metadata
dict
text
stringlengths
60
3.49M
{ "source": "joaoeudes7/suggestclasses", "score": 2 }
#### File: suggestclasses/dados/dados.py ```python import csv import os import urllib.request import django django.setup() from core.models import Curso, Centro, Departamento, ComponenteCurricular, EstruturaCurricular, OrganizacaoCurricular DADOS_PATH = '/home/taciano/dev/workspace/suggestclasses/dados' def main(): print("Lendo dados sobre o CERES/UFRN ...!") os.chdir(DADOS_PATH) print(os.getcwd()) downloads_csv() centros() # Adicionamos apenas o CERES. departamentos() cursos() componentes() estruturas() organizacao() def downloads_csv(): print("Download do CSV dos Departamentos do CERES/UFRN ...!") url = 'http://dados.ufrn.br/dataset/da6451a5-1a59-4630-bdc2-97f6be4a59c2/resource/3f2e4e32-ef1a-4396-8037' \ '-cbc22a89d97f/download/unidades.csv' file_name = 'unidades.csv' urllib.request.urlretrieve(url, file_name) print("Download do CSV dos Cursos do CERES/UFRN ...!") url = 'http://dados.ufrn.br/dataset/08b0dc59-faa9-4281-bd1e-2a39f532489e/resource/949be3d1-e85b-4d0f-9f60' \ '-1d9a7484bb06/download/cursos-ufrn.csv' file_name = 'cursos-ufrn.csv' urllib.request.urlretrieve(url, file_name) print("Download do CSV dos Componentes do CERES/UFRN ...!") url = 'http://dados.ufrn.br/dataset/3fea67e8-6916-4ed0-aaa6-9a8ca06a9bdc/resource/9a3521d2-4bc5-4fda-93f0' \ '-f701c8a20727/download/componentes-curriculares-presenciais.csv' file_name = 'componentes-curriculares-presenciais.csv' urllib.request.urlretrieve(url, file_name) print("Download do CSV das Estruturas Curriculares do CERES/UFRN ...!") url = 'http://dados.ufrn.br/dataset/e7c24910-75c1-451b-9097-e4352488dd69/resource/94cc35b0-6560-44f3-8c67' \ '-98cff965f23c/download/estruturas-curriculares.csv' file_name = 'estruturas-curriculares.csv' urllib.request.urlretrieve(url, file_name) print("Download do CSV dos Organização Curricular do CERES/UFRN ...!") url = 'http://dados.ufrn.br/dataset/82aca3f1-f7ee-425e-bf1e-b6a1d6811bf4/resource/3f25d054-c5d2-4bf2-8cd4' \ '-8e0a2e4f63ce/download/curriculo-componente-graduacao.csv ' file_name = 'curriculo-componente-graduacao.csv' urllib.request.urlretrieve(url, file_name) def centros(): # Cadastrando o Centro CERES centro = Centro(id_unidade=1482, codigo=1800, nome='Centro de Ensino Superior do Seridó', sigla='CERES', endereco='Rua Joaquim Gregório, Penedo, Caicó - RN', site='http://www.ceres.ufrn.br/') centro.save() def departamentos(): # Buscando o Centro CERES ceres = Centro.objects.get(id_unidade=1482) with open('unidades.csv') as csvfile: unidades = csv.reader(csvfile, delimiter=';') next(unidades) # skip header for row in unidades: id_dep = row[0] codigo_dep = row[1] nome_dep = row[2] sigla_dep = row[3] municipio = row[6] id_unidade_responsavel = row[9].strip() tipo_unidade_organizacional = row[17].strip() if id_unidade_responsavel == '1482' and (tipo_unidade_organizacional == 'DEPARTAMENTO' or tipo_unidade_organizacional == 'ASSESSORIA'): print(id_dep) print(codigo_dep) print(nome_dep) print(sigla_dep) print(municipio) print(tipo_unidade_organizacional) print(id_unidade_responsavel) d = Departamento(id_unidade=id_dep, codigo=codigo_dep, nome=nome_dep, sigla=sigla_dep, endereco=municipio, centro=ceres) d.save() def cursos(): print("Criando cursos para o CERES ...!") # Buscando o Centro CERES ceres = Centro.objects.get(id_unidade=1482) with open('cursos-ufrn.csv') as csvfile: cursos_ufrn = csv.reader(csvfile, delimiter=';') next(cursos_ufrn) # skip header for row in cursos_ufrn: id_curso = row[0] nome_curso = row[1] nivel_ensino = row[5] grau_academico = row[6] modalidade_educacao = row[7] turno = row[10] id_unidade_responsavel = row[14] if id_unidade_responsavel == '1482': print(id_curso) print(nome_curso) print(nivel_ensino) print(grau_academico) print(modalidade_educacao) print(turno) print(id_unidade_responsavel) c = Curso(codigo=id_curso, nome=nome_curso, nivel=nivel_ensino, grau=grau_academico, modalidade=modalidade_educacao, turno=turno, centro=ceres) c.save() def componentes(): print("Criando Componentes para os Departamentos do CERES ...!") with open('componentes-curriculares-presenciais.csv') as csvfile: componentes_ceres = csv.reader(csvfile, delimiter=';') next(componentes_ceres) # skip header for row in componentes_ceres: unidade_responsavel = row[5].strip() if Departamento.objects.filter(nome=unidade_responsavel).exists(): depto = Departamento.objects.get(nome=unidade_responsavel) print("Departamento " + depto.sigla) id_componente = row[0] tipo_componente = row[1] codigo_componente = row[2] nivel_componente = row[3] nome_componente = row[4] unidade_responsavel = row[5].strip() ch_teorico = row[6] ch_pratico = row[7] ch_estagio = row[8] ch_total = row[9] ch_dedicada_docente = row[10] ch_ead = row[11] cr_max_ead = row[12] equivalencia = row[16] pre_requisito = row[17] co_requisito = row[18] ementa = row[19] bibliografia = row[20] objetivos = row[21] conteudo = row[22] competencias_habilidades = row[23] referencias = row[24] ano_programa = row[25] periodo_programa = row[26] modalidade = row[27] curso_componente = row[28] # if depto.id_unidade == 9726 or depto.id_unidade == 235: print(id_componente) cc = ComponenteCurricular(id_componente=id_componente, tipo=tipo_componente, codigo=codigo_componente, nivel=nivel_componente, nome=nome_componente, ch_teorica=ch_teorico, ch_pratica=ch_pratico, ch_estagio=ch_estagio, ch_total=ch_total, ch_docente=ch_dedicada_docente, ch_ead=ch_ead, cr_max_ead=cr_max_ead, equivalencia=equivalencia, requisito=pre_requisito, corequisito=co_requisito, ementa=ementa, modalidade=modalidade, departamento=depto) cc.save() def estruturas(): print("Criando Estruturas Curriculares para os Cursos do CERES ...!") with open('estruturas-curriculares.csv') as csvfile: estruturas_ceres = csv.reader(csvfile, delimiter=';') next(estruturas_ceres) # skip header for row in estruturas_ceres: curso_ufrn = row[3] if Curso.objects.filter(codigo=curso_ufrn).exists(): curso_ceres = Curso.objects.get(codigo=curso_ufrn) print(curso_ceres) id_curriculo = row[0] codigo = row[1] nome_matriz = row[2] id_curso = row[3] nome_curso = row[4] semestre_conclusao_minimo = row[5] if row[5] != '' else None semestre_conclusao_ideal = row[6] if row[6] != '' else None semestre_conclusao_maximo = row[7] if row[7] != '' else None meses_conclusao_minimo = row[8] if row[8] != '' else None meses_conclusao_ideal = row[9] if row[9] != '' else None meses_conclusao_maximo = row[10] if row[10] != '' else None cr_total_minimo = row[11] if row[11] != '' else None ch_total_minima = row[12] if row[12] != '' else None ch_optativas_minima = row[13] if row[13] != '' else None ch_complementar_minima = row[14] if row[14] != '' else None max_eletivos = row[15] if row[15] != '' else None ch_nao_atividade_obrigatoria = row[16] if row[16] != '' else None cr_nao_atividade_obrigatorio = row[17] if row[17] != '' else None ch_atividade_obrigatoria = row[18] if row[18] != '' else None cr_minimo_semestre = row[19] if row[19] != '' else None cr_ideal_semestre = row[20] if row[20] != '' else None cr_maximo_semestre = row[21] if row[21] != '' else None ch_minima_semestre = row[22] if row[22] != '' else None ch_ideal_semestre = row[23] if row[23] != '' else None ch_maxima_semestre = row[24] if row[24] != '' else None periodo_entrada_vigor = row[25] if row[25] != '' else None ano_entrada_vigor = row[26] if row[26] != '' else None observacao = row[27] ec = EstruturaCurricular(id_curriculo=id_curriculo, codigo=codigo, nome=nome_matriz, semestre_conclusao_minimo=semestre_conclusao_minimo, semestre_conclusao_ideal=semestre_conclusao_ideal, semestre_conclusao_maximo=semestre_conclusao_maximo, meses_conclusao_minimo=meses_conclusao_minimo, meses_conclusao_ideal=meses_conclusao_ideal, meses_conclusao_maximo=meses_conclusao_maximo, cr_total_minimo=cr_total_minimo, ch_total_minima=ch_total_minima, ch_optativas_minima=ch_optativas_minima, ch_complementar_minima=ch_complementar_minima, max_eletivos=max_eletivos, ch_nao_atividade_obrigatoria=ch_nao_atividade_obrigatoria, cr_nao_atividade_obrigatorio=cr_nao_atividade_obrigatorio, ch_atividade_obrigatoria=ch_atividade_obrigatoria, cr_minimo_semestre=cr_minimo_semestre, cr_ideal_semestre=cr_ideal_semestre, cr_maximo_semestre=cr_maximo_semestre, ch_minima_semestre=ch_minima_semestre, ch_ideal_semestre=ch_ideal_semestre, ch_maxima_semestre=ch_maxima_semestre, periodo_entrada_vigor=periodo_entrada_vigor, ano_entrada_vigor=ano_entrada_vigor, observacao=observacao, curso=curso_ceres) ec.save() def organizacao(): print("Criando Estruturas Curriculares para os Cursos do CERES ...!") with open('curriculo-componente-graduacao.csv') as csvfile: ccg = csv.reader(csvfile, delimiter=';') next(ccg) # skip header for row in ccg: id_estrutura = row[1] id_componente_curricular = row[2] if EstruturaCurricular.objects.filter(id_curriculo=id_estrutura).exists(): ec = EstruturaCurricular.objects.get(id_curriculo=id_estrutura) if ComponenteCurricular.objects.filter(id_componente=id_componente_curricular).exists(): cc = ComponenteCurricular.objects.get(id_componente=id_componente_curricular) id_curriculo_componente = row[0] id_curriculo = row[1] id_componente_curricular = row[2] semestre_oferta = row[3] tipo_vinculo_componente = row[4] nivel_ensino = row[5] oc = OrganizacaoCurricular(id_curriculo_componente=id_curriculo_componente, estrutura=ec, componente=cc, semestre=semestre_oferta, tipo_vinculo=tipo_vinculo_componente, nivel=nivel_ensino) oc.save() if __name__ == "__main__": main() ```
{ "source": "joaoevangelista/animated-octo-couscous", "score": 3 }
#### File: animated-octo-couscous/cars/toolbox.py ```python def find_missing(df, token='?'): col_acc = [] for c in df.columns: if token in df[c].values: col_acc.append(c) print(*col_acc) def show_object_columns(df): return df.select_dtypes(include=['object']) def to_category(df, columns): for c in columns: df[c] = df[c].astype('category') return df def convert_type(df, orig, to='float64'): cols = df.select_dtypes(include=[orig]).columns for c in cols: df[c] = df[c].astype(to) def show_nans(df): return df.isnull().sum() def learning_rate_gen(start=0.01, iterations=8): acc = [] for i in range(0, iterations): if i == 0: acc.append(start) acc.append(acc[-1] * 2) return acc ```
{ "source": "joaofanti/TrabRedesIIFinal", "score": 4 }
#### File: TrabRedesIIFinal/Modelos/Game.py ```python import sys sys.path.insert(0, "Modelos/Mapa") from Map import * from Item import Item """ Define a classe que manipula a logica do jogo. """ class Game: """ Define um jogador do jogo. """ class Player: """ Cria uma nova instancia de jogador """ def __init__(self, name, addr, map): self.Name = name self.Addr = addr #IP self.Room = 1 # Jogador sempre inicia na sala 1 self.Inventario = [] self.Inventario.append(Item("Mapa", map)) """ Cria uma nova instancia de jogo. """ def __init__(self, map): self.Map = map self.Players = [] """ Cria um novo jogador. Retorna falso se jogador ja existe. Retorna verdadeiro se jogador foi criado. """ def CriaJogador(self, playerId, addr): if (self.getPlayer(playerId) != None): return "FAIL" self.Players.append(self.Player(playerId, addr, self.Map.showMap())) return "OK" """ Examina a sala em que o jogador se encontra. """ def Examina(self, playerId): player = self.getPlayer(playerId) if(player == None): return "Player nao encontrado" room = self.Map.getRoom(player.Room) return room.ToString() """ Move o jogador para outra sala. """ def Move(self, playerId, direction): player = self.getPlayer(playerId) if(player == None): return "Player nao encontrado" room = self.Map.getRoom(player.Room) roomInDirection = room.GetRoomInDirection(direction) if (roomInDirection != None): if (room.CanMoveTo(direction)): player.Room = roomInDirection for item in player.Inventario: if item.Name == "Mapa": item.Description = self.Map.showMap(roomInDirection) return "O jogador se moveu para a sala " + str(roomInDirection) + "." else: return "A porta esta fechada." else: return "Nao ha sala nesta direcao." def Inventario(self, playerId): player = self.getPlayer(playerId) if(player == None): return "Player nao encontrado" result = "" ln = len(player.Inventario) for i in range(0, ln): result += player.Inventario[i].Name if (i + 1 != ln): result += " ; " return result def UsaItem(self, playerId, itemName, target = None): player = self.getPlayer(playerId) abriuPorta = False if(player == None): return "Player nao encontrado" salaAtual = self.Map.getRoom(player.Room) for item in player.Inventario: if item.Name == itemName: if "Nota" in str(item.Name): return item.Description elif item.Name == "Mapa": return item.Description elif item.Name == "ObjetoFinal": if salaAtual.ID == 1: return "Fim" else: return "Voce precisa estar na sala inicial para utilizar este objeto" elif ("Chave" in str(item.Name)): if target == None: return "Escolha uma porta para abrir" else: for x in range(0, len(salaAtual.Doors)): if str(x) == target: abriuPorta = True self.Map.getRoom(player.Room).Doors[x].OpenDoor() if(abriuPorta == True): return "Porta "+target+" foi aberta" else: return "Nao foi possivel abrir a porta "+target return "Portas da sala "+str(salaAtual.ID)+" foram abertas" else: return "Item nao existente no inventario" """ Jogador pega um objeto que esta na sala atual """ def Pegar(self, playerId, objeto): player = self.getPlayer(playerId) if(player == None): return "Player nao encontrado" salaAtual = self.Map.getRoom(player.Room) if(salaAtual == None): return "Sala nao encontrada" objetoAdicionado = False lenObjetos = len(salaAtual.Objects) for x in range(0, lenObjetos): objetoEncontrado = salaAtual.Objects[x] if(str(objeto) == str(objetoEncontrado.Name)): objetoAdicionado = True del salaAtual.Objects[x] player.Inventario.append(Item(objetoEncontrado.Name, objetoEncontrado.Description)) break if(objetoAdicionado == True): return "Objeto " + objeto + " adicionado ao inventario" else: return "Objeto " + objeto + " nao foi encontrado nesta sala" """ Larga objeto do inventario na sala atual """ def Largar(self, playerId, objeto): player = self.getPlayer(playerId) if(player == None): return "Player nao encontrado" salaAtual = self.Map.getRoom(player.Room) objetoDeletado = False for x in range(0, len(player.Inventario)): itemPlayer = player.Inventario[x] if(itemPlayer.Name == str(objeto)): objetoDeletado = True del player.Inventario[x] salaAtual.Objects.append(Item(itemPlayer.Name, itemPlayer.Description)) if(objetoDeletado == True): return "Objeto " + objeto + " adicionado a sala" else: return "Objeto " + objeto + " nao foi encontrado no inventario" """ Envia um texto para um jogador especifico """ def Cochichar(self, playerSource, text, playerTarget): player = self.getPlayer(playerSource) for x in range(0, len(self.Players)): if(self.Players[x].Name == str(playerTarget)): return (self.Players[x].Addr, text) """ Retorna os players presente na sala passada por parametro """ def getPlayersInRoom(self, room): sala = self.Map.getRoom(room) if(sala == None): return "Sala nao encontrada" playersNaSala = [] for x in range(0, len(self.Players)): if(self.Players[x].Room == room): playersNaSala.append(self.Players[x].Addr) return playersNaSala """ Busca o jogador na lista de jogadores conectados ao jogo. """ def getPlayer(self, playerName): for player in self.Players: if player.Name == playerName: return player return None ``` #### File: TrabRedesIIFinal/Modelos/Jogador.py ```python class Player: ID = "" # Identificador do jogador Inventario = [] # Inventario contendo os objetos carregados pelo jogador """ Cria uma nova instancia de jogador. """ def __init__(self, numeroPlayer, sala, nome): self.salaAtual = 4 self.numeroPlayer = numeroPlayer self.nome = nome self.sala = sala self.chave = False self.objetoFinal = False self.botoesPressionados = { 1 : False, 2 : False, 3 : False, 4 : False, 5 : False } self.sequenciaBotoes = [] ``` #### File: Modelos/Mapa/Map.py ```python import StringIO """ Define o mapa do jogo. """ class Map(object): Rooms = [] # Lista de salas RoomDesign = "" # Desenho da sala para usar de modelo PlayerPlace = "PLAYER" # Texto para escrever onde esta o jogador """ Cria uma nova instancia de Mapa """ def __init__(self, rooms, roomDesign): self.Rooms = rooms self.RoomDesign = roomDesign """ Retorna o mapa desenhado como ASCII com a posicao do jogador, se necessario. """ def showMap(self, playerPositionRoomId = -1): if (playerPositionRoomId > 0): return "Voce esta na sala " + str(playerPositionRoomId) + "\n" + self.RoomDesign else: return self.RoomDesign def getRoom(self, roomId): for room in self.Rooms: if room.ID == roomId: return room return None ```
{ "source": "joaofbsm/battleship-intel", "score": 4 }
#### File: python/src/vertex.py ```python class Vertex: def __init__(self, weight=None, degree=0, bipartite_set=None, opening_time=None, closing_time=None, depth=0, parent=None, ancestors=None): """ Data structure to store vertex related information. """ # Weight of the vertex which can used to store other problem-specific information self.weight = weight # Number of edges connected to that vertex self.degree = degree # Opening time calculated by DFS self.opening_time = opening_time # Closing time calculated by DFS self.closing_time = closing_time # Number of bipartite set to which this vertex belongs if the connected component it is in is a bipartite graph self.bipartite_set = bipartite_set # This is the depth of this vertex considering the first vertex of its connected component as the root self.depth = depth # This is the parent of the vertex in the shortest path from it to the root self.parent = parent # Logarithmic ancestors of this vertex calculated with dynamic programming for LCA with Binary Lifting self.ancestors = ancestors ```
{ "source": "joaofbsm/neural-lang", "score": 3 }
#### File: neural-lang/code/nlp.py ```python __author__ = '<NAME>' __email__ = '<EMAIL>' __license__ = 'MIT' import logging import gensim import numpy as np logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) def split_corpus_file(path_to_file='', filename='corpus.txt', proportions=(0.25, 0.5, 0.75, 1)): """ Split corpus into different sizes. :param path_to_file: path to the corpus file. :param filename: corpus file name. :param proportions: proportions to apply to the size of corpus. One new file for each value. :return: None """ with open('{}{}'.format(path_to_file, filename), 'r') as f: # Considering that you are using a corpus with only one line corpus = f.read() corpus = corpus.split(' ') corpus_size = len(corpus) for proportion in proportions: splitting_point = round(corpus_size * proportion) with open('{}{}{}'.format(path_to_file, proportion, filename), 'w+') as f: f.write(' '.join(corpus[:splitting_point])) def prepare_validation_file(path_to_file='', filename='validation.txt', prefix_filter=None, lowercase=False): """ Prepare the validation file for evaluation of analogy similarity. All actions are optional. :param path_to_file: path to the validation file. :param filename: validation file name. :param prefix_filter: prefix substring to filter line out of file. :param lowercase: flag to convert all words in file to lowercase. :return: None """ # Removes topic's headers if prefix_filter is not None: with open('{}{}'.format(path_to_file, filename), 'r') as old_file, \ open('{}prep_{}'.format(path_to_file, filename), 'w+') as new_file: for line in old_file: if not line.startswith(prefix_filter): # Convert all words to lowercase if lowercase: line = line.lower() new_file.write(line) # Convert all words to lowercase in case there is no line filter elif lowercase: with open('{}{}'.format(path_to_file, filename), 'r') as old_file, \ open('{}prep_{}'.format(path_to_file, filename), 'w+') as new_file: for line in old_file: line = line.lower() new_file.write(line) def evaluate_analogies_distance(model, validation_path, validation_filename): """ :param model: :param validation_path: :param validation_filename: :return: """ oov_question = 0 oov_answer = 0 distances = [] with open(validation_path + validation_filename, 'r') as f: for line in f: words = line.split() # Get word on top of the similarity to the resulting vector rank try: predicted = model.most_similar(positive=words[1:3], negative=words[0], topn=1)[0][0] except: oov_question += 1 continue # Calculate the distance between predicted and correct word try: distances.append(float(model.wv.distance(predicted, words[3]))) except: oov_answer += 1 continue mean_distances = np.mean(distances) logging.info('Mean of analogies distance: {}'.format(mean_distances)) logging.info(('{} question words and {} answer words out of ' 'vocabulary').format(oov_question, oov_answer)) return mean_distances def train_models(corpus_path, corpus_filename, models_path, corpus_proportions, context_sizes, training_algorithms): """ :param corpus_path: :param corpus_filename: :param models_path: :param corpus_proportions: :param context_sizes: :param training_algorithms: :return: """ for corpus_proportion in corpus_proportions: sentences = gensim.models.word2vec.LineSentence( '{}{}{}'.format(corpus_path, corpus_proportion, corpus_filename) ) for context_size in context_sizes: for algorithm_name, sg in training_algorithms.items(): model = gensim.models.Word2Vec( sentences=sentences, window=context_size, min_count=1, workers=4, sg=sg ) model.save('{}{}-{}-{}.model'.format( models_path, corpus_proportion, context_size, algorithm_name) ) def test_models(validation_path, validation_filename, models_path, results_path, corpus_proportions, context_sizes, training_algorithms): """ :param validation_path: :param validation_filename: :param models_path: :param results_path: :param corpus_proportions: :param context_sizes: :param training_algorithms: :return: """ for corpus_proportion in corpus_proportions: for context_size in context_sizes: for algorithm_name, sg in training_algorithms.items(): model = gensim.models.Word2Vec.load('{}{}-{}-{}.model'.format( models_path, corpus_proportion, context_size, algorithm_name) ) accuracy = model.wv.evaluate_word_analogies( validation_path + validation_filename, case_insensitive=True )[0] distance = evaluate_analogies_distance( model, validation_path, 'prep_' + validation_filename ) with open('{}{}-{}-{}.txt'.format( results_path, corpus_proportion, context_size, algorithm_name), 'w+') as f: f.write('accuracy={:.5g}\n'.format(accuracy)) f.write('distance={:.5g}'.format(distance)) ```
{ "source": "joaofbsm/tensor-network", "score": 3 }
#### File: tensor-network/implementation/main.py ```python from __future__ import print_function __author__ = "<NAME>" __email__ = "<EMAIL>" __license__ = "MIT" import matplotlib.pyplot as plt import numpy as np import keras import sys import utils from collections import Counter from copy import deepcopy from imblearn.over_sampling import RandomOverSampler from keras.models import Sequential from keras.layers import Dense from keras.optimizers import SGD from keras.utils import to_categorical from sklearn.model_selection import StratifiedKFold def train_network(X, y, train_index, test_index, parameters, extra=False): """Create and fit the MLP network Arguments: X -- Dataset input instances. y -- Dataset output classes. train_index -- K-fold generated train indexes. test_index -- K-fold generated test indexes. parameters -- Neural network model parameters. Keyword arguments: extra -- Flag for the presence of extra hidden layer (default: {False}) """ model = Sequential() # Linear stack of layers sgd = SGD(lr=parameters["l_rate"]) # SGD optimizer. Allows learning rate. # Add hidden layer model.add(Dense(parameters["hidden_size"], activation="sigmoid", input_dim=parameters["input_size"])) # Add extra layer if needed if extra: model.add(Dense(parameters["extra_size"], activation="sigmoid")) # Add output layer model.add(Dense(parameters["output_size"], activation="softmax")) # Split input by k-fold generated indexes train_X = X[train_index] test_X = X[test_index] # Convert output to one-hot encoding train_y = to_categorical(y[train_index], num_classes=7) test_y = to_categorical(y[test_index], num_classes=7) # Compile model model.compile(optimizer=sgd, loss="categorical_crossentropy", metrics=["accuracy"]) # Fit model results = model.fit(x=train_X, y=train_y, batch_size=parameters["batch_size"], epochs=parameters["n_epochs"], validation_data=(test_X, test_y), shuffle=True) return results.history def execute_experiment(name, variations, X, y, parameters, kfold): """Train neural network for a set of different parameters and save results Arguments: name -- Name of the parameter to be varied. variations -- Variations of the parameter. X -- Dataset input instances. y -- Dataset output classes. parameters -- Neural network model parameters. kfold -- Object used to create k-folds for crossvalidation. """ parameters = deepcopy(parameters) accuracy = {} for variation in variations: parameters[name] = variation accuracy_train = [] # Cross-validation train accuracy accuracy_test = [] # Cross-validation test accuracy for train_index, test_index in kfold.split(X, y): if name == "extra_size": results = train_network(X, y, train_index, test_index, parameters, True) else: results = train_network(X, y, train_index, test_index, parameters) accuracy_train.append(results["acc"]) accuracy_test.append(results["val_acc"]) accuracy[variation] = { "train_mean": np.mean(accuracy_train, axis=0), "train_std": np.std(accuracy_train, axis=0), "test_mean": np.mean(accuracy_test, axis=0), "test_std": np.std(accuracy_test, axis=0) } utils.save_data(name, accuracy) def balanced_experiment(X, y, parameters, kfold): """Oversample the dataset to analyze the performanced on a balanced one Arguments: X -- Dataset input instances. y -- Dataset output classes. parameters -- Neural network model parameters. kfold -- Object used to create k-folds for crossvalidation. """ accuracy = {} # Oversample data X, y = RandomOverSampler().fit_sample(X, y) accuracy_train = [] # Cross-validation train accuracy accuracy_test = [] # Cross-validation test accuracy for train_index, test_index in kfold.split(X, y): results = train_network(X, y, train_index, test_index, parameters) accuracy_train.append(results["acc"]) accuracy_test.append(results["val_acc"]) accuracy[parameters["hidden_size"]] = { "train_mean": np.mean(accuracy_train, axis=0), "train_std": np.std(accuracy_train, axis=0), "test_mean": np.mean(accuracy_test, axis=0), "test_std": np.std(accuracy_test, axis=0) } utils.save_data("balanced", accuracy) def main(args): X, y = utils.load_dataset(args[1]) parameters = { "n_epochs": 200, # Number of epochs "batch_size": 50, # Default batch size "l_rate": 0.5, # Default learning rate "input_size": 8, # Input layer size "hidden_size": 50, # Default hidden layer size "extra_size": 50, # Default extra hidden layer size "output_size": 7 # Output layer size } experiments = { "hidden_size": [5, 15, 50, 100], # Hidden layer sizes "extra_size": [5, 15, 50, 100], # Extra layer sizes "l_rate": [0.1, 0.5, 1, 10], # Learning rates "batch_size": [1, 10, 50, 100] # Batch sizes } # Generator for 3-fold cross-validation kfold = StratifiedKFold(n_splits=3, shuffle=True) for key, value in experiments.items(): print("\nExecuting {}\n----------------------\n".format(key)) execute_experiment(key, value, X, y, parameters, kfold) balanced_experiment(X, y, parameters, kfold) if __name__ == "__main__": main(sys.argv) ```
{ "source": "joaofbsm/upgraded-guacamole", "score": 3 }
#### File: upgraded-guacamole/feature_engineering/extractor.py ```python from __future__ import print_function import os import sys import MySQLdb import pandas as pd import numpy as np from tqdm import tqdm #==================================FUNCTIONS==================================# def onehot_champions(match, db): champions = pd.read_sql("SELECT id FROM Champion", db) champions["pos"] = champions.index champions = champions.set_index("id").to_dict() blue_team = match[:5] red_team = match[5:10] blue_champions = np.zeros(len(champions["pos"])) red_champions = np.zeros(len(champions["pos"])) for _, player in blue_team.iterrows(): blue_champions[champions["pos"][player["championId"]]] = 1 for _, player in red_team.iterrows(): red_champions[champions["pos"][player["championId"]]] = 1 result = np.concatenate((blue_champions, red_champions)) return result def onehot_spells(match, db): spells = pd.read_sql("SELECT id FROM SummonerSpell " "WHERE name='Barrier' OR name='Cleanse' " "OR name='Exhaust' OR name='Flash' OR name='Ghost' " "OR name='Heal' OR name='Ignite' OR name='Smite' " "OR name='Teleport'", db) spells["pos"] = spells.index spells = spells.set_index("id").to_dict() blue_team = match[:5] red_team = match[5:10] blue_spells = np.zeros(len(spells["pos"])) red_spells = np.zeros(len(spells["pos"])) for _, player in blue_team.iterrows(): blue_spells[spells["pos"][player["spell1Id"]]] += 1 blue_spells[spells["pos"][player["spell2Id"]]] += 1 for _, player in red_team.iterrows(): red_spells[spells["pos"][player["spell1Id"]]] += 1 red_spells[spells["pos"][player["spell2Id"]]] += 1 result = np.concatenate((blue_spells, red_spells)) return result def onehot_summoner_masteries_team(match, db, cursor): masteries = pd.read_sql("SELECT id FROM Mastery", db) masteries["pos"] = masteries.index masteries = masteries.set_index("id").to_dict() get_summoner_masteries = ("SELECT M.masteryId, M.rank " "FROM MatchParticipant P, MatchMastery M, " "MatchDetail D, MatchPlayer PL " "WHERE PL.summonerId = %s " "AND P._match_id = %s " "AND PL._participant_id = P._id " "AND P._id = M._participant_id " "AND P._match_id = D.matchId AND D.mapId = 11 " "ORDER BY P._match_id, PL.summonerId") blue_team = match[:5] red_team = match[5:10] blue_summoner_masteries = np.zeros(45) red_summoner_masteries = np.zeros(45) for _, player in blue_team.iterrows(): cursor.execute(get_summoner_masteries, (player["summonerId"], player["matchId"])) summoner_masteries = list(cursor) for mastery, rank in summoner_masteries: blue_summoner_masteries[masteries["pos"][mastery]] += rank for _, player in red_team.iterrows(): cursor.execute(get_summoner_masteries, (player["summonerId"], player["matchId"])) summoner_masteries = list(cursor) for mastery, rank in summoner_masteries: red_summoner_masteries[masteries["pos"][mastery]] += rank results = np.concatenate((blue_summoner_masteries, red_summoner_masteries)) return results def dmg_types_team(match, db): champion_dmg = pd.read_sql("SELECT _champion_id, attack, defense, magic " "FROM ChampionInfo " "ORDER BY _champion_id", db) champion_dmg = champion_dmg.set_index("_champion_id").T.to_dict("list") blue_team = match[:5] red_team = match[5:10] blueteam_dmg = np.zeros((3)) redteam_dmg = np.zeros((3)) for _, player in blue_team.iterrows(): blueteam_dmg += champion_dmg[player["championId"]] for _, player in red_team.iterrows(): redteam_dmg += champion_dmg[player["championId"]] result = np.concatenate((blueteam_dmg, redteam_dmg)) return result def dmg_types_percent_team(match, db): champion_dmg = pd.read_sql("SELECT _champion_id, attack, magic " "FROM ChampionInfo " "ORDER BY _champion_id", db) champion_dmg = champion_dmg.set_index("_champion_id").T.to_dict("list") blue_team = match[:5] red_team = match[5:10] blueteam_dmg = np.zeros((2)) redteam_dmg = np.zeros((2)) for _, player in blue_team.iterrows(): blueteam_dmg += champion_dmg[player["championId"]] total_dmg = np.sum(blueteam_dmg) blueteam_dmg = 100 * np.around(np.divide(blueteam_dmg, total_dmg), decimals=5) for _, player in red_team.iterrows(): redteam_dmg += champion_dmg[player["championId"]] total_dmg = np.sum(redteam_dmg) redteam_dmg = 100 * np.around(np.divide(redteam_dmg, total_dmg), decimals=5) result = np.concatenate((blueteam_dmg, redteam_dmg)) return result def mastery_scores_team(match, cursor): get_mastery_scores = ("SELECT mastery " "FROM SummonerMasteries " "WHERE summId = %s") blue_team = match[:5] red_team = match[5:10] mastery_scores = np.zeros(2) for _, player in blue_team.iterrows(): cursor.execute(get_mastery_scores, [player["summonerId"]]) mastery_score = list(cursor) if not mastery_score: return None mastery_score = mastery_score[0][0] mastery_scores[0] += mastery_score for _, player in red_team.iterrows(): cursor.execute(get_mastery_scores, [player["summonerId"]]) mastery_score = list(cursor) if not mastery_score: return None mastery_score = mastery_score[0][0] mastery_scores[1] += mastery_score return mastery_scores def champion_masteries_team(match, cursor): get_champion_masteries = ("SELECT mastery " "FROM SummonerChampMasteries " "WHERE summId = %s AND championId = %s") blue_team = match[:5] red_team = match[5:10] champion_masteries = np.zeros(2) for _, player in blue_team.iterrows(): cursor.execute(get_champion_masteries, (player["summonerId"], player["championId"])) champion_mastery = list(cursor) if not champion_mastery: return None champion_mastery = champion_mastery[0][0] champion_masteries[0] += champion_mastery for _, player in red_team.iterrows(): cursor.execute(get_champion_masteries, (player["summonerId"], player["championId"])) champion_mastery = list(cursor) if not champion_mastery: return None champion_mastery = champion_mastery[0][0] champion_masteries[1] += champion_mastery return champion_masteries def champion_masteries_summoner(match, cursor): get_champion_masteries = ("SELECT mastery " "FROM SummonerChampMasteries " "WHERE summId = %s AND championId = %s") blue_team = match[:5] red_team = match[5:10] blue_champion_masteries = np.zeros(5) red_champion_masteries = np.zeros(5) i = 0 for _, player in blue_team.iterrows(): cursor.execute(get_champion_masteries, (player["summonerId"], player["championId"])) champion_mastery = list(cursor) if not champion_mastery: return None champion_mastery = champion_mastery[0][0] blue_champion_masteries[i] = champion_mastery i += 1 i = 0 for _, player in red_team.iterrows(): cursor.execute(get_champion_masteries, (player["summonerId"], player["championId"])) champion_mastery = list(cursor) if not champion_mastery: return None champion_mastery = champion_mastery[0][0] red_champion_masteries[i] = champion_mastery i += 1 champion_masteries = np.concatenate((blue_champion_masteries, red_champion_masteries)) return champion_masteries def summoner_wins_and_rate_team(match, cursor): get_history = ("SELECT wins, losses " "FROM SummonerHistory " "WHERE summId = %s") blue_team = match[:5] red_team = match[5:10] blue_total = np.zeros(1) red_total = np.zeros(1) blue_wins = np.zeros(1) red_wins = np.zeros(1) blue_rate = np.zeros(1) red_rate = np.zeros(1) for _, player in blue_team.iterrows(): cursor.execute(get_history, [player["summonerId"]]) outcomes = list(cursor)[0] if not outcomes: continue wins = outcomes[0] losses = outcomes[1] blue_total += wins + losses blue_wins += wins # Harmonic mean if blue_total > 0: blue_rate = (blue_wins / (blue_total * 1.0)) * 100 for _, player in red_team.iterrows(): cursor.execute(get_history, [player["summonerId"]]) outcomes = list(cursor)[0] if not outcomes: continue wins = outcomes[0] losses = outcomes[1] red_total += wins + losses red_wins += wins if red_total > 0: red_rate = (red_wins / (red_total * 1.0)) * 100 result = np.concatenate((blue_rate, blue_wins, red_rate, red_wins)) return result def champion_wins_and_rate_team(match, cursor): get_history = ("SELECT wins, losses " "FROM SummonerChampHistory " "WHERE summId = %s AND championId = %s") blue_team = match[:5] red_team = match[5:10] blue_total = np.zeros(1) red_total = np.zeros(1) blue_wins = np.zeros(1) red_wins = np.zeros(1) blue_rate = np.zeros(1) red_rate = np.zeros(1) for _, player in blue_team.iterrows(): cursor.execute(get_history, (player["summonerId"], player["championId"])) outcomes = list(cursor)[0] if not outcomes: continue wins = outcomes[0] losses = outcomes[1] blue_total += wins + losses blue_wins += wins if blue_total > 0: blue_rate = (blue_wins / (blue_total * 1.0)) * 100 for _, player in red_team.iterrows(): cursor.execute(get_history, (player["summonerId"], player["championId"])) outcomes = list(cursor)[0] if not outcomes: continue wins = outcomes[0] losses = outcomes[1] red_total += wins + losses red_wins += wins if red_total > 0: red_rate = (red_wins / (red_total * 1.0)) * 100 result = np.concatenate((blue_rate, blue_wins, red_rate, red_wins)) return result def team_features_zero_to_ten(match, cursor): get_features = ("SELECT PL.summonerId, PTD._type, PTD.zeroToTen " "FROM MatchParticipant PA, MatchPlayer PL, " "MatchParticipantTimeline PT, " "MatchParticipantTimelineData PTD " "WHERE PL.summonerId = %s AND PA._match_id = %s " "AND PL._participant_id = PA._id " "AND PA._id = PT._participant_id " "AND PT._id = PTD._timeline_id") blue_team = match[:5] red_team = match[5:10] blue_zero_to_ten = np.zeros(4) red_zero_to_ten = np.zeros(4) for _, player in blue_team.iterrows(): cursor.execute(get_features, (player["summonerId"], player["matchId"])) player_features = list(cursor) if not player_features: return None for features in player_features: if features[1] == "creepsPerMinDeltas": blue_zero_to_ten[0] += features[2] elif features[1] == "damageTakenPerMinDeltas": blue_zero_to_ten[1] += features[2] elif features[1] == "goldPerMinDeltas": blue_zero_to_ten[2] += features[2] elif features[1] == "xpPerMinDeltas": blue_zero_to_ten[3] += features[2] for _, player in red_team.iterrows(): cursor.execute(get_features, (player["summonerId"], player["matchId"])) player_features = list(cursor) if not player_features: return None for features in player_features: if features[1] == "creepsPerMinDeltas": red_zero_to_ten[0] += features[2] elif features[1] == "damageTakenPerMinDeltas": red_zero_to_ten[1] += features[2] elif features[1] == "goldPerMinDeltas": red_zero_to_ten[2] += features[2] elif features[1] == "xpPerMinDeltas": red_zero_to_ten[3] += features[2] zero_to_ten = np.concatenate((blue_zero_to_ten, red_zero_to_ten)) return zero_to_ten def team_features_zero_to_twenty(match, cursor): get_features = ("SELECT PL.summonerId, PTD._type, PTD.zeroToTen, " "PTD.tenToTwenty " "FROM MatchParticipant PA, MatchPlayer PL, " "MatchParticipantTimeline PT, " "MatchParticipantTimelineData PTD " "WHERE PL.summonerId = %s AND PA._match_id = %s " "AND PL._participant_id = PA._id " "AND PA._id = PT._participant_id " "AND PT._id = PTD._timeline_id") blue_team = match[:5] red_team = match[5:10] blue_zero_to_twenty = np.zeros(4) red_zero_to_twenty = np.zeros(4) for _, player in blue_team.iterrows(): cursor.execute(get_features, (player["summonerId"], player["matchId"])) player_features = list(cursor) if not player_features: return None for features in player_features: if features[1] == "creepsPerMinDeltas": blue_zero_to_twenty[0] += features[2] + features[3] elif features[1] == "damageTakenPerMinDeltas": blue_zero_to_twenty[1] += features[2] + features[3] elif features[1] == "goldPerMinDeltas": blue_zero_to_twenty[2] += features[2] + features[3] elif features[1] == "xpPerMinDeltas": blue_zero_to_twenty[3] += features[2] + features[3] for _, player in red_team.iterrows(): cursor.execute(get_features, (player["summonerId"], player["matchId"])) player_features = list(cursor) if not player_features: return None for features in player_features: if features[1] == "creepsPerMinDeltas": red_zero_to_twenty[0] += features[2] + features[3] elif features[1] == "damageTakenPerMinDeltas": red_zero_to_twenty[1] += features[2] + features[3] elif features[1] == "goldPerMinDeltas": red_zero_to_twenty[2] += features[2] + features[3] elif features[1] == "xpPerMinDeltas": red_zero_to_twenty[3] += features[2] + features[3] zero_to_twenty = np.concatenate((blue_zero_to_twenty, red_zero_to_twenty)) return zero_to_twenty def team_features_zero_to_thirty(match, cursor): get_features = ("SELECT PL.summonerId, PTD._type, PTD.zeroToTen, " "PTD.tenToTwenty, PTD.twentyToThirty " "FROM MatchParticipant PA, MatchPlayer PL, " "MatchParticipantTimeline PT, " "MatchParticipantTimelineData PTD " "WHERE PL.summonerId = %s AND PA._match_id = %s " "AND PL._participant_id = PA._id " "AND PA._id = PT._participant_id " "AND PT._id = PTD._timeline_id") blue_team = match[:5] red_team = match[5:10] blue_zero_to_thirty = np.zeros(4) red_zero_to_thirty = np.zeros(4) for _, player in blue_team.iterrows(): cursor.execute(get_features, (player["summonerId"], player["matchId"])) player_features = list(cursor) if not player_features: return None for features in player_features: if features[1] == "creepsPerMinDeltas": blue_zero_to_thirty[0] += (features[2] + features[3] + features[4]) elif features[1] == "damageTakenPerMinDeltas": blue_zero_to_thirty[1] += (features[2] + features[3] + features[4]) elif features[1] == "goldPerMinDeltas": blue_zero_to_thirty[2] += (features[2] + features[3] + features[4]) elif features[1] == "xpPerMinDeltas": blue_zero_to_thirty[3] += (features[2] + features[3] + features[4]) for _, player in red_team.iterrows(): cursor.execute(get_features, (player["summonerId"], player["matchId"])) player_features = list(cursor) if not player_features: return None for features in player_features: if features[1] == "creepsPerMinDeltas": red_zero_to_thirty[0] += (features[2] + features[3] + features[4]) elif features[1] == "damageTakenPerMinDeltas": red_zero_to_thirty[1] += (features[2] + features[3] + features[4]) elif features[1] == "goldPerMinDeltas": red_zero_to_thirty[2] += (features[2] + features[3] + features[4]) elif features[1] == "xpPerMinDeltas": red_zero_to_thirty[3] += (features[2] + features[3] + features[4]) zero_to_thirty = np.concatenate((blue_zero_to_thirty, red_zero_to_thirty)) return zero_to_thirty def team_features_zero_to_end(match, cursor): get_features = ("SELECT PL.summonerId, PTD._type, PTD.zeroToTen, " "PTD.tenToTwenty, PTD.twentyToThirty, PTD.thirtyToEnd " "FROM MatchParticipant PA, MatchPlayer PL, " "MatchParticipantTimeline PT, " "MatchParticipantTimelineData PTD " "WHERE PL.summonerId = %s AND PA._match_id = %s " "AND PL._participant_id = PA._id " "AND PA._id = PT._participant_id " "AND PT._id = PTD._timeline_id") blue_team = match[:5] red_team = match[5:10] blue_zero_to_end = np.zeros(4) red_zero_to_end = np.zeros(4) for _, player in blue_team.iterrows(): cursor.execute(get_features, (player["summonerId"], player["matchId"])) player_features = list(cursor) if not player_features: return None for features in player_features: if features[1] == "creepsPerMinDeltas": blue_zero_to_end[0] += (features[2] + features[3] + features[4] + features[5]) elif features[1] == "damageTakenPerMinDeltas": blue_zero_to_end[1] += (features[2] + features[3] + features[4] + features[5]) elif features[1] == "goldPerMinDeltas": blue_zero_to_end[2] += (features[2] + features[3] + features[4] + features[5]) elif features[1] == "xpPerMinDeltas": blue_zero_to_end[3] += (features[2] + features[3] + features[4] + features[5]) for _, player in red_team.iterrows(): cursor.execute(get_features, (player["summonerId"], player["matchId"])) player_features = list(cursor) if not player_features: return None for features in player_features: if features[1] == "creepsPerMinDeltas": red_zero_to_end[0] += (features[2] + features[3] + features[4] + features[5]) elif features[1] == "damageTakenPerMinDeltas": red_zero_to_end[1] += (features[2] + features[3] + features[4] + features[5]) elif features[1] == "goldPerMinDeltas": red_zero_to_end[2] += (features[2] + features[3] + features[4] + features[5]) elif features[1] == "xpPerMinDeltas": red_zero_to_end[3] += (features[2] + features[3] + features[4] + features[5]) zero_to_end = np.concatenate((blue_zero_to_end, red_zero_to_end)) return zero_to_end def remove_incomplete_instances(dataset): incomplete_instances = [] for i, instance in enumerate(dataset): complete = np.count_nonzero(instance) if not complete: incomplete_instances.append(i) dataset = np.delete(dataset, incomplete_instances, axis=0) print("\n\n", len(incomplete_instances), "incomplete instances removed.") return dataset #===================================MODELS====================================# def feature_testing(db, cursor): """ Size of features ---------------- onehot_champions: 272 onehot_spells: 18 onehot_summoner_masteries_team: 90 dmg_types_team = 6 dmg_types_percent_team = 4 mastery_scores_team = 2 mastery_scores_diff = 1 champion_masteries_team = 2 champion_masteries_summoner = 10 summoner_wins_and_rate_team = 4 champion_wins_and_rate_team = 4 zero_to_ten -> end = 8 zero_to_ten -> end_diff = 4 winner: 1 TOTAL: 418 """ df = pd.read_sql("SELECT D.matchId, PL.summonerId, P.championId, P.teamId," " P.spell1Id, P.spell2Id, T.winner " "FROM MatchParticipant P, MatchDetail D, MatchTeam T, " "MatchPlayer PL " "WHERE P._match_id = D.matchId AND D.mapId = 11 " "AND D.matchId = T._match_id AND P.teamId = T.teamId " "AND PL._participant_id = P._id " "ORDER BY D.matchId, P.teamId", db) dataset = np.zeros((df.shape[0] / 10, 407)) bar = tqdm(total=df.shape[0] / 10) for i, player in enumerate(xrange(0, df.shape[0] - 10, 10)): bar.update(1) match = df[player:player + 10] #=================================PRE=================================# champions = onehot_champions(match, db) spells = onehot_spells(match, db) masteries = onehot_summoner_masteries_team(match, db, cursor) dmg_types = dmg_types_team(match, db) dmg_percent = dmg_types_percent_team(match, db) mastery_scores = mastery_scores_team(match, cursor) if mastery_scores is None: continue mastery_scores_diff = mastery_scores[0] - mastery_scores[1] mastery_scores_diff = mastery_scores_diff[np.newaxis] champion_team_masteries = champion_masteries_team(match, cursor) if champion_team_masteries is None: continue champion_team_diff = champion_team_masteries[0] - champion_team_masteries[1] champion_team_diff = champion_team_diff[np.newaxis] champion_summ_masteries = champion_masteries_summoner(match, cursor) if champion_summ_masteries is None: continue #historysumm = summoner_wins_and_rate_team(match, cursor) #historysumm_wins_diff = np.zeros(2) #historysumm_wins_diff[0] = historysumm[0] - historysumm[2] #historysumm_wins_diff[1] = historysumm[1] - historysumm[3] #historychamp = champion_wins_and_rate_team(match, cursor) #historychamp_wins_diff = np.zeros(2) #historychamp_wins_diff[0] = historychamp[0] - historychamp[2] #historychamp_wins_diff[1] = historychamp[1] - historychamp[3] #=================================IN==================================# #zero_to_ = team_features_zero_to_thirty(match, cursor) #if zero_to_ is None: # continue #zero_to_diff = zero_to_[:4] - zero_to_[4:] winner = np.array(df["winner"].iloc[player])[np.newaxis] # PRE dataset[i] = np.concatenate((champions, spells, masteries, dmg_types, dmg_percent, mastery_scores, mastery_scores_diff, champion_team_masteries, champion_team_diff, champion_summ_masteries, winner)) # dataset[i] = np.concatenate((272, # IN #dataset[i] = np.concatenate((zero_to_, zero_to_diff, winner)) dataset = remove_incomplete_instances(dataset) return dataset #====================================MAIN=====================================# def main(args): db = MySQLdb.connect(host="localhost", user="root", passwd="<PASSWORD>", db="lol") cursor = db.cursor() db.set_character_set('utf8') cursor.execute('SET NAMES utf8;') cursor.execute('SET CHARACTER SET utf8;') cursor.execute('SET character_set_connection=utf8;') model_name = args[0] feature_models = {"ft": feature_testing} model = feature_models[model_name](db, cursor) if model_name == "ft": model_name = args[1] np.savetxt(model_name + ".csv", model, delimiter=",", fmt="%.5g") cursor.close() db.close() if __name__ == "__main__": main(sys.argv[1:]) ```
{ "source": "joao-fb/surf-reporter", "score": 3 }
#### File: joao-fb/surf-reporter/reporter.py ```python from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By import datetime import os class Reporter: def __init__(self, url, x_arg): # Replace below path with the absolute path # to chromedriver in your computer options = webdriver.ChromeOptions() envioroment = os.environ["environment"] if envioroment == 'test': CHROMEDRIVER_PATH = '/Applications/chromedriver' elif envioroment == 'prod': CHROMEDRIVER_PATH = os.environ["CHROMEDRIVER_PATH"] chrome_bin = os.environ.get('GOOGLE_CHROME_BIN', "chromedriver") options.binary_location = chrome_bin options.add_argument("--disable-gpu") options.add_argument("--no-sandbox") options.add_argument('--headless') options.add_argument("--disable-dev-shm-usage") else: CHROMEDRIVER_PATH = 'no path' self.driver = webdriver.Chrome(executable_path=CHROMEDRIVER_PATH, options=options) self.driver.get(url) wait = WebDriverWait(self.driver, 600) wait.until(EC.presence_of_element_located((By.XPATH, x_arg))) def find_energies(self): surf_guru = self.driver.page_source soup = BeautifulSoup(surf_guru, features='html.parser') html_energies = soup.findAll("label", {"class": "resumo_energia_en"}) week_energies = [html_energie.text for html_energie in html_energies] return week_energies def process_energies(self, raw_energies): p_energies = {} day = 0 for energy in raw_energies: if 'J' in energy: date = datetime.datetime.today() date += datetime.timedelta(days=day) report_date = date energy = energy.replace('J', "") energy = energy.replace('▼', "") energy = energy.replace('▲', "") energy = int(energy) p_energies[report_date.strftime('%A, %d %b %Y')] = energy day += 1 return p_energies def __del__(self): self.driver.quit() ```
{ "source": "JoaoFdC/PyroNear", "score": 3 }
#### File: pyronear/datasets/utils.py ```python import requests import multiprocessing as mp from multiprocessing.pool import ThreadPool from pathlib import Path from functools import partial from tqdm import tqdm from urllib.parse import urlparse from torchvision.datasets.utils import check_integrity def url_retrieve(url, outfile, timeout=4): """Download the content of an URL request to a specified location Args: url (str): URL to request outfile (pathlib.Path): path of the file where the response will be saved timeout (float, optional): number of seconds before the request times out """ response = requests.get(url, timeout=timeout, allow_redirects=True) if response.status_code != 200: raise requests.exceptions.ConnectionError(f'Error code {response.status_code} - could not download {url}') outfile.write_bytes(response.content) def get_fname(url, default_extension='jpg', max_base_length=50): """Find extension of file located by URL Args: url (str): URL of the file default_extension (str, optional): default extension max_base_length (int, optional): max base filename's length Returns: str: file name """ name_split = urlparse(url).path.rpartition('/')[-1].split('.') # Check if viable extension if len(name_split) > 1 and all(c.isalpha() for c in name_split[-1].lower()): base, extension = '.'.join(name_split[:-1]), name_split[-1].lower() # Fallback on default extension else: base, extension = name_split[-1], default_extension # Check base length if len(base) > max_base_length: base = base[:max_base_length] return f"{base}.{extension}" def download_url(url, root, filename=None, md5=None, timeout=4, retries=4, verbose=False, silent=False): """Download a file accessible via URL with mutiple retries Args: url (str or tuple<str, str>): URL to request root (pathlib.Path): folder where the file will be saved in filename (str, optional): name of the output file md5 (str, optional): md5 for integrity verification timeout (float, optional): number of seconds before the request times out retries (int, optional): number of additional allowed download attempts verbose (bool, optional): whether status can be displayed in console silent (bool, optional): whether Exception should be raised upon download failure """ if isinstance(url, tuple): url, filename = url if not isinstance(url, str): raise TypeError('expected argument url to be of type <str>') # Root folder root = Path(root).expanduser() root.mkdir(parents=True, exist_ok=True) if not filename: filename = get_fname(url) fpath = root.joinpath(filename) # Download file if check_integrity(fpath, md5): if verbose: print(f'Using downloaded and verified file: {fpath}') else: success = False # Allow multiple retries for idx in range(retries + 1): try: url_retrieve(url, fpath, timeout) success = True except Exception as e: # Try switching to http if url.startswith('https'): try: url_retrieve(url.replace('https:', 'http:'), fpath, timeout) success = True except Exception: success = False # Handle exception if not success and (idx == retries): if not silent: raise e elif verbose: print(e) if success: break def parallel(func, arr, threads=None, leave=False): """Download a file accessible via URL with mutiple retries Args: func (callable): function to be executed on multiple workers arr (iterable): function argument's values threads (int, optional): number of workers to be used for multiprocessing leave (bool, optional): whether traces of progressbar should be kept upon termination Returns: list: list of function's results """ if threads is None: threads = min(16, mp.cpu_count()) if threads < 2: results = [func(arg) for arg in tqdm(arr, total=len(arr), leave=leave)] else: with ThreadPool(threads) as tp: results = list(tqdm(tp.imap_unordered(func, arr), total=len(arr))) if any([o is not None for o in results]): return results def download_urls(entries, root, timeout=4, retries=4, threads=None, silent=True): """Download multiple URLs a file accessible via URL with mutiple retries Args: entries (list<str, str>): URL and destination filen root (pathlib.Path): folder where the files will be saved in timeout (float, optional): number of seconds before the request times out retries (int, optional): number of additional allowed download attempts threads (int, optional): number of threads to be used for multiprocessing silent (bool, optional): whether Exception should be raised upon download failure """ parallel(partial(download_url, root=root, timeout=timeout, retries=retries, silent=silent), entries, threads=threads) ``` #### File: pyronear/models/mobilenet.py ```python from torchvision.models.mobilenet import MobileNetV2, model_urls as imagenet_urls from torchvision.models.utils import load_state_dict_from_url from .utils import cnn_model __all__ = ['mobilenet_v2'] model_urls = { 'mobilenet_v2': 'https://srv-file7.gofile.io/download/RKagNy/mobilenet_v2-binary-classification.pth' } model_cut = -1 def mobilenet_v2(pretrained=False, progress=True, imagenet_pretrained=False, num_classes=1, lin_features=512, dropout_prob=0.5, bn_final=False, concat_pool=True, **kwargs): r"""MobileNetV2 model from `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr imagenet_pretrained (bool, optional): should pretrained parameters be loaded on conv layers (ImageNet training) num_classes (int, optional): number of output classes lin_features (Union[int, list<int>], optional): number of nodes in intermediate layers of model's head dropout_prob (float, optional): dropout probability of head FC layers bn_final (bool, optional): should a batch norm be added after the last layer concat_pool (bool, optional): should pooling be replaced by :mod:`pyronear.nn.AdaptiveConcatPool2d` **kwargs: optional arguments of :mod:`torchvision.models.mobilenet.MobileNetV2` """ # Model creation base_model = MobileNetV2(num_classes=num_classes, **kwargs) # Imagenet pretraining if imagenet_pretrained: if pretrained: raise ValueError('imagenet_pretrained cannot be set to True if pretrained=True') state_dict = load_state_dict_from_url(imagenet_urls['mobilenet_v2'], progress=progress) # Remove FC params from dict for key in ('classifier.1.weight', 'classifier.1.bias'): state_dict.pop(key, None) missing, unexpected = base_model.load_state_dict(state_dict, strict=False) if any(unexpected) or any(not elt.startswith('classifier.') for elt in missing): raise KeyError(f"Missing parameters: {missing}\nUnexpected parameters: {unexpected}") # Cut at last conv layers model = cnn_model(base_model, model_cut, base_model.classifier[1].in_features, num_classes, lin_features, dropout_prob, bn_final=bn_final, concat_pool=concat_pool) # Parameter loading if pretrained: state_dict = load_state_dict_from_url(model_urls['mobilenet_v2'], progress=progress) model.load_state_dict(state_dict) return model ```
{ "source": "JoaoFelipe-AlvesOliveira/LearningPython", "score": 4 }
#### File: LearningPython/Functions/exercicio_4.py ```python def restringirDoaçaoMulher(peso,sexo): if peso < 50 or sexo == "f": resultado = ("Você não pode doar sangue, pois está abaixo do peso") else: resultado = ("Você pode doar sangue") return resultado def restringirDoaçaoHomem(peso,sexo): if peso < 60 or sexo == "m": resultado = ("Você não pode doar sangue, pois está abaixo do peso") else: resultado = ("Você pode doar sangue") return resultado peso = float(input("Informe o seu peso")) sexo = (input("Informe o seu sexo apenas com as iniciais")) resultado = restringirDoaçaoMulher(peso,sexo) resultado = restringirDoaçaoHomem(peso,sexo) print (resultado) ```
{ "source": "JoaoFelipe/apted", "score": 2 }
#### File: apted/apted/all_possible_mappings_ted.py ```python from __future__ import (absolute_import, division) from copy import copy from .config import Config from .node_indexer import NodeIndexer class AllPossibleMappingsTED(object): """Implements an exponential algorithm for the tree edit distance. It computes all possible TED mappings between two trees and calculated their minimal cost.""" def __init__(self, tree1, tree2, config=None): self.config = config or Config() """Config object that specifies how to calculate the edit distance""" self.it1 = NodeIndexer(tree1, 0, self.config) """Stores the indexes of the first input tree""" self.it2 = NodeIndexer(tree2, 1, self.config) """Stores the indexes of the second input tree""" def compute_edit_distance(self): """Computes the tree edit distance between two trees by trying all possible TED mappings. It uses the specified cost model.""" mappings = [ mapping for mapping in self.generate_all_one_to_one_mappins() if self.is_ted_mapping(mapping) ] return self.get_min_cost(mappings) def generate_all_one_to_one_mappins(self): """Generate all possible 1-1 mappings. These mappings do not conform to TED conditions (sibling-order and ancestor-descendant). A mapping is a list of pairs (arrays) of preorder IDs (identifying nodes). return set of all 1-1 mappings """ mappings = [ [(node1, None) for node1 in self.it1.pre_ltr_info] + [(None, node2) for node2 in self.it2.pre_ltr_info] ] # For each node in the source tree for node1 in self.it1.pre_ltr_info: # Duplicate all mappings and store in mappings_copy mappings_copy = [ copy(x) for x in mappings ] # For each node in the destination tree for node2 in self.it2.pre_ltr_info: # For each mapping (produced for all n1 values smaller than # current n1) for mapping in mappings_copy: # Produce new mappings with the pair (n1, n2) by adding this # pair to all mappings where it is valid to add element_add = True # Verify if (n1, n2) can be added to mapping m. # All elements in m are checked with (n1, n2) for possible # violation # One-to-one condition for ele1, ele2 in mapping: # n1 is not in any of previous mappings if ele1 and ele2 and ele2 is node2: element_add = False break # New mappings must be produces by duplicating a previous # mapping and extending it by (n1, n2) if element_add: m_copy = copy(mapping) m_copy.append((node1, node2)) m_copy.remove((node1, None)) m_copy.remove((None, node2)) mappings.append(m_copy) return mappings def is_ted_mapping(self, mapping): """Test if a 1-1 mapping is a TED mapping""" # pylint: disable=no-self-use, invalid-name # Validade each pait of pairs of mapped nodes in the mapping for node_a1, node_a2 in mapping: # Use only pairs of mapped nodes for validation. if node_a1 is None or node_a2 is None: continue for node_b1, node_b2 in mapping: # Use only pairs of mapped nodes for validation. if node_b1 is None or node_b2 is None: continue # If any of the conditions below doesn't hold, discard m. # Validate ancestor-descendant condition. n1 = ( node_a1.pre_ltr < node_b1.pre_ltr and node_a1.pre_rtl < node_b1.pre_rtl ) n2 = ( node_a2.pre_ltr < node_b2.pre_ltr and node_a2.pre_rtl < node_b2.pre_rtl ) if (n1 and not n2) or (not n1 and n2): # Discard the mapping. # If this condition doesn't hold, the next condition # doesn't have to be verified any more and any other # pair doesn't have to be verified any more. return False # Validade sibling-order condition n1 = ( node_a1.pre_ltr < node_b1.pre_ltr and node_a1.pre_rtl > node_b1.pre_rtl ) n2 = ( node_a2.pre_ltr < node_b2.pre_ltr and node_a2.pre_rtl > node_b2.pre_rtl ) if (n1 and not n2) or (not n1 and n2): # Discard the mapping. return False return True def get_min_cost(self, mappings): """Given list of all TED mappings, calculate the cost of the minimal-cost mapping.""" insert, delete = self.config.insert, self.config.delete rename = self.config.rename # Initialize min_cost to the upper bound min_cost = float('inf') # verify cost of each mapping for mapping in mappings: m_cost = 0 # Sum up edit costs for all elements in the mapping m. for node1, node2 in mapping: if node1 and node2: m_cost += rename(node1.node, node2.node) elif node1: m_cost += delete(node1.node) else: m_cost += insert(node2.node) # Break as soon as the current min_cost is exceeded. # Only for early loop break. if m_cost > min_cost: break # Store the minimal cost - compare m_cost and min_cost min_cost = min(min_cost, m_cost) return min_cost ```
{ "source": "JoaoFelipe/extensible_provn", "score": 2 }
#### File: extensible_provn/query/provn.py ```python import dateutil.parser from .querier import querier, var, BLANK from ..utils import parsetime @querier.prov("entity", ["id", "text"]) def entity(querier, eid, attrs={}, id_=None): return [ eid, querier.text("entity", [eid], attrs, id_) ] @querier.prov("activity", ["id", "start", "end", "text"]) def activity(dot, aid, start_time=None, end_time=None, attrs=None, id_=None): start = parsetime(start_time) end = parsetime(end_time) return [ aid, start, end, querier.text("activity", [aid, start_time, end_time], attrs, id_) ] @querier.prov("used", ["id", "activity", "entity", "time", "text"]) def used(dot, aid, eid=None, time=None, attrs=None, id_=None): ti = parsetime(time) return [ id_, aid, eid, ti, querier.text("used", [aid, eid, time], attrs, id_) ] @querier.prov("wasDerivedFrom", ["generated", "used", "activity", "generation", "use", "attrs", "text"]) def wasDerivedFrom(dot, egenerated=None, eused=None, aid=None, gid=None, uid=None, attrs=None, id_=None): return [ egenerated, eused, aid, gid, uid, attrs or {}, querier.text( "wasDerivedFrom", [egenerated, eused, aid, gid, uid], attrs, id_ ) ] @querier.prov("wasGeneratedBy", ["id", "entity", "activity", "time", "text"]) def wasGeneratedBy(dot, eid, aid=None, time=None, attrs=None, id_=None): ti = parsetime(time) return [ id_, eid, aid, ti, querier.text("wasGeneratedBy", [eid, aid, time], attrs, id_) ] @querier.prov("hadMember", ["collection", "entity", "text"]) def hadMember(dot, ecollection=None, eid=None, attrs=None, id_=None): return [ ecollection, eid, querier.text("hadMember", [ecollection, eid], attrs, id_) ] @querier.prov("specializationOf", ["specific", "general", "text"]) def specializationOf(dot, specific=None, general=None, attrs=None, id_=None): return [ specific, general, querier.text("specializationOf", [specific, general], attrs, id_) ] ``` #### File: extensible_provn/view/intertwined_prov.py ```python from .provn import prov from .prov_dictionary import graph from ..utils import unquote from .. import utils NAMESPACE = "https://dew-uff.github.io/versioned-prov/ns/intertwined#" def intertwined(attrs, key, default="-"): try: return attrs[(key, "intertwined", NAMESPACE)] except KeyError: return default def ns_intertwined(key): return { "intertwined:" + key, NAMESPACE + key, key } @graph.prov("entity") def entity(dot, eid, attrs=None, id_=None): if prov(attrs, 'type') in ns_intertwined('Version'): return dot.node(attrs, "version", eid) return dot.node(attrs, "entity", eid) @graph.prov("wasDerivedFrom") def was_derived_from(dot, egenerated=None, eused=None, aid=None, gid=None, uid=None, attrs=None, id_=None): if aid and gid and uid: dot.used_required[(aid, eused)] = (uid, attrs) dot.generated_required[(egenerated, aid)] = (gid, attrs) if prov(attrs, 'type') in ns_intertwined('Reference'): if intertwined(attrs, 'access', False): return dot.arrow3( attrs, "int_wasDerivedFrom", egenerated, intertwined(attrs, 'collection'), eused, "", "der ac-{}\n{}".format( intertwined(attrs, 'access'), intertwined(attrs, 'checkpoint') ), "[{}]".format(intertwined(attrs, 'key')), ) return dot.arrow2( attrs, "int_wasDerivedFrom", egenerated, eused, "der ref\n{}".format( intertwined(attrs, 'checkpoint') ), extra="4" ) return dot.arrow2(attrs, "wasDerivedFrom", egenerated, eused, "der") if __name__ == "__main__": graph.main() @graph.prov("used") def used(dot, aid, eid=None, time=None, attrs=None, id_=None): dot.used.add((aid, eid)) checkpoint = intertwined(attrs, 'checkpoint', False) if checkpoint: return dot.arrow2(attrs, "int_used", aid, eid, "use\n{}".format(checkpoint)) return dot.arrow2(attrs, "used", aid, eid, "use") @graph.prov("wasGeneratedBy") def was_generated_by(dot, aid, eid=None, time=None, attrs=None, id_=None): dot.used.add((aid, eid)) checkpoint = intertwined(attrs, 'checkpoint', False) if checkpoint: return dot.arrow2(attrs, "int_wasGeneratedBy", aid, eid, "gen\n{}".format(checkpoint)) return dot.arrow2(attrs, "wasGeneratedBy", aid, eid, "gen") def _main(): """Main function""" graph.main() if __name__ == "__main__": _main() ``` #### File: extensible_provn/view/mutable_prov.py ```python from .provn import graph from ..utils import unquote @graph.prov("value") def value(dot, vid, attrs=None, id_=None): return dot.node(attrs, "value", vid) @graph.prov("accessed") def accessed(dot, eid=None, vid=None, time=None, attrs=None, id_=None): return dot.arrow2(attrs, "accessed", eid, vid, "access\n{}".format(time or "-")) @graph.prov("accessedPart") def accessed_part(dot, eid=None, wid=None, key=None, pid=None, time=None, attrs=None, id_=None): key = unquote(key) return dot.arrow2(attrs, "accessedPart", eid, pid, "part\n{}[{}]\n{}".format( wid or "-", key or "-", time or "-" )) @graph.prov("defined") def defined(dot, eid=None, vid=None, time=None, attrs=None, id_=None): return dot.arrow2(attrs, "defined", eid, vid, "defined\n{}".format(time or "-")) @graph.prov("wasDefinedBy") def was_defined_by(dot, vid=None, eid=None, time=None, attrs=None, id_=None): return dot.arrow2(attrs, "wasDefinedBy", vid, eid, "def by\n{}".format(time or "-")) @graph.prov("derivedByInsertion") def derived_by_insertion(dot, eid=None, wid=None, changes=None, time=None, attrs=None, id_=None): result = [] for pos, part in changes: pos = unquote(pos) result.append(dot.arrow2( attrs, "derivedByInsertion", wid, part, "der-ins-v\n[{}]\n{}".format(pos or "-", time or "-"), extra="0" )) result.append(dot.arrow2( attrs, "derivedByInsertion", part, eid, "der-ins-e\n[{}]\n{}".format(pos or "-", time or "-"), extra="1" )) result = [x for x in result if x] if not result: return None return "\n".join(result) @graph.prov("derivedByRemoval") def derived_by_removal(dot, eid=None, wid=None, positions=None, time=None, attrs=None, id_=None): result = [] for pos in positions: pos = unquote(pos) result.append(dot.arrow2( attrs, "derivedByRemoval", wid, eid, "der-rem\n[{}]\n{}".format(pos or "-", time or "-") )) result = [x for x in result if x] if not result: return None return "\n".join(result) def _main(): """Main function""" graph.main() if __name__ == "__main__": _main() ``` #### File: view/style/nohighlight.py ```python from .provtoolbox import ProvToolboxStyle class NoHighlightStyle(ProvToolboxStyle): def __init__(self): super(NoHighlightStyle, self).__init__() self.use_parsetime = False self.hide_namespace = False self.qualified_attr = True self.labelsize = "14" self.join(self.style, { #"hadMember_label": lambda l, a: self.taillabel("[ ]", a), "derivedByInsertionFrom1": {"arrowhead": "none"}, "derivedByInsertionFrom_label*": self.label, "hadDictionaryMember_label*": self.label, "value": {"fillcolor": "#FFFC87", "color": "#808080", "style": "filled"}, "accessed_label*": self.label, "accessedPart_label*": self.label, "defined_label*": self.label, "wasDefinedBy_label*": self.label, "derivedByInsertion1": {"style":"dashed"}, "derivedByInsertion_label*": self.label, "derivedByRemoval_label*": self.label, "version": {"fillcolor": "#FFFC87", "color": "#808080", "style": "filled"}, "int_wasDerivedFrom1": {"arrowhead": "none"}, "int_wasDerivedFrom0": {"style":"dashed"}, "int_wasDerivedFrom_label*": self.label, "int_used_label*": self.label, "int_wasGeneratedBy_label*": self.label, "ver_wasDerivedFrom1": {"arrowhead": "none"}, "ver_wasDerivedFrom0": {"style":"dashed"}, "ver_hadMember_label*": self.label, "ver_wasDerivedFrom_label*": self.label, "ver_used_label*": self.label, "ver_wasGeneratedBy_label*": self.label, }) def label(self, label, attrs): if label: return { "fontsize": self.labelsize, "distance": "1.5", "angle": "60.0", "rotation": "20", "label": label.replace('"', '\\"') } return {} EXPORT = NoHighlightStyle ```
{ "source": "JoaoFelipe/nbsvg", "score": 2 }
#### File: nbsvg/components/cell.py ```python from lxml.builder import E from .base import StylizedElement from .code import Code from .markdown import Markdown from .group import GroupSequence from .output import display_data, stream_output, Error from .text import Text from .image import SVGGroup def inout(number, ey, color, style, text=""): inoutpositiony = getattr(style, 'inoutpositiony', style.fontsize + ey) return E.g( E.g( E.text( E.tspan(f"{text}[{number}]:", {'fill': f"{color}"}), { 'x': f'{style.input_width - 3}', 'y': f'{inoutpositiony}', '{http://www.w3.org/XML/1998/namespace}space': 'preserve', 'text-anchor': 'end' } ), { 'font-family': 'monospace', 'font-size': f'{style.fontsize}px' } ) ) class CellInput(StylizedElement): def __init__(self, number, text, **kwargs): super().__init__(**kwargs) self.number = number self.text = text def build(self, style): style.input_width += 25 if style.showtext else 0 self.element = inout( self.number, 6 + 5, "#307fc1", style, text="In " if style.showtext else "" ) code = Code(self.text).translate(style.input_width, 5) self.element.append(code.do_build(style, width=style.width - style.input_width).element) self.width = style.width self.height = code.height + 10 def __repr__(self): return f'CellInput({self.number!r}, {self.text!r})' class CellOutput(StylizedElement): def __init__(self, number, output, **kwargs): super().__init__(**kwargs) self.number = number self.output = output def build(self, style): style.input_width += 25 if style.showtext else 0 self.element = inout( self.number, 0, "#bf5b3d", style, text="Out" if style.showtext else "" ) output = self.output.translate(style.input_width + 7, 0) self.element.append(output.do_build(style, width=style.width - style.input_width).element) self.width = style.width self.height = output.height + 5 def __repr__(self): return f'CellOutput({self.number!r}, {self.output!r})' class CellDisplay(StylizedElement): def __init__(self, output, **kwargs): super().__init__(**kwargs) self.output = output def build(self, style): self.element = E.g() output = self.output.translate(style.input_width + 7, 0) self.element.append(output.do_build(style, width=style.width - style.input_width).element) self.width = style.width self.height = output.height def __repr__(self): return f'CellDisplay({self.output!r})' class Cell(StylizedElement): def __init__(self, cell, **kwargs): super().__init__(**kwargs) self.cell = cell self._replace_cell = None self._replace_input = None self._remove_input = False self._replace_outputs = None self._remove_outputs = False self._replace_result = None self._replace_display = None self._replace_execution_count = None self._result_kwargs = {} self._display_kwargs = {} self.result = None def replace_cell(self, component): self._replace_cell = component def replace_input(self, component): self._replace_input = component def remove_input(self): self._remove_input = True def replace_outputs(self, component): self._replace_outputs = component def remove_outputs(self): self._remove_outputs = True def replace_result(self, component): self._replace_result = component def replace_display(self, component): self._replace_display = component def result_kwargs(self, kwargs): self._result_kwargs = kwargs def display_kwargs(self, kwargs): self._display_kwargs = kwargs def replace_execution_count(self, ec): self._replace_execution_count = ec def build(self, style): cell_type = self.cell.get('cell_type', '') source = self.cell.get('source', '') if self._replace_cell: result = self._replace_cell.do_build(style) elif cell_type == 'markdown': result = Markdown(source).do_build(style) elif cell_type == 'code': result = GroupSequence(group_margin=0) execution_count = self._replace_execution_count or self.cell.get('execution_count', ' ') or ' ' cell_input = self._replace_input or CellInput(execution_count, source) if not self._remove_input: result.add(cell_input) if not self._remove_outputs: if self._replace_outputs: result.add(self._replace_outputs) else: for output in self.cell.get('outputs', []): output_type = output.get('output_type', '') if output_type == 'execute_result': result.add(self._replace_result or CellOutput( execution_count, display_data(output.get('data', {}), **self._result_kwargs) )) elif output_type == 'stream': result.add(self._replace_display or CellDisplay(stream_output(output))) elif output_type == 'display_data': result.add(self._replace_display or CellDisplay( display_data(output.get('data', {}), **self._display_kwargs) )) elif output_type == 'error': result.add(CellDisplay(Error(output))) result = result.do_build(style) else: result = Text(source).do_build(style) self.result = result self.element = result.element self.width = result.width self.height = result.height def __repr__(self): return f'Cell({self.cell!r})' def ellipsis(): return CellDisplay(SVGGroup( '<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" width="16" data-icon="ui-components:ellipses"><g xmlns="http://www.w3.org/2000/svg" class="jp-icon3" fill="#616161"><circle cx="5" cy="12" r="2"></circle><circle cx="12" cy="12" r="2"></circle><circle cx="19" cy="12" r="2"></circle></g></svg>', default_height=24 )).translate(-6, 0) ``` #### File: nbsvg/components/drawing.py ```python from lxml.builder import E from lxml import etree from .base import StylizedElement from .text import Text class TextBox(StylizedElement): def __init__(self, text, width=None, height=None, fill="white", stroke="blue", align='start', padding=5, **kwargs): super().__init__(**kwargs) self.text = text self.width = width self.height = height self.fill = fill self.stroke = stroke self.padding = padding self.align = align def build(self, style): align = self.align text = Text(self.text, textanchor=align).do_build(style) self.width = self.width or text.width + 2*self.padding self.height = self.height or text.height + 2*self.padding if align == 'start': text = text.translate(self.padding, self.padding) elif align == 'middle': text = text.translate(self.width/2, self.padding) elif align == 'end': text = text.translate(self.width - self.padding, self.padding) text = text.do_build(style) self.element = E.g( E.rect({ 'x': '0', 'y': '0', 'width': f'{self.width - 1}', 'height': f'{self.height}', 'fill': self.fill, 'stroke': self.stroke }), text.element ) class SVGNode(StylizedElement): def __init__(self, text, width=1, height=1, **kwargs): super().__init__(**kwargs) self.text = text self.width = width self.height = height def build(self, style): self.element = etree.XML(self.text) ``` #### File: nbsvg/components/html.py ```python from .image import Image from .base import StylizedElement class HTML(StylizedElement): def __init__(self, html, **kwargs): super().__init__(**kwargs) self.html = html def build(self, style): import imgkit res = imgkit.from_string(self.html, False) image = Image(res).do_build(style) self.width = image.width self.height = image.height self.element = image.element def __repr__(self): return f'HTML({self.html!r})' ``` #### File: nbsvg/nbsvg/style.py ```python from copy import copy class Style: old = [] input_width = 35 width = 700 fontsize = 10 showtext = False code_padding = 7 group_margin = 10 fontfamily = 'monospace' fontwidth_proportion = 0.6 textanchor = 'start' table_bold_fontwidth_proportion = 0.67 table_fontwidth_proportion = 0.6 table_colpadding = 5 table_fontsize = 8 table_oversize_proportion = 1.3 table_fontfamily = '-apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol"' markdown_fontfamily = '-apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol"' p_fontsize = 9 p_oversize_proportion = 1.3 p_fontwidth_proportion = 0.6 h1_fontsize = 19 h1_oversize_proportion = 1.3 h1_fontwidth_proportion = 0.6 h2_fontsize = 16 h2_oversize_proportion = 1.3 h2_fontwidth_proportion = 0.6 h3_fontsize = 13 h3_oversize_proportion = 1.3 h3_fontwidth_proportion = 0.6 h4_fontsize = 11 h4_oversize_proportion = 1.3 h4_fontwidth_proportion = 0.6 h5_fontsize = 9 h5_oversize_proportion = 1.3 h5_fontwidth_proportion = 0.6 h6_fontsize = 8 h6_oversize_proportion = 1.3 h6_fontwidth_proportion = 0.6 def apply(self, kwargs, this=True): result = self if this else copy(self) result.old.append({}) for key, value in kwargs.items(): result.old[-1][key] = getattr(self, key, None) setattr(result, key, value) return result def undo(self): old = self.old.pop() for key, value in old.items(): setattr(self, key, value) def getsizeintable(self, text, bold): prop = self.table_fontwidth_proportion if bold: prop = self.table_bold_fontwidth_proportion return len(text) * prop * self.table_fontsize + self.table_colpadding def fontlen(self, width, name): return int( width // (getattr(self, f'{name}_fontsize') * getattr(self, f'{name}_fontwidth_proportion')) * getattr(self, f'{name}_oversize_proportion') ) class PilStyle(Style): fonttype = "SEGOEUI.TTF" bold_fonttype = "SEGOEUIB.TTF" def getsizeintable(self, text, bold): from PIL import ImageFont cfont = ImageFont.truetype(self.fonttype, self.table_fontsize) if bold: cfont = ImageFont.truetype(self.bold_fonttype, self.table_fontsize) return cfont.getsize(text)[0] + self.table_colpadding STYLE = Style() ```
{ "source": "JoaoFelipe/PyPosAST", "score": 3 }
