metadata
dict
text
stringlengths
60
3.49M
{ "source": "jnispen/PPSDA", "score": 3 }
#### File: code/modules/utils.py ```python import matplotlib.pyplot as plt import pandas as pd import numpy as np import arviz as az def get_color(key): """ return color for class key""" color_dict = {0: "blue", 1: "red", 2: "green", 3: "orange", 4: "black"} return color_dict[key] def get_color_mean(key): """ return mean color for class key""" color_dict = {0: "yellow", 1: "black", 2: "green", 3: "orange", 4: "white"} return color_dict[key] def plot_data(cdata, nrows=50): """ plot the dataframe """ # header data = x-values x_val = cdata.get_x_val() # plot rows (== observations) in a single figure plt.figure(figsize=(12, 6)) ax = plt.axes() ax.xaxis.set_major_locator(plt.MaxNLocator(10)) ax.set(xlabel='Wavenumber ($cm^{-1}$)') # used to map label codes to colors label_codes = pd.Categorical(cdata.data[cdata.label_column]).codes # list of class labels clabels = cdata.get_class_labels() for i in range(len(clabels)): print(str(clabels[i]) + ": " + get_color(i)) for i in range(nrows): y_val = cdata.data.values[i] plt.plot(x_val, y_val[:cdata.non_data_columns], '-', color=get_color(label_codes[i])) plt.savefig('data_plot.png') def plot_mean_vs_ppc(cdata, ppc_class_lst): """ plot data mean vs. posterior samples """ # header data = x-values x_val = cdata.get_x_val() plt.figure(figsize=(12, 8)) ax = plt.axes() ax.set(xlabel='Wavenumber ($cm^{-1}$)') # plot a sample from the posterior (for each class) for i in range(1): for z in range(len(ppc_class_lst)): plt.plot(x_val, ppc_class_lst[z][i, 0, :], '-', color=get_color(z), alpha=.6) # list of class labels class_labels = cdata.get_class_labels() # plot the posterior mean for z in range(len(ppc_class_lst)): cls_label = str(class_labels[z]) + " ppc mean" plt.plot(x_val, ppc_class_lst[z][:, 0].mean(axis=0), '-', color=get_color(z), alpha=.6, label=cls_label) # plot mean data for classes (raw data) df = [ cdata.data.loc[cdata.data[cdata.label_column] == class_labels[k]] for k in range(len(class_labels)) ] for z in range(len(df)): cls_label = str(class_labels[z]) + " real mean" plt.plot(x_val, df[z].iloc[:,:cdata.non_data_columns].mean(), '--', color=get_color_mean(z), label=cls_label, linewidth=1) # plot 94% HPD interval for z in range(len(ppc_class_lst)): col = "C" + str(z+1) az.plot_hpd(x_val, ppc_class_lst[z], smooth=False, color=col) plt.legend(loc='best') def plot_real_vs_ppc(cdata, ppc_class_lst, nrows=10): """ plot real data vs. posterior samples """ # header data = x-values x_val = cdata.get_x_val() plt.figure(figsize=(12, 8)) ax = plt.axes() ax.set(xlabel='Wavenumber ($cm^{-1}$)') # plot some samples from the posterior for i in range(5): for z in range(len(ppc_class_lst)): plt.plot(x_val, ppc_class_lst[z][i, 0, :], 'o-', color="gray", alpha=.3) # list of class labels class_labels = cdata.get_class_labels() # plot raw data for classes df = [ cdata.data.loc[cdata.data[cdata.label_column] == class_labels[i]].sample(frac=1) for i in range(len(class_labels)) ] for i in range(nrows): for z in range(len(df)): plt.plot(x_val, df[z].values[i,:cdata.non_data_columns], '--', color=get_color(z), linewidth=1) def append_predictions(cdata, trace, test_data, display=True): """ appends predicted labels to the test dataframe """ # check model predictions on test dataset a = trace['alpha'].mean() b = trace['beta'].mean(axis=0) xt_n = test_data.columns[:cdata.non_data_columns] xt_s = test_data[xt_n].values xt_s = (xt_s - xt_s.mean(axis=0)) / xt_s.std(axis=0) mu_t = a + (b * xt_s).sum(axis=1) yt_p = 1 / (1 + np.exp(-mu_t)) pt_y = np.zeros(len(xt_s)) lp_t = [] class_labels = cdata.get_class_labels() for i in range(len(xt_s)): if yt_p[i] < 0.5: pt_y[i] = 0 lp_t.append(class_labels[0]) else: pt_y[i] = 1 lp_t.append(class_labels[1]) #test_data = test_data.assign(pred=pd.Series(pt_y)) test_data = test_data.assign(p_label=pd.Series(lp_t)) if display: print(test_data.iloc[:, (cdata.non_data_columns-1):]) return test_data def append_predictions_ppc(cdata, trace, display=True): """ appends predicted labels to the dataframe """ # check model predictions on test dataset a = trace['alpha'].mean() b = trace['beta'].mean(axis=0) xt_n = cdata.data.columns[:cdata.non_data_columns] xt_s = cdata.data[xt_n].values xt_s = (xt_s - xt_s.mean(axis=0)) / xt_s.std(axis=0) mu_t = a + (b * xt_s).sum(axis=1) yt_p = 1 / (1 + np.exp(-mu_t)) pt_y = np.zeros(len(xt_s)) lp_t = [] class_labels = cdata.get_class_labels() for i in range(len(xt_s)): if yt_p[i] < 0.5: pt_y[i] = 0 lp_t.append(class_labels[0]) else: pt_y[i] = 1 lp_t.append(class_labels[1]) #cdata.data = cdata.data.assign(pred=pd.Series(pt_y)) cdata.data = cdata.data.assign(p_label=pd.Series(lp_t)) if display: print (cdata.data.iloc[:,(cdata.non_data_columns-1):]) def get_score(data, label_column, predicted_column): """ calculates the logreg score for a single column """ yt = pd.Categorical(data[label_column]).codes cor = 0; err = 0 for i in range(len(yt)): if data[label_column][i] == data[predicted_column][i]: cor += 1 else: err += 1 tot = len(yt) score = f'{cor / len(yt) * 100:.1f}' return tot, cor, err, score def logistic_score(data, label_column, predicted_column, kfold=False): """ calculates and prints the logistic score """ if kfold: print('n tot cor err score (%)') print('----------------------------') ttot = 0; tcor = 0; terr = 0 for i in range(len(data)): tot, cor, err, score = get_score(data[i], label_column, predicted_column) print(str(i+1) + " " + str(tot) + " " + str(cor) + " " + str(err) + " " + score) ttot += tot; tcor += cor; terr += err print('----------------------------') print(" " + str(ttot) + " " + str(tcor) + " " + str(terr) + " " + f'{tcor / ttot * 100:.1f}') else: tot, cor, err, score = get_score(data, label_column, predicted_column) print("total : " + str(tot)) print("correct: " + str(cor)) print("error : " + str(err)) print("score : " + score + "%") def logistic_score_ppc(cdata, predicted_column): """ calculates and prints the logistic regression score """ yt = pd.Categorical(cdata.data[cdata.label_column]).codes cor = 0; err = 0 for i in range(len(yt)): if cdata.data[cdata.label_column][i] == cdata.data[predicted_column][i]: cor += 1 else: err += 1 print("total : " + str(len(yt))) print("correct: " + str(cor)) print("error : " + str(err)) print("score : " + f'{cor / len(yt) * 100:.1f}' + "%") def softmax_score(cdata, data, trace): """ calculates and prints the softmax score """ yt = pd.Categorical(data[cdata.label_column]).codes data_pred = trace['mu'].mean(0) y_pred = [np.exp(point) / np.sum(np.exp(point), axis=0) for point in data_pred] cor = 0; err = 0 for i in range(len(y_pred)): if np.argmax(y_pred[i]) == yt[i]: cor += 1 else: err +=1 print("total : " + str(len(y_pred))) print("correct: " + str(cor)) print("error : " + str(err)) print("score : " + f'{cor / len(y_pred) * 100:.1f}' + "%") def save_traces(cdata, filename, samples_per_class, ppc_class_lst): """ saves the trace to a .csv file """ import csv # create header row file_header = cdata.get_x_val() header = np.array(np.around(file_header, 3), dtype='str') header = header.tolist() header.append("label") # list of class labels class_labels = cdata.get_class_labels() with open(filename, mode='w') as fp: ppc_writer = csv.writer(fp, delimiter=',') ppc_writer.writerow(header) for i in range(samples_per_class): for z in range(len(ppc_class_lst)): row = np.array(ppc_class_lst[z][i, 0, :], dtype='str').tolist() row.append(class_labels[z]) ppc_writer.writerow(row) def standardize(x): """ standardizes the data X, substracts the mean and normalizes the variance """ return (x - x.mean(axis=0)) / x.std(axis=0) def train_test_split_kfold(data, nfolds): """ splits the dataframe into n-fold sets of training and test data """ from sklearn.model_selection import KFold kf = KFold(n_splits=nfolds, random_state=42) kf.get_n_splits(data) # list of training and test dataframes train_lst, test_lst = [], [] for train_index, test_index in kf.split(data): # create empty dataframe df_train = pd.DataFrame(columns=data.columns.to_list()) df_test = pd.DataFrame(columns=data.columns.to_list()) # add rows to training and test dataframes, re-index and append to list for i, val in enumerate(train_index): df_train.loc[data.index[val]] = data.iloc[val] df_train.index = range(len(df_train)) train_lst.append(df_train) for i, val in enumerate(test_index): df_test.loc[data.index[val]] = data.iloc[val] df_test.index = range(len(df_test)) test_lst.append(df_test) return train_lst, test_lst ```
{ "source": "jni/storm-cluster", "score": 2 }
#### File: jni/storm-cluster/stormcluster.py ```python import os import sys from collections import namedtuple import numpy as np import matplotlib matplotlib.use('Qt5Agg') import matplotlib.pyplot as plt from matplotlib.widgets import RectangleSelector from matplotlib.backends.backend_qt5agg import (FigureCanvasQTAgg as FigureCanvas) from matplotlib.figure import Figure from PyQt5 import QtCore, QtGui, QtWidgets import pandas as pd import numba from sklearn.cluster import DBSCAN from skimage import io, color TableParams = namedtuple('TableParams', ['image_shape', 'pixel_scale', 'invert_y']) DEFAULTPARAMS = TableParams(image_shape=(2048, 2048), pixel_scale=10, invert_y=True) def find_header_line(filename): with open(filename) as fin: for i, line in enumerate(fin): if line.rstrip() == '##': return (i - 1) return None def read_locations_table(filename): header_line = find_header_line(filename) skiprows = list(range(header_line)) + [header_line + 1] table = pd.read_csv(filename, skiprows=skiprows, delimiter='\t') return table def image_coords(location_table, params=DEFAULTPARAMS): image_shape = params.image_shape scale = params.pixel_scale xs, ys = location_table[['X_COORD', 'Y_COORD']].values.T rows, cols = ys / scale, xs / scale if params.invert_y: rows = image_shape[0] - rows return rows, cols def image_coords_indices(location_table, params=DEFAULTPARAMS): rows, cols = image_coords(location_table, params) rrows, rcols = np.round(rows).astype(int), np.round(cols).astype(int) filter_rows = (0 <= rrows) & (rrows < params.image_shape[0]) filter_cols = (0 <= rcols) & (rcols < params.image_shape[1]) filter_all = filter_cols & filter_rows return rrows[filter_all], rcols[filter_all], filter_all @numba.njit def _fill_image(image, rows, cols): for i, j in zip(rows, cols): image[i, j] += 1 def _stretchlim(image, bottom=0.001, top=None, in_place=True): """Stretch the image so new image range corresponds to given quantiles. Parameters ---------- image : array, shape (M, N, [...,] P) The input image. bottom : float, optional The lower quantile. top : float, optional The upper quantile. If not provided, it is set to 1 - `bottom`. in_place : bool, optional If True, modify the input image in-place (only possible if it is a float image). Returns ------- out : np.ndarray of float The stretched image. """ if in_place and np.issubdtype(image.dtype, np.float): out = image else: out = np.empty(image.shape, np.float32) out[:] = image if top is None: top = 1 - bottom q0, q1 = np.percentile(image, [100*bottom, 100*top]) out -= q0 if q1 > q0: out /= q1 - q0 out = np.clip(out, 0, 1, out=out) return out def image_from_table(location_table, params=DEFAULTPARAMS, stretch=0.001): rows, cols, _ = image_coords_indices(location_table) image = np.zeros(params.image_shape, dtype=float) _fill_image(image, rows, cols) image = _stretchlim(image, stretch) return image def select_roi(image, rois=None, ax=None, axim=None, qtapp=None): """Return a label image based on polygon selections made with the mouse. Parameters ---------- image : (M, N[, 3]) array Grayscale or RGB image. rois : list, optional If given, append ROIs to this existing list. Otherwise a new list object will be created. ax : matplotlib Axes, optional The Axes on which to do the plotting. axim : matplotlib AxesImage, optional An existing AxesImage on which to show the image. qtapp : QtApplication The main Qt application for ROI selection. If given, the ROIs will be inserted at the right location for the image index. Returns ------- rois : list of tuple of ints The selected regions, in the form [[(row_start, row_end), (col_start, col_end)]]. Notes ----- Use left click to select the vertices of the polygon and right click to confirm the selection once all vertices are selected. Examples -------- >>> from skimage import data, future, io >>> camera = data.camera() >>> mask = future.manual_polygon_segmentation(camera) # doctest: +SKIP >>> io.imshow(mask) # doctest: +SKIP >>> io.show() # doctest: +SKIP """ if image.ndim not in (2, 3): raise ValueError('Only 2D grayscale or RGB images are supported.') if ax is None and axim is None: fig, ax = plt.subplots() if axim is None: ax.clear() axim = ax.imshow(image, cmap="magma") ax.set_axis_off() else: axim.set_array(image) rois = rois or [] def toggle_selector(event): if event.key in ['A', 'a'] and not toggle_selector.RS.active: toggle_selector.RS.set_active(True) def onselect(eclick, erelease): starts = round(eclick.ydata), round(eclick.xdata) ends = round(erelease.ydata), round(erelease.xdata) slices = tuple((int(s), int(e)) for s, e in zip(starts, ends)) if qtapp is None: rois.append(slices) else: index = qtapp.image_index rois[index] = slices qtapp.rectangle_selector.set_active(False) qtapp.select_next_image() qtapp.rectangle_selector.set_active(True) selector = RectangleSelector(ax, onselect, useblit=True) if qtapp is None: # Ensure that the widget remains active by creating a reference to it. # There's probably a better place to put that reference but this will do # for now. (From the matplotlib RectangleSelector gallery example.) toggle_selector.RS = selector else: qtapp.rectangle_selector = selector ax.figure.canvas.mpl_connect('key_press_event', toggle_selector) selector.set_active(True) return rois def _in_range(arr, tup): low, high = tup return (low <= arr) & (arr < high) def cluster(coordinates, radius, core_size): scan = DBSCAN(eps=radius, min_samples=core_size).fit(coordinates) return scan def _centroids(labels, sizes, coords): clustered = labels > -1 labels, coords = labels[clustered], coords[clustered] grouping = np.argsort(labels) sums = np.add.reduceat(coords[grouping], np.cumsum(sizes)[:-1]) means = sums / sizes[1:, np.newaxis] return means def analyse_clustering(scan): labels = scan.labels_ unclustered = labels == -1 num_unclustered = np.sum(unclustered) cluster_sizes = np.bincount(labels[~unclustered]) counts, bin_edges = np.histogram(cluster_sizes, bins='auto') histogram = np.convolve(bin_edges, [0.5, 0.5], 'valid'), counts print(f'There are {len(cluster_sizes)} clusters, and {num_unclustered} ' f'outlier points, out of {labels.size}. The largest cluster size is ' f'{np.max(cluster_sizes)} and the median is ' f'{np.median(cluster_sizes)}') return labels, cluster_sizes, histogram def bbox_diameter(coords): return np.hypot(*np.max(coords, axis=0) - np.min(coords, axis=0)) def summarise_clustering(scan, coords): labels, sizes, hist = analyse_clustering(scan) diameters = labeled_comprehension(coords, scan.labels_, bbox_diameter)[1:, np.newaxis] cluster_centroids = _centroids(labels, sizes, coords) cluster_sq_centroids = _centroids(labels, sizes, coords ** 2) centroid_vars = np.sqrt(cluster_sq_centroids - cluster_centroids ** 2) column_names = ['centroid row', 'centroid column', 'std dev row', 'std dev column', 'detections', 'cluster id', 'diameter'] idxs = np.arange(1, np.max(labels) + 1) columns = (cluster_centroids, centroid_vars, sizes[1:, np.newaxis], idxs[:, np.newaxis], diameters) print([c.shape for c in columns]) data = np.concatenate(columns, axis=1) df = pd.DataFrame(data=data, columns=column_names) return df def labeled_comprehension(features, labels, function, *args, extra_args=(), extra_kwargs={}, **kwargs): """Like ndi.labeled_comprehension, but features can be higher D.""" nonneg = labels >= 0 features = features[nonneg] labels = labels[nonneg] sorter = np.argsort(labels) labels = labels[sorter] features = features[sorter] boundaries = np.concatenate([[0], np.flatnonzero(np.diff(labels)) + 1]) args = args + extra_args kwargs = {**kwargs, **extra_kwargs} if hasattr(function, 'reduceat'): result = function.reduceat(features, boundaries, *args, **kwargs) else: boundaries = np.concatenate((boundaries, [labels.size])) test_index = min(3, features.shape[0]) test_value = function(features[:test_index], *args, **kwargs) result_shape = (boundaries.size - 1,) + np.shape(test_value) result = np.empty(result_shape) for i, (start, stop) in enumerate(zip(boundaries, boundaries[1:])): result[i] = function(features[start:stop], *args, **kwargs) return result def cluster_circle_plot(image, coordinates, data, roi, params=DEFAULTPARAMS, stretch=0.001, size_threshold=None, max_size=None, ax=None): colors = ['gray', 'C9', 'C1', 'C2'] ax = ax or plt.subplots()[1] image = _stretchlim(image, stretch) ax.imshow(image, cmap='gray') ax.set_xlim(*roi[1]) ax.set_ylim(*roi[0]) if size_threshold is None: size_threshold = 0 if max_size is None: max_size = np.inf for y, x, *_, d in data.values: color_index = int(np.digitize(d, [0, size_threshold, max_size])) color = colors[color_index] alpha = 0.9 - (color_index > 2) * 0.5 ax.add_artist(plt.Circle((x, y), d/2, fill=False, color=color, linewidth=0.5, alpha=alpha)) return ax def image_from_clustering(scan, coordinates, roi, params=DEFAULTPARAMS, stretch=0.001, size_threshold=None, max_size=None, use_diameter=True): unclustered = scan.labels_ == -1 if size_threshold is not None: temp_labels = np.copy(scan.labels_) temp_labels[unclustered] = 0 if use_diameter: cluster_sizes = labeled_comprehension(coordinates, scan.labels_, bbox_diameter) else: cluster_sizes = np.bincount(scan.labels_[~unclustered]) large = ((cluster_sizes > size_threshold)[temp_labels] & (~unclustered)) if max_size is not None: too_large = (((cluster_sizes > max_size)[temp_labels] & (~unclustered))) else: too_large = np.zeros_like(large) large &= ~too_large small = (~large) & (~too_large) & (~unclustered) else: large = ~unclustered small = np.zeros_like(large) too_large = small rows, cols = np.round(coordinates).astype(int).T green = np.zeros(params.image_shape, dtype=float) if np.any(large): _fill_image(green, rows[large], cols[large]) green = _stretchlim(green, stretch) green[np.isnan(green)] = 0 red = np.zeros_like(green, dtype=float) if np.any(small): _fill_image(red, rows[small], cols[small]) red = _stretchlim(red, stretch) red[np.isnan(red)] = 0 blue = np.zeros_like(red) if np.any(unclustered): _fill_image(blue, rows[unclustered], cols[unclustered]) blue = _stretchlim(blue, stretch) blue[np.isnan(blue)] = 0 # green += blue # make cyan gray = np.zeros_like(red) if np.any(too_large): _fill_image(gray, rows[too_large], cols[too_large]) gray = _stretchlim(gray, stretch) gray[np.isnan(gray)] = 0 image = np.stack((red, green, blue), axis=-1) image[gray > 0] = (gray[gray > 0] * 0.5)[..., np.newaxis] return image[slice(*roi[0]), slice(*roi[1])] def parameter_scan_image(coordinates, radii=(0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4), core_sizes=(3, 6, 12, 24)): num_clustered = np.zeros((len(radii), len(core_sizes))) largest_cluster = np.zeros_like(num_clustered) for i, r in enumerate(radii): for j, c in enumerate(core_sizes): scan = cluster(coordinates, r, c) clustered = scan.labels_ != -1 num_clustered[i, j] = np.sum(clustered) if np.any(clustered): largest_cluster[i, j] = \ np.max(np.bincount(scan.labels_[clustered])) return num_clustered, largest_cluster class ImageCanvas(FigureCanvas): def __init__(self, parent=None, width=5, height=5, dpi=100, image_size=(2048, 2048), image_cmap='magma'): fig = Figure(figsize=(width, height), dpi=dpi) self.axes = fig.add_axes([0, 0, 1, 1]) self.image_size = image_size self.axim = self.axes.imshow(np.broadcast_to(0., image_size), cmap=image_cmap, vmin=0, vmax=1) self.axes.set_axis_off() fig.set_facecolor('black') FigureCanvas.__init__(self, fig) self.setParent(parent) FigureCanvas.setSizePolicy(self, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) def set_image(self, image): self.axim.set_array(image) self.draw_idle() def new_image(self, image): if image.ndim == 3: self.axim = self.axes.imshow(image) else: self.axim = self.axes.imshow(image, cmap='magma') self.axes.set_axis_off() self.draw_idle() class ApplicationWindow(QtWidgets.QMainWindow): def __init__(self): super().__init__() self.image_index = 0 self.files = [] QtWidgets.QMainWindow.__init__(self) self.setAttribute(QtCore.Qt.WA_DeleteOnClose) self.setWindowTitle('Select ROIs') self.main_widget = QtWidgets.QWidget(self) layout = QtWidgets.QVBoxLayout(self.main_widget) self.image_canvas = ImageCanvas(self.main_widget) layout.addWidget(self.image_canvas) select_files = QtWidgets.QPushButton(text='Select Files') select_files.clicked.connect(self.open_files) previous_image = QtWidgets.QPushButton(text='◀') previous_image.clicked.connect(self.select_previous_image) next_image = QtWidgets.QPushButton(text='▶') next_image.clicked.connect(self.select_next_image) nav_layout = QtWidgets.QHBoxLayout(self.main_widget) nav = QtWidgets.QGroupBox(self.main_widget) nav_layout.addWidget(previous_image) nav_layout.addWidget(next_image) nav.setLayout(nav_layout) buttons = QtWidgets.QHBoxLayout(self.main_widget) buttons.addWidget(select_files, alignment=QtCore.Qt.AlignLeft) buttons.addWidget(nav, alignment=QtCore.Qt.AlignRight) layout.addLayout(buttons) self.image_canvas.draw() self.rois = [] self._mode = 'roi' self.main_widget.setFocus() self.setCentralWidget(self.main_widget) @QtCore.pyqtSlot() def open_files(self): files, resp = QtWidgets.QFileDialog.getOpenFileNames( self.main_widget, filter='*LDCTracked.txt') self.open_file_list(files) def open_file_list(self, files): self.files = files print(self.files) self.set_image_index(0) self.rois = [(slice(None), slice(None))] * len(self.files) image = self.image_canvas.axim.get_array() axes = self.image_canvas.axes axim = self.image_canvas.axim select_roi(image, self.rois, ax=axes, axim=axim, qtapp=self) def set_image_index(self, i=0): if i == len(self.files): if self._mode == 'roi': print(f'rois: {self.rois}') self.clustering_mode() i = 0 else: # _mode == 'clustering' self.save_clustering_results() return if len(self.files) > 0: i = np.clip(i, 0, len(self.files) - 1) self.image_index = i if self._mode == 'roi': file = self.files[i] table = read_locations_table(file) image = image_from_table(table) self.image_canvas.set_image(image) else: if i == len(self.images): scan, coords = self.make_cluster_image(i) df = summarise_clustering(scan, coords) df['filename'] = os.path.basename(self.files[i]) self.cluster_data.append(df) image = self.images[i] self.image_canvas.new_image(image) @QtCore.pyqtSlot() def select_previous_image(self): self.set_image_index(self.image_index - 1) @QtCore.pyqtSlot() def select_next_image(self): self.set_image_index(self.image_index + 1) def clustering_mode(self): self._mode = 'clustering' self.images = [] self.cluster_data = [] self.set_image_index(0) def make_cluster_image(self, i, radius=1.6, core_size=6): cluster_size_threshold = 10 cluster_max_size = 30 file = self.files[i] roi = self.rois[i] table = read_locations_table(file) coords = np.stack(image_coords(table), axis=1) coords_roi = coords[_in_range(coords[:, 0], roi[0]) & _in_range(coords[:, 1], roi[1])] scan = cluster(coords_roi, radius=radius, core_size=core_size) image = image_from_clustering(scan, coords_roi, roi, size_threshold=cluster_size_threshold, max_size=cluster_max_size) if i >= len(self.images): self.images.append(image) else: self.images[i] = image return scan, coords_roi def save_clustering_results(self): input_dir = os.path.dirname(self.files[0]) name = QtWidgets.QFileDialog.getSaveFileName(self.main_widget, 'Save clusters to file', directory=input_dir, filter='*.xlsx')[0] print(name) cluster_table = pd.concat(self.cluster_data) print(name) cluster_table.to_excel(name) if __name__ == '__main__': qApp = QtWidgets.QApplication(sys.argv[:1]) aw = ApplicationWindow() aw.show() if len(sys.argv) > 1: aw.open_file_list(sys.argv[1:]) sys.exit(qApp.exec_()) ```
{ "source": "jni/useful-histories", "score": 3 }
#### File: jni/useful-histories/climate-change-model-test.py ```python T = pd.read_csv('bundoora-temp.csv') T.head() T.rename(columns={'Mean maximum temperature (°C)':'Temperature'}, inplace=True) T['Date'] = T['Year'] + (T['Month'] - 0.5) / 12 dates = T['Date'] temps = T['Temperature'] def predicted_temperature(parameters, time): t0, w, A, omega, phi = parameters return t0 + w*time + A * np.sin(omega*time + phi) def prediction_error(parameters, time, true_temperature): return true_temperature - predicted_temperature(parameters, time) def predicted_temperature_null(parameters, time): t0, w, A, omega, phi = parameters return t0 + A * np.sin(omega*time + phi) t0 = np.mean(temps) w = 0 A = np.max(temps) - np.min(temps) omega = np.pi * 2 phi = np.pi / 2 params0 = [t0, w, A, omega, phi] params, success = optimize.leastsq(prediction_error, params0, args=(dates, temps)) from scipy import optimize params, success = optimize.leastsq(prediction_error, params0, args=(dates, temps)) success def prediction_error_null(parameters, time, true_temperature): return true_temperature - predicted_temperature_null(parameters, time) paramsnull, successnull = optimize.leastsq(prediction_error_null, params0, args=(dates, temps)) successnull from scipy import stats predicted = predicted_temperature(params, dates) predicted_null = predicted_temperature_null(params, dates) chisq1 = (temps - predicted)**2 / predicted chisq0 = (temps - predicted_null)**2 / predicted_null chisqdiff = chisq1 - chisq0 chisqdiff chisq1 = np.sum((temps - predicted)**2 / predicted) chisq0 = np.sum((temps - predicted_null)**2 / predicted_null) chisqdiff = chisq1 - chisq0 chisqdiff chisq_dof = len(temps) chisq_dof chisq1 chisq2 chisq0 plt.plot(dates, predicted_null) import statsmodels from statsmodels import stats np.mean((temps - predicted)**2) plt.plot(dates, predicted) params plt.plot(dates, temps) def predicted_temperature_null(parameters, time): t0, A, omega, phi = parameters return t0 + A * np.sin(omega*time + phi) def prediction_error_null(parameters, time, true_temperature): return true_temperature - predicted_temperature_null(parameters, time) paramsnull, successnull = optimize.leastsq(prediction_error_null, [params0[0]] + params0[2:], args=(dates, temps)) successnull predicted_null = predicted_temperature_null(paramsnull, dates) plt.plot(dates, temps) plt.plot(dates, predicted_null) np.mean((temps - predicted_null)**2) np.mean((temps - predicted)**2) ssdiff = 401 * (_48 - _49) ssdiff from scipy import stats stats.gamma stats.chi2 get_ipython().magic('pinfo stats.chisquare') get_ipython().set_next_input('c2 = stats.chi2');get_ipython().magic('pinfo stats.chi2') c2 = stats.chi2.sf(ssdiff, 401) c2 c2 = stats.chi2.sf(ssdiff, 4) c2 ``` #### File: jni/useful-histories/db.py ```python datadir = '/Users/nuneziglesiasj/Data/myo/' import os import scandir def all_images(path): for p, _, files in scandir.walk(path): for f in files: if f.endswith('.tif'): yield os.path.join(p, f) image_fns = list(all_images(datadir)) import subprocess as sp sp.Popen(["mongod", "--dbpath", "/Users/nuneziglesiasj/mongodb"]) from husc.screens import myofusion as myo filenames = [l.rstrip() for l in open('db/filenames.txt', 'r').readlines()] myo.populate_db('db/all_annots2.csv', filenames) from pymongo import MongoClient collection = MongoClient()["myofusion"]["wells"] for image_fn in [image_fns[450]]: key = myo.filename2coord(image_fn) mongo_id = myo.key2mongo(key) doc = collection.update({'_id': mongo_id}, {'$set': {u'local_filename': image_fn}}) ``` #### File: jni/useful-histories/husc-imgrid.py ```python from skimage import io import os fns = os.listdir fns = os.listdir('.') get_ipython().set_next_input(u'fns = filter');get_ipython().magic(u'pinfo filter') fns = filter(lambda x: x.endswith('illum-95-51.tif'), fns) len(fns) fns = sorted(fns) images = [] for r, g, b in [fns[i:i+3] for i in range(48)]: images.append(np.dstack([io.imread(j) for j in [r, g, b]])) imshow(images[0]) images = [] for g, b, r in [fns[i:i+3] for i in range(48)]: images.append(np.dstack([io.imread(j) for j in [r, g, b]])) len(images) imshow(images[0]) sample_names = list(it.product('CDE', ['%02i'%j for j in range(3, 23)])) import itertools as it sample_names = list(it.product('CDE', ['%02i'%j for j in range(3, 23)])) sample_names = [i+j for i, j in sample_names] sample_names = sample_names[1:-11] def imgrid(names, grid_shape): figure() idxs = [sample_names.find(name) for name in names] sh = grid_shape for i, idx in enumerate(idxs): subplot(sh + (i+1,)) imshow(images[idx], interpolation='nearest') imgrid(['D14', 'D16', 'D17', 'D15', 'D18'], (2, 3)) def imgrid(names, grid_shape): figure() idxs = [sample_names.index(name) for name in names] sh = grid_shape for i, idx in enumerate(idxs): subplot(sh + (i+1,)) imshow(images[idx], interpolation='nearest') imgrid(['D14', 'D16', 'D17', 'D15', 'D18'], (2, 3)) get_ipython().magic(u'pinfo subplot') def imgrid(names, grid_shape): figure() idxs = [sample_names.index(name) for name in names] sh = grid_shape for i, idx in enumerate(idxs): subplot(*(sh + (i+1,))) imshow(images[idx], interpolation='nearest') imgrid(['D14', 'D16', 'D17', 'D15', 'D18'], (2, 3)) fns[:6] imshow(images[1]) images = [] for g, b, r in [fns[3*i:3*i+3] for i in range(48)]: images.append(np.dstack([io.imread(j) for j in [r, g, b]])) len(images) imgrid(['D14', 'D16', 'D17', 'D15', 'D18'], (2, 3)) images = [] for r, b, g in [fns[3*i:3*i+3] for i in range(48)]: images.append(np.dstack([io.imread(j) for j in [r, g, b]])) imgrid(['D14', 'D16', 'D17', 'D15', 'D18'], (2, 3)) for im, sn in zip(images, sample_names): io.imsave(sn+'.illum-95-51.rbg.tif', im) imgrid(['C16', 'C17', 'D13'], (1, 3)) imgrid(['C09', 'C18', 'C22'], (1, 3)) imgrid(['C11', 'C12', 'C21', 'E07'], (2, 2)) imgrid(['C04', 'C08'], (1, 2)) imgrid(['D06', 'D22'], (1, 2)) imgrid(['D08', 'D20'], (1, 2)) imgrid(['E08', 'C14', 'E03'], (1, 3)) imgrid(['E08', 'C14', 'E03', 'E09', 'C05'], (2, 3)) imgrid(['C16', 'C17', 'D13', 'C09', 'C18', 'C22'], (2, 3)) imgrid(['C11', 'C12', 'C21', 'E07'], (2, 2)) ``` #### File: jni/useful-histories/mask-white-artifacts.py ```python from matplotlib import pyplot as plt, cm imshow = plt.imshow clf = plt.clf figure = plt.figure colorbar = plt.colorbar hist = plt.hist import numpy as np from IPython import get_ipython import mahotas as mh import glob import os fns = os.listdir('.') import functools as ft fnw = ft.partial(glob.fnmatch.fnmatch, pat='*s1*crop*.tif') fns_nw = filter(fnw, fns) len(fns_nw) len(fns_nw) / 3 def intensity(im): return im.sum(axis=-1) def whiteness(im): return 1 / (np.var(im, axis=-1) + 1) def artifact(im): return whiteness(im) * intensity(im) ims_nw = map(mh.imread, fns_nw) rgbs_nw = [np.dstack(ims_nw[3*i:3*i+3]) for i in range(48)] imshow(rgbs_nw[0]) imshow(rgbs_nw[1]) imshow(rgbs_nw[5]) rgbs_nw[0].dtype ims_nw[0].dtype ims_nw[0].min() ims_nw[0].max() ims_nw[1].max() ims_nw[1].min() ims_nw[1].dtype ims_nw[2].dtype ims_nw[2].min() ims_nw[2].max() def cshow(im): # assume image data is in the final two dimensions if im.ndim > 2: mid = im.shape[0] // 2 cshow(im[mid]) else: plt.imshow(im, cmap=cm.cubehelix, interpolation='nearest') cshow(ims_nw[0]) cshow(ims_nw[1]) cshow(ims_nw[2]) imshow(rgbs_nw[0]) ims_nw = map(lambda x: (x.astype(float) / x.max() * 255).astype(np.uint8), ims_nw) ims_nw = map(mh.imread, fns_nw) rbs_nw = map(lambda x: (x.astype(float) / x.max() * 255).astype(np.uint8), rgbs_nw) imshow(rgbs_nw[0]) rgbs_nw[0].dtype imshow(rbs_nw[0]) rbs_nw = map(lambda x: (x.astype(float) / x.max(axis=0).max(axis=0)[None, None, :] * 255).astype(np.uint8), rgbs_nw) imshow(rbs_nw[0]) cshow(ims_nw[0]) cshow(ims_nw[1]) cshow(ims_nw[2]) rbs_nw = map(lambda x: (x.astype(float) / x.max(axis=0).max(axis=0)[None, None, :] * 255).astype(np.uint8), rgbs_nw) clf() imshow(rbs_nw[4]) imshow(rbs_nw[5]) arts_nw = map(artifact, rbs_nw) cshow(arts_nw[0]) cshow(arts_nw[1]) cshow(arts_nw[2]) cshow(arts_nw[3]) cshow(arts_nw[4]) cshow(arts_nw[5]) max_arts = np.array(map(np.max, arts_nw)).reshape((6, 8)) cshow(max_arts) figure() cshow(arts_nw[24]) cshow(arts_nw[25]) cshow(arts_nw[26]) cshow(arts_nw[27]) arts_nw = map(artifact, rbs_nw) max_arts = np.array(map(np.max, arts_nw)).reshape((6, 8)) cshow(max_arts) figure() figure(1) colorbar() figure(2) cshow(arts_nw[5]) cshow(arts_nw[37]) fse = ft.partial(glob.fnmatch.fnmatch, pat='*s4*crop*.tif') fns_se = filter(fse, fns) ims_se = map(mh.imread, fns_se) rgbs_se = [np.dstack([ims_se[j] for j in [3*i+2, 3*i, 3*i+1]]) for i in range(48)] rbs_se = map(lambda x: (x.astype(float) / x.max(axis=0).max(axis=0)[None, None, :] * 255).astype(np.uint8), rgbs_nw) arts_se = map(artifact, rbs_se) max_arts_se = np.array(map(np.max, arts_se)).reshape((6, 8)) figure(1); cshow(max_arts_se) clf() cshow(max_arts_se) rbs_se = map(lambda x: (x.astype(float) / x.max(axis=0).max(axis=0)[None, None, :] * 255).astype(np.uint8), rgbs_se) arts_se = map(artifact, rbs_se) max_arts_se = np.array(map(np.max, arts_se)).reshape((6, 8)) cshow(max_arts_se) figure(); cshow(arts_se[1]) figure(); imshow(rbs_se[1]) figure(); cshow(arts_se[1]) colorbar() from husc.preprocess import stretchlim figure(); cshow(stretchlim(arts_se[1])) def artifact2(im): return np.prod(im, axis=-1) arts_se2 = map(artifact2, rbs_se) figure(); cshow(arts_se[1]) figure(); cshow(stretchlim(arts_se[1])) figure(); cshow(arts_se2[1]) colorbar() figure(); cshow(stretchlim(arts_se2[1])) max_arts_se2 = np.array(map(np.max, arts_se2)).reshape((6, 8)) figure(); cshow(max_arts_se2) colorbar() figure(); hist(max_arts_se2.ravel()) ``` #### File: jni/useful-histories/mz-data.py ```python import numpy as np import napari import matplotlib.pyplot as plt from matplotlib.backends.backend_qt5agg import FigureCanvas from matplotlib.figure import Figure # load the data cube = np.load('datacube.npy') peaks = np.load('peaklist.npy') mz = peaks[0] thresh = np.load('hsr_thresholds.npy') cubet = np.transpose(cube, (2, 0, 1)) cubet_norm = cubet / thresh[:, np.newaxis, np.newaxis] # create qt application context with napari.gui_qt(): # create the viewer viewer = napari.view_image(cubet_norm) # create the intensity plot with plt.style.context('dark_background'): mz_canvas = FigureCanvas(Figure(figsize=(5, 3))) mz_axes = mz_canvas.figure.subplots() intensities = cubet[:, 0, 0] intensity_line = mz_axes.plot(mz, intensities)[0] # returns line list position_line = mz_axes.axvline(x=mz[0], c='C1') position_line.set_zorder(-1) # keep the spectra in front minval, maxval = np.min(cube), np.max(cube) range_ = maxval - minval centre = (maxval + minval) / 2 min_y = centre - 1.05 * range_ / 2 max_y = centre + 1.05 * range_ / 2 mz_axes.set_ylim(min_y, max_y) mz_axes.set_xlabel('m/z') mz_axes.set_ylabel('intensity') title = mz_axes.set_title(f'coord=(0, 0); m/z={mz[0]:.3f}') mz_canvas.figure.tight_layout() # add the plot to the viewer viewer.window.add_dock_widget(mz_canvas) # create a function to update the plot def update_plot(axis_event): axis = axis_event.axis if axis != 0: return slice_num = axis_event.value x = mz[slice_num] position_line.set_data([x, x], [0, 1]) coord_str, mz_str = title.get_text().split(';') title.set_text(coord_str + '; ' + f'm/z={x:.3f}') mz_canvas.draw_idle() # connect the function to the dims axis viewer.dims.events.axis.connect(update_plot) # grab the image layer layer = viewer.layers[0] # add a click callback to the layer to update the spectrum being viewed @layer.mouse_drag_callbacks.append def update_intensity(layer, event): xs, ys = intensity_line.get_data() coords_full = tuple(np.round(layer.coordinates).astype(int)) if all(coords_full[i] in range(cubet.shape[i]) for i in range(cubet.ndim)): coords = coords_full[1:] # rows, columns new_ys = cube[coords] intensity_line.set_data(xs, new_ys) coord_str, mz_str = title.get_text().split(';') title.set_text(str(coords) + '; ' + mz_str) mz_canvas.draw_idle() ``` #### File: jni/useful-histories/skeleton_demo.py ```python import os os.chdir('/Users/jni/Dropbox/data1/malaria/adam-oli-schizont-30sec') import imageio as iio im = iio.imread('Shchizont4_UninfRBC10_02.tif', format='fei') scale = im.meta['Scan']['PixelHeight'] * 1e9 # convert m to nm sigma = 5/scale # nm / (nm/pixel) ==> pixel import matplotlib.pyplot as plt plt.imshow(im, cmap='gray') from skan import pre from skimage import morphology binary = pre.threshold(im, sigma=sigma, radius=round(10*sigma)) skeleton_image = morphology.skeletonize(binary) plt.imshow(skeleton_image) shape = feature.shape_index(im, sigma=5) plt.imshow(shape, cmap='RdBu') shape_skeleton = skeleton_image * shape from skan import summarise data = summarise(shape_skeleton) data.head() from skan import draw draw.overlay_skeleton_2d(im, shape_skeleton, dilate=1) def filtered(values): return np.digitize(values, [0.125, 0.625]) data['filtered'] = filtered(data['mean pixel value']) draw.overlay_euclidean_skeleton_2d(im, data, skeleton_color_source='filtered') from skan import Skeleton skeleton = Skeleton(shape_skeleton, source_image=im) # second time is much faster thanks to Numba JIT skeleton = Skeleton(shape_skeleton, source_image=im) def filtered2(skeleton): values = skeleton.path_means() return filtered(values) ax, cvals = draw.overlay_skeleton_2d_class(skeleton, skeleton_color_source=filtered2) ```
{ "source": "jnjaby/DISCNet", "score": 2 }
#### File: datasets/data_scripts/post_process.py ```python import os from pdb import Pdb, set_trace import pdb import sys import argparse import numpy as np import cv2 import matplotlib.pyplot as plt from tqdm import tqdm sys.path.append(os.path.abspath(os.getcwd()+'/../..')) from utils.process_utils import (imread, imwrite, ccm_info_get, cc_img, simple_to_linear, linear_to_gamma, WB, contrast) def post_processing(data_path, ref_path, save_path, color_correct=True, rgb_scaling=True, contrast_enhance=True): """ Convolution of ground truth image and PSF to simulate UDC image Args: data_path (str) : Path to data to be processed ref_path (str) : Path to root directory that contains reference files save_path (str) : Path to save post-processing images color_correct (bool): Whether to correct by Color Correction Matrix from camera rgb_scaling (bool): Whether to copy color from camera output (JPEG) contrast_enhance (bool):Whether to apply contrast enhancement algorithm """ jpg_dir = os.path.join(ref_path, 'jpg_ZTE/') CCM_dir = os.path.join(ref_path, 'CCM_txt/') os.makedirs(save_path, exist_ok=True) img_list = sorted([x.replace('.npy', '') for x in os.listdir(data_path) \ if x.endswith('.npy')]) # import pdb; pdb.set_trace() assert len(img_list) != 0, (f'No npy files found in {data_path}.') for img_path in tqdm(img_list): # Load data jpg_img = imread(os.path.join(jpg_dir, img_path + '.jpg')) / 255. ccm = ccm_info_get(os.path.join(CCM_dir, img_path + '_ccm.txt')) # The output of network are assumed to be in simple tone-mapped domain. simple_img = np.load(os.path.join(data_path, img_path + '.npy')) # Convert to linear domain before post processing. post_img = simple_to_linear(simple_img) if color_correct: post_img = cc_img(post_img, ccm) # Gamma correction post_img = linear_to_gamma(post_img, linear_max=6) # gamma domain [0,1] if rgb_scaling: # The reference jpg images are gamma-corrected, requiring post images # in the same domain. post_img = WB(post_img, jpg_img) if contrast_enhance: post_img = contrast(post_img, limit=1.0) save_img = np.clip(post_img, a_min=0, a_max=1) imwrite(os.path.join(save_path, img_path + '.png'), save_img) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data_path', help='Specify path to dataset to be processed', type=str, default='.') parser.add_argument('--ref_path', help='Specify path to root directory that contains reference \ files, mainly including camera output and ccm files.', type=str, default='datasets/real_data') parser.add_argument('--save_path', help='Specify path to save post-processing images', type=str, default='results/post_images') parser.add_argument('--color_correct', help='Whether to correct by Color Correction Matrix \ from camera', type=bool, default=True) parser.add_argument('--rgb_scaling', help='Whether to copy color from camera output (JPEG)', type=bool, default=True) parser.add_argument('--contrast_enhance', help='Whether to apply contrast enhancement', type=bool, default=True) args = parser.parse_args() post_processing(data_path=args.data_path, ref_path=args.ref_path, \ save_path=args.save_path, color_correct=args.color_correct, \ rgb_scaling=args.rgb_scaling, contrast_enhance=args.contrast_enhance) ``` #### File: data_scripts/utils/process_utils.py ```python import numpy as np import cv2 from os import path as osp from tqdm import tqdm import shutil import sys def imwrite(path, img): img = (img[:, :, [2,1,0]] * 255.0).round().astype(np.uint8) cv2.imwrite(path, img) def imread(path): img = cv2.imread(path) return img[:, :, [2, 1, 0]] def tmap(x): ''' Tone mapping algorithm. Refered to as simple tone-mapped domain. ''' return x / (x + 0.25) def ccm_info_get(ccm_txt): with open(ccm_txt) as fi: for line in fi: (key, val) = line.split(':') val_list = val.split() ccm = [np.float32(v) for v in val_list] ccm = np.array(ccm) ccm = ccm.reshape((3, 3)) return ccm def ccmProcess_rgb(img, ccm): ''' Input images are in RGB domain. ''' new_img = img.copy() new_img[:,:,0] = ccm[0,0] * img[:,:,0] + ccm[0,1]* img[:,:,1] + \ ccm[0,2] * img[:,:,2] new_img[:,:,1] = ccm[1,0] * img[:,:,0] + ccm[1,1]* img[:,:,1] + \ ccm[1,2] * img[:,:,2] new_img[:,:,2] = ccm[2,0] * img[:,:,0] + ccm[2,1]* img[:,:,1] + \ ccm[2,2] * img[:,:,2] return new_img def cc_img(img, ccm): ''' Color correct an image given corresponding matrix. Assume images in linear domain. ''' # clip to fit ZTE sensor img = np.clip(img, 0, 16.0) img_cc = ccmProcess_rgb(img, ccm) img_cc = np.clip(img_cc, 0, 16) return img_cc def WB(img, ref): ''' Simple white balance algorithm to copy color from reference image. Assume both images range [0, 1]. ''' balanced_img = np.zeros_like(img, dtype=np.float32) for c in range(3): balanced_img[:, :, c] = img[:, :, c] / img[:, :, c].sum() * ref[:, :, c].sum() balanced_img = np.clip(balanced_img, 0, 1) return balanced_img def simple_to_linear(img, linear_max=500): ''' From simple tone-mapped domain to linear domain. ''' img = np.clip(img, 0, tmap(linear_max)) img = img / (4 * (1-img)) return img def linear_to_gamma(img, linear_max=12): A = 1 / linear_max**(1/2.8) img = np.clip(img, 0, linear_max) img = A*(img**(1/2.8)) return img def contrast(img, limit=1.0): ''' Apply contrast enhancement. Tune argument "limit" to adjust. ''' img = (img[:, :, [2,1,0]] * 255.0).round().astype(np.uint8) clahe = cv2.createCLAHE(clipLimit=limit, tileGridSize=(8,8)) lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB) # convert from BGR to LAB color space l, a, b = cv2.split(lab) # split on 3 different channels l2 = clahe.apply(l) # apply CLAHE to the L-channel lab = cv2.merge((l2,a,b)) # merge channels img2 = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR) # convert from LAB to BGR return img2[:, :, [2,1,0]] / 255.0 ```
{ "source": "jnjcc/pymatch2", "score": 2 }
#### File: pymatch2/test/benchmark.py ```python import timeit import numpy as np import pandas as pd from pymatch2.MatcherPlus import MatcherPlus class MatcherCmp: def __init__(self, col_identity = "identity", col_treatment = "treatment", col_matchid = "match_id", col_scores = "scores"): self.col_identity_ = col_identity self.col_treatment_ = col_treatment self.col_matchid_ = col_matchid self.col_scores_ = col_scores def _merged(self, matched): reduced = matched[[self.col_matchid_, self.col_identity_, self.col_treatment_, self.col_scores_]] mask = (reduced[self.col_treatment_] == True) treated = reduced[mask] control = reduced[~mask] merged = pd.merge(treated, control, how = "inner", on = self.col_matchid_, suffixes = ("_x", "_y")) col_diff = "diff" merged[col_diff] = abs(merged[self.col_scores_ + "_x"] - merged[self.col_scores_ + "_y"]) merged[self.col_identity_] = merged[self.col_identity_ + "_x"] return merged[[self.col_identity_, col_diff]], col_diff def _compare(self, lhs, rhs): assert lhs.shape == rhs.shape assert lhs.shape[0] > 0 lmerged, col_diff = self._merged(lhs) rmerged, _ = self._merged(rhs) merged = pd.merge(lmerged, rmerged, how = "inner", on = self.col_identity_, suffixes = ("_x", "_y")) col_did = "did" merged[col_did] = merged[col_diff + "_x"] - merged[col_diff + "_y"] return merged, col_did def less_than(self, lhs, rhs): merged, col_did = self._compare(lhs, rhs) return np.all(merged[col_did] < 0) def lt_pct(self, lhs, rhs): merged, col_did = self._compare(lhs, rhs) return np.mean(merged[col_did] < 0), merged.shape def less_eql(self, lhs, rhs): merged, col_did = self._compare(lhs, rhs) return np.all(merged[col_did] <= 0) def equal(self, lhs, rhs): merged, col_did = self._compare(lhs, rhs) return np.all(merged[col_did] == 0) class MatcherTest: def __init__(self, ntest = 10000, nctrl = 100000): self.ntest_ = ntest self.nctrl_ = nctrl self.npopu_ = ntest + nctrl self.col_treatment_ = "treatment" col_scores = "scores" self.df_ = pd.DataFrame({ self.col_treatment_: [0] * self.npopu_, col_scores: np.random.random(self.npopu_) }) itest = np.random.choice(self.npopu_, ntest, replace = False) self.df_.loc[itest, self.col_treatment_] = 1 self.col_identity_ = "identity" self.df_[self.col_identity_] = self.df_.index.values test_mask = (self.df_[self.col_treatment_] == 1) self.matcher_ = MatcherPlus(self.df_[test_mask], self.df_[~test_mask], self.col_treatment_) col_matchid = "match_id" self.compare_ = MatcherCmp(self.col_identity_, self.col_treatment_, col_matchid, col_scores) def timed_match(self, method = "nnm", nmatches = 1, threshold = 0.001): self.matcher_.data = self.df_.copy() start = timeit.default_timer() if method == "nnm": self.matcher_.match_nnm(nmatches = nmatches) elif method == "bs": self.matcher_.match_bs(nmatches = nmatches) else: self.matcher_.match(method = method, nmatches = nmatches, threshold = threshold) end = timeit.default_timer() return end - start, self.matcher_.matched_data def assert_lt(self, nmatches = 1, threshold = 0.001): """ nnm match less than random match """ rnd_time, rnd_matched = self.timed_match("random", nmatches = nmatches, threshold = threshold) nnm_time, nnm_matched = self.timed_match("nnm", nmatches = nmatches, threshold = threshold) assert self.compare_.less_than(nnm_matched, rnd_matched) ## assert nnm_time <= rnd_time print(self.ntest_, self.nctrl_, rnd_time, "-", nnm_time, "-") def assert_le(self, nmatches = 1, threshold = 0.001): """ nnm match less than or equal to random match """ rnd_time, rnd_matched = self.timed_match("random", nmatches = nmatches, threshold = threshold) nnm_time, nnm_matched = self.timed_match("nnm", nmatches = nmatches, threshold = threshold) assert self.compare_.less_eql(nnm_matched, rnd_matched) ## assert nnm_time <= rnd_time bs_time, bs_matched = self.timed_match("bs", nmatches = nmatches, threshold = threshold) assert self.compare_.less_eql(bs_matched, rnd_matched) print(self.ntest_, self.nctrl_, rnd_time, "-", nnm_time, bs_time) def assert_eq(self, nmatches = 1, threshold = 0.001): """ nnm match equal to min match """ min_time, min_matched = self.timed_match("min", nmatches = nmatches, threshold = threshold) nnm_time, nnm_matched = self.timed_match("nnm", nmatches = nmatches, threshold = threshold) assert self.compare_.equal(nnm_matched, min_matched) # assert nnm_time <= min_time print(self.ntest_, self.nctrl_, "-", min_time, nnm_time, "-") def assert_match(self, nmatches = 1, threshold = 0.001): rnd_time, rnd_matched = self.timed_match("random", nmatches = nmatches, threshold = threshold) nnm_time, nnm_matched = self.timed_match("nnm", nmatches = nmatches, threshold = threshold) assert self.compare_.less_eql(nnm_matched, rnd_matched) min_time, min_matched = self.timed_match("min", nmatches = nmatches, threshold = threshold) assert self.compare_.equal(nnm_matched, min_matched) bs_time, bs_matched = self.timed_match("bs", nmatches = nmatches, threshold = threshold) assert self.compare_.equal(nnm_matched, bs_matched) print(self.ntest_, self.nctrl_, rnd_time, min_time, nnm_time, bs_time) if __name__ == "__main__": print("# test", "# control", "random", "min", "nnm", "bs", flush = True) for ntest, nctrl in [(10000, 200000), (15000, 200000), (20000, 200000)]: test = MatcherTest(ntest, nctrl) test.assert_match() for ntest, nctrl in [(50000, 900000), (100000, 1000000)]: test = MatcherTest(ntest, nctrl) test.assert_le() ```
{ "source": "JNjinnan/firstblog", "score": 2 }
#### File: firstblog/firstblog/views.py ```python from django.shortcuts import render from gallery.models import Gallery def home(request): gallerys = Gallery.objects return render(request,'home.html', {'gallerys': gallerys}) ```
{ "source": "JnkDog/i-rheo-web", "score": 3 }
#### File: algorithm/mot/pai.py ```python from matplotlib import pyplot as plt import numpy as np import pandas as pd def pai_test(): ''' 输入只有file 在gamma位置输出 ''' df_news = pd.read_table('data.txt',sep=' ',header = None) pai = [] pai = 1 - df_news[1] df_news[1] = df_news[1].apply(lambda x: 1-x) print(df_news[1]) print(pai) plt.plot(df_news[0], df_news[1], '-o', lw=3, color='royalblue',label='$G^{II}$') plt.xscale('log') plt.xlabel('t (sec)') plt.ylabel('Π(t)') plt.show() # pai_test() def pai_processing(df): df["pai"] = df[1].apply(lambda x: 1-x) return df ``` #### File: i-rheo-web/algorithm/read_data.py ```python import pandas as pd import base64 import io # generate dataframe def generate_df(content): decoded_content = parse_contents(content) # read seprate includes space and tab (delim_whitespace=True) df = pd.read_table(io.StringIO(decoded_content.decode("utf-8")), header=None, delim_whitespace=True) return df def parse_contents(content): content = content.split(",")[-1] decoded_content = base64.b64decode(content) return decoded_content def generate_df_from_local(path): df = pd.read_table(path, header=None, delim_whitespace=True) return df def convert_lists_to_df(data): x = data.get("x") y = data.get("y") if data.get("z"): z = data.get("z") return pd.DataFrame(list(zip(x, y, z))) df = pd.DataFrame(list(zip(x, y))) return df # replace the dict's value def replace_dict_value(dict, replacement, replacement_keys): idx = 0 for key in dict: dict[key] = replacement[idx] if key in replacement_keys else dict[key] idx = idx + 1 if key in replacement_keys else idx return dict ``` #### File: i-rheo-web/algorithm/saving_process.py ```python import pandas as pd import numpy as np i = complex(0, 1) """ Combine the real_list and imag_list to complex_ndarray """ def combine_as_complex(real, imaginary): real_nd = np.asarray(real) imaginary_nd = np.asarray(imaginary) # combine as complex with the real and imag complex = np.array(real_nd, dtype=np.complex128) complex.imag = imaginary_nd return complex.tolist() """ Formating saving data as six decimal place """ def six_decimal_saving(data): for key, item in data.items(): data[key] = np.around(item, decimals=6) return data ``` #### File: apps/mot/mot_app.py ```python import dash from dash.dependencies import Input, Output, State, ClientsideFunction import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc from dash.exceptions import PreventUpdate import plotly.express as px import pandas as pd from enum import Enum, unique from app import app # import components and its generation from components.upload.upload import upload_component_generate from components.download.download import download_component_generate from components.oversampling.oversampling import mot_oversampling_generate from components.input.parameter import stiffness_radius_generate from components.tab.tabs import mot_tabs_generate from components.radio.radio import MOTRadioitems from components.loglinearswitch.axisSwitch import vertical_axis_swith # import algorithm from algorithm.mot.mot_At_oversampling import mot_oversampling from algorithm.read_data import generate_df, generate_df_from_local, convert_lists_to_df from algorithm.mot.mot import fast_mot_procressing from algorithm.mot.mot_two_function import mot_integrated_processing, chenged_G_start_to_g from algorithm.saving_process import combine_as_complex, six_decimal_saving # Using your own app name. Can't be same. prefix_app_name = "MOT" # Function type At or Pait @unique class FUNTION_TYPE(Enum): AT = 0 PAI = 1 # Selection options @unique class DOWNLOAD_OPTIONS(Enum): OVERSAMPLED_RAW_DATA = 0 FT_RAW_DATA = 1 FT_OVERSAMPLED_DATA = 2 BOUNDARY_COMPONENTS_ID = [ "MOT-g_0", "MOT-g_inf", ] STIFFNESS_RADIUS_COMPONENTS_ID = [ "MOT-kt", "MOT-at" ] DEFAULT_G_0_AT = 1 DEFAULT_G_0_PAIT = 0 Layout = dbc.Row([ dbc.Col([ html.H5("Support .txt"), html.Div([ upload_component_generate("MOT-upload"), dcc.Store(id="MOT-raw-data-store", storage_type="session"), dcc.Store(id="MOT-oversampling-data-store", storage_type="session"), dcc.Store(id="MOT-ft-data-store", storage_type="session"), dcc.Loading(dcc.Store(id="MOT-oversampled-ft-data-store", storage_type="session"), id="MOT-full-screen-mask", fullscreen=True), ], className="btn-group me-2"), html.Div([dbc.Button("Load Example data", id="MOT-load-example", color="primary", style={"margin": "5px"})], className="btn-group me-2"), MOTRadioitems, html.Div(id="MOT-upload-message"), # This is just for show the loading message html.Div(id="MOT-loading-message"), html.Hr(), mot_oversampling_generate(prefix_app_name), # html.Hr(), # stiffness_radius_generate(prefix_app_name), html.Hr(), download_component_generate(prefix_app_name) ], width=3), dbc.Col([ mot_tabs_generate(prefix_app_name), vertical_axis_swith(prefix_app_name), ], width=True), # Loading ]) # ================ Upload callback ======================== """ Trigger when the experiental data(raw data) uploaded """ @app.callback( Output("MOT-raw-data-store", "data"), Output("MOT-ft-data-store", "data"), # Output("upload-message", "children"), Output("MOT-loading-message", "children"), Input("MOT-upload", "contents"), Input("MOT-load-example", "n_clicks"), Input("MOT-refresh-btn", "n_clicks"), # TODO need change later # Boundary conditions State("MOT-g_0", "value"), State("MOT-g_inf", "value"), # Trap stiffness and radius State("MOT-kt", "value"), State("MOT-at", "value"), State("MOT-oversampling-Nf", "value"), # Decide the A(t) or ∏(t) State("MOT-radioitems-input", "value"), State("MOT-upload", "filename"), # Get the modified time to avoid inital time operating # State("MOT-ft-data-store", "modified_timestamp"), State("MOT-raw-data-store", "data"), State("MOT-ft-data-store", "data"), prevent_initial_call=True ) def store_raw_data(content, example_click, refresh_click, g_0, g_inf, kt, at, N_f, func_flag, file_name, prev_raw_data, prev_ft_data): raw_data = {} ft_raw_data = {} is_disable_FT = disable_FT(g_0, g_inf, kt, at, N_f, prev_ft_data) """ default kt: 1e-6, at: 1e-6 kt is the value of trap stiffness at is the value of radius """ kt = 1e-6 if kt is None else kt at = 1e-6 if at is None else at """ Boundary conditions (aka. Oversampling parameters) default g_0 : 1 as A(t), 0 as ∏(t) g_inf : 0 """ if g_0 is None: is_double_FT = True # Whatever the value is, the important value is the is_double_FT g_0 = 1 else: is_double_FT = False g_0 = float(g_0) g_inf = 0 if g_inf is None else float(g_inf) N_f = 100 if N_f is None else int(N_f) trigger_id = get_trigger_id() # mot_integrated_processing could take a lot of time depending your PC df = pd.DataFrame() # get the example data from loacl if trigger_id == "MOT-load-example": path = "example_data/mot/data.txt" df = generate_df_from_local(path) raw_data, ft_raw_data = \ upload_local_data_workflow(df, g_0, g_inf, kt, at, N_f, file_name, is_double_FT) # upload the data from users elif trigger_id == "MOT-upload": df = generate_df(content) raw_data, ft_raw_data = \ upload_local_data_workflow(df, g_0, g_inf, kt, at, N_f, file_name, is_double_FT) else: data_null_prevents_updated(prev_ft_data) if is_disable_FT: raw_data = prev_raw_data ft_raw_data = update_ft_data(prev_ft_data, kt, at, func_flag) else: df = convert_lists_to_df(prev_raw_data) file_name = prev_raw_data["filename"] raw_data, ft_raw_data = \ upload_local_data_workflow(df, g_0, g_inf, kt, at, N_f, file_name,is_double_FT) # return data, upload_messge, ft_data return raw_data, ft_raw_data, "" """ Trigger when the experiental data(raw data) has already uploaded and the oversampling button clicked with the oversampling ntimes. """ @app.callback( Output("MOT-oversampling-data-store", "data"), Output("MOT-oversampled-ft-data-store", "data"), Input("MOT-oversampling-btn", "n_clicks"), Input("MOT-refresh-btn", "n_clicks"), # TODO need change later # Boundary conditions State("MOT-g_0", "value"), State("MOT-g_inf", "value"), # Trap stiffness and radius State("MOT-kt", "value"), State("MOT-at", "value"), # Decide the A(t) or ∏(t) State("MOT-radioitems-input", "value"), State("MOT-raw-data-store", "data"), # Get ntimes State("MOT-oversampling-input", "value"), State("MOT-oversampling-Nf", "value"), # Get the modified time to avoid inital time operating # State("MOT-ft-data-store", "modified_timestamp"), State("MOT-oversampling-data-store", "data"), State("MOT-oversampled-ft-data-store", "data"), prevent_initial_call=True ) def store_oversampling_data(oversampling_click, refresh_click, g_0, g_inf, kt, at, func_flag, raw_data, ntimes, N_f, prev_oversampled_data, prev_ft_oversampled_data): if raw_data is None and ntimes is None: raise PreventUpdate is_disable_FT = disable_FT(g_0, g_inf, kt, at, N_f, prev_ft_oversampled_data) trigger_id = get_trigger_id() # avoid float number or string ntimes = 10 if ntimes is None else int(ntimes) N_f = 100 if N_f is None else int(N_f) func_flag = int(func_flag) """ Boundary conditions (aka. Oversampling parameters) default g_0 : 1 as A(t), 0 as ∏(t) g_inf : 0 """ if g_0 is None: is_double_FT = True # Whatever the value is, the important value is the is_double_FT g_0 = 1 else: is_double_FT = False g_0 = float(g_0) g_inf = 0 if g_inf is None else float(g_inf) """ default kt: 1e-6, at: 1e-6 kt is the value of trap stiffness at is the value of radius """ kt = 1e-6 if kt is None else kt at = 1e-6 if at is None else at oversampled_data = {} ft_oversampled_data = {} if trigger_id == "MOT-oversampling-btn": df = convert_lists_to_df(raw_data) oversampled_data, ft_oversampled_data = \ oversampling_button_workflow(df, kt, at, g_0, g_inf, N_f, ntimes, is_double_FT) else: if is_disable_FT: oversampled_data = prev_oversampled_data ft_oversampled_data = update_ft_data(prev_ft_oversampled_data, kt, at, func_flag) else: df = convert_lists_to_df(raw_data) raw_data, ft_oversampled_data = \ oversampling_button_workflow(df, kt, at, g_0, g_inf, N_f, ntimes, is_double_FT) return oversampled_data, ft_oversampled_data # ================ Download callback ======================== @app.callback( Output("MOT-download-text", "data"), Output("MOT-download-message", "children"), Input("MOT-download-btn", "n_clicks"), # State("MOT-downlaod-selection", "value"), State("MOT-raw-data-store","data"), # State("MOT-oversampling-data-store", "data"), # State("MOT-ft-data-store", "data"), State("MOT-oversampled-ft-data-store", "data"), State("MOT-radioitems-input", "value"), prevent_initial_call=True, ) def download(n_clicks, raw_data, ft_oversampled_data, func_flag): if ft_oversampled_data is None: return None, "No data available!" file_suffix_name = raw_data.get("filename") saved_file_name = "FT_oversampled_" + file_suffix_name # TODO At or Pai t's download data convert... # Covert the option from string to int if int(func_flag) == FUNTION_TYPE.AT.value: saved_omega = ft_oversampled_data["at_x"] complex_list = combine_as_complex( ft_oversampled_data["at_y1"], ft_oversampled_data["at_y2"] ) else: saved_omega = ft_oversampled_data["pai_x"] complex_list = combine_as_complex( ft_oversampled_data["pai_y1"], ft_oversampled_data["pai_y2"] ) saved_data_df = pd.DataFrame(six_decimal_saving({ "x": saved_omega, "y": complex_list })) return (dcc.send_data_frame(saved_data_df.to_csv, saved_file_name, header=False, index=False, sep='\t', encoding='utf-8'), "Download OK !") # =================== Clientside callback =================== """ Trigger when the experiental data(raw data) or oversampling data changed """ app.clientside_callback( ClientsideFunction( namespace="clientsideMot", function_name="tabChangeFigRender" ), Output("MOT-A(t)-display", "figure"), Input("MOT-raw-data-store", "data"), Input("MOT-oversampling-data-store", "data"), Input("MOT-oversampling-render-switch", "value"), Input("MOT-vertical-axis-switch", "value"), Input("MOT-radioitems-input", "value"), # Due to the dcc.Stroe's storage_type is session # if prevent_initial_call=True, the fig cannot show # prevent_initial_call=True ) """ Trigger when the ft data generated """ app.clientside_callback( ClientsideFunction( namespace="clientsideMot", function_name="tabChangeMotRender" ), Output("MOT-Mot-display", "figure"), Input("MOT-ft-data-store", "data"), Input("MOT-oversampled-ft-data-store", "data"), Input("MOT-oversampling-render-switch", "value"), Input("MOT-radioitems-input", "value"), Input("MOT-vertical-axis-switch", "value"), # prevent_initial_call=True ) app.clientside_callback( ClientsideFunction( namespace="clientsideMessageRec", function_name="uploadMessage" ), Output("MOT-upload-message", "children"), Input("MOT-raw-data-store", "data"), # prevent_initial_call=True ) # =================== Normal function =================== # Get the triggered component id def get_trigger_id(): ctx = dash.callback_context trigger_id = ctx.triggered[0]['prop_id'].split('.')[0] return trigger_id # Prevent updated when the datastore is NULL def data_null_prevents_updated(data): if data is None: raise PreventUpdate # If the data exists and the g_o is None with the g_inf def disable_FT(g_0, g_inf, kt, at, N_f, prev_data): if any([g_0, g_inf, N_f]) is False and prev_data is not None: return True else: return False # replace the dict's value def replace_dict_value(dict, replacement, replacement_keys): idx = 0 for key in dict: dict[key] = replacement[idx] if key in replacement_keys else dict[key] idx = idx + 1 if key in replacement_keys else idx return dict # Extract data def extract_from_prev_data(original_data, func_flag): if func_flag == FUNTION_TYPE.AT.value: data = { "x": original_data["at_x"], "ft_real": original_data["at_ft_real"], "ft_imag": original_data["at_ft_imag"], } else: data = { "x": original_data["pai_x"], "ft_real": original_data["pai_ft_real"], "ft_imag": original_data["pai_ft_imag"], } return data # Updata FT data acroding the func_flag def update_ft_data(ft_data, kt, at, func_flag): data = extract_from_prev_data(ft_data, func_flag) if func_flag == FUNTION_TYPE.AT.value: _, _, replace_g_p, replace_g_pp = chenged_G_start_to_g(kt, at, data) replacement_keys = ["at_y1", "at_y2"] replacement_elements = [replace_g_p, replace_g_pp] else: replace_g_p, replace_g_pp, _, _ = chenged_G_start_to_g(kt, at, data) replacement_keys = ["pai_y1", "pai_y2"] replacement_elements = [replace_g_p, replace_g_pp] updated_data = replace_dict_value(ft_data, replacement_elements, replacement_keys) return updated_data # only the upload button and example button trigger this def upload_local_data_workflow(df, g_0, g_inf, kt, at, N_f, file_name, is_double_FT): # save file_name and lens for message recovering when app changing raw_data = { "x": df[0], "y": df[1], "filename": file_name, "lines": len(df) } if is_double_FT: # At omega_at, _, _, a_t_g_p, a_t_g_pp, at_ft_real, at_ft_imag = \ mot_integrated_processing(df, kt, at, DEFAULT_G_0_AT, g_inf, N_f, False) # Pait omega_pait, pai_g_p, pai_g_pp, _, _, pait_ft_real, pait_ft_imag = \ mot_integrated_processing(df, kt, at, DEFAULT_G_0_PAIT, g_inf, N_f, False) ft_raw_data = { "at_x": omega_at, "pai_x": omega_pait, "pai_y1": pai_g_p, "pai_y2": pai_g_pp, "pai_ft_real": pait_ft_real, "pai_ft_imag": pait_ft_imag, "at_y1" : a_t_g_p, "at_y2" : a_t_g_pp, "at_ft_real": at_ft_real, "at_ft_imag": at_ft_imag } else: omega, pai_g_p, pai_g_pp, a_t_g_p, a_t_g_pp, ft_real, ft_imag = \ mot_integrated_processing(df, kt, at, g_0, g_inf, N_f, False) ft_raw_data = { "at_x": omega, "pai_x": omega, "pai_y1": pai_g_p, "pai_y2": pai_g_pp, "pai_ft_real": ft_real, "pai_ft_imag": ft_imag, "at_y1" : a_t_g_p, "at_y2" : a_t_g_pp, "at_ft_real": ft_real, "at_ft_imag": ft_imag } return raw_data, ft_raw_data def oversampling_button_workflow(df, kt, at, g_0, g_inf, N_f, ntimes, is_double_FT): x, y = mot_oversampling(df, ntimes) oversampled_data = { "x": x, "y": y, } if is_double_FT: # At omega_at, _, _, a_t_g_p, a_t_g_pp, at_ft_real, at_ft_imag = \ mot_integrated_processing(df, kt, at, DEFAULT_G_0_AT, g_inf, N_f, True, ntimes) # Pait omega_pait, pai_g_p, pai_g_pp, _, _, pait_ft_real, pait_ft_imag = \ mot_integrated_processing(df, kt, at, DEFAULT_G_0_PAIT, g_inf, N_f, True, ntimes) ft_oversampled_data = { "at_x": omega_at, "pai_x": omega_pait, "pai_y1": pai_g_p, "pai_y2": pai_g_pp, "pai_ft_real": pait_ft_real, "pai_ft_imag": pait_ft_imag, "at_y1" : a_t_g_p, "at_y2" : a_t_g_pp, "at_ft_real": at_ft_real, "at_ft_imag": at_ft_imag } else: omega, pai_g_p, pai_g_pp, a_t_g_p, a_t_g_pp, ft_real, ft_imag = \ mot_integrated_processing(df, kt, at, g_0, g_inf, N_f, True, ntimes) ft_oversampled_data = { "at_x": omega, "pai_x": omega, "pai_y1": pai_g_p, "pai_y2": pai_g_pp, "pai_ft_real": ft_real, "pai_ft_imag": ft_imag, "at_y1" : a_t_g_p, "at_y2" : a_t_g_pp, "at_ft_real": ft_real, "at_ft_imag": ft_imag } return oversampled_data, ft_oversampled_data ``` #### File: components/oversampling/switch.py ```python import dash_html_components as html import dash_core_components as dcc import dash_bootstrap_components as dbc SWITCH_ID_SUFFIX = "-oversampling-render-switch" Switch = dbc.FormGroup([ dbc.Checklist(options=[ {"label" : "oversampling render", "value" : True} ], # value=[False], id="oversampling-render-switch", switch=True, style={"fontSize" : "20px"} )]) def switch_component_generate(prefix_app_name): switch_id = prefix_app_name + SWITCH_ID_SUFFIX return dbc.FormGroup([ dbc.Checklist( options=[ {"label": "oversampling render", "value": True} ], # value=[False], id=switch_id, switch=True, style={"fontSize": "20px"} )]) def FT_rendering_switch_generate(prefix_app_name): switch_id = prefix_app_name + "-time-derivative" Switch = dbc.FormGroup( dbc.Checklist( options=[ {"label": "time derivative", "value": True} ], id=switch_id, switch=True, style={"fontSize": "20px"}), id="time-derivate-form", className="mt-1") return Switch ```
{ "source": "JNKielmann/cotect", "score": 2 }
#### File: cotect-endpoints/cotect_endpoints/db_handler.py ```python import logging from neo4j import GraphDatabase, Session from neo4j.exceptions import ServiceUnavailable from cotect_endpoints.utils import id_utils from cotect_endpoints.schema import ( CaseContact, CasePlace, CaseReport, CaseSymptom, User, ) def create_unique_constraint(tx, entity_type: str, property_name: str): constraint_name = (entity_type + "_" + property_name).strip().lower() constraint_stmt = ( "CREATE CONSTRAINT " + constraint_name + " ON (n:" + entity_type + ") ASSERT n." + property_name + " IS UNIQUE" ) tx.run(constraint_stmt) def init_graph(tx): # TODO: Check if no contstaints are set create_unique_constraint(tx, "Place", "place_id") create_unique_constraint(tx, "User", "user_id") create_unique_constraint(tx, "Symptom", "symptom_id") def delete_user(tx, user_id: str): delete_user_stmt = "MATCH (user:User { user_id: $user_id}) DETACH DELETE user;" tx.run(delete_user_stmt, user_id=user_id) def add_user(tx, user: User, report: CaseReport): # Create or update a user user_stmt = ( "MERGE (user:User { user_id: $user_id})\n" "ON CREATE SET user.created = timestamp()\n" ) set_user_props = "" if report.age: set_user_props += " user.age = $age," if report.gender: set_user_props += " user.gender = $gender," if report.covid_test: set_user_props += " user.covid_test = $covid_test," if report.covid_contact: set_user_props += " user.covid_contact = $covid_contact," set_user_props = set_user_props.rstrip(",") if set_user_props: # TODO only set on ON CREATE? user_stmt += " SET " + set_user_props + "\n" tx.run( user_stmt, user_id=user.user_id, age=report.age, gender=report.gender, covid_test=report.covid_test, covid_contact=report.covid_contact, ) def add_place(tx, place: CasePlace): # Create or update place place_stmt = "MERGE (place:Place { place_id: $place_id})\n" place_stmt += "ON CREATE SET place.created = timestamp()\n" set_place_props = "" if place.latitude: set_place_props += " place.latitude = $latitude," if place.longitude: set_place_props += " place.longitude = $longitude," if place.place_name: set_place_props += " place.name = $place_name," if place.place_types: set_place_props += " place.types = $place_types," set_place_props = set_place_props.rstrip(",") if set_place_props: # TODO only set on ON CREATE place_stmt += " SET " + set_place_props + "\n" tx.run( place_stmt, place_id=place.place_id, place_name=place.place_name, place_types=place.place_types, latitude=place.latitude, longitude=place.longitude, ) def add_place_visit(tx, user: User, place: CasePlace): # Create or update place add_place(tx, place) # initialize with single element to prevent code duplication below visit_dates = [None] if place.visit_dates: visit_dates = place.visit_dates for visit_date in visit_dates: relation_date_check = "" if visit_date: relation_date_check = "{visit_date: $visit_date}" # Create has visited relation visit_stmt = ( "MATCH (user:User {user_id: $user_id }), (place:Place {place_id: $place_id })\n" "MERGE (user)-[r:HAS_VISITED " + relation_date_check + "]->(place)\n" "ON CREATE SET r.created = timestamp()\n" ) tx.run( visit_stmt, user_id=user.user_id, place_id=place.place_id, visit_date=visit_date, ) def add_residence(tx, user: User, place: CasePlace): # Create or update place add_place(tx, place) # Create has visited relation residence_stmt = ( "MATCH (user:User {user_id: $user_id }), (place:Place {place_id: $place_id })\n" "MERGE (user)-[r:LOCATED_IN]->(place)\n" "ON CREATE SET r.created = timestamp()\n" ) tx.run(residence_stmt, user_id=user.user_id, place_id=place.place_id) def add_contact(tx, user: User, contact: CaseContact): contact_id = id_utils.generate_user_id( contact.phone_number, id_utils.get_id_generation_secret() ) # Create contact user user_stmt = ( "MERGE (user:User {user_id: $user_id})\n" "ON CREATE SET user.created = timestamp()\n" ) tx.run(user_stmt, user_id=contact_id) # Create contact relation # initialize with single element to prevent code duplicates below contact_dates = [None] if contact.contact_dates: contact_dates = contact.contact_dates for contact_date in contact_dates: relation_date_check = "" if contact_date: relation_date_check = "{contact_date: $contact_date}" contact_stmt = ( "MATCH (user:User {user_id: $user_id}), (contact:User {user_id: $contact_id})\n" "MERGE (user)-[r:IN_CONTACT " + relation_date_check + "]->(contact)\n" "ON CREATE SET r.created = timestamp()\n" ) tx.run( contact_stmt, user_id=user.user_id, contact_id=contact_id, contact_date=contact_date, ) def add_symptom(tx, user: User, symptom: CaseSymptom): symptom_id = id_utils.generate_symptom_id(symptom.symptom_name) # Create or update symptom symptom_node_stmt = ( "MERGE (symptom:Symptom {symptom_id: $symptom_id})\n" "ON CREATE SET symptom.symptom_name = $symptom_name, symptom.created = timestamp()\n" ) tx.run(symptom_node_stmt, symptom_id=symptom_id, symptom_name=symptom.symptom_name) # Create symptom relation relation_date_check = "" if symptom.report_date: relation_date_check = "{report_date: $report_date}" symptom_relation_stmt = ( "MATCH (user:User {user_id: $user_id }), (symptom:Symptom {symptom_id: $symptom_id })\n" "MERGE (user)-[r:HAS_SYMPTOM " + relation_date_check + "]->(symptom)\n" "ON CREATE SET r.created = timestamp()\n" ) set_symptom_props = "" if symptom.severity: set_symptom_props += " r.severity = $severity," set_symptom_props = set_symptom_props.rstrip(",") if set_symptom_props: symptom_relation_stmt += " SET " + set_symptom_props + "\n" tx.run( symptom_relation_stmt, user_id=user.user_id, report_date=symptom.report_date, symptom_id=symptom_id, severity=symptom.severity, ) def add_report(tx, user: User, report: CaseReport): add_user(tx, user, report) if report.residence: add_residence(tx, user, report.residence) if report.places: for place in report.places: add_place_visit(tx, user, place) if report.symptoms: for symptom in report.symptoms: add_symptom(tx, user, symptom) if report.contacts: for contact in report.contacts: add_contact(tx, user, contact) class GraphHandler: def __init__(self, neo_uri: str, user: str, password: str): # Initialize logger self.log = logging.getLogger(__name__) # Initialized default variables self._neo_uri = neo_uri self._neo_auth = (user, password) # Lazy load graph driver self._driver = None def get_driver(self): if self._driver is None or self._driver.closed(): # TODO improve driver configuration # encrypted = TLS encryption # Set connection timeouts? # max_connection_lifetime=30 * 60, max_connection_pool_size=50, # connection_acquisition_timeout=2 * 60 # connection_timeout=15 # max_retry_time=15 self._driver = GraphDatabase.driver( self._neo_uri, auth=self._neo_auth, encrypted=False, keep_alive=True ) return self._driver def check_connection(self): try: self.get_driver().session().begin_transaction().close() except ServiceUnavailable: # Failed to write to defunct connection Address -> reconnect graph driver self.close() self.get_driver() def close(self): if self._driver and not self._driver.closed(): self._driver.close() def get_session(self) -> Session: self.check_connection() return self.get_driver().session() def init_graph(self): try: with self.get_session() as session: tx = session.begin_transaction() init_graph(tx) tx.commit() except Exception: self.log.info( "Could not initialize the graph constraints. Graph is probably already initialized." # , ex, ) def delete_user(self, user_id: str): with self.get_session() as session: tx = session.begin_transaction() delete_user(tx, user_id) tx.commit() def add_report(self, user: User, report: CaseReport): with self.get_session() as session: tx = session.begin_transaction() add_report(tx, user, report) tx.commit() def run_get_query(self, query: str): def fetch(tx, query): return tx.run(query) session = self.get_session() result = session.read_transaction(fetch, query) session.close() return result def run_post_query(self, query: str, data): def put(tx, query, data): return tx.run(query, **data).single().value() session = self.get_session() result = session.write_transaction(put, query, data) session.close() return result ``` #### File: cotect-endpoints/cotect_endpoints/security.py ```python import logging import os import firebase_admin from fastapi import HTTPException, Security, status from fastapi.security import HTTPAuthorizationCredentials, HTTPBearer from fastapi.security.api_key import APIKeyCookie, APIKeyHeader, APIKeyQuery from firebase_admin import auth from cotect_endpoints.utils import id_utils from cotect_endpoints.schema import User # Initialize logger log = logging.getLogger(__name__) firebase_app = None firebase_credentials = os.getenv("GOOGLE_APPLICATION_CREDENTIALS") if firebase_credentials and os.path.isfile(firebase_credentials): # Initilize firebase firebase_app = firebase_admin.initialize_app() else: log.warning( "GOOGLE_APPLICATION_CREDENTIALS was not set with a valid path. Firebase will not be initalized." ) API_KEY_NAME = "api_token" api_key_bearer = HTTPBearer(auto_error=False) api_key_query = APIKeyQuery(name=API_KEY_NAME, auto_error=False) api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False) # Cookie security specification is not supported by swagger 2.0 specs # api_key_cookie = APIKeyCookie(name=API_KEY_NAME, auto_error=False) def get_active_user( api_key_bearer: HTTPAuthorizationCredentials = Security(api_key_bearer), api_key_query: str = Security(api_key_query), api_key_header: str = Security(api_key_header), # api_key_cookie: str = Security(api_key_cookie), ) -> User: # https://medium.com/data-rebels/fastapi-authentication-revisited-enabling-api-key-authentication-122dc5975680 secret = id_utils.get_id_generation_secret() api_key = None if api_key_bearer: api_key = api_key_bearer.credentials elif api_key_query: api_key = api_key_query elif api_key_header: api_key = api_key_header else: raise HTTPException( status_code=status.HTTP_403_FORBIDDEN, detail="No API Key was provided.", ) #elif api_key_cookie: # api_key = api_key_header if api_key == "demo": # Remove return User( user_id=id_utils.generate_user_id("+4917691377102", secret), verified=False, ) if not firebase_app: # firebase app was not initalized raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Failed to verify user.", headers={"WWW-Authenticate": "Bearer"}, ) try: decoded_token = auth.verify_id_token( api_key, app=firebase_app, check_revoked=False ) if "phone_number" in decoded_token and decoded_token["phone_number"]: return User( user_id=id_utils.generate_user_id(decoded_token["phone_number"], secret), verified=True, ) else: # use uid as fallback or for anonymous users return User( user_id=id_utils.generate_user_id(decoded_token["uid"], secret), verified=False, ) except Exception as ex: log.info("Failed to validate firebase token: " + str(ex.msg)) raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Failed to validate the firebase token.", headers={"WWW-Authenticate": "Bearer"}, ) ``` #### File: cotect_endpoints/tests/test_graph_handler.py ```python from cotect_endpoints.schema import User, CaseReport, CasePlace, CaseSymptom, CaseContact from datetime import date from cotect_endpoints.db_handler import GraphHandler # add neo4j logging from logging import getLogger, StreamHandler, DEBUG # ```python # from firebase_admin import auth # user = auth.get_user("", app=default_app) # user.phone_number # auth.delete_user(uid, app=None) # id_token = "" # ``` # ```python # # https://fastapi.tiangolo.com/tutorial/sql-databases/#note # def get_db(): # try: # db = SessionLocal() # yield db # finally: # db.close() # # def get_db(db_state=Depends(reset_db_state)): # try: # database.db.connect() # yield # finally: # if not database.db.is_closed(): # database.db.close() # ``` handler = StreamHandler() handler.setLevel(DEBUG) getLogger("neo4j").addHandler(handler) user = User(user_id="1", verified=True) report = CaseReport() report.age = 20 report.gender = "male" report.residence = CasePlace( place_id="berlin", latitude=1.5, longitude=19 ) report.covid_test = "tested-negative" report.symptoms = [ CaseSymptom(symptom_name="Caugh", report_date=date.today(), severity="mild"), CaseSymptom(symptom_name="Headache", report_date=date.today()), CaseSymptom(symptom_name="Fever", report_date=date.today(), severity="37.5"), ] report.places = [ CasePlace( place_id="my-place-1", visit_date=date.today(), latitude=1.1, longitude=1.2, place_name="test", place_types=["testtype", "type-2"], ), CasePlace( place_id="my-place-3", latitude=1.5, longitude=19 ), CasePlace( place_id="my-place-4", latitude=1.9, longitude=19 ) ] report.contacts = [ CaseContact(phone_number="+4917691377102", contact_date = date.today()), CaseContact(phone_number="+49176947102", contact_date = date.today()), CaseContact(phone_number="+491769 1377102", contact_date = date.today()), CaseContact(phone_number="+49176934432", contact_date = date.today()), ] graph_handler = GraphHandler("bolt://docker.for.mac.localhost:7687", "", "") graph_handler.init_graph() graph_handler.add_report(user, report) graph_handler.get_driver graph_handler.get_session().begin_transaction().close() graph_handler.get_driver().close() # + from neo4j.exceptions import ServiceUnavailable try: graph_handler.get_session().begin_transaction().close() except ServiceUnavailable: graph_handler.close() # - graph_handler.add_report(user, report) ```
{ "source": "JNKielmann/Master-Thesis", "score": 3 }
#### File: expert_voting/author_score_modifiers/last_kit_paper_modifier.py ```python import time from typing import List import numpy as np from expert_voting.author_score_modifiers.author_score_modifier import AuthorScoreModifier from expert_voting.scored_expert import ScoredExpert class LastKitPaperModifier(AuthorScoreModifier): def __init__(self, author_info, alpha, beta): self.author_info = author_info self.alpha = alpha self.beta = beta def modify(self, input_list: List[ScoredExpert]) -> List[ScoredExpert]: result = [] for author in input_list: last_publication_timestamp = self.author_info[str(author.id)][ "last_publication_date"] last_publication_timestamp /= (1000 * 60 * 60 * 24 * 365) current_timestamp = time.time() / (60 * 60 * 24 * 365) age = current_timestamp - last_publication_timestamp new_score = author.score * ((1 - self.beta) * (1 / np.power(self.alpha, age)) + self.beta) result.append(author.change_score(new_score)) return result ``` #### File: expert_voting/document_score_aggregations/author_order_aggregation.py ```python from typing import List import numpy as np from expert_voting.document_score_aggregations.document_score_aggregation import \ DocumentScoreAggregation from expert_voting.scored_document import ScoredDocument from expert_voting.scored_expert import ScoredExpert class AuthorOrderAggregation(DocumentScoreAggregation): def __init__(self, doc_info, alpha, num_docs=None): super().__init__(doc_info, num_docs) self.alpha = alpha def _calc_doc_score(self, author, num_authors, doc): normalization = np.power(self.alpha, np.arange(num_authors)).sum() factor = np.power(self.alpha, author["order_in_paper"]-1) / normalization return doc.score * factor ``` #### File: expert_voting/document_score_aggregations/document_score_aggregation.py ```python import abc from typing import List from expert_voting.scored_document import ScoredDocument from expert_voting.scored_expert import ScoredExpert class DocumentScoreAggregation(abc.ABC): def __init__(self, doc_info, num_docs=None): self.doc_info = doc_info self.num_docs = num_docs def modify(self, input_list: List[ScoredDocument]) -> List[ScoredExpert]: experts = {} for doc in input_list: authors = self.doc_info[str(doc.id)]["authors"] seen_author_ids = set() for author in authors: if author["id"] in seen_author_ids: continue seen_author_ids.add(author["id"]) if not author["id"] in experts: experts[author["id"]] = { "scores": [], "relevant_docs": [], } expert = experts[author["id"]] expert["relevant_docs"].append((doc.id, round(doc.score, 3))) expert["scores"].append(self._calc_doc_score(author, len(authors), doc)) return [ScoredExpert(expert_id, # sum(sorted(expert["scores"], reverse=True)[:self.num_docs]), sum(sorted(expert["scores"], reverse=True)[:self.num_docs]) if len(expert["scores"])>1 else 0, expert["relevant_docs"]) for expert_id, expert in experts.items()] @abc.abstractmethod def _calc_doc_score(self, author, num_authors, doc): pass ``` #### File: expert_voting/document_score_modifiers/exponential_modifier.py ```python from typing import List import numpy as np from expert_voting.document_score_modifiers.document_score_modifier import \ DocumentScoreModifier from expert_voting.scored_document import ScoredDocument class ExponentialModifier(DocumentScoreModifier): def modify(self, input_list: List[ScoredDocument]) -> List[ScoredDocument]: result = [] for rank, doc in enumerate(input_list): new_score = np.exp(doc.score*2) result.append(doc.change_score(new_score)) return result ``` #### File: paper_retrieval/preprocessing/pipeline.py ```python import copy import pickle from multiprocessing.pool import Pool from time import time from contextlib import suppress import numpy as np import pandas as pd import os import logging logger = logging.getLogger(__name__) def apply_pipeline(text, pipeline): for stage in pipeline: text = stage(text) return text class Corpus: def __init__(self, file_path, preprocessing_pipeline, load_from_cache=True, id_column="id", text_column="text", n_jobs=8): logger.info(f"Start preprocessing pipeline " f"\"{_get_pipeline_name(preprocessing_pipeline)}\" " f"for file {file_path}.") self.pipeline = copy.deepcopy(preprocessing_pipeline) cache_file_path = self._get_cache_file_path(file_path) if load_from_cache: if self._load_from_file(cache_file_path, id_column, text_column): logger.info(f"Loaded cached preprocessed corpus from {cache_file_path}") return df = pd.read_csv(file_path).fillna("") self.ids = df[id_column] self.data = df[text_column] pool = None for stage in self.pipeline: logger.info(f"Start stage \"{stage.name}\"") start_time = time() with suppress(AttributeError): stage.fit_corpus(self.data) if n_jobs > 1: if pool is None: pool = Pool(n_jobs) self.data = pd.concat( pool.map(ApplyStage(stage), np.array_split(self.data, n_jobs))) else: self.data = self.data.progress_apply(stage) logger.info(f"Finished stage \"{stage.name}\" in " f"{time() - start_time:.2f} seconds") if pool is not None: pool.close() self._save_to_file(cache_file_path) self.data = self.data.str.split(" ") logger.info(f"Finished preprocessing pipeline. " f"Saved preprocessed corpus to cache file {cache_file_path}") def _save_to_file(self, file_path): pd.concat([self.ids, self.data], axis=1).to_csv(file_path + ".csv") with open(file_path + ".pipeline", "wb") as file: pickle.dump(self.pipeline, file) def _load_from_file(self, file_path, id_column, text_column): data_exists = os.path.isfile(file_path + ".csv") pipeline_exists = os.path.isfile(file_path + ".pipeline") if not data_exists or not pipeline_exists: return False df = pd.read_csv(file_path + ".csv") self.ids = df[id_column] self.data = df[text_column].str.split(" ") with open(file_path + ".pipeline", "rb") as file: self.pipeline = pickle.load(file) return True def _get_cache_file_path(self, original_file_path): pipeline_name = _get_pipeline_name(self.pipeline) root, ext = os.path.splitext(original_file_path) return root + "_" + pipeline_name def _get_pipeline_name(pipeline): return "_".join([stage.name for stage in pipeline]) class ApplyStage: def __init__(self, stage): self.stage = stage def __call__(self, data): return data.progress_apply(self.stage) ``` #### File: paper_retrieval/retrieval_algorithms/retrieval_algorithm.py ```python import abc import pandas as pd from preprocessing import Corpus class RetrievalAlgorithm(abc.ABC): @abc.abstractmethod def prepare(self, corpus: Corpus): pass @abc.abstractmethod def get_ranking(self, query: str) -> pd.DataFrame: pass ``` #### File: paper_retrieval/retrieval_algorithms/tf_idf_retrieval_algorithm.py ```python import numpy as np import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import normalize from preprocessing import Corpus, apply_pipeline from retrieval_algorithms import RetrievalAlgorithm from .identity import identity class TfIdfRetrievalAlgorithm(RetrievalAlgorithm): def __init__(self, use_idf=True, sublinear_tf=True, max_ngram=1, min_df=1): self.pipeline = None self.ids = None self.vectorizer = TfidfVectorizer( analyzer="word", tokenizer=identity, preprocessor=identity, ngram_range=(1, max_ngram), use_idf=use_idf, sublinear_tf=sublinear_tf, min_df=min_df ) self.vectorized_corpus = None def prepare(self, corpus: Corpus): if self.ids is not None: return self.pipeline = corpus.pipeline self.ids = pd.Series(corpus.ids, name="id") self.vectorized_corpus = self.vectorizer.fit_transform(corpus.data) self.vectorized_corpus = normalize(self.vectorized_corpus) def get_ranking(self, query) -> pd.DataFrame: if self.ids is None: raise RuntimeError("Prepare of class TfIdfRetrievalAlgorithm has to be " "called before using get_ranking") if type(query) is str: query = [query] vectorized_query = np.zeros(self.vectorized_corpus.shape[1]) for q in query: q = apply_pipeline(query, self.pipeline) q = q.split(" ") vectorized_q = self.vectorizer.transform([query]) vectorized_query += vectorized_q vectorized_query = normalize(vectorized_query) df = pd.DataFrame(self.ids) df["score"] = (self.vectorized_corpus * vectorized_query.T).toarray() df.sort_values(by="score", ascending=False, inplace=True) return df[df["score"] > 0] ``` #### File: paper_retrieval/server/flask_server.py ```python import json import pickle import runpy import spacy from flask import Flask, jsonify, request, abort from flask_cors import CORS, cross_origin import sys sys.path.insert(0, "..") app = Flask(__name__) app.config["JSONIFY_PRETTYPRINT_REGULAR"] = True cors = CORS(app) try: spacy.load('en', disable=['ner']) except IOError: print("Downloading spacy model...") spacy.cli.download("en") file_path = "../../data/models/expert_voting.model" with open(file_path, "rb") as file: model = pickle.load(file) with open("../../data/kit_expert_2019_all_author_info.json") as file: author_info = json.load(file) @app.route("/experts", methods=["GET"]) @cross_origin() def get_experts(): if "query" not in request.args: return {"error": 'Query parameter "query" is required'}, 400 query = request.args["query"] limit = request.args.get("limit", 15) result = model.get_ranking(query, author_info).head(limit) result = result[["id", "score", "name"]].to_dict(orient="records") return jsonify({"experts": result}) if __name__ == '__main__': app.run(port=8071, debug=False, use_reloader=False) ```
{ "source": "jnkm/MXFusion", "score": 3 }
#### File: components/distributions/gamma.py ```python import numpy as np import mxnet as mx from ...common.config import get_default_MXNet_mode from ..variables import Variable from .univariate import UnivariateDistribution, UnivariateLogPDFDecorator, UnivariateDrawSamplesDecorator from .distribution import Distribution, LogPDFDecorator, DrawSamplesDecorator from ..variables import is_sampled_array, get_num_samples from ...util.customop import broadcast_to_w_samples class Gamma(UnivariateDistribution): """ Gamma distribution parameterized using Alpha and Beta. Takes dependency on Scipy to compute the log-gamma function. :param alpha: the alpha parameter of the Gamma distribution. :type alpha: Variable :param beta: beta parameter of the Gamma distribution. :type beta: Variable :param rand_gen: the random generator (default: MXNetRandomGenerator). :type rand_gen: RandomGenerator :param dtype: the data type for float point numbers. :type dtype: numpy.float32 or numpy.float64 :param ctx: the mxnet context (default: None/current context). :type ctx: None or mxnet.cpu or mxnet.gpu """ def __init__(self, alpha, beta, rand_gen=None, dtype=None, ctx=None): if not isinstance(alpha, Variable): alpha = Variable(value=alpha) if not isinstance(beta, Variable): beta = Variable(value=beta) inputs = [('alpha', alpha), ('beta', beta)] input_names = [k for k, _ in inputs] output_names = ['random_variable'] super(Gamma, self).__init__(inputs=inputs, outputs=None, input_names=input_names, output_names=output_names, rand_gen=rand_gen, dtype=dtype, ctx=ctx) @UnivariateLogPDFDecorator() def log_pdf(self, alpha, beta, random_variable, F=None): """ Computes the logarithm of the probability density function (PDF) of the Gamma distribution. :param random_variable: the random variable of the Gamma distribution. :type random_variable: MXNet NDArray or MXNet Symbol :param F: the MXNet computation mode (mxnet.symbol or mxnet.ndarray). :returns: log pdf of the distribution. :rtypes: MXNet NDArray or MXNet Symbol """ F = get_default_MXNet_mode() if F is None else F g_alpha = F.gammaln(alpha) p1 = (alpha - 1.) * F.log(random_variable) return (p1 - beta * random_variable) - (g_alpha - alpha * F.log(beta)) @UnivariateDrawSamplesDecorator() def draw_samples(self, alpha, beta, rv_shape, num_samples=1, F=None): """ Draw samples from the Gamma distribution. :param rv_shape: the shape of each sample. :type rv_shape: tuple :param nSamples: the number of drawn samples (default: one). :int nSamples: int :param F: the MXNet computation mode (mxnet.symbol or mxnet.ndarray). :returns: a set samples of the Gamma distribution. :rtypes: MXNet NDArray or MXNet Symbol """ F = get_default_MXNet_mode() if F is None else F return F.random.gamma(alpha=alpha, beta=beta, dtype=self.dtype, ctx=self.ctx) @staticmethod def define_variable(alpha=0., beta=1., shape=None, rand_gen=None, dtype=None, ctx=None): """ Creates and returns a random variable drawn from a Gamma distribution parameterized with a and b parameters. :param shape: the shape of the random variable(s). :type shape: tuple or [tuple] :param rand_gen: the random generator (default: MXNetRandomGenerator). :type rand_gen: RandomGenerator :param dtype: the data type for float point numbers. :type dtype: numpy.float32 or numpy.float64 :param ctx: the mxnet context (default: None/current context). :type ctx: None or mxnet.cpu or mxnet.gpu :returns: the random variables drawn from the Gamma distribution. :rtypes: Variable """ dist = Gamma(alpha=alpha, beta=beta, rand_gen=rand_gen, dtype=dtype, ctx=ctx) dist._generate_outputs(shape=shape) return dist.random_variable class GammaMeanVariance(UnivariateDistribution): """ Gamma distribution parameterized using Mean and Variance. Takes dependency on Scipy to compute the log-gamma function. :param mean: the mean parameter of the Gamma distribution. :type mean: Variable :param variance: variance parameter of the Gamma distribution. :type variance: Variable :param rand_gen: the random generator (default: MXNetRandomGenerator). :type rand_gen: RandomGenerator :param dtype: the data type for float point numbers. :type dtype: numpy.float32 or numpy.float64 :param ctx: the mxnet context (default: None/current context). :type ctx: None or mxnet.cpu or mxnet.gpu """ def __init__(self, mean, variance, rand_gen=None, dtype=None, ctx=None): if not isinstance(mean, Variable): mean = Variable(value=mean) if not isinstance(variance, Variable): variance = Variable(value=variance) inputs = [('mean', mean), ('variance', variance)] input_names = [k for k, _ in inputs] output_names = ['random_variable'] super(GammaMeanVariance, self).__init__(inputs=inputs, outputs=None, input_names=input_names, output_names=output_names, rand_gen=rand_gen, dtype=dtype, ctx=ctx) def _get_alpha_beta(self, a, b): """ Returns the alpha/beta representation of the input variables. Based on if the variable was parameterized using alpha/beta or with mean/variance. :param a: alpha or mean :type a: mx.ndarray.array or mx.symbol.array :param b: beta or variance :type b: mx.ndarray.array or mx.symbol.array """ beta = a / b alpha = a * beta return alpha, beta @UnivariateLogPDFDecorator() def log_pdf(self, mean, variance, random_variable, F=None): """ Computes the logarithm of the probability density function (PDF) of the Gamma distribution. :param random_variable: the random variable of the Gamma distribution. :type random_variable: MXNet NDArray or MXNet Symbol :param F: the MXNet computation mode (mxnet.symbol or mxnet.ndarray). :returns: log pdf of the distribution. :rtypes: MXNet NDArray or MXNet Symbol """ F = get_default_MXNet_mode() if F is None else F alpha, beta = self._get_alpha_beta(mean, variance) g_alpha = F.gammaln(alpha) p1 = (alpha - 1.) * F.log(random_variable) return (p1 - beta * random_variable) - (g_alpha - alpha * F.log(beta)) @UnivariateDrawSamplesDecorator() def draw_samples(self, mean, variance, rv_shape, num_samples=1, F=None): """ Draw samples from the Gamma distribution. :param rv_shape: the shape of each sample. :type rv_shape: tuple :param nSamples: the number of drawn samples (default: one). :int nSamples: int :param F: the MXNet computation mode (mxnet.symbol or mxnet.ndarray). :returns: a set samples of the Gamma distribution. :rtypes: MXNet NDArray or MXNet Symbol """ F = get_default_MXNet_mode() if F is None else F alpha, beta = self._get_alpha_beta(mean, variance) return F.random.gamma(alpha=alpha, beta=beta, dtype=self.dtype, ctx=self.ctx) @staticmethod def define_variable(mean=0., variance=1., shape=None, rand_gen=None, dtype=None, ctx=None): """ Creates and returns a random variable drawn from a Gamma distribution parameterized with mean and variance. :param shape: the shape of the random variable(s). :type shape: tuple or [tuple] :param rand_gen: the random generator (default: MXNetRandomGenerator). :type rand_gen: RandomGenerator :param dtype: the data type for float point numbers. :type dtype: numpy.float32 or numpy.float64 :param ctx: the mxnet context (default: None/current context). :type ctx: None or mxnet.cpu or mxnet.gpu :returns: the random variables drawn from the Gamma distribution. :rtypes: Variable """ dist = GammaMeanVariance(mean=mean, variance=variance, rand_gen=rand_gen, dtype=dtype, ctx=ctx) dist._generate_outputs(shape=shape) return dist.random_variable ``` #### File: mxfusion/components/factor.py ```python from copy import copy from .model_component import ModelComponent class Factor(ModelComponent): """ A factor represents a relation among multiple variables in a model such as a distribution, a function or a module. It consists of a list of output variables and optionally a list of input variables. The ``inputs`` and ``outputs`` argument of ``__init__`` holds the input and output of the factor, which are represented in Python dict. The key of a variable in the dict is the name of the variable referred in the context of the factor, e.g., the mean and variance of a normal distribution. The value of a variable is the reference to the variable in memory. Both input and output variables are accessible as class attributes. The ``inputs`` and ``outputs`` argument of ``__init__`` can be: * A list of variables * An empty list (no input/output variables) * None (the input/output variables are not provided yet.) Note that the ``outputs`` argument should never be an empty list, as a factor always outputs some variables. :param inputs: the input variables of the factor. :type inputs: List of tuples of name to node e.g. [('random_variable': Variable y)] or None :param outputs: the output variables of the factor. :type outputs: List of tuples of name to node e.g. [('random_variable': Variable y)] or None """ def __getattr__(self, value): if value.startswith("__"): """ When python copies objects, it begins by checking for ``__setstate__()`` which doesn't exist, so it calls ``__getattr__()``. Our implementation then calls the ``self.inputs`` getter before the object is fully prepared because ``__init__()`` never gets called during the copy. This causes an infinite recursion to ``__getattr__()``. By skipping magic methods with "__" prefix, we allow the object to initialize correctly during copying. # TODO this is very inefficient, can be improved. """ raise AttributeError(value) if value in self._input_names: for name, node in self.inputs: if name == value: return node if value in self._output_names: for name, node in self.outputs: if name == value: return node else: raise AttributeError("''%s' object has no attribute '%s'" % (type(self), value)) def __init__(self, inputs, outputs, input_names, output_names): super(Factor, self).__init__() self._check_name_conflict(inputs, outputs) self._input_names = input_names if input_names is not None else [] self._output_names = output_names if output_names is not None else [] self.predecessors = inputs if inputs is not None else [] self.successors = outputs if outputs is not None else [] def __repr__(self): out_str = str(self.__class__.__name__) if self.predecessors is not None: out_str = out_str + \ '(' + ', '.join([str(name) + '=' + str(var) for name, var in self.predecessors]) + ')' return out_str def replicate_self(self, attribute_map=None): """ This functions is a copy constructor for the object. In order to perform copy construction we first call ``__new__()`` on the class which creates a blank object. We then initialize that object using the method's standard init procedures, and do any extra copying of attributes. Replicates this Factor, using new inputs, outputs, and a new uuid. Used during model replication to functionally replicate a factor into a new graph. :param inputs: new input variables of the factor. :type inputs: List of tuples of name to node e.g. [('random_variable': Variable y)] or None :param outputs: new output variables of the factor. :type outputs: List of tuples of name to node e.g. [('random_variable': Variable y)] or None """ replicant = self.__class__.__new__(self.__class__) Factor.__init__( replicant, None, None, copy(self.input_names), copy(self.output_names)) replicant._uuid = self.uuid return replicant def _check_name_conflict(self, inputs, outputs): if inputs is not None and outputs is not None: intersect = set([v for _, v in inputs]) & set([v for _, v in outputs]) if intersect: raise RuntimeError("The inputs and outputs variables of " + self.__class__.__name__ + " have name conflict: " + str(intersect) + ".") @property def inputs(self): """ Return a list of nodes whose edges point into this node. """ if self.graph is not None: pred = {e['name']: v for v, e in self.graph.pred[self].items()} return [(name, pred[name]) for name in self.input_names] else: return self._predecessors @property def outputs(self): """ Return a list of nodes pointed to by the edges of this node. """ if self.graph is not None: succ = {e['name']: v for v, e in self.graph.succ[self].items()} return [(name, succ[name]) for name in self.output_names] else: return self._successors @inputs.setter def inputs(self, inputs): """ Set Input variables of the factor. :param inputs: Input variables of the factor. :type inputs: List of tuples of name to node e.g. [('random_variable': Variable y)] """ self.predecessors = inputs @outputs.setter def outputs(self, outputs): """ Set Output variables of the factor. :param outputs: Output variables of the factor. :type outputs: List of tuples of name to node e.g. [('random_variable': Variable y)] """ self.successors = outputs def set_outputs(self, variables): """ TODO We don't actually support multi-output. """ variables = [variables] if not isinstance(variables, (list, tuple)) else variables self.successors = [(name, variable) for name, variable in zip(self.output_names, variables)] def set_single_input(self, key, value): """ Set a single input variable of a factor. :param key: the name of the input variable in the factor :type key: str :param value: the variable to be set :type value: Variable """ inputs = [(k, value) if k == key else (k, v) for k, v in self.inputs] self.predecessors = inputs @property def input_names(self): """ Return Input names. """ return self._input_names @property def output_names(self): """ Return Output names. """ return self._output_names def fetch_runtime_inputs(self, params): """ The helper function to fetch the input variables from a set of variables according to the UUIDs of the input variables. It returns a dictionary of variables at runtime, where the keys are the name of the input variables and the values are the MXNet array at runtime. The returned dict can be directly passed into runtime functions of factors such as eval for functions and log_pdf and draw_samples for distributions. :param params: the set of variables where the input variables are fetched from. :type params: {str (UUID): MXNet NDArray or MXNet Symbol} :return: a dict of the input variables, where the keys are the name of the input variables and the values are the MXNet array at runtime. :rtype: {str (kernel name): MXNet NDArray or MXNet Symbol} """ return {n: params[v.uuid] for n, v in self.inputs} def fetch_runtime_outputs(self, params): """ The helper function to fetch the output variables from a set of variables according to the UUIDs of the output variables. It returns a dictionary of variables at runtime, where the keys are the name of the output variables and the values are the MXNet array at runtime. The returned dict can be directly passed into runtime functions of factors such as eval for functions and log_pdf and draw_samples for distributions. :param params: the set of variables where the output variables are fetched from. :type params: {str (UUID): MXNet NDArray or MXNet Symbol} :return: a dict of the output variables, where the keys are the name of the output variables and the values are the MXNet array at runtime. :rtype: {str (kernel name): MXNet NDArray or MXNet Symbol} """ return {n: params[v.uuid] for n, v in self.outputs} ```
{ "source": "jnktsj/fiss", "score": 3 }
#### File: fiss/firecloud/entity.py ```python import json import firecloud.api as fapi class Entity(object): """A FireCloud Entity Attributes: etype (str): Enity type, e.g. "sample". Must be one of Entity.ENTITY_TYPES entity_id (str): Unique id of this entity. Becomes the entity's name in FireCloud. attrs (dict): Dictionary of attributes and their values """ ENTITY_TYPES = { "participant", "participant_set", "sample", "sample_set", "pair", "pair_set" } def __init__(self, etype, entity_id, attrs=dict()): """Create Entity.""" if etype not in Entity.ENTITY_TYPES: raise ValueError("Invalid entity type: " + etype) self.entity_id = entity_id self.etype = etype self.attrs = attrs def get_attribute(self, attr): """Return attribute value.""" return self.attrs.get(attr, None) def set_attribute(self, attr, value): """Set and return attribute value.""" self.attrs[attr] = value return value @staticmethod def create_payload(entities): """Create a tsv payload describing entities. A TSV payload consists of 1 header row describing entity type and attribute names. Each subsequent line is an entity_id followed by attribute values separated by the tab "\\t" character. This payload can be uploaded to the workspace via firecloud.api.upload_entities() """ #First check that all entities are of the same type types = {e.etype for e in entities} if len(types) != 1: raise ValueError("Can't create payload with " + str(len(types)) + " types") all_attrs = set() for e in entities: all_attrs.update(set(e.attrs.keys())) #Write a header line all_attrs = list(all_attrs) header = "entity:" + entities[0].etype + "_id" payload = '\t'.join([header] + all_attrs) + '\n' for e in entities: line = e.entity_id for a in all_attrs: line += '\t' + e.attrs.get(a, "") payload += line + '\n' return payload @staticmethod def create_loadfile(entities, f): """Create payload and save to file.""" with open(f, 'w') as out: out.write(Entity.create_payload(entities)) ``` #### File: fiss/firecloud/fiss.py ```python from __future__ import print_function import json import sys import os import time from inspect import getsourcelines from traceback import print_tb as print_traceback from io import open from fnmatch import fnmatchcase import argparse import subprocess import re import collections from difflib import unified_diff from six import iteritems, string_types, itervalues, u, text_type from six.moves import input from firecloud import api as fapi from firecloud import fccore from firecloud.errors import * from firecloud.__about__ import __version__ from firecloud import supervisor fcconfig = fccore.config_parse() def fiss_cmd(function): """ Decorator to indicate a function is a FISS command """ function.fiss_cmd = True return function ################################################# # SubCommands ################################################# @fiss_cmd def space_list(args): ''' List accessible workspaces, in TSV form: <namespace><TAB>workspace''' r = fapi.list_workspaces(fields="workspace.name,workspace.namespace") fapi._check_response_code(r, 200) spaces = [] project = args.project if project: project = re.compile('^' + project) for space in r.json(): ns = space['workspace']['namespace'] if project and not project.match(ns): continue ws = space['workspace']['name'] spaces.append(ns + '\t' + ws) # Sort for easier downstream viewing, ignoring case return sorted(spaces, key=lambda s: s.lower()) @fiss_cmd def space_exists(args): """ Determine if the named space exists in the given project (namespace)""" # The return value is the INVERSE of UNIX exit status semantics, (where # 0 = good/true, 1 = bad/false), so to check existence in UNIX one would do # if ! fissfc space_exists blah ; then # ... # fi try: r = fapi.get_workspace(args.project, args.workspace, fields="workspace.name") fapi._check_response_code(r, 200) exists = True except FireCloudServerError as e: if e.code == 404: exists = False else: raise if fcconfig.verbosity: result = "DOES NOT" if not exists else "DOES" eprint('Space <%s> %s exist in project <%s>' % (args.workspace, result, args.project)) return exists @fiss_cmd def space_lock(args): """ Lock a workspace """ r = fapi.lock_workspace(args.project, args.workspace) fapi._check_response_code(r, 204) if fcconfig.verbosity: eprint('Locked workspace {0}/{1}'.format(args.project, args.workspace)) return 0 @fiss_cmd def space_unlock(args): """ Unlock a workspace """ r = fapi.unlock_workspace(args.project, args.workspace) fapi._check_response_code(r, 204) if fcconfig.verbosity: eprint('Unlocked workspace {0}/{1}'.format(args.project,args.workspace)) return 0 @fiss_cmd def space_new(args): """ Create a new workspace. """ r = fapi.create_workspace(args.project, args.workspace, args.authdomain, dict()) fapi._check_response_code(r, 201) if fcconfig.verbosity: eprint(r.content) return 0 @fiss_cmd def space_info(args): """ Get metadata for a workspace. """ r = fapi.get_workspace(args.project, args.workspace) fapi._check_response_code(r, 200) return r.text @fiss_cmd def space_delete(args): """ Delete a workspace. """ message = "WARNING: this will delete workspace: \n\t{0}/{1}".format( args.project, args.workspace) if not args.yes and not _confirm_prompt(message): return 0 r = fapi.delete_workspace(args.project, args.workspace) fapi._check_response_code(r, [200, 202, 204, 404]) if fcconfig.verbosity: print('Deleted workspace {0}/{1}'.format(args.project, args.workspace)) return 0 @fiss_cmd def space_clone(args): """ Replicate a workspace """ # FIXME: add --deep copy option (shallow by default) # add aliasing capability, then make space_copy alias if not args.to_workspace: args.to_workspace = args.workspace if not args.to_project: args.to_project = args.project if (args.project == args.to_project and args.workspace == args.to_workspace): eprint("Error: destination project and namespace must differ from" " cloned workspace") return 1 r = fapi.clone_workspace(args.project, args.workspace, args.to_project, args.to_workspace, args.copyFilesWithPrefix) fapi._check_response_code(r, 201) if fcconfig.verbosity: msg = "{}/{} successfully cloned to {}/{}".format( args.project, args.workspace, args.to_project, args.to_workspace) print(msg) return 0 @fiss_cmd def space_acl(args): ''' Retrieve access control list for a workspace''' r = fapi.get_workspace_acl(args.project, args.workspace) fapi._check_response_code(r, 200) result = dict() for user, info in sorted(r.json()['acl'].items()): result[user] = info['accessLevel'] return result @fiss_cmd def space_set_acl(args): """ Assign an ACL role to list of users for a workspace """ acl_updates = [{"email": user, "accessLevel": args.role} for user in args.users] r = fapi.update_workspace_acl(args.project, args.workspace, acl_updates) fapi._check_response_code(r, 200) errors = r.json()['usersNotFound'] if len(errors): eprint("Unable to assign role for unrecognized users:") for user in errors: eprint("\t{0}".format(user['email'])) return 1 if fcconfig.verbosity: print("Successfully updated {0} role(s)".format(len(acl_updates))) return 0 @fiss_cmd def space_search(args): """ Search for workspaces matching certain criteria """ r = fapi.list_workspaces(fields="workspace.name,workspace.namespace,workspace.bucketName") fapi._check_response_code(r, 200) # Parse the JSON for workspace + namespace; then filter by # search terms: each term is treated as a regular expression workspaces = r.json() extra_terms = [] if args.bucket: workspaces = [w for w in workspaces if re.search(args.bucket, w['workspace']['bucketName'])] extra_terms.append('bucket') # FIXME: add more filter terms pretty_spaces = [] for space in workspaces: ns = space['workspace']['namespace'] ws = space['workspace']['name'] pspace = ns + '/' + ws # Always show workspace storage id pspace += '\t' + space['workspace']['bucketName'] pretty_spaces.append(pspace) # Sort for easier viewing, ignore case return sorted(pretty_spaces, key=lambda s: s.lower()) @fiss_cmd def entity_import(args): """ Upload an entity loadfile. """ project = args.project workspace = args.workspace chunk_size = args.chunk_size model = args.model with open(args.tsvfile) as tsvf: headerline = tsvf.readline().strip() entity_data = [l.rstrip('\n') for l in tsvf] return _batch_load(project, workspace, headerline, entity_data, chunk_size, model) @fiss_cmd def set_export(args): '''Return a list of lines in TSV form that would suffice to reconstitute a container (set) entity, if passed to entity_import. The first line in the list is the header, and subsequent lines are the container members. ''' r = fapi.get_entity(args.project, args.workspace, args.entity_type, args.entity) fapi._check_response_code(r, 200) set_type = args.entity_type set_name = args.entity member_type = set_type.split('_')[0] members = r.json()['attributes'][member_type+'s']['items'] result = ["membership:{}_id\t{}_id".format(set_type, member_type)] result += ["%s\t%s" % (set_name, m['entityName']) for m in members ] return result @fiss_cmd def entity_types(args): """ List entity types in a workspace """ r = fapi.list_entity_types(args.project, args.workspace) fapi._check_response_code(r, 200) return r.json().keys() @fiss_cmd def entity_list(args): """ List entities in a workspace. """ r = fapi.get_entities_with_type(args.project, args.workspace) fapi._check_response_code(r, 200) return [ '{0}\t{1}'.format(e['entityType'], e['name']) for e in r.json() ] # REMOVED: This now returns a *.zip* file containing two tsvs, which is far # less useful for FISS users... @fiss_cmd def entity_tsv(args): """ Get list of entities in TSV format. Download files for which the encoding is undetected (e.g. ZIP archives). """ r = fapi.get_entities_tsv(args.project, args.workspace, args.entity_type, args.attrs, args.model) fapi._check_response_code(r, 200) if r.apparent_encoding is not None: return r.content.decode(r.apparent_encoding) else: content = r.headers['Content-Disposition'].split('; ')[-1].split('=') if len(content) == 2 and content[0] == 'filename': filename = content[1] if os.path.exists(filename) and (args.yes or not _confirm_prompt( 'This will overwrite {}'.format(filename))): return with open(filename, 'wb') as outfile: for chunk in r: outfile.write(chunk) print('Downloaded {}.'.format(filename)) return else: eprint("Unable to determine name of file to download.") return 1 def __entity_names(entities): return [ entity['name'] for entity in entities ] def __get_entities(args, kind, page_size=1000, handler=__entity_names): entities = _entity_paginator(args.project, args.workspace, kind, page_size=page_size) return handler(entities) @fiss_cmd def participant_list(args): ''' List participants within a container''' # Case 1: retrieve participants within a named data entity if args.entity_type and args.entity: # Edge case: caller asked for participant within participant (itself) if args.entity_type == 'participant': return [ args.entity.strip() ] # Otherwise retrieve the container entity r = fapi.get_entity(args.project, args.workspace, args.entity_type, args.entity) fapi._check_response_code(r, 200) participants = r.json()['attributes']["participants"]['items'] return [ participant['entityName'] for participant in participants ] # Case 2: retrieve all participants within a workspace return __get_entities(args, "participant", page_size=2000) @fiss_cmd def pair_list(args): ''' List pairs within a container. ''' # Case 1: retrieve pairs within a named data entity if args.entity_type and args.entity: # Edge case: caller asked for pair within a pair (itself) if args.entity_type == 'pair': return [ args.entity.strip() ] # Edge case: pairs for a participant, which has to be done hard way # by iteratiing over all samples (see firecloud/discussion/9648) elif args.entity_type == 'participant': entities = _entity_paginator(args.project, args.workspace, 'pair', page_size=2000) return [ e['name'] for e in entities if e['attributes']['participant']['entityName'] == args.entity] # Otherwise retrieve the container entity r = fapi.get_entity(args.project, args.workspace, args.entity_type, args.entity) fapi._check_response_code(r, 200) pairs = r.json()['attributes']["pairs"]['items'] return [ pair['entityName'] for pair in pairs] # Case 2: retrieve all pairs within a workspace return __get_entities(args, "pair", page_size=2000) @fiss_cmd def sample_list(args): ''' List samples within a container. ''' # Case 1: retrieve samples within a named data entity if args.entity_type and args.entity: # Edge case: caller asked for samples within a sample (itself) if args.entity_type == 'sample': return [ args.entity.strip() ] # Edge case: samples for a participant, which has to be done hard way # by iteratiing over all samples (see firecloud/discussion/9648) elif args.entity_type == 'participant': samples = _entity_paginator(args.project, args.workspace, 'sample', page_size=2000) return [ e['name'] for e in samples if e['attributes']['participant']['entityName'] == args.entity] # Otherwise retrieve the container entity r = fapi.get_entity(args.project, args.workspace, args.entity_type, args.entity) fapi._check_response_code(r, 200) if args.entity_type == 'pair': pair = r.json()['attributes'] samples = [ pair['case_sample'], pair['control_sample'] ] else: samples = r.json()['attributes']["samples"]['items'] return [ sample['entityName'] for sample in samples ] # Case 2: retrieve all samples within a workspace return __get_entities(args, "sample", page_size=2000) @fiss_cmd def sset_list(args): """ List sample sets in a workspace """ return __get_entities(args, "sample_set") @fiss_cmd def entity_delete(args): """ Delete entity in a workspace. """ msg = "WARNING: this will delete {0} {1} in {2}/{3}".format( args.entity_type, args.entity, args.project, args.workspace) if not (args.yes or _confirm_prompt(msg)): return json_body=[{"entityType": args.entity_type, "entityName": args.entity}] r = fapi.delete_entities(args.project, args.workspace, json_body) fapi._check_response_code(r, 204) if fcconfig.verbosity: print("Succesfully deleted " + args.type + " " + args.entity) @fiss_cmd def participant_delete(args): args.entity_type = "participant" return entity_delete(args) @fiss_cmd def sample_delete(args): args.entity_type = "sample" return entity_delete(args) @fiss_cmd def sset_delete(args): args.entity_type = "sample_set" return entity_delete(args) @fiss_cmd def meth_new(args): """ Submit a new workflow (or update) to the methods repository. """ r = fapi.update_repository_method(args.namespace, args.method, args.synopsis, args.wdl, args.doc, args.comment) fapi._check_response_code(r, 201) if fcconfig.verbosity: print("Method %s installed to project %s" % (args.method, args.namespace)) return 0 @fiss_cmd def meth_delete(args): """ Remove (redact) a method from the method repository """ message = "WARNING: this will delete workflow \n\t{0}/{1}:{2}".format( args.namespace, args.method, args.snapshot_id) if not args.yes and not _confirm_prompt(message): return r = fapi.delete_repository_method(args.namespace, args.method, args.snapshot_id) fapi._check_response_code(r, 200) if fcconfig.verbosity: print("Method %s removed from project %s" % (args.method,args.namespace)) return 0 @fiss_cmd def meth_wdl(args): ''' Retrieve WDL for given version of a repository method''' r = fapi.get_repository_method(args.namespace, args.method, args.snapshot_id, True) fapi._check_response_code(r, 200) return r.text @fiss_cmd def meth_acl(args): ''' Retrieve access control list for given version of a repository method''' r = fapi.get_repository_method_acl(args.namespace, args.method, args.snapshot_id) fapi._check_response_code(r, 200) acls = sorted(r.json(), key=lambda k: k['user']) return map(lambda acl: '{0}\t{1}'.format(acl['user'], acl['role']), acls) @fiss_cmd def meth_set_acl(args): """ Assign an ACL role to a list of users for a workflow. """ acl_updates = [{"user": user, "role": args.role} \ for user in set(expand_fc_groups(args.users)) \ if user != fapi.whoami()] id = args.snapshot_id if not id: # get the latest snapshot_id for this method from the methods repo r = fapi.list_repository_methods(namespace=args.namespace, name=args.method) fapi._check_response_code(r, 200) versions = r.json() if len(versions) == 0: if fcconfig.verbosity: eprint("method {0}/{1} not found".format(args.namespace, args.method)) return 1 latest = sorted(versions, key=lambda m: m['snapshotId'])[-1] id = latest['snapshotId'] r = fapi.update_repository_method_acl(args.namespace, args.method, id, acl_updates) fapi._check_response_code(r, 200) if fcconfig.verbosity: print("Updated ACL for {0}/{1}:{2}".format(args.namespace, args.method, id)) return 0 def expand_fc_groups(users, groups=None, seen=set()): """ If user is a firecloud group, return all members of the group. Caveat is that only group admins may do this. """ for user in users: fcgroup = None if user.lower() == 'public': yield 'public' continue if '@' not in user: fcgroup = user elif user.lower().endswith('@firecloud.org'): if groups is None: r = fapi.get_groups() fapi._check_response_code(r, 200) groups = {group['groupEmail'].lower():group['groupName'] \ for group in r.json() if group['role'] == 'Admin'} if user.lower() not in groups: if fcconfig.verbosity: eprint("You do not have access to the members of {}".format(user)) yield user continue else: fcgroup = groups[user.lower()] else: yield user continue # Avoid infinite loops due to nested groups if fcgroup in seen: continue r = fapi.get_group(fcgroup) fapi._check_response_code(r, [200, 403]) if r.status_code == 403: if fcconfig.verbosity: eprint("You do not have access to the members of {}".format(fcgroup)) continue fcgroup_data = r.json() seen.add(fcgroup) for admin in expand_fc_groups(fcgroup_data['adminsEmails'], groups, seen): yield admin for member in expand_fc_groups(fcgroup_data['membersEmails'], groups, seen): yield member @fiss_cmd def meth_list(args): """ List workflows in the methods repository """ r = fapi.list_repository_methods(namespace=args.namespace, name=args.method, snapshotId=args.snapshot_id) fapi._check_response_code(r, 200) # Parse the JSON for the workspace + namespace methods = r.json() results = [] for m in methods: ns = m['namespace'] n = m['name'] sn_id = m['snapshotId'] results.append('{0}\t{1}\t{2}'.format(ns,n,sn_id)) # Sort for easier viewing, ignore case return sorted(results, key=lambda s: s.lower()) @fiss_cmd def meth_exists(args): '''Determine whether a given workflow is present in methods repo''' args.namespace = None args.snapshot_id = None return len(meth_list(args)) != 0 @fiss_cmd def config_start(args): '''Invoke a task (method configuration), on given entity in given space''' # Try to use call caching (job avoidance)? Flexibly accept range of answers cache = getattr(args, "cache", True) cache = cache is True or (cache.lower() in ["y", "true", "yes", "t", "1"]) if not args.namespace: args.namespace = fcconfig.method_ns if not args.namespace: raise RuntimeError("namespace not provided, or configured by default") # If no entity name is given, unset entity_type if args.entity is None: args.entity_type = None r = fapi.create_submission(args.project, args.workspace,args.namespace, args.config, args.entity, args.entity_type, args.expression, use_callcache=cache) fapi._check_response_code(r, 201) id = r.json()['submissionId'] return ("Started {0}/{1} in {2}/{3}: id={4}".format( args.namespace, args.config, args.project, args.workspace, id)), id @fiss_cmd def config_stop(args): '''Abort a task (method configuration) by submission ID in given space''' r = fapi.abort_submission(args.project, args.workspace, args.submission_id) fapi._check_response_code(r, 204) return ("Aborted {0} in {1}/{2}".format(args.submission_id, args.project, args.workspace)) @fiss_cmd def config_list(args): """ List configuration(s) in the methods repository or a workspace. """ verbose = fcconfig.verbosity if args.workspace: if verbose: print("Retrieving method configs from space {0}".format(args.workspace)) if not args.project: eprint("No project given, and no default project configured") return 1 r = fapi.list_workspace_configs(args.project, args.workspace) fapi._check_response_code(r, 200) else: if verbose: print("Retrieving method configs from method repository") r = fapi.list_repository_configs(namespace=args.namespace, name=args.config, snapshotId=args.snapshot_id) fapi._check_response_code(r, 200) # Parse the JSON for the workspace + namespace methods = r.json() results = [] for m in methods: ns = m['namespace'] if not ns: ns = '__EMPTYSTRING__' name = m['name'] # Ugh: configs in workspaces look different from configs in methodRepo mver = m.get('methodRepoMethod', None) if mver: mver = mver.get('methodVersion', 'unknown') # space config else: mver = m.get('snapshotId', 'unknown') # repo config results.append('{0}\t{1}\tsnapshotId:{2}'.format(ns, name, mver)) # Sort for easier viewing, ignore case return sorted(results, key=lambda s: s.lower()) @fiss_cmd def config_acl(args): ''' Retrieve access control list for a method configuration''' r = fapi.get_repository_config_acl(args.namespace, args.config, args.snapshot_id) fapi._check_response_code(r, 200) acls = sorted(r.json(), key=lambda k: k['user']) return map(lambda acl: '{0}\t{1}'.format(acl['user'], acl['role']), acls) @fiss_cmd def config_set_acl(args): """ Assign an ACL role to a list of users for a config. """ acl_updates = [{"user": user, "role": args.role} \ for user in set(expand_fc_groups(args.users)) \ if user != fapi.whoami()] id = args.snapshot_id if not id: # get the latest snapshot_id for this method from the methods repo r = fapi.list_repository_configs(namespace=args.namespace, name=args.config) fapi._check_response_code(r, 200) versions = r.json() if len(versions) == 0: if fcconfig.verbosity: eprint("Configuration {0}/{1} not found".format(args.namespace, args.config)) return 1 latest = sorted(versions, key=lambda c: c['snapshotId'])[-1] id = latest['snapshotId'] r = fapi.update_repository_config_acl(args.namespace, args.config, id, acl_updates) fapi._check_response_code(r, 200) if fcconfig.verbosity: print("Updated ACL for {0}/{1}:{2}".format(args.namespace, args.config, id)) return 0 @fiss_cmd def config_get(args): """ Retrieve a method config from a workspace, send stdout """ r = fapi.get_workspace_config(args.project, args.workspace, args.namespace, args.config) fapi._check_response_code(r, 200) # Setting ensure_ascii to False ensures unicode string returns return json.dumps(r.json(), indent=4, separators=(',', ': '), sort_keys=True, ensure_ascii=False) @fiss_cmd def config_wdl(args): """ Retrieve the WDL for a method config in a workspace, send stdout """ r = fapi.get_workspace_config(args.project, args.workspace, args.namespace, args.config) fapi._check_response_code(r, 200) method = r.json()["methodRepoMethod"] args.namespace = method["methodNamespace"] args.method = method["methodName"] args.snapshot_id = method["methodVersion"] return meth_wdl(args) @fiss_cmd def config_diff(args): """Compare method configuration definitions across workspaces. Ignores methodConfigVersion if the verbose argument is not set""" config_1 = config_get(args).splitlines() args.project = args.Project args.workspace = args.Workspace cfg_1_name = args.config if args.Config is not None: args.config = args.Config if args.Namespace is not None: args.namespace = args.Namespace config_2 = config_get(args).splitlines() if not args.verbose: config_1 = skip_cfg_ver(config_1) config_2 = skip_cfg_ver(config_2) return list(unified_diff(config_1, config_2, cfg_1_name, args.config, lineterm='')) def skip_cfg_ver(cfg): return [line for line in cfg if not line.startswith(' "methodConfigVersion": ')] @fiss_cmd def config_put(args): '''Install a valid method configuration into a workspace, in one of several ways: from a JSON file containing a config definition (both file names and objects are supported); as a string representing the content of such a JSON file; or as a dict generated from such JSON content, e.g via json.loads(). Note that the CLI supports only string & filename input.''' config = args.config if os.path.isfile(config): with open(config, 'r') as fp: config = json.loads(fp.read()) elif isinstance(config, str): config = json.loads(config) elif isinstance(config, dict): pass elif hasattr(config, "read"): config = json.loads(config.read()) else: raise ValueError('Input method config must be filename, string or dict') r = fapi.create_workspace_config(args.project, args.workspace, config) fapi._check_response_code(r, [201]) return True __EDITME__ = u'EDITME, or abort edit/install by leaving entire config unchanged' @fiss_cmd def config_template(args): c = fapi.get_config_template(args.namespace, args.method, args.snapshot_id) fapi._check_response_code(c, 200) c = c.json() c[u'name'] = args.configname or __EDITME__ c[u'namespace'] = args.namespace or __EDITME__ c[u'rootEntityType'] = args.entity_type or __EDITME__ outputs = c[u'outputs'] for o in outputs: outputs[o] = __EDITME__ inputs = c[u'inputs'] for i in inputs: inputs[i] = __EDITME__ return json.dumps(c, indent=4, separators=(',', ': '), sort_keys=True, ensure_ascii=False) @fiss_cmd def config_edit(args): # Placeholder: accept either a method config name or a file containing # a method config definition (e.g. such as returned by config_get) pass @fiss_cmd def config_new(args): '''Attempt to install a new method config into a workspace, by: generating a template from a versioned method in the methods repo, then launching a local editor (respecting the $EDITOR environment variable) to fill in the incomplete input/output fields. Returns True if the config was successfully installed, otherwise False''' cfg = config_template(args) # Iteratively try to edit/install the config: exit iteration by EITHER # Successful config_put() after editing # Leaving config unchanged in editor, e.g. quitting out of VI with :q # FIXME: put an small integer upper bound on the # of loops here while True: try: edited = fccore.edit_text(cfg) if edited == cfg: eprint("No edits made, method config not installed ...") break if __EDITME__ in edited: eprint("Edit is incomplete, method config not installed ...") time.sleep(1) continue args.config = cfg = edited config_put(args) return True except FireCloudServerError as fce: __pretty_print_fc_exception(fce) return False @fiss_cmd def config_delete(args): """ Remove a method config from a workspace """ r = fapi.delete_workspace_config(args.project, args.workspace, args.namespace, args.config) fapi._check_response_code(r, [200,204]) return r.text if r.text else None @fiss_cmd def config_copy(args): """ Copy a method config to new name/space/namespace/project (or all 4) """ if not (args.tospace or args.toname or args.toproject or args.tonamespace): raise RuntimeError('A new config name OR workspace OR project OR ' + 'namespace must be given (or all)') copy = fapi.get_workspace_config(args.fromproject, args.fromspace, args.namespace, args.config) fapi._check_response_code(copy, 200) copy = copy.json() if not args.toname: args.toname = args.config if not args.tonamespace: args.tonamespace = args.namespace if not args.toproject: args.toproject = args.fromproject if not args.tospace: args.tospace = args.fromspace copy['name'] = args.toname copy['namespace'] = args.tonamespace # Instantiate the copy r = fapi.overwrite_workspace_config(args.toproject, args.tospace, args.tonamespace, args.toname, copy) fapi._check_response_code(r, 200) if fcconfig.verbosity: print("Method %s/%s:%s copied to %s/%s:%s" % ( args.fromproject, args.fromspace, args.config, args.toproject, args.tospace, args.toname)) return 0 @fiss_cmd def attr_get(args): '''Return a dict of attribute name/value pairs: if entity name & type are specified then attributes will be retrieved from that entity, otherwise workspace-level attributes will be returned. By default all attributes attached to the given object will be returned, but a subset can be selected by specifying a list of attribute names; names which refer to a non-existent attribute will be silently ignored. By default a special __header__ entry is optionally added to the result. ''' if args.entity_type and (args.entity or args.entity_type == "ref"): if args.entity_type == "ref": # return referenceData attributes r = fapi.get_workspace(args.project, args.workspace, fields="workspace.attributes") fapi._check_response_code(r, 200) ws_attrs = r.json()['workspace']['attributes'] # check for referenceData in workspace ref_attrs = {attr:ws_attrs[attr] for attr in ws_attrs if attr.startswith('referenceData_')} if not ref_attrs: print("There are no reference data available in workspace. Load a reference and try again.") return {} if args.entity: attrs = {attr:ref_attrs[attr] for attr in ref_attrs if attr.startswith('referenceData_{}'.format(args.entity))} if not attrs: # if chosen referenceData is not in workspace ref_options = sorted({attr.split('_')[1] for attr in ref_attrs}) print("The given reference is not in workspace. Available option(s): {}.".format(", ".join(ref_options))) return {} else: attrs = ref_attrs else: # return named entity attrs r = fapi.get_entity(args.project, args.workspace, args.entity_type, args.entity) fapi._check_response_code(r, 200) attrs = r.json()['attributes'] # It is wrong for the members of container objects to appear as metadata # (attributes) attached to the container, as it conflates fundamentally # different things: annotation vs membership. This can be seen by using # a suitcase model of reasoning: ATTRIBUTES are METADATA like the weight # & height of the suitcase, the shipping label and all of its passport # stamps; while MEMBERS are the actual CONTENTS INSIDE the suitcase. # This conflation also contradicts the design & docs (which make a clear # distinction between MEMBERSHIP and UPDATE loadfiles). For this reason # a change has been requested of the FireCloud dev team (via forum), and # until it is implemented we will elide "list of members" attributes here # (but later may provide a way for users to request such, if wanted) for k in ["samples", "participants", "pairs"]: attrs.pop(k, None) elif args.ws_attrs: # return all workspace attrs (no referenceData attrs) r = fapi.get_workspace(args.project, args.workspace, fields="workspace.attributes") fapi._check_response_code(r, 200) ws_attrs = r.json()['workspace']['attributes'] attrs = {attr:ws_attrs[attr] for attr in ws_attrs if not attr.startswith('referenceData')} else: # return all attributes (workspace + referenceData attrs) r = fapi.get_workspace(args.project, args.workspace, fields="workspace.attributes") fapi._check_response_code(r, 200) attrs = r.json()['workspace']['attributes'] if args.attributes: # return a subset of attributes, if requested attrs = {k:attrs[k] for k in set(attrs).intersection(args.attributes)} # If some attributes have been collected, return in appropriate format if attrs: if args.entity: # Entity attributes def textify(thing): if isinstance(thing, dict): thing = thing.get("items", thing.get("entityName", "__UNKNOWN__")) return "{0}".format(thing) result = {args.entity : u'\t'.join(map(textify, attrs.values()))} # Add "hidden" header of attribute names, for downstream convenience object_id = u'entity:%s_id' % args.entity_type result['__header__'] = [object_id] + list(attrs.keys()) else: result = attrs # Workspace attributes else: result = {} return result @fiss_cmd def attr_list(args): '''Retrieve names of all attributes attached to a given object, either an entity (if entity type+name is provided) or workspace (if not)''' args.attributes = None result = attr_get(args) names = result.get("__header__",[]) if names: names = names[1:] else: names = result.keys() return sorted(names) @fiss_cmd def attr_set(args): ''' Set key=value attributes: if entity name & type are specified then attributes will be set upon that entity, otherwise the attribute will be set at the workspace level''' if args.entity_type and args.entity: prompt = "Set {0}={1} for {2}:{3} in {4}/{5}?\n[Y\\n]: ".format( args.attribute, args.value, args.entity_type, args.entity, args.project, args.workspace) if not (args.yes or _confirm_prompt("", prompt)): return 0 update = fapi._attr_set(args.attribute, args.value) r = fapi.update_entity(args.project, args.workspace, args.entity_type, args.entity, [update]) fapi._check_response_code(r, 200) else: prompt = "Set {0}={1} in {2}/{3}?\n[Y\\n]: ".format( args.attribute, args.value, args.project, args.workspace ) if not (args.yes or _confirm_prompt("", prompt)): return 0 update = fapi._attr_set(args.attribute, args.value) r = fapi.update_workspace_attributes(args.project, args.workspace, [update]) fapi._check_response_code(r, 200) return 0 @fiss_cmd def attr_delete(args): ''' Delete key=value attributes: if entity name & type are specified then attributes will be deleted from that entity, otherwise the attribute will be removed from the workspace''' if args.entity_type and args.entities: # Since there is no attribute deletion endpoint, we must perform 2 steps # here: first we retrieve the entity_ids, and any foreign keys (e.g. # participant_id for sample_id); and then construct a loadfile which # specifies which entities are to have what attributes removed. Note # that FireCloud uses the magic keyword __DELETE__ to indicate that # an attribute should be deleted from an entity. # Step 1: see what entities are present, and filter to those requested entities = _entity_paginator(args.project, args.workspace, args.entity_type, page_size=1000, filter_terms=None, sort_direction="asc") if args.entities: entities = [e for e in entities if e['name'] in args.entities] # Step 2: construct a loadfile to delete these attributes attrs = sorted(args.attributes) etype = args.entity_type entity_data = [] for entity_dict in entities: name = entity_dict['name'] line = name # TODO: Fix other types? if etype in ("sample", "pair"): line += "\t" + entity_dict['attributes']['participant']['entityName'] if etype == "pair": line += "\t" + entity_dict['attributes']['case_sample']['entityName'] line += "\t" + entity_dict['attributes']['control_sample']['entityName'] for _ in attrs: line += "\t__DELETE__" # Improve performance by only updating records that have changed entity_data.append(line) entity_header = ["entity:" + etype + "_id"] if etype == "sample": entity_header.append("participant_id") if etype == "pair": entity_header += ["participant", "case_sample", "control_sample"] entity_header = '\t'.join(entity_header + list(attrs)) # Remove attributes from an entity message = "WARNING: this will delete these attributes:\n\n" + \ ','.join(args.attributes) + "\n\n" if args.entities: message += 'on these {0}s:\n\n'.format(args.entity_type) + \ ', '.join(args.entities) else: message += 'on all {0}s'.format(args.entity_type) message += "\n\nin workspace {0}/{1}\n".format(args.project, args.workspace) if not args.yes and not _confirm_prompt(message): return 0 # TODO: reconcile with other batch updates # Chunk the entities into batches of 500, and upload to FC if args.verbose: print("Batching " + str(len(entity_data)) + " updates to Firecloud...") chunk_len = 500 total = int(len(entity_data) / chunk_len) + 1 batch = 0 for i in range(0, len(entity_data), chunk_len): batch += 1 if args.verbose: print("Updating samples {0}-{1}, batch {2}/{3}".format( i+1, min(i+chunk_len, len(entity_data)), batch, total )) this_data = entity_header + '\n' + '\n'.join(entity_data[i:i+chunk_len]) # Now push the entity data back to firecloud r = fapi.upload_entities(args.project, args.workspace, this_data) fapi._check_response_code(r, 200) else: message = "WARNING: this will delete the following attributes in " + \ "{0}/{1}\n\t".format(args.project, args.workspace) + \ "\n\t".join(args.attributes) if not (args.yes or _confirm_prompt(message)): return 0 updates = [fapi._attr_rem(a) for a in args.attributes] r = fapi.update_workspace_attributes(args.project, args.workspace, updates) fapi._check_response_code(r, 200) return 0 @fiss_cmd def attr_copy(args): """ Copy workspace attributes between workspaces. """ if not args.to_workspace: args.to_workspace = args.workspace if not args.to_project: args.to_project = args.project if (args.project == args.to_project and args.workspace == args.to_workspace): eprint("destination project and namespace must differ from" " source workspace") return 1 # First get the workspace attributes of the source workspace r = fapi.get_workspace(args.project, args.workspace, fields="workspace.attributes") fapi._check_response_code(r, 200) # Parse the attributes workspace_attrs = r.json()['workspace']['attributes'] # If we passed attributes, only use those if args.attributes: workspace_attrs = {k:v for k, v in iteritems(workspace_attrs) if k in args.attributes} if len(workspace_attrs) == 0: print("No workspace attributes defined in {0}/{1}".format( args.project, args.workspace)) return 1 message = "This will copy the following workspace attributes to {0}/{1}\n" message = message.format(args.to_project, args.to_workspace) for k, v in sorted(iteritems(workspace_attrs)): message += '\t{0}\t{1}\n'.format(k, v) if not args.yes and not _confirm_prompt(message): return 0 # make the attributes into updates updates = [fapi._attr_set(k,v) for k,v in iteritems(workspace_attrs)] r = fapi.update_workspace_attributes(args.to_project, args.to_workspace, updates) fapi._check_response_code(r, 200) return 0 @fiss_cmd def attr_fill_null(args): """ Assign the null sentinel value for all entities which do not have a value for the given attributes. see gs://broad-institute-gdac/GDAC_FC_NULL for more details """ NULL_SENTINEL = "gs://broad-institute-gdac/GDAC_FC_NULL" attrs = args.attributes if not attrs: print("Error: provide at least one attribute to set") return 1 if 'participant' in attrs or 'samples' in attrs: print("Error: can't assign null to samples or participant") return 1 # Set entity attributes if args.entity_type is not None: print("Collecting entity data...") # Get existing attributes entities = _entity_paginator(args.project, args.workspace, args.entity_type, page_size=1000, filter_terms=None, sort_direction="asc") # samples need participant_id as well #TODO: This may need more fixing for other types orig_attrs = list(attrs) if args.entity_type == "sample": attrs.insert(0, "participant_id") header = "entity:" + args.entity_type + "_id\t" + "\t".join(attrs) # Book keep the number of updates for each attribute attr_update_counts = {a : 0 for a in orig_attrs} # construct new entity data by inserting null sentinel, and counting # the number of updates entity_data = [] for entity_dict in entities: name = entity_dict['name'] etype = entity_dict['entityType'] e_attrs = entity_dict['attributes'] line = name altered = False for attr in attrs: if attr == "participant_id": line += "\t" + e_attrs['participant']['entityName'] continue # This attribute is never updated by fill_null if attr not in e_attrs: altered = True attr_update_counts[attr] += 1 line += "\t" + str(e_attrs.get(attr, NULL_SENTINEL)) # Improve performance by only updating records that have changed if altered: entity_data.append(line) # Check to see if all entities are being set to null for any attributes # This is usually a mistake, so warn the user num_entities = len(entities) prompt = "Continue? [Y\\n]: " for attr in orig_attrs: if num_entities == attr_update_counts[attr]: message = "WARNING: no {0}s with attribute '{1}'\n".format( args.entity_type, attr ) if not args.yes and not _confirm_prompt(message, prompt): return # check to see if no sentinels are necessary if not any(c != 0 for c in itervalues(attr_update_counts)): print("No null sentinels required, exiting...") return 0 if args.to_loadfile: print("Saving loadfile to " + args.to_loadfile) with open(args.to_loadfile, "w") as f: f.write(header + '\n') f.write("\n".join(entity_data)) return 0 updates_table = " count attribute\n" for attr in sorted(attr_update_counts): count = attr_update_counts[attr] updates_table += "{0:>10} {1}\n".format(count, attr) message = "WARNING: This will insert null sentinels for " \ "these attributes:\n" + updates_table if not args.yes and not _confirm_prompt(message): return 0 # Chunk the entities into batches of 500, and upload to FC print("Batching " + str(len(entity_data)) + " updates to Firecloud...") chunk_len = 500 total = int(len(entity_data) / chunk_len) + 1 batch = 0 for i in range(0, len(entity_data), chunk_len): batch += 1 print("Updating samples {0}-{1}, batch {2}/{3}".format( i+1, min(i+chunk_len, len(entity_data)), batch, total )) this_data = header + '\n' + '\n'.join(entity_data[i:i+chunk_len]) # Now push the entity data back to firecloud r = fapi.upload_entities(args.project, args.workspace, this_data) fapi._check_response_code(r, 200) return 0 else: # TODO: set workspace attributes print("attr_fill_null requires an entity type") return 1 @fiss_cmd def health(args): """ Health FireCloud Server """ r = fapi.health() fapi._check_response_code(r, 200) return r.content @fiss_cmd def mop(args): ''' Clean up unreferenced data in a workspace''' # First retrieve the workspace to get bucket information if args.verbose: print("Retrieving workspace information...") fields = "workspace.bucketName,workspace.name,workspace.attributes" r = fapi.get_workspace(args.project, args.workspace, fields=fields) fapi._check_response_code(r, 200) workspace = r.json() bucket = workspace['workspace']['bucketName'] bucket_prefix = 'gs://' + bucket workspace_name = workspace['workspace']['name'] if args.verbose: print("{} -- {}".format(workspace_name, bucket_prefix)) # Handle Basic Values, Compound data structures, and Nestings thereof def update_referenced_files(referenced_files, attrs, bucket_prefix): for attr in attrs: # 1-D array attributes are dicts with the values stored in 'items' if isinstance(attr, dict) and attr.get('itemsType') == 'AttributeValue': update_referenced_files(referenced_files, attr['items'], bucket_prefix) # Compound data structures resolve to dicts elif isinstance(attr, dict): update_referenced_files(referenced_files, attr.values(), bucket_prefix) # Nested arrays resolve to lists elif isinstance(attr, list): update_referenced_files(referenced_files, attr, bucket_prefix) elif isinstance(attr, string_types) and attr.startswith(bucket_prefix): referenced_files.add(attr) referenced_files = set() update_referenced_files(referenced_files, workspace['workspace']['attributes'].values(), bucket_prefix) # TODO: Make this more efficient with a native api call? # # Now run a gsutil ls to list files present in the bucket try: gsutil_args = ['gsutil', 'ls', '-l', bucket_prefix + '/**'] if args.verbose: print(' '.join(gsutil_args)) bucket_files = subprocess.check_output(gsutil_args, stderr=subprocess.STDOUT) # Check output produces a string in Py2, Bytes in Py3, so decode if necessary if type(bucket_files) == bytes: bucket_files = bucket_files.decode() # Store size of each file in bucket to report recovered space bucket_file_sizes = {} for listing in bucket_files.split('\n'): listing = listing.strip().split(' ') if len(listing) != 3: break bucket_file_sizes[listing[2]] = int(listing[0]) # Now make a call to the API for the user's submission information. user_submission_request = fapi.list_submissions(args.project, args.workspace) # Check if API call was successful, in the case of failure, the function will return an error fapi._check_response_code(user_submission_request, 200) # Sort user submission ids for future bucket file verification submission_ids = set(item['submissionId'] for item in user_submission_request.json()) # Check to see if bucket file path contain the user's submission id # to ensure deletion of files in the submission directories only. # Splits the bucket file: "gs://bucket_Id/submission_id/file_path", by the '/' symbol # and stores values in a 5 length array: ['gs:', '' , 'bucket_Id', submission_id, file_path] # to extract the submission id from the 4th element (index 3) of the array bucket_files = set(bucket_file for bucket_file in bucket_file_sizes if bucket_file.split('/', 4)[3] in submission_ids) except subprocess.CalledProcessError as e: eprint("Error retrieving files from bucket:" + "\n\t{}\n\t{}".format(str(e), e.output)) return 1 if args.verbose: num = len(bucket_files) if args.verbose: print("Found {} files in bucket {}".format(num, bucket)) # Now build a set of files that are referenced in the bucket # 1. Get a list of the entity types in the workspace r = fapi.list_entity_types(args.project, args.workspace) fapi._check_response_code(r, 200) entity_types = r.json().keys() # 2. For each entity type, request all the entities for etype in entity_types: if args.verbose: print("Getting annotations for " + etype + " entities...") # use the paginated version of the query entities = _entity_paginator(args.project, args.workspace, etype, page_size=1000, filter_terms=None, sort_direction="asc") for entity in entities: update_referenced_files(referenced_files, entity['attributes'].values(), bucket_prefix) if args.verbose: num = len(referenced_files) print("Found {} referenced files in workspace {}".format(num, workspace_name)) # Set difference shows files in bucket that aren't referenced unreferenced_files = bucket_files - referenced_files # Filter out files like .logs and rc.txt def can_delete(f): '''Return true if this file should not be deleted in a mop.''' filename = f.rsplit('/', 1)[-1] # Don't delete logs if filename.endswith('.log'): return False # Don't delete return codes from jobs if filename.endswith('-rc.txt'): return False if filename == "rc": return False # Don't delete tool's exec.sh or script if filename in ('exec.sh', 'script'): return False # keep stdout, stderr, and output if filename in ('stderr', 'stdout', 'output'): return False # Only delete specified unreferenced files if args.include: for glob in args.include: if fnmatchcase(filename, glob): return True return False # Don't delete specified unreferenced files if args.exclude: for glob in args.exclude: if fnmatchcase(filename, glob): return False return True deletable_files = [f for f in unreferenced_files if can_delete(f)] if len(deletable_files) == 0: if args.verbose: print("No files to mop in " + workspace['workspace']['name']) return 0 units = ['bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB'] def human_readable_size(size_in_bytes): '''Takes a bytes value and returns a human-readable string with an appropriate unit conversion''' reduce_count = 0 while size_in_bytes >= 1024.0 and reduce_count < 5: size_in_bytes /= 1024.0 reduce_count += 1 size_str = "{:.2f}".format(size_in_bytes) if reduce_count > 0 else str(size_in_bytes) return "{} {}".format(size_str, units[reduce_count]) deletable_size = human_readable_size(sum(bucket_file_sizes[f] for f in deletable_files)) if args.verbose or args.dry_run: print("Found {} files to delete:\n".format(len(deletable_files)) + "\n".join("{} {}".format(human_readable_size(bucket_file_sizes[f]).rjust(11), f) for f in deletable_files) + '\nTotal Size: {}\n'.format(deletable_size)) message = "WARNING: Delete {} files totaling {} in {} ({})".format( len(deletable_files), deletable_size, bucket_prefix, workspace['workspace']['name']) if args.dry_run or (not args.yes and not _confirm_prompt(message)): return 0 # Pipe the deletable_files into gsutil rm to remove them gsrm_args = ['gsutil', '-m', 'rm', '-I'] PIPE = subprocess.PIPE STDOUT=subprocess.STDOUT if args.verbose: print("Deleting files with gsutil...") gsrm_proc = subprocess.Popen(gsrm_args, stdin=PIPE, stdout=PIPE, stderr=STDOUT) # Pipe the deletable_files into gsutil result = gsrm_proc.communicate(input='\n'.join(deletable_files).encode())[0] if args.verbose: if type(result) == bytes: result = result.decode() print(result.rstrip()) return 0 def _call_gsstat(object_list): """ Call gsutil stat on a list of objects and return list of ones that can't be found. """ gsstat_args = ['gsutil', '-m', 'stat'] + object_list no_stats = list() try: gsstats = subprocess.check_output(gsstat_args, universal_newlines=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as e: # Account for gsutil stat bug that doesn't emit newlines after missing # or inaccessible objects gsstats = re.sub(r"\B(No URLs matched: |You aren't authorized to read |gs://)", r"\n\1", e.output) except: raise for line in gsstats.split('\n'): if line.startswith("No URLs matched: "): no_stats.append("{}\tNot Found".format(line[17:])) if line.startswith("You aren't authorized to read "): no_stats.append("{}\tNot Authorized".format(line[30:-11])) return no_stats @fiss_cmd def validate_file_attrs(args): bucket_prefix = "gs://" verbose = fcconfig.verbosity if verbose: eprint("Retrieving workspace information...") r = fapi.get_workspace(args.project, args.workspace, fields="workspace.attributes") fapi._check_response_code(r, 200) workspace = r.json() referenced_files = set() # Get all workspace file attributes for value in workspace['workspace']['attributes'].values(): if isinstance(value, str) and value.startswith(bucket_prefix): referenced_files.add(value) # Now build a set of files that are referenced in the bucket # 1. Get a list of the entity types in the workspace r = fapi.list_entity_types(args.project, args.workspace) fapi._check_response_code(r, 200) entity_types = r.json().keys() # 2. For each entity type, request all the entities for etype in entity_types: if verbose: eprint("Getting annotations for " + etype + " entities...") # use the paginated version of the query entities = _entity_paginator(args.project, args.workspace, etype, page_size=1000, filter_terms=None, sort_direction="asc") for entity in entities: for value in entity['attributes'].values(): if isinstance(value, str) and value.startswith(bucket_prefix): referenced_files.add(value) sorted_files = sorted(referenced_files) chunk_size = 100 total_files = len(sorted_files) no_stats = list() if verbose: eprint("Total files:", total_files) for idx in range(0, total_files, chunk_size): if total_files - idx <= chunk_size: if verbose: eprint("checking", idx + 1, "to", total_files) no_stats += _call_gsstat(sorted_files[idx:]) else: if verbose: eprint("checking", idx + 1, "to", idx + chunk_size) no_stats += _call_gsstat(sorted_files[idx:idx+chunk_size]) return no_stats @fiss_cmd def noop(args): if args.verbose: proj = getattr(args, "project", "unspecified") space = getattr(args, "workspace", "unspecified") print('fiss no-op command: Project=%s, Space=%s' % (proj, space)) return 0 @fiss_cmd def config_cmd(args): values = fccore.attrdict() names = args.variables if not names: names = list(fcconfig.keys()) for name in names: values[name] = fcconfig.get(name, "__undefined__") return values @fiss_cmd def sset_loop(args): ''' Loop over all sample sets in a workspace, performing a func ''' # Ensure that the requested action is a valid fiss_cmd fiss_func = __cmd_to_func(args.action) if not fiss_func: eprint("invalid FISS cmd '" + args.action + "'") return 1 # First get the sample set names r = fapi.get_entities(args.project, args.workspace, "sample_set") fapi._check_response_code(r, 200) sample_sets = [entity['name'] for entity in r.json()] args.entity_type = "sample_set" for sset in sample_sets: print('\n# {0}::{1}/{2} {3}'.format(args.project, args.workspace, sset, args.action)) args.entity = sset # Note how this code is similar to how args.func is called in # main so it may make sense to try to a common method for both try: result = fiss_func(args) except Exception as e: status = __pretty_print_fc_exception(e) if not args.keep_going: return status printToCLI(result) return 0 @fiss_cmd def monitor(args): ''' Retrieve status of jobs submitted from a given workspace, as a list of TSV lines sorted by descending order of job submission date''' r = fapi.list_submissions(args.project, args.workspace) fapi._check_response_code(r, 200) statuses = sorted(r.json(), key=lambda k: k['submissionDate'], reverse=True) header = '\t'.join(list(statuses[0].keys())) expander = lambda v: '{0}'.format(v) def expander(thing): if isinstance(thing, dict): entityType = thing.get("entityType", None) if entityType: return "{0}:{1}".format(entityType, thing['entityName']) return "{0}".format(thing) # FIXME: this will generally return different column order between Python 2/3 return [header] + ['\t'.join( map(expander, v.values())) for v in statuses] @fiss_cmd def supervise(args): ''' Run legacy, Firehose-style workflow of workflows''' project = args.project workspace = args.workspace namespace = args.namespace workflow = args.workflow sample_sets = args.sample_sets recovery_file = args.json_checkpoint # If no sample sets are provided, run on all sample sets if not sample_sets: r = fapi.get_entities(args.project, args.workspace, "sample_set") fapi._check_response_code(r, 200) sample_sets = [s['name'] for s in r.json()] message = "Sample Sets ({}):\n\t".format(len(sample_sets)) + \ "\n\t".join(sample_sets) prompt = "\nLaunch workflow in " + project + "/" + workspace + \ " on these sample sets? [Y\\n]: " if not args.yes and not _confirm_prompt(message, prompt): return return supervisor.supervise(project, workspace, namespace, workflow, sample_sets, recovery_file) @fiss_cmd def supervise_recover(args): recovery_file = args.recovery_file return supervisor.recover_and_supervise(recovery_file) @fiss_cmd def entity_copy(args): """ Copy entities from one workspace to another. """ if not args.to_workspace: args.to_workspace = args.workspace if not args.to_project: args.to_project = args.project if (args.project == args.to_project and args.workspace == args.to_workspace): eprint("destination project and namespace must differ from" " source workspace") return 1 if not args.entities: # get a list of entities from source workspace matching entity_type ents = _entity_paginator(args.project, args.workspace, args.entity_type, page_size=500, filter_terms=None, sort_direction='asc') args.entities = [e['name'] for e in ents] prompt = "Copy {0} {1}(s) from {2}/{3} to {4}/{5}?\n[Y\\n]: " prompt = prompt.format(len(args.entities), args.entity_type, args.project, args.workspace, args.to_project, args.to_workspace) if not args.yes and not _confirm_prompt("", prompt): return r = fapi.copy_entities(args.project, args.workspace, args.to_project, args.to_workspace, args.entity_type, args.entities, link_existing_entities=args.link) fapi._check_response_code(r, 201) return 0 @fiss_cmd def proj_list(args): '''Retrieve the list of billing projects accessible to the caller/user, and show the level of access granted for each (e.g. Owner, User, ...)''' projects = fapi.list_billing_projects() fapi._check_response_code(projects, 200) projects = sorted(projects.json(), key=lambda d: d['projectName']) l = map(lambda p: '{0}\t{1}'.format(p['projectName'], p['role']), projects) # FIXME: add username col to output, for when iterating over multiple users return ["Project\tRole"] + list(l) @fiss_cmd def config_validate(args): ''' Validate a workspace configuration: if an entity was specified (i.e. upon which the configuration should operate), then also validate that the entity has the necessary attributes''' r = fapi.validate_config(args.project, args.workspace, args.namespace, args.config) fapi._check_response_code(r, 200) entity_d = None config_d = r.json() if args.entity: entity_type = config_d['methodConfiguration']['rootEntityType'] entity_r = fapi.get_entity(args.project, args.workspace, entity_type, args.entity) fapi._check_response_code(entity_r, [200,404]) if entity_r.status_code == 404: eprint("Error: No {0} named '{1}'".format(entity_type, args.entity)) return 2 else: entity_d = entity_r.json() # also get the workspace info w = fapi.get_workspace(args.project, args.workspace, fields="workspace.attributes") fapi._check_response_code(w, 200) workspace_d = w.json() ii, io, ma, mwa = _validate_helper(args, config_d, workspace_d, entity_d) ii_msg = "\nInvalid inputs:" io_msg = "\nInvalid outputs:" ma_msg = "\n{0} {1} doesn't satisfy the following inputs:".format(entity_type, args.entity) if args.entity else "" mwa_msg = "\nWorkspace {0}/{1} doesn't satisfy following inputs:".format(args.project, args.workspace) for errs, msg in zip([ii, io, ma, mwa], [ii_msg, io_msg, ma_msg, mwa_msg]): if errs: print(msg) for inp, val in errs: print("{0} -> {1}".format(inp, val)) if ii + io + ma + mwa: return 1 def _validate_helper(args, config_d, workspace_d, entity_d=None): """ Return FISSFC validation information on config for a certain entity """ # 4 ways to have invalid config: invalid_inputs = sorted(config_d["invalidInputs"]) invalid_outputs = sorted(config_d["invalidOutputs"]) # Also insert values for invalid i/o invalid_inputs = [(i, config_d['methodConfiguration']['inputs'][i]) for i in invalid_inputs] invalid_outputs = [(i, config_d['methodConfiguration']['outputs'][i]) for i in invalid_outputs] missing_attrs = [] missing_wksp_attrs = [] # If an entity was provided, also check to see if that entity has the necessary inputs if entity_d: entity_type = config_d['methodConfiguration']['rootEntityType'] # If the attribute is listed here, it has an entry entity_attrs = set(entity_d['attributes']) # Optimization, only get the workspace attrs if the method config has any workspace_attrs = workspace_d['workspace']['attributes'] # So now iterate over the inputs for inp, val in iteritems(config_d['methodConfiguration']['inputs']): # Must be an attribute on the entity if val.startswith("this."): # Normally, the value is of the form 'this.attribute', # but for operations on sets, e.g. one can also do # 'this.samples.attr'. But even in this case, there must be a # 'samples' attribute on the sample set, so checking for the middle # value works as expected. Other pathological cases would've been # caught above by the validation endpoint expected_attr = val.split('.')[1] # 'name' is special, it really means '_id', which everything has if expected_attr == "name": continue if expected_attr not in entity_attrs: missing_attrs.append((inp, val)) if val.startswith("workspace."): # Anything not matching this format will be caught above expected_attr = val.split('.')[1] if expected_attr not in workspace_attrs: missing_wksp_attrs.append((inp, val)) # Anything else is a literal return invalid_inputs, invalid_outputs, missing_attrs, missing_wksp_attrs @fiss_cmd def runnable(args): """ Show me what can be run in a given workspace """ w = fapi.get_workspace(args.project, args.workspace) fapi._check_response_code(w, 200) workspace_d = w.json() if args.config and args.namespace and not args.entity: # See what entities I can run on with this config r = fapi.validate_config(args.project, args.workspace, args.namespace, args.config) fapi._check_response_code(r, 200) config_d = r.json() # First validate without any sample sets errs = sum(_validate_helper(args, config_d, workspace_d, None), []) if errs: print("Configuration contains invalid expressions") return 1 # Now get all the possible entities, and evaluate each entity_type = config_d['methodConfiguration']['rootEntityType'] ent_r = fapi.get_entities(args.project, args.workspace, entity_type) fapi._check_response_code(r, 200) entities = ent_r.json() can_run_on = [] cannot_run_on = [] # Validate every entity for entity_d in entities: # If there are errors in the validation if sum(_validate_helper(args, config_d, workspace_d, entity_d), []): cannot_run_on.append(entity_d['name']) else: can_run_on.append(entity_d['name']) # Print what can be run if can_run_on: print("{0} CAN be run on {1} {2}(s):".format(args.config, len(can_run_on), entity_type)) print("\n".join(can_run_on)+"\n") print("{0} CANNOT be run on {1} {2}(s)".format(args.config, len(cannot_run_on), entity_type)) #print("\n".join(cannot_run_on)) # See what method configs are possible for the given sample set elif args.entity and args.entity_type and not args.config: entity_r = fapi.get_entity(args.project, args.workspace, args.entity_type, args.entity) fapi._check_response_code(entity_r, [200,404]) if entity_r.status_code == 404: print("Error: No {0} named '{1}'".format(args.entity_type, args.entity)) return 2 entity_d = entity_r.json() # Now get all the method configs in the workspace conf_r = fapi.list_workspace_configs(args.project, args.workspace) fapi._check_response_code(conf_r, 200) # Iterate over configs in the workspace, and validate against them for cfg in conf_r.json(): # If we limit search to a particular namespace, skip ones that don't match if args.namespace and cfg['namespace'] != args.namespace: continue # But we have to get the full description r = fapi.validate_config(args.project, args.workspace, cfg['namespace'], cfg['name']) fapi._check_response_code(r, [200, 404]) if r.status_code == 404: # Permission error, continue continue config_d = r.json() errs = sum(_validate_helper(args, config_d, workspace_d, entity_d),[]) if not errs: print(cfg['namespace'] + "/" + cfg['name']) elif args.entity_type: # Last mode, build a matrix of everything based on the entity type # Get all of the entity_type ent_r = fapi.get_entities(args.project, args.workspace, args.entity_type) fapi._check_response_code(ent_r, 200) entities = ent_r.json() entity_names = sorted(e['name'] for e in entities) conf_r = fapi.list_workspace_configs(args.project, args.workspace) fapi._check_response_code(conf_r, 200) conf_list = conf_r.json() config_names = sorted(c['namespace'] + '/' + c['name'] for c in conf_list) mat = {c:dict() for c in config_names} # Now iterate over configs, building up the matrix # Iterate over configs in the workspace, and validate against them for cfg in conf_list: # If we limit search to a particular namespace, skip ones that don't match if args.namespace and cfg['namespace'] != args.namespace: continue # But we have to get the full description r = fapi.validate_config(args.project, args.workspace, cfg['namespace'], cfg['name']) fapi._check_response_code(r, [200, 404]) if r.status_code == 404: # Permission error, continue continue config_d = r.json() # Validate against every entity for entity_d in entities: errs = sum(_validate_helper(args, config_d, workspace_d, entity_d),[]) #TODO: True/False? Y/N? symbol = "X" if not errs else "" cfg_name = cfg['namespace'] + '/' + cfg['name'] mat[cfg_name][entity_d['name']] = symbol # Now print the validation matrix # headers print("Namespace/Method Config\t" + "\t".join(entity_names)) for conf in config_names: print(conf + "\t" + "\t".join(mat[conf][e] for e in entity_names)) else: print("runnable requires a namespace+configuration or entity type") return 1 ################################################# # Utilities ################################################# def _make_set_export_cmd(subparsers, parent_parsers, type, prefix): subp = subparsers.add_parser(prefix + '_export', parents = parent_parsers, description='Export a %s entity from a given workspace, returning '\ 'a list of lines in TSV form which completely defines the %s and '\ 'is suitable for reloading with entity_import.' % (type, type)) subp.set_defaults(func=set_export, entity_type=type) def _confirm_prompt(message, prompt="\nAre you sure? [y/yes (default: no)]: ", affirmations=("Y", "Yes", "yes", "y")): """ Display a message, then confirmation prompt, and return true if the user responds with one of the affirmations. """ answer = input(message + prompt) return answer in affirmations def _nonempty_project(string): """ Argparse validator for ensuring a workspace is provided """ value = str(string) if len(value) == 0: msg = "No project provided and no default project configured" raise argparse.ArgumentTypeError(msg) return value def _entity_paginator(namespace, workspace, etype, page_size=500, filter_terms=None, sort_direction="asc"): """Pages through the get_entities_query endpoint to get all entities in the workspace without crashing. """ page = 1 all_entities = [] # Make initial request r = fapi.get_entities_query(namespace, workspace, etype, page=page, page_size=page_size, sort_direction=sort_direction, filter_terms=filter_terms) fapi._check_response_code(r, 200) response_body = r.json() # Get the total number of pages total_pages = response_body['resultMetadata']['filteredPageCount'] # append the first set of results entities = response_body['results'] all_entities.extend(entities) # Now iterate over remaining pages to retrieve all the results page = 2 while page <= total_pages: r = fapi.get_entities_query(namespace, workspace, etype, page=page, page_size=page_size, sort_direction=sort_direction, filter_terms=filter_terms) fapi._check_response_code(r, 200) entities = r.json()['results'] all_entities.extend(entities) page += 1 return all_entities def eprint(*args, **kwargs): """ Print a message to stderr """ print(*args, file=sys.stderr, **kwargs) def __cmd_to_func(cmd): """ Returns the function object in this module matching cmd. """ fiss_module = sys.modules[__name__] # Returns None if string is not a recognized FISS command func = getattr(fiss_module, cmd, None) if func and not hasattr(func, 'fiss_cmd'): func = None return func def _valid_headerline(l, model='firecloud'): """return true if the given string is a valid loadfile header""" if not l: return False headers = l.split('\t') first_col = headers[0] tsplit = first_col.split(':') if len(tsplit) != 2: return False if tsplit[0] in ('entity', 'update'): if model == 'flexible': return tsplit[1].endswith('_id') else: return tsplit[1] in ('participant_id', 'participant_set_id', 'sample_id', 'sample_set_id', 'pair_id', 'pair_set_id') elif tsplit[0] == 'membership': if len(headers) < 2: return False # membership:sample_set_id sample_id, e.g. return tsplit[1].replace('set_', '') == headers[1] else: return False def _batch_load(project, workspace, headerline, entity_data, chunk_size=500, model='firecloud'): """ Submit a large number of entity updates in batches of chunk_size """ if fcconfig.verbosity: print("Batching " + str(len(entity_data)) + " updates to Firecloud...") # Parse the entity type from the first cell, e.g. "entity:sample_id" # First check that the header is valid if not _valid_headerline(headerline, model): eprint("Invalid loadfile header:\n" + headerline) return 1 update_type = "membership" if headerline.startswith("membership") else "entity" etype = headerline.split('\t')[0].split(':')[1].replace("_id", "") # Split entity_data into chunks total = int(len(entity_data) / chunk_size) + 1 batch = 0 for i in range(0, len(entity_data), chunk_size): batch += 1 if fcconfig.verbosity: print("Updating {0} {1}s {2}-{3}, batch {4}/{5}".format( etype, update_type, i+1, min(i+chunk_size, len(entity_data)), batch, total)) this_data = headerline + '\n' + '\n'.join(entity_data[i:i+chunk_size]) # Now push the entity data to firecloud r = fapi.upload_entities(project, workspace, this_data, model) fapi._check_response_code(r, 200) return 0 __PatternsToFilter = [ # This provides a systematic way of turning complex FireCloud messages into # shorter, more comprehensible feedback: each filter entry has the form # [regex_to_match, replacement_template, match_groups_to_fill_in_template] ['^(.