metadata
dict
text
stringlengths
60
3.49M
{ "source": "joegomes/protein-transformer", "score": 2 }
#### File: protein-transformer/protein_transformer/losses.py ```python import numpy as np import prody as pr import torch import wandb import protein_transformer.protein.Structure from protein_transformer.protein.Sequence import VOCAB from protein_transformer.protein.Structure import NUM_PREDICTED_ANGLES, \ NUM_PREDICTED_COORDS, SC_ANGLES_START_POS from .protein.structure_utils import get_backbone_from_full_coords def combine_drmsd_mse(d, mse, w=.5, lndrmsd_norm=0.02, mse_norm=0.01, log=True): """ Returns a combination of drmsd and mse loss that first normalizes their zscales, and then computes w * drmsd + (1 - w) * mse. """ d = w * (d / lndrmsd_norm) mse = (1 - w) * (mse / mse_norm) if log: wandb.log({"MSE Weight": mse, "DRMSD Weight": d}, commit=False) return d + mse def inverse_trig_transform(t): """ Given a (BATCH x L X NUM_PREDICTED_ANGLES ) tensor, returns (BATCH X L X NUM_PREDICTED_ANGLES) tensor. Performs atan2 transformation from sin and cos values. """ t = t.view(t.shape[0], -1, NUM_PREDICTED_ANGLES, 2) t_cos = t[:, :, :, 0] t_sin = t[:, :, :, 1] t = torch.atan2(t_sin, t_cos) return t def remove_sos_eos_from_input(input_seq): """ Given a sequence of integers that may be surrounded with EOS/SOS characters, returns the sequence without those characters. """ start_idx = 1 if input_seq[0] == VOCAB.sos_id else 0 end_idx = -1 if input_seq[-1] == VOCAB.eos_id else None return input_seq[start_idx : end_idx] def drmsd_work(pred_ang, true_crd, input_seq, return_rmsd, do_backward=True, backbone_only=False): """ A version of drmsd loss meant to be used in parallel. Operates on a tuple of predicted angles, coordinates, and sequence. Works for 1 protein at a time. """ # Move numpy arrays to torch tensors pred_ang, true_crd, input_seq = torch.tensor(pred_ang), torch.tensor(true_crd), torch.tensor(input_seq) # Record leaf-node pointer to access gradients at end pred_ang.requires_grad_() starting_ang = pred_ang # Remove batch-level masking batch_mask = input_seq.ne(VOCAB.pad_id) input_seq = input_seq[batch_mask] true_crd = true_crd[:input_seq.shape[0] * NUM_PREDICTED_COORDS] # Compute coordinates pred_crd = angles_to_coords(pred_ang, input_seq) if backbone_only: pred_crd = get_backbone_from_full_coords(pred_crd) true_crd = get_backbone_from_full_coords(true_crd) # Remove coordinate-level masking for missing atoms true_crd_non_nan = torch.isnan(true_crd).eq(0) pred_crds_masked = pred_crd[true_crd_non_nan].reshape(-1, 3) true_crds_masked = true_crd[true_crd_non_nan].reshape(-1, 3) # Compute drmsd between existing atoms only loss = drmsd(pred_crds_masked, true_crds_masked) l_normed = loss / pred_crds_masked.shape[0] # Repeat above for bb only pred_crd_bb = get_backbone_from_full_coords(pred_crd) true_crd_bb = get_backbone_from_full_coords(true_crd) true_crd_bb_non_nan = torch.isnan(true_crd_bb).eq(0) pred_crd_bb_masked = pred_crd_bb[true_crd_bb_non_nan].reshape(-1, 3) true_crd_bb_masked = true_crd_bb[true_crd_bb_non_nan].reshape(-1, 3) bb_loss = drmsd(pred_crd_bb_masked, true_crd_bb_masked) bb_loss_normed = bb_loss / pred_crd_bb_masked.shape[0] if do_backward: l_normed.backward() if return_rmsd: return starting_ang.grad, loss.item(), l_normed.item(), bb_loss.item(), bb_loss_normed.item(), \ rmsd(pred_crds_masked.data.numpy(), true_crds_masked.data.numpy()) else: return starting_ang.grad, loss.item(), l_normed.item(), bb_loss.item(), bb_loss_normed.item() def angles_to_coords(angles, seq, remove_batch_padding=False): """ Convert torsional angles to coordinates. """ pred_ang, input_seq = angles, seq if remove_batch_padding: # Remove batch-level masking batch_mask = input_seq.ne(VOCAB.pad_id) input_seq = input_seq[batch_mask] # Remove SOS and EOS characters if present input_seq = remove_sos_eos_from_input(input_seq) pred_ang = pred_ang[:input_seq.shape[0]] # Generate coordinates return protein_transformer.protein.Structure.generate_coords(pred_ang, input_seq, torch.device("cpu")) def parallel_coords_only(ang, seq): coords = angles_to_coords(ang, seq) return coords def drmsd_work_wrapper(ang_crd_seq_retrmsd_doback_bbonly): """ Unpacks arguments for the drmsd_work function. Useful for Pool.map(). Parameters ---------- ang_crd_seq_retrmsd_doback_bbonly : tuple """ ang, crd, seq, return_rmsd, do_backward, backbone_only = ang_crd_seq_retrmsd_doback_bbonly return drmsd_work(ang, crd, seq, return_rmsd, do_backward, backbone_only) def compute_batch_drmsd(pred_angs, true_crds, input_seqs, device=torch.device("cpu"), return_rmsd=False, do_backward=False, retain_graph=False, pool=None, backbone_only=False): """ Calculate DRMSD loss by first generating predicted coordinates from angles. Then, predicted coordinates are compared with the true coordinate tensor provided to the function. """ pred_angs, true_crds, input_seqs = pred_angs.to(device), true_crds.to(device), input_seqs.to(device) pred_angs = inverse_trig_transform(pred_angs) # Compute drmsd in parallel over the batch if pool is not None: results = pool.map(drmsd_work_wrapper, zip(pred_angs.detach().numpy(), true_crds.detach().numpy(), input_seqs.detach().numpy(), [return_rmsd]*pred_angs.shape[0], [do_backward]*pred_angs.shape[0], [backbone_only]*pred_angs.shape[0])) else: results = (drmsd_work(ang.detach(), crd.detach(), seq.detach(), return_rmsd, do_backward, backbone_only) for ang, crd, seq in zip(pred_angs, true_crds, input_seqs)) # Unpack the multiprocessing results grads, losses, ln_losses, bb_losses, bb_ln_losses, rmsds = [], [], [], [], [], [] for r in results: if len(r) == 6: grad, l, ln, bb_l, bb_ln, rmsd_val = r rmsds.append(rmsd_val) else: grad, l, ln, bb_l, bb_ln = r grads.append(grad) losses.append(l) ln_losses.append(ln) bb_losses.append(bb_l) bb_ln_losses.append(bb_ln) if do_backward: pred_angs.backward(gradient=torch.stack(grads), retain_graph=retain_graph) if return_rmsd: return np.mean(losses), np.mean(ln_losses), np.mean(bb_losses), np.mean(bb_ln_losses), np.mean(rmsds) else: return np.mean(losses), np.mean(ln_losses), np.mean(bb_losses), np.mean(bb_ln_losses) def mse_over_angles(pred, true, bb_only=False, sc_only=False): """Returns the mean squared error between two tensor batches. Given a predicted angle tensor and a true angle tensor (batch-padded with zeros, and missing-item-padded with nans), this function first removes batch then item padding before using torch's built-in MSE loss function. Args: pred, true (np.ndarray): 4-dimensional tensors Returns: MSE loss between true and pred. """ assert len(pred.shape) == 3, "This function must operate on a batch of angles." # Slice off appropriate angles for evaluation, depending on whether or not # the input is in sin/cos terms, or radians if bb_only and pred.shape[-1] == NUM_PREDICTED_ANGLES * 2: pred = pred[:,:,:SC_ANGLES_START_POS*2] true = true[:,:,:SC_ANGLES_START_POS*2] elif bb_only and pred.shape[-1] == NUM_PREDICTED_ANGLES: pred = pred[:,:,:SC_ANGLES_START_POS] true = true[:,:,:SC_ANGLES_START_POS] elif sc_only and pred.shape[-1] == NUM_PREDICTED_ANGLES * 2: pred = pred[:,:,SC_ANGLES_START_POS * 2:] true = true[:,:,SC_ANGLES_START_POS * 2:] elif sc_only and pred.shape[-1] == NUM_PREDICTED_ANGLES: pred = pred[:, :, SC_ANGLES_START_POS:] true = true[:, :, SC_ANGLES_START_POS:] elif not (not bb_only and not sc_only): print(pred.shape) raise Exception("Unknown angle tensor shape.") # Remove batch padding ang_non_zero = true.ne(0).any(dim=2) tgt_ang_non_zero = true[ang_non_zero] # Remove missing angles ang_non_nans = torch.isnan(tgt_ang_non_zero).eq(0) return torch.nn.functional.mse_loss(pred[ang_non_zero][ang_non_nans], true[ang_non_zero][ang_non_nans]) def mse_over_angles_numpy(pred, true): """ Numpy version of mse_over_angles. Given a predicted angle tensor and a true angle tensor (batch-padded with zeros, and missing-item-padded with nans), this function first removes batch then item padding before using torch's built-in MSE loss function. Args: pred true (np.ndarray): 4-dimensional tensors Returns: MSE loss between true and pred. """ return mse_over_angles(torch.tensor(pred), torch.tensor(true)).numpy() def pairwise_internal_dist(x): """ Returns all pairwise distances between points in a coordinate tensor. An implementation of cdist (pairwise distances between sets of vectors) from user jacobrgardner on github. Not implemented for batches. https://github.com/pytorch/pytorch/issues/15253 Args: x (torch.Tensor): coordinate tensor with shape (L x 3) Returns: res (torch.Tensor): a distance tensor comparing all (L x L) pairs of points """ x1, x2 = x, x assert len(x1.shape) == 2, "Pairwise internal distance method is not " \ "implemented for batches." x1_norm = x1.pow(2).sum(dim=-1, keepdim=True) # TODO: experiment with alternative to pow, remove duplicated norm res = torch.addmm(x1_norm.transpose(-2, -1), x1, x2.transpose(-2, -1), alpha=-2).add_(x1_norm) res = res.clamp_min_(1e-30).sqrt_() return res def drmsd(a, b): """ Returns distance root-mean-squared-deviation between tensors a and b. Given 2 coordinate tensors, returns the dRMSD between them. Both tensors must be the exact same shape. It works by creating a mask of the upper-triangular indices of the pairwise distance matrix (excluding the diagonal). Then, the resulting values are compared with Pytorch's MSE loss. Args: a, b (torch.Tensor): coordinate tensor with shape (L x 3). Returns: res (torch.Tensor): DRMSD between a and b. """ a_ = pairwise_internal_dist(a) b_ = pairwise_internal_dist(b) i = torch.triu_indices(a_.shape[0], a_.shape[1], offset=1) mse = torch.nn.functional.mse_loss(a_[i[0], i[1]].float(), b_[i[0], i[1]].float()) res = torch.sqrt(mse) return res def rmsd(a, b): """ Returns the RMSD between two sets of coordinates. """ t = pr.calcTransformation(a, b) return pr.calcRMSD(t.apply(a), b) ``` #### File: protein_transformer/models/ModelPrediction.py ```python from protein_transformer.losses import inverse_trig_transform from protein_transformer.losses import angles_to_coords class ModelPrediction(object): """ Represents a prediction from a model, can be transformed as needed. """ def __init__(self, input_sequence, raw_model_output, modality="sincos"): self.input_sequence = input_sequence self.raw_model_output = raw_model_output self.modality = "sincos" self.data = raw_model_output def to_radians(self): """ Modifies data to angles. Returns data. """ if self.modality == "radians": return self.data elif self.modality == "sincos": self.data = inverse_trig_transform(self.data) self.modality = "radians" return self.data else: raise NotImplementedError def to_coordinates(self): """ Modifies data to coordinates. Returns data. """ if self.modality == "coords": return self.data else: self.to_radians() self.data = angles_to_coords(self.data) self.modality = "coords" return self.data ``` #### File: models/transformer/Encoder.py ```python import torch from .Attention import MultiHeadedAttention from .Sublayers import PositionwiseFeedForward, PositionalEncoding, \ SublayerConnection, Embeddings class Encoder(torch.nn.Module): """ Transformer encoder model. """ def __init__(self, din, dm, dff, n_heads, n_enc_layers, max_seq_len, dropout): super(Encoder, self).__init__() self.din = din self.dm = dm self.dff = dff self.n_heads = n_heads self.n_enc_layers = n_enc_layers self.max_seq_len = max_seq_len self.emb_dropout = torch.nn.Dropout(dropout) self.input_embedding = Embeddings(self.din, self.dm) self.positional_enc = PositionalEncoding(dm, dropout, max_seq_len) self.enc_layers = torch.nn.ModuleList([EncoderLayer(dm, dff, n_heads, dropout) for _ in range(self.n_enc_layers)]) def forward(self, src_seq, src_mask): enc_output = self.input_embedding(src_seq) enc_output = self.emb_dropout(enc_output + self.positional_enc(enc_output)) for enc_layer in self.enc_layers: enc_output = enc_layer(enc_output, src_mask) return enc_output class EncoderLayer(torch.nn.Module): """ Transformer encoder layer. """ def __init__(self, dm, dff, n_heads, dropout): super(EncoderLayer, self).__init__() self.dm = dm self.dff = dff self.n_heads = n_heads self.self_attn = MultiHeadedAttention(dm, n_heads) self.pwff = PositionwiseFeedForward(dm, dff, dropout) self.sublayer_connections = torch.nn.ModuleList([SublayerConnection(dm, dropout) for _ in range(2)]) def forward(self, enc_input, enc_input_mask): enc_output = self.sublayer_connections[0](enc_input, lambda x: self.self_attn(x, x, x, mask=enc_input_mask)) enc_output = self.sublayer_connections[1](enc_output, self.pwff) return enc_output ``` #### File: models/transformer/Sublayers.py ```python import numpy as np import torch class SublayerConnection(torch.nn.Module): """ Does residual + layer norm of input. Modular design inspired from Harvard NLP. http://nlp.seas.harvard.edu/2018/04/03/attention.html#encoder-and-decoder-stacks """ def __init__(self, size, dropout=0.1): super(SublayerConnection, self).__init__() self.norm = torch.nn.LayerNorm(size) self.dropout = torch.nn.Dropout(dropout) def forward(self, layer_input, layer): return layer_input + self.dropout(layer(self.norm(layer_input))) class PositionwiseFeedForward(torch.nn.Module): """ Position-wise Feed Forward network sublayer for the Transformer model. """ def __init__(self, dm, dh, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.dm = dm self.dh = dh self.layer1 = torch.nn.Linear(dm, dh) self.layer2 = torch.nn.Linear(dh, dm) self.relu = torch.nn.ReLU() self.dropout = torch.nn.Dropout(dropout) def forward(self, input_seq): return self.layer2(self.dropout(self.relu(self.layer1(input_seq)))) class PositionalEncoding(torch.nn.Module): """ Positional encoding layer for the Transformer model. From <NAME>, https://github.com/harvardnlp/annotated-transformer/blob/master/The%20Annotated%20Transformer.ipynb """ def __init__(self, dm, dropout, max_seq_len): super(PositionalEncoding, self).__init__() self.dropout = torch.nn.Dropout(p=dropout) # Compute the positional encodings once in log space. pe = torch.zeros(max_seq_len, dm) position = torch.arange(0., max_seq_len).unsqueeze(1) div_term = torch.exp(torch.arange(0., dm, 2) * -(np.log(10000.0) / dm)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): x = x + torch.autograd.Variable(self.pe[:, :x.size(1)], requires_grad=False) return self.dropout(x) class Embeddings(torch.nn.Module): def __init__(self, vocab, d_model): super(Embeddings, self).__init__() self.emb = torch.nn.Embedding(vocab, d_model) self.d_model = d_model def forward(self, x): return self.emb(x) * np.sqrt(self.d_model) if __name__ == "__main__": seq = torch.ones(8, 7, 64) penc = PositionalEncoding(64, 300) print(penc(seq).shape) print(penc(seq)) ``` #### File: protein-transformer/scripts/create_development_datasets.py ```python import datetime import sys import torch from glob import glob from protein_transformer.dataset import VALID_SPLITS import os def make_dev_dataset(data, dev_ids): # Initialize empty dictionary new_data = {"train": {"ang": [], "ids": [], "crd": [], "seq": []}, "test": {"ang": [], "ids": [], "crd": [], "seq": []}, "pnids": {}} d = {f"valid-{x}": {"ang": [], "ids": [], "crd": [], "seq": []} for x in VALID_SPLITS} new_data.update(d) # Add each id to every subset in the new dataset dictionary completed = 0 for did in dev_ids: try: target_subdict, target_idx = data["pnids"][did]["subset"], data["pnids"][did]["idx"] except KeyError: print(f"\t{did} not found in processed data.") continue for subdict in ["train", "test"] + [f"valid-{split}" for split in VALID_SPLITS]: new_data[subdict]["seq"].append(data[target_subdict]["seq"][target_idx]) new_data[subdict]["ang"].append(data[target_subdict]["ang"][target_idx]) new_data[subdict]["crd"].append(data[target_subdict]["crd"][target_idx]) new_data[subdict]["ids"].append(did) new_data["pnids"][did] = {"idx": len(new_data["train"]["seq"]) -1, "subset": "train"} completed += 1 # Copy any remaining data from the original dictionary other_items = {k: v for k, v in data.items() if k not in ["train", "test"] + [f"valid-{split}" for split in VALID_SPLITS]} new_data.update(other_items) new_data["date"] = datetime.datetime.now().strftime("%I:%M%p on %B %d, %Y") print(f"\t{completed} completed.") return new_data if __name__ == "__main__": _, dataset = sys.argv data = torch.load(dataset) dev_datasets = glob("../data/development/*.txt") for dev_dataset_file in dev_datasets: with open(dev_dataset_file, "r") as f: dev_dataset_ids = f.read().splitlines() print(f"Processing {len(dev_dataset_ids)} ProteinNet IDs from {os.path.basename(dev_dataset_file)}.") new_dataset = make_dev_dataset(data, dev_dataset_ids) torch.save(new_dataset, dev_dataset_file.replace(".txt", ".pt")) ``` #### File: protein-transformer/scripts/proteinnet_to_data.py ```python import torch import argparse import re import prody as pr ASTRAL_FILE = "/home/jok120/proteinnet/data/dir.cla.scope.2.07-stable.txt" def get_pdbid_from_astral_db(domain): """ Given an ASTRAL parseable file and an ASTRAL domain name, this function returns the (pdbid, description) associated with it. """ pattern = domain + r"\s+(?P<pdbid>\S{4})\s+(?P<desc>\S+)" m = re.search(pattern, ASTRAL_FILE_DATA) print(domain, m.group('pdbid'), m.group('desc')) return m.group('pdbid'), m.group('desc') def main(): d = torch.load(args.input_pn_dict) for pnid, data in d.items(): try: pdb_id, model_id, chain_id = pnid.split("_") except ValueError: print(pnid) continue print(pdb_id, model_id, chain_id) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Parses the ProteinNet dictionary for PDB IDs so they may be " "downloaded and processed for the all-atom ProteinTransformer.") parser.add_argument('input_pn_dict', type=str, help='Path to PN-parsed dictionary file') parser.add_argument("--pdb_dir", default="/home/jok120/pdb/", type=str, help="Path for ProDy-downloaded PDB files.") args = parser.parse_args() with open(ASTRAL_FILE, "r") as f: ASTRAL_FILE_DATA = f.read() pr.pathPDBFolder(args.pdb_dir) main() ``` #### File: scripts/tests/align_dataset_to_proteinnet_test.py ```python import sys sys.path.append("scripts") from align_dataset_to_proteinnet import * # from ..align_dataset_to_proteinnet import * import pytest global_aligner = init_aligner() @pytest.fixture def aligner(): return global_aligner @pytest.mark.parametrize("target, mobile, mask",[ ("AAAAAAAAGAPAAAAAAA", "AAAAAAAAAAAAAAA", "++++++++---+++++++"), ("STARTAAAAAAAAAGAPAAAAAA", "AAAAAAAAAAAAAAA", "-----+++++++++---++++++"), ("STARTAAAAAAAGAAAAPAAAAAAAAAEND", "AAAAAAAAAAAAAAAA", '-----+++++++------+++++++++---') ]) def test_get_mask_from_alignment(target, mobile, mask): a = init_aligner() a1 = a.align(target, mobile)[0] computed_mask = get_mask_from_alignment(a1) assert mask == computed_mask @pytest.mark.parametrize("pn_seq, my_seq, pn_mask", [ ("AAAAAAAAGAPAAAAAAA", "AAAAAAAAAAAAAAA", "++++++++---+++++++"), ("STARTAAAAAAAAAGAPAAAAAA", "AAAAAAAAAAAAAAA", "-----+++++++++---++++++"), ("STARTAAAAAAAGAAAAPAAAAAAAAAEND", "AAAAAAAAAAAAAAAA", '-----+++++++------+++++++++---') ]) def test_can_be_directly_merged(aligner, pn_seq, my_seq, pn_mask): assert can_be_directly_merged(aligner, pn_seq, my_seq, pn_mask)[0] @pytest.mark.parametrize("pn_seq, my_seq, pn_mask", [ ("AAAAAAAAGAPAAAAAAA", "AAAAAAAAAAAAAAAA", "++++++++---+++++++"), ("STARTAAAAAAAAAGAPAAAAAA", "AAAAAAAAAAAAAAA", "-----+++++++++---+++++-"), ("STARTAAAAAAAGAAAAPAAAAAAAAAEND", "AAAAAAAAAAAAAAAA", '-----+++++++--+---+++++++++---') ]) def test_not_can_be_directly_merged(aligner, pn_seq, my_seq, pn_mask): assert not can_be_directly_merged(aligner, pn_seq, my_seq, pn_mask)[0] ```
{ "source": "joegotflow83/guitar_tabs", "score": 3 }
#### File: guitar_tabs/main/views.py ```python from django.views.generic import TemplateView from bs4 import BeautifulSoup import requests class Search(TemplateView): """Page to display search for guitar tabs""" template_name = 'main/index.html' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) search = self.request.GET.get('search', False) contents = requests.get("http://www.guitartabs.cc/search.php?song={}".format(search)).content soup = BeautifulSoup(contents, "html.parser").find(class_='tabslist') context['songs'] = soup.prettify() return context class Tabs(TemplateView): """Display tabs from song""" template_name = 'main/tabs.html' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) song = requests.get("http://www.guitartabs.cc/{}".format(self.kwargs['url'])).content context['song'] = song soup = BeautifulSoup(song, "html.parser") context['tabs'] = [tab.prettify() for tab in soup.find_all("pre")] return context ```
{ "source": "joe-graham/asadbg", "score": 3 }
#### File: joe-graham/asadbg/curr_thread.py ```python try: import gdb except ImportError: print("[curr_thread] Not running inside of GDB, exiting...") exit() import sys def get_inferior(): try: if len(gdb.inferiors()) == 0: print("No gdb inferior could be found.") return -1 else: inferior = gdb.inferiors()[0] return inferior except AttributeError: print("This gdb's python support is too old.") exit() def find_current_thread(): inf = get_inferior() dat = gdb.execute("info threads", False, True) lines = dat.split("\n") for L in lines: elts = L.split() if elts[0] == "*": print("thread %s" % elts[1]) break print("Finding current thread...") find_current_thread() ``` #### File: joe-graham/asadbg/find_lina_pid.py ```python try: import gdb except ImportError: print("[find_lina_pid] Not running inside of GDB, exiting...") exit() import sys def get_inferior(): try: if len(gdb.inferiors()) == 0: print("No gdb inferior could be found.") return -1 else: inferior = gdb.inferiors()[0] return inferior except AttributeError: print("This gdb's python support is too old.") exit() def find_lina_pid(): inf = get_inferior() pid = 0 found = 0 maxpids = 0x300 # usually lina is around 500-530 while pid < maxpids: #print("%d" % pid) pid += 1 dat = gdb.execute("info proc cmdline %d" % pid, False, True) #if "unable to open" not in dat: # print(dat) found = dat.find("lina'") if found != -1: idx1 = len("process ") idx2 = dat.find("\n") pid = dat[idx1:idx2] print("%d" % int(pid)) break print("Finding lina PID:") find_lina_pid() print("You can use the following to see the lina mapping: info proc mappings <pid>") ``` #### File: joe-graham/asadbg/ignore_errors.py ```python class IgnoreErrorsCommand (gdb.Command): """Execute a single command, ignoring all errors. Only one-line commands are supported. This is primarily useful in scripts.""" def __init__ (self): super (IgnoreErrorsCommand, self).__init__ ("ignore-errors", gdb.COMMAND_OBSCURE, # FIXME... gdb.COMPLETE_COMMAND) def invoke (self, arg, from_tty): try: gdb.execute (arg, from_tty) except: pass IgnoreErrorsCommand () ```
{ "source": "Joegratz/mqtt-home-automation", "score": 3 }
#### File: Joegratz/mqtt-home-automation/powermate2mqtt.py ```python import paho.mqtt.client as mqtt from powermate import Powermate, PowermateDelegate import time import json # Change the following line to include the Bluetooth address of your Powermate Bluetooth # To find the address, run: sudo hcitool lescan POwERMATE_ADDRESS = '00:12:92:08:2B:59' class PrintEvents(PowermateDelegate): def __init__(self, addr, mqttClient): self.addr = addr self.mqttClient = mqttClient def on_connect(self): self.mqttClient.publish('powermateBluetooth/status', json.dumps({'type': 'connected', 'address': self.addr})) def on_disconnect(self): self.mqttClient.publish('powermateBluetooth/status', json.dumps({'type': 'disconnected', 'address': self.addr})) def on_battery_report(self, val): self.mqttClient.publish('powermateBluetooth/status', json.dumps({'type': 'batteryPercentage', 'value': val})) def on_press(self): self.mqttClient.publish('powermateBluetooth/interaction', json.dumps({'type': 'buttonDown'})) def on_long_press(self, t): self.mqttClient.publish('powermateBluetooth/interaction', json.dumps({'type': 'buttonUp', 'pressDuration': t})) def on_clockwise(self): self.mqttClient.publish('powermateBluetooth/interaction', json.dumps({'type': 'turn', 'direction': 'clockwise', 'buttonPressed': False})) def on_counterclockwise(self): self.mqttClient.publish('powermateBluetooth/interaction', json.dumps({'type': 'turn', 'direction': 'counterclockwise', 'buttonPressed': False})) def on_press_clockwise(self): self.mqttClient.publish('powermateBluetooth/interaction', json.dumps({'type': 'turn', 'direction': 'clockwise', 'buttonPressed': True})) def on_press_counterclockwise(self): self.mqttClient.publish('powermateBluetooth/interaction', json.dumps({'type': 'turn', 'direction': 'counterclockwise', 'buttonPressed': True})) mqttClient = mqtt.Client() mqttClient.connect('127.0.0.1') mqttClient.loop_start() p = Powermate(POwERMATE_ADDRESS, PrintEvents(POwERMATE_ADDRESS, mqttClient)) while True: time.sleep(5) p.stop() ```
{ "source": "joe-greenawalt/skulpt", "score": 2 }
#### File: skulpt/doc/simple.py ```python from google.appengine.ext import webapp from google.appengine.ext.webapp.util import run_wsgi_app import os from django.utils import simplejson from google.appengine.ext import db class MainPage(webapp.RequestHandler): def get(self): self.response.headers['Content-Type'] = 'text/html' path = os.path.join(os.path.dirname(__file__), 'index.html') self.response.out.write(open(path).read()) class TurtlePage(webapp.RequestHandler): def get(self): self.response.headers['Content-Type'] = 'text/html' path = os.path.join(os.path.dirname(__file__), 'turtle.html') self.response.out.write(open(path).read()) class IdePage(webapp.RequestHandler): def get(self): self.response.headers['Content-Type'] = 'text/html' path = os.path.join(os.path.dirname(__file__), 'ide/index.html') self.response.out.write(open(path).read()) class TestResult(db.Model): browsername = db.StringProperty() browserversion = db.StringProperty() browseros = db.StringProperty() version = db.StringProperty() rc = db.StringProperty() results = db.TextProperty() date = db.DateTimeProperty(auto_now_add=True) class TestResults(webapp.RequestHandler): def post(self): data = simplejson.loads(self.request.body) tr = TestResult() tr.browsername = str(data['browsername']) tr.browserversion = str(data['browserversion']) tr.browseros = str(data['browseros']) tr.version = str(data['version']) tr.rc = str(data['rc']) tr.results = str(data['results']) tr.put() self.response.headers['Content-Type'] = 'application/json' self.response.out.write("{result:'ok'}") application = webapp.WSGIApplication( [('/', MainPage), ('/testresults', TestResults), ('/turtle', TurtlePage), ('/ide', IdePage) ], debug=False) def main(): run_wsgi_app(application) if __name__ == "__main__": main() ```
{ "source": "joegreene/deap-practice", "score": 3 }
#### File: deap-practice/src/make_algebraic.py ```python def add(a: str, b: str) -> str: '''Converts function with the format 'add(a, b)' to 'a + b'.''' return f'({a} + {b})' def neg(a: str) -> str: '''Converts function with the format 'neg(a)' to '-a'.''' return f'-{a}' def sub(a: str, b: str) -> str: '''Converts function with the format 'sub(a, b)' to 'a - b'.''' return f'({a} - {b})' def div(a: str, b: str) -> str: '''Converts function with the format 'div(a, b)' to 'a / b'.''' return f'({a} / {b})' def mul(a: str, b: str) -> str: '''Converts function with the format 'mul(a, b)' to 'a * b'.''' return f'({a} * {b})' def make_algebraic(candidate: 'deap.creator.Individual') -> str: '''Converts a candidate function (generated by deap.algorithms.eaSimple) to its algebraic form. This works with a little bit of eval trickery and recursion. For example, given the following winner candidate: add(mul(mul(x, x), x), 2) make_algebraic takes a depth-first approach and evaluates the expression as follows: add('mul(mul(x, x), x)' '2') > mul('mul(x, x)', 'x') > mul('x', 'x') = 'x * x' > mul('x * x', 'x') = 'x * x * x' add('x * x * x + 2') = 'x * x * x + 2' End result: 'x * x * x + 2' ''' x = 'x' # pylint: disable=unused-variable return eval(str(candidate)) ```
{ "source": "JoeGreiner/MorphologicalOperatorsDemo", "score": 4 }
#### File: MorphologicalOperatorsDemo/InteractiveBreak_Filtering/showAnswerFiltering.py ```python from IPython.display import display from ipywidgets import widgets button = widgets.Button(description="Click for answer") output = widgets.Output() display(button, output) already_clicked = False def on_button_clicked(b): global already_clicked, button if not already_clicked: already_clicked = True button.description = 'Answer:' with output: print('We added Salt & Pepper noise (minimum value – pepper – black pixels;' ' maximum value – salt – white pixels.\n\n' 'The median filter will sort the elements within the mask' ' and then return the center value of the sorted elements.\n\n' 'Therefore, by construction, it is unlikely that the median filter chooses a noisy pixel,\nas noisy pixels' ' are likely at the very begin/end of the sorted elements; and not a center pixel.') button.on_click(on_button_clicked) ``` #### File: InteractiveBreak_MorphologicalOps/helpers/morphology.py ```python import numpy as np from ipywidgets import widgets import matplotlib.pyplot as plt from itk import binary_dilate_image_filter,binary_morphological_closing_image_filter, binary_morphological_opening_image_filter, binary_erode_image_filter, GetArrayFromImage, GetImageFromArray, label_image_to_shape_label_map_filter class OpenCloseWidget(): def __init__(self): self.image = np.zeros((50,50), dtype=np.uint8) self.image[13, 13] = 255 self.image[20:30, 20:23] = 255 self.image[30, 21] = 255 self.image[31:40, 20:23] = 255 self.image_copy = self.image reset_button = widgets.Button(description='Reset Image') open_button = widgets.Button(description='Open') close_button = widgets.Button(description='Close') reset_button.on_click(self.reset) open_button.on_click(self.opening) close_button.on_click(self.closing) display(widgets.HBox([open_button, close_button, reset_button])) self.fig = plt.figure(figsize=(5,5)) self.img_obj = plt.imshow(self.image, origin='lower') plt.clim((0,255)) def opening(self, event): itk_image = GetImageFromArray(self.image) self.image = GetArrayFromImage(binary_morphological_opening_image_filter(itk_image)) self.img_obj.set_data(self.image) def closing(self, event): itk_image = GetImageFromArray(self.image) self.image = GetArrayFromImage(binary_morphological_closing_image_filter(itk_image)) self.img_obj.set_data(self.image) def reset(self, event): self.image = self.image_copy self.img_obj.set_data(self.image_copy) class DilateErodeWidget(): def __init__(self): self.image = np.zeros((50,50), dtype=np.uint8) self.image[13, 13] = 255 self.image[20:30, 20:23] = 255 self.image[30, 21] = 255 self.image[31:40, 20:23] = 255 self.image_copy = self.image reset_button = widgets.Button(description='Reset Image') dilate_button = widgets.Button(description='Dilate') erode_button = widgets.Button(description='Erode') dilate_button.on_click(self.dilate) erode_button.on_click(self.erode) reset_button.on_click(self.reset) display(widgets.HBox([dilate_button, erode_button, reset_button])) self.fig = plt.figure(figsize=(5,5)) self.img_obj = plt.imshow(self.image, origin='lower') plt.clim((0,255)) def dilate(self, event): itk_image = GetImageFromArray(self.image) self.image = GetArrayFromImage(binary_dilate_image_filter(itk_image)) self.img_obj.set_data(self.image) def erode(self, event): itk_image = GetImageFromArray(self.image) self.image = GetArrayFromImage(binary_erode_image_filter(itk_image)) self.img_obj.set_data(self.image) def reset(self, event): self.image = self.image_copy self.img_obj.set_data(self.image_copy) class Drawer(): def __init__(self, paint_width=1, paint_value = 255, erase_value=0): self.drawing = False self.paint_width = paint_width self.paint_value = paint_value self.erase_value = erase_value self.image = self.create_image() dilate_button = widgets.Button(description='Dilate') erode_button = widgets.Button(description='Erode') open_button = widgets.Button(description='Open') close_button = widgets.Button(description='Close') reset_button = widgets.Button(description='Reset Image') dilate_button.on_click(self.dilate) erode_button.on_click(self.erode) open_button.on_click(self.opening) close_button.on_click(self.closing) reset_button.on_click(self.reset) display(widgets.HBox([dilate_button,erode_button, open_button, close_button, reset_button])) self.fig = plt.figure(figsize=(5,5)) self.img_obj = plt.imshow(self.image, origin='lower') plt.clim((0,255)) plt.show() self.fig.canvas.mpl_connect('button_press_event', self.onclick) self.fig.canvas.mpl_connect('button_release_event', self.onrelease) self.fig.canvas.mpl_connect('motion_notify_event', self.onmove) def create_image(self): return np.zeros((100,100), dtype=np.uint8) def dilate(self, event): itk_image = GetImageFromArray(self.image) self.image = GetArrayFromImage(binary_dilate_image_filter(itk_image)) self.img_obj.set_data(self.image) def erode(self, event): itk_image = GetImageFromArray(self.image) self.image = GetArrayFromImage(binary_erode_image_filter(itk_image)) self.img_obj.set_data(self.image) def reset(self, event): self.image = self.create_image() self.img_obj.set_data(self.image) def opening(self, event): itk_image = GetImageFromArray(self.image) self.image = GetArrayFromImage(binary_morphological_opening_image_filter(itk_image)) self.img_obj.set_data(self.image) def closing(self, event): itk_image = GetImageFromArray(self.image) self.image = GetArrayFromImage(binary_morphological_closing_image_filter(itk_image)) self.img_obj.set_data(self.image) def onclick(self, event): self.drawing = True if event.button == 1: self.draw_point(int(event.xdata), int(event.ydata), self.paint_value) elif event.button == 3: self.draw_point(int(event.xdata), int(event.ydata), self.erase_value) def onmove(self, event): if event.button == 1: self.draw_point(int(event.xdata), int(event.ydata), self.paint_value) elif event.button == 3: self.draw_point(int(event.xdata), int(event.ydata), self.erase_value) def draw_point(self, ix, iy, value): if self.drawing == True: if self.paint_width == 0: self.image[iy, ix] = value self.img_obj._A.data[iy, ix] = value else: self.image[iy-self.paint_width : iy+self.paint_width, ix-self.paint_width : ix+self.paint_width] = value self.img_obj._A.data[iy-self.paint_width : iy+self.paint_width, ix-self.paint_width : ix+self.paint_width] = value plt.draw() def onrelease(self, event): self.drawing=False ```
{ "source": "joegrover/exercism", "score": 3 }
#### File: joegrover/exercism/mock_requests.py ```python import requests import pandas import random sv_df = pandas.read_csv("sample_variables.csv") host = "https://jgrover.hiring.ipums.org" usa_endpoint = host + "/publish_usa" nhgis_endpoint = host + "/publish_nhgis" samples = set(sv_df["sample_name"].to_list()) variables = set(sv_df["variable_mnemonic"].to_list()) data_tables = set(["1790_cPop.dt1", "1790_cPop.dt8", "1800_cPop.dt1", "1800_cPop.dt9"]) users = ["glip", "glop", "rocko", "heffer", "Filburt"] def mock_usa_request(repeats=2): k_s = random.randint(1, len(samples)) s = random.sample(samples, k=k_s) k_v = random.randint(1, len(variables)) v = random.sample(variables, k=k_v) u = random.choice(users) params = { "samples[]": s, "variables[]": v, "user": u, "submit": "Submit", } # XXX Need to repeat here until I figure out the whole client-only # -gets-every-other-message RabbitMQ issue. for _ in range(repeats): resp = requests.get(usa_endpoint, params=params) print(resp) return resp def mock_nhgis_request(repeats=1): k_d = random.randint(1, len(data_tables)) d = random.sample(data_tables, k=k_d) u = random.choice(users) params = { "data_tables[]": d, "user": u, "submit": "Submit", } # XXX Need to repeat here until I figure out the whole client-only # -gets-every-other-message RabbitMQ issue. for _ in range(repeats): resp = requests.get(nhgis_endpoint, params=params) print(resp) return resp ```
{ "source": "JoeGruffins/tinydecred", "score": 3 }
#### File: decred/util/encode.py ```python import struct from decred import DecredError NONE = "None".encode() def filterNone(b): """ If the provided argument is None, return the special None indicator bytes. Otherwise, the argument is returned directly. Args: b (bytes-like or None): The bytes to filter. Returns: bytes-like """ if b is None: return NONE return b def extractNone(b): """ If the provided bytes are the special None indicator, return None, else return the bytes. Args: b (bytes-like): The bytes to filter. Returns: (bytes-like or None) """ if b == NONE: return None return b def intToBytes(i, signed=False): """ Encodes an integer to bytes. Args: i (int): The integer. signed (bool): Whether to encode as a signed integer. Returns: bytearray: The encoded integer. """ length = ((i + ((i * signed) < 0)).bit_length() + 7 + signed) // 8 return bytearray(i.to_bytes(length, byteorder="big", signed=signed)) def intFromBytes(b, signed=False): """ Decodes an integer from bytes. Args: b (bytes-like): The encoded integer. signed (bool): Whether to decode as a signed integer. Returns: int: The decoded integer. """ return int.from_bytes(b, "big", signed=signed) def floatToBytes(flt): """ Encodes a float to bytes. Args: flt (float): The float to encode. Returns: bytearray: The encoded float. """ return bytearray(struct.pack("d", flt)) def floatFromBytes(b): """ Decode a float from bytes. Args: b (bytes-like): The float bytes to decode. Returns: float: The decoded float. """ return struct.unpack("d", b)[0] def boolToBytes(v): """ Encode the boolean value as a byte. Args: v (bool): A boolean to encode. Returns: int: A byte. """ return 0x01 if v else 0x00 def boolFromBytes(b): """ Decode the byte as True if 0x01, else False. Args: b (bytes-like): A length-1 byte buffer with the encoded boolean. Returns: bool: The decoded value. """ return b == 0x01 def decodeBA(b, copy=False): """ Decode into a bytearray. Args: b (str, bytes-like, ByteArray, int, list(int)): The value to decode to a bytearray. Strings are interpreted as hexadecimal. Integers are minimally encoded to an unsigned integer. Returns: bytearray: The decoded bytes. """ if isinstance(b, ByteArray): return bytearray(b.b) if copy else b.b if isinstance(b, bytearray): return bytearray(b) if copy else b if isinstance(b, bytes): return bytearray(b) if isinstance(b, int): return intToBytes(b) if b else bytearray([0]) if isinstance(b, str): return bytearray.fromhex(b) if hasattr(b, "__iter__"): return bytearray(b) raise TypeError("decodeBA: unknown type %s" % type(b)) class ByteArray: """ ByteArray is a bytearray manager. It implements a subset of bytearray's bitwise operators and provides some convenience decodings on the fly, so operations work with various types of input. Since bytearrays are mutable, ByteArray can also zero the internal value without relying on garbage collection. An important difference between ByteArray and bytearray is that an integer argument to ByteArray constructor will result in the shortest possible byte representation of the integer, where for bytearray an int argument results in a zero-valued bytearray of said length. To get a zero-valued or zero-padded ByteArray of length n, use the `length` keyword argument. """ def __init__(self, b=b"", copy=True, length=None): """ Set copy to False if you want to share the memory with another bytearray/ByteArray. If the type of b is not bytearray or ByteArray, copy has no effect. """ if length: self.b = decodeBA(ByteArray(bytearray(length)) | b, copy=False) else: self.b = decodeBA(b, copy=copy) @staticmethod def unblob(b): """Satisfies the encode.Blobber API""" return ByteArray(b) @staticmethod def blob(ba): """Satisfies the encode.Blobber API""" return ba.b def comp(self, a): """ comp gets the underlying bytearray and length of both this ByteArray and a. Args: a (ByteArray): The other ByteArray. Returns: bytearray: This ByteArray's bytearray. int: This ByteArray's length. bytearray: The other ByteArray's bytearray. int: The other ByteArray's length. """ a = decodeBA(a) aLen, bLen = len(a), len(self.b) if aLen > bLen: raise DecredError("decode: invalid length %i > %i" % (aLen, bLen)) return a, aLen, self.b, bLen def __lt__(self, a): return bytearray.__lt__(self.b, decodeBA(a)) def __le__(self, a): return bytearray.__le__(self.b, decodeBA(a)) def __eq__(self, a): try: return bytearray.__eq__(self.b, decodeBA(a)) except Exception: return False def __ne__(self, a): try: return bytearray.__ne__(self.b, decodeBA(a)) except Exception: return True def __ge__(self, a): return bytearray.__ge__(self.b, decodeBA(a)) def __gt__(self, a): return bytearray.__gt__(self.b, decodeBA(a)) def __repr__(self): return "ByteArray(" + self.hex() + ")" def __len__(self): return len(self.b) def __and__(self, a): a, aLen, b, bLen = self.comp(a) b = ByteArray(b) for i in range(bLen): b[bLen - i - 1] &= a[aLen - i - 1] if i < aLen else 0 return b def __iand__(self, a): a, aLen, b, bLen = self.comp(a) for i in range(bLen): b[bLen - i - 1] &= a[aLen - i - 1] if i < aLen else 0 return self def __or__(self, a): a, aLen, b, bLen = self.comp(a) b = ByteArray(b) for i in range(bLen): b[bLen - i - 1] |= a[aLen - i - 1] if i < aLen else 0 return b def __ior__(self, a): a, aLen, b, bLen = self.comp(a) for i in range(bLen): b[bLen - i - 1] |= a[aLen - i - 1] if i < aLen else 0 return self def __add__(self, a): return self.__iadd__(a) def __iadd__(self, a): """append the bytes and return a new ByteArray""" a = decodeBA(a) return ByteArray(self.b + a) def __getitem__(self, k): if isinstance(k, slice): return ByteArray(self.b[k.start : k.stop : k.step], copy=False) return self.b[k] def __setitem__(self, i, v): v = decodeBA(v, copy=False) if i + len(v) > len(self.b): raise DecredError("source bytes too long") for j in range(len(v)): self.b[i + j] = v[j] def __reversed__(self): return ByteArray(bytearray(reversed(self.b))) def __hash__(self): """Enables ByteArray to be a dict key.""" return hash(bytes(self.b)) def hex(self): """ A hexadecimal string representation of the bytes. Returns: str: The hex bytes. """ return self.b.hex() def rhex(self): """ A reversed hexadecimal string representation of the bytes. Returns: str: The hex bytes. """ return self.__reversed__().hex() def zero(self): """ Sets the bytes of the underlying bytearray to zero. The benefit of zeroing is that the info is destroyed immediately, rather than relying on the garbage collector. """ for i in range(len(self.b)): self.b[i] = 0 def iszero(self): """ True if all bytes are zero. """ return all((v == 0 for v in self.b)) def iseven(self): """ True if empty or if last byte is zero. """ l = len(self.b) return l == 0 or self.b[l - 1] == 0 def int(self): """The bytes as an integer.""" return intFromBytes(self.b) def bytes(self): """The bytes as Python `bytes`.""" return bytes(self.b) def unLittle(self): """A copy of the ByteArray, reversed.""" return self.littleEndian() def littleEndian(self): """A copy of the ByteArray, reversed.""" return ByteArray(reversed(self.b)) def copy(self): """A copy of the ByteArray.""" return ByteArray(self.b) def pop(self, n): """ Remove n bytes from the beginning of the ByteArray, returning the bytes. """ b = self[:n] self.b = self.b[n:] return b def rba(*a, **k): """ Reversed ByteArray. All args and kwargs are passed to the ByteArray constructor. """ return reversed(ByteArray(*a, **k)) class BuildyBytes(ByteArray): """ The BuildyBytes class is used to construct (optionally versioned) linearly- encoded 2-D byte arrays. """ def __init__(self, version=None): """ Constructor for a BuildyBytes. Args: version (int): optinonal. The version to encode. Default encodes no version byte. """ if version == 0: version = [0x00] if version is None: version = [] super().__init__(version) def addData(self, d): """ addData adds the data to the BuildyBytes. self is returned to enable chaining. The data has hard-coded length limit of uint16_max = 65535 bytes. """ d = decodeBA(d) lenBytes = intToBytes(len(d)) bLen = len(lenBytes) if bLen > 2: raise DecredError("cannot push data longer than 65535") if bLen == 2: lBytes = bytearray((0xFF, lenBytes[0], lenBytes[1])) elif bLen == 1: lBytes = lenBytes elif bLen == 0: lBytes = bytearray((0x00,)) self.b += lBytes + d return self def extractPushes(b): """ Parses the linearly-encoded 2D byte array into a list of byte arrays. Args: b (bytes-like): The linearly encoded 2-D byte array. Returns: list(bytes-like): The 2-D byte array. """ pushes = [] while True: if len(b) == 0: break bLen = b[0] b = b[1:] if bLen == 255: if len(b) < 2: raise DecredError("2 bytes not available for uint16 data length") bLen = intFromBytes(b[:2]) b = b[2:] if len(b) < bLen: raise DecredError("data too short for pop of %d bytes" % bLen) pushes.append(b[:bLen]) b = b[bLen:] return pushes def decodeBlob(b): """ decodeBlob decodes a versioned blob into its version and the pushes extracted from its data. Args: b (bytes-like): The bytes to decode. Returns: int: The blob version (the version passed to BuildyBytes). list(bytes-like): The data pushes. """ if len(b) == 0: raise DecredError("zero length blob not allowed") return b[0], extractPushes(b[1:]) def unblobStrList(b): """ Decode a list of strings from the bytes. Args: bytes-like: The encoded list. Returns: list(str): The decoded list. """ return [s.decode("utf-8") for s in extractPushes(b)] def blobStrList(strs): """ Encode a list of strings a bytes. Args: list(str): The strings to encode. Returns: bytearray: The encoded list. """ b = BuildyBytes() for s in strs: b.addData(s.encode("utf-8")) return b.b def unblobCheck(class_name, version, pushes, check_data): """ Check version and pushes to unblob. Args: class_name str: the class name that will appear in error messages. version int: the version number that will be checked. pushes int: the number of pushes that will be checked. check_data dict: keys are version numbers, values are number of expected pushes. Raises: NotImplementedError if version is not in check_data keys. DecredError if pushes is not the value in check_data keyed by version. """ if version not in check_data.keys(): raise NotImplementedError(f"{class_name}: unsupported version {version}") expected_pushes = check_data[version] if pushes != expected_pushes: raise DecredError( f"{class_name}: expected {expected_pushes} pushes, got {pushes}" ) ``` #### File: decred/wallet/accounts.py ```python from decred import DecredError from decred.crypto import crypto from decred.util import chains, encode, helpers EXTERNAL_BRANCH = 0 INTERNAL_BRANCH = 1 ACCOUNT_GAP_LIMIT = 10 DEFAULT_ACCOUNT_NAME = "default" log = helpers.getLogger("ACCTS") def checkBranchKeys(acctKey): """ Try to raise an exception. checkBranchKeys ensures deriving the extended keys for the internal and external branches given an account key does not result in an invalid child error which means the chosen seed is not usable. This conforms to the hierarchy described by BIP0044 so long as the account key is already derived accordingly. In particular this is the hierarchical deterministic extended key path: m/44'/<coin type>'/<account>'/<branch> The branch is 0 for external addresses and 1 for internal addresses. Args: acctKey (crypto.ExtendedKey): An account's extended key. """ # Derive the external branch as the first child of the account key. acctKey.child(EXTERNAL_BRANCH) # Derive the interal branch as the second child of the account key. acctKey.child(INTERNAL_BRANCH) class AccountManager: """ The AccountManager provides generation, organization, and other management of Accounts. """ def __init__( self, coinType, coinKeyEnc, netName, db=None, signals=None, ): """ Args: coinType (int): The BIP-0044 coin type. coinKeyEnc (ByteArray): The encrypted, serialized extended key. netName (string): Network name. "mainnet", "testnet", etc. db (database.Bucket): optional. The database bucket. If specified, the db will be loaded. signals (Signal): optional. The UI callbacks. Should be included if db is specified. """ # The crypto keys are used to decrypt the other keys. self.coinType = coinType self.coinKeyEnc = coinKeyEnc # The Scrypt parameters used to encrypt the crypto keys. self.netName = netName self.netParams = chains.NetworkParams[self.coinType][self.netName] self.watchingOnly = False self.node = None self.acctDB = None self.signals = None self.accounts = {} if db is not None: self.load(db, signals) @staticmethod def blob(bal): """Satisfies the encode.Blobber API""" return ( encode.BuildyBytes(0) .addData(bal.coinType) .addData(bal.coinKeyEnc) .addData(bal.netName.encode("utf-8")) .addData(encode.boolToBytes(bal.watchingOnly)) .b ) @staticmethod def unblob(b): """Satisfies the encode.Blobber API""" ver, d = encode.decodeBlob(b) encode.unblobCheck("AccountManager", ver, len(d), {0: 4}) am = AccountManager( coinType=encode.intFromBytes(d[0]), coinKeyEnc=encode.ByteArray(d[1]), netName=d[2].decode("utf-8"), ) am.watchingOnly = encode.boolFromBytes(d[3]) return am def serialize(self): """ Serialize the AccountManager. Returns: ByteArray: The serialized AccountManager. """ return encode.ByteArray(AccountManager.blob(self)) def load(self, db, signals): """ Set up the database and set the UI signals. Args: db (database.Bucket): The database bucket. signals (Signal): The UI signals. """ blobber = chains.AccountConstructors[self.coinType] self.acctDB = db.child("accts", datatypes=("INTEGER", "BLOB"), blobber=blobber) self.signals = signals blockchain = chains.chain(self.coinType) for idx, acct in self.acctDB.items(): self.accounts[idx] = acct db = self.dbForAcctIdx(idx) acct.load(self.dbForAcctIdx(idx), blockchain, self.signals) def setNode(self, node): """ Set the dcrd connection for the account. Args: node (LocalNode): A connected LocalNode. """ self.node = node for acct in self.accounts.values(): acct.setNode(node) def coinKey(self, cryptoKey): """ Decrypt the coin-type extended key. Args: cryptoKey (crypto.SecretKey): The master encryption key. Returns: ByteArray: """ return crypto.decodeExtendedKey(self.netParams, cryptoKey, self.coinKeyEnc) def dbForAcctIdx(self, idx): """ Get the database bucket for the specified index. Args: idx (int): The account index. Returns: database.Bucket: The account bucket. """ return self.acctDB.child(str(idx), table=False) def addAccount(self, cryptoKey, acctName): """ Add a new account and return its index. Args: cryptoKey (ByteArray): The master encoding key. acctName: A name for the account. Returns: Account: The account. """ idx = len(self.acctDB) coinExtKey = self.coinKey(cryptoKey) db = self.dbForAcctIdx(idx) acct = createAccount( cryptoKey, coinExtKey, self.coinType, idx, self.netName, acctName, db, self.signals, ) blockchain = chains.chain(self.coinType) acct.load(self.dbForAcctIdx(idx), blockchain, self.signals) self.acctDB[idx] = acct self.accounts[idx] = acct return acct def saveAccount(self, idx): """ Save the account at the specified index. Args: idx: The account index. """ self.acctDB[idx] = self.accounts[idx] def account(self, idx): """ Get the account at the provided index. Args: idx (int): The account index. Returns: Account: The account at idx. """ return self.accounts[idx] def listAccounts(self): """ Get a list of accounts in order of their account index. The index of the of the account in the returned list is its BIP-44 account index. Returns: list(dcr.Account): All known accounts. """ sortedAccts = sorted(self.accounts.items(), key=lambda pair: pair[0]) if len(sortedAccts) != sortedAccts[-1][0] + 1: raise DecredError( "account index mismatch. expected last index {} got {}".format( len(sortedAccts) - 1, sortedAccts[-1][0] ) ) return [a for _, a in sortedAccts] def openAccount(self, idx, cryptoKey): """ Open an account. Args: idx (int): The acccount index, which is its position in the accounts list. cryptoKey (ByteArray): The master encoding key. Returns: Account: The open account. """ acct = self.accounts[idx] acct.unlock(cryptoKey) return acct def discover(self, cryptoKey): """ Discover accounts up to the account gap limit. If an account is discovered, all accounts up to and including the discovered account's index will be created. Args: cryptoKey (ByteArray): The master encoding key. """ coinExtKey = self.coinKey(cryptoKey) blockchain = chains.chain(self.coinType) lastSeenIdx = len(self.acctDB) - 1 idx = lastSeenIdx + 1 acctConstructor = chains.AccountConstructors[self.coinType] while True: acctKeyPriv = coinExtKey.deriveAccountKey(idx) acctKeyPub = acctKeyPriv.neuter() if acctConstructor.txsExistForKey(acctKeyPub, blockchain): # Add accounts up to the newly seen index. log.info(f"account discovered at index {idx}") while len(self.accounts) <= idx: self.addAccount(cryptoKey, f"Account {len(self.accounts)}") lastSeenIdx = idx idx += 1 if idx - lastSeenIdx > ACCOUNT_GAP_LIMIT: break def createNewAccountManager(root, cryptoKey, coinType, netParams, db): """ Create a new account manager and a set of BIP0044 keys for creating accounts. The zeroth account is created for the provided network parameters. Args: root (crypto.ExtendedKey): The wallet key. cryptoKey (crypto.SecretKey): The master encryption key. netParams (module): Network parameters. Returns: AccountManager: An initialized account manager. """ coinKey = root.deriveCoinTypeKey(netParams) coinKeyEnc = crypto.encrypt(cryptoKey, coinKey.serialize()) manager = AccountManager( coinType=chains.parseCoinType(coinType), coinKeyEnc=coinKeyEnc, netName=netParams.Name, db=db, ) manager.addAccount(cryptoKey, DEFAULT_ACCOUNT_NAME) return manager def createAccount( cryptoKey, coinExtKey, coinType, acctIdx, netName, acctName, db, signals ): # Create the zeroth account. # Derive the account key for the first account according to BIP0044. acctKeyPriv = coinExtKey.deriveAccountKey(acctIdx) # Ensure the branch keys can be derived for the provided seed according # to BIP0044. checkBranchKeys(acctKeyPriv) acctKeyPub = acctKeyPriv.neuter() pubKeyEncrypted = crypto.encrypt(cryptoKey, acctKeyPub.serialize()) privKeyEncrypted = crypto.encrypt(cryptoKey, acctKeyPriv.serialize()) constructor = chains.AccountConstructors[coinType] blockchain = chains.chain(coinType) account = constructor( acctIdx, pubKeyEncrypted, privKeyEncrypted, acctName, netName, db, blockchain, signals, ) # Open the account. account.unlock(cryptoKey) # Create the first payment address. account.generateGapAddresses() # Close the account to zero the key. account.lock() return account ``` #### File: decred/examples/send_testnet.py ```python from getpass import getpass from decred.wallet.wallet import SimpleWallet # Testnet return address for faucet.decred.org. TESTNET_ADDRESS = "TsfDLrRkk9ciUuwfp2b8PawwnukYD7yAjGd" def main(): value = int(1 * 1e8) # 1 DCR, atoms password = getpass() walletDir = "wallets" try: print("Opening and synchronizing wallet") wallet = SimpleWallet(walletDir, password, "testnet") except Exception as e: print("Failed to open wallet with provided password: %s" % e) exit() try: # Send some DCR. tx = wallet.sendToAddress(value, TESTNET_ADDRESS) # Print the transaction ID and a dcrdata link. print("Transaction ID: %s" % tx.id()) print("See transaction at https://testnet.dcrdata.org/tx/%s" % tx.id()) except Exception as e: print("Failed to send transaction: %s" % e) finally: wallet.close() if __name__ == "__main__": main() ``` #### File: unit/crypto/test_gcs.py ```python import random import pytest from decred import DecredError from decred.crypto import gcs, rando from decred.util.encode import ByteArray, rba def test_BitReader(): """ Ensure that the bit reader and all associated methods work as expected including expected errors and corner cases at byte boundaries. """ br = gcs.BitReader(ByteArray(int("11101111", 2))) with pytest.raises(DecredError): br.readNBits(-1) with pytest.raises(DecredError): br.readNBits(65) """ Test parameters name: test description bytes: bytes to use as the bitstream perReaderTests: tests to run against same reader name (str): test description doUnary (bool): whether or not to perform a unary read wantUnary (int): expected number of consecutive ones unaryErr (Exception): expected error on unary read nValBits (int): number of bits to read from bitstream as uint64 wantVal (int): expected value from nValBits read bitsErr (Exception): expected error on bits read """ tests = [ dict( name="unary read on empty bytes error", b=ByteArray(""), perReaderTests=[ dict( name="unary read", doUnary=True, wantUnary=0, unaryErr=gcs.EncodingError, ) ], ), dict( name="0 bits read on empty bytes (no error)", b=ByteArray(""), perReaderTests=[dict(name="0 bit read", nValBits=0, wantVal=0,)], ), dict( name="1 bit read on empty bytes error", b=ByteArray(""), perReaderTests=[ dict(name="1 bit read", nValBits=1, bitsErr=gcs.EncodingError,) ], ), dict( name="9 bit read on single byte error (straddle byte boundary)", b=ByteArray("0f"), perReaderTests=[ dict(name="9 bit read", nValBits=9, bitsErr=gcs.EncodingError,) ], ), dict( name="16 bit read on single byte error (byte boundary)", b=ByteArray("0f"), perReaderTests=[ dict(name="16 bit read", nValBits=16, bitsErr=gcs.EncodingError,) ], ), dict( name="0 bits followed by 8 bits ", b=ByteArray("ff"), perReaderTests=[ dict(name="0 bit read", nValBits=0, wantVal=0,), dict(name="8 bit read", nValBits=8, wantVal=0xFF,), ], ), dict( name="unary 1", b=ByteArray("80"), perReaderTests=[dict(name="first unary read", doUnary=True, wantUnary=1,)], ), dict( name="unary 2", b=ByteArray("c0"), perReaderTests=[dict(name="first unary read", doUnary=True, wantUnary=2,)], ), dict( name="unary 9 (more than one byte)", b=ByteArray("ff80"), perReaderTests=[dict(name="first unary read", doUnary=True, wantUnary=9,)], ), dict( name="unary 0, 1 bit read", b=ByteArray("40"), perReaderTests=[ dict(name="unary read", doUnary=True, wantUnary=0,), dict(name="1 bit read", nValBits=1, wantVal=1,), ], ), dict( name="unary 0, 8 bits read (straddle byte)", b=ByteArray("5a80"), perReaderTests=[ dict(name="unary read", doUnary=True, wantUnary=0,), dict(name="8 bit read", nValBits=8, wantVal=0xB5,), ], ), dict( name="unary 0, 15 bits read (byte boundary)", b=ByteArray("5ac5"), perReaderTests=[ dict(name="unary read", doUnary=True, wantUnary=0,), dict(name="15 bit read", nValBits=15, wantVal=0x5AC5,), ], ), dict( name="unary 0, 16 bits read (straddle 2nd byte boundary)", b=ByteArray("5ac580"), perReaderTests=[ dict(name="unary read", doUnary=True, wantUnary=0,), dict(name="16 bit read", nValBits=16, wantVal=0xB58B,), ], ), dict( name="unary 3, 15 bits read, unary 2", b=ByteArray("eac518"), perReaderTests=[ dict(name="first unary read", doUnary=True, wantUnary=3,), dict(name="15 bit read", nValBits=15, wantVal=0x5628,), dict(name="second unary