#### File: PyPosAST/pyposast/parser.py ```python from __future__ import (absolute_import, division) import bisect import tokenize from collections import OrderedDict, defaultdict from .cross_version import StringIO from .constants import (KEYWORDS, COMBINED_KEYWORDS, SEMI_KEYWORDS, FUTURE_KEYWORDS, PAST_KEYWORKDS) class ElementDict(OrderedDict): def __init__(self, *args, **kwargs): super(ElementDict, self).__init__(*args, **kwargs) self._bkeys = None def set_keys(self): if not self._bkeys: self._bkeys = list(self.keys()) def find_next(self, position, inclusive=False): self.set_keys() if inclusive: position = (position[0], position[1] + 1) index = bisect.bisect_left(self._bkeys, position) key = self._bkeys[index] value = self[key] return key, value def find_previous(self, position, inclusive=False): self.set_keys() if inclusive: position = (position[0], position[1] + 1) index = bisect.bisect_left(self._bkeys, position) key = self._bkeys[index - 1] value = self[key] return key, value def r_find_next(self, position): key, value = self.find_next(position) return value, key def r_find_previous(self, position): key, value = self.find_previous(position) return value, key class StackElement(dict): def __init__(self, open_str, close_str): super(StackElement, self).__init__() self.open = open_str self.close = close_str self.stack = [] def check(self, t_string, t_srow_scol, t_erow_ecol): if t_string == self.open: self.stack.append(t_srow_scol) elif t_string == self.close: self[self.stack.pop()] = t_erow_ecol def apply_delta(original, dline, doffset): return (original[0] + dline, original[1] + doffset) class TokenCollector(object): def __init__(self): self.stacks = self.parenthesis, self.sbrackets, self.brackets = [ StackElement(*x) for x in (('(', ')'), ('[', ']'), ('{', '}')) ] self.strings, self.attributes, self.numbers = {}, {}, {} self.operators = defaultdict(dict) self.names = defaultdict(dict) self.tokens = [] def loop(self, code, dline=0, doffset=0): last = None dots = 0 # number of dots first_dot = None f = StringIO(code) for tok in tokenize.generate_tokens(f.readline): self.tokens.append(tok) t_type, t_string, t_srow_scol, t_erow_ecol, t_line = tok # ToDo: apply delta t_srow_scol = apply_delta(t_srow_scol, dline, doffset) t_erow_ecol = apply_delta(t_erow_ecol, dline, doffset) tok = [t_type, t_string, t_srow_scol, t_erow_ecol, t_line] tok.append(False) # Should wait the next step if t_type == tokenize.OP: for stack in self.stacks: stack.check(t_string, t_srow_scol, t_erow_ecol) if t_string == '.': if not dots: first_dot = tok dots += 1 if dots == 3: # Python 2 self.operators['...'][t_erow_ecol] = first_dot[2] dots = 0 first_dot = None self.operators[t_string][t_erow_ecol] = t_srow_scol elif t_type == tokenize.STRING: if t_string.startswith('f'): # Python 3.6 inner = t_string[2:-1] stack = [] for index, char in enumerate(inner): if char == "{": if not stack or stack[-1] != index - 1: stack.append(index) if char == "}" and stack: oindex = stack.pop() sub = inner[oindex + 1:index] self.brackets.check( "{", apply_delta(t_srow_scol, 0, oindex + 2), apply_delta(t_srow_scol, 0, oindex + 3), ) self.brackets.check( "}", apply_delta(t_srow_scol, 0, index + 2), apply_delta(t_srow_scol, 0, index + 3), ) self.loop(sub, t_srow_scol[0] - 1, oindex + 2) start = t_srow_scol if last and last[0] == tokenize.STRING: start = self.strings[last[3]] del self.strings[last[3]] self.strings[t_erow_ecol] = start elif t_type == tokenize.NUMBER: self.numbers[t_erow_ecol] = t_srow_scol elif t_type == tokenize.NAME and t_string == 'elif': self.operators['if'][t_erow_ecol] = t_srow_scol elif t_type == tokenize.NAME and t_string in PAST_KEYWORKDS.keys(): if t_type == tokenize.NAME and t_string in KEYWORDS: self.operators[t_string][t_erow_ecol] = t_srow_scol if last and last[1] == PAST_KEYWORKDS[t_string]: combined = "{} {}".format(last[1], t_string) self.operators[combined][t_erow_ecol] = last[2] elif t_string in FUTURE_KEYWORDS: tok[5] = True else: self.operators[t_string][t_erow_ecol] = t_srow_scol elif t_type == tokenize.NAME and t_string in FUTURE_KEYWORDS: tok[5] = True elif t_string in SEMI_KEYWORDS: self.operators[t_string][t_erow_ecol] = t_srow_scol elif t_type == tokenize.NAME and t_string in KEYWORDS: self.operators[t_string][t_erow_ecol] = t_srow_scol elif t_type == tokenize.NAME and dots == 1: self.attributes[t_erow_ecol] = first_dot[2] dots = 0 first_dot = None if t_string != '.': dots = 0 if last and last[1] in FUTURE_KEYWORDS and last[5]: self.operators[last[1]][last[3]] = last[2] if t_type == tokenize.NAME or t_string == 'None': self.names[t_string][t_erow_ecol] = t_srow_scol if t_type != tokenize.NL: last = tok def extract_tokens(code, return_tokens=False): # Should I implement a LL 1 parser? toc = TokenCollector() toc.loop(code) if return_tokens: return toc.tokens result = [ ElementDict(sorted(toc.parenthesis.items())), ElementDict(sorted(toc.sbrackets.items())), ElementDict(sorted(toc.brackets.items())), ElementDict(sorted(toc.strings.items())), ElementDict(sorted(toc.attributes.items())), ElementDict(sorted(toc.numbers.items())), ] operators = {k: ElementDict(sorted(v.items())) for k, v in toc.operators.items()} names = {k: ElementDict(sorted(v.items())) for k, v in toc.names.items()} return result, operators, names ``` #### File: PyPosAST/tests/test_extra.py ```python from __future__ import (absolute_import, division) import ast import textwrap from .utils import get_nodes, NodeTestCase, only_python2, only_python3 class TestExtra(NodeTestCase): def test_noworkflow_var(self): code = """ def x(a=1): return a for j in range(3): for i in range(j): print(i) i = i**2 i += 2 class A(): pass a = x(a=2) a = b = c = 1 a = range(5) A.a = c a[b] = b e = b, c = c, 1 a, (b, c) = b, e a += (lambda b: b)(a) b = a a = 2 c = { 'a': a, 'b': b } d = [a, b, c] d[1] += 1 print(a) print(b) print(c) a, b = 1, c """ code = textwrap.dedent(code) nodes = get_nodes(code, ast.FunctionDef) self.assertPosition(nodes[0], (2, 0), (3, 12), (2, 3)) nodes = get_nodes(code, ast.For) self.assertPosition(nodes[0], (4, 0), (8, 14), (4, 3)) self.assertPosition(nodes[1], (5, 4), (8, 14), (5, 7)) nodes = get_nodes(code, ast.ClassDef) self.assertPosition(nodes[0], (10, 0), (11, 8), (10, 5)) nodes = get_nodes(code, ast.Assign) self.assertPosition(nodes[0], (7, 8), (7, 16), (7, 16)) self.assertPosition(nodes[1], (13, 0), (13, 10), (13, 10)) self.assertPosition(nodes[2], (14, 0), (14, 13), (14, 13)) self.assertPosition(nodes[3], (15, 0), (15, 12), (15, 12)) self.assertPosition(nodes[4], (16, 0), (16, 7), (16, 7)) self.assertPosition(nodes[5], (17, 0), (17, 8), (17, 8)) self.assertPosition(nodes[6], (18, 0), (18, 15), (18, 15)) self.assertPosition(nodes[7], (19, 0), (19, 16), (19, 16)) self.assertPosition(nodes[8], (21, 0), (21, 5), (21, 5)) self.assertPosition(nodes[9], (22, 0), (22, 5), (22, 5)) self.assertPosition(nodes[10], (23, 0), (26, 1), (26, 1)) self.assertPosition(nodes[11], (27, 0), (27, 13), (27, 13)) self.assertPosition(nodes[12], (34, 0), (34, 11), (34, 11)) nodes = get_nodes(code, ast.List) self.assertPosition(nodes[0], (27, 4), (27, 13), (27, 13)) def test_update_parenthesis(self): code = ("patterns('',\n" " # url(r'^$', 'views.home', name='home')\n" "\n" " url(r'^index$', 'views.index', name='index'),\n" " url(r'^root$', 'views.root', name='root'),\n" " # url(r'^$', 'views.home', name='home'),\n" ")") nodes = get_nodes(code, ast.Call) self.assertPosition(nodes[0], (1, 0), (7, 1), (7, 1)) self.assertPosition(nodes[1], (4, 4), (4, 48), (4, 48)) self.assertPosition(nodes[2], (5, 4), (5, 45), (5, 45)) def test_assign_tuple(self): code = ("abc.mno = func()\n" "abc.pqr.ghi = ()\n" "abc.jkl = b''") nodes = get_nodes(code, ast.Assign) self.assertPosition(nodes[0], (1, 0), (1, 16), (1, 16)) self.assertPosition(nodes[1], (2, 0), (2, 16), (2, 16)) self.assertPosition(nodes[2], (3, 0), (3, 13), (3, 13)) def test_relative_import_and_assign_attribute(self): code = ("from ..a import b\n" "abc.ghi = [jkl.mno.pqr(name=name) for name in 'abc']") nodes = get_nodes(code, ast.Assign) self.assertPosition(nodes[0], (2, 0), (2, 52), (2, 52)) def test_update_parenthesis2(self): code = ("a = fn(\n" " b=1,\n" " c=[\n" " c.d(\n" " e='a',\n" " f='b',\n" " g=c,\n" " )\n" " ]\n" "\n" ")") nodes = get_nodes(code, ast.List) self.assertPosition(nodes[0], (3, 6), (9, 5), (9, 5)) def test_attribute(self): code = ("(abc.ghi(ijk=[abc.lmn, abc.opq]).\n" " rst('a').uvw('a') |\n" " abc.ghi(ijk=[abc.xyz]).\n" " rst('a').uvw('a'),\n" " ['b', 'c']," ")") nodes = get_nodes(code, ast.Attribute) self.assertPosition(nodes[0], (1, 1), (2, 16), (2, 13)) self.assertPosition(nodes[1], (1, 1), (2, 7), (1, 33)) self.assertPosition(nodes[2], (1, 1), (1, 8), (1, 5)) self.assertPosition(nodes[3], (1, 14), (1, 21), (1, 18)) self.assertPosition(nodes[4], (1, 23), (1, 30), (1, 27)) self.assertPosition(nodes[5], (3, 1), (4, 16), (4, 13)) self.assertPosition(nodes[6], (3, 1), (4, 7), (3, 24)) self.assertPosition(nodes[7], (3, 1), (3, 8), (3, 5)) self.assertPosition(nodes[8], (3, 14), (3, 21), (3, 18)) def test_name(self): code = (b"#bla\n" b"abc") nodes = get_nodes(code, ast.Name) self.assertPosition(nodes[0], (2, 0), (2, 3), (2, 3)) ``` #### File: PyPosAST/tests/test_misc.py ```python from __future__ import (absolute_import, division) import ast from .utils import get_nodes, NodeTestCase from .utils import only_python2, only_python3, only_python35, only_python36, only_python38 class TestMisc(NodeTestCase): # pylint: disable=missing-docstring, too-many-public-methods def test_index(self): code = ("#bla\n" "a[1]") nodes = get_nodes(code, ast.Index) self.assertPosition(nodes[0], (2, 2), (2, 3), (2, 3)) self.assertNoBeforeInnerAfter(nodes[0]) def test_slice(self): code = ("#bla\n" "a[1:2:3]") nodes = get_nodes(code, ast.Slice) self.assertPosition(nodes[0], (2, 2), (2, 7), (2, 4)) self.assertOperation(nodes[0].op_pos[0], (2, 3), (2, 4), (2, 4), ':') self.assertOperation(nodes[0].op_pos[1], (2, 5), (2, 6), (2, 6), ':') self.assertNoBeforeInnerAfter(nodes[0]) def test_slice2(self): code = ("#bla\n" "a[:\\\n" "2:3]") nodes = get_nodes(code, ast.Slice) self.assertPosition(nodes[0], (2, 2), (3, 3), (2, 3)) self.assertOperation(nodes[0].op_pos[0], (2, 2), (2, 3), (2, 3), ':') self.assertOperation(nodes[0].op_pos[1], (3, 1), (3, 2), (3, 2), ':') self.assertNoBeforeInnerAfter(nodes[0]) def test_slice3(self): code = ("#bla\n" "a[:\\\n" ":2]") nodes = get_nodes(code, ast.Slice) self.assertPosition(nodes[0], (2, 2), (3, 2), (2, 3)) self.assertOperation(nodes[0].op_pos[0], (2, 2), (2, 3), (2, 3), ':') self.assertOperation(nodes[0].op_pos[1], (3, 0), (3, 1), (3, 1), ':') self.assertNoBeforeInnerAfter(nodes[0]) def test_slice4(self): code = ("#bla\n" "a[:]") nodes = get_nodes(code, ast.Slice) self.assertPosition(nodes[0], (2, 2), (2, 3), (2, 3)) self.assertOperation(nodes[0].op_pos[0], (2, 2), (2, 3), (2, 3), ':') self.assertNoBeforeInnerAfter(nodes[0]) def test_slice5(self): code = ("#bla\n" "a[::]") nodes = get_nodes(code, ast.Slice) self.assertPosition(nodes[0], (2, 2), (2, 4), (2, 3)) self.assertOperation(nodes[0].op_pos[0], (2, 2), (2, 3), (2, 3), ':') self.assertOperation(nodes[0].op_pos[1], (2, 3), (2, 4), (2, 4), ':') self.assertNoBeforeInnerAfter(nodes[0]) def test_slice6(self): code = ("#bla\n" "a[11:2\\\n" ":]") nodes = get_nodes(code, ast.Slice) self.assertPosition(nodes[0], (2, 2), (3, 1), (2, 5)) self.assertOperation(nodes[0].op_pos[0], (2, 4), (2, 5), (2, 5), ':') self.assertOperation(nodes[0].op_pos[1], (3, 0), (3, 1), (3, 1), ':') self.assertNoBeforeInnerAfter(nodes[0]) def test_slice7(self): code = ("#bla\n" "a[::None]") nodes = get_nodes(code, ast.Slice) self.assertPosition(nodes[0], (2, 2), (2, 8), (2, 3)) self.assertOperation(nodes[0].op_pos[0], (2, 2), (2, 3), (2, 3), ':') self.assertOperation(nodes[0].op_pos[1], (2, 3), (2, 4), (2, 4), ':') self.assertNoBeforeInnerAfter(nodes[0]) def test_slice8(self): code = ("s = None\n" "a[::]") nodes = get_nodes(code, ast.Slice) self.assertPosition(nodes[0], (2, 2), (2, 4), (2, 3)) self.assertOperation(nodes[0].op_pos[0], (2, 2), (2, 3), (2, 3), ':') self.assertOperation(nodes[0].op_pos[1], (2, 3), (2, 4), (2, 4), ':') self.assertNoBeforeInnerAfter(nodes[0]) def test_ext_slice(self): code = ("#bla\n" "a[1:2,3]") nodes = get_nodes(code, ast.ExtSlice) self.assertPosition(nodes[0], (2, 2), (2, 7), (2, 6)) self.assertOperation(nodes[0].op_pos[0], (2, 5), (2, 6), (2, 6), ',') self.assertNoBeforeInnerAfter(nodes[0]) def test_ext_slice2(self): code = ("#bla\n" "a[1:2:,3]") nodes = get_nodes(code, ast.ExtSlice) self.assertPosition(nodes[0], (2, 2), (2, 8), (2, 7)) self.assertOperation(nodes[0].op_pos[0], (2, 6), (2, 7), (2, 7), ',') self.assertNoBeforeInnerAfter(nodes[0]) def test_ext_slice3(self): code = ("#bla\n" "a[3,1:2:]") nodes = get_nodes(code, ast.ExtSlice) self.assertPosition(nodes[0], (2, 2), (2, 8), (2, 4)) self.assertOperation(nodes[0].op_pos[0], (2, 3), (2, 4), (2, 4), ',') self.assertNoBeforeInnerAfter(nodes[0]) def test_eq(self): code = ("#bla\n" "2 == 4") nodes = get_nodes(code, ast.Compare) comp = nodes[0].op_pos[0] self.assertPosition(comp, (2, 2), (2, 4), (2, 4)) self.assertNoBeforeInnerAfter(comp) def test_not_eq(self): code = ("#bla\n" "2 != 4") nodes = get_nodes(code, ast.Compare) comp = nodes[0].op_pos[0] self.assertPosition(comp, (2, 2), (2, 4), (2, 4)) self.assertNoBeforeInnerAfter(comp) def test_not_eq2(self): """ Python 2 syntax """ code = ("#bla\n" "2 != 4\n" "5 != 4") nodes = get_nodes(code, ast.Compare) comp = nodes[0].op_pos[0] self.assertPosition(comp, (2, 2), (2, 4), (2, 4)) self.assertNoBeforeInnerAfter(comp) comp2 = nodes[1].op_pos[0] self.assertPosition(comp2, (3, 2), (3, 4), (3, 4)) self.assertNoBeforeInnerAfter(comp2) @only_python2 def test_not_eq3(self): """ Python 2 syntax """ code = ("#bla\n" "2 <> 4\n" "5 != 4") nodes = get_nodes(code, ast.Compare) comp = nodes[0].op_pos[0] self.assertPosition(comp, (2, 2), (2, 4), (2, 4)) self.assertNoBeforeInnerAfter(comp) comp2 = nodes[1].op_pos[0] self.assertPosition(comp2, (3, 2), (3, 4), (3, 4)) self.assertNoBeforeInnerAfter(comp2) def test_lt(self): code = ("#bla\n" "2 < 4") nodes = get_nodes(code, ast.Compare) comp = nodes[0].op_pos[0] self.assertPosition(comp, (2, 2), (2, 3), (2, 3)) self.assertNoBeforeInnerAfter(comp) def test_lte(self): code = ("#bla\n" "2 <= 4") nodes = get_nodes(code, ast.Compare) comp = nodes[0].op_pos[0] self.assertPosition(comp, (2, 2), (2, 4), (2, 4)) self.assertNoBeforeInnerAfter(comp) def test_gt(self): code = ("#bla\n" "2 > 4") nodes = get_nodes(code, ast.Compare) comp = nodes[0].op_pos[0] self.assertPosition(comp, (2, 2), (2, 3), (2, 3)) self.assertNoBeforeInnerAfter(comp) def test_gte(self): code = ("#bla\n" "2 >= 4") nodes = get_nodes(code, ast.Compare) comp = nodes[0].op_pos[0] self.assertPosition(comp, (2, 2), (2, 4), (2, 4)) self.assertNoBeforeInnerAfter(comp) def test_is(self): code = ("#bla\n" "2 is 4") nodes = get_nodes(code, ast.Compare) comp = nodes[0].op_pos[0] self.assertPosition(comp, (2, 2), (2, 4), (2, 4)) self.assertNoBeforeInnerAfter(comp) def test_is2(self): code = ("#bla\n" "(2)is(4)\n" "(3)is(5)") nodes = get_nodes(code, ast.Compare) comp = nodes[0].op_pos[0] self.assertPosition(comp, (2, 3), (2, 5), (2, 5)) self.assertNoBeforeInnerAfter(comp) comp2 = nodes[1].op_pos[0] self.assertPosition(comp2, (3, 3), (3, 5), (3, 5)) self.assertNoBeforeInnerAfter(comp2) def test_is_not(self): code = ("#bla\n" "2 is not 4") nodes = get_nodes(code, ast.Compare) comp = nodes[0].op_pos[0] self.assertPosition(comp, (2, 2), (2, 8), (2, 8)) self.assertNoBeforeInnerAfter(comp) def test_in(self): code = ("#bla\n" "2 in 4") nodes = get_nodes(code, ast.Compare) comp = nodes[0].op_pos[0] self.assertPosition(comp, (2, 2), (2, 4), (2, 4)) self.assertNoBeforeInnerAfter(comp) def test_not_in(self): code = ("#bla\n" "2 not in 4") nodes = get_nodes(code, ast.Compare) comp = nodes[0].op_pos[0] self.assertPosition(comp, (2, 2), (2, 8), (2, 8)) self.assertNoBeforeInnerAfter(comp) def test_comprehension(self): code = ("#bla\n" "[x\n" " for x in l\n" " if x]") nodes = get_nodes(code, ast.comprehension) self.assertPosition(nodes[0], (3, 1), (4, 5), (3, 4)) self.assertOperation(nodes[0].op_pos[0], (3, 1), (3, 4), (3, 4), 'for') self.assertOperation(nodes[0].op_pos[1], (3, 7), (3, 9), (3, 9), 'in') self.assertOperation(nodes[0].op_pos[2], (4, 1), (4, 3), (4, 3), 'if') self.assertNoBeforeInnerAfter(nodes[0]) def test_comprehension2(self): code = ("#bla\n" "[x\n" " for x in l\n" " if x - 2\n" " if x]") nodes = get_nodes(code, ast.comprehension) self.assertPosition(nodes[0], (3, 1), (5, 5), (3, 4)) self.assertOperation(nodes[0].op_pos[0], (3, 1), (3, 4), (3, 4), 'for') self.assertOperation(nodes[0].op_pos[1], (3, 7), (3, 9), (3, 9), 'in') self.assertOperation(nodes[0].op_pos[2], (4, 1), (4, 3), (4, 3), 'if') self.assertOperation(nodes[0].op_pos[3], (5, 1), (5, 3), (5, 3), 'if') self.assertNoBeforeInnerAfter(nodes[0]) @only_python36 def test_comprehension3(self): code = ("async def f():\n" " [x\n" " async for x in l\n" " if x]") nodes = get_nodes(code, ast.comprehension) self.assertPosition(nodes[0], (3, 5), (4, 9), (3, 14)) self.assertOperation(nodes[0].op_pos[0], (3, 5), (3, 14), (3, 14), 'async for') self.assertOperation(nodes[0].op_pos[1], (3, 17), (3, 19), (3, 19), 'in') self.assertOperation(nodes[0].op_pos[2], (4, 5), (4, 7), (4, 7), 'if') self.assertNoBeforeInnerAfter(nodes[0]) def test_comprehension4(self): code = ("#bla\n" "[(x)for(x)in(l)if(x)]\n" "[(y)for(y)in(m)if(y)]") nodes = get_nodes(code, ast.comprehension) self.assertPosition(nodes[0], (2, 4), (2, 20), (2, 7)) self.assertOperation(nodes[0].op_pos[0], (2, 4), (2, 7), (2, 7), 'for') self.assertOperation(nodes[0].op_pos[1], (2, 10), (2, 12), (2, 12), 'in') self.assertOperation(nodes[0].op_pos[2], (2, 15), (2, 17), (2, 17), 'if') self.assertNoBeforeInnerAfter(nodes[0]) self.assertPosition(nodes[1], (3, 4), (3, 20), (3, 7)) self.assertOperation(nodes[1].op_pos[0], (3, 4), (3, 7), (3, 7), 'for') self.assertOperation(nodes[1].op_pos[1], (3, 10), (3, 12), (3, 12), 'in') self.assertOperation(nodes[1].op_pos[2], (3, 15), (3, 17), (3, 17), 'if') self.assertNoBeforeInnerAfter(nodes[1]) @only_python3 def test_arg(self): code = ("#bla\n" "def f(x: 'a', y):\n" " pass") nodes = get_nodes(code, ast.arg) self.assertPosition(nodes[0], (2, 6), (2, 12), (2, 12)) self.assertOperation(nodes[0].op_pos[0], (2, 7), (2, 8), (2, 8), ':') self.assertNoBeforeInnerAfter(nodes[0]) self.assertPosition(nodes[1], (2, 14), (2, 15), (2, 15)) self.assertNoBeforeInnerAfter(nodes[1]) def test_arguments(self): code = ("#bla\n" "lambda x, y=2, *z, **w : x") nodes = get_nodes(code, ast.arguments) self.assertPosition(nodes[0], (2, 7), (2, 22), (2, 22)) self.assertOperation(nodes[0].op_pos[0], (2, 8), (2, 9), (2, 9), ',') self.assertOperation(nodes[0].op_pos[1], (2, 11), (2, 12), (2, 12), '=') self.assertOperation(nodes[0].op_pos[2], (2, 13), (2, 14), (2, 14), ',') self.assertOperation(nodes[0].op_pos[3], (2, 15), (2, 16), (2, 16), '*') self.assertOperation(nodes[0].op_pos[4], (2, 17), (2, 18), (2, 18), ',') self.assertOperation(nodes[0].op_pos[5], (2, 19), (2, 21), (2, 21), '**') self.assertPosition(nodes[0].vararg_node, (2, 16), (2, 17), (2, 17)) self.assertPosition(nodes[0].kwarg_node, (2, 21), (2, 22), (2, 22)) self.assertNoBeforeInnerAfter(nodes[0]) @only_python3 def test_arguments2(self): code = ("#bla\n" "lambda x, *, y=2: x") nodes = get_nodes(code, ast.arguments) self.assertPosition(nodes[0], (2, 7), (2, 16), (2, 16)) self.assertOperation(nodes[0].op_pos[0], (2, 8), (2, 9), (2, 9), ',') self.assertOperation(nodes[0].op_pos[1], (2, 10), (2, 11), (2, 11), '*') self.assertOperation(nodes[0].op_pos[2], (2, 11), (2, 12), (2, 12), ',') self.assertOperation(nodes[0].op_pos[3], (2, 14), (2, 15), (2, 15), '=') self.assertNoBeforeInnerAfter(nodes[0]) def test_arguments3(self): code = ("#bla\n" "lambda : 2") nodes = get_nodes(code, ast.arguments) self.assertPosition(nodes[0], (2, 8), (2, 8), (2, 8)) self.assertEqual(len(nodes[0].op_pos), 0) self.assertNoBeforeInnerAfter(nodes[0]) def test_arguments4(self): code = ("#bla\n" "def f( x, y=2, *z, **w ):\n" " x") nodes = get_nodes(code, ast.arguments) self.assertPosition(nodes[0], (2, 7), (2, 22), (2, 22)) self.assertOperation(nodes[0].op_pos[0], (2, 8), (2, 9), (2, 9), ',') self.assertOperation(nodes[0].op_pos[1], (2, 11), (2, 12), (2, 12), '=') self.assertOperation(nodes[0].op_pos[2], (2, 13), (2, 14), (2, 14), ',') self.assertOperation(nodes[0].op_pos[3], (2, 15), (2, 16), (2, 16), '*') self.assertOperation(nodes[0].op_pos[4], (2, 17), (2, 18), (2, 18), ',') self.assertOperation(nodes[0].op_pos[5], (2, 19), (2, 21), (2, 21), '**') self.assertNoBeforeInnerAfter(nodes[0]) @only_python3 def test_arguments5(self): code = ("#bla\n" "def f(x, *, y=2): x") nodes = get_nodes(code, ast.arguments) self.assertPosition(nodes[0], (2, 6), (2, 15), (2, 15)) self.assertOperation(nodes[0].op_pos[0], (2, 7), (2, 8), (2, 8), ',') self.assertOperation(nodes[0].op_pos[1], (2, 9), (2, 10), (2, 10), '*') self.assertOperation(nodes[0].op_pos[2], (2, 10), (2, 11), (2, 11), ',') self.assertOperation(nodes[0].op_pos[3], (2, 13), (2, 14), (2, 14), '=') self.assertNoBeforeInnerAfter(nodes[0]) def test_arguments6(self): code = ("#bla\n" "def f( ):\n" " 2") nodes = get_nodes(code, ast.arguments) self.assertPosition(nodes[0], (2, 8), (2, 8), (2, 8)) self.assertEqual(len(nodes[0].op_pos), 0) self.assertNoBeforeInnerAfter(nodes[0]) def test_arguments7(self): code = ("#bla\n" "def f():\n" " 2") nodes = get_nodes(code, ast.arguments) self.assertPosition(nodes[0], (2, 6), (2, 6), (2, 6)) self.assertEqual(len(nodes[0].op_pos), 0) self.assertNoBeforeInnerAfter(nodes[0]) @only_python3 def test_arguments8(self): code = ("#bla\n" "def f(x, *, y, z=2): x") nodes = get_nodes(code, ast.arguments) self.assertPosition(nodes[0], (2, 6), (2, 18), (2, 18)) self.assertOperation(nodes[0].op_pos[0], (2, 7), (2, 8), (2, 8), ',') self.assertOperation(nodes[0].op_pos[1], (2, 9), (2, 10), (2, 10), '*') self.assertOperation(nodes[0].op_pos[2], (2, 10), (2, 11), (2, 11), ',') self.assertOperation(nodes[0].op_pos[3], (2, 13), (2, 14), (2, 14), ',') self.assertOperation(nodes[0].op_pos[4], (2, 16), (2, 17), (2, 17), '=') self.assertNoBeforeInnerAfter(nodes[0]) @only_python38 def test_positional_only(self): code = ("#bla\n" "def f(p1, p2, /, p_or_kw, *, kw):\n" " pass") nodes = get_nodes(code, ast.arguments) self.assertPosition(nodes[0], (2, 6), (2, 31), (2, 31)) self.assertOperation(nodes[0].op_pos[0], (2, 8), (2, 9), (2, 9), ',') self.assertOperation(nodes[0].op_pos[1], (2, 12), (2, 13), (2, 13), ',') self.assertOperation(nodes[0].op_pos[2], (2, 14), (2, 15), (2, 15), '/') self.assertOperation(nodes[0].op_pos[3], (2, 15), (2, 16), (2, 16), ',') self.assertOperation(nodes[0].op_pos[4], (2, 24), (2, 25), (2, 25), ',') self.assertOperation(nodes[0].op_pos[5], (2, 26), (2, 27), (2, 27), '*') self.assertOperation(nodes[0].op_pos[6], (2, 27), (2, 28), (2, 28), ',') self.assertNoBeforeInnerAfter(nodes[0]) @only_python38 def test_positional_only2(self): code = ("#bla\n" "def f(p1, p2=None, /, p_or_kw=None, *, kw):\n" " pass") nodes = get_nodes(code, ast.arguments) self.assertPosition(nodes[0], (2, 6), (2, 41), (2, 41)) self.assertOperation(nodes[0].op_pos[0], (2, 8), (2, 9), (2, 9), ',') self.assertOperation(nodes[0].op_pos[1], (2, 12), (2, 13), (2, 13), '=') self.assertOperation(nodes[0].op_pos[2], (2, 17), (2, 18), (2, 18), ',') self.assertOperation(nodes[0].op_pos[3], (2, 19), (2, 20), (2, 20), '/') self.assertOperation(nodes[0].op_pos[4], (2, 20), (2, 21), (2, 21), ',') self.assertOperation(nodes[0].op_pos[5], (2, 29), (2, 30), (2, 30), '=') self.assertOperation(nodes[0].op_pos[6], (2, 34), (2, 35), (2, 35), ',') self.assertOperation(nodes[0].op_pos[7], (2, 36), (2, 37), (2, 37), '*') self.assertOperation(nodes[0].op_pos[8], (2, 37), (2, 38), (2, 38), ',') self.assertNoBeforeInnerAfter(nodes[0]) @only_python38 def test_positional_only3(self): code = ("#bla\n" "def f(p1, p2=None, /, *, kw):\n" " pass") nodes = get_nodes(code, ast.arguments) self.assertPosition(nodes[0], (2, 6), (2, 27), (2, 27)) self.assertOperation(nodes[0].op_pos[0], (2, 8), (2, 9), (2, 9), ',') self.assertOperation(nodes[0].op_pos[1], (2, 12), (2, 13), (2, 13), '=') self.assertOperation(nodes[0].op_pos[2], (2, 17), (2, 18), (2, 18), ',') self.assertOperation(nodes[0].op_pos[3], (2, 19), (2, 20), (2, 20), '/') self.assertOperation(nodes[0].op_pos[4], (2, 20), (2, 21), (2, 21), ',') self.assertOperation(nodes[0].op_pos[5], (2, 22), (2, 23), (2, 23), '*') self.assertOperation(nodes[0].op_pos[6], (2, 23), (2, 24), (2, 24), ',') self.assertNoBeforeInnerAfter(nodes[0]) @only_python38 def test_positional_only4(self): code = ("#bla\n" "def f(p1, p2=None, /):\n" " pass") nodes = get_nodes(code, ast.arguments) self.assertPosition(nodes[0], (2, 6), (2, 20), (2, 20)) self.assertOperation(nodes[0].op_pos[0], (2, 8), (2, 9), (2, 9), ',') self.assertOperation(nodes[0].op_pos[1], (2, 12), (2, 13), (2, 13), '=') self.assertOperation(nodes[0].op_pos[2], (2, 17), (2, 18), (2, 18), ',') self.assertOperation(nodes[0].op_pos[3], (2, 19), (2, 20), (2, 20), '/') self.assertNoBeforeInnerAfter(nodes[0]) @only_python38 def test_positional_only5(self): code = ("#bla\n" "def f(p1, p2, /, p_or_kw):\n" " pass") nodes = get_nodes(code, ast.arguments) self.assertPosition(nodes[0], (2, 6), (2, 24), (2, 24)) self.assertOperation(nodes[0].op_pos[0], (2, 8), (2, 9), (2, 9), ',') self.assertOperation(nodes[0].op_pos[1], (2, 12), (2, 13), (2, 13), ',') self.assertOperation(nodes[0].op_pos[2], (2, 14), (2, 15), (2, 15), '/') self.assertOperation(nodes[0].op_pos[3], (2, 15), (2, 16), (2, 16), ',') self.assertNoBeforeInnerAfter(nodes[0]) @only_python38 def test_positional_only6(self): code = ("#bla\n" "def f(p1, p2, /):\n" " pass") nodes = get_nodes(code, ast.arguments) self.assertPosition(nodes[0], (2, 6), (2, 15), (2, 15)) self.assertOperation(nodes[0].op_pos[0], (2, 8), (2, 9), (2, 9), ',') self.assertOperation(nodes[0].op_pos[1], (2, 12), (2, 13), (2, 13), ',') self.assertOperation(nodes[0].op_pos[2], (2, 14), (2, 15), (2, 15), '/') self.assertNoBeforeInnerAfter(nodes[0]) def test_invert(self): code = ("#bla\n" "~a") nodes = get_nodes(code, ast.UnaryOp) op = nodes[0].op_pos[0] self.assertPosition(op, (2, 0), (2, 1), (2, 1)) self.assertNoBeforeInnerAfter(op) def test_not(self): code = ("#bla\n" "not a") nodes = get_nodes(code, ast.UnaryOp) op = nodes[0].op_pos[0] self.assertPosition(op, (2, 0), (2, 3), (2, 3)) self.assertNoBeforeInnerAfter(op) def test_usub(self): code = ("#bla\n" "-a") nodes = get_nodes(code, ast.UnaryOp) op = nodes[0].op_pos[0] self.assertPosition(op, (2, 0), (2, 1), (2, 1)) self.assertNoBeforeInnerAfter(op) def test_uadd(self): code = ("#bla\n" "+a") nodes = get_nodes(code, ast.UnaryOp) op = nodes[0].op_pos[0] self.assertPosition(op, (2, 0), (2, 1), (2, 1)) self.assertNoBeforeInnerAfter(op) def test_add(self): code = ("#bla\n" "a + a") nodes = get_nodes(code, ast.BinOp) op = nodes[0].op_pos[0] self.assertPosition(op, (2, 2), (2, 3), (2, 3)) self.assertNoBeforeInnerAfter(op) def test_sub(self): code = ("#bla\n" "a - a") nodes = get_nodes(code, ast.BinOp) op = nodes[0].op_pos[0] self.assertPosition(op, (2, 2), (2, 3), (2, 3)) self.assertNoBeforeInnerAfter(op) def test_mult(self): code = ("#bla\n" "a * a") nodes = get_nodes(code, ast.BinOp) op = nodes[0].op_pos[0] self.assertPosition(op, (2, 2), (2, 3), (2, 3)) self.assertNoBeforeInnerAfter(op) @only_python35 def test_matmult(self): code = ("#bla\n" "a @ a") nodes = get_nodes(code, ast.BinOp) op = nodes[0].op_pos[0] self.assertPosition(op, (2, 2), (2, 3), (2, 3)) self.assertNoBeforeInnerAfter(op) def test_div(self): code = ("#bla\n" "a / a") nodes = get_nodes(code, ast.BinOp) op = nodes[0].op_pos[0] self.assertPosition(op, (2, 2), (2, 3), (2, 3)) self.assertNoBeforeInnerAfter(op) def test_mod(self): code = ("#bla\n" "a % a") nodes = get_nodes(code, ast.BinOp) op = nodes[0].op_pos[0] self.assertPosition(op, (2, 2), (2, 3), (2, 3)) self.assertNoBeforeInnerAfter(op) def test_pow(self): code = ("#bla\n" "a ** a") nodes = get_nodes(code, ast.BinOp) op = nodes[0].op_pos[0] self.assertPosition(op, (2, 2), (2, 4), (2, 4)) self.assertNoBeforeInnerAfter(op) def test_lshift(self): code = ("#bla\n" "a << a") nodes = get_nodes(code, ast.BinOp) op = nodes[0].op_pos[0] self.assertPosition(op, (2, 2), (2, 4), (2, 4)) self.assertNoBeforeInnerAfter(op) def test_rshift(self): code = ("#bla\n" "a >> a") nodes = get_nodes(code, ast.BinOp) op = nodes[0].op_pos[0] self.assertPosition(op, (2, 2), (2, 4), (2, 4)) self.assertNoBeforeInnerAfter(op) def test_bitor(self): code = ("#bla\n" "a | a") nodes = get_nodes(code, ast.BinOp) op = nodes[0].op_pos[0] self.assertPosition(op, (2, 2), (2, 3), (2, 3)) self.assertNoBeforeInnerAfter(op) def test_bitand(self): code = ("#bla\n" "a & a") nodes = get_nodes(code, ast.BinOp) op = nodes[0].op_pos[0] self.assertPosition(op, (2, 2), (2, 3), (2, 3)) self.assertNoBeforeInnerAfter(op) def test_floordiv(self): code = ("#bla\n" "a // a") nodes = get_nodes(code, ast.BinOp) op = nodes[0].op_pos[0] self.assertPosition(op, (2, 2), (2, 4), (2, 4)) self.assertNoBeforeInnerAfter(op) def test_and(self): code = ("#bla\n" "a and b") nodes = get_nodes(code, ast.BoolOp) op = nodes[0].op_pos[0] self.assertPosition(op, (2, 2), (2, 5), (2, 5)) self.assertNoBeforeInnerAfter(op) def test_or(self): code = ("#bla\n" "a or b") nodes = get_nodes(code, ast.BoolOp) op = nodes[0].op_pos[0] self.assertPosition(op, (2, 2), (2, 4), (2, 4)) self.assertNoBeforeInnerAfter(op) def test_alias(self): code = ("#bla\n" "import a,\\\n" "b as c") nodes = get_nodes(code, ast.alias) self.assertPosition(nodes[0], (2, 7), (2, 8), (2, 8)) self.assertEqual(len(nodes[0].op_pos), 0) self.assertNoBeforeInnerAfter(nodes[0]) self.assertPosition(nodes[1], (3, 0), (3, 6), (3, 6)) self.assertOperation(nodes[1].op_pos[0], (3, 2), (3, 4), (3, 4), 'as') self.assertNoBeforeInnerAfter(nodes[1]) def test_excepthandler(self): code = ("#bla\n" "try:\n" " a\n" "except Exception1:\n" " b\n" "except Exception2:\n" " c") nodes = get_nodes(code, ast.excepthandler) self.assertPosition(nodes[0], (4, 0), (5, 5), (4, 6)) self.assertOperation(nodes[0].op_pos[0], (4, 0), (4, 6), (4, 6), 'except') self.assertOperation(nodes[0].op_pos[1], (4, 17), (4, 18), (4, 18), ':') self.assertNoBeforeInnerAfter(nodes[0]) self.assertPosition(nodes[1], (6, 0), (7, 5), (6, 6)) self.assertOperation(nodes[1].op_pos[0], (6, 0), (6, 6), (6, 6), 'except') self.assertOperation(nodes[1].op_pos[1], (6, 17), (6, 18), (6, 18), ':') self.assertNoBeforeInnerAfter(nodes[1]) @only_python2 def test_excepthandler2(self): code = ("#bla\n" "try:\n" " a\n" "except Exception1, target:\n" " b") nodes = get_nodes(code, ast.excepthandler) self.assertPosition(nodes[0], (4, 0), (5, 5), (4, 6)) self.assertOperation(nodes[0].op_pos[0], (4, 0), (4, 6), (4, 6), 'except') self.assertOperation(nodes[0].op_pos[1], (4, 17), (4, 18), (4, 18), ',') self.assertOperation(nodes[0].op_pos[2], (4, 25), (4, 26), (4, 26), ':') self.assertNoBeforeInnerAfter(nodes[0]) @only_python2 def test_excepthandler3(self): code = ("#bla\n" "try:\n" " a\n" "except (Exception1, Exception2), target:\n" " b") nodes = get_nodes(code, ast.excepthandler) self.assertPosition(nodes[0], (4, 0), (5, 5), (4, 6)) self.assertOperation(nodes[0].op_pos[0], (4, 0), (4, 6), (4, 6), 'except') self.assertOperation(nodes[0].op_pos[1], (4, 31), (4, 32), (4, 32), ',') self.assertOperation(nodes[0].op_pos[2], (4, 39), (4, 40), (4, 40), ':') self.assertNoBeforeInnerAfter(nodes[0]) def test_excepthandler4(self): code = ("#bla\n" "try:\n" " a\n" "except Exception1 as target:\n" " b") nodes = get_nodes(code, ast.excepthandler) self.assertPosition(nodes[0], (4, 0), (5, 5), (4, 6)) self.assertOperation(nodes[0].op_pos[0], (4, 0), (4, 6), (4, 6), 'except') self.assertOperation(nodes[0].op_pos[1], (4, 18), (4, 20), (4, 20), 'as') self.assertOperation(nodes[0].op_pos[2], (4, 27), (4, 28), (4, 28), ':') self.assertNoBeforeInnerAfter(nodes[0]) def test_excepthandler5(self): code = ("#bla\n" "try:\n" " a\n" "except (Exception1, Exception2) as target:\n" " b") nodes = get_nodes(code, ast.excepthandler) self.assertPosition(nodes[0], (4, 0), (5, 5), (4, 6)) self.assertOperation(nodes[0].op_pos[0], (4, 0), (4, 6), (4, 6), 'except') self.assertOperation(nodes[0].op_pos[1], (4, 32), (4, 34), (4, 34), 'as') self.assertOperation(nodes[0].op_pos[2], (4, 41), (4, 42), (4, 42), ':') self.assertNoBeforeInnerAfter(nodes[0]) def test_excepthandler6(self): code = ("#bla\n" "try:\n" " a\n" "except(Exception1):\n" " b\n" "except(Exception2):\n" " c") nodes = get_nodes(code, ast.excepthandler) self.assertPosition(nodes[0], (4, 0), (5, 5), (4, 6)) self.assertOperation(nodes[0].op_pos[0], (4, 0), (4, 6), (4, 6), 'except') self.assertOperation(nodes[0].op_pos[1], (4, 18), (4, 19), (4, 19), ':') self.assertNoBeforeInnerAfter(nodes[0]) self.assertPosition(nodes[1], (6, 0), (7, 5), (6, 6)) self.assertOperation(nodes[1].op_pos[0], (6, 0), (6, 6), (6, 6), 'except') self.assertOperation(nodes[1].op_pos[1], (6, 18), (6, 19), (6, 19), ':') self.assertNoBeforeInnerAfter(nodes[1]) @only_python3 def test_withitem(self): code = ("#bla\n" "with x as a, y:\n" " a") nodes = get_nodes(code, ast.withitem) self.assertPosition(nodes[0], (2, 5), (2, 11), (2, 6)) self.assertOperation(nodes[0].op_pos[0], (2, 7), (2, 9), (2, 9), 'as') self.assertNoBeforeInnerAfter(nodes[0]) self.assertPosition(nodes[1], (2, 13), (2, 14), (2, 14)) self.assertEqual(len(nodes[1].op_pos), 0) self.assertNoBeforeInnerAfter(nodes[1]) @only_python3 def test_keyword(self): code = ("#bla\n" "@dec1\n" "class a(metaclass=object):\n" " pass") nodes = get_nodes(code, ast.keyword) self.assertPosition(nodes[0], (3, 8), (3, 24), (3, 18)) self.assertOperation(nodes[0].op_pos[0], (3, 17), (3, 18), (3, 18), '=') self.assertNoBeforeInnerAfter(nodes[0]) def test_keyword2(self): code = ("#bla\n" "f(a=2)") nodes = get_nodes(code, ast.keyword) self.assertPosition(nodes[0], (2, 2), (2, 5), (2, 4)) self.assertOperation(nodes[0].op_pos[0], (2, 3), (2, 4), (2, 4), '=') self.assertNoBeforeInnerAfter(nodes[0]) @only_python35 def test_keyword3(self): code = ("#bla\n" "f(x, a=2, **b, ** c)") nodes = get_nodes(code, ast.keyword) self.assertPosition(nodes[0], (2, 5), (2, 8), (2, 7)) self.assertOperation(nodes[0].op_pos[0], (2, 6), (2, 7), (2, 7), '=') self.assertNoBeforeInnerAfter(nodes[0]) self.assertPosition(nodes[1], (2, 10), (2, 13), (2, 12)) self.assertOperation(nodes[1].op_pos[0], (2, 10), (2, 12), (2, 12), '**') self.assertNoBeforeInnerAfter(nodes[1]) self.assertPosition(nodes[2], (2, 15), (2, 19), (2, 17)) self.assertOperation(nodes[2].op_pos[0], (2, 15), (2, 17), (2, 17), '**') self.assertNoBeforeInnerAfter(nodes[2]) ``` #### File: PyPosAST/tests/utils.py ```python from __future__ import (absolute_import, division) import unittest from pyposast.cross_version import only_python2, only_python3 from pyposast.cross_version import only_python35, only_python36 from pyposast.cross_version import only_python38 from pyposast import get_nodes class NodeTestCase(unittest.TestCase): """Base test case""" # pylint: disable=invalid-name def assertPosition(self, node, first, last, uid, messages=None): """Check node positions""" # pylint: disable=no-self-use node_first = (node.first_line, node.first_col) node_last = (node.last_line, node.last_col) messages = messages or [] if not node_first == first: messages.append( 'first does not match: {} != {}'.format(node_first, first)) if not node_last == last: messages.append( 'last does not match: {} != {}'.format(node_last, last)) if not node.uid == uid: messages.append( 'uid does not match: {} != {}'.format(node.uid, uid)) if messages: raise AssertionError('\n'.join(messages)) def assertOperation(self, node, first, last, uid, kind): messages = [] if not node.kind == kind: messages.append( 'kind does not match: {} != {}'.format(node.kind, kind) ) self.assertPosition(node, first, last, uid, messages=messages) def assertNoBeforeInnerAfter(self, node): """Check if node does not have pos_before, pos_inner, pos_after""" self.assertFalse(hasattr(node, 'pos_before')) self.assertFalse(hasattr(node, 'pos_inner')) self.assertFalse(hasattr(node, 'pos_after')) def assertSimpleInnerPosition(self, node, first, last): """Check pos_before, pos_inner, pos_after""" node_first = (node.first_line, node.first_col) node_last = (node.last_line, node.last_col) self.assertPosition(node.pos_before, node_first, first, first) self.assertPosition(node.pos_inner, first, last, last) self.assertPosition(node.pos_after, last, node_last, node_last) ```
{ "source": "joaoferreira7991/QS-Selenium", "score": 3 }
#### File: QS-Selenium/app/main.py ```python import unittest import page import time from selenium import webdriver from selenium.webdriver.chrome.options import Options chrome_options = Options() chrome_options.add_argument("--headless") class Test01_Register(unittest.TestCase): # This URL is the result of a successful sign up, # we can use it to verify if the test passed or not. _expected_url = 'https://smart-home-assistant.herokuapp.com/sign_in' # Setup functions called when initialized def setUp(self): self.driver = webdriver.Chrome('./driver/chromedriver.exe') self.driver.get('https://smart-home-assistant.herokuapp.com/sign_up') ''' Verify if a user cannot sign up when the email field is empty. ''' def test011_verify_email_field(self): # get register page regPage = page.RegisterPage(self.driver) assert regPage.is_title_matches() # Insert username. regPage.username_text_element = 'Tufao' # Insert email. regPage.email_text_element = '' # Insert password regPage.password_text_element = '<PASSWORD>' # Insert confirm password regPage.confirm_password_text_element = '<PASSWORD>' # Click button. regPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare the current url with the expected one. self.assertNotEqual(self.driver.current_url, self._expected_url) ''' Verify if a user cannot sign up when the username field is empty. ''' def test012_verify_username_field(self): # Get the sign up page. regPage = page.RegisterPage(self.driver) assert regPage.is_title_matches() # Insert username. regPage.username_text_element = '' #insert email regPage.email_text_element = '<EMAIL>' # Insert password. regPage.password_text_element = '<PASSWORD>' # Insert confirm password regPage.confirm_password_text_element = '123' # Click button. regPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare the current url with the expected one. self.assertNotEqual(self.driver.current_url, self._expected_url) ''' Verify if a user cannot sign up when the password field is empty. ''' def test013_verify_password_field(self): # Get the sign up page. regPage = page.RegisterPage(self.driver) assert regPage.is_title_matches() # Insert username. regPage.username_text_element = 'Tufao' # Insert email. regPage.email_text_element = '<EMAIL>' # Insert password confirmation. regPage.password_text_element = '' # Insert confirm password regPage.confirm_password_text_element = '<PASSWORD>' # Click button. regPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare the current url with the expected one. self.assertNotEqual(self.driver.current_url, self._expected_url) ''' Verify if a user cannot sign up when the password confirm field is empty. ''' def test014_verify_password_confirm_field(self): # Get the sign up page. regPage = page.RegisterPage(self.driver) assert regPage.is_title_matches() # Insert username. regPage.username_text_element = 'Tufao' # Insert email. regPage.email_text_element = '<EMAIL>' # Insert password. regPage.password_text_element = '<PASSWORD>' # Insert confirm password regPage.confirm_password_text_element = '' # Click button. regPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare the current url with the expected one. self.assertNotEqual(self.driver.current_url, self._expected_url) ''' Verify if a user cannot login when all fields are empty. ''' def test015_empty_fields(self): # Get the sign up page. regPage = page.RegisterPage(self.driver) assert regPage.is_title_matches() # Click button. regPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare the current url with the expected one. self.assertNotEqual(self.driver.current_url, self._expected_url) ''' Verify if a user will be able to sign up with a valid username, a valid email and a valid password with a invalid password confirmation. ''' def test016_invalid_password(self): # Get the sign up page. regPage = page.RegisterPage(self.driver) assert regPage.is_title_matches() # Insert username. regPage.username_text_element = 'Tufao' # Insert email. regPage.email_text_element = '<EMAIL>' # Insert password. regPage.password_text_element = '<PASSWORD>' # Insert different password confirmation. regPage.confirm_password_text_element = '<PASSWORD>' # Click button. regPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare the current url with the expected one. self.assertNotEqual(self.driver.current_url, self._expected_url) ''' Verify if a user will be able to sign up with a valid username, a valid email and a valid password/password confirmation. ''' def test017_valid_sign_up(self): # Get the sign up page. regPage = page.RegisterPage(self.driver) assert regPage.is_title_matches() # Insert username. regPage.username_text_element = 'Tufao' # Insert email. regPage.email_text_element = '<EMAIL>' # Insert password. regPage.password_text_element = '<PASSWORD>' # Insert password confirmation. regPage.confirm_password_text_element = '<PASSWORD>' # Click button. regPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare the current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) # End of test def tearDown(self): self.driver.close() class Test02_Login(unittest.TestCase): # This URL is only acessible as a result of a sucessful login, # we can use it to verify if the test passed or not. _expected_url = 'https://smart-home-assistant.herokuapp.com/index' # Setup functions called when initialized def setUp(self): self.driver = webdriver.Chrome('./driver/chromedriver.exe') self.driver.get('https://smart-home-assistant.herokuapp.com/sign_in') def test020_verify_username_field(self): # Get the login page elements. loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare the current url with the expected one. self.assertNotEqual(self.driver.current_url, self._expected_url) def test021_verify_password_field(self): # Enter the login page. loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username. loginPage.username_text_element = 'Tufao' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare the current url with the expected one. self.assertNotEqual(self.driver.current_url, self._expected_url) def test022_empty_fields(self): # Enter the login page. loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare the current url with the expected one. self.assertNotEqual(self.driver.current_url, self._expected_url) def test023_invalid_password(self): # Enter the login page. loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertNotEqual(self.driver.current_url, self._expected_url) def test024_valid_sign_in(self): # Enter the login page. loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) # End of test def tearDown(self): self.driver.close() class Test03_Dashboard(unittest.TestCase): # This URL is only acessible as a result of a sucessful login, # we can use it to verify if the test passed or not. _expected_url = 'https://smart-home-assistant.herokuapp.com/index' # Setup functions called when initialized def setUp(self): self.driver = webdriver.Chrome('./driver/chromedriver.exe') self.driver.get('https://smart-home-assistant.herokuapp.com/sign_in') # Actuator form related tests. ''' Test if the user cannot submit the actuator form with all fields empty ''' def test0300_actuator_form_all_fields_empty(self): # Get sign in page loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) dbPage = page.DashboardPage(self.driver) assert dbPage.is_title_matches() # Click the add actuator button dbPage.actuator_click_add_button() # Insert empty name dbPage.actuator_name_text_element = '' # Insert empty IPv4 address dbPage.actuator_ip_text_element = '' # Click button dbPage.actuator_click_submit_button() # Wait 1 second time.sleep(1) # Verify if both fields had been filled with 'Required Field.' self.assertEqual('Required Field.', dbPage.actuator_name_text_element) self.assertEqual('Required Field.', dbPage.actuator_ip_text_element) ''' Test if the user cannot submit the actuator form with an empty device name. ''' def test0301_actuator_form_name_field_empty(self): # Get sign in page loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) # Get dashboard page dbPage = page.DashboardPage(self.driver) assert dbPage.is_title_matches() # Click the add actuator button dbPage.actuator_click_add_button() # Insert empty name dbPage.actuator_name_text_element = '' # Insert empty IPv4 address dbPage.actuator_ip_text_element = '192.168.1.65' # Click button dbPage.actuator_click_submit_button() # Wait 1 second time.sleep(1) # Verify if name field has been filled with 'Required Field.' self.assertEqual('Required Field.', dbPage.actuator_name_text_element) ''' Test if the user cannot submit the actuator forum with an empty ip field. ''' def test0302_actuator_form_ip_field_empty(self): # Get sign in page loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) # Get dashboard page dbPage = page.DashboardPage(self.driver) assert dbPage.is_title_matches() # Click the add actuator button dbPage.actuator_click_add_button() # Insert empty name dbPage.actuator_name_text_element = 'smart switch' # Insert empty IPv4 address dbPage.actuator_ip_text_element = '' # Click button dbPage.actuator_click_submit_button() # Wait 1 second time.sleep(1) # Verify if ip field has been filled with 'Required Field.' self.assertEqual('Required Field.', dbPage.actuator_ip_text_element) ''' Test if the user can submit an appropriate actuator form ''' def test0303_actuator_form_success(self): # Get sign in page loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) # Get dashboard page dbPage = page.DashboardPage(self.driver) assert dbPage.is_title_matches() # Click the add actuator button dbPage.actuator_click_add_button() # Insert name dbPage.actuator_name_text_element = 'smart switch' # Insert empty IPv4 address dbPage.actuator_ip_text_element = '192.168.1.65' # Click button dbPage.actuator_click_submit_button() # Wait 1 second time.sleep(1) # Check if a new actuator frame was created. assert dbPage.actuator_frame_exists() # Controller form related tests. def test0304_controller_form_all_fields_empty(self): # Get sign in page loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) # Get dashboard page dbPage = page.DashboardPage(self.driver) assert dbPage.is_title_matches() # Click the add controller button dbPage.controller_click_add_button() # Insert empty name dbPage.controller_name_text_element = '' # Insert empty red dbPage.controller_red_text_element = '' # Insert empty green dbPage.controller_green_text_element = '' # Insert empty blue dbPage.controller_blue_text_element = '' # Click button dbPage.controller_click_submit_button() # Wait 1 second time.sleep(1) # Verify if all fields had been filled with 'Required Field.' self.assertEqual('Required Field.', dbPage.controller_name_text_element) self.assertEqual('Required Field.', dbPage.controller_red_text_element) self.assertEqual('Required Field.', dbPage.controller_green_text_element) self.assertEqual('Required Field.', dbPage.controller_blue_text_element) def test0305_controller_form_name_field_empty(self): # Get sign in page loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) # Get dashboard page dbPage = page.DashboardPage(self.driver) assert dbPage.is_title_matches() # Click the add controller button dbPage.controller_click_add_button() # Insert empty name dbPage.controller_name_text_element = '' # Insert empty red dbPage.controller_red_text_element = '17' # Insert empty green dbPage.controller_green_text_element = '27' # Insert empty blue dbPage.controller_blue_text_element = '22' # Click button dbPage.controller_click_submit_button() # Wait 1 second time.sleep(1) # Verify if name field has been filled with 'Required Field.' self.assertEqual('Required Field.', dbPage.controller_name_text_element) def test0306_controller_form_red_field_empty(self): # Get sign in page loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) # Get dashboard page dbPage = page.DashboardPage(self.driver) assert dbPage.is_title_matches() # Click the add controller button dbPage.controller_click_add_button() # Insert empty name dbPage.controller_name_text_element = 'led strip' # Insert empty red dbPage.controller_red_text_element = '' # Insert empty green dbPage.controller_green_text_element = '27' # Insert empty blue dbPage.controller_blue_text_element = '22' # Click button dbPage.controller_click_submit_button() # Wait 1 second time.sleep(1) # Verify if red field has been filled with 'Required Field.' self.assertEqual('Required Field.', dbPage.controller_red_text_element) def test0307_controller_form_green_field_empty(self): # Get sign in page loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) # Get dashboard page dbPage = page.DashboardPage(self.driver) assert dbPage.is_title_matches() # Click the add controller button dbPage.controller_click_add_button() # Insert empty name dbPage.controller_name_text_element = 'led strip' # Insert empty red dbPage.controller_red_text_element = '17' # Insert empty green dbPage.controller_green_text_element = '' # Insert empty blue dbPage.controller_blue_text_element = '22' # Click button dbPage.controller_click_submit_button() # Wait 1 second time.sleep(1) # Verify if green field has been filled with 'Required Field.' self.assertEqual('Required Field.', dbPage.controller_green_text_element) def test0308_controller_form_blue_field_empty(self): # Get sign in page loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) # Get dashboard page dbPage = page.DashboardPage(self.driver) assert dbPage.is_title_matches() # Click the add controller button dbPage.controller_click_add_button() # Insert empty name dbPage.controller_name_text_element = 'led strip' # Insert empty red dbPage.controller_red_text_element = '17' # Insert empty green dbPage.controller_green_text_element = '27' # Insert empty blue dbPage.controller_blue_text_element = '' # Click button dbPage.controller_click_submit_button() # Wait 1 second time.sleep(1) # Verify if blue field has been filled with 'Required Field.' self.assertEqual('Required Field.', dbPage.controller_blue_text_element) def test0309_controller_form_malformed_pin_values(self): # Get sign in page loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) # Get dashboard page dbPage = page.DashboardPage(self.driver) assert dbPage.is_title_matches() # Click the add controller button dbPage.controller_click_add_button() # Insert empty name dbPage.controller_name_text_element = 'led strip' # Insert empty red dbPage.controller_red_text_element = 'qwrwerqr' # Insert empty green dbPage.controller_green_text_element = 'qwerwerqw' # Insert empty blue dbPage.controller_blue_text_element = 'werwrw' # Click button dbPage.controller_click_submit_button() # Wait 1 second time.sleep(1) # Verify if pin fields have been filled with 'Required Field.' self.assertEqual('Required Field.', dbPage.controller_red_text_element) self.assertEqual('Required Field.', dbPage.controller_green_text_element) self.assertEqual('Required Field.', dbPage.controller_blue_text_element) def test0310_controller_form_success(self): # Get sign in page loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) # Get dashboard page dbPage = page.DashboardPage(self.driver) assert dbPage.is_title_matches() # Click the add controller button dbPage.controller_click_add_button() # Insert empty name dbPage.controller_name_text_element = 'led strip' # Insert empty red dbPage.controller_red_text_element = '17' # Insert empty green dbPage.controller_green_text_element = '27' # Insert empty blue dbPage.controller_blue_text_element = '22' # Click button dbPage.controller_click_submit_button() # Wait 1 second time.sleep(1) # Check if a new actuator frame was created. assert dbPage.controller_frame_exists() # Actuator button related tests. def test0311_actuator_frame_onoff_button(self): # Get sign in page loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) # Get dashboard page dbPage = page.DashboardPage(self.driver) assert dbPage.is_title_matches() # Click button then wait for it turn on dbPage.actuator_frame_click_onoff() time.sleep(5) # Assert if color has changed assert dbPage.is_actuator_on() def test0312_actuator_frame_delete_button(self): # Get sign in page loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) # Get dashboard page dbPage = page.DashboardPage(self.driver) assert dbPage.is_title_matches() # Click delete button dbPage.actuator_frame_click_delete() # Check if it exists assert dbPage.actuator_frame_exists() # Controller button related tests. def test0313_controller_frame_colorshift_button_while_off(self): # Get sign in page loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) # Get dashboard page dbPage = page.DashboardPage(self.driver) assert dbPage.is_title_matches() # Click coloshift button dbPage.controller_frame_click_colorshift() # Check if it changed color assert not (dbPage.is_controller_colorshift_on()) def test0314_controller_frame_onoff_button(self): # Get sign in page loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '123' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) # Get dashboard page dbPage = page.DashboardPage(self.driver) assert dbPage.is_title_matches() # Click button then wait for it turn on dbPage.controller_frame_click_onoff() time.sleep(5) # Assert if color has changed assert dbPage.is_controller_on() def test0315_controller_frame_colorshift_button_while_on(self): # Get sign in page loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) # Get dashboard page dbPage = page.DashboardPage(self.driver) assert dbPage.is_title_matches() # Click colorshift button dbPage.controller_frame_click_colorshift() time.sleep(5) # Check if it changed color assert dbPage.is_controller_colorshift_on() def test0316_controller_frame_delete_button(self): # Get sign in page loginPage = page.LoginPage(self.driver) assert loginPage.is_title_matches() # Insert username that is valid for login. loginPage.username_text_element = 'Tufao' # Insert correct password. loginPage.password_text_element = '<PASSWORD>' # Click button. loginPage.click_submit_button() # Wait 1 second time.sleep(1) # Compare current url with the expected one. self.assertEqual(self.driver.current_url, self._expected_url) # Get dashboard page dbPage = page.DashboardPage(self.driver) assert dbPage.is_title_matches() # Click delete button dbPage.controller_frame_click_delete() # Check if it exists assert dbPage.controller_frame_exists() # End of test def tearDown(self): self.driver.close() if __name__ == "__main__": unittest.main(verbosity=2) ```
{ "source": "joaofig/auto-k-means", "score": 3 }
#### File: joaofig/auto-k-means/DistortionCurve.py ```python class DistortionCurve: """Stores the distortion curve as a function of K, the number of clusters.""" def __init__(self): self.distortions = dict() def add(self, k, distortion): self.distortions[k] = distortion def get(self, k): return self.distortions[k] def __getitem__(self, item): return self.distortions[item] def __setitem__(self, key, value): self.distortions[key] = value ``` #### File: auto-k-means/KEstimators/AsankaPerera.py ```python import numpy as np import math from sklearn.cluster import MiniBatchKMeans class KEstimator: """Estimates the K-Means K hyperparameter through geometrical analysis of the distortion curve""" def __init__(self, cluster_fn=None): self.K = 0 self.cluster = cluster_fn @staticmethod def distance_to_line(x0, y0, x1, y1, x2, y2): """ Calculates the distance from (x0,y0) to the line defined by (x1,y1) and (x2,y2) """ dx = x2 - x1 dy = y2 - y1 return abs(dy * x0 - dx * y0 + x2 * y1 - y2 * x1) / \ math.sqrt(dx * dx + dy * dy) def fit(self, X, tolerance=1e-3): """Fits the value of K""" max_distance = -1 s_k_list = list() sk0 = 0 for k in range(1, len(X) + 1): sk1 = self.cluster(X, k) s_k_list.append(sk1) if k > 2 and abs(sk0 - sk1) < tolerance: break sk0 = sk1 s_k = np.array(s_k_list) x0 = 1 y0 = s_k[0] x1 = len(s_k) y1 = 0 for k in range(1, len(s_k)): dist = self.distance_to_line(k, s_k[k-1], x0, y0, x1, y1) if dist > max_distance: max_distance = dist else: self.K = k - 1 break return self def fit_s_k(self, s_k, tolerance=1e-3): """Fits the value of K using the s_k series""" max_distance = float('-inf') s_k_list = list() sk0 = 0 # Fit the maximum K for k in s_k: sk1 = s_k[k] s_k_list.append(sk1) if k > 2 and abs(sk0 - sk1) < tolerance: break sk0 = sk1 s_k = np.array(s_k_list) # Get the line endpoints x0 = 1 y0 = s_k[0] x1 = len(s_k) y1 = 0 # Now find the largest distance for k in range(1, len(s_k)): dist = self.distance_to_line(k, s_k[k-1], x0, y0, x1, y1) if dist > max_distance: max_distance = dist else: self.K = k - 1 break return self ``` #### File: auto-k-means/KEstimators/Radius.py ```python import math from sklearn.cluster import MiniBatchKMeans class KEstimator: def __init__(self): self.K = 0 @staticmethod def calculate_s_k(X, k): km = MiniBatchKMeans(n_clusters=k, random_state=42).fit(X) return km.inertia_ # -km.score(df) # def fit(self, X, max_k=50, tolerance=3): min_distance = 0 for k in range(1, len(X) + 1): sk = self.calculate_s_k(X, k) radius = math.sqrt(k * k + sk * sk) if k == 1: min_distance = radius if radius <= min_distance: min_distance = radius self.K = k elif k - self.K > tolerance: break ``` #### File: joaofig/auto-k-means/whiteboard.py ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt import random import torch from sklearn.datasets.samples_generator import make_blobs from KEstimators import PhamDimovNguyen from KEstimators import Riddle from KEstimators import RiddleTorch # # # def load_data_1024(): # df = pd.read_csv('data/data_1024.csv', # delim_whitespace=True) # df = df.drop('Driver_ID', axis=1) # df = df.rename(index=str, columns={"Distance_Feature": "x", "Speeding_Feature": "y"}) # df = df[['x','y']] # df = (df - df.min()) / (df.max() - df.min()) # return df # # # def load_a1(): # df = pd.read_csv('data/a1.txt', names=['x', 'y'], delim_whitespace=True, dtype=np.float64) # df = (df - df.min()) / (df.max() - df.min()) # return df # # # def load_unbalance(): # df = pd.read_csv('data/unbalance.txt', names=['x', 'y'], delim_whitespace=True, dtype=np.float64) # df = (df - df.min()) / (df.max() - df.min()) # return df # # # def load_dim2(): # df = pd.read_csv('data/dim2.txt', names=['x', 'y'], delim_whitespace=True, dtype=np.float64) # df = (df - df.min()) / (df.max() - df.min()) # return df # # # def load_HTRU_2(): # df = pd.read_csv('data/HTRU2/HTRU_2.csv', dtype=np.float64) # df = (df - df.min()) / (df.max() - df.min()) # return df def load_data(): clusters = random.randint(1, 20) cluster_std = random.uniform(0.5, 8) print('K={0}'.format(clusters)) X, y = make_blobs(n_samples=200*clusters, centers=clusters, cluster_std=cluster_std, n_features=2, center_box=(-50.0, 50.0)) df = pd.DataFrame(data=X, columns=['x', 'y']) return df # from sklearn.cluster import MiniBatchKMeans from sklearn.cluster import KMeans def calculate_s_k(X, k): km = KMeans(n_clusters=k).fit(X) return km.inertia_ def run(): pham_estimator = PhamDimovNguyen.KEstimator() # asanka_estimator = AsankaPerera.KEstimator() riddle_estimator = Riddle.KEstimator() torch_estimator = RiddleTorch.KEstimator() s_k_t = torch.zeros(51) df = load_data() s_k = dict() dim = len(df.columns) print(len(df)) x_range = range(1, 51) for k in x_range: km = KMeans(n_clusters=k).fit(df) s_k[k] = km.inertia_ s_k_t[k] = km.inertia_ print(s_k[k]) # asanka_estimator.fit_s_k(s_k, tolerance=1e-3) # print('Asanka : {0}'.format(asanka_estimator.K)) pham_estimator.fit_s_k(s_k, max_k=50, dim=dim) print('PhamDN : {0}'.format(pham_estimator.K)) riddle_estimator.fit_s_k(s_k, max_k=50) print('Riddle : {0}'.format(riddle_estimator.K)) torch_estimator.fit(s_k_t) print('Torch : {0}'.format(torch_estimator.K)) fig, (ax1, ax2) = plt.subplots(1, 2) ax1.scatter(df.x, df.y) ax1.set_title('Clusters') ax2.plot(np.log(np.arange(1, 51, dtype=np.float32)), np.log(s_k_t.numpy()[1:])) ax2.set_title('log-log Scree') plt.show() if __name__ == '__main__': run() ```
{ "source": "joaofig/dublin-buses", "score": 4 }
#### File: joaofig/dublin-buses/explore.py ```python import pandas as pd import numpy as np def load_day(day): header = ['timestamp', 'line_id', 'direction', 'jrny_patt_id', 'time_frame', 'journey_id', 'operator', 'congestion', 'lon', 'lat', 'delay', 'block_id', 'vehicle_id', 'stop_id', 'at_stop'] types = {'timestamp': np.int64, 'journey_id': np.int32, 'congestion': np.int8, 'lon': np.float64, 'lat': np.float64, 'delay': np.int8, 'vehicle_id': np.int32, 'at_stop': np.int8} file_name = 'data/siri.201301{0:02d}.csv'.format(day) df = pd.read_csv(file_name, header=None, names=header, dtype=types, parse_dates=['time_frame'], infer_datetime_format=True) null_replacements = {'line_id': 0, 'stop_id': 0} df = df.fillna(value=null_replacements) df['line_id'] = df['line_id'].astype(np.int32) df['stop_id'] = df['stop_id'].astype(np.int32) df['timestamp'] = pd.to_datetime(df['timestamp'], unit='us') return df def haversine_np(lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) All args must be of equal length. Taken from here: https://stackoverflow.com/questions/29545704/fast-haversine-approximation-python-pandas#29546836 """ lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2]) dlon = lon2 - lon1 dlat = lat2 - lat1 a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2 #c = 2 * np.arcsin(np.sqrt(a)) c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1.0 - a)) meters = 6372000.0 * c return meters def calculate_durations(data_frame, vehicle_id): one_second = np.timedelta64(1000000000, 'ns') dv = data_frame[data_frame['vehicle_id']==vehicle_id] ts = dv.timestamp.values dtd = ts[1:] - ts[:-1] dt = np.zeros(len(dtd) + 1) dt[1:] = dtd / one_second return dt def calculate_distances(data_frame, vehicle_id): dv = data_frame[data_frame['vehicle_id']==vehicle_id] lat = dv.lat.values lon = dv.lon.values dxm = haversine_np(lon[1:], lat[1:], lon[:-1], lat[:-1]) dx = np.zeros(len(dxm) + 1) dx[1:] = dxm return dx def filter_columns(df): columns = ['timestamp', 'direction', 'journey_id', 'congestion', 'lon', 'lat', 'delay', 'vehicle_id', 'stop_id', 'at_stop'] return df[columns] def run(): days = None for d in range(31): print("Day {0}".format(d + 1)) day = filter_columns(load_day(d + 1)) day['dt'] = 0.0 day['dx'] = 0.0 day['speed'] = 0.0 if days is None: days = day else: days = days.append(day) vehicles = days['vehicle_id'].unique() for v in vehicles: print("Vehicle {0}".format(v)) vehicle_selector = days['vehicle_id'] == v days.loc[vehicle_selector, 'dt'] = calculate_durations(days, v) days.loc[vehicle_selector, 'dx'] = calculate_distances(days, v) speed_selector = days['dt'] > 0 days.loc[speed_selector, 'speed'] = days[speed_selector].dx / days[speed_selector].dt * 3.6 # Filter invalid points (speeds over 100 km/h) days = days[days['speed'] < 100.0] days.to_csv('data/201301.csv', index=False) if __name__ == "__main__": run() ```
{ "source": "joaofig/geonaja", "score": 3 }
#### File: joaofig/geonaja/geonaja.py ```python import urllib.request import os.path import zipfile import numpy as np import math import joblib from typing import List class ElevationProvider(object): """Base elevation provider class""" def __init__(self): pass @staticmethod def get_tile_xy(latitude: float, longitude: float) -> (int, int): """ Given the location's latitude and longitude, return the corresponding elevation tile coordinates. :param latitude: Location latitude in decimal degrees :param longitude: Location longitude in decimal degrees :return: Tuple containing the elevation tile coordinates """ x = int((longitude + 180.0) / 5.0) + 1 y = int(-latitude / 5.0) + 12 return x, y @staticmethod def get_tile_name_xy(x: int, y: int) -> str: """ Given the elevation tile coordinates, return the tile name. :param x: Elevation tile x coordinate :param y: Elevation tile y coordinate :return: Elevation tile file file name """ return "srtm_{0:02d}_{1:02d}".format(x, y) def get_tile_name(self, latitude: float, longitude: float) -> str: """ Given the location's latitude and longitude, return the corresponding elevation tile file name. :param latitude: Location latitude in decimal degrees :param longitude: Location longitude in decimal degrees :return: Elevation tile file name """ x, y = self.get_tile_xy(latitude, longitude) return self.get_tile_name_xy(x, y) @staticmethod def download_tile(tile_name: str, dir_name: str) -> str: """ Downloads an elevation tile into a cache directory. :param tile_name: Elevation tile file name :param dir_name: Cache directory :return: Local file name """ zip_name = tile_name + ".zip" url = "http://srtm.csi.cgiar.org/wp-content/uploads/files/" \ "srtm_5x5/ASCII/" + zip_name file_name = os.path.join(dir_name, zip_name) urllib.request.urlretrieve(url, file_name) return file_name class ElevationTile(object): """ Elevation tile - contains all the information of an elevation tile file """ def __init__(self, rows, cols, x_ll, y_ll, cell_size, x=-1, y=-1): self.array = None self.rows = rows self.cols = cols self.x_ll = x_ll self.y_ll = y_ll self.cell_size = cell_size self.x = x self.y = y def get_row_col(self, latitude: float, longitude: float) -> (int, int): """ Given the location's latitude and longitude, return the corresponding elevation tile cell coordinates. :param latitude: Location latitude in decimal degrees :param longitude: Location longitude in decimal degrees :return: The array coordinates of the elevation value """ row = self.rows - math.trunc((latitude - self.y_ll) / self.cell_size + 0.5) col = math.trunc((longitude - self.x_ll) / self.cell_size + 0.5) return row, col def get_elevation(self, latitude: float, longitude: float) -> np.int32: """ Gets the elevation of the tile element corresponding to the given location's latitude and longitude. :param latitude: Location latitude in decimal degrees :param longitude: Location longitude in decimal degrees :return: """ row, col = self.get_row_col(latitude, longitude) return self.array[row, col] def create_array(self): """ Creates the elevation array :return: None """ if self.array is None: self.array = np.zeros((self.rows, self.cols), dtype=np.int32) class FileElevationProvider(ElevationProvider): """ A simple elevation provider that does not preprocess the downloaded tiles. Tile files are stored as the original zipped trio of files, and decoded upon file load. This process is slow when loading from file. """ def __init__(self, cache_dir): self.cache_dir = cache_dir self.tile_dict = {} @staticmethod def parse_text(content: List[str]) -> ElevationTile: rows = 0 cols = 0 x_ll = 0.0 y_ll = 0.0 cell = 0.0 for i in range(6): line = content[i].decode("utf-8") items = line.split() if items[0] == "ncols": cols = int(items[1]) elif items[0] == "nrows": rows = int(items[1]) elif items[0] == "xllcorner": x_ll = float(items[1]) elif items[0] == "yllcorner": y_ll = float(items[1]) elif items[0] == "cellsize": cell = float(items[1]) tile = ElevationTile(rows, cols, x_ll, y_ll, cell) # Read in all the elevation values tile.create_array() for i in range(6, len(content)): line = content[i].decode("utf-8") row = np.fromstring(line, dtype=np.int16, count=cols, sep=' ') tile.array[i - 6, :] = row return tile def get_tile(self, tile_name: str) -> ElevationTile: """ Retrieves the tile, either from the web or any of the caches. :param tile_name: Elevation tile name. :return: Elevation tile """ tile = None if tile_name in self.tile_dict: tile = self.tile_dict[tile_name] else: file_name = os.path.join(self.cache_dir, tile_name + ".zip") if not os.path.exists(file_name): self.download_tile(tile_name, self.cache_dir) if os.path.exists(file_name): with zipfile.ZipFile(file_name) as z: with z.open(tile_name + ".asc") as asc: content = asc.readlines() tile = self.parse_text(content) self.tile_dict[tile_name] = tile return tile def get_elevation(self, latitude: float, longitude: float) -> int: """ Given a location latitude and longitude, retrieve the average elevation in meters. This is the main entry point for the whole feature. :param latitude: Location latitude in decimal degrees :param longitude: Location longitude in decimal degrees :return: """ tile_name = self.get_tile_name(latitude, longitude) tile = self.get_tile(tile_name) if tile is not None: return tile.get_elevation(latitude, longitude) else: return -9999 class JoblibElevationProvider(FileElevationProvider): """ A more sophisticated elevation provider that preprocesses the downloaded elevation tiles and saves them to cache using the Joblib package. By avoiding the decompressing and decoding steps when loading from file, this class achieves much better performance. Note that when downloading a tile for the first time, the performance penalty is slightly higher than the previous one. """ def __init__(self, cache_dir): super().__init__(cache_dir) def get_tile(self, tile_name: str) -> ElevationTile: """ Retrieves the tile, either from the web or any of the caches. :param tile_name: Elevation tile name. :return: Elevation tile """ if tile_name in self.tile_dict: tile = self.tile_dict[tile_name] else: elev_file_name = os.path.join(self.cache_dir, tile_name + ".elev") if not os.path.exists(elev_file_name): self.download_tile(tile_name, self.cache_dir) file_name = os.path.join(self.cache_dir, tile_name + ".zip") with zipfile.ZipFile(file_name) as z: with z.open(tile_name + ".asc") as asc: content = asc.readlines() tile = self.parse_text(content) self.tile_dict[tile_name] = tile os.remove(file_name) joblib.dump(tile, elev_file_name) else: tile = joblib.load(elev_file_name) return tile if __name__ == "__main__": elevation = JoblibElevationProvider(".") print(elevation.get_elevation(34.1225696, -118.2181179)) print(elevation.get_elevation(34.0095999, -117.53678559999999)) print(elevation.get_elevation(37.6047911, -122.0384952)) ```
{ "source": "joaofig/geo-spoke", "score": 3 }
#### File: geo-spoke/geo/geospoke.py ```python import numpy as np import pandas as pd import h3.api.numpy_int as h3 import multiprocessing as mp import math import geo.geomath as gm from functools import partial from timeit import default_timer as timer class GeoBrute(object): def __init__(self, locations: np.ndarray): self.lats = locations[:, 0] self.lons = locations[:, 1] def query_radius(self, location: np.ndarray, r: float) -> (np.ndarray, np.ndarray): """ Selects the indices of the points that lie within a given distance from a given location. :param location: Location to query in [lat, lon] format :param r: Radius in meters :return: Array of indices """ lat = location[0, 0] lon = location[0, 1] dist = gm.vec_haversine(self.lats, self.lons, lat, lon) return np.argwhere(dist <= r) def query_knn(self, location: np.array, k: int) -> np.array: dist = gm.vec_haversine(self.lats, self.lons, location[0], location[1]) idx = np.argsort(dist) return idx[:k], dist[idx[:k]] def get_slice(dim: int, i: int, k: int) -> np.ndarray: return slice(max(0, i - k), min(dim - 1, i + k) + 1) def calculate_sorted_distances(latitudes, longitudes, lat, lon): dist = gm.vec_haversine(latitudes, longitudes, lat, lon) idx = np.argsort(dist) return idx, dist[idx] class GeoSpoke(object): def __init__(self, locations: np.ndarray): self.lats = locations[:, 0] self.lons = locations[:, 1] min_lat, max_lat = self.lats.min(), self.lats.max() min_lon, max_lon = self.lons.min(), self.lons.max() h = gm.num_haversine(min_lat, min_lon, max_lat, min_lon) w = gm.num_haversine(min_lat, min_lon, min_lat, max_lon) self.density = locations.shape[0] / (w * h) if max_lat > 0: self.lat0 = self.lat1 = min_lat - 90 else: self.lat0 = self.lat1 = max_lat + 90 self.lon0 = (max_lon - min_lon) / 2 - 45 self.lon1 = self.lon0 + 90 self.idx0, self.sorted0 = calculate_sorted_distances(self.lats, self.lons, self.lat0, self.lon0) self.idx1, self.sorted1 = calculate_sorted_distances(self.lats, self.lons, self.lat1, self.lon1) def query_radius(self, location: np.ndarray, r: float) -> np.ndarray: """ Selects the indices of the points that lie within a given distance from a given location. :param location: Location to query in [lat, lon] format :param r: Radius in meters :return: Array of indices """ lat = location[0] lon = location[1] d0 = gm.num_haversine(lat, lon, self.lat0, self.lon0) d1 = gm.num_haversine(lat, lon, self.lat1, self.lon1) i0 = np.searchsorted(self.sorted0, d0 - r) i1 = np.searchsorted(self.sorted0, d0 + r) match0 = self.idx0[i0:i1 + 1] i0 = np.searchsorted(self.sorted1, d1 - r) i1 = np.searchsorted(self.sorted1, d1 + r) match1 = self.idx1[i0:i1 + 1] intersect = np.intersect1d(match0, match1) dist = gm.vec_haversine(self.lats[intersect], self.lons[intersect], lat, lon) return intersect[dist <= r] def query_knn(self, location: np.ndarray, k: int) -> (np.ndarray, np.ndarray): lat = location[0] lon = location[1] d0 = gm.num_haversine(lat, lon, self.lat0, self.lon0) d1 = gm.num_haversine(lat, lon, self.lat1, self.lon1) r = math.sqrt(k / self.density) * 2.0 intersect = np.zeros(0) while intersect.shape[0] < k: s0 = np.searchsorted(self.sorted0, [d0 - r, d0 + r]) s1 = np.searchsorted(self.sorted1, [d1 - r, d1 + r]) intersect = np.intersect1d(self.idx0[s0[0]:s0[1] + 1], self.idx1[s1[0]:s1[1] + 1], assume_unique=True) r *= 4 dist = gm.vec_haversine(self.lats[intersect], self.lons[intersect], lat, lon) idx = np.argsort(dist) return intersect[idx][:k], dist[idx[:k]] def geo_to_h3_array(locations, resolution: int = 12): hexes = [h3.geo_to_h3(locations[i, 0], locations[i, 1], resolution) for i in range(locations.shape[0])] return hexes class H3Index(object): def __init__(self, locations: np.ndarray, resolution=10): self.locations = locations self.h3res = resolution cpus = mp.cpu_count() arrays = np.array_split(locations, cpus) fn = partial(geo_to_h3_array, resolution=resolution) with mp.Pool(processes=cpus) as pool: results = pool.map(fn, arrays) flattened = [item for sublist in results for item in sublist] self.h3arr = np.array(flattened, dtype=np.uint64) self.h3idx = np.argsort(self.h3arr) def query_radius(self, location: np.ndarray, r: float) -> np.ndarray: edge_len = h3.edge_length(self.h3res, unit="m") idx = h3.geo_to_h3(location[0], location[1], self.h3res) ring = h3.k_ring(idx, 1 + int(round(r / edge_len))) i0 = np.searchsorted(self.h3arr, ring, side='left', sorter=self.h3idx) i1 = np.searchsorted(self.h3arr, ring, side='right', sorter=self.h3idx) indices = np.hstack([np.arange(i, j) for i, j in zip(i0, i1) if i != j]) idx = self.h3idx[indices] dist = gm.vec_haversine(self.locations[idx, 0], self.locations[idx, 1], location[0], location[1]) return self.h3idx[indices[np.argwhere(dist <= r).ravel()]] def query_knn(self, location: np.ndarray, k: int) -> (np.ndarray, np.ndarray): idx = h3.geo_to_h3(location[0], location[1], self.h3res) i = 0 indices = np.zeros(0, dtype=np.uint64) ring = np.zeros(0, dtype=np.uint64) while indices.shape[0] < k: i += 2 k_ring = h3.k_ring(idx, i) ring = np.setdiff1d(k_ring, ring, assume_unique=True) i0 = np.searchsorted(self.h3arr, ring, side='left', sorter=self.h3idx) i1 = np.searchsorted(self.h3arr, ring, side='right', sorter=self.h3idx) indices = np.hstack((indices, np.hstack([np.arange(i, j, dtype=np.uint64) for i, j in zip(i0, i1) if i != j]))) idx = self.h3idx[indices] dist = gm.vec_haversine(self.locations[idx, 0], self.locations[idx, 1], location[0], location[1]) dist_idx = np.argsort(dist) return idx[dist_idx[:k]], dist[dist_idx[:k]] def main(): import folium from folium.vector_layers import CircleMarker # np.random.randint(111) """ For testing purposes only :return: """ columns_to_read = ['Timestamp', 'LineID', 'Direction', 'PatternID', 'JourneyID', 'Congestion', 'Lon', 'Lat', 'Delay', 'BlockID', 'VehicleID', 'StopID', 'AtStop'] df = pd.read_parquet("../data/sir010113-310113.parquet", columns=columns_to_read) positions = df[['Lat', 'Lon']].to_numpy() random_indexes = np.random.randint(low=0, high=positions.shape[0], size=100) random_locations = positions[random_indexes] start = timer() geo_query = GeoSpoke(positions) end = timer() print("GeoSpoke initialization took {} seconds".format(end - start)) start = timer() h3_index = H3Index(positions, resolution=10) end = timer() print("H3Index initialization took {} seconds".format(end - start)) geo_brute = GeoBrute(positions) # # pt = np.array([[53.3520802, -6.2883607]]) ind = np.zeros(0) start = timer() for pt in random_locations: # [random_locations[0]]: ind = geo_query.query_radius(pt, r=100.0) end = timer() print(ind.shape[0], np.sort(ind)) print("GeoSpoke radius query took {} seconds".format(end - start)) print("--------------") start = timer() for pt in random_locations: # [random_locations[0]]: ind = h3_index.query_radius(pt, r=100.0) end = timer() print(ind.shape[0], np.sort(ind)) print("H3Index radius query took {} seconds".format(end - start)) print("--------------") print(" ") print("KNN - GeoSpoke ------") start = timer() for pt in random_locations: knn0, dist0 = geo_query.query_knn(pt, 20) end = timer() print("Timer: {}".format(end - start)) print(knn0) print(dist0) print("--------------") print(" ") print("KNN - H3Index ------") start = timer() for pt in random_locations: knn0, dist0 = h3_index.query_knn(pt, 20) end = timer() print("Timer: {}".format(end - start)) print(knn0) print(dist0) print("--------------") # print("KNN - GeoBrute ------") # start = timer() # knn1, dist1 = geo_brute.query_knn(random_locations[0].ravel(), 20) # end = timer() # print("Timer: {}".format(end - start)) # print(knn1) # print(dist1) # m = folium.Map(location=pt) # for idx in knn0: # CircleMarker(positions[idx], radius=1, color="#ff0000").add_to(m) # for idx in knn1: # CircleMarker(positions[idx], radius=1, color="#0000ff").add_to(m) # CircleMarker(pt, radius=1, color="#000000").add_to(m) # m.save("./map.html") if __name__ == "__main__": main() ```
{ "source": "joaofig/strat-group-spl", "score": 3 }
#### File: joaofig/strat-group-spl/k_fold_split.py ```python import numpy as np from numpy.random import default_rng from collections import namedtuple from tools import History, get_sort_index, hash_solution from tools import calculate_cost, calculate_costs, calculate_cost_gradients from tools import cosine_similarity, get_similarities RANDOM_SEED = 5005 # 2310 Solution = namedtuple("Solution", "cost index") def generate_problem(num_groups: int, num_classes: int, min_group_size: int, max_group_size: int, max_group_percent: float) -> np.ndarray: """ Generates a problem matrix from the given parameters. :param num_groups: The number of data groups. :param num_classes: The number of classes. :param min_group_size: The minimum group size. :param max_group_size: The maximum group size. :param max_group_percent: The maximum class percent. :return: The problem matrix (N,C). """ rng = default_rng(seed=RANDOM_SEED) problem = np.zeros((num_groups, num_classes)) problem[:, 0] = rng.integers(low=min_group_size, high=max_group_size, size=num_groups) for i in range(1, num_groups): top_i = max_group_percent * problem[i, 0] for j in range(1, num_classes): h = top_i - problem[i, 1:j+1].sum() problem[i, j] = rng.integers(low=0, high=h) return problem def print_problem(problem, solution=None): print("") if solution is None: for g in problem: print("\t".join([str(int(n)) for n in g])) else: for g in zip(problem, solution): print("{0}\t{1}".format("\t".join([str(int(n)) for n in g[0]]), g[1])) def print_solution(problem, solution, k): """ Prints the solution to the console. :param problem: The problem matrix. :param solution: Th solution vector. :param k: The number of folds. """ num_classes = problem.shape[1] total_count = problem[:, 0].sum() print(calculate_cost(problem, solution, k)) print("") print("K-Fold Partitioning") print(total_count, total_count / k) for i in range(k): index = solution == i print(i+1, problem[index, 0].sum()) for j in range(1, num_classes): print("") print("Class {0}".format(j)) for i in range(k): index = solution == i print(i+1, problem[index, j].sum() / problem[index, 0].sum()) # @jit(nopython=True) def add_solution(tabu, solution_arr, cs, k, k0, k1, arr_ix): """ :param tabu: :param solution_arr: :param cs: :param k: The number of folds in the problem (integer) :param k0: :param k1: :param arr_ix: :return: """ sort_ix0 = get_sort_index(solution_arr, cs, k0, arr_ix) sort_ix1 = get_sort_index(solution_arr, cs, k1, arr_ix) n0 = sort_ix0.shape[0] n1 = sort_ix1.shape[0] i0, i1 = 0, 0 solution_added = False while not solution_added and i0 < sort_ix0.shape[0] and i1 < sort_ix1.shape[0]: solution = np.copy(solution_arr) if n0 > 0 and n1 > 0: if cs[k0, sort_ix0[i0]] > cs[k1, sort_ix1[i1]]: solution[sort_ix0[i0]] = k1 i0 += 1 else: solution[sort_ix1[i1]] = k0 i1 += 1 elif n0 > 0: solution[sort_ix0[i0]] = k1 i0 += 1 else: solution[sort_ix1[i1]] = k0 i1 += 1 h = hash_solution(solution, k) if h not in tabu: tabu.add(h) solution_added = True solution_arr = solution return solution_arr, solution_added def main(): history = History() num_groups = 20 # Number of groups to simulate num_classes = 2 # Number of classes max_group_size = 10000 # Maximum group size max_group_percent = 0.4 # Maximum proportion for each class k = 5 # Number of folds max_empty_iterations = 10000 max_intensity_iterations = 10 min_cost = 1000 terminated = False tabu = set() problem = generate_problem(num_groups, num_classes, min_group_size=10, max_group_size=max_group_size, max_group_percent=max_group_percent) rng = default_rng(seed=RANDOM_SEED) solution = rng.integers(low=0, high=k, size=num_groups) # solution = np.zeros(problem.shape[0], dtype=int) arr_ix = np.arange(num_groups, dtype=int) tabu.add(hash_solution(solution, k)) incumbent_solution = solution incumbent_cost = calculate_cost(problem, incumbent_solution, k) print(incumbent_cost) history.add(solution) n = 0 n_intensity = 0 solution_added = False while not terminated: cost_grad = calculate_cost_gradients(problem, solution, k) cs = cosine_similarity(problem, cost_grad) sims = get_similarities(cost_grad) for sim in sims: k0, k1 = int(sim[1]), int(sim[2]) # Cast the indices from double to int solution, solution_added = add_solution(tabu, solution, cs, k, k0, k1, arr_ix) if solution_added: break # Breaks the 'sims' loop if not solution_added: print("Solution not added!") cost = calculate_cost(problem, solution, k) if cost < incumbent_cost: print(cost) incumbent_cost = cost incumbent_solution = solution n = 0 n_intensity = 0 history.add(solution) n += 1 n_intensity += 1 if n > max_empty_iterations or incumbent_cost < min_cost: terminated = True print(calculate_costs(problem, incumbent_solution, k)) print(len(tabu)) print_solution(problem, incumbent_solution, k) # print_problem(problem, incumbent_solution) if __name__ == "__main__": main() ``` #### File: strat-group-spl/tools/functions.py ```python import numpy as np from numba import jit @jit(nopython=True) def index_to_str(idx): """ Generates a string representation from an index array. :param idx: The NumPy boolean index array. :return: The string representation of the array. """ num_chars = int(idx.shape[0] / 6 + 0.5) s = "" for i in range(num_chars): b = i * 6 six = idx[b:b+6] c = 0 for j in range(six.shape[0]): c = c * 2 + int(six[j]) s = s + chr(c+32) return s @jit(nopython=True) def hash_solution(solution: np.ndarray, k: int) -> str: """ Calculates a string hash for the solution. :param solution: The solution vector. :param k: The number of folds. :return: The string hash. """ s = "" for i in range(k-1): s = s + index_to_str(solution == i) return s @jit(nopython=True) def is_in(element, test_elements): """ Predicate to test the inclusion of items in the first array on the second :param element: Array whose elements we want to test the inclusion for :param test_elements: Target array :return: Boolean array of the same size as `element` with the element-wise inclusion test results """ unique = set(test_elements) result = np.zeros_like(element, dtype=np.bool_) for i in range(element.shape[0]): result[i] = element[i] in unique return result @jit(nopython=True) def get_sort_index(solution: np.ndarray, cs: np.ndarray, k: int, arr_ix: np.ndarray) -> np.ndarray: """ :param solution: The solution vector. :param cs: The cosine similarity matrix. :param k: The selected fold index [0..K) :param arr_ix: A pre-calculated integer range [0..N). :return: """ sort_ix = np.zeros((0,), dtype=np.int_) solution_indices_for_k = solution == k n = solution_indices_for_k.sum() # Check if there are any indexes for fold k if n > 0: # Get the descending sort indices for the similarities of fold k. # Lower similarities mean larger differences. sort_ix = np.flip(np.argsort(cs[k])) # Filter the solution indices that belong to fold k. sort_ix = sort_ix[is_in(sort_ix, arr_ix[solution_indices_for_k])] return sort_ix @jit(nopython=True) def cosine_similarity(problem: np.ndarray, cost_grad: np.ndarray) -> np.ndarray: """ Calculates the cosine similarity vector between the problem array and the cost gradient vector. :param problem: The problem array. :param cost_grad: The cost gradient matrix. :return: The cosine similarity vector. """ k = cost_grad.shape[0] s = np.zeros((k, problem.shape[0])) c = problem norm_c = np.zeros(problem.shape[0]) for i in range(problem.shape[0]): norm_c[i] = np.linalg.norm(c[i]) for i in range(k): g = cost_grad[i] a = np.dot(c, g) b = np.multiply(norm_c, np.linalg.norm(g)) s[i, :] = np.divide(a, b) return s @jit(nopython=True) def vector_similarity(v0: np.ndarray, v1: np.ndarray) -> float: """ Calculates the cosine similarity between two vectors. :param v0: Vector :param v1: Vector :return: Similarity scalar. """ a = np.dot(v0, v1) b = np.linalg.norm(v0) * np.linalg.norm(v1) return a / b * np.linalg.norm(v0 - v1) @jit(nopython=True) def get_lowest_similarity(cost_grads): """ Calculates the fold index pair with the lowest cost gradient cosine similarity. :param cost_grads: K-dimensional cost gradient vector. :return: Fold index pair with the lowest cosine similarity. """ sim = 1.0 p = (-1, -1) n = cost_grads.shape[0] for i in range(n): for j in range(i + 1, n): s = vector_similarity(cost_grads[i], cost_grads[j]) if s < sim: sim = s p = (i, j) return p @jit(nopython=True) def get_similarities(cost_grads): """ Calculates the similarity array between all pairs of cost gradients :param cost_grads: The cost gradient matrix :return: The sorted similarity array (K,3) containing rows of [similarity, i, j] with i != j """ n = cost_grads.shape[0] k_count = int(n * (n - 1) / 2) sims = np.zeros((k_count, 3)) k = 0 for i in range(n - 1): for j in range(i + 1, n): s = vector_similarity(cost_grads[i], cost_grads[j]) sims[k, 0] = s sims[k, 1] = i sims[k, 2] = j k += 1 return sims[sims[:, 0].argsort()] @jit(nopython=True) def calculate_costs(problem: np.ndarray, solution: np.ndarray, k: int) -> np.ndarray: """ Calculates the cost vector for the given solution. :param problem: The problem matrix. :param solution: The solution vector. :param k: The number of folds. :return: The K-dimensional cost vector. """ c = problem.shape[1] costs = np.zeros(k) total_count = problem[:, 0].sum() for i in range(k): index = solution == i costs[i] = 0.5 * (problem[index, 0].sum() - total_count / k) ** 2 stratum_sum = problem[index, 0].sum() for j in range(1, c): r = problem[:, j].sum() / total_count costs[i] += 0.5 * (problem[index, j].sum() - r * stratum_sum) ** 2 return costs @jit(nopython=True) def calculate_cost(problem: np.ndarray, solution: np.ndarray, k: int) -> float: """ Calculates the overall cost as the L2 norm of the cost vector. :param problem: The problem matrix. :param solution: The solution vector. :param k: The number of folds. :return: The scalar cost. """ return np.linalg.norm(calculate_costs(problem, solution, k)) @jit(nopython=True) def calculate_cost_gradients(problem: np.ndarray, solution: np.ndarray, k: int) -> np.ndarray: """ Computes the K cost gradients. :param problem: The problem matrix. :param solution: The solution vector. :param k: The number of folds. :return: The (K,C) gradient matrix. """ c = problem.shape[1] gradients = np.zeros((k, c)) total_count = problem[:, 0].sum() for i in range(k): index = solution == i gradients[i, 0] = problem[index, 0].sum() - total_count / k stratum_sum = problem[index, 0].sum() for j in range(1, c): r = problem[:, j].sum() / total_count gradients[i, j] = problem[index, j].sum() - r * stratum_sum return gradients ```
{ "source": "joaofig/ved-explore", "score": 2 }