+)SlickWorkspaceContext\(Workspace\(([^,]+),([^,]*).*$', '%s%s::%s', (1,2,3) ], ] for i in range(len(__PatternsToFilter)): __PatternsToFilter[i][0] = re.compile(__PatternsToFilter[i][0]) def __pretty_print_fc_exception(e): # Look for integer error code, but fallback to the exception's classname preface = 'Error ' code = getattr(e, "code", type(e).__name__) if fcconfig.verbosity: (_, _, trback) = sys.exc_info() print_traceback(trback) try: # Attempt to unpack error message as JSON e = json.loads(e.args[0]) # Default to 'FireCloud' if component which gave error was not specified source = ' (' + e.get('source','FireCloud') + ')' msg = e['message'] for pattern in __PatternsToFilter: match = pattern[0].match(msg) if match: msg = pattern[1] % (match.group(*(pattern[2]))) break except Exception as je: # Could not unpack error to JSON, fallback to original message if isinstance(code, str): preface = '' source = '' msg = "{0}".format(e) print("{0}{1}{2}: {3}".format(preface, code, source, msg)) return 99 def printToCLI(value): retval = value if isinstance(value, int) else 0 if isinstance(value, dict): # See attr_get for genesis of __header__ header = value.pop("__header__", None) if header: print('\t'.join(header)) for k, v in sorted(value.items()): print(u'{0}\t{1}'.format(k, v)) elif isinstance(value, (list, tuple)): list(map(lambda v: print(v), value)) elif not isinstance(value, int): if isinstance(value, text_type): print(value) else: print(u("{0}".format(value))) return retval ################################################# # Main entrypoints ################################################# def main(argv=None): # Use this entry point to call high level api and have objects returned, # (see firecloud/tests/highlevel_tests.py:call_func for usage examples) if not argv: argv = sys.argv proj_required = not bool(fcconfig.project) meth_ns_required = not bool(fcconfig.method_ns) workspace_required = not bool(fcconfig.workspace) etype_required = not bool(fcconfig.entity_type) etype_choices = ['participant', 'participant_set', 'sample', 'sample_set', 'pair', 'pair_set'] # Initialize core parser (TODO: Add longer description) usage = 'fissfc [OPTIONS] [CMD [-h | arg ...]]' epilog = 'positional arguments:\n' + \ ' CMD [-h | arg ...] Command and arguments to run.' parser = argparse.ArgumentParser(description='FISS: The FireCloud CLI', formatter_class=argparse.RawDescriptionHelpFormatter, usage=usage, epilog=epilog) # Core Flags parser.add_argument('-u', '--url', dest='api_url', default=None, help='Firecloud API root URL [default: %s]' % fcconfig.root_url) parser.add_argument('-c', '--credentials', default=None, help='Firecloud credentials file') parser.add_argument("-v", "--version", action='version',version=__version__) parser.add_argument('-V', '--verbose', action='count', default=0, help='Emit progressively more detailed feedback during execution, ' 'e.g. to confirm when actions have completed or to show URL ' 'and parameters of REST calls. Multiple -V may be given.') parser.add_argument("-y", "--yes", action='store_true', help="Assume yes for any prompts") parser.add_argument("-l", "--list", nargs='?', metavar="CMD", help="list or search available commands and exit") parser.add_argument("-F", "--function", nargs='+', metavar="CMD", help="Show the code for the given command(s) and exit") # Many commands share arguments, and we can make parent parsers to make it # easier to reuse arguments. Commands that operate on workspaces # all take a (google) project and a workspace name workspace_parent = argparse.ArgumentParser(add_help=False) workspace_parent.add_argument('-w', '--workspace', default=fcconfig.workspace, required=workspace_required, help='Workspace name (required if no default workspace configured)') proj_help = 'Project (workspace namespace). Required if no default ' \ 'project was configured' workspace_parent.add_argument('-p', '--project', default=fcconfig.project, help=proj_help, required=proj_required) dest_space_parent = argparse.ArgumentParser(add_help=False) dest_space_parent.add_argument("-P", "--to-project", help="Project (Namespace) of clone workspace") # FIXME: change to --tospace dest_space_parent.add_argument("-W", "--to-workspace", help="Name of clone workspace") # Commands that update ACL roles require a role and list of users acl_parent = argparse.ArgumentParser(add_help=False) acl_parent.add_argument('-r', '--role', help='ACL role', required=True, choices=['OWNER', 'READER', 'WRITER', 'NO ACCESS']) acl_parent.add_argument('--users', nargs='+', required=True, metavar='user', help='FireCloud usernames. Use "public" to set global permissions.') # Commands that operates on entity_types etype_parent = argparse.ArgumentParser(add_help=False) etype_help = \ "Entity type, required if no default entity_type was configured" etype_parent.add_argument('-t', '--entity-type', required=etype_required, default=fcconfig.entity_type, help=etype_help) # Commands that require an entity name entity_parent = argparse.ArgumentParser(add_help=False) entity_parent.add_argument('-e', '--entity', required=True, help="Entity name (required)") # Commands that work with methods meth_parent = argparse.ArgumentParser(add_help=False) meth_parent.add_argument('-m', '--method', required=True, help='method name') meth_parent.add_argument('-n', '--namespace', help='Method namespace', default=fcconfig.method_ns, required=meth_ns_required) # Commands that work with method configurations conf_parent = argparse.ArgumentParser(add_help=False) conf_parent.add_argument('-c', '--config', required=True, help='Method config name') conf_parent.add_argument('-n', '--namespace', default=fcconfig.method_ns, help='Method config namespace', required=meth_ns_required) # Commands that need a snapshot_id snapshot_parent = argparse.ArgumentParser(add_help=False) snapshot_parent.add_argument('-i', '--snapshot-id', required=True, help="Snapshot ID (version) of method/config") # Commands that take an optional list of attributes attr_parent = argparse.ArgumentParser(add_help=False) attr_parent.add_argument('-a', '--attributes', nargs='*', metavar='attr', help='List of attributes') # Create one subparser for each fiss equivalent subparsers = parser.add_subparsers(prog='fissfc [OPTIONS]', help=argparse.SUPPRESS) # Create Workspace subp = subparsers.add_parser('space_new', parents=[workspace_parent], description='Create new workspace') phelp = 'Limit access to the workspace to a specific authorization ' \ 'domain. For dbGaP-controlled access (domain name: ' \ 'dbGapAuthorizedUsers) you must have linked NIH credentials to ' \ 'your account.' subp.add_argument('--authdomain', default="", help=phelp) subp.set_defaults(func=space_new) # Determine existence of workspace subp = subparsers.add_parser('space_exists', parents=[workspace_parent], description='Determine if given workspace exists in given project') phelp = 'Do not print message, only return numeric status' subp.add_argument('-q', '--quiet', action='store_true', help=phelp) subp.set_defaults(func=space_exists) # Delete workspace subp = subparsers.add_parser('space_delete', description='Delete workspace') subp.add_argument('-w', '--workspace', help='Workspace name', required=True) subp.add_argument('-p', '--project', default=fcconfig.project, help=proj_help, required=proj_required) subp.set_defaults(func=space_delete) # Get workspace information subp = subparsers.add_parser('space_info', parents=[workspace_parent], description='Show workspace information') subp.set_defaults(func=space_info) # List workspaces subp = subparsers.add_parser('space_list', description='List available workspaces in projects (namespaces) ' + 'to which you have access. If you have a config ' + 'file which defines a default project, then only ' + 'the workspaces in that project will be listed.') subp.add_argument('-p', '--project', default=fcconfig.project, help='List spaces for projects whose names start with this ' + 'prefix. You may also specify . (a dot), to list everything.') subp.set_defaults(func=space_list) # Lock workspace subp = subparsers.add_parser('space_lock', description='Lock a workspace', parents=[workspace_parent]) subp.set_defaults(func=space_lock) # Unlock Workspace subp = subparsers.add_parser('space_unlock', parents=[workspace_parent], description='Unlock a workspace') subp.set_defaults(func=space_unlock) # Clone workspace clone_desc = 'Clone a workspace. The destination namespace or name must ' \ 'be different from the workspace being cloned' subp = subparsers.add_parser('space_clone', description=clone_desc, parents=[workspace_parent, dest_space_parent]) subp.add_argument('-f', '--copyFilesWithPrefix', help='Specify a prefix ' + 'of bucket objects to copy to the destination workspace') subp.set_defaults(func=space_clone) # Import data into a workspace subp = subparsers.add_parser('entity_import', parents=[workspace_parent], description='Import data into a workspace') subp.add_argument('-f','--tsvfile', required=True, help='Tab-delimited loadfile') subp.add_argument('-C', '--chunk-size', default=500, type=int, help='Maximum entities to import per api call') subp.add_argument('-m', '--model', default='firecloud', choices=['firecloud', 'flexible'], help='Data Model ' + 'type. "%(default)s" (default) or "flexible"') subp.set_defaults(func=entity_import) # Export data (set/container entity) from workspace export_cmd_args = [workspace_parent, entity_parent] _make_set_export_cmd(subparsers, export_cmd_args, 'sample_set', 'sset') _make_set_export_cmd(subparsers, export_cmd_args, 'pair_set', 'pset') _make_set_export_cmd(subparsers, export_cmd_args, 'participant_set','ptset') # List of entity types in a workspace subp = subparsers.add_parser( 'entity_types', parents=[workspace_parent], description='List entity types in a workspace') subp.set_defaults(func=entity_types) # List of entities in a workspace subp = subparsers.add_parser( 'entity_list', description='List entity types in a workspace', parents=[workspace_parent]) subp.set_defaults(func=entity_list) # List of entities in a workspace subp = subparsers.add_parser( 'entity_tsv', description='Get list of entities in TSV format. ' + 'Download files for which the encoding is undetected (e.g. ZIP ' + 'archives).', parents=[workspace_parent, etype_parent]) subp.add_argument('-a', '--attrs', nargs='*', help='list of ordered attribute names') subp.add_argument('-m', '--model', default='firecloud', choices=['firecloud', 'flexible'], help='Data Model ' + 'type. "%(default)s" (default) or "flexible"') subp.set_defaults(func=entity_tsv) # List of participants subp = subparsers.add_parser( 'participant_list', parents=[workspace_parent], description='Return list of participants within a given container, '\ 'which by default is the workspace; otherwise, participants in '\ 'the named entity will be listed. If an entity is named but no ' \ 'type is given, then participant_set is assumed. The containers ' \ 'supported are: participant, participant_set, workspace' ) subp.add_argument('-e', '--entity', default=None, help='Entity name, to list participants within container entities') subp.add_argument('-t', '--entity-type', default='participant_set', help='The type for named entity [default:%(default)s]`') subp.set_defaults(func=participant_list) # List of pairs subp = subparsers.add_parser( 'pair_list', parents=[workspace_parent], description='Return the list of pairs within a given container, ' \ 'which by default is the workspace; otherwise, the pairs within '\ 'the named entity will be listed. If an entity is named but no '\ 'type is given, then pair_set will be assumed. The containers '\ 'supported are: pair, pair_set, participant, workspace') subp.add_argument('-e', '--entity', default=None, help='Entity name, to list pairs within container entities') subp.add_argument('-t', '--entity-type', default='pair_set', help='The type for named entity [default:%(default)s]`') subp.set_defaults(func=pair_list) # List of samples subp = subparsers.add_parser( 'sample_list', parents=[workspace_parent], description='Return the list of samples within a given container, ' \ 'which by default is the workspace; otherwise, the samples within '\ 'the named entity will be listed. If an entity is named but no '\ 'type is not given, then sample_set is assumed. The containers '\ 'supported are:\n'\ 'sample, sample_set, pair, participant, workspace') subp.add_argument('-e', '--entity', default=None, help='Entity name, to list samples within container entities') subp.add_argument('-t', '--entity-type', default='sample_set', help='The type for named entity [default:%(default)s]`') subp.set_defaults(func=sample_list) # List of sample sets subp = subparsers.add_parser( 'sset_list', description='List sample sets in a workspace', parents=[workspace_parent]) subp.set_defaults(func=sset_list) # Delete entity in a workspace subp = subparsers.add_parser( 'entity_delete', description='Delete entity in a workspace', parents=[workspace_parent, etype_parent, entity_parent]) subp.set_defaults(func=entity_delete) subp = subparsers.add_parser( 'participant_delete', description='Delete participant in a workspace', parents=[workspace_parent, entity_parent]) subp.set_defaults(func=participant_delete) subp = subparsers.add_parser( 'sample_delete', description='Delete sample in a workspace', parents=[workspace_parent, entity_parent]) subp.set_defaults(func=sample_delete) subp = subparsers.add_parser( 'sset_delete', description='Delete sample set in a workspace', parents=[workspace_parent, entity_parent]) subp.set_defaults(func=sset_delete) # Show workspace roles subp = subparsers.add_parser( 'space_acl', description='Show users and roles in workspace', parents=[workspace_parent]) subp.set_defaults(func=space_acl) # Set workspace roles subp = subparsers.add_parser('space_set_acl', description='Show users and roles in workspace', parents=[workspace_parent, acl_parent]) subp.set_defaults(func=space_set_acl) # Push a new workflow to the methods repo subp = subparsers.add_parser('meth_new', parents=[meth_parent], description='Install a method definition to the repository') subp.add_argument('-d','--wdl', required=True, help='Method definiton, as a file of WDL (Workflow ' + 'Description Language)') subp.add_argument('-s', '--synopsis', help='Short (<80 chars) description of method') subp.add_argument('--doc', help='Optional documentation file <10Kb') subp.add_argument('-c', '--comment', metavar='SNAPSHOT_COMMENT', help='Optional comment specific to this snapshot', default='') subp.set_defaults(func=meth_new) # Redact a method subp = subparsers.add_parser('meth_delete', description='Redact method from the methods repository', parents=[meth_parent, snapshot_parent]) subp.set_defaults(func=meth_delete) # Retreive the WDL of a method subp = subparsers.add_parser('meth_wdl', description='Retrieve the WDL of a method', parents=[meth_parent, snapshot_parent]) subp.set_defaults(func=meth_wdl) # Access control list operations (upon methods) # Get ACL subp = subparsers.add_parser('meth_acl', description='Show users and roles for a method', parents=[meth_parent, snapshot_parent]) subp.set_defaults(func=meth_acl) # Set ACL subp = subparsers.add_parser('meth_set_acl', description='Assign an ACL role to a list of users for a workflow', parents=[meth_parent, acl_parent]) subp.add_argument('-i', '--snapshot-id', help="Snapshot ID (version) of method/config") subp.set_defaults(func=meth_set_acl) # List available methods subp = subparsers.add_parser('meth_list', description='List available workflows') subp.add_argument('-m', '--method', default=None, help='name of single workflow to search for (optional)') subp.add_argument('-n', '--namespace', default=None, help='name of single workflow to search for (optional)') subp.add_argument('-i', '--snapshot-id', default=None, help="Snapshot ID (version) of method/config") subp.set_defaults(func=meth_list) subp = subparsers.add_parser('meth_exists', description='Determine if named workflow exists in method repository') subp.add_argument('method', help='name of method to search for in repository') subp.set_defaults(func=meth_exists) # Configuration: list subp = subparsers.add_parser( 'config_list', description='List available configurations') subp.add_argument('-w', '--workspace', help='Workspace name') subp.add_argument('-p', '--project', default=fcconfig.project, help=proj_help) subp.add_argument('-c', '--config', default=None, help='name of single workflow to search for (optional)') subp.add_argument('-n', '--namespace', default=None, help='name of single workflow to search for (optional)') subp.add_argument('-i', '--snapshot-id', default=None, help="Snapshot ID (version) of config (optional)") subp.set_defaults(func=config_list) # Configuration: delete subp = subparsers.add_parser('config_delete', parents=[conf_parent], description='Delete a workspace configuration') subp.add_argument('-w', '--workspace', help='Workspace name', default=fcconfig.workspace, required=workspace_required) subp.add_argument('-p', '--project', default=fcconfig.project, help=proj_help, required=proj_required) subp.set_defaults(func=config_delete) # Method configuration commands subp = subparsers.add_parser('config_get', description='Retrieve method configuration definition', parents=[conf_parent]) subp.add_argument('-w', '--workspace', help='Workspace name', default=fcconfig.workspace, required=workspace_required) subp.add_argument('-p', '--project', default=fcconfig.project, help=proj_help, required=proj_required) subp.set_defaults(func=config_get) subp = subparsers.add_parser('config_wdl', description='Retrieve method configuration WDL', parents=[conf_parent]) subp.add_argument('-w', '--workspace', help='Workspace name', default=fcconfig.workspace, required=workspace_required) subp.add_argument('-p', '--project', default=fcconfig.project, help=proj_help, required=proj_required) subp.set_defaults(func=config_wdl) subp = subparsers.add_parser('config_diff', description='Compare method configuration definitions across workspaces', parents=[conf_parent]) subp.add_argument('-w', '--workspace', help='First Workspace name', default=fcconfig.workspace, required=workspace_required) subp.add_argument('-p', '--project', default=fcconfig.project, help="First " + proj_help, required=proj_required) subp.add_argument('-C', '--Config', help="Second method config name") subp.add_argument('-N', '--Namespace', help="Second method config namespace") subp.add_argument('-W', '--Workspace', help='Second Workspace name', default=fcconfig.workspace, required=workspace_required) subp.add_argument('-P', '--Project', default=fcconfig.project, help="Second " + proj_help, required=proj_required) subp.set_defaults(func=config_diff) subp = subparsers.add_parser('config_copy', description= 'Copy a method config to a new name/space/namespace/project, ' + 'at least one of which MUST be specified.', parents=[conf_parent]) subp.add_argument('-p', '--fromproject', default=fcconfig.project, help=proj_help, required=proj_required) subp.add_argument('-s', '--fromspace', help='from workspace', default=fcconfig.workspace, required=workspace_required) subp.add_argument('-C', '--toname', help='name of the copied config') subp.add_argument('-S', '--tospace', help='destination workspace') subp.add_argument("-N", "--tonamespace", help="destination namespace") subp.add_argument("-P", "--toproject", help="destination project") subp.set_defaults(func=config_copy) subp = subparsers.add_parser('config_new', description=config_new.__doc__, parents=[meth_parent, snapshot_parent, workspace_parent, etype_parent]) subp.add_argument('-c', '--configname', default=None, help='name of new config; if unspecified, method name will be used') subp.set_defaults(func=config_new) subp = subparsers.add_parser('config_template', parents=[meth_parent, snapshot_parent], description='Generate a template method ' + 'configuration, from the given ' + 'repository method') subp.add_argument('-c', '--configname', default=None, help='name of new config; if unspecified, method name will be used') subp.add_argument('-t', '--entity-type', required=False, default='', help='Root entity type, over which method config will execute') subp.set_defaults(func=config_template) subp = subparsers.add_parser('config_put', parents=[workspace_parent], description=config_put.__doc__) subp.add_argument('-c', '--config', required=True, help='Method configuration definition, as described above') subp.set_defaults(func=config_put) subp = subparsers.add_parser('config_acl', description='Show users and roles for a method configuration', parents=[conf_parent, snapshot_parent]) subp.set_defaults(func=config_acl) # FIXME: continue subp = ... meme below, instead of uniquely naming each # subparse; better yet, most of this can be greatly collapsed and # pushed into a separate function and/or auto-generated # Set ACL subp = subparsers.add_parser('config_set_acl', description='Assign an ' + 'ACL role to a list of users for a config', parents=[conf_parent, acl_parent]) subp.add_argument('-i', '--snapshot-id', help="Snapshot ID (version) of method/config") subp.set_defaults(func=config_set_acl) # Status subp = subparsers.add_parser('health', description='Show health of FireCloud services') subp.set_defaults(func=health) subp = subparsers.add_parser('attr_get', description='Retrieve attribute values from an entity identified by ' + 'name and type. If either name or type are omitted then workspace ' + 'attributes will be returned.', parents=[workspace_parent, attr_parent]) # etype_parent not used for attr_get, because entity type is optional subp.add_argument('-t', '--entity-type', choices=etype_choices + ['ref'], default='', required=False, help='Entity type to retrieve ' + 'attributes from.') subp.add_argument('-e', '--entity', help="Entity or reference to retrieve attributes from") subp.add_argument('-s', '--ws_attrs', action='store_true', help="Argument retrieves workspace attributes only (no referenceData attributes).") subp.set_defaults(func=attr_get) subp = subparsers.add_parser('attr_set', parents=[workspace_parent], description="Set attributes on a workspace") subp.add_argument('-a', '--attribute', required=True, metavar='attr', help='Name of attribute to set') subp.add_argument('-v', '--value', required=True, help='Attribute value') subp.add_argument('-t', '--entity-type', choices=etype_choices, required=etype_required, default=fcconfig.entity_type, help=etype_help) subp.add_argument('-e', '--entity', help="Entity to set attribute on") subp.set_defaults(func=attr_set) subp = subparsers.add_parser('attr_list', parents=[workspace_parent], description='Retrieve names of attributes attached to given entity. ' + 'If no entity Type+Name is given, workspace-level ' + 'attributes will be listed.') # FIXME: this should explain that default entity is workspace subp.add_argument('-e', '--entity', help="Entity name or referenceData name.") subp.add_argument('-t', '--entity-type', choices=etype_choices + ['ref'], required=False, default=fcconfig.entity_type, help='Entity type to retrieve attributes from.') subp.add_argument('-s', '--ws_attrs', action='store_true', help="Argument retrieves workspace attributes only (no referenceData attributes).") subp.set_defaults(func=attr_list) # Copy attributes subp = subparsers.add_parser( 'attr_copy', description="Copy workspace attributes between workspaces", parents=[workspace_parent, dest_space_parent, attr_parent]) subp.set_defaults(func=attr_copy) # Delete attributes subp = subparsers.add_parser( 'attr_delete', description="Delete attributes in a workspace", parents=[workspace_parent, attr_parent]) subp.add_argument('-t', '--entity-type', choices=etype_choices, required=etype_required, default=fcconfig.entity_type, help=etype_help) subp.add_argument('-e', '--entities', nargs='*', help='FireCloud entities') subp.set_defaults(func=attr_delete) # Set null sentinel values subp = subparsers.add_parser( 'attr_fill_null', parents=[workspace_parent, etype_parent, attr_parent], description='Assign NULL sentinel value to attributes') subp.add_argument("-o", "--to-loadfile", metavar='loadfile', help="Save changes to provided loadfile, but do not " + "perform update") subp.set_defaults(func=attr_fill_null) # Delete unreferenced files from a workspace's bucket subp = subparsers.add_parser( 'mop', description='Remove unused files from a workspace\'s bucket', parents=[workspace_parent]) subp.add_argument('--dry-run', action='store_true', help='Show deletions that would be performed') group = subp.add_mutually_exclusive_group() group.add_argument('-i', '--include', nargs='+', metavar="glob", help="Only delete unreferenced files matching the " + "given UNIX glob-style pattern(s)") group.add_argument('-x', '--exclude', nargs='+', metavar="glob", help="Only delete unreferenced files that don't match" + " the given UNIX glob-style pattern(s)") subp.set_defaults(func=mop) # List all invalid file attributes of a workspaces and its entities subp = subparsers.add_parser('validate_file_attrs', parents=[workspace_parent], description='List all invalid file ' + \ 'attributes of a workspaces and its entities') subp.set_defaults(func=validate_file_attrs) subp = subparsers.add_parser('noop', description='Simple no-op command, for ' + 'exercising interface') subp.set_defaults(func=noop, proj=fcconfig.project, space=fcconfig.workspace) subp = subparsers.add_parser('config', description='Display value(s) of one or more configuration variables') subp.add_argument('variables', nargs='*', help='Name of configuration variable(s) (e.g. workspace, project). ' 'If no name is given, all config variables will be displayed.') subp.set_defaults(func=config_cmd) # Invoke a method configuration subp = subparsers.add_parser('config_start', description='Start running workflow in a given space', parents=[workspace_parent, conf_parent]) subp.add_argument('-e', '--entity', help="Entity name (required if " + "executing on an entity)") # Duplicate entity type here since we want sample_set to be default subp.add_argument('-t', '--entity-type', default='sample_set', choices=etype_choices, help='Entity type of specified entity. Not used if no ' + 'entity is named. Default: %(default)s') expr_help = "(optional) Entity expression to use when entity type " \ "doesn't match the method configuration." \ "Example: 'this.samples'" subp.add_argument('-x', '--expression', help=expr_help, default='') subp.add_argument('-C', '--cache', default=True, help='boolean: use previously cached results if possible [%(default)s]') subp.set_defaults(func=config_start) # Abort a running method configuration subp = subparsers.add_parser('config_stop', description='Stop running submission ID in a given space', parents=[workspace_parent]) subp.add_argument('-i', '--submission_id', required=True) subp.set_defaults(func=config_stop) # Loop over sample sets, performing a command ssloop_help = 'Loop over sample sets in a workspace, performing <action>' subp = subparsers.add_parser( 'sset_loop', description=ssloop_help, parents=[workspace_parent, attr_parent]) subp.add_argument('action', help='FISS command to execute') subp.add_argument('-c', '--config', help='Method configuration name') subp.add_argument('-n', '--namespace', help='Method configuration namespace') khelp = "Loop through all sample sets, ignoring errors" subp.add_argument('-k', '--keep-going', action='store_true', help=khelp) subp.add_argument('-x', '--expression', help=expr_help) subp.set_defaults(func=sset_loop) subp = subparsers.add_parser('monitor', help="Monitor submitted jobs.", parents=[workspace_parent]) subp.set_defaults(func=monitor) # Supervisor mode sup_help = "Run a Firehose-style workflow of workflows specified in DOT" subp = subparsers.add_parser('supervise', description=sup_help, parents=[workspace_parent]) subp.add_argument('workflow', help='Workflow description in DOT') subp.add_argument('-n', '--namespace', default=fcconfig.method_ns, required=meth_ns_required, help='Methods namespace') subp.add_argument('-s', '--sample-sets', nargs='+', help='Sample sets to run workflow on') jhelp = "File to save monitor data. This file can be passed to " + \ "fissfc supervise_recover in case the supervisor crashes " + \ "(Default: %(default)s)" recovery = os.path.expanduser('~/.fiss/monitor_data.json') subp.add_argument('-j', '--json-checkpoint', default=recovery, help=jhelp) subp.set_defaults(func=supervise) # Recover an old supervisor rec_help = "Recover a supervisor submission from the checkpoint file" subp = subparsers.add_parser('supervise_recover', description=rec_help) subp.add_argument('recovery_file', default=recovery, nargs='?', help='File where supervisor metadata was stored') subp.set_defaults(func=supervise_recover) # Space search subp = subparsers.add_parser( 'space_search', description="Search for workspaces" ) subp.add_argument('-b', '--bucket', help='Regex to match bucketName') subp.set_defaults(func=space_search) # Entity copy subp = subparsers.add_parser( 'entity_copy', description='Copy entities from one workspace to another', parents=[workspace_parent, dest_space_parent, etype_parent]) subp.add_argument('-e', '--entities', nargs='+', metavar='entity', help='Entities to copy. If omitted, all entities will be copied.') subp.add_argument('-l', '--link', action='store_true', help='link new entities to existing entities') subp.set_defaults(func=entity_copy) # List billing projects subp = subparsers.add_parser('proj_list', description="List available billing projects") subp.set_defaults(func=proj_list) # Validate config subp = subparsers.add_parser('config_validate', parents=[workspace_parent], description="Validate a workspace configuration") subp.add_argument('-e', '--entity', help="Validate config against this entity. Entity is assumed to be " + "the same type as the config's root entity type") subp.add_argument('-c', '--config', help='Method configuration name') subp.add_argument('-n', '--namespace', help='Method configuration namespace') subp.set_defaults(func=config_validate) subp = subparsers.add_parser('runnable', parents=[workspace_parent], description="Show what configurations can be run on which entities.") subp.add_argument('-c', '--config', help='Method configuration name') subp.add_argument('-n', '--namespace', help='Method configuration namespace') subp.add_argument('-e', '--entity', help="Show me what configurations can be run on this entity") subp.add_argument('-t', '--entity-type', choices=etype_choices, required=etype_required, default=fcconfig.entity_type, help=etype_help) subp.set_defaults(func=runnable) # Create the .fiss directory if it doesn't exist fiss_home = os.path.expanduser("~/.fiss") if not os.path.isdir(fiss_home): os.makedirs(fiss_home) result = None # Special cases, print help with no arguments if len(argv) == 1: parser.print_help() elif argv[1] in ('-l', '--list'): # Print commands in a more readable way choices=[] for a in parser._actions: if isinstance(a, argparse._SubParsersAction): for choice, _ in a.choices.items(): choices.append(choice) # next arg is search term, if specified search = '' if len(argv) > 2: search = argv[2] result = list(filter(lambda c: search in c, sorted(choices))) elif argv[1] in ('-F', '--function'): # Show source for remaining args for fname in argv[2:]: # Get module name fiss_module = sys.modules[__name__] try: func = getattr(fiss_module, fname) result = u(''.join(getsourcelines(func)[0])) except AttributeError: result = None else: # Otherwise parse args & call correct subcommand (skipping argv[0]) args = parser.parse_args(argv[1:]) # Ensure CLI flags have greatest precedence (e.g. over config file) if args.verbose: fcconfig.set_verbosity(args.verbose) if args.api_url: fcconfig.set_root_url(args.api_url) if args.credentials: fcconfig.set_credentials(args.credentials) result = args.func(args) if result is None: result = 0 return result def main_as_cli(argv=None): '''Use this entry point to call HL fiss funcs as though from the UNIX CLI. (see firecloud/tests/highlevel_tests.py:call_cli for usage examples)''' try: result = main(argv) except Exception as e: result = __pretty_print_fc_exception(e) # FIXME: we should invert True/False return values to 0/1 here, to comply # with UNIX exit code semantics (and avoid problems with make, scripts, etc) return printToCLI(result) if __name__ == '__main__': sys.exit( main_as_cli() ) ``` #### File: fiss/firecloud/method.py ```python import json from os.path import isfile from firecloud.errors import FireCloudServerError import firecloud.api as fapi class Method(object): """A FireCloud Method. Attributes: namespace (str): Method namespace for this method name (str): Method name snapshot_id (int): Version number wdl (str): WDL description synopsis (str): Short description of task documentation (str): Extra documentation for method api_url (str): FireCloud API root """ def __init__(self, namespace, name, snapshot_id, api_url=fapi.PROD_API_ROOT): r = fapi.get_method(namespace, name, snapshot_id, api_url) fapi._check_response_code(r, 200) data = r.json() self.namespace = namespace self.name = name self.snapshot_id = int(data["snapshotId"]) self.wdl = data["payload"] self.synopsis = data["synopsis"] self.documentation = data["documentation"] self.api_url = api_url @staticmethod def new(namespace, name, wdl, synopsis, documentation=None, api_url=fapi.PROD_API_ROOT): """Create new FireCloud method. If the namespace + name already exists, a new snapshot is created. Args: namespace (str): Method namespace for this method name (str): Method name wdl (file): WDL description synopsis (str): Short description of task documentation (file): Extra documentation for method """ r = fapi.update_workflow(namespace, name, synopsis, wdl, documentation, api_url) fapi._check_response_code(r, 201) d = r.json() return Method(namespace, name, d["snapshotId"]) def template(self): """Return a method template for this method.""" r = fapi.get_config_template(self.namespace, self.name, self.snapshot_id, self.api_url) fapi._check_response_code(r, 200) return r.json() def inputs_outputs(self): """Get information on method inputs & outputs.""" r = fapi.get_inputs_outputs(self.namespace, self.name, self.snapshot_id, self.api_url) fapi._check_response_code(r, 200) return r.json() def acl(self): """Get the access control list for this method.""" r = fapi.get_repository_method_acl( self.namespace, self.name, self.snapshot_id, self.api_url) fapi._check_response_code(r, 200) return r.json() def set_acl(self, role, users): """Set permissions for this method. Args: role (str): Access level one of {one of "OWNER", "READER", "WRITER", "NO ACCESS"} users (list(str)): List of users to give role to """ acl_updates = [{"user": user, "role": role} for user in users] r = fapi.update_repository_method_acl( self.namespace, self.name, self.snapshot_id, acl_updates, self.api_url ) fapi._check_response_code(r, 200) ``` #### File: fiss/firecloud/workspace.py ```python import json import os from firecloud import api as fapi from firecloud.errors import FireCloudServerError from firecloud.entity import Entity class Workspace(object): """A FireCloud Workspace. Attributes: api_url (str): API root used to interact with FireCloud, normally https://api.firecloud.org/api namespace (str): Google project for this workspace name (str): Workspace name """ def __init__(self, namespace, name, api_url=fapi.PROD_API_ROOT): """Get an existing workspace from Firecloud by name. This method assumes that a workspace with the given name and namespace is present at the api_url given, and raises an error if it does not exist. To create a new workspace, use Workspace.new() Raises: FireCloudServerError: Workspace does not exist, or API call fails """ self.api_url = api_url self.namespace = namespace self.name = name ## Call out to FireCloud r = fapi.get_workspace(namespace, name, api_url) fapi._check_response_code(r, 200) self.data = r.json() @staticmethod def new(namespace, name, protected=False, attributes=dict(), api_url=fapi.PROD_API_ROOT): """Create a new FireCloud workspace. Returns: Workspace: A new FireCloud workspace Raises: FireCloudServerError: API call failed. """ r = fapi.create_workspace(namespace, name, protected, attributes, api_url) fapi._check_response_code(r, 201) return Workspace(namespace, name, api_url) def refresh(self): """Reload workspace metadata from firecloud. Workspace metadata is cached in the data attribute of a Workspace, and may become stale, requiring a refresh(). """ r = fapi.get_workspace(self.namespace, self.name, self.api_url) fapi._check_response_code(r, 200) self.data = r.json() return self def delete(self): """Delete the workspace from FireCloud. Note: This action cannot be undone. Be careful! """ r = fapi.delete_workspace(self.namespace, self.name) fapi._check_response_code(r, 202) # Getting useful information out of the bucket def __str__(self): """Return a JSON representation of the bucket.""" return json.dumps(self.data, indent=2) def bucket(self): """Return google bucket id for this workspace.""" return str(self.data["workspace"]["bucketName"]) def lock(self): """Lock this Workspace. This causes the workspace to behave in a read-only way, regardless of access permissions. """ r = fapi.lock_workspace(self.namespace, self.name, self.api_url) fapi._check_response_code(r, 204) self.data['workspace']['isLocked'] = True return self def unlock(self): """Unlock this Workspace.""" r = fapi.unlock_workspace(self.namespace, self.name, self.api_url) fapi._check_response_code(r, 204) self.data['workspace']['isLocked'] = False return self def attributes(self): """Return a dictionary of workspace attributes""" return self.data["workspace"]["attributes"] def get_attribute(self, attr): """Return value of workspace attribute. If the attribute does not exist, return None """ return self.data["workspace"]["attributes"].get(attr, None) def update_attribute(self, attr, value): """Set the value of a workspace attribute.""" update = [fapi._attr_up(attr, value)] r = fapi.update_workspace_attributes(self.namespace, self.name, update, self.api_url) fapi._check_response_code(r, 200) def remove_attribute(self, attr): """Remove attribute from a workspace. Args: attr (str): attribute name """ update = [fapi._attr_rem(attr)] r = fapi.update_workspace_attributes(self.namespace, self.name, update, self.api_url) self.data["workspace"]["attributes"].pop(attr, None) fapi._check_response_code(r, 200) def import_tsv(self, tsv_file): """Upload entity data to workspace from tsv loadfile. Args: tsv_file (file): Tab-delimited file of entity data """ r = fapi.upload_entities_tsv(self.namespace, self.name, self.tsv_file, self.api_url) fapi._check_response_code(r, 201) def get_entity(self, etype, entity_id): """Return entity in this workspace. Args: etype (str): Entity type entity_id (str): Entity name/unique id """ r = fapi.get_entity(self.namespace, self.name, etype, entity_id, self.api_url) fapi._check_response_code(r, 200) dresp = r.json() return Entity(etype, entity_id, dresp['attributes']) def delete_entity(self, etype, entity_id): """Delete an entity in this workspace. Args: etype (str): Entity type entity_id (str): Entity name/unique id """ r = fapi.delete_entity(self.namespace, self.name, etype, entity_id, self.api_url) fapi._check_response_code(r, 202) def import_entities(self, entities): """Upload entity objects. Args: entities: iterable of firecloud.Entity objects. """ edata = Entity.create_payload(entities) r = fapi.upload_entities(self.namespace, self.name, edata, self.api_url) fapi._check_response_code(r, 201) def create_set(self, set_id, etype, entities): """Create a set of entities and upload to FireCloud. Args etype (str): one of {"sample, "pair", "participant"} entities: iterable of firecloud.Entity objects. """ if etype not in {"sample", "pair", "participant"}: raise ValueError("Unsupported entity type:" + str(etype)) payload = "membership:" + etype + "_set_id\t" + etype + "_id\n" for e in entities: if e.etype != etype: msg = "Entity type '" + e.etype + "' does not match " msg += "set type '" + etype + "'" raise ValueError(msg) payload += set_id + '\t' + e.entity_id + '\n' r = fapi.upload_entities(self.namespace, self.name, payload, self.api_url) fapi._check_response_code(r, 201) def create_sample_set(self, sset_id, samples): """Create FireCloud sample_set""" return self.create_set(sset_id, "sample", samples) def create_pair_set(self, pset_id, pairs): """Create FireCloud pair_set""" return self.create_set(pset_id, "pair", pairs) def create_participant_set(self, pset_id, participants): """Create FireCloud participant_set""" return self.create_set(pset_id, "participant", participants) def submissions(self): """List job submissions in workspace.""" r = fapi.get_submissions(self.namespace, self.name, self.api_url) fapi._check_response_code(r, 200) return r.json() def entity_types(self): """List entity types in workspace.""" r = fapi.get_entity_types(self.namespace, self.name, self.api_url) fapi._check_response_code(r, 200) return r.json().keys() def entities(self): """List all entities in workspace.""" r = fapi.get_entities_with_type(self.namespace, self.name, self.api_url) fapi._check_response_code(r, 200) edicts = r.json() return [Entity(e['entityType'], e['name'], e['attributes']) for e in edicts] def __get_entities(self, etype): """Helper to get entities for a given type.""" r = fapi.get_entities(self.namespace, self.name, etype, self.api_url) fapi._check_response_code(r, 200) return [Entity(e['entityType'], e['name'], e['attributes']) for e in r.json()] def samples(self): """List samples in a workspace.""" return self.__get_entities("sample") def participants(self): """List participants in a workspace.""" return self.__get_entities("participant") def pairs(self): """List pairs in a workspace.""" return self.__get_entities("pair") def sample_sets(self): """List sample sets in a workspace.""" return self.__get_entities("sample_set") def participant_sets(self): """List participant sets in a workspace.""" return self.__get_entities("participant_set") def pair_sets(self): """List pair sets in a workspace.""" return self.__get_entities("pair_set") def copy_entities(self, from_namespace, from_workspace, etype, enames): """Copy entities from another workspace. Args: from_namespace (str): Source workspace namespace from_workspace (str): Source workspace name etype (str): Entity type enames (list(str)): List of entity names to copy """ r = fapi.copy_entities(from_namespace, from_workspace, self.namespace, self.name, etype, enames, self.api_url) fapi._check_response_code(r, 201) def configs(self): """Get method configurations in a workspace.""" raise NotImplementedError r = fapi.get_configs(self.namespace, self.name, self.api_url) fapi._check_response_code(r, 200) cdata = r.json() configs = [] for c in cdata: cnamespace = c['namespace'] cname = c['name'] root_etype = c['rootEntityType'] method_namespace = c['methodRepoMethod']['methodNamespace'] method_name = c['methodRepoMethod']['methodName'] method_version = c['methodRepoMethod']['methodVersion'] def acl(self): """Get the access control list for this workspace.""" r = fapi.get_workspace_acl(self.namespace, self.name, self.api_url) fapi._check_response_code(r, 200) return r.json() def set_acl(self, role, users): """Set access permissions for this workspace Args: role (str): Access level one of {one of "OWNER", "READER", "WRITER", "NO ACCESS"} users (list(str)): List of users to give role to """ acl_updates = [{"email": user, "accessLevel": role} for user in users] r = fapi.update_workspace_acl(self.namespace, self.name, acl_updates, self.api_url) fapi._check_response_code(r, 200) def clone(self, to_namespace, to_name): """Clone this workspace. Args: to_namespace (str): Target workspace namespace to_name (str): Target workspace name """ r = fapi.clone_workspace(self.namespace, self.name, to_namespace, to_name, self.api_url) fapi._check_response_code(r, 201) return Workspace(to_namespace, to_name, self.api_url) ```
{ "source": "jnlp-snowman/easy-japanese-checker", "score": 2 }
#### File: jnlp-snowman/easy-japanese-checker/index.py ```python import sys import os # add libs path sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'libs')) from bottle import route, static_file, default_app # load controller files from app.controllers import * # static files routing @route('/static/<filepath:path>') def static(filepath): return static_file(filepath, root='./static/') ## Run with bottle http server. # from bottle import run # run(host='localhost', port=8080, debug=True, reloader=True) # e.g. python index.py ## Run with gunicorn app = default_app() # e.g. gunicorn -b 127.0.0.1:8080 -w 1 index:app ## Run with PasteServer # from bottle import run, PasteServer # run(server=PasteServer, host='localhost', port=8080, debug=True, reloader=True) # e.g. python index.py ``` #### File: easy-japanese-checker/libs/db_snow.py ```python import sqlalchemy from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import MetaData, create_engine, orm from sqlalchemy import CHAR, VARCHAR, Integer, Column, PrimaryKeyConstraint, ForeignKey from sqlalchemy import exc from sqlalchemy import event from sqlalchemy.pool import Pool import configparser config = configparser.ConfigParser() config.sections() config.read('./config.ini') sql_DATABASE = config.get('settings', "db_snow") sql_metadata = MetaData() sql_engine = create_engine( sql_DATABASE, encoding='utf-8', pool_recycle=5, ) db_session = orm.scoped_session( orm.sessionmaker(autocommit=True, autoflush=True, bind=sql_engine) ) sql_Base = declarative_base() sql_Base.query = db_session.query_property() @event.listens_for(Pool, "checkout") def ping_connection(dbapi_connection, connection_record, connection_proxy): cursor = dbapi_connection.cursor() try: cursor.execute("SELECT 1") except: # optional - dispose the whole pool # instead of invalidating one at a time # connection_proxy._pool.dispose() # raise DisconnectionError - pool will try # connecting again up to three times before raising. raise exc.DisconnectionError() cursor.close() class Word(sql_Base): __tablename__ = 'Word' __table_args__ = ( PrimaryKeyConstraint('Id'), ) Id = Column('Id', CHAR(length=5)) SnowmanPOS = Column('SnowmanPOS', VARCHAR(length=40)) POS = Column('POS', VARCHAR(length=20)) POS_s1 = Column('POS_s1', VARCHAR(length=20)) POS_s2 = Column('POS_s2', VARCHAR(length=20)) lemma = Column('lemma', VARCHAR(length=120)) org_lemma = Column('org_lemma', VARCHAR(length=120)) freq = Column('BCCWJ_freq', Integer) def __repr__(self): return 'word:{}'.format(self.lemma) class Morph(sql_Base): __tablename__ = 'Morph' __table_args__ = ( PrimaryKeyConstraint('CharId'), ) CharId = Column('CharId', CHAR(length=5)) lemma = Column('lemma', VARCHAR(length=120)) Id = Column('Id', CHAR(length=5), ForeignKey('Word.Id')) CharMorph = orm.relationship("CharMorph") Word = orm.relationship("Word", backref=orm.backref('Morph')) def __repr__(self): return 'morph:{}'.format(self.lemma) class CharMorph(sql_Base): __tablename__ = 'CharMorph' __table_args__ = ( PrimaryKeyConstraint('UniDicId'), ) UniDicId = Column('UniDicId', CHAR(length=5), ForeignKey('UniDic.ID')) CharId = Column('CharId', CHAR(length=5), ForeignKey('Morph.CharId')) ambiguity = Column('ambiguity', Integer) freq = Column('freq', Integer) UniDic = orm.relationship("UniDic", backref=orm.backref('CharMorph'), order_by=UniDicId) Morph = orm.relationship("Morph", backref=orm.backref('Morph')) # Morph = orm.relationship("Morph", back_populates="Morph") def __repr__(self): return 'CharMorph:{}'.format(self.CharId) class UniDic(sql_Base): __tablename__ = 'UniDic' __table_args__ = ( PrimaryKeyConstraint('ID'), ) ID = Column('ID', CHAR(length=6)) POS = Column('POS', VARCHAR(length=20)) POS_s1 = Column('POS_s1', VARCHAR(length=40)) POS_s2 = Column('POS_s2', VARCHAR(length=40)) POS_s3 = Column('POS_s3', VARCHAR(length=40)) Conj_type = Column('Conj_type', VARCHAR(length=40)) Conj_form = Column('Conj_form', VARCHAR(length=40)) org_kana = Column('org_kana', VARCHAR(length=40)) org_kanji = Column('org_kanji', VARCHAR(length=40)) lemma = Column('lemma', VARCHAR(length=40)) reading = Column('reading', VARCHAR(length=40)) org2_kanji = Column('org2_kanji', VARCHAR(length=40)) org2_kana = Column('org2_kana', VARCHAR(length=40)) freq = Column('freq', Integer) def __repr__(self): return 'UniDic:{}'.format(self.lemma) ```
{ "source": "jnmaloney/aaisd", "score": 2 }
#### File: aaisd/chart/process_outliers_locs.py ```python from bokeh.plotting import figure, show, save, output_file from bokeh.models.tickers import * from bokeh.models.axes import * from bokeh.palettes import brewer from os import listdir from os.path import isfile, join # Open outliers files years = { 'temp': [], 'dewp': [], 't_min': [], 't_max': [], 'precip': [], 'snow_d': [], 'wind_max': [], } values_high = { 'temp': [], 'dewp': [], 't_min': [], 't_max': [], 'precip': [], 'snow_d': [], 'wind_max': [], } values_low = { 'temp': [], 'dewp': [], 't_min': [], 't_max': [], 'precip': [], 'snow_d': [], 'wind_max': [], } onlyfiles = [f for f in listdir('locs') if isfile(join('locs', f))] for fname in onlyfiles: f = open(join('locs', fname), "r") #"locs/833780-99999-outliers.txt", "r") #f = open("locs/833780-99999-outliers.txt", "r") for line in f.readlines(): s = line.split() year = int(s[1]) value = s[0] r = int(s[2]) u = int(s[3]) l = int(s[4]) years[value].append(year) values_high[value].append((100.0*u) / r) values_low[value].append((100.0*l) / r) # x = [] # for i in range(len(l)): # x.append( (100.0*(l[i]+u[i])) / r[i] ) colors = brewer['Spectral'][4] colorsMap = { 'temp': colors[0], 'dewp': colors[1], 't_min': colors[2], 't_max': colors[3], 'precip': 'lightblue', 'snow_d': 'lightgrey', 'wind_max': 'lightsteelblue', } # Do figures seperately # for value in [ # 'temp', # 'dewp', # 't_min', # 't_max', # 'precip', # 'snow_d', # 'wind_max']: # p = figure( # title=None, # x_axis_label='year', #'Month-Day', # y_axis_label='%', # background_fill_color="#EFE8E2", # plot_width=1200, plot_height=600, # ) # p.xaxis[0].ticker = SingleIntervalTicker(interval=10, num_minor_ticks=0) # # poly1 = range(1920, 2021) # poly2 = values_low[value] # print len(poly1), len(poly2) # poly1.insert(0, 1920) # poly2.insert(0, 0) # poly1.append(2020) # poly2.append(0) # # p.patch(poly1, poly2, # #fill_color=colorsMap[value], # line_color=colorsMap[value]) # #fill_alpha=0.5) # # output_file("outlier_count_value_low_%s.html" % value) # # show(p) # save(p) # y # p = figure( # title=None, # x_axis_label='year', #'Month-Day', # y_axis_label='%', # background_fill_color="#EFE8E2", # plot_width=1200, plot_height=600, # ) # p.xaxis[0].ticker = SingleIntervalTicker(interval=10, num_minor_ticks=0) # # p.patch(poly1, poly2, # #fill_color=colorsMap[value], # line_color=colorsMap[value]) # #fill_alpha=0.75) # # output_file("outlier_count_value_high_%s.html" % value) # # show(p) # save(p) def sub(y, x, z, value): p = figure( title=None, x_axis_label='year', #'Month-Day', y_axis_label='%', background_fill_color="#EFE8E2", plot_width=1200, plot_height=600, ) p.xaxis[0].ticker = SingleIntervalTicker(interval=10, num_minor_ticks=0) p.patch(y, x, fill_color=colorsMap[value], line_color=colorsMap[value], line_width=2, fill_alpha=0.5) output_file("outlier_count_value_low_%s.html" % value) show(p) save(p) y p = figure( title=None, x_axis_label='year', #'Month-Day', y_axis_label='%', background_fill_color="#EFE8E2", plot_width=1200, plot_height=600, ) p.xaxis[0].ticker = SingleIntervalTicker(interval=10, num_minor_ticks=0) p.patch(y, z, fill_color=colorsMap[value], line_color=colorsMap[value], line_width=2, fill_alpha=0.75) output_file("outlier_count_value_high_%s.html" % value) show(p) save(p) # All poly p = figure( title=None, x_axis_label='year', #'Month-Day', y_axis_label='%', background_fill_color="#EFE8E2", plot_width=1200, plot_height=600, ) p.xaxis[0].ticker = SingleIntervalTicker(interval=10, num_minor_ticks=0) # # Plot 1 # for v in ['temp', 'dewp', 't_min', 't_max', 'precip', 'snow_d', 'wind_max']: # p.line(years[v], values_low[v]) # p.line(years[v], values_high[v]) # Plot 2 v_store = {} polys1 = { 'temp': [], 'dewp': [], 't_min': [], 't_max': [], 'precip': [], 'snow_d': [], 'wind_max': [], } polys2 = { 'temp': [], 'dewp': [], 't_min': [], 't_max': [], 'precip': [], 'snow_d': [], 'wind_max': [], } polysM1 = { 'temp': [], 'dewp': [], 't_min': [], 't_max': [], 'precip': [], 'snow_d': [], 'wind_max': [], } polysM2 = { 'temp': [], 'dewp': [], 't_min': [], 't_max': [], 'precip': [], 'snow_d': [], 'wind_max': [], } tracko = [0 for i in range(1920, 2021)] y = [] for i in range(1920, 2021, 1): y.append(i) for i in range(2020, 1920, -1): y.append(i) for v in ['temp', 'dewp', 't_min', 't_max', 'precip', 'snow_d', 'wind_max']: x = [] z = [] for year in range(1920, 2021, 1): value_low = 0 value_high = 0 for year2 in range(1): try: i = years[v].index(year+year2) value_low = values_low[v][i] value_high = values_high[v][i] except Exception as e: pass x.append(value_low) z.append(value_high) sub(y, x, z, v) for i in range(len(x)): polys1[v].append(tracko[i]) polys2[v].append(tracko[i] + x[i]) for i in range(len(x)-1, 0, -1): polys1[v].append(tracko[i] + x[i]) polys2[v].append(tracko[i] + x[i] + z[i]) # for i in range(len(x)): # # polys1[v].append(x[i]) # polys2[v].append(z[i]) # # polysM1[v].append(tracko[i] + x[i] * 0.5) # polysM2[v].append(tracko[i] + x[i] + z[i] * 0.5) tracko[i] += x[i] + z[i] #p.patch(y, polys1[v]) #p.line(y, polys1[v]) colors = brewer['Spectral'][4] p.patch(y, polys2['temp'], fill_color=colors[0], fill_alpha=0.75) p.patch(y, polys1['temp'], fill_color=colors[0], fill_alpha=0.5) p.patch(y, polys2['dewp'], fill_color=colors[1], fill_alpha=0.75) p.patch(y, polys1['dewp'], fill_color=colors[1], fill_alpha=0.5) p.patch(y, polys2['t_min'], fill_color=colors[2], fill_alpha=0.75) p.patch(y, polys1['t_min'], fill_color=colors[2], fill_alpha=0.5) p.patch(y, polys2['t_max'], fill_color=colors[3], fill_alpha=0.75) p.patch(y, polys1['t_max'], fill_color=colors[3], fill_alpha=0.5) p.patch(y, polys2['precip'], fill_color='lightblue', fill_alpha=0.75) p.patch(y, polys1['precip'], fill_color='lightblue', fill_alpha=0.5) p.patch(y, polys2['snow_d'], fill_color='lightgrey', fill_alpha=0.75) p.patch(y, polys1['snow_d'], fill_color='lightgrey', fill_alpha=0.5) p.patch(y, polys2['wind_max'], fill_color='lightsteelblue', fill_alpha=0.75) p.patch(y, polys1['wind_max'], fill_color='lightsteelblue', fill_alpha=0.5) # p.rect(y, polysM2['wind_max'], 9, polys2['wind_max'],fill_color='lightsteelblue', fill_alpha=0.75, line_color="black", legend="wind_max +") # p.rect(y, polysM1['wind_max'], 9,polys1['wind_max'],fill_color='lightsteelblue', fill_alpha=0.5, line_color="black", legend="wind_max -") # p.rect(y, polysM2['snow_d'], 9, polys2['snow_d'],fill_color='lightgrey', fill_alpha=0.75, line_color="black", legend="snow_d +") # p.rect(y, polysM1['snow_d'], 9, polys1['snow_d'],fill_color='lightgrey', fill_alpha=0.5, line_color="black", legend="snow_d -") # p.rect(y, polysM2['precip'], 9, polys2['precip'],fill_color='lightblue', fill_alpha=0.75, line_color="black", legend="precip +") # p.rect(y, polysM1['precip'], 9, polys1['precip'],fill_color='lightblue', fill_alpha=0.5, line_color="black", legend="precip -") # p.rect(y, polysM2['t_max'], 9, polys2['t_max'], fill_color=colors[3], fill_alpha=0.75, line_color="black", legend="t_max +") # p.rect(y, polysM1['t_max'], 9, polys1['t_max'], fill_color=colors[3], fill_alpha=0.5, line_color="black", legend="t_max -") # p.rect(y, polysM2['t_min'], 9, polys2['t_min'], fill_color=colors[2], fill_alpha=0.75, line_color="black", legend="t_min +") # p.rect(y, polysM1['t_min'], 9, polys1['t_min'], fill_color=colors[2], fill_alpha=0.5, line_color="black", legend="t_min -") # # p.rect(y, polysM2['dewp'], 9, polys2['dewp'], fill_color=colors[1], fill_alpha=0.75, line_color="black", legend="dewp +") # p.rect(y, polysM1['dewp'], 9, polys1['dewp'], fill_color=colors[1], fill_alpha=0.5, line_color="black", legend="dewp -") # p.rect(y, polysM2['temp'], 9, polys2['temp'], fill_color=colors[0], fill_alpha=0.75, line_color="black", legend="temp +") # p.rect(y, polysM1['temp'], 9, polys1['temp'], fill_color=colors[0], fill_alpha=0.5, line_color="black", legend="temp -") #for year, value_low, value_high in years[v], values_low[v], values_high[v]: # for i in range(len(years[v])): # year = years[v][i] # value_low = values_low[v][i] # value_high = values_high[v][i] # x.append(year) # if not v_store.has_key(year): # v_store[year] = 0 # v_store[year] += value_low # y.append(v_store[year]) # v_store[year] += value_high # z.append(v_store[year]) # x.append(x[-1]) # y.append(0) # z.append(0) # # for year in range(1920, 2021): # value_low = 0 # value_high = 0 # try: # i = years[v].index(year) # value_low = values_low[v][i] # value_high = values_high[v][i] # except Exception as e: # pass # # y.append(year) # x.append(value_low) # z.append(value_high) # # # # #p.rect(x, [0.5*i for i in y], 1, y, fill_color="lightgrey") # #p.rect(x, [0.5*i for i in z], 1, z, fill_color="steelblue") # # xx = [] # for i in y: # xx.append(i) # y.reverse() # for i in y: # xx.append(i) # # yy = [] # for i in x: # yy.append(i) # z.reverse() # for i in z: # yy.append(i) # # p.line(xx, yy) # p.line(x, y) # p.line(x, z) output_file("outlier_count_master.html") show(p) #save(p) ``` #### File: jnmaloney/aaisd/process_gsod.py ```python import gzip from datetime import datetime import os import numpy as np import pandas as pd from bokeh.plotting import figure, show, output_file from bokeh.models.tickers import * from bokeh.models.axes import * # Data containers moda_values = { 't_max': {}, 't_min': {}, 'wind_max': {}, 'precip': {}, 'snow_d': {}, } # Conversion def FStoC(f_string): return (float(f_string) - 32.0) * 5.0 / 9.0 # Read from a single archive def read_archive(archivename): if not os.path.isfile(archivename): return with gzip.open(archivename, 'rb') as f: for line in f.readlines(): process_linedata(line) # Process a line from the data file def process_linedata(line): # Ignore first line if line[0:6] == "STN---": return # Read data points line_data = line.split() yearmoda = line_data[2] wind_max = line_data[15] t_max_f = line[103:108] t_min_f = line[111:116] precip = line_data[19] snowd = line_data[20] # Add to collection for Mo-Da # Store data for Year-Mo-Da add_values(yearmoda, wind_max, 'wind_max') add_values(yearmoda, FStoC(t_max_f), 't_max') add_values(yearmoda, FStoC(t_min_f), 't_min') add_values(yearmoda, precip, 'precip') add_values(yearmoda, snowd, 'snow_d') def add_values(yearmoda, value, label): if value > 500: return # 999 store = moda_values[label] year = yearmoda[0:4] moda = yearmoda[4:] if not store.has_key(moda): store[moda] = [] store[moda].append((value, year)) # Read each year's archive for year in range(1901, 2017+1): archivename = 'gsod/600600-99999-%s.op.gz' % year read_archive(archivename) # Process total statistics # Box plot demo values = moda_values['t_max'] modas = [] xx = [] for k, v in values.iteritems(): for i in v: modas.append(k) xx.append(i[0]) df = pd.DataFrame(dict(score=xx, group=modas)) select_modas = ['0101', '0201', '0301', '0401', '0501', '0601', '0701', '0801', '0901', '1001','1101', '1201'] #select_modas = ['0101', '0301', '0701', '1001'] #select_modas = ['0301'] all_modas = sorted(values.keys()) # find the quartiles and IQR for each category groups = df.groupby('group') q1 = groups.quantile(q=0.25) q2 = groups.quantile(q=0.5) q3 = groups.quantile(q=0.75) iqr = q3 - q1 upper = q3 + 1.5*iqr lower = q1 - 1.5*iqr # ? #print lower.score['0301'] # find the outliers for each category def outliers(group): cat = group.name return group[(group.score > upper.loc[cat]['score']) | (group.score < lower.loc[cat]['score'])]['score'] out = groups.apply(outliers).dropna() # prepare outlier data for plotting, we need coordinates for every outlier. if not out.empty: outx = [] outy = [] for cat in all_modas: # only add outliers if they exist if not out.loc[cat].empty: for value in out[cat]: outx.append(cat) outy.append(value) #p = figure(tools="save", background_fill_color="#EFE8E2", title="", x_range=all_modas) p = figure( title="Outlying Temperature Events", x_axis_label=None, #'Month-Day', y_axis_label='Daily High Temperature from 1950 - 2017', background_fill_color="#EFE8E2", x_minor_ticks=0, x_range=all_modas) # ticker = SingleIntervalTicker(interval=5, num_minor_ticks=10) # xaxis = LinearAxis(ticker=ticker) # plot.add_layout(xaxis, 'below') ticker = FixedTicker() ticker.ticks = [0101, 0201, 0301, 0401] xaxis = LinearAxis(ticker=ticker) p.add_layout(xaxis, 'below') # if no outliers, shrink lengths of stems to be no longer than the minimums or maximums qmin = groups.quantile(q=0.00) qmax = groups.quantile(q=1.00) upper.score = [min([x,y]) for (x,y) in zip(list(qmax.loc[:,'score']),upper.score)] lower.score = [max([x,y]) for (x,y) in zip(list(qmin.loc[:,'score']),lower.score)] # # stems # p.segment(select_modas, upper.score, select_modas, q3.score, line_color="black") # p.segment(select_modas, lower.score, select_modas, q1.score, line_color="black") # # # boxes # p.vbar(select_modas, 0.7, q2.score, q3.score, fill_color="#E08E79", line_color="black") # p.vbar(select_modas, 0.7, q1.score, q2.score, fill_color="#3B8686", line_color="black") # whiskers (almost-0 height rects simpler than segments) # p.rect(select_modas, lower.score[select_modas[0]], 0.2, 0.01, line_color="black") # p.rect(select_modas, upper.score[select_modas[0]], 0.2, 0.01, line_color="black") # Corrected whisker plots # for moda in select_modas: # # # stems # p.segment([moda], upper.score[moda], [moda], q3.score[moda], line_color="black") # p.segment([moda], lower.score[moda], [moda], q1.score[moda], line_color="black") # # # boxes # p.vbar([moda], 0.7, q2.score[moda], q3.score[moda], fill_color="#E08E79", line_color="black") # p.vbar([moda], 0.7, q1.score[moda], q2.score[moda], fill_color="#3B8686", line_color="black") # # # whiskers (almost-0 height rects simpler than segments) # p.rect([moda], lower.score[moda], 0.2, 0.01, line_color="black") # p.rect([moda], upper.score[moda], 0.2, 0.01, line_color="black") # All values continuous box plot #for moda in moda_values # for moda in all_modas: # # # boxes # p.vbar([moda], 0.7, q2.score[moda], q3.score[moda], fill_color="#E08E79", line_color="black") # p.vbar([moda], 0.7, q1.score[moda], q2.score[moda], fill_color="#3B8686", line_color="black") # # # whiskers (almost-0 height rects simpler than segments) # p.rect([moda], lower.score[moda], 0.2, 0.01, line_color="black") # p.rect([moda], upper.score[moda], 0.2, 0.01, line_color="black") q1s = [q1.score[i] for i in all_modas] q2s = [q2.score[i] for i in all_modas] q3s = [q3.score[i] for i in all_modas] #p.line(all_modas, q3s, line_color='#E08E79') #p.line(all_modas, q2s, line_color='black') #p.line(all_modas, q1s, line_color='#3B8686') p.patch(all_modas + all_modas[::-1], q3s + q2s[::-1], color='#E08E79') p.patch(all_modas + all_modas[::-1], q2s + q1s[::-1], color='#3B8686') #p.line(all_modas, q2s, line_color='black') lowers = [lower.score[i] for i in all_modas] uppers = [upper.score[i] for i in all_modas] #p.line(all_modas, uppers, line_color='black') #p.line(all_modas, lowers, line_color='black') p.patch(all_modas + all_modas[::-1], uppers + q3s[::-1], color='white') p.patch(all_modas + all_modas[::-1], q1s + lowers[::-1], color='white') # outliers if not out.empty: p.circle(outx, outy, size=6, color="#F38630", fill_alpha=0.6) p.xgrid.grid_line_color = None p.ygrid.grid_line_color = "white" p.grid.grid_line_width = 2 p.xaxis.major_label_text_font_size="12pt" output_file("boxplot.html", title="boxplot.py example") show(p) ```
{ "source": "jnmaomao/ploomber", "score": 3 }
#### File: ploomber/util/validate.py ```python from ploomber.exceptions import ValidationError from ploomber.io import pretty_print def keys(valid, passed, required=None, name='spec'): passed = set(passed) if valid: extra = passed - set(valid) if extra: raise ValidationError( "Error validating {}, the following keys aren't " "valid: {}. Valid keys are: {}".format( name, pretty_print.iterable(extra), pretty_print.iterable(valid))) if required: missing = set(required) - passed if missing: raise ValidationError(f"Error validating {name}. Missing " f"keys: { pretty_print.iterable(missing)}") ``` #### File: tests/util/test_mixed_envs.py ```python import pytest from ploomber.util import util def test_mixed_envs(): # Set a pip dep string reqs = """pyflakes==2.4.0\nPygments==2.11.2\n pygraphviz @ file:///Users/runner/miniforge3/pygraphviz_1644545996627\n PyNaCl==1.5.0\npyparsing==3.0.7""" with pytest.warns(UserWarning): util.check_mixed_envs(reqs) ```
{ "source": "JNMaree/solvdoku", "score": 4 }
#### File: src/base/elementspace_1D.py ```python import numpy from nodespace_1D import NodeSpace1D class ElementSpace1D(NodeSpace1D): """ An Element space is a collection of elements in a single dimension, X. The data is stored in a 2-dimensional array. The value of the array at i and j represents the element at i, composed of the node j: ElementSpace[i,j] = Node_j of Element_i """ # Element array: elements = numpy.array([0,0], dtype=int) # Numpy array # Number of Elements: n_elements = 0 # int (>0) # Number of Nodes per Element: nodes_per_element = 2 # int (>=2) def __init__(self, elements, dimension=1, start=0, nodes_per_element=2): # If elements is a number, it specifies the number of elements if isinstance(elements, int): self.elements = numpy.zeros((elements, nodes_per_element)) self.n_elements = elements self.nodes_per_element = nodes_per_element # Calculate the number of nodes n_nodes = elements * nodes_per_element - (elements - 1) super().__init__(n_nodes, dimension, start) # If elements is a NodeSpace1D, it defines the Nodes used by the Elements, # - disregards dimension & start elif isinstance(elements, NodeSpace1D): self.elements = numpy.empty([elements.n_nodes, nodes_per_element]) self.nodes_per_element = nodes_per_element self.n_elements = elements.n_nodes - (self.nodes_per_element - 1) # initialise inherited nodeSpace super().__init__(elements) elif isinstance(elements, ElementSpace1D): self.elements = elements.elements self.n_elements = elements.n_elements self.nodes_per_element = elements.nodes_per_element # Generate Elements from NodeSpace for i in range(self.n_elements): for j in range(self.nodes_per_element): self.elements[i, j] = int( i * (self.nodes_per_element - 1) + j ) # end __init__ def __str__(self) -> str: ret_str = format(self.n_elements) ret_str += "\n" for i in range(self.n_elements): for j in range(self.nodes_per_element): ret_str += "[{:n},{:n}]:".format(i,j) ret_str += "{:n}".format(self.elements[i,j]) if j != (self.nodes_per_element - 1): if self.elements[i, j] < 10: ret_str += "\t" # to get consistent column tabs ret_str += "\t" ret_str += "\n" return ret_str def __getitem__(self, key): return self.elements[key] def __setitem__(self, key, value): self.elements[key] = value # Return the NodeSpace the ElementSpace is based on def nodeSpace_str(self) -> str: return super().__str__() def main(): # Test Classes & Functions print("Test ElementSpace:") # - Create an ElementSpace of 10 elements # over a dimension of size 4, # starting at 3, # with 2 nodes per element: e_space2 = ElementSpace1D(10, 4, 3, 2) print("Nodes_Per_Element:", e_space2.nodes_per_element) print(e_space2) # Test get_NodeSpace string print("Test ElementSpace_2 Parent NodeSpace:") n_space_str2 = e_space2.nodeSpace_str() print("N_nodes:", n_space_str2) print("Test ElementSpace with 4 nodes per element") # - Create an ElementSpace of 8 elements # over a dimension of size 10, # starting at 0, # with 4 nodes per element: e_space4 = ElementSpace1D(8, 10, 0, 4) print("Nodes_Per_Element:", e_space4.nodes_per_element) print(e_space4) # Test get_NodeSpace string print("Test ElementSpace_4 Parent NodeSpace:") n_space_str4 = e_space4.nodeSpace_str() print("N_nodes:", n_space_str4) if __name__ == "__main__": main() ``` #### File: src/base/matrix.py ```python import numpy class Matrix: matrix = [] rows = 0 cols = 0 # Error Tolerance for FLoating Points: # if abs( matrix[i, j] ) < epsilon then value = zero epsilon = 1e-14 def __init__(self, array): if isinstance(array, numpy.ndarray): if array.ndim == 2: # If 2D self.matrix = array self.rows = array.shape[0] self.cols = array.shape[1] elif array.ndim == 1: # If 1D self.matrix = array self.rows = array.shape[0] self.cols = 1 elif isinstance(array, list): self.matrix = numpy.array(array) self.rows = len(array) self.cols = len(array[0]) # Overload [] operator def __getitem__(self, key): return self.matrix[key] def __setitem__(self, key, value): self.matrix[key] = value # Overload 'string' method def __str__(self): ret_str = "{}x{}\n".format(self.rows, self.cols) if self.cols == 1: for i in range(self.rows): ret_str += f"{self.matrix[i]:8}\n" else: for i in range(self.rows): for j in range(self.cols): ret_str += f"{self.matrix[i,j]:>4} " ret_str += "\n" return ret_str # BOOLEAN MATRIX CHECK METHODS: # Return if matrix is square (n = rows = cols) def is_square(self): if self.rows == self.cols: return True else: return False # Return if specified matrix is equal in size def is_equal_size(self, other): if self.cols != other.cols: return False elif self.rows != other.rows: return False else: return True # Return if matrix is a diagonal matrix def is_diagonal(self): pass # Overload mathematical operators # Matrix multiplication def __mul__(self, other): if isinstance(other, int): self.matrix *= other else: if self.cols != other.rows: raise ArithmeticError(f"Product Matrix AB not defined for A:cols={self.cols} and B:rows={other.rows}") else: return Matrix(numpy.matmul(self.matrix, other.matrix)) # Matrix 1-to-1 addition def __add__(self, other): if self.is_equal_size(other): return Matrix(numpy.add(self.matrix, other.matrix)) else: raise ArithmeticError("Sum Matrix not defined for matrices of inequal size") # Matrix 1-to-1 substraction def __sub__(self, other): if self.is_equal_size(other): return Matrix(numpy.subtract(self.matrix, other.matrix)) else: raise ArithmeticError("Difference Matrix not defined for matrices of inequal size") """ Class Methods: Basic Matrix Algebra: - Append Rows to matrix - Append Columns to matrix Matrix Transformations: - Row Echelon form - Reduced Row Echelon form """ # ROW OPERATIONS: # Add rows to matrix def add_rows(self, rows, pos =None): if isinstance(rows, numpy.ndarray): addRows = rows elif isinstance(rows, list): addRows = numpy.array(rows) else: #not isinstance(rows, numpy.ndarray): raise TypeError("list or numpy.ndarray types supported") if pos == None: # If position not specified, append row to end of matrix rowPos = self.rows else: rowPos = pos if addRows.ndim > 1: self.rows += addRows.shape[0] else: self.rows += 1 self.matrix = numpy.insert(self.matrix, rowPos, addRows, axis=0) def swap_rows(self, row_A_index, row_B_index): if row_A_index > (self.rows - 1): raise IndexError("row_A_index:", row_A_index, " out of bounds of row_count:", self.rows) if row_B_index > (self.rows - 1): raise IndexError("row_B_index:", row_B_index, " out of bounds of row_count:", self.rows) temp_row = numpy.array(self.matrix[row_A_index, :]) self.matrix[row_A_index, :] = self.matrix[row_B_index, :] self.matrix[row_B_index, :] = temp_row def shift_row(self, row_index, to_index=None): new_order = numpy.arange(0, self.rows) if to_index is not None: # if to_index specified, move row@row_index to row@to_index new_order[to_index] = row_index else: # Else move row@row_index to end for i in range(row_index, self.rows - 1): new_order[i] = i new_order[self.rows - 1] = row_index self.matrix = self.matrix[new_order, :] # COL OPERATIONS: # Add columns to matrix def add_cols(self, cols, pos =None): if isinstance(cols, numpy.ndarray): addCols = cols elif isinstance(cols, list): addCols = numpy.array(cols) else: raise TypeError("list or numpy.ndarray types supported") if pos == None: # If position not specified, append col to end of matrix colPos = self.cols else: colPos = pos if addCols.ndim == 1: self.cols += 1 else: self.cols += addCols.shape[0] self.matrix = numpy.insert(self.matrix, colPos, addCols, axis=1) def swap_cols(self, col_A_index, col_B_index): if col_A_index > (self.cols - 1): raise IndexError("col_A_index:", col_A_index, " out of bounds of row_count:", self.cols) if col_B_index > (self.cols - 1): raise IndexError("col_B_index:", col_B_index, " out of bounds of row_count:", self.cols) temp_row = numpy.array(self.matrix[:, col_A_index]) self.matrix[:, col_A_index] = self.matrix[:, col_B_index] self.matrix[:, col_B_index] = temp_row def shift_col(self, col_index, to_index=None): new_order = numpy.arange(0, self.cols) if to_index is not None: # if to_index specified, move col@col_index to col@to_index new_order[to_index] = col_index else: # Else move col@col_index to end for i in range(col_index, self.cols - 1): new_order[i] = i new_order[self.cols - 1] = col_index self.matrix = self.matrix[:, new_order] # Move Full Zero rows to Bottom of Matrix # - Used for Reduced row echelon form def move_full_zero_rows(self): zeroRows = numpy.all(self.matrix==0, axis=1) anyZeroRows = numpy.any(zeroRows) if anyZeroRows: for i in range(zeroRows.size - 1): if zeroRows[i]: self.shift_row(i) # Return the points at which the matrix's largest absolute value occurs def abs_argmax(self, row_index=None, col_index=None): if row_index == None and col_index == None: # If row or col not specified, return arg max of matrix return numpy.argmax(self.matrix) elif col_index == None: # Return argmax of row_index return numpy.argmax(self.matrix, axis=0) else: # Return argmax of col_index return numpy.argmax(self.matrix, axis=1) # MATRIX TRANSFORMATIONS (in_place): # Absolute value of whole matrix def to_abs(self): self.matrix = numpy.absolute(self.matrix) # Reduce matrix to Row Echelon Form (REF) # see https://en.wikipedia.org/wiki/Row_echelon_form#Reduced_row_echelon_form def to_row_echelon(self): rowJ = 0 colK = 0 while rowJ < self.rows and colK < self.cols: rowMax = self.abs_argmax(row_index=rowJ) if rowMax.size > 1: # Catch argmax returning an array rowMax = rowMax[0] if self.matrix[rowMax, colK] == 0: colK += 1 else: self.swap_rows(rowJ, rowMax) for i in range(rowJ + 1, self.rows): f = self.matrix[i, colK] / self.matrix[rowJ, colK] self.matrix[i, colK] = 0 for j in range(colK, self.cols): self.matrix[i, j] = self.matrix[i, j] - self.matrix[rowJ, j]*f rowJ += 1 colK += 1 # Reduce matrix to reduced row echelon form (RREF) def to_reduced_row_echelon(self): lead = 0 r = 0 stopCondition = False self.matrix # matrix loop while r <= self.rows and ~stopCondition: if self.cols <= lead: stopCondition = True i = r while self.matrix[r, lead] == 0 and ~stopCondition: i += 1 if self.rows == i: i = r lead += 1 if self.rows == lead: stopCondition = True if i != r: self.matrix[[i, r],:] = self.matrix[[r, i], :] self.matrix[r, :] /= self.matrix[r, lead] for i in range(self.rows): if i != r: self.matrix[i] -= self.matrix[i, lead]*self.matrix[r] lead += 1 r += 1 # Transform matrix to its own transpose def to_transpose(self): self.matrix = numpy.transpose(self.matrix) # GET METHODS: # Return the inverse of the matrix def get_inverse(self): # Check if 2D and nxn (square) if self.matrix.ndim == 2: if self.rows == self.cols: # Using a numpy function return Matrix(numpy.linalg.inv(self.matrix)) else: raise ArithmeticError(self.rows, " rows, ", self.cols, " cols. Matrix not square") else: raise ArithmeticError("Matrix ndim:", self.matrix.ndim) # Return an identity matrix for the same size def get_identity(self, size=0): # Check if 2D and square (nxn) if self.matrix.ndim >= 2: return Matrix(numpy.eye(self.rows, self.cols)) elif size > 0: return Matrix(numpy.eye(size)) else: return Matrix(numpy.eye(self.matrix.shape[0])) # Return the transpose of a matrix def get_transpose(self): return Matrix(numpy.transpose(self.matrix)) # Return the numerical determinant of a square matrix def get_determinant(self): if ~self.is_square: raise ArithmeticError("Matrix determinant not defined for non-square matrix") else: return Matrix(numpy.linalg.det(self.matrix)) # Return the diagonal of a square matrix def get_diagonal(self): if ~self.is_square: raise ArithmeticError("Matrix diagonal not defined for non-square matrix") else: ret_matrix = Matrix(numpy.zeros(self.rows)) for i in range(self.rows): ret_matrix[i] += self.matrix[i, i] return ret_matrix # Test function def main(): #test_matrix = numpy.array(([1, 1, 3], [0, 2, 4], [1, 1, 0], [0, 1, 1])) test_matrix = numpy.array(([1, 1, 3], [0, 4, 2])) m = Matrix(test_matrix) print("Test_Matrix:") print(m) print("rows:", m.rows) print("cols:", m.cols) print("Test Add Rows:") m_plusRows = [[1, 2, 3], [0, 0, 0]] m.add_rows(m_plusRows) print(m) print("rows:", m.rows) print("cols:", m.cols) print("Test Add Cols:") m_plusCols = numpy.array([[4, 4, 2, 0], [1, 2, 3, 0], [5, 0, 1, 0]]) m.add_cols(m_plusCols) print(m) print("rows:", m.rows) print("cols:", m.cols) Aindex = 1 Bindex = 2 print("Test Swap Rows(", Aindex, "&", Bindex, "):") m.swap_rows(Aindex, Bindex) print(m) print("Test Swap Cols(", Aindex, "&", Bindex, "):") m.swap_cols(Aindex, Bindex) print(m) print("Test Swap Rows(", m.rows-1, "&", m.rows-2, "):") m.swap_rows(m.rows - 1, m.rows - 2) print(m) print("Test Move Full Zero Rows to Bottom:") m.move_full_zero_rows() print(m) print("Test ShiftRow") m.shift_row(1, 2) print(m) print("Test ShifCol") m.shift_col(2) print(m) """ print("Test Row Echelon Form:") mre = m mre.to_row_echelon() print(mre) print("Test Reduced Row Echelon Form:") mrre = m mrre.to_reduced_row_echelon() print(mrre) print("Test Inverse Matrix:") minv = m.get_inverse() print(minv) """ if __name__ == "__main__": main() ``` #### File: src/base/number_array.py ```python import copy import numpy as np from numpy import random class NumberArray: # Define the Number array ints = [] # Define the number of array entries n = 0 # Create std class methods def __init__(self, setup) -> None: if isinstance(setup, np.ndarray): self.ints = setup self.n = setup.size elif isinstance(setup, list): self.ints = np.array(setup) self.n = len(setup) elif isinstance(setup, int): self.ints = np.arange(setup) self.n = setup else: raise TypeError("Unknown Type specified as 'setup' parameter") def __str__(self) -> str: rstr = format(self.n) rstr += self.ints.__str__() return rstr # Define method to randomise the order of existing array entries def shuffle(self): #""" # Numpy Implementation #np.random.shuffle(self.numArray) # Numpy function #""" # Fisher-Yates Implementation for i in range(self.n - 1): endint = self.n-1-i randint = random.randint(0, endint) # Swap self.ints[endint], self.ints[randint] = self.ints[randint], self.ints[endint] # Remove element from array, # - index: specify index to remove element from # - num: specify component data to remove def remove(self, index=None, num=None): if index != None: self.ints = np.delete(self.ints, index) else: self.ints = self.ints[~np.isin(self.ints, num)] self.n = self.ints.size # Add element to array def add(self, num): if isinstance(num, (list, np.ndarray)): for i in num: self.ints.append(i) self.n += 1 else: self.ints = np.append(self.ints, num) self.n += 1 def calculate_expected_sum(self): n = self.n return n * (n + 1)//2 def calculate_actual_sum(self): return np.sum(self.ints) def find_missing_entity(self): return self.calculate_expected_sum() - self.calculate_actual_sum() # Define a function to swap array entries based on index def swap(self, i, j): self.ints[i], self.ints[j] = self.ints[j], self.ints[i] # Return minimum/maximum numbers present in array def minimum(self): return np.amin(self.ints) def maximum(self): return np.amax(self.ints) # Define a function to reverse the array def reverse(self): for i in range(self.n//2): # Reverse array self.swap(i, self.n - 1 - i) # # # # SORTING ALGORITHMS # - implemented to favour ascending order # 1. Selection Sort: # - find minimum element, move to start def sort_selection(self): for i in range(self.n): min_i = i for j in range(i + 1, self.n): if self.ints[j] < self.ints[min_i]: min_i = j self.swap(i, min_i) # 2. Bubble Sort: # - find min of 2 adjacent elements, swap if larger value precedes def sort_bubble(self): not_sorted = True c = 0 swaps = 0 while not_sorted: if self.ints[c] > self.ints[c + 1]: self.swap(c, c + 1) swaps += 1 c += 1 if c == (self.n - 1): c = 0 if swaps != 0: swaps = 0 else: not_sorted = False # 3. Recursive Bubble Sort: # - Same swapping practive as bubble sort, implemented recursively def sort_bubble_recursive(self, n=0): for i in range(self.n -1 -n): if self.ints[i] > self.ints[i + 1]: self.swap(i, i + 1) if n != (self.n - 2): self.sort_bubble_recursive(n + 1) # 4. Insertion Sort: # - Array is split into sorted & unsorted partitions # - First term of the unsorted side is selected and # placed into correct position in sorted array def sort_insertion(self): for i in range(1, self.n): if self.ints[i] < self.ints[i - 1]: j = 0 while self.ints[i] < self.ints[i - 1 - j]: j += 1 if j >= i: j = i for k in range(j): self.swap(i - k, i - k - 1) # 5. Recursive Insertion Sort # - Same process as insertion sort, applied recursively def sort_insertion_recursive(self, index=1): j = 1 while self.ints[index - j + 1] < self.ints[index - j]: self.swap(index - j, index - j + 1) if (index - j) > 0: j += 1 if index < (self.n - 1): self.sort_insertion_recursive(index + 1) else: return # 6. Merge Sort # - Partition the provided array into 2 parts # - Sort each partition independently # - Merge Sorted arrays back into a single array # - TOP-DOWN approach def sort_merge(self, arr=None): if arr is None: self.sort_merge(self.ints) elif arr.size > 1: split = arr.size//2 # Split array into 2, Sort each side (L & R) independently L = np.array(arr[:split]) R = np.array(arr[split:]) self.sort_merge(L) self.sort_merge(R) # Merge L & R sides of array as ordered iL = iR = iA = 0 while iL < L.size and iR < R.size: if L[iL] < R[iR]: arr[iA] = L[iL] iL += 1 else: arr[iA] = R[iR] iR += 1 iA += 1 # Catch Remainders while iL < L.size: arr[iA] = L[iL] iL += 1 iA += 1 while iR < R.size: arr[iA] = R[iR] iR += 1 iA += 1 # 7. Merge Sort (Iterative) # - Same implementation as Merge Sort, # - No Recursive function calls # - Implements Merge Sort BOTTOM-UP (from small to large arrays) def sort_merge_iterative(self): # Set initial block size interval = 2 while interval <= self.n: # Partition Array into blocks of specified size (interval) blocks = self.n//interval #print(f"interval:{interval}\tblocks:{blocks}| {self.nums}") # Sort each individual block for b in range(blocks): # Set starting index for block i0 = b * interval # Loop through all entries in single block for i in range(interval - 1): iMod = i + 1 while iMod < interval and self.ints[i0 + i] > self.ints[i0 + iMod]: self.swap(i0 + i, i0 + iMod) iMod += 1 #print(f"blocksort:{interval}\tblocks:{blocks}| {self.nums}") # Merge adjacent blocks (A & B) for i in range(blocks//2): iA = i * 2 * interval # Start index of block A iB = iA + interval # Start index of block B for a in range(iA, iB): b = iB while b < self.n and self.ints[a] > self.ints[b]: self.swap(a, b) b += 1 # Double block size interval *= 2 # 8. Quick Sort # - Select a pivot (First number used in this case) # - Partition array into two sections based on values: # 1. Greater Than Pivot # 2. Smaller Than Pivot def sort_quick(self, start=0, end=None): if end is None: end = self.n if start < end: pivot = self.ints[end - 1] low = start - 1 for i in range(start, end): if self.ints[i] < pivot: low += 1 self.swap(low, i) low += 1 self.swap(low, end - 1) self.sort_quick(start, low) self.sort_quick(low + 1, end) # 9. Quick Sort (Iterative) # - Same pivot based algorithm as quick sort # - Implemented iteratively # - Use a temporary array to store indices in sorted form def sort_quick_iterative(self): stack = self.ints pivot_pos = 0 # Set pivot as first index pivot = stack[pivot_pos] pivot_pos += 1 while pivot_pos < self.n - 1: # Position the pivot in correct position in stack array for i in range(pivot_pos, self.n): if self.ints[i] <= pivot: self.swap(i, i - 1) pivot_pos += 1 pivot = stack[pivot_pos] for l in range(pivot_pos): if self.ints[l] > self.ints[l + 1]: self.swap(l, l + 1) for h in range(pivot_pos, self.n): if self.ints[h] < self.ints[h - 1]: self.swap(h, h - 1) # 10. Heap Sort (Binary Tree) # - Array is converted to a binary tree format # - Smallest values are positioned furthest from the root # - Root assumes value of maximum array value def sort_binary_heap(self, index=-1, size=0): if index == -1: for i in range(self.n//2, -1, -1): self.sort_binary_heap(i, self.n) for i in range(self.n - 1, 0, -1): self.swap(0, i) self.sort_binary_heap(0, i) else: P = index # Parent node index L = 2*P + 1 # Left node index R = 2*P + 2 # Right node index # Order P, L, R nodes so P is the largest value, followed by R then L if L < size and self.ints[index] < self.ints[L]: P = L if R < size and self.ints[P] < self.ints[R]: P = R # If larger number detected if P != index: self.swap(P, index) self.sort_binary_heap(P, size) #else: # for i in range(self.n//2): # Re-Order descending to ascending sorted form # self.swap(i, self.n - i - 1) # 11. Counting Sort # - Operates by counting instances of occuring numbers # - Converts count array to the cumulative sum of counts # - Count array describes the index of the def sort_counting(self): mini = self.minimum() maxi = self.maximum() count = np.zeros(maxi - mini + 1) for i in range(self.n): # Count the nubmer of unique occurrences count[self.ints[i]] += 1 #print("count_array: \t\t", count) for i in range(1, count.size): # Convert count to cumulative sum count[i] += count[i - 1] #print("cumulative_array: \t", count) output = np.zeros(self.n, dtype=self.ints.dtype) for i in range(self.n): output[int (count[self.ints[i]]) - 1] = self.ints[i] count[self.ints[i]] -= 1 self.ints = output # 12. Radix Sort # - An implementation of counting sort that relies on digit values # - Numbers are grouped by shared digits in the same place value # - Digits groups are sorted from least significant to most significant def sort_radix(self): digits = len(format(abs(self.maximum()))) # Get max number of digits for i in range(digits): # Loop through all digit positions dec = 10**(i+1) # Set decimal digit place to sort # Implement Counting Sort Algorithm for digit range output = np.zeros(self.n, dtype=self.ints.dtype) count = np.zeros(10, dtype=int) for c in range(self.n): # Count digit occurences count[(self.ints[c] % dec)//(dec//10)] += 1 for c in range(1, 10): # Convert to cumulative sum count[c] += count[c - 1] for j in range(self.n - 1, -1, -1): # Set Output array index = (self.ints[j] % dec)//(dec//10) output[count[index] - 1] = self.ints[j] count[index] -= 1 self.ints = output # 13. Bucket Sort # - Applies to sorting uniform distributions over a range # - Capable of handling floats def sort_bucket(self, n_bins=0): if n_bins == 0: n_bins = self.n//4 bins = [[] for n in range(n_bins)] # Set bin/bucket array mini = self.minimum() maxi = self.maximum() interval = (maxi - mini)//(n_bins) + 1 # Set the interval each bin contains for i in range(self.n): # Arrange the array into bins/buckets mov = mini pos = 0 while pos < n_bins and self.ints[i] >= mov: mov += interval pos += 1 bins[pos - 1].append(self.ints[i]) #print(f"bins:{bins}\n") for b in bins: # Loop through bins & sort each bin independently for i in range(1, len(b)): # Insertion Sort comp = b[i] mov = i - 1 while mov >= 0 and comp < b[mov]: b[mov + 1], b[mov] = b[mov], b[mov + 1] mov -= 1 i = 0 for b in bins: # Extract bins back to array for j in b: self.ints[i] = j i += 1 # 14. Shell Sort # - Operates similarly to insert sort by comparing elements and swapping # - Works with intervals instead by comparing elements an interval apart def sort_shell(self, interval=0): if interval == 0: interval = self.n//2 # Initial interval size while interval > 0: #print("interval:", format(interval), end = " ") for i in range(interval, self.n): hold = self.ints[i] mov = i while mov >= interval and self.ints[mov - interval] > hold: self.ints[mov] = self.ints[mov - interval] mov -= interval self.ints[mov] = hold #print(self.ints) interval = interval//2 # Set next interval value # 15. Tim Sort # - A combination of insertion sort and merge sort algorithms # - Array divided into 'runs' (smaller arrays) # - Insertion sort on smaller arrays # - Merge algorithm from merge sort implemented to combine runs def sort_tim(self): run_size = 4 # Define run (sub-array) size runs = self.n//run_size # Insertion Sort Function for all runs for r in range(runs): r_start = r * run_size r_end = r_start + run_size if r == (runs - 1) and r_end > self.n: # Sort remainder r_end = self.n for i in range(r_start, r_end): # mov = i while mov > r_start and self.ints[mov] < self.ints[mov - 1]: self.swap(mov, mov - 1) mov -= 1 #print("post_run: ", self.ints) # Merge Function for all runs interval = run_size n_interval = runs while True: for r in range(n_interval//2): A = r*2 * interval # Start index of run A B = A + interval # Start index of run B Amax = B Bmax = B + interval arrTemp = np.zeros(Bmax - A) # Resultant array iT = 0 iA = A iB = B #print(f"int:{interval}: \t\t A:{A}|Amax:{Amax}-B:{B}|Bmax:{Bmax} \tTempArr[{Bmax - A}]") while iA < Amax and iB < Bmax: if self.ints[iA] < self.ints[iB]: arrTemp[iT] = self.ints[iA] iA += 1 else: arrTemp[iT] = self.ints[iB] iB += 1 iT += 1 # Catch remaining numbers while iA < Amax: arrTemp[iT] = self.ints[iA] iA += 1 iT += 1 while iB < Bmax: arrTemp[iT] = self.ints[iB] iB += 1 iT += 1 # Feed sorted array back into main array self.ints[A:Bmax] = arrTemp interval *= 2 if interval > self.n: break else: n_interval = self.n//interval def main(): # Test Functions t_n = 16 t = NumberArray(t_n) #print(t1) t.shuffle() #print(t1) # Test remove, add & sum methods t_rem = 10 t.remove(num=t_rem) #print(f"remove:{t1_rem}, new_series:{t1}") #print(f"expected_sum_of_series:{t1.calculate_expected_sum()}") #print(f"actual_sum_of_series:{t1.calculate_actual_sum()}") missing = t.find_missing_entity() #print(f"missing:{missing}") t.add(missing) #print(f"add_missing_entity:{t1}") # Test Sorting Methods dashes = '-'*(t.n * 4) print(dashes) print("Unsorted: ", t) print(dashes) t_sel = copy.deepcopy(t) t_sel.sort_selection() #print("sort_sel: ", t_sel, "\n") t_bub = copy.deepcopy(t) t_bub.sort_bubble() #print("sort_bub: ", t_bub, "\n") t_brc = copy.deepcopy(t) t_brc.sort_bubble_recursive() #print("sort_brc: ", t_brc, "\n") t_ins = copy.deepcopy(t) t_ins.sort_insertion() #print("sort_ins: ", t_ins, "\n") t_irc = copy.deepcopy(t) t_irc.sort_insertion_recursive() #print("sort_irc: ", t_irc, "\n") t_mrg = copy.deepcopy(t) t_mrg.sort_merge() #print("sort_mrg: ", t_mrg, "\n") t_mgi = copy.deepcopy(t) t_mgi.sort_merge_iterative() #print("sort_mgi: ", t_mgi, "\n") t_qui = copy.deepcopy(t) t_qui.sort_quick() #print("sort_qui: ", t_qui, "\n") t_qit = copy.deepcopy(t) t_qit.sort_quick_iterative() #print("sort_qit: ", t_qit, "\n") t_bhp = copy.deepcopy(t) t_bhp.sort_binary_heap() #print("sort_bhp: ", t_bhp, "\n") t_cnt = copy.deepcopy(t) t_cnt.sort_counting() #print("sort_cnt: ", t_cnt, "\n") t_rad = copy.deepcopy(t) t_rad.sort_radix() #print("sort_rad: ", t_rad, "\n") t_buc = copy.deepcopy(t) t_buc.sort_bucket() #print("sort_buc: ", t_buc, "\n") t_shl = copy.deepcopy(t) t_shl.sort_shell() print("sort_shl: ", t_shl, "\n") t_tim = copy.deepcopy(t) t_tim.sort_tim() print("sort_tim: ", t_tim, "\n") if __name__ == "__main__": main() ``` #### File: src/data/hash_table.py ```python import numpy as np class HashTable: """ Associative Array Data Structure - uses numpy arrays to store data """ # Define a dictionary to hold key-value pairs __elements = {} # Define an internal counter for the number of elements __n = 0 # Define a table capacity # - power of 2 recommended TABLE_CAP = 64 # Knuth constant # - applies when TABLE_CAP is a power of 2 random_real_A = 0.5 * (np.sqrt(5) - 1) def __init__(self, array) -> None: if isinstance(array, (list)): self.__elements = np.empty(self.TABLE_CAP) self.__elements[:] = np.NaN for i in range(len(array)): self.insert(array[i]) self.__n += 1 elif isinstance(array, np.ndarray): self.__elements = np.empty(self.TABLE_CAP) self.__elements[:] = np.NaN for i in range(array.size): self.insert(array[i]) self.__n += 1 # STR representation method def __str__(self) -> str: srt = format(self.__n) + "[" for i in self.__elements: if not np.isnan(i): srt += f"{i}, " srt.removesuffix(", ") srt += "]" return srt # Hashing function # - Returns index for hash table where value is stored def get_index(self, key) -> int: # Simple Integer Hashing function # - using Knuth constant on the multiplication method s = key * self.random_real_A s = s - np.fix(s) # Get fraction part of s s = int(self.TABLE_CAP * s) # Get whole part of s as index #print(f"get_index(key:{key}) -> i:{s}") return s # Search for a value in a hash table # - return index of value def search(self, value) -> int: index = self.get_index(value) while index < self.TABLE_CAP - 1 and self.__elements[index] != value: index += 1 return index # Insert a value to a hash table def insert(self, value): index = self.get_index(value) while index < self.TABLE_CAP - 1 and not np.isnan(self.__elements[index]): index += 1 self.__elements[index] = value self.__n += 1 # Delete a value from a hash table def delete(self, value): index = self.get_index(value) while index < self.TABLE_CAP - 1 and self.__elements[index] != value: index += 1 self.__elements = np.delete(self.__elements, index) self.__n -= 1 def main(): # Test Hash_Table maxi = 16 tarr = np.arange(1, maxi) ht = HashTable(tarr) print("tarr:", tarr) #print(ht) # Test Search method for i in tarr: print(f"search_for:{i}, result:{ht.search(i)}") print("HashTable_Printout:\n", ht) # Test Insert method it = [0, 16, 32, 64] for i in it: ht.insert(i) print("Insert_HashTable_Printout:\n", ht) # Test Delete method dt = [] for i in range(maxi): if i % 2 != 0: # Delete odd numbers from ht dt.append(i) for i in dt: ht.delete(i) print("Delete_HashTable_Printout:\n", ht) if __name__ == "__main__": main() ``` #### File: src/numerical/euler_method.py ```python import numpy from base.polynomial import Polynomial def eulers_method(multiVarPolynom, y0, h, time_steps): y_n = y0 y_m = 0 for i in time_steps: y_m = y_n + h*multiVarPolynom.calculate(y_n, i) return y_m def main(): # Test Euler's Method: pass if __name__ == "__main__": # test function main() ``` #### File: src/numerical/newtons_method.py ```python import numpy from numpy.lib.polynomial import roots from base.polynomial import Polynomial # The error_tolerance defines the threshold at which numbers are equal: # |n1 - n2| < error_tolerance ERROR_TOLERANCE = 1e-9 # Maximum number of iterations to run if solution does not converge MAX_ITERATIONS = 50 # Occurences are counted for each estimate: # - If convergence for a single estimate is not reached, # the estimate is slightly increased and Newton's method is re-run on the new estimate # = This counts as an occurrence. MAX_OCCURENCES = 10 # Newton's Method: An iterative method for finding roots to polynomials # - an estimate is required to find the closest root def Newtons_method(polynomi, estimate = 1, occurence=0): x = estimate error = 1 x_n = 0 iteratr = 0 loop = True while loop: x_n = approximate_function(x, polynomi) error = abs(x - x_n) # Check if necessary to iterate if error < ERROR_TOLERANCE or iteratr == MAX_ITERATIONS: loop = False #print("i:",iTerate, ", x=", x, ", x+=", x_n, ", error=", error) x = x_n iteratr += 1 if iteratr < MAX_ITERATIONS: return x_n # return root else: print(f"Max_Iterations:{iteratr} reached without convergence.") print(f"Error_Tolerance:{ERROR_TOLERANCE:.9f}, error reached:{error:.9f}") occurence += 1 if occurence < MAX_OCCURENCES: new_estimate = x_n - occurence*abs(x_n - estimate) return Newtons_method(polynomi, new_estimate, occurence) else: raise RuntimeError("Loop Iteration Ceased & Max Occurrences reached with no roots found!") # x_n = x - f(x)/f'(x) def approximate_function(x, polynomial): return x - polynomial.evaluate(x)/polynomial.derive().evaluate(x) # Determine if the difference between numbers falls below a threshold, # making it effectively zero def is_equal(a, b): ans = abs(a - b) if ans < ERROR_TOLERANCE: return True else: return False # Find all real roots of a polynomial over interval [a, b] def get_roots(polynomi, n_roots=0, interval_start=-1,interval_end=1): if n_roots == 0: # if n_roots not specified n_estimates = polynomi.degree else: n_estimates = n_roots roots = numpy.zeros(n_estimates) if n_estimates > 1: estimate_interval = abs(interval_start - interval_end) / (n_estimates - 1) else: estimate_interval = abs(interval_start - interval_end) #print(f"estimate_interval:{estimate_interval}") # calculate the roots using Newton's method based on an estimate initial value # - assuming equally spaced within specified interval for i in range(n_estimates): est = interval_start + i * estimate_interval #print(f"{i}_est:{est}") potential_root = Newtons_method(polynomi, est) for j in range(roots.size): if ~is_equal(j, potential_root): roots[i] = potential_root return roots # Test function def main(): # Test Newton's Method for 1 iteration polynom = Polynomial([-3,8,-7,1]) # -3 + 8x -7x^2 + x^3 print(f"poly:{polynom}\npoly_derive:{polynom.derive()}") print(f"poly__REPR__:{repr(polynom)}") # Test value evaluation x = 5 fx = polynom.evaluate(x) fpx = polynom.derive().evaluate(x) print(f"x: {x}, f(x): {fx}, f'(x): {fpx}") print("Frac:", approximate_function(x, polynom)) # Test Newton's Method for calculating a root based on an estimate(x) root = Newtons_method(polynom, x) print(f"newtons_method_root:{root}") # Test the application of Newton's Method for finding all roots within a given interval # Define a Legendre polynomial of degree 3 legendre3 = Polynomial([0, -1.5, 0, 2.5]) print(f"leg3_repr: {legendre3.__repr__()}") #print(f"leg3_derive: {legendre3.derive().__repr__()}") # Test root finding methodology print(f"leg3_roots:{get_roots(legendre3)}") print(f"leg3_numpy_roots:{numpy.roots(numpy.flip(legendre3.co_array))}") # Test individual estimates print(f"leg_est(-1):{Newtons_method(legendre3, -1)}") print(f"leg_est( 0):{Newtons_method(legendre3, 0)}") print(f"leg_est(+1):{Newtons_method(legendre3, 1)}") # Define a Legendre Polynomial of degree 4 legendre4 = Polynomial([3/8, 0, -30/8, 0, 35/8]) print(f"leg4: {legendre4.__repr__()}") #print(f"leg4_derive: {legendre4.derive().__repr__()}") # Test root finding method: print(f"leg4_roots:{get_roots(legendre4)}") print(f"leg4_numpy_roots:{numpy.roots(numpy.flip(legendre4.co_array))}") # Test individual estimates print(f"leg_est( -1):{Newtons_method(legendre4, -1)}") print(f"leg_est(-0.3):{Newtons_method(legendre4, -0.3)}") print(f"leg_est(+0.3):{Newtons_method(legendre4, 0.3)}") print(f"leg_est( +1):{Newtons_method(legendre4, 1)}") if __name__ == "__main__": main() ``` #### File: tasks/advent_of_code_21/day14.py ```python class Polymer: def __init__(self, template, insertions) -> None: self.insertion_rules = [] self.elements = [] self.quantities = [] self.count_pair = {} self.first_char = template[0] for i in insertions: rule = i.split(' -> ') self.insertion_rules.append(rule) if rule[1] not in self.elements: self.elements.append(rule[1]) self.quantities.append(0) self.count_pair[rule[0]] = 0 # Set template to init pair count for i in range(len(template) - 1): key = f'{template[i]}{template[i+1]}' self.count_pair[key] += 1 print(self.count_pair) def __str__(self) -> str: sret = f'{sum(self.quantities)}\n' for i in range(len(self.elements)): sret += f'{self.elements[i]}:{self.quantities[i]}\n' sret = sret.rstrip() return sret def get_rule(self, key) -> str: for i in self.insertion_rules: if i[0] == key: return i[1] raise ProcessLookupError(f'Unknown Key:{key}') def step(self): count = self.count_pair.copy() for key in count: rule_char = self.get_rule(key) key_l = f'{key[0]}{rule_char}' # left key key_r = f'{rule_char}{key[1]}' # right key self.count_pair[key_l] += count[key] self.count_pair[key_r] += count[key] self.count_pair[key] -= count[key] #print(f'{key} -> {key_l}:{key_r}') self.set_quantities() print(self.count_pair) def set_quantities(self): self.quantities.clear() self.quantities = [0 for i in range(len(self.elements))] for key in self.count_pair: self.quantities[self.elements.index(key[1])] += self.count_pair[key] self.quantities[self.elements.index(self.first_char)] += 1 def get_sorted_quantities(self) -> list: return sorted(self.quantities) def main(): template = '' insertions = [] line_break = False filepath = 'src/tasks/advent_of_code_21/day14_input.txt' with open(filepath, 'r') as f: for line in f: if not line_break: if line == "\n": line_break = True else: template = line.strip() else: insertions.append(line.strip()) #print(f"template:{template}\npair_insertion_rules:\n{insertions}") """ template = 'NNCB' insertions = ['CH -> B', # 6x B rules 'HH -> N', # 3x N rules 'CB -> H', # 2x H rules 'NH -> C', # 5x C rules 'HB -> C', 'HC -> B', 'HN -> C', 'NN -> C', 'BH -> H', 'NC -> B', 'NB -> B', 'BN -> B', 'BB -> N', 'BC -> B', 'CC -> N', 'CN -> C'] #""" poly = Polymer(template, insertions) for i in range(1,11): poly.step() print(f'>> step:{i}\n{poly}\n') q = poly.get_sorted_quantities() mc_minus_lc = q[len(q) - 1] - q[0] print(f"\tM_Common - L_Common:{mc_minus_lc}\n") # Part 2 ----------------------------------------------- for i in range(11,41): poly.step() print(f'>> step:{i}\n{poly}\n') q = poly.get_sorted_quantities() mc_minus_lc = q[len(q) - 1] - q[0] print(f"\tM_Common - L_Common:{mc_minus_lc}\n") if __name__ == "__main__": main() ``` #### File: tasks/advent_of_code_21/day18.py ```python class Pair: def __init__(self, pstr: str, depth=0, parent=None) -> None: self.d = depth self.x = None # Default x type is Pair type, otherwise int self.y = None # Default y type is Pair type, otherwise int self.is_reduced = False self.pairent = parent pstr_cut = '' # Add x value of pair if pstr[1] == '[': bracketed = self.get_bracketed_substr(pstr[1:]) self.x = Pair(bracketed, depth + 1, self) pstr_cut = pstr.replace(f'[{bracketed}', '', 1) else: self.x = int (pstr[1]) pstr_cut = pstr.replace(f'[{self.x}', '', 1) # Add y value of pair if pstr_cut[1] == '[': bracketed = self.get_bracketed_substr(pstr_cut[1:]) self.y = Pair(bracketed, depth + 1, self) else: self.y = int(pstr_cut[1]) if isinstance(self.x, int) and isinstance(self.y, int): self.is_reduced = True else: self.to_reduced() def __str__(self) -> str: sret = f'[{self.x},{self.y}]' return sret # Overload addition operator def __add__(self, other): if isinstance(other, Pair): pstr = f'[{self.__str__()},{other}]' new_pair = Pair(pstr) return new_pair elif isinstance(other, list): if other[0] == 0: # y specified if isinstance(self.y, int): self.y += other[1] else: self.y += other elif other[1] == 0: # x specified if isinstance(self.x, int): self.x += other[0] else: self.x += other else: raise TypeError(f'{other} not a recognized type to add to Pair-object') # Return a substring enclosed by the first bracket def get_bracketed_substr(self, pstr) -> str: bret = [] open_brackets = 0 for s in pstr: bret.append(s) if s == '[': open_brackets += 1 elif s == ']': open_brackets -= 1 if open_brackets == 0: sret = ''.join(bret) #print(f'get_bracketed_of {pstr} -> {sret}') return sret raise LookupError(f'Str:{pstr} has unclosed brackets') def to_reduced(self): if not self.is_reduced: op = False # X reduction if isinstance(self.x, Pair): # x explode self.x.to_reduced() if self.d >= 3: op = True else: # x split if self.x > 9: op = True x = self.x self.x = Pair(f'[{x//2},{int(x/2 + x%2)}]') # Y reduction if isinstance(self.y, Pair) and not op: # y explode self.y.to_reduced() if self.d >= 3: op = True else: # y split if self.y > 9: op = True y = self.y self.y = Pair(f'[{y//2},{int(y/2 + y%2)}]') if op: # Track if operation executed self.to_reduced() else: self.is_reduced = True def add_to_first_regular(self, val, fromXorY): if self == self.pairent.x: if fromXorY == 0: # from x if self.d > 0: self.pairent.add_to_first_regular(fromXorY, val) elif fromXorY == 1: # from y if isinstance(self.y, Pair): self.y.x += val else: self.y += val elif self == self.pairent.y: if fromXorY == 0: # from x if isinstance(self.x, Pair): self.x.y += val else: self.y += val elif fromXorY == 1: # from y if self.d > 0: self.pairent.add_to_first_regular(fromXorY, val) else: raise RecursionError('add L_or_R comparison did NOT work') def get_magnitude(self) -> int: xm = 0 if isinstance(self.x, Pair): xm = self.x.get_magnitude() else: xm = self.x ym = 0 if isinstance(self.y, Pair): ym = self.y.get_magnitude() else: ym = self.y return (3*xm) + (2*ym) class PairList: def __init__(self, numbers) -> None: self.pairs = [] for n in range(len(numbers)): pair_n = Pair(numbers[n]) self.pairs.append(pair_n) print(f'{n}: {pair_n}') def main(): numbers = [] relative_path = 'src/tasks/advent_of_code_21/day18_input.txt' with open(relative_path, 'r') as f: for line in f: numbers.append(line.strip()) #print(f'{numbers}') #""" Test Cases numbers = ['[[[[[9,8],1],2],3],4]', '[7,[6,[5,[4,[3,2]]]]]', '[[6,[5,[4,[3,2]]]],1]', '[[3,[2,[1,[7,3]]]],[6,[5,[4,[3,2]]]]]', '[[3,[2,[8,0]]],[9,[5,[4,[3,2]]]]]'] for n in numbers: pair_n = Pair(n) print(pair_n) """ numbers = ['[[[0,[5,8]],[[1,7],[9,6]]],[[4,[1,2]],[[1,4],2]]]', '[[[5,[2,8]],4],[5,[[9,9],0]]]', '[6,[[[6,2],[5,6]],[[7,6],[4,7]]]]', '[[[6,[0,7]],[0,9]],[4,[9,[9,0]]]]', '[[[7,[6,4]],[3,[1,3]]],[[[5,5],1],9]]', '[[6,[[7,3],[3,2]]],[[[3,8],[5,7]],4]]', '[[[[5,4],[7,7]],8],[[8,3],8]]', '[[9,3],[[9,9],[6,[4,9]]]]', '[[2,[[7,7],7]],[[5,8],[[9,3],[0,2]]]]', '[[[[5,2],5],[8,[3,7]]],[[5,[7,5]],[4,4]]]'] plist = PairList(numbers) psum = plist[0] for p in plist[1:]: psum += p print(f'{psum} mag:{psum.get_magnitude()}') """ if __name__ == '__main__': main() ``` #### File: tasks/advent_of_code_21/day2.py ```python import numpy as np class Submarine: # Define a vertical position posVERT = None # Define a horizontal position posHORZ = None # PART 2: add aim variable aim = None def __init__(self) -> None: self.posHORZ = 0 self.posVERT = 0 # Part 2 self.aim = 0 def simulate(self, instruction): direction = instruction[:instruction.find(' ')] magnitude = int (instruction[(instruction.find(' ') + 1):]) if direction == "forward": self.posHORZ += magnitude elif direction == "down": self.posVERT += magnitude elif direction == "up": self.posVERT -= magnitude else: raise TypeError("Unkown direction instruction!") def execute(self, instruction): direction = instruction[:instruction.find(' ')] magnitude = int (instruction[(instruction.find(' ') + 1):]) if direction == "forward": #self.posHORZ += magnitude # Part2 self.posHORZ += magnitude self.posVERT += (self.aim * magnitude) elif direction == "down": #self.posVERT += magnitude # Part2 self.aim += magnitude elif direction == "up": #self.posVERT -= magnitude # Part2 self.aim -= magnitude else: raise TypeError("Unkown direction instruction!") def read_input(fname): with open(fname, 'r') as f: arr = np.array(f.read().splitlines()) return arr def main(): # Read input instruction set relative_path = 'src/tasks/advent_of_code_21/' intsructionset = read_input(relative_path + 'day2_input.txt') #print(intsructionset) print("Part 1:") sim = Submarine() for i in intsructionset: sim.simulate(i) print(f"horiztontal_pos:{sim.posHORZ}, depth:{sim.posVERT}") print(f"horizontal_pos * depth:{sim.posHORZ * sim.posVERT}") # Part 2 ----------------------------------------------------------------- print("Part 2:") # Create instance of submarine sub = Submarine() # Follow the instruction set provided for i in intsructionset: sub.execute(i) print(f"horiztontal_pos:{sub.posHORZ}, depth:{sub.posVERT}") print(f"horizontal_pos * depth:{sub.posHORZ * sub.posVERT}") if __name__ == "__main__": main() ``` #### File: tasks/advent_of_code_21/day8.py ```python from numpy import zeros from numpy.core.fromnumeric import sort class Signal: pattern = [] output = [] seg7seq = [] def __init__(self, entry) -> None: signal = entry.strip().split(' | ') self.pattern = signal[0].split() self.output = signal[1].split() self.seg7seq = [''] * 10 def __str__(self) -> str: sret = format(self.pattern) + " | " sret += format(self.output) return sret def count_output_digit_sequences(self, n_digits): ct = 0 for i in self.output: if len(i) == n_digits: ct += 1 return ct def set_display_correlation(self): seq069 = [] seq235 = [] # Set sequences based on length for i in self.pattern: seg = len(i) seq = ''.join(sorted(i)) if seg == 2: # set 1 self.seg7seq[1] = seq elif seg == 4: # set 4 self.seg7seq[4] = seq elif seg == 3: # set 7 self.seg7seq[7] = seq elif seg == 7: # set 8 self.seg7seq[8] = seq elif seg == 6: seq069.append(seq) else: seq235.append(seq) # Isolate left-upper and middle segments lup_mid = self.seg7seq[4] for i in self.seg7seq[1]: lup_mid = lup_mid.replace(i, '') # Set 0 6 9 for i in seq069: # 6 char length ct = 0 for s in self.seg7seq[1]: if s in i: ct += 1 if ct == 2: # 0 or 9 ctn = 0 for s in lup_mid: if s in i: ctn += 1 if ctn == 2: self.seg7seq[9] = i # set 9 else: self.seg7seq[0] = i # set 0 else: self.seg7seq[6] = i # set 6 # Set 2 3 5 for i in seq235: # 5 char length ct = 0 for s in lup_mid: if s in i: ct += 1 if ct == 2: self.seg7seq[5] = i # set 5 else: ctn = 0 for s in self.seg7seq[1]: if s in i: ctn += 1 if ctn == 2: self.seg7seq[3] = i # set 3 else: self.seg7seq[2] = i # set 2 #Print correlations #for i in range(10): # print(f"{i} seg:{self.seg7seq[i]}") def get_output(self): self.set_display_correlation() sret = '' for i in self.output: seq = ''.join(sorted(i)) for s in range(10): if seq == self.seg7seq[s]: sret += format(s) return int(sret) def main(): signal_entry = [] relative_path = 'src/tasks/advent_of_code_21/day8_input.txt' with open(relative_path, 'r') as f: signal_entry = f.readlines() #print(f"signal_entry: {signal_entry}") signals = [] for i in signal_entry: signals.append(Signal(i)) ct = 0 for i in signals: ct += i.count_output_digit_sequences(2) #1 ct += i.count_output_digit_sequences(4) #4 ct += i.count_output_digit_sequences(3) #7 ct += i.count_output_digit_sequences(7) #8 print(f"[1,4,7,8]'s in output:{ct}") # Part 2 -------------------------------------------------------- osum = 0 for i in range(len(signals)): out = signals[i].get_output() osum += out print(f"{i}|{signals[i]} :{out}") print(f"Sum of Outputs:{osum}") if __name__ == "__main__": main() ```
{ "source": "jnmclarty/fapple", "score": 2 }
#### File: jnmclarty/fapple/keyboardeventmaker.py ```python import ctypes import time SendInput = ctypes.windll.user32.SendInput VKs = {'\t' : (0x09,), '0' : (0x30,), '1' : (0x31,), '2' : (0x32,), '3' : (0x33,), '4' : (0x34,), '5' : (0x35,), '6' : (0x36,), '7' : (0x37,), '8' : (0x38,), '9' : (0x39,), 'A' : (0x41,'upper'), 'B' : (0x42,'upper'), 'C' : (0x43,'upper'), 'D' : (0x44,'upper'), 'E' : (0x45,'upper'), 'F' : (0x46,'upper'), 'G' : (0x47,'upper'), 'H' : (0x48,'upper'), 'I' : (0x49,'upper'), 'J' : (0x4A,'upper'), 'K' : (0x4B,'upper'), 'L' : (0x4C,'upper'), 'M' : (0x4D,'upper'), 'N' : (0x4E,'upper'), 'O' : (0x4F,'upper'), 'P' : (0x50,'upper'), 'Q' : (0x51,'upper'), 'R' : (0x52,'upper'), 'S' : (0x53,'upper'), 'T' : (0x54,'upper'), 'U' : (0x55,'upper'), 'V' : (0x56,'upper'), 'W' : (0x57,'upper'), 'X' : (0x58,'upper'), 'Y' : (0x59,'upper'), 'Z' : (0x5A,'upper'), '.' : (0xBE,), 'a' : (0x41,'lower'), 'b' : (0x42,'lower'), 'c' : (0x43,'lower'), 'd' : (0x44,'lower'), 'e' : (0x45,'lower'), 'f' : (0x46,'lower'), 'g' : (0x47,'lower'), 'h' : (0x48,'lower'), 'i' : (0x49,'lower'), 'j' : (0x4A,'lower'), 'k' : (0x4B,'lower'), 'l' : (0x4C,'lower'), 'm' : (0x4D,'lower'), 'n' : (0x4E,'lower'), 'o' : (0x4F,'lower'), 'p' : (0x50,'lower'), 'q' : (0x51,'lower'), 'r' : (0x52,'lower'), 's' : (0x53,'lower'), 't' : (0x54,'lower'), 'u' : (0x55,'lower'), 'v' : (0x56,'lower'), 'w' : (0x57,'lower'), 'x' : (0x58,'lower'), 'y' : (0x59,'lower'), 'z' : (0x5A,'lower')} # C struct redefinitions PUL = ctypes.POINTER(ctypes.c_ulong) class KeyBdInput(ctypes.Structure): _fields_ = [("wVk", ctypes.c_ushort), ("wScan", ctypes.c_ushort), ("dwFlags", ctypes.c_ulong), ("time", ctypes.c_ulong), ("dwExtraInfo", PUL)] class HardwareInput(ctypes.Structure): _fields_ = [("uMsg", ctypes.c_ulong), ("wParamL", ctypes.c_short), ("wParamH", ctypes.c_ushort)] class MouseInput(ctypes.Structure): _fields_ = [("dx", ctypes.c_long), ("dy", ctypes.c_long), ("mouseData", ctypes.c_ulong), ("dwFlags", ctypes.c_ulong), ("time",ctypes.c_ulong), ("dwExtraInfo", PUL)] class Input_I(ctypes.Union): _fields_ = [("ki", KeyBdInput), ("mi", MouseInput), ("hi", HardwareInput)] class Input(ctypes.Structure): _fields_ = [("type", ctypes.c_ulong), ("ii", Input_I)] # Actuals Functions def PressKey(hexKeyCode): extra = ctypes.c_ulong(0) ii_ = Input_I() ii_.ki = KeyBdInput( hexKeyCode, 0x48, 0, 0, ctypes.pointer(extra) ) x = Input( ctypes.c_ulong(1), ii_ ) SendInput(1, ctypes.pointer(x), ctypes.sizeof(x)) def ReleaseKey(hexKeyCode): extra = ctypes.c_ulong(0) ii_ = Input_I() ii_.ki = KeyBdInput( hexKeyCode, 0x48, 0x0002, 0, ctypes.pointer(extra) ) x = Input( ctypes.c_ulong(1), ii_ ) SendInput(1, ctypes.pointer(x), ctypes.sizeof(x)) def TypeKey(kexKeyCode): PressKey(kexKeyCode) time.sleep(0.01) ReleaseKey(kexKeyCode) time.sleep(0.01) def PressCharacter(c): if c in VKs: k = VKs[c] else: raise Exception("{} not in Virtual Keyboard Dictionary".format(c)) if len(k) == 1: TypeKey(k[0]) else: #len is 2 shift = False if k[1] == 'upper': shift=True if shift: PressKey(0xA1) TypeKey(k[0]) if shift: ReleaseKey(0xA1) def PressString(s): for c in s: PressCharacter(c) time.sleep(0.1) def TryPassword(passwd, newpwd): PressString(passwd) for i in range(2): PressCharacter("\t") PressString(newpwd) def AltTab(): ''' Press Alt+Tab and hold Alt key for 2 seconds in order to see the overlay ''' PressKey(0x012) #Alt PressKey(0x09) #Tab ReleaseKey(0x09) #~Tab time.sleep(2) ReleaseKey(0x012) #~Alt if __name__ =="__main__": for i in range(10): PressString('Aa0.\t1') time.sleep(1) #AltTab() ```
{ "source": "jnmclarty/gazpacho", "score": 3 }
#### File: gazpacho/gazpacho/utils.py ```python def match(a, b, strict=False): """Utility function to match two dictionaries Params: - a (dict): Query dictionary - b (dict): Dictionary to match - strict (bool): Require exact matching Examples: ``` a = {'foo': 'bar'} b = {'foo': 'bar baz'} match(a, b) # True a = {'foo': 'bar'} b = {'foo': 'bar baz'} match(a, b, strict=True) # False a = {} b = {'foo': 'bar'} match(a, b) # True a = {} b = {} match(a, b) # True ``` """ if not a: return True if not a and not b: return True if a and not b: return False for k, v in a.items(): if not b.get(k): return False if strict: if v == b.get(k): continue else: return False if v in b.get(k): continue else: return False return True def html_starttag_and_attrs(tag, attrs, startendtag=False): """Utility functon to reconstruct starttag and attrs Params: - tag (str): HTML element tag - attrs (list): HTML element attributes formatted as a list of tuples - startendtag (bool, False): Flag to handle startend tags Example: ``` html_starttag_and_attrs('a', [('href', 'localhost:8000')]) # ('<a href="localhost:8000">', {'href': 'localhost:8000'}) ``` """ if attrs: attrs = dict(attrs) af = [f'{k}="{v}"' for k, v in attrs.items()] af = f' {" ".join(af)}' else: attrs = {} af = "" if startendtag: html = f"<{tag}{af} />" else: html = f"<{tag}{af}>" return html, attrs ```
{ "source": "jnmclarty/pyenvdiff-lib", "score": 2 }
#### File: pyenvdiff-lib/pyenvdiff/hub.py ```python if __name__ == '__main__': from pickle import dump, HIGHEST_PROTOCOL from pyenvdiff.version import __version__ as v from .bottle.bottle import route, run, response, request, template from .environment import Environment, EnvironmentDiff from .import_macros import import_json from .version import __version__ as v from datetime import datetime try: import ghdiff GHDIFF_MSG = "" except: GHDIFF_MSG = "PyEnvDiff is dependency free, but the diffs are easier to read if you manually install ghdiff from pypi. <code>pip install ghdiff</code> does it." DEVELOP_MODE = False title = "PyEnvDiff Environment Diff Tool Hub v" + v header = "<h1>Welcome to " + title + " for M2M & H2M Environment Information & Difference Server!</h1>For more information see the <a href='http://pyenvdiff.com'>home page</a> or checkout the <a href='http://github.com/jnmclarty/pyenvdiff-lib'>github</a>" env_info_store = ['The first entry in this list is never used, the rest of the elements are a tuple of the form (environment info, timestamp)'] HOME_TEMPLATE = """<html><h1>""" + title + """</h1> <p>View Environment Information for the hub at <a href=/environment_info>/environment_info</a> % for i, (posted_data, ts) in enumerate(stored_envs): <p>View Environment Information for <a href=/environment_info/{{i+1}}>Env #{{i+1}}</a> from {{ts}} % end % for a, b, hub in options: <p>Compare <a href=/environment_diff_view/{{a}}/{{b}}>Env #{{a}} {{hub}} and Env #{{b}}</a> % end </html>""" @route('/') def index(): options = [] for i in range(len(env_info_store)): for j in range(i, len(env_info_store)): if i != j: if i == 0: hub = "(hub)" else: hub = "" options.append((i, j, hub)) return template(HOME_TEMPLATE, stored_envs=env_info_store[1:], options=options) ENV_TEMPLATE = """<html><title>""" + title + """</title><body> <h1>""" + title + """</h1><hr> <h1>Environment #{{env_number}} as of {{ts}}</h1> <ul> % for collector in env.keys(): <li> <a href=#{{collector}}>{{collector}}</a> </li> % end </ul> <hr> % for collector in env.keys(): <a name={{collector}}></a> <h1>{{collector}}</h1> <p><b>{{env[collector]['english']}}</b></p> <p>{{!env[collector]['info']}}</p> % end </body></html>""" @route('/environment_info', method='POST') def environment_info_write(): """Recieves Environment Info from another node.""" global env_info_store json = import_json() urlparts = request.urlparts postdata = request.body.read() ts = datetime.now().isoformat() postdata = json.loads(postdata) postdata['environment'] = Environment.from_dict(postdata['environment']) env_info_store.append((postdata, ts)) env_info_number = len(env_info_store) - 1 out = {'timestamp': ts, 'environment_number': env_info_number, 'response_type': 'environment_info_write', 'read_url': urlparts.scheme + "://" + urlparts.netloc + "/environment_info/" + str(env_info_number), 'diff_url': urlparts.scheme + "://" + urlparts.netloc + "/environment_diff_view/0/" + str(env_info_number)} out = json.dumps(out) out = out.encode('utf-8') response.content_type = 'application/json' return out @route('/environment_info', method='GET') @route('/environment_info/<env_info_key>', method='GET') def environment_info_read(env_info_key=0): """Recieves Environment Info""" global env_info_store env_info_key = int(env_info_key) if env_info_key == 0: environment = Environment() ts = datetime.now().isoformat() else: postdata, ts = env_info_store[env_info_key] environment = postdata['environment'] env_info = environment.for_web() response.content_type = 'text/html' return template(ENV_TEMPLATE, env=env_info, env_number=env_info_key, ts=ts) def parse_input_do_diff(env_1_info_key, env_2_info_key): def get_env(key): global env_info_store if key == 0: e = Environment() ts = datetime.now().isoformat() else: postdata, ts = env_info_store[key] e = postdata['environment'] return e, ts e1, ts1 = get_env(env_1_info_key) e2, ts2 = get_env(env_2_info_key) return EnvironmentDiff(e1, e2), ts1, ts2 @route('/environment_diff/<env_1_info_key>', method='GET') @route('/environment_diff/<env_1_info_key>/<env_2_info_key>', method='GET') def environment_diff(env_1_info_key, env_2_info_key=0): env_1_info_key = int(env_1_info_key) env_2_info_key = int(env_2_info_key) json = import_json() ed, ts1, ts2 = parse_input_do_diff(env_1_info_key, env_2_info_key) ed = ed.for_json() out = json.dumps(ed) out = out.encode('utf-8') response.content_type = 'application/json' return out DIFF_TEMPLATE = """<html><title>""" + title + """</title><body> <h1>""" + title + """</h1> """ + GHDIFF_MSG + """ <hr> <h1>Environment #{{e1}} ({{ts1}}) vs #{{e2}} ({{ts2}})</h1> % if e1 == 0 or e2 == 0: Note: Environment #0 is the environment the PyEnvDiff hub is running from. % end <ul> % for collector in diff.keys(): <li> <a href=#{{collector}}>{{collector}}</a> % if not diff[collector]['matching']: - Differences Detected! % end </li> % end </ul> <hr> % for env_cls in diff.keys(): <a name={{env_cls}}></a> <h1>{{env_cls}}</h1> <p><b>{{diff[env_cls]['english']}}</b></p> % if diff[env_cls]['matching']: <h2><font color="blue">Matching!</font></h2> {{!diff[env_cls]['left']}} % end % if not diff[env_cls]['matching']: <h2><font color="blue">Differences Detected!</font></h2> <h3>Comparison</h3> {{!diff[env_cls]['comparison']}} <h3>Left</h3> {{!diff[env_cls]['left']}} <h3>Right</h3> {{!diff[env_cls]['right']}} % end % end </body></html>""" @route('/environment_diff_view/<env_1_info_key>', method='GET') @route('/environment_diff_view/<env_1_info_key>/<env_2_info_key>', method='GET') def environment_diff_view(env_1_info_key, env_2_info_key=0): env_1_info_key = int(env_1_info_key) env_2_info_key = int(env_2_info_key) diff, ts1, ts2 = parse_input_do_diff(env_1_info_key, env_2_info_key) diff = diff.for_web() if DEVELOP_MODE: with open("diff.pickle", "wb+") as f: dump(diff, f, protocol=HIGHEST_PROTOCOL) response.content_type = 'text/html' return template(DIFF_TEMPLATE, diff=diff, e1=env_1_info_key, e2=env_2_info_key, ts1=ts1, ts2=ts2) if DEVELOP_MODE: @route('/sample_diff') def sample_diff(): from pickle import load with open("diff.pickle", "rb+") as f: diff = load(f) response.content_type = 'text/html' print(diff['SysPath']) return template(DIFF_TEMPLATE, diff=diff) SERVER = '0.0.0.0' from sys import argv try: # If we get an integer, use it, else... PORT = str(int(argv[-1])) except: PORT = '8080' print("Starting up " + title + " running on:") print() print(" http://" + SERVER + ":" + PORT + "/") print() print("You can view environment information at") print() print(" http://" + SERVER + ":" + PORT + "/environment_info") print() print("If you run the following command from other environments:") print(">>>python -m pyenvdiff.post_to_hub http://" + SERVER + ":" + PORT) print("...") print("You will be able to view it, or compare it, at the following URLs:") print(" http://" + SERVER + ":" + PORT + "/environment_info/N where N is the number of environment, shown in the response after posting.") print(" http://" + SERVER + ":" + PORT + "/environment_diff_view/N/M where N & M are two different environment numbers. Use 0 for the hub's environment.") run(host=SERVER, port=PORT, quiet=True) ```
{ "source": "jnmclarty/pysia", "score": 2 }
#### File: pysia/pysia/client.py ```python import requests as r from simplejson import JSONDecodeError GET = 1 POST = 2 class Sia(object): def __init__(self, host='http://localhost', port='9980'): self.host = host self.port = port @property def _url_base(self): return self.host + ":" + str(self.port) def __call__(self, verb, url, data=None): user_agent = {'User-agent': 'Sia-Agent'} full_url = self._url_base + url if verb == GET: resp = r.get(full_url, headers=user_agent, params=data) elif verb == POST: resp = r.post(full_url, headers=user_agent, data=data) try: return resp.json() except JSONDecodeError: return resp.ok def get_consensus(self, **data): url = '/consensus' return self(GET, url, data) def set_consensus_validate_transactionset(self, **data): url = '/consensus/validate/transactionset' return self(POST, url, data) def get_daemon_constants(self, **data): url = '/daemon/constants' return self(GET, url, data) def get_daemon_stop(self, **data): url = '/daemon/stop' return self(GET, url, data) def get_daemon_version(self, **data): url = '/daemon/version' return self(GET, url, data) def get_gateway(self, **data): url = '/gateway' return self(GET, url, data) def set_gateway_connect(self, netaddress, **data): url = '/gateway/connect/{netaddress}'.format(netaddress=netaddress) return self(POST, url, data) def set_gateway_disconnect(self, netaddress, **data): url = '/gateway/disconnect/{netaddress}'.format(netaddress=netaddress) return self(POST, url, data) def get_host(self, **data): url = '/host' return self(GET, url, data) def set_host(self, **data): url = '/host' return self(POST, url, data) def set_host_announce(self, **data): url = '/host/announce' return self(POST, url, data) def get_host_storage(self, **data): url = '/host/storage' return self(GET, url, data) def set_host_storage_folders_add(self, **data): url = '/host/storage/folders/add' return self(POST, url, data) def set_host_storage_folders_remove(self, **data): url = '/host/storage/folders/remove' return self(POST, url, data) def set_host_storage_folders_resize(self, **data): url = '/host/storage/folders/resize' return self(POST, url, data) def set_host_storage_sectors_delete(self, merkleroot, **data): url = '/host/storage/sectors/delete/{merkleroot}'.format(merkleroot=merkleroot) return self(POST, url, data) def get_hostdb_active(self, **data): url = '/hostdb/active' return self(GET, url, data) def get_hostdb_all(self, **data): url = '/hostdb/all' return self(GET, url, data) def get_hostdb_hosts(self, pubkey, **data): url = '/hostdb/hosts/{pubkey}'.format(pubkey=pubkey) return self(GET, url, data) def get_miner(self, **data): url = '/miner' return self(GET, url, data) def get_miner_header(self, **data): url = '/miner/header' return self(GET, url, data) def set_miner_header(self, **data): url = '/miner/header' return self(POST, url, data) def get_miner_start(self, **data): url = '/miner/start' return self(GET, url, data) def get_miner_stop(self, **data): url = '/miner/stop' return self(GET, url, data) def get_renter(self, **data): url = '/renter' return self(GET, url, data) def set_renter(self, **data): url = '/renter' return self(POST, url, data) def get_renter_contracts(self, **data): url = '/renter/contracts' return self(GET, url, data) def set_renter_delete(self, siapath, **data): url = '/renter/delete/{siapath}'.format(siapath=siapath) return self(POST, url, data) def get_renter_download(self, siapath, **data): url = '/renter/download/{siapath}'.format(siapath=siapath) return self(GET, url, data) def get_renter_downloadasync(self, siapath, **data): url = '/renter/downloadasync/{siapath}'.format(siapath=siapath) return self(GET, url, data) def get_renter_downloads(self, **data): url = '/renter/downloads' return self(GET, url, data) def get_renter_files(self, **data): url = '/renter/files' return self(GET, url, data) def get_renter_prices(self, **data): url = '/renter/prices' return self(GET, url, data) def set_renter_rename(self, siapath, **data): url = '/renter/rename/{siapath}'.format(siapath=siapath) return self(POST, url, data) def set_renter_upload(self, siapath, **data): url = '/renter/upload/{siapath}'.format(siapath=siapath) return self(POST, url, data) def get_wallet(self, **data): url = '/wallet' return self(GET, url, data) def set_wallet_033x(self, **data): url = '/wallet/033x' return self(POST, url, data) def get_wallet_address(self, **data): url = '/wallet/address' return self(GET, url, data) def get_wallet_addresses(self, **data): url = '/wallet/addresses' return self(GET, url, data) def get_wallet_backup(self, **data): url = '/wallet/backup' return self(GET, url, data) def set_wallet_init(self, **data): url = '/wallet/init' return self(POST, url, data) def set_wallet_init_seed(self, **data): url = '/wallet/init/seed' return self(POST, url, data) def set_wallet_lock(self, **data): url = '/wallet/lock' return self(POST, url, data) def set_wallet_seed(self, **data): url = '/wallet/seed' return self(POST, url, data) def get_wallet_seeds(self, **data): url = '/wallet/seeds' return self(GET, url, data) def set_wallet_siacoins(self, **data): url = '/wallet/siacoins' return self(POST, url, data) def set_wallet_siafunds(self, **data): url = '/wallet/siafunds' return self(POST, url, data) def set_wallet_siagkey(self, **data): url = '/wallet/siagkey' return self(POST, url, data) def set_wallet_sweep_seed(self, **data): url = '/wallet/sweep/seed' return self(POST, url, data) def get_wallet_transaction(self, id, **data): url = '/wallet/transaction/{id}'.format(id=id) return self(GET, url, data) def get_wallet_transactions(self, addr=None, **data): if addr: url = '/wallet/transactions/{addr}'.format(addr=addr) else: url = '/wallet/transactions' return self(GET, url, data) def set_wallet_unlock(self, **data): url = '/wallet/unlock' return self(POST, url, data) if __name__ == '__main__': sc = Sia() cs = sc.get_consensus() print(cs['height']) # 108060 backup_made = sc.get_wallet_backup(destination=r'd:\siadwallet.dat') print(backup_made) # True backup_made = sc.get_wallet_backup(destination=r'error causing input?@#$!`') print(backup_made) # {'message': 'error when calling /wallet/backup: destination must be an absolute path'} print(sc.get_gateway()) # {'peers': [{'netaddress': '192.168.127.12:9981', 'version': '0.5.2', 'inbound': False, 'local': False}, {'netaddress': '172.16.31.10:9981', 'version': '1.1.2', 'inbound': False, 'local': False}, {'netaddress': '192.168.127.12:9981', 'version': '1.2.0', 'inbound': False, 'local': False}, {'netaddress': '192.168.127.12:9981', 'version': '1.2.1', 'inbound': False, 'local': False}, {'netaddress': '172.16.31.10:9981', 'version': '1.1.2', 'inbound': False, 'local': False}, {'netaddress': '172.16.58.3:9981', 'version': '1.0.0', 'inbound': False, 'local': False}, {'netaddress': '172.16.31.10:9981', 'version': '1.2.2', 'inbound': False, 'local': False}], 'netaddress': '192.168.127.12:9981'} print(sc.set_gateway_connect('192.168.127.12:9981')) # True print(sc.set_gateway_disconnect('192.168.127.12:9981')) # True print(sc.set_gateway_disconnect('192.168.127.12:9981')) # {'message': 'not connected to that node'} ```
{ "source": "jnmclarty/sympa", "score": 2 }
#### File: jnmclarty/sympa/setup.py ```python import os from setuptools import setup def read(*paths): """Build a file path from *paths* and return the contents.""" with open(os.path.join(*paths), 'r') as f: return f.read() v = '0.1.0' print ("Setting up sympa") setup( name = 'sympa', version = v, packages = ['sympa'], description = 'Symbolic math for pandas', long_description=(read('README.rst')), author = '<NAME>', author_email = '<EMAIL>', url = 'https://github.com/jnmclarty/sympa', download_url = 'https://github.com/jnmclarty/sympa/tarball/' + v, keywords = ['symbolic', 'symbol', 'sympa', 'sympy', 'pandas', 'math'], classifiers = ['Development Status :: 1 - Planning', 'License :: OSI Approved :: MIT License', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Financial and Insurance Industry', 'Intended Audience :: Healthcare Industry', 'Intended Audience :: Science/Research', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics']) ```
{ "source": "Jn-mic/1m-pitch", "score": 2 }
#### File: migrations/versions/f386cd416e5a_update_the_downvote_table.py ```python from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'f386cd416e5a' down_revision = '<KEY>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('downvotes', 'downvote') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('downvotes', sa.Column('downvote', sa.INTEGER(), autoincrement=False, nullable=True)) # ### end Alembic commands ### ``` #### File: alembic/autogenerate/rewriter.py ```python from alembic import util from alembic.operations import ops class Rewriter(object): """A helper object that allows easy 'rewriting' of ops streams. The :class:`.Rewriter` object is intended to be passed along to the :paramref:`.EnvironmentContext.configure.process_revision_directives` parameter in an ``env.py`` script. Once constructed, any number of "rewrites" functions can be associated with it, which will be given the opportunity to modify the structure without having to have explicit knowledge of the overall structure. The function is passed the :class:`.MigrationContext` object and ``revision`` tuple that are passed to the :paramref:`.Environment Context.configure.process_revision_directives` function normally, and the third argument is an individual directive of the type noted in the decorator. The function has the choice of returning a single op directive, which normally can be the directive that was actually passed, or a new directive to replace it, or a list of zero or more directives to replace it. .. seealso:: :ref:`autogen_rewriter` - usage example """ _traverse = util.Dispatcher() _chained = None def __init__(self): self.dispatch = util.Dispatcher() def chain(self, other): """Produce a "chain" of this :class:`.Rewriter` to another. This allows two rewriters to operate serially on a stream, e.g.:: writer1 = autogenerate.Rewriter() writer2 = autogenerate.Rewriter() @writer1.rewrites(ops.AddColumnOp) def add_column_nullable(context, revision, op): op.column.nullable = True return op @writer2.rewrites(ops.AddColumnOp) def add_column_idx(context, revision, op): idx_op = ops.CreateIndexOp( 'ixc', op.table_name, [op.column.name]) return [ op, idx_op ] writer = writer1.chain(writer2) :param other: a :class:`.Rewriter` instance :return: a new :class:`.Rewriter` that will run the operations of this writer, then the "other" writer, in succession. """ wr = self.__class__.__new__(self.__class__) wr.__dict__.update(self.__dict__) wr._chained = other return wr def rewrites(self, operator): """Register a function as rewriter for a given type. The function should receive three arguments, which are the :class:`.MigrationContext`, a ``revision`` tuple, and an op directive of the type indicated. E.g.:: @writer1.rewrites(ops.AddColumnOp) def add_column_nullable(context, revision, op): op.column.nullable = True return op """ return self.dispatch.dispatch_for(operator) def _rewrite(self, context, revision, directive): try: _rewriter = self.dispatch.dispatch(directive) except ValueError: _rewriter = None yield directive else: if self in directive._mutations: yield directive else: for r_directive in util.to_list( _rewriter(context, revision, directive) ): r_directive._mutations = r_directive._mutations.union( [self] ) yield r_directive def __call__(self, context, revision, directives): self.process_revision_directives(context, revision, directives) if self._chained: self._chained(context, revision, directives) @_traverse.dispatch_for(ops.MigrationScript) def _traverse_script(self, context, revision, directive): upgrade_ops_list = [] for upgrade_ops in directive.upgrade_ops_list: ret = self._traverse_for(context, revision, upgrade_ops) if len(ret) != 1: raise ValueError( "Can only return single object for UpgradeOps traverse" ) upgrade_ops_list.append(ret[0]) directive.upgrade_ops = upgrade_ops_list downgrade_ops_list = [] for downgrade_ops in directive.downgrade_ops_list: ret = self._traverse_for(context, revision, downgrade_ops) if len(ret) != 1: raise ValueError( "Can only return single object for DowngradeOps traverse" ) downgrade_ops_list.append(ret[0]) directive.downgrade_ops = downgrade_ops_list @_traverse.dispatch_for(ops.OpContainer) def _traverse_op_container(self, context, revision, directive): self._traverse_list(context, revision, directive.ops) @_traverse.dispatch_for(ops.MigrateOperation) def _traverse_any_directive(self, context, revision, directive): pass def _traverse_for(self, context, revision, directive): directives = list(self._rewrite(context, revision, directive)) for directive in directives: traverser = self._traverse.dispatch(directive) traverser(self, context, revision, directive) return directives def _traverse_list(self, context, revision, directives): dest = [] for directive in directives: dest.extend(self._traverse_for(context, revision, directive)) directives[:] = dest def process_revision_directives(self, context, revision, directives): self._traverse_list(context, revision, directives) ``` #### File: alembic/operations/batch.py ```python from sqlalchemy import CheckConstraint from sqlalchemy import Column from sqlalchemy import ForeignKeyConstraint from sqlalchemy import Index from sqlalchemy import MetaData from sqlalchemy import PrimaryKeyConstraint from sqlalchemy import schema as sql_schema from sqlalchemy import Table from sqlalchemy import types as sqltypes from sqlalchemy.events import SchemaEventTarget from sqlalchemy.util import OrderedDict from sqlalchemy.util import topological from ..util import exc from ..util.sqla_compat import _columns_for_constraint from ..util.sqla_compat import _copy from ..util.sqla_compat import _ensure_scope_for_ddl from ..util.sqla_compat import _fk_is_self_referential from ..util.sqla_compat import _insert_inline from ..util.sqla_compat import _is_type_bound from ..util.sqla_compat import _remove_column_from_collection from ..util.sqla_compat import _select class BatchOperationsImpl(object): def __init__( self, operations, table_name, schema, recreate, copy_from, table_args, table_kwargs, reflect_args, reflect_kwargs, naming_convention, partial_reordering, ): self.operations = operations self.table_name = table_name self.schema = schema if recreate not in ("auto", "always", "never"): raise ValueError( "recreate may be one of 'auto', 'always', or 'never'." ) self.recreate = recreate self.copy_from = copy_from self.table_args = table_args self.table_kwargs = dict(table_kwargs) self.reflect_args = reflect_args self.reflect_kwargs = dict(reflect_kwargs) self.reflect_kwargs.setdefault( "listeners", list(self.reflect_kwargs.get("listeners", ())) ) self.reflect_kwargs["listeners"].append( ("column_reflect", operations.impl.autogen_column_reflect) ) self.naming_convention = naming_convention self.partial_reordering = partial_reordering self.batch = [] @property def dialect(self): return self.operations.impl.dialect @property def impl(self): return self.operations.impl def _should_recreate(self): if self.recreate == "auto": return self.operations.impl.requires_recreate_in_batch(self) elif self.recreate == "always": return True else: return False def flush(self): should_recreate = self._should_recreate() with _ensure_scope_for_ddl(self.impl.connection): if not should_recreate: for opname, arg, kw in self.batch: fn = getattr(self.operations.impl, opname) fn(*arg, **kw) else: if self.naming_convention: m1 = MetaData(naming_convention=self.naming_convention) else: m1 = MetaData() if self.copy_from is not None: existing_table = self.copy_from reflected = False else: existing_table = Table( self.table_name, m1, schema=self.schema, autoload_with=self.operations.get_bind(), *self.reflect_args, **self.reflect_kwargs ) reflected = True batch_impl = ApplyBatchImpl( self.impl, existing_table, self.table_args, self.table_kwargs, reflected, partial_reordering=self.partial_reordering, ) for opname, arg, kw in self.batch: fn = getattr(batch_impl, opname) fn(*arg, **kw) batch_impl._create(self.impl) def alter_column(self, *arg, **kw): self.batch.append(("alter_column", arg, kw)) def add_column(self, *arg, **kw): if ( "insert_before" in kw or "insert_after" in kw ) and not self._should_recreate(): raise exc.CommandError( "Can't specify insert_before or insert_after when using " "ALTER; please specify recreate='always'" ) self.batch.append(("add_column", arg, kw)) def drop_column(self, *arg, **kw): self.batch.append(("drop_column", arg, kw)) def add_constraint(self, const): self.batch.append(("add_constraint", (const,), {})) def drop_constraint(self, const): self.batch.append(("drop_constraint", (const,), {})) def rename_table(self, *arg, **kw): self.batch.append(("rename_table", arg, kw)) def create_index(self, idx): self.batch.append(("create_index", (idx,), {})) def drop_index(self, idx): self.batch.append(("drop_index", (idx,), {})) def create_table_comment(self, table): self.batch.append(("create_table_comment", (table,), {})) def drop_table_comment(self, table): self.batch.append(("drop_table_comment", (table,), {})) def create_table(self, table): raise NotImplementedError("Can't create table in batch mode") def drop_table(self, table): raise NotImplementedError("Can't drop table in batch mode") def create_column_comment(self, column): self.batch.append(("create_column_comment", (column,), {})) class ApplyBatchImpl(object): def __init__( self, impl, table, table_args, table_kwargs, reflected, partial_reordering=(), ): self.impl = impl self.table = table # this is a Table object self.table_args = table_args self.table_kwargs = table_kwargs self.temp_table_name = self._calc_temp_name(table.name) self.new_table = None self.partial_reordering = partial_reordering # tuple of tuples self.add_col_ordering = () # tuple of tuples self.column_transfers = OrderedDict( (c.name, {"expr": c}) for c in self.table.c ) self.existing_ordering = list(self.column_transfers) self.reflected = reflected self._grab_table_elements() @classmethod def _calc_temp_name(cls, tablename): return ("_alembic_tmp_%s" % tablename)[0:50] def _grab_table_elements(self): schema = self.table.schema self.columns = OrderedDict() for c in self.table.c: c_copy = _copy(c, schema=schema) c_copy.unique = c_copy.index = False # ensure that the type object was copied, # as we may need to modify it in-place if isinstance(c.type, SchemaEventTarget): assert c_copy.type is not c.type self.columns[c.name] = c_copy self.named_constraints = {} self.unnamed_constraints = [] self.col_named_constraints = {} self.indexes = {} self.new_indexes = {} for const in self.table.constraints: if _is_type_bound(const): continue elif self.reflected and isinstance(const, CheckConstraint): # TODO: we are skipping reflected CheckConstraint because # we have no way to determine _is_type_bound() for these. pass elif const.name: self.named_constraints[const.name] = const else: self.unnamed_constraints.append(const) if not self.reflected: for col in self.table.c: for const in col.constraints: if const.name: self.col_named_constraints[const.name] = (col, const) for idx in self.table.indexes: self.indexes[idx.name] = idx for k in self.table.kwargs: self.table_kwargs.setdefault(k, self.table.kwargs[k]) def _adjust_self_columns_for_partial_reordering(self): pairs = set() col_by_idx = list(self.columns) if self.partial_reordering: for tuple_ in self.partial_reordering: for index, elem in enumerate(tuple_): if index > 0: pairs.add((tuple_[index - 1], elem)) else: for index, elem in enumerate(self.existing_ordering): if index > 0: pairs.add((col_by_idx[index - 1], elem)) pairs.update(self.add_col_ordering) # this can happen if some columns were dropped and not removed # from existing_ordering. this should be prevented already, but # conservatively making sure this didn't happen pairs = [p for p in pairs if p[0] != p[1]] sorted_ = list( topological.sort(pairs, col_by_idx, deterministic_order=True) ) self.columns = OrderedDict((k, self.columns[k]) for k in sorted_) self.column_transfers = OrderedDict( (k, self.column_transfers[k]) for k in sorted_ ) def _transfer_elements_to_new_table(self): assert self.new_table is None, "Can only create new table once" m = MetaData() schema = self.table.schema if self.partial_reordering or self.add_col_ordering: self._adjust_self_columns_for_partial_reordering() self.new_table = new_table = Table( self.temp_table_name, m, *(list(self.columns.values()) + list(self.table_args)), schema=schema, **self.table_kwargs ) for const in ( list(self.named_constraints.values()) + self.unnamed_constraints ): const_columns = set( [c.key for c in _columns_for_constraint(const)] ) if not const_columns.issubset(self.column_transfers): continue if isinstance(const, ForeignKeyConstraint): if _fk_is_self_referential(const): # for self-referential constraint, refer to the # *original* table name, and not _alembic_batch_temp. # This is consistent with how we're handling # FK constraints from other tables; we assume SQLite # no foreign keys just keeps the names unchanged, so # when we rename back, they match again. const_copy = _copy( const, schema=schema, target_table=self.table ) else: # "target_table" for ForeignKeyConstraint.copy() is # only used if the FK is detected as being # self-referential, which we are handling above. const_copy = _copy(const, schema=schema) else: const_copy = _copy( const, schema=schema, target_table=new_table ) if isinstance(const, ForeignKeyConstraint): self._setup_referent(m, const) new_table.append_constraint(const_copy) def _gather_indexes_from_both_tables(self): idx = [] idx.extend(self.indexes.values()) for index in self.new_indexes.values(): idx.append( Index( index.name, unique=index.unique, *[self.new_table.c[col] for col in index.columns.keys()], **index.kwargs ) ) return idx def _setup_referent(self, metadata, constraint): spec = constraint.elements[0]._get_colspec() parts = spec.split(".") tname = parts[-2] if len(parts) == 3: referent_schema = parts[0] else: referent_schema = None if tname != self.temp_table_name: key = sql_schema._get_table_key(tname, referent_schema) if key in metadata.tables: t = metadata.tables[key] for elem in constraint.elements: colname = elem._get_colspec().split(".")[-1] if colname not in t.c: t.append_column(Column(colname, sqltypes.NULLTYPE)) else: Table( tname, metadata, *[ Column(n, sqltypes.NULLTYPE) for n in [ elem._get_colspec().split(".")[-1] for elem in constraint.elements ] ], schema=referent_schema ) def _create(self, op_impl): self._transfer_elements_to_new_table() op_impl.prep_table_for_batch(self, self.table) op_impl.create_table(self.new_table) try: op_impl._exec( _insert_inline(self.new_table).from_select( list( k for k, transfer in self.column_transfers.items() if "expr" in transfer ), _select( *[ transfer["expr"] for transfer in self.column_transfers.values() if "expr" in transfer ] ), ) ) op_impl.drop_table(self.table) except: op_impl.drop_table(self.new_table) raise else: op_impl.rename_table( self.temp_table_name, self.table.name, schema=self.table.schema ) self.new_table.name = self.table.name try: for idx in self._gather_indexes_from_both_tables(): op_impl.create_index(idx) finally: self.new_table.name = self.temp_table_name def alter_column( self, table_name, column_name, nullable=None, server_default=False, name=None, type_=None, autoincrement=None, comment=False, **kw ): existing = self.columns[column_name] existing_transfer = self.column_transfers[column_name] if name is not None and name != column_name: # note that we don't change '.key' - we keep referring # to the renamed column by its old key in _create(). neat! existing.name = name existing_transfer["name"] = name if type_ is not None: type_ = sqltypes.to_instance(type_) # old type is being discarded so turn off eventing # rules. Alternatively we can # erase the events set up by this type, but this is simpler. # we also ignore the drop_constraint that will come here from # Operations.implementation_for(alter_column) if isinstance(existing.type, SchemaEventTarget): existing.type._create_events = ( existing.type.create_constraint ) = False self.impl.cast_for_batch_migrate( existing, existing_transfer, type_ ) existing.type = type_ # we *dont* however set events for the new type, because # alter_column is invoked from # Operations.implementation_for(alter_column) which already # will emit an add_constraint() if nullable is not None: existing.nullable = nullable if server_default is not False: if server_default is None: existing.server_default = None else: sql_schema.DefaultClause(server_default)._set_parent(existing) if autoincrement is not None: existing.autoincrement = bool(autoincrement) if comment is not False: existing.comment = comment def _setup_dependencies_for_add_column( self, colname, insert_before, insert_after ): index_cols = self.existing_ordering col_indexes = {name: i for i, name in enumerate(index_cols)} if not self.partial_reordering: if insert_after: if not insert_before: if insert_after in col_indexes: # insert after an existing column idx = col_indexes[insert_after] + 1 if idx < len(index_cols): insert_before = index_cols[idx] else: # insert after a column that is also new insert_before = dict(self.add_col_ordering)[ insert_after ] if insert_before: if not insert_after: if insert_before in col_indexes: # insert before an existing column idx = col_indexes[insert_before] - 1 if idx >= 0: insert_after = index_cols[idx] else: # insert before a column that is also new insert_after = dict( (b, a) for a, b in self.add_col_ordering )[insert_before] if insert_before: self.add_col_ordering += ((colname, insert_before),) if insert_after: self.add_col_ordering += ((insert_after, colname),) if ( not self.partial_reordering and not insert_before and not insert_after and col_indexes ): self.add_col_ordering += ((index_cols[-1], colname),) def add_column( self, table_name, column, insert_before=None, insert_after=None, **kw ): self._setup_dependencies_for_add_column( column.name, insert_before, insert_after ) # we copy the column because operations.add_column() # gives us a Column that is part of a Table already. self.columns[column.name] = _copy(column, schema=self.table.schema) self.column_transfers[column.name] = {} def drop_column(self, table_name, column, **kw): if column.name in self.table.primary_key.columns: _remove_column_from_collection( self.table.primary_key.columns, column ) del self.columns[column.name] del self.column_transfers[column.name] self.existing_ordering.remove(column.name) def create_column_comment(self, column): """the batch table creation function will issue create_column_comment on the real "impl" as part of the create table process. That is, the Column object will have the comment on it already, so when it is received by add_column() it will be a normal part of the CREATE TABLE and doesn't need an extra step here. """ def create_table_comment(self, table): """the batch table creation function will issue create_table_comment on the real "impl" as part of the create table process. """ def drop_table_comment(self, table): """the batch table creation function will issue drop_table_comment on the real "impl" as part of the create table process. """ def add_constraint(self, const): if not const.name: raise ValueError("Constraint must have a name") if isinstance(const, sql_schema.PrimaryKeyConstraint): if self.table.primary_key in self.unnamed_constraints: self.unnamed_constraints.remove(self.table.primary_key) self.named_constraints[const.name] = const def drop_constraint(self, const): if not const.name: raise ValueError("Constraint must have a name") try: if const.name in self.col_named_constraints: col, const = self.col_named_constraints.pop(const.name) for col_const in list(self.columns[col.name].constraints): if col_const.name == const.name: self.columns[col.name].constraints.remove(col_const) else: const = self.named_constraints.pop(const.name) except KeyError: if _is_type_bound(const): # type-bound constraints are only included in the new # table via their type object in any case, so ignore the # drop_constraint() that comes here via the # Operations.implementation_for(alter_column) return raise ValueError("No such constraint: '%s'" % const.name) else: if isinstance(const, PrimaryKeyConstraint): for col in const.columns: self.columns[col.name].primary_key = False def create_index(self, idx): self.new_indexes[idx.name] = idx def drop_index(self, idx): try: del self.indexes[idx.name] except KeyError: raise ValueError("No such index: '%s'" % idx.name) def rename_table(self, *arg, **kw): raise NotImplementedError("TODO") ```
{ "source": "Jn-mic/blog", "score": 2 }
#### File: blog/app/__init__.py ```python from flask import Flask import flask from config import config_options from flask_bootstrap import Bootstrap from flask_login import LoginManager from flask_uploads import UploadSet,configure_uploads,IMAGES from flask_mail import Mail from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) db = SQLAlchemy(app) login_manager = LoginManager() bootstrap = Bootstrap(app) mail = Mail(app) login_manager.login_view = 'auth.login' login_manager.session_protection = 'strong' login_manager.login_message_category = 'info' def create_app(config_name): app = Flask(__name__) app.config.from_object(config_options[config_name]) #initialize extensions bootstrap.init_app(app) db.init_app(app) mail.init_app(app) login_manager.init_app(app) # configure UploadSet from .auth import auth as auth_blueprint from .main import main as main_blueprint app.register_blueprint(auth_blueprint) app.register_blueprint(main_blueprint) return app ``` #### File: blog/test/test_blog.py ```python from app.models import User,Post, Comment,Clap from app import db # def setUp(self): # self.user_Jack = User(username = 'Jack',password = '<PASSWORD>', email = '<EMAIL>') def tearDown(self): Post.query.delete() User.query.delete() Comment.query.delete() Clap.query.delete() ``` #### File: site-packages/dscmailer/mailer.py ```python from decouple import config from sendgrid import SendGridAPIClient from sendgrid.helpers.mail import Mail def send_mail(sender,receiver,subject,html, api_key): """ Use this function to set up the `email sender`, `the recipient`, `email subject`, the `html content` of the email and the `api_key` from Sendgrid.. """ message = Mail( from_email=sender, to_emails=receiver, subject=subject, html_content=html ) try: API_KEY = api_key sg = SendGridAPIClient(API_KEY) response = sg.send(message) print('Email sent successfully.') except Exception as e: print(f'Error while sending email. {e}') ```
{ "source": "Jn-mic/Photo-Gallery", "score": 3 }
#### File: Photo-Gallery/photo/tests.py ```python from django.test import TestCase from .models import Location, Category,Image def test_delete_image(self): ''' Test the deletion of an instance ''' self.image.save_image() self.image.delete_image() self.assertTrue(len(Image) == 0) def test_get_image_by_id(self): self.image.save_image() image_id= self.image.pk image_by_id = Image.get_image_by_id(image_id) self.assertEqual(self.image,image_by_id) def test_search_image(self): self.image.save_image() name = self.image.image_name found_image = Image.search_image(name) self.assertTrue(len(found_image) == 1) def test_filter_by_location(self): self.image.save_image() location = self.image.location found_images = Image.filter_by_location(location) self.assertEqual(self.image,found_images) def tearDown(self): Image.objects.all().delete() Location.objects.all().delete() Category.objects.all().delete() ``` #### File: Photo-Gallery/photo/views.py ```python from photo.models import Image from django.http.response import Http404, HttpResponse from django.shortcuts import render, redirect from django.conf import settings from . import views from django.conf.urls.static import static from django.http import HttpResponse import datetime as dt from .models import Location, Image, Category # Create your views here. # def photo_of_day(request): # date=dt.date.today() # images=Image.objects.all() # return render(request,'all-Photos/today-photos.html',{'date':date, 'images':images}) # view function to present photos from the past days def photo_list(request): images = Image.objects.all() context = { 'images':images } return render(request,'all-Photos/today-photos.html',context) def past_photo(request,past_date): try: # Convert data from string url date= dt.datetime.strptime(past_date,'%Y-%m-%d').date() except ValueError: #Raise 404 error when valueError is thrown raise Http404() assert False if date == dt.date.today(): return redirect(photo_of_day) render(request,'all-Photos/past-photo.html',{'date':date,'image':image}) def photo(request,photo_id): try: photo= Image.objects.get(id = photo_id) except DoesNotExist: raise Http404() return render(request,"all-Photos/photo.html", {"photo":photo}) def search_results(request): if 'photo' in request.GET and request.GET["photo"]: search_term = request.GET.get("photo") searched_photo = Image.search_by_category(search_term) message = f"{search_term}" return render(request, 'all-Photos/search.html',{"message":message,"photos": searched_photo}) else: message = "You haven't searched for any term" return render(request, 'all-Photos/search.html',{"message":message}) ```
{ "source": "Jn-mic/Projects-Portfolio", "score": 3 }
#### File: cloudinary_cli/core/config.py ```python import cloudinary from click import command, option, echo, BadParameter from cloudinary_cli.defaults import logger from cloudinary_cli.utils.config_utils import load_config, verify_cloudinary_url, update_config, remove_config_keys, \ show_cloudinary_config @command("config", help="Display the current configuration, and manage additional configurations.") @option("-n", "--new", help="""\b Create and name a configuration from a Cloudinary account environment variable. e.g. cld config -n <NAME> <CLOUDINARY_URL>""", nargs=2) @option("-ls", "--ls", help="List all saved configurations.", is_flag=True) @option("-s", "--show", help="Show details of a specified configuration.", nargs=1) @option("-rm", "--rm", help="Delete a specified configuration.", nargs=1) @option("-url", "--from_url", help="Create a configuration from a Cloudinary account environment variable. " "The configuration name is the cloud name.", nargs=1) def config(new, ls, show, rm, from_url): if new or from_url: config_name, cloudinary_url = new or [None, from_url] if not verify_cloudinary_url(cloudinary_url): return config_name = config_name or cloudinary.config().cloud_name update_config({config_name: cloudinary_url}) logger.info("Config '{}' saved!".format(config_name)) logger.info("Example usage: cld -C {} <command>".format(config_name)) elif rm: if remove_config_keys(rm): logger.warn(f"Configuration '{rm}' not found.") else: logger.info(f"Configuration '{rm}' deleted.") elif ls: echo("\n".join(load_config().keys())) elif show: curr_config = load_config() if show not in curr_config: raise BadParameter(f"Configuration {show} does not exist, use -ls to list available configurations.") config_obj = cloudinary.Config() # noinspection PyProtectedMember config_obj._setup_from_parsed_url(config_obj._parse_cloudinary_url(load_config()[show])) show_cloudinary_config(config_obj) else: show_cloudinary_config(cloudinary.config()) ```
{ "source": "jnm/kobocat-branches-archive-20200507", "score": 2 }