read", doUnary=True, wantUnary=2,), ], ), ] for test in tests: # Parse the specified bytes to read and create a bitstream reader from # them. r = gcs.BitReader(test["b"]) for prTest in test.get("perReaderTests", []): testTag = test["name"] + ": " + prTest["name"] # Read unary and ensure expected result if requested. if prTest.get("doUnary"): unaryErr = prTest.get("unaryErr") if unaryErr: with pytest.raises(unaryErr): r.readUnary() continue try: gotUnary = r.readUnary() except gcs.EncodingError: break assert gotUnary == prTest.get("wantUnary", 0), testTag # Read specified number of bits as uint64 and ensure expected # result. bitsErr = prTest.get("bitsErr") if bitsErr: with pytest.raises(bitsErr): r.readNBits(prTest.get("nValBits", 0)) continue try: gotVal = r.readNBits(prTest.get("nValBits", 0)) except gcs.EncodingError: break assert gotVal == prTest.get("wantVal", 0), testTag def test_filter(): """ Ensure that the filters and all associated methods work as expected by using various known parameters and contents along with random keys for matching purposes. """ # Use a random key for each test instance and log it if the tests fail. randKey = rando.newKey()[: gcs.KeySize] fixedKey = ByteArray(length=16) # Test some error paths. f = gcs.FilterV2.deserialize( ByteArray( "1189af70ad5baf9da83c64e99b18e96a06cd7295a58b324e81f09c85d093f1e33dcd6f40f18cfcbe2aeb771d8390" ) ) member = ByteArray("Alex".encode()) with pytest.raises(DecredError): f.match(key=ByteArray(length=17), data=ByteArray(0x0A0B)) # random entry doesn't match. assert not f.match(key=fixedKey, data=ByteArray("0a")) assert not f.matchAny(key=fixedKey, data=[ByteArray("0a")]) # Filter of all FF gives encoding error, which returns False. f.filterData = ByteArray(0xFF) assert not f.match(key=fixedKey, data=member) assert not f.matchAny(key=fixedKey, data=[member]) # fmt: off # contents1 defines a set of known elements for use in the tests below. contents1 = [ ByteArray(s.encode()) for s in ("Alex", "Bob", "Charlie", "Dick", "Ed", "Frank", "George", "Harry", "Ilya", "John", "Kevin", "Larry", "Michael", "Nate", "Owen", "Paul", "Quentin") ] # contents2 defines a separate set of known elements for use in the tests # below. contents2 = [ ByteArray(s.encode()) for s in ("Alice", "Betty", "Charmaine", "Donna", "Edith", "Faina", "Georgia", "Hannah", "Ilsbeth", "Jennifer", "Kayla", "Lena", "Michelle", "Natalie", "Ophelia", "Peggy", "Queenie") ] # fmt: on tests = [ dict( name="v2 empty filter", matchKey=randKey, contents=[], wantMatches=[], fixedKey=fixedKey, wantBytes=ByteArray(), wantHash=rba(length=32), ), dict( name="v2 filter single nil item produces empty filter", matchKey=randKey, contents=[ByteArray()], wantMatches=[], fixedKey=fixedKey, wantBytes=bytearray(), wantHash=rba(length=32), ), dict( name="v2 filter contents1 with nil item with B=19, M=784931", matchKey=randKey, contents=[ByteArray()] + contents1, wantMatches=contents1, fixedKey=fixedKey, wantBytes=ByteArray( "1189af70ad5baf9da83c64e99b18e96a06cd7295a58b324e81f09c85d093f1e33dcd6f40f18cfcbe2aeb771d8390" ), wantHash=rba( "b616838c6090d3e732e775cc2f336ce0b836895f3e0f22d6c3ee4485a6ea5018" ), ), dict( name="v2 filter contents1 with B=19, M=784931", matchKey=randKey, contents=contents1, wantMatches=contents1, fixedKey=fixedKey, wantBytes=ByteArray( "1189af70ad5baf9da83c64e99b18e96a06cd7295a58b324e81f09c85d093f1e33dcd6f40f18cfcbe2aeb771d8390" ), wantHash=rba( "b616838c6090d3e732e775cc2f336ce0b836895f3e0f22d6c3ee4485a6ea5018" ), ), dict( name="v2 filter contents2 with B=19, M=784931", matchKey=randKey, contents=contents2, wantMatches=contents2, fixedKey=fixedKey, wantBytes=ByteArray( "118d4be5372d2f4731c7e1681aefd23028be12306b4d90701a46b472ee80ad60f9fa86c4d6430cfb495ced604362" ), wantHash=rba( "f3028f42909209120c8bf649fbbc5a70fb907d8997a02c2c1f2eef0e6402cb15" ), ), ] for test in tests: # Create a filter with the match key for all tests not related to # testing serialization. f = gcs.FilterV2.deserialize(test["wantBytes"]) wantN = len(test["contents"]) - sum(1 for d in test["contents"] if len(d) == 0) assert f.n == wantN, test["name"] # Ensure empty data never matches. assert not f.match(test["matchKey"], ByteArray()) assert not f.matchAny(test["matchKey"], []), test["name"] assert not f.matchAny(test["matchKey"], [ByteArray()]), test["name"] # Ensure empty filter never matches data. if len(test["contents"]) == 0: wantMiss = "test".encode() assert not f.match(test["matchKey"], wantMiss), test["name"] assert not f.matchAny(test["matchKey"], [wantMiss]), test["name"] # Ensure all of the expected matches occur individually. for wantMatch in test["wantMatches"]: assert f.match(test["fixedKey"], wantMatch), test["name"] # Ensure a subset of the expected matches works in various orders when # matching any. if len(test["wantMatches"]) > 0: # Create set of data to attempt to match such that only the final # item is an element in the filter. matches = [] for data in test["wantMatches"]: mutated = ByteArray(data) mutated[0] ^= 0x55 matches.append(mutated) matches[-1] = test["wantMatches"][-1] assert f.matchAny(test["fixedKey"], matches), test["name"] # Fisher-Yates shuffle the match set and test for matches again. for i in range(len(matches)): # Pick a number between current index and the end. j = random.randint(0, len(matches) - i - 1) + i matches[i], matches[j] = matches[j], matches[i] assert f.matchAny(test["fixedKey"], matches), test["name"] assert f.hash() == test["wantHash"], test["name"] ``` #### File: unit/dcr/test_vsp_unit.py ```python import time import pytest from decred import DecredError from decred.dcr import vsp from decred.dcr.nets import mainnet from decred.util import encode def test_result_is_success(): # (res, isSuccess) tests = [ (dict(status="success"), True), (dict(status="fail"), False), (dict(), False), ("success", False), ("abcd", False), ("", False), (0, False), (True, False), (None, False), ] for res, isSuccess in tests: assert vsp.resultIsSuccess(res) == isSuccess purchaseInfo = { "PoolAddress": "TsbyH2p611jSWnvUAq3erSsRYnCxBg3nT2S", "PoolFees": 0.5, "Script": "512103af3c24d005ca8b755e7167617f3a5b4c60a65f8318a7fcd1b0cacb1ab" "d2a97fc21027b81bc16954e28adb832248140eb58bedb6078ae5f4dabf21fde5a8ab7135c" "b652ae", "TicketAddress": "Tcbvn2hiEAXBDwUPDLDG2SxF9iANMKhdVev", "VoteBits": 5, "VoteBitsVersion": 0, } def assertPiIsEqual(pi): assert pi.poolAddress == purchaseInfo["PoolAddress"] assert pi.poolFees == purchaseInfo["PoolFees"] assert pi.script == purchaseInfo["Script"] assert pi.ticketAddress == purchaseInfo["TicketAddress"] assert pi.voteBits == purchaseInfo["VoteBits"] assert pi.voteBitsVersion == purchaseInfo["VoteBitsVersion"] def test_purchase_info_parse(): now = int(time.time()) pi = vsp.PurchaseInfo.parse(purchaseInfo) assertPiIsEqual(pi) assert isinstance(pi.unixTimestamp, int) and pi.unixTimestamp >= now def test_purchase_info_blobbing(): pi = vsp.PurchaseInfo.parse(purchaseInfo) b = vsp.PurchaseInfo.blob(pi) assert isinstance(b, bytearray) rePi = vsp.PurchaseInfo.unblob(b) assertPiIsEqual(rePi) ts = rePi.unixTimestamp assert isinstance(ts, int) and ts == pi.unixTimestamp # bad version bCopy = encode.ByteArray(b, copy=True) bCopy[0] = 255 with pytest.raises(NotImplementedError): vsp.PurchaseInfo.unblob(bCopy.bytes()) # too long bCopy = encode.ByteArray(b, copy=True) bCopy += b"\x00" with pytest.raises(DecredError): vsp.PurchaseInfo.unblob(bCopy.bytes()) poolStats = { "AllMempoolTix": 12, "APIVersionsSupported": [1, 2], "BlockHeight": 368781, "Difficulty": 88.50820708, "Expired": 3, "Immature": 0, "Live": 28, "Missed": 349, "OwnMempoolTix": 0, "PoolSize": 5759, "ProportionLive": 0.004861955200555652, "ProportionMissed": 0.3216589861751152, "Revoked": 349, "TotalSubsidy": 293.10719669, "Voted": 736, "Network": "testnet3", "PoolEmail": "<EMAIL>", "PoolFees": 0.5, "PoolStatus": "Open", "UserCount": 44, "UserCountActive": 34, "Version": "1.6.0-pre", } def test_pool_stats(): ps = vsp.PoolStats(poolStats) assert ps.allMempoolTix == poolStats["AllMempoolTix"] assert ps.apiVersionsSupported == poolStats["APIVersionsSupported"] assert ps.blockHeight == poolStats["BlockHeight"] assert ps.difficulty == poolStats["Difficulty"] assert ps.expired == poolStats["Expired"] assert ps.immature == poolStats["Immature"] assert ps.live == poolStats["Live"] assert ps.missed == poolStats["Missed"] assert ps.ownMempoolTix == poolStats["OwnMempoolTix"] assert ps.poolSize == poolStats["PoolSize"] assert ps.proportionLive == poolStats["ProportionLive"] assert ps.proportionMissed == poolStats["ProportionMissed"] assert ps.revoked == poolStats["Revoked"] assert ps.totalSubsidy == poolStats["TotalSubsidy"] assert ps.voted == poolStats["Voted"] assert ps.network == poolStats["Network"] assert ps.poolEmail == poolStats["PoolEmail"] assert ps.poolFees == poolStats["PoolFees"] assert ps.poolStatus == poolStats["PoolStatus"] assert ps.userCount == poolStats["UserCount"] assert ps.userCountActive == poolStats["UserCountActive"] assert ps.version == poolStats["Version"] now = int(time.time()) votingServiceProvider = { "url": "https://www.dcrstakedinner.com/", "apiKey": ( "<KEY>" "<KEY>" "XMiOjQ2fQ.PEb000_TjQuBYxjRdh-VOaXMdV2GUw3_ZyIyp_tfpFE" ), "netName": "testnet3", "purchaseInfo": vsp.PurchaseInfo.parse(purchaseInfo), } def assertVspIsEqual(pool): assert pool.url == votingServiceProvider["url"] assert pool.apiKey == votingServiceProvider["apiKey"] assert pool.netParams.Name == votingServiceProvider["netName"] assertPiIsEqual(pool.purchaseInfo) def test_vsp_init(): pool = vsp.VotingServiceProvider(**votingServiceProvider) assertVspIsEqual(pool) ts = pool.purchaseInfo.unixTimestamp assert isinstance(ts, int) and ts >= now def test_vsp_blobbing(): pool = vsp.VotingServiceProvider(**votingServiceProvider) b = vsp.VotingServiceProvider.blob(pool) assert isinstance(b, bytearray) rePool = vsp.VotingServiceProvider.unblob(b) assertVspIsEqual(rePool) ts = rePool.purchaseInfo.unixTimestamp assert isinstance(ts, int) and ts == pool.purchaseInfo.unixTimestamp # bad version bCopy = encode.ByteArray(b, copy=True) bCopy[0] = 255 with pytest.raises(NotImplementedError): vsp.VotingServiceProvider.unblob(bCopy.bytes()) # too long bCopy = encode.ByteArray(b, copy=True) bCopy += b"\x00" with pytest.raises(DecredError): vsp.VotingServiceProvider.unblob(bCopy.bytes()) def test_vsp_serialize(): pool = vsp.VotingServiceProvider(**votingServiceProvider) b = vsp.VotingServiceProvider.blob(pool) assert pool.serialize() == encode.ByteArray(b) vspProviders = { "Staked": { "APIEnabled": True, "APIVersionsSupported": [1, 2], "Network": "mainnet", "URL": "https://decred.staked.us", "Launched": 1543433400, "LastUpdated": 1582020568, "Immature": 0, "Live": 141, "Voted": 2730, "Missed": 10, "PoolFees": 5, "ProportionLive": 0.0034847511245118877, "ProportionMissed": 0.0036496350364963502, "UserCount": 229, "UserCountActive": 106, "Version": "1.4.0-pre+dev", }, "Golf": { "APIEnabled": True, "APIVersionsSupported": [1, 2], "Network": "mainnet", "URL": "https://stakepool.dcrstats.com", "Launched": 1464167340, "LastUpdated": 1582020568, "Immature": 21, "Live": 768, "Voted": 148202, "Missed": 154, "PoolFees": 5, "ProportionLive": 0.01898077208244773, "ProportionMissed": 0, "UserCount": 6005, "UserCountActive": 2751, "Version": "1.5.0-pre", }, "Hotel": { "APIEnabled": True, "APIVersionsSupported": [1, 2], "Network": "mainnet", "URL": "https://stake.decredbrasil.com", "Launched": 1464463860, "LastUpdated": 1582020568, "Immature": 41, "Live": 607, "Voted": 48135, "Missed": 49, "PoolFees": 5, "ProportionLive": 0.015002842383647644, "ProportionMissed": 0.0010169350821849577, "UserCount": 1607, "UserCountActive": 968, "Version": "1.5.0", }, "November": { "APIEnabled": True, "APIVersionsSupported": [1, 2], "Network": "mainnet", "URL": "https://decred.raqamiya.net", "Launched": 1513878600, "LastUpdated": 1582020568, "Immature": 5, "Live": 334, "Voted": 15720, "Missed": 50, "PoolFees": 1, "ProportionLive": 0.008255270767937913, "ProportionMissed": 0.0031705770450221942, "UserCount": 261, "UserCountActive": 114, "Version": "1.5.0-pre", }, "Ray": { "APIEnabled": True, "APIVersionsSupported": [1, 2], "Network": "mainnet", "URL": "https://dcrpos.idcray.com", "Launched": 1518446640, "LastUpdated": 1582020569, "Immature": 50, "Live": 1108, "Voted": 36974, "Missed": 298, "PoolFees": 2, "ProportionLive": 0.027385748535554512, "ProportionMissed": 0.007995277956643057, "UserCount": 137, "UserCountActive": 70, "Version": "1.4.0-pre+dev", }, } def test_vsp_providers(http_get_post): http_get_post("https://api.decred.org/?c=gsd", vspProviders) providers = vsp.VotingServiceProvider.providers(mainnet) assert len(providers) == 5 def test_vsp_api_path(): pool = vsp.VotingServiceProvider(**votingServiceProvider) path = pool.apiPath("stakeinfo") assert path == "https://www.dcrstakedinner.com/api/v2/stakeinfo" def test_vsp_headers(): pool = vsp.VotingServiceProvider(**votingServiceProvider) headers = pool.headers() assert headers == {"Authorization": "Bearer " + votingServiceProvider["apiKey"]} def test_vsp_validate(): pool = vsp.VotingServiceProvider(**votingServiceProvider) # correct address addr = "<KEY>" pool.validate(addr) # valid but wrong address addr = "<KEY>" with pytest.raises(DecredError): pool.validate(addr) # invalid address addr = "ASDF" with pytest.raises(DecredError): pool.validate(addr) # no address addr = "" with pytest.raises(DecredError): pool.validate(addr) def test_vsp_authorize(http_get_post): pool = vsp.VotingServiceProvider(**votingServiceProvider) success = {"status": "success", "data": purchaseInfo} addressNotSet = { "status": "error", "code": 9, "message": "no address submitted", } # ok addr = "<KEY>" http_get_post(pool.apiPath("getpurchaseinfo"), success) pool.authorize(addr) # address not submitted addr = "<KEY>" http_get_post(pool.apiPath("getpurchaseinfo"), addressNotSet) http_get_post(pool.apiPath("getpurchaseinfo"), success) http_get_post((pool.apiPath("address"), repr({"UserPubKeyAddr": addr})), success) pool.authorize(addr) # other error systemErr = {"status": "error", "code": 14, "message": "system error"} addr = "<KEY>" http_get_post(pool.apiPath("getpurchaseinfo"), systemErr) with pytest.raises(DecredError): pool.authorize(addr) # wrong address addr = "<KEY>" http_get_post(pool.apiPath("getpurchaseinfo"), systemErr) with pytest.raises(DecredError): pool.authorize(addr) def test_vsp_get_purchase_info(http_get_post): pool = vsp.VotingServiceProvider(**votingServiceProvider) success = {"status": "success", "data": purchaseInfo} addressNotSet = { "status": "error", "code": 9, "message": "no address submitted", } # ok http_get_post(pool.apiPath("getpurchaseinfo"), success) pool.getPurchaseInfo() assert not pool.err # error http_get_post(pool.apiPath("getpurchaseinfo"), addressNotSet) with pytest.raises(DecredError): pool.getPurchaseInfo() assert pool.err def test_vsp_update_purchase_info(http_get_post): pool = vsp.VotingServiceProvider(**votingServiceProvider) success = {"status": "success", "data": purchaseInfo} # updated pool.purchaseInfo.unixTimestamp = 0 http_get_post(pool.apiPath("getpurchaseinfo"), success) pool.updatePurchaseInfo() assert pool.purchaseInfo.unixTimestamp != 0 # not updated # within the update threshhold before = int(time.time() - vsp.PURCHASE_INFO_LIFE / 2) pool.purchaseInfo.unixTimestamp = before pool.updatePurchaseInfo() assert pool.purchaseInfo.unixTimestamp == before def test_vsp_get_stats(http_get_post): pool = vsp.VotingServiceProvider(**votingServiceProvider) success = {"status": "success", "data": poolStats} # ok http_get_post(pool.apiPath("stats"), success) pool.getStats() # pool error systemErr = {"status": "error", "code": 14, "message": "system error"} http_get_post(pool.apiPath("stats"), systemErr) with pytest.raises(DecredError): pool.getStats() def test_vsp_set_vote_bits(http_get_post): pool = vsp.VotingServiceProvider(**votingServiceProvider) success = {"status": "success", "data": "ok"} # votebits are 5 assert pool.purchaseInfo.voteBits == 5 # ok http_get_post((pool.apiPath("voting"), repr({"VoteBits": 7})), success) pool.setVoteBits(7) # set to 7 assert pool.purchaseInfo.voteBits == 7 # pool error systemErr = {"status": "error", "code": 14, "message": "system error"} http_get_post((pool.apiPath("voting"), repr({"VoteBits": 3})), systemErr) with pytest.raises(DecredError): pool.setVoteBits(3) # no change assert pool.purchaseInfo.voteBits == 7 ``` #### File: tests/unit/test_config.py ```python import logging import sys from tinywallet.config import CmdArgs def test_CmdArgs(): sys.argv = ["cmd", "--simnet"] cfg = CmdArgs() assert cfg.netParams.Name == "simnet" sys.argv = ["cmd", "--testnet", "--loglevel", "debug"] cfg = CmdArgs() assert cfg.netParams.Name == "testnet3" assert cfg.logLevel == logging.DEBUG sys.argv = ["cmd", "--loglevel", "A:Warning,B:deBug,C:Critical,D:0"] cfg = CmdArgs() assert len(cfg.moduleLevels) == 4 assert cfg.moduleLevels["A"] == logging.WARNING assert cfg.moduleLevels["B"] == logging.DEBUG assert cfg.moduleLevels["C"] == logging.CRITICAL assert cfg.moduleLevels["D"] == logging.NOTSET ```
{ "source": "joe-habel/Chrome-Global-Media-Key-Hog-Fix", "score": 3 }
#### File: joe-habel/Chrome-Global-Media-Key-Hog-Fix/installer.py ```python import os import subprocess from glob import glob def env_error(): with open('errors.txt', 'w') as log: log.write('''Local App Data Enviornment Variable Not Found. \n Please place your chrome intsall directory in the config.txt file.''') def plexamp_dir_error(): with open('errors.txt', 'w') as log: log.write('Plexamp directory not found.\n Please update your plex directory in the config.txt file.') def default_plexamp_dir(): try: local_app_data = os.environ.get('LOCALAPPDATA') except KeyError: env_error() return False plexamp_dir = os.path.join(local_app_data,'Programs','plexamp') if not os.path.exists(plexamp_dir): return False return plexamp_dir def check_dir(path): if not os.path.exists(path): plexamp_dir_error() return False return True def plexamp_config(): if not os.path.exists('config'): with open('config.txt' ,'w') as config: config.write('Chrome=\n') config.write('Plexamp=\n') with open('config.txt', 'r') as config: paths = config.readlines() plexamp_dir = '' chrome_dir = '' for path in paths: if 'Plexamp' in path: plexamp_dir = path[path.find('=')+1:].strip() if 'Chrome' in path: chrome_dir = path[path.find('=')+1:].strip() with open('config.txt', 'w') as config: config.write('Chrome=%s\n'%chrome_dir) config.write('Plexamp=%s\n'%plexamp_dir) return plexamp_dir def main(): plexamp_dir = plexamp_config() if not bool(plexamp_dir): plexamp_dir = default_plexamp_dir() plexamp_dir = os.path.join(plexamp_dir,'Plexamp.exe') if not check_dir(plexamp_dir): return current_path = os.path.abspath(os.getcwd()) if len(glob(os.path.join(current_path,'*.py'))) > 0: fix_keys = os.path.join(current_path,'update_chrome_files.py') with open('launch.bat', 'w') as launcher: launcher.write('python %s start\n'%fix_keys) launcher.write('start /b /wait "" %s\n'%plexamp_dir) launcher.write('python %s close'%fix_keys) else: fix_keys = os.path.join(current_path,'update_chrome_files.exe') with open('launch.bat', 'w') as launcher: launcher.write('start /b /wait %s start\n'%fix_keys) launcher.write('start /b /wait "" %s\n'%plexamp_dir) launcher.write('start /b /wait %s close'%fix_keys) with open('Plexamp (Media Key Fix).vbs', 'w') as vbs: vbs.write('Set oShell = CreateObject ("Wscript.Shell")\n') vbs.write('Dim StrArgs\n') bat = os.path.join(current_path,'launch.bat') vbs.write('StrArgs = "cmd /c %s"\n'%bat) vbs.write('oShell.Run strArgs, 0, false') shortcut_link = os.path.join(current_path,'Plexamp (Media Key Fix).vbs') with open('make_shortcut.vbs', 'w') as short: short.write('Set WshShell = CreateObject("Wscript.shell")\n') short.write('strDesktop = WshShell.SpecialFolders("Desktop")\n') short.write('set oMyShortcut = WshShell.CreateShortcut(strDesktop & "\\Plexamp (Media Key Fix).lnk")\n') short.write('oMyShortcut.WindowStyle = 1\n') short.write('oMyShortcut.IconLocation = "%s,0"\n'%plexamp_dir) short.write('oMyShortcut.TargetPath = "%s"\n'%shortcut_link) short.write('oMyShortcut.Description = "Shortcut to the Streamkeys Plexamp Fix"\n') short.write('oMyShortcut.WorkingDirectory = "%s"\n'%current_path) short.write('oMyShortcut.Save') subprocess.call('cmd /c make_shortcut.vbs') os.remove('make_shortcut.vbs') if __name__ == '__main__': main() ```
{ "source": "joe-habel/JobSearch", "score": 3 }
#### File: JobSearch/queries/indeed.py ```python from .query import Query, QueryArgument what = QueryArgument('q', str, disp_name='What') where = QueryArgument('l', str, required=True, disp_name='Where') radius = QueryArgument('radius', int, choices=(0, 5, 10, 15, 25, 50, 100), disp_name="Miles away") min_salary = QueryArgument('q', int, fmt="${}", disp_name="Minimum Salary") company = QueryArgument('rbc', str, requires='jcid', disp_name="Compay Name") company_id = QueryArgument('jcid', str, requires='rbc', disp_name="Company id") job_type = QueryArgument('jt', str, choices=('fulltime', 'parttime', 'contract', 'internship', 'temporary', 'commission'), disp_name="Job Type") experience = QueryArgument('explvl', str, choices=('entry_level', 'mid_level', 'senior_level'), disp_name="Experience Level") start = QueryArgument('start', int, required=True, value=0, disp_name="start") class SimpleIndeedQuery(Query): _kwargs = { 'what' : what, 'where' : where, 'radius' : radius, 'min_salary' : min_salary, 'company' : company, 'company_id' : company_id, 'job_type' : job_type, 'experience' : experience, 'start' : start } def __init__(self, **kwargs): super(SimpleIndeedQuery, self).__init__('https://indeed.com/jobs', **SimpleIndeedQuery._kwargs) self._init_kwargs(**kwargs) def _init_kwargs(self, **kwargs): for key, val in kwargs.items(): if key in SimpleIndeedQuery._kwargs: self._args[key].value = val else: raise NotImplementedError("The following keyword is not valid for the SimpleIndeedQuery: %s"%key) #Search Strings all_of_these_words = QueryArgument('as_and', str, disp_name='All of these words') exact_phrase = QueryArgument('as_phr', str, disp_name='Exact phrase') any_of_these_words = QueryArgument('as_any', str, disp_name="Any of these words") none_of_these_words = QueryArgument('as_not', str, disp_name="None of these words") title_words = QueryArgument('as_ttl', str, disp_name="These words in title") from_company = QueryArgument('as_cmp', str, disp_name="From this company") from_this_job_site = QueryArgument('as_src', str, disp_name="From this job site") #Ad Origin posted_to = QueryArgument('st', str, choices=('jobsite', 'employer'), disp_name="Posted to") hired_by = QueryArgument('sr', str, choices=('directhire',), disp_name="Who handles hiring") #Sort and paging sort_by = QueryArgument('sort', str, choices=('date',), disp_name="Sort by") limit = QueryArgument('limit', int, choices=(10, 20, 30, 50), disp_name="Per Page") #Age from_age = QueryArgument('fromage', choices=('last', 1, 3, 7, 15, 'any'), disp_name="Max days old") #Magic Args psf = QueryArgument('psf', str, required=True, value='advsrch', mutable=False, requires='from') searched_from = QueryArgument('from', str, required=True, value='advancedsearch', mutable=False, requires='psf') class AdvancedIndeedQuery(Query): _kwargs = { 'where' : where, 'radius' : radius, 'min_salary' : min_salary, 'job_type' : job_type, 'experience' : experience, 'start' : start, 'all_words' : all_of_these_words, 'exact_phrase' : exact_phrase, 'any_words' : any_of_these_words, 'none_words' : none_of_these_words, 'title_words' : title_words, 'from_company' : from_company, 'from_job_site' : from_this_job_site, 'posted_to' : posted_to, 'hired_by' : hired_by, 'sort_by' : sort_by, 'limit' : limit, 'age' : from_age, 'psf' : psf, 'searched_from': searched_from } def __init__(self, **kwargs): super(AdvancedIndeedQuery, self).__init__('https://indeed.com/jobs', **AdvancedIndeedQuery._kwargs) self._init_kwargs(**kwargs) def _init_kwargs(self, **kwargs): for key, val in kwargs.items(): if key in AdvancedIndeedQuery._kwargs: self._args[key].value = val else: raise NotImplementedError("The following keyword is not valid for the AdvancedIndeedQuery: %s"%key) ```
{ "source": "joe-habel/SampleRHOptionsFinder", "score": 3 }
#### File: joe-habel/SampleRHOptionsFinder/utilities.py ```python import os from datetime import timedelta import yaml import pandas as pd PARENT_PATH = os.path.dirname(os.path.abspath(__file__)) def get_symbols(): """ Get a series of listed symbols. Returns ------- pandas.Series """ return pd.read_csv(os.path.join(PARENT_PATH, 'data/symbols.csv'), sep='|')['Symbol'] def get_listings(): """ Get a dataframe of listed symbols and security names Returns ------- pandas.DataFrame """ return pd.read_csv(os.path.join(PARENT_PATH, 'data/symbols.csv'), sep='|')[['Symbol', 'Security Name']] def robinhood_login(): """ Log into robinhood via robin_stocks and the credentials file. """ import robin_stocks credentials = read_login_file() robin_stocks.login(credentials['username'], credentials['password']) def read_login_file(): """ Parse the credentials file into username and password. Returns ------- dict """ with open('.robinhood_login', 'r') as login_file: credentials = yaml.safe_load(login_file) return credentials def query_date_to_display(date): """ date: str """ yyyy, mm, dd = date.split('-') return '-'.join((mm, dd, yyyy)) def display_date_to_query(date): """ date: str """ mm, dd, yyyy = date.split('-') return '-'.join((yyyy, mm, dd)) def date_range(start_date, end_date): """ Parameters ---------- start_date: datetime.date end_date: datetime.date """ for n in range(int((end_date - start_date).days)): yield (start_date + timedelta(n)).strftime('%Y-%m-%d') ```
{ "source": "joehakimrahme/DungeonCrawler", "score": 2 }
#### File: DungeonCrawler/dungeoncrawler/battle.py ```python import random import re from dungeoncrawler import utils class BadComboInputError(Exception): pass class Battle(object): def __init__(self, yourteam, enemyteam, intro="", outro="", logo=""): self.yourteam = yourteam self.enemyteam = enemyteam self.intro = intro self.status = [] self.turn = 1 # start counting from 1. Like normal people! self.outro_win = outro self.logo = logo self.outro_loss = """ @@@@@@@@ @@@@@@@@@@@@ /@@@@@@@@@* @@@@@@@@@@@@@@@@@@ /@@@@@@@@@@@@@@@@@ @@@@@ @@@@@ @@@@@@@@@@@@@@@@@@@@ @@@@@ @@@@@ *@@@@@@@@@@@@@@@@@@@@@@ @@@@@ @@@@@ @@@@@@@@@@@@( #@@@@@@@ @@@@@ @@ @@ @@@@@ ,@@@@@@@ @@@@@ @@ @@@@@@@@ @@@@@@@@ @@ @@& @@@@@ @@ @@@@@@@@ @@@@@@@@ @@ @@@@@ @@@@@ @@ @@ @@@@@ @@@@@ @@@@@@@ @@ @@@@@@@ @@@@@ @@@@@@@@@@@@ @@@@@@@@@@ #@@@@@@@ @@@@@@@ @@@@@@@ #@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ #@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@ @@@@@@@@@@@@@@@@@@@@@@ @@@@@ @@@@@@@@@@@@@@@@@@@@@@ @@@@@ @@@@@@@@@@@@@@@@@@@@@@ @@@@@ @@@@@@@@@@@@@@@@@@@@@@ @@@@@ @@@@@@@@@@@@@@@@@@ @@@@@ @@@@@@@@@@@@@@@@@@ @@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@ &@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@. @@ @@@@@ @@@@@@@@ @@@@@ @@ @@ &@@ @@@ @@@ @@ @@@ @@@ You dead. You lose. Try to do better next time. """ def outro(self, cond): if cond: return self.outro_win return self.outro_loss def rivals(self, hero): if hero in self.yourteam: return self.enemyteam return self.yourteam def allies(self, hero): if hero in self.yourteam: return self.yourteam return self.enemyteam def weighted_shuffle(self, combo): s = [] while combo: t = [] for h in combo: for _ in range(int(h.SPD**2)): t.append(h) random.shuffle(t) _next = t[0] s.append(_next) while _next in combo: combo.remove(_next) return s def check_for_win(self): if all(h.hp <= 0 for h in self.yourteam): return False if not self.enemyteam or all(h.hp <= 0 for h in self.enemyteam): return True def generate_choices(self, world): choices = {} for h in self.yourteam + self.enemyteam: choices[h.name] = h.choice(world) return choices def display_choice(self, choices): print("-" * 90) print("%s %-24s %-22s %-19s %-s" % ( "#", "NAME", "HIT POINTS", "MANA POINTS", "CHOICE") ) print() for i, h in enumerate(self.yourteam): if h.hp: _c = choices[h.name] if h.mp_ratio == 100: _c = utils.color(str(_c), 'bold') print( "%d %-22s %s %s" % (i + 1, utils.color(h.name, 'bold'), h.bars(), _c) ) print() for m in self.enemyteam: print( "%-15s %9s %s" % ( m.name, "/".join((str(int(m.hp)), str(int(m.maxHP)))), m.hp_bars())) print("-" * 90) print() def generate_combo(self): while True: try: cmd = input("[%s] Pick your combo> " % self.turn) cmd = cmd.strip() if cmd == "q": break # need to do this! if not re.match(r"^[0-9]{1,3}$", cmd): print( "Malformed input. Please input a proper combo string. " "Examples: '124', '423', '21'.") raise BadComboInputError combo = [] for i in cmd: idx = int(i) if idx <= len(self.yourteam): selected = self.yourteam[idx - 1] if selected.hp <= 0: print("Can't select hero %s" % selected) raise BadComboInputError combo.append(self.yourteam[idx - 1]) except BadComboInputError: continue combo += self.enemyteam combo = self.weighted_shuffle(combo) print() return combo def execute_step(self, combo, choices): for h in combo: if h.hp: choices[h.name].effect(combo) # execute end-of-step for mob in self.enemyteam: if mob.hp == 0: self.enemyteam.remove(mob) def battle_loop(self): # Execute start-of-battle while True: win = self.check_for_win() if win is not None: break choices = self.generate_choices(self) self.display_choice(choices) combo = self.generate_combo() self.execute_step(combo, choices) for h in self.yourteam: h.mp += 20 # execute end-of-turn self.turn += 1 print(self.outro(win)) input() return win def display_stats(heroes): def print_bar(stat, ratio): print("%3s: %s" % ( stat, utils.bars(size=20, color_fill="white", ratio=ratio * 100))) _maxHP = max((h.maxHP for h in heroes)) _maxMP = max((h.maxMP for h in heroes)) _maxATK = max((h.ATK for h in heroes)) _maxMAG = max((h.MAG for h in heroes)) _maxDEF = max((h.DEF for h in heroes)) _maxSPR = max((h.SPR for h in heroes)) _maxSPD = max((h.SPD for h in heroes)) for h in heroes: print() print(h.name) print_bar('HP', h.maxHP / _maxHP) print_bar('MP', h.maxMP / _maxMP) print_bar('ATK', h.ATK / _maxATK) print_bar('MAG', h.MAG / _maxMAG) print_bar('DEF', h.DEF / _maxDEF) print_bar('SPR', h.SPR / _maxSPR) print_bar('SPD', h.SPD / _maxSPD) ``` #### File: DungeonCrawler/dungeoncrawler/skills.py ```python import abc import random from dungeoncrawler import utils class Ability(abc.ABC): mp_cost = 100 name = "Ability" def __init__(self, world, caster): self.world = world self.caster = caster def __repr__(self): return self.name def predicate(self): return self.caster.mp == self.caster.maxMP def effect(self, combo): self.opening_words() _targets = self.targets(combo) if _targets: self.caster.mp -= self.mp_cost for _t in _targets: _dmg, _old, _new = self.single_effect(_t) self.log_skill(_dmg, _t, _old, _new) self.closing_words() def targets(self, combo): raise NotImplementedError def single_effect(self, target): raise NotImplementedError def log_skill(self, amount, target, old_value, new_value): utils.slow_type( "%s: [%s] on %s dealing %s dmg" ". (%d -> %d)\n" % ( utils.bold(utils.color_green(self.caster.name)), utils.color_yellow(str(self)), utils.bold(target.name), utils.bold(str(amount)), old_value, new_value)) def opening_words(self): pass def closing_words(self): pass def physical_damage(self, source, target, multiplier): return int((source.ATK**2) / target.DEF * multiplier) def healing_damage(self, source, multiplier): return int(source.SPR / 1.3 * multiplier) def hybrid_damage(self, source, target, multiplier): _a = self.physical_damage(source, target, multiplier) _b = self.magical_damage(source, target, multiplier) return int((_a + _b) / 2) def magical_damage(self, source, target, multiplier): return int(source.MAG**2 / target.SPR * multiplier) class ATTACK(Ability): mp_cost = 0 name = "ATTACK" def predicate(self): return True def targets(self, combo): _targets = [] _rivals_set = set(self.world.rivals(self.caster)) _alive_in_combo_set = {h for h in combo if h.hp} _combo_targets = _rivals_set & _alive_in_combo_set if _combo_targets: sorted_hp = sorted(_combo_targets, key=lambda x: x.hp) if len(sorted_hp) > 1: _targets.append(random.choice(sorted_hp[:2])) if len(sorted_hp) == 1: _targets.append(sorted_hp[0]) return _targets def single_effect(self, target): dmg = self.physical_damage(self.caster, target, 1) _oldt = target.hp target.hp -= dmg mp_received = 0.3 * dmg target.mp += mp_received if mp_received < 60 else 60 self.caster.mp += mp_received if mp_received < 30 else 30 return (dmg, _oldt, target.hp) def log_skill(self, amount, target, old_value, new_value): if self.caster in self.world.yourteam: color = utils.color_green else: color = utils.color_red description_low = [ "punches", "kicks", "throws a pebble at" ] description_mid = [ "lands a blow on", "hits", "swings at" ] description_high = [ "lands a powerful blow on", "injures", "maims" ] _ratio = amount / old_value if _ratio < 0.1: description = description_low elif 0.1 <= _ratio < 0.25: description = description_mid else: description = description_high utils.slow_type("%s: %s %s dealing %s dmg. (%d -> %d)\n" % ( utils.bold(color(self.caster.name)), random.choice(description), utils.bold(target.name), utils.bold(str(amount)), old_value, new_value)) class WellIntentionedWish(Ability): mp_cost = 70 name = "Wishful Intention" def targets(self, combo): _targets = [] for unit in combo: if unit in self.world.yourteam and 0 < unit.hp_ratio < 100: _targets.append(unit) if not _targets: for unit in self.world.yourteam: if unit.hp_ratio < 100: _targets.append(unit) if not _targets: _targets.append(self.caster) return [min(_targets, key=lambda x: x.hp_ratio)] def single_effect(self, target): dmg = self.healing_damage(self.caster, 3) _oldt = target.hp target.hp += dmg return (dmg, _oldt, target.hp) def log_skill(self, amount, target, old_value, new_value): utils.slow_type("%s: [%s] on %s for %s HP. (%d -> %d)\n" % ( utils.bold(utils.color_green(self.caster.name)), utils.color_yellow(str(self)), utils.bold(target.name), utils.bold(str(amount)), old_value, new_value)) class WellIntentionedWish2(WellIntentionedWish): mp_cost = 100 def targets(self, combo): _target = [] for unit in combo: if unit in self.world.yourteam and 0 < unit.hp_ratio: _target.append(unit) return _target class ThousandFists(Ability): mp_cost = 120 name = "A Thousand Fists" def targets(self, combo): _targets = (h for h in self.world.enemyteam if h.hp) if _targets: sorted_hp_def = min(_targets, key=lambda x: x.hp_ratio / (5 * x.DEF)) return [sorted_hp_def] def single_effect(self, target): dmg = self.physical_damage(self.caster, target, 3) _oldt = target.hp target.hp -= dmg return (dmg, _oldt, target.hp) class SilentPrayer(Ability): mp_cost = 70 name = "<NAME>" def targets(self, combo): _targets = [] for hero in self.world.yourteam: if hero.hp and hero in combo and hero.mp_ratio < 100: _targets.append(hero) if not _targets: _targets.append(self.caster) return [min(_targets, key=lambda x: x.mp_ratio)] def single_effect(self, target): _oldt = target.mp target.mp += target.maxMP return (target.mp - _oldt, _oldt, target.mp) def log_skill(self, amount, target, old_value, new_value): utils.slow_type( "%s: [%s] on %s restoring full MP.\n" % ( utils.bold(utils.color_green(self.caster.name)), utils.color_yellow(str(self)), utils.bold(target.name))) class NovaBlast(Ability): mp_cost = 120 name = "<NAME>" def opening_words(self): print(r""" /$$$$$$ /$$ /$$ /$$$$$$$ /$$$$$$$$ /$$$$$$$ /$$ /$$ /$$$$$$ /$$ /$$ /$$$$$$ /$$__ $$| $$ | $$| $$__ $$| $$_____/| $$__ $$| $$$ | $$ /$$__ $$| $$ | $$ /$$__ $$ | $$ \__/| $$ | $$| $$ \ $$| $$ | $$ \ $$| $$$$| $$| $$ \ $$| $$ | $$| $$ \ $$ | $$$$$$ | $$ | $$| $$$$$$$/| $$$$$ | $$$$$$$/| $$ $$ $$| $$ | $$| $$ / $$/| $$$$$$$$ \____ $$| $$ | $$| $$____/ | $$__/ | $$__ $$| $$ $$$$| $$ | $$ \ $$ $$/ | $$__ $$ /$$ \ $$| $$ | $$| $$ | $$ | $$ \ $$| $$\ $$$| $$ | $$ \ $$$/ | $$ | $$ | $$$$$$/| $$$$$$/| $$ | $$$$$$$$| $$ | $$| $$ \ $$| $$$$$$/ \ $/ | $$ | $$ \______/ \______/ |__/ |________/|__/ |__/|__/ \__/ \______/ \_/ |__/ |__/ """) # noqa: E501 def targets(self, combo): return self.world.enemyteam def single_effect(self, target): dmg = self.magical_damage(self.caster, target, 3.5) _oldt = target.hp target.hp -= dmg return (dmg, _oldt, target.hp) class Focus(Ability): mp_cost = 60 name = "Sharp Focus" def targets(self, combo): return [self.caster] def single_effect(self, target): target.MAG *= 1.5 target.SPD *= 1.5 return ('', '', '') def log_skill(self, amount, target, old_value, new_value): utils.slow_type("%s: [%s] on self increasing MAG/SPD.\n" % ( utils.bold(utils.color_green(self.caster.name)), utils.color_yellow(str(self)))) class BurstingQi(Ability): mp_cost = 80 name = "Burning Qi" def targets(self, combo): return [self.caster] def single_effect(self, target): target.ATK *= 1.2 target.DEF *= 1.2 return ('', '', '') def log_skill(self, amount, target, old_value, new_value): utils.slow_type( "%s: [%s] on self increasing ATK/DEF.\n" % ( utils.bold(utils.color_green(self.caster.name)), utils.color_yellow(str(self)))) class CuriousBox(Ability): mp_cost = 10 name = "Curious Box" def targets(self, combo): _targets = [] while True: _enemies = [m for m in self.world.enemyteam if m.hp] if not _enemies: break _targets.append(random.choice(_enemies)) if any((m.hp for m in self.world.enemyteam)): if random.random() > 0.6: break return _targets def single_effect(self, target): _mult = int((random.random() * random.random() * 3) + 1.3) dmg = self.hybrid_damage(self.caster, target, _mult) _oldt = target.hp target.hp -= dmg return (dmg, _oldt, target.hp) class BootyTrap(Ability): mp_cost = 100 name = "Booty Trap" def targets(self, combo): eligible = [m for m in self.world.enemyteam if m.hp] if eligible: return [max(eligible, key=lambda x: x.DEF)] def single_effect(self, target): dmg = self.hybrid_damage(self.caster, target, 1.5) _oldt = target.hp target.hp -= dmg target.DEF *= 0.7 target.SPR *= 0.7 return (dmg, _oldt, target.hp) def log_skill(self, amount, target, old_value, new_value): utils.slow_type( "%s: [%s] on %s dealing %s dmg. (%d -> %d)\n" % ( utils.bold(utils.color_green(self.caster.name)), utils.color_yellow(str(self)), utils.bold(target.name), utils.bold(str(amount)), old_value, target.hp)) utils.slow_type( "%s: [%s] on %s decreasing DEF/SPR.\n" % ( utils.bold(utils.color_green(self.caster.name)), utils.color_yellow(str(self)), target.name)) class ChivalrousProtection(Ability): mp_cost = 100 name = "Chivalrous Protection" def targets(self, combo): return [m for m in self.world.yourteam if m.hp] def single_effect(self, target): target.DEF *= 1.8 target.SPR *= 1.8 return ('', '', '') def log_skill(self, amount, target, old_value, new_value): utils.slow_type( "%s: [%s] on %s increasing DEF/SPR.\n" % ( utils.bold(utils.color_green(self.caster.name)), utils.color_yellow(str(self)), target.name)) class RighteousInspiration(Ability): mp_cost = 100 name = "Righteous Inspiration" def targets(self, combo): return [h for h in self.world.yourteam if (h.mp * h.hp)] def single_effect(self, target): target.mp *= 3 return ('', '', '') def log_skill(self, amount, target, old_value, new_value): utils.slow_type( "%s: [%s] on %s restoring MP.\n" % ( utils.bold(utils.color_green(self.caster.name)), utils.color_yellow(str(self)), utils.bold(target.name))) class BubblyPickMeUp(Ability): name = "Bubbly Pick-me-up" def predicate(self): return any((mob.hp_ratio < 60 for mob in self.world.enemyteam)) def targets(self, combo): return [m for m in self.world.enemyteam if m.hp] def single_effect(self, target): dmg = self.healing_damage(self.caster, 1) _oldt = target.hp target.hp += dmg return (dmg, _oldt, target.hp) def log_skill(self, amount, target, old_value, new_value): utils.slow_type( "%s: [%s] on %s healing for %s. (%d -> %d)\n" % ( utils.bold(utils.color_red(self.caster.name)), utils.color_yellow(str(self)), utils.bold(target.name), utils.bold(str(amount)), old_value, new_value)) class TemporaryInsanity(Ability): name = "Temporary Insanity" def predicate(self): return True def targets(self, combo): return self.world.enemyteam def single_effect(self, target): target.ATK *= 1.35 return ('', '', '') def log_skill(self, amount, target, old_value, new_value): utils.slow_type("%s: [%s] on %s increases ATK.\n" % ( utils.bold(utils.color_red(self.caster.name)), utils.color_yellow(str(self)), utils.bold(target.name))) class AngryOwner(Ability): name = "<NAME>" def predicate(self): if len(self.world.enemyteam) == 1: return True def opening_words(self): utils.slow_type("The Owner's here, and he's not happy!!!\n") def closing_words(self): self.caster.ATK *= 1.35 utils.slow_type( "%s: [%s] on himself increasing ATK.\n" % ( utils.bold(utils.color_red(self.caster.name)), utils.color_yellow(str(self)))) def targets(self, combo): return (h for h in self.world.yourteam if h.hp) def single_effect(self, target): dmg = self.hybrid_damage(self.caster, target, 3.5) _oldt = target.hp target.hp -= dmg return (dmg, _oldt, target.hp) def log_skill(self, amount, target, old_value, new_value): utils.slow_type( "%s: [%s] on %s dealing %s dmg" ". (%d -> %d)\n" % ( utils.bold(utils.color_red(self.caster.name)), utils.color_yellow(str(self)), utils.bold(target.name), utils.bold(str(amount)), old_value, new_value)) class LieDownAndBleed(Ability): name = "Lie Down and Bleed" def predicate(self): return random.random() <= 0.1 def targets(self, combo): _t = [] for h in combo: if h in self.world.yourteam and h.hp: _t.append(h) if not _t: for h in self.world.yourteam: if h.hp: _t.append(h) return [max(_t, key=lambda x: x.hp_ratio)] def single_effect(self, target): dmg = self.physical_damage(self.caster, target, 3.5) _oldt = target.hp target.hp -= dmg return (dmg, _oldt, target.hp) class ClashingAndSlashing(Ability): name = "Clashing and Slashing" def predicate(self): return True def targets(self, combo): _t = [] for h in combo: if h in self.world.yourteam and h.hp: _t.append(h) return _t def single_effect(self, target): return ATTACK(self.world, self.caster).single_effect(target) class FullOfZeal(Ability): name = "Full of Zeal" def predicate(self): return random.random() <= 0.3 def targets(self, combo): _t = [] for h in combo: if h in self.world.yourteam and h.hp: _t.append(h) if not _t: _t = self.world.yourteam return [random.choice(_t)] def single_effect(self, target): dmg = self.physical_damage(self.caster, target, 0.7) _oldt = target.hp target.hp -= dmg self.caster.SPD *= 1.3 return (dmg, _oldt, target.hp) def log_skill(self, amount, target, old_value, new_value): utils.slow_type( "%s: [%s] on %s dealing %s dmg. (%d -> %d)\n" % ( utils.bold(utils.color_red(self.caster.name)), utils.color_yellow(str(self)), utils.bold(target.name), utils.bold(str(amount)), old_value, new_value)) utils.slow_type( "%s: [%s] increases self SPD.\n" % ( utils.bold(utils.color_red(self.caster.name)), utils.color_yellow(str(self)))) class BoastfulNoMore(Ability): name = "Boastful No More" def predicate(self): return any(40 < h.mp_ratio < 70 for h in self.world.yourteam) def targets(self, combo): _t = list(reversed(sorted( (h for h in self.world.yourteam if h.mp_ratio != 100), key=lambda x: x.mp_ratio))) if _t: return [_t[0]] else: return random.choice( [h for h in combo if h in self.world.yourteam and h.hp]) def single_effect(self, target): target.mp = 0 return ('', '', '') def log_skill(self, amount, target, old_value, new_value): utils.slow_type( "%s: [%s] absorbed mp of %s\n" % ( utils.bold(utils.color_red(self.caster.name)), utils.color_yellow(str(self)), utils.bold(target.name))) ```
{ "source": "joehakimrahme/thawra", "score": 2 }
#### File: thawra/tests/test_actions.py ```python import unittest from thawra import hero class ActionTest(unittest.TestCase): def setUp(self): self.h1 = hero.Hero("H1", "", (8, 8, 3), "fire", None) self.h2 = hero.Hero("H2", "", (7, 2, 10), "fire", None) self.h3 = hero.Hero("H3", "", (4, 5, 10), "fire", None) def test_attack(self): self.h1.actions['ATK']([self.h2])("") self.assertNotEqual(self.h2.hp, self.h2.maxHP) self.assertEqual(self.h1.mp, self.h1.maxMP) def test_magic(self): self.h1.actions['MAG']([self.h2])("") self.assertNotEqual(self.h2.hp, self.h2.maxHP) self.assertNotEqual(self.h1.mp, self.h1.maxMP) def test_attack_twice(self): self.h1.actions['ATK']([self.h2, self.h2])("") self.assertNotEqual(self.h2.hp, self.h2.maxHP) self.assertEqual(self.h1.mp, self.h1.maxMP) def test_attack_multiple(self): self.h1.actions['ATK']([self.h2, self.h3])("") self.assertNotEqual(self.h2.hp, self.h2.maxHP) self.assertNotEqual(self.h3.hp, self.h3.maxHP) self.assertEqual(self.h1.mp, self.h1.maxMP) def test_magic_twice(self): self.h1.actions['MAG']([self.h2, self.h2])("") self.assertNotEqual(self.h2.hp, self.h2.maxHP) self.assertNotEqual(self.h1.mp, self.h1.maxMP) def test_magic_multiple(self): self.h1.actions['MAG']([self.h2, self.h3])("") self.assertNotEqual(self.h2.hp, self.h2.maxHP) self.assertNotEqual(self.h3.hp, self.h3.maxHP) self.assertNotEqual(self.h1.mp, self.h1.maxMP) if __name__ == "__main__": unittest.main() ``` #### File: thawra/tests/test_hero.py ```python import unittest from thawra import hero class HeroTest(unittest.TestCase): def setUp(self): self.hero = hero.Hero(name="", skillmap="", attributes=[8, 8, 3], element="fire", macros=hero.randattack) def test_attributes(self): self.assertEqual(self.hero.strength, 8) self.assertEqual(self.hero.intelligence, 8) self.assertEqual(self.hero.agility, 3) def test_level(self): self.assertEqual(self.hero.level, 1) def test_hero_maxHP(self): return self.assertEqual(self.hero.hp, self.hero.intelligence * 100) def test_hero_maxMP(self): return self.assertEqual(self.hero.mp, self.hero.intelligence * 100) def test_hero_stats(self): return self.assertEqual(self.hero.stats, { 'ATK': self.hero.strength * 10, 'DEF': self.hero.strength * 2, 'MAG': self.hero.intelligence * 7, 'MDE': self.hero.intelligence * 2, 'SPD': self.hero.agility * 30}) def test_hero_hp(self): self.assertEqual(self.hero.hp, self.hero.maxHP) self.hero.hp -= self.hero.maxHP + 1 self.assertEqual(self.hero.hp, 0) self.hero.hp += self.hero.maxHP * 2 self.assertEqual(self.hero.hp, self.hero.maxHP) def test_invalid_attributes(self): self.assertRaises(hero.InvalidHero, hero.Hero, "", "", [10], "", None) def test_choice(self): """This test should be renamed test_randattack gambit. Or something. """ choice, target = self.hero.choice([self.hero], [self.hero]) self.assertEqual(choice, "ATK") self.assertEqual(target, [self.hero]) if __name__ == "__main__": unittest.main() ```
{ "source": "joehalloran/python-quiz", "score": 3 }
#### File: joehalloran/python-quiz/gamedata.py ```python import filehandler def saveScore(user, score): filehandler.saveScore(user, score) def reportScore(user, score): print() print("Well done " + user + " your final score was...") print(score) showFinalMenu(user) def showFinalMenu(user): print() print("Press 1 to show your high scores") print("Press 2 to quit") userSelection = input("> ") if userSelection == '1': highScores = getHighScores(user) print() print("Your highscores:") for score in highScores: print(score) showFinalMenu(user) else: print("Thanks for playing. Goodbye") exit() def getHighScores(user): return filehandler.loadHighScores(user) ```
{ "source": "joehalloran/shoppinglist_project", "score": 2 }
#### File: shoppinglist/lists/views.py ```python from django.views.generic import ListView, DetailView from django.views.generic.edit import CreateView, DeleteView from django.contrib.messages.views import SuccessMessageMixin from django.contrib import messages from django.shortcuts import render from django.forms import inlineformset_factory, modelformset_factory, TextInput, HiddenInput from django.http import HttpResponseRedirect from django.urls import reverse, reverse_lazy from django.utils.decorators import method_decorator from django.core.exceptions import PermissionDenied from django.db import transaction from oauth2client.contrib.django_util import decorators from oauth2client import client from .models import List, Item from .forms import ListCreateForm class MyListView(ListView): """ The /mylists/ root. Lists lists I own. """ model = List template_name = 'lists/mylists.html' context_object_name = 'mylists' @method_decorator(decorators.oauth_required()) def dispatch(self,request,*args,**kwargs): """ Add oauth decorator to bind google user data to request object """ return super(MyListView,self).dispatch(request,*args,**kwargs) def get_queryset(self): """ Only list Lists I own. """ return List.objects.filter(owner = self.request.oauth.credentials.id_token['email']) class ListCreate(SuccessMessageMixin, CreateView): """ Form to create a new list """ template_name = 'lists/create_form.html' form_class = ListCreateForm success_message = "List Created. Now you can add some items." @method_decorator(decorators.oauth_required()) def dispatch(self,request,*args,**kwargs): """ Add oauth decorator to bind google user data to request object """ return super(ListCreate,self).dispatch(request,*args,**kwargs) def form_valid(self, form): """ Manually add google user as owner """ form.instance.owner = self.request.oauth.credentials.id_token['email'] return super(ListCreate, self).form_valid(form) class ListDelete(DeleteView): """ Form to delete a list. """ model = List success_url = reverse_lazy('lists:mylists') success_message = "Your list deleted successfully." @method_decorator(decorators.oauth_required()) def dispatch(self,request,*args,**kwargs): """ Add oauth decorator to bind google user data to request object and check if user owns object before delete. """ current_user = request.oauth.credentials.id_token['email'] parentList = self.get_object() if current_user != parentList.owner and not request.user.is_superuser: raise PermissionDenied return super(ListDelete,self).dispatch(request,*args,**kwargs) def get_context_data(self, **kwargs): """ Add in a QuerySet of of the items belonging to the list """ context = super(ListDelete, self).get_context_data(**kwargs) context['items'] = Item.objects.filter( parentList = self.get_object() ) return context def delete(self, request, *args, **kwargs): """ Work around as SuccessMessageMixin does not work with DeleteView """ messages.success(self.request, self.success_message) return super(ListDelete, self).delete(request, *args, **kwargs) @decorators.oauth_required def editListView(request, pk): """ Create / edit form to edit all items in list and list title. """ # Get current user and list object to check ownership current_user = request.oauth.credentials.id_token['email'] parentList = List.objects.get(pk=pk) if current_user != parentList.owner and not request.user.is_superuser: raise PermissionDenied # Generate formset for the parent list, so we can edit the list name ListFormSet = modelformset_factory( List, fields=("name",), extra=0, widgets={ 'name': TextInput(attrs={'class': 'form-control form-title form-inactive', 'required': True}), } ) # If no items exist create an extra field to add new list item. itemCount = Item.objects.filter(parentList = parentList).count() if itemCount > 0: extraItemField = 0 else: extraItemField = 1 # Generate the formset of list member items, so we can edit the shopping list ItemInlineFormSet = inlineformset_factory( List, Item, fields=("name", "parentList"), extra=extraItemField, widgets={ 'name': TextInput(attrs={'class': 'form-control form-inactive', 'required': True}), } ) # if POST generate form data and save if valid if request.method == 'POST': item_formset = ItemInlineFormSet( request.POST, instance=parentList ) list_formset = ListFormSet( request.POST, queryset= List.objects.filter(pk=pk) ) if item_formset.is_valid() and list_formset.is_valid(): # Transactions - only save list and items together with transaction.atomic(): item_formset.save() list_formset.save() # Redirect to list page. messages.add_message(request, messages.SUCCESS, 'List changes saved.') return HttpResponseRedirect(reverse('lists:edit', kwargs={'pk':pk})) else: # Add errors and redirect to form. for errors in list_formset.errors: messages.add_message(request, messages.INFO, errors, extra_tags='danger') for errors in item_formset.errors: messages.add_message(request, messages.INFO, errors, extra_tags='danger') return HttpResponseRedirect(reverse('lists:edit', kwargs={'pk':pk})) # if a GET (or any other method) create a blank form else: # Limit list items to only include parent list members (not from any old list) item_formset = ItemInlineFormSet( instance=parentList ) # Limit list item to one. We only want to edit the title of the current list list_formset = ListFormSet( queryset= List.objects.filter(pk=pk) ) return render(request, 'lists/item_form.html', { 'item_formset': item_formset, 'list_formset': list_formset, }) ```
{ "source": "joehand/joeahand", "score": 2 }
#### File: joehand/joeahand/pelicanconf.py ```python import time from urllib.parse import urlparse VERSION = 0.2 ############################ ##### Pelican Settings ##### ############################ # General Pelican settings. You can problably change these without breaking theme. # Will be set in publish config. SITEURL = '' # Uncomment following line if you want document-relative URLs when developing RELATIVE_URLS = True PATH = 'content' TIMEZONE = 'US/Mountain' DEFAULT_LANG = u'en' DEFAULT_DATE_FORMAT = '%Y-%B-%d' DIRECT_TEMPLATES = ('index', 'archives', 'sitemap') # Feed generation is usually not desired when developing FEED_ALL_ATOM = None CATEGORY_FEED_ATOM = None TRANSLATION_FEED_ATOM = None AUTHOR_FEED_ATOM = None AUTHOR_FEED_RSS = None ARTICLE_URL = 'archive/{slug}/' ARTICLE_SAVE_AS = 'archive/{slug}/index.html' PAGE_URL = '{slug}/' PAGE_SAVE_AS = '{slug}/index.html' ARCHIVES_URL = 'archive/' ARCHIVES_SAVE_AS = 'archive/index.html' SITEMAP_SAVE_AS = 'sitemap.xml' TAG_URL = '' TAG_SAVE_AS = '' CATEGORY_URL = '' CATEGORY_SAVE_AS = '' # Nicer pagination # (e.g. site.com/blog/1/ instead of site.com/blog/1.html) DEFAULT_PAGINATION = 5 PAGINATION_PATTERNS = ( (1, '{base_name}/', '{base_name}/index.html'), (2, '{base_name}/{number}/', '{base_name}/{number}/index.html'), ) ################################# ##### Theme/Custom Settings ##### ################################# # Theme specific settings. These are important and will break theme if missing THEME = 'themes/joe/' # These pages will show in nav pages. # Need to put files in content/pages/ NAV_PAGES = ['about', 'cv'] # We have a special homepage. Blog will go to site.com/blog INDEX_SAVE_AS = 'blog/index.html' # These things are used in various places. AUTHOR = u'<NAME>' AUTHOR_LINKS = { 'INSTAGRAM': 'http://instagram.com/joeahand', 'GITHUB': 'https://github.com/joehand', 'TWITTER': 'http://twitter.com/joeahand/', # use html entities to obfuscate for spammers # (http://stackoverflow.com/questions/748780/best-way-to-obfuscate-an-e-mail-address-on-a-website) 'EMAIL': '&#106;&#111;&#101;&#064;&#106;&#111;&#101;&#097;&#104;&#097;&#110;&#100;&#046;&#099;&#111;&#109;' } SITENAME = u'<NAME>' SITESUBTITLE = u'Better communities with open data' SITEDESCRIPTION = u'<NAME> is a product lead, developer, researcher, and open data enthusiast. Joe works with international communities, open source developers, scientists, and data visualization & mapping experts to enable communities to solve problems.' PLUGIN_PATHS = ["plugins", 'plugins/pelican-plugins'] PLUGINS = [ 'assets', 'pelican_gdocs' ] # GDOCS PLUGIN Settings GDOCS = [ { 'name': 'instagram', 'url': 'http://docs.google.com/spreadsheets/d/16KHyJyTGvOIFKTR5uUHrXKWH3kf-UiucCwXfceFet0k/pub?gid=0&single=true&output=csv' }, { 'name': 'articles', 'url': 'http://docs.google.com/spreadsheets/d/1Wav1nDxtOTRm3WMLL3RI0oqApxLjBxzTcPftWsCn6x4/pub?gid=0&single=true&output=csv' }, { 'name': 'fitbit_activity', 'url': 'http://docs.google.com/spreadsheets/d/1AZRyvrcm-Stk0VlWoPEHD4sxe1PTOdEpU2MejRzHB7s/pub?gid=0&single=true&output=csv' }, { 'name': 'tweets', 'url': 'http://docs.google.com/spreadsheets/d/1qRuICBJWHQQ34ujTXkY8jh7obJuVJ_quLbwMrBiQFyg/pub?gid=0&single=true&output=csv' }, { 'name': 'steps', 'url': 'http://docs.google.com/spreadsheets/d/1AZRyvrcm-Stk0VlWoPEHD4sxe1PTOdEpU2MejRzHB7s/pub?gid=0&single=true&output=csv' }, { 'name': 'coffee', 'url': 'http://docs.google.com/spreadsheets/d/1fsaSy8HJdoTr5iUX7p-iCxUwC-TFzZxnqNzt6mMP26s/pub?gid=0&single=true&output=csv' }, ] COPYRIGHT_LINK = 'http://creativecommons.org/licenses/by-nc-nd/4.0/' home_bundle = [ "external/pure/base.css", "external/pure/menus-core.css", "external/pure/menus-horizontal.css", "external/pure/menus-skin.css", "external/pure/tables.css", "external/pure/grids.css", "external/pure/grids-responsive.css", 'critical_home.scss' ] blog_bundle = [ "external/pure/base.css", "external/pure/menus-core.css", "external/pure/menus-horizontal.css", "external/pure/menus-skin.css", "external/pure/tables.css", "external/pure/grids.css", "external/pure/grids-responsive.css", 'critical_blog.scss' ] page_bundle = [ "external/pure/base.css", "external/pure/menus-core.css", "external/pure/menus-horizontal.css", "external/pure/menus-skin.css", "external/pure/tables.css", "external/pure/grids.css", "external/pure/grids-responsive.css", 'critical_page.scss' ] ASSET_BUNDLES = ( ('home', home_bundle, {'filters':"pyscss,cssmin", 'output':"../../themes/joe/templates/home.min.css"}), ('blog',blog_bundle , {'filters':"pyscss,cssmin", 'output':"../../themes/joe/templates/blog.min.css"}), ('page',page_bundle, {'filters':"pyscss,cssmin", 'output':"../../themes/joe/templates/page.min.css"}), ) ############################### ##### Nice Things to Have ##### ############################### # These can be used anywhere in templates LAST_UPDATE = str(time.strftime('%m %Y')) YEAR = str(time.strftime('%Y')) def get_domain(url): ''' Return the domain (and subdomain!) for a url ''' parsed_uri = urlparse(url) return '{uri.netloc}'.format(uri=parsed_uri).replace('www.', '') JINJA_FILTERS = { 'get_domain': get_domain, } ```
{ "source": "joehand/statistics-neighborhoods", "score": 3 }
