.stderr) self.assertEqual( base_commit, self.repo.get_head_hash(), msg="We should still be on the base commit because " "the merge was aborted.", ) self.assert_dirstate({"bar/some_new_file.txt": ("a", 0, "MERGE_BOTH")}) self.assert_status({"bar/some_new_file.txt": "A"}) self.assertEqual(file_contents, self.read_file("bar/some_new_file.txt")) # Now do the update with --merge specified. self.repo.update(new_commit, merge=True) # The repository will have no file changes, but will still report # as being in the middle of a merge, even though everything was # automatically resolved. self.assert_status_empty(op="merge") self.assertEqual( new_commit, self.repo.get_head_hash(), msg="Should be expected commit hash because nothing has changed.", ) def test_merge_update_added_file_with_conflict_in_destination(self) -> None: self._test_merge_update_file_with_conflict_in_destination(True) def test_merge_update_untracked_file_with_conflict_in_destination(self) -> None: self._test_merge_update_file_with_conflict_in_destination(False) def _test_merge_update_file_with_conflict_in_destination( self, add_before_updating: bool ) -> None: base_commit = self.repo.get_head_hash() original_contents = "Original contents.\n" self.write_file("some_new_file.txt", original_contents) self.hg("add", "some_new_file.txt") self.write_file("foo/bar.txt", "Modify existing file.\n") commit = self.repo.commit("Commit a new file.") self.assert_status_empty() # Do an `hg prev` and re-create the new file with different contents. self.repo.update(base_commit) self.assert_status_empty() self.assertFalse(os.path.exists(self.get_path("some_new_file.txt"))) modified_contents = "Re-create the file with different contents.\n" self.write_file("some_new_file.txt", modified_contents) if add_before_updating: self.hg("add", "some_new_file.txt") self.assert_status({"some_new_file.txt": "A"}) else: self.assert_status({"some_new_file.txt": "?"}) # Verify `hg next` updates such that the original contents and commit # hash are restored. No conflicts should be reported. path_to_backup = ".hg/origbackups/some_new_file.txt" expected_backup_file = os.path.join(self.mount, path_to_backup) self.assertFalse(os.path.isfile(expected_backup_file)) with self.assertRaises(hgrepo.HgError) as context: self.repo.update(commit, merge=True) self.assertIn( b"warning: 1 conflicts while merging some_new_file.txt! " b"(edit, then use 'hg resolve --mark')", # pyre-fixme[16]: `_E` has no attribute `stderr`. context.exception.stderr, ) self.assertEqual( commit, self.repo.get_head_hash(), msg="Even though we have a merge conflict, " "we should still be at the new commit.", ) self.assert_dirstate_empty() self.assert_status({"some_new_file.txt": "M"}, op="merge") merge_contents = dedent( """\ <<<<<<< working copy: .* Re-create the file with different contents. ======= Original contents. >>>>>>> destination: .* """ ) self.assertRegex(self.read_file("some_new_file.txt"), merge_contents) self.assert_unresolved(["some_new_file.txt"]) # Verify the previous version of the file was backed up as expected. self.assertTrue(os.path.isfile(expected_backup_file)) self.assertEqual(modified_contents, self.read_file(path_to_backup)) # Resolve the merge conflict and complete the update resolved_contents = "Merged contents.\n" self.write_file("some_new_file.txt", resolved_contents) self.hg("resolve", "--mark", "some_new_file.txt") self.assert_dirstate_empty() self.assert_status({"some_new_file.txt": "M"}, op="merge") self.repo.commit("Resolved file changes.") self.assert_dirstate_empty() self.assert_status_empty() self.assertEqual(resolved_contents, self.read_file("some_new_file.txt")) def test_update_modified_file_to_removed_file_taking_other(self) -> None: self.write_file("some_new_file.txt", "I am new!\n") self.hg("add", "some_new_file.txt") self.repo.commit("Commit a new file.") self.write_file("some_new_file.txt", "Make some changes to that new file.\n") self.hg("update", ".^", "--merge", "--tool", ":other") self.assertFalse(os.path.exists(self.get_path("some_new_file.txt"))) self.assertFalse( os.path.isfile( os.path.join(self.mount, ".hg/origbackups/some_new_file.txt") ), msg="There should not be a backup file because " ":other was specified explicitly.", ) def test_update_modified_file_to_removed_file_taking_local(self) -> None: self.write_file("some_new_file.txt", "I am new!\n") self.hg("add", "some_new_file.txt") self.repo.commit("Commit a new file.") new_contents = "Make some changes to that new file.\n" self.write_file("some_new_file.txt", new_contents) self.hg("update", ".^", "--merge", "--tool", ":local") self.assertEqual(new_contents, self.read_file("some_new_file.txt")) self.assert_status({"some_new_file.txt": "A"}, op="merge") def test_update_untracked_added_conflict(self) -> None: # Create a commit with a newly-created file foo/new_file.txt self.write_file("foo/new_file.txt", "new file\n") self.hg("add", "foo/new_file.txt") new_commit = self.repo.commit("Add foo/new_file.txt") # Switch back to commit 3 self.hg("update", self.commit3) # Write foo/new_file.txt as an untracked file self.write_file("foo/new_file.txt", "different contents\n") # Try to switch back to the new commit result = self.repo.run_hg( "update", new_commit, "--config", "experimental.updatecheck=noconflict", check=False, ) self.assertEqual( "abort: conflicting changes:\n" " foo/new_file.txt\n" "(commit or update --clean to discard changes)\n", result.stderr.decode("utf-8"), ) self.assertNotEqual(0, result.returncode) self.assert_status({"foo/new_file.txt": "?"}) def test_update_ignores_untracked_directory(self) -> None: base_commit = self.repo.get_head_hash() self.mkdir("foo/bar") self.write_file("foo/bar/a.txt", "File in directory two levels deep.\n") self.write_file("foo/bar/b.txt", "Another file.\n") self.hg("add", "foo/bar/a.txt") self.assert_status({"foo/bar/a.txt": "A", "foo/bar/b.txt": "?"}) self.repo.commit("Commit only a.txt.") self.assert_status({"foo/bar/b.txt": "?"}) self.repo.update(base_commit) self.assert_status({"foo/bar/b.txt": "?"}) self.assertFalse(os.path.exists(self.get_path("foo/bar/a.txt"))) self.assertTrue(os.path.exists(self.get_path("foo/bar/b.txt"))) @unittest.skipIf( "SANDCASTLE" in os.environ, "This test seems to leave behind unkillable processes " "on sandcastle. Disable it for now.", ) def test_dir_locking(self) -> None: """ Test performing checkouts that modify the directory foo/ while other clients are simultaneously renaming untracked files under foo/ This exercises the interaction of the kernel's inode locks and Eden's own user-space locking. We previously had some situations where deadlock could occur because FUSE requests holding kernel inode lock were blocked on userspace locks that were held by other threads blocked on the kernel inode lock. """ num_checkout_changed_files = 500 num_rename_threads = 4 num_checkouts = 4 # Create a new commit in the backing repository with many new files in # the foo/ directory for n in range(num_checkout_changed_files): path = os.path.join(self.backing_repo.path, "foo", "tracked.%d" % n) with open(path, "w") as f: f.write("file %d\n" % n) self.backing_repo.add_files(["foo"]) new_commit = self.backing_repo.commit("Add many files under foo/") # Spawn several threads that repeatedly rename ignored files under foo/ stop = threading.Event() def rename_worker(thread_id): logging.info("rename thread %d starting", thread_id) path1 = os.path.join(self.repo.path, "foo", "_%d.log" % thread_id) path2 = os.path.join(self.repo.path, "foo", "_%d.log2" % thread_id) with open(path1, "w") as f: f.write("ignored %d\n" % thread_id) count = 0 while not stop.is_set(): os.rename(path1, path2) os.rename(path2, path1) count += 1 logging.info("rename thread %d performed %d renames", thread_id, count) threads = [] for n in range(num_rename_threads): thread = threading.Thread(target=rename_worker, args=(n,)) threads.append(thread) thread.start() logging.info("===== starting checkouts") commits = [new_commit, self.commit3] for n in range(num_checkouts): self.repo.update(commits[n % len(commits)]) logging.info("===== checkouts complete") stop.set() for thread in threads: thread.join() logging.info("===== threads stopped") # For the most part this test is mainly checking to ensure that # we reach this point without causing a deadlock. # However go ahead and check that the repository is left in an expected # state too. if num_checkouts % 2 == 0: self.assertEqual(self.commit3, self.repo.get_head_hash()) else: self.assertEqual(new_commit, self.repo.get_head_hash()) # Assert that the status is empty other than the ignored files # created by the rename threads self.assert_status( { os.path.join("foo", "_%d.log" % thread_id): "I" for thread_id in range(num_rename_threads) } ) @hg_test class UpdateCacheInvalidationTest(EdenHgTestCase): commit1: str def edenfs_logging_settings(self) -> Dict[str, str]: return { "eden.fs.inodes.TreeInode": "DBG5", "eden.fs.inodes.CheckoutAction": "DBG5", "eden.fs.inodes.CheckoutContext": "DBG5", "eden.fs.fuse.FuseChannel": "DBG3", } def populate_backing_repo(self, repo: hgrepo.HgRepository) -> None: repo.write_file("dir/file1", "one") repo.write_file("dir/file2", "two") self.commit1 = repo.commit("Initial commit.") repo.remove_file("dir/file1") self.commit2 = repo.commit("Remove file1") repo.write_file("dir/file3", "three") self.commit3 = repo.commit("Add file3") repo.update(self.commit1) repo.write_file("dir/file2", "new two") self.commit4 = repo.commit("Change file2") def _populate_kernel_caches(self): # Populate the kernel's readdir caches. for _dirpath, _dirnames, _filenames in os.walk(self.repo.path): pass def _list_contents(self, path) -> Set[str]: return set(os.listdir(os.path.join(self.repo.path, path))) def _scan_contents(self, path) -> List[os.DirEntry]: entries = list(os.scandir(os.path.join(self.repo.path, path))) entries.sort(key=lambda entry: entry.name) return entries def test_update_adding_file_invalidates_tree_inode_caches(self): self.repo.update(self.commit2) self._populate_kernel_caches() self.assertEqual({"file2"}, self._list_contents("dir")) # The checkout operation should invalidate the kernel's caches. self.repo.update(self.commit3) self.assertEqual({"file2", "file3"}, self._list_contents("dir")) def test_update_removing_file_invalidates_tree_inode_caches(self): self.repo.update(self.commit1) self._populate_kernel_caches() self.assertEqual({"file1", "file2"}, self._list_contents("dir")) # The checkout operation should invalidate the kernel's caches. self.repo.update(self.commit2) self.assertEqual({"file2"}, self._list_contents("dir")) def test_changing_file_contents_creates_new_inode_and_flushes_dcache(self): self.repo.update(self.commit1) self._populate_kernel_caches() before = self._scan_contents("dir") self.repo.update(self.commit4) after = self._scan_contents("dir") self.assertEqual(["file1", "file2"], [x.name for x in before]) self.assertEqual(["file1", "file2"], [x.name for x in after]) self.assertEqual(before[0].inode(), after[0].inode()) self.assertNotEqual(before[1].inode(), after[1].inode()) def test_clean_update_removes_added_file(self) -> None: self.repo.update(self.commit1) self.write_file("dir/new_file.txt", "new file") self.hg("add", "dir/new_file.txt") self.assertTrue(os.path.isfile(self.get_path("dir/new_file.txt"))) self.assert_status({"dir/new_file.txt": "A"}) self._populate_kernel_caches() self.repo.update(".", clean=True) self.assert_status({"dir/new_file.txt": "?"}) self.assertTrue(os.path.isfile(self.get_path("dir/new_file.txt"))) self.assert_dirstate_empty() self.assertEqual({"file1", "file2", "new_file.txt"}, self._list_contents("dir")) def test_clean_update_adds_removed_file(self) -> None: self.hg("remove", "dir/file1") self.assertFalse(os.path.isfile(self.get_path("dir/file1"))) self.assert_status({"dir/file1": "R"}) self._populate_kernel_caches() self.repo.update(".", clean=True) self.assert_status({}) self.assertTrue(os.path.isfile(self.get_path("dir/file1"))) self.assert_dirstate_empty() self.assertEqual({"file1", "file2"}, self._list_contents("dir")) ``` #### File: eden/integration/hypothesis_simple_test.py ```python import os import stat import hypothesis from eden.test_support.hypothesis import FILENAME_STRATEGY from .lib import testcase @testcase.eden_repo_test class HypothesisSimpleTest(testcase.EdenRepoTest): def populate_repo(self) -> None: self.repo.write_file("hello", "hola\n") self.repo.write_file("adir/file", "foo!\n") self.repo.write_file("bdir/test.sh", "#!/bin/bash\necho test\n", mode=0o755) self.repo.write_file("bdir/noexec.sh", "#!/bin/bash\necho test\n") self.repo.symlink("slink", "hello") self.repo.commit("Initial commit.") @hypothesis.given(FILENAME_STRATEGY) def test_create(self, basename: str) -> None: filename = os.path.join(self.mount, basename) # Ensure that we don't proceed if hypothesis has selected a name that # conflicts with the names we generated in the repo. hypothesis.assume(not os.path.exists(filename)) with open(filename, "w") as f: f.write("created\n") self.assert_checkout_root_entries( {".eden", "adir", "bdir", "hello", basename, "slink"} ) with open(filename, "r") as f: self.assertEqual(f.read(), "created\n") st = os.lstat(filename) self.assertEqual(st.st_size, 8) self.assertTrue(stat.S_ISREG(st.st_mode)) ``` #### File: eden/integration/info_test.py ```python import json import os from .lib import testcase @testcase.eden_repo_test class InfoTest(testcase.EdenRepoTest): def populate_repo(self) -> None: self.repo.write_file("hello", "hola\n") self.repo.commit("Initial commit.") def test_info_with_bind_mounts(self) -> None: edenrc = os.path.join(os.environ["HOME"], ".edenrc") with open(edenrc, "w") as f: f.write( """\ ["repository {repo_name}"] path = "{repo_path}" type = "{repo_type}" ["bindmounts {repo_name}"] buck-out = "buck-out" """.format( repo_name=self.repo_name, repo_path=self.repo.get_canonical_root(), repo_type=self.repo.get_type(), ) ) basename = "eden_mount" tmp = os.path.join(self.tmp_dir, basename) self.eden.run_cmd("clone", self.repo_name, tmp) info = self.eden.run_cmd("info", tmp) client_info = json.loads(info) client_dir = os.path.join(self.eden_dir, "clients", basename) self.assertEqual( { "bind-mounts": {"buck-out": "buck-out"}, "client-dir": client_dir, "scm_type": self.repo.get_type(), "mount": tmp, "snapshot": self.repo.get_head_hash(), }, client_info, ) def test_relative_path(self) -> None: """ Test calling "eden info <relative_path>" and make sure it gives the expected results. """ info = self.eden.run_cmd("info", os.path.relpath(self.mount)) client_info = json.loads(info) client_dir = os.path.join( self.eden_dir, "clients", os.path.basename(self.mount) ) self.assertEqual( { "bind-mounts": {}, "client-dir": client_dir, "scm_type": self.repo.get_type(), "mount": self.mount, "snapshot": self.repo.get_head_hash(), }, client_info, ) def test_through_symlink(self) -> None: """ Test calling "eden info" through a symlink and make sure it gives the expected results. This makes sure "eden info" resolves the path correctly before looking it up in the configuration. """ link1 = os.path.join(self.tmp_dir, "link1") os.symlink(self.mount, link1) info1 = json.loads(self.eden.run_cmd("info", link1)) self.assertEqual(self.mount, info1["mount"]) # Create a non-normalized symlink pointing to the parent directory # of the mount link2 = os.path.join(self.tmp_dir, "mounts_link") os.symlink(self.mount + "//..", link2) mount_through_link2 = os.path.join(link2, self.repo_name) info2 = json.loads(self.eden.run_cmd("info", mount_through_link2)) self.assertEqual(self.mount, info2["mount"]) ``` #### File: integration/lib/error.py ```python import shlex import subprocess class CommandError(subprocess.CalledProcessError): """ A wrapper around subprocess.CalledProcessError that also includes includes the process's stderr when converted to a string. """ def __init__(self, orig: subprocess.CalledProcessError) -> None: super().__init__( orig.returncode, orig.cmd, output=orig.output, stderr=orig.stderr ) def __str__(self) -> str: if not self.stderr: return super().__str__() cmd_str = " ".join(shlex.quote(arg) for arg in self.cmd) stderr_str = self.stderr if isinstance(self.stderr, bytes): stderr_str = self.stderr.decode("utf-8", errors="replace") # Indent the stderr output just to help indicate where it starts # and ends in the test output. stderr_str = stderr_str.replace("\n", "\n ") msg = "Command [%s] failed with status %s\nstderr:\n %s" % ( cmd_str, self.returncode, stderr_str, ) return msg ``` #### File: integration/lib/gitrepo.py ```python import datetime import os import subprocess import tempfile import time import typing from typing import Dict, List, Optional from . import repobase from .error import CommandError from .find_executables import FindExe class GitError(CommandError): pass class GitRepository(repobase.Repository): def __init__(self, path: str) -> None: super().__init__(path) self.git_bin = FindExe.GIT def git( self, *args: str, encoding: str = "utf-8", env: Optional[Dict[str, str]] = None ) -> str: """ Invoke a git command inside the repository. All non-keyword arguments are treated as arguments to git. A keyword argument of "env" can be used to specify a dictionary of additional environment variables to be passed to git. (These will be added to the current environment.) "env" is currently the only valid keyword argument. Example usage: repo.git('commit', '-m', 'my new commit', env={'GIT_AUTHOR_NAME': '<NAME>'}) """ cmd = [self.git_bin] + list(args) git_env = None if env is not None: git_env = os.environ.copy() git_env.update(env) try: completed_process = subprocess.run( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True, cwd=self.path, env=git_env, ) except subprocess.CalledProcessError as ex: raise GitError(ex) from ex return typing.cast(str, completed_process.stdout.decode(encoding)) def init(self) -> None: self.git("init") def get_type(self) -> str: return "git" def get_head_hash(self) -> str: return self.git("rev-parse", "HEAD").rstrip() def get_canonical_root(self) -> str: return os.path.join(self.path, ".git") def add_files(self, paths: List[str]) -> None: self.git("add", *paths) def remove_files(self, paths: List[str], force: bool = False) -> None: if force: self.git("rm", "--force", *paths) else: self.git("rm", *paths) def commit( self, message: str, author_name: Optional[str] = None, author_email: Optional[str] = None, date: Optional[datetime.datetime] = None, amend: bool = False, committer_name: Optional[str] = None, committer_email: Optional[str] = None, committer_date: Optional[datetime.datetime] = None, ) -> str: if author_name is None: author_name = self.author_name if author_email is None: author_email = self.author_email if date is None: date = self.get_commit_time() date_str = time.strftime("%Y-%m-%dT%H:%M:%S%z", date.utctimetuple()) if committer_name is None: committer_name = author_name if committer_email is None: committer_email = author_email if committer_date is None: committer_date = date committer_date_str = time.strftime( "%Y-%m-%dT%H:%M:%S%z", committer_date.utctimetuple() ) # Specify all arguments to `git commit` to ensure the resulting hashes # are the same every time this test is run. git_commit_env = { "GIT_AUTHOR_NAME": author_name, "GIT_AUTHOR_EMAIL": author_email, # pyre-fixme[18]: Global name `date_str` is undefined. "GIT_AUTHOR_DATE": date_str, "GIT_COMMITTER_NAME": committer_name, "GIT_COMMITTER_EMAIL": committer_email, # pyre-fixme[18]: Global name `committer_date_str` is undefined. "GIT_COMMITTER_DATE": committer_date_str, } with tempfile.NamedTemporaryFile( prefix="eden_commit_msg.", mode="w", encoding="utf-8" ) as msgf: msgf.write(message) msgf.flush() args = ["commit", "-F", msgf.name] if amend: args.append("--amend") self.git(*args, env=git_commit_env) # Get the commit ID and return it return self.git("rev-parse", "HEAD").strip() ``` #### File: integration/lib/overlay.py ```python import os import pathlib import stat import tempfile import eden.integration.lib.edenclient as edenclient class OverlayStore: def __init__(self, eden: edenclient.EdenFS, mount: pathlib.Path) -> None: self.eden = eden self.mount = mount self.overlay_dir = eden.overlay_dir_for_mount(mount) def materialize_file(self, path: pathlib.Path) -> pathlib.Path: """Force the file inode at the specified path to be materialized and recorded in the overlay. Returns the path to the overlay file that stores the data for this inode in the overlay. """ path_in_mount = self.mount / path # Opening the file in write mode will materialize it with path_in_mount.open("w+b") as f: s = os.fstat(f.fileno()) return self._get_overlay_path(s.st_ino) def materialize_dir(self, path: pathlib.Path) -> pathlib.Path: """Force the directory inode at the specified path to be materialized and recorded in the overlay. Returns the path to the overlay file that stores the data for this inode in the overlay. """ path_in_mount = self.mount / path s = os.lstat(path_in_mount) assert stat.S_ISDIR(s.st_mode) # Creating and then removing a file inside the directory will materialize it with tempfile.NamedTemporaryFile(dir=str(path_in_mount)): pass return self._get_overlay_path(s.st_ino) def _get_overlay_path(self, inode_number: int) -> pathlib.Path: subdir = "{:02x}".format(inode_number % 256) return self.overlay_dir / subdir / str(inode_number) def delete_cached_next_inode_number(self) -> None: (self.overlay_dir / "next-inode-number").unlink() ``` #### File: integration/lib/repobase.py ```python import datetime import errno import os from typing import List, Optional class Repository(object): def __init__(self, path: str) -> None: self.path = path # Default author and timestamp info for commits self.author_name = "<NAME>" self.author_email = "<EMAIL>" self.commit_time = datetime.datetime(year=2000, month=1, day=1) self.commit_time_delta = datetime.timedelta(seconds=1) def get_commit_time(self) -> datetime.datetime: """ Get a datetime object to use for the next commit. Rather than using real wall clock time, we use an internally maintained date to ensure that we get the same commit hashes across repeated test runs. The date is advanced for each commit made. """ current = self.commit_time self.commit_time += self.commit_time_delta return current def init(self) -> None: raise NotImplementedError("subclasses must implement init()") def get_type(self) -> str: """Returns the type of this repo as a string: "git" or "hg".""" raise NotImplementedError("subclasses must implement get_type()") def get_head_hash(self) -> str: """Returns the 40-character hex hash for HEAD.""" raise NotImplementedError("subclasses must implement get_head_hash()") def commit( self, message: str, author_name: Optional[str] = None, author_email: Optional[str] = None, date: Optional[datetime.datetime] = None, amend: bool = False, ) -> str: """ Create a commit. Returns the new commit hash as a 40-character hexadecimal string. """ raise NotImplementedError("subclasses must implement commit()") def add_file(self, path: str) -> None: self.add_files([path]) def add_files(self, paths: List[str]) -> None: raise NotImplementedError("subclasses must implement add_files()") def remove_file(self, path: str) -> None: self.remove_files([path]) def remove_files(self, paths: List[str], force: bool = False) -> None: raise NotImplementedError("subclasses must implement remove_files()") def get_path(self, *args: str) -> str: for arg in args: assert not os.path.isabs(arg), "must not be absolute: %r" % (arg,) return os.path.join(self.path, *args) def get_canonical_root(self) -> str: """Returns cwd to use when calling scm commands.""" raise NotImplementedError("subclasses must implement get_canonical_root()") def mkdir(self, path: str) -> None: full_path = self.get_path(path) try: os.makedirs(full_path) except OSError as ex: if ex.errno != errno.EEXIST: raise def make_parent_dir(self, path: str) -> None: dirname = os.path.dirname(path) if dirname: self.mkdir(dirname) def write_file( self, path: str, contents: str, mode: Optional[int] = None, add: bool = True ) -> None: """ Create or overwrite a file with the given contents. """ self.make_parent_dir(path) if mode is None: mode = 0o644 full_path = self.get_path(path) with open(full_path, "w") as f: f.write(contents) os.chmod(full_path, mode) if add: self.add_file(path) def symlink(self, path: str, contents: str, add: bool = True) -> None: """ Create a symlink at the specified path, pointed at the given destination path contents. """ self.make_parent_dir(path) full_path = self.get_path(path) try: os.unlink(full_path) except OSError as ex: if ex.errno != errno.ENOENT: raise os.symlink(contents, full_path) if add: self.add_file(path) ``` #### File: integration/lib/systemd.py ```python import abc import contextlib import logging import os import os.path import pathlib import re import subprocess import sys import tempfile import types import typing from eden.cli.daemon import wait_for_process_exit from eden.cli.util import poll_until from .find_executables import FindExe from .linux import LinuxCgroup, ProcessID from .temporary_directory import create_tmp_dir logger = logging.getLogger(__name__) SystemdUnitName = str class SystemdUserServiceManager: """A running 'systemd --user' process manageable using 'systemctl --user'.""" def __init__( self, xdg_runtime_dir: pathlib.Path, process_id: typing.Optional[ProcessID] ) -> None: super().__init__() self.__xdg_runtime_dir = xdg_runtime_dir self.__process_id = process_id @property def xdg_runtime_dir(self) -> pathlib.Path: return self.__xdg_runtime_dir @property def process_id(self) -> ProcessID: if self.__process_id is None: raise NotImplementedError() return self.__process_id def is_alive(self) -> bool: result = self._systemctl.run( ["--user", "show-environment"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) if result.returncode == 0: return True if result.returncode == 1: logger.warning(f'{self} is not alive: {result.stdout.decode("utf-8")}') return False result.check_returncode() return False def enable_runtime_unit_from_file(self, unit_file: pathlib.Path) -> None: self._systemctl.check_call(["enable", "--runtime", "--", unit_file]) self._systemctl.check_call(["daemon-reload"]) self.sanity_check_enabled_unit(unit_file=unit_file) def sanity_check_enabled_unit(self, unit_file: pathlib.Path) -> None: unit_name = unit_file.name if "@" in unit_name: unit_name = unit_name.replace("@", "@testinstance") self.sanity_check_enabled_unit_fragment( unit_name=unit_name, expected_unit_file=unit_file ) self.sanity_check_enabled_unit_sources( unit_name=unit_name, expected_unit_file=unit_file ) def sanity_check_enabled_unit_fragment( self, unit_name: SystemdUnitName, expected_unit_file: pathlib.Path ) -> None: service = SystemdService(unit_name=unit_name, systemd=self) actual_unit_file = service.query_fragment_path() if actual_unit_file != expected_unit_file: raise Exception( f"Enabled unit's FragmentPath does not match unit file\n" f"Expected: {expected_unit_file}\n" f"Actual: {actual_unit_file}" ) def sanity_check_enabled_unit_sources( self, unit_name: SystemdUnitName, expected_unit_file: pathlib.Path ) -> None: actual_unit_sources = self._systemctl.check_output(["cat", "--", unit_name]) expected_unit_sources = b"" for file in [expected_unit_file]: expected_unit_sources += b"# " + bytes(file) + b"\n" expected_unit_sources += file.read_bytes() if actual_unit_sources != expected_unit_sources: raise Exception( "Enabled unit does not match unit file\n" "Expected: {repr(expected_unit_sources)}\n" "Actual: {repr(actual_unit_sources)}" ) def systemd_run( self, command: typing.Sequence[str], properties: typing.Mapping[str, str], extra_env: typing.Mapping[str, str], unit_name: typing.Optional[SystemdUnitName] = None, ) -> "SystemdService": systemd_run_command = ["systemd-run", "--user"] for name, value in properties.items(): systemd_run_command.extend(("--property", f"{name}={value}")) for name, value in extra_env.items(): systemd_run_command.extend(("--setenv", f"{name}={value}")) if unit_name is not None: systemd_run_command.extend(("--unit", unit_name)) systemd_run_command.append("--") systemd_run_command.extend(command) try: output = subprocess.check_output( systemd_run_command, env=self.env, stderr=subprocess.STDOUT ) except subprocess.CalledProcessError as e: sys.stderr.buffer.write(e.output) raise match = re.match( r"^Running as unit: (?P<unit>.*)$", output.decode("utf-8"), flags=re.MULTILINE, ) if match is None: raise Exception("Failed to parse unit from command output") return self.get_service(match.group("unit")) def get_active_unit_names(self) -> typing.List[SystemdUnitName]: def parse_line(line: str) -> SystemdUnitName: parts = re.split(r" +", line) return parts[0] stdout = self._systemctl.check_output( [ "list-units", "--all", "--full", "--no-legend", "--no-pager", "--plain", "--state=active", ] ) return [parse_line(line) for line in stdout.decode("utf-8").splitlines()] def get_unit_paths(self) -> typing.List[pathlib.Path]: stdout = subprocess.check_output( ["systemd-analyze", "--user", "unit-paths"], env=self.env ) return [pathlib.Path(line) for line in stdout.decode("utf-8").splitlines()] def get_service(self, unit_name: SystemdUnitName) -> "SystemdService": return SystemdService(unit_name=unit_name, systemd=self) def exit(self) -> None: process_id = self.process_id # We intentionally do not check the result from the systemctl command here. # It may fail with a "Connection reset by peer" error due to systemd exiting. # We simply confirm that systemd exits after running this command. self._systemctl.run(["start", "exit.target"]) if not wait_for_process_exit(process_id, timeout=60): raise TimeoutError() @property def env(self) -> typing.Dict[str, str]: env = dict(os.environ) env.update(self.extra_env) return env @property def extra_env(self) -> typing.Dict[str, str]: return { "DBUS_SESSION_BUS_ADDRESS": "", "XDG_RUNTIME_DIR": str(self.xdg_runtime_dir), } @property def _systemctl(self) -> "_SystemctlCLI": return _SystemctlCLI(env=self.env) def __str__(self) -> str: return f"systemd ({self.xdg_runtime_dir})" def __repr__(self) -> str: return ( f"SystemdUserServiceManager(" f"xdg_runtime_dir={repr(self.xdg_runtime_dir)}, " f"process_id={self.process_id}" f")" ) class SystemdService: def __init__( self, unit_name: SystemdUnitName, systemd: SystemdUserServiceManager ) -> None: super().__init__() self.__systemd = systemd self.__unit_name = unit_name @property def unit_name(self) -> SystemdUnitName: return self.__unit_name def start(self) -> None: self.__systemctl.check_call(["start", "--", self.unit_name]) def stop(self) -> None: self.__systemctl.check_call(["stop", "--", self.unit_name]) def restart(self) -> None: self.__systemctl.check_call(["restart", "--", self.unit_name]) def poll_until_inactive(self, timeout: float) -> None: def check_inactive() -> typing.Optional[bool]: return True if self.query_active_state() == "inactive" else None poll_until(check_inactive, timeout=timeout) def query_active_state(self) -> str: return self.__query_property("ActiveState").decode("utf-8") def query_sub_state(self) -> str: return self.__query_property("SubState").decode("utf-8") def query_main_process_id(self) -> typing.Optional[ProcessID]: return ProcessID(self.__query_property("MainPID")) def query_cgroup(self) -> LinuxCgroup: return LinuxCgroup(self.__query_property("ControlGroup")) def query_process_ids(self) -> typing.Sequence[ProcessID]: return self.query_cgroup().query_process_ids() def query_fragment_path(self) -> pathlib.Path: return pathlib.Path(os.fsdecode(self.__query_property("FragmentPath"))) def __query_property(self, property: str) -> bytes: stdout = self.__systemctl.check_output( ["show", f"--property={property}", "--", self.unit_name] ) prefix = property.encode("utf-8") + b"=" if not stdout.startswith(prefix): raise Exception(f"Failed to parse output of systemctl show: {stdout}") return stdout[len(prefix) :].rstrip(b"\n") @property def __systemctl(self) -> "_SystemctlCLI": return self.__systemd._systemctl def __str__(self) -> str: return f"{self.unit_name} (XDG_RUNTIME_DIR={self.__systemd.xdg_runtime_dir})" def __repr__(self) -> str: return ( f"SystemdService(unit_name={repr(self.unit_name)}, " f"systemd={repr(self.__systemd)})" ) class _SystemctlCLI: def __init__(self, env: typing.Dict[str, str]) -> None: super().__init__() self.__env = env def check_call( self, command_arguments: typing.Sequence[typing.Union[str, pathlib.Path]] ) -> None: """Run 'systemctl --user' with the given arguments. See also subprocess.check_call. """ subprocess.check_call(self.__command(command_arguments), env=self.__env) def check_output( self, command_arguments: typing.Sequence[typing.Union[str, pathlib.Path]] ) -> bytes: """Run 'systemctl --user' and return the command's output. See also subprocess.check_output. """ return subprocess.check_output( self.__command(command_arguments), env=self.__env ) def run( self, command_arguments: typing.Sequence[typing.Union[str, pathlib.Path]], stdout: "subprocess._FILE" = None, stderr: "subprocess._FILE" = None, ) -> subprocess.CompletedProcess: """Run 'systemctl --user' and return the command's output and exit status. See also subprocess.run. """ return subprocess.run( self.__command(command_arguments), env=self.__env, stdout=stdout, stderr=stderr, ) def __command( self, command_arguments: typing.Sequence[typing.Union[str, pathlib.Path]] ) -> typing.Sequence[str]: command = ["systemctl", "--user"] command.extend(str(arg) for arg in command_arguments) return command class SystemdUserServiceManagerMixin(metaclass=abc.ABCMeta): def make_temporary_systemd_user_service_manager(self) -> SystemdUserServiceManager: context_manager = temporary_systemd_user_service_manager() exit = context_manager.__exit__ systemd = context_manager.__enter__() self.addCleanup(lambda: exit(None, None, None)) return systemd def addCleanup( self, function: typing.Callable[..., typing.Any], *args: typing.Any, **kwargs: typing.Any, ) -> None: raise NotImplementedError() @contextlib.contextmanager def temporary_systemd_user_service_manager() -> typing.Iterator[ SystemdUserServiceManager ]: """Create an isolated systemd instance for tests.""" parent_systemd = SystemdUserServiceManager( xdg_runtime_dir=_get_current_xdg_runtime_dir(), process_id=None ) def should_create_managed() -> bool: forced_type_variable = "EDEN_TEST_FORCE_SYSTEMD_USER_SERVICE_MANAGER_TYPE" forced_type = os.getenv(forced_type_variable) if forced_type is not None and forced_type: if forced_type == "managed": return True if forced_type == "unmanaged": return False raise ValueError( f"Unsupported value for {forced_type_variable}: {forced_type!r}" ) if not _is_system_booted_with_systemd(): return False # It's possible that the system was booted with systemd but PID 1 is not # systemd. This happens on Sandcastle (Facebook's CI) which runs tests # in a Linux process namespace. If this is the case, systemctl and # systemd-run fail with the following message: # # > Failed to connect to bus: No data available # # If we can't talk to the system's systemd for this reason, run our # temporary systemd user service manager unmanaged. if os.getuid() == 0 and not parent_systemd.is_alive(): return False return True lifetime_duration = 30 with create_tmp_dir() as xdg_runtime_dir: if should_create_managed(): with _transient_managed_systemd_user_service_manager( xdg_runtime_dir=xdg_runtime_dir, parent_systemd=parent_systemd, lifetime_duration=lifetime_duration, ) as child_systemd: yield child_systemd else: with _TransientUnmanagedSystemdUserServiceManager( xdg_runtime_dir=xdg_runtime_dir, lifetime_duration=lifetime_duration ) as systemd: yield systemd def _is_system_booted_with_systemd() -> bool: """See the sd_booted(3) manual page.""" return pathlib.Path("/run/systemd/system/").exists() @contextlib.contextmanager def _transient_managed_systemd_user_service_manager( xdg_runtime_dir: pathlib.Path, parent_systemd: SystemdUserServiceManager, lifetime_duration: int, ) -> typing.Iterator[SystemdUserServiceManager]: """Create an isolated systemd instance using 'systemd-run systemd'.""" child_systemd_service = parent_systemd.systemd_run( command=["/usr/lib/systemd/systemd", "--user", "--unit=basic.target"], properties={ "Description": f"Eden test systemd user service manager " f"({xdg_runtime_dir})", "CollectMode": "inactive-or-failed", "Restart": "no", "RuntimeMaxSec": str(lifetime_duration), "TimeoutStartSec": str(lifetime_duration), "Type": "notify", }, extra_env={"XDG_RUNTIME_DIR": str(xdg_runtime_dir)}, ) child_systemd = SystemdUserServiceManager( xdg_runtime_dir=xdg_runtime_dir, process_id=child_systemd_service.query_main_process_id(), ) try: yield child_systemd finally: try: child_systemd_service.stop() except Exception: logger.warning( f"Failed to stop systemd user service manager ({child_systemd})" ) # Ignore the exception. class _TransientUnmanagedSystemdUserServiceManager: """Create an isolated systemd instance as child process. This class does not work if a user systemd instance is already running. """ __cleanups: contextlib.ExitStack __lifetime_duration: int __xdg_runtime_dir: pathlib.Path def __init__(self, xdg_runtime_dir: pathlib.Path, lifetime_duration: int) -> None: super().__init__() self.__xdg_runtime_dir = xdg_runtime_dir self.__lifetime_duration = lifetime_duration self.__cleanups = contextlib.ExitStack() def start_systemd_process(self) -> subprocess.Popen: self._create_run_systemd_directory() cgroup = self.create_cgroup() env = self.base_systemd_environment env["XDG_RUNTIME_DIR"] = str(self.__xdg_runtime_dir) # HACK(strager): Work around 'systemd --user' refusing to start if the # system is not managed by systemd. env["LD_PRELOAD"] = str( pathlib.Path( typing.cast(str, FindExe.FORCE_SD_BOOTED) # T38947910 ).resolve(strict=True) ) process = subprocess.Popen( [ "timeout", f"{self.__lifetime_duration}s", "/usr/lib/systemd/systemd", "--user", "--unit=basic.target", "--log-target=console", ], stdin=subprocess.DEVNULL, env=env, preexec_fn=lambda: cgroup.add_current_process(), ) self.__cleanups.callback(lambda: self.stop_systemd_process(process)) return process def _create_run_systemd_directory(self) -> None: """Create /run/systemd/ if it doesn't already exist. 'systemctl --user daemon-reload' checks for disk free space by calling statvfs(3) on /run/systemd [1]. If the directory is missing, daemon-reload fails. Call this function to make daemon-reload pass this check. daemon-reload is right in expecting that /run/systemd exists, since systemd requires sd_booted(3) to return true. However, we force sd_booted(3) to return true, so /run/systemd might not exist. [1] https://github.com/systemd/systemd/blob/v239/src/core/dbus-manager.c#L1277 """ path = pathlib.Path("/run/systemd") try: path.mkdir(exist_ok=False, mode=0o755, parents=False) except OSError: logging.warning( f"Failed to create {path}; ignoring error, but systemd might " f"fail to reload", exc_info=True, ) @property def base_systemd_environment(self) -> typing.Dict[str, str]: # See https://www.freedesktop.org/software/systemd/man/systemd.exec.html#Environment%20variables%20in%20spawned%20processes return {"PATH": "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"} def stop_systemd_process(self, systemd_process: subprocess.Popen) -> None: systemd_process.terminate() try: systemd_process.wait(timeout=15) return except subprocess.TimeoutExpired: pass logger.warning( "Failed to terminate systemd user service manager. Attempting to kill." ) systemd_process.kill() systemd_process.wait(timeout=3) def create_cgroup(self) -> LinuxCgroup: parent_cgroup = LinuxCgroup.from_current_process() path = tempfile.mkdtemp( prefix="edenfs_test.", dir=str(parent_cgroup.sys_fs_cgroup_path) ) cgroup = LinuxCgroup.from_sys_fs_cgroup_path(pathlib.PosixPath(path)) self.__cleanups.callback(lambda: cgroup.delete_recursive()) return cgroup def wait_until_systemd_is_alive( self, systemd_process: subprocess.Popen, child_systemd: SystemdUserServiceManager, ) -> None: while True: systemd_did_exit = systemd_process.poll() is not None if systemd_did_exit: raise Exception("systemd failed to start") if child_systemd.is_alive(): return def __enter__(self) -> SystemdUserServiceManager: systemd_process = self.start_systemd_process() child_systemd = SystemdUserServiceManager( xdg_runtime_dir=self.__xdg_runtime_dir, process_id=systemd_process.pid ) self.wait_until_systemd_is_alive(systemd_process, child_systemd) return child_systemd def __exit__( self, exc_type: typing.Optional[typing.Type[BaseException]], exc_value: typing.Optional[BaseException], traceback: typing.Optional[types.TracebackType], ) -> typing.Optional[bool]: self.__cleanups.close() return None def _get_current_xdg_runtime_dir() -> pathlib.Path: problems = [] path = None if path is None: path_from_env = os.environ.get("XDG_RUNTIME_DIR") if path_from_env is None or path_from_env == "": problems.append("$XDG_RUNTIME_DIR is not set") else: path = pathlib.Path(path_from_env) if path is None: if os.getuid() == 0: path = pathlib.Path("/run") else: path = pathlib.Path("/run/user") / str(os.getuid()) assert path is not None if not path.exists(): problems.append(f"'{path}' does not exist") raise Exception( "Could not determine XDG_RUNTIME_DIR: " + ", and ".join(problems) ) return path ``` #### File: eden/integration/setattr_test.py ```python import errno import os import stat import subprocess import time from .lib import testcase @testcase.eden_repo_test class SetAttrTest(testcase.EdenRepoTest): def populate_repo(self) -> None: self.repo.write_file("hello", "hola\n") self.repo.commit("Initial commit.") # mtime should not get changed on permission changes def test_chmod(self) -> None: filename = os.path.join(self.mount, "hello") st = os.lstat(filename) os.chmod(filename, st.st_mode | stat.S_IROTH) new_st = os.lstat(filename) self.assertGreaterEqual(new_st.st_atime, st.st_atime) self.assertEqual(new_st.st_mtime, st.st_mtime) self.assertEqual(new_st.st_atime, st.st_atime) self.assertGreaterEqual(new_st.st_ctime, st.st_ctime) self.assertEqual(new_st.st_mode, st.st_mode | stat.S_IROTH) def test_chown_as_root(self) -> None: if not self._can_always_chown(): # Don't skip. Skipped tests show up in the metrics and have tasks # created for them. return filename = os.path.join(self.mount, "hello") # If root, any ownership change is legal. st = os.lstat(filename) os.chown(filename, st.st_uid, st.st_gid) os.chown(filename, st.st_uid + 1, st.st_gid) newst = os.lstat(filename) self.assertEqual(st.st_uid + 1, newst.st_uid) self.assertEqual(st.st_gid, newst.st_gid) os.chown(filename, st.st_uid, st.st_gid + 1) newst = os.lstat(filename) self.assertEqual(st.st_uid, newst.st_uid) self.assertEqual(st.st_gid + 1, newst.st_gid) def test_chown_uid_as_nonroot_fails(self) -> None: if self._can_always_chown(): # Don't skip. Skipped tests show up in the metrics and have tasks # created for them. return filename = os.path.join(self.mount, "hello") # Chown should fail with EPERM unless we are setting it # to the same current ownership. st = os.lstat(filename) os.chown(filename, st.st_uid, st.st_gid) with self.assertRaises(OSError) as context: os.chown(filename, st.st_uid + 1, st.st_gid) self.assertEqual( errno.EPERM, context.exception.errno, msg="changing uid of a file should raise EPERM", ) def test_chown_gid_as_nonroot_succeeds_if_member(self) -> None: if self._can_always_chown(): # Don't skip. Skipped tests show up in the metrics and have tasks # created for them. return filename = os.path.join(self.mount, "hello") st = os.lstat(filename) os.chown(filename, st.st_uid, self._get_member_group()) def test_chown_gid_as_nonroot_fails_if_not_member(self) -> None: if self._can_always_chown(): # Don't skip. Skipped tests show up in the metrics and have tasks # created for them. return filename = os.path.join(self.mount, "hello") st = os.lstat(filename) with self.assertRaises(OSError) as context: os.chown(filename, st.st_uid, self._get_non_member_group()) self.assertEqual( errno.EPERM, context.exception.errno, msg="changing gid of a file should raise EPERM", ) def _can_always_chown(self): # Could instead check if the process doesn't have the CAP_CHOWN capability. return 0 == os.geteuid() def _get_member_group(self): """Find a group that this user is a member of.""" # This is a bit hard to do: we need to find a group the user is a member # of that's not the effective or real gid. If there are none then we # must skip. groups = os.getgroups() for gid in groups: if gid != os.getgid() and gid != os.getegid(): return gid self.skipTest("no usable groups found") def _get_non_member_group(self): """Find a group that this user is not a member of.""" # All that matters is that we return a gid outside of the set of this # user's groups. user_groups = set(os.getgroups()) return max(user_groups) + 1 def test_truncate(self) -> None: filename = os.path.join(self.mount, "hello") st = os.lstat(filename) with open(filename, "r+") as f: f.truncate(0) self.assertEqual("", f.read()) new_st = os.lstat(filename) self.assertEqual(new_st.st_size, 0) self.assertGreaterEqual(new_st.st_atime, st.st_atime) self.assertGreaterEqual(new_st.st_ctime, st.st_ctime) self.assertGreaterEqual(new_st.st_mtime, st.st_mtime) def test_utime(self) -> None: filename = os.path.join(self.mount, "hello") # Update the atime and mtime to a time 5 seconds in the past. # # We round to the nearest second to avoid timestamp granularity issues. # (Eden currently uses the underlying overlay filesystem to store the # timestamps, and it might not necessarily support high resolution # timestamps.) timestamp = int(time.time() - 5) os.utime(filename, (timestamp, timestamp)) st = os.lstat(filename) self.assertEqual(st.st_atime, timestamp) self.assertEqual(st.st_mtime, timestamp) def test_touch(self) -> None: filename = os.path.join(self.mount, "hello") now = time.time() subprocess.check_call(["touch", filename]) st = os.lstat(filename) self.assertGreaterEqual(st.st_atime, now) self.assertGreaterEqual(st.st_mtime, now) newfile = os.path.join(self.mount, "touched-new-file") now = time.time() subprocess.check_call(["touch", newfile]) st = os.lstat(newfile) self.assertGreaterEqual(st.st_atime, now) self.assertGreaterEqual(st.st_mtime, now) def test_umask(self) -> None: original_umask = os.umask(0o177) try: filename = os.path.join(self.mount, "test1") with open(filename, "w") as f: f.write("garbage") self.assertEqual(os.stat(filename).st_mode & 0o777, 0o600) filename = os.path.join(self.mount, "test2") os.umask(0o777) with open(filename, "w") as f: f.write("garbage") self.assertEqual(os.stat(filename).st_mode & 0o777, 0o000) finally: os.umask(original_umask) def test_dir_addfile(self) -> None: dirname = os.path.join(self.mount, "test_dir") self.mkdir("test_dir") st = os.lstat(dirname) self.write_file("test_file", "test string") new_st = os.lstat(dirname) self.assertEqual(new_st.st_atime, st.st_atime) self.assertGreaterEqual(new_st.st_ctime, st.st_ctime) self.assertGreaterEqual(new_st.st_mtime, st.st_mtime) def test_dir_delfile(self) -> None: dirname = os.path.join(self.mount, "test_dir") self.mkdir("test_dir") self.write_file("test_file", "test string") st = os.lstat(dirname) self.rm("test_file") new_st = os.lstat(dirname) self.assertEqual(new_st.st_atime, st.st_atime) self.assertGreaterEqual(new_st.st_ctime, st.st_ctime) self.assertGreaterEqual(new_st.st_mtime, st.st_mtime) def test_dir_change_filecontents(self) -> None: dirname = os.path.join(self.mount, "test_dir") self.mkdir("test_dir") self.write_file("test_file", "test string") st = os.lstat(dirname) self.write_file("test_file", "test string 1") new_st = os.lstat(dirname) self.assertEqual(new_st.st_mtime, st.st_mtime) self.assertEqual(new_st.st_ctime, st.st_ctime) self.assertEqual(new_st.st_mtime, st.st_mtime) # Changing permisssions of directory should change # only ctime of the directory, but not mtime and atime. def test_dir_change_perm(self) -> None: dirname = os.path.join(self.mount, "test_dir") self.mkdir("test_dir") st = os.lstat(dirname) os.chmod(dirname, st.st_mode | stat.S_IROTH) new_st = os.lstat(dirname) self.assertEqual(new_st.st_mtime, st.st_mtime) self.assertEqual(new_st.st_atime, st.st_atime) self.assertGreaterEqual(new_st.st_ctime, st.st_ctime) # Read call on a file in Edenfs should modify the atime of the file. # Also, open call should not change the timeStamps of a file. def test_timestamp_openfiles(self) -> None: filename = os.path.join(self.mount, "hello") st = os.lstat(filename) with open(filename, "r") as f: new_st = os.lstat(filename) self.assertEqual(new_st.st_mtime, st.st_mtime) self.assertEqual(new_st.st_atime, st.st_atime) self.assertEqual(new_st.st_ctime, st.st_ctime) f.read() f.close() new_st = os.lstat(filename) self.assertEqual(new_st.st_mtime, st.st_mtime) self.assertGreater(new_st.st_atime, st.st_atime) self.assertEqual(new_st.st_ctime, st.st_ctime) ``` #### File: integration/snapshot/gen_snapshot.py ```python import argparse import logging import sys import time from pathlib import Path from eden.integration.lib.find_executables import FindExe from . import snapshot as snapshot_mod def main() -> int: ap = argparse.ArgumentParser() ap.add_argument( "-l", "--list", action="store_true", help="List all known snapshot generator types.", ) ap.add_argument("-o", "--output", help="The output file path.") ap.add_argument( "name", nargs="?", help="The name of the snapshot generator to run. Use --list to list the " "available generators.", ) args = ap.parse_args() logging.basicConfig(level=logging.INFO, format="%(asctime)s %(message)s") if args.list: print("Available generators:") for name, snapshot_class in snapshot_mod.snapshot_types.items(): print(f" {name}: {snapshot_class.DESCRIPTION}") return 0 if args.name is None: ap.error("must specify a snapshot type or --list") return 1 snapshot_type = snapshot_mod.snapshot_types.get(args.name) if snapshot_type is None: ap.error( f'unknown snapshot type "{args.name}". ' "Use --list to see a list of available generators." ) return 1 if args.output is not None: output_path = Path(args.output) else: date_stamp = time.strftime("%Y%m%d") base_name = f"{args.name}-{date_stamp}.tar.xz" output_path = Path( FindExe.REPO_ROOT, "eden", "test-data", "snapshots", base_name ) logging.info(f'Running "{args.name}" snapshot generator') with snapshot_mod.generate(snapshot_type) as snapshot: snapshot.create_tarball(output_path) logging.info(f"Successfully generated {output_path}") return 0 if __name__ == "__main__": rc = main() sys.exit(rc) ``` #### File: integration/snapshot/test_snapshots.py ```python import os import stat import unittest from pathlib import Path from typing import Callable from eden.integration.lib import edenclient from . import snapshot as snapshot_mod, verify as verify_mod class Test(unittest.TestCase): """Tests to verify the contents of various saved snapshots. All of the test functions in this class are dynamically added by register_tests() """ def _test_snapshot(self, snapshot_path: Path) -> None: with snapshot_mod.create_tmp_dir() as tmp_dir: snapshot = snapshot_mod.unpack_into(snapshot_path, tmp_dir) self._run_test(snapshot) def _run_test(self, snapshot: snapshot_mod.BaseSnapshot) -> None: verifier = verify_mod.SnapshotVerifier() snapshot.verify(verifier) # Fail the test if any errors were found. # The individual errors will have been printed out previously # as they were found. if verifier.errors: self.fail(f"found {len(verifier.errors)} errors") class InfraTests(unittest.TestCase): """Tests for the snapshot generation/verification code itself.""" NUM_SNAPSHOTS = 0 def test_snapshot_list(self) -> None: # Ensure that at least one snapshot file was found, so that the tests will # fail if we somehow can't find the snapshot data directory correctly. self.assertGreater(self.NUM_SNAPSHOTS, 0) def test_verify_directory(self) -> None: expected = verify_mod.ExpectedFileSet() expected.add_file("a/b/normal.txt", b"abc\n", 0o644) expected.add_file("a/b/normal_exe.exe", b"abc\n", 0o755) expected.add_file("a/b/missing.txt", b"abc\n", 0o644) expected.add_file("a/b/wrong_perms.txt", b"abc\n", 0o644) expected.add_file("a/b/wrong_file_type.txt", b"abc\n", 0o644) expected.add_socket("a/normal.sock", 0o644) expected.add_socket("a/exe.sock", 0o755) expected.add_symlink("a/normal.link", b"symlink contents", 0o777) expected.add_symlink("a/missing.link", b"missing symlink", 0o777) # Define a subclass of HgSnapshot. We use define this solely so we can use its # helper write_file(), make_socket(), and mkdir() methods class MockSnapshot(snapshot_mod.HgSnapshot): def populate_backing_repo(self) -> None: pass def populate_checkout(self) -> None: pass def verify_snapshot_data( self, verifier: verify_mod.SnapshotVerifier, eden: edenclient.EdenFS ) -> None: pass with snapshot_mod.create_tmp_dir() as tmp_dir: snapshot = MockSnapshot(tmp_dir) snapshot.data_dir.mkdir() snapshot.checkout_path.mkdir() snapshot.write_file("a/b/normal.txt", b"abc\n", 0o644) snapshot.write_file("a/b/normal_exe.exe", b"abc\n", 0o755) snapshot.write_file("a/b/wrong_perms.txt", b"abc\n", 0o755) snapshot.make_socket("a/b/wrong_file_type.txt", 0o755) snapshot.make_socket("a/normal.sock", 0o644) snapshot.make_socket("a/exe.sock", 0o755) os.symlink(b"symlink contents", snapshot.checkout_path / "a/normal.link") # The verifier code only checks files, not directories, so it should not # complain about extra directories that may be present. snapshot.mkdir("a/b/c/extra_dir", 0o755) verifier = verify_mod.SnapshotVerifier() verifier.verify_directory(snapshot.checkout_path, expected) expected_errors = [ "a/b/missing.txt: file not present in snapshot", "a/missing.link: file not present in snapshot", f"a/b/wrong_file_type.txt: expected file type to be {stat.S_IFREG:#o}, " f"found {stat.S_IFSOCK:#o}", f"a/b/wrong_file_type.txt: expected permissions to be 0o644, found 0o755", "a/b/wrong_perms.txt: expected permissions to be 0o644, found 0o755", ] self.assertEqual(sorted(verifier.errors), sorted(expected_errors)) def register_tests() -> None: # Create one test function for each snapshot snapshot_dir = Path("eden/test-data/snapshots").resolve() for snapshot in snapshot_dir.iterdir(): # We don't use Path.stem here since it only strips off the very last suffix, # so foo.tar.bz2 becomes foo.tar rather than foo. stem = snapshot.name.split(".", 1)[0] setattr(Test, f"test_{stem}", _create_test_fn(snapshot)) InfraTests.NUM_SNAPSHOTS += 1 def _create_test_fn(snapshot: Path) -> Callable[[Test], None]: def test_fn(self: Test) -> None: self._test_snapshot(snapshot) return test_fn register_tests() ``` #### File: snapshot/types/basic.py ```python from eden.integration.lib import edenclient from eden.integration.snapshot import verify as verify_mod from eden.integration.snapshot.snapshot import HgSnapshot, snapshot_class @snapshot_class( "basic", "A simple directory structure with a mix of loaded, materialized, " "and unloaded files.", ) class BasicSnapshot(HgSnapshot): def populate_backing_repo(self) -> None: repo = self.backing_repo repo.write_file("README.md", "project docs") repo.write_file(".gitignore", "ignored.txt\n") repo.write_file("main/loaded_dir/loaded_file.c", "loaded") repo.write_file("main/loaded_dir/not_loaded_file.c", "not loaded") repo.write_file("main/loaded_dir/not_loaded_exe.sh", "not loaded", mode=0o755) repo.write_file("main/loaded_dir/not_loaded_subdir/a.txt", "some contents\n") repo.write_file( "main/loaded_dir/not_loaded_subdir/b.exe", "other contents", mode=0o755 ) repo.write_file("main/loaded_dir/loaded_subdir/dir1/file1.txt", "text\n") repo.write_file("main/loaded_dir/loaded_subdir/dir2/file2.txt", "more text\n") repo.write_file( "main/materialized_subdir/script.sh", "original script contents", mode=0o755 ) repo.write_file("main/materialized_subdir/test.c", "original test contents") repo.write_file("main/materialized_subdir/unmodified.txt", "original contents") repo.symlink("main/materialized_subdir/modified_symlink.lnk", "original link") repo.write_file("main/mode_changes/normal_to_exe.txt", "will change mode") repo.write_file( "main/mode_changes/exe_to_normal.txt", "will change mode", mode=0o755 ) repo.write_file("main/mode_changes/normal_to_readonly.txt", "will be readonly") repo.write_file("never_accessed/foo/bar/baz.txt", "baz\n") repo.write_file("never_accessed/foo/bar/xyz.txt", "xyz\n") repo.write_file("never_accessed/foo/file.txt", "data\n") repo.symlink("never_accessed/foo/some.lnk", "link destination") repo.commit("Initial commit.") def populate_checkout(self) -> None: # Load the main/loaded_dir directory and some of its children. # Listing directories will allocate inode numbers for its children which causes # it to be tracked in the overlay, even if it has not been modified. self.list_dir("main/loaded_dir") self.list_dir("main/loaded_dir/loaded_subdir/dir1") self.list_dir("main/loaded_dir/loaded_subdir/dir2") self.read_file("main/loaded_dir/loaded_file.c") self.read_file("main/loaded_dir/loaded_subdir/dir1/file1.txt") self.read_file("main/loaded_dir/loaded_subdir/dir2/file2.txt") # Modify some files in main/materialized_subdir to force them to be materialized self.write_file( "main/materialized_subdir/script.sh", b"new script contents", 0o755 ) self.write_file("main/materialized_subdir/test.c", b"new test contents") self.symlink("main/materialized_subdir/modified_symlink.lnk", b"new link") self.symlink("main/materialized_subdir/new_symlink.lnk", b"new link") self.make_socket("main/materialized_subdir/test/socket.sock", mode=0o600) # Test materializing some files by changing their mode self.chmod("main/mode_changes/normal_to_exe.txt", 0o755) self.chmod("main/mode_changes/exe_to_normal.txt", 0o644) self.chmod("main/mode_changes/normal_to_readonly.txt", 0o400) # Create a new top-level directory with some new files self.write_file("untracked/new/normal.txt", b"new src contents") self.write_file("untracked/new/normal2.txt", b"extra src contents") self.write_file("untracked/new/readonly.txt", b"new readonly contents", 0o400) self.write_file("untracked/new/subdir/abc.txt", b"abc") self.write_file("untracked/new/subdir/xyz.txt", b"xyz") self.write_file("untracked/executable.exe", b"do stuff", mode=0o755) self.make_socket("untracked/everybody.sock", mode=0o666) self.make_socket("untracked/owner_only.sock", mode=0o600) # Create some untracked files in an existing tracked directory self.write_file("main/untracked.txt", b"new new untracked file") self.write_file("main/ignored.txt", b"new ignored file") self.write_file("main/untracked_dir/foo.txt", b"foobar") def get_expected_files(self) -> verify_mod.ExpectedFileSet: # Confirm that the files look like what we expect files = verify_mod.ExpectedFileSet() # TODO: These symlink permissions should ideally be 0o777 files.add_symlink(".eden/root", bytes(self.checkout_path), 0o770) files.add_symlink( ".eden/client", bytes(self.eden_state_dir / "clients" / "checkout"), 0o770 ) files.add_symlink(".eden/socket", bytes(self.eden_state_dir / "socket"), 0o770) files.add_symlink(".eden/this-dir", bytes(self.checkout_path / ".eden"), 0o770) files.add_file("README.md", b"project docs", 0o644) files.add_file(".gitignore", b"ignored.txt\n", 0o644) files.add_file("main/loaded_dir/loaded_file.c", b"loaded", 0o644) files.add_file("main/loaded_dir/not_loaded_file.c", b"not loaded", 0o644) files.add_file("main/loaded_dir/not_loaded_exe.sh", b"not loaded", 0o755) files.add_file("main/loaded_dir/loaded_subdir/dir1/file1.txt", b"text\n", 0o644) files.add_file( "main/loaded_dir/loaded_subdir/dir2/file2.txt", b"more text\n", 0o644 ) files.add_file( "main/loaded_dir/not_loaded_subdir/a.txt", b"some contents\n", 0o644 ) files.add_file( "main/loaded_dir/not_loaded_subdir/b.exe", b"other contents", 0o755 ) files.add_file( "main/materialized_subdir/script.sh", b"new script contents", 0o755 ) files.add_file("main/materialized_subdir/test.c", b"new test contents", 0o644) files.add_file( "main/materialized_subdir/unmodified.txt", b"original contents", 0o644 ) files.add_symlink( "main/materialized_subdir/modified_symlink.lnk", b"new link", 0o770 ) files.add_symlink( "main/materialized_subdir/new_symlink.lnk", b"new link", 0o770 ) files.add_socket("main/materialized_subdir/test/socket.sock", 0o600) files.add_file( "main/mode_changes/normal_to_exe.txt", b"will change mode", 0o755 ) files.add_file( "main/mode_changes/exe_to_normal.txt", b"will change mode", 0o644 ) files.add_file( "main/mode_changes/normal_to_readonly.txt", b"will be readonly", 0o400 ) files.add_file("main/untracked.txt", b"new new untracked file", 0o644) files.add_file("main/ignored.txt", b"new ignored file", 0o644) files.add_file("main/untracked_dir/foo.txt", b"foobar", 0o644) files.add_file("never_accessed/foo/bar/baz.txt", b"baz\n", 0o644) files.add_file("never_accessed/foo/bar/xyz.txt", b"xyz\n", 0o644) files.add_file("never_accessed/foo/file.txt", b"data\n", 0o644) files.add_symlink("never_accessed/foo/some.lnk", b"link destination", 0o755) files.add_file("untracked/new/normal.txt", b"new src contents", 0o644) files.add_file("untracked/new/normal2.txt", b"extra src contents", 0o644) files.add_file("untracked/new/readonly.txt", b"new readonly contents", 0o400) files.add_file("untracked/new/subdir/abc.txt", b"abc", 0o644) files.add_file("untracked/new/subdir/xyz.txt", b"xyz", 0o644) files.add_file("untracked/executable.exe", b"do stuff", 0o755) files.add_socket("untracked/everybody.sock", 0o666) files.add_socket("untracked/owner_only.sock", 0o600) return files def verify_snapshot_data( self, verifier: verify_mod.SnapshotVerifier, eden: edenclient.EdenFS ) -> None: # Confirm that `hg status` reports the correct information self.verify_hg_status(verifier) expected_files = self.get_expected_files() verifier.verify_directory(self.checkout_path, expected_files) def verify_hg_status(self, verifier: verify_mod.SnapshotVerifier) -> None: expected_status = { "main/materialized_subdir/script.sh": "M", "main/materialized_subdir/test.c": "M", "main/materialized_subdir/modified_symlink.lnk": "M", "main/materialized_subdir/new_symlink.lnk": "?", "main/materialized_subdir/test/socket.sock": "?", "main/mode_changes/normal_to_exe.txt": "M", "main/mode_changes/exe_to_normal.txt": "M", # We changed the mode on main/mode_changes/normal_to_readonly.txt, # but the change isn't significant to mercurial. "untracked/new/normal.txt": "?", "untracked/new/normal2.txt": "?", "untracked/new/readonly.txt": "?", "untracked/new/subdir/abc.txt": "?", "untracked/new/subdir/xyz.txt": "?", "untracked/executable.exe": "?", "untracked/everybody.sock": "?", "untracked/owner_only.sock": "?", "main/untracked.txt": "?", "main/ignored.txt": "I", "main/untracked_dir/foo.txt": "?", } repo = self.hg_repo(self.checkout_path) verifier.verify_hg_status(repo, expected_status) ``` #### File: integration/snapshot/verify.py ```python import abc import collections.abc import os import stat as stat_mod import typing from pathlib import Path from typing import Dict, Iterator, List, Optional, TypeVar, Union from eden.integration.lib import hgrepo _AnyPath = Union[Path, str] class _DefaultObject: pass _DEFAULT_OBJECT: _DefaultObject = _DefaultObject() class ExpectedFileBase(metaclass=abc.ABCMeta): def __init__( self, path: _AnyPath, contents: bytes, perms: int, file_type: int ) -> None: self.path: Path = Path(path) self.contents: bytes = contents self.permissions: int = perms self.file_type: int = file_type def verify( self, verifier: "SnapshotVerifier", path: Path, stat_info: os.stat_result ) -> None: found_perms = stat_mod.S_IMODE(stat_info.st_mode) if found_perms != self.permissions: verifier.error( f"{self.path}: expected permissions to be {self.permissions:#o}, " f"found {found_perms:#o}" ) found_file_type = stat_mod.S_IFMT(stat_info.st_mode) if found_file_type != self.file_type: verifier.error( f"{self.path}: expected file type to be {self.file_type:#o}, " f"found {found_file_type:#o}" ) else: self.verify_contents(verifier, path) @abc.abstractmethod def verify_contents(self, verifier: "SnapshotVerifier", path: Path) -> None: pass def _error(self, msg: str) -> None: raise ValueError(msg) class ExpectedFile(ExpectedFileBase): def __init__(self, path: _AnyPath, contents: bytes, perms: int = 0o644) -> None: super().