#### File: apps/api/urls.py ```python from django.conf.urls import url from rest_framework import routers from rest_framework.response import Response from rest_framework.reverse import reverse from rest_framework.urlpatterns import format_suffix_patterns from rest_framework.views import APIView from onadata.apps.api.viewsets.charts_viewset import ChartsViewSet from onadata.apps.api.viewsets.connect_viewset import ConnectViewSet from onadata.apps.api.viewsets.data_viewset import DataViewSet from onadata.apps.api.viewsets.metadata_viewset import MetaDataViewSet from onadata.apps.api.viewsets.note_viewset import NoteViewSet from onadata.apps.api.viewsets.organization_profile_viewset import\ OrganizationProfileViewSet from onadata.apps.api.viewsets.project_viewset import ProjectViewSet from onadata.apps.api.viewsets.stats_viewset import StatsViewSet from onadata.apps.api.viewsets.team_viewset import TeamViewSet from onadata.apps.api.viewsets.xform_viewset import XFormViewSet from onadata.apps.api.viewsets.user_profile_viewset import UserProfileViewSet from onadata.apps.api.viewsets.user_viewset import UserViewSet from onadata.apps.api.viewsets.submissionstats_viewset import\ SubmissionStatsViewSet from onadata.apps.api.viewsets.attachment_viewset import AttachmentViewSet from onadata.apps.api.viewsets.xform_list_api import XFormListApi from onadata.apps.api.viewsets.xform_submission_api import XFormSubmissionApi from onadata.apps.api.viewsets.briefcase_api import BriefcaseApi class MultiLookupRouter(routers.DefaultRouter): def __init__(self, *args, **kwargs): super(MultiLookupRouter, self).__init__(*args, **kwargs) self.lookups_routes = [] self.lookups_routes.append(routers.Route( url=r'^{prefix}/{lookups}{trailing_slash}$', mapping={ 'get': 'retrieve', 'put': 'update', 'patch': 'partial_update', 'delete': 'destroy' }, name='{basename}-detail', initkwargs={'suffix': 'Instance'} )) self.lookups_routes.append(self.make_routes('lookup')) self.lookups_routes.append(self.make_routes('lookups')) # Dynamically generated routes. # Generated using @action or @link decorators on methods of the viewset self.lookups_routes.append(routers.Route( url=[ r'^{prefix}/{lookups}/{methodname}{trailing_slash}$', r'^{prefix}/{lookups}/{methodname}/{extra}{trailing_slash}$'], mapping={ '{httpmethod}': '{methodname}', }, name='{basename}-{methodnamehyphen}', initkwargs={} )) @staticmethod def make_routes(template_text): return routers.Route( url=r'^{prefix}/{%s}{trailing_slash}$' % template_text, mapping={ 'get': 'list', 'post': 'create' }, name='{basename}-list', initkwargs={'suffix': 'List'}) def get_extra_lookup_regexes(self, route): ret = [] base_regex = '(?P<{lookup_field}>[^/]+)' if 'extra_lookup_fields' in route.initkwargs: for lookup_field in route.initkwargs['extra_lookup_fields']: ret.append(base_regex.format(lookup_field=lookup_field)) return '/'.join(ret) def get_lookup_regexes(self, viewset): ret = [] lookup_fields = getattr(viewset, 'lookup_fields', None) if lookup_fields: for i in range(1, len(lookup_fields)): tmp = [] for lookup_field in lookup_fields[:i + 1]: if lookup_field == lookup_fields[i]: base_regex = '(?P<{lookup_field}>[^/.]+)' else: base_regex = '(?P<{lookup_field}>[^/]+)' tmp.append(base_regex.format(lookup_field=lookup_field)) ret.append(tmp) return ret def get_lookup_routes(self, viewset): ret = [self.routes[0]] # Determine any `@action` or `@link` decorated methods on the viewset dynamic_routes = [] for methodname in dir(viewset): attr = getattr(viewset, methodname) httpmethods = getattr(attr, 'bind_to_methods', None) if httpmethods: httpmethods = [method.lower() for method in httpmethods] dynamic_routes.append((httpmethods, methodname)) for route in self.lookups_routes: if route.mapping == {'{httpmethod}': '{methodname}'}: # Dynamic routes (@link or @action decorator) for httpmethods, methodname in dynamic_routes: initkwargs = route.initkwargs.copy() initkwargs.update(getattr(viewset, methodname).kwargs) mapping = dict( (httpmethod, methodname) for httpmethod in httpmethods) name = routers.replace_methodname(route.name, methodname) if 'extra_lookup_fields' in initkwargs: uri = route.url[1] uri = routers.replace_methodname(uri, methodname) ret.append(routers.Route( url=uri, mapping=mapping, name='%s-extra' % name, initkwargs=initkwargs, )) uri = routers.replace_methodname(route.url[0], methodname) ret.append(routers.Route( url=uri, mapping=mapping, name=name, initkwargs=initkwargs, )) else: # Standard route ret.append(route) return ret def get_routes(self, viewset): ret = [] lookup_fields = getattr(viewset, 'lookup_fields', None) if lookup_fields: ret = self.get_lookup_routes(viewset) else: ret = super(MultiLookupRouter, self).get_routes(viewset) return ret def get_api_root_view(self): """ Return a view to use as the API root. """ api_root_dict = {} list_name = self.routes[0].name for prefix, viewset, basename in self.registry: api_root_dict[prefix] = list_name.format(basename=basename) class OnaApi(APIView): """ ## KoBo JSON Rest API endpoints: ### Data * [/api/v1/charts](/api/v1/charts) - List, Retrieve Charts of collected data * [/api/v1/data](/api/v1/data) - List, Retrieve submission data * [/api/v1/stats](/api/v1/stats) - Summary statistics ### Forms * [/api/v1/forms](/api/v1/forms) - List, Retrieve form information * [/api/v1/media](/api/v1/media) - List, Retrieve media attachments * [/api/v1/metadata](/api/v1/metadata) - List, Retrieve form metadata * [/api/v1/projects](/api/v1/projects) - List, Retrieve, Create, Update organization projects, forms * [/api/v1/submissions](/api/v1/submissions) - Submit XForms to a form ### Users and Organizations * [/api/v1/orgs](/api/v1/orgs) - List, Retrieve, Create, Update organization and organization info * [/api/v1/profiles](/api/v1/profiles) - List, Create, Update user information * [/api/v1/teams](/api/v1/teams) - List, Retrieve, Create, Update teams * [/api/v1/user](/api/v1/user) - Return authenticated user profile info * [/api/v1/users](/api/v1/users) - List, Retrieve user data ## Status Codes * **200** - Successful [`GET`, `PATCH`, `PUT`] * **201** - Resource successfully created [`POST`] * **204** - Resouce successfully deleted [`DELETE`] * **403** - Permission denied to resource * **404** - Resource was not found ## Authentication KoBo JSON API enpoints support both Basic authentication and API Token Authentication through the `Authorization` header. ### Basic Authentication Example using curl: curl -X GET https://example.com/api/v1/ -u username:password ### Token Authentication Example using curl: curl -X GET https://example.com/api/v1/ -H "Authorization: Token TOKEN_KEY" ### KoBo Tagging API * [Filter form list by tags.]( /api/v1/forms#get-list-of-forms-with-specific-tags) * [List Tags for a specific form.]( /api/v1/forms#get-list-of-tags-for-a-specific-form) * [Tag Forms.](/api/v1/forms#tag-forms) * [Delete a specific tag.](/api/v1/forms#delete-a-specific-tag) * [List form data by tag.]( /api/v1/data#query-submitted-data-of-a-specific-form-using-tags) * [Tag a specific submission](/api/v1/data#tag-a-submission-data-point) ## Using Oauth2 with the KoBo API You can learn more about oauth2 [here]( http://tools.ietf.org/html/rfc6749). ### 1. Register your client application with KoBo - [register](\ /o/applications/register/) - `name` - name of your application - `client_type` - Client Type: select confidential - `authorization_grant_type` - Authorization grant type: Authorization code - `redirect_uri` - Redirect urls: redirection endpoint Keep note of the `client_id` and the `client_secret`, it is required when requesting for an `access_token`. ### 2. Authorize client application. The authorization url is of the form: <pre class="prettyprint"> <b>GET</b> /o/authorize?client_id=XXXXXX&response_type=code&state=abc</pre> example: http://localhost:8000/o/authorize?client_id=e8&response_type=code&state=xyz Note: Providing the url to any user will prompt for a password and request for read and write permission for the application whose `client_id` is specified. Where: - `client_id` - is the client application id - ensure its urlencoded - `response_type` - should be code - `state` - a random state string that you client application will get when redirection happens What happens: 1. a login page is presented, the username used to login determines the account that provides access. 2. redirection to the client application occurs, the url is of the form: > REDIRECT_URI/?state=abc&code=YYYYYYYYY example redirect uri http://localhost:30000/?state=xyz&code=SWWk2PN6NdCwfpqiDiPRcLmvkw2uWd - `code` - is the code to use to request for `access_token` - `state` - same state string used during authorization request Your client application should use the `code` to request for an access_token. ### 3. Request for access token. You need to make a `POST` request with `grant_type`, `code`, `client_id` and `redirect_uri` as `POST` payload params. You should authenticate the request with `Basic Authentication` using your `client_id` and `client_secret` as `username:password` pair. Request: <pre class="prettyprint"> <b>POST</b>/o/token</pre> Payload: grant_type=authorization_code&code=YYYYYYYYY&client_id=XXXXXX& redirect_uri=http://redirect/uri/path curl example: curl -X POST -d "grant_type=authorization_code& code=PSwrMilnJESZVFfFsyEmEukNv0sGZ8& client_id=e8x4zzJJIyOikDqjPcsCJrmnU22QbpfHQo4HhRnv& redirect_uri=http://localhost:30000" "http://localhost:8000/o/token/" --user "e8:xo7i4LNpMj" Response: { "access_token": "<KEY>", "token_type": "Bearer", "expires_in": 36000, "refresh_token": "<PASSWORD>", "scope": "read write groups" } Where: - `access_token` - access token - expires - `refresh_token` - token to use to request a new `access_token` in case it has expored. Now that you have an `access_token` you can make API calls. ### 4. Accessing the KoBo API using the `access_token`. Example using curl: curl -X GET https://example.com/api/v1 -H "Authorization: Bearer ACCESS_TOKEN" """ _ignore_model_permissions = True def get(self, request, format=None): ret = {} for key, url_name in api_root_dict.items(): ret[key] = reverse( url_name, request=request, format=format) return Response(ret) return OnaApi.as_view() def get_urls(self): ret = [] if self.include_root_view: root_url = url(r'^$', self.get_api_root_view(), name=self.root_view_name) ret.append(root_url) for prefix, viewset, basename in self.registry: lookup = self.get_lookup_regex(viewset) lookup_list = self.get_lookup_regexes(viewset) if lookup_list: # lookup = lookups[0] lookup_list = [u'/'.join(k) for k in lookup_list] else: lookup_list = [u''] routes = self.get_routes(viewset) for route in routes: mapping = self.get_method_map(viewset, route.mapping) if not mapping: continue for lookups in lookup_list: regex = route.url.format( prefix=prefix, lookup=lookup, lookups=lookups, trailing_slash=self.trailing_slash, extra=self.get_extra_lookup_regexes(route) ) view = viewset.as_view(mapping, **route.initkwargs) name = route.name.format(basename=basename) ret.append(url(regex, view, name=name)) if self.include_format_suffixes: ret = format_suffix_patterns(ret, allowed=['[a-z0-9]+']) return ret class MultiLookupRouterWithPatchList(MultiLookupRouter): """ This class only extends MultiLookupRouter to allow PATCH method on list endpoint """ @staticmethod def make_routes(template_text): return routers.Route( url=r'^{prefix}/{%s}{trailing_slash}$' % template_text, mapping={ 'get': 'list', 'post': 'create', 'patch': 'bulk_validation_status', 'delete': 'bulk_delete' }, name='{basename}-list', initkwargs={'suffix': 'List'}) router = MultiLookupRouter(trailing_slash=False) router.register(r'users', UserViewSet) router.register(r'user', ConnectViewSet) router.register(r'profiles', UserProfileViewSet) router.register(r'orgs', OrganizationProfileViewSet) router.register(r'forms', XFormViewSet) router.register(r'projects', ProjectViewSet) router.register(r'teams', TeamViewSet) router.register(r'notes', NoteViewSet) router.register(r'stats', StatsViewSet, base_name='stats') router.register(r'stats/submissions', SubmissionStatsViewSet, base_name='submissionstats') router.register(r'charts', ChartsViewSet, base_name='chart') router.register(r'metadata', MetaDataViewSet, base_name='metadata') router.register(r'media', AttachmentViewSet, base_name='attachment') router.register(r'formlist', XFormListApi, base_name='formlist') router.register(r'submissions', XFormSubmissionApi, base_name='submissions') router.register(r'briefcase', BriefcaseApi, base_name='briefcase') router_with_patch_list = MultiLookupRouterWithPatchList(trailing_slash=False) router_with_patch_list.register(r'data', DataViewSet, base_name='data') ```
{ "source": "jnm/python-throttle", "score": 3 }
#### File: python-throttle/limiter/rate_limiter.py ```python import math from redis import StrictRedis from .counter import AbstractionCounter, SlidingRedisCounter, FixedWindowRedisCounter __all__ = ['FixedWindowLimiter', 'SlidingWindowLimiter'] class RateLimiter(object): """rate limiter, please give it a counter implementing all methods of AbstractionCounter""" def __init__(self, threshold, interval, counter, name_space="default"): """ :param threshold: int, or we try to ceil, no smaller than 0 :param interval: int, or we try to ceil, no smaller than 1 :param counter: subclass of or one with all methods of AbstractionCounter """ try: threshold() except TypeError: self._static_threshold = threshold else: self._dynamic_threshold = threshold try: interval() except TypeError: self._static_interval = interval else: self._dynamic_interval = interval self._prefix = "rate-limiter:" + name_space + "{}" self._counter = counter @property def _threshold(self): try: val = self._static_threshold except AttributeError: val = self._dynamic_threshold() assert val >= 0 return int(math.ceil(val)) @property def _interval(self): try: val = self._static_interval except AttributeError: val = self._dynamic_interval() assert val >= 1 return int(math.ceil(val)) def exceeded(self, iid): current = self._counter.add_key(self._prefix.format(iid), self._interval) return current >= self._threshold def current(self, iid): return self._counter.current(self._prefix.format(iid)) def reset(self, iid): self._counter.reset(self._prefix.format(iid)) class FixedWindowLimiter(RateLimiter): """return RateLimiter with FixedWindowRedisCounter, which 10 times faster than sliding but it the limit is not smooth, may overflow two threshold near the gap between two interval """ def __init__(self, threshold, interval, redis_config, name_space="default"): super(FixedWindowLimiter, self).__init__(threshold, interval, FixedWindowRedisCounter(StrictRedis(**redis_config)), name_space) class SlidingWindowLimiter(RateLimiter): """return RateLimiter with SlidingRedisCounter, slow but offer smooth limit, and offer more info """ def __init__(self, threshold, interval, redis_config, name_space="default"): super(SlidingWindowLimiter, self).__init__(threshold, interval, SlidingRedisCounter(StrictRedis(**redis_config)), name_space) ```
{ "source": "jnnccc/Dakota-orb", "score": 3 }
#### File: linked_interfaces/Python/rosenbrock.py ```python def rosenbrock_list(**kwargs): num_fns = kwargs['functions'] # if num_fns > 1: # least_sq_flag = true # else: # least_sq_flag = false x = kwargs['cv'] ASV = kwargs['asv'] # get analysis components #an_comps = kwargs['analysis_components'] #print an_comps f0 = x[1]-x[0]*x[0] f1 = 1-x[0] retval = dict([]) if (ASV[0] & 1): # **** f: f = [100*f0*f0+f1*f1] retval['fns'] = f if (ASV[0] & 2): # **** df/dx: g = [ [-400*f0*x[0] - 2*f1, 200*f0] ] retval['fnGrads'] = g if (ASV[0] & 4): # **** d^2f/dx^2: fx = x[1]-3*x[0]*x[0] h = [ [ [-400*fx + 2, -400*x[0]], [-400*x[0], 200 ] ] ] retval['fnHessians'] = h return(retval) def rosenbrock_numpy(**kwargs): from numpy import array num_fns = kwargs['functions'] # if num_fns > 1: # least_sq_flag = true # else: # least_sq_flag = false x = kwargs['cv'] ASV = kwargs['asv'] f0 = x[1]-x[0]*x[0] f1 = 1-x[0] retval = dict([]) if (ASV[0] & 1): # **** f: f = array([100*f0*f0+f1*f1]) retval['fns'] = f if (ASV[0] & 2): # **** df/dx: g = array([[-400*f0*x[0] - 2*f1, 200*f0]]) retval['fnGrads'] = g if (ASV[0] & 4): # **** d^2f/dx^2: fx = x[1]-3*x[0]*x[0] h = array([ [ [-400*fx + 2, -400*x[0]], [-400*x[0], 200 ] ] ] ) retval['fnHessians'] = h return(retval) ``` #### File: dakota/interfacing/interfacing.py ```python from __future__ import print_function import collections import re import sys import copy __author__ = '<NAME>' __copyright__ = 'Copyright 2014 Sandia Corporation' __license__ = 'GNU Lesser General Public License' #### Exceptions class ResponseError(Exception): pass class MissingSourceError(Exception): pass class ParamsFormatError(Exception): pass # Constant used to specify an unnamed results file UNNAMED = True #### Class definitions class Parameters(object): """Access variables and analysis components from a Dakota parameters file Parameters objects typically should be constructed by the convenience function ``dakota.interfacing.read_parameters_file``. Variable values can be accessed by name or by index using []. Analysis components are accessible by index only using the an_comp attribute. The Parameters class supports iteration, yielding the index, variable descriptor, and variable value. Attributes: an_comps: List of strings containing the analysis components. eval_id: Evaluation id (string). eval_num: Evaluation number (final token in eval_id) (int). aprepro_format: Boolean indicating whether the parameters file was in aprepro (True) or Dakota (False) format. descriptors: List of the variable descriptors (read-only) num_variables: Number of variables (read-only) num_an_comps: Number of analysis components (read-only) """ def __init__(self,aprepro_format=None, variables=None, an_comps=None, eval_id=None): self.aprepro_format = aprepro_format self._variables = copy.deepcopy(variables) self.an_comps = list(an_comps) self.eval_id = str(eval_id) self.eval_num = int(eval_id.split(":")[-1]) # Convert variables to the appropriate type. The possible types # are int, float, and string. The variables are already strings. # TODO: Consider a user option to override this behavior and keep # everything as a string, or provide access to the original strings for k, v in self._variables.items(): try: self._variables[k] = int(v) except ValueError: try: self._variables[k] = float(v) except ValueError: pass pass @property def descriptors(self): return [k for k in self._variables.keys()] def __getitem__(self,key): if type(key) is int: return self._variables[self.descriptors[key]] else: return self._variables[key] def __setitem__(self,key,value): if type(key) is int: self._variables[self.descriptors[key]] = value else: self._variables[key] = value @property def num_variables(self): return len(self._variables) @property def num_an_comps(self): return len(self.an_comps) def __iter__(self): for index, (name, response) in enumerate(self._variables.items()): yield index, name, response # Datatype to hold ASV element for a single response. function, gradient, # and hession are set to True or False. _asvType = collections.namedtuple("ASVType",["function","gradient","hessian"]) # A class to hold the ASV and data for a single response class Response(object): """Active set vector and data for a single response. Instances of this class are constructed by Results objects. Attributes: asv: namedtuple with three members, function, gradient, and hessian. Each are a boolean indicating whether Dakota requested the associated information for the response. namedtuples can be accessed by index or by member. function: Function value for the response. A ResponseError is raised if Dakota did not request the function value (and ignore_asv is False). gradient: Gradient for the response. Gradients must be a 1D iterable of values that can be converted to float. A ResponseError is raised if Dakota did not request the gradient (and ignore_asv is False), or if the number of elements does not equal the number of derivative variables. hessian: Hessian value for the response. Hessians must be an iterable of iterables (e.g. a 2D numpy array or list of lists). A ResponseError is raised if Dakota did not request the Hessian (and ignore_asv is False), or if the dimension does not correspond correctly with the number of derivative variables. """ def __init__(self, descriptor, num_deriv_vars, ignore_asv, asv): self._descriptor = descriptor self._num_deriv_vars = num_deriv_vars int_asv = int(asv) self.asv = _asvType(int_asv & 1 == 1, int_asv & 2 == 2, int_asv &4 == 4) self._function = None self._gradient = None self._hessian = None self._ignore_asv = ignore_asv @property def function(self): return self._function @function.setter def function(self,val): if not (self._ignore_asv or self.asv.function): raise ResponseError("Function value not requested for '%s'." % self._descriptor) self._function = float(val) @property def gradient(self): # try/except needed bc Results._write_results with ignore_csv = True # tests for existence of this member try: return list(self._gradient) # return a copy except TypeError: return None @gradient.setter def gradient(self,val): if not (self._ignore_asv or self.asv.gradient): raise ResponseError("Gradient not requested for '%s'." % self._descriptor) self._gradient = [float(e) for e in val] if len(self._gradient) != self._num_deriv_vars: raise ResponseError("Length of gradient must equal number of " "derivative variables.") @property def hessian(self): # try/except needed bc Results._write_results with ignore_csv = True # tests for existence of this member try: return copy.deepcopy(self._hessian) except: return None @hessian.setter def hessian(self,val): if not (self._ignore_asv or self.asv.hessian): raise ResponseError("Hessian not requested for '%s'." % self._descriptor) ### validate dimensions rctr = 0 for r in val: rctr += 1 cctr = 0 for c in r: cctr += 1 if cctr != self._num_deriv_vars: raise ResponseError("Hessian must be square and size " "num_deriv_variables.") if rctr != self._num_deriv_vars: raise ResponseError("Hessian must be square and size " "num_deriv_variables.") ### copy the Hessian self._hessian = [] for r in val: row = [] for c in r: row.append(float(c)) self._hessian.append(row) class Results(object): """Collect response data and write to results file. Results objects typically should be constructed by the convenience function ``dakota.interfacing.read_parameters_file``. Each response is represented by a Response objected, and can be accessed by name or by index using []. The Results class supports iteration, yielding the index, response descriptor, and Response object. Attributes: eval_id: Evaluation id (a string). eval_num: Evaluation number (final token in eval_id) (int). aprepro_format: Boolean indicating whether the parameters file was in aprepro (True) or Dakota (False) format. descriptors: List of the response descriptors (read-only) num_responses: Number of variables (read-only) deriv_vars: List of the derivative variables (read-only) num_deriv_vars: Number of derivative variables (read-only) """ def __init__(self, aprepro_format=None, responses=None, deriv_vars=None, eval_id=None, ignore_asv=False, results_file=None): self.aprepro_format = aprepro_format self.ignore_asv = ignore_asv self._deriv_vars = deriv_vars[:] num_deriv_vars = len(deriv_vars) self._responses = collections.OrderedDict() for t, v in responses.items(): self._responses[t] = Response(t, num_deriv_vars, ignore_asv, int(v)) self.results_file = results_file self.eval_id = eval_id self.eval_num = int(eval_id.split(":")[-1]) self._failed = False def __getitem__(self,key): if type(key) is int: return self._responses[self.descriptors[key]] else: return self._responses[key] @property def num_deriv_vars(self): return len(self._deriv_vars) @property def num_responses(self): return len(self._responses) def _write_results(self,stream, ignore_asv): # Write FAIL if set if self._failed: print("FAIL", file=stream) return # Write function values for t, v in self._responses.items(): if (v.asv.function or ignore_asv) and v.function is not None: print("%24.16E %s" %(v.function, t), file=stream) # Write gradients for t, v in self._responses.items(): if (v.asv.gradient or ignore_asv) and v.gradient is not None: print("[ ",file=stream, end="") for e in v.gradient: print("% 24.16E" % e,file=stream,end="") print(" ]",file=stream) # Write Hessians for t, v in self._responses.items(): if (v.asv.hessian or ignore_asv) and v.hessian is not None: print("[[",file=stream,end="") first = True for r in v.hessian: if not first: print("\n ",file=stream,end="") first=False for c in r: print("% 24.16E" % c,file=stream, end="") print(" ]]",file=stream) def write(self, stream=None, ignore_asv=None): """Write the results to the Dakota results file. Keyword Args: stream: Write results to this I/O stream. Overrides results_file specified when the object was constructed. ignore_asv: Ignore the active set vector while writing the response data to the results file (or stream). Overrides ignore_asv setting provided at construct time. Raises: dakota.interfacing.MissingSourceError: No results_file was provided at construct time, and no stream was provided to the method call. dakota.interfacing.ResponseError: A result requested by Dakota is missing (and ignore_asv is False). """ my_ignore_asv = self.ignore_asv if ignore_asv is not None: my_ignore_asv= ignore_asv ## Confirm that user has provided all info requested by Dakota if not my_ignore_asv and not self._failed: for t, v in self._responses.items(): if v.asv.function and v.function is None: raise ResponseError("Response '" + t + "' is missing " "requested function result.") if v.asv.gradient and v.gradient is None: raise ResponseError("Response '" + t + "' is missing " "requested gradient result.") if v.asv.hessian and v.hessian is None: raise ResponseError("Response '" +t + "' is missing " "requested Hessian result.") if stream is None: if self.results_file is None: raise MissingSourceError("No stream specified and no " "results_file provided at construct time.") else: with open(self.results_file, "w") as ofp: self._write_results(ofp, my_ignore_asv) else: self._write_results(stream, my_ignore_asv) @property def descriptors(self): return [k for k in self._responses.keys()] @property def deriv_vars(self): return list(self._deriv_vars) def __iter__(self): for index, (name, response) in enumerate(self._responses.items()): yield index, name, response def fail(self): """Set the FAIL attribute. When the results file is written, it will contain only the word FAIL""" self._failed = True ### Free functions and their helpers for constructing objects # Collections of regexes for parsing aprepro and dprepro formatted Dakota # parameter files _aprepro_re_base = " {{20}}{{ {tag} += +{value} }}\n" _dakota_re_base = "\s*{value} {tag}\n" _pRE = { "APREPRO":{"num_variables":re.compile(_aprepro_re_base.format( value="(?P<value>\d+)", tag="(?P<tag>DAKOTA_VARS)")), "num_functions":re.compile(_aprepro_re_base.format( value="(?P<value>\d+)", tag="(?P<tag>DAKOTA_FNS)")), "num_deriv_vars":re.compile(_aprepro_re_base.format( value="(?P<value>\d+)", tag="(?P<tag>DAKOTA_DER_VARS)")), "num_an_comps":re.compile(_aprepro_re_base.format( value="(?P<value>\d+)", tag="(?P<tag>DAKOTA_AN_COMPS)")), "eval_id":re.compile(_aprepro_re_base.format( value="(?P<value>\d+(?::\d+)*)", tag="(?P<tag>DAKOTA_EVAL_ID)")), "variable":re.compile(_aprepro_re_base.format( value="\"?(?P<value>.+?)\"?", tag ="(?P<tag>\S+)")), "function":re.compile(_aprepro_re_base.format( value="(?P<value>[0-7])", tag="ASV_\d+:(?P<tag>\S+)")), "deriv_var":re.compile(_aprepro_re_base.format( value="(?P<value>\d+)", tag="DVV_\d+:(?P<tag>\S+)")), "an_comp":re.compile(_aprepro_re_base.format( value="\"(?P<value>.+?)\"", tag="AC_\d+:(?P<tag>.+?)")) }, "DAKOTA":{"num_variables":re.compile(_dakota_re_base.format( value="(?P<value>\d+)", tag="(?P<tag>variables)")), "num_functions":re.compile(_dakota_re_base.format( value="(?P<value>\d+)", tag="(?P<tag>functions)")), "num_deriv_vars":re.compile(_dakota_re_base.format( value="(?P<value>\d+)", tag="(?P<tag>derivative_variables)")), "num_an_comps":re.compile(_dakota_re_base.format( value="(?P<value>\d+)", tag="(?P<tag>analysis_components)")), "eval_id":re.compile(_dakota_re_base.format( value="(?P<value>\d+(?::\d+)*)", tag="(?P<tag>eval_id)")), # A lookahead assertion is required to catch string variables with spaces "variable":re.compile("\s*(?P<value>.+?)(?= \S+\n) (?P<tag>\S+)\n"), "function":re.compile(_dakota_re_base.format( value="(?P<value>[0-7])", tag="ASV_\d+:(?P<tag>\S+)")), "deriv_var":re.compile(_dakota_re_base.format( value="(?P<value>\d+)", tag="DVV_\d+:(?P<tag>\S+)")), "an_comp":re.compile(_dakota_re_base.format( value="(?P<value>.+?)", tag="AC_\d+:(?P<tag>.+?)")) } } def _extract_block(stream, numRE, dataRE, handle): """Extract a block of information from a Dakota parameters file. stream is expected to be queued up to the beginning of the block. numRE and dataRE are regexes used to extract the number of items and the items themselves, respectively. They must support groups named 'tag' and 'value'. handle is a function to store the extracted items.""" line = stream.readline() num = int(numRE.match(line).group("value")) for i in range(num): line = stream.readline() m = dataRE.match(line) tag = m.group("tag") value = m.group("value") handle(tag,value) def _read_parameters_stream(stream=None, ignore_asv=False, results_file=None): """Extract the parameters data from the stream.""" # determine format (dakota or aprepro) by examining the first line line = stream.readline() dakota_format_match = _pRE["DAKOTA"]["num_variables"].match(line) aprepro_format_match = _pRE["APREPRO"]["num_variables"].match(line) if aprepro_format_match is not None: aprepro_format = True useRE = _pRE["APREPRO"] elif dakota_format_match is not None: aprepro_format = False useRE = _pRE["DAKOTA"] else: raise ParamsFormatError("Unrecognized parameters file format.") # Rewind the stream to begin reading blocks stream.seek(0) # Read variable values variables = collections.OrderedDict() def store_variables(t, v): variables[t]=v _extract_block(stream, useRE["num_variables"], useRE["variable"], store_variables) # Read functions block responses = collections.OrderedDict() def store_responses(t, v): responses[t]=v _extract_block(stream, useRE["num_functions"], useRE["function"], store_responses) # Read derivative variables block deriv_vars = [] def store_deriv_vars(t,v): deriv_vars.append(t) _extract_block(stream, useRE["num_deriv_vars"], useRE["deriv_var"], store_deriv_vars) # Read analysis components an_comps = [] def store_an_comps(t, v): an_comps.append(v) _extract_block(stream, useRE["num_an_comps"], useRE["an_comp"], store_an_comps) # Read eval_id m = useRE["eval_id"].match(stream.readline()) eval_id = m.group("value") return (Parameters(aprepro_format, variables, an_comps, eval_id), Results(aprepro_format, responses, deriv_vars, eval_id, ignore_asv, results_file)) def read_parameters_file(parameters_file=None, results_file=None, ignore_asv=False): """Read and parse the Dakota parameters file. Keyword Args: parameters_file: Pathname to the Dakota parameters file. If not provided, the first command line argument will be used. results_file: Pathname to the Dakota results file. If not provided or set to None, the second command line argument will be used. Setting to dakota.interfacing.UNNAMED leaves the file unnamed, and a stream must be specified in the call to Results.write(). ignore_asv: If True, ignore the active set vector when setting responses on the returned Results object. Returns: A tuple containing a Parameters object and Results object configured based on the parameters file. Raises: dakota.interfacing.MissingSourceError: Parameters or results filename is not provided and cannot be read from the command line arguments. dakota.interfacing.ParamsFormatError: The Dakota parameters file was not valid. """ ### Determine the name of the parameters file and read it in if parameters_file is None: try: parameters_file = sys.argv[1] except IndexError: raise MissingSourceError("No parameters filename provided and no " "command line argument.") with open(parameters_file,"r") as ifp: parameters_list = ifp.readlines() ### Determine the name of the results file if results_file is None: try: results_file = sys.argv[2] except IndexError: raise MissingSourceError("No results filename provided and no " "command line argument.") elif results_file == UNNAMED: results_file = "" ### Open and parse the parameters file with open(parameters_file, "r") as ifp: return _read_parameters_stream(ifp, ignore_asv, results_file) ``` #### File: interfaces/Python/dakota_interfacing_test.py ```python from __future__ import print_function import unittest import os __author__ = '<NAME>' __copyright__ = 'Copyright 2014 Sandia Corporation' __license__ = 'GNU Lesser General Public License' try: # Python 2/3 compatible import of StringIO import StringIO except ImportError: import io as StringIO import dakota.interfacing as di from dakota.interfacing import parallel apreproParams = """ { DAKOTA_VARS = 3 } { x1 = 7.488318331306800e-01 } { x2 = 2.188638686202466e-01 } { dussv_1 = "foo bar" } { DAKOTA_FNS = 1 } { ASV_1:response_fn_1 = %d } { DAKOTA_DER_VARS = 2 } { DVV_1:x1 = 1 } { DVV_2:x2 = 2 } { DAKOTA_AN_COMPS = 2 } { AC_1:first.sh = "a b" } { AC_2:first.sh = "b" } { DAKOTA_EVAL_ID = 1 } """ dakotaParams = """ 3 variables 7.488318331306800e-01 x1 2.188638686202466e-01 x2 foo bar dussv_1 1 functions %d ASV_1:response_fn_1 2 derivative_variables 1 DVV_1:x1 2 DVV_2:x2 2 analysis_components a b AC_1:first.sh b AC_2:first.sh 1 eval_id """ # Helper functions needed for Python < 2.7 def set_function(r): r["response_fn_1"].function = 5.0 def set_gradient(r): r["response_fn_1"].gradient = [1.0, 2.0] def set_hessian(r): r["response_fn_1"].hessian = [[1.0, 2.0],[2.0,3.0]] class dakotaInterfacingTestCase(unittest.TestCase): def test_aprepro_format(self): """Confirm that aprepro format Parameters files are parsed correctly.""" pio = StringIO.StringIO(apreproParams % 1) p, r = di.interfacing._read_parameters_stream(stream=pio, results_file="results.out") self.assertEqual(p.num_variables, 3) self.assertEqual(p.descriptors, ["x1","x2","dussv_1"]) self.assertAlmostEqual(p["x1"], 7.488318331306800e-01) self.assertAlmostEqual(p["x2"], 2.188638686202466e-01) self.assertEqual(p["dussv_1"], "foo bar") self.assertEqual(p.num_an_comps, 2) self.assertEqual(p.an_comps[0], "a b") self.assertEqual(p.an_comps[1], "b") self.assertEqual(p.eval_id, "1") self.assertTrue(p.aprepro_format) self.assertEqual(r.num_responses, 1) self.assertEqual(r.descriptors, ["response_fn_1"]) self.assertEqual(r["response_fn_1"].asv, (True, False, False)) self.assertEqual(r.num_deriv_vars, 2) self.assertEqual(r.deriv_vars, ["x1","x2"]) self.assertTrue(r.aprepro_format) self.assertEqual(r.results_file, "results.out") def test_dakota_format(self): """Confirm that Dakota format Parameters files are parsed correctly.""" pio = StringIO.StringIO(dakotaParams % 1) p, r = di.interfacing._read_parameters_stream(stream=pio, results_file="results.out") self.assertEqual(p.num_variables, 3) self.assertEqual(p.descriptors, ["x1","x2","dussv_1"]) self.assertAlmostEqual(p["x1"], 7.488318331306800e-01) self.assertAlmostEqual(p["x2"], 2.188638686202466e-01) self.assertEqual(p["dussv_1"], "foo bar") self.assertEqual(p.num_an_comps, 2) self.assertEqual(p.an_comps[0], "a b") self.assertEqual(p.an_comps[1], "b") self.assertEqual(p.eval_id, "1") self.assertFalse(p.aprepro_format) self.assertEqual(r.num_responses, 1) self.assertEqual(r.descriptors, ["response_fn_1"]) self.assertEqual(r["response_fn_1"].asv, (True, False, False)) self.assertEqual(r.num_deriv_vars, 2) self.assertEqual(r.deriv_vars, ["x1","x2"]) self.assertEqual(r.eval_id, "1") self.assertFalse(r.aprepro_format) self.assertEqual(r.results_file, "results.out") def test_asv(self): """Results behaves according to the ASV when response data is set.""" # Function only pio = StringIO.StringIO(dakotaParams % 1) p, r = di.interfacing._read_parameters_stream(stream=pio) set_function(r) self.assertRaises(di.interfacing.ResponseError, set_gradient, r) self.assertRaises(di.interfacing.ResponseError, set_hessian, r) r.write(StringIO.StringIO()) # Gradient only pio = StringIO.StringIO(dakotaParams % 2) p, r = di.interfacing._read_parameters_stream(stream=pio) self.assertRaises(di.interfacing.ResponseError, set_function, r) set_gradient(r) self.assertRaises(di.interfacing.ResponseError, set_hessian, r) r.write(StringIO.StringIO()) # Hessian only pio = StringIO.StringIO(dakotaParams % 4) p, r = di.interfacing._read_parameters_stream(stream=pio) self.assertRaises(di.interfacing.ResponseError, set_function, r) self.assertRaises(di.interfacing.ResponseError, set_gradient, r) set_hessian(r) r.write(StringIO.StringIO()) def test_ignore_asv(self): """Confirm that ASV is ignored.""" # Test exceptions for i in range(1,8): sio = StringIO.StringIO(dakotaParams % i) p, r = di.interfacing._read_parameters_stream(stream=sio,ignore_asv=True) set_function(r) set_gradient(r) set_hessian(r) r.write(StringIO.StringIO()) # Test write-time ignoring sio = StringIO.StringIO(dakotaParams % 3) p, r = di.interfacing._read_parameters_stream(stream=sio,ignore_asv=False) set_function(r) rio = StringIO.StringIO() r.write(stream=rio,ignore_asv=True) self.assertEqual(rio.getvalue(), " 5.0000000000000000E+00 response_fn_1\n") def test_results_write(self): """Verify Written test results""" sio = StringIO.StringIO(dakotaParams % 7) p, r = di.interfacing._read_parameters_stream(stream=sio) set_function(r) set_gradient(r) set_hessian(r) rio = StringIO.StringIO() r.write(stream=rio) expected = """ 5.0000000000000000E+00 response_fn_1 [ 1.0000000000000000E+00 2.0000000000000000E+00 ] [[ 1.0000000000000000E+00 2.0000000000000000E+00 2.0000000000000000E+00 3.0000000000000000E+00 ]] """ self.assertEqual(rio.getvalue(), expected) # Test simulation failure flag r.fail() rio = StringIO.StringIO() r.write(stream=rio) expected = "FAIL\n" self.assertEqual(rio.getvalue(), expected) def test_slurm_info(self): """Info correctly extracted from the environment.""" # Check env without SLURM_JOBID set try: del os.environ["SLURM_JOBID"] except KeyError: pass self.assertRaises(parallel.MgrEnvError,parallel._get_job_info) # Set JOBID and set TASKS_PER_NODE os.environ["SLURM_JOBID"] = "1337" os.environ["SLURM_TASKS_PER_NODE"] = "16(x2)" nnodes, tpn, job_id = parallel._get_job_info() self.assertEqual(nnodes, 2) self.assertEqual(tpn, 16) self.assertEqual(job_id,"1337") # Single node os.environ["SLURM_TASKS_PER_NODE"] = "16" nnodes, tpn, job_id = parallel._get_job_info() self.assertEqual(nnodes, 1) self.assertEqual(tpn, 16) def test_node_list(self): """Relative node list is built correctly.""" self.assertEqual( "+n0", parallel._get_node_list(tile=0, applic_tasks=16, tasks_per_node=16)) self.assertEqual( "+n0,+n1", parallel._get_node_list(tile=0, applic_tasks=32, tasks_per_node=16)) self.assertEqual( "+n0", parallel._get_node_list(tile=0, applic_tasks=8, tasks_per_node=16)) self.assertEqual( "+n0", parallel._get_node_list(tile=1, applic_tasks=8, tasks_per_node=16)) self.assertEqual( "+n1", parallel._get_node_list(tile=0, applic_tasks=16, tasks_per_node=16, dedicated_master=parallel.NODE)) self.assertEqual( "+n1,+n2", parallel._get_node_list(tile=0, applic_tasks=32, tasks_per_node=16, dedicated_master=parallel.NODE)) self.assertEqual( "+n0", parallel._get_node_list(tile=0, applic_tasks=8, tasks_per_node=16, dedicated_master=parallel.TILE)) self.assertEqual( "+n1", parallel._get_node_list(tile=1, applic_tasks=8, tasks_per_node=16, dedicated_master=parallel.TILE)) self.assertEqual( "+n1", parallel._get_node_list(tile=0, applic_tasks=16, tasks_per_node=16, dedicated_master=parallel.TILE)) def test_static_tile(self): """Correct tile is returned""" self.assertEqual(0, parallel._calc_static_tile(eval_num=1, num_tiles=4)) self.assertEqual(3, parallel._calc_static_tile(eval_num=4, num_tiles=4)) self.assertEqual(0, parallel._calc_static_tile(eval_num=5, num_tiles=4)) self.assertEqual(0, parallel._calc_static_tile(eval_num=9, num_tiles=4)) self.assertEqual(0, parallel._calc_static_tile(eval_num=1, num_tiles=1)) self.assertEqual(0, parallel._calc_static_tile(eval_num=100, num_tiles=1)) def test_num_tiles(self): self.assertEqual(10, parallel._calc_num_tiles(applic_tasks=16, tasks_per_node=16, num_nodes=10)) self.assertEqual(1, parallel._calc_num_tiles(applic_tasks=16, tasks_per_node=16, num_nodes=1)) self.assertEqual(9, parallel._calc_num_tiles(applic_tasks=16, tasks_per_node=16, num_nodes=10, dedicated_master=parallel.NODE)) self.assertEqual(9, parallel._calc_num_tiles(applic_tasks=16, tasks_per_node=16, num_nodes=10, dedicated_master=parallel.TILE)) self.assertEqual(18, parallel._calc_num_tiles(applic_tasks=8, tasks_per_node=16, num_nodes=10, dedicated_master=parallel.NODE)) self.assertEqual(19, parallel._calc_num_tiles(applic_tasks=8, tasks_per_node=16, num_nodes=10, dedicated_master=parallel.TILE)) self.assertEqual(1, parallel._calc_num_tiles(applic_tasks=8, tasks_per_node=16, num_nodes=1, dedicated_master=parallel.TILE)) self.assertRaises(parallel.ResourceError,parallel._calc_num_tiles, applic_tasks=8, tasks_per_node=16, num_nodes=1, dedicated_master=parallel.NODE) self.assertRaises(parallel.ResourceError,parallel._calc_num_tiles, applic_tasks=16, tasks_per_node=16, num_nodes=1, dedicated_master=parallel.TILE) # todo: test iteration, integer access unittest.main() ```
{ "source": "jnngu/codingdatingsite", "score": 2 }
#### File: styledating/backend/test2.py ```python def bar(): [line x for x in for range in 5 + 2 * 4 + 1] ``` #### File: styledating/challenges/pal_sc.py ```python def palindrome(x:int): print(True) ``` #### File: code/tests/testspaces.py ```python def foo(): s = [1, 2, 3] for xd in range(s): return s ``` #### File: codingdatingsite/styledating/main.py ```python from flask import Flask, render_template, request, redirect, url_for from flask_login import LoginManager, UserMixin, login_required, login_user, logout_user, current_user import sqlite3 import hashlib import re from util import * from user import * from autograde import * app = Flask(__name__) app.secret_key = open('secret_key.txt').read() login_manager = LoginManager() login_manager.init_app(app) @login_manager.user_loader def load_user(user_id): return User(user_id) @app.route('/') def index(): return render_template("index.html") @app.route('/register') def register(): return render_template("registration.html") @app.route('/process_registration', methods=['POST']) def process_registration(): f = request.form if not f['username'].isalnum(): return f"username can only contain letters and numbers" L = sql_execute('''SELECT * FROM users WHERE username=?''', (f['username'],)) print(L) if len(L) > 0: return f"sorry; username {f['username']} already taken" num = sql_execute('''SELECT MAX(id) from users''') print(num) newid = 1 if len(num) == 0 or num[0][0] == None else 1 + num[0][0] sql_execute('''INSERT INTO users VALUES (?,?,?,?,?,?,?,?)''',\ (newid,f['username'],f['name'],'',hashpw(f['pass']),"","","")) pfp = request.files['pfp'] pfp.save('static/pfps/'+f['username']) #return f"registered! You are user #{newid}<br>" + render_template("login.html") return redirect(url_for('login')) @app.route('/login') def login(): return render_template("login.html") @app.route('/process_login', methods=['POST']) def process_login(): f = request.form L = sql_execute('''SELECT name FROM users WHERE username=? AND pass_hash=?''',\ (f['username'], hashpw(f['pass']))) print(L) if len(L) == 0 or L[0][0] == None: return "sorry, login failed\n" + render_template("login.html") user = User(f['username']) login_user(user) return redirect(url_for('evaluations')) @app.route("/logout") @login_required def logout(): logout_user() return redirect(url_for('index')) dct = {1:'pal', 2:'robot', 3:'rotated'} fcn_names = {1:'palindrome', 2:'judge', 3:'rotate'} @app.route('/code/<int:n>') @login_required def coding_chal(n): if n < 1 or n > 3: return "???" else: sc = open("challenges/"+dct[n]+"_sc.py").read() question_text = open("challenges/"+dct[n]+"_desc.txt").read().split('\n') return render_template("code_chall.html",\ n=n,question_text=question_text,code=sc,results=["No results yet!"],done=None) @app.route('/process_language', methods=['POST']) def process_language(): n = int(request.form['n']) if request.form['language'] == "Python": sc = open("challenges/"+dct[n]+"_sc.py").read() question_text = open("challenges/"+dct[n]+"_desc.txt").read().split('\n') return render_template("code_chall.html",\ n=n,question_text=question_text,code=sc,results=["No results yet!"],done=None,lang='python') else: sc = open("challenges/"+dct[n]+"_sc.c").read() question_text = open("challenges/"+dct[n]+"_desc.txt").read().split('\n') return render_template("code_chall.html",\ n=n,question_text=question_text,code=sc,results=["No results yet!"],done=None,lang='c') @app.route('/process_code', methods=['POST']) @login_required def process_code(): n = int(request.form['cnum']) if n < 1 or n > 3: return "???" else: question_text = open("challenges/"+dct[n]+"_desc.txt").read().split('\n') user_code = request.form['code_submission'] tc_filename ="challenges/"+dct[n]+"_testcases.txt" sol_filename = "challenges/"+dct[n]+"_sol.txt" lang = request.form['language'] (numWrong,results) = runAutograder(lang.lower(),user_code,fcn_names[n],tc_filename, sol_filename) results = results.split('\n') if numWrong == 0: #TODO: user_code is a string with the user's submitted code. # current_user.username is the user's username. # @ Brandon. current_user.updatedb(n,user_code) return render_template("code_chall.html",n=n,\ question_text=question_text,code=user_code,results=results,\ done=(numWrong == 0)) @app.route('/matches') @app.route('/matches/<string:typ>/<string:other>') @login_required def matches(typ=None,other=None): if other != None: sql_execute('''insert into actions values(?,?,?)''', (typ,current_user.username,other)) if current_user.numdone() < 3: return render_template("matches.html",user=current_user,curr=current_user) best_match = current_user.compute_best_match() return render_template("matches.html",user=best_match,curr=current_user) @app.route('/evaluations') @login_required def evaluations(): return render_template("evaluations.html",user=current_user) @app.route('/profile') @login_required def profile(): return render_template("profile.html", user=current_user, isMe=True) @app.route('/mutual') @login_required def mutual(): matches = current_user.get_mutual_matches() return render_template("mutual.html", matches=matches, user=current_user) if __name__ == '__main__': app.run(debug=False) ```
{ "source": "jnnkhrtmnn/ml-blueprint-arch", "score": 2 }
#### File: jnnkhrtmnn/ml-blueprint-arch/app.py ```python import numpy as np from pathlib import Path from joblib import load from flask import Flask, request, jsonify # initialisepath #path = Path('C:/Users/janni/Desktop/blueprint/ml-blueprint-arch') # load model reg = load(Path('models') / 'reg.joblib') app = Flask(__name__) @app.route('/predict', methods=['POST']) def ml_inference(): ''' Uses JSON input from post method, returns predicition and input as JSON Returns ------- TYPE DESCRIPTION. ''' json_ = request.json X = np.array([[json_['x1'], json_['x2']]]) # Some checks assert X.shape == (1,2) pred = reg.predict(X) return jsonify({'prediction': str(pred[0]) ,'input': {'x1' : str(X[0][0]) ,'x2' : str(X[0][1])} }) if __name__ == '__main__': app.run(host='0.0.0.0', debug=True) ``` #### File: ml-blueprint-arch/src/data_generation.py ```python from scipy.stats import norm import pandas as pd from pathlib import Path path = Path('C:/Users/janni/Desktop/blueprint/ml-blueprint-arch') def generate_data(): ''' Generates random data set with y, x1, x2 and epsilon. y is a linear combination of iid gaussian x1 and x2 plus the gaussian error term epsilon Returns ------- df : TYPE DESCRIPTION. ''' n= 1000 x1 = norm.rvs(10,3,n) x2 = norm.rvs(30,5,n) epsilon = norm.rvs(0,1,n) y = x1 + x2 + epsilon df = pd.DataFrame(list(zip(y,x1,x2)), columns=['y', 'x1', 'x2']) df.to_pickle(path / 'data' / 'dat.pkl') print('Data generated!') return df if __name__=='__main__': generate_data() ```
{ "source": "jnnl/jc", "score": 3 }
#### File: jc/jc/evaluator.py ```python from __future__ import print_function import ast import math import operator import re import sys from . import completer from . import __version__ class NamespaceError(Exception): pass class Evaluator(object): ''' Expression evaluator. Constructs ASTs from expressions and evaluates them. Supports standard arithmetic and bitwise operations, variable assignments, basic functions, constants and base conversions. ''' def __init__(self, base=10, completer=completer.Completer): self.ans = None self.operators = { ast.Add: {'op': operator.add, 'symbol': '+'}, ast.Sub: {'op': operator.sub, 'symbol': '-'}, ast.Mult: {'op': operator.mul, 'symbol': '*'}, ast.Div: {'op': operator.truediv, 'symbol': '/'}, ast.FloorDiv: {'op': operator.floordiv, 'symbol': '//'}, ast.Mod: {'op': operator.mod, 'symbol': '%'}, ast.Pow: {'op': operator.pow, 'symbol': '**'}, ast.BitAnd: {'op': operator.iand, 'symbol': '&'}, ast.BitOr: {'op': operator.ior, 'symbol': '|'}, ast.BitXor: {'op': operator.ixor, 'symbol': '^'}, ast.Invert: {'op': operator.inv, 'symbol': '~'}, ast.LShift: {'op': operator.lshift, 'symbol': '>>'}, ast.RShift: {'op': operator.rshift, 'symbol': '<<'}, ast.UAdd: {'op': operator.pos, 'symbol': '+'}, ast.USub: {'op': operator.neg, 'symbol': '-'}, } self.symbols = [op['symbol'] for op in self.operators.values()] self.internal_variables = { '_base': base, '_python': 'Python ' + sys.version, '_version': __version__ } self.variables = {} self.constants = { 'e': {'value': math.e, 'help': 'e: Euler\'s number'}, 'euler': {'value': 0.577215664901533, 'help': 'euler: Euler-Mascheroni constant'}, 'pi': {'value': math.pi, 'help': 'pi: 0.5 tau'}, 'phi': {'value': (1 + math.sqrt(5)) / 2, 'help': 'phi: the golden ratio'}, 'tau': {'value': math.pi * 2, 'help': 'tau: 2 pi'}, } self.functions = { 'A': {'value': lambda m, n: n + 1 if m == 0 else \ (self.functions['A']['value'](m - 1, 1) if m > 0 and n == 0 else \ self.functions['A']['value'](m - 1, self.functions['A']['value'](m, n - 1))), 'help': 'A(x, y): Ackermann function'}, 'abs': {'value': abs, 'help': 'abs(x): absolute value of x'}, 'acos': {'value': math.acos, 'help': 'acos(x): inverse trigonometric cosine of x (in radians)'}, 'acosh': {'value': math.acosh, 'help': 'acosh(x): inverse hyperbolic cosine of x (in radians)'}, 'asin': {'value': math.asin, 'help': 'asin(x): inverse trigonometric sine of x (in radians)'}, 'asinh': {'value': math.asinh, 'help': 'asinh(x): inverse hyperbolic sine of x (in radians)'}, 'atan': {'value': math.atan, 'help': 'atan(x): inverse trigonometric tangent of x (in radians)'}, 'atanh': {'value': math.atanh, 'help': 'atanh(x): inverse hyperbolic tangent of x (in radians)'}, 'base': {'value': lambda x=None: self._set_base(x), 'help': 'base(x): set output base to x (2, 8, 10 or 16 allowed)'}, 'cbrt': {'value': lambda x: x ** (1. / 3), 'help': 'cbrt(x): cube root of x'}, 'ceil': {'value': math.ceil, 'help': 'ceil(x): ceiling function of x'}, 'cos': {'value': math.cos, 'help': 'cos(x): cosine of x (in radians)'}, 'deg': {'value': math.degrees, 'help': 'deg(x): convert x from radians to degrees'}, 'erf': {'value': math.erf, 'help': 'erf(x): error function of x'}, 'exp': {'value': math.exp, 'help': 'exp(x): calculate e ** x'}, 'fact': {'value': math.factorial, 'help': 'fact(x): factorial of x'}, 'fmod': {'value': math.fmod, 'help': 'fmod(x, y): calculate floating point modulo of x % y'}, 'floor': {'value': math.floor, 'help': 'floor(x): floor function of x'}, 'gamma': {'value': math.gamma, 'help': 'gamma(x): gamma function of x'}, 'help': {'value': lambda x: self._help(x), 'help': 'help(x): print help on x'}, 'hyp': {'value': math.hypot, 'help': 'hyp(x): hypotenuse of x'}, 'ln': {'value': lambda x: math.log(x, math.e), 'help': 'ln(x): natural logarithm of x'}, 'log': {'value': math.log, 'help': 'log(x[, base]): logarithm of x to base (default: 2)'}, 'log2': {'value': lambda x: math.log(x, 2), 'help': 'log2(x): base 2 logarithm of x'}, 'log10': {'value': math.log10, 'help': 'log10(x): base 10 logarithm of x'}, 'nrt': {'value': lambda n, x: x ** (1. / n), 'help': 'nrt(x): nth root of x'}, 'rad': {'value': math.radians, 'help': 'rad(x): convert x from degrees to radians'}, 'round': {'value': round, 'help': 'round(x[, n]): round x to n decimal places (default: 0)'}, 'sin': {'value': math.sin, 'help': 'sin(x): sine of x'}, 'sqrt': {'value': math.sqrt, 'help': 'sqrt(x): square root of x'}, 'tan': {'value': math.tan, 'help': 'tan(x): tangent of x'}, } self.completer = None if completer is not None: self.completer = completer( list([k + '(' for k in self.functions.keys()]) + list(self.constants.keys()) + list(self.variables.keys()) + ['ans'] ) def _help(self, args): ''' Print help for given topics. ''' if not len(args): get_help = lambda x: '\n'.join(c['help'] for c in x.values()) print('jc version %s' % self.internal_variables['_version']) print('\nAvailable constants:') print(get_help(self.constants)) print('\nAvailable functions:') print(get_help(self.functions)) for arg in args: msg = self.constants.get(arg.id, self.functions.get(arg.id, {})).get('help') if not msg: raise ValueError('unknown help topic \'%s\'' % arg.id) print(msg) def _set_base(self, base): if base is None: print(self.internal_variables['_base']) return if base not in (2, 8, 10, 16): raise ValueError('unsupported base \'%s\' (allowed: 2, 8, 10, 16)' % base) self.internal_variables['_base'] = base def _get_op(self, operator): try: found_op = self.operators[type(operator.op)]['op'] except KeyError: raise SyntaxError('unknown operator \'%s\'' % operator.op) return found_op def _eval_unary_op(self, operator): ''' Evaluate unary operator (e.g. -1) ''' op = self._get_op(operator) value = op(self._eval_op(operator.operand)) return value def _eval_binary_op(self, operator): ''' Evaluate binary operator (e.g. 5 + 5). ''' op = self._get_op(operator) value = op(self._eval_op(operator.left), self._eval_op(operator.right)) return value def _eval_name(self, operator): ''' Evaluate name expansion / assignment (e.g. a = 10). ''' if operator.id in self.constants: return self.constants[operator.id]['value'] elif operator.id in self.internal_variables: print(self.internal_variables[operator.id]) elif operator.id in self.variables: return self.variables[operator.id] elif operator.id == 'ans': return self.ans elif operator.id in self.functions: raise TypeError('cannot evaluate function label \'%s\'' % operator.id) else: raise NameError('variable \'%s\' is not defined' % operator.id) def _eval_func(self, operator): ''' Evaluate function call (e.g. sqrt(16)). ''' if operator.func.id in self.functions: func = self.functions[operator.func.id]['value'] if operator.func.id == 'help': return func(operator.args) value = func(*(self._eval_op(arg) for arg in operator.args)) return value else: raise NameError('function \'%s\' is not defined' % operator.func.id) def _eval_op(self, op): ''' Evaluate expression operator. ''' if isinstance(op, ast.Num): val = op.n elif isinstance(op, ast.UnaryOp): val = self._eval_unary_op(op) elif isinstance(op, ast.BinOp): val = self._eval_binary_op(op) elif isinstance(op, ast.Name): val = self._eval_name(op) elif isinstance(op, ast.Call): val = self._eval_func(op) else: raise SyntaxError('unknown operator \'%s\'' % op) return val def _validate_var(self, var): ''' Validate a variable assignment. ''' if var in self.constants: raise NamespaceError('cannot assign to constant \'%s\'' % var) elif var in self.internal_variables: raise NamespaceError('cannot assign to internal variable \'%s\'' % var) elif var in self.functions: raise NamespaceError('cannot override existing function \'%s\'' % var) elif var.startswith('_'): raise NamespaceError('cannot assign to internal variable space (starting with _)') elif var == 'ans': raise NamespaceError('cannot assign to reserved variable \'ans\'') elif var.isdigit(): raise TypeError('cannot assign variable to a numeric literal') elif re.match(r'\w+', var): return True else: raise NameError('invalid variable name \'%s\', only alphanumerics and underscores are supported' % var) def _assign_var(self, var_name, expr_value): ''' Assign a value to a variable. ''' self._validate_var(var_name) tree = ast.parse(expr_value, mode='eval') value = self._eval_op(tree.body) self.variables[var_name] = value if self.completer is not None: self.completer.add_content(var_name) return value def _convert_out(self, result): ''' Convert output result to defined base. ''' base = self.internal_variables['_base'] if base == 2: return int(bin(int(result))[2:]) elif base == 8: if sys.version_info >= (3, 0, 0): return int(oct(int(result))[2:]) else: if result == 0: return int(oct(int(result))) else: return int(oct(int(result))[1:]) elif base == 10: if result - int(result) == 0: return int(result) else: return result elif base == 16: return hex(result)[2:] else: raise ValueError('unsupported base value \'%s\'' % base) def _eval_expr(self, expr): ''' Evaluate a single expression. ''' if self.ans is not None and len(expr) and expr[0] in self.symbols: expr = 'ans' + expr tree = ast.parse(expr, mode='eval') result = self._eval_op(tree.body) if result is not None: self.ans = result result = self._convert_out(result) return result def eval(self, expr, results=None): ''' Build and evaluate the AST for an expression, return the result(s). ''' if results is None: results = [] expr = expr.strip() multi_expr = ';' in expr if multi_expr: expr, _, rest = expr.partition(';') if expr.startswith('#') or len(expr) == 0: return results var_assign = re.search(r'(?P<var>^\w+\s*)\=(?P<val>\s*(.*?)$)', expr) if var_assign is not None: var_assign = var_assign.groupdict() var_name = var_assign['var'].strip() var_value = var_assign['val'].strip() self._assign_var(var_name, var_value) else: result = self._eval_expr(expr) if result is not None: results.append(result) if multi_expr: self.eval(rest, results) return results ```
{ "source": "JnnnLe/intro-to-python", "score": 4 }
#### File: masters-intro/pyworkshop/project.py ```python greetings = ["hello", "world", "Jenn"] for greeting in greetings: print(f"{greeting}, World") def add_number(x, y): return x + y add_number(1, 2) things_to_do = ["pickup meds", "shower", "change bandage", "python", "brush Baby and pack dogs", "Whole Foods", "Jocelyn"] ```
{ "source": "jnnnn1999/Online-Thai-Video-Content-Search-System", "score": 3 }
#### File: djangojobboard/core/upload_video.py ```python from django.shortcuts import render, redirect from pytube import * import os.path # defining function def youtube(link_path=None, url=None): # checking whether request.method is post or not if link_path: # getting link from frontend link = link_path video = YouTube(link) # setting video resolution stream = video.streams.get_lowest_resolution() # downloads video path =stream.download('./media') return path ```
{ "source": "jnnr/oemof", "score": 2 }
#### File: oemof/outputlib/processing.py ```python import pandas as pd import sys from oemof.network import Node from oemof.tools.helpers import flatten from itertools import groupby from pyomo.core.base.var import Var def get_tuple(x): """ Get oemof tuple within iterable or create it. Tuples from Pyomo are of type `(n, n, int)`, `(n, n)` and `(n, int)`. For single nodes `n` a tuple with one object `(n,)` is created. """ for i in x: if isinstance(i, tuple): return i elif issubclass(type(i), Node): return i, def get_timestep(x): """ Get the timestep from oemof tuples. The timestep from tuples `(n, n, int)`, `(n, n)`, `(n, int)` and (n,) is fetched as the last element. For time-independent data (scalars) zero ist returned. """ if all(issubclass(type(n), Node) for n in x): return 0 else: return x[-1] def remove_timestep(x): """ Remove the timestep from oemof tuples. The timestep is removed from tuples of type `(n, n, int)` and `(n, int)`. """ if all(issubclass(type(n), Node) for n in x): return x else: return x[:-1] def create_dataframe(om): """ Create a result dataframe with all optimization data. Results from Pyomo are written into pandas DataFrame where separate columns are created for the variable index e.g. for tuples of the flows and components or the timesteps. """ # get all pyomo variables including their block block_vars = [] for bv in om.component_data_objects(Var): block_vars.append(bv.parent_component()) block_vars = list(set(block_vars)) # write them into a dict with tuples as keys var_dict = {(str(bv).split('.')[0], str(bv).split('.')[-1], i): bv[i].value for bv in block_vars for i in getattr(bv, '_index')} # use this to create a pandas dataframe df = pd.DataFrame(list(var_dict.items()), columns=['pyomo_tuple', 'value']) df['variable_name'] = df['pyomo_tuple'].str[1] # adapt the dataframe by separating tuple data into columns depending # on which dimension the variable/parameter has (scalar/sequence). # columns for the oemof tuple and timestep are created df['oemof_tuple'] = df['pyomo_tuple'].map(get_tuple) df['timestep'] = df['oemof_tuple'].map(get_timestep) df['oemof_tuple'] = df['oemof_tuple'].map(remove_timestep) # order the data by oemof tuple and timestep df = df.sort_values(['oemof_tuple', 'timestep'], ascending=[True, True]) # drop empty decision variables df = df.dropna(subset=['value']) return df def results(om): """ Create a result dictionary from the result DataFrame. Results from Pyomo are written into a dictionary of pandas objects where a Series holds all scalar values and a dataframe all sequences for nodes and flows. The dictionary is keyed by the nodes e.g. `results[idx]['scalars']` and flows e.g. `results[n, n]['sequences']`. """ df = create_dataframe(om) # create a dict of dataframes keyed by oemof tuples df_dict = {k if len(k) > 1 else (k[0], None): v[['timestep', 'variable_name', 'value']] for k, v in df.groupby('oemof_tuple')} # create final result dictionary by splitting up the dataframes in the # dataframe dict into a series for scalar data and dataframe for sequences result = {} for k in df_dict: df_dict[k].set_index('timestep', inplace=True) df_dict[k] = df_dict[k].pivot(columns='variable_name', values='value') try: df_dict[k].index = om.es.timeindex except ValueError as e: msg = ("\nFlow: {0}-{1}. This could be caused by NaN-values in" " your input data.") raise type(e)(str(e) + msg.format(k[0].label, k[1].label) ).with_traceback(sys.exc_info()[2]) try: condition = df_dict[k].isnull().any() scalars = df_dict[k].loc[:, condition].dropna().iloc[0] sequences = df_dict[k].loc[:, ~condition] result[k] = {'scalars': scalars, 'sequences': sequences} except IndexError: error_message = ('Cannot access index on result data. ' + 'Did the optimization terminate' + ' without errors?') raise IndexError(error_message) # add dual variables for bus constraints if om.dual is not None: grouped = groupby(sorted(om.Bus.balance.iterkeys()), lambda p: p[0]) for bus, timesteps in grouped: duals = [om.dual[om.Bus.balance[bus, t]] for _, t in timesteps] df = pd.DataFrame({'duals': duals}, index=om.es.timeindex) if (bus, None) not in result.keys(): result[(bus, None)] = { 'sequences': df, 'scalars': pd.Series()} else: result[(bus, None)]['sequences']['duals'] = duals return result def convert_keys_to_strings(result, keep_none_type=False): """ Convert the dictionary keys to strings. All (tuple) keys of the result object e.g. results[(pp1, bus1)] are converted into strings that represent the object labels e.g. results[('pp1','bus1')]. """ if keep_none_type: converted = { tuple([str(e) if e is not None else None for e in k]) if isinstance(k, tuple) else str(k) if k is not None else None: v for k, v in result.items() } else: converted = { tuple(map(str, k)) if isinstance(k, tuple) else str(k): v for k, v in result.items() } return converted def meta_results(om, undefined=False): """ Fetch some meta data from the Solver. Feel free to add more keys. Valid keys of the resulting dictionary are: 'objective', 'problem', 'solver'. om : oemof.solph.Model A solved Model. undefined : bool By default (False) only defined keys can be found in the dictionary. Set to True to get also the undefined keys. Returns ------- dict """ meta_res = {'objective': om.objective()} for k1 in ['Problem', 'Solver']: k1 = k1.lower() meta_res[k1] = {} for k2, v2 in om.es.results[k1][0].items(): try: if str(om.es.results[k1][0][k2]) == '<undefined>': if undefined: meta_res[k1][k2] = str( om.es.results[k1][0][k2]) else: meta_res[k1][k2] = om.es.results[k1][0][k2] except TypeError: if undefined: msg = "Cannot fetch meta results of type {0}" meta_res[k1][k2] = msg.format( type(om.es.results[k1][0][k2])) return meta_res def __separate_attrs(system, get_flows=False, exclude_none=True): """ Create a dictionary with flow scalars and series. The dictionary is structured with flows as tuples and nested dictionaries holding the scalars and series e.g. {(node1, node2): {'scalars': {'attr1': scalar, 'attr2': 'text'}, 'sequences': {'attr1': iterable, 'attr2': iterable}}} om : A solved oemof.solph.Model. Returns ------- dict """ def detect_scalars_and_sequences(com): com_data = {'scalars': {}, 'sequences': {}} exclusions = ('__', '_', 'registry', 'inputs', 'outputs', 'register', 'Label', 'from_object', 'input', 'output', 'constraint_group') attrs = [i for i in dir(com) if not (callable(i) or i.startswith(exclusions))] for a in attrs: attr_value = getattr(com, a) # Iterate trough investment and add scalars and sequences with # "investment" prefix to component data: if attr_value.__class__.__name__ == 'Investment': invest_data = detect_scalars_and_sequences(attr_value) com_data['scalars'].update( { 'investment_' + str(k): v for k, v in invest_data['scalars'].items() } ) com_data['sequences'].update( { 'investment_' + str(k): v for k, v in invest_data['sequences'].items() } ) continue if isinstance(attr_value, str): com_data['scalars'][a] = attr_value continue # If the label is a tuple it is iterable, therefore it should be # converted to a string. Otherwise it will be a sequence. if a == 'label': attr_value = str(attr_value) # check if attribute is iterable # see: https://stackoverflow.com/questions/1952464/ # in-python-how-do-i-determine-if-an-object-is-iterable try: _ = (e for e in attr_value) com_data['sequences'][a] = attr_value except TypeError: com_data['scalars'][a] = attr_value com_data['sequences'] = flatten(com_data['sequences']) move_undetected_scalars(com_data) if exclude_none: remove_nones(com_data) com_data = { 'scalars': pd.Series(com_data['scalars']), 'sequences': pd.DataFrame(com_data['sequences']) } return com_data def move_undetected_scalars(com): for ckey, value in list(com['sequences'].items()): if isinstance(value, str): com['scalars'][ckey] = value del com['sequences'][ckey] continue try: _ = (e for e in value) except TypeError: com['scalars'][ckey] = value del com['sequences'][ckey] else: try: if not value.default_changed: com['scalars'][ckey] = value.default del com['sequences'][ckey] except AttributeError: pass def remove_nones(com): for ckey, value in list(com['scalars'].items()): if value is None: del com['scalars'][ckey] for ckey, value in list(com['sequences'].items()): if ( len(value) == 0 or value[0] is None ): del com['sequences'][ckey] # Check if system is es or om: if system.__class__.__name__ == 'EnergySystem': components = system.flows() if get_flows else system.nodes else: components = system.flows if get_flows else system.es.nodes data = {} for com_key in components: component = components[com_key] if get_flows else com_key component_data = detect_scalars_and_sequences(component) comkey = com_key if get_flows else (com_key, None) data[comkey] = component_data return data def parameter_as_dict(system, exclude_none=True): """ Create a result dictionary containing node parameters. Results are written into a dictionary of pandas objects where a Series holds all scalar values and a dataframe all sequences for nodes and flows. The dictionary is keyed by flows (n, n) and nodes (n, None), e.g. `parameter[(n, n)]['sequences']` or `parameter[(n, n)]['scalars']`. Parameters ---------- system: energy_system.EnergySystem A populated energy system. exclude_none: bool If True, all scalars and sequences containing None values are excluded Returns ------- dict: Parameters for all nodes and flows """ flow_data = __separate_attrs(system, True, exclude_none) node_data = __separate_attrs(system, False, exclude_none) flow_data.update(node_data) return flow_data ```
{ "source": "jnnr/oemof-tabular", "score": 3 }
#### File: tabular/tools/__init__.py ```python import types class HSN(types.SimpleNamespace): """ A hashable variant of `types.Simplenamespace`. By making it hashable, we can use the instances as dictionary keys, which is necessary, as this is the default type for flows. """ def __hash__(self): return id(self) def raisestatement(exception, message=""): """ A version of `raise` that can be used as a statement. """ if message: raise exception(message) else: raise exception() def remap(mapping, renamings, selection): """ Change `mapping`'s keys according to the `selection` in `renamings`. The `renaming` found under `selection` in `renamings` is used to rename the keys found in `mapping`. I.e., return a copy of `mapping` with every `key` of `mapping` that is also found in `renaming` replaced with `renaming[key]`. If key doesn't have a renaming, it's returned as is. If `selection` doesn't appear as a key in `renamings`, `mapping` is returned unchanged. Example ------- >>> renamings = {'R1': {'zero': 'nada'}, 'R2': {'foo': 'bar'}} >>> mapping = {'zero': 0, 'foo': 'foobar'} >>> remap(mapping, renamings, 'R1') == {'nada': 0, 'foo': 'foobar'} True >>> remap(mapping, renamings, 'R2') == {'zero': 0, 'bar': 'foobar'} True As a special case, if `selection` is a `class`, not only `selection` is considered to select a renaming, but the classes in `selection`'s `mro` are considered too. The first class in `selection`'s `mro` which is also found to be a key in `renamings` is used to determine which renaming to use. The search starts at `selection`. Parameters ---------- mapping: `Mapping` The `Mapping` whose keys should be renamed. renamings: `Mapping` of `Mappings <collections.abc.Mapping>` selection: `Hashable` Key specifying which entry in `renamings` is used to determine the new keys in the copy of `mapping`. If `selection` is a `class`, the first entry of `selection`'s `mro` which is found in `renamings` is used to determine the new keys. """ mro = getattr(selection, "mro", lambda: [selection]) for c in mro(): if c in renamings: break return {renamings.get(c, {}).get(k, k): v for k, v in mapping.items()} ``` #### File: tabular/tools/postprocessing.py ```python import os import numpy as np import pandas as pd from oemof.network import Bus, Sink from oemof.outputlib import views from oemof.solph.components import GenericStorage from oemof.tabular import facades def component_results(es, results, select="sequences"): """ Aggregated by component type """ c = {} if not hasattr(es, "typemap"): setattr(es, "typemap", facades.TYPEMAP) for k, v in es.typemap.items(): if type(k) == str: if select == "sequences": _seq_by_type = [ views.node(results, n, multiindex=True).get("sequences") for n in es.nodes if isinstance(n, v) and not isinstance(n, Bus) ] # check if dataframes / series have been returned if any( [ isinstance(i, (pd.DataFrame, pd.Series)) for i in _seq_by_type ] ): seq_by_type = pd.concat(_seq_by_type, axis=1) c[str(k)] = seq_by_type if select == "scalars": _sca_by_type = [ views.node(results, n, multiindex=True).get("scalars") for n in es.nodes if isinstance(n, v) and not isinstance(n, Bus) ] if [x for x in _sca_by_type if x is not None]: _sca_by_type = pd.concat(_sca_by_type) c[str(k)] = _sca_by_type return c def bus_results(es, results, select="sequences", concat=False): """ Aggregated for every bus of the energy system """ br = {} buses = [b for b in es.nodes if isinstance(b, Bus)] for b in buses: if select == "sequences": bus_sequences = pd.concat( [ views.node(results, b, multiindex=True).get( "sequences", pd.DataFrame() ) ], axis=1, ) br[str(b)] = bus_sequences if select == "scalars": br[str(b)] = views.node(results, b, multiindex=True).get("scalars") if concat: if select == "sequences": axis = 1 else: axis = 0 br = pd.concat([b for b in br.values()], axis=axis) return br def supply_results( types=[ "dispatchable", "volatile", "conversion", "backpressure", "extraction", "storage", "reservoir", ], bus=None, results=None, es=None, ): """ """ if not hasattr(es, "typemap"): setattr(es, "typemap", facades.TYPEMAP) selection = pd.DataFrame() for t in types: if ( issubclass(es.typemap[t], GenericStorage) and es.typemap[t] is not facades.Reservoir ): df = views.net_storage_flow(results, node_type=es.typemap[t]) if df is not None: selection = pd.concat([selection, df], axis=1) else: df = views.node_output_by_type(results, node_type=es.typemap[t]) if df is not None: selection = pd.concat([selection, df], axis=1) selection = selection.loc[ :, (slice(None), [es.groups[b] for b in bus], ["flow", "net_flow"]) ] return selection def demand_results(types=["load"], bus=None, results=None, es=None): """ """ if not hasattr(es, "typemap"): setattr(es, "typemap", facades.TYPEMAP) selection = pd.DataFrame() for t in types: selection = pd.concat( [ selection, views.node_input_by_type(results, node_type=es.typemap[t]), ], axis=1, ) selection = selection.loc[ :, ([es.groups[b] for b in bus], slice(None), ["flow"]) ] return selection def write_results( m, output_path, raw=False, summary=True, scalars=True, **kwargs ): """ """ def save(df, name, path=output_path): """ Helper for writing csv files """ df.to_csv(os.path.join(path, name + ".csv")) buses = [b.label for b in m.es.nodes if isinstance(b, Bus)] link_results = component_results(m.es, m.results).get("link") if link_results is not None and raw: save(link_results, "links-oemof") imports = pd.DataFrame() for b in buses: supply = supply_results(results=m.results, es=m.es, bus=[b], **kwargs) supply.columns = supply.columns.droplevel([1, 2]) demand = demand_results(results=m.results, es=m.es, bus=[b]) excess = component_results(m.es, m.results, select="sequences").get( "excess" ) if link_results is not None and m.es.groups[b] in list( link_results.columns.levels[0] ): ex = link_results.loc[ :, (m.es.groups[b], slice(None), "flow") ].sum(axis=1) im = link_results.loc[ :, (slice(None), m.es.groups[b], "flow") ].sum(axis=1) net_import = im - ex net_import.name = m.es.groups[b] imports = pd.concat([imports, net_import], axis=1) supply["import"] = net_import if m.es.groups[b] in demand.columns: _demand = demand.loc[:, (m.es.groups[b], slice(None), "flow")] _demand.columns = _demand.columns.droplevel([0, 2]) supply = pd.concat([supply, _demand], axis=1) if excess is not None: if m.es.groups[b] in excess.columns: _excess = excess.loc[:, (m.es.groups[b], slice(None), "flow")] _excess.columns = _excess.columns.droplevel([0, 2]) supply = pd.concat([supply, _excess], axis=1) save(supply, b) save(imports, "import") try: all = bus_results(m.es, m.results, select="scalars", concat=True) all.name = "value" endogenous = all.reset_index() endogenous["tech"] = [ getattr(t, "tech", np.nan) for t in all.index.get_level_values(0) ] endogenous["carrier"] = [ getattr(t, "carrier", np.nan) for t in all.index.get_level_values(0) ] endogenous.set_index( ["from", "to", "type", "tech", "carrier"], inplace=True ) except ValueError: endogenous = pd.DataFrame() d = dict() for node in m.es.nodes: if not isinstance(node, (Bus, Sink, facades.Shortage)): if getattr(node, "capacity", None) is not None: if isinstance(node, facades.TYPEMAP["link"]): pass else: key = ( node, [n for n in node.outputs.keys()][0], "capacity", node.tech, # tech & carrier are oemof-tabular specific node.carrier, ) # for oemof logic d[key] = {"value": node.capacity} exogenous = pd.DataFrame.from_dict(d).T # .dropna() if not exogenous.empty: exogenous.index = exogenous.index.set_names( ["from", "to", "type", "tech", "carrier"] ) capacities = pd.concat([endogenous, exogenous]) capacities = pd.concat([endogenous, exogenous]) save(capacities, "capacities") bresults = bus_results(m.es, m.results, concat=True) if "duals" in bresults.columns.levels[2]: duals = bresults.xs("duals", level=2, axis=1) duals.columns = duals.columns.droplevel(1) duals = (duals.T / m.objective_weighting).T save(duals, "shadow_prices") # check if storages exist in energy system nodes if [n for n in m.es.nodes if isinstance(n, GenericStorage)]: filling_levels = views.node_weight_by_type(m.results, GenericStorage) filling_levels.columns = filling_levels.columns.droplevel(1) save(filling_levels, "filling_levels") ``` #### File: oemof-tabular/tests/test_examples.py ```python import pkg_resources as pkg from oemof.energy_system import EnergySystem as ES from oemof.tabular.facades import TYPEMAP # The import below is only used to monkey patch `EnergySystem`. # Hence the `noqa` because otherwise, style checkers would complain about an # unused import. import oemof.tabular.datapackage # noqa: F401 def test_example_datapackage_readability(): """ The example datapackages can be read and loaded. """ systems = [] for example in pkg.resource_listdir( "oemof.tabular", "examples/datapackages" ): print("Runnig reading datapackage example {} ...".format(example)) systems.append( ES.from_datapackage( pkg.resource_filename( "oemof.tabular", "examples/datapackages/{}/datapackage.json".format( example ), ), typemap=TYPEMAP, ) ) for system in systems: assert type(system) is ES def test_scripting_examples(): """ """ exclude = ["plotting.py", "__pycache__"] for example in pkg.resource_listdir("oemof.tabular", "examples/scripting"): if not example.endswith(".ipynb") and example not in exclude: print("Runnig scripting example {} ...".format(example)) exec( open( pkg.resource_filename( "oemof.tabular", "examples/scripting/{}".format(example), ) ).read() ) ```
{ "source": "jnnr/oemof", "score": 3 }
#### File: oemof/tests/solph_tests.py ```python from nose.tools import ok_ from oemof.energy_system import EnergySystem as EnSys from oemof.network import Node from oemof.solph.blocks import InvestmentFlow as InvFlow from oemof.solph import Investment import oemof.solph as solph class TestsGrouping: def setup(self): self.es = EnSys(groupings=solph.GROUPINGS) Node.registry = self.es def test_investment_flow_grouping(self): """ Flows of investment sink should be grouped. The constraint tests uncovered a spurious error where the flows of an investment `Sink` where not put into the `InvestmentFlow` group, although the corresponding grouping was present in the energy system. The error occured in the case where the investment `Sink` was not instantiated directly after the `Bus` it is connected to. This test recreates this error scenario and makes sure that the `InvestmentFlow` group is not empty. """ b = solph.Bus(label='Bus') solph.Source(label='Source', outputs={b: solph.Flow( actual_value=[12, 16, 14], nominal_value=1000000, fixed=True)}) solph.Sink(label='Sink', inputs={b: solph.Flow( summed_max=2.3, variable_costs=25, max=0.8, investment=Investment(ep_costs=500, maximum=10e5))}) ok_(self.es.groups.get(InvFlow), ("Expected InvestmentFlow group to be nonempty.\n" + "Got: {}").format(self.es.groups.get(InvFlow))) ```
{ "source": "jnns/pytest-django-factories", "score": 2 }
#### File: jnns/pytest-django-factories/conftest.py ```python from itertools import count import django import pytest from django.conf import settings from django.db import models from django_factories import Factory, SubFactory settings.configure(DEBUG=False) django.setup() class Author(models.Model): name = models.CharField(max_length=255) age = models.PositiveSmallIntegerField() class Meta: app_label = "dummy_app" def __str__(self): return self.name class Book(models.Model): author = models.ForeignKey(Author, on_delete=models.CASCADE) title = models.CharField(max_length=255) class Meta: app_label = "dummy_app" class Chapter(models.Model): book = models.ForeignKey(Book, on_delete=models.CASCADE) title = models.CharField(max_length=255, default="Chapter 1") class Meta: app_label = "dummy_app" class ModelA(models.Model): class Meta: app_label = "dummy_app" class ModelB(models.Model): model_a = models.ForeignKey(ModelA, on_delete=models.CASCADE) class Meta: app_label = "dummy_app" @pytest.fixture def author_factory(request): factory = Factory(Author, name="Default Author") return factory(request) @pytest.fixture def book_factory(request): return Factory(Book, title="Default Title")(request) @pytest.fixture def watterson_author_factory(request): return Factory(Author, name="<NAME>")(request) @pytest.fixture def bill_watterson(author_factory): return author_factory(name="<NAME>") @pytest.fixture def watterson_book_factory(request, watterson_author_factory): """This factory builds objects with "<NAME>" as default author.""" return Factory(Book, author=SubFactory("watterson_author_factory"))(request) @pytest.fixture def broken_factory(request): return Factory(Book, author=SubFactory("bill_watterson"))(request) @pytest.fixture def chapter_factory(request): return Factory(Chapter)(request) @pytest.fixture def model_b_factory(request): """Please note that a factory function for ModelA is missing intentionally.""" return Factory(ModelB)(request) @pytest.fixture def enumerated_book_factory(request): counter = count(1) class BookFactory(Factory): model = Book def create(self, **kwargs): return super().create(**kwargs, title=f"Book {next(counter)}") return BookFactory()(request) ```
{ "source": "jnobre/lxmls-toolkit-2017", "score": 3 }
#### File: lxmls/classifiers/multinomial_naive_bayes.py ```python import numpy as np import scipy as scipy import lxmls.classifiers.linear_classifier as lc import sys from lxmls.distributions.gaussian import * class MultinomialNaiveBayes(lc.LinearClassifier): def __init__(self, xtype="gaussian"): lc.LinearClassifier.__init__(self) self.trained = False self.likelihood = 0 self.prior = 0 self.smooth = True self.smooth_param = 1 def train(self, x, y): # n_docs = no. of documents # n_words = no. of unique words n_docs, n_words = x.shape # classes = a list of possible classes classes = np.unique(y) # n_classes = no. of classes n_classes = np.unique(y).shape[0] # initialization of the prior and likelihood variables prior = np.zeros(n_classes) likelihood = np.zeros((n_words, n_classes)) # TODO: This is where you have to write your code! # You need to compute the values of the prior and likelihood parameters # and place them in the variables called "prior" and "likelihood". # Examples: # prior[0] is the prior probability of a document being of class 0 # likelihood[4, 0] is the likelihood of the fifth(*) feature being # active, given that the document is of class 0 # (*) recall that Python starts indices at 0, so an index of 4 # corresponds to the fifth feature! # ---------- # Solution to Exercise 1.1 for i in xrange(n_classes): docs_in_class, _ = np.nonzero(y == classes[i]) # docs_in_class = indices of documents in class i prior[i] = 1.0 * len(docs_in_class) / n_docs # prior = fraction of documents with this class # word_count_in_class = count of word occurrences in documents of class i word_count_in_class = x[docs_in_class, :].sum(0) total_words_in_class = word_count_in_class.sum() # total_words_in_class = total number of words in documents of class i if not self.smooth: # likelihood = count of occurrences of a word in a class likelihood[:, i] = word_count_in_class / total_words_in_class else: likelihood[:, i] = (word_count_in_class+self.smooth_param) / (total_words_in_class + self.smooth_param*n_words) # End solution to Exercise 1.1 # ---------- params = np.zeros((n_words+1, n_classes)) for i in xrange(n_classes): params[0, i] = np.log(prior[i]) params[1:, i] = np.nan_to_num(np.log(likelihood[:, i])) self.likelihood = likelihood self.prior = prior self.trained = True return params ```
{ "source": "jnoddell/LC", "score": 4 }
#### File: LC/E/101.py ```python class Solution(object): def isSymmetric(self, root): """ :type root: TreeNode :rtype: bool """ def dfs(a, b): if not a and not b: return True if not a or not b: return False if a.val != b.val: return False return dfs(a.left, b.right) and dfs(a.right, b.left) return dfs(root.left, root.right) ``` #### File: LC/E/257.py ```python class Solution(object): def binaryTreePaths(self, root): """ :type root: TreeNode :rtype: List[str] """ rtlPaths = list() def dfs(node, path): if node is None: return if path: newPath = path + "->" + str(node.val) else: newPath = str(node.val) if node.left is None and node.right is None: rtlPaths.append(newPath) else: dfs(node.left, newPath) dfs(node.right, newPath) dfs(root, "") return rtlPaths ``` #### File: LC/H/30.py ```python class Solution(object): def findSubstring(self, s, words): """ :type s: str :type words: List[str] :rtype: List[int] """ ret = []; wl = len(words[0]) wordsused = [] for i in range (0, len(s) - len(words) * wl + 1): test = s[i:i+wl] if test in words: for j in range(0, len(words) * wl, wl): curr = s[i+j:i+j+wl] if curr in words: words.remove(curr) wordsused.append(curr); else: break if len(words) == 0: ret.append(i) words = wordsused wordsused = [] else: for w in wordsused: words.append(w) wordsused = [] return ret; ``` #### File: LC/M/12.py ```python class Solution(object): def intToRoman(self, num): """ :type num: int :rtype: str """ exchange = [['I', 1], ['V', 5], ['X', 10], ['L', 50], ['C', 100], ['D', 500], ['M', 1000]] exchange = exchange[::-1] roman = "" index = 0 while num > 0: curr_tuple = exchange[index] curr_symbol = curr_tuple[0] curr_value = curr_tuple[1] increment_index = True if num - curr_value == 0: return (roman + curr_symbol) elif num - curr_value > 0: num -= curr_value roman += curr_symbol increment_index = False elif increment_index and num - 900 >= 0: num -= 900 roman += "CM" elif index > 0 and increment_index and num - 400 >= 0: num -= 400 roman += "CD" elif index > 1 and increment_index and num - 90 >= 0: num -= 90 roman += "XC" elif index > 2 and increment_index and num - 40 >= 0: num -= 40 roman += "XL" elif index > 3 and increment_index and num - 9 >= 0: num -= 9 roman += "IX" elif index > 4 and increment_index and num - 4 >= 0: num -= 4 roman += "IV" if num == 0: return roman elif increment_index: index += 1 ```
{ "source": "jnoelvictorino/rasa", "score": 2 }
#### File: featurizers/sparse_featurizer/regex_featurizer.py ```python import logging import os import re from typing import Any, Dict, List, Optional, Text, Type, Tuple import numpy as np import scipy.sparse import rasa.shared.utils.io import rasa.utils.io import rasa.nlu.utils.pattern_utils as pattern_utils from rasa.nlu import utils from rasa.nlu.components import Component from rasa.nlu.config import RasaNLUModelConfig from rasa.nlu.constants import TOKENS_NAMES, FEATURIZER_CLASS_ALIAS from rasa.shared.nlu.constants import ( TEXT, RESPONSE, FEATURE_TYPE_SENTENCE, FEATURE_TYPE_SEQUENCE, ACTION_TEXT, ) from rasa.nlu.featurizers.featurizer import SparseFeaturizer from rasa.shared.nlu.training_data.features import Features from rasa.nlu.model import Metadata from rasa.nlu.tokenizers.tokenizer import Tokenizer from rasa.shared.nlu.training_data.training_data import TrainingData from rasa.shared.nlu.training_data.message import Message logger = logging.getLogger(__name__) class RegexFeaturizer(SparseFeaturizer): @classmethod def required_components(cls) -> List[Type[Component]]: return [Tokenizer] defaults = { # text will be processed with case sensitive as default "case_sensitive": True, # use lookup tables to generate features "use_lookup_tables": True, # use regexes to generate features "use_regexes": True, # use match word boundaries for lookup table "use_word_boundaries": True, } def __init__( self, component_config: Optional[Dict[Text, Any]] = None, known_patterns: Optional[List[Dict[Text, Text]]] = None, ) -> None: """Construct new features for regexes and lookup table using regex expressions.""" super().__init__(component_config) self.known_patterns = known_patterns if known_patterns else [] self.case_sensitive = self.component_config["case_sensitive"] def train( self, training_data: TrainingData, config: Optional[RasaNLUModelConfig] = None, **kwargs: Any, ) -> None: self.known_patterns = pattern_utils.extract_patterns( training_data, use_lookup_tables=self.component_config["use_lookup_tables"], use_regexes=self.component_config["use_regexes"], use_word_boundaries=self.component_config["use_word_boundaries"], ) for example in training_data.training_examples: for attribute in [TEXT, RESPONSE, ACTION_TEXT]: self._text_features_with_regex(example, attribute) def process(self, message: Message, **kwargs: Any) -> None: self._text_features_with_regex(message, TEXT) def _text_features_with_regex(self, message: Message, attribute: Text) -> None: if self.known_patterns: sequence_features, sentence_features = self._features_for_patterns( message, attribute ) if sequence_features is not None: final_sequence_features = Features( sequence_features, FEATURE_TYPE_SEQUENCE, attribute, self.component_config[FEATURIZER_CLASS_ALIAS], ) message.add_features(final_sequence_features) if sentence_features is not None: final_sentence_features = Features( sentence_features, FEATURE_TYPE_SENTENCE, attribute, self.component_config[FEATURIZER_CLASS_ALIAS], ) message.add_features(final_sentence_features) def _features_for_patterns( self, message: Message, attribute: Text ) -> Tuple[Optional[scipy.sparse.coo_matrix], Optional[scipy.sparse.coo_matrix]]: """Checks which known patterns match the message. Given a sentence, returns a vector of {1,0} values indicating which regexes did match. Furthermore, if the message is tokenized, the function will mark all tokens with a dict relating the name of the regex to whether it was matched.""" # Attribute not set (e.g. response not present) if not message.get(attribute): return None, None tokens = message.get(TOKENS_NAMES[attribute], []) if not tokens: # nothing to featurize return None, None flags = 0 # default flag if not self.case_sensitive: flags = re.IGNORECASE sequence_length = len(tokens) sequence_features = np.zeros([sequence_length, len(self.known_patterns)]) sentence_features = np.zeros([1, len(self.known_patterns)]) for pattern_index, pattern in enumerate(self.known_patterns): matches = re.finditer(pattern["pattern"], message.get(TEXT), flags=flags) matches = list(matches) for token_index, t in enumerate(tokens): patterns = t.get("pattern", default={}) patterns[pattern["name"]] = False for match in matches: if t.start < match.end() and t.end > match.start(): patterns[pattern["name"]] = True sequence_features[token_index][pattern_index] = 1.0 if attribute in [RESPONSE, TEXT]: # sentence vector should contain all patterns sentence_features[0][pattern_index] = 1.0 t.set("pattern", patterns) return ( scipy.sparse.coo_matrix(sequence_features), scipy.sparse.coo_matrix(sentence_features), ) @classmethod def load( cls, meta: Dict[Text, Any], model_dir: Optional[Text] = None, model_metadata: Optional[Metadata] = None, cached_component: Optional["RegexFeaturizer"] = None, **kwargs: Any, ) -> "RegexFeaturizer": file_name = meta.get("file") regex_file = os.path.join(model_dir, file_name) if os.path.exists(regex_file): known_patterns = rasa.shared.utils.io.read_json_file(regex_file) return RegexFeaturizer(meta, known_patterns=known_patterns) else: return RegexFeaturizer(meta) def persist(self, file_name: Text, model_dir: Text) -> Optional[Dict[Text, Any]]: """Persist this model into the passed directory. Return the metadata necessary to load the model again.""" file_name = file_name + ".pkl" regex_file = os.path.join(model_dir, file_name) utils.write_json_to_file(regex_file, self.known_patterns, indent=4) return {"file": file_name} ```
{ "source": "jnoennig/aws-account-bootstrap", "score": 2 }
#### File: aws-account-bootstrap/scripts/accountBootstrap.py ```python import os import logging import time import json from collections import OrderedDict import boto3 from botocore.exceptions import ClientError LOGGER = logging.getLogger() LOGGER.setLevel(logging.INFO) def assume_role(aws_account_number, role_name, region='us-west-2'): """ Assumes the provided role in each account and returns a GuardDuty client :param aws_account_number: AWS Account Number :param role_name: Role to assume in target account :param aws_region: AWS Region for the Client call, not required for IAM calls :return: GuardDuty client in the specified AWS Account and Region Modified by <NAME> """ # Beginning the assume role process for account sts_client = boto3.client('sts') # Get the current partition partition = sts_client.get_caller_identity()['Arn'].split(":")[1] response = sts_client.assume_role( RoleArn='arn:{}:iam::{}:role/{}'.format( partition, aws_account_number, role_name ), RoleSessionName='AccountBootstrap' ) # Storing STS credentials session = boto3.Session( aws_access_key_id=response['Credentials']['AccessKeyId'], aws_secret_access_key=response['Credentials']['SecretAccessKey'], aws_session_token=response['Credentials']['SessionToken'], region_name=region ) LOGGER.info("Assumed session for {}.".format( aws_account_number )) return session def get_enabled_regions(enabled_regions, aws_service): """ Gets all supported regions for a specified AWS service If no regions are specified it returns all regions :param enabled_regions: User specified regions :param aws_service: AWS service you want to check :return: list of regions Modified by <NAME> """ session = boto3.session.Session() region_results = [] if enabled_regions: region_results = [str(item).lower().strip() for item in enabled_regions.split(',')] LOGGER.info("Enabling in these regions: {}".format(region_results)) else: region_results = session.get_available_regions(aws_service) LOGGER.info("Enabling in all available regions {}".format(region_results)) return region_results def get_member_email(member_account_id): ''' Gets the member account email from the Organizations service :param member_account_id: AWS member account ID :return member_email: Member email address ''' try: orgs = boto3.client('organizations') response = orgs.describe_account(AccountId=member_account_id) member_email = response['Account']['Email'] return member_email except ClientError as e: LOGGER.error('Failed to get member account email address for account {0}: {1}'.format(member_account_id, e)) def create_alias(session, member_account_name, member_account_id): ''' Creates an alias for an account :param session: IAM session :param member_account_name: AWS target account name :param member_account_id: AWS target account id :return: API response ''' try: # You can prepend or append a string to make the account_alias globally unique account_alias = member_account_name iam = session.client('iam') response = iam.create_account_alias( AccountAlias=account_alias ) LOGGER.info('Set account {0} alias to: {1}'.format(member_account_id, account_alias)) return response except ClientError as e: LOGGER.error('Failed setting alias for account {0}: {1}'.format(member_account_id, e)) def update_iam_pwd_policy(session, member_account_id): ''' Updates the accounts IAM password policy :param session: IAM session :param member_account_id: AWS target account id :return: API response ''' try: iam = session.client('iam') response = iam.update_account_password_policy( MinimumPasswordLength=15, RequireSymbols=True, RequireNumbers=True, RequireUppercaseCharacters=True, RequireLowercaseCharacters=True, AllowUsersToChangePassword=True, MaxPasswordAge=365, PasswordReusePrevention=24, HardExpiry=True ) LOGGER.info('Set account {0} password policy'.format(member_account_id)) return response except ClientError as e: LOGGER.error('Failed to set account {0} IAM password policy: {1}'.format(member_account_id, e)) def enable_s3_pub_block(session, member_account_id): ''' Enables S3 public access block :param session: IAM session :param member_account_id: AWS target account id :return: API response ''' try: s3 = session.client('s3control') response = s3.put_public_access_block( PublicAccessBlockConfiguration={ 'BlockPublicAcls': True, 'IgnorePublicAcls': True, 'BlockPublicPolicy': True, 'RestrictPublicBuckets': True }, AccountId=member_account_id ) LOGGER.info('Set account {0} S3 public access block at account level'.format(member_account_id)) return response except ClientError as e: LOGGER.error('Failed setting S3 public access block for account {0}: {1}'.format(member_account_id, e)) def logging_bucket(session, region, member_account_name, member_account_id): ''' Creates the S3 access logging bucket and returns the responses :param session: IAM session :param region: AWS region to deploy bucket :param member_account_name: AWS target account name :param member_account_id: AWS target account id ''' response_dict = {} # If bucket name needs to be more unique prepend or append string to bucket_name bucket_name = member_account_name + '-s3accesslogs-' + region s3 = session.client('s3') try: # Creating logging bucket LOGGER.info('Creating bucket {} in region {}'.format(bucket_name, region)) if region == 'us-east-1': s3 = session.client('s3') create_response = s3.create_bucket( Bucket=bucket_name ) acl_response = s3.put_bucket_acl( ACL='log-delivery-write', Bucket=bucket_name ) else: create_response = s3.create_bucket( ACL='log-delivery-write', Bucket=bucket_name, CreateBucketConfiguration={ 'LocationConstraint': region } ) response_dict.update({'createBucket': create_response}) except ClientError as e: LOGGER.error('Failed creating S3 logging bucket for account {0}: {1}'.format(member_account_id, e)) LOGGER.info('Created bucket {}'.format(bucket_name)) # Encrypting logging bucket try: LOGGER.info('Setting encryption on bucket {}'.format(bucket_name)) encrypt_response = s3.put_bucket_encryption( Bucket=bucket_name, ServerSideEncryptionConfiguration={ 'Rules':[ { 'ApplyServerSideEncryptionByDefault':{ 'SSEAlgorithm': 'AES256' } } ] } ) response_dict.update({'encryptBucket': encrypt_response}) except ClientError as e: LOGGER.error('Failed creating S3 logging bucket for account {0}: {1}'.format(member_account_id, e)) # Versioning logging bucket try: LOGGER.info('Enabling bucket versioning on bucket {}'.format(bucket_name)) ver_response = s3.put_bucket_versioning( Bucket=bucket_name, VersioningConfiguration={ 'Status':'Enabled' } ) response_dict.update({'versionBucket': ver_response}) except ClientError as e: LOGGER.error('Failed enabling versioning on S3 logging bucket for account {0}: {1}'.format(member_account_id, e)) # Deny public access try: LOGGER.info('Denying public access on bucket {}'.format(bucket_name)) public_response = s3.put_public_access_block( Bucket=bucket_name, PublicAccessBlockConfiguration={ 'BlockPublicAcls': True, 'IgnorePublicAcls': True, 'BlockPublicPolicy': True, 'RestrictPublicBuckets': True } ) response_dict.update({'publicBucket': public_response}) except ClientError as e: LOGGER.error('Failed denying public access on S3 logging bucket for account {0}: {1}'.format(member_account_id, e)) # Bucket lifecycle configuration try: LOGGER.info('Enabling lifecycle configuration on bucket {}'.format(bucket_name)) lifecycle_response = s3.put_bucket_lifecycle_configuration( Bucket=bucket_name, LifecycleConfiguration={ 'Rules': [ { 'Expiration': { 'Days': 365 }, 'ID': 'cleanup', 'Prefix': '', 'Status': 'Enabled', 'NoncurrentVersionExpiration': { 'NoncurrentDays': 90 }, 'AbortIncompleteMultipartUpload': { 'DaysAfterInitiation': 7 } } ] } ) response_dict.update({'lifecycleBucket': lifecycle_response}) except ClientError as e: LOGGER.error('Failed setting lifecycle configuration on S3 logging bucket for account {0}: {1}'.format(member_account_id, e)) return response_dict def cf_stacksets(stackset_name, member_account_id, region_list): ''' Updates a StackSet with a new name. :param stackset_name: Name of the StackSet :param member_account_id: AWS target account id :param region_list: List of AWS regions :return: response ''' try: cf = boto3.client('cloudformation') response = cf.create_stack_instances( StackSetName=stackset_name, Accounts=[member_account_id], Regions=region_list ) LOGGER.info('Deployed stack in StackSet {0} for account {1}'.format(stackset_name, member_account_id)) return response except ClientError as e: LOGGER.error('Error updating CloudFormation StackSet {0}: {1}'.format(stackset_name, e)) # Setup GuardDuty in master memeber relationship def get_master_members(aws_region, detector_id): """ Returns a list of current members of the GuardDuty master account :param aws_region: AWS Region of the GuardDuty master account :param detector_id: DetectorId of the GuardDuty master account in the AWS Region :return: dict of AwsAccountId:RelationshipStatus """ member_dict = dict() gd_client = boto3.client('guardduty', region_name=aws_region) # Need to paginate and iterate over results paginator = gd_client.get_paginator('list_members') operation_parameters = { 'DetectorId': detector_id, 'OnlyAssociated': 'false' } page_iterator = paginator.paginate(**operation_parameters) for page in page_iterator: if page['Members']: for member in page['Members']: member_dict.update({member['AccountId']: member['RelationshipStatus']}) return member_dict def get_members(aws_region, detector_id): ''' Returns a dictionary of account IDs and emails :param aws_region (us-west-2): defaults to us-west-2 as that is our default region :param detector_id: DetectorId of the GuardDuty master account in the AWS Region :return: dict of AwsAccountId:email ''' member_dict = dict() gd_client = boto3.client('guardduty', region_name=aws_region) # Need to paginate and iterate over results paginator = gd_client.get_paginator('list_members') operation_parameters = { 'DetectorId': detector_id, 'OnlyAssociated': 'false' } page_iterator = paginator.paginate(**operation_parameters) for page in page_iterator: if page['Members']: for member in page['Members']: # Accounts that were added at the Organization level do not have associated emails try: member_email = member['Email'] except: member_email = None member_dict.update({member['AccountId']: member_email}) return member_dict def list_detectors(client, aws_region): """ Lists the detectors in a given Account/Region Used to detect if a detector exists already :param client: GuardDuty client :param aws_region: AWS Region :return: Dictionary of AWS_Region: DetectorId """ detector_dict = client.list_detectors() if detector_dict['DetectorIds']: for detector in detector_dict['DetectorIds']: detector_dict.update({aws_region: detector}) else: detector_dict.update({aws_region: ''}) return detector_dict def master_account_check(master_account, guardduty_regions): """ Enables GuardDuty in the regions specified :param master_account: Master Account ID :param guardduty_regions: Regions to enable GuardDuty :returns: A tuple with failed regions and detector id dict """ failed_master_regions = [] master_detector_id_dict = dict() # Processing Master account for aws_region in guardduty_regions: try: aws_region = aws_region.lower().strip() gd_client = boto3.client('guardduty', region_name=aws_region) detector_dict = list_detectors(gd_client, aws_region) if detector_dict[aws_region]: # a detector exists LOGGER.info('Found existing detector {detector} in {region} for {account}'.format( detector=detector_dict[aws_region], region=aws_region, account=master_account )) master_detector_id_dict.update({aws_region: detector_dict[aws_region]}) else: # create a detector detector_str = gd_client.create_detector(Enable=True)['DetectorId'] LOGGER.info('Created detector {detector} in {region} for {account}'.format( detector=detector_str, region=aws_region, account=master_account )) master_detector_id_dict.update({aws_region: detector_str}) except ClientError as err: if err.response['ResponseMetadata']['HTTPStatusCode'] == 403: LOGGER.error("Failed to list detectors in Master account for region: {} due to an authentication error. Either your credentials are not correctly configured or the region is an OptIn region that is not enabled on the master account. Skipping {} and attempting to continue").format(aws_region,aws_region) failed_master_regions.append(aws_region) return (failed_master_regions, master_detector_id_dict) def add_config_rule(session, master_account, aws_region): """ Adds guardduty-enabled-centralized AWS Config rule :param session: AWS session object :param master_account: GuardDuty master account :param aws_region: AWS region :returns: response of API call """ config = session.client('config', region_name=aws_region) try: input_parameters = {'CentralMonitoringAccount': master_account} response = config.put_config_rule( ConfigRule={ 'ConfigRuleName': 'guardduty-enabled-centralized', 'Description': 'Checks whether Amazon GuardDuty is enabled in your AWS account and region. If you provide an AWS account for centralization, the rule evaluates the GuardDuty results in that account. The rule is compliant when GuardDuty is enabled.', 'Scope': {}, 'Source': { 'Owner': 'AWS', 'SourceIdentifier': 'GUARDDUTY_ENABLED_CENTRALIZED', }, 'InputParameters': json.dumps(input_parameters), 'MaximumExecutionFrequency': 'TwentyFour_Hours', 'ConfigRuleState': 'ACTIVE' } ) LOGGER.info('AWS Config GuardDuty rule enabled') return response except ClientError as e: LOGGER.error(e) def invite_members(master_account, aws_account_dict, assume_role_name, guardduty_regions, master_detector_id_dict): """ Invites member accounts to the GuardDuty master :param master_account: Master Account ID :param aws_account_dict: Dictionary of member Account IDs and email addresses :param assume_role_name: AWS IAM role to assume in the member accounts :param guardduty_regions: Regions to enable GuardDuty in :param master_detector_id_dict: Dictionary of Master Account GuardDuty dectotor IDs :returns: List of failed accounts """ # Setting the invitationmessage gd_invite_message = 'Account {account} invites you to join GuardDuty.'.format(account=master_account) failed_accounts = [] for account in aws_account_dict.keys(): try: session = assume_role(account, assume_role_name) for aws_region in guardduty_regions: LOGGER.info('Beginning {account} in {region}'.format( account=account, region=aws_region )) gd_client = session.client('guardduty', region_name=aws_region) # get detectors for this region detector_dict = list_detectors(gd_client, aws_region) detector_id = detector_dict[aws_region] # If detector does not exist, create it if detector_id: # a detector exists LOGGER.info('Found existing detector {detector} in {region} for {account}'.format( detector=detector_id, region=aws_region, account=account )) else: # create a detector detector_str = gd_client.create_detector(Enable=True)['DetectorId'] LOGGER.info('Created detector {detector} in {region} for {account}'.format( detector=detector_str, region=aws_region, account=account )) detector_id = detector_str master_detector_id = master_detector_id_dict[aws_region] member_dict = get_master_members(aws_region, master_detector_id) # If detector is not a member of the GuardDuty master account, add it if account not in member_dict: gd_client = boto3.client('guardduty', region_name=aws_region) gd_client.create_members( AccountDetails=[ { 'AccountId': account, 'Email': aws_account_dict[account] } ], DetectorId=master_detector_id ) LOGGER.info('Added Account {monitored} to member list in GuardDuty master account {master} for region {region}'.format( monitored=account, master=master_account, region=aws_region )) start_time = int(time.time()) while account not in member_dict: if (int(time.time()) - start_time) > 180: LOGGER.warning("Membership did not show up for account {}, skipping".format(account)) break time.sleep(5) member_dict = get_master_members(aws_region, master_detector_id) else: LOGGER.info('Account {monitored} is already a member of {master} in region {region}'.format( monitored=account, master=master_account, region=aws_region )) # Check if Verification Was failed before, delete and add it again. if member_dict[account] == 'EmailVerificationFailed': # Member is enabled and already being monitored LOGGER.error('Account {account} Error: EmailVerificationFailed'.format(account=account)) gd_client = boto3.client('guardduty', region_name=aws_region) gd_client.disassociate_members( AccountIds=[ account ], DetectorId=master_detector_id ) gd_client.delete_members( AccountIds=[ account ], DetectorId=master_detector_id ) LOGGER.warning('Deleting members for {account} in {region}'.format( account=account, region=aws_region )) gd_client.create_members( AccountDetails=[ { 'AccountId': account, 'Email': aws_account_dict[account] } ], DetectorId=master_detector_id ) LOGGER.info('Added Account {monitored} to member list in GuardDuty master account {master} for region {region}'.format( monitored=account, master=master_account, region=aws_region )) start_time = int(time.time()) while account not in member_dict: if (int(time.time()) - start_time) > 300: LOGGER.warning("Membership did not show up for account {}, skipping".format(account)) break time.sleep(5) member_dict = get_master_members(aws_region, master_detector_id) if member_dict[account] == 'Enabled': # Member is enabled and already being monitored LOGGER.info('Account {account} is already enabled'.format(account=account)) else: master_gd_client = boto3.client('guardduty', region_name=aws_region) gd_client = session.client('guardduty', region_name=aws_region) if member_dict[account] == 'Disabled' : # Member was disabled LOGGER.error('Account {account} Error: Disabled'.format(account=account)) master_gd_client.start_monitoring_members( AccountIds=[ account ], DetectorId=master_detector_id ) LOGGER.info('Account {account} Re-Enabled'.format(account=account)) while member_dict[account] != 'Enabled': if member_dict[account] == 'Created' : # Member has been created in the GuardDuty master account but not invited yet master_gd_client = boto3.client('guardduty', region_name=aws_region) master_gd_client.invite_members( AccountIds=[ account ], DetectorId=master_detector_id, Message=gd_invite_message ) LOGGER.info('Invited Account {monitored} to GuardDuty master account {master} in region {region}'.format( monitored=account, master=master_account, region=aws_region )) if member_dict[account] == 'Invited' or member_dict[account] == 'Resigned': # member has been invited so accept the invite response = gd_client.list_invitations() invitation_dict = dict() invitation_id = None for invitation in response['Invitations']: invitation_id = invitation['InvitationId'] if invitation_id is not None: gd_client.accept_invitation( DetectorId=detector_id, InvitationId=invitation_id, MasterId=str(master_account) ) LOGGER.info('Accepting Account {monitored} to GuardDuty master account {master} in region {region}'.format( monitored=account, master=master_account, region=aws_region )) # Refresh the member dictionary member_dict = get_master_members(aws_region, master_detector_id) LOGGER.info('Finished {account} in {region}'.format(account=account, region=aws_region)) add_config_rule(session, master_account, aws_region) except ClientError as e: LOGGER.error("Error Processing Account {}".format(account)) failed_accounts.append({ account: repr(e) }) return failed_accounts def lambda_handler(event, context): ''' Main function ''' member_account_id = event['detail']['serviceEventDetails']['createManagedAccountStatus']['account']['accountId'] member_account_name = event['detail']['serviceEventDetails']['createManagedAccountStatus']['account']['accountName'] master_account = boto3.client('sts').get_caller_identity().get('Account') assume_role_name = os.environ['assumeRoleName'] enabled_regions = os.environ['enabledRegions'] stackset_names = os.environ['stackSetNames'] stackset_names_or = os.environ['stackSetNamesOneRegion'] session = assume_role(member_account_id, assume_role_name) # Create resources # Alias create_alias(session, member_account_name, member_account_id) # IAM password policy update_iam_pwd_policy(session, member_account_id) # Enable S3 publick block enable_s3_pub_block(session, member_account_id) # S3 logging buckets s3_regions = get_enabled_regions(enabled_regions, 's3') for region in s3_regions: session = assume_role(member_account_id, assume_role_name, region=region) logging_bucket(session, region, member_account_name, member_account_id) # CloudFormation cf_regions = get_enabled_regions(enabled_regions, 'cloudformation') stackset_names = [str(item).strip() for item in stackset_names.split(',')] for stackset_name in stackset_names: if stackset_name: cf_stacksets(stackset_name, member_account_id, cf_regions) else: LOGGER.info('CloudFormation StackSet list empty') stackset_names_or = [str(item).strip() for item in stackset_names_or.split(',')] for stackset_name in stackset_names_or: if stackset_name: default_region = [os.environ['defaultRegion']] cf_stacksets(stackset_name, member_account_id, default_region) else: LOGGER.info('CloudFormation StackSet one region empty') # GuardDuty # Collecting data to enable GD in member accounts # Change default_gd_region to your main region default_gd_region = 'us-west-2' aws_account_dict = OrderedDict() gd_regions = get_enabled_regions(enabled_regions, 'guardduty') gd_client = boto3.client('guardduty', region_name=default_gd_region) detector_dict = list_detectors(gd_client, default_gd_region) detector_id = detector_dict[default_gd_region] members = get_members(default_gd_region, detector_id) member_email = get_member_email(member_account_id) aws_account_dict.update({member_account_id: member_email}) if len(members) > 1000: raise Exception("Only 1000 accounts can be linked to a single master account") master_account_checked = master_account_check(master_account, gd_regions) master_detector_id_dict = master_account_checked[1] failed_master_regions = master_account_checked[0] # Removes regions the detector failed to enable in the master account for failed_region in failed_master_regions: gd_regions.remove(failed_region) # Processing accounts to be linked/invited failed_accounts = invite_members( master_account, aws_account_dict, assume_role_name, gd_regions, master_detector_id_dict ) if len(failed_accounts) > 0: for account in failed_accounts: LOGGER.error("GuardDuty failed to enable accounts") LOGGER.error("{}: \n\t{}".format( list(account.keys())[0], account[list(account.keys())[0]] ) ) ```
{ "source": "jnoennig/crest", "score": 3 }
#### File: crest/Extensions/exifData.py ```python import appex from PIL import Image from PIL.ExifTags import TAGS def get_exif(fn): ret = {} i = Image.open(fn) info = i._getexif() for tag, value in info.items(): decoded = TAGS.get(tag, tag) ret[decoded] = value return ret def main(): if not appex.is_running_extension(): print('This script is intended to be run from the sharing extension.') return images = appex.get_attachments('public.jpeg') if images: a = get_exif(images[0]) if a: print('EXIF data:') for k, v in a.items(): print('{0}: {1}'.format(k, v)) else: print('No exif data found') else: print('No input image found') if __name__ == '__main__': main() ``` #### File: crest/Extensions/hash-md5.py ```python import appex import hashlib import clipboard def md5_hash(file_path): try: hash_md5 = hashlib.md5() with open(file_path, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() except: return "Error the file was not hashed." def main(): if not appex.is_running_extension(): print('This script is intended to be run from the sharing extension.') return myfile = appex.get_attachments('public.data')[0] if myfile: md5 = md5_hash(myfile) print('md5: {}\n'.format(md5)) clipboard.set(md5) print('The md5 hash has been copied to the clipboard.') if __name__ == '__main__': main() ``` #### File: crest/Extensions/pdfMetadata.py ```python import appex import PyPDF2 from PyPDF2 import PdfFileReader def main(): if not appex.is_running_extension(): print('This script is intended to be run from the sharing extension.') return pdfs = appex.get_attachments(uti='public.data') if pdfs: pdf_file = PdfFileReader(open(pdfs[0], "rb")) if pdf_file: metadata = pdf_file.getDocumentInfo() for k, v in metadata.items(): if type(v) == PyPDF2.generic.IndirectObject: print('{0} - {1}'.format(k, metadata[k])) else: print('{0} - {1}'.format(k, v)) else: print('No metadata found') else: print('No input PDF found') if __name__ == '__main__': main() ```
{ "source": "jnohlgard/projector-installer", "score": 2 }
#### File: projector-installer/projector_installer/ide_update.py ```python from distutils.version import LooseVersion from typing import Optional, List import click from .config_generator import save_config from .global_config import SHORT_NETWORK_TIMEOUT, LONG_NETWORK_TIMEOUT from .products import Product, get_product_releases, IDEKind, load_compatible_apps, \ COMPATIBLE_IDE_FILE, EAP_PRODUCTS from .apps import is_projector_installed_ide, get_product_info, download_and_install, ProductInfo from .run_config import RunConfig from .timeout import TimeoutException, timeout # This map differs from products.CODE2KIND in several positions. IDE_UPDATE_CODE2KIND = { 'IC': IDEKind.Idea_Community, 'IU': IDEKind.Idea_Ultimate, 'PC': IDEKind.PyCharm_Community, 'PY': IDEKind.PyCharm_Professional, 'CL': IDEKind.CLion, 'GO': IDEKind.GoLand, 'DB': IDEKind.DataGrip, 'PS': IDEKind.PhpStorm, 'WS': IDEKind.WebStorm, 'RM': IDEKind.RubyMine, 'RD': IDEKind.Rider, 'PD': IDEKind.DataSpell } def is_updatable_ide(path_to_ide: str) -> bool: """Returns true if IDE updatable""" return is_projector_installed_ide(path_to_ide) def get_product_list_from_file(kind: IDEKind) -> List[Product]: """Get product list from compatible IDE json""" return [prod for prod in load_compatible_apps(COMPATIBLE_IDE_FILE) if prod.kind == kind] def is_tested_ide(run_config: RunConfig) -> bool: """Returns True if given IDE is from compatible list""" if run_config.update_channel == RunConfig.UNKNOWN: prod_info = get_product_info(run_config.path_to_app) kind: IDEKind = IDE_UPDATE_CODE2KIND.get(prod_info.product_code, IDEKind.Unknown) ver = LooseVersion(prod_info.version) for prod in load_compatible_apps(COMPATIBLE_IDE_FILE): if prod.kind == kind and prod.ver == ver: return True return False return run_config.update_channel == RunConfig.TESTED def get_product_version(prod_info: ProductInfo) -> LooseVersion: """"Return version for given product""" kind: IDEKind = IDE_UPDATE_CODE2KIND.get(prod_info.product_code, IDEKind.Unknown) if kind in EAP_PRODUCTS: return LooseVersion(f'{prod_info.version}.{prod_info.build_number}') return LooseVersion(prod_info.version) def get_update(run_config: RunConfig) -> Optional[Product]: """Returns update for given app if available""" prod_info = get_product_info(run_config.path_to_app) kind: IDEKind = IDE_UPDATE_CODE2KIND.get(prod_info.product_code, IDEKind.Unknown) if kind == IDEKind.Unknown: return None current = get_product_version(prod_info) prod_list = get_product_list_from_file(kind) \ if is_tested_ide(run_config) else get_product_releases(kind, timeout=LONG_NETWORK_TIMEOUT) product = None for prod in prod_list: if prod.ver > current and (product is None or prod.ver > product.ver): product = prod return product def update_config(run_config: RunConfig, product: Product) -> None: """Updates IDE in given config""" run_config.path_to_app = download_and_install(product.url) save_config(run_config) @timeout(SHORT_NETWORK_TIMEOUT) def get_fast_update(run_config: RunConfig) -> Optional[Product]: """Checks available updates with short network timeout""" return get_update(run_config) def check_ide_update(run_config: RunConfig) -> None: """Check if update is available and prints message if yes""" if is_updatable_ide(run_config.path_to_app): try: product = get_fast_update(run_config) except TimeoutException: click.echo('Checking for updates ... ', nl=False) product = get_update(run_config) click.echo('done.') if product is not None: prod_info = get_product_info(run_config.path_to_app) msg = f'\nNew version {product.name} is available.\n' \ f'Current version {prod_info.version}.\n' \ f'To update use command: projector config update {run_config.name}\n' click.echo(click.style(msg, bold=True)) ``` #### File: projector-installer/test/config_generator_test.py ```python from unittest import TestCase from projector_installer.config_generator import token_quote class ConfigGeneratorTest(TestCase): """Test config_generator.py module""" def test_token_quote(self) -> None: """The token_quote method must return the same token in quotes""" self.assertEqual(token_quote('some_token'), '\"some_token\"') ``` #### File: projector-installer/test/dialogs_test.py ```python from unittest import TestCase from unittest import mock import sys import pytest from projector_installer.dialogs import get_user_input, is_boolean_input, ask, \ prompt_with_default, get_all_listening_ports class DialogsTests(TestCase): """Test dialogs.py module""" def test_get_user_input(self): # type: ignore """The get_user_input method must return the user's input""" some_input = 'some_input' original_input = mock.builtins.input mock.builtins.input = lambda _: some_input self.assertEqual(get_user_input('prompt', 'default'), some_input) mock.builtins.input = original_input def test_get_user_input_default(self): # type: ignore """The get_user_input method must return default if the input is empty""" original_input = mock.builtins.input mock.builtins.input = lambda _: '' self.assertEqual(get_user_input('prompt', 'default'), 'default') mock.builtins.input = original_input def test_is_boolean_input_true(self): # type: ignore """ The is_boolean_input method must return true if the user's input is in ['Y', 'y', 'N', 'n'] """ self.assertTrue(is_boolean_input('Y')) self.assertTrue(is_boolean_input('y')) self.assertTrue(is_boolean_input('N')) self.assertTrue(is_boolean_input('n')) def test_is_boolean_input_false(self): # type: ignore """ The is_boolean_input method must return false if the user's input is not in ['Y', 'y', 'N', 'n'] """ self.assertFalse(is_boolean_input('123')) self.assertFalse(is_boolean_input('true')) self.assertFalse(is_boolean_input('')) def test_ask_yes(self): # type: ignore """The ask method must return true if the user's input is 'y'""" original_input = mock.builtins.input mock.builtins.input = lambda _: 'y' self.assertTrue(ask('prompt', True)) mock.builtins.input = original_input def test_ask_no(self): # type: ignore """The ask method must return false if the user's input is 'n'""" original_input = mock.builtins.input mock.builtins.input = lambda _: 'n' self.assertFalse(ask('prompt', False)) mock.builtins.input = original_input def test_ask_empty(self): # type: ignore """The ask method must return true if the user's input is empty""" original_input = mock.builtins.input mock.builtins.input = lambda _: '' self.assertTrue(ask('prompt', True)) mock.builtins.input = original_input def test_prompt_with_default(self): # type: ignore """The prompt_with_default method must return the user's input""" some_input = 'non empty input' original_input = mock.builtins.input mock.builtins.input = lambda _: some_input self.assertEqual(prompt_with_default(prompt='prompt', default='default'), some_input) mock.builtins.input = original_input def test_prompt_with_default_empty_input(self): # type: ignore """The prompt_with_default method must return 'default' if the user's input is empty""" empty_input = '' original_input = mock.builtins.input mock.builtins.input = lambda _: empty_input self.assertEqual(prompt_with_default(prompt='prompt', default='default'), 'default') mock.builtins.input = original_input @pytest.mark.skipif(sys.platform == "linux", reason="test for non-linux only") def test_get_all_listening_ports(self) -> None: """ The get_all_listening_ports method must return an empty array if the platform is not Linux """ self.assertEqual(get_all_listening_ports(), []) ``` #### File: projector-installer/test/secure_config_test.py ```python from unittest import TestCase from projector_installer.secure_config import get_ca_password class SecureConfigTest(TestCase): """Test secure_config.py module""" def test_get_ca_password(self) -> None: """The get_ca_password method must return ca password""" self.assertEqual(get_ca_password(), '<PASSWORD>') ```
{ "source": "jnojek/Interview", "score": 4 }
#### File: Interview/JamesNojekChallenge/Database.py ```python import json def oldToNewDB(filename): try: with open(filename, "r") as f: text = json.load(f) #get data from file print("Input the new database name: ") DBname = str(input()) #select database to edit for i in range (0, len(text['Customer Records'])): #define database being edited and column names being edited print("INSERT INTO " + DBname + " (Record ID, Name, Cell Phone, Work Phone, Email, Address, Basic Widget Order, Advanced Widget Order, Protection Plan)") if text['Customer Records'][i]['Protection Plan'] == True: #determine boolean of Protection Plan to make sure the keyword is the correct format for SQL print('VALUES (' + str(text['Customer Records'][i]['ID']) + ', \'' + str(text['Customer Records'][i]['Name']) + '\', \'' + str(text['Customer Records'][i]['Cell Phone']) + '\', \'' + str(text['Customer Records'][i]['Work Phone']) + '\', \'' + str(text['Customer Records'][i]['Email']) + '\', \'' + str(text['Customer Records'][i]['Address']) + '\', ' + str(text['Customer Records'][i]['Basic Widget Order']) + ', ' + str(text['Customer Records'][i]['Advanced Widget Order']) + ', TRUE)') else: #if false print('VALUES (' + str(text['Customer Records'][i]['ID']) + ', \'' + str(text['Customer Records'][i]['Name']) + '\', \'' + str(text['Customer Records'][i]['Cell Phone']) + '\', \'' + str(text['Customer Records'][i]['Work Phone']) + '\', \'' + str(text['Customer Records'][i]['Email']) + '\', \'' + str(text['Customer Records'][i]['Address']) + '\', ' + str(text['Customer Records'][i]['Basic Widget Order']) + ', ' + str(text['Customer Records'][i]['Advanced Widget Order']) + ', FALSE)') except: return("Your file was not found") #test driver print("Input the old data file name") filename = str(input()) oldToNewDB(filename) #{ Sample json used for testing # "Customer Records": [ # { # "ID": 1234, # "Name": "<NAME>", # "Cell Phone": "405.867.5309", # "Work Phone": "123.123.1234", # "Email": "<EMAIL>", # "Address": "123 Vic Way, Dallas TX 75001", # "Basic Widget Order": 37, # "Advanced Widget Order": 12, # "Protection Plan": true # } # ] #} ```
{ "source": "J-Nokwal/AlgorithmsAndDataStructure", "score": 4 }
#### File: Algorithms/InfixToPostfix/algo.py ```python class node: def __init__(self,data=None,next=None): self.data=data self.next=next class Stack: def __init__(self): self.start=None self.pushOnTop('(') def pushOnTop(self,data): p=node(data,None) if self.start==None: self.start=p return else: p.next=self.start self.start=p def pop(self): temp=self.start.data self.start=self.start.next return temp def peek(self): if self.start==None: print("Stack is Empty") else:return (self.start.data) def display(self): q=self.start while(q): print(q.data,end=" ") q=q.next print("Left side is Top") newStack = Stack() data=[] string = input("Enter the String: ")+')' for i in string: if i in ['+','-','*','/','^']: if i in ['+','-']: while True: if newStack.peek() in ['*','/','^','+','-']: print('aaaak') data.append(newStack.pop()) else: print('bbbk') break newStack.pushOnTop(i) elif i in ['*','/']: while True: if newStack.peek() in ['*','/','^']: data.append(newStack.pop()) else: break newStack.pushOnTop(i) else: while True: if newStack.peek() == '^': data.append(newStack.pop()) newStack.pushOnTop('^') elif i==')': while True: if newStack.peek() == '(': newStack.pop() break else: data.append(newStack.pop()) elif i=='(': newStack.pushOnTop('(') else: data.append(i) for i in data: print(i,end=" ") # a+(b*c-(d/e^f)*g)*h ```
{ "source": "jnolan40/husky_mixed_reality_ws", "score": 2 }
#### File: simulated_gps/src/more_gps_data.py ```python from ubxtranslator.msg import hpposllh, relpos2D from geometry_msgs.msg import Twist import rospy class message_combiner: def __init__(self) : self.msg = Twist() self.Pub = rospy.Publisher('/UBX/Combined', Twist, queue_size=10) def run(self) : rospy.init_node('message_combiner_node') rospy.Subscriber('/UBX/relpos2D', relpos2D, self.hdg_cb) rospy.Subscriber('/UBX/hpposllh', hpposllh, self.llh_cb) rospy.spin() def hdg_cb(self, msg): # Convert to ENU theta = 90 - msg.pos.theta while theta > 180: theta -= 360 while theta < -180: theta += 360 self.msg.linear.z = theta def llh_cb(self, msg) : self.msg.linear.x = msg.llh.lat self.msg.linear.y = msg.llh.lon self.msg.angular.x = msg.err.lat self.msg.angular.y = msg.err.lon self.Pub.publish(self.msg) if __name__ == '__main__' : mc = message_combiner() mc.run() ```
{ "source": "jnolan-poloniex/vennt-server", "score": 3 }
#### File: jnolan-poloniex/vennt-server/api_campaigns.py ```python import venntdb import uuid from constants import * # VenntHandler methods def has_campaign_permissions(self, username, campaign_id, owner_only=False): campaign = self.server.db.get_campaign(campaign_id) if campaign is None: return False if owner_only: return campaign["owner"] == username return username in campaign["members"] def has_gm_permissions(self, username, campaign_id): campaign = self.server.db.get_campaign(campaign_id) if campaign is None: return False return username in campaign["members"] and campaign["members"][username] == "GM" def get_campaigns(self, args, username): return self.respond({"success": True, "value": self.server.db.get_campaigns(username)}) def create_campaign(self, args, username): name = args[KEY_NAME] id = IDType.CAMPAIGN + str(uuid.uuid4()) self.server.db.create_campaign(username, id, name) ret = {"success": True, "campaign_id": id} return self.respond(ret) def send_campaign_invite(self, args, username): user_to = args[KEY_USERNAME] user_from = username campaign_id = args[KEY_CAMPAIGN_ID] if not has_campaign_permissions(self, user_from, campaign_id, owner_only=True): return self.respond({"success": False, "info": MSG_BAD_CAMP}) if has_campaign_permissions(self, user_to, campaign_id): return self.respond({"success": False, "info": MSG_DID_JOIN}) if not self.server.db.is_valid("accounts", user_to): return self.respond({"success": False, "info": MSG_NO_USER}) success = self.server.db.send_campaign_invite( user_from, user_to, campaign_id) if not success: return self.respond({"success": False, "info": MSG_INVITE_EXISTS}) return self.respond({"success": success}) def accept_campaign_invite(self, args, username): invites = self.server.db.get_campaign_invites(username) campaign_id = args[KEY_CAMPAIGN_ID] campaign_owner = None for inv in invites: if campaign_id == inv["id"]: campaign_owner = inv["from"] if campaign_owner is None: return self.respond({"success": False, "info": MSG_BAD_CAMP}) # Clear campaign invite even if adding the user fails self.server.db.remove_campaign_invite(username, campaign_id) if self.server.db.is_valid("campaigns", campaign_id, "members", username): return self.respond({"success": False, "info": MSG_DID_JOIN}) self.server.db.add_user_to_campaign(username, campaign_id) return self.respond({"success": True}) def decline_campaign_invite(self, args, username): invites = self.server.db.get_campaign_invites(username) campaign_id = args[KEY_CAMPAIGN_ID] campaign_owner = None for inv in invites: if campaign_id == inv["id"]: campaign_owner = inv["from"] if campaign_owner is None: return self.respond({"success": False, "info": MSG_BAD_CAMP}) self.server.db.remove_campaign_invite(username, campaign_id) return self.respond({"success": True}) def set_role(self, args, username): if args[KEY_ROLE] not in ROLES: return self.respond({"success": False, "info": MSG_BAD_ROLE}) campaign_id = args[KEY_CAMPAIGN_ID] if not has_campaign_permissions(self, username, campaign_id, owner_only=True): return self.respond({"success": False, "info": MSG_BAD_CAMP}) member = args[KEY_USERNAME] if not self.server.db.is_valid("campaigns", campaign_id, "members", member): return self.respond({"success": False, "info": MSG_NO_USER}) self.server.db.set_role(member, campaign_id, args[KEY_ROLE]) return self.respond({"success": True}) def get_role(self, args, username): campaign_id = args[KEY_CAMPAIGN_ID] if not has_campaign_permissions(self, username, campaign_id): return self.respond({"success": False, "info": MSG_BAD_CAMP}) member = args[KEY_USERNAME] if not self.server.db.is_valid("campaigns", campaign_id, "members", member): return self.respond({"success": False, "info": MSG_NO_USER}) role = self.server.db.get_role(member, campaign_id) return self.respond({"success": True, "value": role}) def get_campaign(self, args, username): campaign_id = args[KEY_CAMPAIGN_ID] campaign = self.server.db.get_campaign(campaign_id).copy() if campaign is None or not username in campaign["members"]: return self.respond({"success": False, "info": MSG_BAD_CAMP}) role = campaign["members"][username] if role == ROLE_GM: return self.respond({"success": True, "value": campaign}) elif role in [ROLE_PLAYER, ROLE_SPECTATOR]: # Filter out gm_only entities (mostly enemies to allow GMs to plan easily) filtered_entities = {id: entity for id, entity in campaign["entities"].items() if not entity["gm_only"]} campaign["entities"] = filtered_entities return self.respond({"success": True, "value": campaign}) return self.respond({"success": False, "info": MSG_BAD_CAMP}) def add_entity_to_campaign(self, args, username): campaign_id = args[KEY_CAMPAIGN_ID] entity_id = args[KEY_ID] if len(entity_id) != FULL_UUID_LEN: return self.respond({"success": False, "info": MSG_NO_ENTITY}) campaign = self.server.db.get_campaign(campaign_id) if campaign is None or not username in campaign["members"]: return self.respond({"success": False, "info": MSG_BAD_CAMP}) role = campaign["members"][username] if entity_id[0] == IDType.CHARACTER and not role in [ROLE_PLAYER, ROLE_GM]: return self.respond({"success": False, "info": MSG_NO_PERMISSION}) elif entity_id[0] == IDType.ENEMY and role != ROLE_GM: return self.respond({"success": False, "info": MSG_NO_PERMISSION}) if not self.server.db.is_valid("accounts", username, "characters", entity_id): return self.respond({"success": False, "info": MSG_NO_ENTITY}) self.server.db.add_to_campaign( campaign_id, username, entity_id, gm_only=(entity_id[0] == IDType.ENEMY)) return self.respond({"success": True}) def remove_entity_from_campaign(self, args, username): campaign_id = args[KEY_CAMPAIGN_ID] entity_id = args[KEY_ID] if not self.server.db.is_valid("campaigns", campaign_id, "entities", entity_id): return self.respond({"success": False, "info": MSG_NO_ENTITY}) campaign = self.server.db.get_campaign(campaign_id) if campaign is None or not username in campaign["members"] or not entity_id in campaign["entities"]: return self.respond({"success": False, "info": MSG_BAD_CAMP}) role = campaign["members"][username] entity = campaign["entities"][entity_id] if (role == ROLE_PLAYER and entity["owner"] == username and not entity["gm_only"]) or role == ROLE_GM: # players can only remove their own entities - GMs can remove any entity self.server.db.remove_from_campaign(campaign_id, entity_id) return self.respond({"success": True}) return self.respond({"success": False, "info": MSG_NO_PERMISSION}) ``` #### File: jnolan-poloniex/vennt-server/api_characters.py ```python import venntdb import uuid from constants import * # VenntHandler methods def get_characters(self, args, username): return self.respond({"success": True, "value": self.server.db.get_characters(username)}) def get_character(self, args, username): return self.respond({"success": True, "value": self.server.db.get_character(username, args[KEY_ID])}) def create_character(self, args, username): name = args[KEY_NAME] if len(name) > MAX_NAME_LENGTH: return self.respond({"success": False, "info": MSG_NAME_LONG}) if KEY_GIFT not in args: args[KEY_GIFT] = "None" elif args[KEY_GIFT] not in GIFTS: return self.respond({"success": False, "info": MSG_INVALID_GIFT}) id = IDType.CHARACTER + str(uuid.uuid4()) character = {"name": name, "id": id} for key in args: if key in ATTRIBUTES: try: character[key] = int(args[key]) except ValueError: return self.respond({"success": False, "info": MSG_INVALID_ATTRIBUTE}) character[KEY_GIFT] = args[KEY_GIFT] self.server.db.create_character(username, character) ret = {"success": True, "id": id} return self.respond(ret) def set_attr(self, args, username): char_id = args[KEY_ID] attr = args[KEY_ATTR] try: val = int(args[KEY_VAL]) except ValueError: return self.respond({"success": False, "info": MSG_INVALID_ATTRIBUTE}) if attr not in ATTRIBUTES: return self.respond({"success": False, "info": MSG_NO_ATTR}) if not self.server.db.character_exists(username, char_id): return self.respond({"success": False, "info": MSG_NO_CHAR}) self.server.db.set_attr(username, char_id, attr, val) return self.respond({"success": True}) def get_attr(self, args, username): char_id = args[KEY_ID] attr = args[KEY_ATTR] if attr not in ATTRIBUTES: return self.respond({"success": False, "info": MSG_NO_ATTR}) if not self.server.db.character_exists(username, char_id): return self.respond({"success": False, "info": MSG_NO_CHAR}) val = self.server.db.get_attr(username, char_id, attr) return self.respond({"success": True, "value": val}) ``` #### File: jnolan-poloniex/vennt-server/api_initiative.py ```python import venntdb import d20 from api_campaigns import * from constants import * import importlib logClass = importlib.import_module("logger") logger = logClass.Logger("api_initiative") # VenntHandler methods def entity_in_init_list(campaign, entity_id): for init in campaign["init"]: if init["entity_id"] == entity_id: return True return False def add_entity_to_combat(self, args, username): campaign_id = args[KEY_CAMPAIGN_ID] entity_id = args[KEY_ID] campaign = self.server.db.get_campaign(campaign_id) if campaign is None or not username in campaign["members"]: return self.respond({"success": False, "info": MSG_BAD_CAMP}) role = campaign["members"][username] if not entity_id in campaign["entities"]: return self.respond({"success": False, "info": MSG_NO_ENTITY}) entity = campaign["entities"][entity_id] if entity_id[0] == IDType.CHARACTER and entity_in_init_list(campaign, entity_id): # characters cannot go into the init list more than once a round (enemies can though) return self.respond({"success": False, "info": MSG_NO_PERMISSION}) if (role == ROLE_PLAYER and entity_id[0] == IDType.CHARACTER and entity["owner"] == username and not entity["gm_only"]) or role == ROLE_GM: owner_username = entity["owner"] character = self.server.db.get_character(owner_username, entity_id) bonus = int(character["INIT"]) else: return self.respond({"success": False, "info": MSG_NO_PERMISSION}) response = {} if KEY_ROLL in args: try: roll = int(args[KEY_ROLL]) except ValueError: return self.respond({"success": False, "info": MSG_INVALID_ATTRIBUTE}) else: roll_result = d20.roll("3d6 + " + str(bonus)) roll = roll_result.total response["roll_str"] = str(roll_result) # TODO: if the enemy is already in the campaign, ensure it has been seperated by a character self.server.db.add_to_combat(campaign_id, entity_id, roll, bonus) response["success"] = True return self.respond(response) def remove_entity_from_combat(self, args, username): campaign_id = args[KEY_CAMPAIGN_ID] entity_id = args[KEY_ID] campaign = self.server.db.get_campaign(campaign_id) if campaign is None or not username in campaign["members"]: return self.respond({"success": False, "info": MSG_BAD_CAMP}) role = campaign["members"][username] if not entity_id in campaign["entities"] or not entity_in_init_list(campaign, entity_id): # the entity needs to be in the list for us to be able to remove it return self.respond({"success": False, "info": MSG_NO_ENTITY}) entity = campaign["entities"][entity_id] if (role == ROLE_PLAYER and entity_id[0] == IDType.CHARACTER and entity["owner"] == username) or role == ROLE_GM: self.server.db.remove_from_combat(campaign_id, entity_id) return self.respond({"success": True}) return self.respond({"success": False, "info": MSG_NO_PERMISSION}) def start_combat(self, args, username): campaign_id = args[KEY_CAMPAIGN_ID] if has_gm_permissions(self, username, campaign_id) and self.server.db.start_combat(campaign_id): return self.respond({"success": True}) return self.respond({"success": False, "info": MSG_NO_PERMISSION}) def end_combat(self, args, username): campaign_id = args[KEY_CAMPAIGN_ID] if has_gm_permissions(self, username, campaign_id) and self.server.db.end_combat(campaign_id): return self.respond({"success": True}) return self.respond({"success": False, "info": MSG_NO_PERMISSION}) def update_initiative_style(self, args, username): campaign_id = args[KEY_CAMPAIGN_ID] style = args[KEY_STYLE] if style not in INIT_STYLES: return self.respond({"success": False, "info": MSG_NO_INIT_STYLE}) if has_gm_permissions(self, username, campaign_id): self.server.db.update_initiative_style(campaign_id, style) return self.respond({"success": True}) return self.respond({"success": False, "info": MSG_NO_PERMISSION}) def end_turn(self, args, username): campaign_id = args[KEY_CAMPAIGN_ID] entity_id = args[KEY_ID] campaign = self.server.db.get_campaign(campaign_id) if campaign is None or not username in campaign["members"]: return self.respond({"success": False, "info": MSG_BAD_CAMP}) role = campaign["members"][username] if not entity_id in campaign["entities"] or not entity_in_init_list(campaign, entity_id): # the entity needs to be in the init list in order for us to be able to end its turn! return self.respond({"success": False, "info": MSG_NO_ENTITY}) entity = campaign["entities"][entity_id] if (role == ROLE_PLAYER and entity_id[0] == IDType.CHARACTER and entity["owner"] == username) or role == ROLE_GM: self.server.db.reset_actions(campaign_id, entity_id) self.server.db.next_turn(campaign_id) return self.respond({"success": True}) return self.respond({"success": False, "info": MSG_NO_PERMISSION}) ``` #### File: jnolan-poloniex/vennt-server/db_characters.py ```python import venntdb from constants import * # VenntDB Methods def character_exists(self, username, char_id): return self.get_character(username, char_id) is not None def get_character(self, username, char_id): self.assert_valid("accounts", username, "characters") if self.is_valid("accounts", username, "characters", char_id): return self.db["accounts"][username]["characters"][char_id] return None def create_character(self, username, character, is_enemy=False): self.assert_valid("accounts", username, "characters") for attr in ATTRIBUTES: if attr not in character: character[attr] = 0 character["items"] = [] character["abilities"] = [] character["is_enemy"] = is_enemy self.db["accounts"][username]["characters"][character["id"]] = character self.save_db() def get_characters(self, username): self.assert_valid("accounts", username, "characters") return self.db["accounts"][username]["characters"] def get_attr(self, username, char_id, attr): self.assert_valid("accounts", username, "characters", char_id) return self.get_character(username, char_id)[attr] def set_attr(self, username, char_id, attr, val): self.assert_valid("accounts", username, "characters", char_id) self.get_character(username, char_id)[attr] = val self.save_db() ``` #### File: jnolan-poloniex/vennt-server/db_initiative.py ```python import venntdb from constants import * import importlib logClass = importlib.import_module("logger") logger = logClass.Logger("db_initiative") # VenntDB Methods def add_to_combat(self, campaign_id, entity_id, roll, bonus): init_list = self.db["campaigns"][campaign_id]["init"] # walk through init list and look for correct place to insert the new row insert_index = len(init_list) for i in range(len(init_list)): if init_list[i]["roll"] == roll: if init_list[i]["bonus"] == bonus: if init_list[i]["entity_id"][0] == IDType.ENEMY and entity_id[0] == IDType.CHARACTER: insert_index = i break elif init_list[i]["bonus"] < bonus: insert_index = i break elif init_list[i]["roll"] < roll: insert_index = i break self.db["campaigns"][campaign_id]["init"].insert( insert_index, {"roll": roll, "bonus": bonus, "entity_id": entity_id}) # shift the current index forward to account for new item in the init list if self.db["campaigns"][campaign_id]["in_combat"]: current_index = self.db["campaigns"][campaign_id]["init_index"] if current_index >= insert_index: self.db["campaigns"][campaign_id]["init_index"] = current_index + 1 else: # entities start combat with 1 reaction (only when not in combat) self.db["campaigns"][campaign_id]["entities"][entity_id]["reactions"] = 1 # if the entity is gm_only - make it visible to everyone if self.db["campaigns"][campaign_id]["entities"][entity_id]["gm_only"]: self.db["campaigns"][campaign_id]["entities"][entity_id]["gm_only"] = False self.save_db() return True def remove_from_combat(self, campaign_id, entity_id): if len(self.db["campaigns"][campaign_id]["init"]) == 0: return False init_list = self.db["campaigns"][campaign_id]["init"] filtered_init_list = [] init_list_len = len(init_list) removed_count = 0 for index, init in enumerate(init_list): if init["entity_id"] != entity_id: filtered_init_list.append(init) else: removed_count += 1 # need to update the init_index accordingly if index == 0 and self.db["campaigns"][campaign_id]["init_index"] == 0: # need to wrap around backwards self.db["campaigns"][campaign_id]["init_index"] = init_list_len - \ 1 - removed_count self.db["campaigns"][campaign_id]["init_round"] -= 1 elif index <= self.db["campaigns"][campaign_id]["init_index"]: self.db["campaigns"][campaign_id]["init_index"] -= 1 if len(filtered_init_list) == 0: # If the initiative order is empty, we can automatically end combat return self.end_combat(campaign_id) self.db["campaigns"][campaign_id]["init"] = filtered_init_list # Increment turn if needed next_turn(self, campaign_id, save_db=False) self.save_db() return True def start_combat(self, campaign_id): if self.db["campaigns"][campaign_id]["in_combat"] or len(self.db["campaigns"][campaign_id]["init"]) == 0: return False self.db["campaigns"][campaign_id]["in_combat"] = True self.db["campaigns"][campaign_id]["init_index"] = 0 self.db["campaigns"][campaign_id]["init_round"] = 0 # grab iniative from the top of the order entity = self.db["campaigns"][campaign_id]["init"][0] entity_id = entity["entity_id"] __give_entity_actions(self, campaign_id, entity_id) # increment additional times following init style rules while __should_keep_incrementing_init(self, campaign_id, entity): __increment_init_index(self, campaign_id) self.save_db() return True def end_combat(self, campaign_id): self.db["campaigns"][campaign_id]["in_combat"] = False self.db["campaigns"][campaign_id]["init"] = [] self.db["campaigns"][campaign_id]["init_index"] = 0 self.db["campaigns"][campaign_id]["init_round"] = 0 # Reset actions and reactions for entity in self.db["campaigns"][campaign_id]["entities"]: self.db["campaigns"][campaign_id]["entities"][entity]["actions"] = 0 self.db["campaigns"][campaign_id]["entities"][entity]["reactions"] = 0 # do not clear any pending attacks since those still need to be resolved self.save_db() return True def update_initiative_style(self, campaign_id, style): self.db["campaigns"][campaign_id]["init_styles"] = style self.save_db() def reset_actions(self, campaign_id, entity_id): self.db["campaigns"][campaign_id]["entities"][entity_id]["actions"] = 0 def next_turn(self, campaign_id, save_db=True): if len(self.db["campaigns"][campaign_id]["init"]) == 0 and not self.db["campaigns"][campaign_id]["in_combat"]: return False # Check if we are ready to increment (no one has actions any more) for init in self.db["campaigns"][campaign_id]["init"]: entity = self.db["campaigns"][campaign_id]["entities"][init["entity_id"]] if entity["actions"] > 0 and not entity["delayed_actions"]: return False # always increment once init_index = __increment_init_index(self, campaign_id) # increment additional times following init style rules init_details = self.db["campaigns"][campaign_id]["init"][init_index] while __should_keep_incrementing_init(self, campaign_id, init_details): __increment_init_index(self, campaign_id) if save_db: self.save_db() return True # Helper functions def __get_next_init(self, campaign_id): next_init = self.db["campaigns"][campaign_id]["init_index"] + 1 init_length = len(self.db["campaigns"][campaign_id]["init"]) if (next_init >= init_length): # wrap around return 0 return next_init def __should_keep_incrementing_init(self, campaign_id, starting_init_details): # TODO: Should keep incrementing init if the entity is dead (maybe in this case it should just get removed from combat init though) next_init = __get_next_init(self, campaign_id) next_init_details = self.db["campaigns"][campaign_id]["init"][next_init] starting_entity_id = starting_init_details["entity_id"] next_entity_id = next_init_details["entity_id"] init_style = self.db["campaigns"][campaign_id]["init_styles"] style_detail = init_style == INIT_ASYNC or ( next_init_details["roll"] == starting_init_details["roll"] and next_init_details["bonus"] == starting_init_details["bonus"]) return next_entity_id[0] == starting_entity_id[0] and next_entity_id != starting_entity_id and style_detail def __increment_init_index(self, campaign_id): next_init = __get_next_init(self, campaign_id) if next_init == 0: # wrap around self.db["campaigns"][campaign_id]["init_round"] += 1 self.db["campaigns"][campaign_id]["init_index"] = next_init entity_id = self.db["campaigns"][campaign_id]["init"][next_init]["entity_id"] __give_entity_actions(self, campaign_id, entity_id) return next_init def __give_entity_actions(self, campaign_id, entity_id): # TODO: Do not reset actions / reactions if stunned / paralyzed # TODO: Do not reset actions if the entity is dead # TODO: Reset only 1 action / 1 reaction is the entity is dying # Do not reset actions of users who delayed actions if self.db["campaigns"][campaign_id]["entities"][entity_id]["actions"] > 1 and self.db["campaigns"][campaign_id]["entities"][entity_id]["delayed_actions"]: return self.db["campaigns"][campaign_id]["entities"][entity_id]["actions"] = 3 self.db["campaigns"][campaign_id]["entities"][entity_id]["reactions"] = 1 ``` #### File: jnolan-poloniex/vennt-server/example.py ```python import requests import json import uuid import argparse import time url = 'http://localhost:3004/' parser = argparse.ArgumentParser(description='Vennt API example client.') parser.add_argument('--verify', action='store_true', help="Stop running the example when a failure occurs") parser.add_argument('--quiet', action='store_true', help="Don't print server responses") parser.add_argument('--nocert', action='store_true', help="Don't use a secure connection") args = parser.parse_args() do_ssl = not args.nocert def check_continue(response, expectError=False): time.sleep(1) # need to sleep so we don't get rate limited if not args.quiet: print(response.text) if not args.verify: return True data = json.loads(response.text) if "success" not in data: print("No success key received") exit(1) if data["success"] and expectError: print("Operation succeeded but was expected to fail") print(data["info"]) exit(1) if not data["success"]: if expectError: return True print("Unsuccessful operation") print(data["info"]) exit(1) #################### ACCOUNT APIS #################### print("New account") gm_username = str(uuid.uuid4()) gm_password = str(uuid.uuid4()) data = {"register": gm_username, "password": <PASSWORD>} response = requests.post( url, json=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) old_auth_token = response["auth_token"] print("Logout") data = {"auth_token": old_auth_token} response = requests.get( url + 'logout?', params=data, verify=do_ssl) check_continue(response) print("Login") data = {"login": gm_username, "password": <PASSWORD>} response = requests.post( url, json=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) gm_token = response["auth_token"] assert(not args.verify or old_auth_token != gm_token) print("New account 2") player_username = str(uuid.uuid4()) player_password = str(uuid.uuid4()) data = {"register": player_username, "password": player_password} response = requests.post( url, json=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) player_token = response["auth_token"] assert(not args.verify or player_token != gm_token) #################### CHARACTER APIS #################### print("create character") random_name = str(uuid.uuid4()) data = {"auth_token": gm_token, "name": random_name, "PER": 3, "MAX_HP": 10, "HP": 5, "gift": "Mind"} response = requests.get(url + 'create_character', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) my_character_id = response["id"] print("create character - invalid gift value - will fail") data = {"auth_token": gm_token, "name": "bad character", "gift": "fake gift"} response = requests.get(url + 'create_character', params=data, verify=do_ssl) check_continue(response, expectError=True) print("create character - invalid attribute value - will fail") data = {"auth_token": gm_token, "name": "bad character", "INT": "not a number"} response = requests.get(url + 'create_character', params=data, verify=do_ssl) check_continue(response, expectError=True) print("Get characters") data = {"auth_token": gm_token} response = requests.get(url + 'get_characters', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) assert(not args.verify or len(response["value"]) == 1) assert(not args.verify or response["value"] [my_character_id]["name"] == random_name) assert(not args.verify or response["value"][my_character_id]["PER"] == 3) assert(not args.verify or response["value"][my_character_id]["INT"] == 0) assert(not args.verify or response["value"][my_character_id]["gift"] == "Mind") assert(not args.verify or response["value"] [my_character_id]["is_enemy"] == False) print("Get character") data = {"auth_token": gm_token, "id": my_character_id} response = requests.get(url + 'get_character', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) assert(not args.verify or response["value"]["name"] == random_name) # ATTRIBUTES print("set attribute") data = {"auth_token": gm_token, "id": my_character_id, "attr": "STR", "value": 3} response = requests.get(url + 'set_attr', params=data, verify=do_ssl) check_continue(response) print("get attribute") data = {"auth_token": gm_token, "id": my_character_id, "attr": "STR"} response = requests.get(url + 'get_attr', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) assert(not args.verify or response["value"] == 3) # ABILITIES print("Lookup ability") data = {"auth_token": gm_token, "name": "Basic Cooking"} response = requests.get(url + 'lookup_ability', params=data, verify=do_ssl) check_continue(response) print("add ability") data = {"auth_token": gm_token, "name": "Basic Cooking", "id": my_character_id} response = requests.get(url + 'add_ability', params=data, verify=do_ssl) check_continue(response) print("get abilities") data = {"auth_token": gm_token, "id": my_character_id} response = requests.get(url + 'get_abilities', params=data, verify=do_ssl) check_continue(response) print("get ability") data = {"auth_token": gm_token, "name": "Basic Cooking", "id": my_character_id} response = requests.get(url + 'get_ability', params=data, verify=do_ssl) check_continue(response) # ITEMS print("Add item") data = {"auth_token": gm_token, "id": my_character_id, "name": "donut", "bulk": "1", "desc": "Just a donut"} response = requests.get(url + 'add_item', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) item_id = response["id"] print("View items") data = {"auth_token": gm_token, "id": my_character_id} response = requests.get(url + 'view_items', params=data, verify=do_ssl) check_continue(response) print("Remove item") data = {"auth_token": gm_token, "id": my_character_id, "id2": item_id} response = requests.get(url + 'remove_item', params=data, verify=do_ssl) check_continue(response) # WEAPONS (WIP) print("Add weapon") data = {"auth_token": gm_token, "name": "myfirstweapon", "attr": "STR", "dmg": "1d6+6", "mods": {"burning": "1d6"}} response = requests.get(url + 'add_weapon', params=data, verify=do_ssl) check_continue(response) print("Get weapon") data = {"auth_token": gm_token, "name": "myfirstweapon"} response = requests.get(url + 'get_weapon', params=data, verify=do_ssl) check_continue(response) print("Remove weapon") data = {"auth_token": gm_token, "name": "myfirstweapon"} response = requests.get(url + 'remove_weapon', params=data, verify=do_ssl) check_continue(response) # ENEMIES print("create enemy") data = {"auth_token": gm_token, "name": "myfirstenemy", "WIS": 3, "MAX_HP": 10, "HP": 10} response = requests.get(url + 'create_enemy', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) enemy_id = response["id"] data = {"auth_token": gm_token, "id": enemy_id} response = requests.get(url + 'get_character', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) assert(not args.verify or response["value"]["name"] == "myfirstenemy") assert(not args.verify or response["value"]["WIS"] == 3) assert(not args.verify or response["value"]["INT"] == 0) assert(not args.verify or response["value"]["is_enemy"] == True) #################### CAMPAIGN APIS #################### print("Create campaign") data = {"auth_token": gm_token, "name": "myfirstcampaign"} response = requests.get(url + 'create_campaign?', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) campaign_id = response["campaign_id"] # CAMPAIGN INVITES print("Send campaign invite - self invite - will fail") data = {"auth_token": gm_token, "username": gm_username, "campaign_id": campaign_id} response = requests.get(url + 'send_campaign_invite', params=data, verify=do_ssl) check_continue(response, expectError=True) print("Send campaign invite - not owner of campaign - will fail") data = {"auth_token": player_token, "username": gm_username, "campaign_id": campaign_id} response = requests.get(url + 'send_campaign_invite', params=data, verify=do_ssl) check_continue(response, expectError=True) print("Send campaign invite") data = {"auth_token": gm_token, "username": player_username, "campaign_id": campaign_id} response = requests.get(url + 'send_campaign_invite', params=data, verify=do_ssl) check_continue(response) print("View campaign invites") data = {"auth_token": player_token} response = requests.get(url + 'view_campaign_invites', params=data, verify=do_ssl) check_continue(response) print("Decline campaign invite") data = {"auth_token": player_token, "campaign_id": campaign_id} response = requests.get(url + 'decline_campaign_invite', params=data, verify=do_ssl) check_continue(response) print("Accept campaign invite") data = {"auth_token": gm_token, "username": player_username, "campaign_id": campaign_id} response = requests.get(url + 'send_campaign_invite', params=data, verify=do_ssl) check_continue(response) data = {"auth_token": player_token, "campaign_id": campaign_id} response = requests.get(url + 'accept_campaign_invite?', params=data, verify=do_ssl) check_continue(response) print("Set role") data = {"auth_token": gm_token, "campaign_id": campaign_id, "username": gm_username, "role": "GM"} response = requests.get(url + 'set_role', params=data, verify=do_ssl) check_continue(response) print("Get role") data = {"auth_token": gm_token, "campaign_id": campaign_id, "username": gm_username} response = requests.get(url + 'get_role', params=data, verify=do_ssl) check_continue(response) print("Get campaigns") data = {"auth_token": player_token, "name": "mySecondCampaign"} response = requests.get(url + 'create_campaign?', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) campaign_id_2 = response["campaign_id"] data = {"auth_token": player_token} response = requests.get(url + 'get_campaigns', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) assert(not args.verify or len(response["value"]) == 2) assert(not args.verify or response["value"][0]["id"] == campaign_id) assert(not args.verify or response["value"][0]["name"] == "myfirstcampaign") assert(not args.verify or response["value"][1]["id"] == campaign_id_2) assert(not args.verify or response["value"][1]["name"] == "mySecondCampaign") # ENTITY MANAGEMENT data = {"auth_token": gm_token, "campaign_id": campaign_id, "username": player_username, "role": "player"} response = requests.get(url + 'set_role', params=data, verify=do_ssl) check_continue(response) spectator_username = str(uuid.uuid4()) spectator_password = str(uuid.uuid4()) data = {"register": spectator_username, "password": <PASSWORD>} response = requests.post( url, json=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) spectator_token = response["auth_token"] no_perms_username = str(uuid.uuid4()) no_perms_password = str(uuid.uuid4()) data = {"register": no_perms_username, "password": <PASSWORD>perms_password} response = requests.post( url, json=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) no_perms_token = response["auth_token"] data = {"auth_token": gm_token, "username": spectator_username, "campaign_id": campaign_id} response = requests.get(url + 'send_campaign_invite', params=data, verify=do_ssl) check_continue(response) data = {"auth_token": spectator_token, "campaign_id": campaign_id} response = requests.get(url + 'accept_campaign_invite?', params=data, verify=do_ssl) check_continue(response) print("Add character to the campaign - GM") data = {"auth_token": gm_token, "campaign_id": campaign_id, "id": my_character_id} response = requests.get(url + 'add_to_campaign', params=data, verify=do_ssl) check_continue(response) print("Add character to the campaign - player") data = {"auth_token": player_token, "name": "player character!", "INIT": 5, "SPEED": 6, "MAX_HP": 100, "HP": 52} response = requests.get(url + 'create_character', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) player_character_id = response["id"] data = {"auth_token": player_token, "campaign_id": campaign_id, "id": player_character_id} response = requests.get(url + 'add_to_campaign', params=data, verify=do_ssl) check_continue(response) print("Add character to the campaign - spectator - will fail") data = {"auth_token": spectator_token, "name": random_name} response = requests.get(url + 'create_character', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) spectator_character_id = response["id"] data = {"auth_token": spectator_token, "campaign_id": campaign_id, "id": spectator_character_id} response = requests.get(url + 'add_to_campaign', params=data, verify=do_ssl) check_continue(response, expectError=True) print("Add enemy to the campaign - GM") data = {"auth_token": gm_token, "campaign_id": campaign_id, "id": enemy_id} response = requests.get(url + 'add_to_campaign', params=data, verify=do_ssl) check_continue(response) print("Add enemy to the campaign - player - will fail") data = {"auth_token": player_token, "name": "player enemy"} response = requests.get(url + 'create_enemy', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) player_enemy_id = response["id"] data = {"auth_token": player_token, "campaign_id": campaign_id, "id": player_enemy_id} response = requests.get(url + 'add_to_campaign', params=data, verify=do_ssl) check_continue(response, expectError=True) print("Get campaign - player") data = {"auth_token": player_token, "campaign_id": campaign_id} response = requests.get(url + 'get_campaign', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) player_campaign = response["value"] assert(not args.verify or player_campaign["name"] == "myfirstcampaign") assert(not args.verify or player_campaign["owner"] == gm_username) assert(not args.verify or len(player_campaign["members"]) == 3) assert(not args.verify or player_campaign["members"][gm_username] == "GM") assert( not args.verify or player_campaign["members"][player_username] == "player") assert( not args.verify or player_campaign["members"][spectator_username] == "spectator") assert(not args.verify or len(player_campaign["entities"]) == 2) assert( not args.verify or player_campaign["entities"][my_character_id]["owner"] == gm_username) assert( not args.verify or player_campaign["entities"][my_character_id]["name"] == random_name) assert( not args.verify or player_campaign["entities"][my_character_id]["gm_only"] == False) assert( not args.verify or player_campaign["entities"][my_character_id]["actions"] == 0) assert( not args.verify or player_campaign["entities"][my_character_id]["reactions"] == 0) assert( not args.verify or player_campaign["entities"][my_character_id]["health"] == "bloodied") assert( not args.verify or player_campaign["entities"][player_character_id]["owner"] == player_username) assert(not args.verify or player_campaign["init_styles"] == "traditional") assert(not args.verify or len(player_campaign["init"]) == 0) assert(not args.verify or player_campaign["init_index"] == 0) assert(not args.verify or player_campaign["init_round"] == 0) assert(not args.verify or player_campaign["in_combat"] == False) print("Get campaign - spectator") data = {"auth_token": spectator_token, "campaign_id": campaign_id} response = requests.get(url + 'get_campaign', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) assert(not args.verify or response["value"] == player_campaign) print("Get campaign - no permission - will fail") data = {"auth_token": no_perms_token, "campaign_id": campaign_id} response = requests.get(url + 'get_campaign', params=data, verify=do_ssl) check_continue(response, expectError=True) print("Get campaign - GM") data = {"auth_token": gm_token, "campaign_id": campaign_id} response = requests.get(url + 'get_campaign', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) gm_campaign = response["value"] assert(not args.verify or gm_campaign != player_campaign) assert(not args.verify or len(gm_campaign["entities"]) == 3) assert(not args.verify or gm_campaign["entities"] [enemy_id]["owner"] == gm_username) assert(not args.verify or gm_campaign["entities"] [enemy_id]["name"] == "myfirstenemy") assert(not args.verify or gm_campaign["entities"][enemy_id]["gm_only"] == True) assert(not args.verify or gm_campaign["entities"][enemy_id]["actions"] == 0) assert(not args.verify or gm_campaign["entities"][enemy_id]["reactions"] == 0) assert(not args.verify or gm_campaign["entities"] [enemy_id]["health"] == "healthy") #################### INITIATIVE APIS #################### print("Add character to combat - GM") data = {"auth_token": gm_token, "campaign_id": campaign_id, "id": my_character_id, "roll": 10} response = requests.get(url + 'add_to_combat', params=data, verify=do_ssl) check_continue(response) print("Add character to combat - GM - adds player character") data = {"auth_token": gm_token, "campaign_id": campaign_id, "id": player_character_id, "roll": 10} response = requests.get(url + 'add_to_combat', params=data, verify=do_ssl) check_continue(response) print("Add enemies to combat - GM") data = {"auth_token": gm_token, "campaign_id": campaign_id, "id": enemy_id, "roll": 10} response = requests.get(url + 'add_to_combat', params=data, verify=do_ssl) check_continue(response) data = {"auth_token": gm_token, "name": "second enemy", "INIT": 1, "MAX_HP": 10, "HP": 5, "campaign_id": campaign_id} response = requests.get(url + 'create_enemy', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) second_enemy_id = response["id"] data = {"auth_token": gm_token, "campaign_id": campaign_id, "id": second_enemy_id, "roll": 18} response = requests.get(url + 'add_to_combat', params=data, verify=do_ssl) check_continue(response) print("Add character to combat - Player") data = {"auth_token": player_token, "name": "player character 2!", "STR": 6, "MP": 12, "MAX_MP": 12, "MAX_HP": 50, "HP": 50} response = requests.get(url + 'create_character', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) player_second_character_id = response["id"] data = {"auth_token": player_token, "campaign_id": campaign_id, "id": player_second_character_id} response = requests.get(url + 'add_to_campaign', params=data, verify=do_ssl) check_continue(response) data = {"auth_token": <PASSWORD>_token, "campaign_id": campaign_id, "id": player_second_character_id, "roll": 10} response = requests.get(url + 'add_to_combat', params=data, verify=do_ssl) check_continue(response) data = {"auth_token": <PASSWORD>ator_token, "campaign_id": campaign_id} response = requests.get(url + 'get_campaign', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) assert(not args.verify or response["value"] ["entities"][enemy_id]["gm_only"] == False) assert(not args.verify or len(response["value"]["init"]) == 5) assert(not args.verify or response["value"] ["init"][0]["entity_id"] == second_enemy_id) assert(not args.verify or response["value"] ["init"][1]["entity_id"] == player_character_id) assert(not args.verify or response["value"] ["init"][2]["entity_id"] == my_character_id) assert(not args.verify or response["value"] ["init"][3]["entity_id"] == player_second_character_id) assert(not args.verify or response["value"] ["init"][4]["entity_id"] == enemy_id) assert(not args.verify or response["value"] ["entities"][enemy_id]["reactions"] == 1) assert(not args.verify or response["value"]["init_index"] == 0) assert(not args.verify or response["value"]["init_round"] == 0) assert(not args.verify or response["value"]["in_combat"] == False) print("Start combat") data = {"auth_token": gm_token, "campaign_id": campaign_id} response = requests.get(url + 'start_combat', params=data, verify=do_ssl) check_continue(response) data = {"auth_token": spectator_token, "campaign_id": campaign_id} response = requests.get(url + 'get_campaign', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) assert(not args.verify or response["value"]["init_index"] == 0) assert(not args.verify or response["value"]["init_round"] == 0) assert(not args.verify or response["value"]["in_combat"] == True) assert(not args.verify or response["value"] ["entities"][second_enemy_id]["actions"] == 3) assert(not args.verify or response["value"] ["entities"][second_enemy_id]["reactions"] == 1) print("End turn - GM") data = {"auth_token": gm_token, "campaign_id": campaign_id, "id": second_enemy_id} response = requests.get(url + 'end_turn', params=data, verify=do_ssl) check_continue(response) data = {"auth_token": spectator_token, "campaign_id": campaign_id} response = requests.get(url + 'get_campaign', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) assert(not args.verify or response["value"]["init_index"] == 1) assert(not args.verify or response["value"]["init_round"] == 0) assert(not args.verify or response["value"]["in_combat"] == True) assert(not args.verify or response["value"] ["entities"][second_enemy_id]["actions"] == 0) assert(not args.verify or response["value"] ["entities"][second_enemy_id]["reactions"] == 1) assert(not args.verify or response["value"] ["entities"][player_character_id]["actions"] == 3) assert(not args.verify or response["value"] ["entities"][player_character_id]["reactions"] == 1) print("End turn - player - init jumps forward 2") data = {"auth_token": player_token, "campaign_id": campaign_id, "id": player_character_id} response = requests.get(url + 'end_turn', params=data, verify=do_ssl) check_continue(response) data = {"auth_token": spectator_token, "campaign_id": campaign_id} response = requests.get(url + 'get_campaign', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) assert(not args.verify or response["value"]["init_index"] == 3) assert(not args.verify or response["value"]["init_round"] == 0) assert(not args.verify or response["value"]["in_combat"] == True) assert(not args.verify or response["value"] ["entities"][player_character_id]["actions"] == 0) assert(not args.verify or response["value"] ["entities"][player_character_id]["reactions"] == 1) assert(not args.verify or response["value"] ["entities"][my_character_id]["actions"] == 3) assert(not args.verify or response["value"] ["entities"][my_character_id]["reactions"] == 1) assert(not args.verify or response["value"] ["entities"][player_second_character_id]["actions"] == 3) assert(not args.verify or response["value"] ["entities"][player_second_character_id]["reactions"] == 1) print("End turn - player - init does not move") data = {"auth_token": <PASSWORD>_token, "campaign_id": campaign_id, "id": player_second_character_id} response = requests.get(url + 'end_turn', params=data, verify=do_ssl) check_continue(response) data = {"auth_token": <PASSWORD>, "campaign_id": campaign_id} response = requests.get(url + 'get_campaign', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) assert(not args.verify or response["value"]["init_index"] == 3) assert(not args.verify or response["value"]["init_round"] == 0) assert(not args.verify or response["value"]["in_combat"] == True) assert(not args.verify or response["value"] ["entities"][player_character_id]["actions"] == 0) assert(not args.verify or response["value"] ["entities"][player_character_id]["reactions"] == 1) assert(not args.verify or response["value"] ["entities"][my_character_id]["actions"] == 3) assert(not args.verify or response["value"] ["entities"][my_character_id]["reactions"] == 1) assert(not args.verify or response["value"] ["entities"][player_second_character_id]["actions"] == 0) assert(not args.verify or response["value"] ["entities"][player_second_character_id]["reactions"] == 1) print("End turn - GM - init moves 1") data = {"auth_token": gm_token, "campaign_id": campaign_id, "id": my_character_id} response = requests.get(url + 'end_turn', params=data, verify=do_ssl) check_continue(response) data = {"auth_token": <PASSWORD>_token, "campaign_id": campaign_id} response = requests.get(url + 'get_campaign', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) assert(not args.verify or response["value"]["init_index"] == 4) assert(not args.verify or response["value"]["init_round"] == 0) assert(not args.verify or response["value"]["in_combat"] == True) assert(not args.verify or response["value"] ["entities"][player_character_id]["actions"] == 0) assert(not args.verify or response["value"] ["entities"][player_character_id]["reactions"] == 1) assert(not args.verify or response["value"] ["entities"][my_character_id]["actions"] == 0) assert(not args.verify or response["value"] ["entities"][my_character_id]["reactions"] == 1) assert(not args.verify or response["value"] ["entities"][player_second_character_id]["actions"] == 0) assert(not args.verify or response["value"] ["entities"][player_second_character_id]["reactions"] == 1) assert(not args.verify or response["value"] ["entities"][enemy_id]["actions"] == 3) assert(not args.verify or response["value"] ["entities"][enemy_id]["reactions"] == 1) print("End turn - GM - init wraps around again") data = {"auth_token": gm_token, "campaign_id": campaign_id, "id": enemy_id} response = requests.get(url + 'end_turn', params=data, verify=do_ssl) check_continue(response) data = {"auth_token": spectator_token, "campaign_id": campaign_id} response = requests.get(url + 'get_campaign', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) assert(not args.verify or response["value"]["init_index"] == 0) assert(not args.verify or response["value"]["init_round"] == 1) assert(not args.verify or response["value"]["in_combat"] == True) assert(not args.verify or response["value"] ["entities"][second_enemy_id]["actions"] == 3) assert(not args.verify or response["value"] ["entities"][second_enemy_id]["reactions"] == 1) assert(not args.verify or response["value"] ["entities"][enemy_id]["actions"] == 0) assert(not args.verify or response["value"] ["entities"][enemy_id]["reactions"] == 1) print("Remove from combat - GM") data = {"auth_token": gm_token, "campaign_id": campaign_id, "id": player_second_character_id} response = requests.get(url + 'remove_from_combat', params=data, verify=do_ssl) check_continue(response) data = {"auth_token": <PASSWORD>_token, "campaign_id": campaign_id} response = requests.get(url + 'get_campaign', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) assert(not args.verify or response["value"]["init_index"] == 0) assert(not args.verify or response["value"]["init_round"] == 1) assert(not args.verify or response["value"]["in_combat"] == True) assert(not args.verify or len(list(filter( lambda init: init["entity_id"] == player_second_character_id, response["value"]["init"]))) == 0) print("Remove from combat - GM - init_index remains the same") data = {"auth_token": gm_token, "campaign_id": campaign_id, "id": second_enemy_id} response = requests.get(url + 'remove_from_combat', params=data, verify=do_ssl) check_continue(response) data = {"auth_token": <PASSWORD>ator_token, "campaign_id": campaign_id} response = requests.get(url + 'get_campaign', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) assert(not args.verify or response["value"]["init_index"] == 0) assert(not args.verify or response["value"]["init_round"] == 1) assert(not args.verify or response["value"]["in_combat"] == True) assert(not args.verify or len(list(filter( lambda init: init["entity_id"] == second_enemy_id, response["value"]["init"]))) == 0) print("End combat") data = {"auth_token": gm_token, "campaign_id": campaign_id} response = requests.get(url + 'end_combat', params=data, verify=do_ssl) check_continue(response) data = {"auth_token": spectator_token, "campaign_id": campaign_id} response = requests.get(url + 'get_campaign', params=data, verify=do_ssl) check_continue(response) response = json.loads(response.text) assert(not args.verify or response["value"]["init_index"] == 0) assert(not args.verify or response["value"]["init_round"] == 0) assert(not args.verify or response["value"]["in_combat"] == False) assert(not args.verify or len(response["value"]["init"]) == 0) # Print user information for further testing purposes print("----------------------------------------------------------------------------------") print("GM username: '{}' password: '{}' auth_token: '{}'".format( gm_username, gm_password, gm_token)) print("Player username: '{}' password: '{}' auth_token: '{}'".format( player_username, player_password, player_token)) print("Spectator username: '{}' password: '{}' auth_token: '{}'".format( spectator_username, spectator_password, spectator_token)) print("No Perms username: '{}' password: '{}' auth_token: '{}'".format( no_perms_username, no_perms_password, no_perms_token)) ``` #### File: jnolan-poloniex/vennt-server/webscraper.py ```python import time, requests, datetime, re from bs4 import BeautifulSoup import venntdb from constants import * import importlib logClass = importlib.import_module("logger") logger = logClass.Logger("webscraper") # VenntHandler methods def lookup_ability(self, args): name = args[KEY_NAME] abiDict = self.server.db.get_cached_ability(name) if abiDict is not None: logger.log("lookup_ability", "cache hit") return self.respond({"success":True, "value":abiDict["contents"]}) logger.log("lookup_ability", "cache miss") approximations, URL = find_ability(self, name) if len(approximations) == 0: return self.respond({"success":False, "info":"No such ability"}) elif len(approximations) > 1: return self.respond({"success":False, "info":"More than one match", "matches":approximations}) else: ability = "\n".join(get_ability_contents(approximations[0], URL)) # should add to cache here or no? return self.respond({"success":True, "value":ability}) # Returns list of matches and URL string (if found) def find_ability(self, name): name = name.replace("'", "’") # Wiki uses smart quotes logger.log("find_ability", "Looking for " + name) return self.server.db.find_ability(name) def ability_exists(self, *args): approximations, URL = self.find_ability(" ".join(args[:])) if len(approximations) != 1: return False return True # Returns contents of ability as list of lines def get_ability_contents(ability, URL): page = requests.get(URL) soup = BeautifulSoup(page.content, 'html.parser') found = False contents = [] last_had_newline = False best_match = 999 for hit in soup.find_all('p'): text = hit.get_text() text = text.replace("’", "'") # I hate smart quotes if ability in text and len(text) < best_match: # Goes through the whole page, takes the *shortest* valid line which matches the given description found = True best_match = len(text) contents = [] if found and (text.isspace() or (text.startswith('\n') and last_had_newline)): found = False if found: contents.append(text) if text.endswith('\n'): last_had_newline = True else: last_had_newline = False return contents ```
{ "source": "jnolis/dask", "score": 2 }