#### File: statistics-neighborhoods/statsneighborhoods/price.py ```python import numpy as np from pandas import concat, DataFrame, Series from scipy import stats LOW_BINS = [0, 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, 60000, 75000, 100000, 125000, 150000, 200000] MID_BINS = [5000, 12500, 17500, 22500, 27500, 32500, 37500, 42500, 47500, 55000, 67500, 87500, 112500, 137500, 175000, 225000] def adjust_rich_bin(df, col_suffix, inc_bin=200000): col = 'ACSHINC200' df['new_mid_pt' + col_suffix] = (df['ACSAVGHINC'] * df['Total_Households'] - df['mean_inc' + col_suffix] * df['Total_Households'] + df[col] * inc_bin)/df[col] df['new_mid_pt' + col_suffix] = df['new_mid_pt' + col_suffix].replace([np.inf, -np.inf], inc_bin) df[col + col_suffix] = df[col] * df['new_mid_pt' + col_suffix] df['adjusted' + col_suffix] = df.filter( regex='^ACSHINC([0-9])+' + col_suffix).sum(axis=1)//df['Total_Households'] df['adjusted' + col_suffix] = df['adjusted' + col_suffix].astype(int) return df def calculate_mean_income(df, inc_bins, col_suffix): df = df.copy() cols = df.filter(regex='^ACSHINC([0-9])+$').columns for i, col in enumerate(cols): df[col + col_suffix] = df[col] * inc_bins[i] df['total_inc' + col_suffix] = df.filter(regex='^ACSHINC([0-9])+' + col_suffix).sum(axis=1) df['mean_inc' + col_suffix] = df['total_inc' + col_suffix]//df['Total_Households'] df = adjust_rich_bin(df, col_suffix, inc_bin=inc_bins[i]) return df def calculate_a(df, reported_mean='ACSAVGHINC', calc_mean_low='mean_inc_low', calc_mean_mid='mean_inc_mid'): df = df.copy() df['a'] = (df[reported_mean] - df[calc_mean_low]) / \ (df[calc_mean_mid] - df[calc_mean_low]) return df def calculate_price(df): df = calculate_mean_income(df, LOW_BINS, '_low') df = calculate_mean_income(df, MID_BINS, '_mid') df = calculate_a(df, calc_mean_low='adjusted_low') return df ```
{ "source": "joehandzik/dlcookbook-dlbs", "score": 2 }
#### File: caffe2_benchmarks/models/googlenet.py ```python from __future__ import absolute_import from caffe2.python import brew from caffe2_benchmarks.models.model import Model # https://github.com/dmlc/mxnet/blob/master/example/image-classification/symbols/googlenet.py # http://ethereon.github.io/netscope/#/gist/4325909f3683e51eaf93fdaeed6b2a9b def conv_factory(model, v, num_in_channels, num_filter, kernel, stride=1, pad=0, name=None, suffix=''): v = brew.conv(model, v, 'conv_%s%s' %(name, suffix), num_in_channels, num_filter, kernel=kernel, pad=pad, stride=stride) v = brew.relu(model, v, 'relu_%s%s' %(name, suffix)) return v def inception_factory(model, v, num_in_channels, num_1x1, num_3x3red, num_3x3, num_d5x5red, num_d5x5, proj, name): # 1x1 c1x1 = conv_factory(model, v, num_in_channels, num_filter=num_1x1, kernel=1, name=('%s_1x1' % name)) # 3x3 reduce + 3x3 c3x3r = conv_factory(model, v, num_in_channels, num_filter=num_3x3red, kernel=1, name=('%s_3x3' % name), suffix='_reduce') c3x3 = conv_factory(model, c3x3r, num_3x3red, num_filter=num_3x3, kernel=3, pad=1, name=('%s_3x3' % name)) # double 3x3 reduce + double 3x3 cd5x5r = conv_factory(model, v, num_in_channels, num_filter=num_d5x5red, kernel=1, name=('%s_5x5' % name), suffix='_reduce') cd5x5 = conv_factory(model, cd5x5r, num_d5x5red, num_filter=num_d5x5, kernel=5, pad=2, name=('%s_5x5' % name)) # pool + proj pooling = brew.max_pool(model, v, 'max_pool_%s_pool' % name, kernel=3, stride=1, pad=1) cproj = conv_factory(model, pooling, num_in_channels, num_filter=proj, kernel=1, name=('%s_proj' % name)) # concat and return return brew.concat(model, [c1x1, c3x3, cd5x5, cproj], 'ch_concat_%s_chconcat' % name) class GoogleNet(Model): """A GoogleNet implementation""" implements = 'googlenet' def __init__(self, params): """ Naming and topology according to: http://ethereon.github.io/netscope/#/gist/f2e4825a8d4f8a3609cefd7ffadc910a Based on: https://github.com/dmlc/mxnet/blob/master/example/image-classification/symbols/alexnet.py """ Model.check_parameters( params, {'name': 'GoogleNet', 'input_shape':(3, 224, 224), 'num_classes': 1000, 'arg_scope': {'order': 'NCHW'}}) Model.__init__(self, params) def forward_pass_builder(self, model, loss_scale=1.0): """ This function adds the operators, layers to the network. It should return a list of loss-blobs that are used for computing the loss gradient. This function is also passed an internally calculated loss_scale parameter that is used to scale your loss to normalize for the number of GPUs. Signature: function(model, loss_scale) """ v = 'data' v = conv_factory(model, v, self.input_shape[0], 64, kernel=7, stride=2, pad=3, name="conv1/7x7_s2") v = brew.max_pool(model, v, 'pool1/3x3_s2', kernel=3, stride=2) v = brew.lrn(model, v, 'pool1/norm1', size=5, alpha=0.0001, beta=0.75) v = conv_factory(model, v, 64, 64, kernel=1, stride=1, name="conv2/3x3_reduce") v = conv_factory(model, v, 64, 192, kernel=3, stride=1, pad=1, name="conv2/3x3") v = brew.lrn(model, v, 'conv2/norm2', size=5, alpha=0.0001, beta=0.75) v = brew.max_pool(model, v, 'pool2/3x3_s2', kernel=3, stride=2) v = inception_factory(model, v, 192, 64, 96, 128, 16, 32, 32, name="inception_3a") v = inception_factory(model, v, 256, 128, 128, 192, 32, 96, 64, name="inception_3b") v = brew.max_pool(model, v, 'pool3/3x3_s2', kernel=3, stride=2) v = inception_factory(model, v, 480, 192, 96, 208, 16, 48, 64, name="inception_4a") v = inception_factory(model, v, 512, 160, 112, 224, 24, 64, 64, name="inception_4b") v = inception_factory(model, v, 512, 128, 128, 256, 24, 64, 64, name="inception_4c") v = inception_factory(model, v, 512, 112, 144, 288, 32, 64, 64, name="inception_4d") v = inception_factory(model, v, 528, 256, 160, 320, 32, 128, 128, name="inception_4e") v = brew.max_pool(model, v, 'pool4/3x3_s2', kernel=3, stride=2, pad=1) v = inception_factory(model, v, 832, 256, 160, 320, 32, 128, 128, name="inception_5a") v = inception_factory(model, v, 832, 384, 192, 384, 48, 128, 128, name="inception_5b") v = brew.average_pool(model, v, 'pool5/7x7_s1', kernel=7, stride=1) v = brew.dropout(model, v, 'pool5/drop_7x7_s1', ratio=0.5, is_test=(self.phase == 'inference')) return self.add_head_nodes(model, v, 1024, 'classifier', loss_scale=loss_scale) ``` #### File: data/imagenet/imagenet_tools.py ```python import os import sys import gzip import json import random from dlbs.utils import IOUtils class ImageNetTools(object): """Various framework-independent tools to process ImageNet and prepare files requried to generate benchmark datasets. """ @staticmethod def get_labels(): """Load labels from 'imagenet_labels.json.gz' that's located in the same directory as this file. :rtype: dict :return: Dictionary that maps ImageNet class folder ID to an object that contains two fields - 'label' and 'human_labels'. The 'label' is an integer index of a label from [0,1000) according to this list: http://data.csail.mit.edu/soundnet/categories/categories_imagenet.txt """ labels_file = os.path.join(os.path.dirname(__file__), 'imagenet_labels.json.gz') with gzip.open(labels_file, 'rb') as file_obj: labels = json.load(file_obj) return labels @staticmethod def get_image_files(folder, shuffle=True, num_files=-1): """ Get *.JPEG files in folder. Shuffle files and return at most num_files files. """ # Scan the folder recursively and find files. files = IOUtils.find_files(folder, '*.JPEG', recursively=True) # Shuffle files and return first 'num_files' files. if shuffle: random.shuffle(files) if num_files > 0 and num_files < len(files): files = files[0:num_files] return files @staticmethod def get_file_info(img_file, labels): """Return meta information about image in 'img_file' file. """ fdir, fname = os.path.split(img_file) synset = os.path.basename(fdir) if synset not in labels: raise ValueError("Invalid synset '%s: not found in labels dict." % synset) return synset, fname, labels[synset] @staticmethod def build_caffe_labels(imagenet_dir, labels_file): """Generates a textual file with the following content: img_0000.jpeg 1 img_0001.jpeg 0 ... mapping image file name to its class label """ IOUtils.mkdirf(labels_file) img_files = ImageNetTools.get_image_files(imagenet_dir) labels = ImageNetTools.get_labels() with open(labels_file, 'w') as fobj: for img_file in img_files: synset, fname, finfo = ImageNetTools.get_file_info(img_file, labels) fobj.write("%s/%s %d\n" % (synset, fname, finfo['label'])) @staticmethod def build_mxnet_labels(imagenet_dir, labels_file): """Generates a textual file with the following content: 0 45 n02093256/n02093256_3032.JPEG 1 45 n02093256/n02093256_3353.JPEG ... image_index image_class_label image_path """ IOUtils.mkdirf(labels_file) img_files = ImageNetTools.get_image_files(imagenet_dir) labels = ImageNetTools.get_labels() with open(labels_file, 'w') as fobj: for img_index, img_file in enumerate(img_files): synset, fname, finfo = ImageNetTools.get_file_info(img_file, labels) fobj.write("%d\t%d\t%s/%s\n" % (img_index, finfo['label'], synset, fname)) @staticmethod def build_tensorflow_synsets(imagenet_dir, synset_file): """Builds a textual file with one synset on a line""" IOUtils.mkdirf(synset_file) labels = ImageNetTools.get_labels() with open(synset_file, 'w') as fobj: for label in labels: fobj.write("%s\n" % label) @staticmethod def build_tensorflow_human_labels(imagenet_dir, human_labels_file): """Builds a textual file with one synset on a line""" IOUtils.mkdirf(human_labels_file) labels = ImageNetTools.get_labels() with open(human_labels_file, 'w') as fobj: for label in labels: fobj.write("%s\t%s\n" % (label, labels[label]['human_labels'])) if __name__ == '__main__': num_args = len(sys.argv) if num_args > 1: if sys.argv[1] == 'build_caffe_labels' and num_args == 4: ImageNetTools.build_caffe_labels(sys.argv[2], sys.argv[3]) if sys.argv[1] == 'build_mxnet_labels' and num_args == 4: ImageNetTools.build_mxnet_labels(sys.argv[2], sys.argv[3]) if sys.argv[1] == 'build_tensorflow_synsets' and num_args == 4: ImageNetTools.build_tensorflow_synsets(sys.argv[2], sys.argv[3]) if sys.argv[1] == 'build_tensorflow_human_labels' and num_args == 4: ImageNetTools.build_tensorflow_human_labels(sys.argv[2], sys.argv[3]) ``` #### File: dlbs/reports/bench_stats.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import argparse import json from dlbs.utils import IOUtils from dlbs.logparser import LogParser """ print("[WARNING] This module is deprecated and will be removed in future releases. " "Please, use bench_data.py instead.") """ class BenchStats(object): """Class that finds log files and computes simple statistics on experiments.""" @staticmethod def load_data(**kwargs): is_dir = os.path.isdir(kwargs['input']) is_file = os.path.isfile(kwargs['input']) is_log_file = is_file and kwargs['input'].endswith('.log') is_json_file = is_file and (kwargs['input'].endswith('.json') or kwargs['input'].endswith('.json.gz')) if is_dir or is_log_file: files = IOUtils.find_files(config['input'], "*.log", config['recursive']) benchmarks, failed_benchmarks = LogParser.parse_log_files(files) benchmarks.extend(failed_benchmarks) elif is_json_file: benchmarks = IOUtils.read_json(kwargs['input']) benchmarks = benchmarks['data'] else: raise ValueError("Invalid input descriptor: {}".format(kwargs['input'])) return benchmarks @staticmethod def compute(**kwargs): """ Finds files and compute experiments' statistics. :param std log_dir: Directory to search files for. :param bool recursive: If True, directory will be searched recursively. :return: Dictionary with experiment statistics. """ benchmarks = BenchStats.load_data(**kwargs) def _get(d, key, val=''): return d[key] if key in d else val stats = { 'num_benchmarks': len(benchmarks), 'num_failed_exps': 0, 'num_successful_exps': 0, 'failed_exps': {}, 'node_ids': set(), 'node_titles': set(), 'gpu_titles': set(), 'framework_titles': set() } for bench in benchmarks: time_val = str(bench['results.time']).strip() if 'results.time' in bench else '' if not time_val: stats['num_failed_exps'] += 1 if 'exp.id' not in bench: print("[ERROR] No exp.id found in benchmark (%s)" % str(bench)) continue stats['failed_exps'][bench['exp.id']] = { 'msg': 'No %s time found in log file.' % _get(bench, 'exp.phase', 'PHASE_UNKNOWN'), 'log_file': _get(bench, 'exp.log_file', 'LOG_FILE_UNKNOWN'), 'phase': _get(bench, 'exp.phase', 'PHASE_UNKNOWN'), 'framework_title': _get(bench, 'exp.framework_title', 'FRAMEWORK_TITLE_UNKNOWN') } else: stats['num_successful_exps'] += 1 # for key in [('exp.node_id', 'node_ids'), ('exp.node_title', 'node_titles'), ('exp.gpu_title', 'gpu_titles'), ('exp.framework_title', 'framework_titles')]: if key[0] in bench: stats[key[1]].add(bench[key[0]]) for key in ['node_ids', 'node_titles', 'gpu_titles', 'framework_titles']: stats[key] = list(stats[key]) return stats if __name__ == "__main__": print("[WARNING] This module is deprecated and will be removed in future releases. " "Please, use bench_data.py instead.") parser = argparse.ArgumentParser() parser.add_argument('--input', type=str, required=True, default=None, help="Either a folder containing Scan this folder for *.log files. " "Scan recursively if --recursive is set.") parser.add_argument('--recursive', required=False, default=False, action='store_true', help='Scan --log_dir folder recursively for log files.') config = vars(parser.parse_args()) stats = BenchStats.compute(**config) print(json.dumps(stats, sort_keys=False, indent=2)) ``` #### File: python/dlbs/worker.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import time import json import threading import logging import subprocess import traceback from dlbs.utils import IOUtils, DictUtils, ParamUtils from dlbs.sysinfo.systemconfig import SysInfo class Worker(threading.Thread): """This class runs one benchmarking experiment. It runs it in a separate thread. The typical usage example: .. code-block:: python worker = Worker( ["echo", "'Hello World'"], # Command to execute (with ``Popen``) {}, # Environmental variables to set {}, # Experiment variables (dictionary) 5, # Current benchmark index 10 # Total number of benchmarks ) worker.work() # This is a blocking call. """ def __init__(self, command, environ, params): """ Initializes this worker with the specific parameters. Args: command (list): List containing command to execute and its command line arguments (with Popen). environ (dict): Environment variables to set with Popen. params (dict): Parameters of this benchmark (dictionary). """ threading.Thread.__init__(self) self.command = command # Command + command line arguments self.environ = environ # Environmental variables to append self.params = params # All experiment variables self.process = None # Background process object self.ret_code = 0 # Return code of the process def __dump_parameters(self, file_object): """Dumps all experiment parameters to a file (or /dev/stdout). Args: file_object: A file object. This is a log file for an individual benchmark. All parameters are dumped which not great. """ file_object.write("Running subprocess (%s) with log file '%s'\n" % (self.command, self.params['exp.log_file'])) file_object.write("\n" "--------------------------\n" "Variables from python script.\n" "--------------------------\n") ParamUtils.log_parameters(self.params, file_object) file_object.write("\n" "----------------------------\n" "Starting framework launcher.\n" "----------------------------\n") def run(self): """Runs subprocess with Popen. This method must not be called directly. Use blocking :py:meth:`~dlbs.worker.Worker.work` method instead. """ try: # Dump parameters to a log file or to standard output DictUtils.ensure_exists(self.params, 'exp.log_file', default_value='') if self.params['exp.log_file'].strip() == '': self.params['exp.log_file'] = '/dev/stdout' IOUtils.mkdirf(self.params['exp.log_file']) with open(self.params['exp.log_file'], 'a+') as log_file: self.__dump_parameters(log_file) # This is where we launch process. Keep in mind, that the log file that's # supposed to be created is exp.log_file or exp_log_file in the script. # Other output of the launching script will be printed by this python code # to a standard output. try: self.process = subprocess.Popen(self.command, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, env=self.environ) except OSError: print("[ERROR] Failed to run command '%s' (file must exist and be executable)" % str(self.command)) raise while True: output = self.process.stdout.readline() if output == '' and self.process.poll() is not None: break if output: sys.stdout.write(output) sys.stdout.flush() self.ret_code = self.process.poll() except Exception as err: logging.warn('Exception has been caught for experiment %s: %s', self.params.get('exp.id'), str(err)) logging.warn(traceback.format_exc()) self.ret_code = -1 def work(self, resource_monitor=None): """Runs a benchmark as subprocess and waits for it. Args: resource_monitor (dlbs.utils.ResourceMonitor): Optional resource monitor object. Returns: Status code for a subprocess call invocation. """ self.start() self.join() if resource_monitor is not None: resource_monitor.empty_pid_file() metrics = resource_monitor.get_measurements() with open(self.params['exp.log_file'], 'a+') as log_file: for key in metrics: log_file.write('__results.use.%s__=%s\n' % (key, json.dumps(metrics[key]))) if self.is_alive(): self.process.terminate() self.join() time.sleep(1) if 'exp.sys_info' in self.params and self.params['exp.sys_info']: info = SysInfo(self.params['exp.sys_info']).collect() with open(self.params['exp.log_file'], 'a+') as log_file: for key in info: log_file.write('__%s__=%s\n' % (key, json.dumps(info[key]))) return self.ret_code ``` #### File: mxnet_benchmarks/models/alexnet.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import mxnet as mx from mxnet_benchmarks.models.model import Model, Layers class AlexNet(Model): implements = 'alexnet' @property def output(self): return self.__output def __init__(self, params): Model.check_parameters( params, {'name': 'AlexNet', 'num_classes': 1000, 'phase': 'training', 'dtype': 'float32', 'input_layout': 'NCHW', 'model_layout': 'NCHW', 'nvidia_layers': False} ) params['input_shape'] = Model.conv_shape(3, (227, 227), params['input_layout']) Model.__init__(self, params) layers = Layers(params) data = self.add_data_node() data = Layers.conv_transform_layout(data, params['input_layout'], params['model_layout']) conv1 = layers.Convolution(name='conv1', data=data, kernel=(11, 11), stride=(4, 4), num_filter=96) relu1 = layers.Activation(name='relu1', data=conv1, act_type='relu') norm1 = self.maybe_lrn(relu1, 'norm1') pool1 = layers.Pooling(name='pool1', data=norm1, pool_type="max", kernel=(3, 3), stride=(2, 2)) conv2 = layers.Convolution(name='conv2', data=pool1, kernel=(5, 5), pad=(2, 2), num_filter=256, num_group=1) relu2 = layers.Activation(name='relu2', data=conv2, act_type="relu") norm2 = self.maybe_lrn(relu2, 'norm2') pool2 = layers.Pooling(name='pool2', data=norm2, kernel=(3, 3), stride=(2, 2), pool_type="max") conv3 = layers.Convolution(name='conv3', data=pool2, kernel=(3, 3), pad=(1, 1), num_filter=384) relu3 = layers.Activation(name='relu3', data=conv3, act_type="relu") conv4 = layers.Convolution(name='conv4', data=relu3, kernel=(3, 3), pad=(1, 1), num_filter=384, num_group=1) relu4 = layers.Activation(name='relu4', data=conv4, act_type="relu") conv5 = layers.Convolution(name='conv5', data=relu4, kernel=(3, 3), pad=(1, 1), num_filter=256, num_group=1) relu5 = layers.Activation(name='relu5', data=conv5, act_type="relu") pool5 = layers.Pooling(name='pool5', data=relu5, kernel=(3, 3), stride=(2, 2), pool_type="max") flatten = mx.symbol.Flatten(data=pool5) fc6 = mx.symbol.FullyConnected(name='fc6', data=flatten, num_hidden=4096) relu6 = layers.Activation(name='relu6', data=fc6, act_type="relu") drop6 = layers.Dropout(name='drop6', data=relu6, p=0.5) fc7 = mx.symbol.FullyConnected(name='fc7', data=drop6, num_hidden=4096) relu7 = layers.Activation(name='relu7', data=fc7, act_type="relu") drop7 = layers.Dropout(name='drop7', data=relu7, p=0.5) self.__output = self.add_head_nodes(drop7) ``` #### File: mxnet_benchmarks/models/model.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import os import copy import mxnet as mx import numpy as np class Layers(object): """ This class was introduced to work with some of the new NVIDIA performance improvements to MXNET available in NGC containers. Once these changes are merged into master branch, this class will probably be removed. """ def __init__(self, params): """ Args: params (dict): Dictionary of parameters: --model_layout (str) Tensor layout for CNN models - NCHW or NHWC. --nvidia_layers (bool) Enables/disables performance improvements. --dtype (str) Data type of computations - float32 or float16. """ self.__model_layout = params['model_layout'] self.__nvidia_layers = params['nvidia_layers'] self.__training = params['phase'] == 'training' self.__conv_args = {'layout': self.__model_layout} self.__pool_args = {} dtype = params['dtype'] if self.__nvidia_layers: if dtype == 'float16': self.__conv_args.update({'cudnn_algo_fwd': 1, 'cudnn_algo_bwd_data': 1, 'cudnn_algo_bwd_filter': 1, 'cudnn_tensor_core_only': True}) elif dtype == 'float32': self.__conv_args.update({'cudnn_algo_fwd': -1, 'cudnn_algo_bwd_data': -1, 'cudnn_algo_bwd_filter': -1, 'cudnn_tensor_core_only': False}) self.__conv_args.update({'layout': self.__model_layout}) self.__pool_args.update({'layout': self.__model_layout}) logging.info("Layers: model_layout = %s.", self.__model_layout) logging.info("Layers: conv_args = %s.", self.__conv_args) logging.info("Layers: pool_args = %s.", self.__pool_args) @staticmethod def merge_args(user_args, additional_args): merged_args = user_args.copy() merged_args.update(additional_args) return merged_args @staticmethod def conv_transform_layout(data, from_layout, to_layout): """ Transform a symbol from one layout to another, or do nothing if they have the same layout. Args: data (obj): Input tensor of rank 4. from_layout (str): Input layout to_layout (str): Output layout Returns: Tensor `data` with `to_layout`. """ supported_layouts = ['NCHW', 'NHWC'] if from_layout not in supported_layouts: raise ValueError('Not prepared to handle layout: {}'.format(from_layout)) if to_layout not in supported_layouts: raise ValueError('Not prepared to handle layout: {}'.format(to_layout)) # Insert transpose if from_layout and to_layout don't match if from_layout == 'NCHW' and to_layout == 'NHWC': return mx.sym.transpose(data, axes=(0, 2, 3, 1)) elif from_layout == 'NHWC' and to_layout == 'NCHW': return mx.sym.transpose(data, axes=(0, 3, 1, 2)) else: return data # noinspection PyPep8Naming def Convolution(self, **kwargs): return mx.symbol.Convolution(**Layers.merge_args(kwargs, self.__conv_args)) # noinspection PyPep8Naming def Activation(self, **kwargs): return mx.symbol.Activation(**kwargs) # noinspection PyPep8Naming def Pooling(self, **kwargs): data = kwargs.pop('data') if not self.__nvidia_layers: data = Layers.conv_transform_layout(data, self.__model_layout, 'NCHW') data = mx.symbol.Pooling(data=data, **Layers.merge_args(kwargs, self.__pool_args)) if not self.__nvidia_layers: data = Layers.conv_transform_layout(data, 'NCHW', self.__model_layout) return data # noinspection PyPep8Naming def Dropout(self, **kwargs): return mx.symbol.Dropout(**kwargs) if self.__training else kwargs['data'] # noinspection PyPep8Naming def BatchNorm(self, **kwargs): bn_axis = 3 if self.__model_layout == 'NHWC' else 1 if 'act_type' in kwargs: if kwargs['act_type'] is not None and not self.__nvidia_layers: raise ValueError("Model construction logic violation. Batch norm support activation only with " "enabled NVIDIA layers (--nvidia_layers=true), this functionality is only available " "in NGC containers (it's not yet in MXNET repository).") del kwargs['act_type'] return mx.sym.BatchNorm(**Layers.merge_args(kwargs, {'axis': bn_axis})) # noinspection PyPep8Naming def BatchNormAddRelu(self, **kwargs): bn_axis = 3 if self.__model_layout == 'NHWC' else 1 return mx.sym.BatchNormAddRelu(**Layers.merge_args(kwargs, {'axis': bn_axis})) class Model(object): """Base class for all models""" def __init__(self, kwargs): """ name: printable name like AlexNet, ResNet152 etc input_shape: tuple of dimensions of input data excluding batch, for instance, (3,224,224) - 3 channels with 224 spatial dimensions num_classes: size of output softmax (affine) operator phase: 'inference' or 'training' """ for arg in ['name', 'input_shape', 'num_classes', 'phase', 'dtype', 'model_opts']: if arg not in kwargs: raise ValueError("Missing mandatory neural net parameter '%s'" % arg) self.__name = kwargs['name'] self.__input_shape = kwargs['input_shape'] self.__num_classes = kwargs['num_classes'] self.__phase = kwargs['phase'] self.__dtype = kwargs['dtype'] self.__model_opts = copy.deepcopy(kwargs['model_opts']) self.__have_float16_lrn = 'DLBS_MXNET_NO_FLOAT16_LRN' not in os.environ self._eval_metric = 'acc' # The following two parameters are used by data providers. self._labels_shape = (1,) # Shape of labels tensor excluding leading batch dimension self._labels_range = (0, self.num_classes-1) # Possible labels' values inclusive if self.__dtype == 'float16' and self.__have_float16_lrn: logging.warning( "The data type is 'float16' and I assume MXNET provides a float16 kernel for LRN layer. If this model " "uses LRN and your MXNET version is outdated, you will get error. In this case, to disable LRN layers " "in float16 regime, define the following variable 'DLBS_MXNET_NO_FLOAT16_LRN' (the value of this " "variable does not matter) i.e.: -Pruntime.launcher='\"DLBS_MXNET_NO_FLOAT16_LRN=1 \"'") if self.__dtype == 'float16' and not self.__have_float16_lrn: logging.warning( "The data type is 'float16' and you disable LRN layers. All calls to Model.maybe_lrn will do nothing. " "If your MXNET version is up to date and provides LRN float16 kernel make sure " "DLBS_MXNET_NO_FLOAT16_LRN environment variable is not defined. All this is relevant only if this " "model uses LRN operators.") @staticmethod def conv_shape(num_channels, spatial_dims, layout='NCHW'): """ Return shape of a feature map tensor for convolutional models. Args: num_channels (int): Number of channels. spatial_dims (tuple or list): Spatial dimensions (H, W) for a feature map. layout (str): Required layout, one of NCHW (channel first) or NHWC (channel last). Returns: Tuple with shape, either (C, H, W) or (H, W, C) depending on `layout`. """ if layout not in ('NCHW', 'NHWC'): raise ValueError("Invalid conv layout '{}'. Must be one of ['NCHW', 'NHWC']".format(layout)) if not isinstance(spatial_dims, (list, tuple)): raise ValueError("Invalid type of spatial_dims argument '{}'. " "Must be tuple or list.".format(type(spatial_dims))) return (num_channels, ) + tuple(spatial_dims) if layout == 'NCHW' else tuple(spatial_dims) + (num_channels, ) @staticmethod def check_parameters(params, default_params): """Ensures `params` dictionary contains all keys in `default_params` Args: params (dict): Dictionary to check. default_params (dict): Values with these keys must present in `params`. """ for param, value in default_params.items(): if params.get(param, None) is None: params[param] = value def add_data_node(self, name='data'): """Add data node casting it to float16 is required. Also implements double-buffering. https://github.com/NVIDIA/DeepLearningExamples/blob/40e074257fb8670b0284a37c92b9372bb1587354/MxNet/Classification/RN50v1.5/resnet.py#L241 """ data = mx.sym.Variable(name=name) if self.dtype == 'float32': data = mx.sym.identity(data=data) elif self.dtype == 'float16': data = mx.sym.cast(data=data, dtype=np.float16) return data def add_head_nodes(self, v): """Adds dense and softmax head nodes. Args: v (obj): input tensor. Returns: Output tensor """ v = mx.sym.FullyConnected(data=v, num_hidden=self.num_classes) if self.dtype == 'float16': logging.info("Casting logits to np.float32") v = mx.sym.cast(data=v, dtype=np.float32) if self.phase == 'training': labels = mx.sym.Variable(name="softmax_label") # Just in case labels are of shape (batch_size, 1) we need to # reshape them to (batch_size,). labels = mx.sym.Reshape(labels, shape=(-1,)) v = mx.symbol.SoftmaxOutput(data=v, label=labels, name='softmax') else: v = mx.symbol.softmax(data=v, name='softmax') return v def maybe_lrn(self, v, name): """ MxNet does not have float16 kernel for LRN operator. So, we use it only for float32 data type. That makes comparison not fair. Need to do something about it like dropping completely these operators. They are used by AlexNet and GoogleNet. UPDATE: Seems like mxnet now provides this kernel. :param obj v: Input tensor. :param str name: Name of the LRN operator. :return: The input tensor 'v' if data type is float16 else result of LRN operator """ if self.dtype == 'float32' or self.__have_float16_lrn: return mx.symbol.LRN(data=v, alpha=0.0001, beta=0.75, knorm=2, nsize=5, name=name) else: return v def render_to_file(self, node, bsize, fname): """Render the neural network to JPG file. :param sym node: Head node. :param int bsize: Batch size. :param str fname: File name without extension. """ g = mx.viz.plot_network( node, shape={'data': (bsize,) + self.input_shape}, node_attrs={"shape": 'rect', "fixedsize": 'false'}, save_format='jpg' ) g.render(fname) @staticmethod def num_parameters(module, count_aux_params=True): """Return number of parameters in a module. """ arg_params, aux_params = module.get_params() num_params = 0 for p in arg_params: num_params += np.prod(arg_params[p].shape) if count_aux_params: for p in aux_params: num_params += np.prod(aux_params[p].shape) return num_params @staticmethod def print_parameters(module): def __print(params): total_params = 0 pnames = params.keys() pnames.sort() for p in pnames: nparams = np.prod(params[p].shape) total_params += nparams print("%-30s %-30s %d" % (p, str(params[p].shape), int(nparams))) return total_params arg_params, aux_params = module.get_params() print("Arg parameters") net_params = __print(arg_params) print("Aux parameters") net_params += __print(aux_params) print("Total number of parameters %d" % net_params) @property def name(self): """Get model name""" return self.__name @property def input_shape(self): """Get input shape excluding batch size dimension""" return self.__input_shape if isinstance(self.__input_shape, tuple) else (self.__input_shape, ) @property def num_classes(self): """Get number of classes""" return self.__num_classes @property def phase(self): """Get current phase ('training' or 'inference')""" return self.__phase @property def dtype(self): """Get type of data ('float32' or 'float16' or 'int8')""" return self.__dtype @property def model_opts(self): """Get additional model options (json dictionary)""" return self.__model_opts @property def eval_metric(self): """Return evaluation metric""" return self._eval_metric @property def labels_shape(self): """Shape of labels tensor excluding leading batch dimension""" return self._labels_shape @property def labels_range(self): """Get range for possible label values. Range is inclusive.""" return self._labels_range ``` #### File: pytorch_benchmarks/models/googlenet.py ```python from __future__ import absolute_import import torch import torch.nn as nn from pytorch_benchmarks.models.model import Model class ConvModule(nn.Module): """ [input] -> Conv2D -> ReLU -> [output] """ def __init__(self, num_input_channels, num_filters, kernel_size, stride=1, padding=0): super(ConvModule, self).__init__() self.conv_module = nn.Sequential( nn.Conv2d(num_input_channels, num_filters, kernel_size=kernel_size, stride=stride, padding=padding), nn.ReLU(inplace=True), ) def forward(self, x): return self.conv_module(x) class InceptionModule(nn.Module): """ | -> c1x1 | branch: conv1 | -> c3x3r -> c3x3 | branch: conv3 [input] -| |-> concat -> [output] | -> cd5x5r -> cd5x5 | branch: conv5 | -> pooling -> cproj | branch: pooling """ def __init__(self, num_input_channels, num_1x1, num_3x3red, num_3x3, num_d5x5red, num_d5x5, proj): super(InceptionModule, self).__init__() self.conv1 = ConvModule(num_input_channels, num_filters=num_1x1, kernel_size=1) self.conv3 = nn.Sequential( ConvModule(num_input_channels, num_filters=num_3x3red, kernel_size=1), ConvModule(num_3x3red, num_filters=num_3x3, kernel_size=3, padding=1) ) self.conv5 = nn.Sequential( ConvModule(num_input_channels, num_filters=num_d5x5red, kernel_size=1), ConvModule(num_d5x5red, num_filters=num_d5x5, kernel_size=5, padding=2) ) self.pooling = nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=1, padding=1), ConvModule(num_input_channels, num_filters=proj, kernel_size=1) ) def forward(self, x): return torch.cat( [self.conv1(x), self.conv3(x), self.conv5(x), self.pooling(x)], dim=1 ) class GoogleNet(Model): implements = 'googlenet' def __init__(self, params): """""" Model.check_parameters( params, {'name': 'GoogleNet', 'input_shape':(3, 224, 224), 'num_classes': 1000, 'phase': 'training', 'dtype': 'float32'} ) Model.__init__(self, params) self.features = nn.Sequential( ConvModule(self.input_shape[0], 64, kernel_size=7, stride=2, padding=3), nn.MaxPool2d(kernel_size=3, stride=2), nn.LocalResponseNorm(size=5, alpha=0.0001, beta=0.75, k=2), ConvModule(64, 64, kernel_size=1, stride=1), ConvModule(64, 192, kernel_size=3, stride=1, padding=1), nn.LocalResponseNorm(size=5, alpha=0.0001, beta=0.75, k=2), nn.MaxPool2d(kernel_size=3, stride=2), InceptionModule(192, num_1x1=64, num_3x3red=96, num_3x3=128, num_d5x5red=16, num_d5x5=32, proj=32), # out channels = 256 InceptionModule(256, num_1x1=128, num_3x3red=128, num_3x3=192, num_d5x5red=32, num_d5x5=96, proj=64), # out channels = 480 nn.MaxPool2d(kernel_size=3, stride=2), InceptionModule(480, num_1x1=192, num_3x3red=96, num_3x3=208, num_d5x5red=16, num_d5x5=48, proj=64), # out channels = 512 InceptionModule(512, num_1x1=160, num_3x3red=112, num_3x3=224, num_d5x5red=24, num_d5x5=64, proj=64), # out channels = 512 InceptionModule(512, num_1x1=128, num_3x3red=128, num_3x3=256, num_d5x5red=24, num_d5x5=64, proj=64), # out channels = 512 InceptionModule(512, num_1x1=112, num_3x3red=144, num_3x3=288, num_d5x5red=32, num_d5x5=64, proj=64), # out channels = 528 InceptionModule(528, num_1x1=256, num_3x3red=160, num_3x3=320, num_d5x5red=32, num_d5x5=128, proj=128), # out channels = 832 nn.MaxPool2d(kernel_size=3, stride=2, padding=1), InceptionModule(832, num_1x1=256, num_3x3red=160, num_3x3=320, num_d5x5red=32, num_d5x5=128, proj=128), # out channels = 832 InceptionModule(832, num_1x1=384, num_3x3red=192, num_3x3=384, num_d5x5red=48, num_d5x5=128, proj=128), # out channels = 1024 nn.AvgPool2d(kernel_size=7, stride=1) ) self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(1024, self.num_classes) ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), 1024 * 1 * 1) return self.classifier(x) ``` #### File: pytorch_benchmarks/models/model.py ```python import torch.nn as nn class Model(nn.Module): """Base class for all models""" def __init__(self, params): super(Model, self).__init__() for param in ['name', 'input_shape', 'num_classes', 'phase', 'dtype']: assert param in params, "Missing mandatory neural net parameter '%s'" % param assert params['phase'] in ['inference', 'training'],\ "Invalid phase: '%s'. Expecting 'inference' or 'training'" % (params['phase']) self.__name = params['name'] self.__input_shape = params['input_shape'] self.__num_classes = params['num_classes'] self.__phase = params['phase'] self.__dtype = params['dtype'] @staticmethod def check_parameters(params, default_params): """Ensures `params` dictionary contains all keys in `default_params` Args: params (dict): Dictionary to check. default_params (dict): Values with these keys must present in `params`. """ for param, value in default_params.items(): if param not in params: params[param] = value @property def name(self): """Get model name""" return self.__name @property def input_shape(self): """Get input shape excluding batch size dimension""" return self.__input_shape if isinstance(self.__input_shape, tuple)\ else (self.__input_shape,) @property def num_classes(self): """Get number of classes""" return self.__num_classes @property def phase(self): """Get current phase ('training' or 'inference')""" return self.__phase @property def dtype(self): """Get type of data ('float32' or 'float16' or 'int8')""" return self.__dtype ``` #### File: pytorch_benchmarks/models/overfeat.py ```python from __future__ import absolute_import import torch.nn as nn from pytorch_benchmarks.models.model import Model class Overfeat(Model): implements = 'overfeat' def __init__(self, params): Model.check_parameters( params, {'name': 'Overfeat', 'input_shape': (3, 231, 231), 'num_classes': 1000, 'phase': 'training', 'dtype': 'float32'} ) Model.__init__(self, params) self.features = nn.Sequential( # Layer1 nn.Conv2d(self.input_shape[0], 96, kernel_size=11, stride=4), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), # Layer2 nn.Conv2d(96, 256, kernel_size=5), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), # Layer3 nn.Conv2d(256, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), # Layer4 nn.Conv2d(512, 1024, kernel_size=3, padding=1), nn.ReLU(inplace=True), # Layer5 nn.Conv2d(1024, 1024, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2) ) self.classifier = nn.Sequential( # Layer6 nn.Linear(1024 * 6 * 6, 3072), nn.ReLU(inplace=True), nn.Dropout(), # Layer7 nn.Linear(3072, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, self.num_classes) ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), 1024 * 6 * 6) return self.classifier(x) ``` #### File: pytorch_benchmarks/models/resnet.py ```python from __future__ import absolute_import import torch.nn as nn from pytorch_benchmarks.models.model import Model class ResnetModule(nn.Module): """Number of outut channels is always 'num_filters'.""" def __init__(self, num_input_channels, num_filters, stride, dim_match, bottle_neck): """Number of outut channels is always 'num_filters'.""" super(ResnetModule, self).__init__() # Branch 1 if dim_match: self.shortcut = None else: self.shortcut = nn.Sequential( nn.Conv2d(num_input_channels, num_filters, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(num_filters, eps=2e-5, momentum=0.9, affine=True) ) # Branch 2 if bottle_neck: bottleneck_channels = num_filters // 4 self.main = nn.Sequential( # Block 2A nn.Conv2d(num_input_channels, bottleneck_channels, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(bottleneck_channels, eps=2e-5, momentum=0.9, affine=True), nn.ReLU(inplace=True), # Block 2B nn.Conv2d(bottleneck_channels, bottleneck_channels, kernel_size=3, stride=stride, padding=1, bias=False), nn.BatchNorm2d(bottleneck_channels, eps=2e-5, momentum=0.9, affine=True), nn.ReLU(inplace=True), # Block 3B nn.Conv2d(bottleneck_channels, num_filters, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(num_filters, eps=2e-5, momentum=0.9, affine=True), ) else: self.main = nn.Sequential( # Block 2A nn.Conv2d(num_input_channels, num_filters, kernel_size=3, stride=stride, padding=1, bias=False), nn.BatchNorm2d(num_filters, eps=2e-5, momentum=0.9, affine=True), nn.ReLU(inplace=True), # Block 2B nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(num_filters, eps=2e-5, momentum=0.9, affine=True), ) self.relu = nn.ReLU(inplace=True) def forward(self, x): shortcut = x if self.shortcut is None else self.shortcut(x) return self.relu(shortcut + self.main(x)) class ResNet(Model): implements = [ 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnet200', 'resnet269' ] specs = { 'resnet18': { 'name': 'ResNet18', 'units': [2, 2, 2, 2], 'num_layers': 18 }, # pylint: disable=C0326 'resnet34': { 'name': 'ResNet34', 'units': [3, 4, 6, 3], 'num_layers': 34 }, # pylint: disable=C0326 'resnet50': { 'name': 'ResNet50', 'units': [3, 4, 6, 3], 'num_layers': 50 }, # pylint: disable=C0326 'resnet101': { 'name': 'ResNet101', 'units': [3, 4, 23, 3], 'num_layers': 101 }, # pylint: disable=C0326 'resnet152': { 'name': 'ResNet152', 'units': [3, 8, 36, 3], 'num_layers': 152 }, # pylint: disable=C0326 'resnet200': { 'name': 'ResNet200', 'units': [3, 24, 36, 3], 'num_layers': 200 }, # pylint: disable=C0326 'resnet269': { 'name': 'ResNet269', 'units': [3, 30, 48, 8], 'num_layers': 269 } # pylint: disable=C0326 } def __init__(self, params): specs = ResNet.specs[params['model']] Model.check_parameters( params, {'name': specs['name'], 'input_shape':(3, 224, 224), 'num_classes': 1000, 'phase': 'training', 'dtype': 'float32'} ) Model.__init__(self, params) # Adapted from https://github.com/tornadomeet/ResNet/blob/master/train_resnet.py # Original author <NAME> if specs['num_layers'] >= 50: filter_list = [64, 256, 512, 1024, 2048] bottle_neck = True else: filter_list = [64, 64, 128, 256, 512] bottle_neck = False self.features = nn.Sequential( nn.Conv2d(3, filter_list[0], kernel_size=7, stride=2, padding=3, bias=False), nn.BatchNorm2d(filter_list[0], eps=2e-5, momentum=0.9, affine=True), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ) # Number of stages is always 4 num_prev_channels = filter_list[0] for i in range(len(specs['units'])): # num_input_channels, num_filters, stride, dim_match, bottle_neck self.features.add_module( 'stage%d_unit%d' % (i + 1, 1), ResnetModule(num_prev_channels, filter_list[i+1], (1 if i == 0 else 2), False, bottle_neck) ) num_prev_channels = filter_list[i+1] for j in range(specs['units'][i]-1): self.features.add_module( 'stage%d_unit%d' % (i + 1, j + 2), ResnetModule(num_prev_channels, filter_list[i+1], 1, True, bottle_neck) ) self.features.add_module('pool1', nn.AvgPool2d(kernel_size=7, padding=0)) self.num_output_channels = filter_list[-1] self.classifier = nn.Sequential( nn.Linear(self.num_output_channels, self.num_classes) ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), self.num_output_channels) x = self.classifier(x) return x ``` #### File: python/tf_cnn_benchmarks/benchmark_cnn_distributed_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import namedtuple import os import subprocess import time from absl import flags as absl_flags import portpicker import six import tensorflow as tf import flags import test_util from platforms import util as platforms_util FLAGS = absl_flags.FLAGS def _convert_params_to_flags_list(params): """Converts Params to a list of flags. Skips default-valued parameters. E.g., converts benchmark_cnn.make_params(batch_size=32, model='resnet50') to ['--batch_size=32', '--model=resnet50'] Args: params: Params for BenchmarkCNN. Returns: A list of flags. """ return [ '--%s=%s' % (k, str(v)) for k, v in six.iteritems(params._asdict()) if v != flags.param_specs[k].default_value ] # When outputting a process's output in the log, maximum number of characters # to output. The log system does not allow us to output more than this in a # single log message, but this limit is also useful to avoid the logs from # becoming too large (the full process output is written to disk). MAX_OUTPUT_CHARS = 15000 # A process. name is a string identifying the process in logs. stdout and # stderr are file objects of the process's stdout and stderr, respectively. _ProcessInfo = namedtuple('_ProcessInfo', ['name', 'popen', 'stdout', 'stderr']) def _create_task_process(job_name, task_index, args, env, output_dir): """Creates a process for a single task for benchmark_cnn. Args: job_name: 'worker' or 'ps' or ''. Empty string used for non-distributed mode. task_index: The index of the task within the cluster. args: A list of arguments to pass to the task. This function additionally sets --task_index and --job_name env: The environment to use for the task. output_dir: Where to place the output files, storing the task's stdout and stderr. Returns: A _ProcessInfo namedtuple of the running process. The stdout and stderr fields of this tuple must be closed by the caller once the process ends. """ args = args[:] args += ['--task_index=%s' % task_index, '--job_name=%s' % job_name] name_prefix = job_name or 'local' process_name = '%s_%s' % (name_prefix, task_index) tf.logging.info('Spawning %s process: %s' % (process_name, ' '.join(args))) stdout_filename = os.path.join(output_dir, '%s_stdout.txt' % process_name) stderr_filename = os.path.join(output_dir, '%s_stderr.txt' % process_name) stdout_file = open(stdout_filename, 'w+') stderr_file = open(stderr_filename, 'w+') popen = subprocess.Popen( args, stdout=stdout_file, stderr=stderr_file, env=env) return _ProcessInfo(process_name, popen, stdout_file, stderr_file) def _wait_for_processes(wait_processes, kill_processes): """Waits until all `wait_processes` finish, then kills `kill_processes`. Fails an assert if a process in `wait_processes` finishes unsuccessfully. The processes in `kill_processes` are assumed to never finish so they are killed. Args: wait_processes: A list of _ProcessInfo tuples. This function will wait for each to finish. kill_processes: A list of _ProcessInfo tuples. Each will be killed once every process in `wait_processes` is finished. Returns: A list of strings, each which is a string of the stdout of a wait process. """ wait_process_stdouts = [None] * len(wait_processes) finished_wait_processes = set() while len(finished_wait_processes) < len(wait_processes): for i, wait_process in enumerate(wait_processes): if i in finished_wait_processes: continue ret_code = wait_process.popen.poll() if ret_code is None: continue tf.logging.info('{} finished'.format(wait_process.name)) wait_process.stdout.seek(0) wait_process_stdouts[i] = wait_process.stdout.read() tf.logging.info('stdout for {} (last {} chars): {}\n'.format( wait_process.name, MAX_OUTPUT_CHARS, wait_process_stdouts[i][-MAX_OUTPUT_CHARS:])) wait_process.stderr.seek(0) tf.logging.info('stderr for {} (last {} chars): {}\n'.format( wait_process.name, MAX_OUTPUT_CHARS, wait_process.stderr.read()[-MAX_OUTPUT_CHARS:])) assert ret_code == 0, 'Process failed with return code %d' % ret_code finished_wait_processes.add(i) for kill_process in kill_processes: ret_code = kill_process.popen.poll() # kill processes should not end until we kill them. assert ret_code is None, 'Process returned early with code %d' % ret_code time.sleep(0.25) tf.logging.info('All wait processes finished') for i, kill_process in enumerate(kill_processes): # Kill each kill process. kill_process.popen.kill() kill_process.popen.wait() kill_process.stdout.seek(0) tf.logging.info('stdout for {} (last {} chars): {}\n'.format( kill_process.name, MAX_OUTPUT_CHARS, kill_process.stdout.read()[-MAX_OUTPUT_CHARS:])) kill_process.stderr.seek(0) tf.logging.info('stderr for {} (last {} chars): {}\n'.format( kill_process.name, MAX_OUTPUT_CHARS, kill_process.stderr.read()[-MAX_OUTPUT_CHARS:])) return wait_process_stdouts def _spawn_benchmark_processes(output_dir_path, num_workers, num_ps, num_controllers, params): """Run training or evaluation in spawned processes. Runs locally if num_workers == 1, num_ps == 0, and num_controllers == 0, otherwise runs in distributed mode. In either case, one process is spawned per worker and ps. Waits for training/evaluation to finish before returning. Args: output_dir_path: Relative path where stdout and stderr files will be placed. num_workers: Number of workers to spawn. num_ps: Number of ps processes to spawn. num_controllers: Number of controller processes to spawn (must be 0 or 1). params: Params for BenchmarkCNN in each subprocess. Returns: A list output_list of outputs from all processes that output the images/sec and accuracy. This process is the controller host in distributed_all_reduce, and the workers otherwise. output_list[i] is a list of lines from the ith worker's stdout. """ run_distributed = num_workers != 1 or num_ps != 0 or num_controllers != 0 if params.variable_update == 'distributed_all_reduce': assert num_controllers == 1 or not run_distributed assert num_ps == 0 else: assert num_controllers == 0 output_base_dir = platforms_util.get_test_output_dir() output_dir = os.path.join(output_base_dir, output_dir_path) os.makedirs(output_dir) tf.logging.info('Outputs of processes will be outputted to: %s' % output_dir) args = platforms_util.get_command_to_run_python_module( 'benchmark_cnn_distributed_test_runner') args += _convert_params_to_flags_list(params) if run_distributed: worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)] ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)] controller_ports = [portpicker.pick_unused_port() for _ in range(num_controllers)] # The numerator is 0.7 instead of 1 to leave some memory for the Cuda # runtime, etc. gpu_memory_frac = 0.7 / num_workers args += [ '--gpu_memory_frac_for_testing=%f' % gpu_memory_frac, '--worker_hosts=' + ','.join('localhost:%d' % p for p in worker_ports) ] if num_ps > 0: ps_hosts_str = ','.join('localhost:%d' % p for p in ps_ports) args.append('--ps_hosts=' + ps_hosts_str) else: controller_host_str = ','.join('localhost:%d' % p for p in controller_ports) args.append('--controller_host=' + controller_host_str) env = os.environ.copy() # Allow stdout to be viewed before the process ends. env['PYTHONUNBUFFERED'] = '1' worker_processes = [] ps_processes = [] controller_processes = [] try: for i in range(num_workers): job_name = 'worker' if run_distributed else '' process = _create_task_process(job_name, i, args, env, output_dir) worker_processes.append(process) # Don't let ps or controller processes use the gpu. env['CUDA_VISIBLE_DEVICES'] = '' for i in range(num_ps): process = _create_task_process('ps', i, args, env, output_dir) ps_processes.append(process) for i in range(num_controllers): process = _create_task_process('controller', i, args, env, output_dir) controller_processes.append(process) # If all distributed all reduce mode is being used, the controller process # finishes and the worker processes block forever. Otherwise, the worker # processes finish and the ps processes block forever. We set # wait_processes and kill_processes accordingly. if controller_processes: wait_processes = controller_processes kill_processes = worker_processes else: wait_processes = worker_processes kill_processes = ps_processes outputs = _wait_for_processes(wait_processes, kill_processes) finally: for process in worker_processes + ps_processes + controller_processes: try: process.popen.kill() except OSError: pass # It's OK (and expected) if the process already exited. process.stdout.close() process.stderr.close() return [output.splitlines() for output in outputs] # When this test class is run, a method will fail about 0.3% of the time with a # gRPC error. It is not clear why this occurs. # TODO(reedwm): Fix this test class. class TfCnnBenchmarksDistributedTest(tf.test.TestCase): """Tests running benchmark_cnn in distributed mode.""" # We cannot check for a GPU via tf.test.is_gpu_available() before the tests in # this class because it allocates all the GPU memory which would cause the # spawned processes to run out of GPU memory. def _test_distributed(self, test_name, num_workers, num_ps, params, num_controllers=0, check_output_values=False, skip_eval=False): # TODO(reedwm): check_output_values should default to True and be enabled # on every test. See the TODO in benchmark_cnn_test.py. def run_fn(run_type, inner_params): output_dir_path = os.path.join(test_name, run_type) if run_type == 'Evaluation': # Distributed evaluation is not supported, so we use a single process. # We still must spawn another process, because if we evaluate in the # current process, it would allocate the GPU memory causing future test # methods to fail. if inner_params.variable_update == 'distributed_replicated': inner_params = inner_params._replace(variable_update='replicated') return _spawn_benchmark_processes( output_dir_path, num_workers=1, num_ps=0, num_controllers=0, params=inner_params) else: return _spawn_benchmark_processes(output_dir_path, num_workers, num_ps, num_controllers, inner_params) return test_util.train_and_eval(self, run_fn, params, check_output_values=check_output_values, skip_eval=skip_eval) def testParameterServer(self): test_name = 'testParameterServer' params = test_util.get_params(test_name) self._test_distributed(test_name, 2, 2, params) def testParameterServerStaged(self): test_name = 'testParameterServerStaged' params = test_util.get_params(test_name)._replace(staged_vars=True) self._test_distributed(test_name, 2, 2, params) def testReplicated(self): test_name = 'testReplicated' params = test_util.get_params(test_name)._replace( variable_update='distributed_replicated') self._test_distributed(test_name, 2, 2, params) def testAllReducePsgpu(self): test_name = 'testAllReducePsgpu' flags_dict = test_util.get_params(test_name)._replace( variable_update='distributed_all_reduce', all_reduce_spec='psgpu#4') self._test_distributed(test_name, 2, 0, flags_dict, num_controllers=1) def testAllReducePscpuXring(self): test_name = 'testAllReducePscpuXring' flags_dict = test_util.get_params(test_name)._replace( variable_update='distributed_all_reduce', all_reduce_spec='pscpu:2k:xring') self._test_distributed(test_name, 2, 0, flags_dict, num_controllers=1) def testForwardOnly(self): test_name = 'testForwardOnly' params = test_util.get_params(test_name)._replace(forward_only=True) # Evaluation is not supported with --forward_only, so we set skip_eval=True. self._test_distributed(test_name, 2, 2, params, skip_eval=True) def testSingleWorkerAndPs(self): test_name = 'testSingleWorkerAndPs' params = test_util.get_params(test_name) self._test_distributed(test_name, 1, 1, params) def testThreeWorkersAndPses(self): test_name = 'testThreeWorkersAndPses' params = test_util.get_params(test_name) self._test_distributed(test_name, 3, 3, params) def testOneWorkerThreePses(self): test_name = 'testOneWorkerThreePses' params = test_util.get_params(test_name) self._test_distributed(test_name, 1, 3, params) def testThreeWorkersOnePs(self): test_name = 'testThreeWorkersOnePs' params = test_util.get_params(test_name) self._test_distributed(test_name, 3, 1, params) def testNoPrintTrainingAccuracy(self): test_name = 'testNoPrintTrainingAccuracy' params = test_util.get_params(test_name)._replace( print_training_accuracy=False) self._test_distributed(test_name, 2, 2, params) def testRmspropParameterServer(self): test_name = 'testRmspropParameterServer' params = test_util.get_params(test_name)._replace(optimizer='rmsprop') self._test_distributed(test_name, 2, 2, params) def testMomentumReplicated(self): test_name = 'testMomentumReplicated' params = test_util.get_params(test_name)._replace( optimizer='momentum', variable_update='distributed_replicated') self._test_distributed(test_name, 2, 2, params) def testNoCrossReplicaSyncParameterServerStaged(self): test_name = 'testNoCrossReplicaSyncParameterServerStaged' params = test_util.get_params(test_name)._replace( staged_vars=True, cross_replica_sync=False) self._test_distributed(test_name, 2, 2, params) def testSingleGpu(self): test_name = 'testSingleGpu' params = test_util.get_params(test_name)._replace(num_gpus=1) self._test_distributed(test_name, 2, 2, params) def testBatchGroupSize(self): test_name = 'testBatchGroupSize' params = test_util.get_params(test_name)._replace( batch_group_size=4, num_batches=100, num_warmup_batches=5) self._test_distributed(test_name, 2, 2, params) def testFp16WithFp32Vars(self): test_name = 'testFp16WithFp32Vars' params = test_util.get_params(test_name)._replace( use_fp16=True, fp16_vars=False) self._test_distributed(test_name, 2, 2, params) def testFp16WithFp16Vars(self): test_name = 'testFp16WithFp16Vars' params = test_util.get_params(test_name)._replace( use_fp16=True, fp16_vars=True, fp16_loss_scale=1.) self._test_distributed(test_name, 2, 2, params) def testFp16Replicated(self): test_name = 'testFp16Replicated' params = test_util.get_params(test_name)._replace( use_fp16=True, variable_update='distributed_replicated') self._test_distributed(test_name, 2, 2, params) class DistributedVariableUpdateTest(tf.test.TestCase): """Tests that variables are updated correctly in distributed mode.""" def _test_variable_update(self, test_name, num_workers, num_ps, params, num_controllers=0): """Tests variables are updated correctly when the given params are used.""" output_dir_path = os.path.join(test_name, 'variable_update') logs = _spawn_benchmark_processes(output_dir_path, num_workers, num_ps, num_controllers, params) actual_losses = [] for worker_logs in logs: outputs = test_util.get_training_outputs_from_logs( worker_logs, params.print_training_accuracy) actual_losses.append([x.loss for x in outputs]) inputs = test_util.get_fake_var_update_inputs() expected_losses = test_util.TestModel().manually_compute_losses( inputs, num_workers, params) if params.variable_update == 'distributed_all_reduce': # In distributed all reduce, each step, the controller outputs the average # of the loss from each worker. So we modify expected losses accordingly. # E.g, we change [[1, 2], [4, 5]] to [[2.5, 3.5]] expected_losses = [[sum(losses) / num_workers for losses in zip(*expected_losses)]] rtol = 3e-2 if params.use_fp16 else 1e-5 for worker_actual_losses, worker_expected_losses in zip(actual_losses, expected_losses): self.assertAllClose(worker_actual_losses[:len(worker_expected_losses)], worker_expected_losses, rtol=rtol, atol=0.) def _test_variable_updates(self, test_name, params): """Tests variables are updated correctly with various variable updates.""" # Unfortunately, distributed parameter server is non-deterministic with # multiple workers, because one worker may write to a variable before # another worker reads it. This probably does not harm training, but it # does mean we cannot easily test that case. So, we use one worker. self._test_variable_update( test_name + '_ps', num_workers=1, num_ps=2, num_controllers=0, params=params._replace(variable_update='parameter_server')) self._test_variable_update( test_name + '_rep', num_workers=2, num_ps=1, num_controllers=0, params=params._replace(variable_update='distributed_replicated')) self._test_variable_update( test_name + '_allreduce', num_workers=2, num_ps=0, num_controllers=1, params=params._replace(variable_update='distributed_all_reduce', all_reduce_spec='psgpu#%d' % params.num_gpus)) def testVarUpdateDefault(self): params = test_util.get_var_update_params() self._test_variable_updates('testVarUpdateDefault', params) def testVarUpdateCpuAsLocalParamDevice(self): params = test_util.get_var_update_params()._replace( local_parameter_device='cpu') self._test_variable_updates('testVarUpdateCpuAsLocalParamDevice', params) def testVarUpdateFp16(self): params = test_util.get_var_update_params()._replace(use_fp16=True) self._test_variable_updates('testVarUpdateFp16', params) if __name__ == '__main__': tf.test.main() ``` #### File: python/tf_cnn_benchmarks/cbuild_benchmark_storage.py ```python from datetime import datetime import json import os import sys import six from google.cloud import datastore _TEST_NAME_ENV_VAR = 'TF_DIST_BENCHMARK_NAME' def upload_to_benchmark_datastore(data, test_name=None, start_time=None): """Use a new datastore.Client to upload data to datastore. Create the datastore Entities from that data and upload them to the datastore in a batch using the client connection. Args: data: Map from benchmark names to values. test_name: Name of this test. If not specified, name will be set either from TF_DIST_BENCHMARK_NAME environment variable or to default name 'TestBenchmark'. start_time: (datetime) Time to record for this test. Raises: ValueError: if test_name is not passed in and TF_DIST_BENCHMARK_NAME is not set. """ client = datastore.Client() if not test_name: if _TEST_NAME_ENV_VAR in os.environ: test_name = os.environ[_TEST_NAME_ENV_VAR] else: raise ValueError( 'No test name passed in for benchmarks. ' 'Either pass a test_name to upload_to_benchmark_datastore or ' 'set %s environment variable.' % _TEST_NAME_ENV_VAR) test_name = six.text_type(test_name) if not start_time: start_time = datetime.now() # Create one Entry Entity for each benchmark entry. The wall-clock timing is # the attribute to be fetched and displayed. The full entry information is # also stored as a non-indexed JSON blob. entries = [] batch = [] for name, value in data.items(): e_key = client.key('Entry') e_val = datastore.Entity(e_key, exclude_from_indexes=['info']) entry_map = {'name': name, 'wallTime': value, 'iters': '1'} entries.append(entry_map) e_val.update({ 'test': test_name, 'start': start_time, 'entry': six.text_type(name), 'timing': value, 'info': six.text_type(json.dumps(entry_map)) }) batch.append(e_val) # Create the Test Entity containing all the test information as a # non-indexed JSON blob. test_result = json.dumps( {'name': test_name, 'startTime': (start_time - datetime(1970, 1, 1)).total_seconds(), 'entries': {'entry': entries}, 'runConfiguration': {'argument': sys.argv[1:]}}) t_key = client.key('Test') t_val = datastore.Entity(t_key, exclude_from_indexes=['info']) t_val.update({ 'test': test_name, 'start': start_time, 'info': six.text_type(test_result) }) batch.append(t_val) # Put the whole batch of Entities in the datastore. client.put_multi(batch) ``` #### File: tf_cnn_benchmarks/models/sensornet_model.py ```python from models import model class SensorNetModel(model.Model): """SensorNet fully connected model.""" def __init__(self): super(SensorNetModel, self).__init__('sensor_net', 28, 512, 0.005) def add_inference(self, cnn): # We have one channel image of size 28x28 = 784 cnn.reshape([-1, 28*28]) cnn.affine(1024) cnn.affine(1024) cnn.affine(1024) ```
{ "source": "JoeHarman/ngs_pipeline", "score": 2 }