#### File: ved-explore/tools/generate_traces.py ```python from collections import Counter import numpy as np from tqdm.auto import tqdm from db.api import VedDb, TraceDb from numba import jit from pyquadkey2 import quadkey def qk_int_tostr(qk_int, z): qk_str = "" for i in range(z): qk_str = "0123"[qk_int % 4] + qk_str qk_int = qk_int >> 2 return qk_str def qk_str_toint(qk_str): qk_int = 0 for c in qk_str: qk_int = (qk_int << 2) + int(c) return qk_int def qk_toint(qk): return qk_str_toint(str(qk)) def get_master_tile(qk, z): qk_str = qk_int_tostr(qk, z) tile = quadkey.from_str(qk_str[:len(qk_str) - 8]) return tile @jit(nopython=True) def bresenham_pairs(x0: int, y0: int, x1: int, y1: int) -> np.ndarray: """Generates the diagonal coordinates Parameters ---------- x0 : int Origin x value y0 : int Origin y value x1 : int Target x value y1 : int Target y value Returns ------- np.ndarray Array with the diagonal coordinates """ dx = abs(x1 - x0) dy = abs(y1 - y0) dim = max(dx, dy) pairs = np.zeros((dim, 2), dtype=np.int64) x, y = x0, y0 sx = -1 if x0 > x1 else 1 sy = -1 if y0 > y1 else 1 if dx > dy: err = dx // 2 for i in range(dx): pairs[i, 0] = x pairs[i, 1] = y err -= dy if err < 0: y += sy err += dx x += sx else: err = dy // 2 for i in range(dy): pairs[i, 0] = x pairs[i, 1] = y err -= dx if err < 0: x += sx err += dy y += sy return pairs def create_pixel_table(db): if not db.table_exists("pixel"): sql = """ CREATE TABLE pixel ( pixel_id INTEGER PRIMARY KEY ASC, qk INTEGER NOT NULL, intensity FLOAT NOT NUL ); """ db.execute_sql(sql) # sql = "CREATE INDEX idx_pixel_qk ON pixel (qk);" # db.execute_sql(sql) def get_moves(db): sql = "select vehicle_id, day_num from move" moves = db.query(sql) return moves def get_move_points(db, move): sql = """ select latitude, longitude from signal where vehicle_id = ? and day_num = ? order by time_stamp; """ points = db.query(sql, move) return points def get_unique_points(points): unique_pts = [] last_pt = None for pt in points: if last_pt is None or last_pt != pt: unique_pts.append(pt) last_pt = pt return unique_pts def add_pixel(db, px, intensity): sql = "select n from l26 where qk=?" res = db.query(sql, parameters=[px]) if len(res) == 0: sql = "insert into l26 (qk, tile, n) values (?, ?, ?)" db.execute_sql(sql, [px, px // 256, intensity]) else: sql = "update l26 set n = ? where qk = ?" db.execute_sql(sql, [res[0] + intensity, px]) def get_level_list(d, z): l = [(qk, qk_toint(get_master_tile(qk, z)), d[qk]) for qk in d.keys()] return l def get_parent_level(d): parents = dict() for qk in d.keys(): p = qk // 4 if p in parents: parents[p] += d[qk] else: parents[p] = d[qk] return parents def insert_all_levels(db, counter): level = counter level_ranges = dict() for z in tqdm(range(26, 8, -1)): level_ranges[z] = (min(level.values()), max(level.values())) db.insert_qk_intensities(z, get_level_list(level, z)) level = get_parent_level(level) return level_ranges def main(): trace_db = TraceDb(folder="../db") ved_db = VedDb(folder="../db") counter = Counter() create_pixel_table(trace_db) moves = get_moves(ved_db) for move in tqdm(moves): points = get_unique_points(get_move_points(ved_db, move)) tiles = [quadkey.from_geo((p[0], p[1]), level=26).to_tile() for p in points] for i in range(len(tiles) - 1): x0, y0 = tiles[i][0] x1, y1 = tiles[i+1][0] line = bresenham_pairs(x0, y0, x1, y1) pixels = [qk_str_toint(quadkey.from_tile((p[0], p[1]), 26).key) for p in line] counter.update(pixels) level_ranges = insert_all_levels(trace_db, counter) trace_db.insert_level_ranges([(k, v[0], v[1]) for k, v in level_ranges.items()]) if __name__ == "__main__": main() ```
{ "source": "Joao-Filh0/Python--Flask--Pix", "score": 3 }
#### File: Joao-Filh0/Python--Flask--Pix/main.py ```python from flask import Flask,request,jsonify from flask_cors import CORS import os from pix import * app = Flask(__name__) CORS(app) dataResponses = [] #Rota usada para testes do webhook @app.route("/",methods = ['GET']) def get_data(): if len(dataResponses) == 0: return jsonify({"message" : "Nada no momento "}), 200 return jsonify(dataResponses),200 @app.route("/cob",methods = ["POST"]) def web_hooks(): pix = PixModel() result = request.get_json() cob = pix.cob(uid = result.get("uid"), data = result.get("data")) dataResponses.append(cob) return jsonify({ "message" : "sucess" ,"payload" : cob }),201 if __name__== '__main__': port = int(os.environ.get('PORT', 5000)) app.run(debug=True,host="0.0.0.0",port=port,threaded=True) #,host="0.0.0.0" ``` #### File: Joao-Filh0/Python--Flask--Pix/pix.py ```python import json,requests from constants import permissions from constants import urls from constants import body from utils import qrcode from utils import creator class PixModel: def __init__(self): #Auth para pegar token de acesso self.ACESS_TOKEN = self.auth(body.cob_data).get("access_token") def auth(self,data): r = requests.post(url= urls.auth_url, data = json.dumps(data) , headers = {'content-type': 'application/json', 'Authorization': permissions.BASIC_CREDENTIAL}, cert= permissions.CERTIFICATES) return json.loads(r.text) def cob(self,uid,data): txid =creator.txid(uid) r = requests.put(url= urls.cob_url+txid, data=json.dumps(data), headers={'content-type': 'application/json', 'Authorization': f"Bearer {self.ACESS_TOKEN}"}, cert= permissions.CERTIFICATES) response = json.loads(r.text) if(r.status_code == 201): self.webhooks_config(key=response.get("chave")) return { "txid" : txid, "qr_code" : qrcode.build_payload(response) } return {} def webhooks_config(self,key): requests.put(url= urls.webhooks_config_url+key,data=json.dumps(body.webhook_data), headers={'content-type': 'application/json', 'Authorization': f"Bearer {self.ACESS_TOKEN}"}, cert= permissions.CERTIFICATES) return ``` #### File: Python--Flask--Pix/utils/creator.py ```python import libscrc from datetime import datetime from random import randint,choice def txid(userID): alphabet = "abcdefghijklmnopqrstuvwxyz" now = str(datetime.now()).replace("-",'').replace(".",'').replace(":",'').replace(" ",'')[2:14] byts = bytes(userID, 'utf-8') userID = hex(libscrc.xmodem(byts,0xFFFF)).upper().replace("0X","") id = "" for i in range(0,15): sort = randint(0,9) if(randint(0,len(id))%2 ==0): id = id+str(sort) else: sort = randint(0,25) if(sort%2==0): id = id+choice(alphabet).upper() else: id = id+choice(alphabet) return userID+now+id ```
{ "source": "joaofilipevaz/CSM-Trab3", "score": 3 }
#### File: joaofilipevaz/CSM-Trab3/trab3.py ```python import cv2 import numpy as np # import matplotlib.pyplot as plt from trab3Test import K3, K5 from time import time from os import path import matplotlib # 1 """ Construa uma função (codificador) que para cada bloco de 8×8 da imagem original efectue a DCT bidimensional. Veja a imagem com o conjunto dos blocos após a transformada. Construa uma função (descodificador) que faça a DCT inversa. Verifique que a imagem é igual à original. """ def codificador(bloco, k1, alfa): # DCT2D direta bloco_dct = cv2.dct(bloco-128) # quantificação dct_quant = np.round(bloco_dct / (k1 * alfa)) return dct_quant def descodificador(bloco_desc_dct, k1, alfa): # DCT2D inversa (IDCT2D) bloco_rec = np.round((k1 * alfa) * bloco_desc_dct) return np.round(cv2.idct(bloco_rec)+128) # 2 """ Construa uma função (codificador) que para cada bloco de 8 × 8 de coeficientes da transformação efectuada faça a divisão pela matriz de quantificação (tabela K1 no anexo da norma) multiplicada por um factor de qualidade q (ver pág. 230 do livro "Tecnologias de Compressão Multimédia"). Veja a imagem com o conjunto dos blocos após a quantificação. Construa uma função (descodificador) que realize a operação inversa da quantificação. Junte estas funções às já realizadas e verifique para diferentes factores de qualidade qual a SNR e veja a imagem descodificada. """ # 3 """ Construa uma função (codificador) que faça a codificação diferencial dos coeficientes DC após a quantificação. Construa a função inversa para o descodificador. """ def dpcm(bloco_dct): # lista de controlo com os valores DC diferenciais dc = [bloco_dct[0][0][0]] # copia do array original para um novo array bloco_dct_dpcm = np.copy(bloco_dct) # DPCM da componente DC for i in xrange(1, len(bloco_dct)): diff = bloco_dct[i][0][0] - bloco_dct[i-1][0][0] bloco_dct_dpcm[i][0][0] = diff dc.append(diff) return bloco_dct_dpcm, dc def desc_dpcm(bloco_dct_dpcm, dc): bloco_dct = np.copy(bloco_dct_dpcm) dcanterior = 0 # DPCM da componente DC for i in xrange(0, len(dc)): bloco_dct[i][0][0] = dc[i] + dcanterior dcanterior = bloco_dct[i][0][0] return bloco_dct # 4 """ Construa uma função (codificador) que crie um array com a indexação em zig-zag dos coeficientes AC após a quantificação e crie um array com os pares (zero run length, nonzero value). Construa a função inversa para o descodificador. Junte estas funções às já realizadas e veja a imagem descodificada. """ def zig_zag(bloco_dct_dpcm, zigzag, debug, test_block): zigzag_order = zigzag.ravel().astype(np.int8) # lista bidimensional com os ac de cada bloco bloco_dct_dpcm_zz = [] # array temporario para guardar os valores ordenaados pela order do zigzag temp = np.zeros(64) for i in xrange(len(bloco_dct_dpcm)): # captura o primeiro bloco 8x8 bloco_1d = bloco_dct_dpcm[i][:][:].ravel() # lista com os pares (zero run length, nonzero value) ac = [] if i == test_block and debug: print bloco_1d print zigzag_order for z in xrange(0, len(bloco_1d)): # guarda o valor no indice correspondente pela ordem do zigzag temp[zigzag_order[z]] = bloco_1d[z] # variavel auxiliar para contar o numero de zeros zeros = 0 if i == test_block and debug: print temp eob = False for t in xrange(1, len(temp), 1): # valida o fim do bloco if (temp[t] == 0) and zeros >= 15: ac.append((0, 0)) eob = True break # aplica o limita máximo de 15 zeros consecutivos para nao criar conflitos com a cod huff elif temp[t] == 0 and zeros < 15: zeros += 1 else: # adiciona o um tuplo (run length code, value) ac.append((zeros, int(temp[t]))) zeros = 0 if not eob: ac.append((0, 0)) if i == test_block and debug: print ac bloco_dct_dpcm_zz.append(ac) return bloco_dct_dpcm_zz def zag_zig(acs, zigzag, debug, test_block): ind_O = zigzag.reshape(64, order='F').astype('int') # lista de output 8x8 bloco_dct_dpcm = [] for i in xrange(len(acs)): ac_block = acs[i] if i == test_block and debug: print ac_block temp = np.zeros(64) ultima_pos = 0 for z in xrange(len(ac_block)): zeros = ac_block[z][0] value = ac_block[z][1] if value != 0: if zeros+1+ultima_pos >= 64: print ac_block[z] temp[zeros+1+ultima_pos] = value ultima_pos += zeros+1 if i == test_block and debug: print "array temp" print temp print ind_O bloco_1d_ordenado = temp[ind_O].reshape((8, 8), order='F') if i == test_block and debug: print bloco_1d_ordenado bloco_dct_dpcm.append(bloco_1d_ordenado) return bloco_dct_dpcm # 5 """ Construa uma função que dados os arrays das alíneas anteriores use as tabelas do código de Huffman (tabela K3 e K5) e grave num ficheiro a sequência de bits correspondente. (não é necessário usar o formato JFIF) """ def codifica_huff(bloco_dct_dpcm_zz, bloco_dct_dpcm, debug): # stream de bits de saida bit_stream = "" # insere informação sobre a o numero de blocos 8x8 a ler bit_stream += '{0:032b}'.format(len(bloco_dct_dpcm_zz)) for i in xrange(len(bloco_dct_dpcm)): # valor componente DC dc = int(bloco_dct_dpcm[i][0][0]) if dc != 0: # O campo Size indica quantos bits codificam o campo amplitude size = len('{0:b}'.format(abs(dc))) else: size = 0 # adiciona o size ao bitstream recorrendo à codificação de huffman bit_stream += K3[size] # + " " if size != 0: # amplitude é o valor em binario do componente dc amp_dc = ones_complement(dc, size) # adiciona o valor directamente ao bitstream sem codificação de huffman bit_stream += amp_dc # + " " # analise da componente ac for z in xrange(len(bloco_dct_dpcm_zz[i])): # quantidade de 0s consecutivos runlength = bloco_dct_dpcm_zz[i][z][0] # valor do coeficiente nao nulo value = bloco_dct_dpcm_zz[i][z][1] if value != 0: # o valor é ainda subdividido em size e amp como no dc size = len('{0:b}'.format(abs(value))) amp_ac = ones_complement(value, size) # o tuplo (runlength, size) é codificado recorrendo a tabela K5 com codigo de Huffman bit_stream += K5[(runlength, size)] # + " " # o valor é codificado sem huffman bit_stream += amp_ac # + " " else: size = 0 # o tuplo (runlength, size) é codificado recorrendo a tabela K5 com codigo de Huffman bit_stream += K5[(runlength, size)] # + " " if debug: print bit_stream print len(bit_stream) # utiliza a função desenvolvida no trab anterior para escrever para ficheiro escrever(bit_stream, "Lena_Cod.huf") return bit_stream # 6 """ Construa uma função que leia o ficheiro gravado e retorne os arrays com os coeficientes AC e DC. """ def le_huff(test_block): # lista com os coeficientes dc dc = [] # lista com os coeficientes ac por bloco ac = [] # Sequencia de bits com a codificação da mensagem seqbits = ler("Lena_Cod.huf") # le o primeiro bloco de 32 bits com a informação sobre o numero de blocos 8x8 a ler n_blocos = int(seqbits[0:32], 2) seqbits = seqbits[32:] print "o numero de blocos é " + str(n_blocos) # lista bidimensional com a totalidade dos ac dos blocos bloco_dct_dpcm_zz = [] # loops de (15,0) para serem retirados count = 0 # lê os bits codificados enquanto houver dados para leitura for z in xrange(n_blocos): if count == test_block: print bloco_dct_dpcm_zz[test_block] # flag end of block eob = False # le o dc for k in K3: # avalia o prefixo inicial de acordo com a chave do dicionario if seqbits.startswith(K3[k]): # slice da mensagem de bits para lermos sempre a partir do inicio seqbits = seqbits[len(K3[k]):] if k > 0: # adiciona o valor a lista dc dc.append(read_ones_complement(seqbits[0:k])) # remove o valor lido da mensagem seqbits = seqbits[k:] else: dc.append(0) # print "DC =" + str(dc) break while not eob: for y in K5: # avalia o prefixo inicial de acordo com a chave do dicionario if seqbits.startswith(K5[y]): # obtemos runlength e size runlength = y[0] size = y[1] # slice da mensagem de bits para lermos sempre a partir do inicio seqbits = seqbits[len(K5[y]):] if K5[y] == "1010": eob = True ac.append((0, 0)) bloco_dct_dpcm_zz.append(ac) ac = [] break if size != 0: # obtemos o valor amp_ac = read_ones_complement(seqbits[0:size]) # remove o valor lido da mensagem seqbits = seqbits[size:] ac.append((runlength, amp_ac)) return dc, bloco_dct_dpcm_zz, n_blocos # 7 """ Junte estas funções às já realizadas e veja a imagem descodificada. Para diferentes factores de qualidade meça a relação sinal-ruído e a taxa de compressão obtida. Represente um gráfico onde se apresente a taxa de compressão em função do SNR. """ # 8 """ No mesmo gráfico compare o seu compressor de imagem com outros existentes para várias qualidades. """ # 9 """ O relatório deve conter uma descrição breve das funções realizadas e uma tabela com todos os resultados da SNR, taxa de compressão, tempo de compressão e descompressão. """ # converte a imagem num array de blocos 8x8 def create_8x8block(array): # resultado da divisao modulo 8 pelo comprimento do array mod8 = (array.shape[0] % 8) == 0 and (array.shape[1] % 8) == 0 # Lista de blocos 8x8 lista_blocos = [] if not mod8: print "Dimensão do array não é multipla de 8" for i in xrange(0, array.shape[0], 8): for z in xrange(0, array.shape[1], 8): block = array[i:(i+8), z:(z+8)] lista_blocos.append(block.astype(np.float32)) return lista_blocos # efectua o processo inverso devolvendo a imagem a shape original def revert_to_original_block(lista_blocos, original_shape): array_original = np.zeros(original_shape) count = 0 for i in xrange(0, array_original.shape[0], 8): for z in xrange(0, array_original.shape[1], 8): array_original[i:(i+8), z:(z+8)] = lista_blocos[count] count += 1 return array_original def quality_factor(q_factor): if q_factor <= 50: factor = 50.0 / q_factor else: factor = 2.0 - (q_factor * 2.0) / 100.0 return factor # calcula o valor em binario com recurso ao inverso (complemento de uns) para binario negativo def ones_complement(value, size): if value >= 0: return '{0:b}'.format(value) else: bit_lenght = "{" + "0:0{}b".format(str(size)) + "}" return bit_lenght.format(2**size - 1 - abs(value)) # efectua o procedimento inverso retornado o numero que corresponde ao binario def read_ones_complement(bin_number): bin_number = list(bin_number) if bin_number[0] == "1": bin_number = ''.join(bin_number) return int(bin_number, 2) else: for i in xrange(len(bin_number)): if bin_number[i] == "0": bin_number[i] = "1" else: bin_number[i] = "0" bin_number = ''.join(bin_number) return -int(bin_number, 2) # funções de leitura e escrita obtidas do trabalho anterior """ Elabore uma função ("escrever") que dada uma sequência de bits (mensagem codificada) e o nome do ficheiro, escreva a sequência de bits para o ficheiro. """ def escrever(seqbits, nomeficheiro): # array de bytes que irá ser escrito para ficheiro array_bytes = bytearray() # assegura que o numero de bits é multiplo de 8 adicionando os bits necessarios # avalia o modulo da divisao por 8 para saber quantos bits estão "livres" n_bits_livres = len(seqbits) % 8 if n_bits_livres != 0: # enche o resto do byte de 1s seqbits += '1' * (8 - n_bits_livres) # insere informação sobre a quantidade de bits de stuffing para permitir a sua remoçao na leitura seqbits += '{0:08b}'.format(n_bits_livres) # converte os bits para bytes for i in range(len(seqbits) / 8): # segmento de 8 bits = 1 byte substring = seqbits[i * 8: i * 8 + 8] # adiciona o segmento ao array array_bytes.append(int(substring, base=2)) # inicializa o ficheiro em modo de escrita f = open("{}".format(nomeficheiro), "wb") # escreve os bytes para ficheiro for byte in bytes(array_bytes): f.write(byte) # fecha o stream de escrita f.close() print "Foram escritos {} bits para ficheiro".format(len(seqbits)) """ Elabore uma função ("ler") que dado o nome do ficheiro, leia uma sequência de bits (mensagem codificada) contida no ficheiro. """ def ler(nomeficheiro): # Sequencia de bits com a codificação da mensagem seqbits = "" # with garante tratamento de exepções e close integrado with open("{}".format(nomeficheiro), "rb") as f: # le o byte byte = f.read(1) while byte: # adciona os bits correspondentes do byte à seq de bits seqbits += '{0:08b}'.format(ord(byte)) byte = f.read(1) print "Foram lidos {} bits do ficheiro".format(len(seqbits)) # verifica quantos bits foram utilizados para stuffing n_bits_livres = int(seqbits[-8:], 2) if n_bits_livres != 0: # remove o campo de informação sobre os bits de stuffing e esses bits seqbits = seqbits[:-((8-n_bits_livres) + 8)] else: # remove o campo de informação sobre os bits de stuffing e esses bits seqbits = seqbits[:-8] print len(seqbits) return seqbits # função auxiliar para calcular o SNR entre a imagem original e a comprimida def calculoSNR(imgOrig, imgComp): PSinal = np.sum(imgComp**2.0) PRuido = np.sum((imgOrig-imgComp)**2.0) args = PSinal / PRuido return np.round(10.0*np.log10(args), 3) def main(): print "========================================================================================================" print "================================Analise Ficheiro lena================================" \ "=======" # variavel que controla o modo de impressao de dados de teste debug = False test_block = 4095 # factor de qualidade q q = 90 # alfa = quality_factor(q) # Matriz de quantificação K1 # table K1 - Luminance quantize Matrix k1 = np.zeros((8, 8)) k1[0] = [16, 11, 10, 16, 24, 40, 51, 61] k1[1] = [12, 12, 14, 19, 26, 58, 60, 55] k1[2] = [14, 13, 16, 24, 40, 57, 69, 56] k1[3] = [14, 17, 22, 29, 51, 87, 80, 62] k1[4] = [18, 22, 37, 56, 68, 109, 103, 77] k1[5] = [24, 35, 55, 64, 81, 104, 113, 92] k1[6] = [49, 64, 78, 87, 103, 121, 120, 101] k1[7] = [72, 92, 95, 98, 112, 100, 103, 99] # zig-zag order zigzag = np.zeros((8, 8)) zigzag[0] = [0, 1, 5, 6, 14, 15, 27, 28] zigzag[1] = [2, 4, 7, 13, 16, 26, 29, 42] zigzag[2] = [3, 8, 12, 17, 25, 30, 41, 43] zigzag[3] = [9, 11, 18, 24, 31, 40, 44, 53] zigzag[4] = [10, 19, 23, 32, 39, 45, 52, 54] zigzag[5] = [20, 22, 33, 38, 46, 51, 55, 60] zigzag[6] = [21, 34, 37, 47, 50, 56, 59, 61] zigzag[7] = [35, 36, 48, 49, 57, 58, 62, 63] x = cv2.imread("samples/lena.tiff", cv2.IMREAD_GRAYSCALE) # cv2.imwrite("samples/lena_gray.jpeg", x.astype(np.uint8)) lista_blocos = create_8x8block(x) bloco_dct = [] t0 = time() # DCT e Quantificação for i in xrange(len(lista_blocos)): bloco = codificador(lista_blocos[i], k1, alfa) bloco_dct.append(bloco) t1 = time() print "O tempo necessário para efectuar a DCT e a Quantificação foi de {} segundos".format(round(t1 - t0, 3)) # codificação parametro DC bloco_dct_dpcm, dc_cod = dpcm(bloco_dct) t2 = time() print "O tempo necessário para efectuar a codificação DC foi de {} segundos".format(round(t2 - t1, 3)) if debug: print lista_blocos[test_block] print bloco_dct_dpcm[test_block] # codificacao ac bloco_dct_dpcm_zz = zig_zag(bloco_dct_dpcm, zigzag, debug, test_block) t3 = time() print "O tempo necessário para efectuar a codificação AC foi de {} segundos".format(round(t3 - t2, 3)) # codificação huffman e escrita para ficheiro bitstream_cod = codifica_huff(bloco_dct_dpcm_zz, bloco_dct_dpcm, debug) t4 = time() print "O tempo necessário para o bloco de entropy coding (huffman) foi de {} segundos".format(round(t4 - t3, 3)) # imprime imagem x_desc = revert_to_original_block(bloco_dct_dpcm, x.shape) #cv2.imshow("Lena dc Q = {}.jpeg".format(q), x_desc.astype(np.uint8)) #cv2.waitKey(0) & 0xFF cv2.imwrite("Lena dc Q = {}.jpeg".format(q), x_desc.astype(np.uint8)) if debug: print "O bit Stream é valido? = " + str(bitstream_cod == ler("Lena_Cod.huf")) # leitura do ficheiro e reconstrução do ac e dc dc, ac, n_blocos = le_huff(test_block) if debug: print "o valor do DC descodificado é igual ao codificado = " + str(dc == dc_cod) t5 = time() print "O tempo necessário para a leitura do ficheiro e reconstrução do ac e dc foi de {} " \ "segundos".format(round(t5 - t4, 3)) # descodificacao ac bloco_desc_dct_dpcm = zag_zig(ac, zigzag, debug, test_block) t6 = time() print "O tempo necessário para a descodificacao ac foi de {} segundos".format(round(t6 - t5, 3)) # Descodificação parametro DC bloco_desc_dct = desc_dpcm(bloco_desc_dct_dpcm, dc) t7 = time() print "O tempo necessário para a descodificacao dc foi de {} segundos".format(round(t7 - t6, 3)) if debug: print bloco_desc_dct_dpcm[test_block] print bloco_dct[test_block] bloco_rec = [] # descodificação for i in xrange(n_blocos): bloco = descodificador(bloco_desc_dct[i], k1, alfa) bloco_rec.append(bloco) t8 = time() print "O tempo necessário para a dct inversa dc foi de {} segundos".format(round(t8 - t7, 3)) if debug: print lista_blocos[test_block] print np.rint(bloco_rec[test_block]) print lista_blocos[test_block]-bloco_rec[test_block] x_rec = revert_to_original_block(bloco_rec, x.shape) cv2.imshow("Lena descodificada Q = {}".format(q), x_rec.astype(np.uint8)) cv2.waitKey(0) & 0xFF cv2.imwrite("Lena descodificada Q = {}.jpg".format(q), x_rec.astype(np.uint8)) print "factor q = " + str(q) print "alfa = " + str(alfa) print "SNR = " + str(calculoSNR(x, x_rec)) size_ini = path.getsize("samples/lena.tiff") size_end = path.getsize("Lena descodificada Q = {}.jpeg".format(q)) print "A dimensão do ficheiro original é de {} Kb".format(round(size_ini / 1024., 2)) print "A dimensão do ficheiro codificado é de {} Kb".format(round(size_end / 1024., 2)) print "A taxa de compressão conseguida foi de {}".format(1. * size_ini / size_end) print "O saldo da compressão foi de {} Kb".format(round((size_ini - size_end) / 1024., 2)) print "========================================================================================================" print "========================================================================================================" print "========================================================================================================" print print main() ```
{ "source": "joaofilipevaz/IASA-TP3", "score": 3 }
#### File: agente_prosp/controlo_delib/modelo_mundo.py ```python from psa.psa5.util import dirmov from agente_prosp.controlo_delib.operador_mover import OperadorMover class ModeloMundo: def __init__(self): self.__estado = None self.__estados = [] self.__operadores = [OperadorMover(self, ang) for ang in dirmov()] self.__alterado = False # definicao do nada self.__elementos = {} @property def estado(self): return self.__estado @property def alterado(self): return self.__alterado def obter_elem(self, estado): return self.__elementos.get(estado) def actualizar(self, percepcao): # posicao agente if self.__elementos != percepcao.imagem: self.__elementos = percepcao.imagem self.__alterado = True self.__estados = self.__elementos.keys() else: self.__alterado = False self.__estado = percepcao.posicao def operadores(self): return self.__operadores def estados(self): return self.__estados def mostrar(self, vis): lista_obs = ["alvo", "obstaculo"] alvos_obs = {key: value for (key, value) in self.__elementos.items() if value in lista_obs} vis.elementos(alvos_obs) ``` #### File: src/agente_prosp/controlo.py ```python import abc class Controlo(object): __metaclass__ = abc.ABCMeta @abc.abstractmethod def processar(self, percepcao): """accao""" ```
{ "source": "joaofilis/Banco_Gringotes-", "score": 4 }
#### File: Banco_Gringotes-/Banco gringotes comeback !/financiamento.py ```python gringotes comeback !/financiamento.py def finan(): i = 0 tot_renda = 0 print('Ok mas antes de financiar preciso de algumas informações') pess_rend = int(input('Quantas pessoas possuem renda na sua casa?')) while pess_rend > i: #tem que usar 'for' porque se não fica no looping infinito rend_familia = int(input('Valor da renda do membro:')) tot_renda = (tot_renda + rend_familia) #nesta linha enquanto esta dentro do while o programa vai somando a renda dos familiares temp_serv = int(input('Quanto tempo de serviço você tem ?: ')) print('O total de renda familiar é R${:.2f}'.format(tot_renda)) print('Bem vindo ao financiamento online (cuidado com o que você coloca neste campo meu jovem)') #no caso abaixo eu não sei trabalhar muito bem com booleanos mas vou tentar usar neste caso para o if print('O que você pretende financiar?') print('{1} - Imóveis {2} - Automóveis {3} - Nada vim aqui por engano') escolha = int(input('Bora rapaz diga: ')) if (escolha == 1) or (escolha == 2): val_fin = int(input('Digite o valor do Financiamento: ')) val_entrada = int(input('Digite o valor de entrada: ')) temp_fin = int(input('Digite o tempo de financiamento: ')) tot_fin = ((val_fin-val_entrada)* 1.8) #calculo juros do financiamento val_par = (tot_fin/temp_fin) #calculo valor da parcela rend = ((tot_renda*40)/100) #calculo porcentagem renda familiar val_tot = (val_fin - val_entrada) #calculo falor do financiamento if (tot_fin < rend) or (temp_serv <= 3): print('Valor de financiamento não aprovado pelo sistema') elif (tot_fin > rend) or (temp_serv > 3): print('Parabéns o Banco Gringotes aprova o seu financiamento!') else: print('Algo no seu financiamento está errado') else: print('Obrigado por utilizar o Banco Gringotes') ```
{ "source": "joaofonseca9/mimic3-benchmarks-TBI_edit", "score": 2 }
#### File: mimic3-benchmarks-TBI_edit/mimic3models/preprocessing.py ```python from __future__ import absolute_import from __future__ import print_function import numpy as np import pandas as pd import math import platform import pickle import json import os from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer from fancyimpute import IterativeImputer from sklearn.linear_model import BayesianRidge from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import ExtraTreesRegressor from sklearn.neighbors import KNeighborsRegressor from warnings import simplefilter from sklearn.exceptions import ConvergenceWarning simplefilter("ignore", category=ConvergenceWarning) class Discretizer: def __init__(self, timestep=0.8, store_masks=True, impute_strategy='zero', start_time='zero', config_path=os.path.join(os.path.dirname(__file__), 'resources/discretizer_config.json')): with open(config_path) as f: config = json.load(f) self._id_to_channel = config['id_to_channel'] self._channel_to_id = dict(zip(self._id_to_channel, range(len(self._id_to_channel)))) self._is_categorical_channel = config['is_categorical_channel'] self._possible_values = config['possible_values'] self._normal_values = config['normal_values'] self._header = ["Hours"] + self._id_to_channel self._timestep = timestep self._store_masks = store_masks self._start_time = start_time self._impute_strategy = impute_strategy # for statistics self._done_count = 0 self._empty_bins_sum = 0 self._unused_data_sum = 0 def transform(self, X, header=None, end=None): if header is None: header = self._header assert header[0] == "Hours" eps = 1e-6 N_channels = len(self._id_to_channel) ts = [float(row[0]) for row in X] for i in range(len(ts) - 1): assert ts[i] < ts[i+1] + eps if self._start_time == 'relative': first_time = ts[0] elif self._start_time == 'zero': first_time = 0 else: raise ValueError("start_time is invalid") if end is None: max_hours = max(ts) - first_time else: max_hours = end - first_time N_bins = int(max_hours / self._timestep + 1.0 - eps) # print('N_bins:',N_bins) # print('N_channels:',N_channels) cur_len = 0 begin_pos = [0 for i in range(N_channels)] end_pos = [0 for i in range(N_channels)] for i in range(N_channels): channel = self._id_to_channel[i] begin_pos[i] = cur_len if self._is_categorical_channel[channel]: end_pos[i] = begin_pos[i] + len(self._possible_values[channel]) else: end_pos[i] = begin_pos[i] + 1 cur_len = end_pos[i] data = np.zeros(shape=(N_bins, cur_len), dtype=float) mask = np.zeros(shape=(N_bins, N_channels), dtype=int) original_value = [["" for j in range(N_channels)] for i in range(N_bins)] total_data = 0 unused_data = 0 def write(data, bin_id, channel, value, begin_pos): channel_id = self._channel_to_id[channel] if self._is_categorical_channel[channel]: category_id = self._possible_values[channel].index(value) N_values = len(self._possible_values[channel]) one_hot = np.zeros((N_values,)) one_hot[category_id] = 1 for pos in range(N_values): data[bin_id, begin_pos[channel_id] + pos] = one_hot[pos] else: data[bin_id, begin_pos[channel_id]] = float(value) for row in X: t = float(row[0]) - first_time if t > max_hours + eps: continue bin_id = int(t / self._timestep - eps) assert 0 <= bin_id < N_bins for j in range(1, len(row)): if row[j] == "": continue channel = header[j] channel_id = self._channel_to_id[channel] total_data += 1 if mask[bin_id][channel_id] == 1: unused_data += 1 mask[bin_id][channel_id] = 1 # if row[j]=='10k': # # print('Found value ',row[j],' in channel ', channel) # row[j]='10' #prevent missimputed data to give an error if not self._is_categorical_channel[channel]: try: value=float(row[j]) except: row[j] = float(self._normal_values[channel]) write(data, bin_id, channel, row[j], begin_pos) original_value[bin_id][channel_id] = row[j] # impute missing values if self._impute_strategy not in ['zero', 'normal_value', 'previous', 'next', 'mice']: raise ValueError("impute strategy is invalid") if self._impute_strategy in ['normal_value', 'previous']: prev_values = [[] for i in range(len(self._id_to_channel))] for bin_id in range(N_bins): for channel in self._id_to_channel: channel_id = self._channel_to_id[channel] if mask[bin_id][channel_id] == 1: prev_values[channel_id].append(original_value[bin_id][channel_id]) continue if self._impute_strategy == 'normal_value': imputed_value = self._normal_values[channel] if self._impute_strategy == 'previous': if len(prev_values[channel_id]) == 0: imputed_value = self._normal_values[channel] else: imputed_value = prev_values[channel_id][-1] write(data, bin_id, channel, imputed_value, begin_pos) if self._impute_strategy == 'next': prev_values = [[] for i in range(len(self._id_to_channel))] for bin_id in range(N_bins-1, -1, -1): for channel in self._id_to_channel: channel_id = self._channel_to_id[channel] if mask[bin_id][channel_id] == 1: prev_values[channel_id].append(original_value[bin_id][channel_id]) continue if len(prev_values[channel_id]) == 0: imputed_value = self._normal_values[channel] else: imputed_value = prev_values[channel_id][-1] write(data, bin_id, channel, imputed_value, begin_pos) if self._impute_strategy == 'mice': mice_imputer = IterativeImputer(max_iter=20, random_state=42, sample_posterior=True) categorical=[] for chan in self._is_categorical_channel: if self._is_categorical_channel[chan]: categorical.append(chan) cat_channels=list(self._possible_values.values()) cat_channels = [x for x in cat_channels if x != []] columnTransformer = ColumnTransformer([('ohe', OneHotEncoder(categories=cat_channels,handle_unknown='ignore',sparse=False),categorical)], remainder='passthrough') X_df=pd.DataFrame(X[:,1:],columns=header[1:]) X_df[X_df==""]=np.nan X_ohe = columnTransformer.fit_transform(X_df) X_ohe=pd.DataFrame(X_ohe,columns=columnTransformer.get_feature_names_out()) all_missing=[] for col in X_ohe: if X_ohe[col].isnull().all(): all_missing.append(col) for ft_name in self._normal_values: for missing_ft in all_missing: if ft_name in missing_ft: X_ohe[missing_ft]=float(self._normal_values[ft_name]) X_mice=mice_imputer.fit_transform(X_ohe) X_mice=np.concatenate((X[:,0].reshape(-1,1),X_mice),axis=1) for row in X_mice: t = float(row[0]) - first_time if t > max_hours + eps: continue bin_id = int(t / self._timestep - eps) assert 0 <= bin_id < N_bins data[bin_id,:]=row[1:] empty_bins = np.sum([1 - min(1, np.sum(mask[i, :])) for i in range(N_bins)]) self._done_count += 1 self._empty_bins_sum += empty_bins / (N_bins + eps) self._unused_data_sum += unused_data / (total_data + eps) if self._store_masks: data = np.hstack([data, mask.astype(np.float32)]) # create new header new_header = [] for channel in self._id_to_channel: if self._is_categorical_channel[channel]: values = self._possible_values[channel] for value in values: new_header.append(channel + "->" + value) else: new_header.append(channel) if self._store_masks: for i in range(len(self._id_to_channel)): channel = self._id_to_channel[i] new_header.append("mask->" + channel) new_header = ",".join(new_header) return (data, new_header) def print_statistics(self): print("statistics of discretizer:") print("\tconverted {} examples".format(self._done_count)) print("\taverage unused data = {:.2f} percent".format(100.0 * self._unused_data_sum / self._done_count)) print("\taverage empty bins = {:.2f} percent".format(100.0 * self._empty_bins_sum / self._done_count)) class Normalizer: def __init__(self, fields=None): self._means = None self._stds = None self._fields = None if fields is not None: self._fields = [col for col in fields] self._sum_x = None self._sum_sq_x = None self._count = 0 def _feed_data(self, x): x = np.array(x) self._count += x.shape[0] if self._sum_x is None: self._sum_x = np.sum(x, axis=0) self._sum_sq_x = np.sum(x**2, axis=0) else: self._sum_x += np.sum(x, axis=0) self._sum_sq_x += np.sum(x**2, axis=0) def _save_params(self, save_file_path): eps = 1e-7 with open(save_file_path, "wb") as save_file: N = self._count self._means = 1.0 / N * self._sum_x # print(self._means) self._stds = np.sqrt(1.0/(N - 1) * (self._sum_sq_x - 2.0 * self._sum_x * self._means + N * self._means**2)) # print(self._stds) self._stds[self._stds < eps] = eps self._stds=np.nan_to_num(self._stds, nan=eps) print(self._stds) pickle.dump(obj={'means': self._means, 'stds': self._stds}, file=save_file, protocol=2) def load_params(self, load_file_path): with open(load_file_path, "rb") as load_file: if platform.python_version()[0] == '2': dct = pickle.load(load_file) else: dct = pickle.load(load_file, encoding='latin1') self._means = dct['means'] self._stds = dct['stds'] def transform(self, X): if self._fields is None: fields = range(X.shape[1]) else: fields = self._fields ret = 1.0 * X for col in fields: ret[:, col] = (X[:, col] - self._means[col]) / self._stds[col] return ret ```
{ "source": "joaofracasso/banknoteBrazil", "score": 3 }
#### File: src/modeling/predict_model.py ```python import io import torchvision.transforms as transforms from PIL import Image import onnxruntime as ort import numpy as np class_map = { 0: "10 Reais Frente", 1: "10 Reais Verso", 2: "20 Reais Frente", 3: "20 Reais Verso", 4: "2 Reais Frente", 5: "2 Reais Verso", 6: "50 Reais Frente", 7: "50 Reais Verso", 8: "5 Reais Frente", 9: "5 Reais Verso" } def transform_image(image_bytes): my_transforms = transforms.Compose([ transforms.Resize([224, 224]), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) image = Image.open(io.BytesIO(image_bytes)) return my_transforms(image).unsqueeze_(0) def get_prediction(image_bytes, inference_session): tensor = transform_image(image_bytes=image_bytes) outputs = inference_session.run(None, {'input.1': tensor.numpy()}) y_hat = np.argmax(outputs[0], axis=1)[0] return class_map[y_hat] if __name__ == "__main__": ort_session = ort.InferenceSession('app/models/banknote_best.onnx') filename = [ "data/validation/2reaisFrente/compressed_0_1835891.jpeg", 'data/validation/2reaisVerso/compressed_0_3752849.jpeg', "data/validation/5reaisFrente/compressed_0_1986857.jpeg", "data/validation/5reaisVerso/compressed_0_4651610.jpeg", "data/validation/10reaisFrente/compressed_0_2854543.jpeg", "data/validation/10reaisVerso/compressed_0_2175135.jpeg", 'data/validation/20reaisFrente/compressed_0_1516768.jpeg', 'data/validation/20reaisVerso/compressed_0_3080811.jpeg', 'data/validation/50reaisFrente/compressed_0_1478513.jpeg', 'data/validation/50reaisVerso/compressed_0_3923784.jpeg'] for img in filename: with open(img, 'rb') as f: image_bytes = f.read() tensor = get_prediction(image_bytes, ort_session) print(tensor) ```
{ "source": "joaofracasso/e2e-asr-pt-br", "score": 3 }
#### File: src/datasets/alcaim.py ```python import os from typing import Tuple, Union from pathlib import Path import re import torchaudio from torch import Tensor from torch.utils.data import Dataset from torchaudio.datasets.utils import ( download_url, extract_archive, ) from unidecode import unidecode URL = "alcaim" FOLDER_IN_ARCHIVE = "alcaim" _CHECKSUMS = { "http://www.openslr.org/resources/12/dev-clean.tar.gz": "76f87d090650617fca0cac8f88b9416e0ebf80350acb97b343a85fa903728ab3" } def load_alcaim_item(fileid: str, ext_audio: str, ext_txt: str) -> Tuple[Tensor, int, str, int, int, int]: file_text = os.path.splitext(fileid)[0] + ext_txt # Load audio waveform, sample_rate = torchaudio.load(fileid) # Load text with open(file_text, 'r', encoding='utf8') as ft: utterance = ft.readlines()[0].strip() return ( waveform, sample_rate, re.sub('[^A-Za-z ]+', '', unidecode(utterance)), ) class Alcaim(Dataset): """Create a Dataset for alcaim. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. url (str, optional): The URL to download the dataset from, or the type of the dataset to dowload. Allowed type values are ``"dev-clean"``, ``"dev-other"``, ``"test-clean"``, ``"test-other"``, ``"train-clean-100"``, ``"train-clean-360"`` and ``"train-other-500"``. (default: ``"train-clean-100"``) folder_in_archive (str, optional): The top-level directory of the dataset. (default: ``"alcaim"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ _ext_txt = ".txt" _ext_audio = ".wav" def __init__(self, root: Union[str, Path], folder_in_archive: str = FOLDER_IN_ARCHIVE, download: bool = False) -> None: # Get string representation of 'root' in case Path object is passed root = os.fspath(root) self._path = os.path.join(root, folder_in_archive) #if download: # if not os.path.isdir(self._path): # if not os.path.isfile(archive): # checksum = _CHECKSUMS.get(URL, None) # download_url(URL, root, hash_value=checksum) # extract_archive(archive) self._walker = sorted(str(p) for p in Path(self._path).glob('*/*' + self._ext_audio)) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, int, int]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: tuple: ``(waveform, sample_rate, utterance, speaker_id, chapter_id, utterance_id)`` """ fileid = self._walker[n] return load_alcaim_item(fileid, self._ext_audio, self._ext_txt) def __len__(self) -> int: return len(self._walker) ```
{ "source": "joaofracasso/semanticGP", "score": 3 }
#### File: semanticGP/semanticGP/primitives.py ```python import operator import math import numpy as np def add(a, b): try: return operator.add(a, b) except (OverflowError, ValueError): return 1.0 def sub(a, b): try: return operator.sub(a, b) except (OverflowError, ValueError): return 1.0 def mul(a, b): try: result = operator.mul(a, b) if abs(result) > 1e43: return 1.0 else: return result except (OverflowError, ValueError): return 1.0 def div(left, right): if (abs(right) > 1e-43): result = left / right return result else: return 1.0 def pow(x, y): try: result = math.pow(x, y) if abs(result) > 1e43: return 1.0 else: return result except (OverflowError, ValueError): return 1.0 def exp(value): if value < 1e2: return math.exp(value) else: return 1.0 def log(value): if (value > 1e-100): return math.log(value) else: return 1.0 def sin(x): try: return math.sin(x) except (OverflowError, ValueError): return 1.0 def cos(x): try: return math.cos(x) except (OverflowError, ValueError): return 1.0 ```
{ "source": "joaofrancese/heavy-destruction", "score": 2 }
#### File: Panda/src/cameraHandler.py ```python from pandac.PandaModules import Point3, TransparencyAttrib, CardMaker from direct.interval.IntervalGlobal import Sequence, LerpPosInterval, LerpColorInterval from direct.gui.OnscreenImage import OnscreenImage from pandaUtils import hideMouse # Adapted from: http://www.panda3d.org/forums/viewtopic.php?t=9143 class CameraHandler(): def __init__(self, character): self.character = character # Setup mouse base.disableMouse() hideMouse(True) self.mouseSensitivity = 0.1 base.taskMgr.doMethodLater(0.1, self.prepareCameraTask, "prepare-camera") # Setup camera base.camera.reparentTo(self.character.node) base.camera.setPos(0, 0, 0) base.camera.lookAt(0, 1, 0) # Create target self.target = OnscreenImage(image = "media/target.png", pos = (0, 0, 0)) self.target.setTransparency(TransparencyAttrib.MAlpha) self.target.setScale(0.1) self.target.setSa(0.5) # Create overlay self.overlayCard = CardMaker("overlayCard") self.overlayCard.setFrameFullscreenQuad() self.overlay = base.render2d.attachNewNode(self.overlayCard.generate()) self.overlay.setTransparency(TransparencyAttrib.MAlpha) self.overlay.setColor(0,0,0,0) # Setup interval sequences self.shakeSequence = None self.flashSequence = None def shake(self, amplitude = (1,0,0), duration = 1.0, swings = 1): if self.shakeSequence != None: self.shakeSequence.finish() self.shakeSequence = Sequence() swings = int(swings) duration = float(duration) dt = duration / (swings * 4) ds = Point3(amplitude) for i in range(swings): self.shakeSequence.append(LerpPosInterval(base.camera, dt, ds*-1)) self.shakeSequence.append(LerpPosInterval(base.camera, dt*2, ds)) self.shakeSequence.append(LerpPosInterval(base.camera, dt, Point3(0, 0, 0))) self.shakeSequence.start() def flash(self, color = (1,1,1,1), duration = 1.0, fadeIn = 0.2): if self.flashSequence != None: self.flashSequence.finish() self.flashSequence = Sequence() dtIn = float(duration) * fadeIn dtOut = duration - dtIn if dtIn > 0: self.flashSequence.append(LerpColorInterval(self.overlay, dtIn, color)) if dtOut > 0: self.flashSequence.append(LerpColorInterval(self.overlay, dtOut, (0,0,0,0), color)) self.flashSequence.start() def prepareCameraTask(self, task): base.win.movePointer(0, base.win.getXSize()/2, base.win.getYSize()/2) base.taskMgr.add(self.controlCameraTask, "camera-control") return task.done def controlCameraTask(self, task): char = self.character.node # Get current mouse location. md = base.win.getPointer(0) x = md.getX() y = md.getY() # Rotate character based on mouse coordinates. if base.win.movePointer(0, base.win.getXSize()/2, base.win.getYSize()/2): char.setP((char.getP() - (y - base.win.getYSize()/2)*self.mouseSensitivity) % 360) char.setH((char.getH() - (x - base.win.getXSize()/2)*self.mouseSensitivity) % 360) # Don't let the camera loop over. Allowed range is 0-90 (up) and 360-270 (down). if char.getP() > 90 and char.getP() < 180: char.setP(90) elif char.getP() < 270 and char.getP() >= 180: char.setP(270) return task.cont ``` #### File: Panda/src/character.py ```python from pandac.PandaModules import OdeBody, OdeMass, OdeBoxGeom, Vec3, Point3 from objects.gameObject import GameObject from pandaUtils import SoundWrapper, sign class Character(GameObject): def __init__(self, world): GameObject.__init__(self, world) # Set the speed parameters self.vel = Vec3(0, 0, 0) self.strafespeed = 20.0 self.forwardspeed = 32.0 self.backspeed = 24.0 self.jumpspeed = 20 self.wasJumping = False # Set character dimensions self.size = (4.0, 3.0, 10.0) self.eyeHeight = 9.0 self.offset = Point3(0, 0, self.eyeHeight - (self.size[2]/2)) # Create character node self.node = base.render.attachNewNode("character") self.node.setPos(0, 0, self.eyeHeight) self.node.lookAt(0, 1, self.eyeHeight) # Create physics representation self.mass = OdeMass() self.mass.setBox(50, *self.size) self.body = OdeBody(world.world) self.body.setMass(self.mass) self.updatePhysicsFromPos() self.body.setData(self) self.geom = OdeBoxGeom(world.space, Vec3(*self.size)) self.geom.setBody(self.body) world.space.setSurfaceType(self.geom, world.surfaces["box"]) # Adjust collision bitmasks. self.geom.setCategoryBits(GameObject.bitmaskCharacter) self.geom.setCollideBits(GameObject.bitmaskAll & ~GameObject.bitmaskBullet) # Setup event handling self.keys = [0, 0, 0, 0, 0] self.setupKeys() base.taskMgr.add(self.moveTask, "character-move") # Create footsteps sound self.footstepsSound = base.loader.loadSfx("media/footsteps.wav") self.footstepsSound.setLoop(1) self.footsteps = SoundWrapper(self.footstepsSound) # Create other sounds. self.jumpSound = base.loader.loadSfx("media/jump_start.wav") self.landSound = base.loader.loadSfx("media/jump_fall.wav") def updatePosFromPhysics(self): self.node.setPos(render, self.body.getPosition() + self.offset) self.body.setAngularVel(0, 0, 0) def updatePhysicsFromPos(self): self.body.setPosition(self.node.getPos() - self.offset) self.body.setQuaternion(self.node.getQuat()) def getDir(self): return base.render.getRelativeVector(self.node, (0, 1, 0)) def moveTo(self, pos): self.node.setPos(pos) self.updatePhysicsFromPos() def recoil(self, mag): vel = self.body.getLinearVel() diff = self.getDir() * mag # Limit recoil if sign(vel[0]) != sign(diff[0]) and abs(vel[0]) > 15: diff[0] = 0 if sign(vel[1]) != sign(diff[1]) and abs(vel[1]) > 15: diff[1] = 0 diff[2] = 0 self.body.setLinearVel(vel - diff) def jump(self): vel = self.body.getLinearVel() self.body.setLinearVel(vel[0], vel[1], vel[2] + self.jumpspeed) self.jumpSound.play() def isJumping(self): return abs(self.body.getLinearVel()[2]) > 0.05 def setKey(self, button, value): self.keys[button] = value def setupKeys(self): base.accept("w", self.setKey, [0, 1]) #forward base.accept("s", self.setKey, [1, 1]) #back base.accept("a", self.setKey, [2, 1]) #strafe left base.accept("d", self.setKey, [3, 1]) #strafe right base.accept("space", self.setKey, [4, 1]) #jump base.accept("w-up", self.setKey, [0, 0]) base.accept("s-up", self.setKey, [1, 0]) base.accept("a-up", self.setKey, [2, 0]) base.accept("d-up", self.setKey, [3, 0]) base.accept("space-up", self.setKey, [4, 0]) def moveTask(self, task): # Initialize variables elapsed = globalClock.getDt() x = 0.0 y = 0.0 jumping = self.isJumping() # Calculate movement vector. if self.keys[0] != 0: y = self.forwardspeed if self.keys[1] != 0: y = -self.backspeed if self.keys[2] != 0: x = -self.strafespeed if self.keys[3] != 0: x = self.strafespeed self.vel = Vec3(x, y, 0) self.vel *= elapsed # Move the character along the ground. hpr = self.node.getHpr() self.node.setP(0) self.node.setR(0) self.node.setPos(self.node, self.vel) self.updatePhysicsFromPos() self.node.setHpr(hpr) # Play landing sound (if applicable). if self.wasJumping and not jumping: pass #Landing detection not working. #self.landSound.play() # Jump (if applicable). if self.keys[4] and not jumping: self.jump() self.wasJumping = jumping # Play footsteps if walking. if not jumping and (self.keys[0] != 0 or self.keys[1] != 0 or self.keys[2] != 0 or self.keys[3] != 0): self.footsteps.resume() else: self.footsteps.pause() return task.cont ``` #### File: src/objects/box.py ```python from pandac.PandaModules import OdeBody, OdeMass, OdeBoxGeom, Vec3, Texture, TextureStage from gameObject import GameObject from cement import Cement from random import random from pandaUtils import makeVec4Color from vecUtils import vecFromList, getNeutralDir #more imports at the end of the file class Box(GameObject): disableGracePeriod = 20 def __init__(self, world, parent, color, pos, dir, size, density, unglueThreshold=None, shatterLimit=None, shatterThreshold=None): GameObject.__init__(self, world) if unglueThreshold == None: unglueThreshold = 20 if shatterLimit == None: shatterLimit = 0 if shatterThreshold == None: shatterThreshold = 30 self.size = size self.density = density self.dir = dir self.parent = parent self.color = color = makeVec4Color(color) self.node = parent.attachNewNode("") self.node.setPos(*pos) self.node.setColorScale(color) self.node.setScale(*size) self.node.lookAt(self.node, *dir) self.model = loader.loadModel("models/box.egg") self.model.reparentTo(self.node) self.model.setScale(2.0) self.model.setPos(-1.0, -1.0, -1.0) self.applyTexture() self.mass = OdeMass() self.mass.setBox(density, Vec3(*size) * 2) self.body = OdeBody(world.world) self.body.setMass(self.mass) self.body.setPosition(self.node.getPos()) self.body.setQuaternion(self.node.getQuat()) self.body.setData(self) self.geom = OdeBoxGeom(world.space, Vec3(*size) * 2.0) self.geom.setBody(self.body) world.space.setSurfaceType(self.geom, world.surfaces["box"]) # Adjust collision bitmasks. self.geom.setCategoryBits(GameObject.bitmaskBox) self.geom.setCollideBits(GameObject.bitmaskAll & ~GameObject.bitmaskTileGlued) # Tile, cement and shatter variables. self.tiles = [] self.cements = [] self.disableCount = 0 self.unglueThreshold = unglueThreshold self.shatterLimit = shatterLimit self.shatterThreshold = shatterThreshold def applyTexture(self): self.texture = loader.loadTexture("media/brick_wall.tga") self.texture.setWrapU(Texture.WMRepeat) self.texture.setWrapV(Texture.WMRepeat) self.model.setTexture(self.texture, 1) self.model.setTexScale(TextureStage.getDefault(), max(self.size[0], self.size[1]), self.size[2]) def addTile(self, tile): if tile not in self.tiles: self.tiles.append(tile) def removeTile(self, tile): if tile in self.tiles: self.tiles.remove(tile) def addCement(self, cement): if cement not in self.cements: self.cements.append(cement) def removeCement(self, cement): if cement in self.cements: self.cements.remove(cement) def destroy(self): for tile in self.tiles: tile.unglue() for cement in self.cements: cement.destroy() GameObject.destroy(self) def makeTiles(self, xNeg=False, xPos=False, yNeg=False, yPos=False, zNeg=False, zPos=False, thickness=0.1, unglueThreshold=None, shatterLimit=None, shatterThreshold=None): if xNeg: Tile(self, self.color, (-1,0,0), thickness, self.density, unglueThreshold, shatterLimit, shatterThreshold) if xPos: Tile(self, self.color, ( 1,0,0), thickness, self.density, unglueThreshold, shatterLimit, shatterThreshold) if yNeg: Tile(self, self.color, (0,-1,0), thickness, self.density, unglueThreshold, shatterLimit, shatterThreshold) if yPos: Tile(self, self.color, (0, 1,0), thickness, self.density, unglueThreshold, shatterLimit, shatterThreshold) if zNeg: Tile(self, self.color, (0,0,-1), thickness, self.density, unglueThreshold, shatterLimit, shatterThreshold) if zPos: Tile(self, self.color, (0,0, 1), thickness, self.density, unglueThreshold, shatterLimit, shatterThreshold) def onCollision(self, otherBody, entry): if otherBody.isEmpty(): return self.disableCount = 0 speed = otherBody.getData().body.getLinearVel() #if otherBody.getData().__class__ == Bullet: print speed.length(), self.shatterThreshold, self.shatterLimit ####### if self.active and speed.length() >= self.shatterThreshold and self.shatterLimit > 0: adj = otherBody.getData().body.getMass().getMagnitude() / self.body.getMass().getMagnitude() speedMag = speed.length() * adj speedBase = ((speed * adj) + (self.body.getLinearVel() * 2) / 3) self.shatter(speedMag, speedBase) def shatter(self, speedMag, speedBase): #print 'box shatter' ######### self.destroy() taskMgr.add(self.spawnTask, "box-spawn", extraArgs=[speedMag, speedBase]) # Graphic (camera shake) and sound effects self.world.game.cameraHandler.shake((0,0,2), 0.1) sound = base.loader.loadSfx("media/shatter.wav") sound.setVolume(1.5) sound.play() def spawnTask(self, speedMag, speedBase): pos = self.node.getPos() size = Vec3(self.size) / 2 w = 1 for i in [-w, w]: for j in [-w, w]: for k in [-w, w]: box = Box(self.world, self.parent, self.color, (pos[0] + (i * size[0]), pos[1] + (j * size[1]), pos[2] + (k * size[2])), self.dir, size, self.density, self.unglueThreshold, self.shatterLimit - 1, self.shatterThreshold * 1) speed = (speedBase * (1.5 + random())) + (Vec3(i,j,k) * speedMag * (1 + random())) speed = speed / 2.0 box.body.setLinearVel(speed) box.body.setAngularVel(speedMag * random(), speedMag * random(), speedMag * random()) taskMgr.add(box.disableOnStopTask, "box-disableOnStop") def disableOnStopTask(self, task): if self.body.getLinearVel().length() > 0.1 or self.body.getAngularVel().length() > 0.1: self.disableCount = 0 return task.cont elif self.disableCount < Box.disableGracePeriod: self.disableCount += 1 return task.cont else: self.visibleAfterDestroy = True if DEBUG: self.node.setColorScale(1.0, 2.0, 1.0, 0.5) self.destroy() return task.done def createWall(world, parent, color, pos, size, density, quantity, shatterLimit=None, tileThickness=None, tileShatterLimit=None): boxes = [] diffBase = vecFromList(size) * 2 dir = getNeutralDir() for i in range(quantity[0]): boxes.append([]) for j in range(quantity[1]): boxes[i].append([]) for k in range(quantity[2]): diff = Vec3(diffBase[0]*i, diffBase[1]*j, diffBase[2]*k) box = Box(world, parent, color, Vec3(*pos) + diff, dir, size, density, shatterLimit=shatterLimit) boxes[i][j].append(box) if tileThickness != None: box.makeTiles( xNeg = i == 0, xPos = i == quantity[0] - 1, yNeg = j == 0, yPos = j == quantity[1] - 1, zNeg = False, zPos = k == quantity[2] - 1, thickness = tileThickness, shatterLimit = tileShatterLimit) if i > 0: Cement(boxes[i][j][k], boxes[i-1][j][k]) if j > 0: Cement(boxes[i][j][k], boxes[i][j-1][k]) if k > 0: Cement(boxes[i][j][k], boxes[i][j][k-1]) if k == 0: Cement(boxes[i][k][k], None) return boxes from tile import Tile ``` #### File: src/objects/cement.py ```python from pandac.PandaModules import OdeFixedJoint class Cement: def __init__(self, one, two): b1 = None b2 = None self.one = one if one != None: one.addCement(self) b1 = one.body self.two = two if two != None: two.addCement(self) b2 = two.body self.joint = OdeFixedJoint(one.world.world) self.joint.attach(b1, b2) self.joint.set() self.active = True def destroy(self): if not self.active: return self.joint.destroy() if self.one != None: self.one.removeCement(self) if self.two != None: self.two.removeCement(self) self.active = False ``` #### File: src/objects/gameObject.py ```python from pandac.PandaModules import Quat, BitMask32 import threading class GameObject: bitmaskAll = BitMask32.allOn() bitmaskDefault = BitMask32.bit(0) bitmaskBullet = BitMask32.bit(1) bitmaskCharacter = BitMask32.bit(2) bitmaskBox = BitMask32.bit(3) bitmaskTileGlued = BitMask32.bit(4) bitmaskTile = BitMask32.bit(5) def __init__(self, world): world.addObject(self) self.world = world self.body = None self.geom = None self.node = None self.active = True self.visibleAfterDestroy = False self.dissipateCountdown = 0 def updatePosFromPhysics(self): if self.body != None: self.node.setPosQuat(render, self.body.getPosition(), Quat(self.body.getQuaternion())) def getMomentum(self): mass = self.body.getMass().getMagnitude() speed = self.body.getLinearVel().length() return mass * speed def dissipate(self, factor, interval=5): if self.body == None or self.dissipateCountdown > 0: return self.body.setLinearVel(self.body.getLinearVel() * factor) self.body.setAngularVel(self.body.getAngularVel() * factor) self.dissipateCountdown = interval + 1 self.dissipateRecover() def dissipateRecover(self): self.dissipateCountdown -= 1 if self.dissipateCountdown > 0: self.world.performAfterStep(self.dissipateRecover, []) def onCollision(self, otherBody, entry): pass def destroy(self): self.active = False self.world.removeObject(self) def doDestroy(self): if self.node != None and not self.visibleAfterDestroy: self.node.detachNode() if self.geom != None: self.geom.disable() if self.body != None: self.body.disable() return # This is the code that actually removes the elements instead of just disabling them. # But it doesn't work. obj = self print obj #DEBUG print threading.current_thread() #DEBUG print "0", #DEBUG if obj.node != None: obj.node.detachNode() obj.node = None print "1", #DEBUG if obj.geom != None: self.world.space.remove(obj.geom) #Probably unnecessary print "2", #DEBUG if obj.geom != None: obj.geom.destroy() obj.geom = None print "3", #DEBUG if obj.body != None: obj.body.destroy() obj.body = None print "4" #DEBUG ``` #### File: src/objects/sphere.py ```python from pandac.PandaModules import OdeBody, OdeMass, OdeSphereGeom from gameObject import GameObject from objects.ripple import Ripple class Sphere(GameObject): def __init__(self, world, parent, color, pos, dir, radius, density, posParent=None): GameObject.__init__(self, world) self.node = parent.attachNewNode("") if posParent == None: self.node.setPos(*pos) else: self.node.setPos(posParent, *pos) self.node.setColor(*color) self.node.setScale(radius) self.node.lookAt(self.node, *dir) self.parent = parent self.color = color self.scale = radius self.model = loader.loadModel("models/smiley.egg") self.model.reparentTo(self.node) self.mass = OdeMass() self.mass.setSphere(density, radius) self.body = OdeBody(world.world) self.body.setMass(self.mass) self.body.setPosition(self.node.getPos()) self.body.setQuaternion(self.node.getQuat()) self.body.setData(self) self.geom = OdeSphereGeom(world.space, radius) self.geom.setBody(self.body) world.space.setSurfaceType(self.geom, world.surfaces["sphere"]) def onCollision(self, otherBody, entry): if otherBody.isEmpty(): # Collision on a wall geom = entry.getContactGeom(0) Ripple(self.parent, self.color, geom.getPos(), geom.getNormal() * -1, self.scale * 2.5) ``` #### File: Panda/src/pandaUtils.py ```python from pandac.PandaModules import AudioSound, WindowProperties, Vec4, loadPrcFileData def setWindowTitle(title): wp = WindowProperties() wp.setTitle(title) base.win.requestProperties(wp) def preSetWindowIcon(filename): # Must be called before ShowBase(). loadPrcFileData("", "icon-filename " + filename) def centerWindow(): curProps = base.win.getProperties() wp = WindowProperties() wp.setOrigin((base.pipe.getDisplayWidth() - curProps.getXSize()) / 2, (base.pipe.getDisplayHeight() - curProps.getYSize()) / 2) base.win.requestProperties(wp) def hideMouse(hidden): wp = WindowProperties() wp.setCursorHidden(hidden) base.win.requestProperties(wp) def toggleFullscreen(): wp = WindowProperties() wp.setFullscreen(not base.win.isFullscreen()) base.win.requestProperties(wp) def makeVec4Color(color): return Vec4(color[0], color[1], color[2], color[3] if len(color) == 4 else 1.0) def sign(num): return cmp(num, 0) class SoundWrapper(): def __init__(self, sound): self.sound = sound self.pos = 0 def play(self): self.sound.play() def stop(self): self.sound.stop() def pause(self): if self.sound.status() == AudioSound.PLAYING: self.pos = self.sound.getTime() self.sound.stop() def resume(self): if self.sound.status() == AudioSound.READY: self.sound.setTime(self.pos) self.sound.play() ``` #### File: Panda/src/scene.py ```python from pandac.PandaModules import Point3, Vec3, VBase4, PointLight, AmbientLight, Fog from objects.plane import Plane from objects.sphere import Sphere from objects.spinner import Spinner from objects.box import createWall class Scene: def __init__(self, world, parent, cameraHandler, character): self.world = world self.parent = parent self.objects = [] self.boundaries = [] self.cameraHandler = cameraHandler self.character = character self.bgm = base.loader.loadSfx("media/ambient.ogg") self.bgm.setVolume(2.0) self.bgm.setLoop(True) self.bgm.play() def createBoundaries(self, sizeVector, centerPos): x, y, z = centerPos sx, sy, sz = sizeVector b = [] b.append(Plane(self.world, self.parent, (x, y, z - sz), (0, 0,-1), sx, sy, (0.7, 0.7, 0.8, 0.0), "floor", "media/floor_quake.png")) b.append(Plane(self.world, self.parent, (x, y, z + sz), (0, 0, 1), sx, sy, (0.4, 0.4, 0.4, 0.0), "ceiling", "media/floor_metal_plate.tga")) b.append(Plane(self.world, self.parent, (x - sx, y, z), (-1, 0,0), sy, sz, (0.38, 0.40, 0.35, 0.0), "left", "media/brick_wall.tga")) b.append(Plane(self.world, self.parent, (x + sx, y, z), ( 1, 0,0), sy, sz, (0.38, 0.38, 0.38, 0.0), "right", "media/brick_wall.tga")) b.append(Plane(self.world, self.parent, (x, y - sy, z), (0,-1, 0), sx, sz, (0.35, 0.40, 0.35, 0.0), "front", "media/brick_wall.tga")) b.append(Plane(self.world, self.parent, (x, y + sy, z), (0, 1, 0), sx, sz, (0.35, 0.40, 0.40, 0.0), "back", "media/brick_wall.tga")) return b def setupLighting(self, sizeVector, centerPos): x, y, z = centerPos sx, sy, sz = (Vec3(sizeVector) * 0.8) # Point lights, one in each ceiling corner. for i in (x-sx, x+sx): for j in (y-sy, y+sy): for k in (z+sz,): self.addPointLight((i, j, k)) # Ambient light. c = 0.4 lightA = AmbientLight("light-ambient") lightA.setColor(VBase4(c, c, c, 1)) lightANode = render.attachNewNode(lightA) render.setLight(lightANode) # Fog. fog = Fog("fog") fog.setColor(1, 1, 1) fog.setExpDensity(0.002) render.setFog(fog) def addPointLight(self, pos): k = 12 light = PointLight("light-point") light.setColor(VBase4(k, k, k, 1)) light.setAttenuation(Point3(0.2, 0.1, 0.01)) node = render.attachNewNode(light) node.setPos(*pos) render.setLight(node) class FallingBalls(Scene): def __init__(self, world, parent, cameraHandler, character): Scene.__init__(self, world, parent, cameraHandler, character) self.sphere1 = Sphere(world, parent, (0.7, 0.4, 0.4), (-5, 0, 7), ( 1, 0, 0), 0.9, 30) self.sphere1.body.setLinearVel(-1.0, 0.0, 0.0) self.sphere2 = Sphere(world, parent, (0.4, 0.7, 0.4), ( 0, 0, 12), ( 0, 1, 0), 1.2, 30) self.sphere2.body.setLinearVel(0.0, 0.0, -15.0) self.sphere3 = Sphere(world, parent, (0.4, 0.4, 0.7), ( 5, 0, 4), (-1, 0, 0), 1.0, 30) self.sphere3.body.setLinearVel(5.0, 0.0, 15.0) self.spinner1 = Spinner(world, parent, (0.25, 0.19, 0.13), (-4, 0, 1), (0, 0, -1), (0, -1, 0), (2.0, 1.0, 4.0), 50) self.spinner2 = Spinner(world, parent, (0.25, 0.19, 0.13), ( 4, 0, 1), (0, 0, -1), (0, -1, 0), (2.0, 1.0, 4.0), 50) self.createBoundaries((30, 20, 20), (0, 0, 5)) self.setupLighting((30, 20, 20), (0, 0, 5)) class BasicWall(Scene): def __init__(self, world, parent, cameraHandler, character): Scene.__init__(self, world, parent, cameraHandler, character) # Setup the containing area. volume = (60, 60, 18) center = (0, 0, 18) self.createBoundaries(volume, center) self.setupLighting(volume, center) character.moveTo((0, 0, 15)) # Create the wall itself. color = (0.8, 0.8, 0.8) size = (3, 1, 2) pos = (-20, 30, size[2]) density = 10 quantity = (4, 2, 3) shatterLimit = 2 tileThickness = 0.05 tileShatterLimit = 1 createWall(world, parent, color, pos, size, density, quantity, shatterLimit, tileThickness, tileShatterLimit) ```
{ "source": "JoaoFranciscoAmorim/exercicios-de-Python", "score": 4 }
#### File: exercicios-de-Python/Exercicios_Python/funcaoquecalculaarea.py ```python def area(a,b): s=a*b print('A área do terreno {} por {} é igual a {:.2f} metros quadrados.'.format(a,b,s)) larg=float(input('Largura (em metros): ')) comprimento=float(input('Comprimento (em metros): ')) area(larg,comprimento) ```
{ "source": "joao-frohlich/BCC", "score": 4 }
#### File: ANN/e01/e01.py ```python def f(x): return x ** 5 - 4 * x - 3 def verificacao_bolzano(a, b): print("*** Verificação Bolzano ***") fa = f(a) fb = f(b) print("f(a)= %.4f\nf(b)= %.4f" % (fa, fb)) if f(a) * f(b) < 0: print("Como a f(a)*f(b) < 0 ∃ x | f(x) = 0") return True print("Como a f(a)*f(b) >= 0 ∄ x | f(x) = 0") return False def bissecao(a, b, max_iter): print("\n*** Método da Bisseção ***") print("Procurando uma raiz no intervalo [%.3f,%.3f]" % (a, b)) print("Iteração | (x , y)") fa = f(a) for i in range(max_iter): p = a + (b - a) / 2 print("%d | ( %.6f , %.6f )" % (i + 1, p, f(p))) fp = f(p) if fa * fp > 0: a = p fa = fp else: b = p return p def bissecao2(a, b, epsilon): cont = 1 fa = f(a) while (b - a) / 2 >= epsilon: p = a + (b - a) / 2 fp = f(p) if fa * fp > 0: a = p fa = fp else: b = p cont += 1 return cont a = 0.646 b = 2.431 max_iter = 8 epsilon = 10 ** (-14) if __name__ == "__main__": if verificacao_bolzano(a, b): raiz = bissecao(a, b, max_iter) cont = bissecao2(a, b, epsilon) print("\nRaiz encontrada após %d iterações = %.6f" % (max_iter, raiz)) print("Iterações para erro menor que 10e-14 = %d" % cont) else: print("O intervalo não possui raiz") ``` #### File: ANN/e02/e02.py ```python def f(x): return x ** 3 - 4 * x - 1 def f_(x): return 3 * (x ** 2) - 4 def bolzano(a, b): if (f(a) * f(b)) < 0: return True return False def newton(p, n): for i in range(n): p = p - (f(p) / f_(p)) return p def secantes(pontos, n): for i in range(1, n - 1): pontos.append( (pontos[i - 1] * f(pontos[i]) - pontos[i] * f(pontos[i - 1])) / (f(pontos[i]) - f(pontos[i - 1])) ) return pontos[-1] def posicao_falsa(p0, p1, n): if bolzano(p0, p1): p3 = p0 - f(p0) * (p1 - p0) / (f(p1) - f(p0)) for i in range(n): if bolzano(p0, p3): p0 = p3 else: p1 = p3 p3 = p0 - f(p0) * (p1 - p0) / (f(p1) - f(p0)) return p3 else: print("Reprovado no teorema de Bolzano") # Questao 1 p = float(input("Informe o p0: ")) n = int(input("Informe a quantidade de iterações: ")) ans = newton(p, n) print("{:.8}".format(ans)) # Questao 2 p0 = float(input("Informe o p0: ")) p1 = float(input("Informe o p1: ")) n = int(input("Informe a quantidade de iterações: ")) pontos = [p0, p1] ans = secantes(pontos, n) print("{:.7}".format(ans)) # Questao 3 p0 = float(input("Informe o p0: ")) p1 = float(input("Informe o p1: ")) n = int(input("Informe a quantidade de iterações: ")) ans = posicao_falsa(p0, p1, n) print("{:.7}".format(ans)) ``` #### File: ANN/e04/e04.py ```python from pprint import pprint from numpy import array, diag, diagflat, dot, linalg def jacobi(A, b, N, x): D_ = diagflat(diag(A)) L_U = A - D_ D_ = linalg.inv(D_) for i in range(N): x = dot(dot(-D_, L_U), x) + dot(D_, b) print("X(%d) = " % (i + 1), end="") print(x) return x A = array([[3, -1, 1], [1, 4, 1], [1, 1, 5]]) b = array([3, 8, -2]) chute = array([0, -1, 2]) sol = jacobi(A, b, N=9, x=chute) print("A:", end=" ") pprint(A) print("b:", end=" ") print(b) print("x:", end=" ") print(sol) ``` #### File: CAL/extra/render_graph.py ```python from graphviz import Graph ################################################ # Autor: <NAME> # Nome: Renderizador de grafos ################################################ def save_graph(dot, name): dot.format = "pdf" dot.render(name) def render_graph(g_list, size): dot = Graph() for idx in range(size): dot.node(str(idx)) for u, v, w in g_list: dot.edge(str(u), str(v), str(w)) save_graph(dot, "initial_graph") def load_graph(path): f = open(path, "r") g_list = [] size, edges = map(int, f.readline().split()) for vertex in range(edges): edges = list(map(int, list(f.readline().replace("\n", "").split()))) g_list.append(edges) return g_list, size if __name__ == "__main__": g_list, size = load_graph(input("Input filename-> ")) render_graph(g_list, size) ``` #### File: CAL/extra/render_mst.py ```python from graphviz import Graph ################################################ # Autor: <NAME> # Nome: Renderizador de MST ################################################ def save_graph(dot, name): dot.format = "pdf" dot.render(name) def render_graph(g_list, size, mst_edges, mst_nodes): dot = Graph() for idx in range(size): if idx in mst_nodes: dot.node(str(idx), style="filled", color="lightgrey") else: dot.node(str(idx)) for u, v, w in g_list: if [u, v, w] in mst_edges: dot.edge(str(u), str(v), str(w), color="red") else: dot.edge(str(u), str(v), str(w)) save_graph(dot, "mst_graph") def load_graph(path): f = open(path, "r") g_list = [] mst_edges, mst_nodes = [], set() size, edges, mst_size = map(int, f.readline().split()) for vertex in range(edges): edges = list(map(int, list(f.readline().replace("\n", "").split()))) g_list.append(edges) for vertex in range(mst_size): edges = list(map(int, list(f.readline().replace("\n", "").split()))) mst_edges.append(edges) mst_nodes.add(edges[0]) mst_nodes.add(edges[1]) return g_list, size, mst_edges, mst_nodes if __name__ == "__main__": g_list, size, mst_edges, mst_nodes = load_graph(input("Input filename-> ")) render_graph(g_list, size, mst_edges, mst_nodes) ``` #### File: CGR/T2/snowman.py ```python from OpenGL.GL import * from OpenGL.GLUT import * from OpenGL.GLU import * from colors import * from shapes import SolidCylinder angle_h = 300.0 angle_v = 0 spin = True turn_h = 1 turn_v = 0 render_quality = 100 # max = 100 def keyboard(key, x, y): global spin, turn_h, turn_v, angle_h, angle_v, render_quality key = ord(key) # Esc para sair if key == 27: exit(0) elif key == ord("s"): spin = not spin elif key == ord("a"): turn_h = -1 elif key == ord("d"): turn_h = 1 elif key == ord("w"): turn_v = 0.5 elif key == ord("x"): turn_v = -0.5 # Controle de render elif key == ord("+"): render_quality += 5 elif key == ord("-"): render_quality -= 2 else: angle_h = 300.0 angle_v = 0 turn_h = 1 turn_v = 0 render_quality = 100 def display(): global spin, angle_h, angle_v glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) glClearColor(*blue_sky) glLoadIdentity() gluLookAt(4.2, 1.4, 0.0, 0.0, 0.4, 0.0, 0.0, 1.0, 0.0) # Controle de camera if spin: angle_h += turn_h * 0.5 angle_v += turn_v angle_h %= 360 angle_v %= 360 # Angulo do objeto glRotatef(angle_h, 0, 1, 0) glRotatef(angle_v, 1, 0, 1) glPushMatrix() # Ajustando para centro do frame glTranslatef(0.0, 0.2, 0.0) # Base glPushMatrix() glTranslatef(0.0, -0.298, 0.0) glRotatef(90, 1, 0, 0) glColor3f(*grass) glutSolidCylinder(1.13, 0.002, 100, 1) glPopMatrix() # Cor da neve glColor3f(*white) # Bola maior glTranslatef(0.0, 0.0, 0.0) glutSolidSphere(0.45, render_quality, render_quality * 2) # Bola meio glTranslatef(0.0, 0.45, 0.0) glutSolidSphere(0.3, render_quality, render_quality * 2) # Bola cabeca glTranslatef(0.0, 0.35, 0.0) glutSolidSphere(0.25, render_quality, render_quality * 2) # <NAME> glPushMatrix() glRotatef(26.0, 0, 1, 0) glTranslatef(0.21, 0.08, 0.0) glColor3f(0.1, 0.1, 0.1) glutSolidSphere(0.04, 8, 8) glPopMatrix() # <NAME> glPushMatrix() glRotatef(-26.0, 0, 1, 0) glTranslatef(0.21, 0.08, 0.0) glutSolidSphere(0.04, 8, 8) glPopMatrix() # Nariz glPushMatrix() glTranslatef(0.22, -0.01, 0.0) glRotatef(90, 0, 1, 0) glColor3f(*red) glutSolidCone(0.03, 0.18, 8, 6) glPopMatrix() # Chapeuzinho glColor3f(*black) glPushMatrix() glTranslatef(0, 0.25, 0) SolidCylinder(0.2, 0.03, render_quality) glColor3f(*red) glTranslatef(0, 0.08, 0) SolidCylinder(0.11, 0.05, render_quality) glColor3f(*dark_gray) SolidCylinder(0.1, 0.3, render_quality) glPopMatrix() # Base do globo de vidro glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) glPushMatrix() glTranslatef(0.0, -1.1, 0.0) glColor3f(*dark_gray) glRotatef(90, 1, 0, 0) glutSolidCylinder(1.23, 0.4, 100, 1) glPopMatrix() glPushMatrix() glTranslatef(0.0, -1.13, 0.0) glColor3f(*light_gray) glPushMatrix() glRotatef(90, 1, 0, 0) glutSolidCylinder(1.3, 0.4, 100, 1) glPopMatrix() glTranslatef(0.0, -0.08, 0.0) glColor3f(*dark_gray) glPushMatrix() glRotatef(90, 1, 0, 0) glutSolidCylinder(1.308, 0.24, 100, 1) glPopMatrix() glPopMatrix() # Globo de vidro # Interno glPushMatrix() glColor4f(0.8, 0.8, 0.8, 0.05) glTranslatef(0.0, -0.5, 0.0) glRotatef(90.0, 1, 0, 0) glutSolidSphere(1.3, render_quality, render_quality) glPopMatrix() # Externo glPushMatrix() glColor4f(0.8, 0.8, 0.8, 0.1) glTranslatef(0.0, -0.5, 0.0) glRotatef(90.0, 1, 0, 0) glutSolidSphere(1.4, render_quality, render_quality) glPopMatrix() glDisable(GL_BLEND) glPopMatrix() glFlush() glutSwapBuffers() width = 800 height = 600 glutInit() glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH) glutInitWindowSize(width, height) glutCreateWindow("Boneco de Neve - <NAME>") glutDisplayFunc(display) glutIdleFunc(display) glutKeyboardFunc(keyboard) glMatrixMode(GL_PROJECTION) glViewport(0, 0, width, height) glMatrixMode(GL_PROJECTION) glLoadIdentity() aspect = width / height gluPerspective(45, aspect, 0.01, 100.0) glMatrixMode(GL_MODELVIEW) glShadeModel(GL_SMOOTH) glClearDepth(1.0) glEnable(GL_DEPTH_TEST) glDepthFunc(GL_LEQUAL) glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST) glClearColor(0.0, 0.0, 0.0, 1.0) # Controle de textura mat_shininess = [15.0] mat_specular = [0.75, 0.75, 0.75, 0.75] # Controle de luz light_ambient = [0.6, 0.6, 0.6, 1.0] light_diffuse = [0.8, 0.8, 0.8, 0.8] light_specular = [1.0, 1.0, 1.0, 0.3] light_position = [6.0, 6.0, 2.0, 0.0] glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular) glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess) glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient) glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse) glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular) glLightfv(GL_LIGHT0, GL_POSITION, light_position) glEnable(GL_LIGHTING) glEnable(GL_LIGHT0) glEnable(GL_COLOR_MATERIAL) glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE) glutMainLoop() ``` #### File: COMP/W01/class_DFA.py ```python class DFA: current_state = None current_letter = None valid = True def __init__( self, name, alphabet, states, delta_function, start_state, final_states ): self.name = name self.alphabet = alphabet self.states = states self.delta_function = delta_function self.start_state = start_state self.final_states = final_states self.current_state = start_state def transition_to_state_with_input(self, letter): if self.valid: if (self.current_state, letter) not in self.delta_function.keys(): self.valid = False return self.current_state = self.delta_function[(self.current_state, letter)] self.current_letter = letter else: return def in_accept_state(self): return self.current_state in self.final_states and self.valid def go_to_initial_state(self): self.current_letter = None self.valid = True self.current_state = self.start_state def run_with_word(self, word): self.go_to_initial_state() for letter in word: self.transition_to_state_with_input(letter) continue return self.in_accept_state() def run_with_letters(self, word): self.go_to_initial_state() for letter in word: if self.run_with_letter(letter): return else: return def run_with_letter(self, letter): self.transition_to_state_with_input(letter) return self.current_state def __len__(self): return len(self.states) ``` #### File: BCC/LFA/class_regex.py ```python from utils import read_regex class Regex: def __init__(self, file): self.regex = read_regex(file) def run_regex(self, raw): raw = list(raw) self.word = self.regex.format(raw[0], raw[2], raw[1]) return self.word def __str__(self): return self.word ``` #### File: web/project/__init__.py ```python import os from time import sleep from flask import Flask, render_template, request, redirect from flask_sqlalchemy import SQLAlchemy from project.stdout import log from project.twitter_stream import Extractor from project.utils import gen_hash # Flask main file. It generate html page and read input data # Global vars tweets = list() ids = set() extractors = set() limit = 5 def add_tweet(tweet): """ Append to tweets list a tuple. Each tuple contains tags information and tweet information The tweet ID is added to an IDs set to prevent duplicated tweets """ global tweets tweets.append((tweet[1], tweet[0])) ids.add(tweet[1].get_id()) def update(extractors): """ Iterate above extractors list updating tweets extracted for each """ global tweets for extractor in extractors: log("Retrieving data for tag:", str(extractor.hashtag_to_track)) extractor.run() sleep(1) for stream in extractor.streams: for tweet in stream.listener.tweets: if not tweet[1].get_id() in ids: add_tweet((*extractor.hashtag_to_track, tweet[1])) tweets.sort(reverse=True) class App: def __init__(self): self.app = Flask(__name__) self.tags = set() @self.app.route("/", methods=["GET", "POST"]) def index(): if request.method == "POST": # Deal with diferrent buttons pressed if "tag_input" in request.form.keys(): # Add new tag from input field data = list(request.form["tag_input"].split(";")) for tag in data: if tag not in self.tags: self.tags.add(tag) ex = Extractor([tag]) extractors.add(ex) elif "tag_button" in request.form.keys(): # Removes tag button when is pressed data = request.form["tag_button"] self.tags.remove(data) # Remove tweets from that tag to_delete = list() for i in range(len(tweets)): if tweets[i][1] == data: to_delete.append(i) for i in to_delete[::-1]: tweets.pop(i) # Destroys that tag stream to_delete = list() for i in extractors: if data in i.hashtag_to_track: for stream in i.streams: log("Closing ", data, " stream") stream.disconnect() to_delete.append(i) for i in to_delete[::-1]: extractors.remove(i) else: return redirect(request.url) sleep(1) # Controlling feed showing if len(extractors): while len(tweets) >= limit: tweets.pop(0) update(extractors) return render_template( "index.html", tweets=tweets, tags=self.tags, recovery_code="" ) @self.app.route("/recovery", methods=["GET", "POST"]) def recovery(): if request.method == "POST": recovery_code = request.form["hash_input"] query = db_select(recovery_code) if query: self.tags = query for tag in self.tags: ex = Extractor([tag]) extractors.add(ex) recovery_code = "" else: recovery_code = gen_hash(self.tags) query = db_select(recovery_code) if not query: db_insert(recovery_code, self.tags) return render_template( "index.html", tweets=tweets, tags=self.tags, recovery_code=recovery_code ) def run(self): port = int(os.environ.get("PORT", 5000)) self.app.run(host="0.0.0.0", port=port) app = App().app app.config.from_object("project.config.Config") db = SQLAlchemy(app) class Tag(db.Model): __tablename__ = "tags" id = db.Column(db.Integer, primary_key=True) tags = db.Column(db.String(256), unique=True, nullable=False) def __init__(self, idx, tags): self.id = idx self.tags = tags def db_insert(pk, data): instance = Tag(pk, ";".join(data)) db.session.add(instance) db.session.commit() def db_select(pk): query = Tag.query.get(pk) if query is None: return False else: return set(query.tags.split(";")) ``` #### File: web/project/user.py ```python class User: """ User class stores user data and have get methods """ def __init__(self, author): self.name = author.name self.username = author.screen_name self.user_url = "https://twitter.com/" + self.username def get_name(self): return self.name def get_username(self): return self.username def get_user_url(self): return self.user_url def __str__(self): return "@" + self.username ``` #### File: TEG/past_works/gera_grafo.py ```python import random as r from pprint import pprint import math as m def cria_ponto(): return round(r.uniform(0, 1), 4) def gera_x(n): x = set() while len(x) < n: x.add(cria_ponto()) return x def gera_y(n): y = set() while len(y) < n: y.add(cria_ponto()) return y def gera_coordenadas(n): pontos = [] for x, y in zip(gera_x(n), gera_y(n)): pontos.append((x, y)) return pontos def gera_grafo(vertices, v): arestas = set() while len(arestas) < m.ceil( v * (v - 1) / 3 ): # gerando aleatoriamente (v*(v-1)/3 arestas, arredondando para o maior inteiro v1, v2 = r.randrange(v), r.randrange(v) if v1 != v2: # garantindo que não exista aresta para o próprio vértice arestas.add((v1, v2)) grafo = [[0 for m in range(v)] for n in range(v)] # iniciando grafo[n][m] = 0 for de, para in arestas: # ligando arestas grafo[de][para] = 1 grafo[para][de] = 1 return grafo def pesa_grafo(grafo, vertices): grafo_pesado = [ [-1 for m in range(len(grafo))] for n in range(len(grafo)) ] # compressão de lista para criar a matriz grafo_pesado[n][m] com todos os valores -1 for n in range(len(grafo)): # iteração até n for m in range(len(grafo[n])): # iteração até m if grafo[n][m] == 1: dist = distancia( vertices[m], vertices[n] ) # calculando distancia entre os dois vertices grafo_pesado[m][n] = dist # garantindo grafo não-dirigido grafo_pesado[n][m] = dist # garantindo grafo não-dirigido return grafo_pesado def distancia(p1, p2): return float(str(m.sqrt((p2[0] - p1[0]) ** 2 + (p2[1] - p1[1]) ** 2))[:6]) n = int(input()) vertices = gera_coordenadas(n) grafo = gera_grafo(vertices, n) grafo_pesado = pesa_grafo(grafo, vertices) pprint(grafo) pprint(grafo_pesado) ```
{ "source": "joao-frohlich/covid-sc", "score": 2 }
#### File: hospitals/admin/hospital.py ```python from django.contrib import admin from apps.hospitals.models import Hospital, HospitalBed class HospitalBedInline(admin.TabularInline): model = HospitalBed def get_extra(self, request, obj=None, **kwargs): extra = 3 extra_on_edit = 0 return extra_on_edit if obj else extra class HospitalAdmin(admin.ModelAdmin): empty_value_display = '--' fieldsets = [ (None, { 'fields': ['acronym', ('name', 'city'), ('phonenumber', 'email')], 'classes': ('wide', 'extrapretty'), }), ] inlines = [HospitalBedInline] list_display = ['upper_case_acronym', 'upper_case_name', 'city', 'phonenumber', 'email'] ordering = ['acronym', 'name'] search_fields = ['acronym', 'name'] autocomplete_fields = ['city'] def upper_case_acronym(self, obj): return obj.acronym.upper() upper_case_acronym.short_description = 'acronym' def upper_case_name(self, obj): return obj.name.capitalize() upper_case_name.short_description = 'name' admin.site.register(Hospital, HospitalAdmin) ```
{ "source": "JoaoFula/SnakeGame", "score": 3 }
#### File: JoaoFula/SnakeGame/textbox.py ```python import pygame as pg pg.init() class Textbox: def __init__(self, surface, x, y, sizex=50, sizey=50, caption="", text="", font_size=22, font_color=(0, 0, 0), text_offset=(-35, 1), outline_color=(255,255,255), color_active=(25,25,25), color_inactive=(10,10,10)): self.surface = surface self.color_active = color_active self.color_inactive = color_inactive self.color = color_inactive self.x = x self.y = y self.text = text self.sizex = sizex self.sizey = sizey self.caption = caption self.outline_color = outline_color self.font_size = font_size self.font_color = font_color self.text_offset = text_offset self.checkbox_obj = pg.Rect(self.x, self.y, 12, 12) self.checkbox_outline = self.checkbox_obj.copy() self.active = False def _draw_button_text(self): self.font = pg.font.Font(None, self.font_size) self.font_surf = self.font.render(self.caption, True, self.font_color) w, h = self.font.size(self.caption) self.font_pos = (self.x + 12 / 2 - w / 2 + self.text_offset[0], self.y + 12 / 2 - h / 2 + self.text_offset[1]) self.surface.blit(self.font_surf, self.font_pos) def render_textbox(self): pg.draw.rect(self.surface, (255,255,255), self.checkbox_obj) pg.draw.rect(self.surface, self.outline_color, self.checkbox_outline, 1) font = pg.font.Font(None, self.font_size) txt_surface = font.render(self.text, True, self.color) width = max(200, txt_surface.get_width() + 10) self.checkbox_obj.w = width # Blit the text. self.surface.blit(txt_surface, (self.checkbox_obj.x + 5, self.checkbox_obj.y )) # Blit the input_box rect. #pg.draw.rect( self.surface, self.color, self.checkbox_obj, 2) self._draw_button_text() def update_textbox(self, event_object): if event_object.type == pg.MOUSEBUTTONDOWN: if self.checkbox_obj.collidepoint(event_object.pos): self.active = True else: self.active = False self.color = self.color_active if self.active else self.color_inactive if event_object.type == pg.KEYDOWN: if self.active: if event_object.key == pg.K_RETURN: print(self.text) elif event_object.key == pg.K_BACKSPACE: self.text = self.text[:-1] else: self.text += event_object.unicode ```
{ "source": "joaofurini/GuerreiroDasEstradas", "score": 3 }