#### File: array/tests/test_stats.py ```python import pytest scipy = pytest.importorskip("scipy") import numpy as np import dask.array as da import dask.array.stats from dask.array.utils import allclose, assert_eq from dask.delayed import Delayed @pytest.mark.parametrize( "kind, kwargs", [("skew", {}), ("kurtosis", {}), ("kurtosis", {"fisher": False})] ) @pytest.mark.parametrize("single_dim", [True, False]) def test_measures(kind, kwargs, single_dim): np.random.seed(seed=1337) if single_dim: x = np.random.random(size=(30,)) else: x = np.random.random(size=(30, 2)) y = da.from_array(x, 3) dfunc = getattr(dask.array.stats, kind) sfunc = getattr(scipy.stats, kind) expected = sfunc(x, **kwargs) result = dfunc(y, **kwargs) if np.isscalar(expected): # make it an array to account for possible numeric errors expected = np.array(expected) assert_eq(result, expected) assert isinstance(result, da.Array) def test_bias_raises(): x = np.random.random(size=(30, 2)) y = da.from_array(x, 3) with pytest.raises(NotImplementedError): dask.array.stats.skew(y, bias=False) with pytest.raises(NotImplementedError): dask.array.stats.kurtosis(y, bias=False) @pytest.mark.parametrize( "kind", ["chisquare", "power_divergence", "normaltest", "skewtest", "kurtosistest"] ) def test_one(kind): a = np.random.random(size=30) a_ = da.from_array(a, 3) dask_test = getattr(dask.array.stats, kind) scipy_test = getattr(scipy.stats, kind) result = dask_test(a_) expected = scipy_test(a) assert isinstance(result, Delayed) assert allclose(result.compute(), expected) @pytest.mark.parametrize( "kind, kwargs", [ ("ttest_ind", {}), ("ttest_ind", {"equal_var": False}), ("ttest_1samp", {}), ("ttest_rel", {}), ("chisquare", {}), ("power_divergence", {}), ("power_divergence", {"lambda_": 0}), ("power_divergence", {"lambda_": -1}), ("power_divergence", {"lambda_": "neyman"}), ], ) def test_two(kind, kwargs): a = np.random.random(size=30) b = np.random.random(size=30) a_ = da.from_array(a, 3) b_ = da.from_array(b, 3) dask_test = getattr(dask.array.stats, kind) scipy_test = getattr(scipy.stats, kind) with pytest.warns(None): # maybe overflow warning (powrer_divergence) result = dask_test(a_, b_, **kwargs) expected = scipy_test(a, b, **kwargs) assert isinstance(result, Delayed) assert allclose(result.compute(), expected) # fails occasionally. shouldn't this be exact? # assert dask.compute(*result) == expected @pytest.mark.parametrize("k", range(5)) def test_moments(k): x = np.random.random(size=(30, 2)) y = da.from_array(x, 3) expected = scipy.stats.moment(x, k) result = dask.array.stats.moment(y, k) assert_eq(result, expected) def test_anova(): np_args = [i * np.random.random(size=(30,)) for i in range(4)] da_args = [da.from_array(x, chunks=10) for x in np_args] result = dask.array.stats.f_oneway(*da_args) expected = scipy.stats.f_oneway(*np_args) assert allclose(result.compute(), expected) @pytest.mark.parametrize( "func, nargs", [ (dask.array.stats.ttest_1samp, 2), (dask.array.stats.ttest_rel, 2), (dask.array.stats.skewtest, 1), (dask.array.stats.kurtosis, 1), (dask.array.stats.kurtosistest, 1), (dask.array.stats.normaltest, 1), (dask.array.stats.moment, 1), ], ) @pytest.mark.parametrize("nan_policy", ["omit", "raise"]) def test_nan_raises(func, nargs, nan_policy): with pytest.raises(NotImplementedError): func(*(None,) * nargs, nan_policy=nan_policy) def test_power_divergence_invalid(): a = np.random.random(size=30) a_ = da.from_array(a, 3) with pytest.raises(ValueError): dask.array.stats.power_divergence(a_, lambda_="wrong") def test_skew_raises(): a = da.ones((7,), chunks=(7,)) with pytest.raises(ValueError, match="7 samples"): dask.array.stats.skewtest(a) def test_skew_single_return_type(): """This function tests the return type for the skew method for a 1d array.""" numpy_array = np.random.random(size=(30,)) dask_array = da.from_array(numpy_array, 3) result = dask.array.stats.skew(dask_array).compute() assert isinstance(result, np.float64) def test_kurtosis_single_return_type(): """This function tests the return type for the kurtosis method for a 1d array.""" numpy_array = np.random.random(size=(30,)) dask_array = da.from_array(numpy_array, 3) result = dask.array.stats.kurtosis(dask_array).compute() result_non_fisher = dask.array.stats.kurtosis(dask_array, fisher=False).compute() assert isinstance(result, np.float64) assert isinstance(result_non_fisher, np.float64) ``` #### File: dask/dataframe/backends.py ```python import warnings import numpy as np import pandas as pd from pandas.api.types import ( is_categorical_dtype, is_datetime64tz_dtype, is_interval_dtype, is_period_dtype, is_scalar, is_sparse, union_categoricals, ) from ..utils import is_arraylike, typename from ._compat import PANDAS_GT_100 from .core import DataFrame, Index, Scalar, Series, _Frame from .dispatch import ( categorical_dtype_dispatch, concat, concat_dispatch, get_parallel_type, group_split_dispatch, hash_object_dispatch, is_categorical_dtype_dispatch, make_meta, make_meta_obj, meta_nonempty, tolist_dispatch, union_categoricals_dispatch, ) from .extensions import make_array_nonempty, make_scalar from .utils import ( _empty_series, _nonempty_scalar, _scalar_from_dtype, is_categorical_dtype, is_float_na_dtype, is_integer_na_dtype, ) ########## # Pandas # ########## @make_scalar.register(np.dtype) def _(dtype): return _scalar_from_dtype(dtype) @make_scalar.register(pd.Timestamp) @make_scalar.register(pd.Timedelta) @make_scalar.register(pd.Period) @make_scalar.register(pd.Interval) def _(x): return x @make_meta.register((pd.Series, pd.DataFrame)) def make_meta_pandas(x, index=None): return x.iloc[:0] @make_meta.register(pd.Index) def make_meta_index(x, index=None): return x[0:0] meta_object_types = (pd.Series, pd.DataFrame, pd.Index, pd.MultiIndex) try: import scipy.sparse as sp meta_object_types += (sp.spmatrix,) except ImportError: pass @make_meta_obj.register(meta_object_types) def make_meta_object(x, index=None): """Create an empty pandas object containing the desired metadata. Parameters ---------- x : dict, tuple, list, pd.Series, pd.DataFrame, pd.Index, dtype, scalar To create a DataFrame, provide a `dict` mapping of `{name: dtype}`, or an iterable of `(name, dtype)` tuples. To create a `Series`, provide a tuple of `(name, dtype)`. If a pandas object, names, dtypes, and index should match the desired output. If a dtype or scalar, a scalar of the same dtype is returned. index : pd.Index, optional Any pandas index to use in the metadata. If none provided, a `RangeIndex` will be used. Examples -------- >>> make_meta([('a', 'i8'), ('b', 'O')]) # doctest: +SKIP Empty DataFrame Columns: [a, b] Index: [] >>> make_meta(('a', 'f8')) # doctest: +SKIP Series([], Name: a, dtype: float64) >>> make_meta('i8') # doctest: +SKIP 1 """ if is_arraylike(x) and x.shape: return x[:0] if index is not None: index = make_meta(index) if isinstance(x, dict): return pd.DataFrame( {c: _empty_series(c, d, index=index) for (c, d) in x.items()}, index=index ) if isinstance(x, tuple) and len(x) == 2: return _empty_series(x[0], x[1], index=index) elif isinstance(x, (list, tuple)): if not all(isinstance(i, tuple) and len(i) == 2 for i in x): raise ValueError( "Expected iterable of tuples of (name, dtype), got {0}".format(x) ) return pd.DataFrame( {c: _empty_series(c, d, index=index) for (c, d) in x}, columns=[c for c, d in x], index=index, ) elif not hasattr(x, "dtype") and x is not None: # could be a string, a dtype object, or a python type. Skip `None`, # because it is implictly converted to `dtype('f8')`, which we don't # want here. try: dtype = np.dtype(x) return _scalar_from_dtype(dtype) except Exception: # Continue on to next check pass if is_scalar(x): return _nonempty_scalar(x) raise TypeError("Don't know how to create metadata from {0}".format(x)) @meta_nonempty.register(object) def meta_nonempty_object(x): """Create a nonempty pandas object from the given metadata. Returns a pandas DataFrame, Series, or Index that contains two rows of fake data. """ if is_scalar(x): return _nonempty_scalar(x) else: raise TypeError( "Expected Pandas-like Index, Series, DataFrame, or scalar, " "got {0}".format(typename(type(x))) ) @meta_nonempty.register(pd.DataFrame) def meta_nonempty_dataframe(x): idx = meta_nonempty(x.index) dt_s_dict = dict() data = dict() for i, c in enumerate(x.columns): series = x.iloc[:, i] dt = series.dtype if dt not in dt_s_dict: dt_s_dict[dt] = _nonempty_series(x.iloc[:, i], idx=idx) data[i] = dt_s_dict[dt] res = pd.DataFrame(data, index=idx, columns=np.arange(len(x.columns))) res.columns = x.columns if PANDAS_GT_100: res.attrs = x.attrs return res _numeric_index_types = (pd.Int64Index, pd.Float64Index, pd.UInt64Index) @meta_nonempty.register(pd.Index) def _nonempty_index(idx): typ = type(idx) if typ is pd.RangeIndex: return pd.RangeIndex(2, name=idx.name) elif typ in _numeric_index_types: return typ([1, 2], name=idx.name) elif typ is pd.Index: return pd.Index(["a", "b"], name=idx.name) elif typ is pd.DatetimeIndex: start = "1970-01-01" # Need a non-monotonic decreasing index to avoid issues with # partial string indexing see https://github.com/dask/dask/issues/2389 # and https://github.com/pandas-dev/pandas/issues/16515 # This doesn't mean `_meta_nonempty` should ever rely on # `self.monotonic_increasing` or `self.monotonic_decreasing` try: return pd.date_range( start=start, periods=2, freq=idx.freq, tz=idx.tz, name=idx.name ) except ValueError: # older pandas versions data = [start, "1970-01-02"] if idx.freq is None else None return pd.DatetimeIndex( data, start=start, periods=2, freq=idx.freq, tz=idx.tz, name=idx.name ) elif typ is pd.PeriodIndex: return pd.period_range( start="1970-01-01", periods=2, freq=idx.freq, name=idx.name ) elif typ is pd.TimedeltaIndex: start = np.timedelta64(1, "D") try: return pd.timedelta_range( start=start, periods=2, freq=idx.freq, name=idx.name ) except ValueError: # older pandas versions start = np.timedelta64(1, "D") data = [start, start + 1] if idx.freq is None else None return pd.TimedeltaIndex( data, start=start, periods=2, freq=idx.freq, name=idx.name ) elif typ is pd.CategoricalIndex: if len(idx.categories) == 0: data = pd.Categorical(_nonempty_index(idx.categories), ordered=idx.ordered) else: data = pd.Categorical.from_codes( [-1, 0], categories=idx.categories, ordered=idx.ordered ) return pd.CategoricalIndex(data, name=idx.name) elif typ is pd.MultiIndex: levels = [_nonempty_index(l) for l in idx.levels] codes = [[0, 0] for i in idx.levels] try: return pd.MultiIndex(levels=levels, codes=codes, names=idx.names) except TypeError: # older pandas versions return pd.MultiIndex(levels=levels, labels=codes, names=idx.names) raise TypeError( "Don't know how to handle index of type {0}".format(typename(type(idx))) ) @meta_nonempty.register(pd.Series) def _nonempty_series(s, idx=None): # TODO: Use register dtypes with make_array_nonempty if idx is None: idx = _nonempty_index(s.index) dtype = s.dtype if len(s) > 0: # use value from meta if provided data = [s.iloc[0]] * 2 elif is_datetime64tz_dtype(dtype): entry = pd.Timestamp("1970-01-01", tz=dtype.tz) data = [entry, entry] elif is_categorical_dtype(dtype): if len(s.cat.categories): data = [s.cat.categories[0]] * 2 cats = s.cat.categories else: data = _nonempty_index(s.cat.categories) cats = s.cat.categories[:0] data = pd.Categorical(data, categories=cats, ordered=s.cat.ordered) elif is_integer_na_dtype(dtype): data = pd.array([1, None], dtype=dtype) elif is_float_na_dtype(dtype): data = pd.array([1.0, None], dtype=dtype) elif is_period_dtype(dtype): # pandas 0.24.0+ should infer this to be Series[Period[freq]] freq = dtype.freq data = [pd.Period("2000", freq), pd.Period("2001", freq)] elif is_sparse(dtype): entry = _scalar_from_dtype(dtype.subtype) if PANDAS_GT_100: data = pd.array([entry, entry], dtype=dtype) else: data = pd.SparseArray([entry, entry], dtype=dtype) elif is_interval_dtype(dtype): entry = _scalar_from_dtype(dtype.subtype) data = pd.array([entry, entry], dtype=dtype) elif type(dtype) in make_array_nonempty._lookup: data = make_array_nonempty(dtype) else: entry = _scalar_from_dtype(dtype) data = np.array([entry, entry], dtype=dtype) out = pd.Series(data, name=s.name, index=idx) if PANDAS_GT_100: out.attrs = s.attrs return out @union_categoricals_dispatch.register( (pd.DataFrame, pd.Series, pd.Index, pd.Categorical) ) def union_categoricals_pandas(to_union, sort_categories=False, ignore_order=False): return pd.api.types.union_categoricals( to_union, sort_categories=sort_categories, ignore_order=ignore_order ) @get_parallel_type.register(pd.Series) def get_parallel_type_series(_): return Series @get_parallel_type.register(pd.DataFrame) def get_parallel_type_dataframe(_): return DataFrame @get_parallel_type.register(pd.Index) def get_parallel_type_index(_): return Index @get_parallel_type.register(_Frame) def get_parallel_type_frame(o): return get_parallel_type(o._meta) @get_parallel_type.register(object) def get_parallel_type_object(_): return Scalar @hash_object_dispatch.register((pd.DataFrame, pd.Series, pd.Index)) def hash_object_pandas( obj, index=True, encoding="utf8", hash_key=None, categorize=True ): return pd.util.hash_pandas_object( obj, index=index, encoding=encoding, hash_key=hash_key, categorize=categorize ) @group_split_dispatch.register((pd.DataFrame, pd.Series, pd.Index)) def group_split_pandas(df, c, k, ignore_index=False): indexer, locations = pd._libs.algos.groupsort_indexer( c.astype(np.int64, copy=False), k ) df2 = df.take(indexer) locations = locations.cumsum() parts = [ df2.iloc[a:b].reset_index(drop=True) if ignore_index else df2.iloc[a:b] for a, b in zip(locations[:-1], locations[1:]) ] return dict(zip(range(k), parts)) @concat_dispatch.register((pd.DataFrame, pd.Series, pd.Index)) def concat_pandas( dfs, axis=0, join="outer", uniform=False, filter_warning=True, ignore_index=False, **kwargs ): ignore_order = kwargs.pop("ignore_order", False) if axis == 1: return pd.concat(dfs, axis=axis, join=join, **kwargs) # Support concatenating indices along axis 0 if isinstance(dfs[0], pd.Index): if isinstance(dfs[0], pd.CategoricalIndex): for i in range(1, len(dfs)): if not isinstance(dfs[i], pd.CategoricalIndex): dfs[i] = dfs[i].astype("category") return pd.CategoricalIndex( union_categoricals(dfs, ignore_order=ignore_order), name=dfs[0].name ) elif isinstance(dfs[0], pd.MultiIndex): first, rest = dfs[0], dfs[1:] if all( (isinstance(o, pd.MultiIndex) and o.nlevels >= first.nlevels) for o in rest ): arrays = [ concat([i._get_level_values(n) for i in dfs]) for n in range(first.nlevels) ] return pd.MultiIndex.from_arrays(arrays, names=first.names) to_concat = (first.values,) + tuple(k._values for k in rest) new_tuples = np.concatenate(to_concat) try: return pd.MultiIndex.from_tuples(new_tuples, names=first.names) except Exception: return pd.Index(new_tuples) return dfs[0].append(dfs[1:]) # Handle categorical index separately dfs0_index = dfs[0].index has_categoricalindex = isinstance(dfs0_index, pd.CategoricalIndex) or ( isinstance(dfs0_index, pd.MultiIndex) and any(isinstance(i, pd.CategoricalIndex) for i in dfs0_index.levels) ) if has_categoricalindex: dfs2 = [df.reset_index(drop=True) for df in dfs] ind = concat([df.index for df in dfs]) else: dfs2 = dfs ind = None # Concatenate the partitions together, handling categories as needed if ( isinstance(dfs2[0], pd.DataFrame) if uniform else any(isinstance(df, pd.DataFrame) for df in dfs2) ): if uniform: dfs3 = dfs2 cat_mask = dfs2[0].dtypes == "category" else: # When concatenating mixed dataframes and series on axis 1, Pandas # converts series to dataframes with a single column named 0, then # concatenates. dfs3 = [ df if isinstance(df, pd.DataFrame) else df.to_frame().rename(columns={df.name: 0}) for df in dfs2 ] # pandas may raise a RuntimeWarning for comparing ints and strs with warnings.catch_warnings(): warnings.simplefilter("ignore", RuntimeWarning) if filter_warning: warnings.simplefilter("ignore", FutureWarning) cat_mask = pd.concat( [(df.dtypes == "category").to_frame().T for df in dfs3], join=join, **kwargs ).any() if cat_mask.any(): not_cat = cat_mask[~cat_mask].index # this should be aligned, so no need to filter warning out = pd.concat( [df[df.columns.intersection(not_cat)] for df in dfs3], join=join, **kwargs ) temp_ind = out.index for col in cat_mask.index.difference(not_cat): # Find an example of categoricals in this column for df in dfs3: sample = df.get(col) if sample is not None: break # Extract partitions, subbing in missing if needed parts = [] for df in dfs3: if col in df.columns: parts.append(df[col]) else: codes = np.full(len(df), -1, dtype="i8") data = pd.Categorical.from_codes( codes, sample.cat.categories, sample.cat.ordered ) parts.append(data) out[col] = union_categoricals(parts, ignore_order=ignore_order) # Pandas resets index type on assignment if frame is empty # https://github.com/pandas-dev/pandas/issues/17101 if not len(temp_ind): out.index = temp_ind out = out.reindex(columns=cat_mask.index) else: # pandas may raise a RuntimeWarning for comparing ints and strs with warnings.catch_warnings(): warnings.simplefilter("ignore", RuntimeWarning) if filter_warning: warnings.simplefilter("ignore", FutureWarning) out = pd.concat(dfs3, join=join, sort=False) else: if is_categorical_dtype(dfs2[0].dtype): if ind is None: ind = concat([df.index for df in dfs2]) return pd.Series( union_categoricals(dfs2, ignore_order=ignore_order), index=ind, name=dfs2[0].name, ) with warnings.catch_warnings(): if filter_warning: warnings.simplefilter("ignore", FutureWarning) out = pd.concat(dfs2, join=join, **kwargs) # Re-add the index if needed if ind is not None: out.index = ind return out @categorical_dtype_dispatch.register((pd.DataFrame, pd.Series, pd.Index)) def categorical_dtype_pandas(categories=None, ordered=False): return pd.api.types.CategoricalDtype(categories=categories, ordered=ordered) @tolist_dispatch.register((pd.Series, pd.Index, pd.Categorical)) def tolist_pandas(obj): return obj.tolist() @is_categorical_dtype_dispatch.register( (pd.Series, pd.Index, pd.api.extensions.ExtensionDtype, np.dtype) ) def is_categorical_dtype_pandas(obj): return pd.api.types.is_categorical_dtype(obj) ###################################### # cuDF: Pandas Dataframes on the GPU # ###################################### @concat_dispatch.register_lazy("cudf") @hash_object_dispatch.register_lazy("cudf") @group_split_dispatch.register_lazy("cudf") @get_parallel_type.register_lazy("cudf") @meta_nonempty.register_lazy("cudf") @make_meta.register_lazy("cudf") @make_meta_obj.register_lazy("cudf") def _register_cudf(): import dask_cudf # noqa: F401 ```
{ "source": "jnomani/locust-plugins", "score": 3 }
#### File: locust-plugins/locust_plugins/mongoreader.py ```python from pymongo import MongoClient from datetime import datetime import logging import time from contextlib import contextmanager import os class MongoReader: def __init__(self, id_column, uri=None, database=None, collection=None, filters=[]): uri = uri or os.environ["LOCUST_MONGO"] database = database or os.environ["LOCUST_MONGO_DATABASE"] collection = collection or os.environ["LOCUST_MONGO_COLLECTION"] self.coll = MongoClient(uri)[database][collection] self.id_column = id_column self.delay_warning = 0.5 self.query = {"$and": filters + [{"logged_in": 0}]} @contextmanager def user(self): start_at = time.time() user = self.coll.find_one_and_update( self.query, {"$set": {"last_login": datetime.now(), "logged_in": 1}}, sort=[("last_login", 1)] ) if user is None: raise Exception(f"Didnt get any user from db ({self.coll}) using query {self.query}") if start_at + self.delay_warning < time.time(): logging.warning( f"Getting a user took more than {self.delay_warning} seconds (doubling warning threshold for next time)" ) self.delay_warning *= 2 try: yield user finally: releasessn = self.coll.find_one_and_update( {"$and": [{self.id_column: user[self.id_column]}, {"logged_in": 1}]}, {"$set": {"logged_in": 0}} ) if releasessn is None: raise Exception("Couldnt release lock for user in db. ") ```
{ "source": "jnoms/virID", "score": 3 }
#### File: bin/python/get_counts.py ```python import pandas as pd import pathlib import inspect from ete3 import NCBITaxa ncbi = NCBITaxa() import argparse import time import os import csv import sys # Lets input feilds be extremely large. csv.field_size_limit(sys.maxsize) #------------------------------------------------------------------------------# # Defining functions #------------------------------------------------------------------------------# #Ete3 functions def get_level(taxonID): level = list(ncbi.get_rank([taxonID]).values()) # Unknown taxonID would yield [], which can't be indexed by [0] to get the # string if level == []: level = "UNKNOWN" else: level = level[0] return level def get_name(taxonID): name = list(ncbi.get_taxid_translator([taxonID]).values()) # Unknown taxonID would yield [], which can't be indexed by [0] to get the # string if name == []: name = "UNKNOWN" else: name = name[0] name = name.replace(" ", "_") return name def get_lineage(taxonID): try: lineage = ncbi.get_lineage(taxonID) except ValueError: print("Cannot find taxonID " + str(taxonID)) lineage = [taxonID] if lineage == None: lineage = [0] return lineage def get_named_lineage_from_lineage(lineage, prefix_dictionary = {'strain': 'st__', 'species': 's__', 'genus': 'g__', 'family': 'f__', 'order': 'o__', 'class': 'c__', 'phylum': 'p__', 'kingdom': 'k__', 'superkingdom': 'sk__'} ): named_lineage = [] conversion_dict = ncbi.get_taxid_translator(lineage) for taxonID in lineage: level = get_level(taxonID) prefix = prefix_dictionary.get(level, 'UNKNOWN__') name = prefix + conversion_dict.get(taxonID, "UNKNOWN").replace(" ", "_") named_lineage.append(name) return named_lineage def write_to_log(log_file, message): current_date_time = time.strftime("%c") #if the log_file wasn't input, just print message to screen if log_file == '': print(message) print(current_date_time) return None #Check if the file exists. If not, make the directory if necessary log_file_directory = os.path.dirname(log_file) pathlib.Path(log_file_directory).mkdir(parents=True, exist_ok=True) #Open the log_file in append mode and write message to it with open(log_file, 'a') as infile: infile.write(message + '\n') infile.write(current_date_time + '\n') def read_data_file(input_data_file, sep = '\t', column_names = ''): """ This function reads in a tab-delimited file and assigns the column names appropriately. If column names are provided they're used, else it uses the first line of the file as the header. column_names is a string that is a space-delimited list. """ #State progress function_name = inspect.stack()[0][3] print(function_name + ': Reading the input file ' + input_data_file) #Main if column_names == '': DF = pd.read_csv(input_data_file, engine = 'python', sep = sep, header = 0).fillna(0) else: DF = pd.read_csv(input_data_file, engine = 'python', sep = sep, header = None).fillna(0) DF.columns = column_names.split(" ") #Make sure the LCA_taxonID column is the correct datatype DF['LCA_taxonID'] = DF['LCA_taxonID'].astype(int) print(function_name + ': Finished.') return DF def make_counts_dictionary_from_counts_file(counts_file, sep = '\t'): """ The purpose of this function is to read in a counts file and make it a dictionary. The structure of the counts file must be a two column file with 'query_ID' and 'counts' as the columns. There should be no colnames in the file. """ #State progress function_name = inspect.stack()[0][3] print(function_name + ''': Reading in the counts file to make a counts dictionary.''') counts_dictionary = dict() with open(counts_file, 'r') as infile: for line in infile: line = line.split(sep) if len(line) != 2: raise ValueError(function_name + """: The counts_file should have two columns. Make sure the delimiter, sep, is correct.""") query_ID = line[0] count = int(line[1]) if query_ID == '*': continue counts_dictionary[query_ID] = count print(function_name + ': Finished.') return counts_dictionary def add_read_counts_to_dataframe(input_DF, counts_dictionary): ''' The purpose of this function is to add a column, labeled counts, to the input dataframe. This assumes that the dictionary keys of the counts_dictionary are equal to values in the query_ID column of the input dataframe. ''' #State progress function_name = inspect.stack()[0][3] print(function_name + ': Adding read counts to dataframe.') #Make an output DF that is a copy of the input dataframe output_DF = input_DF.copy() #Get a list of query_IDs in the input_DF and make sure they are unique output_DF_query_IDs = list(output_DF['query_ID'].unique()) if output_DF_query_IDs != list(output_DF['query_ID']): raise ValueError(function_name + """: The query_ID's present in the input_DF are not unique.""") #Add a read_count column to the input dataframe output_DF['read_count'] = 0 #For each query_ID, add counts to the output dictionary for query_ID in output_DF_query_IDs: if not query_ID in counts_dictionary: raise ValueError("Cannot find the query_ID {0} in the counts dict".format(query_ID)) output_DF['read_count'][output_DF['query_ID'] == query_ID] = counts_dictionary[query_ID] print(function_name + ': Finished.') return output_DF def get_taxonID_counts(df): ''' Get total counts for each LCA_taxonID. Required colnames are 'LCA_taxonID' and 'read_count'. This takes the sum of read_counts for each taxonID and returns a dictionary of structure taxonID:counts. Does NOT do any assigning to lineages and whatnot. Input: # - df: A dataframe that contains, at least, the columns "LCA_taxonID" and "read_count" Output: # - taxon_counts_dict: A dictionary of structure taxonID:read_count, where read_count is the sum of all read counts of that taxonID ''' def column_names_in_DF(input_DF, required_column_names): output = True for column_name in required_column_names: if column_name not in input_DF.columns: output = False return output if not column_names_in_DF(df, ['LCA_taxonID', 'read_count']): raise ValueError("The columns LCA_taxonID and read_count are required.") query_ID_to_taxon = dict(zip(df['query_ID'], df['LCA_taxonID'])) query_ID_to_counts = dict(zip(df['query_ID'], df['read_count'])) #Get total counts taxon_counts_dict = dict() for query_ID in query_ID_to_taxon: taxon = query_ID_to_taxon[query_ID] counts = query_ID_to_counts[query_ID] taxon_counts_dict[taxon] = taxon_counts_dict.get(taxon, 0) + counts return taxon_counts_dict def assign_counts(counts_dict, prefix_dictionary = {'strain': 'st__', 'species': 's__', 'genus': 'g__', 'family': 'f__', 'order': 'o__', 'class': 'c__', 'phylum': 'p__', 'kingdom': 'k__', 'superkingdom': 'sk__'} ): def distribute_counts(counts_dict): read_counts = dict() #Iterate over each taxonID for LCA_taxonID, counts in counts_dict.items(): #Check if nan - it will not be equal to itself if LCA_taxonID != LCA_taxonID: continue #Check if taxonID is 0 - no need to count if LCA_taxonID == 0: continue #Get lineage lineage = get_lineage(LCA_taxonID) #Assign counts to each taxonID in lineage for taxonID in lineage: read_counts[taxonID] = read_counts.get(taxonID, 0) + counts return read_counts def generate_output_df(read_counts): out_df = pd.DataFrame(columns = ['lineage', 'superkingdom', 'taxon', 'level', 'count']) out_df['taxon'] = read_counts.keys() out_df['taxon'] = out_df['taxon'].astype(str) out_df.index = read_counts.keys() out_df.index.name = "taxonID" return out_df def is_cannonical_level(taxonID, cannonical_levels): level = get_level(taxonID) if level in cannonical_levels: return True else: return False def get_cannonical_lineage(taxonID, cannonical_levels): lineage = get_lineage(taxonID) cannonical_lineage = [] for taxon in lineage: if is_cannonical_level(taxon, cannonical_levels): cannonical_lineage.append(taxon) return cannonical_lineage def get_superkingdom_from_named_lineage(named_lineage): superkingdom = "UNKNOWN" for taxon in named_lineage: if taxon.startswith("sk__"): superkingdom = taxon return superkingdom return superkingdom #State progress function_name = inspect.stack()[0][3] print(function_name + ': Generating counts dataframe.') cannonical_levels = list(prefix_dictionary.keys()) read_counts = distribute_counts(counts_dict) #generate output_df out_df = generate_output_df(read_counts) #For each taxon, check if it is a cannonical level. If so, write to output df for taxonID, count in read_counts.items(): #Check if the taxonID is cannonical. If not, continue if not is_cannonical_level(taxonID, cannonical_levels): continue level = get_level(taxonID) prefix = prefix_dictionary.get(level, "unknown__") name = prefix + get_name(taxonID) cannonical_lineage = get_cannonical_lineage(taxonID, cannonical_levels) named_lineage = get_named_lineage_from_lineage(cannonical_lineage, prefix_dictionary) superkingdom = get_superkingdom_from_named_lineage(named_lineage) #Write to output dictionary - # 'lineage', 'superkingdom', 'taxon', 'level', 'count' out_df.at[taxonID, 'lineage'] = named_lineage out_df.at[taxonID, 'superkingdom'] = superkingdom out_df.at[taxonID, 'taxon'] = name out_df.at[taxonID, 'level'] = level out_df.at[taxonID, 'count'] = count #Remove rows that have missing data out_df = out_df.dropna() print(function_name + ': Finished.') return out_df def write_output(output_DF, output_path): #State progress function_name = inspect.stack()[0][3] print(function_name + ': Writing output to ' + output_path) #Make the output directory if necessary output_directory = os.path.dirname(output_path) pathlib.Path(output_directory).mkdir(parents=True, exist_ok=True) #Write the output file output_DF.to_csv(output_path, sep='\t', index=True) print('write_output(): Finished.') def main(infile, outfile, counts_file, log_file): write_to_log(log_file, "Starting.") #import data data = read_data_file(infile) #if there are no counts, assume these are reads if counts_file == '': print('''Did not detect a counts file. Assuming the input dataset is queried reads.''') data['read_count'] = 1 else: #Make counts_dictionary from counts_file counts_dictionary = make_counts_dictionary_from_counts_file(counts_file) #Add counts to the dataframe data = add_read_counts_to_dataframe(data, counts_dictionary) #Make a dict containing the aggregate counts for each taxonID counts_dict = get_taxonID_counts(data) #Assign counts to each taxonID's phylogeny counts = assign_counts(counts_dict) #write output write_output(counts, outfile) write_to_log(log_file, "Finished.") if __name__ == '__main__': #Argparse input parser = argparse.ArgumentParser(description=""" The purpose of this script is to take a converted DIAMOND or BLAST output file (in csv format) and generate a counts file at each taxon level. Input: - infile: A converted DIAMOND or blast output file. This script assumes there ARE colnames. Required column is 'LCA_taxonID'. If there is no counts_file, this input is assumed to be from reads, meaning each line has a read_count of 1. - outfile: Path to the output file, which will be tab-delimited. *Optional* - counts_file: A tab-delimited file of structure <sequence name> <count>. If this is provided, the counts for each entry in the infile will come from this file. - log_file: An optional file provided for logging purposes (start/end of the script). """) parser.add_argument('-i', '--infile', type=str, required=True, help='''Path to the input data file. See -h for more information.''') parser.add_argument('-o', '--outfile', type=str, required=True, help='''Path to the output file (tab-delimited).''') parser.add_argument('-c', '--counts_file', type=str, required=False, default = '', help='''Path to the counts file. See -h for more information.''') parser.add_argument('-l', '--log_file', type=str, required=False, default = '', help='''Path to the log file.''') args = parser.parse_args() infile = args.infile outfile = args.outfile counts_file = args.counts_file log_file = args.log_file #Run script. main(infile, outfile, counts_file, log_file) ``` #### File: bin/python/get_enriched_kmers.py ```python from glob import glob from Bio.Seq import Seq import os import argparse import time import pathlib #------------------------------------------------------------------------------# # Define functions #------------------------------------------------------------------------------# def write_to_log(log_file, message): current_date_time = time.strftime("%c") #if the log_file wasn't input, just print message to screen if log_file == '': print(message) print(current_date_time) return None #Check if the file exists. If not, make the directory if necessary log_file_directory = os.path.dirname(log_file) pathlib.Path(log_file_directory).mkdir(parents=True, exist_ok=True) #Open the log_file in append mode and write message to it with open(log_file, 'a') as infile: infile.write(message + '\n') infile.write(current_date_time + '\n') def extract_kmers(infile_path): output_set = set() with open(infile_path) as infile: for line in infile: if line.startswith(">"): continue kmer = line.rstrip('\n') output_set.add(kmer) # also add it's rev compliment rev_compliment = str(Seq(kmer).reverse_complement()) output_set.add(rev_compliment) return output_set def get_dict_from_infile_list(infile_list): """ infile_list is a list of infiles from which to extract kmers and add to the output dictionary. """ out_dict = dict() out_set = set() for infile_path in infile_list: print('Processing the infile ' + infile_path) sample_name = os.path.basename(infile_path).split(".")[0] kmer_set = extract_kmers(infile_path) out_dict[sample_name] = kmer_set out_set.update(kmer_set) return out_dict, out_set #------------------------------------------------------------------------------# # Main #------------------------------------------------------------------------------# def main(): parser = argparse.ArgumentParser(description=""" The purpose of this script is to find which kmers are enriched in experimental samples compared to control samples. This script takes in globs specifying fastas that contain kmers present in experimentals and controls. It then identifies kmers that are present in at least EXPERIMENTAL_THRESHOLD of the experimental files, and determines which of those kmers are not present in any of the control samples. """) parser.add_argument( '-e', '--experimental_files_glob', type=str, required=True, help=""" A glob that specifies fastas containing the kmers from experimental files. """ ) parser.add_argument( '-c', '--control_files_glob', type=str, required=True, help=""" A glob that specifies fastas containing the kmers from control files. """ ) parser.add_argument( '-o', '--outfile_path', type=str, required=True, help=""" Path to the output file, which is a txt file where each line is one enriched kmer. """ ) parser.add_argument( '-t', '--threshold', type=int, required=True, help=""" The number of experimental samples that should have the kmer for it to be considered for enrichment. """ ) parser.add_argument( '-l', '--log_file', type=str, required=False, default="", help=""" Path to the log file. If blank, log will be written to screen. Log is in tsv format. """ ) args = parser.parse_args() experimental_files_glob = args.experimental_files_glob control_files_glob = args.control_files_glob outfile_path = args.outfile_path threshold = args.threshold log_file = args.log_file # Gen dictionaries, where sampleID:kmers, as well as all the kmers in a set experimental_dict, experimental_kmers = get_dict_from_infile_list(glob(experimental_files_glob)) control_dict, control_kmers = get_dict_from_infile_list(glob(control_files_glob)) write_to_log(log_file, "experimental_group_total_kmers\t" + str(len(experimental_kmers))) write_to_log(log_file, "control_group_total_kmers\t" + str(len(control_kmers))) # For each of the kmers, check how many samples' the kmer is present in and # get a count. If it is above threshold, add to common_experimental_kmers. common_experimental_kmers = set() for kmer in experimental_kmers: count = 0 for sample, kmers in experimental_dict.items(): if count >= threshold: continue if kmer in kmers: count += 1 if count >= threshold: common_experimental_kmers.add(kmer) write_to_log(log_file, "common_experimental_kmers\t" + str(len(common_experimental_kmers))) # Determine which of the common experimental kmers are not present in the control kmers enriched_kmers = common_experimental_kmers - control_kmers write_to_log(log_file, "enriched_kmers\t" + str(len(enriched_kmers))) # write enriched kmers to outfile with open(outfile_path, "w") as outfile: for kmer in enriched_kmers: outfile.write(kmer + '\n') if __name__ == '__main__': main() ```
{ "source": "jnoortheen/arger", "score": 3 }
#### File: arger/arger/docstring.py ```python import inspect import re import typing as tp class ParamDocTp(tp.NamedTuple): type_hint: tp.Any flags: tp.Tuple[str, ...] doc: str @classmethod def init(cls, type_hint: tp.Any, doc: str, flag_symbol="-"): """Parse flags defined in param's doc Examples: ''':param arg1: -a --arg this is the document''' """ doc_parts: tp.List[str] = [] flags: tp.List[str] = [] for part in doc.split(): if part.startswith(flag_symbol) and not doc_parts: # strip both comma and empty space flags.append(part.strip(", ").strip()) else: doc_parts.append(part) return cls(type_hint, flags=tuple(flags), doc=" ".join(doc_parts)) class DocstringTp(tp.NamedTuple): description: str epilog: str params: tp.Dict[str, ParamDocTp] class DocstringParser: """Abstract class""" pattern: tp.Pattern section_ptrn: tp.Pattern param_ptrn: tp.Pattern _parsers: tp.List["DocstringParser"] = [] def __init_subclass__(cls, **_): # Cache costly init phase per session. cls._parsers.append(cls()) @classmethod def parse(cls, func: tp.Optional[tp.Callable]) -> DocstringTp: doc = (inspect.getdoc(func) or "") if func else "" if doc: for parser in cls._parsers: if parser.matches(doc): return parser._parse(doc) return DocstringTp(description=doc, epilog="", params={}) def _parse(self, doc: str) -> DocstringTp: raise NotImplementedError def matches(self, doc: str) -> bool: return bool(self.pattern.search(doc)) class NumpyDocParser(DocstringParser): """Implement Numpy Docstring format parser `Example <https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html#example-numpy>`_ """ def __init__(self): self.pattern = re.compile(r"(Parameters\n[-]+)") self.section_ptrn = re.compile(r"\n\s*(?P<section>\w+)\n\s*[-]+\n+") self.param_ptrn = re.compile(r"^(?P<param>\w+)[ \t]*:?[ \t]*(?P<type>\w+)?") def get_rest_of_section(self, params: str) -> tp.Tuple[str, str]: other_sect = self.section_ptrn.search(params) if other_sect: pos = other_sect.start() return params[pos:].strip(), params[:pos] return "", params def parse_params(self, params: str) -> tp.Dict[str, ParamDocTp]: docs = [] for line in params.splitlines(): match = self.param_ptrn.search(line) if match: result = match.groupdict() doc = result.get("doc", "") docs.append([result["param"], result["type"], doc]) elif docs: docs[-1][-1] += line return { param.strip("*"): ParamDocTp.init(tphint, doc) for param, tphint, doc in docs } def _parse(self, doc: str) -> DocstringTp: desc, _, params = self.pattern.split(doc, maxsplit=1) other_sect, params = self.get_rest_of_section(params) return DocstringTp(desc.strip(), other_sect, params=self.parse_params(params)) class GoogleDocParser(NumpyDocParser): """Implement Google Docstring format parser `Example <https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html>`_ """ def __init__(self): # pylint: disable=super-init-not-called self.pattern = re.compile(r"\s(Args|Arguments):\s") self.section_ptrn = re.compile(r"\n(?P<section>[A-Z]\w+):\n+") self.param_ptrn = re.compile( r"^\s+(?P<param>[*\w]+)\s*(\((?P<type>[\s,`:\w]+)\))?:\s*(?P<doc>[\s\S]+)" ) # matches parameter_name e.g. param1 (type): description class RstDocParser(DocstringParser): """Sphinx rst-style docstrings parser `Example <https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html>`_ """ def __init__(self): self.pattern = re.compile(r":param") self.section_ptrn = re.compile(r"\n:[\w]+") # matches any start of the section self.param_ptrn = re.compile(r"^[ ]+(?P<tp_param>.+):[ ]*(?P<doc>[\s\S]+)") def parse_doc(self, line: str, params: tp.Dict[str, ParamDocTp]): match = self.param_ptrn.match(line) if match: tp_param, doc = match.groups() # type: str, str parts = tp_param.strip().rsplit(" ", maxsplit=1) param = parts[-1].strip() type_hint = None if len(parts) > 1: type_hint = parts[0].strip() params[param] = ParamDocTp.init(type_hint, doc) def _parse(self, doc: str) -> DocstringTp: lines = self.pattern.split(doc) long_desc = lines.pop(0) epilog = "" params: tp.Dict[str, ParamDocTp] = {} for idx, lin in enumerate(lines): sections = self.section_ptrn.split(lin, maxsplit=1) if idx + 1 == len(lines) and len(sections) > 1: epilog = sections[-1] self.parse_doc(sections[0], params) return DocstringTp(long_desc.strip(), epilog, params) ``` #### File: tests/test_args_opts/conftest.py ```python import inspect import pytest from arger import Arger, Argument from arger.docstring import ParamDocTp from arger.main import FlagsGenerator @pytest.fixture def param_doc(hlp=''): return ParamDocTp.init('', hlp) @pytest.fixture def add_arger(): def _add(argument): par = Arger() argument.add_to(par) return par return _add @pytest.fixture def gen_options(): return FlagsGenerator('-') @pytest.fixture def parameter(name, tp): return inspect.Parameter( name, inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=tp, ) @pytest.fixture def argument(parameter, param_doc, gen_options) -> Argument: return Argument.create(parameter, param_doc, gen_options) @pytest.fixture def parser(add_arger, argument): return add_arger(argument) ``` #### File: arger/tests/test_dispatcher.py ```python import re import sys from pathlib import Path import pytest from colorama import Back, Fore, Style from arger import Arger @pytest.fixture def arger(pyfile: Path) -> Arger: ctx: dict = {} exec(pyfile.read_text(), ctx) return ctx["arger"] @pytest.fixture def args(cmd: str): args = cmd.strip("$").strip().split(" ") args.pop(0) # python args.pop(0) # filename return args def test_example(capsys, arger, args, expected: str): if "error" in expected or expected.startswith("usage:"): with pytest.raises(SystemExit): arger.run(*args, capture_sys=False) # start function else: arger.run(*args, capture_sys=False) if sys.version_info >= (3, 9): expected = re.sub( r"\[(?P<arg>\w+) \[(?P=arg) ...]]", r"[\g<arg> ...]", expected ) if sys.version_info >= (3, 10): expected = expected.replace("optional arguments:", "options:") capture = capsys.readouterr() out = capture.err or capture.out assert out.split() == expected.split(), "".join( [ f"\n{Fore.BLUE}{Back.WHITE}cmd: {Style.RESET_ALL}\n{args}", f"\n{Fore.BLUE}{Back.WHITE}out: {Style.RESET_ALL}\n{out}", f"\n{Fore.BLUE}{Back.WHITE}expected: {Style.RESET_ALL}\n{expected}", ] ) ```
{ "source": "jnoortheen/django-utils-plus", "score": 2 }
#### File: jnoortheen/django-utils-plus/tasks.py ```python import invoke @invoke.task def release(c): cversion: invoke.Result = c.run("poetry version") version: str = cversion.stdout.replace("django-utils-plus", "").strip() c.run('git push') c.run('git tag v{}'.format(version)) c.run('git push --tags') # dont forget to have this file # ~/.pypirc # [distutils] # index-servers = # pypi c.run('poetry publish --build') @invoke.task def test(c): c.run( 'pytest ' '--cov utils_plus ' ) @invoke.task def lint(c): c.run("mypy utils_plus") c.run("pylint utils_plus") ``` #### File: django-utils-plus/tests/conftest.py ```python from contextlib import contextmanager import pytest @pytest.fixture def records(db): from .test_app.models import Book from django_dynamic_fixture import G # create three records for i in range(3): G(Book, authors=3, name='filter') # copied form the pytest-django as it is not available in PyPI version @pytest.fixture(scope='function') def django_assert_num_queries(pytestconfig): from django.db import connection from django.test.utils import CaptureQueriesContext @contextmanager def _assert_num_queries(num): with CaptureQueriesContext(connection) as context: yield if num != len(context): msg = "Expected to perform %s queries but %s were done" % (num, len(context)) if pytestconfig.getoption('verbose') > 0: sqls = (q['sql'] for q in context.captured_queries) msg += '\n\nQueries:\n========\n\n%s' % '\n\n'.join(sqls) else: msg += " (add -v option to show queries)" pytest.fail(msg) return _assert_num_queries ``` #### File: tests/test_app/models.py ```python from django.db import models # Create your models here. from utils_plus.abstracts import CheckDeletableModelMixin from utils_plus.choices import ChoicesEnum from utils_plus.models import QueryManager from utils_plus.fields import ChoicesEnumField class Title(ChoicesEnum): mr = 'Mr.' ms = 'Ms.' mrs = 'Mrs.' class Author(CheckDeletableModelMixin, models.Model, ): title = ChoicesEnumField(Title, default=Title.mr) name = models.CharField(max_length=20) objects = QueryManager() def __str__(self): return self.name class Publisher(models.Model): name = models.CharField(max_length=20) created_on = models.DateTimeField(auto_now_add=True) class Book(models.Model): authors = models.ManyToManyField(Author) publisher = models.ForeignKey(Publisher, on_delete=models.CASCADE) name = models.CharField(max_length=40) created_on = models.DateTimeField(auto_now_add=True) objects = models.Manager() rel_objects = QueryManager(name__icontains='filter').selects('publisher').prefetches('authors').order_by('-id') ``` #### File: django-utils-plus/tests/test_mixins.py ```python from unittest.mock import Mock from django.urls import reverse from django.views import View from utils_plus.mixins import ContextMixinPlus, CreateUpdateMixin, ProcessFormView def test_generic_view(): class GenricView(ContextMixinPlus, View): three = 0 four = 0 kwargs = {'one': 1, 'two': 2} view = GenricView() assert set(view.get_context_data(six=6, five=5).keys()) == {'six', 'five', 'view', 'one', 'two'} class test_CreateUpdateMixin: def test_get(self, monkeypatch): c = CreateUpdateMixin() monkeypatch.setattr(c, "get_object", Mock()) monkeypatch.setattr(ProcessFormView, "get", Mock()) c.get(request='') c.get_object.assert_called_once() def test_post(self, monkeypatch): c = CreateUpdateMixin() monkeypatch.setattr(c, "get_object", Mock()) monkeypatch.setattr(ProcessFormView, "post", Mock()) c.post(request='', pk=1) c.get_object.assert_called_once() def test_urls(self): # the urls are defined in test-app assert reverse('author:add') == '/blog/author_profile/add/' assert reverse('author:edit', args=[12]) == '/blog/author_profile/edit/12/' ``` #### File: django-utils-plus/tests/test_router.py ```python from utils_plus.router import url from utils_plus.views import return_path_view as view str_iter = lambda x: list(map(str, x)) def test_nesting_levels(): urls = list( url("home")[ url("p1", view, "report1"), url("p2", view, "report2"), url("level1", view, "sub1")[ url("p1", view, "level1"), url("p2", view, "level2"), url("level2", view, "sub2")[url("p1", view, "lp1"), url("p2", view, "lp2")], ], url("p3", view, "report3"), ] ) assert str_iter(urls) == [ "<URLPattern 'home/p1/' [name='report1']>", "<URLPattern 'home/p2/' [name='report2']>", "<URLPattern 'home/level1/' [name='sub1']>", "<URLPattern 'home/level1/p1/' [name='level1']>", "<URLPattern 'home/level1/p2/' [name='level2']>", "<URLPattern 'home/level1/level2/' [name='sub2']>", "<URLPattern 'home/level1/level2/p1/' [name='lp1']>", "<URLPattern 'home/level1/level2/p2/' [name='lp2']>", "<URLPattern 'home/p3/' [name='report3']>", ] assert len(urls) == 9 def test_variable_regex(): g = url("home")[ url.pk(view, "pk"), url.int("int_var", view, "int"), url.var("str_var", view, "str"), url.re("reg_x", r"[x]+", view, "regex"), ] assert str_iter(g) == [ "<URLPattern 'home/<int:pk>/' [name='pk']>", "<URLPattern 'home/<int:int_var>/' [name='int']>", "<URLPattern 'home/<str_var>/' [name='str']>", "<URLPattern 'home/(?P<reg_x>[x]+)/' [name='regex']>", ] def test_same_level_urls(): g = url("home", view)[ url.pk(view) ] + url("about", view)[ url.pk(view)[ url("pdf", view) ] ] + url("contact", view)[ url.pk(view) ] assert str_iter(g) == ["<URLPattern 'home/'>", "<URLPattern 'home/<int:pk>/'>", "<URLPattern 'about/'>", "<URLPattern 'about/<int:pk>/'>", "<URLPattern 'about/<int:pk>/pdf/'>", "<URLPattern 'contact/'>", "<URLPattern 'contact/<int:pk>/'>"] def test_paths_without_views(): g = url("home")[ url.pk()[url("edit", view)], url.int("integer")[url("edit", view)], url.var("variable")[url("edit", view)], url.re("regex", r"\.+")[url("edit", view)], url("home2")[url.pk(view, "pk")], url("home3", view), ] assert str_iter(g) == [ "<URLPattern 'home/<int:pk>/edit/'>", "<URLPattern 'home/<int:integer>/edit/'>", "<URLPattern 'home/<variable>/edit/'>", "<URLPattern 'home/(?P<regex>\\.+)/edit/'>", "<URLPattern 'home/home2/<int:pk>/' [name='pk']>", "<URLPattern 'home/home3/'>", ] def test_include_patterns(): # app1 urls app2 = url("app2/")[url("post")[url.pk(view)[url("edit", view)]]] # app1 urls app1 = url("app1/")[url("post")[url.pk(view)[url("edit", view)]]] # root url definition app = url("app/")[app1, app2] assert str_iter(app) == [ "<URLPattern 'app/app1/post/<int:pk>/'>", "<URLPattern 'app/app1/post/<int:pk>/edit/'>", "<URLPattern 'app/app2/post/<int:pk>/'>", "<URLPattern 'app/app2/post/<int:pk>/edit/'>", ] def test_paths_that_starts_with_a_blank_root(): g = url("", view)[ url("home")[url.pk()[url("edit", view)], url.int("integer")[url("edit", view)]], url("home2")[url.pk(view, "pk")], url("home3", view), ] assert str_iter(g) == [ "<URLPattern ''>", "<URLPattern 'home/<int:pk>/edit/'>", "<URLPattern 'home/<int:integer>/edit/'>", "<URLPattern 'home2/<int:pk>/' [name='pk']>", "<URLPattern 'home3/'>" ] def test_multi_part_single_entry(): g = url("nest1/nest2", view)[ url("home/coming")[ url.pk()[ url("edit", view) ], url.int("integer")[ url("edit", view), ], ], url("first/nest3")[ url.pk(view, "pk") ], url("home3", view), ] assert str_iter(g) == [ "<URLPattern 'nest1/nest2/'>", "<URLPattern 'nest1/nest2/home/coming/<int:pk>/edit/'>", "<URLPattern 'nest1/nest2/home/coming/<int:integer>/edit/'>", "<URLPattern 'nest1/nest2/first/nest3/<int:pk>/' [name='pk']>", "<URLPattern 'nest1/nest2/home3/'>" ] ``` #### File: django-utils-plus/utils_plus/abstracts.py ```python from django.db.models import Model class CheckDeletableModelMixin: def is_deletable(self: Model): # type: ignore # get all the related object for rel in self._meta.get_fields(): try: # check if there is a relationship with at least one related object if rel.related_model: related = rel.related_model.objects.filter(**{rel.field.name: self}) # type: ignore if related.exists(): # if there is return a Tuple of flag = False the related_model object return False, related except AttributeError: # an attribute error for field occurs when checking for AutoField pass # just pass as we dont need to check for AutoField return True, None ``` #### File: management/commands/create_middleware.py ```python import os from django.core.management.base import AppCommand from utils_plus.utils.misc import read_if_exists from .create_admin import render_template CLASS_TMPL = """\ def {{name}}(get_response): def middleware(request): # do your processing here return get_response(request) return middleware """ class Command(AppCommand): help = "Create new middleware" def add_arguments(self, parser): super(Command, self).add_arguments(parser) parser.add_argument('-n', '--name', type=str, help='Name of the middeware', default='sample') def handle_app_config(self, app_config, **options): file = os.path.join(app_config.path, 'middleware.py') content = read_if_exists(file) mware_name = "{}_middleware".format(options['name']) if mware_name not in content: content += render_template(CLASS_TMPL, name=mware_name) # finaly write file contents if content: with open(file, 'w') as writer: writer.write(content) ``` #### File: django-utils-plus/utils_plus/middleware.py ```python import re from django.conf import settings from django.contrib.auth.decorators import login_required LOGIN_REQ_URLS = [] if hasattr(settings, 'LOGIN_REQUIRED_URLS'): LOGIN_REQ_URLS += [re.compile(expr) for expr in settings.LOGIN_REQUIRED_URLS] def login_required_middleware(get_response): """ settings.LOGIN_REQ_URLS holds a list of ``re`` patterns. Those request are wrapped with login_required decorator This is extremely useful when you don't have to litter your code with lots of decorators and checks Args: get_response: Returns: """ def middleware(request): if any(m.match(request.path) for m in LOGIN_REQ_URLS): return login_required(get_response)(request) return get_response(request) return middleware ``` #### File: utils_plus/templatetags/utils_plus_tags.py ```python from __future__ import absolute_import from django import template from django.conf import settings from django.templatetags.static import static from django.utils.safestring import mark_safe from utils_plus.utils import get_node_modules_dir from utils_plus.utils.html import script_tag, link_css_tag from ..utils import get_npm_pkg_path register = template.Library() @register.filter def klass(obj) -> str: """ returns class name of the object. Might be useful when rendering widget class names Args: obj: any python class object Returns: str: name of the class >>> from tests.test_app.models import Author >>> klass(Author) 'ModelBase' """ return obj.__class__.__name__ if settings.DEBUG: # todo: replace this with finder implementation # add node_modules to list of static folders to find and load in local development settings.STATICFILES_DIRS = settings.STATICFILES_DIRS + [ get_node_modules_dir() ] @register.simple_tag def npmcdn(cdn_url, path) -> str: """ Args: cdn_url: URL of CDN like `unpkg.com` or `cdn.jsdelivr.net/npm` path: path to js/css file. should follow the directory structure as inside ``node_modules`` Returns: str: URL """ return ( static(path) if settings.DEBUG else '//{}/{}'.format(cdn_url, get_npm_pkg_path(path)) ) @register.simple_tag def unpkg(path) -> str: """ Alternative to standard `static` template tag. When you are using external static files/libraries like bootstrap, jquery you may want to load them from CDNs instead of managing them yourself in production. This tag helps you to do that. When `settings.DEBUG` is false, this will return paths that resolved from `package.json` to versioned `unpkg.com`. Otherwise it will resolve to `node_modules` locally. Args: path (str): Returns: str: assets path resolved either to node_modules directory or https://unpkg.com/#/ in production. Usage: load the template tags and use `unpkg` like `static` tag, ``` {% load static utils_plus_tags %} <link rel="stylesheet" type="text/css" href="{% unpkg 'bootstrap/dist/css/bootstrap.min.css' %}"/> <script src="{% unpkg 'bootstrap/dist/js/bootstrap.min.js' %}"></script> <script src="{% unpkg 'jquery/dist/jquery.min.js' %}"></script> ``` Note: 1. the package.json should be present in the project ROOT DIR. 2. When DEBUG is True the packages must be installed and should be available already inside `node_modules`. """ return npmcdn('unpkg.com', path) @register.simple_tag def jsdelivr(path) -> str: """ same as above with CDN as jsdelivr """ return npmcdn('cdn.jsdelivr.net/npm', path) def jsdelivr_combined_tags_helper(tag_template, *paths) -> str: if settings.DEBUG: tag_str = "".join([ tag_template.format(static(path)) for path in paths ]) else: npm_paths = ','.join(["npm/" + get_npm_pkg_path(path) for path in paths]) cdn_url = '//{}/{}'.format('cdn.jsdelivr.net/combine/', npm_paths) tag_str = mark_safe(tag_template.format(cdn_url)) return mark_safe(tag_str) @register.simple_tag def jsdelivr_combine_js(*paths, **attributes): """ same as above with CDN as jsdelivr's combine feature. In debug mode, it return multiple script tag. Otherwise return single script tag with combined js Args: *paths: **attributes: script tag's attrbute """ script_template = script_tag( **attributes, src='{}', # URL placeholder ) return jsdelivr_combined_tags_helper(script_template, *paths) @register.simple_tag def jsdelivr_combine_css(*paths, **attributes): """ same as above with CDN as jsdelivr's combine feature. In debug mode, it return multiple script tag. Otherwise return single script tag with combined js Args: *paths: **attributes: script tag's attrbute """ tmpl = link_css_tag( **attributes, href='{}', # URL placeholder ) return jsdelivr_combined_tags_helper(tmpl, *paths) ```
{ "source": "jnoortheen/flake8-import-style", "score": 3 }
#### File: flake8-import-style/tests/test_module.py ```python import ast import unittest import flake8_typing_import_style class I8Test(unittest.TestCase): def test_run(self): tree = ast.parse("import typing") i8 = flake8_typing_import_style.I9(tree) self.assertEqual(list(i8.run()), [(1, 0, "I902 use 'import typing as tp' instead of 'import typing'", 'I902')]) tree = ast.parse("import typing as tp") i8 = flake8_typing_import_style.I9(tree) self.assertEqual(list(i8.run()), []) tree = ast.parse("from typing import obj") i8 = flake8_typing_import_style.I9(tree) self.assertEqual(list(i8.run()), [( 1, 0, "I901 use 'import typing as tp' instead of 'from typing import obj'", "I901", )]) ```
{ "source": "jnoortheen/graphql-pynamodb", "score": 2 }
#### File: graphql-pynamodb/graphene_pynamodb/types.py ```python from collections import OrderedDict from inspect import isclass from graphene import Field, Connection, Node from graphene.relay import is_node from graphene.types.objecttype import ObjectType, ObjectTypeOptions from graphene.types.utils import yank_fields_from_attrs from pynamodb.attributes import Attribute, NumberAttribute from pynamodb.models import Model from .converter import convert_pynamo_attribute from .registry import Registry, get_global_registry from .relationships import RelationshipResult from .utils import get_key_name, connection_for_type def get_model_fields(model, excluding=None): if excluding is None: excluding = [] attributes = dict() for attr_name, attr in model.get_attributes().items(): if attr_name in excluding: continue attributes[attr_name] = attr return OrderedDict(sorted(attributes.items(), key=lambda t: t[0])) def construct_fields(model, registry, only_fields, exclude_fields): inspected_model = get_model_fields(model) fields = OrderedDict() for name, attribute in inspected_model.items(): is_not_in_only = only_fields and name not in only_fields is_already_created = name in fields is_excluded = name in exclude_fields or is_already_created if is_not_in_only or is_excluded: # We skip this field if we specify only_fields and is not # in there. Or when we excldue this field in exclude_fields continue converted_column = convert_pynamo_attribute(attribute, attribute, registry) fields[name] = converted_column return fields class PynamoObjectTypeOptions(ObjectTypeOptions): model = None # type: Model registry = None # type: Registry connection = None # type: Type[Connection] id = None # type: str class PynamoObjectType(ObjectType): @classmethod def __init_subclass_with_meta__(cls, model=None, registry=None, skip_registry=False, only_fields=(), exclude_fields=(), connection=None, use_connection=None, interfaces=(), id=None, **options): assert model and isclass(model) and issubclass(model, Model), ( 'You need to pass a valid PynamoDB Model in ' '{}.Meta, received "{}".' ).format(cls.__name__, model) if not registry: registry = get_global_registry() assert isinstance(registry, Registry), ( 'The attribute registry in {} needs to be an instance of ' 'Registry, received "{}".' ).format(cls.__name__, registry) pynamo_fields = yank_fields_from_attrs( construct_fields(model, registry, only_fields, exclude_fields), _as=Field, ) if use_connection is None and interfaces: use_connection = any((issubclass(interface, Node) for interface in interfaces)) if use_connection and not connection: # We create the connection automatically connection = Connection.create_type('{}Connection'.format(cls.__name__), node=cls) if connection is not None: assert issubclass(connection, Connection), ( "The connection must be a Connection. Received {}" ).format(connection.__name__) _meta = PynamoObjectTypeOptions(cls) _meta.model = model _meta.registry = registry _meta.fields = pynamo_fields _meta.connection = connection _meta.id = id or 'id' super(PynamoObjectType, cls).__init_subclass_with_meta__(_meta=_meta, interfaces=interfaces, **options) if not skip_registry: registry.register(cls) @classmethod def is_type_of(cls, root, info): if isinstance(root, RelationshipResult) and root.__wrapped__ == cls._meta.model: return True return isinstance(root, cls._meta.model) @classmethod def get_node(cls, info, id): if isinstance(getattr(cls._meta.model, get_key_name(cls._meta.model)), NumberAttribute): return cls._meta.model.get(int(id)) else: return cls._meta.model.get(id) def resolve_id(self, info): graphene_type = info.parent_type.graphene_type if is_node(graphene_type): return getattr(self, get_key_name(graphene_type._meta.model)) @classmethod def get_connection(cls): return connection_for_type(cls) ``` #### File: graphql-pynamodb/graphene_pynamodb/utils.py ```python import json from typing import Tuple from graphql_relay import from_global_id, to_global_id from pynamodb.attributes import Attribute from pynamodb.models import Model import graphene MODEL_KEY_REGISTRY = {} def get_key_name(model): if not issubclass(model, Model): raise TypeError("Invalid type passed to get_key_name: %s" % model.__class__) if model in MODEL_KEY_REGISTRY: return MODEL_KEY_REGISTRY[model] for attr in model.get_attributes().values(): if isinstance(attr, Attribute) and attr.is_hash_key: MODEL_KEY_REGISTRY[model] = attr.attr_name return attr.attr_name def connection_for_type(_type): class Connection(graphene.relay.Connection): total_count = graphene.Int() class Meta: name = _type._meta.name + "Connection" node = _type def resolve_total_count(self, args, context, info): return self.total_count if hasattr(self, "total_count") else len(self.edges) return Connection def to_cursor(item: Model) -> str: data = {} # this will be same as last_evaluated_key returned by PageIterator for name, attr in item.get_attributes().items(): if attr.is_hash_key or attr.is_range_key: data[name] = item._serialize_value(attr, getattr(item, name)) return to_global_id(type(item).__name__, json.dumps(data)) def from_cursor(cursor: str) -> Tuple[str, dict]: model, data = from_global_id(cursor) return model, json.loads(data) ```
{ "source": "jnoortheen/pipm", "score": 2 }
#### File: pipm/pipm/classes.py ```python from pip._internal.req import InstallRequirement from .file_utils import parse_comes_from class FileRequirement: def __init__(self, req, env): # type: (InstallRequirement, str) -> None filename, line_num = parse_comes_from(req.comes_from, env) self.req = req self.filename = filename self.line_num = line_num def __repr__(self): return "{}".format(self.req) ``` #### File: pipm/pipm/setup_cfg.py ```python import codecs import os try: from typing import Dict, Iterable, Set, List except ImportError: pass from pip._internal.req import InstallRequirement from pip._vendor.packaging.requirements import Requirement from pip._vendor.packaging.specifiers import SpecifierSet from six.moves.configparser import ConfigParser from . import operations SETUP_FILE_NAME = "setup.cfg" def _req_list_to_str(reqs): # type: (Iterable) -> str return "".join(map(lambda x: "\n" + x, sorted(reqs, key=lambda x: x.lower()))) def _req_str_to_list(reqs): # type: (str) -> list if reqs and isinstance(reqs, str): reqs = reqs.strip() if "\n" in reqs: return reqs.splitlines() elif "," in reqs: return reqs.split(",") else: return [reqs] return [] def _req_str_to_dict(config, base_key, key): # type: (ConfigParser, str, str) -> Dict[str, str] reqs = ( config.get(base_key, key) if config.has_section(base_key) and config.has_option(base_key, key) else "" ) return dict(map(lambda x: (Requirement(x).name, x), _req_str_to_list(reqs))) def update_config(config, env, new_reqs): """ updates config Args: config (ConfigParser): parsed config file base_key (str): i.e. options, options.extra_requires key (str): new_reqs (Dict[str, str]): a dict of newly installed/updated requirements. Key is the package name and value is the full name with version and markers """ base_key, key = get_keys(env) if not config.has_section(base_key): config.add_section(base_key) reqs = _req_str_to_dict(config, base_key, key) reqs.update(new_reqs) if reqs: config.set(base_key, key, _req_list_to_str(reqs.values())) def get_keys(env=None): """return key combination for adding new RequirementSet""" if env: base_key = "options.extras_require" key = "testing" if env and "test" in env else str(env) else: base_key = "options" key = "install_requires" return base_key, key def _read_config(): """read from existing file""" config = ConfigParser() if os.path.exists(SETUP_FILE_NAME): config.read(SETUP_FILE_NAME) return config def _write_to_file(config): with codecs.open(SETUP_FILE_NAME, "w") as file_obj: config.write(file_obj) def get_requirements(env=None): # (str) -> dict config = _read_config() base_key, key = get_keys(env) return _req_str_to_dict(config, base_key, key) def add_requirements(user_reqs, env=None): # type: (List[InstallRequirement], str) -> ConfigParser """ create/update setup.cfg file Args: user_reqs: list of user requirements file_obj: file object to write to """ config = _read_config() reqs = {} for req in user_reqs: # type: InstallRequirement if not req.comes_from: # add only top-level dependencies if not req.req.specifier and req.installed_version: req.req.specifier = SpecifierSet("~=" + str(req.installed_version)) reqs[req.req.name] = str(req.req) if reqs: update_config(config, env, reqs) _write_to_file(config) return config def _remove_requirements(config, base_key, key, installed_reqs): # (ConfigParser, str, str, Set[str]) -> None # check all the sections and remove requirements that are not in the reqs = _req_str_to_dict(config, base_key, key) filtered = (req for req_name, req in reqs.items() if req_name in installed_reqs) config.set(base_key, key, _req_list_to_str(filtered)) def remove_requirements(installed_reqs=None): # type: (Set[str]) -> ConfigParser """ remove requirements from `setup.cfg` after `pip uninstall` Args: installed_reqs (set): set of requirements name strings """ installed_reqs = installed_reqs or set(operations.get_frozen_reqs().keys()) config = _read_config() # check all the sections and remove requirements that are not in the for name in config.sections(): if name == "options": section, option = get_keys() _remove_requirements(config, section, option, installed_reqs) elif name == "options.extras_require": for key in config.options(name): _remove_requirements(config, name, key, installed_reqs) _write_to_file(config) return config ``` #### File: pipm/tests/test_commands.py ```python from pipm import commands from pipm.file import get_req_filenames from pipm.file_utils import get_req_filename def test_fill_args_when_no_args_given(chdir): """ Args: tmpdir (LocalPath): fixture """ f = get_req_filename() cmd = commands.InstallCommandPlus("i", "i") opts, args = cmd.parse_args([]) assert opts.requirements == [f] def test_fill_args_when_no_args_given_dev(chdir): """ Args: tmpdir (LocalPath): fixture """ for env in ["dev", "test", "prod"]: f = get_req_filename(env) cmd = commands.InstallCommandPlus("i", "i") opts, args = cmd.parse_args(["--{}".format(env)]) assert opts.requirements == [f] def test_fill_args_when_no_args_given_all(chdir): """ Args: tmpdir (LocalPath): fixture """ # create the below two files get_req_filename("dev") get_req_filename("test") # start test fset = get_req_filenames() cmd = commands.InstallCommandPlus("i", "i") opts, args = cmd.parse_args(["--all"]) assert set(opts.requirements) == fset def test_fill_args_when_no_args_given_environ(chdir): """ Args: tmpdir (LocalPath): fixture """ env = "staging" f = get_req_filename(env) cmd = commands.InstallCommandPlus("i", "i") opts, args = cmd.parse_args(["--env", env]) assert opts.requirements == [f] def test_req_environment(): cmd = commands.InstallCommandPlus("i", "i") opts, args = cmd.parse_args(["--dev"]) assert opts.req_environment == "dev" opts, args = cmd.parse_args(["--test"]) assert opts.req_environment == "test" opts, args = cmd.parse_args(["pkg_name", "--prod"]) assert opts.req_environment == "prod" opts, args = cmd.parse_args(["pkg_name", "--env", "staging"]) assert opts.req_environment == "staging" opts, args = cmd.parse_args([]) assert opts.req_environment is None def test_update_command_parse_args(): cmd = commands.UpdateCommand("u", "u") opts, args = cmd.parse_args([]) assert opts.upgrade def test_install_cmd_run(mocker): """ """ run = mocker.patch.object(commands.install.InstallCommand, "run") # type: MagicMock save = mocker.patch.object(commands.file, "save") # type: MagicMock # run method cmd = commands.InstallCommandPlus("i", "i") cmd.main(["--dev", "pkg"]) run.assert_called_once() save.assert_called_once() def test_remove_cmd_run(mocker): run = mocker.patch.object(commands.UninstallCommand, "run") # type: MagicMock save = mocker.patch.object(commands.file, "save") # type: MagicMock mocker.patch.object( commands, "get_orphaned_packages", return_value=["pkg1", "pkg2"] ) # type: MagicMock # run method cmd = commands.UninstallCommandPlus("u", "u") opts, args = cmd.parse_args(["dev"]) cmd.run(opts, args) run.assert_called_once_with(opts, ["dev", "pkg1", "pkg2"]) save.assert_called_once() def test_freeze_cmd_run(mocker): run = mocker.patch.object(commands.FreezeCommand, "run") # type: MagicMock save = mocker.patch.object(commands.file, "save") # type: MagicMock mocker.patch.object( commands, "get_orphaned_packages", return_value=["pkg1", "pkg2"] ) # type: MagicMock # run method cmd = commands.FreezeCommandPlus("f", "f") opts, args = cmd.parse_args([]) cmd.run(opts, args) run.assert_called_once() save.assert_called_once() ```
{ "source": "jnoortheen/xontrib-avox-poetry", "score": 2 }
#### File: xontrib/avox_poetry/venv_poetry.py ```python import builtins import typing as tp from pathlib import Path from .utils import deep_get def run(*args) -> str: from subprocess import check_output return check_output(args).decode().strip() def poetry_venv_path(pkg_name: str, cwd: str) -> str: import hashlib import base64 import re # taken from # https://github.com/python-poetry/poetry/blob/1.0.3/poetry/utils/env.py#L693 name = pkg_name.lower() sanitized_name = re.sub(r'[ $`!*@"\\\r\n\t]', "_", name)[:42] h = hashlib.sha256(str(cwd).encode()).digest() h = base64.urlsafe_b64encode(h).decode()[:8] return "{}-{}".format(sanitized_name, h) def find_project_name(proj_file: Path) -> tp.Optional[str]: import tomlkit proj = tomlkit.parse(proj_file.read_text()) return deep_get(proj, "tool", "poetry", "name") def iter_venvs(): path = Path( builtins.__xonsh__.env.get("VIRTUALENV_HOME", "~/.virtualenvs") ).expanduser() if path.exists(): yield from path.iterdir() def iter_venvs_proj(proj_name): for env in iter_venvs(): if env.name.startswith(proj_name) or env.name.startswith( proj_name.replace("_", "-") ): yield env def find_venv_path(cwd: Path) -> tp.Optional[Path]: # durations # plain-function: ~40ms # using subprocess: ~760ms # using xonsh builtins: ~640ms proj_toml = cwd.joinpath("pyproject.toml") if not proj_toml.exists(): return None proj_name = find_project_name(proj_toml) if not proj_name: return venvs = list(iter_venvs_proj(proj_name)) if len(venvs) == 1: return venvs[0] if not venvs: return None # if there are multiple venv for the same project then resolve it actually # using poetry itself return Path(run("poetry", "env", "info", "-p")) ```
{ "source": "jnoortheen/xontrib-broot", "score": 2 }
#### File: xontrib-broot/xontrib/broot.py ```python import builtins import os import subprocess import tempfile from xonsh.built_ins import XSH def _br(args, stdin=None, stdout=None, stderr=None): cmd_file = tempfile.NamedTemporaryFile(delete=False) try: cmds = ("broot", "--outcmd", cmd_file.name) + tuple(args) if builtins.__xonsh__.env.get("XONSH_INTERACTIVE"): cmds += ("--color", "yes") subprocess.call( cmds, stdin=stdin, stderr=stderr, stdout=stdout, ) builtins.evalx(cmd_file.read().decode()) finally: os.remove(cmd_file.name) builtins.aliases["br"] = _br @XSH.builtins.events.on_ptk_create def custom_keybindings(bindings, **kw): def handler(key_name: str, default: str): def do_nothing(_): pass if key_name not in XSH.env: key = default else: key = XSH.env.get(key_name) if key: return bindings.add(key) return do_nothing @handler("XONSH_BROOT_KEY", "c-n") def start_broot(event): _br([]) ```
{ "source": "jnoortheen/xontrib-commands", "score": 2 }
#### File: xontrib/commands/dev_cmd.py ```python import operator import os import typing as tp from pathlib import Path from arger import Argument import xonsh.tools as xt from xonsh.completers.tools import RichCompletion from xonsh.parsers.completion_context import CommandContext from .utils import Command, xsh ENVS = {} @xt.lazyobject def added_file_path() -> Path: return ( Path(xsh.env.get("XDG_DATA_HOME", "~/.local/share")).resolve() / "dev-paths.json" ) def update_saved_paths(paths=()): import json file = tp.cast(Path, added_file_path) if paths: content = json.dumps(list(set(paths))) file.write_text(content) def get_added_paths(add_path: str = None) -> tp.Dict[str, str]: import json file = tp.cast(Path, added_file_path) if file.exists(): paths = json.loads(file.read_text()) else: paths = [] if add_path: paths.append(add_path) update_saved_paths(paths) return {os.path.split(p)[-1]: p for p in paths} def register_project(fn: tp.Callable = None): """Register new project. Parameters ---------- call This function will get invoked upon finding the project_path. the function name will be used to search in $PROJECT_PATHS """ def _wrapper(): path = _start_proj_shell(fn.__name__) result = fn(path) return result ENVS[fn.__name__] = _wrapper return _wrapper def _start_proj_shell(env: tp.Union[str, Path]): if isinstance(env, Path) and env.exists(): path = str(env) else: path = find_proj_path(env) if not path: raise Exception("Project not found") os.chdir(path) return path def _find_proj_path(name, op): for direc in xsh.env.get("PROJECT_PATHS", []): for path in Path(direc).glob("*"): if op(path.name, name): yield path def find_proj_path(name): for op in [operator.eq, str.startswith, operator.contains]: for path in _find_proj_path(name, op): return path def _list_cmds(): from rich.console import Console c = Console() paths = get_added_paths() c.print("Paths", paths) def _add_current_path(): from rich.console import Console c = Console() path = Path.cwd().resolve() c.log("Adding cwd to project-paths", {path.name: path}) get_added_paths(str(path)) def proj_name_completer(**kwargs): command: CommandContext = kwargs.pop("command") for name, path in get_added_paths().items(): yield RichCompletion(name, description=path) yield from ENVS for path in _find_proj_path(command.prefix, str.startswith): yield RichCompletion(path.name, description=str(path)) @Command.reg def _dev( name: tp.cast(str, Argument(nargs="?", completer=proj_name_completer)), add=False, ls=False, ): """A command to cd into a directory Inspired from my own workflow and these commands - https://github.com/ohmyzsh/ohmyzsh/tree/master/plugins/pj - https://github.com/ohmyzsh/ohmyzsh/tree/master/plugins/wd Parameters ---------- name name of the folder to cd into. This searches for names under $PROJECT_PATHS or the ones registered with `dev --add` add register the current folder to dev command. When using this, it will get saved in a file, also that is used during completions. ls show currently registered paths Notes ----- One can use `register_project` function to regiter custom_callbacks to run on cd to project path Examples ------- > $PROJECT_PATHS = ["~/src/"] > dev proj-name # --> will cd into ~/src/proj-name > dev --add """ if ls or (name is None): _list_cmds() elif add: _add_current_path() else: added_paths = get_added_paths() if name in ENVS: ENVS[name]() elif name in added_paths: path = added_paths[name] if os.path.exists(path): return _start_proj_shell(Path(path)) else: # old/expired link added_paths.pop(name) update_saved_paths(tuple(added_paths.values())) return _start_proj_shell(name) ```
{ "source": "jnoortheen/xontrib-term-integrations", "score": 2 }
#### File: xontrib-term-integrations/xontrib_term_integrations/utils.py ```python import sys from xonsh.environ import Env class Codes: # https://iterm2.com/documentation-escape-codes.html equivalents ESC = "\x1b" ST = "\x07" OSC = ESC + "]" # \x5d CSI = ESC + "[" class ShellIntegrationPrompt: def __init__(self, env: "Env"): self.env = env self.old_prompt = env["PROMPT"] def __call__(self, **_): prompt = self.old_prompt() if callable(self.old_prompt) else self.old_prompt prefix, suffix = [ ansi_esc(form()) for form in [form_term_prompt_prefix, form_term_prompt_suffix] ] return prefix + prompt + suffix def ansi_esc(code: str): return "\001" + code + "\002" def term_mark(code): return f"{Codes.OSC}133;{code}{Codes.ST}" def term_osc_cmd(code): return f"{Codes.OSC}1337;{code}{Codes.ST}" def form_term_prompt_prefix(): return term_mark("A") def form_term_prompt_suffix(): return term_mark("B") def write_term_mark(code): return write_to_out(term_mark(code)) def write_osc_cmd(code): return write_to_out(term_osc_cmd(code)) def write_osc_output_prefix(): return write_term_mark("C") def write_osc_cmd_status(status): return write_term_mark(f"D;{status}") def write_to_out(code: str): sys.stdout.write(code) sys.stdout.flush() def write_osc_shell_integration(): # OSC 1337 ; ShellIntegrationVersion=[Pn] ; [Ps] ST write_osc_cmd("ShellIntegrationVersion=15;shell=xonsh") def write_osc_cwd(newdir): # OSC 1337 ; CurrentDir=[current directory] ST write_osc_cmd(f"CurrentDir={newdir}") def write_osc_user_host(env): user = env.get("USER") host = env.get("HOSTNAME") if user and host: write_osc_cmd(f"RemoteHost={user}@{host}") ```
{ "source": "jnordberg/benchmarking", "score": 2 }
#### File: evm/scripts/bench_evm384.py ```python import re import subprocess import nanodurationpy as durationpy import csv import time import datetime import os import shutil import shlex import json # output paths should be mounted docker volumes RESULT_CSV_OUTPUT_PATH = "/evmraceresults" RESULT_CSV_FILENAME = "evm_benchmarks_evmone384.csv" EVMONE_BENCH_INFOS = [ { "command": "/root/evmone-evm384-v1/build/bin/evmone-bench --benchmark_format=json --benchmark_color=false --benchmark_min_time=5 /root/evm384_f6m_mul/build/v1-f6m_mul_bench.bin 00 74229fc665e6c3f4401905c1a454ea57c8931739d05a074fd60400f19684d680a9e1305c25f13613dcc6cdd6e6e57d0800000000000000000000000000000000", "bench_name": "evm384-synth-loop-v1" }, { "command": "/root/evmone-evm384-v2/build/bin/evmone-bench --benchmark_format=json --benchmark_color=false --benchmark_min_time=5 /root/evm384_f6m_mul/build/v2-f6m_mul_bench.bin 00 74229fc665e6c3f4401905c1a454ea57c8931739d05a074fd60400f19684d680a9e1305c25f13613dcc6cdd6e6e57d0800000000000000000000000000000000", "bench_name": "evm384-synth-loop-v2" }, { "command": "/root/evmone-evm384-v2-unsafe/build/bin/evmone-bench --benchmark_format=json --benchmark_color=false --benchmark_min_time=5 /root/mem-check-disable-evm384_f6m_mul/build/v2-f6m_mul_bench.bin 00 74229fc665e6c3f4401905c1a454ea57c8931739d05a074fd60400f19684d680a9e1305c25f13613dcc6cdd6e6e57d0800000000000000000000000000000000", "bench_name": "evm384-synth-loop-v3" } ] """ root@472ab2fd1fc1:~/evm384_f6m_mul# /root/evmone-evm384-v2/build/bin/evmone-bench ~/evm384_f6m_mul/build/v2-f6m_mul_bench.bin "00" "74229fc665e6c3f4401905c1a454ea57c8931739d05a074fd60400f19684d680a9e1305c25f13613dcc6cdd6e6e57d0800000000000000000000000000000000" Benchmarking evmone 2020-06-18 20:52:56 Running /root/evmone-evm384-v2/build/bin/evmone-bench Run on (4 X 2294.68 MHz CPU s) CPU Caches: L1 Data 32K (x2) L1 Instruction 32K (x2) L2 Unified 256K (x2) L3 Unified 51200K (x2) ------------------------------------------------------------------------------------------------------- Benchmark Time CPU Iterations UserCounters... ------------------------------------------------------------------------------------------------------- /root/evm384_f6m_mul/build/v2-f6m_mul_bench.bin 18156 us 18156 us 39 gas_rate=322.266M/s gas_used=5.85118M """ def do_evmone_bench(evmone_bench_cmd): evmone_cmd = shlex.split(evmone_bench_cmd) print("running evmone benchmark...\n{}".format(evmone_bench_cmd)) stdoutlines = [] with subprocess.Popen(evmone_cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, universal_newlines=True) as p: for line in p.stdout: # b'\n'-separated lines print(line, end='') stdoutlines.append(line) # pass bytes as is p.wait() json_result = json.loads("".join(stdoutlines[2:])) benchmarks = json_result['benchmarks'] benchmark_results = benchmarks[0] gasused = int(benchmark_results['gas_used']) total_time = str(benchmark_results['real_time']) + benchmark_results['time_unit'] time = durationpy.from_str(total_time) return {'gas_used': gasused, 'time': time.total_seconds()} def saveResults(precompile_benchmarks): # move existing csv file to backup-datetime-folder ts = time.time() date_str = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d') ts_folder_name = "backup-{}-{}".format(date_str, round(ts)) dest_backup_path = os.path.join(RESULT_CSV_OUTPUT_PATH, ts_folder_name) result_file = "{}/{}".format(RESULT_CSV_OUTPUT_PATH, RESULT_CSV_FILENAME) # back up existing result csv file if os.path.isfile(result_file): os.makedirs(dest_backup_path) shutil.move(result_file, dest_backup_path) print("existing {} moved to {}".format(RESULT_CSV_FILENAME, dest_backup_path)) with open(result_file, 'w', newline='') as bench_result_file: fieldnames = ['engine', 'test_name', 'total_time', 'gas_used'] writer = csv.DictWriter(bench_result_file, fieldnames=fieldnames) writer.writeheader() for test_result in precompile_benchmarks: writer.writerow({"engine": test_result['engine'], "test_name" : test_result['bench_name'], "gas_used" : test_result['gas_used'], "total_time" : test_result['time']}) def main(): all_bench_resuls = [] for evmone_bench_info in EVMONE_BENCH_INFOS: evmone_cmd = evmone_bench_info['command'] bench_result = do_evmone_bench(evmone_cmd) bench_result['bench_name'] = evmone_bench_info['bench_name'] bench_result['engine'] = "evmone384" all_bench_resuls.append(bench_result) saveResults(all_bench_resuls) if __name__ == "__main__": main() ``` #### File: evm/scripts/benchevm.py ```python import json, re import subprocess import nanodurationpy as durationpy import csv import time import datetime import os import sys import shutil import shlex RESULT_CSV_OUTPUT_PATH = "/evmraceresults" # must be an absolute path to evm code dir EVM_CODE_DIR = "/input_data/evmcode" INPUT_VECTORS_DIR = "/input_data/input_vectors" EVMONE_BUILD_DIR = "/root/evmone/build" PARITY_EVM_DIR = "/parity/target/release" CITA_EVM_DIR = "/cita-vm/target/release" GETH_EVM_DIR = "/root/go/src/github.com/ethereum/go-ethereum/core/vm/runtime" def save_results(evm_name, evm_benchmarks): result_file = os.path.join(RESULT_CSV_OUTPUT_PATH, "evm_benchmarks_{}.csv".format(evm_name)) # move existing files to old-datetime-folder ts = time.time() date_str = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d') ts_folder_name = "{}-{}".format(date_str, round(ts)) dest_backup_path = os.path.join(RESULT_CSV_OUTPUT_PATH, ts_folder_name) #for file in glob.glob(r"{}/*.csv".format(RESULT_CSV_OUTPUT_PATH)): if os.path.isfile(result_file): os.makedirs(dest_backup_path) print("backing up existing {}".format(result_file)) shutil.move(result_file, dest_backup_path) print("existing csv files backed up to {}".format(dest_backup_path)) # will always be a new file after this. # might move this backup routine to a bash script fieldnames = ['engine', 'test_name', 'total_time', 'gas_used'] # write header if new file if not os.path.isfile(result_file): with open(result_file, 'w', newline='') as bench_result_file: writer = csv.DictWriter(bench_result_file, fieldnames=fieldnames) writer.writeheader() # append to existing file with open(result_file, 'a', newline='') as bench_result_file: writer = csv.DictWriter(bench_result_file, fieldnames=fieldnames) for row in evm_benchmarks: writer.writerow(row) def get_evmone_cmd(codefile, calldata, expected): cmd_str = "bin/evmone-bench {} {} {} --benchmark_color=false --benchmark_min_time=7 --benchmark_format=json".format(codefile, calldata, expected) return cmd_str def get_parity_cmd(codefile, calldata, expected): cmd_str = "./parity-evm --code-file {} --input {} --expected {} ".format(codefile, calldata, expected) return cmd_str def get_geth_cmd(codefile, calldata, expected): cmd_str = "/go-ethereum/build/bin/evm --codefile {} --statdump --input {} --bench run".format(codefile, calldata) return cmd_str def get_cita_cmd(codefile, calldata, expected): cmd_str = "./cita-evm --code-file {} --input {} --expected {} ".format(codefile, calldata, expected) return cmd_str def do_evmone_bench(evmone_cmd): print("running evmone benchmark...\n{}\n".format(evmone_cmd)) evmone_cmd = shlex.split(evmone_cmd) stdoutlines = [] with subprocess.Popen(evmone_cmd, cwd=EVMONE_BUILD_DIR, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, universal_newlines=True) as p: for line in p.stdout: # b'\n'-separated lines print(line, end='') stdoutlines.append(line) # pass bytes as is p.wait() json_result = json.loads("".join(stdoutlines[2:])) benchmarks = json_result['benchmarks'] benchmark_results = benchmarks[0] gasused = int(benchmark_results['gas_used']) total_time = str(benchmark_results['real_time']) + benchmark_results['time_unit'] time = durationpy.from_str(total_time) return { 'gas_used': gasused, 'time': time.total_seconds() } def do_parity_bench(parity_cmd): print("running parity-evm benchmark...\n{}\n".format(parity_cmd)) parity_cmd = shlex.split(parity_cmd) stdoutlines = [] with subprocess.Popen(parity_cmd, cwd=PARITY_EVM_DIR, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, universal_newlines=True) as p: for line in p.stdout: # b'\n'-separated lines print(line, end='') stdoutlines.append(line) # pass bytes as is p.wait() timeregex = "code avg run time: ([\d\w\.]+)" gasregex = "gas used: (\d+)" # maybe --benchmark_format=json is better so dont have to parse "36.775k" time_line = stdoutlines[-1] gas_line = stdoutlines[-2] time_match = re.search(timeregex, time_line) time = durationpy.from_str(time_match.group(1)) gas_match = re.search(gasregex, gas_line) gasused = gas_match.group(1) return {'gas_used': gasused, 'time': time.total_seconds()} def do_geth_bench(geth_cmd): print("running geth-evm benchmark...\n{}\n".format(geth_cmd)) geth_cmd = shlex.split(geth_cmd) stdoutlines = [] with subprocess.Popen(geth_cmd, cwd=GETH_EVM_DIR, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1) as p: for line in p.stdout: # b'\n'-separated lines print(line.decode(), end='') stdoutlines.append(line.decode()) # pass bytes as is p.wait() msOpRegex = "execution time:\s+([\d]+.[\d]+)ms" qsOpRegex = "execution time:\s+([\d]+.[\d]+)µs" gasregex = "EVM gas used:\s+(\d+)" # maybe --benchmark_format=json is better so dont have to parse "36.775k" time_line = stdoutlines[1] gas_line = stdoutlines[0] time_match = re.search(msOpRegex, time_line) time = None if time_match is None: time_match = re.search(qsOpRegex, time_line) time = durationpy.from_str("{}µs".format(time_match.group(1))) else: time = durationpy.from_str("{}ms".format(time_match.group(1))) gas_match = re.search(gasregex, gas_line) gasused = gas_match.group(1) return {'gas_used': gasused, 'time': time.total_seconds()} def do_cita_bench(cita_cmd): print("running cita-evm benchmark...\n{}\n".format(cita_cmd)) cita_cmd = shlex.split(cita_cmd) stdoutlines = [] with subprocess.Popen(cita_cmd, cwd=CITA_EVM_DIR, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, universal_newlines=True) as p: for line in p.stdout: # b'\n'-separated lines print(line, end='') stdoutlines.append(line) # pass bytes as is p.wait() timeregex = "code avg run time: ([\d\w\.]+)" gasregex = "gas_used: (\d+)" time_line = stdoutlines[-1] gas_line = stdoutlines[-2] time_match = re.search(timeregex, time_line) time = durationpy.from_str(time_match.group(1)) gas_match = re.search(gasregex, gas_line) gasused = gas_match.group(1) return {'gas_used': gasused, 'time': time.total_seconds()} def bench_evm(evm_name, input, codefilepath, shift_suffix): calldata = input['input'] expected = input['expected'] test_name = input['name'] + shift_suffix evm_result = {} if evm_name == 'evmone': evmone_bench_cmd = get_evmone_cmd(codefilepath, calldata, expected) evmone_bench_result = do_evmone_bench(evmone_bench_cmd) print("got evmone_bench_result:", evmone_bench_result) evm_result['engine'] = 'evmone' evm_result['test_name'] = test_name evm_result['total_time'] = evmone_bench_result['time'] evm_result['gas_used'] = evmone_bench_result['gas_used'] if evm_name == "parity": parity_bench_cmd = get_parity_cmd(codefilepath, calldata, expected) parity_bench_result = do_parity_bench(parity_bench_cmd) evm_result['engine'] = 'parity-evm' evm_result['test_name'] = test_name evm_result['total_time'] = parity_bench_result['time'] evm_result['gas_used'] = parity_bench_result['gas_used'] if evm_name == "geth": geth_bench_cmd = get_geth_cmd(codefilepath, calldata, expected) geth_bench_result = do_geth_bench(geth_bench_cmd) evm_result['engine'] = "geth-evm" evm_result['test_name'] = test_name evm_result['total_time'] = geth_bench_result['time'] evm_result['gas_used'] = geth_bench_result['gas_used'] if evm_name == "cita-vm": cita_bench_cmd = get_cita_cmd(codefilepath, calldata, expected) cita_bench_result = do_cita_bench(cita_bench_cmd) evm_result['engine'] = "cita-evm" evm_result['test_name'] = test_name evm_result['total_time'] = cita_bench_result['time'] evm_result['gas_used'] = cita_bench_result['gas_used'] return evm_result def main(evm_name): evmcodefiles = [fname for fname in os.listdir(EVM_CODE_DIR) if fname.endswith('.hex')] evm_benchmarks = [] for codefile in evmcodefiles: print('start benching: ', codefile) codefilepath = os.path.join(EVM_CODE_DIR, codefile) benchname = codefile.replace(".hex", "") inputsfilename = benchname shift_suffix = "" if benchname.endswith("_shift"): inputsfilename = benchname.replace("_shift", "") shift_suffix = "-shiftopt" file_name = "{}-inputs.json".format(inputsfilename) inputs_file_path = os.path.join(INPUT_VECTORS_DIR, file_name) with open(inputs_file_path) as f: bench_inputs = json.load(f) for input in bench_inputs: print("bench input: ", input['name']) evm_result = bench_evm(evm_name, input, codefilepath, shift_suffix) evm_benchmarks.append(evm_result) save_results(evm_name, evm_benchmarks) def usage(): print("newbench.py <evm_name>") if __name__ == "__main__": if len(sys.argv) < 2: usage() evm_name = sys.argv[1] main(evm_name) ``` #### File: evm/scripts/merge.py ```python import csv import os import time import datetime import shutil INDIVIDUAL_EVM_RESULTS_CSV_PATH = "/evmraceresults/" RESULT_CSV_OUTPUT_PATH = "/benchmark_results_data/" EVMS = ["evmone", "parity", "geth", "cita-vm", "evmone384"] RESULT_CSV_FILENAME = "evm_benchmarks.csv" RESULT_FILE = os.path.join(RESULT_CSV_OUTPUT_PATH, RESULT_CSV_FILENAME) # translate a string representing a numerical field like '1.8M' to '1800000' def format_evmone_benchmark(csv_line): fields = csv_line.split(',') gas_used = fields[-1] if gas_used[-1].lower() == 'k': gas_used = str(int(float(gas_used[:-1]) * 1000)) elif gas_used[-1].lower() == 'm': gas_used = str(int(float(gas_used[:-1]) * 1000000)) else: return csv_line return ','.join(fields[:-1] + [gas_used])[:-1] # merge benchmarks from multiple engines into one csv output def main(): merged_csv_contents = 'engine, test_name, total_time, gas_used\n' evm_results = [] for evm in EVMS: path = os.path.join(INDIVIDUAL_EVM_RESULTS_CSV_PATH, "evm_benchmarks_{}.csv".format(evm)) data_file = open(path, 'r') data = data_file.read().splitlines() data_file.close() evm_results.append(data) for e in range(0, len(EVMS)): for i in range(0, len(evm_results[e])): if EVMS[e] == 'evmone' or EVMS[e] == 'evmone384': merged_csv_contents += format_evmone_benchmark(evm_results[e][i]) + '\n' else: merged_csv_contents += evm_results[e][i] + '\n' # move existing csv file to backup-datetime-folder ts = time.time() date_str = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d') ts_folder_name = "backup-{}-{}".format(date_str, round(ts)) dest_backup_path = os.path.join(RESULT_CSV_OUTPUT_PATH, ts_folder_name) # back up existing result csv file if os.path.isfile(RESULT_FILE): os.makedirs(dest_backup_path) shutil.move(RESULT_FILE, dest_backup_path) print("existing {} moved to {}".format(RESULT_CSV_FILENAME, dest_backup_path)) with open(RESULT_FILE, 'w') as bench_result_file: bench_result_file.write(merged_csv_contents) print("saved evm results to:", RESULT_FILE) if __name__ == "__main__": main() ``` #### File: benchmarking/scout-engines/scout_bignum_bench.py ```python import json, re import subprocess import nanodurationpy as durationpy import csv import time import datetime import os import shutil import shlex import sys import yaml # docker run --privileged=true -v $(pwd)/../benchmark_results_data:/benchmark_results_data:cached --security-opt seccomp=unconfined -it scout-engines /bin/bash RESULT_CSV_OUTPUT_DIR = "/benchmark_results_data" RESULT_CSV_FILE_NAME = "scout_bignum_benchmarks.csv" C_EWASM_DIR = "/scoutyamls/C_ewasm_contracts" # the wabt branch reads input data from a file in the working directory `./test_block_data.hex` # we'll create a new directory using bench_name + engine_name, and create test_block_data.hex in each one WABT_BENCH_WORKING_DIR = "/engines/wabt-bench-dirs" # because wabt reads input data from `./test_block_data.hex` in the working directory, # we can execute `wabt_bin_path` from any directory. WASM3_BENCH_INFOS = [ { 'bench_name': 'bls12-wasmsnark-synth-loop', 'engine_name': 'wasm3-with-bignums', 'wasm3_bin_path': '/engines/fizzy-bls12-hostfuncs/build/bin/fizzy-bench', 'wasm3_bench_dir': '/engines/fizzy-bls12-hostfuncs/build/bin/bls12-synth-loop', }, { 'bench_name': 'bls12-wasmsnark-two-pairings-standalone', 'engine_name': 'wasm3-with-bignums', 'wasm3_bin_path': '/engines/fizzy-bls12-hostfuncs/build/bin/fizzy-bench', 'wasm3_bench_dir': '/engines/fizzy-bls12-hostfuncs/build/bin/bls12-pairing', } ] WAMR_BENCH_INFOS = [ { 'bench_name': 'bls12-wasmsnark-synth-loop', 'engine_path': '/engines/scout_wamr.c/build/scout.exec', 'engine_name': 'wamr-with-bignums', 'scout_yml_path': '/engines/scout_wamr.c/bls12-synth-loop.yaml', }, { 'bench_name': 'bls12-wasmsnark-two-pairings-standalone', 'engine_path': '/engines/scout_wamr.c/build/scout.exec', 'engine_name': 'wamr-with-bignums', 'scout_yml_path': '/engines/scout_wamr.c/bls12-two-pairings-standalone.yaml', } ] FIZZY_BENCH_INFOS = [ { 'bench_name': 'bls12-wasmsnark-synth-loop', 'engine_name': 'fizzy-with-bignums', 'fizzy_bin_path': '/engines/fizzy-bls12-hostfuncs/build/bin/fizzy-bench', 'fizzy_bench_dir': '/engines/fizzy-bls12-hostfuncs/build/bin/bls12-synth-loop', }, { 'bench_name': 'bls12-wasmsnark-two-pairings-standalone', 'engine_name': 'fizzy-with-bignums', 'fizzy_bin_path': '/engines/fizzy-bls12-hostfuncs/build/bin/fizzy-bench', 'fizzy_bench_dir': '/engines/fizzy-bls12-hostfuncs/build/bin/bls12-pairing', }, { 'bench_name': 'bls12-wasmsnark-two-pairings-standalone', 'engine_name': 'fizzy', 'fizzy_bin_path': '/engines/fizzy-bls12-hostfuncs/build/bin/fizzy-bench', 'fizzy_bench_dir': '/engines/fizzy-bls12-hostfuncs/build/bin/bls12-pairing-nohostfuncs', } ] # TODO: use scout wabt branch without bignums for the no-bignum runs? WABT_BENCH_INFOS = [ { 'bench_name': 'ecrecover-eth1-txns-websnark-secp256k1-verify-72-sigs', 'engine_name': 'wabt-fasthost-bignums', 'wabt_bin_path': '/engines/wabt-secp/out/clang/Release/benchmark-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-secp/', 'yaml_file_rel_path': 'secpsigverify.yaml' }, { 'bench_name': 'ecrecover-eth1-txns-websnark-secp256k1-verify-72-sigs', 'engine_name': 'wabt-no-bignums', 'wabt_bin_path': '/engines/wabt-secp/out/clang/Release/benchmark-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-secp/', 'yaml_file_rel_path': 'secpsigverify_nobignums.yaml' }, # { # 'bench_name': 'ecpairing-zkrollup-websnark-bn128-two-pairings', # 'engine_name': 'wabt-with-bignums', # 'wabt_bin_path': '/engines/wabt-bn128/out/clang/Release/benchmark-interp', # 'yaml_file_dir': '/scoutyamls/scout.ts-bn128/', # 'yaml_file_rel_path': 'bn128pairing_bignums.yaml' # }, # { # 'bench_name': 'ecpairing-zkrollup-websnark-bn128-two-pairings', # 'engine_name': 'wabt-no-bignums', # 'wabt_bin_path': '/engines/wabt-bn128/out/clang/Release/benchmark-interp', # 'yaml_file_dir': '/scoutyamls/scout.ts-bn128/', # 'yaml_file_rel_path': 'bn128pairing.yaml' # }, { 'bench_name': 'biturbo-token-eth1-mainnet-stateless-block-hexary-trie-keccak256-multiproof', 'engine_name': 'wabt-superops', 'wabt_bin_path': '/engines/wabt-biturbo/out/clang/Release/benchmark-interp', 'yaml_file_dir': '/scoutyamls/biturbo/', 'yaml_file_rel_path': 'turbo-token-realistic.yaml' }, { 'bench_name': 'biturbo-token-eth1-mainnet-stateless-block-hexary-trie-keccak256-multiproof', 'engine_name': 'wabt-baseline', 'wabt_bin_path': '/engines/wabt-biturbo-no-superops/out/clang/Release/benchmark-interp', 'yaml_file_dir': '/scoutyamls/biturbo/', 'yaml_file_rel_path': 'turbo-token-realistic.yaml' }, { 'bench_name': 'bls12-wasmsnark-two-pairings', 'engine_name': 'wabt-fastmont-fasthost-superops', 'wabt_bin_path': '/engines/wabt-bls12-fastmont-fasthost-superops/out/clang/Release/benchmark-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-bls12/', 'yaml_file_rel_path': 'bls12pairing.yaml' }, { 'bench_name': 'bls12-wasmsnark-two-pairings', 'engine_name': 'wabt-fastmont-fasthost-superops', 'wabt_bin_path': '/engines/wabt-bls12-fastmont-fasthost-superops/out/clang/Release/benchmark-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-bls12/', 'yaml_file_rel_path': 'bls12pairing.yaml' }, { 'bench_name': 'bls12-wasmsnark-two-pairings', 'engine_name': 'wabt-fastmont-fasthost-f1m_mul', 'wabt_bin_path': '/engines/wabt-bls12-bignums-fasthost-fastmont-no-superops/out/clang/Release/benchmark-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-bls12/', 'yaml_file_rel_path': 'bls12pairing-f1m_mul.yaml' }, { 'bench_name': 'bls12-wasmsnark-two-pairings', 'engine_name': 'wabt-fastmont-fasthost-f1m_mul-f1m_add', 'wabt_bin_path': '/engines/wabt-bls12-bignums-fasthost-fastmont-no-superops/out/clang/Release/benchmark-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-bls12/', 'yaml_file_rel_path': 'bls12pairing-f1m_mul-f1m_add.yaml' }, { 'bench_name': 'bls12-wasmsnark-two-pairings', 'engine_name': 'wabt-fastmont-fasthost-f1m_mul-f1m_add-f1m_sub', 'wabt_bin_path': '/engines/wabt-bls12-bignums-fasthost-fastmont-no-superops/out/clang/Release/benchmark-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-bls12/', 'yaml_file_rel_path': 'bls12pairing-f1m_mul-f1m_add-f1m_sub.yaml' }, { 'bench_name': 'bls12-wasmsnark-two-pairings', 'engine_name': 'wabt-fastmont-fasthost-f1m_mul-f1m_add-f1m_sub-int_mul', 'wabt_bin_path': '/engines/wabt-bls12-bignums-fasthost-fastmont-no-superops/out/clang/Release/benchmark-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-bls12/', 'yaml_file_rel_path': 'bls12pairing-f1m_mul-f1m_add-f1m_sub-int_mul.yaml' }, { 'bench_name': 'bls12-wasmsnark-two-pairings', 'engine_name': 'wabt-fastmont-fasthost-f1m_mul-f1m_add-f1m_sub-int_mul-int_add', 'wabt_bin_path': '/engines/wabt-bls12-bignums-fasthost-fastmont-no-superops/out/clang/Release/benchmark-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-bls12/', 'yaml_file_rel_path': 'bls12pairing-f1m_mul-f1m_add-f1m_sub-int_mul-int_add.yaml' }, { 'bench_name': 'bls12-wasmsnark-two-pairings', 'engine_name': 'wabt-fastmont-fasthost-f1m_mul-f1m_add-f1m_sub-int_mul-int_add-int_sub', 'wabt_bin_path': '/engines/wabt-bls12-bignums-fasthost-fastmont-no-superops/out/clang/Release/benchmark-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-bls12/', 'yaml_file_rel_path': 'bls12pairing-f1m_mul-f1m_add-f1m_sub-int_mul-int_add-int_sub.yaml' }, { 'bench_name': 'bls12-wasmsnark-two-pairings', 'engine_name': 'wabt-fastmont-fasthost-f1m_mul-f1m_add-f1m_sub-int_mul-int_add-int_sub-int_div', 'wabt_bin_path': '/engines/wabt-bls12-bignums-fasthost-fastmont-no-superops/out/clang/Release/benchmark-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-bls12/', 'yaml_file_rel_path': 'bls12pairing-f1m_mul-f1m_add-f1m_sub-int_mul-int_add-int_sub-int_div.yaml' }, { 'bench_name': 'bls12-wasmsnark-two-pairings-standalone', 'engine_name': 'wabt-fastmont-fasthost-superops', 'wabt_bin_path': '/engines/wabt-bls12-fastmont-fasthost-superops/out/clang/Release/benchmark-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-bls12-standalone-pairing/', 'yaml_file_rel_path': 'bls12pairing_standalone.yaml' }, { 'bench_name': 'bls12-wasmsnark-synth-loop', 'engine_name': 'wabt-fastmont-fasthost-superops', 'wabt_bin_path': '/engines/wabt-bls12-fastmont-fasthost-superops/out/clang/Release/benchmark-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-bls12-standalone-synth-loop/', 'yaml_file_rel_path': 'bls12_f6m_mul_loop.yaml' } ] # on bls12-wasmsnark-two-pairings wabt-no-bignums, we can use any wabt that doesn't have superops # (some of the code in one of the big_int implementations of wasmsnark triggers a bug) # use wabt/wasm-interp instead of wabt/benchmark-interp # benchmark-interp loops over calls to main() without zeroing out memory or re-instantiating the wasm instance # some wasm modules support repeated calls to main(). Daiqiuri doesn't, so use wasm-interp instead of benchmark-interp WABT_BENCH_MANUAL_INFOS = [ { 'bench_name': 'bls12-wasmsnark-two-pairings', 'engine_name': 'wabt-no-bignums', 'wabt_bin_path': '/engines/wabt-biturbo-no-superops/out/clang/Release/wasm-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-bls12/', 'yaml_file_rel_path': 'bls12pairing_nobignums.yaml' }, { 'bench_name': 'daiquiri-zkmixer-websnark-bn128-groth16-four-pairings-and-mimc', 'engine_name': 'wabt-fasthost-bignums', 'wabt_bin_path': '/engines/wabt-bn128/out/clang/Release/wasm-interp', 'yaml_file_dir': '/scoutyamls/daiquiri/', 'yaml_file_rel_path': 'tests/tests-withdraw-bn.yml' }, { 'bench_name': 'daiquiri-zkmixer-websnark-bn128-groth16-four-pairings-and-mimc', 'engine_name': 'wabt-no-bignums', 'wabt_bin_path': '/engines/wabt-bn128/out/clang/Release/wasm-interp', 'yaml_file_dir': '/scoutyamls/daiquiri/', 'yaml_file_rel_path': 'tests/tests-withdraw.yml' }, { 'bench_name': 'ecpairing-zkrollup-rust-wasm-bn128-two-pairings', 'engine_name': 'wabt-no-bignums', 'wabt_bin_path': '/engines/wabt-bn128-rolluprs-slowmont-slowhost/out/clang/Release/wasm-interp', 'yaml_file_dir': '/scoutyamls/rollup-rs-no-bignums/', 'yaml_file_rel_path': 'rolluprs.yaml' }, { 'bench_name': 'ecpairing-zkrollup-rust-wasm-bn128-two-pairings', 'engine_name': 'wabt-bignums-slowhost-slowmont', 'wabt_bin_path': '/engines/wabt-bn128-rolluprs-slowmont-slowhost/out/clang/Release/wasm-interp', 'yaml_file_dir': '/scoutyamls/rollup-rs-with-bignums/', 'yaml_file_rel_path': 'rolluprs.yaml' }, { 'bench_name': 'ecpairing-zkrollup-rust-wasm-bn128-two-pairings', 'engine_name': 'wabt-bignums-slowhost-slowmont-superops', 'wabt_bin_path': '/engines/wabt-bn128-rolluprs-slowmont-slowhost-superops/out/clang/Release/wasm-interp', 'yaml_file_dir': '/scoutyamls/rollup-rs-with-bignums/', 'yaml_file_rel_path': 'rolluprs.yaml' }, { 'bench_name': 'ecpairing-zkrollup-rust-wasm-bn128-two-pairings', 'engine_name': 'wabt-bignums-fasthost-slowmont-superops', 'wabt_bin_path': '/engines/wabt-bn128-rolluprs-slowmont-fasthost-superops/out/clang/Release/wasm-interp', 'yaml_file_dir': '/scoutyamls/rollup-rs-with-bignums/', 'yaml_file_rel_path': 'rolluprs.yaml' }, { 'bench_name': 'ecpairing-zkrollup-rust-wasm-bn128-two-pairings', 'engine_name': 'wabt-bignums-fasthost-fastmont-superops', 'wabt_bin_path': '/engines/wabt-bn128-rolluprs-fastmont-fasthost-superops/out/clang/Release/wasm-interp', 'yaml_file_dir': '/scoutyamls/rollup-rs-with-bignums/', 'yaml_file_rel_path': 'rolluprs.yaml' }, { 'bench_name': 'ecpairing-zkrollup-websnark-bn128-two-pairings', 'engine_name': 'wabt-no-bignums', 'wabt_bin_path': '/engines/wabt-bn128-websnark-slowmont-slowhost/out/clang/Release/wasm-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-bn128/', 'yaml_file_rel_path': 'bn128pairing.yaml' }, { 'bench_name': 'ecpairing-zkrollup-websnark-bn128-two-pairings', 'engine_name': 'wabt-bignums-slowhost-slowmont', 'wabt_bin_path': '/engines/wabt-bn128-websnark-slowmont-slowhost/out/clang/Release/wasm-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-bn128/', 'yaml_file_rel_path': 'bn128pairing_bignums.yaml' }, { 'bench_name': 'ecpairing-zkrollup-websnark-bn128-two-pairings', 'engine_name': 'wabt-bignums-slowhost-slowmont-superops', 'wabt_bin_path': '/engines/wabt-bn128-websnark-slowmont-slowhost-superops/out/clang/Release/wasm-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-bn128/', 'yaml_file_rel_path': 'bn128pairing_bignums.yaml' }, { 'bench_name': 'ecpairing-zkrollup-websnark-bn128-two-pairings', 'engine_name': 'wabt-bignums-fasthost-slowmont-superops', 'wabt_bin_path': '/engines/wabt-bn128-websnark-slowmont-fasthost-superops/out/clang/Release/wasm-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-bn128/', 'yaml_file_rel_path': 'bn128pairing_bignums.yaml' }, { 'bench_name': 'ecpairing-zkrollup-websnark-bn128-two-pairings', 'engine_name': 'wabt-bignums-fasthost-fastmont-superops', 'wabt_bin_path': '/engines/wabt-bn128-websnark-fastmont-fasthost-superops/out/clang/Release/wasm-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-bn128/', 'yaml_file_rel_path': 'bn128pairing_bignums.yaml' }, { 'bench_name': 'ecpairing-zkrollup-websnark-bn128-two-pairings', 'engine_name': 'wabt-bignums-fasthost-fastmont', 'wabt_bin_path': '/engines/wabt-bn128-websnark-fastmont-fasthost/out/clang/Release/wasm-interp', 'yaml_file_dir': '/scoutyamls/scout.ts-bn128/', 'yaml_file_rel_path': 'bn128pairing_bignums.yaml' } ] SCOUTCPP_BENCH_INFOS = [] #SCOUTCPP_BENCH_INFOS = [ # { # 'bench_name': 'ecrecover-eth1-txns-websnark-secp256k1-verify-72-sigs', # 'engine_name': 'scoutcpp-wabt-with-bignums', # 'scoutcpp_bin_path': '/engines/scoutcpp-secp/build/scout.exec', # 'yaml_working_dir': '/scoutyamls/scout.ts-secp/', # 'yaml_file_path': 'secpsigverify.yaml' # }, # { # 'bench_name': 'ecrecover-eth1-txns-websnark-secp256k1-verify-72-sigs', # 'engine_name': 'scoutcpp-wabt-no-bignums', # 'scoutcpp_bin_path': '/engines/scoutcpp-secp/build/scout.exec', # 'yaml_working_dir': '/scoutyamls/scout.ts-secp/', # 'yaml_file_path': 'secpsigverify_nobignums.yaml' # }, # { # 'bench_name': 'ecpairing-zkrollup-websnark-bn128-two-pairings', # 'engine_name': 'scoutcpp-wabt-with-bignums', # 'scoutcpp_bin_path': '/engines/scoutcpp-bn128/build/scout.exec', # 'yaml_working_dir': '/scoutyamls/scout.ts-bn128/', # 'yaml_file_path': 'bn128pairing_bignums.yaml' # }, # { # 'bench_name': 'ecpairing-zkrollup-websnark-bn128-two-pairings', # 'engine_name': 'scoutcpp-wabt-no-bignums', # 'scoutcpp_bin_path': '/engines/scoutcpp-bn128/build/scout.exec', # 'yaml_working_dir': '/scoutyamls/scout.ts-bn128/', # 'yaml_file_path': 'bn128pairing.yaml' # }, # { # 'bench_name': 'ecpairing-zkrollup-rust-wasm-bn128-two-pairings', # 'engine_name': 'scoutcpp-wabt-with-bignums', # 'scoutcpp_bin_path': '/engines/scoutcpp-bn128-rolluprs/build/scout.exec', # 'yaml_working_dir': '/scoutyamls/rollup-rs-with-bignums/', # 'yaml_file_path': 'rolluprs.yaml' # }, # { # 'bench_name': 'ecpairing-zkrollup-rust-wasm-bn128-two-pairings', # 'engine_name': 'scoutcpp-wabt-no-bignums', # 'scoutcpp_bin_path': '/engines/scoutcpp-bn128-rolluprs/build/scout.exec', # 'yaml_working_dir': '/scoutyamls/rollup-rs-no-bignums/', # 'yaml_file_path': 'rolluprs.yaml' # }, # { # 'bench_name': 'daiquiri-zkmixer-websnark-bn128-groth16-four-pairings-and-mimc', # 'engine_name': 'scoutcpp-wabt-with-bignums', # 'scoutcpp_bin_path': '/engines/scoutcpp-bn128/build/scout.exec', # 'yaml_working_dir': '/scoutyamls/daiquiri/', # 'yaml_file_path': 'tests/tests-withdraw-bn.yml' # }, # { # 'bench_name': 'daiquiri-zkmixer-websnark-bn128-groth16-four-pairings-and-mimc', # 'engine_name': 'scoutcpp-wabt-no-bignums', # 'scoutcpp_bin_path': '/engines/scoutcpp-bn128/build/scout.exec', # 'yaml_working_dir': '/scoutyamls/daiquiri/', # 'yaml_file_path': 'tests/tests-withdraw.yml' # } #] # v8 is always benched with no bignums. EDIT: benched with bignums now too, to show the slowdown. # bignums cause a slowdown due to v8's host function overhead # in practice, wasm engines that don't support the bignum host functions # could use "polyfill" implementations of the host functions, provided in wasm # these v8 benchmarks demonstrate using websnark's implementations of bigints # and modular arithmetic as the polyfill. # TODO: add v8-interpreter V8_BENCH_INFOS = [ { 'bench_name': 'ecrecover-eth1-txns-websnark-secp256k1-verify-72-sigs', 'engine_name': 'v8-turbofan', 'scoutts_cmd': 'npm run start:turbofan secpsigverify_nobignums.yaml', 'scoutts_working_dir': '/scoutyamls/scout.ts-bn128/' }, { 'bench_name': 'ecrecover-eth1-txns-websnark-secp256k1-verify-72-sigs', 'engine_name': 'v8-liftoff', 'scoutts_cmd': 'npm run start:liftoff secpsigverify_nobignums.yaml', 'scoutts_working_dir': '/scoutyamls/scout.ts-secp/', }, { 'bench_name': 'ecrecover-eth1-txns-websnark-secp256k1-verify-72-sigs', 'engine_name': 'v8-interpreter', 'scoutts_cmd': 'node --wasm-interpret-all ./dist/cli.js secpsigverify_nobignums.yaml', 'scoutts_working_dir': '/scoutyamls/scout.ts-secp/', }, { 'bench_name': 'ecpairing-zkrollup-websnark-bn128-two-pairings', 'engine_name': 'v8-turbofan', 'scoutts_cmd': 'npm run start:turbofan bn128pairing.yaml', 'scoutts_working_dir': '/scoutyamls/scout.ts-bn128/' }, { 'bench_name': 'ecpairing-zkrollup-websnark-bn128-two-pairings', 'engine_name': 'v8-liftoff', 'scoutts_cmd': 'npm run start:liftoff bn128pairing.yaml', 'scoutts_working_dir': '/scoutyamls/scout.ts-bn128/' }, { 'bench_name': 'ecpairing-zkrollup-websnark-bn128-two-pairings', 'engine_name': 'v8-liftoff-and-turbofan', 'scoutts_cmd': 'node ./dist/cli.js bn128pairing.yaml', 'scoutts_working_dir': '/scoutyamls/scout.ts-bn128/' }, { 'bench_name': 'ecpairing-zkrollup-websnark-bn128-two-pairings', 'engine_name': 'v8-interpreter', 'scoutts_cmd': 'node --wasm-interpret-all ./dist/cli.js bn128pairing.yaml', 'scoutts_working_dir': '/scoutyamls/scout.ts-bn128/' }, { 'bench_name': 'ecpairing-zkrollup-websnark-bn128-two-pairings', 'engine_name': 'v8-turbofan-with-bignums', 'scoutts_cmd': 'npm run start:turbofan bn128pairing_bignums.yaml', 'scoutts_working_dir': '/scoutyamls/scout.ts-bn128/' }, { 'bench_name': 'ecpairing-zkrollup-websnark-bn128-two-pairings', 'engine_name': 'v8-liftoff-with-bignums', 'scoutts_cmd': 'npm run start:liftoff bn128pairing_bignums.yaml', 'scoutts_working_dir': '/scoutyamls/scout.ts-bn128/' }, { 'bench_name': 'ecpairing-zkrollup-websnark-bn128-two-pairings', 'engine_name': 'v8-interpreter-with-bignums', 'scoutts_cmd': 'node --wasm-interpret-all ./dist/cli.js bn128pairing_bignums.yaml', 'scoutts_working_dir': '/scoutyamls/scout.ts-bn128/' }, { 'bench_name': 'ecpairing-zkrollup-rust-wasm-bn128-two-pairings', 'engine_name': 'v8-turbofan', 'scoutts_cmd': 'npm run start:turbofan rolluprs.yaml', 'scoutts_working_dir': '/scoutyamls/scout.ts-bn128/' }, { 'bench_name': 'ecpairing-zkrollup-rust-wasm-bn128-two-pairings', 'engine_name': 'v8-liftoff', 'scoutts_cmd': 'npm run start:liftoff rolluprs.yaml', 'scoutts_working_dir': '/scoutyamls/scout.ts-bn128/' }, { 'bench_name': 'ecpairing-zkrollup-rust-wasm-bn128-two-pairings', 'engine_name': 'v8-liftoff-and-turbofan', 'scoutts_cmd': 'node ./dist/cli.js rolluprs.yaml', 'scoutts_working_dir': '/scoutyamls/scout.ts-bn128/' }, { 'bench_name': 'ecpairing-zkrollup-rust-wasm-bn128-two-pairingss', 'engine_name': 'v8-interpreter', 'scoutts_cmd': 'node --wasm-interpret-all ./dist/cli.js rolluprs.yaml', 'scoutts_working_dir': '/scoutyamls/scout.ts-bn128/' }, { 'bench_name': 'daiquiri-zkmixer-websnark-bn128-groth16-four-pairings-and-mimc', 'engine_name': 'v8-turbofan', 'scoutts_cmd': 'npm run bench:turbofan tests/tests-withdraw.yml', 'scoutts_working_dir': '/scoutyamls/daiquiri/' }, { 'bench_name': 'daiquiri-zkmixer-websnark-bn128-groth16-four-pairings-and-mimc', 'engine_name': 'v8-liftoff', 'scoutts_cmd': 'npm run bench:liftoff tests/tests-withdraw.yml', 'scoutts_working_dir': '/scoutyamls/daiquiri/' }, { 'bench_name': 'daiquiri-zkmixer-websnark-bn128-groth16-four-pairings-and-mimc', 'engine_name': 'v8-interpreter', 'scoutts_cmd': 'npm run bench:interpreter tests/tests-withdraw.yml', 'scoutts_working_dir': '/scoutyamls/daiquiri/' }, { 'bench_name': 'biturbo-token-eth1-mainnet-stateless-block-hexary-trie-keccak256-multiproof', 'engine_name': 'v8-turbofan', 'scoutts_cmd': 'node --no-liftoff node_modules/scout.ts/dist/cli.js turbo-token-realistic.yaml', 'scoutts_working_dir': '/scoutyamls/biturbo/' }, { 'bench_name': 'biturbo-token-eth1-mainnet-stateless-block-hexary-trie-keccak256-multiproof', 'engine_name': 'v8-liftoff', 'scoutts_cmd': 'node --liftoff --no-wasm-tier-up node_modules/scout.ts/dist/cli.js turbo-token-realistic.yaml', 'scoutts_working_dir': '/scoutyamls/biturbo/' }, { 'bench_name': 'biturbo-token-eth1-mainnet-stateless-block-hexary-trie-keccak256-multiproof', 'engine_name': 'v8-liftoff-and-turbofan', 'scoutts_cmd': 'node node_modules/scout.ts/dist/cli.js turbo-token-realistic.yaml', 'scoutts_working_dir': '/scoutyamls/biturbo/' }, { 'bench_name': 'biturbo-token-eth1-mainnet-stateless-block-hexary-trie-keccak256-multiproof', 'engine_name': 'v8-interpreter', 'scoutts_cmd': 'node --wasm-interpret-all node_modules/scout.ts/dist/cli.js turbo-token-realistic.yaml', 'scoutts_working_dir': '/scoutyamls/biturbo/' }, { 'bench_name': 'bls12-wasmsnark-two-pairings', 'engine_name': 'v8-liftoff', 'scoutts_cmd': 'node --liftoff --no-wasm-tier-up dist/cli.js bls12pairing_nobignums.yaml', 'scoutts_working_dir': '/scoutyamls/scout.ts-bls12/' }, { 'bench_name': 'bls12-wasmsnark-two-pairings', 'engine_name': 'v8-turbofan', 'scoutts_cmd': 'npm run start:turbofan bls12pairing_nobignums.yaml', 'scoutts_working_dir': '/scoutyamls/scout.ts-bls12/' }, ] RUST_NATIVE_BENCH_INFOS = [ { 'bench_name': 'ecpairing-zkrollup-rust-native-bn128-two-pairings', 'engine_name': 'rust-native', 'native_bin_path': '/scoutyamls/rollup-rs-native/target/release/rollup_rs' }, { 'bench_name': 'bls12-eip1962-rust-native-two-pairings', 'engine_name': 'rust-native', 'native_bin_path': '/scoutyamls/eip1962-bls12-rs-native/target/release/eip1962-bench' } ] # scout yaml files look like this: """ beacon_state: execution_scripts: - assembly/secp-sig-verify/out/main_with_websnark_and_keccak.wasm shard_pre_state: exec_env_states: - "0000000000000000000000000000000000000000000000000000000000000000" shard_blocks: - env: 0 data: "d894895b62b6dc6115fe23c931f9765041a078e1241881ff8015ed312c5863d1e3ff253e8c9077c460233f62bc73d69c5364e0f2de0f7cd064173d84e53ad0bb8bbbd2f48703c59697ca33bf9077524d9df154bc944f8f6516" shard_post_state: exec_env_states: - "00000000000000000000000029120ac3527858f5637e698cdbf0548c6b59ec77" #- "000000000000000000000000d683fd3465c996598dc972688b7ace676c89077b" """ def saveResults(benchmarks): result_file = os.path.join(RESULT_CSV_OUTPUT_DIR, RESULT_CSV_FILE_NAME) if os.path.isfile(result_file): print("backing up existing {}".format(result_file)) # move existing files to old-datetime-folder ts = time.time() date_str = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d') ts_folder_name = "{}-{}".format(date_str, round(ts)) dest_backup_path = os.path.join(RESULT_CSV_OUTPUT_DIR, ts_folder_name) os.makedirs(dest_backup_path) shutil.move(result_file, dest_backup_path) print("existing csv files backed up to {}".format(dest_backup_path)) with open(result_file, 'w', newline='') as bench_result_file: fieldnames = ['engine', 'bench_name', 'parse_time', 'exec_time'] writer = csv.DictWriter(bench_result_file, fieldnames=fieldnames) writer.writeheader() for row in benchmarks: writer.writerow(row) """ /engines/wabt-bench-dirs/ecpairing-zkrollup-rust-bn128-two-pairings-wabt-with-bignums# /scoutyamls/rollup-rs-native/target/release/rollup_rs pairing check time: 10.467ms """ """ /scoutyamls/eip1962-bls12-rs-native/target/release/eip1962-bench Time elapsed in bench() is: 5.178954ms """ def do_rust_native(native_bin_path): print("running rust-native benchmark...\n{}".format(native_bin_path)) rust_cmd = shlex.split(native_bin_path) stdoutlines = [] with subprocess.Popen(rust_cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, universal_newlines=True) as p: for line in p.stdout: # b'\n'-separated lines print(line, end='') stdoutlines.append(line) # pass bytes as is p.wait() exec_time_regex = "pairing check time: ([\.\w\d]+)" exec_benchline = stdoutlines[-1] exec_time_match = re.search(exec_time_regex, exec_benchline) if exec_time_match is None: exec_time_regex = "Time elapsed in bench\(\) is: ([\.\w\d]+)" exec_time_match = re.search(exec_time_regex, exec_benchline) exec_us_time = durationpy.from_str(exec_time_match.group(1)) return {'exec_time': exec_us_time.total_seconds()} """ $ npm run start:turbofan secpsigverify_nobignums.yaml > [email protected] start:turbofan /Users/mbpro/dev_ewasm/scout.ts > node --no-liftoff ./dist/cli.js "secpsigverify_nobignums.yaml" benchmark startup took 0 seconds and 11780729 nanoseconds (11.780729ms) benchmark execution 0 seconds and 267736023 nanoseconds (267.736023ms) """ def do_v8_bench(scoutts_cmd, scoutts_working_dir): print("running v8 benchmark...\n{}".format(scoutts_cmd)) scoutts_cmd = shlex.split(scoutts_cmd) stdoutlines = [] with subprocess.Popen(scoutts_cmd, cwd=scoutts_working_dir, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, universal_newlines=True) as p: for line in p.stdout: # b'\n'-separated lines print(line, end='') stdoutlines.append(line) # pass bytes as is p.wait() parse_time_regex = "benchmark startup took (\d+) seconds and \d+ nanoseconds \(([\d\w\.\s]+)\)" exec_time_regex = "benchmark execution took (\d+) seconds and \d+ nanoseconds \(([\d\w\.\s]+)\)" parse_time_line = stdoutlines[-2] exec_time_line = stdoutlines[-1] parse_time_match = re.search(parse_time_regex, parse_time_line) parse_time_seconds = durationpy.from_str(parse_time_match.group(1) + "s") parse_time_milliseconds = durationpy.from_str(parse_time_match.group(2).replace(" ", "")) parse_time = parse_time_seconds + parse_time_milliseconds exec_time_match = re.search(exec_time_regex, exec_time_line) exec_time_seconds = durationpy.from_str(exec_time_match.group(1) + "s") exec_time_milliseconds = durationpy.from_str(exec_time_match.group(2).replace(" ", "")) exec_time = exec_time_seconds + exec_time_milliseconds return { 'exec_time': exec_time.total_seconds(), 'parse_time': parse_time.total_seconds() } def do_wamr_bench(wamr_bench_info): wamr_cmd = [wamr_bench_info['engine_path'], wamr_bench_info['scout_yml_path']] stdoutlines = [] wamr_working_dir = os.path.dirname(wamr_bench_info['scout_yml_path']) with subprocess.Popen(wamr_cmd, cwd=wamr_working_dir, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, universal_newlines=True) as p: for line in p.stdout: # b'\n'-separated lines print(line, end='') stdoutlines.append(line) # pass bytes as is p.wait() parse_time_regex = 'startup time: (.*)\n' execution_time_regex = 'execution time: (.*)\n' parse_time_match = re.search(parse_time_regex, stdoutlines[0])[1] execution_time_match = re.search(execution_time_regex, stdoutlines[2])[1] return {'engine': wamr_bench_info['engine_name'], 'bench_name': wamr_bench_info['bench_name'], 'parse_time': float(parse_time_match), 'exec_time': float(execution_time_match)} """ root@1<PASSWORD>:/engines/scout.ts-bn128# /engines/scout-cpp-bn128/build/scout.exec bn128pairing_bignums.yaml opening assembly/bn128-pairing/out/main_with_websnark_bignum_hostfuncs.wasm called host func blockDataCopy 512016 0 576 benchmark took 0.0419916 seconds. """ def do_scoutcpp_bench(scoutcpp_cmd, yaml_working_dir): print("running scout.cpp benchmark...\n{}".format(scoutcpp_cmd)) scoutcpp_cmd = shlex.split(scoutcpp_cmd) stdoutlines = [] with subprocess.Popen(scoutcpp_cmd, cwd=yaml_working_dir, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, universal_newlines=True) as p: for line in p.stdout: # b'\n'-separated lines print(line, end='') stdoutlines.append(line) # pass bytes as is p.wait() time_line = stdoutlines[-1] timeregex = "benchmark took ([\d\.e-]+) seconds." time_match = re.search(timeregex, time_line) time_string = "" if "e-" in time_line: time_string = "{:.8f}s".format(float(time_match.group(1))) else: time_string = time_match.group(1) + "s" time_seconds = durationpy.from_str(time_string) return { 'exec_time': time_seconds.total_seconds()} """ root@7<PASSWORD>:/benchscript# /engines/fizzy-bls12-hostfuncs/build/bin/fizzy-bench --benchmark_filter=fizzy/* --benchmark_color=false /engines/fizzy-bls12-hostfuncs/build/bin/bls12-synth-loop 2020-06-08 17:49:12 Running /engines/fizzy-bls12-hostfuncs/build/bin/fizzy-bench Run on (4 X 2294.68 MHz CPU s) CPU Caches: L1 Data 32K (x2) L1 Instruction 32K (x2) L2 Unified 256K (x2) L3 Unified 51200K (x2) Load Average: 0.00, 0.00, 0.02 --------------------------------------------------------------------------------------------------------------------- Benchmark Time CPU Iterations UserCounters... --------------------------------------------------------------------------------------------------------------------- fizzy/parse/main_with_websnark_bignum_hostfuncs 655 us 655 us 1044 rate=132.335M/s size=86.734k fizzy/instantiate/main_with_websnark_bignum_hostfuncs 788 us 788 us 885 fizzy/execute/main_with_websnark_bignum_hostfuncs/-e synth 10374 us 10374 us 65 """ def do_fizzy_bench(fizzy_cmd): print("\nrunning fizzy benchmark...\n{}\n".format(fizzy_cmd)) fizzy_cmd = shlex.split(fizzy_cmd) stdoutlines = [] with subprocess.Popen(fizzy_cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, universal_newlines=True) as p: for line in p.stdout: # b'\n'-separated lines print(line, end='') stdoutlines.append(line) # pass bytes as is p.wait() instantiate_time_regex = "fizzy/instantiate\D+(\d+) us" instantiate_benchline = stdoutlines[-2] instantiate_time_match = re.search(instantiate_time_regex, instantiate_benchline) parse_us_time = durationpy.from_str("{}us".format(instantiate_time_match.group(1))) exec_time_regex = "fizzy/execute\D+(\d+) us" exec_benchline = stdoutlines[-1] exec_time_match = re.search(exec_time_regex, exec_benchline) exec_us_time = durationpy.from_str("{}us".format(exec_time_match.group(1))) return {'parse_time': parse_us_time.total_seconds(), 'exec_time': exec_us_time.total_seconds()} def do_wasm3_bench(wasm3_cmd): print("\nrunning wasm3 benchmark...\n{}\n".format(wasm3_cmd)) wasm3_cmd = shlex.split(wasm3_cmd) stdoutlines = [] with subprocess.Popen(wasm3_cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, universal_newlines=True) as p: for line in p.stdout: # b'\n'-separated lines print(line, end='') stdoutlines.append(line) bench_result = json.loads("".join(stdoutlines)) # count parsing/instantiation in 'init_time' init_time = bench_result['benchmarks'][0]['real_time'] + bench_result['benchmarks'][1]['real_time'] exec_time = bench_result['benchmarks'][2]['real_time'] p.wait() return {'parse_time': init_time, 'exec_time': exec_time} """ /engines/wabt-bn128/out/clang/Release/wasm-interp /engines/wabt-bench-dirs/daiquiri-zkmixer-websnark-bn128-groth16-four-pairings-and-mimc-wabt-with-bignums/main_with_websnark_bignum_hostfuncs.wasm ReadMemorySection time: 240us eth2_savePostStateRoot: E0A30EF7356F67420D65613C3E5F718B12240227C90304CA00916B2618B5B300 parse time: 3204us exec time: 345512us """ def do_wabt_bench_manual(isolated_bench_dir, wabt_cmd): print("running wabt_manual benchmark...\n{}".format(wabt_cmd)) wabt_cmd = shlex.split(wabt_cmd) stdoutlines = [] with subprocess.Popen(wabt_cmd, cwd=isolated_bench_dir, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, universal_newlines=True) as p: for line in p.stdout: # b'\n'-separated lines print(line, end='') stdoutlines.append(line) # pass bytes as is p.wait() parse_time_regex = "parse time: (\d+)us" exec_time_regex = "exec time: (\d+)us" parse_benchline = stdoutlines[-2] exec_benchline = stdoutlines[-1] parse_time_match = re.search(parse_time_regex, parse_benchline) parse_us_time = durationpy.from_str("{}us".format(parse_time_match.group(1))) exec_time_match = re.search(exec_time_regex, exec_benchline) exec_us_time = durationpy.from_str("{}us".format(exec_time_match.group(1))) return {'exec_time': exec_us_time.total_seconds(), 'parse_time': parse_us_time.total_seconds()} """ /engines/wabt-secp/out/clang/Release/benchmark-interp /engines/wabt-bench-dirs/ecrecover-eth1-txns-websnark-secp256k1-verify-72-sigs-wabt-with-bignums/main_with_websnark_and_keccak.wasm ReadMemorySection time: 47us parse succeeded.. eth2_savePostStateRoot: 00000000000000000000000029120AC3527858F5637E698CDBF0548C6B59EC77 parse time: 2685us exec time: 883336us execution succeeded... register benchmark... run benchmark... 2020-03-10 23:45:46 Running /engines/wabt-secp/out/clang/Release/benchmark-interp Run on (1 X 2900 MHz CPU ) CPU Caches: L1 Data 32 KiB (x1) L1 Instruction 32 KiB (x1) L2 Unified 256 KiB (x1) L3 Unified 12288 KiB (x1) Load Average: 0.39, 0.12, 0.20 eth2_savePostStateRoot: 00000000000000000000000029120AC3527858F5637E698CDBF0548C6B59EC77 ------------------------------------------------------ Benchmark Time CPU Iterations ------------------------------------------------------ wabt_interp 999345 us 806069 us 1 """ def do_wabt_bench(isolated_bench_dir, wabt_cmd): print("\nrunning wabt benchmark...\n{}\n".format(wabt_cmd)) wabt_cmd = shlex.split(wabt_cmd) stdoutlines = [] with subprocess.Popen(wabt_cmd, cwd=isolated_bench_dir, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, universal_newlines=True) as p: for line in p.stdout: # b'\n'-separated lines print(line, end='') stdoutlines.append(line) # pass bytes as is p.wait() parse_time_regex = "parse time: (\d+)us" parse_benchline = stdoutlines[3] parse_time_match = re.search(parse_time_regex, parse_benchline) if parse_time_match is None: # the parse time is on `stdoutlines[2]` if eth2_savePostStateRoot isn't called (one less line printed) parse_benchline = stdoutlines[2] parse_time_match = re.search(parse_time_regex, parse_benchline) parse_us_time = durationpy.from_str("{}us".format(parse_time_match.group(1))) exec_time_regex = "wabt_interp\s+(\d+) us" # maybe --benchmark_format=json is better so dont have to parse "36.775k" exec_benchline = stdoutlines[-1] exec_time_match = re.search(exec_time_regex, exec_benchline) exec_us_time = durationpy.from_str("{}us".format(exec_time_match.group(1))) return {'parse_time': parse_us_time.total_seconds(), 'exec_time': exec_us_time.total_seconds()} def run_yaml_file_in_wabt(isolated_bench_dir, wabt_bin_path, yaml_file_dir, yaml_file_rel_path, manual=False): yaml_file_path = os.path.join(yaml_file_dir, yaml_file_rel_path) with open(yaml_file_path, 'r') as stream: print("running yaml file in wabt:", yaml_file_path) yaml_file = yaml.safe_load(stream) wasm_files = yaml_file['beacon_state']['execution_scripts'] if len(wasm_files) > 1: print("ERROR: should only be one wasm file in the yaml file. the scout_bignum_bench.py script doesn't support more.") sys.exit() print("wasm file name:", yaml_file['beacon_state']['execution_scripts']) wasm_file_relative_path = wasm_files[0] input_data = yaml_file['shard_blocks'][0]['data'] print("input_data size (bytes):", len(input_data)//2) # TODO: this test_block_data.hex is a workaround because this wabt branch doesn't support scout yaml files isolated_bench_path = os.path.join(WABT_BENCH_WORKING_DIR, isolated_bench_dir) os.makedirs(isolated_bench_path, exist_ok=True) isolated_input_data_path = os.path.join(isolated_bench_path, "test_block_data.hex") with open(isolated_input_data_path, 'w') as blockdata_file: blockdata_file.write(input_data) # copy the wasm file into isolated_bench_path # we assume the path in the scout yaml file is a relative path to the directory where the yaml file resides wasm_file_full_src_path = os.path.join(yaml_file_dir, wasm_file_relative_path) wasm_filename = os.path.basename(wasm_file_full_src_path) wasm_file_dst_path = os.path.join(isolated_bench_path, wasm_filename) shutil.copyfile(wasm_file_full_src_path, wasm_file_dst_path) # form the wabt command and execute #cmd_str = "./benchmark-interp {}".format(wasmfile) #cmd_str = "./wasm-interp {}".format(wasmfile) wabt_cmd = "{} {}".format(wabt_bin_path, wasm_file_dst_path) if manual: wabt_result = do_wabt_bench_manual(isolated_bench_path, wabt_cmd) else: wabt_result = do_wabt_bench(isolated_bench_path, wabt_cmd) return wabt_result print("ERROR in scout_bignum_bench.py, run_yaml_file_in_wabt()!") sys.exit() return def generate_single_test_yamls_from_multitest(yaml_file_dir, yaml_file_rel_path, output_file_dir): yaml_file_path = os.path.join(yaml_file_dir, yaml_file_rel_path) yaml_file_name = os.path.basename(yaml_file_path) with open(yaml_file_path, 'r') as stream: print("generating single test case yaml files from multi test case yaml file:", yaml_file_path) yaml_file = yaml.safe_load(stream) exec_script = yaml_file['beacon_state']['execution_scripts'][0] block_data = yaml_file['shard_blocks'][0]['data'] prestate_exec_env_state = yaml_file['shard_pre_state']['exec_env_states'][0] poststate_exec_env_state = yaml_file['shard_post_state']['exec_env_states'][0] template_yaml = {} template_yaml['beacon_state'] = {'execution_scripts': [exec_script]} template_yaml['shard_pre_state'] = {'exec_env_states': [prestate_exec_env_state]} template_yaml['shard_blocks'] = [{'env': 0, 'data': block_data}] template_yaml['shard_post_state'] = {'exec_env_states': [poststate_exec_env_state]} execution_scripts = yaml_file['beacon_state']['execution_scripts'] for script in execution_scripts: new_yaml = template_yaml.copy() new_yaml['beacon_state']['execution_scripts'][0] = script script_without_extension = script[0:-5] script_without_prefix = re.sub(r'(\w+_)', '', script_without_extension) new_name_without_extension = yaml_file_name[0:-5] new_file_name = new_name_without_extension + '-' + script_without_prefix + '.yaml' new_file_path = os.path.join(output_file_dir, new_file_name) with open(new_file_path, 'w') as outstream: yaml.dump(new_yaml, outstream, default_flow_style=False) print("wrote new yaml file:", new_file_name) return def generate_all_cewasm_yamls(): new_yamls_output_dir = os.path.join(C_EWASM_DIR, 'wasm') c_ewasm_tests_path = os.path.join(C_EWASM_DIR, 'tests') yamlfiles = [dI for dI in os.listdir(c_ewasm_tests_path)] for c_yaml_file in yamlfiles: generate_single_test_yamls_from_multitest(c_ewasm_tests_path, c_yaml_file, new_yamls_output_dir) def do_all_cewasm_benchmarks(): yaml_files_path = os.path.join(C_EWASM_DIR, 'wasm') yaml_file_names = [file for file in os.listdir(yaml_files_path) if file[-4:] == "yaml"] # yaml_file_names look like "keccak256_256-keccak256_libkeccak-tiny-unrolled.yaml" scoutcpp_bin_path = '/engines/scoutcpp-bn128/build/scout.exec' c_ewasm_bench_runs = [] for yaml_file_name in yaml_file_names: if yaml_file_name in ["keccak256_1024-ref.yaml", "keccak256_256-ref.yaml", "keccak256_64-ref.yaml"]: continue yaml_file_without_extension = yaml_file_name[:-5] c_ewasm_bench_name = yaml_file_without_extension #engine_name = "wabt-baseline" scoutcpp_bin_path = '/engines/scoutcpp-bn128/build/scout.exec' yaml_file_path = os.path.join(yaml_files_path, yaml_file_name) yaml_working_dir = yaml_files_path scoutcpp_cmd = "{} {}".format(scoutcpp_bin_path, yaml_file_path) for i in range(0, 10): print("doing scoutcpp c_ewasm bench i=", i) scoutcpp_result = do_scoutcpp_bench(scoutcpp_cmd, yaml_working_dir) scoutcpp_record = {} scoutcpp_record['engine'] = "wabt-baseline" scoutcpp_record['bench_name'] = c_ewasm_bench_name scoutcpp_record['exec_time'] = scoutcpp_result['exec_time'] #bench_record['parse_time'] = scoutcpp_result['exec_time'] c_ewasm_bench_runs.append(scoutcpp_record) print("doing wabt-with-superops c_ewasm bench i=", i) wabt_with_superops_bin_path = "/engines/wabt-biturbo/out/clang/Release/wasm-interp" isolated_bench_dir = "{}-{}".format(c_ewasm_bench_name, "wabt-with-superops") wabt_superops_result = run_yaml_file_in_wabt(isolated_bench_dir, wabt_with_superops_bin_path, yaml_working_dir, yaml_file_name, manual=True) wabt_record = {} wabt_record['engine'] = "wabt-with-superops" wabt_record['bench_name'] = c_ewasm_bench_name wabt_record['exec_time'] = wabt_superops_result['exec_time'] wabt_record['parse_time'] = wabt_superops_result['parse_time'] #bench_record['parse_time'] = scoutcpp_result['exec_time'] c_ewasm_bench_runs.append(wabt_record) return c_ewasm_bench_runs def main(): scout_benchmarks = [] ## do C_ewasm hash function benchmarks # TODO: temporarily disabled until we replace scout.cpp #generate_all_cewasm_yamls() #c_ewasm_bench_runs = do_all_cewasm_benchmarks() #scout_benchmarks.extend(c_ewasm_bench_runs) # run 5 iterations of wasm3 for i in range(0, 5): print("\ndoing wasm3 bench run i=",i) for wasm3_bench in WASM3_BENCH_INFOS: bench_name = wasm3_bench['bench_name'] wasm3_engine_name = wasm3_bench['engine_name'] wasm3_bin_path = wasm3_bench['wasm3_bin_path'] wasm3_bench_dir = wasm3_bench['wasm3_bench_dir'] print("wasm3 bench: ", wasm3_engine_name, bench_name) wasm3_command = "{} --benchmark_format=json --benchmark_filter=wasm3/* --benchmark_color=false {}".format(wasm3_bin_path, wasm3_bench_dir) wasm3_bench_result = do_wasm3_bench(wasm3_command) wasm3_record = {} wasm3_record['engine'] = wasm3_engine_name wasm3_record['bench_name'] = bench_name wasm3_record['exec_time'] = wasm3_bench_result['exec_time'] wasm3_record['parse_time'] = wasm3_bench_result['parse_time'] scout_benchmarks.append(wasm3_record) print("got fizzy result:", wasm3_record) # run 10 iterations of scout_wamr.c for i in range(10): for bench_to_run in WAMR_BENCH_INFOS: scout_benchmarks.append(do_wamr_bench(bench_to_run)) # run 10 iterations of rust-native for i in range(0, 10): print("\ndoing rust-native bench run i=",i) for rust_bench_torun in RUST_NATIVE_BENCH_INFOS: bench_name = rust_bench_torun['bench_name'] rust_engine_name = rust_bench_torun['engine_name'] native_bin_path = rust_bench_torun['native_bin_path'] print("rust-native bench: ", rust_engine_name, bench_name) rust_bench_result = do_rust_native(native_bin_path) rust_record = {} rust_record['engine'] = rust_engine_name rust_record['bench_name'] = bench_name rust_record['exec_time'] = rust_bench_result['exec_time'] #wabt_record['parse_time'] = 0 scout_benchmarks.append(rust_record) print("got rust-native result:", rust_record) # run 5 iterations of fizzy for i in range(0, 5): print("\ndoing fizzy bench run i=",i) for fizzy_bench_torun in FIZZY_BENCH_INFOS: bench_name = fizzy_bench_torun['bench_name'] fizzy_engine_name = fizzy_bench_torun['engine_name'] fizzy_bin_path = fizzy_bench_torun['fizzy_bin_path'] fizzy_bench_dir = fizzy_bench_torun['fizzy_bench_dir'] print("fizzy bench: ", fizzy_engine_name, bench_name) fizzy_command = "{} --benchmark_filter=fizzy/* --benchmark_color=false {}".format(fizzy_bin_path, fizzy_bench_dir) fizzy_bench_result = do_fizzy_bench(fizzy_command) fizzy_record = {} fizzy_record['engine'] = fizzy_engine_name fizzy_record['bench_name'] = bench_name fizzy_record['exec_time'] = fizzy_bench_result['exec_time'] fizzy_record['parse_time'] = fizzy_bench_result['parse_time'] scout_benchmarks.append(fizzy_record) print("got fizzy result:", fizzy_record) # run 10 iterations of wabt_manual (ran using wabt/wasm-interp) for i in range(0, 10): print("\ndoing wabt manual bench run i=",i) for wabt_bench_torun in WABT_BENCH_MANUAL_INFOS: bench_name = wabt_bench_torun['bench_name'] wabt_engine_name = wabt_bench_torun['engine_name'] wabt_bin_path = wabt_bench_torun['wabt_bin_path'] yaml_file_dir = wabt_bench_torun['yaml_file_dir'] yaml_file_rel_path = wabt_bench_torun['yaml_file_rel_path'] print("wabt bench: ", wabt_engine_name, bench_name) isolated_bench_dir = "{}-{}".format(bench_name, wabt_engine_name) wabt_bench_result = run_yaml_file_in_wabt(isolated_bench_dir, wabt_bin_path, yaml_file_dir, yaml_file_rel_path, manual=True) wabt_record = {} wabt_record['engine'] = wabt_engine_name wabt_record['bench_name'] = bench_name wabt_record['exec_time'] = wabt_bench_result['exec_time'] wabt_record['parse_time'] = wabt_bench_result['parse_time'] scout_benchmarks.append(wabt_record) print("got wabt_manual result:", wabt_record) # run only 5 iterations of wabt, since each run is an average already (ran using wabt/benchmark-interp) for i in range(0, 5): print("\ndoing wabt bench run i=",i) for wabt_bench_torun in WABT_BENCH_INFOS: bench_name = wabt_bench_torun['bench_name'] wabt_engine_name = wabt_bench_torun['engine_name'] wabt_bin_path = wabt_bench_torun['wabt_bin_path'] yaml_file_dir = wabt_bench_torun['yaml_file_dir'] yaml_file_rel_path = wabt_bench_torun['yaml_file_rel_path'] print("wabt bench: ", wabt_engine_name, bench_name) isolated_bench_dir = "{}-{}".format(bench_name, wabt_engine_name) wabt_bench_result = run_yaml_file_in_wabt(isolated_bench_dir, wabt_bin_path, yaml_file_dir, yaml_file_rel_path, manual=False) wabt_record = {} wabt_record['engine'] = wabt_engine_name wabt_record['bench_name'] = bench_name wabt_record['exec_time'] = wabt_bench_result['exec_time'] wabt_record['parse_time'] = wabt_bench_result['parse_time'] scout_benchmarks.append(wabt_record) print("got wabt result:", wabt_record) # run 10 iterations of v8 for i in range(0, 10): print("\ndoing v8 bench run i=",i) for v8_bench in V8_BENCH_INFOS: v8_bench_name = v8_bench['bench_name'] v8_engine_name = v8_bench['engine_name'] scoutts_cmd = v8_bench['scoutts_cmd'] scoutts_working_dir = v8_bench['scoutts_working_dir'] v8_result = do_v8_bench(scoutts_cmd, scoutts_working_dir) v8_record = {} v8_record['engine'] = v8_engine_name v8_record['bench_name'] = v8_bench_name v8_record['parse_time'] = v8_result['parse_time'] v8_record['exec_time'] = v8_result['exec_time'] scout_benchmarks.append(v8_record) print("got v8 result:", v8_record) # run 10 iterations of scout.cpp for i in range(0, 10): print("\ndoing scout.cpp bench run i=",i) for scoutcpp_bench in SCOUTCPP_BENCH_INFOS: scoutcpp_bench_name = scoutcpp_bench['bench_name'] scoutcpp_engine_name = scoutcpp_bench['engine_name'] scoutcpp_bin_path = scoutcpp_bench['scoutcpp_bin_path'] yaml_file_path = scoutcpp_bench['yaml_file_path'] yaml_working_dir = scoutcpp_bench['yaml_working_dir'] scoutcpp_cmd = "{} {}".format(scoutcpp_bin_path, yaml_file_path) scoutcpp_result = do_scoutcpp_bench(scoutcpp_cmd, yaml_working_dir) scoutcpp_record = {} scoutcpp_record['engine'] = scoutcpp_engine_name scoutcpp_record['bench_name'] = scoutcpp_bench_name scoutcpp_record['exec_time'] = scoutcpp_result['exec_time'] scout_benchmarks.append(scoutcpp_record) print("got scout.cpp result:", scoutcpp_record) print("got scout_benchmarks:") print(json.dumps(scout_benchmarks)) saveResults(scout_benchmarks) if __name__ == "__main__": main() ```
{ "source": "jnordin20/conan-boost-scripts", "score": 2 }
#### File: jnordin20/conan-boost-scripts/conanfile.py ```python from conans import ConanFile, tools class BoostConan(ConanFile): name = "boost" settings = "os", "compiler", "build_type", "arch" options = {"shared": [True, False], "android_ndk": "ANY", "android_stl_type":["c++_static", "c++_shared"]} default_options = "shared=False", "android_ndk=None" description = "Boost is a set of libraries for the C++ programming language." url = "https://github.com/RGPaul/conan-boost-scripts" license = "Boost Software License" def package(self): self.copy("*", dst="include", src='conan/include') self.copy("*.lib", dst="lib", src='conan/lib', keep_path=False) self.copy("*.dll", dst="bin", src='conan/lib', keep_path=False) self.copy("*.so", dst="lib", src='conan/lib', keep_path=False) self.copy("*.dylib", dst="lib", src='conan/lib', keep_path=False) self.copy("*.a", dst="lib", src='conan/lib', keep_path=False) def package_id(self): if "arm" in self.settings.arch and self.settings.os == "iOS": self.info.settings.arch = "AnyARM" def package_info(self): self.cpp_info.libs = tools.collect_libs(self) self.cpp_info.includedirs = ['include'] def config_options(self): # remove android specific option for all other platforms if self.settings.os != "Android": del self.options.android_ndk del self.options.android_stl_type ```
{ "source": "jnorthrup/neural-qa", "score": 3 }
#### File: jnorthrup/neural-qa/generator_test.py ```python import operator import generator import generator_utils def test_extract_variables(): query = 'select distinct(?x) ?y where { ?x a C . ?x a ?y}' query2 = 'select distinct ?a where' result = generator_utils.extract_variables(query) result2 = generator_utils.extract_variables(query2) assert result == ['x', 'y'] assert result2 == ['a'] def test_single_resource_sort(): matches = [{'usages': [17]}, {'usages': [0]}, {'usages': [3]}, {'usages': [2]}, {'usages': [1]}] result = sorted(matches, key=generator.prioritize_usage) assert list(map(operator.itemgetter(0), list(map(operator.itemgetter('usages'), result)))) == [17, 3, 2, 1, 0 ] def test_couple_resource_sort(): matches = [{'usages': [17, 2]}, {'usages': [0, 0]}, {'usages': [3, 2]}, {'usages': [2, 2]}, {'usages': [1, 2]}] result = sorted(matches, key=generator.prioritize_usage) assert list(map(operator.itemgetter('usages'), result)) == [[17, 2], [3, 2], [2, 2], [1, 2], [0, 0]] def test_encoding(): original = 'SELECT ?city WHERE { ?m skos:broader dbc:Cities_in_Germany . ?city dct:subject ?m . ?city dbo:areaTotal ?area . ?b dbo:artist dbr:John_Halsey_(musician) } order by asc (?area)' expected_encoding = 'SELECT var_city WHERE brack_open var_m skos_broader dbc_Cities_in_Germany sep_dot var_city dct_subject var_m sep_dot var_city dbo_areaTotal var_area sep_dot var_b dbo_artist dbr_John_Halsey_ attr_open musician attr_close brack_close _oba_ var_area ' result = generator_utils.encode(original) assert result == expected_encoding assert str.strip(generator_utils.decode(result)) == original def test_shorten_query(): shorten = generator_utils.shorten_query assert shorten('ORDER BY var_area') == '_oba_ var_area' assert shorten('order by asc par_open var_area par_close') == '_oba_ var_area' assert shorten('order by desc attr_open var_area attr_close') == '_obd_ var_area' def test_normalize_predicates(): alt = 'dbp_placeOfBirth' assert generator_utils.normalize_predicates(alt) == 'dbo_birthPlace' ``` #### File: zheyuan/pipeline/eliminator.py ```python import argparse from tqdm import tqdm def eliminator(): """ The function remove the templates which are considered as less popular based on the proposed ranking mechanism, the input files should be pre processed and a TRUE or FALSE should be added as the last column. This function just removes the entries with FALSE as the last entry in a row and create a file name new_train.csv to be used for futher purposes. """ lines = open(location,'r').readlines() print(len(lines)) accum = [] nspm_ready = open("new_train.csv",'w') for line in tqdm(lines): values = line.split(",") if(len(values)<8): print("Input file is of wrong format, please add the corect bolean values as the last column entry to use this function") print(values[-1]) if(values[-1]=="TRUE\n"): accum.append(";".join(values[:-2])+"\n") nspm_ready.write(accum[-1]) nspm_ready.close() if __name__ == "__main__": parser = argparse.ArgumentParser() requiredNamed = parser.add_argument_group('Required Arguments') requiredNamed.add_argument('--location', dest='location', metavar='location', help='location of the file to be pruned.', required=True) args = parser.parse_args() location = args.location eliminator(location) pass ``` #### File: utility/benchmark/benchmark.py ```python import argparse import json from tqdm import tqdm from extract_questions import read_json, write_to_ask from interpreter import interprete from reconstruct_json import construct_json from retrieve_answers import read_sparqls, retrieve def benchmark(trained_model, test_set, answer_file="answers.json"): # Deconstruct the questions and infos from test set questions_info, questions = read_json(test_set) # Write the questions to to_ask.txt write_to_ask(questions) # Use Interpreter to interprete them into decoded queries stored in output_decoded.txt interprete(trained_model) # Use the sparql endpoint (http://dbpedia.org/sparql) to retrieve answers of the queries sparqls = read_sparqls() answers = [] print("Retrieving answers of queries via SPARQL endpoint") for query in tqdm(sparqls): try: answer_group = retrieve(query) except: answer_group = [] answers.append(answer_group) json_file = construct_json(test_set.replace(".qald.json",""), questions_info, questions, sparqls, answers) path = "../gsoc/zheyuan/utility/benchmark/" with open(path+"answers-"+test_set, "w") as f: # js = json.dumps(json_file, indent=4, separators=(',', ':')) json.dump(json_file, f, indent=4, separators=(', ', ': ')) if __name__ == "__main__": """ Section to parse the command line arguments. """ parser = argparse.ArgumentParser() requiredNamed = parser.add_argument_group('Required Arguments') requiredNamed.add_argument('--model', dest='model', metavar='[modelId]', help='the trained model', required=True) requiredNamed.add_argument('--test', dest='test', metavar='[testset file name]', help='the testing qald set file name', required=True) requiredNamed.add_argument('--answer', dest='answer', metavar='[answer file name]', help='the answers of qald dataset file name', required=False) args = parser.parse_args() trained_model = args.model test_set = args.test answer_file = args.answer benchmark(trained_model,test_set, answer_file) pass ```
{ "source": "jnorwood/incubator-mxnet", "score": 2 }
#### File: example/cnn_text_classification/data_helpers.py ```python import itertools import os import re from collections import Counter import numpy as np import word2vec # from gensim.models import word2vec def clean_str(string): """Tokenization/string cleaning for all datasets except for SST. Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py """ string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string) string = re.sub(r"\'s", " \'s", string) string = re.sub(r"\'ve", " \'ve", string) string = re.sub(r"n\'t", " n\'t", string) string = re.sub(r"\'re", " \'re", string) string = re.sub(r"\'d", " \'d", string) string = re.sub(r"\'ll", " \'ll", string) string = re.sub(r",", " , ", string) string = re.sub(r"!", " ! ", string) string = re.sub(r"\(", r" \( ", string) string = re.sub(r"\)", r" \) ", string) string = re.sub(r"\?", r" \? ", string) string = re.sub(r"\s{2,}", " ", string) return string.strip().lower() def load_data_and_labels(): """Loads MR polarity data from files, splits the data into words and generates labels. Returns split sentences and labels. """ # Load data from files pos_path = "./data/rt-polaritydata/rt-polarity.pos" neg_path = "./data/rt-polaritydata/rt-polarity.neg" if not os.path.exists(pos_path): os.system("git clone https://github.com/dennybritz/cnn-text-classification-tf.git") os.system('mv cnn-text-classification-tf/data .') os.system('rm -rf cnn-text-classification-tf') positive_examples = list(open(pos_path).readlines()) positive_examples = [s.strip() for s in positive_examples] negative_examples = list(open(neg_path).readlines()) negative_examples = [s.strip() for s in negative_examples] # Split by words x_text = positive_examples + negative_examples x_text = [clean_str(sent) for sent in x_text] x_text = [s.split(" ") for s in x_text] # Generate labels positive_labels = [1 for _ in positive_examples] negative_labels = [0 for _ in negative_examples] y = np.concatenate([positive_labels, negative_labels], 0) return [x_text, y] def pad_sentences(sentences, padding_word="</s>"): """Pads all sentences to the same length. The length is defined by the longest sentence. Returns padded sentences. """ sequence_length = max(len(x) for x in sentences) padded_sentences = [] for i, sentence in enumerate(sentences): num_padding = sequence_length - len(sentence) new_sentence = sentence + [padding_word] * num_padding padded_sentences.append(new_sentence) return padded_sentences def build_vocab(sentences): """Builds a vocabulary mapping from word to index based on the sentences. Returns vocabulary mapping and inverse vocabulary mapping. """ # Build vocabulary word_counts = Counter(itertools.chain(*sentences)) # Mapping from index to word vocabulary_inv = [x[0] for x in word_counts.most_common()] # Mapping from word to index vocabulary = {x: i for i, x in enumerate(vocabulary_inv)} return [vocabulary, vocabulary_inv] def build_input_data(sentences, labels, vocabulary): """Maps sentencs and labels to vectors based on a vocabulary.""" x = np.array([[vocabulary[word] for word in sentence] for sentence in sentences]) y = np.array(labels) return [x, y] def build_input_data_with_word2vec(sentences, labels, word2vec_list): """ Map sentences and labels to vectors based on a pretrained word2vec """ x_vec = [] for sent in sentences: vec = [] for word in sent: if word in word2vec_list: vec.append(word2vec_list[word]) else: vec.append(word2vec_list['</s>']) x_vec.append(vec) x_vec = np.array(x_vec) y_vec = np.array(labels) return [x_vec, y_vec] def load_data_with_word2vec(word2vec_list): """Loads and preprocessed data for the MR dataset. Returns input vectors, labels, vocabulary, and inverse vocabulary. """ # Load and preprocess data sentences, labels = load_data_and_labels() sentences_padded = pad_sentences(sentences) # vocabulary, vocabulary_inv = build_vocab(sentences_padded) return build_input_data_with_word2vec(sentences_padded, labels, word2vec_list) def load_data(): """Loads and preprocessed data for the MR dataset. Returns input vectors, labels, vocabulary, and inverse vocabulary. """ # Load and preprocess data sentences, labels = load_data_and_labels() sentences_padded = pad_sentences(sentences) vocabulary, vocabulary_inv = build_vocab(sentences_padded) x, y = build_input_data(sentences_padded, labels, vocabulary) return [x, y, vocabulary, vocabulary_inv] def batch_iter(data, batch_size, num_epochs): """Generates a batch iterator for a dataset.""" data = np.array(data) data_size = len(data) num_batches_per_epoch = int(len(data)/batch_size) + 1 for epoch in range(num_epochs): # Shuffle the data at each epoch shuffle_indices = np.random.permutation(np.arange(data_size)) shuffled_data = data[shuffle_indices] for batch_num in range(num_batches_per_epoch): start_index = batch_num * batch_size end_index = min((batch_num + 1) * batch_size, data_size) yield shuffled_data[start_index:end_index] def load_pretrained_word2vec(infile): """Load the pre-trained word2vec from file.""" if isinstance(infile, str): infile = open(infile) word2vec_list = {} for idx, line in enumerate(infile): if idx == 0: vocab_size, dim = line.strip().split() else: tks = line.strip().split() word2vec_list[tks[0]] = map(float, tks[1:]) return word2vec_list def load_google_word2vec(path): model = word2vec.Word2Vec.load_word2vec_format(path, binary=True) return model ```
{ "source": "jnorwood/keras-squeezenet", "score": 3 }
#### File: jnorwood/keras-squeezenet/squeezenet.py ```python import keras.backend as K from keras.models import Model from keras.layers import Input, Flatten, Dropout, Concatenate, Activation from keras.layers import Convolution2D, MaxPooling2D, AveragePooling2D from keras.layers import GlobalMaxPooling2D, GlobalAveragePooling2D from keras.applications.imagenet_utils import decode_predictions from keras.applications.imagenet_utils import preprocess_input #modified in keras 2.2.2 see https://stackoverflow.com/questions/49113140/importerror-cannot-import-name-obtain-input-shape-from-keras from keras_applications.imagenet_utils import _obtain_input_shape from keras.utils.data_utils import get_file WEIGHTS_PATH = 'https://github.com/wohlert/keras-squeezenet/releases/download/v0.1/squeezenet_weights.h5' def _fire(x, filters, name="fire"): sq_filters, ex1_filters, ex2_filters = filters squeeze = Convolution2D(sq_filters, (1, 1), activation='relu', padding='same', name=name + "/squeeze1x1")(x) expand1 = Convolution2D(ex1_filters, (1, 1), activation='relu', padding='same', name=name + "/expand1x1")(squeeze) expand2 = Convolution2D(ex2_filters, (3, 3), activation='relu', padding='same', name=name + "/expand3x3")(squeeze) x = Concatenate(axis=-1, name=name)([expand1, expand2]) return x def SqueezeNet(include_top=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000): if weights not in {'imagenet', None}: raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `imagenet` ' '(pre-training on ImageNet).') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as imagenet with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=48, data_format=K.image_data_format(), require_flatten=include_top) if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor x = Convolution2D(64, kernel_size=(3, 3), strides=(2, 2), padding="same", activation="relu", name='conv1')(img_input) x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), name='maxpool1', padding="valid")(x) x = _fire(x, (16, 64, 64), name="fire2") x = _fire(x, (16, 64, 64), name="fire3") x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), name='maxpool3', padding="valid")(x) x = _fire(x, (32, 128, 128), name="fire4") x = _fire(x, (32, 128, 128), name="fire5") x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), name='maxpool5', padding="valid")(x) x = _fire(x, (48, 192, 192), name="fire6") x = _fire(x, (48, 192, 192), name="fire7") x = _fire(x, (64, 256, 256), name="fire8") x = _fire(x, (64, 256, 256), name="fire9") if include_top: x = Dropout(0.5, name='dropout9')(x) x = Convolution2D(classes, (1, 1), padding='valid', name='conv10')(x) x = AveragePooling2D(pool_size=(13, 13), name='avgpool10')(x) x = Flatten(name='flatten10')(x) x = Activation("softmax", name='softmax')(x) else: if pooling == "avg": x = GlobalAveragePooling2D(name="avgpool10")(x) else: x = GlobalMaxPooling2D(name="maxpool10")(x) model = Model(img_input, x, name="squeezenet") if weights == 'imagenet': weights_path = get_file('squeezenet_weights.h5', WEIGHTS_PATH, cache_subdir='models') model.load_weights(weights_path) return model ```
{ "source": "jnorwood/NNEF-Tools", "score": 2 }