__init__(path, contents, perms, stat_mod.S_IFREG) def verify_contents(self, verifier: "SnapshotVerifier", path: Path) -> None: with path.open("rb") as f: actual_contents = f.read() if actual_contents != self.contents: verifier.error( f"file contents mismatch for {self.path}:\n" f"expected: {self.contents!r}\n" f"actual: {actual_contents!r}" ) class ExpectedSymlink(ExpectedFileBase): def __init__(self, path: _AnyPath, contents: bytes, perms: int = 0o777) -> None: super().__init__(path, contents, perms, stat_mod.S_IFLNK) def verify_contents(self, verifier: "SnapshotVerifier", path: Path) -> None: actual_contents = os.readlink(bytes(path)) if actual_contents != self.contents: verifier.error( f"symlink contents mismatch for {self.path}:\n" f"expected: {self.contents!r}\n" f"actual: {actual_contents!r}" ) class ExpectedSocket(ExpectedFileBase): def __init__(self, path: _AnyPath, perms: int = 0o755) -> None: super().__init__(path, b"", perms, stat_mod.S_IFSOCK) def verify_contents(self, verifier: "SnapshotVerifier", path: Path) -> None: pass _ExpectedFile = TypeVar("_ExpectedFile", bound=ExpectedFileBase) class ExpectedFileSet(collections.abc.Mapping): """ ExpectedFileSet is basically a container of ExpectedFileBase objects, but also provides some helper methods for accessing and updating entries by path. """ def __init__(self) -> None: self._entries: Dict[Path, ExpectedFileBase] = {} def __len__(self) -> int: return len(self._entries) def __iter__(self) -> Iterator[ExpectedFileBase]: return iter(self._entries.values()) def __getitem__(self, path: _AnyPath) -> ExpectedFileBase: key = Path(path) return self._entries[key] def __delitem__(self, path: _AnyPath) -> None: key = Path(path) del self._entries[key] def __contains__(self, path: object) -> bool: if isinstance(path, str): key = Path(path) elif isinstance(path, Path): key = path else: return False return key in self._entries @typing.overload def pop(self, path: _AnyPath) -> ExpectedFileBase: ... @typing.overload # noqa: F811 def pop(self, path: _AnyPath, default: ExpectedFileBase) -> ExpectedFileBase: ... @typing.overload # noqa: F811 def pop(self, path: _AnyPath, default: None) -> Optional[ExpectedFileBase]: ... def pop( # noqa: F811 self, path: _AnyPath, default: Union[ExpectedFileBase, None, _DefaultObject] = _DEFAULT_OBJECT, ) -> Optional[ExpectedFileBase]: key = Path(path) if default is _DEFAULT_OBJECT: return self._entries.pop(key) else: tmp = typing.cast(Optional[ExpectedFileBase], default) return self._entries.pop(key, tmp) def add_file( self, path: _AnyPath, contents: bytes, perms: int = 0o644 ) -> ExpectedFile: return self.add(ExpectedFile(path=path, contents=contents, perms=perms)) def add_symlink( self, path: _AnyPath, contents: bytes, perms: int = 0o777 ) -> ExpectedSymlink: return self.add(ExpectedSymlink(path=path, contents=contents, perms=perms)) def add_socket(self, path: _AnyPath, perms: int = 0o755) -> ExpectedSocket: return self.add(ExpectedSocket(path=path, perms=perms)) def add(self, entry: _ExpectedFile) -> _ExpectedFile: assert entry.path not in self self._entries[entry.path] = entry return entry def set_file( self, path: _AnyPath, contents: bytes, perms: int = 0o644 ) -> ExpectedFile: return self.set(ExpectedFile(path=path, contents=contents, perms=perms)) def set_symlink( self, path: _AnyPath, contents: bytes, perms: int = 0o777 ) -> ExpectedSymlink: return self.set(ExpectedSymlink(path=path, contents=contents, perms=perms)) def set_socket(self, path: _AnyPath, perms: int = 0o755) -> ExpectedSocket: return self.set(ExpectedSocket(path=path, perms=perms)) def set(self, entry: _ExpectedFile) -> _ExpectedFile: self._entries[entry.path] = entry return entry class SnapshotVerifier: def __init__(self) -> None: self.errors: List[str] = [] self.quiet: bool = False def error(self, message: str) -> None: self.errors.append(message) if not self.quiet: print(f"==ERROR== {message}") def verify_directory(self, path: Path, expected: ExpectedFileSet) -> None: """Confirm that the contents of a directory match the expected file state.""" found_files = enumerate_directory(path) for expected_entry in expected: file_stat = found_files.pop(expected_entry.path, None) if file_stat is None: self.error(f"{expected_entry.path}: file not present in snapshot") continue full_path = path / expected_entry.path try: expected_entry.verify(self, full_path, file_stat) except AssertionError as ex: self.error(f"{expected_entry.path}: {ex}") continue for path, stat_info in found_files.items(): if stat_mod.S_ISDIR(stat_info.st_mode): # Don't require directories to be listed explicitly in the input files continue if str(path.parents[0]) == ".hg": # Don't complain about files inside the .hg directory that the caller # did not explicitly specify. Mercurial can create a variety of files # here, and we don't care about checking the exact list of files it # happened to create when the snapshot was generated. continue self.error(f"{path}: unexpected file present in snapshot") def verify_hg_status( self, repo: hgrepo.HgRepository, expected: Dict[str, str], check_ignored: bool = True, ) -> None: actual_status = repo.status(include_ignored=check_ignored) for path, expected_char in expected.items(): actual_char = actual_status.pop(path, None) if expected_char != actual_char: self.error( f"{path}: unexpected hg status difference: " f"reported as {actual_char}, expected {expected_char}" ) for path, actual_char in actual_status.items(): self.error( f"{path}: unexpected hg status difference: " f"reported as {actual_char}, expected None" ) def enumerate_directory(path: Path) -> Dict[Path, os.stat_result]: """ Recursively walk a directory and return a dictionary of all of the files and directories it contains. Returns a dictionary of [path -> os.stat_result] The returned paths are relative to the input directory. """ entries: Dict[Path, os.stat_result] = {} _enumerate_directory_helper(path, Path(), entries) return entries def _enumerate_directory_helper( root_path: Path, rel_path: Path, results: Dict[Path, os.stat_result] ) -> None: for entry in os.scandir(root_path / rel_path): # Current versions of typeshed don't know about the follow_symlinks argument, # so ignore type errors on the next line. stat_info: os.stat_result = entry.stat(follow_symlinks=False) # type: ignore entry_path: Path = rel_path / entry.name results[entry_path] = stat_info if stat_mod.S_ISDIR(stat_info.st_mode): _enumerate_directory_helper(root_path, entry_path, results) ``` #### File: eden/integration/start_test.py ```python import os import pathlib import subprocess import sys import typing import unittest from typing import List, Optional import pexpect from eden.cli.config import EdenInstance from eden.cli.util import HealthStatus from eden.test_support.environment_variable import EnvironmentVariableMixin from fb303.ttypes import fb_status from .lib import testcase from .lib.edenfs_systemd import EdenFSSystemdMixin from .lib.fake_edenfs import get_fake_edenfs_argv from .lib.find_executables import FindExe from .lib.pexpect import PexpectAssertionMixin, wait_for_pexpect_process from .lib.service_test_case import ( ServiceTestCaseBase, SystemdServiceTestCaseMarker, service_test, ) from .lib.systemd import SystemdUserServiceManagerMixin class StartTest(testcase.EdenTestCase): def test_start_if_necessary(self) -> None: # Confirm there are no checkouts configured, then stop edenfs checkouts = self.eden.list_cmd_simple() self.assertEqual({}, checkouts) self.assertTrue(self.eden.is_healthy()) self.eden.shutdown() self.assertFalse(self.eden.is_healthy()) # `eden start --if-necessary` should not start eden output = self.eden.run_cmd("start", "--if-necessary") self.assertEqual("No Eden mount points configured.\n", output) self.assertFalse(self.eden.is_healthy()) # Restart eden and create a checkout self.eden.start() self.assertTrue(self.eden.is_healthy()) # Create a repository with one commit repo = self.create_hg_repo("testrepo") repo.write_file("README", "test\n") repo.commit("Initial commit.") # Create an Eden checkout of this repository checkout_dir = os.path.join(self.mounts_dir, "test_checkout") self.eden.clone(repo.path, checkout_dir) checkouts = self.eden.list_cmd_simple() self.assertEqual({checkout_dir: "RUNNING"}, checkouts) # Stop edenfs self.eden.shutdown() self.assertFalse(self.eden.is_healthy()) # `eden start --if-necessary` should start edenfs now if eden_start_needs_allow_root_option(systemd=False): output = self.eden.run_cmd( "start", "--if-necessary", "--", "--allowRoot", capture_stderr=True ) else: output = self.eden.run_cmd("start", "--if-necessary", capture_stderr=True) self.assertIn("Started edenfs", output) self.assertTrue(self.eden.is_healthy()) # Stop edenfs. We didn't start it through self.eden.start() # so the self.eden class doesn't really know it is running and that # it needs to be shut down. self.eden.run_cmd("stop") @testcase.eden_repo_test class StartWithRepoTest( testcase.EdenRepoTest, EnvironmentVariableMixin, SystemdUserServiceManagerMixin, EdenFSSystemdMixin, ): """Test 'eden start' with a repo and checkout already configured. """ def setUp(self) -> None: super().setUp() self.eden.shutdown() def test_eden_start_mounts_checkouts(self) -> None: self.run_eden_start(systemd=False) self.assert_checkout_is_mounted() def test_eden_start_with_systemd_mounts_checkouts(self) -> None: self.set_up_edenfs_systemd_service() self.run_eden_start(systemd=True) self.assert_checkout_is_mounted() def run_eden_start(self, systemd: bool) -> None: run_eden_start_with_real_daemon( eden_dir=pathlib.Path(self.eden_dir), etc_eden_dir=pathlib.Path(self.etc_eden_dir), home_dir=pathlib.Path(self.home_dir), systemd=systemd, ) def assert_checkout_is_mounted(self) -> None: file = pathlib.Path(self.mount) / "hello" self.assertTrue(file.is_file()) self.assertEqual(file.read_text(), "hola\n") def populate_repo(self) -> None: self.repo.write_file("hello", "hola\n") self.repo.commit("Initial commit.") def select_storage_engine(self) -> str: """ we need to persist data across restarts """ return "rocksdb" class DirectInvokeTest(unittest.TestCase): def test_no_args(self) -> None: """Directly invoking edenfs with no arguments should fail.""" self._check_error([]) def test_eden_cmd_arg(self) -> None: """Directly invoking edenfs with an eden command should fail.""" self._check_error(["restart"]) def _check_error(self, args: List[str], err: Optional[str] = None) -> None: cmd = [typing.cast(str, FindExe.EDEN_DAEMON)] # T38947910 cmd.extend(args) out = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) self.assertEqual(os.EX_USAGE, out.returncode) self.assertEqual(b"", out.stdout) if err is None: err = """\ error: the edenfs daemon should not normally be invoked manually Did you mean to run "eden" instead of "edenfs"? """ self.maxDiff = 5000 self.assertMultiLineEqual(err, out.stderr.decode("utf-8", errors="replace")) class StartFakeEdenFSTestBase(ServiceTestCaseBase, PexpectAssertionMixin): def setUp(self) -> None: super().setUp() self.eden_dir = pathlib.Path(self.make_temporary_directory()) def spawn_start( self, eden_dir: typing.Optional[pathlib.Path] = None, extra_args: typing.Optional[typing.Sequence[str]] = None, ) -> "pexpect.spawn[str]": if eden_dir is None: eden_dir = self.eden_dir args = ( ["--config-dir", str(eden_dir)] + self.get_required_eden_cli_args() + [ "start", "--daemon-binary", typing.cast(str, FindExe.FAKE_EDENFS), # T38947910 ] ) if extra_args: args.extend(extra_args) return pexpect.spawn( FindExe.EDEN_CLI, args, encoding="utf-8", logfile=sys.stderr ) @service_test class StartFakeEdenFSTest(StartFakeEdenFSTestBase, PexpectAssertionMixin): def test_eden_start_launches_separate_processes_for_separate_eden_dirs( self ) -> None: eden_dir_1 = self.eden_dir eden_dir_2 = pathlib.Path(self.make_temporary_directory()) start_1_process = self.spawn_start(eden_dir=eden_dir_1) self.assert_process_succeeds(start_1_process) start_2_process = self.spawn_start(eden_dir=eden_dir_2) self.assert_process_succeeds(start_2_process) instance_1_health: HealthStatus = EdenInstance( str(eden_dir_1), etc_eden_dir=None, home_dir=None ).check_health() self.assertEqual( instance_1_health.status, fb_status.ALIVE, f"First edenfs process should be healthy, but it isn't: " f"{instance_1_health}", ) instance_2_health: HealthStatus = EdenInstance( str(eden_dir_2), etc_eden_dir=None, home_dir=None ).check_health() self.assertEqual( instance_2_health.status, fb_status.ALIVE, f"Second edenfs process should be healthy, but it isn't: " f"{instance_2_health}", ) self.assertNotEqual( instance_1_health.pid, instance_2_health.pid, f"The edenfs process should have separate process IDs", ) def test_daemon_command_arguments_should_forward_to_edenfs(self) -> None: extra_daemon_args = ["--allowExtraArgs", "--", "hello world", "--ignoredOption"] start_process = self.spawn_start(extra_args=["--"] + extra_daemon_args) wait_for_pexpect_process(start_process) argv = get_fake_edenfs_argv(self.eden_dir) self.assertEqual( argv[-len(extra_daemon_args) :], extra_daemon_args, f"fake_edenfs should have received arguments verbatim\nargv: {argv}", ) def test_daemon_command_arguments_should_forward_to_edenfs_without_leading_dashdash( self ) -> None: start_process = self.spawn_start( extra_args=[ "hello world", "another fake_edenfs argument", "--", "--allowExtraArgs", "arg_after_dashdash", ] ) self.assert_process_succeeds(start_process) expected_extra_daemon_args = [ "hello world", "another fake_edenfs argument", "--allowExtraArgs", "arg_after_dashdash", ] argv = get_fake_edenfs_argv(self.eden_dir) self.assertEqual( argv[-len(expected_extra_daemon_args) :], expected_extra_daemon_args, f"fake_edenfs should have received extra arguments\nargv: {argv}", ) def test_eden_start_resolves_explicit_config_dir_symlinks(self) -> None: # Test resolution of symlinks in the Eden state directectory when the # --config-dir argument is specified to the Eden CLI. link1 = self.tmp_dir / "link1" link2 = self.tmp_dir / "link2" link1.symlink_to(self.eden_dir, target_is_directory=True) link2.symlink_to(link1) self._test_eden_start_resolves_config_symlinks(link2, self.eden_dir) def test_eden_start_resolves_auto_config_dir_symlinks(self) -> None: # Test resolution of symlinks in the Eden state directectory if we don't specify # --config-dir and let the Eden CLI automatically figure out the location. # This is how Eden normally runs in practice most of the time. # # Set up symlinks in the home directory location normally used by Eden. home_local_dir = self.home_dir / "local" data_dir = self.tmp_dir / "data" data_dir.mkdir() home_local_dir.symlink_to(data_dir, target_is_directory=True) resolved_eden_dir = data_dir / ".eden" self._test_eden_start_resolves_config_symlinks(None, resolved_eden_dir) def _test_eden_start_resolves_config_symlinks( self, input_path: Optional[pathlib.Path], resolved_path: pathlib.Path ) -> None: # Test that the eden CLI resolves symlinks in the Eden state directory path. # # These must be resolved by the CLI and not the edenfs process: in some cases # where the symlinks are on an NFS mount point they can be resolved by the user # but not by root. The edenfs privhelper process runs as root, so it may not be # able to resolve these symlinks. Making sure the symlinks are fully resolved # by the CLI enables Eden to still work in these situations. if input_path is not None: config_dir_args = ["--config-dir", str(input_path)] else: config_dir_args = [] args = ( self.get_required_eden_cli_args() + config_dir_args + [ "start", "--daemon-binary", typing.cast(str, FindExe.FAKE_EDENFS), # T38947910 ] ) start_process: pexpect.spawn[str] = pexpect.spawn( FindExe.EDEN_CLI, args, encoding="utf-8", logfile=sys.stderr ) wait_for_pexpect_process(start_process) argv = get_fake_edenfs_argv(resolved_path) self.assert_eden_dir(argv, resolved_path) def assert_eden_dir(self, argv: List[str], expected: pathlib.Path) -> None: try: index = argv.index("--edenDir") except ValueError: self.fail(f"--edenDir not present in arguments: {argv}") actual_config_dir = argv[index + 1] self.assertEqual(str(expected), actual_config_dir, f"bad config dir: {argv}") def test_eden_start_fails_if_edenfs_is_already_running(self) -> None: with self.spawn_fake_edenfs(self.eden_dir) as daemon_pid: start_process = self.spawn_start() start_process.expect_exact(f"edenfs is already running (pid {daemon_pid})") self.assert_process_fails(start_process, 1) def test_eden_start_fails_if_edenfs_fails_during_startup(self) -> None: start_process = self.spawn_start(extra_args=["--", "--failDuringStartup"]) start_process.expect_exact( "Started successfully, but reporting failure because " "--failDuringStartup was specified" ) self.assert_process_fails(start_process, 1) @service_test class StartWithSystemdTest(StartFakeEdenFSTestBase, SystemdServiceTestCaseMarker): def test_eden_start_fails_if_service_is_running(self) -> None: with self.spawn_fake_edenfs(self.eden_dir): # Make fake_edenfs inaccessible and undetectable (without talking to # systemd), but keep the systemd service alive. (self.eden_dir / "lock").unlink() (self.eden_dir / "socket").unlink() health: HealthStatus = EdenInstance( str(self.eden_dir), etc_eden_dir=None, home_dir=None ).check_health() self.assertEqual(health.status, fb_status.DEAD) service = self.get_edenfs_systemd_service(eden_dir=self.eden_dir) self.assertEqual(service.query_active_state(), "active") start_process = self.spawn_start() start_process.expect_exact( f"error: edenfs systemd service is already running" ) # edenfsctl should show the output of 'systemctl status'. start_process.expect(r"\bfb-edenfs@.*?\.service\b") start_process.expect(r"Active:[^\n]*active \(running\)") self.assert_process_fails(start_process, 1) def run_eden_start_with_real_daemon( eden_dir: pathlib.Path, etc_eden_dir: pathlib.Path, home_dir: pathlib.Path, systemd: bool, ) -> None: env = dict(os.environ) if systemd: env["EDEN_EXPERIMENTAL_SYSTEMD"] = "1" else: env.pop("EDEN_EXPERIMENTAL_SYSTEMD", None) command = [ typing.cast(str, FindExe.EDEN_CLI), # T38947910 "--config-dir", str(eden_dir), "--etc-eden-dir", str(etc_eden_dir), "--home-dir", str(home_dir), "start", "--daemon-binary", typing.cast(str, FindExe.EDEN_DAEMON), # T38947910 ] if eden_start_needs_allow_root_option(systemd=systemd): command.extend(["--", "--allowRoot"]) subprocess.check_call(command, env=env) def eden_start_needs_allow_root_option(systemd: bool) -> bool: return not systemd and "SANDCASTLE" in os.environ ``` #### File: eden/integration/thrift_test.py ```python import binascii import hashlib import os from pathlib import Path from facebook.eden.ttypes import ScmFileStatus, SHA1Result, TimeSpec from .lib import testcase @testcase.eden_repo_test class ThriftTest(testcase.EdenRepoTest): commit1: str commit2: str def populate_repo(self) -> None: self.repo.write_file("hello", "hola\n") self.repo.write_file("README", "docs\n") self.repo.write_file("adir/file", "foo!\n") self.repo.write_file("bdir/file", "bar!\n") self.repo.symlink("slink", "hello") self.commit1 = self.repo.commit("Initial commit.") self.repo.write_file("bdir/file", "bar?\n") self.repo.write_file("cdir/subdir/new.txt", "and improved") self.repo.remove_file("README") self.commit2 = self.repo.commit("Commit 2.") def setUp(self) -> None: super().setUp() self.client = self.get_thrift_client() self.client.open() self.addCleanup(self.client.close) def get_loaded_inodes_count(self, path: str) -> int: result = self.client.debugInodeStatus(self.mount_path_bytes, os.fsencode(path)) inode_count = 0 for item in result: assert item.entries is not None for inode in item.entries: if inode.loaded: inode_count += 1 return inode_count def test_list_mounts(self) -> None: mounts = self.client.listMounts() self.assertEqual(1, len(mounts)) mount = mounts[0] self.assertEqual(self.mount_path_bytes, mount.mountPoint) assert mount.edenClientPath is not None # The client path should always be inside the main eden directory # Path.relative_to() will throw a ValueError if self.eden.eden_dir is not a # directory prefix of mount.edenClientPath Path(os.fsdecode(mount.edenClientPath)).relative_to(self.eden.eden_dir) def test_get_sha1(self) -> None: expected_sha1_for_hello = hashlib.sha1(b"hola\n").digest() result_for_hello = SHA1Result(expected_sha1_for_hello) expected_sha1_for_adir_file = hashlib.sha1(b"foo!\n").digest() result_for_adir_file = SHA1Result(expected_sha1_for_adir_file) self.assertEqual( [result_for_hello, result_for_adir_file], self.client.getSHA1(self.mount_path_bytes, [b"hello", b"adir/file"]), ) def test_get_sha1_throws_for_path_with_dot_components(self) -> None: results = self.client.getSHA1(self.mount_path_bytes, [b"./hello"]) self.assertEqual(1, len(results)) self.assert_error( results[0], "std::domain_error: PathComponent must not be . or .." ) def test_get_sha1_throws_for_empty_string(self) -> None: results = self.client.getSHA1(self.mount_path_bytes, [b""]) self.assertEqual(1, len(results)) self.assert_error(results[0], "path cannot be the empty string") def test_get_sha1_throws_for_directory(self) -> None: results = self.client.getSHA1(self.mount_path_bytes, [b"adir"]) self.assertEqual(1, len(results)) self.assert_error(results[0], "adir: Is a directory") def test_get_sha1_throws_for_non_existent_file(self) -> None: results = self.client.getSHA1(self.mount_path_bytes, [b"i_do_not_exist"]) self.assertEqual(1, len(results)) self.assert_error(results[0], "i_do_not_exist: No such file or directory") def test_get_sha1_throws_for_symlink(self) -> None: """Fails because caller should resolve the symlink themselves.""" results = self.client.getSHA1(self.mount_path_bytes, [b"slink"]) self.assertEqual(1, len(results)) self.assert_error(results[0], "slink: file is a symlink: Invalid argument") def assert_error(self, sha1result: SHA1Result, error_message: str) -> None: self.assertIsNotNone(sha1result, msg="Must pass a SHA1Result") self.assertEqual( SHA1Result.ERROR, sha1result.getType(), msg="SHA1Result must be an error" ) error = sha1result.get_error() self.assertIsNotNone(error) self.assertEqual(error_message, error.message) def test_unload_free_inodes(self) -> None: for i in range(100): self.write_file("testfile%d.txt" % i, "unload test case") inode_count_before_unload = self.get_loaded_inodes_count("") self.assertGreater( inode_count_before_unload, 100, "Number of loaded inodes should increase" ) age = TimeSpec() age.seconds = 0 age.nanoSeconds = 0 unload_count = self.client.unloadInodeForPath(self.mount_path_bytes, b"", age) self.assertGreaterEqual( unload_count, 100, "Number of loaded inodes should reduce after unload" ) def test_unload_thrift_api_accepts_single_dot_as_root(self) -> None: self.write_file("testfile.txt", "unload test case") age = TimeSpec() age.seconds = 0 age.nanoSeconds = 0 unload_count = self.client.unloadInodeForPath(self.mount_path_bytes, b".", age) self.assertGreater( unload_count, 0, "Number of loaded inodes should reduce after unload" ) def get_counter(self, name: str) -> float: return self.get_counters()[name] def test_invalidate_inode_cache(self) -> None: filename = "bdir/file" full_dirname = os.path.join(self.mount, "bdir/") # Exercise eden a bit to make sure counters are ready for _ in range(20): fn = os.path.join(self.mount, "_tmp_") with open(fn, "w") as f: f.write("foo!\n") os.unlink(fn) reads = self.get_counter("fuse.read_us.count") self.read_file(filename) reads_1read = self.get_counter("fuse.read_us.count") self.assertEqual(reads_1read, reads + 1) self.read_file(filename) reads_2read = self.get_counter("fuse.read_us.count") self.assertEqual(reads_1read, reads_2read) self.client.invalidateKernelInodeCache(self.mount_path_bytes, b"bdir/file") self.read_file(filename) reads_3read = self.get_counter("fuse.read_us.count") self.assertEqual(reads_2read + 1, reads_3read) lookups = self.get_counter("fuse.lookup_us.count") # -hl makes ls to do a lookup of the file to determine type os.system("ls -hl " + full_dirname + " > /dev/null") lookups_1ls = self.get_counter("fuse.lookup_us.count") # equal, the file was lookup'ed above. self.assertEqual(lookups, lookups_1ls) self.client.invalidateKernelInodeCache(self.mount_path_bytes, b"bdir") os.system("ls -hl " + full_dirname + " > /dev/null") lookups_2ls = self.get_counter("fuse.lookup_us.count") self.assertEqual(lookups_1ls + 1, lookups_2ls) def test_diff_revisions(self) -> None: # Convert the commit hashes to binary for the thrift call with self.get_thrift_client() as client: diff = client.getScmStatusBetweenRevisions( os.fsencode(self.mount), binascii.unhexlify(self.commit1), binascii.unhexlify(self.commit2), ) self.assertDictEqual(diff.errors, {}) self.assertDictEqual( diff.entries, { b"cdir/subdir/new.txt": ScmFileStatus.ADDED, b"bdir/file": ScmFileStatus.MODIFIED, b"README": ScmFileStatus.REMOVED, }, ) def test_diff_revisions_hex(self) -> None: # Watchman currently calls getScmStatusBetweenRevisions() # with 40-byte hexadecimal commit IDs, so make sure that works. with self.get_thrift_client() as client: diff = client.getScmStatusBetweenRevisions( os.fsencode(self.mount), self.commit1.encode("utf-8"), self.commit2.encode("utf-8"), ) self.assertDictEqual(diff.errors, {}) self.assertDictEqual( diff.entries, { b"cdir/subdir/new.txt": ScmFileStatus.ADDED, b"bdir/file": ScmFileStatus.MODIFIED, b"README": ScmFileStatus.REMOVED, }, ) ``` #### File: eden/py/dirstate.py ```python from __future__ import absolute_import, division, print_function, unicode_literals import binascii import hashlib import struct from typing import IO, Any, Callable, Dict, Tuple from six import iteritems # Version number for the format of the .hg/dirstate file that is read/written by # this library. CURRENT_DIRSTATE_VERSION = 1 # Valid values for the merge state. MERGE_STATE_NOT_APPLICABLE = 0 MERGE_STATE_BOTH_PARENTS = -1 MERGE_STATE_OTHER_PARENT = -2 def write(file, parents, tuples_dict, copymap): # type: (IO[bytes], Tuple[bytes, bytes], Dict[bytes, Tuple[str, int, int]], Dict[bytes, bytes]) -> None # # The serialization format of the dirstate is as follows: # - The first 40 bytes are the hashes of the two parent pointers. # - The next 4 bytes are the version number of the format. # - The next section is the dirstate tuples. Each dirstate tuple is # represented as follows: # - The first byte is '\x01'. # - The second byte represents the status. It is the ASCII value of # 'n', 'm', 'r', 'a', '?', as appropriate. # - The next four bytes are an unsigned integer representing mode_t. # - The seventh byte (which is signed) represents the merge state: # - 0 is NotApplicable # - -1 is BothParents # - -2 is OtherParent # - The next two bytes are an unsigned short representing the length of # the path, in bytes. # - The bytes of the path itself. Note that a path cannot contain \0. # - The next section is the copymap. Each entry in the copymap is # represented as follows. # - The first byte is '\x02'. # - An unsigned short (two bytes) representing the length, followed by # that number of bytes, which constitutes the relative path name of the # *destination* of the copy. # - An unsigned short (two bytes) representing the length, followed by # that number of bytes, which constitutes the relative path name of the # *source* of the copy. # - The last section is the checksum. Although the other tuples can be # interleaved or reordered without issue, the checksum must come last. # The checksum is a function of all of the bytes written up to this point # plus the \xFF header for the checksum section. # - The first byte is '\xFF' to distinguish it from the other fields. # - Because we use SHA-256 as the hash algorithm for the checksum, the # remaining 32 bytes are used for the hash. sha = hashlib.sha256() def hashing_write(data): # type: (bytes) -> None sha.update(data) file.write(data) hashing_write(parents[0]) hashing_write(parents[1]) hashing_write(struct.pack(">I", CURRENT_DIRSTATE_VERSION)) for path, dirstate_tuple in iteritems(tuples_dict): status, mode, merge_state = dirstate_tuple hashing_write(b"\x01") hashing_write(struct.pack(">BIb", ord(status), mode, merge_state)) _write_path(hashing_write, path) for dest, source in iteritems(copymap): hashing_write(b"\x02") _write_path(hashing_write, dest) _write_path(hashing_write, source) hashing_write(b"\xFF") # Write the checksum, so we use file.write() instead of hashing_write(). file.write(sha.digest()) def read(fp, filename): # noqa: C901 # type: (IO[bytes], str) -> Tuple[Tuple[bytes, bytes], Dict[str, Tuple[str, int, int]], Dict[str, str]] """Returns a tuple of (parents, tuples_dict, copymap) if successful. Any exception from create_file(), such as IOError with errno == ENOENT, will be bubbled up to the caller. If contents of the dirstate file do not match the expected format, then a DirstateParseException will be thrown. """ parents = None tuples_dict = {} copymap = {} sha = hashlib.sha256() def hashing_read(num): data = fp.read(num) sha.update(data) return data parent_bytes = hashing_read(40) num_parents_bytes = len(parent_bytes) if num_parents_bytes != 40: raise DirstateParseException( "Reached EOF while reading dirstate parents in {}.\n".format(filename) ) parents = parent_bytes[:20], parent_bytes[20:40] binary_version = hashing_read(4) if len(binary_version) != 4: raise DirstateParseException( "Reached EOF while reading the version number in {}.\n".format(filename) ) version = struct.unpack(">I", binary_version)[0] # type: int if version != CURRENT_DIRSTATE_VERSION: raise DirstateParseException( "Unknown dirstate version in {}. Found {} but expected {}.\n".format( filename, version, CURRENT_DIRSTATE_VERSION ) ) while True: header = hashing_read(1) if not header: # We have reached the end of the file. break elif header == b"\x01": scalars = hashing_read(6) if len(scalars) != 6: raise DirstateParseException( "Malformed dirstate tuple in ".format(filename) + ". Aborting read().\n" ) path = _read_path(hashing_read, filename) status = 0 # type: int mode = 0 # type: int merge = 0 # type: int status, mode, merge = struct.unpack(">BIb", scalars) # TODO(mbolin): Verify status and merge? tuples_dict[path] = (chr(status), mode, merge) elif header == b"\x02": dest = _read_path(hashing_read, filename) source = _read_path(hashing_read, filename) copymap[dest] = source elif header == b"\xFF": # Reading the checksum, so we use fp.read() instead of # hashing_read(). binary_checksum = fp.read(32) if len(binary_checksum) != 32: raise DirstateParseException( "Reached EOF while reading checksum hash in {}.\n".format(filename) ) digest = sha.digest() if binary_checksum == digest: if fp.read(1) == b"": # There is no more data, as expected. break else: raise DirstateParseException( "Suspicious data is present after " "the end of the valid checksum in {}.\n".format(filename) ) else: raise DirstateParseException( "Checksum mismatch when reading {}. Observed checksum is " "{}, but the checksum in the file is {}.\n".format( filename, binascii.hexlify(digest), binascii.hexlify(binary_checksum), ) ) else: raise DirstateParseException( "Unexpected header byte " "when reading {}: 0x{0:x}.".format(filename, header) + " Ignoring remaining dirstate data.\n" ) return parents, tuples_dict, copymap def _write_path(writer, path): # type: (Callable[[bytes], None], bytes) -> None writer(struct.pack(">H", len(path))) writer(path) def _read_path(reader, filename): # type: (Callable[[int], bytes], str) -> str binary_path_len = reader(2) if len(binary_path_len) != 2: raise DirstateParseException( "Reached EOF while reading path length in {}.\n".format(filename) ) path_len = struct.unpack(">H", binary_path_len)[0] # type: int path = reader(path_len) if len(path) == path_len: if isinstance(path, str): # Python 2. return path else: # Python 3 return str(path, "utf8") else: raise DirstateParseException( "Reached EOF while reading path in {}.\n".format(filename) ) class DirstateParseException(Exception): pass ```
{ "source": "jmswu/resistor_solver", "score": 3 }
#### File: jmswu/resistor_solver/resistor_solver.py ```python from resistor import Resistor from resistor_data import ResistorData class ResistorSolver: """ find a solution to for the non-standard resistor values """ _target = Resistor() _dataset_list = list() def __init__(self, target, tolerance=0.05, extension=".resistor"): """ create Resistor solver object, with the target values and tolerance :param target: target resistor value :param tolerance: acceptable tolerance """ self._target = Resistor(val=target, tolerance=tolerance) # extract the data from the data set file and put them into a data set list self._dataset_list = ResistorData(extension).get_dataset() def solution(self): """ :return: return a solution in a list [name, R1, R2, RParallel, error] """ result = list() # loop through all data set for data_set in self._dataset_list: # loop through all the values index = 0 for val_1 in data_set.data(): index = index + 1 for val_2 in data_set.data()[index:]: r1 = Resistor(val=val_1) r2 = Resistor(val=val_2) rp = r1.parallel_with(r2) # test the value if self._target.in_tolerance(rp.value()): error = (self._target.value() - rp.value()) / self._target.value() result.append([data_set.name(), r1.value(), r2.value(), rp.value(), error]) return result ```
{ "source": "jmsz/lab3", "score": 2 }
#### File: lab3/scripts/timing.py ```python from lab3_analysis_functions import * from __future__ import division # In[2]: filename = './data/cs2.h5' hf = tables.open_file(filename, "r") raw_data_1 = import_data(filename) event_data_cs1= hf.root.EventData.read() hf.close() # In[3]: # filename = '/Users/Asia/Desktop/204/lab3/lab3/data/am1.h5' # hf = tables.open_file(filename, "r") # raw_data_1 = import_data(filename) # event_data_am1= hf.root.EventData.read() # hf.close() # filename = '/Users/Asia/Desktop/204/lab3/lab3/data/am2.h5' # hf = tables.open_file(filename, "r") # raw_data_2 = import_data(filename) # event_data_am2= hf.root.EventData.read() # hf.close() # filename = '/Users/Asia/Desktop/204/lab3/lab3/data/cs1.h5' # hf = tables.open_file(filename, "r") # raw_data_1 = import_data(filename) # event_data_cs1= hf.root.EventData.read() # hf.close() # filename = '/Users/Asia/Desktop/204/lab3/lab3/data/cs2.h5' # hf = tables.open_file(filename, "r") # raw_data_2 = import_data(filename) # event_data_cs2= hf.root.EventData.read() # hf.close() # In[4]: # event_data_am = np.concatenate((event_data_am1, event_data_am2)) # event_data_cs = np.concatenate((event_data_cs1, event_data_cs2)) # In[5]: # sort events by timestamp event_data_cs1 = event_data_cs1[np.argsort(event_data_cs1['timestamp'])] # In[6]: time_btwn_events = np.diff(event_data_cs1['timestamp']) counts, bin_edges = np.histogram(time_btwn_events, bins=30, range = [0, 30]) bins = (bin_edges[1:]+bin_edges[:-1])/2 # bin centers from bin edges for i in range(0, len(bins), 1): bins[i] = i*10 plt.figure(4, figsize=(7, 5)) plt.cla() plt.clf() plt.plot(bins, counts, 'ko') plt.xlabel('time to next event (ns)') plt.ylabel('counts') plt.title("Time-to-Next-Event Histogram") plt.xlim([0, 300]) plt.savefig("./figures/time-to-next-event.pdf") #plt.show() # In[7]: print('applying energy calibration to data files...') print('(this part takes a bit of time)') filename = './data/calibration_long.txt' calibration = np.genfromtxt(filename,delimiter=' ') slopes = calibration[:,0] intercepts = calibration[:,1] for i in range(0, 152, 1): mask = (event_data_cs1['detector'] == i) event_data_cs1['ADC_value'][mask] = calculate_energies(event_data_cs1['ADC_value'][mask], slopes[i], intercepts[i]) #if i == 90: #print('still going... almost done') if i == 151: print('phew! done with that part') # In[8]: counts, bin_edges = np.histogram(event_data_cs1['ADC_value'], bins=2048, range = [300, 700]) bins = (bin_edges[1:]+bin_edges[:-1])/2 # bin centers from bin edges plt.cla() plt.clf() plt.plot(bins, counts) plt.savefig('./figures/energy-spectrum.pdf') #plt.show() print('an energy spectrum of the Cs-137 peak has been plotted in energy-spectrum.pdf') mask_1 = ((660 < event_data_cs1['ADC_value']) & (event_data_cs1['ADC_value'] < 663)) counts, bin_edges = np.histogram(event_data_cs1['ADC_value'][mask_1], bins=500, range = [657, 665]) bins = (bin_edges[1:]+bin_edges[:-1])/2 # bin centers from bin edges plt.cla() plt.clf() plt.plot(bins, counts) plt.savefig('./figures/energy-spectrum-cut.pdf') #plt.show() # In[11]: raw_data_1 = fast_baseline_correction(raw_data_1) # In[12]: def make_test_file(masked_data, rawdata): f = open('test.csv', 'w') for i in event_data_cs1[mask_1]: #print(i) f.write(str(i[0]) +','+ str(i[1]) + ','+str(i[2]) + ','+ str(i[3]) + ','+ str(i[4]) + ','+ str(i[5]) + ','+ str(i[6]) + '\n') f.close() f = open('test_trace.csv', 'w') for i in event_data_cs1['rid'][mask_1]: x = rawdata[i] for j in x: f.write(str(j) + ' ') f.write('\n') f.close() #make_test_file(event_data_cs1[mask_1], raw_data_1) # In[13]: # full energy only mask_1 = ((640 < event_data_cs1['ADC_value']) & (event_data_cs1['ADC_value'] < 680)) #print(event_data_cs1['ADC_value'][mask_1][0:10]) # In[14]: #dc1, dc2, ac1, ac2 face1 = np.arange(0, 38) # dc1 face2 = np.arange(38, 76) # dc2 face3 = np.arange(76, 114) # ac1 face4 = np.arange(114, 152) # ac2 # In[15]: def calculate_t50(signal, plot=False): signal = signal[:-100] x = np.linspace(0, len(signal) -100, len(signal) -99) # print(x) sig = savgol_filter(signal, 15, 3) # window size 51, polynomial order 3 if sig.all() == 0: return -1000 elif np.argmax(sig) == len(sig): return -1000 else: maxval = np.amax(sig) fiftyval = maxval* 0.5 fiftyindex = 0 for i in range(0, len(sig), 1): if sig[i] <= fiftyval: fiftyindex = i if (fiftyindex + 3) >= len(sig): x_fit_low = np.linspace((fiftyindex - 2), len(sig), len(sig)-2 - fiftyindex) sig_fit_low = sig[int(fiftyindex - 2): len(sig)] else: x_fit_low = np.linspace((fiftyindex - 2), int(fiftyindex + 3), 5) sig_fit_low = sig[int(fiftyindex - 2): int(fiftyindex + 3)] if len(x_fit_low) != len(sig_fit_low): #print(fiftyindex) #print(len(x_fit_low)) #print(len(sig_fit_low)) #print(x_fit_low) #print(sig_fit_low) #plt.plot(signal) #plt.plot(sig) #plt.show() #plt.plot(signal[int(fiftyindex - 4):int(fiftyindex + 5)], 'o') #plt.plot(sig[int(fiftyindex -4): int(fiftyindex + 5)], 'o') #plt.show() x_fit_low = x_fit_low = np.linspace((fiftyindex - 1), int(fiftyindex + 2), 4) sig_fit_low = sig[int(fiftyindex -1): int(fiftyindex +2)] #print(len(x_fit_low)) #print(len(sig_fit_low)) x_fit_low = np.array(x_fit_low) sig_fit_low = np.array(sig_fit_low) if len(x_fit_low) < 1: #print('x empty') #plt.plot(signal) #plt.plot(sig) #plt.show() return -1000 else: m, b = np.polyfit(x_fit_low, sig_fit_low, deg=1) fit_low = b + m * x_fit_low rise_low = ((fiftyval - b )/ m) t50 = (rise_low) * 10# ns if plot==True: plt.figure(figsize=(10,5)) plt.plot(signal, '-', label = 'raw signal') plt.plot(sig, label = 'smoothed signal') plt.plot(x_fit_low, fit_low,'-', linewidth = 5.0,alpha=0.7, label = 'fit') plt.plot(t50/10, fiftyval, 'ro', label='t50') plt.title('T50 Fitting') plt.ylabel('ADC value') plt.xlabel('ADC sample (10 ns sampling time)') plt.legend() #plt.savefig('t50_fitting.pdf') plt.show() return t50 # In[16]: #x = 7000 diff1vals = [] flag = 0 # 1 = detector1, 2= detector2, 3=detector1 neighbors, 4=detector2 neigbors, 5=other delta_t50_values_1 = [] delta_t50_values_2 = [] for t in range(0, len(event_data_cs1['timestamp'][mask_1]), 1): #for t in range(0, x, 1): diff0 = np.abs(event_data_cs1['timestamp'][mask_1][t] - event_data_cs1['timestamp'][mask_1][t-1]) diff1 = np.abs(event_data_cs1['timestamp'][mask_1][t] - event_data_cs1['timestamp'][mask_1][t-2]) # diff2 = np.abs(event_data_cs1['timestamp'][mask_1][t+1] - event_data_cs1['timestamp'][mask_1][t]) # diff3 = np.abs(event_data_cs1['timestamp'][mask_1][t+2] - event_data_cs1['timestamp'][mask_1][t]) if diff0 < 7 and diff1 > 7: # print('0', diff0) # print('1', diff1) # print('2', diff2) # print('3', diff3) detector1 = (event_data_cs1['detector'][mask_1][t-1]) detector2 = (event_data_cs1['detector'][mask_1][t]) #print('-------------') if detector1 in face1 and detector2 in face1: # print('face1 neighbors') flag = 3 elif detector1 in face2 and detector2 in face2: # print('face2 neighbors') flag = 3 elif detector1 in face3 and detector2 in face3: # print('face3 neighbors') flag = 4 elif detector1 in face4 and detector2 in face4: # print('face4 neighbors') flag = 4 elif detector1 in face1 and detector2 in face3: # print('detector1') flag = 1 elif detector1 in face3 and detector2 in face1: # print('detector1') flag = 1 elif detector1 in face2 and detector2 in face4: # print('detector2') flag = 2 elif detector1 in face4 and detector2 in face2: # print('detector2') flag = 2 else: flag= 5 # print('other') if flag == 1: rid1 = (event_data_cs1['rid'][mask_1][t-1]) rid2 = (event_data_cs1['rid'][mask_1][t]) adc1 = (event_data_cs1['ADC_value'][mask_1][t-1]) adc2 = (event_data_cs1['ADC_value'][mask_1][t]) t501 = calculate_t50(raw_data_1[rid1], plot=False) t502 = calculate_t50(raw_data_1[rid2], plot=False) if rid1 > rid2: # electrons - holes = ac - dc #deltat50 = -(diff0 * 10) - t502 + t501 #- diff0 * 10 deltat50 = (diff0 * 10) + t502 - t501 else: # rid1 < rid2 #deltat50 = (diff0 * 10) + t502 - t501 #- diff0 * 10 deltat50 = -(diff0 * 10) - t502 + t501 deltat50 = round(float(deltat50),4) delta_t50_values_1.append(deltat50) diff1vals.append(diff0) elif flag == 2: rid1 = (event_data_cs1['rid'][mask_1][t-1]) rid2 = (event_data_cs1['rid'][mask_1][t]) adc1 = (event_data_cs1['ADC_value'][mask_1][t-1]) adc2 = (event_data_cs1['ADC_value'][mask_1][t]) t501 = calculate_t50(raw_data_1[rid1], plot=False) t502 = calculate_t50(raw_data_1[rid2], plot=False) if rid1 > rid2: # electrons - holes = ac - dc #deltat50 = -(diff0 * 10) - t502 + t501 #- diff0 * 10 deltat50 = (diff0 * 10) + t502 - t501 else: # rid1 < rid2 #deltat50 = (diff0 * 10) + t502 - t501 #- diff0 * 10 deltat50 = -(diff0 * 10) - t502 + t501 deltat50 = round(float(deltat50),4) delta_t50_values_2.append(deltat50) diff1vals.append(diff0) else: continue # In[20]: #print(len(delta_t50_values_1)) #print(len(delta_t50_values_2)) delta_t50_1 = np.asarray(delta_t50_values_1)#, dtype=float) #print(type(delta_t50_1)) counts_det1, bin_edges = np.histogram(delta_t50_1, bins=200, range = [-225, 275]) bins_det1 = (bin_edges[1:]+bin_edges[:-1])/2 # bin centers from bin edges plt.cla() plt.clf() #plt.axvline(-160,color='k') #plt.axvline(210,color='k') plt.plot(bins_det1, counts_det1) plt.title('$\Delta$t50 Values for Detector 1') plt.ylabel('counts') plt.xlabel('$\Delta$t50 (ns)') plt.savefig('./figures/t50s_det1.pdf') #plt.show() delta_t50_2 = np.asarray(delta_t50_values_2)#, dtype=float) #print(type(delta_t50_1)) counts_det2, bin_edges = np.histogram(delta_t50_2, bins=200, range = [-225, 275]) bins_det2 = (bin_edges[1:]+bin_edges[:-1])/2 # bin centers from bin edges plt.cla() plt.clf() #plt.axvline(-160,color='k') #plt.axvline(210,color='k') plt.plot(bins_det2, counts_det2) plt.title('$\Delta$t50 Values for Detector 2') plt.ylabel('counts') plt.xlabel('$\Delta$t50 (ns)') plt.savefig('./figures/t50s_det2.pdf') #plt.show() cut_counts_det1, bin_edges = np.histogram(delta_t50_1, bins=200, range = [-160, 210]) cut_bins_det1 = (bin_edges[1:]+bin_edges[:-1])/2 # bin centers from bin edges cut_counts_det2, bin_edges = np.histogram(delta_t50_2, bins=200, range=[-160, 210]) cut_bins_det2 = (bin_edges[1:]+bin_edges[:-1])/2 # bin centers from bin edges # In[21]: # method 1 = linear fit x = (np.linspace(0, 15, len(cut_bins_det1))) m, b = np.polyfit(cut_bins_det1, x, deg=1) x_values = b + m * bins_det1 y_values = counts_det1 plt.xlim([-3,18]) plt.cla() plt.clf() plt.plot(x_values, y_values,'b--', label='method 1') #plt.show() # method 2 z_0 = 5.2 # mm z_0 = 5.2 + 0.75# mm k_c = 0.04 # mm/ns c = 3*10**8 # m/s c = 299.792 # mm/ns z_coord_eq_1 = [] #print(len(delta_t50_values_2)) for i in delta_t50_values_2: z = z_0 + 0.04*(i) z_coord_eq_1.append(z) z_coord_eq_1= np.asarray(z_coord_eq_1)#, dtype=float) #print(type(delta_t50_1)) z_coord_eq_1_y, bin_edges = np.histogram(z_coord_eq_1, bins=200) z_coord_eq_1_x = (bin_edges[1:]+bin_edges[:-1])/2 # bin centers from bin edges plt.plot(z_coord_eq_1_x, z_coord_eq_1_y,'r--', label = 'method 2') plt.xlim([-3,18]) plt.title('Interaction Depth Profile') plt.xlabel('depth (mm)') plt.ylabel('counts') plt.legend() plt.savefig('./figures/interactiondepths.pdf') #plt.show() # In[ ]: # In[82]: #Geant4 comparison hf = tables.open_file("./data/hits.h5", "r") event_pointers = hf.root.EventPointers.read() event_lengths = hf.root.EventLengths.read() idata = hf.root.InteractionData.read() # energy weighted z coordinates for full E deposition in a signel crystal event_energies = [] z_values = [] z_values_all = [] for i in range(0, len(event_pointers), 1): #print('---', i) pointer = event_pointers[i] length = event_lengths[i] energy = np.sum(idata['energy'][pointer:pointer+length]) z_coords = (idata['z'][pointer:pointer+length]) if (energy > 661.6): neg = 0 pos = 0 for j in z_coords: z_values_all.append(j) if j > 0: pos = 1 if j < 0: neg = 1 if pos == 1 and neg == 0: event_energies.append(energy) z_val = [] for j in idata[pointer:pointer+length]: z_val.append(j['z'] * j['energy'] / energy) z_coord_1 = np.sum(np.asarray(z_val)) z_values.append(z_coord_1) elif pos == 0 and neg == 1: event_energies.append(energy) z_val = [] for j in idata[pointer:pointer+length]: z_val.append(j['z'] * j['energy'] / energy) z_coord_1 = np.sum(np.asarray(z_val)) z_values.append(z_coord_1) event_energies = np.asarray(event_energies) z_values = np.asarray(z_values) # In[83]: counts_weight, bin_edges = np.histogram(z_values, bins=200, range=[-25,0]) bins_weight = (bin_edges[1:]+bin_edges[:-1])/2 # bin centers from bin edges counts_all, bin_edges = np.histogram(z_values_all, bins=200, range=[-25,0]) bins_all = (bin_edges[1:]+bin_edges[:-1])/2 # bin centers from bin edges # single interaction z coordinates for full E deposition in a signle crystal event_energies = [] z_values = [] for i in range(0, len(event_pointers), 1): pointer = event_pointers[i] length = event_lengths[i] energy = np.sum(idata['energy'][pointer:pointer+length]) if energy > 661.6: event_energies.append(energy) if length ==1: z_values.append(idata['z'][pointer:pointer+length]) #elif length > 1: #print(length) event_energies = np.asarray(event_energies) z_values = np.asarray(z_values) counts, bin_edges = np.histogram(z_values, bins=200,range=[-25,0]) bins = (bin_edges[1:]+bin_edges[:-1])/2 # bin centers from bin edges for i in range(0, len(counts), 1): bins[i] = bins[i] + 20 for i in range(0, len(counts_weight), 1): bins_weight[i] = bins_weight[i] + 20 plt.cla() plt.clf() plt.plot(bins, counts,'b') #plt.plot(bins_all,counts_all,'r') #plt.plot(bins_weight,counts_weight,'g') plt.xlim([-5, 20]) plt.savefig('./figures/detector1_g4_zpos.pdf') #plt.show() plt.cla() plt.clf() #plt.plot(bins,counts,'b') #plt.plot(bins_all,counts_all,'r') plt.plot(bins_weight, counts_weight,'g') plt.xlim([-5, 20]) plt.savefig('./figures/detector1_g4_zpos_weighted.pdf') #plt.show() # In[89]: y1 = z_coord_eq_1_y / np.sum(z_coord_eq_1_y) y2 = counts / np.sum(counts) plt.cla() plt.clf() plt.plot(z_coord_eq_1_x, y1,'r--', label = 'method 2') plt.plot(bins, y2,'b') plt.xlim([-3,18]) plt.title('Comparison with Simulated Data') plt.xlabel('depth (mm)') plt.ylabel('counts') plt.legend() plt.savefig('./figures/g4_comp.pdf') #plt.show() # In[ ]: ```
{ "source": "jm-szlendak/particle-filter", "score": 3 }
#### File: particle-filter/src/pf.py ```python import sys import os.path sys.path.append(os.path.join(os.path.dirname(__file__), '..')) """ Based on Dakota's Nelson PF implementation for laser scanner Visit: https://github.com/DakotaNelson/particle-filter """ import rospy from std_msgs.msg import Header, String, ColorRGBA from sensor_msgs.msg import LaserScan from geometry_msgs.msg import PoseStamped, PoseWithCovarianceStamped, PoseArray, Pose, Point, Quaternion, Vector3, \ PoseWithCovariance from beacon_msgs.msg import BeaconPositionAndDistance, BeaconsScan from nav_msgs.srv import GetMap from visualization_msgs.msg import Marker, MarkerArray from copy import deepcopy import tf from tf import TransformListener from tf import TransformBroadcaster from tf.transformations import euler_from_quaternion, rotation_matrix, quaternion_from_matrix from random import gauss import math import random import time import numpy as np from numpy.random import random_sample, normal import scipy from scripts.helper_functions import (convert_pose_inverse_transform, convert_translation_rotation_to_pose, convert_pose_to_xy_and_theta, angle_diff, sum_vectors, gaussian) class Particle(object): """ Represents a hypothesis (particle) of the robot's pose consisting of x,y and theta (yaw) Attributes: x: the x-coordinate of the hypothesis relative to the map frame y: the y-coordinate of the hypothesis relative ot the map frame theta: the yaw of the hypothesis relative to the map frame w: the particle weight (the class does not ensure that particle weights are normalized """ def __init__(self, x=0.0, y=0.0, theta=0.0, w=1.0): """ Construct a new Particle x: the x-coordinate of the hypothesis relative to the map frame y: the y-coordinate of the hypothesis relative ot the map frame theta: the yaw of the hypothesis relative to the map frame w: the particle weight (the class does not ensure that particle weights are normalized """ self.w = w self.theta = theta self.x = x self.y = y def as_pose(self): """ A helper function to convert a particle to a geometry_msgs/Pose message """ orientation_tuple = tf.transformations.quaternion_from_euler(0, 0, self.theta) return Pose(position=Point(x=self.x, y=self.y, z=0), orientation=Quaternion(x=orientation_tuple[0], y=orientation_tuple[1], z=orientation_tuple[2], w=orientation_tuple[3])) class ParticleFilter: """ The class that represents a Particle Filter ROS Node Attributes list: initialized: a Boolean flag to communicate to other class methods that initializaiton is complete base_frame: the name of the robot base coordinate frame (should be "base_link" for most robots) map_frame: the name of the map coordinate frame (should be "map" in most cases) odom_frame: the name of the odometry coordinate frame (should be "odom" in most cases) scan_topic: the name of the scan topic to listen to (should be "scan" in most cases) n_particles: the number of particles in the filter d_thresh: the amount of linear movement before triggering a filter update a_thresh: the amount of angular movement before triggering a filter update laser_max_distance: the maximum distance to an obstacle we should use in a likelihood calculation pose_listener: a subscriber that listens for new approximate pose estimates (i.e. generated through the rviz GUI) particle_pub: a publisher for the particle cloud laser_subscriber: listens for new scan data on topic self.scan_topic tf_listener: listener for coordinate transforms tf_broadcaster: broadcaster for coordinate transforms particle_cloud: a list of particles representing a probability distribution over robot poses current_odom_xy_theta: the pose of the robot in the odometry frame when the last filter update was performed. The pose is expressed as a list [x,y,theta] (where theta is the yaw) map: the map we will be localizing ourselves in. The map should be of type nav_msgs/OccupancyGrid """ def __init__(self): self.initialized = False # make sure we don't perform updates before everything is setup rospy.init_node('pf') # tell roscore that we are creating a new node named "pf" robot_name = rospy.get_namespace()[1:] self.base_frame = robot_name + "base_link" # the frame of the robot base self.map_frame = "map" # the name of the map coordinate frame self.odom_frame = robot_name + "odom" # the name of the odometry coordinate frame self.beacons_topic = "beacon_localization/distances/probabilistic" # the topic where we will get laser scans from TODO: filter parametrization self.n_particles = 500 # the number of particles to use self.d_thresh = 0.2 # the amount of linear movement before performing an update self.a_thresh = math.pi / 6 # the amount of angular movement before performing an update self.laser_max_distance = 2.0 # maximum penalty to assess in the likelihood field model self.sigma = 1 # guess for how inaccurate beacon scans are are in meters # Setup pubs and subs # pose_listener responds to selection of a new approximate robot location (for instance using rviz) self.pose_listener = rospy.Subscriber("initialpose", PoseWithCovarianceStamped, self.update_initial_pose) # publish the current particle cloud. This enables viewing particles in rviz. self.particle_pub = rospy.Publisher("bl/particlecloud", PoseArray, queue_size=10) self.pose_pub = rospy.Publisher('bl/pose', PoseWithCovarianceStamped, queue_size=10) self.marker_pub = rospy.Publisher("markers", MarkerArray, queue_size=10) # laser_subscriber listens for data from the lidar self.beacon_subscriber = rospy.Subscriber(self.beacons_topic, BeaconsScan, self.scan_received) # enable listening for and broadcasting coordinate transforms self.tf_listener = TransformListener() self.tf_broadcaster = TransformBroadcaster() self.particle_cloud = [] self.current_odom_xy_theta = [] self.robot_pose = None self.odom_pose = None self.receiver_pose = None self.initialized = True rospy.loginfo('Initialized particle filter') def update_robot_pose(self): """ Update the estimate of the robot's pose given the updated particles. Computed by taking the weighted average of poses. """ # first make sure that the particle weights are normalized self.normalize_particles() x = 0 y = 0 theta = 0 angles = [] x_var = 0 y_var = 0 for particle in self.particle_cloud: x += particle.x * particle.w y += particle.y * particle.w v = [particle.w * math.cos(math.radians(particle.theta)), particle.w * math.sin(math.radians(particle.theta))] angles.append(v) theta = sum_vectors(angles) for particle in self.particle_cloud: x_var += (particle.x - x)**2 * particle.w y_var += (particle.y - y) ** 2 * particle.w print 'Position x, y, xvar, yvar', x, y, x_var, y_var covar = np.zeros((6, 6)) covar[0, 0] = x_var covar[1, 1] = y_var orientation_tuple = tf.transformations.quaternion_from_euler(0, 0, theta) self.robot_pose = PoseWithCovarianceStamped( header=Header( stamp=rospy.Time.now(), frame_id=self.map_frame ), pose=PoseWithCovariance( pose=Pose( position=Point(x=x, y=y), orientation=Quaternion( x=orientation_tuple[0], y=orientation_tuple[1], z=orientation_tuple[2], w=orientation_tuple[3])), covariance=covar.flatten() ) ) def update_particles_with_odom(self, msg): """ Update the particles using the newly given odometry pose. The function computes the value delta which is a tuple (x,y,theta) that indicates the change in position and angle between the odometry when the particles were last updated and the current odometry. msg: this is not really needed to implement this, but is here just in case. """ new_odom_xy_theta = convert_pose_to_xy_and_theta(self.odom_pose.pose) # compute the change in x,y,theta since our last update if self.current_odom_xy_theta: old_odom_xy_theta = self.current_odom_xy_theta delta = (new_odom_xy_theta[0] - self.current_odom_xy_theta[0], new_odom_xy_theta[1] - self.current_odom_xy_theta[1], new_odom_xy_theta[2] - self.current_odom_xy_theta[2]) self.current_odom_xy_theta = new_odom_xy_theta else: self.current_odom_xy_theta = new_odom_xy_theta return for particle in self.particle_cloud: r1 = math.atan2(delta[1], delta[0]) - old_odom_xy_theta[2] d = math.sqrt((delta[0] ** 2) + (delta[1] ** 2)) particle.theta += r1 % 360 particle.x += d * math.cos(particle.theta) + normal(0, 0.1) particle.y += d * math.sin(particle.theta) + normal(0, 0.1) particle.theta += (delta[2] - r1 + normal(0, 0.1)) % 360 # For added difficulty: Implement sample_motion_odometry (Prob Rob p 136) def resample_particles(self): """ Resample the particles according to the new particle weights. The weights stored with each particle should define the probability that a particular particle is selected in the resampling step. You may want to make use of the given helper function draw_random_sample. """ # make sure the distribution is normalized self.normalize_particles() new_particles = [] for i in range(len(self.particle_cloud)): # resample the same # of particles choice = random_sample() # all the particle weights sum to 1 csum = 0 # cumulative sum for particle in self.particle_cloud: csum += particle.w if csum >= choice: # if the random choice fell within the particle's weight new_particles.append(deepcopy(particle)) break self.particle_cloud = new_particles def update_particles_with_beacons(self, msg): for particle in self.particle_cloud: total_probability = 1.0 for beacon in msg.beacons: distance = math.sqrt( (beacon.pose.position.x - particle.x) ** 2 + (beacon.pose.position.y - particle.y) ** 2 ) total_probability *= gaussian(distance, self.sigma, beacon.distance) total_probability /= len(msg.beacons) particle.w = total_probability @staticmethod def weighted_values(values, probabilities, size): """ Return a random sample of size elements from the set values with the specified probabilities values: the values to sample from (numpy.ndarray) probabilities: the probability of selecting each element in values (numpy.ndarray) size: the number of samples """ bins = np.add.accumulate(probabilities) return values[np.digitize(random_sample(size), bins)] @staticmethod def draw_random_sample(choices, probabilities, n): """ Return a random sample of n elements from the set choices with the specified probabilities choices: the values to sample from represented as a list probabilities: the probability of selecting each element in choices represented as a list n: the number of samples """ values = np.array(range(len(choices))) probs = np.array(probabilities) bins = np.add.accumulate(probs) inds = values[np.digitize(random_sample(n), bins)] samples = [] for i in inds: samples.append(deepcopy(choices[int(i)])) return samples def update_initial_pose(self, msg): """ Callback function to handle re-initializing the particle filter based on a pose estimate. These pose estimates could be generated by another ROS Node or could come from the rviz GUI """ xy_theta = convert_pose_to_xy_and_theta(msg.pose.pose) self.initialize_particle_cloud(xy_theta) self.fix_map_to_odom_transform(msg) def initialize_particle_cloud(self, xy_theta=None): """ Initialize the particle cloud. Arguments xy_theta: a triple consisting of the mean x, y, and theta (yaw) to initialize the particle cloud around. If this input is ommitted, the odometry will be used """ if xy_theta == None: xy_theta = convert_pose_to_xy_and_theta(self.odom_pose.pose) rad = 1 # meters self.particle_cloud = [] self.particle_cloud.append(Particle(xy_theta[0], xy_theta[1], xy_theta[2])) for i in range(self.n_particles - 1): # initial facing of the particle theta = random.random() * 360 # compute params to generate x,y in a circle other_theta = random.random() * 360 radius = random.random() * rad # x => straight ahead x = radius * math.sin(other_theta) + xy_theta[0] y = radius * math.cos(other_theta) + xy_theta[1] particle = Particle(x, y, theta) self.particle_cloud.append(particle) self.normalize_particles() self.update_robot_pose() def normalize_particles(self): """ Make sure the particle weights define a valid distribution (i.e. sum to 1.0) """ tot_weight = sum([particle.w for particle in self.particle_cloud]) or 1 for particle in self.particle_cloud: particle.w = particle.w / tot_weight; def publish_particles(self, msg): particles_conv = [] for p in self.particle_cloud: particles_conv.append(p.as_pose()) # actually send the message so that we can view it in rviz self.particle_pub.publish(PoseArray(header=Header(stamp=rospy.Time.now(), frame_id=self.map_frame), poses=particles_conv)) marker_array = [] for index, particle in enumerate(self.particle_cloud): marker = Marker(header=Header(stamp=rospy.Time.now(), frame_id=self.map_frame), pose=particle.as_pose(), type=0, scale=Vector3(x=particle.w * 2, y=particle.w * 1, z=particle.w * 5), id=index, color=ColorRGBA(r=1, a=1)) marker_array.append(marker) self.marker_pub.publish(MarkerArray(markers=marker_array)) self.pose_pub.publish(self.robot_pose) def scan_received(self, msg): """ This is the default logic for what to do when processing scan data. Feel free to modify this, however, I hope it will provide a good guide. The input msg is an object of type sensor_msgs/LaserScan """ rospy.loginfo('Scan received') if not self.initialized: # wait for initialization to complete rospy.loginfo('not initialized') return if not (self.tf_listener.canTransform(self.base_frame, msg.header.frame_id, msg.header.stamp)): return if not (self.tf_listener.canTransform(self.base_frame, self.odom_frame, msg.header.stamp)): self.tf_listener.waitForTransform(self.base_frame, self.odom_frame, msg.header.stamp, rospy.Duration(1.0/5)) # calculate pose of BLE receiver relative ot the robot base p = PoseStamped(header=Header(stamp=rospy.Time(0), frame_id=msg.header.frame_id)) self.receiver_pose = self.tf_listener.transformPose(self.base_frame, p) # find out where the robot thinks it is based on its odometry p = PoseStamped(header=Header(stamp=msg.header.stamp, frame_id=self.base_frame), pose=Pose()) # self.tf_listener.waitForTransform() self.odom_pose = self.tf_listener.transformPose(self.odom_frame, p) # store the the odometry pose in a more convenient format (x,y,theta) new_odom_xy_theta = convert_pose_to_xy_and_theta(self.odom_pose.pose) if not self.particle_cloud: # now that we have all of the necessary transforms we can update the particle cloud self.initialize_particle_cloud() # cache the last odometric pose so we can only update our particle filter if we move more than self.d_thresh or self.a_thresh self.current_odom_xy_theta = new_odom_xy_theta # update our map to odom transform now that the particles are initialized self.fix_map_to_odom_transform(msg) elif (math.fabs(new_odom_xy_theta[0] - self.current_odom_xy_theta[0]) > self.d_thresh or math.fabs(new_odom_xy_theta[1] - self.current_odom_xy_theta[1]) > self.d_thresh or math.fabs(new_odom_xy_theta[2] - self.current_odom_xy_theta[2]) > self.a_thresh): # we have moved far enough to do an update! self.update_particles_with_odom(msg) # update based on odometry self.update_particles_with_beacons(msg) # update based on laser scan self.update_robot_pose() # update robot's pose self.resample_particles() # resample particles to focus on areas of high density self.fix_map_to_odom_transform(msg) # update map to odom transform now that we have new particles # publish particles (so things like rviz can see them) self.publish_particles(msg) def fix_map_to_odom_transform(self, msg): """ This method constantly updates the offset of the map and odometry coordinate systems based on the latest results from the localizer """ (translation, rotation) = convert_pose_inverse_transform(self.robot_pose.pose.pose) p = PoseStamped(pose=convert_translation_rotation_to_pose(translation, rotation), header=Header(stamp=msg.header.stamp, frame_id=self.base_frame)) self.odom_to_map = self.tf_listener.transformPose(self.odom_frame, p) (self.translation, self.rotation) = convert_pose_inverse_transform(self.odom_to_map.pose) def broadcast_last_transform(self): """ Make sure that we are always broadcasting the last map to odom transformation. This is necessary so things like move_base can work properly. """ if not (hasattr(self, 'translation') and hasattr(self, 'rotation')): return self.tf_broadcaster.sendTransform(self.translation, self.rotation, rospy.get_rostime(), self.odom_frame, self.map_frame) if __name__ == '__main__': n = ParticleFilter() r = rospy.Rate(5) while not (rospy.is_shutdown()): # in the main loop all we do is continuously broadcast the latest map to odom transform n.broadcast_last_transform() r.sleep() ```
{ "source": "jmtatsch/keras-contrib", "score": 2 }