#### File: ngs_pipeline/ngs_pipeline/pipeline_atac_chipseq.py ```python import sys import os import seaborn as sns import glob from cgatcore import pipeline as P from ruffus import ( mkdir, follows, transform, merge, originate, collate, regex, add_inputs, active_if, ) from cgatcore.iotools import zap_file, touch_file from utils import is_none, is_on import re import glob ################## # Pipeline setup # ################## # Read in parameter file P.get_parameters(glob.glob("config_*.yml")[0]) # Small edits to config to enable cluster usage P.PARAMS["cluster_queue_manager"] = P.PARAMS.get( "pipeline_cluster_queue_manager") P.PARAMS["conda_env"] = os.path.basename(os.environ["CONDA_PREFIX"]) # Make sure that params dict is typed correctly for key in P.PARAMS: if is_none(P.PARAMS[key]): P.PARAMS[key] = None elif is_on(P.PARAMS): P.PARAMS[key] = True # Global variables CREATE_BIGWIGS = P.PARAMS.get("run_options_bigwigs") CALL_PEAKS = P.PARAMS.get("run_options_peaks") CREATE_HUB = P.PARAMS.get("run_options_hub") USE_HOMER = P.PARAMS.get("homer_use") USE_DEEPTOOLS = P.PARAMS.get("deeptools_use") USE_MACS = P.PARAMS.get("macs_use") # Ensures that all fastq are named correctly if not os.path.exists("fastq"): os.mkdir("fastq") fastqs = dict() for fq in glob.glob("*.fastq*"): fq_renamed = ( fq.replace("Input", "input") .replace("INPUT", "input") .replace("R1.fastq", "1.fastq") .replace("R2.fastq", "2.fastq") ) fastqs[os.path.abspath(fq)] = os.path.join("fastq", fq_renamed) for src, dest in fastqs.items(): if not os.path.exists(dest): os.symlink(src, dest) ################### # Setup functions # ################### def set_up_chromsizes(): """ Ensures that genome chromsizes are present. If chromsizes are not provided this function attempts to download them from UCSC. The P.PARAMS dictionary is updated with the location of the chromsizes. """ assert P.PARAMS.get("genome_name"), "Genome name has not been provided." if P.PARAMS.get("genome_chrom_sizes"): pass elif os.path.exists("chrom_sizes.txt.tmp"): P.PARAMS["genome_chrom_sizes"] = "chrom_sizes.txt.tmp" else: from pybedtools.helpers import get_chromsizes_from_ucsc get_chromsizes_from_ucsc( P.PARAMS["genome_name"], "chrom_sizes.txt.tmp") P.PARAMS["genome_chrom_sizes"] = "chrom_sizes.txt.tmp" ############# # Read QC # ############# @follows(mkdir("statistics"), mkdir("statistics/fastqc")) @transform("*.fastq.gz", regex(r"(.*).fastq.gz"), r"statistics/fastqc/\1_fastqc.zip") def qc_reads(infile, outfile): """Quality control of raw sequencing reads""" statement = "fastqc -q -t %(pipeline_n_cores)s --nogroup %(infile)s --outdir statistics/fastqc" P.run( statement, job_queue=P.PARAMS["pipeline_cluster_queue"], job_pipeline_n_cores=P.PARAMS["pipeline_n_cores"], job_condaenv=P.PARAMS["conda_env"], ) @merge(qc_reads, "statistics/readqc_report.html") def multiqc_reads(infile, outfile): """Collate fastqc reports into single report using multiqc""" statement = """export LC_ALL=en_US.UTF-8 && export LANG=en_US.UTF-8 && multiqc statistics/fastqc/ -o statistics -n readqc_report.html""" P.run( statement, job_queue=P.PARAMS["pipeline_cluster_queue"], job_memory="2G", job_condaenv=P.PARAMS["conda_env"], ) ###################### # Fastq processing # ###################### @follows(mkdir('trimmed')) @transform('fastq/*.fastq*', # Regex negates any filenames matching the paired pattern regex(r'(?!.*_[12])^fastq/(.*).fastq.gz'), r'trimmed/\1_trimmed.fq') def fastq_trim_single(infile, outfile): statement = '''trim_galore --cores %(pipeline_n_cores)s --dont_gzip %(trim_options)s -o trimmed %(infile)s''' P.run( statement, job_queue=P.PARAMS["pipeline_cluster_queue"], job_pipeline_n_cores=P.PARAMS["pipeline_n_cores"], job_condaenv=P.PARAMS["conda_env"], ) @follows(mkdir("trimmed"), mkdir("statistics/trimming/data")) @collate( "fastq/*.fastq.gz", regex(r"fastq/(.*)_R?[12].fastq(?:.gz)?"), r"trimmed/\1_1_val_1.fq", ) def fastq_trim_paired(infiles, outfile): """Trim adaptor sequences from fastq files using trim_galore""" fq1, fq2 = infiles fq1_basename, fq2_basename = os.path.basename(fq1), os.path.basename(fq2) outdir = "trimmed" trim_options = P.PARAMS.get("trim_options", "") cores = ( P.PARAMS["pipeline_n_cores"] if int( P.PARAMS["pipeline_n_cores"]) <= 8 else "8" ) statement = """trim_galore --cores %(cores)s --paired %(trim_options)s --dont_gzip -o %(outdir)s %(fq1)s %(fq2)s """ P.run( statement, job_queue=P.PARAMS["pipeline_cluster_queue"], job_pipeline_n_cores=P.PARAMS["pipeline_n_cores"], job_condaenv=P.PARAMS["conda_env"], ) ############### # Alignment # ############### @follows(mkdir("bam"), mkdir("statistics/alignment"), fastq_trim_single, fastq_trim_paired) @transform(fastq_trim_single, regex(r"trimmed/(.*)_trimmed.fq"), r"bam/\1.bam") def fastq_align_single(infile, outfile): """ Aligns fq files. Uses bowtie2 before conversion to bam file using Samtools view. Bam file is then sorted and the unsorted bam file is replaced. """ basename = os.path.basename(outfile).replace(".bam", "") sorted_bam = outfile.replace(".bam", "_sorted.bam") aligner = P.PARAMS.get("aligner_aligner", "bowtie2") aligner_options = P.PARAMS.get("aligner_options", "") blacklist = P.PARAMS.get("genome_blacklist", "") statement = [ "%(aligner_aligner)s -x %(aligner_index)s -U %(infile)s %(aligner_options)s |", "samtools view - -b > %(outfile)s &&", "samtools sort -@ %(pipeline_n_cores)s -o %(sorted_bam)s %(outfile)s", ] if blacklist: # Uses bedtools intersect to remove blacklisted regions statement.append( "&& bedtools intersect -v -b %(blacklist)s -a %(sorted_bam)s > %(outfile)s" ) statement.append("&& rm -f %(sorted_bam)s") else: statement.append("&& mv %(sorted_bam)s %(outfile)s") P.run( " ".join(statement), job_queue=P.PARAMS["pipeline_cluster_queue"], job_pipeline_n_cores=P.PARAMS["pipeline_n_cores"], job_condaenv=P.PARAMS["conda_env"], ) # Zeros the trimmed fastq files zap_file(infile) @follows(mkdir("bam"), mkdir("statistics/alignment"), fastq_trim_paired, fastq_trim_single) @collate("trimmed/*.fq", regex(r"trimmed/(.*)_[12]_val_[12].fq"), r"bam/\1.bam") def fastq_align_paired(infiles, outfile): """ Aligns fq files. Uses bowtie2 before conversion to bam file using Samtools view. Bam file is then sorted and the unsorted bam file is replaced. """ fq1, fq2 = infiles basename = os.path.basename(outfile).replace(".bam", "") sorted_bam = outfile.replace(".bam", "_sorted.bam") aligner = P.PARAMS.get("aligner_aligner", "bowtie2") aligner_options = P.PARAMS.get("aligner_options", "") blacklist = P.PARAMS.get("genome_blacklist", "") statement = [ "%(aligner_aligner)s -x %(aligner_index)s -1 %(fq1)s -2 %(fq2)s %(aligner_options)s |", "samtools view - -b > %(outfile)s &&", "samtools sort -@ %(pipeline_n_cores)s -o %(sorted_bam)s %(outfile)s", ] if blacklist: # Uses bedtools intersect to remove blacklisted regions statement.append( "&& bedtools intersect -v -b %(blacklist)s -a %(sorted_bam)s > %(outfile)s" ) statement.append("&& rm -f %(sorted_bam)s") else: statement.append("&& mv %(sorted_bam)s %(outfile)s") P.run( " ".join(statement), job_queue=P.PARAMS["pipeline_cluster_queue"], job_pipeline_n_cores=P.PARAMS["pipeline_n_cores"], job_condaenv=P.PARAMS["conda_env"], ) # Zeros the trimmed fastq files for fn in infiles: zap_file(fn) @transform([fastq_align_single, fastq_align_paired], regex(r"bam/(.*)"), r"bam/\1.bai") def create_bam_index(infile, outfile): """Creates an index for the bam file""" statement = "samtools index %(infile)s" P.run( statement, job_queue=P.PARAMS["pipeline_cluster_queue"], job_memory=P.PARAMS["pipeline_memory"], job_condaenv=P.PARAMS["conda_env"], ) ############## # Mapping QC # ############## @transform([fastq_align_single, fastq_align_paired], regex(r".*/(.*).bam"), r"statistics/alignment/\1.txt") def alignment_statistics(infile, outfile): statement = """samtools stats %(infile)s > %(outfile)s""" P.run( statement, job_queue=P.PARAMS["pipeline_cluster_queue"], job_memory="2G", job_condaenv=P.PARAMS["conda_env"], ) @follows(multiqc_reads, alignment_statistics) @originate("statistics/mapping_report.html") def alignments_multiqc(outfile): """Combines mapping metrics using multiqc""" statement = """export LC_ALL=en_US.UTF-8 && export LANG=en_US.UTF-8 && multiqc statistics/alignment/ -o statistics -n alignmentqc_report.html""" P.run( statement, job_queue=P.PARAMS["pipeline_cluster_queue"], job_memory="2G", job_condaenv=P.PARAMS["conda_env"], ) ##################### # Remove duplicates # ##################### @follows(create_bam_index, mkdir("bam_processed")) @transform([fastq_align_single, fastq_align_paired], regex(r"bam/(.*.bam)"), r"bam_processed/\1") def alignments_filter(infile, outfile): """Remove duplicate fragments from bam file.""" alignments_deduplicate = P.PARAMS.get("alignments_deduplicate") alignments_filter_options = P.PARAMS.get("alignments_filter_options") if alignments_deduplicate or alignments_filter_options: statement = [ "alignmentSieve", "-b", infile, "-o", outfile, "-p", "%(pipeline_n_cores)s", "--ignoreDuplicates" if alignments_deduplicate else "", alignments_filter_options if alignments_filter_options else " ", "&& samtools sort -o %(outfile)s.tmp %(outfile)s -@ %(pipeline_n_cores)s", "&& mv %(outfile)s.tmp %(outfile)s", "&& samtools index %(outfile)s", "&& rm -f %(outfile)s.tmp", ] else: infile_abspath = os.path.abspath(infile) statement = [ "ln -s %(infile_abspath)s %(outfile)s", "&& ln -s %(infile_abspath)s.bai %(outfile)s.bai", ] P.run( " ".join(statement), job_queue=P.PARAMS["pipeline_cluster_queue"], job_memory=P.PARAMS["pipeline_memory"], job_condaenv=P.PARAMS["conda_env"], ) @active_if(USE_HOMER) @follows(mkdir("tag/")) @transform(alignments_filter, regex(r".*/(.*).bam"), r"tag/\1") def create_tag_directory(infile, outfile): statement = [ "makeTagDirectory", outfile, P.PARAMS["homer_tagdir_options"] or " ", infile, ] P.run( " ".join(statement), job_queue=P.PARAMS["pipeline_cluster_queue"], job_memory=P.PARAMS["pipeline_memory"], job_condaenv=P.PARAMS["conda_env"], ) ########### # BigWigs # ########### @active_if(CREATE_BIGWIGS and USE_DEEPTOOLS) @follows(mkdir("bigwigs/deeptools/")) @transform( alignments_filter, regex( r"bam_processed/(.*).bam"), r"bigwigs/deeptools/\1_deeptools.bigWig") def alignments_pileup_deeptools(infile, outfile): statement = [ "bamCoverage", "-b", infile, "-o", outfile, "-p", "%(pipeline_n_cores)s", P.PARAMS.get("deeptools_bamcoverage_options") or " ", ] P.run( " ".join(statement), job_queue=P.PARAMS["pipeline_cluster_queue"], job_memory=P.PARAMS["pipeline_memory"], job_pipeline_n_cores=P.PARAMS["pipeline_n_cores"], job_condaenv=P.PARAMS["conda_env"], ) @follows(mkdir("bigwigs/homer/")) @active_if(CREATE_BIGWIGS and USE_HOMER) @transform( create_tag_directory, regex(r".*/(.*)"), r"bigwigs/homer/\1_homer.bigWig", extras=[r"\1"] ) def alignments_pileup_homer(infile, outfile, tagdir_name): outdir = os.path.dirname(outfile) statement_bw = [ "makeBigWig.pl", infile, P.PARAMS["genome_name"], "-chromSizes", P.PARAMS["genome_chrom_sizes"], "-url", P.PARAMS.get("homer_makebigwig_options") or "INSERT_URL_HERE", "-webdir", outdir, ] statement_mv = ["&&", 'mv', outfile.replace('_homer.bigWig', '.ucsc.bigWig'), outfile] P.run( " ".join([*statement_bw, *statement_mv]), job_queue=P.PARAMS["pipeline_cluster_queue"], job_pipeline_n_cores=1, job_condaenv=P.PARAMS["conda_env"], ) try: # Rename bigwigs to remove ucsc bigwig_src = os.path.join(outdir, f"{tagdir_name}.ucsc.bigWig") bigwig_dest = os.path.join(outdir, f"{tagdir_name}.bigWig") os.rename(bigwig_src, bigwig_dest) except OSError: pass ############## # Call peaks # ############## @active_if(CALL_PEAKS and USE_MACS) @follows(mkdir("peaks/macs")) @transform( alignments_filter, regex(r".*/(.*?)(?<!input).bam"), r"peaks/macs/\1_peaks.narrowPeak", ) def call_peaks_macs(infile, outfile): output_prefix = outfile.replace("_peaks.narrowPeak", "") statement = [ "%(macs_caller)s", "callpeak", "-t", "%(infile)s", "-n", "%(output_prefix)s", P.PARAMS.get("macs_callpeak_options") or " ", ] chipseq_match = re.match(r".*/(.*)_(.*).bam", infile) if chipseq_match: samplename = chipseq_match.group(1) antibody = chipseq_match.group(2) control_file = f"bam_processed/{samplename}_input.bam" if os.path.exists(control_file): statement.append(f"-c {control_file}") P.run( " ".join(statement), job_queue=P.PARAMS["pipeline_cluster_queue"], job_memory=P.PARAMS["pipeline_memory"], job_condaenv=P.PARAMS["conda_env"], ) @active_if(CALL_PEAKS and USE_HOMER) @follows(mkdir("peaks/homer")) @transform( create_tag_directory, regex(r".*/(?!.*_input)(.*)"), r"peaks/homer/\1_homer_peaks.bed", ) def call_peaks_homer(infile, outfile): tmp = outfile.replace(".bed", ".txt") statement = [ "findPeaks", infile, P.PARAMS["homer_findpeaks_options"] or " ", "-o", tmp, ] # Finds the matching input file if one extists chipseq_match = re.match(r".*/(.*)_(.*)", infile) if chipseq_match: samplename = chipseq_match.group(1) antibody = chipseq_match.group(2) control = f"tag/{samplename}_input" if os.path.exists(control): statement.append(f"-i {control}") # Need to convert homer peak format to bed statement.append(f"&& pos2bed.pl {tmp} -o {outfile}") P.run( " ".join(statement), job_queue=P.PARAMS["pipeline_cluster_queue"], job_memory=P.PARAMS["pipeline_memory"], job_condaenv=P.PARAMS["conda_env"], ) ####################### # UCSC hub generation # ####################### @transform(call_peaks_macs, regex(r"peaks/(.*).narrowPeak"), r"peaks/\1.bed") def convert_narrowpeak_to_bed(infile, outfile): statement = """awk '{OFS="\\t"; print $1,$2,$3,$4}' %(infile)s > %(outfile)s""" P.run( statement, job_queue=P.PARAMS["pipeline_cluster_queue"], job_condaenv=P.PARAMS["conda_env"], ) @transform( [convert_narrowpeak_to_bed, call_peaks_homer], regex(r"(.*)/(.*).bed"), r"\1/\2.bigBed", ) def convert_bed_to_bigbed(infile, outfile): statement = """cat %(infile)s | sort -k1,1 -k2,2n > %(infile)s.tmp && bedToBigBed %(infile)s.tmp %(genome_chrom_sizes)s %(outfile)s""" P.run( statement, job_queue=P.PARAMS["pipeline_cluster_queue"], job_condaenv=P.PARAMS["conda_env"], ) @active_if(CREATE_HUB) @follows( fastq_align_single, fastq_align_paired, alignments_pileup_deeptools, alignments_pileup_homer, alignments_multiqc, ) @merge( [alignments_pileup_deeptools, alignments_pileup_homer, convert_bed_to_bigbed], regex(r".*"), os.path.join( P.PARAMS.get("hub_dir", ""), P.PARAMS.get("hub_name", "") + ".hub.txt" ), ) def make_ucsc_hub(infile, outfile, *args): import trackhub import shutil import seaborn as sns hub, genomes_file, genome, trackdb = trackhub.default_hub( hub_name=P.PARAMS["hub_name"], short_label=P.PARAMS.get("hub_short"), long_label=P.PARAMS.get("hub_long"), email=P.PARAMS["hub_email"], genome=P.PARAMS["genome_name"], ) bigwigs = [fn for fn in infile if ".bigWig" in fn] colours = dict(zip(bigwigs, sns.color_palette("hls", len(set(bigwigs))))) bigbeds = [fn for fn in infile if ".bigBed" in fn] for bw in bigwigs: track = trackhub.Track( name=os.path.basename(bw).replace(".bigWig", ""), source=bw, # filename to build this track from visibility="full", # shows the full signal color=",".join( [str(int(x * 255)) for x in colours[bw]]), # brick red autoScale="on", # allow the track to autoscale tracktype="bigWig", # required when making a track ) trackdb.add_tracks(track) for bb in bigbeds: track = trackhub.Track( name=os.path.basename(bb).replace(".bigBed", ""), source=bb, # filename to build this track from color="0,0,0", # brick red tracktype="bigBed", # required when making a track ) trackdb.add_tracks(track) # Stage the hub trackhub.upload.stage_hub(hub=hub, staging="hub_tmp_dir") # Copy to the new location shutil.copytree( "hub_tmp_dir", P.PARAMS["hub_dir"], dirs_exist_ok=True, symlinks=P.PARAMS.get("hub_symlink", False), ) # Delete the staged hub shutil.rmtree("hub_tmp_dir") @follows( alignments_pileup_homer, alignments_pileup_homer, call_peaks_homer, call_peaks_macs, ) @originate("pipeline_complete.txt") def full(outfile): touch_file(outfile) if __name__ == "__main__": if ( "-h" in sys.argv or "--help" in sys.argv ): # If --help then just run the pipeline without setup sys.exit(P.main(sys.argv)) elif not "make" in sys.argv: sys.exit(P.main(sys.argv)) elif "make" in sys.argv: set_up_chromsizes() sys.exit(P.main(sys.argv)) ```
{ "source": "joeharpur/compare_ocr", "score": 3 }
#### File: joeharpur/compare_ocr/helpers.py ```python import pandas as pd import itertools from fuzzywuzzy import fuzz import matplotlib.pyplot as plt import matplotlib.patches as patches def iou(box1, box2): """ Implement the intersection over union (IoU) between box1 and box2      Arguments: box1 (List) -- first box with coordinates (box1_x1, box1_y1, box1_x2, box_1_y2)     box2 (List) -- second box with coordinates (box2_x1, box2_y1, box2_x2, box2_y2) Returns: iou (Float) -- intersection over union value for box1, box2     """ # Assign variable names to coordinates for clarity (box1_x1, box1_y1, box1_x2, box1_y2) = box1 (box2_x1, box2_y1, box2_x2, box2_y2) = box2 # Calculate the coordinates and area of the intersection of box1 and box2. xi1 = max(box1_x1, box2_x1) yi1 = max(box1_y1, box2_y1) xi2 = min(box1_x2, box2_x2) yi2 = min(box1_y2, box2_y2) inter_width = max(yi2 - yi1, 0) inter_height = max(xi2 - xi1, 0) inter_area = inter_width * inter_height # Calculate the Union area by using Formula: Union(A,B)=A+B-Inter(A,B) box1_area = (box1_y2 - box1_y1) * (box1_x2 - box1_x1) box2_area = (box2_y2 - box2_y1) * (box2_x2 - box2_x1) union_area = (box1_area + box2_area) - inter_area # compute the IoU iou = inter_area / union_area return iou def find_boundaries(table, word, fuzz_threshold): """ Find the boundary boxes for a specified word. String match strictness can be tuned using fuzz_threshold.      Arguments: table (pd.DataFrame) -- table containing text field and bounds field word (Str) -- search word fuzz_threshold (Int) -- accepted closeness between string values Returns: (List) -- list of matching boundaries     """ filter = lambda x: fuzz.ratio(x.lower(), word) >= fuzz_threshold boundaries = table[table['text'].apply(filter)]['bounds'].values return list(boundaries) def extract_page(table, page): """ Filter table by page number field.      Arguments: table (pd.DataFrame) -- table containing "page" field page (Int) -- page value Returns: extracted (pd.DataFrame) -- filtered table     """ extracted = table[table['page'] == page] return extracted def plot_page(im_data, scale): """ Plot image data to Matplotlib axes.      Arguments: im_data (np.array) -- array containing image data scale (Int) -- scale to convert image dpi to inches Returns: ax (matplotlib.axes) -- axes with image data plotted     """ height, width = im_data.shape[:2] figsize = height/scale, width/scale fig = plt.figure(figsize=figsize) ax = fig.add_axes([0, 0, 1, 1]) ax.axis('off') ax.imshow(im_data, cmap='gray') return ax def plot_boundary_boxes(ax, red_boxes, green_boxes): """ Plot boundary boxes to Matplotlib axes.      Arguments: ax (matplotlib.axes) -- pre generated axes red_boxes (List) -- list of boundary coordinates green_boxes (List) -- list of boundary coordinates Returns: ax (matplotlib.axes) -- axes with boundary boxes plotted     """ for r, g in itertools.zip_longest(red_boxes, green_boxes): if r: r_x, r_y, r_w, r_h = r[0], r[1], r[2]-r[0], r[3]-r[1] r_rect = patches.Rectangle((r_x, r_y), r_w, r_h, linewidth=2, edgecolor='r', facecolor='none') ax.add_patch(r_rect) if g: g_x, g_y, g_w, g_h = g[0], g[1], g[2]-g[0], g[3]-g[1] g_rect = patches.Rectangle((g_x, g_y), g_w, g_h, linewidth=2, edgecolor='g', facecolor='none') ax.add_patch(g_rect) return ax def build_legend(ax, names, red_count, green_count): """ Plot boundary boxes to Matplotlib axes.      Arguments: ax (matplotlib.axes) -- pre generated axes names (List) -- list of ocr engine names red_count (Int) -- count of red boundary boxes green_count (Int) -- count of green boundary boxes Returns: ax (matplotlib.axes) -- axes with legend plotted     """ handles = [] red_patch = patches.Patch(linewidth=2, edgecolor='r', facecolor='none', label=names[0].capitalize()) handles.append(red_patch) info_1 = patches.Patch(edgecolor='none', facecolor='none', label=str(red_count) + ' matches') handles.append(info_1) if green_count > 0: green_patch = patches.Patch(linewidth=2, edgecolor='g', facecolor='none', label=names[1].capitalize()) handles.append(green_patch) info_2 = patches.Patch(edgecolor='none', facecolor='none', label=str(green_count) + ' matches') handles.append(info_2) ax.legend(handles=handles, loc='best', framealpha=0.5) return ax if __name__ == '__main__': pass ```
{ "source": "JoeHartley3/raspberry-pi-cdplayer", "score": 3 }
#### File: server/classes/MediaPlayer.py ```python import queue import subprocess from time import sleep from enum import Enum from classes.MediaLibrary import MediaLibrary from classes.MediaPlayerInfo import MediaPlayerInfo, CurrentTrackInfo, TrackInfo import json import musicbrainzngs as m import libdiscid class MediaPlayer: """ Contains logic for controlling mpv and getting information about CD. """ class DiskType(Enum): AUDIO_CD = 'audio_cd' MP3_CD = 'mp3_cd' class BranchType(Enum): FOLDERS = 'folders' ARTISTS = 'artists' ALBUMS = 'albums' def __init__(self, config): self._config = config self.MPV_COMMAND = ["mpv", "--quiet", "--vo=null", "--no-audio-display", "--cache=1024", "--loop", "--input-ipc-server=" + self._config['MPV_SOCKET_PATH']] self._cd = CD() self._mpv = None self._current_disk_type = None self._media_library = None self._current_track_list = None self._current_media_library_branch_type_index = None self._info_events = None self._current_track = 0 self._volume = 95 def get_current_info(self, status=True, cur_track_info=True, volume=True, track_list=False, library=False): info = MediaPlayerInfo() if self.is_running: if status: status_res = self._run_command('get_property', 'pause') info.status = 'paused' if status_res else 'playing' if cur_track_info: info.cur_track_info = CurrentTrackInfo() if self._current_disk_type == MediaPlayer.DiskType.AUDIO_CD: chapter_res = self._run_command('get_property', 'chapter') self._current_track = chapter_res info.cur_track_info.track_number = chapter_res elif self._current_disk_type == MediaPlayer.DiskType.MP3_CD: playlist_pos_res = self._run_command('get_property', 'playlist-pos') self._current_track = playlist_pos_res info.cur_track_info.track_number = playlist_pos_res if self._current_track is not None: time_res = self._run_command('get_property', 'time-pos') if time_res is not None: time_millis = time_res * 1000 if self._current_disk_type == MediaPlayer.DiskType.AUDIO_CD: for track in self._current_track_list[0:self._current_track]: time_millis -= track.total_time info.cur_track_info.cur_time = time_millis if volume: vol = self._run_command('get_property', 'volume') if vol is not None: self._volume = vol info.volume = vol if track_list and self._current_track_list is not None: info.track_list = list(map(lambda x: x.as_dict(), self._current_track_list)) if library and self._media_library is not None: info.library = self._media_library else: info.volume = self._volume info.status = 'waitingForCD' return info def poll_info(self): try: info_event = self._info_events.get_nowait() return info_event except queue.Empty: return None def try_play_cd(self): """ Tries to play CD in CD drive, if there is any (or USB drive). Sets the current media library branch type and index attribute and puts info into the info queue. :return: None """ self._info_events = queue.Queue() if not self.is_running: cd_type = self._check_for_cd() if cd_type is None: return if cd_type == MediaPlayer.DiskType.AUDIO_CD: # check for audio CD print('playing audio CD') self._mpv = subprocess.Popen(self.MPV_COMMAND + [ 'cdda://', '--volume=' + self._config['DEFAULT_VOLUME'] ], bufsize=1) elif cd_type == MediaPlayer.DiskType.MP3_CD: # check for MP3 CD print('playing MP3 CD') self._mpv = subprocess.Popen(self.MPV_COMMAND + ['--volume=' + self._config['DEFAULT_VOLUME']] + list(map(lambda file: file.full_path, self._media_library.media_folders[0].media_files)), bufsize=1) self._current_media_library_branch_type_index = (MediaPlayer.BranchType.FOLDERS, 0) info = self.get_current_info(True, True, True, True, True) # info = self.get_current_info(True, False, True, True, True) # fill cur_track_info with zeros, because it may not be initialized yet (mpv loading) info.cur_track_info = CurrentTrackInfo() info.cur_track_info.cur_time = 0 info.cur_track_info.track_number = 0 self._info_events.put(info) def _check_for_cd(self): self._current_disk_type = None self._current_track_list = [] self._cd.load_cd_info() df = [] if CD.is_cd_inserted(): if self._cd.numtracks > 1: # CD that isn't audio CD has 1 track self._current_disk_type = MediaPlayer.DiskType.AUDIO_CD try: artist = self._cd._cd_info['disc']['release-list'][0]['artist-credit-phrase'] album = self._cd._cd_info['disc']['release-list'][0]['title'] self._current_track_list = list(map( lambda x, y: TrackInfo(y, artist, album, x['recording']['title']), self._cd._cd_info['disc']['release-list'][0]['medium-list'][0]['track-list'], self._cd.track_lengths)) except: self._current_track_list = list(map(lambda x: TrackInfo(x), self._cd.track_lengths)) else: df = subprocess.getoutput('df | grep ' + self._config['CD_DEVICE']).split() else: df = subprocess.getoutput('df | grep ' + self._config['USB_DEVICE']).split() if len(df) > 0: mount_point = ' '.join(df[5:]) self._media_library = MediaLibrary() self._media_library.init(mount_point) if self._media_library.media_file_count > 0: self._current_disk_type = MediaPlayer.DiskType.MP3_CD self._current_track_list = list(map( lambda media_info: TrackInfo(media_info.total_time, media_info.artist, media_info.album, media_info.title), self._media_library.media_folders[0].media_files)) # print(self._media_library.as_dict()) return self._current_disk_type def _run_command(self, *command): command_dict = { "command": command } command_json = json.dumps(command_dict) + '\n' socat = subprocess.Popen(['socat', '-', self._config['MPV_SOCKET_PATH']], stdin=subprocess.PIPE, stdout=subprocess.PIPE) socat_output = socat.communicate(command_json.encode('utf-8')) if socat_output[0] is not None and \ len(socat_output[0]) != 0 and \ socat_output[1] is None: try: data = json.loads(socat_output[0].decode()) return data['data'] except: return None def _put_info_with_delay(self, full=False): if full: sleep(0.2) self._info_events.put(self.get_current_info(True, True, True, True, True)) sleep(1) self._info_events.put(self.get_current_info(True, True, True, True, True)) else: sleep(0.2) self._info_events.put(self.get_current_info()) sleep(1) self._info_events.put(self.get_current_info()) def next_track(self): last_track = len(self._current_track_list) - 1 if self._current_track != last_track: if self._current_disk_type == MediaPlayer.DiskType.AUDIO_CD: self._run_command('add', 'chapter', '1') elif self._current_disk_type == MediaPlayer.DiskType.MP3_CD: self._run_command('add', 'playlist-pos', '1') else: if self._current_disk_type == MediaPlayer.DiskType.AUDIO_CD: self._run_command('set', 'chapter', '0') elif self._current_disk_type == MediaPlayer.DiskType.MP3_CD: self._run_command('set', 'playlist-pos', '0') self._put_info_with_delay() def prev_track(self): if self._current_track != 0: if self._current_disk_type == MediaPlayer.DiskType.AUDIO_CD: self._run_command('add', 'chapter', '-1') elif self._current_disk_type == MediaPlayer.DiskType.MP3_CD: self._run_command('add', 'playlist-pos', '-1') else: last_track = len(self._current_track_list) - 1 if self._current_disk_type == MediaPlayer.DiskType.AUDIO_CD: self._run_command('set', 'chapter', str(last_track)) elif self._current_disk_type == MediaPlayer.DiskType.MP3_CD: self._run_command('set', 'playlist-pos', str(last_track)) self._put_info_with_delay() def next_branch(self): if self._current_disk_type == MediaPlayer.DiskType.AUDIO_CD: self.next_track() elif self._current_disk_type == MediaPlayer.DiskType.MP3_CD: type_index = self._current_media_library_branch_type_index folder_index = None artist_index = None album_index = None if type_index[0] == MediaPlayer.BranchType.FOLDERS: folder_index = (type_index[1] + 1) % len(self._media_library.media_folders) elif type_index[0] == MediaPlayer.BranchType.ALBUMS: artist_index = (type_index[1] + 1) % len(self._media_library.artists) album_index = type_index[2] + 1 if album_index >= len(self._media_library.artists[artist_index].albums): album_index = 0 elif type_index[0] == MediaPlayer.BranchType.ARTISTS: artist_index = (type_index[1] + 1) % len(self._media_library.artists) self.play_file(type_index[0], (folder_index, artist_index, album_index, 0)) def prev_branch(self): if self._current_disk_type == MediaPlayer.DiskType.AUDIO_CD: self.prev_track() elif self._current_disk_type == MediaPlayer.DiskType.MP3_CD: type_index = self._current_media_library_branch_type_index folder_index = None artist_index = None album_index = None if type_index[0] == MediaPlayer.BranchType.FOLDERS: folder_index = type_index[1] - 1 folder_index = folder_index if folder_index != -1 else len(self._media_library.media_folders) - 1 elif type_index[0] == MediaPlayer.BranchType.ALBUMS: album_index = type_index[2] - 1 if album_index == -1: artist_index = type_index[1] - 1 artist_index = artist_index if artist_index != -1 else len(self._media_library.artist) - 1 album_index = len(self._media_library.artists[artist_index].albums) - 1 elif type_index[0] == MediaPlayer.BranchType.ARTISTS: artist_index = type_index[1] - 1 artist_index = artist_index if artist_index != -1 else len(self._media_library.artists) - 1 self.play_file(type_index[0], (folder_index, artist_index, album_index, 0)) def play_track(self, track_number): if self._current_disk_type == MediaPlayer.DiskType.AUDIO_CD: self._run_command('set', 'chapter', str(track_number)) elif self._current_disk_type == MediaPlayer.DiskType.MP3_CD: self._run_command('set', 'playlist-pos', str(track_number)) self._put_info_with_delay() def play_file(self, media_library_type, indexes): # indexes = (folder_index, artist_index, album_index, file_index) if self._current_disk_type == MediaPlayer.DiskType.MP3_CD and \ media_library_type is not None and \ indexes is not None: files = None if media_library_type == MediaPlayer.BranchType.FOLDERS: self._current_media_library_branch_type_index = (MediaPlayer.BranchType.FOLDERS, indexes[0]) files = self._media_library.media_folders[indexes[0]].media_files elif media_library_type == MediaPlayer.BranchType.ALBUMS: self._current_media_library_branch_type_index = (MediaPlayer.BranchType.ALBUMS, indexes[1], indexes[2]) files = self._media_library.artists[indexes[1]].albums[indexes[2]].songs elif media_library_type == MediaPlayer.BranchType.ARTISTS: self._current_media_library_branch_type_index = (MediaPlayer.BranchType.ARTISTS, indexes[1]) files = self._media_library.artists[indexes[1]].songs file_index = indexes[3] if files is not None: ordered_files = files[file_index:] + files[0:file_index] self._current_track_list = list(map( lambda media_info: TrackInfo(media_info.total_time, media_info.artist, media_info.album, media_info.title), ordered_files)) self._run_command('playlist-clear') self._run_command('loadfile', files[file_index].full_path) for file in ordered_files[1:]: self._run_command('loadfile', file.full_path, 'append') self._put_info_with_delay(True) def volume_up(self): self._volume = (self._volume + 5) % 101 self._run_command('set', 'volume', str(self._volume)) self._info_events.put(self.get_current_info(False, False, True, False, False)) def volume_down(self): volume = self._volume - 5 volume = volume if volume >= 0 else 0 self._volume = volume self._run_command('set', 'volume', str(self._volume)) self._info_events.put(self.get_current_info(False, False, True, False, False)) def play_pause(self): pause = self._run_command('get_property', 'pause') if pause: self._run_command('set', 'pause', 'no') else: self._run_command('set', 'pause', 'yes') self._info_events.put(self.get_current_info()) def stop(self): try: self._mpv.kill() except: print("Nothing is playing.") subprocess.call(['umount', '/dev/' + self._config['USB_DEVICE']]) self._current_disk_type = None self._current_track = 0 self._current_track_list = None self._current_media_library_branch_type_index = None self._media_library = None self.eject() def eject(self): subprocess.Popen(['eject', self._config['CD_DEVICE']]) def seek(self, seek_percent): time_millis = self._current_track_list[self._current_track].total_time * seek_percent / 100 if self._current_disk_type == MediaPlayer.DiskType.AUDIO_CD: for track in self._current_track_list[:self._current_track]: time_millis += track.total_time self._run_command('set', 'time-pos', str(time_millis / 1000)) # (time_millis / 1000) * (seek_percent / 100) self._put_info_with_delay() @property def is_running(self): return self._mpv is not None and self._mpv.poll() is None @property def current_track_list(self): return self._current_track_list class CD: """ Represents CD drive and disc inside. """ def __init__(self): self._numtracks = 0 self._track_lengths = [] self._cd_info = None def load_cd_info(self): # JH - added code to query musicbrainz for disk info, build track list and times from that info # instead of the cd-discid output, if available. track_offsets = [] m.set_useragent('raspberry-pi-cdplayer', '0.2', 'https://github.com/JoeHartley3/raspberry-pi-cdplayer') try: this_disc = libdiscid.read('/dev/cdrom') except: print('DiskID could not read /dev/cdrom') self._numtracks = 0 self._track_lengths = [] self._cd_info = None return try: # A CD stub is an anonymously submitted track list that contains a disc ID, barcode, comment field, and # basic metadata like a release title and track names. ( https://wiki.musicbrainz.org/CD_Stub ) # By using cdstubs=False here, we force a ResponseError rather than try and parse the stub. Remove the # argument to enable cdstubs. self._cd_info = m.get_releases_by_discid(this_disc.id, includes=["recordings", "artists"], cdstubs=False) except m.ResponseError: print("Disk not found or database unavailable") discid = subprocess.getstatusoutput('cd-discid --musicbrainz') if discid[0] == 0: output_split = discid[1].split() self._numtracks = int(output_split[0]) track_offsets = list(map(lambda i: int(i), output_split[1:])) if self._cd_info is not None: if self._cd_info.get("disc"): self._numtracks = self._cd_info['disc']['offset-count'] track_offsets = self._cd_info['disc']['offset-list'] # Append the total time to the track_offsets track_offsets.append(int(self._cd_info['disc']['sectors'])) elif self._cd_info.get("cdstub"): pass else: # We should never actually get to this point with or without cdstubs, but let's make sure. # This is the same code as for a ResponseError above. print("Unknown disk type from MB - use track numbers") discid = subprocess.getstatusoutput('cd-discid --musicbrainz') if discid[0] == 0: output_split = discid[1].split() self._numtracks = int(output_split[0]) track_offsets = list(map(lambda i: int(i), output_split[1:])) try: self._track_lengths = list( map(lambda i, offsets=track_offsets: int((offsets[i + 1] - offsets[i]) * 1000 / 75), range(0, self._numtracks))) except: self._numtracks = 0 self._track_lengths = [] @staticmethod def is_cd_inserted(): try: subprocess.check_output(['cd-discid', '--musicbrainz']) except subprocess.CalledProcessError: # return value is not 0 return False return True @property def numtracks(self): return self._numtracks @property def track_lengths(self): return self._track_lengths ```
{ "source": "Joe-Heffer-Shef/owast", "score": 3 }
#### File: blueprints/blob/views.py ```python import io import flask import owast.blob app = flask.current_app blueprint = flask.Blueprint('blob', __name__, url_prefix='/blob', template_folder='templates') service_client = owast.blob.get_service_client() def iter_blobs(): for container in service_client.list_containers(): container_client = service_client.get_container_client(container) yield from container_client.list_blobs() @blueprint.route('/') def list_(): """ Show all blobs """ return flask.render_template('blob/list.html', blobs=iter_blobs()) @blueprint.route('/<string:container>/<string:blob>') def detail(container: str, blob: str): """ Inspect a single blob """ blob_client = service_client.get_blob_client( container=container, blob=blob) blob = blob_client.get_blob_properties() return flask.render_template('blob/detail.html', blob=blob) @blueprint.route('/<string:container>/<string:blob>/download') def download(container: str, blob: str): """ Retrieve data for this file """ # Download blob blob_client = service_client.get_blob_client( container=container, blob=blob) blob = blob_client.get_blob_properties() downloader = blob_client.download_blob() # type: azure.storage.blob.StorageStreamDownloader # Send download file data = io.BytesIO(downloader.readall()) data.seek(0) return flask.send_file(data, download_name=blob['name'], mimetype=blob['content_settings']['content_type']) @blueprint.route('/<string:container>/<string:blob>/delete') def delete(container: str, blob: str): blob_client = service_client.get_blob_client( container=container, blob=blob) blob_client.delete_blob() flask.flash(f'Deleted blob "{container}/{blob}"') return flask.redirect( flask.url_for('container.detail', container=container)) ``` #### File: blueprints/container/views.py ```python import flask import owast.blob app = flask.current_app blueprint = flask.Blueprint('container', __name__, url_prefix='/container', template_folder='templates') service_client = owast.blob.get_service_client() @blueprint.route('/') def list_(): """ Show all the containers """ containers = service_client.list_containers() return flask.render_template('container/list.html', containers=containers) @blueprint.route('/<string:container>') def detail(container: str): """ Inspect a container on Azure Blob Storage """ # Get container info container_client = service_client.get_container_client( container=container) container = container_client.get_container_properties() # Get the blobs inside this container blobs = container_client.list_blobs() return flask.render_template('container/detail.html', container=container, blobs=blobs) ``` #### File: blueprints/schema/views.py ```python import json import os import bson.json_util import flask from bson.objectid import ObjectId from flask_pymongo.wrappers import Collection from pymongo.results import UpdateResult, InsertOneResult, DeleteResult from .forms import SchemaForm app = flask.current_app blueprint = flask.Blueprint('schema', __name__, url_prefix='/schema', template_folder='templates') # These are properties that contain JSON objects or arrays JSON_FIELDS = { 'properties', 'required', } # Don't allow users to overwrite these collections SYSTEM_COLLECTIONS = { 'schemas', 'relations', } @blueprint.route('/') def list_(): schemas = app.mongo.db.schemas.find() return flask.render_template('schema/list.html', schemas=schemas) @blueprint.route('/create', methods={'GET', 'POST'}) def create(): """ Add a new research object """ form = SchemaForm() # Process form submission if form.validate_on_submit(): # Prevent collection name conflict if flask.request.form['collection'] in SYSTEM_COLLECTIONS: raise ValueError('Forbidden collection name') # Build research object from user input schema = dict( title=flask.request.form['title'], description=flask.request.form['description'], icon=flask.request.form['icon'], collection=flask.request.form['collection'].casefold(), type='object', properties=json.loads(flask.request.form['properties']), required=json.loads(flask.request.form['required']), ) # Create document result = app.mongo.db.schemas.insert_one( schema) # type: InsertOneResult app.logger.info(result.acknowledged) flask.flash(f'Created "{result.inserted_id}"') # Redirect to the new object return flask.redirect(flask.url_for('schema.detail', schema_id=result.inserted_id)) # Show form return flask.render_template('schema/create.html', form=form) @blueprint.route('/<ObjectId:schema_id>') def detail(schema_id: ObjectId): schema = app.mongo.db.schemas.find_one_or_404(schema_id) return flask.render_template('schema/detail.html', schema=schema) def build_json_schema_document(schema: dict) -> dict: uri = flask.url_for('schema.document', schema_id=str(schema['_id']), _external=True) return dict( **{'$schema': os.environ['JSON_SCHEMA_SPEC'], '$id': uri}, **{key: value for key, value in schema.items() if not key.startswith('_')} ) @blueprint.route('/<ObjectId:schema_id>/schema.json') def document(schema_id: ObjectId): """ Show the JSON schema document https://json-schema.org/draft/2020-12/json-schema-core.html """ schema = app.mongo.db.schemas.find_one_or_404(schema_id) schema_document = build_json_schema_document(schema) return app.response_class( bson.json_util.dumps(schema_document, **flask.request.args), mimetype='application/schema+json') @blueprint.route('/<ObjectId:schema_id>/delete') def delete(schema_id: ObjectId): schemas = app.mongo.db.schemas # type: Collection result = schemas.delete_one( dict(_id=schema_id)) # type: DeleteResult app.logger.info(result.raw_result) flask.flash(f'Deleted {schema_id}') return flask.redirect(flask.url_for('schema.list_')) @blueprint.route('/<ObjectId:schema_id>/edit', methods={'GET', 'POST'}) def edit(schema_id: ObjectId): """ Modify a research object """ collection = app.mongo.db.schemas # type: Collection schema = collection.find_one_or_404(schema_id) form = SchemaForm() # Process form submission if form.validate_on_submit(): # Parse JSON fields _schema = {key: json.loads(value) if key in JSON_FIELDS else value for key, value in form.data.items()} # Write changes to database result = collection.update_one( dict(_id=schema_id), {'$set': _schema}) # type: UpdateResult app.logger.info(result.raw_result) flask.flash(f"Saved changes to '{schema['title']}'") return flask.redirect(flask.url_for('schema.detail', schema_id=schema_id)) # Convert fields to JSON form.process( **{key: json.dumps(schema[key]) if key in JSON_FIELDS else value for key, value in schema.items()}) return flask.render_template('schema/edit.html', schema=schema, form=form) ``` #### File: blueprints/tool/views.py ```python import json import flask import pymongo.collection import pymongo.results from bson.objectid import ObjectId app = flask.current_app blueprint = flask.Blueprint('tool', __name__, url_prefix='/tool', template_folder='templates') @blueprint.route('/create', methods={'GET', 'POST'}) def create(): if flask.request.method == 'POST': tool = {key: value for key, value in flask.request.form.items() if not key.startswith('_')} # Insert custom JSON fields # TODO handle malformed JSON input custom = json.loads(tool.pop('custom')) tool.update(custom) tools = app.mongo.db.tools # type: pymongo.collection.Collection result = tools.insert_one( tool) # type: pymongo.results.InsertOneResult app.logger.info(result) flask.flash(f"Created {result.inserted_id}") option_names = {'Supplier'} options = app.mongo.db.options.find(dict(name={'$in': list(option_names)})) return flask.render_template('tool/create.html', options=options) @blueprint.route('/<ObjectId:tool_id>') def detail(tool_id: ObjectId): tool = app.mongo.db.tools.find_one_or_404(tool_id) return flask.render_template('tool/detail.html', tool=tool) @blueprint.route('/') def list_(): tools = app.mongo.db.tools.find() return flask.render_template('tool/list.html', tools=tools) @blueprint.route('/<string:tool_id>/delete/') def delete(): return flask.redirect(flask.url_for('tool.list_')) ``` #### File: owast/fields/datetime_local.py ```python import datetime def datetime_local_default(t: datetime.datetime = None) -> datetime.datetime: """ Current timestamp with timezone floored to minute resolution (which is the resolution of HTML5 datetime-local e.g. "2018-06-14T00:00" https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/datetime-local """ t = t or datetime.datetime.utcnow() return t.replace(microsecond=0) ```
{ "source": "Joe-Heffer-Shef/pyspark-bessemer", "score": 3 }
#### File: pyspark-bessemer/pysparktest/__main__.py ```python import logging import os import pyspark.sql import pysparktest.test_data_frame import pysparktest.test_basic_stats import pysparktest.test_pandas LOG_LEVEL = os.getenv('LOG_LEVEL', 'WARNING') LOGGER = logging.getLogger(__name__) def run_tests(session: pyspark.sql.SparkSession): pysparktest.test_data_frame.test_data_frame(session) pysparktest.test_basic_stats.test_correlation(session) pysparktest.test_basic_stats.test_chi_square(session) pysparktest.test_pandas.test_pandas(session) def main(): # Create Spark session (only one can exist per process) as global variable # to be shared between all unit tests # https://stackoverflow.com/a/41513805 with pyspark.sql.SparkSession.builder.appName( __name__).getOrCreate() as session: session.sparkContext.setLogLevel(LOG_LEVEL) # Log configuration for key, value in session.sparkContext.getConf().getAll(): LOGGER.info("%s=%s", key, value) run_tests(session) if __name__ == '__main__': main() ```
{ "source": "Joe-Heffer-Shef/reprohack_site", "score": 2 }
#### File: reprohack/tests/test_views.py ```python import pytest from django.forms.models import model_to_dict from django.test import Client from django.urls import reverse from reprohack_hub.reprohack.models import Review from reprohack_hub.users.models import User pytestmark = pytest.mark.django_db def test_markdown_page(client: Client) -> None: """Test markdown rendering.""" response = client.get(reverse("about_test")) assert response.status_code == 200 assert "<h3>ReproHack History</h3>" in response.content.decode() def test_create_review(client: Client, user: User, review: Review) -> None: """Test creating a review.""" # Test reviwer hasn't been set for a generated test paper review assert user not in review.reviewers.all() # Create a new review from similar data to test setting author review_dict = model_to_dict(review) client.force_login(user) response = client.post(reverse("review_new"), review_dict, follow=True) assert response.status_code == 200 rendered_response = response.render() assert review.paper.title in rendered_response.content.decode() # Test reviewer is now set for newly created paper review assert user in review.paper.review_set.last().reviewers.all() # Test reviwer still hasn't been set to initial review assert user not in review.reviewers.all() ``` #### File: reprohack_hub/users/forms.py ```python from django.contrib.auth import forms, get_user_model from django.core.exceptions import ValidationError from django.utils.translation import gettext_lazy as _ from crispy_forms.helper import FormHelper from crispy_forms.layout import Submit User = get_user_model() class UserChangeForm(forms.UserChangeForm): class Meta(forms.UserChangeForm.Meta): model = User class UserCreationForm(forms.UserCreationForm): error_message = forms.UserCreationForm.error_messages.update( {"duplicate_username": _("This username has already been taken.")} ) class Meta(forms.UserCreationForm.Meta): fields = ('username', 'email', '<PASSWORD>', '<PASSWORD>') model = User def clean_username(self): username = self.cleaned_data["username"] try: User.objects.get(username=username) except User.DoesNotExist: return username raise ValidationError(self.error_messages["duplicate_username"]) def __init__(self, *args, **kwargs): super(UserCreationForm, self).__init__(*args, **kwargs) self.helper = FormHelper(self) self.helper.form_method = 'post' self.helper.add_input(Submit('submit', 'Sign up')) ```
{ "source": "joehellmers/Castro", "score": 3 }
#### File: Castro/Docs/add_doxy_headers.py ```python import re import sys def make_class_header(class_name, description): # remove // from description description = re.sub(r"//", "", description).strip() description = re.sub(r"\n[ ]*", "\n/// ", description) class_name = re.sub(r"{", "", class_name).strip() class_name = class_name.split(':')[0].strip() boilerplate = f""" /// /// @class {class_name} /// /// @brief {description} ///""" return boilerplate def make_method_header(description="", parameters=[]): # remove // from description description = re.sub(r"//", "", description).strip() description = re.sub(r"\n[ ]*", "\n/// ", description) boilerplate = "" if description != "": boilerplate += f""" /// /// {description} /// """ elif parameters != []: boilerplate += """ /// """ if parameters != []: for param in parameters: boilerplate += f"""/// @param {(param.split('=')[0].strip()).split(' ')[-1]} """ boilerplate += r"""/// """ return boilerplate def make_method_doxycomment(description=""): # remove // from description description = re.sub(r"//", "", description).strip() description = re.sub(r"\n[ ]*", "\n/// ", description) if description == "": return "" else: return f""" /// /// @note /// {description} /// """ def make_variable_docstring(description): description = re.sub(r"//", "", description).strip() description = re.sub(r"\n[ ]*", "\n/// ", description) if description == "": return "" else: return f""" /// /// {description} /// """ def process_header_file(filename): output_data = "" # find comments in lines above re_comments = re.compile( r"[ \t]*\/\/\s*\n[ \t]*(\/\/[ \t]*[\S ^\n]*?)\n[ \t]*\/\/") with open(filename) as input_file: data = input_file.read() # find classes re_class_name = re.compile(r"\n[^\n\s]*class ([^\n]+)") last_index = 0 for m in re.finditer(re_class_name, data): comments = None for comments in re.finditer(re_comments, data[last_index:m.start()]): pass if comments and (m.start() - comments.end() - last_index) < 2: output_data += data[last_index:last_index + comments.start()] class_header = make_class_header(m.group(1), comments.group(1)) else: output_data += data[last_index:m.start()] class_header = make_class_header(m.group(1), "") output_data += class_header last_index = m.start() output_data += data[last_index:] data = output_data output_data = "" last_index = 0 re_prototype = re.compile( r"(?:^[\w&:*\t ]+\n)*^[ \t]*[~\w:*& <>]+\(([*\w\: \,&\n\t_=\<>\-.]*)\)", flags=re.MULTILINE) # markup methods for m in re.finditer(re_prototype, data): # print("match = ", m.group(1)) parameters = m.group(1).split(",") parameters = [param.strip() for param in parameters] parameters = [param for param in parameters if param != ""] comments = None for comments in re.finditer(re_comments, data[last_index:m.start()]): pass if comments and (m.start() - comments.end() - last_index) < 2: # print(comments.span()) output_data += data[last_index:last_index + comments.start()] method_header = make_method_header(comments.group(1), parameters) last_index = m.start() else: output_data += data[last_index:m.start()] method_header = make_method_header("", parameters) last_index = m.start() output_data += method_header output_data += data[last_index:] data = output_data output_data = "" last_index = 0 re_comments = re.compile( r"^[ \t]*(\/\/[ \t]*[\S \n]*?)\n^(?![ \t]*\/\/)", flags=re.MULTILINE) re_variable = re.compile( r"^[ \t]*[~\w:*& <>\[\]]+;", flags=re.MULTILINE) # markup variables for m in re.finditer(re_variable, data): # print("match =", m.group(0)) if " return " in m.group(0): continue comments = None for comments in re.finditer(re_comments, data[last_index:m.start() + 1]): pass # print(data[last_index:m.start()-1]) # if comments: # print(comments.group(0), m.start(), comments.end()+last_index) if comments and (m.start() - comments.end() - last_index) < 1: output_data += data[last_index:last_index + comments.start()] variable_header = make_variable_docstring(comments.group(1)) output_data += variable_header last_index = m.start() else: output_data += data[last_index:m.start()] last_index = m.start() output_data += data[last_index:] output_filename = filename + ".doxygen" # print(output_data) with open(output_filename, 'w+') as output_file: output_file.write(output_data) def process_cpp_file(filename): output_data = "" # find comments in lines above re_comments = re.compile( r"[ \t]*(\/\/[ \t]*[\S ^\n]*?)\n^[ \t]*[^\/]", flags=re.MULTILINE) re_prototype = re.compile( r"^\w*\n^\w[~\w:*& ]+\([\w\: \,&\n\t_=<>.]*\)\n?[\s\S]*?\n?{", flags=re.MULTILINE) with open(filename) as input_file: data = input_file.read() last_index = 0 for m in re.finditer(re_prototype, data): comments = None for comments in re.finditer(re_comments, data[last_index:m.start() + 1]): pass if comments and (m.start() - comments.end() - last_index) < 3: output_data += data[last_index:last_index + comments.start()] method_header = make_method_doxycomment(comments.group(1)) last_index = m.start() else: output_data += data[last_index:m.start()] method_header = make_method_doxycomment("") last_index = m.start() output_data += method_header output_data += data[last_index:] output_filename = filename + ".doxygen" with open(output_filename, 'w+') as output_file: output_file.write(output_data) if __name__ == "__main__": filename = sys.argv[1] if filename[-2:] == ".H": process_header_file(filename) elif filename[-4:] == ".cpp": process_cpp_file(filename) ``` #### File: Castro/Docs/preprocess_files.py ```python import os import re # directory of the source files rootdir = "../Source" outdir = "source/preprocessed_files" def strip_directives(filename, filepath, outpath): """ Read in file, remove all preprocessor directives and output. This is also going to switch square brackets initializing arrays to parentheses and remove the new-line characters in these so sphinx fortran is happy. """ with open(os.path.join(filepath, filename)) as infile: txt = infile.read() outtxt = re.sub(r"(^#.*$\n)", '', txt, flags=re.M) outtxt = re.sub(r"(&\n)\s*", '', outtxt) outtxt = re.sub(r"\[", r"(\\", outtxt) outtxt = re.sub(r"\]", r'\\)', outtxt) with open(os.path.join(outpath, filename), 'w') as outfile: outfile.write(outtxt) if __name__ == "__main__": # make the output directory if it does not exist if not os.path.exists(outdir): os.makedirs(outdir) # loop over source dir for subdir in sorted(os.listdir(rootdir)): if not os.path.isdir(os.path.join(rootdir, subdir)): continue # loop over files in subdirectories and run strip_directives on all # C++ header files for f in sorted(os.listdir(os.path.join(rootdir, subdir))): if (f[-2:] == ".H"): strip_directives(f, os.path.join(rootdir, subdir), outdir) ``` #### File: massive_star/analysis/initial_model.py ```python import numpy as np import matplotlib.pyplot as plt def find_r_for_rho(r, rho, rho_want): idx = np.where(rho < rho_want)[0][0] return r[idx] #file = "../15m_500_sec.aprox19.hse.6400" file = "../15m_500_sec.aprox19.hse.20.0km" Lx = 1.6384e10 data = np.loadtxt(file) print(data.shape) # now manually read to get the variable names # the first column is position names = ["r"] with open(file) as f: for n, line in enumerate(f): if line.startswith("# num"): continue if line.startswith("# npts"): continue if not line.startswith("#"): break names.append(line.split()[-1].strip()) # now make plots idens = names.index("density") itemp = names.index("temperature") iye = names.index("Ye") fig = plt.figure() ax = fig.add_subplot(211) l1 = ax.plot(data[:,0], data[:,idens], label="density") l2 = ax.plot(data[:,0], data[:,itemp], label="temperature") # show where the refinement kicks in rho_refine = 1.e4 r_refine = find_r_for_rho(data[:,0], data[:,idens], rho_refine) print(r_refine) ax.axvline(r_refine, color="0.25", ls=":") ax.axvline(Lx, color="0.25", ls="-") ax.set_xscale("log") ax.set_yscale("log") ax.set_xlabel("r [cm]") ax.set_ylabel(r"$\rho~[\rm{g/cm^3}]$, $T~[K]$") ax2 = ax.twinx() ax2.set_ylabel(r"$Y_e$") l3 = ax2.plot(data[:,0], data[:,iye], color="C2", label="Ye") lns = l1 + l2 + l3 labs = [l.get_label() for l in lns] ax.legend(lns, labs, frameon=False) ax = fig.add_subplot(212) threshold = 0.1 for n, var in enumerate(names): print(n, var) if var in ["r", "density", "temperature", "pressure", "Ye"]: continue Xmax = data[:,n].max() if Xmax > threshold: if Xmax > 0.5: lw = 2 else: lw = 1 ax.plot(data[:,0], data[:,n], label=var, lw=lw) ax.axvline(r_refine, color="0.25", ls=":") ax.axvline(Lx, color="0.25", ls="-") ax.set_xscale("log") ax.set_yscale("log") ax.set_xlabel("r [cm]") ax.set_ylabel("mass fraction") ax.legend(frameon=False, fontsize="small", ncol=2) fig.set_size_inches((8, 12)) fig.tight_layout() fig.savefig("initial_model.png") ```
{ "source": "joehendrix/pyre-check", "score": 2 }