#### File: nnef_converter/common/nnef_converter.py ```python from __future__ import division import collections import math import os import nnef import numpy as np import networkx as nx from .importer_exporter import ImporterExporter from .nnef_graph import * from . import nnef_node as node class NNEFImporter(ImporterExporter): @staticmethod def list_to_string(list_input): return "[" + ','.join(str(e) for e in list_input) + "]" def __init__(self, input_model): super(NNEFImporter, self).__init__() self.graph_name = "" self.input_model = input_model self.nxgraph = nx.OrderedDiGraph() self.node_pool = collections.OrderedDict() self.with_weights = False def get_input_nodes(self): input_node_list = [] if 'input' in self.node_pool.keys(): input_node_list.append(self.node_pool['input']) else: i = 1 while 'input' + str(i) in self.node_pool.keys(): input_node_list.append(self.node_pool['input' + str(i)]) i += 1 return input_node_list def get_output_nodes(self): output_node_list = [] if 'output' in self.node_pool.keys(): output_node_list.append(self.node_pool['output']) else: i = 1 while 'output' + str(i) in self.node_pool.keys(): output_node_list.append(self.node_pool['output' + str(i)]) i += 1 return output_node_list def get_node_from_pool(self, operation, param): if isinstance(operation.inputs[param], str): return self.node_pool[operation.inputs[param]] else: return operation.inputs[param] def remove_node_from_pool(self, node_name): self.node_pool.pop(node_name, None) def define_elementwise_binary_output_shape(self, node_x, node_y): if isinstance(node_x, Node) and not isinstance(node_y, Node): return node_x.output_shape[:] elif not isinstance(node_x, Node) and isinstance(node_y, Node): return node_y.output_shape[:] else: y_size = x_size = 1 for i in node_x.output_shape: x_size *= i for i in node_y.output_shape: y_size *= i if x_size >= y_size: output_shape = node_x.output_shape[:] else: output_shape = node_y.output_shape[:] return output_shape def run(self): try: self.with_weights = os.path.isdir(self.input_model) if not self.with_weights: print("Importing without weights (specify a directory as input-model to import with weights)") parser_graph = nnef.load_graph(self.input_model) nnef.infer_shapes(parser_graph) except Exception as ex: raise Exception('failed to open %s: %s' % (self.input_model, ex)) self.graph_name = parser_graph.name for operation in parser_graph.operations: if hasattr(self, "import_" + operation.name): func = getattr(self, "import_" + operation.name) returned_node = func(operation, parser_graph.tensors) self.node_pool[returned_node.name] = returned_node else: self.import_UNKNOWN(operation, parser_graph.tensors) input_nodes = self.get_input_nodes() output_nodes = self.get_output_nodes() graph = NNEFGraph(os.path.basename(self.input_model).split('.')[0], input_nodes, output_nodes, node_pool=self.node_pool) return graph def import_abs(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Abs(x=node_x, _uid=node_name, _output_shape=output_shape) def import_add(self, operation, tensors): node_name = operation.outputs['z'] node_x = self.get_node_from_pool(operation, 'x') node_y = self.get_node_from_pool(operation, 'y') output_shape = self.define_elementwise_binary_output_shape(node_x, node_y) return node.Add(x=node_x, y=node_y, _uid=node_name, _output_shape=output_shape) def import_add_n(self, operation, tensors): node_name = operation.outputs['y'] node_x = [] for x_names in operation.inputs['x']: node_x.append(self.node_pool[x_names]) output_shape = node_x[0].output_shape[:] return node.AddN(x=node_x, _uid=node_name, _output_shape=output_shape) def import_and(self, operation, tensors): node_name = operation.outputs['z'] node_x = self.get_node_from_pool(operation, 'x') node_y = self.get_node_from_pool(operation, 'y') output_shape = self.define_elementwise_binary_output_shape(node_x, node_y) return node.And(x=node_x, y=node_y, _uid=node_name, _output_shape=output_shape) def import_area_downsample(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') factors = operation.attribs['factor'] output_shape = node_input.output_shape[:] for i in range(len(factors)): output_shape[i + 2] = int(output_shape[i + 2] / factors[i]) return node.AreaDownsample(input=node_input, factor=factors, _uid=node_name, _output_shape=output_shape) def import_avg_pool(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') size = operation.attribs['size'] output_shape = node_input.output_shape[:] if 'border' in operation.attribs: border = operation.attribs['border'] else: border = 'constant' if 'padding' in operation.attribs: padding = operation.attribs['padding'] else: padding = [] if 'stride' in operation.attribs and operation.attribs['stride'] != []: stride = operation.attribs['stride'] else: stride = [1] * len(output_shape) if 'dilation' in operation.attribs and operation.attribs['dilation'] != []: dilation = operation.attribs['dilation'] else: dilation = [1] * len(output_shape) for i in range(len(output_shape)): if padding == []: output_shape[i] = math.ceil(output_shape[i] / stride[i]) else: fd = (size[i] - 1) * dilation[i] + 1 output_shape[i] = math.floor((output_shape[i] + padding[i][0] + padding[i][1] - fd) / stride[i]) + 1 return node.AvgPool(input=node_input, size=size, border=border, padding=padding, stride=stride, dilation=dilation, _uid=node_name, _output_shape=output_shape) def import_batch_normalization(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') node_mean = self.get_node_from_pool(operation, 'mean') node_variance = self.get_node_from_pool(operation, 'variance') node_offset = self.get_node_from_pool(operation, 'offset') node_scale = self.get_node_from_pool(operation, 'scale') node_epsilon = operation.attribs['epsilon'] output_shape = node_input.output_shape[:] return node.BatchNormalization(input=node_input, mean=node_mean, variance=node_variance, offset=node_offset, scale=node_scale, epsilon=node_epsilon, _uid=node_name, _output_shape=output_shape) def import_ceil(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Ceil(x=node_x, _uid=node_name, _output_shape=output_shape) def import_concat(self, operation, tensors): node_name = operation.outputs['value'] values = [] for val in operation.inputs['values']: values.append(self.node_pool[val]) axis = operation.attribs['axis'] output_shape = values[0].output_shape[:] for nnef_node in values[1:]: output_shape[axis] += nnef_node.output_shape[axis] return node.Concat(values=values, axis=axis, _uid=node_name, _output_shape=output_shape) def import_constant(self, operation, tensors): node_name = operation.outputs['output'] shape = operation.attribs['shape'] value = operation.attribs['value'] return node.Constant(shape=shape, value=value, _uid=node_name, _output_shape=shape) def import_conv(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') node_filter = self.get_node_from_pool(operation, 'filter') output_shape = node_input.output_shape[:] if 'bias' in operation.inputs: bias = self.get_node_from_pool(operation, 'bias') else: bias = 0.0 if 'border' in operation.attribs: border = operation.attribs['border'] else: border = 'constant' if 'padding' in operation.attribs: padding = operation.attribs['padding'] else: padding = [] if 'stride' in operation.attribs and operation.attribs['stride'] != []: stride = operation.attribs['stride'] else: stride = [1] * (len(output_shape) - 2) if 'dilation' in operation.attribs and operation.attribs['dilation'] != []: dilation = operation.attribs['dilation'] else: dilation = [1] * (len(output_shape) - 2) if 'groups' in operation.attribs: groups = operation.attribs['groups'] else: groups = 1 conv_filter = node_filter.output_shape output_shape[1] = conv_filter[0] for i in range(2, len(output_shape)): if padding == []: output_shape[i] = math.ceil(output_shape[i] / stride[i - 2]) else: fd = (conv_filter[i] - 1) * dilation[i - 2] + 1 pad = padding[i - 2][0] + padding[i - 2][1] output_shape[i] = math.floor((output_shape[i] + pad - fd) / stride[i - 2]) + 1 return node.Conv(input=node_input, filter=node_filter, bias=bias, border=border, padding=padding, stride=stride, dilation=dilation, groups=groups, _uid=node_name, _output_shape=output_shape) def import_deconv(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') node_filter = self.get_node_from_pool(operation, 'filter') output_shape = node_input.output_shape[:] if 'bias' in operation.inputs: bias = self.get_node_from_pool(operation, 'bias') else: bias = 0.0 if 'border' in operation.attribs: border = operation.attribs['border'] else: border = 'constant' if 'padding' in operation.attribs: padding = operation.attribs['padding'] else: padding = [] if 'stride' in operation.attribs and operation.attribs['stride'] != []: stride = operation.attribs['stride'] else: stride = [1] * (len(output_shape) - 2) if 'dilation' in operation.attribs and operation.attribs['dilation'] != []: dilation = operation.attribs['dilation'] else: dilation = [1] * (len(output_shape) - 2) if 'groups' in operation.attribs: groups = operation.attribs['groups'] else: groups = 1 conv_filter = node_filter.output_shape output_shape[1] = conv_filter[1] for i in range(2, len(output_shape)): fd = (conv_filter[i] - 1) * dilation[i - 2] + 1 if padding == []: pad = 0 else: pad = padding[i - 2][0] + padding[i - 2][1] output_shape[i] = (output_shape[i] - 1) * stride[i - 2] + fd - pad return node.Deconv(input=node_input, filter=node_filter, bias=bias, border=border, padding=padding, stride=stride, dilation=dilation, groups=groups, _uid=node_name, _output_shape=output_shape) def import_div(self, operation, tensors): node_name = operation.outputs['z'] node_x = self.get_node_from_pool(operation, 'x') node_y = self.get_node_from_pool(operation, 'y') output_shape = self.define_elementwise_binary_output_shape(node_x, node_y) return node.Div(x=node_x, y=node_y, _uid=node_name, _output_shape=output_shape) def import_elu(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Elu(x=node_x, _uid=node_name, _output_shape=output_shape) def import_eq(self, operation, tensors): node_name = operation.outputs['z'] node_x = self.get_node_from_pool(operation, 'x') node_y = self.get_node_from_pool(operation, 'y') output_shape = self.define_elementwise_binary_output_shape(node_x, node_y) return node.EQ(x=node_x, y=node_y, _uid=node_name, _output_shape=output_shape) def import_exp(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Exp(x=node_x, _uid=node_name, _output_shape=output_shape) def import_external(self, operation, tensors): node_name = operation.outputs['output'] nnef_shape = operation.attribs['shape'] return node.External(shape=nnef_shape, _uid=node_name, _output_shape=nnef_shape) def import_floor(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Floor(x=node_x, _uid=node_name, _output_shape=output_shape) def import_ge(self, operation, tensors): node_name = operation.outputs['z'] node_x = self.get_node_from_pool(operation, 'x') node_y = self.get_node_from_pool(operation, 'y') output_shape = self.define_elementwise_binary_output_shape(node_x, node_y) return node.GE(x=node_x, y=node_y, _uid=node_name, _output_shape=output_shape) def import_gt(self, operation, tensors): node_name = operation.outputs['z'] node_x = self.get_node_from_pool(operation, 'x') node_y = self.get_node_from_pool(operation, 'y') output_shape = self.define_elementwise_binary_output_shape(node_x, node_y) return node.GT(x=node_x, y=node_y, _uid=node_name, _output_shape=output_shape) def import_le(self, operation, tensors): node_name = operation.outputs['z'] node_x = self.get_node_from_pool(operation, 'x') node_y = self.get_node_from_pool(operation, 'y') output_shape = self.define_elementwise_binary_output_shape(node_x, node_y) return node.LE(x=node_x, y=node_y, _uid=node_name, _output_shape=output_shape) def import_linear(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') node_filter = self.get_node_from_pool(operation, 'filter') node_bias = self.get_node_from_pool(operation, 'bias') output_shape = [node_input.output_shape[0], node_filter.output_shape[0]] return node.Linear(input=node_input, filter=node_filter, bias=node_bias, _uid=node_name, _output_shape=output_shape) def import_local_response_normalization(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') size = operation.attribs['size'] if 'alpha' in operation.attribs: alpha = operation.attribs['alpha'] else: alpha = 1.0 if 'beta' in operation.attribs: beta = operation.attribs['beta'] else: beta = 0.5 if 'bias' in operation.attribs: bias = operation.attribs['bias'] else: bias = 1.0 output_shape = node_input.output_shape[:] return node.LocalResponseNormalization(input=node_input, size=size, alpha=alpha, beta=beta, bias=bias, _uid=node_name, _output_shape=output_shape) def import_log(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Log(x=node_x, _uid=node_name, _output_shape=output_shape) def import_lt(self, operation, tensors): node_name = operation.outputs['z'] node_x = self.get_node_from_pool(operation, 'x') node_y = self.get_node_from_pool(operation, 'y') output_shape = self.define_elementwise_binary_output_shape(node_x, node_y) return node.LT(x=node_x, y=node_y, _uid=node_name, _output_shape=output_shape) def import_l2_normalization(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') axes = operation.attribs['axes'] if 'bias' in operation.attribs: bias = operation.attribs['bias'] else: bias = 0.0 output_shape = node_input.output_shape[:] return node.L2Normalization(input=node_input, axes=axes, bias=bias, _uid=node_name, _output_shape=output_shape) def import_matmul(self, operation, tensors): node_name = operation.outputs['C'] node_A = self.get_node_from_pool(operation, 'A') node_B = self.get_node_from_pool(operation, 'B') trA = operation.attribs['transposeA'] trB = operation.attribs['transposeB'] output_shape = [] if trA: output_shape.append(node_A.output_shape[-1]) else: output_shape.append(node_A.output_shape[0]) if trB: output_shape.append(node_B.output_shape[0]) else: output_shape.append(node_B.output_shape[-1]) return node.Matmul(A=node_A, B=node_B, transposeA=trA, transposeB=trB, _uid=node_name, _output_shape=output_shape) def import_max(self, operation, tensors): node_name = operation.outputs['z'] node_x = self.get_node_from_pool(operation, 'x') node_y = self.get_node_from_pool(operation, 'y') output_shape = self.define_elementwise_binary_output_shape(node_x, node_y) return node.Max(x=node_x, y=node_y, _uid=node_name, _output_shape=output_shape) def import_max_pool(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') size = operation.attribs['size'] output_shape = node_input.output_shape[:] if 'border' in operation.attribs: border = operation.attribs['border'] else: border = 'constant' if 'padding' in operation.attribs: padding = operation.attribs['padding'] else: padding = [] if 'stride' in operation.attribs and operation.attribs['stride'] != []: stride = operation.attribs['stride'] else: stride = [1] * len(output_shape) if 'dilation' in operation.attribs and operation.attribs['dilation'] != []: dilation = operation.attribs['dilation'] else: dilation = [1] * len(output_shape) for i in range(len(output_shape)): if padding == []: output_shape[i] = math.ceil(output_shape[i] / stride[i]) else: fd = (size[i] - 1) * dilation[i] + 1 output_shape[i] = math.floor((output_shape[i] + padding[i][0] + padding[i][1] - fd) / stride[i]) + 1 return node.MaxPool(input=node_input, size=size, border=border, padding=padding, stride=stride, dilation=dilation, _uid=node_name, _output_shape=output_shape) def import_max_pool_with_index(self, operation, tensors): node_name = operation.outputs['output'] + ', ' + operation[2]['index'] node_input = self.get_node_from_pool(operation, 'input') size = operation.attribs['size'] output_shape = node_input.output_shape[:] if 'border' in operation.attribs: border = operation.attribs['border'] else: border = 'constant' if 'padding' in operation.attribs: padding = operation.attribs['padding'] else: padding = [] if 'stride' in operation.attribs and operation.attribs['stride'] != []: stride = operation.attribs['stride'] else: stride = [1] * len(output_shape) if 'dilation' in operation.attribs and operation.attribs['dilation'] != []: dilation = operation.attribs['dilation'] else: dilation = [1] * len(output_shape) for i in range(len(output_shape)): if padding == []: output_shape[i] = math.ceil(output_shape[i] / stride[i]) else: fd = (size[i] - 1) * dilation[i] + 1 output_shape[i] = math.floor((output_shape[i] + padding[i][0] + padding[i][1] - fd) / stride[i]) + 1 base_node = node.MaxPoolWithIndex(input=node_input, size=size, border=border, padding=padding, stride=stride, dilation=dilation, _uid=node_name, _output_shape=output_shape) node_maxpool = node.OutputVal(base_node=base_node, base_index=0, _uid=operation[2]['output'], _output_shape=output_shape) self.node_pool[node_maxpool.name] = node_maxpool node_index = node.OutputVal(base_node=base_node, base_index=1, _uid=operation[2]['index'], _output_shape=output_shape) self.node_pool[node_index.name] = node_index return base_node def import_max_reduce(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') axes = operation.attribs['axes'] output_shape = [] for i in range(len(node_input.output_shape)): if i not in axes: output_shape.append(node_input.output_shape[i]) return node.MaxReduce(input=node_input, axes=axes, _uid=node_name, _output_shape=output_shape) def import_mean_reduce(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') axes = operation.attribs['axes'] output_shape = [] for i in range(len(node_input.output_shape)): if i not in axes: output_shape.append(node_input.output_shape[i]) return node.MeanReduce(input=node_input, axes=axes, _uid=node_name, _output_shape=output_shape) def import_min(self, operation, tensors): node_name = operation.outputs['z'] node_x = self.get_node_from_pool(operation, 'x') node_y = self.get_node_from_pool(operation, 'y') output_shape = self.define_elementwise_binary_output_shape(node_x, node_y) return node.Min(x=node_x, y=node_y, _uid=node_name, _output_shape=output_shape) def import_mul(self, operation, tensors): node_name = operation.outputs['z'] node_x = self.get_node_from_pool(operation, 'x') node_y = self.get_node_from_pool(operation, 'y') output_shape = self.define_elementwise_binary_output_shape(node_x, node_y) return node.Mul(x=node_x, y=node_y, _uid=node_name, _output_shape=output_shape) def import_multilinear_upsample(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') factors = operation.attribs['factor'] if 'method' in operation.attribs: method = operation.attribs['method'] else: method = 'symmetric' if 'border' in operation.attribs: border = operation.attribs['border'] else: border = 'replicate' output_shape = node_input.output_shape[:] for i in range(len(factors)): output_shape[i + 2] = int(output_shape[i + 2] * factors[i]) return node.MultilinearUpsample(input=node_input, factor=factors, method=method, border=border, _uid=node_name, _output_shape=output_shape) def import_ne(self, operation, tensors): node_name = operation.outputs['z'] node_x = self.get_node_from_pool(operation, 'x') node_y = self.get_node_from_pool(operation, 'y') output_shape = self.define_elementwise_binary_output_shape(node_x, node_y) return node.NE(x=node_x, y=node_y, _uid=node_name, _output_shape=output_shape) def import_nearest_downsample(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') factors = operation.attribs['factor'] output_shape = node_input.output_shape[:] for i in range(len(factors)): output_shape[i + 2] = int(output_shape[i + 2] / factors[i]) return node.NearestDownsample(input=node_input, factor=factors, _uid=node_name, _output_shape=output_shape) def import_nearest_upsample(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') factors = operation.attribs['factor'] output_shape = node_input.output_shape[:] for i in range(len(factors)): output_shape[i + 2] = int(output_shape[i + 2] * factors[i]) return node.NearestUpsample(input=node_input, factor=factors, _uid=node_name, _output_shape=output_shape) def import_neg(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Neg(x=node_x, _uid=node_name, _output_shape=output_shape) def import_not(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Not(x=node_x, _uid=node_name, _output_shape=output_shape) def import_or(self, operation, tensors): node_name = operation.outputs['z'] node_x = self.get_node_from_pool(operation, 'x') node_y = self.get_node_from_pool(operation, 'y') output_shape = self.define_elementwise_binary_output_shape(node_x, node_y) return node.Or(x=node_x, y=node_y, _uid=node_name, _output_shape=output_shape) def import_planewise_conv(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') node_filter = self.get_node_from_pool(operation, 'filter') output_shape = node_input.output_shape[:] if 'bias' in operation.inputs: bias = self.get_node_from_pool(operation, 'bias') else: bias = 0.0 if 'border' in operation.attribs: border = operation.attribs['border'] else: border = 'constant' if 'padding' in operation.attribs: padding = operation.attribs['padding'] else: padding = [] if 'stride' in operation.attribs and operation.attribs['stride'] != []: stride = operation.attribs['stride'] else: stride = [1] * (len(output_shape) - 2) if 'dilation' in operation[1] and operation.attribs['dilation'] != []: dilation = operation.attribs['dilation'] else: dilation = [1] * (len(output_shape) - 2) conv_filter = node_filter.output_shape output_shape[1] = conv_filter[0] for i in range(2, len(output_shape)): if padding == []: output_shape[i] = math.ceil(output_shape[i] / stride[i - 2]) else: fd = (conv_filter[i] - 1) * dilation[i - 2] + 1 pad = padding[i - 2][0] + padding[i - 2][1] output_shape[i] = math.floor((output_shape[i] + pad - fd) / stride[i - 2]) + 1 return node.PlanewiseConv(input=node_input, filter=node_filter, bias=bias, border=border, padding=padding, stride=stride, dilation=dilation, _uid=node_name, _output_shape=output_shape) def import_pow(self, operation, tensors): node_name = operation.outputs['z'] node_x = self.get_node_from_pool(operation, 'x') node_y = self.get_node_from_pool(operation, 'y') output_shape = node_x.output_shape[:] return node.Pow(x=node_x, y=node_y, _uid=node_name, _output_shape=output_shape) def import_rcp(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Rcp(x=node_x, _uid=node_name, _output_shape=output_shape) def import_relu(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Relu(x=node_x, _uid=node_name, _output_shape=output_shape) def import_reshape(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') shape = operation.attribs['shape'] return node.Reshape(input=node_input, shape=shape, _uid=node_name, _output_shape=shape) def import_round(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Round(x=node_x, _uid=node_name, _output_shape=output_shape) def import_rsqrt(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Rsqrt(x=node_x, _uid=node_name, _output_shape=output_shape) def import_select(self, operation, tensors): node_name = operation.outputs['output'] node_cond = self.get_node_from_pool(operation, 'condition') node_true = self.get_node_from_pool(operation, 'true_value') node_false = self.get_node_from_pool(operation, 'false_value') output_shape = self.define_elementwise_binary_output_shape(node_true, node_false) return node.Select(condition=node_cond, true_value=node_true, false_value=node_false, _uid=node_name, _output_shape=output_shape) def import_separable_conv(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') node_plane_filter = self.get_node_from_pool(operation, 'plane_filter') node_point_filter = self.get_node_from_pool(operation, 'point_filter') output_shape = node_input.output_shape[:] if 'bias' in operation.inputs: bias = self.get_node_from_pool(operation, 'bias') else: bias = 0.0 if 'border' in operation.attribs: border = operation.attribs['border'] else: border = 'constant' if 'padding' in operation.attribs: padding = operation.attribs['padding'] else: padding = [] if 'stride' in operation.attribs and operation.attribs['stride'] != []: stride = operation.attribs['stride'] else: stride = [1] * (len(output_shape) - 2) if 'dilation' in operation.attribs and operation.attribs['dilation'] != []: dilation = operation.attribs['dilation'] else: dilation = [1] * (len(output_shape) - 2) if 'groups' in operation.attribs: groups = operation.attribs['groups'] else: groups = 1 conv_filter = node_plane_filter.output_shape output_shape[1] = conv_filter[0] for i in range(2, len(output_shape)): if padding == []: output_shape[i] = math.ceil(output_shape[i] / stride[i - 2]) else: fd = (conv_filter[i] - 1) * dilation[i - 2] + 1 pad = padding[i - 2][0] + padding[i - 2][1] output_shape[i] = math.floor((output_shape[i] + pad - fd) / stride[i - 2]) + 1 conv_filter = node_point_filter.output_shape output_shape[1] = conv_filter[0] for i in range(2, len(output_shape)): if padding == []: output_shape[i] = math.ceil(output_shape[i] / stride[i - 2]) else: fd = (conv_filter[i] - 1) * dilation[i - 2] + 1 pad = padding[i - 2][0] + padding[i - 2][1] output_shape[i] = math.floor((output_shape[i] + pad - fd) / stride[i - 2]) + 1 return node.SeparableConv(input=node_input, plane_filter=node_plane_filter, point_filter=node_point_filter, bias=bias, border=border, padding=padding, stride=stride, dilation=dilation, groups=groups, _uid=node_name, _output_shape=output_shape) def import_sigmoid(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Sigmoid(x=node_x, _uid=node_name, _output_shape=output_shape) def import_sign(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Sign(x=node_x, _uid=node_name, _output_shape=output_shape) def import_slice(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') axes = operation.attribs['axes'] begin = operation.attribs['begin'] end = operation.attribs['end'] input_shape = node_input.output_shape output_shape = input_shape[:] for i in range(len(axes)): if i in axes: if begin[i] == -1 and end[i] == 0: output_shape[i] = 1 elif end[i] == 0: output_shape[i] = int(input_shape[i] - begin[i]) else: output_shape[i] = int(end[i] - begin[i]) return node.Slice(input=node_input, axes=axes, begin=begin, end=end, _uid=node_name, _output_shape=output_shape) def import_softmax(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if 'axes' in operation.attribs: axes = operation.attribs['axes'] else: axes = [1] output_shape = node_x.output_shape[:] return node.Softmax(x=node_x, axes=axes, _uid=node_name, _output_shape=output_shape) def import_softplus(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Softplus(x=node_x, _uid=node_name, _output_shape=output_shape) # Not in current NNEF Documentation def import_softsign(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Softsign(x=node_x, _uid=node_name, _output_shape=output_shape) def import_split(self, operation, tensors): node_name = '[' for val_name in operation.outputs['values']: node_name += val_name + ', ' node_name = node_name[:-2] + ']' node_value = self.get_node_from_pool(operation, 'value') axis = operation.attribs['axis'] ratios = operation.attribs['ratios'] input_shape = node_value.output_shape[:] total_ratio = 0 for ratio in ratios: total_ratio += ratio mu = int(input_shape[axis] / total_ratio) base_node = node.Split(value=node_value, axis=axis, ratios=ratios, _uid=node_name, _output_shape=input_shape) for i in range(len(operation.outputs['values'])): output_shape = input_shape[:] output_shape[axis] = ratios[i] * mu node_split = node.OutputVal(base_node=base_node, base_index=i, _uid=operation.outputs['values'][i], _output_shape=output_shape) self.node_pool[node_split.name] = node_split return base_node def import_sqr(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Sqr(x=node_x, _uid=node_name, _output_shape=output_shape) def import_sqrt(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Sqrt(x=node_x, _uid=node_name, _output_shape=output_shape) def import_stack(self, operation, tensors): node_name = operation.outputs['value'] values = [] for val in operation.inputs['values']: values.append(self.node_pool[val]) axis = operation.attribs['axis'] output_shape = values[0].output_shape[:] output_shape.insert(axis, len(values)) return node.Stack(values=values, axis=axis, _uid=node_name, _output_shape=output_shape) def import_sub(self, operation, tensors): node_name = operation.outputs['z'] node_x = self.get_node_from_pool(operation, 'x') node_y = self.get_node_from_pool(operation, 'y') output_shape = self.define_elementwise_binary_output_shape(node_x, node_y) return node.Sub(x=node_x, y=node_y, _uid=node_name, _output_shape=output_shape) def import_sum_reduce(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') axes = operation.attribs['axes'] if 'normalize' in operation.attribs: normalize = operation.attribs['normalize'] else: normalize = False output_shape = [] for i in range(len(node_input.output_shape)): if i not in axes: output_shape.append(node_input.output_shape[i]) return node.SumReduce(input=node_input, axes=axes, normalize=normalize, _uid=node_name, _output_shape=output_shape) def import_tanh(self, operation, tensors): node_name = operation.outputs['y'] node_x = self.get_node_from_pool(operation, 'x') if isinstance(node_x, Node): output_shape = node_x.output_shape else: output_shape = list(np.shape(node_x)) return node.Tanh(x=node_x, _uid=node_name, _output_shape=output_shape) def import_transpose(self, operation, tensors): node_name = operation.outputs['output'] node_input = self.get_node_from_pool(operation, 'input') perm = operation.attribs['axes'] output_shape = [] for i in range(len(node_input.output_shape)): output_shape.append(node_input.output_shape[perm[i]]) return node.Transpose(input=node_input, axes=perm, _uid=node_name, _output_shape=output_shape) def import_update(self, operation, tensors): node_name = operation.outputs['result'] node_variable = self.get_node_from_pool(operation, 'variable') node_value = self.get_node_from_pool(operation, 'value') return node.Update(variable=node_variable, value=node_value, _uid=node_name, _output_shape=node_value.output_shape[:]) def import_variable(self, operation, tensors): node_name = operation.outputs['output'] label = operation.attribs['label'] shape = operation.attribs['shape'] if self.with_weights: tensor = tensors[node_name].data assert tensor is not None else: nnef_dtype = tensors[node_name].dtype if nnef_dtype == "integer": tensor = np.random.randint(0, 255, dtype=np.int32) elif nnef_dtype == "logical": tensor = np.random.rand(*shape).astype(np.float32) > 0.5 else: assert nnef_dtype == "scalar", "Unknown nnef dtype: {}".format(nnef_dtype) tensor = np.random.rand(*shape).astype(np.float32) nnef_node = node.Variable(label=label, shape=shape, _np_dtype=tensor.dtype, _np_tensor=tensor, _uid=node_name, _output_shape=shape) return nnef_node def import_UNKNOWN(self, operation, tensors): assert False, "Missing implementation for node op: %s" % operation.name class NNEFExporter(ImporterExporter): def __init__(self, output_model): super(NNEFExporter, self).__init__() self.output_model = output_model def run(self, nnef_graph): self.generate_nnef(nnef_graph) def generate_nnef(self, nnef_graph): nnef_graph.save_to_file(self.output_model) ``` #### File: nnef_converter/common/nnef_graph.py ```python from __future__ import division import nnef import networkx as nx from .nnef_version import NNEFVersion from .nnef_node import Node import os class NNEFGraph(object): def __init__(self, model_name=None, input_list=None, output_list=None, pre_compile_callback=None, post_compile_callback=None, node_pool = None): if model_name is None and \ input_list is None and \ output_list is None and \ pre_compile_callback is None and \ post_compile_callback is None and \ node_pool is None: return assert isinstance(input_list, list) or isinstance(input_list, Node), "Input list must be a single Node or list of Nodes" assert isinstance(output_list, list) or isinstance(output_list, Node), "Output list must be a single Node or list of Nodes" self.network_dir = os.getcwd() input_list_ = [] output_list_ = [] if isinstance(input_list, Node): input_list_.append(input_list) else: input_list_ = input_list if isinstance(output_list, Node): output_list_.append(output_list) else: output_list_ = output_list if(model_name == 'graph' or model_name in Node.type_nnef_primitive): model_name += '_' self.model_name = model_name bottom_top_nodes = [] self.nx_graph = nx.OrderedDiGraph() if node_pool is None: ''' Add all nodes without connecting edges. (by walking output list) ''' def add_node_to_nx_graph(node): bottom_top_nodes.append(node) for key, param in node.parameters.items(): if isinstance(param, Node) and param.name not in self.nx_graph: add_node_to_nx_graph(param) for output_node in output_list_: add_node_to_nx_graph(output_node) for node in reversed(bottom_top_nodes): type_node = 'node' if node in input_list_: type_node = 'input' if node in output_list_: type_node = 'output' self.nx_graph.add_node(node.name, node=node, type_node=type_node) else: for _,node in node_pool.items(): type_node = 'node' if node in input_list_: type_node = 'input' if node in output_list_: type_node = 'output' self.nx_graph.add_node(node.name, node=node, type_node=type_node) ''' pre_compile_callback: Callback to provide converter's specific interaction with the nxgraph if required BEFORE connecting the edges ''' if pre_compile_callback is not None: pre_compile_callback(self.nx_graph) ''' "Compile" the nodes: creates edge connections, calls node specific callbacks (if defined) ''' for node in self.nx_graph: self.nx_graph.node[node]['node'].compile(self.nx_graph) ''' post_compile_callback: Callback to provide converter's specific interaction with the nxgraph if required AFTER connecting the edges ''' if post_compile_callback is not None: post_compile_callback(self.nx_graph) self.trim_nx_graph(input_list_, output_list_) #nx.write_yaml(self.nx_graph, 'graph.yaml') ''' To be used only in an environment where tf is the framework (vs protobuf definitions) ''' def run(self, output_tensors, input_data, needs_enable_eager_execution=False): assert isinstance(self.nx_graph, nx.OrderedDiGraph), "Invalid nx graph" cwd = os.getcwd() os.chdir(self.network_dir) import tensorflow as tf if needs_enable_eager_execution: tf.enable_eager_execution() assert tf.executing_eagerly(), "TF not executing eagerly" output_results = {} for node, data in self.nx_graph.nodes(data=True): node = data['node'] if node.op == 'external': assert node.name in input_data, "Input data missing for external node" node.run(external_tensor=input_data[node.name]) elif node.name in output_tensors: output_results[node.name] = node.run(nx_graph=self.nx_graph) elif node.op is "variable": output_results[node.name] = node.run(nx_graph=self.nx_graph) else: node.run(nx_graph=self.nx_graph) os.chdir(cwd) return output_results def trim_nx_graph(self, input_list, output_list): ancestors = set() for node in output_list: ancestors = ancestors.union(nx.ancestors(self.nx_graph, node.name)) remove_nodes = list(self.nx_graph.nodes()) for ancestor in ancestors: remove_nodes.remove(ancestor) for node in output_list: remove_nodes.remove(node.name) for node in input_list: assert node.name not in remove_nodes, "Input node %s is not required for the outputs" % (node.name) for node in remove_nodes: self.nx_graph.remove_node(node) def set_nx_graph(self, nx_graph): assert isinstance(nx_graph, nx.OrderedDiGraph), "nx_graph isn't a nx.OrderedDiGraph" self.nx_graph = nx_graph.copy() def get_nx_graph(self): return self.nx_graph def load_from_file(self, load_path): assert False, "Unimplemented" def save_to_file(self, save_file): assert isinstance(save_file, str), "Output model path is required to be of type str." network_dir, model_filename = os.path.split(save_file) assert model_filename == "graph.nnef", "NNEF Format requires to write to a file named 'graph.nnef'" cwd = os.getcwd() self.network_dir = network_dir if not os.path.exists(network_dir): os.makedirs(network_dir) os.chdir(network_dir) with open(model_filename, 'w') as f: f.write("\nversion %s;\n\n" % (NNEFVersion().version)) fragments = set() inputs = '' outputs = '' for node, data in self.nx_graph.nodes(data=True): if data['node'].op in ['gru']: fragments.add(data['node'].op) assert 'type_node' in data, "Node in graph is missing type information" if data['type_node'] == 'input': inputs += node + ', ' elif data['type_node'] == 'output': outputs += node + ', ' inputs = inputs[:-2] outputs = outputs[:-2] if fragments: f.write("extension KHR_enable_fragment_definitions, KHR_enable_operator_expressions;\n\n") for frag in fragments: if frag == 'gru': gru = \ "fragment gru( \ \n\tinput: tensor<scalar>, \ \n\tchannels: integer, \ \n\tscope: string ) \ \n-> ( output: tensor<scalar> ) \ \n{ \ \n\tbatch = shape_of(input)[0]; \ \n\n\th = variable(shape = [batch,channels], label = scope + '/h'); \ \n\n\tm = concat([input, h], axis = 1); \ \n\n\tz = sigmoid(linear_layer(m, channels = channels, scope = scope + '/z')); \ \n\tr = sigmoid(linear_layer(m, channels = channels, scope = scope + '/r')); \ \n\ts = tanh(linear_layer(concat([input, r * h], axis = 1), channels = channels, scope = scope + '/s')); \ \n\n\toutput = update(h, z * s + (1.0 - z) * h); \ \n}\n\n" f.write(gru) f.write("graph %s( %s ) -> ( %s )\n" % (self.model_name.replace('/', '_'), inputs, outputs)) f.write("{\n") for node, data in self.nx_graph.nodes(data=True): if 'node' in data: if data['node'].op == 'output_val': continue #print((data['node'].nnef_node_definition())) f.write("\t") f.write(data['node'].nnef_node_definition()) f.write(";\n") assert data['node'] is not None, "Node doesn't have NNEF node!" nnef_node = data['node'] if data['node'].op == 'variable': #print("=> Node %s is saving tensor to disk(%s)" % ( # nnef_node.name, nnef_node.parameters['label'])) loc = nnef_node.parameters['label'].rfind('/') if loc != -1: if not os.path.isdir(nnef_node.parameters['label'][:loc]): os.makedirs(nnef_node.parameters['label'][:loc]) dat_file = open(nnef_node.parameters['label'] + '.dat', 'wb') nnef.write_tensor(dat_file, nnef_node.tensor) dat_file.close() else: print("===> %s doesn't have node!?" % (node)) f.write("}") os.chdir(cwd) ``` #### File: nnef_converter/common/nnef_node.py ```python from __future__ import division import numpy as np class Node(object): type_name = set([ "tensor", "extent", "scalar", "logical", "string" ]) type_nnef_primitive = set([ 'tensor', 'variable', 'external', 'constant', 'concat', 'split', 'reshape', 'transpose', 'idn', 'add', 'sub', 'mul', 'div', 'pow', 'and', 'or', 'not', 'neg', 'abs', 'sign', 'exp', 'log', 'sqrt', 'rsqrt', 'sqr', 'floor', 'ceil', 'round', 'gt', 'ge', 'lt', 'le', 'eq', 'ne', 'min', 'max', 'select', 'update', 'matmul', 'sum_reduce', 'mean_reduce', 'max_reduce', 'sigmoid', 'tanh', 'elu', 'relu', 'leaky_relu', 'stack', 'shape_of', 'slice', 'softsign', 'softplus', 'softmax', 'conv', 'deconv', 'planewise_conv', 'max_pool', 'max_pool_with_index', 'avg_pool', 'local_response_normalization', 'batch_normalization', 'l2_normalization', 'linear', 'add_n', 'multilinear_upsample', 'nearest_upsample', 'nearest_downsample', 'area_downsample', 'gru', 'pad', 'output_val']) array_type_spec = set([]) def __init__(self, nnef_primitive, **kwargs): assert '_uid' in kwargs assert '/' not in kwargs['_uid'], "Node uid shouldn't contain '/' characters" assert ':' not in kwargs['_uid'], "Node uid shouldn't contain ':' characters" self.unique_name = kwargs['_uid'] self.parameters_ = {} self.output_shape = None self.tensor = None self.output_value_ = None if not hasattr(self, 'defaults'): self.defaults = {} if nnef_primitive in self.type_nnef_primitive: self.nnef_primitive_ = nnef_primitive else: print("Creating Node with unsupported primitive: %s"%nnef_primitive) assert False for key, value in kwargs.items(): if key not in ['_uid', '_output_shape', '_np_tensor']: self.set_parameter(key, value) elif key == '_output_shape': self.output_shape = value for key, value in self.defaults.items(): if key not in self.parameters: self.parameters[key] = value def list_to_string(self, list_): return "[" + ','.join(str(e) for e in list_) + "]" def nnef_node_definition(self): param_list = "" for key, val in self.parameters.items(): if key in self.defaults and val == self.defaults[key]: continue if key.startswith("_"): continue # Reformat as strings if isinstance(val, Node): val = val.name if key == 'label': val = "'" + val + "'" elif key == 'shape' or \ key == 'size' or \ key == 'perm' or \ key == 'axis' or \ key == 'axes': if isinstance(val, list): val = self.list_to_string(val) else: val = str(val) elif key == 'value': if isinstance(self.parameters['value'], Node): val = self.parameters['value'].name else: val = str(self.parameters['value']) elif isinstance(self.parameters[key], list) and isinstance(self.parameters[key][0], Node): new_val = '[' for value in val: new_val += value.name + ', ' val = new_val[:-2] + ']' elif key == 'scope': val = "'" + val + "'" if isinstance(val, bool): val = 'true' if val else 'false' if self.nnef_primitive_ == 'shape_of': param_list += '{v}, '.format(v=val) else: param_list += '{k} = {v}, '.format(k=key, v=val) if len(param_list) > 2: param_list = param_list[:-2] return '{n} = {self.nnef_primitive_}({params})'.format(self=self, n=self.unique_name.lower(), params=param_list) def get_value(self): print("Trying to get value of unsupported op: %s"%(self.__class__.__name__)) input() @property def nnef_version(self): return '1.0-provisional' @property def keyword(self): return 'node' @property def op(self): return self.nnef_primitive_ @property def output_value(self): return self.output_value_ @property def name(self): return self.unique_name @property def parameters(self): return self.parameters_ def set_name(self, name): self.unique_name = name def print_parameters(self): print("DBG: Printing from parameters_ dict") for key, val in self.parameters_.items(): print(key, ":", val) def set_parameter(self, key, param): self.parameters_[key] = param # This function gets called if no compile implementation is found for nodes # Nodes with compile() implementations should check for their callback fct... def compile(self, nx_graph): if '_compile_callback' in self.parameters: self.parameters['_compile_callback'](nx_graph, self) return def add_edges(self, nx_graph, param_inputs): for param in param_inputs: if isinstance(self.parameters[param], Node): if self.parameters[param].__class__.__name__ == 'Idn': self.parameters[param] = self.parameters[param].parameters['x'] nx_graph.add_edge(self.parameters[param].name, self.name) elif isinstance(self.parameters[param], list): for i in range(len(self.parameters[param])): if isinstance(self.parameters[param][i], Node): if self.parameters[param][i].__class__.__name__ == 'Idn': self.parameters[param][i] = self.parameters[param][i].parameters['x'] nx_graph.add_edge(self.parameters[param][i].name, self.name) ''' NNEF 1.0 provisional operations: Framework specific/'vendor specific' operations to be implemented by subclassing Node into the framework specific converter file. ''' class Abs(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value" % (self.__class__.__name__) super(Abs, self).__init__('abs', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class Add(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) assert 'y' in kwargs, "NNEF %s node is missing 'y' value"%(self.__class__.__name__) super(Add, self).__init__('add', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x', 'y']) def run(self, **kwargs): import tensorflow as tf nx_graph = kwargs['nx_graph'] x = tf.constant(nx_graph.node[self.parameters['x'].name]['node'].output_value) y = tf.constant(nx_graph.node[self.parameters['y'].name]['node'].output_value) self.output_value_ = tf.add(x, y).numpy() return self.output_value_ class AddN(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) super(AddN, self).__init__('add_n', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class And(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) assert 'y' in kwargs, "NNEF %s node is missing 'y' value"%(self.__class__.__name__) super(And, self).__init__('and', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x', 'y']) def run(self, nx_graph): self.output_value_ = None class AreaDownsample(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) assert 'factor' in kwargs, "NNEF %s node is missing 'factor' value"%(self.__class__.__name__) super(AreaDownsample, self).__init__('area_downsample', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['input']) def run(self, nx_graph): self.output_value_ = None class AvgPool(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) assert 'size' in kwargs, "NNEF %s node is missing 'size' value"%(self.__class__.__name__) self.defaults = {'border': 'constant', 'padding': [], 'stride': [], 'dilation': []} super(AvgPool, self).__init__('avg_pool', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['input']) def run(self, nx_graph): self.output_value_ = None class BatchNormalization(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) assert 'mean' in kwargs, "NNEF %s node is missing 'mean' value"%(self.__class__.__name__) assert 'variance' in kwargs, "NNEF %s node is missing 'variance' value"%(self.__class__.__name__) assert 'offset' in kwargs, "NNEF %s node is missing 'offset' value"%(self.__class__.__name__) assert 'scale' in kwargs, "NNEF %s node is missing 'scale' value"%(self.__class__.__name__) assert 'epsilon' in kwargs, "NNEF %s node is missing 'epsilon' value"%(self.__class__.__name__) super(BatchNormalization, self).__init__('batch_normalization', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['input', 'mean', 'variance', 'offset', 'scale', 'epsilon']) def run(self, nx_graph): self.output_value_ = None class Ceil(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value" % (self.__class__.__name__) super(Ceil, self).__init__('ceil', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class Concat(Node): def __init__(self, **kwargs): assert 'values' in kwargs, "NNEF %s node is missing 'values' value"%(self.__class__.__name__) assert 'axis' in kwargs, "NNEF %s node is missing 'axis' value"%(self.__class__.__name__) assert isinstance(kwargs['values'], list), "NNEF %s node, 'values' value is not of 'list' type"%(self.__class__.__name__) super(Concat, self).__init__('concat', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['values']) def run(self, **kwargs): self.output_value_ = None class Constant(Node): def __init__(self, **kwargs): assert 'value' in kwargs, "NNEF %s node is missing 'value' value"%(self.__class__.__name__) assert 'shape' in kwargs, "NNEF %s node is missing 'shape' value"%(self.__class__.__name__) assert isinstance(kwargs['shape'], list), "NNEF %s node, 'shape' value is not of 'list' type"%(self.__class__.__name__) super(Constant, self).__init__('constant', **kwargs) def run(self, **kwargs): self.output_value_ = self.parameters['value'] return self.output_value_ def get_value(self): if len(self.parameters['shape']) == 2 and self.parameters['shape'][0] == 1: return np.reshape(np.asarray(self.parameters['value']), self.parameters['shape'][1:]) else: return np.reshape(np.asarray(self.parameters['value']), self.parameters['shape']) class Conv(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) assert 'filter' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) self.defaults = {'bias': 0.0, 'border': 'constant', 'padding': [], 'stride': [], 'dilation': [], 'groups': 1} super(Conv, self).__init__('conv', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) if 'bias' in self.parameters and isinstance(self.parameters['bias'], Node): self.add_edges(nx_graph, ['input', 'filter', 'bias']) else: self.add_edges(nx_graph, ['input', 'filter']) def run(self, nx_graph): self.output_value_ = None class Deconv(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) assert 'filter' in kwargs, "NNEF %s node is missing 'filter' value"%(self.__class__.__name__) self.defaults = {'bias': 0.0, 'border': 'constant', 'padding': [], 'stride': [], 'dilation': [], 'groups': 1} super(Deconv, self).__init__('deconv', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) if 'bias' in self.parameters and isinstance(self.parameters['bias'], Node): self.add_edges(nx_graph, ['input', 'filter', 'bias']) else: self.add_edges(nx_graph, ['input', 'filter']) def run(self, nx_graph): self.output_value_ = None class Div(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) assert 'y' in kwargs, "NNEF %s node is missing 'y' value"%(self.__class__.__name__) super(Div, self).__init__('div', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x', 'y']) def run(self, nx_graph): self.output_value_ = None class Elu(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) super(Elu, self).__init__('elu', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class EQ(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) assert 'y' in kwargs, "NNEF %s node is missing 'y' value"%(self.__class__.__name__) super(EQ, self).__init__('eq', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x', 'y']) def run(self, nx_graph): self.output_value_ = None class Exp(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value" % (self.__class__.__name__) super(Exp, self).__init__('exp', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class External(Node): def __init__(self, **kwargs): assert 'shape' in kwargs, "NNEF External node is missing 'shape' value" assert isinstance(kwargs['shape'], list), "NNEF External node, 'shape' must be a list" for shape_item in kwargs['shape']: assert shape_item > 0, "NNEF External node, 'shape' values must be positive" super(External, self).__init__('external', **kwargs) def run(self, **kwargs): self.output_value_ = kwargs['external_tensor'] return self.output_value_ class Floor(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value" % (self.__class__.__name__) super(Floor, self).__init__('floor', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class GE(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) assert 'y' in kwargs, "NNEF %s node is missing 'y' value"%(self.__class__.__name__) super(GE, self).__init__('ge', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x', 'y']) def run(self, nx_graph): self.output_value_ = None class Gru(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) assert 'channels' in kwargs, "NNEF %s node is missing 'channels' value"%(self.__class__.__name__) assert 'scope' in kwargs, "NNEF %s node is missing 'scope' value"%(self.__class__.__name__) super(Gru, self).__init__('gru', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['input']) def run(self, nx_graph): self.output_value_ = None class GT(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) assert 'y' in kwargs, "NNEF %s node is missing 'y' value"%(self.__class__.__name__) super(GT, self).__init__('gt', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x', 'y']) def run(self, nx_graph): self.output_value_ = None class Idn(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) super(Idn, self).__init__('idn', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) def run(self, nx_graph): self.output_value_ = None class LE(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) assert 'y' in kwargs, "NNEF %s node is missing 'y' value"%(self.__class__.__name__) super(LE, self).__init__('le', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x', 'y']) def run(self, nx_graph): self.output_value_ = None class LeakyRelu(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) assert 'alpha' in kwargs, "NNEF %s node is missing 'alpha' value"%(self.__class__.__name__) super(LeakyRelu, self).__init__('leaky_relu', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class Linear(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) assert 'filter' in kwargs, "NNEF %s node is missing 'filter' value"%(self.__class__.__name__) self.defaults = {'bias': 0.0} super(Linear, self).__init__('linear', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) if 'bias' in self.parameters and isinstance(self.parameters['bias'], Node): self.add_edges(nx_graph, ['input', 'filter', 'bias']) else: self.add_edges(nx_graph, ['input', 'filter']) def run(self, nx_graph): self.output_value_ = None class LocalResponseNormalization(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) assert 'size' in kwargs, "NNEF %s node is missing 'size' value"%(self.__class__.__name__) self.defaults = {'alpha': 1.0, 'beta': 0.5, 'bias': 1.0} super(LocalResponseNormalization, self).__init__('local_response_normalization', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['input', 'size', 'alpha', 'beta', 'bias']) def run(self, nx_graph): self.output_value_ = None class Log(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value" % (self.__class__.__name__) super(Log, self).__init__('log', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class LT(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) assert 'y' in kwargs, "NNEF %s node is missing 'y' value"%(self.__class__.__name__) super(LT, self).__init__('lt', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x', 'y']) def run(self, nx_graph): self.output_value_ = None class L2Normalization(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) assert 'axes' in kwargs, "NNEF %s node is missing 'axes' value"%(self.__class__.__name__) self.defaults = {'bias': 0.0, 'epsilon': 0.0} super(L2Normalization, self).__init__('l2_normalization', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) if 'bias' in self.parameters and isinstance(self.parameters['bias'], Node): self.add_edges(nx_graph, ['input', 'bias']) else: self.add_edges(nx_graph, ['input']) def run(self, nx_graph): self.output_value_ = None class Matmul(Node): def __init__(self, **kwargs): assert 'A' in kwargs, "NNEF %s node is missing 'A' value"%(self.__class__.__name__) assert 'B' in kwargs, "NNEF %s node is missing 'B' value"%(self.__class__.__name__) if 'transposeA' in kwargs: assert isinstance(kwargs['transposeA'], bool) if 'transposeB' in kwargs: assert isinstance(kwargs['transposeB'], bool) self.defaults = {'transposeA': False, 'transposeB': False} super(Matmul, self).__init__('matmul', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['A', 'B']) def run(self, nx_graph): self.output_value_ = None class Max(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) assert 'y' in kwargs, "NNEF %s node is missing 'y' value"%(self.__class__.__name__) super(Max, self).__init__('max', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x', 'y']) def run(self, nx_graph): self.output_value_ = None class MaxPool(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) assert 'size' in kwargs, "NNEF %s node is missing 'size' value"%(self.__class__.__name__) self.defaults = {'border': 'constant', 'padding': [], 'stride': [], 'dilation': []} super(MaxPool, self).__init__('max_pool', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['input']) def run(self, nx_graph): self.output_value_ = None class MaxPoolWithIndex(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) assert 'size' in kwargs, "NNEF %s node is missing 'size' value"%(self.__class__.__name__) self.defaults = {'border': 'constant', 'padding': [], 'stride': [], 'dilation': []} super(MaxPoolWithIndex, self).__init__('max_pool_with_index', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['input']) def run(self, nx_graph): self.output_value_ = None class MaxReduce(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value" % (self.__class__.__name__) assert 'axes' in kwargs, "NNEF %s node is missing 'axes' value" % (self.__class__.__name__) super(MaxReduce, self).__init__('max_reduce', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['input']) def run(self, nx_graph): self.output_value_ = None class MeanReduce(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value" % (self.__class__.__name__) assert 'axes' in kwargs, "NNEF %s node is missing 'axes' value" % (self.__class__.__name__) super(MeanReduce, self).__init__('mean_reduce', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['input']) def run(self, nx_graph): self.output_value_ = None class Min(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) assert 'y' in kwargs, "NNEF %s node is missing 'y' value"%(self.__class__.__name__) super(Min, self).__init__('min', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x', 'y']) def run(self, nx_graph): self.output_value_ = None class Mul(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) assert 'y' in kwargs, "NNEF %s node is missing 'y' value"%(self.__class__.__name__) super(Mul, self).__init__('mul', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x', 'y']) def run(self, nx_graph): self.output_value_ = None class MultilinearUpsample(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) assert 'factor' in kwargs, "NNEF %s node is missing 'factor' value"%(self.__class__.__name__) self.defaults = {'method': 'symmetric', 'border': 'replicate'} super(MultilinearUpsample, self).__init__('multilinear_upsample', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['input']) def run(self, nx_graph): self.output_value_ = None class NE(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) assert 'y' in kwargs, "NNEF %s node is missing 'y' value"%(self.__class__.__name__) super(NE, self).__init__('ne', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x', 'y']) def run(self, nx_graph): self.output_value_ = None class NearestDownsample(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) assert 'factor' in kwargs, "NNEF %s node is missing 'factor' value"%(self.__class__.__name__) super(NearestDownsample, self).__init__('nearest_downsample', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['input']) def run(self, nx_graph): self.output_value_ = None class NearestUpsample(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) assert 'factor' in kwargs, "NNEF %s node is missing 'factor' value"%(self.__class__.__name__) super(NearestUpsample, self).__init__('nearest_upsample', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['input']) def run(self, nx_graph): self.output_value_ = None class Neg(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value" % (self.__class__.__name__) super(Neg, self).__init__('neg', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class Not(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value" % (self.__class__.__name__) super(Not, self).__init__('not', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class Or(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) assert 'y' in kwargs, "NNEF %s node is missing 'y' value"%(self.__class__.__name__) super(Or, self).__init__('or', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x', 'y']) def run(self, nx_graph): self.output_value_ = None class OutputVal(Node): def __init__(self, **kwargs): super(OutputVal, self).__init__('output_val', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['base_node']) class Pad(Node): def __init__(self, **kwargs): super(Pad, self).__init__('pad', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) class PlanewiseConv(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value" % (self.__class__.__name__) assert 'filter' in kwargs, "NNEF %s node is missing 'input' value" % (self.__class__.__name__) self.defaults = {'bias': 0.0, 'border': 'constant', 'padding': [], 'stride': [], 'dilation': []} super(PlanewiseConv, self).__init__('planewise_conv', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) if 'bias' in self.parameters and isinstance(self.parameters['bias'], Node): self.add_edges(nx_graph, ['input', 'filter', 'bias']) else: self.add_edges(nx_graph, ['input', 'filter']) def run(self, nx_graph): self.output_value_ = None class Pow(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) assert 'y' in kwargs, "NNEF %s node is missing 'y' value"%(self.__class__.__name__) super(Pow, self).__init__('pow', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x', 'y']) def run(self, nx_graph): self.output_value_ = None class Rcp(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value" % (self.__class__.__name__) super(Rcp, self).__init__('rcp', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class Relu(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) super(Relu, self).__init__('relu', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class Reshape(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) assert 'shape' in kwargs, "NNEF %s node is missing 'shape' value"%(self.__class__.__name__) super(Reshape, self).__init__('reshape', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['input']) def run(self, nx_graph): self.output_value_ = None class Round(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value" % (self.__class__.__name__) super(Round, self).__init__('round', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class Rsqrt(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) super(Rsqrt, self).__init__('rsqrt', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class Select(Node): def __init__(self, **kwargs): assert 'condition' in kwargs, "NNEF %s node is missing 'condition' value"%(self.__class__.__name__) assert 'true_value' in kwargs, "NNEF %s node is missing 'true_value' value"%(self.__class__.__name__) assert 'false_value' in kwargs, "NNEF %s node is missing 'false_value' value"%(self.__class__.__name__) super(Select, self).__init__('select', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['condition', 'true_value', 'false_value']) def run(self, nx_graph): self.output_value_ = None class SeparableConv(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) assert 'plane_filter' in kwargs, "NNEF %s node is missing 'plane_filter' value"%(self.__class__.__name__) assert 'point_filter' in kwargs, "NNEF %s node is missing 'point_filter' value"%(self.__class__.__name__) self.defaults = {'bias': 0.0, 'border': 'constant', 'padding': [], 'stride': [], 'dilation': [], 'groups': 1} super(SeparableConv, self).__init__('separable_conv', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) if 'bias' in self.parameters and isinstance(self.parameters['bias'], Node): self.add_edges(nx_graph, ['input', 'plane_filter', 'point_filter', 'bias']) else: self.add_edges(nx_graph, ['input', 'plane_filter', 'point_filter']) def run(self, nx_graph): self.output_value_ = None class ShapeOf(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s noe is missing 'x' value"%(self.__class__.__name__) super(ShapeOf, self).__init__('shape_of', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None def get_value(self): return self.output_shape class Sigmoid(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is imissing 'x' value"%(self.__class__.__name__) super(Sigmoid, self).__init__('sigmoid', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class Sign(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) super(Sign, self).__init__('sign', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class Slice(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) assert 'axes' in kwargs, "NNEF %s node is missing 'axes' value"%(self.__class__.__name__) assert 'begin' in kwargs, "NNEF %s node is missing 'begin' value"%(self.__class__.__name__) assert 'end' in kwargs, "NNEF %s node is missing 'end' value"%(self.__class__.__name__) super(Slice, self).__init__('slice', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['input']) def run(self, nx_graph): self.output_value_ = None def get_value(self): init_val = self.parameters['input'].get_value() output_val = init_val[:] axes = self.parameters['axes'] for i in range(len(axes)): if i in axes: if i == 0: output_val = output_val[int(self.parameters['begin'][axes.index(i)]):int(self.parameters['end'][axes.index(i)])] elif i == 1: output_val = output_val[:][int(self.parameters['begin'][axes.index(i)]):int(self.parameters['end'][axes.index(i)])] elif i == 2: output_val = output_val[:][:][int(self.parameters['begin'][axes.index(i)]):int(self.parameters['end'][axes.index(i)])] elif i == 3: output_val = output_val[:][:][:][int(self.parameters['begin'][axes.index(i)]):int(self.parameters['end'][axes.index(i)])] elif i == 4: output_val = output_val[:][:][:][:][int(self.parameters['begin'][axes.index(i)]):int(self.parameters['end'][axes.index(i)])] else: raise ValueError("Axes goes too high, currently not handled") return output_val class Softmax(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) self.defaults = {'axes': [1]} super(Softmax, self).__init__('softmax', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class Softplus(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) super(Softplus, self).__init__('softplus', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class Softsign(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) super(Softsign, self).__init__('softsign', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class Split(Node): def __init__(self, **kwargs): assert 'value' in kwargs, "NNEF %s node is missing 'value' value"%(self.__class__.__name__) assert 'axis' in kwargs, "NNEF %s node is missing 'axis' value"%(self.__class__.__name__) assert 'ratios' in kwargs, "NNEF %s node is missing 'ratios' value"%(self.__class__.__name__) super(Split, self).__init__('split', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['value']) def run(self, nx_graph): self.output_value_ = None class Sqr(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) super(Sqr, self).__init__('sqr', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class Sqrt(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) super(Sqrt, self).__init__('sqrt', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class Stack(Node): def __init__(self, **kwargs): assert 'values' in kwargs, "NNEF %s node is missing 'values' value"%(self.__class__.__name__) assert 'axis' in kwargs, "NNEF %s node is missing 'axis' value"%(self.__class__.__name__) super(Stack, self).__init__('stack', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['values']) def run(self, nx_graph): self.output_value_ = None def get_value(self): values = [] for i in range(len(self.parameters['values'])): values.append(self.parameters['values'][i].get_value()) return np.stack(values, self.parameters['axis']) class Sub(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) assert 'y' in kwargs, "NNEF %s node is missing 'y' value"%(self.__class__.__name__) super(Sub, self).__init__('sub', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x', 'y']) def run(self, nx_graph): self.output_value_ = None def get_value(self): x_val = self.parameters['x'].get_value() y_val = self.parameters['y'].get_value() return np.subtract(x_val, y_val) class SumReduce(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value" % (self.__class__.__name__) assert 'axes' in kwargs, "NNEF %s node is missing 'axes' value" % (self.__class__.__name__) self.defaults = {'normalize': False} super(SumReduce, self).__init__('sum_reduce', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['input']) def run(self, nx_graph): self.output_value_ = None class Tanh(Node): def __init__(self, **kwargs): assert 'x' in kwargs, "NNEF %s node is missing 'x' value"%(self.__class__.__name__) super(Tanh, self).__init__('tanh', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['x']) def run(self, nx_graph): self.output_value_ = None class Transpose(Node): def __init__(self, **kwargs): assert 'input' in kwargs, "NNEF %s node is missing 'input' value"%(self.__class__.__name__) assert 'axes' in kwargs, "NNEF %s node is missing 'perm' value"%(self.__class__.__name__) super(Transpose, self).__init__('transpose', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['input']) def run(self, nx_graph): self.output_value_ = None class Update(Node): def __init__(self, **kwargs): assert 'variable' in kwargs, "NNEF %s node is missing 'variable' value"%(self.__class__.__name__) assert 'value' in kwargs, "NNEF %s node is missing 'value' value"%(self.__class__.__name__) super(Update, self).__init__('update', **kwargs) def compile(self, nx_graph): Node.compile(self, nx_graph) self.add_edges(nx_graph, ['variable', 'value']) def run(self, nx_graph): self.output_value_ = None class Variable(Node): def __init__(self, **kwargs): assert 'label' in kwargs, "NNEF %s node is missing 'label' value"%(self.__class__.__name__) assert 'shape' in kwargs, "NNEF %s node is missing 'shape' value"%(self.__class__.__name__) assert isinstance(kwargs['label'], str), "NNEF %s node, 'label' value is not of 'str' type"%(self.__class__.__name__) assert isinstance(kwargs['shape'], list), "NNEF %s node, 'shape' value is not of 'list' type"%(self.__class__.__name__) super(Variable, self).__init__('variable', **kwargs) self.modified = False if isinstance(kwargs['_np_tensor'], bytes): self.tensor = np.frombuffer(kwargs['_np_tensor'], dtype = kwargs['_np_dtype']) self.tensor = np.reshape(self.tensor, kwargs['shape']) else: self.tensor = kwargs['_np_tensor'] self.output_shape = kwargs['shape'] def run(self, **kwargs): self.output_value_ = self.tensor return self.output_value_ ``` #### File: nnef_converters/common/dog_to_nnef.py ```python from __future__ import division, print_function from collections import OrderedDict import nnef from . import dog from . import utils from .types import * from .utils import StringIO from .nnef_dog_types import NnefGraph def nnefdog_to_source(nnefdog, file_handle=None, custom_fragments=""): if file_handle is None: string_io = StringIO() try: # noinspection PyUnresolvedReferences, PyTypeChecker return _nnefdog_to_source_impl(nnefdog, string_io, custom_fragments=custom_fragments).getvalue() finally: string_io.close() else: return _nnefdog_to_source_impl(nnefdog, file_handle, custom_fragments=custom_fragments) def _nnefdog_to_source_impl(nnefdog, file_handle, custom_fragments=""): # type: (NnefGraph, TextIO, str)->TextIO f = file_handle fix_str = utils.ensure_not_unicode_in_python2 indent = 4 * " " print(nnef.format_version((1, 0)), file=f) extensions = [] print(nnef.format_extensions(extensions), file=f) print(file=f) if custom_fragments: print(custom_fragments, file=f) print(file=f) graph_name = fix_str(nnefdog.name) graph_inputs = [fix_str(name) for name in nnefdog.input_dn_names] graph_outputs = [fix_str(name) for name in nnefdog.output_dn_names] print("graph {}({}) -> ({})".format(graph_name, ', '.join(graph_inputs), ', '.join(graph_outputs)), file=f) print("{", file=f) for op in nnefdog.ops: dtype = op.result.dtype if op.name in ["external", "constant", "variable"] else None invocation = nnef.format_invocation(name=fix_str(op.name), attribs=_preprocess_args(op.args), inputs=tuple(), outputs=_results_to_result_names(op.results.values()), dtype=dtype) comments = utils.without_nones([op.extra.get(dog.EXTRA_COMMENT)] + [dn.extra.get(dog.EXTRA_COMMENT) for dn in op.get_result_nodes()]) comment = " # {}".format(", ".join(comments)) if comments else "" print("{}{};{}".format(indent, invocation, comment), file=f) print("}", file=f) return file_handle def _preprocess_args(args): # type: (OrderedDict[str, Any])->OrderedDict[str, Any] def transform(arg): if isinstance(arg, dog.DataNode): return nnef.Identifier(utils.ensure_not_unicode_in_python2(arg.name)) else: return utils.ensure_not_unicode_in_python2(arg) return utils.recursive_transform(args, transform) def _results_to_result_names(results): results2 = [] for r in results: if isinstance(r, (list, tuple)): results2.append(_results_to_result_names(r)) else: results2.append(nnef.Identifier(utils.ensure_not_unicode_in_python2(r.name))) if isinstance(results, tuple): return tuple(results2) else: return results2 ``` #### File: nnef_tools/conversion/conversion_info.py ```python from __future__ import division, print_function, absolute_import import json import os import typing from nnef_tools.conversion.transforms import * class _Empty(object): pass class _CustomEncoder(json.JSONEncoder): def default(self, o): d = dict(o.__dict__) d["__class__"] = o.__class__.__name__ return d class _CustomDecoder(object): def __init__(self, class_by_name): self._class_by_name = class_by_name def __call__(self, d): if "__class__" in d: o = _Empty() d2 = dict(d) del d2["__class__"] o.__dict__.update(d2) o.__class__ = self._class_by_name[d["__class__"]] return o return d def _json_dump(obj, file_name): if not os.path.exists(os.path.dirname(file_name)): os.makedirs(os.path.dirname(file_name)) with open(file_name, 'w') as f: json.dump(obj, f, indent=4, sort_keys=True, cls=_CustomEncoder) def _json_load(file_name, classes=None): if classes is None: classes = [] with open(file_name, 'r') as f: return json.load(f, object_hook=_CustomDecoder({class_.__name__: class_ for class_ in classes})) class TensorInfo(object): def __init__(self, source_name, target_name, target_shape, target_dtype, is_input=False, is_output=False, is_variable=False, transforms=None): if transforms is None: transforms = [] self.source_name = source_name self.target_name = target_name self.is_input = is_input self.is_output = is_output self.is_variable = is_variable self.transforms = transforms # type: typing.List[Transform] self.target_dtype = target_dtype self.target_shape = target_shape def copy(self): return TensorInfo(source_name=self.source_name, target_name=self.target_name, is_input=self.is_input, is_output=self.is_output, is_variable=self.is_variable, transforms=[t.copy() for t in self.transforms], target_shape=self.target_shape, target_dtype=self.target_dtype) class ConversionInfo(object): def __init__(self, tensors): self.tensors = tensors # type: typing.List[TensorInfo] def copy(self): return ConversionInfo([t.copy() for t in self.tensors]) def dump(conversion_info, file_name): _json_dump(conversion_info, file_name) def load(file_name): return _json_load(file_name, [ConversionInfo, TensorInfo, Transpose, Squeeze, Unsqueeze, Reshape]) def _compose(info1, info2): # type: (ConversionInfo, ConversionInfo)->ConversionInfo tensor_info1_by_target_name = {info.target_name: info for info in info1.tensors} tensor_infos = [] for right in info2.tensors: if right.source_name in tensor_info1_by_target_name: left = tensor_info1_by_target_name[right.source_name] # type: TensorInfo del tensor_info1_by_target_name[right.source_name] result = right.copy() result.source_name = left.source_name result.transforms = left.transforms + right.transforms tensor_infos.append(result) return ConversionInfo(tensor_infos) def compose(info1, info2, *more_infos): infos = (info1, info2) + more_infos infos = [info for info in infos if info is not None] if not infos: return None left = infos[0] for right in infos[1:]: left = _compose(left, right) return left ``` #### File: conversion/tensorflow/nnef_to_tf.py ```python from __future__ import division, print_function, absolute_import import copy import typing from functools import partial import numpy as np from nnef_tools.conversion import converter from nnef_tools.conversion import transforms from nnef_tools.conversion.shape_utils import ShapeUtils from nnef_tools.conversion.tensorflow import nnef_to_tf_trafos from nnef_tools.core import utils from nnef_tools.io.nnef.nnef_graph import NNEFGraph, NNEFOperation, NNEFTensor from nnef_tools.io.nnef.parser_config import NNEFParserConfig from nnef_tools.io.tensorflow.tf_graph import TFGraph, TFTensor, TFOperation # NNEF must be parsed with this before calling nnef_to_tf.Converter on it ParserConfig = NNEFParserConfig(expand=[ "rms_pool", "softabs", "log2", "linear", "separable_conv", "separable_deconv", "l1_normalization", ]) _tf_dtype_by_nnef_dtype = { "scalar": "float32", "integer": 'int64', "logical": 'bool' } class Converter(converter.Converter[NNEFTensor, NNEFOperation, NNEFGraph, TFTensor, TFOperation, TFGraph], ShapeUtils): FORMAT_NHWC = "NHWC" FORMAT_NCHW = "NCHW" FORMAT_SPATIAL = "SPATIAL" def __init__(self, prefer_nhwc=True, enable_default_conversion=False, enable_imprecise_image_resize=False, enable_imprecise_padding_border=False, custom_converter_by_op_name=None): default_op_converter = convert_default if enable_default_conversion else None converters = {} converters.update(_DefaultConverters) if custom_converter_by_op_name is not None: converters.update(custom_converter_by_op_name) super(Converter, self).__init__(op_converter_by_name=converters, default_op_converter=default_op_converter) self._preferred_format = self.FORMAT_NHWC if prefer_nhwc else self.FORMAT_NCHW self._enable_imprecise_image_resize = enable_imprecise_image_resize self._enable_imprecise_padding_border = enable_imprecise_padding_border @property def preferred_format(self): return self._preferred_format @property def prefer_nhwc(self): return self._preferred_format == self.FORMAT_NHWC def create_graph(self, source_graph): # type: (NNEFGraph)->TFGraph return TFGraph(source_graph.name) def convert_tensors(self, source_graph, target_graph): # type: (NNEFGraph, TFGraph)->None super(Converter, self).convert_tensors(source_graph, target_graph) if any(tensor.quantization is not None for tensor in target_graph.tensors): for tensor in target_graph.tensors: if tensor.dtype not in ["int32", "uint8"]: tensor.dtype = "uint8" def convert_tensor(self, source_tensor, target_graph): # type: (NNEFTensor, TFGraph)->TFTensor quantization = None dtype = self.tf_dtype(source_tensor.dtype) if source_tensor.quantization: assert source_tensor.quantization.name == 'tflite_quantize' quantization = TFTensor.Quantization(min=source_tensor.quantization.attribs['min'], max=source_tensor.quantization.attribs['max'], scale=source_tensor.quantization.attribs['scale'], zero_point=source_tensor.quantization.attribs['zero_point']) dtype = "uint8" if source_tensor.quantization.attribs['bits'] == 8 else "int32" return TFTensor(graph=target_graph, label=source_tensor.label, # can be None shape=list(source_tensor.shape), dtype=dtype, data=copy.copy(source_tensor.data), quantization=quantization) def convert_graph(self, source_graph): # type: (NNEFGraph)->TFGraph nnef_to_tf_trafos.pre_conversion_transform(source_graph) target_graph = super(Converter, self).convert_graph(source_graph) # type: TFGraph target_graph.generate_missing_names() return target_graph @property def enable_imprecise_image_resize(self): return self._enable_imprecise_image_resize @property def enable_imprecise_padding_border(self): return self._enable_imprecise_padding_border @staticmethod def tf_dtype(nnef_dtype): return _tf_dtype_by_nnef_dtype[nnef_dtype] @staticmethod def create_constant_tf_tensor(tf_graph, data, dtype="float32"): if dtype.startswith("float"): data = float(data) return TFTensor(graph=tf_graph, shape=[], dtype=dtype, data=[data]) @staticmethod def convert_format(shapelike, in_format, out_format, default_elem): if in_format == out_format: return list(shapelike) if in_format == Converter.FORMAT_SPATIAL: if out_format == Converter.FORMAT_NCHW: return [default_elem, default_elem] + shapelike elif out_format == Converter.FORMAT_NHWC: return [default_elem] + shapelike + [default_elem] else: assert False elif in_format == Converter.FORMAT_NCHW: if out_format == Converter.FORMAT_SPATIAL: return shapelike[2:] elif out_format == Converter.FORMAT_NHWC: return [shapelike[0]] + shapelike[2:] + [shapelike[1]] else: assert False elif in_format == Converter.FORMAT_NHWC: if out_format == Converter.FORMAT_SPATIAL: return shapelike[1:-1] elif out_format == Converter.FORMAT_NCHW: return [shapelike[0], shapelike[-1]] + shapelike[1:-1] else: assert False else: assert False @staticmethod def tf_data_format(data_format, rank): if rank == 3: return "NWC" if data_format == Converter.FORMAT_NHWC else "NCW" elif rank == 4: return "NHWC" if data_format == Converter.FORMAT_NHWC else "NCHW" elif rank == 5: return "NDHWC" if data_format == Converter.FORMAT_NHWC else "NCDHW" else: print("Warning: data format called for rank not in [3, 4, 5]") return "NHWC" if data_format == Converter.FORMAT_NHWC else "NCHW" @staticmethod def tf_border_mode(nnef_border_mode, enable_imprecise_padding_border=False): to_tf = { 'ignore': None, 'constant': 'CONSTANT', 'replicate': None, 'reflect': 'REFLECT', 'reflect-even': 'SYMMETRIC' } if to_tf[nnef_border_mode] is None: if enable_imprecise_padding_border: print("Warning: Border mode {} is not supported in TensorFlow, " "using CONSTANT because enable_imprecise_padding_border was True.".format(nnef_border_mode)) else: assert False, \ "Error: Border mode {} is not supported in TensorFlow, " \ "use enable_imprecise_padding_border to suppress this error.".format(nnef_border_mode) return 'CONSTANT' else: return to_tf[nnef_border_mode] @staticmethod def nnef_reshaped_shape(input_shape, reshape_shape): for i in range(len(reshape_shape)): assert reshape_shape[i] != 0 or i <= len(input_shape), "Invalid input_shape and reshape_shape combination" reshape_shape = [input_shape[i] if reshape_shape[i] == 0 else reshape_shape[i] for i in range(len(reshape_shape))] if -1 in reshape_shape: idx = reshape_shape.index(-1) reshape_shape2 = list(reshape_shape) reshape_shape2[idx] = 1 rem = int(np.prod(input_shape)) % int(np.prod(reshape_shape2)) assert rem == 0, "Invalid input_shape and reshape_shape combination" div = int(int(np.prod(input_shape)) / int(np.prod(reshape_shape2))) reshape_shape2[idx] = div return reshape_shape2 return reshape_shape @staticmethod def nnef_flatten_shape(input_shape): return [input_shape[0], int(np.prod(input_shape[1:]))] @staticmethod def has_gt_1(data): return utils.has_gt_1(data) @staticmethod def add_nchw_to_nhwc_transpose(tf_graph, tf_tensor, nhwc_tensor=None): assert isinstance(tf_graph, TFGraph) assert isinstance(tf_tensor, TFTensor) assert nhwc_tensor is None or isinstance(nhwc_tensor, TFTensor) if nhwc_tensor is None: nhwc_tensor = TFTensor(graph=tf_graph, shape=Converter.shape_nchw_to_nhwc(tf_tensor.shape), dtype=tf_tensor.dtype) TFOperation(graph=tf_graph, name="tf.transpose", inputs=tf_tensor, attribs=dict(perm=Converter.transpose_axes_nchw_to_nhwc(tf_tensor.rank)), outputs=nhwc_tensor) return nhwc_tensor @staticmethod def add_squeeze(tf_graph, tf_tensor, axes): # type: (TFGraph, TFTensor, typing.List[int])->TFTensor assert isinstance(tf_graph, TFGraph) assert isinstance(tf_tensor, TFTensor) return TFOperation(graph=tf_graph, name="tf.squeeze", inputs=tf_tensor, attribs=dict(axis=axes), outputs=TFTensor(graph=tf_graph, shape=transforms.squeezed_shape(tf_tensor.shape, axes), dtype=tf_tensor.dtype)).output @staticmethod def add_nchw_to_hwcn_transpose(tf_graph, tf_tensor, hwcn_tensor=None): assert isinstance(tf_graph, TFGraph) assert isinstance(tf_tensor, TFTensor) assert hwcn_tensor is None or isinstance(hwcn_tensor, TFTensor) if hwcn_tensor is None: hwcn_tensor = TFTensor(graph=tf_graph, shape=Converter.shape_nchw_to_hwcn(tf_tensor.shape), dtype=tf_tensor.dtype) TFOperation(graph=tf_graph, name="tf.transpose", inputs=tf_tensor, attribs=dict(perm=Converter.transpose_axes_nchw_to_hwcn(tf_tensor.rank)), outputs=hwcn_tensor) return hwcn_tensor @staticmethod def add_hwcn_to_hwcm_reshape(tf_graph, tf_tensor, hwcm_tensor=None, in_channels=None): assert isinstance(tf_graph, TFGraph) assert isinstance(tf_tensor, TFTensor) assert hwcm_tensor is None or isinstance(hwcm_tensor, TFTensor) assert hwcm_tensor is not None or in_channels is not None if hwcm_tensor is not None: new_shape = hwcm_tensor.shape else: in_channels = int(in_channels) assert in_channels % tf_tensor.shape[-2] == 0 groups = int(in_channels // tf_tensor.shape[-2]) assert tf_tensor.shape[-1] % groups == 0 new_shape = tf_tensor.shape[:-2] + [in_channels, int(tf_tensor.shape[-1] // groups)] hwcm_tensor = TFTensor(graph=tf_graph, shape=list(new_shape), dtype=tf_tensor.dtype) return TFOperation(graph=tf_graph, name="tf.reshape", inputs=tf_tensor, attribs=dict(shape=list(new_shape)), outputs=hwcm_tensor).output @staticmethod def create_nhwc_intermediate_for_nchw_output(tf_graph, tf_tensor): assert isinstance(tf_graph, TFGraph) assert isinstance(tf_tensor, TFTensor) return TFTensor(graph=tf_graph, shape=Converter.shape_nchw_to_nhwc(tf_tensor.shape), dtype=tf_tensor.dtype, data=tf_tensor.data) @staticmethod def add_nhwc_to_nchw_transpose(tf_graph, tf_tensor, nchw_tensor=None): assert isinstance(tf_graph, TFGraph) assert isinstance(tf_tensor, TFTensor) assert nchw_tensor is None or isinstance(nchw_tensor, TFTensor) if nchw_tensor is None: nchw_tensor = TFTensor(graph=tf_graph, shape=Converter.shape_nhwc_to_nchw(tf_tensor.shape), dtype=tf_tensor.dtype) return TFOperation(graph=tf_graph, name="tf.transpose", inputs=tf_tensor, attribs=dict(perm=Converter.transpose_axes_nhwc_to_nchw(tf_tensor.rank)), outputs=nchw_tensor).output @staticmethod def create_hwcn_intermediate_for_nchw_output(tf_graph, tf_tensor): assert isinstance(tf_graph, TFGraph) assert isinstance(tf_tensor, TFTensor) return TFTensor(graph=tf_graph, shape=Converter.shape_nchw_to_hwcn(tf_tensor.shape), dtype=tf_tensor.dtype, data=tf_tensor.data) @staticmethod def add_hwcn_to_nchw_transpose(tf_graph, tf_tensor, nchw_tensor=None): assert isinstance(tf_graph, TFGraph) assert isinstance(tf_tensor, TFTensor) assert nchw_tensor is None or isinstance(nchw_tensor, TFTensor) if nchw_tensor is None: nchw_tensor = TFTensor(graph=tf_graph, shape=Converter.shape_hwcn_to_nchw(tf_tensor.shape), dtype=tf_tensor.dtype) return TFOperation(graph=tf_graph, name="tf.transpose", inputs=tf_tensor, attribs=dict(perm=Converter.transpose_axes_hwcn_to_nchw(tf_tensor.rank)), outputs=nchw_tensor).output @staticmethod def create_hwcm_intermediate_for_nchw_output(tf_graph, tf_tensor, input_channels): assert isinstance(tf_graph, TFGraph) assert isinstance(tf_tensor, TFTensor) return TFTensor(graph=tf_graph, shape=Converter.shape_nchw_to_hwcm(tf_tensor.shape, input_channels), dtype=tf_tensor.dtype, data=tf_tensor.data) @staticmethod def add_hwcm_to_hwcn_reshape(tf_graph, tf_tensor): assert isinstance(tf_graph, TFGraph) assert isinstance(tf_tensor, TFTensor) new_shape = tf_tensor.shape[:-2] + [1, tf_tensor.shape[-1] * tf_tensor.shape[-2]] return TFOperation(graph=tf_graph, name="tf.reshape", inputs=tf_tensor, attribs=dict(shape=list(new_shape)), outputs=TFTensor(graph=tf_graph, shape=list(new_shape), dtype=tf_tensor.dtype)).output @staticmethod def add_unsqueeze(tf_graph, tf_tensor, axes): assert isinstance(tf_graph, TFGraph) assert isinstance(tf_tensor, TFTensor) for axis in sorted(axes): tf_tensor = TFOperation(graph=tf_graph, name="tf.expand_dims", inputs=tf_tensor, attribs=dict(axis=axis), outputs=TFTensor(graph=tf_graph, shape=transforms.unsqueezed_shape(tf_tensor.shape, [axis]), dtype=tf_tensor.dtype)).output return tf_tensor @staticmethod def tf_zero_value(tf_dtype): if "float" in tf_dtype: return 0.0 elif "int" in tf_dtype: return 0 elif "bool" in tf_dtype: return False assert False, "Unsupported TF dtype: {}".format(tf_dtype) @staticmethod def tf_addition_op(tf_dtype): if "float" in tf_dtype: return "tf.add" elif "int" in tf_dtype: return "tf.add" elif "bool" in tf_dtype: return "tf.logical_or" assert False, "Unsupported TF dtype: {}".format(tf_dtype) def convert_default(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None print("Warning: Converter of {} is not implemented, doing default conversion.".format(nnef_op.name)) TFOperation(graph=tf_graph, name="nnef_" + nnef_op.name, inputs=converter.converted_tensors(nnef_op.inputs), attribs=utils.recursive_copy(nnef_op.attribs), outputs=converter.converted_tensors(nnef_op.outputs)) def convert_update(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None var, val = converter.converted_tensors(nnef_op.inputs) output = converter.converted_tensor(nnef_op.output) TFOperation(graph=tf_graph, name="tf.assign", inputs=(var, val), outputs=output) def convert_reshape(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input, output = converter.converted_tensors((nnef_op.input, nnef_op.output)) new_shape = converter.nnef_reshaped_shape(nnef_op.input.shape, nnef_op.attribs["shape"]) if nnef_op.input.rank >= 2 and new_shape == converter.nnef_flatten_shape(nnef_op.input.shape): TFOperation(graph=tf_graph, name="tf.layers.flatten", inputs=input, outputs=output) else: TFOperation(graph=tf_graph, name="tf.reshape", inputs=input, attribs=dict(shape=new_shape), outputs=output) def convert_squeeze(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input, output = converter.converted_tensors((nnef_op.input, nnef_op.output)) if nnef_op.attribs["axes"]: TFOperation(graph=tf_graph, name="tf.squeeze", inputs=input, attribs=dict(axis=list(nnef_op.attribs["axes"])), outputs=output) else: # axes=[] is special in tf TFOperation(graph=tf_graph, name="tf.identity", inputs=input, outputs=output) def convert_unsqueeze(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None if len(nnef_op.attribs["axes"]) == 1: partial_convert_unsqueeze_to_expand_dims(converter, nnef_op, tf_graph) else: partial_convert_unsqueeze_to_reshape(converter, nnef_op, tf_graph) def partial_convert_unsqueeze_to_reshape(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input, output = converter.converted_tensors((nnef_op.input, nnef_op.output)) TFOperation(graph=tf_graph, name="tf.reshape", inputs=input, attribs=dict(shape=transforms.unsqueezed_shape(input.shape, nnef_op.attribs["axes"])), outputs=output) def partial_convert_unsqueeze_to_expand_dims(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None assert len(nnef_op.attribs["axes"]) == 1 input, output = converter.converted_tensors((nnef_op.input, nnef_op.output)) TFOperation(graph=tf_graph, name="tf.expand_dims", inputs=input, attribs=dict(axis=nnef_op.attribs["axes"][0]), outputs=output) def convert_transpose(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input, output = converter.converted_tensors((nnef_op.input, nnef_op.output)) axes = nnef_op.attribs["axes"] if len(axes) < nnef_op.input.rank: axes = axes + list(range(len(axes), nnef_op.input.rank)) TFOperation(graph=tf_graph, name="tf.transpose", inputs=input, attribs=dict(perm=axes), outputs=output) def convert_concat(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None inputs = list(converter.converted_tensors(nnef_op.inputs)) output = converter.converted_tensor(nnef_op.output) TFOperation(graph=tf_graph, name="tf.concat", inputs=inputs, attribs=dict(axis=nnef_op.attribs["axis"]), outputs=output) def convert_split(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input = converter.converted_tensor(nnef_op.input) outputs = list(converter.converted_tensors(nnef_op.outputs)) nnef_axis = nnef_op.attribs["axis"] nnef_ratios = nnef_op.attribs["ratios"] if input.shape[nnef_axis] == 0: if len(np.unique(nnef_ratios)) == 1: tf_num_or_size_splits = len(nnef_ratios) else: assert False, "Split with different ratios on an axis ({}) with unspecified size.".format(nnef_axis) else: part_size = input.shape[nnef_axis] // int(np.sum(nnef_ratios)) tf_num_or_size_splits = [ratio * part_size for ratio in nnef_ratios] TFOperation(graph=tf_graph, name="tf.split", inputs=input, attribs=dict(num_or_size_splits=tf_num_or_size_splits, axis=nnef_axis), outputs=outputs) def convert_bias_add(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None x, y = converter.converted_tensors(nnef_op.inputs) output = converter.converted_tensor(nnef_op.output) tf_op = TFOperation(graph=tf_graph, name="tf.nn.bias_add", inputs=(converter.add_nchw_to_nhwc_transpose(tf_graph, x) if converter.prefer_nhwc else x, converter.add_squeeze(tf_graph, y, axes=[0])), attribs=dict(data_format=converter.tf_data_format(converter.preferred_format, x.rank)), outputs=(converter.create_nhwc_intermediate_for_nchw_output(tf_graph, output) if converter.prefer_nhwc else output)) if converter.prefer_nhwc: converter.add_nhwc_to_nchw_transpose(tf_graph, tf_op.output, nchw_tensor=output) def generic_convert_binary(converter, nnef_op, tf_graph, target_name): # type: (Converter, NNEFOperation, TFGraph, str)->None x, y = converter.converted_tensors(nnef_op.inputs) output = converter.converted_tensor(nnef_op.output) TFOperation(graph=tf_graph, name=target_name, inputs=((converter.add_unsqueeze(tf_graph, x, list(range(y.rank - x.rank, y.rank))) if 0 < x.rank < y.rank else x), (converter.add_unsqueeze(tf_graph, y, list(range(x.rank - y.rank, x.rank))) if 0 < y.rank < x.rank else y)), outputs=output) def generic_convert_unary(converter, nnef_op, tf_graph, target_name): # type: (Converter, NNEFOperation, TFGraph, str)->None TFOperation(graph=tf_graph, name=target_name, inputs=converter.converted_tensor(nnef_op.input), outputs=converter.converted_tensor(nnef_op.output)) def convert_rsqr(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input, output = converter.converted_tensors((nnef_op.input, nnef_op.output)) TFOperation(graph=tf_graph, name="tf.pow", inputs=(input, converter.create_constant_tf_tensor(tf_graph, -2.0)), outputs=output) def convert_select(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None # TensorFlow does not support broadcast in tf.where condition, x, y = converter.converted_tensors(nnef_op.inputs) output = converter.converted_tensor(nnef_op.output) def fixed(tensor): if 0 < tensor.rank < output.rank: tensor = converter.add_unsqueeze(tf_graph, tensor, list(range(output.rank - tensor.rank, output.rank))) if tensor.shape != output.shape: tensor = TFOperation(graph=tf_graph, name=converter.tf_addition_op(tensor.dtype), inputs=(tensor, TFTensor(graph=tf_graph, shape=list(output.shape), dtype=tensor.dtype, data=[converter.tf_zero_value(tensor.dtype)])), outputs=TFTensor(graph=tf_graph, shape=list(output.shape), dtype=tensor.dtype)).output return tensor TFOperation(graph=tf_graph, name="tf.where", inputs=(fixed(condition), fixed(x), fixed(y)), outputs=output) def convert_clamp(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None x, a, b = converter.converted_tensors(nnef_op.inputs) output = converter.converted_tensor(nnef_op.output) TFOperation(graph=tf_graph, name="tf.clip_by_value", inputs=(x, (converter.add_unsqueeze(tf_graph, a, list(range(x.rank - a.rank, x.rank))) if 0 < a.rank < x.rank else a), (converter.add_unsqueeze(tf_graph, b, list(range(x.rank - b.rank, x.rank))) if 0 < b.rank < x.rank else b)), outputs=output) def convert_matmul(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None a, b = converter.converted_tensors(nnef_op.inputs) output = converter.converted_tensor(nnef_op.output) TFOperation(graph=tf_graph, name="tf.matmul", inputs=(a, b), attribs=dict(transpose_a=nnef_op.attribs["transposeA"], transpose_b=nnef_op.attribs["transposeB"]), outputs=output) def convert_conv(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None groups = nnef_op.attribs["groups"] input = nnef_op.inputs[0] d = input.rank - 2 if groups == 1: if d in [2, 3]: partial_convert_conv_to_conv2d_or_conv3d(converter, nnef_op, tf_graph) else: partial_convert_conv_to_convolution(converter, nnef_op, tf_graph) else: if groups in [0, input.shape[1]] and d == 2: partial_convert_conv_to_deptwise_conv2d(converter, nnef_op, tf_graph) else: assert False, "Grouped convolutions are only supported if they can be converted to tf.nn.depthwise_conv2d." def partial_convert_conv_to_conv2d_or_conv3d(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input, filter = converter.converted_tensors(nnef_op.inputs) output = converter.converted_tensor(nnef_op.output) d = input.rank - 2 assert d in [2, 3] tf_op = TFOperation( graph=tf_graph, name=("tf.nn.conv2d" if d == 2 else "tf.nn.conv3d"), inputs=(converter.add_nchw_to_nhwc_transpose(tf_graph, input) if converter.prefer_nhwc else input, converter.add_nchw_to_hwcn_transpose(tf_graph, filter)), attribs=dict( data_format=converter.tf_data_format(converter.preferred_format, input.rank), strides=converter.convert_format( nnef_op.attribs["stride"] if nnef_op.attribs["stride"] else [1] * d, in_format=converter.FORMAT_SPATIAL, out_format=converter.preferred_format, default_elem=1), dilations=converter.convert_format( nnef_op.attribs["dilation"] if nnef_op.attribs["dilation"] else [1] * d, in_format=converter.FORMAT_SPATIAL, out_format=converter.preferred_format, default_elem=1), padding=nnef_op.attribs["padding"]), outputs=(converter.create_nhwc_intermediate_for_nchw_output(tf_graph, output) if converter.prefer_nhwc else output)) if converter.prefer_nhwc: converter.add_nhwc_to_nchw_transpose(tf_graph, tf_op.output, nchw_tensor=output) def partial_convert_conv_to_convolution(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input, filter = converter.converted_tensors(nnef_op.inputs) output = converter.converted_tensor(nnef_op.output) assert not (converter.has_gt_1(nnef_op.attribs["stride"]) and converter.has_gt_1(nnef_op.attribs["dilation"])), \ "Custom stride AND dilation is not supported by tf.nn.convolution." tf_op = TFOperation( graph=tf_graph, name="tf.nn.convolution", inputs=(converter.add_nchw_to_nhwc_transpose(tf_graph, input) if converter.prefer_nhwc else input, converter.add_nchw_to_hwcn_transpose(tf_graph, filter)), attribs=dict(data_format=converter.tf_data_format(converter.preferred_format, input.rank), padding=nnef_op.attribs["padding"]), outputs=(converter.create_nhwc_intermediate_for_nchw_output(tf_graph, output) if converter.prefer_nhwc else output)) if converter.prefer_nhwc: converter.add_nhwc_to_nchw_transpose(tf_graph, tf_op.output, nchw_tensor=output) if utils.has_gt_1(nnef_op.attribs["stride"]): tf_op.attribs["strides"] = list(nnef_op.attribs["stride"]) if utils.has_gt_1(nnef_op.attribs["dilation"]): tf_op.attribs["dilation_rate"] = list(nnef_op.attribs["dilation"]) def partial_convert_conv_to_deptwise_conv2d(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input, filter = converter.converted_tensors(nnef_op.inputs) output = converter.converted_tensor(nnef_op.output) in_channels = input.shape[1] d = input.rank - 2 assert d == 2 assert not (utils.has_gt_1(nnef_op.attribs["stride"]) and utils.has_gt_1(nnef_op.attribs["dilation"])), \ "Custom stride AND dilation is not supported by tf.nn.depthwise_conv2d." input = converter.add_nchw_to_nhwc_transpose(tf_graph, input) if converter.prefer_nhwc else input filter = converter.add_nchw_to_hwcn_transpose(tf_graph, filter) filter = converter.add_hwcn_to_hwcm_reshape(tf_graph, filter, in_channels=in_channels) tf_op = TFOperation( graph=tf_graph, name="tf.nn.depthwise_conv2d", inputs=(input, filter), attribs=dict( data_format=converter.tf_data_format(converter.preferred_format, input.rank), padding=nnef_op.attribs["padding"], strides=converter.convert_format(nnef_op.attribs["stride"] if nnef_op.attribs["stride"] else [1] * d, in_format=converter.FORMAT_SPATIAL, out_format=converter.preferred_format, default_elem=1)), outputs=(converter.create_nhwc_intermediate_for_nchw_output(tf_graph, output) if converter.prefer_nhwc else output)) if converter.prefer_nhwc: converter.add_nhwc_to_nchw_transpose(tf_graph, tf_op.output, nchw_tensor=output) if utils.has_gt_1(nnef_op.attribs["dilation"]): tf_op.attribs["rate"] = converter.convert_format(shapelike=nnef_op.attribs["dilation"], in_format=converter.FORMAT_SPATIAL, out_format=converter.preferred_format, default_elem=1) def convert_deconv(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None groups = nnef_op.attribs["groups"] input = nnef_op.inputs[0] d = input.rank - 2 is_dilated = utils.has_gt_1(nnef_op.attribs["dilation"]) if groups == 1: if not is_dilated and d in [2, 3]: partial_convert_deconv_to_conv2d_transpose_or_conv3d_transpose(converter, nnef_op, tf_graph) elif is_dilated and d == 2: partial_convert_deconv_to_atrous_conv2d_transpose(converter, nnef_op, tf_graph) else: assert False, \ "{} dimensional{} deconv is not supported by TensorFlow.".format(d, " dilated" if is_dilated else "") else: if groups in [0, input.shape[1]] and d == 2: partial_convert_deconv_to_depthwise_conv2d_native_backprop_input(converter, nnef_op, tf_graph) else: assert False, \ "Grouped deconvolutions are only supported if they can be " \ "converted to tf.nn.depthwise_conv2d_native_backprop_input." def partial_convert_deconv_to_conv2d_transpose_or_conv3d_transpose(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input, filter = converter.converted_tensors(nnef_op.inputs) output = converter.converted_tensor(nnef_op.output) d = input.rank - 2 assert d in [2, 3] target_format = converter.FORMAT_NHWC if d == 3 else converter.preferred_format assert not nnef_op.attribs["output_shape"] or nnef_op.attribs["output_shape"] == nnef_op.output.shape tf_op = TFOperation( graph=tf_graph, name=("tf.nn.conv2d_transpose" if d == 2 else "tf.nn.conv3d_transpose"), inputs=((converter.add_nchw_to_nhwc_transpose(tf_graph, input) if target_format == converter.FORMAT_NHWC else input), converter.add_nchw_to_hwcn_transpose(tf_graph, filter)), attribs=dict( data_format=converter.tf_data_format(target_format, input.rank), strides=converter.convert_format(nnef_op.attribs["stride"] if nnef_op.attribs["stride"] else [1] * d, in_format=converter.FORMAT_SPATIAL, out_format=target_format, default_elem=1), padding=nnef_op.attribs["padding"], output_shape=(converter.shape_nchw_to_nhwc(output.shape) if target_format == converter.FORMAT_NHWC else list(output.shape))), outputs=(converter.create_nhwc_intermediate_for_nchw_output(tf_graph, output) if target_format == converter.FORMAT_NHWC else output)) if target_format == converter.FORMAT_NHWC: converter.add_nhwc_to_nchw_transpose(tf_graph, tf_op.output, nchw_tensor=output) def partial_convert_deconv_to_atrous_conv2d_transpose(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None # Only NHWC is supported input, filter = converter.converted_tensors(nnef_op.inputs) output = converter.converted_tensor(nnef_op.output) d = input.rank - 2 assert d == 2 assert len(utils.unique(nnef_op.attribs["dilation"])) <= 1, \ "Cannot specify different x and y dilation in tf.nn.atrous_conv2d_transpose." assert not utils.has_gt_1(nnef_op.attribs["stride"]), \ "Cannot use stride>1 in tf.nn.atrous_conv2d_transpose." assert not nnef_op.attribs["output_shape"] or nnef_op.attribs["output_shape"] == nnef_op.output.shape tf_op = TFOperation( graph=tf_graph, name="tf.nn.atrous_conv2d_transpose", inputs=(converter.add_nchw_to_nhwc_transpose(tf_graph, input), converter.add_nchw_to_hwcn_transpose(tf_graph, filter)), attribs=dict(rate=nnef_op.attribs["dilation"][0] if nnef_op.attribs["dilation"] else 1, padding=nnef_op.attribs["padding"], output_shape=converter.shape_nchw_to_nhwc(output.shape)), outputs=converter.create_nhwc_intermediate_for_nchw_output(tf_graph, output)) converter.add_nhwc_to_nchw_transpose(tf_graph, tf_op.output, nchw_tensor=output) def partial_convert_deconv_to_depthwise_conv2d_native_backprop_input(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input, filter = converter.converted_tensors(nnef_op.inputs) output = converter.converted_tensor(nnef_op.output) in_channels = output.shape[1] d = input.rank - 2 assert d == 2 assert not nnef_op.attribs["output_shape"] or nnef_op.attribs["output_shape"] == nnef_op.output.shape assert not (utils.has_gt_1(nnef_op.attribs["stride"]) and utils.has_gt_1(nnef_op.attribs["dilation"])), \ "Custom stride AND dilation is not supported by tf.nn.atrous_conv2d_transpose." input = converter.add_nchw_to_nhwc_transpose(tf_graph, input) if converter.prefer_nhwc else input filter = converter.add_nchw_to_hwcn_transpose(tf_graph, filter) filter = converter.add_hwcn_to_hwcm_reshape(tf_graph, filter, in_channels=in_channels) tf_op = TFOperation( graph=tf_graph, name="tf.nn.depthwise_conv2d_native_backprop_input", inputs=(filter, input), attribs=dict( data_format=converter.tf_data_format(converter.preferred_format, input.rank), strides=converter.convert_format(nnef_op.attribs["stride"] if nnef_op.attribs["stride"] else [1] * d, in_format=converter.FORMAT_SPATIAL, out_format=converter.preferred_format, default_elem=1), padding=nnef_op.attribs["padding"], input_sizes=converter.shape_nchw_to_nhwc(output.shape) if converter.prefer_nhwc else list(output.shape)), outputs=(converter.create_nhwc_intermediate_for_nchw_output(tf_graph, output) if converter.prefer_nhwc else output)) if converter.prefer_nhwc: converter.add_nhwc_to_nchw_transpose(tf_graph, tf_op.output, nchw_tensor=output) if utils.has_gt_1(nnef_op.attribs["dilation"]): tf_op.attribs["dilations"] = converter.convert_format( nnef_op.attribs["dilation"] if nnef_op.attribs["dilation"] else [1] * d, in_format=converter.FORMAT_SPATIAL, out_format=converter.preferred_format, default_elem=1) def generic_convert_pooling(converter, nnef_op, tf_graph, target_name): # type: (Converter, NNEFOperation, TFGraph, str)->None assert not utils.has_gt_1(nnef_op.attribs["dilation"]), "Dilated pool is not supported in TensorFlow" input = converter.converted_tensor(nnef_op.input) outputs = converter.converted_tensors(nnef_op.outputs) size, stride, padding = utils.get_dict_items(nnef_op.attribs, "size", "stride", "padding") tf_op = TFOperation( graph=tf_graph, name=target_name, inputs=converter.add_nchw_to_nhwc_transpose(tf_graph, input) if converter.prefer_nhwc else input, attribs=dict( data_format=converter.tf_data_format(converter.preferred_format, input.rank), ksize=converter.shape_nchw_to_nhwc(size) if converter.prefer_nhwc else list(size), strides=converter.convert_format(stride if stride else [1] * input.rank, in_format=converter.FORMAT_NCHW, out_format=converter.preferred_format, default_elem=1), padding=padding), outputs=tuple(converter.create_nhwc_intermediate_for_nchw_output(tf_graph, output) if converter.prefer_nhwc else output for output in outputs)) if converter.prefer_nhwc: for op_output, output in zip(tf_op.outputs, outputs): converter.add_nhwc_to_nchw_transpose(tf_graph, op_output, output) def convert_max_pool_with_index(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None # always nhwc assert not utils.has_gt_1(nnef_op.attribs["dilation"]), "Dilated pool is not supported in TensorFlow" size, stride, padding = utils.get_dict_items(nnef_op.attribs, "size", "stride", "padding") input = converter.converted_tensor(nnef_op.input) outputs = converter.converted_tensors(nnef_op.outputs) tf_op = TFOperation( graph=tf_graph, name="tf.nn.max_pool_with_argmax", inputs=converter.add_nchw_to_nhwc_transpose(tf_graph, input), attribs=dict( ksize=converter.shape_nchw_to_nhwc(size), strides=converter.shape_nchw_to_nhwc(stride) if stride else [1] * input.rank, padding=padding), outputs=tuple(converter.create_nhwc_intermediate_for_nchw_output(tf_graph, output) for output in outputs)) for op_output, output in zip(tf_op.outputs, outputs): converter.add_nhwc_to_nchw_transpose(tf_graph, op_output, output) def convert_argmax_pool(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None # always nhwc assert not utils.has_gt_1(nnef_op.attribs["dilation"]), "Dilated pool is not supported in TensorFlow" size, stride, padding = utils.get_dict_items(nnef_op.attribs, "size", "stride", "padding") input = converter.converted_tensor(nnef_op.input) index = converter.converted_tensor(nnef_op.output) index_tmp = converter.create_nhwc_intermediate_for_nchw_output(tf_graph, index) output_tmp = TFTensor(graph=tf_graph, shape=index_tmp.shape, dtype="float32") tf_op = TFOperation( graph=tf_graph, name="tf.nn.max_pool_with_argmax", inputs=converter.add_nchw_to_nhwc_transpose(tf_graph, input), attribs=dict( ksize=converter.shape_nchw_to_nhwc(size), strides=converter.shape_nchw_to_nhwc(stride) if stride else [1] * input.rank, padding=padding), outputs=(output_tmp, index_tmp)) converter.add_nhwc_to_nchw_transpose(tf_graph, index_tmp, index) def generic_convert_upsample_downsample(converter, nnef_op, tf_graph, target_name, is_downsample): # type: (Converter, NNEFOperation, TFGraph, str, bool)->None input, output = converter.converted_tensors((nnef_op.input, nnef_op.output)) factors = nnef_op.attribs["factor"] # always nhwc tf_op = TFOperation( graph=tf_graph, name=target_name, inputs=converter.add_nchw_to_nhwc_transpose(tf_graph, input), attribs=dict(size=[(int(i / f) if is_downsample else int(i * f)) for i, f in zip(input.shape[2:], factors)]), outputs=converter.create_nhwc_intermediate_for_nchw_output(tf_graph, output)) converter.add_nhwc_to_nchw_transpose(tf_graph, tf_op.output, output) if nnef_op.name == "multilinear_upsample": if nnef_op.attribs["border"].lower() != "replicate": if converter.enable_imprecise_image_resize: print("Warning: border={} is unsupported in multilinear_upsample, " "using replicate, because enable_imprecise_image_resize was True" .format(nnef_op.attribs["border"])) else: assert False, "Error: border={} is unsupported in multilinear_upsample. " \ "Use enable_imprecise_image_resize=True, to suppress this error." \ .format(nnef_op.attribs["border"]) if nnef_op.attribs["method"].lower() not in ["aligned", "asymmetric"]: if converter.enable_imprecise_image_resize: print("Warning: method={} is unsupported in multilinear_upsample, " "using align_corners=False, because enable_imprecise_image_resize was True" .format(nnef_op.attribs["method"])) else: assert False, "Error: method={} is unsupported in multilinear_upsample. " \ "Use enable_imprecise_image_resize=True, to suppress this error." \ .format(nnef_op.attribs["method"]) tf_op.attribs["align_corners"] = (nnef_op.attribs["method"].lower() == 'aligned') def generic_convert_reduce(converter, nnef_op, tf_graph, target_name, target_name_if_normalize=None): # type: (Converter, NNEFOperation, TFGraph, str, typing.Optional[str])->None input, output = converter.converted_tensors((nnef_op.input, nnef_op.output)) if nnef_op.attribs.get("normalize"): assert target_name_if_normalize target_name = target_name_if_normalize TFOperation(graph=tf_graph, name=target_name, inputs=input, attribs=dict(axis=list(nnef_op.attribs["axes"]), keepdims=True), outputs=output) def generic_convert_argminmax_reduce(converter, nnef_op, tf_graph, target_name): # type: (Converter, NNEFOperation, TFGraph, str)->None assert len(nnef_op.attribs["axes"]) == 1, "{} is only supported for one axis".format(nnef_op.name) axis = nnef_op.attribs["axes"][0] input, output = converter.converted_tensors((nnef_op.input, nnef_op.output)) argminmax = TFOperation(graph=tf_graph, name=target_name, inputs=input, attribs=dict(axis=axis), outputs=TFTensor(graph=tf_graph, shape=transforms.squeezed_shape(input.shape, [axis], can_squeeze_not_one=True), dtype=converter.tf_dtype("integer"))) TFOperation(graph=tf_graph, name="tf.expand_dims", inputs=argminmax.output, attribs=dict(axis=axis), outputs=output) def convert_moments(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input = converter.converted_tensor(nnef_op.input) mean, variance = converter.converted_tensors(nnef_op.outputs) TFOperation(graph=tf_graph, name="tf.nn.moments", inputs=input, attribs=dict(axes=list(nnef_op.attribs["axes"]), keep_dims=True), outputs=(mean, variance)) def convert_softmax(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None assert len(nnef_op.attribs["axes"]) == 1, "{} is only supported for one axis".format(nnef_op.name) axis = nnef_op.attribs["axes"][0] input, output = converter.converted_tensors((nnef_op.input, nnef_op.output)) TFOperation(graph=tf_graph, name="tf.nn.softmax", inputs=input, attribs=dict(axis=axis), outputs=output) def convert_prelu(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input, alpha = converter.converted_tensors(nnef_op.inputs) output = converter.converted_tensor(nnef_op.output) TFOperation(graph=tf_graph, name="tf.nn.leaky_relu", inputs=(input, alpha), outputs=output) def convert_leaky_relu(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input = converter.converted_tensor(nnef_op.input) alpha = converter.create_constant_tf_tensor(tf_graph=tf_graph, data=nnef_op.attribs["alpha"]) output = converter.converted_tensor(nnef_op.output) TFOperation(graph=tf_graph, name="tf.nn.leaky_relu", inputs=(input, alpha), outputs=output) def convert_local_response_normalization(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None # Probably only NHWC is supported input, output = converter.converted_tensors((nnef_op.input, nnef_op.output)) nnefsize = converter.shape_nchw_to_nhwc(nnef_op.attribs["size"]) assert len(nnefsize) >= 2, "Argument 'size' of local_response_normalization must have at least 2 elements" depth_size = nnefsize[-1] nnefsize[-1] = 1 assert not utils.has_gt_1(nnefsize), \ "local_response_normalization only supported when only the last element of 'size' is > 1" depth_radius = (depth_size - 1) / 2 alpha = nnef_op.attribs["alpha"] / depth_size tf_op = TFOperation(graph=tf_graph, name="tf.nn.lrn", inputs=converter.add_nchw_to_nhwc_transpose(tf_graph, input), attribs=dict(depth_radius=int(depth_radius), bias=nnef_op.attribs["bias"], alpha=alpha, beta=nnef_op.attribs["beta"]), outputs=converter.create_nhwc_intermediate_for_nchw_output(tf_graph, output)) converter.add_nhwc_to_nchw_transpose(tf_graph, tf_op.output, output) def convert_l2_normalization(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input, output = converter.converted_tensors((nnef_op.input, nnef_op.output)) # TODO epsilon and bias are not really the same, is this a problem? TFOperation(graph=tf_graph, name="tf.nn.l2_normalize", inputs=input, attribs=dict(axis=nnef_op.attribs["axes"], epsilon=nnef_op.attribs["bias"]), outputs=output) def convert_batch_normalization(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input, mean, variance, offset, scale = converter.converted_tensors(nnef_op.inputs) output = converter.converted_tensor(nnef_op.output) if converter.prefer_nhwc: def add_squeeze_or_transpose(tf_tensor): if tf_tensor.rank == 2 and tf_tensor.shape[0] == 1: return converter.add_squeeze(tf_graph, tf_tensor, axes=[0]) else: return converter.add_nchw_to_nhwc_transpose(tf_graph, tf_tensor) tf_op = TFOperation(graph=tf_graph, name="tf.nn.batch_normalization", inputs=(converter.add_nchw_to_nhwc_transpose(tf_graph, input), add_squeeze_or_transpose(mean), add_squeeze_or_transpose(variance), add_squeeze_or_transpose(offset), add_squeeze_or_transpose(scale)), attribs=dict(variance_epsilon=nnef_op.attribs["epsilon"]), outputs=converter.create_nhwc_intermediate_for_nchw_output(tf_graph, output)) converter.add_nhwc_to_nchw_transpose(tf_graph, tf_op.output, output) else: def add_unsqueeze(tf_tensor): return converter.add_unsqueeze(tf_graph, tf_tensor, list(range(input.rank - tf_tensor.rank, input.rank))) TFOperation(graph=tf_graph, name="tf.nn.batch_normalization", inputs=(input, add_unsqueeze(mean) if 0 < mean.rank < input.rank else mean, add_unsqueeze(variance) if 0 < variance.rank < input.rank else variance, add_unsqueeze(offset) if 0 < offset.rank < input.rank else offset, add_unsqueeze(scale) if 0 < scale.rank < input.rank else scale), attribs=dict(variance_epsilon=nnef_op.attribs["epsilon"]), outputs=output) def convert_copy_n(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None assert len(nnef_op.outputs) == nnef_op.attribs["times"], "copy_n must have 'times' outputs" input = converter.converted_tensor(nnef_op.input) outputs = converter.converted_tensors(nnef_op.outputs) for output in outputs: TFOperation(graph=tf_graph, name="tf.identity", inputs=input, outputs=output) def convert_add_n(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None inputs = list(converter.converted_tensors(nnef_op.inputs)) output = converter.converted_tensor(nnef_op.output) TFOperation(graph=tf_graph, name="tf.add_n", inputs=inputs, outputs=output) def convert_slice(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input, output = converter.converted_tensors((nnef_op.input, nnef_op.output)) axes = nnef_op.attribs["axes"] begin = nnef_op.attribs["begin"] end = nnef_op.attribs["end"] size = [ -1 if e == -1 else e - b for b, e in zip(begin, end) ] tfbegin, tfsize = utils.zip_inverse(2, [ (begin[axes.index(i)], size[axes.index(i)]) if i in axes else (0, -1) for i in range(input.rank) ]) TFOperation(graph=tf_graph, name="tf.slice", inputs=input, attribs=dict(begin=tfbegin, size=tfsize), outputs=output) def convert_stack(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None inputs = list(converter.converted_tensors(nnef_op.inputs)) output = converter.converted_tensor(nnef_op.output) TFOperation(graph=tf_graph, name="tf.stack", inputs=inputs, attribs=dict(axis=nnef_op.attribs["axis"]), outputs=output) def convert_unstack(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input = converter.converted_tensor(nnef_op.input) outputs = converter.converted_tensors(nnef_op.outputs) TFOperation(graph=tf_graph, name="tf.unstack", inputs=input, attribs=dict(num=len(outputs), axis=nnef_op.attribs["axis"]), outputs=outputs) def convert_box(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input, output = converter.converted_tensors((nnef_op.input, nnef_op.output)) if (all(s == 1 for s in nnef_op.attribs["size"]) and all(s == 1 for s in nnef_op.attribs["stride"]) and all(d == 1 for d in nnef_op.attribs["dilation"])): tf_op = TFOperation(graph=tf_graph, name="tf.pad", inputs=input, outputs=output) tf_border_mode = converter.tf_border_mode(nnef_op.attribs["border"], converter.enable_imprecise_padding_border) if tf_border_mode != 'CONSTANT': tf_op.attribs["mode"] = tf_border_mode else: assert False, "Box is not yet fully supported, only for padding" def convert_copy(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input, output = converter.converted_tensors((nnef_op.input, nnef_op.output)) TFOperation(graph=tf_graph, name="tf.identity", inputs=input, outputs=output) def convert_box_to_pad(converter, nnef_op, tf_graph): # type: (Converter, NNEFOperation, TFGraph)->None input, output = converter.converted_tensors((nnef_op.input, nnef_op.output)) assert nnef_op.attribs["size"] == [1] * input.rank, "Only 1x1 box is supported (which is used to simulate padding)" tf_op = TFOperation(graph=tf_graph, name="tf.pad", inputs=input, attribs=dict(paddings=list(nnef_op.attribs["padding"]), mode='CONSTANT', constant_values=0), outputs=output) tf_pad_mode = converter.tf_border_mode(nnef_op.attribs["border"], converter.enable_imprecise_padding_border) if tf_pad_mode != "CONSTANT": tf_op.attribs["mode"] = tf_pad_mode _DefaultConverters = { "update": convert_update, "reshape": convert_reshape, "squeeze": convert_squeeze, "unsqueeze": convert_unsqueeze, "transpose": convert_transpose, "concat": convert_concat, "split": convert_split, "add": partial(generic_convert_binary, target_name="tf.add"), "sub": partial(generic_convert_binary, target_name="tf.subtract"), "mul": partial(generic_convert_binary, target_name="tf.multiply"), "div": partial(generic_convert_binary, target_name="tf.divide"), "pow": partial(generic_convert_binary, target_name="tf.pow"), "lt": partial(generic_convert_binary, target_name="tf.less"), "gt": partial(generic_convert_binary, target_name="tf.greater"), "le": partial(generic_convert_binary, target_name="tf.less_equal"), "ge": partial(generic_convert_binary, target_name="tf.greater_equal"), "eq": partial(generic_convert_binary, target_name="tf.equal"), "ne": partial(generic_convert_binary, target_name="tf.not_equal"), "and": partial(generic_convert_binary, target_name="tf.logical_and"), "or": partial(generic_convert_binary, target_name="tf.logical_or"), "min": partial(generic_convert_binary, target_name="tf.minimum"), "max": partial(generic_convert_binary, target_name="tf.maximum"), "exp": partial(generic_convert_unary, target_name="tf.exp"), "log": partial(generic_convert_unary, target_name="tf.log"), "abs": partial(generic_convert_unary, target_name="tf.abs"), "sign": partial(generic_convert_unary, target_name="tf.sign"), "rcp": partial(generic_convert_unary, target_name="tf.reciprocal"), "neg": partial(generic_convert_unary, target_name="tf.negative"), "floor": partial(generic_convert_unary, target_name="tf.floor"), "ceil": partial(generic_convert_unary, target_name="tf.ceil"), "round": partial(generic_convert_unary, target_name="tf.round"), "sqr": partial(generic_convert_unary, target_name="tf.square"), "sqrt": partial(generic_convert_unary, target_name="tf.sqrt"), "rsqrt": partial(generic_convert_unary, target_name="tf.rsqrt"), "not": partial(generic_convert_unary, target_name="tf.logical_not"), "sigmoid": partial(generic_convert_unary, target_name="tf.nn.sigmoid"), "tanh": partial(generic_convert_unary, target_name="tf.nn.tanh"), "elu": partial(generic_convert_unary, target_name="tf.nn.elu"), "relu": partial(generic_convert_unary, target_name="tf.nn.relu"), "softplus": partial(generic_convert_unary, target_name="tf.nn.softplus"), "rsqr": convert_rsqr, "select": convert_select, "clamp": convert_clamp, "matmul": convert_matmul, "conv": convert_conv, "deconv": convert_deconv, "argmax_pool": convert_argmax_pool, "max_pool": partial(generic_convert_pooling, target_name="tf.nn.max_pool"), "avg_pool": partial(generic_convert_pooling, target_name="tf.nn.avg_pool"), "max_pool_with_index": convert_max_pool_with_index, "nearest_downsample": partial(generic_convert_upsample_downsample, target_name="tf.image.resize_nearest_neighbor", is_downsample=True), "area_downsample": partial(generic_convert_upsample_downsample, target_name="tf.image.resize_area", is_downsample=True), "nearest_upsample": partial(generic_convert_upsample_downsample, target_name="tf.image.resize_nearest_neighbor", is_downsample=False), "multilinear_upsample": partial(generic_convert_upsample_downsample, target_name="tf.image.resize_bilinear", is_downsample=False), "sum_reduce": partial(generic_convert_reduce, target_name="tf.reduce_sum", target_name_if_normalize="tf.reduce_mean"), "min_reduce": partial(generic_convert_reduce, target_name="tf.reduce_min"), "max_reduce": partial(generic_convert_reduce, target_name="tf.reduce_max"), "mean_reduce": partial(generic_convert_reduce, target_name="tf.reduce_mean"), "any_reduce": partial(generic_convert_reduce, target_name="tf.reduce_any"), "all_reduce": partial(generic_convert_reduce, target_name="tf.reduce_all"), "argmax_reduce": partial(generic_convert_argminmax_reduce, target_name="tf.argmax"), "argmin_reduce": partial(generic_convert_argminmax_reduce, target_name="tf.argmin"), "moments": convert_moments, "softmax": convert_softmax, "leaky_relu": convert_leaky_relu, "prelu": convert_prelu, "local_response_normalization": convert_local_response_normalization, "l2_normalization": convert_l2_normalization, "batch_normalization": convert_batch_normalization, "copy_n": convert_copy_n, "add_n": convert_add_n, "slice": convert_slice, "stack": convert_stack, "unstack": convert_unstack, "copy": convert_copy, "_bias_add": convert_bias_add, "box": convert_box_to_pad, # unsupported: debox, sample, desample, local_mean_normalization, local_variance_normalization, # local_contrast_normalization, linear_quantize, logarithmic_quantize, binary_quantize, ternary_quantize } ``` #### File: conversion/tensorflow/tf_py_to_tf_pb.py ```python from __future__ import division, print_function, absolute_import import typing from functools import partial import numpy as np import six from nnef_tools.conversion.tensorflow import tf_pb_to_tf_py from nnef_tools.core import utils from nnef_tools.io.tensorflow.tf_graph import * from nnef_tools.shape_inference import shape_inference as infer # noinspection PyProtectedMember _tf_py_dtype_to_tf_pb_dtype = utils.key_value_swapped(tf_pb_to_tf_py._tf_py_dtype_by_tf_pb_dtype) def convert(tf_graph): # type: (TFGraph)->None for tensor in tf_graph.tensors: if tensor.is_variable: if tensor.data.dtype == np.int64: tensor.data = tensor.data.astype(np.int32) tensor.dtype = "int32" if tensor.data.dtype == np.float64: tensor.data = tensor.data.astype(np.float32) tensor.dtype = "float32" for op in list(tf_graph.operations): if op.name == "tf.nn.softmax": expand_softmax(tf_graph, op) for op in list(tf_graph.operations): assert op.name in _DefaultConverters, "No tf_py_to_tf_pb converter for {}".format(op.name) _DefaultConverters[op.name](op) for tensor in tf_graph.tensors: tensor.dtype = _tf_py_dtype_to_tf_pb_dtype[tensor.dtype] for op in tf_graph.operations: if op.name not in ['LogicalAnd', 'LogicalNot', 'LogicalOr']: if op.name in ['Select', 'Conv2DBackpropInput', 'Conv3DBackpropInputV2']: op.attribs['T'] = op.inputs[1].dtype else: op.attribs['T'] = op.inputs[0].dtype if op.name == 'MaxPoolWithArgmax': op.attribs['Targmax'] = 'DT_INT64' tf_graph.generate_missing_names() def expand_softmax(tf_graph, tf_op): assert tf_op.input.rank != 0 axis = tf_op.attribs.get('axis') if axis is None: axis = -1 if axis < 0: axis += tf_op.input.rank tf_op.attribs['axis'] = -1 if tf_op.input.rank == 2 and axis == 1: return if axis != tf_op.input.rank - 1: perm = utils.without(range(tf_op.input.rank), axis) + [axis] perm_inv = utils.inverse_permutation(perm) transpose = TFOperation(graph=tf_graph, name="tf.transpose", inputs=tf_op.input, attribs=dict(perm=perm), outputs=TFTensor(graph=tf_graph, name=None, shape=infer.transpose(input=tf_op.input.shape, axes=perm), dtype=tf_op.input.dtype)) tf_op.inputs = transpose.output old_output = tf_op.output tf_op.outputs = TFTensor(graph=tf_graph, name=None, shape=tf_op.input.shape, dtype=tf_op.input.dtype) TFOperation(graph=tf_graph, name="tf.transpose", inputs=tf_op.output, attribs=dict(perm=perm_inv), outputs=old_output) if tf_op.input.rank != 2: shape = [-1, tf_op.input.shape[-1]] reshape = TFOperation(graph=tf_graph, name="tf.reshape", inputs=tf_op.input, attribs=dict(shape=shape), outputs=TFTensor(graph=tf_graph, name=None, shape=infer.reshape(input=tf_op.input.shape, shape=shape), dtype=tf_op.input.dtype)) tf_op.inputs = reshape.output old_output = tf_op.output tf_op.outputs = TFTensor(graph=tf_graph, name=None, shape=list(tf_op.input.shape), dtype=tf_op.input.dtype) TFOperation(graph=tf_graph, name="tf.reshape", inputs=tf_op.output, attribs=dict(shape=old_output.shape), outputs=old_output) def create_constant_tensor(graph, value, np_dtype=None): if np_dtype is not None: arr = np.array(value, dtype=np_dtype) else: arr = np.array(value) if arr.dtype == np.float64: arr = arr.astype(np.float32) elif arr.dtype == np.int64: arr = arr.astype(np.int32) # Constants must be int32 at most places return TFTensor(graph=graph, name=None, shape=list(arr.shape), dtype=str(arr.dtype), data=arr.flatten().tolist()) def generic_converter(op, # type: TFOperation target_name, # type: str revert_inputs=False, # type: bool attrib_name_dict=None, # type: typing.Optional[typing.Dict[str, str]] attrib_to_input_dict=None, # type: typing.Optional[typing.Dict[str, int]] attribs_to_remove=None # type: typing.Optional[typing.List[str]] ): op.name = target_name if revert_inputs: op.inputs = tuple(reversed(op.inputs)) if attrib_name_dict: attribs = {} for k, v in six.iteritems(op.attribs): if k in attrib_name_dict: attribs[attrib_name_dict[k]] = v else: attribs[k] = v op.attribs = attribs if attrib_to_input_dict: inputs = list(op.inputs) attribs_inputs = sorted([(a, i) for a, i in six.iteritems(attrib_to_input_dict)], key=lambda t: t[1]) for attrib_name, input_id in attribs_inputs: if input_id < 0: input_id += len(inputs) + 1 inputs.insert(input_id, create_constant_tensor(op.graph, op.attribs[attrib_name])) del op.attribs[attrib_name] op.inputs = inputs if attribs_to_remove: for attrib_name in attribs_to_remove: del op.attribs[attrib_name] def generate_back_converters(converters): back_converters = {} for target_name, converter in six.iteritems(converters): if isinstance(converter, partial) and converter.func == tf_pb_to_tf_py.generic_converter: from_name = converter.keywords['target_name'] revert_inputs = converter.keywords.get('revert_inputs', False) attrib_name_dict = utils.key_value_swapped(converter.keywords.get('attrib_name_dict', {})) attrib_to_input_dict = utils.key_value_swapped(converter.keywords.get('input_to_attrib_dict', {})) attribs_to_remove = list(six.iterkeys(converter.keywords.get('new_attribs', {}))) back_converters[from_name] = partial(generic_converter, target_name=target_name, revert_inputs=revert_inputs, attrib_name_dict=attrib_name_dict, attrib_to_input_dict=attrib_to_input_dict, attribs_to_remove=attribs_to_remove) return back_converters def convert_batch_normalization(op): # type: (TFOperation)->None op.name = "FusedBatchNorm" input, mean, variance, offset, scale = op.inputs is_nhwc = not (mean.rank >= 2 and mean.shape[1] > 1) def make_1d(tensor): # type: (TFTensor)->TFTensor if tensor.rank == 1: return tensor return TFOperation(name='Reshape', graph=tensor.graph, inputs=(tensor, create_constant_tensor(graph=tensor.graph, value=[tensor.count])), outputs=TFTensor(graph=tensor.graph, shape=[tensor.count], dtype=tensor.dtype)).output op.inputs = (input, make_1d(scale), make_1d(offset), make_1d(mean), make_1d(variance)) op.attribs['is_training'] = False op.attribs['epsilon'] = op.attribs['variance_epsilon'] op.attribs['data_format'] = 'NHWC' if is_nhwc else 'NCHW' del op.attribs['variance_epsilon'] def convert_flatten(op): # type: (TFOperation)->None op.name = "Reshape" op.inputs = tuple(op.inputs) + (create_constant_tensor(op.graph, list(op.output.shape)),) def convert_split(op): # TODO what if split has -1, and fix split # type: (TFOperation)->None if isinstance(op.attribs['num_or_size_splits'], (list, tuple)): op.name = 'SplitV' op.inputs = (op.input, create_constant_tensor(op.graph, op.attribs['num_or_size_splits'], np_dtype=np.int64), create_constant_tensor(op.graph, op.attribs['axis'])) op.attribs['num_split'] = len(op.attribs['num_or_size_splits']) del op.attribs['num_or_size_splits'] del op.attribs['axis'] else: op.name = 'Split' op.inputs = (create_constant_tensor(op.graph, op.attribs['axis']), op.input) op.attribs['num_split'] = op.attribs['num_or_size_splits'] del op.attribs['num_or_size_splits'] del op.attribs['axis'] def postconvert_concat(op): # type: (TFOperation)->None op.attribs['N'] = len(op.inputs) - 1 def postconvert_slice(op): # type: (TFOperation)->None op.attribs['Index'] = 'DT_INT32' def converter_sequence(fun1, fun2): def f(op): fun1(op) fun2(op) return f # noinspection PyProtectedMember _DefaultConverters = generate_back_converters( tf_pb_to_tf_py._DefaultConverters ) # type: typing.Dict[str, typing.Callable[[TFOperation], None]] _DefaultConverters.update({ "tf.nn.batch_normalization": convert_batch_normalization, "tf.layers.flatten": convert_flatten, 'tf.concat': converter_sequence(_DefaultConverters['tf.concat'], postconvert_concat), 'tf.nn.depthwise_conv2d': _DefaultConverters['tf.nn.depthwise_conv2d_native'], 'tf.split': convert_split, 'tf.slice': converter_sequence(_DefaultConverters['tf.slice'], postconvert_slice) }) ``` #### File: nnef_tools/core/graph_utils.py ```python from __future__ import division, print_function, absolute_import import typing from collections import deque, OrderedDict from nnef_tools.core.graph import * _OpOrOps = typing.Union[Operation, typing.Tuple[Operation, ...], typing.List[Operation]] _TensorOrTensors = typing.Union[Tensor, typing.Tuple[Tensor, ...], typing.List[Tensor]] def remove_subgraph(graph, operations): # type: (Graph, typing.List[Operation])->None """ Deletes the given ops and the tensors that are enclosed in their sub-graph """ tensors = set() for operation in operations: for tensor in operation.inputs: if (tensor not in tensors and tensor.producers and all(producer in operations for producer in tensor.producers)): tensors.add(tensor) for tensor in tensors: for operation in tensor.consumers: assert operation in operations graph.remove_operations(operations, unlink=True) graph.remove_tensors(tensors) def remove_unreachable(graph): # type: (Graph)->None visited_ops = set() # type: typing.Set[Operation] q = deque() # type: typing.Deque[Operation] output_ops = set([producer for t in graph.outputs for producer in t.producers]) for op in output_ops: visited_ops.add(op) q.append(op) while q: op = q.popleft() for tensor in op.inputs: for producer in tensor.producers: if producer not in visited_ops: visited_ops.add(producer) q.append(producer) graph.remove_operations([op for op in graph.operations if op not in visited_ops], unlink=True) def can_remove(g, t): return len(t.producers) == 0 and len(t.consumers) == 0 and t not in g.outputs and t not in g.inputs graph.remove_tensors([t for t in graph.tensors if can_remove(graph, t)]) def replace_tensor_in_inputs(graph, old_tensor, new_tensor, remove=False): if graph.input_ids is not None: graph.inputs = OrderedDict((name, new_tensor if t is old_tensor else t) for name, t in zip(graph.input_ids, graph.inputs)) else: graph.inputs = [new_tensor if t is old_tensor else t for t in graph.inputs] if remove: graph.remove_tensor(old_tensor) def replace_tensor_in_outputs(graph, old_tensor, new_tensor, remove=False): if graph.output_ids is not None: graph.outputs = OrderedDict((name, new_tensor if t is old_tensor else t) for name, t in zip(graph.output_ids, graph.outputs)) else: graph.outputs = [new_tensor if t is old_tensor else t for t in graph.outputs] if remove: graph.remove_tensor(old_tensor) def replace_tensor_in_consumers(graph, old_tensor, new_tensor, remove=False): # type: (Graph, Tensor, Tensor, bool)->None for consumer in list(old_tensor.consumers): if isinstance(consumer.inputs, tuple): consumer.inputs = tuple(new_tensor if t is old_tensor else t for t in consumer.inputs) else: consumer.inputs = [new_tensor if t is old_tensor else t for t in consumer.inputs] replace_tensor_in_outputs(graph, old_tensor, new_tensor) if remove: graph.remove_tensor(old_tensor) def remove_passthrough(g, op): # type: (Graph, Operation)->None assert len(op.outputs) == 1 and len(op.inputs) == 1 op_input = op.input op_output = op.output g.remove_operation(op, unlink=True) replace_tensor_in_consumers(g, op_output, op_input, remove=True) def remove_passthroughs(g, is_passthrough): # type: (Graph, typing.Callable[[Operation], bool])->None for op in list(g.operations): if is_passthrough(op): remove_passthrough(g, op) ``` #### File: io/nnef/parser_config.py ```python from __future__ import division, print_function, absolute_import import importlib import typing import nnef from nnef_tools.core import utils class NNEFParserConfig(object): STANDARD_CONFIG = None # It is loaded after the class definition def __init__(self, source=None, shapes=None, expand=None): if source is None: source = "" if shapes is None: shapes = {} if expand is None: expand = list() if not isinstance(expand, list): expand = list(expand) self._source = source self._shapes = shapes self._expand = expand def parse_string(self, graph_str, quant_str=None): return nnef.parse_string(graph_str=graph_str, quant_str=quant_str, stdlib=self._source, lowered=self._expand) def load_graph(self, path): return nnef.load_graph(path=path, stdlib=self._source, lowered=self._expand) def infer_shapes(self, graph): nnef.infer_shapes(graph=graph, custom_shapes=self._shapes) return graph @property def empty(self): return not self._source and not self._shapes and not self._expand @staticmethod def load_config(module_name): # type: (str)->NNEFParserConfig """ :param module_name: "package.module" :return: NNEFParserConfig """ module = importlib.import_module(module_name) custom_fragments = "" if hasattr(module, "NNEF_OP_DEFINITIONS"): custom_fragments = module.NNEF_OP_DEFINITIONS custom_expands = [] if hasattr(module, "NNEF_LOWERED_OPS"): custom_expands = module.NNEF_LOWERED_OPS custom_shapes = {} if hasattr(module, "NNEF_SHAPE_PROPAGATORS"): custom_shapes = module.NNEF_SHAPE_PROPAGATORS return NNEFParserConfig(source=custom_fragments, shapes=custom_shapes, expand=custom_expands) @staticmethod def load_configs(module_names="", load_standard=True): # type: (typing.Union[str, typing.List[str], None], bool)->typing.List[NNEFParserConfig] """ :param module_names: "package.module" or "p1.m1,p2.m2", or ["p1.m1", "p2.m2"] :param load_standard: Load the standard NNEF op definitions as well :return: parser configs """ if module_names is None: module_names = [] if utils.is_anystr(module_names): module_names = [name.strip() for name in module_names.split(',')] if module_names.strip() else [] configs = [NNEFParserConfig.STANDARD_CONFIG] if load_standard else [] for module_name in module_names: config = NNEFParserConfig.load_config(module_name) if not config.empty: configs.append(config) return configs @staticmethod def combine_configs(configs): assert all(isinstance(config, NNEFParserConfig) for config in configs) shapes = {} for config in configs: shapes.update(config._shapes) expand = [] for config in configs: expand += config._expand expand = utils.unique(expand) return NNEFParserConfig(source='\n\n'.join(config._source for config in configs), shapes=shapes, expand=expand) NNEFParserConfig.STANDARD_CONFIG = NNEFParserConfig.load_config("nnef_tools.io.nnef.parser_config_std") ``` #### File: tensorflow/tf_py/tf_py_definitions.py ```python from __future__ import division, print_function, absolute_import import typing from collections import OrderedDict import six import tensorflow as tf from nnef_tools.core import utils from nnef_tools.io.tensorflow.tf_graph import * def _getattr(module, *names): for name in names: if hasattr(module, name): return getattr(module, name) _name = "_" + name if hasattr(module, _name): return getattr(module, _name) return None class ArgProto(object): def __init__(self, arg_names, is_tensor, is_array, is_optional): self.arg_names = arg_names self.is_tensor = is_tensor self.is_array = is_array self.is_optional = is_optional @property def primary_arg_name(self): return self.arg_names[0] def __repr__(self): return "ArgProto({})".format(self.arg_names) class OpProto(object): def __init__(self, op_name, arg_protos): self.op_name = op_name self.arg_protos = arg_protos # type: typing.List[ArgProto] def list_tensor_arg_protos(self): return [a for a in self.arg_protos if a.is_tensor] def list_nontensor_arg_protos(self): return [a for a in self.arg_protos if not a.is_tensor] def __repr__(self): return "OpProto({})".format(self.op_name) def parse_arg_proto(s): is_tensor = False is_optional = False is_array = False if s.endswith('?'): is_optional = True s = s[:-1] if s.endswith('[]'): is_array = True s = s[:-2] if ':' in s: s, t = s.split(':', 1) t = t.strip() assert t == "T" is_tensor = True arg_names = list(t.strip() for t in s.split('/')) assert all(utils.is_identifier(n) for n in arg_names), "{}".format(arg_names) return ArgProto(arg_names=arg_names, is_tensor=is_tensor, is_array=is_array, is_optional=is_optional) def parse_op_proto(s): assert s and s[-1] == ')' s = s[:-1] op_name, args = s.split('(', 1) arg_protos = [] for arg in args.split(','): arg = arg.strip() assert arg arg_protos.append(parse_arg_proto(arg)) assert utils.is_identifier(op_name.replace('.', '_')) return OpProto(op_name=op_name, arg_protos=arg_protos) def args_from_tfop(op, op_proto, allow_missing=False): # type: (TFOperation, OpProto, bool)->OrderedDict[str, typing.Any] args = OrderedDict() i_tensor = 0 for arg_proto in op_proto.arg_protos: if arg_proto.is_tensor and arg_proto.is_array: args[arg_proto.primary_arg_name] = [] while i_tensor < len(op.inputs): args[arg_proto.primary_arg_name].append(op.inputs[i_tensor]) i_tensor += 1 elif arg_proto.is_tensor and not arg_proto.is_array: assert i_tensor < len(op.inputs) or arg_proto.is_optional if i_tensor < len(op.inputs): args[arg_proto.primary_arg_name] = op.inputs[i_tensor] i_tensor += 1 else: if not ((allow_missing or arg_proto.is_optional) and arg_proto.primary_arg_name not in op.attribs): args[arg_proto.primary_arg_name] = op.attribs[arg_proto.primary_arg_name] return args class TraceableFunction(object): def __init__(self, proto, fun): # type: (typing.Union[str, OpProto], typing.Union[typing.Callable, typing.List[typing.Callable]])->None funs = list(fun) if isinstance(fun, (list, tuple)) else [fun] funs = [f for f in funs if f is not None] self.op_proto = parse_op_proto(proto) if not isinstance(proto, OpProto) else proto self.functions = funs def __repr__(self): return "TraceableFunction({})".format(self.op_proto.op_name) class _Functions(object): def __init__(self): self.sinh = _getattr(tf, "sinh") self.cosh = _getattr(tf, "cosh") self.leaky_relu = _getattr(tf.nn, "leaky_relu") class _InternalFunctions(object): def __init__(self): from tensorflow.python.ops import gen_array_ops as tf_gen_array_ops from tensorflow.python.ops import array_grad as tf_array_grad from tensorflow.python.ops import gen_math_ops as tf_gen_math_ops from tensorflow.python.ops import math_grad as tf_math_grad from tensorflow.python.ops import gen_nn_ops as tf_gen_nn_ops from tensorflow.python.ops import gen_image_ops as tf_gen_image_ops from tensorflow.python.ops import variables as tf_variables self.RefVariable = _getattr(tf_variables, "RefVariable") self.add = _getattr(tf_gen_math_ops, "add") self.div = _getattr(tf_gen_math_ops, "div") self.pow = _getattr(tf_gen_math_ops, "pow") self.logical_and = _getattr(tf_gen_math_ops, "logical_and") self.logical_or = _getattr(tf_gen_math_ops, "logical_or") self.reciprocal = _getattr(tf_gen_math_ops, "reciprocal") self.logical_not = _getattr(tf_gen_math_ops, "logical_not") self.abs = _getattr(tf_gen_math_ops, "abs") self.sign = _getattr(tf_gen_math_ops, "sign") self.exp = _getattr(tf_gen_math_ops, "exp") self.log = _getattr(tf_gen_math_ops, "log") self.square = _getattr(tf_gen_math_ops, "square") self.floor = _getattr(tf_gen_math_ops, "floor") self.ceil = _getattr(tf_gen_math_ops, "ceil") self.round = _getattr(tf_gen_math_ops, "round") self.greater = _getattr(tf_gen_math_ops, "greater") self.greater_equal = _getattr(tf_gen_math_ops, "greater_equal") self.less = _getattr(tf_gen_math_ops, "less") self.less_equal = _getattr(tf_gen_math_ops, "less_equal") self.equal = _getattr(tf_gen_math_ops, "equal") self.not_equal = _getattr(tf_gen_math_ops, "not_equal") self.sqrt = _getattr(tf_gen_math_ops, "sqrt") self.rsqrt = _getattr(tf_gen_math_ops, "rsqrt") self.range = _getattr(tf_gen_math_ops, "range") self.rank = _getattr(tf_gen_array_ops, "rank") self.conv3d_backprop_input_v2 = _getattr(tf_gen_nn_ops, "conv3d_backprop_input_v2") self.fused_batch_norm = _getattr(tf_gen_nn_ops, "fused_batch_norm") self.transpose = _getattr(tf_gen_array_ops, "transpose") self.strided_slice_grad = _getattr(tf_gen_array_ops, "strided_slice_grad") self.bias_add_grad = _getattr(tf_gen_nn_ops, "bias_add_grad") self.fused_batch_norm_grad = _getattr(tf_gen_nn_ops, "fused_batch_norm_grad") self.resize_nearest_neighbor_grad = _getattr(tf_gen_image_ops, "resize_nearest_neighbor_grad") self.resize_bilinear_grad = _getattr(tf_gen_image_ops, "resize_bilinear_grad") self.resize_bicubic_grad = _getattr(tf_gen_image_ops, "resize_bicubic_grad") self.TransposeGrad = _getattr(tf_array_grad, "TransposeGrad") self.MinOrMaxGrad = _getattr(tf_math_grad, "MinOrMaxGrad") self.fused_batch_norm_grad_v2 = _getattr(tf_gen_nn_ops, "fused_batch_norm_grad_v2") self.sub = _getattr(tf_gen_math_ops, "sub") self.mul = _getattr(tf_gen_math_ops, "mul") self.real_div = _getattr(tf_gen_math_ops, "real_div") self.neg = _getattr(tf_gen_math_ops, "neg") self.mat_mul = _getattr(tf_gen_math_ops, "mat_mul") self.softmax = _getattr(tf_gen_nn_ops, "softmax") self.concat_offset = _getattr(tf_gen_array_ops, "concat_offset") self.fused_batch_norm_v2 = _getattr(tf_gen_nn_ops, "fused_batch_norm_v2") self.max_pool_grad = _getattr(tf_gen_nn_ops, "max_pool_grad") self.max_pool_grad_with_argmax = _getattr(tf_gen_nn_ops, "max_pool_grad_with_argmax") self.avg_pool_grad = _getattr(tf_gen_nn_ops, "avg_pool_grad") self.sqrt_grad = _getattr(tf_gen_math_ops, "sqrt_grad") self.elu_grad = _getattr(tf_gen_nn_ops, "elu_grad") self.relu_grad = _getattr(tf_gen_nn_ops, "relu_grad") self.relu6_grad = _getattr(tf_gen_nn_ops, "relu6_grad") self.softplus_grad = _getattr(tf_gen_nn_ops, "softplus_grad") self.rsqrt_grad = _getattr(tf_gen_math_ops, "rsqrt_grad") self.sigmoid_grad = _getattr(tf_gen_math_ops, "sigmoid_grad") self.tanh_grad = _getattr(tf_gen_math_ops, "tanh_grad") self.reciprocal_grad = _getattr(tf_gen_math_ops, "reciprocal_grad") self.lrn_grad = _getattr(tf_gen_nn_ops, "lrn_grad") self.mirror_pad_grad = _getattr(tf_gen_array_ops, "mirror_pad_grad") self.broadcast_gradient_args = _getattr(tf_gen_array_ops, "broadcast_gradient_args") tf_functions = _Functions() tf_internal = _InternalFunctions() DefaultTraceableFunctions = [ TraceableFunction("tf.gradients(xs:T[], ys:T[])", [tf.gradients]), TraceableFunction("tf.constant(value, dtype, shape, name)", [tf.constant]), TraceableFunction("tf.placeholder(shape, dtype, name)", [tf.placeholder]), TraceableFunction("tf.get_variable(shape, dtype, name)", [tf.get_variable]), TraceableFunction("tf.Variable(initial_value, dtype, name)", [tf.Variable, tf_internal.RefVariable]), TraceableFunction("tf.assign(ref:T, value:T)", [tf.assign]), TraceableFunction("tf.concat(values:T[], axis)", [tf.concat]), TraceableFunction("tf.split(value:T, num_or_size_splits, axis)", [tf.split]), TraceableFunction("tf.reshape(tensor:T, shape)", [tf.reshape]), TraceableFunction("tf.squeeze(input:T, axis/squeeze_dims[])", [tf.squeeze]), TraceableFunction("tf.expand_dims(input:T, axis/dim)", [tf.expand_dims]), TraceableFunction("tf.transpose(a/x:T, perm)", [tf.transpose, tf_internal.transpose]), TraceableFunction("tf.pad(tensor:T, paddings, mode, constant_values)", [tf.pad]), TraceableFunction("tf.add(x:T, y:T)", [tf.add, tf_internal.add]), TraceableFunction("tf.subtract(x:T, y:T)", [tf.subtract, tf_internal.sub]), TraceableFunction("tf.multiply(x:T, y:T)", [tf.multiply, tf_internal.mul]), TraceableFunction("tf.divide(x:T, y:T)", [tf.divide, tf_internal.div, tf_internal.real_div]), TraceableFunction("tf.floor_div(x:T, y:T)", [tf.floor_div]), TraceableFunction("tf.mod(x:T, y:T)", [tf.mod]), TraceableFunction("tf.pow(x:T, y:T)", [tf.pow, tf_internal.pow]), TraceableFunction("tf.logical_and(x:T, y:T)", [tf.logical_and, tf_internal.logical_and]), TraceableFunction("tf.logical_or(x:T, y:T)", [tf.logical_or, tf_internal.logical_or]), TraceableFunction("tf.greater(x:T, y:T)", [tf.greater, tf_internal.greater]), TraceableFunction("tf.greater_equal(x:T, y:T)", [tf.greater_equal, tf_internal.greater_equal]), TraceableFunction("tf.less(x:T, y:T)", [tf.less, tf_internal.less]), TraceableFunction("tf.less_equal(x:T, y:T)", [tf.less_equal, tf_internal.less_equal]), TraceableFunction("tf.equal(x:T, y:T)", [tf.equal, tf_internal.equal]), TraceableFunction("tf.not_equal(x:T, y:T)", [tf.not_equal, tf_internal.not_equal]), TraceableFunction("tf.squared_difference(x:T, y:T)", [tf.squared_difference]), TraceableFunction("tf.minimum(x:T, y:T)", [tf.minimum]), TraceableFunction("tf.maximum(x:T, y:T)", [tf.maximum]), TraceableFunction("tf.reciprocal(x:T)", [tf.reciprocal, tf_internal.reciprocal]), TraceableFunction("tf.negative(x:T)", [tf.negative, tf_internal.neg]), TraceableFunction("tf.logical_not(x:T)", [tf.logical_not, tf_internal.logical_not]), TraceableFunction("tf.abs(x:T)", [tf.abs, tf_internal.abs]), TraceableFunction("tf.sign(x:T)", [tf.sign, tf_internal.sign]), TraceableFunction("tf.exp(x:T)", [tf.exp, tf_internal.exp]), TraceableFunction("tf.log(x:T)", [tf.log, tf_internal.log]), TraceableFunction("tf.sqrt(x:T)", [tf.sqrt, tf_internal.sqrt]), TraceableFunction("tf.rsqrt(x:T)", [tf.rsqrt, tf_internal.rsqrt]), TraceableFunction("tf.square(x:T)", [tf.square, tf_internal.square]), TraceableFunction("tf.floor(x:T)", [tf.floor, tf_internal.floor]), TraceableFunction("tf.ceil(x:T)", [tf.ceil, tf_internal.ceil]), TraceableFunction("tf.round(x:T)", [tf.round, tf_internal.round]), # TraceableFunction("tf.sin(x:T)", [tf.sin]), # TraceableFunction("tf.cos(x:T)", [tf.cos]), TraceableFunction("tf.sinh(x:T)", [tf_functions.sinh]), TraceableFunction("tf.cosh(x:T)", [tf_functions.cosh]), TraceableFunction("tf.nn.sigmoid(x:T)", [tf.sigmoid, tf.nn.sigmoid]), TraceableFunction("tf.nn.tanh(x:T)", [tf.tanh, tf.nn.tanh]), TraceableFunction("tf.where(condition:T, x:T, y:T)", [tf.where]), TraceableFunction("tf.reduce_sum(input_tensor:T, axis/reduction_indices[], keepdims/keep_dims)", [tf.reduce_sum]), TraceableFunction("tf.reduce_mean(input_tensor:T, axis/reduction_indices[], keepdims/keep_dims)", [tf.reduce_mean]), TraceableFunction("tf.reduce_max(input_tensor:T, axis/reduction_indices[], keepdims/keep_dims)", [tf.reduce_max]), TraceableFunction("tf.reduce_min(input_tensor:T, axis/reduction_indices[], keepdims/keep_dims)", [tf.reduce_min]), TraceableFunction("tf.reduce_any(input_tensor:T, axis/reduction_indices[], keepdims/keep_dims)", [tf.reduce_any]), TraceableFunction("tf.reduce_all(input_tensor:T, axis/reduction_indices[], keepdims/keep_dims)", [tf.reduce_all]), TraceableFunction("tf.argmax(input:T, axis/dimension)", [tf.argmax]), TraceableFunction("tf.argmin(input:T, axis/dimension)", [tf.argmin]), TraceableFunction("tf.matmul(a:T, b:T, transpose_a, transpose_b, adjoint_a?, adjoint_b?)", [tf.matmul, tf_internal.mat_mul]), TraceableFunction("tf.add_n(inputs:T[])", [tf.add_n]), TraceableFunction("tf.nn.elu(features:T)", [tf.nn.elu]), TraceableFunction("tf.nn.relu(features:T)", [tf.nn.relu]), TraceableFunction("tf.nn.relu6(features:T)", [tf.nn.relu6]), TraceableFunction("tf.nn.softsign(features:T)", [tf.nn.softsign]), TraceableFunction("tf.nn.softplus(features:T)", [tf.nn.softplus]), TraceableFunction("tf.nn.leaky_relu(features:T, alpha:T)", [tf_functions.leaky_relu]), TraceableFunction("tf.nn.conv1d(value:T, filters:T, stride[], padding, data_format?)", [tf.nn.conv1d]), TraceableFunction("tf.nn.conv2d(input:T, filter:T, strides, padding, data_format?, dilations?)", [tf.nn.conv2d]), TraceableFunction("tf.nn.conv3d(input:T, filter:T, strides, padding, data_format?, dilations?)", [tf.nn.conv3d]), TraceableFunction("tf.nn.convolution(input:T, filter:T, padding, strides, dilation_rate, data_format?)", [tf.nn.convolution]), TraceableFunction("tf.nn.atrous_conv2d(value:T, filters:T, rate, padding)", [tf.nn.atrous_conv2d]), TraceableFunction("tf.nn.conv2d_transpose(value:T, filter:T, output_shape, strides, padding, data_format?)", [tf.nn.conv2d_transpose]), TraceableFunction("tf.nn.conv3d_transpose(value:T, filter:T, output_shape, strides, padding, data_format?)", [tf.nn.conv3d_transpose]), TraceableFunction("tf.nn.atrous_conv2d_transpose(value:T, filters:T, output_shape, rate, padding)", [tf.nn.atrous_conv2d_transpose]), TraceableFunction("tf.nn.depthwise_conv2d(input:T, filter:T, strides, padding, rate, data_format?)", [tf.nn.depthwise_conv2d]), TraceableFunction("tf.nn.depthwise_conv2d_native(input:T, filter:T, strides, padding, data_format?, dilations?)", [tf.nn.depthwise_conv2d_native]), TraceableFunction("tf.nn.separable_conv2d(input:T, depthwise_filter:T, pointwise_filter:T, strides, padding, " "rate, data_format?)", [tf.nn.separable_conv2d]), TraceableFunction("tf.nn.conv2d_backprop_input(input_sizes, filter:T, out_backprop:T, strides, padding, " "data_format?, dilations?)", [tf.nn.conv2d_backprop_input]), TraceableFunction("tf.nn.depthwise_conv2d_native_backprop_input(input_sizes, filter:T, out_backprop:T, strides, " "padding, data_format?, dilations?)", [tf.nn.depthwise_conv2d_native_backprop_input]), TraceableFunction("tf.nn.conv2d_backprop_filter(input:T, filter_sizes, out_backprop:T, strides, padding, " "data_format?, dilations?)", [tf.nn.conv2d_backprop_filter]), TraceableFunction("tf.nn.conv3d_backprop_filter_v2(input:T, filter_sizes, out_backprop:T, strides, padding, " "data_format?, dilations?)", [tf.nn.conv3d_backprop_filter_v2]), TraceableFunction("tf.nn.depthwise_conv2d_native_backprop_filter(input:T, filter_sizes, out_backprop:T, strides, " "padding, data_format?, dilations?)", [tf.nn.depthwise_conv2d_native_backprop_filter]), TraceableFunction("tf.nn.max_pool(value:T, ksize, strides, padding, data_format?)", [tf.nn.max_pool]), TraceableFunction("tf.nn.avg_pool(value:T, ksize, strides, padding, data_format?)", [tf.nn.avg_pool]), TraceableFunction("tf.nn.max_pool_with_argmax(input:T, ksize, strides, padding, data_format?)", [tf.nn.max_pool_with_argmax]), TraceableFunction("tf.nn.bias_add(value:T, bias:T, data_format?)", [tf.nn.bias_add]), TraceableFunction("tf.nn.lrn(input:T, depth_radius, bias, alpha, beta)", [tf.nn.lrn]), TraceableFunction("tf.nn.batch_normalization(x:T, mean:T, variance:T, offset:T, scale:T, variance_epsilon)", [tf.nn.batch_normalization]), TraceableFunction("tf.nn.fused_batch_norm(x:T, scale:T, offset:T, mean:T?, variance:T?, epsilon, data_format?, " "is_training)", [tf.nn.fused_batch_norm, tf_internal.fused_batch_norm, tf_internal.fused_batch_norm_v2]), TraceableFunction("tf.nn.l2_normalize(x:T, axis/dim[], epsilon)", [tf.nn.l2_normalize]), TraceableFunction("tf.nn.softmax(logits:T, axis/dim?)", [tf.nn.softmax, tf.contrib.layers.softmax, tf_internal.softmax]), TraceableFunction("tf.nn.moments(x:T, axes[], keep_dims)", [tf.nn.moments]), TraceableFunction("tf.image.resize_images(images:T, size, method, align_corners)", [tf.image.resize_images]), TraceableFunction("tf.image.resize_bilinear(images:T, size, align_corners)", [tf.image.resize_bilinear]), TraceableFunction("tf.image.resize_nearest_neighbor(images:T, size, align_corners)", [tf.image.resize_nearest_neighbor]), TraceableFunction("tf.image.resize_bicubic(images:T, size, align_corners)", [tf.image.resize_bicubic]), TraceableFunction("tf.image.resize_area(images:T, size, align_corners)", [tf.image.resize_area]), TraceableFunction("tf.layers.flatten(inputs:T)", [tf.layers.flatten, tf.contrib.layers.flatten]), TraceableFunction("tf.clip_by_value(t:T, clip_value_min:T, clip_value_max:T)", [tf.clip_by_value]), TraceableFunction("tf.slice(input_:T, begin, size)", [tf.slice]), TraceableFunction("tf.strided_slice(input_:T, begin, end, strides, begin_mask, end_mask, " "ellipsis_mask, new_axis_mask, shrink_axis_mask, var)", [tf.strided_slice]), TraceableFunction("tf.stack(values:T[], axis)", [tf.stack]), TraceableFunction("tf.unstack(value:T, num, axis)", [tf.unstack]), TraceableFunction("tf.identity(input:T)", [tf.identity]), TraceableFunction("tf.stop_gradient(input:T)", [tf.stop_gradient]), TraceableFunction("tf.cast(x:T, dtype)", [tf.cast]), TraceableFunction("tf.nn.dropout(x:T, keep_prob)", [tf.nn.dropout]), TraceableFunction("tf.space_to_batch(input:T, paddings, block_size)", [tf.space_to_batch]), TraceableFunction("tf.space_to_batch_nd(input:T, block_shape, paddings)", [tf.space_to_batch_nd]), TraceableFunction("tf.batch_to_space(input:T, crops, block_size)", [tf.batch_to_space]), TraceableFunction("tf.batch_to_space_nd(input:T, block_shape, crops)", [tf.batch_to_space_nd]), TraceableFunction("tf.zeros(shape, dtype)", [tf.zeros]), TraceableFunction("tf.ones(shape, dtype)", [tf.ones]), TraceableFunction("tf.zeros_like(tensor:T, dtype)", [tf.zeros_like]), TraceableFunction("tf.ones_like(tensor:T, dtype)", [tf.ones_like]), TraceableFunction("tf.tile(input:T, multiples)", [tf.tile]), TraceableFunction("tf.dynamic_stitch(indices, data)", [tf.dynamic_stitch]), TraceableFunction("tf.range(start, limit, delta, dtype)", [tf.range, tf_internal.range]), TraceableFunction("tf.rank(input:T)", [tf.rank, tf_internal.rank]), TraceableFunction("tf.shape(input:T)", [tf.shape]), TraceableFunction("tf.shape_n(input:T[])", [tf.shape_n]), TraceableFunction("tf.invert_permutation(x:T)", [tf.invert_permutation]), TraceableFunction("tf.fill(dims, value)", [tf.fill]), TraceableFunction("tf.random_uniform(shape, minval, maxval, dtype, seed)", [tf.random_uniform]), TraceableFunction("_tf.conv3d_backprop_input_v2(input_sizes, filter:T, out_backprop:T, strides, padding, " "data_format?, dilations?)", [tf_internal.conv3d_backprop_input_v2]), TraceableFunction("_tf.concat_offset(concat_dim, shape)", [tf_internal.concat_offset]), TraceableFunction("_tf.broadcast_gradient_args(s0, s1)", [tf_internal.broadcast_gradient_args]), TraceableFunction("_tf.sqrt_grad(y:T, dy:T)", [tf_internal.sqrt_grad]), TraceableFunction("_tf.rsqrt_grad(y:T, dy:T)", [tf_internal.rsqrt_grad]), TraceableFunction("_tf.sigmoid_grad(y:T, dy:T)", [tf_internal.sigmoid_grad]), TraceableFunction("_tf.tanh_grad(y:T, dy:T)", [tf_internal.tanh_grad]), TraceableFunction("_tf.reciprocal_grad(y:T, dy:T)", [tf_internal.reciprocal_grad]), TraceableFunction("_tf.strided_slice_grad(shape, begin, end, strides, dy:T, begin_mask, end_mask, " "ellipsis_mask, new_axis_mask, shrink_axis_mask)", [tf_internal.strided_slice_grad]), TraceableFunction("_tf.bias_add_grad(out_backprop:T, data_format?)", [tf_internal.bias_add_grad]), TraceableFunction("_tf.fused_batch_norm_grad(y_backprop:T, x:T, scale:T, reserve_space_1:T?, reserve_space_2:T?, " "epsilon, data_format?, is_training)", [tf_internal.fused_batch_norm_grad, tf_internal.fused_batch_norm_grad_v2]), TraceableFunction("_tf.max_pool_grad(orig_input:T, orig_output:T, grad:T, ksize, strides, padding, data_format?)", [tf_internal.max_pool_grad]), TraceableFunction("_tf.max_pool_grad_with_argmax(input:T, grad:T, argmax:T, ksize, strides, padding)", [tf_internal.max_pool_grad_with_argmax]), TraceableFunction("_tf.avg_pool_grad(orig_input_shape, grad:T, ksize, strides, padding, data_format?)", [tf_internal.avg_pool_grad]), TraceableFunction("_tf.elu_grad(gradients:T, outputs:T)", [tf_internal.elu_grad]), TraceableFunction("_tf.relu_grad(gradients:T, features:T)", [tf_internal.relu_grad]), TraceableFunction("_tf.relu6_grad(gradients:T, features:T)", [tf_internal.relu6_grad]), TraceableFunction("_tf.softplus_grad(gradients:T, features:T)", [tf_internal.softplus_grad]), TraceableFunction("_tf.lrn_grad(input_grads:T, input_image:T, output_image:T, depth_radius, bias, alpha, beta)", [tf_internal.lrn_grad]), TraceableFunction("_tf.TransposeGrad(orig_input/_orig_input_0:T, orig_perm/_orig_input_1, " "orig_output/_orig_output_0:T, grad:T)", [tf_internal.TransposeGrad]), TraceableFunction("_tf.MinOrMaxGrad(orig_input/_orig_input_0:T, orig_axis/_orig_input_1[], " "orig_output/_orig_output_0:T, grad:T)", [tf_internal.MinOrMaxGrad]), TraceableFunction("_tf.resize_nearest_neighbor_grad(grads:T, size, align_corners)", [tf_internal.resize_nearest_neighbor_grad]), TraceableFunction("_tf.resize_bilinear_grad(grads:T, original_image:T, align_corners)", [tf_internal.resize_bilinear_grad]), TraceableFunction("_tf.resize_bicubic_grad(grads:T, original_image:T, align_corners)", [tf_internal.resize_bicubic_grad]), TraceableFunction("_tf.mirror_pad_grad(input:T, paddings, mode)", [tf_internal.mirror_pad_grad]), ] ``` #### File: optimization/tensorflow/tf_data_format_optimizer.py ```python from __future__ import division, print_function, absolute_import import typing from nnef_tools.conversion.conversion_info import ConversionInfo from nnef_tools.io.tensorflow.tf_graph import TFGraph, TFOperation, TFTensor from nnef_tools.optimization.data_format_optimizer import * class TFDataFormatOptimizationDriver(DataFormatOptimizationDriver): @property def graph_type(self): return TFGraph @property def tensor_type(self): return TFTensor @property def op_type(self): return TFOperation @property def conv_grad_filter_op_names(self): return ["tf.nn.conv2d_backprop_filter", "tf.nn.conv3d_backprop_filter_v2", "tf.nn.depthwise_conv2d_native_backprop_filter"] @property def squeeze_op_name(self): return "tf.squeeze" @property def unsqueeze_op_name(self): return "tf.expand_dims" @property def transpose_op_name(self): return "tf.transpose" @property def reshape_op_name(self): return "tf.reshape" @property def copy_op_name(self): return "tf.identity" def get_axes_from_squeeze(self, squeeze): assert isinstance(squeeze.attribs["axis"], list) return squeeze.attribs["axis"] def set_axes_on_squeeze(self, squeeze, axes): squeeze.attribs["axis"] = axes def get_axes_from_unsqueeze(self, unsqueeze): assert isinstance(unsqueeze.attribs["axis"], int) return [unsqueeze.attribs["axis"]] def get_axes_from_transpose(self, transpose): assert isinstance(transpose.attribs["perm"], list) return transpose.attribs["perm"] def set_axes_on_transpose(self, transpose, axes): transpose.attribs["perm"] = axes def get_shape_from_reshape(self, reshape): assert isinstance(reshape.attribs["shape"], list) return reshape.attribs["shape"] def create_tensor(self, graph, name, shape, dtype): return TFTensor(graph=graph, name=name, shape=shape, dtype=dtype) def create_transpose_op(self, graph, input, output, axes): return TFOperation(graph=graph, name="tf.transpose", inputs=input, attribs=dict(perm=axes), outputs=output) def create_copy_op(self, graph, input, output): return TFOperation(graph=graph, name="tf.identity", inputs=input, outputs=output) def generate_missing_names(self, graph): graph.generate_missing_names() def get_input_of_transform(self, transform): return transform.input def transpose_operation_default(transposer, graph, op, perm): # type: (Transposer, TFGraph, TFOperation, typing.List[int])->None if "begin" in op.attribs: op.attribs["begin"] = transposer.apply_permutation(op.attribs["begin"], perm) if "size" in op.attribs: op.attribs["size"] = transposer.apply_permutation(op.attribs["size"], perm) if "paddings" in op.attribs: op.attribs["paddings"] = transposer.apply_permutation(op.attribs["paddings"], perm) if "axis" in op.attribs: if isinstance(op.attribs["axis"], (list, tuple)): op.attribs["axis"] = transposer.apply_permutation_to_axes(op.attribs["axis"], perm) else: op.attribs["axis"] = transposer.apply_permutation_to_axis(op.attribs["axis"], perm) if "axes" in op.attribs: op.attribs["axes"] = transposer.apply_permutation_to_axes(op.attribs["axes"], perm) def _get_default_transposable_ops(): unary_ops = ['tf.identity', 'tf.negative', 'tf.reciprocal', 'tf.exp', 'tf.log', 'tf.abs', 'tf.sign', 'tf.logical_not', 'tf.floor', 'tf.ceil', 'tf.round', 'tf.square', 'tf.sqrt', 'tf.rsqrt'] binary_ops = ['tf.add', 'tf.subtract', 'tf.multiply', 'tf.divide', 'tf.pow', 'tf.less', 'tf.greater', 'tf.less_equal', 'tf.greater_equal', 'tf.equal', 'tf.not_equal', 'tf.logical_and', 'tf.logical_or', 'tf.minimum', 'tf.maximum'] activation_ops = ['tf.nn.sigmoid', 'tf.nn.relu', 'tf.nn.relu6', 'tf.nn.leaky_relu', 'tf.nn.elu', 'tf.nn.tanh', 'tf.nn.softplus', 'tf.nn.softsign'] reduce_ops = ['tf.reduce_sum', 'tf.reduce_mean', 'tf.reduce_max', 'tf.reduce_min', 'tf.reduce_any', 'tf.reduce_all'] skippable_norm_ops = ['tf.nn.l2_normalize'] skippable_other_ops = ['tf.where', 'tf.concat', 'tf.stack', 'tf.unstack', 'tf.add_n', 'tf.nn.moments', 'tf.pad', '_tf.mirror_pad_grad', 'tf.clip_by_value', 'tf.split', 'tf.nn.softmax', "tf.slice"] op_names = (unary_ops + binary_ops + activation_ops + reduce_ops + skippable_norm_ops + skippable_other_ops) ops = [TransposableOperation(name=name, dg_transpose=transpose_operation_default) for name in op_names] return ops _DefaultTransposableOps = _get_default_transposable_ops() # type: typing.List[TransposableOperation] def optimize(g, # type: TFGraph remove_unneeded_copies=False, # type: bool remove_inverse_transposes=False, # type: bool merge_transforms_into_variables=False, # type: bool merge_transforms_into_constants=False, # type: bool custom_transposable_ops=None, # type: typing.Optional[typing.List[TransposableOperation]] io_transform=None, # type:typing.Optional[TrafoOrTrafoDictType] verbose=False, # type: bool rename_tensors=False, # type: bool ): transposable_ops = _DefaultTransposableOps + (custom_transposable_ops if custom_transposable_ops else []) return optimize_impl(g=g, driver=TFDataFormatOptimizationDriver(), remove_unneeded_copies=remove_unneeded_copies, remove_inverse_transposes=remove_inverse_transposes, merge_transforms_into_variables=merge_transforms_into_variables, merge_transforms_into_constants=merge_transforms_into_constants, transposable_ops=transposable_ops, io_transform=io_transform, verbose=verbose, rename_tensors=rename_tensors) class Optimizer(object): def __init__(self, io_transform=None, # type:typing.Optional[TrafoOrTrafoDictType] custom_transposable_ops=None, # type: typing.Optional[typing.List[TransposableOperation]] merge_transforms_into_variables=False, # type: bool ): # type: (...)->None self._io_transform = io_transform self._custom_transposable_ops = custom_transposable_ops self._merge_transforms_into_variables = merge_transforms_into_variables def __call__(self, g): # type: (TFGraph)->ConversionInfo transposable_ops = (_DefaultTransposableOps + (self._custom_transposable_ops if self._custom_transposable_ops else [])) return optimize_impl(g=g, driver=TFDataFormatOptimizationDriver(), remove_unneeded_copies=True, remove_inverse_transposes=True, merge_transforms_into_variables=self._merge_transforms_into_variables, merge_transforms_into_constants=True, transposable_ops=transposable_ops, io_transform=self._io_transform, verbose=False, rename_tensors=True) ``` #### File: tests/activation/tflite_layer_test_cases.py ```python from __future__ import division, print_function, absolute_import import os import shutil import unittest import tensorflow as tf from tests.activation.tflite_test_runner import TFLiteTestRunner if not os.path.exists('nnef_tools') and os.path.exists('../../nnef_tools'): os.chdir('../..') class TFLiteLayerTestCases(TFLiteTestRunner): @classmethod def setUpClass(cls): if os.path.exists("out"): shutil.rmtree("out") @staticmethod def to_tflite(fun): tf.reset_default_graph() input, output = fun() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) converter = tf.contrib.lite.TFLiteConverter.from_session(sess, [input], [output]) tflite_model = converter.convert() filename = "out/orig/{}.tflite".format(fun.