#### File: keras-contrib/keras_contrib/constraints.py ```python from __future__ import absolute_import from . import backend as K from keras.constraints import * class Clip(Constraint): """Clips weights to [-c, c]. # Arguments c: Clipping parameter. """ def __init__(self, c=0.01): self.c = c def __call__(self, p): return K.clip(p, -self.c, self.c) def get_config(self): return {'name': self.__class__.__name__, 'c': self.c} # Aliases. clip = Clip ``` #### File: tests/keras_contrib/optimizers_test.py ```python from __future__ import print_function from keras.utils.test_utils import get_test_data from keras.models import Sequential from keras.layers.core import Dense, Activation from keras.utils.np_utils import to_categorical from keras_contrib import optimizers import pytest import numpy as np np.random.seed(1337) (X_train, y_train), (X_test, y_test) = get_test_data(num_train=1000, num_test=200, input_shape=(10,), classification=True, num_classes=2) y_train = to_categorical(y_train) y_test = to_categorical(y_test) def get_model(input_dim, nb_hidden, output_dim): model = Sequential() model.add(Dense(nb_hidden, input_shape=(input_dim,))) model.add(Activation('relu')) model.add(Dense(output_dim)) model.add(Activation('softmax')) return model def _test_optimizer(optimizer, target=0.89): model = get_model(X_train.shape[1], 10, y_train.shape[1]) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) history = model.fit(X_train, y_train, epochs=12, batch_size=16, validation_data=(X_test, y_test), verbose=2) config = optimizer.get_config() assert type(config) == dict assert history.history['val_acc'][-1] >= target if __name__ == '__main__': pytest.main([__file__]) ```
{ "source": "jmtatsch/PSPNet-Keras-tensorflow", "score": 3 }
#### File: PSPNet-Keras-tensorflow/pspnet/utils.py ```python from __future__ import print_function import colorsys import requests from os.path import join import numpy as np from keras.models import Model def preprocess_image(img, mean=np.array([[[123.68, 116.779, 103.939]]])): # mean in rgb order """Preprocess an image as input.""" float_img = img.astype('float16') centered_image = float_img - mean bgr_image = centered_image[:, :, ::-1] # RGB => BGR return bgr_image def class_image_to_image(class_id_image, class_id_to_rgb_map): """Map the class image to a rgb-color image.""" colored_image = np.zeros((class_id_image.shape[0], class_id_image.shape[1], 3), np.uint8) for class_id in np.nditer(np.unique(class_id_image)): # get all the unique classes and color at once try: cl = class_id_to_rgb_map[int(class_id)] colored_image[class_id_image[:, :] == class_id] = cl.color except KeyError as key_error: print("Warning: could not resolve color of class_id %s" % key_error) return colored_image def gt_image_to_class_image(gt_image, class_id_to_rgb_map): """Map the rgb-color gt_image to a class image.""" class_image = np.zeros((gt_image.shape[0], gt_image.shape[1]), np.uint8) for class_id in np.nditer(np.unique(gt_image)): # get all the unique classes and color at once class_id = int(class_id) try: class_color = list(class_id_to_rgb_map[class_id].color) # print("treating class %i i.e. color %s" % (class_id, class_color)) class_image[np.where((gt_image == class_color).all(axis=2))] = class_id except KeyError as key_error: print("Warning: could not resolve class_id %s" % key_error) return class_image def color_class_image(class_image, id2label): """Color classes according to their original colormap.""" if id2label: colored_image = class_image_to_image(class_image, id2label) else: colored_image = add_color(class_image) return colored_image def add_color(img): """Color classes a good distance away from each other.""" h, w = img.shape img_color = np.zeros((h, w, 3)) for i in range(1, 151): img_color[img == i] = to_color(i) return img_color * 255 # is [0.0-1.0] should be [0-255] def to_color(category): """Map each category color a good distance from each other on the HSV color space.""" v = (category-1)*(137.5/360) return colorsys.hsv_to_rgb(v, 1, 1) def download_weights(name): """Download Keras weights from Dropbox.""" print("Downloading Keras weights from Dropbox ...") link_dict = {'pspnet50_ade20k.h5': 'https://www.dropbox.com/s/0uxn14y26jcui4v/pspnet50_ade20k.h5?dl=1', 'pspnet50_ade20k.json': 'https://www.dropbox.com/s/v41lvku2lx7lh6m/pspnet50_ade20k.json?dl=1', 'pspnet101_cityscapes.h5': 'https://www.dropbox.com/s/c17g94n946tpalb/pspnet101_cityscapes.h5?dl=1', 'pspnet101_cityscapes.json': 'https://www.dropbox.com/s/fswowe8e3o14tdm/pspnet101_cityscapes.json?dl=1', 'pspnet101_voc2012.h5': 'https://www.dropbox.com/s/uvqj2cjo4b9c5wg/pspnet101_voc2012.h5?dl=1', 'pspnet101_voc2012.json': 'https://www.dropbox.com/s/rr5taqu19f5fuzy/pspnet101_voc2012.json?dl=1'} for key in link_dict: if name in key: url = link_dict[key] print("Downloading %s from %s" % (key, url)) response = requests.get(url) with open(join("..", "weights", "keras", key), 'wb') as f: f.write(response.content) def download_npy_weights(name): """Download Numpy weights from Dropbox.""" print("Downloading Keras weights from Dropbox ...") link_dict = {'pspnet50_ade20k.npy': 'https://www.dropbox.com/s/slzgd07ijcyl45b/pspnet50_ade20k.npy?dl=1', 'pspnet101_cityscapes.npy': 'https://www.dropbox.com/s/oimz7wrgqhfmkk9/pspnet101_cityscapes.npy?dl=1', 'pspnet101_voc2012.npy': 'https://www.dropbox.com/s/ht3qup5r1nourbg/pspnet101_voc2012.npy?dl=1'} for key in link_dict: if name in key: url = link_dict[key] print("Downloading %s from %s" % (key, url)) response = requests.get(url) with open(join("..", "weights", "npy", key), 'wb') as f: f.write(response.content) def debug(model, data): """Debug model by printing the activations in each layer.""" names = [layer.name for layer in model.layers] for name in names[:]: print_activation(model, name, data) def print_activation(model, layer_name, data): """Print the activations in each layer.""" intermediate_layer_model = Model(inputs=model.input, outputs=model.get_layer(layer_name).output) io = intermediate_layer_model.predict(data) print(layer_name, array_to_str(io)) def array_to_str(a): """Dump activation parameters into a string.""" return "{} {} {} {} {}".format(a.dtype, a.shape, np.min(a), np.max(a), np.mean(a)) ```
{ "source": "jmtaysom/idom", "score": 2 }
#### File: source/_exts/idom_view.py ```python import os from docutils.nodes import raw from docutils.parsers.rst import directives from sphinx.application import Sphinx from sphinx.util.docutils import SphinxDirective from docs.examples import get_normalized_example_name _IDOM_EXAMPLE_HOST = os.environ.get("IDOM_DOC_EXAMPLE_SERVER_HOST", "") _IDOM_STATIC_HOST = os.environ.get("IDOM_DOC_STATIC_SERVER_HOST", "/docs").rstrip("/") class IteractiveWidget(SphinxDirective): has_content = False required_arguments = 1 _next_id = 0 option_spec = { "activate-button": directives.flag, "margin": float, } def run(self): IteractiveWidget._next_id += 1 container_id = f"idom-widget-{IteractiveWidget._next_id}" view_id = get_normalized_example_name( self.arguments[0], # only used if example name starts with "/" self.get_source_info()[0], ) return [ raw( "", f""" <div> <div id="{container_id}" class="interactive widget-container center-content" style="margin-bottom: {self.options.get("margin", 0)}px;" /> <script type="module"> import {{ mountWidgetExample }} from "{_IDOM_STATIC_HOST}/_static/custom.js"; mountWidgetExample( "{container_id}", "{view_id}", "{_IDOM_EXAMPLE_HOST}", {"true" if "activate-button" in self.options else "false"}, ); </script> </div> """, format="html", ) ] def setup(app: Sphinx) -> None: app.add_directive("idom-view", IteractiveWidget) ``` #### File: source/_exts/patched_html_translator.py ```python from sphinx.util.docutils import is_html5_writer_available from sphinx.writers.html import HTMLTranslator from sphinx.writers.html5 import HTML5Translator class PatchedHTMLTranslator( HTML5Translator if is_html5_writer_available() else HTMLTranslator ): def starttag(self, node, tagname, *args, **attrs): if ( tagname == "a" and "target" not in attrs and ( "external" in attrs.get("class", "") or "external" in attrs.get("classes", []) ) ): attrs["target"] = "_blank" attrs["ref"] = "noopener noreferrer" return super().starttag(node, tagname, *args, **attrs) def setup(app): app.set_translator("html", PatchedHTMLTranslator) ``` #### File: dangers-of-mutability/_examples/dict_remove.py ```python from idom import component, html, run, use_state @component def Definitions(): term_to_add, set_term_to_add = use_state(None) definition_to_add, set_definition_to_add = use_state(None) all_terms, set_all_terms = use_state({}) def handle_term_to_add_change(event): set_term_to_add(event["target"]["value"]) def handle_definition_to_add_change(event): set_definition_to_add(event["target"]["value"]) def handle_add_click(event): if term_to_add and definition_to_add: set_all_terms({**all_terms, term_to_add: definition_to_add}) set_term_to_add(None) set_definition_to_add(None) def make_delete_click_handler(term_to_delete): def handle_click(event): set_all_terms({t: d for t, d in all_terms.items() if t != term_to_delete}) return handle_click return html.div( html.button({"onClick": handle_add_click}, "add term"), html.label( "Term: ", html.input({"value": term_to_add, "onChange": handle_term_to_add_change}), ), html.label( "Definition: ", html.input( { "value": definition_to_add, "onChange": handle_definition_to_add_change, } ), ), html.hr(), [ html.div( html.button( {"onClick": make_delete_click_handler(term)}, "delete term" ), html.dt(term), html.dd(definition), key=term, ) for term, definition in all_terms.items() ], ) run(Definitions) ``` #### File: dangers-of-mutability/_examples/set_remove.py ```python from idom import component, html, run, use_state @component def Grid(): line_size = 5 selected_indices, set_selected_indices = use_state({1, 2, 4}) def make_handle_click(index): def handle_click(event): if index in selected_indices: set_selected_indices(selected_indices - {index}) else: set_selected_indices(selected_indices | {index}) return handle_click return html.div( {"style": {"display": "flex", "flex-direction": "row"}}, [ html.div( { "onClick": make_handle_click(index), "style": { "height": "30px", "width": "30px", "backgroundColor": ( "black" if index in selected_indices else "white" ), "outline": "1px solid grey", "cursor": "pointer", }, }, key=index, ) for index in range(line_size) ], ) run(Grid) ``` #### File: multiple-state-updates/_examples/set_color_3_times.py ```python from idom import component, html, run, use_state @component def ColorButton(): color, set_color = use_state("gray") def handle_click(event): set_color("orange") set_color("pink") set_color("blue") def handle_reset(event): set_color("gray") return html.div( html.button( {"onClick": handle_click, "style": {"backgroundColor": color}}, "Set Color" ), html.button( {"onClick": handle_reset, "style": {"backgroundColor": color}}, "Reset" ), ) run(ColorButton) ``` #### File: responding-to-events/_examples/button_prints_message.py ```python from idom import component, html, run @component def PrintButton(display_text, message_text): def handle_event(event): print(message_text) return html.button({"onClick": handle_event}, display_text) @component def App(): return html.div( PrintButton("Play", "Playing"), PrintButton("Pause", "Paused"), ) run(App) ``` #### File: state-as-a-snapshot/_examples/print_chat_message.py ```python import asyncio from idom import component, event, html, run, use_state @component def App(): recipient, set_recipient = use_state("Alice") message, set_message = use_state("") @event(prevent_default=True) async def handle_submit(event): set_message("") print("About to send message...") await asyncio.sleep(5) print(f"Sent '{message}' to {recipient}") return html.form( {"onSubmit": handle_submit, "style": {"display": "inline-grid"}}, html.label( "To: ", html.select( { "value": recipient, "onChange": lambda event: set_recipient(event["target"]["value"]), }, html.option({"value": "Alice"}, "Alice"), html.option({"value": "Bob"}, "Bob"), ), ), html.input( { "type": "text", "placeholder": "Your message...", "value": message, "onChange": lambda event: set_message(event["target"]["value"]), } ), html.button({"type": "submit"}, "Send"), ) run(App) ``` #### File: your-first-components/_examples/nested_photos.py ```python from idom import component, html, run @component def Photo(): return html.img( { "src": "https://picsum.photos/id/274/500/300", "style": {"width": "30%"}, "alt": "<NAME>", } ) @component def Gallery(): return html.section( html.h1("Famous Musicians"), Photo(), Photo(), Photo(), ) run(Gallery) ``` #### File: your-first-components/_examples/simple_photo.py ```python from idom import component, html, run @component def Photo(): return html.img( { "src": "https://picsum.photos/id/237/500/300", "style": {"width": "50%"}, "alt": "Puppy", } ) run(Photo) ``` #### File: getting-started/_examples/debug_error_example.py ```python from idom import component, html, run @component def App(): return html.div(GoodComponent(), BadComponent()) @component def GoodComponent(): return html.p("This component rendered successfuly") @component def BadComponent(): raise RuntimeError("This component raised an error") run(App) ``` #### File: getting-started/_examples/run_starlette.py ```python from idom import run from idom.backend import starlette as starlette_server # the run() function is the entry point for examples starlette_server.configure = lambda _, cmpt: run(cmpt) from starlette.applications import Starlette from idom import component, html from idom.backend.starlette import configure @component def HelloWorld(): return html.h1("Hello, world!") app = Starlette() configure(app, HelloWorld) ``` #### File: _static/embed-idom-view/main.py ```python from sanic import Sanic from sanic.response import file from idom import component, html from idom.backend.sanic import Options, configure app = Sanic("MyApp") @app.route("/") async def index(request): return await file("index.html") @component def IdomView(): return html.code("This text came from an IDOM App") configure(app, IdomView, Options(url_prefix="/_idom")) app.run(host="127.0.0.1", port=5000) ``` #### File: reference/_examples/material_ui_switch.py ```python import idom mui = idom.web.module_from_template("react", "@material-ui/core@^5.0", fallback="⌛") Switch = idom.web.export(mui, "Switch") @idom.component def DayNightSwitch(): checked, set_checked = idom.hooks.use_state(False) return idom.html.div( Switch( { "checked": checked, "onChange": lambda event, checked: set_checked(checked), } ), "🌞" if checked else "🌚", ) idom.run(DayNightSwitch) ``` #### File: reference/_examples/network_graph.py ```python import random import idom react_cytoscapejs = idom.web.module_from_template( # we need to use this template because react-cytoscapejs uses a default export "react", "react-cytoscapejs", exports_default=True, fallback="⌛", ) Cytoscape = idom.web.export(react_cytoscapejs, "default") @idom.component def RandomNetworkGraph(): return Cytoscape( { "style": {"width": "100%", "height": "200px"}, "elements": random_network(20), "layout": {"name": "cose"}, } ) def random_network(number_of_nodes): conns = [] nodes = [{"data": {"id": 0, "label": 0}}] for src_node_id in range(1, number_of_nodes + 1): tgt_node = random.choice(nodes) src_node = {"data": {"id": src_node_id, "label": src_node_id}} new_conn = {"data": {"source": src_node_id, "target": tgt_node["data"]["id"]}} nodes.append(src_node) conns.append(new_conn) return nodes + conns idom.run(RandomNetworkGraph) ``` #### File: idom/scripts/changes_since_release.py ```python from __future__ import annotations import sys from common.github_utils import ( REPO_NAME, date_range_query, last_release_date, search_idom_repo, ) SECTION_FORMAT_TEMPLATES = { "md": lambda title: f"# {title}", "rst": lambda title: f"**{title}**\n", "text": lambda title: f"{title}\n{'-' * len(title)}", } ISSUE_FORMAT_TEMPLATES = { "md": lambda title, number, **_: f"- {title} - [#{number}](https://github.com/{REPO_NAME}/issues/{number})", "rst": lambda title, number, **_: f"- {title} - :issue:`{number}`", "text": lambda title, number, **_: f"- {title} - #{number}", } PULL_REQUEST_FORMAT_TEMPLATES = { "md": lambda title, number, **_: f"- {title} - [#{number}](https://github.com/{REPO_NAME}/pull/{number})", "rst": lambda title, number, **_: f"- {title} - :pull:`{number}`", "text": lambda title, number, **_: f"- {title} - #{number}", } def show_issues(format: str): print(SECTION_FORMAT_TEMPLATES[format]("Closed Issues")) template = ISSUE_FORMAT_TEMPLATES[format] query = f"type:issue closed:{date_range_query(last_release_date())}" for issue in search_idom_repo(query): print(template(**issue)) def show_pull_requests(format: str = "text"): print(SECTION_FORMAT_TEMPLATES[format]("Merged Pull Requests")) template = PULL_REQUEST_FORMAT_TEMPLATES[format] query = f"type:pr merged:{date_range_query(last_release_date())}" for pull in search_idom_repo(query): print(template(**pull)) def main(format: str = "text"): for func in [show_issues, show_pull_requests]: func(format) print() if __name__ == "__main__": main(*sys.argv[1:]) ``` #### File: idom/backend/starlette.py ```python from __future__ import annotations import asyncio import json import logging from dataclasses import dataclass from typing import Any, Awaitable, Callable, Dict, Tuple, Union from starlette.applications import Starlette from starlette.middleware.cors import CORSMiddleware from starlette.staticfiles import StaticFiles from starlette.types import Receive, Scope, Send from starlette.websockets import WebSocket, WebSocketDisconnect from idom.backend.types import Location from idom.config import IDOM_WEB_MODULES_DIR from idom.core.hooks import Context, create_context, use_context from idom.core.layout import Layout, LayoutEvent from idom.core.serve import ( RecvCoroutine, SendCoroutine, VdomJsonPatch, serve_json_patch, ) from idom.core.types import RootComponentConstructor from ._asgi import serve_development_asgi from .utils import CLIENT_BUILD_DIR, safe_client_build_dir_path logger = logging.getLogger(__name__) WebSocketContext: type[Context[WebSocket | None]] = create_context( None, "WebSocketContext" ) def configure( app: Starlette, constructor: RootComponentConstructor, options: Options | None = None, ) -> None: """Return a :class:`StarletteServer` where each client has its own state. Implements the :class:`~idom.server.proto.ServerFactory` protocol Parameters: app: An application instance constructor: A component constructor options: Options for configuring server behavior """ options = options or Options() # this route should take priority so set up it up first _setup_single_view_dispatcher_route(options, app, constructor) _setup_common_routes(options, app) def create_development_app() -> Starlette: """Return a :class:`Starlette` app instance in debug mode""" return Starlette(debug=True) async def serve_development_app( app: Starlette, host: str, port: int, started: asyncio.Event | None = None, ) -> None: """Run a development server for starlette""" await serve_development_asgi(app, host, port, started) def use_location() -> Location: """Get the current route as a string""" scope = use_scope() pathname = "/" + scope["path_params"].get("path", "") search = scope["query_string"].decode() return Location(pathname, "?" + search if search else "") def use_scope() -> Scope: """Get the current ASGI scope dictionary""" return use_websocket().scope def use_websocket() -> WebSocket: """Get the current WebSocket object""" websocket = use_context(WebSocketContext) if websocket is None: raise RuntimeError( # pragma: no cover "No websocket. Are you running with a Starllette server?" ) return websocket @dataclass class Options: """Optionsuration options for :class:`StarletteRenderServer`""" cors: Union[bool, Dict[str, Any]] = False """Enable or configure Cross Origin Resource Sharing (CORS) For more information see docs for ``starlette.middleware.cors.CORSMiddleware`` """ serve_static_files: bool = True """Whether or not to serve static files (i.e. web modules)""" url_prefix: str = "" """The URL prefix where IDOM resources will be served from""" def _setup_common_routes(options: Options, app: Starlette) -> None: cors_options = options.cors if cors_options: # pragma: no cover cors_params = ( cors_options if isinstance(cors_options, dict) else {"allow_origins": ["*"]} ) app.add_middleware(CORSMiddleware, **cors_params) # This really should be added to the APIRouter, but there's a bug in Starlette # BUG: https://github.com/tiangolo/fastapi/issues/1469 url_prefix = options.url_prefix if options.serve_static_files: wm_dir = IDOM_WEB_MODULES_DIR.current web_module_files = StaticFiles(directory=wm_dir, html=True, check_dir=False) app.mount(url_prefix + "/_api/modules", web_module_files) app.mount(url_prefix + "/{_:path}/_api/modules", web_module_files) # register this last so it takes least priority app.mount(url_prefix + "/", single_page_app_files()) def single_page_app_files() -> Callable[..., Awaitable[None]]: static_files_app = StaticFiles( directory=CLIENT_BUILD_DIR, html=True, check_dir=False, ) async def spa_app(scope: Scope, receive: Receive, send: Send) -> None: # Path safety is the responsibility of starlette.staticfiles.StaticFiles - # using `safe_client_build_dir_path` is for convenience in this case. path = safe_client_build_dir_path(scope["path"]).name return await static_files_app({**scope, "path": path}, receive, send) return spa_app def _setup_single_view_dispatcher_route( options: Options, app: Starlette, constructor: RootComponentConstructor ) -> None: @app.websocket_route(options.url_prefix + "/_api/stream") @app.websocket_route(options.url_prefix + "/{path:path}/_api/stream") async def model_stream(socket: WebSocket) -> None: await socket.accept() send, recv = _make_send_recv_callbacks(socket) try: await serve_json_patch( Layout(WebSocketContext(constructor(), value=socket)), send, recv, ) except WebSocketDisconnect as error: logger.info(f"WebSocket disconnect: {error.code}") def _make_send_recv_callbacks( socket: WebSocket, ) -> Tuple[SendCoroutine, RecvCoroutine]: async def sock_send(value: VdomJsonPatch) -> None: await socket.send_text(json.dumps(value)) async def sock_recv() -> LayoutEvent: return LayoutEvent(**json.loads(await socket.receive_text())) return sock_send, sock_recv ``` #### File: idom/backend/tornado.py ```python from __future__ import annotations import asyncio import json from asyncio import Queue as AsyncQueue from asyncio.futures import Future from dataclasses import dataclass from typing import Any, List, Tuple, Type, Union from urllib.parse import urljoin from tornado.httpserver import HTTPServer from tornado.httputil import HTTPServerRequest from tornado.log import enable_pretty_logging from tornado.platform.asyncio import AsyncIOMainLoop from tornado.web import Application, RequestHandler, StaticFileHandler from tornado.websocket import WebSocketHandler from tornado.wsgi import WSGIContainer from idom.backend.types import Location from idom.config import IDOM_WEB_MODULES_DIR from idom.core.hooks import Context, create_context, use_context from idom.core.layout import Layout, LayoutEvent from idom.core.serve import VdomJsonPatch, serve_json_patch from idom.core.types import ComponentConstructor from .utils import CLIENT_BUILD_DIR, safe_client_build_dir_path ConnectionContext: type[Context[Connection | None]] = create_context( None, "ConnectionContext" ) def configure( app: Application, component: ComponentConstructor, options: Options | None = None, ) -> None: """Return a :class:`TornadoServer` where each client has its own state. Implements the :class:`~idom.server.proto.ServerFactory` protocol Parameters: app: A tornado ``Application`` instance. component: A root component constructor options: Options for configuring how the component is mounted to the server. """ options = options or Options() _add_handler( app, options, ( # this route should take priority so set up it up first _setup_single_view_dispatcher_route(component) + _setup_common_routes(options) ), ) def create_development_app() -> Application: return Application(debug=True) async def serve_development_app( app: Application, host: str, port: int, started: asyncio.Event | None = None, ) -> None: enable_pretty_logging() # setup up tornado to use asyncio AsyncIOMainLoop().install() server = HTTPServer(app) server.listen(port, host) if started: # at this point the server is accepting connection started.set() try: # block forever - tornado has already set up its own background tasks await asyncio.get_event_loop().create_future() finally: # stop accepting new connections server.stop() # wait for existing connections to complete await server.close_all_connections() def use_location() -> Location: """Get the current route as a string""" conn = use_connection() search = conn.request.query return Location(pathname="/" + conn.path, search="?" + search if search else "") def use_scope() -> dict[str, Any]: """Get the current WSGI environment dictionary""" return WSGIContainer.environ(use_request()) def use_request() -> HTTPServerRequest: """Get the current ``HTTPServerRequest``""" return use_connection().request def use_connection() -> Connection: connection = use_context(ConnectionContext) if connection is None: raise RuntimeError( # pragma: no cover "No connection. Are you running with a Tornado server?" ) return connection @dataclass class Connection: """A simple wrapper for holding connection information""" request: HTTPServerRequest """The current request object""" path: str """The current path being served""" @dataclass class Options: """Render server options for :class:`TornadoRenderServer` subclasses""" serve_static_files: bool = True """Whether or not to serve static files (i.e. web modules)""" url_prefix: str = "" """The URL prefix where IDOM resources will be served from""" _RouteHandlerSpecs = List[Tuple[str, Type[RequestHandler], Any]] def _setup_common_routes(options: Options) -> _RouteHandlerSpecs: handlers: _RouteHandlerSpecs = [] if options.serve_static_files: handlers.append( ( r"/.*/?_api/modules/(.*)", StaticFileHandler, {"path": str(IDOM_WEB_MODULES_DIR.current)}, ) ) # register last to give lowest priority handlers.append( ( r"/(.*)", SpaStaticFileHandler, {"path": str(CLIENT_BUILD_DIR)}, ) ) return handlers def _add_handler( app: Application, options: Options, handlers: _RouteHandlerSpecs ) -> None: prefixed_handlers: List[Any] = [ (urljoin(options.url_prefix, route_pattern),) + tuple(handler_info) for route_pattern, *handler_info in handlers ] app.add_handlers(r".*", prefixed_handlers) def _setup_single_view_dispatcher_route( constructor: ComponentConstructor, ) -> _RouteHandlerSpecs: return [ ( r"/(.*)/_api/stream", ModelStreamHandler, {"component_constructor": constructor}, ), ( r"/_api/stream", ModelStreamHandler, {"component_constructor": constructor}, ), ] class SpaStaticFileHandler(StaticFileHandler): async def get(self, path: str, include_body: bool = True) -> None: # Path safety is the responsibility of tornado.web.StaticFileHandler - # using `safe_client_build_dir_path` is for convenience in this case. return await super().get(safe_client_build_dir_path(path).name, include_body) class ModelStreamHandler(WebSocketHandler): """A web-socket handler that serves up a new model stream to each new client""" _dispatch_future: Future[None] _message_queue: AsyncQueue[str] def initialize(self, component_constructor: ComponentConstructor) -> None: self._component_constructor = component_constructor async def open(self, path: str = "", *args: Any, **kwargs: Any) -> None: message_queue: "AsyncQueue[str]" = AsyncQueue() async def send(value: VdomJsonPatch) -> None: await self.write_message(json.dumps(value)) async def recv() -> LayoutEvent: return LayoutEvent(**json.loads(await message_queue.get())) self._message_queue = message_queue self._dispatch_future = asyncio.ensure_future( serve_json_patch( Layout( ConnectionContext( self._component_constructor(), value=Connection(self.request, path), ) ), send, recv, ) ) async def on_message(self, message: Union[str, bytes]) -> None: await self._message_queue.put( message if isinstance(message, str) else message.decode() ) def on_close(self) -> None: if not self._dispatch_future.done(): self._dispatch_future.cancel() ``` #### File: idom/core/_event_proxy.py ```python from typing import Any, Dict, Sequence from warnings import warn def _wrap_in_warning_event_proxies(values: Sequence[Any]) -> Sequence[Any]: return [_EventProxy(x) if isinstance(x, dict) else x for x in values] class _EventProxy(Dict[Any, Any]): def __getitem__(self, key: Any) -> Any: # pragma: no cover try: return super().__getitem__(key) except KeyError: target = self.get("target") if isinstance(target, dict) and key in target: warn( f"The event key event[{key!r}] has been moved event['target'][{key!r}", DeprecationWarning, stacklevel=2, ) return target[key] else: raise def get(self, key: Any, default: Any = None) -> Any: # pragma: no cover try: return super().__getitem__(key) except KeyError: target = self.get("target") if isinstance(target, dict) and key in target: warn( f"The event key event[{key!r}] has been moved event['target'][{key!r}", DeprecationWarning, stacklevel=2, ) return target[key] else: return default ``` #### File: idom/core/_fixed_jsonpatch.py ```python from jsonpatch import _ST_REMOVE from jsonpatch import DiffBuilder as _DiffBuilder from jsonpatch import JsonPatch as _JsonPatch from jsonpatch import RemoveOperation, _path_join, basestring from jsonpointer import JsonPointer def apply_patch(doc, patch, in_place=False, pointer_cls=JsonPointer): if isinstance(patch, basestring): patch = JsonPatch.from_string(patch, pointer_cls=pointer_cls) else: patch = JsonPatch(patch, pointer_cls=pointer_cls) return patch.apply(doc, in_place) def make_patch(src, dst, pointer_cls=JsonPointer): return JsonPatch.from_diff(src, dst, pointer_cls=pointer_cls) class JsonPatch(_JsonPatch): @classmethod def from_diff( cls, src, dst, optimization=True, dumps=None, pointer_cls=JsonPointer, ): json_dumper = dumps or cls.json_dumper builder = DiffBuilder(src, dst, json_dumper, pointer_cls=pointer_cls) builder._compare_values("", None, src, dst) ops = list(builder.execute()) return cls(ops, pointer_cls=pointer_cls) class DiffBuilder(_DiffBuilder): def _item_removed(self, path, key, item): new_op = RemoveOperation( { "op": "remove", "path": _path_join(path, key), } ) new_index = self.insert(new_op) self.store_index(item, new_index, _ST_REMOVE) ``` #### File: idom/testing/common.py ```python from __future__ import annotations import asyncio import inspect import shutil import time from functools import wraps from typing import Any, Awaitable, Callable, Generic, Optional, TypeVar, cast from uuid import uuid4 from weakref import ref from typing_extensions import ParamSpec from idom.config import IDOM_TESTING_DEFAULT_TIMEOUT, IDOM_WEB_MODULES_DIR from idom.core.events import EventHandler, to_event_handler_function from idom.core.hooks import LifeCycleHook, current_hook def clear_idom_web_modules_dir() -> None: """Clear the directory where IDOM stores registered web modules""" for path in IDOM_WEB_MODULES_DIR.current.iterdir(): shutil.rmtree(path) if path.is_dir() else path.unlink() _P = ParamSpec("_P") _R = TypeVar("_R") _RC = TypeVar("_RC", covariant=True) _DEFAULT_POLL_DELAY = 0.1 class poll(Generic[_R]): # noqa: N801 """Wait until the result of an sync or async function meets some condition""" def __init__( self, function: Callable[_P, Awaitable[_R] | _R], *args: _P.args, **kwargs: _P.kwargs, ) -> None: coro: Callable[_P, Awaitable[_R]] if not inspect.iscoroutinefunction(function): async def coro(*args: _P.args, **kwargs: _P.kwargs) -> _R: return cast(_R, function(*args, **kwargs)) else: coro = cast(Callable[_P, Awaitable[_R]], function) self._func = coro self._args = args self._kwargs = kwargs async def until( self, condition: Callable[[_R], bool], timeout: float = IDOM_TESTING_DEFAULT_TIMEOUT.current, delay: float = _DEFAULT_POLL_DELAY, ) -> None: """Check that the coroutines result meets a condition within the timeout""" started_at = time.time() while True: await asyncio.sleep(delay) result = await self._func(*self._args, **self._kwargs) if condition(result): break elif (time.time() - started_at) > timeout: # pragma: no cover raise TimeoutError( f"Condition not met within {timeout} " f"seconds - last value was {result!r}" ) async def until_is( self, right: _R, timeout: float = IDOM_TESTING_DEFAULT_TIMEOUT.current, delay: float = _DEFAULT_POLL_DELAY, ) -> None: """Wait until the result is identical to the given value""" return await self.until(lambda left: left is right, timeout, delay) async def until_equals( self, right: _R, timeout: float = IDOM_TESTING_DEFAULT_TIMEOUT.current, delay: float = _DEFAULT_POLL_DELAY, ) -> None: """Wait until the result is equal to the given value""" return await self.until(lambda left: left == right, timeout, delay) class HookCatcher: """Utility for capturing a LifeCycleHook from a component Example: .. code-block:: hooks = HookCatcher(index_by_kwarg="thing") @idom.component @hooks.capture def MyComponent(thing): ... ... # render the component # grab the last render of where MyComponent(thing='something') hooks.index["something"] # or grab the hook from the component's last render hooks.latest After the first render of ``MyComponent`` the ``HookCatcher`` will have captured the component's ``LifeCycleHook``. """ latest: LifeCycleHook def __init__(self, index_by_kwarg: Optional[str] = None): self.index_by_kwarg = index_by_kwarg self.index: dict[Any, LifeCycleHook] = {} def capture(self, render_function: Callable[..., Any]) -> Callable[..., Any]: """Decorator for capturing a ``LifeCycleHook`` on each render of a component""" # The render function holds a reference to `self` and, via the `LifeCycleHook`, # the component. Some tests check whether components are garbage collected, thus # we must use a `ref` here to ensure these checks pass once the catcher itself # has been collected. self_ref = ref(self) @wraps(render_function) def wrapper(*args: Any, **kwargs: Any) -> Any: self = self_ref() assert self is not None, "Hook catcher has been garbage collected" hook = current_hook() if self.index_by_kwarg is not None: self.index[kwargs[self.index_by_kwarg]] = hook self.latest = hook return render_function(*args, **kwargs) return wrapper class StaticEventHandler: """Utility for capturing the target of one event handler Example: .. code-block:: static_handler = StaticEventHandler() @idom.component def MyComponent(): state, set_state = idom.hooks.use_state(0) handler = static_handler.use(lambda event: set_state(state + 1)) return idom.html.button({"onClick": handler}, "Click me!") # gives the target ID for onClick where from the last render of MyComponent static_handlers.target If you need to capture event handlers from different instances of a component the you should create multiple ``StaticEventHandler`` instances. .. code-block:: static_handlers_by_key = { "first": StaticEventHandler(), "second": StaticEventHandler(), } @idom.component def Parent(): return idom.html.div(Child(key="first"), Child(key="second")) @idom.component def Child(key): state, set_state = idom.hooks.use_state(0) handler = static_handlers_by_key[key].use(lambda event: set_state(state + 1)) return idom.html.button({"onClick": handler}, "Click me!") # grab the individual targets for each instance above first_target = static_handlers_by_key["first"].target second_target = static_handlers_by_key["second"].target """ def __init__(self) -> None: self.target = uuid4().hex def use( self, function: Callable[..., Any], stop_propagation: bool = False, prevent_default: bool = False, ) -> EventHandler: return EventHandler( to_event_handler_function(function), stop_propagation, prevent_default, self.target, ) ``` #### File: idom/testing/display.py ```python from __future__ import annotations from contextlib import AsyncExitStack from types import TracebackType from typing import Any from playwright.async_api import Browser, BrowserContext, Page, async_playwright from idom import html from idom.types import RootComponentConstructor from .server import ServerFixture class DisplayFixture: """A fixture for running web-based tests using ``playwright``""" _exit_stack: AsyncExitStack def __init__( self, server: ServerFixture | None = None, driver: Browser | BrowserContext | Page | None = None, ) -> None: if server is not None: self.server = server if driver is not None: if isinstance(driver, Page): self.page = driver else: self._browser = driver self._next_view_id = 0 async def show( self, component: RootComponentConstructor, ) -> None: self._next_view_id += 1 view_id = f"display-{self._next_view_id}" self.server.mount(lambda: html.div({"id": view_id}, component())) await self.goto("/") await self.page.wait_for_selector(f"#{view_id}", state="attached") async def goto(self, path: str, query: Any | None = None) -> None: await self.page.goto(self.server.url(path, query)) async def __aenter__(self) -> DisplayFixture: es = self._exit_stack = AsyncExitStack() browser: Browser | BrowserContext if not hasattr(self, "page"): if not hasattr(self, "_browser"): pw = await es.enter_async_context(async_playwright()) browser = await pw.chromium.launch() else: browser = self._browser self.page = await browser.new_page() if not hasattr(self, "server"): self.server = ServerFixture() await es.enter_async_context(self.server) return self async def __aexit__( self, exc_type: type[BaseException] | None, exc_value: BaseException | None, traceback: TracebackType | None, ) -> None: self.server.mount(None) await self._exit_stack.aclose() ``` #### File: idom/web/utils.py ```python import logging import re from pathlib import Path, PurePosixPath from typing import Set, Tuple from urllib.parse import urlparse import requests logger = logging.getLogger(__name__) def module_name_suffix(name: str) -> str: if name.startswith("@"): name = name[1:] head, _, tail = name.partition("@") # handle version identifier version, _, tail = tail.partition("/") # get section after version return PurePosixPath(tail or head).suffix or ".js" def resolve_module_exports_from_file( file: Path, max_depth: int, is_re_export: bool = False, ) -> Set[str]: if max_depth == 0: logger.warning(f"Did not resolve all exports for {file} - max depth reached") return set() elif not file.exists(): logger.warning(f"Did not resolve exports for unknown file {file}") return set() export_names, references = resolve_module_exports_from_source( file.read_text(), exclude_default=is_re_export ) for ref in references: if urlparse(ref).scheme: # is an absolute URL export_names.update( resolve_module_exports_from_url(ref, max_depth - 1, is_re_export=True) ) else: path = file.parent.joinpath(*ref.split("/")) export_names.update( resolve_module_exports_from_file(path, max_depth - 1, is_re_export=True) ) return export_names def resolve_module_exports_from_url( url: str, max_depth: int, is_re_export: bool = False, ) -> Set[str]: if max_depth == 0: logger.warning(f"Did not resolve all exports for {url} - max depth reached") return set() try: text = requests.get(url).text except requests.exceptions.ConnectionError as error: reason = "" if error is None else " - {error.errno}" logger.warning("Did not resolve exports for url " + url + reason) return set() export_names, references = resolve_module_exports_from_source( text, exclude_default=is_re_export ) for ref in references: url = _resolve_relative_url(url, ref) export_names.update( resolve_module_exports_from_url(url, max_depth - 1, is_re_export=True) ) return export_names def resolve_module_exports_from_source( content: str, exclude_default: bool ) -> Tuple[Set[str], Set[str]]: names: Set[str] = set() references: Set[str] = set() if _JS_DEFAULT_EXPORT_PATTERN.search(content): names.add("default") # Exporting functions and classes names.update(_JS_FUNC_OR_CLS_EXPORT_PATTERN.findall(content)) for export in _JS_GENERAL_EXPORT_PATTERN.findall(content): export = export.rstrip(";").strip() # Exporting individual features if export.startswith("let "): names.update(let.split("=", 1)[0] for let in export[4:].split(",")) # Renaming exports and export list elif export.startswith("{") and export.endswith("}"): names.update( item.split(" as ", 1)[-1] for item in export.strip("{}").split(",") ) # Exporting destructured assignments with renaming elif export.startswith("const "): names.update( item.split(":", 1)[0] for item in export[6:].split("=", 1)[0].strip("{}").split(",") ) # Default exports elif export.startswith("default "): names.add("default") # Aggregating modules elif export.startswith("* as "): names.add(export[5:].split(" from ", 1)[0]) elif export.startswith("* "): references.add(export[2:].split("from ", 1)[-1].strip("'\"")) elif export.startswith("{") and " from " in export: names.update( item.split(" as ", 1)[-1] for item in export.split(" from ")[0].strip("{}").split(",") ) elif not (export.startswith("function ") or export.startswith("class ")): logger.warning(f"Unknown export type {export!r}") names = {n.strip() for n in names} references = {r.strip() for r in references} if exclude_default and "default" in names: names.remove("default") return names, references def _resolve_relative_url(base_url: str, rel_url: str) -> str: if not rel_url.startswith("."): return rel_url base_url = base_url.rsplit("/", 1)[0] if rel_url.startswith("./"): return base_url + rel_url[1:] while rel_url.startswith("../"): base_url = base_url.rsplit("/", 1)[0] rel_url = rel_url[3:] return f"{base_url}/{rel_url}" _JS_DEFAULT_EXPORT_PATTERN = re.compile( r";?\s*export\s+default\s", ) _JS_FUNC_OR_CLS_EXPORT_PATTERN = re.compile( r";?\s*export\s+(?:function|class)\s+([a-zA-Z_$][0-9a-zA-Z_$]*)" ) _JS_GENERAL_EXPORT_PATTERN = re.compile( r"(?:^|;|})\s*export(?=\s+|{)(.*?)(?=;|$)", re.MULTILINE ) ``` #### File: src/idom/widgets.py ```python from __future__ import annotations from base64 import b64encode from typing import ( Any, Callable, Dict, List, Optional, Sequence, Set, Tuple, TypeVar, Union, ) from typing_extensions import Protocol import idom from . import html from .core import hooks from .core.component import component from .core.types import ComponentConstructor, VdomDict from .utils import Ref def image( format: str, value: Union[str, bytes] = "", attributes: Optional[Dict[str, Any]] = None, ) -> VdomDict: """Utility for constructing an image from a string or bytes The source value will automatically be encoded to base64 """ if format == "svg": format = "svg+xml" if isinstance(value, str): bytes_value = value.encode() else: bytes_value = value base64_value = b64encode(bytes_value).decode() src = f"data:image/{format};base64,{base64_value}" return {"tagName": "img", "attributes": {"src": src, **(attributes or {})}} _Value = TypeVar("_Value") def use_linked_inputs( attributes: Sequence[Dict[str, Any]], on_change: Callable[[_Value], None] = lambda value: None, cast: _CastFunc[_Value] = lambda value: value, initial_value: str = "", ignore_empty: bool = True, ) -> List[VdomDict]: """Return a list of linked inputs equal to the number of given attributes. Parameters: attributes: That attributes of each returned input element. If the number of generated inputs is variable, you may need to assign each one a :ref:`key <Organizing Items With Keys>` by including a ``"key"`` in each attribute dictionary. on_change: A callback which is triggered when any input is changed. This callback need not update the 'value' field in the attributes of the inputs since that is handled automatically. cast: Cast the 'value' of changed inputs that is passed to ``on_change``. initial_value: Initialize the 'value' field of the inputs. ignore_empty: Do not trigger ``on_change`` if the 'value' is an empty string. """ value, set_value = idom.hooks.use_state(initial_value) def sync_inputs(event: Dict[str, Any]) -> None: new_value = event["value"] set_value(new_value) if not new_value and ignore_empty: return None on_change(cast(new_value)) inputs: list[VdomDict] = [] for attrs in attributes: # we're going to mutate this so copy it attrs = attrs.copy() key = attrs.pop("key", None) attrs.update({"onChange": sync_inputs, "value": value}) inputs.append(html.input(attrs, key=key)) return inputs _CastTo = TypeVar("_CastTo", covariant=True) class _CastFunc(Protocol[_CastTo]): def __call__(self, value: str) -> _CastTo: ... MountFunc = Callable[["Callable[[], Any] | None"], None] def hotswap(update_on_change: bool = False) -> Tuple[MountFunc, ComponentConstructor]: """Swap out components from a layout on the fly. Since you can't change the component functions used to create a layout in an imperative manner, you can use ``hotswap`` to do this so long as you set things up ahead of time. Parameters: update_on_change: Whether or not all views of the layout should be udpated on a swap. Example: .. code-block:: python import idom show, root = idom.hotswap() PerClientStateServer(root).run_in_thread("localhost", 8765) @idom.component def DivOne(self): return {"tagName": "div", "children": [1]} show(DivOne) # displaying the output now will show DivOne @idom.component def DivTwo(self): return {"tagName": "div", "children": [2]} show(DivTwo) # displaying the output now will show DivTwo """ constructor_ref: Ref[Callable[[], Any]] = Ref(lambda: None) if update_on_change: set_constructor_callbacks: Set[Callable[[Callable[[], Any]], None]] = set() @component def HotSwap() -> Any: # new displays will adopt the latest constructor and arguments constructor, set_constructor = _use_callable(constructor_ref.current) def add_callback() -> Callable[[], None]: set_constructor_callbacks.add(set_constructor) return lambda: set_constructor_callbacks.remove(set_constructor) hooks.use_effect(add_callback) return constructor() def swap(constructor: Callable[[], Any] | None) -> None: constructor = constructor_ref.current = constructor or (lambda: None) for set_constructor in set_constructor_callbacks: set_constructor(constructor) return None else: @component def HotSwap() -> Any: return constructor_ref.current() def swap(constructor: Callable[[], Any] | None) -> None: constructor_ref.current = constructor or (lambda: None) return None return swap, HotSwap _Func = Callable[..., Any] def _use_callable(initial_func: _Func) -> Tuple[_Func, Callable[[_Func], None]]: state = hooks.use_state(lambda: initial_func) return state[0], lambda new: state[1](lambda old: new) ``` #### File: tests/test_core/test_dispatcher.py ```python import asyncio from typing import Any, Sequence import idom from idom.core.layout import Layout, LayoutEvent, LayoutUpdate from idom.core.serve import VdomJsonPatch, serve_json_patch from idom.testing import StaticEventHandler EVENT_NAME = "onEvent" STATIC_EVENT_HANDLER = StaticEventHandler() def test_vdom_json_patch_create_from_apply_to(): update = LayoutUpdate("", {"a": 1, "b": [1]}, {"a": 2, "b": [1, 2]}) patch = VdomJsonPatch.create_from(update) result = patch.apply_to({"a": 1, "b": [1]}) assert result == {"a": 2, "b": [1, 2]} def make_send_recv_callbacks(events_to_inject): changes = [] # We need a semaphor here to simulate recieving an event after each update is sent. # The effect is that the send() and recv() callbacks trade off control. If we did # not do this, it would easy to determine when to halt because, while we might have # received all the events, they might not have been sent since the two callbacks are # executed in separate loops. sem = asyncio.Semaphore(0) async def send(patch): changes.append(patch) sem.release() if not events_to_inject: raise idom.Stop() async def recv(): await sem.acquire() try: return events_to_inject.pop(0) except IndexError: # wait forever await asyncio.Event().wait() return changes, send, recv def make_events_and_expected_model(): events = [LayoutEvent(STATIC_EVENT_HANDLER.target, [])] * 4 expected_model = { "tagName": "", "children": [ { "tagName": "div", "attributes": {"count": 4}, "eventHandlers": { EVENT_NAME: { "target": STATIC_EVENT_HANDLER.target, "preventDefault": False, "stopPropagation": False, } }, } ], } return events, expected_model def assert_changes_produce_expected_model( changes: Sequence[LayoutUpdate], expected_model: Any, ) -> None: model_from_changes = {} for update in changes: model_from_changes = update.apply_to(model_from_changes) assert model_from_changes == expected_model @idom.component def Counter(): count, change_count = idom.hooks.use_reducer( (lambda old_count, diff: old_count + diff), initial_value=0, ) handler = STATIC_EVENT_HANDLER.use(lambda: change_count(1)) return idom.html.div({EVENT_NAME: handler, "count": count}) async def test_dispatch(): events, expected_model = make_events_and_expected_model() changes, send, recv = make_send_recv_callbacks(events) await asyncio.wait_for(serve_json_patch(Layout(Counter()), send, recv), 1) assert_changes_produce_expected_model(changes, expected_model) async def test_dispatcher_handles_more_than_one_event_at_a_time(): block_and_never_set = asyncio.Event() will_block = asyncio.Event() second_event_did_execute = asyncio.Event() blocked_handler = StaticEventHandler() non_blocked_handler = StaticEventHandler() @idom.component def ComponentWithTwoEventHandlers(): @blocked_handler.use async def block_forever(): will_block.set() await block_and_never_set.wait() @non_blocked_handler.use async def handle_event(): second_event_did_execute.set() return idom.html.div( idom.html.button({"onClick": block_forever}), idom.html.button({"onClick": handle_event}), ) send_queue = asyncio.Queue() recv_queue = asyncio.Queue() asyncio.ensure_future( serve_json_patch( idom.Layout(ComponentWithTwoEventHandlers()), send_queue.put, recv_queue.get, ) ) await recv_queue.put(LayoutEvent(blocked_handler.target, [])) await will_block.wait() await recv_queue.put(LayoutEvent(non_blocked_handler.target, [])) await second_event_did_execute.wait() ``` #### File: idom/tests/test_html.py ```python import pytest from idom import component, config, html, use_state from idom.testing import DisplayFixture, poll from idom.utils import Ref def use_toggle(initial=True): state, set_state = use_state(initial) return state, lambda: set_state(not state) def use_counter(initial_value): state, set_state = use_state(initial_value) return state, lambda: set_state(state + 1) async def test_script_mount_unmount(display: DisplayFixture): toggle_is_mounted = Ref() @component def Root(): is_mounted, toggle_is_mounted.current = use_toggle() return html.div( html.div({"id": "mount-state", "data-value": False}), HasScript() if is_mounted else html.div(), ) @component def HasScript(): return html.script( """() => { const mapping = {"false": false, "true": true}; const mountStateEl = document.getElementById("mount-state"); mountStateEl.setAttribute( "data-value", !mapping[mountStateEl.getAttribute("data-value")]); return () => mountStateEl.setAttribute( "data-value", !mapping[mountStateEl.getAttribute("data-value")]); }""" ) await display.show(Root) mount_state = await display.page.wait_for_selector("#mount-state", state="attached") poll_mount_state = poll(mount_state.get_attribute, "data-value") await poll_mount_state.until_equals("true") toggle_is_mounted.current() await poll_mount_state.until_equals("false") toggle_is_mounted.current() await poll_mount_state.until_equals("true") async def test_script_re_run_on_content_change(display: DisplayFixture): incr_count = Ref() @component def HasScript(): count, incr_count.current = use_counter(1) return html.div( html.div({"id": "mount-count", "data-value": 0}), html.div({"id": "unmount-count", "data-value": 0}), html.script( f"""() => {{ const mountCountEl = document.getElementById("mount-count"); const unmountCountEl = document.getElementById("unmount-count"); mountCountEl.setAttribute("data-value", {count}); return () => unmountCountEl.setAttribute("data-value", {count});; }}""" ), ) await display.show(HasScript) mount_count = await display.page.wait_for_selector("#mount-count", state="attached") poll_mount_count = poll(mount_count.get_attribute, "data-value") unmount_count = await display.page.wait_for_selector( "#unmount-count", state="attached" ) poll_unmount_count = poll(unmount_count.get_attribute, "data-value") await poll_mount_count.until_equals("1") await poll_unmount_count.until_equals("0") incr_count.current() await poll_mount_count.until_equals("2") await poll_unmount_count.until_equals("1") incr_count.current() await poll_mount_count.until_equals("3") await poll_unmount_count.until_equals("2") async def test_script_from_src(display: DisplayFixture): incr_src_id = Ref() file_name_template = "__some_js_script_{src_id}__.js" @component def HasScript(): src_id, incr_src_id.current = use_counter(0) if src_id == 0: # on initial display we haven't added the file yet. return html.div() else: return html.div( html.div({"id": "run-count", "data-value": 0}), html.script( {"src": f"/_api/modules/{file_name_template.format(src_id=src_id)}"} ), ) await display.show(HasScript) for i in range(1, 4): script_file = config.IDOM_WEB_MODULES_DIR.current / file_name_template.format( src_id=i ) script_file.write_text( f""" let runCountEl = document.getElementById("run-count"); runCountEl.setAttribute("data-value", {i}); """ ) incr_src_id.current() run_count = await display.page.wait_for_selector("#run-count", state="attached") poll_run_count = poll(run_count.get_attribute, "data-value") await poll_run_count.until_equals("1") def test_script_may_only_have_one_child(): with pytest.raises(ValueError, match="'script' nodes may have, at most, one child"): html.script("one child", "two child") def test_child_of_script_must_be_string(): with pytest.raises(ValueError, match="The child of a 'script' must be a string"): html.script(1) def test_simple_fragment(): assert html._() == {"tagName": ""} assert html._(1, 2, 3) == {"tagName": "", "children": [1, 2, 3]} assert html._(key="something") == {"tagName": "", "key": "something"} assert html._(1, 2, 3, key="something") == { "tagName": "", "key": "something", "children": [1, 2, 3], } def test_fragment_can_have_no_attributes(): with pytest.raises(TypeError, match="Fragments cannot have attributes"): html._({"some-attribute": 1}) ``` #### File: tests/test_server/test_utils.py ```python import asyncio import threading import time from contextlib import ExitStack import pytest from playwright.async_api import Page from idom.backend import flask as flask_implementation from idom.backend.utils import find_available_port from idom.backend.utils import run as sync_run from idom.backend.utils import traversal_safe_path from idom.sample import SampleApp as SampleApp from tests.tooling.loop import open_event_loop @pytest.fixture def exit_stack(): with ExitStack() as es: yield es def test_find_available_port(): assert find_available_port("localhost", port_min=5000, port_max=6000) with pytest.raises(RuntimeError, match="no available port"): # check that if port range is exhausted we raise find_available_port("localhost", port_min=0, port_max=0) async def test_run(page: Page, exit_stack: ExitStack): loop = exit_stack.enter_context(open_event_loop(as_current=False)) host = "127.0.0.1" port = find_available_port(host) url = f"http://{host}:{port}" def run_in_thread(): asyncio.set_event_loop(loop) sync_run( SampleApp, host, port, implementation=flask_implementation, ) threading.Thread(target=run_in_thread, daemon=True).start() # give the server a moment to start time.sleep(0.5) await page.goto(url) await page.wait_for_selector("#sample") @pytest.mark.parametrize( "bad_path", [ "../escaped", "ok/../../escaped", "ok/ok-again/../../ok-yet-again/../../../escaped", ], ) def test_catch_unsafe_relative_path_traversal(tmp_path, bad_path): with pytest.raises(ValueError, match="Unsafe path"): traversal_safe_path(tmp_path, *bad_path.split("/")) ``` #### File: tests/tooling/loop.py ```python import asyncio import sys import threading import time from asyncio import wait_for from contextlib import contextmanager from typing import Iterator from idom.config import IDOM_TESTING_DEFAULT_TIMEOUT TIMEOUT = 3 @contextmanager def open_event_loop(as_current: bool = True) -> Iterator[asyncio.AbstractEventLoop]: """Open a new event loop and cleanly stop it Args: as_current: whether to make this loop the current loop in this thread """ loop = asyncio.new_event_loop() try: if as_current: asyncio.set_event_loop(loop) loop.set_debug(True) yield loop finally: try: _cancel_all_tasks(loop, as_current) if as_current: loop.run_until_complete(wait_for(loop.shutdown_asyncgens(), TIMEOUT)) if sys.version_info >= (3, 9): # shutdown_default_executor only available in Python 3.9+ loop.run_until_complete( wait_for(loop.shutdown_default_executor(), TIMEOUT) ) finally: if as_current: asyncio.set_event_loop(None) start = time.time() while loop.is_running(): if (time.time() - start) > IDOM_TESTING_DEFAULT_TIMEOUT.current: raise TimeoutError( "Failed to stop loop after " f"{IDOM_TESTING_DEFAULT_TIMEOUT.current} seconds" ) time.sleep(0.1) loop.close() def _cancel_all_tasks(loop: asyncio.AbstractEventLoop, is_current: bool) -> None: to_cancel = asyncio.all_tasks(loop) if not to_cancel: return done = threading.Event() count = len(to_cancel) def one_task_finished(future): nonlocal count count -= 1 if count == 0: done.set() for task in to_cancel: loop.call_soon_threadsafe(task.cancel) task.add_done_callback(one_task_finished) if is_current: loop.run_until_complete( wait_for( asyncio.gather(*to_cancel, loop=loop, return_exceptions=True), TIMEOUT ) ) else: # user was responsible for cancelling all tasks if not done.wait(timeout=3): raise TimeoutError("Could not stop event loop in time") for task in to_cancel: if task.cancelled(): continue if task.exception() is not None: loop.call_exception_handler( { "message": "unhandled exception during event loop shutdown", "exception": task.exception(), "task": task, } ) ```
{ "source": "jmtchllrx/pyMuse", "score": 2 }