#### File: joaofurini/GuerreiroDasEstradas/carroInimigo.py ```python from random import randint import time class CarroInimigo: def __init__(self, poderDeFogo, blindagem): self.__carro = { "Poder De Fogo": poderDeFogo, "Blindagem": blindagem } def getPoderDeFogo(self): return self.__carro['Poder De Fogo'] def getBlindagem(self): return self.__carro['Blindagem'] def tomaTiro(self): danoTiro = randint(0, 6) if danoTiro == 0: print("A blindagem do inimigo foi mais forte") print("Voce deu {} de dano".format(danoTiro)) time.sleep(1.5) else: self.__carro['Blindagem'] -= danoTiro print("\nVOCE ACERTOU TIROS NO CARRO DO INIMIGO") print("e tirou {} da blindagem dele".format(danoTiro)) time.sleep(1.5) ``` #### File: joaofurini/GuerreiroDasEstradas/inimigo.py ```python from random import randint import time class Inimigo: def __init__(self, habilidade, energia): self.__inimigo= { "Habilidade": habilidade, "Energia": energia } self.__habilidade = habilidade self.__energia = energia def getHabilidade(self): return self.__inimigo['Habilidade'] def getEnergia(self): return self.__inimigo['Energia'] def setEnergia(self, value): self.__inimigo['Energia'] = value def perdeuRound(self): self.__inimigo['Energia'] -=1 def mostraEstado(self): print("\n==========================================================") print("ATUALMENTE SEU INIMIGO SE ENCONTRA NO SEGUINTE ESTADO:") for key, value in self.__inimigo.items(): print('{} - {}'.format(key, value)) print("\n==========================================================") def tomaTiro(self): danoTiro = randint(0, 6) if danoTiro == 0: print("Voce teria acertado se o inimigo nao tivesse desviado de ultima hora ") print("Voce tirou {} de dano".format(danoTiro)) time.sleep(1.5) elif danoTiro == 6: self.__inimigo['Energia'] =0 print("Voce acertou um tiro na cabeca do inimigo e ele esta morto") else: self.__inimigo['Energia'] -= danoTiro print("\nVOCE ACERTOU UM TIRO") print("e tirou {} de energia do inimigo".format(danoTiro)) ```
{ "source": "JoaoG250/AracompWeb", "score": 2 }
#### File: aracomp/enigmas/views.py ```python from django.views import View from django.contrib import messages from django.views.generic import TemplateView from django.shortcuts import render, redirect, get_object_or_404 from core.models import Config from enigmas.models import VencedorEnigmas, Enigma from enigmas.forms import RespostaEnigmaForm, EnigmaVencedorForm def get_respostas(enigma): respostas = list(Enigma.objects.order_by('enigma')[:enigma - 1].values_list('resposta', flat=True)) for i in range(len(respostas) + 1, 6): respostas.append('????') return respostas class EnigmaView(View): def post(self, request, *args, **kwargs): # Verificando se a caça ao tesouro já começou start = Config.objects.filter(name='enigmas_start').first() if not start or not start.active: return redirect('home') form = RespostaEnigmaForm(request.POST) if form.is_valid(): resposta = form.cleaned_data['resposta'] enigma = request.session.get('enigma', 1) # Checando se todos os enigmas já foram ultrapassados if enigma > 5: return redirect('enigmas') # Checando resposta enigma_obj = get_object_or_404(Enigma, enigma=enigma) if enigma_obj.checar_resposta(resposta): enigma += 1 else: messages.warning(request, 'Resposta errada :(, tente novamente.') # Atualizando variável do enigma request.session['enigma'] = enigma return redirect('enigmas') context = { 'form': form, 'respostas': get_respostas(enigma), } return render(request, 'enigmas/enigma.html', context) def get(self, request, *args, **kwargs): # Verificando se a caça ao tesouro já começou start = Config.objects.filter(name='enigmas_start').first() if not start or not start.active: return redirect('home') enigma = request.session.get('enigma', 1) if enigma > 5: if VencedorEnigmas.objects.count() > 0: return redirect('enigmas-finalizado') return redirect('enigmas-vencedor') else: enigma_obj = get_object_or_404(Enigma, enigma=enigma) context = { 'form': RespostaEnigmaForm(), 'vencedor': VencedorEnigmas.objects.first(), 'enigma': enigma_obj, 'respostas': get_respostas(enigma), } return render(request, 'enigmas/enigma.html', context) class EnigmaFinalizadoView(View): def get(self, request, *args, **kwargs): enigma = request.session.get('enigma', 1) if VencedorEnigmas.objects.count() > 0 and enigma > 5: context = { 'vencedor': VencedorEnigmas.objects.first(), 'respostas': get_respostas(enigma), } return render(request, 'enigmas/finalizado.html', context) else: return redirect('enigmas') class EnigmaVencedorView(View): def post(self, request, *args, **kwargs): enigma = request.session.get('enigma', 1) if VencedorEnigmas.objects.count() == 0 and enigma > 5: form = EnigmaVencedorForm(request.POST) if form.is_valid(): form.save() messages.success(request, 'Você é o ganhador da caça ao tesouro. Parabêns!!') return redirect('enigmas-finalizado') context = { 'form': form, 'respostas': get_respostas(enigma), } return render(request, 'enigmas/vencedor.html', context) else: return redirect('enigmas') def get(self, request, *args, **kwargs): enigma = request.session.get('enigma', 1) if VencedorEnigmas.objects.count() == 0 and enigma > 5: context = { 'form': EnigmaVencedorForm(), 'respostas': get_respostas(enigma), } return render(request, 'enigmas/vencedor.html', context) else: return redirect('enigmas') class EnigmaReset(View): def get(self, request, *args, **kwargs): request.session['enigma'] = 1 return redirect('enigmas') ``` #### File: aracomp/posts/models.py ```python from pathlib import Path from django.db import models from django.templatetags.static import static from django.contrib.staticfiles import finders from django.utils.crypto import get_random_string from django.core.exceptions import SuspiciousOperation class Post(models.Model): OPTIONS_POST_TYPE = [ ('P', 'Palestras'), ('H', 'Hackathon'), ('M', 'Minicursos'), ('R', 'Mesas Redondas'), ('A', 'Maratona'), ('O', 'Oficinas'), ('B', 'BATE-PAPO') ] post_type = models.CharField('Tipo de Postagem', max_length=1, choices=OPTIONS_POST_TYPE) title = models.CharField('Título', max_length=120) description = models.TextField('Descrição', max_length=800) content = models.TextField('Conteúdo', max_length=3000) image = models.CharField('Path da imagem em static', max_length=200) created = models.DateField('Data de Criação', auto_now_add=True) class Meta: verbose_name = 'Postagem' verbose_name_plural = 'Postagens' def save(self, *args, **kwargs): self.image = self.image.replace('/static/', '') try: if finders.find(self.image): self.image = static(self.image) else: self.image = static('posts/default/post_image.png') except SuspiciousOperation: self.image = static('posts/default/post_image.png') super(Post, self).save(*args, **kwargs) def __str__(self): return f'{self.get_post_type_display()}: {self.title[:50]}' ```
{ "source": "JoaoG250/Docker-Nuxt-Django", "score": 2 }
#### File: api/api/settings.py ```python import os from pathlib import Path from django.core.exceptions import ImproperlyConfigured def get_env_value(env_variable): """Função para recuperar variável de ambiente. Args: env_variable (str): Nome da variável. Raises: ImproperlyConfigured: Levanta a exceção caso a variável não exista. Returns: str: Valor da variável de ambiente. """ try: return str(os.environ[env_variable]).strip() except KeyError: error_msg = f"Set the {env_variable} environment variable" raise ImproperlyConfigured(error_msg) ALLOWED_HOSTS = [] CSRF_COOKIE_SECURE = False SESSION_COOKIE_SECURE = False SECRET_KEY = get_env_value("NUXTDJANGO_SECRET_KEY") DATABASES = { "default": { "ENGINE": "django.db.backends.postgresql_psycopg2", "NAME": get_env_value("NUXTDJANGO_DATABASE_NAME"), "USER": get_env_value("NUXTDJANGO_DATABASE_USER"), "PASSWORD": get_env_value("NUXTDJANGO_DATABASE_PASSWORD"), "HOST": get_env_value("NUXTDJANGO_DATABASE_HOST"), "PORT": get_env_value("NUXTDJANGO_DATABASE_PORT"), } } if get_env_value("NUXTDJANGO_PRODUCTION") == "FALSE": DEBUG = True elif get_env_value("NUXTDJANGO_PRODUCTION") == "TRUE": ALLOWED_HOSTS = ["*"] DEBUG = False CSRF_COOKIE_SECURE = True SESSION_COOKIE_SECURE = True # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Application definition INSTALLED_APPS = [ "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", "rest_framework", "corsheaders", "core", ] MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "corsheaders.middleware.CorsMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", ] ROOT_URLCONF = "api.urls" TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", ], }, }, ] WSGI_APPLICATION = "api.wsgi.application" # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator", }, { "NAME": "django.contrib.auth.password_validation.MinimumLengthValidator", }, { "NAME": "django.contrib.auth.password_validation.CommonPasswordValidator", }, { "NAME": "django.contrib.auth.password_validation.NumericPasswordValidator", }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = "pt-br" TIME_ZONE = "America/Sao_Paulo" USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = "/static/" STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles/") # Media files MEDIA_URL = "/media/" MEDIA_ROOT = os.path.join(BASE_DIR, "media/") # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = "django.db.models.BigAutoField" # CORS configuration CORS_ALLOWED_ORIGINS = [ "http://localhost:3000", ] ```
{ "source": "JoaoG250/Todo-REST", "score": 2 }
#### File: todo_rest/todo/serializers.py ```python from django.urls import reverse from rest_framework import serializers from todo.models import Todo class TodoSerializer(serializers.ModelSerializer): url = serializers.SerializerMethodField() class Meta: model = Todo fields = ('id', 'url', 'titulo', 'descricao', 'concluido') def url(self, obj): return reverse('todo-detail', args=[obj.id]) ```
{ "source": "joaog314/uff-projects", "score": 3 }
#### File: 2020-2-uff-lrp/lista-2/ex-2.py ```python def numbers(n): return (2**n + 1)**2 entr = None i = 1 test_list = [] while entr!=-1: entr = int(input()) if -1 < entr <= 15: test_list.append(entr) for n in test_list: print('Teste '+str(i)) print(numbers(n)) print('') i += 1 ```
{ "source": "joaogabriel15/spfc", "score": 2 }
#### File: spfc/home/views.py ```python from django.contrib.auth.decorators import login_required from django.shortcuts import render, redirect from .models import Civil, Documento, TipoDocumento # Create your views here. @login_required() def home(request): return render(request, 'home/index.html') def pesquisa_id(request, civil_id): civil_dados = Civil.objects.get(id=civil_id) documento_dados = Documento.objects.all() documento_dados_civil = documento_dados.filter(civil=civil_dados) documento_tipo_dados = TipoDocumento.objects.all() return render(request, 'home/index.html',{ 'civil':civil_dados, 'documentos':documento_dados_civil, 'tipos':documento_tipo_dados, }) ```
{ "source": "joaogabrielcarnevale/secure-pipelines-in-aws-workshop", "score": 2 }
#### File: code/SecGuardRails/cfn_validate_lambda.py ```python from __future__ import print_function from boto3.session import Session import json import urllib import boto3 import zipfile import tempfile import botocore import traceback import re import zipfile import time print('Loading function') cf = boto3.client('cloudformation') code_pipeline = boto3.client('codepipeline') def find_artifact(artifacts, name): """Finds the artifact 'name' among the 'artifacts' Args: artifacts: The list of artifacts available to the function name: The artifact we wish to use Returns: The artifact dictionary found Raises: Exception: If no matching artifact is found """ for artifact in artifacts: if artifact['name'] == name: return artifact raise Exception('Input artifact named "{0}" not found in event'.format(name)) def get_template(s3, artifact, file_in_zip): """Gets the template artifact Downloads the artifact from the S3 artifact store to a temporary file then extracts the zip and returns the file containing the CloudFormation template. Args: artifact: The artifact to download file_in_zip: The path to the file within the zip containing the template Returns: The CloudFormation template as a string Raises: Exception: Any exception thrown while downloading the artifact or unzipping it """ tmp_file = tempfile.NamedTemporaryFile() bucket = artifact['location']['s3Location']['bucketName'] key = artifact['location']['s3Location']['objectKey'] with tempfile.NamedTemporaryFile() as tmp_file: print("Retrieving s3://" + bucket + "/" + key) s3.download_file(bucket, key, tmp_file.name) with zipfile.ZipFile(tmp_file.name, 'r') as zip: zip.printdir() return zip.read(file_in_zip) def put_job_success(job, message): """Notify CodePipeline of a successful job Args: job: The CodePipeline job ID message: A message to be logged relating to the job status Raises: Exception: Any exception thrown by .put_job_success_result() """ print('Putting job success') print(message) code_pipeline.put_job_success_result(jobId=job) def put_job_failure(job, message): """Notify CodePipeline of a failed job Args: job: The CodePipeline job ID message: A message to be logged relating to the job status Raises: Exception: Any exception thrown by .put_job_failure_result() """ print('Putting job failure') print(message) code_pipeline.put_job_failure_result(jobId=job, failureDetails={'message': message, 'type': 'JobFailed'}) def continue_job_later(job, message): """Notify CodePipeline of a continuing job This will cause CodePipeline to invoke the function again with the supplied continuation token. Args: job: The JobID message: A message to be logged relating to the job status continuation_token: The continuation token Raises: Exception: Any exception thrown by .put_job_success_result() """ # Use the continuation token to keep track of any job execution state # This data will be available when a new job is scheduled to continue the current execution continuation_token = json.dumps({'previous_job_id': job}) print('Putting job continuation') print(message) code_pipeline.put_job_success_result(jobId=job, continuationToken=continuation_token) def get_user_params(job_data): print(job_data) """Decodes the JSON user parameters and validates the required properties. Args: job_data: The job data structure containing the UserParameters string which should be a valid JSON structure Returns: The JSON parameters decoded as a dictionary. Raises: Exception: The JSON can't be decoded or a property is missing. """ try: # Get the user parameters which contain the artifact and file settings user_parameters = job_data['actionConfiguration']['configuration']['UserParameters'] decoded_parameters = json.loads(user_parameters) except Exception as e: # We're expecting the user parameters to be encoded as JSON # so we can pass multiple values. If the JSON can't be decoded # then fail the job with a helpful message. raise Exception('UserParameters could not be decoded as JSON') if 'input' not in decoded_parameters: # Validate that the artifact name is provided, otherwise fail the job # with a helpful message. raise Exception('Your UserParameters JSON must include the artifact name') if 'file' not in decoded_parameters: # Validate that the template file is provided, otherwise fail the job # with a helpful message. raise Exception('Your UserParameters JSON must include the template file name') if 'output' not in decoded_parameters: # Validate that the template file is provided, otherwise fail the job # with a helpful message. raise Exception('Your UserParameters JSON must include the output bucket') return decoded_parameters def setup_s3_client(job_data): """Creates an S3 client Uses the credentials passed in the event by CodePipeline. These credentials can be used to access the artifact bucket. Args: job_data: The job data structure Returns: An S3 client with the appropriate credentials """ key_id = job_data['artifactCredentials']['accessKeyId'] key_secret = job_data['artifactCredentials']['secretAccessKey'] session_token = job_data['artifactCredentials']['sessionToken'] session = Session( aws_access_key_id=key_id, aws_secret_access_key=key_secret, aws_session_token=session_token) return session.client('s3', config=botocore.client.Config(signature_version='s3v4')) def get_rules(): # Find table client = boto3.client('dynamodb') resource = boto3.resource('dynamodb') response = client.list_tables() logTable = "" for i in range(len(response['TableNames'])): if "AWS-devsecops" in response['TableNames'][i]: logTable = response['TableNames'][i] # Verify that rules are created and if not, create them response = client.scan( TableName=logTable, AttributesToGet=[ 'rule', ] ) if len(response['Items']) == 0: add_rules(logTable) time.sleep(45) # Get all rules from DDB. # Rules have rule, ruledata, type and weight rules = dict() sgRules = [] ec2Rules = [] volRules = [] for n in range(len(response['Items'])): rule = client.get_item( TableName=logTable, Key={ 'rule': {'S':response['Items'][n]['rule']['S']} }, ConsistentRead=True )['Item'] if rule['category']['S'] == "SecurityGroup": sgRules.append(rule) elif rule['category']['S'] == "EC2Instance": ec2Rules.append(rule) elif rule['category']['S'] == "Volume": volRules.append(rule) rules['sgRules'] = sgRules rules['ec2Rules'] = ec2Rules rules['volRules'] = volRules return rules def add_rules(logTable): client = boto3.client('dynamodb') client.put_item( TableName=logTable, Item={ 'rule' : {'S': "IngressOpenToWorld"}, 'category' : {'S': "SecurityGroup"}, 'ruletype' : {'S': "regex"}, 'ruledata' : {'S': "^.*Ingress.*((0\.){3}0\/0)"}, 'riskvalue' : {'N': "100"}, 'active' : {'S': "Y"} } ) client.put_item( TableName=logTable, Item={ 'rule' : {'S': "SSHOpenToWorld"}, 'category' : {'S': "SecurityGroup"}, 'ruletype' : {'S': "regex"}, 'ruledata' : {'S': "^.*Ingress.*(([fF]rom[pP]ort|[tT]o[pP]ort).\s*:\s*u?.(22).*[cC]idr[iI]p.\s*:\s*u?.((0\.){3}0\/0)|[cC]idr[iI]p.\s*:\s*u?.((0\.){3}0\/0).*([fF]rom[pP]ort|[tT]o[pP]ort).\s*:\s*u?.(22))"}, 'riskvalue' : {'N': "100"}, 'active' : {'S': "Y"} } ) client.put_item( TableName=logTable, Item={ 'rule' : {'S': "AllowHttp"}, 'category' : {'S': "SecurityGroup"}, 'ruletype' : {'S': "regex"}, 'ruledata' : {'S': "^.*Ingress.*[fF]rom[pP]ort.\s*:\s*u?.(80)"}, 'riskvalue' : {'N': "3"}, 'active' : {'S': "N"} } ) client.put_item( TableName=logTable, Item={ 'rule' : {'S': "ForbiddenAMIs"}, 'category' : {'S': "EC2Instance"}, 'ruletype' : {'S': "regex"}, 'ruledata' : {'S': "^.*ImageId.\s*:\s*u?.(ami-7a11e211|ami-08111162|ami-f6035893)"}, 'riskvalue' : {'N': "10"}, 'active' : {'S': "N"} } ) client.put_item( TableName=logTable, Item={ 'rule' : {'S': "VolumesNotEncrypted"}, 'category' : {'S': "Volume"}, 'ruletype' : {'S': "regex"}, 'ruledata' : {'S': "^.*Encrypted.?\s*:\s*u?.?false"}, 'riskvalue' : {'N': "90"}, 'active' : {'S': "Y"} } ) def evaluate_template(rules, template): # Validate rules and increase risk value risk = 0 # Extract Security Group Resources sgResources = [] ec2Resources = [] volumeResources = [] failedRules = [] jsonTemplate = json.loads(template) print(json.dumps(jsonTemplate, sort_keys=True, indent=4, separators=(',', ': '))) print(rules) for key in jsonTemplate['Resources'].keys(): if "EC2::SecurityGroup" in jsonTemplate['Resources'][key]['Type']: sgResources.append(jsonTemplate['Resources'][key]) elif "EC2::Instance" in jsonTemplate['Resources'][key]['Type']: ec2Resources.append(jsonTemplate['Resources'][key]) elif "EC2::Volume" in jsonTemplate['Resources'][key]['Type']: volumeResources.append(jsonTemplate['Resources'][key]) for n in range(len(sgResources)): for m in range(len(rules['sgRules'])): if rules['sgRules'][m]['active']['S'] == "Y": if re.match(rules['sgRules'][m]['ruledata']['S'], str(sgResources[n])): risk = risk + int(rules['sgRules'][m]['riskvalue']['N']) failedRules.append(str(rules['sgRules'][m]['rule']['S'])) print("Matched rule: " + str(rules['sgRules'][m]['rule']['S'])) print("Resource: " + str(sgResources[n])) print("Riskvalue: " + rules['sgRules'][m]['riskvalue']['N']) print("") for n in range(len(ec2Resources)): for m in range(len(rules['ec2Rules'])): if rules['ec2Rules'][m]['active']['S'] == "Y": if re.match(rules['ec2Rules'][m]['ruledata']['S'], str(ec2Resources[n])): risk = risk + int(rules['ec2Rules'][m]['riskvalue']['N']) failedRules.append(str(rules['ec2Rules'][m]['rule']['S'])) print("Matched rule: " + str(rules['ec2Rules'][m]['rule']['S'])) print("Resource: " + str(ec2Resources[n])) print("Riskvalue: " + rules['ec2Rules'][m]['riskvalue']['N']) print("") for n in range(len(volumeResources)): for m in range(len(rules['volRules'])): if rules['volRules'][m]['active']['S'] == "Y": if re.match(rules['volRules'][m]['ruledata']['S'], str(volumeResources[n])): risk = risk + int(rules['volRules'][m]['riskvalue']['N']) failedRules.append(str(rules['volRules'][m]['rule']['S'])) print("Matched rule: " + str(rules['volRules'][m]['rule']['S'])) print("Resource: " + str(volumeResources[n])) print("Riskvalue: " + rules['volRules'][m]['riskvalue']['N']) print("") print("Risk value: " +str(risk)) return risk, failedRules def s3_next_step(s3, bucket, risk, failedRules, template, job_id): # Store data in temporary physical file s3Client = boto3.client('s3', config=botocore.client.Config(signature_version='s3v4')) tmp_file = tempfile.NamedTemporaryFile() tmp_zip = tempfile.NamedTemporaryFile() # for item in template: # tmp_file.write(item) tmp_file.write(template) tmp_file.flush() # Process file based on risk value if risk < 5: with zipfile.ZipFile(tmp_zip.name, 'w') as zip: zip.write(tmp_file.name, "valid.template.json") zip.close() s3Client.upload_file( # Add encryption support tmp_zip.name, bucket, 'valid.template.zip') tmp_file.close() put_job_success(job_id, 'Job succesful, minimal or no risk detected.') elif 5 <= risk < 50: with zipfile.ZipFile(tmp_zip.name, 'w') as zip: zip.write(tmp_file.name, "flagged.template.json") zip.close() s3Client.upload_file( # Add encryption support tmp_zip.name, bucket, 'flagged.template.zip') tmp_file.close() put_job_success(job_id, 'Job succesful, medium risk detected, manual approval needed.') elif risk >= 50: tmp_file.close() print("High risk file, fail pipeline") put_job_failure(job_id, 'Function exception: Failed filters ' + str(failedRules)) return 0 def lambda_handler(event, context): """The Lambda function handler Validate input template for security vulnerables. Route as appropriate based on risk assesment. Args: event: The event passed by Lambda context: The context passed by Lambda """ # Extract the Job ID job_id = event['CodePipeline.job']['id'] # Extract the Job Data job_data = event['CodePipeline.job']['data'] try: # Print the entire event for tracking print("Received event: " + json.dumps(event, indent=2)) # Extract the params params = get_user_params(job_data) # Get the list of artifacts passed to the function input_artifacts = job_data['inputArtifacts'] input_artifact = params['input'] template_file = params['file'] output_bucket = params['output'] # Get the artifact details input_artifact_data = find_artifact(input_artifacts, input_artifact) # Get S3 client to access artifact with s3 = setup_s3_client(job_data) # Get the JSON template file out of the artifact template = get_template(s3, input_artifact_data, template_file) print("Template: " + str(template)) # Get validation rules from DDB rules = get_rules() # Validate template from risk perspective. FailedRules can be used if you wish to expand the script to report failed items risk, failedRules = evaluate_template(rules, template) # Based on risk, store the template in the correct S3 bucket for future process s3_next_step(s3, output_bucket, risk, failedRules, template, job_id) except Exception as e: # If any other exceptions which we didn't expect are raised # then fail the job and log the exception message. print('Function failed due to exception.') print(e) traceback.print_exc() put_job_failure(job_id, 'Function exception: ' + str(e)) print('Function complete.') return "Complete." ```
{ "source": "joaogabrielferr/AlgosandDataStructures", "score": 4 }
#### File: AlgosandDataStructures/AlgosandDataStructures/BinarySearch.py ```python def Binarysearch(arr,value): ini = 0 end = len(arr) - 1 while ini<=end: middle = ini + ((end - ini) / 2) middle = int(middle) if arr[middle] == value: return middle if arr[middle] > value: end = middle - 1 else: ini = middle + 1 return -1 ``` #### File: AlgosandDataStructures/AlgosandDataStructures/Stack.py ```python class Stack(): stack = [] numelements = 0 def push(self,value): self.stack.append(value) self.numelements+=1 def pop(self): value = 0 if self.numelements == 0: raise Exception("Trying to pop on a empty stack") else: self.numelements-=1 value = self.stack.pop() return value def empty(self): if self.numelements == 0: return True else: return False def top(self): if self.numelements == 0: raise Exception("Trying to get the top of a empty stack") else: return self.stack[self.numelements-1] def size(self): return self.numelements ```
{ "source": "joaogabrieljs/document-layout-analysis-app", "score": 3 }
#### File: project/api/dla_api.py ```python from subprocess import check_output import base64 import numpy as np from flask import Blueprint, jsonify, request import matplotlib.pyplot as plt from io import BytesIO from project.predictor import make_predictions from pdf2image import convert_from_bytes from PyPDF2 import PdfFileReader, PdfFileWriter dla_blueprint = Blueprint("", __name__) @dla_blueprint.route("/analyse-image-json", methods=["POST"]) def analyse_image_json(): # Read pdf from request and convert to PyPdf2 PdfFileReader pdfFileFromRequest = request.files["pdf_file"].read() pdfFile = PdfFileReader(BytesIO(pdfFileFromRequest)) # Resize all pdf pages for pageNumber in range(pdfFile.getNumPages()): pdfFile.getPage(pageNumber).scaleTo(400, 700) pdfWriter = PdfFileWriter() #pdfWriter.addAttachment('pdfResized.pdf', pdfFile) pdfWriter.addPage(pdfFile.getPage(0)) with open('pdfResized.pdf', 'wb') as f: pdfWriter.write(f) imagesFromPdf = convert_from_bytes(BytesIO(pdfFileFromRequest).read(), size=(400, 700)) for image in imagesFromPdf: openCVImage = np.array(image) openCVImage = openCVImage[:, :, ::-1].copy() # Convert RGB to BGR jsonData = make_predictions(openCVImage, True) predictions = jsonData.get('predictions') boundingBoxes = sort_bounding_boxes(predictions.get('pred_boxes')) jsonParagraphs = {} for index, boundingBox in enumerate(boundingBoxes): paragraph = {} pointX = int(boundingBox[0]) pointY = int(boundingBox[1]) width = int(boundingBox[2]) - pointX height = int(boundingBox[3]) - pointY paragraph['text'] = check_output(['pdftotext', '-x', str(pointX), '-y', str(pointY), '-W', str(width), '-H', str(height), 'pdfResized.pdf', '-enc', 'UTF-8', '-']) paragraph['score'] = predictions.get('scores')[index] paragraph['type'] = get_prediction_type(predictions.get('pred_classes')[index]) jsonParagraphs[index] = paragraph return jsonify(jsonParagraphs) def sort_bounding_boxes(boundingBoxes): npArrayBoundingBoxes = np.array(boundingBoxes) index = np.lexsort((npArrayBoundingBoxes[:,0], npArrayBoundingBoxes[:,1])) sortedBoundingBoxes = npArrayBoundingBoxes[index] return sortedBoundingBoxes def get_prediction_type(type): switcher = { 0: 'text', 1: 'title', 2: 'figure', 3: 'table' } return switcher.get(type, 'nothing') ```
{ "source": "JoaoGabriel-Lima/motivational-bot", "score": 3 }
#### File: JoaoGabriel-Lima/motivational-bot/frog2.py ```python username = input("Coloque o nome do usuário: ") def start_frog(): input("Aperte Enter após o Código QR") name = username msg = "<Status> Servidor Iniciado! Aguarde" count = 1 user = driver.find_element_by_xpath("//span[@title='{}']".format(name)) user.click() msg_box = driver.find_element_by_xpath("//*[@id='main']/footer/div[1]/div[2]/div/div[2]") for index in range(count): msg_box.send_keys(msg) driver.find_element_by_xpath("//*[@id='main']/footer/div[1]/div[3]/button").click() print("Success") def send_time(): # from datetime import datetime # now = datetime.now() # current_time = now.strftime("%H:%M:%S") from getword import frase_motivacional frase_motivacional() current_time = frase_motivacional.frase name = username msg = name + " não fique triste! Fique com uma frase motivacional: " + current_time count = 1 user = driver.find_element_by_xpath("//span[@title='{}']".format(name)) user.click() msg_box = driver.find_element_by_xpath("//*[@id='main']/footer/div[1]/div[2]/div/div[2]") for index in range(count): msg_box.send_keys(msg) driver.find_element_by_xpath("//*[@id='main']/footer/div[1]/div[3]/button").click() from selenium import webdriver driver = webdriver.Chrome() driver.get("https://web.whatsapp.com/") driver.maximize_window() start_frog() ```
{ "source": "joaogabrielrc/fusion", "score": 2 }
#### File: apps/core/forms.py ```python from django import forms from django.core.mail.message import EmailMessage from django.forms.fields import EmailField class ContactForm(forms.Form): name = forms.CharField(label='Nome', max_length=100) email = forms.EmailField(label='E-mail', max_length=100) subject = forms.CharField(label='Assunto', max_length=100) message = forms.CharField(label='Mensagem', widget=forms.Textarea()) def send_mail(self): # Recebe os dados do name = self.cleaned_data['name'] email = self.cleaned_data['email'] subject = self.cleaned_data['subject'] message = self.cleaned_data['message'] content = f'Nome: {name}\nE-mail: {email}\nAssunto: {subject}\nMensagem: {message}' mail = EmailMessage( subject=subject, body=content, from_email='<EMAIL>', to=['<EMAIL>'], headers={'Reply-To': email} ) mail.send() ```
{ "source": "joaogarciadelima/oopy", "score": 4 }
#### File: oopy/caes/cao_abc.py ```python import abc class CaoBase(object): __metaclass__ = abc.ABCMeta qt_patas = 4 carnivoro = True nervoso = False def __init__(self, nome): self.nome = nome @abc.abstractmethod def latir(self, vezes=1): '''exibir latido na saída padrão''' def detectar_intruso(self): self.latir() # mais alguma ação... def __str__(self): return self.nome def __repr__(self): return 'Cao(%r)' % self.nome def __eq__(self, outro): return (isinstance(outro, Cao) and self.__dict__ == outro.__dict__) class Cao(CaoBase): def latir(self, vezes=1): # quando nervoso, late o dobro vezes = vezes + (self.nervoso * vezes) print(self.nome + ':' + ' Au!' * vezes) ``` #### File: joaogarciadelima/oopy/carta.py ```python class Carta(object): def __init__(self, valor, naipe): self.valor = valor self.naipe = naipe def __repr__(self): return 'Carta(valor=%r, naipe=%r)' % (self.valor, self.naipe) ``` #### File: exercicios/tombola/tombola_bug.py ```python class Tombola(object): '''IMPLEMENTACAO COM BUG!!!''' def __init__(self, seq): self.itens = seq def carregar(self, seq): self.itens.extend(seq) def sortear(self): return self.itens.pop() def carregada(self): return bool(self.itens) ``` #### File: exercicios/tombola/tombola.py ```python from random import shuffle class Tombola(object): '''Sorteia itens sem repetir''' def carregar(self, seq): self.itens = list(seq) def misturar(self): shuffle(self.itens) def sortear(self): return self.itens.pop() def carregada(self): return bool(self.itens) ``` #### File: joaogarciadelima/oopy/tombola.py ```python from random import shuffle class Tombola: """sorteia itens sem repetir""" def __init__(self): self.itens = [] def carregada(self): return bool(self.itens) def carregar(self, itens): self.itens = list(itens) def misturar(self): shuffle(self.itens) def sortear(self): return self.itens.pop() ```
{ "source": "JoaoGasparini/ADS2D", "score": 2 }
#### File: JoaoGasparini/ADS2D/teste.py ```python import pytest from principal import soma def test_soma(): assert soma(3, 2) == 5 ```
{ "source": "joaogbcravo/gocdapi", "score": 3 }
#### File: gocdapi/gocdapi/pipeline_groups.py ```python from gocdapi.pipeline_group import PipelineGroup from gocdapi.gobase import GoBase from gocdapi.custom_exceptions import GoCdApiException class PipelineGroups(dict, GoBase): """ Class to hold information on a collection of PipelineGroups objects This class acts like a dictionary """ def __init__(self, go_server): """Inits PipelineGroups objects. Args: go_server (Go): A Go object which this PipelineGroups belongs to. """ dict.__init__(self) GoBase.__init__(self, go_server, path='go/api/config/pipeline_groups/') def __getitem__(self, group_name): """Custom __getitem__ method Overrides the default __getitem__ method from dict class to raise a custom exception when the item doen't exist Args: group_name (str): the name of group of pipelines that it is looking for Return: PipelineGroup: the PipelineGroups with the 'group_name' found Raises: GoCdApiException: When no PipelineGroups with the 'group_name' was found """ try: self.repoll() return dict.__getitem__(self, group_name) except KeyError: raise GoCdApiException("No PipelineGroup with name %s connected to server." % group_name) def __str__(self): """Returns a pretty representation of the object Returns: str: representation of the object """ return 'Pipelines Groups @ %s' % self.go_server.baseurl def _poll(self): """Will get information of all PipelineGroups in the Go server. Uses _data attribute populated by inherited methods, creating PipelineGroups objects with that information. The PipelineGroups's objects are saved as a pair (key,value) with their name as key. """ data = self.load_json_data(self._data) for item in data: pipeline_group = PipelineGroup(self.go_server, item) self[pipeline_group.name] = pipeline_group ```
{ "source": "joaogehlen91/django-easy-tenants", "score": 2 }
#### File: django-easy-tenants/tests/test_easy_tenants.py ```python from easy_tenants import get_current_tenant, get_tenant_model, tenant_context from tests.models import StoreTenant def test_get_tenant_model(): assert StoreTenant == get_tenant_model() def test_get_and_set_current_tenant_thread_local(db): tenant = StoreTenant.objects.create() with tenant_context(tenant): assert tenant == get_current_tenant() def test_tenant_context(db): tenant1 = StoreTenant.objects.create() tenant2 = StoreTenant.objects.create() with tenant_context(tenant1): with tenant_context(tenant2): assert tenant2 == get_current_tenant() assert tenant1 == get_current_tenant() ```
{ "source": "JoaoGF21/apache-spark-programming-with-databricks", "score": 3 }
#### File: Solutions/ASP 3 - Functions/ASP 3.5L - Sort Day Lab.py ```python from pyspark.sql.functions import approx_count_distinct, avg, col, date_format, to_date df = (spark .read .format("delta") .load(events_path) .withColumn("ts", (col("event_timestamp") / 1e6).cast("timestamp")) .withColumn("date", to_date("ts")) .groupBy("date").agg(approx_count_distinct("user_id").alias("active_users")) .withColumn("day", date_format(col("date"), "E")) .groupBy("day").agg(avg(col("active_users")).alias("avg_users")) ) display(df) # COMMAND ---------- # MAGIC %md # MAGIC ### 1. Define UDF to label day of week # MAGIC # MAGIC Use the **`label_day_of_week`** function provided below to create the UDF **`label_dow_udf`** # COMMAND ---------- def label_day_of_week(day: str) -> str: dow = {"Mon": "1", "Tue": "2", "Wed": "3", "Thu": "4", "Fri": "5", "Sat": "6", "Sun": "7"} return dow.get(day) + "-" + day # COMMAND ---------- # ANSWER label_dow_udf = spark.udf.register("label_dow", label_day_of_week) # COMMAND ---------- # MAGIC %md ### 2. Apply UDF to label and sort by day of week # MAGIC - Update the **`day`** column by applying the UDF and replacing this column # MAGIC - Sort by **`day`** # MAGIC - Plot as a bar graph # COMMAND ---------- # ANSWER final_df = (df .withColumn("day", label_dow_udf(col("day"))) .sort("day") ) display(final_df) # COMMAND ---------- # MAGIC %md ### Clean up classroom # COMMAND ---------- classroom_cleanup() # COMMAND ---------- # MAGIC %md-sandbox # MAGIC &copy; 2022 Databricks, Inc. All rights reserved.<br/> # MAGIC Apache, Apache Spark, Spark and the Spark logo are trademarks of the <a href="https://www.apache.org/">Apache Software Foundation</a>.<br/> # MAGIC <br/> # MAGIC <a href="https://databricks.com/privacy-policy">Privacy Policy</a> | <a href="https://databricks.com/terms-of-use">Terms of Use</a> | <a href="https://help.databricks.com/">Support</a> ```
{ "source": "JoaoGFarias/CucumberWithDataSauce", "score": 2 }
#### File: FeatureFileProcessor/exceptions/no_data_file_exception.py ```python class NoDataFileException(Exception): def __init__(self, message="No data file", errors=[]): super().__init__(message, errors) pass ``` #### File: FeatureFileProcessor/file_models/feature_file.py ```python from .scenario import Scenario from functools import reduce class FeatureFile(object): def __init__(self, title, data_path, file_scenarios=[]): self.title = title self.scenarios = [Scenario(file_scenario, data_path) for file_scenario in file_scenarios] def feature_title(self): return self.title def number_of_scenarios(self): return len(self.scenarios) def scenario_at(self, position): return self.scenarios[position-1] def feature_file_as_text(self): printable_scenarios = [scenario.printable_scenario() for scenario in self.scenarios] scenarios_as_text = ["\n" + "\n".join(scenario) for scenario in printable_scenarios] return self.feature_title() + "\n" + "\n".join(scenarios_as_text) ``` #### File: FeatureFileProcessor/folder_processor/processor.py ```python import shutil import os import itertools as it from pathlib import Path class FolderProcessor(object): def __init__(self, target_folder, data_folder, file_processor=None): self.target_folder = target_folder self.data_folder = data_folder self.file_processor = file_processor def prepare_target_folder(self): try: self.delete_target_folder() except FileNotFoundError as e: pass os.makedirs(self.target_folder) def process_data_folder(self): for path in list(Path(self.data_folder).glob('**/*.feature')): parsed_file = self.process_file(path).feature_file_as_text() target_file_path = self.discover_target_file_path(path) Path.mkdir(target_file_path.parent, parents=True, exist_ok=True) with open(target_file_path, "w+") as text_file: text_file.write(parsed_file) def process_file(self, file_path): text = self.file_processor.read_file(file_path) self.file_processor.create_scenarios(text, file_path.parent) return self.file_processor.parsed_feature() def discover_target_file_path(self, path): path_parts = path.parts data_folder_parts = Path(self.data_folder).parts internal_file_path = [ x for x, y in it.zip_longest(path_parts, data_folder_parts) if x != y and x is not None] result = Path(self.target_folder) for folder in internal_file_path: result = result.joinpath(folder) return result def delete_target_folder(self): shutil.rmtree(self.target_folder) ``` #### File: tests/test_data/test_data_interface.py ```python import os from .simple_file.simple_file_data import SimpleFileData from .without_data_file.without_data_file import WithoutDataFile import json class TestDataInterface(object): def __init__(self): self._setup_base_path() self._setup_target_path() self._setup_files() pass def _setup_base_path(self): self.base_path = os.path.join( os.path.abspath( os.path.join( os.path.dirname(__file__)))) def _setup_target_path(self): self.target_path = os.path.join(self.base_path, "target_data") def _setup_files(self): with open(os.path.join(self.base_path, 'files.json')) as f: files = json.load(f)['files'] for key in files.keys(): setattr(self, key, files[key]) def getFileData(self, fileName): return { self.SIMPLE_FILE_DATA: SimpleFileData(self.base_path), self.WITHOUT_DATA_FILE_DATA: WithoutDataFile(self.base_path), }[fileName] ``` #### File: CucumberWithDataSauce/tests/test_folder_processor.py ```python from .context import FolderProcessor from .context import FeatureFileProcessor import os import unittest from nose2dep.core import depends import shutil from .test_data.test_data_interface import TestDataInterface class FolderProcessorTestSuite(unittest.TestCase): @classmethod def setUpClass(self): self.testData = TestDataInterface() self.base_path = self.testData.base_path self.target_path = self.testData.target_path def setUp(self): self.file_processor = FolderProcessor( data_folder=self.base_path, target_folder=self.target_path, file_processor=FeatureFileProcessor(self.base_path)) def tearDown(self): try: shutil.rmtree(self.target_path) except FileNotFoundError as e: pass def test_prepare_target_folder(self): self.file_processor.prepare_target_folder() self.assertTrue(os.path.exists(self.target_path)) self.assertTrue(os.path.isdir(self.target_path)) self.assertEqual(os.listdir(self.target_path), []) @depends(before=test_prepare_target_folder) def test_data_flow(self): self.file_processor.prepare_target_folder() self.file_processor.process_data_folder() self.assertEqual( self.number_files_in_directory(self.target_path), 3) @depends(before=test_prepare_target_folder) def test_deletes_target_folder(self): self.file_processor.prepare_target_folder() self.file_processor.delete_target_folder() self.assertFalse(os.path.exists(self.target_path)) def number_files_in_directory(self, target_path): return sum([len(files) for _, _, files in os.walk(self.target_path)]) ``` #### File: CucumberWithDataSauce/tests/test_scenario.py ```python from .context import FeatureFileProcessor from .context import FeatureFile from .context import Scenario from .context import NoDataFileException import unittest from nose2dep.core import depends from .test_data.test_data_interface import TestDataInterface class FeatureFileProcessorTestSuite(unittest.TestCase): @classmethod def setUpClass(self): self.testData = TestDataInterface() self.simpleFileData = self.testData.getFileData( self.testData.SIMPLE_FILE_DATA) self.base_path = self.simpleFileData.base_path self.withoutDataFile = self.testData.getFileData( self.testData.WITHOUT_DATA_FILE_DATA) self.scenario_witout_data = self.withoutDataFile.scenario_text(1) def setUp(self): self.file_processor = FeatureFileProcessor(self.base_path) def test_prints_with_data_table(self): printable_scenario = self.__create_scenario_at_position__( 1).printable_scenario() expected_scenario = Scenario( self.simpleFileData.printable_table_text(1), self.base_path) self.assertEqual(expected_scenario, printable_scenario) def test_prints_without_scenario_outline(self): scenario = Scenario(self.scenario_witout_data, self.base_path) printable_scenario = scenario.printable_scenario() self.assertEqual(scenario, printable_scenario) def __create_scenario_at_position__(self, scenario_position): return Scenario( self.simpleFileData.scenario_text(scenario_position), self.base_path) if __name__ == '__main__': nose.run() ```
{ "source": "JoaoGFarias/locust-plugins", "score": 2 }
#### File: locust-plugins/examples/pgreader.py ```python import os from locust_plugins.postgresreader import PostgresReader from locust import HttpLocust, task, TaskSet from locust.wait_time import constant customer_reader = PostgresReader(f"env='{os.environ['LOCUST_TEST_ENV']}' AND tb=0 AND lb=1") class UserBehavior(TaskSet): @task def my_task(self): customer = customer_reader.get() self.client.get(f"/?ssn={customer['ssn']}") customer_reader.release(customer) class MyHttpLocust(HttpLocust): task_set = UserBehavior wait_time = constant(0) host = "http://example.com" ``` #### File: locust-plugins/examples/socketio.py ```python from locust import task from locust.core import TaskSet from locust_plugins.locusts import SocketIOLocust from locust.wait_time import constant class UserBehaviour(TaskSet): @task def my_task(self): # example of subscribe self.locust.send('42["subscribe",{"url":"/sport/matches/11995208/draws","sendInitialUpdate": true}]') # you can do http in the same taskset as well self.client.get("/") # wait for pushes, while occasionally sending heartbeats, like a real client would self.locust.sleep_with_heartbeat(10) class MySocketIOLocust(SocketIOLocust): task_set = UserBehaviour wait_time = constant(0) if __name__ == "__main__": host = "http://example.com" ``` #### File: locust-plugins/examples/timescale_listener.py ```python from locust_plugins.listeners import TimescaleListener from locust import HttpLocust, TaskSet, task from locust.wait_time import constant TimescaleListener("example", "env1") class MyTaskSet(TaskSet): @task def index(self): self.client.post("/authentication/1.0/getResults", {"username": "something"}) class MyHttpLocust(HttpLocust): task_set = MyTaskSet wait_time = constant(1) host = "http://example.com" ```
{ "source": "JoaoGFarias/Projects", "score": 3 }
#### File: Numbers/AlarmClock/AlarmClock.py ```python import pygame import threading def play_sound(): """ Plays a loaded sound and waits 5 seconds to do so again """ pygame.mixer.music.play() while pygame.mixer.music.get_busy(): pass threading.Timer(5,play_sound).start() pygame.mixer.init(frequency=22050, size=-16, channels=2, buffer=4096) pygame.mixer.music.load("you_suffer.wav") play_sound() ``` #### File: Python/Numbers/FactorialFinder.py ```python def factIter(num): """ Calculates the factorial of a given natural number interactively. Keyword arguments: num -- the natural number """ if num == 0 : return 1 result = 1 for i in range(1 , num+1): result = result * i return result def factRecur(num): """ Calculates the factorial of a given natural number recursively. Keyword arguments: num -- the natural number """ def factRecurAux(acc,num): if num == 1: return acc else: return factRecurAux(acc*num, num-1) if num == 0: return 1 else: return factRecurAux(1,num) assert factIter(0) == 1 assert factIter(1) == 1 assert factIter(5) == 120 assert factIter(15) == 1307674368000 assert factRecur(0) == 1 assert factRecur(1) == 1 assert factRecur(5) == 120 assert factRecur(15) == 1307674368000 ```
{ "source": "joaogilberto23/ProjetoReiDoCangaco", "score": 3 }
#### File: ProjetoReiDoCangaco/models/categoria_model.py ```python from sql_alchemy import db class CategoriaModel(db.Model): __tablename__ = 'categoria' cod_categoria = db.Column(db.Integer, primary_key=True) nome_categoria = db.Column(db.String(50), nullable=False) def __init__(self, nome_categoria): self.nome_categoria = nome_categoria def json(self): return { 'cod_categoria': self.cod_categoria, 'nome_categoria': self.nome_categoria } @classmethod def find_categoria(cls, cod_categoria): categoria = cls.query.filter_by(cod_categoria=cod_categoria).first() if categoria: return categoria return None @classmethod def find_categoria_nome(cls, nome_categoria): categoria = cls.query.filter_by(nome_categoria=nome_categoria).first() if categoria: return categoria return None def save_categoria(self): db.session.add(self) db.session.commit() def update_categoria(self, cod_categoria, nome_categoria): self.cod_categoria = cod_categoria self.nome_categoria = nome_categoria def delete_categoria(self): db.session.delete(self) db.session.commit() ``` #### File: ProjetoReiDoCangaco/models/produto_model.py ```python from sql_alchemy import db from models.fornecedor_model import FornecedorModel from models.categoria_model import CategoriaModel class ProdutoModel(db.Model): __tablename__ = 'produto' id_produto = db.Column(db.Integer, primary_key=True) cod_produto = db.Column(db.String(50), nullable=False) nome_produto = db.Column(db.String(150), nullable=False) valor_produto = db.Column(db.Float(precision=2), nullable=False) ativo = db.Column(db.String(3), nullable=False) cod_categoria = db.Column( db.Integer, db.ForeignKey('categoria.cod_categoria')) cod_fornecedor = db.Column( db.Integer, db.ForeignKey('fornecedor.cod_fornecedor')) def __init__(self, cod_produto, nome_produto, valor_produto, ativo, cod_categoria, cod_fornecedor): self.cod_produto = cod_produto self.nome_produto = nome_produto self.valor_produto = valor_produto self.ativo = ativo self.cod_categoria = cod_categoria self.cod_fornecedor = cod_fornecedor def getCodProduto(self): return self.cod_produto def json(self): return { 'id_produto': self.id_produto, 'cod_produto': self.cod_produto, 'nome_produto': self.nome_produto, 'valor_produto': self.valor_produto, 'ativo': self.ativo, 'cod_categoria': self.cod_categoria, 'cod_fornecedor': self.cod_fornecedor } @classmethod def find_produto_by_cod(cls, cod_produto): produto = cls.query.filter_by(cod_produto=cod_produto).first() if produto: return produto return None @classmethod def find_produto(cls, id_produto): produto = cls.query.filter_by(id_produto=id_produto).first() if produto: return produto return None @classmethod def find_produto_categoria(cls, cod_fornecedor): produto = cls.query.filter_by(cod_fornecedor=cod_fornecedor).first() if produto: return produto return None @classmethod def find_produto_fornecedor(cls, cod_categoria): produto = cls.query.filter_by(cod_categoria=cod_categoria).first() if produto: return produto return None def save_produto(self): db.session.add(self) db.session.commit() def update_produto(self, id_produto, cod_produto, nome_produto, valor_produto, ativo, cod_categoria, cod_fornecedor): self.id_produto = id_produto self.cod_produto = cod_produto self.nome_produto = nome_produto self.valor_produto = valor_produto self.ativo = ativo self.cod_categoria = cod_categoria self.cod_fornecedor = cod_fornecedor def delete_produto(self): db.session.delete(self) db.session.commit() def __json_categoria(self, cod_categoria): categoria = CategoriaModel.find_categoria(cod_categoria) return categoria.json() def __json_fornecedor(self, cod_fornecedor): fornecedor = FornecedorModel.find_fornecedor(cod_fornecedor) return fornecedor.json() ```
{ "source": "joaogodinho/price_fetcher", "score": 2 }
#### File: price_fetcher/price_fetcher/pipelines.py ```python from scrapy.exceptions import DropItem class DuplicatesPipeline(object): def __init__(self): self.ids_seen = set() def process_item(self, item, spider): if item['url'] in self.ids_seen: raise DropItem("Duplicate item found: %s" % item) else: self.ids_seen.add(item['url']) return item ``` #### File: price_fetcher/spiders/alientech.py ```python import math import scrapy import json from lxml import etree from price_fetcher.items import ProductItem class AlienTechSpider(scrapy.Spider): name = 'AlienTech' allowed_domains = ['alientech.pt'] url_format = 'https://www.alientech.pt/toogas/product/ajax/action/index/uniqueSearchId/{}/page/{}?q=%25&price=20%2C999999999&order=price-high-to-low' added_urls = set() start_urls = [ 'https://www.alientech.pt/toogas/product/ajax/action/index/uniqueSearchId/1/page/1?q=%25&price=20%2C999999999&order=price-high-to-low', ] def parse(self, response): response = json.loads(response.body_as_unicode()) products = etree.HTML(response['products']) for sel in products.xpath('//div[contains(@class, "item")]/form/div[@class="box-product"]'): item = ProductItem() temp = sel.xpath('div/div[@class="prod-name"]')[0] item['name'] = temp.xpath('a/text()')[0].strip() item['url'] = temp.xpath('a/@href')[0] item['part_number'] = temp.xpath('small/text()')[0].strip() prices = sel.xpath('div/div/div[@class="block-price"]')[0] sale_price = prices.xpath('span[contains(@class, "prod-old-price")]/text()')[0].strip().split(' ')[0] sale_price = sale_price.replace(',', '') norm_price = prices.xpath('span[contains(@class, "prod-price")]/text()')[0].strip().split(' ')[0] norm_price = norm_price.replace(',', '') if float(sale_price) != float(norm_price): item['sale_price'] = sale_price item['on_sale'] = True item['price'] = norm_price else: item['sale_price'] = 0 item['on_sale'] = False item['price'] = norm_price yield item for numb in range(1, int(response['max_pages']) + 1): url = self.url_format.format(response['uniqueSearchId'], numb) if numb not in self.added_urls: self.added_urls.add(numb) print(url) yield scrapy.Request(url) ```
{ "source": "JoaoGranja/CarND-Advanced-Lane-Lines", "score": 3 }
#### File: JoaoGranja/CarND-Advanced-Lane-Lines/line.py ```python import numpy as np import cv2 import matplotlib.pyplot as plt from helper_functions import * # Define a class to receive the characteristics of each line detection class Line(): def __init__(self, image_shape, debug = False): # HYPERPARAMETERS # Number of sliding windows self.nwindows = 12 # Width of the windows +/- margin self.margin = 50 #100 # Minimum number of pixels found to recenter window self.minpix = 50 # Iteration number to average the polynomial coefficients self.n_iteration = 10 # Image size self.image_height = image_shape[0] self.image_width = image_shape[1] # y values of the line, spaced by 1 pixel self.line_y = np.linspace(0, self.image_height-1, self.image_height ) # was the line detected in the last iteration? self.detected = False # x values of the last n fits of the line self.recent_xfitted = [] #average x values of the fitted line over the last n iterations self.bestx = None #polynomial coefficients averaged over the last n iterations self.best_fit = None #polynomial coefficients for the most recent fit self.current_fit = [np.array([False])] #radius of curvature of the line in some units self.radius_of_curvature = None #distance in meters of vehicle center from the line self.line_base_pos = None #difference in fit coefficients between last and new fits self.diffs = np.array([0,0,0], dtype='float') #x values for detected line pixels self.allx = None #y values for detected line pixels self.ally = None self.debug = debug def find_lane_pixels(self, binary_warped, base, out_img = None): """ Find the x and y pixels for the lane line. Sliding windows will be used around starting points (base) passed as argument """ # Set height of windows - based on nwindows above and image shape window_height = np.int(binary_warped.shape[0]//self.nwindows) # Identify the x and y positions of all nonzero pixels in the image nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Current positions to be updated later for each window in nwindows x_current = base # Create empty lists to receive the lane pixel indices lane_inds = [] counter_empty_win = 0 dx_current = [] #last_y = binary_warped.shape[0] - window_height #self.line_y = np.linspace(0, self.image_height-1, self.image_height ) # Step through the windows one by one for window in range(self.nwindows): # Identify window boundaries in x and y win_y_low = binary_warped.shape[0] - (window+1)*window_height win_y_high = binary_warped.shape[0] - window*window_height win_x_low = x_current - self.margin win_x_high = x_current + self.margin ## For Visualization - Draw the windows on the visualization image ## if out_img is not None: cv2.rectangle(out_img,(win_x_low,win_y_low), (win_x_high,win_y_high),(0,255,0), 2) # Identify the nonzero pixels in x and y within the window good_inds = ((nonzerox>=win_x_low) & (nonzerox<win_x_high) & (nonzeroy>=win_y_low) & (nonzeroy<win_y_high)).nonzero()[0] # Append these indices to the lists lane_inds.append(good_inds) # If > minpix pixels, recenter next window on their mean position if len(good_inds) > self.minpix: new_x_current = np.int(np.mean(nonzerox[good_inds])) dx_current.append(new_x_current - x_current) x_current = np.int(new_x_current + sum(dx_current)/len(dx_current)) #last_y = win_y_low counter_empty_win = 0 else: if len(dx_current) > 0: x_current = np.int(x_current + sum(dx_current)/len(dx_current)) counter_empty_win +=1 # if 4 sequence windows have few pixels, it is better to stop searching more if counter_empty_win == 4: self.allx = [] self.ally = [] #self.line_y = np.linspace(last_y, self.image_height-1, (self.image_height-win_y_high) ) return if ((x_current - self.margin ) <= 0) or ((x_current + self.margin)>= self.image_width): #self.line_y = np.linspace(win_y_high, self.image_height-1, (self.image_height-win_y_high) ) if self.debug: print("The curve crosses the lateral boundaries") break # Concatenate the arrays of indices (previously was a list of lists of pixels) try: lane_inds = np.concatenate(lane_inds) except ValueError: # Avoids an error if the above is not implemented fully pass # Extract left and right line pixel positions self.allx = nonzerox[lane_inds] self.ally = nonzeroy[lane_inds] def update_poly(self, order = 2, out_img = None): """ Append the polynomial x points to a list "recent_xfitted" and calculate the average x values of the fitted line over the last 'self.n_iteration' iterations. """ if len(self.allx) > 0 and len(self.ally)>0: # Fit a polynomial to each using `np.polyfit' self.current_fit = np.polyfit(self.ally, self.allx, order ) # Get the difference in fit coefficients between last and new fits if self.best_fit is not None: self.diffs = (self.best_fit - self.current_fit) / self.best_fit # Generate x and y values for plotting try: x = self.current_fit[order] for i in range(order): x += self.current_fit[i]*self.line_y**(order-i) if len(self.recent_xfitted) == self.n_iteration: self.recent_xfitted.pop(0) if (len(self.recent_xfitted) > 1) and (len(x) < len(self.recent_xfitted[0])): if self.debug: print("Before concatenating x values", len(x), len(self.recent_xfitted[0])) x = np.concatenate([np.array([x[0]]*(len(self.recent_xfitted[0]) - len(x))), x]) self.recent_xfitted.append(x) except TypeError: # Avoids an error print('The function failed to fit a line!') self.detected = False # Calculate the average x values of the fitted line over the last 'self.n_iteration' iterations self.bestx = np.mean(self.recent_xfitted, axis = 0) self.best_fit = np.polyfit(self.line_y, self.bestx, order ) self.detected = True else: if self.debug: print('No x, y points fitting the line') self.detected = False ## For Visualization ## if out_img is not None: # Colors in the left and right lane regions out_img[self.ally, self.allx] = [255, 0, 0] # Plots the left and right polynomials on the lane lines plt.plot(self.bestx, self.line_y, color='yellow') def first_fit_polynomial(self, binary_warped, basex, order = 2, out_img = None): """ Fit a polynomial with order "order" for the lane line based on the x,y pixels which fall on sliding windows. """ # Find the lane pixels first self.find_lane_pixels(binary_warped, basex, out_img) # Update the polynomial self.update_poly(order, out_img) def search_around_poly(self, binary_warped, order, out_img = None): """ Fit a polynomial with order "order" for the lane line based on the x,y pixels which are around a lane line detected on previous frame """ # Grab activated pixels nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Set the area of search based on activated x-values # within the +/- margin of our polynomial function x_current = 0 for i in range(order+1): x_current += self.best_fit[i]*nonzeroy**(order-i) win_x_low = x_current - self.margin win_x_high = x_current + self.margin lane_inds = ((nonzerox>=win_x_low) & (nonzerox<win_x_high)).nonzero()[0] # Again, extract left and right line pixel positions self.allx = nonzerox[lane_inds] self.ally = nonzeroy[lane_inds] self.update_poly(order, out_img) ## For Visualization ## if out_img is not None: # Create an image to draw on and an image to show the selection window window_img = np.zeros_like(out_img) # Generate a polygon to illustrate the search window area # And recast the x and y points into usable format for cv2.fillPoly() line_window1 = np.array([np.transpose(np.vstack([self.bestx-self.margin, self.line_y]))]) line_window2 = np.array([np.flipud(np.transpose(np.vstack([self.bestx+self.margin, self.line_y])))]) line_pts = np.hstack((line_window1, line_window2)) # Draw the lane onto the warped blank image cv2.fillPoly(window_img, np.int_([line_pts]), (0,255, 0)) out_img = cv2.addWeighted(out_img, 1, window_img, 0.3, 0) ```
{ "source": "JoaoGranja/CarND-Behavioral-Cloning-P3", "score": 3 }
#### File: JoaoGranja/CarND-Behavioral-Cloning-P3/model.py ```python import os, csv, cv2 import numpy as np from scipy import ndimage import tensorflow as tf import sklearn from math import ceil from random import shuffle import matplotlib.pyplot as plt ### ---------------------------------------------- Data Generator ------------------------------------------ ### def generator(samples, batch_size=32): correction = [0, 0.2, -0.2] num_samples = len(samples) while 1: # Loop forever so the generator never terminates shuffle(samples) for offset in range(0, num_samples, batch_size): batch_samples = samples[offset:offset+batch_size] images = [] labels = [] for batch_sample in batch_samples: for i in range(3): filename = batch_sample[i].split('/')[-1] if len(batch_sample[i].split('/')) > 2: # The training data from Udacity has a different format data_dir = batch_sample[i].split('/')[3] else: data_dir = "data" current_path = "/opt/carnd_p3/" + data_dir +'/IMG/' + filename image = ndimage.imread(current_path) yuv=cv2.cvtColor(image,cv2.COLOR_RGB2YUV) images.append(yuv) labels.append(float(line[3]) + correction[i]) ## Data Augmentation augmented_images, augmented_labels = [], [] for image, label in zip(images, labels): augmented_images.append(image) augmented_labels.append(label) augmented_images.append(cv2.flip(image,1)) augmented_labels.append(label*-1.0) X_train = np.array(augmented_images) y_train = np.array(augmented_labels) yield sklearn.utils.shuffle(X_train, y_train) ### ---------------------------------------------- Loading Data ------------------------------------------ ### # Loading data from several sources source_paths = ["/opt/carnd_p3/data_29_06/"] samples = [] for path in source_paths: with open(path+"driving_log.csv") as csvfile: reader = csv.reader(csvfile) if path == "/opt/carnd_p3/data/": next(reader) for line in reader: samples.append(line) ### ---------------------------------------------- Traning and Validation Data Split ------------------------------------------ ### from sklearn.model_selection import train_test_split train_samples, validation_samples = train_test_split(samples, test_size=0.2) print("Train samples length is", len(train_samples)) print("Validation samples length is", len(validation_samples)) ###--------------------------------- Neural Network Model ------------------------------------------------------ ### from keras.models import Model, Sequential from keras.layers import Dense, Lambda, Flatten, Conv2D, MaxPooling2D, Activation, Cropping2D from keras.layers import Dropout from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import TensorBoard debug = True batch_size = 32 epochs = 5 # compile and train the model using the generator function train_generator = generator(train_samples, batch_size=batch_size) validation_generator = generator(validation_samples, batch_size=batch_size) # Build a Sequential Model model = Sequential() model.add(Cropping2D(cropping=((50,20), (0,0)), input_shape=(160,320,3))) model.add(Lambda(lambda x: (x - 128) / 128)) # Conv 1 model.add(Conv2D(filters=24, kernel_size=(5,5), strides=(2,2), padding='valid')) model.add(Activation('relu')) # Conv 2 model.add(Conv2D(filters=36, kernel_size=(5,5), strides=(2,2), padding='valid')) model.add(Activation('relu')) # Conv 3 model.add(Conv2D(filters=48, kernel_size=(5,5), strides=(2,2), padding='valid')) model.add(Activation('relu')) # Conv 4 model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding='valid')) model.add(Activation('relu')) # Conv 5 model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding='valid')) model.add(Activation('relu')) model.add(Flatten()) # Fully Connected 1 model.add(Dense(1000)) # Fully Connected 2 model.add(Dense(100)) # Fully Connected 3 model.add(Dense(1)) # compile the model model.compile(optimizer='adam', loss='mse') if debug: print("Model summary:") # Check the summary of this new model to confirm the architecture model.summary() ### --------------------------------- Train and save the model ------------------------------------------------------ ### tensorboard_callback = TensorBoard(log_dir="./logs") history_object = model.fit_generator(train_generator, steps_per_epoch=ceil(len(train_samples)/batch_size), validation_data=validation_generator, validation_steps=ceil(len(validation_samples)/batch_size), epochs=epochs, verbose=1, callbacks=[tensorboard_callback]) # Save the model model.save('model.h5') ### ---------------------------------------------- Plot Training and Validation Results ----------------------- ### if debug: # print the keys contained in the history object print(history_object.history.keys()) # plot the training and validation loss for each epoch plt.plot(history_object.history['loss']) plt.plot(history_object.history['val_loss']) plt.title('model mean squared error loss') plt.ylabel('mean squared error loss') plt.xlabel('epoch') plt.legend(['training set', 'validation set'], loc='upper right') plt.savefig(os.path.join("examples", "model_loss")) plt.show() plt.close() ```
{ "source": "joaogui1/evoflow", "score": 2 }
#### File: benchmark/benchmark/logger.py ```python import json from termcolor import cprint import numpy as np from tabulate import tabulate from time import time from pathlib import Path from evoflow import __version__ as evoflow_version class Logger(): def __init__(self, system_info, backend): self.system_info = system_info self.ts = int(time()) self.backend = backend if len(system_info['gpu']): gpu = system_info['gpu'][0]['name'].lower().replace(' ', '_') else: gpu = "CPU" result_dir = Path("results/%s" % (evoflow_version)) if not result_dir.exists(): result_dir.mkdir() fname = result_dir / ("%s_%s_%s.json" % (backend, gpu, self.ts)) self.out = open(str(fname), 'w+') self.rows = [] cprint('Bench results will be saved here:%s' % fname, 'green') def record_test(self, test_type, group, name, timings, num_runs, num_generations, shape): shape = list(shape) record = { 'ts': self.ts, 'system': self.system_info, 'backend': self.backend, 'evoflow_version': evoflow_version, 'test_type': test_type, 'group': group, 'name': name, 'generations': num_generations, 'num_runs': num_runs, 'shape': shape, } record['input_size'] = int(np.prod(shape)) record['timings'] = { "avg": float(np.average(timings)), "max": float(np.max(timings)), "min": float(np.min(timings)), "std": float(np.std(timings)), "raw": timings } self.out.write(json.dumps(record) + '\n') self.rows.append([ group, name, shape, round(record['timings']['min'], 3), round(record['timings']['avg'], 3), round(record['timings']['max'], 3), round(record['timings']['std'], 3) ]) def summary(self): print( tabulate( self.rows, headers=['group', 'name', 'shape', 'min', 'avg', 'max', 'std'])) ``` #### File: benchmark/ops/reverse.py ```python from evoflow.ops import Reverse1D, Reverse2D from evoflow.ops import Reverse3D def bench_reverse(population): # setup shape = population.shape population_fraction = 1 # select the right op if len(shape) == 2: mutations_probability = 0.5 OP = Reverse1D elif len(shape) == 3: mutations_probability = (0.5, 0.5) OP = Reverse2D elif len(shape) == 4: mutations_probability = (0.5, 0.5, 0.5) OP = Reverse3D else: raise ValueError("too many dimensions") OP(population_fraction=population_fraction, mutations_probability=mutations_probability)(population) ``` #### File: benchmark/ops/uniform_crossover.py ```python from evoflow.ops import UniformCrossover1D, UniformCrossover2D from evoflow.ops import UniformCrossover3D def bench_uniform_crossover(population): # setup shape = population.shape population_fraction = 1 # select the right op if len(shape) == 2: mutations_probability = 0.5 OP = UniformCrossover1D elif len(shape) == 3: mutations_probability = (0.5, 0.5) OP = UniformCrossover2D elif len(shape) == 4: mutations_probability = (0.5, 0.5, 0.5) OP = UniformCrossover3D else: raise ValueError("too many dimensions") OP(population_fraction=population_fraction, mutations_probability=mutations_probability)(population) ``` #### File: benchmark/benchmark/setup.py ```python from termcolor import cprint from .system import get_system_info def setup(backend): # disable gpu if needed - must be as early as possible. if backend == 'tensorflow-cpu': import tensorflow as tf tf.config.set_visible_devices([], 'GPU') cprint('Tensoflow set to CPU', 'green') # setting backend from evoflow.config import set_backend if backend in ['tensorflow-cpu', 'tensorflow-gpu']: set_backend('tensorflow') else: set_backend(backend) cprint('Requested backend: %s' % backend, 'magenta') if backend in ['tensorflow-gpu', 'cupy']: gpu_enable = True else: gpu_enable = False sys_info = get_system_info(gpu_enable) return sys_info ``` #### File: evoflow/backend/tensorflow.py ```python import tensorflow as tf from tensorflow.errors import InvalidArgumentError from .common import _infer_dtype from evoflow.config import intx, floatx import numpy from evoflow.backend.tf_ops.assign import assign # noqa: F401 from evoflow.backend.tf_ops.assign import assign2 # noqa: F401 # - tf specific functions # ! don't import them in __init__ RAND_GENERATOR = tf.random.get_global_generator() def get_num_gpu(): "Return the number of GPU available to Tensorflow" return len(tf.config.get_visible_devices('GPU')) # -initialization- def tensor(a, dtype=None): """Converts an object to a tensor. Args: a: The source object. dtype: Data type specifier. It is inferred from the input by default. Returns: ndarray: An array on the current device. If ``a`` is already on the device, no copy is performed. """ if is_tensor(a): return a if not dtype and not isinstance(a, numpy.ndarray): # automatic inference based of floatx and intx settings dtype = _infer_dtype(a) return tf.convert_to_tensor(a, dtype=dtype) def copy(tensor): """Copy a tensor Args: tensor (ndarray): tensor to copy Returns ndarray: copied tensor """ return tf.identity(tensor) def zeros(shape, dtype=float): """Returns a new Tensor of given shape and dtype, filled with zeros. Args: shape (int or tuple of ints): Dimensionalities of the array. dtype (str, optional): dtype: Data type specifier. Defaults to 'l'. Returns: ndarray: An tensor filled with zeros. """ return tf.zeros(shape, dtype=dtype) def ones(shape, dtype=float): """Returns a new Tensor of given shape and dtype, filled with ones. Args: shape (int or tuple of ints): Dimensionalities of the array. dtype: Data type specifier. Returns: ndarray: An tensor filled with zeros. """ return tf.ones(shape, dtype=dtype) def fill(shape, fill_value): """Returns a new Tensor of given shape and dtype, filled with the provided value. Args: shape (int or tuple of ints): Dimensionalities of the array. fill_value (int): The value to fill with. Returns: ndarray: An tensor filled with zeros. """ return tf.fill(shape, fill_value) def normal(shape, mean=0, stddev=1.0): """Draw random samples from a normal (Gaussian) distribution. Args: shape (int or tuple of ints): Dimensionalities of the array. mean (float): Mean value. Default to 0.0. stddev (float): Standard deviations. Default to 1.0. Returns: ndarray: Drawn samples from the parameterized normal distribution. """ return RAND_GENERATOR.normal(shape, mean=mean, stddev=stddev) def range(start, stop=None, step=1, dtype=intx()): """Creates a sequence of numbers. Creates a sequence of numbers that begins at `start` and extends by increments of `delta` up to but not including `stop`. Args: start (int): Initial value. Optional. Defaults to 0 stop (int, optional): End value. delta (int, optional): Spacing between values. Defaults to 1. dtype (str, optional): Tensor tyoe. Defaults to intx(). Returns: Tensor: Tensor that contains the requested range. """ return tf.range(start, limit=stop, delta=step, dtype=dtype) # - Reduce - def prod(tensor, axis=None, keepdims=False): """Returns the product of an array along a given axis. Args: tensor (ndarray): Array to take the maximum. axis (int): Along which axis to take the maximum. The flattened array is used by default. Defaults to None. keepdims (bool): If ``True``, the axis is kept as an axis of size one. Default to False. Returns: ndarray: The maximum of ``tensor``, along the axis if specified. """ return tf.math.reduce_prod(tensor, axis=axis, keepdims=keepdims) def max(tensor, axis=None, keepdims=False): """Returns the maximum of an array or the maximum along a given axis. Note:: When at least one element is NaN, the corresponding min value will be NaN. Args: tensor (ndarray): Array to take the maximum. axis (int): Along which axis to take the maximum. The flattened array is used by default. Defaults to None. keepdims (bool): If ``True``, the axis is kept as an axis of size one. Default to False. Returns: ndarray: The maximum of ``tensor``, along the axis if specified. """ return tf.math.reduce_max(tensor, axis=axis, keepdims=keepdims) def min(tensor, axis=None, keepdims=False): """Returns the minimum of an array or the maximum along an axis. Note:: When at least one element is NaN, the corresponding min value will be NaN. Args: tensor (ndarray): Array to take the maximum. axis (int): Along which axis to take the maximum. The flattened array is used by default. Defaults to None. keepdims (bool): If ``True``, the axis is kept as an axis of size one. Default to False. Returns: ndarray: The maximum of ``tensor``, along the axis if specified. """ return tf.math.reduce_min(tensor, axis=axis, keepdims=keepdims) def sum(tensor, axis=None, keepdims=False): """Returns the sum of an array along given axes. Args: tensor (ndarray): Array to sum reduce. axis (int or sequence of ints): Axes along which the sum is taken. keepdims (bool): If ``True``, the specified axes are remained as axes of length one. Returns: ndarray: The sum of ``tensor``, along the axis if specified. """ return tf.math.reduce_sum(tensor, axis=axis, keepdims=keepdims) def mean(tensor, axis=None, keepdims=False): """Returns the sum of an array along given axes. Args: tensor (ndarray): Array to mean reduce. axis (int or sequence of ints): Axes along which the sum is taken. keepdims (bool): If ``True``, the specified axes are remained as axes of length one. Returns: ndarray: The mean of ``tensor``, along the axis if specified. """ return tf.math.reduce_mean(tensor, axis=axis, keepdims=keepdims) def sqrt(tensor): """Computes element-wise square root of the input tensor. Args: tensor (ndarray): tensor Returns: tensor: square root of the input tensor. """ return tf.math.sqrt(tensor) # - Manipulation - def reverse(tensor, axis): """Reverses specific dimensions of a tensor. Args: tensor (tensor): tensor to reverse axis (tensor): axis or tuple of axis """ return tf.reverse(tensor, axis) def roll(tensor, shift, axis): """Rolls the elements of a tensor along an axis. Args: tensor (tensor): tensor to roll shift (tensor): offset to roll axis (tensor): axis to shift by Returns: [type]: [description] """ return tf.roll(tensor, shift, axis) def tile(tensor, reps): """Construct a tensor by repeating tensor the number of times given by reps. Args: tensor (cupy.ndarray): Tensor to transform. reps (int or tuple): The number of repeats. Returns: ndarray: Transformed tensor with repeats. """ return tf.tile(tensor, reps) def concatenate(tup, axis=0): """Joins tensors along a given axis. Args: tup (sequence of arrays): Tensors to be joined. Tensors must have the same cardinality except for the specified axis. axis (int or None): Axis to joint along. If None, tensors are flattened before use. Default is 0. Returns: ndarray: Joined array. """ return tf.concat(tup, axis=axis) # - Utils - def transpose(a): "Transpose the tensor" return tf.transpose(a) def cast(tensor, dtype): """Cast Args: tensor (Tensor): tensor to cast. dtype (str): type to cast. Usually floatx() or intx() Returns: ndarray: Tensor casted in the requested format. """ return tf.cast(tensor, dtype) def dtype(tensor): """"Returns the dtype of a tensor as a string. Args: tensor (tensor): Tensor Returns: str: type of the tensor as string. e.g int32. """ return tensor.dtype.name def flatten(tensor): """Returns a copy of the tensor flatten into one dimension. Args: tensor (ndarray): tensor to flatten Returns: ndarray: flattened tensor """ # note: unsure if that is the fastest way. maybe compute flat_shape in # pure python # flat_shape = prod(tensor.shape) return tf.reshape(tensor, [-1]) def as_numpy_array(t): """Convert tensor to a numpy array. Useful when interfacing with other librairies to have a unified input to them. Args: t (ndarray): tensor to convert Returns: numpy.ndarray: Tensor as numpy array """ if not is_tensor(t): dtype = _infer_dtype(t) if isinstance(t, list): t = tensor(t) else: t = tensor([t]) else: dtype = t.dtype.name return t.numpy().astype(dtype) def reshape(tensor, shape): "reshape tensor" return tf.reshape(tensor, shape) def is_tensor(a): "check if the given object is a tensor" if isinstance(a, tf.Tensor): return True elif isinstance(a, tf.python.framework.tensor_shape.TensorShape): return True else: return False def tensor_equal(tensor1, tensor2): """True if two tensors are exactly equals Args: tensor1 (ndarray): tensor to compare. tensor2 (ndarray): tensor to compare. Returns: Bool: True if exactly equal, False otherwise. """ return tf.reduce_all(tf.equal(tensor1, tensor2)) def assert_near(a, b, absolute_tolerance=0, relative_tolerance=0): """ Returns True if two arrays are element-wise equal within a tolerance. Args: a (ndarray): Tensor with a last dimension of at least k size. b (ndarray): Tensor with a last dimension of at least k size. absolute_tolerance (float): Default to 0 relative_tolerance (float): Default to 0 Returns: bool: True if the two arrays are equal within the given tolerance; False otherwise. Note: This function return True if the following equation is satisfied: `absolute(a - b) <= (absolute_tolerance + relative_tolerance * absolute(b))` # noqa """ try: tf.debugging.assert_near(a, b, atol=absolute_tolerance, rtol=relative_tolerance) except InvalidArgumentError: return False return True # - Math - def _is_scalar(a): if isinstance(a, int): return True elif isinstance(a, float): return True elif is_tensor(a): if a.shape == (): return True else: False def dot(t1, t2): """Return the dot product of two arrays Args: t1 (ndarray): Left tensor t2 (ndarray): Right tensor Return: ndarray: tensor containing the dot product """ # # scalar if (_is_scalar(t1) or _is_scalar(t2)): return t1 * t2 # return tf.reduce_sum(tf.multiply(t1, t2)) elif len(t1.shape) == 1 or len(t2.shape) == 1: return tf.reduce_sum(tf.multiply(t1, t2), axis=-1) else: return tf.matmul(t1, t2) def add(tensor1, tensor2): """Add two tensors Args: tensor1 (ndarray): Left tensor. tensor2 (ndarray): right tensor. """ return tf.add(tensor1, tensor2) def subtract(tensor1, tensor2): """Substract two tensors Args: tensor1 (ndarray): Left tensor. tensor2 (ndarray): right tensor. """ return tf.subtract(tensor1, tensor2) def multiply(tensor1, tensor2): """multiply two tensors Args: tensor1 (ndarray): Left tensor. tensor2 (ndarray): right tensor. """ return tf.multiply(tensor1, tensor2) def divide(numerator, denominator): """divide a tensor by another Args: tensor1 (ndarray): numerator tensor. tensor2 (ndarray): denominator tensor. """ return tf.cast(tf.divide(numerator, denominator), floatx()) def mod(numerator, denominator): """Compute the reminder of the divisin of a tensor by another Args: tensor1 (ndarray): numerator tensor. tensor2 (ndarray): denominator tensor. """ return tf.math.mod(numerator, denominator) def clip(tensor, min_val=0, max_val=None, out=None): """Clips the values of a tensor to a given interval. For example, if an interval of [0, 1] is specified, values smaller than 0 become 0, and values larger than 1 become 1. Efficient version of ``max(min(a, max_val), min_val)`` Args: tensor (ndarray): The input Tensor. min_val (scalar, ndarray or None): The left side of the interval. When None ignored. Defaults to None. max_val (scalar, ndarray or None): The right side of the interval. When None ignored. Defaults to None. Returns: ndarray: Clipped tensor. """ return tf.clip_by_value(tensor, clip_value_min=min_val, clip_value_max=max_val) def abs(tensor): "Calculate the absolute value element-wise." return tf.math.abs(tensor) def broadcasted_norm(tensor): "Norm broadcasted accross dimensions" norm = cast(tf.abs(tensor), intx()) norm = norm**2 norm = tf.reduce_sum(norm, axis=-1) norm = sqrt(cast(norm, floatx())) return norm # population_norm = B.sum(B.abs(flat_pop)**2, axis=-1)**0.5 def norm(tensor, ord='euclidean', axis=None, keepdims=False): """Return one of eight different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the `ord` parameter. Args: tensor (ndarray): Array to take the norm from. If ``axis`` is None, the ``tensor`` must be 1D or 2D. ord (non-zero int, inf, -inf, 'fro'): Norm type. Euclidian by default. See `tf.norm` for explanation: https://www.tensorflow.org/api_docs/python/tf/norm axis (int, 2-tuple of ints, None): `axis` along which the norm is computed. keepdims (bool): If this is set ``True``, the axes which are normed over are left in the resulting tensor with a size of one. Returns: ndarray: Norm of the tensor. """ return tf.norm(tensor, ord=ord, axis=axis, keepdims=keepdims) # - Randomness - def randint(low, high=0, shape=None, dtype=intx()): """Returns a scalar or an array of integer values over [low, high) Args: low (int): If high is None, it is the upper bound of the interval and the lower bound is set to 0. if high is set, it is the lower bound of the interval. high (int, optional):Upper bound of the interval. Defaults to None. shape (None or int or tuple of ints, optional): The shape of returned value. Defaults to None. dtype (str, optional): dtype: Data type specifier. Defaults to 'float32'. Returns: int or ndarray of ints: If size is None, it is single integer sampled. If size is integer, it is the 1D-array of length size element. Otherwise, it is the array whose shape specified by size. """ # just one number if not shape: if high == 0: high = low low = 0 return RAND_GENERATOR.uniform(shape=(1, ), minval=low, maxval=high, dtype=intx())[0] if isinstance(shape, int): shape = (shape, ) return RAND_GENERATOR.uniform(shape=shape, minval=low, maxval=high, dtype=dtype) def shuffle(t, axis=0): """Shuffle tensor along the given axis. Other axis remain in place. Args: tensor (ndarray): tensor to shuffle. axis (int, optional): axis to shuffle on. Default to 0. Returns: None: in place shuffling """ if not axis: # ! tensorflow don't do in place shuffling return tf.random.shuffle(t) else: # FIXME: its a hack as we use numpy which is liklely to cause slowness t = as_numpy_array(t) rng = numpy.random.default_rng() rng.shuffle(t, axis=axis) return tensor(t) def full_shuffle(t): """Shuffle in place a tensor along all of its axis Args: t (ndarray): tensor to shuffle. Returns: tensor: shuffled tensor We need to use transpose Shuffle() 2D [1, 0] -> [1, 0] : Dim 1 [1, 0] -> [0, 1] : restore order 3D Transpose -> new order [1, 0, 2] -> [1, 0, 2] : Dim 1 [2, 1, 0] -> [2, 0, 1] : Dim 2 [1, 2, 0] -> [0, 1, 2] : restore order 4D Transpose -> new order [1, 0, 2, 3] -> [1, 0, 2, 3] : Dim 1 [2, 1, 0, 3] -> [2, 0, 1, 3] : Dim 2 [3, 1, 2, 0] -> [3, 0, 1, 2] : Dim 3 [1, 2, 3, 0] -> [0, 1, 2, 3] : restore order 5D+ nope - might consider patching tf.shuffle at that point :) """ # ! dont use the variable name tensor as it confusion with the tensor() dims = len(t.shape) t = tf.random.shuffle(t) # always shuffle dim0 if dims == 2: # dim 1 t = tf.transpose(t, [1, 0]) t = tf.random.shuffle(t) # restore t = tf.transpose(t, [1, 0]) elif dims == 3: # dim 1 t = tf.transpose(t, [1, 0, 2]) t = tf.random.shuffle(t) # dim 2 t = tf.transpose(t, [2, 1, 0]) t = tf.random.shuffle(t) # restore t = tf.transpose(t, [1, 2, 0]) elif dims == 4: # dim 1 t = tf.transpose(t, [1, 0, 2, 3]) t = tf.random.shuffle(t) # dim 2 t = tf.transpose(t, [2, 1, 0, 3]) t = tf.random.shuffle(t) # dim 3 t = tf.transpose(t, [3, 1, 2, 0]) t = tf.random.shuffle(t) # restore t = tf.transpose(t, [1, 2, 3, 0]) elif dims > 4: print('tensor shape', t.shape) raise ValueError('Tensor Rank > 4 -- not implemented') return t # FIXME: its a hack as we use numpy which is liklely to cause slowness # t = as_numpy_array(t) # rng = numpy.random.default_rng() # for idx in range(len(t.shape)): # rng.shuffle(t, axis=idx) # return tensor(t) # - Indexing - def take(tensor, indices, axis=None): """Takes elements of a Tensor at specified indices along a specified axis Args: tensor (ndarray): Tensor to extract elements from. indices (int or array-like): Indices of elements that this function takes. axis (int, optional): The axis along which to select indices from. The flattened input is used by default. Defaults to None. Returns: ndarray: Tensor containing the values from the specified indices. """ return tf.gather(tensor, indices, axis=axis) def top_k_indices(tensor, k, axis=-1): """ Finds the indices of the k largest entries alongside an axis. Args: tensor (ndarray): Tensor with a last dimension of at least k size. k (i): number of elements to return """ return tf.math.top_k(tensor, k)[1] def bottom_k_indices(tensor, k, axis=-1): """ Finds the indices of the k smallest entries alongside an axis. Args: tensor (ndarray): Tensor with a last dimension of at least k size. k (i): number of elements to return. axis (int or None) - Axis along which to sort. Default is -1, which is the last axis. If None is supplied, the array will be flattened before sorting. """ # inverted top k and reinverted before returning return tf.math.top_k(tf.multiply(tensor, -1), k)[1] def unique_with_counts(tensor): """Finds unique elements and return them along side their position and counts. Args: tensor (Tensor): 1D tensor to analyze. Returns: values (Tensor): unique values founded indexes (Tensor): index of the value sorted counts (Tensor): Tensor containing the count for each value. """ return tf.unique_with_counts(tensor) # - Statistical - def bincount(tensor, weights=None, minlength=None): """Count number of occurrences of each value in array of non-negative ints. Args: tensor (ndarray): Input tensor. weights (cupy.ndarray): Weights tensor which has the same shape as tensor``. Default to None. minlength (int): A minimum number of bins for the output array. """ return tf.math.bincount(tensor, weights=weights, minlength=minlength) ``` #### File: backend/tf_ops/randint.py ```python import tensorflow as tf RAND_GENERATOR = tf.random.get_global_generator() @tf.function() def randint2(low, high=None, shape=None, dtype='int32'): """Returns a scalar or an array of integer values over [low, high) Args: low (int): If high is None, it is the upper bound of the interval and the lower bound is set to 0. if high is set, it is the lower bound of the interval. high (int, optional):Upper bound of the interval. Defaults to None. shape (None or int or tuple of ints, optional): The shape of returned value. Defaults to None. dtype (str, optional): dtype: Data type specifier. Defaults to 'float32'. Returns: int or ndarray of ints: If size is None, it is single integer sampled. If size is integer, it is the 1D-array of length size element. Otherwise, it is the array whose shape specified by size. """ # just one number if not shape: return RAND_GENERATOR.uniform(shape=(1, ), minval=low, maxval=high, dtype='int32')[0] if isinstance(shape, int): shape = (shape, ) return RAND_GENERATOR.uniform(shape=shape, minval=low, maxval=high, dtype=dtype) ``` #### File: evoflow/evoflow/config.py ```python _INTX = 'int32' _FLOATX = 'float32' _BACKEND = None def floatx(): """Returns the default float type, as a string. E.g. `'float16'`, `'float32'`, `'float64'`. Returns: str: the current default float type. Example: >>> B.floatx() 'float32' """ return _FLOATX def set_floatx(value): """Sets the default float type. Note: It is not recommended to set this to float16 for training, as this will likely cause numeric stability issues Args: value (str): `'float16'`, `'float32'`, or `'float64'`. Example: >>> evoflow.backend.floatx() 'float32' >>> evoflow.backend.set_floatx('float64') >>> evoflow.backend.floatx() 'float64' >>> evoflow.backend.set_floatx('float32') Raises: ValueError: In case of invalid value. """ global _FLOATX if value not in {'float16', 'float32', 'float64'}: raise ValueError('Unknown floatx type: ' + str(value)) _FLOATX = str(value) def intx(): """Returns the default int type, as a string. E.g. `'int8'`, `'unit8'`, `'int32'`. Returns: str: the current default int type. Example: >>> B.intx() 'int32' """ return _INTX def set_intx(value): """Sets the default int type. Args: value (str): default int type to use. One of `{'int8', 'uint8', 'int16', 'uint16', 'int32', 'int64'}` Example: >>> evoflow.backend.intx() 'int32' >>> evoflow.set_intx('uint8') >>> evoflow.backend.intx() 'uint8' >>> evoflow.intx('float132') Raises: ValueError: In case of invalid value. """ global _INTX if value not in {'int8', 'uint8', 'int16', 'uint16', 'int32', 'int64'}: raise ValueError('Unknown intx type: ' + str(value)) _INTX = str(value) def get_backend(): "Return the backend used" return _BACKEND def set_backend(name): """Set Geneflow backend to be a given framework Args: name(str): Name of the backend. {cupy, numpy, tensorflow}. Default to tensorflow. See: `load_backend.py` for the actual loading code. """ global _BACKEND if name not in {'cupy', 'numpy', 'tensorflow'}: raise ValueError('Unknown backend: ' + str(name)) _BACKEND = name ``` #### File: evoflow/engine/evoflow.py ```python import networkx as nx from termcolor import cprint from tabulate import tabulate from collections import defaultdict from tqdm.auto import tqdm from evoflow.utils import box from evoflow.io import print_debug from .results import Results from .callback_collection import CallbackCollection class EvoFlow(object): def __init__(self, inputs, outputs, debug=False): if not inputs: raise ValueError("Inputs can't be empty") if not outputs: raise ValueError("Ouputs can't be empty") # FIXME: check we have the same number of inputs and output # and they have the same shape because we are using the ouputs as # the next inputs # set debug self.debug = debug # graph underlying structure self.graph = nx.DiGraph() # tracking structures self.idx2op = {} # op object self.idx2results = {} # op computation result self.idx2input_idx = defaultdict(set) # ops used as inputs self.idx2ouput_ops = defaultdict(set) # ops used as outputs self.inputs_idx = [] # track which op idx are inputs self.outputs_idx = [] # track what op idx are outputs self.fitness = None self.compiled = False self._results = None self.callback_collection = None # storing inputs tensors self.inputs = box(inputs) for ipt in self.inputs: self.inputs_idx.append(ipt.idx) # output self.outputs = box(outputs) for output in self.outputs: self.outputs_idx.append(output.idx) # build forward graph for output in self.outputs: self._add_op_to_graph(output, None, self.debug) # FIXME: check that the graph is fully connected from input to output # coerce exec_path as a list to allow reuse accros batches. self.execution_path = list(nx.topological_sort(self.graph)) def compile(self, selection_strategy, fitness_functions): """Configure evoluationary model for training """ # FIXME: check args validity self.selection_strategy = selection_strategy self.fitness_functions = box(fitness_functions) self.compiled = True self._results = Results(debug=self.debug) def evolve(self, populations, generations=1, callbacks=None, verbose=1): if not self.compiled: raise ValueError("compile() must be run before using the graph") return self.callback_collection = CallbackCollection(callbacks) populations = box(populations) self.print_debug("Initial Populations", populations) if not len(populations) == len(self.inputs): raise ValueError('The numbers of population must be equal\ to number of inputs') # assign initial value to inputs current_populations = [] for pop_idx, ipt in enumerate(self.inputs): self.inputs[pop_idx].assign(populations[pop_idx]) pop = self.inputs[pop_idx].get() current_populations.append(pop) num_populations = len(current_populations) self.print_debug('Initial current_populations', current_populations) # callbacks self.callback_collection.on_evolution_begin(current_populations) # progress bar if verbose: pb = tqdm(total=generations, unit='generation') # evolve loop for generation_idx in range(generations): # callbacks self.callback_collection.on_generation_begin(generation_idx) # perform evolution evolved_populations = self.perform_evolution() # assign evolved populations self.print_debug(generation_idx, 'evolved pop', evolved_populations) fitness_scores_list = [] # keep track of fitness scores metrics_list = [] # keep track of the metrics scores for pop_idx in range(num_populations): # find current informaiton current_pop = current_populations[pop_idx] evolved_pop = evolved_populations[pop_idx] fitness_function = self.fitness_functions[pop_idx] self.print_debug('current_population', pop_idx, current_pop) self.print_debug('evolved_population', pop_idx, evolved_pop) # select population new_population, fitness_scores, metrics = self.selection_strategy( # noqa fitness_function, current_pop, evolved_pop) # tracks metrics metrics_list.append(metrics) fitness_scores_list.append(fitness_scores) # update population tensor self.inputs[pop_idx].assign(new_population) # track current population current_populations[pop_idx] = new_population # record fitness scores self._results.record_fitness(fitness_scores_list) latest_metrics = self._results.get_latest_metrics(flatten=True) # callbacks self.callback_collection.on_generation_end(generation_idx, latest_metrics, fitness_scores_list, populations) # progress bar if verbose: formatted_metrics = {} for name, value in latest_metrics.items(): name = name.lower().replace(' ', '_') formatted_metrics[name] = value pb.set_postfix(formatted_metrics) pb.update() if verbose: pb.close() # final callback self.callback_collection.on_evolution_end(current_populations) # record last population self._results.set_population(current_populations) # return last evolution return self._results def perform_evolution(self): """ Evolve population Args: populations (list): populations to evolve. """ # single batch # FIXME: move to a batch function as we need for # evaluate self.print_debug('execution path:', self.execution_path) for op_idx in self.execution_path: op = self.idx2op[op_idx] self.print_debug('%s(%s)' % (op.idx, self.idx2input_idx[op.idx])) # fetching inputs values inputs = [] for input_idx in self.idx2input_idx[op_idx]: inputs.append(self.idx2results[input_idx]) # execute the op self.idx2results[op_idx] = op._call_from_graph(inputs) self.print_debug('idx2results:', self.idx2results.keys()) # collect results results = [] for op_idx in self.outputs_idx: results.append(self.idx2results[op_idx]) return results def summary(self): "print a summary of the data flow" rows = [] for op_idx in self.execution_path: op = self.idx2op[op_idx] # inputs if len(self.idx2input_idx[op_idx]): inputs = ",".join([o for o in self.idx2input_idx[op_idx]]) else: inputs = '' # the op id and its shape op_info = "%s (%s)" % (op.idx, op.op_type) # shape op_shape = "%s" % str(op.get_output_shapes()) # output # if len(self.idx2ouput_ops[op_idx]): # outputs = ",".join([o for o in self.idx2ouput_ops[op_idx]]) # noqa E501 # else: # outputs = '>>' rows.append([op_info, op_shape, inputs]) print(tabulate(rows, headers=['OP (type)', 'Output Shape', 'Inputs'])) def _add_op_to_graph(self, op, output_op=None, debug=0): """ Recursively insert nodes in the DAG Take the opportunity to compute outbound nodes and various variables Args: op (Op): the operation to insert output_op (Op): the output_op to add. debug (int): print debug """ self.idx2op[op.idx] = op self.graph.add_node(op.idx) # recording inbound op if any if output_op: self.idx2ouput_ops[op.idx].add(output_op.idx) # Reversing the graph and storing it - notice:in_op become op for in_op in op.input_ops: self.idx2input_idx[op.idx].add(in_op.idx) if debug: cprint("[edge] %s->%s" % (in_op.idx, op.idx), 'yellow') self.graph.add_edge(in_op.idx, op.idx) self._add_op_to_graph(in_op, op, self.debug) # up the chain def print_debug(self, *msg): "output debug message" if self.debug: print_debug('GeneFlow', *msg) def history(self): return self._history ``` #### File: evoflow/engine/results.py ```python from time import time from collections import defaultdict import altair as alt # dymamic from matplotlib.pylab import plt # static graph from tabulate import tabulate import pandas as pd import evoflow.backend as B from evoflow.utils import unbox from evoflow.io import print_debug class Results(object): def __init__(self, debug=False): self.start_time = time() self._populations = None self._fitness_scores = None self._metrics_latest = defaultdict(dict) # convinience holder self._metrics_history = defaultdict(lambda: defaultdict(list)) self.debug = debug def get_populations(self): return unbox(self._populations) def set_population(self, populations): """Assign unboxed population Args: populations (list): list of population tensors Note: the whole class assumes populations as a list so don't set unboxed results or it will break everything. """ if self.debug: print_debug(populations) self._populations = populations def display_populations(self, top_k=10, max_chromosome_len=1024, rounding=None): for pop_idx, population in enumerate(self._populations): num_chromosomes = min(len(population), top_k) heatmap = [] gene_max = 0 for cidx, chromosome in enumerate(population): genes = [] for gene in chromosome[:max_chromosome_len]: if isinstance(rounding, type(None)): genes.append(str(gene)) elif rounding > 0: genes.append(round(float(gene), rounding)) else: genes.append(int(gene)) gene_max = max(gene_max, gene) heatmap.append(genes) if cidx > num_chromosomes: break fig, ax = plt.subplots() im = ax.imshow(heatmap, interpolation='nearest', cmap="viridis", aspect='auto') # gradient bar cbar = ax.figure.colorbar(im, ax=ax) cbar.ax.set_ylabel('Gene value', rotation=-90, va="bottom") plt.title(f'Population - top {num_chromosomes}', fontsize=16, fontweight='bold') plt.xlabel("Genes") plt.ylabel("Chromosome") # fig.tight_layout() plt.show() def top_k(self, top_k=10, max_chromosome_len=20, precision=None): """Display the top k chromosome. Args: top_k (int, optional): Number of chromosomes to display. Defaults to 10. expected_max_value (int, optional): how many gene to display per chromosomes. precision (int, optional): how many digits per chromosome to display. Default to None. If None full value. FIXME: use HTML while in notebook """ for pop_idx, population in enumerate(self._populations): rows = [] for cidx, chromosome in enumerate(population): genes = [] for gene in chromosome[:max_chromosome_len]: if isinstance(precision, type(None)): genes.append(str(gene)) elif precision > 0: genes.append(str(round(float(gene), precision))) else: genes.append(str(int(gene))) if len(genes) != len(chromosome): genes.append(' ...') genes = " ".join(genes) row = [self._fitness_scores[pop_idx][cidx], genes] if cidx == top_k: break rows.append(row) headers = ['fit score', 'genes [:%d]' % max_chromosome_len] print(tabulate(rows, headers=headers)) def plot_fitness(self, static=False): """Plots the various metrics""" if static: return self._build_plot_static('Fitness function') else: return self._build_plot('Fitness function') def plot(self, group_name, static=False): """Plots group metrics""" if static: return self._build_plot_static(group_name) else: return self._build_plot(group_name) def _build_plot_static(self, metric_group): metrics = self.get_metrics_history() if metric_group not in metrics: raise ValueError("can't find metric group") for name, values in metrics[metric_group].items(): plt.plot(values, label=name) plt.legend(loc='best') plt.title(metric_group, fontsize=16, fontweight='bold') plt.xlabel("Generations") plt.show() return None def _build_plot(self, metric_group): "Build an altair plot for a given metric group" metrics = self.get_metrics_history() if metric_group not in metrics: raise ValueError("can't find metric group") data = metrics[metric_group] rows = [] for name, values in data.items(): for idx, val in enumerate(values): rows.append({'generation': idx, 'metric': name, 'value': val}) metrics_pd = pd.DataFrame(rows) chart = alt.Chart(metrics_pd, title='Fitness function').mark_line() chart.encode(x='generation', y='value', color='metric') chart.configure_title(fontSize=16, offset=5, orient='top', anchor='middle') return chart def get_metrics_history(self): """Get the last evolution metrics values Returns: dict: name: value as list(float). """ return self._metrics_history def get_latest_metrics(self, flatten=False): """Get the last evolution metrics values Args: flatten (bool, optional): Return metrics as a flat dictionary instead of a nested one Returns: dict: name:value as float. """ if flatten: metrics = {} for group_name, group_data in self._metrics_latest.items(): for metric, value in group_data.items(): k = "%s_%s" % (group_name, metric) metrics[k] = value return metrics else: return self._metrics_latest def record_metrics(self, metrics_list): """Record metrics and track their history Args: metrics (list(dict(dict))): group of metrics to track. Of the form: [group][metric] = float(value) """ for pop_idx, metrics in enumerate(metrics_list): for group, data in metrics.items(): for name, value in data.items(): # only suffix is more than one population if len(metrics) > 1: name += "_%s" % pop_idx self._metrics_history[group][name].append(value) self._metrics_latest[group][name] = value def record_fitness(self, fitness_scores): """Compute and record fitness related metrics Args: fitness_scores (list(ndarray)): tensor holding fitness scores. """ self._fitness_scores = fitness_scores # update history for pop_idx, fit_scores in enumerate(fitness_scores): METRICS = [['mean', B.mean], ['max', B.max], ['min', B.min]] for name, fn in METRICS: # only suffix is more than one population if len(fitness_scores) > 1: name += "_%s" % pop_idx # compute result value = float(fn(fit_scores)) self._metrics_history['Fitness function'][name].append(value) self._metrics_latest['Fitness function'][name] = value ``` #### File: evoflow/selection/select_fittest.py ```python import evoflow.backend as B from evoflow.engine import SelectionStrategy class SelectFittest(SelectionStrategy): "Select the fittest member of the population" def __init__(self, mode='max', **kwargs): """[summary] Args: mode (str, optional): one of `{min', 'max'}`. In 'min' mode, the fitness function will select individual with the lowest fitness value; in 'max' mode it will select the one with the highest values. Defaults to 'max'. """ if mode not in ['min', 'max']: raise ValueError('mode must be either max or min') self.mode = mode super(SelectFittest, self).__init__('select_fittest', **kwargs) def call(self, fitness_function, current_population, evolved_population): """Select the most fit individuals from the combined current and evolved population. Args: fitness_function (function): User provided function that return the fitness value for each chromosome of a population as a Tensor. current_population: Tensor containing the population prior to evolution. evolved_population: Tensor containing the population after the evolution """ population_size = current_population.shape[0] merged_population = B.concatenate( [current_population, evolved_population]) # fitness computation fitness_scores = fitness_function(merged_population) metrics = fitness_function.get_metrics() # population selection if self.mode == 'max': indices = B.top_k_indices(fitness_scores, k=population_size) else: indices = B.bottom_k_indices(fitness_scores, k=population_size) selected_pop = B.take(merged_population, indices, axis=0) return selected_pop, B.take(fitness_scores, indices, axis=0), metrics ``` #### File: tests/backend/test_manipulation.py ```python from evoflow.utils import slices2array def test_roll(backends): inputs = [1, 2, 3] expected = [3, 1, 2] for B in backends: tensor = B.tensor(inputs) result = B.roll(tensor, 1, axis=0) expected_tensor = B.tensor(expected) assert B.tensor_equal(result, expected_tensor) def test_roll_2d(backends): inputs = [[1, 2, 3], [1, 2, 3]] expected = [[3, 1, 2], [3, 1, 2]] for B in backends: tensor = B.tensor(inputs) result = B.roll(tensor, 1, axis=1) expected_tensor = B.tensor(expected) assert B.tensor_equal(result, expected_tensor) def test_assign(backends): inputs = [[11, 12, 13], [21, 22, 23], [31, 32, 33]] values = [[1, 1], [1, 1]] slices = (slice(1, 3), slice(1, 3)) tslices = slices2array(slices) expected = [[11, 12, 13], [21, 1, 1], [31, 1, 1]] for B in backends: tval = B.tensor(values) tensor = B.tensor(inputs) result = B.assign(tensor, tval, tslices) expected_tensor = B.tensor(expected) assert B.tensor_equal(result, expected_tensor) def test_assign2d(backends): inputs = [ [[11, 12, 13], [21, 22, 23], [31, 32, 33]], [[11, 12, 13], [21, 22, 23], [31, 32, 33]], ] values = [[1, 1], [1, 1]] slices = (slice(0, 1), slice(1, 3), slice(1, 3)) tslices = slices2array(slices) expected = [ [[11, 12, 13], [21, 1, 1], [31, 1, 1]], [[11, 12, 13], [21, 22, 23], [31, 32, 33]], ] for B in backends: print('--%s--' % B) tval = B.tensor(values) tensor = B.tensor(inputs) result = B.assign(tensor, tval, tslices) expected_tensor = B.tensor(expected) print(result) assert B.tensor_equal(result, expected_tensor) def test_concatenate(backends): inputs = [1, 2, 3] inputs2 = [4, 5, 6] expected = [1, 2, 3, 4, 5, 6] for B in backends: tensor = B.tensor(inputs) tensor2 = B.tensor(inputs2) result = B.concatenate([tensor, tensor2]) expected_tensor = B.tensor(expected) assert B.tensor_equal(result, expected_tensor) ``` #### File: tests/backend/test_random.py ```python from termcolor import cprint def arr2d(): return [[1, 2, 3], [4, 5, 6], [7, 8, 9]] def arr2dlarge(): return [[1, 2, 3, 10, 11, 12], [4, 5, 6, 13, 14, 15], [7, 8, 9, 16, 17, 18]] def test_full_shuffle_shape(backends): # use arrays where each dimension is different to make sure we get back # the same. This might seems odd but there is a real risk it is broken # due to how the tf.op is implemented SHAPES = [(10, ), (10, 20), (20, 10), (10, 20, 30), (30, 10, 20), (10, 20, 30, 40), (40, 30, 20, 10)] for B in backends: print('\n==[Backend]==\n') for shape in SHAPES: t = B.normal(shape) assert t.shape == shape t = B.full_shuffle(t) assert t.shape == shape print('shape', shape, 't.shape', t.shape) def test_shuffle_axis0(backends): for B in backends: t = B.tensor(arr2d()) # give it 20 tries to ensure consistency for _ in range(20): t = B.shuffle(t) if t[0][0] != 1 or t[1][0] != 4: break assert t[0][0] in [1, 4, 7] assert t[1][0] in [1, 4, 7] assert t[2][0] in [1, 4, 7] assert t[0][0] != 1 or t[1][0] != 4 def test_shuffle_axis1(backends): for B in backends: t = B.tensor(arr2d()) cprint(t, 'blue') # give it 20 tries to ensure consistency for _ in range(20): t = B.shuffle(t, axis=1) if t[0][0] != 1 or t[1][0] != 4: break cprint(t, 'green') assert t[0][0] in [1, 2, 3] assert t[1][0] in [4, 5, 6] assert t[2][0] in [7, 8, 9] assert t[0][0] != 1 or t[1][0] != 4 def test_full_shuffle(backends): for B in backends: t = B.tensor(arr2d()) cprint(t, 'blue') # give it multiple try as identity is a valid shuffle for _ in range(20): t = B.full_shuffle(t) if (t[0][0] != 1 or t[1][0] != 4) and (t[0][1] != 2 or t[1][1] != 5): # noqa break cprint(t, 'green') assert (t[0][0] != 1 or t[1][0] != 4) assert (t[0][1] != 2 or t[1][1] != 5) def test_randint_1D(backends): for B in backends: print(B) t = B.randint(0, 11, shape=10) print(t) assert len(t) == 10 assert B.max(t) <= 10 assert B.min(t) >= 0 def test_single_number(backends): for B in backends: t = B.randint(11) assert t <= 10 assert t >= 0 t = B.randint(5, 11) assert t <= 10 assert t >= 5 def test_randint_2SD(backends): for B in backends: t = B.randint(0, 11, shape=(10, 20)) assert t.shape == (10, 20) assert B.max(t) <= 10 assert B.min(t) >= 0 ``` #### File: tests/backend/test_reduce.py ```python def test_prod(backends): inputs = [1, 2, 3, 4] for B in backends: tensor = B.tensor(inputs) assert B.prod(tensor) == 24 def test_sum(backends): inputs = [1, 2, 3, 4] for B in backends: tensor = B.tensor(inputs) assert B.sum(tensor) == 10 def test_max(backends): inputs = [1, 2, 3, 4] for B in backends: tensor = B.tensor(inputs) assert B.max(tensor) == 4 def test_min(backends): inputs = [1, 2, 3] for B in backends: tensor = B.tensor(inputs) assert B.min(tensor) == 1 def test_mean(backends): inputs = [1, 2, 3] for B in backends: tensor = B.tensor(inputs) assert B.mean(tensor) == 2 ``` #### File: tests/engine/test_inputs.py ```python from evoflow.ops import Input from evoflow import backend as B def test_call_vs_get(): shape = (128, 64) population = B.randint(1, 10, shape=shape) inputs = Input(shape) inputs.assign(population) assert B.tensor_equal(inputs.get(), inputs.call('')) def test_1d(): shape = (128, 64) population = B.randint(1, 10, shape=shape) inputs = Input(shape) inputs.assign(population) assert B.tensor_equal(inputs.get(), population) def test_2d(): shape = (128, 64, 64) population = B.randint(1, 10, shape=shape) inputs = Input(shape) inputs.assign(population) assert B.tensor_equal(inputs.get(), population) def test_non_tensor_input(): shape = (2, 4) population = [[1, 2, 3, 4], [1, 2, 3, 4]] inputs = Input(shape) inputs.assign(population) res = inputs.get() assert B.is_tensor(res) ``` #### File: tests/ops/test_single_crossover.py ```python from copy import copy from termcolor import cprint from evoflow import backend as B # noqa: F402 from evoflow.ops import SingleCrossover1D, SingleCrossover2D from evoflow.ops import SingleCrossover3D def test_ND(): "test various tensor size random" TEST_INPUTS = [ [SingleCrossover1D, (2, 4), 0.5], [SingleCrossover2D, (2, 4, 4), (0.5, 0.5)], [SingleCrossover3D, (2, 4, 4, 4), (0.5, 0.5, 0.5)], ] for inputs in TEST_INPUTS: OP = inputs[0] pop_shape = inputs[1] mutations_probability = inputs[2] population_fraction = 1 population = B.randint(0, 1024, pop_shape) # eager RM = OP(population_fraction=population_fraction, mutations_probability=mutations_probability) population = RM(population) assert B.is_tensor(population) assert population.shape == pop_shape # graph RM = OP(population_fraction=population_fraction, mutations_probability=mutations_probability) population = RM._call_from_graph(population) assert B.is_tensor(population) assert population.shape == pop_shape def test_1D_shape(): POPULATION_SHAPE = (64, 16) population = B.randint(0, 1024, POPULATION_SHAPE) population_fraction = 0.5 crossover_size_fraction = 0.2 original_population = copy(population) population = SingleCrossover1D(population_fraction, crossover_size_fraction, debug=1)(population) cprint(population, 'cyan') cprint(original_population, 'yellow') assert population.shape == POPULATION_SHAPE # measuring mutation rate diff = B.clip(abs(population - original_population), 0, 1) cprint('diff', 'cyan') cprint(diff, 'cyan') # row test num_ones_in_row = 0 for col in diff: num_ones = list(col).count(1) num_ones_in_row = max(num_ones, num_ones_in_row) max_one_in_row = POPULATION_SHAPE[1] * crossover_size_fraction assert num_ones_in_row <= max_one_in_row assert num_ones_in_row # col diff = B.transpose(diff) num_ones_in_col = 0 for col in diff: num_ones_in_col = max(list(col).count(1), num_ones_in_col) max_one_in_col = POPULATION_SHAPE[0] * population_fraction assert max_one_in_col - 3 <= num_ones_in_col <= max_one_in_col ``` #### File: tests/tensorflow_compile/test_randint.py ```python import evoflow.backend.tensorflow as B # from evoflow.backend.tf_ops.assign import assign as assign2 import tensorflow as tf from perfcounters import PerfCounters @tf.function() def randint_tf(low, high, shape): return B.randint(low, high, shape) @tf.function(experimental_compile=True) def randint_xla(low, high, shape): return B.randint(low, high, shape) def test_randint_fn(): NUM_TESTS = 3 low = 10 high = 1000 shape = (100, 100, 100) randint_tf(low, high, shape) randint_xla(low, high, shape) v = randint_tf(low, high, shape) v2 = randint_tf(low, high, shape) assert not B.tensor_equal(v, v2) v = randint_xla(low, high, shape) v2 = randint_xla(low, high, shape) assert not B.tensor_equal(v, v2) cnts = PerfCounters() cnts.start('basic') for _ in range(NUM_TESTS): B.randint(low, high, shape) cnts.stop('basic') cnts.start('tf_fn') for _ in range(NUM_TESTS): randint_tf(low, high, shape) cnts.stop('tf_fn') cnts.start('tf_xla') for _ in range(NUM_TESTS): randint_xla(low, high, shape) cnts.stop('tf_xla') cnts.report() ``` #### File: tests/test_integration/test_direct_2d_tensors.py ```python from evoflow.engine import EvoFlow from evoflow.ops import Input, RandomMutations2D, UniformCrossover2D from evoflow.selection import SelectFittest from evoflow.fitness import Sum from evoflow.population import randint_population import evoflow.backend as B def test_direct_2d(): NUM_EVOLUTIONS = 2 POPULATION_SIZE = 3 GENE_SIZE = 4 MAX_VAL = 10 SHAPE = (POPULATION_SIZE, GENE_SIZE, GENE_SIZE) population = randint_population(SHAPE, MAX_VAL) fitness_function = Sum(max_sum_value=GENE_SIZE) evolution_strategy = SelectFittest() inputs = Input(shape=SHAPE) # x = RandomMutations2D(max_gene_value=1, min_gene_value=0)(inputs) outputs = UniformCrossover2D()(inputs) ef = EvoFlow(inputs, outputs, debug=True) ef.compile(evolution_strategy, fitness_function) ef.evolve(population, generations=NUM_EVOLUTIONS, verbose=0) if __name__ == "__main__": test_direct_2d() ``` #### File: evoflow/tests/test_population.py ```python from evoflow.population import randint_population, uniform_population import evoflow.backend as B def test_randintpop(): shape = (100, 100, 10) pop = randint_population(shape, 42, 1) assert pop.shape == shape assert B.max(pop) == 42 assert B.min(pop) == 1 assert pop.dtype == B.intx() def test_uniformpop(): shape = (100, 100) pop = uniform_population(shape) assert pop.shape == shape assert B.max(pop) == 99 assert B.min(pop) == 0 for chrm in pop: _, _, count = B.unique_with_counts(chrm) assert B.max(count) == 1 ```
{ "source": "joaogui1/objax", "score": 3 }
#### File: objax/tests/testrandom.py ```python import unittest import numpy as np import scipy.stats import objax class TestRandom(unittest.TestCase): def helper_test_randint(self, shape, low, high): """Helper function to test objax.random.randint.""" value = objax.random.randint(shape, low, high) self.assertEqual(value.shape, shape) self.assertTrue(np.all(value >= low)) self.assertTrue(np.all(value < high)) def test_randint(self): """Test for objax.random.randint.""" self.helper_test_randint(shape=(3, 4), low=1, high=10) self.helper_test_randint(shape=(5,), low=0, high=5) self.helper_test_randint(shape=(), low=-5, high=5) def helper_test_normal(self, shape, stddev): """Helper function to test objax.random.normal.""" value = objax.random.normal(shape, stddev=stddev) self.assertEqual(value.shape, shape) def test_normal(self): """Test for objax.random.normal.""" self.helper_test_normal(shape=(4, 2, 3), stddev=1.0) self.helper_test_normal(shape=(2, 3), stddev=2.0) self.helper_test_normal(shape=(5,), stddev=2.0) self.helper_test_normal(shape=(), stddev=10.0) value = np.array(objax.random.normal((1000, 100))) self.assertAlmostEqual(value.mean(), 0, delta=0.01) self.assertAlmostEqual(value.std(), 1, delta=0.01) value = np.array(objax.random.normal((1000, 100), mean=0, stddev=2)) self.assertAlmostEqual(value.mean(), 0, delta=0.01) self.assertAlmostEqual(value.std(), 2, delta=0.01) value = np.array(objax.random.normal((1000, 100), mean=1, stddev=1.5)) self.assertAlmostEqual(value.mean(), 1, delta=0.01) self.assertAlmostEqual(value.std(), 1.5, delta=0.01) def helper_test_truncated_normal(self, shape, stddev, bound): """Helper function to test objax.random.truncated_normal.""" value = objax.random.truncated_normal(shape, stddev=stddev, lower=-bound, upper=bound) self.assertEqual(value.shape, shape) self.assertTrue(np.all(value >= -bound * stddev)) self.assertTrue(np.all(value <= bound * stddev)) def test_truncated_normal(self): """Test for objax.random.truncated_normal.""" self.helper_test_truncated_normal(shape=(5, 7), stddev=1.0, bound=2.0) self.helper_test_truncated_normal(shape=(4,), stddev=2.0, bound=4.0) self.helper_test_truncated_normal(shape=(), stddev=1.0, bound=4.0) value = np.array(objax.random.truncated_normal((1000, 100))) truncated_std = scipy.stats.truncnorm.std(a=-2, b=2, loc=0., scale=1) self.assertAlmostEqual(value.mean(), 0, delta=0.01) self.assertAlmostEqual(value.std(), truncated_std, delta=0.01) self.assertAlmostEqual(value.min(), -1.9, delta=0.1) self.assertAlmostEqual(value.max(), 1.9, delta=0.1) value = np.array(objax.random.truncated_normal((1000, 100), stddev=2, lower=-3, upper=3)) truncated_std = scipy.stats.truncnorm.std(a=-3, b=3, loc=0., scale=2) self.assertAlmostEqual(value.mean(), 0, delta=0.01) self.assertAlmostEqual(value.std(), truncated_std, delta=0.01) self.assertAlmostEqual(value.min(), -5.9, delta=0.1) self.assertAlmostEqual(value.max(), 5.9, delta=0.1) value = np.array(objax.random.truncated_normal((1000, 100), stddev=1.5)) truncated_std = scipy.stats.truncnorm.std(a=-2, b=2, loc=0., scale=1.5) self.assertAlmostEqual(value.mean(), 0, delta=0.01) self.assertAlmostEqual(value.std(), truncated_std, delta=0.01) self.assertAlmostEqual(value.min(), -2.9, delta=0.1) self.assertAlmostEqual(value.max(), 2.9, delta=0.1) def helper_test_uniform(self, shape): """Helper function to test objax.random.uniform.""" value = objax.random.uniform(shape) self.assertEqual(value.shape, shape) self.assertTrue(np.all(value >= 0.0)) self.assertTrue(np.all(value < 1.0)) def test_uniform(self): """Test for objax.random.uniform.""" self.helper_test_uniform(shape=(4, 3)) self.helper_test_uniform(shape=(5,)) self.helper_test_uniform(shape=()) def test_generator(self): """Test for objax.random.Generator.""" g1 = objax.random.Generator(0) g2 = objax.random.Generator(0) g3 = objax.random.Generator(1) value1 = objax.random.randint((3, 4), low=0, high=65536, generator=g1) value2 = objax.random.randint((3, 4), low=0, high=65536, generator=g2) value3 = objax.random.randint((3, 4), low=0, high=65536, generator=g3) self.assertTrue(np.all(value1 == value2)) self.assertFalse(np.all(value1 == value3)) g4 = objax.random.Generator(123) value = [objax.random.randint(shape=(1,), low=0, high=65536, generator=g4) for _ in range(2)] self.assertNotEqual(value[0], value[1]) if __name__ == '__main__': unittest.main() ```
{ "source": "joaogui1/parallax", "score": 2 }
#### File: parallax/parallax/core.py ```python import itertools from collections import namedtuple from dataclasses import dataclass from typing import Any, Union, Tuple from frozendict import frozendict import jax class ParamInit: initializer : Any # function (rng, shape) |-> tensor shape : Tuple[int] def __init__(self, shape, initializer): self.shape = shape self.initializer = initializer def instantiate(self, rng): """Returns a tensor created according to this init.""" return self.initializer(key=rng, shape=self.shape) def __repr__(self): return "ParamInit(" + ", ".join([str(d) for d in self.shape]) + ")" Parameter = Union[ParamInit, jax.interpreters.xla.DeviceArray] @jax.tree_util.register_pytree_node_class @dataclass class ParameterTuple: parameters : Tuple[Parameter] def __init__(self, parameters): self.parameters = tuple(parameters) def instantiate(self, rng): rngs = jax.random.split(rng, len(self.parameters)) return ParameterTuple(p.instantiate(rng) for p, rng in zip(self.parameters, rngs)) def __repr__(self): return "ParameterTuple(" + ", ".join([repr(p) for p in self.parameters]) + ")" def __iter__(self): return self.parameters.__iter__() def tree_flatten(self): aux = [self.__class__] leaves = [] for p in self.parameters: if isinstance(p, ParameterTuple): l, a = p.tree_flatten() leaves += l aux.append((len(l), a)) else: leaves.append(p) aux.append(None) return leaves, aux @classmethod def tree_unflatten(cls, aux, leaves): parameters = [] i = 0 for p in aux[1:]: if p is None: parameters.append(leaves[i]) i += 1 else: nleaves, a = p parameters.append( cls.tree_unflatten(a, leaves[i:i+nleaves]) ) i += nleaves assert i == len(leaves) return cls(parameters) def _recursive_all_annotations(cls): d = frozendict() for c in cls.__mro__[::-1]: if "__annotations__" in c.__dict__: d = d.copy(**c.__annotations__) return d @jax.tree_util.register_pytree_node_class class Module: _is_initialized: bool = False mode : str rng : jax.interpreters.xla.DeviceArray _parameters : Tuple[Union[Parameter, ParameterTuple]] _modules : Tuple[Union["Module", "ModuleTuple"]] # apparently that's the best we can do for recursive types :( _constants : Tuple[Any] ModField = namedtuple("ModField", ["name", "type"]) def __init__(self): self._is_initialized = False self.mode = "train" self.rng = None self._register_fields() def __setattr__(self, name, value): if self._is_initialized: raise Exception(f"Can't set {name}, class is already initialized!") elif name not in _recursive_all_annotations(self.__class__).keys(): raise Exception(f"Field {name} was not declared in {self.__class__} or ancestors!") else: self.__dict__[name] = value def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) jax.tree_util.register_pytree_node_class(cls) @classmethod def _user_fields(cls): return sorted([ cls.ModField(k, v) for k, v in _recursive_all_annotations(cls).items() if k not in ["_is_initialized", "mode", "rng", "_parameters", "_modules", "_constants"] ], key=lambda f: f.name) @classmethod def _new_from(cls, **kwargs): obj = cls.__new__(cls) for k, v in kwargs.items(): obj.__dict__[k] = v obj._register_fields() return obj def _updated_with(self, **kwargs): obj = self.__class__.__new__(self.__class__) for k, v in self.__dict__.items(): if k in kwargs: obj.__dict__[k] = kwargs[k] else: obj.__dict__[k] = v return obj def _register_fields(self): super().__setattr__('_modules', tuple([f.name for f in self._user_fields() if not f.type == Parameter and not issubclass(f.type, ParameterTuple) and (issubclass(f.type, ModuleTuple) or issubclass(f.type, Module))])) super().__setattr__('_parameters', tuple([f.name for f in self._user_fields() if f.type == Parameter or issubclass(f.type, ParameterTuple)])) super().__setattr__('_constants', tuple([f.name for f in self._user_fields() if not f.type == Parameter and not issubclass(f.type, ParameterTuple) and not issubclass(f.type, ModuleTuple) and not issubclass(f.type, Module) ])) def _all_constants(self): d = frozendict({"_is_initialized" : self._is_initialized, "mode" : self.mode, "rng" : self.rng}) for c in self._constants: d = d.copy(**{c : self.__dict__[c]}) return d def split(self, num_splits): rngs = jax.random.split(self.rng, num_splits) return [self._updated_with(rng=rng) for rng in rngs] def initialized(self, rng): d = self._all_constants().copy(_is_initialized = True) rng_p, rng_m = jax.random.split(rng) rngs = jax.random.split(rng_p, len(self._parameters)) for p, rng in zip(self._parameters, rngs): assert isinstance(self.__dict__[p], ParamInit) or \ isinstance(self.__dict__[p], ParameterTuple) d = d.copy(**{p : self.__dict__[p].instantiate(rng)}) rngs = jax.random.split(rng_m, len(self._modules)) for m, rng in zip(self._modules, rngs): if isinstance(self.__dict__[m], Module): assert not self.__dict__[m]._is_initialized d = d.copy(**{m: self.__dict__[m].initialized(rng)}) return self.__class__._new_from(**d) def new_state(self, rng, mode=None): d = frozendict({"rng": rng, "mode": mode or self.mode}) rngs = jax.random.split(rng, len(self._modules)) for m, rng in zip(self._modules, rngs): d = d.copy(**{m: self.__dict__[m].new_state(rng, mode)}) return self._updated_with(**d) def __call__(self, *args): return self.forward(*args) def grad(self, input): return jax.grad(self.__class__.forward)(self, input) def tree_flatten(self): flat_module_names = tuple(self._modules) flat_modules = [self.__dict__[m].tree_flatten() for m in flat_module_names] flat_parameter_names = tuple(self._parameters) flat_parameters = [self.__dict__[p].tree_flatten() if isinstance(self.__dict__[p], ParameterTuple) else ([self.__dict__[p]], None) for p in flat_parameter_names] leaves = tuple(itertools.chain( *[leaves for (leaves, _) in flat_modules + flat_parameters], )) aux = ( self.__class__, self._all_constants(), [ (name, len(leaves), aux) for name, (leaves, aux) in zip( flat_module_names + flat_parameter_names, flat_modules + flat_parameters ) ], ) return (leaves, aux) @classmethod def tree_unflatten(cls, aux, leaves): _cls, d, aux_fields = aux assert cls == _cls i = 0 add_d = {} for name, n_leaves, aux in aux_fields: if aux is None: assert n_leaves == 1 add_d[name] = leaves[i] else: add_d[name] = aux[0].tree_unflatten(aux, leaves[i:i+n_leaves]) i += n_leaves assert i == len(leaves) d = d.copy(**add_d) return cls._new_from(**d) def modules(self): for f in self._modules: yield f, self.__dict__[f] def _get_name(self): return self.__class__.__name__ def extra_repr(self): return "" def __repr__(self): "Mimic the pytorch pretty printer" def _addindent(s_, numSpaces): s = s_.split('\n') # don't do anything for single-line stuff if len(s) == 1: return s_ first = s.pop(0) s = [(numSpaces * ' ') + line for line in s] s = '\n'.join(s) s = first + '\n' + s return s extra_lines = [] extra_repr = self.extra_repr() # empty string will be split into list [''] if extra_repr: extra_lines = extra_repr.split('\n') child_lines = [] for key, module in self.modules(): mod_str = repr(module) mod_str = _addindent(mod_str, 2) child_lines.append('(' + key + '): ' + mod_str) lines = extra_lines + child_lines main_str = self._get_name() + (" uninit " if not self._is_initialized else "") + '(' if lines: # simple one-liner info, which most builtin Modules will use if len(extra_lines) == 1 and not child_lines: main_str += extra_lines[0] else: main_str += '\n ' + '\n '.join(lines) + '\n' main_str += ')' return main_str @jax.tree_util.register_pytree_node_class @dataclass class ModuleTuple: modules : Tuple[Module] def __init__(self, modules): self.modules = tuple(modules) def initialized(self, rng): rngs = jax.random.split(rng, len(self.modules)) return ModuleTuple(m.initialized(rng) for m, rng in zip(self.modules, rngs)) def new_state(self, rng, mode=None): rngs = jax.random.split(rng, len(self.modules)) return ModuleTuple( m.new_state(rng, mode) for m, rng in zip(self.modules, rngs) ) def __repr__(self): return "ModuleTuple(" + ", ".join([repr(m) for m in self.modules]) + ")" def __iter__(self): return self.modules.__iter__() def tree_flatten(self): aux = [self.__class__] leaves = [] for m in self.modules: l, a = m.tree_flatten() leaves += l aux.append((m.__class__, len(l), a)) return leaves, aux @classmethod def tree_unflatten(cls, aux, leaves): modules = [] i = 0 for m in aux[1:]: child_cls, nleaves, a = m modules.append( child_cls.tree_unflatten(a, leaves[i:i+nleaves]) ) i += nleaves assert i == len(leaves) return cls(modules) @jax.tree_util.register_pytree_node_class class OptState: def __init__(self, state, _update, _get_params): self.state = state self._get_params = _get_params self._update = _update def updated(self, i, grad): return OptState(self._update(i, grad, self.state), self._update, self._get_params) def get(self): return self._get_params(self.state) def tree_flatten(self): aux = [self._update, self._get_params] leaves = [self.state] return leaves, aux @classmethod def tree_unflatten(cls, aux, leaves): return cls(leaves[0], aux[0], aux[1]) class Optimizer: def __init__(self, hooks): self._hooks = hooks def initialized(self, module, rng): return OptState(self._hooks[0](module.initialized(rng)), self._hooks[1], self._hooks[2]) ``` #### File: parallax/parallax/layers.py ```python import jax import jax.nn.initializers as init from .core import * class Dense(Module): # All parameter-holders are explicitly declared. weight : Parameter bias : Parameter # Setup replace __init__ and creates shapes and binds lazy initializers. def __init__(self, in_size, out_size): super().__init__() self.weight = ParamInit((out_size, in_size), init.xavier_normal()) self.bias = ParamInit((out_size,), init.normal()) # Forward is just like standard pytorch. def forward(self, input): return self.weight @ input + self.bias # Hook for pretty printing def extra_repr(self): return "%d, %d"%(self.weight.shape[1], self.weight.shape[0]) class Dropout(Module): # Arbitrary constants allowed. rate : float def __init__(self, rate): super().__init__() self.rate = rate def forward(self, input): # RNG state is use-once or split. Attached to tree. state = self.rng if self.mode == "train": keep = jax.random.bernoulli(state, self.rate, input.shape) return jax.numpy.where(keep, input / self.rate, 0) else: return input class BinaryNetwork(Module): # No difference between modules and parameters dense1 : Dense dense2 : Dense dense3 : Dense dropout : Dropout def __init__(self, input_size, hidden_size): super().__init__() self.dense1 = Dense(input_size, hidden_size) self.dense2 = Dense(hidden_size, hidden_size) self.dense3 = Dense(hidden_size, 1) self.dropout = Dropout(0.2) def forward(self, input): # Standard usage works out of the box. x = jax.numpy.tanh(self.dense1(input)) # Stochastic modules (have random seed already) x = self.dropout(x) # Shared params / recurrence only requires split to change RNG x = jax.numpy.tanh(self.dense2(x)) x = jax.numpy.tanh(self.dense2(x)) return jax.nn.sigmoid(self.dense3(jax.numpy.tanh(x)))[0] class LSTMCell(Module): weight_ih : Parameter linear_hh : Dense def __init__(self, input_size, hidden_size): super().__init__() self.weight_ih = ParamInit((input_size, 4 * hidden_size), init.normal()) self.linear_hh = Dense(input_size, 4 * hidden_size) def forward(self, input, h, c): ifgo = self.weight_ih.T @ input + self.linear_hh(h) i, f, g, o = jax.numpy.split(ifgo, indices_or_sections=4, axis=-1) i = jax.nn.sigmoid(i) f = jax.nn.sigmoid(f) g = jax.numpy.tanh(g) o = jax.nn.sigmoid(o) new_c = f * c + i * g new_h = o * jax.numpy.tanh(new_c) return (new_h, new_c) class MultiLayerLSTM(Module): # Dynamic number of parameters and modules cells : ModuleTuple c_0s : ParameterTuple def __init__(self, n_layers, n_hidden): """For simplicity, have everything have the same dimension.""" super().__init__() self.cells = ModuleTuple([ LSTMCell(n_hidden, n_hidden) for _ in range(n_layers) ]) self.c_0s = ParameterTuple([ ParamInit((n_hidden,), init.normal()) for _ in range(n_layers) ]) @property def hc_0s(self): return tuple((jax.numpy.tanh(c_0), c_0) for c_0 in self.c_0s) @jax.jit # a lot faster (try it without!) def forward(self, input, hcs): new_hcs = [] for cell, hc in zip(self.cells, hcs): input, c = cell(input, *hc) new_hcs.append((input, c)) return tuple(new_hcs) ```
{ "source": "joaogui1/rlax-1", "score": 2 }
#### File: rlax/_src/multistep_test.py ```python from absl.testing import absltest from absl.testing import parameterized import numpy as np from rlax._src import multistep from rlax._src import test_util class LambdaReturnsTest(parameterized.TestCase): def setUp(self): super(LambdaReturnsTest, self).setUp() self.lambda_ = 0.75 self.r_t = np.array( [[1.0, 0.0, -1.0, 0.0, 1.0], [0.5, 0.8, -0.7, 0.0, 2.1]]) self.discount_t = np.array( [[0.5, 0.9, 1.0, 0.5, 0.8], [0.9, 0.5, 0.3, 0.8, 0.7]]) self.v_t = np.array( [[3.0, 1.0, 5.0, -5.0, 3.0], [-1.7, 1.2, 2.3, 2.2, 2.7]]) self.expected = np.array( [[1.6460547, 0.72281253, 0.7375001, 0.6500001, 3.4], [0.7866317, 0.9913063, 0.1101501, 2.834, 3.99]], dtype=np.float32) @test_util.parameterize_vmap_variant() def test_lambda_returns_batch(self, variant): """Tests for a full batch.""" lambda_returns = variant(multistep.lambda_returns, lambda_=self.lambda_) # Compute lambda return in batch. actual = lambda_returns(self.r_t, self.discount_t, self.v_t) # Test return estimate. np.testing.assert_allclose(self.expected, actual, rtol=1e-5) class DiscountedReturnsTest(parameterized.TestCase): def setUp(self): super(DiscountedReturnsTest, self).setUp() self.r_t = np.array( [[1.0, 0.0, -1.0, 0.0, 1.0], [0.5, 0.8, -0.7, 0.0, 2.1]]) self.discount_t = np.array( [[0.5, 0.9, 1.0, 0.5, 0.8], [0.9, 0.5, 0.3, 0.8, 0.7]]) self.v_t = np.array( [[3.0, 1.0, 5.0, -5.0, 3.0], [-1.7, 1.2, 2.3, 2.2, 2.7]]) self.bootstrap_v = np.array([v[-1] for v in self.v_t]) self.expected = np.array( [[1.315, 0.63000005, 0.70000005, 1.7, 3.4], [1.33592, 0.9288, 0.2576, 3.192, 3.9899998]], dtype=np.float32) @test_util.parameterize_vmap_variant() def test_discounted_returns_batch(self, variant): """Tests for a single element.""" discounted_returns = variant(multistep.discounted_returns) # Compute discounted return. actual_scalar = discounted_returns(self.r_t, self.discount_t, self.bootstrap_v) actual_vector = discounted_returns(self.r_t, self.discount_t, self.v_t) # Test output. np.testing.assert_allclose(self.expected, actual_scalar, rtol=1e-5) np.testing.assert_allclose(self.expected, actual_vector, rtol=1e-5) class TDErrorTest(parameterized.TestCase): def setUp(self): super(TDErrorTest, self).setUp() self.r_t = np.array( [[1.0, 0.0, -1.0, 0.0, 1.0], [0.5, 0.8, -0.7, 0.0, 2.1]]) self.discount_t = np.array( [[0.5, 0.9, 1.0, 0.5, 0.8], [0.9, 0.5, 0.3, 0.8, 0.7]]) self.rho_tm1 = np.array( [[0.5, 0.9, 1.3, 0.2, 0.8], [2., 0.1, 1., 0.4, 1.7]]) self.values = np.array( [[3.0, 1.0, 5.0, -5.0, 3.0, 1.], [-1.7, 1.2, 2.3, 2.2, 2.7, 2.]]) @test_util.parameterize_vmap_variant() def test_importance_corrected_td_errors_batch(self, variant): """Tests equivalence to computing the error from a the lambda-return.""" # Vmap and optionally compile. lambda_returns = variant(multistep.lambda_returns) td_errors = variant(multistep.importance_corrected_td_errors) # Compute multistep td-error with recursion on deltas. td_direct = td_errors(self.r_t, self.discount_t, self.rho_tm1, np.ones_like(self.discount_t), self.values) # Compute off-policy corrected return, and derive td-error from it. ls_ = np.concatenate((self.rho_tm1[:, 1:], [[1.], [1.]]), axis=1) td_from_returns = self.rho_tm1 * ( lambda_returns(self.r_t, self.discount_t, self.values[:, 1:], ls_) - self.values[:, :-1]) # Check equivalence. np.testing.assert_allclose(td_direct, td_from_returns, rtol=1e-5) if __name__ == '__main__': absltest.main() ``` #### File: rlax/_src/perturbations_test.py ```python from absl.testing import absltest from absl.testing import parameterized import jax import numpy as np from rlax._src import perturbations from rlax._src import test_util class GaussianTest(parameterized.TestCase): def setUp(self): super(GaussianTest, self).setUp() self._num_actions = 3 self._rng_key = jax.random.PRNGKey(42) @test_util.parameterize_variant() def test_deterministic(self, variant): """Check that noisy and noisless actions match for zero stddev.""" add_noise = variant(perturbations.add_gaussian_noise) # Test that noisy and noisless actions match for zero stddev for _ in range(10): action = np.random.normal(0., 1., self._num_actions) # Test output. self._rng_key, key = jax.random.split(self._rng_key) noisy_action = add_noise(key, action, 0.) np.testing.assert_allclose(action, noisy_action) class OrnsteinUhlenbeckTest(parameterized.TestCase): def setUp(self): super(OrnsteinUhlenbeckTest, self).setUp() self._num_actions = 3 self._rng_key = jax.random.PRNGKey(42) @test_util.parameterize_variant() def test_deterministic(self, variant): """Check that noisy and noisless actions match for zero stddev.""" add_noise = variant(perturbations.add_ornstein_uhlenbeck_noise) # Test that noisy and noisless actions match for zero stddev noise_tm1 = np.zeros((self._num_actions,)) for _ in range(10): action = np.random.normal(0., 1., self._num_actions) # Test output. self._rng_key, key = jax.random.split(self._rng_key) noisy_action = add_noise(key, action, noise_tm1, 1., 0.) noise_tm1 = action - noisy_action np.testing.assert_allclose(action, noisy_action) if __name__ == '__main__': absltest.main() ``` #### File: rlax/_src/test_util.py ```python import functools from absl.testing import parameterized import jax import jax.numpy as jnp import numpy as np def parameterize_variant(*testcases): """A decorator to test each test case with all variants. This decorator is an enhanced version of `parameterized.named_parameters`. The variant factory is appended to the end of the tuple of the function parameters. Args: *testcases: Tuples to pass to `parameterized.named_parameters`. An empty list of testcases will produce one test for each variant. Returns: A test generator to test each test case with all variants. """ factories = _get_variant_factories() return _enhance_named_parameters(factories, testcases) def parameterize_vmap_variant(*testcases): """A decorator to test each test case with all variants of vmap. This decorator is an enhanced version of `parameterized.named_parameters`. The variant factory is appended to the end of the tuple of the function parameters. Args: *testcases: Tuples to pass to `parameterized.named_parameters`. An empty list of testcases will produce one test for each variant. Returns: A test generator to test each test case with all variants. """ factories = _get_vmap_variant_factories() return _enhance_named_parameters(factories, testcases) def _enhance_named_parameters(factories, testcases): """Calls parameterized.named_parameters() with enhanced testcases.""" if not testcases: testcases = [("variant",)] enhanced_testcases = [] for testcase in testcases: name = testcase[0] test_args = tuple(testcase[1:]) for variant_name, raw_factory in factories.items(): variant_factory = _produce_variant_factory(raw_factory) # The variant_factory will be the last argument. case = (name + "_" + variant_name,) + test_args + (variant_factory,) enhanced_testcases.append(case) return parameterized.named_parameters( *enhanced_testcases) def _produce_variant_factory(raw_factory): def variant_factory(fn, *args, **kwargs): return raw_factory(functools.partial(fn, *args, **kwargs)) return variant_factory def _get_variant_factories(): factories = dict( nodevice=_without_device, jit=lambda f: _without_device(jax.jit(f)), device=_with_device, device_jit=lambda f: _with_device(jax.jit(f)), ) return factories def _get_vmap_variant_factories(): """Returns factories for variants operating on batch data.""" factories = dict( jit_vmap=lambda f: _without_device(jax.jit(jax.vmap(f))), device_vmap=lambda f: _with_device(jax.vmap(f)), device_jit_vmap=lambda f: _with_device(jax.jit(jax.vmap(f))), iteration=lambda f: _with_iteration(_without_device(f)), iteration_jit=lambda f: _with_iteration(_without_device(jax.jit(f))), iteration_device=lambda f: _with_iteration(_with_device(f)), iteration_device_jit=lambda f: _with_iteration(_with_device(jax.jit(f))), ) return factories def strict_zip(*args): """A strict `zip()` that requires sequences with the same length.""" expected_len = len(args[0]) for arg in args: np.testing.assert_equal(len(arg), expected_len) return zip(*args) def _with_iteration(fn): """Uses iteration to produce vmap-like output.""" def wrapper(*args): outputs = [] # Iterating over the first axis. for inputs in strict_zip(*args): outputs.append(fn(*inputs)) return jax.tree_util.tree_multimap(lambda *x: jnp.stack(x), *outputs) return wrapper def _with_device(fn): """Puts all inputs to a device.""" def wrapper(*args): converted = jax.device_put(args) return fn(*converted) return wrapper def _without_device(fn): """Moves all inputs outside of a device.""" def wrapper(*args): def get(x): if isinstance(x, jnp.DeviceArray): return jax.device_get(x) return x converted = jax.tree_util.tree_map(get, args) return fn(*converted) return wrapper ``` #### File: rlax/_src/vtrace_test.py ```python from absl.testing import absltest from absl.testing import parameterized import numpy as np from rlax._src import distributions from rlax._src import test_util from rlax._src import vtrace class VTraceTest(parameterized.TestCase): def setUp(self): super(VTraceTest, self).setUp() behavior_policy_logits = np.array( [[[8.9, 0.7], [5.0, 1.0], [0.6, 0.1], [-0.9, -0.1]], [[0.3, -5.0], [1.0, -8.0], [0.3, 1.7], [4.7, 3.3]]], dtype=np.float32) target_policy_logits = np.array( [[[0.4, 0.5], [9.2, 8.8], [0.7, 4.4], [7.9, 1.4]], [[1.0, 0.9], [1.0, -1.0], [-4.3, 8.7], [0.8, 0.3]]], dtype=np.float32) actions = np.array([[0, 1, 0, 0], [1, 0, 0, 1]], dtype=np.int32) self._rho_t = distributions.categorical_importance_sampling_ratios( target_policy_logits, behavior_policy_logits, actions) self._rewards = np.array([[-1.3, -1.3, 2.3, 42.0], [1.3, 5.3, -3.3, -5.0]], dtype=np.float32) self._discounts = np.array([[0., 0.89, 0.85, 0.99], [0.88, 1., 0.83, 0.95]], dtype=np.float32) self._values = np.array([[2.1, 1.1, -3.1, 0.0], [3.1, 0.1, -1.1, 7.4]], dtype=np.float32) self._bootstrap_value = np.array([8.4, -1.2], dtype=np.float32) self._inputs = [ self._rewards, self._discounts, self._rho_t, self._values, self._bootstrap_value] self._clip_rho_threshold = 1.0 self._clip_pg_rho_threshold = 5.0 self._lambda = 1.0 self._expected_td = np.array( [[-1.6155143, -3.4973226, 1.8670533, 5.0316002e1], [1.4662437, 3.6116405, -8.3327293e-5, -1.3540000e1]], dtype=np.float32) self._expected_pg = np.array( [[-1.6155143, -3.4973226, 1.8670534, 5.0316002e1], [1.4662433, 3.6116405, -8.3369283e-05, -1.3540000e+1]], dtype=np.float32) @test_util.parameterize_vmap_variant() def test_vtrace_td_error_and_advantage(self, variant): """Tests for a full batch.""" vtrace_td_error_and_advantage = variant( vtrace.vtrace_td_error_and_advantage, clip_rho_threshold=self._clip_rho_threshold, lambda_=self._lambda) # Get function arguments. r_t, discount_t, rho_t, v_tm1, bootstrap_value = self._inputs v_t = np.concatenate([v_tm1[:, 1:], bootstrap_value[:, None]], axis=1) # Compute vtrace output. vtrace_output = vtrace_td_error_and_advantage( v_tm1, v_t, r_t, discount_t, rho_t) # Test output. np.testing.assert_allclose( self._expected_td, vtrace_output.errors, rtol=1e-3) np.testing.assert_allclose( self._expected_pg, vtrace_output.pg_advantage, rtol=1e-3) @test_util.parameterize_vmap_variant() def test_lambda_q_estimate(self, variant): """Tests for a full batch.""" lambda_ = 0.8 vtrace_td_error_and_advantage = variant( vtrace.vtrace_td_error_and_advantage, clip_rho_threshold=self._clip_rho_threshold, lambda_=lambda_) # Get function arguments. r_t, discount_t, rho_t, v_tm1, bootstrap_value = self._inputs v_t = np.concatenate([v_tm1[:, 1:], bootstrap_value[:, None]], axis=1) # Compute vtrace output. vtrace_output = vtrace_td_error_and_advantage( v_tm1, v_t, r_t, discount_t, rho_t) expected_vs = vtrace_output.errors + v_tm1 clipped_rho_t = np.minimum(self._clip_rho_threshold, rho_t) vs_from_q = v_tm1 + clipped_rho_t * (vtrace_output.q_estimate - v_tm1) # Test output. np.testing.assert_allclose(expected_vs, vs_from_q, rtol=1e-3) if __name__ == '__main__': absltest.main() ```
{ "source": "joaogui1/sonnet", "score": 2 }
#### File: sonnet/src/axis_norm_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np from sonnet.src import axis_norm from sonnet.src import initializers from sonnet.src import test_utils import tensorflow as tf class LayerNormTest(test_utils.TestCase, parameterized.TestCase): def testSimpleCase(self): layer = axis_norm.LayerNorm([1, 2], create_scale=False, create_offset=False) inputs = tf.ones([2, 3, 3, 5]) outputs = layer(inputs).numpy() for x in np.nditer(outputs): self.assertEqual(x, 0.0) def testSimpleCaseVar(self): layer = axis_norm.LayerNorm([1, 2], create_scale=True, create_offset=True, scale_init=initializers.Constant(0.5), offset_init=initializers.Constant(2.0)) inputs = tf.ones([2, 3, 3, 5]) outputs = layer(inputs).numpy() for x in np.nditer(outputs): self.assertEqual(x, 2.0) def testSimpleCaseNCHWVar(self): layer = axis_norm.LayerNorm([1, 2], create_scale=True, create_offset=True, scale_init=initializers.Constant(0.5), offset_init=initializers.Constant(2.0), data_format="NCHW") inputs = tf.ones([2, 5, 3, 3]) outputs = layer(inputs).numpy() for x in np.nditer(outputs): self.assertEqual(x, 2.0) def testDataFormatAgnosticVar(self): c_last_layer = axis_norm.LayerNorm([1, 2], create_scale=True, create_offset=True) c_first_layer = axis_norm.LayerNorm([2, 3], create_scale=True, create_offset=True, data_format="NCHW") inputs = tf.random.uniform([3, 4, 4, 5], 0, 10) c_last_output = c_last_layer(inputs) inputs = tf.transpose(inputs, [0, 3, 1, 2]) c_first_output = c_first_layer(inputs) c_first_output = tf.transpose(c_first_output, [0, 2, 3, 1]) self.assertAllClose(c_last_output.numpy(), c_first_output.numpy()) def testSimpleCaseTensor(self): layer = axis_norm.LayerNorm([1, 2], create_scale=False, create_offset=False) inputs = tf.ones([2, 3, 3, 5]) scale = tf.constant(0.5, shape=(5,)) offset = tf.constant(2.0, shape=(5,)) outputs = layer(inputs, scale, offset).numpy() for x in np.nditer(outputs): self.assertEqual(x, 2.0) def testSimpleCaseNCHWTensor(self): layer = axis_norm.LayerNorm([1, 2], data_format="NCHW", create_scale=False, create_offset=False) inputs = tf.ones([2, 5, 3, 3]) scale = tf.constant(0.5, shape=(5, 1, 1)) offset = tf.constant(2.0, shape=(5, 1, 1)) outputs = layer(inputs, scale, offset).numpy() for x in np.nditer(outputs): self.assertEqual(x, 2.0) def testDataFormatAgnosticTensor(self): c_last_layer = axis_norm.LayerNorm([1, 2], create_scale=False, create_offset=False) c_first_layer = axis_norm.LayerNorm([2, 3], data_format="NCHW", create_scale=False, create_offset=False) inputs = tf.random.uniform([3, 4, 4, 5], 0, 10) scale = tf.random.normal((5,), mean=1.0) offset = tf.random.normal((5,)) c_last_output = c_last_layer(inputs, scale, offset) inputs = tf.transpose(inputs, [0, 3, 1, 2]) scale = tf.reshape(scale, (5, 1, 1)) offset = tf.reshape(offset, (5, 1, 1)) c_first_output = c_first_layer(inputs, scale, offset) c_first_output = tf.transpose(c_first_output, [0, 2, 3, 1]) self.assertAllClose(c_last_output.numpy(), c_first_output.numpy()) @parameterized.parameters("NHW", "HWC", "channel_last") def testInvalidDataFormat(self, data_format): with self.assertRaisesRegexp( ValueError, "Unable to extract channel information from '{}'.".format(data_format)): axis_norm.LayerNorm( 3, data_format=data_format, create_scale=False, create_offset=False) @parameterized.parameters("NCHW", "NCW", "channels_first") def testValidDataFormatChannelsFirst(self, data_format): test = axis_norm.LayerNorm( 3, data_format=data_format, create_scale=False, create_offset=False) self.assertEqual(test._channel_index, 1) @parameterized.parameters("NHWC", "NWC", "channels_last") def testValidDataFormatChannelsLast(self, data_format): test = axis_norm.LayerNorm( 3, data_format=data_format, create_scale=False, create_offset=False) self.assertEqual(test._channel_index, -1) @parameterized.named_parameters(("String", "foo"), ("ListString", ["foo"])) def testInvalidAxis(self, axis): with self.assertRaisesRegexp( ValueError, "`axis` should be an int, slice or iterable of ints."): axis_norm.LayerNorm(axis, create_scale=False, create_offset=False) def testNoScaleAndInitProvided(self): with self.assertRaisesRegexp( ValueError, "Cannot set `scale_init` if `create_scale=False`."): axis_norm.LayerNorm( 3, create_scale=False, create_offset=True, scale_init=initializers.Ones()) def testNoOffsetBetaInitProvided(self): with self.assertRaisesRegexp( ValueError, "Cannot set `offset_init` if `create_offset=False`."): axis_norm.LayerNorm( 3, create_scale=True, create_offset=False, offset_init=initializers.Zeros()) def testCreateScaleAndScaleProvided(self): layer = axis_norm.LayerNorm([2], create_scale=True, create_offset=False) with self.assertRaisesRegexp( ValueError, "Cannot pass `scale` at call time if `create_scale=True`."): layer(tf.ones([2, 3, 4]), scale=tf.ones([4])) def testCreateOffsetAndOffsetProvided(self): layer = axis_norm.LayerNorm([2], create_offset=True, create_scale=False) with self.assertRaisesRegexp( ValueError, "Cannot pass `offset` at call time if `create_offset=True`."): layer(tf.ones([2, 3, 4]), offset=tf.ones([4])) def testSliceAxis(self): slice_layer = axis_norm.LayerNorm( slice(1, -1), create_scale=False, create_offset=False) axis_layer = axis_norm.LayerNorm((1, 2), create_scale=False, create_offset=False) inputs = tf.random.uniform([3, 4, 4, 5], 0, 10) scale = tf.random.normal((5,), mean=1.0) offset = tf.random.normal((5,)) slice_outputs = slice_layer(inputs, scale, offset) axis_outputs = axis_layer(inputs, scale, offset) self.assertAllEqual(slice_outputs.numpy(), axis_outputs.numpy()) def testRankChanges(self): layer = axis_norm.LayerNorm((1, 2), create_scale=False, create_offset=False) inputs = tf.ones([2, 3, 3, 5]) scale = tf.constant(0.5, shape=(5,)) offset = tf.constant(2.0, shape=(5,)) layer(inputs, scale, offset) with self.assertRaisesRegexp( ValueError, "The rank of the inputs cannot change between calls, the original"): layer(tf.ones([2, 3, 3, 4, 5]), scale, offset) def testWorksWithFunction(self): layer = axis_norm.LayerNorm((1, 2), create_scale=False, create_offset=False) function_layer = tf.function(layer) inputs = tf.ones([2, 3, 3, 5]) scale = tf.constant(0.5, shape=(5,)) offset = tf.constant(2.0, shape=(5,)) outputs = layer(inputs, scale, offset) function_outputs = function_layer(inputs, scale, offset) self.assertAllEqual(outputs.numpy(), function_outputs.numpy()) def testShapeAgnostic(self): layer = axis_norm.LayerNorm((1, 2), create_scale=False, create_offset=False) inputs_spec = tf.TensorSpec([None, None, None, None], dtype=tf.float32) params_spec = tf.TensorSpec([None], dtype=tf.float32) function_layer = tf.function(layer).get_concrete_function( inputs_spec, params_spec, params_spec) scale = tf.constant(0.5, shape=(5,)) offset = tf.constant(2.0, shape=(5,)) outputs = function_layer(tf.ones([2, 3, 3, 5]), scale, offset) self.assertEqual(outputs.shape, [2, 3, 3, 5]) for x in np.nditer(outputs): self.assertEqual(x, 2.0) scale = tf.constant(0.5, shape=(3,)) offset = tf.constant(2.0, shape=(3,)) outputs = function_layer(tf.ones([3, 4, 6, 3]), scale, offset) self.assertEqual(outputs.shape, [3, 4, 6, 3]) for x in np.nditer(outputs): self.assertEqual(x, 2.0) def test5DDataFormatAgnostic(self): c_last_layer = axis_norm.LayerNorm([1, 2, 3], create_scale=False, create_offset=False) c_first_layer = axis_norm.LayerNorm([2, 3, 4], create_scale=False, create_offset=False, data_format="NCDHW") inputs = tf.random.uniform([3, 4, 4, 4, 5], 0, 10) scale = tf.random.normal((5,), mean=1.0) offset = tf.random.normal((5,)) c_last_output = c_last_layer(inputs, scale, offset) inputs = tf.transpose(inputs, [0, 4, 1, 2, 3]) scale = tf.reshape(scale, [-1, 1, 1, 1]) offset = tf.reshape(offset, [-1, 1, 1, 1]) c_first_output = c_first_layer(inputs, scale, offset) c_first_output = tf.transpose(c_first_output, [0, 2, 3, 4, 1]) self.assertAllClose( c_last_output.numpy(), c_first_output.numpy(), atol=1e-5, rtol=1e-5) def test3DDataFormatAgnostic(self): c_last_layer = axis_norm.LayerNorm([1], create_scale=False, create_offset=False) c_first_layer = axis_norm.LayerNorm([2], create_scale=False, create_offset=False, data_format="NCW") inputs = tf.random.uniform([3, 4, 5], 0, 10) scale = tf.random.normal((5,), mean=1.0) offset = tf.random.normal((5,)) c_last_output = c_last_layer(inputs, scale, offset) inputs = tf.transpose(inputs, [0, 2, 1]) scale = tf.reshape(scale, [-1, 1]) offset = tf.reshape(offset, [-1, 1]) c_first_output = c_first_layer(inputs, scale, offset) c_first_output = tf.transpose(c_first_output, [0, 2, 1]) self.assertAllClose( c_last_output.numpy(), c_first_output.numpy(), atol=1e-5, rtol=1e-5) def testInstanceNormCorrectAxis(self): layer = axis_norm.InstanceNorm(create_scale=True, create_offset=True) inputs = tf.ones([3, 4, 5, 6]) layer(inputs) self.assertEqual(layer._axis, (1, 2)) def testInstanceNormCorrectNCW(self): layer = axis_norm.InstanceNorm( create_scale=True, create_offset=True, data_format="channels_first") inputs = tf.ones([3, 4, 5, 6]) layer(inputs) self.assertEqual(layer._axis, (2, 3)) if __name__ == "__main__": # tf.enable_v2_behavior() tf.test.main() ``` #### File: sonnet/src/batch_norm.py ```python from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function from sonnet.src import base from sonnet.src import initializers from sonnet.src import metrics from sonnet.src import moving_averages from sonnet.src import once from sonnet.src import types from sonnet.src import utils import tensorflow as tf from typing import Optional, Text, Tuple class BaseBatchNorm(base.Module): r"""Batch normalization module. This implements normalization across the batch and spatial dimensions. It maintains moving averages of the mean and variance which can be used to normalize at test time. The constructor is generic and requires the user to pass in objects to compute these. At training time we use the batch statistics for that batch and these are then used to update the moving averages. At test time we can either use the moving averages of the batch statistics (``test_local_stats=False``) or we can use the local statistics (``test_local_stats=True``). It transforms the input ``x`` into: .. math:: \d{outputs} = \d{scale} \dfrac{x - \mu}{\sigma + \epsilon} + \d{offset} Where :math:`\mu` and :math:`\sigma` are respectively the mean and standard deviation of ``x``. Note that this module automatically uses the fused batch norm op if the data format is ``NHWC``. There are many different variations for how users want to manage scale and offset if they require them at all. These are: - No scale/offset in which case ``create_*`` should be set to ``False`` and ``scale``/``offset`` aren't passed when the module is called. - Trainable scale/offset in which case ``create_*`` should be set to ``True`` and again ``scale``/``offset`` aren't passed when the module is called. In this case this module creates and owns the ``scale``/``offset`` variables. - Externally generated ``scale``/``offset``, such as for conditional normalization, in which case ``create_*`` should be set to ``False`` and then the values fed in at call time. Attributes: scale: If ``create_scale``, a trainable :tf:`Variable` holding the current scale after the module is connected for the first time. offset: If ``create_offset``, a trainable :tf:`Variable` holding the current offset after the module is connected for the first time. """ def __init__(self, create_scale: bool, create_offset: bool, moving_mean: metrics.Metric, moving_variance: metrics.Metric, eps: types.FloatLike = 1e-5, scale_init: Optional[initializers.Initializer] = None, offset_init: Optional[initializers.Initializer] = None, data_format: Text = "channels_last", name: Optional[Text] = None): """Constructs a ``BaseBatchNorm`` module. Args: create_scale: whether to create a trainable scale per channel applied after the normalization. create_offset: whether to create a trainable offset per channel applied after normalization and scaling. moving_mean: A metric which tracks the moving average of the mean which can be used to normalize at test time. moving_variance: A metric which tracks the moving average of the variance which can be used to normalize at test time. eps: Small epsilon to avoid division by zero variance. Defaults to ``1e-5``. scale_init: Optional initializer for the scale variable. Can only be set if ``create_scale=True``. By default scale is initialized to ``1``. offset_init: Optional initializer for the offset variable. Can only be set if ``create_offset=True``. By default offset is initialized to ``0``. data_format: The data format of the input. Can be either ``channels_first``, ``channels_last``, ``N...C`` or ``NC...``. By default it is ``channels_last``. name: Name of the module. """ super(BaseBatchNorm, self).__init__(name=name) self._eps = eps self.moving_mean = moving_mean self.moving_variance = moving_variance self._data_format = data_format self._channel_index = utils.get_channel_index(data_format) self._create_scale = create_scale self._create_offset = create_offset if not self._create_scale and scale_init is not None: raise ValueError("Cannot set `scale_init` if `create_scale=False`") self._scale_init = scale_init or initializers.Ones() if not self._create_offset and offset_init is not None: raise ValueError("Cannot set `offset_init` if `create_offset=False`") self._offset_init = offset_init or initializers.Zeros() @utils.smart_autograph def __call__(self, inputs: tf.Tensor, is_training: types.BoolLike, test_local_stats: types.BoolLike = False, scale: Optional[tf.Tensor] = None, offset: Optional[tf.Tensor] = None): """Returns normalized inputs. Args: inputs: An n-D tensor of the data_format specified above on which the transformation is performed. is_training: Whether the module should be connected in training mode, meaning the moving averages are updated. test_local_stats: Whether local batch statistics should be used when ``is_training=False``. If not, moving averages are used. By default ``False``. scale: A tensor up to n-D. The shape of this tensor must be broadcastable to the shape of ``inputs``. This is the scale applied to the normalized inputs. This cannot be passed in if the module was constructed with ``create_scale=True``. offset: A tensor up to n-D. The shape of this tensor must be broadcastable to the shape of ``inputs``. This is the offset applied to the normalized inputs. This cannot be passed in if the module was constructed with ``create_offset=True``. Returns: An n-d tensor of the same shape as inputs that has been normalized. """ use_batch_stats = is_training or test_local_stats if self._create_scale: if scale is not None: raise ValueError( "Cannot pass `scale` at call time if `create_scale=True`.") if self._create_offset: if offset is not None: raise ValueError( "Cannot pass `offset` at call time if `create_offset=True`.") self._initialize(inputs) if scale is None: scale = self.scale if offset is None: offset = self.offset mean, variance = self._moments(inputs, use_batch_stats) if self._fused: out, mean, variance, _, _ = tf.raw_ops.FusedBatchNormV2( x=inputs, mean=mean, variance=variance, scale=scale, offset=offset, is_training=use_batch_stats, epsilon=self._eps, data_format=self._fused_data_format) else: out = tf.nn.batch_normalization( inputs, mean=mean, variance=variance, scale=scale, offset=offset, variance_epsilon=self._eps) if is_training: self._update_statistics(mean, variance) return out @once.once def _initialize(self, inputs: tf.Tensor): input_shape = inputs.shape rank = len(input_shape) self._fused = (rank == 4 and self._channel_index == -1) self._fused_data_format = "NHWC" if self._channel_index == -1 else "NCHW" if self._channel_index < 0: channel_index = self._channel_index + rank else: channel_index = self._channel_index self._axis = tuple(i for i in range(rank) if i != channel_index) # Ensure all the variables are created on the first call mean, variance = tf.nn.moments(inputs, self._axis, keepdims=True) self.shape = mean.shape self.moving_mean.initialize(mean) self.moving_variance.initialize(variance) dtype = inputs.dtype if self._channel_index == -1: params_shape = [inputs.shape[-1]] else: # self._channel_index == 1 params_shape = [inputs.shape[1]] + [1] * (rank - 2) # Creates scale and offset parameters - required for fused_batch_norm # trainable set to with_scale and with_offset which gives no-op if false self.scale = tf.Variable( self._scale_init(params_shape, dtype), name="scale", trainable=self._create_scale) self.offset = tf.Variable( self._offset_init(params_shape, dtype), name="offset", trainable=self._create_offset) if self._fused: with tf.init_scope(): self._fused_constant = tf.constant([]) def _moments(self, inputs: tf.Tensor, use_batch_stats: types.BoolLike) -> Tuple[tf.Tensor, tf.Tensor]: if use_batch_stats: if self._fused: # The raw ops version of fused batch norm calculates the mean and # variance internally but requires tensors to be passed in. mean = self._fused_constant variance = self._fused_constant else: mean, variance = tf.nn.moments(inputs, self._axis, keepdims=True) else: # use moving stats mean = self.moving_mean.value variance = self.moving_variance.value if self._fused: mean = tf.squeeze(mean) variance = tf.squeeze(variance) return mean, variance def _update_statistics(self, mean, variance): if self._fused: mean = tf.reshape(mean, self.shape) variance = tf.reshape(variance, self.shape) self.moving_mean.update(mean) self.moving_variance.update(variance) class BatchNorm(BaseBatchNorm): """Batch normalization with exponential moving average for test statistics. See :class:`BaseBatchNorm` for details. Attributes: scale: If ``create_scale=True``, a trainable :tf:`Variable` holding the current scale after the module is connected for the first time. offset: If ``create_offset``, a trainable :tf:`Variable` holding the current offset after the module is connected for the first time. """ def __init__(self, create_scale: bool, create_offset: bool, decay_rate: float = 0.999, eps: types.FloatLike = 1e-5, scale_init: Optional[initializers.Initializer] = None, offset_init: Optional[initializers.Initializer] = None, data_format: Text = "channels_last", name: Optional[Text] = None): """Constructs a ``BatchNorm`` module. Args: create_scale: whether to create a trainable scale per channel applied after the normalization. create_offset: whether to create a trainable offset per channel applied after normalization and scaling. decay_rate: Decay rate of the exponential moving averages of the mean and variance. eps: Small epsilon to avoid division by zero variance. Defaults to ``1e-5``. scale_init: Optional initializer for the scale variable. Can only be set if ``create_scale=True``. By default scale is initialized to ``1``. offset_init: Optional initializer for the offset variable. Can only be set if ``create_offset=True``. By default offset is initialized to ``0``. data_format: The data format of the input. Can be either ``channels_first``, ``channels_last``, ``N...C`` or ``NC...``. By default it is ``channels_last``. name: Name of the module. """ with tf.name_scope(name or "batch_norm"): moving_mean = moving_averages.ExponentialMovingAverage(decay_rate) moving_variance = moving_averages.ExponentialMovingAverage(decay_rate) super(BatchNorm, self).