__name__) dir = os.path.dirname(filename) if not os.path.exists(dir): os.makedirs(dir) with open(filename, "wb") as f: f.write(tflite_model) return filename @staticmethod def conv_network(): input_ = tf.placeholder(tf.float32, shape=[1, 64, 64, 3], name="input") filter_ = tf.get_variable(dtype=tf.float32, shape=[4, 4, 3, 16], name="filter") return input_, tf.nn.conv2d(input_, filter_, [1, 1, 1, 1], 'VALID') def test_conv(self): self._test_model(self.to_tflite(self.conv_network)) @staticmethod def conv_relu_network(): input_ = tf.placeholder(tf.float32, shape=[1, 64, 64, 3], name="input") filter_ = tf.get_variable(dtype=tf.float32, shape=[4, 4, 3, 16], name="filter") conv = tf.nn.conv2d(input_, filter_, [1, 1, 1, 1], 'VALID') relu = tf.nn.relu(conv) return input_, relu def test_conv_relu(self): self._test_model(self.to_tflite(self.conv_relu_network)) @staticmethod def depthwise_conv_relu_network(): input_ = tf.placeholder(tf.float32, shape=[1, 64, 64, 3], name="input") filter_ = tf.get_variable(dtype=tf.float32, shape=[4, 4, 3, 2], name="filter") conv = tf.nn.depthwise_conv2d(input_, filter_, [1, 1, 1, 1], 'VALID') relu = tf.nn.relu(conv) return input_, relu def test_depthwise_conv_relu(self): self._test_model(self.to_tflite(self.depthwise_conv_relu_network)) @staticmethod def max_pool_network(): input_ = tf.placeholder(tf.float32, shape=[1, 64, 64, 3], name="input") return input_, tf.nn.relu(tf.nn.max_pool(input_, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID')) def test_max_pool(self): self._test_model(self.to_tflite(self.max_pool_network)) @staticmethod def avg_pool_network(): input_ = tf.placeholder(tf.float32, shape=[1, 64, 64, 3], name="input") return input_, tf.nn.relu(tf.nn.avg_pool(input_, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID')) def test_avg_pool(self): self._test_model(self.to_tflite(self.avg_pool_network)) @staticmethod def concat_network(): input_ = tf.placeholder(tf.float32, shape=[1, 64, 64, 3], name="input") return input_, tf.concat([input_, input_ + input_], axis=2) def test_concat(self): self._test_model(self.to_tflite(self.concat_network)) @staticmethod def softmax_network(): input_ = tf.placeholder(tf.float32, shape=[1, 64, 64, 3], name="input") return input_, tf.nn.softmax(input_) def test_softmax(self): self._test_model(self.to_tflite(self.softmax_network)) @staticmethod def network1(): input_ = tf.placeholder(tf.float32, shape=[1, 64, 64, 3], name="input") filter_ = tf.get_variable(dtype=tf.float32, shape=[4, 4, 3, 16], name="filter") conv = tf.nn.conv2d(input_, filter_, [1, 1, 1, 1], 'VALID') bias = tf.constant(dtype=tf.float32, shape=[16], value=4.5, name="bias") bias_add = tf.nn.bias_add(conv, bias) relu = tf.nn.relu(bias_add) max = tf.nn.max_pool(relu, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID') filter2_ = tf.get_variable(dtype=tf.float32, shape=[4, 4, 16, 16], name="filter2") conv2 = tf.nn.conv2d(max, filter2_, [1, 1, 1, 1], 'VALID') bias_add2 = tf.nn.bias_add(conv2, bias) relu2 = tf.nn.relu(bias_add2) return input_, relu2 def test_network1(self): self._test_model(self.to_tflite(self.network1)) @staticmethod def abs_network(): input_ = tf.placeholder(tf.float32, shape=[1, 64, 64, 3], name="input") return input_, tf.abs(input_) @unittest.skip('Not yet supported in tflite') def test_abs(self): self._test_model(self.to_tflite(self.abs_network)) @staticmethod def add_network(): input_ = tf.placeholder(tf.float32, shape=[1, 64, 64, 3], name="input") return input_, tf.nn.relu(tf.add(input_, input_)) def test_add(self): self._test_model(self.to_tflite(self.add_network)) @staticmethod def subtract_network(): input_ = tf.placeholder(tf.float32, shape=[1, 64, 64, 3], name="input") return input_, tf.nn.relu(tf.subtract(input_, input_)) def test_subtract(self): self._test_model(self.to_tflite(self.subtract_network)) @staticmethod def multiply_network(): input_ = tf.placeholder(tf.float32, shape=[1, 64, 64, 3], name="input") return input_, tf.nn.relu(tf.multiply(input_, input_)) def test_multiply(self): self._test_model(self.to_tflite(self.multiply_network)) @staticmethod def add_n_network(): input_ = tf.placeholder(tf.float32, shape=[1, 64, 64, 3], name="input") return input_, tf.add_n([input_, input_, input_]) @unittest.skip('Not yet supported in tflite') def test_add_n(self): self._test_model(self.to_tflite(self.add_n_network)) @staticmethod def argmax_network(): input_ = tf.placeholder(tf.float32, shape=[1, 64, 64, 3], name="input") output_ = tf.argmax(input_, axis=3) return input_, output_ def test_argmax(self): self._test_model(self.to_tflite(self.argmax_network)) @staticmethod def argmin_network(): input_ = tf.placeholder(tf.float32, shape=[1, 64, 64, 3], name="input") return input_, tf.argmin(input_, axis=3) def test_argmin(self): self._test_model(self.to_tflite(self.argmin_network)) @staticmethod def deconv_network(): input_ = tf.placeholder(tf.float32, shape=[1, 64, 64, 16], name="input") filter_ = tf.get_variable(dtype=tf.float32, shape=[4, 4, 3, 16], name="filter") return input_, tf.nn.relu(tf.nn.conv2d_transpose(value=input_, filter=filter_, output_shape=[1, 64, 64, 3], strides=[1, 1, 1, 1], padding='SAME')) def test_deconv(self): self._test_model(self.to_tflite(self.deconv_network)) @staticmethod def elu_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.nn.elu(input_) @unittest.skip('Not yet supported in tflite') def test_elu(self): self._test_model(self.to_tflite(self.elu_network)) @staticmethod def equal_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.equal(input_, input_) def test_equal(self): self._test_model(self.to_tflite(self.equal_network)) @staticmethod def exp_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.exp(input_) def test_exp(self): self._test_model(self.to_tflite(self.exp_network), max_val=1.0) @staticmethod def fill_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.fill([1, 2, 2, 3], 0.6) + input_ def test_fill(self): self._test_model(self.to_tflite(self.fill_network)) @staticmethod def floor_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.floor(input_) def test_floor(self): self._test_model(self.to_tflite(self.floor_network)) @staticmethod def ceil_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.ceil(input_) @unittest.skip('Not yet supported in tflite') def test_ceil(self): self._test_model(self.to_tflite(self.ceil_network)) @staticmethod def greater_equal_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.greater_equal(input_, input_) def test_greater_equal(self): self._test_model(self.to_tflite(self.greater_equal_network)) @staticmethod def greater_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.greater(input_, input_) def test_greater(self): self._test_model(self.to_tflite(self.greater_network)) @staticmethod def l2_normalize_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.nn.relu(tf.nn.l2_normalize(input_, axis=-1)) def test_l2_normalize(self): self._test_model(self.to_tflite(self.l2_normalize_network)) @staticmethod def matmul_network(): input_ = tf.placeholder(tf.float32, shape=[2, 5], name="input") filter_ = tf.get_variable(dtype=tf.float32, shape=[5, 6], name="filter") return input_, tf.matmul(input_, filter_) + tf.nn.relu(tf.matmul(input_, filter_)) def test_matmul(self): self._test_model(self.to_tflite(self.matmul_network)) @staticmethod def leaky_relu_network(): input_ = tf.placeholder(tf.float32, shape=[2, 5], name="input") return input_, tf.nn.leaky_relu(input_, alpha=0.3) def test_leaky_relu(self): self._test_model(self.to_tflite(self.leaky_relu_network)) @staticmethod def less_equal_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.less_equal(input_, input_) def test_less_equal(self): self._test_model(self.to_tflite(self.less_equal_network)) @staticmethod def less_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.less(input_, input_) def test_less(self): self._test_model(self.to_tflite(self.less_network)) @staticmethod def lrn_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.nn.lrn(input_) def test_lrn(self): self._test_model(self.to_tflite(self.lrn_network)) @staticmethod def logical_or_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.logical_or(input_ < 128, input_ > 200) def test_logical_or(self): self._test_model(self.to_tflite(self.logical_or_network)) @staticmethod def logical_and_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.logical_and(input_ < 128, input_ > 200) def test_logical_and(self): self._test_model(self.to_tflite(self.logical_and_network)) @staticmethod def logical_not_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.logical_not(input_ < 128) def test_logical_not(self): self._test_model(self.to_tflite(self.logical_not_network)) @staticmethod def log_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.log(input_) def test_log(self): self._test_model(self.to_tflite(self.log_network), max_val=1.0) @staticmethod def negative_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.negative(input_) def test_negative(self): self._test_model(self.to_tflite(self.negative_network), max_val=1.0) @staticmethod def maximum_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.maximum(input_, input_) def test_maximum(self): self._test_model(self.to_tflite(self.maximum_network)) @staticmethod def minimum_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.minimum(input_, input_) def test_minimum(self): self._test_model(self.to_tflite(self.minimum_network)) @staticmethod def divide_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.nn.relu(tf.divide(input_, input_)) def test_divide(self): self._test_model(self.to_tflite(self.divide_network)) @staticmethod def expand_dims_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.expand_dims(input_, axis=0) def test_expand_dims(self): self._test_model(self.to_tflite(self.expand_dims_network)) @staticmethod def not_equal_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.not_equal(input_, input_) def test_not_equal(self): self._test_model(self.to_tflite(self.not_equal_network)) @staticmethod def stack_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2], name="input") return input_, tf.stack([input_, input_], axis=1) def test_stack(self): self._test_model(self.to_tflite(self.stack_network)) @staticmethod def unstack_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2], name="input") return input_, tf.unstack(input_, axis=1)[0] def test_unstack(self): self._test_model(self.to_tflite(self.unstack_network)) @staticmethod def pow_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.pow(input_, input_) def test_pow(self): self._test_model(self.to_tflite(self.pow_network), max_val=1.0) @staticmethod def prelu_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.nn.leaky_relu(input_, input_) def test_prelu(self): self._test_model(self.to_tflite(self.prelu_network), max_val=1.0) @staticmethod def mean_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.reduce_mean(input_, axis=1) def test_mean(self): self._test_model(self.to_tflite(self.mean_network)) @staticmethod def sum_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.reduce_sum(input_, axis=1) def test_sum(self): self._test_model(self.to_tflite(self.sum_network)) @staticmethod def max_reduce_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.reduce_max(input_, axis=1) def test_max_reduce(self): self._test_model(self.to_tflite(self.max_reduce_network)) @staticmethod def min_reduce_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.reduce_min(input_, axis=1) def test_min_reduce(self): self._test_model(self.to_tflite(self.min_reduce_network)) @staticmethod def relu6_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.nn.relu6(input_) def test_relu6(self): self._test_model(self.to_tflite(self.relu6_network)) @staticmethod def resize_nearest_neighbor_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.image.resize_nearest_neighbor(input_, (4, 4), align_corners=False) @unittest.skip('Not yet supported in tflite') def test_resize_nearest_neighbor(self): self._test_model(self.to_tflite(self.resize_nearest_neighbor_network)) @staticmethod def where_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.where(input_ < 128, input_, -input_) def test_where(self): self._test_model(self.to_tflite(self.where_network)) @staticmethod def slice_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.slice(input_, [0, 1, 1, 0], [1, 1, 1, 2]) def test_slice(self): self._test_model(self.to_tflite(self.slice_network)) @staticmethod def split_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 10, 3], name="input") return input_, tf.split(input_, 5, 2)[2] def test_split(self): self._test_model(self.to_tflite(self.split_network)) @staticmethod def split_v_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 10, 3], name="input") return input_, tf.split(input_, [5, 3, 1, 1], 2)[2] @unittest.skip('Not yet supported in tflite') def test_split_v(self): self._test_model(self.to_tflite(self.split_v_network)) @staticmethod def sqrt_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.sqrt(input_) def test_sqrt(self): self._test_model(self.to_tflite(self.sqrt_network)) @staticmethod def square_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.square(input_) def test_square(self): self._test_model(self.to_tflite(self.square_network)) @staticmethod def transpose_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.transpose(input_, perm=[0, 3, 1, 2]) def test_transpose(self): self._test_model(self.to_tflite(self.transpose_network)) @staticmethod def zeros_like_network(): input_ = tf.placeholder(tf.float32, shape=[1, 2, 2, 3], name="input") return input_, tf.zeros_like(input_) + input_ @unittest.skip('Not yet supported in tflite') def test_zeros_like(self): self._test_model(self.to_tflite(self.zeros_like_network)) if __name__ == '__main__': unittest.main() ``` #### File: tests/activation/tf_pb_network_test_cases.py ```python from __future__ import division, print_function, absolute_import import os import shutil import unittest import numpy as np import tensorflow as tf from nnef_tools import convert from tests.activation.file_downloader import download_and_untar_once if not os.path.exists('nnef_tools') and os.path.exists('../../nnef_tools'): os.chdir('../..') # This test only tests the outputs of the networks def load_graph_from_pb(frozen_graph_filename): import tensorflow as tf with tf.gfile.GFile(frozen_graph_filename, "rb") as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) tf.import_graph_def(graph_def, name='') def get_placeholders(): return [tensor for op in tf.get_default_graph().get_operations() if 'Placeholder' in op.node_def.op for tensor in op.values()] def get_tensors_with_no_consumers(): return [tensor for op in tf.get_default_graph().get_operations() if not any(tensor.consumers() for tensor in op.values()) for tensor in op.values()] # From: https://www.tensorflow.org/lite/guide/hosted_models class TFPbNetworkTestCases(unittest.TestCase): @classmethod def setUpClass(cls): if 'TF_CPP_MIN_LOG_LEVEL' not in os.environ: os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' np.random.seed(0) tf.set_random_seed(0) if os.path.exists('out'): shutil.rmtree('out') def _test_network(self, path, size): network = os.path.basename(path.rsplit('.', 1)[0]) input_shape = "(float32, [2, {size}, {size}, 3])".format(size=size) command = """ ./nnef_tools/convert.py --input-framework=tensorflow-pb \\ --input-model={} \\ --input-shape="{}" \\ --output-framework=nnef \\ --output-directory=out/nnef/{} \\ --compress""".format(path, input_shape, network) print(command) convert.convert_using_command(command) command = """ ./nnef_tools/convert.py --input-framework=nnef \\ --input-model=out/nnef/{}/model.nnef.tgz \\ --output-framework=tensorflow-pb \\ --output-directory=out/tensorflow-pb/{}""".format(network, network) print(command) convert.convert_using_command(command) tf.reset_default_graph() load_graph_from_pb(path) [input] = get_placeholders() outputs = get_tensors_with_no_consumers() feed = np.random.random([2, size, size, 3]) with tf.Session() as sess: activations = sess.run(outputs, feed_dict={input: feed}) tf.reset_default_graph() load_graph_from_pb('out/tensorflow-pb/{}/model.pb'.format(network)) [input] = get_placeholders() outputs = get_tensors_with_no_consumers() with tf.Session() as sess: activations2 = sess.run(outputs, feed_dict={input: feed}) for a1, a2 in zip(activations, activations2): self.assertTrue(np.allclose(a1, a2)) def test_densenet(self): path = download_and_untar_once( url="http://download.tensorflow.org/models/tflite/model_zoo/upload_20180427/densenet_2018_04_27.tgz", member="*.pb", path="_models/tensorflow-pb/densenet_2018_04_27.pb") self._test_network(path, 224) def test_squeezenet(self): path = download_and_untar_once( url="http://download.tensorflow.org/models/tflite/model_zoo/upload_20180427/squeezenet_2018_04_27.tgz", member="*.pb", path="_models/tensorflow-pb/squeezenet_2018_04_27.pb") self._test_network(path, 224) def test_nasnet_mobile(self): path = download_and_untar_once( url="http://download.tensorflow.org/models/tflite/model_zoo/upload_20180427/nasnet_mobile_2018_04_27.tgz", member="*.pb", path="_models/tensorflow-pb/nasnet_mobile_2018_04_27.pb") self._test_network(path, 224) def test_nasnet_large(self): path = download_and_untar_once( url="http://download.tensorflow.org/models/tflite/model_zoo/upload_20180427/nasnet_large_2018_04_27.tgz", member="*.pb", path="_models/tensorflow-pb/nasnet_large_2018_04_27.pb") self._test_network(path, 331) def test_inception_v3(self): path = download_and_untar_once( url="http://download.tensorflow.org/models/tflite/model_zoo/upload_20180427/inception_v3_2018_04_27.tgz", member="*.pb", path="_models/tensorflow-pb/inception_v3_2018_04_27.pb") self._test_network(path, 299) def test_inception_v4(self): path = download_and_untar_once( url="http://download.tensorflow.org/models/tflite/model_zoo/upload_20180427/inception_v4_2018_04_27.tgz", member="*.pb", path="_models/tensorflow-pb/inception_v4_2018_04_27.pb") self._test_network(path, 299) def test_inception_resnet_v2(self): path = download_and_untar_once( url="http://download.tensorflow.org/models/tflite/model_zoo/upload_20180427/inception_resnet_v2_2018_04_27.tgz", member="*.pb", path="_models/tensorflow-pb/inception_resnet_v2_2018_04_27.pb") self._test_network(path, 299) def test_mobilenet_v1_0_25_128(self): path = download_and_untar_once( url="http://download.tensorflow.org/models/mobilenet_v1_2018_02_22/mobilenet_v1_0.25_128.tgz", member="*.pb", path="_models/tensorflow-pb/mobilenet_v1_0.25_128.pb") self._test_network(path, 128) def test_mobilenet_v1_1_0_128(self): path = download_and_untar_once( url="http://download.tensorflow.org/models/mobilenet_v1_2018_02_22/mobilenet_v1_1.0_128.tgz", member="*.pb", path="_models/tensorflow-pb/mobilenet_v1_1.0_128.pb") self._test_network(path, 128) def test_mobilenet_v2_1_0_224(self): path = download_and_untar_once( url="http://download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224.tgz", member="*.pb", path="_models/tensorflow-pb/mobilenet_v2_1.0_224.pb") self._test_network(path, 224) if __name__ == '__main__': unittest.main() ``` #### File: tests/activation/tf_pb_test_runner.py ```python from __future__ import division, print_function, absolute_import import os import shutil from nnef_tools.activation_export import activation_test from nnef_tools.conversion import conversion_info from nnef_tools.conversion.tensorflow import tf_pb_all_in_one def test_tf_pb(filename, source_shapes, feed_dict, prefer_nhwc, network_name, export_io_only, delete_after_each): dir = os.path.join('out', network_name + ('_nhwc' if prefer_nhwc else '_nchw')) if os.path.exists(dir): shutil.rmtree(dir) tf_pb_all_in_one.convert_tf_pb_to_nnef( file_name=filename, output_directory=os.path.join(dir, 'nnef'), network_name=network_name, optimization_level=tf_pb_all_in_one.OptimizationLevel.FULL, io_transform=tf_pb_all_in_one.IOTransform.SMART_TF_NHWC_TO_NCHW, source_shapes=source_shapes, activation_export_feed_dict=feed_dict, activation_export_io_only=export_io_only) conv_info1 = conversion_info.load(os.path.join(dir, 'nnef', 'conversion.json')) tf_pb_all_in_one.convert_nnef_to_tf_pb( nnef_tgz_or_dir_path=os.path.join(dir, 'nnef', network_name + '_nnef'), output_directory=os.path.join(dir, 'tf_pb'), optimization_level=tf_pb_all_in_one.OptimizationLevel.FULL, io_transform=(tf_pb_all_in_one.IOTransform.SMART_NCHW_TO_TF_NHWC if prefer_nhwc else tf_pb_all_in_one.IOTransform.SMART_NCHW_TO_TF_NCHW), prefer_nhwc=prefer_nhwc) conv_info2 = conversion_info.load(os.path.join(dir, 'tf_pb', 'conversion.json')) feed_dict2 = (activation_test.transform_feed_dict(feed_dict=feed_dict, conv_info=conversion_info.compose(conv_info1, conv_info2)) if feed_dict is not None else None) tf_pb_all_in_one.convert_tf_pb_to_nnef( file_name=os.path.join(dir, 'tf_pb', 'graph.pb'), output_directory=os.path.join(dir, 'nnef2'), network_name=network_name, optimization_level=tf_pb_all_in_one.OptimizationLevel.FULL, io_transform=(tf_pb_all_in_one.IOTransform.SMART_TF_NHWC_TO_NCHW if prefer_nhwc else tf_pb_all_in_one.IOTransform.SMART_TF_NCHW_TO_NCHW), activation_export_feed_dict=feed_dict2, activation_export_io_only=export_io_only) conv_info3 = conversion_info.load(os.path.join(dir, 'nnef2', 'conversion.json')) if feed_dict is not None: activation_test.compare_activation_dirs( os.path.join(dir, 'nnef', 'activations'), os.path.join(dir, 'nnef2', 'activations'), conv_info=conversion_info.compose(conv_info2, conv_info3), verbose=False, allowed_bad_pixel_ratio=0.01 if not prefer_nhwc and not export_io_only else 0.0) if delete_after_each: shutil.rmtree(dir) ``` #### File: tests/functional/shape_inference_test.py ```python from __future__ import division, print_function, absolute_import from nnef_tools.shape_inference import shape_inference as infer import unittest class TestShapePropagation(unittest.TestCase): def test_singleton(self): self.assertEqual(infer.singleton(0), []) self.assertEqual(infer.singleton(1), [1]) self.assertEqual(infer.singleton(4), [1, 1, 1, 1]) def test_copy(self): a = [1, 2, 3] b = infer.copy(a) self.assertEqual(a, b) self.assertIsNot(a, b) def test_elementwise(self): a = [1, 2, 3] b = [1, 2, 3] c = infer.elementwise([a, b], infer.Broadcast.NONE) self.assertEqual(c, a) self.assertIsNot(c, a) self.assertIsNot(c, b) a = [1, 2, 3] b = [3] ab = [a, b] c = infer.elementwise([a, b], infer.Broadcast.FROM_RIGHT) self.assertEqual([1, 2, 3], c) self.assertEqual([1, 2, 3], a) self.assertEqual([3], b) self.assertEqual([a, b], ab) with self.assertRaises(AssertionError): infer.elementwise([[1, 2], [1]], infer.Broadcast.NONE) with self.assertRaises(AssertionError): infer.elementwise([[1, 2], [1, 3]], infer.Broadcast.NONE) self.assertEqual([2, 4, 3], infer.elementwise([[1, 4, 1], [2, 1, 3]], infer.Broadcast.SAME_RANK)) with self.assertRaises(AssertionError): infer.elementwise([[1, 2], [1]], infer.Broadcast.SAME_RANK) self.assertEqual([4, 2, 3], infer.elementwise([[1, 2, 3], [4, 2]], infer.Broadcast.FROM_LEFT)) with self.assertRaises(AssertionError): infer.elementwise([[2, 3], [3]], infer.Broadcast.FROM_LEFT) self.assertEqual([1, 2, 3], infer.elementwise([[1, 1, 3], [2, 3]], infer.Broadcast.FROM_RIGHT)) with self.assertRaises(AssertionError): infer.elementwise([[2, 3], [2]], infer.Broadcast.FROM_RIGHT) def test_sliding_window(self): with self.assertRaises(AssertionError): infer.sliding_window(input=[1], filter=[], padding=[(1, 1)], stride=[1], dilation=[1]) with self.assertRaises(AssertionError): infer.sliding_window(input=[1], filter=[1], padding=[], stride=[1], dilation=[1]) with self.assertRaises(AssertionError): infer.sliding_window(input=[1], filter=[1], padding=[(1, 1)], stride=[], dilation=[1]) with self.assertRaises(AssertionError): infer.sliding_window(input=[1], filter=[1], padding=[(1, 1)], stride=[1], dilation=[]) with self.assertRaises(AssertionError): infer.sliding_window(input=[], filter=[1], padding=[(1, 1)], stride=[1], dilation=[1]) self.assertEqual([10, 30, 30, 3], infer.sliding_window(input=[10, 32, 32, 3], filter=[1, 3, 3, 1], padding=[(0, 0)] * 4, stride=[1, 1, 1, 1], dilation=[1, 1, 1, 1])) self.assertEqual([10, 32, 32, 3], infer.sliding_window(input=[10, 30, 30, 3], filter=[1, 3, 3, 1], padding=[(0, 0)] * 4, stride=[1, 1, 1, 1], dilation=[1, 1, 1, 1], upscale=True)) self.assertEqual([10, 28, 26, 3], infer.sliding_window(input=[10, 32, 32, 3], filter=[1, 3, 3, 1], padding=[(0, 0)] * 4, stride=[1, 1, 1, 1], dilation=[1, 2, 3, 1])) self.assertEqual([10, 15, 32, 3], infer.sliding_window(input=[10, 32, 32, 3], filter=[1, 3, 1, 1], padding=[(0, 0)] * 4, stride=[1, 2, 1, 1], dilation=[1, 1, 1, 1])) self.assertEqual([10, 16, 32, 3], infer.sliding_window(input=[10, 32, 32, 3], filter=[1, 3, 1, 1], padding=[(0, 0)] * 4, stride=[1, 2, 1, 1], dilation=[1, 1, 1, 1], ceil=True)) def test_valid_padding(self): self.assertEqual([], infer.valid_padding(0)) self.assertEqual([(0, 0)], infer.valid_padding(1)) self.assertEqual([(0, 0), (0, 0), (0, 0), (0, 0)], infer.valid_padding(4)) def test_same_padding(self): self.assertEqual([(0, 1)], infer.same_padding(upscaled_input=[32], filter=[3], stride=[2], dilation=[1])) self.assertEqual([(1, 0)], infer.same_padding(upscaled_input=[32], filter=[3], stride=[2], dilation=[1], left_bigger=True)) self.assertEqual([(2, 3)], infer.same_padding(upscaled_input=[32], filter=[3], stride=[2], dilation=[3])) def test_concat(self): self.assertEqual([3, 2, 3, 4], infer.concat([[1, 2, 3, 4], [2, 2, 3, 4]], 0)) self.assertEqual([3, 2, 3, 4], infer.concat([[1, 2, 3, 4], [2, 2, 3, 4]], -4)) self.assertEqual([1, 12, 3, 4], infer.concat([[1, 2, 3, 4], [1, 10, 3, 4]], 1)) self.assertEqual([1, 2, 3, 9], infer.concat([[1, 2, 3, 4], [1, 2, 3, 5]], -1)) def test_split(self): self.assertEqual([[1, 2, 2], [1, 2, 2], [1, 2, 2]], infer.split([1, 2, 6], -1, num=3)) self.assertEqual([[1, 2, 2], [1, 2, 4]], infer.split([1, 2, 6], -1, ratios=[1, 2])) self.assertEqual([[1, 2, 2], [1, 2, 4]], infer.split([1, 2, 6], -1, sizes=[2, 4])) def test_conv(self): self.assertEqual([10, 30, 30, 16], infer.conv(input=[10, 32, 32, 3], filter=[3, 3], padding=infer.Padding.VALID, stride=[1, 1], dilation=[1, 1], groups=1, spatial_begin=infer.spatial_begin(infer.Format.NHWC), channel_axis=infer.channel_axis(infer.Format.NHWC), output_channels=16)) self.assertEqual([10, 16, 30, 30], infer.conv(input=[10, 3, 32, 32], filter=[3, 3], padding=[(0, 0), (0, 0)], stride=[1, 1], dilation=[1, 1], groups=1, spatial_begin=infer.spatial_begin(infer.Format.NCHW), channel_axis=infer.channel_axis(infer.Format.NCHW), output_channels=16)) self.assertEqual([10, 3, 32, 32], infer.conv(input=[10, 16, 30, 30], filter=[3, 3], padding=[(0, 0), (0, 0)], stride=[1, 1], dilation=[1, 1], groups=1, format=infer.Format.NCHW, output_channels=3, deconv=True)) self.assertEqual([10, 3, 32, 32], infer.conv(input=[10, 16, 32, 32], filter=[3, 3], padding=infer.Padding.SAME_UPPER, stride=[1, 1], dilation=[1, 1], groups=1, format=infer.Format.NCHW, output_channels=3)) self.assertEqual([10, 6, 32, 32], infer.conv(input=[10, 3, 32, 32], filter=[3, 3], padding=infer.Padding.SAME_LOWER, stride=[1, 1], dilation=[1, 1], groups=0, format=infer.Format.NCHW, output_channels=6)) self.assertEqual([10, 16, 32, 32], infer.conv(input=[10, 3, 32, 32], filter=[3, 3], padding=infer.Padding.SAME_UPPER, stride=[1, 1], dilation=[1, 1], groups=1, format=infer.Format.NCHW, output_channels=16, deconv=True)) self.assertEqual([10, 16, 64, 64], infer.conv(input=[10, 3, 32, 32], filter=[3, 3], padding=infer.Padding.SAME_UPPER, stride=[2, 2], dilation=[1, 1], groups=1, format=infer.Format.NCHW, output_channels=16, deconv=True)) self.assertEqual([10, 16, 65, 65], infer.conv(input=[10, 3, 32, 32], filter=[3, 3], padding=infer.Padding.SAME_UPPER, stride=[2, 2], dilation=[1, 1], groups=1, format=infer.Format.NCHW, output_channels=16, output_padding=[(0, 1), (0, 1)], deconv=True)) def test_squeeze(self): self.assertEqual([3, 2], infer.squeeze([3, 2, 1], [-1])) self.assertEqual([2, 3], infer.squeeze([1, 2, 3], [0])) self.assertEqual([2, 2], infer.squeeze([2, 1, 2, 1], [1, -1])) self.assertEqual([], infer.squeeze([1, 1], [0, -1])) self.assertEqual([3, 2], infer.squeeze([1, 3, 1, 1, 2, 1, 1])) def test_unsqueeze(self): self.assertEqual([1, 2, 3], infer.unsqueeze([2, 3], [0])) self.assertEqual([2, 3, 1], infer.unsqueeze([2, 3], [-1])) self.assertEqual([2, 1, 3], infer.unsqueeze([2, 3], [-2])) self.assertEqual([1, 2, 3], infer.unsqueeze([2, 3], [-3])) self.assertEqual([1, 2, 1], infer.unsqueeze([1, 2], [2])) self.assertEqual([2, 1, 3], infer.unsqueeze([2, 3], [1])) self.assertEqual([1, 1, 1, 2, 1, 1], infer.unsqueeze([1, 2], [0, 2, 4, 5])) self.assertEqual([1], infer.unsqueeze([], [0])) def test_matmul(self): self.assertEqual([3, 5], infer.matmul([3, 4], [4, 5])) self.assertEqual([3, 5], infer.matmul([4, 3], [4, 5], transpose_a=True)) self.assertEqual([3, 5], infer.matmul([3, 4], [5, 4], transpose_b=True)) self.assertEqual([10, 20, 3, 5], infer.matmul([10, 20, 4, 3], [10, 20, 5, 4], transpose_a=True, transpose_b=True)) def test_reduce(self): self.assertEqual([1, 1, 1, 1, 5], infer.reduce([1, 2, 3, 4, 5], [1, 2, 3])) self.assertEqual([1, 5], infer.reduce([1, 2, 3, 4, 5], [1, 2, 3], squeeze=True)) self.assertEqual([], infer.reduce([5], [-1], squeeze=True)) self.assertEqual([1, 6], infer.reduce([5, 6], [-2])) def test_stack(self): self.assertEqual([1, 2, 3], infer.stack([[1, 2], [1, 2], [1, 2]], 2)) self.assertEqual([1, 2, 3], infer.stack([[1, 2], [1, 2], [1, 2]], -1)) self.assertEqual([3, 1, 2], infer.stack([[1, 2], [1, 2], [1, 2]], 0)) self.assertEqual([1, 3, 2], infer.stack([[1, 2], [1, 2], [1, 2]], 1)) def test_unstack(self): self.assertEqual([[1, 2], [1, 2], [1, 2]], infer.unstack([1, 2, 3], 2)) self.assertEqual([[1, 2], [1, 2], [1, 2]], infer.unstack([1, 2, 3], -1)) self.assertEqual([[2, 3]], infer.unstack([1, 2, 3], 0)) self.assertEqual([[1, 3], [1, 3]], infer.unstack([1, 2, 3], 1)) s1, s2 = infer.unstack([1, 2, 3], 1) self.assertIsNot(s1, s2) def test_pad(self): self.assertEqual([2, 7, 12], infer.pad([1, 2, 3], [(0, 1), (2, 3), (4, 5)])) def test_reshape(self): self.assertEqual([4, 6], infer.reshape([4, 2, 3], [4, 6])) self.assertEqual([4, 6], infer.reshape([4, 2, 3], [4, -1])) self.assertEqual([24], infer.reshape([4, 2, 3], [24])) self.assertEqual([24], infer.reshape([4, 2, 3], [-1])) self.assertEqual([4, 2, 1, 3], infer.reshape([4, 2, 3], [4, 2, -1, 3])) self.assertEqual([4, 6, 1], infer.reshape([4, 2, 3], [4, -1, 1])) self.assertEqual([4, 6, 1], infer.reshape([4, 2, 3], [4, -1, 1])) self.assertEqual([1], infer.reshape([], [1])) self.assertEqual([1], infer.reshape([], [-1])) self.assertEqual([], infer.reshape([1], [])) self.assertEqual([], infer.reshape([1, 1, 1], [])) self.assertEqual([0, 1], infer.reshape([0], [0, 1])) with self.assertRaises(AssertionError): infer.reshape([0], [0, -1]) self.assertEqual([1, 2, 1, 3], infer.reshape([1, 2, 3], [0, 0, 1, -1], zero_means_same=True)) self.assertEqual([1], infer.reshape([1], [0], zero_means_same=True)) with self.assertRaises(AssertionError): infer.reshape([], [0], zero_means_same=True) with self.assertRaises(AssertionError): infer.reshape([1], [1, 0], zero_means_same=True) def test_flatten(self): self.assertEqual([1, 1], infer.flatten([])) self.assertEqual([2, 1], infer.flatten([2])) self.assertEqual([2, 3], infer.flatten([2, 3])) self.assertEqual([2, 12], infer.flatten([2, 3, 4])) self.assertEqual([0, 1], infer.flatten([0])) self.assertEqual([0, 3], infer.flatten([0, 3])) self.assertEqual([0, 12], infer.flatten([0, 3, 4])) self.assertEqual([0, 0], infer.flatten([0, 3, 4, 0])) self.assertEqual([1, 0], infer.flatten([1, 3, 4, 0])) def test_resize(self): self.assertEqual([10, 16, 64, 3], infer.resize([10, 32, 32, 3], [16, 64], spatial_begin=infer.spatial_begin(infer.Format.NHWC))) self.assertEqual([10, 16, 64], infer.resize([10, 32, 32], [16, 64], format=infer.Format.NHWC)) self.assertEqual([10, 3, 16, 64], infer.resize([10, 3, 32, 32], [16, 64], format=infer.Format.NCHW)) def test_downsample(self): self.assertEqual([10, 16, 16, 3], infer.downsample([10, 32, 32, 3], [2, 2], spatial_begin=infer.spatial_begin(infer.Format.NHWC))) self.assertEqual([10, 16, 8], infer.downsample([10, 32, 32], [2, 4], format=infer.Format.NHWC)) self.assertEqual([10, 3, 8, 16], infer.downsample([10, 3, 32, 32], [4, 2], format=infer.Format.NCHW)) def test_upsample(self): self.assertEqual([10, 64, 64, 3], infer.upsample([10, 32, 32, 3], [2, 2], spatial_begin=infer.spatial_begin(infer.Format.NHWC))) self.assertEqual([10, 64, 128], infer.upsample([10, 32, 32], [2, 4], format=infer.Format.NHWC)) self.assertEqual([10, 3, 128, 64], infer.upsample([10, 3, 32, 32], [4, 2], format=infer.Format.NCHW)) def test_transpose(self): self.assertEqual([], infer.transpose([])) self.assertEqual([1, 2, 3], infer.transpose([3, 2, 1])) self.assertEqual([10, 3, 32, 16], infer.transpose([10, 32, 16, 3], [0, 3, 1, 2])) def test_slice(self): self.assertEqual([1, 1, 1, 2], infer.slice(input=[1, 2, 3, 4], begin=[0, 1, 2, 2], size=[1, 1, 1, 2])) self.assertEqual([1, 1, 1, 2], infer.slice(input=[1, 2, 3, 4], begin=[0, 1, 2, 2], size=[-1, -1, -1, -1])) self.assertEqual([1, 1, 1, 2], infer.slice(input=[1, 2, 3, 4], begin=[0, 1, 2, 2], size=[0, 0, 0, 0], zero_means_all=True)) self.assertEqual([0, 0, 0, 0], infer.slice([1, 2, 3, 4], begin=[0, 1, 2, 2], size=[0, 0, 0, 0])) self.assertEqual([2, 4, 6, 36], infer.slice(input=[10, 20, 30, 40], begin=[1, 2, 3, 4], size=[2, 4, 6, -1])) self.assertEqual([1, 1, 1, 2], infer.slice(input=[1, 2, 3, 4], begin=[0, 1, 2, 2], end=[1, 2, 3, 4])) self.assertEqual([1, 1, 1, 2], infer.slice(input=[1, 2, 3, 4], begin=[0, 1, 2, 2], end=[0, 0, 0, 0], zero_means_all=True)) self.assertEqual([0, 0, 0, 0], infer.slice([1, 2, 3, 4], begin=[0, 1, 2, 2], end=[0, 1, 2, 2])) self.assertEqual([2, 4, 6, 36], infer.slice(input=[10, 20, 30, 40], begin=[1, 2, 3, 4], end=[3, 6, 9, 0], zero_means_all=True)) self.assertEqual([10, 32, 32, 1], infer.slice(input=[10, 32, 32, 3], axes=[3], begin=[1], end=[2])) self.assertEqual([10, 32, 32, 0], infer.slice(input=[10, 32, 32, 3], axes=[3], begin=[1], end=[1])) self.assertEqual([10, 32, 32, 2], infer.slice(input=[10, 32, 32, 3], axes=[3], begin=[1], end=[0], zero_means_all=True)) self.assertEqual([10, 32, 32, 1], infer.slice(input=[10, 32, 32, 3], axes=[3], begin=[1], size=[1])) self.assertEqual([10, 32, 32, 2], infer.slice(input=[10, 32, 32, 3], axes=[3], begin=[1], size=[-1])) self.assertEqual([10, 32, 32, 0], infer.slice(input=[10, 32, 32, 3], axes=[-1], begin=[1], size=[0])) self.assertEqual([10, 32, 32, 2], infer.slice(input=[10, 32, 32, 3], axes=[-1], begin=[1], size=[0], zero_means_all=True)) self.assertEqual([1, 2, 1, 2], infer.slice(input=[10, 32, 32, 3], axes=[-1, 2, -3, 0], begin=[1, 2, 3, 0], end=[3, 3, 5, 1])) self.assertEqual([1, 2, 1, 2], infer.slice(input=[10, 32, 32, 3], axes=[-1, 2, -3, 0], begin=[1, 2, 3, 0], size=[-1, 1, 2, 1])) self.assertEqual([10, 5, 3, 2], infer.slice(input=[10, 20, 30, 40], begin=[0, 0, 0, 0], size=[10, 10, 10, 10], stride=[1, 2, 3, 4])) def test_bit_mask_to_array(self): self.assertEqual([0, 1, 1, 0], infer.bit_mask_to_array(6, 4)) self.assertEqual([1, 1, 1, 0, 0], infer.bit_mask_to_array(7, 5)) self.assertEqual([1], infer.bit_mask_to_array(1, 1)) self.assertEqual([0], infer.bit_mask_to_array(0, 1)) self.assertEqual([], infer.bit_mask_to_array(0, 0)) def test_decompose_strided_slice(self): anything = 0xdeadbeef ssl_begin, ssl_end, ssl_stride, ssl_shape, reshape_shape = \ infer.decompose_strided_slice(input=[10, 32, 32, 3], begin=[1, anything, 2, 2, 0], end=[3, anything, 5, 3, 3], stride=[1, anything, 1, 1, 1], new_axis_mask=[0, 1, 0, 0, 0], shrink_axis_mask=[0, 0, 0, 1, 0], begin_mask=[0, 0, 0, 0, 0], end_mask=[0, 0, 0, 0, 0], ellipsis_mask=[0, 0, 0, 0, 0]) self.assertEqual([1, 2, 2, 0], ssl_begin) self.assertEqual([3, 5, 3, 3], ssl_end) self.assertEqual([1, 1, 1, 1], ssl_stride) self.assertEqual([2, 3, 1, 3], ssl_shape) self.assertEqual([2, 1, 3, 3], reshape_shape) ssl_begin, ssl_end, ssl_stride, ssl_shape, reshape_shape = \ infer.decompose_strided_slice(input=[10, 32, 32, 3], begin=[anything, anything, anything, anything], end=[anything, anything, anything, anything], stride=[1, -1, 3, -2], new_axis_mask=[0, 0, 0, 0], shrink_axis_mask=[0, 0, 0, 0], begin_mask=[1, 1, 1, 1], end_mask=[1, 1, 1, 1], ellipsis_mask=[0, 0, 0, 0]) self.assertEqual([0, 0, 0, 0], ssl_begin) self.assertEqual([10, 32, 32, 3], ssl_end) self.assertEqual([1, -1, 3, -2], ssl_stride) self.assertEqual([10, 32, 10, 1], ssl_shape) self.assertEqual([10, 32, 10, 1], reshape_shape) self.assertIsNot(ssl_shape, reshape_shape) decomposed = infer.decompose_strided_slice(input=[10, 32, 32, 3], begin=[0, anything, 0], end=[1, anything, 1], stride=[1, anything, 1], new_axis_mask=[0, 0, 0], shrink_axis_mask=[0, 0, 0], begin_mask=[0, 0, 0], end_mask=[0, 0, 0], ellipsis_mask=[0, 1, 0]) self.assertEqual([0, 0, 0, 0], decomposed.ssl_begin) self.assertEqual([1, 32, 32, 1], decomposed.ssl_end) self.assertEqual([1, 1, 1, 1], decomposed.ssl_stride) self.assertEqual([1, 32, 32, 1], decomposed.ssl_shape) self.assertEqual([1, 32, 32, 1], decomposed.reshape_shape) self.assertIsNot(decomposed.ssl_shape, decomposed.reshape_shape) def test_strided_slice(self): anything = 0xcafecafe self.assertEqual([2, 1, 3, 3], infer.strided_slice(input=[10, 32, 32, 3], begin=[1, anything, 2, 2, 0], end=[3, anything, 5, 3, 3], stride=[1, anything, 1, 1, 1], new_axis_mask=[0, 1, 0, 0, 0], shrink_axis_mask=[0, 0, 0, 1, 0], begin_mask=[0, 0, 0, 0, 0], end_mask=[0, 0, 0, 0, 0], ellipsis_mask=[0, 0, 0, 0, 0])) self.assertEqual([10, 32, 10, 1], infer.strided_slice(input=[10, 32, 32, 3], begin=[anything, anything, anything, anything], end=[anything, anything, anything, anything], stride=[1, -1, 3, -2], new_axis_mask=[0, 0, 0, 0], shrink_axis_mask=[0, 0, 0, 0], begin_mask=[1, 1, 1, 1], end_mask=[1, 1, 1, 1], ellipsis_mask=[0, 0, 0, 0])) self.assertEqual([1, 32, 32, 1], infer.strided_slice(input=[10, 32, 32, 3], begin=[0, anything, 0], end=[1, anything, 1], stride=[1, anything, 1], new_axis_mask=[0, 0, 0], shrink_axis_mask=[0, 0, 0], begin_mask=[0, 0, 0], end_mask=[0, 0, 0], ellipsis_mask=[0, 1, 0])) self.assertEqual([1, 32, 32, 1], infer.strided_slice(input=[10, 32, 32, 3], begin=[0, anything, 0], end=[1, anything, 1], stride=[1, anything, 1], new_axis_mask=0, shrink_axis_mask=0, begin_mask=0, end_mask=0, ellipsis_mask=2)) def test_tile(self): self.assertEqual([4, 6, 6, 4], infer.tile(input=[1, 2, 3, 4], repeat=[4, 3, 2, 1])) if __name__ == '__main__': unittest.main() ```
{ "source": "jnory/easy_lddc", "score": 3 }
#### File: easy_lddc/easy_ldcc/loader.py ```python import tarfile from io import BytesIO import os import requests import re ARCHIVE_URL = "https://www.rondhuit.com/download/ldcc-20140209.tar.gz" MIRROR_URL = "https://github.com/jnory/datasets/raw/master/ldcc/ldcc-20140209.tar.gz" CACHE_DIR = ".cache" CACHE_PATH = "{}/ldcc-20140209.tar".format(CACHE_DIR) CORPUS_PAT = re.compile(r"^text/(.*?)/.*\d\.txt$") def _get_data(use_mirror=True): if not os.path.exists(CACHE_DIR): os.mkdir(CACHE_DIR) if not os.path.exists(CACHE_PATH): url = MIRROR_URL if use_mirror else ARCHIVE_URL resp = requests.get(url) with open(CACHE_PATH, "wb") as fp: fp.write(resp.content) content = resp.content else: with open(CACHE_PATH, "rb") as fp: content = fp.read() return content class Downloader(object): def __init__(self, use_mirror=True): tar = tarfile.open(fileobj=BytesIO(_get_data(use_mirror))) self.categories = [] self.texts = [] for member in tar.getmembers(): name = member.name if not member.isfile(): continue m = CORPUS_PAT.match(name) if m is None: continue category = m.group(1) obj = tar.extractfile(member) text = obj.read().decode("utf-8") self.categories.append(category) self.texts.append(text) ``` #### File: easy_lddc/easy_ldcc/parser.py ```python import re import MeCab from dateutil.parser import parse DATETIME_PAT = re.compile(r"^\d\d\d\d-\d\d-\d\dT\d\d:\d\d:\d\d.*$") def remove_meta(sentences): data = [] timestamp = None for sentence in sentences: sentence = sentence.strip() if sentence == "": continue if sentence.startswith("http"): continue if DATETIME_PAT.match(sentence): timestamp = parse(sentence) continue data.append(sentence) return data, timestamp class Parser(object): def __init__(self): self.tagger = MeCab.Tagger("-Owakati") self.tagger.parse("") def parse(self, text): sentences = text.split("\n") sentences, timestamp = remove_meta(sentences) assert timestamp is not None doc = [] for sentence in sentences: tokenized = self.tagger.parse(sentence).strip() words = tokenized.split() doc.append(["<s>"] + words + ["</s>"]) return doc, timestamp ```
{ "source": "jnosal/py-sls-audit", "score": 2 }
#### File: py-sls-audit/py_sls_audit/cli.py ```python import json import sys import boto3 import botocore.exceptions import click from .common import AWSBridge _COMMANDS = ["metrics", "conf", "exit"] class CLIAwsProxy(AWSBridge): def fetch_and_list_functions(self): data = self.fetch_functions() for index, name in enumerate(data): click.echo(f"{index + 1}. {name}") def fetch_and_list_metrics(self, index): data = self.fetch_metrics(index) for index, name in enumerate(data): click.echo(f"{index + 1}. {name}") def fetch_and_list_metric_statistics(self, function_index, metric_index): data = self.fetch_metric_statistics(function_index, metric_index) click.echo(json.dumps(data, indent=2)) def command_exit(self, *args): sys.exit(1) def command_conf(self, index): function = self.functions[index] client = self.session.client("lambda") response = client.get_function_configuration(FunctionName=function) click.echo(json.dumps(response, indent=2)) def command_metrics(self, index): self.fetch_and_list_metrics(index) if len(self.metrics) < 1: return metric_index = prompt_for_index("metric", len(self.metrics)) self.fetch_and_list_metric_statistics(index, metric_index) def prompt_for_index(name, total): index = click.prompt(f"Please enter {name} index", type=int) if index < 1 or index > total: click.echo(f"Index must be between 1 and {total}") return prompt_for_index(name, total) return index - 1 @click.command() @click.option("-p", "--profile", help="AWS profile to use.", required=True) @click.option("-r", "--region", help="AWS region.", default="eu-west-1") def run(profile, region): try: session = boto3.Session(profile_name=profile, region_name=region) except botocore.exceptions.ProfileNotFound: click.echo(f"Could not load profile {profile}") sys.exit(1) proxy = CLIAwsProxy(session=session) proxy.fetch_and_list_functions() function_index = prompt_for_index("function", len(proxy.functions)) click.clear() while True: choice = click.prompt( "Please enter command to run", type=click.Choice(_COMMANDS) ) click.clear() getattr(proxy, f"command_{choice}")(function_index) click.echo("") ```
{ "source": "jnosal/tormon", "score": 2 }
#### File: tormon/api/views.py ```python import tornado.web import tornado.gen from . import utils class BaseApiHandler(tornado.web.RequestHandler): def response(self, data, code=200): if code != 200: # if something went wrong, we include returned HTTP code in the # JSON response data[u'status'] = code self.write(utils.json_dumps(data) + u"\n") self.set_status(code) def error(self, message, code=500): self.response({u'message': message}, code) def options(self, *args, **kwargs): pass class StatsHandler(BaseApiHandler): @tornado.gen.coroutine def get(self, *args, **kwargs): stats = yield self.application.monitor.get_stats() self.response({u'stats': stats}, 200) class UrlsListHandler(BaseApiHandler): @tornado.gen.coroutine def get(self, *args, **kwargs): data = yield self.application.monitor.iter_resources() objects = [ dict(url=url, response=response) for url, response in data ] self.response({u'objects': objects}, 200) class UrlDetailsHandler(BaseApiHandler): @tornado.gen.coroutine def get(self, *args, **kwargs): url = self.get_argument('url', None) try: info = yield self.application.monitor.get_info(url) self.response({u'response': info}, 200) except KeyError: error = ( u"Url: {} is not monitored. Perhaps slash is missing" u" or is redundant." ).format(url) self.response({u'error': error}, 400) ``` #### File: tormon/core/utils.py ```python import logging import importlib import signal import time from tormon import applications from tormon.monitor import client from tornado.ioloop import IOLoop def load_app(name, default=None): default = default or applications.MonitorWebApplication return load_component(name, default) def load_monitor(name, default=None): default = default or client.HealthCheckMonitor return load_component(name, default) def load_component(name, default): loaded = default if name: try: components = name.split(u'.') module_name = u".".join(components[:-1]) module = importlib.import_module(module_name) loaded = getattr(module, components[-1]) except AttributeError: logging.error(u"Error loading: {0}. Switching to: {1}.".format( name, default.__name__ )) logging.info(u"Loaded component: {0}".format(loaded.__name__)) return loaded def shutdown(server_instance, *args): ioloop_instance = IOLoop.instance() logging.info(u'Shutting down gracefully.') server_instance.stop() for component in args: component.stop() def finalize(): ioloop_instance.stop() logging.info(u'Shut down.') ioloop_instance.add_timeout(time.time() + 1.5, finalize) def register_shutdown_handlers(server, *args): shutdown_handler = lambda sig, frame: shutdown(server, *args) signal.signal(signal.SIGINT, shutdown_handler) signal.signal(signal.SIGTERM, shutdown_handler) ``` #### File: tormon/monitor/handlers.py ```python import abc import logging DEFAULT_ALGORITHM = u'' class IBaseHandler(object): __metaclass__ = abc.ABCMeta def __init__(self, *args, **kwargs): logging.info(u'Initializing handler: {0}'.format( self.__class__.__name__ )) self.algorithm = kwargs.get(u'algorithm', DEFAULT_ALGORITHM) @abc.abstractmethod def notify(self, *args, **kwargs): pass class SmtpHandler(IBaseHandler): def notify(self, *args, **kwargs): pass class LogHandler(IBaseHandler): def notify(self, *args, **kwargs): pass class ApiCallHandler(IBaseHandler): def notify(self, *args, **kwargs): pass ``` #### File: tormon/tests/base.py ```python import tornado.testing class BaseTestCase(tornado.testing.AsyncTestCase): def setUp(self): super(BaseTestCase, self).setUp() def tearDown(self): super(BaseTestCase, self).tearDown() ```
{ "source": "JNotelddim/python-snake", "score": 4 }
#### File: python-snake/src/board.py ```python import copy from typing import Tuple, List from src.coordinate import Coordinate from src.snake import Snake class Board: """Track the cooardinates for all snakes and food in the game.""" def __init__(self, data): self._data = data self._snakes = None self._foods = None @property def snakes(self) -> List[Snake]: """Retreive the list of snakes from the board data.""" if self._snakes is None: snakes = [Snake(snake_data) for snake_data in self._data['snakes']] self._snakes = snakes return self._snakes @property def foods(self) -> List[Coordinate]: """Retreive the list of food from the board data.""" if self._foods is None: self._foods = [Coordinate(food_data) for food_data in self._data['food']] return self._foods @property def width(self) -> int: """Get width of the board -- note: it's a square.""" return self._data['width'] def is_coordinate_in_bounds(self, coordinate) -> bool: """Check whether or not the Coordinate is within the bounds of the Board.""" is_wall = (coordinate.x == -1 or coordinate.x == self.width or coordinate.y == -1 or coordinate.y == self.width) return not is_wall def get_other_snakes(self, exclude_id) -> List[Snake]: """Get the List of Snakes whose IDs don't match the given ID.""" return [snake for snake in self.snakes if snake.id != exclude_id] def advance_snake_along_path(self, snake_id: str, path: List[Coordinate]): """Return a new board with our snake advanced along given path.""" new_board = copy.deepcopy(self) return new_board.__help_advance_snake_along_path(snake_id, path) def __help_advance_snake_along_path(self, snake_id: str, path: List[Coordinate]): """Do the actual advancement of the snake along the path.""" me = next((snake for snake in self.snakes if snake.id == snake_id), None) if not me: raise ValueError("No snake for given id!") me.coordinates += path me.coordinates = me.coordinates[len(path):] me.coordinates.reverse() me.coordinates.append(me.coordinates[-1]) print("new coords:") for coord in me.coordinates: print(coord) return self ```
{ "source": "jnothman/datatemplate", "score": 2 }
#### File: datatemplate/template_libs/withjson.py ```python import cjson from django.template import Library, Node, Context, TemplateSyntaxError from django.template.defaultfilters import stringfilter register = Library() @register.filter def json(value): return cjson.decode(value) json = stringfilter(json) @register.filter def item(value, arg): return value[unicode(arg)] class WithJsonNode(Node): def __init__(self, var, name, nodelist): self.var = var self.name = name self.nodelist = nodelist def __repr__(self): return "<WithJsonNode>" def render(self, context): val = self.var context.push() context[self.name] = val output = self.nodelist.render(context) context.pop() return output def do_withjson(parser, token): bits = list(token.split_contents()) if len(bits) != 4 or bits[2] != "as": raise TemplateSyntaxError("%r expected format is 'value as name'" % bits[0]) obj = cjson.decode(parser.compile_filter(bits[1]).resolve(Context())) name = bits[3] nodelist = parser.parse(('endwith',)) parser.delete_first_token() return WithJsonNode(obj, name, nodelist) do_withjson = register.tag('withjson', do_withjson) ```
{ "source": "jnothman/fastcore", "score": 2 }
#### File: fastcore/fastcore/docments.py ```python __all__ = ['docments'] # Cell from tokenize import tokenize,COMMENT from ast import parse,FunctionDef from io import BytesIO from textwrap import dedent from types import SimpleNamespace from inspect import getsource,isfunction,isclass,signature,Parameter from .basics import * import re # Cell def _parses(s): "Parse Python code in string or function object `s`" return parse(dedent(getsource(s) if isfunction(s) else s)) def _tokens(s): "Tokenize Python code in string or function object `s`" if isfunction(s): s = getsource(s) return tokenize(BytesIO(s.encode('utf-8')).readline) _clean_re = re.compile('^\s*#(.*)\s*$') def _clean_comment(s): res = _clean_re.findall(s) return res[0] if res else None def _param_locs(s, returns=True): "`dict` of parameter line numbers to names" body = _parses(s).body if len(body)!=1or not isinstance(body[0], FunctionDef): return None defn = body[0] res = {arg.lineno:arg.arg for arg in defn.args.args} if returns and defn.returns: res[defn.returns.lineno] = 'return' return res # Cell def _get_comment(line, arg, comments, parms): if line in comments: return comments[line].strip() line -= 1 res = [] while line and line in comments and line not in parms: res.append(comments[line]) line -= 1 return dedent('\n'.join(reversed(res))) if res else None def _get_full(anno, name, default, docs): if anno==Parameter.empty and default!=Parameter.empty: anno = type(default) return AttrDict(docment=docs.get(name), anno=anno, default=default) # Cell def docments(s, full=False, returns=True): "`dict` of parameter names to 'docment-style' comments in function or string `s`" if isclass(s): s = s.__init__ # Constructor for a class comments = {o.start[0]:_clean_comment(o.string) for o in _tokens(s) if o.type==COMMENT} parms = _param_locs(s, returns=returns) docs = {arg:_get_comment(line, arg, comments, parms) for line,arg in parms.items()} if not full: return docs if isinstance(s,str): s = eval(s) sig = signature(s) res = {arg:_get_full(p.annotation, p.name, p.default, docs) for arg,p in sig.parameters.items()} if returns: res['return'] = _get_full(sig.return_annotation, 'return', Parameter.empty, docs) return res ```
{ "source": "jnothman/joblib", "score": 3 }
#### File: joblib/test/test_parallel.py ```python import time import sys import io import os try: import cPickle as pickle PickleError = TypeError except: import pickle PickleError = pickle.PicklingError if sys.version_info[0] == 3: PickleError = pickle.PicklingError try: # Python 2/Python 3 compat unicode('str') except NameError: unicode = lambda s: s from ..parallel import Parallel, delayed, SafeFunction, WorkerInterrupt, \ multiprocessing, cpu_count from ..my_exceptions import JoblibException import nose ############################################################################### def division(x, y): return x / y def square(x): return x ** 2 def exception_raiser(x): if x == 7: raise ValueError return x def interrupt_raiser(x): time.sleep(.05) raise KeyboardInterrupt def f(x, y=0, z=0): """ A module-level function so that it can be spawn with multiprocessing. """ return x ** 2 + y + z ############################################################################### def test_cpu_count(): assert cpu_count() > 0 ############################################################################### # Test parallel def test_simple_parallel(): X = range(5) for n_jobs in (1, 2, -1, -2): yield (nose.tools.assert_equal, [square(x) for x in X], Parallel(n_jobs=-1)( delayed(square)(x) for x in X)) try: # To smoke-test verbosity, we capture stdout orig_stdout = sys.stdout orig_stderr = sys.stdout if sys.version_info[0] == 3: sys.stderr = io.StringIO() sys.stderr = io.StringIO() else: sys.stdout = io.BytesIO() sys.stderr = io.BytesIO() for verbose in (2, 11, 100): Parallel(n_jobs=-1, verbose=verbose)( delayed(square)(x) for x in X) Parallel(n_jobs=1, verbose=verbose)( delayed(square)(x) for x in X) Parallel(n_jobs=2, verbose=verbose, pre_dispatch=2)( delayed(square)(x) for x in X) except Exception as e: my_stdout = sys.stdout my_stderr = sys.stderr sys.stdout = orig_stdout sys.stderr = orig_stderr print(unicode(my_stdout.getvalue())) print(unicode(my_stderr.getvalue())) raise e finally: sys.stdout = orig_stdout sys.stderr = orig_stderr def nested_loop(): Parallel(n_jobs=2)(delayed(square)(.01) for _ in range(2)) def test_nested_loop(): Parallel(n_jobs=2)(delayed(nested_loop)() for _ in range(2)) def test_parallel_kwargs(): """ Check the keyword argument processing of pmap. """ lst = range(10) for n_jobs in (1, 4): yield (nose.tools.assert_equal, [f(x, y=1) for x in lst], Parallel(n_jobs=n_jobs)(delayed(f)(x, y=1) for x in lst) ) def test_parallel_pickling(): """ Check that pmap captures the errors when it is passed an object that cannot be pickled. """ def g(x): return x ** 2 nose.tools.assert_raises(PickleError, Parallel(), (delayed(g)(x) for x in range(10)) ) def test_error_capture(): # Check that error are captured, and that correct exceptions # are raised. if multiprocessing is not None: # A JoblibException will be raised only if there is indeed # multiprocessing nose.tools.assert_raises(JoblibException, Parallel(n_jobs=2), [delayed(division)(x, y) for x, y in zip((0, 1), (1, 0))], ) nose.tools.assert_raises(WorkerInterrupt, Parallel(n_jobs=2), [delayed(interrupt_raiser)(x) for x in (1, 0)], ) else: nose.tools.assert_raises(KeyboardInterrupt, Parallel(n_jobs=2), [delayed(interrupt_raiser)(x) for x in (1, 0)], ) nose.tools.assert_raises(ZeroDivisionError, Parallel(n_jobs=2), [delayed(division)(x, y) for x, y in zip((0, 1), (1, 0))], ) try: ex = JoblibException Parallel(n_jobs=1)( delayed(division)(x, y) for x, y in zip((0, 1), (1, 0))) except Exception: # Cannot use 'except as' to maintain Python 2.5 compatibility ex = sys.exc_info()[1] nose.tools.assert_false(isinstance(ex, JoblibException)) class Counter(object): def __init__(self, list1, list2): self.list1 = list1 self.list2 = list2 def __call__(self, i): self.list1.append(i) nose.tools.assert_equal(len(self.list1), len(self.list2)) def consumer(queue, item): queue.append('Consumed %s' % item) def test_dispatch_one_job(): """ Test that with only one job, Parallel does act as a iterator. """ queue = list() def producer(): for i in range(6): queue.append('Produced %i' % i) yield i Parallel(n_jobs=1)(delayed(consumer)(queue, x) for x in producer()) nose.tools.assert_equal(queue, ['Produced 0', 'Consumed 0', 'Produced 1', 'Consumed 1', 'Produced 2', 'Consumed 2', 'Produced 3', 'Consumed 3', 'Produced 4', 'Consumed 4', 'Produced 5', 'Consumed 5'] ) nose.tools.assert_equal(len(queue), 12) def test_dispatch_multiprocessing(): """ Check that using pre_dispatch Parallel does indeed dispatch items lazily. """ if multiprocessing is None: return manager = multiprocessing.Manager() queue = manager.list() def producer(): for i in range(6): queue.append('Produced %i' % i) yield i Parallel(n_jobs=2, pre_dispatch=3)(delayed(consumer)(queue, i) for i in producer()) nose.tools.assert_equal(list(queue)[:4], ['Produced 0', 'Produced 1', 'Produced 2', 'Consumed 0', ]) nose.tools.assert_equal(len(queue), 12) def test_exception_dispatch(): "Make sure that exception raised during dispatch are indeed captured" nose.tools.assert_raises( ValueError, Parallel(n_jobs=6, pre_dispatch=16, verbose=0), (delayed(exception_raiser)(i) for i in range(30)), ) def _reload_joblib(): # Retrieve the path of the parallel module in a robust way joblib_path = Parallel.__module__.split(os.sep) joblib_path = joblib_path[:1] joblib_path.append('parallel.py') joblib_path = '/'.join(joblib_path) module = __import__(joblib_path) # Reload the module. This should trigger a fail reload(module) def test_multiple_spawning(): # Test that attempting to launch a new Python after spawned # subprocesses will raise an error, to avoid infinite loops on # systems that do not support fork if not int(os.environ.get('JOBLIB_MULTIPROCESSING', 1)): raise nose.SkipTest() nose.tools.assert_raises(ImportError, Parallel(n_jobs=2), [delayed(_reload_joblib)() for i in range(10)]) ############################################################################### # Test helpers def test_joblib_exception(): # Smoke-test the custom exception e = JoblibException('foobar') # Test the repr repr(e) # Test the pickle pickle.dumps(e) def test_safe_function(): safe_division = SafeFunction(division) nose.tools.assert_raises(JoblibException, safe_division, 1, 0) ```
{ "source": "jnothman/liac-arff", "score": 3 }
#### File: liac-arff/tests/test_decode_attribute.py ```python import unittest import arff class TestDecodeAttribute(unittest.TestCase): def get_decoder(self): decoder = arff.ArffDecoder() return decoder def test_padding(self): '''Attributes with spaces between attribute declaration and name, and between attribute name and type.''' decoder = self.get_decoder() fixture = u'@ATTRIBUTE attribute-name NUMERIC' result = decoder._decode_attribute(fixture) expected = u'attribute-name' self.assertEqual(len(result), 2) self.assertEqual(result[0], expected) def test_quoted(self): '''Attributes with quoted name but without space.''' decoder = self.get_decoder() # Double Quote fixture = u'@ATTRIBUTE "attribute-name" NUMERIC' result = decoder._decode_attribute(fixture) expected = u'attribute-name' self.assertEqual(len(result), 2) self.assertEqual(result[0], expected) # Simple Quote fixture = u"@ATTRIBUTE 'attribute-name' NUMERIC" result = decoder._decode_attribute(fixture) expected = u'attribute-name' self.assertEqual(len(result), 2) self.assertEqual(result[0], expected) def test_numeric_name(self): '''Attributes with quoted name but without space.''' decoder = self.get_decoder() # Double Quote fixture = u'@ATTRIBUTE 0 NUMERIC' result = decoder._decode_attribute(fixture) expected = u'0' self.assertEqual(len(result), 2) self.assertEqual(result[0], expected) def test_quoted_special(self): '''Attributes with quoted name but without space.''' decoder = self.get_decoder() # Double Quote fixture = u'@ATTRIBUTE "%attribute-name" NUMERIC' result = decoder._decode_attribute(fixture) expected = u'%attribute-name' self.assertEqual(len(result), 2) self.assertEqual(result[0], expected) # Simple Quote fixture = u"@ATTRIBUTE ',attribute {} name' NUMERIC" result = decoder._decode_attribute(fixture) expected = u',attribute {} name' self.assertEqual(len(result), 2) self.assertEqual(result[0], expected) def test_quoted_space(self): '''Attributes with quoted name and space.''' decoder = self.get_decoder() # Double Quote fixture = u'@ATTRIBUTE "attribute name" NUMERIC' result = decoder._decode_attribute(fixture) expected = u'attribute name' self.assertEqual(len(result), 2) self.assertEqual(result[0], expected) # Simple Quote fixture = u"@ATTRIBUTE 'attribute name' NUMERIC" result = decoder._decode_attribute(fixture) expected = u'attribute name' self.assertEqual(len(result), 2) self.assertEqual(result[0], expected) def test_invalid_format(self): '''Attributes with bad format.''' decoder = self.get_decoder() fixture = u'@ATTRIBUTE badformat' self.assertRaises( arff.BadAttributeFormat, decoder._decode_attribute, fixture ) fixture = u'@ATTRIBUTE NUMERIC' self.assertRaises( arff.BadAttributeFormat, decoder._decode_attribute, fixture ) def test_invalid_characters(self): '''Attributes with bad format.''' decoder = self.get_decoder() fixture = u'@ATTRIBUTE %badformat' self.assertRaises( arff.BadAttributeFormat, decoder._decode_attribute, fixture ) fixture = u'@ATTRIBUTE na,me NUMERIC' self.assertRaises( arff.BadAttributeFormat, decoder._decode_attribute, fixture ) fixture = u'@ATTRIBUTE {name NUMERIC' self.assertRaises( arff.BadAttributeFormat, decoder._decode_attribute, fixture ) ```
{ "source": "jnothman/pandas", "score": 2 }
#### File: pandas/tests/test_indexing.py ```python import unittest import nose import itertools from numpy import random, nan from numpy.random import randn import numpy as np from numpy.testing import assert_array_equal import pandas as pan import pandas.core.common as com from pandas.core.api import (DataFrame, Index, Series, Panel, notnull, isnull, MultiIndex, DatetimeIndex, Timestamp) from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal, assert_panel_equal) from pandas.util import py3compat import pandas.util.testing as tm import pandas.lib as lib from pandas import date_range from numpy.testing.decorators import slow _verbose = False #------------------------------------------------------------------------------- # Indexing test cases def _generate_indices(f, values=False): """ generate the indicies if values is True , use the axis values is False, use the range """ axes = f.axes if values: axes = [ range(len(a)) for a in axes ] return itertools.product(*axes) def _get_value(f, i, values=False): """ return the value for the location i """ # check agains values if values: return f.values[i] # this is equiv of f[col][row]..... #v = f #for a in reversed(i): # v = v.__getitem__(a) #return v return f.ix[i] def _get_result(obj, method, key, axis): """ return the result for this obj with this key and this axis """ if isinstance(key, dict): key = key[axis] # use an artifical conversion to map the key as integers to the labels # so ix can work for comparisions if method == 'indexer': method = 'ix' key = obj._get_axis(axis)[key] # in case we actually want 0 index slicing try: xp = getattr(obj, method).__getitem__(_axify(obj,key,axis)) except: xp = getattr(obj, method).__getitem__(key) return xp def _axify(obj, key, axis): # create a tuple accessor if axis is not None: axes = [ slice(None) ] * obj.ndim axes[axis] = key return tuple(axes) return k class TestIndexing(unittest.TestCase): _multiprocess_can_split_ = True _objs = set(['series','frame','panel']) _typs = set(['ints','labels','mixed','ts','floats','empty']) def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.series_ints = Series(np.random.rand(4), index=range(0,8,2)) self.frame_ints = DataFrame(np.random.randn(4, 4), index=range(0, 8, 2), columns=range(0,12,3)) self.panel_ints = Panel(np.random.rand(4,4,4), items=range(0,8,2),major_axis=range(0,12,3),minor_axis=range(0,16,4)) self.series_labels = Series(np.random.randn(4), index=list('abcd')) self.frame_labels = DataFrame(np.random.randn(4, 4), index=list('abcd'), columns=list('ABCD')) self.panel_labels = Panel(np.random.randn(4,4,4), items=list('abcd'), major_axis=list('ABCD'), minor_axis=list('ZYXW')) self.series_mixed = Series(np.random.randn(4), index=[2, 4, 'null', 8]) self.frame_mixed = DataFrame(np.random.randn(4, 4), index=[2, 4, 'null', 8]) self.panel_mixed = Panel(np.random.randn(4,4,4), items=[2,4,'null',8]) self.series_ts = Series(np.random.randn(4), index=date_range('20130101', periods=4)) self.frame_ts = DataFrame(np.random.randn(4, 4), index=date_range('20130101', periods=4)) self.panel_ts = Panel(np.random.randn(4, 4, 4), items=date_range('20130101', periods=4)) #self.series_floats = Series(np.random.randn(4), index=[1.00, 2.00, 3.00, 4.00]) #self.frame_floats = DataFrame(np.random.randn(4, 4), columns=[1.00, 2.00, 3.00, 4.00]) #self.panel_floats = Panel(np.random.rand(4,4,4), items = [1.00,2.00,3.00,4.00]) self.frame_empty = DataFrame({}) self.series_empty = Series({}) self.panel_empty = Panel({}) # form agglomerates for o in self._objs: d = dict() for t in self._typs: d[t] = getattr(self,'%s_%s' % (o,t),None) setattr(self,o,d) def check_values(self, f, func, values = False): if f is None: return axes = f.axes indicies = itertools.product(*axes) for i in indicies: result = getattr(f,func)[i] # check agains values if values: expected = f.values[i] else: expected = f for a in reversed(i): expected = expected.__getitem__(a) assert_almost_equal(result, expected) def check_result(self, name, method1, key1, method2, key2, typs = None, objs = None, axes = None, fails = None): def _eq(t, o, a, obj, k1, k2): """ compare equal for these 2 keys """ if a is not None and a > obj.ndim-1: return def _print(result, error = None): if error is not None: error = str(error) v = "%-16.16s [%-16.16s]: [typ->%-8.8s,obj->%-8.8s,key1->(%-4.4s),key2->(%-4.4s),axis->%s] %s" % (name,result,t,o,method1,method2,a,error or '') if _verbose: print(v) try: ### good debug location ### #if name == 'bool' and t == 'empty' and o == 'series' and method1 == 'loc': # import pdb; pdb.set_trace() rs = getattr(obj, method1).__getitem__(_axify(obj,k1,a)) try: xp = _get_result(obj,method2,k2,a) except: result = 'no comp' _print(result) return try: if np.isscalar(rs) and np.isscalar(xp): self.assert_(rs == xp) elif xp.ndim == 1: assert_series_equal(rs,xp) elif xp.ndim == 2: assert_frame_equal(rs,xp) elif xp.ndim == 3: assert_panel_equal(rs,xp) result = 'ok' except (AssertionError): result = 'fail' # reverse the checks if fails is True: if result == 'fail': result = 'ok (fail)' if not result.startswith('ok'): raise AssertionError(_print(result)) _print(result) except (AssertionError): raise except (TypeError): raise AssertionError(_print('type error')) except (Exception), detail: # if we are in fails, the ok, otherwise raise it if fails is not None: if fails == type(detail): result = 'ok (%s)' % type(detail).__name__ _print(result) return result = type(detail).__name__ raise AssertionError(_print(result, error = detail)) if typs is None: typs = self._typs if objs is None: objs = self._objs if axes is not None: if not isinstance(axes,(tuple,list)): axes = [ axes ] else: axes = list(axes) else: axes = [ 0, 1, 2] # check for o in objs: if o not in self._objs: continue d = getattr(self,o) for a in axes: for t in typs: if t not in self._typs: continue obj = d[t] if obj is not None: obj = obj.copy() k2 = key2 _eq(t, o, a, obj, key1, k2) def test_at_and_iat_get(self): def _check(f, func, values = False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: result = getattr(f,func)[i] expected = _get_value(f,i,values) assert_almost_equal(result, expected) for o in self._objs: d = getattr(self,o) # iat _check(d['ints'],'iat', values=True) for f in [d['labels'],d['ts'],d['floats']]: if f is not None: self.assertRaises(ValueError, self.check_values, f, 'iat') # at _check(d['ints'], 'at') _check(d['labels'],'at') _check(d['ts'], 'at') _check(d['floats'],'at') def test_at_and_iat_set(self): def _check(f, func, values = False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: getattr(f,func)[i] = 1 expected = _get_value(f,i,values) assert_almost_equal(expected, 1) for t in self._objs: d = getattr(self,t) _check(d['ints'],'iat',values=True) for f in [d['labels'],d['ts'],d['floats']]: if f is not None: self.assertRaises(ValueError, _check, f, 'iat') # at _check(d['ints'], 'at') _check(d['labels'],'at') _check(d['ts'], 'at') _check(d['floats'],'at') def test_at_timestamp(self): # as timestamp is not a tuple! dates = date_range('1/1/2000', periods=8) df = DataFrame(randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) s = df['A'] result = s.at[dates[5]] xp = s.values[5] self.assert_(result == xp) def test_iat_invalid_args(self): pass def test_iloc_getitem_int(self): # integer self.check_result('integer', 'iloc', 2, 'ix', { 0 : 4, 1: 6, 2: 8 }, typs = ['ints']) self.check_result('integer', 'iloc', 2, 'indexer', 2, typs = ['labels','mixed','ts','floats','empty'], fails = IndexError) def test_iloc_getitem_neg_int(self): # neg integer self.check_result('neg int', 'iloc', -1, 'ix', { 0 : 6, 1: 9, 2: 12 }, typs = ['ints']) self.check_result('neg int', 'iloc', -1, 'indexer', -1, typs = ['labels','mixed','ts','floats','empty'], fails = IndexError) def test_iloc_getitem_list_int(self): # list of ints self.check_result('list int', 'iloc', [0,1,2], 'ix', { 0 : [0,2,4], 1 : [0,3,6], 2: [0,4,8] }, typs = ['ints']) self.check_result('list int', 'iloc', [0,1,2], 'indexer', [0,1,2], typs = ['labels','mixed','ts','floats','empty'], fails = IndexError) def test_iloc_getitem_dups(self): # no dups in panel (bug?) self.check_result('list int (dups)', 'iloc', [0,1,1,3], 'ix', { 0 : [0,2,2,6], 1 : [0,3,3,9] }, objs = ['series','frame'], typs = ['ints']) def test_iloc_getitem_array(self): # array like s = Series(index=range(1,4)) self.check_result('array like', 'iloc', s.index, 'ix', { 0 : [2,4,6], 1 : [3,6,9], 2: [4,8,12] }, typs = ['ints']) def test_iloc_getitem_bool(self): # boolean indexers b = [True,False,True,False,] self.check_result('bool', 'iloc', b, 'ix', b, typs = ['ints']) self.check_result('bool', 'iloc', b, 'ix', b, typs = ['labels','mixed','ts','floats','empty'], fails = IndexError) def test_iloc_getitem_slice(self): # slices self.check_result('slice', 'iloc', slice(1,3), 'ix', { 0 : [2,4], 1: [3,6], 2: [4,8] }, typs = ['ints']) self.check_result('slice', 'iloc', slice(1,3), 'indexer', slice(1,3), typs = ['labels','mixed','ts','floats','empty'], fails = IndexError) def test_iloc_getitem_out_of_bounds(self): # out-of-bounds slice self.assertRaises(IndexError, self.frame_ints.iloc.__getitem__, tuple([slice(None),slice(1,5,None)])) self.assertRaises(IndexError, self.frame_ints.iloc.__getitem__, tuple([slice(None),slice(-5,3,None)])) self.assertRaises(IndexError, self.frame_ints.iloc.__getitem__, tuple([slice(1,5,None)])) self.assertRaises(IndexError, self.frame_ints.iloc.__getitem__, tuple([slice(-5,3,None)])) def test_iloc_setitem(self): df = self.frame_ints df.iloc[1,1] = 1 result = df.iloc[1,1] self.assert_(result == 1) df.iloc[:,2:3] = 0 expected = df.iloc[:,2:3] result = df.iloc[:,2:3] assert_frame_equal(result, expected) def test_iloc_multiindex(self): df = DataFrame(np.random.randn(3, 3), columns=[[2,2,4],[6,8,10]], index=[[4,4,8],[8,10,12]]) rs = df.iloc[2] xp = df.irow(2) assert_series_equal(rs, xp) rs = df.iloc[:,2] xp = df.icol(2) assert_series_equal(rs, xp) rs = df.iloc[2,2] xp = df.values[2,2] self.assert_(rs == xp) def test_loc_getitem_int(self): # int label self.check_result('int label', 'loc', 2, 'ix', 2, typs = ['ints'], axes = 0) self.check_result('int label', 'loc', 3, 'ix', 3, typs = ['ints'], axes = 1) self.check_result('int label', 'loc', 4, 'ix', 4, typs = ['ints'], axes = 2) self.check_result('int label', 'loc', 2, 'ix', 2, typs = ['label'], fails = KeyError) def test_loc_getitem_label(self): # label self.check_result('label', 'loc', 'c', 'ix', 'c', typs = ['labels'], axes=0) self.check_result('label', 'loc', 'null', 'ix', 'null', typs = ['mixed'] , axes=0) self.check_result('label', 'loc', 8, 'ix', 8, typs = ['mixed'] , axes=0) self.check_result('label', 'loc', Timestamp('20130102'), 'ix', 1, typs = ['ts'], axes=0) self.check_result('label', 'loc', 'c', 'ix', 'c', typs = ['empty'], fails = KeyError) def test_loc_getitem_label_out_of_range(self): # out of range label self.check_result('label range', 'loc', 'f', 'ix', 'f', typs = ['ints','labels','mixed','ts','floats'], fails=KeyError) def test_loc_getitem_label_list(self): # list of labels self.check_result('list lbl', 'loc', [0,2,4], 'ix', [0,2,4], typs = ['ints'], axes=0) self.check_result('list lbl', 'loc', [3,6,9], 'ix', [3,6,9], typs = ['ints'], axes=1) self.check_result('list lbl', 'loc', [4,8,12], 'ix', [4,8,12], typs = ['ints'], axes=2) self.check_result('list lbl', 'loc', ['a','b','d'], 'ix', ['a','b','d'], typs = ['labels'], axes=0) self.check_result('list lbl', 'loc', ['A','B','C'], 'ix', ['A','B','C'], typs = ['labels'], axes=1) self.check_result('list lbl', 'loc', ['Z','Y','W'], 'ix', ['Z','Y','W'], typs = ['labels'], axes=2) self.check_result('list lbl', 'loc', [2,8,'null'], 'ix', [2,8,'null'], typs = ['mixed'], axes=0) self.check_result('list lbl', 'loc', [Timestamp('20130102'),Timestamp('20130103')], 'ix', [Timestamp('20130102'),Timestamp('20130103')], typs = ['ts'], axes=0) # fails self.check_result('list lbl', 'loc', [0,1,2], 'indexer', [0,1,2], typs = ['empty'], fails = KeyError) self.check_result('list lbl', 'loc', [0,2,3], 'ix', [0,2,3], typs = ['ints'], axes=0, fails = KeyError) self.check_result('list lbl', 'loc', [3,6,7], 'ix', [3,6,9], typs = ['ints'], axes=1, fails = KeyError) self.check_result('list lbl', 'loc', [4,8,10], 'ix', [4,8,12], typs = ['ints'], axes=2, fails = KeyError) # array like self.check_result('array like', 'loc', Series(index=[0,2,4]).index, 'ix', [0,2,4], typs = ['ints'], axes=0) self.check_result('array like', 'loc', Series(index=[3,6,9]).index, 'ix', [3,6,9], typs = ['ints'], axes=1) self.check_result('array like', 'loc', Series(index=[4,8,12]).index, 'ix', [4,8,12], typs = ['ints'], axes=2) def test_loc_getitem_bool(self): # boolean indexers b = [True,False,True,False] self.check_result('bool', 'loc', b, 'ix', b, typs = ['ints','labels','mixed','ts','floats']) self.check_result('bool', 'loc', b, 'ix', b, typs = ['empty'], fails = KeyError) def test_loc_getitem_int_slice(self): # int slices in int self.check_result('int slice1', 'loc', slice(2,4), 'ix', { 0 : [2,4], 1: [3,6], 2: [4,8] }, typs = ['ints'], fails=KeyError) # ok self.check_result('int slice2', 'loc', slice(2,4), 'ix', [2,4], typs = ['ints'], axes = 0) self.check_result('int slice2', 'loc', slice(3,6), 'ix', [3,6], typs = ['ints'], axes = 1) self.check_result('int slice2', 'loc', slice(4,8), 'ix', [4,8], typs = ['ints'], axes = 2) # GH 3053 # loc should treat integer slices like label slices from itertools import product index = MultiIndex.from_tuples([t for t in product([6,7,8], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[6:8,:] expected = df.ix[6:8,:] assert_frame_equal(result,expected) index = MultiIndex.from_tuples([t for t in product([10, 20, 30], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[20:30,:] expected = df.ix[20:30,:] assert_frame_equal(result,expected) # doc examples result = df.loc[10,:] expected = df.ix[10,:] assert_frame_equal(result,expected) result = df.loc[:,10] #expected = df.ix[:,10] (this fails) expected = df[10] assert_frame_equal(result,expected) def test_loc_to_fail(self): # GH3449 df = DataFrame(np.random.random((3, 3)), index=['a', 'b', 'c'], columns=['e', 'f', 'g']) # raise a KeyError? self.assertRaises(KeyError, df.loc.__getitem__, tuple([[1, 2], [1, 2]])) def test_loc_getitem_label_slice(self): # label slices (with ints) self.check_result('lab slice', 'loc', slice(1,3), 'ix', slice(1,3), typs = ['labels','mixed','ts','floats','empty'], fails=KeyError) # real label slices self.check_result('lab slice', 'loc', slice('a','c'), 'ix', slice('a','c'), typs = ['labels'], axes=0) self.check_result('lab slice', 'loc', slice('A','C'), 'ix', slice('A','C'), typs = ['labels'], axes=1) self.check_result('lab slice', 'loc', slice('W','Z'), 'ix', slice('W','Z'), typs = ['labels'], axes=2) self.check_result('ts slice', 'loc', slice('20130102','20130104'), 'ix', slice('20130102','20130104'), typs = ['ts'], axes=0) self.check_result('ts slice', 'loc', slice('20130102','20130104'), 'ix', slice('20130102','20130104'), typs = ['ts'], axes=1, fails=KeyError) self.check_result('ts slice', 'loc', slice('20130102','20130104'), 'ix', slice('20130102','20130104'), typs = ['ts'], axes=2, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2,8), 'ix', slice(2,8), typs = ['mixed'], axes=0, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2,8), 'ix', slice(2,8), typs = ['mixed'], axes=1, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2,8), 'ix', slice(2,8), typs = ['mixed'], axes=2, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2,4,2), 'ix', slice(2,4,2), typs = ['mixed'], axes=0) def test_loc_general(self): # GH 2922 (these are fails) df = DataFrame(np.random.rand(4,4),columns=['A','B','C','D']) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(0,2),slice(0,2)])) df = DataFrame(np.random.rand(4,4),columns=['A','B','C','D'], index=['A','B','C','D']) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(0,2),df.columns[0:2]])) # want this to work result = df.loc[:,"A":"B"].iloc[0:2,:] self.assert_((result.columns == ['A','B']).all() == True) self.assert_((result.index == ['A','B']).all() == True) def test_loc_setitem_frame(self): df = self.frame_labels result = df.iloc[0,0] df.loc['a','A'] = 1 result = df.loc['a','A'] self.assert_(result == 1) result = df.iloc[0,0] self.assert_(result == 1) df.loc[:,'B':'D'] = 0 expected = df.loc[:,'B':'D'] result = df.ix[:,1:] assert_frame_equal(result, expected) def test_iloc_getitem_frame(self): """ originally from test_frame.py""" df = DataFrame(np.random.randn(10, 4), index=range(0, 20, 2), columns=range(0,8,2)) result = df.iloc[2] exp = df.ix[4] assert_series_equal(result, exp) result = df.iloc[2,2] exp = df.ix[4,4] self.assert_(result == exp) # slice result = df.iloc[4:8] expected = df.ix[8:14] assert_frame_equal(result, expected) result = df.iloc[:,2:3] expected = df.ix[:,4:5] assert_frame_equal(result, expected) # list of integers result = df.iloc[[0,1,3]] expected = df.ix[[0,2,6]] assert_frame_equal(result, expected) result = df.iloc[[0,1,3],[0,1]] expected = df.ix[[0,2,6],[0,2]] assert_frame_equal(result, expected) # neg indicies result = df.iloc[[-1,1,3],[-1,1]] expected = df.ix[[18,2,6],[6,2]] assert_frame_equal(result, expected) # dups indicies result = df.iloc[[-1,-1,1,3],[-1,1]] expected = df.ix[[18,18,2,6],[6,2]] assert_frame_equal(result, expected) # with index-like s = Series(index=range(1,5)) result = df.iloc[s.index] expected = df.ix[[2,4,6,8]] assert_frame_equal(result, expected) # out-of-bounds slice self.assertRaises(IndexError, df.iloc.__getitem__, tuple([slice(None),slice(1,5,None)])) self.assertRaises(IndexError, df.iloc.__getitem__, tuple([slice(None),slice(-5,3,None)])) self.assertRaises(IndexError, df.iloc.__getitem__, tuple([slice(1,11,None)])) self.assertRaises(IndexError, df.iloc.__getitem__, tuple([slice(-11,3,None)])) # try with labelled frame df = DataFrame(np.random.randn(10, 4), index=list('abcdefghij'), columns=list('ABCD')) result = df.iloc[1,1] exp = df.ix['b','B'] self.assert_(result == exp) result = df.iloc[:,2:3] expected = df.ix[:,['C']] assert_frame_equal(result, expected) # negative indexing result = df.iloc[-1,-1] exp = df.ix['j','D'] self.assert_(result == exp) # out-of-bounds exception self.assertRaises(IndexError, df.iloc.__getitem__, tuple([10,5])) # trying to use a label self.assertRaises(ValueError, df.iloc.__getitem__, tuple(['j','D'])) def test_iloc_setitem_series(self): """ originally from test_series.py """ df = DataFrame(np.random.randn(10, 4), index=list('abcdefghij'), columns=list('ABCD')) df.iloc[1,1] = 1 result = df.iloc[1,1] self.assert_(result == 1) df.iloc[:,2:3] = 0 expected = df.iloc[:,2:3] result = df.iloc[:,2:3] assert_frame_equal(result, expected) def test_iloc_setitem_series(self): s = Series(np.random.randn(10), index=range(0,20,2)) s.iloc[1] = 1 result = s.iloc[1] self.assert_(result == 1) s.iloc[:4] = 0 expected = s.iloc[:4] result = s.iloc[:4] assert_series_equal(result, expected) def test_iloc_multiindex(self): mi_labels = DataFrame(np.random.randn(4, 3), columns=[['i', 'i', 'j'], ['A', 'A', 'B']], index=[['i', 'i', 'j', 'k'], ['X', 'X', 'Y','Y']]) mi_int = DataFrame(np.random.randn(3, 3), columns=[[2,2,4],[6,8,10]], index=[[4,4,8],[8,10,12]]) # the first row rs = mi_int.iloc[0] xp = mi_int.ix[4].ix[8] assert_series_equal(rs, xp) # 2nd (last) columns rs = mi_int.iloc[:,2] xp = mi_int.ix[:,2] assert_series_equal(rs, xp) # corner column rs = mi_int.iloc[2,2] xp = mi_int.ix[:,2].ix[2] self.assert_(rs == xp) # this is basically regular indexing rs = mi_labels.iloc[2,2] xp = mi_labels.ix['j'].ix[:,'j'].ix[0,0] self.assert_(rs == xp) def test_loc_multiindex(self): mi_labels = DataFrame(np.random.randn(3, 3), columns=[['i', 'i', 'j'], ['A', 'A', 'B']], index=[['i', 'i', 'j'], ['X', 'X', 'Y']]) mi_int = DataFrame(np.random.randn(3, 3), columns=[[2,2,4],[6,8,10]], index=[[4,4,8],[8,10,12]]) # the first row rs = mi_labels.loc['i'] xp = mi_labels.ix['i'] assert_frame_equal(rs, xp) # 2nd (last) columns rs = mi_labels.loc[:,'j'] xp = mi_labels.ix[:,'j'] assert_frame_equal(rs, xp) # corner column rs = mi_labels.loc['j'].loc[:,'j'] xp = mi_labels.ix['j'].ix[:,'j'] assert_frame_equal(rs,xp) # with a tuple rs = mi_labels.loc[('i','X')] xp = mi_labels.ix[('i','X')] assert_frame_equal(rs,xp) rs = mi_int.loc[4] xp = mi_int.ix[4] assert_frame_equal(rs,xp) def test_ix_general(self): # ix general issues # GH 2817 data={'amount': {0: 700, 1: 600, 2: 222, 3: 333, 4: 444}, 'col': {0: 3.5, 1: 3.5, 2: 4.0, 3: 4.0, 4: 4.0}, 'year': {0: 2012, 1: 2011, 2: 2012, 3: 2012, 4: 2012}} df = DataFrame(data).set_index(keys=['col','year']) # this should raise correct error self.assertRaises(KeyError, df.ix.__getitem__, tuple([4.0,2012])) # this is ok df.sortlevel(inplace=True) df.ix[(4.0,2012)] def test_xs_multiindex(self): # GH2903 columns = MultiIndex.from_tuples([('a', 'foo'), ('a', 'bar'), ('b', 'hello'), ('b', 'world')], names=['lvl0', 'lvl1']) df = DataFrame(np.random.randn(4, 4), columns=columns) df.sortlevel(axis=1,inplace=True) result = df.xs('a', level='lvl0', axis=1) expected = df.iloc[:,0:2].loc[:,'a'] assert_frame_equal(result,expected) result = df.xs('foo', level='lvl1', axis=1) expected = df.iloc[:, 1:2].copy() expected.columns = expected.columns.droplevel('lvl1') assert_frame_equal(result, expected) def test_setitem_dtype_upcast(self): # GH3216 df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) df['c'] = np.nan self.assert_(df['c'].dtype == np.float64) df.ix[0,'c'] = 'foo' expected = DataFrame([{"a": 1, "c" : 'foo'}, {"a": 3, "b": 2, "c" : np.nan}]) assert_frame_equal(df,expected) def test_setitem_iloc(self): # setitem with an iloc list df = DataFrame(np.arange(9).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]) df.iloc[[0,1],[1,2]] df.iloc[[0,1],[1,2]] += 100 expected = DataFrame(np.array([0,101,102,3,104,105,6,7,8]).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]) assert_frame_equal(df,expected) def test_dups_fancy_indexing(self): # GH 3455 from pandas.util.testing import makeCustomDataframe as mkdf df= mkdf(10, 3) df.columns = ['a','a','b'] cols = ['b','a'] result = df[['b','a']].columns expected = Index(['b','a','a']) self.assert_(result.equals(expected)) if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False) ```
{ "source": "jnothman/pickleback", "score": 2 }
#### File: jnothman/pickleback/setup.py ```python import os import sys from setuptools import setup, find_packages def setup_package(): src_path = os.path.dirname(os.path.abspath(sys.argv[0])) old_path = os.getcwd() os.chdir(src_path) sys.path.insert(0, src_path) try: # See setup.cfg setup(name='pickleback', version='0.1a1', packages=find_packages(), setup_requires=['pytest-runner'], tests_require=['pytest>=2.7', 'pytest-cov~=2.4', 'matplotlib'], ) # We have considered installing a console script, but avoid it to # avoid environment mismatches that would break pickles. finally: del sys.path[0] os.chdir(old_path) return if __name__ == '__main__': setup_package() ```
{ "source": "jnothman/sphinx-gallery", "score": 2 }
#### File: sphinxgallery/tests/test_backreferences.py ```python from __future__ import division, absolute_import, print_function import sphinxgallery.backreferences as sg from nose.tools import assert_equal def test_thumbnail_div(): """Test if the thumbnail div generates the correct string""" html_div = sg._thumbnail_div('fake_dir', 'test_file.py', 'test formating') reference = """ .. raw:: html <div class="sphx-glr-thumbContainer" tooltip="test formating"> .. figure:: /fake_dir/images/thumb/sphx_glr_test_file_thumb.png :ref:`sphx_glr_fake_dir_test_file.py` .. raw:: html </div> """ assert_equal(html_div, reference) ```
{ "source": "Jnotyogi/NN", "score": 4 }
#### File: Jnotyogi/NN/NNJ 3c &change.py ```python import numpy as np J = 6 ; M = 6 # numbers of nodes in the hidden layers 1 and 2 (set M to zero for just one hidden layer) def sigmoid(f): # but other activation functions can be tried return 1.0/(1+ np.exp(-f)) def sigmderiv(z): # derivative of above function but note that z is the value sigmoid(f) not the sigmoid argument f return z * (1.0 - z) class NeuralNetwork: def __init__(self, x, y): if M > 0: # ie if there is a second hidden layer self.z3ea = x # input self.w32am = np.random.rand(A,M) * 0.1 # initial weights for layer 3 to layer 2 (hidden) self.w21mj = np.random.rand(M,J) * 0.1 # initial weights for layer 2 to layer 1 (hidden) else: self.z2em = x # input although m is a now !! (when M=0) self.w21mj = np.random.rand(A,J) * 0.1 # initial weights for layer 2 to layer 1 (hidden) self.w10jp = np.random.rand(J,P) * 0.1 # initial weights for layer 1 to layer 0 (output) self.t0ep = y # Target training results of e training cases for layer 0 (output): p values each def feedforward(self): if M > 0: self.z2em = sigmoid(np.dot(self.z3ea, self.w32am)) # = sigmoid(f2em) self.z1ej = sigmoid(np.dot(self.z2em, self.w21mj)) # = sigmoid(f1ej) self.z0ep = sigmoid(np.dot(self.z1ej, self.w10jp)) # = sigmoid(f0ep) def backprop(self): dEp = (self.t0ep - self.z0ep) * sigmderiv(self.z0ep) # = -dE/df0ep self.w10jp += np.dot(self.z1ej.T, dEp) dEj = np.dot(dEp, self.w10jp.T) * sigmderiv(self.z1ej) # = -de/df1ej self.w21mj += np.dot(self.z2em.T, dEj) if M > 0: dEm = np.dot(dEj,self.w21mj.T)*sigmderiv(self.z2em) # = -dE/df2em self.w32am += np.dot(self.z3ea.T, dEm) def singlerun(self,zInput): if M > 0: z2m = sigmoid(np.dot(zInput, self.w32am)) z1j = sigmoid(np.dot(z2m, self.w21mj)) else: z1j = sigmoid(np.dot(zInput, self.w21mj)) return sigmoid(np.dot(z1j, self.w10jp)) # main # input defines by E down and A across, the E examples of the nodes of the input layer TrainingInput_ea = np.array([ [0,1,1,1,0,0], [0,1,1,1,0,1], [0,1,1,1,1,0], [1,1,1,1,0,0], [0,1,1,0,1,1], [0,0,1,1,1,0], [0,0,0,1,0,0], [0,1,0,0,0,0], [0,0,1,0,0,0], [1,0,0,0,0,0]]) TrainingOutput_ep = np.array([[1,0],[1,0],[1,0],[1,0],[1,0],[1,0], [0,1],[0,1],[0,1],[0,1]]) E = TrainingInput_ea.shape[0] A = TrainingInput_ea.shape[1] P = TrainingOutput_ep.shape[1] nn = NeuralNetwork(TrainingInput_ea,TrainingOutput_ep) # define class and its initial setup with random weights T = 9000 # train with this number of training sets each employing all of the E example/result combos for ts in range(T): nn.feedforward() # get output result for this set, starting with weights from previous set nn.backprop() # modify the weighting factors following this set print("A M J P T : ", A, M, J, P, T) print("From training:") print(nn.z0ep) # Single runs each with their own input data: print target then result print("New cases:") print(1,0,nn.singlerun(np.array([0,1,1,1,0,0]))) # same as training case print(0,1,nn.singlerun(np.array([0,0,1,0,0,0]))) # same as training case print("u",nn.singlerun(np.array([0,0,0,0,0,1]))) # unspecified as not one of the training cases print() ```
{ "source": "JNovaM/AutoForward", "score": 3 }
#### File: JNovaM/AutoForward/animesdb.py ```python from sqlalchemy import Column, String, BigInteger, Integer from sqlalchemy.orm import sessionmaker, Session from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import create_engine Base = declarative_base() class Anime(Base): __tablename__ = 'anime' id = Column(Integer, primary_key=True, autoincrement=True) att = Column(String) class ChannelFrom(Base): __tablename__ = 'channel_from' id = Column(Integer, primary_key=True, autoincrement=True) att = Column(BigInteger) class ChannelTo(Base): __tablename__ = 'channel_to' id = Column(Integer, primary_key=True, autoincrement=True) att = Column(BigInteger) tables = ('anime', 'channel_from', 'channel_to') def asign(table: str): if table == tables[0]: obj = Anime elif table == tables[1]: obj = ChannelFrom else: obj = ChannelTo return obj class DBHelper: def __init__(self, dbname: str): if dbname.startswith('postgres://'): dbname = dbname.replace('postgres://', 'postgresql://', 1) self.engine = create_engine(dbname) Base.metadata.bind = self.engine Base.metadata.create_all(checkfirst=True) def get_items(self, table: str): session: Session = sessionmaker(self.engine)() try: db_item = session.query(asign(table)).all() session.close() return db_item except Exception as e: session.close() print(f'An error occurred retrieving items. Item was\n{id}') raise e def add_items(self, table: str, attributes: list): session: Session = sessionmaker(self.engine)() try: obj = asign(table) for element in attributes: if not session.query(obj).filter_by(att=element).first(): session.add(obj(att=element)) session.commit() session.close() return True except Exception as e: session.close() print(f'An error occurred in insertion. The item to insert was\n' +f'{id}') print(e) return False def del_items(self, table: str, list_id: list): session: Session = sessionmaker(self.engine)() try: for element in list_id: db_item = session.query(asign(table)).filter_by(id=element).first() if db_item: session.delete(db_item) session.commit() session.close() return True except Exception as e: session.close() print(f'An error occurred updating. The item to update was\n{id}') return False ```
{ "source": "jnovikov/ctfscoreboard", "score": 2 }
#### File: scoreboard/attachments/testing.py ```python import hashlib import flask import StringIO from scoreboard import main app = main.get_app() files = {} def send(attachment): """Send the attachment to the client.""" return flask.send_file(files[attachment.aid], attachment_filename="testing.txt", as_attachment=True) def delete(attachment): """Delete the attachment from disk.""" del files[attachment.aid] def upload(fp): """Upload the file attachment to the storage medium.""" md = hashlib.sha256() ret = StringIO.StringIO() while True: blk = fp.read(2**16) if not blk: break md.update(blk) ret.write(blk) aid = md.hexdigest() ret.seek(0) files[aid] = ret return aid, ('test://%s' % aid) ``` #### File: ctfscoreboard/scoreboard/mail.py ```python from email.mime import text import email.utils import smtplib from scoreboard import main app = main.get_app() class MailFailure(Exception): """Inability to send mail.""" pass def send(message, subject, to, to_name=None, sender=None, sender_name=None): sender = sender or app.config.get('MAIL_FROM') sender_name = sender_name or app.config.get('MAIL_FROM_NAME') host = app.config.get('MAIL_HOST') try: server = smtplib.SMTP(host) except smtplib.SMTPConnectError as ex: app.logger.error('Unable to send mail: %s', str(ex)) raise MailFailure() msg = text.MIMEText(message) msg['Subject'] = subject msg['To'] = email.utils.formataddr((to_name, to)) msg['From'] = email.utils.formataddr((sender_name, sender)) try: if app.debug: server.set_debuglevel(True) server.sendmail(sender, [to], msg.as_string()) except smtplib.SMTPException as ex: app.logger.error('Unable to send mail: %s', str(ex)) raise MailFailure() finally: try: server.quit() except smtplib.SMTPException: pass ``` #### File: scoreboard/tests/rest_test.py ```python import flask import json import StringIO from scoreboard.tests import base from scoreboard.tests import data from scoreboard import models from scoreboard import rest from scoreboard import utils from scoreboard import views # Needed imports _ = (rest, views) def makeTestUser(): u = models.User.create('<EMAIL>', 'Nick', 'hunter2') models.db.session.commit() return u def makeTestTeam(user): t = models.Team.create('Test') user.team = t models.db.session.commit() return t def makeTestChallenges(): cats = data.make_categories() tags = data.make_tags() challs = data.make_challenges(cats, tags) models.db.session.commit() return challs, cats class ConfigzTest(base.RestTestCase): PATH = '/api/configz' def testGetFails(self): with self.queryLimit(0): response = self.client.get(self.PATH) self.assert403(response) testGetFailsNonAdmin = base.authenticated_test(testGetFails) @base.admin_test def testAdmin(self): with self.queryLimit(0): response = self.client.get(self.PATH) self.assert200(response) class PageTest(base.RestTestCase): PATH = '/api/page/home' PATH_NEW = '/api/page/new' PATH_404 = '/api/page/404' def setUp(self): super(PageTest, self).setUp() page = models.Page() page.path = 'home' page.title = 'Home' page.contents = 'Home Page' models.db.session.add(page) models.db.session.commit() self.page = page def testGetAnonymous(self): with self.queryLimit(1): response = self.client.get(self.PATH) self.assert200(response) self.assertEqual(self.page.title, response.json['title']) self.assertEqual(self.page.contents, response.json['contents']) def testGetNonExistent(self): with self.queryLimit(1): self.assert404(self.client.get(self.PATH_404)) @base.admin_test def testDeletePage(self): with self.client as c: self.assert200(c.get(self.PATH)) with self.queryLimit(1): self.assert200(c.delete(self.PATH)) self.assert404(c.get(self.PATH)) @base.admin_test def testCreatePage(self): page_data = dict( title='Test', contents='Test Page Contents', ) with self.queryLimit(3): resp = self.postJSON(self.PATH_NEW, page_data) self.assert200(resp) self.assertEqual(page_data['title'], resp.json['title']) self.assertEqual(page_data['contents'], resp.json['contents']) @base.authenticated_test def testCreatePageNonAdmin(self): page_data = dict( title='Test', contents='Test Page Contents', ) with self.queryLimit(0): resp = self.postJSON(self.PATH_NEW, page_data) self.assert403(resp) @base.admin_test def testUpdatePage(self): page_data = dict( title='Test', contents='Test Page Contents', ) with self.queryLimit(3): resp = self.postJSON(self.PATH, page_data) self.assert200(resp) self.assertEqual(page_data['title'], resp.json['title']) self.assertEqual(page_data['contents'], resp.json['contents']) class UpdateTeam(base.RestTestCase): PATH = '/api/teams/change' _state = None def createTeam(self, teamname): team = models.Team.create(teamname) models.db.session.commit() return team def changeTeam(self, tid, code): return self.putJSON(self.PATH, { 'uid': self.authenticated_client.uid, 'team_tid': tid, 'code': code }) def patchState(self, time='BEFORE'): self._state = utils.GameTime.state utils.GameTime.state = staticmethod(lambda: time) def restoreState(self): if self._state: utils.GameTime.state = self._state @base.authenticated_test def testChangeTeam(self): self.patchState() test_team = self.createTeam('test') resp = self.changeTeam(test_team.tid, test_team.code) self.assert200(resp) self.restoreState() @base.authenticated_test def testTeamChangeWorked(self): self.patchState() test_team = self.createTeam('test2') self.changeTeam(test_team.tid, test_team.code) tid = self.authenticated_client.user.team.tid self.assertEqual(tid, test_team.tid) self.restoreState() @base.authenticated_test def testEmptyTeamIsDeleted(self): self.patchState() test_team_first = self.createTeam('first') test_team_second = self.createTeam('second') self.changeTeam(test_team_first.tid, test_team_first.code) self.changeTeam(test_team_second.tid, test_team_second.code) tid = self.authenticated_client.user.team.tid self.assertEqual(tid, test_team_second.tid) self.assertIsNone(models.Team.query.get(test_team_first.tid)) self.restoreState() @base.authenticated_test def testTeamWithSolvesNotDeleted(self): self.patchState() test_team_first = self.createTeam('first') test_team_second = self.createTeam('second') self.changeTeam(test_team_first.tid, test_team_first.code) chall = models.Challenge.create('Foo', 'Foo', 1, 'Foo', 'foo') models.Answer.create(chall, test_team_first, 'Foo') self.changeTeam(test_team_second.tid, test_team_second.code) tid = self.authenticated_client.user.team.tid self.assertEqual(tid, test_team_second.tid) self.assertIsNotNone(models.Team.query.get(test_team_first.tid)) self.restoreState() @base.authenticated_test def testCantSwitchAfterStart(self): self.patchState('DURING') test_team = self.createTeam('test') resp = self.changeTeam(test_team.tid, test_team.code) self.assert403(resp) self.restoreState() class AttachmentTest(base.RestTestCase): PATH = '/api/attachments/%s' ATTACHMENT_FIELDS = ('aid', 'filename', 'challenges') text = "This is a test" name = "test.txt" def uploadFile(self, filename, text): with self.admin_client as c: string = StringIO.StringIO() string.write(text) string.seek(0) return c.post('/api/attachments', data={ 'file': (string, filename) }) def fetchFile(self, aid): with self.admin_client as c: return c.get(self.PATH % aid) def testUploadFile(self): resp = self.uploadFile("test.txt", "This is a test") self.assert200(resp) # Calculated using an external sha256 tool self.assertEquals( resp.json['aid'], "c7be1ed902fb8dd4d48997c6452f5d7e" "509fbcdbe2808b16bcf4edce4c07d14e") def testQueryFile(self): postresp = self.uploadFile(self.name, self.text) getresp = self.fetchFile(postresp.json['aid']) self.assert200(getresp) def testFileQueryAID(self): postresp = self.uploadFile(self.name, self.text) getresp = self.fetchFile(postresp.json['aid']) self.assertEqual(getresp.json['aid'], postresp.json['aid']) def testFileQueryName(self): postresp = self.uploadFile(self.name, self.text) getresp = self.fetchFile(postresp.json['aid']) self.assertEqual(getresp.json['filename'], self.name) def testFileChallengesEmpty(self): postresp = self.uploadFile(self.name, self.text) getresp = self.fetchFile(postresp.json['aid']) self.assertEqual(len(getresp.json['challenges']), 0) def testRetrieveFile(self): postresp = self.uploadFile(self.name, self.text) with self.admin_client as c: getresp = c.get('/attachments/%s' % postresp.json['aid']) self.assert200(getresp) def testFileRetrievalValue(self): postresp = self.uploadFile(self.name, self.text) with self.admin_client as c: getresp = c.get('/attachment/%s' % postresp.json['aid']) self.assertEqual(getresp.get_data(), self.text) def testFileDelete(self): postresp = self.uploadFile(self.name, self.text) with self.admin_client as c: delresp = c.delete('/api/attachments/%s' % postresp.json['aid']) self.assert200(delresp) def testDeletionRemovesFile(self): postresp = self.uploadFile(self.name, self.text) with self.admin_client as c: c.delete('/api/attachments/%s' % postresp.json['aid']) with self.admin_client as c: getresp = c.get('/api/attachments/%s' % postresp.json['aid']) self.assert404(getresp) def testFileUpdate(self): new_name = "file.png" postresp = self.uploadFile(self.name, self.text) with self.admin_client as c: putresp = c.put( '/api/attachments/%s' % postresp.json['aid'], data=json.dumps({ 'filename': new_name, 'aid': postresp.json['aid'], 'challenges': [], }), content_type="application/json") self.assert200(putresp) def testUpdateChangesName(self): new_name = "file.png" postresp = self.uploadFile(self.name, self.text) with self.admin_client as c: c.put('/api/attachments/%s' % postresp.json['aid'], data=json.dumps({ 'filename': new_name, 'aid': postresp.json['aid'], 'challenges': [], }), content_type="application/json") getresp = c.get('/api/attachments/%s' % postresp.json['aid']) self.assertEqual(getresp.json['filename'], new_name) class UserTest(base.RestTestCase): PATH = '/api/users/%d' USER_FIELDS = ('admin', 'nick', 'email', 'team_tid', 'uid') def testGetAnonymous(self): path = self.PATH % makeTestUser().uid with self.queryLimit(0): self.assert403(self.client.get(path)) def testGetNonExistent(self): path = self.PATH % 999 with self.queryLimit(0): resp = self.client.get(path) self.assert403(resp) testGetNonExistentAuth = base.authenticated_test( testGetNonExistent) @base.admin_test def testGetNonExistentAdmin(self): path = self.PATH % 999 with self.queryLimit(1): resp = self.client.get(path) self.assert404(resp) @base.authenticated_test def testGetSelf(self): user = self.authenticated_client.user with self.queryLimit(1): resp = self.client.get(self.PATH % user.uid) self.assert200(resp) self.assertEqual(user.email, resp.json['email']) self.assertEqual(user.nick, resp.json['nick']) self.assertEqual(user.admin, resp.json['admin']) @base.authenticated_test def testUpdateUser(self): user = self.authenticated_client.user data = {'password': '<PASSWORD>'} # for security with self.queryLimit(2): self.assert200(self.putJSON( self.PATH % user.uid, data)) @base.authenticated_test def testUpdateUserNoAccess(self): uid = self.admin_client.user.uid data = {'password': '<PASSWORD>'} with self.queryLimit(0): resp = self.putJSON(self.PATH % uid, data) self.assert403(resp) @base.admin_test def testUpdateUserAdmin(self): uid = self.authenticated_client.user.uid data = {'nick': 'Lame'} with self.queryLimit(2): resp = self.putJSON(self.PATH % uid, data) self.assert200(resp) self.assertEqual('Lame', resp.json['nick']) self.assertNotEqual( 'Lame', self.authenticated_client.user.team.name) @base.admin_test def testUpdateUsersNoTeams(self): uid = self.authenticated_client.user.uid self.app.config['TEAMS'] = False data = {'nick': 'Lame'} with self.queryLimit(3): resp = self.putJSON(self.PATH % uid, data) self.assert200(resp) self.assertEqual('Lame', resp.json['nick']) self.assertEqual('Lame', self.authenticated_client.user.team.name) @base.admin_test def testUpdateUserPromote(self): user = self.authenticated_client.user data = {'nick': user.nick, 'admin': True} # yes, this is a lot, but promoting is infrequent with self.queryLimit(7): resp = self.putJSON(self.PATH % user.uid, data) self.assert200(resp) self.assertTrue(resp.json['admin']) @base.admin_test def testUpdateUserDemote(self): user = self.admin_client.user data = {'nick': user.nick, 'admin': False} with self.queryLimit(3): resp = self.putJSON(self.PATH % user.uid, data) self.assert200(resp) self.assertFalse(resp.json['admin']) @base.authenticated_test def testUpdateUserNoSelfPromotion(self): uid = self.authenticated_client.user.uid data = {'admin': True} with self.queryLimit(1): resp = self.putJSON(self.PATH % uid, data) self.assert200(resp) self.assertFalse(resp.json['admin']) @base.admin_test def testUpdateUserNoAnswers(self): user = self.authenticated_client.user team = self.authenticated_client.user.team chall = models.Challenge.create('Foo', 'Foo', 1, 'Foo', 'foo') models.Answer.create(chall, team, 'Foo') models.db.session.commit() data = {'nick': user.nick, 'admin': True} with self.queryLimit(3): resp = self.putJSON(self.PATH % user.uid, data) self.assert400(resp) user = models.User.query.get(user.uid) self.assertFalse(user.admin) @base.authenticated_test def testGetUsersNoAccess(self): with self.queryLimit(0): resp = self.client.get('/api/users') self.assert403(resp) @base.admin_test def testGetUsers(self): self.admin_client.user with self.queryLimit(1): resp = self.client.get('/api/users') self.assert200(resp) self.assertIsInstance(resp.json, dict) self.assertIn('users', resp.json) self.assertIsInstance(resp.json['users'], list) users = resp.json['users'] self.assertEqual(2, len(users)) for u in users: self.assertItemsEqual(self.USER_FIELDS, u.keys()) @staticmethod def default_data(): return { 'email': '<EMAIL>', 'nick': 'test3', 'password': '<PASSWORD>', 'team_id': 'new', 'team_name': 'New Team', 'team_code': None, } def testRegisterUserNewTeam(self): data = self.default_data() # TODO: maybe optimize? with self.client: with self.queryLimit(9): resp = self.postJSON('/api/users', data) self.assert200(resp) self.assertItemsEqual(self.USER_FIELDS, resp.json.keys()) self.assertEqual(resp.json['uid'], flask.session['user']) self.assertEqual(resp.json['admin'], flask.session['admin']) self.assertEqual(resp.json['team_tid'], flask.session['team']) def testRegisterUserExistingTeam(self): team = self.authenticated_client.team data = self.default_data() data.update({ 'team_id': team.tid, 'team_name': None, 'team_code': team.code, }) with self.client: with self.queryLimit(8): resp = self.postJSON('/api/users', data) self.assert200(resp) self.assertItemsEqual(self.USER_FIELDS, resp.json.keys()) self.assertEqual(resp.json['uid'], flask.session['user']) self.assertEqual(resp.json['admin'], flask.session['admin']) self.assertEqual(resp.json['team_tid'], flask.session['team']) self.assertEqual(team.tid, resp.json['team_tid']) def testRegisterUserTeamWrongCode(self): team = self.authenticated_client.team data = self.default_data() data.update({ 'team_id': team.tid, 'team_name': None, 'team_code': 'xxx', }) with self.client: with self.queryLimit(1): resp = self.postJSON('/api/users', data) self.assert400(resp) @base.authenticated_test def testRegisterUserLoggedInFails(self): data = self.default_data() with self.queryLimit(0): resp = self.postJSON('/api/users', data) self.assert400(resp) def testRegisterUserNoNick(self): data = self.default_data() del data['nick'] with self.queryLimit(0): self.assert400(self.postJSON('/api/users', data)) def testRegisterUserNoTeam(self): data = self.default_data() del data['team_name'] del data['team_id'] with self.queryLimit(0): self.assert400(self.postJSON('/api/users', data)) def testRegisterUserInviteKey(self): self.app.config['INVITE_KEY'] = 'foobar' data = self.default_data() data['invite_key'] = self.app.config['INVITE_KEY'] with self.client: resp = self.postJSON('/api/users', data) self.assert200(resp) def testRegisterUserNoInviteKey(self): self.app.config['INVITE_KEY'] = 'foobar' data = self.default_data() with self.client: with self.queryLimit(0): resp = self.postJSON('/api/users', data) self.assert400(resp) def testRegisterUserWrongInviteKey(self): self.app.config['INVITE_KEY'] = 'foobar' data = self.default_data() data['invite_key'] = 'notright' with self.client: with self.queryLimit(0): resp = self.postJSON('/api/users', data) self.assert400(resp) class TeamTest(base.RestTestCase): LIST_URL = '/api/teams' def setUp(self): super(TeamTest, self).setUp() self.user = makeTestUser() self.team = makeTestTeam(self.user) self.team_path = '/api/teams/%d' % self.team.tid @base.authenticated_test def testGetTeam(self): with self.queryLimit(4): resp = self.client.get(self.team_path) self.assert200(resp) self.assertEqual(0, len(resp.json['players'])) self.assertEqual(self.team.name, resp.json['name']) # TODO: check other fields def testGetTeamAnonymous(self): with self.queryLimit(0): self.assert403(self.client.get(self.team_path)) @base.admin_test def testGetTeamAdmin(self): with self.queryLimit(4): resp = self.client.get(self.team_path) self.assert200(resp) self.assertEqual(1, len(resp.json['players'])) @base.admin_test def testUpdateTeamAdmin(self): data = {'name': 'Updated'} with self.queryLimit(6): resp = self.putJSON(self.team_path, data) self.assert200(resp) self.assertEqual('Updated', resp.json['name']) team = models.Team.query.get(self.team.tid) self.assertEqual('Updated', team.name) def testGetTeamList(self): with self.client as c: with self.queryLimit(3) as ctr: resp = c.get(self.LIST_URL) n_queries = ctr.query_count self.assert200(resp) models.Team.create('Test 2') models.Team.create('Test 3') models.Team.create('Test 4') models.db.session.commit() with self.queryLimit(n_queries): resp = c.get(self.LIST_URL) self.assert200(resp) class SessionTest(base.RestTestCase): PATH = '/api/session' def testGetSessionAnonymous(self): self.assert403(self.client.get(self.PATH)) @base.authenticated_test def testGetSessionAuthenticated(self): with self.queryLimit(1): resp = self.client.get(self.PATH) self.assert200(resp) self.assertEqual( self.authenticated_client.user.nick, resp.json['user']['nick']) self.assertEqual( self.authenticated_client.team.name, resp.json['team']['name']) @base.admin_test def testGetSessionAdmin(self): with self.queryLimit(1): resp = self.client.get(self.PATH) self.assert200(resp) self.assertEqual( self.admin_client.user.nick, resp.json['user']['nick']) self.assertTrue(resp.json['user']['admin']) self.assertItemsEqual( {'tid': 0, 'score': 0, 'name': None, 'code': None}, resp.json['team']) def testSessionLoginSucceeds(self): data = { 'email': self.authenticated_client.user.email, 'password': <PASSWORD>, } with self.client: with self.queryLimit(4): resp = self.postJSON(self.PATH, data) self.assert200(resp) self.assertEqual( flask.session['user'], self.authenticated_client.user.uid) self.assertEqual( flask.session['team'], self.authenticated_client.team.tid) self.assertFalse(flask.session['admin']) self.assertEqual( flask.g.user.email, self.authenticated_client.user.email) def testSessionLoginFailsBadPassword(self): data = { 'email': self.authenticated_client.user.email, 'password': '<PASSWORD>', } with self.client: with self.queryLimit(1): resp = self.postJSON(self.PATH, data) self.assert403(resp) self.assertIsNone(flask.session.get('user')) self.assertIsNone(flask.session.get('team')) self.assertIsNone(flask.session.get('admin')) def testSessionLoginFailsBadUser(self): data = { 'email': '<EMAIL>', 'password': '<PASSWORD>', } with self.client: with self.queryLimit(1): resp = self.postJSON(self.PATH, data) self.assert403(resp) self.assertIsNone(flask.session.get('user')) self.assertIsNone(flask.session.get('team')) self.assertIsNone(flask.session.get('admin')) @base.admin_test def testSessionLoginAlreadyLoggedIn(self): data = { 'email': self.authenticated_client.user.email, 'password': <PASSWORD>, } # This makes sure admin->non-admin downgrades properly with self.client: with self.queryLimit(4): resp = self.postJSON(self.PATH, data) self.assert200(resp) self.assertEqual( flask.session['user'], self.authenticated_client.user.uid) self.assertEqual( flask.session['team'], self.authenticated_client.team.tid) self.assertFalse(flask.session['admin']) self.assertEqual( flask.g.user.email, self.authenticated_client.user.email) @base.authenticated_test def testSessionLogout(self): with self.client as c: with self.queryLimit(1): resp = c.delete(self.PATH) self.assert200(resp) self.assertIsNone(flask.session.get('user')) self.assertIsNone(flask.session.get('team')) self.assertIsNone(flask.session.get('admin')) def testSessionLogoutAnonymous(self): with self.client as c: with self.queryLimit(0): resp = c.delete(self.PATH) self.assert200(resp) self.assertIsNone(flask.session.get('user')) self.assertIsNone(flask.session.get('team')) self.assertIsNone(flask.session.get('admin')) class ChallengeTest(base.RestTestCase): PATH_LIST = '/api/challenges' PATH_SINGLE = '/api/challenges/%d' def setUp(self): super(ChallengeTest, self).setUp() self.challs, _ = makeTestChallenges() self.chall = self.challs[0] self.PATH_SINGLE %= self.chall.cid def testGetListAnonymous(self): with self.queryLimit(0): self.assert403(self.client.get(self.PATH_LIST)) testGetListAuthenticated = base.authenticated_test( testGetListAnonymous) @base.admin_test def testGetListAdmin(self): # TODO: fix to not be O(n) with self.queryLimit(None): resp = self.client.get(self.PATH_LIST) self.assert200(resp) self.assertEqual(len(self.challs), len(resp.json['challenges'])) def newChallengeData(self): return { 'name': 'Chall 1', 'description': 'Challenge 1', 'points': 200, 'answer': 'abc', 'cat_slug': self.chall.cat_slug, 'unlocked': True, 'validator': 'static_pbkdf2', } def testCreateChallengeAnonymous(self): data = self.newChallengeData() with self.queryLimit(0): self.assert403(self.postJSON( self.PATH_LIST, data)) testCreateChallengeAuthenticated = base.authenticated_test( testCreateChallengeAnonymous) @base.admin_test def testCreateChallenge(self): # TODO: variants data = self.newChallengeData() # TODO: optimize count with self.queryLimit(8): resp = self.postJSON(self.PATH_LIST, data) self.assert200(resp) for field in ('name', 'description', 'points', 'unlocked'): self.assertEqual(data[field], resp.json[field]) def getUpdateData(self): return { 'name': 'Renamed', 'points': 1, 'weight': 12, 'unlocked': False } @base.admin_test def testUpdateChallenge(self): data = self.getUpdateData() with self.queryLimit(6): resp = self.putJSON(self.PATH_SINGLE, data) self.assert200(resp) for k in data.keys(): self.assertEqual(data[k], resp.json[k]) def testUpdateChallengeAnonymous(self): data = self.getUpdateData() with self.queryLimit(0): self.assert403(self.putJSON(self.PATH_SINGLE, data)) testUpdateChallengeAuthenticated = base.authenticated_test( testUpdateChallengeAnonymous) @base.admin_test def testGetSingleton(self): with self.queryLimit(6): resp = self.client.get(self.PATH_SINGLE) self.assert200(resp) for field in ('name', 'points', 'description', 'unlocked'): self.assertEqual(getattr(self.chall, field), resp.json[field]) def testGetSingletonAnonymous(self): with self.queryLimit(0): self.assert403(self.client.get(self.PATH_SINGLE)) testGetSingletonAuthenticated = base.authenticated_test( testGetSingletonAnonymous) @base.admin_test def testDeleteChallenge(self): with self.queryLimit(5): self.assert200(self.client.delete(self.PATH_SINGLE)) def testDeleteChallengeAnonymous(self): with self.queryLimit(0): self.assert403(self.client.delete(self.PATH_SINGLE)) testDeleteChallengeAuthenticated = base.authenticated_test( testDeleteChallengeAnonymous) class ScoreboardTest(base.RestTestCase): PATH = '/api/scoreboard' def setUp(self): super(ScoreboardTest, self).setUp() data.create_all() # Make a bunch of data for scoreboard def testGetScoreboard(self): resp = self.client.get(self.PATH) self.assert200(resp) # TODO: check contents class CategoryTest(base.RestTestCase): PATH_LIST = '/api/categories' PATH_SINGLE = '/api/categories/%s' def setUp(self): super(CategoryTest, self).setUp() self.challs, self.cats = makeTestChallenges() self.cat = self.cats[0] self.PATH_SINGLE %= self.cat.slug def _testGetList(self): with self.queryLimit(3): resp = self.client.get(self.PATH_LIST) self.assert200(resp) self.assertEqual(len(self.cats), len(resp.json['categories'])) # TODO: check that the expected fields are visible and that others are # not. testGetListAuthenticated = base.authenticated_test(_testGetList) testGetListAdmin = base.admin_test(_testGetList) def testGetListAnonymous(self): with self.queryLimit(0): resp = self.client.get(self.PATH_LIST) self.assert403(resp) def testCreateCategoryFails(self): data = { 'name': 'New', 'description': 'New Category', } with self.queryLimit(0): resp = self.postJSON(self.PATH_LIST, data) self.assert403(resp) self.assertEqual(len(self.cats), models.Category.query.count()) testCreateCategoryFailsAuthenticated = base.authenticated_test( testCreateCategoryFails) @base.admin_test def testCreateCategory(self): data = { 'name': 'New', 'description': 'New Category', } with self.queryLimit(6): resp = self.postJSON(self.PATH_LIST, data) self.assert200(resp) for f in ('name', 'description'): self.assertEqual(data[f], resp.json[f]) cat = models.Category.query.get(resp.json['slug']) for f in ('name', 'description'): self.assertEqual(data[f], getattr(cat, f)) def testDeleteCategoryFails(self): with self.queryLimit(0): resp = self.client.delete(self.PATH_SINGLE) self.assert403(resp) self.assertIsNotNone(models.Category.query.get(self.cat.slug)) testDeleteCategoryFailsAuthenticated = base.authenticated_test( testDeleteCategoryFails) @base.admin_test def testDeleteNonEmptyCategory(self): with self.queryLimit(3): resp = self.client.delete(self.PATH_SINGLE) self.assert400(resp) self.assertIsNotNone(models.Category.query.get(self.cat.slug)) @base.admin_test def testDeleteEmptyCategory(self): for i in self.cat.challenges: models.db.session.delete(i) models.db.session.commit() with self.queryLimit(3): resp = self.client.delete(self.PATH_SINGLE) self.assert200(resp) self.assertIsNone(models.Category.query.get(self.cat.slug)) def testGetCategoryAnonymous(self): with self.queryLimit(0): self.assert403(self.client.get(self.PATH_SINGLE)) def _testGetCategory(self): with self.queryLimit(None): resp = self.client.get(self.PATH_SINGLE) self.assert200(resp) testGetCategoryAuthenticated = base.authenticated_test( _testGetCategory) testGetCategoryAdmin = base.admin_test(_testGetCategory) def testUpdateCategoryAnonymous(self): with self.queryLimit(0): resp = self.putJSON(self.PATH_SINGLE, { 'name': 'new name'}) self.assert403(resp) testUpdateCategoryAuthenticated = base.authenticated_test( testUpdateCategoryAnonymous) @base.admin_test def testUpdateCategoryAdmin(self): data = {'name': 'new name'} with self.queryLimit(None): resp = self.putJSON(self.PATH_SINGLE, data) self.assert200(resp) self.assertEqual(data['name'], resp.json['name']) cat = models.Category.query.get(self.cat.slug) self.assertEqual(data['name'], cat.name) class AnswerTest(base.RestTestCase): PATH = '/api/answers' def setUp(self): super(AnswerTest, self).setUp() cat = models.Category.create('test', 'test') self.answer = 'foobar' self.points = 100 self.chall = models.Challenge.create( 'test', 'test', self.points, self.answer, cat.slug, unlocked=True) self.cid = self.chall.cid models.db.session.commit() def testSubmitAnonymous(self): with self.queryLimit(0): self.assert403(self.postJSON(self.PATH, { 'cid': self.cid, 'answer': self.answer, })) @base.admin_test def testSubmitAdmin_Regular(self): with self.queryLimit(0): self.assert400(self.postJSON(self.PATH, { 'cid': self.cid, 'answer': self.answer, })) @base.admin_test def testSubmitAdmin_Override(self): team = models.Team.create('crash_override') models.db.session.commit() with self.queryLimit(7): resp = self.postJSON(self.PATH, { 'cid': self.cid, 'tid': team.tid, }) self.assert200(resp) self.assertEqual(self.points, resp.json['points']) @base.authenticated_test def testSubmitCorrect(self): with self.queryLimit(6): resp = self.postJSON(self.PATH, { 'cid': self.cid, 'answer': self.answer, }) self.assert200(resp) self.assertEqual(self.points, resp.json['points']) @base.authenticated_test def testSubmitIncorrect(self): old_score = self.client.team.score with self.queryLimit(2): resp = self.postJSON(self.PATH, { 'cid': self.cid, 'answer': 'incorrect', }) self.assert403(resp) team = models.Team.query.get(self.client.team.tid) self.assertEqual(old_score, team.score) @base.authenticated_test def testSubmitDouble(self): models.Answer.create(self.chall, self.client.team, '') old_score = self.client.team.score with self.queryLimit(4): resp = self.postJSON(self.PATH, { 'cid': self.cid, 'answer': self.answer, }) self.assert403(resp) team = models.Team.query.get(self.client.team.tid) self.assertEqual(old_score, team.score) @base.authenticated_test def testSubmit_ProofOfWork(self): test_nbits = 12 def MockValidate(val, key, nbits): self.assertEqual(val, self.answer) self.assertEqual(key, 'foo') self.assertEqual(nbits, test_nbits) return True self.app.config['PROOF_OF_WORK_BITS'] = test_nbits # TODO: switch to mock framework old_pow_test = utils.validate_proof_of_work utils.validate_proof_of_work = MockValidate with self.queryLimit(6): resp = self.postJSON(self.PATH, { 'cid': self.cid, 'answer': self.answer, 'token': 'foo' }) self.assert200(resp) self.assertEqual(self.points, resp.json['points']) utils.validate_proof_of_work = old_pow_test @base.authenticated_test def testSubmit_ProofOfWorkFails(self): test_nbits = 12 def MockValidate(val, key, nbits): self.assertEqual(val, self.answer) self.assertEqual(key, 'foo') self.assertEqual(nbits, test_nbits) return False self.app.config['PROOF_OF_WORK_BITS'] = test_nbits # TODO: switch to mock framework old_pow_test = utils.validate_proof_of_work utils.validate_proof_of_work = MockValidate old_score = self.client.team.score with self.queryLimit(2): resp = self.postJSON(self.PATH, { 'cid': self.cid, 'answer': self.answer, 'token': '<PASSWORD>' }) self.assert403(resp) team = models.Team.query.get(self.client.team.tid) self.assertEqual(old_score, team.score) utils.validate_proof_of_work = old_pow_test class ConfigTest(base.RestTestCase): PATH = '/api/config' def makeTestGetConfig(extra_keys=None): extra_keys = set(extra_keys or []) def testGetConfig(self): with self.queryLimit(0): resp = self.client.get(self.PATH) self.assert200(resp) expected_keys = set(( 'teams', 'sbname', 'news_mechanism', 'news_poll_interval', 'csrf_token', 'rules', 'game_start', 'game_end', 'login_url', 'register_url', 'login_method', 'scoring', 'validators', 'proof_of_work_bits', 'invite_only', 'tags_only', )) expected_keys |= extra_keys self.assertEqual(expected_keys, set(resp.json.keys())) self.assertIsInstance(resp.json['invite_only'], bool) return testGetConfig testGetConfig = makeTestGetConfig() testGetConfigAuthenticated = base.authenticated_test( makeTestGetConfig()) testGetConfigAdmin = base.admin_test( makeTestGetConfig()) class NewsTest(base.RestTestCase): PATH = '/api/news' def setUp(self): super(NewsTest, self).setUp() models.News.broadcast('test', 'Test message.') models.News.unicast( self.authenticated_client.team.tid, 'test', 'Test team message.') models.commit() def testGetNews(self): with self.queryLimit(2): resp = self.client.get(self.PATH) self.assert200(resp) self.assertEqual(1, len(resp.json)) testGetNewsAdmin = base.admin_test(testGetNews) @base.authenticated_test def testGetNewsAuthenticated(self): with self.queryLimit(2): resp = self.client.get(self.PATH) self.assert200(resp) self.assertEqual(2, len(resp.json)) def testCreateNews(self): with self.queryLimit(0): resp = self.postJSON(self.PATH, { 'message': 'some message', }) self.assert403(resp) testCreateNewsAuthenticated = base.authenticated_test(testCreateNews) @base.admin_test def testCreateNewsAdmin(self): msg = 'some message' with self.queryLimit(3): resp = self.postJSON(self.PATH, { 'message': msg, }) self.assert200(resp) self.assertEqual(self.client.user.nick, resp.json['author']) self.assertEqual(msg, resp.json['message']) @base.admin_test def testCreateTeamNewsAdmin(self): msg = 'some message' tid = self.authenticated_client.team.tid with self.queryLimit(3): resp = self.postJSON(self.PATH, { 'message': msg, 'tid': tid, }) self.assert200(resp) self.assertEqual(self.client.user.nick, resp.json['author']) self.assertEqual(msg, resp.json['message']) self.assertEqual('Unicast', resp.json['news_type']) news = models.News.query.get(resp.json['nid']) self.assertEqual(tid, news.audience_team_tid) class CTFTimeTest(base.RestTestCase): PATH = '/api/ctftime/scoreboard' def testGetScoreboard(self): with self.queryLimit(1): resp = self.client.get(self.PATH) self.assert200(resp) self.assertIn('standings', resp.json) standings = resp.json['standings'] required = set(('pos', 'team', 'score')) for i in standings: self.assertEqual(required, required & set(i.keys())) ``` #### File: scoreboard/validators/nonce.py ```python import base64 import hashlib import hmac import struct from scoreboard import main from scoreboard import utils from scoreboard import models from . import base app = main.get_app() class BaseNonceValidator(base.BaseValidator): # Bits to use for each of the nonce and authenticator NONCE_BITS = 0 AUTHENTICATOR_BITS = 0 HASH = hashlib.sha256 def __init__(self, *args, **kwargs): super(BaseNonceValidator, self).__init__(*args, **kwargs) if not self.NONCE_BITS or self.NONCE_BITS % 8: raise ValueError('NONCE_BITS must be non-0 and a multiple of 8.') if not self.AUTHENTICATOR_BITS or self.AUTHENTICATOR_BITS % 8: raise ValueError( 'AUTHENTICATOR_BITS must be non-0 and a multiple of 8.') @staticmethod def _decode(buf): raise NotImplementedError('Must implement decode.') @staticmethod def _encode(buf): raise NotImplementedError('Must implement encode.') def validate_answer(self, answer, team): """Validate the nonce-based flag.""" try: decoded_answer = self._decode(answer) except TypeError: app.logger.error('Invalid padding for answer.') return False if len(decoded_answer) != ( self.NONCE_BITS + self.AUTHENTICATOR_BITS) / 8: app.logger.error('Invalid length of decoded answer in %s', type(self).__name__) return False nonce = decoded_answer[:self.NONCE_BITS/8] authenticator = decoded_answer[self.NONCE_BITS/8:] if not utils.compare_digest(authenticator, self.compute_authenticator(nonce)): app.logger.error('Invalid nonce flag: %s', answer) return False # At this point, it's a valid flag, but need to check for reuse. # We do this by inserting and primary key checks will fail in the # commit phase. if team: models.NonceFlagUsed.create( self.challenge, self.unpack_nonce(nonce), team) return True def compute_authenticator(self, nonce): """Compute the authenticator part for a nonce.""" mac = hmac.new( self.challenge.answer_hash.encode('utf-8'), nonce, digestmod=self.HASH).digest() return mac[:self.AUTHENTICATOR_BITS/8] def make_answer(self, nonce): """Compute the whole answer for a nonce.""" if isinstance(nonce, int): nonce = struct.pack('>Q', nonce) nonce = nonce[8 - (self.NONCE_BITS / 8):] if len(nonce) != self.NONCE_BITS / 8: raise ValueError('nonce is wrong length!') return self._encode(nonce + self.compute_authenticator(nonce)) @classmethod def unpack_nonce(cls, nonce): pad = '\x00' * (8 - cls.NONCE_BITS / 8) return struct.unpack('>Q', pad + nonce)[0] class Base32Validator(BaseNonceValidator): def __init__(self, *args, **kwargs): if (self.NONCE_BITS + self.AUTHENTICATOR_BITS) % 5 != 0: raise ValueError('Length must be a mulitple of 5 bits.') super(Base32Validator, self).__init__(*args, **kwargs) @staticmethod def _encode(buf): return base64.b32encode(buf) @staticmethod def _decode(buf): if isinstance(buf, unicode): buf = buf.encode('utf-8') return base64.b32decode(buf, casefold=True, map01='I') class Nonce_16_64_Base32_Validator(Base32Validator): name = 'Nonce: 16 bits, 64 bit validator, Base32 encoded' NONCE_BITS = 16 AUTHENTICATOR_BITS = 64 class Nonce_24_56_Base32_Validator(Base32Validator): name = 'Nonce: 24 bits, 56 bit validator, Base32 encoded' NONCE_BITS = 24 AUTHENTICATOR_BITS = 56 class Nonce_32_88_Base32_Validator(Base32Validator): name = 'Nonce: 32 bits, 88 bit validator, Base32 encoded' NONCE_BITS = 32 AUTHENTICATOR_BITS = 88 ``` #### File: ctfscoreboard/scoreboard/views.py ```python import flask import os from werkzeug import exceptions from scoreboard import attachments from scoreboard import main from scoreboard import models from scoreboard import utils app = main.get_app() _VIEW_CACHE = {} @app.errorhandler(404) def handle_404(ex): """Handle 404s, sending index.html for unhandled paths.""" path = flask.request.path[1:] try: return app.send_static_file(path) except (exceptions.NotFound, UnicodeEncodeError): if '.' not in path and not path.startswith('api/'): app.logger.info('%s -> index.html', path) return render_index() return '404 Not Found', 404 # Needed because emails with a "." in them prevent 404 handler from working @app.route('/pwreset/<path:unused>') def render_pwreset(unused): return render_index() @app.route('/') @app.route('/index.html') def render_index(): """Render index. Do not include any user-controlled content to avoid XSS! """ try: tmpl = _VIEW_CACHE['index'] except KeyError: minify = not app.debug and os.path.exists( os.path.join(app.static_folder, 'js/app.min.js')) tmpl = flask.render_template('index.html', minify=minify) _VIEW_CACHE['index'] = tmpl return flask.make_response(tmpl, 200) @app.route('/attachment/#') @utils.login_required def download(filename): """Download an attachment.""" attachment = models.Attachment.query.get_or_404(filename) valid = models.User.current().admin for ch in attachment.challenges: if ch.unlocked: valid = True break if not valid: flask.abort(404) app.logger.info('Download of %s by %r.', attachment, models.User.current()) return attachments.backend.send(attachment) @app.route('/createdb') def createdb(): """Create database schema without CLI access. Useful for AppEngine and other container environments. Should be safe to be exposed, as operation is idempotent and does not clear any data. """ try: models.db.create_all() return 'Tables created.' except Exception as ex: app.logger.exception('Failed creating tables: %s', str(ex)) return 'Failed creating tables: see log.' ```
{ "source": "jnovikov/training-05-10-19", "score": 3 }
#### File: checkers/bot5words/bot_lib.py ```python from bs4 import BeautifulSoup from checklib import * import secrets import requests import json import base64 PORT = 5002 web_links = { 'https://yandex.ru': "Яндекс", "https://shadowservants.ru": "Ддосишь", } class CheckMachine: @property def url(self): return f'http://{self.host}:{self.port}' def __init__(self, host, port): self.host = host self.port = port def register_in_service(self, who='MC'): register_url = self.url + '/register' login = secrets.choice(('Sunlover', 'Pomo', 'Johnny', 'alagunto', 'Kekov')) login = login + '_' + rnd_username() password = <PASSWORD>() type = '2' if who != 'MC': type = '1' data = dict( type=type, login=login, password=password ) r = requests.post(url=register_url, data=data, allow_redirects=False) assert_eq(r.status_code, 303, "Can't register in service") return data def login_in_service(self, data): login_url = self.url + '/login' s = requests.Session() r = s.get(url=login_url, allow_redirects=True) assert_eq(r.status_code, 200, "Can't login in service") r = s.post(url=login_url, data=data, allow_redirects=True) assert_eq(r.status_code, 200, "Can't login in service") return s def put_string(self, session, s): name = rnd_string(10) create_url = self.url + '/create' r = session.post(url=create_url, data=dict(name=name, text=s)) assert_eq(r.status_code, 200, "Can't create text") def get_searchable_link(self, s, link): resp = s.get(self.url + link) html = resp.text soup = BeautifulSoup(html, 'html.parser') links = soup.find_all('a') last_link = links.pop() return last_link.get("href", "/not_found_lol") def find_all_links(self, session): list_url = self.url + '/list' r = session.get(url=list_url) html = r.text soup = BeautifulSoup(html, 'html.parser') links = soup.find_all('a') result_links = [] for link in links: link = link.get("href", "/not_found_lol") if "text" in link: result_links.append(link) result_links = [self.get_searchable_link(session, x) for x in result_links] return dict(links=result_links) def find_all_strings_by_links(self, session, links): s = [] for link in links: find_url = self.url + link r = session.get(find_url) html = r.text soup = BeautifulSoup(html, 'html.parser') areas = soup.find_all('textarea') if areas: s += [x.string for x in areas] return s def create_text_by_url(self, session): create_url = self.url + '/create_url' name = rnd_string(10) text_url_pair = secrets.choice(list(web_links.items())) text_url = text_url_pair[0] r = session.post(url=create_url, data=dict(name=name, url=text_url)) assert_eq(r.status_code, 200, "Can't create text by link") list_url = self.url + '/list' r = session.get(url=list_url) html = r.text soup = BeautifulSoup(html, 'html.parser') links = soup.find_all('a') last = links.pop().get("href", "/bad_href") r = session.get(url=self.url + last) assert_in(text_url_pair[1], r.text, "Can't create text by link") def check_print_session_works(self, username, s): print_url = self.url + '/print' r = s.get(print_url) assert_eq(r.status_code, 200, "Can't print banned user data") try: data = json.loads(base64.b64decode(r.text)) assert_in(username, data.values(), "Can't print banned user data") except Exception: cquit(Status.MUMBLE, "Can't print banned user data") ```
{ "source": "jnovinger/django-batch-requests", "score": 2 }
#### File: django-batch-requests/batch_requests/utils.py ```python from __future__ import absolute_import, unicode_literals import six from django.test.client import RequestFactory, FakePayload from batch_requests.settings import br_settings as _settings # Standard WSGI supported headers WSGI_HEADERS = { "CONTENT_LENGTH", "CONTENT_TYPE", "QUERY_STRING", "REMOTE_ADDR", "REMOTE_HOST", "REMOTE_USER", "REQUEST_METHOD", "SERVER_NAME", "SERVER_PORT", } class BatchRequestFactory(RequestFactory): ''' Extend the RequestFactory and update the environment variables for WSGI. ''' def _base_environ(self, **request): ''' Override the default values for the wsgi environment variables. ''' # This is a minimal valid WSGI environ dictionary, plus: # - HTTP_COOKIE: for cookie support, # - REMOTE_ADDR: often useful, see #8551. # See http://www.python.org/dev/peps/pep-3333/#environ-variables environ = { 'HTTP_COOKIE': self.cookies.output(header='', sep='; '), 'PATH_INFO': str('/'), 'REMOTE_ADDR': str('127.0.0.1'), 'REQUEST_METHOD': str('GET'), 'SCRIPT_NAME': str(''), 'SERVER_NAME': str('localhost'), 'SERVER_PORT': str('8000'), 'SERVER_PROTOCOL': str('HTTP/1.1'), 'wsgi.version': (1, 0), 'wsgi.url_scheme': str('http'), 'wsgi.input': FakePayload(b''), 'wsgi.errors': self.errors, 'wsgi.multiprocess': True, 'wsgi.multithread': True, 'wsgi.run_once': False, } environ.update(self.defaults) environ.update(request) return environ def get_wsgi_request_object( curr_request, method, url, headers, body, REQUEST_FACTORY=BatchRequestFactory() # purposefully using a shared instance ): ''' Based on the given request parameters, constructs and returns the WSGI request object. ''' def transform_header(header, _wsgi_headers=WSGI_HEADERS): """Transform headers, if necessary For every header, replace - to _, prepend http_ if necessary and convert to upper case. """ header = header.replace("-", "_").upper() if header not in _wsgi_headers: header = "HTTP_{header}".format(header=header) return header t_headers = {"CONTENT_TYPE": _settings.DEFAULT_CONTENT_TYPE} t_headers.update({ transform_header(h): v for h, v in six.iteritems(headers) }) # Override existing batch requests headers with the new headers passed for this request. x_headers = { h: v for h, v in six.iteritems(curr_request.META) if h in _settings.HEADERS_TO_INCLUDE } x_headers.update(t_headers) return getattr(REQUEST_FACTORY, method.lower())( url, data=body, secure=_settings.USE_HTTPS, content_type=x_headers.get("CONTENT_TYPE", _settings.DEFAULT_CONTENT_TYPE), **x_headers ) ``` #### File: django-batch-requests/tests/test_bad_batch_request.py ```python import json from django.test import TestCase from tests import ensure_text_content class TestBadBatchRequest(TestCase): ''' Check the behavior of bad batch request. ''' def _batch_request(self, method, path, data, headers={}): ''' Prepares a batch request. ''' return {"url": path, "method": method, "headers": headers, "body": data} def test_invalid_http_method(self): ''' Make a batch request with invalid HTTP method. ''' resp = ensure_text_content( self.client.post( "/api/v1/batch/", json.dumps([self._batch_request("select", "/views", "", {})]), content_type="application/json" ) ) self.assertEqual(resp.status_code, 400, "Method validation is broken!") self.assertEqual(resp.text.lower(), "invalid request method.", "Method validation is broken!") def test_missing_http_method(self): ''' Make a batch request without HTTP method. ''' resp = ensure_text_content( self.client.post( "/api/v1/batch/", json.dumps([{"body": "/views"}]), content_type="application/json" ) ) self.assertEqual(resp.status_code, 400, "Method & URL validation is broken!") self.assertEqual(resp.text.lower(), "request definition should have url, method defined.", "Method validation is broken!") def test_missing_url(self): ''' Make a batch request without the URL. ''' resp = ensure_text_content( self.client.post( "/api/v1/batch/", json.dumps([{"method": "get"}]), content_type="application/json" ) ) self.assertEqual(resp.status_code, 400, "Method & URL validation is broken!") self.assertEqual(resp.text.lower(), "request definition should have url, method defined.", "Method validation is broken!") def test_invalid_batch_request(self): ''' Make a batch request without wrapping in the list. ''' resp = ensure_text_content( self.client.post( "/api/v1/batch/", json.dumps({"method": "get", "url": "/views/"}), content_type="application/json" ) ) self.assertEqual(resp.status_code, 400, "Batch requests should always be in list.") self.assertEqual(resp.text.lower(), "the body of batch request should always be list!", "List validation is broken!") def test_view_that_raises_exception(self): ''' Make a batch request to a view that raises exception. ''' resp = ensure_text_content( self.client.post( "/api/v1/batch/", json.dumps([{"method": "get", "url": "/exception/"}]), content_type="application/json" ) ) resp = json.loads(resp.text)[0] self.assertEqual(resp['status_code'], 500, "Exceptions should return 500.") self.assertEqual(resp['body'].lower(), "exception", "Exception handling is broken!") ```
{ "source": "jnozsc/GeoIP2-python", "score": 2 }
#### File: GeoIP2-python/geoip2/records.py ```python import ipaddress # pylint:disable=R0903 from abc import ABCMeta from geoip2.compat import compat_ip_network from geoip2.mixins import SimpleEquality class Record(SimpleEquality): """All records are subclasses of the abstract class ``Record``.""" __metaclass__ = ABCMeta def __repr__(self): args = ", ".join("%s=%r" % x for x in self.__dict__.items()) return "{module}.{class_name}({data})".format( module=self.__module__, class_name=self.__class__.__name__, data=args ) class PlaceRecord(Record): """All records with :py:attr:`names` subclass :py:class:`PlaceRecord`.""" __metaclass__ = ABCMeta def __init__(self, locales=None, names=None): if locales is None: locales = ["en"] self._locales = locales if names is None: names = {} self.names = names @property def name(self): """Dict with locale codes as keys and localized name as value.""" # pylint:disable=E1101 return next((self.names.get(x) for x in self._locales if x in self.names), None) class City(PlaceRecord): """Contains data for the city record associated with an IP address. This class contains the city-level data associated with an IP address. This record is returned by ``city``, ``enterprise``, and ``insights``. Attributes: .. attribute:: confidence A value from 0-100 indicating MaxMind's confidence that the city is correct. This attribute is only available from the Insights end point and the GeoIP2 Enterprise database. :type: int .. attribute:: geoname_id The GeoName ID for the city. :type: int .. attribute:: name The name of the city based on the locales list passed to the constructor. :type: unicode .. attribute:: names A dictionary where the keys are locale codes and the values are names. :type: dict """ def __init__(self, locales=None, confidence=None, geoname_id=None, names=None, **_): self.confidence = confidence self.geoname_id = geoname_id super(City, self).__init__(locales, names) class Continent(PlaceRecord): """Contains data for the continent record associated with an IP address. This class contains the continent-level data associated with an IP address. Attributes: .. attribute:: code A two character continent code like "NA" (North America) or "OC" (Oceania). :type: unicode .. attribute:: geoname_id The GeoName ID for the continent. :type: int .. attribute:: name Returns the name of the continent based on the locales list passed to the constructor. :type: unicode .. attribute:: names A dictionary where the keys are locale codes and the values are names. :type: dict """ def __init__(self, locales=None, code=None, geoname_id=None, names=None, **_): self.code = code self.geoname_id = geoname_id super(Continent, self).__init__(locales, names) class Country(PlaceRecord): """Contains data for the country record associated with an IP address. This class contains the country-level data associated with an IP address. Attributes: .. attribute:: confidence A value from 0-100 indicating MaxMind's confidence that the country is correct. This attribute is only available from the Insights end point and the GeoIP2 Enterprise database. :type: int .. attribute:: geoname_id The GeoName ID for the country. :type: int .. attribute:: is_in_european_union This is true if the country is a member state of the European Union. :type: bool .. attribute:: iso_code The two-character `ISO 3166-1 <http://en.wikipedia.org/wiki/ISO_3166-1>`_ alpha code for the country. :type: unicode .. attribute:: name The name of the country based on the locales list passed to the constructor. :type: unicode .. attribute:: names A dictionary where the keys are locale codes and the values are names. :type: dict """ def __init__( self, locales=None, confidence=None, geoname_id=None, is_in_european_union=False, iso_code=None, names=None, **_ ): self.confidence = confidence self.geoname_id = geoname_id self.is_in_european_union = is_in_european_union self.iso_code = iso_code super(Country, self).__init__(locales, names) class RepresentedCountry(Country): """Contains data for the represented country associated with an IP address. This class contains the country-level data associated with an IP address for the IP's represented country. The represented country is the country represented by something like a military base. Attributes: .. attribute:: confidence A value from 0-100 indicating MaxMind's confidence that the country is correct. This attribute is only available from the Insights end point and the GeoIP2 Enterprise database. :type: int .. attribute:: geoname_id The GeoName ID for the country. :type: int .. attribute:: is_in_european_union This is true if the country is a member state of the European Union. :type: bool .. attribute:: iso_code The two-character `ISO 3166-1 <http://en.wikipedia.org/wiki/ISO_3166-1>`_ alpha code for the country. :type: unicode .. attribute:: name The name of the country based on the locales list passed to the constructor. :type: unicode .. attribute:: names A dictionary where the keys are locale codes and the values are names. :type: dict .. attribute:: type A string indicating the type of entity that is representing the country. Currently we only return ``military`` but this could expand to include other types in the future. :type: unicode """ def __init__( self, locales=None, confidence=None, geoname_id=None, is_in_european_union=False, iso_code=None, names=None, # pylint:disable=redefined-builtin type=None, **_ ): self.type = type super(RepresentedCountry, self).__init__( locales, confidence, geoname_id, is_in_european_union, iso_code, names ) class Location(Record): """Contains data for the location record associated with an IP address. This class contains the location data associated with an IP address. This record is returned by ``city``, ``enterprise``, and ``insights``. Attributes: .. attribute:: average_income The average income in US dollars associated with the requested IP address. This attribute is only available from the Insights end point. :type: int .. attribute:: accuracy_radius The approximate accuracy radius in kilometers around the latitude and longitude for the IP address. This is the radius where we have a 67% confidence that the device using the IP address resides within the circle centered at the latitude and longitude with the provided radius. :type: int .. attribute:: latitude The approximate latitude of the location associated with the IP address. This value is not precise and should not be used to identify a particular address or household. :type: float .. attribute:: longitude The approximate longitude of the location associated with the IP address. This value is not precise and should not be used to identify a particular address or household. :type: float .. attribute:: metro_code The metro code of the location if the location is in the US. MaxMind returns the same metro codes as the `Google AdWords API <https://developers.google.com/adwords/api/docs/appendix/cities-DMAregions>`_. :type: int .. attribute:: population_density The estimated population per square kilometer associated with the IP address. This attribute is only available from the Insights end point. :type: int .. attribute:: time_zone The time zone associated with location, as specified by the `IANA Time Zone Database <http://www.iana.org/time-zones>`_, e.g., "America/New_York". :type: unicode """ def __init__( self, average_income=None, accuracy_radius=None, latitude=None, longitude=None, metro_code=None, population_density=None, postal_code=None, postal_confidence=None, time_zone=None, **_ ): self.average_income = average_income self.accuracy_radius = accuracy_radius self.latitude = latitude self.longitude = longitude self.metro_code = metro_code self.population_density = population_density self.postal_code = postal_code self.postal_confidence = postal_confidence self.time_zone = time_zone class MaxMind(Record): """Contains data related to your MaxMind account. Attributes: .. attribute:: queries_remaining The number of remaining queries you have for the end point you are calling. :type: int """ def __init__(self, queries_remaining=None, **_): self.queries_remaining = queries_remaining class Postal(Record): """Contains data for the postal record associated with an IP address. This class contains the postal data associated with an IP address. This attribute is returned by ``city``, ``enterprise``, and ``insights``. Attributes: .. attribute:: code The postal code of the location. Postal codes are not available for all countries. In some countries, this will only contain part of the postal code. :type: unicode .. attribute:: confidence A value from 0-100 indicating MaxMind's confidence that the postal code is correct. This attribute is only available from the Insights end point and the GeoIP2 Enterprise database. :type: int """ def __init__(self, code=None, confidence=None, **_): self.code = code self.confidence = confidence class Subdivision(PlaceRecord): """Contains data for the subdivisions associated with an IP address. This class contains the subdivision data associated with an IP address. This attribute is returned by ``city``, ``enterprise``, and ``insights``. Attributes: .. attribute:: confidence This is a value from 0-100 indicating MaxMind's confidence that the subdivision is correct. This attribute is only available from the Insights end point and the GeoIP2 Enterprise database. :type: int .. attribute:: geoname_id This is a GeoName ID for the subdivision. :type: int .. attribute:: iso_code This is a string up to three characters long contain the subdivision portion of the `ISO 3166-2 code <http://en.wikipedia.org/wiki/ISO_3166-2>`_. :type: unicode .. attribute:: name The name of the subdivision based on the locales list passed to the constructor. :type: unicode .. attribute:: names A dictionary where the keys are locale codes and the values are names :type: dict """ def __init__( self, locales=None, confidence=None, geoname_id=None, iso_code=None, names=None, **_ ): self.confidence = confidence self.geoname_id = geoname_id self.iso_code = iso_code super(Subdivision, self).__init__(locales, names) class Subdivisions(tuple): """A tuple-like collection of subdivisions associated with an IP address. This class contains the subdivisions of the country associated with the IP address from largest to smallest. For instance, the response for Oxford in the United Kingdom would have England as the first element and Oxfordshire as the second element. This attribute is returned by ``city``, ``enterprise``, and ``insights``. """ def __new__(cls, locales, *subdivisions): subdivisions = [Subdivision(locales, **x) for x in subdivisions] obj = super(cls, Subdivisions).__new__(cls, subdivisions) return obj def __init__(self, locales, *subdivisions): # pylint:disable=W0613 self._locales = locales super(Subdivisions, self).__init__() @property def most_specific(self): """The most specific (smallest) subdivision available. If there are no :py:class:`Subdivision` objects for the response, this returns an empty :py:class:`Subdivision`. :type: :py:class:`Subdivision` """ try: return self[-1] except IndexError: return Subdivision(self._locales) class Traits(Record): """Contains data for the traits record associated with an IP address. This class contains the traits data associated with an IP address. This class has the following attributes: .. attribute:: autonomous_system_number The `autonomous system number <http://en.wikipedia.org/wiki/Autonomous_system_(Internet)>`_ associated with the IP address. This attribute is only available from the City and Insights web service end points and the GeoIP2 Enterprise database. :type: int .. attribute:: autonomous_system_organization The organization associated with the registered `autonomous system number <http://en.wikipedia.org/wiki/Autonomous_system_(Internet)>`_ for the IP address. This attribute is only available from the City and Insights web service end points and the GeoIP2 Enterprise database. :type: unicode .. attribute:: connection_type The connection type may take the following values: - Dialup - Cable/DSL - Corporate - Cellular Additional values may be added in the future. This attribute is only available in the GeoIP2 Enterprise database. :type: unicode .. attribute:: domain The second level domain associated with the IP address. This will be something like "example.com" or "example.co.uk", not "foo.example.com". This attribute is only available from the City and Insights web service end points and the GeoIP2 Enterprise database. :type: unicode .. attribute:: ip_address The IP address that the data in the model is for. If you performed a "me" lookup against the web service, this will be the externally routable IP address for the system the code is running on. If the system is behind a NAT, this may differ from the IP address locally assigned to it. :type: unicode .. attribute:: is_anonymous This is true if the IP address belongs to any sort of anonymous network. This attribute is only available from GeoIP2 Precision Insights. :type: bool .. attribute:: is_anonymous_proxy This is true if the IP is an anonymous proxy. See http://dev.maxmind.com/faq/geoip#anonproxy for further details. :type: bool .. deprecated:: 2.2.0 Use our our `GeoIP2 Anonymous IP database <https://www.maxmind.com/en/geoip2-anonymous-ip-database GeoIP2>`_ instead. .. attribute:: is_anonymous_vpn This is true if the IP address is registered to an anonymous VPN provider. If a VPN provider does not register subnets under names associated with them, we will likely only flag their IP ranges using the ``is_hosting_provider`` attribute. This attribute is only available from GeoIP2 Precision Insights. :type: bool .. attribute:: is_hosting_provider This is true if the IP address belongs to a hosting or VPN provider (see description of ``is_anonymous_vpn`` attribute). This attribute is only available from GeoIP2 Precision Insights. :type: bool .. attribute:: is_legitimate_proxy This attribute is true if MaxMind believes this IP address to be a legitimate proxy, such as an internal VPN used by a corporation. This attribute is only available in the GeoIP2 Enterprise database. :type: bool .. attribute:: is_public_proxy This is true if the IP address belongs to a public proxy. This attribute is only available from GeoIP2 Precision Insights. :type: bool .. attribute:: is_satellite_provider This is true if the IP address is from a satellite provider that provides service to multiple countries. :type: bool .. deprecated:: 2.2.0 Due to the increased coverage by mobile carriers, very few satellite providers now serve multiple countries. As a result, the output does not provide sufficiently relevant data for us to maintain it. .. attribute:: is_tor_exit_node This is true if the IP address is a Tor exit node. This attribute is only available from GeoIP2 Precision Insights. :type: bool .. attribute:: isp The name of the ISP associated with the IP address. This attribute is only available from the City and Insights web service end points and the GeoIP2 Enterprise database. :type: unicode .. attribute:: network The network associated with the record. In particular, this is the largest network where all of the fields besides ip_address have the same value. :type: ipaddress.IPv4Network or ipaddress.IPv6Network .. attribute:: organization The name of the organization associated with the IP address. This attribute is only available from the City and Insights web service end points and the GeoIP2 Enterprise database. :type: unicode .. attribute:: static_ip_score An indicator of how static or dynamic an IP address is. The value ranges from 0 to 99.99 with higher values meaning a greater static association. For example, many IP addresses with a user_type of cellular have a lifetime under one. Static Cable/DSL IPs typically have a lifetime above thirty. This indicator can be useful for deciding whether an IP address represents the same user over time. This attribute is only available from GeoIP2 Precision Insights. :type: float .. attribute:: user_count The estimated number of users sharing the IP/network during the past 24 hours. For IPv4, the count is for the individual IP. For IPv6, the count is for the /64 network. This attribute is only available from GeoIP2 Precision Insights. :type: int .. attribute:: user_type The user type associated with the IP address. This can be one of the following values: * business * cafe * cellular * college * content_delivery_network * dialup * government * hosting * library * military * residential * router * school * search_engine_spider * traveler This attribute is only available from the Insights end point and the GeoIP2 Enterprise database. :type: unicode """ def __init__( self, autonomous_system_number=None, autonomous_system_organization=None, connection_type=None, domain=None, is_anonymous=False, is_anonymous_proxy=False, is_anonymous_vpn=False, is_hosting_provider=False, is_legitimate_proxy=False, is_public_proxy=False, is_satellite_provider=False, is_tor_exit_node=False, isp=None, ip_address=None, network=None, organization=None, prefix_len=None, static_ip_score=None, user_count=None, user_type=None, **_ ): self.autonomous_system_number = autonomous_system_number self.autonomous_system_organization = autonomous_system_organization self.connection_type = connection_type self.domain = domain self.is_anonymous = is_anonymous self.is_anonymous_proxy = is_anonymous_proxy self.is_anonymous_vpn = is_anonymous_vpn self.is_hosting_provider = is_hosting_provider self.is_legitimate_proxy = is_legitimate_proxy self.is_public_proxy = is_public_proxy self.is_satellite_provider = is_satellite_provider self.is_tor_exit_node = is_tor_exit_node self.isp = isp self.organization = organization self.static_ip_score = static_ip_score self.user_type = user_type self.user_count = user_count self.ip_address = ip_address self._network = network self._prefix_len = prefix_len # This code is duplicated for performance reasons # pylint: disable=duplicate-code @property def network(self): """The network for the record""" network = self._network if isinstance(network, (ipaddress.IPv4Network, ipaddress.IPv6Network)): return network if network is None: ip_address = self.ip_address prefix_len = self._prefix_len if ip_address is None or prefix_len is None: return None network = "{}/{}".format(ip_address, prefix_len) network = compat_ip_network(network, False) self._network = network return network ```
{ "source": "jnplonte/flask-api", "score": 2 }
#### File: python-app/app/__init__.py ```python import os import base64 import datetime from flask import Flask, jsonify, g from flask_pymongo import PyMongo from flask_restful import Resource, Api, abort, request from app import config from app.services.api_response import ApiResponse from app.v1.authentication.token import startToken from app.v1.core.users.user import startUser from app.v1.core.users.users import startUsers from app.models.users import Users env = os.environ.get('ENV') port = os.environ.get('PORT') if env == 'development': configs = config.DevConfig elif env == 'production': configs = config.ProdConfig else: configs = config.LocalConfig print('api environment is %s' % env.upper() if env is not None else 'local') print('api listening to http://localhost:%s' % os.environ.get('PORT') if env is not None else '8383' ) # --------------------------------------------------------------------------------------------------------------------- app = Flask(__name__) app.config["MONGO_URI"] = 'mongodb://%s:%s@%s:%s/%s' % (configs.MONGO_USERNAME, configs.MONGO_PASSWORD, configs.MONGO_HOST, configs.MONGO_PORT, configs.MONGO_DATABASE) mongo = PyMongo(app) api = Api(app) @app.before_request def tokenCheck(): if request.method == 'OPTIONS': return userData = {} userString = request.headers.get(configs.SECRET_KEY, None) if userString is None: response = jsonify(api_response.failed('authentication', '')) response.status_code = 401 return response if 'auth' in request.url: if userString != configs.SECRET_KEY_HASH: response = jsonify(api_response.failed('authentication', '')) response.status_code = 401 return response else: userKey = request.headers.get('user-key', None) if userKey is None: response = jsonify(api_response.failed('authentication', '')) response.status_code = 401 return response userData = Users(mongo, False).get({'key': str(userKey)}) if not bool(userData): response = jsonify(api_response.failed('authentication', '')) response.status_code = 401 return response g.user = userData @app.after_request def corsCheck(response): response.headers.add('Access-Control-Allow-Origin', '*') response.headers.add('Access-Control-Allow-Headers', '*') response.headers.add('Access-Control-Allow-Methods', '*') return response @app.errorhandler(404) def not_found(error): response = jsonify(api_response.failed('notfound', '')) response.status_code = 404 return response api_response = ApiResponse() startToken(api, configs, api_response, mongo) startUser(api, configs, api_response, mongo) startUsers(api, configs, api_response, mongo) if __name__ == "__main__": app.run(debug=True) ```
{ "source": "jnpoJuwan/just_a_bot", "score": 3 }
#### File: bot/cogs/meta.py ```python import discord from discord.ext import commands from ..utils.constants import COLOUR def fmt(dt=None): if not dt: return 'N/A' return f'{dt:%A, %d/%m/%Y %H:%M UTC}' class Meta(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command(aliases=['github', 'invite', 'source_code']) async def links(self, ctx): """Sends the bot's invite link.""" msg = ( '[Bot Invite](https://discord.com/api/oauth2/authorize?client_id=764106437701140490&permissions=8' '&scope=bot)\n' '[Source code](https://github.com/jnpoJuwan/Just-a-bot)' ) embed = discord.Embed(title='Links', description=msg, colour=COLOUR) await ctx.send(embed=embed) @commands.command(aliases=['member', 'user', 'user_info']) async def member_info(self, ctx, member: discord.Member = None): """Sends some information about the member.""" member = member or ctx.author roles = [role.mention for role in member.roles if role.name != '@everyone'][::-1] top_role = (member.top_role.mention if member.top_role.name != '@everyone' else member.top_role.name) embed = discord.Embed(colour=COLOUR) embed.set_author(name=str(member), icon_url=member.avatar.url) embed.add_field(name='Nickname', value=member.display_name) embed.add_field(name='Top Role', value=top_role) embed.add_field(name=f'Roles ({len(roles)})', value=' '.join(roles) if len(roles) <= 10 else ' '.join(roles[:10]) + ' ...') embed.add_field(name='Created:', value=fmt(member.created_at)) embed.add_field(name='Joined:', value=fmt(member.joined_at)) embed.add_field(name='User ID', value=member.id) embed.set_thumbnail(url=member.avatar.url) embed.set_footer(text=f'Requested by {ctx.author.display_name}', icon_url=ctx.author.avatar.url) await ctx.send(embed=embed) @member_info.error async def member_error(self, ctx, error): if isinstance(error, commands.BadArgument): await ctx.send('Please @mention a member.') @commands.command(aliases=['server']) async def server_info(self, ctx): """Sends some information about the server.""" guild = ctx.guild embed = discord.Embed(title=guild.name, colour=COLOUR) embed.set_thumbnail(url=str(guild.icon_url)) embed.add_field(name='Owner', value=f'<@{guild.owner_id}>') embed.add_field(name='Region', value=str(guild.region).title()) embed.add_field(name='Member Count', value=str(ctx.guild.member_count)) embed.add_field(name='Created:', value=fmt(guild.created_at)) embed.add_field(name='Server ID', value=guild.id) embed.set_thumbnail(url=guild.icon_url) embed.set_footer(text=f'Requested by {ctx.author.display_name}', icon_url=ctx.author.avatar.url) await ctx.send(embed=embed) @commands.command() async def icon(self, ctx): """Sends the server's icon.""" embed = discord.Embed(title=f'Icon of {ctx.guild.name}', colour=COLOUR) embed.set_image(url=ctx.guild.icon_url) embed.set_footer(text=f'Requested by {ctx.author.display_name}', icon_url=ctx.author.avatar.url) await ctx.send(embed=embed) @commands.command(aliases=['pfp']) async def avatar(self, ctx, member: discord.Member = None): """Sends the member's avatar.""" member = member or ctx.author embed = discord.Embed(title=f'{member.display_name}\'s profile picture', colour=COLOUR) embed.set_image(url=member.avatar.url) embed.set_footer(text=f'Requested by {ctx.author.display_name}', icon_url=ctx.author.avatar.url) await ctx.send(embed=embed) def setup(bot): bot.add_cog(Meta(bot)) ``` #### File: bot/cogs/mod.py ```python from discord.ext import commands from ..utils import checks class Mod(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command(aliases=['clear', 'delete']) @commands.cooldown(3, 60.0, commands.BucketType.user) @checks.is_mod() async def purge(self, ctx, amount=0): """Purges the amount of messages.""" await ctx.message.delete() limit = 200 if amount > limit: await ctx.send(f'The amount can\'t exceed {limit} messages.', delete_after=2.5) return await ctx.channel.purge(limit=amount) await ctx.send(f'Successfully purged {amount} message(s).', delete_after=2.5) @purge.error async def purge_error(self, ctx, error): if isinstance(error, commands.BadArgument): await ctx.send('Please enter an amount of messages.') def setup(bot): bot.add_cog(Mod(bot)) ``` #### File: bot/cogs/owner.py ```python import io import textwrap import traceback from contextlib import redirect_stdout from pathlib import Path from discord.ext import commands from ..utils import checks class Owner(commands.Cog, command_attrs=dict(hidden=True)): def __init__(self, bot): self.bot = bot @commands.command(name='quit', aliases=['die', 'logout', 'sleep']) @checks.is_bot_owner() async def _quit(self, ctx): """Logout from Discord.""" await ctx.send('**change da world**\n**my final message. Goodb ye**') await self.bot.logout() @staticmethod def cleanup_code(content): # Remove ```py\n```. if content.startswith('```') and content.endswith('```'): return '\n'.join(content.split('\n')[1:-1]) # Remove `foo`. return content.strip('` \n') # CRED: @Rapptz (https://github.com/Rapptz/RoboDanny/blob/rewrite/cogs/admin.py) @commands.command(name='eval', pass_context=True) @checks.is_bot_owner() async def eval_(self, ctx, *, body: str): """Evaluates Python code.""" env = { 'bot': self.bot, 'ctx': ctx, 'channel': ctx.channel, 'author': ctx.author, 'guild': ctx.guild, 'message': ctx.message } env.update(globals()) body = self.cleanup_code(body) stdout = io.StringIO() to_compile = f'async def func():\n{textwrap.indent(body, " ")}' try: exec(to_compile, env) except Exception as e: return await ctx.send(f'```\n{e.__class__.__name__}: {e}\n```') func = env['func'] try: with redirect_stdout(stdout): ret = await func() except: value = stdout.getvalue() await ctx.send(f'```\n{value}{traceback.format_exc()}\n```') else: value = stdout.getvalue() if ret is None: if value: await ctx.send(f'```py\n{value}\n```') else: self._last_result = ret await ctx.send(f'```\n{value}{ret}\n```') # CRED: @Rapptz (https://github.com/Rapptz/RoboDanny/blob/rewrite/cogs/admin.py) @commands.command() @checks.is_bot_owner() async def load(self, ctx, module): """Loads a module.""" try: self.bot.load_extension(module) except Exception as e: traceback_msg = ''.join(traceback.format_exception(etype=type(e), value=e, tb=e.__traceback__)) await ctx.send(f'Failed to load cog {module}. Traceback:\n```{traceback_msg}```') else: await ctx.send(f'`{module}` has been loaded.') @commands.command() @checks.is_bot_owner() async def unload(self, ctx, module): """Unloads a module.""" try: self.bot.unload_extension(module) except Exception as e: traceback_msg = ''.join(traceback.format_exception(etype=type(e), value=e, tb=e.__traceback__)) await ctx.send(f'Failed to load cog {module}. Traceback:\n```{traceback_msg}```') else: await ctx.send(f'`{module}` has been unloaded.') @commands.command() @checks.is_bot_owner() async def reload(self, ctx, module): """Reloads a module.""" try: self.bot.reload_extension(module) except Exception as e: traceback_msg = ''.join(traceback.format_exception(etype=type(e), value=e, tb=e.__traceback__)) await ctx.send(f'Failed to load cog {module}. Traceback:\n```{traceback_msg}```') else: await ctx.send(f'`{module}` has been reloaded.') @commands.command() @checks.is_bot_owner() async def reload_all(self, ctx): """Reloads all extensions.""" content = 'Reloading modules...' message = await ctx.send('Reloading modules...') for extension_path in Path('bot/cogs').glob('*.py'): extension_name = extension_path.stem dotted_path = f'bot.cogs.{extension_name}' try: self.bot.reload_extension(dotted_path) content += f'\nReloaded `{dotted_path}`.' await message.edit(content=content) except Exception as e: traceback_msg = ''.join(traceback.format_exception(etype=type(e), value=e, tb=e.__traceback__)) await ctx.send(f'Failed to load cog {dotted_path}. Traceback:\n```{traceback_msg}```') content += '\nSuccessfully reloaded all extensions.' await message.edit(content=content) def setup(bot): bot.add_cog(Owner(bot)) ```
{ "source": "JNPRAutomate/event_driven_automation_with_a_TIG_stack", "score": 2 }
#### File: JNPRAutomate/event_driven_automation_with_a_TIG_stack/clean_junos_routes.py ```python from jnpr.junos import Device from jnpr.junos.utils.config import Config def clean_routing_table(): device=Device (host='172.16.31.10', user='jcluser', password='<PASSWORD>') device.open() cfg=Config(device, mode='private') cfg.load(path='junos_configuration/clean_routes.conf', format='text') cfg.commit() device.close() clean_routing_table() ```
{ "source": "JNPRAutomate/northstar_SDN_controller_automation", "score": 3 }
#### File: JNPRAutomate/northstar_SDN_controller_automation/get_active_LSPs.py ```python import json import requests from requests.auth import HTTPBasicAuth from pprint import pprint import yaml from requests.packages.urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) def get_token(): url = 'https://' + my_variables_in_yaml['northstar']['ip'] + ':8443/oauth2/token' data_to_get_token = {"grant_type":"password","username":authuser,"password":<PASSWORD>} r = requests.post(url, data=json.dumps(data_to_get_token), auth=(authuser, authpwd), headers=headers, verify=False) return str('Bearer ' + r.json()['access_token']) def import_variables_from_file(): my_variables_file=open('variables.yml', 'r') my_variables_in_string=my_variables_file.read() my_variables_in_yaml=yaml.load(my_variables_in_string) my_variables_file.close() return my_variables_in_yaml my_variables_in_yaml=import_variables_from_file() authuser = my_variables_in_yaml['northstar']['username'] authpwd = my_variables_in_yaml['northstar']['password'] url_base = 'http://' + my_variables_in_yaml['northstar']['ip'] + ':8091/NorthStar/API/v2/tenant/' url = url_base + '1/topology/1/te-lsps' headers = { 'Accept': 'application/json' } headers = { 'Content-type': 'application/json' } # r = requests.get(url, headers=headers, auth=(authuser, authpwd)) get_token() headers = {'Authorization':get_token(), 'Accept' : 'application/json', 'Content-Type' : 'application/json'} r = requests.get(url, headers=headers, verify=False) # type(r.json()) # pprint(r.json()) # This gives the names of all the LSPs that are active for item in r.json(): if item['operationalStatus'] == 'Active': print "This LSP is active: " + item['name'] ```
{ "source": "jnpr-pranav/contrail-controller", "score": 2 }