#### File: hsaudiotag/tests/ogg_test.py ```python from .. import ogg from .util import TestData, eq_ def test_page_valid_on_test1(): fp = open(TestData.filepath('ogg/test1.ogg'), 'rb') page = ogg.VorbisPage(fp) assert page.valid eq_(0, page.page_number) eq_(0, page.position) eq_(30, page.size) fp.seek(page.start_offset + page.header_size) data = fp.read(page.size) eq_(data, page.read()) page = next(page) assert page.valid eq_(1, page.page_number) eq_(0, page.position) eq_(0x10f1, page.size) page = next(page) assert page.valid eq_(2, page.page_number) eq_(0, page.position) eq_(0x91, page.size) page = next(page) assert page.valid eq_(3, page.page_number) eq_(0x2800, page.position) eq_(0x1019, page.size) fp.close() def test_file_valid_on_test1(): o = ogg.Vorbis(TestData.filepath('ogg/test1.ogg')) eq_(o.size, 101785) eq_(o.bitrate, 160) eq_(o.sample_rate, 44100) eq_(o.sample_count, 0x6d3eae) eq_(o.duration, 162) eq_(o.artist, 'The White Stripes') eq_(o.album, 'The White Stripes') eq_(o.title, 'Astro') eq_(o.genre, '') eq_(o.comment, '') eq_(o.year, '1999') eq_(o.track, 8) eq_(o.audio_offset, 0x1158) eq_(o.audio_size, 101785 - 0x1158) def test_file_valid_on_test2(): o = ogg.Vorbis(TestData.filepath('ogg/test2.ogg')) eq_(103168, o.size) eq_(199, o.bitrate) eq_(44100, o.sample_rate) eq_(0xb2a2c8, o.sample_count) eq_(265, o.duration) eq_('<NAME>', o.artist) eq_('Le coeur dans la t\u00eate', o.album) eq_('Le coeur dans la t\u00eate', o.title) eq_('Pop', o.genre) eq_('', o.comment) eq_('2005', o.year) eq_(3, o.track) eq_(0xf79, o.audio_offset) eq_(103168 - 0xf79, o.audio_size) def test_lowercase_fieldnames(): # Support ogg files with lowercase fieldnames (artist, album, etc.) o = ogg.Vorbis(TestData.filepath('ogg/lowercase.ogg')) eq_(o.artist, 'The White Stripes') eq_(o.album, 'The White Stripes') eq_(o.title, 'Astro') def test_track_with_slash(): # A track number field with a slash (for example, 1/20) is supported and will return the first # number of the field. # FILE NOTE: Because I had added 4 bytes to the TRACKNUMBER field in the test file and that I # wasn't sure where I had to adjust the vorbis comment offset other than just in front of the # field, I removed 4 bytes in the otherwise unused TRACKTOTAL (now TRACKT) field. o = ogg.Vorbis(TestData.filepath('ogg/track_with_slash.ogg')) eq_(o.track, 18) def test_small(): # Previously, a small (<64kb) OGG file couldn't be read due to a hardcoded 64kb offset. Tix #2. o = ogg.Vorbis(TestData.filepath('ogg/small.ogg')) eq_(o.bitrate, 60) eq_(o.duration, 4) def verify_emptyness(o): eq_(0, o.bitrate) eq_(0, o.sample_rate) eq_(0, o.sample_count) eq_(0, o.duration) eq_('', o.artist) eq_('', o.album) eq_('', o.title) eq_('', o.genre) eq_('', o.comment) eq_('', o.year) eq_(0, o.track) eq_(0, o.audio_offset) eq_(0, o.audio_size) def test_invalid_zerofile(): o = ogg.Vorbis(TestData.filepath('zerofile')) verify_emptyness(o) def test_invalid_zerofill(): o = ogg.Vorbis(TestData.filepath('zerofill')) verify_emptyness(o) def test_invalid_randomfile(): o = ogg.Vorbis(TestData.filepath('randomfile')) verify_emptyness(o) def test_invalid_mp3(): o = ogg.Vorbis(TestData.filepath('mpeg/test1.mp3')) verify_emptyness(o) def test_invalid_wma(): o = ogg.Vorbis(TestData.filepath('wma/test1.wma')) verify_emptyness(o) def test_invalid_mp4(): o = ogg.Vorbis(TestData.filepath('mp4/test1.m4a')) verify_emptyness(o) ```
{ "source": "jmtcsngr/htsget-compliance", "score": 2 }
#### File: compliance/config/methods.py ```python from ga4gh.htsget.compliance.config import constants as c def format_url(test_case, kwargs, use_reads=True): datatype_urlpath = kwargs["reads_base_path"] \ if use_reads \ else kwargs["variants_base_path"] template = c.BASE_URL + datatype_urlpath + c.ID_URLPATH url = template.format(**{ "base_url": kwargs["htsget_url"], "obj_id": test_case["obj_id"] }) return url def format_reads_url(test_case, kwargs): return format_url(test_case, kwargs) def format_variants_url(test_case, kwargs): return format_url(test_case, kwargs, use_reads=False) FORMAT_READS_URL = format_reads_url FORMAT_VARIANTS_URL = format_variants_url ``` #### File: htsget/compliance/schema_validator.py ```python import inspect import json import os from jsonschema import validate from jsonschema import RefResolver from jsonschema.exceptions import ValidationError from ga4gh.htsget.compliance.config import constants as c class SchemaValidator(object): """Validates htsget response matches JSON schema Attributes: SUCCESS (int): constant. indicates successful validation FAILURE (int): constant. indicates unsuccessful validation schema_file (str): filename containing JSON schema schema_dir (str): path to local dir containing htsget JSON schemas schema_path (str): full path to htsget response JSON schema file resolver (RefResolver): resolves external references to the schema dir schema_json (dict): loaded htsget response JSON schema """ SUCCESS = 1 FAILURE = -1 def __init__(self): """Instantiates a SchemaValidator object""" self.schema_file = c.SCHEMA_HTSGET_RESPONSE self.schema_dir = os.path.join( os.path.dirname( os.path.dirname(inspect.getmodule(self).__file__) ), "schemas" ) self.schema_path = os.path.join(self.schema_dir, self.schema_file) self.resolver = RefResolver('file://{}/'.format(self.schema_dir), None) self.schema_json = json.loads(open(self.schema_path, 'r').read()) def validate_instance(self, instance_json): """Validate a JSON object/response against the htsget response schema Args: instance_json (dict): loaded JSON object to validate Returns: dict: contains success/failure of validation, and message """ # setup validation object # test status initialized as passing validation_result = { "status": SchemaValidator.SUCCESS, "exception_class": "", "message": "" } try: # api method to compare json instance to the schema validate(instance=instance_json, schema=self.schema_json, resolver=self.resolver) except ValidationError as e: # if the api method raises an error, the result dictionary set # to include failure status and error message validation_result["status"] = SchemaValidator.FAILURE validation_result["exception_class"] = str(e.__class__.__name__) validation_result["message"] = e.message return validation_result ``` #### File: htsget/compliance/test_case.py ```python import json import requests from ga4gh.htsget.compliance.config import constants as c from ga4gh.htsget.compliance.schema_validator import SchemaValidator from ga4gh.htsget.compliance.file_validator import FileValidator from ga4gh.htsget.compliance.filepart_aggregator import FilepartAggregator from ga4gh.testbed.models.report_case import ReportCase class TestCase(object): def __init__(self, props, kwargs): """Instantiates a TestCase object""" self.set_name(props["name"]) self.set_url_function(props["url_function"]) self.set_url_params(props["url_params"]) self.set_obj_id(props["obj_id"]) self.set_expected_response_status(props["expected_response_status"]) self.set_expected_contents(props["expected_contents"]) self.set_kwargs(kwargs) def validate_response_code(self, response): if self.get_expected_response_status() != response.status_code: raise Exception("incorrect status code") def validate_response_schema(self, response): response_json = response.json() sv = SchemaValidator() validation_result = sv.validate_instance(response_json) if validation_result["status"] == SchemaValidator.FAILURE: raise Exception(validation_result["message"]) def validate_file_contents(self, response): aggregator = FilepartAggregator(response) aggregator.aggregate() returned_filepath = aggregator.get_output_filepath() expected_filepath = self.get_expected_contents() file_validator = FileValidator(returned_filepath, expected_filepath) validation_result = file_validator.validate() if validation_result == FileValidator.FAILURE: raise Exception("returned file does not match expected") def execute_test(self): report_case = ReportCase() report_case.set_name(self.get_name()) try: url = self.get_formatted_url() params = self.get_url_params() report_case.add_debug_msg("URL: " + url) report_case.add_debug_msg("PARAMS: " + str(params)) response = requests.get(url, params=params) self.validate_response_code(response) self.validate_response_schema(response) self.validate_file_contents(response) report_case.set_status_success() except Exception as e: # any raised exceptions will set the ReportCase status to failure report_case.set_status_failure() report_case.set_error(str(e)) return report_case def set_name(self, name): self.name = name def get_name(self): return self.name def set_url_function(self, url_function): self.url_function = url_function def get_url_function(self): return self.url_function def set_url_params(self, url_params): self.url_params = url_params def get_url_params(self): return self.url_params def get_formatted_url(self): func = self.get_url_function() return func(self.get_props_dict(), self.get_kwargs()) def set_obj_id(self, obj_id): self.obj_id = obj_id def get_obj_id(self): return self.obj_id def set_expected_response_status(self, expected_response_status): self.expected_response_status = expected_response_status def get_expected_response_status(self): return self.expected_response_status def set_expected_contents(self, expected_contents): self.expected_contents = expected_contents def get_expected_contents(self): return self.expected_contents def get_props_dict(self): return { "name": self.get_name(), "url_function": self.get_url_function(), "obj_id": self.get_obj_id(), "expected_response_status": self.get_expected_response_status() } def set_kwargs(self, kwargs): self.kwargs = kwargs def get_kwargs(self): return self.kwargs ``` #### File: testbed/models/report_summary.py ```python from ga4gh.testbed import constants as c class ReportSummary(object): """Summarizes statuses of all cases in a group or report Attributes: run (int): total number of cases run passed (int): total number of cases passed warned (int): total number of cases passed with warning(s) failed (int): total number of cases failed skipped (int): total number of cases skipped increment_dict (dict): increments the correct attribute by status code """ def __init__(self): """Instantiate a ReportSummary""" self.run = 0 self.passed = 0 self.warned = 0 self.failed = 0 self.skipped = 0 self.increment_dict = { c.RESULT_SUCCESS: self.increment_passed, c.RESULT_WARNING: self.increment_warned, c.RESULT_FAILURE: self.increment_failed, c.RESULT_SKIPPED: self.increment_skipped } def increment_run(self): """increment run count by 1""" self.run += 1 def get_run(self): """get run count Returns: int: run count """ return self.run def increment_passed(self): """increment pass count by 1""" self.passed += 1 def get_passed(self): """get passed count Returns: int: passed count """ return self.passed def increment_warned(self): """increment warn count by 1""" self.warned += 1 def get_warned(self): """get warn count Returns: int: warn count """ return self.warned def increment_failed(self): """increment fail count by 1""" self.failed += 1 def get_failed(self): """get fail count Returns: int: fail count """ return self.failed def increment_skipped(self): """increment skip count by 1""" self.skipped += 1 def get_skipped(self): """get skip count Returns: int: skip count """ return self.skipped def increment(self, status): """increment run and status-specific counts by 1 For a given status code, increment the total number of cases run, as well as the count for that status by 1 Args: status (int): status code to increment """ self.increment_run() self.increment_dict[status]() def add_from_summary(self, summary_obj): """add all counts from another summary to the existing summary Used when aggregating summaries from multiple groups for the overall report. Args: summary_obj (ReportSummary): another ReportSummary object """ self.run += summary_obj.run self.passed += summary_obj.passed self.warned += summary_obj.warned self.failed += summary_obj.failed self.skipped += summary_obj.skipped def as_json(self): """Dump ReportSummary as simple python dictionary The returned dictionary can be easily converted to JSON via 'json.dumps', either on its own or as part of a larger object (e.g. ReportGroup, Report) Returns: dict: ReportSummary object as python dictionary """ return { "run": self.run, "passed": self.passed, "warned": self.warned, "failed": self.failed, "skipped": self.skipped } ```
{ "source": "jmtd/cekit", "score": 3 }
#### File: cekit/concreate/generator.py ```python import logging import os import subprocess from jinja2 import Environment, FileSystemLoader from concreate import tools from concreate.descriptor import Descriptor from concreate.errors import ConcreateError from concreate.module import copy_module_to_target from concreate.template_helper import TemplateHelper logger = logging.getLogger('concreate') class Generator(object): def __init__(self, descriptor_path, target, overrides): self.descriptor = Descriptor(descriptor_path, 'image').process() self.target = target self.effective_descriptor = self.descriptor if overrides: self.effective_descriptor = self.override(overrides) def prepare_modules(self, descriptor=None): """ Prepare module to be used for Dockerfile generation. This means: 1. Place module to args.target/image/modules/ directory 2. Fetch its artifacts to target/image/sources directory 3. Merge modules descriptor with iamge descriptor Arguments: descriptor: Module descriptor used to dig required modules, if descriptor is not provided image descriptor is used. """ if not descriptor: descriptor = self.descriptor # If descriptor doesn't requires any module we can start merging descriptors # and fetching artifacts. There ibs nothing left to do except for this if 'modules' not in descriptor: self.effective_descriptor.merge(descriptor) return for module in descriptor['modules']: version = None if 'version' in module: version = module['version'] req_module = copy_module_to_target(module['name'], version, os.path.join(self.target, 'image', 'modules')) # If there is any required module it needs to be prepared too self.prepare_modules(req_module.descriptor) self.effective_descriptor.merge(descriptor) def fetch_artifacts(self): """ Goes through artifacts section of image descriptor and fetches all of them """ if 'artifacts' not in self.descriptor: return artifacts = self.descriptor['artifacts'] for artifact_dict in artifacts: artifact = tools.Artifact(artifact_dict) artifact.fetch() def override(self, overrides_path): logger.info("Using overrides file from '%s'." % overrides_path) descriptor = Descriptor(overrides_path, 'overrides').process() descriptor.merge(self.effective_descriptor) return descriptor def render_dockerfile(self): """ Renders Dockerfile to $target/image/Dockerfile Args: template_file - a path to jinja2 template file """ logger.info("Rendering Dockerfile...") template_file = os.path.join(os.path.dirname(__file__), 'templates', 'template.jinja') loader = FileSystemLoader(os.path.dirname(template_file)) env = Environment(loader=loader, trim_blocks=True, lstrip_blocks=True) env.globals['helper'] = TemplateHelper() template = env.get_template(os.path.basename(template_file)) dockerfile = os.path.join(self.target, 'image', 'Dockerfile') with open(dockerfile, 'wb') as f: f.write(template.render(self.effective_descriptor.descriptor).encode('utf-8')) logger.debug("Done") def prepare_repositories(self): """Udates descriptor with added repositories""" self.descriptor['additional_repos'] = \ tools.prepare_external_repositories(os.path.join(self.target, 'image')) def build(self): """ After the source siles are generated, the container image can be built. We're using Docker to build the image currently. Built image will be avaialbe under two tags: 1. version defined in the image descriptor 2. 'latest' """ # Desired tag of the image tag = "%s:%s" % (self.effective_descriptor['name'], self.effective_descriptor['version']) latest_tag = "%s:latest" % self.effective_descriptor['name'] logger.info("Building %s container image..." % tag) ret = subprocess.call(["docker", "build", "-t", tag, "-t", latest_tag, os.path.join(self.target, 'image')]) if ret == 0: logger.info("Image built and available under following tags: %s and %s" % (tag, latest_tag)) else: raise ConcreateError("Image build failed, see logs above.") ``` #### File: cekit/tests/test_unit_descriptor.py ```python import os import tempfile import unittest import yaml from concreate import descriptor from concreate.errors import ConcreateError class TestMergingDictionaries(unittest.TestCase): def test_merging_plain_dictionaries(self): dict1 = {'a': 1, 'b': 2} dict2 = {'b': 5, 'c': 3} expected = {'a': 1, 'b': 2, 'c': 3} self.assertEqual(expected, descriptor.merge_dictionaries(dict1, dict2)) def test_merging_emdedded_dictionaires(self): dict1 = {'a': 1, 'b': {'b1': 10, 'b2': 20}} dict2 = {'b': {'b2': 50, 'b3': 30}, 'c': 3} expected = {'a': 1, 'b': {'b1': 10, 'b2': 20, 'b3': 30}, 'c': 3} self.assertEqual(expected, descriptor.merge_dictionaries(dict1, dict2)) class TestMergingLists(unittest.TestCase): def test_descriptor_schema_version(self): img_descriptor = descriptor.Descriptor.__new__(descriptor.Descriptor) img_descriptor.descriptor = {'schema_version': 1} img_descriptor.check_schema_version() def test_descriptor_schema_version_bad_version(self): img_descriptor = descriptor.Descriptor.__new__(descriptor.Descriptor) img_descriptor.descriptor = {'schema_version': 123} with self.assertRaises(ConcreateError): img_descriptor.check_schema_version() def test_merging_plain_lists(self): list1 = [1, 2, 3] list2 = [2, 3, 4, 5] expected = [1, 2, 3, 4, 5] self.assertEqual(descriptor.merge_lists(list1, list2), expected) def test_merging_plain_list_oflist(self): list1 = [1, 2, 3] list2 = [3, 4, []] with self.assertRaises(ConcreateError): descriptor.merge_lists(list1, list2) def test_merging_list_of_dictionaries(self): list1 = [{'name': 1, 'a': 1, 'b': 2}, 'a'] list2 = [{'name': 1, 'b': 3, 'c': 3}, {'name': 2, 'a': 123}] expected = [{'name': 1, 'a': 1, 'b': 2, 'c': 3}, 'a', {'name': 2, 'a': 123}] self.assertEqual(expected, descriptor.merge_lists(list1, list2)) class TestLabels(unittest.TestCase): def setUp(self): _, self.descriptor = tempfile.mkstemp() def tearDown(self): os.remove(self.descriptor) def prepare_descriptor(self, data={}): image = {'name': 'image/name', 'version': 1.0, 'from': 'from/image', 'schema_version': 1} image.update(data) with open(self.descriptor, 'w') as outfile: yaml.dump(image, outfile, default_flow_style=False) def test_no_labels_should_be_added(self): self.prepare_descriptor() img_descriptor = descriptor.Descriptor(self.descriptor, 'image') img_descriptor._process_labels() self.assertIsNone(img_descriptor.label('description')) self.assertIsNone(img_descriptor.label('summary')) self.assertIsNone(img_descriptor.label('maintainer')) def test_description_label_should_be_added(self): self.prepare_descriptor({'description': 'This is image description'}) img_descriptor = descriptor.Descriptor(self.descriptor, 'image') img_descriptor._process_labels() self.assertIsNone(img_descriptor.label('maintainer')) self.assertEqual(img_descriptor.label('description').get( 'value'), 'This is image description') # In this case the 'summary' label should be also set self.assertEqual(img_descriptor.label('summary').get( 'value'), 'This is image description') def test_description_and_summary_labels_should_not_be_overriden(self): self.prepare_descriptor({'description': 'This is image description', 'labels': [ {'name': 'summary', 'value': 'summary value'}, {'name': 'description', 'value': 'description value'}]}) img_descriptor = descriptor.Descriptor(self.descriptor, 'image') img_descriptor._process_labels() self.assertIsNone(img_descriptor.label('maintainer')) self.assertEqual(img_descriptor.label( 'description').get('value'), 'description value') self.assertEqual(img_descriptor.label( 'summary').get('value'), 'summary value') ```
{ "source": "jmtomczak/git_flow", "score": 2 }
#### File: git_flow/models/idf.py ```python import numpy as np import torch import torch.nn as nn from utils.nn import RoundStraightThrough class IDF(nn.Module): def __init__(self, nett, num_flows, D=2): super(IDF, self).__init__() print('IDF by JT.') self.t = torch.nn.ModuleList([nett() for _ in range(num_flows)]) self.num_flows = num_flows self.round = RoundStraightThrough.apply self.p = nn.Parameter(torch.zeros(1, D)) self.mu = nn.Parameter(torch.ones(1, D) * 0.5) def coupling(self, x, index, forward=True): (xa, xb) = torch.chunk(x, 2, 1) t = self.t[index](xa) if forward: yb = xb + self.round(t) else: yb = xb - self.round(t) return torch.cat((xa, yb), 1) def permute(self, x): return x.flip(1) def f(self, x): z = x for i in range(self.num_flows): z = self.coupling(z, i, forward=True) z = self.permute(z) return z def f_inv(self, z): x = z for i in reversed(range(self.num_flows)): x = self.permute(x) x = self.coupling(x, i, forward=False) return x def forward(self, x): z = self.f(x) return self.log_prior(z) def sample(self, batchSize, D=2, intMax=100): # sample z: z = self.prior_sample(batchSize=batchSize, D=D, intMax=intMax) # x = f^-1(z) x = self.f_inv(z) return x.view(batchSize, 1, D) def log_integer_probability(self, x, p, mu): # Chakraborty & Chakravarty, "A new discrete probability distribution with integer support on (−∞, ∞)", # Communications in Statistics - Theory and Methods, 45:2, 492-505, DOI: 10.1080/03610926.2013.830743 log_p = torch.log(1. - p) + (x - mu) * torch.log(p) \ - torch.log(1. + torch.exp((x - mu) * torch.log(p))) \ - torch.log(1. + torch.exp((x - mu + 1.) * torch.log(p))) return log_p def log_prior(self, x): p = torch.sigmoid(self.p) log_p = self.log_integer_probability(x, p, self.mu) return log_p.sum(1) def prior_sample(self, batchSize, D=2, intMax=100): ints = np.expand_dims(np.arange(-intMax, intMax + 1), 0) for d in range(D): p = torch.sigmoid(self.p[:, [d]]) mu = self.mu[:, d] log_p = self.log_integer_probability(torch.from_numpy(ints), p, mu) if d == 0: z = torch.from_numpy(np.random.choice(ints[0], (batchSize, 1), p=torch.exp(log_p[0]).detach().numpy()).astype(np.float32)) else: z_new = torch.from_numpy(np.random.choice(ints[0], (batchSize, 1), p=torch.exp(log_p[0]).detach().numpy()).astype(np.float32)) z = torch.cat((z, z_new), 1) return z class IDF2(nn.Module): def __init__(self, nett_a, nett_b, num_flows, D=2): super(IDF2, self).__init__() print('IDF by JT.') self.t_a = torch.nn.ModuleList([nett_a() for _ in range(num_flows)]) self.t_b = torch.nn.ModuleList([nett_b() for _ in range(num_flows)]) self.num_flows = num_flows self.round = RoundStraightThrough.apply self.p = nn.Parameter(torch.zeros(1, D)) self.mu = nn.Parameter(torch.ones(1, D) * 0.5) def coupling(self, x, index, forward=True): (xa, xb) = torch.chunk(x, 2, 1) if forward: ya = xa + self.round(self.t_a[index](xb)) yb = xb + self.round(self.t_b[index](ya)) else: yb = xb - self.round(self.t_b[index](xa)) ya = xa - self.round(self.t_a[index](yb)) return torch.cat((ya, yb), 1) def permute(self, x): return x.flip(1) def f(self, x): z = x for i in range(self.num_flows): z = self.coupling(z, i, forward=True) z = self.permute(z) return z def f_inv(self, z): x = z for i in reversed(range(self.num_flows)): x = self.permute(x) x = self.coupling(x, i, forward=False) return x def forward(self, x): z = self.f(x) return self.log_prior(z) def sample(self, batchSize, D=2, intMax=100): # sample z: z = self.prior_sample(batchSize=batchSize, D=D, intMax=intMax) # x = f^-1(z) x = self.f_inv(z) return x.view(batchSize, 1, D) def log_integer_probability(self, x, p, mu): # Chakraborty & Chakravarty, "A new discrete probability distribution with integer support on (−∞, ∞)", # Communications in Statistics - Theory and Methods, 45:2, 492-505, DOI: 10.1080/03610926.2013.830743 log_p = torch.log(1. - p) + (x - mu) * torch.log(p) \ - torch.log(1. + torch.exp((x - mu) * torch.log(p))) \ - torch.log(1. + torch.exp((x - mu + 1.) * torch.log(p))) return log_p def log_prior(self, x): p = torch.sigmoid(self.p) log_p = self.log_integer_probability(x, p, self.mu) return log_p.sum() def prior_sample(self, batchSize, D=2, intMax=100): ints = np.expand_dims(np.arange(-intMax, intMax + 1), 0) for d in range(D): p = torch.sigmoid(self.p[:, [d]]) mu = self.mu[:, d] log_p = self.log_integer_probability(torch.from_numpy(ints), p, mu) if d == 0: z = torch.from_numpy(np.random.choice(ints[0], (batchSize, 1), p=torch.exp(log_p[0]).detach().numpy()).astype(np.float32)) else: z_new = torch.from_numpy(np.random.choice(ints[0], (batchSize, 1), p=torch.exp(log_p[0]).detach().numpy()).astype(np.float32)) z = torch.cat((z, z_new), 1) return z class IDF4(nn.Module): def __init__(self, nett_a, nett_b, nett_c, nett_d, num_flows, D=2): super(IDF4, self).__init__() print('IDF by JT.') self.t_a = torch.nn.ModuleList([nett_a() for _ in range(num_flows)]) self.t_b = torch.nn.ModuleList([nett_b() for _ in range(num_flows)]) self.t_c = torch.nn.ModuleList([nett_c() for _ in range(num_flows)]) self.t_d = torch.nn.ModuleList([nett_d() for _ in range(num_flows)]) self.num_flows = num_flows self.round = RoundStraightThrough.apply self.p = nn.Parameter(torch.zeros(1, D)) self.mu = nn.Parameter(torch.ones(1, D) * 0.5) def coupling(self, x, index, forward=True): (xa, xb, xc, xd) = torch.chunk(x, 4, 1) if forward: ya = xa + self.round(self.t_a[index](torch.cat((xb, xc, xd), 1))) yb = xb + self.round(self.t_b[index](torch.cat((ya, xc, xd), 1))) yc = xc + self.round(self.t_c[index](torch.cat((ya, yb, xd), 1))) yd = xd + self.round(self.t_d[index](torch.cat((ya, yb, yc), 1))) else: yd = xd - self.round(self.t_d[index](torch.cat((xa, xb, xc), 1))) yc = xc - self.round(self.t_c[index](torch.cat((xa, xb, yd), 1))) yb = xb - self.round(self.t_b[index](torch.cat((xa, yc, yd), 1))) ya = xa - self.round(self.t_a[index](torch.cat((yb, yc, yd), 1))) return torch.cat((ya, yb, yc, yd), 1) def permute(self, x): return x.flip(1) def f(self, x): z = x for i in range(self.num_flows): z = self.coupling(z, i, forward=True) z = self.permute(z) return z def f_inv(self, z): x = z for i in reversed(range(self.num_flows)): x = self.permute(x) x = self.coupling(x, i, forward=False) return x def forward(self, x): z = self.f(x) return self.log_prior(z) def sample(self, batchSize, D=2, intMax=100): # sample z: z = self.prior_sample(batchSize=batchSize, D=D, intMax=intMax) # x = f^-1(z) x = self.f_inv(z) return x.view(batchSize, 1, D) def log_integer_probability(self, x, p, mu): # Chakraborty & Chakravarty, "A new discrete probability distribution with integer support on (−∞, ∞)", # Communications in Statistics - Theory and Methods, 45:2, 492-505, DOI: 10.1080/03610926.2013.830743 log_p = torch.log(1. - p) + (x - mu) * torch.log(p) \ - torch.log(1. + torch.exp((x - mu) * torch.log(p))) \ - torch.log(1. + torch.exp((x - mu + 1.) * torch.log(p))) return log_p def log_prior(self, x): p = torch.sigmoid(self.p) log_p = self.log_integer_probability(x, p, self.mu) return log_p.sum() def prior_sample(self, batchSize, D=2, intMax=100): ints = np.expand_dims(np.arange(-intMax, intMax + 1), 0) for d in range(D): p = torch.sigmoid(self.p[:, [d]]) mu = self.mu[:, d] log_p = self.log_integer_probability(torch.from_numpy(ints), p, mu) if d == 0: z = torch.from_numpy(np.random.choice(ints[0], (batchSize, 1), p=torch.exp(log_p[0]).detach().numpy()).astype(np.float32)) else: z_new = torch.from_numpy(np.random.choice(ints[0], (batchSize, 1), p=torch.exp(log_p[0]).detach().numpy()).astype(np.float32)) z = torch.cat((z, z_new), 1) return z class IDF8(nn.Module): def __init__(self, nett_a, nett_b, nett_c, nett_d, nett_e, nett_f, nett_g, nett_h, num_flows, D=2): super(IDF8, self).__init__() print('IDF by JT.') self.t_a = torch.nn.ModuleList([nett_a() for _ in range(num_flows)]) self.t_b = torch.nn.ModuleList([nett_b() for _ in range(num_flows)]) self.t_c = torch.nn.ModuleList([nett_c() for _ in range(num_flows)]) self.t_d = torch.nn.ModuleList([nett_d() for _ in range(num_flows)]) self.t_e = torch.nn.ModuleList([nett_e() for _ in range(num_flows)]) self.t_f = torch.nn.ModuleList([nett_f() for _ in range(num_flows)]) self.t_g = torch.nn.ModuleList([nett_g() for _ in range(num_flows)]) self.t_h = torch.nn.ModuleList([nett_h() for _ in range(num_flows)]) self.num_flows = num_flows self.round = RoundStraightThrough.apply self.p = nn.Parameter(torch.zeros(1, D)) self.mu = nn.Parameter(torch.ones(1, D) * 0.5) def coupling(self, x, index, forward=True): (xa, xb, xc, xd, xe, xf, xg, xh) = torch.chunk(x, 8, 1) if forward: ya = xa + self.round(self.t_a[index](torch.cat((xb, xc, xd, xe, xf, xg, xh), 1))) yb = xb + self.round(self.t_b[index](torch.cat((ya, xc, xd, xe, xf, xg, xh), 1))) yc = xc + self.round(self.t_c[index](torch.cat((ya, yb, xd, xe, xf, xg, xh), 1))) yd = xd + self.round(self.t_d[index](torch.cat((ya, yb, yc, xe, xf, xg, xh), 1))) ye = xe + self.round(self.t_e[index](torch.cat((ya, yb, yc, yd, xf, xg, xh), 1))) yf = xf + self.round(self.t_f[index](torch.cat((ya, yb, yc, yd, ye, xg, xh), 1))) yg = xg + self.round(self.t_g[index](torch.cat((ya, yb, yc, yd, ye, yf, xh), 1))) yh = xh + self.round(self.t_h[index](torch.cat((ya, yb, yc, yd, ye, yf, yg), 1))) else: yh = xh - self.round(self.t_h[index](torch.cat((xa, xb, xc, xd, xe, xf, xg), 1))) yg = xg - self.round(self.t_g[index](torch.cat((xa, xb, xc, xd, xe, xf, yh), 1))) yf = xf - self.round(self.t_f[index](torch.cat((xa, xb, xc, xd, xe, yg, yh), 1))) ye = xe - self.round(self.t_e[index](torch.cat((xa, xb, xc, xd, yf, yg, yh), 1))) yd = xd - self.round(self.t_d[index](torch.cat((xa, xb, xc, ye, yf, yg, yh), 1))) yc = xc - self.round(self.t_c[index](torch.cat((xa, xb, yd, ye, yf, yg, yh), 1))) yb = xb - self.round(self.t_b[index](torch.cat((xa, yc, yd, ye, yf, yg, yh), 1))) ya = xa - self.round(self.t_a[index](torch.cat((yb, yc, yd, ye, yf, yg, yh), 1))) return torch.cat((ya, yb, yc, yd, ye, yf, yg, yh), 1) def permute(self, x): return x.flip(1) def f(self, x): z = x for i in range(self.num_flows): z = self.coupling(z, i, forward=True) z = self.permute(z) return z def f_inv(self, z): x = z for i in reversed(range(self.num_flows)): x = self.permute(x) x = self.coupling(x, i, forward=False) return x def forward(self, x): z = self.f(x) return self.log_prior(z) def sample(self, batchSize, D=2, intMax=100): # sample z: z = self.prior_sample(batchSize=batchSize, D=D, intMax=intMax) # x = f^-1(z) x = self.f_inv(z) return x.view(batchSize, 1, D) def log_integer_probability(self, x, p, mu): # Chakraborty & Chakravarty, "A new discrete probability distribution with integer support on (−∞, ∞)", # Communications in Statistics - Theory and Methods, 45:2, 492-505, DOI: 10.1080/03610926.2013.830743 log_p = torch.log(1. - p) + (x - mu) * torch.log(p) \ - torch.log(1. + torch.exp((x - mu) * torch.log(p))) \ - torch.log(1. + torch.exp((x - mu + 1.) * torch.log(p))) return log_p def log_prior(self, x): p = torch.sigmoid(self.p) log_p = self.log_integer_probability(x, p, self.mu) return log_p.sum() def prior_sample(self, batchSize, D=2, intMax=100): ints = np.expand_dims(np.arange(-intMax, intMax + 1), 0) for d in range(D): p = torch.sigmoid(self.p[:, [d]]) mu = self.mu[:, d] log_p = self.log_integer_probability(torch.from_numpy(ints), p, mu) if d == 0: z = torch.from_numpy(np.random.choice(ints[0], (batchSize, 1), p=torch.exp(log_p[0]).detach().numpy()).astype(np.float32)) else: z_new = torch.from_numpy(np.random.choice(ints[0], (batchSize, 1), p=torch.exp(log_p[0]).detach().numpy()).astype(np.float32)) z = torch.cat((z, z_new), 1) return z ``` #### File: git_flow/models/realnvp.py ```python import numpy as np import torch import torch.nn as nn class RealNVP(nn.Module): def __init__(self, nets, nett, num_flows, prior, dequantization=True): super(RealNVP, self).__init__() print('RealNVP by JT.') self.dequantization = dequantization self.prior = prior self.t = torch.nn.ModuleList([nett() for _ in range(num_flows)]) self.s = torch.nn.ModuleList([nets() for _ in range(num_flows)]) self.num_flows = num_flows def coupling(self, x, index, forward=True): (xa, xb) = torch.chunk(x, 2, 1) s = self.s[index](xa) t = self.t[index](xa) if forward: yb = (xb - t) * torch.exp(-s) else: yb = torch.exp(s) * xb + t return torch.cat((xa, yb), 1), s, t def permute(self, x): return x.flip(1) def f(self, x): log_det_J, z = x.new_zeros(x.shape[0]), x for i in range(self.num_flows): z, s, _ = self.coupling(z, i, forward=True) z = self.permute(z) log_det_J = log_det_J - s.sum(dim=1) return z, log_det_J def f_inv(self, z): x = z for i in reversed(range(self.num_flows)): x = self.permute(x) x, _, _ = self.coupling(x, i, forward=False) return x def forward(self, x): z, log_det_J = self.f(x) return self.prior.log_prob(z) + log_det_J def sample(self, batchSize, D=2): z = self.prior.sample((batchSize, D)) z = z[:, 0, :] x = self.f_inv(z) return x.view(-1, D) ``` #### File: git_flow/utils/nn.py ```python import torch import torch.nn as nn class RoundStraightThrough(torch.autograd.Function): def __init__(self): super().__init__() @staticmethod def forward(ctx, input): rounded = torch.round(input, out=None) return rounded @staticmethod def backward(ctx, grad_output): grad_input = grad_output.clone() return grad_input class Swish(nn.Module): def __init__(self): super().__init__() def forward(self, x): return x * torch.sigmoid(x) class Reshape3d(nn.Module): def __init__(self, size): super().__init__() self.size = size def forward(self, x): B = x.shape[0] return x.view(B, self.size[0], self.size[1], self.size[2]) class Flatten(nn.Module): def __init__(self): super().__init__() def forward(self, x): B = x.shape[0] return x.view(B, -1) ```
{ "source": "jmtomczak/popi4sb", "score": 3 }
#### File: popi4sb/algorithms/population_optimization_algorithms.py ```python import numpy as np from sklearn.neighbors import KNeighborsRegressor from algorithms.general_method import GeneralMethod from simulators.ode_simulator import calculate_fitness class DE(GeneralMethod): def __init__(self, config_method, config_model): super().__init__(config_method, config_model) print('Initialized Differential Evolution (DE).') def proposal(self, theta, E=None): indices_1 = np.random.permutation(theta.shape[0]) indices_2 = np.random.permutation(theta.shape[0]) theta_1 = theta[indices_1] theta_2 = theta[indices_2] de_noise = self.config_method['gamma'] * (theta_1 - theta_2) if self.config_method['best']: tht = theta[[np.argmin(E)]] else: tht = theta theta_new = tht + de_noise p_1 = np.random.binomial(1, self.config_method['CR'], tht.shape) return p_1 * theta_new + (1. - p_1) * tht def step(self, theta, E_old, x_obs, mod, params): # (1. Generate) theta_new = self.proposal(theta, E_old) theta_new = np.clip(theta_new, a_min=self.config_method['clip_min'], a_max=self.config_method['clip_max']) # (2. Evaluate) E_new = calculate_fitness(x_obs, theta_new, mod, params, self.dist, self.config_model, self.config_method) # (3. Select) theta_cat = np.concatenate((theta, theta_new), 0) E_cat = np.concatenate((E_old, E_new), 0) indx = np.argsort(E_cat.squeeze()) return theta_cat[indx[:theta.shape[0]],:], E_cat[indx[:theta.shape[0]],:] class RevDE(GeneralMethod): def __init__(self, config_method, config_model): super().__init__(config_method, config_model) print('Initialized RevDE.') R = np.asarray([[1, self.config_method['gamma'], -self.config_method['gamma']], [-self.config_method['gamma'], 1. - self.config_method['gamma'] ** 2, self.config_method['gamma'] + self.config_method['gamma'] ** 2], [self.config_method['gamma'] + self.config_method['gamma'] ** 2, -self.config_method['gamma'] + self.config_method['gamma'] ** 2 + self.config_method['gamma'] ** 3, 1. - 2. * self.config_method['gamma'] ** 2 - self.config_method['gamma'] ** 3]]) self.R = np.expand_dims(R, 0) # 1 x 3 x 3 def proposal(self, theta, E=None): theta_0 = np.expand_dims(theta, 1) # B x 1 x D indices_1 = np.random.permutation(theta.shape[0]) indices_2 = np.random.permutation(theta.shape[0]) theta_1 = np.expand_dims(theta[indices_1], 1) theta_2 = np.expand_dims(theta[indices_2], 1) tht = np.concatenate((theta_0, theta_1, theta_2), 1) # B x 3 x D y = np.matmul(self.R, tht) theta_new = np.concatenate((y[:,0], y[:,1], y[:,2]), 0) p_1 = np.random.binomial(1, self.config_method['CR'], theta_new.shape) return p_1 * theta_new + (1. - p_1) * np.concatenate((tht[:,0], tht[:,1], tht[:,2]), 0) def step(self, theta, E_old, x_obs, mod, params): # (1. Generate) theta_new = self.proposal(theta, E_old) theta_new = np.clip(theta_new, a_min=self.config_method['clip_min'], a_max=self.config_method['clip_max']) # (2. Evaluate) E_new = calculate_fitness(x_obs, theta_new, mod, params, self.dist, self.config_model, self.config_method) # (3. Select) theta_cat = np.concatenate((theta, theta_new), 0) E_cat = np.concatenate((E_old, E_new), 0) indx = np.argsort(E_cat.squeeze()) return theta_cat[indx[:theta.shape[0]],:], E_cat[indx[:theta.shape[0]],:] class RevDEknn(GeneralMethod): def __init__(self, config_method, config_model): super().__init__(config_method, config_model) print('Initialized RevDE+knn.') R = np.asarray([[1, self.config_method['gamma'], -self.config_method['gamma']], [-self.config_method['gamma'], 1. - self.config_method['gamma'] ** 2, self.config_method['gamma'] + self.config_method['gamma'] ** 2], [self.config_method['gamma'] + self.config_method['gamma'] ** 2, -self.config_method['gamma'] + self.config_method['gamma'] ** 2 + self.config_method['gamma'] ** 3, 1. - 2. * self.config_method['gamma'] ** 2 - self.config_method['gamma'] ** 3]]) self.R = np.expand_dims(R, 0) # 1 x 3 x 3 self.nn = KNeighborsRegressor(n_neighbors=3) self.X = None self.E = None def proposal(self, theta, E=None): if self.X is None: self.X = theta self.E = E else: if self.X.shape[0] < 10000: self.X = np.concatenate((self.X, theta), 0) self.E = np.concatenate((self.E, E), 0) self.nn.fit(self.X, self.E) theta_0 = np.expand_dims(theta, 1) # B x 1 x D indices_1 = np.random.permutation(theta.shape[0]) indices_2 = np.random.permutation(theta.shape[0]) theta_1 = np.expand_dims(theta[indices_1], 1) theta_2 = np.expand_dims(theta[indices_2], 1) tht = np.concatenate((theta_0, theta_1, theta_2), 1) # B x 3 x D y = np.matmul(self.R, tht) theta_new = np.concatenate((y[:,0], y[:,1], y[:,2]), 0) p_1 = np.random.binomial(1, self.config_method['CR'], theta_new.shape) theta_new = p_1 * theta_new + (1. - p_1) * np.concatenate((tht[:,0], tht[:,1], tht[:,2]), 0) E_pred = self.nn.predict((theta_new)) ind = np.argsort(E_pred.squeeze()) return theta_new[ind[:theta.shape[0]]] def step(self, theta, E_old, x_obs, mod, params): # (1. Generate) theta_new = self.proposal(theta, E_old) theta_new = np.clip(theta_new, a_min=self.config_method['clip_min'], a_max=self.config_method['clip_max']) # (2. Evaluate) E_new = calculate_fitness(x_obs, theta_new, mod, params, self.dist, self.config_model, self.config_method) # (3. Select) theta_cat = np.concatenate((theta, theta_new), 0) E_cat = np.concatenate((E_old, E_new), 0) indx = np.argsort(E_cat.squeeze()) return theta_cat[indx[:theta.shape[0]],:], E_cat[indx[:theta.shape[0]],:] class ES(GeneralMethod): def __init__(self, config_method, config_model): super().__init__(config_method, config_model) print('Initialized ES.') self.sigma = config_method['std'] self.c = 0.817 def proposal(self, theta, E=None): noise = self.sigma * np.random.randn(theta.shape[0], theta.shape[1]) if self.config_method['best']: tht = theta[[np.argmin(E)]] else: tht = theta theta_new = tht + noise p_1 = np.random.binomial(1, self.config_method['CR'], tht.shape) return p_1 * theta_new + (1. - p_1) * tht def step(self, theta, E_old, x_obs, mod, params): # (1. Generate) theta_new = self.proposal(theta, E_old) theta_new = np.clip(theta_new, a_min=self.config_method['clip_min'], a_max=self.config_method['clip_max']) # (2. Evaluate) E_new = calculate_fitness(x_obs, theta_new, mod, params, self.dist, self.config_model, self.config_method) # (3. Select) m = (E_new < E_old) * 1. if np.mean(m) < 0.2: self.sigma = self.sigma * self.c elif np.mean(m) > 0.2: self.sigma = self.sigma / self.c return m * theta_new + (1. - m) * theta, m * E_new + (1. - m) * E_old class EDA(GeneralMethod): def __init__(self, config_method, config_model): super().__init__(config_method, config_model) print('Initialized EDA.') def estimate(self, x): m = np.mean(x, 0, keepdims=True) z = np.expand_dims(x - m, 2) S = np.mean(np.matmul(z, np.transpose(z, [0, 2, 1])), 0) L = np.linalg.cholesky(S) return m, L def proposal(self, theta, E=None): # Fit Gaussian: # 1) Calculate mean and covariance matrix m, L = self.estimate(theta) # 2) Generate new points (2 x more than original theta): # x_new = mean + epsilon * L theta_new = m + np.dot( np.random.randn(theta.shape[0], theta.shape[1]), L ) return theta_new def step(self, theta, E_old, x_obs, mod, params): # (1. Generate) theta_new = self.proposal(theta, E_old) theta_new = np.clip(theta_new, a_min=self.config_method['clip_min'], a_max=self.config_method['clip_max']) # (2. Evaluate) E_new = calculate_fitness(x_obs, theta_new, mod, params, self.dist, self.config_model, self.config_method) # (3. Select) theta_cat = np.concatenate((theta, theta_new), 0) E_cat = np.concatenate((E_old, E_new), 0) indx = np.argsort(E_cat.squeeze()) return theta_cat[indx[:theta.shape[0]], :], E_cat[indx[:theta.shape[0]], :] class EDAknn(GeneralMethod): def __init__(self, config_method, config_model): super().__init__(config_method, config_model) print('Initialized EDA+knn.') self.nn = KNeighborsRegressor(n_neighbors=3) self.X = None self.E = None def estimate(self, x): m = np.mean(x, 0, keepdims=True) z = np.expand_dims(x - m, 2) S = np.mean(np.matmul(z, np.transpose(z, [0, 2, 1])), 0) L = np.linalg.cholesky(S) return m, L def proposal(self, theta, E=None): if self.X is None: self.X = theta self.E = E else: if self.X.shape[0] < 10000: self.X = np.concatenate((self.X, theta), 0) self.E = np.concatenate((self.E, E), 0) self.nn.fit(self.X, self.E) # Fit Gaussian: # 1) Calculate mean and covariance matrix m, L = self.estimate(theta) # 2) Generate new points (2 x more than original theta): # x_new = mean + epsilon * L theta_new = m + np.dot( np.random.randn(theta.shape[0] * 5, theta.shape[1]), L ) E_pred = self.nn.predict((theta_new)) ind = np.argsort(E_pred.squeeze()) return theta_new[ind[:theta.shape[0]]] def step(self, theta, E_old, x_obs, mod, params): # (1. Generate) theta_new = self.proposal(theta, E_old) theta_new = np.clip(theta_new, a_min=self.config_method['clip_min'], a_max=self.config_method['clip_max']) # (2. Evaluate) E_new = calculate_fitness(x_obs, theta_new, mod, params, self.dist, self.config_model, self.config_method) # (3. Select) theta_cat = np.concatenate((theta, theta_new), 0) E_cat = np.concatenate((E_old, E_new), 0) indx = np.argsort(E_cat.squeeze()) return theta_cat[indx[:theta.shape[0]], :], E_cat[indx[:theta.shape[0]], :] ```
{ "source": "jmtoung/26p", "score": 3 }
#### File: jmtoung/26p/modelPaymentMethod.py ```python from google.appengine.ext import ndb import ndbTools class PaymentMethod(ndb.Model): purchaser = ndb.KeyProperty(kind='Purchaser') store = ndb.KeyProperty(kind='Store') type = ndb.StringProperty(choices=['Credit Card', 'Debit Card', 'Bank Account', 'Cash', 'Paypal']) cardType = ndb.StringProperty(choices=['Visa', 'Master Card', 'Discover', 'American Express', 'Paypal']) accountNumber = ndb.StringProperty() expirationDate = ndb.DateProperty() paymentDirection = ndb.StringProperty(choices=['Outgoing', 'Incoming'], repeated=True) displayName = ndb.ComputedProperty(lambda self: ComputeDisplayName(self)) def GetPaymentMethod(key): return PaymentMethod.query(ancestor=ndb.Key(urlsafe=key)).fetch() # if property == "key": # return ndb.Key(urlsafe=value).get() # #else: # #stores = [s for s in Store.query(Store._properties[property] == value)] # #return stores[0] def ComputeDisplayName(self): if self.type=="Credit Card": result = "" for x in [self.cardType, self.accountNumber, self.expirationDate]: if x: result = result + " " + str(x) return result else: return 'NOT CODED YET' def AddPaymentMethod(d): return ndbTools.AddData(PaymentMethod, d, d['purchaser']['key']) ``` #### File: jmtoung/26p/ndbTools.py ```python from google.appengine.ext import ndb import re import datetime # function for getting entity from GAE by key def GetData(key): return ndb.Key(urlsafe=key).get() # function for querying GAE def QueryData(model, queryParams): newQueryParams = {} if 'ancestor' in queryParams: if isinstance(queryParams['ancestor'], basestring): ancestor = ndb.Key(urlsafe=queryParams['ancestor']) elif isinstance(queryParams['ancestor'], dict): ancestor = ndb.Key(urlsafe=queryParams['ancestor']['key']) else: raise Exception('invalid key parameter in queryParams: ' + str(queryParams['key'])) newQueryParams['ancestor'] = ancestor if 'filters' in queryParams: filterNode = [] for f in queryParams['filters']: filterNode.append(ndb.FilterNode(f['property'], f['operator'], f['value'])) newQueryParams['filters'] = ndb.AND(*filterNode) query = model.query(**newQueryParams) if 'orders' in queryParams: if queryParams['orders']['direction'] == 'ASC': query = query.order(getattr(model, queryParams['orders']['property'])) elif queryParams['orders']['direction'] == 'DESC': query = query.order(-getattr(model, queryParams['orders']['property'])) else: raise Exception('invalid direction parameter for order: ' + queryParams['orders']['direction']) return query.fetch() # function for adding a new GAE entity def AddData(model, data, parent=None): entity = _CreateEntity(model, data, parent) entity.put() return entity # private helper function for adding data def _CreateEntity(model, data, parent=None): entity = None if parent: key = None if isinstance(parent, ndb.model.KeyProperty): key = parent elif isinstance(parent, basestring): key = ndb.Key(urlsafe=parent) elif isinstance(parent, dict): key = ndb.Key(urlsafe=parent['key']) elif isinstance(parent, list): key = ndb.Key(pairs=parent) else: raise Exception('invalid parent parameter to CreateEntity method') if key.get(): entity = model(parent=key) else: entity = model() for x in model._properties: property = model._properties[x] if x in data: if property._repeated: values = _CheckValueIntegrityList(property, data[x]) setattr(entity, x, values) else: value = _CheckValueIntegrity(property, data[x]) setattr(entity, x, value) else: if property._required: raise Exception('required attribute ' + x + ' not defined') return entity # private helper function for adding data def _CheckValueIntegrityList(property, data): values = [] for d in data: value = _CheckValueIntegrity(property, d) if value not in values: values.append(value) return values # private helper function for adding data def _CheckValueIntegrity(property, data): if isinstance(property, ndb.model.StringProperty): if isinstance(data, basestring): return data else: raise Exception('property ' + str(property) + ' expects StringProperty: received ' + str(data) + ' ' + str(type(data)) + ' instead') elif isinstance(property, ndb.model.TextProperty): if isinstance(data, basestring): return data else: raise Exception('property ' + str(property) + ' expects TextProperty: received ' + str(data) + ' ' + str(type(data)) + ' instead') elif isinstance(property, ndb.model.BooleanProperty): if isinstance(data, bool): return data else: raise Exception('property ' + str(property) + ' expects BooleanProperty: received ' + str(data) + ' ' + str(type(data)) + ' instead') elif isinstance(property, ndb.model.IntegerProperty): if isinstance(data, int): return data else: raise Exception('property ' + str(property) + ' expects IntegerProperty: received ' + str(data) + ' ' + str(type(data)) + ' instead') elif isinstance(property, ndb.model.FloatProperty): if isinstance(data, float): return data elif isinstance(data, int): return float(data) else: raise Exception('property ' + str(property) + ' expects FloatProperty: received ' + str(data) + ' ' + str(type(data)) + ' instead') elif isinstance(property, ndb.model.DateProperty): if isinstance(data, basestring): return AsDateObject(data) else: raise Exception('property ' + str(property) + ' expects StringProperty: received ' + str(data) + ' ' + str(type(data)) + ' instead') elif isinstance(property, ndb.model.TimeProperty): if isinstance(data, basestring): return AsTimeObject(data) else: raise Exception('property ' + str(property) + ' expects StringProperty: received ' + str(data) + ' ' + str(type(data)) + ' instead') elif isinstance(property, ndb.model.DateTimeProperty): if isinstance(data, basestring): return AsDateTimeObject(data) else: raise Exception('property ' + str(property) + ' expects StringProperty: received ' + str(data) + ' ' + str(type(data)) + ' instead') elif isinstance(property, ndb.model.StructuredProperty): return _CreateEntity(property._modelclass, data) elif isinstance(property, ndb.model.KeyProperty): (urlsafe, key) = None, None if isinstance(data, basestring): urlsafe = data elif isinstance(data, dict): urlsafe = data['key'] else: raise Exception('property ' + str(property) + ' expects KeyProperty: received ' + str(data) + ' ' + str(type(data)) + ' instead') if urlsafe: key = ndb.Key(urlsafe=urlsafe) if key and key.get(): return key else: raise Exception('key points to nonexistent object: ' + str(key)) else: raise Exception('property ' + str(property) + ' not yet implemented') def DeleteData(key): if isinstance(key, basestring): key = ndb.Key(urlsafe=key) elif isinstance(key, ndb.model.KeyProperty): pass else: raise Exception('invalid key parameter passed to DeleteData') key.delete() return # function for getting an object referenced by 'key' def GetData(key): if isinstance(key, basestring): return ndb.Key(urlsafe=key).get() elif isinstance(key, dict): return ndb.Key(urlsafe=key['key']) else: raise Exception('unknown key type') # function for saving a python dict object (obj) into GAE entity (referenced by 'key') def SaveData(key, obj): entity = ndb.Key(urlsafe=key).get() for x in entity.__class__._properties: property = entity.__class__._properties[x] if isinstance(property, ndb.model.ComputedProperty): continue if property._repeated: values = [] for d in obj[x]: value = _CheckValueIntegrity(property, d) if value not in values: values.append(value) setattr(entity, x, values) else: value = _CheckValueIntegrity(property, obj[x]) setattr(entity, x, value) entity.put() return entity # function for returning a ndb object as a dictionary def AsDict(obj, level = 0): dict = None entity = None if isinstance(obj, ndb.Key): dict = {'id': obj.id(), 'key': obj.urlsafe()} if level > 2: return obj.urlsafe() entity = obj.get() if entity is None: return None elif isinstance(obj, ndb.Model): dict = {} entity = obj else: raise Exception('invalid parameter obj passed to AsDict') for p in entity._properties: attr = getattr(entity, p) #if p == "shipping": #print '~~~' #print attr #print '~~~' if isinstance(attr, ndb.Key): attr = AsDict(attr, level = (level + 1)) elif isinstance(attr, list): #print 'p: ' + str(p) #print 'attr: ' + str(attr) attr = [AsDict(a, level = (level + 1)) for a in attr] attr = [a for a in attr if not a is None] elif isinstance(attr, (datetime.datetime, datetime.date, datetime.time)): attr = str(attr) dict[p] = attr return dict # function for returning a ndb object as a dictionary def AsDictBACKUP(obj, level = 0): if isinstance(obj, ndb.Key): dict = {'id': obj.id(), 'key': obj.urlsafe()} if obj.get() is None: return None if level > 2: return obj.urlsafe() for p in obj.get()._properties: attr = getattr(obj.get(), p) if p == "shipping": print '~~~' print attr print '~~~' if isinstance(attr, ndb.Key): attr = AsDict(attr, level = (level + 1)) elif isinstance(attr, list): print 'p: ' + str(p) print 'attr: ' + str(attr) attr = [AsDict(a, level = (level + 1)) for a in attr] attr = [a for a in attr if not a is None] elif isinstance(attr, (datetime.datetime, datetime.date, datetime.time)): attr = str(attr) dict[p] = attr return dict elif isinstance(obj, ndb.Model): dict = {} for p in obj._properties: print '@@@' print p print getattr(obj, p) print '@@@' print obj print type(obj) print isinstance(obj, ndb.Model) print '/////' return '{error: "AsDict()" requires entity key}' # function for returning a date and time string as a date object def AsDateTimeObject(dt): dateTimeMatch = re.match('.*(\d{4}-\d{2}-\d{2}).*(\d{2}:\d{2}).*',dt) if dateTimeMatch: dateValue = dateTimeMatch.groups()[0].split('-') dateValue = [int(dv) for dv in dateValue] timeValue = dateTimeMatch.groups()[1].split(':') timeValue = [int(tv) for tv in timeValue] return datetime.datetime(dateValue[0], dateValue[1], dateValue[2], timeValue[0], timeValue[1]) else: raise Exception('invalid DateTime parameter: ' + str(dt)) def AsDateObject(d): dateMatch = re.match('.*(\d{4}-\d{2}-\d{2}).*',d) if dateMatch: dateValue = dateMatch.groups()[0].split('-') dateValue = [int(dv) for dv in dateValue] return datetime.date(dateValue[0], dateValue[1], dateValue[2]) else: return Exception('invalid Date parameter: ' + str(d)) def AsTimeObject(t): timeMatch = re.match('.*(\d{2}:\d{2}).*',t) if timeMatch: timeValue = timeMatch.groups()[0].split(':') timeValue = [int(tv) for tv in timeValue] return datetime.time(timeValue[0], timeValue[1]) else: return Exception('invalid Time parameter: ' + str(t)) ```
{ "source": "jmtsuji/atlas", "score": 2 }