__init__( create_scale=create_scale, create_offset=create_offset, moving_mean=moving_mean, moving_variance=moving_variance, eps=eps, scale_init=scale_init, offset_init=offset_init, data_format=data_format, name=name) ``` #### File: src/conformance/goldens.py ```python from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function import abc from absl.testing import parameterized import numpy as np import six import sonnet as snt import tensorflow as tf from typing import Text, Tuple, Sequence _all_goldens = [] def named_goldens() -> Sequence[Tuple[Text, "Golden"]]: return ((name, cls()) for _, name, cls in list_goldens()) def all_goldens(test_method): return parameterized.named_parameters(named_goldens())(test_method) def _register_golden(module_cls, golden_name): def registration_fn(golden_cls): _all_goldens.append((module_cls, golden_name, golden_cls)) golden_cls.name = golden_name return golden_cls return registration_fn def list_goldens(): return list(_all_goldens) def range_like(t, start=0): """Returns a tensor with sequential values of the same dtype/shape as `t`. >>> range_like(tf.ones([2, 2])) <tf.Tensor: ... shape=(2, 2), dtype=float32, numpy= array([[ 0., 1.], [ 2., 3.]], dtype=float32)> >>> range_like(tf.ones([2, 2]), start=5) <tf.Tensor: ... shape=(2, 2), dtype=float32, numpy= array([[ 5., 6.], [ 7., 8.]], dtype=float32)> Args: t: A tensor like object (with shape and dtype). start: Value to start the range from. Returns: A `tf.Tensor` with sequential element values the same shape/dtype as `t`. """ return tf.reshape( tf.cast( tf.range(start, np.prod(t.shape, dtype=int) + start), dtype=t.dtype), t.shape) @six.add_metaclass(abc.ABCMeta) class Golden(object): """Represents a golden checkpoint file.""" @abc.abstractmethod def create_module(self): """Should create a new module instance and return it.""" pass @abc.abstractmethod def create_all_variables(self, module): """Create all variables for the given model and return them.""" pass @abc.abstractmethod def forward(self, module): """Return the output from calling the module with a fixed input.""" pass @six.add_metaclass(abc.ABCMeta) class AbstractGolden(Golden): """Abstract base class for golden tests of single input modules.""" deterministic = True has_side_effects = False # Tolerance to be used for assertAllClose calls on TPU, where lower precision # can mean results differ more. tpu_atol = 1e-3 @abc.abstractproperty def input_spec(self): pass @abc.abstractproperty def num_variables(self): pass def forward(self, module): x = range_like(self.input_spec, start=1) return module(x) def create_all_variables(self, module): self.forward(module) variables = module.variables assert len(variables) == self.num_variables, ( "Expected %d params, got %d %r" % (self.num_variables, len(variables), variables)) return variables # pylint: disable=missing-docstring @_register_golden(snt.Linear, "linear_1x1") class Linear1x1Test(AbstractGolden): create_module = lambda _: snt.Linear(1) input_spec = tf.TensorSpec([128, 1]) num_variables = 2 @_register_golden(snt.Linear, "linear_nobias_1x1") class LinearNoBias1x1(AbstractGolden): create_module = lambda _: snt.Linear(1, with_bias=False) input_spec = tf.TensorSpec([1, 1]) num_variables = 1 @_register_golden(snt.Conv1D, "conv1d_3x3_2x2") class Conv1D(AbstractGolden): create_module = lambda _: snt.Conv1D(output_channels=3, kernel_shape=3) input_spec = tf.TensorSpec([1, 2, 2]) num_variables = 2 @_register_golden(snt.Conv2D, "conv2d_3x3_2x2") class Conv2D(AbstractGolden): create_module = lambda _: snt.Conv2D(output_channels=3, kernel_shape=3) input_spec = tf.TensorSpec([1, 2, 2, 2]) num_variables = 2 @_register_golden(snt.Conv3D, "conv3d_3x3_2x2") class Conv3D(AbstractGolden): create_module = lambda _: snt.Conv3D(output_channels=3, kernel_shape=3) input_spec = tf.TensorSpec([1, 2, 2, 2, 2]) num_variables = 2 @_register_golden(snt.Conv1DTranspose, "conv1d_transpose_3x3_2x2") class Conv1DTranspose(AbstractGolden): create_module = ( lambda _: snt.Conv1DTranspose(output_channels=3, kernel_shape=3)) input_spec = tf.TensorSpec([1, 2, 2]) num_variables = 2 @_register_golden(snt.Conv2DTranspose, "conv2d_transpose_3x3_2x2") class Conv2DTranspose(AbstractGolden): create_module = ( lambda _: snt.Conv2DTranspose(output_channels=3, kernel_shape=3)) input_spec = tf.TensorSpec([1, 2, 2, 2]) num_variables = 2 @_register_golden(snt.Conv3DTranspose, "conv3d_transpose_3x3_2x2") class Conv3DTranspose(AbstractGolden): create_module = ( lambda _: snt.Conv3DTranspose(output_channels=3, kernel_shape=3)) input_spec = tf.TensorSpec([1, 2, 2, 2, 2]) num_variables = 2 @_register_golden(snt.DepthwiseConv2D, "depthwise_conv2d_3x3_2x2") class DepthwiseConv2D(AbstractGolden): create_module = lambda _: snt.DepthwiseConv2D(kernel_shape=3) input_spec = tf.TensorSpec([1, 2, 2, 2]) num_variables = 2 @_register_golden(snt.nets.MLP, "mlp_3x4x5_1x3") class MLP(AbstractGolden): create_module = (lambda _: snt.nets.MLP([3, 4, 5])) input_spec = tf.TensorSpec([1, 3]) num_variables = 6 @_register_golden(snt.nets.MLP, "mlp_nobias_3x4x5_1x3") class MLPNoBias(AbstractGolden): create_module = (lambda _: snt.nets.MLP([3, 4, 5], with_bias=False)) input_spec = tf.TensorSpec([1, 3]) num_variables = 3 @_register_golden(snt.nets.Cifar10ConvNet, "cifar10_convnet_2x3_2x2_1x3x3x2") class Cifar10ConvNet(AbstractGolden): create_module = ( lambda _: snt.nets.Cifar10ConvNet(output_channels=(2, 3), strides=(2, 2))) input_spec = tf.TensorSpec([1, 3, 3, 2]) num_variables = 22 def forward(self, module): x = range_like(self.input_spec, start=1) return module(x, is_training=False, test_local_stats=True)["logits"] @_register_golden(snt.LayerNorm, "layer_norm_1_1x3_2") class LayerNorm(AbstractGolden): create_module = ( lambda _: snt.LayerNorm(1, create_scale=True, create_offset=True)) input_spec = tf.TensorSpec([1, 3, 2]) num_variables = 2 @_register_golden(snt.InstanceNorm, "instance_norm_1_1x3_2") class Instance(AbstractGolden): create_module = ( lambda _: snt.InstanceNorm(create_scale=True, create_offset=True)) input_spec = tf.TensorSpec([1, 3, 2]) num_variables = 2 @_register_golden(snt.GroupNorm, "group_norm_2_1x3x4") class GroupNorm(AbstractGolden): create_module = ( lambda _: snt.GroupNorm(2, create_scale=True, create_offset=True)) input_spec = tf.TensorSpec([1, 3, 4]) num_variables = 2 @_register_golden(snt.BaseBatchNorm, "base_batch_norm_1x2x2x3") class BaseBatchNorm(AbstractGolden): create_module = ( lambda _: snt.BaseBatchNorm(True, False, FooMetric(), FooMetric())) # pytype: disable=wrong-arg-types input_spec = tf.TensorSpec([1, 2, 2, 3]) num_variables = 2 def forward(self, module): x = range_like(self.input_spec, start=1) return module(x, is_training=False, test_local_stats=True) @_register_golden(snt.BaseBatchNorm, "base_batch_norm_scale_offset_1x2x2x3") class BaseBatchNormScaleOffset(AbstractGolden): create_module = ( lambda _: snt.BaseBatchNorm(True, False, FooMetric(), FooMetric())) # pytype: disable=wrong-arg-types input_spec = tf.TensorSpec([1, 2, 2, 3]) num_variables = 2 def forward(self, module): x = range_like(self.input_spec, start=1) return module(x, is_training=False, test_local_stats=True) @_register_golden(snt.BatchNorm, "batch_norm_1x2x2x3") class BatchNorm(AbstractGolden): create_module = (lambda _: snt.BatchNorm(True, True)) input_spec = tf.TensorSpec([1, 2, 2, 3]) num_variables = 8 def forward(self, module): x = range_like(self.input_spec, start=1) return module(x, is_training=False, test_local_stats=True) @_register_golden(snt.BatchNorm, "batch_norm_scale_offset_1x2x2x3") class BatchNormScaleOffset(AbstractGolden): create_module = (lambda _: snt.BatchNorm(True, True)) input_spec = tf.TensorSpec([1, 2, 2, 3]) num_variables = 8 def forward(self, module): x = range_like(self.input_spec, start=1) return module(x, is_training=False, test_local_stats=True) @_register_golden(snt.ExponentialMovingAverage, "ema_2") class ExponentialMovingAverage(AbstractGolden): create_module = (lambda _: snt.ExponentialMovingAverage(decay=0.9)) input_spec = tf.TensorSpec([2]) num_variables = 3 has_side_effects = True def forward(self, module): x = range_like(self.input_spec, start=1) return module(x) @_register_golden(snt.BatchNorm, "batch_norm_training_1x2x2x3") class BatchNormTraining(AbstractGolden): create_module = (lambda _: snt.BatchNorm(True, True)) input_spec = tf.TensorSpec([1, 2, 2, 3]) num_variables = 8 has_side_effects = True def forward(self, module): x = range_like(self.input_spec, start=1) return module(x, is_training=True) @_register_golden(snt.distribute.CrossReplicaBatchNorm, "cross_replica_batch_norm_1x2x2x3") class CrossReplicaBatchNorm(AbstractGolden): create_module = ( lambda _: snt.BaseBatchNorm(True, False, FooMetric(), FooMetric())) input_spec = tf.TensorSpec([1, 2, 2, 3]) num_variables = 2 def forward(self, module): x = range_like(self.input_spec, start=1) return module(x, is_training=False, test_local_stats=True) @_register_golden(snt.Dropout, "dropout") class DropoutVariableRate(AbstractGolden): create_module = lambda _: snt.Dropout(rate=tf.Variable(0.5)) input_spec = tf.TensorSpec([3, 3, 3]) num_variables = 1 deterministic = False def forward(self, module): tf.random.set_seed(3) x = range_like(self.input_spec, start=1) return module(x, is_training=True) class AbstractRNNGolden(AbstractGolden): def forward(self, module): # Small inputs to ensure that tf.tanh and tf.sigmoid don't saturate. x = 1.0 / range_like(self.input_spec, start=1) batch_size = self.input_spec.shape[0] prev_state = module.initial_state(batch_size) y, next_state = module(x, prev_state) del next_state return y @_register_golden(snt.Conv1DLSTM, "conv1d_lstm_3x3_2x2") class Conv1DLSTM(AbstractRNNGolden): input_spec = tf.TensorSpec([1, 2, 2]) num_variables = 3 def create_module(self): return snt.Conv1DLSTM( input_shape=self.input_spec.shape[1:], output_channels=3, kernel_shape=3) @_register_golden(snt.Conv2DLSTM, "conv2d_lstm_3x3_2x2") class Conv2DLSTM(AbstractRNNGolden): input_spec = tf.TensorSpec([1, 2, 2, 2]) num_variables = 3 def create_module(self): return snt.Conv2DLSTM( input_shape=self.input_spec.shape[1:], output_channels=3, kernel_shape=3) @_register_golden(snt.Conv3DLSTM, "conv3d_lstm_3x3_2x2") class Conv3DLSTM(AbstractRNNGolden): input_spec = tf.TensorSpec([1, 2, 2, 2, 2]) num_variables = 3 def create_module(self): return snt.Conv3DLSTM( input_shape=self.input_spec.shape[1:], output_channels=3, kernel_shape=3) @_register_golden(snt.GRU, "gru_1") class GRU(AbstractRNNGolden): create_module = lambda _: snt.GRU(hidden_size=1) input_spec = tf.TensorSpec([1, 128]) num_variables = 3 @_register_golden(snt.LSTM, "lstm_1") class LSTM(AbstractRNNGolden): create_module = lambda _: snt.LSTM(hidden_size=1) input_spec = tf.TensorSpec([1, 128]) num_variables = 3 @_register_golden(snt.LSTM, "lstm_8_projected_1") class LSTMWithProjection(AbstractRNNGolden): create_module = lambda _: snt.LSTM(hidden_size=8, projection_size=1) input_spec = tf.TensorSpec([1, 128]) num_variables = 4 @_register_golden(snt.UnrolledLSTM, "unrolled_lstm_1") class UnrolledLSTM(AbstractRNNGolden): create_module = lambda _: snt.UnrolledLSTM(hidden_size=1) input_spec = tf.TensorSpec([1, 1, 128]) num_variables = 3 @_register_golden(snt.VanillaRNN, "vanilla_rnn_8") class VanillaRNN(AbstractRNNGolden): create_module = lambda _: snt.VanillaRNN(hidden_size=8) input_spec = tf.TensorSpec([1, 128]) num_variables = 3 @_register_golden(snt.TrainableState, "trainable_state") class TrainableState(AbstractGolden): create_module = lambda _: snt.TrainableState(tf.zeros([1])) input_spec = tf.TensorSpec(()) num_variables = 1 @_register_golden(snt.Bias, "bias_3x3x3") class BiasTest(AbstractGolden): create_module = lambda _: snt.Bias() input_spec = tf.TensorSpec([1, 3, 3, 3]) num_variables = 1 @_register_golden(snt.Embed, "embed_100_100") class EmbedTest(AbstractGolden): create_module = lambda _: snt.Embed(vocab_size=100, embed_dim=100) input_spec = tf.TensorSpec([10], dtype=tf.int32) num_variables = 1 @_register_golden(snt.Mean, "mean_2x2") class MeanTest(AbstractGolden): create_module = lambda _: snt.Mean() input_spec = tf.TensorSpec([2, 2]) num_variables = 2 has_side_effects = True @_register_golden(snt.Sum, "sum_2x2") class SumTest(AbstractGolden): create_module = lambda _: snt.Sum() input_spec = tf.TensorSpec([2, 2]) num_variables = 1 has_side_effects = True @_register_golden(snt.nets.ResNet, "resnet50") class ResNet(AbstractGolden): create_module = (lambda _: snt.nets.ResNet([1, 1, 1, 1], 9)) input_spec = tf.TensorSpec([1, 8, 8, 3]) num_variables = 155 has_side_effects = True def forward(self, module): x = range_like(self.input_spec, start=1) return module(x, is_training=True) @_register_golden(snt.nets.VectorQuantizer, "vqvae") class VectorQuantizerTest(AbstractGolden): def create_module(self): return snt.nets.VectorQuantizer( embedding_dim=4, num_embeddings=6, commitment_cost=0.25) # Input can be any shape as long as final dimension is equal to embedding_dim. input_spec = tf.TensorSpec([2, 3, 4]) def forward(self, module): x = range_like(self.input_spec) return module(x, is_training=True) # Numerical results can be quite different on TPU, be a bit more loose here. tpu_atol = 4e-2 num_variables = 1 @_register_golden(snt.nets.VectorQuantizerEMA, "vqvae_ema_train") class VectorQuantizerEMATrainTest(AbstractGolden): def create_module(self): return snt.nets.VectorQuantizerEMA( embedding_dim=5, num_embeddings=7, commitment_cost=0.5, decay=0.9) # Input can be any shape as long as final dimension is equal to embedding_dim. input_spec = tf.TensorSpec([2, 5]) def forward(self, module): x = range_like(self.input_spec) return module(x, is_training=True) # Numerical results can be quite different on TPU, be a bit more loose here. tpu_atol = 4e-2 num_variables = 7 # 1 embedding, then 2 EMAs each of which contain 3. has_side_effects = True @_register_golden(snt.nets.VectorQuantizerEMA, "vqvae_ema_eval") class VectorQuantizerEMAEvalTest(AbstractGolden): def create_module(self): return snt.nets.VectorQuantizerEMA( embedding_dim=3, num_embeddings=4, commitment_cost=0.5, decay=0.9) # Input can be any shape as long as final dimension is equal to embedding_dim. input_spec = tf.TensorSpec([2, 3]) def forward(self, module): x = range_like(self.input_spec) return module(x, is_training=False) # Numerical results can be quite different on TPU, be a bit more loose here. tpu_atol = 4e-2 num_variables = 7 # 1 embedding, then 2 EMAs each of which contain 3. has_side_effects = False # only has side effects when is_training==True # pylint: enable=missing-docstring class FooMetric(snt.Metric): """Used for testing a class which uses Metrics.""" def initialize(self, x): pass def reset(self): pass def update(self, x): pass ``` #### File: sonnet/src/deferred_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from sonnet.src import base from sonnet.src import deferred from sonnet.src import test_utils import tensorflow as tf class DeferredTest(test_utils.TestCase): def test_target(self): target = ExampleModule() mod = deferred.Deferred(lambda: target) self.assertIs(mod.target, target) def test_only_computes_target_once(self): target = ExampleModule() targets = [target] mod = deferred.Deferred(targets.pop) for _ in range(10): # If target was recomputed more than once pop should fail. self.assertIs(mod.target, target) self.assertEmpty(targets) def test_attr_forwarding_fails_before_construction(self): mod = deferred.Deferred(ExampleModule) with self.assertRaises(AttributeError): getattr(mod, "foo") def test_getattr(self): mod = deferred.Deferred(ExampleModule) mod() self.assertIs(mod.w, mod.target.w) def test_setattr(self): mod = deferred.Deferred(ExampleModule) mod() new_w = tf.ones_like(mod.w) mod.w = new_w self.assertIs(mod.w, new_w) self.assertIs(mod.target.w, new_w) def test_setattr_on_target(self): mod = deferred.Deferred(ExampleModule) mod() w = tf.ones_like(mod.w) mod.w = None # Assigning to the target directly should reflect in the parent. mod.target.w = w self.assertIs(mod.w, w) self.assertIs(mod.target.w, w) def test_delattr(self): mod = deferred.Deferred(ExampleModule) mod() self.assertTrue(hasattr(mod.target, "w")) del mod.w self.assertFalse(hasattr(mod.target, "w")) def test_alternative_forward(self): mod = deferred.Deferred(AlternativeForwardModule, call_methods=("forward",)) self.assertEqual(mod.forward(), 42) def test_alternative_forward_call_type_error(self): mod = deferred.Deferred(AlternativeForwardModule, call_methods=("forward",)) msg = "'AlternativeForwardModule' object is not callable" with self.assertRaisesRegexp(TypeError, msg): mod() def test_name_scope(self): mod = deferred.Deferred(ExampleModule) mod() self.assertEqual(mod.name_scope.name, "deferred/") self.assertEqual(mod.target.name_scope.name, "example_module/") def test_str(self): m = ExampleModule() d = deferred.Deferred(lambda: m) self.assertEqual("Deferred(%s)" % m, str(d)) def test_repr(self): m = ExampleModule() d = deferred.Deferred(lambda: m) self.assertEqual("Deferred(%r)" % m, repr(d)) class ExampleModule(base.Module): def __init__(self): super(ExampleModule, self).__init__() self.w = tf.Variable(1.) def __str__(self): return "ExampleModuleStr" def __repr__(self): return "ExampleModuleRepr" def __call__(self): return self.w class AlternativeForwardModule(base.Module): def forward(self): return 42 if __name__ == "__main__": # tf.enable_v2_behavior() tf.test.main() ``` #### File: sonnet/src/embed_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized from sonnet.src import embed from sonnet.src import initializers from sonnet.src import test_utils import tensorflow as tf class EmbedTest(test_utils.TestCase, parameterized.TestCase): @parameterized.parameters([1, 10, 100]) def test_vocab_size(self, vocab_size): e = embed.Embed(vocab_size=vocab_size) self.assertEqual(e.vocab_size, vocab_size) self.assertEqual(e.embeddings.shape[0], vocab_size) @parameterized.parameters([1, 10, 100]) def test_embed_dim(self, embed_dim): e = embed.Embed(vocab_size=100, embed_dim=embed_dim) self.assertEqual(e.embed_dim, embed_dim) self.assertEqual(e.embeddings.shape[1], embed_dim) @parameterized.parameters([(1, 1), (10, 10), (100, 100)]) def test_existing_vocab(self, vocab_size, embed_dim): existing_vocab = tf.ones([vocab_size, embed_dim]) e = embed.Embed(existing_vocab=existing_vocab) self.assertEqual(e.vocab_size, vocab_size) self.assertEqual(e.embed_dim, embed_dim) self.assertAllEqual(e.embeddings.read_value(), existing_vocab) @parameterized.parameters([True, False]) def test_densify_gradients(self, densify_gradients): e = embed.Embed(1, densify_gradients=densify_gradients) with tf.GradientTape() as tape: y = e([0]) dy = tape.gradient(y, e.embeddings) if densify_gradients: self.assertIsInstance(dy, tf.Tensor) else: self.assertIsInstance(dy, tf.IndexedSlices) def test_initializer(self): e = embed.Embed(1, 1, initializer=initializers.Constant(28.)) self.assertAllEqual(e.embeddings.read_value(), [[28.]]) def test_pinned_to_cpu(self): with tf.device("CPU"): e = embed.Embed(1) spec = tf.DeviceSpec.from_string(e.embeddings.device) self.assertEqual(spec.device_type, "CPU") @parameterized.parameters([True, False]) def test_trainable(self, trainable): e = embed.Embed(1, trainable=trainable) self.assertEqual(e.embeddings.trainable, trainable) @parameterized.parameters([tf.float32, tf.float16]) def test_dtype(self, dtype): if dtype == tf.float16 and self.primary_device == "TPU": self.skipTest("float16 embeddings not supported on TPU.") e = embed.Embed(1, dtype=dtype) self.assertEqual(e.embeddings.dtype, dtype) def test_name(self): e = embed.Embed(1, name="my_embedding") self.assertEqual(e.name, "my_embedding") self.assertEqual(e.embeddings.name, "my_embedding/embeddings:0") if __name__ == "__main__": # tf.enable_v2_behavior() tf.test.main() ``` #### File: sonnet/src/sequential_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized from sonnet.src import sequential from sonnet.src import test_utils import tensorflow as tf input_parameters = parameterized.parameters(object(), ([[[1.]]],), ({1, 2, 3},), None, "str", 1) class SequentialTest(test_utils.TestCase, parameterized.TestCase): @input_parameters def test_empty(self, value): net = sequential.Sequential() self.assertIs(net(value), value) @input_parameters def test_empty_drops_varargs_varkwargs(self, value): net = sequential.Sequential() self.assertIs(net(value, object(), keyword=object()), value) @input_parameters def test_identity_chain(self, value): net = sequential.Sequential([identity, identity, identity]) self.assertIs(net(value), value) def test_call(self): seq = sequential.Sequential([append_character(ch) for ch in "rocks!"]) self.assertEqual(seq("Sonnet "), "Sonnet rocks!") def test_varargs_varkwargs_to_call(self): layer1 = lambda a, b, c: ((a + b + c), (c + b + a)) layer2 = lambda a: a[0] + "," + a[1] net = sequential.Sequential([layer1, layer2]) self.assertEqual(net("a", "b", c="c"), "abc,cba") def identity(v): return v def append_character(c): return lambda v: v + c if __name__ == "__main__": # tf.enable_v2_behavior() tf.test.main() ```
{ "source": "joaoguilherme1/convert-files", "score": 2 }
#### File: tudoparapdf/main/views.py ```python from typing import final from django.conf import settings from django.http import response from django.http.response import HttpResponse from django.shortcuts import redirect, render from django.urls.conf import path from django.template.response import TemplateResponse #from django.views.generic import TemplateView from django.http import FileResponse #, HttpResponse import PyPDF2 import pyheif from PIL import Image import os import zipfile as zp def home(request): return TemplateResponse(request, 'home.html', {}) def pdf_merge(request): if request.method == 'GET': return TemplateResponse(request, 'pdf_merge.html', {}) elif request.method == 'POST': final_name = request.POST['final_name'] arqpdf_1 = request.FILES.getlist('arqpdf_1') arqpdf_2 = request.FILES.getlist('arqpdf_2') name_dir_with_main_dir = f'/tmp/{final_name}.pdf' dados_arq1 = PyPDF2.PdfFileReader(open(arqpdf_1[0].temporary_file_path(), "rb")) dados_arq2 = PyPDF2.PdfFileReader(open(arqpdf_2[0].temporary_file_path(), "rb")) merge = PyPDF2.PdfFileMerger() merge.append(dados_arq1) merge.append(dados_arq2) merge.write(name_dir_with_main_dir) final = open(name_dir_with_main_dir, "rb") return FileResponse(final) def pdf_exclude_and_merge(request): if request.method == 'GET': return TemplateResponse(request, 'pdf_exclude_and_merge.html', {}) elif request.method == 'POST': nome_arquivo_saida = request.POST['nome_arquivo_saida'] pagina_pra_tirar = request.POST['pagina_pra_tirar'] arquivo_entrada = request.FILES.getlist('arquivo_entrada') mid_arquivo = f'/tmp/midlevel.pdf' arquivo_pra_merge = request.FILES.getlist('arquivo_pra_merge') name_dir_with_main_dir = f'/tmp/{nome_arquivo_saida}.pdf' #tirando a pagina do arquivo de entrada data = PyPDF2.PdfFileWriter() pdfdata = PyPDF2.PdfFileReader(arquivo_entrada[0].temporary_file_path()) for i in range(pdfdata.getNumPages()): if str(i) not in pagina_pra_tirar: page = pdfdata.getPage(i) data.addPage(page) with open(mid_arquivo, "wb") as f: data.write(f) #mergeando os arquivos dados_arq1 = PyPDF2.PdfFileReader(open(mid_arquivo, "rb")) dados_arq2 = PyPDF2.PdfFileReader(open(arquivo_pra_merge[0].temporary_file_path(), "rb")) merge = PyPDF2.PdfFileMerger() merge.append(dados_arq1) merge.append(dados_arq2) merge.write(name_dir_with_main_dir) final = open(name_dir_with_main_dir, "rb") return FileResponse(final) def csv(request): return TemplateResponse(request, 'csv.html', {}) def docx(request): return TemplateResponse(request, 'docx.html', {}) def heic_to_jpeg(request): if request.method == 'GET': return render(request, 'heic_to_jpeg.html') elif request.method == 'POST': name_files = request.POST['nome_arquivo'] name_dir = request.POST['nome_pasta'] name_dir_with_main_dir = f'/tmp/{name_dir}.zip' images_heic = request.FILES.getlist('file[]') if name_files == '': name_files = 'helpmydoc_arquivo' elif name_dir == '': name_dir = 'Pasta_helpmydoc' if len(images_heic) == 0 or len(images_heic) > 20: return HttpResponse(status=403) else: middle_zipfile = zp.ZipFile(name_dir_with_main_dir, 'w') for i in range(len(images_heic)): if images_heic[i].size > 4000000: return HttpResponse(status=403) else: heif_file = pyheif.read(images_heic[i].temporary_file_path()) heif_file_to_jpeg = Image.frombytes( heif_file.mode, heif_file.size, heif_file.data, "raw", heif_file.mode, heif_file.stride, ) heif_file_to_jpeg.save(f'/tmp/{name_files}_{i}.jpeg', "JPEG") middle_zipfile.write(f'/tmp/{name_files}_{i}.jpeg') middle_zipfile.close() final_zipfile = open(name_dir_with_main_dir, 'rb') return FileResponse(final_zipfile) ```
{ "source": "joaoguilherme1/DekatrianDateConversion", "score": 4 }
#### File: joaoguilherme1/DekatrianDateConversion/date_conversion.py ```python def Dek2week(dekDay, dekMonth, dekYear): """ Returns the Gregorian week day from a Dekatrian date. 1 = Sunday; 2 = Monday; 3 = Tuesday ... 7 = Saturday. """ weekDay = ((WeekdayOnFirstAuroran(dekYear) + DekatrianWeek(dekDay, dekMonth) - 2) % 7) + 1 if dekMonth == 0: weekDay = ((weekDay - 3 + dekDay) % 7) + 1 return weekDay def DekatrianWeek(dekDay, dekMonth): """ Returns the Dekatrian week day from a Dekatrian date. Here we can see the elegance of Dekatrian, since it's not necessary to inform the year. Actually, barely it's necessary to inform the month, as it's only needed to check if that is an Achronian day. 0 = Achronian; 1 = first week day; 2 = second week day ... 7 = seventh. """ if dekMonth == 0: return 0 else: dekWeekDay = ((dekDay-1) % 7) + 1 return dekWeekDay def WeekdayOnFirstAuroran(dekYear): """ Returns the Gregorian week day for the 1 Auroran of a given year """ weekDay = ((1 + 5*((dekYear) % 4) + 4*((dekYear) % 100) + 6*((dekYear) % 400)) % 7) + 1 return weekDay def CheckLeapYear(dekYear): if (dekYear % 4 == 0) and (dekYear % 100 != 0 or dekYear % 400 == 0): return 1 else: return 0 def YearDayOnDekaDate(dekDay, dekMonth, dekYear): """ Returns the day of the year from a Dekatrian date. Achronian is the day 1. Sinchronian is day 2 when it exists. """ if dekMonth == 0: return dekDay else: return (CheckLeapYear(dekYear)) + 1 + (dekMonth-1)*28 + dekDay def YearDayOnGregDate(day, month, year): """ Returns the day of the year from a Gregorian date. Jan 1 is the day 1. Dez 31 is the day 365 or 366, whether it's a leap year or not """ Jan = 31 Fev = 28 + CheckLeapYear(year) Mar = 31 Apr = 30 Mai = 31 Jun = 30 Jul = 31 Ago = 31 Set = 30 Out = 31 Nov = 30 Dez = 31 Meses = (Jan, Fev, Mar, Apr, Mai, Jun, Jul, Ago, Set, Out, Nov, Dez) i = 0 days = 0 while i < (month-1): days += Meses[i] i += 1 return days + day def Dek2Greg(dekDay, dekMonth, dekYear): """ Returns a Gregorian date from a Dekatrian date. """ YearDay = YearDayOnDekaDate(dekDay, dekMonth, dekYear) Jan = 31 Fev = 28 + CheckLeapYear(dekYear) Mar = 31 Apr = 30 Mai = 31 Jun = 30 Jul = 31 Ago = 31 Set = 30 Out = 31 Nov = 30 Dez = 31 Meses = (Jan, Fev, Mar, Apr, Mai, Jun, Jul, Ago, Set, Out, Nov, Dez) for mes, dias in enumerate(Meses, start=1): if YearDay > dias: YearDay -= dias else: break return (YearDay, mes, dekYear) def Greg2Dek(day, month, year): """ Returns a Dekatrian date from a Gregorian date """ YearDay = YearDayOnGregDate(day, month, year) LeapYear = CheckLeapYear(year) #print(YearDay) if YearDay > (1 + LeapYear): YearDay -= 1 + LeapYear #print(YearDay) dekMonth = int((YearDay-1) / 28) + 1 dekDay = (YearDay-1) % 28 + 1 else: dekMonth = 0 dekDay = day return (dekDay, dekMonth, year) if __name__ == "__main__": # Examples # print("Dekatrian 28\\13\\2015 falls on Greg week day: " + str(Dek2week(28, 13, 2015))) print("Dekatrian 1\\0\\2016 falls on Greg week day: " + str(Dek2week(1, 0, 2016))) print("Dekatrian 2\\0\\2016 falls on Greg week day: " + str(Dek2week(2, 0, 2016))) print("Dekatrian 1\\1\\2016 falls on Greg week day: " + str(Dek2week(1, 1, 2016))) print("Achronian corresponds to Dekatrian week day: " + str(DekatrianWeek(1, 0))) print("Dekatrian 1\\1\\2016 happens on Gregorian week day: " + str(WeekdayOnFirstAuroran(2016))) print("Dekatrian 3\\1\\2017 is the year day: " + str(YearDayOnDekaDate(3, 1, 2017))) print("Dekatrian 10\\10\\2017 corresponds to Gregorian " + str(Dek2Greg(10, 10, 2017))) print("Gregorian 29/12/2016 is the year day: " + str(YearDayOnGregDate(29, 12, 2016))) print("Gregorian 3/1/2016 corresponds to Dekatrian: " + str(Greg2Dek(3, 1, 2016))) ```
{ "source": "joaoguilherme1/dekatrian-date-conversion", "score": 3 }
#### File: dekatrian-date-conversion/dekatrian_date_conversion/base.py ```python """ Some functions to convert between Dekatrian and Gregorian calendar. @author: Pena 11\10\2017 dekatrian.com """ import calendar def dek_to_week(dek_day: int, dek_month: int, dek_year: int) -> int: """Returns the Gregorian week day from a Dekatrian date. Args: dek_day (int): Day of the month. dek_month (int): Month of the year. dek_year (int): Year. Return: int: The week day. Example: 1 = Sunday; 2 = Monday; 3 = Tuesday ... 7 = Saturday. """ week_day = ( ( week_day_on_first_auroran(dek_year) + dekatrian_week(dek_day, dek_month) - 2 ) % 7 ) + 1 if dek_month == 0: week_day = ((week_day - 3 + dek_day) % 7) + 1 return week_day def dekatrian_week(dek_day: int, dek_month: int) -> int: """Returns the Dekatrian week day from a Dekatrian date. Here we can see the elegance of Dekatrian, since it's not necessary to inform the year. Actually, barely it's necessary to inform the month, as it's only needed to check if that is an Achronian day. Args: dek_day (int): Day of the month. dek_month (int): Month of the year. Return: int: The week day. Example: 0 = Achronian; 1 = first week day; 2 = second week day ... 7 = seventh. """ if dek_month == 0: return 0 else: dek_week_day = ((dek_day - 1) % 7) + 1 return dek_week_day def week_day_on_first_auroran(dek_year: int) -> int: """Returns the Gregorian week day for the first Auroran of a given year Args: dek_year (int): Year. Return: int: The week day. Example: 1 = Sunday; 2 = Monday; 3 = Tuesday ... 7 = Saturday. """ week_day = ( ( 1 + 5 * ((dek_year) % 4) + 4 * ((dek_year) % 100) + 6 * ((dek_year) % 400) ) % 7 ) + 1 return week_day def year_day_on_deka_date(dek_day: int, dek_month: int, dek_year: int) -> int: """Returns the day of the year from a Dekatrian date. Achronian is the day 1. Sinchronian is day 2 when it exists. Args: dek_day (int): Day of the month. dek_month (int): Month of the year. dek_year (int): Year. Return: int: The day of the year. """ if dek_month == 0: return dek_day else: return (calendar.isleap(dek_year)) + 1 + (dek_month - 1) * 28 + dek_day def year_day_on_greg_date(day: int, month: int, year: int) -> int: """Returns the day of the year from a Gregorian date. Example1: Jan 1 is the day 1; Dez 31 is the day 365 or 366, whether it's a leap year or not Args: day (int): Day of the month. Example: Jan 1 is the day 1. month (int): Month of the year. year (int): Year. Return: int: The day of the year. """ JAN = 31 FEB = 28 + calendar.isleap(year) MAR = 31 APR = 30 MAY = 31 JUN = 30 JUL = 31 AUG = 31 SEP = 30 OCT = 31 NOV = 30 DEC = 31 gregorian_calendar_months = ( JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC, ) # TODO: MUDAR PRA DICIONARIO i = 0 days = 0 while i < (month - 1): days += gregorian_calendar_months[i] i += 1 return days + day def dek_to_greg(dek_day: int, dek_month: int, dek_year: int) -> tuple: """Returns a Gregorian date from a Dekatrian date. Args: dek_day (int): Day of the month. dek_month (int): Month of the year. dek_year (int): Year. Return: tuple: A tuple with the day, month and year. """ year_day = year_day_on_greg_date(dek_day, dek_month, dek_year) JAN = 31 FEB = 28 + calendar.isleap(dek_year) MAR = 31 APR = 30 MAY = 31 JUN = 30 JUL = 31 AUG = 31 SEP = 30 OCT = 31 NOV = 30 DEC = 31 gregorian_calendar_months = ( JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC, ) # TODO: MUDAR PRA DICIONARIO for month, days in enumerate(gregorian_calendar_months, start=1): if year_day > days: year_day -= days else: break return (year_day, month, dek_year) def greg_to_dek(day: int, month: int, year: int) -> tuple: """Returns a Dekatrian date from a Gregorian date Args: day (int): Day of the month. month (int): Month of the year. year (int): Year. Return: tuple: A tuple with the day, month and year. """ year_day = year_day_on_greg_date(day, month, year) if year_day > (1 + calendar.isleap(year)): year_day -= 1 + calendar.isleap(year) dek_month = int((year_day - 1) / 28) + 1 dek_day = (year_day - 1) % 28 + 1 else: dek_month = 0 dek_day = day return (dek_day, dek_month, year) ```
{ "source": "JoaoGustavoRogel/spider-music-api", "score": 3 }
#### File: api/tests/test_endpoint_spotify_api.py ```python import mock import os import shutil import unittest from datetime import datetime from src.models.SpotifyAPICrawler import ConcreteFactorySpotifyAPICrawler, ConcreteSpotifyAPICrawler from src.routers.endpoints import spotify_api class TestSpotifyAPIRouter(unittest.TestCase): @mock.patch("src.models.SpotifyAPICrawler.ConcreteSpotifyAPICrawler") def test_get_data_chart(self, mock_crawler): mock_crawler().get_data.return_value = "testando o endpoint" extract_data = spotify_api.query_crawler_track_by_id("random_id") self.assertEqual(extract_data["data"], "testando o endpoint") if __name__ == "__main__": unittest.main() ```
{ "source": "joaoh1/GamesKeeper", "score": 2 }
#### File: GamesKeeper/plugins/core.py ```python import yaml import re import requests import functools import pprint import os import base64 import psycopg2 import time from datetime import datetime, timedelta from disco.types.permissions import Permissions from disco.api.http import APIException from disco.bot import Bot, Plugin, CommandLevels from disco.bot.command import CommandEvent from disco.types.message import MessageEmbed, MessageTable from disco.types.user import GameType, Status, Game from disco.types.channel import ChannelType from disco.util.sanitize import S from GamesKeeper.db import init_db, database from GamesKeeper.models.guild import Guild from GamesKeeper import bot_config, update_config PY_CODE_BLOCK = '```py\n{}\n```' TEMP_BOT_ADMINS = [ 104376018222972928, 142721776458137600, 248245568004947969, 298516367311765505 ] def game_checker(string): games = { 'ttt': 'ttt', 'hm': 'hm', 'c4': 'c4', 'uno': 'uno', '2048': '2048', 'twentyfourtyeight': '2048', 'connect 4': 'c4', 'connect four': 'c4', 'connectfour': 'c4', 'connect4': 'c4', 'hangman': 'hm', 'hang man': 'hm', 'tic-tac-toe': 'ttt', 'tic tac toe': 'ttt', } name = games.get(string.lower(), None) return name class CorePlugin(Plugin): def load(self, ctx): init_db() # self.bot.add_plugin = self.our_add_plugin self.guilds = ctx.get('guilds', {}) super(CorePlugin, self).load(ctx) def cooldown_check(self, user): return False #Basic command handler @Plugin.listen('MessageCreate') def on_message_create(self, event): if event.message.channel.type == ChannelType.DM: return event.bot_admin = event.message.author.id in TEMP_BOT_ADMINS event.user_level = 0 has_admin = False new_setup = False guild = None if event.message.guild: try: guild = Guild.using_id(event.guild.id) except Guild.DoesNotExist: guild = self.fresh_start(event, event.guild.id) new_setup = True if len(event.message.member.roles) > 0: for x in event.message.member.roles: role = event.message.guild.roles.get(x) if role.permissions.can(Permissions.ADMINISTRATOR): event.user_level = 100 has_admin = True if guild.referee_role: if not has_admin and guild.referee_role in event.message.member.roles: event.user_level = 50 if event.message.author.bot: return # Grab the list of commands commands = list(self.bot.get_commands_for_message(False, {}, guild.prefix, event.message)) #Used for cmd cooldowns user_ignores_cooldowns = self.cooldown_check(event.message.author.id) #Sorry, nothing to see here :C if not len(commands): return for command, match in commands: needed_level = 0 if command.level: needed_level = command.level cooldown = 0 if hasattr(command.plugin, 'game'): if not guild.check_if_listed(game_checker(command.plugin.game), 'enabled'): return if command.level == -1 and not event.bot_admin: return if not event.bot_admin and event.user_level < needed_level: continue try: command_event = CommandEvent(command, event.message, match) command_event.bot_admin = event.bot_admin command_event.user_level = event.user_level command_event.db_guild = guild if command.args: if len(command_event.args) < command.args.required_length: self.dis_cmd_help(command, command_event, event, guild) return command.plugin.execute(command_event) except: self.log.exception('Command error:') return event.reply('It seems that an error has occured! :(') if new_setup: event.message.reply('Hey! I\'ve noticed that I\'m new to the server and have no config, please check out `{}settings` to edit and setup the bot.'.format(guild.prefix)) return def dis_cmd_help(self, command, command_event, event, guild_obj): embed = MessageEmbed() embed.title = 'Command: {}{}'.format('{} '.format(command.group) if hasattr(command, 'group') and command.group != None else '', command.name) helpstr = command.get_docstring() embed.description = helpstr event.message.channel.send_message('', embed=embed) @Plugin.command('help', '[command:str...]') def cmd_help(self, event, command=None): """ This is the help command! Use this command to help you get info some certain commands. Usage: `help [Command Name]` To get general info, just type `help` """ if command is None: embed = MessageEmbed() embed.title = 'GamesKeeper Help' embed.description = '**To get help with a certain command please use `{prefix}help Command`**\n** **\nFor help with settings please type `{prefix}help settings`'.format(prefix=event.db_guild.prefix) return event.msg.reply('', embed=embed) elif command == 'settings' and (event.user_level == 100 or event.bot_admin): embed = MessageEmbed() embed.title = 'GamesKeeper Settings Help' description = [ 'To change most settings, the command group is `update`', '\♦ To change **Prefix**, use `{}update prefix`'.format(event.db_guild.prefix), '\♦ To change **Games Category**, use `{}update gc`'.format(event.db_guild.prefix), '\♦ To change the **Referee** role, use `{}update ref`'.format(event.db_guild.prefix), '\♦ To update **Spectator** roles, use `{}update addspec/rvmspec`'.format(event.db_guild.prefix), '\♦ To **Enable/Disable Games**, use `{}games enable/disable`'.format(event.db_guild.prefix), ] embed.description = '\n'.join(description) return event.msg.reply('', embed=embed) elif command == 'settings' and (event.user_level != 100 or not event.bot_admin): return event.msg.reply('`Error:` Command Not Found') else: commands = list(self.bot.commands) for cmd in commands: if cmd.name != command: continue elif cmd.level == -1 and not event.bot_admin: continue else: embed = MessageEmbed() embed.title = 'Command: {}{}'.format('{} '.format(cmd.group) if hasattr(cmd, 'group') and cmd.group != None else '', cmd.name) helpstr = cmd.get_docstring() embed.description = helpstr return event.msg.reply('', embed=embed) return event.msg.reply('`Error:` Command Not Found') @Plugin.command('ping', level=-1) def cmd_ping(self, event): """ Allow us to do what you wish you could do to your pings. """ return event.msg.reply('YEET!') @Plugin.command('level', level=-1) def cmd_level(self, event): """ Dev command to get a user level. """ if event.user_level is 0: return event.msg.reply('>:C (0)') else: return event.msg.reply(event.user_level) #Massive function to check for first run, and if so, create a blank server for all the emojis. @Plugin.listen('Ready')#, priority=Priority.BEFORE) def on_ready(self, event): if bot_config.first_run != True: return else: def gen_invite(channel): invite = channel.create_invite(max_age=0, max_uses=0, unique=True, reason='First run invite generation.') invite_url = 'https://discord.gg/{code}'.format(code=invite.code) return invite_url server_one = self.client.api.guilds_create(name='GamesKeeper Emojis (1/2)') server_two = self.client.api.guilds_create(name='GamesKeeper Emojis (2/2)') server_one_channel = server_one.create_text_channel(name='GamesKeeper') server_two_channel = server_two.create_text_channel(name='GamesKeeper') server_one_invite = gen_invite(server_one_channel) server_two_invite = gen_invite(server_two_channel) uno_emojis = {} server_one_path = './assets/server_one_emojis' server_two_path = './assets/server_two_emojis' for emoji in os.listdir(server_one_path): with open('{}/{}'.format(server_one_path, emoji), 'rb') as emoji_image: encoded_string = base64.encodebytes(emoji_image.read()) emoji_image_string = encoded_string.decode() name = emoji.replace('.png', '') emoji = self.client.api.guilds_emojis_create(server_one.id, 'Setting up Uno Cards!', name=name, image='data:image/png;base64,{}'.format(emoji_image_string)) uno_emojis[emoji.name] = '{name}:{emoji_id}'.format(name=emoji.name, emoji_id=emoji.id) for emoji in os.listdir(server_two_path): with open('{}/{}'.format(server_two_path, emoji), 'rb') as emoji_image: encoded_string = base64.encodebytes(emoji_image.read()) emoji_image_string = encoded_string.decode() name = emoji.replace('.png', '') emoji = self.client.api.guilds_emojis_create(server_two.id, 'Setting up Uno Cards!', name=name, image='data:image/png;base64,{}'.format(emoji_image_string)) uno_emojis[emoji.name] = '{name}:{emoji_id}'.format(name=emoji.name, emoji_id=emoji.id) with open("config.yaml", 'r') as config: current_config = yaml.safe_load(config) emote_server_info = { 'invites': { 'server_one': server_one_invite, 'server_two': server_two_invite }, 'IDs': { 'server_one': server_one.id, 'server_two': server_two.id } } current_config['emoji_servers'] = emote_server_info current_config['uno_emojis'] = uno_emojis current_config['first_run'] = False with open("config.yaml", 'w') as f: yaml.safe_dump(current_config, f) # For developer use, also made by b1nzy (Only eval command in Disco we know of). @Plugin.command('eval', level=-1) def command_eval(self, event): """ This a Developer command which allows us to run code without having to restart the bot. """ ctx = { 'bot': self.bot, 'client': self.bot.client, 'state': self.bot.client.state, 'event': event, 'msg': event.msg, 'guild': event.msg.guild, 'channel': event.msg.channel, 'author': event.msg.author } # Mulitline eval src = event.codeblock if src.count('\n'): lines = list(filter(bool, src.split('\n'))) if lines[-1] and 'return' not in lines[-1]: lines[-1] = 'return ' + lines[-1] lines = '\n'.join(' ' + i for i in lines) code = 'def f():\n{}\nx = f()'.format(lines) local = {} try: exec(compile(code, '<eval>', 'exec'), ctx, local) except Exception as e: event.msg.reply(PY_CODE_BLOCK.format(type(e).__name__ + ': ' + str(e))) return result = pprint.pformat(local['x']) else: try: result = str(eval(src, ctx)) except Exception as e: event.msg.reply(PY_CODE_BLOCK.format(type(e).__name__ + ': ' + str(e))) return if len(result) > 1990: event.msg.reply('', attachments=[('result.txt', result)]) else: event.msg.reply(PY_CODE_BLOCK.format(result)) @Plugin.command('sql', level=-1) def command_sql(self, event): """ This a Developer command which allows us to run Database commands without having to interact with the actual database directly. """ conn = database.obj.get_conn() try: tbl = MessageTable(codeblock=False) with conn.cursor() as cur: start = time.time() cur.execute(event.codeblock.format(e=event)) dur = time.time() - start if not cur.description: return event.msg.reply('_took {}ms - no result_'.format(int(dur * 1000))) tbl.set_header(*[desc[0] for desc in cur.description]) for row in cur.fetchall(): tbl.add(*row) result = tbl.compile() if len(result) > 1900: return event.msg.reply( '_took {}ms_'.format(int(dur * 1000)), attachments=[('result.txt', result)]) event.msg.reply('```' + result + '```\n_took {}ms_\n'.format(int(dur * 1000))) except psycopg2.Error as e: event.msg.reply('```{}```'.format(e.pgerror)) def fresh_start(self, event, guild_id): new_guild = Guild.create( guild_id = guild_id, owner_id = event.guild.owner_id, prefix = "+", games_catergory = None, spectator_roles = [], enabled_games = 0, referee_role = None, role_allow_startgames = None, booster_perks = False, ) return new_guild ```
{ "source": "joaoh1/Inktober", "score": 2 }
#### File: backend/discord_events/on_command_error.py ```python import logging import traceback import discord from discord.ext import commands from bot import Bot as Client log = logging.getLogger(__name__) class Errors(commands.Cog): def __init__(self, bot): self.bot: Client = bot @commands.Cog.listener() async def on_command_error(self, ctx: commands.Context, error: commands.CommandError): ctx.message: discord.Message error_server: discord.Guild = self.bot.get_guild(404070984769994753) error_channel: discord.TextChannel = error_server.get_channel(404074085522472961) trace = traceback.format_exception(type(error), error, error.__traceback__, limit=15) log.error("".join(trace)) log.error(ctx.command) log.error(ctx.invoked_with) log.error(ctx.bot) log.error(ctx.args) if ctx.guild is not None: server = ctx.guild.name server_id = ctx.guild.id channel_id = ctx.channel.id else: server = None server_id = None channel_id = None await error_channel.send( "_ _\nInvoked With: {}\nArgs: {}\nServer: {} {}\nChannel: {}\nUser: {}#{} {}\n```{}```".format( repr(ctx.invoked_with), repr(ctx.args), repr(server), repr(server_id), repr(channel_id), repr(ctx.author.name), ctx.author.discriminator, repr(ctx.author.id), "".join(trace))) def setup(bot): bot.add_cog(Errors(bot)) ```
{ "source": "joaoh82/leetcode_with_python", "score": 4 }
#### File: joaoh82/leetcode_with_python/3sum.py ```python class Solution: def threeSum(self, nums: List[int]) -> List[List[int]]: nums.sort() triplets = [] for i in range(len(nums)-2): if i > 0 and nums[i] == nums[i-1]: continue leftIdx = i+1 rightIdx = len(nums)-1 while leftIdx < rightIdx: currentSum = nums[i] + nums[leftIdx] + nums[rightIdx] if currentSum < 0: leftIdx += 1 elif currentSum > 0: rightIdx -= 1 else: triplets.append((nums[i], nums[leftIdx], nums[rightIdx])) while leftIdx < rightIdx and nums[leftIdx] == nums[leftIdx + 1]: leftIdx += 1 while leftIdx < rightIdx and nums[rightIdx] == nums[rightIdx - 1]: rightIdx -= 1 leftIdx += 1 rightIdx -= 1 return triplets ``` #### File: joaoh82/leetcode_with_python/chucked_palindrome.py ```python def solution(str): size = len(str) if not str: return 0 for i in range(size//2): if str[:i+1] == str[size - 1 - i:]: return 2 + solution(str[i + 1: size - 1 - i]) return 1 print(solution("valve")) print(solution("voabcvo")) print(solution("vovo")) print(solution("volvolvo")) print(solution("volvol")) print(solution("aaaaaa")) ``` #### File: joaoh82/leetcode_with_python/invert_binary_tree.py ```python class TreeNode: def __init__(self, val): self.val = val self.left = None self.right = None class Solution: def invertTree(self, node: TreeNode) -> TreeNode: if not node: return None node.left, node.right = self.invertTree(node.right), self.invertTree(node.left) return node ``` #### File: joaoh82/leetcode_with_python/longest_palindromic_substring.py ```python class Solution: def longestPalindrome(self, s: str) -> str: # Return if string is empty of 1 letter if len(s) < 2: return s longestPal = "" for i in range(len(s)): j = i + 1 # While j is less the length of string # and longest palindrome length is less or equal to substring s[i:] while j <= len(s) and len(longestPal) <= len(s[i:]): # if substring of s[i:j] is a palindrome # and substring is longer then longest palindrome so far if s[i:j] == s[i:j][::-1] and len(s[i:j]) > len(longestPal): longestPal = s[i:j] j += 1 return longestPal ``` #### File: joaoh82/leetcode_with_python/move_zeros.py ```python class Solution: def moveZeroes(self, nums: List[int]) -> None: """ Do not return anything, modify nums in-place instead. """ lastZeroFound = 0 for i in range(0, len(nums)): if nums[i] != 0: nums[i], nums[lastZeroFound] = nums[lastZeroFound], nums[i] lastZeroFound += 1 ```
{ "source": "joaohenggeler/software-vulnerability-collection-scripts", "score": 3 }
#### File: software-vulnerability-collection-scripts/Scripts/build_raw_dataset_from_database.py ```python import os import sys from collections import namedtuple import pandas as pd # type: ignore from modules.common import log, GLOBAL_CONFIG, CURRENT_TIMESTAMP, get_list_index_or_default, get_path_in_data_directory, get_path_in_output_directory from modules.database import Database from modules.project import Project from modules.sats import Sat #################################################################################################### def build_raw_dataset_from_database() -> None: with Database() as db: CodeUnit = namedtuple('CodeUnit', ['Kind', 'MetricsTablePrefix', 'ProcedureName', 'ProcedureScriptPath']) FILE_UNIT_INFO = CodeUnit('file', 'FILES_', 'BUILD_FILE_DATASET', get_path_in_data_directory('create_build_file_dataset_procedure.sql')) FUNCTION_UNIT_INFO = CodeUnit('function', 'FUNCTIONS_', 'BUILD_FUNCTION_DATASET', get_path_in_data_directory('create_build_function_dataset_procedure.sql')) CLASS_UNIT_INFO = CodeUnit('class', 'CLASSES_', 'BUILD_CLASS_DATASET', get_path_in_data_directory('create_build_class_dataset_procedure.sql')) UNIT_INFO_LIST = [FILE_UNIT_INFO, FUNCTION_UNIT_INFO, CLASS_UNIT_INFO] for unit_info in UNIT_INFO_LIST: success, _ = db.execute_script(unit_info.ProcedureScriptPath) if not success: log.error(f'Failed to create the procedure "{unit_info.ProcedureName}" using the script "{unit_info.ProcedureScriptPath}".') return project_list = Project.get_project_list_from_config() sat_list = Sat.get_sat_info_from_config() for unit_info in UNIT_INFO_LIST: if not GLOBAL_CONFIG['allowed_code_units'].get(unit_info.Kind): log.info(f'Skipping the {unit_info.Kind} metrics at the user\'s request') continue for project in project_list: unit_metrics_table = f'{unit_info.MetricsTablePrefix}{project.database_id}' log.info(f'Building the {project} {unit_info.Kind} dataset using the table {unit_metrics_table}.') output_csv_path = get_path_in_output_directory(f'raw-dataset-{unit_info.Kind}-{project.database_id}-{project.short_name}-{CURRENT_TIMESTAMP}.csv') escaped_output_csv_path = output_csv_path.replace('\\', '\\\\') filter_ineligible_samples = GLOBAL_CONFIG['dataset_filter_samples_ineligible_for_alerts'] filter_commits_without_alerts = GLOBAL_CONFIG['dataset_filter_commits_without_alerts'] allowed_sat_name_list = ','.join([sat.database_name for sat in sat_list]) success, _ = db.call_procedure( unit_info.ProcedureName, unit_metrics_table, escaped_output_csv_path, filter_ineligible_samples, filter_commits_without_alerts, allowed_sat_name_list) if success: # @Hack: Change the resulting CSV file's permissions and owner since it would # otherwise be associated with the user running the MySQL Daemon process (mysqld). if sys.platform != 'win32': username = GLOBAL_CONFIG['account_username'] password = GLOBAL_CONFIG['account_password'] log.info(f'Changing the raw dataset\'s file permissions and owner to "{username}".') os.system(f'echo "{password}" | sudo -S chmod 0664 "{output_csv_path}"') os.system(f'echo "{password}" | sudo -S chown "{username}:{username}" "{output_csv_path}"') # Add some class label columns to the dataset. These include: # 1. Binary - neutral (0) or vulnerable (1). In this case, vulnerable samples belong to any category. # 2. Multiclass - neutral (0), vulnerable without a category (1), or vulnerability with a specific category (2 to N). # 3. Grouped Multiclass - same as the multiclass label, but any vulnerability category (2 to N) is set to a new # label if the number of samples in each category falls below a given threshold. vulnerability_categories = list(GLOBAL_CONFIG['vulnerability_categories'].keys()) def assign_label(row: pd.Series) -> int: """ Assigns each sample a label given the rules above. """ label = int(row['Affected']) if label == 1: category_index = get_list_index_or_default(vulnerability_categories, row['VULNERABILITY_CATEGORY']) if category_index is not None: label = category_index + 2 return label dataset = pd.read_csv(output_csv_path, dtype=str) dataset['multiclass_label'] = dataset.apply(assign_label, axis=1) dataset['binary_label'] = dataset['multiclass_label'] is_category = dataset['multiclass_label'] > 1 dataset.loc[is_category, 'binary_label'] = 1 # Overwrite the dataset on disk. dataset.to_csv(output_csv_path, index=False) log.info(f'Built the raw dataset to "{output_csv_path}" successfully.') else: log.error(f'Failed to build the raw dataset to "{output_csv_path}".') ################################################## build_raw_dataset_from_database() log.info('Finished running.') print('Finished running.') ``` #### File: software-vulnerability-collection-scripts/Scripts/fix_neutral_code_unit_status_in_affected_files_and_file_timeline.py ```python import pandas as pd # type: ignore from modules.common import log, deserialize_json_container, serialize_json_container from modules.project import Project #################################################################################################### total_rows = 0 total_functions = 0 total_classes = 0 def set_status_to_neutral(code_unit_list: list, is_function: bool) -> None: """ Sets the vulnerability status of a function or class to neutral if it was vulenrable. """ global total_functions, total_classes for unit in code_unit_list: if unit['Vulnerable'] == 'Yes': unit.update({'Vulnerable': 'No'}) if is_function: total_functions += 1 else: total_classes += 1 project_list = Project.get_project_list_from_config() for project in project_list: for input_csv_path in project.find_output_csv_files('affected-files'): log.info(f'Fixing the neutral code unit status for the project "{project}" using the information in "{input_csv_path}".') affected_files = pd.read_csv(input_csv_path, dtype=str) for index, row in affected_files.iterrows(): neutral_function_list = deserialize_json_container(row['Neutral File Functions'], []) neutral_class_list = deserialize_json_container(row['Neutral File Classes'], []) set_status_to_neutral(neutral_function_list, True) # type: ignore[arg-type] set_status_to_neutral(neutral_class_list, False) # type: ignore[arg-type] affected_files.at[index, 'Neutral File Functions'] = serialize_json_container(neutral_function_list) # type: ignore[arg-type] affected_files.at[index, 'Neutral File Classes'] = serialize_json_container(neutral_class_list) # type: ignore[arg-type] total_rows += 1 affected_files.to_csv(input_csv_path, index=False) for input_csv_path in project.find_output_csv_files('file-timeline'): log.info(f'Fixing the neutral code unit status for the project "{project}" using the information in "{input_csv_path}".') timeline = pd.read_csv(input_csv_path, dtype=str) is_neutral = (timeline['Affected'] == 'Yes') & (timeline['Vulnerable'] == 'No') for index, row in timeline[is_neutral].iterrows(): neutral_function_list = deserialize_json_container(row['Affected Functions'], []) neutral_class_list = deserialize_json_container(row['Affected Classes'], []) set_status_to_neutral(neutral_function_list, True) # type: ignore[arg-type] set_status_to_neutral(neutral_class_list, False) # type: ignore[arg-type] timeline.at[index, 'Affected Functions'] = serialize_json_container(neutral_function_list) # type: ignore[arg-type] timeline.at[index, 'Affected Classes'] = serialize_json_container(neutral_class_list) # type: ignore[arg-type] total_rows += 1 timeline.to_csv(input_csv_path, index=False) result = f'Finished running. Updated {total_rows} rows including {total_functions} functions and {total_classes} classes.' log.info(result) print(result) ``` #### File: software-vulnerability-collection-scripts/Scripts/insert_alerts_in_database.py ```python import glob import os from itertools import chain, zip_longest from tempfile import TemporaryDirectory from typing import cast, Optional, Tuple from zipfile import ZipFile import numpy as np # type: ignore import pandas as pd # type: ignore from modules.common import log, GLOBAL_CONFIG, delete_file, extract_numeric from modules.database import Database from modules.project import Project from modules.sats import Sat, CppcheckSat, FlawfinderSat #################################################################################################### def insert_alerts_in_database() -> None: with Database(buffered=True) as db: success, error_code = db.execute_query('SELECT SAT_NAME, SAT_ID FROM SAT;') if not success: log.error(f'Failed to query the SAT IDs with the error code {error_code}.') return sat_id_from_name = {row['SAT_NAME']: row['SAT_ID'] for row in db.cursor} log.info(f'Found the following SATs: {sat_id_from_name}') project_list = Project.get_project_list_from_config() for project in project_list: cppcheck = CppcheckSat(project) flawfinder = FlawfinderSat(project) file_metrics_table = 'FILES_' + str(project.database_id) function_metrics_table = 'FUNCTIONS_' + str(project.database_id) class_metrics_table = 'CLASSES_' + str(project.database_id) SELECT_FILE_ID_QUERY = f''' SELECT F.ID_File FROM {file_metrics_table} AS F INNER JOIN EXTRA_TIME_FILES AS E ON F.ID_File = E.ID_File INNER JOIN PATCHES AS P ON E.P_ID = P.P_ID WHERE P.R_ID = %(R_ID)s AND P.P_COMMIT = %(P_COMMIT)s AND F.FilePath = %(FILE_PATH)s AND F.Occurrence = %(P_OCCURRENCE)s; ''' with TemporaryDirectory() as temporary_directory_path: sat_list = Sat.get_sat_info_from_config() for sat in sat_list: sat_id = sat_id_from_name.get(sat.database_name) if sat_id is None: log.error(f'The SAT "{sat}" does not exist in the database.') continue cached_rule_ids: dict = {} def find_zipped_csv_files(commit_type: str) -> list: """ Finds the paths to any zipped CSV files that belong to this project, SAT and commit type (current or previous). """ # E.g. "mozilla/cppcheck/complete_scan/current_commit/part1/cppcheck-195-305babb41123e575e6fd6bf4ea4dab2716ce1ecc.csv.zip" # E.g. "linux/flawfinder/complete_scan/previous_commit/part4/flawfinder-358-fc1ca73b3758f0c419b46cfeb2a951de22007d90-1.csv.zip" base_directory = f'{project.github_data_name}/{sat.github_data_name}/complete_scan/{commit_type}' data_path = os.path.join(GLOBAL_CONFIG['data_repository_path'], base_directory, '**', '*.csv.zip') data_path = os.path.normpath(data_path) data_file_list = glob.glob(data_path, recursive=True) data_file_list = list(filter(os.path.isfile, data_file_list)) data_file_list = sorted(data_file_list, reverse=True) return data_file_list neutral_file_list = find_zipped_csv_files('current_commit') vulnerable_file_list = find_zipped_csv_files('previous_commit') # Create a list of alternating zipped CSV paths, regardless of each list's length. zip_file_list: list = list(filter(None, chain.from_iterable(zip_longest(neutral_file_list, vulnerable_file_list)))) log.info(f'Starting the insertion of {len(zip_file_list)} CSV alert files.') for i, zip_file_path in enumerate(zip_file_list): zip_filename = os.path.basename(zip_file_path) # E.g. "cppcheck-195-305babb41123e575e6fd6bf4ea4dab2716ce1ecc.csv.zip" # E.g. "flawfinder-358-fc1ca73b3758f0c419b46cfeb2a951de22007d90-1.csv.zip" # Note the "-1" in the previous_commit. This means we are in "previous_commit" and the real commit hash # is the one immediately before the one shown here. _, _, commit_hash = zip_filename.split('-', 2) commit_hash, _, _ = commit_hash.rsplit('.', 2) occurrence = 'before' if commit_hash.endswith('-1') else 'after' commit_hash = commit_hash.rstrip('-1') success, error_code = db.execute_query( ''' SELECT (SELECT COUNT(*) > 0 FROM PATCHES WHERE R_ID = %(R_ID)s AND P_COMMIT = %(P_COMMIT)s) AS PATCH_EXISTS, ( SELECT COUNT(*) > 0 FROM ALERT AS A INNER JOIN RULE AS R ON A.RULE_ID = R.RULE_ID WHERE R.SAT_ID = %(SAT_ID)s AND A.R_ID = %(R_ID)s AND A.P_COMMIT = %(P_COMMIT)s AND A.P_OCCURRENCE = %(P_OCCURRENCE)s ) AS SAT_ALERTS_ALREADY_EXIST_FOR_THIS_COMMIT ; ''', params={'SAT_ID': sat_id, 'R_ID': project.database_id, 'P_COMMIT': commit_hash, 'P_OCCURRENCE': occurrence}) if not success: log.error(f'Failed to query any existing patches with the commit {commit_hash} ({occurrence}, "{zip_filename}") in the project "{project}" with the error code {error_code}.') continue alert_row = db.cursor.fetchone() if alert_row['PATCH_EXISTS'] == 0: log.warning(f'Skipping the patch with the commit {commit_hash} ({occurrence}, "{zip_filename}") in the project "{project}" since it does not exist in the database.') continue if alert_row['SAT_ALERTS_ALREADY_EXIST_FOR_THIS_COMMIT'] == 1: log.info(f'Skipping the alerts for the commit {commit_hash} ({occurrence}, "{zip_filename}") in the project "{project}" since they already exist.') continue log.info(f'Inserting the alerts {i+1} of {len(zip_file_list)} from "{zip_file_path}" ({occurrence}).') with ZipFile(zip_file_path, 'r') as zip_file: # type: ignore[assignment] filenames_in_zip = zip_file.namelist() # type: ignore[attr-defined] zip_file.extractall(temporary_directory_path) # type: ignore[attr-defined] csv_file_path = os.path.join(temporary_directory_path, filenames_in_zip[0]) cached_file_ids: dict = {} ################################################## def insert_rule_and_cwe_info(alert_params: dict, cwe_list: list) -> Tuple[bool, Optional[int]]: """ Inserts a security alert's rule and CWEs in the database. This function is successful and returns the rule's primary key if a new row was inserted or if the rule already exists. """ total_success = True rule_id = None alert_params['SAT_ID'] = sat_id success, error_code = db.execute_query( ''' INSERT IGNORE INTO RULE (RULE_NAME, RULE_CATEGORY, SAT_ID) VALUES (%(RULE_NAME)s, %(RULE_CATEGORY)s, %(SAT_ID)s); ''', params=alert_params) if not success: total_success = False log.error(f'Failed to insert the rule with the error code {error_code} and the parameters: {alert_params}.') for cwe in cwe_list: success, error_code = db.execute_query('INSERT IGNORE INTO CWE_INFO (V_CWE) VALUES (%(V_CWE)s);', params={'V_CWE': cwe}) if not success: total_success = False log.error(f'Failed to insert the info for the CWE {cwe} with the error code {error_code} and the parameters: {alert_params}.') rule_key = (sat_id, alert_params['RULE_NAME']) rule_id = cached_rule_ids.get(rule_key, -1) if rule_id == -1: success, error_code = db.execute_query( 'SELECT RULE_ID FROM RULE WHERE RULE_NAME = %(RULE_NAME)s AND SAT_ID = %(SAT_ID)s;', params=alert_params) if success and db.cursor.rowcount > 0: rule_row = db.cursor.fetchone() rule_id = rule_row['RULE_ID'] else: rule_id = None total_success = False log.error(f'Failed to query the rule ID for {rule_key} wiwith the error code {error_code} and the parameters: {alert_params}.') cached_rule_ids[rule_key] = rule_id if rule_id is None: total_success = False else: for cwe in cwe_list: success, error_code = db.execute_query( ''' INSERT IGNORE INTO RULE_CWE_INFO (RULE_ID, V_CWE) VALUES ( %(RULE_ID)s, %(V_CWE)s ); ''', params={'RULE_ID': rule_id, 'V_CWE': cwe}) if not success: total_success = False log.error(f'Failed to insert the key ({rule_id}, {cwe}) in RULE_CWE_INFO with the error code {error_code} and the parameters: {alert_params}.') return total_success, rule_id def insert_alert(alert_params: dict, cwe_list: list) -> None: """ Inserts a security alert in the database given its parameters: RULE_NAME, RULE_CATEGORY, ALERT_SEVERITY_LEVEL, ALERT_LINE, ALERT_MESSAGE, FILE_PATH, and a list of CWEs. """ alert_params['R_ID'] = project.database_id alert_params['P_COMMIT'] = commit_hash alert_params['P_OCCURRENCE'] = occurrence success, rule_id = insert_rule_and_cwe_info(alert_params, cwe_list) if success: alert_params['RULE_ID'] = rule_id file_path = alert_params['FILE_PATH'] file_id = cached_file_ids.get(file_path, -1) if file_id == -1: success, error_code = db.execute_query(SELECT_FILE_ID_QUERY, params=alert_params) if success and db.cursor.rowcount > 0: file_id_row = db.cursor.fetchone() file_id = file_id_row['ID_File'] else: file_id = None cached_file_ids[file_path] = file_id if file_id is not None: alert_params['ID_File'] = file_id success, error_code = db.execute_query( ''' INSERT INTO ALERT ( ALERT_SEVERITY_LEVEL, ALERT_LINE, ALERT_MESSAGE, R_ID, P_COMMIT, P_OCCURRENCE, RULE_ID, ID_File ) VALUES ( %(ALERT_SEVERITY_LEVEL)s, %(ALERT_LINE)s, %(ALERT_MESSAGE)s, %(R_ID)s, %(P_COMMIT)s, %(P_OCCURRENCE)s, %(RULE_ID)s, %(ID_File)s ); ''', params=alert_params) if success: alert_params['ALERT_ID'] = db.cursor.lastrowid success, error_code = db.execute_query(f''' INSERT IGNORE INTO ALERT_FUNCTION (ALERT_ID, ID_Function) SELECT A.ALERT_ID, F.ID_Function FROM {function_metrics_table} AS F INNER JOIN ALERT AS A ON F.ID_File = A.ID_File WHERE A.ALERT_ID = %(ALERT_ID)s AND A.ALERT_LINE BETWEEN F.BeginLine AND F.EndLine; ''', params=alert_params) if not success: log.error(f'Failed to insert the functions IDs where the alert appears with the error code {error_code} and the parameters: {alert_params}.') success, error_code = db.execute_query(f''' INSERT IGNORE INTO ALERT_CLASS (ALERT_ID, ID_Class) SELECT A.ALERT_ID, C.ID_Class FROM {class_metrics_table} AS C INNER JOIN ALERT AS A ON C.ID_File = A.ID_File WHERE A.ALERT_ID = %(ALERT_ID)s AND A.ALERT_LINE BETWEEN C.BeginLine AND C.EndLine; ''', params=alert_params) if not success: log.error(f'Failed to insert the class IDs where the alert appears with the error code {error_code} and the parameters: {alert_params}.') else: log.error(f'Failed to insert the alert with the error code {error_code} and the parameters: {alert_params}.') ################################################## if sat.database_name == 'Cppcheck': alerts = cppcheck.read_and_convert_output_csv_in_default_format(csv_file_path) for row in alerts.itertuples(): alert_params = {} cwe_list = [row.CWE] if row.CWE is not None else [] alert_params['RULE_NAME'] = row.Rule alert_params['RULE_CATEGORY'] = row.Severity alert_params['ALERT_SEVERITY_LEVEL'] = None alert_params['ALERT_LINE'] = row.Line alert_params['ALERT_MESSAGE'] = row.Message alert_params['FILE_PATH'] = row.File insert_alert(alert_params, cwe_list) elif sat.database_name == 'Flawfinder': alerts = flawfinder.read_and_convert_output_csv_in_default_format(csv_file_path) for row in alerts.itertuples(): alert_params = {} # Get a list of CWEs. The following values may appear: # - '' # - 'CWE-676, CWE-120, CWE-20' # - 'CWE-362/CWE-367!' # - 'CWE-119!/CWE-120' cwe_list = cast(list, extract_numeric(row.CWEs, all=True)) if row.CWEs is not None else [] alert_params['RULE_NAME'] = row.Name alert_params['RULE_CATEGORY'] = row.Category alert_params['ALERT_SEVERITY_LEVEL'] = row.Level alert_params['ALERT_LINE'] = row.Line alert_params['ALERT_MESSAGE'] = row.Warning alert_params['FILE_PATH'] = row.File insert_alert(alert_params, cwe_list) else: log.critical(f'Cannot insert the alerts from "{zip_file_path}" since the SAT "{sat.database_name}" is not recognized.') ################################################## db.commit() delete_file(csv_file_path) ################################################## insert_alerts_in_database() log.info('Finished running.') print('Finished running.') ``` #### File: software-vulnerability-collection-scripts/Scripts/insert_metrics_in_database.py ```python import os from collections import namedtuple from typing import cast import numpy as np # type: ignore import pandas as pd # type: ignore from modules.common import log, GLOBAL_CONFIG, deserialize_json_container, extract_numeric, get_list_index_or_default from modules.database import Database from modules.project import Project #################################################################################################### with Database(buffered=True) as db: CodeUnit = namedtuple('CodeUnit', ['Kind', 'ExtraTimeTable', 'MetricsTablePrefix', 'MetricsTablePrimaryKey']) FILE_UNIT_INFO = CodeUnit('file', 'EXTRA_TIME_FILES', 'FILES_', 'ID_File') FUNCTION_UNIT_INFO = CodeUnit('function', 'EXTRA_TIME_FUNCTIONS', 'FUNCTIONS_', 'ID_Function') CLASS_UNIT_INFO = CodeUnit('class', 'EXTRA_TIME_CLASS', 'CLASSES_', 'ID_Class') UNIT_INFO_LIST = [FILE_UNIT_INFO, FUNCTION_UNIT_INFO, CLASS_UNIT_INFO] CSV_TO_DATABASE_COLUMN = { # For file tables: 'SumCountPath': 'CountPath', 'SumCountInput': 'FanIn', 'SumCountOutput' : 'FanOut', 'AvgCountInput': 'AvgFanIn', 'AvgCountOutput': 'AvgFanOut', 'MaxCountInput': 'MaxFanIn', 'MaxCountOutput': 'MaxFanOut', 'HenryKafura': 'HK', } project_list = Project.get_project_list_from_config() for project in project_list: file_metrics_table = FILE_UNIT_INFO.MetricsTablePrefix + str(project.database_id) SELECT_FILE_ID_QUERY = f''' SELECT F.ID_File FROM {file_metrics_table} AS F INNER JOIN EXTRA_TIME_FILES AS E ON F.ID_File = E.ID_File INNER JOIN PATCHES AS P ON E.P_ID = P.P_ID WHERE P.R_ID = %(R_ID)s AND P.P_COMMIT = %(P_COMMIT)s AND F.FilePath = %(FilePath)s AND F.Occurrence = %(Occurrence)s; ''' # @Hack: Doesn't handle multiple versions that were scraped at different times, though that's not really necessary for now. commits_csv_path = project.find_output_csv_files('affected-files')[0] commits = pd.read_csv(commits_csv_path, usecols=['Topological Index', 'Vulnerable Commit Hash', 'Neutral Commit Hash'], dtype=str) # Only neutral commits are stored in the PATCHES table. We need to convert from vulnerable to neutral commits so we can find the correct P_IDs. vulnerable_to_neutral_commit = {row['Vulnerable Commit Hash']: row['Neutral Commit Hash'] for _, row in commits.iterrows()} del commits_csv_path, commits for unit_info in UNIT_INFO_LIST: if not GLOBAL_CONFIG['allowed_code_units'].get(unit_info.Kind): log.info(f'Skipping the {unit_info.Kind} metrics for the project "{project}" at the user\'s request') continue is_function = (unit_info.Kind == 'function') is_class = (unit_info.Kind == 'class') unit_metrics_table = unit_info.MetricsTablePrefix + str(project.database_id) EXTRA_TIME_INSERT_QUERY = f''' INSERT INTO {unit_info.ExtraTimeTable} ( P_ID, {unit_info.MetricsTablePrimaryKey} ) VALUES ( %(P_ID)s, %({unit_info.MetricsTablePrimaryKey})s ); ''' success, error_code = db.execute_query(f'SELECT MAX({unit_info.MetricsTablePrimaryKey} DIV 100) + 1 AS NEXT_ID FROM {unit_metrics_table};') assert db.cursor.rowcount != -1, 'The database cursor must be buffered.' next_id = -1 if success and db.cursor.rowcount > 0: row = db.cursor.fetchone() next_id = int(row['NEXT_ID']) log.info(f'Found the next {unit_info.Kind} metrics ID {next_id} for the project "{project}".') else: log.error(f'Failed to find the next {unit_info.Kind} metrics ID for the project "{project}" with the error code {error_code}.') continue def get_next_unit_metrics_table_id() -> int: """ Retrieves the next primary key value of the ID_File, ID_Function, or ID_Class column for the current project and code unit table. """ global next_id result = next_id * 100 + project.database_id next_id += 1 return result cached_insert_queries: dict = {} output_csv_prefix = f'{unit_info.Kind}-metrics' output_csv_subdirectory = f'{unit_info.Kind}_metrics' def output_csv_sort_key(csv_path: str) -> int: """ Called when sorting the CSV list by each file path. We want units that weren't affected by a vulnerability (affected = 0, vulnerable = 0) to be sorted before the vulnerable and neutral ones (affected = 1, vulnerable = 0 or 1). This is because the query that checks if the metrics were already inserted only works if the units whose P_ID columns will be NULL are inserted first. """ commit_params = cast(list, extract_numeric(os.path.basename(csv_path), convert=True, all=True)) topological_index, affected, vulnerable, *_ = commit_params # (0 to N, 0 or 1, 0 or 1) return topological_index * 100 + affected * 10 + vulnerable for input_csv_path in project.find_output_csv_files(output_csv_prefix, subdirectory=output_csv_subdirectory, sort_key=output_csv_sort_key): log.info(f'Inserting the {unit_info.Kind} metrics using the information in "{input_csv_path}".') # The CSV may be empty if a given code unit type didn't exist in a file (e.g. classes) when we split them. try: metrics = pd.read_csv(input_csv_path, dtype=str) except pd.errors.EmptyDataError: log.info(f'Skipping the empty {unit_info.Kind} metrics file "{input_csv_path}".') continue metrics = metrics.replace({np.nan: None}) topological_index = metrics['Topological Index'].iloc[0] commit_hash = metrics['Commit Hash'].iloc[0] affected_commit = metrics['Affected Commit'].iloc[0] == 'Yes' vulnerable_commit = metrics['Vulnerable Commit'].iloc[0] == 'Yes' # The first commit (neutral) in the project is not in the PATCHES table, so we'll skip its metrics for now. if topological_index == '0': log.info(f'Skipping the first commit {commit_hash}.') continue commit_hash = vulnerable_to_neutral_commit.get(commit_hash, commit_hash) occurrence = 'before' if vulnerable_commit else 'after' # Since only neutral commits are stored in the PATCHES table, we need to use the occurrence (before and after a patch) # to determine if a commit's metrics (vulnerable or neutral) already exist in the database. success, error_code = db.execute_query(f''' SELECT P_ID, ( SELECT COUNT(*) > 0 FROM {unit_metrics_table} AS U WHERE U.P_ID LIKE CONCAT('%', P.P_ID, '%') AND Occurrence = %(Occurrence)s ) AS COMMIT_METRICS_ALREADY_EXIST FROM PATCHES AS P WHERE R_ID = %(R_ID)s AND P_COMMIT = %(P_COMMIT)s; ''', params={'R_ID': project.database_id, 'P_COMMIT': commit_hash, 'Occurrence': occurrence}) if not success: log.error(f'Failed to query any existing {unit_info.Kind} metrics for the commit {commit_hash} ({topological_index}, {affected_commit}, {vulnerable_commit}) in the project "{project}" with the error code {error_code}.') continue patch_row_list = [row for row in db.cursor] if not patch_row_list: log.error(f'Could not find any patch with the commit {commit_hash} ({topological_index}, {affected_commit}, {vulnerable_commit}) in the project "{project}".') continue if any(patch_row['COMMIT_METRICS_ALREADY_EXIST'] == 1 for patch_row in patch_row_list): log.info(f'Skipping the {unit_info.Kind} metrics for the patches "{patch_row_list}" with the commit {commit_hash} ({topological_index}, {affected_commit}, {vulnerable_commit}) in the project "{project}" since they already exist.') if any(patch_row['COMMIT_METRICS_ALREADY_EXIST'] == 0 for patch_row in patch_row_list): log.warning(f'The patches "{patch_row_list}" to be skipped have one or more {unit_info.Kind} metric values that were not previously inserted.') continue patch_list = [patch_row['P_ID'] for patch_row in patch_row_list] patch_list_string = '[' + ', '.join(patch_list) + ']' cached_file_ids: dict = {} ################################################## # Remove column name spaces for itertuples(). metrics.columns = metrics.columns.str.replace(' ', '') csv_metric_names = metrics.columns.values.tolist() first_metric_index = get_list_index_or_default(csv_metric_names, 'File') or get_list_index_or_default(csv_metric_names, 'Name') or get_list_index_or_default(csv_metric_names, 'Kind') first_metric_index += 1 csv_metric_names = csv_metric_names[first_metric_index:] # E.g. "SumCyclomatic" -> "SumCyclomatic"" or "HenryKafura" -> "HK". database_metric_names = [CSV_TO_DATABASE_COLUMN.get(name, name) for name in csv_metric_names] # Due to the way metrics are divided by code units, the CVEs and CodeUnitLines columns may only exist # in CSV related to affected commits (vulnerable or neutral). has_code_unit_lines = 'CodeUnitLines' in metrics.columns has_file = 'File' in metrics.columns def convert_string_status_to_number(status: str) -> int: """ Converts a Yes/No/Unknown status from a CSV file into a numeric value used by the database. """ if status == 'Yes': return 1 elif status == 'No': return 0 else: return 2 ################################################## for row in metrics.itertuples(): file_path = row.File if has_file else None if file_path is None: continue affected_status = convert_string_status_to_number(row.VulnerableCodeUnit) # Possible cases for the P_ID columns in the FILES_*, FUNCTIONS_*, and CLASSES_* tables (Affected Vulnerable): # - (No, No) -> Set to NULL. # - (Yes, Yes) -> Set to the string "[P_ID_1, P_ID_2, ..., P_ID_N]", for N patches. # - (Yes, No) -> Set to the current P_ID, for N patches. p_id_list: list if not affected_commit: p_id_list = [None] elif affected_status != 0: p_id_list = [patch_list_string] else: p_id_list = patch_list for p_id in p_id_list: # Columns: # - File: ID_File, R_ID, P_ID, FilePath, Patched, Occurrence, Affected, [METRICS] # - Function: ID_Function, R_ID, P_ID, ID_Class, ID_File, Visibility, Complement, NameMethod, FilePath, Patched, Occurrence, Affected, [METRICS] # - Class: ID_Class, R_ID, P_ID, ID_File, Visibility, Complement, NameClass, FilePath, Patched, Occurrence, Affected, [METRICS] unit_id = get_next_unit_metrics_table_id() # Columns in common: query_params = { unit_info.MetricsTablePrimaryKey: unit_id, 'R_ID': project.database_id, 'P_ID': p_id, 'FilePath': file_path, 'Patched': convert_string_status_to_number(row.PatchedCodeUnit), # If the code unit was changed. 'Occurrence': occurrence, # Whether or not this code unit exists before (vulnerable) or after (neutral) the patch. 'Affected': affected_status, # If the code unit is vulnerable or not. } if is_function or is_class: query_params['Visibility'] = row.Visibility query_params['Complement'] = row.Complement if has_code_unit_lines: lines = cast(list, deserialize_json_container(row.CodeUnitLines, [None, None])) query_params['BeginLine'] = lines[0] query_params['EndLine'] = lines[1] file_id = cached_file_ids.get(file_path, -1) if file_id == -1: success, error_code = db.execute_query(SELECT_FILE_ID_QUERY, params={ 'R_ID': query_params['R_ID'], 'P_COMMIT': commit_hash, 'FilePath': query_params['FilePath'], 'Occurrence': query_params['Occurrence'] }) if success and db.cursor.rowcount > 0: file_id_row = db.cursor.fetchone() file_id = file_id_row[FILE_UNIT_INFO.MetricsTablePrimaryKey] else: file_id = None cached_file_ids[file_path] = file_id query_params[FILE_UNIT_INFO.MetricsTablePrimaryKey] = file_id if is_function: query_params['NameMethod'] = row.Name query_params[CLASS_UNIT_INFO.MetricsTablePrimaryKey] = -1 elif is_class: query_params['NameClass'] = row.Name for database_name, csv_name in zip(database_metric_names, csv_metric_names): query_params[database_name] = getattr(row, csv_name) query_params_key = tuple(query_params.keys()) query = cached_insert_queries.get(query_params_key) if query is None: query = f'INSERT INTO {unit_metrics_table} (' for name in query_params: query += f'{name},' query = query.rstrip(',') query += ') VALUES (' for name in query_params: query += f'%({name})s,' query = query.rstrip(',') query += ');' cached_insert_queries[query_params_key] = query success, error_code = db.execute_query(query, params=query_params) def insert_patch_and_unit_ids_in_extra_time_table(patch_id: str) -> None: """ Inserts a row for the current code unit into the appropriate EXTRA_TIME_* table. """ success, error_code = db.execute_query(EXTRA_TIME_INSERT_QUERY, params={ 'P_ID': patch_id, unit_info.MetricsTablePrimaryKey: unit_id, } ) if not success: log.error(f'Failed to insert the {unit_info.Kind} metrics ID in the {unit_info.ExtraTimeTable} table for the unit "{row.Name}" ({unit_id}) in the file "{file_path}" and commit {commit_hash} ({topological_index}, {patch_id}, {affected_commit}, {vulnerable_commit}) with the error code {error_code}.') if success: if affected_commit and affected_status == 0: insert_patch_and_unit_ids_in_extra_time_table(p_id) else: for p_id in patch_list: insert_patch_and_unit_ids_in_extra_time_table(p_id) else: log.error(f'Failed to insert the {unit_info.Kind} metrics for the unit "{row.Name}" ({unit_id}) in the file "{file_path}" and commit {commit_hash} ({topological_index}, {p_id}, {affected_commit}, {vulnerable_commit}) with the error code {error_code}.') ################################################## db.commit() log.info('Finished running.') print('Finished running.') ``` #### File: Scripts/modules/cve.py ```python import re from typing import TYPE_CHECKING, Callable, Optional from urllib.parse import urlsplit, parse_qsl if TYPE_CHECKING: from .project import Project import bs4 # type: ignore from .common import log, remove_list_duplicates, serialize_json_container from .scraping import ScrapingManager, ScrapingRegex #################################################################################################### class Cve: """ Represents a vulnerability (CVE) scraped from the CVE Details website. """ CVE_DETAILS_SCRAPING_MANAGER: ScrapingManager = ScrapingManager('https://www.cvedetails.com') id: str url: str project: 'Project' publish_date: Optional[str] last_update_date: Optional[str] cvss_score: Optional[str] confidentiality_impact: Optional[str] integrity_impact: Optional[str] availability_impact: Optional[str] access_complexity: Optional[str] authentication: Optional[str] gained_access: Optional[str] vulnerability_types: Optional[list] cwe: Optional[str] affected_products: dict bugzilla_urls: list bugzilla_ids: list advisory_urls: list advisory_ids: list advisory_info: dict git_urls: list git_commit_hashes: list svn_urls: list svn_revision_numbers: list def __init__(self, id: str, project: 'Project'): self.id = id self.url = f'https://www.cvedetails.com/cve/{self.id}' self.project = project self.cve_details_soup = None self.publish_date = None self.last_update_date = None self.cvss_score = None self.confidentiality_impact = None self.integrity_impact = None self.availability_impact = None self.access_complexity = None self.authentication = None self.gained_access = None self.vulnerability_types = None self.cwe = None self.affected_products = {} self.bugzilla_urls = [] self.bugzilla_ids = [] self.advisory_urls = [] self.advisory_ids = [] self.advisory_info = {} self.git_urls = [] self.git_commit_hashes = [] self.svn_urls = [] self.svn_revision_numbers = [] def __str__(self): return self.id def download_cve_details_page(self) -> bool: """ Downloads the CVE's page from the CVE Details website. """ response = Cve.CVE_DETAILS_SCRAPING_MANAGER.download_page(self.url) if response is not None: self.cve_details_soup = bs4.BeautifulSoup(response.text, 'html.parser') return response is not None def scrape_dates_from_page(self): """ Scrapes any date values from the CVE's page. """ """ <div class="cvedetailssummary"> Memory safety bugs were reported in Firefox 57 and Firefox ESR 52.5. Some of these bugs showed evidence of memory corruption and we presume that with enough effort that some of these could be exploited to run arbitrary code. This vulnerability affects Thunderbird &lt; 52.6, Firefox ESR &lt; 52.6, and Firefox &lt; 58. <br> <span class="datenote">Publish Date : 2018-06-11 Last Update Date : 2018-08-03</span> </div> """ dates_span = self.cve_details_soup.find('span', class_='datenote') if dates_span is None: log.warning(f'--> No dates span found for {self}.') dates_text = dates_span.get_text(strip=True) cve_dates = {} for date in re.split(r'\t+', dates_text): key, value = date.split(' : ') cve_dates[key] = value self.publish_date = cve_dates.get('Publish Date') self.last_update_date = cve_dates.get('Last Update Date') def scrape_basic_attributes_from_page(self): """ Scrapes any basic attributes from the CVE's page. """ """ <table id="cvssscorestable" class="details"> <tbody> <tr> <th>CVSS Score</th> <td><div class="cvssbox" style="background-color:#ff9c20">7.5</div></td> </tr> <tr> <th>Confidentiality Impact</th> <td><span style="color:orange">Partial</span> <span class="cvssdesc">(There is considerable informational disclosure.)</span></td> </tr> <tr> <th>Access Complexity</th> <td><span style="color:red">Low</span> <span class="cvssdesc">(Specialized access conditions or extenuating circumstances do not exist. Very little knowledge or skill is required to exploit. )</span></td> </tr> <tr> <th>Authentication</th> <td><span style="color:red">Not required</span> <span class="cvssdesc">(Authentication is not required to exploit the vulnerability.)