#### File: cat/tests/test_xmpp_peers.py ```python import argparse from pyunitreport import HTMLTestRunner import os import sys import unittest sys.path.append('controller/src/bgp/test/cat/lib') from cat import * class TestCAT(unittest.TestCase): @classmethod def setUpClass(cls): CAT.initialize() return @classmethod def tearDownClass(cls): CAT.delete_all_files() return def setUp(self): self.test = unittest.TestCase.id(self) def tearDown(self): CAT.clean_up() def test_1_single_controlnode_single_agent(self): print(Fore.CYAN + "\nSingle control-node + single agent" + Style.RESET_ALL) c1 = CAT.add_control_node(self.test, "control-node1") a1 = CAT.add_agent(self.test, "agent1", [c1]) ret, ms = CAT.check_connection([c1], [a1], 2, 3) self.assertTrue(ret, msg=ms) def test_2_multi_controlnodes_single_agent(self): print(Fore.CYAN + "\nMultiple control-nodes + single agent" + Style.RESET_ALL) c1 = CAT.add_control_node(self.test, "control-node1") c2 = CAT.add_control_node(self.test, "control-node2") a1 = CAT.add_agent(self.test, "agent1", [c1, c2]) ret, ms = CAT.check_connection([c1, c2], [a1], 2, 3) self.assertTrue(ret, msg=ms) def test_3_single_controlnode_multi_agents(self): print(Fore.CYAN + "\nSingle control-node + multiple agents" + Style.RESET_ALL) c1 = CAT.add_control_node(self.test, "control-node1") a1 = CAT.add_agent(self.test, "agent1", [c1]) a2 = CAT.add_agent(self.test, "agent2", [c1]) a3 = CAT.add_agent(self.test, "agent3", [c1]) ret, ms = CAT.check_connection([c1], [a1, a2, a3], 2, 3) self.assertTrue(ret, msg=ms) c1.restart_control_node() ret, ms = CAT.check_connection([c1], [a1, a2, a3], 2, 3) self.assertTrue(ret, msg=ms) def test_4_multi_controlnodes_multi_agents(self): print(Fore.CYAN + "\Multiple control-node + multiple agents" + Style.RESET_ALL) c1 = CAT.add_control_node(self.test, "control-node1") c2 = CAT.add_control_node(self.test, "control-node2") c3 = CAT.add_control_node(self.test, "control-node3") a1 = CAT.add_agent(self.test, "agent1", [c1, c2]) a2 = CAT.add_agent(self.test, "agent2", [c1, c3]) ret, ms = CAT.check_connection([c1, c2], [a1], 2, 3) self.assertTrue(ret, msg=ms) ret, ms = CAT.check_connection([c1, c3], [a1, a2], 2, 3) self.assertFalse(ret, msg=ms) def main(): CAT.parse_arguments() unittest.main(testRunner=HTMLTestRunner(output=CAT.get_report_dir())) if __name__ == "__main__": main() ``` #### File: vnc_cfg_api_server/resources/address_group.py ```python from vnc_api.gen.resource_common import AddressGroup from vnc_cfg_api_server.resources._security_base import SecurityResourceBase class AddressGroupServer(SecurityResourceBase, AddressGroup): @classmethod def pre_dbe_create(cls, tenant_name, obj_dict, db_conn): return cls.check_draft_mode_state(obj_dict) @classmethod def pre_dbe_update(cls, id, fq_name, obj_dict, db_conn, **kwargs): return cls.check_draft_mode_state(obj_dict) ``` #### File: vnc_cfg_api_server/resources/port_profile.py ```python from vnc_api.gen.resource_common import PortProfile from vnc_cfg_api_server.resources._resource_base import ResourceMixin class PortProfileServer(ResourceMixin, PortProfile): @staticmethod def validate_storm_control_back_refs(obj_dict): storm_profile_refs = obj_dict.get('storm_control_profile_refs') if storm_profile_refs and len(storm_profile_refs) > 1: ref_list = [ref.get('to') for ref in storm_profile_refs] return (False, (400, "Port profile %s has more than one " "storm profile refs %s" % ( obj_dict.get('fq_name'), ref_list))) return True, '' # end validate_storm_control_back_refs @classmethod def pre_dbe_create(cls, tenant_name, obj_dict, db_conn): return cls.validate_storm_control_back_refs(obj_dict) # end pre_dbe_create @classmethod def pre_dbe_update(cls, id, fq_name, obj_dict, db_conn, **kwargs): return cls.validate_storm_control_back_refs(obj_dict) # end pre_dbe_update ``` #### File: tests/resources/test_service_appliance.py ```python import logging from vnc_api.exceptions import BadRequest from vnc_api.gen.resource_client import GlobalSystemConfig from vnc_api.gen.resource_client import PhysicalInterface from vnc_api.gen.resource_client import PhysicalRouter from vnc_api.gen.resource_client import ServiceAppliance from vnc_api.gen.resource_client import ServiceApplianceSet from vnc_api.gen.resource_xsd import KeyValuePair from vnc_api.gen.resource_xsd import KeyValuePairs from vnc_api.gen.resource_xsd import ServiceApplianceInterfaceType from vnc_cfg_api_server.tests import test_case logger = logging.getLogger(__name__) # logger.setLevel(logging.DEBUG) class TestServiceApplianceBase(test_case.ApiServerTestCase): @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) super(TestServiceApplianceBase, cls).setUpClass(*args, **kwargs) @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestServiceApplianceBase, cls).tearDownClass(*args, **kwargs) @property def api(self): return self._vnc_lib class TestPnfServiceAppliance(TestServiceApplianceBase): def setUp(self): super(TestPnfServiceAppliance, self).setUp() logger.debug("setUp called") # Create Global system config object self.gsc_obj = self.api.global_system_config_read( GlobalSystemConfig().fq_name) self.default_gsc_name = 'default-global-system-config' # Create Service Appliance Set object self.sas_obj = ServiceApplianceSet('sas-' + self.id(), self.gsc_obj) self.sas_obj.set_service_appliance_set_virtualization_type( 'physical-device') self.api.service_appliance_set_create(self.sas_obj) # Create PNF Physical Router object self.pnf_obj = PhysicalRouter('pnf-' + self.id(), self.gsc_obj) self.pnf_obj.set_physical_router_role('pnf') self.api.physical_router_create(self.pnf_obj) # Create spine Physical Router object self.spine_obj = PhysicalRouter('spine-' + self.id(), self.gsc_obj) self.api.physical_router_create(self.spine_obj) # create left, right PNF PI self.left_pnf_pi_obj = PhysicalInterface( 'ge-0/0/1-' + self.id(), parent_obj=self.pnf_obj) self.right_pnf_pi_obj = PhysicalInterface( 'ge-0/0/2-' + self.id(), parent_obj=self.pnf_obj) self.api.physical_interface_create(self.left_pnf_pi_obj) self.api.physical_interface_create(self.right_pnf_pi_obj) # create left, right spine PI self.left_spine_pi_obj = PhysicalInterface( 'xe-0/0/1-' + self.id(), parent_obj=self.spine_obj) self.right_spine_pi_obj = PhysicalInterface( 'xe-0/0/2-' + self.id(), parent_obj=self.spine_obj) self.api.physical_interface_create(self.left_spine_pi_obj) self.api.physical_interface_create(self.right_spine_pi_obj) def tearDown(self): super(TestPnfServiceAppliance, self).tearDown() logger.debug("TearDown called") # delete PNF PI self.api.physical_interface_delete(id=self.left_pnf_pi_obj.uuid) self.api.physical_interface_delete(id=self.right_pnf_pi_obj.uuid) # delete spine PI self.api.physical_interface_delete(id=self.left_spine_pi_obj.uuid) self.api.physical_interface_delete(id=self.right_spine_pi_obj.uuid) # delete PNF PR and spine PR self.api.physical_router_delete(id=self.spine_obj.uuid) self.api.physical_router_delete(id=self.pnf_obj.uuid) # delete sas self.api.service_appliance_set_delete(id=self.sas_obj.uuid) def test_valid_sa(self): sa_obj = ServiceAppliance('sa-' + self.id(), parent_obj=self.sas_obj) kvp_array = [] kvp = KeyValuePair( "left-attachment-point", self.default_gsc_name + ':' + 'spine-' + self.id() + ':' + 'xe-0/0/1-' + self.id()) kvp_array.append(kvp) kvp = KeyValuePair( "right-attachment-point", self.default_gsc_name + ':' + 'spine-' + self.id() + ':' + 'xe-0/0/2-' + self.id()) kvp_array.append(kvp) kvps = KeyValuePairs() kvps.set_key_value_pair(kvp_array) sa_obj.set_service_appliance_properties(kvps) sa_obj.set_service_appliance_virtualization_type('physical-device') # Add PNF PI refs attr = ServiceApplianceInterfaceType(interface_type='left') sa_obj.add_physical_interface(self.left_pnf_pi_obj, attr) attr = ServiceApplianceInterfaceType(interface_type='right') sa_obj.add_physical_interface(self.right_pnf_pi_obj, attr) # Create SA self.api.service_appliance_create(sa_obj) self.left_pnf_pi_obj = self.api.physical_interface_read( id=self.left_pnf_pi_obj.uuid) self.right_pnf_pi_obj = self.api.physical_interface_read( id=self.right_pnf_pi_obj.uuid) # Check if spine PI <-> PNF PI link has been created self.assertEqual( self.left_pnf_pi_obj.physical_interface_refs[0].get('uuid'), self.left_spine_pi_obj.uuid) self.assertEqual( self.right_pnf_pi_obj.physical_interface_refs[0].get('uuid'), self.right_spine_pi_obj.uuid) # Delete service appliance self.api.service_appliance_delete(id=sa_obj.uuid) # Check if spine PI <-> PNF PI link got removed self.left_pnf_pi_obj = self.api.physical_interface_read( id=self.left_pnf_pi_obj.uuid) self.right_pnf_pi_obj = self.api.physical_interface_read( id=self.right_pnf_pi_obj.uuid) self.assertFalse( hasattr( self.left_pnf_pi_obj, "physical_interface_refs")) self.assertFalse( hasattr( self.right_pnf_pi_obj, "physical_interface_refs")) def test_sa_with_invalid_kvp(self): sa_obj = ServiceAppliance('sa-' + self.id(), parent_obj=self.sas_obj) kvp_array = [] kvp = KeyValuePair( "left-attachment-point", self.default_gsc_name + ':' + 'spine-' + self.id() + ':' + 'xe-0/0/1-' + self.id()) kvp_array.append(kvp) kvp = KeyValuePair( "right-attachment-point", self.default_gsc_name + ':' + 'spine-' + self.id() + ':' + 'xe-0/0/2-' + self.id()) # The next line is intentionally commented out # kvp_array.append(kvp) kvps = KeyValuePairs() kvps.set_key_value_pair(kvp_array) sa_obj.set_service_appliance_properties(kvps) sa_obj.set_service_appliance_virtualization_type('physical-device') # Add PNF PI refs attr = ServiceApplianceInterfaceType(interface_type='left') sa_obj.add_physical_interface(self.left_pnf_pi_obj, attr) attr = ServiceApplianceInterfaceType(interface_type='right') sa_obj.add_physical_interface(self.right_pnf_pi_obj, attr) # Create SA should raise exception self.assertRaises( BadRequest, self.api.service_appliance_create, sa_obj) def test_sa_with_invalid_pr_role(self): sa_obj = ServiceAppliance('sa-' + self.id(), parent_obj=self.sas_obj) kvp_array = [] kvp = KeyValuePair( "left-attachment-point", self.default_gsc_name + ':' + 'spine-' + self.id() + ':' + 'xe-0/0/1-' + self.id()) kvp_array.append(kvp) kvp = KeyValuePair( "right-attachment-point", self.default_gsc_name + ':' + 'spine-' + self.id() + ':' + 'xe-0/0/2-' + self.id()) kvp_array.append(kvp) kvps = KeyValuePairs() kvps.set_key_value_pair(kvp_array) sa_obj.set_service_appliance_properties(kvps) sa_obj.set_service_appliance_virtualization_type('physical-device') # Add PNF PI refs attr = ServiceApplianceInterfaceType(interface_type='left') sa_obj.add_physical_interface(self.left_pnf_pi_obj, attr) attr = ServiceApplianceInterfaceType(interface_type='right') sa_obj.add_physical_interface(self.right_pnf_pi_obj, attr) # Overwrite the role as leaf instead of pnf self.pnf_obj.set_physical_router_role('leaf') self.api.physical_router_update(self.pnf_obj) # Create SA should raise exception self.assertRaises(BadRequest, self.api.service_appliance_create, sa_obj) ``` #### File: tests/resources/test_storm_control_profile.py ```python import logging from vnc_api.exceptions import BadRequest from vnc_api.gen.resource_client import StormControlProfile from vnc_api.gen.resource_xsd import StormControlParameters from vnc_cfg_api_server.tests import test_case logger = logging.getLogger(__name__) class TestStormControlProfile(test_case.ApiServerTestCase): @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) super(TestStormControlProfile, cls).setUpClass(*args, **kwargs) @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestStormControlProfile, cls).tearDownClass(*args, **kwargs) def test_storm_control_profile_create(self): # create test sc profile object sc_name = 'strm_ctrl_' + self.id() bw_percent = 20 traffic_type = ['no-broadcast', 'no-multicast'] actions = ['interface-shutdown'] sc_params_list = StormControlParameters( storm_control_actions=actions, bandwidth_percent=bw_percent) if 'no-broadcast' in traffic_type: sc_params_list.set_no_broadcast(True) if 'no-multicast' in traffic_type: sc_params_list.set_no_multicast(True) if 'no-registered-multicast' in traffic_type: sc_params_list.set_no_registered_multicast(True) if 'no-unknown-unicast' in traffic_type: sc_params_list.set_no_unknown_unicast(True) if 'no-unregistered-multicast' in traffic_type: sc_params_list.set_no_unregistered_multicast(True) sc_obj = StormControlProfile( name=sc_name, storm_control_parameters=sc_params_list ) self.assertIsNotNone( self._vnc_lib.storm_control_profile_create( sc_obj)) def test_storm_control_profile_create_negative_percent(self): # create test sc profile object sc_name = 'strm_ctrl_' + self.id() bw_percent = -20 traffic_type = ['no-broadcast', 'no-multicast'] actions = ['interface-shutdown'] sc_params_list = StormControlParameters( storm_control_actions=actions, bandwidth_percent=bw_percent) if 'no-broadcast' in traffic_type: sc_params_list.set_no_broadcast(True) if 'no-multicast' in traffic_type: sc_params_list.set_no_multicast(True) if 'no-registered-multicast' in traffic_type: sc_params_list.set_no_registered_multicast(True) if 'no-unknown-unicast' in traffic_type: sc_params_list.set_no_unknown_unicast(True) if 'no-unregistered-multicast' in traffic_type: sc_params_list.set_no_unregistered_multicast(True) sc_obj = StormControlProfile( name=sc_name, storm_control_parameters=sc_params_list ) regex_msg = (r"Invalid bandwidth percentage %d" % bw_percent) self.assertRaisesRegexp( BadRequest, regex_msg, self._vnc_lib.storm_control_profile_create, sc_obj) def test_storm_control_profile_update_invalid_rec_timeout(self): sc_name = 'strm_ctrl_' + self.id() bw_percent = 20 traffic_type = ['no-broadcast', 'no-multicast'] actions = ['interface-shutdown'] rec_timeout = 1000 sc_params_list = StormControlParameters( storm_control_actions=actions, recovery_timeout=rec_timeout, bandwidth_percent=bw_percent) if 'no-broadcast' in traffic_type: sc_params_list.set_no_broadcast(True) if 'no-multicast' in traffic_type: sc_params_list.set_no_multicast(True) if 'no-registered-multicast' in traffic_type: sc_params_list.set_no_registered_multicast(True) if 'no-unknown-unicast' in traffic_type: sc_params_list.set_no_unknown_unicast(True) if 'no-unregistered-multicast' in traffic_type: sc_params_list.set_no_unregistered_multicast(True) sc_obj = StormControlProfile( name=sc_name, storm_control_parameters=sc_params_list ) self.assertIsNotNone( self._vnc_lib.storm_control_profile_create( sc_obj)) # set invalid recovery timeout rec_timeout = 3800 sc_params_list.set_recovery_timeout(rec_timeout) sc_obj = StormControlProfile( name=sc_name, storm_control_parameters=sc_params_list ) regex_msg = (r"Invalid recovery timeout %d" % rec_timeout) self.assertRaisesRegexp( BadRequest, regex_msg, self._vnc_lib.storm_control_profile_update, sc_obj) ``` #### File: tests/resources/test_sub_cluster.py ```python from builtins import object import logging from cfgm_common.exceptions import BadRequest import mock from vnc_api.vnc_api import GlobalSystemConfig from vnc_api.vnc_api import SubCluster from vnc_cfg_api_server.tests.test_case import ApiServerTestCase logger = logging.getLogger(__name__) ASN_2_BYTES = (1 << 16) - 42 ASN_4_BYTES = (1 << 16) + 42 class TestSubClusterBase(ApiServerTestCase): @classmethod def setUpClass(cls, *args, **kwargs): super(TestSubClusterBase, cls).setUpClass(*args, **kwargs) cls._gsc = cls._vnc_lib.global_system_config_read( GlobalSystemConfig().fq_name) if hasattr(cls, '_global_asn') and cls._global_asn: cls._gsc.set_autonomous_system(cls._global_asn) if cls._global_asn > 0xFFFF: cls._gsc.enable_4byte_as = True cls._vnc_lib.global_system_config_update(cls._gsc) else: cls._global_asn = cls._gsc.get_autonomous_system() # Create a pool of 10 sub-cluster IDs to use for the tests start = 42 if cls._global_asn <= 0xFFFF: start += 1 << 16 cls._id_range = set(range(start, start + 10)) @property def api(self): return self._vnc_lib class SubClusterTestSuite(object): def test_cannot_update_asn(self): sc = SubCluster('sc-%s' % self.id()) self.api.sub_cluster_create(sc) sc.set_sub_cluster_asn(43) self.assertRaises(BadRequest, self.api.sub_cluster_update, sc) def test_cluster_id_automatically_assigned(self): sc = SubCluster('sc-%s' % self.id()) self.api.sub_cluster_create(sc) sc = self.api.sub_cluster_read(id=sc.uuid) self.assertIsNotNone(sc.get_sub_cluster_id()) zk_db = self._api_server._db_conn._zk_db self.assertEqual( zk_db._get_sub_cluster_from_id(sc.get_sub_cluster_id()), sc.get_fq_name_str(), ) def test_manually_allocate_sub_cluster_id(self): sub_cluster_id = self._id_range.pop() sc = SubCluster('sc-%s' % self.id(), sub_cluster_id=sub_cluster_id) self.api.sub_cluster_create(sc) sc = self.api.sub_cluster_read(id=sc.uuid) self.assertEqual(sc.get_sub_cluster_id(), sub_cluster_id) zk_db = self._api_server._db_conn._zk_db self.assertEqual( zk_db._get_sub_cluster_from_id(sub_cluster_id), sc.get_fq_name_str(), ) def test_cannot_use_allocated_sub_cluster_id(self): # automatically allocated sc1 = SubCluster('sc1-%s' % self.id()) self.api.sub_cluster_create(sc1) sc1 = self.api.sub_cluster_read(id=sc1.uuid) sc2 = SubCluster( 'sc2-%s' % self.id(), sub_cluster_id=sc1.get_sub_cluster_id()) self.assertRaises(BadRequest, self.api.sub_cluster_create, sc2) # or manually allocated sc3 = SubCluster( 'sc3-%s' % self.id(), sub_cluster_id=self._id_range.pop()) self.api.sub_cluster_create(sc3) sc4 = SubCluster( 'sc4-%s' % self.id(), sub_cluster_id=sc3.get_sub_cluster_id()) self.assertRaises(BadRequest, self.api.sub_cluster_create, sc4) def test_sub_cluster_id_deallocated_on_delete(self): sc = SubCluster('sc-%s' % self.id()) self.api.sub_cluster_create(sc) sc = self.api.sub_cluster_read(id=sc.uuid) self.api.sub_cluster_delete(id=sc.uuid) zk_db = self._api_server._db_conn._zk_db self.assertNotEqual( zk_db._get_sub_cluster_from_id(sc.get_sub_cluster_id()), sc.get_fq_name_str(), ) def test_sub_cluster_id_range(self): sub_cluster_id = 1 << 32 # more than 4 bytes cluster ID if self._global_asn > 0xFFFF: sub_cluster_id = 1 << 16 # more than 2 bytes cluster ID sc = SubCluster('sc-%s' % self.id(), sub_cluster_id=sub_cluster_id) with mock.patch.object(self._api_server, '_validate_simple_type', return_value=sub_cluster_id): self.assertRaises(BadRequest, self.api.sub_cluster_create, sc) sc = SubCluster('sc-%s' % self.id(), sub_cluster_id=0) with mock.patch.object(self._api_server, '_validate_simple_type', return_value=0): self.assertRaises(BadRequest, self.api.sub_cluster_create, sc) def test_update_allocated_id(self): sc = SubCluster('sc-%s' % self.id()) self.api.sub_cluster_create(sc) sc = self.api.sub_cluster_read(id=sc.uuid) allocated_id = sc.get_sub_cluster_id() self.assertIsNotNone(allocated_id) sub_cluster_id = self._id_range.pop() self.assertNotEqual(allocated_id, sub_cluster_id) sc.set_sub_cluster_id(sub_cluster_id) self.api.sub_cluster_update(sc) zk_db = self._api_server._db_conn._zk_db self.assertEqual( zk_db._get_sub_cluster_from_id(sub_cluster_id), sc.get_fq_name_str(), ) self.assertIsNone(zk_db._get_sub_cluster_from_id(allocated_id)) class TestSubClusterWith2BytesASN(TestSubClusterBase, SubClusterTestSuite): _global_asn = ASN_2_BYTES class TestSubClusterWith4BytesASN(TestSubClusterBase, SubClusterTestSuite): _global_asn = ASN_4_BYTES class TestSubClusterChangeGlobalASN(TestSubClusterBase): _global_asn = ASN_2_BYTES def test_change_global_asn_from_2_to_4_bytes(self): sc = SubCluster('sc-%s' % self.id()) self.api.sub_cluster_create(sc) sc = self.api.sub_cluster_read(id=sc.uuid) allocated_id = sc.get_sub_cluster_id() self.assertIsNotNone(allocated_id) self.assertLess(allocated_id, 1 << 16) self._gsc.set_autonomous_system(ASN_4_BYTES) self._gsc.enable_4byte_as = True self.api.global_system_config_update(self._gsc) sc = self.api.sub_cluster_read(id=sc.uuid) self.assertEqual(sc.get_sub_cluster_id(), allocated_id) self._gsc.set_autonomous_system(ASN_2_BYTES) self._gsc.enable_4byte_as = False self.api.global_system_config_update(self._gsc) def test_change_global_asn_from_2_to_4_bytes_with_to_high_id(self): sub_cluster_id = self._id_range.pop() self.assertGreaterEqual(sub_cluster_id, 1 << 16) sc = SubCluster('sc-%s' % self.id(), sub_cluster_id=sub_cluster_id) self.api.sub_cluster_create(sc) self._gsc.set_autonomous_system(ASN_4_BYTES) self._gsc.enable_4byte_as = True self.assertRaises(BadRequest, self.api.global_system_config_update, self._gsc) self.api.sub_cluster_delete(id=sc.uuid) self._gsc.set_autonomous_system(ASN_4_BYTES) self._gsc.enable_4byte_as = True self.api.global_system_config_update(self._gsc) sc = SubCluster('sc-%s' % self.id(), sub_cluster_id=sub_cluster_id) self.assertRaises(BadRequest, self.api.sub_cluster_create, sc) self._gsc.set_autonomous_system(ASN_2_BYTES) self._gsc.enable_4byte_as = False self.api.global_system_config_update(self._gsc) self.api.sub_cluster_create(sc) class TestSubClusterFirstAllocatedId(TestSubClusterBase): def test_first_allocated_id_is_one(self): sc = SubCluster('sc-%s' % self.id()) self.api.sub_cluster_create(sc) sc = self.api.sub_cluster_read(id=sc.uuid) self.assertEqual(sc.get_sub_cluster_id(), 1) ``` #### File: vnc_cfg_api_server/tests/test_perms2_target.py ```python from builtins import str from builtins import object from keystoneclient.v2_0 import client from vnc_api.vnc_api import * import uuid import argparse import keystoneclient.exceptions as kc_exceptions import cfgm_common import pprint import logging logger = logging.getLogger(__name__) PERMS_NONE = 0 PERMS_X = 1 PERMS_W = 2 PERMS_R = 4 PERMS_WX = 3 PERMS_RX = 5 PERMS_RW = 6 PERMS_RWX = 7 class TestPerms(object): def parse_args(self): # Eg. python test_perms.py <api-server-ip> parser = argparse.ArgumentParser( description="Test API server resource permissions") parser.add_argument('--api_server_ip', default='127.0.0.1', help="IP address of API server") parser.add_argument('--api-server-port', type=int, default=8082, help="API server port (default 8082)") self.args = parser.parse_args() logger.info('API server = %s : %d'\ % (self.args.api_server_ip, self.args.api_server_port)) # end parse_args # create users specified as array of tuples (name, password, role) # assumes admin user and tenant exists class User(object): def __init__(self, apis_ip, apis_port, kc, name, password, role, project): self.name = name self.password = password self.role = role self.project = project self.project_uuid = None self.project_obj = None # create user/role/tenant in keystone as needed kc_users = set([user.name for user in kc.users.list()]) kc_roles = set([user.name for user in kc.roles.list()]) kc_tenants = set([tenant.name for tenant in kc.tenants.list()]) if self.role not in kc_roles: logger.info('role %s missing from keystone ... creating' % self.role) kc.roles.create(self.role) if self.project not in kc_tenants: logger.info('tenant %s missing from keystone ... creating' % self.project) kc.tenants.create(self.project) for tenant in kc.tenants.list(): if tenant.name == self.project: break self.project_uuid = tenant.id if self.name not in kc_users: logger.info('user %s missing from keystone ... creating' % self.name) user = kc.users.create(self.name, self.password, '', tenant_id=tenant.id) role_dict = {role.name:role for role in kc.roles.list()} user_dict = {user.name:user for user in kc.users.list()} logger.info('Adding user %s with role %s to tenant %s' \ % (name, role, project)) try: kc.roles.add_user_role(user_dict[self.name], role_dict[self.role], tenant) except kc_exceptions.Conflict: pass try: self.vnc_lib = VncApi(username = self.name, password = <PASSWORD>, tenant_name = self.project, api_server_host = apis_ip,api_server_port = apis_port) except cfgm_common.exceptions.PermissionDenied: logger.error('Error creating API server client handle (VncApi)') logger.error('RBAC disabled or missing user-token middleware in Neutron pipeline? Please verify') sys.exit(1) # end __init__ def api_acl_name(self): rg_name = list(self.project_obj.get_fq_name()) rg_name.append('default-api-access-list') return rg_name # display resource id-perms def print_perms(obj_perms): share_perms = ['%s:%d' % (x.tenant, x.tenant_access) for x in obj_perms.share] return '%s/%d %d %s' \ % (obj_perms.owner, obj_perms.owner_access, obj_perms.global_access, share_perms) # end print_perms # set id perms for object def set_perms(obj, owner=None, owner_access=None, share=None, global_access=None): try: perms = obj.get_perms2() except AttributeError: logger.error('Unable to set perms2 in object %s' % obj.get_fq_name()) sys.exit() logger.info('Current perms %s = %s' % (obj.get_fq_name(), print_perms(perms))) if owner: perms.owner = owner if owner_access: perms.owner_access = owner_access if share is not None: perms.share = [ShareType(obj_uuid, obj_crud) for (obj_uuid, obj_crud) in share] if global_access is not None: perms.global_access = global_access obj.set_perms2(perms) logger.info('New perms %s = %s' % (obj.get_fq_name(), print_perms(perms))) # end set_perms # Read VNC object. Return None if object doesn't exists def vnc_read_obj(vnc, res_type, name = None, obj_uuid = None): if name is None and obj_uuid is None: logger.error('Need FQN or UUID to read object') return None method_name = res_type.replace('-', '_') method = getattr(vnc, "%s_read" % (method_name)) try: if obj_uuid: if '-' not in obj_uuid: obj_uuid = str(uuid.UUID(obj_uuid)) return method(id=obj_uuid) else: return method(fq_name=name) except NoIdError: logger.error('%s %s not found!' % (res_type, name if name else obj_uuid)) return None except PermissionDenied: logger.error('Permission denied reading %s %s' % (res_type, name)) raise # end def show_rbac_rules(api_access_list_entries): if api_access_list_entries is None: logger.info('Empty RBAC group!') return # {u'rbac_rule': [{u'rule_object': u'*', u'rule_perms': [{u'role_crud': u'CRUD', u'role_name': u'admin'}], u'rule_field': None}]} rule_list = api_access_list_entries.get_rbac_rule() logger.info('Rules (%d):' % len(rule_list)) logger.info('----------') idx = 1 for rule in rule_list: o = rule.rule_object f = rule.rule_field ps = '' for p in rule.rule_perms: ps += p.role_name + ':' + p.role_crud + ',' o_f = "%s.%s" % (o,f) if f else o logger.info('%2d %-32s %s' % (idx, o_f, ps)) idx += 1 logger.info('') def build_rule(rule_str): r = rule_str.split(" ") if rule_str else [] if len(r) < 2: return None # [0] is object.field, [1] is list of perms obj_field = r[0].split(".") perms = r[1].split(",") o = obj_field[0] f = obj_field[1] if len(obj_field) > 1 else None o_f = "%s.%s" % (o,f) if f else o # perms eg ['foo:CRU', 'bar:CR'] rule_perms = [] for perm in perms: p = perm.split(":") rule_perms.append(RbacPermType(role_name = p[0], role_crud = p[1])) # build rule rule = RbacRuleType( rule_object = o, rule_field = f, rule_perms = rule_perms) return rule #end def match_rule(rule_list, rule_str): extend_rule_list = True nr = build_rule(rule_str) for r in rule_list: if r.rule_object != nr.rule_object or r.rule_field != nr.rule_field: continue # object and field match - fix rule in place extend_rule_list = False for np in nr.rule_perms: extend_perms = True for op in r.rule_perms: if op.role_name == np.role_name: # role found - merge incoming and existing crud in place x = set(list(op.role_crud)) | set(list(np.role_crud)) op.role_crud = ''.join(x) extend_perms = False if extend_perms: r.rule_perms.append(RbacPermType(role_name = np.role_name, role_crud = np.role_crud)) if extend_rule_list: rule_list.append(nr) # end match_rule def vnc_fix_api_access_list(vnc_lib, pobj, rule_str = None): rg_name = list(pobj.get_fq_name()) rg_name.append('default-api-access-list') rg = vnc_read_obj(vnc_lib, 'api-access-list', name = rg_name) create = False rule_list = [] if rg == None: rg = ApiAccessList( name = 'default-api-access-list', parent_obj = pobj, api_access_list_entries = None) create = True elif rule_str: api_access_list_entries = rg.get_api_access_list_entries() rule_list = api_access_list_entries.get_rbac_rule() if rule_str: rule = match_rule(rule_list, rule_str) rentry = RbacRuleEntriesType(rule_list) rg.set_api_access_list_entries(rentry) if create: logger.info('API access list empty. Creating with default rule') vnc_lib.api_access_list_create(rg) else: vnc_lib.api_access_list_update(rg) show_rbac_rules(rg.get_api_access_list_entries()) def all(ip='127.0.0.1', port=8082, domain_name='default-domain', proj_name='my-proj', subnet='192.168.1.0', prefix=24, vn_name='my-vn'): testfail = 0 testpass = 0 fqdn = [domain_name] pobjs = {} kc = client.Client(username='admin', password='<PASSWORD>', tenant_name='admin', auth_url='http://127.0.0.1:5000/v2.0') # create admin account first to ensure there are no permission problems admin = User(ip, port, kc, 'admin', 'contrail123', 'admin', 'admin') alice = User(ip, port, kc, 'alice', 'alice123', 'alice-role', 'alice-proj') bob = User(ip, port, kc, 'bob', 'bob123', 'bob-role', 'bob-proj') # create domain domain = vnc_read_obj(admin.vnc_lib, 'domain', name = fqdn) if domain == None: domain = Domain(domain_name) admin.vnc_lib.domain_create(domain) domain = vnc_read_obj(vnc_lib, 'domain', name = domain.get_fq_name()) logger.info('Created domain %s' % fqdn) # read projects alice.project_obj = vnc_read_obj(admin.vnc_lib, 'project', obj_uuid = alice.project_uuid) logger.info('Created Project object for %s' % alice.project) bob.project_obj = vnc_read_obj(admin.vnc_lib, 'project', obj_uuid = bob.project_uuid) logger.info('Created Project object for %s' % bob.project) # reassign ownership of projects to alice and bob (from admin) for user in [alice, bob]: logger.info('Change owner of project %s to %s' % (user.project, user.project_uuid)) set_perms(user.project_obj, owner=user.project_uuid, share = []) admin.vnc_lib.project_update(user.project_obj) # delete test VN if it exists for net_name in [vn_name, 'second-vn', 'bob-vn-in-alice-project']: vn_fq_name = [domain_name, alice.project, net_name] vn = vnc_read_obj(admin.vnc_lib, 'virtual-network', name = vn_fq_name) if vn: logger.info('%s exists ... deleting to start fresh' % vn_fq_name) admin.vnc_lib.virtual_network_delete(fq_name = vn_fq_name) logger.info('########### API ACCESS (CREATE) ##################') # delete api-access-list for alice and bob and disallow api access to their projects for user in [alice, bob]: logger.info("Delete api-acl for project %s to disallow api access" % user.project) vnc_fix_api_access_list(admin.vnc_lib, user.project_obj, rule_str = None) logger.info('alice: trying to create VN in her project') vn = VirtualNetwork(vn_name, alice.project_obj) try: alice.vnc_lib.virtual_network_create(vn) logger.error('Created virtual network %s ... test failed!' % vn.get_fq_name()) testfail += 1 except PermissionDenied as e: logger.info('Failed to create VN ... Test passes!') testpass += 1 if testfail > 0: sys.exit() # allow permission to create virtual-network for user in [alice, bob]: logger.info("%s: project %s to allow full access to role %s" % \ (user.name, user.project, user.role)) # note that collection API is set for create operation vnc_fix_api_access_list(admin.vnc_lib, user.project_obj, rule_str = 'virtual-networks %s:C' % user.role) logger.info('alice: trying to create VN in her project') try: alice.vnc_lib.virtual_network_create(vn) logger.info('Created virtual network %s ... test passed!' % vn.get_fq_name()) testpass += 1 except PermissionDenied as e: logger.error('Failed to create VN ... Test failed!') testfail += 1 if testfail > 0: sys.exit() logger.info('########### API ACCESS (READ) ##################') logger.info('alice: trying to read VN in her project (should fail)') try: vn2 = vnc_read_obj(alice.vnc_lib, 'virtual-network', name = vn.get_fq_name()) logger.error('Read VN without read permission ... test failed!!!') testfail += 1 except PermissionDenied as e: logger.info('Unable to read VN ... test passed') testpass += 1 if testfail > 0: sys.exit() # allow read access vnc_fix_api_access_list(admin.vnc_lib, alice.project_obj, rule_str = 'virtual-network %s:R' % alice.role) logger.info('alice: added permission to read virtual-network') logger.info('alice: trying to read VN in her project (should succeed)') try: vn2 = vnc_read_obj(alice.vnc_lib, 'virtual-network', name = vn.get_fq_name()) logger.info('Read VN successfully ... test passed') testpass += 1 except PermissionDenied as e: testfail += 1 logger.info('Read VN failed ... test failed!!!') if testfail > 0: sys.exit() logger.info('########### API ACCESS (UPDATE) ##################') logger.info('alice: trying to update VN in her project (should fail)') try: vn.display_name = "foobar" alice.vnc_lib.virtual_network_update(vn) logger.error('Set field in virtual network %s ... test failed!' % vn.get_fq_name()) testfail += 1 except PermissionDenied as e: logger.info('Unable to update field in VN ... Test succeeded!') testpass += 1 if testfail > 0: sys.exit() vnc_fix_api_access_list(admin.vnc_lib, alice.project_obj, rule_str = 'virtual-network %s:U' % alice.role) logger.info('alice: added permission to update virtual-network') logger.info('alice: trying to set field in her VN ') try: vn.display_name = "foobar" alice.vnc_lib.virtual_network_update(vn) logger.info('Set field in virtual network %s ... test passed!' % vn.get_fq_name()) testpass += 1 except PermissionDenied as e: logger.error('Failed to update field in VN ... Test failed!') testfail += 1 if testfail > 0: sys.exit() vn2 = vnc_read_obj(alice.vnc_lib, 'virtual-network', name = vn.get_fq_name()) logger.info('alice: display_name %s' % vn2.display_name) if vn2.display_name != "foobar": testfail += 1 logger.error('Failed to update shared field correctly in VN ... Test failed!') else: testpass += 1 logger.info('Updated shared field correctly in virtual network %s ... test passed!' % vn.get_fq_name()) if testfail > 0: sys.exit() logger.info('########### API ACCESS (update field) ##################') logger.info('Restricting update of field to admin only ') vnc_fix_api_access_list(admin.vnc_lib, alice.project_obj, rule_str = 'virtual-network.display_name admin:U') try: vn.display_name = "alice" alice.vnc_lib.virtual_network_update(vn) logger.error('Set field in virtual network %s ... test failed!' % vn.get_fq_name()) testfail += 1 except PermissionDenied as e: logger.info('Failed to update field in VN ... Test passed!') testpass += 1 if testfail > 0: sys.exit() logger.info('########### API ACCESS (DELETE) ##################') # delete test VN ... should fail vn_fq_name = [domain_name, alice.project, vn_name] try: alice.vnc_lib.virtual_network_delete(fq_name = vn_fq_name) logger.error('%s: Deleted VN %s ... test failed!' % (alice.name, vn_fq_name)) testfail += 1 except PermissionDenied as e: logger.info('%s: Error deleting VN %s ... test passed!' % (alice.name, vn_fq_name)) testpass += 1 if testfail > 0: sys.exit() logger.info('############### PERMS2 ##########################') logger.info( 'Giving bob API level access to perform all ops on virtual-network') vnc_fix_api_access_list(admin.vnc_lib, bob.project_obj, rule_str = 'virtual-network %s:RUD' % bob.role) logger.info('bob: trying to create VN in alice project ... should fail') try: vn2 = VirtualNetwork('bob-vn-in-alice-project', alice.project_obj) bob.vnc_lib.virtual_network_create(vn2) logger.error('Created virtual network %s ... test failed!' % vn2.get_fq_name()) testfail += 1 except PermissionDenied as e: logger.info('Failed to create VN ... Test passed!') testpass += 1 if testfail > 0: sys.exit() vn = vnc_read_obj(alice.vnc_lib, 'virtual-network', name = vn_fq_name) logger.info('########### READ (SHARED WITH TENANT) ##################') logger.info('Disable share in virtual networks for others') set_perms(vn, share = [], global_access = PERMS_NONE) alice.vnc_lib.virtual_network_update(vn) logger.info('Reading VN as bob ... should fail') try: net_obj = bob.vnc_lib.virtual_network_read(id=vn.get_uuid()) logger.error('Succeeded in reading VN. Test failed!') testfail += 1 except PermissionDenied as e: logger.info('Failed to read VN ... Test passed!') testpass += 1 if testfail > 0: sys.exit() logger.info('Enable share in virtual network for bob project') set_perms(vn, share = [(bob.project_uuid, PERMS_R)]) alice.vnc_lib.virtual_network_update(vn) logger.info('Reading VN as bob ... should succeed') try: net_obj = bob.vnc_lib.virtual_network_read(id=vn.get_uuid()) logger.info('Succeeded in reading VN. Test passed!') testpass += 1 except PermissionDenied as e: logger.error('Failed to read VN ... Test failed!') testfail += 1 if testfail > 0: sys.exit() logger.info('########### READ (GLOBALLY SHARED ) ##################') logger.info('Disable share in virtual networks for others') set_perms(vn, share = []) alice.vnc_lib.virtual_network_update(vn) logger.info('Reading VN as bob ... should fail') try: net_obj = bob.vnc_lib.virtual_network_read(id=vn.get_uuid()) logger.error('Succeeded in reading VN. Test failed!') testfail += 1 except PermissionDenied as e: logger.info('Failed to read VN ... Test passed!') testpass += 1 if testfail > 0: sys.exit() logger.info('Enable virtual networks in alice project for global sharing (read only)') set_perms(vn, share = [], global_access = PERMS_R) alice.vnc_lib.virtual_network_update(vn) logger.info('Reading VN as bob ... should succeed') try: net_obj = bob.vnc_lib.virtual_network_read(id=vn.get_uuid()) logger.info('Succeeded in reading VN. Test passed!') testpass += 1 except PermissionDenied as e: logger.error('Failed to read VN ... Test failed!') testfail += 1 if testfail > 0: sys.exit() logger.info('Writing shared VN as bob ... should fail') try: vn.display_name = "foobar" bob.vnc_lib.virtual_network_update(vn) logger.error('Succeeded in updating VN. Test failed!!') testfail += 1 except PermissionDenied as e: logger.info('Failed to update VN ... Test passed!') testpass += 1 if testfail > 0: sys.exit() logger.info('Enable virtual networks in alice project for global sharing (read, write)') logger.info('Writing shared VN as bob ... should succeed') # important: read VN afresh to overwrite display_name update pending status vn = vnc_read_obj(alice.vnc_lib, 'virtual-network', name = vn_fq_name) set_perms(vn, global_access = PERMS_RW) alice.vnc_lib.virtual_network_update(vn) try: bob.vnc_lib.virtual_network_update(vn) logger.info('Succeeded in updating VN. Test passed!') testpass += 1 except PermissionDenied as e: logger.error('Failed to update VN ... Test failed!!') testfail += 1 if testfail > 0: sys.exit() logger.info('########################### Collections #################') logger.info('User should be able to see VN in own project and any shared') logger.info('alice: get virtual network collection ... should fail') try: x = alice.vnc_lib.virtual_networks_list(parent_id = alice.project_uuid) logger.error('Read VN collection without list permission ... test failed!') testfail += 1 except PermissionDenied as e: logger.info('Failed to read VN collection ... test passed') testpass += 1 if testfail > 0: sys.exit() # allow permission to read virtual-network collection for user in [alice, bob]: logger.info("%s: project %s to allow collection access to role %s" % \ (user.name, user.project, user.role)) # note that collection API is set for create operation vnc_fix_api_access_list(admin.vnc_lib, user.project_obj, rule_str = 'virtual-networks %s:CR' % user.role) # create one more VN in alice project to differentiate from what bob sees vn2 = VirtualNetwork('second-vn', alice.project_obj) alice.vnc_lib.virtual_network_create(vn2) logger.info('Alice: created additional VN %s in her project' % vn2.get_fq_name()) logger.info('Alice: network list') x = alice.vnc_lib.virtual_networks_list(parent_id = alice.project_uuid) for item in x['virtual-networks']: logger.info(' %s: %s' % (item['uuid'], item['fq_name'])) expected = set(['my-vn', 'second-vn']) received = set([item['fq_name'][-1] for item in x['virtual-networks']]) if received != expected: logger.error('Alice: Received incorrect VN list ... test failed!') testfail += 1 else: logger.info('Alice: Received correct VN list ... test passed') testpass += 1 if testfail > 0: sys.exit() logger.info('Bob: network list') y = bob.vnc_lib.virtual_networks_list(parent_id = bob.project_uuid) for item in y['virtual-networks']: logger.info(' %s: %s' % (item['uuid'], item['fq_name'])) # need changes in auto code generation for lists expected = set(['my-vn']) received = set([item['fq_name'][-1] for item in y['virtual-networks']]) if received != expected: logger.error('Bob: Received incorrect VN list ... test failed!') testfail += 1 else: logger.info('Bob: Received correct VN list ... test passed') testpass += 1 if testfail > 0: sys.exit() logger.info('Tests fail=%d, pass=%d' % (testfail, testpass)) if __name__ == '__main__': perms = TestPerms() perms.parse_args() log_level = 'INFO' logger.setLevel(log_level) logformat = logging.Formatter("%(levelname)s: %(message)s") stdout = logging.StreamHandler() stdout.setLevel(log_level) stdout.setFormatter(logformat) logger.addHandler(stdout) all(ip=perms.args.api_server_ip, port=perms.args.api_server_port) ``` #### File: tests/unit/test_dependency_tracker.py ```python from __future__ import unicode_literals # # Copyright (c) 2015 Juniper Networks, Inc. All rights reserved. # import unittest import mock import six from cfgm_common.dependency_tracker import DependencyTracker from cfgm_common.vnc_db import DBBase # # Red ------------------ # | | # | | # v v # Blue <--> Green # | | # | | # v v # Purple <--> White class DBBaseTM(DBBase): obj_type = __name__ class RedSM(DBBaseTM): _dict = {} obj_type = 'red' def __init__(self, uuid, obj_dict=None): self.uuid = uuid self.blues = set() self.greens = set() obj_dict = self.update(obj_dict) self.set_children('blue', obj_dict) self.set_children('green', obj_dict) # end __init__ def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) return obj # end update @classmethod def delete(cls, uuid): if uuid not in cls._dict: return del cls._dict[uuid] # end delete # end RedSM class GreenSM(DBBaseTM): _dict = {} obj_type = 'green' def __init__(self, uuid, obj_dict=None): self.uuid = uuid self.whites = set() obj_dict = self.update(obj_dict) self.add_to_parent(obj_dict) self.red = self.get_parent_uuid(obj_dict) self.set_children('white', obj_dict) # end __init__ def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) self.update_single_ref('blue', obj) return obj # end update @classmethod def delete(cls, uuid): if uuid not in cls._dict: return obj = cls._dict[uuid] obj.remove_from_parent() obj.update_single_ref('blue', {}) del cls._dict[uuid] # end delete # end GreenSM class BlueSM(DBBaseTM): _dict = {} obj_type = 'blue' def __init__(self, uuid, obj_dict=None): self.uuid = uuid self.purples = set() self.greens = set() obj_dict = self.update(obj_dict) self.add_to_parent(obj_dict) self.red = self.get_parent_uuid(obj_dict) # end __init__ def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) self.update_multiple_refs('green', obj) self.name = obj['fq_name'][-1] return obj # end update @classmethod def delete(cls, uuid): if uuid not in cls._dict: return obj = cls._dict[uuid] obj.remove_from_parent() obj.update_multiple_refs('green', {}) del cls._dict[uuid] # end delete # end BlueSM class PurpleSM(DBBaseTM): _dict = {} obj_type = 'purple' def __init__(self, uuid, obj_dict=None): self.uuid = uuid obj_dict = self.update(obj_dict) self.add_to_parent(obj_dict) self.blue = self.get_parent_uuid(obj_dict) # end __init__ def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) self.update_single_ref('white', obj) return obj # end update @classmethod def delete(cls, uuid): if uuid not in cls._dict: return obj = cls._dict[uuid] obj.remove_from_parent() obj.update_single_ref('white', {}) del cls._dict[uuid] # end delete # end PurpleSM class WhiteSM(DBBaseTM): _dict = {} obj_type = 'white' def __init__(self, uuid, obj_dict=None): self.uuid = uuid self.purples = set() obj_dict = self.update(obj_dict) self.add_to_parent(obj_dict) self.green = self.get_parent_uuid(obj_dict) # end __init__ def update(self, obj=None): if obj is None: obj = self.read_obj(self.uuid) self.update_multiple_refs('purple', obj) self.name = obj['fq_name'][-1] return obj # end update @classmethod def delete(cls, uuid): if uuid not in cls._dict: return obj = cls._dict[uuid] obj.remove_from_parent() obj.update_multiple_refs('purple', {}) del cls._dict[uuid] # end delete # end WhiteSM DBBase._OBJ_TYPE_MAP = { 'red': RedSM, 'blue': BlueSM, 'green': GreenSM, 'white': WhiteSM, 'purple': PurpleSM } class DepTrackTester(unittest.TestCase): def green_read(self, obj_type, uuid, **kwargs): green_obj = {} green_obj['uuid'] = uuid[0] green_obj['fq_name'] = ['fake-green-' + uuid[0]] green_obj['parent_type'] = 'red' green_obj['parent_uuid'] = 'fake-red-uuid' return True, [green_obj] # end green_read def white_read(self, obj_type, uuid, **kwargs): white_obj = {} white_obj['uuid'] = uuid[0] white_obj['fq_name'] = ['fake-white-' + uuid[0]] white_obj['parent_type'] = 'green' white_obj['parent_uuid'] = 'fake-green-uuid' return True, [white_obj] # end white_read def purple_read(self, obj_type, uuid, **kwargs): purple_obj = {} purple_obj['uuid'] = uuid[0] purple_obj['fq_name'] = ['fake-purple-' + uuid[0]] purple_obj['parent_type'] = 'blue' purple_obj['parent_uuid'] = 'fake-blue-uuid' return True, [purple_obj] # end purple_read def green_read_with_refs(self, obj_type, uuid, **kwargs): green_obj = {} green_obj['uuid'] = 'fake-green-uuid' green_obj['fq_name'] = ['fake-green-uuid'] green_obj['parent_type'] = 'red' green_obj['parent_uuid'] = 'fake-red-uuid' green_obj['blue_back_refs'] = [{'uuid': 'fake-blue-uuid'}] return True, [green_obj] # end green_read_with_refs def green_read_with_update_refs(self, obj_type, uuid, **kwargs): green_obj = {} green_obj['uuid'] = 'fake-green-uuid' green_obj['fq_name'] = ['fake-green-uuid'] green_obj['parent_type'] = 'red' green_obj['parent_uuid'] = 'fake-red-uuid' green_obj['blue_back_refs'] = [{'uuid': 'fake-blue-uuid-1'}] return True, [green_obj] # end green_read_with_update_refs def white_read_with_refs(self, obj_type, uuid, **kwargs): white_obj = {} white_obj['uuid'] = 'fake-white-uuid' white_obj['fq_name'] = ['fake-white-uuid'] white_obj['parent_type'] = 'green' white_obj['parent_uuid'] = 'fake-green-uuid-0' white_obj['purple_back_refs'] = [{'uuid': 'fake-purple-uuid'}] return True, [white_obj] # end white_read_with_refs def red_read(self, obj_type, uuid, **kwargs): red_obj = {} red_obj['uuid'] = 'fake-red-uuid' red_obj['fq_name'] = ['fake-red-uuid'] return True, [red_obj] # end red_read def red_read_with_child(self, obj_type, uuid, **kwargs): red_obj = {} red_obj['uuid'] = 'fake-red-uuid' red_obj['fq_name'] = ['fake-red-uuid'] red_obj['blues'] = [{'uuid': 'fake-blue-uuid'}] red_obj['greens'] = [{'to': 'fake-green-uuid'}] return True, [red_obj] # end red_read_with_child def blue_read(self, obj_type, uuid, **kwargs): blue_obj = {} blue_obj['uuid'] = uuid[0] blue_obj['fq_name'] = ['fake-blue-' + uuid[0]] blue_obj['parent_type'] = 'red' blue_obj['parent_uuid'] = 'fake-red-uuid' return True, [blue_obj] # end blue_read def blue_read_with_refs(self, obj_type, uuid, **kwargs): blue_obj = {} blue_obj['uuid'] = 'fake-blue-uuid' blue_obj['fq_name'] = ['fake-blue-uuid'] blue_obj['parent_type'] = 'red' blue_obj['parent_uuid'] = 'fake-red-uuid' blue_obj['green_refs'] = [{'uuid': 'fake-green-uuid'}] return True, [blue_obj] # end blue_read_with_refs def blue_read_with_multi_refs(self, obj_type, uuid, **kwargs): blue_obj = {} blue_obj['uuid'] = 'fake-blue-uuid' blue_obj['fq_name'] = ['fake-blue-uuid'] blue_obj['parent_type'] = 'red' blue_obj['parent_uuid'] = 'fake-red-uuid' blue_obj['green_refs'] = [{'uuid': 'fake-green-uuid-0'}, {'uuid': 'fake-green-uuid-1'}] return True, [blue_obj] # end blue_read_with_multi_refs def blue_read_with_new_refs(self, obj_type, uuid, **kwargs): blue_obj = {} blue_obj['uuid'] = 'fake-blue-uuid' blue_obj['fq_name'] = ['fake-blue-uuid'] blue_obj['parent_type'] = 'red' blue_obj['parent_uuid'] = 'fake-red-uuid' blue_obj['green_refs'] = [{'uuid': 'fake-green-uuid-2'}, {'uuid': 'fake-green-uuid-3'}] return True, [blue_obj] # end blue_read_with_new_refs def purple_read_with_multi_refs(self, obj_type, uuid, **kwargs): purple_obj = {} purple_obj['uuid'] = 'fake-purple-uuid' purple_obj['fq_name'] = ['fake-purple-uuid'] purple_obj['parent_type'] = 'blue' purple_obj['parent_uuid'] = 'fake-blue-uuid' purple_obj['white_refs'] = [{'uuid': 'fake-white-uuid-0'}, {'uuid': 'fake-white-uuid-1'}] return True, [purple_obj] # end purple_read_with_multi_refs def setUp(self): if six.PY3: self.assertItemsEqual = self.assertCountEqual DBBase.init(self, None, None) DBBase._OBJ_TYPE_MAP['red'] = RedSM DBBase._OBJ_TYPE_MAP['blue'] = BlueSM DBBase._OBJ_TYPE_MAP['green'] = GreenSM DBBase._OBJ_TYPE_MAP['white'] = WhiteSM DBBase._OBJ_TYPE_MAP['purple'] = PurpleSM BlueSM._object_db = mock.MagicMock() BlueSM._object_db.object_read = self.blue_read RedSM._object_db = mock.MagicMock() RedSM._object_db.object_read = self.red_read GreenSM._object_db = mock.MagicMock() GreenSM._object_db.object_read = self.green_read WhiteSM._object_db = mock.MagicMock() WhiteSM._object_db.object_read = self.white_read PurpleSM._object_db = mock.MagicMock() PurpleSM._object_db.object_read = self.purple_read # end setUp def tearDown(self): GreenSM.reset() BlueSM.reset() RedSM.reset() PurpleSM.reset() del DBBase._OBJ_TYPE_MAP['red'] del DBBase._OBJ_TYPE_MAP['blue'] del DBBase._OBJ_TYPE_MAP['green'] del DBBase._OBJ_TYPE_MAP['white'] del DBBase._OBJ_TYPE_MAP['purple'] # end tearDown def test_add_delete(self): RedSM.locate("fake-red-uuid") BlueSM.locate("fake-blue-uuid") GreenSM.locate("fake-green-uuid") blues = [blue.uuid for blue in list(BlueSM.values())] blues_1 = [uuid for uuid, value in list(BlueSM.items())] blues_2 = [value for value in BlueSM] self.assertEqual(blues, blues_1) self.assertEqual(blues_2, blues_1) self.assertIsNotNone(GreenSM.get("fake-green-uuid")) self.assertIsNotNone(RedSM.get("fake-red-uuid")) self.assertIsNotNone(BlueSM.get("fake-blue-uuid")) red = RedSM.get("fake-red-uuid") self.assertEqual(len(red.blues), 1) self.assertEqual(len(red.greens), 1) green = GreenSM.get("fake-green-uuid") self.assertEqual(green.red, "fake-red-uuid") blue = BlueSM.get("fake-blue-uuid") self.assertEqual(blue.red, "fake-red-uuid") RedSM.delete("fake-red-uuid") GreenSM.delete("fake-green-uuid") BlueSM.delete("fake-blue-uuid") # end test_add_delete def fq_name_to_uuid(self, type, name): return 'fake-green-uuid' # end fq_name_to_uuid def test_add_set_child(self): RedSM._object_db = mock.MagicMock() RedSM._object_db.object_read = self.red_read_with_child RedSM._object_db.fq_name_to_uuid = self.fq_name_to_uuid RedSM.locate("fake-red-uuid") self.assertIsNotNone(RedSM.get("fake-red-uuid")) red = RedSM.get("fake-red-uuid") self.assertEqual(len(red.blues), 1) self.assertEqual(len(red.greens), 1) BlueSM.locate("fake-blue-uuid") GreenSM.locate("fake-green-uuid") self.assertIsNotNone(GreenSM.get("fake-green-uuid")) self.assertIsNotNone(BlueSM.get("fake-blue-uuid")) red = RedSM.get("fake-red-uuid") green = GreenSM.get("fake-green-uuid") self.assertEqual(green.red, "fake-red-uuid") blue = BlueSM.get("fake-blue-uuid") self.assertEqual(blue.red, "fake-red-uuid") BlueSM.delete("fake-blue-uuid") self.assertEqual(len(red.blues), 0) RedSM.delete("fake-red-uuid") GreenSM.delete("fake-green-uuid") # end test_add_set_child def test_add_with_refs(self): GreenSM._object_db.object_read = self.green_read_with_refs BlueSM._object_db.object_read = self.blue_read_with_refs RedSM.locate("fake-red-uuid") BlueSM.locate("fake-blue-uuid") GreenSM.locate("fake-green-uuid") self.assertIsNotNone(RedSM.get("fake-red-uuid")) self.assertIsNotNone(GreenSM.get("fake-green-uuid")) self.assertIsNotNone(BlueSM.get("fake-blue-uuid")) red = RedSM.get("fake-red-uuid") self.assertEqual(len(red.blues), 1) self.assertEqual(len(red.greens), 1) green = GreenSM.get("fake-green-uuid") self.assertEqual(green.red, "fake-red-uuid") self.assertEqual(green.blue, "fake-blue-uuid") blue = BlueSM.get("fake-blue-uuid") self.assertEqual(blue.red, "fake-red-uuid") self.assertEqual(len(blue.greens), 1) BlueSM.delete("fake-blue-uuid") self.assertEqual(green.blue, None) RedSM.delete("fake-red-uuid") GreenSM.delete("fake-green-uuid") # end test_add_with_refs def test_update_with_refs(self): GreenSM._object_db.object_read = self.green_read_with_refs BlueSM._object_db.object_read = self.blue_read_with_refs RedSM.locate("fake-red-uuid") BlueSM.locate("fake-blue-uuid") GreenSM.locate("fake-green-uuid") self.assertIsNotNone(RedSM.get("fake-red-uuid")) self.assertIsNotNone(GreenSM.get("fake-green-uuid")) self.assertIsNotNone(BlueSM.get("fake-blue-uuid")) red = RedSM.get("fake-red-uuid") self.assertEqual(len(red.blues), 1) self.assertEqual(len(red.greens), 1) green = GreenSM.get("fake-green-uuid") self.assertEqual(green.red, "fake-red-uuid") self.assertEqual(green.blue, "fake-blue-uuid") blue = BlueSM.get("fake-blue-uuid") self.assertEqual(blue.red, "fake-red-uuid") self.assertEqual(len(blue.greens), 1) BlueSM.delete("fake-blue-uuid") BlueSM.locate("fake-blue-uuid-1") GreenSM._object_db.object_read = self.green_read_with_update_refs green.update() green = GreenSM.get("fake-green-uuid") RedSM.delete("fake-red-uuid") GreenSM.delete("fake-green-uuid") # end test_update_with_refs def test_add_with_multi_refs(self): GreenSM._object_db.object_read = self.green_read_with_refs BlueSM._object_db.object_read = self.blue_read_with_multi_refs RedSM.locate("fake-red-uuid") BlueSM.locate("fake-blue-uuid") GreenSM.locate("fake-green-uuid-0") GreenSM.locate("fake-green-uuid-1") self.assertIsNotNone(RedSM.get("fake-red-uuid")) self.assertIsNotNone(GreenSM.get("fake-green-uuid-0")) self.assertIsNotNone(GreenSM.get("fake-green-uuid-1")) self.assertIsNotNone(BlueSM.get("fake-blue-uuid")) red = RedSM.get("fake-red-uuid") self.assertEqual(len(red.blues), 1) self.assertEqual(len(red.greens), 2) green_0 = GreenSM.get("fake-green-uuid-0") green_1 = GreenSM.get("fake-green-uuid-1") self.assertEqual(green_0.red, "fake-red-uuid") self.assertEqual(green_0.blue, "fake-blue-uuid") self.assertEqual(green_1.red, "fake-red-uuid") self.assertEqual(green_1.blue, "fake-blue-uuid") blue = BlueSM.get("fake-blue-uuid") self.assertEqual(blue.red, "fake-red-uuid") self.assertEqual(len(blue.greens), 2) self.assertTrue("fake-green-uuid-0" in (blue.greens)) self.assertTrue("fake-green-uuid-1" in (blue.greens)) RedSM.delete("fake-red-uuid") GreenSM.delete("fake-green-uuid-0") GreenSM.delete("fake-green-uuid-1") BlueSM.delete("fake-blue-uuid") # end test_add_with_multi_refs def test_update_with_multi_refs(self): GreenSM._object_db.object_read = self.green_read_with_refs BlueSM._object_db.object_read = self.blue_read_with_multi_refs RedSM.locate("fake-red-uuid") BlueSM.locate("fake-blue-uuid") GreenSM.locate("fake-green-uuid-0") GreenSM.locate("fake-green-uuid-1") self.assertIsNotNone(RedSM.get("fake-red-uuid")) self.assertIsNotNone(GreenSM.get("fake-green-uuid-0")) self.assertIsNotNone(GreenSM.get("fake-green-uuid-1")) self.assertIsNotNone(BlueSM.get("fake-blue-uuid")) red = RedSM.get("fake-red-uuid") self.assertEqual(len(red.blues), 1) self.assertEqual(len(red.greens), 2) green_0 = GreenSM.get("fake-green-uuid-0") green_1 = GreenSM.get("fake-green-uuid-1") self.assertEqual(green_0.red, "fake-red-uuid") self.assertEqual(green_0.blue, "fake-blue-uuid") self.assertEqual(green_1.red, "fake-red-uuid") self.assertEqual(green_1.blue, "fake-blue-uuid") blue = BlueSM.get("fake-blue-uuid") self.assertEqual(blue.red, "fake-red-uuid") self.assertEqual(len(blue.greens), 2) self.assertTrue("fake-green-uuid-0" in (blue.greens)) self.assertTrue("fake-green-uuid-1" in (blue.greens)) GreenSM.delete("fake-green-uuid-0") GreenSM.delete("fake-green-uuid-1") GreenSM.locate("fake-green-uuid-2") GreenSM.locate("fake-green-uuid-3") BlueSM._object_db.object_read = self.blue_read_with_new_refs blue.update() green_2 = GreenSM.get("fake-green-uuid-2") green_3 = GreenSM.get("fake-green-uuid-3") self.assertEqual(green_2.red, "fake-red-uuid") self.assertEqual(green_2.blue, "fake-blue-uuid") self.assertEqual(green_3.red, "fake-red-uuid") self.assertEqual(green_3.blue, "fake-blue-uuid") blue = BlueSM.get("fake-blue-uuid") self.assertEqual(blue.red, "fake-red-uuid") self.assertEqual(len(blue.greens), 2) self.assertTrue("fake-green-uuid-2" in (blue.greens)) self.assertTrue("fake-green-uuid-3" in (blue.greens)) self.assertFalse("fake-green-uuid-0" in (blue.greens)) self.assertFalse("fake-green-uuid-1" in (blue.greens)) RedSM.delete("fake-red-uuid") BlueSM.delete("fake-blue-uuid") GreenSM.delete("fake-green-uuid-2") GreenSM.delete("fake-green-uuid-3") # end test_update_with_mulit_refs def test_find(self): GreenSM._object_db.object_read = self.green_read BlueSM._object_db.object_read = self.blue_read RedSM.locate("fake-red-uuid") BlueSM.locate("OK") GreenSM.locate("fake-green-uuid-0") GreenSM.locate("fake-green-uuid-1") self.assertIsNone(BlueSM.find_by_name_or_uuid("fake-blue-NOK")) self.assertIsNotNone(BlueSM.find_by_name_or_uuid("fake-blue-OK")) self.assertIsNotNone(BlueSM.find_by_name_or_uuid("OK")) RedSM.delete("fake-red-uuid") GreenSM.delete("fake-green-uuid-0") GreenSM.delete("fake-green-uuid-1") BlueSM.delete("fake-blue-uuid") # end test_find def test_basic_dep_track(self): reaction_map = { "red": { 'self': ['blue', 'green'], }, "blue": { 'self': [], 'red': [], }, "green": { 'self': [], 'red': [], }, "purple": { 'self': [], }, } dependency_tracker = DependencyTracker(DBBase._OBJ_TYPE_MAP, reaction_map) red = RedSM.locate("fake-red-uuid") BlueSM.locate("fake-blue-uuid") GreenSM.locate("fake-green-uuid") dependency_tracker.evaluate('red', red) self.assertEqual(len(dependency_tracker.resources), 3) self.assertTrue("red" in dependency_tracker.resources) self.assertTrue("blue" in dependency_tracker.resources) self.assertTrue("green" in dependency_tracker.resources) self.assertEqual(dependency_tracker.resources["red"], ["fake-red-uuid"]) self.assertEqual(dependency_tracker.resources["blue"], ["fake-blue-uuid"]) self.assertEqual(dependency_tracker.resources["green"], ["fake-green-uuid"]) RedSM.delete("fake-red-uuid") GreenSM.delete("fake-green-uuid") BlueSM.delete("fake-blue-uuid") # end test_basic_dep_track @unittest.skip("Flaky test, sometimes the DT resource list length is one " "intead of two. Probably issue when tests run in parallel") def test_basic_dep_track_1(self): reaction_map = { "red": { 'self': [], }, "blue": { 'self': ['green'], }, "green": { 'self': [], 'blue': [], }, "purple": { 'self': [], }, } GreenSM._object_db.object_read = self.green_read_with_refs BlueSM._object_db.object_read = self.blue_read_with_multi_refs dependency_tracker = DependencyTracker(DBBase._OBJ_TYPE_MAP, reaction_map) RedSM.locate("fake-red-uuid") blue = BlueSM.locate("fake-blue-uuid") GreenSM.locate("fake-green-uuid") dependency_tracker.evaluate('blue', blue) self.assertEqual(len(dependency_tracker.resources), 2) self.assertTrue("blue" in dependency_tracker.resources) self.assertTrue("green" in dependency_tracker.resources) self.assertEqual(dependency_tracker.resources["blue"], ["fake-blue-uuid"]) self.assertEqual(dependency_tracker.resources["green"], ["fake-green-uuid"]) RedSM.delete("fake-red-uuid") GreenSM.delete("fake-green-uuid") BlueSM.delete("fake-blue-uuid") # end test_basic_dep_track_1 def test_basic_dep_track_2(self): reaction_map = { "red": { 'self': [], }, "blue": { 'self': ['green'], }, "green": { 'self': [], 'blue': [], }, "purple": { 'self': [], }, } GreenSM._object_db.object_read = self.green_read_with_refs BlueSM._object_db.object_read = self.blue_read_with_multi_refs dependency_tracker = DependencyTracker(DBBase._OBJ_TYPE_MAP, reaction_map) RedSM.locate("fake-red-uuid") blue = BlueSM.locate("fake-blue-uuid") GreenSM.locate("fake-green-uuid-0") GreenSM.locate("fake-green-uuid-1") dependency_tracker.evaluate('blue', blue) self.assertEqual(len(dependency_tracker.resources), 2) self.assertTrue("blue" in dependency_tracker.resources) self.assertTrue("green" in dependency_tracker.resources) self.assertItemsEqual(dependency_tracker.resources["green"], ["fake-green-uuid-1", "fake-green-uuid-0"]) self.assertEqual(dependency_tracker.resources["blue"], ["fake-blue-uuid"]) RedSM.delete("fake-red-uuid") GreenSM.delete("fake-green-uuid-0") GreenSM.delete("fake-green-uuid-1") BlueSM.delete("fake-blue-uuid") # end test_basic_dep_track def test_basic_dep_track_3(self): reaction_map = { "red": { 'self': ['green', 'blue'], }, "blue": { 'self': ['green'], 'red': [], }, "green": { 'self': ['white'], 'blue': ['white'], 'red': [], }, "white": { 'self': ['purple'], 'green': ['purple'], }, "purple": { 'self': ['blue'], 'white': ['blue'], }, } GreenSM._object_db.object_read = self.green_read_with_refs WhiteSM._object_db.object_read = self.white_read_with_refs BlueSM._object_db.object_read = self.purple_read_with_multi_refs BlueSM._object_db.object_read = self.blue_read_with_multi_refs dependency_tracker = DependencyTracker(DBBase._OBJ_TYPE_MAP, reaction_map) RedSM.locate("fake-red-uuid") blue = BlueSM.locate("fake-blue-uuid") GreenSM.locate("fake-green-uuid-0") GreenSM.locate("fake-green-uuid-1") WhiteSM.locate("fake-white-uuid") PurpleSM.locate("fake-purple-uuid") dependency_tracker.evaluate('blue', blue) self.assertEqual(len(dependency_tracker.resources), 4) self.assertTrue("blue" in dependency_tracker.resources) self.assertTrue("green" in dependency_tracker.resources) self.assertTrue("white" in dependency_tracker.resources) self.assertTrue("purple" in dependency_tracker.resources) self.assertItemsEqual(dependency_tracker.resources["green"], ["fake-green-uuid-1", "fake-green-uuid-0"]) self.assertEqual(dependency_tracker.resources["blue"], ["fake-blue-uuid"]) self.assertEqual(dependency_tracker.resources["purple"], ["fake-purple-uuid"]) self.assertEqual(dependency_tracker.resources["white"], ["fake-white-uuid"]) RedSM.delete("fake-red-uuid") GreenSM.delete("fake-green-uuid-0") GreenSM.delete("fake-green-uuid-1") BlueSM.delete("fake-blue-uuid") WhiteSM.delete("fake-white-uuid") PurpleSM.delete("fake-purple-uuid") # end test_basic_dep_track_3 def test_basic_dep_track_4(self): reaction_map = { "red": { 'self': ['green', 'blue'], }, "blue": { 'self': ['green'], 'red': [], }, "green": { 'self': ['white'], 'blue': ['white'], 'red': [], }, "white": { 'self': ['purple'], 'green': ['purple'], }, "purple": { 'self': ['blue'], 'white': ['blue'], }, } GreenSM._object_db.object_read = self.green_read_with_refs WhiteSM._object_db.object_read = self.white_read_with_refs BlueSM._object_db.object_read = self.purple_read_with_multi_refs BlueSM._object_db.object_read = self.blue_read_with_multi_refs dependency_tracker = DependencyTracker(DBBase._OBJ_TYPE_MAP, reaction_map) red = RedSM.locate("fake-red-uuid") BlueSM.locate("fake-blue-uuid") GreenSM.locate("fake-green-uuid-0") GreenSM.locate("fake-green-uuid-1") WhiteSM.locate("fake-white-uuid") PurpleSM.locate("fake-purple-uuid") dependency_tracker.evaluate('red', red) self.assertEqual(len(dependency_tracker.resources), 3) self.assertTrue("blue" in dependency_tracker.resources) self.assertTrue("green" in dependency_tracker.resources) self.assertTrue("red" in dependency_tracker.resources) self.assertItemsEqual(dependency_tracker.resources["green"], ["fake-green-uuid-1", "fake-green-uuid-0"]) self.assertEqual(dependency_tracker.resources["blue"], ["fake-blue-uuid"]) self.assertEqual(dependency_tracker.resources["red"], ["fake-red-uuid"]) RedSM.delete("fake-red-uuid") GreenSM.delete("fake-green-uuid-0") GreenSM.delete("fake-green-uuid-1") BlueSM.delete("fake-blue-uuid") WhiteSM.delete("fake-white-uuid") PurpleSM.delete("fake-purple-uuid") # end test_basic_dep_track_4 def test_basic_dep_track_5(self): reaction_map = { "red": { 'self': ['green', 'blue'], }, "blue": { 'self': ['green'], 'red': [], 'purple': ['green'], }, "green": { 'self': ['white'], 'blue': ['white'], 'red': [], }, "white": { 'self': ['purple'], 'green': ['purple'], }, "purple": { 'self': ['blue'], 'white': ['blue'], }, } GreenSM._object_db.object_read = self.green_read_with_refs WhiteSM._object_db.object_read = self.white_read_with_refs BlueSM._object_db.object_read = self.purple_read_with_multi_refs BlueSM._object_db.object_read = self.blue_read_with_multi_refs dependency_tracker = DependencyTracker(DBBase._OBJ_TYPE_MAP, reaction_map) RedSM.locate("fake-red-uuid") BlueSM.locate("fake-blue-uuid") green = GreenSM.locate("fake-green-uuid-0") GreenSM.locate("fake-green-uuid-1") WhiteSM.locate("fake-white-uuid") PurpleSM.locate("fake-purple-uuid") dependency_tracker.evaluate('green', green) self.assertEqual(len(dependency_tracker.resources), 4) self.assertTrue("blue" in dependency_tracker.resources) self.assertTrue("green" in dependency_tracker.resources) self.assertTrue("white" in dependency_tracker.resources) self.assertTrue("purple" in dependency_tracker.resources) self.assertItemsEqual(dependency_tracker.resources["green"], ["fake-green-uuid-1", "fake-green-uuid-0"]) self.assertEqual(dependency_tracker.resources["blue"], ["fake-blue-uuid"]) self.assertEqual(dependency_tracker.resources["white"], ["fake-white-uuid"]) self.assertEqual(dependency_tracker.resources["purple"], ["fake-purple-uuid"]) RedSM.delete("fake-red-uuid") GreenSM.delete("fake-green-uuid-0") GreenSM.delete("fake-green-uuid-1") BlueSM.delete("fake-blue-uuid") WhiteSM.delete("fake-white-uuid") PurpleSM.delete("fake-purple-uuid") # end test_basic_dep_track_5 def test_basic_dep_track_6(self): reaction_map = { "red": { 'self': ['green', 'blue'], }, "blue": { 'self': ['green'], 'red': [], 'purple': ['green'], }, "green": { 'self': ['white'], 'blue': ['white'], 'red': [], }, "white": { 'self': ['purple'], 'green': ['purple'], }, "purple": { 'self': ['blue'], 'white': ['blue'], }, } GreenSM._object_db.object_read = self.green_read_with_refs WhiteSM._object_db.object_read = self.white_read_with_refs BlueSM._object_db.object_read = self.purple_read_with_multi_refs BlueSM._object_db.object_read = self.blue_read_with_multi_refs dependency_tracker = DependencyTracker(DBBase._OBJ_TYPE_MAP, reaction_map) RedSM.locate("fake-red-uuid") BlueSM.locate("fake-blue-uuid") GreenSM.locate("fake-green-uuid-0") GreenSM.locate("fake-green-uuid-1") white = WhiteSM.locate("fake-white-uuid") PurpleSM.locate("fake-purple-uuid") dependency_tracker.evaluate('white', white) self.assertEqual(len(dependency_tracker.resources), 4) self.assertTrue("blue" in dependency_tracker.resources) self.assertTrue("green" in dependency_tracker.resources) self.assertTrue("white" in dependency_tracker.resources) self.assertTrue("purple" in dependency_tracker.resources) self.assertItemsEqual(dependency_tracker.resources["green"], ["fake-green-uuid-1", "fake-green-uuid-0"]) self.assertEqual(dependency_tracker.resources["blue"], ["fake-blue-uuid"]) self.assertEqual(dependency_tracker.resources["white"], ["fake-white-uuid"]) self.assertEqual(dependency_tracker.resources["purple"], ["fake-purple-uuid"]) RedSM.delete("fake-red-uuid") GreenSM.delete("fake-green-uuid-0") GreenSM.delete("fake-green-uuid-1") BlueSM.delete("fake-blue-uuid") WhiteSM.delete("fake-white-uuid") PurpleSM.delete("fake-purple-uuid") # end test_basic_dep_track_6 def test_basic_dep_track_7(self): reaction_map = { "red": { 'self': ['green', 'blue'], }, "blue": { 'self': ['green'], 'red': [], 'purple': ['green'], }, "green": { 'self': ['white'], 'blue': ['white'], 'red': [], }, "white": { 'self': ['purple'], 'green': ['purple'], }, "purple": { 'self': ['blue'], 'white': ['blue'], }, } GreenSM._object_db.object_read = self.green_read_with_refs WhiteSM._object_db.object_read = self.white_read_with_refs BlueSM._object_db.object_read = self.purple_read_with_multi_refs BlueSM._object_db.object_read = self.blue_read_with_multi_refs dependency_tracker = DependencyTracker(DBBase._OBJ_TYPE_MAP, reaction_map) RedSM.locate("fake-red-uuid") BlueSM.locate("fake-blue-uuid") GreenSM.locate("fake-green-uuid-0") GreenSM.locate("fake-green-uuid-1") WhiteSM.locate("fake-white-uuid") purple = PurpleSM.locate("fake-purple-uuid") dependency_tracker.evaluate('purple', purple) self.assertEqual(len(dependency_tracker.resources), 4) self.assertTrue("blue" in dependency_tracker.resources) self.assertTrue("green" in dependency_tracker.resources) self.assertTrue("white" in dependency_tracker.resources) self.assertTrue("purple" in dependency_tracker.resources) self.assertItemsEqual(dependency_tracker.resources["green"], ["fake-green-uuid-1", "fake-green-uuid-0"]) self.assertEqual(dependency_tracker.resources["blue"], ["fake-blue-uuid"]) self.assertEqual(dependency_tracker.resources["white"], ["fake-white-uuid"]) self.assertEqual(dependency_tracker.resources["purple"], ["fake-purple-uuid"]) RedSM.delete("fake-red-uuid") GreenSM.delete("fake-green-uuid-0") GreenSM.delete("fake-green-uuid-1") BlueSM.delete("fake-blue-uuid") WhiteSM.delete("fake-white-uuid") PurpleSM.delete("fake-purple-uuid") # end test_basic_dep_track_7 def test_basic_dep_track_8(self): reaction_map = { "red": { 'self': ['green', 'blue'], }, "blue": { 'self': ['green'], 'red': ['blue'], 'purple': ['green'], 'green': [], }, "green": { 'self': ['white'], 'blue': ['white'], 'red': ['blue'], }, "white": { 'self': ['purple'], 'green': ['purple'], }, "purple": { 'self': ['blue'], 'white': ['blue'], }, } GreenSM._object_db.object_read = self.green_read_with_refs WhiteSM._object_db.object_read = self.white_read_with_refs BlueSM._object_db.object_read = self.purple_read_with_multi_refs BlueSM._object_db.object_read = self.blue_read_with_multi_refs dependency_tracker = DependencyTracker(DBBase._OBJ_TYPE_MAP, reaction_map) red = RedSM.locate("fake-red-uuid") BlueSM.locate("fake-blue-uuid") GreenSM.locate("fake-green-uuid-0") GreenSM.locate("fake-green-uuid-1") WhiteSM.locate("fake-white-uuid") PurpleSM.locate("fake-purple-uuid") dependency_tracker.evaluate('red', red) self.assertEqual(len(dependency_tracker.resources), 3) self.assertTrue("blue" in dependency_tracker.resources) self.assertTrue("green" in dependency_tracker.resources) self.assertTrue("red" in dependency_tracker.resources) self.assertItemsEqual(dependency_tracker.resources["green"], ["fake-green-uuid-1", "fake-green-uuid-0"]) self.assertEqual(dependency_tracker.resources["blue"], ["fake-blue-uuid"]) self.assertEqual(dependency_tracker.resources["red"], ["fake-red-uuid"]) RedSM.delete("fake-red-uuid") GreenSM.delete("fake-green-uuid-0") GreenSM.delete("fake-green-uuid-1") BlueSM.delete("fake-blue-uuid") WhiteSM.delete("fake-white-uuid") PurpleSM.delete("fake-purple-uuid") # end test_basic_dep_track_8 def test_basic_dep_track_update_1(self): reaction_map = { "red": { 'self': ['green', 'blue'], }, "blue": { 'self': ['green'], 'red': ['blue'], 'purple': ['green'], 'green': [], }, "green": { 'self': ['white'], 'blue': ['white'], 'red': ['blue'], }, "white": { 'self': ['purple'], 'green': ['purple'], }, "purple": { 'self': ['blue'], 'white': ['blue'], }, } GreenSM._object_db.object_read = self.green_read_with_refs WhiteSM._object_db.object_read = self.white_read_with_refs BlueSM._object_db.object_read = self.purple_read_with_multi_refs BlueSM._object_db.object_read = self.blue_read_with_multi_refs dependency_tracker = DependencyTracker(DBBase._OBJ_TYPE_MAP, reaction_map) red = RedSM.locate("fake-red-uuid") blue = BlueSM.locate("fake-blue-uuid") GreenSM.locate("fake-green-uuid-0") GreenSM.locate("fake-green-uuid-1") WhiteSM.locate("fake-white-uuid") PurpleSM.locate("fake-purple-uuid") dependency_tracker.evaluate('red', red) GreenSM.delete("fake-green-uuid-0") GreenSM.delete("fake-green-uuid-1") GreenSM.locate("fake-green-uuid-2") GreenSM.locate("fake-green-uuid-3") BlueSM._object_db.object_read = self.blue_read_with_new_refs blue.update() dependency_tracker.resources = {} dependency_tracker.evaluate('red', red) self.assertEqual(len(dependency_tracker.resources), 3) self.assertTrue("blue" in dependency_tracker.resources) self.assertTrue("green" in dependency_tracker.resources) self.assertTrue("red" in dependency_tracker.resources) self.assertItemsEqual(dependency_tracker.resources["green"], ["fake-green-uuid-2", "fake-green-uuid-3"]) self.assertEqual(dependency_tracker.resources["blue"], ["fake-blue-uuid"]) self.assertEqual(dependency_tracker.resources["red"], ["fake-red-uuid"]) RedSM.delete("fake-red-uuid") GreenSM.delete("fake-green-uuid-2") GreenSM.delete("fake-green-uuid-3") BlueSM.delete("fake-blue-uuid") WhiteSM.delete("fake-white-uuid") PurpleSM.delete("fake-purple-uuid") # end test_basic_dep_track_update_1 def test_basic_dep_track_update_2(self): reaction_map = { "red": { 'self': ['green', 'blue'], }, "blue": { 'self': ['green'], 'red': ['blue'], 'purple': ['green'], 'green': [], }, "green": { 'self': ['white'], 'blue': ['white'], 'red': ['blue'], }, "white": { 'self': ['purple'], 'green': ['purple'], }, "purple": { 'self': ['blue'], 'white': ['blue'], }, } GreenSM._object_db.object_read = self.green_read_with_refs WhiteSM._object_db.object_read = self.white_read_with_refs BlueSM._object_db.object_read = self.purple_read_with_multi_refs BlueSM._object_db.object_read = self.blue_read_with_multi_refs dependency_tracker = DependencyTracker(DBBase._OBJ_TYPE_MAP, reaction_map) RedSM.locate("fake-red-uuid") blue = BlueSM.locate("fake-blue-uuid") GreenSM.locate("fake-green-uuid-0") GreenSM.locate("fake-green-uuid-1") WhiteSM.locate("fake-white-uuid") PurpleSM.locate("fake-purple-uuid") dependency_tracker.evaluate('blue', blue) GreenSM.delete("fake-green-uuid-0") GreenSM.delete("fake-green-uuid-1") GreenSM.locate("fake-green-uuid-2") GreenSM.locate("fake-green-uuid-3") BlueSM._object_db.object_read = self.blue_read_with_new_refs blue.update() dependency_tracker.resources = {} dependency_tracker.evaluate('blue', blue) self.assertEqual(len(dependency_tracker.resources), 2) self.assertTrue("blue" in dependency_tracker.resources) self.assertTrue("green" in dependency_tracker.resources) self.assertItemsEqual(dependency_tracker.resources["green"], ["fake-green-uuid-2", "fake-green-uuid-3"]) self.assertEqual(dependency_tracker.resources["blue"], ["fake-blue-uuid"]) RedSM.delete("fake-red-uuid") GreenSM.delete("fake-green-uuid-2") GreenSM.delete("fake-green-uuid-3") BlueSM.delete("fake-blue-uuid") WhiteSM.delete("fake-white-uuid") PurpleSM.delete("fake-purple-uuid") # end test_basic_dep_track_update_2 def test_basic_dep_track_update_3(self): reaction_map = { "red": { 'self': ['green', 'blue'], }, "blue": { 'self': ['green'], 'red': [], 'purple': ['green'], }, "green": { 'self': ['white'], 'blue': ['white'], 'red': [], }, "white": { 'self': ['purple'], 'green': ['purple'], }, "purple": { 'self': ['blue'], 'white': ['blue'], }, } GreenSM._object_db.object_read = self.green_read_with_refs WhiteSM._object_db.object_read = self.white_read_with_refs BlueSM._object_db.object_read = self.purple_read_with_multi_refs BlueSM._object_db.object_read = self.blue_read_with_multi_refs dependency_tracker = DependencyTracker(DBBase._OBJ_TYPE_MAP, reaction_map) RedSM.locate("fake-red-uuid") blue = BlueSM.locate("fake-blue-uuid") GreenSM.locate("fake-green-uuid-0") GreenSM.locate("fake-green-uuid-1") WhiteSM.locate("fake-white-uuid") PurpleSM.locate("fake-purple-uuid") dependency_tracker.evaluate('blue', blue) self.assertEqual(len(dependency_tracker.resources), 4) self.assertTrue("blue" in dependency_tracker.resources) self.assertTrue("green" in dependency_tracker.resources) self.assertTrue("white" in dependency_tracker.resources) self.assertTrue("purple" in dependency_tracker.resources) self.assertItemsEqual(dependency_tracker.resources["green"], ["fake-green-uuid-1", "fake-green-uuid-0"]) self.assertEqual(dependency_tracker.resources["blue"], ["fake-blue-uuid"]) self.assertEqual(dependency_tracker.resources["white"], ["fake-white-uuid"]) self.assertEqual(dependency_tracker.resources["purple"], ["fake-purple-uuid"]) # update GreenSM.delete("fake-green-uuid-0") GreenSM.delete("fake-green-uuid-1") GreenSM.locate("fake-green-uuid-2") GreenSM.locate("fake-green-uuid-3") BlueSM._object_db.object_read = self.blue_read_with_new_refs blue.update() dependency_tracker.resources = {} dependency_tracker.evaluate('blue', blue) self.assertEqual(len(dependency_tracker.resources), 2) self.assertTrue("blue" in dependency_tracker.resources) self.assertTrue("green" in dependency_tracker.resources) self.assertItemsEqual(dependency_tracker.resources["green"], ["fake-green-uuid-3", "fake-green-uuid-2"]) self.assertEqual(dependency_tracker.resources["blue"], ["fake-blue-uuid"]) RedSM.delete("fake-red-uuid") GreenSM.delete("fake-green-uuid-2") GreenSM.delete("fake-green-uuid-3") BlueSM.delete("fake-blue-uuid") WhiteSM.delete("fake-white-uuid") PurpleSM.delete("fake-purple-uuid") # end test_basic_dep_track_update_3 # end DepTrackTester(unittest.TestCase): ``` #### File: tests/unit/test_utils.py ```python from __future__ import unicode_literals import unittest from cfgm_common.utils import CacheContainer from cfgm_common.utils import decode_string from cfgm_common.utils import encode_string class TestCacheContainer(unittest.TestCase): def test_cache_container_trimming(self): c = CacheContainer(5) lst = ['a', 'b', 'c', 'd', 'e', 'f', 'h', 'i', 'j', 'k', 'm'] for index, value in enumerate(lst): c[value] = index + 1 self.assertEqual(len(list(c.dictionary.keys())), 5) self.assertEqual(set(lst[-5:]), set(c.dictionary.keys())) def test_cache_container_fetch(self): c = CacheContainer(5) lst = ['a', 'b', 'c', 'd', 'e'] for index, value in enumerate(lst): c[value] = index + 1 self.assertEqual(set(lst), set(c.dictionary.keys())) # get the oldest value and check on the next set its not lost c['a'] c['f'] = 6 self.assertEqual(set(['c', 'd', 'e', 'f', 'a']), set(c.dictionary.keys())) # put a value for the oldest key and check its not lost c['c'] = 'x' self.assertEqual(c['c'], 'x') self.assertEqual(set(['d', 'e', 'f', 'a', 'c']), set(c.dictionary.keys())) c['g'] = 7 self.assertEqual(set(['e', 'f', 'a', 'c', 'g']), set(c.dictionary.keys())) class TestFqNameEncode(unittest.TestCase): def test_fq_name_encoding(self): test_suite = [ ('only-ascii', 'only-ascii'), ('only ascii with space', 'only ascii with space'), ('only/ascii/with/forward/slash', 'only/ascii/with/forward/slash'), ('only!ascii!with!exclamatory', 'only!ascii!with!exclamatory'), ('only~ascii~tilde', 'only~ascii~tilde'), ('foo=bar', 'foo=bar'), # (, ), # ('non-ascii-é', 'non-ascii-%C3%A9'), # ('non ascii with space é', 'non+ascii+with+space+%C3%A9'), # ('non-ascii-encoded-\xe9', 'non-ascii-encoded-%C3%A9'), # (b'binary', TypeError), ] for string, expected_result in test_suite: if (isinstance(expected_result, type) and issubclass(expected_result, Exception)): self.assertRaises(expected_result, encode_string, string) else: self.assertEqual(expected_result, encode_string(string)) self.assertEqual(decode_string(expected_result), string) ``` #### File: common/cfgm_common/vnc_greenlets.py ```python from __future__ import unicode_literals # # Copyright (c) 2016 Juniper Networks, Inc. All rights reserved. # import os import socket from pysandesh.sandesh_base import * from pysandesh.sandesh_logger import * from pysandesh.gen_py.sandesh.ttypes import SandeshLevel from cfgm_common.uve.greenlets import ttypes as sandesh import gc import gevent import traceback from greenlet import greenlet from gevent import Greenlet class VncGreenlet(Greenlet): def __init__(self, module_name, handler): Greenlet.__init__(self, self.super_greenlet_handler, handler, module_name) self.start() # end __init_ @staticmethod def register_sandesh_handler(): sandesh.GreenletObjectReq.handle_request = \ VncGreenlet.sandesh_greenlet_object_handle_request def super_greenlet_handler(self, greenlet_handler, module_name): # Create a flag/variable local to the greenlet so that # it can be identified as a "well known" greenlet. gevent.getcurrent().greenlet_name = module_name if callable(greenlet_handler): greenlet_handler() @staticmethod def build_greenlet_sandesh(name, traces): sandesh_greenlet = sandesh.GreenletObject() sandesh_greenlet.greenlet_name = name sandesh_greenlet.greenlet_traces = traces return sandesh_greenlet @classmethod def sandesh_greenlet_object_handle_request(cls, req): greenlet_resp = sandesh.GreenletObjectListResp(greenlets=[]) anonymous_cnt = 0 for obj in gc.get_objects(): if obj is None: continue if not isinstance(obj, greenlet): continue # If the GC object is an instance of greenlet, # but does not have the flag/variable 'greenlet_name' # then try to find the run function. if not hasattr(obj, 'greenlet_name'): try: name = obj._run.__name__ except AttributeError: name = 'Anonymous' else: name = obj.greenlet_name if (req.greenlet_name is None or req.greenlet_name == name): sandesh_greenlet = VncGreenlet.build_greenlet_sandesh( name, ''.join(traceback.format_stack(obj.gr_frame))) greenlet_resp.greenlets.append(sandesh_greenlet) greenlet_resp.response(req.context()) # end sandesh_greenlet_object_handle_request # end class VncGreenlet ``` #### File: device-manager/device_manager/device_job_manager.py ```python import ast from builtins import map from builtins import object from builtins import str import json import os import signal import socket import subprocess import time import traceback from cfgm_common import vnc_greenlets from cfgm_common.exceptions import NoIdError from cfgm_common.exceptions import ResourceExistsError from cfgm_common.uve.vnc_api.ttypes import FabricJobExecution, FabricJobUve, \ PhysicalRouterJobExecution, PhysicalRouterJobUve from cfgm_common.zkclient import ZookeeperClient import gevent from job_manager.job_exception import JobException from job_manager.job_log_utils import JobLogUtils from job_manager.job_utils import JobStatus, JobVncApi class DeviceJobManager(object): JOB_REQUEST_EXCHANGE = "job_request_exchange" JOB_REQUEST_CONSUMER = "job_request_consumer" JOB_REQUEST_ROUTING_KEY = "job.request" JOB_ABORT_CONSUMER = "job_abort_consumer" JOB_ABORT_ROUTING_KEY = "job.abort" JOB_STATUS_EXCHANGE = "job_status_exchange" JOB_STATUS_CONSUMER = "job_status_consumer." JOB_STATUS_ROUTING_KEY = "job.status." JOB_STATUS_TTL = 5 * 60 FABRIC_ZK_LOCK = "fabric-job-monitor" _instance = None def __init__(self, amqp_client, db_conn, args, dm_logger): """Initialize ZooKeeper, RabbitMQ, Sandesh, DB conn etc.""" DeviceJobManager._instance = self self._amqp_client = amqp_client # create zk client for devicejobmanager with call_back self.client_reconnect_gl = None self._zookeeper_client = ZookeeperClient("device-job-manager", args.zk_server_ip, args.host_ip) self._zookeeper_client.set_lost_cb(self.client_reconnect) self._db_conn = db_conn self._args = args self._job_mgr_statistics = { 'max_job_count': self._args.max_job_count, 'running_job_count': 0 } # dict of exec_id:job_status (key/value pairs) self.job_status = {} # map of running job instances. Key is the pid and value is job # instance info self._job_mgr_running_instances = {} job_args = { 'collectors': self._args.collectors, 'fabric_ansible_conf_file': self._args.fabric_ansible_conf_file, 'host_ip': self._args.host_ip, 'zk_server_ip': self._args.zk_server_ip, 'cluster_id': self._args.cluster_id } self._job_args = json.dumps(job_args) # initialize the job logger self._job_log_utils = JobLogUtils( sandesh_instance_id="DeviceJobManager" + str(time.time()), config_args=self._job_args, sandesh_instance=dm_logger._sandesh) self._logger = self._job_log_utils.config_logger self._sandesh = self._logger._sandesh self._amqp_client.add_exchange(self.JOB_STATUS_EXCHANGE, type='direct') # add dummy consumer to initialize the exchange self._amqp_client.add_consumer( self.JOB_STATUS_CONSUMER + "dummy", self.JOB_STATUS_EXCHANGE, routing_key=self.JOB_STATUS_ROUTING_KEY + "dummy", auto_delete=True) self._amqp_client.add_exchange(self.JOB_REQUEST_EXCHANGE, type='direct') self._amqp_client.add_consumer( self.JOB_REQUEST_CONSUMER, self.JOB_REQUEST_EXCHANGE, routing_key=self.JOB_REQUEST_ROUTING_KEY, callback=self.handle_execute_job_request) abort_q_name = '.'.join([self.JOB_ABORT_CONSUMER, socket.getfqdn(self._args.host_ip)]) self._amqp_client.add_consumer( abort_q_name, self.JOB_REQUEST_EXCHANGE, routing_key=self.JOB_ABORT_ROUTING_KEY, callback=self.handle_abort_job_request) # end __init__ @classmethod def get_instance(cls): return cls._instance # end get_instance @classmethod def destroy_instance(cls): inst = cls.get_instance() if not inst: return cls._instance = None # end destroy_instance def client_reconnect(self): if self.client_reconnect_gl is None: self.client_reconnect_gl =\ vnc_greenlets.VncGreenlet("djm reconnect", self.zk_reconnect) # end client_reconnect def zk_reconnect(self): self._zookeeper_client.connect() self.client_reconnect_gl = None def db_read(self, obj_type, obj_id, obj_fields=None, ret_readonly=False): try: (ok, cassandra_result) = self._db_conn.object_read( obj_type, [obj_id], obj_fields, ret_readonly=ret_readonly) except NoIdError as e: # if NoIdError is for obj itself (as opposed to say for parent # or ref), let caller decide if this can be handled gracefully # by re-raising if e._unknown_id == obj_id: raise return (False, str(e)) return (ok, cassandra_result[0]) # end db_read def is_max_job_threshold_reached(self): if self._job_mgr_statistics.get('running_job_count') < \ self._job_mgr_statistics.get('max_job_count'): return False return True # end is_max_job_threshold_reached def publish_job_status_notification(self, job_execution_id, status): try: msg = {'job_execution_id': job_execution_id, 'job_status': status} self._amqp_client.publish( msg, self.JOB_STATUS_EXCHANGE, routing_key=self.JOB_STATUS_ROUTING_KEY + job_execution_id, serializer='json', retry=True, retry_policy={'max_retries': 5, 'interval_start': 2, 'interval_step': 3, 'interval_max': 15}, expiration=self.JOB_STATUS_TTL) except Exception: self._logger.error("Failed to send job status change notification" " %s %s" % (job_execution_id, status)) # end publish_job_status_notification def get_job_template_id(self, job_template_fq_name): try: return self._db_conn.fq_name_to_uuid("job_template", job_template_fq_name) except Exception as e: msg = "Error while reading job_template_id: " + str(e) self._logger.error(msg) raise # end get_job_template_id def handle_execute_job_request(self, body, message): job_input_params = body job_execution_id = job_input_params.get('job_execution_id') # check if the max job processing threshold is reached if not self.is_max_job_threshold_reached(): message.ack() self._logger.info("SENT JOB REQUEST: {}".format( job_execution_id)) else: # requeue the message if the max threshold is reached, to be picked # by another job manager or wait until the current job mgr is free message.reject(requeue=True) self._logger.info("REQUEUE JOB REQUEST: {}".format( job_execution_id)) gevent.sleep(1) return acfg = job_input_params.get('input', {}).get('device_abstract_config') if acfg: job_input_params['input']['device_abstract_config'] = \ json.loads(acfg) update_uve_on_failure = False device_list = None extra_params = job_input_params.get('params') if extra_params is not None: device_list = extra_params.get('device_list') is_delete = job_input_params.get('input').get('is_delete') job_template_fq_name = job_input_params.get('job_template_fq_name') job_template_id = job_input_params.get('job_template_id') fabric_fq_name = None fabric_job_uve_name = '' job_input_params['vnc_api_init_params'] = { "admin_user": self._args.admin_user, "admin_password": self._args.admin_password, "admin_tenant_name": self._args.admin_tenant_name, "api_server_port": self._args.api_server_port, "api_server_use_ssl": self._args.api_server_use_ssl } try: # populate job template id if not present in input_param if job_template_id is None: job_template_id = self.get_job_template_id( job_template_fq_name) job_input_params["job_template_id"] = job_template_id # read the device object and pass the necessary data to the job if device_list: self.read_device_data(device_list, job_input_params, job_execution_id, is_delete) else: self.read_fabric_data(job_input_params, job_execution_id, is_delete) # read the job concurrency level from job template job_concurrency = self.get_job_concurrency(job_template_id, job_execution_id) job_input_params['job_concurrency'] = job_concurrency fabric_fq_name = job_input_params.get('fabric_fq_name') fabric_job_uve_name_list = job_template_fq_name fabric_job_uve_name_list.insert(0, fabric_fq_name) fabric_job_uve_name = ':'.join(map(str, fabric_job_uve_name_list)) device_fqnames = [] # create the UVE if fabric_fq_name != "__DEFAULT__" and not device_list: self.create_fabric_job_uve(fabric_job_uve_name, job_input_params.get( 'job_execution_id'), JobStatus.STARTING.value, 0.0) if device_list: device_fqnames = self.create_physical_router_job_uve( device_list, job_input_params, fabric_job_uve_name, JobStatus.STARTING.value, 0.0) # after creating the UVE, flag indicates to update the # UVE upon any failures update_uve_on_failure = True # check if there is any other job running for the fabric if job_concurrency is not None and job_concurrency == "fabric": existing_job = self._is_existing_job_for_fabric( fabric_fq_name, job_execution_id) if existing_job: msg = "Another job for the same fabric is in" \ " progress. Please wait for the job to finish" self.mark_failure( msg, job_template_fq_name, job_execution_id, fabric_fq_name, mark_uve=True, device_list=device_list, fabric_job_uve_name=fabric_job_uve_name, job_params=job_input_params) return start_time = time.time() signal_var = { 'fabric_name': fabric_job_uve_name, 'fabric_fq_name': fabric_fq_name, 'start_time': start_time, 'exec_id': job_execution_id, 'device_fqnames': device_fqnames, 'job_concurrency': job_concurrency } self.job_status.update( {job_execution_id: JobStatus.STARTING.value}) self.publish_job_status_notification(job_execution_id, JobStatus.STARTING.value) # handle process exit signal signal.signal(signal.SIGCHLD, self.job_mgr_signal_handler) # write the abstract config to file if needed self.save_abstract_config(job_input_params) # add params needed for sandesh connection job_input_params['args'] = self._job_args # create job manager subprocess job_mgr_path = os.path.dirname( __file__) + "/../job_manager/job_mgr.py" job_process = subprocess.Popen(["python", job_mgr_path, "-i", json.dumps(job_input_params)], cwd="/", close_fds=True) self._job_mgr_running_instances[str(job_process.pid)] = signal_var self._job_mgr_statistics['running_job_count'] = len( self._job_mgr_running_instances) self._logger.notice("Created job manager process. Execution id: " "%s" % job_execution_id) self._logger.info( "Current number of job_mgr processes running %s" % self._job_mgr_statistics.get('running_job_count')) except Exception as e: msg = "Exception while processing the job request %s %s %s : " \ "%s %s" % (job_template_fq_name, job_execution_id, fabric_fq_name, repr(e), traceback.format_exc()) self.mark_failure(msg, job_template_fq_name, job_execution_id, fabric_fq_name, mark_uve=update_uve_on_failure, device_list=device_list, fabric_job_uve_name=fabric_job_uve_name, job_params=job_input_params) # end handle_execute_job_request def _abort_job(self, pid, job_instance, abort_mode): self._logger.info("ABORT: pid={}, job_instance={}, mode={}". format(pid, job_instance, abort_mode)) # Force abort or graceful abort os.kill(int(pid), signal.SIGABRT if abort_mode == "force" else signal.SIGUSR1) def handle_abort_job_request(self, body, message): message.ack() inp = body.get('input') job_execution_ids = inp.get('job_execution_ids') abort_mode = inp.get('abort_mode') self._logger.info("Abort job request: job_ids={}, mode={}". format(job_execution_ids, abort_mode)) # Search through running job instances to find this job for pid, job_instance in list(self._job_mgr_running_instances.items()): # Abort one job if job_execution_ids: if job_instance.get('exec_id') in job_execution_ids: self._abort_job(pid, job_instance, abort_mode) # Abort next job else: self._abort_job(pid, job_instance, abort_mode) # end handle_abort_job_request def create_fabric_job_uve(self, fabric_job_uve_name, execution_id, job_status, percentage_completed): job_execution_data = FabricJobExecution( name=fabric_job_uve_name, execution_id=execution_id, job_start_ts=int(round(time.time() * 1000)), job_status=job_status, percentage_completed=percentage_completed ) job_execution_uve = FabricJobUve(data=job_execution_data, sandesh=self._sandesh) job_execution_uve.send(sandesh=self._sandesh) # end create_fabric_job_uve def create_physical_router_job_uve(self, device_list, job_input_params, fabric_job_uve_name, job_status, percentage_completed): device_fqnames = [] for device_id in device_list: device_fqname = job_input_params.get( 'device_json').get(device_id).get('device_fqname') device_fqname = ':'.join(map(str, device_fqname)) prouter_uve_name = device_fqname + ":" + \ fabric_job_uve_name prouter_job_data = PhysicalRouterJobExecution( name=prouter_uve_name, execution_id=job_input_params.get('job_execution_id'), job_start_ts=int(round(time.time() * 1000)), job_status=job_status, percentage_completed=percentage_completed ) prouter_job_uve = PhysicalRouterJobUve( data=prouter_job_data, sandesh=self._sandesh) prouter_job_uve.send(sandesh=self._sandesh) device_fqnames.append(prouter_uve_name) return device_fqnames # end create_physical_router_job_uve def mark_failure(self, msg, job_template_fq_name, job_execution_id, fabric_fq_name, mark_uve=True, device_list=None, fabric_job_uve_name=None, job_params=None): self._logger.error("Marked job as failed %s %s %s " % (job_template_fq_name, job_execution_id, msg)) # send job object log for failure self._job_log_utils.send_job_log(job_template_fq_name, job_execution_id, fabric_fq_name, msg, JobStatus.FAILURE.value) # update the in memory job status for the job self.job_status[job_execution_id] = JobStatus.FAILURE.value self.publish_job_status_notification(job_execution_id, JobStatus.FAILURE.value) # update the UVE if mark_uve: if fabric_fq_name != "__DEFAULT__" and not device_list: self.create_fabric_job_uve(fabric_job_uve_name, job_execution_id, JobStatus.FAILURE.value, 100.0) if device_list: self.create_physical_router_job_uve(device_list, job_params, fabric_job_uve_name, JobStatus.FAILURE.value, 100.0) # end mark_failure def _load_job_log(self, marker, input_str): json_str = input_str.split(marker)[1] try: return json.loads(json_str) except ValueError: return ast.literal_eval(json_str) # end _load_job_log def _extracted_file_output(self, execution_id): status = "FAILURE" prouter_info = {} device_op_results = {} failed_devices_list = [] try: with open("/tmp/" + execution_id, "r") as f_read: for line in f_read: if 'PROUTER_LOG##' in line: job_log = self._load_job_log('PROUTER_LOG##', line) fqname = ":".join(job_log.get('prouter_fqname')) prouter_info[fqname] = job_log.get('onboarding_state') if line.startswith('job_summary'): job_log = self._load_job_log('JOB_LOG##', line) status = job_log.get('job_status') failed_devices_list = job_log.get( 'failed_devices_list') if 'GENERIC_DEVICE##' in line: job_log = self._load_job_log( 'GENERIC_DEVICE##', line) device_name = job_log.get('device_name') device_op_results[device_name] = job_log.get( 'command_output') except Exception as e: msg = "File corresponding to execution id %s not found: %s\n%s" % ( execution_id, str(e), traceback.format_exc()) self._logger.error(msg) return status, prouter_info, device_op_results, failed_devices_list # end _extracted_file_output def job_mgr_signal_handler(self, signalnum, frame): pid = None signal_var = None try: # get the child process id that called the signal handler pid = os.waitpid(-1, os.WNOHANG) signal_var = self._job_mgr_running_instances.get(str(pid[0])) if not signal_var: self._logger.error( "Job mgr process %s not found in the instance " "map" % str(pid)) return msg = "Entered job_mgr_signal_handler for: %s" % signal_var self._logger.notice(msg) exec_id = signal_var.get('exec_id') status, prouter_info, device_op_results, failed_devices_list = \ self._extracted_file_output(exec_id) self.job_status[exec_id] = status self.publish_job_status_notification(exec_id, status) if signal_var.get('fabric_name') != "__DEFAULT__"\ and not signal_var.get('device_fqnames'): job_execution_data = FabricJobExecution( name=signal_var.get('fabric_name'), job_status=status, percentage_completed=100) job_execution_uve = FabricJobUve(data=job_execution_data, sandesh=self._sandesh) job_execution_uve.send(sandesh=self._sandesh) else: for prouter_uve_name in signal_var.get('device_fqnames'): prouter_status = status device_name = prouter_uve_name.split(":")[1] if device_name in failed_devices_list: prouter_status = "FAILURE" prouter_job_data = PhysicalRouterJobExecution( name=prouter_uve_name, job_status=prouter_status, percentage_completed=100, device_op_results=json.dumps( device_op_results.get(device_name, {})) ) prouter_job_uve = PhysicalRouterJobUve( data=prouter_job_data, sandesh=self._sandesh) prouter_job_uve.send(sandesh=self._sandesh) for k, v in list(prouter_info.items()): prouter_uve_name = "%s:%s" % (k, signal_var.get('fabric_name')) prouter_job_data = PhysicalRouterJobExecution( name=prouter_uve_name, execution_id=exec_id, job_start_ts=int(round(signal_var.get('start_time' ) * 1000)), prouter_state=v ) prouter_job_uve = PhysicalRouterJobUve( data=prouter_job_data, sandesh=self._sandesh) prouter_job_uve.send(sandesh=self._sandesh) self._clean_up_job_data(signal_var, str(pid[0])) self._logger.info("Job : %s finished. Current number of job_mgr " "processes running now %s " % (signal_var, self._job_mgr_statistics[ 'running_job_count'])) except OSError as process_error: self._logger.error("Could not retrieve the child process id. " "OS call returned with error %s" % str(process_error)) except Exception as unknown_exception: self._clean_up_job_data(signal_var, str(pid[0])) self._logger.error("Failed in job signal handler %s" % str(unknown_exception)) # end job_mgr_signal_handler def _clean_up_job_data(self, signal_var, pid): # remove the pid entry of the processed job_mgr process del self._job_mgr_running_instances[pid] # clean up fabric level lock if signal_var.get('job_concurrency') \ is not None and signal_var.get('job_concurrency') == "fabric": self._release_fabric_job_lock(signal_var.get('fabric_fq_name')) self._cleanup_job_lock(signal_var.get('fabric_fq_name')) self._job_mgr_statistics['running_job_count'] = len( self._job_mgr_running_instances) # end _clean_up_job_data def _is_existing_job_for_fabric(self, fabric_fq_name, job_execution_id): is_fabric_job_running = False # build the zk lock path fabric_node_path = '/job-manager/' + fabric_fq_name + '/' + \ self.FABRIC_ZK_LOCK # check if the lock is already taken if not taken, acquire the lock # by creating a node try: self._zookeeper_client.create_node(fabric_node_path, value=job_execution_id, ephemeral=True) self._logger.info("Acquired fabric lock" " for %s " % fabric_node_path) except ResourceExistsError: # means the lock was acquired by some other job value = self._zookeeper_client.read_node(fabric_node_path) self._logger.error("Fabric lock is already acquired by" " job %s " % value) is_fabric_job_running = True return is_fabric_job_running # end _is_existing_job_for_fabric def _release_fabric_job_lock(self, fabric_fq_name): # build the zk lock path fabric_node_path = '/job-manager/' + fabric_fq_name + '/' + \ self.FABRIC_ZK_LOCK try: self._zookeeper_client.delete_node(fabric_node_path) self._logger.info("Released fabric lock" " for %s " % fabric_node_path) except Exception as zk_error: self._logger.error("Exception while releasing the zookeeper lock" " %s " % repr(zk_error)) # end _release_fabric_job_lock def _cleanup_job_lock(self, fabric_fq_name): fabric_node_path = '/job-manager/' + fabric_fq_name try: if not self._zookeeper_client.get_children(fabric_node_path): self._zookeeper_client.delete_node(fabric_node_path) self._logger.info("Released fabric node" " for %s " % fabric_node_path) except Exception as zk_error: self._logger.error("Exception while releasing the fabric node for " "%s: %s " % (fabric_node_path, str(zk_error))) # end _cleanup_job_lock def save_abstract_config(self, job_params): # Saving device abstract config to a local file as it could be large # config. There will be one local file per device and this file gets # removed when device is removed from database. dev_abs_cfg = job_params.get('input', {}).get('device_abstract_config') if dev_abs_cfg: dev_mgt_ip = dev_abs_cfg.get('system', {}).get('management_ip') if not dev_mgt_ip: raise ValueError('Missing management IP in abstract config') dev_cfg_dir = '/opt/contrail/fabric_ansible_playbooks/config/' +\ dev_mgt_ip if not os.path.exists(dev_cfg_dir): os.makedirs(dev_cfg_dir) if dev_cfg_dir: with open(dev_cfg_dir + '/abstract_cfg.json', 'w') as f: f.write(json.dumps(dev_abs_cfg, indent=4)) job_params.get('input').pop('device_abstract_config') # end save_abstract_config def get_job_concurrency(self, job_template_id, job_exec_id): (ok, result) = self.db_read("job-template", job_template_id, ['job_template_concurrency_level']) if not ok: msg = "Error while reading the job concurrency " \ "from the job template with id %s : %s" %\ (job_template_id, result) raise JobException(msg, job_exec_id) return result.get('job_template_concurrency_level') # end get_job_concurrency def read_device_data(self, device_list, request_params, job_exec_id, is_delete=False): device_data = dict() for device_id in device_list: if not is_delete: try: (ok, result) = self.db_read( "physical-router", device_id, ['physical_router_user_credentials', 'physical_router_management_ip', 'fq_name', 'physical_router_device_family', 'physical_router_vendor_name', 'physical_router_product_name', 'fabric_refs']) if not ok: msg = "Error while reading the physical router " \ "with id %s : %s" % (device_id, result) raise JobException(msg, job_exec_id) except NoIdError as ex: msg = "Device not found" \ "%s: %s" % (device_id, str(ex)) raise JobException(msg, job_exec_id) except Exception as e: msg = "Exception while reading device %s %s " % \ (device_id, str(e)) raise JobException(msg, job_exec_id) device_fq_name = result.get('fq_name') device_mgmt_ip = result.get( 'physical_router_management_ip') user_cred = result.get('physical_router_user_credentials') device_family = result.get("physical_router_device_family") device_vendor_name = result.get("physical_router_vendor_name") device_product_name = result.get( "physical_router_product_name") fabric_refs = result.get('fabric_refs') if fabric_refs: fabric_fq_name = result.get('fabric_refs')[0].get('to') fabric_fq_name_str = ':'.join(fabric_fq_name) request_params['fabric_fq_name'] = fabric_fq_name_str else: device_mgmt_ip = request_params.get('input', {}).get( 'device_management_ip') device_abs_cfg = request_params.get('input', {}).get( 'device_abstract_config') system = device_abs_cfg.get('system', {}) device_name = system.get('name') device_username = system.get('credentials', {}).get( 'user_name') device_password = system.get('credentials', {}).get('password') user_cred = { "username": device_username, "password": <PASSWORD> } device_family = system.get('device_family') device_vendor_name = system.get('vendor_name') device_product_name = system.get('product_name') device_fq_name = [ "default-global-system-config", device_name ] self.read_fabric_data(request_params, job_exec_id, is_delete) device_json = {"device_management_ip": device_mgmt_ip} device_json.update({"device_fqname": device_fq_name}) if user_cred: device_json.update( {"device_username": user_cred.get('username')}) decrypt_password = JobVncApi.decrypt_password( encrypted_password=user_cred.get('password'), pwd_key=device_id) device_json.update({"device_password": decrypt_password}) if device_family: device_json.update({"device_family": device_family}) if device_vendor_name: device_json.update({"device_vendor": device_vendor_name}) if device_product_name: device_json.update({"device_product": device_product_name}) device_data.update({device_id: device_json}) if len(device_data) > 0: request_params.update({"device_json": device_data}) # end read_device_data def read_fabric_data(self, request_params, job_execution_id, is_delete=False): if request_params.get('input') is None: err_msg = "Missing job input" raise JobException(err_msg, job_execution_id) fabric_fq_name = None if request_params.get('input').get('fabric_fq_name'): fabric_fq_name = request_params.get('input').get('fabric_fq_name') elif request_params.get('input').get('fabric_uuid'): # get the fabric fq_name from the db if fabric_uuid is provided fabric_uuid = request_params.get('input').get('fabric_uuid') try: fabric_fq_name = self._db_conn.uuid_to_fq_name(fabric_uuid) except NoIdError as e: raise JobException(str(e), job_execution_id) else: if "device_deletion_template" in request_params.get( 'job_template_fq_name'): fabric_fq_name = ["__DEFAULT__"] elif not is_delete: err_msg = "Missing fabric details in the job input" raise JobException(err_msg, job_execution_id) if fabric_fq_name: fabric_fq_name_str = ':'.join(map(str, fabric_fq_name)) request_params['fabric_fq_name'] = fabric_fq_name_str # end read_fabric_data ``` #### File: device-manager/test/test_dm_ip_clos.py ```python import gevent import json from attrdict import AttrDict from device_manager.device_manager import DeviceManager from cfgm_common.tests.test_common import retries from cfgm_common.tests.test_common import retry_exc_handler from vnc_api.vnc_api import * from .test_dm_ansible_common import TestAnsibleCommonDM from .test_dm_utils import FakeJobHandler class TestAnsibleUnderlayIpClosDM(TestAnsibleCommonDM): def test_dm_ansible_underlay_ip_clos(self): self.create_feature_objects_and_params() jt1 = self.create_job_template('job-template-1') jt2 = self.create_job_template('job-template-2') name = "test_ipclos" fabric_uuid = self.create_fabric(name) fabric = self._vnc_lib.fabric_read(id=fabric_uuid) asn_ranges = [{'asn_min': 64501, 'asn_max': 64601}] ns_fq_name = fabric.fq_name + ["test_ipclos_ns_eBGP-ASN-pool"] fabric_namespace = FabricNamespace( name='test_ipclos_ns_eBGP-ASN-pool', fq_name=ns_fq_name, parent_type='fabric', fabric_namespace_type='ASN_RANGE', fabric_namespace_value=NamespaceValue(asn_ranges=asn_ranges) ) tag_obj = Tag( name="label=fabric-ebgp-as-number", tag_type_name="label", tag_value="fabric-ebgp-as-number", tag_predefined=True) self._vnc_lib.tag_create(tag_obj) fabric_namespace.add_tag(tag_obj) self._vnc_lib.fabric_namespace_create(fabric_namespace) np1, rc1 = self.create_node_profile( 'node-profile-1', device_family='junos-qfx', role_mappings=[ AttrDict( {'physical_role': 'spine', 'rb_roles': ['crb-gateway']} )], job_template=jt1) np2, rc2 = self.create_node_profile( 'node-profile-2', device_family='junos-qfx', role_mappings=[ AttrDict( {'physical_role': 'leaf', 'rb_roles': ['crb-access']} )], job_template=jt2) pr1_mgmtip = '10.10.0.1' pr2_mgmtip = '10.10.0.2' bgp_router1, pr1 = self.create_router( 'router1', pr1_mgmtip, role='spine', ignore_bgp=False, fabric=fabric, node_profile=np1, physical_role=self.physical_roles['spine'], overlay_role=self.overlay_roles[ 'crb-gateway'], rb_roles=['crb-gateway'], product='qfx10k', family='junos-qfx') bgp_router2, pr2 = self.create_router( 'router2', pr2_mgmtip, role='leaf', ignore_bgp=False, fabric=fabric, node_profile=np2, physical_role=self.physical_roles['leaf'], overlay_role=self.overlay_roles[ 'crb-access'], rb_roles=['crb-access'], product='qfx5110', family='junos-qfx') pr1.set_physical_router_underlay_managed(True) pr2.set_physical_router_underlay_managed(True) pr1.set_physical_router_loopback_ip('1.1.1.1') pr2.set_physical_router_loopback_ip('1.1.1.2') self._vnc_lib.physical_router_update(pr1) self._vnc_lib.physical_router_update(pr2) pi1 = PhysicalInterface(name='xe-0/0/0', parent_obj=pr1) pi2 = PhysicalInterface(name='xe-0/0/0', parent_obj=pr2) self._vnc_lib.physical_interface_create(pi1) self._vnc_lib.physical_interface_create(pi2) pi1.set_physical_interface(pi2) pi2.set_physical_interface(pi1) self._vnc_lib.physical_interface_update(pi1) self._vnc_lib.physical_interface_update(pi2) subnet1 = SubnetType(ip_prefix='192.168.2.0', ip_prefix_len=24) net_ipam1 = NetworkIpam() li1 = LogicalInterface(name='0', parent_obj=pi1) self._vnc_lib.logical_interface_create(li1) li2 = LogicalInterface(name='0', parent_obj=pi2) self._vnc_lib.logical_interface_create(li2) vn_obj1 = VirtualNetwork( name='vn1', virtual_network_category='infra', address_allocation_mode='flat-subnet-only') vnsubnet_obj = VnSubnetsType( ipam_subnets=[ IpamSubnetType( subnet=subnet1)]) self._vnc_lib.virtual_network_create(vn_obj1) vn_obj1.set_network_ipam(net_ipam1, vnsubnet_obj) self._vnc_lib.virtual_network_update(vn_obj1) ins_ip1 = InstanceIp( name='ip1', instance_ip_address='192.168.2.1', instance_ip_family='v4') ins_ip1.set_logical_interface(li1) ins_ip1.set_virtual_network(vn_obj1) self._vnc_lib.instance_ip_create(ins_ip1) ins_ip2 = InstanceIp( name='ip2', instance_ip_address='192.168.2.2', instance_ip_family='v4') ins_ip2.set_logical_interface(li2) ins_ip2.set_virtual_network(vn_obj1) self._vnc_lib.instance_ip_create(ins_ip2) pr1.set_physical_router_product_name('qfx10k-6s-4c') self._vnc_lib.physical_router_update(pr1) self.validate_abstract_configs(pr1, pr2) self.delete_objects() @retries(5, hook=retry_exc_handler) def validate_abstract_configs(self, pr1, pr2): abstract_config = FakeJobHandler.get_dev_job_input(pr1.name) device_abstract_config1 = abstract_config.get('device_abstract_config') pr2.set_physical_router_product_name('qfx5110-6s-4c') self._vnc_lib.physical_router_update(pr2) abstract_config = FakeJobHandler.get_dev_job_input(pr2.name) device_abstract_config2 = abstract_config.get('device_abstract_config') system1 = device_abstract_config1.get('system') bgp_config1 = device_abstract_config1.get('features', {}).get( 'underlay-ip-clos', {}).get('bgp', []) bgp_peer1 = bgp_config1[0].get('peers', []) system2 = device_abstract_config2.get('system') bgp_config2 = device_abstract_config2.get('features', {}).get( 'underlay-ip-clos', {}).get('bgp', []) bgp_peer2 = bgp_config2[0].get('peers', []) self.assertEqual(bgp_config1[0].get('ip_address'), '192.168.2.1') self.assertEqual(bgp_peer1[0].get('ip_address'), '192.168.2.2') self.assertEqual(bgp_config2[0].get('ip_address'), '192.168.2.2') self.assertEqual(bgp_peer2[0].get('ip_address'), '192.168.2.1') def create_feature_objects_and_params(self): self.create_features(['underlay-ip-clos']) self.create_physical_roles(['leaf', 'spine']) self.create_overlay_roles(['crb-gateway', 'crb-access']) self.create_role_definitions([ AttrDict({ 'name': 'crb-gateway@spine', 'physical_role': 'spine', 'overlay_role': 'crb-gateway', 'features': ['underlay-ip-clos'], 'feature_configs': {} }), AttrDict({ 'name': 'crb-access@leaf', 'physical_role': 'leaf', 'overlay_role': 'crb-access', 'features': ['underlay-ip-clos'], 'feature_configs': {} }) ]) def create_fabric(self, name): fab = Fabric( name=name, manage_underlay=True, fabric_enterprise_style=False, fabric_ztp=True, fabric_credentials={ 'device_credential': [{ 'credential': { 'username': 'root', 'password': '<PASSWORD>' }, 'vendor': 'Juniper', 'device_family': None }] } ) fab_uuid = self._vnc_lib.fabric_create(fab) return fab_uuid @retries(5, hook=retry_exc_handler) def delete_objects(self): # Seeing issues with the JSON decoder - not sure why we are not # receiving the response, so added retry logic for the deletion # objects as well. vpg_list = self._vnc_lib.virtual_port_groups_list().get( 'virtual-port-groups') for vpg in vpg_list: vpg_obj = self._vnc_lib.virtual_port_group_read(id=vpg['uuid']) vpg_obj.set_virtual_machine_interface_list([]) vpg_obj.set_physical_interface_list([]) self._vnc_lib.virtual_port_group_update(vpg_obj) vmi_list = self._vnc_lib.virtual_machine_interfaces_list().get( 'virtual-machine-interfaces', []) for vmi in vmi_list: self._vnc_lib.virtual_machine_interface_delete(id=vmi['uuid']) instance_ip_list = self._vnc_lib.instance_ips_list().get( 'instance-ips', []) for ip in instance_ip_list: self._vnc_lib.instance_ip_delete(id=ip['uuid']) logical_interfaces_list = self._vnc_lib.logical_interfaces_list().get( 'logical-interfaces', []) for logical_interface in logical_interfaces_list: self._vnc_lib.logical_interface_delete(id=logical_interface['uuid']) pi_list = self._vnc_lib.physical_interfaces_list().get( 'physical-interfaces', []) for pi in pi_list: self._vnc_lib.physical_interface_delete(id=pi['uuid']) for vpg in vpg_list: self._vnc_lib.virtual_port_group_delete(id=vpg['uuid']) pr_list = self._vnc_lib.physical_routers_list().get( 'physical-routers', []) for pr in pr_list: self._vnc_lib.physical_router_delete(id=pr['uuid']) bgpr_list = self._vnc_lib.bgp_routers_list().get('bgp-routers', []) for br in bgpr_list: self._vnc_lib.bgp_router_delete(id=br['uuid']) rc_list = self._vnc_lib.role_configs_list().get('role-configs', []) for rc in rc_list: self._vnc_lib.role_config_delete(id=rc['uuid']) ports_list = self._vnc_lib.ports_list().get('ports', []) for port in ports_list: self._vnc_lib.port_delete(id=port['uuid']) nodes_list = self._vnc_lib.nodes_list().get('nodes', []) for node in nodes_list: self._vnc_lib.node_delete(id=node['uuid']) fabric_namespace_list = self._vnc_lib.fabric_namespaces_list().get( 'fabric-namespaces', []) for fabric_namespace in fabric_namespace_list: self._vnc_lib.fabric_namespace_delete(id=fabric_namespace['uuid']) fab_list = self._vnc_lib.fabrics_list().get('fabrics', []) for fab in fab_list: self._vnc_lib.fabric_delete(id=fab['uuid']) vn_list = self._vnc_lib.virtual_networks_list().get( 'virtual-networks', []) for vn in vn_list: self._vnc_lib.virtual_network_delete(id=vn['uuid']) np_list = self._vnc_lib.node_profiles_list().get('node-profiles', []) for np in np_list: self._vnc_lib.node_profile_delete(id=np['uuid']) jt_list = self._vnc_lib.job_templates_list().get('job-templates', []) for jt in jt_list: self._vnc_lib.job_template_delete(id=jt['uuid']) pp_list = self._vnc_lib.port_profiles_list().get('port-profiles', []) for pp in pp_list: self._vnc_lib.port_profile_delete(id=pp['uuid']) sc_list = self._vnc_lib.storm_control_profiles_list().get( 'storm-control-profiles', []) for sc in sc_list: self._vnc_lib.storm_control_profile_delete(id=sc['uuid']) self.delete_role_definitions() self.delete_overlay_roles() self.delete_physical_roles() self.delete_features() self.wait_for_features_delete() ``` #### File: sanity/tools/debug.py ```python from __future__ import print_function from vnc_api.vnc_api import VncApi import json api = VncApi() GSC = 'default-global-system-config' def dump(res_type, fq_name): obj = api._object_read(res_type=res_type, fq_name=fq_name) dumpobj(obj) def dumpobj(obj): print(json.dumps(api.obj_to_dict(obj), indent=4)) def dumplist(res_type, detail=False): refs = api._objects_list(res_type) if refs: refs = refs.get(res_type + 's') if detail: obj_list = [] for ref in refs or []: obj = api._object_read(res_type, id=ref.get('uuid')) obj_list.append(api.obj_to_dict(obj)) print(json.dumps({ 'objs': obj_list }, indent=4)) else: print(json.dumps(refs, indent=4)) def dump_pr(name): dump('physical-router', [GSC, name]) def dump_pi(pr_name, pi_name): dump('physical-interface', [GSC, pr_name, pi_name]) def dump_li(pr_name, pi_name, unit=0): dump('logical-interface', [GSC, pr_name, pi_name, "%s.%d" % (pi_name, unit)]) def validate_json(filepath): with open(filepath, 'r') as f: data = json.load(f) print(json.dumps(data, indent=4)) ``` #### File: test/units/test_swift_fileutil.py ```python import unittest from flexmock import flexmock import swiftclient import swiftclient.utils from ansible.modules.network.fabric import swift_fileutil from test_fabric_base import TestFabricModule from test_fabric_base import set_module_args from ansible.module_utils import fabric_utils class TestSwiftFileUtilModule(TestFabricModule): module = swift_fileutil def setUp(self): super(TestSwiftFileUtilModule, self).setUp() # Mocking the swift connection object self.mockobj = flexmock().should_receive('get_account').and_return(['storageurl']).mock() flexmock(swiftclient.client).should_receive('Connection').and_return(self.mockobj) flexmock(self.mockobj).should_receive('post_account').and_return(None) flexmock(self.mockobj).url = "storage_url" flexmock(self.mockobj).should_receive("close").and_return(None) fake_logger = flexmock() flexmock(fake_logger).should_receive('error') flexmock(fake_logger).should_receive('debug') flexmock(fabric_utils).should_receive('fabric_ansible_logger').and_return(fake_logger) self.args_dict = dict(authtoken="<PASSWORD>", authurl="auth_url", user="admin", key="contrail", tenant_name="project", auth_version="3.0", temp_url_key="temp_url_key1", temp_url_key_2="temp_url_key2", chosen_temp_url_key="temp_url_key", container_name="container", filename="sample.txt", expirytime=3600) # Testing the swift utility module def test_fileutility01(self): fake_image_url = "/v1/sample.txt" flexmock(swiftclient.utils).should_receive('generate_temp_url').and_return(fake_image_url) set_module_args(self.args_dict) result = self.execute_module() self.assertTrue(result["url"]) self.assertEqual(result["url"], fake_image_url) # Testing when generate_temp_url returns None def test_fileutility02(self): flexmock(swiftclient.utils).should_receive('generate_temp_url').and_return(None) set_module_args(self.args_dict) self.assertRaises(Exception, self.execute_module()) # Testing when generate_temp_url raises exception def test_fileutility_03(self): flexmock(swiftclient.utils).should_receive('generate_temp_url').and_raise(Exception) set_module_args(self.args_dict) self.assertRaises(Exception, self.execute_module()) # #Testing the swift connection after retry def test_fileutility04(self): flexmock(swiftclient.client).should_receive('Connection').and_return(None) self.args_dict['connection_retry_count'] = 1 set_module_args(self.args_dict) self.assertRaises(Exception, self.execute_module()) # Testing the update account error def test_fileutility05(self): flexmock(self.mockobj).should_receive('post_account').and_raise(Exception) set_module_args(self.args_dict) self.assertRaises(Exception, self.execute_module()) # Testing the case where optional args are not passed and it should take default value def test_fileutility06(self): for e in ["tenant_name","auth_version","chosen_temp_url_key","connection_retry_count"]: self.args_dict.pop(e, None) set_module_args(self.args_dict) fake_image_url = "/v1/sample.txt" flexmock(swiftclient.utils).should_receive('generate_temp_url').and_return(fake_image_url) result = self.execute_module() self.assertTrue(result["url"]) self.assertEqual(result["url"], fake_image_url) ``` #### File: fabric-ansible/job_manager/playbook_helper.py ```python import argparse from builtins import object from builtins import str from collections import namedtuple import errno import json import sys import traceback from ansible import constants as CONST from ansible.executor.playbook_executor import PlaybookExecutor from ansible.inventory.manager import InventoryManager from ansible.module_utils._text import to_bytes, to_text from ansible.parsing.dataloader import DataLoader from ansible.utils.color import stringc import ansible.utils.display as default_display from ansible.utils.display import Display from ansible.vars.manager import VariableManager from job_manager.fabric_logger import fabric_ansible_logger from job_manager.job_manager_logger import job_mgr_logger from job_manager.job_messages import MsgBundle from job_manager.job_utils import ( JobFileWrite, PLAYBOOK_EOL_PATTERN ) verbosity = CONST.DEFAULT_VERBOSITY or 0 logger = fabric_ansible_logger("ansible") # Overrides the default display processing from ansible/utils/display.py # The default display method supresses certain output for remote hosts # while we want this information sent to the logs def fabric_ansible_display(self, msg, color=None, stderr=False, screen_only=False, log_only=False): # Display a message to the user # Note: msg *must* be a unicode string to prevent UnicodeError traceback nocolor = msg if color: msg = stringc(msg, color) if not log_only: if not msg.endswith(u'\n'): msg2 = msg + u'\n' else: msg2 = msg msg2 = to_bytes(msg2, encoding=self._output_encoding(stderr=stderr)) if sys.version_info >= (3,): # Convert back to text string on python3 # We first convert to a byte string so that we get rid of # characters that are invalid in the user's locale msg2 = to_text(msg2, self._output_encoding(stderr=stderr), errors='replace') # Note: After Display() class is refactored need to update the # log capture code in 'bin/ansible-connection' (and other # relevant places). if not stderr: fileobj = sys.stdout else: fileobj = sys.stderr fileobj.write(msg2) try: fileobj.flush() except IOError as e: # Ignore EPIPE in case fileobj has been prematurely closed, eg. # when piping to "head -n1" if e.errno != errno.EPIPE: raise if logger: msg2 = nocolor.lstrip(u'\n') msg2 = to_bytes(msg2) if sys.version_info >= (3,): # Convert back to text string on python3 # We first convert to a byte string so that we get rid of # characters that are invalid in the user's locale msg2 = to_text(msg2, self._output_encoding(stderr=stderr)) if color == CONST.COLOR_ERROR: logger.error(msg2) else: logger.info(msg2) # Use custom display function default_display.logger = logger display = Display(verbosity) JM_LOGGER = job_mgr_logger("FabricAnsible") default_display.Display.display = fabric_ansible_display class PlaybookHelper(object): def __init__(self): """Playbook helper initializer. Creates the playbook log util class.""" self._job_file_write = JobFileWrite(logger) def get_plugin_output(self, pbex): output_json = pbex._tqm._variable_manager._nonpersistent_fact_cache[ 'localhost'].get('output') return output_json def execute_playbook(self, playbook_info): output = None try: loader = DataLoader() inventory = InventoryManager(loader=loader, sources=['localhost']) variable_manager = VariableManager(loader=loader, inventory=inventory) Options = namedtuple('Options', ['listtags', 'listtasks', 'listhosts', 'syntax', 'connection', 'module_path', 'forks', 'remote_user', 'private_key_file', 'ssh_common_args', 'ssh_extra_args', 'sftp_extra_args', 'scp_extra_args', 'become', 'become_method', 'become_user', 'verbosity', 'check', 'diff']) options = Options(listtags=False, listtasks=False, listhosts=False, syntax=False, connection='ssh', module_path=None, forks=100, remote_user=None, private_key_file=None, ssh_common_args=None, ssh_extra_args=None, sftp_extra_args=None, scp_extra_args=None, become=None, become_method=None, become_user=None, verbosity=None, check=False, diff=False) variable_manager.extra_vars = playbook_info['extra_vars'] pbex = PlaybookExecutor(playbooks=[playbook_info['uri']], inventory=inventory, variable_manager=variable_manager, loader=loader, options=options, passwords=None) ret_val = pbex.run() output = self.get_plugin_output(pbex) if ret_val != 0: msg = MsgBundle.getMessage(MsgBundle. PLAYBOOK_RETURN_WITH_ERROR) raise Exception(msg) if output is None or output.get('status') is None: msg = MsgBundle.getMessage(MsgBundle. PLAYBOOK_OUTPUT_MISSING) raise Exception(msg) if output.get('status').lower() == "failure": msg = MsgBundle.getMessage(MsgBundle. PLAYBOOK_STATUS_FAILED) raise Exception(msg) return output except Exception as exp: msg = MsgBundle.getMessage(MsgBundle.PLAYBOOK_EXECUTE_ERROR, playbook_uri=playbook_info['uri'], execution_id=playbook_info['extra_vars'] ['playbook_input']['job_execution_id'], exc_msg=repr(exp)) if exp.message: msg = msg + "\n" + exp.message JM_LOGGER.error(msg) # after handling exception, write an END # to stop listening to the file if created unique_pb_id = playbook_info['extra_vars'][ 'playbook_input']['unique_pb_id'] exec_id = playbook_info['extra_vars']['playbook_input'][ 'job_execution_id'] self._job_file_write.write_to_file( exec_id, unique_pb_id, JobFileWrite.PLAYBOOK_OUTPUT, json.dumps(output) ) with open("/tmp/" + exec_id, "a") as f: f.write(unique_pb_id + 'END' + PLAYBOOK_EOL_PATTERN) sys.exit(msg) def parse_args(): parser = argparse.ArgumentParser(description='Ansible playbook input ' 'parameters') parser.add_argument('-i', '--playbook_input', nargs=1, help='Playbook input json') return parser.parse_args() if __name__ == "__main__": playbook_input_json = None try: playbook_params = parse_args() playbook_input_json = json.loads(playbook_params.playbook_input[0]) if playbook_input_json is None: sys.exit(MsgBundle.getMessage(MsgBundle.NO_PLAYBOOK_INPUT_DATA)) except Exception as exp: ERR_MSG = "Failed to start playbook due to Exception: %s" %\ traceback.print_stack() JM_LOGGER.error(ERR_MSG) sys.exit(MsgBundle.getMessage(MsgBundle.PLAYBOOK_INPUT_PARSING_ERROR, exc_msg=repr(exp))) playbook_helper = PlaybookHelper() pb_output = playbook_helper.execute_playbook(playbook_input_json) # if it comes here, it implies the pb_output is of correct # format and is present with status Sucess. So derive the # playbook output to be written to file and finally write END to the file unique_pb_id = playbook_input_json['extra_vars'][ 'playbook_input']['unique_pb_id'] exec_id = playbook_input_json['extra_vars']['playbook_input'][ 'job_execution_id'] try: playbook_helper._job_file_write.write_to_file( exec_id, unique_pb_id, JobFileWrite.PLAYBOOK_OUTPUT, json.dumps(pb_output) ) except Exception as exc: ERR_MSG = "Error while trying to parse output"\ " from playbook due to exception: %s"\ % str(exc) JM_LOGGER.error(ERR_MSG) # not stopping execution just because of parsing error # no sys.exit therefore finally: with open("/tmp/" + exec_id, "a") as f: f.write(unique_pb_id + 'END' + PLAYBOOK_EOL_PATTERN) ``` #### File: schema_transformer/resources/bgp_vpn.py ```python from schema_transformer.resources._resource_base import ResourceBaseST class BgpvpnST(ResourceBaseST): _dict = {} obj_type = 'bgpvpn' prop_fields = ['route_target_list', 'import_route_target_list', 'export_route_target_list'] def __init__(self, name, obj=None): self.name = name self.virtual_networks = set() self.logical_routers = set() self.rt_list = set() self.import_rt_list = set() self.export_rt_list = set() self.update(obj) self.update_multiple_refs('virtual_network', self.obj) self.update_multiple_refs('logical_router', self.obj) def update(self, obj=None): changed = self.update_vnc_obj(obj) if set(self.prop_fields) & set(changed): self.get_route_target_lists() return changed def delete_obj(self): self.update_multiple_refs('virtual_network', {}) self.update_multiple_refs('logical_router', {}) def get_route_target_lists(self): old_lists = (self.rt_list, self.import_rt_list, self.export_rt_list) rt_list = self.obj.get_route_target_list() if rt_list: self.rt_list = set(rt_list.get_route_target()) else: self.rt_list = set() rt_list = self.obj.get_import_route_target_list() if rt_list: self.import_rt_list = set(rt_list.get_route_target()) else: self.import_rt_list = set() rt_list = self.obj.get_export_route_target_list() if rt_list: self.export_rt_list = set(rt_list.get_route_target()) else: self.export_rt_list = set() # if any RT exists in both import and export, just add it to rt_list self.rt_list |= self.import_rt_list & self.export_rt_list # if any RT exists in rt_list, remove it from import/export lists self.import_rt_list -= self.rt_list self.export_rt_list -= self.rt_list return old_lists != (self.rt_list, self.import_rt_list, self.export_rt_list) def handle_st_object_req(self): resp = super(BgpvpnST, self).handle_st_object_req() resp.obj_refs = [ self._get_sandesh_ref_list('virtual_network'), self._get_sandesh_ref_list('logical_router'), ] return resp # end BgpvpnST ``` #### File: schema_transformer/resources/virtual_machine.py ```python from schema_transformer.resources._resource_base import ResourceBaseST from schema_transformer.sandesh.st_introspect import ttypes as sandesh class VirtualMachineST(ResourceBaseST): _dict = {} obj_type = 'virtual_machine' ref_fields = ['service_instance'] def __init__(self, name, obj=None): self.name = name self.virtual_machine_interfaces = set() self.service_instance = None self.update(obj) self.uuid = self.obj.uuid self.update_multiple_refs('virtual_machine_interface', self.obj) # end __init__ def get_vmi_by_service_type(self, service_type): for vmi_name in self.virtual_machine_interfaces: vmi = ResourceBaseST.get_obj_type_map().get( 'virtual_machine_interface').get(vmi_name) if vmi and vmi.service_interface_type == service_type: return vmi return None def get_service_mode(self): if self.service_instance is None: return None si_obj = ResourceBaseST.get_obj_type_map().get( 'service_instance').get(self.service_instance) if si_obj is None: self._logger.error("service instance %s not found" % self.service_instance) return None return si_obj.get_service_mode() # end get_service_mode def handle_st_object_req(self): resp = super(VirtualMachineST, self).handle_st_object_req() resp.obj_refs.extend([ self._get_sandesh_ref_list('virtual_machine_interface'), ]) resp.properties.extend([ sandesh.PropList('service_mode', self.get_service_mode()), ]) return resp # end handle_st_object_req # end VirtualMachineST ``` #### File: schema-transformer/schema_transformer/utils.py ```python import socket import cfgm_common as common from cfgm_common import jsonutils as json from cfgm_common.uve.config_req.ttypes import SystemConfigReq from cfgm_common.uve.config_req.ttypes import SystemConfigReqTrace import jsonpickle from schema_transformer.sandesh.st_introspect import ttypes as sandesh _PROTO_STR_TO_NUM_IPV4 = { 'icmp6': '58', 'icmp': '1', 'tcp': '6', 'udp': '17', 'any': 'any', } _PROTO_STR_TO_NUM_IPV6 = { 'icmp6': '58', 'icmp': '58', 'tcp': '6', 'udp': '17', 'any': 'any', } RULE_IMPLICIT_ALLOW_UUID = common.RULE_IMPLICIT_ALLOW_UUID RULE_IMPLICIT_DENY_UUID = common.RULE_IMPLICIT_DENY_UUID def _raise_and_send_uve_to_sandesh(obj_type, err_info, sandesh): config_req_err = SystemConfigReq(obj_type=obj_type, err_info=err_info) config_req_err.name = socket.getfqdn() config_req_trace = SystemConfigReqTrace(data=config_req_err, sandesh=sandesh) config_req_trace.send(sandesh=sandesh) def _pp_json_object(obj): parsed = json.loads(jsonpickle.encode(obj, unpicklable=False)) return json.dumps(parsed, indent=4) def _create_pprinted_prop_list(name, value): return sandesh.PropList(name, _pp_json_object(value)) ``` #### File: drivers/f5/f5_driver_v2.py ```python import sys from oslo_config import cfg from f5_openstack_agent.lbaasv2.drivers.bigip import icontrol_driver from f5_openstack_agent.lbaasv2.drivers.bigip import agent_manager from svc_monitor.services.loadbalancer.drivers import abstract_driver from svc_monitor.config_db import * class OpencontrailF5LoadbalancerDriver( abstract_driver.ContrailLoadBalancerAbstractDriver): def __init__(self, name, manager, api, db, args=None): self._name = name self._manager = manager self._api = api self.db = db args_driver = dict(args.config_sections.items(self._name)) args_auth = dict(args.config_sections.items('KEYSTONE')) self.service = {} conf = cfg.ConfigOpts() conf.register_opts(agent_manager.OPTS) conf.register_opts(icontrol_driver.OPTS) conf.register_opt(cfg.BoolOpt('debug', default = False)) conf.f5_global_routed_mode = True if not 'device_ip' in args_driver: return None if 'ha_mode' in args_driver: conf.f5_ha_type = args_driver['ha_mode'] conf.icontrol_hostname = args_driver['device_ip'] conf.icontrol_username = args_driver['user'] conf.icontrol_password = args_driver['password'] conf.cert_manager = 'f5_openstack_agent.lbaasv2.drivers.bigip' \ '.barbican_cert.BarbicanCertManager' if 'v2.0' in args_auth['auth_url']: conf.auth_version = 'v2' conf.os_username = args_auth['admin_user'] conf.os_password = <PASSWORD>_auth['<PASSWORD>'] conf.os_auth_url = args_auth['auth_url'] conf.os_tenant_name = args_auth['admin_tenant_name'] elif 'v3' in args_auth['auth_url']: conf.auth_version = 'v3' conf.os_username = args_auth['admin_user'] conf.os_password = <PASSWORD>_auth['<PASSWORD>'] conf.os_auth_url = args_auth['auth_url'] conf.os_project_name = args_auth['admin_tenant_name'] conf.os_user_domain_name = 'default' conf.os_project_domain_name = 'default' self.icontrol = icontrol_driver.iControlDriver(conf, registerOpts = False) def _service_lb(self, lb_id, status = 'ACTIVE'): self.service = {} lb = LoadbalancerSM.get(lb_id) if not lb: self.service['loadbalancer'] = None return tenant = ProjectSM.get(lb.parent_uuid) vmi = VirtualMachineInterfaceSM.get(lb.virtual_machine_interface) vn = VirtualNetworkSM.get(vmi.virtual_network) conf = {'id': lb.uuid, 'config': None, 'tenant_id': tenant.name, 'name': lb.name, 'description': "", 'vip_subnet_id': lb.params['vip_subnet_id'], 'vip_address': lb.params['vip_address'], 'port_id': lb.virtual_machine_interface, 'provisioning_status': status, 'status': lb.params['status'], 'network_id': vn.name} self.service['loadbalancer'] = conf self.service['networks'] = {vn.name: {'provider:network_type': 'flat'}} def _service_listener(self, l_id, status = 'ACTIVE'): lb_conf = self.service['loadbalancer'] l = LoadbalancerListenerSM.get(l_id) conf = {'id': lb_conf['name'] + '_' + l.name, 'config': None, 'tenant_id': lb_conf['tenant_id'], 'name': l.name, 'protocol': l.params['protocol'], 'protocol_port': l.params['protocol_port'], 'provisioning_status': status, 'admin_state_up': l.params['admin_state'], 'description': ""} if l.params['protocol'] == 'TERMINATED_HTTPS': conf['default_tls_container_id'] = l.params['default_tls_container'] conf['sni_containers'] = [] for sni_container in l.params['sni_containers']: c = {'tls_container_id': sni_container} conf['sni_containers'].append(c) self.service['listeners'] = [conf] def _service_pool(self, p_id, status = 'ACTIVE'): lb_conf = self.service['loadbalancer'] l_conf = self.service['listeners'][0] p = LoadbalancerPoolSM.get(p_id) conf = {'id': lb_conf['name'] + '_' + p.name, 'config': None, 'tenant_id': lb_conf['tenant_id'], 'provisioning_status': status, 'listeners': [{'id': l_conf['id']}], 'description': ""} self.service['pools'] = [conf] def _service_member(self, m_id, status = 'ACTIVE'): lb_conf = self.service['loadbalancer'] p_conf = self.service['pools'][0] m = LoadbalancerMemberSM.get(m_id) conf = {'id': m_id, 'config': None, 'tenant_id': lb_conf['tenant_id'], 'provisioning_status': status, 'pool_id': p_conf['id'], 'address': m.params['address'], 'protocol_port': m.params['protocol_port'], 'subnet_id': None, 'network_id': None, 'description': ""} self.service['members'] = [conf] def _service_healthmonitor(self, hm_id, status = 'ACTIVE'): lb_conf = self.service['loadbalancer'] p_conf = self.service['pools'][0] hm = HealthMonitorSM.get(hm_id) conf = {'id': hm_id, 'config': None, 'tenant_id': lb_conf['tenant_id'], 'provisioning_status': status, 'pool_id': p_conf['id'], 'type': hm.params['monitor_type'], 'url_path': hm.params['url_path'], 'delay': hm.params['delay'], 'max_retries': hm.params['max_retries'], 'timeout': hm.params['timeout'], 'expected_codes': hm.params['expected_codes'], 'description': ""} self.service['healthmonitors'] = [conf] def create_loadbalancer(self, loadbalancer): self._service_lb(loadbalancer['id']) if self.service['loadbalancer']: self.icontrol.create_loadbalancer(None, self.service) def update_loadbalancer(self, old_loadbalancer, loadbalancer): pass def delete_loadbalancer(self, loadbalancer): self._service_lb(loadbalancer['id'], status = 'PENDING_DELETE') self.icontrol.delete_loadbalancer(None, self.service) def create_listener(self, listener): self._service_lb(listener['loadbalancer_id']) self._service_listener(listener['id']) self.icontrol.create_listener(None, self.service) def update_listener(self, old_listener, listener): pass def delete_listener(self, listener): self._service_lb(listener['loadbalancer_id']) self._service_listener(listener['id'], status = 'PENDING_DELETE') self.icontrol.delete_listener(None, self.service) def create_pool(self, pool): self._service_lb(pool['loadbalancer_id']) pool_sm = LoadbalancerPoolSM.get(pool['id']) self._service_listener(pool_sm.loadbalancer_listener) self._service_pool(pool['id']) self.icontrol.create_pool(None, self.service) def update_pool(self, old_pool, pool): pass def delete_pool(self, pool): self._service_lb(pool['loadbalancer_id']) pool_sm = LoadbalancerPoolSM.get(pool['id']) self._service_listener(pool_sm.loadbalancer_listener) self._service_pool(pool['id'], status = 'PENDING_DELETE') self.icontrol.delete_pool(None, self.service) def create_member(self, member): pool_sm = LoadbalancerPoolSM.get(member['pool_id']) listener_sm = LoadbalancerListenerSM.get(pool_sm.loadbalancer_listener) self._service_lb(listener_sm.loadbalancer) self._service_listener(listener_sm.uuid) self._service_pool(pool_sm.uuid) self._service_member(member['id']) self.icontrol.create_member(None, self.service) def update_member(self, old_member, member): pass def delete_member(self, member): pool_sm = LoadbalancerPoolSM.get(member['pool_id']) listener_sm = LoadbalancerListenerSM.get(pool_sm.loadbalancer_listener) self._service_lb(listener_sm.loadbalancer) self._service_listener(listener_sm.uuid) self._service_pool(pool_sm.uuid) self._service_member(member['id'], status = 'PENDING_DELETE') self.icontrol.delete_member(None, self.service) def create_health_monitor(self, health_monitor, pool_id): pool_sm = LoadbalancerPoolSM.get(pool_id) listener_sm = LoadbalancerListenerSM.get(pool_sm.loadbalancer_listener) self._service_lb(pool_sm.loadbalancer_id) self._service_listener(listener_sm.uuid) self._service_pool(pool_id) self._service_healthmonitor(health_monitor['id']) self.icontrol.create_health_monitor(None, self.service) def update_health_monitor(self, old_health_monitor, health_monitor, pool_id): pass def delete_health_monitor(self, health_monitor, pool_id): pool_sm = LoadbalancerPoolSM.get(pool_id) listener_sm = LoadbalancerListenerSM.get(pool_sm.loadbalancer_listener) self._service_lb(pool_sm.loadbalancer_id) self._service_listener(listener_sm.uuid) self._service_pool(pool_id) self._service_healthmonitor(health_monitor['id'], status = 'PENDING_DELETE') self.icontrol.delete_health_monitor(None, self.service) def create_vip(self, vip): pass def update_vip(self, old_vip, vip): pass def delete_vip(self, vip): pass def stats(self, pool_id): pass def set_config_v2(self, lb_id): pass ``` #### File: ha_proxy/custom_attributes/haproxy_validator.py ```python from builtins import str from builtins import range from builtins import object import logging import inspect import os class CustomAttr(object): """This type handles non-flat data-types like int, str, bool. """ def __init__(self, key, value): self._value = value self._key = key def validate(self): pass def post_validation(self): pass class CustomAttrTlsContainer(CustomAttr): def __init__(self, key, value): super(CustomAttrTlsContainer, self).__init__(key, value) def validate(self): return True def post_validation(self): return self._value def validate_custom_attributes(custom_attributes_dict, section, custom_attributes): section_dict = {} if custom_attributes and section in custom_attributes_dict: for key, value in list(custom_attributes.items()): if key in custom_attributes_dict[section]: #Sanitize the value try: type_attr = custom_attributes_dict[section][key]['type'] limits = custom_attributes_dict[section][key]['limits'] if type_attr == 'int': value = int(value) if value in range(limits[0], limits[1]): section_dict.update({key:value}) else: logging.info("Skipping key: %s, value: %s due to" \ "validation failure" % (key, value)) elif type_attr == 'str': if len(value) in range(limits[0], limits[1]): section_dict.update({key:value}) else: logging.info("Skipping key: %s, value: %s due to" \ "validation failure" % (key, value)) elif type_attr == 'bool': if value in limits: if value == 'True': value = '' elif value == 'False': value = 'no ' section_dict.update({key:value}) else: logging.info("Skipping key: %s, value: %s due to" \ "validation failure" % (key, value)) elif inspect.isclass(eval(type_attr)): new_custom_attr = eval(type_attr)(key, value) if new_custom_attr.validate(): value = new_custom_attr.post_validation() section_dict.update({key:value}) else: logging.info("Skipping key: %s, value: %s due to" \ "validation failure" % (key, value)) except Exception as e: logging.error(str(e)) continue return section_dict ``` #### File: svc_monitor/tests/test_virtual_machine_manager.py ```python from __future__ import absolute_import import mock import unittest from vnc_api.vnc_api import * from svc_monitor.virtual_machine_manager import VirtualMachineManager from svc_monitor.config_db import * from . import test_common_utils as test_utils class VirtualMachineManagerTest(unittest.TestCase): def setUp(self): VirtualMachineSM._object_db = mock.MagicMock() VirtualMachineSM._object_db.object_read = test_utils.vm_db_read VirtualMachineInterfaceSM._object_db = mock.MagicMock() VirtualMachineInterfaceSM._object_db.object_read = test_utils.vmi_db_read InstanceIpSM._object_db = mock.MagicMock() InstanceIpSM._object_db.object_read = test_utils.iip_db_read InterfaceRouteTableSM._object_db = mock.MagicMock() InterfaceRouteTableSM._object_db.object_read = test_utils.irt_db_read self.mocked_vnc = mock.MagicMock() self.mocked_vnc.fq_name_to_id = test_utils.get_vn_id_for_fq_name self.mocked_vnc.virtual_network_create = test_utils.vn_create self.mocked_vnc.virtual_machine_interface_create = test_utils.vmi_create self.mocked_vnc.instance_ip_create = test_utils.iip_create self.nova_mock = mock.MagicMock() self.mocked_db = mock.MagicMock() self.mocked_args = mock.MagicMock() self.mocked_args.availability_zone = 'default-availability-zone' self.log_mock = mock.MagicMock() self.vm_manager = VirtualMachineManager( db=self.mocked_db, logger=self.log_mock, vnc_lib=self.mocked_vnc, vrouter_scheduler=mock.MagicMock(), nova_client=self.nova_mock, args=self.mocked_args, agent_manager=mock.MagicMock()) def tearDown(self): ServiceTemplateSM.reset() ServiceInstanceSM.reset() InstanceIpSM.reset() VirtualMachineInterfaceSM.reset() VirtualMachineSM.reset() del InterfaceRouteTableSM._object_db del VirtualMachineSM._object_db def test_virtual_machine_create(self): test_utils.create_test_project('fake-domain:fake-project') test_utils.create_test_security_group('fake-domain:fake-project:default') test_utils.create_test_virtual_network('fake-domain:fake-project:left-vn') test_utils.create_test_virtual_network('fake-domain:fake-project:right-vn') st = test_utils.create_test_st(name='vm-template', virt_type='virtual-machine', intf_list=[['management', False], ['left', True], ['right', False]]) si = test_utils.create_test_si(name='vm-instance', count=2, intf_list=['', 'left-vn', 'right-vn']) def nova_oper(resource, oper, proj_name, **kwargs): if resource == 'servers' and oper == 'create': nova_vm = test_utils.FakeNovaServer('fake-vm-uuid', kwargs['name']) return nova_vm else: return mock.MagicMock() self.nova_mock.oper = nova_oper self.vm_manager.create_service(st, si) self.mocked_vnc.virtual_machine_create.assert_any_call(test_utils.VMObjMatcher(1)) self.mocked_vnc.virtual_machine_create.assert_any_call(test_utils.VMObjMatcher(2)) self.assertTrue(si.availability_zone, 'default-availability-zone') def test_virtual_machine_delete(self): vm = test_utils.create_test_virtual_machine('fake-vm-uuid') self.vm_manager.delete_service(vm) def test_missing_image_in_template(self): test_utils.create_test_project('fake-domain:fake-project') test_utils.create_test_security_group('fake-domain:fake-project:default') test_utils.create_test_virtual_network('fake-domain:fake-project:left-vn') test_utils.create_test_virtual_network('fake-domain:fake-project:right-vn') st = test_utils.create_test_st(name='vm-template', virt_type='virtual-machine', intf_list=[['management', False], ['left', True], ['right', False]]) si = test_utils.create_test_si(name='vm-instance', count=2, intf_list=['', 'left-vn', 'right-vn']) st.params['image_name'] = None self.vm_manager.create_service(st, si) self.log_mock.error.assert_called_with("Image not present in %s" % ((':').join(st.fq_name))) def test_missing_image_in_nova(self): test_utils.create_test_project('fake-domain:fake-project') test_utils.create_test_security_group('fake-domain:fake-project:default') test_utils.create_test_virtual_network('fake-domain:fake-project:left-vn') test_utils.create_test_virtual_network('fake-domain:fake-project:right-vn') st = test_utils.create_test_st(name='vm-template', virt_type='virtual-machine', intf_list=[['management', False], ['left', True], ['right', False]]) si = test_utils.create_test_si(name='vm-instance', count=2, intf_list=['', 'left-vn', 'right-vn']) def nova_oper(resource, oper, proj_name, **kwargs): if resource == 'images' and oper == 'find': return None else: return mock.MagicMock() self.nova_mock.oper = nova_oper self.vm_manager.create_service(st, si) self.log_mock.error.assert_called_with("Image not found %s" % si.image) def test_nova_vm_create_fail(self): test_utils.create_test_project('fake-domain:fake-project') test_utils.create_test_security_group('fake-domain:fake-project:default') test_utils.create_test_virtual_network('fake-domain:fake-project:left-vn') test_utils.create_test_virtual_network('fake-domain:fake-project:right-vn') st = test_utils.create_test_st(name='vm-template', virt_type='virtual-machine', intf_list=[['management', False], ['left', True], ['right', False]]) si = test_utils.create_test_si(name='vm-instance', count=2, intf_list=['', 'left-vn', 'right-vn']) def nova_oper(resource, oper, proj_name, **kwargs): if resource == 'servers' and oper == 'create': return None else: return mock.MagicMock() self.nova_mock.oper = nova_oper self.vm_manager.create_service(st, si) self.log_mock.error.assert_any_call(test_utils.AnyStringWith('Nova vm create failed')) def test_missing_flavor_in_template(self): test_utils.create_test_project('fake-domain:fake-project') test_utils.create_test_security_group('fake-domain:fake-project:default') test_utils.create_test_virtual_network('fake-domain:fake-project:left-vn') test_utils.create_test_virtual_network('fake-domain:fake-project:right-vn') st = test_utils.create_test_st(name='vm-template', virt_type='virtual-machine', intf_list=[['management', False], ['left', True], ['right', False]]) si = test_utils.create_test_si(name='vm-instance', count=2, intf_list=['', 'left-vn', 'right-vn']) def nova_oper(resource, oper, proj_name, **kwargs): if resource == 'flavors' and oper == 'find': return None else: return mock.MagicMock() self.nova_mock.oper = nova_oper st.params['flavor'] = None self.vm_manager.create_service(st, si) self.log_mock.error.assert_called_with(test_utils.AnyStringWith("Flavor not found")) def test_availability_zone_setting(self): test_utils.create_test_project('fake-domain:fake-project') test_utils.create_test_security_group('fake-domain:fake-project:default') test_utils.create_test_virtual_network('fake-domain:fake-project:left-vn') test_utils.create_test_virtual_network('fake-domain:fake-project:right-vn') st = test_utils.create_test_st(name='vm-template', virt_type='virtual-machine', intf_list=[['management', False], ['left', True], ['right', False]]) si = test_utils.create_test_si(name='vm-instance', count=2, intf_list=['', 'left-vn', 'right-vn']) def nova_oper(resource, oper, proj_name, **kwargs): if resource == 'servers' and oper == 'create': nova_vm = test_utils.FakeNovaServer('fake-vm-uuid', kwargs['name']) return nova_vm else: return mock.MagicMock() self.nova_mock.oper = nova_oper st.params['availability_zone_enable'] = True si.params['availability_zone'] = 'test-availability-zone' self.vm_manager.create_service(st, si) self.assertTrue(si.availability_zone, 'test-availability-zone') def test_network_config_validation(self): test_utils.create_test_project('fake-domain:fake-project') test_utils.create_test_security_group('fake-domain:fake-project:default') test_utils.create_test_virtual_network('fake-domain:fake-project:left-vn') test_utils.create_test_virtual_network('fake-domain:fake-project:right-vn') st = test_utils.create_test_st(name='vm-template', virt_type='virtual-machine', intf_list=[['management', False], ['left', True], ['right', False]]) si = test_utils.create_test_si(name='vm-instance', count=2, intf_list=['', 'left-vn', 'right-vn']) st.params['interface_type'] = [] self.vm_manager.create_service(st, si) self.log_mock.notice.assert_called_with("Interface list empty for ST %s SI %s" % ((':').join(st.fq_name), (':').join(si.fq_name))) def test_virtual_machine_exists(self): test_utils.create_test_project('fake-domain:fake-project') test_utils.create_test_security_group('fake-domain:fake-project:default') test_utils.create_test_virtual_network('fake-domain:fake-project:left-vn') test_utils.create_test_virtual_network('fake-domain:fake-project:right-vn') st = test_utils.create_test_st(name='vm-template', virt_type='virtual-machine', intf_list=[['management', False], ['left', True], ['right', False]]) si = test_utils.create_test_si(name='vm-instance', count=2, intf_list=['', 'left-vn', 'right-vn']) def nova_oper(resource, oper, proj_name, **kwargs): if resource == 'servers' and oper == 'create': nova_vm = test_utils.FakeNovaServer(kwargs['name'], kwargs['name']) return nova_vm else: return mock.MagicMock() self.nova_mock.oper = nova_oper self.mocked_vnc.virtual_machine_create = test_utils.vm_create self.vm_manager.create_service(st, si) self.log_mock.info.assert_any_call(test_utils.AnyStringWith('Launching VM :')) self.log_mock.info.assert_any_call(test_utils.AnyStringWith('Created VM :')) self.log_mock.info.assert_any_call(test_utils.AnyStringWith(si.name)) self.log_mock.reset_mock() self.vm_manager.create_service(st, si) self.assertTrue(self.log_mock.info.call_count, 1) def test_virtual_machine_static_routes(self): test_utils.create_test_project('fake-domain:fake-project') test_utils.create_test_security_group('fake-domain:fake-project:default') test_utils.create_test_virtual_network('fake-domain:fake-project:left-vn') test_utils.create_test_virtual_network('fake-domain:fake-project:right-vn') st = test_utils.create_test_st(name='vm-template', virt_type='virtual-machine', intf_list=[['management', False], ['left', True, True], ['right', False]]) si = test_utils.create_test_si(name='vm-instance', count=2, intf_list=['', 'left-vn', 'right-vn']) def nova_oper(resource, oper, proj_name, **kwargs): if resource == 'servers' and oper == 'create': nova_vm = test_utils.FakeNovaServer('fake-vm-uuid', kwargs['name']) return nova_vm else: return mock.MagicMock() self.nova_mock.oper = nova_oper self.vm_manager.create_service(st, si) self.mocked_vnc.virtual_machine_create.assert_any_call(test_utils.VMObjMatcher(1)) self.mocked_vnc.virtual_machine_create.assert_any_call(test_utils.VMObjMatcher(2)) ``` #### File: mockzoo/mockzoo/mockzoo.py ```python import os import subprocess import logging import socket from kazoo.client import KazooClient logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') zookeeper_version = 'zookeeper-3.4.5' zookeeper_dl = '/zookeeper-3.4.5.tar.gz' zookeeper_bdir = '/tmp/cache-' + os.environ['USER'] + '-systemless_test' def start_zoo(cport): ''' Client uses this function to start an instance of zookeeper Arguments: cport : An unused TCP port for zookeeper to use as the client port ''' if not os.path.exists(zookeeper_bdir): output,_ = call_command_("mkdir " + zookeeper_bdir) zookeeper_download = 'wget -O ' + zookeeper_bdir + zookeeper_dl + \ ' https://github.com/Juniper/contrail-third-party-cache/blob/master/zookeeper' + \ zookeeper_dl + '?raw=true' if not os.path.exists(zookeeper_bdir + zookeeper_dl): process = subprocess.Popen(zookeeper_download.split(' ')) process.wait() if process.returncode is not 0: logging.info('Cannot download Zk: %s' % zookeeper_download) return False basefile = zookeeper_version cassbase = "/tmp/zoo.%s.%d/" % (os.getenv('USER', 'None'), cport) confdir = cassbase + basefile + "/conf/" output,_ = call_command_("mkdir " + cassbase) logging.info('Installing zookeeper in ' + cassbase) os.system("cat " + zookeeper_bdir + zookeeper_dl + " | tar -xpzf - -C " + cassbase) output,_ = call_command_("cp " + confdir + "zoo_sample.cfg " + confdir + "zoo.cfg") logging.info('zookeeper Client Port %d' % cport) replace_string_(confdir + "zoo.cfg", \ [("dataDir=/tmp/zookeeper", "dataDir="+cassbase), ("clientPort=2181", "clientPort="+str(cport))]) replace_string_(cassbase + basefile + "/bin/zkServer.sh", \ [('_ZOO_DAEMON_OUT="$ZOO_LOG_DIR/', '_ZOO_DAEMON_OUT="%s' % cassbase)]) output,_ = call_command_("chmod +x " + cassbase + basefile + "/bin/zkServer.sh") output,_ = call_command_(cassbase + basefile + "/bin/zkServer.sh start") zk = KazooClient(hosts='127.0.0.1:'+str(cport)) try: zk.start() except: logging.info("Zookeeper client cannot connect. Zk logfile below:") with open(cassbase+"zookeeper.out", 'r') as fin: logging.info(fin.read()) return False zk.stop() return True def stop_zoo(cport): ''' Client uses this function to stop an instance of zookeeper This will only work for zookeeper instances that were started by this module Arguments: cport : The Client Port for the instance of zookeper be stopped ''' cassbase = "/tmp/zoo.%s.%d/" % (os.getenv('USER', 'None'), cport) basefile = zookeeper_version logging.info('Killing zookeeper %d' % cport) output,_ = call_command_(cassbase + basefile + '/bin/zkServer.sh stop') output,_ = call_command_("rm -rf " + cassbase) def replace_string_(filePath, findreplace): "replaces all findStr by repStr in file filePath" print(filePath) tempName=filePath+'~~~' input = open(filePath) output = open(tempName,'w') s=input.read() for couple in findreplace: outtext=s.replace(couple[0],couple[1]) s=outtext output.write(outtext) output.close() input.close() os.rename(tempName,filePath) def call_command_(command): process = subprocess.Popen(command.split(' '), stdout=subprocess.PIPE, stderr=subprocess.PIPE) return process.communicate() if __name__ == "__main__": cs = socket.socket(socket.AF_INET, socket.SOCK_STREAM) cs.bind(("",0)) cport = cs.getsockname()[1] cs.close() start_zoo(cport) ``` #### File: kube-manager/kube_manager/kube_manager.py ```python import random import os import sys import time import gc import traceback import greenlet from gevent.queue import Queue import gevent from cfgm_common.vnc_amqp import VncAmqpHandle from cfgm_common.zkclient import ZookeeperClient from .common import logger as common_logger from .common import args as kube_args from .kube import ( kube_monitor, namespace_monitor, pod_monitor, service_monitor, network_policy_monitor, endpoint_monitor, ingress_monitor, network_monitor ) from .vnc import config_db from .vnc import reaction_map from .vnc import vnc_kubernetes from .sandesh.kube_introspect import ttypes as introspect class KubeNetworkManager(object): _kube_network_manager = None def __init__(self, args=None, logger=None, kube_api_connected=False, queue=None, vnc_kubernetes_config_dict=None, is_master=True): self.q = queue if queue else Queue() self.args = args self.logger = logger self.is_master = is_master # All monitors supported by this manager. self.monitors = {} self.kube = None self.greenlets = [] while not kube_api_connected: try: self.kube = kube_monitor.KubeMonitor( args=self.args, logger=self.logger, q=self.q) self.monitors['namespace'] = namespace_monitor.NamespaceMonitor( args=self.args, logger=self.logger, q=self.q) self.monitors['network'] = \ network_monitor.NetworkMonitor( args=self.args, logger=self.logger, q=self.q) self.monitors['pod'] = pod_monitor.PodMonitor( args=self.args, logger=self.logger, q=self.q) self.monitors['service'] = service_monitor.ServiceMonitor( args=self.args, logger=self.logger, q=self.q) self.monitors['network_policy'] =\ network_policy_monitor.NetworkPolicyMonitor( args=self.args, logger=self.logger, q=self.q) self.monitors['endpoint'] = \ endpoint_monitor.EndPointMonitor( args=self.args, logger=self.logger, q=self.q) self.monitors['ingress'] = \ ingress_monitor.IngressMonitor( args=self.args, logger=self.logger, q=self.q) kube_api_connected = True except Exception: # FIXME: Except clause is too broad time.sleep(30) # Register all the known monitors. for monitor in list(self.monitors.values()): monitor.register_monitor() self.vnc = vnc_kubernetes.VncKubernetes( args=self.args, logger=self.logger, q=self.q, kube=self.kube, vnc_kubernetes_config_dict=vnc_kubernetes_config_dict) # end __init__ def _kube_object_cache_enabled(self): return self.args.kube_object_cache == 'True' def launch_timer(self): self.logger.info("KubeNetworkManager - kube_timer_interval(%ss)" % self.args.kube_timer_interval) time.sleep(int(self.args.kube_timer_interval)) while True: gevent.sleep(int(self.args.kube_timer_interval)) try: self.timer_callback() except Exception: # FIXME: Except clause is too broad pass def timer_callback(self): self.vnc.vnc_timer() def start_tasks(self): self.logger.info("Starting all tasks.") self.greenlets = [gevent.spawn(self.vnc.vnc_process)] for monitor in list(self.monitors.values()): self.greenlets.append(gevent.spawn(monitor.event_callback)) if not self.args.kube_timer_interval.isdigit(): self.logger.emergency("set seconds for kube_timer_interval " "in contrail-kubernetes.conf. \ example: kube_timer_interval=60") sys.exit() if int(self.args.kube_timer_interval) > 0: self.greenlets.append(gevent.spawn(self.launch_timer)) gevent.joinall(self.greenlets) @staticmethod def reset(): for cls in list(config_db.DBBaseKM.get_obj_type_map().values()): cls.reset() @classmethod def get_instance(cls): return cls._kube_network_manager @classmethod def destroy_instance(cls): inst = cls.get_instance() if inst is None: return inst.logger.sandesh_uninit() for gl in inst.greenlets: gl.kill() inst.greenlets = [] inst.vnc.destroy_instance() inst.vnc = None inst.q = None KubeNetworkManager._kube_network_manager = None @classmethod def sandesh_handle_greenlet_stack_list_request(cls, request): greenlets = [introspect.KubeGreenletStackInstance(stack=stack) for stack in [traceback.format_stack(ob.gr_frame) for ob in gc.get_objects() if isinstance(ob, greenlet.greenlet)]] resp = introspect.KubeGreenletStackListResp(greenlets=greenlets) resp.response(request.context()) @classmethod def sandesh_handle_kube_api_connection_status_request(cls, request): statuses = { 'endpoint_monitor': False, 'ingress_monitor': False, 'namespace_monitor': False, 'network_policy_monitor': False, 'pod_monitor': False, 'service_monitor': False } kube_manager = cls.get_instance() if kube_manager is not None: for key, value in list(kube_manager.monitors.items()): statuses[key + '_monitor'] = value._is_kube_api_server_alive() response = introspect.KubeApiConnectionStatusResp( connections=introspect.KubeApiConnections(**statuses)) response.response(request.context()) @classmethod def sandesh_handle_mastership_status_request(cls, request): kube_manager = cls.get_instance() response = introspect.MastershipStatusResp( is_master=(kube_manager.is_master if kube_manager else False)) response.response(request.context()) def run_kube_manager(km_logger, args, kube_api_skip, event_queue, vnc_kubernetes_config_dict=None): km_logger.notice("Elected master kube-manager node. Initializing...") km_logger.introspect_init() kube_nw_mgr = KubeNetworkManager( args, km_logger, kube_api_connected=kube_api_skip, queue=event_queue, vnc_kubernetes_config_dict=vnc_kubernetes_config_dict, is_master=True) KubeNetworkManager._kube_network_manager = kube_nw_mgr # Register introspect handlers introspect.KubeGreenletStackList.handle_request = \ KubeNetworkManager.sandesh_handle_greenlet_stack_list_request introspect.KubeApiConnectionStatus.handle_request =\ KubeNetworkManager.sandesh_handle_kube_api_connection_status_request introspect.MastershipStatus.handle_request =\ KubeNetworkManager.sandesh_handle_mastership_status_request kube_nw_mgr.start_tasks() def main(args_str=None, kube_api_skip=False, event_queue=None, vnc_kubernetes_config_dict=None): _zookeeper_client = None args = kube_args.parse_args(args_str) client_pfx = '' zk_path_pfx = '' if args.cluster_id: client_pfx += args.cluster_id + '-' zk_path_pfx += args.cluster_id + '/' client_pfx += args.cluster_name + '-' zk_path_pfx += args.cluster_name + '/' # randomize collector list args.random_collectors = args.collectors if args.collectors: args.random_collectors = random.sample(args.collectors, len(args.collectors)) km_logger = common_logger.KubeManagerLogger(args, http_server_port=-1) if args.nested_mode == '0': # Initialize AMQP handler then close it to be sure remain queue of a # precedent run is cleaned rabbitmq_cfg = kube_args.rabbitmq_args(args) try: vnc_amqp = VncAmqpHandle( km_logger._sandesh, km_logger, config_db.DBBaseKM, reaction_map.REACTION_MAP, client_pfx + 'kube_manager', rabbitmq_cfg, args.host_ip ) vnc_amqp.establish() vnc_amqp.close() except Exception: # FIXME: Except clause is too broad pass finally: km_logger.debug("Removed remained AMQP queue") # Ensure zookeeper is up and running before starting kube-manager _zookeeper_client = ZookeeperClient(client_pfx + "kube-manager", args.zk_server_ip, args.host_ip) km_logger.notice("Waiting to be elected as master...") _zookeeper_client.master_election( zk_path_pfx + "kube-manager", os.getpid(), run_kube_manager, km_logger, args, kube_api_skip, event_queue, vnc_kubernetes_config_dict) else: # nested mode, skip zookeeper mastership check run_kube_manager(km_logger, args, kube_api_skip, event_queue, vnc_kubernetes_config_dict) if __name__ == '__main__': main() ``` #### File: mesos_manager/vnc/vnc_common.py ```python from __future__ import absolute_import from builtins import object from .vnc_mesos_config import VncMesosConfig as vnc_mesos_config from vnc_api.vnc_api import (KeyValuePair,KeyValuePairs) from .config_db import DBBaseMM class VncCommon(object): """VNC mesos common functionality. """ def __init__(self, mesos_obj_kind): self.annotations = {} self.annotations['kind'] = mesos_obj_kind def get_annotations(self): return self.annotations ``` #### File: dns/scripts/disassociate_virtual_dns.py ```python from __future__ import print_function from future import standard_library standard_library.install_aliases() from builtins import object import sys import argparse from six.moves import configparser from provision_dns import DnsProvisioner from requests.exceptions import ConnectionError class DisassociateVirtualDns(object): def __init__(self, args_str = None): self._args = None if not args_str: args_str = ' '.join(sys.argv[1:]) self._parse_args(args_str) try: dp_obj = DnsProvisioner(self._args.admin_user, self._args.admin_password, self._args.admin_tenant_name, self._args.api_server_ip, self._args.api_server_port) except ConnectionError: print('Connection to API server failed ') return dp_obj.disassociate_vdns_from_ipam(self._args.ipam_fqname, self._args.vdns_fqname) #end __init__ def _parse_args(self, args_str): ''' Eg. python disassociate_virtual_dns.py --ipam_fqname default-domain:demo:ipam1 --vdns_fqname default-domain:vdns2 ''' # Source any specified config/ini file # Turn off help, so we print all options in response to -h conf_parser = argparse.ArgumentParser(add_help = False) args, remaining_argv = conf_parser.parse_known_args(args_str.split()) defaults = { 'api_server_ip' : '127.0.0.1', 'api_server_port' : '8082', 'admin_user': None, 'admin_password': None, 'admin_tenant_name': None } # Don't surpress add_help here so it will handle -h parser = argparse.ArgumentParser( # Inherit options from config_parser parents=[conf_parser], # print script description with -h/--help description=__doc__, # Don't mess with format of description formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.set_defaults(**defaults) parser.add_argument("--ipam_fqname", help = "Fully qualified IPAM Name") parser.add_argument("--vdns_fqname", help = "Fully qualified Virtual DNS Name") parser.add_argument("--api_server_ip", help = "IP address of api server") parser.add_argument("--api_server_port", help = "Port of api server") parser.add_argument("--admin_user", help = "Name of keystone admin user") parser.add_argument("--admin_password", help = "Password of <PASSWORD>") parser.add_argument("--admin_tenant_name", help = "Tenamt name for keystone admin user") self._args = parser.parse_args(remaining_argv) #end _parse_args # end class DisassociateVirtualDns def main(args_str = None): DisassociateVirtualDns(args_str) #end main if __name__ == "__main__": main() ``` #### File: src/nodemgr/main.py ```python doc = """\ Node manager listens to process state change events and other flag value change events to provide advanced service management functionality. """ from gevent import monkey import argparse from six.moves.configparser import SafeConfigParser, NoOptionError import gevent import os import socket import sys from pysandesh.gen_py.sandesh.ttypes import SandeshLevel from pysandesh.sandesh_base import Sandesh, SandeshConfig from nodemgr.analytics_nodemgr.event_manager import AnalyticsEventManager from nodemgr.analytics_alarm_nodemgr.event_manager import AnalyticsAlarmEventManager from nodemgr.analytics_snmp_nodemgr.event_manager import AnalyticsSNMPEventManager from nodemgr.config_nodemgr.event_manager import ConfigEventManager from nodemgr.control_nodemgr.event_manager import ControlEventManager from nodemgr.analytics_database_nodemgr.event_manager import AnalyticsDatabaseEventManager from nodemgr.config_database_nodemgr.event_manager import ConfigDatabaseEventManager from nodemgr.vrouter_nodemgr.event_manager import VrouterEventManager monkey.patch_all() node_properties = { 'contrail-analytics': { 'config_file': '/etc/contrail/contrail-analytics-nodemgr.conf', 'event_manager': AnalyticsEventManager, 'unit_names': [ 'contrail-collector', 'contrail-analytics-api', 'contrail-analytics-nodemgr' ], }, 'contrail-analytics-snmp': { 'config_file': '/etc/contrail/contrail-analytics-snmp-nodemgr.conf', 'event_manager': AnalyticsSNMPEventManager, 'unit_names': [ 'contrail-snmp-collector', 'contrail-topology', 'contrail-analytics-snmp-nodemgr', ], }, 'contrail-analytics-alarm': { 'config_file': '/etc/contrail/contrail-analytics-alarm-nodemgr.conf', 'event_manager': AnalyticsAlarmEventManager, 'unit_names': [ 'contrail-alarm-gen', 'kafka', 'contrail-analytics-alarm-nodemgr', ], }, 'contrail-config': { 'config_file': '/etc/contrail/contrail-config-nodemgr.conf', 'event_manager': ConfigEventManager, 'unit_names': [ 'contrail-api', 'contrail-schema', 'contrail-svc-monitor', 'contrail-device-manager', 'contrail-config-nodemgr' ], }, 'contrail-config-database': { 'config_file': '/etc/contrail/contrail-config-database-nodemgr.conf', 'event_manager': ConfigDatabaseEventManager, 'unit_names': [ 'cassandra', 'zookeeper', 'contrail-config-database-nodemgr' ], }, 'contrail-control': { 'config_file': '/etc/contrail/contrail-control-nodemgr.conf', 'event_manager': ControlEventManager, 'unit_names': [ 'contrail-control', 'contrail-dns', 'contrail-named', 'contrail-control-nodemgr' ], }, 'contrail-vrouter': { 'config_file': '/etc/contrail/contrail-vrouter-nodemgr.conf', 'event_manager': VrouterEventManager, 'unit_names': [ 'contrail-vrouter-agent', 'contrail-vrouter-nodemgr' ], }, 'contrail-database': { 'config_file': '/etc/contrail/contrail-database-nodemgr.conf', 'event_manager': AnalyticsDatabaseEventManager, 'unit_names': [ 'cassandra', 'contrail-query-engine', 'contrail-database-nodemgr' ], }, } def print_usage_and_exit(): print(doc) sys.exit(255) def main(args_str=' '.join(sys.argv[1:])): # Parse Arguments node_parser = argparse.ArgumentParser(add_help=False) node_parser.add_argument("--nodetype", default='contrail-analytics', help='Type of node which nodemgr is managing') try: args, remaining_argv = node_parser.parse_known_args(args_str.split()) except Exception: print_usage_and_exit() default = {'rules': '', 'collectors': [], 'db_port': '9042', 'db_jmx_port': '7199', 'db_user': None, 'db_password': None, 'db_use_ssl': False, 'minimum_diskgb': 256, 'corefile_path': '/var/crashes', 'cassandra_repair_interval': 24, 'cassandra_repair_logdir': '/var/log/contrail/', 'log_local': False, 'log_level': SandeshLevel.SYS_DEBUG, 'log_category': '', 'log_file': Sandesh._DEFAULT_LOG_FILE, 'use_syslog': False, 'syslog_facility': Sandesh._DEFAULT_SYSLOG_FACILITY, 'hostname': None } try: default['hostip'] = socket.gethostbyname(socket.getfqdn()) except Exception: pass default.update(SandeshConfig.get_default_options(['DEFAULTS'])) sandesh_opts = SandeshConfig.get_default_options() node_type = args.nodetype if node_type not in node_properties: sys.stderr.write("Node type '" + str(node_type) + "' is incorrect\n") sys.exit(1) config_file_path = "" config_file_path += node_properties[node_type]['config_file'] if (os.path.exists(config_file_path) is False): sys.stderr.write("config file '" + config_file_path + "' is not present\n") sys.exit(1) config = SafeConfigParser() config.read([config_file_path]) if 'DEFAULTS' in config.sections(): default.update(dict(config.items('DEFAULTS'))) if 'COLLECTOR' in config.sections(): try: collector = config.get('COLLECTOR', 'server_list') default['collectors'] = collector.split() except NoOptionError: pass SandeshConfig.update_options(sandesh_opts, config) parser = argparse.ArgumentParser( parents=[node_parser], formatter_class=argparse.ArgumentDefaultsHelpFormatter) default.update(sandesh_opts) parser.set_defaults(**default) parser.add_argument("--rules", help='Rules file to use for processing events') parser.add_argument("--collectors", nargs='+', help='Collector addresses in format' + 'ip1:port1 ip2:port2') parser.add_argument("--log_local", action="store_true", help="Enable local logging of sandesh messages") parser.add_argument( "--log_level", help="Severity level for local logging of sandesh messages") parser.add_argument( "--log_category", help="Category filter for local logging of sandesh messages") parser.add_argument("--log_file", help="Filename for the logs to be written to") parser.add_argument("--use_syslog", action="store_true", help="Use syslog for logging") parser.add_argument("--syslog_facility", help="Syslog facility to receive log lines") parser.add_argument("--corefile_path", help="Location where coredump files are stored") parser.add_argument("--hostname", help="Custom Hostname") SandeshConfig.add_parser_arguments(parser, add_dscp=True) if (node_type == 'contrail-database' or node_type == 'contrail-config-database'): parser.add_argument("--minimum_diskGB", type=int, dest='minimum_diskgb', help="Minimum disk space in GB's") parser.add_argument("--hostip", help="IP address of host") parser.add_argument("--db_port", help="Cassandra DB cql port") parser.add_argument("--db_jmx_port", help="Cassandra DB jmx port") parser.add_argument("--db_user", help="Cassandra DB cql username") parser.add_argument("--db_password", help="Cassandra DB cql password") parser.add_argument("--db_use_ssl", help="Cassandra DB behind SSL or not") parser.add_argument("--cassandra_repair_interval", type=int, help="Time in hours to periodically run " "nodetool repair for cassandra maintenance") parser.add_argument("--cassandra_repair_logdir", help="Directory for storing repair logs") try: _args = parser.parse_args(remaining_argv) except Exception: print_usage_and_exit() _args.config_file_path = config_file_path _args.db_use_ssl = (str(_args.db_use_ssl).lower() == 'true') # done parsing arguments # TODO: restore rule_file logic somehow if needed for microservices # rule_file = _args.rules unit_names = node_properties[node_type]['unit_names'] event_manager = node_properties[node_type]['event_manager'](_args, unit_names) event_manager.send_init_data() gevent.joinall([ gevent.spawn(event_manager.runforever), gevent.spawn( event_manager.run_periodically( event_manager.do_periodic_events, 60)) ]) if __name__ == '__main__': main() ``` #### File: opencontrail-vrouter-netns/opencontrail_vrouter_netns/vrouter_control.py ```python from contrail_vrouter_api.vrouter_api import ContrailVRouterApi def interface_register(vm, vmi, iface_name, project=None, vrouter_api=None): api = vrouter_api or ContrailVRouterApi() mac = vmi.virtual_machine_interface_mac_addresses.mac_address[0] if project: proj_id = project.uuid else: proj_id = None api.add_port(vm.uuid, vmi.uuid, iface_name, mac, display_name=vm.name, vm_project_id=proj_id) def interface_unregister(vmi_uuid): api = ContrailVRouterApi() api.delete_port(vmi_uuid) ``` #### File: provisioning/contrail_vrouter_provisioning/common.py ```python from __future__ import print_function from __future__ import division from builtins import str from builtins import range from past.utils import old_div import os import socket import netaddr import logging import netifaces import tempfile from contrail_vrouter_provisioning import local from contrail_vrouter_provisioning.base import ContrailSetup from contrail_vrouter_provisioning.network import ComputeNetworkSetup log = logging.getLogger('contrail_vrouter_provisioning.common') def insert_line_to_file(line, file_name, pattern=None): if pattern: local('sed -i \'/%s/d\' %s' % (pattern, file_name), warn_only=True) local('printf "%s\n" >> %s' % (line, file_name)) class CommonComputeSetup(ContrailSetup, ComputeNetworkSetup): def __init__(self, args): super(CommonComputeSetup, self).