#### File: atlas/atlas/conf.py ```python import logging import multiprocessing import os import sys import tempfile from snakemake import utils from snakemake.io import load_configfile import pandas as pd import numpy as np from collections import defaultdict import click sys.path.append(os.path.dirname(__file__)) from default_values import make_default_config # default globals ADAPTERS = "adapters.fa" RRNA = "silva_rfam_all_rRNAs.fa" PHIX = "phiX174_virus.fa" ADDITIONAL_SAMPLEFILE_HEADERS=[]#,'Contigs'] def get_samples_from_fastq(path): """ creates table sampleID R1 R2 with the absolute paths of fastq files in a given folder """ samples = defaultdict(dict) seen = set() for dir_name, sub_dirs, files in os.walk(os.path.abspath(path)): for fname in files: if ".fastq" in fname or ".fq" in fname: sample_id = fname.split(".fastq")[0].split(".fq")[0] sample_id = sample_id.replace("_R1", "").replace("_r1", "").replace("_R2", "").replace("_r2", "") sample_id = sample_id.replace("_", "-").replace(" ", "-") fq_path = os.path.join(dir_name, fname) if fq_path in seen: continue if "_R2" in fname or "_r2" in fname: if 'R2' in samples[sample_id]: logging.error(f"Duplicate sample {sample_id} was found after renaming; skipping... \n Samples: \n{samples}") samples[sample_id]['R2'] = fq_path else: if 'R1' in samples[sample_id]: logging.error(f"Duplicate sample {sample_id} was found after renaming; skipping... \n Samples: \n{samples}") samples[sample_id]['R1'] = fq_path samples= pd.DataFrame(samples).T if samples.isnull().any().any(): logging.error(f"Missing files:\n\n {samples}") exit(1) if samples.shape[0]==0: logging.error(f"No files found in {path}\n" "I'm looking for files with .fq or .fastq extension. ") exit(1) return samples def validate_sample_table(sampleTable): Expected_Headers =['BinGroup'] + ADDITIONAL_SAMPLEFILE_HEADERS for h in Expected_Headers: if not (h in sampleTable.columns): logging.error(f"expect '{h}' to be found in samples.tsv") exit(1) elif sampleTable[h].isnull().any(): logging.error(f"Found empty values in the sample table column '{h}'") exit(1) if not sampleTable.index.is_unique: duplicated_samples=', '.join(D.index.duplicated()) logging.error( f"Expect Samples to be unique. Found {duplicated_samples} more than once") exit(1) def prepare_sample_table(path_to_fastq,reads_are_QC=False,outfile='samples.tsv'): """ Write the file `samples.tsv` and complete the sample names and paths for all files in `path`. Args: path_to_fastq (str): fastq/fasta data directory """ samples = get_samples_from_fastq(path_to_fastq) columns= samples.columns # R1 and R2 or only R1 , who knows if 'R2' not in columns: assert len(columns) == 1, "expect columns to be only ['R1']" columns=['se'] if reads_are_QC: samples.columns= ['Reads_QC_'+c for c in columns] else: samples.columns= ['Reads_raw_'+c for c in columns] Headers = ADDITIONAL_SAMPLEFILE_HEADERS for h in Headers: samples[h]=np.nan samples['BinGroup']= samples.index validate_sample_table(samples) logging.info("Found %d samples under %s" % (len(samples), path_to_fastq)) if os.path.exists(outfile): logging.error(f"Output file {outfile} already exists I don't dare to overwrite it.") exit(1) else: samples.to_csv(outfile,sep='\t') def load_sample_table(sample_table='samples.tsv'): sampleTable = pd.read_csv(sample_table,index_col=0,sep='\t') validate_sample_table(sampleTable) return sampleTable def make_config(database_dir, threads, assembler, data_type='metagenome',interleaved_fastq=False,config='config.yaml'): """ Reads template config file with comments from ./template_config.yaml updates it by the parameters provided. Args: config (str): output file path for yaml database_dir (str): location of downloaded databases threads (int): number of threads per node to utilize assembler (str): either spades or megahit data_type (str): this is either metagenome or metatranscriptome """ from ruamel.yaml import YAML #used for yaml reading with comments yaml = YAML() yaml.version = (1, 1) yaml.default_flow_style = False template_conf_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), "template_config.yaml") with open(template_conf_file) as template_config: conf = yaml.load(template_config) conf["tmpdir"] = tempfile.gettempdir() conf["threads"] = multiprocessing.cpu_count() if not threads else threads conf["preprocess_adapters"] = os.path.join(database_dir, "adapters.fa") conf["contaminant_references"] = {"PhiX":os.path.join(database_dir, "phiX174_virus.fa")} if data_type == 'metatranscriptome': conf["contaminant_references"]["rRNA"]= os.path.join(database_dir, "silva_rfam_all_rRNAs.fa"), conf["data_type"]= data_type conf["interleaved_fastqs"]=interleaved_fastq conf["assembler"] = assembler conf["database_dir"] = database_dir #conf["refseq_namemap"] = os.path.join(database_dir, "refseq.db") #conf["refseq_tree"] = os.path.join(database_dir, "refseq.tree") #conf["diamond_db"] = os.path.join(database_dir, "refseq.dmnd") if os.path.exists(config): logging.warning(f"Config file {config} already exists, I didn't dare to overwrite it. continue...") else: with open(config, "w") as f: yaml.dump(conf, f) logging.info( "Configuration file written to %s\n" "You may want to edit it using any text editor."% config ) def validate_config(config, workflow): conf = load_configfile(config) # validate_sample_defs(conf, workflow) # could later add more validation steps def update_config(config): """ Populates config file with default config values. And made changes if necessary. """ # in old version java_mem was used, new is mem if ('java_mem' in config) and (not ('mem' in config)): config['mem']=config['java_mem'] # get default values and update them with values specified in config file default_config = make_default_config() utils.update_config(default_config, config) return default_config @click.command( "init", short_help="prepare configuration file and sample table for atlas run", ) @click.argument("path_to_fastq",type=click.Path(readable=True)) @click.option( "-d", "--db-dir", default=os.path.join(os.path.realpath("."), "databases"), type=click.Path(dir_okay=True,writable=True,resolve_path=True), show_default=True, help="location to store databases (need ~50GB)", ) @click.option("-w", "--working-dir", type=click.Path(dir_okay=True,writable=True,resolve_path=True), help="location to run atlas", default="." ) @click.option( "--assembler", default="spades", type=click.Choice(["megahit", "spades"]), show_default=True, help="assembler", ) @click.option( "--data-type", default="metagenome", type=click.Choice(["metagenome", "metatranscriptome"]), show_default=True, help="sample data type", ) @click.option( "--interleaved-fastq", is_flag=True, default=False, help="fastq files are paired-end in one files (interleaved)", ) @click.option( "--threads", default=8, type=int, help="number of threads to use per multi-threaded job", ) @click.option( "--skip-qc", is_flag=True, help="Skip QC, if reads are already pre-processed", ) def run_init(path_to_fastq,db_dir, working_dir, assembler, data_type, interleaved_fastq,threads,skip_qc=False): """Write the file CONFIG and complete the sample names and paths for all FASTQ files in PATH. PATH is traversed recursively and adds any file with '.fastq' or '.fq' in the file name with the file name minus extension as the sample ID. """ if not os.path.exists(working_dir): os.makedirs(working_dir) config=os.path.join(working_dir,'config.yaml') if not os.path.exists(db_dir): os.makedirs(db_dir) sample_file= os.path.join(working_dir,'samples.tsv') make_config(db_dir, threads, assembler,data_type,interleaved_fastq,config) prepare_sample_table(path_to_fastq,reads_are_QC=skip_qc,outfile=sample_file) ``` #### File: atlas/atlas/group_species.py ```python import pandas as pd import scipy.spatial as sp import scipy.cluster.hierarchy as hc from sklearn.metrics import silhouette_score import numpy as np from common import genome_pdist as gd def automatic_cluster_species(Dist,seed_tresholds= [0.92,0.97],linkage_method='average'): linkage = hc.linkage(sp.distance.squareform(Dist), method=linkage_method) def get_Nclusters(treshold): labels= hc.fcluster(linkage,(1-treshold),criterion='distance') return max(labels) N_range= [get_Nclusters(t) for t in seed_tresholds] assert (N_range[1]-N_range[0])< 60, "Need to evaluate more than 60 tresholds" assert ~np.isnan(N_range).any(), "N range is not defined" Scores= gd.evaluate_clusters_range(np.arange(min(N_range),max(N_range)+1),Dist,linkage_method=linkage_method) if N_range[0]==N_range[1]: labels= hc.fcluster(linkage,(1-seed_tresholds[0]),criterion='distance') else: N_species= Scores.Silhouette_score.idxmax() labels= hc.fcluster(linkage,N_species,criterion='maxclust') return Scores,labels def treshold_based_clustering(Dist,treshold,linkage_method='average'): assert (treshold>0.9)&(treshold<1), "treshold should be between 0.9 and 1 or 'auto', treshold was {treshold}" linkage = hc.linkage(sp.distance.squareform(Dist), method=linkage_method) labels = hc.fcluster(linkage,(1-treshold),criterion='distance') Scores= gd.evaluate_clusters_tresholds([treshold],Dist,linkage_method=linkage_method) return Scores,labels if __name__=='__main__': linkage_method= snakemake.params.linkage_method treshold = snakemake.params.treshold quality_score_formula = snakemake.config['quality_score'] Q= gd.load_quality(snakemake.input.quality) quality_score= Q.eval(quality_score_formula) M= gd.load_mummer(snakemake.input.dists) Dist= 1-gd.pairewise2matrix(M,fillna=0.9) if treshold=='auto': Scores,labels= automatic_cluster_species(Dist,linkage_method=linkage_method) else: Scores, labels = treshold_based_clustering(Dist,treshold,linkage_method=linkage_method) Scores.to_csv(snakemake.output.scores,sep='\t') mag2Species= pd.DataFrame(index=Q.index,columns=['SpeciesNr','Species']) mag2Species.index.name='genome' mag2Species.loc[Dist.index,'SpeciesNr']= labels speciesNr= labels.max() missing_species=mag2Species.SpeciesNr.isnull() mag2Species.loc[missing_species,'SpeciesNr']=np.arange(speciesNr+1, speciesNr+1+missing_species.sum()) print(f"Identified { mag2Species.SpeciesNr.max()} species") n_leading_zeros= len(str(max(labels))) format_int='sp{:0'+str(n_leading_zeros)+'d}' mag2Species['Species']=mag2Species.SpeciesNr.apply(format_int.format) mag2Species['Representative_Species']=gd.best_genome_from_table(mag2Species.Species,quality_score) mag2Species.to_csv(snakemake.output.cluster_file,sep='\t') ``` #### File: atlas/report/assembly_report.py ```python import os,sys f = open(os.devnull, 'w'); sys.stdout = f # block cufflinks to plot strange code from cufflinks import iplot log=open(snakemake.log[0],"w") sys.stderr= log sys.stdout= log import pandas as pd import plotly.graph_objs as go from plotly import offline from snakemake.utils import report PLOTLY_PARAMS = dict( include_plotlyjs=False, show_link=False, output_type="div", image_height=700 ) atlas_dir= os.path.abspath(os.path.join(os.path.dirname(__file__),'..')) sys.path.append(os.path.join(atlas_dir,'scripts')) from utils.parsers_bbmap import parse_bbmap_log_file def parse_map_stats(sample_data, out_tsv): stats_df = pd.DataFrame() for sample in sample_data.keys(): df = pd.read_csv(sample_data[sample]["contig_stats"],sep='\t') assert df.shape[0] == 1, "Assumed only one row in file {}; found {}".format( sample_data[sample]["contig_stats"], df.iloc[0] ) df = df.iloc[0] df.name = sample genes_df = pd.read_csv(sample_data[sample]["gene_table"], index_col=0,sep='\t') df["N_Predicted_Genes"] = genes_df.shape[0] used_reads,mapped_reads= parse_bbmap_log_file(sample_data[sample]["mapping_log"]) df["Assembled_Reads"] = mapped_reads df["Percent_Assembled_Reads"] = mapped_reads/used_reads *100 stats_df = stats_df.append(df) stats_df = stats_df.loc[:, ~ stats_df.columns.str.startswith("scaf_")] stats_df.columns = stats_df.columns.str.replace("ctg_", "") stats_df.to_csv(out_tsv, sep="\t") return stats_df def main(samples, contig_stats, gene_tables, mapping_logs, report_out, combined_stats): sample_data = {} for sample in samples: sample_data[sample] = {} for c_stat in contig_stats: # underscore version was for simplified local testing # if "%s_" % sample in c_stat: if "%s/" % sample in c_stat: sample_data[sample]["contig_stats"] = c_stat for g_table in gene_tables: # if "%s_" % sample in g_table: if "%s/" % sample in g_table: sample_data[sample]["gene_table"] = g_table for mapping_log in mapping_logs: # if "%s_" % sample in mapping_log: if "%s/" % sample in mapping_log: sample_data[sample]["mapping_log"] = mapping_log df = parse_map_stats(sample_data, combined_stats) div = {} labels = { "Percent_Assembled_Reads": "Percent of Assembled Reads", "contig_bp": "Total BP", "n_contigs": "Contigs (count)", "N_Predicted_Genes": "Predicted Genes (count)", } for variable in [ "Percent_Assembled_Reads", "contig_bp", "n_contigs", "N_Predicted_Genes" ]: y_axis_label = labels[variable] div[variable] = offline.plot( df[variable].iplot( asFigure=True, kind="bar", xTitle="Samples", layout=go.Layout( xaxis=dict(tickangle=45), yaxis=dict(title=y_axis_label) ), ), **PLOTLY_PARAMS, ) div["L50"] = offline.plot( df[["L50", "L90"]].iplot( asFigure=True, kind="bar", xTitle="Samples", layout=go.Layout(xaxis=dict(tickangle=45), yaxis=(dict(title="Bases"))), ), **PLOTLY_PARAMS, ) report_str = """ .. raw:: html <script src="https://cdn.plot.ly/plotly-latest.min.js"></script> ============================================================= ATLAS_ - Assembly Summary ============================================================= .. _ATLAS: https://github.com/metagenome-atlas/atlas .. contents:: :backlinks: none Summary ------- Fragmentation ************* L50/L90 is a measure of how fractionated assemblies are: 50%/ 90% of the assembly is made up of contigs of Length L50/L90 or longer. Sometimes refered to as N50/N90. .. raw:: html {div[L50]} Assembly Length *************** .. raw:: html {div[contig_bp]} Number of Contigs ***************** .. raw:: html {div[n_contigs]} Number of Predicted Genes ************************* .. raw:: html {div[N_Predicted_Genes]} Percent of Assembled Reads ************************** .. raw:: html {div[Percent_Assembled_Reads]} For more information see Table_1_ Downloads --------- """ report(report_str, report_out, Table_1=combined_stats, stylesheet=os.path.join(atlas_dir,'report', "report.css")) if __name__ == "__main__": try: main( samples=snakemake.params.samples, contig_stats=snakemake.input.contig_stats, gene_tables=snakemake.input.gene_tables, mapping_logs=snakemake.input.mapping_logs, report_out=snakemake.output.report, combined_stats=snakemake.output.combined_contig_stats ) except NameError: import argparse p = argparse.ArgumentParser() p.add_argument("--samples", nargs="+") p.add_argument("--contig-stats", nargs="+") p.add_argument("--gene-tables", nargs="+") p.add_argument("--mapping-logs", nargs="+") p.add_argument("--report-out") p.add_argument("--combined-stats") args = p.parse_args() main( args.samples, args.contig_stats, args.gene_tables, args.mapping_logs, args.report_out, args.combined_stats, ) ``` #### File: scripts/utils/tree.py ```python import os os.environ['QT_QPA_PLATFORM']='offscreen' # because we might not have a X server import ete3 import pandas as pd import warnings def load_tree(netwik_file): return ete3.Tree(netwik_file,quoted_node_names=True,format=1) def root_tree_by_phyla(T,phyla): """ Root the tree next to the phylum that is as far apart as possible from the other phyla """ phylum_LCA={} for p in phyla.unique(): phylum_LCA[p]=T.get_common_ancestor(*tuple(phyla.index[phyla==p].values)) Dist= pd.DataFrame() for p1,lca1 in phylum_LCA.items(): for p2,lca2 in phylum_LCA.items(): Dist.loc[p1,p2]=T.get_distance(lca1,lca2) furthest_phylum= Dist.mean().idxmax() outgroup=phylum_LCA[furthest_phylum] if not outgroup== T: T.set_outgroup(outgroup) def layout_black_circles(node): # If node is a leaf if node.is_leaf(): node.img_style["fgcolor"]='k' else: node.img_style["size"]=0 def render_tree(T,out): from ete3 import TreeStyle ts = TreeStyle() ts.show_leaf_name= False ts.mode = "c" ts.scale=200 ts.show_scale=False T.render(out,tree_style=ts,layout=layout_black_circles) ```
{ "source": "jmt-transloc/python_automation_frameworks", "score": 3 }
#### File: tests/step_definitions/test_steps__google.py ```python from pytest_bdd import scenarios, given, when, then, parsers from pages.search import GoogleSearch from pages.results import GoogleResults # # Scenarios # scenarios('../features/google.feature') # # Background: # @given('we are viewing the Google search page') def navigate_to_page(browser): search_page = GoogleSearch(browser) search_page.load() # # Test: Page Title Matches the Page # @then('the title should feature the Google name') def compare_title(browser): search_page = GoogleSearch(browser) assert search_page.get_title() == 'Google' # # Test: Process a Google Search # @when(parsers.parse('we search for "{phrase}"')) def search(browser, phrase): search_page = GoogleSearch(browser) search_page.search(phrase) @then(parsers.parse('"{phrase}" should appear in the results field')) def verify_search_results(browser, phrase): results_page = GoogleResults(browser) assert results_page.result_div_count() > 0 assert results_page.search_input_value(results_page.search_field) == phrase ```
{ "source": "jmtyszka/fMRI_Utilities", "score": 2 }
#### File: jmtyszka/fMRI_Utilities/dropout.py ```python import sys import os import numpy as np import nibabel as nib USAGE = """ USAGE : dropout.py <fmap mag nifti> <fmap nifti> <TE> ARGS : <fmap mag nifti> - Nifti-1 fieldmap magnitude image filename <fmap nifti> - Nifti-1 fieldmap (in rad/s) image filename <TE> - new effective TE in ms for dropout calculation [30 ms] """ # Main function def main(): # Command line args if len(sys.argv) < 3: print(USAGE) sys.exit() else: fmap_mag_file = sys.argv[1] fmap_file = sys.argv[2] # Simulated echo time in seconds if len(sys.argv) < 5: TE = 30.0 else: TE = float(sys.argv[3]) / 1000.0 # Isolate file stub in presence of .nii.gz or .nii extensions if '.nii.gz' in fmap_mag_file: dropout_file = fmap_mag_file[:-7] else: if '.nii' in fmap_mag_file: dropout_file = fmap_mag_file[:-4] else: dropout_file = fmap_mag_file # Complete output filename dropout_file = dropout_file + '_dropout.nii.gz' # Report arguments print('') print('Gradient Echo Dropout Simulator') print('-------------------------------') print('Fieldmap magnitude : ' + fmap_mag_file) print('Fieldmap phase : ' + fmap_file) print('Simulated TE : ' + str(TE) + ' ms') print('Adjusted mag image : ' + dropout_file) print('') print('Simulating intravoxel dephasing') # Load fmap_mag and fmap volumes # See http://niftilib.sourceforge.net/pynifti/examples.html for examples print(' Loading phase image from ' + fmap_file) try: nim_phi = nib.load(fmap_file) except: sys.exit() # Get phase data from Niftidd object phi = nim_phi.get_data() # Calculate grad(phi). Returns numpy array print(' Calculating grad(phi)') Gz, Gy, Gx = np.gradient(phi) # Calculate absolute gradient magnitude and scale to Hz/voxel print(' Calculating scaled absolute gradient') aG = np.sqrt(Gx*Gx + Gy*Gy + Gz*Gz) / (2 * np.pi) # Weighting function estimates additional signal loss from intravoxel # dephasing assuming spherical voxel and local linear gradient. # TODO: account for imaging x susceptibility gradient interactions print(' Calculating intravoxel dephasing weight') w = np.abs(np.sinc(TE / 1000.0 * aG)) print(' Loading magnitude image from ' + fmap_mag_file) try: nim_M = nib.load(fmap_mag_file) except: sys.exit() # Get mag data from Nifti object M = nim_M.get_data() # Create signal mask from mag data # Use 10% of 99th percentile as threshold p99 = np.percentile(M, 99) M_mask = (M > p99 * 0.1).astype(int) # Adjust TE of magnitude image print(' Applying weight to magnitude image') M_dropout = M * w # Create signal masked dropout weight image w_mask = w * M_mask # Construct TE-adjusted mag output image - same affine transform as original mag image nim_M_dropout = nib.Nifti1Image(M_dropout, nim_M.get_affine()) # Save TE-adjusted mag image print(' Saving TE adjusted magnitude image to ' + dropout_file) nim_M_dropout.to_filename(dropout_file) print('Done') print('') # This is the standard boilerplate that calls the main() function. if __name__ == '__main__': main() ```
{ "source": "jmtyszka/freesurfer-editing-utils", "score": 2 }
#### File: jmtyszka/freesurfer-editing-utils/fs_merge_control_points.py ```python import os import sys import argparse import numpy as np def load_cps(fname): """ Load contents of FS7 control point file Example control.dat file: 58.4497 -6.64394 -14.5253 60.4497 -7.64394 -16.5253 58.4497 -5.64394 -13.5253 58.4497 -2.64394 -11.5253 58.4497 -9.64394 -16.5253 57.4497 -7.64394 -14.5253 60.4497 -6.64394 -16.5253 -49.5503 -7.64394 -19.5253 -46.5503 -5.64394 -17.5253 info numpoints 9 useRealRAS 1 """ cps = [] try: with open(fname, 'r') as fd: for line in fd: # Split line into space-separated values tmp = line.strip() vals = tmp.split(' ') if 'numpoints' in vals[0]: npnts = int(vals[1]) elif 'useRealRAS' in vals[0]: use_real_ras = int(vals[1]) elif 'info' in vals[0]: pass elif len(vals) == 3: cps.append(vals) else: pass except IOError: print('* Problem loading {}'.format(fname)) except UnicodeDecodeError: print('* Problem decoding {}'.format(fname)) return np.array(cps, dtype=float), npnts, use_real_ras def save_cps(fname, cps, ras_flag): with open(fname, 'w') as fd: for pnt in cps: fd.write(' '.join(['{:f}'.format(x) for x in pnt])) fd.write('\n') fd.write('info\n') fd.write('numpoints {:d}\n'.format(cps.shape[0])) fd.write('useRealRAS {:d}\n'.format(ras_flag)) def main(): # Parse command line arguments parser = argparse.ArgumentParser(description='Merge Freesurfer control point files') parser.add_argument('-i1', '--infile1', required=True, help="Freesurfer control point text file #1") parser.add_argument('-i2', '--infile2', required=True, help="Freesurfer control point text file #2") parser.add_argument('-o', '--outfile', help="Merged control point output text file ['control_merge.dat']") # Parse command line arguments args = parser.parse_args() cp1_fname = args.infile1 if not os.path.isfile(cp1_fname): print('* {} does not exist - exiting'.format(cp1_fname)) sys.exit(1) cp2_fname = args.infile2 if not os.path.isfile(cp2_fname): print('* {} does not exist - exiting'.format(cp2_fname)) sys.exit(1) if args.outfile: merge_fname = args.outfile else: merge_fname = 'control_merge.dat' print('Loading {}'.format(cp1_fname)) cp1, npnts1, ras_flag1 = load_cps(cp1_fname) print('Loading {}'.format(cp2_fname)) cp2, npnts2, ras_flag2 = load_cps(cp2_fname) if not ras_flag1 == ras_flag2: print('useRealRAS flags differ between files - exiting') sys.exit(2) # Minimum separation for points to be considered distinct (mm) d_tol = 0.01 # Loop over points in second set, checking for distance to points in first set cps = cp1.copy() for p2 in cp2: # Init closest distance and point in set 1 d_min = 1e30 p1_closest = np.array([-1, -1, -1]) for p1 in cp1: d = np.linalg.norm(p1-p2) if d < d_min: d_min = d p1_closest = p1 if d_min > d_tol: cps = np.vstack([cps, p2]) else: print('1:[{:6.1f}, {:6.1f}, {:6.1f}] close to 2:[{:6.1f}, {:6.1f}, {:6.1f}]'.format( p1_closest[0], p1_closest[1], p1_closest[2], p2[0], p2[1], p2[2], d_min) ) print('Merge summary') print(' {} points in {}'.format(cp1.shape[0], cp1_fname)) print(' {} points in {}'.format(cp2.shape[0], cp2_fname)) print(' {} points in {}'.format(cps.shape[0], merge_fname)) # Save merged point set print('Writing merged point set to {}'.format(merge_fname)) save_cps(merge_fname, cps, ras_flag1) # This is the standard boilerplate that calls the main() function. if __name__ == '__main__': main() ```
{ "source": "jmtyszka/mrgaze", "score": 2 }
#### File: lib/mrgaze/pupilometry.py ```python import os import time import getpass import cv2 from mrgaze import media, utils, config, calibrate, report, engine def LivePupilometry(data_dir, live_eyetracking=False): """ Perform pupil boundary ellipse fitting on camera feed Arguments ---- data_dir : string Root data directory path. cfg : Analysis configuration parameters Returns ---- pupils : boolean Completion status (True = successful) """ # If user did not provide a root data directory, we use HOME/mrgaze if data_dir == '': data_dir = os.path.join(os.getenv("HOME"), 'mrgaze') # Full video file paths hostname = os.uname()[1] username = getpass.getuser() ss_dir = os.path.join(data_dir, "%s_%s_%s" % (hostname, username, int(time.time()))) else: ss_dir = data_dir # Load Configuration cfg = config.LoadConfig(data_dir) cfg_ts = time.time() # Output flags verbose = cfg.getboolean('OUTPUT', 'verbose') overwrite = cfg.getboolean('OUTPUT', 'overwrite') # Video information # vin_ext = cfg.get('VIDEO', 'inputextension') vout_ext = cfg.get('VIDEO' ,'outputextension') # vin_fps = cfg.getfloat('VIDEO', 'inputfps') # Flag for freeze frame freeze_frame = False vid_dir = os.path.join(ss_dir, 'videos') res_dir = os.path.join(ss_dir, 'results') vout_path = os.path.join(vid_dir, 'gaze' + vout_ext) cal_vout_path = os.path.join(vid_dir, 'cal' + vout_ext) # if we do live eye-tracking, we read in what would be the output of the live eye-tracking if not live_eyetracking: vin_path = vout_path cal_vin_path = cal_vout_path else: vin_path = 0 # Raw and filtered pupilometry CSV file paths cal_pupils_csv = os.path.join(res_dir, 'cal_pupils.csv') pupils_csv = os.path.join(res_dir, 'gaze_pupils.csv') # Check that output directory exists if not os.path.isdir(res_dir): os.makedirs(res_dir) print('* %s does not exist - creating' % res_dir) if not os.path.isdir(vid_dir): os.makedirs(vid_dir) print('* %s does not exist - creating' % vid_dir) # Set up the LBP cascade classifier LBP_path = os.path.join(utils._package_root(), 'Cascade/cascade.xml') print(' Loading LBP cascade') cascade = cv2.CascadeClassifier(LBP_path) if cascade.empty(): print('* LBP cascade is empty - mrgaze installation problem') return False # Check for output CSV existance and overwrite flag if os.path.isfile(pupils_csv): print('+ Pupilometry output already exists - checking overwrite flag') if overwrite: print('+ Overwrite allowed - continuing') else: print('+ Overwrite forbidden - skipping pupilometry') return True # # Camera Input # print(' Opening camera stream') try: if not live_eyetracking: vin_stream = cv2.VideoCapture(vin_path) cal_vin_stream = cv2.VideoCapture(cal_vin_path) else: vin_stream = cv2.VideoCapture(vin_path) cal_vin_stream = vin_stream except: print('* Problem opening input video stream - skipping pupilometry') return False while not vin_stream.isOpened(): print("Waiting for Camera.") key = utils._waitKey(500) if key == 'ESC': print("User Abort.") break if not vin_stream.isOpened(): print('* Video input stream not opened - skipping pupilometry') return False if not cal_vin_stream.isOpened(): print('* Calibration video input stream not opened - skipping pupilometry') return False # Video FPS from metadata # TODO: may not work with Quicktime videos # fps = vin_stream.get(cv2.cv.CV_CAP_PROP_FPS) # fps = cfg.getfloat('CAMERA', 'fps') # Desired time between frames in milliseconds # time_bw_frames = 1000.0 / fps vin_stream.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 320) vin_stream.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 240) vin_stream.set(cv2.cv.CV_CAP_PROP_FPS, 30) # Total number of frames in video file # nf = vin_stream.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT) # print(' Video has %d frames at %0.3f fps' % (nf, vin_fps)) # Read first preprocessed video frame from stream keep_going, frame_orig = media.LoadVideoFrame(vin_stream, cfg) if keep_going: frame, art_power = media.Preproc(frame_orig, cfg) else: art_power = 0.0 # Get size of preprocessed frame for output video setup nx, ny = frame.shape[1], frame.shape[0] # By default we start in non-calibration mode # switch between gaze/cal modes by pressing key "c" do_cal = False while keep_going: if do_cal == False: # # Output video # if live_eyetracking: print(' Opening output video stream') # Output video codec (MP4V - poor quality compression) # TODO : Find a better multiplatform codec fourcc = cv2.cv.CV_FOURCC('m','p','4','v') try: vout_stream = cv2.VideoWriter(vout_path, fourcc, 30, (nx, ny), True) except: print('* Problem creating output video stream - skipping pupilometry') return False if not vout_stream.isOpened(): print('* Output video not opened - skipping pupilometry') return False # Open pupilometry CSV file to write try: pupils_stream = open(pupils_csv, 'w') except: print('* Problem opening pupilometry CSV file - skipping pupilometry') return False # # Main Video Frame Loop # # Print verbose column headers if verbose: print('') print(' %10s %10s %10s %10s %10s' % ( 'Time (s)', 'Area', 'Blink', 'Artifact', 'FPS')) # Init frame counter fc = 0 # Init processing timer t0 = time.time() t = t0 while keep_going: # check whether config file has been updated, reload of that is the case if fc % 30 == 0: cfg_mtime = os.path.getmtime(os.path.join(data_dir, 'mrgaze.cfg')) if cfg_mtime > cfg_ts: print("Updating Configuration") cfg = config.LoadConfig(data_dir) cfg_ts = time.time() # Current video time in seconds t = time.time() # ------------------------------------- # Pass this frame to pupilometry engine # ------------------------------------- # b4_engine = time.time() pupil_ellipse, roi_rect, blink, glint, frame_rgb = engine.PupilometryEngine(frame, cascade, cfg) # print "Enging took %s ms" % (time.time() - b4_engine) # Derive pupilometry parameters px, py, area = engine.PupilometryPars(pupil_ellipse, glint, cfg) # Write data line to pupilometry CSV file pupils_stream.write( '%0.4f,%0.3f,%0.3f,%0.3f,%d,%0.3f,\n' % (t, area, px, py, blink, art_power) ) if live_eyetracking: # Write output video frame vout_stream.write(frame_orig) # Read next frame, unless we want to figure out the correct settings for this frame if not freeze_frame: keep_going, frame_orig = media.LoadVideoFrame(vin_stream, cfg) if keep_going: frame, art_power = media.Preproc(frame_orig, cfg) else: art_power = 0.0 # Increment frame counter fc = fc + 1 # Report processing FPS if verbose: if fc % 100 == 0: pfps = fc / (time.time() - t0) print(' %10.1f %10.1f %10d %10.3f %10.1f' % ( t, area, blink, art_power, pfps)) t0 = time.time() fc = 0 # wait whether user pressed esc to exit the experiment key = utils._waitKey(1) if key == 'ESC': # Clean up if live_eyetracking: vout_stream.release() pupils_stream.close() keep_going = False elif key == 'c': # Clean up if live_eyetracking: vout_stream.release() pupils_stream.close() do_cal = True print("Starting calibration.") break elif key == 'f': freeze_frame = not freeze_frame else: # do calibration # # Output video # if live_eyetracking: print(' Opening output video stream') # Output video codec (MP4V - poor quality compression) # TODO : Find a better multiplatform codec fourcc = cv2.cv.CV_FOURCC('m','p','4','v') try: cal_vout_stream = cv2.VideoWriter(cal_vout_path, fourcc, 30, (nx, ny), True) except: print('* Problem creating output video stream - skipping pupilometry') return False if not cal_vout_stream.isOpened(): print('* Output video not opened - skipping pupilometry') return False # Open pupilometry CSV file to write try: cal_pupils_stream = open(cal_pupils_csv, 'w') except: print('* Problem opening pupilometry CSV file - skipping pupilometry') return False # # Main Video Frame Loop # # Print verbose column headers if verbose: print('') print(' %10s %10s %10s %10s %10s' % ( 'Time (s)', 'Area', 'Blink', 'Artifact', 'FPS')) # Init frame counter fc = 0 # Init processing timer t0 = time.time() t = t0 while keep_going: # check whether config file has been updated, reload of that is the case if fc % 30 == 0: cfg_mtime = os.path.getmtime(os.path.join(data_dir, 'mrgaze.cfg')) if cfg_mtime > cfg_ts: print("Updating Configuration") cfg = config.LoadConfig(data_dir) cfg_ts = time.time() # Current video time in seconds t = time.time() # ------------------------------------- # Pass this frame to pupilometry engine # ------------------------------------- # b4_engine = time.time() pupil_ellipse, roi_rect, blink, glint, frame_rgb = engine.PupilometryEngine(frame, cascade, cfg) # print "Engine took %s ms" % (time.time() - b4_engine) # Derive pupilometry parameters px, py, area = engine.PupilometryPars(pupil_ellipse, glint, cfg) # Write data line to pupilometry CSV file cal_pupils_stream.write( '%0.4f,%0.3f,%0.3f,%0.3f,%d,%0.3f,\n' % (t, area, px, py, blink, art_power) ) # Write output video frame if live_eyetracking: cal_vout_stream.write(frame_orig) # Read next frame (if available) # if verbose: # b4_frame = time.time() keep_going, frame_orig = media.LoadVideoFrame(vin_stream, cfg) if keep_going: frame, art_power = media.Preproc(frame_orig, cfg) else: art_power = 0.0 #if verbose: # print "Time to load frame: %s" % (time.time() - b4_frame) # Increment frame counter fc = fc + 1 # Report processing FPS if verbose: if fc % 100 == 0: pfps = fc / (time.time() - t0) print(' %10.1f %10.1f %10d %10.3f %10.1f' % ( t, area, blink, art_power, pfps)) t0 = time.time() fc = 0 # wait whether user pressed esc to exit the experiment key = utils._waitKey(1) if key == 'ESC': keep_going = False # Clean up if live_eyetracking: cal_vout_stream.release() cal_pupils_stream.close() elif key == 'v' or not keep_going: do_cal = False print("Stopping calibration.") # Clean up if live_eyetracking: cal_vout_stream.release() cal_pupils_stream.close() break print(' Create calibration model') C, central_fix = calibrate.AutoCalibrate(res_dir, cfg) if not C.any(): print('* Empty calibration matrix detected - skipping') try: print(' Calibrate pupilometry') calibrate.ApplyCalibration(ss_dir, C, central_fix, cfg) except UnboundLocalError: print(' No calibration data found') cv2.destroyAllWindows() vin_stream.release() print('') print(' Generate Report') print(' ---------------') report.WriteReport(ss_dir, cfg) # Return pupilometry timeseries return t, px, py, area, blink, art_power def VideoPupilometry(data_dir, subj_sess, v_stub, cfg): """ Perform pupil boundary ellipse fitting on entire video Arguments ---- data_dir : string Root data directory path. subj_sess : string Subject/Session name used for subdirectory within data_dir v_stub : string Video filename stub, eg 'cal' or 'gaze' cfg : Analysis configuration parameters Returns ---- pupils : boolean Completion status (True = successful) """ # Output flags verbose = cfg.getboolean('OUTPUT', 'verbose') overwrite = cfg.getboolean('OUTPUT','overwrite') # Video information vin_ext = cfg.get('VIDEO', 'inputextension') vout_ext = cfg.get('VIDEO' ,'outputextension') vin_fps = cfg.getfloat('VIDEO', 'inputfps') # Full video file paths ss_dir = os.path.join(data_dir, subj_sess) vid_dir = os.path.join(ss_dir, 'videos') res_dir = os.path.join(ss_dir, 'results') vin_path = os.path.join(vid_dir, v_stub + vin_ext) vout_path = os.path.join(res_dir, v_stub + '_pupils' + vout_ext) # Raw and filtered pupilometry CSV file paths pupils_csv = os.path.join(res_dir, v_stub + '_pupils.csv') # Check that input video file exists if not os.path.isfile(vin_path): print('* %s does not exist - returning' % vin_path) return False # Set up the LBP cascade classifier LBP_path = os.path.join(utils._package_root(), 'Cascade/cascade.xml') print(' Loading LBP cascade') cascade = cv2.CascadeClassifier(LBP_path) if cascade.empty(): print('* LBP cascade is empty - mrgaze installation problem') return False # Check for output CSV existance and overwrite flag if os.path.isfile(pupils_csv): print('+ Pupilometry output already exists - checking overwrite flag') if overwrite: print('+ Overwrite allowed - continuing') else: print('+ Overwrite forbidden - skipping pupilometry') return True # # Input video # print(' Opening input video stream') try: vin_stream = cv2.VideoCapture(vin_path) except: print('* Problem opening input video stream - skipping pupilometry') return False if not vin_stream.isOpened(): print('* Video input stream not opened - skipping pupilometry') return False # Video FPS from metadata # TODO: may not work with Quicktime videos # fps = vin_stream.get(cv2.cv.CV_CAP_PROP_FPS) # Total number of frames in video file nf = vin_stream.get(cv2.CAP_PROP_FRAME_COUNT) print(' Video has %d frames at %0.3f fps' % (nf, vin_fps)) # Read first preprocessed video frame from stream keep_going, frame_orig = media.LoadVideoFrame(vin_stream, cfg) if keep_going: frame, art_power = media.Preproc(frame_orig, cfg) else: art_power = 0.0 # Get size of preprocessed frame for output video setup nx, ny = frame.shape[1], frame.shape[0] # # Output video # print(' Opening output video stream') # Output video codec (MP4V - poor quality compression) fourcc = cv2.VideoWriter_fourcc('m','p','4','v') try: vout_stream = cv2.VideoWriter(vout_path, fourcc, 30, (nx, ny), True) except: print('* Problem creating output video stream - skipping pupilometry') return False if not vout_stream.isOpened(): print('* Output video not opened - skipping pupilometry') return False # Open pupilometry CSV file to write try: pupils_stream = open(pupils_csv, 'w') except: print('* Problem opening pupilometry CSV file - skipping pupilometry') return False # # Main Video Frame Loop # # Print verbose column headers if verbose: print('') print(' %10s %10s %10s %10s %10s %10s' % ( 'Time (s)', '% Done', 'Area', 'Blink', 'Artifact', 'FPS')) # Init frame counter fc = 0 # Init processing timer t0 = time.time() while keep_going: # Current video time in seconds t = fc / vin_fps # ------------------------------------- # Pass this frame to pupilometry engine # ------------------------------------- pupil_ellipse, roi_rect, blink, glint, frame_rgb = engine.PupilometryEngine(frame, cascade, cfg) # Derive pupilometry parameters px, py, area = engine.PupilometryPars(pupil_ellipse, glint, cfg) # Write data line to pupilometry CSV file pupils_stream.write( '%0.3f,%0.3f,%0.3f,%0.3f,%d,%0.3f,\n' % (t, area, px, py, blink, art_power) ) # Write output video frame vout_stream.write(frame_rgb) # Read next frame (if available) keep_going, frame_orig = media.LoadVideoFrame(vin_stream, cfg) if keep_going: frame, art_power = media.Preproc(frame_orig, cfg) else: art_power = 0.0 # Increment frame counter fc = fc + 1 # Report processing FPS if verbose: if fc % 100 == 0: perc_done = fc / float(nf) * 100.0 pfps = fc / (time.time() - t0) print(' %10.1f %10.1f %10.1f %10d %10.3f %10.1f' % ( t, perc_done, area, blink, art_power, pfps)) # Clean up cv2.destroyAllWindows() vin_stream.release() vout_stream.release() pupils_stream.close() # Return pupilometry timeseries return t, px, py, area, blink, art_power ``` #### File: build/scripts-3.4/mrgaze_batch.py ```python __version__ = '0.7.2' import os import sys import datetime as dt from mrgaze import pipeline def main(): # Get single session directory from command line if len(sys.argv) > 1: data_dir = sys.argv[1] else: data_dir = os.getcwd() # Text splash print('') print('--------------------------------------------------') print('mrgaze Batch Gaze Tracking Video Analysis') print('--------------------------------------------------') print('Version : %s' % __version__) print('Date : %s' % dt.datetime.now()) print('Data dir : %s' % data_dir) print('') print('Starting batch analysis') pipeline.RunBatch(data_dir) print('') print('Completed batch analysis') # Clean exit sys.exit(0) # This is the standard boilerplate that calls the main() function. if __name__ == '__main__': main() ``` #### File: mrgaze/mrgaze/fitellipse.py ```python import numpy as np import random import cv2 #--------------------------------------------- # Ellipse Fitting Functions #--------------------------------------------- def FitEllipse_RANSAC_Support(pnts, roi, cfg, max_itts=5, max_refines=3, max_perc_inliers=95.0): ''' Robust ellipse fitting to segmented boundary with image support Parameters ---- pnts : n x 2 array of integers Candidate pupil-iris boundary points from edge detection roi : 2D scalar array Grayscale image of pupil-iris region for support calculation. max_itts : integer Maximum RANSAC ellipse candidate iterations max_refines : integer Maximum RANSAC ellipse inlier refinements max_perc_inliers : float Maximum inlier percentage of total points for convergence Returns ---- best_ellipse : tuple of tuples Best fitted ellipse parameters ((x0, y0), (a,b), theta) ''' # Debug flag DEBUG = False # Output flags graphics = cfg.getboolean('OUTPUT', 'graphics') # Suppress invalid values np.seterr(invalid='ignore') # Maximum normalized error squared for inliers max_norm_err_sq = 4.0 # Tiny circle init best_ellipse = ((0,0),(1e-6,1e-6),0) # High support is better, so init with -Infinity best_support = -np.inf # Create display window and init overlay image if graphics: cv2.namedWindow('RANSAC', cv2.WINDOW_AUTOSIZE) # Count pnts (n x 2) n_pnts = pnts.shape[0] # Break if too few points to fit ellipse (RARE) if n_pnts < 5: return best_ellipse # Precalculate roi intensity gradients dIdx = cv2.Sobel(roi, cv2.CV_32F, 1, 0) dIdy = cv2.Sobel(roi, cv2.CV_32F, 0, 1) # Ransac iterations for itt in range(0,max_itts): # Select 5 points at random sample_pnts = np.asarray(random.sample(pnts, 5)) # Fit ellipse to points ellipse = cv2.fitEllipse(sample_pnts) # Dot product of ellipse and image gradients for support calculation grad_dot = EllipseImageGradDot(sample_pnts, ellipse, dIdx, dIdy) # Skip this iteration if one or more dot products are <= 0 # implying that the ellipse is unlikely to bound the pupil if all(grad_dot > 0): # Refine inliers iteratively for refine in range(0,max_refines): # Calculate normalized errors for all points norm_err = EllipseNormError(pnts, ellipse) # Identify inliers inliers = np.nonzero(norm_err**2 < max_norm_err_sq)[0] # Update inliers set inlier_pnts = pnts[inliers] # Protect ellipse fitting from too few points if inliers.size < 5: if DEBUG: print('Break < 5 Inliers (During Refine)') break # Fit ellipse to refined inlier set ellipse = cv2.fitEllipse(inlier_pnts) # End refinement # Count inliers (n x 2) n_inliers = inliers.size perc_inliers = (n_inliers * 100.0) / n_pnts # Calculate support for the refined inliers support = EllipseSupport(inlier_pnts, ellipse, dIdx, dIdy) # Report on RANSAC progress if DEBUG: print('RANSAC %d,%d : %0.3f (%0.1f)' % (itt, refine, support, best_support)) # Update overlay image and display if graphics: overlay = cv2.cvtColor(roi/2,cv2.COLOR_GRAY2RGB) OverlayRANSACFit(overlay, pnts, inlier_pnts, ellipse) cv2.imshow('RANSAC', overlay) cv2.waitKey(5) # Update best ellipse if support > best_support: best_support = support best_ellipse = ellipse else: # Ellipse gradients did not match image gradients support = 0.0 perc_inliers = 0.0 if perc_inliers > max_perc_inliers: if DEBUG: print('Break Max Perc Inliers') break return best_ellipse def FitEllipse_RANSAC(pnts, roi, cfg, max_itts=5, max_refines=3, max_perc_inliers=95.0): ''' Robust ellipse fitting to segmented boundary points Parameters ---- pnts : n x 2 array of integers Candidate pupil-iris boundary points from edge detection roi : 2D scalar array Grayscale image of pupil-iris region for display only max_itts : integer Maximum RANSAC ellipse candidate iterations max_refines : integer Maximum RANSAC ellipse inlier refinements max_perc_inliers : float Maximum inlier percentage of total points for convergence Returns ---- best_ellipse : tuple of tuples Best fitted ellipse parameters ((x0, y0), (a,b), theta) ''' # Debug flag DEBUG = False # Output flags graphics = cfg.getboolean('OUTPUT', 'graphics') # Suppress invalid values np.seterr(invalid='ignore') # Maximum normalized error squared for inliers max_norm_err_sq = 4.0 # Tiny circle init best_ellipse = ((0,0),(1e-6,1e-6),0) # Create display window and init overlay image if graphics: cv2.namedWindow('RANSAC', cv2.WINDOW_AUTOSIZE) # Count pnts (n x 2) n_pnts = pnts.shape[0] # Break if too few points to fit ellipse (RARE) if n_pnts < 5: return best_ellipse # Ransac iterations for itt in range(0,max_itts): # Select 5 points at random sample_pnts = np.asarray(random.sample(pnts, 5)) # Fit ellipse to points ellipse = cv2.fitEllipse(sample_pnts) # Refine inliers iteratively for refine in range(0,max_refines): # Calculate normalized errors for all points norm_err = EllipseNormError(pnts, ellipse) # Identify inliers inliers = np.nonzero(norm_err**2 < max_norm_err_sq)[0] # Update inliers set inlier_pnts = pnts[inliers] # Protect ellipse fitting from too few points if inliers.size < 5: if DEBUG: print('Break < 5 Inliers (During Refine)') break # Fit ellipse to refined inlier set ellipse = cv2.fitEllipse(inlier_pnts) # End refinement # Count inliers (n x 2) n_inliers = inliers.size perc_inliers = (n_inliers * 100.0) / n_pnts # Update overlay image and display if graphics: overlay = cv2.cvtColor(roi/2,cv2.COLOR_GRAY2RGB) OverlayRANSACFit(overlay, pnts, inlier_pnts, ellipse) cv2.imshow('RANSAC', overlay) cv2.waitKey(5) # Update best ellipse best_ellipse = ellipse if perc_inliers > max_perc_inliers: if DEBUG: print('Break Max Perc Inliers') break return best_ellipse def FitEllipse_RobustLSQ(pnts, roi, cfg, max_refines=5, max_perc_inliers=95.0): ''' Iterate ellipse fit on inliers Parameters ---- pnts : n x 2 array of integers Candidate pupil-iris boundary points from edge detection roi : 2D scalar array Grayscale image of pupil-iris region for display only cfg : configuration structure Configuration parameters max_refines : integer Maximum number of inlier refinements max_perc_inliers : float Maximum inlier percentage of total points for convergence Returns ---- best_ellipse : tuple of tuples Best fitted ellipse parameters ((x0, y0), (a,b), theta) ''' # Debug flag DEBUG = False # Suppress invalid values np.seterr(invalid='ignore') # Maximum normalized error squared for inliers max_norm_err_sq = 4.0 # Tiny circle init best_ellipse = ((0,0),(1e-6,1e-6),0) # Count edge points n_pnts = pnts.shape[0] # Break if too few points to fit ellipse (RARE) if n_pnts < 5: return best_ellipse # Fit ellipse to points ellipse = cv2.fitEllipse(pnts) # Refine inliers iteratively for refine in range(0, max_refines): # Calculate normalized errors for all points norm_err = EllipseNormError(pnts, ellipse) # Identify inliers inliers = np.nonzero(norm_err**2 < max_norm_err_sq)[0] # Update inliers set inlier_pnts = pnts[inliers] # Protect ellipse fitting from too few points if inliers.size < 5: if DEBUG: print('Break < 5 Inliers (During Refine)') break # Fit ellipse to refined inlier set ellipse = cv2.fitEllipse(inlier_pnts) # Count inliers (n x 2) n_inliers = inliers.size perc_inliers = (n_inliers * 100.0) / n_pnts # Update best ellipse best_ellipse = ellipse if perc_inliers > max_perc_inliers: if DEBUG: print('Break > maximum inlier percentage') break return best_ellipse def FitEllipse_LeastSquares(pnts, roi, cfg): ''' Simple least-squares ellipse fit to boundary points Parameters ---- pnts : n x 2 array of integers Candidate pupil-iris boundary points from edge detection roi : 2D scalar array Grayscale image of pupil-iris region for display only cfg : configuration structure Configuration parameters Returns ---- best_ellipse : tuple of tuples Best fitted ellipse parameters ((x0, y0), (a,b), theta) ''' # Tiny circle init best_ellipse = ((0,0),(1e-6,1e-6),0) # Break if too few points to fit ellipse (RARE) if pnts.shape[0] < 5: return best_ellipse # Call OpenCV ellipse fitting best_ellipse = cv2.fitEllipse(pnts) return best_ellipse def EllipseError(pnts, ellipse): """ Ellipse fit error function """ # Suppress divide-by-zero warnings np.seterr(divide='ignore') # Calculate algebraic distances and gradients of all points from fitted ellipse distance, grad, absgrad, normgrad = ConicFunctions(pnts, ellipse) # Calculate error from distance and gradient # See Swirski et al 2012 # TODO : May have to use distance / |grad|^0.45 - see Swirski source # Gradient array has x and y components in rows (see ConicFunctions) err = distance / absgrad return err def EllipseNormError(pnts, ellipse): """ Error normalization factor, alpha Normalizes cost to 1.0 at point 1 pixel out from minor vertex along minor axis """ # Ellipse tuple has form ( ( x0, y0), (bb, aa), phi_b_deg) ) # Where aa and bb are the major and minor axes, and phi_b_deg # is the CW x to minor axis rotation in degrees (x0,y0), (bb,aa), phi_b_deg = ellipse # Semiminor axis b = bb/2 # Convert phi_b from deg to rad phi_b_rad = phi_b_deg * np.pi / 180.0 # Minor axis vector bx, by = np.cos(phi_b_rad), np.sin(phi_b_rad) # Point one pixel out from ellipse on minor axis p1 = np.array( (x0 + (b + 1) * bx, y0 + (b + 1) * by) ).reshape(1,2) # Error at this point err_p1 = EllipseError(p1, ellipse) # Errors at provided points err_pnts = EllipseError(pnts, ellipse) return err_pnts / err_p1 def EllipseSupport(pnts, ellipse, dIdx, dIdy): """ Ellipse support function """ if pnts.size < 5: return -np.inf # Return sum of (grad Q . grad image) over point set return EllipseImageGradDot(pnts, ellipse, dIdx, dIdy).sum() def EllipseImageGradDot(pnts, ellipse, dIdx, dIdy): # Calculate normalized grad Q at inlier pnts distance, grad, absgrad, normgrad = ConicFunctions(pnts, ellipse) # Extract vectors of x and y values x, y = pnts[:,0], pnts[:,1] # Extract image gradient at inlier points dIdx_pnts = dIdx[y,x] dIdy_pnts = dIdy[y,x] # Construct intensity gradient array (2 x N) gradI = np.array( (dIdx_pnts, dIdy_pnts) ) # Calculate the sum of the column-wise dot product of normgrad and gradI # http://stackoverflow.com/questions/6229519/numpy-column-wise-dot-product return np.einsum('ij,ij->j', normgrad, gradI) #--------------------------------------------- # Ellipse Math #--------------------------------------------- def Geometric2Conic(ellipse): """ Geometric to conic parameter conversion References ---- Adapted from Swirski's ConicSection.h https://bitbucket.org/Leszek/pupil-tracker/ """ # Ellipse tuple has form ( ( x0, y0), (bb, aa), phi_b_deg) ) # Where aa and bb are the major and minor axes, and phi_b_deg # is the CW x to minor axis rotation in degrees (x0,y0), (bb, aa), phi_b_deg = ellipse # Semimajor and semiminor axes a, b = aa/2, bb/2 # Convert phi_b from deg to rad phi_b_rad = phi_b_deg * np.pi / 180.0 # Major axis unit vector ax, ay = -np.sin(phi_b_rad), np.cos(phi_b_rad) # Useful intermediates a2 = a*a b2 = b*b # # Conic parameters # if a2 > 0 and b2 > 0: A = ax*ax / a2 + ay*ay / b2; B = 2*ax*ay / a2 - 2*ax*ay / b2; C = ay*ay / a2 + ax*ax / b2; D = (-2*ax*ay*y0 - 2*ax*ax*x0) / a2 + (2*ax*ay*y0 - 2*ay*ay*x0) / b2; E = (-2*ax*ay*x0 - 2*ay*ay*y0) / a2 + (2*ax*ay*x0 - 2*ax*ax*y0) / b2; F = (2*ax*ay*x0*y0 + ax*ax*x0*x0 + ay*ay*y0*y0) / a2 + (-2*ax*ay*x0*y0 + ay*ay*x0*x0 + ax*ax*y0*y0) / b2 - 1; else: # Tiny dummy circle - response to a2 or b2 == 0 overflow warnings A,B,C,D,E,F = (1,0,1,0,0,-1e-6) # Compose conic parameter array conic = np.array((A,B,C,D,E,F)) return conic def Conic2Geometric(conic): """ Merge geometric parameter functions from van Foreest code References ---- http://nicky.vanforeest.com/misc/fitEllipse/fitEllipse.html """ # Extract modified conic parameters A,B,C,D,E,F = conic[0], conic[1]/2, conic[2], conic[3]/2, conic[4]/2, conic[5] # Usefult intermediates dAC = A-C Z = np.sqrt( 1 + 4*B*B/(dAC*dAC) ) # Center num = B * B - A * C x0 = (C * D - B * E) / num y0 = (A * E - B * D) / num # Axis lengths up = 2 * (A*E*E + C*D*D + F*B*B - 2*B*D*E - A*C*F) down1 = (B*B-A*C) * ( -dAC*Z - (C+A) ) down2 = (B*B-A*C) * ( dAC*Z - (C+A) ) b, a = np.sqrt(up/down1), np.sqrt(up/down2) # Minor axis rotation angle in degrees (CW from x axis, origin upper left) phi_b_deg = 0.5 * np.arctan(2 * B / dAC) * 180.0 / np.pi # Note OpenCV ellipse parameter format (full axes) return (x0,y0), (2*b, 2*a), phi_b_deg def ConicFunctions(pnts, ellipse): """ Calculate various conic quadratic curve support functions General 2D quadratic curve (biquadratic) Q = Ax^2 + Bxy + Cy^2 + Dx + Ey + F For point on ellipse, Q = 0, with appropriate coefficients Parameters ---- pnts : n x 2 array of floats ellipse : tuple of tuples Returns ---- distance : array of floats grad : array of floats absgrad : array of floats normgrad : array of floats References ---- Adapted from Swirski's ConicSection.h https://bitbucket.org/Leszek/pupil-tracker/ """ # Suppress invalid values np.seterr(invalid='ignore') # Convert from geometric to conic ellipse parameters conic = Geometric2Conic(ellipse) # Row vector of conic parameters (Axx, Axy, Ayy, Ax, Ay, A1) (1 x 6) C = np.array(conic) # Extract vectors of x and y values x, y = pnts[:,0], pnts[:,1] # Construct polynomial array (6 x n) X = np.array( ( x*x, x*y, y*y, x, y, np.ones_like(x) ) ) # Calculate Q/distance for all points (1 x n) distance = C.dot(X) # Quadratic curve gradient at (x,y) # Analytical grad of Q = Ax^2 + Bxy + Cy^2 + Dx + Ey + F # (dQ/dx, dQ/dy) = (2Ax + By + D, Bx + 2Cy + E) # Construct conic gradient coefficients vector (2 x 3) Cg = np.array( ( (2*C[0], C[1], C[3]), (C[1], 2*C[2], C[4]) ) ) # Construct polynomial array (3 x n) Xg = np.array( (x, y, np.ones_like(x) ) ) # Gradient array (2 x n) grad = Cg.dot(Xg) # Normalize gradient -> unit gradient vector # absgrad = np.apply_along_axis(np.linalg.norm, 0, grad) absgrad = np.sqrt(np.sqrt(grad[0,:]**2 + grad[1,:]**2)) normgrad = grad / absgrad return distance, grad, absgrad, normgrad def Eccentricity(ellipse): ''' Calculate eccentricity of an ellipse ''' # Ellipse tuple has form ( ( x0, y0), (bb, aa), phi_b_deg) ) # Where aa and bb are the major and minor axes, and phi_b_deg # is the CW x to minor axis rotation in degrees (x0,y0), (bb, aa), phi_b_deg = ellipse return np.sqrt(1 - (bb/aa)**2) def OverlayRANSACFit(img, all_pnts, inlier_pnts, ellipse): """ NOTE ---- All points are (x,y) pairs, but arrays are (row, col) so swap coordinate ordering for correct positioning in array """ # Overlay all pnts in red for col,row in all_pnts: img[row,col] = [0,0,255] # Overlay inliers in green for col,row in inlier_pnts: img[row,col] = [0,255,0] # Overlay inlier fitted ellipse in yellow cv2.ellipse(img, ellipse, (0,255,255), 1) ``` #### File: mrgaze/mrgaze/pipeline.py ```python import os import sys from mrgaze import utils, pupilometry, calibrate, report, config def RunBatch(data_dir=[]): """ Run the gaze tracking pipeline over all sessions within a data directory """ # Default data directory if not data_dir: print('* No data directory provided - exiting') return False # Check for missing directories if not os.path.isdir(data_dir): print('* Data directory does not exist - exiting') sys.exit(1) # Loop over all subject subdirectories of the data directory for subj_sess in os.walk(data_dir).next()[1]: # Run single-session pipeline RunSingle(data_dir, subj_sess) # Clean exit return True def RunSingle(data_dir, subj_sess): """ Run the gaze tracking pipeline on a single gaze tracking session """ print('') print('Running single-session pipeline : ' + subj_sess) if not data_dir or not subj_sess: print('* Data or subject/session directory not provided - returning') return False # Subject/session directory name ss_dir = os.path.join(data_dir, subj_sess) # Video and results directory names for this subject/session ss_vid_dir = os.path.join(ss_dir, 'videos') ss_res_dir = os.path.join(ss_dir, 'results') # Load configuration from root directory or subj/sess video dir # If no config file exists, a default root config is created cfg = config.LoadConfig(data_dir, subj_sess) if not cfg: print('* Configuration file missing - returning') return False # Extract operational flags from config do_cal = cfg.getboolean('CALIBRATION', 'calibrate') # Run pipeline if video directory present if os.path.isdir(ss_vid_dir): # Create results subj/sess dir utils._mkdir(ss_res_dir) print('') print(' Calibration Pupilometry') print(' -----------------------') pupilometry.VideoPupilometry(data_dir, subj_sess, 'cal', cfg) if do_cal: print(' Create calibration model') C, central_fix = calibrate.AutoCalibrate(ss_res_dir, cfg) if not C.any(): print('* Empty calibration matrix detected - skipping') return False print('') print(' Gaze Pupilometry') print(' -----------------------') pupilometry.VideoPupilometry(data_dir, subj_sess, 'gaze', cfg) if do_cal: print(' Calibrate pupilometry') calibrate.ApplyCalibration(ss_dir, C, central_fix, cfg) print('') print(' Generate Report') print(' ---------------') report.WriteReport(ss_dir, cfg) else: print('%s does not exist - skipping' % ss_vid_dir) print('') print('Completed single-session pipeline') return True ``` #### File: mrgaze/testing/test_fitellipse.py ```python import cv2 import numpy as np import ConfigParser from mrgaze import pupilometry, media, config def main(): # Setup default config structure print('Initializing configuration') cfg = ConfigParser.ConfigParser() cfg = config.InitConfig(cfg) # Update defaults cfg.set('VIDEO','downsampling','1') cfg.set('PUPILSEG','method','otsu') cfg.set('PUPILSEG','thresholdperc','50.0') cfg.set('PUPILSEG','pupildiameterperc','15.0') cfg.set('PUPILSEG','sigma','0.0') cfg.set('PUPILFIT','method','ROBUST_LSQ') cfg.set('PUPILFIT','maxrefinements','5') # Load test eye tracking frame print('Loading test frame') test_frame = '/Users/jmt/GitHub/mrgaze/testing/CBIC_Example_2.png' frame = media.LoadImage(test_frame, cfg) # Init ROI to whole frame # Note (col, row) = (x, y) for shape x0, x1, y0, y1 = 0, frame.shape[1], 0, frame.shape[0] # Define ROI rect roi_rect = (x0,y0),(x1,y1) # Extract pupil ROI (note row,col indexing of image array) roi = frame[y0:y1,x0:x1] # Find glint(s) in frame glints, glints_mask, roi_noglints = pupilometry.FindGlints(roi, cfg) # Segment pupil intelligently - also return glint mask print('Segmenting pupil') pupil_bw, roi_rescaled = pupilometry.SegmentPupil(roi, cfg) # Create composite image of various stages of segmentation strip_bw = np.hstack((roi, pupil_bw * 255, glints_mask * 255, roi_rescaled)) # Init montage montage_rgb = np.array([]) # Fit ellipse to pupil boundary - returns ellipse ROI for method in ('RANSAC_SUPPORT','RANSAC','ROBUST_LSQ','LSQ'): print('Fitting pupil ellipse : %s' % method) cfg.set('PUPILFIT','method',method) eroi = pupilometry.FitPupil(pupil_bw, roi, cfg) # Construct pupil ellipse tuple pupil_ellipse = (eroi[0][0], eroi[0][1]), eroi[1], eroi[2] # TODO: find best glint candidate in glint mask glint = pupilometry.FindBestGlint(glints_mask, pupil_ellipse) # RGB version of preprocessed frame for output video frame_rgb = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) # Create RGB overlay of pupilometry on ROI frame_rgb = pupilometry.OverlayPupil(frame_rgb, pupil_ellipse, roi_rect, glint) if montage_rgb.size == 0: montage_rgb = frame_rgb else: montage_rgb = np.hstack((montage_rgb, frame_rgb)) cv2.imshow('Segmentation', strip_bw) cv2.imshow('Pupilometry', montage_rgb) cv2.waitKey() print('Done') # This is the standard boilerplate that calls the main() function. if __name__ == '__main__': main() ```
{ "source": "jmtyszka/mrikit", "score": 2 }
#### File: jmtyszka/mrikit/mp2rage_T1w.py ```python __version__ = '0.1.0' import sys import argparse import numpy as np import nibabel as nb from skimage.filters import threshold_otsu, gaussian from scipy import logical_or def main(): # Parse command line arguments parser = argparse.ArgumentParser(description='Reconstruct T1w image from MP2RAGE data') parser.add_argument('-i1', '--inv1', help='MP2RAGE INV1 image filename') parser.add_argument('-i2', '--inv2', help='MP2RAGE INV2 image filename') parser.add_argument('-u', '--unified', help='MP2RAGE UNI image filename') parser.add_argument('-o', '--outname', help='Output T1w image filename') # Parse command line arguments args = parser.parse_args() uni_fname = args.unified inv1_fname = args.inv1 inv2_fname = args.inv2 t1w_fname = args.outname print('Loading UNI image (%s)' % uni_fname) try: uni_nii = nb.load(uni_fname) uni = uni_nii.get_data() except: print('* Problem loading %s - exiting' % uni_fname) sys.exit(1) print('Loading INV1 image (%s)' % inv1_fname) try: inv1_nii = nb.load(inv1_fname) inv1 = inv1_nii.get_data() except: print('* Problem loading %s - exiting' % inv1_fname) sys.exit(1) print('Loading INV2 image (%s)' % inv2_fname) try: inv2_nii = nb.load(inv2_fname) inv2 = inv2_nii.get_data() except: print('* Problem loading %s - exiting' % inv2_fname) sys.exit(1) print('') print('Starting T1w image recon') # Hardwired Otsu threshold scale factor otsu_sf = 0.33 # Otsu threshold INV1 and INV2 images inv1_th = threshold_otsu(inv1) * otsu_sf print(' INV1 Otsu threshold : %0.1f' % inv1_th) inv1_mask = inv1 > inv1_th # Otsu threshold INV1 and INV2 images inv2_th = threshold_otsu(inv2) * otsu_sf print(' INV2 Otsu threshold : %0.1f' % inv2_th) inv2_mask = inv2 > inv2_th # Combine INV1 and INV2 masks print(' Combining INV masks') inv12_mask = logical_or(inv1_mask, inv2_mask) # Feather combined mask by one pixel (Gaussin blur) print(' Feathering mask') inv12_mask = gaussian(inv12_mask, 1.0) # Multiply UNI image by feathered mask print(' Applying mask to UNI image') t1w = uni * inv12_mask # Save T1w image print('') print('Saving T1w image to %s' % t1w_fname) t1w_nii = nb.Nifti1Image(t1w, uni_nii.affine) t1w_nii.to_filename(t1w_fname) # This is the standard boilerplate that calls the main() function. if __name__ == '__main__': main() ```
{ "source": "jmtyszka/pydeface", "score": 2 }
#### File: jmtyszka/pydeface/setup.py ```python descr = """pydeface: deidentify structural MRI data by voxelizing the face""" import os from setuptools import setup import glob DISTNAME="pydeface" DESCRIPTION=descr MAINTAINER='<NAME>' MAINTAINER_EMAIL='<EMAIL>' LICENSE='MIT' URL='http://evendim.sites.caltech.edu' DOWNLOAD_URL='https://github.com/jmtyszka/pydeface/' VERSION='2020.4.3' def check_dependencies(): # Just make sure dependencies exist, I haven't rigorously # tested what the minimal versions that will work are needed_deps = ["numpy", "nibabel", "nipype"] missing_deps = [] for dep in needed_deps: try: __import__(dep) except ImportError: missing_deps.append(dep) if missing_deps: raise ImportError("Missing dependencies: %s" % missing_deps) if __name__ == "__main__": if os.path.exists('MANIFEST'): os.remove('MANIFEST') import sys if not (len(sys.argv) >= 2 and ('--help' in sys.argv[1:] or sys.argv[1] in ('--help-commands', '--version', 'egg_info', 'clean'))): check_dependencies() datafiles = {'pydeface': ['data/ConteCore2_50_T1w_2mm.nii.gz', 'data/ConteCore2_50_T1w_2mm_deface_mask.nii.gz', 'ident.mat']} setup( name=DISTNAME, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, description=DESCRIPTION, license=LICENSE, version=VERSION, url=URL, download_url=DOWNLOAD_URL, packages=['pydeface'], package_data = datafiles, scripts=['scripts/pydeface.py'], classifiers=['Intended Audience :: Science/Research', 'Programming Language :: Python :: 2.7', 'License :: OSI Approved :: BSD License', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS'], install_requires=['nipype', 'numpy'], ) ```
{ "source": "JMU2021/DESRGAN", "score": 3 }
#### File: codes/models/gradient_loss.py ```python import torch import torch.nn as nn from kornia.filters import laplacian class GradientLoss(nn.Module): def __init__(self, gradient_type, horizontal, vertical, loss_type, device): super(GradientLoss, self).__init__() self.gradient_type = gradient_type self.horizontal = horizontal self.vertical = vertical self.device = device if loss_type == 'l1': self.loss = torch.nn.L1Loss(reduction='sum').to(device) elif loss_type == 'l2': self.loss = torch.nn.MSELoss(reduction='sum').to(device) else: raise NotImplementedError('Loss type [{:s}] not recognized.'.format(loss_type)) return # When horizontal = 3, vertical = 3: # +────+────+────+ # | 00 | 10 | 20 | # +────+────+────+ # | 01 | 11 | 21 | # +────+────+────+ # | 02 | 12 | 22 | # +────+────+────+ # allow_lost_pixels: 当像素点数量无法正好整除的时候,是否将剩下的像素补充到最后的小块中 def crop_image_to_grid(self, image, horizontal, vertical, allow_lost_pixels=False): # Input image: [Channel * Height * Width] image_height = image.shape[1] image_width = image.shape[2] image_whc = image.reshape([image_height, image_width, image.shape[0]]) horizontal_block_pixels = image_width // horizontal # 切割后每个小块的宽 vertical_block_pixels = image_height // vertical # 切割后每个小块的高 is_horizontal_average = horizontal_block_pixels * horizontal == image_width is_vertical_average = vertical_block_pixels * vertical == image_height cropped_images = {} for i in range(horizontal): for j in range(vertical): left = i * horizontal_block_pixels up = j * vertical_block_pixels if (not allow_lost_pixels) and (not is_horizontal_average) and i == horizontal - 1: right = image_width else: right = left + horizontal_block_pixels if (not allow_lost_pixels) and (not is_vertical_average) and j == vertical - 1: bottom = image_height else: bottom = up + vertical_block_pixels cropped_block = image_whc[up:bottom, left:right] cropped_images[str(i) + '|' + str(j)] = cropped_block.reshape( [cropped_block.shape[2], cropped_block.shape[0], cropped_block.shape[1]]) return cropped_images def forward(self, ground_truth_batch, segmented_print_batch): # Input image: [Batch * Channel * Height * Width] if self.gradient_type == 'laplace': ground_truth_gradient_batch = laplacian(ground_truth_batch, kernel_size=3) segmented_print_gradient_batch = laplacian(segmented_print_batch, kernel_size=3) # elif self.gradient_type == 'sobel_x': # pass # elif self.gradient_type == 'sobel_y': # pass else: raise NotImplementedError('Gradient type [{:s}] not recognized.'.format(self.radient_type)) loss = torch.tensor(.0).to(self.device) for i in range(len(ground_truth_batch)): ground_truth_gradient = ground_truth_gradient_batch[i] segmented_print_gradient = segmented_print_gradient_batch[i] ground_truth_gradient_cropped = self.crop_image_to_grid(ground_truth_gradient, self.horizontal, self.vertical) segmented_print_gradient_cropped = self.crop_image_to_grid(segmented_print_gradient, self.horizontal, self.vertical) max_key = list(ground_truth_gradient_cropped.keys())[0] max_loss = self.loss(ground_truth_gradient_cropped[max_key], segmented_print_gradient_cropped[max_key]) for key in ground_truth_gradient_cropped.keys(): ground_truth_image_gradient_cropped_tensor = ground_truth_gradient_cropped[key] segmented_print_image_gradient_cropped_tensor = segmented_print_gradient_cropped[key] loss_value = self.loss(ground_truth_image_gradient_cropped_tensor, segmented_print_image_gradient_cropped_tensor) if loss_value > max_loss: max_key = key max_loss = loss_value loss += self.loss(ground_truth_gradient_cropped[max_key].to(self.device), segmented_print_gradient_cropped[max_key].to(self.device)).to(self.device) return loss ```
{ "source": "jmucha90/Stock-Analyzer", "score": 3 }
#### File: jmucha90/Stock-Analyzer/linearregressmodel.py ```python import yfinance as yf import pandas as pd from sklearn.linear_model import LinearRegression import plotly.graph_objects as go class lrmodel: ''' Building class to develop the linear regression model to be used in the application. ''' def __init__(self, ticker): ticker = ticker self.info = yf.Ticker(str(ticker)).info # Gets the stock historical data and ensures that no non-numerical data exists def history(self, ticker): ticker = ticker stock_history = yf.Ticker(str(ticker)).history(period='max') if stock_history.isnull().values.any(): issues = stock_history[stock_history.isnull().values] issue_index = [] for issue in issues.index: if issue not in issue_index: issue_index.append(issue) stock_history.drop([issue], inplace = True) return stock_history else: return stock_history # Builds the linear regression model def linearregression(self, ticker): stockdata = self.history(ticker) num_train_vals = round(len(stockdata) * .80) model = LinearRegression() X_train = stockdata[:num_train_vals] X_train = X_train.drop('Close', axis=1) X_test = stockdata[num_train_vals:] X_test = X_test.drop('Close', axis=1) y_train = stockdata[:num_train_vals] y_train = y_train[['Close']] y_test = stockdata[num_train_vals:] y_test = y_test[['Close']] model.fit(X_train, y_train) trainingpredictions = pd.DataFrame() trainingpredictions['Predictions'] = model.predict(X_train).flatten() trainingpredictions.index = X_train.index testpredictions = pd.DataFrame() testpredictions['Predictions'] = model.predict(X_test).flatten() testpredictions.index = X_test.index return testpredictions # Graphs the results of the linear regression on a Plotly graph def graphlrresults(self, ticker): stockdata = self.history(ticker) num_train_vals = round(len(stockdata) * .80) actualdatafortrain = stockdata[:num_train_vals] actualdatafortest = stockdata[num_train_vals:] testpredictions = self.linearregression(ticker) predfig = go.Figure() # Create and style traces predfig.add_trace(go.Scatter(x=actualdatafortrain.index, y=actualdatafortrain['Close'], name='Actual Training Set Price', line=dict(color='#003300', width=2))) predfig.add_trace(go.Scatter(x=actualdatafortest.index, y=actualdatafortest['Close'], name='Actual Test Set Price', line=dict(color='#1A0099', width=2))) predfig.add_trace(go.Scatter(x=testpredictions.index, y=testpredictions['Predictions'], name='Test Predictions', line=dict(color='#CC0000', width=2))) predfig.update_layout(title=str(ticker) + '\'s Stock Price Predicted by Linear Regression', xaxis_title='Date', yaxis_title='USD') fig = predfig.show() return fig ```
{ "source": "jmuchovej/paperpile-notion", "score": 2 }