#### File: client/tests/pyre_test.py ```python import tempfile from pathlib import Path import testslide from .. import ( command_arguments, configuration, pyre, recently_used_configurations, ) from .setup import ( ensure_directories_exists, switch_working_directory, write_configuration_file, ) class CreateConfigurationWithRetryTest(testslide.TestCase): def test_create_configuration_with_retry_no_retry(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() ensure_directories_exists(root_path, [".pyre", "local"]) write_configuration_file(root_path, {}) with switch_working_directory(root_path): try: pyre._create_configuration_with_retry( command_arguments.CommandArguments( local_configuration=None, source_directories=["."], dot_pyre_directory=Path(".pyre"), ), base_directory=Path(root), ) except configuration.InvalidConfiguration: self.fail("Unexpected InvalidConfiguration failure!") def test_create_configuration_with_retry__no_recent_configuration(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() ensure_directories_exists(root_path, [".pyre", "local"]) write_configuration_file(root_path, {}) with switch_working_directory(root_path): with self.assertRaises(configuration.InvalidConfiguration): pyre._create_configuration_with_retry( command_arguments.CommandArguments( local_configuration=None, source_directories=[], dot_pyre_directory=Path(".pyre"), ), base_directory=Path(root), ) def test_create_configuration_with_retry__success(self) -> None: self.mock_callable( recently_used_configurations, "prompt_user_for_local_root" ).to_return_value("local").and_assert_called_once() with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() ensure_directories_exists(root_path, [".pyre", "local"]) write_configuration_file(root_path, {}) write_configuration_file( root_path, {"source_directories": ["."]}, relative="local" ) recently_used_configurations.Cache(root_path / ".pyre").put("local") with switch_working_directory(root_path): test_configuration = pyre._create_configuration_with_retry( command_arguments.CommandArguments( local_configuration=None, source_directories=[], dot_pyre_directory=Path(".pyre"), ), base_directory=Path(root), ) self.assertEqual( test_configuration.local_root, str(root_path / "local") ) def test_create_configuration_with_retry__fail(self) -> None: self.mock_callable( recently_used_configurations, "prompt_user_for_local_root" ).to_return_value("local2").and_assert_called_once() with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() ensure_directories_exists(root_path, [".pyre", "local", "local2"]) write_configuration_file(root_path, {}) write_configuration_file( root_path, {"source_directories": ["."]}, relative="local" ) recently_used_configurations.Cache(root_path / ".pyre").put("local2") with switch_working_directory(root_path): with self.assertRaises(configuration.InvalidConfiguration): pyre._create_configuration_with_retry( command_arguments.CommandArguments( local_configuration=None, source_directories=[], dot_pyre_directory=Path(".pyre"), ), base_directory=Path(root), ) def test_create_configuration_with_retry__invalid_user_input(self) -> None: self.mock_callable( recently_used_configurations, "prompt_user_for_local_root" ).to_return_value(None).and_assert_called_once() with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() ensure_directories_exists(root_path, [".pyre", "local"]) write_configuration_file(root_path, {}) write_configuration_file( root_path, {"source_directories": ["."]}, relative="local" ) recently_used_configurations.Cache(root_path / ".pyre").put("local") with switch_working_directory(root_path): with self.assertRaises(configuration.InvalidConfiguration): pyre._create_configuration_with_retry( command_arguments.CommandArguments( local_configuration=None, source_directories=[], dot_pyre_directory=Path(".pyre"), ), base_directory=Path(root), ) ``` #### File: documentation/deliberately_vulnerable_flask_app/app.py ```python import sqlite3 import subprocess import flask import requests from flask import Flask, render_template from lxml import etree app = Flask(__name__) @app.route("/rce/<string:payload>") def definite_rce(payload: str) -> None: subprocess.run(payload, shell=True) @app.route("/rce/<string:payload>") def potential_rce_1(payload: str) -> None: subprocess.run(["echo", payload]) @app.route("/rce/<int:payload>") def potential_rce_2(payload: int) -> None: subprocess.run(f"echo {payload}", shell=True) @app.route("/pt/<string:payload>") def definite_pt(payload: str) -> str: f = open(payload, "r") text = f.read() return text @app.route("/xss/<string:payload>") def definite_xss(payload: str) -> None: content = flask.Markup(payload) return render_template(content) @app.route("/sql/<string:payload>") def definite_sql(payload: str) -> None: con = sqlite3.connect() cur = con.cursor() cur.execute(f"SELECT info FROM users WHERE name={payload}") @app.route("/ssrf/<string:payload>") def definite_ssrf(payload: str) -> None: requests.get(payload) @app.route("/xxe/<string:payload>") def definite_xxe(payload: str) -> None: etree.fromstring(payload) ``` #### File: pysa_tutorial/exercise2/views.py ```python import subprocess from django.http import HttpRequest, HttpResponse def operate_on_twos(request: HttpRequest) -> HttpResponse: operator = request.POST["operator"] result = eval(f"2 {operator} 2") # noqa: P204 return result def operate_on_threes(request: HttpRequest) -> HttpResponse: operator = request.GET["operator"] exec(f"result = 3 {operator} 3") return result # noqa: F821 def operate_on_fours(request: HttpRequest) -> HttpResponse: operator = request.GET["operator"] result = subprocess.getoutput(f"expr 4 {operator} 4") return result ``` #### File: test/integration/multi_sink_ports.py ```python def source(): pass def sinkA(x): pass def sinkB(x): pass def sinkC(x): pass def sinkD(x): pass def split(x): y = x._params sinkB(y) sinkC(y) sinkD(y) return x def wrapper(x): y = split(x) sinkA(y) def issue(): x = source() wrapper(x) def splitwrapper(x): return split(x) class QueryBase: def send(self): pass class Query(QueryBase): _params = None def send(self): return splitwrapper(self) def params(self, data): self._params = data return self def log_call(params, response): sinkA(params) sinkA(response) def wrapper2(x: Query): params = x._params response = None try: response = x.send() except Exception as ex: raise ex log_call(params, response) def issue2(): taint = source() query = Query().params(taint) wrapper2(query) ``` #### File: test/integration/taint_in_taint_out.py ```python from builtins import _test_sink, _test_source from typing import Dict, List, Tuple def some_service(id): ... def _unpack(tuple): ... class DataRecord: ... class Data: def __init__(self, a, b): self.a = a self.b = b def get_data(x): return {"name": x, "id": x} def product_data(x): data = get_data(x) if x: parent = product_data(x.parent) else: parent = None is_blocked = some_service(data.id) report_tuple = DataRecord(id=data.id, username=data.name, isBlocked=is_blocked) return { "report": _unpack(report_tuple), "id": data.id, "parent_data": parent, "name": data.name, } def product_data_wrapper(x): return product_data(x) def tito(): return product_data_wrapper(_test_source()) def via_getattr(x, y): return getattr(x, "foo", y) class Recursive: def __init__(self, select): self.init_list = [ f[0].target.attname for f in select[self.cols_start : self.cols_end] ] self.related = get_related(select) def get_related(select): return Recursive(select) class FieldIsTITO: add_tito: int = 1 def adds_tito(x: FieldIsTITO) -> int: return x.add_tito class InheritsFromTITO(FieldIsTITO): pass def adds_tito_inherited(x: InheritsFromTITO) -> int: return x.add_tito def adds_tito_with_indirect_sink(src: FieldIsTITO) -> None: indirect_sink(src) def indirect_sink(x: FieldIsTITO) -> None: _test_sink(x.add_tito) def issue_with_indirect_sink_tito(): x = _test_source() adds_tito_with_indirect_sink(x) def approximate_return_access_paths(x): return { "a": x.a, "b": x.b, "c": x.c, "d": x.d, "e": x.e, "f": x.f, "g": x.g, "h": x.h, "j": x.j, "k": x.k, "l": x.l, } def approximate_return_access_paths_common_prefix_input(x): return { "a": x.y.a, "b": x.y.b, "c": x.y.c, "d": x.y.d, "e": x.y.e, "f": x.y.f, "g": x.y.g, "h": x.y.h, "j": x.y.j, "k": x.y.k, "l": x.y.l, } def approximate_return_access_paths_common_prefix_output(x): return { "a": { "a": x.a, "b": x.b, "c": x.c, "d": x.d, "e": x.e, "f": x.f, "g": x.g, "h": x.h, "j": x.j, "k": x.k, "l": x.l, } } async def return_taint(tainted: str, b1: str, b2: str) -> Tuple[str, str, str]: return tainted, b1, b2 async def test_tuple_tito_indices(): tainted, b1, b2 = await return_taint(_test_source(), "", "") _test_sink(b2) def return_taint_in_list(tainted: str, a: str, b: str) -> List[str]: return [tainted, a, b] def add_feature(arg): return arg def tito_with_feature(arg): if arg: return arg else: return add_feature(arg) def test_always_via_feature(): _test_sink(tito_with_feature(_test_source())) # Test TITO through explicit super. class GetQuery: def __init__(self, arg): self.arg = arg class GetUser(GetQuery): def __init__(self, arg): GetQuery.__init__(self, arg) def test_explicit_call_to_superclass(): user = GetUser(_test_source()) _test_sink(user.arg) def evaluate_lazy(payload: Dict[str, str]): return {key: value for key, value in payload.items()} def test_simplified_evaluator(): _test_sink(evaluate_lazy(_test_source())) class ComplexEvaluator: def evaluate_lazy_field(self, field): if callable(field): return field() else: return field def evaluate_lazy_payload(self, payload): def _evaluate(field): if isinstance(field, dict): return self.evaluate_lazy_payload(field) return self.evaluate_lazy_field(field) return {key: _evaluate(value) for key, value in payload.items()} def test_complex_evaluator(evaluator: ComplexEvaluator): _test_sink(evaluator.evaluate_lazy_payload(_test_source())) ``` #### File: test/integration/typed_dict.py ```python from builtins import _test_sink, _test_source from typing import TypedDict class Foo(TypedDict): a: int b: int class Bar(TypedDict): other: int foo: Foo def test1(): bar: Bar = _test_source() _test_sink(bar["other"]) def test2(): bar: Bar = _test_source() # TODO(T81192268): this should not trigger an issue. _test_sink(bar["foo"]["a"]) def test3(): bar: Bar = _test_source() _test_sink(bar["foo"]["b"]) ``` #### File: stubs/integration_test/decorator.py ```python from typing import Callable from django.http import HttpRequest from .logging_decorator import with_logging_with_helper, with_logging_without_helper def with_logging(f: Callable[[str], None]) -> Callable[[str], None]: def inner(x: str) -> None: eval(x) f(x) return inner @with_logging def foo(x: str) -> None: print(x) @with_logging_with_helper @with_logging_without_helper def foo2(x: int) -> None: eval(x) def bar(request: HttpRequest) -> None: foo(request.GET["bad"]) foo2(request.GET["bad"]) ``` #### File: stubs/integration_test/lru_cache_test.py ```python from functools import lru_cache from django.http import HttpRequest @lru_cache def cached_sanitizer(x): return x def test_cached_sanitizer(request: HttpRequest) -> None: sanitized = cached_sanitizer(request.GET["bad"]) eval(sanitized) ``` #### File: tools/generate_taint_models/decorator_parser.py ```python import ast import logging from dataclasses import dataclass from typing import List, Optional, Set, Tuple, Union, cast from typing_extensions import Final FunctionDefinition = Union[ast.FunctionDef, ast.AsyncFunctionDef] LOG: logging.Logger = logging.getLogger(__name__) @dataclass class Decorator: name: str arguments: Final[Optional[Set[str]]] = None keywords: Final[Optional[Set[Tuple[Optional[str], str]]]] = None class DecoratorParser: def __init__(self, unparsed_target_decorators: str) -> None: self._unparsed_target_decorators: str = unparsed_target_decorators self._target_decorators: Optional[List[Decorator]] = None @property def target_decorators(self) -> List[Decorator]: target_decorators = self._target_decorators if target_decorators is None: target_decorators = self._parse_target_decorators( self._unparsed_target_decorators ) self._target_decorators = target_decorators return target_decorators def function_matches_target_decorators(self, node: FunctionDefinition) -> bool: ## TODO T58744796: In the future, change this to support ## filtering on multiple decorators. target_decorator: Decorator = self.target_decorators[0] for decorator in node.decorator_list: node_decorator = self._parse_decorator( cast(Union[ast.Name, ast.Call, ast.Attribute], decorator) ) # if the target decorator has args / kwargs, the node decorator # must also have them if ( target_decorator.name == node_decorator.name and ( not target_decorator.arguments or ( node_decorator.arguments and target_decorator.arguments.issubset( node_decorator.arguments ) ) ) and ( not target_decorator.keywords or ( node_decorator.keywords and target_decorator.keywords.issubset(node_decorator.keywords) ) ) ): return True return False def _resolve_decorator_func_name(self, func: ast.expr) -> str: if isinstance(func, ast.Name): return func.id func = cast(ast.Attribute, func) return self._resolve_decorator_func_name(func.value) + "." + func.attr def _parse_decorator( self, decorator: Union[ast.Name, ast.Call, ast.Attribute] ) -> Decorator: # decorator does not have args or kwargs if isinstance(decorator, ast.Name) or isinstance(decorator, ast.Attribute): return Decorator(self._resolve_decorator_func_name(decorator), set(), set()) # decorator does have args and / or kwargs decorator_name = self._resolve_decorator_func_name(decorator.func) decorator_arguments = { argument.s for argument in decorator.args if isinstance(argument, ast.Str) } decorator_keywords = { # pyre-fixme[22]: The cast is redundant. (keyword.arg, cast(ast.Str, keyword.value).s) for keyword in decorator.keywords if isinstance(keyword.value, ast.Str) } return Decorator( decorator_name, decorator_arguments, decorator_keywords, ) def _parse_target_decorators(self, target_decorator: str) -> List[Decorator]: """ Responsible for parsing the target decorator to extract the decorator name, named and unnamed attributes. """ # We need to create a well formed decorator so we attach a bogus # function to the decorators. well_formed_decorator = target_decorator + """\ndef foo(): ...""" try: parsed_ast = ast.parse(well_formed_decorator) except SyntaxError as error: LOG.error(f"Can't parse `{well_formed_decorator}`.") raise error function_definition = parsed_ast.body[0] if not isinstance(function_definition, ast.FunctionDef): return [] decorator_list = function_definition.decorator_list if len(decorator_list) < 1: LOG.error("No target decorators were specified.") raise Exception("No target decorators were specified.") return [ self._parse_decorator( cast(Union[ast.Name, ast.Call, ast.Attribute], decorator) ) for decorator in decorator_list ] ``` #### File: tools/generate_taint_models/get_constructor_initialized_attribute_sources.py ```python import logging from typing import Callable, Iterable, List, Optional, Type, TypeVar from ...api import query from ...api.connection import PyreConnection from .constructor_generator import gather_all_constructors_in_hierarchy from .inspect_parser import extract_parameters, extract_qualified_name from .model import AssignmentModel from .model_generator import ModelGenerator LOG: logging.Logger = logging.getLogger(__name__) T = TypeVar("T") BATCH_SIZE = 200 class ConstructorInitializedAttributeSourceGenerator(ModelGenerator[AssignmentModel]): """ This Generator will taint the attributes initialized by the constructors of 'classes_to_taint' and their descendants. Only descendants that have had their modules loaded at preprocessing time will be tainted. Models are generated on a best effort basis by assuming the name of the parameter will match the name of the attribute it is assigned to. This naive approach means this model generator will likely generate some invalid models. """ def __init__( self, classes_to_taint: List[str], pyre_connection: PyreConnection, filter_classes_by: Optional[Callable[[Type[T]], bool]] = None, taint_annotation: str = "TaintSource[UserControlled]", ) -> None: self.classes_to_taint: List[str] = classes_to_taint self.pyre_connection = pyre_connection self.filter_classes_by = filter_classes_by self.taint_annotation: str = taint_annotation def gather_functions_to_model(self) -> Iterable[Callable[..., object]]: return gather_all_constructors_in_hierarchy( self.classes_to_taint, self.filter_classes_by ) def compute_models( self, functions_to_model: Iterable[Callable[..., object]] ) -> Iterable[AssignmentModel]: constructors = {} for constructor in functions_to_model: qualified_name = extract_qualified_name(constructor) if not qualified_name: continue # Strip off __init__ and append the parameter name as an attribute # name. class_name = ".".join(qualified_name.split(".")[:-1]) constructors[class_name] = constructor attributes_map = query.get_attributes( self.pyre_connection, constructors.keys(), BATCH_SIZE ) for class_name, constructor in constructors.items(): attributes = {attribute.name for attribute in attributes_map[class_name]} parameters = extract_parameters(constructor) for parameter in parameters: # Skip 'self', and attributes that are callables if parameter.name == "self" or ( "Callable[" in (parameter.annotation or "") or "Coroutine[" in (parameter.annotation or "") ): continue if parameter.name in attributes: # If a parameter is a valid attribute, add a taint model. target = f"{class_name}.{parameter.name}" yield AssignmentModel( target=target, annotation=self.taint_annotation ) if "_" + parameter.name in attributes: # Same as above, but parameters might be prefixed with an # underscore to indicate a private attribute. target = f"{class_name}._{parameter.name}" yield AssignmentModel( target=target, annotation=self.taint_annotation ) ``` #### File: generate_taint_models/tests/get_exit_nodes_test.py ```python import unittest from unittest.mock import MagicMock from ..get_exit_nodes import ExitNodeGenerator from .test_functions import __name__ as qualifier, all_functions class GetExitNodesTest(unittest.TestCase): def test_compute_models(self) -> None: self.maxDiff = None sink = "TaintSink[ReturnedToUser]" self.assertEqual( [ *map( str, ExitNodeGenerator(django_urls=MagicMock()).compute_models( all_functions ), ) ], [ f"def {qualifier}.TestClass.methodA(self, x) -> {sink}: ...", f"def {qualifier}.TestClass.methodB(self, *args) -> {sink}: ...", f"def {qualifier}.testA() -> {sink}: ...", f"def {qualifier}.testB(x) -> {sink}: ...", f"def {qualifier}.testC(x) -> {sink}: ...", f"def {qualifier}.testD(x, *args) -> {sink}: ...", f"def {qualifier}.testE(x, **kwargs) -> {sink}: ...", ], ) self.assertEqual( [ *map( str, ExitNodeGenerator( django_urls=MagicMock(), whitelisted_views=[f"{qualifier}.TestClass.methodA"], ).compute_models(all_functions), ) ], [ f"def {qualifier}.TestClass.methodB(self, *args) -> {sink}: ...", f"def {qualifier}.testA() -> {sink}: ...", f"def {qualifier}.testB(x) -> {sink}: ...", f"def {qualifier}.testC(x) -> {sink}: ...", f"def {qualifier}.testD(x, *args) -> {sink}: ...", f"def {qualifier}.testE(x, **kwargs) -> {sink}: ...", ], ) ``` #### File: generate_taint_models/tests/get_REST_api_sources_test.py ```python import unittest from unittest.mock import MagicMock from ..generator_specifications import ( AllParametersAnnotation, AnnotationSpecification, WhitelistSpecification, default_entrypoint_taint, ) from ..get_REST_api_sources import RESTApiSourceGenerator from .test_functions import __name__ as qualifier, all_functions class GetRESTApiSourcesTest(unittest.TestCase): def test_compute_models(self) -> None: # Test with default arguments source = "TaintSource[UserControlled]" sink = default_entrypoint_taint.returns self.assertEqual( [ *map( str, RESTApiSourceGenerator(django_urls=MagicMock()).compute_models( all_functions ), ) ], [ f"def {qualifier}.TestClass.methodA(self, x: {source})" f" -> {sink}: ...", f"def {qualifier}.TestClass.methodB(self, *args: {source})" f" -> {sink}: ...", f"def {qualifier}.testA() -> {sink}: ...", f"def {qualifier}.testB(x: {source}) -> {sink}: ...", f"def {qualifier}.testC(x: {source}) -> {sink}: ...", f"def {qualifier}.testD(x: {source}, *args: {source})" f" -> {sink}: ...", f"def {qualifier}.testE(x: {source}, **kwargs: {source})" f" -> {sink}: ...", ], ) # Test with view whitelisting self.assertEqual( [ *map( str, RESTApiSourceGenerator( django_urls=MagicMock(), whitelisted_views=[f"{qualifier}.testA"], ).compute_models(all_functions), ) ], [ f"def {qualifier}.TestClass.methodA(self, x: {source})" f" -> {sink}: ...", f"def {qualifier}.TestClass.methodB(self, *args: {source})" f" -> {sink}: ...", f"def {qualifier}.testB(x: {source}) -> {sink}: ...", f"def {qualifier}.testC(x: {source}) -> {sink}: ...", f"def {qualifier}.testD(x: {source}, *args: {source})" f" -> {sink}: ...", f"def {qualifier}.testE(x: {source}, **kwargs: {source})" f" -> {sink}: ...", ], ) # Test with AnnotationSpecification self.assertEqual( [ *map( str, RESTApiSourceGenerator( django_urls=MagicMock(), annotations=AnnotationSpecification( parameter_annotation=AllParametersAnnotation( arg="Arg", vararg="VarArg", kwarg="KWArg" ), returns="Returns", ), ).compute_models(all_functions), ) ], [ f"def {qualifier}.TestClass.methodA(self, x: Arg) -> Returns: ...", f"def {qualifier}.TestClass.methodB(self, *args: VarArg)" " -> Returns: ...", f"def {qualifier}.testA() -> Returns: ...", f"def {qualifier}.testB(x: Arg) -> Returns: ...", f"def {qualifier}.testC(x: Arg) -> Returns: ...", f"def {qualifier}.testD(x: Arg, *args: VarArg) -> Returns: ...", f"def {qualifier}.testE(x: Arg, **kwargs: KWArg) -> Returns: ...", ], ) # Test with WhitelistSpecification self.assertEqual( [ *map( str, RESTApiSourceGenerator( django_urls=MagicMock(), whitelisted_parameters=WhitelistSpecification( parameter_name={"self"}, parameter_type={"int"} ), ).compute_models(all_functions), ) ], [ f"def {qualifier}.TestClass.methodA(self, x) -> {sink}: ...", f"def {qualifier}.TestClass.methodB(self, *args: {source})" f" -> {sink}: ...", f"def {qualifier}.testA() -> {sink}: ...", f"def {qualifier}.testB(x: {source}) -> {sink}: ...", f"def {qualifier}.testC(x) -> {sink}: ...", f"def {qualifier}.testD(x, *args) -> {sink}: ...", f"def {qualifier}.testE(x, **kwargs: {source}) -> {sink}: ...", ], ) ```
{ "source": "joeherold/weekly_coding_challenge_fwkwkw_python", "score": 3 }
#### File: weekly_coding_challenge_fwkwkw_python/Challenge_3/challenge_3.py ```python def removeTrailingNewLine(value): return value.rstrip("\n") def addTrailingNewLine(value): return value + ("\n") def readFileAndGetAsList(pathToFile): f = open(pathToFile, "r") if f.mode == 'r': contents = f.readlines() f.close() return list(map(removeTrailingNewLine, contents)) else: return [] def writeListToFile(pathToFile, dataAsList=[]): f = open(pathToFile, "w+") listWithNewsLintes = list(map(addTrailingNewLine, dataAsList)) f.writelines(listWithNewsLintes) f.close() pathToFile = "/Users/johannespichler/Development/FHWKW/WeeklyCodingChallenge/weekly_coding_challenge_fwkwkw_python/Challenge_3/tasks.txt" lines = readFileAndGetAsList(pathToFile) print(lines) lines.append("holladrio") print(lines) writeListToFile(pathToFile, lines) ``` #### File: weekly_coding_challenge_fwkwkw_python/Challenge_4/challange_4.py ```python def getAbstand(p1, p2): # Calculate distance between two point tupels # frist get delta x x1 = p1[0] x2 = p2[0] deltaX = x2 - x1 # then get delta y y1 = p1[1] y2 = p2[1] deltaY = y2 - y1 # then we take advantage of Pythagoras a^2 + b^2 = c^2 distance = ( deltaX**2 + deltaY**2 ) ** 0.5 return distance def getUmfang(p1, p2, p3): # here we sum up the distances between the three points a = getAbstand(p1, p2) b = getAbstand(p2, p3) c = getAbstand(p3, p1) return (a + b + c) def getFlaeche(p1, p2, p3): # with semiperimeter by the Heron Formlar # s = (a + b + c)/2 = Umfang / 2 a = getAbstand(p1,p2) b = getAbstand(p2,p3) c = getAbstand(p3,p1) # semiparameter s = (a + b + c)/2 # <NAME>: area = ( s * (s - a) * (s - b) * (s - c) )^0.5 return (s * (s-a) * (s-b) * (s-c))**0.5 def getSchwerpunkt(p1, p2, p3): # S = (A+B+C)/3 return ( (p1[0]+p2[0]+p3[0])/3 , # x = (x1 + x2 + x3) / 3 (p1[1]+p2[1]+p3[1])/3 # y = (y1 + y2 + y3) / 3 ) # This function is ment to generalize the point input and conversion def enterPoint(nameOfPoint): # we wrap the input and conversion in a try block # to handle wrong inputs... try: print(f"Punkt {nameOfPoint}: x,y") pointInput = input() arrPoint = pointInput.split(",") return (float(arrPoint[0]), float(arrPoint[1])) except: print(f"Deine Eingabe {pointInput} war ungüligt. Es wird stattdessen der Punkt 0,0 verwendet") return (0,0) def main(): print("### Magic Triangle ###") print("Bitte gebe 3 Punkte an, aus denen ein Dreieck gebildet wird") A = enterPoint("A") B = enterPoint("B") C = enterPoint("C") umfang = getUmfang(A,B,C) schwerpunkt = getSchwerpunkt(A,B,C) flaeche = getFlaeche(A,B,C) print(f"Umfang: {round(umfang,3)}cm") print(f"Semiperimeter (Halbumfang): {round(umfang/2,3)}cm") print(f"Schwerpunkt: x={round(schwerpunkt[0],3)}cm, y={round(schwerpunkt[1],3)}cm") print(f"Fläche: {round(flaeche,3)} cm^2") main() ```
{ "source": "joehewitt/devon", "score": 2 }
#### File: devon/devon/maker.py ```python class Maker: def __init__(self): self.nextMaker = None self.previousMaker = None def __rshift__(self, other): self.nextMaker = other other.previousMaker = self return other def filterSources(self, project, sources): return sources def getDependencies(self, project): return [] def install(self, project, out, sources, target): return 0 def printResult(self, project, out, text): pass class MakerOneToOne(Maker): def needsUpdate(self, project, source, target): return False def getSourceTarget(self, project, source): return "" def printAction(self, project, out, source, targets): pass class MakerOneToMany(Maker): def needsUpdate(self, project, source, target): return False def getSourceTargets(self, project, source, target): return [] def printAction(self, project, out, source, target): pass class MakerManyToOne(Maker): def getTarget(self, project): return "" def needsUpdate(self, project, target): return False def printAction(self, project, out, target): pass class Preprocessor(Maker): def needsUpdate(self, project, source, target): return False def getSourceTarget(self, project, source): return "" def printAction(self, project, out, source, target): pass ``` #### File: makers/unix/compile.py ```python import devon.makers, devon.make, devon.parsers.gcc from devon.tags import * import os.path, re, time reCFiles = re.compile(r"\.(cpp|c|cxx|m|mm)$") # ************************************************************************************************** class Compile(devon.makers.Compile): path = "gcc" parser = devon.parsers.gcc.GCCParser() def getSourceTarget(self, project, source): if source == project.pch: return "%s.gch" % source elif reCFiles.search(source): target = re.sub(r"\.(cpp|c|cxx|m|mm)$", r".o", source) return target def build(self, project, out, source, target): args = self.getBaseArgs(project, source, target) if project.pedantic: args += " -pedantic" if len(source) >= 2 and source[-2:] == ".h": args += " -x c++-header" compilerPath = project.compilerPath if project.compilerPath else self.path line = "%s %s -c -o %s %s" % (compilerPath, args, target, source) #c1 = time.time() result = devon.make.executeCommand(project, self, line, out) #c2 = time.time() #print "built %s in %f" % (source, c2-c1) return result def printAction(self, project, out, source, target): out << Block("progressBox progress-build") << "Compiling " \ << FileLink(basePath=project.path, path=source) << source << Close \ << "..." << Close << Flush def printResult(self, project, out, text): if project.formatOutput: self.parser.parse(text, project, out) else: out << CodeBlock << text << Close def getBaseArgs(self, project, source, target): # The "no-long-double" option seems to be a mac-only thing import sys if sys.platform == "darwin": # Causes error on Snow Leopard #args = "-Wno-long-double " args = "" else: args = "" if project.compilerFlags: args += project.compilerFlags + " " args += self.getOptimizeFlag(project) # XXXjoe Building on the fb sandboxes without this flag causes a link error on some libs #args += " -fPIC" for name in vars(project.defines): value = getattr(project.defines, name) if value: args += ' -D%s=%s' % (name, value) args += " -I%s" % project.getBuildPath() for includePath in project.getIncludePaths(True, source): args += " -I%s" % includePath return args def getOptimizeFlag(self, project): session = devon.projects.getSession() vals = {"size": "-Os", "speed": "-O3", "full": "-O3"} if project.optimize in vals: return vals[project.optimize] else: return "-O0 -gdwarf-2 -DDEBUG -D_DEBUG" # ************************************************************************************************** class CompileTestRunner(Compile, devon.makers.CompileTestRunner): def filterSources(self, project, sources): return devon.makers.CompileTestRunner.filterSources(self, project, sources) ``` #### File: devon/devon/projects.py ```python import devon.maker import time, glob, os.path, re, sys, types, threading # ************************************************************************************************** projectBuiltin = None projectCache = {} # path -> project exportMap = {} # export -> projects exportReverseMap = {} projectMap = {} # name -> project kDefaultWikiPath = "docs" kPrecompiledHeader = "pch" projectFileName = "project.dev" projectDepFileName = ".project.dep" workspaceFileName = "workspace.dev" userFileName = "user.dev" configFileName = "config.dev" pchH = kPrecompiledHeader + ".h" if sys.platform == "win32": defaultInterfaceFlags = "/no_robust" defaultCompilerFlags = "/EHsc /Wp64 /nologo /GR" defaultLinkerFlags = "/NOLOGO /MACHINE:X86" else: defaultInterfaceFlags = "" defaultCompilerFlags = "" defaultLinkerFlags = "" rePrivate = re.compile("__.*?__") # ************************************************************************************************** # Public API def load(projectPath = None, recurse = True): """Loads the project that lives in a specified directory""" if projectPath == None: projectPath = os.getcwd() localProjectPath = __findProjectPath(projectPath, recurse) if localProjectPath == None: # Either the project path is invalid, or it's an external project. If it's external, it # should already be in our cache from when we read in the user file. if projectPath in projectCache: return projectCache[projectPath] raise Exception("%s is not a valid project path " % projectPath) project = __importProject(localProjectPath) return project def loadUserProject(): """ Loads a project that contains only the contents of user.dev. This project will not be cached, so every call will reload it.""" userFilePath = os.path.join(os.path.expanduser(devon.userPath), userFileName) project = DevonProject("", time.time()) __mergeProject(project, "", userFilePath) return project def getNearestProjectPath(sourcePath): projectPath = __findProjectPath(sourcePath) if projectPath: return os.path.join(projectPath, projectFileName) def getProjectByName(name): if name in projectMap: return projectMap[name] return None def shutdownProjects(): for project in projectCache.values(): if isinstance(project, DevonProject): project.writeDependencyFile() def loadExternalProjects(): """ Instantiates each of the external projects found in the user file. """ path = os.path.join(os.path.expanduser(devon.userPath), userFileName) locals = __importProjectLocals(path) for attr in locals: obj = locals[attr] if not isinstance(obj, types.ClassType) \ or not issubclass(obj, ExternalProject) \ or obj is ExternalProject: continue # Instantiate the external project. ExternalProject's constructor will # do everything else. obj = obj() # ************************************************************************************************** class ProjectBranch: def writeBranch(self, projectLocals): for name in projectLocals: localValue = projectLocals[name] if hasattr(self, name): selfValue = getattr(self, name) if isinstance(selfValue, ProjectBranch): # If the member is a branch object, the project variable is expected to be # a class whose members we copy directly onto the branch if localValue and isinstance(localValue, types.ClassType): selfValue.writeBranch(vars(localValue)) continue setattr(self, name, localValue) # ************************************************************************************************** class Project: name = "" def __init__(self): self.__includePaths = None def __post_init__(self): pass def __repr__(self): return "<project %s (%s)>" % (self.name, self.path) def getDependencies(self, deep = False, source = None, projects = None, dups = None): return [] def getIncludePaths(self): if self.__includePaths is None: self.__includePaths = self.getExportPaths() if hasattr(self, 'dependencies'): for projectName in self.dependencies: if projectName in exportReverseMap: self.__includePaths += exportReverseMap[projectName] return self.__includePaths[:] def getSourceDependencies(self, source, deep, checkedDeps): return [] def getAbsolutePath(self, relPath): """ Joins the project path with the relative path and returns the absolute path. Does not check to see if the path exists. """ return os.path.join(self.path, relPath) def getAbsolutePaths(self, relPaths): """ Returns a list of absolute paths given a list of relative paths. This is just a convenience function; see getAbsolutePath() above for the dirty work. """ return [self.getAbsolutePath(relPath) for relPath in relPaths] def getExportPaths(self, deep = False, absPaths = True): """ Returns a list of the project's export paths. An export path contains files that other projects may include. There are two kinds of export paths: the real export path, which reflects the actual directory structure, and the virtual export path, which is the path that other projects use. For example, a project may export the directory /foo/shared/thread/include, containing foopy.h, as the virtual path suade/thread, such that clients would include suade/thread/foopy.h. Behind the scenes, virtual paths are symlinks in the build directory. This allows us to have nice include namespaces that we can use to look up the exporting project, without having to muck up the directory structure. Because the actual location of the exported files is an unnecessary detail, this function only supplies virtual paths. A project is not required to use virtual paths, in which case we export the parent of the real path. In other words, if a project exports /foo/shared/thread/Thread containing bar.h, we export /foo/shared/thread, and a client project would include <Thread/bar.h>. If absPaths is True, this function returns the absolute export paths that can be handed to the compiler as include paths. If False, it it returns the paths the client uses, such as "suade/thread". If deep is True, the returned list includes exported subfolders as well. For example, if a project exports /foo/shared/thread/Thread containing subfolder Primitives and you request client paths, this function returns ["Thread", "Thread/Primitives"]. """ paths = [] for relRealPath in self.exports: # Ensure that the real export path actually exists absRealPath = self.getAbsolutePath(relRealPath) if not os.path.exists(absRealPath): raise OSError, "Export path %s does not exist" % absRealPath # absIncludePath below represents the directory containing the # exports, since that's actually the path we export. In other words, # if a client project is to include foopy/bar/baz.h as bar/baz.h, # we need to export foopy. relVirtualPath = self.exports[relRealPath] if relVirtualPath: absIncludePath = self.getBuildPath() linkPath = os.path.join(absIncludePath, relVirtualPath) # XXXblake Need to check symlink target against expected target # and recreate if they don't match; the symlink could exist, # but point to the wrong place if not os.path.exists(linkPath): # All directories up until the actual link must exist dir = os.path.dirname(linkPath) if dir and not os.path.exists(dir): os.makedirs(dir) # Finally, create the actual link target to absRealPath try: os.symlink(absRealPath, linkPath) except Exception,exc: print "ERROR: unable to link", absRealPath, "to", linkPath relIncludePath = relVirtualPath else: # XXXblake This isn't right. Consider libxml2, which by default installs headers to # /usr/include/libxml2/libxml/. If a user file specifies # exports = { "include/libxml2" : None } # we should be exporting everything in /usr/include/libxml2, and thus # include <libxml/*.h should work...to make this work, we have to enumerate the dirs # in the export path and add those to our list. The code below will add libxml2 to # our export map and export include/ absIncludePath, relIncludePath = os.path.split(absRealPath) if absPaths: includePath = absIncludePath else: includePath = relIncludePath if not includePath in paths: paths.append(includePath) # If it's an external project, we grudgingly add the non-namespaced export path as well, # since the project's own files won't use the namespace. For example, if the exported # path is include/libxml2, we would normally export include and force clients to include # libxml2/*.h. But since libxml2's own headers won't do that, we'll also export # include/libxml2. if absPaths and isinstance(self, ExternalProject): paths.append(absRealPath) if deep: arpLength = len(absRealPath) for root, dirs, files in os.walk(absRealPath): length = len(dirs) for i, dir in enumerate(reversed(dirs)): if not includeSource(root, dir, False): del dirs[length-i-1] continue # Get the relative path (e.g. "win") relPath = os.path.join(root, dir)[arpLength:] if absPaths: includePath = os.path.join(absRealPath, relVirtualPath, relPath) else: includePath = os.path.join(relVirtualPath, relPath) if not includePath in paths: paths.append(includePath) return paths def makeVirtual(self, source): """ Given an absolute or relative concrete export path, returns the same path with symlinks if possible. """ if os.path.isabs(source): absPaths = True relPath = self.getRelativePath(source) else: absPaths = False relPath = source # If not, enumerate our real paths until we find which one this is for realPath in self.exports: virtualPath = self.exports[realPath] if not virtualPath: continue if os.path.dirname(relPath) == realPath: path = os.path.join(virtualPath, os.path.basename(source)) if absPaths: path = self.getAbsolutePath(os.path.join(realPath, kVirtualExportDir, path)) return path # Can't be virtualized, so return the original source. return source def makeConcrete(self, source): """ Given an absolute or relative export path, returns the same path without symlinks. This is similar to os.path.realpath(), but it's much faster because it only works for known export paths. Examples: INPUT OUTPUT <Absolute Paths> /foo/shared/base/Suade/base/foopy.h /foo/shared/base/include/foopy.h <Relative Paths> Suade/base/foopy.h include/foopy.h """ if os.path.isabs(source): relSrcPath = self.getRelativePath(source) absPaths = True else: relSrcPath = source absPaths = False # Enumerate our real path -> virtual path mapping until we find the corresponding virtual # path, then splice in the real path in its place. for relRealPath in self.exports: relVirtualPath = self.exports[relRealPath] if relVirtualPath: rvpLen = len(relVirtualPath) # See if the source path begins with the real path. We have to check for a trailing # slash to ensure we're actually matching directories. If we just compared rvpLen # letters, we'd consider e.g. "DevonLog/Foopy.h" to match an export path of "Devon" if relSrcPath[:rvpLen+1] == (relVirtualPath + "/"): source = os.path.join(relRealPath, relSrcPath[rvpLen+1:]) if absPaths: source = self.getAbsolutePath(source) break else: # No virtual path specified. That means we're exporting the # directory itself, so check and see if the head of the real path # + the head of the source path exists. In other words, say the # project exported { "foopy/bar": None } given foopy/bar/baz/blah.h # and the source path is <bar/baz/blah.h>. # XXXblake Not really making concrete here... relPath = os.path.join(os.path.dirname(relRealPath), relSrcPath) absPath = self.getAbsolutePath(relPath) if os.path.exists(absPath): if absPaths: source = absPath else: source = relPath break return source def getRelativePath(self, absPath, throw=True): """ Extracts the project path from an absolute path and returns the relative path.""" if not absPath.lower().find(self.path.lower()) == 0: if throw: raise ValueError, "Supplied source is not part of this project" return None length = len(self.path) if not self.path[-1] == "/": length += 1 return absPath[length:] __includePaths = None class ExternalProject(Project): def __init__(self): """ Adds the project's exports to the global export map, and the project itself to our global project cache. ExternalProjects are only instantiated by loadUserSettings() in web.py """ Project.__init__(self) if not self.path: if sys.platform == "win32": raise Exception("No path specified for external project ", self.name) self.path = "/usr" # XXXblake Doesn't seem like the right place to do this populateExportMap(self) projectCache[self.path] = self projectMap[self.name] = self def getBuildTarget(self): build = None # `build` can be unspecified, True, False, None or a filename. If unspecified or True, we'll # attempt to locate a file matching the project's name. If False or None, the project is not # built. If a filename is specified, we'll just use that filename. if not hasattr(self, "build") or self.build == True: build = self.name elif self.build: build = self.build else: return # XXXblake I think external projects actually need a getBuildTargetS(), # and we should just try to link all of its libraries. You shouldn't have # to specify manually. # targets = [] # for source in getSourcesIn(self.getBuildPath(), absPaths=True): # if source[-4:].lower() == ".lib": # targets.append(source) # return targets if sys.platform == "win32": if build.find(".") == -1: build += ".lib" path = self.getBuildPath(build) else: def getLibPath(name): if sys.platform == "darwin": fullName = "lib%s.dylib" % name else: fullName = "lib%s.so" % name # XXXblake Version numbers (e.g. .so.2)? path = self.getBuildPath(fullName) if not os.path.exists(path): path = self.getBuildPath("lib%s.a" % name) return path if build.find(".") == -1: path = getLibPath(build) else: path = self.getBuildPath("lib%s" % build) # The dot may not necessarily indicate an extension (e.g. "libpython2.4") if not os.path.exists(path): path = getLibPath(build) # XXXblake REQUIRE(os.path.exists...) if not os.path.exists(path): # Couldn't find the build target, but this is only an error if the developer indicated # that he expects one--by specifying build = True, build = #, or a buildPath. if (hasattr(self, "build") and self.build) or self.buildPath: raise Exception("Invalid path (%s) for external project %s" % (path, self.path)) return return path def getName(self): classname = str(self.__class__) return classname[classname.rfind(".")+1:] def getBuildPath(self, targetPath = None): buildPath = self.getAbsolutePath(self.buildPath or "lib") if targetPath: return os.path.join(buildPath, targetPath) return buildPath name = property(getName) path = None buildPath = None libs = [] def getFrameworks(self, deep=False): return {} class DevonProject(Project, ProjectBranch): def __init__(self, path, updateTime): Project.__init__(self) # Use forward slashes since this gets printed to streams in many places # and it's easier than trying to escape it everywhere self.path = os.path.abspath(path).replace("\\", "/") self.updateTime = updateTime self.projectFilePaths = [] self.userName = "" self.password = "" self.name = None self.version = None self.description = None self.url = None self.author = None self.authorEmail = None self.glossary = {} self.defaultProject = None self.wikiPath = kDefaultWikiPath self.buildPath = None self.buildRootPath = None self.buildProject = self self.buildPre = [] self.build = None self.buildPost = [] self.deps = {} self.dist = None self.distInstallPaths = None self.exclude = [] self.debugSources = [] self.installPaths = {} self.pythonModules = [] import devon.builtin self.buildTests = devon.builtin.CompileTestRunner() >> devon.builtin.LinkTestRunner() self.alwaysBuild = [] # Source files to rebuild every time self.neverLink = [] # Target files to never link # Libraries to link against. This should be used only for system libs # in cases where we can't determine library from the include alone. For # example, the include for many Windows libraries is the generic # <windows.h> # XXXblake I think in the future we should require a comment next to # such includes that we'll parse, then remove this, e.g.: # #include <windows.h> // gdiplus, timer # The code should be self-documenting like that. self.libs = [] self.resources = [] self.frameworks = [] self.ignoreFrameworks = [] self.frameworkPaths = [] self.exports = {} self.includes = [] self.dependencies = [] self.optimize = "debug" self.warningLevel = 4 self.pedantic = False pch = self.getAbsolutePath(pchH) if os.path.exists(pch): self.pch = pchH else: self.pch = None self.testExcludes = [] self.testRunner = None self.pythonExes = {} self.pythonPaths = [] self.showCommands = False self.formatOutput = True self.tracer = True self.platform = None self.device = None self.sdk = None self.arch = None self.developerPath = None self.compilerPath = None self.linkerPath = None self.ranlibPath = None self.linkerFlags = defaultLinkerFlags self.compilerFlags = defaultCompilerFlags self.interfaceFlags = defaultInterfaceFlags # ****************************************************************************************** self.defines = ProjectBranch() self.config = ProjectBranch() self.wiki = ProjectBranch() self.buildArguments = ProjectBranch() self.distArguments = ProjectBranch() if not sys.platform == "darwin" and not sys.platform == "win32": self.defines._REENTRANT = True # ****************************************************************************************** # Win32 Options if sys.platform == "win32": # Compiler options # Use the multithreaded CRT by default; msvc requires runtime libs to be the same type self.runtimeThreaded = True # Linker options self.linkIncremental = True self.definition = None # http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/_core_module.2d.definition_files.asp self.subSystem = "CONSOLE" self.defines.WIN32 = True self.defines._WINDOWS = True self.defines._WIN32_DCOM = True self.defines._WIN32_WINNT = 0x0501 self.defines._MBCS = True # ****************************************************************************************** # Mac OS X options elif sys.platform == "darwin": self.defines.DARWIN = True # App Bundle options self.executableFile = None self.plistFile = None self.iconFile = None self.signature = None self.osFiles = None self.resourceFiles = None # ****************************************************************************************** # Firefox Extension options self.installScript = None # ****************************************************************************************** # Mozilla Jar options pass @property def debug(self): return not self.optimize or self.optimize == 'debug' @property def buildDir(self): if self.debug: return 'debug' else: return 'release' def __post_init__(self): """ Called after the project file is reflected onto the Project instance. """ self.__dependencyFile = self.getBuildPath(projectDepFileName) # If a name in the exclusion list has no extension and it's not a child # project, we assume exclusion of both the source file and its associated # header (if any). for i, exclude in enumerate(self.exclude): excludeRelPath = exclude exclude = self.makeConcrete(self.getAbsolutePath(exclude)) # Skip over anything with an extension if exclude.rfind(".") > -1: self.exclude[i] = exclude continue # XXXblake Just use glob # Check if it's a project path = os.path.join(exclude, projectFileName) if os.path.exists(path): self.exclude[i] = exclude continue # Otherwise, if it's a source file, exclude associated include cpp = "%s.cpp" % exclude if os.path.exists(cpp): self.exclude[i] = cpp for export in self.exports: header = os.path.join(self.path, export, "%s.h" % excludeRelPath) if os.path.exists(header): self.exclude.append(header) break def writeBranch(self, projectLocals): # Copy all of the variables from the project file onto the project object # if they are in the set of pre-defined project member variables for name in vars(self): if name in projectLocals: selfValue = getattr(self, name) localValue = projectLocals[name] if isinstance(selfValue, ProjectBranch): # If the member is a branch object, the project variable is expected to be # a class whose members we copy directly onto the branch if localValue and isinstance(localValue, types.ClassType): selfValue.writeBranch(vars(localValue)) else: setattr(self, name, localValue) def getParentProject(self): parentPath = os.path.dirname(self.path) if not parentPath or not os.path.isdir(parentPath): return None try: return load(parentPath) except: return None def getChildProject(self, projectPath): childPath = os.path.join(self.path, projectPath) if not os.path.isdir(childPath): return None return load(childPath, False) def getChildProjects(self, deep = False): """ Compiles a list of the specified project's child projects """ allExclude = [self.buildRootPath] def getProjectsUnderPath(path, deep, projectExclude = []): """ Returns a list of the projects that live below the specified path. The optional exclude list should contain absolute project paths. """ projects = [] for name in os.listdir(path): if name[0] == "." or name == "docs": continue full = os.path.join(path, name) if not os.path.isdir(full) or full in projectExclude or full in allExclude: continue # Respect platform forks if name == "mac" and sys.platform != "darwin": continue if name == "win" and sys.platform != "win32": continue if name == "unix" and sys.platform == "win32": continue project = None projectPath = os.path.join(full, projectFileName) if os.path.exists(projectPath): project = load(projectPath) projects.append(project) # Don't bother walking this project's build directory. We add the path to # our "all exclude" list, since it's not necessarily a direct child of the # project; it could be anywhere. buildPath = project.buildRootPath if not buildPath in allExclude: allExclude.append(buildPath) if deep: if project: exclude = project.exclude else: exclude = [] projects.extend(getProjectsUnderPath(full, True, exclude)) return projects return getProjectsUnderPath(self.path, deep, self.exclude) def getBuildTarget(self): """Gets the path of the build target for a ManyToOne project""" if not self.build or isinstance(self.build, devon.maker.MakerOneToOne): return None targetPath = self.build.getTarget(self) return self.getBuildPath(targetPath) def getBuildPath(self, targetPath=None): """ Gets the full path of a single target in the build directory of the build project. All returned paths end with trailing slashes. """ if self.path.find(self.buildProject.path) == 0: relativePath = self.path[len(self.buildProject.path)+1:] # +1 for the trailing slash session = getSession() basePath = os.path.join(self.buildRootPath, self.getPlatformAbbreviation()) basePath = os.path.join(basePath, self.buildDir, relativePath) else: raise Exception("Not currently supported/tested") if targetPath: return os.path.join(basePath, targetPath) return basePath def getPlatformAbbreviation(self): names = [] if self.platform: names.append(self.platform) if self.sdk: names.append(self.sdk) if names: return "_".join(names) else: return getSystemAbbreviation() def getDocumentPath(self, docName): docName = docName.replace("_", " ") return os.path.join(self.path, self.wikiPath, "%s.txt" % docName) def getSources(self, includeDirs = False, includeTests = False, absPaths = False, changedAfter = 0, types = []): """ Returns a project's sources, which basically consists of every file within the project directory and each of its subdirectories until another built project is reached. In other words, given /foopy/ base/ project.dev blah.cpp blah.h this function would return ["blah.cpp", "blah.h"] for the base project and [] for the top-level foopy project. """ excludes = self.exclude if not self.debug: excludes += self.getAbsolutePaths(self.debugSources) return getSourcesIn(self.path, includeDirs, includeTests, absPaths, excludes, changedAfter, types) # ************************************************************************************************** # Test def getTestSources(self, includeDirs = False, absPaths = False): sources = getSourcesIn(self.getAbsolutePath("tests"), includeDirs, absPaths) # getSourcesIn() returns paths relative to the test dir. If the caller is # expecting paths relative to the project path, fix up the paths here. if not absPaths: sources = [os.path.join("tests", source) for source in sources] return sources # ************************************************************************************************** # Dependencies def getLibs(self, deep=False, absPaths=False): """ Retrieves the project's dependent libraries. By default, a complete list of library names (e.g. "foopy.lib") is returned, including system libraries, such as gdi.lib. If absPaths is specified, we may not be able to return the absolute paths of all explicit libs, particularly system libraries. """ # XXXblake This is temporary pending ExternalProject.getBuildTargetS() def getAbsPathsOfExplicitLibs(explicitLibs): libs = [] for lib in explicitLibs: # XXXblake Make getExportingProject() just take the export path, # since we end up indexing slash again below project = getExportingProject(lib) if project: # XXXblake Not currently checking dups...is it faster to just pass dups to the linker? libs.append(project.getBuildPath(lib[lib.rfind("/")+1:])) else: libs.append(lib) return libs if absPaths: libs = getAbsPathsOfExplicitLibs(self.libs) else: libs = self.libs[:] # XXXblake getDependencies() should probably also return any projects # culled from our explicit libs list for dep in self.getDependencies(deep): depExplicitLibs = dep.libs if absPaths: depExplicitLibs = getAbsPathsOfExplicitLibs(depExplicitLibs) libs.extend(depExplicitLibs) target = dep.getBuildTarget() if target: # If the project is built if absPaths: lib = target else: lib = os.path.basename(target) # XXXblake Do we really need this check if getDependencies() already does dup-checking? if not lib in libs: libs.append(lib) return libs def getLibPaths(self, deep=False): """ Retrieves the project's absolute library paths """ libPaths = [] libs = self.getLibs(deep, True) for lib in libs: libPaths.append(os.path.dirname(lib)) return libPaths def getIncludePaths(self, deep = False, source = None): """ Retrieves the project's absolute include paths. """ includes = Project.getIncludePaths(self) includes.append(self.path) if deep: for dep in self.getDependencies(deep, source): for include in dep.getIncludePaths(): if not include in includes: includes.append(include) return includes # XXXblake Seems like a lot of the complexity would disappear if we stored concrete paths in the # dependency lists in a tuple that also contains the project name (rather than storing virtual # paths just so we can retrieve the exporting project) # XXXblake This function is currently not used because the headersOnly method of retrieving # dependencies is faster. def getSourceIncludePaths(self, source, deep = False): """ Retrieves the source's absolute include paths. The specified source should be relative to the project. """ includes = [] projects = [] sources = [] def getIncludes(project, source, deep): if source in sources: return includes sources.append(source) project.__updateDependencies() for dep in project.deps[source]: depProject = getExportingProject(dep) if not depProject: if dep in project.deps: # If there's no exporting project but the source is in our own list, it must # be a local project include depProject = project else: # Otherwise, could be a system include, e.g. <string> continue if not depProject in projects: for include in depProject.getIncludePaths(): if not include in includes: includes.append(include) projects.append(depProject) # Only retrieve includes for Devon projects for now, since we don't currently have # a concept of dependencies tracking for external projects (XXXblake) if deep and isinstance(depProject, DevonProject): source = depProject.makeConcrete(dep) getIncludes(depProject, source, deep) return includes return getIncludes(self, source, deep) def readDependencyFile(self): """ Load the dependency map from the project's dependency file """ path = self.__dependencyFile if not os.path.exists(path): self.__updateDependencies() else: f = {} execfile(path, {}, f) self.deps = f["deps"] def writeDependencyFile(self): """ Write the dependency map to the project's dependency file """ dir = os.path.dirname(self.__dependencyFile) if not os.path.exists(self.__dependencyFile) and not os.path.exists(dir): os.makedirs(dir) f = file(self.__dependencyFile, "w") f.write("deps = {") for source, deps in self.deps.iteritems(): f.write("'%s': [" % source) for dep in deps: f.write("'%s'," % dep) f.write("],") f.write("}") def __updateDependencies(self): """ Ensures that our in-memory and written dependency map is completely up to date. Note that we currently use the dependency file's time stamp--rather than a per-source timestamp--as the sole indicator of whether a source's dependency listing needs updating. This means that whenever a source has changed and we update its dependencies, we need to ensure that all other source dependency lists are up to date as well. """ # Note: We don't strip tests for now, because a test source might create a # dependency that none of the actual sources do, so we need to find those # too. In the future, we may actually wish to offer a separate "test project" # that offers getIncludePaths(), getSources(), etc. # XXXblake Rather than doing this check, create the file and utime(0) earlier # XXXblake Why use the dependency file time as the marker instead of an in-memory flag? if os.path.exists(self.