</span></td> </tr> <tr> <th>Gained Access</th> <td><span style="color:green;">None</span></td> </tr> <tr> <th>Vulnerability Type(s)</th> <td><span class="vt_overflow">Overflow</span><span class="vt_memc">Memory corruption</span></td> </tr> <tr> <th>CWE ID</th> <td><a href="//www.cvedetails.com/cwe-details/119/cwe.html" title="CWE-119 - CWE definition">119</a></td> </tr> </tbody> </table> """ scores_table = self.cve_details_soup.find('table', id='cvssscorestable') if scores_table is None: log.warning(f'--> No scores table found for {self}.') return scores_th_list = scores_table.find_all('th') scores_td_list = scores_table.find_all('td') cve_attributes = {} for th, td in zip(scores_th_list, scores_td_list): key = th.get_text(strip=True) value = None if key == 'Vulnerability Type(s)': value = [span.get_text(strip=True) for span in td.find_all('span')] else: span = td.find('span') if span is not None: value = span.get_text(strip=True) else: value = td.get_text(strip=True) cve_attributes[key] = value self.cvss_score = cve_attributes.get('CVSS Score') self.confidentiality_impact = cve_attributes.get('Confidentiality Impact') self.integrity_impact = cve_attributes.get('Integrity Impact') self.availability_impact = cve_attributes.get('Availability Impact') self.access_complexity = cve_attributes.get('Access Complexity') self.authentication = cve_attributes.get('Authentication') self.gained_access = cve_attributes.get('Gained Access') self.vulnerability_types = cve_attributes.get('Vulnerability Type(s)') cwe = cve_attributes.get('CWE ID') if cwe is not None and not cwe.isnumeric(): cwe = None self.cwe = cwe def scrape_affected_product_versions_from_page(self): """ Scrapes any affected products and their versions from the CVE's page. """ """ <table class="listtable" id="vulnprodstable"> <tbody> <tr> <th class="num">#</th> <th>Product Type</th> <th>Vendor</th> <th>Product</th> <th>Version</th> <th>Update</th> <th>Edition</th> <th>Language</th> <th></th> </tr> <tr> <td class="num">1</td> <td>Application </td> <td><a href="//www.cvedetails.com/vendor/452/Mozilla.html" title="Details for Mozilla">Mozilla</a></td> <td><a href="//www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452" title="Product Details Mozilla Firefox">Firefox</a></td> <td></td> <td></td> <td></td> <td></td> <td><a href="/version/12613/Mozilla-Firefox-.html" title="Mozilla Firefox ">Version Details</a>&nbsp;<a href="/vulnerability-list/vendor_id-452/product_id-3264/version_id-12613/Mozilla-Firefox-.html" title="Vulnerabilities of Mozilla Firefox ">Vulnerabilities</a></td> </tr> <tr> <td class="num">2 </td> <td>Application </td> <td><a href="//www.cvedetails.com/vendor/44/Netscape.html" title="Details for Netscape">Netscape</a></td> <td><a href="//www.cvedetails.com/product/64/Netscape-Navigator.html?vendor_id=44" title="Product Details Netscape Navigator">Navigator</a></td> <td>7.0.2 </td> <td></td> <td></td> <td></td> <td><a href="/version/11359/Netscape-Navigator-7.0.2.html" title="Netscape Navigator 7.0.2">Version Details</a>&nbsp;<a href="/vulnerability-list/vendor_id-44/product_id-64/version_id-11359/Netscape-Navigator-7.0.2.html" title="Vulnerabilities of Netscape Navigator 7.0.2">Vulnerabilities</a></td> </tr> </tbody> </table> """ products_table = self.cve_details_soup.find('table', id='vulnprodstable') if products_table is None: log.warning(f'--> No products table found for {self}.') return # Parse each row in the product table. th_list = products_table.find_all('th') th_list = [th.get_text(strip=True) for th in th_list] column_indexes = { 'vendor': th_list.index('Vendor'), 'product': th_list.index('Product'), 'version': th_list.index('Version')} tr_list = products_table.find_all('tr') for tr in tr_list: # Skip the header row. if tr.find('th'): continue td_list = tr.find_all('td') def get_column_value_and_url(name): """ Gets a specific cell value and any URL it references from the current row given its column name.. """ idx = column_indexes[name] td = td_list[idx] value = td.get_text(strip=True) url = td.find('a', href=True) if value in ['', '-']: value = None if url is not None: url = url['href'] return value, url _, vendor_url = get_column_value_and_url('vendor') product, product_url = get_column_value_and_url('product') version, _ = get_column_value_and_url('version') vendor_pattern = f'/{self.project.vendor_id}/' product_pattern = f'/{self.project.product_id}/' if self.project.product_id is not None else '' # Check if the vendor and product belong to the current project. if vendor_pattern in vendor_url and product_pattern in product_url: if product not in self.affected_products: self.affected_products[product] = [] if version is not None and version not in self.affected_products[product]: self.affected_products[product].append(version) def scrape_references_from_page(self): """ Scrapes any references and links from the CVE's page. """ """ <table class="listtable" id="vulnrefstable"> <tbody> <tr> <td class="r_average"> <a href="https://github.com/torvalds/linux/commit/09ccfd238e5a0e670d8178cf50180ea81ae09ae1" target="_blank" title="External url">https://github.com/torvalds/linux/commit/09ccfd238e5a0e670d8178cf50180ea81ae09ae1</a> CONFIRM <br> </td> </tr> <tr> <td class="r_average"> <a href="https://bugzilla.redhat.com/show_bug.cgi?id=1292045" target="_blank" title="External url">https://bugzilla.redhat.com/show_bug.cgi?id=1292045</a> CONFIRM <br> </td> </tr> </tbody> </table> """ references_table = self.cve_details_soup.find('table', id='vulnrefstable') if references_table is None: log.warning(f'--> No references table found for {self}.') return def list_all_urls(url_regex: str, url_handler: Callable = None): """ Creates a list of URL that match a regex (or a list of regexes). If a handler method is passed as the second argument, then it will be called for each URL in order to create and return a secondary list. This may be used to extract specific parts of the URL.""" a_list = references_table.find_all('a', href=url_regex) url_list = [] for a in a_list: url = a['href'] if re.search(self.project.url_pattern, url, re.IGNORECASE): url_list.append(url) secondary_list = [] if url_handler is not None: for url in url_list: secondary_value = url_handler(url) if secondary_value is not None: secondary_list.append(secondary_value) return url_list, secondary_list def get_query_param(url: str, query_key_list: list) -> Optional[str]: """ Gets the value of the first parameter in a URL's query segment given a list of keys to check. """ split_url = urlsplit(url) params = dict(parse_qsl(split_url.query)) result = None for query_key in query_key_list: result = params.get(query_key) if result is not None: break return result """ Various helper methods to handle specific URLs from different sources. """ def handle_bugzilla_urls(url: str) -> Optional[str]: id = get_query_param(url, ['id', 'bug_id']) if id is None: log.error(f'--> Could not find a valid Bugzilla ID in "{url}".') return id def handle_advisory_urls(url: str) -> Optional[str]: split_url = urlsplit(url) id = None for regex in [ScrapingRegex.MFSA_ID, ScrapingRegex.XSA_ID, ScrapingRegex.APACHE_SECURITY_ID]: match = regex.search(split_url.path) if match is not None: id = match.group(1) if regex is ScrapingRegex.MFSA_ID: id = id.upper() id = id.replace('MFSA', 'MFSA-') elif regex is ScrapingRegex.XSA_ID: id = 'XSA-' + id elif regex is ScrapingRegex.APACHE_SECURITY_ID: id = 'APACHE-' + id[0] + '.' + id[1:] break if id is None: log.error(f'--> Could not find a valid advisory ID in "{url}".') return id def handle_git_urls(url: str) -> Optional[str]: commit_hash = get_query_param(url, ['id', 'h']) if commit_hash is None: split_url = urlsplit(url) path_components = split_url.path.rsplit('/') commit_hash = path_components[-1] # If the hash length is less than 40, we need to refer to the repository # to get the full hash. if commit_hash is not None and len(commit_hash) < ScrapingRegex.GIT_COMMIT_HASH_LENGTH: commit_hash = self.project.find_full_git_commit_hash(commit_hash) if commit_hash is not None and not ScrapingRegex.GIT_COMMIT_HASH.match(commit_hash): commit_hash = None if commit_hash is None: log.error(f'--> Could not find a valid commit hash in "{url}".') return commit_hash def handle_svn_urls(url: str) -> Optional[str]: revision_number = get_query_param(url, ['rev', 'revision', 'pathrev']) if revision_number is not None: # In some rare cases, the revision number can be prefixed with 'r'. # As such, we'll only extract the numeric part of this value. match = ScrapingRegex.SVN_REVISION_NUMBER.search(revision_number) if match is not None: # For most cases, this is the same value. revision_number = match.group(1) else: # For cases where the query parameter was not a valid number. revision_number = None if revision_number is None: log.error(f'--> Could not find a valid revision number in "{url}".') return revision_number self.bugzilla_urls, self.bugzilla_ids = list_all_urls(ScrapingRegex.BUGZILLA_URL, handle_bugzilla_urls) self.advisory_urls, self.advisory_ids = list_all_urls([ScrapingRegex.MFSA_URL, ScrapingRegex.XSA_URL, ScrapingRegex.APACHE_SECURITY_URL], handle_advisory_urls) self.git_urls, self.git_commit_hashes = list_all_urls([ScrapingRegex.GIT_URL, ScrapingRegex.GITHUB_URL], handle_git_urls) self.svn_urls, self.svn_revision_numbers = list_all_urls(ScrapingRegex.SVN_URL, handle_svn_urls) def remove_duplicated_values(self): """ Removes any duplicated values from specific CVE attributes that contain lists. """ self.vulnerability_types = remove_list_duplicates(self.vulnerability_types) self.bugzilla_urls = remove_list_duplicates(self.bugzilla_urls) self.bugzilla_ids = remove_list_duplicates(self.bugzilla_ids) self.advisory_urls = remove_list_duplicates(self.advisory_urls) self.advisory_ids = remove_list_duplicates(self.advisory_ids) self.git_urls = remove_list_duplicates(self.git_urls) self.git_commit_hashes = remove_list_duplicates(self.git_commit_hashes) self.svn_urls = remove_list_duplicates(self.svn_urls) self.svn_revision_numbers = remove_list_duplicates(self.svn_revision_numbers) def serialize_containers(self): """ Serializes specific CVE attributes that contain lists or dictionaries using JSON. """ self.vulnerability_types = serialize_json_container(self.vulnerability_types) self.affected_products = serialize_json_container(self.affected_products) self.bugzilla_urls = serialize_json_container(self.bugzilla_urls) self.bugzilla_ids = serialize_json_container(self.bugzilla_ids) self.advisory_urls = serialize_json_container(self.advisory_urls) self.advisory_ids = serialize_json_container(self.advisory_ids) self.advisory_info = serialize_json_container(self.advisory_info) self.git_urls = serialize_json_container(self.git_urls) self.git_commit_hashes = serialize_json_container(self.git_commit_hashes) self.svn_urls = serialize_json_container(self.svn_urls) self.svn_revision_numbers = serialize_json_container(self.svn_revision_numbers) if __name__ == '__main__': pass ``` #### File: Scripts/modules/database.py ```python import os import subprocess import sys from typing import Iterator, Optional, Tuple, Union from mysql.connector import MySQLConnection, Error as MySQLError # type: ignore from mysql.connector.cursor import MySQLCursor # type: ignore from .common import log, GLOBAL_CONFIG, DATABASE_CONFIG class Database: """ Represents a connection to the software vulnerability MySQL database. """ host: str port: str user: str password: str database: str connection: MySQLConnection cursor: MySQLCursor input_directory_path: str def __init__(self, config: dict = DATABASE_CONFIG, **kwargs): try: log.info(f'Connecting to the database with the following configurations: {config}') for key, value in config.items(): setattr(self, key, value) self.connection = MySQLConnection(**config) self.cursor = self.connection.cursor(dictionary=True, **kwargs) log.info(f'Autocommit is {self.connection.autocommit}.') self.input_directory_path = os.path.abspath(GLOBAL_CONFIG['output_directory_path']) except MySQLError as error: log.error(f'Failed to connect to the database with the error: {repr(error)}') sys.exit(1) def __enter__(self): return self def __exit__(self, exception_type, exception_value, traceback): try: self.cursor.close() self.connection.close() except MySQLError as error: log.error(f'Failed to close the connection to the database with the error: {repr(error)}') def execute_query(self, query: str, commit: bool = False, **kwargs) -> Tuple[bool, Optional[int]]: """ Executes a given SQL query and optionally commits the results. """ try: self.cursor.execute(query, **kwargs) if commit: self.connection.commit() success = True error_code = None except MySQLError as error: success = False error_code = error.errno log.warning(f'Failed to execute the query "{query}" with the error: {repr(error)}') return (success, error_code) def commit(self) -> bool: """ Commits the current transaction. """ try: self.connection.commit() success = True except MySQLError as error: success = False log.error(f'Failed to perform the commit with the error: {repr(error)}') return success def rollback(self) -> bool: """ Rolls back the current transaction. """ try: self.connection.rollback() success = True except MySQLError as error: success = False log.error(f'Failed to perform the rollback with the error: {repr(error)}') return success def execute_script(self, script_path: str) -> Tuple[bool, str]: """ Executes one or more SQL queries inside a file and returns the output of the MySQL command. """ arguments = ['mysql', f'--host={self.host}', f'--port={self.port}', f'--user={self.user}', f'--password={self.password}', '--default-character-set=utf8', '--comments', self.database] try: script_file = open(script_path) result = subprocess.run(arguments, stdin=script_file, capture_output=True, text=True) success = result.returncode == 0 output = result.stdout if not success: command_line_arguments = ' '.join(arguments) error_message = result.stderr or result.stdout log.error(f'Failed to run the command "{command_line_arguments}" with the error code {result.returncode} and the error message "{error_message}".') except Exception as error: success = False output = '' log.error(f'Failed to execute the script "{script_path}" with the error: {repr(error)}') return (success, output) def call_procedure(self, name: str, *args) -> Tuple[bool, tuple]: """ Calls a previously created stored procedure. """ try: output = self.cursor.callproc(name, args) success = True except Exception as error: success = False output = () log.error(f'Failed to call the procedure "{name}" with the error: {repr(error)}') return (success, output) ``` #### File: Scripts/modules/sats.py ```python import os import subprocess import tempfile from collections import namedtuple from typing import cast, Optional, Tuple, Union import bs4 # type: ignore import numpy as np # type: ignore import pandas as pd # type: ignore from .common import log, GLOBAL_CONFIG, delete_directory, delete_file, extract_numeric, get_path_in_data_directory from .project import Project #################################################################################################### class Sat(): """ Represents a third-party static analysis tool (SAT) and allows the execution of its commands. """ config: dict name: str executable_path: str version: Optional[str] project: Project def __init__(self, name: str, project: Project): self.config = GLOBAL_CONFIG['sats'][name] self.name = name self.executable_path = self.config['executable_path'] self.version = None self.project = project def __str__(self): return self.name def get_version(self) -> str: """ Gets the tool's version number. """ return self.version or 'Unknown' def run(self, *args) -> Tuple[bool, str]: """ Runs the tool with a series of command line arguments. """ if self.executable_path is None: return (False, '') arguments = [self.executable_path] + [arg for arg in args] result = subprocess.run(arguments, capture_output=True, text=True) success = (result.returncode == 0) if not success: command_line_arguments = ' '.join(arguments) error_message = result.stderr or result.stdout log.error(f'Failed to run the command "{command_line_arguments}" with the error code {result.returncode} and the error message "{error_message}".') return (success, result.stdout) @staticmethod def write_list_to_temporary_file(value_list: list) -> Optional[str]: """ Writes a list to a temporary file, where each item appears in its own line. If this file cannot be created, this function returns None. This file is closed before returning so it can be opened by other processes. For example, passing a list of file paths to a SAT. """ result = None try: _, temporary_file_path = tempfile.mkstemp() with open(temporary_file_path, 'w') as temporary_file: for value in value_list: temporary_file.write(value + '\n') result = temporary_file_path except Exception as error: log.error(f'Failed to write the list to a temporary file with the error: {repr(error)}') return result @staticmethod def get_sat_info_from_config() -> list: """ Creates a list of SAT information given the current configuration. """ template_list = list(GLOBAL_CONFIG['sats'].values()) SatInfo = namedtuple('SatInfo', template_list[0]) # type: ignore[misc] sat_list = [] for name, items in GLOBAL_CONFIG['sats'].items(): sat_database_name = items['database_name'] if sat_database_name is not None: should_be_allowed = GLOBAL_CONFIG['allowed_sats'].get(sat_database_name) if should_be_allowed: info = SatInfo(**items) # type: ignore[call-arg] sat_list.append(info) else: log.info(f'Ignoring the SAT "{sat_database_name}".') return sat_list #################################################################################################### class UnderstandSat(Sat): """ Represents the Understand tool, which is used to generate software metrics given a project's source files. """ use_new_database_format: bool database_extension: str def __init__(self, project: Project): super().__init__('Understand', project) version_success, build_number = self.run('version') if version_success: build_number = cast(str, extract_numeric(build_number)) self.version = build_number self.use_new_database_format = int(build_number) >= 1039 # Understand 6.0 or later. self.database_extension = '.und' if self.use_new_database_format else '.udb' log.info(f'Loaded {self} version {self.version}.') def generate_project_metrics(self, file_path_list: Union[list, bool], output_csv_path: str) -> bool: """ Generates the project's metrics using the files and any other options defined in the database directory. """ """ Understand Metrics Settings: - WriteColumnTitles on/off (default on) - ShowFunctionParameterTypes on/off (default off) - ShowDeclaredInFile on/off (default off) - FileNameDisplayMode NoPath/FullPath/RelativePath (default NoPath) - DeclaredInFileDisplayMode NoPath/FullPath/RelativePath (default NoPath) - OutputFile <CSV File Path> (default "<Database Name>.csv") These were listed using the command: und list -all settings <Database Name> """ success = False database_path = os.path.join(self.project.output_directory_path, self.project.short_name + self.database_extension) if isinstance(file_path_list, bool): file_path_list = [self.project.repository_path] # Understand fails if one of the files doesn't exist on disk so we'll filter the paths before running it. filtered_file_path_list = [] for file_path in file_path_list: if os.path.isfile(file_path): filtered_file_path_list.append(file_path) else: log.warning(f'Skipping the file path "{file_path}" since it does not exist on disk.') file_path_list = filtered_file_path_list del filtered_file_path_list temporary_file_path = Sat.write_list_to_temporary_file(file_path_list) if temporary_file_path: success, _ = self.run ( '-quiet', '-db', database_path, 'create', '-languages', 'c++', # This value cannot be self.project.language since only "c++" is accepted. 'settings', '-metrics', 'all', '-metricsWriteColumnTitles', 'on', '-metricsShowFunctionParameterTypes', 'on', '-metricsShowDeclaredInFile', 'on', '-metricsFileNameDisplayMode', 'NoPath', '-metricsDeclaredInFileDisplayMode', 'FullPath', # See below. '-metricsOutputFile', output_csv_path, 'add', f'@{temporary_file_path}', 'analyze', 'metrics' ) delete_file(temporary_file_path) # Safeguard against the tool executing successfully without having created the CSV file. success = success and os.path.isfile(output_csv_path) if success: try: metrics = pd.read_csv(output_csv_path, dtype=str) except pd.errors.ParserError as error: log.warning(f'Could not parse the metrics in "{output_csv_path}" with the error: {repr(error)}') metrics = pd.read_csv(output_csv_path, dtype=str, error_bad_lines=False, warn_bad_lines=True) # Ideally, we'd just set the "DeclaredInFileDisplayMode" option to "RelativePath" and skip this step. However, doing that would # lead to a few cases where the relative path to the file in the repository was incorrect. metrics['File'] = metrics['File'].map(lambda x: self.project.get_relative_path_in_repository(x) if pd.notna(x) else x) metrics.to_csv(output_csv_path, index=False) if self.use_new_database_format: delete_directory(database_path) else: delete_file(database_path) return success #################################################################################################### class CppcheckSat(Sat): """ Represents the Cppcheck tool, which is used to generate security alerts given a project's source files. """ RULE_TO_CWE: dict = {} mapped_rules_to_cwes: bool = False def __init__(self, project: Project): super().__init__('Cppcheck', project) version_success, version_number = self.run('--version') if version_success: self.version = cast(Optional[str], extract_numeric(version_number, r'\d+\.\d+')) log.info(f'Loaded {self} version {self.version}.') if not CppcheckSat.mapped_rules_to_cwes: CppcheckSat.mapped_rules_to_cwes = True error_list_file_path = get_path_in_data_directory('cppcheck_error_list.xml') with open(error_list_file_path) as xml_file: error_soup = bs4.BeautifulSoup(xml_file, 'xml') if error_soup is not None: error_list = error_soup.find_all('error', id=True, cwe=True) CppcheckSat.RULE_TO_CWE = {error['id']: error['cwe'] for error in error_list} else: log.error(f'Failed to map a list of SAT rules in "{error_list_file_path}" to their CWE values.') def generate_project_alerts(self, file_path_list: Union[list, bool], output_csv_path: str) -> bool: """ Generates the project's alerts given list of files. """ success = False if self.project.include_directory_path is not None: include_arguments = ['-I', self.project.include_directory_path] else: include_arguments = ['--suppress=missingInclude'] if isinstance(file_path_list, bool): file_path_list = [self.project.repository_path] temporary_file_path = Sat.write_list_to_temporary_file(file_path_list) if temporary_file_path: # The argument "--enable=error" is not necessary since it's enabled by default. # @Future: Should "--force" be used? If so, remove "--suppress=toomanyconfigs". success, _ = self.run ( '--quiet', '--enable=warning,portability', '--inconclusive', f'--language={self.project.language}', *include_arguments, '--suppress=toomanyconfigs', '--suppress=unknownMacro', '--suppress=unmatchedSuppression', '--template="{file}","{line}","{column}","{severity}","{id}","{cwe}","{message}"', f'--output-file={output_csv_path}', f'--file-list={temporary_file_path}' ) delete_file(temporary_file_path) # Safeguard against the tool executing successfully without having created the CSV file. success = success and os.path.isfile(output_csv_path) if success: alerts = pd.read_csv(output_csv_path, header=None, names=['File', 'Line', 'Column', 'Severity', 'Rule', 'CWE', 'Message'], dtype=str) alerts['File'] = alerts['File'].map(lambda x: None if x == 'nofile' else self.project.get_relative_path_in_repository(x)) alerts['Line'] = alerts['Line'].replace({'0': None}) alerts['Column'] = alerts['Column'].replace({'0': None}) alerts['CWE'] = alerts['CWE'].replace({'0': None}) alerts.to_csv(output_csv_path, index=False) return success def read_and_convert_output_csv_in_default_format(self, csv_file_path: str) -> pd.DataFrame: """ Reads a CSV file generated using Cppcheck's default output parameters and converts it to a more convenient format. """ # The default CSV files generated by Cppcheck don't quote values with commas correctly. # This means that pd.read_csv() would fail because some lines have more columns than others. # We'll read each line ourselves and interpret anything after the fourth column as being part # of the "Message" column. Format: "[FILE]:[LINE],[SEVERITY],[RULE],[MESSAGE]" dictionary_list = [] with open(csv_file_path, 'r') as csv_file: for line in csv_file: # Some rare cases showed only "Segmentation fault (core dumped)" in the line. if not ':' in line: continue # We'll assume that a source file's path never has a colon so we don't accidentally # break paths with commas. In some rare cases the following can appear as the first # value: ":,[ETC]". Since there's no file path or line number, we'll discard it below. file_path = line_number = severity = rule = message = None file_path, remaining_line = line.split(':', 1) if remaining_line: line_number, severity, rule, message = remaining_line.split(',', 3) message = message.rstrip() dictionary_list.append({'File': file_path, 'Line': line_number, 'Severity': severity, 'Rule': rule, 'Message': message}) alerts = pd.DataFrame.from_dict(dictionary_list, dtype=str) alerts = alerts.replace({np.nan: None, '': None}) alerts.dropna(subset=['File', 'Line'], inplace=True) alerts['File'] = alerts['File'].map(lambda x: None if x == 'nofile' else self.project.get_relative_path_in_repository(x)) alerts['CWE'] = alerts['Rule'].map(lambda x: CppcheckSat.RULE_TO_CWE.get(x, None)) return alerts #################################################################################################### class FlawfinderSat(Sat): """ Represents the Flawfinder tool, which is used to generate security alerts given a project's source files. """ def __init__(self, project: Project): super().__init__('Flawfinder', project) version_success, version_number = self.run('--version') if version_success: self.version = version_number.strip() log.info(f'Loaded {self} version {self.version}.') def generate_project_alerts(self, file_path_list: Union[list, bool], output_csv_path: str) -> bool: """ Generates the project's alerts given list of files. """ raise NotImplementedError('Cannot yet generate alerts using Flawfinder.') def read_and_convert_output_csv_in_default_format(self, csv_file_path: str) -> pd.DataFrame: """ Reads a CSV file generated using Flawfinder's default output parameters and converts it to a more convenient format. """ alerts = pd.read_csv(csv_file_path, dtype=str) alerts.dropna(subset=['File', 'Line', 'Level', 'Category', 'Name'], inplace=True) alerts = alerts.replace({np.nan: None}) alerts['File'] = alerts['File'].map(lambda x: self.project.get_relative_path_in_repository(x)) return alerts if __name__ == '__main__': pass ``` #### File: instances/vulnerability_prediction_final/InstanceBatchExecution.py ```python import glob import os from copy import deepcopy import propheticus.core.BatchExecution from InstanceConfig import InstanceConfig from modules.common import log, remove_list_duplicates class InstanceBatchExecution(propheticus.core.BatchExecution): def __init__(self, context): super(InstanceBatchExecution, self).__init__(context) # self.display_visuals = False """ The GUI methods are specified in 'propheticus/core/GUI.py'. The data analysis techniques are specified in 'propheticus/core/DataAnalysis.py'. GUI Methods: def DataAnalysis(self, method) def parseCurrentConfigurationAlgorithms(self, choice=None, skip_validation=False) [there are others] DataAnalysis Methods: descriptiveAnalysis boxPlots barPlot scatterPlotMatrix correlationMatrixPlot timeSeriesStd timeSeries lineGraphsStd lineGraphs parallelCoordinates """ self.Processes = [ {'method': 'DataAnalysis', 'arguments': ['lineGraphs']}, {'method': 'DataAnalysis', 'arguments': ['boxPlots']}, {'method': 'DataAnalysis', 'arguments': ['correlationMatrixPlot']}, {'method': 'parseCurrentConfigurationAlgorithms', 'arguments': [None, True]}, ] """ The dimensionality reduction techniques are specified in 'propheticus/configs/DimensionalityReduction.py'. The sampling techniques are specified in 'propheticus/configs/Sampling.py'. The algorithms and their parameters are specified in 'propheticus/configs/Classification.py'. Algorithm Parameters: # Random Forests: 'n_estimators': {'type': 'int', 'default': 100}, 'criterion': {'type': 'str', 'values': ['gini', 'entropy']}, 'max_depth': {'type': ['int', 'None']}, 'min_samples_split': {'type': ['int', 'float']}, 'min_samples_leaf': {'type': ['int', 'float']}, 'min_weight_fraction_leaf': {'type': 'float'}, 'max_features': {'type': ['int', 'float', 'str', 'None']}, 'max_leaf_nodes': {'type': ['int', 'None']}, 'min_impurity_decrease': {'type': 'float'}, 'min_impurity_split': {'type': 'float'}, 'bootstrap': {'type': 'bool', 'values': [True, False]}, 'oob_score': {'type': 'bool', 'values': [True, False]}, 'n_jobs': {'type': ['int', 'None'], 'default': -1}, 'random_state': {'hide': True, 'type': ['int', 'None']}, 'verbose': {'type': 'int'}, 'warm_start': {'type': 'bool', 'values': [True, False]}, 'class_weight': {'type': ['dict', 'list-dicts', 'balanced', 'None']} # Bagging: 'base_estimator': {'type': ''}, 'n_estimators': {'type': '', 'default': 100}, 'max_samples': {'type': ''}, 'max_features': {'type': ''}, 'bootstrap': {'type': ''}, 'bootstrap_features': {'type': ''}, 'oob_score': {'type': ''}, 'warm_start': {'type': ''}, 'n_jobs': {'type': ''}, 'random_state': {'hide': True, 'type': ''}, 'verbose': {'type': ''} # XGBoost: 'n_estimators': {'type': 'int'}, 'learning_rate': {'type': 'float'}, 'max_depth': {'type': 'int'}, 'subsample': {'type': 'float'}, 'objective': {'type': 'str'}, 'gamma': {'type': 'float'}, 'alpha': {'type': 'float'}, 'lambda': {'type': 'float'}, 'random_state': {'hide': True, 'type': ''}, """ base_configuration = {} base_configuration['config_seed_count'] = InstanceConfig.PROPHETICUS['seed_count'] # Deprecated (see the config): base_configuration['config_cv_fold'] = 5 base_configuration['config_data_split_parameters'] = InstanceConfig.PROPHETICUS['data_split'] base_configuration['config_grid_search'] = False base_configuration['config_binary_classification'] = False # This is only used when 'config_binary_classification' is false. prediction_classes = list(InstanceConfig.ClassesDescription.values()) base_configuration['datasets_positive_classes'] = prediction_classes[1:] for code_unit in InstanceConfig.CODE_UNIT_LIST: dataset_path = os.path.join(InstanceConfig.framework_instance_data_path, fr'propheticus-dataset-{code_unit}-*') dataset_list = glob.glob(dataset_path) if not dataset_list: log.warning(f'Could not find any {code_unit} datasets.') continue dataset_list = [os.path.basename(path).split('.')[0] for path in dataset_list] dataset_list = remove_list_duplicates(dataset_list) log.info(f'Found the following {code_unit} datasets: {dataset_list}') for target_label in InstanceConfig.PROPHETICUS['labels']: excluded_label_list = [label for label in InstanceConfig.TARGET_LABEL_LIST if label != target_label] for dimensionality_reduction in InstanceConfig.PROPHETICUS['dimensionality_reduction']: for data_balancing in InstanceConfig.PROPHETICUS['data_balancing']: # From the original demo: # TODO: improve the following logic to allow passing more than one algorithm to improve performance # TODO: use something similar to itertools but be aware of different lenghts in configs; itertools.product stops at the minimum length for classification_algorithm, raw_algorithm_parameters_list in InstanceConfig.PROPHETICUS['classification_algorithms'].items(): algorithm_parameters_list = [] for raw_algorithm_parameters in raw_algorithm_parameters_list: if isinstance(raw_algorithm_parameters, dict): dict_list = propheticus.shared.Utils.cartesianProductDictionaryLists(**raw_algorithm_parameters) algorithm_parameters_list.extend(dict_list) else: algorithm_parameters_list.append(raw_algorithm_parameters) for algorithm_parameters in algorithm_parameters_list: configuration = deepcopy(base_configuration) configuration['datasets'] = dataset_list configuration['pre_target'] = target_label configuration['pre_excluded_features'] = excluded_label_list configuration['proc_reduce_dimensionality'] = dimensionality_reduction configuration['proc_balance_data'] = data_balancing configuration['proc_classification'] = [classification_algorithm] configuration['proc_classification_algorithms_parameters'] = {} if algorithm_parameters is not None: configuration['proc_classification_algorithms_parameters'] = {classification_algorithm: algorithm_parameters} log.info(f'Adding the batch configuration: {dataset_list}, {target_label}, {dimensionality_reduction}, {data_balancing}, {classification_algorithm}, {algorithm_parameters_list}') self.Configurations.append(configuration) log.info(f'Added a total of {len(self.Configurations)} batch configurations.') ```
{ "source": "joaohenggeler/twitch-chat-highlights", "score": 3 }
#### File: twitch-chat-highlights/Source/common.py ```python import json import sqlite3 from datetime import datetime from typing import Tuple, Union #################################################################################################### class CommonConfig(): # From the config file. json_config: dict client_id: str access_token: str database_filename: str def __init__(self): with open('config.json') as file: self.json_config = json.load(file) self.__dict__.update(self.json_config['common']) def connect_to_database(self) -> sqlite3.Connection: db = sqlite3.connect(self.database_filename, isolation_level=None) db.row_factory = sqlite3.Row db.execute('''PRAGMA journal_mode = WAL;''') db.execute('''PRAGMA synchronous = NORMAL;''') db.execute('''PRAGMA temp_store = MEMORY;''') db.execute(''' CREATE TABLE IF NOT EXISTS 'Channel' ( 'Id' INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, 'Name' VARCHAR(50) NOT NULL UNIQUE ); ''') db.execute(''' CREATE TABLE IF NOT EXISTS 'Video' ( 'Id' INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, 'ChannelId' INTEGER NOT NULL, 'TwitchId' VARCHAR(50) NOT NULL UNIQUE, 'Title' TEXT NOT NULL, 'CreationTime' TIMESTAMP NOT NULL, 'Duration' TIME NOT NULL, 'YouTubeId' VARCHAR(50) UNIQUE, 'Notes' TEXT, FOREIGN KEY (ChannelId) REFERENCES Channel (Id) ); ''') # VideoId can be NULL when we're storing messages from a live stream, meaning there's no VOD yet. db.execute(''' CREATE TABLE IF NOT EXISTS 'Chat' ( 'Id' INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, 'ChannelId' INTEGER NOT NULL, 'VideoId' INTEGER, 'Timestamp' TIMESTAMP NOT NULL, 'Message' TEXT NOT NULL, FOREIGN KEY (ChannelId) REFERENCES Channel (Id), FOREIGN KEY (VideoId) REFERENCES Video (Id) ); ''') return db #################################################################################################### def split_twitch_duration(duration: str) -> Tuple[int, int, int, int]: # Duration format: 00h00m00s or 00m00s duration = duration.replace('h', ':').replace('m', ':').replace('s', '') tokens = duration.split(':', 2) hours = int(tokens[-3]) if len(tokens) >= 3 else 0 minutes = int(tokens[-2]) if len(tokens) >= 2 else 0 seconds = int(tokens[-1]) if len(tokens) >= 1 else 0 total_seconds = hours * 3600 + minutes * 60 + seconds return hours, minutes, seconds, total_seconds def convert_twitch_timestamp_to_datetime(timestamp: str) -> datetime: # Datetime format: YYYY-MM-DDThh:mm:ss.sssZ # Where the following precisions where observed: # - YYYY-MM-DDThh:mm:ss.sssssssssZ # - YYYY-MM-DDThh:mm:ss.ssZ # - YYYY-MM-DDThh:mm:ss.sZ # - YYYY-MM-DDThh:mm:ssZ # Truncate anything past the microsecond precision. if '.' in timestamp: microseconds: Union[str, int] beginning, microseconds = timestamp.rsplit('.', 1) microseconds, _ = microseconds.rsplit('Z', 1) timestamp = beginning + '.' + microseconds[:6].ljust(6, '0') + 'Z' timestamp = timestamp.replace('Z', '+00:00') return datetime.fromisoformat(timestamp) ```
{ "source": "JoaoHenrique12/uri_compiler", "score": 3 }
#### File: tools/language_support/Cpp.py ```python class Cpp11(): def create_file(self): with open("main.cpp",'w') as f: st = ''' #include<bits/stdc++.h> using namespace std; int main() { return 0; } ''' f.write(st) class Cpp17(): def create_file(self): with open("main.cpp",'w') as f: st = ''' #include<bits/stdc++.h> using namespace std; int main() { return 0; } ''' f.write(st) ``` #### File: tools/language_support/C.py ```python class C(): def create_file(self): with open("main.c",'w') as f: st = ''' #include<stdio.h> #include<stdlib.h> using namespace std; int main() { return 0; } ''' f.write(st) ``` #### File: tools/language_support/LanguageFactory.py ```python from tools.language_support.Cpp import Cpp11, Cpp17 from tools.language_support.Paitom import Paitom from tools.language_support.C import C class LanguageFactory: def __init__(self, st: str): self.st = st.lower() def create(self): if self.st == "cpp11": return Cpp11() elif self.st == "cpp17": return Cpp17() elif self.st == "py": return Paitom() elif self.st == "c": return C() else: return None ```
{ "source": "joaohenriques/dungeon_generator", "score": 3 }
#### File: dungeon_generator/renderers/__init__.py ```python __author__ = 'jpsh' from abc import ABCMeta, abstractmethod class MapRenderer(object): __metaclass__ = ABCMeta @abstractmethod def render(self, cave): pass @abstractmethod def render_cell(self, cave): pass ```
{ "source": "joaohenry23/metlib", "score": 3 }
#### File: metlib/metlib/functions.py ```python import numpy as np import xarray as xr from . import flib #----------------------------------------------------------------------------------------------------------------------------------- # finite differences centered def cdiff(Field, Dim): """ Calculates a centered finite difference of Numpy array or Xarray.DataArray. The function use a fortran subroutine to perform a quick calculation. Parameters ---------- Field: Numpy array or Xarray.DataArray Their structure can be: - 1D [x] - 2D [y,x] - 3D [z,y,x] - 4D [t,z,y,x] Dim: String (str) Defines axis of derivative and can be 'X', 'Y', 'Z', 'T'. Returns ------- CDIFF: Numpy array or Xarray.DataArray Centered finite difference in Dim of Field. The shape is the same that input(Field). """ try: assert type(Field) == np.ndarray or type(Field) == xr.DataArray except AssertionError: print('\nThe Field must be Numpy array or Xarray\n') return try: assert Dim=='X' or Dim=='x' or Dim=='Y' or Dim=='y' or Dim=='Z' or Dim=='z' or Dim=='T' or Dim=='t' except AssertionError: print('\nYou need to specify the dimension X, Y, Z or T\n') return try: assert Field.ndim >= 2 and Field.ndim <= 4 except AssertionError: print('\nThe Field must be 2, 3 or 4 Dimensions\n') return if type(Field) == np.ndarray: FieldType = np.ndarray elif type(Field) == xr.DataArray: CoordsData = Field.coords DimsData = Field.dims try: FieldUnits = Field.units except: FieldUnits = 'Field_units' try: FieldLongName = Field.long_name except: FieldLongName = 'Field_Name' FieldType = xr.DataArray Field = Field.values # replaces np.nan before pass to fortran Field = np.where(np.isnan(Field)==True,-999.99,Field) if Field.ndim==2: if Dim=='X' or Dim=='x': axis = 1 elif Dim=='Y' or Dim=='y': axis = 0 CDIFF = flib.cdiff2d(Field, axis) elif Field.ndim==3: if Dim=='X' or Dim=='x': axis = 2 elif Dim=='Y' or Dim=='y': axis = 1 elif Dim=='Z' or Dim=='z' or Dim=='T' or Dim=='t': axis = 0 CDIFF = flib.cdiff3d(Field, axis) elif Field.ndim==4: if Dim=='X' or Dim=='x': axis = 3 elif Dim=='Y' or Dim=='y': axis = 2 elif Dim=='Z' or Dim=='z': axis = 1 elif Dim=='T' or Dim=='t': axis = 0 CDIFF = flib.cdiff4d(Field, axis) CDIFF = np.where(CDIFF<-990.0, np.nan, CDIFF) if FieldType == xr.DataArray: CDIFF = xr.DataArray(CDIFF, coords=CoordsData, dims=DimsData) CDIFF.name = 'cdiff' CDIFF.attrs['units'] = FieldUnits CDIFF.attrs['long_name'] = 'CDIFF_'+FieldLongName+'_in_'+Dim CDIFF.attrs['standard_name'] = 'Centered_finite_difference_of_'+FieldLongName+'_in_'+Dim return CDIFF; #----------------------------------------------------------------------------------------------------------------------------------- # dynamic calcs def relative_vorticity(UComp, VComp, Lon=None, Lat=None): ''' Calculates the relative vorticity of horizontal wind. Parameters ---------- UComp: Numpy array or Xarray.DataArray Zonal component of wind. Their structure can be: - 2D [y,x] - 3D [z,y,x] or [t,y,x] - 4D [t,z,y,x] VComp: Numpy array or Xarray.DataArray Meridional component of wind. Their structure can be: - 2D [y,x] - 3D [z,y,x] or [t,y,x] - 4D [t,z,y,x] Lon: Numpy array 2D array with the longitudes of UComp and VComp. If UComp and VComp are xarray.DataArray is not necessary define this parameter. Lat: Numpy array 2D array with the latitudes of UComp and VComp. If UComp and VComp are xarray.DataArray is not necessary define this parameter. Returns ------- vor: Numpy array or Xarray.DataArray Relative vorticity of Ucomp and Vcomp [s**-1] ''' if type(UComp) == type(VComp) == np.ndarray: try: assert type(Lon) == type(Lat) == np.ndarray except AssertionError: print('\nThe data input (UComp, VComp) is Numpy array, so you need pass 2D array of Lon and Lat, e.g.:') print('hcurl(UComp, VComp, 2DLon, 2DLat)\n') return else: dvdx = cdiff(VComp,'X') dudy = cdiff(UComp*np.cos(Lat*np.pi/180.0),'Y') dx = cdiff(Lon,'X') * np.pi/180.0 dy = cdiff(Lat,'Y') * np.pi/180.0 vor = (dvdx/dx-dudy/dy)/(6.37e6*np.cos(Lat*np.pi/180.0)) elif type(UComp) == type(VComp) == xr.DataArray: try: assert UComp.dims == VComp.dims except AssertionError: print('\nThe data input (UComp, VComp) is Xarray.DataArray but they do not have the same dimensions\n') return else: try: assert True in [ True if word in (UComp.dims)[-1] else False for word in ['lon','LON','Lon'] ] and True in [ True if word in (UComp.dims)[-2] else False for word in ['lat','LAT','Lat'] ] except AssertionError: print('\nThe data input (UComp, VComp) is Xarray.DataArray and must have unless two dimensions [latitude, longitude]') print('If data input have three dimensions their structure must be [level, latitude, longitude] or [time, latitude, longitude]') print('If data input have four dimensions their structure must be [time, level, latitude, longitude] or [level, time, latitude, longitude]\n') return else: CoordsData = UComp.coords DimsData = UComp.dims Lon = UComp.coords[(UComp.dims)[-1]].values Lat = UComp.coords[(UComp.dims)[-2]].values Lon, Lat = np.meshgrid(Lon, Lat) dvdx = cdiff(VComp,'X').values dudy = cdiff(UComp*np.cos(Lat*np.pi/180.0),'Y').values dx = cdiff(Lon,'X') * np.pi/180.0 dy = cdiff(Lat,'Y') * np.pi/180.0 vor = (dvdx/dx-dudy/dy)/(6.37e6*np.cos(Lat*np.pi/180.0)) vor = xr.DataArray(vor, coords=CoordsData, dims=DimsData) vor.name = 'vor' vor.attrs['units'] = 's**-1' vor.attrs['long_name'] = 'Vorticity' vor.attrs['standard_name'] = 'Relative_vorticity_of_wind' return vor; #----------------------------------------------------------------------------------------------------------------------------------- # dynamic calcs def absolute_vorticity(UComp, VComp, Lon=None, Lat=None): ''' Calculates the absolute vorticity of horizontal wind. Parameters ---------- UComp: Numpy array or Xarray.DataArray Zonal component of wind. Their structure can be: - 2D [y,x] - 3D [z,y,x] or [t,y,x] - 4D [t,z,y,x] VComp: Numpy array or Xarray.DataArray Meridional component of wind. Their structure can be: - 2D [y,x] - 3D [z,y,x] or [t,y,x] - 4D [t,z,y,x] Lon: Numpy array 2D array with the longitudes of UComp and VComp. If UComp and VComp are xarray.DataArray is not necessary define this parameter. Lat: Numpy array 2D array with the latitudes of UComp and VComp. If UComp and VComp are xarray.DataArray is not necessary define this parameter. Returns ------- avor: Numpy array or Xarray.DataArray Absolute relative vorticity of Ucomp and Vcomp [s**-1] ''' if type(UComp) == type(VComp) == np.ndarray: try: assert type(Lon) == type(Lat) == np.ndarray except AssertionError: print('\nThe data input (UComp, VComp) is Numpy array, so you need pass 2D array of Lon and Lat, e.g.:') print('hcurl(UComp, VComp, 2DLon, 2DLat)\n') return else: dvdx = cdiff(VComp,'X') dudy = cdiff(UComp*np.cos(Lat*np.pi/180.0),'Y') dx = cdiff(Lon,'X') * np.pi/180.0 dy = cdiff(Lat,'Y') * np.pi/180.0 omega = 2.0*np.pi/86400.0 fc = 2*omega*np.cos(Lat*np.pi/180.0) avor = (dvdx/dx-dudy/dy)/(6.37e6*np.cos(Lat*np.pi/180.0)) + fc elif type(UComp) == type(VComp) == xr.DataArray: try: assert UComp.dims == VComp.dims except AssertionError: print('\nThe data input (UComp, VComp) is Xarray.DataArray but they do not have the same dimensions\n') return else: try: assert True in [ True if word in (UComp.dims)[-1] else False for word in ['lon','LON','Lon'] ] and True in [ True if word in (UComp.dims)[-2] else False for word in ['lat','LAT','Lat'] ] except AssertionError: print('\nThe data input (UComp, VComp) is Xarray.DataArray and must have unless two dimensions [latitude, longitude]') print('If data input have three dimensions their structure must be [level, latitude, longitude] or [time, latitude, longitude]') print('If data input have four dimensions their structure must be [time, level, latitude, longitude] or [level, time, latitude, longitude]\n') return else: CoordsData = UComp.coords DimsData = UComp.dims Lon = UComp.coords[(UComp.dims)[-1]].values Lat = UComp.coords[(UComp.dims)[-2]].values Lon, Lat = np.meshgrid(Lon, Lat) dvdx = cdiff(VComp,'X').values dudy = cdiff(UComp*np.cos(Lat*np.pi/180.0),'Y').values dx = cdiff(Lon,'X') * np.pi/180.0 dy = cdiff(Lat,'Y') * np.pi/180.0 omega = 2.0*np.pi/86400.0 fc = 2*omega*np.cos(Lat*np.pi/180.0) avor = (dvdx/dx-dudy/dy)/(6.37e6*np.cos(Lat*np.pi/180.0)) + fc avor = xr.DataArray(avor, coords=CoordsData, dims=DimsData) avor.name = 'avor' avor.attrs['units'] = 's**-1' avor.attrs['long_name'] = 'Absolute_vorticity' avor.attrs['standard_name'] = 'Absolute_relative_vorticity_of_wind' return avor; #----------------------------------------------------------------------------------------------------------------------------------- def divergence(UComp, VComp, Lon=None, Lat=None): ''' Calculates the divergence of horizontal wind or some vector field. Parameters ---------- UComp: Numpy array or Xarray.DataArray Zonal component of wind. Their structure can be: - 2D [y,x] - 3D [z,y,x] or [t,y,x] - 4D [t,z,y,x] VComp: Numpy array or Xarray.DataArray Meridional component of wind. Their structure can be: - 2D [y,x] - 3D [z,y,x] or [t,y,x] - 4D [t,z,y,x] Lon: Numpy array 2D array with the longitudes of UComp and VComp. If UComp and VComp are xarray.DataArray is not necessary define this parameter. Lat: Numpy array 2D array with the latitudes of UComp and VComp. If UComp and VComp are xarray.DataArray is not necessary define this parameter. Returns ------- div: Numpy array or Xarray.DataArray Horizontal divergence of Ucomp and Vcomp [1/s] Negative divergence is also known as convergence. ''' if type(UComp) == type(VComp) == np.ndarray: try: assert type(Lon) == type(Lat) == np.ndarray except AssertionError: print('\nThe data input (UComp, VComp) is Numpy array, so you need pass 2D array of Lon and Lat, e.g.:') print('hdivg(UComp, VComp, 2DLon, 2DLat)\n') return else: dudx = cdiff(UComp,'X') dvdy = cdiff(VComp*np.cos(Lat*np.pi/180.0),'Y') dx = cdiff(Lon,'X') * np.pi/180.0 dy = cdiff(Lat,'Y') * np.pi/180.0 div = (dudx/dx+dvdy/dy)/(6.37e6*np.cos(Lat*np.pi/180.0)) elif type(UComp) == type(VComp) == xr.DataArray: try: assert UComp.dims == VComp.dims except AssertionError: print('\nThe data input (UComp, VComp) is Xarray.DataArray but they do not have the same dimensions\n') return else: try: assert True in [ True if word in (UComp.dims)[-1] else False for word in ['lon','LON','Lon'] ] and True in [ True if word in (UComp.dims)[-2] else False for word in ['lat','LAT','Lat'] ] except AssertionError: print('\nThe data input (UComp, VComp) is Xarray.DataArray and must have unless two dimensions [latitude, longitude]') print('If data input have three dimensions their structure must be [level, latitude, longitude] or [time, latitude, longitude]') print('If data input have four dimensions their structure must be [time, level, latitude, longitude] or [level, time, latitude, longitude]\n') return else: CoordsData = UComp.coords DimsData = UComp.dims Lon = UComp.coords[(UComp.dims)[-1]].values Lat = UComp.coords[(UComp.dims)[-2]].values Lon, Lat = np.meshgrid(Lon, Lat) dudx = cdiff(UComp,'X').values dvdy = cdiff(VComp*np.cos(Lat*np.pi/180.0),'Y').values dx = cdiff(Lon,'X') * np.pi/180.0 dy = cdiff(Lat,'Y') * np.pi/180.0 div = (dudx/dx+dvdy/dy)/(6.37e6*np.cos(Lat*np.pi/180.0)) div = xr.DataArray(div, coords=CoordsData, dims=DimsData) div.name = 'div' div.attrs['units'] = 's**-1' div.attrs['long_name'] = 'Divergence' div.attrs['standard_name'] = 'Horizontal_divergence_of_wind' return div; #----------------------------------------------------------------------------------------------------------------------------------- def advection(Field, UComp, VComp, Lon=None, Lat=None): ''' Calculates the horizontal adveccion of Field. Parameters ---------- Field: Numpy array or Xarray.DataArray Their structure can be: - 2D [y,x] - 3D [z,y,x] or [t,y,x] - 4D [t,z,y,x] UComp: Numpy array or Xarray.DataArray Zonal component of wind. Their structure can be: - 2D [y,x] - 3D [z,y,x] or [t,y,x] - 4D [t,z,y,x] VComp: Numpy array or Xarray.DataArray Meridional component of wind. Their structure can be: - 2D [y,x] - 3D [z,y,x] or [t,y,x] - 4D [t,z,y,x] Lon: Numpy array 2D array with the longitudes of UComp and VComp. If UComp and VComp are xarray.DataArray is not necessary define this parameter. Lat: Numpy array 2D array with the latitudes of UComp and VComp. If UComp and VComp are xarray.DataArray is not necessary define this parameter. Returns ------- adv: Numpy array or Xarray.DataArray Horizontal advection of Field [Field_units/s] ''' if type(Field) == type(UComp) == type(VComp) == np.ndarray: try: assert type(Lon) == type(Lat) == np.ndarray except AssertionError: print('\nThe data input (Field, UComp, VComp) are Numpy array, so you need pass 2D array of Lon and Lat, e.g.:') print('hdivg(UComp, VComp, 2DLon, 2DLat)\n') return else: dfdx = cdiff(Field,'X') dfdy = cdiff(Field,'Y') dx = cdiff(Lon,'X') * np.pi/180.0 dy = cdiff(Lat,'Y') * np.pi/180.0 adv = -1.0*( ((UComp*dfdx)/(np.cos(Lat*np.pi/180.0)*dx)) + ((VComp*dfdy)/(dy)) )/6.37e6 elif type(Field) == type(UComp) == type(VComp) == xr.DataArray: try: assert Field.dims == UComp.dims == VComp.dims except AssertionError: print('\nThe data input (Field, UComp, VComp) are Xarray.DataArray but they do not have the same dimensions\n') return else: try: assert True in [ True if word in (Field.dims)[-1] else False for word in ['lon','LON','Lon'] ] and True in [ True if word in (Field.dims)[-2] else False for word in ['lat','LAT','Lat'] ] except AssertionError: print('\nThe data input (Field, UComp, VComp) is Xarray.DataArray and must have unless two dimensions [latitude, longitude]') print('If data input have three dimensions their structure must be [level, latitude, longitude] or [time, latitude, longitude]') print('If data input have four dimensions their structure must be [time, level, latitude, longitude] or [level, time, latitude, longitude]\n') return else: CoordsData = Field.coords DimsData = Field.dims try: UnitsData = Field.units except: UnitsData = 'Field_units' try: LongNameData = Field.long_name except: LongNameData = 'Field_Name' Lon = Field.coords[(Field.dims)[-1]].values Lat = Field.coords[(Field.dims)[-2]].values Lon, Lat = np.meshgrid(Lon, Lat) dfdx = cdiff(Field,'X').values dfdy = cdiff(Field,'Y').values dx = cdiff(Lon,'X') * np.pi/180.0 dy = cdiff(Lat,'Y') * np.pi/180.0 adv = -1.0*( ((UComp*dfdx)/(np.cos(Lat*np.pi/180.0)*dx)) + ((VComp*dfdy)/(dy)) )/6.37e6 adv = xr.DataArray(adv, coords=CoordsData, dims=DimsData) adv.name = 'adv' adv.attrs['units'] = UnitsData+'/s' adv.attrs['long_name'] = LongNameData+'_advection' adv.attrs['standard_name'] = 'Horizontal_advection_of_'+LongNameData return adv; #----------------------------------------------------------------------------------------------------------------------------------- def potential_temperature(Temperature, Levels=None): ''' Calculates the potential temperature. Parameters ---------- Temperature: Numpy array or Xarray.DataArray Temperature field in Kelvin. Their structure can be: - 2D [y,x] - 3D [z,y,x] or [t,y,x] - 4D [t,z,y,x] Levels: Numpy array 1D array with pressure levels of Temperature. Returns ------- PTemp: Numpy array or Xarray.DataArray Potential temperature [K]. ''' if type(Temperature) == np.ndarray: try: #assert Levels is not None assert type(Levels) == np.ndarray #type(Levels) == list or except AssertionError: print('\nYou need pass 1D array of Levels') print('potential_temperature(Temperature, Levels)\n') return else: #if isinstance(Levels,list)==True: # Levels = np.array(Levels,dtype=np.float32) if Temperature.ndim == 2: pass elif Temperature.ndim == 3: Levels = Levels[:,None,None] elif Temperature.ndim == 4: Levels = Levels[None,:,None,None] PTemp = Temperature*np.power(1000.0/Levels,0.286) elif type(Temperature) == xr.DataArray: try: assert True in [ True if word in (Temperature.dims)[-1] else False for word in ['lon','LON','Lon'] ] and True in [ True if word in (Temperature.dims)[-2] else False for word in ['lat','LAT','Lat'] ] except AssertionError: print('\nThe data input (Temperature) is Xarray.DataArray and must have unless two dimensions [latitude, longitude]') print('If data input have three dimensions their structure must be [level, latitude, longitude]') print('If data input have four dimensions their structure must be [time, level, latitude, longitude]\n') return else: CoordsData = Temperature.coords DimsData = Temperature.dims Levels = Temperature.coords[(Temperature.dims)[-3]].values if Temperature.ndim == 2: pass elif Temperature.ndim == 3: Levels = Levels[:,None,None] elif Temperature.ndim == 4: Levels = Levels[None,:,None,None] PTemp = Temperature*np.power(1000.0/Levels,0.286) PTemp = xr.DataArray(PTemp, coords=CoordsData, dims=DimsData) PTemp.name = 'PTemp' PTemp.attrs['units'] = 'K' PTemp.attrs['long_name'] = 'Potential_temperature' PTemp.attrs['standard_name'] = 'Potential_temperature' return PTemp; #----------------------------------------------------------------------------------------------------------------------------------- def potential_vorticity(Temperature, UComp, VComp, Lon=None, Lat=None, Levels=None): ''' Calculates the baroclinic potential vorticity. Parameters ---------- Temperature: Numpy array or Xarray.DataArray Temperature field in Kelvin. Their structure can be: - 3D [z,y,x] - 4D [t,z,y,x] UComp: Numpy array or Xarray.DataArray Zonal component of wind. Their structure can be: - 3D [z,y,x] - 4D [t,z,y,x] VComp: Numpy array or Xarray.DataArray Meridional component of wind. Their structure can be: - 3D [z,y,x] - 4D [t,z,y,x] Lon: Numpy array 2D array with the longitudes of UComp and VComp. If UComp and VComp are xarray.DataArray is not necessary define this parameter. Lat: Numpy array 2D array with the latitudes of UComp and VComp. If UComp and VComp are xarray.DataArray is not necessary define this parameter. Levels: Numpy array 1D array with pressure levels of Temperature. If UComp and VComp are xarray.DataArray is not necessary define this parameter. Returns ------- PVor: Numpy array or Xarray.DataArray Baroclinic potential voticity [1/s]. ''' if type(Temperature) == type(UComp) == type(VComp) == np.ndarray: try: assert type(Lon) == type(Lat) == type(Levels) == np.ndarray except AssertionError: print('\nThe data input (Temperature, UComp, VComp) are Numpy array, so you need pass 2D array of Lon and Lat,') print('and 1D array of Levels, e.g.:') print('potential_vorticity(Temperature, UComp, VComp, 2DLon, 2DLat, 1DLevels)\n') return else: if Temperature.ndim == 3: Levels2 = Levels[:,None,None]*100.0 elif Temperature.ndim == 4: Levels2 = Levels[None,:,None,None]*100.0 AVor = absolute_vorticity(UComp, VComp, Lon=Lon, Lat=Lat) PTemp = potential_temperature(Temperature, Levels=Levels) dx = 6.37e6 * cdiff(Lon,'X') * np.pi/180.0 * np.cos(Lat*np.pi/180.0) dy = 6.37e6 * cdiff(Lat,'Y') * np.pi/180.0 dp = cdiff(Levels2,'Z') dPTempdp = cdiff(PTemp,'Z')/dp dUCompdp = cdiff(UComp,'Z')/dp dVCompdp = cdiff(VComp,'Z')/dp dPTempdx = cdiff(PTemp,'X')/dx dPTempdy = cdiff(PTemp,'Y')/dy PVor = -9.8*(AVor*dPTempdp - dVCompdp*dPTempdx + dUCompdp*dPTempdy) elif type(Temperature) == type(UComp) == type(VComp) == xr.DataArray: try: assert True in [ True if word in (Temperature.dims)[-1] else False for word in ['lon','LON','Lon'] ] and True in [ True if word in (Temperature.dims)[-2] else False for word in ['lat','LAT','Lat'] ] except AssertionError: print('\nThe data input (Temperature, UComp, VComp) is Xarray.DataArray and must have unless three dimensions [levels, latitude, longitude]') print('If data input have three dimensions their structure must be [levels, latitude, longitude]') print('If data input have four dimensions their structure must be [times, level, latitude, longitude]\n') return else: CoordsData = Temperature.coords DimsData = Temperature.dims Lon = Temperature.coords[(Temperature.dims)[-1]].values Lat = Temperature.coords[(Temperature.dims)[-2]].values Levels = Temperature.coords[(Temperature.dims)[-3]].values Lon, Lat = np.meshgrid(Lon, Lat) if Temperature.ndim == 3: Levels = Levels[:,None,None]*100.0 elif Temperature.ndim == 4: Levels = Levels[None,:,None,None]*100.0 AVor = absolute_vorticity(UComp, VComp).values PTemp = potential_temperature(Temperature).values dx = 6.37e6 * cdiff(Lon,'X') * np.pi/180.0 * np.cos(Lat*np.pi/180.0) dy = 6.37e6 * cdiff(Lat,'Y') * np.pi/180.0 dp = cdiff(Levels,'Z') dPTempdp = cdiff(PTemp,'Z')/dp dUCompdp = cdiff(UComp.values,'Z')/dp dVCompdp = cdiff(VComp.values,'Z')/dp dPTempdx = cdiff(PTemp,'X')/dx dPTempdy = cdiff(PTemp,'Y')/dy PVor = -9.8*(AVor*dPTempdp - dVCompdp*dPTempdx + dUCompdp*dPTempdy) PVor = xr.DataArray(PVor, coords=CoordsData, dims=DimsData) PVor.name = 'PVor' PVor.attrs['units'] = 's**-1' PVor.attrs['long_name'] = 'Potential_vorticity' PVor.attrs['standard_name'] = 'Potential_vorticity' return PVor; #----------------------------------------------------------------------------------------------------------------------------------- ```
{ "source": "joaoheron/data_mining", "score": 3 }
#### File: data_mining/data_mining/cli.py ```python import sys import os import click from data_mining import data_mining from data_mining.vars import adult_data_test DB_URI = os.environ.get('DB_URI', None) def verify_environment_variables(): if DB_URI is None: raise Exception(MESSAGE_ENV_VAR_NOT_SET % ('DB_URI')) @click.command() def extract(): """ Extract data from website. """ try: data_mining.get_data() except Exception as e: raise e @click.command() def integrate(): """ Integrate data from multiple sources into a single file. """ try: data_mining.integrate_data() except Exception as e: raise e @click.command() def clean(): """ Clean data removing invalid lines. """ try: data_mining.clean_data(adult_data_test) except Exception as e: raise e @click.command() def build_data(): """ Build new information from current data. """ try: data_mining.build_data(adult_data_test) except Exception as e: raise e @click.command() def format_data(): """ Format builded data. """ try: data_mining.format_data(adult_data_test) except Exception as e: raise e @click.command() @click.option('--columns', '-c', help='Columns to be considered on the model.', multiple=True, required=True) @click.option('--criterion', '-cr', default='entropy', help='The function to measure the quality of a split. Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain.') @click.option('--splitter', '-s', default='best', help='The strategy used to choose the split at each node. Supported strategies are “best” to choose the best split and “random” to choose the best random split.') @click.option('--max-depth', '-d', default=None, help='The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.', type=int) @click.option('--min-samples-split', '-m', default=2, help='The minimum number of samples required to split an internal node.', type=int) @click.option('--test-size', '-t', default=0.3, help='Percentage size of data test classifier.', type=float) def build_tree(columns, criterion, splitter, max_depth, test_size, min_samples_split): """ Build decision tree. """ try: data_mining.build_tree(columns, criterion, splitter, max_depth, test_size, min_samples_split) except Exception as e: raise e @click.command() def build_final_tree(): """ Build decision tree. """ try: data_mining.build_final_tree(adult_data_test) except Exception as e: raise e @click.group() def entry_point(): pass entry_point.add_command(extract) entry_point.add_command(integrate) entry_point.add_command(clean) entry_point.add_command(build_data) entry_point.add_command(format_data) entry_point.add_command(build_tree) entry_point.add_command(build_final_tree) if __name__ == "__main__": sys.exit(entry_point()) # pragma: no cover ``` #### File: data_mining/data_mining/crawler.py ```python import time import os from data_mining import vars from selenium import webdriver from selenium.webdriver.chrome.options import Options def enable_download_headless(browser, download_dir): browser.command_executor._commands["send_command"] = ( "POST", '/session/$sessionId/chromium/send_command') params = { 'cmd': 'Page.setDownloadBehavior', 'params': {'behavior': 'allow','downloadPath': download_dir} } browser.execute("send_command", params) def build_chrome_options(): chrome_options = Options() chrome_options.add_argument("--window-size=1920x1080") chrome_options.add_argument("--disable-notifications") chrome_options.add_argument('--no-sandbox') chrome_options.add_argument('--verbose') chrome_options.add_experimental_option("prefs", { "download.default_directory": vars.download, "download.prompt_for_download": False, "download.directory_upgrade": True, "safebrowsing_for_trusted_sources_enabled": False, "safebrowsing.enabled": False }) chrome_options.add_argument('--disable-gpu') chrome_options.add_argument('--disable-software-rasterizer') chrome_options.add_argument('--headless=True') return chrome_options def extract_data(): # remove old files from /downloads folder if os.path.exists(vars.adult_data): os.remove(vars.adult_data) if os.path.exists(vars.adult_test): os.remove(vars.adult_test) if os.path.exists(vars.adult_data_test): os.remove(vars.adult_data_test) # build options chrome_options = build_chrome_options() # initialize webdriver driver = webdriver.Chrome(chrome_options=chrome_options, executable_path=vars.chromedriver_path) # set download folder enable_download_headless(driver, vars.download) # navigate to url and downloads files driver.get(vars.url_download_data) driver.get(vars.url_download_test) time.sleep(vars.TIMEOUT) driver.close driver.quit ``` #### File: data_mining/data_mining/data_mining.py ```python import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn import metrics from data_mining.vars import download, adult_data, adult_test, adult_data_test from data_mining import crawler from data_mining.utils import ( append_files, create_continent_column, delete_lines, replace_characters, build_final_decision_tree, build_decision_tree, create_index ) models = [] def get_data(): print('Extracting data from website...') crawler.extract_data() print('Data has been extracted.') def integrate_data(): print(f'Appending {adult_data_test}...') append_files( output_file=adult_data_test, input_filenames=[adult_data, adult_test], basepath=download ) print(f'Data from {adult_data} and {adult_test} has been appended to {adult_data_test}.') def clean_data(filename): print('Deleting invalid lines...') delete_lines(bad_word="?", basepath=download, filename=filename) delete_lines(bad_word="|1x3", basepath=download, filename=filename) delete_lines(bad_word="South", basepath=download, filename=filename) replace_characters(', ', ',', filename=filename) print('Invalid lines deleted.') def build_data(filename): print('Building data...') create_index() create_continent_column(basepath=download, filename=filename) print('Data has been builded.') def format_data(filename): print('Formatting data...') # Salary replace_characters('>50K.', '>50K', filename=filename) replace_characters('<=50K.', '<=50K', filename=filename) # Country replace_characters('Columbia', 'Colombia', filename=filename) replace_characters('Hong', 'Hong Kong', filename=filename) replace_characters('Trinadad&Tobago', 'Trinidad and Tobago', filename=filename) replace_characters('United-States', 'United States', filename=filename) replace_characters('Puerto-Rico', 'Puerto Rico', filename=filename) replace_characters('Dominican-Republic', 'Dominican Republic', filename=filename) replace_characters('El-Salvador', 'El Salvador', filename=filename) replace_characters('Holand-Netherlands', 'Netherlands', filename=filename) print('Data has been formatted.') def build_final_tree(filename): print('Building decision tree...') build_final_decision_tree(filename) print('Decision tree has been built') def clear_decision_model(): print('cleared') def build_tree(columns, criterion, splitter, max_depth, min_samples_split, test_size): print('Building decision tree...') build_decision_tree(columns, criterion, splitter, max_depth, min_samples_split, test_size) print('Decision tree has been built') ``` #### File: data_mining/model/adult.py ```python from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, String, Integer Base = declarative_base() class Adult(Base): __tablename__ = 'adult' age = Column("age", Integer) # primary_key=True workclass = Column("Created At", String) fnlwgt = Column("Discount", String) education = Column("Product ID", String) education_num = Column("Quantity", String) marital_status = Column("Subtotal", String) occupation = Column("Tax", String) relationship = Column("Total", String) race = Column("User ID", String) sex = Column("User ID", String) capital_gain = Column("User ID", String) capital_loss = Column("User ID", String) hours_per_week = Column("User ID", String) native_countr = Column("User ID", String) def __repr__(self): return "<Adult(age='%s', workclass='%s', fnlwgt='%s', education='%s', education_num='%s', marital_status='%s', occupation='%s', relationship='%s', race='%s', sex='%s', capital_gain='%s', capital_loss='%s', hours_per_week='%s', native_countr='%s' )>" % ( self.age, self.workclass, self.fnlwgt, self.education, self.education_num, self.marital_status, self.occupation, self.relationship, self.race, self.sex, self.capital_gain, self.capital_loss, self.hours_per_week, self.native_countr) ```
{ "source": "joaoheron/eddy_bot", "score": 3 }
#### File: eddy_bot/eddy_bot/utils.py ```python from random import choice from yaml import load, FullLoader def get_credentials(path): with open(path, 'r') as f: tagsl = [line.strip() for line in f] return tagsl[0], tagsl[1] def get_resource(path): with open(path, 'r') as f: resources = [line.strip() for line in f] return resources def get_yaml(path): with open(path) as yaml_file: obj = load(yaml_file, Loader=FullLoader) return obj def pick_random_resource(resources): res = choice(resources) return res def get_comma_sepparated_values(values): return [x.strip() for x in values.split(',')] ```
{ "source": "joaoheron/numba_pipelines_performance", "score": 2 }
#### File: numba_pipelines_performance/dags/numba_performance_dag.py ```python from datetime import timedelta from airflow.models import DAG from airflow.utils import timezone from airflow.operators.python_operator import PythonOperator from utils.vars import email_list from utils.numba_pipelines_performance import ( calc_elapsed_time_numpy_jit_c, calc_elapsed_time_numpy_jit_python, calc_elapsed_time_loop_jit_c, calc_elapsed_time_loop_jit_python ) start_date = timezone.utcnow().replace( minute=0, second=0, microsecond=0 ) - timedelta(hours=1) default_args = { 'email': email_list, 'email_on_failure': True, 'email_on_retry': False, 'owner': 'airflow', 'start_date': start_date, 'concurrency': 1, 'retries': 1 } dag = DAG( dag_id='numba_performance', default_args=default_args, schedule_interval=timedelta(minutes=1440), dagrun_timeout=timedelta(minutes=45), ) """ Executes python script with numba framework """ def build_numba_loop_python(dag): return PythonOperator( task_id='numba_performance_loop_python', python_callable=calc_elapsed_time_loop_jit_python, dag=dag ) def build_numba_loop_c(dag): return PythonOperator( task_id='numba_performance_loop_c', python_callable=calc_elapsed_time_loop_jit_c, dag=dag ) def build_numba_numpy_python(dag): return PythonOperator( task_id='numba_performance_numpy_python', python_callable=calc_elapsed_time_numpy_jit_python, dag=dag ) def build_numba_numpy_c(dag): return PythonOperator( task_id='numba_performance_numpy_c', python_callable=calc_elapsed_time_numpy_jit_c, dag=dag ) numba_numpy_python = build_numba_numpy_python(dag) numba_numpy_c = build_numba_numpy_c(dag) numba_loop_python = build_numba_loop_python(dag) numba_loop_c = build_numba_loop_c(dag) numba_loop_python >> numba_numpy_python numba_loop_c >> numba_numpy_c ```
{ "source": "JoaoHFerreira/FileOrganizer", "score": 3 }
#### File: JoaoHFerreira/FileOrganizer/file_organizer.py ```python import os import pathlib import yaml class OrganizeFolderFiles: def __init__(self, yaml_origin): self.configs = self._load_configs() self.root_path = self.configs.get("path") self.default_folders = self.configs.get("default_folders") self.destiny_root = self.configs.get("destiny_root") self.yaml_origin = yaml_origin def _load_configs(self): with open('configs.yml') as conf_file: configs = yaml.safe_load(conf_file) return configs def execute(self): file_dict_list, file_types = self._get_files(os.listdir(path=self.root_path)) self._to_correct_folder(file_dict_list, file_types) def _get_files(self, files): files = self._remove_folders(files) file_types = [file.split(".")[-1] if len(file.split(".")) > 1 else "script" for file in files] unique_types = self._get_single_file_types(file_types) return self._build_files_dict(files, file_types), unique_types def _remove_folders(self, files): return [file for file in files if self._not_folder(file)] def _not_folder(self, file): return not os.path.isdir(os.path.join(self.root_path, file)) def _build_files_dict(self, files, file_types): return [{file_type:file} for (file_type,file) in zip(file_types, files)] @staticmethod def _get_single_file_types(file_types): return list(set(file_types)) def _to_correct_folder(self, file_dict_list, file_types): for file_type in file_types: self._move_file(file_type, file_dict_list) def _move_file(self, file_type, file_dict_list): for file_dict in file_dict_list: if file_dict.get(file_type): self._change_folder(file_type, file_dict[file_type]) continue def _change_folder(self, folder_name, item_name): folder_name = self._define_right_path(folder_name) if not os.path.isdir(folder_name): os.mkdir(folder_name) current = os.path.join(self.root_path, item_name) destination = "/".join([folder_name, item_name]) os.replace(current, destination) def _define_right_path(self, folder_name): for key in self.default_folders: if not self.default_folders[key]: continue path_name = self.default_folders[key].replace(" ","").split(",") if folder_name in path_name: return os.path.join(self.destiny_root, key, folder_name.capitalize()) return os.path.join(self.root_path, folder_name.capitalize()) # yaml_origin = "/home/joaoh/repos_to_conribute/joaoh/FileOrganizer/configs.yml" print(pathlib.Path(__file__).parent.resolve()) # OrganizeFolderFiles(yaml_origin).execute() ```
{ "source": "Joaohigor/JCUsinagem", "score": 2 }
#### File: test/pecas_teste_python/peca_home_teste.py ```python from __future__ import absolute_import, unicode_literals from base import GAETestCase from mommygae import mommy from pecas_app.pecas_model import Peca from routes import pecas class HomeTests(GAETestCase): def test_index(self): mommy.save_one(Peca) resposta = pecas.index() self.assert_can_render(resposta) ``` #### File: test/pecas_testes/modelo_testes.py ```python from __future__ import absolute_import, unicode_literals import unittest from base import GAETestCase from pecas_app.pecas_model import Peca from mommygae import mommy class PecasTestes(GAETestCase): def teste_salvar_peca(self): peca=mommy.make_one(Peca, title='Testando Teste') peca.put() pecas_em_bd=peca.query_by_creation().fetch() self.assertListEqual([peca], pecas_em_bd) self.assertEqual('Testando Teste', pecas_em_bd[0].title) ```
{ "source": "Joao-Inacio/Curso-de-Python3", "score": 4 }
#### File: 01_Python_Basico_Intermediario/Aula030/aula30.py ```python def func(*args, **kwargs): print(args, kwargs) lista = [1, 2, 3, 4, 5] func(*lista, nome='João') ``` #### File: vendas/formata/preco.py ```python def real(n): return f'R${n:.2f}'.replace('.', ',') ``` #### File: 01_Python_Basico_Intermediario/Aula061/cnpj.py ```python import re def remover_caract(cnpj): return re.sub(r'[^0-9]', '', cnpj) ``` #### File: 02_Python_POO/Aula_066/aula66.py ```python class BaseDeDados: def __init__(self): self.__dados = {} def inserir_clientes(self, id, nome): if 'clientes' not in self.__dados: self.__dados['clientes'] = {id: nome} else: self.__dados['clientes'].update({id: nome}) def lista_clientes(self): for id, nome in self.__dados['clientes'].items(): print(id, nome) def apaga_clientes(self, id): del self.__dados['clientes'][id] bd = BaseDeDados() bd.inserir_clientes(1, 'João') bd.inserir_clientes(2, 'Miranda') bd.inserir_clientes(3, 'Rose') bd.apaga_clientes(2) bd.lista_clientes() ``` #### File: 02_Python_POO/Aula_069/classes.py ```python class CarrinhoDeCompras: def __init__(self): self.produtos = [] def inserir_produtos(self, produto): self.produtos.append(produto) def lista_produtos(self): for produto in self.produtos: print(produto.nome, produto.valor) def soma_total(self): total = 0 for produto in self.produtos: total += produto.valor return total class Produto: def __init__(self, nome, valor): self.nome = nome self.valor = valor ``` #### File: 02_Python_POO/Aula_077/main.py ```python class Retangulo: def __init__(self, x, y): self.x = x self.y = y def __repr__(self): return f"<class 'Retangulo({self.x}, {self.y})'>" def __add__(self, other): novo_x = self.x + other.x novo_y = self.y + other.y return Retangulo(novo_x, novo_y) r1 = Retangulo(10, 20) r2 = Retangulo(10, 20) print(r1 + r2) ``` #### File: 02_Python_POO/Aula_082/main.py ```python from dataclasses import dataclass from dataclasses import field @dataclass(eq=True, repr=True, order=True, frozen=False, init=True) class Pessoa: nome: str sobrenome: str = field(repr=False) def __post_init__(self): if not isinstance(self.nome, str): raise TypeError( f'Tipo Inválido {type(self.nome).__name__} != str em {self}' ) @property def nome_completo(self): return f'{self.nome} {self.sobrenome}' p1 = Pessoa('João', 'Inácio') print(p1.nome, p1.sobrenome) ``` #### File: Desafios/POO/banco.py ```python class Banco: def __init__(self): self.agencia = [1111, 2222, 3333] self.clientes = [] self.contas = [] def inserir_cliente(self, cliente): self.clientes.append(cliente) def inserir_conta(self, conta): self.contas.append(conta) def autenticar(self, cliente): if cliente not in self.clientes: return False if cliente.conta not in self.contas: return False if cliente.conta.agencia not in self.agencia: return False return True ``` #### File: Curso-de-Python3/Pratica/exe11.py ```python def func1(): print(func2()) def func2(): return 'eai' func1() # Resolunção def ola_mundo(): return 'olá mundo!' def mestre(funcao): return funcao() exec = mestre(ola_mundo) print(exec) ``` #### File: Curso-de-Python3/Pratica/exe9.py ```python def funcao(n1, n2): soma = (n1 * n2) / 100 total = n1 + soma return total print(funcao(500, 35)) ``` #### File: Projeto_Ecommerce/pedido/views.py ```python from django.shortcuts import render, redirect from django.views.generic.list import ListView from django.views import View from django.http import HttpResponse from django.contrib import messages from produto.models import Variacao from utils import utils from .models import Pedido, ItemPedido class Pagar(View): template_name = 'pedido/pagar.html' def get(self, *args, **kwargs): if not self.request.user.is_authenticated: messages.error( self.request, 'Você Precisa fazer login.' ) return redirect('perfil:criar') if not self.request.session.get('carrinho'): messages.error( self.request, 'Carrinho vazio.' ) return redirect('produtos:lista') carrinho = self.request.session.get('carrinho') carrinho_variacao_ids = [v for v in carrinho] bd_variacoes = list( Variacao.objects.select_related('produto').filter( id__in=carrinho_variacao_ids) ) for variacao in bd_variacoes: vid = str(variacao.id) estoque = variacao.estoque qtd_carrinho = carrinho[vid]['quantidade'] preco_unt = carrinho[vid]['preco_unitario'] preco_unt_prom = carrinho[vid]['preco_unitario_promocional'] error_msg_estoque = '' if estoque < qtd_carrinho: carrinho[vid]['quantidade'] = estoque carrinho[vid]['preco_quantitativo'] = estoque * preco_unt carrinho[vid]['preco_quantitativo_promocional'] = estoque * \ preco_unt_prom error_msg_estoque = 'Estoque insuficiente para alguns'\ ' produtos do seu carrinho' if error_msg_estoque: messages.error( self.request, error_msg_estoque ) self.request.session.save() return redirect('produto:carrinho') qtd_total_carrinho = utils.qtd_total_carr(carrinho) valor_total_carrinho = utils.cart_totals(carrinho) pedido = Pedido( usuario=self.request.user, total=valor_total_carrinho, qtd_total=qtd_total_carrinho, status='C', ) pedido.save() ItemPedido.objects.bulk_create( [ ItemPedido( pedido=pedido, produto=v['produto_nome'], produto_id=v['produto_id'], variacao=v['variacao_nome'], variacao_id=v['variacao_id'], preco=v['preco_quantitativo'], preco_promocional=v['preco_quantitativo_promocional'], quantidade=v['quantidade'], imagem=v['imagem'], ) for v in carrinho.values() ] ) del self.request.session['carrinho'] return redirect('pedido:lista') class SalvaPedido(View): pass class Detalhe(View): pass class Lista(View): def get(self, request, *args, **kwargs): return HttpResponse('Lista') ```
{ "source": "JoaoJanini/data_pipeline", "score": 3 }
#### File: JoaoJanini/data_pipeline/stepOne.py ```python import pandas as pd import luigi import pandas.io.sql as psqlio from datetime import datetime import PSQLConn as psql import helper class ExtractFromDataBase(luigi.Task): """ Task that Extracts the tables from the database given by the challenge to the local files. Its output is a dic containing the path for all the tables. You can use the parameter Date to define the date you want to run the task on. The default date is the current date. """ # Sets the parameter date. date = luigi.DateParameter(default=datetime.today()) # All the credentials to connect to the postgres database. database="northwind" user="northwind_user" password="<PASSWORD>" host="127.0.0.1" port="5432" # Assign credentials here. cred = psql.PSQLConn(database, user, password, host, port) conn = cred.connect() def output(self): return self.create_dic_paths() def run(self): # Gets the name of all the database tables. list_tables = self.tables_names_list(self.conn) for table in list_tables: table_name = table # Buscar a table utilizando um select statement pelo nome da table e salvar o resultado como um dataframe. dataframe = psqlio.read_sql(f'SELECT * FROM {table_name}', self.conn) # Name of the csv containing the table. outname = f'{table_name}.csv' outdir = f"./data/postgres/{table_name}/{self.date}" path = helper.createDir(outdir, outname) dataframe.to_csv(path, index = False) def create_dic_paths(self): """ Function which creates a dictionary containing all the database tables names and their respective paths. """ tables = self.tables_names_list(self.conn) dic_paths = {} for table in tables: dic_paths[table] = luigi.LocalTarget(f"./data/postgres/{table}/{self.date}/{table}.csv") return dic_paths def tables_names_list(self, conn): """ Function which returns a list of all the tables in the database. """ s = "" s += "SELECT" s += " table_name" s += " FROM information_schema.tables" s += " WHERE" s += " (" s += " table_schema = 'public'" s += " )" s += " ORDER BY table_name;" # db_cursor to lookup the tables' names db_cursor = conn.cursor() db_cursor.execute(s) list_tables = db_cursor.fetchall() tables_names = [] for table in list_tables: tables_names.append(table[0]) return tables_names class ExtractFromCSV(luigi.Task): """ Task that Extracts the csv file containing the orders given by the challenge to the local files. Its output is a dic containing the path for all the tables. You can use the parameter Date to define the date you want to run the task on. The default date is the current date. """ date = luigi.DateParameter(default=datetime.today()) def output(self): return luigi.LocalTarget(f"./data/csv/{self.date}/order_details.csv") def run(self): order_details_df = pd.read_csv('data/order_details.csv') # Name of the csv containing the orders. outname = 'order_details.csv' # Name of the csv where the directory will be saved. outdir = f"./data/csv/{self.date}" path = helper.createDir(outdir, outname) order_details_df.to_csv(path, index = False) ``` #### File: JoaoJanini/data_pipeline/stepTwo.py ```python import pandas as pd import luigi import pandas.io.sql as psql from datetime import datetime import PSQLConn as psql from stepOne import ExtractFromCSV, ExtractFromDataBase import sqlalchemy import helper class ExtractLocal(luigi.Task): # Task that extracts the order_details.csv and the orders.csv from the Local file # to the Final postgres database. # The task also returns the result of the query to the final database containing the order and its details. # You can use the parameter Date to define the date you want to run the task on. # The default date is the current date. date = luigi.DateParameter(default=datetime.today()) # Parameters to connect to the final database. database="db_final" user="postgresUser" password="<PASSWORD>" host="127.0.0.1" port="5433" # Assign credentials here cred = psql.PSQLConn(database, user, password, host, port) conn = cred.connect() # Alternative way of connecting to the database using the package sqlalchemy. It is the only method # which works of the pandas package sql related functions. engine = sqlalchemy.create_engine(f'postgresql://{user}:{password}@{host}:{port}/{database}') def requires(self): # Defines the dependency of the task. In this case the dependency are the completion of both # the ExtractFromDataBase task and ExtractFromCSV task. return { "data_base_tables": ExtractFromDataBase(self.date), "orders_csv": ExtractFromCSV(self.date)} def output(self): # The task returns the csv resulted from the query. return luigi.LocalTarget(f"./data/query/{self.date}/order_with_details.csv") def run(self): # Read both csv's from local file and put their content into dataframes. df_orders_details = pd.read_csv(f"./data/csv/{self.date}/order_details.csv") df_orders_table = pd.read_csv(f"./data/postgres/orders/{self.date}/orders.csv") # Append the content of the dataframes to their respective tables on the database. df_orders_details.to_sql(f'orders_details', con = self.engine, if_exists = 'append') df_orders_table.to_sql(f'orders_table', con = self.engine, if_exists = 'append') # Stores the result of the challenge query. s = self.join_query() # Makes the query and saves the content to a dataframe dataframe_sql_query = pd.read_sql_query(s, con = self.engine ) # Name of the csv containing the csv. outname = 'order_with_details.csv' # Nome do diretório onde será salvo o csv. outdir = f"./data/query/{self.date}" path_csv = helper.createDir(outdir, outname) # Store the dataframe as a csv. dataframe_sql_query.to_csv(path_csv, index = False) def join_query(self): # Specifies the content of the join query for the challenge. s = "" s += "SELECT" s += " orders_table.order_id, customer_id,employee_id,order_date,required_date,shipped_date,ship_via,freight,ship_name,ship_address,ship_city,ship_region,ship_postal_code,ship_country," s += "product_id,unit_price,quantity,discount" s += " FROM orders_table" s += " RIGHT JOIN orders_details" s += " ON orders_table.order_id = orders_details.order_id" return s ```
{ "source": "JoaoJanini/Faixa_CEP", "score": 3 }
#### File: Faixa_CEP/faixa_cep/helpers.py ```python from lxml.html import fromstring import requests import time from itertools import cycle import traceback import random from bs4 import BeautifulSoup import pandas as pd import requests import json import jsonlines my_time_out = 20 def get_proxy_list(): """Retorna uma lista de proxies supostamente válidos""" url = 'https://free-proxy-list.net/' response = requests.get(url) parser = fromstring(response.text) proxies = set() for i in parser.xpath('//tbody/tr')[:10]: if i.xpath('.//td[7][contains(text(),"yes")]'): #Grabbing IP and corresponding PORT proxy = ":".join([i.xpath('.//td[1]/text()')[0], i.xpath('.//td[2]/text()')[0]]) proxies.add(proxy) return proxies #Learn how to save the json to a buffer instead of the file system def df_to_jsonl(data_frame: pd.DataFrame, UF: str): """Recebe um DataFrame, retorna um jsonl""" data_frame.to_json("tabela.json", orient = "records") with open("./tabela.json") as f: data = json.load(f) #Turn DataFrame into Jsonl with open(f'./{UF}.jsonl', 'w') as outfile: for entry in data: json.dump(entry, outfile) outfile.write('\n') def clean_data(df: pd.DataFrame): """Recebe um DataFrame, retorna um DataFrame tratado da maneira adequada """ df = df.drop_duplicates() df = df.dropna() return df def make_post_request(post_fields, proxy): """Recebe dicionário com os post fields e um proxy válido, retora uma request""" headers = { "Content-Type": "application/x-www-form-urlencoded", "Origin": "http://www.buscacep.correios.com.br", "Referer": "http://www.buscacep.correios.com.br/sistemas/buscacep/buscaFaixaCep.cfm", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36", } url = "http://www.buscacep.correios.com.br/sistemas/buscacep/resultadoBuscaFaixaCEP.cfm" print("") print("Trying to Make the post request.") request = requests.post(url = url, data = post_fields, headers = headers, proxies = {"http": proxy, "https": proxy}, timeout = my_time_out) return request def request_text_to_table(request, page_content_index): """Recebe request, retorna uma tabela de faixas de CEP""" result = request.text soup = BeautifulSoup(result, 'html.parser') page_content = soup.find_all(name= 'table', class_ ='tmptabela') tabela_UF = page_content[page_content_index] return tabela_UF def table_to_df(tabela_UF): """Recebe tabela, Retorna DataFrame""" logradouros = pd.read_html(str(tabela_UF),flavor= "bs4") page_table_data_frame = logradouros[0] return page_table_data_frame def proxy_list_to_cycle(): print("Tentando conseguir a proxy list") proxy_list_attempts = 0 proxies = get_proxy_list() while len(proxies) == 0: proxies = get_proxy_list() print("oi") if proxy_list_attempts == 5: print("There was a problem retrieving the proxies List. Try again later.") raise Exception() print(f"Tentativa: {proxy_list_attempts}") proxy_list_attempts = proxy_list_attempts + 1 print(f"Proxy left: {proxies}") #Turn the proxy list into a cycle proxy_pool = cycle(proxies) return proxy_pool def request_to_dataframe(UF): """Recebe string do estado, retona DataFrame com faixa de CEP do estado""" #Try to load the proxy list. If after several attempts it still doesn't work, raise an exception and quit. proxy_pool = proxy_list_to_cycle() #Set initial values for post request's parameters. pagini = 1 pagfim = 50 count = 1 while True: #random sleep times to decrease the chances of being blocked. num1 = random.randint(2,5) time.sleep(num1) try: #select_proxy from proxy pool. proxy = next(proxy_pool) print(f"Proxy atual: {proxy}") #Define o post Field de acordo com a página Atual. Para a primeira página os campos "Bairro", "qtdrow", "pagini", "pagfim" não são considerados. if count == 1: post_fields = {"UF":UF, "Localidade":""} full_dataframe = pd.DataFrame() else: post_fields = {"UF": UF, "Localidade":"**", "Bairro":"", "qtdrow":"50", "pagini":str(pagini),"pagfim": str(pagfim)} #Makes the post request request = make_post_request(post_fields, proxy) #Extrai tabela com as faixas de CEP do HTML. Se estivermos na primeira página, o conteúdo se encontra no primeiro index do page content, caso o contrário, se encontra no próximo index. if count == 1: UF_table = request_text_to_table(request = request, page_content_index = 1) else: UF_table = request_text_to_table(request = request, page_content_index = 0) except requests.exceptions.ProxyError: print("") print(f"Error with the proxy: {proxy}") print(f"Proxies left: {proxy_pool}") print("Tentando novamente") print("") continue except (requests.exceptions.Timeout, requests.exceptions.ConnectionError) as err: print("") print('Servidor demorando muito') print("Tentando novamente") print("") continue except Exception as e: print("") print(e) proxy_pool = proxy_list_to_cycle() continue #Turning the table into a dataframe. current_page_df = table_to_df(UF_table) #Concat DataFrames for each page into one DataFrame full_dataframe = pd.concat([full_dataframe, current_page_df]) print(f"Total de dados coletados sobre o Estado {UF}: {full_dataframe.shape[0]} ") #Sair do loop de post requests para o estado atual se chegamos na última página. if current_page_df.shape[0] < 49: print(f"Última página do estado:{UF}") break #Incrementa o número da página e o contador de página. pagini += 50 pagfim += 50 count = count + 1 return full_dataframe ```
{ "source": "joaojunior/crawler_tribunais", "score": 3 }