#### File: paperpile_notion/utils/notion.py ```python from typing import List, Dict from functools import partial import click from notion_client import Client from paperpile_notion import models def retrieve_dbs(ctx: click.Context) -> None: notion = ctx.obj["notion"] config = ctx.obj["config"] errmsg = partial(click.secho, fg="red", bold=True) try: assert len(notion.databases.list()["results"]) > 0 except AssertionError: errmsg("Please follow the steps to add your Integration to the Database.") click.echo("Retrieving database(s) ... ", nl=False) dbs = [ [db["id"], db["title"][0]["plain_text"]] for db in notion.databases.list()["results"] ] try: # fmt: off authors = next(filter(lambda db: config["db"]["authors" ] in db, dbs))[0] articles = next(filter(lambda db: config["db"]["articles"] in db, dbs))[0] ctx.obj["articles-cls"] = models.RelationalArticle # fmt: on except KeyError: authors = None articles = next(filter(lambda db: config["db"]["articles"] in db, dbs))[0] ctx.obj["articles-cls"] = models.MultiSelectArticle except (IndexError, StopIteration): errmsg("Your Integration must have access to your database(s).") exit(2) # fmt: off ctx.obj["authors" ] = authors ctx.obj["articles"] = articles ctx.obj["authors-id"] = authors ctx.obj["articles-id"] = articles # fmt: on click.secho("done.", fg="green", bold=True) return ctx def paginate_db(notion: Client, id: str) -> List[Dict]: """Paginates the database, since Notion returns <= 100 records per query.""" query = partial(notion.databases.query, id) db = query() index = db["results"] while db["has_more"]: db = query(start_cursor=db["next_cursor"]) index += db["results"] index += db["results"] return index def db_to_dict(cls, key: str, items: List, uniq: str) -> Dict: """Converts a paginated database into a dictionary with keys for Notion's internal ID and the record itself. """ attrs = [ {"notionID": item["id"], key: models.from_props(cls, item["properties"])} for item in items ] return {getattr(item[key], uniq).string: item for item in attrs} ```
{ "source": "JMU-CIME/CPR-Music-Backend", "score": 2 }
#### File: assignments/tests/test_drf_views.py ```python import pytest from django.test import RequestFactory from teleband.assignments.api.views import AssignmentViewSet from teleband.courses.models import Enrollment pytestmark = pytest.mark.django_db class TestAssignmentViewSet: def test_get_queryset_student(self, enrollment: Enrollment, rf: RequestFactory): view = AssignmentViewSet() enrollment.role.name = "Student" enrollment.role.save() request = rf.get("/fake-url/") request.user = enrollment.user view.request = request setattr(view, "kwargs", {"course_slug_slug": enrollment.course.slug}) queryset = view.get_queryset() # actually there is nothing in the queryset, need # to populate it with some assignments for this student # and some other students to actually check this # Make sure every assignment is assigned to me and only me for assignment in queryset: assert enrollment.user == assignment.enrollment.user ``` #### File: courses/migrations/0005_data_migration_demo_course.py ```python from django.db import migrations from datetime import date def demo_course(apps, schema_editor): User = apps.get_model("users", "User") # how to import this from the other migrations file? michael = User.objects.filter(email="<EMAIL>")[0] alden = User.objects.filter(email="<EMAIL>")[0] dave = User.objects.filter(email="<EMAIL>")[0] Course = apps.get_model("courses", "course") sixth_grade = Course.objects.update_or_create( name="6th Grade Band", owner=dave, start_date=date(2022, 1, 9), end_date=date(2022, 6, 9), slug="6th-grade-band", )[0] Instrument = apps.get_model("instruments", "Instrument") trombone = Instrument.objects.filter(name="Trombone")[0] Role = apps.get_model("users", "Role") teacher = Role.objects.filter(name="Teacher")[0] student = Role.objects.filter(name="Student")[0] Enrollment = apps.get_model("courses", "enrollment") Enrollment.objects.update_or_create(user=dave, course=sixth_grade, role=teacher) Enrollment.objects.update_or_create( user=michael, course=sixth_grade, instrument=trombone, role=student ) Enrollment.objects.update_or_create( user=alden, course=sixth_grade, instrument=trombone, role=student ) class Migration(migrations.Migration): dependencies = [ ("courses", "0004_alter_enrollment_unique_together"), ("users", "0004_data_migration_demo_users"), ] operations = [migrations.RunPython(demo_course, migrations.RunPython.noop)] ``` #### File: instruments/migrations/0002_data_migration_seed_transpositions.py ```python from django.db import migrations def update_site_forward(apps, schema_editor): """Set site domain and name.""" Transposition = apps.get_model("instruments", "Transposition") Transposition.objects.update_or_create( name="Alto Clef", ) Transposition.objects.update_or_create( name="Bb", ) Transposition.objects.update_or_create( name="Concert Pitch BC", ) Transposition.objects.update_or_create( name="Concert Pitch BC 8vb", ) Transposition.objects.update_or_create( name="Concert Pitch TC", ) Transposition.objects.update_or_create( name="Concert Pitch TC 8va", ) Transposition.objects.update_or_create( name="Eb", ) Transposition.objects.update_or_create( name="F", ) class Migration(migrations.Migration): dependencies = [ ("instruments", "0001_initial"), ] operations = [migrations.RunPython(update_site_forward, migrations.RunPython.noop)] ``` #### File: instruments/migrations/0003_data_migration_seed_instruments.py ```python from django.db import migrations def initial_instruments(apps, schema_editor): Transposition = apps.get_model("instruments", "Transposition") transpositions = {elem.name: elem for elem in Transposition.objects.all()} Instrument = apps.get_model("instruments", "Instrument") Instrument.objects.update_or_create( name="Viola", transposition=transpositions["Alto Clef"], ) Instrument.objects.update_or_create( name="Baritone TC", transposition=transpositions["Bb"], ) Instrument.objects.update_or_create( name="Bass Clarinet", transposition=transpositions["Bb"], ) Instrument.objects.update_or_create( name="Bb Clarinet", transposition=transpositions["Bb"], ) Instrument.objects.update_or_create( name="Bb Cornet", transposition=transpositions["Bb"], ) Instrument.objects.update_or_create( name="Bb Soprano Saxophone", transposition=transpositions["Bb"], ) Instrument.objects.update_or_create( name="Bb Tenor Saxophone", transposition=transpositions["Bb"], ) Instrument.objects.update_or_create( name="Bb Trumpet", transposition=transpositions["Bb"], ) Instrument.objects.update_or_create( name="Bassoon", transposition=transpositions["Concert Pitch BC"], ) Instrument.objects.update_or_create( name="Cello", transposition=transpositions["Concert Pitch BC"], ) Instrument.objects.update_or_create( name="Euphonium BC", transposition=transpositions["Concert Pitch BC"], ) Instrument.objects.update_or_create( name="Trombone", transposition=transpositions["Concert Pitch BC"], ) Instrument.objects.update_or_create( name="Bass", transposition=transpositions["Concert Pitch BC 8vb"], ) Instrument.objects.update_or_create( name="Bass Trombone", transposition=transpositions["Concert Pitch BC 8vb"], ) Instrument.objects.update_or_create( name="Contrabassoon", transposition=transpositions["Concert Pitch BC 8vb"], ) Instrument.objects.update_or_create( name="String Bass", transposition=transpositions["Concert Pitch BC 8vb"], ) Instrument.objects.update_or_create( name="Tuba", transposition=transpositions["Concert Pitch BC 8vb"], ) Instrument.objects.update_or_create( name="Oboe", transposition=transpositions["Concert Pitch TC"], ) Instrument.objects.update_or_create( name="Percussion", transposition=transpositions["Concert Pitch TC"], ) Instrument.objects.update_or_create( name="Piano", transposition=transpositions["Concert Pitch TC"], ) Instrument.objects.update_or_create( name="Flute", transposition=transpositions["Concert Pitch TC 8va"], ) Instrument.objects.update_or_create( name="Piccolo", transposition=transpositions["Concert Pitch TC 8va"], ) Instrument.objects.update_or_create( name="Violin", transposition=transpositions["Concert Pitch TC 8va"], ) Instrument.objects.update_or_create( name="Contrabass Clarinet", transposition=transpositions["Eb"], ) Instrument.objects.update_or_create( name="Eb Alto Clarinet", transposition=transpositions["Eb"], ) Instrument.objects.update_or_create( name="Eb Alto Horn", transposition=transpositions["Eb"], ) Instrument.objects.update_or_create( name="Eb Alto Saxophone", transposition=transpositions["Eb"], ) Instrument.objects.update_or_create( name="Eb Baritone Saxophone", transposition=transpositions["Eb"], ) Instrument.objects.update_or_create( name="Eb Soprano Clarinet", transposition=transpositions["Eb"], ) Instrument.objects.update_or_create( name="F Horn", transposition=transpositions["F"], ) class Migration(migrations.Migration): dependencies = [ ("instruments", "0002_data_migration_seed_transpositions"), ] operations = [migrations.RunPython(initial_instruments, migrations.RunPython.noop)] ``` #### File: musics/migrations/0002_seed_ensemble_type.py ```python from django.db import migrations def update_site_forward(apps, schema_editor): """Set site domain and name.""" EnsembleType = apps.get_model("musics", "EnsembleType") for name in ["Band", "Orchestra"]: EnsembleType.objects.update_or_create(name=name) class Migration(migrations.Migration): dependencies = [ ("musics", "0001_initial"), ] operations = [migrations.RunPython(update_site_forward, migrations.RunPython.noop)] ``` #### File: musics/migrations/0006_legitimize_part_type.py ```python from django.db import migrations def update_site_forward(apps, schema_editor): """Set site domain and name.""" Part = apps.get_model("musics", "Part") PartType = apps.get_model("musics", "PartType") pt = PartType.objects.all().first() for p in Part.objects.all(): p.part_type = pt p.save() class Migration(migrations.Migration): dependencies = [ ("musics", "0005_seed_part_types"), ] operations = [migrations.RunPython(update_site_forward, migrations.RunPython.noop)] ``` #### File: musics/migrations/0013_assign_piece_slugs.py ```python from django.db import migrations from teleband.utils.fields import generate_slug_from_name def update_site_forward(apps, schema_editor): """Compute slugs from names.""" Piece = apps.get_model("musics", "Piece") for piece in Piece.objects.all(): generate_slug_from_name(piece, Piece) piece.save() class Migration(migrations.Migration): dependencies = [ ('musics', '0012_piece_slug'), ] operations = [migrations.RunPython(update_site_forward, migrations.RunPython.noop)] ``` #### File: musics/migrations/0016_seed_pieces_later.py ```python from django.db import migrations import json from teleband.musics.api.serializers import * data = { "name": "Air for Band", "ensemble_type": "Band", "parts": [ { "name": "Air for Band Melody", "part_type": "Melody", "transpositions": [ {"transposition": "Bb"}, {"transposition": "Concert Pitch BC 8vb"}, {"transposition": "Concert Pitch BC"}, {"transposition": "Concert Pitch TC 8va"}, {"transposition": "Concert Pitch TC"}, {"transposition": "Eb"}, {"transposition": "F"}, ], }, { "name": "Air for Band Bassline", "part_type": "Bassline", "transpositions": [ {"transposition": "Bb"}, {"transposition": "Concert Pitch BC 8vb"}, {"transposition": "Concert Pitch BC"}, {"transposition": "Concert Pitch TC 8va"}, {"transposition": "Concert Pitch TC"}, {"transposition": "Eb"}, {"transposition": "F"}, ], }, ], } flatios = { "Air for Band Melody": { "Bb": { "scoreId": "61e09029dffcd50014571a80", "sharingKey": "<KEY>", }, "Concert Pitch BC 8vb": { "scoreId": "61e09029f7c4ec0013a88255", "sharingKey": "da2261d04292fb3ec8562a5fd1ac167e70937ee5c531bf51ba01a49e7629e4df47c838c488e5b2e978d72a2885879787c1f2357b46b35abecc6f8308c943c35f", }, "Concert Pitch BC": { "scoreId": "61e0902a29718e0012080b97", "sharingKey": "7399632fbfbc793448182049dead3b88d921d7fab4328b5b9f5c589e654374d1d12a86d2e5567df1723b33e517b392552371129a9302bda49930f3e8a28dd857", }, "Concert Pitch TC 8va": { "scoreId": "61e0902a58d51b001256f80c", "sharingKey": "<KEY>", }, "Concert Pitch TC": { "scoreId": "61e0902a32669f0013f6f91d", "sharingKey": "<KEY>", }, "Eb": { "scoreId": "61e0902a74bfb70013c4ea3e", "sharingKey": "a88d609cd8c2224ccef9c043b03622ee11cd02390343eb9bbf3830b17929602ce138f7e623c99d9ebbbb291d9a415d62519ba5321b870be84c5fef49008f6d6e", }, "F": { "scoreId": "61e0902a1ffc3c00126dc83a", "sharingKey": "7a9c959174769c7998d654218ba1d5c39054cf889f888e5b8eae871f2f4ccdca0d603a42266f45c875274263eb214cd517698bde86960dbdb088d4975bf33764", }, }, "Air for Band Bassline": { "Bb": { "scoreId": "61e0902832669f0013f6f8cf", "sharingKey": "176abdfc4283560ad234533e5a392e0ced4ea08f9f799a165dd950d66debf48daa293211ee11a56e98f1e62a6b6b12dd2d5d50085a866ea3910f9b721bf0cb11", }, "Concert Pitch BC 8vb": { "scoreId": "61e0902874bfb70013c4e9f0", "sharingKey": "<KEY>", }, "Concert Pitch BC": { "scoreId": "61e090281ffc3c00126dc7d6", "sharingKey": "b6a819a7636cfc5e7842417ce68d598725ca98b184b7997321ae15dd3b2a14f82622d249175d9fd308f00636cf3c7f28ad0a5dde6a309ca7ab7c37f01170404b", }, "Concert Pitch TC 8va": { "scoreId": "61e09028c9707c0013966a6d", "sharingKey": "1bf46c7b7cf16bf5d06b9dbb9d822c54299ed092bc3f3a0d3209d0f776b23fe1dbb49a49d7d7b97f9fad460c2c0ea42cd1c572eced32e734c28f26f8f064d989", }, "Concert Pitch TC": { "scoreId": "61e090281cad9a0012110fa6", "sharingKey": "<KEY>", }, "Eb": { "scoreId": "61e090290f63e200125c8da7", "sharingKey": "6609d33e30426aeaf95279321291501cc8296da784b6c96fc2bdd6fdad968ed94faa3508e1b3bb609a537d9be3246a63b8d6c38273814a228728f6765de7208f", }, "F": { "scoreId": "61e090290bd92f0012185daa", "sharingKey": "224061dc8f008b68e3f1ffb1d9de357a88f655557fd26b735f6f67761521195c51368775ab30b9e82d1f03f08d23611ff84796d198e4ba5b09dc1d458202de26", }, }, } def update_site_forward(apps, schema_editor): Piece = apps.get_model("musics", "Piece") if Piece.objects.filter(name="Air for Band").exists(): return for part in data["parts"]: for t in part["transpositions"]: t["flatio"] = json.dumps(flatios[part["name"]][t["transposition"]]) serializer = PieceCreateSerializer(data=data) serializer.is_valid() serializer.create(serializer.validated_data) class Migration(migrations.Migration): dependencies = [ ('musics', '0015_auto_20220206_2027'), ] operations = [migrations.RunPython(update_site_forward, migrations.RunPython.noop)] ``` #### File: submissions/api/serializers.py ```python from rest_framework import serializers from teleband.submissions.models import Grade, Submission, SubmissionAttachment from teleband.assignments.api.serializers import AssignmentSerializer class SubmissionSerializer(serializers.ModelSerializer): class Meta: model = Submission fields = ["id", "submitted", "content"] # extra_kwargs = { # "assignment": {"view_name": "api:assignment-detail", "lookup_field": "id"}, # } class AttachmentSerializer(serializers.ModelSerializer): class Meta: model = SubmissionAttachment fields = ["id", "file", "submitted"] class GradeSerializer(serializers.ModelSerializer): class Meta: model = Grade fields = ["id", "rhythm", "tone", "expression", "created_at", "grader", "submission"] class TeacherSubmissionSerializer(serializers.ModelSerializer): attachments = AttachmentSerializer(read_only=True, many=True) assignment = AssignmentSerializer() grades = GradeSerializer(many=True) def get_attachments(self, queryset): print(queryset) return None class Meta: model = Submission fields = ["id", "assignment", "submitted", "content", "attachments", "grades"] # extra_kwargs = { # "assignment": {"view_name": "api:assignment-detail", "lookup_field": "id"}, # } ``` #### File: users/api/views.py ```python import collections import csv from io import StringIO from django.contrib.auth import get_user_model from django.contrib.auth.models import Group from django.core.exceptions import ValidationError from django.core.validators import validate_email from rest_framework import permissions from rest_framework import status from rest_framework.decorators import action from rest_framework.mixins import ListModelMixin, RetrieveModelMixin, UpdateModelMixin from rest_framework.response import Response from rest_framework.viewsets import GenericViewSet from rest_framework.authtoken.models import Token from rest_framework.authtoken.views import ObtainAuthToken from invitations.utils import get_invitation_model from invitations.exceptions import AlreadyAccepted, AlreadyInvited, UserRegisteredEmail from invitations.forms import CleanEmailMixin from .serializers import UserSerializer, UserInstrumentSerializer from teleband.courses.models import Enrollment, Course User = get_user_model() Invitation = get_invitation_model() class IsRelevantTeacherUpdate(permissions.IsAuthenticated): def has_object_permission(self, request, view, obj): if view.action not in ["update", "partial_update"]: return True # only permissible if request.user is a teacher of obj in any existing class return Enrollment.objects.filter( user=obj, course__in=Course.objects.filter( enrollment__user=request.user, enrollment__role__name="Teacher" ), role__name="Student", ).exists() class UserViewSet(RetrieveModelMixin, ListModelMixin, UpdateModelMixin, GenericViewSet): serializer_class = UserSerializer queryset = User.objects.all() lookup_field = "username" permission_classes = [IsRelevantTeacherUpdate & permissions.IsAuthenticated] def get_queryset(self, *args, **kwargs): if self.action in ["update", "partial_update"]: return self.queryset.filter( enrollment__course__in=[ e.course for e in Enrollment.objects.filter( user__username="admin", role__name="Teacher" ) ] ) assert isinstance(self.request.user.id, int) return self.queryset.filter(id=self.request.user.id) def get_serializer_class(self): if self.action in ["update", "partial_update"]: return UserInstrumentSerializer return self.serializer_class @action(detail=False) def me(self, request): serializer = UserSerializer(request.user, context={"request": request}) return Response(status=status.HTTP_200_OK, data=serializer.data) @action( detail=False, methods=["post"], permission_classes=[permissions.IsAdminUser] ) def bulk_create_teachers(self, request): users_file = request.FILES["file"] contents = "".join([line.decode("utf-8") for line in users_file.readlines()]) reader = csv.reader(StringIO(contents)) teacher_group = Group.objects.get(name="Teacher") response = collections.defaultdict(list) for row in reader: # based on https://github.com/bee-keeper/django-invitations/blob/9069002f1a0572ae37ffec21ea72f66345a8276f/invitations/views.py#L63 invitee = row[0] try: validate_email(invitee) CleanEmailMixin().validate_invitation(invitee) invite = Invitation.create(invitee, group=teacher_group) except (ValidationError): response["invalid"].append({invitee: "invalid email"}) except (AlreadyAccepted): response["invalid"].append({invitee: "already accepted"}) except (AlreadyInvited): response["invalid"].append({invitee: "pending invite"}) except (UserRegisteredEmail): response["invalid"].append({invitee: "user registered email"}) else: invite.send_invitation(request) response["valid"].append({invitee: "invited"}) return Response(status=status.HTTP_200_OK, data=response) class IsAuthForDelete(permissions.IsAuthenticated): def has_permission(self, request, view): if request.method == "DELETE": return super().has_permission(request, view) return True class ObtainDeleteAuthToken(ObtainAuthToken): permission_classes = [IsAuthForDelete] def delete(self, request, *args, **kwargs): try: Token.objects.get(user=request.user).delete() return Response(status=status.HTTP_200_OK) except Token.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) obtain_delete_auth_token = ObtainDeleteAuthToken.as_view() ``` #### File: teleband/users/models.py ```python from django.contrib.auth.models import AbstractUser, Group from django.db import models from django.urls import reverse from django.utils.translation import gettext_lazy as _ from invitations.models import Invitation import reversion from teleband.instruments.models import Instrument @reversion.register() class User(AbstractUser): """Default user for TeleBand.""" #: First and last name do not cover name patterns around the globe name = models.CharField(_("Name of User"), blank=True, max_length=255) grade = models.CharField(blank=True, max_length=255) first_name = None # type: ignore last_name = None # type: ignore instrument = models.ForeignKey(Instrument, null=True, on_delete=models.DO_NOTHING) external_id = models.CharField( _("External ID"), blank=True, max_length=255, help_text=_( "Any string that is meaningful to the user's educational institution." ), ) def get_absolute_url(self): """Get url for user's detail view. Returns: str: URL for user detail. """ return reverse("users:detail", kwargs={"username": self.username}) class Role(models.Model): name = models.CharField(max_length=255) def __str__(self): return self.name class GroupInvitation(Invitation): group = models.ForeignKey(Group, on_delete=models.DO_NOTHING) ``` #### File: teleband/utils/fields.py ```python import itertools from django.utils.text import slugify def generate_slug_from_name(instance, model_cls): # based on https://simpleit.rocks/python/django/generating-slugs-automatically-in-django-easy-solid-approaches/ max_length = instance._meta.get_field("slug").max_length value = instance.name slug_candidate = slug_original = slugify(value, allow_unicode=True) for i in itertools.count(1): if not model_cls.objects.filter(slug=slug_candidate).exists(): break slug_candidate = "{}-{}".format(slug_original, i) instance.slug = slug_candidate ``` #### File: teleband/utils/serializers.py ```python from rest_framework import serializers class GenericNameSerializer(serializers.Serializer): name = serializers.CharField(max_length=255) def __init__(self, *args, **kwargs): self.model_cls = kwargs.pop("model_cls", None) super().__init__(*args, **kwargs) def to_representation(self, instance): return instance.name def to_internal_value(self, data): return self.model_cls.objects.get(name=data) ```
{ "source": "JMU-CS354/move_base_354", "score": 3 }
#### File: move_base_354/scripts/move_base.py ```python from collections import deque import rospy from nav_msgs.srv import GetPlan from nav_msgs.msg import Path from move_base_msgs.msg import MoveBaseAction, MoveBaseFeedback from geometry_msgs.msg import PoseStamped import tf2_ros import actionlib import util class MoveBase(object): """ Class handling navigation logic for a simple-action-server-based navigation system. """ def __init__(self): """ Set up the node and read the goal parameters. """ rospy.init_node('move_base') self.xy_goal_tolerance = rospy.get_param('~xy_goal_tolerance', .15) self.stuck_delay = rospy.get_param('~stuck_delay', 10.0) self.stuck_threshold = .2 self.action_s = actionlib.SimpleActionServer('move_base', MoveBaseAction, execute_cb=self.execute_cb, auto_start=False) self.tf_buffer = tf2_ros.Buffer() tf2_ros.TransformListener(self.tf_buffer) rospy.sleep(1.0) # accumulate some transforms rospy.Subscriber('move_base_simple/goal', PoseStamped, self.goal_callback) self.path_pub = rospy.Publisher('/path', Path, latch=True, queue_size=10) rospy.loginfo("Waiting for create_global_plan service...") rospy.wait_for_service('create_global_plan') rospy.loginfo("OK") self.action_s.start() rospy.spin() def _check_stuck(self, poses, pose): """Return true if we haven't moved for a while. """ max_delay = rospy.Duration.from_sec(self.stuck_delay) poses.append(pose) if (poses[-1].header.stamp - poses[0].header.stamp) > max_delay: dist = util.distance(poses[-1], poses[0]) if dist < self.stuck_threshold: return True poses.popleft() return False def execute_cb(self, goal): """This is the callback that will occur when a new goal arrives through the simple action client. goal will have a .target_pose field """ # Store the goal pose in the global frame so we can # monitor progress. goal_pose_world = util.pose_transform(self.tf_buffer, goal.target_pose, 'map') path = self.request_plan(goal.target_pose) if path is None: msg = "Global planner couldn't find plan. Giving up." self.action_s.set_aborted(text=msg) return # After this happens the local planner should be working. self.path_pub.publish(path.plan) at_goal = False stuck = False rate = rospy.Rate(10) poses = deque() # store recent poses to see if we are stuck. while not at_goal and not stuck and not rospy.is_shutdown(): if self.action_s.is_preempt_requested(): rospy.loginfo('Navigation Preempted') self.path_pub.publish(Path()) self.action_s.set_preempted() break robot_pose = self.get_current_pose() distance = util.distance(robot_pose, goal_pose_world) if distance < self.xy_goal_tolerance: at_goal = True rospy.loginfo("Goal reached.") self.action_s.set_succeeded() elif self._check_stuck(poses, robot_pose): stuck = True msg = "Not making progress. Giving up." self.path_pub.publish(Path()) self.action_s.set_aborted(text=msg) else: feedback = MoveBaseFeedback() feedback.base_position = robot_pose self.action_s.publish_feedback(feedback) rate.sleep() def goal_callback(self, goal_pose): """ This callback handles non-action-client goal requests.""" path = self.request_plan(goal_pose) if path is None: rospy.loginfo("Global planner couldn't find plan.") else: self.path_pub.publish(path.plan) def get_current_pose(self): """ Return the current robot pose in the world frame. """ pose_base = util.create_pose_stamped(0, 0, frame_id='base_link') return util.pose_transform(self.tf_buffer, pose_base, 'map') def request_plan(self, goal_pose): """ Create a service proxy and use it to request a plan from the global planner. Returns the plan, or None if no plan is available. """ rospy.wait_for_service('create_global_plan') try: get_plan = rospy.ServiceProxy('create_global_plan', GetPlan) robot_pose = self.get_current_pose() rospy.loginfo("Requesting plan...") resp = get_plan(robot_pose, goal_pose, self.xy_goal_tolerance) rospy.loginfo("Plan received.") if len(resp.plan.poses) == 0: resp = None except rospy.ServiceException: resp = None return resp if __name__ == "__main__": MoveBase() ```
{ "source": "JMU-CS/jmu_python_gradescope_utils", "score": 3 }
#### File: jmu_python_gradescope_utils/jmu_gradescope_utils/jmu_test_case.py ```python import types import unittest import tempfile import subprocess import os import shutil import re from functools import wraps from . import utils import sys from importlib import import_module _TEST_ORDER = {} def _order(f): global _TEST_ORDER _TEST_ORDER[f.__name__] = len(_TEST_ORDER) return f def test_compare(a, b): if a in _TEST_ORDER and b in _TEST_ORDER: return [1, -1][_TEST_ORDER[a] < _TEST_ORDER[b]] elif a in _TEST_ORDER: return -1 elif b in _TEST_ORDER: return 1 else: return [1, -1][a < b] def _check_required(func): @wraps(func) def wrapper(self, *args, **kwargs): if hasattr(self.__class__, '_FAILED_REQUIRED_TEST'): self.fail("Failed required test: {}".format(self._FAILED_REQUIRED_TEST)) result = None else: result = func(self, *args, **kwargs) return result return wrapper def required(): """Used to decorate required test method. If a required method is failed then all of the following methods will fail as well. """ def decorator(func): @wraps(func) def wrapper(self, *args, **kwargs): try: result = func(self, *args, **kwargs) except Exception as e: self.__class__._FAILED_REQUIRED_TEST = func.__doc__ result = None raise e.__class__(str(e) + "\n This test was required. All of the following tests will fail automatically.") return result return wrapper return decorator # https://stackoverflow.com/questions/8245135/python-decorate-all-methods-of-subclass-and-provide-means-to-override class OrderAllTestsMeta(type): """Decorate every method so that they will be ordered during testing, and they will respect the 'required' decorator. """ def __new__(cls, name, bases, local): for attr in local: value = local[attr] if isinstance(value, types.FunctionType): local[attr] = _check_required(_order(value)) return type.__new__(cls, name, bases, local) class _JmuTestCase(unittest.TestCase): """ Additional useful assertions for grading. """ # counts the number of dynamic modules created module_count = 0 def assertScriptOutputEqual(self, filename, string_in, expected, variables=None, args="", msg=None, processor=None): tmpdir = None try: tmpdir, new_file_name = utils.replace_variables(filename, variables) # Make a clean backup of the original submission: shutil.copy(utils.full_submission_path(filename), os.path.join(tmpdir, "__tmp_backup.py")) # Replace the original submission in source: shutil.copy(new_file_name, utils.full_source_path(filename)) command = ['python3', utils.full_source_path(filename)] command.extend(args.split()) proc = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) actual, stderr = proc.communicate(input=string_in.encode()) actual_text = actual.decode() if processor: actual_text = processor(actual_text) stderr_text = stderr.decode() if len(stderr) > 0: stderr_text = stderr_text.replace(utils.full_source_path() + "/" , '') err_msg = "Error during script execution:\n{}".format(stderr_text) out_msg = "\nOutput before failure:\n{}".format(actual_text) self.fail(err_msg + out_msg) show_in = string_in.encode('unicode_escape').decode() message = "Input was: '{}'".format(show_in) if len(args) > 0: message += "\nCommand line arguments: {}".format(args) if msg is not None: message += "\n" + msg self.assertEqual(actual_text, expected, message) finally: if tmpdir is not None: # Restore the original submission in source: shutil.copy(os.path.join(tmpdir, "__tmp_backup.py"), utils.full_source_path(filename)) shutil.rmtree(tmpdir) def assertNoLoops(self, filename, msg=None): loop_regex = "(^|(\r\n?|\n))\s*(for|while).*:\s*(#.*)*($|(\r\n?|\n))" count = utils.count_regex_matches(loop_regex, filename) message = f"It looks like the file {filename} contains at least one loop." if msg is not None: message += f"\n{msg}" if count > 0: self.fail(message) def assertNoForLoops(self, filename, msg=None): loop_regex = "(^|(\r\n?|\n))\s*(for).*:\s*(#.*)*($|(\r\n?|\n))" count = utils.count_regex_matches(loop_regex, filename) message = f"It looks like the file {filename} contains at least one for loop." if msg is not None: message += f"\n{msg}" if count > 0: self.fail(message) def assertNoWhileLoops(self, filename, msg=None): loop_regex = "(^|(\r\n?|\n))\s*(while).*:\s*(#.*)*($|(\r\n?|\n))" count = utils.count_regex_matches(loop_regex, filename) message = f"It looks like the file {filename} contains at least one while loop." if msg is not None: message += f"\n{msg}" if count > 0: self.fail(message) def assertNoConditionals(self, filename, msg=None): if_regex = "(^|(\r\n?|\n))\s*if.*:\s*(#.*)*($|(\r\n?|\n))" main_regex = "(^|(\r\n?|\n))\s*if\s*__name__.*:\s*(#.*)*($|(\r\n?|\n))" count = utils.count_regex_matches(if_regex, filename) main_count = utils.count_regex_matches(main_regex, filename) message = f"It looks like the file {filename} contains at least one if statement." if msg is not None: message += f"\n{msg}" if count > main_count: self.fail(message) def assertPassesPep8(self, filename): output = utils.run_flake8(filename) if len(output) != 0: self.fail("Submission does not pass pep8 checks:\n" + output) print('Submission passes all formatting checks!') def assertDocstringsCorrect(self, filename): output = utils.run_flake8_docstring(filename) if len(output) != 0: self.fail("Submission does not pass docstring checks:\n" + output) print('Submission passes all docstring checks!') def assertRequiredFilesPresent(self, required_files): missing_files = utils.check_submitted_files(required_files) for path in missing_files: print('Missing {0}'.format(path)) self.assertEqual(len(missing_files), 0, 'Missing some required files!') print('All required files submitted!') def assertOutputCorrect(self, filename, string_in, expected, variables=None, processor=None): self.assertScriptOutputEqual(filename, string_in, expected, variables=variables, processor=processor) print('Correct output:\n' + expected) def run_with_substitution(self, filename, variables, func): """substitute variable values, then load a module and execute the given function `func`""" _JmuTestCase.module_count = _JmuTestCase.module_count + 1 short_filename = filename if filename[-3:] == '.py': short_filename = filename[0:-3] new_module_name = short_filename + "_" + str(_JmuTestCase.module_count) (tmpdir, new_file_name) = utils.replace_variables(filename, variables=variables, new_name=new_module_name + ".py") # insert the new temporary directory into the system module load path sys.path.insert(1, tmpdir) # load the module dynamic_module = import_module(new_module_name) func(dynamic_module) def assertMatchCount(self, filename, regex, num_matches, msg=None): count = utils.count_regex_matches(regex, filename) self.assertEqual(num_matches, count, msg=msg) class JmuTestCase(_JmuTestCase, metaclass=OrderAllTestsMeta): """Test methods declared within subclasses will be executed in the order they are declared as long as the sortTestMethodUsing attrute of the defaultTestLoader has been set:: unittest.defaultTestLoader.sortTestMethodsUsing = test_compare They will also respect the @required decorator. """ pass ```
{ "source": "JMU-CS/Upload-Canvas-Grades", "score": 3 }
#### File: JMU-CS/Upload-Canvas-Grades/generate_form_msp.py ```python import argparse import generate_form import re def autolab_assignment_name(filename): """Extract the autolab assessment name for an autolab csv grade file name. """ m = re.search("(.*)_(.*)_[0-9]{12}.csv", filename) if m: return m.group(2) return None class AutoLabForm(generate_form.CanvasForm): def __init__(self, canvas_csv, assignment_id, autolab_csvs): super(AutoLabForm, self).__init__(canvas_csv, assignment_id) self.student_dicts = [] # one dictionary per exercise/csv file self.table_headers = [] self.ex_names = [] for autolab_csv in autolab_csvs: self.ex_names.append(autolab_assignment_name(autolab_csv)) autolab_table = generate_form.csv_to_numpy(autolab_csv) cur_entries = {} for i in range(1, autolab_table.shape[0], 1): eid = autolab_table[i, 0].split('@')[0] cur_entries[eid] = list(autolab_table[i, :]) self.student_dicts.append(cur_entries) cur_headers = {} for col in range(autolab_table.shape[1]): cur_headers[autolab_table[0, col].strip(':')] = col self.table_headers.append(cur_headers) def generate_comments(self, eid): comments = "" tool_score = 0 try: table_data = zip(self.student_dicts, self.ex_names, self.table_headers) for student_data, ex_name, table_headers in table_data: cur_score = student_data[eid][table_headers['Total']] comments += ex_name + ": " if cur_score == "not_submitted" or \ cur_score == "not_yet_submitted": comments += "No Autolab submission.\n" cur_score = "0" else: comments += cur_score + "\n" tool_score += float(cur_score) except KeyError as e: # This may happen if a student is in Canvas, but not autolab pass return comments, tool_score if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("canvas_csv", metavar="CANVAS_CSV") parser.add_argument("canvas_assignment_id", metavar="CANVAS_ASSIGNMENT_ID") parser.add_argument("autolab_csv", metavar="AUTOLAB_CSV", nargs='*') args = parser.parse_args() wf = AutoLabForm(args.canvas_csv, args.canvas_assignment_id, args.autolab_csv) wf.generate_form() ```
{ "source": "jmuddappa/DeepClassificationBot", "score": 3 }
#### File: DeepClassificationBot/deepanimebot/bot.py ```python from __future__ import absolute_import from __future__ import print_function from __future__ import division import functools import logging import os import random import time import tweepy import deploy import gceutil from deepanimebot import classifiers from deepanimebot import exceptions as exc from deepanimebot import messages INPUT_SHAPE = 128 # change it to your input image size TWEET_MAX_LENGTH = 140 logging.basicConfig() logger = logging.getLogger('bot') logger.setLevel(logging.INFO) def wait_like_a_human(f): @functools.wraps(f) def wrapper(*args, **kwargs): start = time.time() rv = f(*args, **kwargs) if not rv: return api, action, args, kwargs = rv end = start + random.randint(1, 5) sleep = end - time.time() if sleep > 0: time.sleep(sleep) return getattr(api, action)(*args, **kwargs) return wrapper class ReplyToTweet(tweepy.StreamListener): def __init__(self, screen_name, classifier, api=None, silent=False): super(ReplyToTweet, self).__init__(api) self.screen_name = screen_name self.classifier = classifier self.silent = silent @wait_like_a_human def on_direct_message(self, data): status = data.direct_message sender_name = status['sender']['screen_name'] if sender_name == self.screen_name: return logger.debug(u"{0} incoming dm {1}".format(status['id'], status['text'])) reply = self.get_reply(status['id'], status['entities'], TWEET_MAX_LENGTH - len('d {} '.format(sender_name)), messages.DMMessages) if self.silent: return return self.api, 'send_direct_message', tuple(), dict(user_id=status['sender']['id'], text=reply) @wait_like_a_human def on_status(self, status): sender_name = status.author.screen_name if sender_name == self.screen_name: return logger.debug(u"{0} incoming status {1}".format(status.id, status.text)) if retweets_me(status, self.screen_name): logger.debug("{0} is a retweet".format(status.id)) return if not status_mentions(status, self.screen_name): logger.debug("{0} doesn't mention {1}".format(status.id, self.screen_name)) return prefix = '@{0} '.format(sender_name) reply = self.get_reply(status.id, status.entities, TWEET_MAX_LENGTH - len(prefix), messages.StatusMessages) status_text = prefix + reply if self.silent: return return self.api, 'update_status', (status_text,), dict(in_reply_to_status_id=status.id) def get_reply(self, status_id, entities, max_length, messages): maybe_image_url = url_from_entities(entities) if not maybe_image_url: logger.debug("{0} doesn't have a URL".format(status_id)) return messages.give_me_an_image() try: y = self.classifier.classify(url=maybe_image_url) except exc.TimeoutError: logger.debug("{0} timed out while classifying {1}".format(status_id, maybe_image_url)) return messages.took_too_long() except exc.NotImage: logger.debug("{0} no image found at {1}".format(status_id, maybe_image_url)) return messages.not_an_image() except exc.RemoteError as e: logger.debug("{0} remote error {1}".format(status_id, e)) return e.message except Exception as e: logger.error("{0} error while classifying {1}: {2}".format(status_id, maybe_image_url, e)) return messages.something_went_wrong() reply = messages.my_guess(y, max_length) logger.debug("{0} reply: {1}".format(status_id, reply)) return reply def on_error(self, status): if status == 420: # we are rate-limited. # returning False disconnects the stream return False def retweets_me(status, screen_name): retweeted_status = getattr(status, 'retweeted_status', None) if retweeted_status is None: return False return retweeted_status.author.screen_name == screen_name def status_mentions(status, screen_name): for mention in status.entities.get('user_mentions', []): if mention['screen_name'] == screen_name: return True return False def url_from_entities(entities): for media in entities.get('media', []): if media['type'] == 'photo': return media['media_url'] for url in entities.get('urls', []): return url['expanded_url'] def main(args): if args.debug: logger.setLevel(logging.DEBUG) auth = tweepy.OAuthHandler(args.consumer_key, args.consumer_secret) auth.set_access_token(args.access_token, args.access_token_secret) api = tweepy.API(auth, wait_on_rate_limit=True) screen_name = api.me().screen_name if args.classifier == 'mock': classifier = classifiers.MockClassifier() elif args.classifier == 'local': classifier = classifiers.URLClassifier(classifiers.ImageClassifier(args.dataset_path, INPUT_SHAPE)) elif args.classifier == 'remote': classifier = classifiers.RemoteClassifier(args.remote_endpoint) stream = tweepy.Stream(auth=auth, listener=ReplyToTweet(screen_name, classifier, api, args.silent)) logger.info('Listening as {}'.format(screen_name)) stream.userstream(track=[screen_name]) if __name__ == '__main__': import configargparse parser = configargparse.getArgumentParser() parser.add('-c', '--config', required=False, is_config_file=True, help='Config file path. See bot.ini.example') parser.add('--consumer-key', required=True, env_var='CONSUMER_KEY', help='Twitter app consumer key') parser.add('--consumer-secret', required=True, env_var='CONSUMER_SECRET', help='Twitter app consumer secret') parser.add('--access-token', required=True, env_var='ACCESS_TOKEN', help='Twitter access token') parser.add('--access-token-secret', required=True, env_var='ACCESS_TOKEN_SECRET', help='Twitter access token secret') parser.add('--classifier', choices=['mock', 'local', 'remote'], default='mock', help='Which classifier to use') parser.add('--dataset-path', default='data/data.hdf5', help='Path to dataset when using a local calssifier') parser.add('--remote-endpoint', default=None, help='API endpoint to call when using a remote classifier') parser.add('--silent', action='store_true', default=False, help='Run bot without actually replying') parser.add('--debug', action='store_true', default=False, help='Set log level to debug') try: args = parser.parse_args() except SystemExit as e: if gceutil.detect_gce_environment(logger): attrname_env_varnames = {action.dest.replace('_', '-'): action.env_var for action in parser._actions if action.env_var} metadata = gceutil.get_metadata(attrname_env_varnames.keys()) environ = dict(os.environ) environ.update({attrname_env_varnames[attr]: value for attr, value in metadata.items()}) args = parser.parse_args(env_vars=environ) else: raise main(args) ``` #### File: DeepClassificationBot/deepanimebot/messages.py ```python from __future__ import absolute_import import math import deploy from deepanimebot.shortcuts import at_random class Messages(object): '''Each method is expected to return a message of length under TWEET_MAX_LENGTH. ''' @staticmethod def took_too_long(): return at_random( "It took too long to get the image. Try again?", ) @staticmethod def something_went_wrong(): return at_random( "Something went wrong. Try again later?", ) @staticmethod def not_an_image(): return at_random( "That doesn't look like an image", "Are you sure it's an image?", ) @staticmethod def unknown_image(): return at_random( 'I have no clue!', 'Unknown', ) @classmethod def my_guess(cls, y, top_n=3, max_length=None, preface="Probable Anime:"): if not len(y): return cls.unknown_image() pred_lines = [] max_category_length = 0 max_category_length_index = 0 for i, pred in enumerate(y[:top_n]): pred_lines.append(deploy.Prediction( "{}.".format(pred.rank), pred.category, "{:.2%}".format(pred.probability), )) if max_category_length < len(pred.category): max_category_length_index = i max_category_length = len(pred.category) newline_count = len(pred_lines) pred_length = sum(sum(map(len, pred)) + len(pred) - 1 for pred in pred_lines) current_length = len(preface) + newline_count + pred_length # truncate category name(s) if needed if max_length is not None and current_length > max_length: lengthy_pred = pred_lines[max_category_length_index] excess_length = current_length - max_length # don't penalize the longest category if it's going to be truncated too much if len(lengthy_pred.category) * 0.5 < excess_length: subtract_from_everyone_length = int(math.ceil(excess_length / len(pred_lines))) pred_lines = [ deploy.Prediction( pred.rank, pred.category[:-subtract_from_everyone_length], pred.probability) for pred in pred_lines] else: shortened_pred = deploy.Prediction( lengthy_pred.rank, lengthy_pred.category[:-excess_length], lengthy_pred.probability) pred_lines[max_category_length_index] = shortened_pred reply = "{}\n{}".format(preface, "\n".join(" ".join(pred) for pred in pred_lines)) return reply[:max_length] if max_length is not None else reply class StatusMessages(Messages): @staticmethod def give_me_an_image(): return at_random( 'Give me a direct image URL or attach it to your tweet', "I don't see an image. Tweet a direct image URL or attach it please", ) class DMMessages(Messages): @staticmethod def give_me_an_image(): return at_random( 'Give me a direct image URL', "I don't see an image. Message me a direct image URL please", ) ``` #### File: DeepClassificationBot/examples/anime_names.py ```python from __future__ import absolute_import import sys import codecs import re from backports import csv import xml.etree.ElementTree as ElementTree import requests ANN_REPORTS_URL = 'http://www.animenewsnetwork.com/encyclopedia/reports.xml' ANN_DETAILS_URL = 'http://cdn.animenewsnetwork.com/encyclopedia/api.xml' ANN_ANIME_RATINGS_REPORT_ID = 172 TRAILING_KIND_RE = re.compile(r'\s+\([^)]+\)$') def get_top_n_shows(n): """Returns top n shows from Anime News Network""" assert n <= 1000 params = {'id': ANN_ANIME_RATINGS_REPORT_ID, 'nlist': n, 'nskip': 0} response = requests.get(ANN_REPORTS_URL, params=params) root = ElementTree.fromstring(response.content) return { 'fields': ['id', 'name'], 'items': [{'id': item.get('id'), 'name': _extract_item_name(item)} for item in root.iter('item')] } def _extract_item_name(item): return TRAILING_KIND_RE.sub('', item.find('anime').text) def list_characters(shows): ids = [show['id'] for show in shows['items']] params = {'anime': ids} response = requests.get(ANN_DETAILS_URL, params=params) root = ElementTree.fromstring(response.content) return { 'fields': ['show_id', 'show_name', 'character_name'], 'items': _extract_anime_characters(root), } def _extract_anime_characters(root): for anime in root.iter('anime'): anime_id = anime.get('id') anime_name = anime.get('name') seen_names = set() for role in anime.findall("cast[@lang='JA']/role"): name = role.text if name not in seen_names: yield { 'anime_id': anime_id, 'anime_name': anime_name, 'name': role.text, } seen_names.add(name) def print_csv(field_items, fileobj=sys.stdout, fields=None): writer = csv.writer(codecs.getwriter('utf8')(fileobj)) fields = field_items['fields'] if fields is None else fields writer.writerow(fields) for row in field_items['items']: writer.writerow([row[field] for field in fields]) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('what', choices=['shows', 'characters']) parser.add_argument('-n', type=int, default=50) args = parser.parse_args() if args.what == 'shows': print_csv(get_top_n_shows(args.n), fields=['name']) elif args.what == 'characters': shows = get_top_n_shows(args.n) print_csv(list_characters(shows), fields=['anime_name', 'name']) ``` #### File: jmuddappa/DeepClassificationBot/model.py ```python from __future__ import absolute_import from __future__ import print_function from keras.models import Sequential from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D, AveragePooling2D from keras.layers.core import Activation, Dense, Flatten, Dropout from keras.layers.normalization import BatchNormalization def get_model(n_outputs=1000, input_size=256): '''Builds a Deep Convolutional Neural Network of architecture VGG-Net as described in paper http://arxiv.org/pdf/1409.1556.pdf and adapted with batch_norm and dropout regularization Returns the model ready for compilation and training or predictions we have commented out dropout in between the conv layers because it was not needed for our use cases. However if you find that your models overfit you can choose to uncomment and add them. Back into your architecture. ''' conv = Sequential() conv.add(Convolution2D(64, 3, 3, activation='relu', input_shape=(3, input_size, input_size))) conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(64, 3, 3, activation='relu')) conv.add(MaxPooling2D((2, 2), strides=(2, 2))) conv.add(BatchNormalization()) # conv.add(Dropout(0.5)) conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(128, 3, 3, activation='relu')) conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(128, 3, 3, activation='relu')) conv.add(MaxPooling2D((2, 2), strides=(2, 2))) conv.add(BatchNormalization()) # conv.add(Dropout(0.5)) conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(256, 3, 3, activation='relu')) conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(256, 3, 3, activation='relu')) conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(256, 3, 3, activation='relu')) conv.add(MaxPooling2D((2, 2), strides=(2, 2))) conv.add(BatchNormalization()) # conv.add(Dropout(0.5)) conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(512, 3, 3, activation='relu')) conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(512, 3, 3, activation='relu')) conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(512, 3, 3, activation='relu')) conv.add(MaxPooling2D((2, 2), strides=(2, 2))) conv.add(BatchNormalization()) # conv.add(Dropout(0.5)) conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(512, 3, 3, activation='relu')) conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(512, 3, 3, activation='relu')) conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(512, 3, 3, activation='relu')) conv.add(MaxPooling2D((2, 2), strides=(2, 2))) conv.add(BatchNormalization()) conv.add(Flatten()) conv.add(Dropout(0.5)) conv.add(Dense(4096)) conv.add(BatchNormalization()) conv.add(Dropout(0.5)) conv.add(Dense(4096)) conv.add(BatchNormalization()) conv.add(Dropout(0.5)) conv.add(Dense(n_outputs)) conv.add(Activation('softmax')) print(conv.summary()) return conv def get_deep_anime_model(n_outputs=1000, input_size=128): '''The deep neural network used for deep anime bot''' conv = Sequential() conv.add(Convolution2D(64, 3, 3, activation='relu', input_shape=(3, input_size, input_size))) conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(64, 3, 3, activation='relu')) conv.add(MaxPooling2D((2, 2), strides=(2, 2))) conv.add(BatchNormalization()) # conv.add(Dropout(0.5)) conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(128, 3, 3, activation='relu')) # conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(128, 1, 1, activation='relu')) conv.add(MaxPooling2D((2, 2), strides=(2, 2))) conv.add(BatchNormalization()) # conv.add(Dropout(0.5)) conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(256, 3, 3, activation='relu')) conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(256, 3, 3, activation='relu')) # conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(256, 1, 1, activation='relu')) conv.add(MaxPooling2D((2, 2), strides=(2, 2))) conv.add(BatchNormalization()) # conv.add(Dropout(0.5)) conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(512, 3, 3, activation='relu')) conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(512, 3, 3, activation='relu')) # conv.add(ZeroPadding2D((1, 1))) conv.add(Convolution2D(512, 1, 1, activation='relu')) conv.add(AveragePooling2D((8, 8), strides=(2, 2))) conv.add(BatchNormalization()) # conv.add(Dropout(0.5)) # conv.add(ZeroPadding2D((1, 1))) # conv.add(Convolution2D(512, 3, 3, activation='relu')) # conv.add(ZeroPadding2D((1, 1))) # conv.add(Convolution2D(512, 3, 3, activation='relu')) # #conv.add(ZeroPadding2D((1, 1))) # conv.add(Convolution2D(512, 1, 1, activation='relu')) # conv.add(AveragePooling2D((4, 4))) # conv.add(BatchNormalization()) conv.add(Flatten()) conv.add(Dropout(0.5)) conv.add(Dense(2048)) conv.add(BatchNormalization()) conv.add(Dropout(0.7)) conv.add(Dense(2048)) conv.add(BatchNormalization()) conv.add(Dropout(0.7)) conv.add(Dense(n_outputs)) conv.add(Activation('softmax')) print(conv.summary()) return conv ``` #### File: jmuddappa/DeepClassificationBot/tasks.py ```python from __future__ import absolute_import from __future__ import print_function import os import subprocess import urllib from configargparse import ConfigFileParser from temporary import temp_dir import click DEFAULT_INSTANCE_NAME = 'bot-standalone' DEFAULT_ZONE = 'us-central1-a' DEFAULT_MACHINE_TYPE = 'f1-micro' LOGGING_AGENT_INSTALL_SCRIPT = 'https://dl.google.com/cloudagents/install-logging-agent.sh' @click.group() def bot(): pass @bot.command() @click.argument('version') def build_and_push_images(version): images = ['deploy-base', 'bot-remote', 'webapp'] for image_name in images: version_tag = 'classificationbot/{}:{}'.format(image_name, version) latest_tag = 'classificationbot/{}:latest'.format(image_name) args = [ 'docker', 'build', '-t', version_tag, '-t', latest_tag, '-f', 'dockerfiles/{}/Dockerfile'.format(image_name), '.'] subprocess.call(args) for tag in [version_tag, latest_tag]: args = [ 'docker', 'push', tag ] subprocess.call(args) @bot.command() @click.option('--name', default=DEFAULT_INSTANCE_NAME) @click.option('--zone', default=DEFAULT_ZONE) @click.option('--machine-type', default=DEFAULT_MACHINE_TYPE) @click.option('--address', default=None) @click.option('--bot-config', default='bot.ini') @click.option('--stackdriver-logging/--no-stackdriver-logging', default=False, help='Install logging agent and add config to collect logs') @click.pass_context def create_standalone_instance(ctx, name, zone, machine_type, address, bot_config, stackdriver_logging): args = [ 'gcloud', 'compute', 'instances', 'create', name, '--image', 'container-vm', '--zone', zone, '--machine-type', machine_type, ] if address: args.append('--address') args.append(address) with open(bot_config) as f: bot_config_content = ConfigFileParser().parse(f) if len(bot_config_content): secret_args = [ '--metadata', ','.join('='.join(item) for item in bot_config_content.items()), ] with temp_dir() as d: # add metadata from file args.append('--metadata-from-file') metadata_files = ['google-container-manifest=etc/standalone-bot-containers.yaml'] startup_script_path = os.path.join(d, 'startup-script.sh') if stackdriver_logging: urllib.urlretrieve(LOGGING_AGENT_INSTALL_SCRIPT, startup_script_path) with open(startup_script_path, 'a') as f: f.write('\nmkdir -p /var/log/bot\n') metadata_files.append('startup-script={}'.format(startup_script_path)) args.append(','.join(metadata_files)) confirm = "Create the following instance? (+{num} metadata from {config})\n{command}".format( num=len(bot_config_content), config=bot_config, command=' '.join(args)) click.confirm(confirm, abort=True) subprocess.call(args + secret_args) if stackdriver_logging: ctx.invoke(copy_fluentd_conf, name=name, zone=zone) @bot.command() @click.option('--name', default=DEFAULT_INSTANCE_NAME) @click.option('--zone', default=DEFAULT_ZONE) def copy_fluentd_conf(name, zone): args = [ 'gcloud', 'compute', 'copy-files', 'etc/fluentd.conf', '{}:~/bot.conf'.format(name), '--zone', zone, ] print(' '.join(args)) subprocess.call(args) args = [ 'gcloud', 'compute', 'ssh', name, '--zone', zone, '--command', 'sudo mkdir -p /etc/google-fluentd/config.d && sudo mv bot.conf /etc/google-fluentd/config.d/ && sudo service google-fluentd restart || true' ] print(' '.join(args)) subprocess.call(args) @bot.command() @click.option('--name', default=DEFAULT_INSTANCE_NAME) @click.option('--zone', default=DEFAULT_ZONE) def delete_standalone_instance(name, zone): args = [ 'gcloud', 'compute', 'instances', 'delete', name, '--zone', zone, ] subprocess.call(args) if __name__ == '__main__': bot() ``` #### File: DeepClassificationBot/tests/test_deepanimebot_classifiers.py ```python import os import time from multiprocessing import TimeoutError import json import h5py import cv2 import pytest import requests import six import deploy import data from deepanimebot import classifiers from deepanimebot import exceptions as exc import mocks TEST_IMAGE_PATH = os.path.join(os.path.dirname(__file__), 'fixtures', '1920x1080.png') def test_fetch_cvimage_from_url(monkeypatch): with open(TEST_IMAGE_PATH, 'rb') as f: image = f.read() monkeypatch.setattr(requests, 'get', mocks.mock_get(image)) image = classifiers.fetch_cvimage_from_url('this url is ignored') assert image is not None def test_fetch_cvimage_from_url_non_image(monkeypatch): monkeypatch.setattr(requests, 'get', mocks.mock_get('non-image string')) image = classifiers.fetch_cvimage_from_url('this url is ignored') assert image is None def test_fetch_cvimage_from_url_timeout(monkeypatch): def long_func(*args, **kwargs): time.sleep(3) monkeypatch.setattr(requests, 'get', long_func) with pytest.raises(TimeoutError): classifiers.fetch_cvimage_from_url('this url is ignored', timeout_max_timeout=1) def test_fetch_cvimage_from_url_too_large(monkeypatch): monkeypatch.setattr(requests, 'get', mocks.mock_get('12')) with pytest.raises(ValueError): classifiers.fetch_cvimage_from_url('this url is ignored', maxsize=1) def test_mock_classifier_classify(): classifier = classifiers.MockClassifier() y = classifier.classify() assert isinstance(y, list) assert isinstance(y[0], deploy.Prediction) def test_image_classifier_classify(monkeypatch): # TODO: add fixture for categories and mean. (95 is a magic number corresponding to the deployed model) monkeypatch.setattr(data, 'get_categories', lambda: dict((str(n), n) for n in range(95))) monkeypatch.setattr(data, 'get_mean', lambda path: None) cvimage = cv2.imread(TEST_IMAGE_PATH) # TODO: add fixture for weights and refactor so that model is loaded from a workspace directory classifier = classifiers.ImageClassifier('ignored path', 128, 'deep_anime_model') y = classifier.classify(cvimage) assert isinstance(y, list) assert isinstance(y[0], deploy.Prediction) def create_url_classifier(monkeypatch): # TODO: add fixture for categories and mean. (95 is a magic number corresponding to the deployed model) monkeypatch.setattr(data, 'get_categories', lambda: dict((str(n), n) for n in range(95))) monkeypatch.setattr(data, 'get_mean', lambda path: None) # TODO: add fixture for weights and refactor so that model is loaded from a workspace directory image_classifier = classifiers.ImageClassifier('ignored path', 128, 'deep_anime_model') return classifiers.URLClassifier(image_classifier) def test_url_classifier_classify(monkeypatch): with open(TEST_IMAGE_PATH, 'rb') as f: image = f.read() monkeypatch.setattr(requests, 'get', mocks.mock_get(image)) url_classifier = create_url_classifier(monkeypatch) y = url_classifier.classify(TEST_IMAGE_PATH) assert isinstance(y, list) assert isinstance(y[0], deploy.Prediction) def test_url_classifier_classify_none(monkeypatch): monkeypatch.setattr(classifiers, 'fetch_cvimage_from_url', lambda url: None) url_classifier = create_url_classifier(monkeypatch) with pytest.raises(exc.NotImage): url_classifier.classify(TEST_IMAGE_PATH) def test_remote_classifier_classify(monkeypatch): response = json.dumps(dict(y=[dict(rank=1, category='noein', probability=1.0)])) monkeypatch.setattr(requests, 'get', mocks.mock_get(response)) classifier = classifiers.RemoteClassifier('base url') y = classifier.classify(url='param') assert isinstance(y, list) assert isinstance(y[0], deploy.Prediction) def test_remote_classifier_classify(monkeypatch): response = json.dumps(dict(error='something went wrong expectedly')) monkeypatch.setattr(requests, 'get', mocks.mock_get(response)) classifier = classifiers.RemoteClassifier('base url') with pytest.raises(exc.RemoteError): classifier.classify(url='param') ``` #### File: jmuddappa/DeepClassificationBot/train.py ```python from __future__ import absolute_import from __future__ import print_function from __future__ import division import argparse import h5py import numpy as np import data import model as m def get_top_n_error(preds, y, n): index_of_true = np.argmax(y, axis=1) index_of_preds = np.argsort(preds, axis=1) correct = 0 for i in range(len(index_of_true)): for j in range(1, n + 1): if index_of_true[i] == index_of_preds[i, -j]: correct = correct + 1 break total = len(y) accuracy = correct / total return accuracy def run(epochs=500, training_percentage=0.4, validation_percentage=0.1, extract=True, cont=True, size=256, top_k=5): '''Does the routine required to get the data, put them in needed format and start training the model saves weights whenever the model produces a better test result and keeps track of the best loss''' if extract: print("Extracting data..") X, y = data.extract_data(size=size) print("Preprocessing data..") X, y, nb_samples, num_categories = data.preprocess_data(X, y, save=True, subtract_mean=True) else: print("Loading data..") h5f = h5py.File('data.hdf5', 'r') nb_samples = h5f['nb_samples'].value num_categories = h5f['n_categories'].value h5f.close() print("Number of categories: {}".format(num_categories)) print("Number of samples {}".format(nb_samples)) data_ids = np.arange(start=0, stop=nb_samples) val_ids = data.produce_validation_indices(data_ids, nb_samples * validation_percentage) train_ids = data.produce_train_indices(dataset_indx=data_ids, number_of_samples=nb_samples * training_percentage, val_indx=val_ids) # X_train, y_train, X_test, y_test = data.split_data(X, y, split_ratio=split) X_train, y_train, X_val, y_val = data.load_dataset_bit_from_hdf5(train_ids, val_ids, only_train=False) X_val = X_val / 255 print("Building and Compiling model..") model = m.get_model(n_outputs=num_categories, input_size=size) if cont: # model.load_weights_until_layer("pre_trained_weights/latest_model_weights.hdf5", 26) model.load_weights("pre_trained_weights/latest_model_weights.hdf5") model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=["accuracy"]) print("Training..") best_performance = np.inf for i in range(epochs): train_ids = data.produce_train_indices(dataset_indx=data_ids, number_of_samples=15000, val_indx=val_ids) X_train, y_train = data.load_dataset_bit_from_hdf5(train_ids, val_ids, only_train=True) X_train = X_train / 255 X_train = data.augment_data(X_train) # fit the model on the batches generated by datagen.flow() metadata = model.fit(X_train, y_train, validation_data=[X_val, y_val], batch_size=64, nb_epoch=1, verbose=1, shuffle=True, class_weight=None, sample_weight=None) current_loss = metadata.history['loss'][-1] current_val_loss = metadata.history['val_loss'][-1] preds = model.predict_proba(X_val, batch_size=64) print("Loss: {}".format(current_loss)) print("Val_loss: {}".format(current_val_loss)) top_3_error = get_top_n_error(preds, y_val, top_k) print("Top 3 error: {}".format(top_3_error)) if current_val_loss < best_performance: model.save_weights("pre_trained_weights/model_weights.hdf5", overwrite=True) best_performance = current_val_loss print("Saving weights..") model.save_weights("pre_trained_weights/latest_model_weights.hdf5", overwrite=True) def extract_data(size=256): print("Extracting data..") X, y = data.extract_data(size=256) print("Preprocessing data..") X, y, nb_samples, num_categories = data.preprocess_data(X, y, save=True, subtract_mean=True) return X, y, nb_samples, num_categories if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--extract_data', dest='extract_data', action='store_const', const=True, default=False) parser.add_argument('--run', dest='run', action='store_const', const=True, default=False) parser.add_argument('--continue', dest='continue_training', action='store_const', const=True, default=False) args = parser.parse_args() extract_mode = args.extract_data run_mode = args.run continue_ = args.continue_training if run_mode: run(extract=extract_mode, cont=continue_) elif extract_mode: extract_data() ```
{ "source": "jmuddappa/tattoo-gan-erator", "score": 3 }