__dependencyFile): depLastMod = os.path.getmtime(self.__dependencyFile) else: depLastMod = 0 # Clear the in-memory map so we don't write old cruft if you delete a dependency file # while the server is running self.deps.clear() source = None types = ["cpp", "h", "c", "hpp", "hxx", "mm", "lex", "y"] for source in self.getSources(absPaths=True, changedAfter=depLastMod, includeTests=True, types=types): self.deps[self.getRelativePath(source)] = getIncludes(source) # If we updated the in-memory dependency map, just touch it and we'll write it on shutdown, # unless we've never created the dependency file before, in which case we'll write it now if source: if not depLastMod: self.writeDependencyFile() os.utime(self.__dependencyFile, None) def getSourceDependencies(self, source, deep = False, checkedDeps = None): """ Yields the source's include dependencies. Takes either an absolute or relative source path. Since a source's dependencies usually come from a mix of projects, this function always returns absolute paths. """ if os.path.isabs(source): # Ensure that the source is actually part of this project by trying # to retrieve a relative path. relSrcPath = self.getRelativePath(source, throw=False) # If the source isn't in the project path, it might be a file in # our build directory. Not quite sure how to handle this right now. # It seems like we should be able to extract dependency information # from generated files--consider e.g. a file that gets preprocessed # into a source file. In fact, that's how flex/bison files work # right now, but we get lucky there in that their original files # have includes of the proper format. For now, we'll just check # if this is a build file and return an empty list if so. if not relSrcPath: buildPath = self.getBuildPath() if source[:len(buildPath)] == buildPath: return raise ValueError, "Supplied source is not part of project" else: relSrcPath = source source = self.getAbsolutePath(source) if checkedDeps is None: checkedDeps = [] # XXXblake Check ctime (which is creation time on Windows) everywhere if not os.path.exists(self.__dependencyFile) or \ os.path.getmtime(source) > os.path.getmtime(self.__dependencyFile): self.__updateDependencies() if not relSrcPath in self.deps: self.deps[relSrcPath] = [] # raise Exception("Couldn't retrieve dependency information for ", relSrcPath) for dep in self.deps[relSrcPath]: if dep in checkedDeps: continue checkedDeps.append(dep) project = getExportingProject(dep) path = None if not project: # Note that it's entirely possible for a local file to match the name of an external # file. Since we've lost the <> versus "" information in the include directive, we'll # just forge ahead knowing we might be wrong. Usually the worst that happens is that # we unnecessarily rebuild a source file, but since it also affects getDependencies(), # it could cause incorrect lib/include paths, etc. If this becomes an issue, we could # prevent this by prepending something (e.g. "./") in getIncludes when we parse a # quoted include. In other words, given local subfolder "gecko" and external project # "gecko", we'll mistake "gecko/foopy.h" as a gecko-project reference. Or given # <system/file.h> and local system subfolder, we'll mistake it as a self-reference. # The latter case is less concerning since it's just the self project again. path = self.getAbsolutePath(dep) if os.path.isfile(path): project = self else: # OK, the header isn't at the base of the project. Before giving up, see if it's # relative to the current file. dirname = os.path.dirname(relSrcPath) if dirname: rel = os.path.join(dirname, dep) path = self.getAbsolutePath(rel) # We check that rel is in self.deps below to guard against a scenario such as # that presented by shared/thread/include/Semaphore.h, which includes the # posix <semaphore.h>, and which we would otherwise treat as the local header # only to bail on the next call when we can't find dependency information for # include/semaphore.h. The correct fix here is probably to retain the # important metadata provided by the choice of "" versus <> for includes, as # discussed above. if os.path.isfile(path) and rel in self.deps: project = self dep = rel if not project: continue # Now we need to turn the virtual path into a real path so we can # get an absolute path, and so we can call ourselves recursively # if deep was requested. if not path: dep = project.makeConcrete(dep) path = project.getAbsolutePath(dep) # It's possible that a given dependency no longer exists, e.g. if # a header has been renamed but nobody updated the source file. Since # we won't recompile the file (and thus induce the compiler to catch # the error) unless the source file happened to change for other reasons, # we'll throw and cause the buck to stop here. if not os.path.exists(path): raise ValueError, "%s does not exist; did you rename a header \ file and forget to update the source file?" % path yield path if deep: for dep in project.getSourceDependencies(dep, deep, checkedDeps): yield dep def getDependencies(self, deep = False, source = None, projects = None): """ Returns a list of the project's dependent projects. """ # XXXblake The "source" param is a big, big hack. Basically what we're doing is calculating # one source's dependencies by retrieving all the *potential* dependencies, i.e. anything # exported by a project that exports one of the source's dependencies, recursively. if projects is None: projects = [] # Ensure the dependency map is up-to-date self.__updateDependencies() # Now flatten the dependency map into a list, retrieve the project from # the dependency, and, if requested, get each dependency's dependencies for src, deps in self.deps.iteritems(): if source and src[-2:] not in (".h", ".y") and not src[-3:] == ".lex" \ and not src == source: continue for dep in deps: project = getExportingProject(dep) # Don't include ourselves or duplicates in the dependency list if project and project is not self and not project in projects: yield project projects.append(project) # XXXblake Profile to see if breadth approach (myProjects list) is faster if deep: for proj in project.getDependencies(deep, bool(source), projects): yield proj # ************************************************************************************************** def getFrameworks(self, deep=False): names = self.frameworks if deep: for depProject in self.getDependencies(deep): for libName in depProject.getFrameworks(): if libName not in names and libName not in self.ignoreFrameworks: names.append(libName) return names def expandString(self, path): return path % ProjectVariables(self) def getInheritableProperty(self, name, default): value = getattr(self, name) if value: return value, self else: parent = self.getParentProject() if not parent: return default, None else: return parent.getInheritableProperty(name, default) def getPathList(self, sources): fullSources = [] if sources: cwd = os.getcwd() os.chdir(self.path) for source in sources: source = self.expandString(source) # On Windows, glob can return paths with backslashes. We change # back to forward slashes to maintain the path integrity. fullSources += [s.replace("\\", "/") for s in glob.glob(source)] os.chdir(cwd) return fullSources # ************************************************************************************************** class ProjectVariables: """A wrapper that can used to embed project variables in formatted strings""" def __init__(self, project): self.project = project def __getitem__(self, name): if name == "buildTarget": return self.project.getBuildTarget() elif name == "buildPath": return self.project.getBuildPath() elif name.find("buildTarget_") == 0: projectPath = name[12:] childProject = self.project.getChildProject(projectPath) if childProject: return childProject.getBuildTarget() else: parentPath = os.path.basename(self.project.path) projectPath = os.path.abspath(os.path.join("..", projectPath)) siblingProject = load(projectPath) if siblingProject: return siblingProject.getBuildTarget() elif name.find("buildPath_") == 0: projectPath = name[10:] childProject = self.project.getChildProject(projectPath) if childProject: return childProject.getBuildPath() else: parentPath = os.path.basename(self.project.path) projectPath = os.path.abspath(os.path.join("..", projectPath)) siblingProject = load(projectPath) if siblingProject: return siblingProject.getBuildPath() else: names = name.split(".") obj = self.project for name in names: obj = getattr(obj, name) return str(obj) # ************************************************************************************************** class Session: pass def getSession(): thread = threading.currentThread() if not hasattr(thread, "session"): # XXXjoe Sessions are dead, I think thread.session = Session() return thread.session # ************************************************************************************************** def __findProjectPath(path, recurse = True): """Returns the path of the project that lives in |path|. If no project is found and |recurse| is true, this searches the parents of a directory until a project file is found""" path = os.path.abspath(path) if not os.path.isdir(path): path = os.path.dirname(path) while 1: projectPath = os.path.join(path, projectFileName) if os.path.exists(projectPath): return os.path.dirname(projectPath) elif recurse: newPath = os.path.dirname(path) if newPath == path: # We've hit the drive root break else: path = newPath else: break return None def __importProject(projectPath): projectFilePath = os.path.join(projectPath, projectFileName) workspaceFilePath = os.path.join(projectPath, workspaceFileName) userFilePath = os.path.join(os.path.expanduser(devon.userPath), userFileName) configFilePath = os.path.join(os.path.expanduser(devon.userPath), configFileName) # Look for the project in the cache project = None if projectPath in projectCache: project = projectCache[projectPath] # If any of the files have been changed, invalidate and reload the project for path in (projectFilePath, workspaceFilePath, userFilePath, configFilePath): if os.path.isfile(path): fileTime = os.path.getmtime(path) if fileTime > project.updateTime: # Sanity check: if the file time is greater than time.time(), something's wacky. # (I ran into this problem running a Unix VM, where the Unix "hardware clock" # was off and thus invariably fileTime > updateTime and we recursed infinitely.) if fileTime > time.time(): raise Exception("Error: System clock appears to be set inappropriately " \ "(while importing project %s)" % project.path) project = None break if project: return project project = DevonProject(os.path.dirname(projectFilePath), time.time()) projectCache[projectPath] = project # Merge the config file __mergeProject(project, projectPath, configFilePath) # Merge the project file __mergeProject(project, projectPath, projectFilePath) # Merge the local workspace file __mergeProject(project, projectPath, workspaceFilePath) # Merge the user file __mergeProject(project, projectPath, userFilePath) # Find the project that hosts the build directory and cache it on this project if project.buildPath: if os.path.isabs(project.buildPath): project.buildRootPath = project.buildPath else: project.buildRootPath = project.getAbsolutePath(project.buildPath) else: buildPath, buildProject = project.getInheritableProperty("buildPath", ".") if buildProject: project.buildRootPath = os.path.join(buildProject.path, buildPath) project.buildProject = buildProject else: project.buildRootPath = buildPath project.buildProject = project # Merge the workspace file for the whole project if project.buildProject and not project.buildProject == project: rootWorkspacePath = os.path.join(project.buildRootPath, '..', workspaceFileName) __mergeProject(project, projectPath, rootWorkspacePath) # "Post initialize" the project so it has a chance to do additional work # after the project file has been read in project.__post_init__() # Add the project's exports to our global export map populateExportMap(project) # Add the project to our global name map projectMap[project.name] = project # Read in cached dependencies if the project is built or if it exports if isinstance(project, DevonProject) and (project.getBuildTarget() or project.exports): project.readDependencyFile() return project def __mergeProject(project, projectPath, projectFilePath): projectLocals = __importProjectLocals(projectFilePath, project) if projectLocals: project.writeBranch(projectLocals) def __importProjectLocals(projectFilePath, project=None): if not os.path.isfile(projectFilePath): return {} cwd = os.getcwd() os.chdir(os.path.dirname(projectFilePath)) projectLocals = {} projectLocals.update(__getProjectBuiltin()) if project: projectLocals.update(vars(project)) execfile(projectFilePath, {}, projectLocals) os.chdir(cwd) return projectLocals def __getProjectBuiltin(): global projectBuiltin if not projectBuiltin: projectBuiltin = {} import devon.builtin for name in vars(devon.builtin): if not rePrivate.match(name): value = getattr(devon.builtin, name) if not type(value) == types.ModuleType: projectBuiltin[name] = value return projectBuiltin # ************************************************************************************************** # Dependency Helpers # reInclude = re.compile(r"""#include (?:(?:"|<)((?:\w*/\w*)*\(?:.h|.hxx|.hpp))(?:"|>))|(?:(?:\")(\w*\(?:.h|.hxx|.hpp)(?:\"))""") reInclude = re.compile(r"""#include (?:"|<)(.*?(?:\.h|\.hpp|))(?:"|>)""") reNamespace = re.compile(r"namespace \w* {") def populateExportMap(project): """ Adds the project's export paths to our map. We use this map to lookup a project based on its exports when we encounter an include in a source file. Export paths are case-insensitive. """ # XXXblake On Unix, where external project paths tend to be "usr", this adds all sorts of junk # to the map if project.name: exports = project.getExportPaths(deep=False, absPaths=True) exportReverseMap[project.name] = exports for export in project.getExportPaths(deep=True, absPaths=False): if not export in exportMap: exportMap[export] = [] # print "Adding ", export, " to project ", project.path XXXblake This reveals some bugs exportMap[export].append(project) def getIncludes(source): """ Returns a list of relative, concrete include paths used by the specified (absolute) source. """ includes = [] # XXXblake We need to parse conditionals so we only process the right includes. # XXXblake Doesn't work for includes after the namespace (e.g. at the bottom of the file) # XXXblake Need to handle relative includes (e.g. #include "../foopy.h") for line in file(source): match = reInclude.match(line) if match: includes.append(match.group(1)) elif reNamespace.match(line): break return includes def getExportingProject(export): """ Returns the project that exports the supplied path. """ exportDir = os.path.dirname(export) if not exportDir in exportMap: return None projects = exportMap[exportDir] exportingProject = None numProjects = len(projects) if numProjects > 1: # If we already determined the correct project for this export in the past, we cached it # in our map, so check for that first. if export in exportMap: exportingProject = exportMap[export] else: # If more than one project exports the given path, we need to determine # which one it is. We want to minimize cases like this (by using distinctive # export paths) since it slows down building. # XXXblake This assumes a header, but getLibs() also uses this function # to look up namespaced libraries. We should check the extension here and # look at export or lib paths accordingly. This will probably fail if, say, # two projects export "gecko" currently. for project in projects: absRealPath = project.getAbsolutePath(project.makeConcrete(export)) if os.path.exists(absRealPath): exportingProject = project # Add to our cache so future lookups are faster exportMap[export] = exportingProject break elif numProjects: exportingProject = projects[0] # Although we already have a project instance here, we call through load() # to ensure that the project is up to date. if exportingProject and isinstance(exportingProject, DevonProject): exportingProject = load(exportingProject.path) # Warn if a file includes a header that was marked for exclusion. This rare situation # arises if you try to prevent a project from building by excluding all the files in it # but fail to remove the associated includes. The linker usually complains anyways, but this # warning helps identify the source of the problem. Note that the correct way to prevent # a project from building is to exclude the project itself in its parent. if isinstance(exportingProject, DevonProject): path = exportingProject.getAbsolutePath(exportingProject.makeConcrete(export)) if path in exportingProject.exclude: print "Warning: A header designated for exclusion was included (%s)" % path return exportingProject def includeSource(root, name, isFile, types = []): """ Filters out project files, build and test directories, hidden directories, generated files, other platforms' files, and (optionally) files that aren't of the specified types. """ # Filter hidden files and directories. This excludes things like the svn # working copy. # XXXblake Move under dir when dep files move. if name[0] == ".": return False if isFile: if types: index = name.rfind(".") if index == -1: return False ext = name[index+1:] if not ext in types: return False else: # Filter other platforms' sources if sys.platform == "win32": if name == "mac" or name == "unix": return False elif sys.platform == "darwin": if name == "win": return False else: if name == "mac" or name == "win": return False # If the subdirectory is a built project of its own, don't crawl into # it since the files contained within are that project's sources, not # our own. if os.path.exists(os.path.join(root, name, projectFileName)): return False # Filter the build directory if name == "build": return False return True def relativePath(fullPath, basePath): slash = basePath[-1] == "/" or basePath[-1] == "\\" return fullPath[len(basePath) + (not slash):] def getSourcesIn(path, includeDirs = False, includeTests = False, absPaths = False, excludes = [], changedAfter = 0, types = []): """ Returns the files in the specified path and its subfolders, excluding project files, build and test directories, etc. (see includeSource()). By default, the function returns paths relative to |path|; use absPaths to change that. You can also pass a list of absolute paths to exclude. """ sources = [] def getSource(root, name, changedAfter=changedAfter): fullPath = os.path.join(root, name) source = None if not fullPath in excludes: if absPaths: source = fullPath else: source = relativePath(fullPath, path) if source: # We also check ctime below, which ensures that we count moved/copied files as "changed" # even though their modification times have not changed. (We can't *just* check ctime, # because on Windows it's only the creation time, although on Unix it encompasses both # modification and moves. if not changedAfter or os.path.getmtime(fullPath) > changedAfter \ or os.path.getctime(fullPath) > changedAfter: return source # Walk the directory tree looking for sources for root, dirs, files in os.walk(path): # Directories length = len(dirs) for i, dir in enumerate(reversed(dirs)): if not includeSource(root, dir, False) or (not includeTests and dir == "tests"): del dirs[length-i-1] elif includeDirs: # We don't exclude directories based on the mod date because their subdirectories # may have changed, so pass 0 here. source = getSource(root, dir, 0) if source: sources.append(source) # Optimization: only bother checking files if the current directory mod time is newer than # our requested mod time if changedAfter and os.path.getmtime(root) < changedAfter: continue # Files for file in files: if not includeSource(root, file, True, types): continue source = getSource(root, file) if source: sources.append(source) return sources def getSystemAbbreviation(): import sys if sys.platform == "win32": return "win" if sys.platform == "darwin": return "mac" return "unix" ``` #### File: devon/devon/tag.py ```python class Node: def __init__(self, attributes=None): self.attributes = attributes self.childNodes = None def __getitem__(self, name): return self.attributes[name] def __setitem__(self, name, value): self.attributes[name] = value def __lshift__(self, value): from devon.stream import OutStream from devon.renderers.html import HTMLRenderer from cStringIO import StringIO stream = OutStream(StringIO(), HTMLRenderer()) stream.write(self) stream.write(value) return stream def clone(self): cloned = self.__class__(self.line) cloned.mergeAttributes(self.attributes) return cloned def mergeAttributes(self, attributes): if self.attributes: self.attributes.update(attributes) else: self.attributes = dict(attributes) def appendChild(self, node): if not self.childNodes: self.childNodes = [] self.childNodes.append(node) def getInnerText(self): text = "" if self.childNodes: for node in self.childNodes: if isinstance(node, basestring): text += node return text def iterateNodes(self, exclude=None): if self.childNodes: for node in self.childNodes: if exclude and exclude(node): continue yield node if isinstance(node, Node): if node.childNodes: for child in node.iterateNodes(exclude): yield child yield Close def getNodesBy(self, criteria): if self.childNodes: for node in self.childNodes: if isinstance(node, Node) and node.childNodes: if criteria(node): yield node for child in node.getNodesBy(criteria): yield child def __str__(self): xml = "<%s" % self.__class__.__name__ if self.attributes: for name in self.attributes: xml += ' %s="%s"' % (name, self.attributes[name]) xml += ">" return xml # ************************************************************************************************** class Document(Node): def __init__(self, sourcePath=None): self.sourcePath = sourcePath Node.__init__(self) # ************************************************************************************************** class Tag(Node): def __init__(self, classes=None, line=-1, **attributes): self.line = line if classes: attributes["class"] = classes Node.__init__(self, attributes) def clone(self): cloned = self.__class__("", self.line) cloned.mergeAttributes(self.attributes) return cloned # ************************************************************************************************** class Close: """Write this class to the stream to close the last open tag.""" def __init__(self, line=-1): self.line = line class Flush: """Write this class to the stream to flush all buffered text.""" class FileTarget: def getFileTargetPath(self): pass # ************************************************************************************************** def dumpNodeTree(node, out=None, indent=""): if not out: import sys out = sys.stdout out.write(indent) if isinstance(node, basestring): out.write("'" + node + "'\n") else: out.write(str(node) + "\n") if isinstance(node, Node) and node.childNodes: childIndent = indent + " " for child in node.childNodes: dumpNodeTree(child, out, childIndent) out.write(indent) out.write("</%s>\n" % node.__class__.__name__) ``` #### File: devon/web/logCatalog.py ```python import devon.projects.run import os.path # ************************************************************************************************** def main(request): devon.projects.run.writeProjectLogCatalog(request.project, request.out) ```
{ "source": "joeHickson/flood_nowcasting", "score": 2 }
#### File: joeHickson/flood_nowcasting/lambda_function.py ```python import json import os import sys # bugger about with the path to include the package. not the right way really. sys.path.append(os.path.dirname(os.path.realpath(__file__)) + "/flood_nowcasting") from flood_nowcasting.flood_nowcasting import FloodNowcasting # import sys # # # bugger about with the path to include the package. not the right way really. # sys.path.append(os.path.dirname(os.path.realpath(__file__)) + "/flood_nowcasting") def lambda_handler(event, context): try: nowcast = FloodNowcasting(app_key=os.environ['APP_KEY'], app_secret=os.environ['APP_SECRET'], access_token=os.environ['ACCESS_TOKEN'], access_token_secret=os.environ['ACCESS_TOKEN_SECRET']) nowcast.main() return { 'statusCode': 200, 'body': json.dumps('Run complete') } except Exception: return { 'statusCode': 500, 'body': json.dumps('Server Error') } ``` #### File: flood_nowcasting/tests/test_load_ea_data.py ```python import unittest from entities import Location, FloodStates from load_ea_data import get_data class TestLoadEaData(unittest.TestCase): def test_load(self): location = Location( name="test", monitoring_station="45128", wet=1, warn=0.5, messages={state: f"message {state.name}" for state in FloodStates} ) x_data, y_data = get_data(location) self.assertEqual(24, len(x_data)) self.assertEqual(24, len(y_data)) x_data, y_data = get_data(location, 5) self.assertEqual(5, len(x_data)) self.assertEqual(5, len(y_data)) # check the last point in the sequence is within 5 minutes of where it should be self.assertAlmostEqual(min(x_data) + 4 * 60 * 15, max(x_data), delta=300) if __name__ == '__main__': unittest.main() ```
{ "source": "joehillen/jsonrpcake", "score": 3 }
#### File: jsonrpcake/jsonrpcake/core.py ```python import sys import errno import json import jsonrpc_ns from .models import Environment from .output import build_output_stream, write from . import ExitStatus def main(args=sys.argv[1:], env=Environment()): """Run the main program and write the output to ``env.stdout``. Return exit status code. """ from .cli import parser def error(msg, *args, **kwargs): msg = msg % args level = kwargs.get('level', 'error') env.stderr.write('\njsonrpc: {level}: {msg}\n' .format(level=level, msg=msg)) debug = '--debug' in args traceback = debug or '--traceback' in args exit_status = ExitStatus.OK if debug: if args == ['--debug']: return exit_status try: args = parser.parse_args(args=args, env=env) try: response = jsonrpc_ns.request( args.addr, args.method, args.data, timeout=args.timeout) except jsonrpc_ns.JSONRPCResponseError as e: response = e.value code = e.value['code'] message = e.value['message'] if args.check_status: exit_status = ExitStatus.ERROR error('JSONRPC %s %s', code, message, level='warning') response = json.dumps(response) write_kwargs = { 'stream': build_output_stream( args, env, None, response), 'outfile': env.stdout, 'flush': env.stdout_isatty or args.stream } try: write(**write_kwargs) except IOError as e: if not traceback and e.errno == errno.EPIPE: # Ignore broken pipes unless --traceback. env.stderr.write('\n') else: raise except (KeyboardInterrupt, SystemExit): if traceback: raise env.stderr.write('\n') exit_status = ExitStatus.ERROR except Exception as e: # TODO: Better distinction between expected and unexpected errors. # Network errors vs. bugs, etc. if traceback: raise error('%s: %s', type(e).__name__, str(e)) exit_status = ExitStatus.ERROR return exit_status ```
{ "source": "joehmchiu/tsoncli", "score": 2 }
#### File: tsoncli/tsoncli/msg.py ```python import sys, os, time from markdown import markdown def info(): return markdown( "# tson-cli" "##Task Service over Networks CLI" ) ```
{ "source": "joehoeller/Algorithmic-Data-Cleaning-with-Pandas", "score": 3 }
#### File: joehoeller/Algorithmic-Data-Cleaning-with-Pandas/pipeline.py ```python import pandas as pd from datetime import datetime import numpy as np import pydash as _ ### Read in CSV files df1 = pd.read_csv('./input/Task_Data_1.csv') df2 = pd.read_csv('./input/Task_Data_2.csv') ### Use Pandas DF to merge by common key, "item_id" to ensure ### that rows from both CSVs matched merged_by_id = df1.merge(df2, how="left", on="item_id") ### Format values for result Data1.mp1 * data2.mp2 merged_by_id['result'] = merged_by_id.mp1 * merged_by_id.mp2 ### Format values for date as Data2.date in YYYY-MM-DD merged_by_id['date_new'] = pd.to_datetime(merged_by_id['date']).dt.strftime('%Y-%m-%d') ### Drop missing values: Drop all rows from col 'value' ### inside Pands DF that are NaN or Null merged_by_id = merged_by_id[pd.notnull(merged_by_id['value'])] ### Space in mem to hold data data = [] ### Python struct init = { 'prev': None, 'curr': None, 'result': [] } ### Get data in array so pseudo rolling windows ### with conditions can operate on data for x in merged_by_id.loc[:, 'value']: data.append(x) ### Algorithmic accumulator that walks arrays right (reduceRight) ### and handles the conditions of Data1.value or ### (data1[row-1].value + data1[row+1].value) / 2 ### Or 1 if there is no [row-1] or [row+1] values ### without mutations to variables, no loops, and zero non deterministic ### code design patterns def fn(acc, curr): if acc['prev'] == None and acc['curr'] == None: return { 'prev': None, 'curr': curr, 'result': [1] } elif acc['curr'] != None and acc['prev'] == None: return { 'prev': acc['curr'], 'curr': curr, 'result': acc['result'] } elif acc['curr'] != None and acc['prev'] != None: return { 'prev': acc['curr'], 'curr': curr, 'result': [ (acc['prev']+curr) / 2 ] + acc['result'] } def det(): if len(data) == 1: return data else: return [1] + _.reduce_right(data, fn, init)['result'] ### print to verify Pandas DF, output desired CSV file in /output folder result = det() df = pd.DataFrame({"item_identifier":merged_by_id['item_id'],"result":merged_by_id['result'],"date_new":merged_by_id['date_new'],"new_value":result}) print(df) df.to_csv(r'./output/clean_data.csv') ```
{ "source": "joehood/SubCircuit", "score": 3 }
#### File: subcircuit/devices/c.py ```python import subcircuit.interfaces as inter import subcircuit.sandbox as sb class C(inter.MNADevice): """SPICE capacitor device""" def __init__(self, nodes, value, mname=None, l=None, w=None, ic=None, **parameters): """General form: CXXXXXXX N+ N- VALUE <IC=INCOND> Examples: CBYP 13 0 1UF COSC 17 23 10U IC=3V N+ and N- are the positive and negative element nodes, respectively. VALUE is the capacitance in Farads. The (optional) initial condition is the initial (time-zero) value of capacitor voltage (in Volts). Note that the initial conditions (if any) apply 'only' if the UIC option is specified on the .TRAN control line. Semiconductor Capacitors: General form: CXXXXXXX N1 N2 <VALUE> <MNAME> <L=LENGTH> <W=WIDTH> <IC=VAL> Examples: CLOAD 2 10 10P CMOD 3 7 CMODEL L=10u W=1u This is the more general form of the Capacitor presented in section 6.2, and allows for the calculation of the actual capacitance value from strictly geometric information and the specifications of the process. If VALUE is specified, it defines the capacitance. If MNAME is specified, then the capacitance is calculated from the process information in the model MNAME and the given LENGTH and WIDTH. If VALUE is not specified, then MNAME and LENGTH must be specified. If WIDTH is not specified, then it is taken from the default width given in the model. Either VALUE or MNAME, LENGTH, and WIDTH may be specified, but not both sets. The capacitor model contains process information that may be used to compute the capacitance from strictly geometric information. name parameter units default example ----------------------------------------------------------------- CJ junction bottom capacitance F m-2 - 5e-5 CJSW junction sidewall capacitance F m-1 - 2e-11 DEFW default device width m 1e-6 2e-6 NARROW narrowing due to side etching m 0.0 1e-7 The capacitor has a capacitance computed as CAP = CJ(LENGTH - NARROW)(WIDTH - NARROW) + 2.CJSW(LENGTH + WIDTH - 2.NARROW) """ inter.MNADevice.__init__(self, nodes, 0, **parameters) self.value = value self.ic = ic def connect(self): npos, nneg = self.nodes self.port2node = {0: self.get_node_index(npos), 1: self.get_node_index(nneg)} def start(self, dt): self.jac[0, 0] = self.value / dt self.jac[0, 1] = -self.value / dt self.jac[1, 0] = -self.value / dt self.jac[1, 1] = self.value / dt def step(self, dt, t): vc = self.get_across_history(0, 1) self.bequiv[0] = self.value / dt * vc self.bequiv[1] = -self.value / dt * vc class CBlock(sb.Block): """Schematic graphical inteface for L device.""" friendly_name = "Capacitor" family = "Elementary" label = "C" engine = C symbol = sb.Symbol() symbol.lines.append(((60, 0), (60, 40))) symbol.lines.append(((60, 60), (60, 100))) symbol.lines.append(((40, 40), (80, 40))) symbol.lines.append(((40, 60), (80, 60))) def __init__(self, name): # init super: sb.Block.__init__(self, name, C) # ports: self.ports['positive'] = sb.Port(self, 0, (60, 0)) self.ports['negative'] = sb.Port(self, 1, (60, 100)) # properties: self.properties['Capacitance (F)'] = 0.1 def get_engine(self, nodes): return C(nodes, self.properties['Capacitance (F)']) ``` #### File: subcircuit/devices/e.py ```python import subcircuit.sandbox as sb import subcircuit.interfaces as inter class E(inter.MNADevice, inter.CurrentSensor): """A SPICE E (VCVS) device.""" def __init__(self, nodes, value=1.0, limit=None, **parameters): """Create a new SPICE E (VCVS) device. :param name: Name of device. Must be unique within the subcircuit :param nodes: node connections sequence :param value: Either fixed value or transfer function table Examples: value=10.0 # fixed value value=Table((-1, 0), (0, 0), (0.0001, 1)) # lookup table TODO: add stimulus option. :param kwargs: Additional keyword arguments :return: New E instance General form: EXXXXXXX N+ N- NC+ NC- VALUE Examples: E1 2 3 14 1 2.0 N+ is the positive node, and N- is the negative node. NC+ and NC- are the positive and negative controlling nodes, respectively. VALUE is the voltage gain. """ inter.MNADevice.__init__(self, nodes, 1, **parameters) self.gain = None self.table = None if isinstance(value, float) or isinstance(value, int): self.gain = float(value) elif isinstance(value, inter.Table): self.table = value self.subckt = None self.limit = limit def connect(self): ncp, ncm, np, nm = self.nodes self.port2node = {0: self.get_node_index(ncp), 1: self.get_node_index(ncm), 2: self.get_node_index(np), 3: self.get_node_index(nm), 4: self.create_internal("{0}_int".format(self.name))} def start(self, dt): """Define the initial VCVS jacobian stamp.""" if self.gain: k = self.gain else: k = 0.0 self.jac[2, 4] = -1.0 self.jac[3, 4] = 1.0 self.jac[4, 0] = k self.jac[4, 2] = -1.0 self.jac[4, 3] = 1.0 self.jac[4, 1] = -k def step(self, dt, t): """TODO Doc""" if self.table: vc = self.get_across(2, 3) k = self.table.output(vc) # get gain for this control voltage if self.limit and not vc == 0.0: if vc * k > self.limit: k = self.limit / vc if vc * k < -self.limit: k = -self.limit / vc self.jac[4, 0] = k self.jac[4, 1] = -k def get_current_node(self): """Return the current node.""" return self.nodes[4], 1.0 class EBlock(sb.Block): """Schematic graphical inteface for E device.""" friendly_name = "Voltage Controlled Voltage Source" family = "Dependant Sources" label = "E" engine = E symbol = sb.Symbol() # main leads: symbol.lines.append(((60, 0), (60, 20))) symbol.lines.append(((60, 80), (60, 100))) # control leads: symbol.lines.append(((20, 40), (40, 40))) symbol.lines.append(((20, 60), (40, 60))) # plus: symbol.lines.append(((60, 33), (60, 43))) symbol.lines.append(((55, 38), (65, 38))) # diamond: symbol.lines.append(((60, 20), (90, 50), (60, 80), (30, 50), (60, 20))) def __init__(self, name): # init super: sb.Block.__init__(self, name) # ports: self.ports['control positive'] = sb.Port(self, 0, (20, 40)) self.ports['control negative'] = sb.Port(self, 1, (20, 60)) self.ports['positive'] = sb.Port(self, 2, (60, 0)) self.ports['negative'] = sb.Port(self, 3, (60, 100)) # properties: self.properties['Gain value or (time, value) pairs'] = 1.0 def get_engine(self, nodes): return E(nodes, self.properties['Gain value or (time, value) pairs']) ``` #### File: subcircuit/devices/isense.py ```python import subcircuit.interfaces as inter import subcircuit.sandbox as sb class CurrentSensor(inter.MNADevice, inter.CurrentSensor): def __init__(self, nodes, **parameters): inter.MNADevice.__init__(self, nodes, 0, **parameters) def connect(self): nplus, nminus, current_node = self.nodes self.port2node = {0: self.get_node_index(nplus), 1: self.get_node_index(nminus), 2: self.get_node_index(current_node)} def start(self, dt): self.jac[0, 2] = 1.0 self.jac[1, 2] = -1.0 self.jac[2, 0] = 1.0 self.jac[2, 1] = -1.0 def get_current_node(self): return self.port2node[2], -1.0 class CurrentSensorBlock(sb.Block): """Schematic graphical inteface for IScope device.""" friendly_name = "Current Sensor" family = "Meters" label = "I" engine = CurrentSensor symbol = sb.Symbol() # lines: symbol.lines.append(((80, 40), (80, 70))) symbol.lines.append(((60, 80), (100, 80))) # plus: symbol.lines.append(((60, 53), (60, 63))) symbol.lines.append(((55, 58), (65, 58))) # circle symbol.circles.append((75, 70, 10, 20)) def __init__(self, name): # init super: sb.Block.__init__(self, name, None) # port: self.ports['positive'] = sb.Port(self, 0, (60, 80)) self.ports['negative'] = sb.Port(self, 1, (100, 80)) self.ports['current node'] = sb.Port(self, 2, (80, 40)) def get_engine(self, nodes): self.engine = CurrentSensor(nodes) return self.engine ``` #### File: subcircuit/devices/l.py ```python import math import subcircuit.interfaces as inter import subcircuit.sandbox as sb class L(inter.MNADevice, inter.CurrentSensor): """SPICE Inductor Device""" def __init__(self, nodes, value, ic=None, res=0.0, **parameters): """ General form: LYYYYYYY N+ N- VALUE <IC=INCOND> Examples: LLINK 42 69 1UH LSHUNT 23 51 10U IC=15.7MA N+ and N- are the positive and negative element nodes, respectively. VALUE is the inductance in Henries. The (optional) initial condition is the initial (time-zero) value of inductor current (in Amps) that flows from N+, through the inductor, to N-. Note that the initial conditions (if any) apply only if the UIC option is specified on the .TRAN analysis line. """ self.linkable = False if len(nodes) == 2: inter.MNADevice.__init__(self, nodes, 1, **parameters) elif len(nodes) == 3: inter.MNADevice.__init__(self, nodes, 0, **parameters) self.linkable = True self.value = value self.ic = ic self.res = res def connect(self): if self.linkable: nplus, nminus, link = self.nodes self.port2node = {0: self.get_node_index(nplus), 1: self.get_node_index(nminus), 2: self.get_node_index(link)} else: nplus, nminus = self.nodes internal = "{0}_int".format(self.name) self.port2node = {0: self.get_node_index(nplus), 1: self.get_node_index(nminus), 2: self.create_internal(internal)} def start(self, dt): self.jac[0, 2] = 1.0 self.jac[1, 2] = -1.0 self.jac[2, 0] = 1.0 self.jac[2, 1] = -1.0 self.jac[2, 2] = -(self.res + self.value / dt) def step(self, dt, t): inductor_current = self.get_across_history(2) self.bequiv[2] = -self.value / dt * inductor_current def get_current_node(self): return self.port2node[2], 1.0 class LBlock(sb.Block): """Schematic graphical inteface for L device.""" friendly_name = "Inductor" family = "Elementary" label = "L" engine = L symbol = sb.Symbol() # leads: symbol.lines.append(((60, 0), (60, 20))) symbol.lines.append(((60, 80), (60, 100))) # coils (x, y, r, ang0, ang1, clockwise) ang1 = math.pi * 0.5 ang2 = 3.0 * math.pi * 0.5 symbol.arcs.append((60, 30, 10, ang1, ang2, True)) symbol.arcs.append((60, 50, 10, ang1, ang2, True)) symbol.arcs.append((60, 70, 10, ang1, ang2, True)) def __init__(self, name): # init super: sb.Block.__init__(self, name, L) # ports: self.ports['positive'] = sb.Port(self, 0, (60, 0)) self.ports['negative'] = sb.Port(self, 1, (60, 100)) # properties: self.properties['Inductance (H)'] = 0.1 def get_engine(self, nodes): return L(nodes, self.properties['Inductance (H)']) class LLinkBlock(sb.Block): """Schematic graphical inteface for L device.""" friendly_name = "Inductor (Linkable)" family = "Elementary" label = "L" engine = L symbol = sb.Symbol() # leads: symbol.lines.append(((60, 0), (60, 20))) symbol.lines.append(((60, 80), (60, 100))) # coils (x, y, r, ang0, ang1, clockwise) ang1 = math.pi * 0.5 ang2 = 3.0 * math.pi * 0.5 symbol.arcs.append((60, 30, 10, ang1, ang2, False)) symbol.arcs.append((60, 50, 10, ang1, ang2, False)) symbol.arcs.append((60, 70, 10, ang1, ang2, False)) # mag link bar: symbol.lines.append(((80, 20), (80, 80))) def __init__(self, name): # init super: sb.Block.__init__(self, name, L) # ports: self.ports['positive'] = sb.Port(self, 0, (60, 0)) self.ports['negative'] = sb.Port(self, 1, (60, 100)) self.ports['link'] = sb.Port(self, 1, (80, 20)) # properties: self.properties['Inductance (H)'] = 0.1 def get_engine(self, nodes): return L(nodes, self.properties['Inductance (H)']) ``` #### File: subcircuit/devices/r.py ```python import subcircuit.interfaces as inter import subcircuit.sandbox as sb class R(inter.MNADevice): """Engine for SPICE R (resistor or semiconductor resistor) device.""" def __init__(self, nodes, value, rmodel=None, l=None, w=None, temp=None, **parameters): """General form: RXXXXXXX N1 N2 VALUE Examples: R1 1 2 100 RC1 12 17 1K N1 and N2 are the two element nodes. VALUE is the resistance (in ohms) and may be positive or negative but not zero. Semiconductor Resistors: General form: RXXXXXXX N1 N2 <VALUE> <MNAME> <L=LENGTH> <W=WIDTH> <TEMP=T> Examples: RLOAD 2 10 10K RMOD 3 7 RMODEL L=10u W=1u """ inter.MNADevice.__init__(self, nodes, 0, **parameters) self.value = value self.rmodel = rmodel self.l = l self.w = w self.temp = temp def connect(self): nplus, nminus = self.nodes self.port2node = {0: self.get_node_index(nplus), 1: self.get_node_index(nminus)} def update(self): if self.value: # if non-zero: g = 1.0 / self.value else: g = 1.0E12 # approximate short circuit for 0-resistance self.jac[0, 0] = g self.jac[0, 1] = -g self.jac[1, 0] = -g self.jac[1, 1] = g def start(self, dt): self.update() def step(self, dt, t): """Do nothing here. Linear and time-invariant device.""" pass class RBlock(sb.Block): """Schematic graphical inteface for R device.""" friendly_name = "Resistor" family = "Elementary" label = "R" engine = R symbol = sb.Symbol() # resistor shape: symbol.lines.append(((60, 0), (60, 20), (45, 25), (75, 35), (45, 45), (75, 55), (45, 65), (75, 75), (60, 80), (60, 100))) def __init__(self, name): # init super: sb.Block.__init__(self, name) # ports: self.ports['positive'] = sb.Port(self, 0, (60, 0)) self.ports['negative'] = sb.Port(self, 1, (60, 100)) # properties: self.properties['Resistance (R)'] = 1.0 def get_engine(self, nodes): return R(nodes, self.properties['Resistance (R)']) ``` #### File: subcircuit/devices/x.py ```python import subcircuit.interfaces as inter import subcircuit.sandbox as sb from subcircuit.loader import load_engines_to_module import sys # Suncircuit instance device needs access to all other devices: load_engines_to_module(sys.modules[__name__], "devices") class X(inter.MNADevice): """Subckt instance device (SPICE X)""" def __init__(self, nodes, subckt, **parameters): """Creates a new subckt instance device :param nodes: Device extrnal node names :param subckt: Subckt name :param parameters: Dictionary of parameters for the subcircuit instance :return: New subckt instance device """ inter.MNADevice.__init__(self, nodes, 0, **parameters) self.subckt = subckt self.parameters = parameters def connect(self): """Maps the ports to the system node indexes. :return: None """ self.port2node = {} for p, n in zip(self.netlist.subckts[self.subckt].ports, self.nodes): self.port2node[p] = n class XBlock2Port(sb.Block): """Schematic graphical inteface for R device.""" friendly_name = "Subcircuit 2-Port" family = "Subcircuit" label = "X" engine = X def __init__(self, name): # init super: sb.Block.__init__(self, name) # ports: self.ports['port1'] = sb.Port(self, 0, (60, 0)) self.ports['port2'] = sb.Port(self, 1, (60, 100)) # properties: self.properties['Subckt Name'] = "RLCSeries" self.properties['Port 1 Name'] = "1" self.properties['Port 2 Name'] = "2" self.properties['Device 1'] = "R((1, 3), 1.0)" self.properties['Device 2'] = "L((3, 4), 0.001)" self.properties['Device 3'] = "C((4, 2), 0.001)" self.properties['Device 4'] = "" self.properties['Device 5'] = "" self.properties['Device 6'] = "" self.properties['Device 7'] = "" self.properties['Device 8'] = "" self.properties['Device 9'] = "" # leads: self.lines.append(((60, 0), (60, 20), (45, 25), (75, 35), (45, 45), (75, 55), (45, 65), (75, 75), (60, 80), (60, 100))) def get_engine(self, nodes, netlist=None): ports = self.properties['Port 1 Name'], self.properties['Port 2 Name'] subckt = inter.Subckt(ports) if netlist: netlist.subckt(self.properties['Subckt Name'], subckt) for i in range(1, 10): devicedef = self.properties["Device {0}".format(i)] if devicedef.strip(): try: # this is the fun part where we try to evaluate the # strings and turn it into a device record... device = eval(devicedef, globals(), locals()) subckt.device(devicedef, device) except Exception as e: print(str(e)) return X(nodes, self.properties['Subckt Name']) ``` #### File: subcircuit/mathutils/lti.py ```python import math import numpy as np import numpy.linalg as la import matplotlib.pyplot as plt import sympy from sympy.parsing.sympy_parser import parse_expr class LTISystem(object): def __init__(self): pass def reset(self, dt): raise NotImplementedError() def step(self, u, dt, t): raise NotImplementedError() def rollback(self, dt, t): raise NotImplementedError() class StateSpace(LTISystem): def __init__(self, a, b, c, d=None, xo=None): """TODO :param a: :param b: :param c: :param d: :param xo: :return: """ LTISystem.__init__(self) # grab arguments: self.a = a self.b = b self.c = c self.d = d self.xo = xo # get system size: self.n, x = a.shape x, self.m = b.shape self.l, x = c.shape if not self.d: self.d = np.zeros((self.m, self.l)) if not self.xo: self.xo = np.zeros((self.n, 1)) self.x = self.xo[:, :] self.xh = self.xo[:, :] self.u = np.zeros((self.n, 1)) self.y = np.zeros((self.m, 1)) self.y = None def reset(self, dt): self.x = self.xo[:, :] self.xh = self.xo[:, :] self.u = np.zeros((self.n, 1)) def step(self, u, dt, t): self.u = u dx = self.a.dot(self.x) + self.b.dot(u) self.x = self.x + dx.dot(dt) self.y = self.c.dot(self.x) + self.d.dot(u) self.xh = self.x[:, :] return self.y def rollback(self, dt, t): pass class TransferFunction(LTISystem): def __init__(self, equation): LTISystem.__init__(self) self.is_gain = False self.equation = equation self.ss = None self.reset(0.0) def reset(self, dt): equ = parse_expr(self.equation) num, den = equ.as_numer_denom() self.is_gain = False if str(den).find("s") >= 0: # if s domain expr: a = self.expr2poly(den) self.is_gain = False else: a = [eval(str(den))] if str(num).find("s") >= 0: # if s domain expr: b = self.expr2poly(num) self.is_gain = False else: b = [eval(str(num))] if self.is_gain: A = np.zeros((1, 1)) B = np.zeros((1, 1)) C = np.zeros((1, 1)) D = np.zeros((1, 1)) else: n = len(a) # now convert tf to ss (CCF): n = len(a) ao = a[0] b2 = np.zeros(n) b2[(n - len(b)):] = b bo = b2[0] b = b2[:] # truncate: a = a[1:] b = b[1:] n -= 1 # normalize: for i in range(n): a[i] /= ao b[i] /= ao A = np.zeros((n, n)) B = np.zeros((n, 1)) C = np.zeros((1, n)) D = np.zeros((1, 1)) # a matrix and c vector: for i in range(n): for j in range(n): if j == i+1: A[i, j] = 1.0 elif i == n-1: A[i, j] = -a[j] C[0, i] = b[-(i+1)] - a[-(i+1)] * bo # b vector: B[-1, 0] = 1.0 # d matrix: D[0, 0] = bo self.ss = StateSpace(A, B, C, D) def step(self, u, dt, t): return self.ss.step(u, dt, t) def rollback(self, dt, t): pass @staticmethod def expr2poly(expr, n=None): poly = sympy.Poly(expr) coeffs = poly.all_coeffs() return coeffs if __name__ == "__main__": A = np.mat([[0, 1], [-1, -1]]) B = np.mat([[0], [1]]) C = np.mat([[1, 0]]) ss = StateSpace(A, B, C) u = 10.0 tp = np.linspace(0.0, 1.0, 50) to = 0.0 xp = np.zeros((len(tp))) for i, t in enumerate(tp): dt = t - to y = ss.step(u, dt, t) xp[i] = y print(y) plt.plot(tp, xp) plt.show() ``` #### File: SubCircuit/subcircuit/stimuli.py ```python import math import subcircuit.interfaces as inter class Pulse(inter.Stimulus): def __init__(self, v1, v2, td=0.0, tr=None, tf=None, pw=None, per=None): """ General form: PULSE(V1 V2 TD TR TF PW PER) Examples: VIN 3 0 PULSE(-1 1 2NS 2NS 2NS 50NS 100NS) parameter default value units V1 (initial value) V or A V2 (pulsed value) V or A TD (delay time) 0.0 s TR (rise time) TSTEP s TF (fall time) TSTEP s PW (pulse width) TSTOP s PER (period) TSTOP seconds A single pulse so specified is described by the following table: time value ----------------- 0 V1 TD V1 TD+TR V2 TD+TR+PW V2 TD+TR+PW+TF V1 TSTOP V1 Intermediate points are determined by linear interpolation. """ self.v1 = v1 self.v2 = v2 self.td = td self.tr = tr self.tf = tf self.pw = pw self.per = per self.device = None def start(self, dt): if self.tr is None: self.tr = dt if self.tf is None: self.tf = dt if self.pw is None: self.pw = dt if self.per is None: self.per = float('inf') return self.v1 def step(self, dt, t): t %= self.per if (self.td + self.tr) <= t < (self.td + self.tr + self.pw): return self.v2 elif self.td <= t < (self.td + self.tr): return self.v1 + (self.v2 - self.v1) * (t - self.td) / self.tr elif ((self.td + self.tr + self.pw) <= t < (self.td + self.tr + self.pw + self.tf)): return (self.v2 + (self.v1 - self.v2) * (t - (self.td + self.tr + self.pw)) / self.tf) else: return self.v1 def __str__(self): s = "Pulse({0}, {1}, {2}, {3}, {4}, {5}, {6})".format(self.v1, self.v2, self.td, self.tr, self.tf, self.pw, self.per) return s def __repr__(self): return str(self) class Sin(inter.Stimulus): """Models a sin wave stimulus for independent sources.""" def __init__(self, vo=0.0, va=1.0, freq=1.0, td=0.0, theta=0.0, phi=0.0): """ General form: SIN(VO VA FREQ TD THETA) Examples: VIN 3 0 SIN(0 1 100MEG 1NS 1E10) parameters default value units VO (offset) V or A VA (amplitude) V or A FREQ (frequency) 1/TSTOP Hz TD (delay) 0.0 s THETA (damping factor) 0.0 s-1 The shape of the waveform is described by the following table: time, t value 0 to TD VO TD to TSTOP VO+VA.exp[-(t-TD)/THETA].sin[2pi.FREQ.(t+TD)] """ self.vo = vo self.va = va self.freq = freq self.td = td self.theta = theta self.phi = phi self.device = None def start(self, dt): """Sets up the pulse stimulus and returns the initial output.""" return self.step(dt, 0.0) def step(self, dt, t): """Update and return the stimulus value at the current time.""" if t < self.td: return 0.0 elif self.theta: return (self.vo + self.va * math.exp(-(t + self.td) / self.theta) * math.sin(2.0 * math.pi * self.freq * (t + self.td) + self.phi)) else: return self.vo + self.va * math.sin( 2.0 * math.pi * self.freq * (t + self.td) + self.phi) def __str__(self): s = "Sin({0}, {1}, {2}, {3}, {4}, {5})".format(self.vo, self.va, self.freq, self.td, self.theta, self.phi) return s def __repr__(self): return str(self) class Exp(inter.Stimulus): """Generates a SPICE EXP stimulus for independant sources.""" def __init__(self, v1, v2, td1=0.0, tau1=None, td2=None, tau2=None): """ Define a pulse stimulus. :param v1: initial value (V or A) :param v2: pulsed value (V or A) :param td1: rise time delay, default=0.0 (s) :param tau1: rise time constant default=None (will be set to timestep) (s) :param td2: fall delay time, default=None (will be set to td1 + timestep) (s) :param tau2: fall time constant, default=None (will be set to timestep) (s) :return: None """ self.v1 = v1 self.v2 = v2 self.td1 = td1 self.tau1 = tau1 self.td2 = td2 self.tau2 = tau2 def start(self, dt): """Initialize the Exp output at time 0s.""" if not self.tau1: self.tau1 = dt if not self.td2: self.td2 = self.td1 + dt if not self.tau2: self.tau2 = dt return self.step(dt, 0.0) def step(self, dt, t): """Update and return the current value of the Exp stimulus""" if 0.0 >= t < self.td1: return self.v1 elif self.td1 <= t < self.td1: return self.v1 + (self.v2 - self.v2) * ( 1.0 - math.exp(-(t - self.td1) / self.tau1)) else: return (1.0 + (self.v2 - self.v1) * (1.0 - math.exp(-(t - self.td1) / self.tau1)) + (self.v1 - self.v2) * ( 1.0 - math.exp(-(t - self.td2) / self.tau2))) def __str__(self): s = "Exp({0}, {1}, {2}, {3}, {4}, {5})".format(self.v1, self.v2, self.td1, self.tau1, self.td2, self.tau2) return s def __repr__(self): return str(self) class Pwl(inter.Stimulus): """TODO Doc""" def __init__(self, *time_voltage_pairs): self.xp = [] self.yp = [] for time, value in time_voltage_pairs: try: self.xp.append(float(time)) self.yp.append(float(value)) except ValueError as e: pass pass def start(self, dt): pass def step(self, dt, t): x = self.device.get_time() return self._interp_(x) def _interp_(self, x): if x <= self.xp[0]: return self.yp[0] elif x >= self.xp[-1]: return self.yp[-1] else: itr = 1 while x > self.xp[itr] and itr < (len(self.xp) - 1): itr += 1 x0, y0 = self.xp[itr - 1], self.yp[itr - 1] x1, y1 = self.xp[itr], self.yp[itr] return y0 + (y1 - y0) * (x - x0) / (x1 - x0) def __str__(self): p = "" for x, y in zip(self.xp, self.yp): p += "({0}, {1}),".format(x, y) s = "Pwl({0})".format(p.strip(",")) return s def __repr__(self): return str(self) class Sffm(inter.Stimulus): def __init__(self, vo, va, fc, md1, fs): pass # todo def start(self, dt): pass def step(self, dt, t): pass ```
{ "source": "Joe-houghton/CommandToDomoticz", "score": 3 }
#### File: Joe-houghton/CommandToDomoticz/CommandToDomoticz.py ```python __author__ = '<NAME>' import logging import json import requests from collections import namedtuple # CONFIG START DOMOTICZ_USER = '' DOMOTICZ_PASS = '' DOMOTICZ_ADDRESS = 'http://1172.16.17.32:8080' #CONFIG END DomoticzDevice = namedtuple("DomoticzDevice", "name idx type") class Domoticz: def __init__(self, address, user, password): self.address = address self.user = user self.password = password self.devicesAndScenes = [] def __populateUsingURL(self, url, deviceType): requestUrl = self.address + url print("RequestUrl: " + requestUrl) response = requests.get(requestUrl, auth=(self.user,self. password)) if response.status_code != 200: print("Bad Request") return None jsonDevices = response.json() if "result" in jsonDevices: devices = jsonDevices["result"] for device in devices: tempDevice = DomoticzDevice(device["Name"], device["idx"], deviceType) self.devicesAndScenes.append(tempDevice) def __populateDevicesAndScenes(self): self.devicesAndScenes = [] getAllSwitches = "/json.htm?type=command&param=getlightswitches" self.__populateUsingURL(getAllSwitches, 0) getAllScenes = "/json.htm?type=scenes" self.__populateUsingURL(getAllScenes, 1) def __doesDeviceExist(self, deviceName): deviceNameToTest = deviceName.lower() for device in self.devicesAndScenes: if device[0].lower() == deviceNameToTest : return device return None def __getTargetDevice(self, words): print("finding device...") wordsLength = len(words) targetDevice = "" for i in range(wordsLength - 2): if i > 0 : targetDevice += " " targetDevice += words[i + 2] returnDevice = self.__doesDeviceExist(targetDevice) if returnDevice != None : return returnDevice print("No matches for " + targetDevice) return None # No matches def __sendCommand(self, command, deviceId, deviceType): # e.g. '/json.htm?type=command&param=switchscene&idx=1' url = "" param = "" if deviceType == 0: param = "switchlight" elif deviceType == 1: param = "switchscene" jsonString = '/json.htm?type=command&' switchCommand = '&switchcmd=' seq = (self.address, jsonString, "param=", param, "&idx=", deviceId, switchCommand, command) blankString = '' url = blankString.join(seq) print(url, '\n') response = requests.get(url, auth=(self.user, self.password)) if response.status_code != 200: print("Bad Send Request") return None def ProcessCommand(self, message): print("Processing Domoticz Command") self.__populateDevicesAndScenes() lines = message.split('\n') commandUnderstood = False for line in lines: words = line.split(' ') if len(words) > 2: if words[0] == '#command': commandUnderstood = True self.__sendCommand(words[1], words[2], 0) elif words[0] == '#commandToScene': commandUnderstood = True self.__sendCommand(words[1], words[2], 1) elif words[0] == '#commandByName': print("Processing Command by Name") commandUnderstood = True targetDevice = self.__getTargetDevice(words) if targetDevice != None: print("Target Device is " + targetDevice[0]) self.__sendCommand(words[1], targetDevice[1], targetDevice[2]) else: print("Cannot find device: ") return commandUnderstood def PrintObject(self): print("\nAddress: " + self.address) print("\nUsername: " + self.user) print("\nPassword: " + self.password) def main(): domoticz = Domoticz(DOMOTICZ_ADDRESS, DOMOTICZ_USER, DOMOTICZ_PASS) domoticz.PrintObject() while True: userInput = input("Please enter a Command: \n") domoticz.ProcessCommand(userInput) #domoticz.ProcessCommand("#commandByName On lamp") if __name__ == '__main__': try: main() except KeyboardInterrupt: pass ```
{ "source": "JoeHowarth/meta_turing", "score": 3 }