#### File: crawler_tribunais/scripts/generate_process_number.py ```python def generate(year: str, j: str, tr: str, final: str, qty=10) -> str: for i in range(qty): n = int(f'{i}{year}{j}{tr}{final}00') digit = 98 - (n % 97) yield f'{i}-{digit}.{year}.{j}.{tr}.{final}'.rjust(25, '0') def main(): process_tjal = generate('2018', '8', '02', '0001') process_tjms = generate('2018', '8', '12', '0001') for process in [process_tjal, process_tjms]: for process_number in process: print(process_number) if __name__ == '__main__': main() ``` #### File: src/api/resources.py ```python from flask_restful import Resource from models import db, Process from schemas import ProcessSchema from tasks import crawler_task class ProcessResource(Resource): def get(self, process_number): if self._process_number_is_valid(process_number) is False: return { 'msg': f'Número do processo {process_number} inválido'}, 422 process = Process.query.get(process_number) if process is None: process = Process(process_number=process_number) db.session.add(process) db.session.commit() crawler_task.delay(process_number, 1) crawler_task.delay(process_number, 2) process_schema = ProcessSchema() return process_schema.jsonify(process) @staticmethod def _process_number_is_valid(process_number: str) -> bool: if len(process_number) != 25: return False try: final = process_number.find('.') digits = int((process_number[8:final]).replace('-', '')) calculated_process_number = (f'{process_number[:8]}' f'{process_number[final:]}00') calculated_process_number = int(calculated_process_number.replace( '.', '').replace('-', '')) digits_calculated = 98 - (calculated_process_number % 97) except Exception: return False return digits == digits_calculated ``` #### File: src/crawler/crawlers.py ```python from requests_html import HTMLSession def get_page_from_first_instance_TJAL(process_number: str) -> str: url = 'https://www2.tjal.jus.br/cpopg/search.do' params = { 'cbPesquisa': 'NUMPROC', 'dadosConsulta.tipoNuProcesso': 'UNIFICADO', 'numeroDigitoAnoUnificado': process_number[:15], 'foroNumeroUnificado': process_number[-4:], 'dadosConsulta.valorConsultaNuUnificado': process_number, } return get_page(url, params) def get_page_from_second_instance_TJAL(process_number: str) -> str: url = 'https://www2.tjal.jus.br/cposg5/search.do?' params = { 'cbPesquisa': 'NUMPROC', 'tipoNuProcesso': 'UNIFICADO', 'numeroDigitoAnoUnificado': process_number[:15], 'foroNumeroUnificado': process_number[-4:], 'dePesquisaNuUnificado': process_number, 'pbEnviar': 'Pesquisar' } return get_page(url, params) def get_page_from_first_instance_TJMS(process_number: str) -> str: url = 'https://esaj.tjms.jus.br/cpopg5/search.do' params = { 'cbPesquisa': 'NUMPROC', 'dadosConsulta.tipoNuProcesso': 'UNIFICADO', 'numeroDigitoAnoUnificado': process_number[:15], 'foroNumeroUnificado': process_number[-4:], 'dadosConsulta.valorConsultaNuUnificado': process_number, } return get_page(url, params) def get_page_from_second_instance_TJMS(process_number: str) -> str: url = 'https://esaj.tjms.jus.br/cposg5/search.do' params = { 'cbPesquisa': 'NUMPROC', 'tipoNuProcesso': 'UNIFICADO', 'numeroDigitoAnoUnificado': process_number[:15], 'foroNumeroUnificado': process_number[-4:], 'dePesquisaNuUnificado': process_number } return get_page(url, params) def get_page(url: str, params: dict, timeout=30) -> str: session = HTMLSession() r = session.get(url, params=params, timeout=timeout) return r.html.html ``` #### File: tests/crawler/test_parsers.py ```python from crawler import parsers class TestFirstGradeProcess: def test_parser_movements_return_correct_list(self, movements): expected = [ {'data': '25/11/2018', 'movimento': ('Informação do Sistema\nPJMS - Certidão de ' 'realização de consulta de repetiçaõ de ação')}, {'data': '25/11/2018', 'movimento': ('Realizada pesquisa de suspeita de repetição ' 'de ação\nNenhum processo localizado')}, {'data': '22/10/2018', 'movimento': ('Em Cartório-p/ Escrivão/Diretor preparar ' 'Conclusão')}, {'data': '10/10/2018', 'movimento': ('Juntada de Petição Intermediária ' 'Realizada\nNº Protocolo: WCGR.18.08405509-7 ' 'Tipo da Petição: Manifestação do Autor ' 'Data: 09/10/2018 14:59')}, {'data': '05/10/2018', 'movimento': ('Publicado ato publicado em data da ' 'publicação.\nRelação :0273/2018 Data da ' 'Publicação: 08/10/2018 Número do Diário: 4126') }] assert expected == parsers.movements(movements) def test_parser_process_parts_return_correct_list(self, parts): expected = [ [{'Autora': '<NAME>'}, {'Advogada': '<NAME>'}, {'Advogada': 'Ana Silvia Pessoa Salgado de Moura'}], [{'Autora': '<NAME>'}, {'Advogada': '<NAME>'}, {'Advogada': 'Ana Silvia Pessoa Salgado de Moura'}], [{'Autora': '<NAME>'}, {'Advogada': '<NAME>'}, {'Advogada': 'Ana Silvia Pessoa Salgado de Moura'}], [{'Réu': 'Estado de Mato Grosso do Sul'}, {'RepreLeg': 'Procuradoria Geral do Estado de Mato Grosso do Sul'} ] ] assert expected == parsers.parts(parts) def test_parser_general_data_return_correct_dict(self, general_data): expected = {'Classe': 'Procedimento Comum Cível', 'Área': 'Cível', 'Assunto': 'Enquadramento', 'Distribuição': '30/07/2018 às 12:39 - Automática', 'Juiz': 'Zidiel Infantino Coutinho', 'Valor da ação': 'R$ 10.000,00'} assert expected == parsers.general_data(general_data) def test_parser_return_correct_keys(self, process): expected_keys = ['Dados do processo', 'Partes do processo', 'Movimentações'] actual = parsers.process(process.html) assert expected_keys == list(actual.keys()) def test_parser_process_not_found_and_return_empty_values( self, process_not_found ): expected = {'Dados do processo': {}, 'Partes do processo': [], 'Movimentações': []} actual = parsers.process(process_not_found.html) assert expected == actual class TestSecondGradeProcess: def test_parser_movements_return_correct_list(self, second_movements): expected = [ {'data': '28/05/2019', 'movimento': ('Certidão Emitida\nCERTIDÃO Certifico que foi ' 'interposto Agravo em Recurso Especial da decisão ' 'de fls. 433-437. Certifico, ainda, que esse ' 'Agravo, foi recebido, no carimbo, em 27/05/2019, ' 'devido a problemas no saj/protocolo. Maceió, 28 ' 'de maio de 2019 <NAME> ' 'Diretora Adjunta Especial de Assuntos Judiciários ' 'Fernanda Luiza de Albuquerque Brasil Lins Técnica ' 'Judiciária')}, {'data': '28/05/2019', 'movimento': 'Juntada de Petição de\nAgravo'}, {'data': '28/05/2019', 'movimento': 'Incidente Cadastrado\nSeq.: 50 - Agravo'}, {'data': '03/05/2019', 'movimento': ('Certidão Emitida\nCERTIFICO que foi ' 'disponibilizada no Diário da Justiça Eletrônico ' 'do Tribunal de Justiça de Alagoas em 03/05/2019 ' 'a decisão de fls. 433-437 e considerada publicada ' 'em 06/05/2019, nos termos do Artigo 4º, § 3º, da ' 'Lei nº 11.419/2006. Maceió, 03 de maio de 2019 ' '<NAME> Diretora ' 'Adjunta Especial de Assuntos Judiciários Fernanda ' 'Luiza de Albuquerque Brasil Lins Técnica ' 'Judiciária')}, {'data': '03/05/2019', 'movimento': 'Publicado\nDisponibilizado no DJE de 03/05/2019.'}] assert expected == parsers.movements(second_movements) def test_parser_process_parts_return_correct_list(self, second_parts): expected = [ [{'Apelante': 'Importadora Auto Peças Ltda'}, {'Advogada': '<NAME>'}, {'Advogado': '<NAME>'}, {'Advogado': '<NAME>'}, {'Advogado': '<NAME>'}, {'Advogado': '<NAME>'}, {'Advogada': '<NAME>'}, {'Advogado': '<NAME>'}, {'Advogado': '<NAME>'}, {'Advogada': 'Flávia Nobre de Melo'}, {'Advogada': '<NAME>'}, {'Advogado': '<NAME>'}], [{'Apelado': '<NAME>'}, {'Advogado': '<NAME>'}, {'Advogada': 'Priscila Araújo Guedes'}, {'Advogado': '<NAME>'}] ] assert expected == parsers.parts(second_parts) def test_parser_general_data_return_correct_dict(self, second_general_data): expected = {'Classe': 'Apelação', 'Área ': 'Cível', 'Assunto': 'Perdas e Danos', 'Distribuição': 'Vice-Presidência', 'Relator': 'DES. SEBASTIÃO COSTA FILHO', 'Valor da ação': '380,00'} assert expected == parsers.general_data(second_general_data) ```
{ "source": "joaojunior/data_structure", "score": 4 }
#### File: binary_search_tree/graph/bfs.py ```python class BFS(): def bfs(self, source, graph): visited = {} result = [] for node in graph.nodes: visited[node] = False nodes = [source] while nodes: node = nodes.pop(0) if visited[node] is False: visited[node] = True result.append(node) for adjacent in graph.adjacents(node): nodes.append(adjacent) return result ``` #### File: binary_search_tree/graph/dfs_tests.py ```python import unittest from dfs import DFS from graph import Edge, Graph def create_edge(source, dest, size): return Edge(source, dest, size) class TestDFS(unittest.TestCase): def setUp(self): self.dfs = DFS() self.graph = Graph() self.graph.insert_edge(create_edge(0, 1, 10)) self.graph.insert_edge(create_edge(1, 3, 10)) self.graph.insert_edge(create_edge(0, 2, 20)) self.graph.insert_edge(create_edge(0, 3, 30)) self.graph.insert_edge(create_edge(2, 3, 60)) self.graph.insert_edge(create_edge(3, 4, 120)) def test_dfs(self): result = self.dfs.dfs(0, self.graph) expected = [0, 1, 3, 2, 4] self.assertEqual(expected, result) if __name__ == '__main__': unittest.main() ``` #### File: data_structure/double_linked_list/double_linked_list.py ```python class Item(): def __init__(self, id_, value): self.id_ = id_ self.value = value self.next = None self.before = None class DoubleLinkedList(): def __init__(self): self.size = 0 self.root = None def insert(self, item): if self.root is None: self.root = item else: root = self.root while root.next is not None: root = root.next item.before = root root.next = item self.size += 1 def search(self, id_): founded = None root = self.root while founded is None and root is not None: if id_ == root.id_: founded = root else: root = root.next return founded def delete(self, id_): item = None if self.root is not None and self.root.id_ == id_: item = self.root self.root = self.root.next self.root.next.before = self.root else: root = self.root while root.next is not None and item is None: if root.next.id_ == id_: item = root.next root.next = root.next.next if root.next is not None: root.next.before = root else: root = root.next if item is not None: self.size -= 1 return item ``` #### File: data_structure/double_linked_list/double_linked_list_tests.py ```python import unittest from double_linked_list import DoubleLinkedList, Item def create_item(id_, value): return Item(id_, value) class TestDoubleLinkedList(unittest.TestCase): def setUp(self): self.double_list = DoubleLinkedList() def test_insert_one_item(self): self.assertEqual(0, self.double_list.size) self.assertEqual(None, self.double_list.root) item1 = create_item(1, 1) self.double_list.insert(item1) self.assertEqual(1, self.double_list.size) self.assertEqual(item1, self.double_list.root) self.assertEqual(None, self.double_list.root.next) self.assertEqual(None, self.double_list.root.before) def test_insert_two_items(self): self.assertEqual(0, self.double_list.size) self.assertEqual(None, self.double_list.root) item1 = create_item(1, 1) item2 = create_item(2, 2) self.double_list.insert(item1) self.double_list.insert(item2) self.assertEqual(2, self.double_list.size) self.assertEqual(item1, self.double_list.root) self.assertEqual(item2, self.double_list.root.next) self.assertEqual(None, self.double_list.root.next.next) self.assertEqual(item1, self.double_list.root.next.before) def test_insert_three_items(self): self.assertEqual(0, self.double_list.size) self.assertEqual(None, self.double_list.root) item1 = create_item(1, 1) item2 = create_item(2, 2) item3 = create_item(3, 3) self.double_list.insert(item1) self.double_list.insert(item2) self.double_list.insert(item3) self.assertEqual(3, self.double_list.size) self.assertEqual(item1, self.double_list.root) self.assertEqual(item2, self.double_list.root.next) self.assertEqual(item1, self.double_list.root.next.before) self.assertEqual(item3, self.double_list.root.next.next) self.assertEqual(item2, self.double_list.root.next.next.before) self.assertEqual(item1, self.double_list.root.next.next.before.before) def test_search_item_exist(self): item1 = create_item(1, 1) item2 = create_item(2, 2) item3 = create_item(3, 3) self.double_list.insert(item1) self.double_list.insert(item2) self.double_list.insert(item3) self.assertEqual(item3, self.double_list.search(item3.id_)) def test_search_item_not_exist(self): item1 = create_item(1, 1) item2 = create_item(2, 2) item3 = create_item(3, 3) self.double_list.insert(item1) self.double_list.insert(item2) self.double_list.insert(item3) self.assertEqual(None, self.double_list.search(4)) def test_search_in_list_empty(self): self.assertEqual(None, self.double_list.search(1)) def test_remove_last_item(self): item1 = create_item(1, 1) item2 = create_item(2, 2) item3 = create_item(3, 3) self.double_list.insert(item1) self.double_list.insert(item2) self.double_list.insert(item3) item_removed = self.double_list.delete(item3.id_) self.assertEqual(item3, item_removed) self.assertEqual(2, self.double_list.size) self.assertEqual(item1, self.double_list.root) self.assertEqual(item2, self.double_list.root.next) def test_remove_first_item(self): item1 = create_item(1, 1) item2 = create_item(2, 2) item3 = create_item(3, 3) self.double_list.insert(item1) self.double_list.insert(item2) self.double_list.insert(item3) item_removed = self.double_list.delete(item1.id_) self.assertEqual(item1, item_removed) self.assertEqual(2, self.double_list.size) self.assertEqual(item2, self.double_list.root) self.assertEqual(item3, self.double_list.root.next) def test_remove_middle_item(self): item1 = create_item(1, 1) item2 = create_item(2, 2) item3 = create_item(3, 3) self.double_list.insert(item1) self.double_list.insert(item2) self.double_list.insert(item3) item_removed = self.double_list.delete(item2.id_) self.assertEqual(item2, item_removed) self.assertEqual(2, self.double_list.size) self.assertEqual(item1, self.double_list.root) self.assertEqual(item3, self.double_list.root.next) if __name__ == '__main__': unittest.main() ``` #### File: data_structure/linked_list/linked_list.py ```python class Item(): def __init__(self, id_, value): self.id_ = id_ self.value = value self.next = None class LinkedList(): def __init__(self): self.root = None self.size = 0 def insert(self, item): self.size += 1 if self.root is None: self.root = item else: root = self.root while root is not None: if root.next is None: root.next = item root = item root = root.next def search(self, id_): root = self.root item_found = None while item_found is None and root is not None: if id_ == root.id_: item_found = root else: root = root.next return item_found def delete(self, id_): root = self.root deleted = None if root is not None: if id_ == root.id_: deleted = root self.root = root.next while deleted is None and root.next is not None: if id_ == root.next.id_: deleted = root.next root.next = root.next.next else: root = root.next if deleted is not None: self.size -= 1 return deleted ```
{ "source": "joaojunior/data_structures_and_algorithms", "score": 4 }
#### File: algorithms/sorting/shell_sort.py ```python from typing import List class ShellSort: def sort(self, items: List) -> None: size = len(items) h = 1 while h < size / 3: h = 3 * h + 1 while h >= 1: for i in range(h, size): j = i while j >= h and items[j] < items[j-h]: items[j-h], items[j] = items[j], items[j-h] j -= h h = h // 3 ``` #### File: data_structures_and_algorithms/python_implementations/draw.py ```python from datetime import datetime import matplotlib.pyplot as plt def draw_bars(items, red_elements=None): size = len(items) bar = plt.bar(list(range(size)), items, color='b') if red_elements: for i in red_elements: bar[i].set_color('r') output = str(datetime.now().timestamp()).replace('.', '') plt.savefig(output, dpi=300) plt.close() # ffmpeg -framerate 5 -pattern_type glob -i '*.png' -c:v libx264 -r 30 -pix_fmt yuv420p out.mp4 # noqa # ffmpeg -i out.mp4 -filter_complex "[0:v] scale=480:-1" -f gif out.gif ``` #### File: python_implementations/ds/linked_list.py ```python from typing import Any class Node: def __init__(self, item: Any) -> None: self.item = item self.next = None class LinkedListIterator: def __init__(self, head: Node) -> None: self.__node = head def __next__(self) -> Any: if self.__node is not None: item = self.__node.item self.__node = self.__node.next return item else: raise StopIteration class LinkedList: def __init__(self): self._size = 0 self.head = None def is_empty(self) -> bool: return self._size == 0 def insert(self, item: Any) -> None: new_node = Node(item) if self.head is None: self.head = new_node else: new_node.next = self.head self.head = new_node self._size += 1 def delete(self, item: Any) -> Any: previous = None current = self.head while current is not None and current.item != item: previous = current current = current.next if current is not None and current.item == item: self._size -= 1 if current == self.head: self.head = self.head.next else: previous.next = current.next else: raise ValueError(f'Item {item} is not in the LinkedList') return item def __iter__(self) -> LinkedListIterator: return LinkedListIterator(self.head) ``` #### File: python_implementations/ds/max_heap.py ```python from typing import List class MaxHeap: @classmethod def build_max_heap(cls: 'MaxHeap', items: List): for i in range((len(items) - 1) // 2, -1, -1): cls.max_heapify(items, i) @classmethod def max_heapify(cls: 'MaxHeap', items: List, i: int): left = i * 2 + 1 right = left + 1 size = len(items) if left < size: j = i if items[j] < items[left]: j = left if right < size and items[j] < items[right]: j = right if j != i: items[i], items[j] = items[j], items[i] cls.max_heapify(items, j) ``` #### File: python_implementations/ds/min_heap.py ```python from typing import List class MinHeap(): @classmethod def build_min_heap(cls: 'MinHeap', items: List): for i in range((len(items) - 1) // 2, -1, -1): cls.min_heapify(items, i) @classmethod def min_heapify(cls: 'MinHeap', items: List, i: int): left = 2 * i + 1 right = left + 1 size = len(items) j = i if left < size: if items[j] > items[left]: j = left if right < size and items[j] > items[right]: j = right if j != i: items[i], items[j] = items[j], items[i] cls.min_heapify(items, j) ``` #### File: python_implementations/ds/queue.py ```python from typing import Any from ds.linked_list import LinkedList, LinkedListIterator, Node class LinkedListInsertInLast(LinkedList): def __init__(self): super().__init__() self.last = None def insert(self, item: Any) -> None: self._size += 1 new_node = Node(item) if self.last is None: self.head = new_node else: self.last.next = new_node self.last = new_node def delete_first_element(self) -> Any: if self.head is not None: self._size -= 1 item = self.head.item self.head = self.head.next if super().is_empty(): self.last = None return item else: raise ValueError('Queue is empty') class Queue: def __init__(self) -> None: self.__linked_list = LinkedListInsertInLast() def is_empty(self) -> bool: return self.__linked_list.is_empty() def enqueue(self, item: Any) -> None: self.__linked_list.insert(item) def dequeue(self) -> Any: return self.__linked_list.delete_first_element() def __iter__(self) -> LinkedListIterator: return LinkedListIterator(self.__linked_list.head) ``` #### File: algorithms/tree_traversals/test_in_order.py ```python import pytest from algorithms.tree_traversals.in_order import in_order from ds.binary_search_tree import BST @pytest.fixture def bst(): _bst = BST() assert _bst.is_empty() return _bst def test_in_order_sanity(bst): values = [1, 2, 3, 4, 5] for value in values: bst.insert(value) assert values == in_order(bst.root) ``` #### File: algorithms/tree_traversals/test_post_order.py ```python import pytest from algorithms.tree_traversals.post_order import post_order from ds.binary_search_tree import BST @pytest.fixture def bst(): _bst = BST() assert _bst.is_empty() return _bst def test_post_order_sanity(bst): values = [3, 1, 5, 2, 4] expected = [2, 1, 4, 5, 3] for value in values: bst.insert(value) assert expected == post_order(bst.root) ``` #### File: tests/ds/test_linked_list.py ```python import pytest from ds.linked_list import LinkedList @pytest.fixture def linked_list(): return LinkedList() def test_ensure_empty_list_when_create_an_instance(linked_list): assert linked_list.is_empty() assert [] == list(linked_list) def test_insert_one_item_in_an_empty_linked_list(linked_list): linked_list.insert(1) assert [1] == list(linked_list) def test_insert_n_items(linked_list): items_to_insert = [1, 2, 3, 4, 5] for item in items_to_insert: linked_list.insert(item) items_to_insert.reverse() assert items_to_insert == list(linked_list) def test_remove_unique_item(linked_list): linked_list.insert(1) assert 1 == linked_list.delete(1) assert linked_list.is_empty() assert [] == list(linked_list) def test_remove_all_items(linked_list): items_to_delete = [1, 2, 3, 4, 5] for item in items_to_delete: linked_list.insert(item) for item in items_to_delete: linked_list.delete(item) assert linked_list.is_empty() assert [] == list(linked_list) def test_remove_last_item(linked_list): items_to_insert = [1, 2, 3, 4] item_to_delete = 5 for item in items_to_insert: linked_list.insert(item) linked_list.insert(item_to_delete) assert item_to_delete == linked_list.delete(item_to_delete) items_to_insert.reverse() assert items_to_insert == list(linked_list) def test_remove_first_item(linked_list): items = [1, 2, 3, 4, 5] for item in items: linked_list.insert(item) assert 1 == linked_list.delete(items.pop(0)) items.reverse() assert items == list(linked_list) def test_try_to_remove_in_empty_linked_list_raises_exception(linked_list): with pytest.raises(ValueError, match="Item 1 is not in the LinkedList"): linked_list.delete(1) def test_try_to_remove_item_not_in_the_linked_list_raises_exception( linked_list): items = [1, 2, 3, 4, 5] for item in items: linked_list.insert(item) with pytest.raises(ValueError, match="Item 6 is not in the LinkedList"): linked_list.delete(6) ``` #### File: tests/ds/test_min_heap.py ```python import heapq import random from ds.min_heap import MinHeap def test_ensure_create_min_heap_with_empty_array(): items = [] MinHeap.build_min_heap(items) assert [] == items def test_create_min_heap_with_only_one_element(): items = [1] MinHeap.build_min_heap(items) assert [1] == items def test_create_min_heap_with_two_elements(): items = [2, 1] MinHeap.build_min_heap(items) assert [1, 2] == items def test_create_min_heap_with_n_elements_that_is_already_a_min_heap(): n = 16 items = list(range(n)) MinHeap.build_min_heap(items) expected = list(range(n)) assert expected == items def test_create_min_heap_with_n_elements_that_is_not_a_min_heap(): n = 16 items = list(range(n)) items.reverse() MinHeap.build_min_heap(items) expected = list(range(n)) expected.reverse() heapq.heapify(expected) assert expected == items def test_create_min_heap_from_an_random_array(): n = 1000 items = list(range(n)) random.shuffle(items) expected = items[:] MinHeap.build_min_heap(items) assert expected != items heapq.heapify(expected) assert items == expected ``` #### File: tests/ds/test_stack.py ```python import pytest from ds.stack import Stack @pytest.fixture() def stack(): return Stack() def test_ensure_empty_stack_when_create_an_instance(stack): assert stack.is_empty() assert [] == list(stack) def test_insert_one_item_in_an_empty_stack(stack): stack.push(1) assert [1] == list(stack) def test_insert_n_items(stack): items_to_insert = [1, 2, 3, 4, 5] for item in items_to_insert: stack.push(item) items_to_insert.reverse() assert items_to_insert == list(stack) def test_remove_unique_item(stack): stack.push(1) assert 1 == stack.pop() assert stack.is_empty() assert [] == list(stack) def test_remove_all_items(stack): items_to_delete = [1, 2, 3, 4, 5] for item in items_to_delete: stack.push(item) items_to_delete.reverse() for item in items_to_delete: assert item == stack.pop() assert stack.is_empty() assert [] == list(stack) def test_try_to_remove_in_empty_stack_raises_exception(stack): with pytest.raises(ValueError, match="Stack is empty"): stack.pop() ```
{ "source": "joaojunior/example_load_balancer", "score": 3 }
#### File: joaojunior/example_load_balancer/server.py ```python from http.server import BaseHTTPRequestHandler, HTTPServer import os from sys import argv class Server(BaseHTTPRequestHandler): def _set_headers(self): self.send_response(200) self.send_header('Content-type', 'text') self.end_headers() def do_GET(self): self._set_headers() host_name = os.environ['HOSTNAME'] self.wfile.write(bytes(f'server:{host_name}', "utf-8")) def run(port, server_class=HTTPServer, handler_class=Server): server_address = ("0.0.0.0", port) httpd = server_class(server_address, handler_class) print('Server started') httpd.serve_forever() if __name__ == "__main__": run(port=int(argv[1])) ```
{ "source": "joaojunior/hackerrank", "score": 4 }
#### File: hackerrank/3sum-closest/three_sum_closest.py ```python from typing import List class Solution: def three_sum_closest(self, nums: List[int], target: int) -> int: nums.sort() size = len(nums) max_distance = 1000 result = 0 for i in range(size - 2): left = i + 1 r = size - 1 while left < r: sum_ = nums[i] + nums[left] + nums[r] distance = abs(sum_ - target) if distance < max_distance: max_distance = distance result = sum_ if sum_ > target: r -= 1 elif sum_ < target: left += 1 else: return result return result ``` #### File: hackerrank/arithmetic_expression/main.py ```python def arithmetic_expression(array): size = len(array) queue = [(array[0], str(array[0]))] start = 0 i = 1 cache = {array[0]: True} while i < size: end = len(queue) j = start while j < end: sum_, response = queue[j] sum_plus = (sum_ + array[i]) % 101 sum_times = (sum_ * array[i]) % 101 sum_minus = (sum_ - array[i]) % 101 if sum_ % 101 == 0: queue = [[sum_times, response + '*' + str(array[i])]] j = 0 end = 0 else: all_in_cache = ( sum_plus in cache and sum_times in cache and sum_minus in cache ) if all_in_cache: queue.append( [sum_plus, response + '+' + str(array[i])] ) else: if sum_plus not in cache: queue.append( [sum_plus, response + '+' + str(array[i])] ) cache[sum_plus] = True if sum_times not in cache: queue.append( [sum_times, response + '*' + str(array[i])] ) cache[sum_times] = True if sum_minus not in cache: queue.append( [sum_minus, response + '-' + str(array[i])] ) cache[sum_minus] = True j += 1 start = end i += 1 for sum_, response in queue: if sum_ % 101 == 0: return response if __name__ == '__main__': n = int(input()) numbers = list(map(int, input().rstrip().split())) print(arithmetic_expression(numbers)) ``` #### File: hackerrank/combination-sum-iii/test_combination_sum_iii.py ```python from combination_sum_iii import Solution def test_example1(): n = 7 k = 3 expected = [[1, 2, 4]] assert expected == Solution().combination_sum_3(k, n) def test_example2(): n = 9 k = 3 expected = [[1, 2, 6], [1, 3, 5], [2, 3, 4]] assert expected == Solution().combination_sum_3(k, n) def test_example3(): n = 1 k = 4 expected = [] assert expected == Solution().combination_sum_3(k, n) def test_example4(): n = 2 k = 3 expected = [] assert expected == Solution().combination_sum_3(k, n) def test_example5(): n = 45 k = 9 expected = [[1, 2, 3, 4, 5, 6, 7, 8, 9]] assert expected == Solution().combination_sum_3(k, n) ``` #### File: hackerrank/container-with-most-water/container_with_most_water.py ```python from typing import List class Solution: def max_area(self, height: List[int]) -> int: i = 0 j = len(height) - 1 result = 0 while i < j: if height[i] < height[j]: area = (j - i) * height[i] i += 1 else: area = (j - i) * height[j] j -= 1 result = max(result, area) return result ``` #### File: hackerrank/count-good-numbers/count_good_numbers.py ```python class Solution: def count_good_numbers(self, n: int) -> int: result = 1 even_digits = 5 prime_numbers = 4 large = 1000000007 q, r = divmod(n, 2) result = pow(even_digits, q + r, large) * pow(prime_numbers, q, large) return result % large ``` #### File: hackerrank/ctci-array-left-rotation/main.py ```python def rot_left(array, d): copy_array = array[:] for i in range(len(array)): array[i-d] = copy_array[i] return array if __name__ == '__main__': nd = input().split() n = int(nd[0]) d = int(nd[1]) array = list(map(int, input().rstrip().split())) result = rot_left(array, d) print(' '.join(map(str, result))) ``` #### File: hackerrank/even_tree/main.py ```python from collections import defaultdict class Graph(): def __init__(self, number_of_nodes): self.number_of_nodes = number_of_nodes self._edges = {} self._adjacents = defaultdict(list) def nodes(self): return list(range(1, self.number_of_nodes + 1)) def edges(self): return self._edges.keys() def add_edge(self, source, dest): self._edges[(source, dest)] = True self._adjacents[source].append(dest) self._adjacents[dest].append(source) def remove_edge(self, edge): self._edges[edge] = False def return_edge(self, edge): self._edges[edge] = True def adjacents(self, node): result = [] for dest in self._adjacents[node]: edge_exist = self._edges.get((node, dest), False) if edge_exist or self._edges.get((dest, node), False): result.append(dest) return result def edge_not_connected_leaf(self, edge): adjacents = self.adjacents(edge[0]) if len(adjacents) > 1: adjacents = self.adjacents(edge[1]) if len(adjacents) > 1: return True return False def bfs(graph, node): visited = {} queue = [node] for node in graph.nodes(): visited[node] = False while queue: node = queue.pop(0) if visited[node] is False: visited[node] = True for adjacent in graph.adjacents(node): if visited[adjacent] is False: queue.append(adjacent) component = [] for key, value in visited.items(): if value is True: component.append(key) return component def even_tree(graph): number_removed_edges = 0 for edge in graph.edges(): if graph.edge_not_connected_leaf(edge): graph.remove_edge(edge) removed = True nodes = graph.nodes() while nodes and removed: node = nodes.pop(0) component = bfs(graph, node) if len(component) % 2 == 0: for node in component: if node in nodes: nodes.remove(node) else: removed = False if removed is True: number_removed_edges += 1 else: graph.return_edge(edge) return number_removed_edges if __name__ == '__main__': number_of_nodes, number_of_edges = input().split() number_of_nodes = int(number_of_nodes) number_of_edges = int(number_of_edges) graph = Graph(number_of_nodes) for edge in range(number_of_edges): source, dest = input().split() graph.add_edge(int(source), int(dest)) print(even_tree(graph)) ``` #### File: hackerrank/find-peak-element/test_find_peak_element.py ```python from find_peak_element import Solution def test_example1(): nums = [1, 2, 3, 1] expected = 2 assert expected == Solution().find_peak_element(nums) def test_example2(): nums = [1, 2, 1, 3, 5, 6, 4] expected = 1 assert expected == Solution().find_peak_element(nums) ``` #### File: hackerrank/find-the-winner-of-the-circular-game/test_find_the_winner_of_the_circular_game.py ```python from find_the_winner_of_the_circular_game import Solution def test_example_1(): n = 5 k = 2 expected = 3 assert expected == Solution().find_the_winner(n, k) def test_example_2(): n = 6 k = 5 expected = 1 assert expected == Solution().find_the_winner(n, k) ``` #### File: hackerrank/jim_and_the_orders/main.py ```python def jimOrders(orders): times = [] for key, order in enumerate(orders): times.append((key+1, order[0] + order[1])) times = sorted(times, key=lambda x: (x[1], x[0])) return times if __name__ == "__main__": n = int(input().strip()) orders = [] for orders_i in range(n): o_t = [int(orders_temp) for orders_temp in input().strip().split(' ')] orders.append(o_t) result = jimOrders(orders) for key, value in result: print(key, end=' ') ``` #### File: leetcode/3sum/main.py ```python class Solution: def three_sum(self, nums): self.nums = sorted(nums) self.size = len(self.nums) self.result = [] for i in range(self.size): self.find_sum(i) return self.result def find_sum(self, i): value = 0 - self.nums[i] j = i + 1 k = self.size - 1 while j < k: if self.nums[j] + self.nums[k] == value: r = [self.nums[i], self.nums[j], self.nums[k]] if r not in self.result: self.result.append(r) j += 1 k -= 1 elif self.nums[j] + self.nums[k] > value: k -= 1 else: j += 1 if __name__ == '__main__': nums = [-1, 0, 1, 2, -1, -4] solution = Solution() print(solution.three_sum(nums)) print(solution.three_sum([-2, 0, 1, 1, 2])) ``` #### File: leetcode/add-and-search-word-data-structure-design/main.py ```python class WordDictionary: def __init__(self): self.letters = {} self.is_end = False def add_word(self, word: str): trie = self for c in word: if c in trie.letters: trie = trie.letters[c] else: trie.letters[c] = WordDictionary() trie = trie.letters[c] trie.is_end = True def search(self, word: str, trie=None) -> bool: if trie is None: trie = self for i in range(len(word)): c = word[i] if c == '.': for t in trie.letters.values(): result = self.search(word[i+1:], t) if result is True: return True return False else: if c in trie.letters: trie = trie.letters[c] else: return False return trie.is_end ``` #### File: leetcode/binary-tree-pruning/main.py ```python class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def prune_tree(self, root: TreeNode) -> TreeNode: self.post_order(root) return root def post_order(self, root) -> bool: if root is not None: left = self.post_order(root.left) right = self.post_order(root.right) if left is False: root.left = None if right is False: root.right = None if left is False and right is False: return root.val == 1 else: return True else: return False ``` #### File: leetcode/clone-graph/main.py ```python class UndirectedGraphNode: def __init__(self, x): self.label = x self.neighbors = [] class Solution: def clone_graph(self, node: UndirectedGraphNode) -> UndirectedGraphNode: new = None map_ = {} if node is not None: queue = [node] while queue: node = queue.pop(0) if new is None: new = UndirectedGraphNode(node.label) root = new else: if id(node) not in map_: root = UndirectedGraphNode(node.label) else: root = map_[id(node)] for n in node.neighbors: if id(n) not in map_: n1 = UndirectedGraphNode(n.label) root.neighbors.append(n1) queue.append(n) map_[id(n)] = n1 else: root.neighbors.append(map_[id(n)]) return new ``` #### File: leetcode/construct-binary-search-tree-from-preorder-traversal/main.py ```python from typing import List class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def bst_from_preorder(self, preorder: List[int]) -> TreeNode: val = preorder.pop(0) root = TreeNode(val) i = self.position_val_is_greater_than(val, preorder) if i is not None: left_preorder = preorder[:i] right_preorder = preorder[i:] else: left_preorder = preorder right_preorder = [] if left_preorder: root.left = self.bst_from_preorder(left_preorder) if right_preorder: root.right = self.bst_from_preorder(right_preorder) return root def position_val_is_greater_than(self, val: int, data: List[int]) -> int: for i, v in enumerate(data): if v > val: return i ``` #### File: leetcode/copy-list-with-random-pointer/main.py ```python class RandomListNode(): def __init__(self, x: int): self.label = x self.next = None self.random = None class Solution(): def copy_random_list(self, root: RandomListNode) -> RandomListNode: head = None if root is not None: pointers = {} new_root = RandomListNode(root.label) pointers[id(root)] = new_root head = new_root while (root is not None and (root.next is not None or root.random is not None)): if root.next is not None: if id(root.next) not in pointers: new_root.next = RandomListNode(root.next.label) pointers[id(root.next)] = new_root.next else: new_root.next = pointers[id(root.next)] if root.random is not None: if id(root.random) not in pointers: new_root.random = RandomListNode(root.random.label) pointers[id(root.random)] = new_root.random else: new_root.random = pointers[id(root.random)] root = root.next new_root = new_root.next return head ``` #### File: leetcode/course_schedule_II/main.py ```python from typing import List class Solution(): ZERO = 0 ONE = 1 TWO = 2 def find_order(self, num_courses: int, prerequisites: List[List[int]]) -> int: self.graph = {} for dest, source in prerequisites: if source in self.graph: self.graph[source].append(dest) else: self.graph[source] = [dest] self.colors = {} for node in range(num_courses): self.colors[node] = self.ZERO self.result = [] for node in range(num_courses): if self.visit(node) is False: return [] return self.result def visit(self, node): if self.colors[node] == self.TWO: return True if self.colors[node] == self.ONE: return False self.colors[node] = self.ONE for m in self.graph.get(node, []): result = self.visit(m) if result is False: return False self.colors[node] = self.TWO self.result.insert(0, node) return True if __name__ == '__main__': solution = Solution() num_courses = 4 prerequisites = [[1, 0], [2, 0], [3, 1], [3, 2]] print(solution.find_order(num_courses, prerequisites)) ``` #### File: leetcode/delete-node-in-a-bst/main.py ```python from typing import Tuple class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def delete_node(self, root: TreeNode, key: int) -> TreeNode: self.root = root parent, node_to_remove = self.binary_search(None, root, key) if node_to_remove is None: return root if node_to_remove.left is None: self.transplant(node_to_remove, node_to_remove.right) elif node_to_remove.right is None: self.transplant(node_to_remove, node_to_remove.left) else: y = self.minimum(node_to_remove.right) if y != node_to_remove.right: self.transplant(y, y.right) y.right = node_to_remove.right self.transplant(node_to_remove, y) y.left = node_to_remove.left return self.root def binary_search(self, parent: TreeNode, root: TreeNode, key: int) -> Tuple[TreeNode, TreeNode]: if root is not None: if root.val == key: return parent, root elif key < root.val: return self.binary_search(root, root.left, key) else: return self.binary_search(root, root.right, key) else: return parent, None def minimum(self, root: TreeNode) -> TreeNode: while root.left is not None: root = root.left return root def transplant(self, x: TreeNode, y: TreeNode): parent, _ = self.binary_search(None, self.root, x.val) if parent is None: self.root = y elif x == parent.left: parent.left = y else: parent.right = y ``` #### File: leetcode/h-index-ii/main.py ```python from typing import List class Solution: def h_index(self, citations: List[int]) -> int: result = 0 size = len(citations) i = 0 while i < size: h = size - i if len(citations[i:]) >= h: if i != 0: if citations[i-1] <= h and citations[i] >= h: return h else: if citations[i] >= h: return h i += 1 return result if __name__ == '__main__': solution = Solution() citations = [0, 1, 3, 5, 6] print(solution.h_index(citations)) ``` #### File: leetcode/increasing-triplet-subsequence/main.py ```python from typing import List class Solution: def increasing_triplet(self, nums: List[int]) -> bool: for i, value_i in enumerate(nums): for j, value_j in enumerate(nums[i+1:]): if value_i < value_j: for k, value_k in enumerate(nums[i+j+1:]): if value_j < value_k: return True return False if __name__ == '__main__': solution = Solution() nums = [2, 1, 5, 0, 3] print(solution.increasing_triplet(nums)) ``` #### File: leetcode/maximum-difference-between-node-and-ancestor/main.py ```python class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def max_ancestor_diff(self, root: TreeNode) -> int: return self.in_order(root, root.val, root.val) def in_order(self, root: TreeNode, min_: int, max_: int) -> int: if root is not None: new_min = min(min_, root.val) new_max = max(max_, root.val) return max( abs(root.val - min_), abs(root.val - max_), self.in_order(root.left, new_min, new_max), self.in_order(root.right, new_min, new_max) ) return 0 ``` #### File: leetcode/minimum-window-substring/main.py ```python from typing import Dict class Solution: def min_window(self, s: str, t: str) -> str: frequency_s = {} frequency_t = {} for c in s: frequency_s[c] = frequency_s.get(c, 0) + 1 for c in t: frequency_t[c] = frequency_t.get(c, 0) + 1 start = 0 end = len(s) - 1 result = '' while end >= start and start >= 0: if self.verify(frequency_s, frequency_t): result = s[start:end+1] frequency_s[s[start]] -= 1 start += 1 else: frequency_s[s[start-1]] += 1 frequency_s[s[end]] -= 1 start -= 1 end -= 1 return result def verify(self, frequency: Dict, frequency_t: Dict) -> bool: for c, qty in frequency_t.items(): if frequency.get(c, 0) < qty: return False return True if __name__ == '__main__': solution = Solution() s = "ADOBECODEBANC" t = "ABC" print(solution.min_window(s, t)) ``` #### File: leetcode/product-of-array-except-self/main.py ```python from typing import List class Solution: def product_except_self(self, nums: List[int]) -> List[int]: result = [] memoize = {} for i, num1 in enumerate(nums): multi = 1 if num1 not in memoize: for j, num2 in enumerate(nums): if i != j: multi *= num2 memoize[num1] = multi result.append(memoize[num1]) return result ``` #### File: leetcode/search-in-rotated-sorted-array/main.py ```python from typing import List class Solution: def search(self, nums: List[int], target: int) -> int: self.nums = nums return self.binary_search(0, len(nums) - 1, target) def binary_search(self, l: int, r: int, value: int) -> int: # noqa if l > r: return -1 else: mid = (l + r) // 2 if self.nums[mid] == value: return mid elif value < self.nums[mid]: result = self.binary_search(l, mid-1, value) if result == -1: return self.binary_search(mid+1, r, value) else: return result else: result = self.binary_search(mid+1, r, value) if result == -1: return self.binary_search(l, mid-1, value) else: return result ``` #### File: leetcode/serialize-and-deserialize-binary-tree/main.py ```python class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Codec: def serialize(self, root: TreeNode) -> str: if root is None: return '' result = [] queue = [[root]] while queue: new_nodes = [] nodes = queue.pop(0) for node in nodes: if node is not None: result.append(str(node.val)) new_nodes.append(node.left) new_nodes.append(node.right) else: result.append('null') if new_nodes: queue.append(new_nodes) return ','.join(result) def deserialize(self, data: str) -> TreeNode: if data == '': return None data = data.split(',') size = len(data) base_root = TreeNode(data[0]) queue = [(base_root, 0)] while queue: root, i = queue.pop(0) left = 2*i+1 right = 2*i+2 if right < size: root.left = TreeNode(data[left]) root.right = TreeNode(data[right]) queue.append((root.left, left)) queue.append((root.right, right)) return base_root ``` #### File: leetcode/smallest-string-starting-from-leaf/main.py ```python class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def smallestFromLeaf(self, root: TreeNode) -> str: self.result = '' self.pre_order(root, '') return self.result def pre_order(self, root: TreeNode, word: str): if root is not None: word = chr(97 + root.val) + word self.pre_order(root.left, word) self.pre_order(root.right, word) if root.left is None and root.right is None: if word < self.result or self.result == '': self.result = word ``` #### File: leetcode/top-k-frequent-words/main.py ```python import heapq from typing import List class Solution: def top_k_frequent(self, words: List[str], k: int) -> List[str]: frequency = {} for word in words: frequency[word] = frequency.get(word, 0) - 1 result = [] items = [(item[1], item[0]) for item in frequency.items()] heapq.heapify(items) for i in range(k): result.append(heapq.heappop(items)[1]) return result ``` #### File: leetcode/word-break/main.py ```python from typing import List class Solution(): def word_break(self, s: str, words: List[str]) -> bool: self.words = words self.memoization = {} return self.find(s) def find(self, s: str) -> bool: if s in self.memoization: return self.memoization[s] if s == '': return True else: result = False i = 0 while i < len(self.words) and result is False: word = self.words[i] if s.startswith(word): result = self.find(s[len(word):]) self.memoization[s[len(word):]] = result i += 1 return result if __name__ == '__main__': solution = Solution() s = "catsandog" words = ["cats", "dog", "sand", "and", "cat"] print(solution.word_break(s, words)) ``` #### File: hackerrank/longest-increasing-path-in-a-matrix/longest_increasing_path_in_a_matrix.py ```python from typing import List class Solution: def longest_increasing_path(self, matrix: List[List[int]]) -> int: self.matrix = matrix self.m = len(matrix) self.n = len(matrix[0]) self.result = 0 self.memoization = {} for i in range(self.m): for j in range(self.n): result = self.find_longest_from(i, j) if result > self.result: self.result = result return self.result def find_longest_from(self, i: int, j: int) -> int: if (i, j) in self.memoization: return self.memoization[(i, j)] elif i < 0 or i >= self.m or j < 0 or j >= self.n: return 0 else: result = 1 if i - 1 >= 0 and self.matrix[i-1][j] > self.matrix[i][j]: result = max(result, 1 + self.find_longest_from(i-1, j)) if i + 1 < self.m and self.matrix[i+1][j] > self.matrix[i][j]: result = max(result, 1 + self.find_longest_from(i+1, j)) if j - 1 >= 0 and self.matrix[i][j-1] > self.matrix[i][j]: result = max(result, 1 + self.find_longest_from(i, j-1)) if j + 1 < self.n and self.matrix[i][j+1] > self.matrix[i][j]: result = max(result, 1 + self.find_longest_from(i, j+1)) self.memoization[(i, j)] = result return result ``` #### File: hackerrank/luck-balance/main.py ```python def luck_balance(k, contests): contests.sort(key=lambda item: item[0]) importances = 0 for value, importance in contests: if importance == 1: importances += 1 result = 0 qty = 0 for value, importance in contests: if importance == 0: result += value elif qty < importances - k: qty += 1 result -= value else: result += value return result ``` #### File: joaojunior/hackerrank/main.py ```python def k_factorization(numbers, n): numbers = sorted(numbers, reverse=True) n_bck = n divisors = [] for divisor in numbers: if n % divisor == 0: divisors.append(divisor) result = [] while divisors: divisor = divisors.pop(0) while n % divisor == 0: result.append(divisor) n = n / divisor result.append(1) for i in range(len(result) - 2, -1, -1): result[i] = result[i] * result[i+1] result.reverse() if result and result[-1] == n_bck: return result else: return [-1] if __name__ == "__main__": n, size = input().split() n = int(n) size = int(size) numbers = input().split() for i in range(size): numbers[i] = int(numbers[i]) result = k_factorization(numbers, n) for number in result: print(number, end=" ") ``` #### File: hackerrank/majority-element-ii/majority_element_ii.py ```python from typing import List class Solution: def majority_element(self, nums: List[int]) -> List[int]: size = len(nums) times = size // 3 counter = {} result = [] for num in nums: counter[num] = counter.get(num, 0) + 1 for num, qty in counter.items(): if qty > times: result.append(num) return result ``` #### File: hackerrank/max-area-of-island/max_area_of_island.py ```python from typing import List class Solution: def max_area_of_island(self, grid: List[List[int]]) -> int: self.grid = grid self.m = len(self.grid) self.n = len(self.grid[0]) max_ = 0 for i in range(self.m): for j in range(self.n): if self.grid[i][j] == 1: count = self.count_island(i, j) if count >= max_: max_ = count return max_ def count_island(self, row: int, col: int) -> int: if row < 0 or row >= self.m or col < 0 or col >= self.n: return 0 if self.grid[row][col] == 0: return 0 else: self.grid[row][col] = 0 return 1 + ( self.count_island(row-1, col) + self.count_island(row+1, col) + self.count_island(row, col-1) + self.count_island(row, col+1) ) ``` #### File: hackerrank/maximum-number-of-eaten-apples/maximum_number_of_eaten_apples.py ```python from typing import List, Tuple class IndexMinHeap: def __init__(self): self.items = [] self.indexes = {} def is_empty(self) -> bool: return len(self.items) == 0 def insert(self, key: int, value: int): i = self.indexes.get(key, None) if i is not None: _, old_value = self.items[i] self.items[i] = (key, value + old_value) self.heapify_down(i) else: i = len(self.items) self.items.append((key, value)) self.indexes[key] = i self.heapify(i) def delete_min(self) -> Tuple[int]: key, value = self.items[0] self.indexes.pop(key) if len(self.items) > 1: self.items[0] = self.items[-1] self.indexes[self.items[0][0]] = 0 self.items.pop() self.heapify_down(0) return (key, value) def heapify_down(self, i: int): left = 2 * i + 1 right = left + 1 size = len(self.items) if left < size: j = i if self.items[j][0] > self.items[left][0]: j = left if right < size and self.items[j][0] > self.items[right][0]: j = right if i != j: self.items[i], self.items[j] = self.items[j], self.items[i] self.indexes[self.items[i][0]] = i self.indexes[self.items[j][0]] = j self.heapify_down(j) def heapify(self, i: int): if i > 0: parent = (i - 1) // 2 if self.items[i][0] < self.items[parent][0]: self.items[i], self.items[parent] = (self.items[parent], self.items[i]) self.indexes[self.items[i][0]] = i self.indexes[self.items[parent][0]] = parent self.heapify(parent) class Solution: def eaten_apples(self, apples: List[int], days: List[int]) -> int: qty = 0 i = 0 size = len(apples) index_min_heap = IndexMinHeap() while i < size or not index_min_heap.is_empty(): if i < size: apple = apples[i] day = days[i] if apple > 0: index_min_heap.insert(i + day, apple) deadline = 0 while deadline <= i and not index_min_heap.is_empty(): deadline, apple = index_min_heap.delete_min() if deadline > i: qty += 1 if apple - 1 > 0: index_min_heap.insert(deadline, apple - 1) i += 1 return qty ``` #### File: hackerrank/minesweeper/test_minesweeper.py ```python from minesweeper import Solution def test_example_1(): board = [["E", "E", "E", "E", "E"], ["E", "E", "M", "E", "E"], ["E", "E", "E", "E", "E"], ["E", "E", "E", "E", "E"]] click = [3, 0] expected = [["B", "1", "E", "1", "B"], ["B", "1", "M", "1", "B"], ["B", "1", "1", "1", "B"], ["B", "B", "B", "B", "B"]] assert expected == Solution().update_board(board, click) def test_example_2(): board = [["B", "1", "E", "1", "B"], ["B", "1", "M", "1", "B"], ["B", "1", "1", "1", "B"], ["B", "B", "B", "B", "B"]] click = [1, 2] expected = [["B", "1", "E", "1", "B"], ["B", "1", "X", "1", "B"], ["B", "1", "1", "1", "B"], ["B", "B", "B", "B", "B"]] assert expected == Solution().update_board(board, click) ``` #### File: hackerrank/number-of-operations-to-make-network-connected/number_of_operations_to_make_network_connected.py ```python from typing import List class Solution: def make_connected(self, n: int, connections: List[List[int]]) -> int: if n - 1 > len(connections): return -1 self.adjacents = {} self.visited = {} for i in range(n): self.adjacents[i] = [] self.visited[i] = False for i, j in connections: self.adjacents[i].append(j) self.adjacents[j].append(i) components = 0 for i in range(n): if self.visited[i] is False: self.dfs(i) components += 1 return components - 1 def dfs(self, i): if self.visited[i] is False: self.visited[i] = True for j in self.adjacents[i]: self.dfs(j) ``` #### File: hackerrank/number-of-operations-to-make-network-connected/test_number_of_operations_to_make_network_connected.py ```python from number_of_operations_to_make_network_connected import Solution def test_example_1(): n = 4 connections = [[0, 1], [0, 2], [1, 2]] expected = 1 assert expected == Solution().make_connected(n, connections) def test_example_2(): n = 6 connections = [[0, 1], [0, 2], [0, 3], [1, 2], [1, 3]] expected = 2 assert expected == Solution().make_connected(n, connections) def test_example_3(): n = 6 connections = [[0, 1], [0, 2], [0, 3], [1, 2]] expected = -1 assert expected == Solution().make_connected(n, connections) def test_example_4(): n = 5 connections = [[0, 1], [0, 2], [3, 4], [2, 3]] expected = 0 assert expected == Solution().make_connected(n, connections) ``` #### File: hackerrank/number-of-orders-in-the-backlog/number_of_orders_in_the_backlog.py ```python import heapq from typing import List class Solution: def get_number_of_backlog_orders(self, orders: List[List[int]]) -> int: sell_backlog = [] buy_backlog = [] for price, amount, order_type in orders: if order_type == 0: while amount > 0: if sell_backlog and sell_backlog[0][0] <= price: sell_price, sell_amount = heapq.heappop(sell_backlog) if sell_amount > amount: heapq.heappush(sell_backlog, (sell_price, sell_amount - amount)) amount = 0 else: amount -= sell_amount else: heapq.heappush(buy_backlog, (-price, amount)) amount = 0 else: while amount > 0: if buy_backlog and -buy_backlog[0][0] >= price: buy_price, buy_amount = heapq.heappop(buy_backlog) if buy_amount > amount: heapq.heappush(buy_backlog, (buy_price, buy_amount - amount)) amount = 0 else: amount -= buy_amount else: heapq.heappush(sell_backlog, (price, amount)) amount = 0 result = 0 for _, amount in sell_backlog: result += amount for _, amount in buy_backlog: result += amount return result % (10**9 + 7) ``` #### File: hackerrank/palindrome-partitioning/palindrome_partitioning.py ```python from typing import List class Solution: def partition(self, s: str) -> List[List[str]]: self.partitions = [] self.generate_partitions(s, []) return self.partitions def generate_partitions(self, s, partition, start=0, end=1): if end == len(s): if self.is_palindrome(s[start:end]): partition.append(s[start:end]) self.partitions.append(partition) else: if self.is_palindrome(s[start:end]): self.generate_partitions(s, partition[:] + [s[start:end]], end, end + 1) self.generate_partitions(s, partition[:], start, end + 1) def is_palindrome(self, s: str) -> bool: i = 0 j = len(s) - 1 while i <= j: if s[i] != s[j]: return False i += 1 j -= 1 return True ``` #### File: hackerrank/restore-ip-addresses/restore_ip_addresses.py ```python from typing import List class Solution: def restore_ip_addresses(self, s: str) -> List[str]: if s == "": return [] self.s = s self.size = len(s) self.result = [] self.partitions(0, 1, []) return self.result def partitions(self, start: int = 0, end: int = 1, partition: List = None): if end == self.size: if self.is_valid(self.s[start:end]): partition.append(self.s[start:end]) if len(partition) == 4: self.result.append('.'.join(partition)) else: self.partitions(start, end+1, partition[:]) if (len(partition) + 1 <= 4) and self.is_valid(self.s[start:end]): self.partitions(end, end+1, partition[:] + [self.s[start:end]]) def is_valid(self, s: str) -> bool: i = 0 while i < len(s) and s[i] == '0': i += 1 if i > 0 and len(s) > 1: return False return len(s) <= 3 and int(s) <= 255 ``` #### File: hackerrank/sherlock-and-cost/main.py ```python class SherlockCost(): def cost(self, b): self.b = b last = len(b) - 1 self.memoize = {} return max(self._cost(1, last-1), self._cost(b[last], last-1)) def _cost(self, previous, i): if (previous, i) in self.memoize: return self.memoize[(previous, i)] elif i == 0: self.memoize[(previous, i)] = max(abs(1 - previous), abs(self.b[0] - previous)) return self.memoize[(previous, i)] else: result = max(self._cost(1, i - 1) + abs(1 - previous), self._cost(self.b[i], i - 1) + abs(self.b[i]-previous) ) self.memoize[(previous, i)] = result return result if __name__ == '__main__': sc = SherlockCost() b = [10, 1, 10, 1, 10] b = [4, 7, 9] print(sc.cost(b)) ``` #### File: hackerrank/sherlock-and-valid-string/tests.py ```python import unittest from main import is_valid class IsValidTest(unittest.TestCase): def test_sample_0_return_no(self): s = 'aabbcd' expected = 'NO' self.assertEqual(expected, is_valid(s)) def test_sample_1_return_no(self): s = 'aabbccddeefghi' expected = 'NO' self.assertEqual(expected, is_valid(s)) def test_sample_2_return_yes(self): s = 'abcdefghhgfedecba' expected = 'YES' self.assertEqual(expected, is_valid(s)) def test_sample_3_return_yes(self): s = 'a' expected = 'YES' self.assertEqual(expected, is_valid(s)) def test_sample_4_return_yes(self): s = 'abcdd' expected = 'YES' self.assertEqual(expected, is_valid(s)) def test_sample_5_return_yes(self): s = 'abcd' expected = 'YES' self.assertEqual(expected, is_valid(s)) def test_sample_6_return_no(self): s = 'aaaabb' expected = 'NO' self.assertEqual(expected, is_valid(s)) def test_sample_7_return_yes(self): s = 'abbac' expected = 'YES' self.assertEqual(expected, is_valid(s)) def test_sample_8_return_no(self): s = 'abbacd' expected = 'NO' self.assertEqual(expected, is_valid(s)) def test_sample_9_return_yes(self): s = 'ab' expected = 'YES' self.assertEqual(expected, is_valid(s)) def test_sample_10_return_yes(self): s = 'aaabbbc' expected = 'YES' self.assertEqual(expected, is_valid(s)) if __name__ == '__main__': unittest.main() ``` #### File: hackerrank/single_threaded_cpu/single_threaded_cpu.py ```python import heapq from typing import List class Solution: def get_order(self, tasks: List[List[int]]) -> List[int]: time = 1 q = [] q_tasks = [] result = [] for i in range(len(tasks)): q_tasks.append((tasks[i][0], tasks[i][1], i)) heapq.heapify(q_tasks) while q_tasks or q: while q_tasks and q_tasks[0][0] <= time: enqueue_time, processing_time, i = heapq.heappop(q_tasks) heapq.heappush(q, (processing_time, i)) if q: processing_time, i = heapq.heappop(q) time += processing_time result.append(i) else: time = q_tasks[0][0] return result ``` #### File: hackerrank/some_division/main.py ```python import sys sys.setrecursionlimit(10**4) class Backtrack(): def backtrack(self, n, divisors): self.divisors = sorted(divisors) self.memoize = {} return self._backtrack(n) def _backtrack(self, n): if n in self.memoize: return self.memoize[n] temp_max = 0 for divisor in self.divisors: if divisor < n and n % divisor == 0: temp_max = max(1 + (n//divisor) * self._backtrack(divisor), temp_max) self.memoize[n] = temp_max return self.memoize[n] if __name__ == '__main__': q = int(input()) for i in range(q): n, m = input().split() n = int(n) m = int(m) _divisors = input().split() divisors = [] for divisor in _divisors: divisors.append(int(divisor)) backtrack = Backtrack() print(backtrack.backtrack(n, divisors)) ``` #### File: hackerrank/string-to-integer-atoi/test_string_to_integer_atoi.py ```python from string_to_integer_atoi import Solution def test_example_1(): s = '42' expected = 42 assert expected == Solution().my_atoi(s) def test_example_2(): s = ' -42' expected = -42 assert expected == Solution().my_atoi(s) def test_example_3(): s = '4193 with words' expected = 4193 assert expected == Solution().my_atoi(s) def test_example_4(): s = 'words and 987' expected = 0 assert expected == Solution().my_atoi(s) def test_example_5(): s = '-91283472332' expected = -2147483648 assert expected == Solution().my_atoi(s) ``` #### File: hackerrank/truck-tour/main.py ```python def truck_tour(petrolpumps): size = len(petrolpumps) initial = 0 founded = False while founded is False and initial < size: total = 0 for i in range(size): position = (i + initial) % size total += petrolpumps[position][0] - petrolpumps[position][1] if total < 0: break if total >= 0: founded = True else: initial += 1 return initial if __name__ == '__main__': petrolpumps = [[1, 5], [10, 3], [3, 4]] print(truck_tour(petrolpumps)) ```
{ "source": "joaojunior/identify_paragraphs_in_image", "score": 3 }
#### File: joaojunior/identify_paragraphs_in_image/tests.py ```python import unittest import numpy as np from images import (get_lines_with_color, identify_paragraphs_in_image, remove_boundary) class TestImage(unittest.TestCase): def setUp(self): self.image_input = np.ones((3, 5), np.uint8) self.image_input = self.image_input * 255 self.image_input[1, 2] = 0 def test_remove_boundary(self): expected = np.zeros((1, 1), np.uint8) self.assertEqual(expected, remove_boundary(self.image_input)) def test_lines_0_and_2_have_color_white(self): expected = [0, 2] self.assertEqual(expected, get_lines_with_color(self.image_input)) def test_have_one_paragraph(self): paragraphs, image = identify_paragraphs_in_image(self.image_input) self.assertEqual(1, paragraphs) def test_have_two_paragraphs(self): image = np.ones((3, 5), np.uint8) image = image * 255 image[0, 2] = 0 image[2, 3] = 0 paragraphs, image = identify_paragraphs_in_image(image) self.assertEqual(2, paragraphs) def test_have_three_paragraphs(self): image = np.ones((5, 5), np.uint8) image = image * 255 image[0, 2] = 0 image[2, 3] = 0 image[4, 4] = 0 paragraphs, image = identify_paragraphs_in_image(image) self.assertEqual(3, paragraphs) if __name__ == '__main__': unittest.main() ```
{ "source": "joaojunior/talk_creating_faster_crawler", "score": 3 }
#### File: talk_creating_faster_crawler/crawler_app_flask/3_crawler_with_green_threads.py ```python import requests import gevent.monkey from gevent import Greenlet from constants import URL_FASTER, URL_SLOWLY gevent.monkey.patch_socket() def crawler(url): response = requests.get(url) if response.status_code != 200: print('error') return response.status_code if __name__ == '__main__': gthreads = [Greenlet(crawler, URL_SLOWLY)] for i in range(20): gthreads.append(Greenlet(crawler, URL_FASTER)) for gthread in gthreads: gthread.start() gevent.joinall(gthreads) ``` #### File: talk_creating_faster_crawler/crawler_app_flask_many_requests/1_crawler_with_threads.py ```python from threading import Thread import requests from constants import BATCH_SIZE, NUMBER_REQUESTS, URL_FASTER def crawler(url): response = requests.get(url) if response.status_code != 200: print('error') return response.status_code if __name__ == '__main__': size = int(NUMBER_REQUESTS/BATCH_SIZE) for quantity in range(size): threads = [] for i in range(BATCH_SIZE): t = Thread(target=crawler, args=(URL_FASTER,)) threads.append(t) for t in threads: t.start() for t in threads: t.join() ```
{ "source": "JoaoLages/ecco", "score": 3 }
#### File: ecco/tests/analysis_tests.py ```python from ecco import analysis import pytest import numpy as np shape = (100, 1000) np.random.seed(seed=1) @pytest.fixture def acts(): acts1 = np.random.randn(*shape) acts2 = np.random.randn(*shape) yield acts1, acts2 class TestAnalysis: def test_cca_smoke(self, acts): actual = analysis.cca(acts[0], acts[1]) assert isinstance(actual, float) assert actual >= 0 assert actual <= 1 def test_svcca_smoke(self, acts): actual = analysis.svcca(acts[0], acts[1]) assert isinstance(actual, float) assert actual >= 0 assert actual <= 1 def test_pwcca_smoke(self, acts): actual = analysis.pwcca(acts[0], acts[1]) assert isinstance(actual, float) assert actual >= 0 assert actual <= 1 def test_cka_smoke(self, acts): actual = analysis.cka(acts[0], acts[1]) assert isinstance(actual, float) assert actual >= 0 assert actual <= 1 def test_linear_transformation(self, acts): acts_1 = acts[0] acts_2 = acts_1 * 10 assert pytest.approx(analysis.cca(acts_1, acts_2), 1.0), "CCA of linear transformation is approx 1.0" assert pytest.approx(analysis.svcca(acts_1, acts_2), 1.0), "SVCCA of linear transformation is approx 1.0" assert pytest.approx(analysis.pwcca(acts_1, acts_2), 1.0), "PWCCA of linear transformation is approx 1.0" assert pytest.approx(analysis.cka(acts_1, acts_2), 1.0), "CKA of linear transformation is approx 1.0" ``` #### File: ecco/tests/lm_test.py ```python from ecco.lm import LM, _one_hot, sample_output_token, activations_dict_to_array import ecco import torch import numpy as np from transformers import PreTrainedModel class TestLM: def test_one_hot(self): expected = torch.tensor([[1., 0., 0.], [0., 1., 0.]]) actual = _one_hot(torch.tensor([0, 1]), 3) assert torch.all(torch.eq(expected, actual)) def test_select_output_token_argmax(self): result = sample_output_token(torch.tensor([0., 1.]), False, 0, 0, 0) assert result == torch.tensor(1) def test_select_output_token_sample(self): result = sample_output_token(torch.tensor([[0., 0.5, 1.]]), True, 1, 1, 1.0) assert result == torch.tensor(2) def test_activations_dict_to_array(self): batch, position, neurons = 1, 3, 4 actual_dict = {0: np.zeros((batch, position, neurons)), 1: np.zeros((batch, position, neurons))} activations = activations_dict_to_array(actual_dict) assert activations.shape == (batch, 2, neurons, position) def test_init(self): lm = ecco.from_pretrained('sshleifer/tiny-gpt2', activations=True) assert isinstance(lm.model, PreTrainedModel), "Model downloaded and LM was initialized successfully." def test_generate(self): lm = ecco.from_pretrained('sshleifer/tiny-gpt2', activations=True, verbose=False) output = lm.generate('test', generate=1, attribution=['grad_x_input']) assert output.token_ids.shape == (1, 2), "Generated one token successfully" assert output.attribution['grad_x_input'][0] == 1, "Successfully got an attribution value" # Confirm activations is dimensions: # (batch 1, layer 2, h_dimension 8, position 1) assert output.activations['decoder'].shape == (1, 2, 8, 1) def test_call_dummy_bert(self): lm = ecco.from_pretrained('julien-c/bert-xsmall-dummy', activations=True, verbose=False) inputs = lm.to(lm.tokenizer(['test', 'hi'], padding=True, truncation=True, return_tensors="pt", max_length=512)) output = lm(inputs) # Confirm it's (batch 2, layer 1, h_dimension 40, position 3) # position is 3 because of [CLS] and [SEP] # If we do require padding, this CUDA compains with this model for some reason. assert output.activations['encoder'].shape == (2, 1, 40, 3) # TODO: Test LM Generate with Activation. Tweak to support batch dimension. # def test_generate_token_no_attribution(self, mocker): # pass # # def test_generate_token_with_attribution(self, mocker): # pass ```
{ "source": "joaolcaas/distiller", "score": 2 }
#### File: distiller/tests/test_post_train_quant.py ```python import os import sys import pytest import torch import torch.testing module_path = os.path.abspath(os.path.join('..')) if module_path not in sys.path: sys.path.append(module_path) from distiller.quantization import RangeLinearQuantParamLayerWrapper, LinearQuantMode @pytest.fixture() def conv_input(): return torch.cat((torch.tensor([[[[-7, 5], [2, -3]]]], dtype=torch.float32), torch.tensor([[[[-15, 10], [-1, 5]]]], dtype=torch.float32)), 0) @pytest.fixture() def conv_weights(): return torch.tensor([[[[-1, -0.5, 0], [0.5, 1, 1.5], [2, 2.5, 3]]], [[[-0.3, -0.25, -0.2], [-0.15, -0.1, -0.05], [0, 0.05, 0.1]]]], dtype=torch.float32) @pytest.mark.parametrize( "mode, clip_acts, per_channel_wts, expected_output", [ (LinearQuantMode.ASYMMETRIC_UNSIGNED, False, False, torch.cat((torch.tensor([[[[-3.648135333, -2.14596196], [0.858384784, 2.432090222]], [[0.214596196, 0.500724457], [0.715320653, 0.786852719]]]], dtype=torch.float32), torch.tensor([[[[12.51811144, 13.01883589], [14.0918168, 14.59254133]], [[1.359109242, 1.645237503], [1.573705438, 1.645237503]]]], dtype=torch.float32)), dim=0) ), (LinearQuantMode.ASYMMETRIC_UNSIGNED, True, False, torch.cat((torch.tensor([[[[-1.089218234, -1.089218234], [1.055180164, 2.518817167]], [[0.238266489, 0.476532978], [0.680761396, 0.782875606]]]], dtype=torch.float32), torch.tensor([[[[7.59048957, 7.59048957], [7.59048957, 7.59048957]], [[1.123256304, 1.259408583], [1.089218234, 1.089218234]]]], dtype=torch.float32)), dim=0) ), (LinearQuantMode.ASYMMETRIC_UNSIGNED, False, True, torch.cat((torch.tensor([[[[-3.648135333, -2.14596196], [0.858384784, 2.432090222]], [[0.214596196, 0.429192392], [0.715320653, 0.858384784]]]], dtype=torch.float32), torch.tensor([[[[12.51811144, 13.01883589], [14.09181687, 14.59254133]], [[1.430641307, 1.502173372], [1.573705438, 1.645237503]]]], dtype=torch.float32)), dim=0) ), (LinearQuantMode.ASYMMETRIC_UNSIGNED, True, True, torch.cat((torch.tensor([[[[-1.089768056, -1.089768056], [1.055712804, 2.52008863]], [[0.238386762, 0.408663021], [0.681105035, 0.817326042]]]], dtype=torch.float32), torch.tensor([[[[7.59432114, 7.59432114], [7.59432114, 7.59432114]], [[1.191933811, 1.15787856], [1.123823308, 1.089768056]]]], dtype=torch.float32)), dim=0) ) ] ) def test_conv_layer_wrapper(conv_input, conv_weights, mode, clip_acts, per_channel_wts, expected_output): layer = torch.nn.Conv2d(conv_input.shape[1], expected_output.shape[1], conv_weights.shape[-1], padding=1, bias=False) layer.weight.data = conv_weights model = RangeLinearQuantParamLayerWrapper(layer, 8, 8, mode=mode, clip_acts=clip_acts, per_channel_wts=per_channel_wts) with pytest.raises(RuntimeError): model(conv_input) model.eval() output = model(conv_input) torch.testing.assert_allclose(output, expected_output) @pytest.fixture() def linear_input(): return torch.tensor([[-7, 5, 2, -3]], dtype=torch.float32) @pytest.fixture() def linear_weights(): return torch.tensor([[-1, 0.5, 0, 0.5], [-0.05, 0, 0.05, 0.1], [0.3, 0.6, -0.1, -0.2]], dtype=torch.float32) @pytest.fixture() def linear_bias(): return torch.tensor([-0.3, 0.1, -0.5], dtype=torch.float32) @pytest.mark.parametrize( "mode, clip_acts, per_channel_wts, expected_output", [ (LinearQuantMode.ASYMMETRIC_UNSIGNED, False, False, torch.tensor([[7.686200692, 0.241135708, 0.783691051]], dtype=torch.float32)), (LinearQuantMode.ASYMMETRIC_UNSIGNED, False, True, torch.tensor([[7.698823529, 0.241531719, 0.784978085]], dtype=torch.float32)) ] ) def test_linear_layer_wrapper(linear_input, linear_weights, linear_bias, mode, clip_acts, per_channel_wts, expected_output): layer = torch.nn.Linear(linear_input.shape[1], expected_output.shape[1], bias=True) layer.weight.data = linear_weights layer.bias.data = linear_bias model = RangeLinearQuantParamLayerWrapper(layer, 8, 8, mode=mode, clip_acts=clip_acts, per_channel_wts=per_channel_wts) with pytest.raises(RuntimeError): model(linear_input) model.eval() output = model(linear_input) torch.testing.assert_allclose(output, expected_output) ```
{ "source": "joaolcaas/PySyft", "score": 3 }
#### File: syft/grid/__init__.py ```python from .network import Network DEFAULT_NETWORK_URL = "ws://ec2-13-59-45-128.us-east-2.compute.amazonaws.com" def register(node_id: str, **kwargs): """ Add this process as a new peer registering it in the grid network. Args: node_id: Id used to identify this node. Returns: peer: Peer Network instance. """ if not kwargs: args = args = {"max_size": None, "timeout": 444, "url": DEFAULT_NETWORK_URL} else: args = kwargs peer = Network(node_id, **args) peer.start() return peer ```
{ "source": "JoaoLeal92/crawler_ps5", "score": 3 }
#### File: crawlerPS5/crawlerPS5/pipelines.py ```python import telegram_send from datetime import datetime class Crawlerps5Pipeline: def process_item(self, item, spider): if item['price']: telegram_send.send(messages=[f"Produto {item['name']} encontrado por {item['price']} na url abaixo: \n\n {item['url']}"]) else: current_date = datetime.now() current_hour = current_date.hour current_minute = current_date.minute # Checks if bot has run for 24h (every 7 am) if current_hour == 9 and current_minute <= 1: telegram_send.send(messages=["Bot ativo por 24h, produto ainda não encontrado"]) if not item['name']: telegram_send.send(messages=["Ocorreu um erro ao buscar o produto, verificar no site"]) ``` #### File: crawlerPS5/spiders/amazon.py ```python import scrapy from crawlerPS5.items import Crawlerps5Item class AmazonSpider(scrapy.Spider): name = 'amazon' allowed_domains = ['amazon.com.br'] user_agent = 'Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.157 Safari/537.36' start_urls = [ 'https://www.amazon.com.br/PlayStation-Console-PlayStation%C2%AE5/dp/B088GNRX3J/ref=sr_1_1?__mk_pt_BR=%C3%85M%C3%85%C5%BD%C3%95%C3%91&dchild=1&keywords=ps5&qid=1613470308&sr=8-1', # Ulr below used for testing # 'https://www.amazon.com.br/God-War-Hits-PlayStation-4/dp/B07YT1GLV9/?_encoding=UTF8&pd_rd_w=yRrM3&pf_rd_p=d2ea4cd9-b3fa-4bdb-ab83-24ca9c54ecbe&pf_rd_r=3JF03Z0NMXW0PXVM86Z1&pd_rd_r=b592df2f-51e0-4fe5-8ccd-e6ff9930134e&pd_rd_wg=CLvfl&ref_=pd_gw_ci_mcx_mr_hp_d' ] def parse(self, response): product_title = response.xpath('//span[@id="productTitle"]/text()').get() if product_title: product_title = product_title.strip() product_price = response.xpath('//span[@id="priceblock_ourprice"]/text()').get() ps5 = Crawlerps5Item(name=product_title, price=product_price, url=response.url) yield ps5 ```
{ "source": "JoaoLeal92/crawler_ps5_selenium", "score": 3 }
#### File: crawler_ps5_selenium/scripts/amazon_product.py ```python from selenium.common.exceptions import NoSuchElementException from selenium import webdriver class Product: def __init__(self, product_url): self.url = product_url self.name = None self.price = None def get_product_feature(self, driver, tag, tag_attr, tag_attr_value): try: product_feat_element = driver.find_element_by_xpath( f'//{tag}[@{tag_attr}="{tag_attr_value}"]') product_feat = product_feat_element.text return product_feat except NoSuchElementException: return None except Exception as e: # Enviar mensagem de alerta telegram contendo a descrição do erro print(f'Ocorreu o seguinte erro: {e}') ```
{ "source": "joaoleveiga/feedzai-openml-python", "score": 3 }
#### File: resources/dummy_model/classifier.py ```python class Classifier(object): def __init__(self, target_value): self.target_value = target_value self.multiplier = [1, 0, 0] def classify(self, instances): return self.target_value def getClassDistribution(self, instances): return [self.multiplier] * len(instances) ```
{ "source": "joaolevi/payroll_v2", "score": 3 }
#### File: Company/Departments/HumanResourcers.py ```python import os, sys currentdir = os.path.dirname(os.path.realpath(__file__)) parentdir = os.path.dirname(currentdir) sys.path.append(parentdir) from RegisterTools.EmployeesRegister import EmployeesRegister from RegisterTools.TimeRegister import TimeRegister REGISTER = EmployeesRegister() class HumanResourcers(): def __init__(self): self.employeeTimeRegister = [] # Métodos de acesso def get_employeeTimeRegister(self): return self.employeeTimeRegister def set_employeeTimeRegister(self, emp_id, date, workedHours): if REGISTER.employee_finder(emp_id): tr = TimeRegister(emp_id, date, workedHours) self.employeeTimeRegister.append(tr) print(tr) else: print("\n\nID nao encontrado ou nao existe\n\n") # Funções específicas def show_employees(self): print(REGISTER.get_employees_list()) def add_employee(self, emp_type, name, rg, adress, hour_value=None, wage=None): return REGISTER.add_employee(emp_type, name, rg, adress, hour_value, wage) def remove_employee_hr(self, emp_id): REGISTER.remove_employee(emp_id) def change_employee_details(self, emp_id, emp_t=None, name=None, rg=None, adress=None, hour_value=None, wage=None): emp = REGISTER.change_employee_details(emp_id, emp_t, name, rg, adress, hour_value, wage) print("\n\nAlteracao bem sucedida!") self.show_full_employee_details(emp_id=emp.id) def show_full_employee_details(self, emp_id): i = REGISTER.employee_finder(emp_id) if i: emp = REGISTER.employees_list[i] print("\n\nID:",emp.id,"\nTipo de Empregado:",emp.__class__.__name__, "\nNome:", emp.name,"\nRG:", emp.rg,"\nEndereco", emp.adress, "\n\n") else: print("\n\nEmpregado não encontrado!!\n\n") ``` #### File: Company/RegisterTools/Sales.py ```python class Sales: def __init__(self, date, value, emp_id, comission): self.__date = date self.__value = value self.__seller = emp_id self.__comission = comission def get_date(self): return self.__date def set_date(self, new_date): self.__date = new_date def get_value(self): return self.__value def set_value(self, new_value): self.__value = new_value def get_seller(self): return self.__seller def set_seller(self, new_seller): self.__seller = new_seller def get_comission(self): return self.__comission def set_comission(self, new_comission): self.__comission = new_comission def __repr__(self): return "Data: %s ID: %s Valor: %.2f Comissao: %.2f\n" %(self.__date, self.__seller, self.__value, self.__comission) ``` #### File: Company/RegisterTools/TimeRegister.py ```python class TimeRegister: def __init__(self, emp_id, date, hours): self.emp_id = emp_id self.date = date self.hours = hours def get_emp_id(self): return self.emp_id def set_emp_id(self, new_id): self.emp_id = new_id def get_date(self): return self.__date def set_date(self, new_date): self.__date = new_date def get_hours(self): return self.__hours def set_hours(self, new_hours): self.__hours = new_hours def get_empTimeRegisters(self): return self.employeesTimeRegisters def set_to_clear_registers(self): self.employeesTimeRegisters = [] def __repr__(self): return "\nid: %i, data: %s -- %s horas\n\n" %(self.emp_id, self.date, self.hours) ``` #### File: src/PayMethods/PayMethod.py ```python class PayMethod(): def __init__(self, value, date): self.__value = value self.__date = date def get_value(self): return self.__value def set_value(self, new_value): self.__value = new_value def get_date(self): return self.__date def set_date(self, new_date): self.__date = new_date ``` #### File: UI/DepartamentsUI/HumanResourcersUI.py ```python import os, sys currentdir = os.path.dirname(os.path.realpath(__file__)) parentdir = os.path.dirname(currentdir) sys.path.append(parentdir) from MenuOfChoices import MenuOfChoices MENU_OF_CHOICES = MenuOfChoices() class HumanResourcersUI(): def __init__(self): pass def add_employee_ui(HumanResourcers, Finances, Administration): wage, hour_value = None, None name = input("Nome: ") rg = input("Rg: ") adress = input("Endereço: ") emp_type = MENU_OF_CHOICES.menu_employee_types() if emp_type == "Hourly": hour_value = float(input("Valor da hora de trabalho: ")) else: wage = float(input("Salario: ")) bankID, agency, account = MENU_OF_CHOICES.fill_in_bank_data() paymentType = MENU_OF_CHOICES.menu_payment_types() emp_id = HumanResourcers.add_employee(emp_type, name, rg, adress, hour_value, wage) Administration.add_employeePayDate(emp_id, emp_type) Finances.add_employee_finances(emp_id, 0, bankID, agency, account, paymentType) HumanResourcers.show_full_employee_details(emp_id) return HumanResourcers, Finances, Administration def employee_remove_ui(HumanResourcers, Finances, Administration): emp_id = int(input("ID do empregado: ")) HumanResourcers.remove_employee_hr(emp_id) Finances.remove_employee_fin(emp_id) Administration.remove_employee_adm(emp_id) return HumanResourcers, Finances, Administration def change_employee_datails_ui(HumanResourcers, Finances): escolha = -1 emp_type, name, adress, rg, bankID, agency, account, paymentMethod, new_wage, hour_value = None, None, None, None, None, None, None, None, None, None emp_id = int(input("ID do empregado: ")) while (escolha != 10): escolha = MENU_OF_CHOICES.menu_change_emp_details() if escolha == 1: emp_type = MENU_OF_CHOICES.menu_employee_types() elif escolha == 2: name = str(input("Nome: ")) elif escolha == 3: rg = input("RG: ") elif escolha == 4: adress = input("Endereco: ") elif escolha == 5: bankID, agency, account = MENU_OF_CHOICES.fill_in_bank_data() elif escolha == 6: paymentMethod = MENU_OF_CHOICES.menu_payment_types() elif escolha == 7: new_wage = float(input("Novo salario: ")) elif escolha == 8: hour_value = float(input("Valor da Hora de trabalho: ")) elif escolha == 9: HumanResourcers.change_employee_details(emp_id, emp_type, name, rg, adress, hour_value, new_wage) Finances.change_emp_fin_data(emp_id, bankID, agency, account, paymentMethod) return HumanResourcers, Finances else: return def time_register(HumanResourcers): emp_id = int(input("ID do empregado: ")) date = MENU_OF_CHOICES.fill_in_date_format() worked_hours = float(input("Horas trabalhadas: ")) HumanResourcers.set_employeeTimeRegister(emp_id, date, worked_hours) return HumanResourcers ```
{ "source": "joaolevi/Projeto_de_software_2020.1", "score": 3 }
#### File: src/Tax/Tax.py ```python class Tax: def __init__(self, value): self.__value = value def get_value(self): return self.__value def set_value(self, new_value): self.__value = new_value ```
{ "source": "joaolima16/Projeto-InterMySql", "score": 3 }
#### File: Projeto-InterMySql/Trabalho interpolador banco de dados/getExcel.py ```python from openpyxl import Workbook, load_workbook from openpyxl.utils import get_column_letter import json wb = load_workbook('tabelaCarros.xlsx') wb = wb.active # Pergunta quantidade de colunas qtdCol = int(input("Insira a quantidade de colunas da tabela: ")) qtdLinhas = int(input("Insira a quantidade de linhas da tabela: ")) dados = {} for col in range(0,qtdCol): letra = 65 + col letra = chr(letra) celula = f"{letra}1" informacoesCelula = [] for lin in range(2,qtdLinhas+1): valorCol = f"{letra}{lin}" informacoesCelula.append(wb[valorCol].value) dados[wb[celula].value] = informacoesCelula dadosTratados = [] def formataJson(): i = 0 for linhas in range(1,qtdLinhas): arrayInfosTemp = [] arrayIndex = [] objetoLinha = {} for colunas in range(0,qtdCol): letra = 65 + colunas letra = chr(letra) celulaCampo = f"{letra}1" arrayIndex.append(wb[celulaCampo].value) arrayInfosTemp.append(dados[wb[celulaCampo].value][i]) for infos in range(0,len(arrayIndex)): objetoLinha[arrayIndex[infos]] = arrayInfosTemp[infos] dadosTratados.append(objetoLinha) i = i + 1 formataJson() arquivo = open("InfosExcel.json",'w') json.dump(dadosTratados,arquivo,indent=4) ```
{ "source": "joaolima-code/thunder-hawks-arpia", "score": 4 }
#### File: Atividade 11/1.3/tarefa.py ```python def eh_primo(num): if (num <= 0): return False if (num == 2): return True if (num%2 == 0): return False raiz = int(num**0.5) for i in range(3, (raiz+1), 2): if (num%i == 0): return False return True num = int(input("Digite o numero: ")) print("Numero digitado: {}".format(num)) print("E primo? {}".format(eh_primo(num))) ```
{ "source": "joaolisboa/PiCaApp", "score": 2 }
#### File: PiCaApp/actions/Capture.py ```python class Capture: def __init__(self, camera): self.camera = camera def run(self): return self.camera.capture() ``` #### File: PiCaApp/api/routes.py ```python from __main__ import app from flask import request @app.route('/start', methods=['POST']) def start(): camera = app.config['SHARED'].camera requestData = request.get_json() camera.start(requestData, warmup=True) return ('', 200) @app.route('/stop', methods=['POST']) def stop(): camera = app.config['SHARED'].camera camera.stop() return ('', 200) @app.route('/capture-photo', methods=['POST']) def capturePhoto(): camera = app.config['SHARED'].camera filename = camera.action('capture').run() return (filename, 200) @app.route('/record-video', methods=['POST']) def recordVideo(): camera = app.config['SHARED'].camera filename = camera.action('record').run() return (filename, 200) @app.route('/set-option', methods=['POST']) def setOption(): requestData = request.get_json() if 'option' not in requestData: return ('Missing option parameter', 400) if 'value' not in requestData: return ('Missing value parameter', 400) camera = app.config['SHARED'].camera result = camera.option(requestData['option'], requestData['value']).run() return (result, 200) ``` #### File: PiCaApp/configs/CameraConfig.py ```python from configs.Config import Config class CameraConfig(Config): config = [] fullscreen = False previewWidth = 480 previewHeight = 320 x = 0 y = 0 def __init__(self): Config.__init__(self, '/camera_config.json') def previewWindow(self): return (self.x, self.y, self.previewWidth, self.previewHeight) def getPreviewConfig(self, config): if config: if 'fullscreen' in config: self.fullscreen = config['fullscreen'] if 'window' in config or self.fullscreen == False: # preferably use max width instead of width and height # a max width will allow to properly determine the UI dimensions if 'max_width' in config['window']: self.previewWidth = config['window']['max_width'] self.previewHeight = round(self.previewWidth / (4/3)) else: self.previewWidth = config['window']['width'] self.previewHeight = config['window']['height'] if 'x' in config['window']: self.x = config['window']['x'] if 'y' in config['window']: self.y = config['window']['y'] return self.previewWindow() cameraConfig = CameraConfig() ``` #### File: joaolisboa/PiCaApp/Utils.py ```python import os def wakeDisplay(): os.system('DISPLAY=:0 xset s reset') ```