#### File: jmuddappa/tattoo-gan-erator/app.py ```python from flask import Flask, request, send_from_directory from flask import request import os from flask import render_template #from .attnGAN.gen_art import gen_example_from_text #from user import about from attnGAN.gen_art import * project_dir = os.path.dirname(os.path.abspath(__file__)) output_dir = os.path.join(project_dir, 'images') app = Flask(__name__, static_url_path='/static') # No caching at all for API endpoints. @app.after_request def add_header(response): # response.cache_control.no_store = True response.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, post-check=0, pre-check=0, max-age=0' response.headers['Pragma'] = 'no-cache' response.headers['Expires'] = '-1' return response @app.route("/") def hello(): return "Hello World!" @app.route("/input") def input(): return render_template('input.html') @app.route("/output") def test(): input_text = request.args.get('input') run(input_text=input_text) return render_template('output.html', value=input_text) """ python2 gen_art.py --gpu 0 --input_text "the red bird" --data_dir data/birds --model_path models/bird_AttnGAN2.pth --textencoder_path DAMSMencoders/bird/text_encoder200.pth --output_dir output """ def run(input_text = "", gpu_id=0, data_dir="attnGAN/data/birds", model_path = "attnGAN/models/bird_AttnGAN2.pth", textencoder_path="attnGAN/DAMSMencoders/bird/text_encoder200.pth", output_directory="static"): print(input_text) # args = parse_args() #if args.cfg_file is not None: cfg_from_file("attnGAN/cfg/eval_bird.yml") cfg.GPU_ID = gpu_id #else: # cfg.CUDA = False cfg.DATA_DIR = data_dir cfg.TRAIN.NET_G = model_path cfg.TRAIN.NET_E = textencoder_path #if not cfg.TRAIN.FLAG: # args.manualSeed = 100 #elif args.manualSeed is None: manualSeed = 100 random.seed(manualSeed) np.random.seed(manualSeed) torch.manual_seed(manualSeed) if cfg.CUDA: torch.cuda.manual_seed_all(manualSeed) now = datetime.datetime.now(dateutil.tz.tzlocal()) timestamp = now.strftime('%Y_%m_%d_%H_%M_%S') output_dir = './output/%s_%s_%s' % \ (cfg.DATASET_NAME, cfg.CONFIG_NAME, timestamp) split_dir, bshuffle = 'train', True #if not cfg.TRAIN.FLAG: # bshuffle = False # split_dir = 'test' # Get data loader imsize = cfg.TREE.BASE_SIZE * (2 ** (cfg.TREE.BRANCH_NUM - 1)) image_transform = transforms.Compose([ transforms.Scale(int(imsize * 76 / 64)), transforms.RandomCrop(imsize), transforms.RandomHorizontalFlip()]) dataset = TextDataset(cfg.DATA_DIR, split_dir, base_size=cfg.TREE.BASE_SIZE, transform=image_transform) assert dataset dataloader = torch.utils.data.DataLoader( dataset, batch_size=cfg.TRAIN.BATCH_SIZE, drop_last=True, shuffle=bshuffle, num_workers=int(cfg.WORKERS)) # Define models and go to train/evaluate algo = trainer(output_dir, dataloader, dataset.n_words, dataset.ixtoword) start_t = time.time() if cfg.TRAIN.FLAG: algo.train() else: ''' Generate images from pre-extracted embeddings ''' if cfg.B_VALIDATION: # generate images for the whole valid dataset algo.sampling(split_dir) else: # generate images for customized captions gen_example_from_text( input_text, output_directory, dataset.wordtoix, algo) end_t = time.time() print('Total time for training:', end_t - start_t) if __name__ == '__main__': app.run(debug=True) ``` #### File: neural-style-docker/neuralstyle/algorithms.py ```python from subprocess import call from itertools import product from tempfile import TemporaryDirectory, NamedTemporaryFile from shutil import copyfile import logging from math import ceil import numpy as np import json import GPUtil from neuralstyle.utils import filename, fileext from neuralstyle.imagemagick import (convert, resize, shape, assertshape, choptiles, feather, smush, composite, extractalpha, mergealpha) logging.basicConfig(level=logging.INFO) LOGGER = logging.getLogger(__name__) # Folders and commands for style-transfer algorithms ALGORITHMS = { "gatys": { "folder": "/app/neural-style", "command": "th neural_style.lua", "defaultpars": [ "-backend", "cudnn", "-cudnn_autotune", "-normalize_gradients", "-init", "image", "-content_weight", "100", "-save_iter", "10000", "-proto_file", "/app/neural-style/models/VGG_ILSVRC_19_layers_deploy.prototxt", "-model_file", "/app/neural-style/models/VGG_ILSVRC_19_layers.caffemodel", "-num_iterations", "500" ] }, "gatys-multiresolution": {}, "chen-schmidt": { "folder": "/app/style-swap", "command": "th style-swap.lua", "defaultpars": [ "--patchSize", "7", "--patchStride", "3" ] }, "chen-schmidt-inverse": { "folder": "/app/style-swap", "command": "th style-swap.lua", "defaultpars": [ "--decoder", "models/dec-tconv-sigmoid.t7" ] } } # Load file with GPU configuration with open("gpuconfig.json", "r") as f: GPUCONFIG = json.load(f) def styletransfer(contents, styles, savefolder, size=None, alg="gatys", weights=None, stylescales=None, tileoverlap=100, algparams=None): """General style transfer routine over multiple sets of options""" # Check arguments if alg not in ALGORITHMS.keys(): raise ValueError("Unrecognized algorithm %s, must be one of %s" % (alg, str(list(ALGORITHMS.keys())))) # Plug default options if alg != "gatys" and alg != "gatys-multiresolution": if weights is not None: LOGGER.warning("Only gatys algorithm accepts style weights. Ignoring style weight parameters") weights = [None] else: if weights is None: weights = [5.0] if stylescales is None: stylescales = [1.0] if tileoverlap is None: tileoverlap = 100 if algparams is None: algparams = [] # Iterate through all combinations for content, style, weight, scale in product(contents, styles, weights, stylescales): outfile = outname(savefolder, content, style, alg, scale, weight) # If the desired size is smaller than the maximum tile size, use a direct neural style if fitsingletile(targetshape(content, size), alg): styletransfer_single(content=content, style=style, outfile=outfile, size=size, alg=alg, weight=weight, stylescale=scale, algparams=algparams) # Else use a tiling strategy else: neuraltile(content=content, style=style, outfile=outfile, size=size, overlap=tileoverlap, alg=alg, weight=weight, stylescale=scale, algparams=algparams) def styletransfer_single(content, style, outfile, size=None, alg="gatys", weight=5.0, stylescale=1.0, algparams=None): """General style transfer routine over a single set of options""" workdir = TemporaryDirectory() # Cut out alpha channel from content rgbfile = workdir.name + "/" + "rgb.png" alphafile = workdir.name + "/" + "alpha.png" extractalpha(content, rgbfile, alphafile) # Transform style to png, as some algorithms don't understand other formats stylepng = workdir.name + "/" + "style.png" convert(style, stylepng) # Call style transfer algorithm algfile = workdir.name + "/" + "algoutput.png" if alg == "gatys": gatys(rgbfile, stylepng, algfile, size, weight, stylescale, algparams) elif alg == "gatys-multiresolution": gatys_multiresolution(rgbfile, stylepng, algfile, size, weight, stylescale, algparams) elif alg in ["chen-schmidt", "chen-schmidt-inverse"]: chenschmidt(alg, rgbfile, stylepng, algfile, size, stylescale, algparams) # Enforce correct size correctshape(algfile, content, size) # Recover alpha channel correctshape(alphafile, content, size) mergealpha(algfile, alphafile, outfile) def neuraltile(content, style, outfile, size=None, overlap=100, alg="gatys", weight=5.0, stylescale=1.0, algparams=None): """Strategy to generate a high resolution image by running style transfer on overlapping image tiles""" LOGGER.info("Starting tiling strategy") if algparams is None: algparams = [] workdir = TemporaryDirectory() # Gather size info from original image fullshape = targetshape(content, size) # Compute number of tiles required to map all the image xtiles, ytiles = tilegeometry(fullshape, alg, overlap) # First scale image to target resolution firstpass = workdir.name + "/" + "lowres.png" convert(content, firstpass) resize(firstpass, fullshape) # Chop the styled image into tiles with the specified overlap value. lowrestiles = choptiles(firstpass, xtiles=xtiles, ytiles=ytiles, overlap=overlap, outname=workdir.name + "/" + "lowres_tiles") # High resolution pass over each tile highrestiles = [] for i, tile in enumerate(lowrestiles): name = workdir.name + "/" + "highres_tiles_" + str(i) + ".png" styletransfer_single(tile, style, name, size=None, alg=alg, weight=weight, stylescale=stylescale, algparams=algparams) highrestiles.append(name) # Feather tiles featheredtiles = [] for i, tile in enumerate(highrestiles): name = workdir.name + "/" + "feathered_tiles_" + str(i) + ".png" feather(tile, name) featheredtiles.append(name) # Smush the feathered tiles together smushedfeathered = workdir.name + "/" + "feathered_smushed.png" smush(featheredtiles, xtiles, ytiles, overlap, overlap, smushedfeathered) # Smush also the non-feathered tiles smushedhighres = workdir.name + "/" + "highres_smushed.png" smush(highrestiles, xtiles, ytiles, overlap, overlap, smushedhighres) # Combine feathered and un-feathered output images to disguise feathering composite([smushedfeathered, smushedhighres], outfile) # Adjust back to desired size assertshape(outfile, fullshape) def gatys(content, style, outfile, size, weight, stylescale, algparams): """Runs Gatys et al style-transfer algorithm References: * https://arxiv.org/abs/1508.06576 * https://github.com/jcjohnson/neural-style """ # Gatys can only process one combination of content, style, weight and scale at a time, so we need to iterate tmpout = NamedTemporaryFile(suffix=".png") runalgorithm("gatys", [ "-content_image", content, "-style_image", style, "-style_weight", weight * 100, # Because content weight is 100 "-style_scale", stylescale, "-output_image", tmpout.name, "-image_size", size if size is not None else shape(content)[0], *algparams ]) # Transform to original file format convert(tmpout.name, outfile) tmpout.close() def gatys_multiresolution(content, style, outfile, size, weight, stylescale, algparams, startres=256): """Runs a multiresolution version of Gatys et al method The multiresolution strategy starts by generating a small image, then using that image as initializer for higher resolution images. This procedure is repeated up to the tilesize. Once the maximum tile size attainable by L-BFGS is reached, more iterations are run by using Adam. This allows to produce larger images using this method than the basic Gatys. References: * Gatys et al - Controlling Perceptual Factors in Neural Style Transfer (https://arxiv.org/abs/1611.07865) * https://gist.github.com/jcjohnson/ca1f29057a187bc7721a3a8c418cc7db """ # Multiresolution strategy: list of rounds, each round composed of a optimization method and a number of # upresolution steps. # Using "adam" as optimizer means that Adam will be used when necessary to attain higher resolutions strategy = [ ["lbfgs", 7], ["lbfgs", 7], ["lbfgs", 7], ["lbfgs", 7], ["lbfgs", 7] ] LOGGER.info("Starting gatys-multiresolution with strategy " + str(strategy)) # Initialization workdir = TemporaryDirectory() maxres = targetshape(content, size)[0] if maxres < startres: LOGGER.warning("Target resolution (%d) might too small for the multiresolution method to work well" % maxres) startres = maxres / 2.0 seed = None tmpout = workdir.name + "/tmpout.png" # Iterate over rounds for roundnumber, (optimizer, steps) in enumerate(strategy): LOGGER.info("gatys-multiresolution round %d with %s optimizer and %d steps" % (roundnumber, optimizer, steps)) roundmax = min(maxtile("gatys"), maxres) if optimizer == "lbfgs" else maxres resolutions = np.linspace(startres, roundmax, steps, dtype=int) iters = 1000 for stepnumber, res in enumerate(resolutions): stepopt = "adam" if res > maxtile("gatys") else "lbfgs" LOGGER.info("Step %d, resolution %d, optimizer %s" % (stepnumber, res, stepopt)) passparams = algparams[:] passparams.extend([ "-num_iterations", iters, "-tv_weight", "0", "-print_iter", "0", "-optimizer", stepopt ]) if seed is not None: passparams.extend([ "-init", "image", "-init_image", seed ]) gatys(content, style, tmpout, res, weight, stylescale, passparams) seed = workdir.name + "/seed.png" copyfile(tmpout, seed) iters = max(iters/2.0, 100) convert(tmpout, outfile) def chenschmidt(alg, content, style, outfile, size, stylescale, algparams): """Runs Chen and Schmidt fast style-transfer algorithm References: * https://arxiv.org/pdf/1612.04337.pdf * https://github.com/rtqichen/style-swap """ if alg not in ["chen-schmidt", "chen-schmidt-inverse"]: raise ValueError("Unnaceptable subalgorithm %s for Chen-Schmidt family") # Rescale style as requested instyle = NamedTemporaryFile() copyfile(style, instyle.name) resize(instyle.name, int(stylescale * shape(style)[0])) # Run algorithm outdir = TemporaryDirectory() runalgorithm(alg, [ "--save", outdir.name, "--content", content, "--style", instyle.name, "--maxContentSize", size if size is not None else shape(content)[0], "--maxStyleSize", size if size is not None else shape(content)[0], *algparams ]) # Gather output results output = outdir.name + "/" + filename(content) + "_stylized" + fileext(content) convert(output, outfile) instyle.close() def runalgorithm(alg, params): """Run a style transfer algorithm with given parameters""" # Move to algorithm folder command = "cd " + ALGORITHMS[alg]["folder"] + "; " # Algorithm command with default parameters command += ALGORITHMS[alg]["command"] + " " + " ".join(ALGORITHMS[alg]["defaultpars"]) # Add provided parameters, if any command += " " + " ".join([str(p) for p in params]) LOGGER.info("Running command: %s" % command) call(command, shell=True) def outname(savefolder, content, style, alg, scale, weight=None, ext=None): """Creates an output filename that reflects the style transfer parameters""" return ( savefolder + "/" + filename(content) + "_" + filename(style) + "_" + alg + "_ss" + str(scale) + ("_sw" + str(weight) if weight is not None else "") + (ext if ext is not None else fileext(content)) ) def correctshape(result, original, size=None): """Corrects the result of style transfer to ensure shape is coherent with original image and desired output size If output size is not specified, the result image is corrected to have the same shape as the original. """ assertshape(result, targetshape(original, size)) def tilegeometry(imshape, alg, overlap=50): """Given the shape of an image, computes the number of X and Y tiles to cover it""" maxtilesize = maxtile(alg) xtiles = ceil(float(imshape[0] - maxtilesize) / float(maxtilesize - overlap) + 1) ytiles = ceil(float(imshape[1] - maxtilesize) / float(maxtilesize - overlap) + 1) return xtiles, ytiles def fitsingletile(imshape, alg): """Returns whether a given image shape will fit in a single tile or not. This depends on the algorithm used and the GPU available in the system""" mx = maxtile(alg) return mx*mx >= np.prod(imshape) def targetshape(content, size=None): """Computes the shape the resultant image will have after a reshape of the size given If size is None, return original shape. """ contentshape = shape(content) if size is None: return contentshape else: return [size, int(size * contentshape[1] / contentshape[0])] def gpuname(): """Returns the model name of the first available GPU""" try: gpus = GPUtil.getGPUs() except: LOGGER.warning("Unable to detect GPU model. Is your GPU configured? Are you running with nvidia-docker?") return "UNKNOWN" if len(gpus) == 0: raise ValueError("No GPUs detected in the system") return gpus[0].name def maxtile(alg="gatys"): """Returns the recommended configuration maximum tile size, based on the available GPU and algorithm to be run The size returned should be understood as the maximum tile size for a square tile. If non-square tiles are used, a maximum tile of the same number of pixels should be used. """ gname = gpuname() if gname not in GPUCONFIG: LOGGER.warning(f"Unknown GPU model {gname}, will use default tiling parameters") gname = "default" return GPUCONFIG[gname][alg] ``` #### File: neural-style-docker/tests/algorithms_tests.py ```python from tempfile import TemporaryDirectory from glob import glob from neuralstyle.algorithms import styletransfer, neuraltile, ALGORITHMS from neuralstyle.imagemagick import shape, equalimages from neuralstyle.utils import filename CONTENTS = "/app/entrypoint/tests/contents/" STYLES = "/app/entrypoint/tests/styles/" def assertalldifferent(pattern, expected=None): """Asserts that all images that follow a given glob pattern have different contents An expected number of images can also be provided to be checked. """ files = glob(pattern) if expected is not None: assert len(files) == expected for f1, f2 in zip(files, files[1:]): assert not equalimages(f1, f2) def test_styletransfer_gatys(): """Style transfer works without error for the Gatys algorithm""" tmpdir = TemporaryDirectory() styletransfer([CONTENTS + "dockersmall.png"], [STYLES + "cubism.jpg"], tmpdir.name, alg="gatys") assert len(glob(tmpdir.name + "/dockersmall*cubism*")) == 1 def test_styletransfer_gatys_parameters(): """Algorithm parameters can be passed to the Gatys method""" tmpdir = TemporaryDirectory() algparams = ("-num_iterations", "50") styletransfer([CONTENTS + "dockersmall.png"], [STYLES + "cubism.jpg"], tmpdir.name, algparams=algparams) assert len(glob(tmpdir.name + "/dockersmall*cubism*")) == 1 def test_styletransfer_gatysmultiresolution(): """Style transfer works without error for the Gatys algorithm with multiresolution""" tmpdir = TemporaryDirectory() styletransfer([CONTENTS + "docker.png"], [STYLES + "cubism.jpg"], tmpdir.name, alg="gatys-multiresolution", size=600) assert len(glob(tmpdir.name + "/docker*cubism*")) == 1 def test_styletransfer_chenschmidt(): """Style transfer method works without error for the Chend-Schmidt algorithm""" tmpdir = TemporaryDirectory() styletransfer([CONTENTS + "dockersmall.png"], [STYLES + "cubism.jpg"], tmpdir.name, alg="chen-schmidt") assert len(glob(tmpdir.name + "/dockersmall*cubism*")) == 1 def test_styletransfer_chenschmidtinverse(): """Style transfer method works without error for the Chend-Schmidt Inverse algorithm""" tmpdir = TemporaryDirectory() styletransfer([CONTENTS + "dockersmall.png"], [STYLES + "cubism.jpg"], tmpdir.name, alg="chen-schmidt-inverse") assert len(glob(tmpdir.name + "/dockersmall*cubism*")) == 1 def test_styletransfer_keepsize(): """Style transfer keeps the original image size if no size paramenter is given""" for alg in ALGORITHMS.keys(): tmpdir = TemporaryDirectory() img = CONTENTS + "dockersmall.png" styletransfer([img], [STYLES + "cubism.jpg"], tmpdir.name, alg=alg) files = glob(tmpdir.name + "/" + filename(img) + "*cubism*") print("Expected size", shape(img)) print("Actual shape", shape(files[0])) assert len(files) == 1 assert shape(files[0]) == shape(img) def test_styletransfer_size(): """Style transfer works for varying image sizes, producing correctly scaled images""" for alg in ALGORITHMS.keys(): for size in [50, 100, 200]: for img in ["docker.png", "obama.jpg"]: originalshape = shape(CONTENTS + img) tmpdir = TemporaryDirectory() styletransfer([CONTENTS + img], [STYLES + "cubism.jpg"], tmpdir.name, alg=alg, size=size) files = glob(tmpdir.name + "/" + filename(img) + "*cubism*") resultshape = shape(files[0]) rescalefactor = size / originalshape[0] expectedshape = [size, int(rescalefactor * originalshape[1])] print("Expected shape", expectedshape) print("Actual shape", resultshape) assert len(files) == 1 assert expectedshape == resultshape def test_styletransfer_ss(): """Style transfer works for varying style scales""" stylescales = [0.75, 1, 1.25] for alg in ALGORITHMS.keys(): img = "docker.png" tmpdir = TemporaryDirectory() styletransfer([CONTENTS + img], [STYLES + "cubism.jpg"], tmpdir.name, alg=alg, size=100, stylescales=stylescales) assertalldifferent(tmpdir.name + "/" + filename(img) + "*cubism*", len(stylescales)) def test_styletransfer_sw(): """Style transfer works for varying style weights""" styleweights = [1, 5, 10] alg = "gatys" img = "docker.png" tmpdir = TemporaryDirectory() styletransfer([CONTENTS + img], [STYLES + "cubism.jpg"], tmpdir.name, alg=alg, size=100, weights=styleweights) assertalldifferent(tmpdir.name + "/" + filename(img) + "*cubism*", len(styleweights)) def test_neuraltile(): """The neural tiling procedure can be run without issues""" tmpdir = TemporaryDirectory() content = CONTENTS + "avila-walls.jpg" outfile = tmpdir.name + "/tiled.png" neuraltile(content, STYLES + "cubism.jpg", outfile, alg="chen-schmidt-inverse", overlap=100) assert shape(outfile) == shape(content) def test_formattga(): """TGA format images can be processed correctly""" contents = [CONTENTS + f for f in ["tgasample.tga", "marbles.tga"]] tmpdir = TemporaryDirectory() styletransfer(contents, [STYLES + "cubism.jpg"], tmpdir.name, alg="chen-schmidt-inverse") assert len(glob(tmpdir.name + "/*cubism*")) == 2 def test_formatpsd(): """PSD format images can be processed correctly""" contents = [CONTENTS + f for f in ["oldtelephone.psd"]] tmpdir = TemporaryDirectory() styletransfer(contents, [STYLES + "cubism.jpg"], tmpdir.name, alg="chen-schmidt-inverse") assert len(glob(tmpdir.name + "/*cubism*")) == 1 def test_alpha(): """Transformation of images with an alpha channel preserve transparency""" tmpdir = TemporaryDirectory() # Transform image with alpha styletransfer([CONTENTS + "dockersmallalpha.png"], [STYLES + "cubism.jpg"], tmpdir.name, alg="chen-schmidt-inverse") assert len(glob(tmpdir.name + "/*dockersmallalpha_cubism*")) == 1 # Transform image without alpha styletransfer([CONTENTS + "dockersmall.png"], [STYLES + "cubism.jpg"], tmpdir.name, alg="chen-schmidt-inverse") assert len(glob(tmpdir.name + "/*dockersmall_cubism*")) == 1 # Check correct that generated image are different assertalldifferent(tmpdir.name + "/*cubism*") def test_alpha_tiling(): """Transformation of images with an alpha channel preserve transparency, even when a tiling strategy is used""" tmpdir = TemporaryDirectory() # Transform image with alpha styletransfer([CONTENTS + "dockersmallalpha.png"], [STYLES + "cubism.jpg"], tmpdir.name, alg="chen-schmidt-inverse", size=500) assert len(glob(tmpdir.name + "/*dockersmallalpha_cubism*")) == 1 # Transform image without alpha styletransfer([CONTENTS + "dockersmall.png"], [STYLES + "cubism.jpg"], tmpdir.name, alg="chen-schmidt-inverse", size=500) assert len(glob(tmpdir.name + "/*dockersmall_cubism*")) == 1 # Check correct that generated image are different assertalldifferent(tmpdir.name + "/*cubism*") ```
{ "source": "jmudge14/whackastreamdeck", "score": 3 }
#### File: whackastreamdeck/whackastreamdeck/app.py ```python import whackastreamdeck.Deck as Deck from random import randint from time import time from time import sleep import threading import os class MoleGame(): def __init__(this, deck, numMoles=3, minDelay=500, maxDelay=1000, explosionDisplayTime=500, gameTime=60000): # Initial State this.hill = [] this.deck = deck this.numMoles = numMoles this.minDelay = minDelay this.maxDelay = maxDelay this.gameTime = gameTime this.score = 0 this.startTime = -1 this.nextUpdateTime = -1 this.gameOverTime = -1 # Mark where the last mole was whacked, to show an explosion this.explosions = [] this.explosionUpdateTime = -1 this.explosionDisplayTime = explosionDisplayTime # Game assets this.moleImage = Deck.getAsset(deck,"Mole.jpeg") this.blankImage = Deck.getAsset(deck, "Blank.jpeg") this.explosionImage = Deck.getAsset(deck, "Explosion.jpeg") # Process management this.updateLock = threading.Lock() this.drawLock = threading.Lock() def keyCallback(deck, key, state): this.keyCallback(key,state) this.deck.set_key_callback(keyCallback) # Storyboard Management this.storyboard = "notstarted" this.redraw() def tick(this): this.update() this.redraw() if this.storyboard != "gameover": threading.Timer((randint(this.minDelay, this.maxDelay)/1000.0), this.tick).start() def randbutton(this): return randint(0, this.deck.key_count()-1) def start(this): # Mole positions are randomized in update() this.storyboard = "started" this.nextUpdateTime = -1 # Force initial update this.startTime = time() this.gameOverTime = this.startTime+(this.gameTime/1000) this.tick() # set everything in motion! def duration(this): return time()-this.startTime def update(this): if this.storyboard != "started": return t = time() # Check if any further updates are required if t>this.gameOverTime: this.storyboard = "gameover" return #elif t>this.nextUpdateTime: # this.nextUpdateTime = t+(randint(this.minDelay, this.maxDelay)/1000.0) #else: # return # Populate the mole hill with new moles this.updateLock.acquire() nextHill = [] for _ in range(this.numMoles): nextMole = this.randbutton() # Force the mole to *look* like it has moved: It can't overlap in the new # hill, and it should be different from any occupied spot in the old hill. while nextMole in nextHill or nextMole in this.hill: nextMole = this.randbutton() nextHill.append(nextMole) # Remove any covered explosions from the list try: this.explosions.remove(nextMole) except ValueError: pass this.hill = nextHill this.updateLock.release() this.redraw() def redraw(this): with this.drawLock: if this.storyboard == "notstarted": Deck.renderString(this.deck, " PRESS KEY TO START", background="black", color="white") elif this.storyboard == "gameover": Deck.renderString(this.deck, "GAME XOVER. SCORE: {}".format(this.score)) else: for key in range(this.deck.key_count()): if key in this.hill: image = this.moleImage elif key in this.explosions: image = this.explosionImage else: image = this.blankImage this.deck.set_key_image(key, image) def removeExplosion(this, key): this.updateLock.acquire() try: this.explosions.remove(key) except ValueError: pass this.updateLock.release() this.redraw() def keyCallback(this, key, state): if not state: return if this.storyboard in ("gameover", "quit"): if key == 7: this.storyboard = "quit" deck.reset() deck.close() this.redraw() return elif this.storyboard == "notstarted": this.start() elif key in this.hill: this.updateLock.acquire() this.score += 1 # Move the mole that was just whacked nextMole = this.randbutton() while nextMole in this.hill: nextMole = this.randbutton() this.hill.remove(key) this.hill.append(nextMole) # Display an explosion icon for some time this.explosions.append(key) this.updateLock.release() threading.Timer(this.explosionDisplayTime/1000.0, this.removeExplosion, args=(key,)).start() this.redraw() def printAndSaveHighScores(score): print("Score: " + str(game.score)) HIGH_SCORE_FILE = os.path.join(os.path.dirname(__file__), "highscores") if os.path.exists(HIGH_SCORE_FILE): with open(HIGH_SCORE_FILE,"r") as highScoreFile: high_scores = eval(highScoreFile.read()) else: high_scores = [] high_scores.append(game.score) high_scores.sort(reverse=True) high_scores = high_scores[:10] # keep ten scores print("High Scores:") print("\n".join([str(s) for s in high_scores])) with open(HIGH_SCORE_FILE, "w") as highScoreFile: highScoreFile.write(repr(high_scores)) def run(): deck = Deck.getInitializedDeck(background="green"); game = MoleGame(deck) print("Good luck!") while game.storyboard != "quit": #game.update() sleep(0.1) ```
{ "source": "jmueller95/deepgrind", "score": 3 }
#### File: deepgrind/scripts/preprocess_for_prediction.py ```python import pandas as pd import utils def check_msms_model_name(converter): def wrapper(*args, **kwargs): if kwargs['style'] not in ["pdeep", "prosit"]: raise Exception("MSMS model must be 'pdeep' or 'prosit'") converter(*args, **kwargs) return wrapper @check_msms_model_name def _convert_for_msms(comet_df, style, output): if style == "prosit": res = pd.DataFrame( {"modified_sequence": comet_df.Peptide.apply( lambda pep: utils.find_modifications(pep[2:-2], style="prosit")).values, "collision_energy": snakemake.params['collision_energy'], "precursor_charge": comet_df.apply(lambda row: row.Charge1 + 2 * row.Charge2 + 3 * row.Charge3, axis=1)}) res.dropna(inplace=True) res.to_csv(output, sep=",", header=True, index=False) else: res = pd.DataFrame( comet_df.Peptide.apply(lambda pep: utils.find_modifications(pep[2:-2], style="pdeep")).to_list(), columns=["peptide", "modification"]) # The charge is one-hot encoded in the comet df, so we can resolve this into 1,2 or 3 by multiplying 1,2 and 3 # with the entries of Charge1, Charge2 and Charge3 res["charge"] = comet_df.apply(lambda row: row.Charge1 + 2 * row.Charge2 + 3 * row.Charge3, axis=1) res.dropna(inplace=True) res.to_csv(output, sep="\t", header=True, index=False) @check_msms_model_name def _convert_for_rt(comet_df, style, output): if style == "prosit": res = pd.DataFrame( {"modified_sequence": comet_df.Peptide.apply(lambda pep: utils.find_modifications(pep[2:-2], style="prosit")).values}) res.dropna(inplace=True) res.to_csv(output, sep=",", header=True, index=False) else: raise Exception("Not implemented. Right now, the only accepted RT Model is 'prosit'.") def main(): # Parse the input file: comet_df = pd.read_csv(snakemake.input[0], sep="\t", header=0, usecols=["Peptide", "Charge1", "Charge2", "Charge3"], index_col=False) # Determine if MSMS and RT prediction will be performed jointly or separately if "msms_model" in dict(snakemake.params) and "rt_model" in dict(snakemake.params): _convert_for_msms(comet_df, style=snakemake.params['msms_model'].lower(), output=snakemake.output['msms_prediction_input']) _convert_for_rt(comet_df, style=snakemake.params['rt_model'].lower(), output=snakemake.output['rt_prediction_input']) else: # If only one model was supplied, the prediction will be joint # Only convert the input for msms in that case _convert_for_msms(comet_df, style=snakemake.params['model'].lower(), output=snakemake.output['prediction_input']) if __name__ == '__main__': main() ```
{ "source": "jmueller95/prosit", "score": 3 }
#### File: prosit/converters/rtlist.py ```python from .. import utils import pandas as pd import numpy as np class Converter: def __init__(self, data, out_path): self.data = data self.out_path = out_path def convert(self): res = pd.DataFrame({ "modified_sequence" : [utils.get_sequence(seq_int) for seq_int in self.data["sequence_integer"]], "iRT" : np.hstack(self.data["iRT"]) }) res[['modified_sequence', 'iRT']].to_csv(self.out_path, sep="\t", index=False) ``` #### File: prosit/prosit/server.py ```python import time import os import tempfile import warnings import flask from flask import after_this_request import pandas as pd import tensorflow as tf import argparse import zipfile import io from . import model from . import io_local from . import constants from . import tensorize from . import prediction from . import alignment from . import converters app = flask.Flask(__name__) @app.route("/") def hello(): return "prosit!\n" def predict(df, mode, fragmentation_mode=None, nlosses=None): """ nlosses and fragmentation mode are only required if MSMS prediction should be included fragmentation_mode must be one of "CID", "HCD" mode: String, one of 'rt', 'msms', 'both' """ #If msms prediction is included, convert and predict the input df. Else only convert the input for rt prediction data = prediction.predict(tensorize.csv(df, nlosses), d_spectra[fragmentation_mode], nlosses) if mode != "rt" else tensorize.csv_only_seq(df) #Perform rt prediction if requested if mode != "msms": data = prediction.predict(data, d_irt) return data @app.route("/predict/<output_format>", methods=["POST"]) @app.route("/predict/<output_format>/<fragmentation_mode>", methods=["POST"]) def run_prosit(output_format=None, fragmentation_mode=None): df = pd.read_csv(flask.request.files['peptides']) result = predict(df, mode="rt" if output_format == "rt" else "both", #Isolated msms prediction is currently not possible, but there's no reason to do that right now. fragmentation_mode = fragmentation_mode.upper() if fragmentation_mode else None, nlosses = 3) ###Neutral Losses currently are always predicted by default. if output_format not in ["speclib", "msms"]: tmp_f = tempfile.NamedTemporaryFile(delete=True) if output_format == "rt": c = converters.rtlist.Converter(result, tmp_f.name) elif output_format == "mgf": c = converters.mgf.Converter(result, tmp_f.name) elif output_format == "generic": c = converters.generic.Converter(result, tmp_f.name) elif output_format == "msp": print("Warning: msp output is not yet implemented!") c = converters.msp.Converter(result, tmp_f.name) c.convert() elif output_format == "msms": df_pred = converters.maxquant.convert_prediction(result) tmp_f = tempfile.NamedTemporaryFile(delete=True) converters.maxquant.write(df_pred, tmp_f.name) if output_format != "speclib": @after_this_request def cleanup(response): tmp_f.close() return response return flask.send_file(tmp_f.name) else: peptides_filename = ".".join(flask.request.files["peptides"].filename.split("/")[-1].split(".")[:-1]) zipdata = io.BytesIO() with zipfile.ZipFile(zipdata, 'w', zipfile.ZIP_DEFLATED) as zipf: mgf_file = "{}.mgf".format(peptides_filename) c_mgf = converters.mgf.Converter(result, mgf_file) c_mgf.convert(as_speclib=True) zipf.write(mgf_file) # SSL only needs the input data, not the predictions ssl_file = "{}.ssl".format(peptides_filename) c_ssl = converters.ssl.Converter(df, ssl_file) c_ssl.convert() zipf.write(ssl_file) @after_this_request def cleanup(response): os.remove("{}.mgf".format(peptides_filename)) os.remove("{}.ssl".format(peptides_filename)) return response zipdata.seek(0) return flask.send_file(zipdata, mimetype='zip') if __name__ == "__main__": ################################### # Have Keras allocate memory only when needed config = tf.ConfigProto() config.gpu_options.allow_growth = True #This allows the user to customize the port the server uses parser = argparse.ArgumentParser() parser.add_argument("-p" "--port", action="store", dest="port") args = parser.parse_args() ################################### warnings.filterwarnings("ignore") global d_spectra global d_irt #Load CID MSMS Model d_spectra_cid = {} d_spectra_cid["graph"] = tf.Graph() with d_spectra_cid["graph"].as_default(): d_spectra_cid["session"] = tf.Session(config=config) with d_spectra_cid["session"].as_default(): d_spectra_cid["model"], d_spectra_cid["config"] = model.load( constants.MODEL_CONFIG_SPECTRA, constants.WEIGHTS_CID, trained=True ) d_spectra_cid["model"].compile(optimizer="adam", loss="mse") #Load HCD MSMS Model d_spectra_hcd = {} d_spectra_hcd["graph"] = tf.Graph() with d_spectra_hcd["graph"].as_default(): d_spectra_hcd["session"] = tf.Session(config=config) with d_spectra_hcd["session"].as_default(): d_spectra_hcd["model"], d_spectra_hcd["config"] = model.load( constants.MODEL_CONFIG_SPECTRA, constants.WEIGHTS_HCD, trained=True ) d_spectra_hcd["model"].compile(optimizer="adam", loss="mse") d_spectra = {"CID": d_spectra_cid, "HCD": d_spectra_hcd} #Load RT Model d_irt = {} d_irt["graph"] = tf.Graph() with d_irt["graph"].as_default(): d_irt["session"] = tf.Session(config=config) with d_irt["session"].as_default(): d_irt["model"], d_irt["config"] = model.load(constants.MODEL_CONFIG_RT, constants.WEIGHTS_RT, trained=True) d_irt["model"].compile(optimizer="adam", loss="mse") app.run(host="0.0.0.0", port=args.port) ``` #### File: prosit/prosit/train_prosit.py ```python import os import numpy as np import pandas as pd import yaml from . import model as model_lib from . import training, tensorize, io_local def main(): #Turn off warnings: os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" ###Load training data - Put the path to your own data here training_data_path = "/root/training/training_preprocessed.csv" training_df = pd.read_csv(training_data_path) ###Dump all Peptides containing selenocystein training_df = training_df.loc[~training_df.modified_sequence.str.contains("U")] print("CSV Loaded, shape is {}.".format(training_df.shape)) ###Load Untrained Retention Time Model and prepare its training data iRT_model_dir = "/root/training/iRT/" iRT_model, iRT_config = model_lib.load(iRT_model_dir, trained=False) iRT_callbacks = training.get_callbacks(iRT_model_dir) iRT_raw_mean = training_df.uRT.mean() iRT_raw_var = training_df.uRT.var() iRT_config['iRT_rescaling_mean'] = float(iRT_raw_mean) iRT_config['iRT_rescaling_var'] = float(iRT_raw_var) with open(iRT_model_dir + "config_new.yml", "w") as config_outfile: yaml.dump(iRT_config, config_outfile) ###Load Untrained Fragmentation Model and prepare its training data msms_model_dir = "/root/training/msms/" msms_model, msms_config = model_lib.load(msms_model_dir, trained=False) msms_callbacks = training.get_callbacks(msms_model_dir) #The intensity lists are already in proper order, but might have some missing values and need to be padded to the correct length #(Only a peptide of the maximal length 29 will have 522 values, but all lists need to be of this length) intensities_length = 522 print("iRT and Fragmentation Intensity Models Loaded.") #Compile the models once, and then call fit separately - useful if you lack memory or space and have to partition your training data training.compile_model(iRT_model, iRT_config) training.compile_model(msms_model, msms_config) training_tensorized = tensorize.csv(training_df[['modified_sequence', 'collision_energy', 'precursor_charge']], nlosses=3) print("CSV Tensorized.") training_tensorized['prediction'] = np.reshape( np.asarray((training_df.uRT - iRT_raw_mean) / np.sqrt(iRT_raw_var)), (-1,1)) training_df.relative_intensities = training_df.relative_intensities.apply(eval) training_df.relative_intensities = training_df.relative_intensities.apply( lambda ls: np.nan_to_num(np.pad(ls, pad_width=(0,intensities_length-len(ls)),constant_values=-1, mode="constant"),-1)) training_tensorized['intensities_raw'] = np.stack(training_df.relative_intensities) ###Write and reload training data in hdf5 format hdf5_path = "/root/training/training_data.hdf5" io_local.to_hdf5(training_tensorized,hdf5_path) print("Training Data Written to HDF5 File.") #Load the hdf5 again training_loaded = io_local.from_hdf5(hdf5_path) print("Training Data Reloaded from HDF5 File.\nCommencing Training of iRT Model...") ###Train both models iRT_history = training.train_model(training_loaded, iRT_model, iRT_config, iRT_callbacks) iRT_epochs = len(iRT_history.history['val_loss']) iRT_val_loss = iRT_history.history['val_loss'][-1] iRT_weights_filename = "{}/weight_{:02d}_{:.5f}.hdf5".format(iRT_model_dir, iRT_epochs, iRT_val_loss) iRT_model.save_weights(iRT_weights_filename) print("Training of iRT Model Complete.\nCommencing Training of Fragmentation Intensity Model...") msms_history = training.train_model(training_loaded, msms_model, msms_config, msms_callbacks) #Save the weights to a file named by the val_loss and the epochs msms_epochs = len(msms_history.history['val_loss']) msms_val_loss = msms_history.history['val_loss'][-1] msms_weights_filename = "{}/weight_{:02d}_{:.5f}.hdf5".format(msms_model_dir, msms_epochs, msms_val_loss) msms_model.save_weights(msms_weights_filename) print("Training of Fragmentation Intensity Model Complete.") print("Done! You may now use these models for your predictions.") if __name__ == '__main__': main() ```
{ "source": "jmueller95/pyteomics", "score": 3 }
#### File: pyteomics/openms/idxml.py ```python import warnings from .. import auxiliary as aux from .. import xml, _schema_defaults class IDXML(xml.IndexedXML): """Parser class for idXML files.""" file_format = 'idXML' _root_element = 'IdXML' _default_schema = _schema_defaults._idxml_schema_defaults _default_version = '1.5' _default_iter_tag = 'PeptideIdentification' _structures_to_flatten = {} _indexed_tags = {'ProteinHit'} _schema_location_param = 'noNamespaceSchemaLocation' def __init__(self, *args, **kwargs): kwargs.setdefault('retrieve_refs', True) super(IDXML, self).__init__(*args, **kwargs) def _get_info_smart(self, element, **kwargs): """Extract the info in a smart way depending on the element type""" name = xml._local_name(element) kwargs = dict(kwargs) rec = kwargs.pop("recursive", None) # Try not to recursively unpack the root element # unless the user really wants to. if name == self._root_element: info = self._get_info(element, recursive=(rec if rec is not None else False), **kwargs) else: info = self._get_info(element, recursive=(rec if rec is not None else True), **kwargs) for k in ['start', 'end']: v = info.get(k) if isinstance(v, list) and len(v) == 2: info[k] = [int(x) for x in v[0].split()] for k in ['aa_before', 'aa_after']: if k in info: info[k] = info[k].split() return info def _retrieve_refs(self, info, **kwargs): """Retrieves and embeds the data for each attribute in `info` that ends in _ref. Removes the id attribute from `info`""" for k, v in dict(info).items(): if k[-5:] == '_refs': try: by_id = [self.get_by_id(x, retrieve_refs=True) for x in v.split()] except KeyError: warnings.warn('Ignoring unresolved reference: ' + v) else: for x in by_id: x.pop('id', None) info[k[:-5]] = by_id del info[k] def read(source, **kwargs): """Parse `source` and iterate through peptide-spectrum matches. .. note:: This function is provided for backward compatibility only. It simply creates an :py:class:`IDXML` instance using provided arguments and returns it. Parameters ---------- source : str or file A path to a target IDXML file or the file object itself. recursive : bool, optional If :py:const:`False`, subelements will not be processed when extracting info from elements. Default is :py:const:`True`. retrieve_refs : bool, optional If :py:const:`True`, additional information from references will be automatically added to the results. The file processing time will increase. Default is :py:const:`True`. iterative : bool, optional Specifies whether iterative XML parsing should be used. Iterative parsing significantly reduces memory usage and may be just a little slower. When `retrieve_refs` is :py:const:`True`, however, it is highly recommended to disable iterative parsing if possible. Default value is :py:const:`True`. read_schema : bool, optional If :py:const:`True`, attempt to extract information from the XML schema mentioned in the IDXML header (default). Otherwise, use default parameters. Disable this to avoid waiting on slow network connections or if you don't like to get the related warnings. build_id_cache : bool, optional Defines whether a cache of element IDs should be built and stored on the created :py:class:`IDXML` instance. Default value is the value of `retrieve_refs`. .. note:: This parameter is ignored when ``use_index`` is ``True`` (default). use_index : bool, optional Defines whether an index of byte offsets needs to be created for the indexed elements. If :py:const:`True` (default), `build_id_cache` is ignored. indexed_tags : container of bytes, optional Defines which elements need to be indexed. Empty set by default. Returns ------- out : IDXML An iterator over the dicts with PSM properties. """ kwargs = kwargs.copy() kwargs.setdefault('retrieve_refs', True) kwargs['build_id_cache'] = kwargs.get('build_id_cache', kwargs.get('retrieve_refs')) return IDXML(source, **kwargs) def iterfind(source, path, **kwargs): """Parse `source` and yield info on elements with specified local name or by specified "XPath". .. note:: This function is provided for backward compatibility only. If you do multiple :py:func:`iterfind` calls on one file, you should create an :py:class:`IDXML` object and use its :py:meth:`!iterfind` method. Parameters ---------- source : str or file File name or file-like object. path : str Element name or XPath-like expression. Only local names separated with slashes are accepted. An asterisk (`*`) means any element. You can specify a single condition in the end, such as: ``"/path/to/element[some_value>1.5]"`` Note: you can do much more powerful filtering using plain Python. The path can be absolute or "free". Please don't specify namespaces. recursive : bool, optional If :py:const:`False`, subelements will not be processed when extracting info from elements. Default is :py:const:`True`. retrieve_refs : bool, optional If :py:const:`True`, additional information from references will be automatically added to the results. The file processing time will increase. Default is :py:const:`False`. iterative : bool, optional Specifies whether iterative XML parsing should be used. Iterative parsing significantly reduces memory usage and may be just a little slower. When `retrieve_refs` is :py:const:`True`, however, it is highly recommended to disable iterative parsing if possible. Default value is :py:const:`True`. read_schema : bool, optional If :py:const:`True`, attempt to extract information from the XML schema mentioned in the IDXML header (default). Otherwise, use default parameters. Disable this to avoid waiting on slow network connections or if you don't like to get the related warnings. build_id_cache : bool, optional Defines whether a cache of element IDs should be built and stored on the created :py:class:`IDXML` instance. Default value is the value of `retrieve_refs`. Returns ------- out : iterator """ kwargs = kwargs.copy() kwargs['build_id_cache'] = kwargs.get('build_id_cache', kwargs.get('retrieve_refs')) return IDXML(source, **kwargs).iterfind(path, **kwargs) version_info = xml._make_version_info(IDXML) def get_by_id(source, elem_id, **kwargs): """Parse `source` and return the element with `id` attribute equal to `elem_id`. Returns :py:const:`None` if no such element is found. .. note:: This function is provided for backward compatibility only. If you do multiple :py:func:`get_by_id` calls on one file, you should create an :py:class:`IDXML` object and use its :py:meth:`!get_by_id` method. Parameters ---------- source : str or file A path to a target mzIdentML file of the file object itself. elem_id : str The value of the `id` attribute to match. Returns ------- out : :py:class:`dict` or :py:const:`None` """ return IDXML(source, **kwargs).get_by_id(elem_id, **kwargs) chain = aux.ChainBase._make_chain(IDXML) def is_decoy(psm, prefix=None): """Given a PSM dict, return :py:const:`True` if it is marked as decoy, and :py:const:`False` otherwise. Parameters ---------- psm : dict A dict, as yielded by :py:func:`read`. prefix : ignored Returns ------- out : bool """ return psm['PeptideHit'][0]['target_decoy'] == 'decoy' def DataFrame(*args, **kwargs): """Read idXML files into a :py:class:`pandas.DataFrame`. Requires :py:mod:`pandas`. .. warning :: Only the first 'PeptideHit' element is considered in every 'PeptideIdentification'. Parameters ---------- *args, **kwargs : passed to :py:func:`chain` sep : str or None, optional Some values related to PSMs (such as protein information) are variable-length lists. If `sep` is a :py:class:`str`, they will be packed into single string using this delimiter. If `sep` is :py:const:`None`, they are kept as lists. Default is :py:const:`None`. Returns ------- out : pandas.DataFrame """ import pandas as pd data = [] sep = kwargs.pop('sep', None) with chain(*args, **kwargs) as f: for item in f: info = {} for k, v in item.items(): if isinstance(v, (str, int, float)): info[k] = v peptide_hit = item.get('PeptideHit', [None])[0] if peptide_hit is not None: info.update((k, v) for k, v in peptide_hit.items() if isinstance(v, (str, int, float))) protein = peptide_hit.get('protein') if protein: accessions, isd, starts, ends, scores, aa_bs, aa_as = [], [], [], [], [], [], [] for d, start, end, aab, aaa in zip(protein, peptide_hit['start'], peptide_hit['end'], peptide_hit['aa_before'], peptide_hit['aa_after']): accessions.append(d.get('accession')) isd.append(d.get('target_decoy')) scores.append(d.get('score')) starts.append(start) ends.append(end) aa_bs.append(aab) aa_as.append(aaa) isd = all(x == 'decoy' for x in isd) if sep is not None: if all(isinstance(acc, str) for acc in accessions): accessions = sep.join(accessions) if all(isinstance(aaa, str) for aaa in aa_as): aa_as = sep.join(aa_as) if all(isinstance(aab, str) for aab in aa_bs): aa_bs = sep.join(aa_bs) if all(acc is None for acc in accessions): accessions = None info.update((k, v) for k, v in protein[0].items() if isinstance(v, (str, int, float, list))) info['accession'] = accessions info['is decoy'] = isd info['start'] = starts info['end'] = ends info['aa_before'] = aa_bs info['aa_after'] = aa_as data.append(info) df = pd.DataFrame(data) return df def filter_df(*args, **kwargs): """Read idXML files or DataFrames and return a :py:class:`DataFrame` with filtered PSMs. Positional arguments can be idXML files or DataFrames. Requires :py:mod:`pandas`. .. warning :: Only the first 'PeptideHit' element is considered in every 'PeptideIdentification'. Parameters ---------- key : str / iterable / callable, optional Default is 'score'. You will probably need to change it. is_decoy : str / iterable / callable, optional Default is 'is decoy'. *args, **kwargs : passed to :py:func:`auxiliary.filter` and/or :py:func:`DataFrame`. Returns ------- out : pandas.DataFrame """ import pandas as pd kwargs.setdefault('key', 'score') if all(isinstance(arg, pd.DataFrame) for arg in args): df = pd.concat(args) else: df = DataFrame(*args, **kwargs) if 'is_decoy' not in kwargs: kwargs['is_decoy'] = 'is decoy' return aux.filter(df, **kwargs) fdr = aux._make_fdr(is_decoy, None) _key = lambda x: x['PeptideHit'][0]['score'] qvalues = aux._make_qvalues(chain, is_decoy, None, _key) filter = aux._make_filter(chain, is_decoy, None, _key, qvalues) filter.chain = aux._make_chain(filter, 'filter', True) ``` #### File: pyteomics/pyteomics/parser.py ```python import re from collections import deque import itertools as it from .auxiliary import PyteomicsError, memoize, BasicComposition std_amino_acids = ['Q', 'W', 'E', 'R', 'T', 'Y', 'I', 'P', 'A', 'S', 'D', 'F', 'G', 'H', 'K', 'L', 'C', 'V', 'N', 'M'] """modX labels for the 20 standard amino acids.""" std_nterm = 'H-' """modX label for the unmodified N-terminus.""" std_cterm = '-OH' """modX label for the unmodified C-terminus.""" std_labels = std_amino_acids + [std_nterm, std_cterm] """modX labels for the standard amino acids and unmodified termini.""" _nterm_mod = r'[^-]+-$' _cterm_mod = r'-[^-]+$' def is_term_mod(label): """Check if `label` corresponds to a terminal modification. Parameters ---------- label : str Returns ------- out : bool Examples -------- >>> is_term_mod('A') False >>> is_term_mod('Ac-') True >>> is_term_mod('-customGroup') True >>> is_term_mod('this-group-') False >>> is_term_mod('-') False """ return (re.match(_nterm_mod, label) or re.match(_cterm_mod, label)) is not None def match_modX(label): """Check if `label` is a valid 'modX' label. Parameters ---------- label : str Returns ------- out : re.match or None """ return re.match(_modX_single, label) def is_modX(label): """Check if `label` is a valid 'modX' label. Parameters ---------- label : str Returns ------- out : bool Examples -------- >>> is_modX('M') True >>> is_modX('oxM') True >>> is_modX('oxMet') False >>> is_modX('160C') True """ return bool(match_modX(label)) def length(sequence, **kwargs): """Calculate the number of amino acid residues in a polypeptide written in modX notation. Parameters ---------- sequence : str or list or dict A string with a polypeptide sequence, a list with a parsed sequence or a dict of amino acid composition. labels : list, optional A list of allowed labels for amino acids and terminal modifications. Returns ------- out : int Examples -------- >>> length('PEPTIDE') 7 >>> length('H-PEPTIDE-OH') 7 """ if not sequence: return 0 if isinstance(sequence, str) or isinstance(sequence, list): if isinstance(sequence, str): parsed_sequence = parse(sequence, **kwargs) else: parsed_sequence = sequence num_term_groups = 0 if is_term_mod(parsed_sequence[0]): num_term_groups += 1 if is_term_mod(parsed_sequence[-1]): num_term_groups += 1 return len(parsed_sequence) - num_term_groups elif isinstance(sequence, dict): return sum(amount for aa, amount in sequence.items() if not is_term_mod(aa)) raise PyteomicsError('Unsupported type of sequence.') def _split_label(label): try: mod, X = match_modX(label).groups() except AttributeError: raise PyteomicsError('Cannot split a non-modX label: %s' % label) if not mod: return (X,) else: return mod, X _modX_sequence = re.compile(r'^([^-]+-)?((?:[^A-Z-]*[A-Z])+)(-[^-]+)?$') _modX_group = re.compile(r'[^A-Z-]*[A-Z]') _modX_split = re.compile(r'([^A-Z-]*)([A-Z])') _modX_single = re.compile(r'^([^A-Z-]*)([A-Z])$') def parse(sequence, show_unmodified_termini=False, split=False, allow_unknown_modifications=False, **kwargs): """Parse a sequence string written in modX notation into a list of labels or (if `split` argument is :py:const:`True`) into a list of tuples representing amino acid residues and their modifications. Parameters ---------- sequence : str The sequence of a polypeptide. show_unmodified_termini : bool, optional If :py:const:`True` then the unmodified N- and C-termini are explicitly shown in the returned list. Default value is :py:const:`False`. split : bool, optional If :py:const:`True` then the result will be a list of tuples with 1 to 4 elements: terminal modification, modification, residue. Default value is :py:const:`False`. allow_unknown_modifications : bool, optional If :py:const:`True` then do not raise an exception when an unknown modification of a known amino acid residue is found in the sequence. This also includes terminal groups. Default value is :py:const:`False`. .. note:: Since version 2.5, this parameter has effect only if `labels` are provided. labels : container, optional A container of allowed labels for amino acids, modifications and terminal modifications. If not provided, no checks will be done. Separate labels for modifications (such as 'p' or 'ox') can be supplied, which means they are applicable to all residues. .. warning:: If `show_unmodified_termini` is set to :py:const:`True`, standard terminal groups need to be present in `labels`. .. warning:: Avoid using sequences with only one terminal group, as they are ambiguous. If you provide one, `labels` (or :py:const:`std_labels`) will be used to resolve the ambiguity. Returns ------- out : list List of tuples with labels of modifications and amino acid residues. Examples -------- >>> parse('PEPTIDE', split=True) [('P',), ('E',), ('P',), ('T',), ('I',), ('D',), ('E',)] >>> parse('H-PEPTIDE') ['P', 'E', 'P', 'T', 'I', 'D', 'E'] >>> parse('PEPTIDE', show_unmodified_termini=True) ['H-', 'P', 'E', 'P', 'T', 'I', 'D', 'E', '-OH'] >>> parse('TEpSToxM', labels=std_labels + ['pS', 'oxM']) ['T', 'E', 'pS', 'T', 'oxM'] >>> parse('zPEPzTIDzE', True, True, labels=std_labels+['z']) [('H-', 'z', 'P'), ('E',), ('P',), ('z', 'T'), ('I',), ('D',), ('z', 'E', '-OH')] >>> parse('Pmod1EPTIDE') ['P', 'mod1E', 'P', 'T', 'I', 'D', 'E'] """ sequence = str(sequence) try: n, body, c = re.match(_modX_sequence, sequence).groups() except AttributeError: raise PyteomicsError('Not a valid modX sequence: ' + sequence) # Check for allowed labels, if they were explicitly given labels = kwargs.get('labels') # labels help save the day when only one terminal group is given if c is None and n is not None: if labels is None: labels = std_labels # we can try to resolve the ambiguity if n != std_nterm and n not in labels: # n is the body then c = '-' + body body = n[:-1] n = None # Actual parsing if split: parsed_sequence = [g if g[0] else (g[1],) for g in re.findall( _modX_split, body)] else: parsed_sequence = re.findall(_modX_group, body) nterm, cterm = (n or std_nterm), (c or std_cterm) # Check against `labels` if given if labels is not None: labels = set(labels) for term, std_term in zip([n, c], [std_nterm, std_cterm]): if term and term not in labels and not allow_unknown_modifications: raise PyteomicsError( 'Unknown label: {}'.format(term)) for group in parsed_sequence: if split: mod, X = group if len(group) == 2 else ('', group[0]) else: mod, X = re.match(_modX_split, group).groups() if ((not mod) and X not in labels) or not ((mod+X in labels) or ( X in labels and ( mod in labels or allow_unknown_modifications))): raise PyteomicsError( 'Unknown label: {}'.format(group)) # Append terminal labels if show_unmodified_termini or nterm != std_nterm: if split: parsed_sequence[0] = (nterm,) + parsed_sequence[0] else: parsed_sequence.insert(0, nterm) if show_unmodified_termini or cterm != std_cterm: if split: parsed_sequence[-1] = parsed_sequence[-1] + (cterm,) else: parsed_sequence.append(cterm) return parsed_sequence def valid(*args, **kwargs): """Try to parse sequence and catch the exceptions. All parameters are passed to :py:func:`parse`. Returns ------- out : bool :py:const:`True` if the sequence was parsed successfully, and :py:const:`False` otherwise. """ try: parse(*args, **kwargs) except PyteomicsError: return False return True def fast_valid(sequence, labels=set(std_labels)): """Iterate over `sequence` and check if all items are in `labels`. With strings, this only works as expected on sequences without modifications or terminal groups. Parameters ---------- sequence : iterable (expectedly, str) The sequence to check. A valid sequence would be a string of labels, all present in `labels`. labels : iterable, optional An iterable of known labels. Returns ------- out : bool """ return set(sequence).issubset(labels) def tostring(parsed_sequence, show_unmodified_termini=True): """Create a string from a parsed sequence. Parameters ---------- parsed_sequence : iterable Expected to be in one of the formats returned by :py:func:`parse`, i.e. list of labels or list of tuples. show_unmodified_termini : bool, optional Defines the behavior towards standard terminal groups in the input. :py:const:`True` means that they will be preserved if present (default). :py:const:`False` means that they will be removed. Standard terminal groups will not be added if not shown in `parsed_sequence`, regardless of this setting. Returns ------- sequence : str """ parsed_sequence = list(parsed_sequence) labels = [] nterm = parsed_sequence[0] cterm = parsed_sequence[-1] if isinstance(nterm, str): if nterm != std_nterm or show_unmodified_termini: labels.append(nterm) labels.extend(parsed_sequence[1:-1]) if len(parsed_sequence) > 1 and (cterm != std_cterm or show_unmodified_termini): labels.append(cterm) else: if len(parsed_sequence) == 1: g = nterm if nterm[0] == std_nterm and not show_unmodified_termini: g = g[1:] if nterm[-1] == std_cterm and not show_unmodified_termini: g = g[:-1] return ''.join(g) if nterm[0] != std_nterm or show_unmodified_termini: labels.append(''.join(nterm)) else: labels.append(''.join(nterm[1:])) labels.extend(''.join(g) for g in parsed_sequence[1:-1]) if len(parsed_sequence) > 1: if cterm[-1] != std_cterm or show_unmodified_termini: labels.append(''.join(cterm)) else: labels.append(''.join(cterm[:-1])) return ''.join(labels) def amino_acid_composition(sequence, show_unmodified_termini=False, term_aa=False, allow_unknown_modifications=False, **kwargs): """Calculate amino acid composition of a polypeptide. Parameters ---------- sequence : str or list The sequence of a polypeptide or a list with a parsed sequence. show_unmodified_termini : bool, optional If :py:const:`True` then the unmodified N- and C-terminus are explicitly shown in the returned dict. Default value is :py:const:`False`. term_aa : bool, optional If :py:const:`True` then the terminal amino acid residues are artificially modified with `nterm` or `cterm` modification. Default value is :py:const:`False`. allow_unknown_modifications : bool, optional If :py:const:`True` then do not raise an exception when an unknown modification of a known amino acid residue is found in the sequence. Default value is :py:const:`False`. labels : list, optional A list of allowed labels for amino acids and terminal modifications. Returns ------- out : dict A dictionary of amino acid composition. Examples -------- >>> amino_acid_composition('PEPTIDE') == \ {'I': 1, 'P': 2, 'E': 2, 'T': 1, 'D': 1} True >>> amino_acid_composition('PEPTDE', term_aa=True) == \ {'ctermE': 1, 'E': 1, 'D': 1, 'P': 1, 'T': 1, 'ntermP': 1} True >>> amino_acid_composition('PEPpTIDE', labels=std_labels+['pT']) == \ {'I': 1, 'P': 2, 'E': 2, 'D': 1, 'pT': 1} True """ labels = kwargs.get('labels') if isinstance(sequence, str): parsed_sequence = parse(sequence, show_unmodified_termini, allow_unknown_modifications=allow_unknown_modifications, labels=labels) elif isinstance(sequence, list): if sequence and isinstance(sequence[0], tuple): parsed_sequence = parse(tostring(sequence, True), show_unmodified_termini, allow_unknown_modifications=allow_unknown_modifications, labels=labels) else: parsed_sequence = sequence else: raise PyteomicsError('Unsupported type of a sequence.' 