#### File: meta_turing/PyTorch-GatedCNN-Lang-Model/model.py ```python import numpy as np import tensorflow as tf class GatedCNN(nn.Module): def __init__(self, conf): tf.reset_default_graph() self.X = tf.placeholder(shape=[conf.batch_size, conf.context_size-1], dtype=tf.int32, name="X") self.y = tf.placeholder(shape=[conf.batch_size, conf.context_size-1], dtype=tf.int32, name="y") embed = self.create_embeddings(self.X, conf) h, res_input = embed, embed for i in range(conf.num_layers): fanin_depth = h.get_shape()[-1] #last layer should have filter size of 1 filter_size = conf.filter_size if i < conf.num_layers-1 else 1 shape = (conf.filter_h, conf.filter_w, fanin_depth, filter_size) with tf.variable_scope("layer_%d"%i): conv_w = self.conv_op(h, shape, "linear") conv_v = self.conv_op(h, shape, "gated") h = conv_w * tf.sigmoid(conv_v) if i % conf.block_size == 0: h += res_input res_input = h h = tf.reshape(h, (-1, conf.embedding_size)) y_shape = self.y.get_shape().as_list() self.y = tf.reshape(self.y, (y_shape[0] * y_shape[1], 1)) softmax_w = tf.get_variable("softmax_w", [conf.vocab_size, conf.embedding_size], tf.float32, tf.random_normal_initializer(0.0, 0.1)) softmax_b = tf.get_variable("softmax_b", [conf.vocab_size], tf.float32, tf.constant_initializer(1.0)) #PROBLEM #Preferance: NCE Loss, heirarchial softmax, adaptive softmax self.loss = tf.reduce_mean(tf.nn.nce_loss(softmax_w, softmax_b, h, self.y, conf.num_sampled, conf.vocab_size)) trainer = tf.train.MomentumOptimizer(conf.learning_rate, conf.momentum) gradients = trainer.compute_gradients(self.loss) clipped_gradients = [(tf.clip_by_value(_[0], -conf.grad_clip, conf.grad_clip), _[1]) for _ in gradients] self.optimizer = trainer.apply_gradients(clipped_gradients) self.perplexity = tf.exp(self.loss) self.create_summaries() def create_embeddings(self, X, conf): #No getters in pytorch embeddings = tf.get_variable("embeds",(conf.vocab_size, conf.embedding_size), tf.float32, tf.random_uniform_initializer(-1.0,1.0)) #embeddings for words sentences in particular batch embed = tf.nn.embedding_lookup(embeddings, X) mask_layer = np.ones((conf.batch_size, conf.context_size-1, conf.embedding_size)) mask_layer[:,0:conf.filter_h/2,:] = 0 embed *= mask_layer embed_shape = embed.get_shape().as_list() embed = tf.reshape(embed, (embed_shape[0], embed_shape[1], embed_shape[2], 1)) return embed def conv_op(self, fan_in, shape, name): W = tf.get_variable("%s_W"%name, shape, tf.float32, tf.random_normal_initializer(0.0, 0.1)) b = tf.get_variable("%s_b"%name, shape[-1], tf.float32, tf.constant_initializer(1.0)) return tf.add(tf.nn.conv2d(fan_in, W, strides=[1,1,1,1], padding='SAME'), b) def create_summaries(self): tf.summary.scalar("loss", self.loss) tf.summary.scalar("perplexity", self.perplexity) self.merged_summary_op = tf.summary.merge_all() ''' variables_dict = { "conv1_weights": tf.Variable(tf.random_normal([5, 5, 32, 32]), name="conv1_weights") "conv1_biases": tf.Variable(tf.zeros([32]), name="conv1_biases") ... etc. ... } def my_image_filter(input_images, variables_dict): conv1 = tf.nn.conv2d(input_images, variables_dict["conv1_weights"], strides=[1, 1, 1, 1], padding='SAME') relu1 = tf.nn.relu(conv1 + variables_dict["conv1_biases"]) conv2 = tf.nn.conv2d(relu1, variables_dict["conv2_weights"], strides=[1, 1, 1, 1], padding='SAME') return tf.nn.relu(conv2 + variables_dict["conv2_biases"]) # The 2 calls to my_image_filter() now use the same variables result1 = my_image_filter(image1, variables_dict) result2 = my_image_filter(image2, variables_dict) def conv_relu(input, kernel_shape, bias_shape): # Create variable named "weights". weights = tf.get_variable("weights", kernel_shape, initializer=tf.random_normal_initializer()) # Create variable named "biases". biases = tf.get_variable("biases", bias_shape, initializer=tf.constant_initializer(0.0)) conv = tf.nn.conv2d(input, weights, strides=[1, 1, 1, 1], padding='SAME') return tf.nn.relu(conv + biases) ''' ```
{ "source": "joehowells/7drl2020", "score": 2 }
#### File: ecs/processors/defendaiprocessor.py ```python from esper import Processor, World from action import Action, ActionType from constants import DijkstraMap from ecs.components.boss import Boss from ecs.components.defendtarget import DefendTarget from ecs.components.firescroll import FireScroll from ecs.components.healingpotion import HealingPotion from ecs.components.inventory import Inventory from ecs.components.item import Item from ecs.components.map import Map from ecs.components.monster import Monster from ecs.components.player import Player from ecs.components.position import Position from ecs.components.smokebomb import SmokeBomb from ecs.components.taunted import Taunted from ecs.components.teleportscroll import TeleportScroll from ecs.components.visible import Visible from ecs.processors.spatialprocessor import Coincident from functions import move_dijkstra, color_item_name class DefendAIProcessor(Processor): def process(self): self.world: World for _, game_map in self.world.get_component(Map): for player_entity, (player, player_position) in self.world.get_components(Player, Position): if self.world.has_component(player_entity, Taunted): player.defend_action = player.attack_action return if player.health < 9: for entity, (item, _, _) in self.world.get_components(Item, Inventory, HealingPotion): self.world.add_component(entity, DefendTarget()) player.defend_action = Action( action_type=ActionType.USE_ITEM, rage=-20, nice_name=f"Use {color_item_name(self.world, entity)}", ) return for _ in self.world.get_components(Monster, Visible): target = move_dijkstra(self.world, game_map, player_position, DijkstraMap.MONSTER, reverse=True) if target: player.defend_action = Action( action_type=ActionType.MOVE, rage=-1, target=target, nice_name="Retreat", ) return for entity, (item, _, _) in self.world.get_components(Item, Inventory, FireScroll): candidates = [] for monster_entity, (monster, _) in self.world.get_components(Monster, Visible): if self.world.has_component(monster_entity, Boss): continue if monster.visible_threat <= 0: continue candidate = (monster.actual_threat, monster.visible_threat, monster_entity, monster) candidates.append(candidate) if candidates: candidates.sort(reverse=True) _, _, monster_entity, monster = candidates[0] self.world.add_component(monster_entity, DefendTarget()) self.world.add_component(entity, DefendTarget()) player.defend_action = Action( action_type=ActionType.USE_ITEM, rage=-20, nice_name=f"Use {color_item_name(self.world, entity)}", ) return if player.actual_threat > 0: for entity, (item, _, _) in self.world.get_components(Item, Inventory, SmokeBomb): self.world.add_component(entity, DefendTarget()) player.defend_action = Action( action_type=ActionType.USE_ITEM, rage=-20, nice_name=f"Use {color_item_name(self.world, entity)}", ) return for entity, (item, _, _) in self.world.get_components(Item, Inventory, TeleportScroll): self.world.add_component(entity, DefendTarget()) player.defend_action = Action( action_type=ActionType.USE_ITEM, rage=-20, nice_name=f"Use {color_item_name(self.world, entity)}", ) return player.defend_action = Action( action_type=ActionType.WAIT, rage=-1, nice_name="Wait", ) return for entity, (item, _) in self.world.get_components(Item, Coincident): player.defend_action = Action( action_type=ActionType.GET_ITEM, rage=-1, nice_name=f"Get {color_item_name(self.world, entity)}", ) return target = move_dijkstra(self.world, game_map, player_position, DijkstraMap.ITEM) if target: player.defend_action = Action( action_type=ActionType.MOVE, rage=-1, target=target, nice_name="Gather items", ) return target = move_dijkstra(self.world, game_map, player_position, DijkstraMap.EXPLORE) if target: player.defend_action = Action( action_type=ActionType.MOVE, rage=-1, target=target, nice_name="Explore", ) return player.defend_action = Action( action_type=ActionType.WAIT, rage=-1, nice_name="Wait", ) ``` #### File: ecs/processors/exploremapprocessor.py ```python import itertools from dataclasses import dataclass from typing import Optional, Set, Tuple from esper import Processor, World from constants import DijkstraMap from ecs.components.map import Map from functions import dijkstra_map @dataclass class ExploreMapProcessor(Processor): sources: Optional[Set[Tuple[int, int]]] = None def process(self): self.world: World for _, game_map in self.world.get_component(Map): sources: Set[Tuple[int, int]] = set() for x, y in itertools.product(range(game_map.w), range(game_map.h)): if not game_map.explored[y][x]: sources.add((x, y)) if self.sources != sources: game_map.dijkstra[DijkstraMap.EXPLORE] = dijkstra_map(game_map, sources) self.sources = sources ``` #### File: ecs/processors/getitemprocessor.py ```python from esper import Processor, World import script from action import ActionType from constants import MAX_WEAPON, MAX_ARMOUR from ecs.components.equipment import Equipment from ecs.components.inventory import Inventory from ecs.components.item import Item from ecs.components.lastknownposition import LastKnownPosition from ecs.components.message import Message from ecs.components.player import Player from ecs.components.position import Position from ecs.processors.spatialprocessor import Coincident from functions import color_item_name class GetItemProcessor(Processor): def process(self): self.world: World for _, player in self.world.get_component(Player): if player.action.action_type is ActionType.GET_ITEM: for entity, (item, _) in self.world.get_components(Item, Coincident): for equipment in self.world.try_component(entity, Equipment): self.world.delete_entity(entity, immediate=True) if equipment is Equipment.WEAPON: if player.attack_equip >= MAX_WEAPON: self.world.create_entity(Message( text=script.WEAPON_UPGRADE_FAIL, priority=45, )) else: player.attack_equip += 1 self.world.create_entity(Message( text=script.WEAPON_UPGRADE, priority=45, )) if equipment is Equipment.ARMOUR: if player.defend_equip >= MAX_ARMOUR: self.world.create_entity(Message( text=script.ARMOUR_UPGRADE_FAIL, priority=45, )) else: player.defend_equip += 1 self.world.create_entity(Message( text=script.ARMOUR_UPGRADE, priority=45, )) break else: self.world.remove_component(entity, Coincident) self.world.remove_component(entity, Position) self.world.remove_component(entity, LastKnownPosition) self.world.add_component(entity, Inventory()) self.world.create_entity(Message( text=script.PICKUP_ITEM.format(name=color_item_name(self.world, entity)), priority=50, )) ``` #### File: ecs/processors/playerattackprocessor.py ```python from random import randint from esper import Processor, World import script from action import ActionType from ecs.components.attacktarget import AttackTarget from ecs.components.map import Map from ecs.components.message import Message from ecs.components.monster import Monster from ecs.components.player import Player from ecs.components.position import Position class PlayerAttackProcessor(Processor): def process(self): self.world: World for _, game_map in self.world.get_component(Map): for _, (position, player) in self.world.get_components(Position, Player): if player.action.action_type is ActionType.ATTACK: for entity, (monster, _) in self.world.get_components(Monster, AttackTarget): self.world.remove_component(entity, AttackTarget) if randint(0, monster.defend) < player.attack: self.world.create_entity(Message( text=script.PLAYER_HIT.format(name=monster.name), priority=50, )) monster.health -= 1 if monster.health <= 0: player.kills[monster.name] += 1 self.world.delete_entity(entity, immediate=True) self.world.create_entity(Message( text=script.PLAYER_KILL.format(name=monster.name), priority=50, )) else: self.world.create_entity(Message( text=script.PLAYER_MISS.format(name=monster.name), priority=50, )) ``` #### File: ecs/processors/playerthreatprocessor.py ```python from esper import Processor, World from constants import MAX_THREAT from ecs.components.map import Map from ecs.components.monster import Monster from ecs.components.player import Player class PlayerThreatProcessor(Processor): def process(self): self.world: World for _, game_map in self.world.get_component(Map): for player_entity, player in self.world.get_component(Player): player.visible_threat = 0 player.actual_threat = 0 for entity, monster in self.world.get_component(Monster): player.visible_threat += monster.visible_threat player.actual_threat += monster.actual_threat player.visible_threat = min(max(player.visible_threat, 0), MAX_THREAT) player.actual_threat = min(max(player.actual_threat, 0), MAX_THREAT) ``` #### File: ecs/processors/usestairsprocessor.py ```python from typing import List, Collection, Any from esper import Processor, World import script from action import ActionType from constants import MAX_LEVEL from ecs.components.dead import Dead from ecs.components.gamestate import GameState from ecs.components.inventory import Inventory from ecs.components.item import Item from ecs.components.message import Message from ecs.components.player import Player from factories.world import make_world class UseStairsProcessor(Processor): def process(self): self.world: World for player_entity, player in self.world.get_component(Player): if player.action.action_type is ActionType.USE_STAIRS: if player.level >= MAX_LEVEL: self.world.add_component(player_entity, Dead()) self.world.create_entity(Message(text=script.GAME_COMPLETE, priority=-100)) self.world.create_entity(Message(text=script.GAME_OVER, priority=-200)) else: player.level += 1 entities: List[Collection[Any]] = make_world(player=player, level=player.level) for entity, _ in self.world.get_component(GameState): entities.append(self.world.components_for_entity(entity)) for entity, _ in self.world.get_components(Item, Inventory): entities.append(self.world.components_for_entity(entity)) self.world.clear_database() for entity in entities: self.world.create_entity(*entity) self.world.create_entity(Message(text=script.USE_STAIRS, priority=100)) ``` #### File: ecs/processors/visibilityprocessor.py ```python from esper import Processor from ecs.components.lastknownposition import LastKnownPosition from ecs.components.map import Map from ecs.components.position import Position from ecs.components.visible import Visible class VisibilityProcessor(Processor): """Determines whether entities are visible.""" def process(self): for _, game_map in self.world.get_component(Map): for entity, position in self.world.get_component(Position): if game_map.visible[position.y][position.x]: self.world.add_component(entity, Visible()) self.world.add_component(entity, LastKnownPosition(position.x, position.y)) else: if self.world.has_component(entity, Visible): self.world.remove_component(entity, Visible) ``` #### File: ecs/processors/visiblethreatprocessor.py ```python from esper import Processor, World from constants import DijkstraMap from ecs.components.assassin import Assassin from ecs.components.map import Map from ecs.components.monster import Monster from ecs.components.player import Player from ecs.components.position import Position from ecs.components.visible import Visible class VisibleThreatProcessor(Processor): def process(self): self.world: World for _, game_map in self.world.get_component(Map): for _, player in self.world.get_component(Player): for entity, (monster, _, position) in self.world.get_components(Monster, Visible, Position): distance = game_map.dijkstra[DijkstraMap.PLAYER][position.y][position.x] in_range = 1 <= distance <= len(monster.threat) if in_range or not self.world.has_component(entity, Assassin): visible_threat = max(monster.threat) visible_threat = max(0, visible_threat - player.defend) else: visible_threat = 0 monster.visible_threat = visible_threat ``` #### File: 7drl2020/factories/entities.py ```python from typing import List, Any, Optional, Callable from ecs.components.display import Display from ecs.components.player import Player from ecs.components.position import Position from ecs.components.stairs import Stairs from ecs.components.trap import Trap def make_player(x: int, y: int, player: Optional[Player] = None) -> List[Any]: if player is None: player = Player() return [ Display(0x0040), player, Position(x, y), ] def make_stairs(x: int, y: int) -> List[Any]: return [ Display(0x003E, draw_order=-2), Stairs(), Position(x, y), ] def make_trap(x: int, y: int, factory: Callable[[int, int], List[Any]]) -> List[Any]: return [ Display( code=0x005E, color=0xFF999999, draw_order=-2, ), Trap(factory), Position(x, y), ] ``` #### File: 7drl2020/factories/items.py ```python from random import choice from typing import List, Any, Callable from ecs.components.display import Display from ecs.components.equipment import Equipment from ecs.components.firescroll import FireScroll from ecs.components.healingpotion import HealingPotion from ecs.components.item import Item from ecs.components.position import Position from ecs.components.smokebomb import SmokeBomb from ecs.components.teleportscroll import TeleportScroll def make_healing_potion(x: int, y: int) -> List[Any]: return [ Display( code=0x0021, color=0xFFFF0066, draw_order=-1, ), Item( name="healing potion", ), HealingPotion(), Position(x, y), ] def make_smoke_bomb(x: int, y: int) -> List[Any]: return [ Display( code=0x0021, color=0xFF00FF66, draw_order=-1, ), Item( name="smoke bomb", ), SmokeBomb(), Position(x, y), ] def make_fire_scroll(x: int, y: int) -> List[Any]: return [ Display( code=0x003F, color=0xFFFF6600, draw_order=-1, ), Item( name="fire scroll", ), FireScroll(), Position(x, y), ] def make_teleport_scroll(x: int, y: int) -> List[Any]: return [ Display( code=0x003F, color=0xFF6600FF, draw_order=-1, ), Item( name="teleport scroll", ), TeleportScroll(), Position(x, y), ] def make_weapon(x: int, y: int) -> List[Any]: return [ Display( code=0x0029, color=0xFF999999, draw_order=-1, ), Item( name="weapon upgrade", ), Equipment.WEAPON, Position(x, y), ] def make_armour(x: int, y: int) -> List[Any]: return [ Display( code=0x005B, color=0xFF999999, draw_order=-1, ), Item( name="armour upgrade", ), Equipment.ARMOUR, Position(x, y), ] def get_item_factory() -> Callable[[int, int], List[Any]]: return choice([ make_healing_potion, make_healing_potion, make_healing_potion, make_healing_potion, make_fire_scroll, make_fire_scroll, make_teleport_scroll, make_teleport_scroll, make_smoke_bomb, make_smoke_bomb, ]) ``` #### File: 7drl2020/factories/world.py ```python from random import choice, shuffle from typing import List, Any, Optional from ecs.components.map import Map from ecs.components.message import Message from ecs.components.player import Player from factories.rooms import make_enemy_room, make_trap_room, make_item_room, make_player_room, make_stairs_room, \ make_mid_boss_room, make_end_boss_room, make_weapon_room, make_armour_room ROOM_FACTORIES = [ make_enemy_room, make_enemy_room, make_item_room, make_item_room, make_trap_room, ] def make_world(player: Optional[Player] = None, level: int = 0) -> List[List[Any]]: game_map = Map() entities = [[game_map]] big_rooms = [room for room in game_map.rooms if room.w >= 4 and room.h >= 4] shuffle(big_rooms) make_player_room(game_map, entities, big_rooms.pop(), player) make_stairs_room(game_map, entities, big_rooms.pop()) make_weapon_room(game_map, entities, big_rooms.pop(), level) make_armour_room(game_map, entities, big_rooms.pop(), level) if level == 0: entities.append([Message(text="You enter the dungeon.", priority=90)]) if level == 2: entities.append([Message(text="[color=#FFFFFF00]The militia commander is on this level.[/color]", priority=90)]) make_mid_boss_room(game_map, entities, big_rooms.pop()) if level == 5: entities.append([Message(text="[color=#FFFFFF00]The militia captain is on this level.[/color]", priority=90)]) make_end_boss_room(game_map, entities, big_rooms.pop()) while big_rooms: factory = choice(ROOM_FACTORIES) factory(game_map, entities, big_rooms.pop(), level) return entities ```
{ "source": "joehowells/critical-keep", "score": 2 }
#### File: ecs/components/aicomponent.py ```python class AIComponent: def __init__(self): self.awake: bool = False ``` #### File: ecs/components/combatcomponent.py ```python class CombatComponent: def __init__(self, max_hp, attack_stat, defend_stat, hit_stat, critical_stat): self.max_hp = max_hp self.cur_hp = max_hp self.attack_stat = attack_stat self.defend_stat = defend_stat self.hit_stat = hit_stat self.critical_stat = critical_stat self.base_attack_stat = attack_stat self.base_defend_stat = defend_stat self.base_hit_stat = hit_stat self.base_critical_stat = critical_stat ``` #### File: components/criticals/execute.py ```python from typing import Any, Dict, List, Tuple, TYPE_CHECKING from ecs.components.combatcomponent import CombatComponent from ecs.components.criticals.abc import CriticalComponent if TYPE_CHECKING: from ecs.entity import Entity class ExecuteComponent(CriticalComponent): def damage(self, _: 'Entity', defender: 'Entity') -> int: defender_combat = defender[CombatComponent] return max(1, defender_combat.cur_hp - 1) def critical(self, attacker: 'Entity', defender: 'Entity') -> List[Tuple[str, Dict[str, Any]]]: damage = self.damage(attacker, defender) defender_combat = defender[CombatComponent] defender_combat.cur_hp = max(0, defender_combat.cur_hp - damage) events = [('critical_execute', {'attacker': attacker, 'defender': defender, 'damage': damage})] if defender_combat.cur_hp == 0: events.append(('dead', {'defender': defender})) return events ``` #### File: components/criticals/poison.py ```python from typing import Any, Dict, List, Tuple, TYPE_CHECKING from ecs.components.combatcomponent import CombatComponent from ecs.components.criticals.abc import CriticalComponent from ecs.components.poisoncomponent import PoisonComponent from helper_functions import get_combat_base_damage if TYPE_CHECKING: from ecs.entity import Entity class PoisonCriticalComponent(CriticalComponent): def __init__(self, tier: int = 0) -> None: self.tier = tier self.name = f'poison ({self.tier+1})' ticks = [ 2, 4, 6, ] self.tick = ticks[tier] def damage(self, attacker: 'Entity', defender: 'Entity') -> int: return int(1.5*get_combat_base_damage(attacker, defender)) def critical(self, attacker: 'Entity', defender: 'Entity') -> List[Tuple[str, Dict[str, Any]]]: damage = self.damage(attacker, defender) defender_combat = defender[CombatComponent] defender_combat.cur_hp = max(0, defender_combat.cur_hp-damage) if PoisonComponent in defender: poison = defender[PoisonComponent] poison.duration = 5 if poison.tick < self.tick: poison.tick = self.tick else: defender.attach(PoisonComponent(tick=self.tick, duration=5)) events = [ ('critical_poison', {'attacker': attacker, 'defender': defender, 'damage': damage}), ] if defender_combat.cur_hp == 0: events.append(('dead', {'defender': defender})) return events ``` #### File: ecs/components/durabilitycomponent.py ```python class DurabilityComponent: def __init__(self, durability: int) -> None: self.value = durability ``` #### File: ecs/components/smokecomponent.py ```python class SmokeComponent: def __init__(self, duration: int) -> None: self.duration = duration ``` #### File: ecs/systems/combatsystem.py ```python import random from ecs.components.combatcomponent import CombatComponent from ecs.components.criticals.abc import CriticalComponent from ecs.components.inventorycomponent import InventoryComponent from ecs.components.poisoncomponent import PoisonComponent from ecs.components.randomnumbercomponent import RandomNumberComponent from ecs.components.smokecomponent import SmokeComponent from ecs.components.visiblecomponent import VisibleComponent from helper_functions import get_combat_result, get_combat_base_damage, get_weapon from project_types import CombatResult class CombatSystem: def __init__(self, container): self.container = container def event_take_turn(self, entity): if CombatComponent in entity: combat: CombatComponent = entity[CombatComponent] if PoisonComponent in entity: poison: PoisonComponent = entity[PoisonComponent] combat.cur_hp = max(0, combat.cur_hp-poison.tick) self.container.event('poison_damage', entity=entity, damage=poison.tick) if combat.cur_hp == 0: self.container.event('dead', defender=entity) poison.duration -= 1 if poison.duration <= 0: entity.remove(PoisonComponent) self.container.event('poison_expire', entity=entity) if SmokeComponent in entity: smoke: SmokeComponent = entity[SmokeComponent] smoke.duration -= 1 if smoke.duration <= 0: entity.remove(SmokeComponent) self.container.event('smoke_expire', entity=entity) def event_attack(self, attacker, defender): # Get the attacker RN result = get_combat_result(attacker) if result is CombatResult.MISS: self.container.event('miss', attacker=attacker, defender=defender) if result is CombatResult.HIT: self.container.event('hit', attacker=attacker, defender=defender) if result is CombatResult.CRITICAL: self.container.event('critical', attacker=attacker, defender=defender) attacker[RandomNumberComponent].number = random.randint(0, 99) weapon = get_weapon(attacker) if weapon is not None: self.container.event('degrade_item', item=weapon, amount=1) if attacker is self.container.player: self.container.target = defender def event_hit(self, attacker, defender): damage = get_combat_base_damage(attacker, defender) defender_combat = defender[CombatComponent] defender_combat.cur_hp = max(0, defender_combat.cur_hp-damage) if defender_combat.cur_hp == 0: self.container.event('dead', defender=defender) def event_critical(self, attacker, defender): critical: CriticalComponent = attacker[InventoryComponent].items[0][CriticalComponent] events = critical.critical(attacker=attacker, defender=defender) for event_type, kwargs in events: self.container.event(event_type, **kwargs) def event_use_smoke_bomb(self): for entity in self.container.entities: if CombatComponent in entity and VisibleComponent in entity and entity is not self.container.player: entity.attach(SmokeComponent(duration=3)) self.container.event('smoke_attach', entity=entity) ``` #### File: ecs/systems/itempickupsystem.py ```python from ecs.components.inventorycomponent import InventoryComponent from ecs.components.itemcomponent import ItemComponent from ecs.components.positioncomponent import PositionComponent class ItemPickupSystem: def __init__(self, container): self.container = container def event_entity_moved(self, entity): player = self.container.player if entity is not player: return assert PositionComponent in player and InventoryComponent in player for entity in self.container.entities: coincident_item = ( ItemComponent in entity and PositionComponent in entity and entity[PositionComponent] == player[PositionComponent] ) if coincident_item: slot = next( ( slot for slot in range(player[InventoryComponent].capacity) if slot not in player[InventoryComponent].items ), None, ) if slot is None: self.container.event('pickup_full', item=entity) else: player[InventoryComponent].items[slot] = entity entity.remove(PositionComponent) self.container.event('pickup_success', item=entity) ``` #### File: systems/panels/inventorypanel.py ```python import string import constants from ecs.components.combatcomponent import CombatComponent from ecs.components.displaycomponent import DisplayComponent from ecs.components.durabilitycomponent import DurabilityComponent from ecs.components.inventorycomponent import InventoryComponent from ecs.components.namecomponent import NameComponent from ecs.systems.panels.panel import Panel from project_types import GameState class InventoryPanel(Panel): def update_contents(self): target = self.container.target if self.container.input_mode is GameState.STATUS_DROP: title = 'Discard which item?' elif self.container.input_mode is GameState.STATUS_USE: title = 'Use which item?' elif self.container.input_mode is GameState.STATUS_VIEW: if target is self.container.player: title = 'Your inventory' else: title = f'The {target[NameComponent].name}\'s inventory' else: assert False # Unreachable branch self.console.draw_frame(x=0, y=0, width=self.w, height=self.h, title=title) if target is not None: cc: CombatComponent = target[CombatComponent] self.console.print(x=2, y=2, string=f'Health: {cc.cur_hp:>2d}/{cc.max_hp:>2d}') self.console.print(x=2, y=4, string=f'Attack: {cc.attack_stat:>2d}') self.console.print(x=2, y=5, string=f'Defend: {cc.defend_stat:>2d}') self.console.print(x=2, y=6, string=f'Hit: {cc.hit_stat:>3d}%') self.console.print(x=2, y=7, string=f'Critical: {cc.critical_stat:>3d}%') ic: InventoryComponent = target[InventoryComponent] item_entity = ic.items.get(0) if item_entity is None: self.console.print(x=20, y=2, string=f'a) None', fg=constants.COLOR_GRAY1) else: name = item_entity[NameComponent].name fg = item_entity[DisplayComponent].fg self.console.print(x=20, y=2, string=f'a) {name}', fg=fg) if DurabilityComponent in item_entity: durability = item_entity[DurabilityComponent].value self.console.print(x=48, y=2, string=f'{durability:>2d}', fg=fg) for i, letter in zip(range(1, ic.capacity), string.ascii_lowercase[1:]): item_entity = ic.items.get(i) if item_entity is None: self.console.print(x=20, y=3+i, string=f'{letter}) None', fg=constants.COLOR_GRAY1) else: name = item_entity[NameComponent].name fg = item_entity[DisplayComponent].fg self.console.print(x=20, y=3+i, string=f'{letter}) {name}', fg=fg) if DurabilityComponent in item_entity: durability = item_entity[DurabilityComponent].value self.console.print(x=48, y=3+i, string=f'{durability:>2d}', fg=fg) ``` #### File: systems/panels/messagepanel.py ```python import textwrap from ecs.systems.panels.panel import Panel class MessagePanel(Panel): def update_contents(self): w = self.w - 4 h = self.h - 4 old_messages = self.container.buffer[-h:] new_messages = [] for message, color in old_messages: for line in textwrap.wrap(message, w): new_messages.append((line, color)) new_messages = new_messages[-h:] self.console.draw_frame(0, 0, self.w, self.h, title='Messages') for i, (message, color) in enumerate(new_messages): self.console.print(x=2, y=i+2, string=message, fg=color) ``` #### File: systems/panels/titlepanel.py ```python import textwrap import constants from ecs.systems.panels.panel import Panel class TitlePanel(Panel): def update_contents(self): wrap_lines = [] with open('data/title.txt') as file: for line in file: file_line = line.rstrip() if not file_line: wrap_lines.append('') continue wrap_lines.extend(textwrap.wrap(file_line, self.w)) for i, line in enumerate(wrap_lines): y = i if i == 0: self.console.print(x=0, y=y, string='Critical', fg=constants.COLOR_CRITICAL) self.console.print(x=9, y=y, string='Keep', fg=constants.COLOR_MISS) else: if i in (2, 13, 34, 41): fg = constants.COLOR_YELLOW else: fg = constants.COLOR_WHITE self.console.print(x=0, y=y, string=line, fg=fg) ``` #### File: ecs/systems/test_cursorsystem.py ```python from unittest import TestCase from ecs.components.combatcomponent import CombatComponent from ecs.components.cursorcomponent import CursorComponent from ecs.components.inventorycomponent import InventoryComponent from ecs.components.positioncomponent import PositionComponent from ecs.components.randomnumbercomponent import RandomNumberComponent from ecs.container import Container from ecs.entity import Entity from ecs.systems.cursorsystem import CursorSystem class TestCursorSystem(TestCase): def test_first(self): """Target the first coincident entity.""" container = Container() system = CursorSystem(container) cursor = Entity(PositionComponent(1, 1), CursorComponent()) first = Entity(PositionComponent(1, 1)) second = Entity(PositionComponent(1, 1)) container.entities = [ cursor, first, second, ] system.check_target() self.assertIs(container.target, first) def test_no_coincident(self): """Target nothing if there are no coincident entities.""" container = Container() system = CursorSystem(container) cursor = Entity(PositionComponent(1, 1), CursorComponent()) first = Entity(PositionComponent(2, 2)) container.entities = [ cursor, first, ] system.check_target() self.assertIsNone(container.target) def test_stat_second(self): """Target the first coincident entity with a CombatComponent and InventoryComponent.""" container = Container() system = CursorSystem(container) cursor = Entity(PositionComponent(1, 1), CursorComponent()) first = Entity(PositionComponent(1, 1)) second = Entity(PositionComponent(1, 1), CombatComponent(0, 0, 0, 0, 0), InventoryComponent(0)) container.entities = [ cursor, first, second, ] system.check_target() self.assertIs(container.target, second) def test_swap_second(self): """Target the first coincident entity with a RandomNumberComponent.""" container = Container() system = CursorSystem(container) cursor = Entity(PositionComponent(1, 1), CursorComponent()) first = Entity(PositionComponent(1, 1)) second = Entity(PositionComponent(1, 1), RandomNumberComponent()) container.entities = [ cursor, first, second, ] system.check_target() self.assertIs(container.target, second) ``` #### File: src/factories/consumable.py ```python import random import constants from ecs.components import consumables from ecs.components.displaycomponent import DisplayComponent from ecs.components.durabilitycomponent import DurabilityComponent from ecs.components.itemcomponent import ItemComponent from ecs.components.namecomponent import NameComponent from ecs.entity import Entity from project_types import DrawLayer def random_consumable(): choices = [ elixir, elixir, smoke_bomb, tonic, antidote, ] choice = random.choice(choices) return choice() def elixir(): return Entity( NameComponent('elixir'), DisplayComponent(char=chr(173), fg=constants.COLOR_WHITE, layer=DrawLayer.ITEM), ItemComponent(), consumables.Elixir(), DurabilityComponent(durability=5), ) def smoke_bomb(): return Entity( NameComponent('smoke bomb'), DisplayComponent(char=chr(173), fg=constants.COLOR_WHITE, layer=DrawLayer.ITEM), ItemComponent(), consumables.SmokeBomb(), DurabilityComponent(durability=3), ) def tonic(): pool = [ ('health tonic', consumables.HealthTonic, 1), ('attack tonic', consumables.AttackTonic, 1), ('defend tonic', consumables.DefendTonic, 1), ('hit tonic', consumables.HitTonic, 1), ('critical tonic', consumables.CriticalTonic, 1), ] name, constructor, durability = random.choice(pool) return Entity( NameComponent(name), DisplayComponent(char=chr(173), fg=constants.COLOR_YELLOW, layer=DrawLayer.ITEM), ItemComponent(), constructor(), DurabilityComponent(durability=durability), ) def antidote(): return Entity( NameComponent('antidote'), DisplayComponent(char=chr(173), fg=constants.COLOR_WHITE, layer=DrawLayer.ITEM), ItemComponent(), consumables.Antidote(), DurabilityComponent(durability=3), ) ``` #### File: src/factories/cursor.py ```python import constants from ecs.components.cursorcomponent import CursorComponent from ecs.components.displaycomponent import DisplayComponent from ecs.components.positioncomponent import PositionComponent from ecs.entity import Entity from project_types import DrawLayer def make_cursor(x, y): return Entity( CursorComponent(), DisplayComponent(char='X', fg=constants.COLOR_YELLOW, layer=DrawLayer.CURSOR), PositionComponent(x=x, y=y), ) ``` #### File: src/factories/throne.py ```python import constants from ecs.components.displaycomponent import DisplayComponent from ecs.components.namecomponent import NameComponent from ecs.components.positioncomponent import PositionComponent from ecs.components.thronecomponent import ThroneComponent from ecs.entity import Entity from project_types import DrawLayer def make_throne(x, y): return Entity( DisplayComponent(char=chr(210), fg=constants.COLOR_YELLOW, layer=DrawLayer.THRONE), NameComponent(name='throne'), PositionComponent(x, y), ThroneComponent(), ) ``` #### File: src/factories/weapon.py ```python import random import constants from constants import WEAPON_TIER_SELECTION from ecs.components.criticals.abc import CriticalComponent from ecs.components.criticals.cleave import CleaveComponent from ecs.components.criticals.execute import ExecuteComponent from ecs.components.criticals.extradamage import ExtraDamageComponent from ecs.components.criticals.knockback import KnockbackComponent from ecs.components.criticals.poison import PoisonCriticalComponent from ecs.components.criticals.shatter import ShatterComponent from ecs.components.criticals.thunder import ThunderComponent from ecs.components.displaycomponent import DisplayComponent from ecs.components.durabilitycomponent import DurabilityComponent from ecs.components.itemcomponent import ItemComponent from ecs.components.namecomponent import NameComponent from ecs.components.weaponcomponent import WeaponComponent from ecs.entity import Entity from project_types import DrawLayer def make_sword(level: int) -> Entity: if random.randint(0, constants.DUNGEON_DEPTH) < level: return make_exotic_sword(level) else: return make_normal_sword(level) def make_axe(level: int) -> Entity: if random.randint(0, constants.DUNGEON_DEPTH) < level: return make_exotic_axe(level) else: return make_normal_axe(level) def make_spear(level: int) -> Entity: if random.randint(0, constants.DUNGEON_DEPTH) < level: return make_exotic_spear(level) else: return make_normal_spear(level) def make_bow(level: int) -> Entity: if random.randint(0, constants.DUNGEON_DEPTH) < level: return make_exotic_bow(level) else: return make_normal_bow(level) def make_normal_sword(level: int) -> Entity: choices = WEAPON_TIER_SELECTION[min(len(WEAPON_TIER_SELECTION) - 1, level)] choice = random.choice(choices) factories = [ make_sword1, make_sword2, make_sword3, ] factory = factories[choice] return factory() def make_normal_axe(level: int) -> Entity: choices = WEAPON_TIER_SELECTION[min(len(WEAPON_TIER_SELECTION) - 1, level)] choice = random.choice(choices) factories = [ make_axe1, make_axe2, make_axe3, ] factory = factories[choice] return factory() def make_normal_spear(level: int) -> Entity: choices = WEAPON_TIER_SELECTION[min(len(WEAPON_TIER_SELECTION) - 1, level)] choice = random.choice(choices) factories = [ make_spear1, make_spear2, make_spear3, ] factory = factories[choice] return factory() def make_normal_bow(level: int) -> Entity: choices = WEAPON_TIER_SELECTION[min(len(WEAPON_TIER_SELECTION) - 1, level)] choice = random.choice(choices) factories = [ make_crossbow1, make_crossbow2, make_crossbow3, ] factory = factories[choice] return factory() def make_exotic_sword(level: int) -> Entity: basic = make_normal_sword(level) wc: WeaponComponent = basic[WeaponComponent] wc.critical_bonus += 10 dc: DurabilityComponent = basic[DurabilityComponent] dc.value += 10 constructors: CriticalComponent = [ CleaveComponent, KnockbackComponent, ShatterComponent, PoisonCriticalComponent, ] constructor = random.choice(constructors) tiers = WEAPON_TIER_SELECTION[min(len(WEAPON_TIER_SELECTION) - 1, level)] tier = random.choice(tiers) critical = constructor(tier=tier) basic.remove(CriticalComponent) basic.attach(critical) basic[NameComponent].name = f'{critical.name} sword' basic[DisplayComponent].fg = constants.COLOR_YELLOW return basic def make_exotic_axe(level: int) -> Entity: basic = make_normal_axe(level) wc: WeaponComponent = basic[WeaponComponent] wc.critical_bonus += 10 dc: DurabilityComponent = basic[DurabilityComponent] dc.value += 10 constructors: CriticalComponent = [ ExtraDamageComponent, KnockbackComponent, ShatterComponent, PoisonCriticalComponent, ] constructor = random.choice(constructors) tiers = WEAPON_TIER_SELECTION[min(len(WEAPON_TIER_SELECTION) - 1, level)] tier = random.choice(tiers) critical = constructor(tier=tier) basic.remove(CriticalComponent) basic.attach(critical) basic[NameComponent].name = f'{critical.name} axe' basic[DisplayComponent].fg = constants.COLOR_YELLOW return basic def make_exotic_spear(level: int) -> Entity: basic = make_normal_spear(level) wc: WeaponComponent = basic[WeaponComponent] wc.critical_bonus += 10 dc: DurabilityComponent = basic[DurabilityComponent] dc.value += 10 constructors: CriticalComponent = [ CleaveComponent, ExtraDamageComponent, ShatterComponent, PoisonCriticalComponent, ] constructor = random.choice(constructors) tiers = WEAPON_TIER_SELECTION[min(len(WEAPON_TIER_SELECTION) - 1, level)] tier = random.choice(tiers) critical = constructor(tier=tier) basic.remove(CriticalComponent) basic.attach(critical) basic[NameComponent].name = f'{critical.name} spear' basic[DisplayComponent].fg = constants.COLOR_YELLOW return basic def make_exotic_bow(level: int) -> Entity: basic = make_normal_bow(level) wc: WeaponComponent = basic[WeaponComponent] wc.critical_bonus += 10 dc: DurabilityComponent = basic[DurabilityComponent] dc.value += 10 constructors: CriticalComponent = [ CleaveComponent, KnockbackComponent, ShatterComponent, PoisonCriticalComponent, ] constructor = random.choice(constructors) tiers = WEAPON_TIER_SELECTION[min(len(WEAPON_TIER_SELECTION) - 1, level)] tier = random.choice(tiers) critical = constructor(tier=tier) basic.remove(CriticalComponent) basic.attach(critical) basic[NameComponent].name = f'{critical.name} crossbow' basic[DisplayComponent].fg = constants.COLOR_YELLOW return basic def make_sword_player(): return Entity( NameComponent('ancestral sword'), DisplayComponent(char=')', fg=constants.COLOR_YELLOW, layer=DrawLayer.ITEM), ItemComponent(droppable=False), WeaponComponent(attack_bonus=3, hit_bonus=80, critical_bonus=5), ExtraDamageComponent(tier=0), ) def make_sword1(): return Entity( NameComponent('bronze sword'), DisplayComponent(char=')', fg=constants.COLOR_GRAY3, layer=DrawLayer.ITEM), ItemComponent(), WeaponComponent(attack_bonus=5, hit_bonus=70), DurabilityComponent(durability=30), ExtraDamageComponent(tier=0), ) def make_sword2(): return Entity( NameComponent('iron sword'), DisplayComponent(char=')', fg=constants.COLOR_GRAY3, layer=DrawLayer.ITEM), ItemComponent(), WeaponComponent(attack_bonus=8, hit_bonus=65), DurabilityComponent(durability=25), ExtraDamageComponent(tier=1), ) def make_sword3(): return Entity( NameComponent('steel sword'), DisplayComponent(char=')', fg=constants.COLOR_GRAY3, layer=DrawLayer.ITEM), ItemComponent(), WeaponComponent(attack_bonus=13, hit_bonus=60), DurabilityComponent(durability=20), ExtraDamageComponent(tier=2), ) def make_axe1(): return Entity( NameComponent('bronze axe'), DisplayComponent(char=')', fg=constants.COLOR_GRAY3, layer=DrawLayer.ITEM), ItemComponent(), WeaponComponent(attack_bonus=9, hit_bonus=50), DurabilityComponent(durability=30), CleaveComponent(tier=0), ) def make_axe2(): return Entity( NameComponent('iron axe'), DisplayComponent(char=')', fg=constants.COLOR_GRAY3, layer=DrawLayer.ITEM), ItemComponent(), WeaponComponent(attack_bonus=12, hit_bonus=45), DurabilityComponent(durability=25), CleaveComponent(tier=1), ) def make_axe3(): return Entity( NameComponent('steel axe'), DisplayComponent(char=')', fg=constants.COLOR_GRAY3, layer=DrawLayer.ITEM), ItemComponent(), WeaponComponent(attack_bonus=17, hit_bonus=40), DurabilityComponent(durability=20), CleaveComponent(tier=2), ) def make_spear1(): return Entity( NameComponent('bronze spear'), DisplayComponent(char=')', fg=constants.COLOR_GRAY3, layer=DrawLayer.ITEM), ItemComponent(), WeaponComponent(attack_bonus=7, hit_bonus=60), DurabilityComponent(durability=30), KnockbackComponent(tier=0), ) def make_spear2(): return Entity( NameComponent('iron spear'), DisplayComponent(char=')', fg=constants.COLOR_GRAY3, layer=DrawLayer.ITEM), ItemComponent(), WeaponComponent(attack_bonus=10, hit_bonus=55), DurabilityComponent(durability=25), KnockbackComponent(tier=1), ) def make_spear3(): return Entity( NameComponent('steel spear'), DisplayComponent(char=')', fg=constants.COLOR_GRAY3, layer=DrawLayer.ITEM), ItemComponent(), WeaponComponent(attack_bonus=15, hit_bonus=60), DurabilityComponent(durability=20), KnockbackComponent(tier=2), ) def make_crossbow1(): return Entity( NameComponent('light crossbow'), DisplayComponent(char=')', fg=constants.COLOR_GRAY3, layer=DrawLayer.ITEM), ItemComponent(), WeaponComponent(max_range=constants.FOV_RADIUS, attack_bonus=5, hit_bonus=50), DurabilityComponent(durability=30), ExtraDamageComponent(tier=0), ) def make_crossbow2(): return Entity( NameComponent('heavy crossbow'), DisplayComponent(char=')', fg=constants.COLOR_GRAY3, layer=DrawLayer.ITEM), ItemComponent(), WeaponComponent(max_range=constants.FOV_RADIUS, attack_bonus=8, hit_bonus=45), DurabilityComponent(durability=25), ExtraDamageComponent(tier=1), ) def make_crossbow3(): return Entity( NameComponent('arbalest'), DisplayComponent(char=')', fg=constants.COLOR_GRAY3, layer=DrawLayer.ITEM), ItemComponent(), WeaponComponent(max_range=constants.FOV_RADIUS, attack_bonus=13, hit_bonus=40), DurabilityComponent(durability=20), ExtraDamageComponent(tier=2), ) def make_midboss_weapon(): return Entity( NameComponent('book of lightning'), DisplayComponent(char=')', fg=constants.COLOR_YELLOW, layer=DrawLayer.ITEM), ItemComponent(droppable=False), WeaponComponent(max_range=constants.FOV_RADIUS, attack_bonus=15, hit_bonus=0, smite=True), ThunderComponent(), ) def make_endboss_weapon(): return Entity( NameComponent('executioner\'s sword'), DisplayComponent(char=')', fg=constants.COLOR_YELLOW, layer=DrawLayer.ITEM), ItemComponent(droppable=False), WeaponComponent(attack_bonus=15, hit_bonus=30), ExecuteComponent(), ) ``` #### File: src/factories/world.py ```python import random from typing import List import constants from ecs.components.positioncomponent import PositionComponent from ecs.entity import Entity from factories.chest import make_chest from factories.enemy import make_boss, make_enemy, make_endboss, make_midboss from factories.map import Room, make_map from factories.player import make_player from factories.throne import make_throne from map import Map def make_world(level, player=None): entities = [] game_map: Map = make_map() if player is None: player = make_player(0, 0) rooms = game_map.rooms endpoints = game_map.endpoints start_room = endpoints[0] entities.extend(populate_start_room(start_room, player=player)) final_room = endpoints[-1] entities.extend(populate_final_room(final_room, level)) for room in endpoints[1:-1]: entities.extend(populate_treasure_room(room, level)) for room in rooms: if room not in endpoints and room.w > 2 and room.h > 2: entities.extend(populate_room(room, level)) return entities, game_map, player def populate_start_room(room: Room, player: Entity) -> List[Entity]: entities = [] cells = room.cells random.shuffle(cells) x, y = cells.pop() player[PositionComponent].x = x player[PositionComponent].y = y entities.append(player) for _ in range(random.randint(0, 1)): x, y = cells.pop() entities.append(make_chest(x=x, y=y)) return entities def populate_room(room: Room, level: int) -> List[Entity]: entities = [] case = random.randint(1, 4) cells = room.cells random.shuffle(cells) for _ in range(random.randint(1, max(1, room.w*room.h // 16))): x, y = cells.pop() entities.append(make_enemy(x=x, y=y, level=level, case=case)) for _ in range(random.randint(0, max(1, room.w*room.h // 32))): x, y = cells.pop() entities.append(make_chest(x=x, y=y)) return entities def populate_treasure_room(room: Room, level: int) -> List[Entity]: entities = [] case = random.randint(1, 4) cells = room.cells random.shuffle(cells) for _ in range(random.randint(0, max(2, room.w*room.h // 16))): x, y = cells.pop() entities.append(make_enemy(x=x, y=y, level=level, case=case)) for _ in range(random.randint(2, max(2, room.w*room.h // 16))): x, y = cells.pop() entities.append(make_chest(x=x, y=y)) return entities def populate_final_room(room: Room, level: int) -> List[Entity]: entities = [] cells = room.cells random.shuffle(cells) x, y = cells.pop() if level == constants.DUNGEON_MIDBOSS: entities.append(make_midboss(x, y)) elif level == constants.DUNGEON_ENDBOSS: entities.append(make_endboss(x, y)) else: case = random.randint(1, 4) entities.append(make_boss(x, y, level, case)) x, y = cells.pop() entities.append(make_throne(x, y)) for _ in range(random.randint(2, max(2, room.w*room.h // 16))): x, y = cells.pop() entities.append(make_chest(x=x, y=y)) return entities ```
{ "source": "JoeHowse/VisualizingTheInvisible", "score": 3 }
#### File: JoeHowse/VisualizingTheInvisible/LiveVideoAsusXtion.py ```python import cv2 import numpy __author__ = '<NAME>' __copyright__ = 'Copyright (c) 2019, Nummist Media Corporation Limited' __credits__ = ['<NAME>'] __license__ = 'BSD 3-Clause' __version__ = '0.0.1' __maintainer__ = '<NAME>' __email__ = '<EMAIL>' __status__ = 'Prototype' def main(): capture = cv2.VideoCapture(cv2.CAP_OPENNI2_ASUS) channel = cv2.CAP_OPENNI_IR_IMAGE success = capture.grab() if success: success, image = capture.retrieve(flag=channel) while success: if image is not None: if channel == cv2.CAP_OPENNI_IR_IMAGE: # Assume the image is 10-bit. # Convert it to 8-bit. image = (image >> 2).astype(numpy.uint8) elif channel == cv2.CAP_OPENNI_DEPTH_MAP: # Assume the image is 12-bit (max depth 4.096m). # Convert it to 8-bit. image = (image >> 4).astype(numpy.uint8) cv2.imshow('Live Video', image) keycode = cv2.waitKey(1) if keycode == ord('1'): channel = cv2.CAP_OPENNI_IR_IMAGE elif keycode == ord('2'): channel = cv2.CAP_OPENNI_DEPTH_MAP elif keycode == ord('3'): channel = cv2.CAP_OPENNI_VALID_DEPTH_MASK elif keycode == ord('4'): channel = cv2.CAP_OPENNI_DISPARITY_MAP elif keycode == ord('5'): channel = cv2.CAP_OPENNI_POINT_CLOUD_MAP elif keycode == 27: # The user pressed the escape key. # Quit. break success = capture.grab() if success: success, image = capture.retrieve(flag=channel) if __name__ == '__main__': main() ``` #### File: JoeHowse/VisualizingTheInvisible/PySpinCapture.py ```python import PySpin import cv2 __author__ = '<NAME>' __copyright__ = 'Copyright (c) 2018, Nummist Media Corporation Limited' __credits__ = ['<NAME>'] __license__ = 'BSD 3-Clause' __version__ = '0.0.1' __maintainer__ = '<NAME>' __email__ = '<EMAIL>' __status__ = 'Prototype' class PySpinCapture: def __init__(self, index, roi, binning_radius=1, is_monochrome=False): self._system = system = PySpin.System.GetInstance() self._camera_list = system.GetCameras() self._camera = self._camera_list.GetByIndex(index) self._camera.Init() self._nodemap = self._camera.GetNodeMap() # Enable continuous acquisition mode. node_acquisition_mode = PySpin.CEnumerationPtr(self._nodemap.GetNode( 'AcquisitionMode')) node_acquisition_mode_continuous = node_acquisition_mode.GetEntryByName( 'Continuous') acquisition_mode_continuous = node_acquisition_mode_continuous.GetValue() node_acquisition_mode.SetIntValue(acquisition_mode_continuous) # Set the pixel format. node_pixel_format = PySpin.CEnumerationPtr(self._nodemap.GetNode('PixelFormat')) if is_monochrome: # Enable Mono8 mode. node_pixel_format_mono8 = PySpin.CEnumEntryPtr( node_pixel_format.GetEntryByName('Mono8')) pixel_format_mono8 = node_pixel_format_mono8.GetValue() node_pixel_format.SetIntValue(pixel_format_mono8) else: # Enable BGR8 mode. node_pixel_format_bgr8 = PySpin.CEnumEntryPtr( node_pixel_format.GetEntryByName('BGR8')) pixel_format_bgr8 = node_pixel_format_bgr8.GetValue() node_pixel_format.SetIntValue(pixel_format_bgr8) # Set the vertical binning radius. # The horizontal binning radius is automatically set to the same value. node_binning_vertical = PySpin.CIntegerPtr(self._nodemap.GetNode( 'BinningVertical')) node_binning_vertical.SetValue(binning_radius) # Set the ROI. x, y, w, h = roi node_offset_x = PySpin.CIntegerPtr(self._nodemap.GetNode('OffsetX')) node_offset_x.SetValue(int(x)) node_offset_y = PySpin.CIntegerPtr(self._nodemap.GetNode('OffsetY')) node_offset_y.SetValue(int(y)) node_width = PySpin.CIntegerPtr(self._nodemap.GetNode('Width')) node_width.SetValue(int(w)) node_height = PySpin.CIntegerPtr(self._nodemap.GetNode('Height')) node_height.SetValue(int(h)) self._camera.BeginAcquisition() def get(self, propId): if propId == cv2.CAP_PROP_FRAME_WIDTH: node_width = PySpin.CIntegerPtr(self._nodemap.GetNode('Width')) return float(node_width.GetValue()) if propId == cv2.CAP_PROP_FRAME_HEIGHT: node_height = PySpin.CIntegerPtr(self._nodemap.GetNode('Height')) return float(node_height.GetValue()) if propId == cv2.CAP_PROP_GAIN: node_gain = PySpin.CFloatPtr(self._nodemap.GetNode('Gain')) return node_gain.GetValue() return 0.0 def set(self, propId, value): if propId == cv2.CAP_PROP_FRAME_WIDTH: node_width = PySpin.CIntegerPtr(self._nodemap.GetNode('Width')) node_width.SetValue(int(value)) return True if propId == cv2.CAP_PROP_FRAME_HEIGHT: node_height = PySpin.CIntegerPtr(self._nodemap.GetNode('Height')) node_height.SetValue(int(value)) return True if propId == cv2.CAP_PROP_GAIN: node_gain = PySpin.CFloatPtr(self._nodemap.GetNode('Gain')) node_gain.SetValue(value) return True return False def __del__(self): self.release() def read(self, image=None): camera_image = self._camera.GetNextImage() if camera_image.IsIncomplete(): return False, None h = camera_image.GetHeight() w = camera_image.GetWidth() num_channels = camera_image.GetNumChannels() if num_channels > 1: camera_image_data = camera_image.GetData().reshape(h, w, num_channels) else: camera_image_data = camera_image.GetData().reshape(h, w) if image is None: image = camera_image_data.copy() else: image[:] = camera_image_data camera_image.Release() return True, image def release(self): self._camera.EndAcquisition() self._camera.DeInit() del self._camera self._camera_list.Clear() self._system.ReleaseInstance() ```
{ "source": "joehwang/auto-door", "score": 3 }
#### File: cvs_scrapy/spiders/hilife.py ```python import scrapy import time from scrapy.http import FormRequest from cvs_scrapy.items import CvsScrapyItem class Hilife(scrapy.Spider): name = "hilife" DEBUG=0 _citys=[] def start_requests(self): urls = [ 'https://www.hilife.com.tw/storeInquiry_street.aspx' ] for url in urls: yield scrapy.Request(url=url, callback=self.parse) def parse(self, response): self._citys=self.get_citys(response) self.log("--------------") self.log("列出所有縣市:{}".format(self._citys)) for city in self._citys: yield scrapy.FormRequest('https://www.hilife.com.tw/storeInquiry_street.aspx', formdata={'CITY': city, '__VIEWSTATE': response.css('input#__VIEWSTATE::attr(value)').extract_first(), '__EVENTVALIDATION': response.css('input#__EVENTVALIDATION::attr(value)').extract_first() },dont_filter=True,callback=self.get_areas_into_city) if self.DEBUG==1: return None self.log("***********") def get_citys(self,response): return response.xpath('//*[@id="CITY"]/option/text()').extract() def get_areas_into_city(self,response): self.log("************") areas=response.xpath('//*[@id="AREA"]/option/text()').extract() city=response.xpath('//*[@id="lblCity"]/text()').extract()[0] self.log("{}的所有行政區{}".format(city,areas)) for area in areas: self.log("查詢:{} {}".format(city,area)) yield scrapy.FormRequest('https://www.hilife.com.tw/storeInquiry_street.aspx', formdata={'CITY': city, 'AREA': area, '__VIEWSTATE': response.css('input#__VIEWSTATE::attr(value)').extract_first(), '__EVENTVALIDATION': response.css('input#__EVENTVALIDATION::attr(value)').extract_first()}, dont_filter=True,callback=self.get_area_info) if self.DEBUG==1: return def get_area_info(self,response): self.log("店鋪列表") self.log(response.xpath('//*[@id="wrapper"]/div[2]/div/div/table/tr/th/text()').extract()) item = CvsScrapyItem() for tr in response.xpath('//*[@id="wrapper"]/div[2]/div/div/table/tr'): #self.log(tr.xpath('td[1]/img[@title]/@title').extract()) item["serial"]=tr.xpath('th[1]/text()').get() item["name"]=tr.xpath('th[2]/text()').get() item["phone"]=tr.xpath('td[2]/text()').get() item["addr"]=tr.xpath('td[1]/a/text()').get() item["ship_status"]="" item["note"]=tr.xpath('td[1]/img[@title]/@title').extract() item["kind"]="hilife" yield item ``` #### File: cvs_scrapy/spiders/seveneleven.py ```python import scrapy import time from cvs_scrapy.items import CvsScrapyItem import json class Seveneleven(scrapy.Spider): name = "seveneleven" DEBUG=0 _citys=[] #https://api.map.com.tw/net/familyShop.aspx?searchType=ShopList&type=&city=%E6%BE%8E%E6%B9%96%E7%B8%A3&area=%E9%A6%AC%E5%85%AC%E5%B8%82&road=&fun=showStoreList&key=<KEY> def start_requests(self): urls = [ #'https://emap.pcsc.com.tw/emap.aspx#', 'https://emap.pcsc.com.tw/lib/areacode.js' ] for url in urls: yield scrapy.Request(url=url, callback=self.parse) def parse(self, response): self._citys=self.get_citys(response) self.log("--------------") self.log("列出含有7-11所有縣市:{}".format(self._citys)) headers={'Referer':'https://emap.pcsc.com.tw/emap.aspx','Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'} for city in self._citys: city_code=list(city.values())[0] city_name=list(city.keys())[0] #self.log(city_code) #unpack dict values url="https://emap.pcsc.com.tw/EMapSDK.aspx" yield scrapy.Request(url=url, method='POST', body="commandid=GetTown&cityid={}&leftMenuChecked=".format(city_code),meta={'city_name':city_name},headers=headers,callback=self.get_dists_of_city) if self.DEBUG==1: return None def get_dists_of_city(self,response): self.log("***********") dicts=response.xpath('//*/GeoPosition/TownName/text()').extract() self.log(dicts) ##get the shops headers={'Referer':'https://emap.pcsc.com.tw/emap.aspx','Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'} url="https://emap.pcsc.com.tw/EMapSDK.aspx" for dict in dicts: yield scrapy.Request(url=url, method='POST', body="commandid=SearchStore&city={}&town={}".format(response.meta["city_name"],dict),headers=headers,callback=self.get_shops) if self.DEBUG==1: return None def get_shops(self,response): shops=response.xpath('//*/GeoPosition') item = CvsScrapyItem() for shop in shops: item["serial"]=shop.xpath('POIID/text()').get().strip() item["name"]=shop.xpath('POIName/text()').get().strip() item["phone"]=shop.xpath('Telno/text()').get().strip() item["addr"]=shop.xpath('Address/text()').get().strip() item["ship_status"]="" item["note"]=shop.xpath('StoreImageTitle/text()').get().strip().replace(","," ") item["kind"]="seven" yield item def get_citys(self,response): #return response.xpath('//*[@id="tw"]/div/a/text()').extract() groups=response.xpath('//*').re(r'new AreaNode\(\'(.*)\', new bu\(.*,.*\), \'(\d\d)\'\)') #self.log(groups) a=[] for i in range(0,len(groups),2): a.append({groups[i]:groups[i+1]}) return a ```
{ "source": "joehybird/django-extended-choices", "score": 3 }