__init__() self._args = args # Using keystone admin password for nova/neutron if not supplied if not self._args.neutron_password: self._args.neutron_password = self._args.keystone_admin_password self.multi_net = False if self._args.non_mgmt_ip: self.multi_net = True self.vhost_ip = self._args.non_mgmt_ip else: self.vhost_ip = self._args.self_ip self.dev = None # Will be physical device if self._args.physical_interface: # During re-provision/upgrade vhost0 will be present # so vhost0 should be treated as dev, # which is used to get netmask/gateway if 'vhost0' in netifaces.interfaces(): self.dev = 'vhost0' # During intial provision actual interface should be treated as dev # which is used to get netmask/gateway elif self._args.physical_interface in netifaces.interfaces(): self.dev = self._args.physical_interface else: raise KeyError('Interface %s in present' % self._args.physical_interface) else: # Get the physical device and provision status # if reprov is False, it means fresh install # True, it means reprovision (self.dev, self.reprov) = self.get_device_info(self.vhost_ip) def fixup_config_files(self): self.add_dev_tun_in_cgroup_device_acl() self.fixup_contrail_vrouter_agent() self.add_qos_config() self.fixup_contrail_vrouter_nodemgr() self.fixup_contrail_lbaas() def setup_lbaas_prereq(self): if self.pdist in ['centos', 'redhat']: local('sudo groupadd -f nogroup') cmd = "sudo sed -i s/'Defaults requiretty'/'#Defaults " cmd += "requiretty'/g /etc/sudoers" local(cmd) def add_dev_tun_in_cgroup_device_acl(self): # add /dev/net/tun in cgroup_device_acl needed # for type=ethernet interfaces fl = "/etc/libvirt/qemu.conf" ret = local("sudo grep -q '^cgroup_device_acl' %s" % fl, warn_only=True) if ret.failed: if self.pdist in ['centos', 'redhat']: local('sudo echo "clear_emulator_capabilities = 1" >> %s' % fl, warn_only=True) local('sudo echo \'user = "root"\' >> %s' % fl, warn_only=True) local('sudo echo \'group = "root"\' >> %s' % fl, warn_only=True) cmds = ['echo \'cgroup_device_acl = [\' >> %s' % fl, 'echo \' "/dev/null", "/dev/full", "/dev/zero",\'' + ' >> %s' % fl, 'echo \' "/dev/random", "/dev/urandom",\'' + ' >> %s' % fl, 'echo \' "/dev/ptmx", "/dev/kvm", "/dev/kqemu",\'' + ' >> %s' % fl, 'echo \' "/dev/rtc", "/dev/hpet", "/dev/net/tun",\'' + ' >> %s' % fl, 'echo \']\' >> %s' % fl] for cmd in cmds: local('sudo ' + cmd, warn_only=True) self._fixed_qemu_conf = True # add "alias bridge off" in /etc/modprobe.conf for Centos if self.pdist in ['centos', 'redhat']: local('sudo echo "alias bridge off" > /etc/modprobe.conf', warn_only=True) def fixup_contrail_vrouter_nodemgr(self): # Workaround https://bugs.launchpad.net/juniperopenstack/+bug/1681172 cfgfile = '/etc/contrail/contrail-vrouter-nodemgr.conf' if not os.path.isfile(cfgfile): local('sudo touch %s' % cfgfile) collector_list = ' '.join('%s:%s' % (server, '8086') for server in self._args.collectors) self.set_config(cfgfile, 'COLLECTOR', 'server_list', collector_list) self.set_config(cfgfile, 'SANDESH', 'sandesh_ssl_enable', self._args.sandesh_ssl_enable) self.set_config(cfgfile, 'SANDESH', 'introspect_ssl_enable', self._args.introspect_ssl_enable) def setup_hugepages_node(self, dpdk_args): """Setup hugepages on one or list of nodes """ # How many times DPDK inits hugepages (rte_eal_init()) # See function map_all_hugepages() in DPDK DPDK_HUGEPAGES_INIT_TIMES = 2 # get required size of hugetlbfs factor = int(dpdk_args['huge_pages']) print(dpdk_args) if factor == 0: factor = 1 # set number of huge pages memsize = local("sudo grep MemTotal /proc/meminfo |" " tr -s ' ' | cut -d' ' -f 2 | tr -d '\n'", capture=True, warn_only=True) pagesize = local("sudo grep Hugepagesize /proc/meminfo" " | tr -s ' 'i | cut -d' ' -f 2 | tr -d '\n'", capture=True, warn_only=True) reserved = local("sudo grep HugePages_Total /proc/meminfo" " | tr -s ' 'i | cut -d' ' -f 2 | tr -d '\n'", capture=True, warn_only=True) if (reserved == ""): reserved = "0" requested = old_div((old_div((int(memsize) * factor), 100)), int(pagesize)) if (requested > int(reserved)): pattern = "^vm.nr_hugepages =" line = "vm.nr_hugepages = %d" % requested insert_line_to_file(pattern=pattern, line=line, file_name='/etc/sysctl.conf') current_max_map_count = local("sudo sysctl -n " "vm.max_map_count") if current_max_map_count == "": current_max_map_count = 0 current_huge_pages = max(int(requested), int(reserved)) requested_max_map_count = (DPDK_HUGEPAGES_INIT_TIMES * int(current_huge_pages)) if int(requested_max_map_count) > int(current_max_map_count): pattern = "^vm.max_map_count =" line = "vm.max_map_count = %d" % requested_max_map_count insert_line_to_file(pattern=pattern, line=line, file_name='/etc/sysctl.conf') local('sudo sysctl -p', warn_only=True) mounted = local("sudo mount | grep hugetlbfs | cut -d' ' -f 3", capture=True, warn_only=False) if (mounted != ""): print("hugepages already mounted on %s" % mounted) else: local("sudo mkdir -p /hugepages", warn_only=False) pattern = "^hugetlbfs" line = "hugetlbfs "\ "/hugepages hugetlbfs defaults 0 0" insert_line_to_file(pattern=pattern, line=line, file_name='/etc/fstab') local("sudo mount -t hugetlbfs hugetlbfs /hugepages", warn_only=False) def search_and_replace(self, lvalue, rvalue, position, vrouter_file): """Search and replace strings in the format <key>=<filepath> <args> - 'position' determines where the <rvalue> needs to be inserted - If it is "Begin", the string becomes: <key>=<rvalue> <filepath> <args> - If it is "End", the string becomes: <key>=<filepath> <args> <rvalue> - If <rvalue> already exists in <args>, it deletes it first - If <rvalue> already preceeds <filepath> it deletes it first Input: - lvalue = <key> - rvalue = <arg> to be searched and replaced - position = Begin/End - vrouter_file = path of vrouter file """ if position == "Begin": regexp_del = r"'s/\(^ *%s *=\)\(.*\)\( \/.*\)/\1\3/'" % (lvalue) regexp_add = r"'s/\(^%s=\)\(.*\)/\1%s \2/'" % (lvalue, rvalue) regexp = "sed -i.bak -e %s -e %s %s" \ % (regexp_del, regexp_add, vrouter_file) local(regexp, warn_only=False) elif position == "End": regexp_del = r"'s/\(^ *%s *=.*\) \(%s [^ ]*\)\(.*\) *$/\1\3/'" \ % (lvalue, rvalue.split(' ')[0]) regexp_add = r"'s/\(^ *%s *=.*\)/\1 %s/'" % (lvalue, rvalue) regexp = "sed -i.bak -e %s -e %s %s" \ % (regexp_del, regexp_add, vrouter_file) local(regexp, warn_only=False) def setup_coremask_node(self, dpdk_args): """Setup core mask on one or list of nodes """ try: coremask = dpdk_args['coremask'] except KeyError: raise RuntimeError("Core mask for host %s is not defined." % (dpdk_args)) if not coremask: raise RuntimeError("Core mask for host %s is not defined." % dpdk_args) # if a list of cpus is provided, -c flag must be passed to taskset if (',' in coremask) or ('-' in coremask): taskset_param = ' -c' else: taskset_param = '' # supported coremask format: hex: (0x3f); list: (0,3-5), (0,1,2,3,4,5) # try taskset on a dummy command if local('sudo taskset%s %s true' % (taskset_param, coremask), capture=True, warn_only=False).succeeded: self.search_and_replace(self.command_key, '\/usr\/bin\/taskset ' + coremask, "Begin", self.vrouter_file) else: raise RuntimeError("Error: Core mask %s for host %s is invalid." % (coremask, dpdk_args)) def setup_vm_coremask_node(self, q_coremask, dpdk_args): """ Setup CPU affinity for QEMU processes based on vRouter/DPDK core affinity on a given node. Supported core mask format: vRouter/DPDK: hex (0x3f), list (0,1,2,3,4,5), range (0,3-5) QEMU/nova.conf: list (0,1,2,3,4,5), range (0,3-5), exclusion (0-5,^4) QEMU needs to be pinned to different cores than vRouter. Because of different core mask formats, it is not possible to just set QEMU to <not vRouter cores>. This function takes vRouter core mask from testbed, changes it to list of cores and removes them from list of all possible cores (generated as a list from 0 to N-1, where N = number of cores). This is changed back to string and passed to openstack-config. """ try: vr_coremask = dpdk_args['coremask'] except KeyError: raise RuntimeError("vRouter core mask for " "host %s is not defined." % (dpdk_args)) if not vr_coremask: raise RuntimeError("vRouter core mask for host " "%s is not defined." % dpdk_args) if not q_coremask: try: cpu_count = int(local( 'sudo grep -c processor /proc/cpuinfo', capture=True)) except ValueError: log.info("Cannot count CPUs on host %s. VM core " "mask cannot be computed." % (dpdk_args)) raise if not cpu_count or cpu_count == -1: raise ValueError("Cannot count CPUs on host %s. " "VM core mask cannot be computed." % (dpdk_args)) all_cores = [x for x in range(cpu_count)] if 'x' in vr_coremask: # String containing hexadecimal mask. vr_coremask = int(vr_coremask, 16) """ Convert hexmask to a string with numbers of cores to be used, eg. 0x19 -> 11001 -> 10011 -> [(0,1), (1,0), (2,0), (3,1), (4,1)] -> '0,3,4' """ vr_coremask = [ x[0] for x in enumerate(reversed(bin(vr_coremask)[2:])) if x[1] == '1'] # Range or list of cores. elif (',' in vr_coremask) or ('-' in vr_coremask): # Get list of core numbers and/or core ranges. vr_coremask = vr_coremask.split(',') # Expand ranges like 0-4 to 0, 1, 2, 3, 4. vr_coremask_expanded = [] for rng in vr_coremask: if '-' in rng: # If it's a range - expand it. a, b = rng.split('-') vr_coremask_expanded += list(range(int(a), int(b) + 1)) else: # If not, just add to the list. vr_coremask_expanded.append(int(rng)) vr_coremask = vr_coremask_expanded else: # A single core. try: single_core = int(vr_coremask) except ValueError: log.error("vRouter core mask %s for host %s is invalid." % (vr_coremask, dpdk_args)) raise vr_coremask = [] vr_coremask.append(single_core) # From list of all cores remove list of vRouter cores # and stringify. diff = set(all_cores) - set(vr_coremask) q_coremask = ','.join(str(x) for x in diff) # If we have no spare cores for VMs if not q_coremask: raise RuntimeError("Setting QEMU core mask for host %s " "failed - empty string." % (dpdk_args)) # This can fail eg. because openstack-config is not present. # There's no sanity check in openstack-config. if local("sudo crudini --set /etc/nova/nova.conf " "DEFAULT vcpu_pin_set %s" % q_coremask, capture=True, warn_only=False).succeeded: log.info("QEMU coremask on host %s set to %s." % (dpdk_args, q_coremask)) else: raise RuntimeError("Error: setting QEMU core mask %s for " "host %s failed." % (vr_coremask, dpdk_args)) def setup_uio_driver(self, dpdk_args): """Setup UIO driver to use for DPDK (igb_uio, uio_pci_generic or vfio-pci) """ vrouter_agent_file = '/etc/contrail/contrail-vrouter-agent.conf' if 'uio_driver' in dpdk_args: uio_driver = dpdk_args['uio_driver'] if uio_driver == "vfio-pci": self.setup_sriov_grub(uio_driver) else: print("No UIO driver defined for host, skipping...") return if local('sudo modprobe %s' % (uio_driver), capture=True, warn_only=False).succeeded: log.info("Setting UIO driver to %s for host..." % uio_driver) local('sudo contrail-config --set %s DEFAULT '\ 'physical_uio_driver %s' % (vrouter_agent_file, uio_driver)) else: raise RuntimeError("Error: invalid UIO driver %s for host" % (uio_driver)) def dpdk_increase_vrouter_limit(self, vrouter_module_params_args): """Increase the maximum number of mpls label and nexthop on tsn node""" vr_params = { 'flow_entries': '524288', 'oflow_entries': '3000', 'mpls_labels': '5120', 'nexthops': '65536', 'vrfs': '5120', 'macs': {'bridge_entries': '262144'}, } for param in vr_params: if isinstance(vr_params[param], dict): for p in vr_params[param]: param_name = p param_val = vrouter_module_params_args.setdefault( param, vr_params[param][p]) else: param_name = param param_val = vrouter_module_params_args.setdefault( param, vr_params[param]) param = "--vr_" + param_name + " " + param_val self.search_and_replace(self.command_key, param, "End", self.vrouter_file) def fixup_contrail_vrouter_agent(self): compute_ip = self._args.self_ip non_mgmt_gw = self._args.non_mgmt_gw vgw_public_subnet = self._args.vgw_public_subnet vgw_public_vn_name = self._args.vgw_public_vn_name vgw_intf_list = self._args.vgw_intf_list vgw_gateway_routes = self._args.vgw_gateway_routes compute_as_gateway = self._args.compute_as_gateway flow_thread_count = self._args.flow_thread_count self.mac = None # Fresh install if self.dev and not self.reprov: self.mac = netifaces.ifaddresses(self.dev)[netifaces.AF_LINK][0][ 'addr'] if not self.mac: raise KeyError('Interface %s Mac %s' % (str(self.dev), str(self.mac))) self.netmask = netifaces.ifaddresses(self.dev)[ netifaces.AF_INET][0]['netmask'] if self.multi_net: self.gateway = non_mgmt_gw else: self.gateway = self.find_gateway(self.dev) self.cidr = netaddr.IPNetwork('%s/%s' % (self.vhost_ip, self.netmask)) elif self.dev: # Reprovision cfg_file = "/etc/contrail/contrail-vrouter-agent.conf" section = "DEFAULT" key = "physical_interface_mac" self.mac = self.get_config(cfg_file, section, key).strip() section = "VIRTUAL-HOST-INTERFACE" key = "ip" self.cidr = netaddr.IPNetwork(self.get_config(cfg_file, section, key).strip()) section = "VIRTUAL-HOST-INTERFACE" key = "gateway" self.gateway = self.get_config(cfg_file, section, key).strip() self.netmask = "255.255.255.0" if self.dev: if vgw_public_subnet: os.chdir(self._temp_dir_name) # Manipulating the string to use in agent_param vgw_public_subnet_str = [] for i in vgw_public_subnet[1:-1].split(";"): j = i[1:-1].split(",") j = ";".join(j) vgw_public_subnet_str.append(j) vgw_public_subnet_str = str(tuple( vgw_public_subnet_str)).replace("'", "") vgw_public_subnet_str = vgw_public_subnet_str.replace(" ", "") vgw_intf_list_str = str(tuple( vgw_intf_list[1:-1].split(";"))).replace(" ", "") cmds = ["sudo sed 's@dev=.*@dev=%s@g;" % self.dev, "s@vgw_subnet_ip=.*@vgw_subnet_ip=%s@g;" % vgw_public_subnet_str, "s@vgw_intf=.*@vgw_intf=%s@g'" % vgw_intf_list_str, " /etc/contrail/agent_param.tmpl > agent_param.new"] local(' '.join(cmds)) local("sudo mv agent_param.new /etc/contrail/agent_param") else: os.chdir(self._temp_dir_name) cmds = ["sudo sed 's/dev=.*/dev=%s/g' " % self.dev, "/etc/contrail/agent_param.tmpl > agent_param.new"] local(''.join(cmds)) local("sudo mv agent_param.new /etc/contrail/agent_param") vmware_dev = None gateway_mode = None if (self._args.mode == 'vcenter' or self._args.hypervisor == 'vmware'): vmware_dev = self.get_secondary_device(self.dev) if compute_as_gateway == 'server': gateway_mode = "server" # Set template options for DPDK mode pci_dev = "" platform_mode = "default" if self._args.dpdk: dpdk_args = dict( u.split("=") for u in self._args.dpdk.split(",")) log.info(dpdk_args) platform_mode = "dpdk" supervisor_vrouter_file = ('/etc/contrail/' + 'supervisord_vrouter_files/' + 'contrail-vrouter-dpdk.ini') systemd_vrouter_file = ('/lib/systemd/system/' + 'contrail-vrouter-dpdk.service') if os.path.isfile(supervisor_vrouter_file): self.vrouter_file = supervisor_vrouter_file self.command_key = "command" elif os.path.isfile(systemd_vrouter_file): self.vrouter_file = systemd_vrouter_file self.command_key = "ExecStart" else: raise RuntimeError("Vrouter Supervisor/Systemd not found.") self.setup_hugepages_node(dpdk_args) self.setup_coremask_node(dpdk_args) self.setup_vm_coremask_node(False, dpdk_args) self.setup_uio_driver(dpdk_args) if self._args.dpdk and not self.reprov: iface = self.dev if self.is_interface_vlan(self.dev): iface = self.get_physical_interface_of_vlan(self.dev) local("ls /opt/contrail/bin/dpdk_nic_bind.py", warn_only=False) cmd = "sudo /opt/contrail/bin/dpdk_nic_bind.py --status | " cmd += "sudo grep -w %s | cut -d' ' -f 1" % iface.strip() pci_dev = local(cmd, capture=True, warn_only=False) # If there is no PCI address, the device is a bond. # Bond interface in DPDK has zero PCI address. if not pci_dev: pci_dev = "0000:00:00.0" elif self._args.dpdk and self.reprov: cfg_file = "/etc/contrail/contrail-vrouter-agent.conf" section = "DEFAULT" key = "physical_interface_address" pci_dev = self.get_config(cfg_file, section, key).strip() if self.pdist == 'Ubuntu': # Fix /dev/vhost-net permissions. It is required for # multiqueue operation local('sudo echo \'KERNEL=="vhost-net", ' 'GROUP="kvm", MODE="0660"\' > ' '/etc/udev/rules.d/vhost-net.rules', warn_only=True) # The vhost-net module has to be loaded at startup to # ensure the correct permissions while the qemu is being # launched pattern = "vhost-net" line = "vhost-net" insert_line_to_file(pattern=pattern, line=line, file_name='/etc/modules') if not self._args.dpdk: self.setup_vrouter_kmod_hugepages() vrouter_kmod_1G_page = '' vrouter_kmod_2M_page = '' if self._args.vrouter_1G_hugepages != '0': if (os.path.isfile('/mnt/hugepage_1G/vrouter_1G_mem_0')): vrouter_kmod_1G_page = '/mnt/hugepage_1G/vrouter_1G_mem_0' if (os.path.isfile('/mnt/hugepage_1G/vrouter_1G_mem_1')): vrouter_kmod_1G_page = vrouter_kmod_1G_page + ' /mnt/hugepage_1G/vrouter_1G_mem_1' if self._args.vrouter_2M_hugepages != '0': if (os.path.isfile('/mnt/hugepage_2M/vrouter_2M_mem_0')): vrouter_kmod_2M_page = '/mnt/hugepage_2M/vrouter_2M_mem_0' if (os.path.isfile('/mnt/hugepage_2M/vrouter_2M_mem_1')): vrouter_kmod_2M_page = vrouter_kmod_2M_page + ' /mnt/hugepage_2M/vrouter_2M_mem_1' control_servers = ' '.join('%s:%s' % (server, '5269') for server in self._args.control_nodes) dns_servers = ' '.join('%s:%s' % (server, '53') for server in self._args.control_nodes) collector_servers = ' '.join('%s:%s' % (server, '8086') for server in self._args.collectors) if self._args.tsn_evpn_mode and self._args.tsn_servers: tsn_servers = ' '.join(self._args.tsn_servers) else: tsn_servers = '' configs = { 'DEFAULT': { 'platform': platform_mode, 'gateway_mode': gateway_mode or '', 'physical_interface_address': pci_dev, 'physical_interface_mac': self.mac, 'collectors': collector_servers, 'xmpp_auth_enable': self._args.xmpp_auth_enable, 'xmpp_dns_auth_enable': self._args.xmpp_dns_auth_enable, 'tsn_servers': tsn_servers, 'agent_mode': ''}, 'NETWORKS': { 'control_network_ip': compute_ip}, 'VIRTUAL-HOST-INTERFACE': { 'name': 'vhost0', 'ip': str(self.cidr), 'gateway': self.gateway, 'physical_interface': self.dev}, 'HYPERVISOR': { 'type': ('kvm' if self._args.hypervisor == 'libvirt' else self._args.hypervisor), 'vmware_mode': self._args.mode or '', 'vmware_physical_interface': vmware_dev or ''}, 'CONTROL-NODE': { 'servers': control_servers}, 'DNS': { 'servers': dns_servers}, 'SANDESH': { 'sandesh_ssl_enable': self._args.sandesh_ssl_enable, 'introspect_ssl_enable': self._args.introspect_ssl_enable}, 'FLOWS': { 'thread_count': flow_thread_count}, 'METADATA': { 'metadata_proxy_secret': self._args.metadata_secret, 'metadata_use_ssl': self._args.metadata_use_ssl, 'metadata_client_cert': ('/etc/contrail/ssl/certs/server.pem' if self._args.metadata_use_ssl else ''), 'metdata_client_cert_type': ('PEM' if self._args.metadata_use_ssl else ''), 'metadata_client_key': ('/etc/contrail/ssl/private/server-privkey.pem' if self._args.metadata_use_ssl else '')}, 'RESTART': { 'huge_page_2M': vrouter_kmod_2M_page, 'huge_page_1G': vrouter_kmod_1G_page, 'backup_enable': (True if self._args.resource_backup_restore else False), 'backup_dir': ('/var/lib/contrail/backup'), 'backup_file_count': (self._args.backup_file_count), 'backup_idle_timeout': (self._args.backup_idle_timeout), 'restore_enable': (True if self._args.resource_backup_restore else False), 'restore_audit_timeout': (self._args.restore_audit_timeout)}, } # VGW configs if vgw_public_vn_name and vgw_public_subnet: vgw_public_vn_name = vgw_public_vn_name[1:-1].split(';') vgw_public_subnet = vgw_public_subnet[1:-1].split(';') vgw_intf_list = vgw_intf_list[1:-1].split(';') if vgw_gateway_routes is not None: vgw_gateway_routes = vgw_gateway_routes[1:-1].split(';') for i in range(len(vgw_public_vn_name)): ip_blocks = '' if vgw_public_subnet[i].find("[") != -1: for ele in vgw_public_subnet[i][1:-1].split(","): ip_blocks += ele[1:-1] + " " else: ip_blocks += vgw_public_subnet[i] routes = '' if (vgw_gateway_routes is not None and i < len(vgw_gateway_routes)): if vgw_gateway_routes[i] != '[]': if vgw_gateway_routes[i].find("[") != -1: for ele in vgw_gateway_routes[i][1:-1].split( ","): routes += ele[1:-1] + " " else: routes += vgw_gateway_routes[i] configs['GATEWAY-%s' % i] = {'interface': vgw_intf_list[i], 'ip_blocks': ip_blocks, 'routes': routes, 'routing_instance': vgw_public_vn_name[i]} for section, key_vals in list(configs.items()): for key, val in list(key_vals.items()): self.set_config( '/etc/contrail/contrail-vrouter-agent.conf', section, key, val) if self.running_in_container: self.config_vhost0_interface_in_container() else: self.fixup_vhost0_interface_configs() def config_vhost0_interface_in_container(self): if self.reprov: log.info("vhost0 configuration already present") return # Insert vrouter and setup vrouter vifs insert_cmd = "source /opt/contrail/bin/vrouter-functions.sh && " insert_cmd += "insert_vrouter" local(insert_cmd, executable='/bin/bash') # Move ip address from vrouter physical device to vhost config_vhost0_cmd = "ip address delete %s/%s dev %s && " % ( self.vhost_ip, self.cidr.prefixlen, self.dev) config_vhost0_cmd += "ip address add %s/%s dev vhost0 && " % ( self.vhost_ip, self.cidr.prefixlen) config_vhost0_cmd += "ip link set dev vhost0 up" local(config_vhost0_cmd) # Add default gateway to new device as link local if /32 IP Address if self.cidr.prefixlen == 32: local("ip route add unicast %s dev vhost0 scope link" % self.gateway) if not self.multi_net: # Add default gateway to vhost local("ip route add default via %s dev vhost0" % self.gateway) def fixup_contrail_lbaas(self): auth_url = self._args.keystone_auth_protocol + '://' auth_url += self._args.keystone_ip auth_url += ':' + self._args.keystone_auth_port auth_url += '/' + 'v2.0' configs = { 'BARBICAN': { 'admin_tenant_name': 'service', 'admin_user': 'neutron', 'admin_password': <PASSWORD>, 'auth_url': auth_url, 'region': 'RegionOne'} } # Workaround https://bugs.launchpad.net/juniperopenstack/+bug/1681172 cfgfile = '/etc/contrail/contrail-lbaas-auth.conf' if not os.path.isfile(cfgfile): local('sudo touch %s' % cfgfile) for section, key_vals in list(configs.items()): for key, val in list(key_vals.items()): self.set_config(cfgfile, section, key, val) def fixup_vhost0_interface_configs(self): if self.reprov: log.info("fixup_vhost0_interface_configs() not applicable") return if self.pdist in ['centos', 'fedora', 'redhat']: # make ifcfg-vhost0 with open('%s/ifcfg-vhost0' % self._temp_dir_name, 'w') as f: f.write('''#Contrail vhost0 DEVICE=vhost0 ONBOOT=yes BOOTPROTO=none IPV6INIT=no USERCTL=yes IPADDR=%s NETMASK=%s NM_CONTROLLED=no #NETWORK MANAGER BUG WORKAROUND SUBCHANNELS=1,2,3 ''' % (self.vhost_ip, self.netmask)) # Don't set gateway and DNS on vhost0 if on non-mgmt network if not self.multi_net: if self.gateway: f.write('GATEWAY=%s\n' % self.gateway) dns_list = self.get_dns_servers(self.dev) for i, dns in enumerate(dns_list): f.write('DNS%d=%s\n' % (i + 1, dns)) domain_list = self.get_domain_search_list() if domain_list: f.write('DOMAIN="%s"\n' % domain_list) prsv_cfg = [] mtu = self.get_if_mtu(self.dev) if mtu: dcfg = 'MTU=%s' % str(mtu) f.write(dcfg + '\n') prsv_cfg.append(dcfg) f.flush() if self.dev != 'vhost0': src = "%s/ifcfg-vhost0" % self._temp_dir_name dst = "/etc/sysconfig/network-scripts/ifcfg-vhost0" local("sudo mv %s %s" % (src, dst), warn_only=True) local("sudo sync", warn_only=True) # make ifcfg-$dev ifcfg = "/etc/sysconfig/network-scripts/ifcfg-%s" % self.dev ifcfg_bkp = "/etc/sysconfig/network-scripts/orig.ifcfg-%s.rpmsave"\ % self.dev if not os.path.isfile(ifcfg_bkp): local("sudo cp %s %s" % (ifcfg, ifcfg_bkp), warn_only=True) ifcfg_tmp = '%s/ifcfg-%s' % (self._temp_dir_name, self.dev) self._rewrite_ifcfg_file(ifcfg_tmp, self.dev, prsv_cfg) if self.multi_net: self.migrate_routes(self.dev) local("sudo mv %s /etc/contrail/" % ifcfg_tmp, warn_only=True) if self.pdist not in ['Ubuntu']: local("sudo chkconfig network on", warn_only=True) local("sudo chkconfig supervisor-vrouter on", warn_only=True) # end self.pdist == centos | fedora | redhat # setup lbaas prereqs self.setup_lbaas_prereq() if self.pdist in ['Ubuntu']: self._rewrite_net_interfaces_file( self.dev, self.mac, self.vhost_ip, self.netmask, self.gateway, self._args.vmware, self._args.vmware_vmpg_vswitch_mtu, self._args.vmware_datanic_mtu) # end self.pdist == ubuntu def run_services(self): if self.pdist not in ['Ubuntu']: for svc in ['supervisor-vrouter']: local('sudo chkconfig %s on' % svc) if self.running_in_container: for svc in ['contrail-vrouter-agent', 'contrail-vrouter-nodemgr']: local('sudo service %s restart' % svc) def add_vnc_config(self): compute_ip = self._args.self_ip compute_hostname = socket.gethostname() use_ssl = False if self._args.apiserver_auth_protocol == 'https': use_ssl = True prov_args = "--host_name %s --host_ip %s --api_server_ip %s "\ "--oper add --admin_user %s --admin_password %s "\ "--admin_tenant_name %s --openstack_ip %s "\ "--api_server_use_ssl %s" \ % (compute_hostname, compute_ip, self._args.cfgm_ip, self._args.keystone_admin_user, self._args.keystone_admin_password, self._args.keystone_admin_tenant_name, self._args.keystone_ip, use_ssl) if self._args.dpdk: prov_args += " --dpdk_enabled" cmd = "sudo python /opt/contrail/utils/provision_vrouter.py " local(cmd + prov_args) def add_qos_config(self): qos_logical_queue = self._args.qos_logical_queue qos_queue_id_list = self._args.qos_queue_id default_hw_queue_qos = self._args.default_hw_queue_qos qos_priority_tagging = self._args.qos_priority_tagging priority_id_list = self._args.priority_id priority_scheduling = self._args.priority_scheduling priority_bandwidth = self._args.priority_bandwidth agent_conf = "/etc/contrail/contrail-vrouter-agent.conf" conf_file = "contrail-vrouter-agent.conf" configs = {} # Clean existing qos config ltemp_dir = tempfile.mkdtemp() local("sudo cp %s %s/" % (agent_conf, ltemp_dir)) local( "sudo sed -i -e '/^\[QOS\]/d' -e '/^\[QUEUE-/d' -e '/^logical_queue/d' -e '/^default_hw_queue/d' -e '/^priority_tagging/d' %s/%s" % (ltemp_dir, conf_file)) local( "sudo sed -i -e '/^\[QOS-NIANTIC\]/d' -e '/^\[PG-/d' -e '/^scheduling/d' -e '/^bandwidth/d' %s/%s" % (ltemp_dir, conf_file)) local("sudo cp %s/%s %s" % (ltemp_dir, conf_file, agent_conf)) local('sudo rm -rf %s' % (ltemp_dir)) # Set qos_enabled in agent_param to false self.set_config( '/etc/contrail/agent_param', sec="''", var='qos_enabled', val='false') # QOS configs if qos_queue_id_list is not None: self.set_config( agent_conf, 'QOS', 'priority_tagging', qos_priority_tagging) num_sections = len(qos_logical_queue) if(len(qos_logical_queue) == len(qos_queue_id_list) and default_hw_queue_qos): num_sections = num_sections - 1 for i in range(num_sections): configs['QUEUE-%s' % qos_queue_id_list[i]] = { 'logical_queue': '[%s]' % qos_logical_queue[i].replace(",", ", ")} if (default_hw_queue_qos): if(len(qos_logical_queue) == len(qos_queue_id_list)): logical_queue = '[%s]' %\ qos_logical_queue[-1].replace(",", ", ") else: logical_queue = '[ ]' configs['QUEUE-%s' % qos_queue_id_list[-1]] = { 'default_hw_queue': 'true', 'logical_queue': logical_queue} for section, key_vals in list(configs.items()): for key, val in list(key_vals.items()): self.set_config( agent_conf, section, key, val) if priority_id_list is not None: local( 'sudo contrail-config --set /etc/contrail/contrail-vrouter-agent.conf QOS-NIANTIC') for i in range(len(priority_id_list)): configs['PG-%s' % priority_id_list[i]] = { 'scheduling': priority_scheduling[i], 'bandwidth': priority_bandwidth[i]} for section, key_vals in list(configs.items()): for key, val in list(key_vals.items()): self.set_config( agent_conf, section, key, val) if (qos_queue_id_list or priority_id_list): # Set qos_enabled in agent_param self.set_config( '/etc/contrail/agent_param', sec="''", var='qos_enabled', val='true') # Run qosmap script on physical interface (on all members for bond # interface) physical_interface = local( "sudo openstack-config --get /etc/contrail/contrail-vrouter-agent.conf VIRTUAL-HOST-INTERFACE physical_interface") if os.path.isdir('/sys/class/net/%s/bonding' % physical_interface): physical_interfaces_str = local( "sudo cat /sys/class/net/%s/bonding/slaves | tr ' ' '\n' | sort | tr '\n' ' '" % physical_interface) else: physical_interfaces_str = physical_interface local( "cd /opt/contrail/utils; python qosmap.py --interface_list %s " % physical_interfaces_str) def disable_nova_compute(self): # Check if nova-compute is present in nova service list # Disable nova-compute on TSN node if local("nova service-list | grep nova-compute", warn_only=True).succeeded: # Stop the service local("sudo service nova-compute stop", warn_only=True) if self.pdist in ['Ubuntu']: local('sudo echo "manual" >> /etc/init/nova-compute.override') else: local('sudo chkconfig nova-compute off') def add_tsn_vnc_config(self): tsn_ip = self._args.self_ip self.tsn_hostname = socket.gethostname() prov_args = "--host_name %s --host_ip %s --api_server_ip %s --oper add "\ "--admin_user %s --admin_password %s --admin_tenant_name %s "\ "--openstack_ip %s --router_type tor-service-node --disable_vhost_vmi "\ % (self.tsn_hostname, tsn_ip, self._args.cfgm_ip, self._args.keystone_admin_user, self._args.keystone_admin_password, self._args.keystone_admin_tenant_name, self._args.keystone_ip) if self._args.apiserver_auth_protocol == 'https': prov_args += " --api_server_use_ssl True" local( "python /opt/contrail/utils/provision_vrouter.py %s" % (prov_args)) def start_tsn_service(self): nova_conf_file = '/etc/contrail/contrail-vrouter-agent.conf' mode = 'tsn' if self._args.tsn_evpn_mode: mode = 'tsn-no-forwarding' local( "openstack-config --set %s DEFAULT agent_mode %s" % (nova_conf_file, mode)) def setup_tsn_node(self): self.disable_nova_compute() self.add_tsn_vnc_config() self.start_tsn_service() def increase_vrouter_limit(self): """Increase the maximum number of mpls label and nexthop on tsn node""" if self._args.vrouter_module_params: vrouter_module_params = self._args.vrouter_module_params.rstrip( ',') vrouter_module_params_args = dict( u.split("=") for u in vrouter_module_params.split(",")) if self._args.dpdk: self.dpdk_increase_vrouter_limit( vrouter_module_params_args) else: cmd = "options vrouter" if 'mpls_labels' in list(vrouter_module_params_args.keys()): cmd += " vr_mpls_labels=%s" % vrouter_module_params_args['mpls_labels'] if 'nexthops' in list(vrouter_module_params_args.keys()): cmd += " vr_nexthops=%s" % vrouter_module_params_args['nexthops'] if 'vrfs' in list(vrouter_module_params_args.keys()): cmd += " vr_vrfs=%s" % vrouter_module_params_args['vrfs'] if 'macs' in list(vrouter_module_params_args.keys()): cmd += " vr_bridge_entries=%s" % vrouter_module_params_args['macs'] if 'flow_entries' in list(vrouter_module_params_args.keys()): cmd += " vr_flow_entries=%s" % vrouter_module_params_args['flow_entries'] if 'oflow_entries' in list(vrouter_module_params_args.keys()): cmd += " vr_oflow_entries=%s" % vrouter_module_params_args['oflow_entries'] if 'mac_oentries' in list(vrouter_module_params_args.keys()): cmd += " vr_bridge_oentries=%s" % vrouter_module_params_args['mac_oentries'] if 'flow_hold_limit' in list(vrouter_module_params_args.keys()): cmd += " vr_flow_hold_limit=%s" % vrouter_module_params_args['flow_hold_limit'] if 'max_interface_entries' in list(vrouter_module_params_args.keys()): cmd += " vr_interfaces=%s" % vrouter_module_params_args['max_interface_entries'] if 'vrouter_dbg' in list(vrouter_module_params_args.keys()): cmd += " vrouter_dbg=%s" % vrouter_module_params_args['vrouter_dbg'] if 'vr_memory_alloc_checks' in list(vrouter_module_params_args.keys()): cmd += " vr_memory_alloc_checks=%s" % vrouter_module_params_args['vr_memory_alloc_checks'] local( "echo %s > %s" % (cmd, '/etc/modprobe.d/vrouter.conf'), warn_only=True) def setup_vrouter_kmod_hugepages(self): """Setup 1G and 2M hugepages for vrouter""" no_of_pages = 2 # Update vrouter kernel mode hugepage config self.setup_vrouter_kmod_hugepage_grub() # Delete vrouter kernel mode 1G hugepage config if os.path.isfile('/etc/fstab'): pattern = "hugepage_1G" line = "" insert_line_to_file(pattern=pattern, line=line, file_name='/etc/fstab') pattern = "vrouter_kmod_1G_hugepages" line = "vrouter_kmod_1G_hugepages=0" insert_line_to_file(pattern=pattern, line=line, file_name='/etc/contrail/agent_param') # Delete vrouter kernel mode 2M hugepage config if os.path.isfile('/etc/fstab'): pattern = "hugepage_2M" line = "" insert_line_to_file(pattern=pattern, line=line, file_name='/etc/fstab') pattern = "vrouter_kmod_2M_hugepages" line = "vrouter_kmod_2M_hugepages=0" insert_line_to_file(pattern=pattern, line=line, file_name='/etc/contrail/agent_param') # Configure vrouter kernel mode 1G hugepages if self._args.vrouter_1G_hugepages != '0': if int(self._args.vrouter_1G_hugepages) > 0 and int(self._args.vrouter_1G_hugepages) <= 2: no_of_pages = int(self._args.vrouter_1G_hugepages) mounted = local("sudo mount | grep hugepage_1G | cut -d' ' -f 3", capture=True, warn_only=False) if (mounted != ""): print("hugepages already mounted on %s" % mounted) else: local("sudo mkdir -p /mnt/hugepage_1G", warn_only=False) local("sudo mount -t hugetlbfs -o pagesize=1G none /mnt/hugepage_1G", warn_only=False) if os.path.isdir('/mnt/hugepage_1G'): for i in range(no_of_pages): local("sudo touch /mnt/hugepage_1G/vrouter_1G_mem_%s " % i, warn_only=False) pattern = "hugepage_1G" line = "hugetlbfs "\ "/mnt/hugepage_1G hugetlbfs defaults,pagesize=1G 0 0" insert_line_to_file(pattern=pattern, line=line, file_name='/etc/fstab') pattern = "vrouter_kmod_1G_hugepages" line = "vrouter_kmod_1G_hugepages=%s" % no_of_pages insert_line_to_file(pattern=pattern, line=line, file_name='/etc/contrail/agent_param') # Configure vrouter kernel mode 2M hugepages if self._args.vrouter_2M_hugepages != '0' and self._args.vrouter_1G_hugepages != '0': if int(self._args.vrouter_2M_hugepages) >= 0 and int(self._args.vrouter_2M_hugepages) <= 2: no_of_pages = int(self._args.vrouter_2M_hugepages) mounted = local("sudo mount | grep hugepage_2M | cut -d' ' -f 3", capture=True, warn_only=False) if (mounted != ""): print("hugepages already mounted on %s" % mounted) else: local("sudo mkdir -p /mnt/hugepage_2M", warn_only=False) local("sudo mount -t hugetlbfs -o pagesize=2M none /mnt/hugepage_2M", warn_only=False) if os.path.isdir('/mnt/hugepage_2M'): for i in range(no_of_pages): local("sudo touch /mnt/hugepage_2M/vrouter_2M_mem_%s " % i, warn_only=False) pattern = "hugepage_2M" line = "hugetlbfs "\ "/mnt/hugepage_2M hugetlbfs defaults,pagesize=2M 0 0" insert_line_to_file(pattern=pattern, line=line, file_name='/etc/fstab') pattern = "vrouter_kmod_2M_hugepages" line = "vrouter_kmod_2M_hugepages=%s" % no_of_pages insert_line_to_file(pattern=pattern, line=line, file_name='/etc/contrail/agent_param') def setup(self): self.disable_selinux() self.disable_iptables() self.setup_coredump() self.fixup_config_files() self.increase_vrouter_limit() self.setup_sriov_grub() if self._args.tsn_mode or self._args.tsn_evpn_mode: self.setup_tsn_node() self.run_services() else: self.run_services() if self._args.register and not self.reprov: self.add_vnc_config() ``` #### File: contrail_vrouter_provisioning/toragent/setup.py ```python import os import sys import argparse import platform import socket from contrail_vrouter_provisioning import local from contrail_vrouter_provisioning.base import ContrailSetup from contrail_vrouter_provisioning.toragent.templates import tor_agent_conf from contrail_vrouter_provisioning.toragent.templates import tor_agent_ini from contrail_vrouter_provisioning.toragent.templates import tor_agent_service from distutils.version import LooseVersion (PLATFORM, VERSION, EXTRA) = platform.linux_distribution() class TorAgentBaseSetup(ContrailSetup): def __init__(self, tor_agent_args, args_str=None): super(TorAgentBaseSetup, self).__init__() self._args = tor_agent_args # if the non_mgmt_ip is set use this as control ip if self._args.non_mgmt_ip: self._args.self_ip = self._args.non_mgmt_ip if self._args.tor_agent_name is None: self._args.tor_agent_name = socket.getfqdn()+ '-' + str(self._args.tor_id) def fixup_tor_agent(self): #if self._args.tor_ovs_protocol.lower() == 'pssl': self.ssl_cacert = '/etc/contrail/ssl/certs/tor-ca-cert.pem' self.ssl_cert = '/etc/contrail/ssl/certs/tor.' + self._args.tor_id + '.cert.pem' self.ssl_privkey = '/etc/contrail/ssl/private/tor.' + self._args.tor_id + '.private.pem' control_servers = ' '.join('%s:%s' % (server, '5269') for server in self._args.control_nodes) collector_servers = ' '.join('%s:%s' % (server, '8086') for server in self._args.collectors) dns_servers = ' '.join('%s:%s' % (server, '53') for server in self._args.control_nodes) template_vals = { '__contrail_control_ip__': self._args.self_ip, '__contrail_tor_name__': self._args.tor_name, '__contrail_http_server_port__': self._args.http_server_port, '__contrail_tor_ip__': self._args.tor_ip, '__contrail_tor_id__': self._args.tor_id, '__contrail_tsn_ovs_port__': self._args.tor_ovs_port, '__contrail_tsn_ip__': self._args.tsn_ip, '__contrail_tor_ovs_protocol__': self._args.tor_ovs_protocol, '__contrail_tor_agent_ovs_ka__': self._args.tor_agent_ovs_ka, '__contrail_tor_agent_name__': self._args.tor_agent_name, '__contrail_tor_tunnel_ip__': self._args.tor_tunnel_ip, '__contrail_tor_product_name__': self._args.tor_product_name, '__contrail_tor_vendor_name__': self._args.tor_vendor_name, '__contrail_tor_ssl_cert__': self.ssl_cert, '__contrail_tor_ssl_privkey__': self.ssl_privkey, '__contrail_tor_ssl_cacert__': self.ssl_cacert, '__contrail_control_servers__': control_servers, '__contrail_collector_servers__': collector_servers, '__contrail_dns_servers__': dns_servers, '__xmpp_dns_auth_enable__': self._args.xmpp_dns_auth_enable, '__xmpp_auth_enable__': self._args.xmpp_auth_enable, } self._template_substitute_write( tor_agent_conf.template, template_vals, self._temp_dir_name + '/tor_agent_conf') self.tor_file_name = ('contrail-tor-agent-' + self._args.tor_id + '.conf') local("sudo mv %s/tor_agent_conf /etc/contrail/%s" % (self._temp_dir_name, self.tor_file_name)) def fixup_tor_ini(self): self.tor_process_name = 'contrail-tor-agent-' + self._args.tor_id self.tor_log_file_name = self.tor_process_name + '-stdout.log' template_vals = { '__contrail_tor_agent__': self.tor_process_name, '__contrail_tor_agent_conf_file__': self.tor_file_name, '__contrail_tor_agent_log_file__': self.tor_log_file_name } self._template_substitute_write( tor_agent_ini.template, template_vals, self._temp_dir_name + '/tor_agent_ini') self.tor_ini_file_name = self.tor_process_name + '.ini' src = "%s/tor_agent_ini" % self._temp_dir_name dst = "/etc/contrail/supervisord_vrouter_files/%s" %\ self.tor_ini_file_name local("sudo mv %s %s" % (src, dst)) def fixup_tor_service(self): self.tor_process_name = 'contrail-tor-agent-' + self._args.tor_id template_vals = { '__contrail_tor_agent_conf_file__': self.tor_file_name, } self._template_substitute_write( tor_agent_service.template, template_vals, self._temp_dir_name + '/tor_agent_service') self.tor_service_file_name = self.tor_process_name + '.service' src = "%s/tor_agent_service" % self._temp_dir_name dst = "/lib/systemd/system/%s" %\ self.tor_service_file_name local("sudo mv %s %s" % (src, dst)) def create_init_file(self): local("sudo cp /etc/init.d/contrail-vrouter-agent /etc/init.d/%s" %(self.tor_process_name)) def add_vnc_config(self): cmd = "sudo python /opt/contrail/utils/provision_vrouter.py" cmd += " --host_name %s" % self._args.tor_agent_name cmd += " --host_ip %s" % self._args.self_ip cmd += " --api_server_ip %s" % self._args.cfgm_ip cmd += " --admin_user %s" % self._args.admin_user cmd += " --admin_password %s" % self._args.admin_password cmd += " --admin_tenant_name %s" % self._args.admin_tenant_name cmd += " --openstack_ip %s" % self._args.authserver_ip cmd += " --router_type tor-agent" if self._args.auth_protocol == 'https': cmd += " --api_server_use_ssl True" cmd += " --oper add " local(cmd) def add_physical_device(self): cmd = "sudo python /opt/contrail/utils/provision_physical_device.py" cmd += " --device_name %s" % self._args.tor_name cmd += " --vendor_name %s" % self._args.tor_vendor_name cmd += " --device_mgmt_ip %s" % self._args.tor_ip cmd += " --device_tunnel_ip %s" % self._args.tor_tunnel_ip cmd += " --device_tor_agent %s" % self._args.tor_agent_name cmd += " --device_tsn %s" % self._args.tor_tsn_name cmd += " --api_server_ip %s" % self._args.cfgm_ip cmd += " --admin_user %s" % self._args.admin_user cmd += " --admin_password %s" % self._args.admin_password cmd += " --admin_tenant_name %s" % self._args.admin_tenant_name cmd += " --openstack_ip %s" % self._args.authserver_ip if self._args.auth_protocol == 'https': cmd += " --api_server_use_ssl True" if self._args.tor_product_name: cmd += " --product_name %s" %(self._args.tor_product_name) cmd += " --oper add " local(cmd) def update_supervisor(self): if self._args.restart: local("sudo supervisorctl -c /etc/contrail/supervisord_vrouter.conf update", warn_only=True) def run_services(self): if self._args.restart: cmd = "sudo service %s start" % self.tor_process_name local(cmd) cmd = "sudo systemctl enable %s" % self.tor_process_name local(cmd) def setup(self): self.fixup_tor_agent() if (('ubuntu' in PLATFORM.lower()) and (LooseVersion(VERSION) >= LooseVersion('16.04'))): self.fixup_tor_service() self.add_vnc_config() self.add_physical_device() self.run_services() else: self.fixup_tor_ini() self.create_init_file() self.add_vnc_config() self.add_physical_device() self.update_supervisor() class TorAgentSetup(ContrailSetup): def __init__(self, args_str=None): super(TorAgentSetup, self).__init__() self._args = None self.global_defaults = { 'cfgm_ip': '127.0.0.1', 'authserver_ip': '127.0.0.1', 'admin_user':None, 'admin_passwd':None, 'admin_tenant_name':'admin', 'auth_protocol':None, 'tor_agent_name':None, 'tor_vendor_name':'', 'tor_product_name':'', 'http_server_port':9090, 'tor_agent_ovs_ka':10000, 'restart':True, 'xmpp_auth_enable': False, 'xmpp_dns_auth_enable': False, } self.parse_args(args_str) def parse_args(self, args_str): ''' Eg. setup-vnc-tor-agent --agent_name contrail-tor-1 --http_server_port 9090 --discovery_server_ip 10.204.217.39 --tor_id 1 --tor_ip 10.204.221.35 --tor_ovs_port 9999 --tsn_ip 10.204.221.33 --tor_ovs_protocol tcp --tor_agent_ovs_ka 10000 ''' parser = argparse.ArgumentParser() parser.add_argument("--cfgm_ip", help = "IP Address of the config node") parser.add_argument("--self_ip", help="IP Address of this(compute) node") parser.add_argument( "--non_mgmt_ip", help="IP Address of non-management interface(fabric network)" "on the compute node") parser.add_argument("--authserver_ip", help = "IP Address of the authserver(keystone) node") parser.add_argument("--admin_user", help = "Authserver admin tenants user name") parser.add_argument("--admin_password", help = "AuthServer admin user's password") parser.add_argument("--admin_tenant_name", help = "AuthServer admin tenant name") parser.add_argument("--auth_protocol", help = "AuthServer(keystone) running protocol") parser.add_argument("--tor_name", help="Name of the TOR agent") parser.add_argument("--http_server_port", help="Port number for the HTTP server.") parser.add_argument("--tor_ip", help="TOR Switch IP") parser.add_argument("--tor_id", help="Unique ID for the TOR") parser.add_argument("--tor_ovs_port", help="OVS Port Number") parser.add_argument("--tsn_ip", help="Tor tunnel Node IP") parser.add_argument("--tor_ovs_protocol", help="TOR OVS Protocol. Currently Only TCP and ssl supported") parser.add_argument("--tor_vendor_name", help="TOR Vendor name") parser.add_argument("--tor_tsn_name", help="TOR Tsn name") parser.add_argument("--tor_agent_ovs_ka", help="TOR Agent OVS Keepalive timer value in millisecs") parser.add_argument("--tor_agent_name", help="TOR Agent name") parser.add_argument("--tor_tunnel_ip", help="TOR tunnel ip") parser.add_argument("--tor_product_name", help="TOR product name ") parser.add_argument( "--control-nodes", help="List of IP of the VNC control-nodes", nargs='+', type=str) parser.add_argument( "--collectors", help="List of IP of the VNC collectors", nargs='+', type=str) parser.add_argument("--tor_id_list", help="tor id list", nargs='+', type=str) parser.add_argument( "--xmpp_auth_enable", help="Enable xmpp auth", action="store_true") parser.add_argument( "--xmpp_dns_auth_enable", help="Enable DNS xmpp auth", action="store_true") parser.set_defaults(**self.global_defaults) self._args = parser.parse_args(args_str) def main(args_str=None): tor_agent_args = TorAgentSetup(args_str)._args tor_agent = TorAgentBaseSetup(tor_agent_args) tor_agent.setup() if __name__ == "__main__": main() ```
{ "source": "jnpr-tjiang/devmgr", "score": 2 }
#### File: api/resources/device.py ```python from flask import request from flask_restful import Resource from sqlalchemy.exc import IntegrityError from devmgr.models import Device, Annotation, Label from devmgr.extensions import ma, db from devmgr.common.pagination import paginate class AnnotationSchema(ma.ModelSchema): class Meta: model = Annotation fields = ['name', 'value'] class DeviceSchema(ma.ModelSchema): annotations = ma.Nested(AnnotationSchema, many=True) class Meta: model = Device class DeviceResource(Resource): """Single device resource """ def get(self, device_id): schema = DeviceSchema() device = Device.query.get_or_404(device_id) return { 'device': schema.dump(device).data } def put(self, device_id): schema = DeviceSchema() device = Device.query.get_or_404(device_id) device, errors = schema.load(request.json, instance=device) if errors: return errors, 422 db.session.commit() return { 'msg': 'device updated', 'device': schema.dump(device).data } def delete(self, device_id): device = Device.query.get_or_404(device_id) db.session.delete(device) db.session.commit() return { 'msg': "Device (%s) deleted" % device.name } class DeviceList(Resource): """Device resource creation and get list of device resources """ def get(self): schema = DeviceSchema(many=True) query = Device.query return paginate(query, schema) def post(self): schema = DeviceSchema() device, errors = schema.load(request.json) if errors: return errors, 422 try: db.session.add(device) db.session.commit() except IntegrityError as ex: db.session.rollback() return {'msg': str(ex)}, 422 return { 'msg': 'Device %s created' % device.name, 'device': schema.dump(device).data }, 201 ``` #### File: devmgr/devmgr/app.py ```python from flask import Flask from devmgr import api from devmgr.extensions import db def create_app(testing=False, cli=False): """Application factory, used to create application """ app = Flask('devmgr') app.config.from_object('devmgr.config') if testing is True: app.config['TESTING'] = True configure_extensions(app, cli) register_blueprints(app) return app def configure_extensions(app, cli): """Configure Flask extensions """ db.init_app(app) def register_blueprints(app): """Register blueprints """ app.register_blueprint(api.views.blueprint) ``` #### File: devmgr/models/annotation.py ```python from devmgr.extensions import db class Annotation(db.Model): """Key-value annotations for any config object. Annotated value is usually a json blob that is not indexed """ id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(100)) value = db.Column(db.JSON) device_id = db.Column( db.Integer, db.ForeignKey('device.id'), nullable=False ) __table_args__ = ( db.UniqueConstraint('name', 'device_id', name='unique_key_value'), ) def __repr__(self): return '<Annotation %s>' % self.name ```
{ "source": "jnqd/simiki", "score": 2 }
#### File: simiki/tests/test_parse_config.py ```python from __future__ import unicode_literals import os.path import unittest import datetime from simiki.config import parse_config, get_default_config class TestParseConfig(unittest.TestCase): def setUp(self): self.expected_config = get_default_config() self.expected_config.update({ "author": "<NAME>", "debug": True, "default_ext": "markdown", "description": "This is a simiki's config sample, \u6d4b\u8bd5\u6837\u4f8b", "destination": "destination", "keywords": "wiki, simiki, python, \u7ef4\u57fa", "root": "/wiki/", "source": "source", "attach": "attach", "theme": "mytheme", "themes_dir": "simiki_themes", "title": "\u6211\u7684Wiki", "url": "http://wiki.tankywoo.com" }) self.config_file = os.path.join( os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "tests", "configs", "config_sample.yml") def test_parse_config(self): config = parse_config(self.config_file) self.expected_config.pop('time') _date = config.pop('time') if hasattr(unittest.TestCase, 'assertIsInstance'): self.assertIsInstance(_date, datetime.datetime) else: assert isinstance(_date, datetime.datetime), \ '%s is not an instance of %r' % \ (repr(_date), datetime.datetime) self.assertEqual( config, self.expected_config ) def test_parse_config_not_exist(self): not_exist_config_file = os.path.join(self.config_file, "not_exist") self.assertRaises(Exception, lambda: parse_config(not_exist_config_file)) if __name__ == "__main__": unittest.main() ```
{ "source": "jnrbsn/daemonocle", "score": 2 }
#### File: daemonocle/daemonocle/helpers.py ```python import os import posixpath from collections.abc import Callable from concurrent.futures import ThreadPoolExecutor, as_completed from operator import itemgetter import click import psutil from daemonocle._utils import ( format_elapsed_time, json_encode, to_bytes, waitstatus_to_exitcode) from daemonocle.core import Daemon, expose_action, get_action, list_actions from daemonocle.exceptions import DaemonError class FHSDaemon(Daemon): """A Daemon subclass that makes opinionatedly complies with the Filesystem Hierarchy Standard""" def __init__( self, name=None, prefix='/opt', log_prefix='', **kwargs): if name is not None: self.name = name elif not getattr(self, 'name', None): raise DaemonError('name must be defined for FHSDaemon') kwargs.update({ 'chrootdir': None, 'detach': True, }) prefix = posixpath.realpath(prefix) if prefix == '/opt': kwargs.update({ 'pid_file': '/var/opt/{name}/run/{name}.pid', 'stdout_file': '/var/opt/{name}/log/{log_prefix}out.log', 'stderr_file': '/var/opt/{name}/log/{log_prefix}err.log', }) elif prefix == '/usr/local': kwargs.update({ 'pid_file': '/var/local/run/{name}/{name}.pid', 'stdout_file': '/var/local/log/{name}/{log_prefix}out.log', 'stderr_file': '/var/local/log/{name}/{log_prefix}err.log', }) elif prefix == '/usr': kwargs.update({ 'pid_file': '/var/run/{name}/{name}.pid', 'stdout_file': '/var/log/{name}/{log_prefix}out.log', 'stderr_file': '/var/log/{name}/{log_prefix}err.log', }) else: kwargs.update({ 'pid_file': posixpath.join(prefix, 'run/{name}.pid'), 'stdout_file': posixpath.join( prefix, 'log/{log_prefix}out.log'), 'stderr_file': posixpath.join( prefix, 'log/{log_prefix}err.log'), }) # Format paths for key in ('pid_file', 'stdout_file', 'stderr_file'): kwargs[key] = kwargs[key].format( name=self.name, log_prefix=log_prefix) if 'work_dir' in kwargs: work_dir = posixpath.realpath(kwargs['work_dir']) if work_dir == prefix and not posixpath.isdir(work_dir): # Normally, the work_dir is required to exist, but if the # work_dir is the same as the prefix, automatically create it # if it doesn't exist. umask = kwargs.get('umask', 0o22) uid = kwargs.get('uid', os.getuid()) gid = kwargs.get('gid', os.getgid()) os.makedirs(work_dir, 0o777 & ~umask) os.chown(work_dir, uid, gid) super(FHSDaemon, self).__init__(**kwargs) class MultiDaemon(object): """Daemon wrapper class that manages multiple copies of the same worker""" def __init__(self, num_workers, daemon_cls=Daemon, **daemon_kwargs): if num_workers < 1: raise DaemonError('num_workers must be >= 1 for MultiDaemon') self.num_workers = num_workers self.worker = daemon_kwargs.get('worker', None) self._daemons = [] kwargs_to_format = {'name', 'work_dir'} if issubclass(daemon_cls, FHSDaemon): kwargs_to_format.add('prefix') else: kwargs_to_format.update(('pid_file', 'stdout_file', 'stderr_file')) pid_files = set() for n in range(self.num_workers): kwargs = daemon_kwargs.copy() kwargs.update({ 'chrootdir': None, 'detach': True, }) for key in kwargs_to_format: if key in kwargs: kwargs[key] = kwargs[key].format(n=n) daemon = daemon_cls(**kwargs) # Enable multi mode daemon.worker_id = n if daemon.pid_file is None: raise DaemonError('pid_file must be defined for MultiDaemon') pid_files.add(daemon.pid_file) self._daemons.append(daemon) if len(pid_files) < self.num_workers: raise DaemonError('PID files must be unique for MultiDaemon') @classmethod def list_actions(cls): return list_actions(cls) def get_action(self, action): return get_action(self, action) def do_action(self, action, *args, **kwargs): func = self.get_action(action) return func(*args, **kwargs) def cli(self, *args, **kwargs): from daemonocle.cli import DaemonCLI cli = DaemonCLI(daemon=self) return cli(*args, **kwargs) @expose_action def start(self, worker_id=None, debug=False, *args, **kwargs): """Start the daemon.""" if worker_id is not None: daemons = [self._daemons[worker_id]] else: daemons = self._daemons # Do first part of detaching pid = os.fork() if pid: status = os.waitpid(pid, 0) exit(waitstatus_to_exitcode(status[1])) # All workers will be in the same session, and each worker will # be in its own process group (handled in Daemon class). os.setsid() try: ctx = click.get_current_context() except RuntimeError: ctx = None for daemon in daemons: if ctx is not None: ctx.obj = daemon daemon.start(debug=debug, *args, **kwargs) @expose_action def stop(self, worker_id=None, timeout=None, force=False): """Stop the daemon.""" if worker_id is not None: daemons = [self._daemons[worker_id]] else: daemons = self._daemons for daemon in daemons: daemon.stop(timeout=timeout, force=force) @expose_action def restart( self, worker_id=None, timeout=None, force=False, debug=False, *args, **kwargs): """Stop then start the daemon.""" self.stop(worker_id=worker_id, timeout=timeout, force=force) self.start(worker_id=worker_id, debug=debug, *args, **kwargs) def get_status_single(self, worker_id, fields=None): return self._daemons[worker_id].get_status(fields=fields) def get_status(self, fields=None): """Get the statuses of all the workers in parallel.""" statuses = [] with ThreadPoolExecutor(max_workers=self.num_workers) as executor: future_to_worker_id = {} for n in range(self.num_workers): future = executor.submit( self.get_status_single, n, fields=fields) future_to_worker_id[future] = n for future in as_completed(future_to_worker_id): n = future_to_worker_id[future] statuses.append((n, future.result())) return [s[1] for s in sorted(statuses, key=itemgetter(0))] @expose_action def status(self, worker_id=None, json=False, fields=None): """Get the status of the daemon.""" if worker_id is not None: statuses = [self.get_status_single(worker_id, fields=fields)] else: statuses = self.get_status(fields=fields) if json: status_width = max(len(json_encode(s)) for s in statuses) term_width, term_height = click.get_terminal_size() if status_width + 3 > term_width: message = json_encode(statuses, pretty=True) else: message = ['['] for i, status in enumerate(statuses): message.append( ' ' + json_encode(status) + (',' if i < len(statuses) - 1 else '') ) message.append(']') message = '\n'.join(message) else: message = [] for status in statuses: if status.get('status') == psutil.STATUS_DEAD: message.append('{name} -- not running'.format( name=status['name'])) else: status['uptime'] = format_elapsed_time(status['uptime']) template = ( '{name} -- pid: {pid}, status: {status}, ' 'uptime: {uptime}, %cpu: {cpu_percent:.1f}, ' '%mem: {memory_percent:.1f}') message.append(template.format(**status)) message = '\n'.join(message) click.echo(message) class ExecWorker(Callable): """A worker class that simply executes another program""" def __init__(self, name, *args): self.name = to_bytes(name) self.args = tuple(to_bytes(a) for a in args) if b'/' in self.name: self.name = posixpath.realpath(self.name) self.__doc__ = 'Run "{}" as a daemon.'.format( self.name.decode('ascii', errors='backslashreplace')) def __call__(self): # pragma: no cover exec_prog = os.execv if self.name[0] == b'/' else os.execvp exec_prog(self.name, (self.name,) + self.args) ``` #### File: daemonocle/tests/test_utils.py ```python import errno import os import posixpath import subprocess import pytest from daemonocle import DaemonEnvironmentError from daemonocle._utils import check_dir_exists, proc_get_open_fds def test_check_dir_exists(temp_dir): test_dir = posixpath.join(temp_dir, 'foo') os.mkdir(test_dir) check_dir_exists(test_dir) with pytest.raises(OSError) as exc_info: check_dir_exists(posixpath.join(temp_dir, 'baz')) assert exc_info.value.errno == errno.ENOENT assert 'No such file or directory' in str(exc_info.value) test_file = posixpath.join(temp_dir, 'bar') with open(test_file, 'w') as f: f.write('bar\n') with pytest.raises(OSError) as exc_info: check_dir_exists(test_file) assert exc_info.value.errno == errno.ENOTDIR assert 'Not a directory' in str(exc_info.value) def test_proc_get_open_fds_fallbacks_current_proc(temp_dir, monkeypatch): # Normal result_1 = proc_get_open_fds() def mock_os_listdir_scandir(path='.'): raise OSError(errno.ENOENT, 'No such file or directory', path) monkeypatch.setattr(os, 'listdir', mock_os_listdir_scandir) if hasattr(os, 'scandir'): monkeypatch.setattr(os, 'scandir', mock_os_listdir_scandir) # Simulating not being able to read "/proc/<pid>/fd" result_2 = proc_get_open_fds() temp_lsof = posixpath.join(temp_dir, 'lsof') with open(temp_lsof, 'w') as f: f.write('#!/bin/sh\nexit 42\n') os.chmod(temp_lsof, 0o755) orig_env_path = os.environ.get('PATH', '') temp_env_path = ( ':'.join((temp_dir, orig_env_path)) if orig_env_path else temp_dir) try: os.environ['PATH'] = temp_env_path # Simulating "lsof" error result_3 = proc_get_open_fds() finally: os.environ['PATH'] = orig_env_path assert result_1 == result_2 == result_3 def test_proc_get_open_fds_fallbacks_other_proc(temp_dir, monkeypatch): proc = subprocess.Popen(['sleep', '60']) pid = proc.pid try: # Normal result_1 = proc_get_open_fds(pid) def mock_os_listdir_scandir(path='.'): raise OSError(errno.ENOENT, 'No such file or directory', path) monkeypatch.setattr(os, 'listdir', mock_os_listdir_scandir) if hasattr(os, 'scandir'): monkeypatch.setattr(os, 'scandir', mock_os_listdir_scandir) # Simulating not being able to read "/proc/<pid>/fd" result_2 = proc_get_open_fds(pid) assert result_1 == result_2 temp_lsof = posixpath.join(temp_dir, 'lsof') with open(temp_lsof, 'w') as f: f.write('#!/bin/sh\nexit 42\n') os.chmod(temp_lsof, 0o755) orig_env_path = os.environ.get('PATH', '') temp_env_path = ( ':'.join((temp_dir, orig_env_path)) if orig_env_path else temp_dir) os.environ['PATH'] = temp_env_path try: # Simulating "lsof" error with pytest.raises(DaemonEnvironmentError) as exc_info: proc_get_open_fds(pid) assert 'Unable to get open file descriptors' in str(exc_info.value) finally: os.environ['PATH'] = orig_env_path finally: proc.terminate() proc.wait() def test_exit(pyscript): result = pyscript(""" from daemonocle._utils import exit exit(0) """).run() assert result.returncode == 0 result = pyscript(""" from daemonocle._utils import exit exit(42) """).run() assert result.returncode == 42 result = pyscript(""" from daemonocle._utils import exit exit(9999) """).run() assert result.returncode == 9999 & 0xff result = pyscript(""" from daemonocle._utils import exit exit(-15) """).run() assert result.returncode == 128 + 15 result = pyscript(""" from daemonocle._utils import exit exit('27Quj7FzhWRVidZHygXUtE1WNcVGGxiTEAP') """).run() assert result.returncode == 1 assert result.stderr == b'27Quj7FzhWRVidZHygXUtE1WNcVGGxiTEAP\n' ```
{ "source": "jnrbsn/python-click-prettify", "score": 2 }
#### File: jnrbsn/python-click-prettify/click_prettify.py ```python import re import subprocess import sys import traceback import click import click.core import click.exceptions _re_error_message_keywords = re.compile( r'^(error|aborted|failed|fatal)[:!]', flags=re.IGNORECASE | re.MULTILINE) def _echo_stderr_red(message, *args, **kwargs): if sys.exc_info() and kwargs.get('file') is sys.stderr: # Only modify the message if an exception is currently being # handled and we're printing to STDERR. # Capitalize keywords in the error message message = _re_error_message_keywords.sub( lambda m: m.group(0).upper(), message) # Make it red message = click.style(message, fg='red') return click.echo(message, *args, **kwargs) click.exceptions.echo = _echo_stderr_red click.core.echo = _echo_stderr_red class _UsageErrorWithFullHelp(click.exceptions.UsageError): def show(self, *args, **kwargs): # Swap out get_usage for get_help get_usage = self.ctx.get_usage self.ctx.get_usage = self.ctx.get_help try: return super().show(*args, **kwargs) finally: # Change it back self.ctx.get_usage = get_usage click.exceptions.UsageError = _UsageErrorWithFullHelp click.UsageError = _UsageErrorWithFullHelp def _excepthook_red(etype, value, tb): # Print exception in red click.secho( ''.join(traceback.format_exception(etype, value, tb)), fg='red', file=sys.stderr, nl=False, ) sys.exit(1) sys.excepthook = _excepthook_red def hecho(message, level=1): """Print a heading in a style inspired by Homebrew""" heading_colors = { 1: 'green', 2: 'blue', 3: 'magenta', } arrow_color = heading_colors[level] click.echo(' '.join(( click.style('==>', fg=arrow_color), click.style(message, bold=True), ))) def h1echo(msg): """Print a level 1 heading""" hecho(msg, level=1) def h2echo(msg): """Print a level 2 heading""" hecho(msg, level=2) def h3echo(msg): """Print a level 3 heading""" hecho(msg, level=3) click.hecho = hecho click.h1echo = h1echo click.h2echo = h2echo click.h3echo = h3echo _subproc_run_default_hmsg = '$ {command}' def subproc_run( args, hmsg=_subproc_run_default_hmsg, hlevel=1, fg=True, **kwargs): """User-friendly wrapper around subprocess.run""" check = kwargs.get('check', True) kwargs['check'] = False kwargs['shell'] = False if not fg: kwargs['capture_output'] = True if hmsg is _subproc_run_default_hmsg: hmsg = None command = ' '.join((f"'{a}'" if ' ' in a else a) for a in args) if hmsg: hecho(hmsg.format(command=command, args=args), level=hlevel) proc_result = subprocess.run(args, **kwargs) if check and proc_result.returncode != 0: error_message = ( f'ERROR: Command "{command}" returned non-zero exit status ' f'{proc_result.returncode}' ) if proc_result.stderr: error_message += f'\nSTDERR:\n{proc_result.stderr}' click.secho(error_message, fg='red') sys.exit(1) return proc_result click.subproc_run = subproc_run ```
{ "source": "jnrbsn/python-latest-user-agents", "score": 2 }
#### File: jnrbsn/python-latest-user-agents/tests.py ```python import json import os import shutil import time from tempfile import mkdtemp from threading import Thread import pytest import requests from freezegun import freeze_time import latest_user_agents from latest_user_agents import ( clear_user_agent_cache, get_latest_user_agents, get_random_user_agent) __all__ = [] fake_user_agents = ['Mozilla/5.0 (Foo) Bar', 'Mozilla/5.0 (Baz) Qux'] def _items_equal(a, b): return len(a) == len(b) and sorted(a) == sorted(b) @pytest.fixture(scope='function', autouse=True) def patch_cache(monkeypatch): """Make all tests use a fresh cache. The cache directory will be a unique temporary directory for all test functions, and the in-memory cache will be cleared before each test. """ tmp_dir = mkdtemp(prefix='latest_user_agents_test_') try: # Change cache location on disk monkeypatch.setattr(latest_user_agents, '_cache_dir', tmp_dir) monkeypatch.setattr( latest_user_agents, '_cache_file', os.path.join(tmp_dir, 'user-agents.sqlite')) # Clear in-memory cache monkeypatch.setattr(latest_user_agents, '_cached_user_agents', None) yield finally: if os.path.isdir(tmp_dir): shutil.rmtree(tmp_dir) @pytest.fixture(scope='function', autouse=True) def patch_requests(monkeypatch): """Mock HTTP requests wtih fake data instead of making real requests.""" class MockResponse(object): text = json.dumps(fake_user_agents, indent=4).strip() + '\n' @staticmethod def json(): return fake_user_agents @staticmethod def raise_for_status(): pass def mock_requests_get(*args, **kwargs): return MockResponse() monkeypatch.setattr(requests, 'get', mock_requests_get) @pytest.fixture(scope='function') def spy_download(mocker): """Spy on downloads of new user agent data.""" return mocker.spy(latest_user_agents, '_download') @pytest.fixture(scope='function') def spy_read_cache(mocker): """Spy on reads of the cache file.""" return mocker.spy(latest_user_agents, '_read_cache') @pytest.fixture(name='clear_in_memory_cache', scope='function') def clear_in_memory_cache_fixture(monkeypatch): """Return a function that can clear the in-memory cache.""" def fixture(): monkeypatch.setattr(latest_user_agents, '_cached_user_agents', None) return fixture @pytest.mark.parametrize( ('test_func', 'assertion'), ( (get_latest_user_agents, lambda x: _items_equal(x, fake_user_agents)), (get_random_user_agent, lambda x: x in fake_user_agents), ), ) def test_latest_user_agents( test_func, assertion, spy_download, spy_read_cache, clear_in_memory_cache): """Test basic/normal usage of main functions.""" # This should download new data assert assertion(test_func()) spy_download.assert_called_once() spy_download.reset_mock() clear_in_memory_cache() # This should NOT download new data, but read the cache on-disk since # we cleared the in-memory cache above assert assertion(test_func()) spy_download.assert_not_called() spy_read_cache.assert_called_once() spy_download.reset_mock() spy_read_cache.reset_mock() # This should neither download new data nor read the cache because # it hits the in-memory cache assert assertion(test_func()) spy_download.assert_not_called() spy_read_cache.assert_not_called() spy_download.reset_mock() clear_user_agent_cache() # This should download new data again since we cleared all the cache above assert assertion(test_func()) spy_download.assert_called_once() def test_expired_cache(spy_download, clear_in_memory_cache): """Test normal cache expiration.""" with freeze_time() as frozen_time: # This should download new data assert get_latest_user_agents() == fake_user_agents spy_download.assert_called_once() spy_download.reset_mock() clear_in_memory_cache() frozen_time.tick(25 * 3600) # This should download new data again since the cache expired assert get_latest_user_agents() == fake_user_agents spy_download.assert_called_once() def test_double_clear_cache(): """Test that clearing the cache multiple times doesn't cause errors.""" clear_user_agent_cache() clear_user_agent_cache() def test_download_error( monkeypatch, spy_download, spy_read_cache, clear_in_memory_cache): """Test cache expiration when we're unable to download new data.""" with freeze_time() as frozen_time: # This should download new data assert get_latest_user_agents() == fake_user_agents spy_download.assert_called_once() spy_download.reset_mock() clear_in_memory_cache() frozen_time.tick(25 * 3600) # Mock a download failure class MockResponse(object): @staticmethod def raise_for_status(): raise requests.ConnectionError() def mock_requests_get(*args, **kwargs): return MockResponse() monkeypatch.setattr(requests, 'get', mock_requests_get) # This will attempt to download new data but end up reading the cache assert _items_equal(get_latest_user_agents(), fake_user_agents) spy_download.assert_called_once() assert isinstance(spy_download.spy_exception, requests.ConnectionError) spy_read_cache.assert_called_once() spy_download.reset_mock() spy_read_cache.reset_mock() clear_in_memory_cache() # This should NOT download new data, but read the cache on-disk since # we cleared the in-memory cache above assert _items_equal(get_latest_user_agents(), fake_user_agents) spy_download.assert_not_called() spy_read_cache.assert_called_once() spy_download.reset_mock() spy_read_cache.reset_mock() clear_in_memory_cache() frozen_time.tick(7 * 86400) # Since the cache is too old, this will raise an exception with pytest.raises(latest_user_agents.LatestUserAgentsError): get_latest_user_agents() def test_racing_locks(spy_download, spy_read_cache): """Test multiple threads racing to get a lock.""" # Acquire the lock latest_user_agents._cache_lock.acquire() # Start another thread and give it enough time to block while trying # to acquire the lock itself thread = Thread(target=get_latest_user_agents) thread.start() time.sleep(1) # Fill the cache while the other thread is waiting for the lock assert get_latest_user_agents() == fake_user_agents spy_download.reset_mock() spy_read_cache.reset_mock() # Release the lock and check that the other thread used the cache # that we just filled latest_user_agents._cache_lock.release() thread.join() spy_download.assert_not_called() spy_read_cache.assert_not_called() ```
{ "source": "jnrizvi/CMPUT404-assignment-web-client", "score": 3 }
#### File: jnrizvi/CMPUT404-assignment-web-client/httpclient.py ```python import sys import socket import re # you may use urllib to encode data appropriately import urllib.parse def help(): print("httpclient.py [GET/POST] [URL]\n") # I don't like doing it like this, but regex is not working # status_codes = ['200', '300', '301', '302', '400', '404'] class HTTPResponse(object): def __init__(self, code=200, body=""): self.code = code self.body = body def pretty_print(self): print("Code:", self.code) print("Body:", self.body) class HTTPClient(object): #def get_host_port(self,url): def connect(self, host, port): self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.socket.connect((host, port)) return None # TODO - String format the result returned by recvall def get_code(self, data): headers = data.split("\r\n\r\n")[0] http_status_header = headers.split("\r\n")[0] # print(http_status_header) match = re.search(r"\s\d{3}\s", http_status_header) if match: # print(match.group().strip()) return match.group().strip() # for code in status_codes: # if code in http_status_header: # # print(code) # return code return 500 # TODO - String format the result returned by recvall def get_headers(self,data): headers = data.split("\r\n\r\n")[0] headers_as_list = headers.split("\r\n") # print(headers_as_list) return headers_as_list # TODO - String format the result returned by recvall def get_body(self, data): body = data.split("\r\n\r\n")[1] # print(body) return body def sendall(self, data): self.socket.sendall(data.encode('utf-8')) def close(self): self.socket.close() # read everything from the socket def recvall(self, sock): buffer = bytearray() done = False while not done: part = sock.recv(1024) if (part): buffer.extend(part) else: done = not part return buffer.decode('utf-8') # TODO - handle 404 requests and 200 requests def GET(self, url, args=None): code = 500 body = "" components = urllib.parse.urlparse(url) port = components.port if port == None: # if there's no host, set port to 80 as default port = 80 host = components.hostname path = components.path if len(path) == 0: path = "/" # host, port from url self.connect(host, port) # make up payload string, format with path and host. payload = f'GET {path} HTTP/1.1\r\nHost: {host}\r\nAccept: /*/\r\nConnection: Close\r\n\r\n' # payload = f'GET {path} HTTP/1.1\r\nHost: {host}\r\nConnection: Close\r\n\r\n' # payload = f'GET {path} HTTP/1.1\r\nHost: {host}\r\nAccept: /*/\r\n\r\n' # payload goes in here to be sent self.sendall(payload) result = self.recvall(self.socket) # status code (within headers) code = self.get_code(result) # headers headers = self.get_headers(result) # body body = self.get_body(result) print(body) self.close() return HTTPResponse(int(code), body) # TODO - handle 404 requests and 200 requests # I think args is referring to what's in the url: parameter=value def POST(self, url, args=None): code = 500 body = "" # can we use this? components = urllib.parse.urlparse(url) port = components.port if port == None: # if there's no host, set port to 80 as default port = 80 host = components.hostname path = components.path if len(path) == 0: path = "/" # host, port from url self.connect(host, port) keyValues = [] if args == None: args = '' else: # build a string of fields and values from the args, if provided. Cast the dict to a string and add it to payload args = str(urllib.parse.urlencode(args)) # make up payload string, format with path and host. # Args should go in here as well if they are not None # Need to close the connection too # Need content length too (length of args string) payload = f'POST {path} HTTP/1.1\r\nHost: {host}\r\nAccept: /*/\r\nConnection: Close\r\nContent-Type: application/x-www-form-urlencoded\r\nContent-Length: {len(args)}\r\n\r\n{args}\r\n\r\n' # (encoded) payload goes in here? self.sendall(payload) result = self.recvall(self.socket) # status code (within headers) code = self.get_code(result) # headers headers = self.get_headers(result) # body body = self.get_body(result) print(body) self.close() return HTTPResponse(int(code), body) def command(self, url, command="GET", args=None): if (command == "POST"): return self.POST( url, args ) else: return self.GET( url, args ) if __name__ == "__main__": client = HTTPClient() command = "GET" if (len(sys.argv) <= 1): help() sys.exit(1) elif (len(sys.argv) == 3): print(client.command( sys.argv[2], sys.argv[1] )) # client.command( sys.argv[2], sys.argv[1] ).pretty_print() else: print(client.command( sys.argv[1] )) # Remember that a client (socket) starts a connection to a server socket that is listening. # There is no server in this assignment, which is why we just print out the result of GET/POST # just use urllib.parseurl and send the data? with a standard GET / POST request # then print the body that gets returned # http://www.cs.ualberta.ca/ # http://softwareprocess.es/static/SoftwareProcess.es.html # http://c2.com/cgi/wiki?CommonLispHyperSpec # http://slashdot.org ```
{ "source": "jnrizvi/CMPUT404-assignment-webserver", "score": 3 }
#### File: jnrizvi/CMPUT404-assignment-webserver/server.py ```python import socketserver import re import os # from PIL import Image # Copyright 2013 <NAME>, <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # # Furthermore it is derived from the Python documentation examples thus # some of the code is Copyright © 2001-2013 Python Software # Foundation; All Rights Reserved # # http://docs.python.org/2/library/socketserver.html # # run: python freetests.py # try: curl -v -X GET http://127.0.0.1:8080/ # FROM: https://stackoverflow.com/questions/47726865/html-page-not-displaying-using-python-socket-programming 2021-01-27 by lappet 2017 # filename = 'static/index.html' # f = open(filename, 'r') # csock.sendall(str.encode("HTTP/1.0 200 OK\n",'iso-8859-1')) # csock.sendall(str.encode('Content-Type: text/html\n', 'iso-8859-1')) # csock.send(str.encode('\r\n')) # # send data per line # for l in f.readlines(): # print('Sent ', repr(l)) # csock.sendall(str.encode(""+l+"", 'iso-8859-1')) # l = f.read(1024) # f.close() # END FROM class MyWebServer(socketserver.BaseRequestHandler): def handle(self): self.data = self.request.recv(1024).strip() # Need to parse the self.data. Look at the path to see which file/folder should be returned. Look at HTTP method and see if its GET. POST/PUT/DELETE not supported # print ("Got a request of: %s\n" % self.data) # print(self.data) request_snippet = self.data.decode("utf-8").split("?")[0] print(request_snippet) # Just grab the HTTP method and the file path using a regular expression # THIS REGEX NEEDS TO BE UPDATED TO HANDLE DEEP PATH match = re.match(r"GET\s\/([A-Za-z]+\.[A-Za-z]+)?\s", request_snippet) if match: method_and_path = match.group().split(" ") print(method_and_path) # from self.data, extract the path to know which files should be sent. # If / is the path, the index.html should be the file to send if method_and_path[1] == "/": filename = '/index.html' else: # otherwise, serve the other requested file (css, maybe favicon?) filename = method_and_path[1] # print(filename) # print(os.listdir("www")) # Send a 404 status code if the file in the request does not match a file in the directory if filename[1:] in os.listdir("www") == False: self.request.sendall(bytearray("HTTP/1.1 404 FILE_NOT_FOUND\r\n", 'utf-8')) else: f = open("www" + filename, "r") l = f.read() self.request.sendall(bytearray("HTTP/1.1 200 OK\n",'utf-8')) mimetype = "text/html" if "css" in filename: mimetype = "text/css" self.request.sendall(bytearray(f'Content-Type: {mimetype}\n', 'utf-8')) self.request.send(bytearray('\n', 'utf-8')) self.request.sendall(bytearray(""+l+"", 'utf-8')) f.close() else: self.request.sendall(bytearray("HTTP/1.1 404 FILE_NOT_FOUND\r\n", 'utf-8')) if __name__ == "__main__": HOST, PORT = "localhost", 8080 socketserver.TCPServer.allow_reuse_address = True # Create the server, binding to localhost on port 8080 server = socketserver.TCPServer((HOST, PORT), MyWebServer) # Activate the server; this will keep running until you # interrupt the program with Ctrl-C server.serve_forever() # # Reading the file and sending it # python3 -m http.server # # Check against it? What do you mean? # GET http://127 ```
{ "source": "jnrksv/ha-tide", "score": 3 }
#### File: custom_components/tide/config_flow.py ```python import voluptuous as vol from homeassistant import config_entries from homeassistant.const import ATTR_ATTRIBUTION, CONF_LATITUDE, CONF_LONGITUDE from . import DOMAIN @config_entries.HANDLERS.register(DOMAIN) class TideFlowHandler(config_entries.ConfigFlow): """Config flow for Tide.""" VERSION = 1 CONNECTION_CLASS = config_entries.CONN_CLASS_LOCAL_PUSH def __init__(self): """Initialize.""" self._errors = {} async def async_step_user(self, user_input=None): """Handle a flow initialized by the user.""" if user_input is not None: return self.async_create_entry( title="Tide", data=user_input) return self.async_show_form(step_id="user", data_schema=vol.Schema({ vol.Required(CONF_LATITUDE, default=1.0): vol.Coerce(float), vol.Required(CONF_LONGITUDE, default=1.0): vol.Coerce(float) }), errors=self._errors) async def async_step_import(self, user_input=None): """Import a config flow from configuration.""" return self.async_create_entry(title="configuration.yaml", data={}) ```
{ "source": "jnromero/steep", "score": 2 }
#### File: code/html/monitor.py ```python import imp import sys import netifaces as ni from pathlib import Path def getPage(config): pf = imp.load_source('pf',str(Path(config['webServerRoot'])/Path(config['packageFolder']).joinpath("html","pageFunctions.py"))) thisVersion=sys.version.split("\n")[0] thisVersion=thisVersion.replace("\"","'") string="" string+="\n\nwindow.pythonVersion=\"%s\";\n"%(thisVersion) string+="window.pythonExecutable=\"%s\";\n"%(sys.executable) ips=[] for k in ni.interfaces(): ni.ifaddresses(k) try: ip = ni.ifaddresses(k)[2][0]['addr'] ips.append(["%s"%(k),"%s"%(ip)]) except Exception as e: # print("error getting ips",str(e)) "no address" ips=[[str(y.encode("utf-8")) for y in x] for x in ips] string+="window.ipAddresses=%s;\n"%(ips) files=pf.getFiles(config) this='' this+='<html>\n' this+='\t<head>\n' this+='\t\t<title>STEEP: Monitor</title>\n' this+=pf.addExternalFiles(config,"headStart") this+=pf.javascriptLine(files["exp"]['config.js']) this+=pf.javascriptLine(files['common']['jquery.js']) this+=pf.javascriptLine(files["exp"]['monitor.js']) this+=pf.javascriptLine(files['common']['common.js']) this+=pf.javascriptLine(files['common']['websocketConnect.js']) this+=pf.javascriptLine(files['common']['chat.js']) this+=pf.cssLine(files['common']['monitor.css']) this+=pf.cssLine(files['common']['common.css']) this+=pf.cssLine(files['common']['chat.css']) this+=pf.addExternalFiles(config,"headEnd") this+='\t</head>\n' this+='\t<body>\n' this+=pf.addExternalFiles(config,"bodyStart") this+='\t\t<div id="mainDiv"></div>\n' this+='\t\t\t<script type="text/javascript">%s;</script>\n'%(string) this+=pf.javascriptLine(files['common']['monitor.js']) this+=pf.addExternalFiles(config,"bodyEnd") this+='\t</body>\n' this+='</html>' return this ``` #### File: python/modules/instructions.py ```python from __future__ import print_function,division,absolute_import import pickle import json import time from twisted.internet import reactor import random from mutagen.mp3 import MP3 from pathlib import Path class SteepInstructions(): def __init__(self): "self.doNothering=1" self.instructionsAudioFile=Path(self.config['domain'])/Path(self.config['currentExperiment'])/Path(self.config['instructionsFolder']).joinpath("generatedFiles","output.mp3") self.instructionsFinishedCaption="Instructions Finished. Please wait patiently for experiment to continue." #so video can be like a regular subject with a status self.instructionsPlaybackSpeed=1 self.createSubject("video") self.getInstructionsDuration() self.getInstructionsTasks() self.getInstructionsCaptions() self.taskCalls={} self.captionCalls={} def toggleInsructionsPauseOnClient(self,message,client): sid=client.subjectID if self.data['subjects'][sid].instructionsPlaying==1: timeIN=time.time()-self.data['subjects'][sid].instructionsStartTime params={} params['startTime']="%.02f"%(timeIN) self.cancelInstructionsCalls(sid) self.setURLParameters(params,sid,"send") self.runJavascriptFunction("pauseInstructions",sid,"send") self.data['subjects'][sid].instructionsPlaying=0 else: timeIN=self.data['subjects'][sid].queryParameters["startTime"][0] self.instructionsDemo(sid,float(timeIN)) def changeInstructionsTime(self,message,client): sid=client.subjectID if sid=="monitor": sid="allPlusVideo" if "amount" in message: timeIN=min(self.instructionsLength-30,max(0,time.time()-self.data['subjects'][sid].instructionsStartTime+message['amount'])) self.setURLParameters(params,sid,"send") elif "percentage" in message: timeIN=self.instructionsLength*message['percentage'] params={} params['startTime']="%.02f"%(timeIN) self.cancelInstructionsCalls(sid) self.instructionsDemo(sid,timeIN) def changeInstructionsTimeFromMonitor(self,message,client): sid="allPlusVideo" self.stopInstructions({},{}) timeIN=self.instructionsLength*message['percentage'] self.data['instructionsTime']=timeIN self.playInstructions() def instructionsDemo(self,sid,timeIN=0): if timeIN==0 and "startTime" in self.data['subjects'][sid].queryParameters: timeIN=float(self.data['subjects'][sid].queryParameters["startTime"][0]) if timeIN>self.instructionsLength: timeIN=0 print("DMO"); msgs=[] msgList=self.loadInstructionsOnClient(sid,"return") msgs+=msgList #draw cursor overlay msgList=self.runJavascriptFunction("drawCursorOverlay",sid,"return") msgs+=msgList #draw caption overlay msgList=self.runJavascriptFunction("drawCaptionOverlay",sid,"return") msgs+=msgList #draw instructions timer msgList=self.drawInstructionsTimer(sid,"return") msgs+=msgList for s in self.getSubjectIDList(sid): self.data['subjects'][s].instructionsPlaying=1 msgList=self.runJavascriptFunction("clearAllInstructions",sid,"return") msgs+=msgList #dont end instructions for demo # self.initializeTimer(sid,self.instructionsLength,self.endInstructions) self.initializeTimer(sid,self.instructionsLength,self.endInstructions) self.data['timers'][sid]=[time.time(),time.time()-timeIN,self.instructionsLength] # self.data['subjects'][sid].timer=[time.time(),time.time()-timeIN,self.instructionsLength] print(self.data['timers'][sid]) kwargs={"sid":sid} [taskMsgs,index,timeToNext]=self.catchUpTasks(sid,timeIN) for s in self.getSubjectIDList(sid): self.data['subjects'][s].taskIndex=index self.taskCalls[sid]=reactor.callLater(float(timeToNext)/self.instructionsPlaybackSpeed,self.runAnotherTask,**kwargs) msgs+=taskMsgs [msgList,index,timeToNext]=self.catchUpCaptions(sid,timeIN) for s in self.getSubjectIDList(sid): self.data['subjects'][s].captionIndex=index self.captionCalls[sid]=reactor.callLater(float(timeToNext)/self.instructionsPlaybackSpeed,self.displayCaption,**kwargs) msgs+=msgList msgList=self.startAudio(sid,"return",timeIN) msgs+=msgList msgList=self.runJavascriptFunction("drawInstructionsControls",sid,"return") msgs+=msgList self.sendListOfMessages(msgs) def getInstructionsTasks(self): filename=Path(self.config['webServerRoot'])/Path(self.config['currentExperiment'])/Path(self.config['instructionsFolder']).joinpath("generatedFiles","taskTimes.json") file = open(filename,'r') self.taskTimes=json.load(file) file.close() self.data['taskIndex']=-1 filename=Path(self.config['webServerRoot'])/Path(self.config['currentExperiment'])/Path(self.config['instructionsFolder']).joinpath("generatedFiles","tasksOut.json") file = open(filename,'r') self.tasks=json.load(file) file.close() def getInstructionsCaptions(self): #is a list of lists with [caption,time to next,total time at end of this caption display] filename=Path(self.config['webServerRoot'])/Path(self.config['currentExperiment'])/Path(self.config['instructionsFolder']).joinpath("generatedFiles","captions.json") file = open(filename,'r') self.captions=json.load(file) file.close() self.captions.append([self.instructionsFinishedCaption,100000,100000]) self.data['captionIndex']=-1 def getInstructionsDuration(self): mp3Path=Path(self.config['webServerRoot'])/Path(self.config['currentExperiment'])/Path(self.config['instructionsFolder']).joinpath("generatedFiles","output.mp3") instructionLength=MP3(mp3Path).info.length # instructionLength=MP3(self.instructionsAudioFile) self.instructionsLength=float(instructionLength)/self.instructionsPlaybackSpeed self.instructionsLength+=10#add 10 second buffer at end. def getCurrentInstructionsTime(self): #sets self.instructionsTime if self.data['serverStatus']['instructions']['playing']==1: self.data['instructionsTime']=time.time()-self.data['instructionsStartTime'] def setInstructionsStartTime(self): #sets self.instructionsStartTime if self.data['serverStatus']['instructions']['playing']==1: self.data['instructionsStartTime']=time.time()-self.data['instructionsTime'] def reconnectInstructions(self,sid="all",output="send",timeIN="none"): print("reconnecting "+sid) msgs=[] msgList=self.loadInstructionsOnClient(sid,"return") msgs+=msgList #draw cursor overlay msgList=self.runJavascriptFunction("drawCursorOverlay",sid,"return") msgs+=msgList #draw caption overlay msgList=self.runJavascriptFunction("drawCaptionOverlay",sid,"return") msgs+=msgList #draw instructions timer msgList=self.drawInstructionsTimer(sid,"return") msgList=self.drawInstructionsTimer("allPlusVideo","return") msgs+=msgList [taskMsgs,index,timeToNext]=self.catchUpTasks(sid,timeIN) msgs+=taskMsgs [msgList,index,timeToNext]=self.catchUpCaptions(sid,timeIN) msgs+=msgList if self.data['serverStatus']['instructions']['playing']==1: msgList=self.startAudio(sid,"return") msgs+=msgList else: # self.initializeTimer("all",self.instructionsLength,self.endInstructions) self.data['timer']=[time.time(),time.time()-self.data['instructionsTime'],self.instructionsLength] msgList=self.runJavascriptFunction("pauseInstructions",sid,"return") msgs+=msgList self.sendListOfMessages(msgs) def loadInstructions(self,message,client): #this ensures that the server knows that the instructions are loaded print("Loading Instructions....") self.data['serverStatus']['page']="instructions" self.data['instructionsTime']=0 self.data['instructionsStartTime']=0 self.data['serverStatus']['instructions']['lastCaption']=self.captions[0][0] self.data['serverStatus']['instructions']['loaded']=1 self.loadInstructionsOnClient("allPlusVideo") self.monitorMessage() self.updateTaskTable() def loadInstructionsOnClient(self,sid="all",output="send"): print(len(self.data['subjectIDs'])) print("Loading Instructions on client....",sid) messages=[] # def sendListOfMessages(self,messages): # def messageToId(self,msg,sid="all",output="send"): #update status message for s in self.getSubjectIDList(sid): self.data['subjects'][s].status['page']="generic" self.data['subjects'][s].status['message']=["The instruction video will start shortly...."] msgList=self.updateStatus(sid,"return") messages+=msgList #load Instructions message msg={} msg['type']="loadInstructions" msg['source']=self.instructionsAudioFile msg['length']=self.instructionsLength msgList=self.messageToId(msg,sid,"return") messages+=msgList # #Load Click moved to load instructions # msgList=self.runJavascriptFunction("loadClickSound",sid,"return") # messages+=msgList if output=="send": self.sendListOfMessages(messages) elif output=="return": return messages def runJavascriptFunction(self,functionName,sid="all",output="send"): msg={} msg['type']=functionName return self.messageToId(msg,sid,output) def placeCursor(self,x,y,sid="all",output="send"): msg={} msg['type']='placeCursor' msg['x']=x msg['y']=y return self.messageToId(msg,sid,output) def changeCaptionBottom(self,y,sid="all",output="send"): msg={} msg['type']='changeCaptionBottom' msg['y']=y return self.messageToId(msg,sid,output) def moveCursor(self,endX,endY,time=0.5,delay=0,sid="all",output="send"): msg={} msg['type']='moveCursor' msg['endX']=endX msg['endY']=endY msg['time']=time msg['delay']=delay return self.messageToId(msg,sid,output) def moveCursorToDiv(self,divName,time=0.5,delay=0,anchor="none",sid="all",output="send"): msg={} msg['type']='moveCursorToDiv' msg['anchor']=anchor msg['divName']=divName msg['time']=time msg['delay']=delay return self.messageToId(msg,sid,output) def cursorDown(self,delay,position,sid="all",output="send"): msg={} msg['type']='cursorDown' msg['position']=position msg['delay']=delay return self.messageToId(msg,sid,output) def cursorDownDiv(self,delay,divName,anchor="none",sid="all",output="send"): msg={} msg['type']='cursorDownDiv' msg['divName']=divName msg['anchor']=anchor msg['delay']=delay print(sid,output) print("Cursordown") return self.messageToId(msg,sid,output) def mouseSequence(self,sequence,sid="all",output="send"): kwargs={"sid":sid,"output":"return"} msgs=[] sequenceTime=0 currentPosition=[0,0] for s in sequence: if s[0]=="place": msgList=self.placeCursor(s[1],s[2],**kwargs) msgs+=msgList currentPosition=[s[1],s[2]] elif s[0]=="toPoint": msgList=self.moveCursor(s[1],s[2],s[3],sequenceTime,**kwargs) msgs+=msgList sequenceTime+=s[3] currentPosition=[s[1],s[2]] elif s[0]=="toDiv": for kw in kwargs: s[1][kw]=kwargs[kw] s[1]['delay']=sequenceTime msgList=self.moveCursorToDiv(**s[1]) msgs+=msgList if "time" not in s[1]: thisTime=0.5 else: thisTime=s[1]['time'] sequenceTime+=thisTime elif s[0]=="click" or s[0]=="clickDiv": if s[0]=="click": msgList=self.cursorDown(sequenceTime,currentPosition,**kwargs) msgs+=msgList elif s[0]=="clickDiv": theseArgs={} for kw in ['divName','anchor']: if kw in s[1]: theseArgs[kw]=s[1][kw] for kw in ['sid','output']: theseArgs[kw]=kwargs[kw] theseArgs['delay']=sequenceTime msgList=self.cursorDownDiv(**theseArgs) msgs+=msgList clickArgs={} clickArgs['func']=s[1]['func'] clickArgs['args']=s[1]['args'] clickArgs['sid']=sid clickArgs['output']="send" self.taskCalls[sid]=reactor.callLater(float(sequenceTime+.15)/self.instructionsPlaybackSpeed,self.runSingleTask,**clickArgs) sequenceTime+=.65 if output=="send": self.sendListOfMessages(msgs) else: return msgs def startAudio(self,sid="all",output="send",timeIN="none"): #self.instructionsTime should be set before this is run if timeIN=="none" or sid in ["all","allPlusVideo"]: timeIN=self.data['instructionsTime'] self.data['instructionsStartTime']=time.time()-timeIN else: self.data['subjects'][sid].instructionsStartTime=time.time()-timeIN msg={} msg['currentTime']=timeIN msg['playbackRate']=self.instructionsPlaybackSpeed msg['type']='startAudio' return self.messageToId(msg,sid,output) def changeBackgroundColor(self,color,sid="all",output="send"): msg={} msg['type']='changeBackgroundColor' msg['color']=color return self.messageToId(msg,sid,output) def highlightDiv(self,divName,sid="all",output="send"): msg={} msg['type']='highlightDiv' msg['divName']=divName return self.messageToId(msg,sid,output) def unHighlightDiv(self,divName,sid="all",output="send"): msg={} msg['type']='unHighlightDiv' msg['divName']=divName return self.messageToId(msg,sid,output) def placeText(self,divID,text,left,top,fontSize,color,fadeTime,textAlign,sid="all",output="send"): msg={} msg['type']='placeText' msg['divid']=divID msg['text']=text msg['left']=left msg['top']=top msg['fontSize']=fontSize msg['color']=color msg['fadeTime']=fadeTime msg['textAlign']=textAlign return self.messageToId(msg,sid,output) def playInstructions(self): msgs=[] self.data['serverStatus']['instructions']['playing']=1 # if self.data['serverStatus']['instructions']['loaded']==0 self.data['serverStatus']['instructions']['started']=1 self.data['serverStatus']['instructions']['time']=float(self.data['instructionsTime'])/self.instructionsLength #draw cursor overlay msgList=self.runJavascriptFunction("drawCursorOverlay","allPlusVideo","return") msgs+=msgList #draw caption overlay msgList=self.runJavascriptFunction("drawCaptionOverlay","allPlusVideo","return") msgs+=msgList #draw instructions timer msgList=self.drawInstructionsTimer("allPlusVideo","return") msgs+=msgList msgList=self.startAudio("allPlusVideo","return") msgs+=msgList msgList=self.runJavascriptFunction("clearAllInstructions","allPlusVideo","return") msgs+=msgList # self.initializeTimer("all",self.instructionsLength,self.endInstructions) self.initializeTimer("all",self.instructionsLength-self.data['instructionsTime'],self.endInstructions) # self.data['timer']=[time.time(),time.time()-self.data['instructionsTime'],self.instructionsLength] [taskMsgs,index,timeToNext]=self.catchUpTasks() self.data['taskIndex']=index kwargs={"sid":"allPlusVideo"} self.taskCalls['allPlusVideo']=reactor.callLater(float(timeToNext)/self.instructionsPlaybackSpeed,self.runAnotherTask,**kwargs) msgs+=taskMsgs [msgList,index,timeToNext]=self.catchUpCaptions() self.data['captionIndex']=index kwargs={"sid":"allPlusVideo"} self.captionCalls['allPlusVideo']=reactor.callLater(float(timeToNext)/self.instructionsPlaybackSpeed,self.displayCaption,**kwargs) msgs+=msgList self.sendListOfMessages(msgs) self.monitorMessage() self.updateTaskTable() def resumeInstructions(self,message,client): self.playInstructions() def restartInstructions(self,message,client): if self.data['serverStatus']['instructions']['playing']==1: self.stopInstructions({},{}) for sid in ['video']+self.data['subjectIDs']: self.data['subjects'][sid].status['page']="generic" self.data['subjects'][sid].status['message']=["The instruction video will start shortly...."] self.updateStatus(sid) self.data['instructionsTime']=0 self.data['serverStatus']['instructions']['time']=float(self.data['instructionsTime'])/self.instructionsLength self.data['serverStatus']['instructions']['playing']=0 self.monitorMessage() self.updateTaskTable() def cancelInstructionsCalls(self,sid): if sid in self.taskCalls: if self.taskCalls[sid].cancelled==0: if self.taskCalls[sid].called==0: self.taskCalls[sid].cancel() else: print("trying to cancel already called Task",sid) if sid in self.captionCalls: if self.captionCalls[sid].cancelled==0: if self.captionCalls[sid].called==0: self.captionCalls[sid].cancel() else: print("trying to cancel already called Caption",sid) def stopInstructions(self,message,client): self.cancelInstructionsCalls("allPlusVideo") self.runJavascriptFunction("pauseInstructions","allPlusVideo","send") self.data['instructionsTime']=time.time()-self.data['instructionsStartTime'] self.data['serverStatus']['instructions']['time']=float(self.data['instructionsTime'])/self.instructionsLength self.data['serverStatus']['instructions']['playing']=0 self.monitorMessage() self.updateTaskTable() def runSingleTask(self,func,args,sid="all",output="send"): args['sid']=sid args['output']="return" thisFunction = getattr(self,func) msgList=thisFunction(**args) if output=="send": self.sendListOfMessages(msgList) else: return msgList def catchUpTasks(self,sid="all",timeIN="none"): print("catchUpTasks") if timeIN=="none": self.getCurrentInstructionsTime() timeIN=self.data['instructionsTime'] print(timeIN) toBeRun=[{"func":"runJavascriptFunction","args":{"functionName":"clearAllInstructions"}}] lastPosition=[-23,-23] for index in range(len(self.taskTimes)): taskTime=self.taskTimes[index] thisTask=self.tasks[index] if taskTime<timeIN: if "args" in thisTask: if "functionName" in thisTask['args']: if thisTask['args']['functionName']=="clearAllInstructions": toBeRun=[] lastPosition=[-23,-23] if thisTask['func']=="mouseSequence": thisSequence= thisTask['args']['sequence'] for k in thisSequence: if k[0]=="place": lastPosition=[k[1],k[2]] elif k[0]=="place": lastPosition=[k[1],k[2]] elif k[0]=="toDiv": lastPosition=["div",k[1]["divName"]] elif k[0]=="click" or k[0]=="clickDiv": clickArgs={} clickArgs['func']=k[1]['func'] clickArgs['args']=k[1]['args'] clickArgs['args']['sid']=sid toBeRun.append(clickArgs) else: toBeRun.append(thisTask) else: #all tasks after time don't need to be looked at break #index is the index of the next task to be run. #place cursor: if lastPosition==[-23,-23]: "do nothing" elif lastPosition[0]=="div": this={"func":"mouseSequence","args":{"sequence":[["toDiv",{"divName":lastPosition[1],"time":0}]]}} toBeRun.append(this) else: this={"func":"placeCursor","args":{"x":lastPosition[0],"y":lastPosition[1]}} toBeRun.append(this) messages=[] for task in toBeRun: msgList=self.runSingleTask(task['func'],task['args'],sid,"return") messages+=msgList timeToNextTask=self.taskTimes[index]-timeIN return [messages,index-1,timeToNextTask] def testRunAnotherTask(self,message,client): thisIndex=self.data['taskIndex'] if "testInstructionTimeIndex" not in self.data: self.data['testInstructionTimeIndex']=0 timeForThisTask=float(self.taskTimes[self.data['testInstructionTimeIndex']])-.1 self.data['instructionsTime']=timeForThisTask self.data['serverStatus']['instructions']['playing']=1 self.reconnectInstructions("allPlusVideo","send",timeForThisTask) self.data['testInstructionTimeIndex']+=1 def runAnotherTask(self,sid="all"): runTask=0 if self.config['serverType']=="regularExperiment": self.data['taskIndex']+=1 thisIndex=self.data['taskIndex'] sendToWho="allPlusVideo" runTask=1 elif self.config['serverType']=="demoExperiment": if sid in self.data: self.data['subjects'][sid].taskIndex+=1 thisIndex=self.data['subjects'][sid].taskIndex sendToWho=sid runTask=1 if runTask==1: timeForThisTask=float(self.taskTimes[thisIndex]) task=self.tasks[thisIndex] msgList=self.runSingleTask(task['func'],task['args'],sendToWho,"send") # self.getCurrentInstructionsTime() if thisIndex<len(self.taskTimes)-1: timeForNextThisTask=float(self.taskTimes[thisIndex+1]) timeToNext=timeForNextThisTask-timeForThisTask kwargs={"sid":sid} self.taskCalls[sid]=reactor.callLater(float(timeToNext)/self.instructionsPlaybackSpeed,self.runAnotherTask,**kwargs) self.updateInstructionTimeToMonitor(sid) def catchUpCaptions(self,sid="all",timeIN="none"): if timeIN=="none": self.getCurrentInstructionsTime() timeIN=self.data['instructionsTime'] for index in range(len(self.captions)): caption=self.captions[index] if caption[-1]>timeIN: break currentCaption=self.captions[index][0] timeToNext=self.captions[index][-1]-timeIN msgList=self.setCaption(currentCaption,sid,"return") return [msgList,index,timeToNext] def updateInstructionTimeToMonitor(self,sid="all"): if sid=="all" or sid=="allPlusVideo": self.data['instructionsTime']=time.time()-self.data['instructionsStartTime'] self.data['serverStatus']['instructions']['time']=float(self.data['instructionsTime'])/self.instructionsLength else: self.data['subjects'][sid].instructionsTime=time.time()-self.data['subjects'][sid].instructionsStartTime self.data['serverStatus']['instructions']['time']=float(self.data['subjects'][sid].instructionsTime)/self.instructionsLength self.monitorMessage() self.updateTaskTable() def drawInstructionsTimer(self,sid="all",output="send"): msg={} msg['type']='drawInstructionsTimer' if sid=="allPlusVideo": msg['whichTimer']="all" else: msg['whichTimer']=sid # if self.config['serverType']=="regularExperiment": # msg['whichTimer']="all" # elif self.config['serverType']=="demoExperiment": # msg['whichTimer']="selfTimer" return self.messageToId(msg,sid,output) def setCaption(self,caption,sid="all",output="send"): msg={} msg['type']='setCaptions' msg['caption']=caption msg['length']=self.instructionsLength if sid=="allPlusVideo": msg['whichTimer']="all" else: msg['whichTimer']=sid return self.messageToId(msg,sid,output) def resyncAudio(self,sid="all",output="send"): # self.data['timers']['all'][1]+=1 msg={} msg['type']='resyncAudio' msg['length']=self.instructionsLength if sid=="allPlusVideo": msg['whichTimer']="all" else: msg['whichTimer']=sid return self.messageToId(msg,sid,output) def displayCaption(self,sid="all"): setCaption=0 if self.config['serverType']=="regularExperiment": self.data['captionIndex']+=1 thisIndex=self.data['captionIndex'] sendToWho="allPlusVideo" setCaption=1 elif self.config['serverType']=="demoExperiment": if sid in self.data: self.data['subjects'][sid].captionIndex+=1 thisIndex=self.data['subjects'][sid].captionIndex sendToWho=sid setCaption=1 if setCaption==1: thisCaption=self.captions[thisIndex][0] timeToNext=float(self.captions[thisIndex][1]) self.setCaption(thisCaption,sendToWho,"send") if self.captions[thisIndex][0]==self.instructionsFinishedCaption: 'do nothing' else: kwargs={"sid":sid} self.captionCalls[sid]=reactor.callLater(float(timeToNext)/self.instructionsPlaybackSpeed,self.displayCaption,**kwargs) self.data['serverStatus']['instructions']['lastCaption']=thisCaption self.updateInstructionTimeToMonitor(sid) def endInstructionsMessage(self,message,client): self.stopInstructions({},{}) self.endInstructions() def endInstructions(self): print("Instructions Finished") self.data['serverStatus']['instructions']['started']=0 self.data['serverStatus']['instructions']['loaded']=0 self.data['serverStatus']['instructions']['playing']=0 self.data['serverStatus']['instructions']['finished']=1 self.data['serverStatus']['page']="none" self.monitorMessage() self.updateTaskTable() msg={} msg['type']="endInstructions" # for sid in self.getSubjectIDList("allPlusVideo"): # self.data['subjects'][sid].status["page"]="generic" # self.data['subjects'][sid].status["message"]=["The Instructions Have Ended. <br> Plese wait for experiment to continue."] return self.messageToId(msg,"allPlusVideo","send") ``` #### File: python/modules/logger.py ```python from __future__ import print_function,division,absolute_import import os from twisted.python import log import time import sys import pickle from builtins import bytes from pathlib import Path class logCounter(): def __init__(self): self.counter=0 self.fileCount=1 self.totalCounter=0 self.currentTab=1 def increment(self): self.counter+=1 self.totalCounter+=1 out=False if self.counter>500: self.fileCount+=1 self.counter=0 out=True return out def createBlankFile(filename): file = open(filename,'wb') file.close() def getFilenames(config,fileCount): txtFile=Path(config['logFolder']).joinpath("txt","%s.txt"%(fileCount)) pickleFile=Path(config['logFolder']).joinpath("pickle","%s.pickle"%(fileCount)) return [txtFile,pickleFile] def newFiles(config,fileCount): [txtFile,pickleFile]=getFilenames(config,fileCount) createBlankFile(txtFile) createBlankFile(pickleFile) return [txtFile,pickleFile] class SteepLogger(object): def __init__(self,stream,streamType,config,thisCounter,consoleMessage): self.stream=stream self.config=config self.counter=thisCounter self.type=streamType#stdErr or stdOut self.consoleMessage=consoleMessage [self.txtLogFilename,self.pickleLogFilename]=newFiles(self.config,self.counter.fileCount) self.newLine() def newLine(self): self.currentLine="" def write(self,obj,**kwargs): #open files for appending #split into lines lines=obj.split("\n") if "type" in kwargs: thisType=kwargs['type'] else: thisType=self.type for k in range(len(lines)): self.currentLine+=lines[k] if k<len(lines)-1: #write to text file with open(self.txtLogFilename,'ab') as f: f.write(bytes(self.currentLine+"\n", encoding="UTF-8")) #write to pickle file ([type,line,linecounter,kwargs]) with open(self.pickleLogFilename,'ab') as f: pickle.dump([thisType,self.currentLine.replace(" ","&nbsp;&nbsp;"),self.counter.totalCounter,kwargs],f,protocol=2) #write to console self.stream.write(thisType+" "*(15-len(thisType))+" "+self.currentLine+"\n") self.stream.flush() self.currentLine="" if self.counter.increment(): print("Incrementing, and Creating New Log Files") [self.txtLogFilename,self.pickleLogFilename]=newFiles(self.config,self.counter.fileCount) self.consoleMessage() def flush(self): self.stream.flush() def twistedObserver(eventDict): kwargs={"type":"twisted"} if 'log_namespace' not in eventDict: sys.stdout.write(eventDict+"\n",**kwargs) elif eventDict['isError']==1: kwargs={"type":"twistedError"} if 'log_text' in eventDict: for k in eventDict['log_text'].split("\n"): sys.stdout.write(k+"\n",**kwargs) elif 'log_io' in eventDict: sys.stdout.write(eventDict['log_io']+"\n",**kwargs) else: sys.stdout.write(str(eventDict)+"\n",**kwargs) elif eventDict['log_namespace']=='stdout': sys.stdout.write(eventDict['log_io']+"\n",**kwargs) elif eventDict['log_namespace']=='twisted.python.log' and 'log_io' in eventDict: if eventDict['log_io'].find("\"GET")==-1: sys.stdout.write(eventDict['log_io']+"\n",**kwargs) else: if "log_text" in eventDict: sys.stdout.write(eventDict['log_text']+"\n",**kwargs) elif "log_format" in eventDict: sys.stdout.write(eventDict['log_format']+"\n",**kwargs) else: sys.stdout.write(eventDict['message']+"\n",**kwargs) def log(text,**kwargs): print(text) ``` #### File: python/modules/monitor.py ```python from __future__ import print_function,division,absolute_import import json import pickle import time class monitorClass(): def __init__(self): #This should be set in experiment.py #self.monitorTaskList=['loadInstructions','startQuiz','startExperiment'] # self.data['taskList']=self.monitorTaskList self.monitorTasks() self.data['taskDoneTime']=[] self.data['monitorTableInfo']={} self.clientInfoSpecificMonitorTableEntries() def sendMessageToMonitorClients(self,msg): try: for client in self.monitorClients: if client.page=="monitor": msg=self.getExtraMonitorPageInfo(msg,client) client.sendMessage(json.dumps(msg).encode('utf8')) except Exception as thisExept: print(thisExept) print("can't send message to monitor, from sendMessageToMonitorClients") #def monitorMessage(self): in mainServer.py so that it can use reactor. def updateMonitorPage(self,client): self.updateMonitorHeader(client) if client.page=="monitor": self.updateMonitorTable() self.updateTaskTable() elif client.page=="console": self.lastConsoleMessageTime=time.time()-10#this ensures a page refresh self.consoleMessage() elif client.page=="serverInfo": self.showServerInfo(client) def showServerInfo(self,client): try: msg={'type':"showServerInfo"} msg=self.getExtraMonitorPageInfo(msg,client) client.sendMessage(json.dumps(msg).encode('utf8')) except Exception as thisExept: print(thisExept) print("can't send message to monitor, from showServerInfo") def updateMonitorHeader(self,client): msg={"type":"updateMonitorHeader"} msg['currentPage']=client.page msg['serverStatus']=self.data['serverStatus'] msg=self.getExtraMonitorPageInfo(msg,client) client.sendMessage(json.dumps(msg).encode('utf8')) def newMonitorTable(self): for client in self.monitorClients: client.currentMonitorTable=self.currentMonitorTable self.updateMonitorHeader(client) self.updateMonitorTable() self.updateTaskTable() def updateMonitorTable(self): try: for client in self.monitorClients: if client.page=="monitor": msg={"type":"updateMonitorTable"} msg['table']=self.getMonitorTable(client) msg['serverStatus']=self.data['serverStatus'] msg=self.getExtraMonitorPageInfo(msg,client) client.sendMessage(json.dumps(msg).encode('utf8')) except Exception as thisExept: print(thisExept) print("can't send message to monitor, from updateMonitorTable") def updateTaskTable(self): msg={"type":"updateTaskTable"} msg['taskList']=[x['name'] if isinstance(x,dict) else x for x in self.monitorTaskList] msg['taskStatus']=self.data['taskStatus'] msg['serverStatus']=self.data['serverStatus'] msg['dataFile']=self.config['dataFilePath'] msg['dataFileURL']=self.config['dataFileURL'] msg['dataFolderURL']=self.config['dataFolderURL'] self.sendMessageToMonitorClients(msg) def toggleAcceptingSwitch(self,message,client): self.data['serverStatus']['acceptingClients']=1-self.data['serverStatus']['acceptingClients'] if self.data['serverStatus']['acceptingClients']==0: print("Done Accepting Clients!") print("%s Clients Connected"%(len(self.data['subjectIDs']))) #check to see if notAcceptingClientsAnymore is defined in experiment notAcceptingClientsAnymore = getattr(self,"notAcceptingClientsAnymore",None) if callable(notAcceptingClientsAnymore): self.notAcceptingClientsAnymore() else: self.notAcceptingClientsAnymoreDefault() else: print("Accepting Clients Now!") self.finalPayoffsSpecificMonitorTableEntries() self.monitorMessage() self.updateTaskTable() def clientInfoSpecificMonitorTableEntries(self): self.currentMonitorTable="clientInfo" self.data['monitorTableInfo']['clientInfo']=[ ['Refresh' ,'"<a href=\'javascript:void(0)\' onclick=\'refreshClient([\\\"%s\\\"]);\'>%s</a>"%(sid,sid)'], ['Connection' ,'self.data["subjects"][sid].connectionStatus'], ['IP Address' ,'self.clientsById[sid].peer'], ['Disconnect','"<a href=\'javascript:void(0)\' onclick=\'disconnectClient([\\\"%s\\\"]);\'>%s</a>"%(sid,sid)'], ['Accept/Reject','"<a href=\'javascript:void(0)\' onclick=\'%sClient([\\\"%s\\\"]);\'>%s</a>"%("reject"*int(sid in self.data["subjectIDs"])+"accept"*int(sid in self.data["rejectIDs"]),sid,"Reject"*int(sid in self.data["subjectIDs"])+"Accept"*int(sid in self.data["rejectIDs"]))'] ] def finalPayoffsSpecificMonitorTableEntries(self): try: self.currentMonitorTable="finalPayoffs" sid=self.data['subjectIDs'][0] thisTable=[] for k in self.data['subjects'][sid].finalPayoffs: thisTable.append([k,"'$%%.02f'%%(self.data['subjects'][sid].finalPayoffs['%s'])"%(k)]) self.data['monitorTableInfo']['finalPayoffs']=thisTable except Exception as e: print("can't set final payoffs monitor table",str(e)) def getMonitorTableValue(self,sid,item): try: out=eval(item[1]) except: out="NA" return out def getMonitorTable(self,client): thisMonitorTable=[["subjectID","sid"]]+self.data['monitorTableInfo'][client.currentMonitorTable] tableData={} connectedRejects=[x for x in self.data['rejectIDs'] if x in self.clientsById] connectedDuplicates=[x for x in self.data['duplicateIDs'] if x in self.clientsById] tableData['subjectIDs']=connectedRejects+connectedDuplicates+self.data['subjectIDs'] tableData['connected']={} #get Connection statius for sid in tableData['subjectIDs']: if sid in self.data['rejectIDs']: value="rejected" elif sid in self.data['duplicateIDs']: value="duplicate" else: value=self.data['subjects'][sid].connectionStatus tableData['connected'][sid]=value #get communication statius tableData['communication']={} for sid in tableData['subjectIDs']: tableData['communication'][sid]=self.data['subjects'][sid].communicationStatus[0] #get Values tableData['titles']=[x[0] for x in thisMonitorTable] for sid in tableData['subjectIDs']: tableData[sid]={} for item in thisMonitorTable: string=item[0] value=self.getMonitorTableValue(sid,item) tableData[sid][string]=value tableData=self.sortMonitorTable(tableData,client.monitorTableSortColumn) return tableData def sortMonitorTable(self,tableData,sortColumns): toBeSorted=[] for sid in tableData['subjectIDs']: thisList=[] for c in sortColumns: index=c[0] sortTyep=c[1] table=c[2] item=self.data['monitorTableInfo'][table][index-1] if index==0: thisList.append(sid) else: thisList.append(self.getMonitorTableValue(sid,item)) if sid in self.data['subjectIDs']: thisList.append("ZZZ") elif sid in self.data['rejectIDs']: thisList.append("BBB") elif sid in self.data['duplicateIDs']: thisList.append("AAA") toBeSorted.append(thisList) index=0 for c in sortColumns: index+=1 if c[1]=="reg": toBeSorted.sort(key=lambda x: x[index])#reverse=True) else: toBeSorted.sort(key=lambda x: x[index],reverse=True) tableData['subjectIDs']=[x[1] for x in toBeSorted] return tableData def sortMonitorTableMessage(self,message,client): if client.monitorTableSortColumn[-1][0]==int(message['col']) and client.monitorTableSortColumn[-1][2]==client.currentMonitorTable: if client.monitorTableSortColumn[-1][1]=="rev": client.monitorTableSortColumn[-1][1]="reg" elif client.monitorTableSortColumn[-1][1]=="reg": client.monitorTableSortColumn[-1][1]="rev" else: client.monitorTableSortColumn.append([int(message['col']),"reg",client.currentMonitorTable]) client.monitorTableSortColumn=client.monitorTableSortColumn[1:] self.monitorMessage() def changeMonitorTable(self,message,client): client.currentMonitorTable=message["table"] client.page="monitor" self.updateMonitorPage(client) def changeMonitorPage(self,message,client): client.page=message["page"] self.updateMonitorPage(client) def changeConsoleTab(self,message,client): if message["tab"]=="first": client.consoleTab=1 elif message["tab"]=="next": client.consoleTab+=1 client.consoleTab=min(client.consoleTab,self.logCounter.fileCount) elif message["tab"]=="previous": client.consoleTab-=1 client.consoleTab=max(client.consoleTab,1) elif message["tab"]=="last": client.consoleTab=self.logCounter.fileCount client.page="console" self.updateMonitorPage(client) def getExtraMonitorPageInfo(self,msg,client): msg['consoleTabs']=[client.consoleTab,self.logCounter.fileCount] msg['monitorTables']=[x for x in self.data['monitorTableInfo']] msg['currentMonitorTable']=client.currentMonitorTable return msg def taskDone(self,message): task=message['type'] self.data['taskDoneTime'].append([task,time.time()]) self.data['taskStatus'][task]['status']="Done" self.saveData() self.newMonitorTable() def taskDoneMany(self,message): task=message['type'] self.data['taskDoneTime'].append([task,time.time()]) self.data['taskStatus'][task]['status']="" self.saveData() self.newMonitorTable() def taskToTitle(self,taskName): title="" for l in taskName: if l.isupper(): title+=" " title+=l title=title.title() return title def monitorTasks(self): self.data.setdefault('taskStatus',{}) for task in self.monitorTaskList: taskName=task['name'] if isinstance(task,dict) else task taskType=task if isinstance(task,dict) else {"name":taskName,"type":"regular"} self.data['taskStatus'].setdefault(taskName,{}) self.data['taskStatus'][taskName].setdefault('status',"") self.data['taskStatus'][taskName].setdefault('title',self.taskToTitle(taskName)) self.data['taskStatus'][taskName].setdefault('type',taskType) ```
{ "source": "JNRowe-retired/Dolt", "score": 2 }
#### File: dolt/apis/github.py ```python from dolt import Dolt class GitHub(Dolt): def __init__(self, api_version="v2", *args, **kwargs): super(GitHub, self).__init__(*args, **kwargs) self._api_url = "https://github.com/api/%s/json" % api_version self._url_template = "%(domain)s/%(generated_url)s" ``` #### File: dolt/apis/statsmix.py ```python from dolt import Dolt import httplib2 from xml.dom import minidom class StatsMixHttp(object): def __init__(self, api_key=None, http=None, *args, **kwargs): self.api_key = api_key self.http = http or httplib2.Http() def request(self, *args, **kwargs): if not 'headers' in kwargs: kwargs['headers'] = {} kwargs['headers']['X-StatsMix-Token'] = self.api_key return self.http.request(*args, **kwargs) class StatsMix(Dolt): def __init__(self, api_key, *args, **kwargs): http = StatsMixHttp(api_key, *args, **kwargs) kwargs['http'] = http super(StatsMix, self).__init__(*args, **kwargs) self._api_url = "http://statsmix.com/api/v1" def _handle_response(self, response, data): return minidom.parseString(data) ``` #### File: Dolt/dolt/__init__.py ```python import httplib2 import urllib try: import json except ImportError: import simplejson as json try: from decorator import decorator except ImportError: # No decorator package available. Create a no-op "decorator". def decorator(f): def decorate(_func): def inner(*args, **kwargs): return f(_func, *args, **kwargs) return inner return decorate @decorator def _makes_clone(_func, *args, **kw): """ A decorator that returns a clone of the current object so that we can re-use the object for similar requests. """ self = args[0]._clone() _func(self, *args[1:], **kw) return self class Dolt(object): """ A dumb little wrapper around RESTful interfaces. Subclass `Dolt` to create specific APIs. Example:: class MyApi(Dolt): _api_url = 'https://api.example.com' _url_template = '%(domain)s/%(generated_url)s.json' api = MyApi() print api.images() """ _api_url = '' """The base url for this API""" _url_template = '%(domain)s/%(generated_url)s' """ Template used to generate URLs. - `%(domain)s` is the `_api_url` - `%(generated_url)s` is where the URL parts go. """ _stack_collapser = '/'.join _params_template = '?%s' def __init__(self, http=None): self._supported_methods = ("GET", "POST", "PUT", "HEAD", "DELETE", "OPTIONS") self._attribute_stack = [] self._method = "GET" self._body = None self._http = http or httplib2.Http() self._params = {} self._headers = {} def __call__(self, *args, **kwargs): url = self.get_url(*[str(a) for a in args], **kwargs) response, data = self._http.request(url, self._method, body=self._body, headers=self._headers) return self._handle_response(response, data) def _generate_params(self, params): return self._params_template % urllib.urlencode(params) def _handle_response(self, response, data): """ Deserializes JSON if the content-type matches, otherwise returns the response body as is. """ # Content-Type headers can include additional parameters(RFC 1521), so # we split on ; to match against only the type/subtype if data and response.get('content-type', '').split(';')[0] in ( 'application/json', 'application/x-javascript', 'text/javascript', 'text/x-javascript', 'text/x-json' ): return json.loads(data) else: return data @_makes_clone def __getitem__(self, name): """ Adds `name` to the URL path. """ self._attribute_stack.append(name) return self @_makes_clone def __getattr__(self, name): """ Sets the HTTP method for the request or adds `name` to the URL path. :: >>> dolt.GET._method == 'GET' True >>> dolt.foo.bar.get_url() '/foo/bar' """ if name in self._supported_methods: self._method = name elif not name.endswith(')'): self._attribute_stack.append(name) return self @_makes_clone def with_params(self, **params): """ Add/overwrite URL query parameters to the request. """ self._params.update(params) return self @_makes_clone def with_body(self, body=None, **params): """ Add a body to the request. When `body` is a: - string, it will be used as is. - dict or list of (key, value) pairs, it will be form encoded - None, remove request body - anything else, a TypeError will be raised If `body` is a dict or None you can also pass in keyword arguments to add to the body. :: >>> dolt.with_body(dict(key='val'), foo='bar')._body 'foo=bar&key=val' """ if isinstance(body, (tuple, list)): body = dict(body) if params: # Body must be None or able to be a dict if isinstance(body, dict): body.update(params) elif body is None: body = params else: raise ValueError('Body must be None or a dict if used with params, got: %r' % body) if isinstance(body, basestring): self._body = body elif isinstance(body, dict): self._body = urllib.urlencode(body) elif body is None: self._body = None else: raise TypeError('Invalid body type %r' % body) return self def with_json(self, data=None, **params): """ Add a json body to the request. :param data: A json string, a dict, or a list of key, value pairs :param params: A dict of key value pairs to JSON encode """ if isinstance(data, (tuple, list)): data = dict(data) if params: # data must be None or able to be a dict if isinstance(data, dict): data.update(params) elif data is None: data = params else: raise ValueError('Data must be None or a dict if used with params, got: %r' % data) req = self.with_headers({'Content-Type': 'application/json', 'Accept': 'application/json'}) if isinstance(data, basestring): # Looks like it's already been encoded return req.with_body(data) else: return req.with_body(json.dumps(data)) @_makes_clone def with_headers(self, headers=None, **params): """ Add headers to the request. :param headers: A dict, or a list of key, value pairs :param params: A dict of key value pairs """ if isinstance(headers, (tuple, list)): headers = dict(headers) if params: if isinstance(headers, dict): headers.update(params) elif headers is None: headers = params self._headers.update(headers) return self def get_url(self, *paths, **params): """ Returns the URL for this request. :param paths: Additional URL path parts to add to the request :param params: Additional query parameters to add to the request """ path_stack = self._attribute_stack[:] if paths: path_stack.extend(paths) u = self._stack_collapser(path_stack) url = self._url_template % { "domain": self._api_url, "generated_url" : u, } if self._params or params: internal_params = self._params.copy() internal_params.update(params) url += self._generate_params(internal_params) return url def _clone(self): """ Clones the state of the current operation. The state is cloned so that you can freeze the state at a certain point for re-use. :: >>> cat = dolt.cat >>> cat.get_url() '/cat' >>> o = cat.foo >>> o.get_url() '/cat/foo' >>> cat.get_url() '/cat' """ cls = self.__class__ q = cls.__new__(cls) q.__dict__ = self.__dict__.copy() q._params = self._params.copy() q._headers = self._headers.copy() q._attribute_stack = self._attribute_stack[:] return q try: __IPYTHON__ def __dir__(self): return [ '_supported_methods', '_attribute_stack', '_method', '_body', '_http', '_params', '_headers', '_api_url', '_url_template', '_stack_collapser', '_params_template', '__init__', '__call__', '_handle_response', '__getattr__', 'get_url', '__dir__', ] _getAttributeNames = trait_names = __dir__ except NameError: pass class Simpleton(Dolt): """ A dumber little wrapper around RESTful interfaces. Example:: api = Simpleton('http://api.example.com') print api.images() """ def __init__(self, base_url, http=None): super(Simpleton, self).__init__(http=http) self._api_url = base_url ```
{ "source": "JNRowe-retired/github-cli", "score": 3 }
#### File: src/github/issues.py ```python import sys import urllib import webbrowser as browser from optparse import OptionParser try: import simplejson as json except ImportError: try: import json except ImportError: print "error: simplejson required" sys.exit(1) from github.utils import urlopen2, get_remote_info, edit_text, \ get_remote_info_from_option, get_prog, Pager, wrap_text, get_underline from github.version import get_version def smart_unicode(text): try: return str(text) except UnicodeEncodeError: return text.encode('utf-8') def format_issue(issue, verbose=True): output = [] if verbose: indent = "" else: indent = " " * (5 - len(str(issue['number']))) title = "%s%s. %s" % (indent, issue['number'], issue['title']) title = smart_unicode(title) if not verbose: output.append(title[:80]) if verbose: title = wrap_text(title) output.append(title) underline = get_underline(title) output.append(underline) if issue['body']: body = smart_unicode(wrap_text(issue['body'])) output.append(body) output.append(" state: %s" % issue['state']) output.append(" user: %s" % issue['user']) output.append(" votes: %s" % issue['votes']) output.append(" created: %s" % issue['created_at']) updated = issue.get('updated_at') if updated and not updated == issue['created_at']: output.append(" updated: %s" % updated) output.append(" comments: %s" % issue.get('comments', 0)) output.append(" ") return output def format_comment(comment, nr, total): timestamp = comment.get("updated_at", comment["created_at"]) title = "comment %s of %s by %s (%s)" % (nr, total, comment["user"], timestamp) title = smart_unicode(title) output = [title] underline = get_underline(title) output.append(underline) body = smart_unicode(wrap_text(comment['body'])) output.append(body) return output def pprint_issue(issue, verbose=True): lines = format_issue(issue, verbose) lines.insert(0, " ") # insert empty first line print "\n".join(lines) def handle_error(result): output = [] for msg in result['error']: if msg == result['error'][0]: output.append(msg['error']) else: output.append("error: %s" % msg['error']) error_msg = "\n".join(output) raise Exception(error_msg) def validate_number(number, example): msg = "number required\nexample: %s" % example.replace("%prog", get_prog()) if not number: raise Exception(msg) else: try: int(number) except: raise Exception(msg) def get_key(data, key): try: return data[key] except KeyError: raise Exception("unexpected failure") def create_edit_issue(issue=None, text=None): main_text = """# Please explain the issue. # The first line will be used as the title. # Lines starting with `#` will be ignored.""" if issue: issue['main'] = main_text template = """%(title)s %(body)s %(main)s # # number: %(number)s # user: %(user)s # votes: %(votes)s # state: %(state)s # created: %(created_at)s""" % issue else: template = "\n%s" % main_text if text: # \n on the command-line becomes \\n; undoing this: text = text.replace("\\n", "\n") else: text = edit_text(template) if not text: raise Exception("can not submit an empty issue") lines = text.splitlines() title = lines[0] body = "\n".join(lines[1:]).strip() return {'title': title, 'body': body} def create_comment(issue): inp = """ # Please enter a comment. # Lines starting with `#` will be ignored. # # number: %(number)s # user: %(user)s # votes: %(votes)s # state: %(state)s # created: %(created_at)s""" % issue out = edit_text(inp) if not out: raise Exception("can not submit an empty comment") lines = out.splitlines() comment = "\n".join(lines).strip() return comment class Commands(object): def __init__(self, user, repo): self.user = user self.repo = repo self.url_template = "http://github.com/api/v2/json/issues/%s/%s/%s" def search(self, search_term=None, state='open', verbose=False, **kwargs): if not search_term: example = "%s search experimental" % get_prog() msg = "error: search term required\nexample: %s" % example print msg sys.exit(1) search_term_quoted = urllib.quote_plus(search_term) search_term_quoted = search_term_quoted.replace(".", "%2E") result = self.__submit('search', search_term, state) issues = get_key(result, 'issues') header = "# searching for '%s' returned %s issues" % (search_term, len(issues)) printer = Pager() printer.write(header) for issue in issues: lines = format_issue(issue, verbose) printer.write("\n".join(lines)) printer.close() def list(self, state='open', verbose=False, webbrowser=False, **kwargs): if webbrowser: issues_url_template = "http://github.com/%s/%s/issues/%s" if state == "closed": issues_url = issues_url_template % (self.user, self.repo, state) else: issues_url = issues_url_template % (self.user, self.repo, "") try: browser.open(issues_url) except: print "error: opening page in web browser failed" else: sys.exit(0) if state == 'all': states = ['open', 'closed'] else: states = [state] printer = Pager() for st in states: header = "# %s issues on %s/%s" % (st, self.user, self.repo) printer.write(header) result = self.__submit('list', st) issues = get_key(result, 'issues') if issues: for issue in issues: lines = format_issue(issue, verbose) printer.write("\n".join(lines)) else: printer.write("no %s issues available" % st) if not st == states[-1]: printer.write() # new line between states printer.close() def show(self, number=None, verbose=False, webbrowser=False, **kwargs): validate_number(number, example="%prog show 1") if webbrowser: issue_url_template = "http://github.com/%s/%s/issues/%s/find" issue_url = issue_url_template % (self.user, self.repo, number) try: browser.open(issue_url) except: print "error: opening page in web browser failed" else: sys.exit(0) issue = self.__get_issue(number) if not verbose: pprint_issue(issue) else: printer = Pager() lines = format_issue(issue, verbose=True) lines.insert(0, " ") printer.write("\n".join(lines)) if issue.get("comments", 0) > 0: comments = self.__submit('comments', number) comments = get_key(comments, 'comments') lines = [] # reset total = len(comments) for i in range(total): comment = comments[i] lines.extend(format_comment(comment, i+1, total)) lines.append(" ") printer.write("\n".join(lines)) printer.close() def open(self, message=None, **kwargs): post_data = create_edit_issue(text=message) result = self.__submit('open', data=post_data) issue = get_key(result, 'issue') pprint_issue(issue) def close(self, number=None, **kwargs): validate_number(number, example="%prog close 1") result = self.__submit('close', number) issue = get_key(result, 'issue') pprint_issue(issue) def reopen(self, number=None, **kwargs): validate_number(number, example="%prog open 1") result = self.__submit('reopen', number) issue = get_key(result, 'issue') pprint_issue(issue) def edit(self, number=None, **kwargs): validate_number(number, example="%prog edit 1") gh_issue = self.__get_issue(number) output = {'title': gh_issue['title'], 'body': gh_issue['body']} post_data = create_edit_issue(gh_issue) if post_data['title'] == output['title'] and \ post_data['body'].splitlines() == output['body'].splitlines(): print "no changes found" sys.exit(1) result = self.__submit('edit', number, data=post_data) issue = get_key(result, 'issue') pprint_issue(issue) def label(self, command, label, number=None, **kwargs): validate_number(number, example="%prog label %s %s 1" % (command, label)) if command not in ['add', 'remove']: msg = "label command should use either 'add' or 'remove'\n"\ "example: %prog label add %s %s" % (label, number) raise Exception(msg) label = urllib.quote(label) label = label.replace(".", "%2E") # this is not done by urllib.quote result = self.__submit('label/%s' % command, label, number) labels = get_key(result, 'labels') if labels: print "labels for issue #%s:" % number for label in labels: print "- %s" % label else: print "no labels found for issue #%s" % number def comment(self, number=None, **kwargs): validate_number(number, example="%prog comment 1") gh_issue = self.__get_issue(number) comment = create_comment(gh_issue) post_data = {'comment': comment} result = self.__submit('comment', number, data=post_data) returned_comment = get_key(result, 'comment') if returned_comment: print "comment for issue #%s submitted successfully" % number def __get_issue(self, number): result = self.__submit('show', number) return get_key(result, 'issue') def __submit(self, action, *args, **kwargs): base_url = self.url_template % (action, self.user, self.repo) args_list = list(args) args_list.insert(0, base_url) url = "/".join(args_list) page = urlopen2(url, **kwargs) result = json.load(page) page.close() if result.get('error'): handle_error(result) else: return result def main(): usage = """usage: %prog command [args] [options] Examples: %prog list [-s open|closed|all] show open, closed or all issues (default: open) %prog [-s o|c|a] -v same as above, but with issue details %prog same as: %prog list %prog -v same as: %prog list -v %prog [-s o|c] -w show issues' GitHub page in web browser (default: open) %prog show <nr> show issue <nr> %prog show <nr> -v same as above, but with comments %prog <nr> same as: %prog show <nr> %prog <nr> -w show issue <nr>'s GitHub page in web browser %prog open (o) create a new issue (with $EDITOR) %prog open (o) -m <msg> create a new issue with <msg> content (optionally, use \\n for new lines; first line will be the issue title) %prog close (c) <nr> close issue <nr> %prog open (o) <nr> reopen issue <nr> %prog edit (e) <nr> edit issue <nr> (with $EDITOR) %prog label add (al) <label> <nr> add <label> to issue <nr> %prog label remove (rl) <label> <nr> remove <label> from issue <nr> %prog search (s) <term> search for <term> (default: open) %prog s <term> [-s o|c] -v same as above, but with details %prog s <term> -s closed only search in closed issues %prog comment (m) <nr> create a comment for issue <nr> (with $EDITOR) %prog -r <user>/<repo> specify a repository (can be used for all commands) %prog -r <repo> specify a repository (gets user from global git config)""" description = """Description: command-line interface to GitHub's Issues API (v2)""" parser = OptionParser(usage=usage, description=description) parser.add_option("-v", "--verbose", action="store_true", dest="verbose", default=False, help="show issue details (only for show, list and "\ "search commands) [default: False]") parser.add_option("-s", "--state", action="store", dest="state", type='choice', choices=['o', 'open', 'c', 'closed', 'a', 'all'], default='open', help="specify state (only for list and search "\ "(except `all`) commands) choices are: open (o), closed (c), all "\ "(a) [default: open]") parser.add_option("-m", "--message", action="store", dest="message", default=None, help="message content for opening an issue without "\ "using the editor") parser.add_option("-r", "--repo", "--repository", action="store", dest="repo", help="specify a repository (format: "\ "`user/repo` or just `repo` (latter will get the user from the "\ "global git config))") parser.add_option("-w", "--web", "--webbrowser", action="store_true", dest="webbrowser", default=False, help="show issue(s) GitHub page "\ "in web browser (only for list and show commands) [default: False]") parser.add_option("-V", "--version", action="store_true", dest="show_version", default=False, help="show program's version number and exit") class CustomValues: pass (options, args) = parser.parse_args(values=CustomValues) kwargs = dict([(k, v) for k, v in options.__dict__.items() \ if not k.startswith("__")]) if kwargs.get('show_version'): print("ghi %s" % get_version('short')) sys.exit(0) if kwargs.get('state'): kwargs['state'] = {'o': 'open', 'c': 'closed', 'a': 'all'}.get( kwargs['state'], kwargs['state']) if args: cmd = args[0] try: nr = str(int(cmd)) if cmd == nr: cmd = 'show' args = (cmd, nr) except: pass else: cmd = 'list' # default command if cmd == 'search': search_term = " ".join(args[1:]) args = (args[0], search_term) # handle command aliases cmd = {'o': 'open', 'c': 'close', 'e': 'edit', 'm': 'comment', 's': 'search'}.get(cmd, cmd) if cmd == 'open' and len(args) > 1: cmd = 'reopen' if cmd == 'al' or cmd == 'rl': alias = cmd cmd = 'label' args_list = [cmd, {'a': 'add', 'r': 'remove'}[alias[0]]] args_list.extend(args[1:]) args = tuple(args_list) try: repository = kwargs.get('repo') if repository: user, repo = get_remote_info_from_option(repository) else: user, repo = get_remote_info() commands = Commands(user, repo) getattr(commands, cmd)(*args[1:], **kwargs) except AttributeError: return "error: command '%s' not implemented" % cmd except Exception, info: return "error: %s" % info if __name__ == '__main__': main() ``` #### File: github-cli/tests/test_version.py ```python from nose.tools import eq_ import github.version def test_get_version(): get_version = github.version.get_version for tup, short, normal, verbose in [ ((0, 2, 0, 'final', 0), '0.2.0', '0.2', '0.2 final'), ((0, 2, 7, 'final', 0), '0.2.7', '0.2.7', '0.2.7 final'), ((0, 2, 0, 'alpha', 1), '0.2a1', '0.2 alpha 1', '0.2 alpha 1'), ((0, 2, 7, 'beta', 1), '0.2.7b1', '0.2.7 beta 1', '0.2.7 beta 1'), ((0, 2, 0, 'release candidate', 1), '0.2rc1', '0.2 release candidate 1', '0.2 release candidate 1'), ((1, 0, 0, 'alpha', 0), '1.0a', '1.0 pre-alpha', '1.0 pre-alpha'), ]: github.version.VERSION = tup yield eq_, get_version('short'), short yield eq_, get_version('normal'), normal yield eq_, get_version('verbose'), verbose ```
{ "source": "JNRowe-retired/http", "score": 4 }
#### File: http/http/response.py ```python from headers import Headers from url import Url class Response(object): """ The ``Response`` object encapsulates HTTP style responses. """ def __init__(self, status, headers=Headers(), content=None, message=None, request=None): """ Construct a new ``Response`` object. :param status: HTTP status code for the response :type status: integer :param headers: HTTP headers :type status: a list of tuples or a class:`Headers` object :param content: content :param message: HTTP message for the response :param request: origin Request object used :type request: class:`Request` .. attribute:: redirects List of redirections """ self._status = status self.message = message self.redirects = list() if (not isinstance(headers, Headers)): headers = Headers(headers) self._headers = headers self._content = content self._request = request @property def status(self): """ Returns the HTTP status :rtype: int """ return int(self._status) @property def is_info(self): """ Returns if the response was informational :rtype: boolean """ if self.status >= 100 and self.status < 200: return True return False @property def is_success(self): """ Returns if the response was success :rtypen: boolean """ if self.status >= 200 and self.status < 300: return True return False @property def is_redirect(self): """ Returns if the response was redirect :rtype: boolean """ if self.status >= 300 and self.status < 400: return True return False @property def is_client_error(self): """ Returns if the response was a client error :rtype: boolean """ if self.status >= 400 and self.status < 500: return True return False @property def is_server_error(self): """ Returns if the response was a client server :rtype: boolean """ if self.status >= 500 and self.status < 600: return True @property def is_error(self): """ Returns if the response was an error :rtype: boolean """ if self.is_client_error or self.is_server_error: return True return False @property def base(self): """ Returns the base URI for this response :rtype: class:`Url` or None """ url = None if self.header('Content-Base'): url = self.header('Content-Base') if self.header('Content-Location'): url = self.header('Content-Location') if url is None and self.request: url = self.request.url if not url: return None if not isinstance(url, Url): url = Url(url) return url @property def request(self): """ Returns the request object that caused that response :rtype: class:`Request` """ return self._request @property def content(self): """ Returns the actual content of the response :rtype: string """ return self._content @content.setter def content(self, content): """ Set the actual content of the response """ self._content = content def header(self, name): """ Returns the value for a given header :rtype: string """ return self._headers.get(name) @property def headers(self): """ Returns the class:`Headers` object :rtype: class:`Headers` """ return self._headers @property def status_line(self): """ Returns the string '<code> <message>' :rtype: string """ return "{0} {1}".format(self.status, self.message) @property def last_modified(self): """ Returns a datetime object represeting the *Last-Modified* header :rtype: class:`datetime` """ return self._headers.last_modified @property def date(self): """ Returns a datetime object represeting the *Date* header :rtype: class:`datetime` """ return self._headers.date @property def expires(self): """ Returns a datetime object represeting the *Expires* header :rtype: class:`datetime` """ return self._headers.expires @property def content_length(self): """ Returns the content-length of the actual response :rtype: int """ return self._headers.content_length @property def content_is_text(self): """ Returns ``True`` if the "Content-Type" header is set to text :rtype: boolean """ return self._headers.content_is_text @property def content_is_xml(self): """ Returns ``True`` if the "Content-Type" header is set to XML :rtype: boolean """ return self._headers.content_is_xml @property def content_is_xhtml(self): """ Returns True if the "Content-Type" header is set to XHTML :rtype: boolean """ return self._headers.content_is_xhtml ``` #### File: http/tests/test_request.py ```python from unittest2 import TestCase from http import Request, Headers, Url from datetime import datetime class TestClient(TestCase): def test_base(self): request = Request('GET', 'http://github.com') self.assertTrue(request) self.assertEqual(request.method, 'GET') def test_method(self): for method in ['GET', 'get', 'gEt']: request = Request(method, 'http') self.assertEqual(request.method, method) request = Request('GET', 'http') request.method = 'POST' self.assertEqual(request.method, 'POST') request.method = 'post' self.assertEqual(request.method, 'post') def test_headers(self): request = Request('GET', 'http', {'Connection': 'keep-alive'}) self.assertIsInstance(request.headers, Headers) headers = Headers({'Connection': 'keep-alive'}) request = Request('GET', 'http', headers) self.assertTrue(request) self.assertEqual(request.header('connection'), 'keep-alive') def test_header(self): request = Request('GET', 'http://lumberjaph.net') request.header('If-Modified-Since', 'Wed, 08 Feb 2012 05:08:50 GMT') self.assertEqual(request.header('If-Modified-Since'), 'Wed, 08 Feb 2012 05:08:50 GMT') def test_url(self): request = Request('GET', 'http') self.assertIsInstance(request.url, Url) def test_content(self): request = Request('GET', 'http', content='foo') self.assertEqual(request.content, 'foo') def test_date_headers(self): request = Request('GET', 'http') request.if_modified_since = datetime(2011, 12, 12, 12, 0, 0) self.assertEqual(request._headers.get('If-Modified-Since'), 'Mon, 12 Dec 2011 12:00:00 GMT') ```
{ "source": "JNRowe-retired/incoming", "score": 4 }
#### File: incoming/incoming/datatypes.py ```python class Types(object): ''' Base class for creating new datatypes for validation. When this class is sub-classed, :meth:`validate` must be implemented in the sub-class and this method will be resposible for the actual validation. ''' def __init__(self, required=None, error=None, *args, **kwargs): ''' :param bool required: if a particular (this) field is required or not. This param allows specifying field level setting if a particular field is required or not. :param str error: a generic error message that will be used by :class:`incoming.PayloadValidator` in the returned :class:`incoming.incoming.PayloadErrors` object when the validation test fails. ''' self.required = required self.error = error or self._DEFAULT_ERROR def validate(self, val, *args, **kwargs): ''' This method must be overridden by the sub-class for implementing the validation test. The overridden method can be a regular method or ``classmethod`` or ``staticmethod``. This method must only return a :class:`bool` value. :param val: the value that has to be validated. :returns bool: if the implemented validation test passed or not. ''' raise NotImplementedError('validate() method must be implemented in ' 'the sub-class.') def test(self, key, val, payload, errors): ''' Responsible for running the validate method. This method hides the gory checks of identifying if the validate method is a normal method or a ``staticmethod`` or a ``classmethod``. This method is more of a helper for :class:`incoming.PayloadValidator`. :param str key: the key who's value is going to get validated. :param val: the value on which the test is to be validated. :param payload: the entire payload to which the key and val belong to. :param errors: :class:`incoming.incoming.PayloadErrors` object. :returns bool: if the validation passed, depends on validate. ''' try: method = getattr(self, 'validate') except AttributeError: try: method = self.__class__.validate except AttributeError: raise NotImplementedError('validate() must be implemented ' 'either as a method of the class or' 'a staticmethod of the class.') result = method(val, key=key, payload=payload, errors=errors) # Check if the value returned by the validate method is a boolean if not isinstance(result, bool): raise TypeError('The value returned by validate() method must be ' 'a bool value.') if not result: errors.prepend(key, self.error) return False return True class Instance(Types): ''' Sub-class of :class:`Types` class for Integer type. Validates if a value is of a given type or not. This class should not be used directly, it should be subclassed ''' type_ = None @classmethod def validate(cls, val, *args, **kwargs): if cls.type_ is None: raise NotImplementedError else: return isinstance(val, cls.type_) class Integer(Instance): ''' Sub-class of :class:`Types` class for Integer type. Validates if a value is a :class:`int` value. ''' _DEFAULT_ERROR = 'Invalid data. Expected an integer.' type_ = int class Float(Instance): ''' Sub-class of :class:`Types` class for Float type. Validates if a value is a :class:`float` value. ''' _DEFAULT_ERROR = 'Invalid data. Expected a float.' type_ = float class Number(Instance): ''' Sub-class of :class:`Types` class for Number type. Validates if a value is a :class:`int` value or :class:`float` value. ''' _DEFAULT_ERROR = 'Invalid data. Expected an integer or a float).' type_ = (int, float) class String(Instance): ''' Sub-class of :class:`Types` class for String type. Validates if a value is a :class:`str` value or :class:`unicode` value. ''' _DEFAULT_ERROR = 'Invalid data. Expected a string.' type_ = basestring class Array(Instance): ''' Sub-class of :class:`Types` class for Array type. Validates if a value is a :class:`list` object. ''' _DEFAULT_ERROR = 'Invalid data. Expected an array.' type_ = list class Boolean(Instance): ''' Sub-class of :class:`Types` class for Boolean type. Validates if a value is a :class:`bool`. ''' _DEFAULT_ERROR = 'Invalid data. Expected a boolean value.' type_ = bool class Function(Types): ''' Sub-class of :class:`Types` class for Function type. This type allows using functions for validation. Using :class:`incoming.datatypes.Function`, validation tests can be written in a function or a regular method, a ``staticmethod`` or a ``classmethod`` on the sub-class of :class:`incoming.PayloadValidator`. ''' _DEFAULT_ERROR = 'Invalid data.' def __init__(self, func, *args, **kwargs): ''' :param func: any callable that accepts ``val``, ``*args`` and ``**kwawrgs`` and returns a :class:`bool` value, True if ``val`` validates, False otherwise. ''' if not callable(func) and not isinstance(func, str): raise TypeError('function must be a callable or a string ' 'representing method belonging to the validator ' 'class.') self.func = func super(Function, self).__init__(*args, **kwargs) def validate(self, val, *args, **kwargs): result = self.func(val, *args, **kwargs) if not isinstance(result, bool): raise ValueError('Validation function does not return a bool.') return result class JSON(Types): ''' Sub-class of :class:`Types` class for JSON type. This type allows writing validation for nested JSON. ''' _DEFAULT_ERROR = 'Invalid data. Expected JSON.' def __init__(self, cls, *args, **kwargs): ''' :param cls: sub-class of :class:`incoming.PayloadValidator` for validating nested JSON. Class object can be accepted. In case you want to have the class nested withing the parent validator, you can pass the name of the class as a string as well. ''' self.cls = cls super(JSON, self).__init__(*args, **kwargs) def validate(self, val, *args, **kwargs): if not isinstance(val, dict): return False obj = self.cls() is_valid, result = obj.validate(val) if not is_valid: kwargs['errors'].append(kwargs['key'], result) return False return True ``` #### File: incoming/tests/test_datatypes.py ```python import unittest from . import TestCase from .. import datatypes from ..incoming import PayloadErrors, PayloadValidator class TestTypes(TestCase): def test_init_raises_attribute_error(self): self.assertRaises(AttributeError, datatypes.Types) def test_validate_raises_not_implemented_error(self): class SomeType(datatypes.Types): _DEFAULT_ERROR = 'Some error message.' self.assertRaises(NotImplementedError, SomeType().validate, 'test') class TestInteger(TestCase): def test_integer_validates(self): self.assertTrue(datatypes.Integer.validate(2)) self.assertTrue(datatypes.Integer.validate(-2)) self.assertFalse(datatypes.Integer.validate(2.1)) class TestFloat(TestCase): def test_float_validates(self): self.assertFalse(datatypes.Float.validate(2)) self.assertFalse(datatypes.Float.validate(-2)) self.assertTrue(datatypes.Float.validate(2.1)) self.assertTrue(datatypes.Float.validate(-2.1)) class TestNumber(TestCase): def test_number_validates(self): self.assertTrue(datatypes.Number.validate(2)) self.assertTrue(datatypes.Number.validate(-2)) self.assertTrue(datatypes.Number.validate(2.1)) self.assertTrue(datatypes.Number.validate(-2.1)) class TestString(TestCase): def test_string_validates(self): self.assertTrue(datatypes.String.validate('Some string')) self.assertTrue(datatypes.String.validate(u'Some string')) self.assertTrue(datatypes.String.validate(r'Some string')) self.assertFalse(datatypes.String.validate(1)) class TestArray(TestCase): def test_array_validates(self): self.assertTrue(datatypes.Array.validate(['item1', 'item2'])) self.assertFalse(datatypes.Array.validate({})) class TestBoolean(TestCase): def test_boolean_validates(self): self.assertTrue(datatypes.Boolean.validate(True)) self.assertTrue(datatypes.Boolean.validate(False)) class TestFunction(TestCase): def test_function_validates_with_function(self): def test_func(val, *args, **kwargs): if val < 18: return False return True self.assertFalse(datatypes.Function(func=test_func).validate(10)) self.assertTrue(datatypes.Function(func=test_func).validate(18)) def test_function_validates_with_methods(self): class PseudoNameSpace(object): @staticmethod def test_func_static(val, *args, **kwargs): if val < 18: return False return True @classmethod def test_func_class(cls, val, *args, **kwargs): if val < 18: return False return True def test_func_regular(self, val, *arg, **kwargs): if val < 18: return False return True # staticmethod self.assertFalse(datatypes.Function( func=PseudoNameSpace.test_func_static).validate(10)) self.assertTrue(datatypes.Function( func=PseudoNameSpace.test_func_static).validate(18)) # classmethod self.assertFalse(datatypes.Function( func=PseudoNameSpace.test_func_class).validate(10)) self.assertTrue(datatypes.Function( func=PseudoNameSpace.test_func_class).validate(18)) # regular self.assertFalse(datatypes.Function( func=PseudoNameSpace().test_func_regular).validate(10)) self.assertTrue(datatypes.Function( func=PseudoNameSpace().test_func_regular).validate(18)) class TestJSON(TestCase): def test_json_validates_normal_types(self): class CustomJSONValidator(PayloadValidator): age = datatypes.Integer() errors = PayloadErrors() result = datatypes.JSON(CustomJSONValidator).validate( dict(age=10), key='nested', errors=errors) self.assertTrue(result) self.assertFalse('nested' in errors) self.assertTrue(len(errors.to_dict().keys()) == 0) result = datatypes.JSON(CustomJSONValidator).validate( dict(age='10'), key='nested', errors=errors) self.assertFalse(result) self.assertTrue('nested' in errors) self.assertTrue(len(errors.to_dict().keys()) == 1) def test_json_validates_function_types(self): class CustomJSONValidator(PayloadValidator): age = datatypes.Function(func='validate_age') def validate_age(self, val, *args, **kwargs): if not isinstance(val, int): return False if val < 18: return False return True errors = PayloadErrors() result = datatypes.JSON(CustomJSONValidator) result.validate( dict(age=20), key='nested', errors=errors) self.assertTrue(result) self.assertFalse('nested' in errors) self.assertTrue(len(errors.to_dict().keys()) == 0) errors = PayloadErrors() result = datatypes.JSON(CustomJSONValidator).validate( dict(age=10), key='nested', errors=errors) self.assertFalse(result) self.assertTrue('nested' in errors) self.assertTrue(len(errors.to_dict().keys()) == 1) ```
{ "source": "JNRowe-retired/pecan", "score": 2 }
#### File: pecan/pecan/core.py ```python try: from simplejson import loads except ImportError: # pragma: no cover from json import loads # noqa from threading import local from itertools import chain from mimetypes import guess_type, add_type from os.path import splitext import logging import operator import six from webob import Request, Response, exc, acceptparse from .compat import urlparse, unquote_plus, izip from .secure import handle_security from .templating import RendererFactory from .routing import lookup_controller, NonCanonicalPath from .util import _cfg, encode_if_needed from .middleware.recursive import ForwardRequestException # make sure that json is defined in mimetypes add_type('application/json', '.json', True) state = local() logger = logging.getLogger(__name__) def proxy(key): class ObjectProxy(object): def __getattr__(self, attr): obj = getattr(state, key) return getattr(obj, attr) def __setattr__(self, attr, value): obj = getattr(state, key) return setattr(obj, attr, value) def __delattr__(self, attr): obj = getattr(state, key) return delattr(obj, attr) def __dir__(self): obj = getattr(state, key) return dir(obj) return ObjectProxy() request = proxy('request') response = proxy('response') def override_template(template, content_type=None): ''' Call within a controller to override the template that is used in your response. :param template: a valid path to a template file, just as you would specify in an ``@expose``. :param content_type: a valid MIME type to use for the response.func_closure ''' request.pecan['override_template'] = template if content_type: request.pecan['override_content_type'] = content_type def abort(status_code=None, detail='', headers=None, comment=None, **kw): ''' Raise an HTTP status code, as specified. Useful for returning status codes like 401 Unauthorized or 403 Forbidden. :param status_code: The HTTP status code as an integer. :param detail: The message to send along, as a string. :param headers: A dictionary of headers to send along with the response. :param comment: A comment to include in the response. ''' raise exc.status_map[status_code]( detail=detail, headers=headers, comment=comment, **kw ) def redirect(location=None, internal=False, code=None, headers={}, add_slash=False): ''' Perform a redirect, either internal or external. An internal redirect performs the redirect server-side, while the external redirect utilizes an HTTP 302 status code. :param location: The HTTP location to redirect to. :param internal: A boolean indicating whether the redirect should be internal. :param code: The HTTP status code to use for the redirect. Defaults to 302. :param headers: Any HTTP headers to send with the response, as a dictionary. ''' if add_slash: if location is None: split_url = list(urlparse.urlsplit(state.request.url)) new_proto = state.request.environ.get( 'HTTP_X_FORWARDED_PROTO', split_url[0] ) split_url[0] = new_proto else: split_url = urlparse.urlsplit(location) split_url[2] = split_url[2].rstrip('/') + '/' location = urlparse.urlunsplit(split_url) if not headers: headers = {} if internal: if code is not None: raise ValueError('Cannot specify a code for internal redirects') request.environ['pecan.recursive.context'] = request.context raise ForwardRequestException(location) if code is None: code = 302 raise exc.status_map[code](location=location, headers=headers) def render(template, namespace): ''' Render the specified template using the Pecan rendering framework with the specified template namespace as a dictionary. Useful in a controller where you have no template specified in the ``@expose``. :param template: The path to your template, as you would specify in ``@expose``. :param namespace: The namespace to use for rendering the template, as a dictionary. ''' return state.app.render(template, namespace) def load_app(config): ''' Used to load a ``Pecan`` application and its environment based on passed configuration. :param config: Can be a dictionary containing configuration, a string which represents a (relative) configuration filename returns a pecan.Pecan object ''' from .configuration import _runtime_conf, set_config set_config(config, overwrite=True) for package_name in getattr(_runtime_conf.app, 'modules', []): module = __import__(package_name, fromlist=['app']) if hasattr(module, 'app') and hasattr(module.app, 'setup_app'): app = module.app.setup_app(_runtime_conf) app.config = _runtime_conf return app raise RuntimeError( 'No app.setup_app found in any of the configured app.modules' ) class Pecan(object): ''' Base Pecan application object. Generally created using ``pecan.make_app``, rather than being created manually. Creates a Pecan application instance, which is a WSGI application. :param root: A string representing a root controller object (e.g., "myapp.controller.root.RootController") :param default_renderer: The default template rendering engine to use. Defaults to mako. :param template_path: A relative file system path (from the project root) where template files live. Defaults to 'templates'. :param hooks: A callable which returns a list of :class:`pecan.hooks.PecanHook`s :param custom_renderers: Custom renderer objects, as a dictionary keyed by engine name. :param extra_template_vars: Any variables to inject into the template namespace automatically. :param force_canonical: A boolean indicating if this project should require canonical URLs. :param guess_content_type_from_ext: A boolean indicating if this project should use the extension in the URL for guessing the content type to return. ''' SIMPLEST_CONTENT_TYPES = ( ['text/html'], ['text/plain'] ) def __init__(self, root, default_renderer='mako', template_path='templates', hooks=lambda: [], custom_renderers={}, extra_template_vars={}, force_canonical=True, guess_content_type_from_ext=True, **kw): if isinstance(root, six.string_types): root = self.__translate_root__(root) self.root = root self.renderers = RendererFactory(custom_renderers, extra_template_vars) self.default_renderer = default_renderer # pre-sort these so we don't have to do it per-request if six.callable(hooks): hooks = hooks() self.hooks = list(sorted( hooks, key=operator.attrgetter('priority') )) self.template_path = template_path self.force_canonical = force_canonical self.guess_content_type_from_ext = guess_content_type_from_ext def __translate_root__(self, item): ''' Creates a root controller instance from a string root, e.g., > __translate_root__("myproject.controllers.RootController") myproject.controllers.RootController() :param item: The string to the item ''' if '.' in item: parts = item.split('.') name = '.'.join(parts[:-1]) fromlist = parts[-1:] module = __import__(name, fromlist=fromlist) kallable = getattr(module, parts[-1]) msg = "%s does not represent a callable class or function." assert hasattr(kallable, '__call__'), msg % item return kallable() raise ImportError('No item named %s' % item) def route(self, req, node, path): ''' Looks up a controller from a node based upon the specified path. :param node: The node, such as a root controller object. :param path: The path to look up on this node. ''' path = path.split('/')[1:] try: node, remainder = lookup_controller(node, path) return node, remainder except NonCanonicalPath as e: if self.force_canonical and \ not _cfg(e.controller).get('accept_noncanonical', False): if req.method == 'POST': raise RuntimeError( "You have POSTed to a URL '%s' which " "requires a slash. Most browsers will not maintain " "POST data when redirected. Please update your code " "to POST to '%s/' or set force_canonical to False" % (req.pecan['routing_path'], req.pecan['routing_path']) ) redirect(code=302, add_slash=True) return e.controller, e.remainder def determine_hooks(self, controller=None): ''' Determines the hooks to be run, in which order. :param controller: If specified, includes hooks for a specific controller. ''' controller_hooks = [] if controller: controller_hooks = _cfg(controller).get('hooks', []) if controller_hooks: return list( sorted( chain(controller_hooks, self.hooks), key=operator.attrgetter('priority') ) ) return self.hooks def handle_hooks(self, hook_type, *args): ''' Processes hooks of the specified type. :param hook_type: The type of hook, including ``before``, ``after``, ``on_error``, and ``on_route``. :param \*args: Arguments to pass to the hooks. ''' if hook_type in ['before', 'on_route']: hooks = state.hooks else: hooks = reversed(state.hooks) for hook in hooks: result = getattr(hook, hook_type)(*args) # on_error hooks can choose to return a Response, which will # be used instead of the standard error pages. if hook_type == 'on_error' and isinstance(result, Response): return result def get_args(self, pecan_state, all_params, remainder, argspec, im_self): ''' Determines the arguments for a controller based upon parameters passed the argument specification for the controller. ''' args = [] kwargs = dict() valid_args = argspec[0][1:] def _decode(x): return unquote_plus(x) if isinstance(x, six.string_types) \ else x remainder = [_decode(x) for x in remainder] if im_self is not None: args.append(im_self) # grab the routing args from nested REST controllers if 'routing_args' in pecan_state: remainder = pecan_state['routing_args'] + list(remainder) del pecan_state['routing_args'] # handle positional arguments if valid_args and remainder: args.extend(remainder[:len(valid_args)]) remainder = remainder[len(valid_args):] valid_args = valid_args[len(args):] # handle wildcard arguments if [i for i in remainder if i]: if not argspec[1]: abort(404) args.extend(remainder) # get the default positional arguments if argspec[3]: defaults = dict(izip(argspec[0][-len(argspec[3]):], argspec[3])) else: defaults = dict() # handle positional GET/POST params for name in valid_args: if name in all_params: args.append(all_params.pop(name)) elif name in defaults: args.append(defaults[name]) else: break # handle wildcard GET/POST params if argspec[2]: for name, value in six.iteritems(all_params): if name not in argspec[0]: kwargs[encode_if_needed(name)] = value return args, kwargs def render(self, template, namespace): renderer = self.renderers.get( self.default_renderer, self.template_path ) if template == 'json': renderer = self.renderers.get('json', self.template_path) if ':' in template: renderer = self.renderers.get( template.split(':')[0], self.template_path ) template = template.split(':')[1] return renderer.render(template, namespace) def handle_request(self, req, resp): ''' The main request handler for Pecan applications. ''' # get a sorted list of hooks, by priority (no controller hooks yet) state.hooks = self.hooks pecan_state = req.pecan # store the routing path for the current application to allow hooks to # modify it pecan_state['routing_path'] = path = req.encget('PATH_INFO') # handle "on_route" hooks self.handle_hooks('on_route', state) # lookup the controller, respecting content-type as requested # by the file extension on the URI pecan_state['extension'] = None # attempt to guess the content type based on the file extension if self.guess_content_type_from_ext \ and not pecan_state['content_type'] \ and '.' in path: new_path, extension = splitext(path) # preface with a letter to ensure compat for 2.5 potential_type = guess_type('x' + extension)[0] if potential_type is not None: path = new_path pecan_state['extension'] = extension pecan_state['content_type'] = potential_type controller, remainder = self.route(req, self.root, path) cfg = _cfg(controller) if cfg.get('generic_handler'): raise exc.HTTPNotFound # handle generic controllers im_self = None if cfg.get('generic'): im_self = six.get_method_self(controller) handlers = cfg['generic_handlers'] controller = handlers.get(req.method, handlers['DEFAULT']) handle_security(controller, im_self) cfg = _cfg(controller) # add the controller to the state so that hooks can use it state.controller = controller # if unsure ask the controller for the default content type content_types = cfg.get('content_types', {}) if not pecan_state['content_type']: # attempt to find a best match based on accept headers (if they # exist) accept = getattr(req.accept, 'header_value', '*/*') if accept == '*/*' or ( accept.startswith('text/html,') and list(content_types.keys()) in self.SIMPLEST_CONTENT_TYPES): pecan_state['content_type'] = cfg.get( 'content_type', 'text/html' ) else: best_default = acceptparse.MIMEAccept( accept ).best_match( content_types.keys() ) if best_default is None: msg = "Controller '%s' defined does not support " + \ "content_type '%s'. Supported type(s): %s" logger.error( msg % ( controller.__name__, pecan_state['content_type'], content_types.keys() ) ) raise exc.HTTPNotAcceptable() pecan_state['content_type'] = best_default elif cfg.get('content_type') is not None and \ pecan_state['content_type'] not in content_types: msg = "Controller '%s' defined does not support content_type " + \ "'%s'. Supported type(s): %s" logger.error( msg % ( controller.__name__, pecan_state['content_type'], content_types.keys() ) ) raise exc.HTTPNotFound # get a sorted list of hooks, by priority state.hooks = self.determine_hooks(controller) # handle "before" hooks self.handle_hooks('before', state) # fetch any parameters if req.method == 'GET': params = dict(req.GET) else: params = dict(req.params) # fetch the arguments for the controller args, kwargs = self.get_args( pecan_state, params, remainder, cfg['argspec'], im_self ) # get the result from the controller result = controller(*args, **kwargs) # a controller can return the response object which means they've taken # care of filling it out if result is response: return raw_namespace = result # pull the template out based upon content type and handle overrides template = content_types.get(pecan_state['content_type']) # check if for controller override of template template = pecan_state.get('override_template', template) pecan_state['content_type'] = pecan_state.get( 'override_content_type', pecan_state['content_type'] ) # if there is a template, render it if template: if template == 'json': pecan_state['content_type'] = 'application/json' result = self.render(template, result) # If we are in a test request put the namespace where it can be # accessed directly if req.environ.get('paste.testing'): testing_variables = req.environ['paste.testing_variables'] testing_variables['namespace'] = raw_namespace testing_variables['template_name'] = template testing_variables['controller_output'] = result # set the body content if isinstance(result, six.text_type): resp.text = result elif result: resp.body = result # set the content type if pecan_state['content_type']: resp.content_type = pecan_state['content_type'] def __call__(self, environ, start_response): ''' Implements the WSGI specification for Pecan applications, utilizing ``WebOb``. ''' # create the request and response object state.request = req = Request(environ) state.response = resp = Response() state.hooks = [] state.app = self state.controller = None # handle the request try: # add context and environment to the request req.context = environ.get('pecan.recursive.context', {}) req.pecan = dict(content_type=None) self.handle_request(req, resp) except Exception as e: # if this is an HTTP Exception, set it as the response if isinstance(e, exc.HTTPException): state.response = e environ['pecan.original_exception'] = e # if this is not an internal redirect, run error hooks on_error_result = None if not isinstance(e, ForwardRequestException): on_error_result = self.handle_hooks('on_error', state, e) # if the on_error handler returned a Response, use it. if isinstance(on_error_result, Response): state.response = on_error_result else: if not isinstance(e, exc.HTTPException): raise finally: # handle "after" hooks self.handle_hooks('after', state) # get the response try: return state.response(environ, start_response) finally: # clean up state del state.hooks del state.request del state.response del state.controller ```