'Must be str or list, not %s' % type(sequence)) aa_dict = BasicComposition() # Process terminal amino acids. if term_aa: nterm_aa_position = 1 if is_term_mod(parsed_sequence[0]) else 0 cterm_aa_position = ( len(parsed_sequence) - 2 if is_term_mod(parsed_sequence[-1]) else len(parsed_sequence) - 1) if len(parsed_sequence) > 1: aa_dict['cterm' + parsed_sequence.pop(cterm_aa_position)] = 1 aa_dict['nterm' + parsed_sequence.pop(nterm_aa_position)] = 1 # Process core amino acids. for aa in parsed_sequence: aa_dict[aa] += 1 return aa_dict @memoize() def cleave(sequence, rule, missed_cleavages=0, min_length=None, semi=False, exception=None): """Cleaves a polypeptide sequence using a given rule. Parameters ---------- sequence : str The sequence of a polypeptide. .. note:: The sequence is expected to be in one-letter uppercase notation. Otherwise, some of the cleavage rules in :py:data:`expasy_rules` will not work as expected. rule : str or compiled regex A key present in :py:const:`expasy_rules` or a `regular expression <https://docs.python.org/library/re.html#regular-expression-syntax>`_ describing the site of cleavage. It is recommended to design the regex so that it matches only the residue whose C-terminal bond is to be cleaved. All additional requirements should be specified using `lookaround assertions <http://www.regular-expressions.info/lookaround.html>`_. :py:data:`expasy_rules` contains cleavage rules for popular cleavage agents. missed_cleavages : int, optional Maximum number of allowed missed cleavages. Defaults to 0. min_length : int or None, optional Minimum peptide length. Defaults to :py:const:`None`. .. note :: This checks for string length, which is only correct for one-letter notation and not for full *modX*. Use :py:func:`length` manually if you know what you are doing and apply :py:func:`cleave` to *modX* sequences. semi : bool, optional Include products of semi-specific cleavage. Default is :py:const:`False`. This effectively cuts every peptide at every position and adds results to the output. exception : str or compiled RE or None, optional Exceptions to the cleavage rule. If specified, should be a key present in :py:const:`expasy_rules` or regular expression. Cleavage sites matching `rule` will be checked against `exception` and omitted if they match. Returns ------- out : set A set of unique (!) peptides. Examples -------- >>> cleave('AKAKBK', expasy_rules['trypsin'], 0) == {'AK', 'BK'} True >>> cleave('AKAKBK', 'trypsin', 0) == {'AK', 'BK'} True >>> cleave('GKGKYKCK', expasy_rules['trypsin'], 2) == \ {'CK', 'GKYK', 'YKCK', 'GKGK', 'GKYKCK', 'GK', 'GKGKYK', 'YK'} True """ return set(_cleave(sequence, rule, missed_cleavages, min_length, semi, exception)) def _cleave(sequence, rule, missed_cleavages=0, min_length=None, semi=False, exception=None): """Like :py:func:`cleave`, but the result is a list. Refer to :py:func:`cleave` for explanation of parameters. """ rule = expasy_rules.get(rule, rule) exception = expasy_rules.get(exception, exception) peptides = [] ml = missed_cleavages+2 trange = range(ml) cleavage_sites = deque([0], maxlen=ml) if min_length is None: min_length = 1 cl = 1 if exception is not None: exceptions = {x.end() for x in re.finditer(exception, sequence)} for i in it.chain([x.end() for x in re.finditer(rule, sequence)], [None]): if exception is not None and i in exceptions: continue cleavage_sites.append(i) if cl < ml: cl += 1 for j in trange[:cl-1]: seq = sequence[cleavage_sites[j]:cleavage_sites[-1]] if seq and len(seq) >= min_length: peptides.append(seq) if semi: for k in range(min_length, len(seq)-1): peptides.append(seq[:k]) for k in range(1, len(seq)-min_length+1): peptides.append(seq[k:]) return peptides def num_sites(sequence, rule, **kwargs): """Count the number of sites where `sequence` can be cleaved using the given `rule` (e.g. number of miscleavages for a peptide). Parameters ---------- sequence : str The sequence of a polypeptide. rule : str or compiled regex A regular expression describing the site of cleavage. It is recommended to design the regex so that it matches only the residue whose C-terminal bond is to be cleaved. All additional requirements should be specified using `lookaround assertions <http://www.regular-expressions.info/lookaround.html>`_. labels : list, optional A list of allowed labels for amino acids and terminal modifications. exception : str or compiled RE or None, optional Exceptions to the cleavage rule. If specified, should be a regular expression. Cleavage sites matching `rule` will be checked against `exception` and omitted if they match. Returns ------- out : int Number of cleavage sites. """ return len(_cleave(sequence, rule, **kwargs)) - 1 expasy_rules = { 'arg-c': r'R', 'asp-n': r'\w(?=D)', 'bnps-skatole' : r'W', 'caspase 1': r'(?<=[FWYL]\w[HAT])D(?=[^PEDQKR])', 'caspase 2': r'(?<=DVA)D(?=[^PEDQKR])', 'caspase 3': r'(?<=DMQ)D(?=[^PEDQKR])', 'caspase 4': r'(?<=LEV)D(?=[^PEDQKR])', 'caspase 5': r'(?<=[LW]EH)D', 'caspase 6': r'(?<=VE[HI])D(?=[^PEDQKR])', 'caspase 7': r'(?<=DEV)D(?=[^PEDQKR])', 'caspase 8': r'(?<=[IL]ET)D(?=[^PEDQKR])', 'caspase 9': r'(?<=LEH)D', 'caspase 10': r'(?<=IEA)D', 'chymotrypsin high specificity' : r'([FY](?=[^P]))|(W(?=[^MP]))', 'chymotrypsin low specificity': r'([FLY](?=[^P]))|(W(?=[^MP]))|(M(?=[^PY]))|(H(?=[^DMPW]))', 'clostripain': r'R', 'cnbr': r'M', 'enterokinase': r'(?<=[DE]{3})K', 'factor xa': r'(?<=[AFGILTVM][DE]G)R', 'formic acid': r'D', 'glutamyl endopeptidase': r'E', 'granzyme b': r'(?<=IEP)D', 'hydroxylamine': r'N(?=G)', 'iodosobenzoic acid': r'W', 'lysc': r'K', 'ntcb': r'\w(?=C)', 'pepsin ph1.3': r'((?<=[^HKR][^P])[^R](?=[FL][^P]))|' r'((?<=[^HKR][^P])[FL](?=\w[^P]))', 'pepsin ph2.0': r'((?<=[^HKR][^P])[^R](?=[FLWY][^P]))|' r'((?<=[^HKR][^P])[FLWY](?=\w[^P]))', 'proline endopeptidase': r'(?<=[HKR])P(?=[^P])', 'proteinase k': r'[AEFILTVWY]', 'staphylococcal peptidase i': r'(?<=[^E])E', 'thermolysin': r'[^DE](?=[AFILMV])', 'thrombin': r'((?<=G)R(?=G))|' r'((?<=[AFGILTVM][AFGILTVWA]P)R(?=[^DE][^DE]))', 'trypsin': r'([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))', 'trypsin_exception': r'((?<=[CD])K(?=D))|((?<=C)K(?=[HY]))|((?<=C)R(?=K))|((?<=R)R(?=[HR]))', } """ This dict contains regular expressions for cleavage rules of the most popular proteolytic enzymes. The rules were taken from the `PeptideCutter tool <http://ca.expasy.org/tools/peptidecutter/peptidecutter_enzymes.html>`_ at Expasy. .. note:: 'trypsin_exception' can be used as `exception` argument when calling :py:func:`cleave` with 'trypsin' `rule`:: >>> parser.cleave('PEPTIDKDE', parser.expasy_rules['trypsin']) {'DE', 'PEPTIDK'} >>> parser.cleave('PEPTIDKDE', parser.expasy_rules['trypsin'], \ exception=parser.expasy_rules['trypsin_exception']) {'PEPTIDKDE'} """ def isoforms(sequence, **kwargs): """ Apply variable and fixed modifications to the polypeptide and yield the unique modified sequences. Parameters ---------- sequence : str Peptide sequence to modify. variable_mods : dict, optional A dict of variable modifications in the following format: :py:const:`{'label1': ['X', 'Y', ...], 'label2': ['X', 'A', 'B', ...]}` Keys in the dict are modification labels (terminal modifications allowed). Values are iterables of residue labels (one letter each) or :py:const:`True`. If a value for a modification is :py:const:`True`, it is applicable to any residue (useful for terminal modifications). You can use values such as 'ntermX' or 'ctermY' to specify that a mdofication only occurs when the residue is in the terminal position. This is *not needed* for terminal modifications. .. note:: Several variable modifications can occur on amino acids of the same type, but in the output each amino acid residue will be modified at most once (apart from terminal modifications). fixed_mods : dict, optional A dict of fixed modifications in the same format. **Note**: if a residue is affected by a fixed modification, no variable modifications will be applied to it (apart from terminal modifications). labels : list, optional A list of amino acid labels containing all the labels present in `sequence`. Modified entries will be added automatically. Defaults to :py:data:`std_labels`. Not required since version 2.5. max_mods : int or None, optional Number of modifications that can occur simultaneously on a peptide, excluding fixed modifications. If :py:const:`None` or if ``max_mods`` is greater than the number of modification sites, all possible isoforms are generated. Default is :py:const:`None`. override : bool, optional Defines how to handle the residues that are modified in the input. :py:const:`False` means that they will be preserved (default). :py:const:`True` means they will be treated as unmodified. show_unmodified_termini : bool, optional If :py:const:`True` then the unmodified N- and C-termini are explicitly shown in the returned sequences. Default value is :py:const:`False`. format : str, optional If :py:const:`'str'` (default), an iterator over sequences is returned. If :py:const:`'split'`, the iterator will yield results in the same format as :py:func:`parse` with the 'split' option, with unmodified terminal groups shown. Returns ------- out : iterator over strings or lists All possible unique polypeptide sequences resulting from the specified modifications are yielded obe by one. """ def main(group): # index of the residue (capital letter) in `group` if group[-1][0] == '-': i = -2 else: i = -1 return len(group) + i, group[i] def apply_mod(label, mod): # `label` is assumed to be a tuple (see split option of parse) # unmodified termini are assumed shown # if the modification is not applicable, `label` is returned group = list(label) m = main(group)[0] if m == 0 and not is_term_mod(mod): group.insert(0, mod) elif mod[0] == '-' and (group[-1] == std_cterm or ( group[-1][0] == '-' and override)): group[-1] = mod elif mod[-1] == '-' and (group[0] == std_nterm or ( group[0][-1] == '-' and override)): group[0] = mod elif not is_term_mod(mod): if m and not group[m-1][-1] == '-': if override: group[m-1] = mod else: group.insert(m, mod) return tuple(group) variable_mods = kwargs.get('variable_mods', {}) fixed_mods = kwargs.get('fixed_mods', {}) parse_kw = {} if 'labels' in kwargs: parse_kw['labels'] = list(kwargs['labels']) + list(fixed_mods) parsed = parse(sequence, True, True, **parse_kw) override = kwargs.get('override', False) show_unmodified_termini = kwargs.get('show_unmodified_termini', False) max_mods = kwargs.get('max_mods') format_ = kwargs.get('format', 'str') # Apply fixed modifications for cmod in fixed_mods: for i, group in enumerate(parsed): if fixed_mods[cmod] == True or main(group)[1] in fixed_mods[cmod]: parsed[i] = apply_mod(group, cmod) # Create a list of possible states for each group # Start with N-terminal mods and regular mods on the N-terminal residue second = set(apply_mod(parsed[0], m) for m, r in variable_mods.items() if (r == True or main(parsed[0])[1] in r or 'nterm' + main(parsed[0])[1] in r or (len(parsed) == 1 and 'cterm' + main(parsed[0])[1] in r)) and not is_term_mod(m) ).union([parsed[0]]) first = it.chain((apply_mod(group, mod) for group in second for mod, res in variable_mods.items() if (mod.endswith('-') or (mod.startswith('-') and len(parsed) == 1)) and (res == True or main(group)[1] in res)), second) states = [[parsed[0]] + list(set(first).difference({parsed[0]}))] # Continue with regular mods states.extend([group] + list(set(apply_mod(group, mod) for mod in variable_mods if ( variable_mods[mod] == True or group[-1] in variable_mods[mod]) and not is_term_mod(mod) ).difference({group})) for group in parsed[1:-1]) # Finally add C-terminal mods and regular mods on the C-terminal residue if len(parsed) > 1: second = set(apply_mod(parsed[-1], m) for m, r in variable_mods.items() if (r == True or main(parsed[-1])[1] in r or 'cterm' + main(parsed[-1])[1] in r) and not is_term_mod(m) ).union((parsed[-1],)) first = it.chain((apply_mod(group, mod) for group in second for mod, res in variable_mods.items() if mod.startswith('-') and ( res == True or main(group)[1] in res)), second) states.append([parsed[-1]] + list(set(first).difference({parsed[-1]}))) sites = [s for s in enumerate(states) if len(s[1]) > 1] if max_mods is None or max_mods > len(sites): possible_states = it.product(*states) else: def state_lists(): for m in range(max_mods+1): for comb in it.combinations(sites, m): skel = [[s[0]] for s in states] for i, e in comb: skel[i] = e[1:] yield skel possible_states = it.chain.from_iterable( it.product(*skel) for skel in state_lists()) if format_ == 'split': def strip_std_terms(): for ps in possible_states: ps = list(ps) if not show_unmodified_termini: if ps[0][0] == std_nterm: ps[0] = ps[0][1:] if ps[-1][-1] == std_cterm: ps[-1] = ps[-1][:-1] yield ps return strip_std_terms() elif format_ == 'str': return (tostring(form, show_unmodified_termini) for form in possible_states) else: raise PyteomicsError('Unsupported value of "format": {}'.format(format_)) def coverage(protein, peptides): """Calculate how much of `protein` is covered by `peptides`. Peptides can overlap. If a peptide is found multiple times in `protein`, it contributes more to the overall coverage. Requires :py:mod:`numpy`. .. note:: Modifications and terminal groups are discarded. Parameters ---------- protein : str A protein sequence. peptides : iterable An iterable of peptide sequences. Returns ------- out : float The sequence coverage, between 0 and 1. Examples -------- >>> coverage('PEPTIDES'*100, ['PEP', 'EPT']) 0.5 """ import numpy as np protein = re.sub(r'[^A-Z]', '', protein) mask = np.zeros(len(protein), dtype=np.int8) for peptide in peptides: indices = [m.start() for m in re.finditer( '(?={})'.format(re.sub(r'[^A-Z]', '', peptide)), protein)] for i in indices: mask[i:i+len(peptide)] = 1 return mask.sum(dtype=float) / mask.size if __name__ == "__main__": import doctest doctest.testmod() ``` #### File: pyteomics/pyteomics/pepxml.py ```python from lxml import etree from . import xml, auxiliary as aux, _schema_defaults class PepXML(xml.MultiProcessingXML, xml.IndexSavingXML): """Parser class for pepXML files.""" file_format = 'pepXML' _root_element = 'msms_pipeline_analysis' _default_schema = _schema_defaults._pepxml_schema_defaults _default_version = '1.15' _default_iter_tag = 'spectrum_query' _indexed_tags = {'spectrum_query'} _indexed_tag_keys = {'spectrum_query': 'spectrum'} _default_id_attr = 'spectrum' _structures_to_flatten = {'search_score_summary', 'modification_info'} # attributes which contain unconverted values _convert_items = {'float': {'calc_neutral_pep_mass', 'massdiff', 'probability', 'variable', 'static'}, 'int': {'start_scan', 'end_scan', 'index', 'num_matched_peptides'}, 'bool': {'is_rejected'}, 'floatarray': {'all_ntt_prob'}}.items() def _get_info_smart(self, element, **kwargs): """Extract the info in a smart way depending on the element type""" try: name = kwargs.pop('ename') except KeyError: name = xml._local_name(element) rec = kwargs.pop('recursive', None) if name == self._root_element: info = self._get_info(element, ename=name, recursive=(rec if rec is not None else False), **kwargs) else: info = self._get_info(element, ename=name, recursive=(rec if rec is not None else True), **kwargs) def safe_float(s): try: return float(s) except ValueError: if s.startswith('+-0'): return 0 return None converters = {'float': safe_float, 'int': int, 'bool': lambda x: x.lower() in {'1', 'true'}, 'floatarray': lambda x: list(map(float, x[1:-1].split(',')))} for k, v in dict(info).items(): for t, s in self._convert_items: if k in s: del info[k] info[k] = converters[t](v) for k in {'search_score', 'parameter'}: if k in info and isinstance(info[k], list) and all( isinstance(x, dict) and len(x) == 1 for x in info[k]): scores = {} for score in info[k]: name, value = score.popitem() try: scores[name] = float(value) except ValueError: scores[name] = value info[k] = scores if 'search_result' in info and len(info['search_result']) == 1: info.update(info['search_result'][0]) del info['search_result'] if 'protein' in info and 'peptide' in info: info['proteins'] = [{'protein': info.pop('protein'), 'protein_descr': info.pop('protein_descr', None)}] for add_key in {'peptide_prev_aa', 'peptide_next_aa', 'protein_mw'}: if add_key in info: info['proteins'][0][add_key] = info.pop(add_key) info['proteins'][0]['num_tol_term'] = info.pop('num_tol_term', 0) if 'alternative_protein' in info: info['proteins'].extend(info['alternative_protein']) del info['alternative_protein'] if 'peptide' in info and not 'modified_peptide' in info: info['modified_peptide'] = info['peptide'] if 'peptide' in info: info['modifications'] = info.pop('mod_aminoacid_mass', []) if 'mod_nterm_mass' in info: info['modifications'].insert(0, {'position': 0, 'mass': float(info.pop('mod_nterm_mass'))}) if 'mod_cterm_mass' in info: info['modifications'].append({'position': 1 + len(info['peptide']), 'mass': float(info.pop('mod_cterm_mass'))}) if 'modified_peptide' in info and info['modified_peptide'] == info.get( 'peptide'): if not info.get('modifications'): info['modifications'] = [] else: mp = info['modified_peptide'] for mod in sorted(info['modifications'], key=lambda m: m['position'], reverse=True): if mod['position'] not in {0, 1+len(info['peptide'])}: p = mod['position'] mp = mp[:p] + '[{}]'.format(int(mod['mass'])) + mp[p:] info['modified_peptide'] = mp if 'search_hit' in info: info['search_hit'].sort(key=lambda x: x['hit_rank']) return info def read(source, read_schema=False, iterative=True, **kwargs): """Parse `source` and iterate through peptide-spectrum matches. Parameters ---------- source : str or file A path to a target pepXML file or the file object itself. read_schema : bool, optional If :py:const:`True`, attempt to extract information from the XML schema mentioned in the pepXML header. Otherwise, use default parameters. Not recommended without Internet connection or if you don't like to get the related warnings. iterative : bool, optional Defines whether iterative parsing should be used. It helps reduce memory usage at almost the same parsing speed. Default is :py:const:`True`. Returns ------- out : PepXML An iterator over dicts with PSM properties. """ return PepXML(source, read_schema=read_schema, iterative=iterative) def iterfind(source, path, **kwargs): """Parse `source` and yield info on elements with specified local name or by specified "XPath". .. note:: This function is provided for backward compatibility only. If you do multiple :py:func:`iterfind` calls on one file, you should create an :py:class:`PepXML` object and use its :py:meth:`!iterfind` method. Parameters ---------- source : str or file File name or file-like object. path : str Element name or XPath-like expression. Only local names separated with slashes are accepted. An asterisk (`*`) means any element. You can specify a single condition in the end, such as: ``"/path/to/element[some_value>1.5]"`` Note: you can do much more powerful filtering using plain Python. The path can be absolute or "free". Please don't specify namespaces. recursive : bool, optional If :py:const:`False`, subelements will not be processed when extracting info from elements. Default is :py:const:`True`. iterative : bool, optional Specifies whether iterative XML parsing should be used. Iterative parsing significantly reduces memory usage and may be just a little slower. When `retrieve_refs` is :py:const:`True`, however, it is highly recommended to disable iterative parsing if possible. Default value is :py:const:`True`. read_schema : bool, optional If :py:const:`True`, attempt to extract information from the XML schema mentioned in the mzIdentML header. Otherwise, use default parameters. Not recommended without Internet connection or if you don't like to get the related warnings. Returns ------- out : iterator """ return PepXML(source, **kwargs).iterfind(path, **kwargs) version_info = xml._make_version_info(PepXML) def roc_curve(source): """Parse source and return a ROC curve for peptideprophet analysis. Parameters ---------- source : str or file A path to a target pepXML file or the file object itself. Returns ------- out : list A list of ROC points. """ parser = etree.XMLParser(remove_comments=True, ns_clean=True) tree = etree.parse(source, parser=parser) roc_curve = [] for roc_error_data in tree.xpath( "/*[local-name()='msms_pipeline_analysis'] \ //*[local-name()='analysis_summary' and @analysis='peptideprophet'] \ //*[local-name()='peptideprophet_summary'] \ //*[local-name()='roc_error_data']"): for element in roc_error_data.xpath("*[local-name()='roc_data_point' or local-name()='error_point']"): data_point = dict(element.attrib) for key in data_point: data_point[key] = float(data_point[key]) data_point["charge"] = roc_error_data.attrib["charge"] data_point["tag"] = etree.QName(element).localname roc_curve.append(data_point) return roc_curve # chain = aux._make_chain(read, 'read') chain = aux.ChainBase._make_chain(read) def _is_decoy_prefix(psm, prefix='DECOY_'): """Given a PSM dict, return :py:const:`True` if all protein names for the PSM start with ``prefix``, and :py:const:`False` otherwise. This function might not work for some pepXML flavours. Use the source to get the idea and suit it to your needs. Parameters ---------- psm : dict A dict, as yielded by :py:func:`read`. prefix : str, optional A prefix used to mark decoy proteins. Default is `'DECOY_'`. Returns ------- out : bool """ return all(protein['protein'].startswith(prefix) for protein in psm['search_hit'][0]['proteins']) def _is_decoy_suffix(psm, suffix='_DECOY'): return all(protein['protein'].endswith(suffix) for protein in psm['search_hit'][0]['proteins']) is_decoy = _is_decoy_prefix fdr = aux._make_fdr(_is_decoy_prefix, _is_decoy_suffix) _key = lambda x: min( sh['search_score']['expect'] for sh in x['search_hit']) qvalues = aux._make_qvalues(chain, _is_decoy_prefix, _is_decoy_suffix, _key) filter = aux._make_filter(chain, _is_decoy_prefix, _is_decoy_suffix, _key, qvalues) filter.chain = aux._make_chain(filter, 'filter', True) def DataFrame(*args, **kwargs): """Read pepXML output files into a :py:class:`pandas.DataFrame`. Requires :py:mod:`pandas`. Parameters ---------- *args, **kwargs : passed to :py:func:`chain` sep : str or None, optional Some values related to PSMs (such as protein information) are variable-length lists. If `sep` is a :py:class:`str`, they will be packed into single string using this delimiter. If `sep` is :py:const:`None`, they are kept as lists. Default is :py:const:`None`. pd_kwargs : dict, optional Keyword arguments passed to the :py:class:`pandas.DataFrame` constructor. Returns ------- out : pandas.DataFrame """ import pandas as pd kwargs = kwargs.copy() sep = kwargs.pop('sep', None) pd_kwargs = kwargs.pop('pd_kwargs', {}) def gen_items(): with chain(*args, **kwargs) as f: for item in f: info = {} for k, v in item.items(): if isinstance(v, (str, int, float)): info[k] = v if 'search_hit' in item: sh = item['search_hit'][0] proteins = sh.pop('proteins') prot_dict = {} for p in proteins: for k in p: prot_dict[k] = [] for p in proteins: for k, v in prot_dict.items(): v.append(p.get(k)) if sep is None: info.update(prot_dict) else: for k, v in prot_dict.items(): info[k] = sep.join(str(val) if val is not None else '' for val in v) info.update(sh.pop('search_score')) mods = sh.pop('modifications', []) formatted_mods = ['{0[mass]:.3f}@{0[position]}'.format(x) for x in mods] if sep is not None: info['modifications'] = sep.join(formatted_mods) else: info['modifications'] = formatted_mods for k, v in sh.items(): if isinstance(v, (str, int, float)): info[k] = v if 'analysis_result' in sh: for ar in sh['analysis_result']: if ar['analysis'] == 'peptideprophet': try: info.update(ar['peptideprophet_result']['parameter']) except KeyError: pass info['peptideprophet_probability'] = ar['peptideprophet_result']['probability'] info['peptideprophet_ntt_prob'] = ar['peptideprophet_result']['all_ntt_prob'] elif ar['analysis'] == 'interprophet': info.update(ar['interprophet_result']['parameter']) info['interprophet_probability'] = ar['interprophet_result']['probability'] info['interprophet_ntt_prob'] = ar['interprophet_result']['all_ntt_prob'] yield info return pd.DataFrame(gen_items(), **pd_kwargs) def filter_df(*args, **kwargs): """Read pepXML files or DataFrames and return a :py:class:`DataFrame` with filtered PSMs. Positional arguments can be pepXML files or DataFrames. Requires :py:mod:`pandas`. Parameters ---------- key : str / iterable / callable, optional Default is 'expect'. is_decoy : str / iterable / callable, optional Default is to check if all strings in the "protein" column start with `'DECOY_'` *args, **kwargs : passed to :py:func:`auxiliary.filter` and/or :py:func:`DataFrame`. Returns ------- out : pandas.DataFrame """ import pandas as pd sep = kwargs.get('sep') kwargs.setdefault('key', 'expect') if all(isinstance(arg, pd.DataFrame) for arg in args): if len(args) > 1: df = pd.concat(args) else: df = args[0] else: read_kw = {k: kwargs.pop(k) for k in ['iterative', 'read_schema', 'sep', 'pd_kwargs'] if k in kwargs} df = DataFrame(*args, **read_kw) if 'is_decoy' not in kwargs: if sep is not None: if 'decoy_suffix' in kwargs: kwargs['is_decoy'] = df['protein'].str.split(';').apply( lambda s: all(x.endswith(kwargs['decoy_suffix']) for x in s)) else: kwargs['is_decoy'] = df['protein'].str.split(';').apply( lambda s: all(x.startswith(kwargs.get('decoy_prefix', 'DECOY_')) for x in s)) else: if 'decoy_suffix' in kwargs: kwargs['is_decoy'] = df['protein'].apply( lambda s: all(x.endswith(kwargs['decoy_suffix']) for x in s)) else: kwargs['is_decoy'] = df['protein'].apply( lambda s: all(x.startswith(kwargs.get('decoy_prefix', 'DECOY_')) for x in s)) return aux.filter(df, **kwargs) ```
{ "source": "jmuelmen/scmlib", "score": 2 }
#### File: scmlib/SCM_diagnostics/SCM_diagnostics_functions.py ```python from netCDF4 import Dataset import tarfile import numpy as np import os def makevarlist(datadir,filelist,dimtest,varstoplot): numfiles=len(filelist) for f in range(0,numfiles): filename=filelist[f] file=datadir+filename print(file) fh=Dataset(file,mode='r') varsinfile=fh.variables.keys() numvars=len(varsinfile) dimtest_rev=dimtest dimsinfile=fh.dimensions.keys() if (dimsinfile[0] == "ncol"): dimtest_rev=dimtest-1 for v in range(0,numvars): varname=varsinfile[v] if (varname not in varstoplot): vartotest=fh.variables[varname][:] if (vartotest.ndim == dimtest_rev): theshape=np.shape(vartotest) if (theshape[vartotest.ndim - 1] == 1): varstoplot.append(varname) return varstoplot def make_tarfile(output_filename,source_dir): with tarfile.open(output_filename, "w:gz") as tar: tar.add(source_dir, arcname=os.path.basename(source_dir)) return make_tarfile def replace_string(infile, outfile, replacements): with open(infile) as fin: with open(outfile, 'w') as fout: for line in fin: for src,target in replacements.iteritems(): line = line.replace(src,target) fout.write(line) return outfile ```
{ "source": "jmuema/instaclone254", "score": 2 }
#### File: instaclone254/gram254/email.py ```python from django.core.mail import EmailMessage from django.template.loader import render_to_string from django.utils.encoding import force_bytes from django.utils.http import urlsafe_base64_encode from .token import account_activation_token def activation_email(user, current_site, receiver): subject = 'Account Activation' message = render_to_string('registration/confirm.html', { 'user': user, 'domain': current_site.domain, 'uid': urlsafe_base64_encode(force_bytes(user.pk)), 'token': account_activation_token.make_token(user) }) email = EmailMessage(subject, message, to=[receiver]) email.send() ```
{ "source": "jmuema/password-locker", "score": 4 }
#### File: jmuema/password-locker/credential_test.py ```python import unittest # Importing the unittest module from credential import Credential # Importing the credential class class TestCredential(unittest.TestCase): ''' Test class that defines test cases for the credential class behaviours. Args: unittest.TestCase: TestCase class that helps in creating test cases ''' def setUp(self): ''' Set up method to run before each test cases. ''' self.new_credential = Credential("instagram", "ironman", "ironman20") # create credential object def test_init(self): ''' test_init test case to test if the object is initialized properly ''' self.assertEqual(self.new_credential.myaccountname,"instagram") self.assertEqual(self.new_credential.myusername,"ironman") self.assertEqual(self.new_credential.mypassword,"<PASSWORD>") def test_save_credential(self): ''' test_save_credential test case to test if the credential object is saved into the credential list ''' self.new_credential.save_credential() # saving the new credential self.assertEqual(len(Credential.credential_list),1) def tearDown(self): ''' tearDown method that does clean up after each test case has run. ''' Credential.credential_list = [] def test_save_multiple_credential(self): ''' test to check if we can check multiple objects within credenials list ''' self.new_credential.save_credential() test_credential = Credential("instagram","ironman","ironman20") # new credential test_credential.save_credential() self.assertEqual(len(Credential.credential_list),2) def test_delete_credential(self): ''' test to remove a credential from our credential list ''' self.new_credential.save_credential() test_credential = Credential("instagram","ironman","ironman20") # new credential test_credential.save_credential() self.new_credential.delete_credential()# Deleting a credential object self.assertEqual(len(Credential.credential_list),1) def test_find_credential_by_username(self): ''' test to check if we can find a credential by username and display information ''' self.new_credential.save_credential() test_credential = Credential("instagram","ironman","ironman20") # new credential test_credential.save_credential() found_credential = Credential.find_by_username("ironman") self.assertEqual(found_credential.mypassword,test_credential.mypassword) def test_credential_exists(self): ''' test to check if we can return a Boolean if we cannot find the credential. ''' self.new_credential.save_credential() test_credential = Credential("instagram","ironman","ironman20") # new credential test_credential.save_credential() credential_exists = Credential.credential_exist("ironman") self.assertTrue(credential_exists) def test_display_all_credentials(self): ''' method that returns a list of all credentials saved ''' self.assertEqual(Credential.display_credentials(),Credential.credential_list) if __name__ == '__main__': unittest.main() ```
{ "source": "JMuff22/Scripts", "score": 3 }
#### File: casino/positron_utils/compute_e_twist.py ```python import numpy as np from scipy.optimize import curve_fit import argparse import sys def get_args(): """Define the task arguments with the default values. Returns: experiment parameters """ args_parser = argparse.ArgumentParser() args_parser.add_argument( '--qmc_ks', help='Filename of the QMC twisted energies in HA.', type=str, default='E_qmc_ks.txt' ) args_parser.add_argument( '--dft_ks', help='Filename of the DFT twisted energies in Ry.', type=str, default='E_dft_ks.txt' ) args_parser.add_argument( '--dft_dense', help='Value of the dft energy with dense k-grid in Ry', type=float, default=0.0 ) args_parser.add_argument( '--atsup_dense', help='Difference of the atsup energies epsilon_ks - epsilon_dense in Ha.', type=float, default=0.0 ) return args_parser.parse_args() def Eks(Edft, E_ta, b): return E_ta+b*Edft def main(): args=get_args() # Inputs: Energies of QMC, DFT, and DFT dense. In addition, positron energy # is given as the differense E_atsup_loose-E_atsup_dense. Eqmc=np.loadtxt(args.qmc_ks) Edft=0.5*np.loadtxt(args.dft_ks) if(Eqmc.shape[0]!=Edft.shape[0]): sys.exit("QMC and DFT have different number of twists.") Edft_dense=0.5*args.dft_dense Epositron=args.atsup_dense ydata=Eqmc[:,0] xdata=Edft-Edft_dense+Epositron popt,pcov=curve_fit(Eks,xdata,ydata) print(popt) print("-") print(pcov) if __name__=='__main__': main() ``` #### File: casino/positron_utils/connect.py ```python import numpy as np import matplotlib.pyplot as plt import argparse import sys def get_args(): """Define the task arguments with the default values. Returns: experiment parameters """ args_parser = argparse.ArgumentParser() args_parser.add_argument( '--files', help='lineplot.dat-files.', type=str, nargs='+', default=['lineplot.dat'] ) # Data files arguments args_parser.add_argument( '--dft', help='Filename of the DFT result.', type=str, default='acar1d_100_ave' ) args_parser.add_argument( '--weight', help= ''' value by which the APMD coefficients are to be weighted. Hint: in si-units, S=1.9014321124319818e-21 ''', type=float, default=1 ) args_parser.add_argument( '--ylog', help='log scale (1) or not (0).', type=int, default=0 ) args_parser.add_argument( '--ylim', help='ylim1,ylim2', type=str, default="not" ) args_parser.add_argument( '--xlim', help='xlim1,xlim2', type=str, default="not" ) return args_parser.parse_args() def main(): args=get_args() if(args.ylim!="not"): temp=args.ylim.split(',') if(len(temp)!=2): sys.exit("Wrong ylim input") ylim1=float(temp[0]) ylim2=float(temp[1]) if(args.xlim!="not"): temp=args.xlim.split(',') if(len(temp)!=2): sys.exit("Wrong ylim input") xlim1=float(temp[0]) xlim2=float(temp[1]) data=[] for fname in args.files: a=np.loadtxt(fname) print(a.shape) data.append(a[:,1]) x=a[:,0] y=np.array(data)*args.weight print(y.shape) ymean=np.mean(y,axis=0) ystd=np.std(y,axis=0) plt.plot(x,ymean,'b-') plt.plot(x,ymean+ystd,'r--') plt.plot(x,ymean-ystd,'r--') plt.grid(True) plt.legend(["Mean data","60% confidence interval"]) plt.xlabel("G-vector length (a.u.)") plt.ylabel("APMD value") if(args.ylim!="not"): plt.ylim([ylim1,ylim2]) if(args.xlim!="not"): plt.xlim([xlim1,xlim2]) if(not(args.ylog==0)): plt.yscale('log') plt.show() if __name__ == '__main__': main() ``` #### File: casino/positron_utils/errorbar_on_expval.py ```python import numpy as np import argparse import matplotlib.pyplot as plt import sys ''' This script searches for g-vectors along a given line, takes APMD values corresponding to the vectors from one or multiple expval.data-files, and plots the values as a function of the g-vector lentghts. If multiple expval.data-files are fed in to the script, the plto will also contain errorbars of the APMD values. ''' def get_args(): args_parser = argparse.ArgumentParser() args_parser.add_argument( '--files', help='Filenames.', nargs='+', type=str, default=['expval.data'] ) args_parser.add_argument( '--angle', help='3 integers: i,j,k, so that we look points in the direction i*b1+j*b2+k*b3.', type=str, default='1,0,0' ) args_parser.add_argument( '--ntwist', help='Number of twists at each lattice vector direction, given as i,j,k.', type=str, default='1,1,1' ) args_parser.add_argument( '--weight', help=''' value by which the APMD coefficients are to be weighted. Hint: in si-units, S=1.9014321124319818e-21 ''', type=float, default=1 ) return args_parser.parse_args() def parse(fn,nt): ''' Parses expval.data-file and returns the reciprocal lattice vectors, Number of g-vectors, list of g-vectors and the APMD values. Because we also want to parse merged expval.data-files, where multiple twisted g-vector-grids are merged, we give as an argument to this function the array nt, that describes the number of twists at each lattice vector direction. Then the i:th reciprocal lattice vector is divided by nt[i], so that by integer linear combinations of the newly generated reciprocal lattice vectors we can found ALL of the g-vectors, including the twisted ones. ''' with open(fn) as f: lines=f.readlines() for i in range(len(lines)): if(lines[i]=="Supercell reciprocal lattice vectors (au)\n"): pbmat=np.zeros((3,3)) for j in range(3): words=lines[i+j+1].split() for k in range(3): pbmat[j,k]=float(words[k])/nt[j] elif(lines[i]=="Number of G-vectors in set\n"): Ng=int(lines[i+1]) elif(lines[i]=="G-vector components Gx, Gy, Gz (au)\n"): gvec=np.zeros((Ng,3)) for j in range(Ng): words=lines[i+j+1].split() for k in range(3): gvec[j,k]=float(words[k]) elif(lines[i]=="Complex pair-density coefficients (real part, imaginary part)\n"): pmd=np.zeros((Ng,2)) for j in range(Ng): words=lines[i+j+1].split() for k in range(2): pmd[j,k]=float(words[k]) return pbmat,Ng,gvec,pmd def testint(r): tol=0.0000001 if(abs(round(r[0])-r[0])>tol): return -1 elif(abs(round(r[1])-r[1])>tol): return -1 elif(abs(round(r[2])-r[2])>tol): return -1 else: return 1 def linepoints(gvec,pmd,A,ia,ib,ic): g=[]; p=[] g.append(np.linalg.norm(gvec[0,:])) p.append(pmd[0,0]) for i in range(1,gvec.shape[0]): gv=gvec[i,:] intvec=np.matmul(A,gv) if(testint(intvec)<0): sys.exit("Non-integer linear combination of reciprocal lattice vectors:[{} {} {}]".format(intvec[0],intvec[1],intvec[2])) ivec=np.array((round(intvec[0]),round(intvec[1]),round(intvec[2]))) absivec=np.absolute(ivec) if(np.nonzero(absivec)[0].shape[0]>1): ii=np.min(absivec[np.nonzero(absivec)]) else: ii=absivec[np.nonzero(absivec)] intvec=intvec/ii if(testint(intvec)<0): continue if((round(intvec[0])==ia and round(intvec[1])==ib and round(intvec[2])==ic)): g.append(np.sqrt(gv[0]**2+gv[1]**2+gv[2]**2)) p.append(pmd[i,0]) g=np.array(g) p=np.array(p) isort=np.argsort(g) return g[isort],p[isort] def main(): args=get_args() print(" ") print("====== Plot APMD values along a given line =====") print(" ") print("CASINO expval files to be parsed:") for file in args.files: print(file) print(" ") temp=args.angle.split(',') ia=int(temp[0]); ib=int(temp[1]); ic=int(temp[2]) temp=args.ntwist.split(',') nt1=int(temp[0]); nt2=int(temp[1]); nt3=int(temp[2]) nt=np.array([nt1,nt2,nt3]) dict={} ind=0 plt.figure(1) pointlists=[] for fname in args.files: print("Parsing {}...".format(fname)) pbmat,Ng,gvec,pmd=parse(fname,nt) A=np.transpose(pbmat) AtA=np.matmul(np.transpose(A),A) mpinv=np.matmul(np.linalg.inv(AtA),np.transpose(A)) g,p=linepoints(gvec,pmd,mpinv,ia,ib,ic) p=p*args.weight pointlists.append(p) ind+=1 for p in pointlists[1:]: if p.shape[0]!=pointlists[0].shape[0]: sys.exit("Error: Different number of points along a line found from expval.data-files. ") YX=np.array(pointlists) yval=np.mean(YX,axis=0) yvar=np.std(YX,axis=0) print(" ") print("Obtained statistics: ") print("g-vec length, mean value, error") for i in range(yval.shape[0]): print("{}, {}, {}".format(g[i],yval[i],yvar[i])) plt.errorbar(g,yval,yvar) plt.title("Points found in direction "+args.angle) plt.grid() plt.legend(args.files) plt.show() if __name__=='__main__': main() ``` #### File: casino/positron_utils/merge_expval.py ```python import argparse import sys import numpy as np def get_args(): """Define the task arguments with the default values. Returns: experiment parameters """ args_parser = argparse.ArgumentParser() # Data files arguments args_parser.add_argument( '--files', help='Filenames.', nargs='+', type=str, default=['expval.data1','expval.data2'] ) return args_parser.parse_args() def sort_expval_files(l): d=[] for f in l: ind=f.find('expval.data') if(ind==-1): sys.exit("Filenames are not including the string 'expval.data'.") d.append(int(f[ind+11:])) d=np.array(d) perm=np.argsort(d) newl=[] for i in range(d.shape[0]): newl.append(l[perm[i]]) return newl def main(): def _read_expval(filename): gvec=[] pmd=[] pmd_sqr=[] with open(filename) as f: read_pmd2=False lines=f.readlines() for i in range(len(lines)): if lines[i][:39]=='START POSITRON MOMENTUM DENSITY SQUARED': read_pmd2=True if lines[i][:19]=='Number of G-vectors': Ng=int(lines[i+1]) if lines[i][:19] == 'G-vector components': for j in range(1,Ng+1): components=lines[i+j].split() vec=[] vec.append(float(components[0])) vec.append(float(components[1])) vec.append(float(components[2])) gvec.append(np.array(vec)) if ((lines[i][:17] == 'APMD coefficients')): if(read_pmd2): # Read the squared component array for j in range(1,Ng+1): components=lines[i+j].split() vec=[] vec.append(float(components[0])) vec.append(float(components[1])) pmd_sqr.append(np.array(vec)) else: # Read the non-squared mom den for j in range(1,Ng+1): components=lines[i+j].split() vec=[] vec.append(float(components[0])) vec.append(float(components[1])) pmd.append(np.array(vec)) return Ng,np.array(gvec),np.array(pmd),np.array(pmd_sqr) def _read_twists(filename='k_offsets'): twists=[] with open(filename) as f: lines=f.readlines() Nconf=int(lines[0]) for line in lines[1:]: words=line.split() vec=np.array([float(words[0]),float(words[1]),float(words[2])]) twists.append(vec) return Nconf,twists def _merge_expvals(files,file_to): Ng,gvec,pmd,pmd_sqr=_read_expval(files[0]) Ng0=Ng Nconf,twists=_read_twists() i=1 for file in files[1:]: Ng2,gvec2,pmd2,pmd_sqr_2=_read_expval(file) gvec2=gvec2+twists[i]; i+=1 Ng=Ng+Ng2 gvec=np.concatenate((gvec,gvec2)) pmd=np.concatenate((pmd,pmd2)) pmd_sqr=np.concatenate((pmd_sqr,pmd_sqr_2)) with open(files[0]) as f: lines=f.readlines() with open(file_to,'w') as f: write_line=True i=0 write_pmd_sqr=False while(write_line): if lines[i][:29] == 'END POSITRON MOMENTUM DENSITY': write_pmd_sqr=True if lines[i][:19]=='G-vector components': f.write(lines[i]); i+=1 for j in range(Ng): if j<Ng0: i+=1 f.write(str(gvec[j,0])+" "+str(gvec[j,1])+" "+str(gvec[j,2])+'\n') elif((lines[i][:17] == 'APMD coefficients')): if(write_pmd_sqr): # Write squared momentum density f.write(lines[i]); i+=1 for j in range(Ng): if j<Ng0: i+=1 f.write(str(pmd_sqr[j,0])+" "+str(pmd_sqr[j,1])+'\n') else: # Non-squared f.write(lines[i]); i+=1 for j in range(Ng): if j<Ng0: i+=1 f.write(str(pmd[j,0])+" "+str(pmd[j,1])+'\n') elif(lines[i][:19]=='Number of G-vectors'): f.write(lines[i]); i+=1 f.write(str(Ng)+'\n'); i+=1 elif(lines[i][:10]=='END EXPVAL'): # Terminate f.write(lines[i]) write_line=False else: f.write(lines[i]); i+=1 args=get_args() if len(args.files)<2: sys.exit("Error: Less than 2 files to merge found.") for file in args.files: if file[:11] != "expval.data": sys.exit("Wrong filenames provided: "+file) files=sort_expval_files(args.files) _merge_expvals(files,'expval.data') if __name__ == '__main__': main() ``` #### File: JMuff22/Scripts/twitter-delete-script.py ```python import json import tweepy import threading import time # Extract your archive and name the folder something you can remember # Paste your folder's absolute path below # For example it can be– # ARCHIVE_PATH = "/Users/mayur57/Desktop/archive" ARCHIVE_PATH = "" JS_FILE = ARCHIVE_PATH + "/data/tweet.js" JSON_FILE = ARCHIVE_PATH + "/data/deleter.json" DELETED_TWEETS = ARCHIVE_PATH + "/data/deleted_tweets.txt" SKIPPED_TWEETS = ARCHIVE_PATH + "/data/skipped_tweets.txt" # These are optional filters for the tweets you want to delete. # DO NOT edit these if you want to delete all of your tweets without # any filters. Otherwise, for example, if you want to skip tweets # having likes more 30 and retweets more than 5, you change the below # values as: # -> LIKES=30, RETWEETS=5 RETWEETS=0 LIKES=40 # Generate your own Twitter API keys and edit them here consumer_key = 'xxxxxxxx' consumer_secret = '<KEY>' access_token = '<KEY>' access_token_secret = '<KEY>' skipped_tweets = [] tweets_to_delete = [] # Number of tweets to be deleted by each thread. # Smaller batch size means faster deletion but may strain the CPU. # Recommended value is <500> tweets per thread. batch_size = 500 def process_tweet_json(JS_FILE): print("\n\n>> Processing your tweet.js file and converting it to a JSON.") print("\n>> Processing tweet.js file") js_file = open(JS_FILE, "r") js_data = js_file.read() js_file.close() print("\n>> Converting to processable JSON") json_data = js_data[25:] json_file = open(JSON_FILE, "w") json_file.write(json_data) json_file.close() def parse_json(JSON_FILE, LIKES, RETWEETS=0): with open(JSON_FILE) as jfd: data = json.load(jfd) for tweet in data: if(int(tweet["tweet"]["favorite_count"]) > LIKES and int(tweet["tweet"]["retweet_count"]) > RETWEETS): f = open(SKIPPED_TWEETS, "w") f.write("Tweets skipped:\n\n" + "ID: "+tweet["tweet"]["id"] + "\n" + "Tweet: "+tweet["tweet"]["full_text"]+"\n" + "Likes: "+tweet["tweet"]["favorite_count"]+"\n" + "Retweets: "+tweet["tweet"]["retweet_count"]+"\n\n") f.close() skipped_tweets.append(str(tweet["tweet"]["id"])) else: f = open(DELETED_TWEETS, "w") f.write("Tweets deleted:\n\n" + "ID: "+tweet["tweet"]["id"] + "\n" + "Tweet: "+tweet["tweet"]["full_text"]+"\n" + "Likes: "+tweet["tweet"]["favorite_count"]+"\n" + "Retweets: "+tweet["tweet"]["retweet_count"]+"\n\n") f.close() tweets_to_delete.append(str(tweet["tweet"]["id"])) print("\n>> You have selected " + str(len(tweets_to_delete)) + " tweets to be deleted.") print(">> You have selected " + str(len(skipped_tweets)) + " tweets to be deleted.") print("\n>> Your choices for filters were: ") print(f">> Likes more than {LIKES} and retweets more than {RETWEETS}.\n") def delete_tweets(batch_start, api): for i in range(batch_start, batch_start+batch_size): try: api.destroy_status(int(tweets_to_delete[i])) print("T - Deleted: " + tweets_to_delete[i]) except tweepy.TweepError as e: error_code = str(e.reason[10:13]) if error_code == "327": print(" D ---Skipping: " + tweets_to_delete[i]) elif error_code == "139": print(" D ---Already liked: " + tweets_to_delete[i]) elif error_code == "185": print("ERROR: Rate limit reached. Exiting.") break else: print("ERROR: ---" + e.reason + tweets_to_delete[i]) def make_threads(): auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) print(''' >> Deletion of tweets takes a long time due to the sluggish Twitter API. The script uses multithreading to delete threads faster. However, it might still take a few minutes to delete your entire history of tweets if it exceeds a couple of thousand tweets.''') i = 0 thread_count = 0 while(i < int(len(tweets_to_delete))): thread_count = thread_count + 1 t1 = threading.Thread(target=delete_tweets, args=(i, api)) t1.start() print(f"Thread started for deletion. Thread #{thread_count}") i = i + batch_size start_time = time.time() process_tweet_json(JS_FILE) parse_json(JSON_FILE, LIKES, RETWEETS) make_threads() print(f"--> Successfully deleted {len(tweets_to_delete)} tweets.") print(f"--> Successfully skipped {len(skipped_tweets)} tweets from deletion.") print(f"--> Number of threads used: {len(tweets_to_delete) % batch_size} of batch size {batch_size} each.") print("\n\n--> Process finished in %s seconds." % (time.time() - start_time)) ```
{ "source": "jmuhlich/cycif_registration", "score": 2 }
#### File: ashlar/scripts/ashlar.py ```python import warnings import sys import re import argparse import pathlib import blessed from .. import __version__ as VERSION from .. import reg from ..reg import PlateReader, BioformatsReader from ..filepattern import FilePatternReader from ..fileseries import FileSeriesReader from ..zen import ZenReader def main(argv=sys.argv): parser = argparse.ArgumentParser( description='Stitch and align multi-tile cyclic microscope images', formatter_class=HelpFormatter, ) parser.add_argument( 'filepaths', metavar='FILE', nargs='+', help='Image file(s) to be processed, one per cycle', ) parser.add_argument( '-o', '--output', dest='output', default='ashlar_output.ome.tif', metavar='PATH', help=("Output file. If PATH ends in .ome.tif a pyramidal OME-TIFF will" " be written. If PATH ends in just .tif and includes {cycle} and" " {channel} placeholders, a series of single-channel plain TIFF" " files will be written. If PATH starts with a relative or" " absolute path to another directory, that directory must already" " exist."), ) parser.add_argument( '-c', '--align-channel', dest='align_channel', type=int, default='0', metavar='CHANNEL', help=('Reference channel number for image alignment. Numbering starts' ' at 0.'), ) parser.add_argument( '--flip-x', default=False, action='store_true', help='Flip tile positions left-to-right', ) parser.add_argument( '--flip-y', default=False, action='store_true', help='Flip tile positions top-to-bottom', ) parser.add_argument( '--flip-mosaic-x', default=False, action='store_true', help='Flip output image left-to-right', ) parser.add_argument( '--flip-mosaic-y', default=False, action='store_true', help='Flip output image top-to-bottom', ) parser.add_argument( '--output-channels', nargs='+', type=int, metavar='CHANNEL', help=('Output only specified channels for each cycle. Numbering starts' ' at 0. (default: all channels)'), ) parser.add_argument( '-m', '--maximum-shift', type=float, default=15, metavar='SHIFT', help='Maximum allowed per-tile corrective shift in microns', ) parser.add_argument( '--filter-sigma', type=float, default=0, metavar='SIGMA', help=('Filter images before alignment using a Gaussian kernel with s.d.' ' of SIGMA pixels (default: no filtering)'), ) parser.add_argument( '-f', '--filename-format', dest='filename_format', default='cycle_{cycle}_channel_{channel}.tif', help=argparse.SUPPRESS, ) parser.add_argument( '--pyramid', default=False, action='store_true', help=argparse.SUPPRESS ) parser.add_argument( '--tile-size', type=int, default=1024, metavar='PIXELS', help='Pyramid tile size for OME-TIFF output', ) parser.add_argument( '--ffp', metavar='FILE', nargs='+', help=("Perform flat field illumination correction using the given" " profile image. Specify one common file for all cycles or one" " file for every cycle. Channel counts must match input files." " (default: no flat field correction)"), ) parser.add_argument( '--dfp', metavar='FILE', nargs='+', help=("Perform dark field illumination correction using the given" " profile image. Specify one common file for all cycles or one" " file for every cycle. Channel counts must match input files." " (default: no dark field correction)"), ) parser.add_argument( '--plates', default=False, action='store_true', help='Enable plate mode for HTS data', ) parser.add_argument( '-q', '--quiet', dest='quiet', default=False, action='store_true', help='Suppress progress display', ) parser.add_argument( '--version', action='version', version=f"ashlar {VERSION}" ) args = parser.parse_args(argv[1:]) configure_terminal() configure_warning_format() filepaths = args.filepaths output_path = pathlib.Path(args.output) op_tiff = bool(re.search(r"\.tiff?$", output_path.name, re.IGNORECASE)) ff_default = args.filename_format == parser.get_default("filename_format") if op_tiff and ff_default: # Standard usage: -o includes a .tif filename, -f not included. args.filename_format = output_path.name output_path = output_path.parent else: # Old, deprecated usage: -o is a directory and/or -f was specified. if ff_default: warnings.warn( "The output path must include a filename with a .tif or .tiff" " suffix. Specifying only a directory path with -o/--output has" " been deprecated and will be disabled in a future version. See" " the -o documentation for details.", reg.Warning, ) else: warnings.warn( "The -f/--filename-format argument has been deprecated and its" " functionality merged into the -o argument. See the -o" " documentation for details.", reg.Warning, ) if op_tiff and not output_path.is_dir(): # Checking is_dir() avoids erroring out in the strange but legal # situation where output_path is a DIRECTORY that ends in .tif ! print_error( "Filename may be appended to the output path specified by" " -o/--output, or specified separately with" " -f/--filename-format, but not both at the same time" ) return 1 if not re.search(r"\.tiff?$", args.filename_format, re.IGNORECASE): print_error( f"Filename format does not end in .tif: {args.filename_format}" ) return 1 if not output_path.is_dir(): print_error( "Output location does not exist or is not a directory:" f" {output_path}" ) return 1 if re.search(r"\.ome\.tiff?$", args.filename_format, re.IGNORECASE): args.pyramid = True if args.tile_size != parser.get_default("tile_size") and not args.pyramid: print_error("--tile-size can only be used with OME-TIFF output") return 1 ffp_paths = args.ffp if ffp_paths: if len(ffp_paths) not in (0, 1, len(filepaths)): print_error( "Wrong number of flat-field profiles. Must be 1, or {}" " (number of input files)".format(len(filepaths)) ) return 1 if len(ffp_paths) == 1: ffp_paths = ffp_paths * len(filepaths) dfp_paths = args.dfp if dfp_paths: if len(dfp_paths) not in (0, 1, len(filepaths)): print_error( "Wrong number of dark-field profiles. Must be 1, or {}" " (number of input files)".format(len(filepaths)) ) return 1 if len(dfp_paths) == 1: dfp_paths = dfp_paths * len(filepaths) aligner_args = {} aligner_args['channel'] = args.align_channel aligner_args['verbose'] = not args.quiet aligner_args['max_shift'] = args.maximum_shift aligner_args['filter_sigma'] = args.filter_sigma mosaic_args = {} if args.output_channels: mosaic_args['channels'] = args.output_channels if args.pyramid: mosaic_args['tile_size'] = args.tile_size if args.quiet is False: mosaic_args['verbose'] = True mosaic_args['flip_mosaic_x'] = args.flip_mosaic_x mosaic_args['flip_mosaic_y'] = args.flip_mosaic_y try: if args.plates: return process_plates( filepaths, output_path, args.filename_format, args.flip_x, args.flip_y, ffp_paths, dfp_paths, aligner_args, mosaic_args, args.pyramid, args.quiet ) else: mosaic_path_format = str(output_path / args.filename_format) return process_single( filepaths, mosaic_path_format, args.flip_x, args.flip_y, ffp_paths, dfp_paths, aligner_args, mosaic_args, args.pyramid, args.quiet ) except ProcessingError as e: print_error(str(e)) return 1 def process_single( filepaths, output_path_format, flip_x, flip_y, ffp_paths, dfp_paths, aligner_args, mosaic_args, pyramid, quiet, plate_well=None ): mosaic_args = mosaic_args.copy() writer_args = {} if pyramid: writer_args["tile_size"] = mosaic_args.pop("tile_size", None) mosaics = [] if not quiet: print("Stitching and registering input images") print('Cycle 0:') print(' reading %s' % filepaths[0]) reader = build_reader(filepaths[0], plate_well=plate_well) process_axis_flip(reader, flip_x, flip_y) ea_args = aligner_args.copy() if len(filepaths) == 1: ea_args['do_make_thumbnail'] = False edge_aligner = reg.EdgeAligner(reader, **ea_args) edge_aligner.run() mshape = edge_aligner.mosaic_shape mosaic_args_final = mosaic_args.copy() if ffp_paths: mosaic_args_final['ffp_path'] = ffp_paths[0] if dfp_paths: mosaic_args_final['dfp_path'] = dfp_paths[0] mosaics.append(reg.Mosaic(edge_aligner, mshape, **mosaic_args_final)) for cycle, filepath in enumerate(filepaths[1:], 1): if not quiet: print('Cycle %d:' % cycle) print(' reading %s' % filepath) reader = build_reader(filepath, plate_well=plate_well) process_axis_flip(reader, flip_x, flip_y) layer_aligner = reg.LayerAligner(reader, edge_aligner, **aligner_args) layer_aligner.run() mosaic_args_final = mosaic_args.copy() if ffp_paths: mosaic_args_final['ffp_path'] = ffp_paths[cycle] if dfp_paths: mosaic_args_final['dfp_path'] = dfp_paths[cycle] mosaics.append(reg.Mosaic(layer_aligner, mshape, **mosaic_args_final)) # Disable reader caching to save memory during mosaicing and writing. edge_aligner.reader = edge_aligner.reader.reader if not quiet: print() print(f"Merging tiles and writing to {output_path_format}") writer_class = reg.PyramidWriter if pyramid else reg.TiffListWriter writer = writer_class( mosaics, output_path_format, verbose=not quiet, **writer_args ) writer.run() return 0 def process_plates( filepaths, output_path, filename_format, flip_x, flip_y, ffp_paths, dfp_paths, aligner_args, mosaic_args, pyramid, quiet ): temp_reader = build_reader(filepaths[0]) metadata = temp_reader.metadata if metadata.num_plates == 0: # FIXME raise ProcessingError here instead? print("Dataset does not contain plate information.") return 1 for p, plate_name in enumerate(metadata.plate_names): print("Plate {} ({})\n==========\n".format(p, plate_name)) for w, well_name in enumerate(metadata.well_names[p]): print("Well {}\n-----".format(well_name)) if len(metadata.plate_well_series[p][w]) > 0: well_path = output_path / plate_name / well_name well_path.mkdir(parents=True, exist_ok=True) mosaic_path_format = str(well_path / filename_format) process_single( filepaths, mosaic_path_format, flip_x, flip_y, ffp_paths, dfp_paths, aligner_args, mosaic_args, pyramid, quiet, plate_well=(p, w) ) else: print("Skipping -- No images found.") print() print() return 0 def process_axis_flip(reader, flip_x, flip_y): metadata = reader.metadata # Trigger lazy initialization. _ = metadata.positions sx = -1 if flip_x else 1 sy = -1 if flip_y else 1 metadata._positions *= [sy, sx] readers = { 'filepattern': FilePatternReader, 'fileseries': FileSeriesReader, 'bioformats': BioformatsReader, 'zen': ZenReader, } # This is a short-term hack to provide a way to specify alternate reader # classes and pass specific args to them. def build_reader(path, plate_well=None): # Default to BioformatsReader if name not specified. reader_class = BioformatsReader kwargs = {} match = re.match( r'(?P<reader>\w+)\|(?P<path>.*?)(\|(?P<kwargs>.*))?$', path ) if match: path = match.group('path') reader_name = match.group('reader') reader_class = readers.get(reader_name) if reader_class is None: raise ProcessingError("Unknown reader: {}".format(reader_name)) kwargs.update(parse_kwargs_string(match.group('kwargs'))) if plate_well is not None: if not issubclass(reader_class, PlateReader): raise ProcessingError( "The %s reader does not support plate/well processing" % reader_class.__name__ ) kwargs.update(plate=plate_well[0], well=plate_well[1]) reader = reader_class(path, **kwargs) return reader def parse_kwargs_string(string): kwargs = {} if string is not None: for piece in string.split('|'): name, value = piece.split('=') # Optimistically parse as float. try: value = float(value) except ValueError: pass kwargs[name] = value return kwargs def configure_terminal(): global terminal terminal = blessed.Terminal() def print_error(message): print(terminal.bright_red("ERROR:"), message) def warning_formatter(message, category, filename, lineno, line=None): if issubclass(category, reg.Warning): return terminal.bright_yellow("WARNING:") + f" {message}\n" else: return _old_formatwarning(message, category, filename, lineno, line) def configure_warning_format(): global _old_formatwarning _old_formatwarning = warnings.formatwarning warnings.formatwarning = warning_formatter class HelpFormatter(argparse.HelpFormatter): """Help message formatter which adds default values to argument help. Based on argparse.ArgumentDefaultsHelpFormatter. """ def _get_help_string(self, action): help = action.help if isinstance(action, (argparse._HelpAction, argparse._VersionAction)): help = help.capitalize() elif ( not isinstance(action, argparse._StoreTrueAction) and "%(default)" not in help and "(default:" not in help and action.default is not argparse.SUPPRESS ): defaulting_nargs = [argparse.OPTIONAL, argparse.ZERO_OR_MORE] if action.option_strings or action.nargs in defaulting_nargs: help += " (default: %(default)s)" return help class ProcessingError(RuntimeError): pass if __name__ == '__main__': sys.exit(main()) ```
{ "source": "jmuhlich/gr_metrics", "score": 3 }
#### File: python/scripts/add_gr_column.py ```python import sys import textwrap import fileinput import csv import collections import decimal import gr50 # ------------------------------------------------------------------------------ def print_augmented_row(row, last_col): print '%s\t%s' % ('\t'.join(row), last_col) # ------------------------------------------------------------------------------ def main(): ''' Usage: add_gr_column.py input.tsv > output.tsv Compute Growth Response value from cell count data in TSV format. The input tsv file must meet the following requirements: - The first row contains column names. - The 'cell_count' column contains measured cell counts under a given perturbation at some time. - The 'cell_count__time0' column contains cell counts for the corresponding time=0 controls. - The 'cell_count__ctrl' column contains cell counts for the corresponding no-perturbation controls. All other columns are ignored and passed through untouched. The output tsv will have all columns from the input, as well as a new 'GRvalue' column at the end containing the GR values. ''' if '-h' in sys.argv or '--help' in sys.argv: print textwrap.dedent(main.__doc__) return reader = csv.reader(fileinput.input(mode='rb'), delimiter='\t') headers = next(reader) print_augmented_row(row=headers, last_col='GRvalue') record = collections.namedtuple(typename='record', field_names=headers, rename=True) for r in (record(*row) for row in reader): gr = gr50.compute_gr_single(r) print_augmented_row(row=r, last_col=gr) if __name__ == '__main__': main() ```