#### File: django-extended-choices/extended_choices/choices.py ```python from __future__ import unicode_literals from past.builtins import basestring from collections import OrderedDict try: from collections.abc import Mapping except ImportError: from collections import Mapping from .helpers import ChoiceEntry __all__ = [ 'Choices', 'OrderedChoices', 'AutoDisplayChoices', 'AutoChoices', ] _NO_SUBSET_NAME_ = '__NO_SUBSET_NAME__' class Choices(list): """Helper class for choices fields in Django A choice entry has three representation: constant name, value and display name). So ``Choices`` takes list of such tuples. It's easy to get the constant, value or display name given one of these value. See in example. Parameters ---------- *choices : list of tuples It's the list of tuples to add to the ``Choices`` instance, each tuple having three entries: the constant name, the value, the display name. A dict could be added as a 4th entry in the tuple to allow setting arbitrary arguments to the final ``ChoiceEntry`` created for this choice tuple. name : string, optional If set, a subset will be created containing all the constants. It could be used if you construct your ``Choices`` instance with many calls to ``add_choices``. dict_class : type, optional ``dict`` by default, it's the dict class to use to create dictionaries (``constants``, ``values`` and ``displays``. Could be set for example to ``OrderedDict`` (you can use ``OrderedChoices`` that is a simple subclass using ``OrderedDict``. Example ------- Start by declaring your ``Choices``: >>> ALIGNMENTS = Choices( ... ('BAD', 10, 'bad'), ... ('NEUTRAL', 20, 'neutral'), ... ('CHAOTIC_GOOD', 30, 'chaotic good'), ... ('GOOD', 40, 'good'), ... dict_class=OrderedDict ... ) Then you can use it in a django field, Notice its usage in ``choices`` and ``default``: >>> from django.conf import settings >>> try: ... settings.configure(DATABASE_ENGINE='sqlite3') ... except: pass >>> from django.db.models import IntegerField >>> field = IntegerField(choices=ALIGNMENTS, # use ``ALIGNMENTS`` or ``ALIGNMENTS.choices``. ... default=ALIGNMENTS.NEUTRAL) The ``Choices`` returns a list as expected by django: >>> ALIGNMENTS == ((10, 'bad'), (20, 'neutral'), (30, 'chaotic good'), (40, 'good')) True But represents it with the constants: >>> repr(ALIGNMENTS) "[('BAD', 10, 'bad'), ('NEUTRAL', 20, 'neutral'), ('CHAOTIC_GOOD', 30, 'chaotic good'), ('GOOD', 40, 'good')]" Use ``choices`` which is a simple list to represent it as such: >>> ALIGNMENTS.choices ((10, 'bad'), (20, 'neutral'), (30, 'chaotic good'), (40, 'good')) And you can access value by their constant, or as you want: >>> ALIGNMENTS.BAD 10 >>> ALIGNMENTS.BAD.display 'bad' >>> 40 in ALIGNMENTS True >>> ALIGNMENTS.has_constant('BAD') True >>> ALIGNMENTS.has_value(20) True >>> ALIGNMENTS.has_display('good') True >>> ALIGNMENTS.for_value(10) ('BAD', 10, 'bad') >>> ALIGNMENTS.for_value(10).constant 'BAD' >>> ALIGNMENTS.for_display('good').value 40 >>> ALIGNMENTS.for_constant('NEUTRAL').display 'neutral' >>> ALIGNMENTS.constants OrderedDict([('BAD', ('BAD', 10, 'bad')), ('NEUTRAL', ('NEUTRAL', 20, 'neutral')), ('CHAOTIC_GOOD', ('CHAOTIC_GOOD', 30, 'chaotic good')), ('GOOD', ('GOOD', 40, 'good'))]) >>> ALIGNMENTS.values OrderedDict([(10, ('BAD', 10, 'bad')), (20, ('NEUTRAL', 20, 'neutral')), (30, ('CHAOTIC_GOOD', 30, 'chaotic good')), (40, ('GOOD', 40, 'good'))]) >>> ALIGNMENTS.displays OrderedDict([('bad', ('BAD', 10, 'bad')), ('neutral', ('NEUTRAL', 20, 'neutral')), ('chaotic good', ('CHAOTIC_GOOD', 30, 'chaotic good')), ('good', ('GOOD', 40, 'good'))]) You can create subsets of choices: >>> ALIGNMENTS.add_subset('WESTERN',('BAD', 'GOOD')) >>> ALIGNMENTS.WESTERN.choices ((10, 'bad'), (40, 'good')) >>> ALIGNMENTS.BAD in ALIGNMENTS.WESTERN True >>> ALIGNMENTS.NEUTRAL in ALIGNMENTS.WESTERN False To use it in another field (only the values in the subset will be available), or for checks: >>> def is_western(value): ... return value in ALIGNMENTS.WESTERN >>> is_western(40) True """ # Allow to easily change the ``ChoiceEntry`` class to use in subclasses. ChoiceEntryClass = ChoiceEntry def __init__(self, *choices, **kwargs): # Init the list as empty. Entries will be formatted for django and added in # ``add_choices``. super(Choices, self).__init__() # Class to use for dicts. self.dict_class = kwargs.get('dict_class', dict) # List of ``ChoiceEntry``, one for each choice in this instance. self.entries = [] # List of the created subsets self.subsets = [] # Dicts to access ``ChoiceEntry`` instances by constant, value or display value. self.constants = self.dict_class() self.values = self.dict_class() self.displays = self.dict_class() # For now this instance is mutable: we need to add the given choices. self._mutable = True self.add_choices(*choices, name=kwargs.get('name', None)) # Now we can set ``_mutable`` to its correct value. self._mutable = kwargs.get('mutable', True) @property def choices(self): """Property that returns a tuple formatted as expected by Django. Example ------- >>> MY_CHOICES = Choices(('FOO', 1, 'foo'), ('BAR', 2, 'bar')) >>> MY_CHOICES.choices ((1, 'foo'), (2, 'bar')) """ return tuple(self) def _convert_choices(self, choices): """Validate each choices Parameters ---------- choices : list of tuples The list of choices to be added Returns ------- list The list of the added constants """ # Check that each new constant is unique. constants = [c[0] for c in choices] constants_doubles = [c for c in constants if constants.count(c) > 1] if constants_doubles: raise ValueError("You cannot declare two constants with the same constant name. " "Problematic constants: %s " % list(set(constants_doubles))) # Check that none of the new constants already exists. bad_constants = set(constants).intersection(self.constants) if bad_constants: raise ValueError("You cannot add existing constants. " "Existing constants: %s." % list(bad_constants)) # Check that none of the constant is an existing attributes bad_constants = [c for c in constants if hasattr(self, c)] if bad_constants: raise ValueError("You cannot add constants that already exists as attributes. " "Existing attributes: %s." % list(bad_constants)) # Check that each new value is unique. values = [c[1] for c in choices] values_doubles = [c for c in values if values.count(c) > 1] if values_doubles: raise ValueError("You cannot declare two choices with the same name." "Problematic values: %s " % list(set(values_doubles))) # Check that none of the new values already exists. try: bad_values = set(values).intersection(self.values) except TypeError: raise ValueError("One value cannot be used in: %s" % list(values)) else: if bad_values: raise ValueError("You cannot add existing values. " "Existing values: %s." % list(bad_values)) # We can now add each choice. for choice_tuple in choices: # Convert the choice tuple in a ``ChoiceEntry`` instance if it's not already done. # It allows to share choice entries between a ``Choices`` instance and its subsets. choice_entry = choice_tuple if not isinstance(choice_entry, self.ChoiceEntryClass): choice_entry = self.ChoiceEntryClass(choice_entry) # Append to the main list the choice as expected by django: (value, display name). self.append(choice_entry.choice) # And the ``ChoiceEntry`` instance to our own internal list. self.entries.append(choice_entry) # Make the value accessible via an attribute (the constant being its name). setattr(self, choice_entry.constant, choice_entry.value) # Fill dicts to access the ``ChoiceEntry`` instance by its constant, value or display.. self.constants[choice_entry.constant] = choice_entry self.values[choice_entry.value] = choice_entry self.displays[choice_entry.display] = choice_entry return constants def add_choices(self, *choices, **kwargs): """Add some choices to the current ``Choices`` instance. The given choices will be added to the existing choices. If a ``name`` attribute is passed, a new subset will be created with all the given choices. Note that it's not possible to add new choices to a subset. Parameters ---------- *choices : list of tuples It's the list of tuples to add to the ``Choices`` instance, each tuple having three entries: the constant name, the value, the display name. A dict could be added as a 4th entry in the tuple to allow setting arbitrary arguments to the final ``ChoiceEntry`` created for this choice tuple. If the first entry of ``*choices`` is a string, then it will be used as a name for a new subset that will contain all the given choices. **kwargs : dict name : string Instead of using the first entry of the ``*choices`` to pass a name of a subset to create, you can pass it via the ``name`` named argument. Example ------- >>> MY_CHOICES = Choices() >>> MY_CHOICES.add_choices(('ZERO', 0, 'zero')) >>> MY_CHOICES [('ZERO', 0, 'zero')] >>> MY_CHOICES.add_choices('SMALL', ('ONE', 1, 'one'), ('TWO', 2, 'two')) >>> MY_CHOICES [('ZERO', 0, 'zero'), ('ONE', 1, 'one'), ('TWO', 2, 'two')] >>> MY_CHOICES.SMALL [('ONE', 1, 'one'), ('TWO', 2, 'two')] >>> MY_CHOICES.add_choices(('THREE', 3, 'three'), ('FOUR', 4, 'four'), name='BIG') >>> MY_CHOICES [('ZERO', 0, 'zero'), ('ONE', 1, 'one'), ('TWO', 2, 'two'), ('THREE', 3, 'three'), ('FOUR', 4, 'four')] >>> MY_CHOICES.BIG [('THREE', 3, 'three'), ('FOUR', 4, 'four')] Raises ------ RuntimeError When the ``Choices`` instance is marked as not mutable, which is the case for subsets. ValueError * if the subset name is defined as first argument and as named argument. * if some constants have the same name or the same value. * if at least one constant or value already exists in the instance. """ # It the ``_mutable`` flag is falsy, which is the case for subsets, we refuse to add # new choices. if not self._mutable: raise RuntimeError("This ``Choices`` instance cannot be updated.") # Check for an optional subset name as the first argument (so the first entry of *choices). subset_name = None if choices and isinstance(choices[0], basestring) and choices[0] != _NO_SUBSET_NAME_: subset_name = choices[0] choices = choices[1:] # Check for an optional subset name in the named arguments. if kwargs.get('name', None): if subset_name: raise ValueError("The name of the subset cannot be defined as the first " "argument and also as a named argument") subset_name = kwargs['name'] constants = self._convert_choices(choices) # If we have a subset name, create a new subset with all the given constants. if subset_name: self.add_subset(subset_name, constants) def extract_subset(self, *constants): """Create a subset of entries This subset is a new ``Choices`` instance, with only the wanted constants from the main ``Choices`` (each "choice entry" in the subset is shared from the main ``Choices``) Parameters ---------- *constants: list The constants names of this ``Choices`` object to make available in the subset. Returns ------- Choices The newly created subset, which is a ``Choices`` object Example ------- >>> STATES = Choices( ... ('ONLINE', 1, 'Online'), ... ('DRAFT', 2, 'Draft'), ... ('OFFLINE', 3, 'Offline'), ... ) >>> STATES [('ONLINE', 1, 'Online'), ('DRAFT', 2, 'Draft'), ('OFFLINE', 3, 'Offline')] >>> subset = STATES.extract_subset('DRAFT', 'OFFLINE') >>> subset [('DRAFT', 2, 'Draft'), ('OFFLINE', 3, 'Offline')] >>> subset.DRAFT 2 >>> subset.for_constant('DRAFT') is STATES.for_constant('DRAFT') True >>> subset.ONLINE Traceback (most recent call last): ... AttributeError: 'Choices' object has no attribute 'ONLINE' Raises ------ ValueError If a constant is not defined as a constant in the ``Choices`` instance. """ # Ensure that all passed constants exists as such in the list of available constants. bad_constants = set(constants).difference(self.constants) if bad_constants: raise ValueError("All constants in subsets should be in parent choice. " "Missing constants: %s." % list(bad_constants)) # Keep only entries we asked for. choice_entries = [self.constants[c] for c in constants] # Create a new ``Choices`` instance with the limited set of entries, and pass the other # configuration attributes to share the same behavior as the current ``Choices``. # Also we set ``mutable`` to False to disable the possibility to add new choices to the # subset. subset = self.__class__( *choice_entries, **{ 'dict_class': self.dict_class, 'mutable': False, } ) return subset def add_subset(self, name, constants): """Add a subset of entries under a defined name. This allow to defined a "sub choice" if a django field need to not have the whole choice available. The sub-choice is a new ``Choices`` instance, with only the wanted the constant from the main ``Choices`` (each "choice entry" in the subset is shared from the main ``Choices``) The sub-choice is accessible from the main ``Choices`` by an attribute having the given name. Parameters ---------- name : string Name of the attribute that will old the new ``Choices`` instance. constants: list or tuple List of the constants name of this ``Choices`` object to make available in the subset. Returns ------- Choices The newly created subset, which is a ``Choices`` object Example ------- >>> STATES = Choices( ... ('ONLINE', 1, 'Online'), ... ('DRAFT', 2, 'Draft'), ... ('OFFLINE', 3, 'Offline'), ... ) >>> STATES [('ONLINE', 1, 'Online'), ('DRAFT', 2, 'Draft'), ('OFFLINE', 3, 'Offline')] >>> STATES.add_subset('NOT_ONLINE', ('DRAFT', 'OFFLINE',)) >>> STATES.NOT_ONLINE [('DRAFT', 2, 'Draft'), ('OFFLINE', 3, 'Offline')] >>> STATES.NOT_ONLINE.DRAFT 2 >>> STATES.NOT_ONLINE.for_constant('DRAFT') is STATES.for_constant('DRAFT') True >>> STATES.NOT_ONLINE.ONLINE Traceback (most recent call last): ... AttributeError: 'Choices' object has no attribute 'ONLINE' Raises ------ ValueError * If ``name`` is already an attribute of the ``Choices`` instance. * If a constant is not defined as a constant in the ``Choices`` instance. """ # Ensure that the name is not already used as an attribute. if hasattr(self, name): raise ValueError("Cannot use '%s' as a subset name. " "It's already an attribute." % name) subset = self.extract_subset(*constants) # Make the subset accessible via an attribute. setattr(self, name, subset) self.subsets.append(name) def for_constant(self, constant): """Returns the ``ChoiceEntry`` for the given constant. Parameters ---------- constant: string Name of the constant for which we want the choice entry. Returns ------- ChoiceEntry The instance of ``ChoiceEntry`` for the given constant. Raises ------ KeyError If the constant is not an existing one. Example ------- >>> MY_CHOICES = Choices(('FOO', 1, 'foo'), ('BAR', 2, 'bar')) >>> MY_CHOICES.for_constant('FOO') ('FOO', 1, 'foo') >>> MY_CHOICES.for_constant('FOO').value 1 >>> MY_CHOICES.for_constant('QUX') Traceback (most recent call last): ... KeyError: 'QUX' """ return self.constants[constant] def for_value(self, value): """Returns the ``ChoiceEntry`` for the given value. Parameters ---------- value: ? Value for which we want the choice entry. Returns ------- ChoiceEntry The instance of ``ChoiceEntry`` for the given value. Raises ------ KeyError If the value is not an existing one. Example ------- >>> MY_CHOICES = Choices(('FOO', 1, 'foo'), ('BAR', 2, 'bar')) >>> MY_CHOICES.for_value(1) ('FOO', 1, 'foo') >>> MY_CHOICES.for_value(1).display 'foo' >>> MY_CHOICES.for_value(3) Traceback (most recent call last): ... KeyError: 3 """ return self.values[value] def for_display(self, display): """Returns the ``ChoiceEntry`` for the given display name. Parameters ---------- display: string Display name for which we want the choice entry. Returns ------- ChoiceEntry The instance of ``ChoiceEntry`` for the given display name. Raises ------ KeyError If the display name is not an existing one. Example ------- >>> MY_CHOICES = Choices(('FOO', 1, 'foo'), ('BAR', 2, 'bar')) >>> MY_CHOICES.for_display('foo') ('FOO', 1, 'foo') >>> MY_CHOICES.for_display('foo').constant 'FOO' >>> MY_CHOICES.for_display('qux') Traceback (most recent call last): ... KeyError: 'qux' """ return self.displays[display] def has_constant(self, constant): """Check if the current ``Choices`` object has the given constant. Parameters ---------- constant: string Name of the constant we want to check.. Returns ------- boolean ``True`` if the constant is present, ``False`` otherwise. Example ------- >>> MY_CHOICES = Choices(('FOO', 1, 'foo'), ('BAR', 2, 'bar')) >>> MY_CHOICES.has_constant('FOO') True >>> MY_CHOICES.has_constant('QUX') False """ return constant in self.constants def has_value(self, value): """Check if the current ``Choices`` object has the given value. Parameters ---------- value: ? Value we want to check. Returns ------- boolean ``True`` if the value is present, ``False`` otherwise. Example ------- >>> MY_CHOICES = Choices(('FOO', 1, 'foo'), ('BAR', 2, 'bar')) >>> MY_CHOICES.has_value(1) True >>> MY_CHOICES.has_value(3) False """ return value in self.values def has_display(self, display): """Check if the current ``Choices`` object has the given display name. Parameters ---------- display: string Display name we want to check.. Returns ------- boolean ``True`` if the display name is present, ``False`` otherwise. Example ------- >>> MY_CHOICES = Choices(('FOO', 1, 'foo'), ('BAR', 2, 'bar')) >>> MY_CHOICES.has_display('foo') True >>> MY_CHOICES.has_display('qux') False """ return display in self.displays def __contains__(self, item): """Check if the current ``Choices`` object has the given value. Example ------- >>> MY_CHOICES = Choices(('FOO', 1, 'foo'), ('BAR', 2, 'bar')) >>> 1 in MY_CHOICES True >>> 3 in MY_CHOICES False """ return self.has_value(item) def __getitem__(self, key): """Return the attribute having the given name for the current instance It allows for example to retrieve constant by keys instead of by attributes (as constants are set as attributes to easily get the matching value.) Example ------- >>> MY_CHOICES = Choices(('FOO', 1, 'foo'), ('BAR', 2, 'bar')) >>> MY_CHOICES['FOO'] 1 >>> MY_CHOICES['constants'] is MY_CHOICES.constants True """ # If the key is an int, call ``super`` to access the list[key] item if isinstance(key, int): return super(Choices, self).__getitem__(key) if not hasattr(self, key): raise KeyError("Attribute '%s' not found." % key) return getattr(self, key) def __repr__(self): """String representation of this ``Choices`` instance. Notes ----- It will represent the data passed and store in ``self.entries``, not the data really stored in the base list object, which is in the format expected by django, ie a list of tuples with only value and display name. Here, we display everything. Example ------- >>> Choices(('FOO', 1, 'foo'), ('BAR', 2, 'bar')) [('FOO', 1, 'foo'), ('BAR', 2, 'bar')] """ return '%s' % self.entries def __eq__(self, other): """Override to allow comparison with a tuple of choices, not only a list. It also allow to compare with default django choices, ie (value, display name), or with the format of ``Choices``, ie (constant name, value, display_name). Example ------- >>> MY_CHOICES = Choices(('FOO', 1, 'foo'), ('BAR', 2, 'bar')) >>> MY_CHOICES == [('FOO', 1, 'foo'), ('BAR', 2, 'bar')] True >>> MY_CHOICES == (('FOO', 1, 'foo'), ('BAR', 2, 'bar')) True >>> MY_CHOICES == [(1, 'foo'), (2, 'bar')] True >>> MY_CHOICES == ((1, 'foo'), (2, 'bar')) True """ # Convert to list if it's a tuple. if isinstance(other, tuple): other = list(other) # Compare to the list of entries if the first element seems to have a constant # name as first entry. if other and len(other[0]) == 3: return self.entries == other return super(Choices, self).__eq__(other) # TODO: implement __iadd__ and __add__ def __reduce__(self): """Reducer to make the auto-created classes picklable. Returns ------- tuple A tuple as expected by pickle, to recreate the object when calling ``pickle.loads``: 1. a callable to recreate the object 2. a tuple with all positioned arguments expected by this callable """ return ( # Function to create a ``Choices`` instance create_choice, ( # The ``Choices`` class, or a subclass, used to create the current instance self.__class__, # The list of choices [ ( entry.constant.original_value, entry.value.original_value, entry.display.original_value, entry.attributes, ) for entry in self.entries ], # The list of subsets [ ( # The name subset_name, # The list of constants to use in this subset [ c.original_value for c in getattr(self, subset_name).constants.keys() ] ) for subset_name in self.subsets ], # Extra kwargs to pass to ``__ini__`` { 'dict_class': self.dict_class, 'mutable': self._mutable, } ) ) class OrderedChoices(Choices): """Simple subclass of ``Choices`` using ``OrderedDict`` as ``dict_class`` Example ------- Start by declaring your ``Choices``: >>> ALIGNMENTS = OrderedChoices( ... ('BAD', 10, 'bad'), ... ('NEUTRAL', 20, 'neutral'), ... ('CHAOTIC_GOOD', 30, 'chaotic good'), ... ('GOOD', 40, 'good'), ... ) >>> ALIGNMENTS.dict_class <class 'collections.OrderedDict'> >>> ALIGNMENTS.constants OrderedDict([('BAD', ('BAD', 10, 'bad')), ('NEUTRAL', ('NEUTRAL', 20, 'neutral')), ('CHAOTIC_GOOD', ('CHAOTIC_GOOD', 30, 'chaotic good')), ('GOOD', ('GOOD', 40, 'good'))]) >>> ALIGNMENTS.values OrderedDict([(10, ('BAD', 10, 'bad')), (20, ('NEUTRAL', 20, 'neutral')), (30, ('CHAOTIC_GOOD', 30, 'chaotic good')), (40, ('GOOD', 40, 'good'))]) >>> ALIGNMENTS.displays OrderedDict([('bad', ('BAD', 10, 'bad')), ('neutral', ('NEUTRAL', 20, 'neutral')), ('chaotic good', ('CHAOTIC_GOOD', 30, 'chaotic good')), ('good', ('GOOD', 40, 'good'))]) """ def __init__(self, *choices, **kwargs): # Class to use for dicts if 'dict_class' not in kwargs: kwargs['dict_class'] = OrderedDict super(OrderedChoices, self).__init__(*choices, **kwargs) class AutoDisplayChoices(OrderedChoices): """Subclass of ``OrderedChoices`` that will compose the display value based on the constant. To compose the display value, it will call a ``display_transform`` function, that is defined as a class attribute but can be overridden by passing it to the constructor. Example ------- >>> ALIGNMENTS = AutoDisplayChoices( ... ('BAD', 10), ... ('NEUTRAL', 20), ... ('CHAOTIC_GOOD', 30, 'THE CHAOS'), ... ('GOOD', 40, {'additional': 'attributes'}), ... ) >>> ALIGNMENTS.BAD.display 'Bad' >>> ALIGNMENTS.NEUTRAL.choice_entry ('NEUTRAL', 20, 'Neutral') >>> ALIGNMENTS.CHAOTIC_GOOD.display 'THE CHAOS' >>> ALIGNMENTS.GOOD.choice_entry.additional 'attributes' """ display_transform = staticmethod(lambda const: const.lower().replace('_', ' ').capitalize()) def __init__(self, *choices, **kwargs): self.display_transform = kwargs.pop('display_transform', None) or self.display_transform super(AutoDisplayChoices, self).__init__(*choices, **kwargs) def _convert_choices(self, choices): """Auto create display values then call super method""" final_choices = [] for choice in choices: if isinstance(choice, ChoiceEntry): final_choices.append(choice) continue original_choice = choice choice = list(choice) length = len(choice) assert 2 <= length <= 4, 'Invalid number of entries in %s' % (original_choice,) final_choice = [] # do we have attributes? if length > 2 and isinstance(choice[-1], Mapping): final_choice.append(choice.pop()) elif length == 4: attributes = choice.pop() assert attributes is None or isinstance(attributes, Mapping), 'Last argument must be a dict-like object in %s' % (original_choice,) if attributes: final_choice.append(attributes) # the constant final_choice.insert(0, choice.pop(0)) # the db value final_choice.insert(1, choice.pop(0)) if len(choice): # we were given a display value final_choice.insert(2, choice.pop(0)) else: # no display value, we compute it from the constant final_choice.insert(2, self.display_transform(final_choice[0])) final_choices.append(final_choice) return super(AutoDisplayChoices, self)._convert_choices(final_choices) class AutoChoices(AutoDisplayChoices): """Subclass of ``AutoDisplayChoices`` that will also compose the value to be saved based on the constant. To compose the display value, it will call a ``display_transform`` function, that is defined as a class attribute but can be overridden by passing it to the constructor. In this class, the ``*choices`` argument can simply be strings, or tuples with one element (or two to add additional attributes) Example ------- >>> ALIGNMENTS = AutoChoices( ... 'BAD', ... ('NEUTRAL', ), ... ('CHAOTIC_GOOD', 'chaos', 'THE CHAOS'), ... ('GOOD', None, 'Yeah', {'additional': 'attributes'}), ... ) >>> ALIGNMENTS.BAD.value 'bad' >>> ALIGNMENTS.BAD.display 'Bad' >>> ALIGNMENTS.NEUTRAL.choice_entry ('NEUTRAL', 'neutral', 'Neutral') >>> ALIGNMENTS.CHAOTIC_GOOD.value 'chaos' >>> ALIGNMENTS.CHAOTIC_GOOD.display 'THE CHAOS' >>> ALIGNMENTS.GOOD.value 'good' >>> ALIGNMENTS.GOOD.display 'Yeah' >>> ALIGNMENTS.GOOD.choice_entry.additional 'attributes' """ value_transform = staticmethod(lambda const: const.lower()) def __init__(self, *choices, **kwargs): self.value_transform = kwargs.pop('value_transform', None) or self.value_transform super(AutoChoices, self).__init__(*choices, **kwargs) def add_choices(self, *choices, **kwargs): """Disallow super method to thing the first argument is a subset name""" return super(AutoChoices, self).add_choices(_NO_SUBSET_NAME_, *choices, **kwargs) def _convert_choices(self, choices): """Auto create db values then call super method""" final_choices = [] for choice in choices: if isinstance(choice, ChoiceEntry): final_choices.append(choice) continue original_choice = choice if isinstance(choice, basestring): if choice == _NO_SUBSET_NAME_: continue choice = [choice, ] else: choice = list(choice) length = len(choice) assert 1 <= length <= 4, 'Invalid number of entries in %s' % (original_choice,) final_choice = [] # do we have attributes? if length > 1 and isinstance(choice[-1], Mapping): final_choice.append(choice.pop()) elif length == 4: attributes = choice.pop() assert attributes is None or isinstance(attributes, Mapping), 'Last argument must be a dict-like object in %s' % (original_choice,) if attributes: final_choice.append(attributes) # the constant final_choice.insert(0, choice.pop(0)) if len(choice): # we were given a db value final_choice.insert(1, choice.pop(0)) if len(choice): # we were given a display value final_choice.insert(2, choice.pop(0)) else: # set None to compute it later final_choice.insert(1, None) if final_choice[1] is None: # no db value, we compute it from the constant final_choice[1] = self.value_transform(final_choice[0]) final_choices.append(final_choice) return super(AutoChoices, self)._convert_choices(final_choices) def create_choice(klass, choices, subsets, kwargs): """Create an instance of a ``Choices`` object. Parameters ---------- klass : type The class to use to recreate the object. choices : list(tuple) A list of choices as expected by the ``__init__`` method of ``klass``. subsets : list(tuple) A tuple with an entry for each subset to create. Each entry is a list with two entries: - the name of the subsets - a list of the constants to use for this subset kwargs : dict Extra parameters expected on the ``__init__`` method of ``klass``. Returns ------- Choices A new instance of ``Choices`` (or other class defined in ``klass``). """ obj = klass(*choices, **kwargs) for subset in subsets: obj.add_subset(*subset) return obj ```
{ "source": "joehybird/django-north", "score": 2 }
#### File: management/commands/runserver.py ```python from django.contrib.staticfiles.management.commands.runserver import \ Command as RunserverCommand from django.db import connection from django_north.management import migrations class Command(RunserverCommand): help = ("Starts a lightweight Web server for development and also " "serves static files.") def check_migrations(self): try: migration_plan = migrations.build_migration_plan(connection) except migrations.DBException as e: self.stdout.write(self.style.NOTICE("\n{}\n".format(e))) return if migration_plan is None: self.stdout.write(self.style.NOTICE("\nSchema not inited.\n")) return has_migrations = any( [ any([not applied for mig, applied, path, is_manual in plan['plan']]) for plan in migration_plan['plans'] ] ) if has_migrations: self.stdout.write(self.style.NOTICE( "\nYou have unapplied migrations; your app may not work " "properly until they are applied." )) self.stdout.write(self.style.NOTICE( "Run 'python manage.py migrate' to apply them.\n" )) ``` #### File: management/commands/showmigrations.py ```python import logging from django.conf import settings from django.core.management.base import BaseCommand from django.db import connections from django.db import DEFAULT_DB_ALIAS from django_north.management import migrations logger = logging.getLogger(__name__) class Command(BaseCommand): help = "Shows all available migrations for the current project" def add_arguments(self, parser): parser.add_argument( '--database', action='store', dest='database', default=DEFAULT_DB_ALIAS, help='Nominates a database to synchronize. ' 'Defaults to the "default" database.', ) def handle(self, *args, **options): if getattr(settings, 'NORTH_MANAGE_DB', False) is not True: logger.info('showmigrations command disabled') return self.connection = connections[options['database']] return self.show_list() def show_list(self): """ Shows a list of all migrations on the system, from the version used to init the DB, to the current target version. """ migration_plan = migrations.build_migration_plan(self.connection) if migration_plan is None: self.stdout.write(self.style.ERROR("Schema not inited")) return self.stdout.write( self.style.MIGRATE_HEADING("Current version of the DB:")) self.stdout.write( self.style.MIGRATE_LABEL( " {}".format(migration_plan['current_version']))) self.stdout.write( self.style.MIGRATE_HEADING("Schema used to init the DB:")) self.stdout.write( self.style.MIGRATE_LABEL( " {}".format(migration_plan['init_version']))) # display migration status for each version to apply for plan in migration_plan['plans']: self.stdout.write(self.style.MIGRATE_HEADING("Version:")) self.stdout.write( self.style.MIGRATE_LABEL(" {}".format(plan['version']))) # print plan for mig, applied, path, is_manual in plan['plan']: title = mig if is_manual: title += ' (manual)' if applied: self.stdout.write(" [X] %s" % title) else: self.stdout.write(" [ ] %s" % title) ```
{ "source": "joehybird/django-perf-rec", "score": 2 }
#### File: django-perf-rec/django_perf_rec/sql.py ```python from django.utils.lru_cache import lru_cache from sqlparse import parse, tokens from sqlparse.sql import IdentifierList, Token @lru_cache(maxsize=500) def sql_fingerprint(query, hide_columns=True): """ Simplify a query, taking away exact values and fields selected. Imperfect but better than super explicit, value-dependent queries. """ parsed_query = parse(query)[0] sql_recursively_simplify(parsed_query, hide_columns=hide_columns) return str(parsed_query) sql_deleteable_tokens = ( tokens.Number, tokens.Number.Float, tokens.Number.Integer, tokens.Number.Hexadecimal, tokens.String, tokens.String.Single, ) def sql_recursively_simplify(node, hide_columns=True): # Erase which fields are being updated in an UPDATE if node.tokens[0].value == 'UPDATE': i_set = [i for (i, t) in enumerate(node.tokens) if t.value == 'SET'][0] i_where = [i for (i, t) in enumerate(node.tokens) if _is_group(t) and t.tokens[0].value == 'WHERE'][0] middle = [Token(tokens.Punctuation, ' ... ')] node.tokens = node.tokens[:i_set + 1] + middle + node.tokens[i_where:] # Erase the names of savepoints since they are non-deteriministic if hasattr(node, 'tokens'): # SAVEPOINT x if str(node.tokens[0]) == 'SAVEPOINT': node.tokens[2].tokens[0].value = '`#`' return # RELEASE SAVEPOINT x elif len(node.tokens) >= 3 and node.tokens[2].value == 'SAVEPOINT': node.tokens[4].tokens[0].value = "`#`" return # ROLLBACK TO SAVEPOINT X token_values = [getattr(t, 'value', '') for t in node.tokens] if len(node.tokens) == 7 and token_values[:6] == ['ROLLBACK', ' ', 'TO', ' ', 'SAVEPOINT', ' ']: node.tokens[6].tokens[0].value = '`#`' return # Erase volatile part of PG cursor name if node.tokens[0].value.startswith('"_django_curs_'): node.tokens[0].value = '"_django_curs_#"' one_before = None for token in node.tokens: ttype = getattr(token, 'ttype', None) # Detect IdentifierList tokens within an ORDER BY, GROUP BY or HAVING # clauses inside_order_group_having = match_keyword(one_before, ['ORDER BY', 'GROUP BY', 'HAVING']) replace_columns = not inside_order_group_having and hide_columns if isinstance(token, IdentifierList) and replace_columns: token.tokens = [Token(tokens.Punctuation, '...')] elif hasattr(token, 'tokens'): sql_recursively_simplify(token, hide_columns=hide_columns) elif ttype in sql_deleteable_tokens: token.value = '#' elif ttype == tokens.Whitespace.Newline: token.value = '' # Erase newlines elif ttype == tokens.Whitespace: token.value = ' ' elif getattr(token, 'value', None) == 'NULL': token.value = '#' if not token.is_whitespace: one_before = token def match_keyword(token, keywords): """ Checks if the given token represents one of the given keywords """ if not token: return False if not token.is_keyword: return False return token.value.upper() in keywords def _is_group(token): """ sqlparse 0.2.2 changed it from a callable to a bool property """ is_group = token.is_group if isinstance(is_group, bool): return is_group else: return is_group() ``` #### File: django-perf-rec/django_perf_rec/utils.py ```python import difflib import inspect from collections import namedtuple try: from _pytest.fixtures import FixtureRequest except ImportError: FixtureRequest = None TestDetails = namedtuple('TestDetails', ['file_path', 'class_name', 'test_name']) def current_test(): """ Use a little harmless stack inspection to determine the test that is currently running. """ frame = inspect.currentframe() try: while True: details = ( _get_details_from_test_function(frame) or _get_details_from_pytest_request(frame) ) if details: return details # Next frame frame = frame.f_back if frame is None: break raise RuntimeError("Could not automatically determine the test name.") finally: # Always delete frame references to help garbage collector del frame def _get_details_from_test_function(frame): if not frame.f_code.co_name.startswith('test_'): return file_path = frame.f_globals['__file__'] # May be a pytest function test so we can't assume 'self' exists its_self = frame.f_locals.get('self', None) if its_self is None: class_name = None else: class_name = its_self.__class__.__name__ test_name = frame.f_code.co_name return TestDetails( file_path=file_path, class_name=class_name, test_name=test_name, ) def _get_details_from_pytest_request(frame): if FixtureRequest is None: return request = frame.f_locals.get('request', None) if request is None: return if request.cls is not None: class_name = request.cls.__name__ else: class_name = None return TestDetails( file_path=request.fspath.strpath, class_name=class_name, test_name=request.function.__name__, ) def sorted_names(names): """ Sort a list of names but keep the word 'default' first if it's there. """ names = list(names) have_default = False if 'default' in names: names.remove('default') have_default = True sorted_names = sorted(names) if have_default: sorted_names = ['default'] + sorted_names return sorted_names def record_diff(old, new): """ Generate a human-readable diff of two performance records. """ return '\n'.join(difflib.ndiff( ['%s: %s' % (k, v) for op in old for k, v in op.items()], ['%s: %s' % (k, v) for op in new for k, v in op.items()], )) ```
{ "source": "joehybird/factory_boy", "score": 2 }
#### File: django_demo/generic_foreignkey/tests.py ```python from django.contrib.auth.models import User, Group from django.contrib.contenttypes.models import ContentType from django.test import TestCase from .factories import UserFactory, GroupFactory, TaggedUserFactory, TaggedGroupFactory class GenericFactoryTest(TestCase): def test_user_factory(self): user = UserFactory() self.assertEqual(user.first_name, 'Adam') def test_group_factory(self): group = GroupFactory() self.assertEqual(group.name, 'group') def test_generic_user(self): model = TaggedUserFactory(tag='user') self.assertEqual(model.tag, 'user') self.assertTrue(isinstance(model.content_object, User)) self.assertEqual(model.content_type, ContentType.objects.get_for_model(model.content_object)) def test_generic_group(self): model = TaggedGroupFactory(tag='group') self.assertEqual(model.tag, 'group') self.assertTrue(isinstance(model.content_object, Group)) self.assertEqual(model.content_type, ContentType.objects.get_for_model(model.content_object)) ``` #### File: factory_boy/tests/test_alchemy.py ```python import factory from .compat import unittest from .compat import mock import warnings from factory.alchemy import SQLAlchemyModelFactory from .alchemyapp import models class StandardFactory(SQLAlchemyModelFactory): class Meta: model = models.StandardModel sqlalchemy_session = models.session id = factory.Sequence(lambda n: n) foo = factory.Sequence(lambda n: 'foo%d' % n) class NonIntegerPkFactory(SQLAlchemyModelFactory): class Meta: model = models.NonIntegerPk sqlalchemy_session = models.session id = factory.Sequence(lambda n: 'foo%d' % n) class NoSessionFactory(SQLAlchemyModelFactory): class Meta: model = models.StandardModel sqlalchemy_session = None id = factory.Sequence(lambda n: n) class SQLAlchemyPkSequenceTestCase(unittest.TestCase): def setUp(self): super(SQLAlchemyPkSequenceTestCase, self).setUp() StandardFactory.reset_sequence(1) NonIntegerPkFactory._meta.sqlalchemy_session.rollback() def test_pk_first(self): std = StandardFactory.build() self.assertEqual('foo1', std.foo) def test_pk_many(self): std1 = StandardFactory.build() std2 = StandardFactory.build() self.assertEqual('foo1', std1.foo) self.assertEqual('foo2', std2.foo) def test_pk_creation(self): std1 = StandardFactory.create() self.assertEqual('foo1', std1.foo) self.assertEqual(1, std1.id) StandardFactory.reset_sequence() std2 = StandardFactory.create() self.assertEqual('foo0', std2.foo) self.assertEqual(0, std2.id) def test_pk_force_value(self): std1 = StandardFactory.create(id=10) self.assertEqual('foo1', std1.foo) # sequence and pk are unrelated self.assertEqual(10, std1.id) StandardFactory.reset_sequence() std2 = StandardFactory.create() self.assertEqual('foo0', std2.foo) # Sequence doesn't care about pk self.assertEqual(0, std2.id) class SQLAlchemySessionPersistenceTestCase(unittest.TestCase): def setUp(self): super(SQLAlchemySessionPersistenceTestCase, self).setUp() self.mock_session = mock.NonCallableMagicMock(spec=models.session) def test_flushing(self): class FlushingPersistenceFactory(StandardFactory): class Meta: sqlalchemy_session = self.mock_session sqlalchemy_session_persistence = 'flush' self.mock_session.commit.assert_not_called() self.mock_session.flush.assert_not_called() FlushingPersistenceFactory.create() self.mock_session.commit.assert_not_called() self.mock_session.flush.assert_called_once_with() def test_committing(self): class CommittingPersistenceFactory(StandardFactory): class Meta: sqlalchemy_session = self.mock_session sqlalchemy_session_persistence = 'commit' self.mock_session.commit.assert_not_called() self.mock_session.flush.assert_not_called() CommittingPersistenceFactory.create() self.mock_session.commit.assert_called_once_with() self.mock_session.flush.assert_not_called() def test_noflush_nocommit(self): class InactivePersistenceFactory(StandardFactory): class Meta: sqlalchemy_session = self.mock_session sqlalchemy_session_persistence = None self.mock_session.commit.assert_not_called() self.mock_session.flush.assert_not_called() InactivePersistenceFactory.create() self.mock_session.commit.assert_not_called() self.mock_session.flush.assert_not_called() def test_type_error(self): with self.assertRaises(TypeError): class BadPersistenceFactory(StandardFactory): class Meta: sqlalchemy_session_persistence = 'invalid_persistence_option' model = models.StandardModel def test_force_flush_deprecation(self): with warnings.catch_warnings(record=True) as warning_list: class OutdatedPersistenceFactory(StandardFactory): class Meta: force_flush = True sqlalchemy_session = self.mock_session # There should be *1* DeprecationWarning self.assertEqual(len(warning_list), 1) warning = warning_list[0] self.assertTrue(issubclass(warning.category, DeprecationWarning)) # The warning text should point to the class declaration. text = warnings.formatwarning(warning.message, warning.category, warning.filename, warning.lineno) self.assertIn('test_alchemy.py', text) self.assertIn('class OutdatedPersistenceFactory', text) # However, we shall keep the old-style behavior. self.mock_session.commit.assert_not_called() self.mock_session.flush.assert_not_called() OutdatedPersistenceFactory.create() self.mock_session.commit.assert_not_called() self.mock_session.flush.assert_called_once_with() class SQLAlchemyNonIntegerPkTestCase(unittest.TestCase): def setUp(self): super(SQLAlchemyNonIntegerPkTestCase, self).setUp() NonIntegerPkFactory.reset_sequence() NonIntegerPkFactory._meta.sqlalchemy_session.rollback() def test_first(self): nonint = NonIntegerPkFactory.build() self.assertEqual('foo0', nonint.id) def test_many(self): nonint1 = NonIntegerPkFactory.build() nonint2 = NonIntegerPkFactory.build() self.assertEqual('foo0', nonint1.id) self.assertEqual('foo1', nonint2.id) def test_creation(self): nonint1 = NonIntegerPkFactory.create() self.assertEqual('foo0', nonint1.id) NonIntegerPkFactory.reset_sequence() nonint2 = NonIntegerPkFactory.build() self.assertEqual('foo0', nonint2.id) def test_force_pk(self): nonint1 = NonIntegerPkFactory.create(id='foo10') self.assertEqual('foo10', nonint1.id) NonIntegerPkFactory.reset_sequence() nonint2 = NonIntegerPkFactory.create() self.assertEqual('foo0', nonint2.id) class SQLAlchemyNoSessionTestCase(unittest.TestCase): def test_create_raises_exception_when_no_session_was_set(self): with self.assertRaises(RuntimeError): NoSessionFactory.create() def test_build_does_not_raises_exception_when_no_session_was_set(self): inst0 = NoSessionFactory.build() inst1 = NoSessionFactory.build() self.assertEqual(inst0.id, 0) self.assertEqual(inst1.id, 1) ```
{ "source": "joehybird/mock-services", "score": 3 }
#### File: mock-services/mock_services/service.py ```python import json import logging import re try: from urllib import parse as urlparse except ImportError: # Python 2 import urlparse import attr from . import storage from .decorators import to_json from .decorators import trap_errors from .exceptions import Http400 from .exceptions import Http404 logger = logging.getLogger(__name__) @attr.s class ResourceContext(object): hostname = attr.ib() resource = attr.ib() action = attr.ib(default='default') id = attr.ib(default=None) @property def key(self): return '{hostname}/{resource}/{action}'.format(**attr.asdict(self)) def parse_url(request, url_pattern, id=None, require_id=False): logger.debug('url_pattern: %s', url_pattern) logger.debug('url: %s', request.url) url_kw = re.compile(url_pattern).search(request.url).groupdict() logger.debug('url_kw: %s', url_kw) if 'resource' not in url_kw: raise Http404 if require_id and 'id' not in url_kw: raise Http404 hostname = urlparse.urlparse(request.url).hostname logger.debug('hostname: %s', hostname) action = url_kw.pop('action', 'default') logger.debug('action: %s', action) resource_context = ResourceContext( hostname=hostname, resource=url_kw.pop('resource'), action=action, id=url_kw.pop('id', id), ) logger.debug('resource_context: %s', attr.asdict(resource_context)) return resource_context def validate_data(request, attrs=None, validators=None): logger.debug('attrs: %s', attrs) logger.debug('body: %s', request.body) data = json.loads(request.body) data_to_validate = {k: v for k, v in data.items() if k in (attrs or {}).keys()} logger.debug('data_to_validate: %s', data_to_validate) # missing field if attrs and not data_to_validate: raise Http400 # invalid field if data_to_validate: try: attr.make_class("C", attrs)(**data_to_validate) except (TypeError, ValueError): raise Http400 # custom validation for validate_func in (validators or []): validate_func(request) return data @to_json @trap_errors def list_cb(request, context, url=None, **kwargs): resource_context = parse_url(request, url) context.status_code = 200 return storage.to_list(resource_context) @to_json @trap_errors def get_cb(request, context, url=None, **kwargs): resource_context = parse_url(request, url, require_id=True) context.status_code = 200 return storage.get(resource_context) @trap_errors def head_cb(request, context, url=None, id_name='id', **kwargs): resource_context = parse_url(request, url, require_id=True) context.headers = dict(context.headers or {}, **{id_name: resource_context.id}) context.status_code = 200 return '' @to_json @trap_errors def post_cb(request, context, url=None, id_name='id', id_factory=int, attrs=None, validators=None, **kwargs): data = validate_data(request, attrs=attrs, validators=validators) id = storage.next_id(id_factory) logger.debug('id: %s', id) data.update({ id_name: id }) logger.debug('data: %s', data) resource_context = parse_url(request, url, id=id) context.status_code = 201 return storage.add(resource_context, data) @to_json @trap_errors def patch_cb(request, context, url=None, attrs=None, validators=None, **kwargs): data = validate_data(request, attrs=attrs, validators=validators) logger.debug('data: %s', data) resource_context = parse_url(request, url, require_id=True) context.status_code = 200 return storage.update(resource_context, data) put_cb = patch_cb @trap_errors def delete_cb(request, context, url=None, **kwargs): resource_context = parse_url(request, url, require_id=True) context.status_code = 204 return storage.remove(resource_context) or '' ``` #### File: mock-services/tests/test_http_mock.py ```python import logging import unittest import requests from requests.exceptions import ConnectionError from mock_services import http_mock from mock_services import is_http_mock_started from mock_services import no_http_mock from mock_services import reset_rules from mock_services import start_http_mock from mock_services import stop_http_mock from mock_services import update_http_rules from mock_services import with_http_mock logging.basicConfig( level=logging.INFO, format='%(asctime)s %(levelname)-8s %(name)s %(message)s' ) def fake_duckduckgo_cb(request, context): return 'Coincoin!' rules = [ { 'text': fake_duckduckgo_cb, 'headers': {'Content-Type': 'text/html'}, 'method': 'GET', 'url': r'^https://duckduckgo.com/\?q=' }, ] class HttpTestCase(unittest.TestCase): def setUp(self): stop_http_mock() reset_rules() http_mock.set_allow_external(False) tearDown = setUp def test_reset_rules(self): self.assertFalse(http_mock.get_rules()) update_http_rules(rules) self.assertEqual(len(http_mock.get_rules()), 1) # reset reset_rules() self.assertFalse(http_mock.get_rules()) def test_update_rules(self): self.assertFalse(http_mock.get_rules()) # add first rule update_http_rules(rules) self.assertEqual(len(http_mock.get_rules()), 1) matcher = http_mock.get_rules()[0] self.assertEqual(matcher._method, 'GET') self.assertTrue(hasattr(matcher._url, 'match')) self.assertTrue(matcher._url.match('https://duckduckgo.com/?q=mock-services')) # noqa response = matcher._responses[0] self.assertTrue(hasattr(response._params['text'], '__call__')) self.assertEqual(response._params['headers']['Content-Type'], 'text/html') # noqa # add second rule update_http_rules([ { 'method': 'POST', 'status_code': 201, 'text': '{"coin": 1}', 'url': r'http://dummy/', }, ]) self.assertEqual(len(http_mock.get_rules()), 2) matcher = http_mock.get_rules()[1] self.assertTrue(hasattr(matcher._url, 'match')) self.assertTrue(matcher._url.match('http://dummy/')) self.assertEqual(matcher._method, 'POST') response = matcher._responses[0] self.assertEqual(response._params['status_code'], 201) self.assertEqual(response._params['text'], '{"coin": 1}') self.assertEqual(response._params['headers']['Content-Type'], 'text/plain') # noqa def test_start_http_mock(self): update_http_rules(rules) response = requests.get('https://duckduckgo.com/?q=mock-services') self.assertEqual(response.status_code, 200) self.assertEqual(response.content[:15], b'<!DOCTYPE html>') self.assertTrue(start_http_mock()) response = requests.get('https://duckduckgo.com/?q=mock-services') self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'Coincoin!') def test_stop_http_mock(self): update_http_rules(rules) self.assertTrue(start_http_mock()) response = requests.get('https://duckduckgo.com/?q=mock-services') self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'Coincoin!') self.assertTrue(stop_http_mock()) response = requests.get('https://duckduckgo.com/?q=mock-services') self.assertEqual(response.status_code, 200) self.assertEqual(response.content[:15], b'<!DOCTYPE html>') def test_restart_http_mock(self): update_http_rules(rules) start_http_mock() response = requests.get('https://duckduckgo.com/?q=mock-services') self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'Coincoin!') self.assertTrue(stop_http_mock()) # already stopped self.assertFalse(stop_http_mock()) response = requests.get('https://duckduckgo.com/?q=mock-services') self.assertEqual(response.status_code, 200) self.assertEqual(response.content[:15], b'<!DOCTYPE html>') self.assertTrue(start_http_mock()) response = requests.get('https://duckduckgo.com/?q=mock-services') self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'Coincoin!') # already started self.assertFalse(start_http_mock()) def test_is_http_mock_started(self): update_http_rules(rules) self.assertFalse(is_http_mock_started()) self.assertTrue(start_http_mock()) self.assertTrue(is_http_mock_started()) def test_no_http_mock(self): update_http_rules(rules) self.assertTrue(start_http_mock()) @no_http_mock def please_do_not_mock_me(): self.assertFalse(is_http_mock_started()) response = requests.get('https://duckduckgo.com/?q=mock-services') self.assertEqual(response.status_code, 200) self.assertEqual(response.content[:15], b'<!DOCTYPE html>') self.assertTrue(is_http_mock_started()) def test_with_http_mock(self): update_http_rules(rules) self.assertFalse(is_http_mock_started()) @with_http_mock def please_do_not_mock_me(): self.assertTrue(is_http_mock_started()) response = requests.get('https://duckduckgo.com/?q=mock-services') self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'Coincoin!') self.assertFalse(is_http_mock_started()) def test_real_http_0(self): update_http_rules(rules) self.assertTrue(start_http_mock()) # mocked response = requests.get('https://duckduckgo.com/?q=mock-services') self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'Coincoin!') # not mocked but fail self.assertRaises(ConnectionError, requests.get, 'https://www.google.com/#q=mock-services') # test we keep the request try: url = 'https://www.google.com/#q=mock-services' requests.get(url) except ConnectionError as e: self.assertEqual(e.request.url, url) def test_real_http_1(self): update_http_rules(rules) self.assertTrue(start_http_mock()) # allow external call http_mock.set_allow_external(True) # mocked response = requests.get('https://duckduckgo.com/?q=mock-services') self.assertEqual(response.status_code, 200) self.assertEqual(response.content, b'Coincoin!') # not mocked but do an external call response = requests.get('https://www.google.com/#q=mock-services') self.assertEqual(response.status_code, 200) self.assertEqual(response.content[:15], b'<!doctype html>') ```
{ "source": "JoeinChina/DeepWeather", "score": 3 }
#### File: src/runtime/capture.py ```python from model_config import base_config import imghdr import os from datetime import datetime, timedelta from PIL import Image import sys sys.path.append(base_config['append_path']) def check_last(path0, time2): filename = time2.strftime("%Y%m%d%H%M") + '.PNG' if os.path.exists(os.path.join(path0, filename)) and imghdr.what(os.path.join(path0, filename)) != None: return filename else: for i in range(1, 100): filename1 = (time2 - timedelta(minutes=(6 * i)) ).strftime("%Y%m%d%H%M") + '.PNG' if os.path.exists(os.path.join(path0, filename1)) and imghdr.what(os.path.join(path0, filename1)) != None: break return filename1 def check_next(path0, time2): filename = time2.strftime("%Y%m%d%H%M") + '.PNG' if os.path.exists(os.path.join(path0, filename)) and imghdr.what(os.path.join(path0, filename)) != None: return filename else: for i in range(1, 100): filename1 = (time2 + timedelta(minutes=(6 * i)) ).strftime("%Y%m%d%H%M") + '.PNG' if os.path.exists(os.path.join(path0, filename1)) and imghdr.what(os.path.join(path0, filename1)) != None: break return filename1 def extract_last(path0, time1, path1): with Image.open(os.path.join(path0, check_last(path0, time1)), 'r') as f: f.save(os.path.join(path1, time1.strftime("%Y%m%d%H%M") + '.png')) def extract_next(path0, time1, path1): with Image.open(os.path.join(path0, check_next(path0, time1))) as f: f.save(os.path.join(path1, time1.strftime("%Y%m%d%H%M") + '.png')) def check_dir(path1): if not os.path.exists(path1): os.makedirs(path1) assert os.path.exists(path1) def main(): predict_moment = datetime.strptime(sys.argv[1], "%Y%m%d%H%M") raw_img_path = raw_image_path to_folder = to_path check_dir(to_folder) extract_to = os.path.join(to_folder, predict_moment.strftime("%Y%m%d%H%M")) check_dir(extract_to) check_dir(os.path.join(extract_to, 'input10')) check_dir(os.path.join(extract_to, 'true20')) for i in range(10): extract_last(path0=os.path.join(raw_img_path, predict_moment.strftime('%Y%m')), time1=predict_moment - timedelta(minutes=(6 * i)), path1=os.path.join(extract_to, 'input10')) for j in range(1, 21): extract_next(path0=os.path.join(raw_img_path, predict_moment.strftime("%Y%m")), time1=predict_moment + timedelta(minutes=(6 * j)), path1=os.path.join(extract_to, 'true20')) if __name__ == '__main__': main() ``` #### File: src/runtime/deduce_emsemble.py ```python from settings import * import sys sys.path.append(append_path) import os import os.path import random import theano import json from utils import * from reader import * from factorWeather import FactorWeatherModel import sparnn from sparnn.optimizers import RMSProp import argparse import numpy as np import datetime import time import logging import ConfigParser from netCDF4 import Dataset from crypt import crypt from mylog import mylog as lg # sparnn.utils.quick_logging_config('deep-weather.log') def float_formatter(x): return "%.2f" % x np.set_printoptions(formatter={'float_kind': float_formatter}) # Enable or disable parallel computation on the CPU with OpenMP theano.config.openmp = True theano.config.optimizer = "fast_compile" # The number of user stack level to keep for variables. theano.config.traceback.limit = 100 my_log = lg.init_logger(deduce_log_path) # dictMerged2=dict(dict1, **dict2) radar_config = { 'name': 'radar', 'max': 14.0, 'offset': 0.0, 'cmap': 'radar', 'cost_func': 'Fade', 'level': 0, 'data_dir': radar_data_dir, 'save_dir': radar_save_dir } wind_config = { 'name': 'wind', 'level': 10, 'max': 50.0, 'offset': 25.0, 'cmap': 'wind', 'data_dir': wind_data_dir, 'save_dir': wind_save_dir, 'cost_func': 'BinaryCrossEntropy' } pgm_config = { 'name': 'pgm', 'level': 10, 'max': 255.0, 'offset': 0, 'cmap': 'pgm', 'data_dir': pgm_data_dir, 'save_dir': pgm_save_dir, 'cost_func': 'Fade' } model_config = { 'interval': 6, 'input_seq_length': 10, 'output_seq_length': 20, 'minibatch_size': 8, 'learning_rate': 0.003, # ori 0.002 'patch_size': 2, 'max_epoch': 20, 'layer_num': 6, 'layer_name': 'lstm', 'kernel_size': 3, 'kernel_num': (64, 64, 64), 'size': (200, 200), 'compress': 2, 'model_path': model_path, 'model_name': None, #'vmax': 100,#instead of 'model' 'use_input_mask': False, 'input_data_type': 'float32', 'is_output_sequence': True, #'name': 'DeepWeather', 'cost_func': 'Fade', #'cost_func': 'BinaryCrossEntropy' # } def check_crypt(): with open('crypt') as f: line = f.readline() if line == crypt(): return True return False def get_config(mode='train', src='radar'): if src == 'radar': config = dict(model_config, **radar_config) elif src == 'wind': config = dict(model_config, **wind_config) elif src == 'pgm': config = dict(model_config, **pgm_config) if mode == "train": config['start_date'] = start_date config['end_date'] = end_date elif mode == "valid": config['start_date'] = valid_start_date config['end_date'] = valid_end_date elif mode == "test": config['start_date'] = test_start_date config['end_date'] = test_end_date return config def predict(begin_date, end_date, save_mode, src='radar'): config = get_config('test', src=src) config['savejson'] = save_mode save_dir = config['save_dir'] if not os.path.exists(save_dir): os.makedirs(save_dir) model_path = config['model_path'] model_list = ['DeepWeatherModel_5690.pkl', 'DeepWeatherModel_800.pkl'] predict_res = [[] for i in range(len(model_list) + 1)] for x, model_name in enumerate(model_list): print('Load model:' + model_path + '/' + model_name) config['model_name'] = model_name model = FactorWeatherModel.load(os.path.join(model_path, model_name)) print("done") model.set_mode("predict") predict_func = theano.function(inputs=model.interface_layer.input_symbols(), outputs=sparnn.utils.quick_reshape_patch_back(model.middle_layers[-1].output, config['patch_size']), on_unused_input='ignore') it = begin_date while(it <= end_date): #it += datetime.timedelta(minutes=6) start_date = it - \ datetime.timedelta( minutes=(config['input_seq_length'] - 1) * config['interval']) config['start_date'] = start_date config['end_date'] = it print('loading data', config['start_date'], config['end_date']) try: test_iterator = load_data(config, mode='predict') test_iterator.begin(do_shuffle=False) except Exception as e: print(Exception, e) continue result = predict_func(*(test_iterator.input_batch())) * \ config['max'] - config['offset'] result_dir = os.path.join(save_dir, it.strftime('%Y%m%d%H%M')) if not os.path.exists(result_dir): os.makedirs(result_dir) input_image = np.reshape(test_iterator.input_batch()[ 0][-1][0], (1, config['size'][0], config['size'][1]))[0] * config['max'] - config['offset'] #write_image_update(input_image, result_dir, it, config) print('predict', it, result.shape, input_image.max(), input_image.min(), result.max(), result.min()) for i, r in enumerate(result): image = np.reshape( r[0], (1, config['size'][0], config['size'][1]))[0] image = resize( image, (config['size'][0] * config['compress'], config['size'][1] * config['compress'])) predict_res[x].append(image) write_image_update(image, result_dir, it, config, predict=i) it += datetime.timedelta(minutes=6) for i in range(config['output_seq_length']): # file1 = begin_date.strftime( # "%Y%m%d%H%M") + "-" + str(i) + "-" + model_list[0][:-4] + '.json' # file2 = begin_date.strftime( # "%Y%m%d%H%M") + "-" + str(i) + "-" + model_list[1][:-4] + '.json' # a1 = np.array(json.load(open(os.path.join( # save_dir + "/" + begin_date.strftime("%Y%m%d%H%M"), file1)))) # a2 = np.array(json.load(open(os.path.join( # save_dir + "/" + begin_date.strftime("%Y%m%d%H%M"), file2)))) a1 = predict_res[0][i] a2 = predict_res[1][i] A = 0.7 * a1 + 0.5 * a2 config['savejson'] = 'both' predict_res[-1].append(A) # write_image(A, os.path.join(save_dir, begin_date.strftime("%Y%m%d%H%M")), # begin_date, config, predict=i) write_image(predict_res[-1][i], os.path.join(save_dir, begin_date.strftime("%Y%m%d%H%M")), begin_date, config, predict=i) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Deduce future images.') parser.add_argument('mode', metavar='base', type=str, default='run', help='Mode: run, train') parser.add_argument('--src', type=str, default='radar', required=False, help='Type of data: radar, pgm, wind') parser.add_argument('save_mode', type=str, default='onlypng', help='if save jsonfile: onlypng or both') parser.add_argument('start', type=str, default='201902192000', help='predict start time') parser.add_argument('end', type=str, default='201902192030', help='predict end time') args = parser.parse_args() mode = args.mode src = args.src save_mode = args.save_mode start = args.start end = args.end if mode == 'train': try: train(src=src) my_log.info('End of the training') except Exception as e: my_log.info('error2: ' + str(e)) elif mode == 'predict': begin_date = datetime.datetime.strptime(start, "%Y%m%d%H%M") end_date = datetime.datetime.strptime(end, "%Y%m%d%H%M") predict(begin_date, end_date, save_mode, src=src) elif mode == 'run': run(src=src) ``` #### File: src/runtime/prediction_remover.py ```python import os import shutil import sys from datetime import datetime, timedelta from settings import * from mylog import mylog as lg remove_log = lg.init_logger(remove_log_path) # def calc_size(): # pass def remove_all(path1): try: shutil.rmtree(path1) remove_log.info(" Clean train data done !") except Exception as e: remove_log.error(" Clean error ", e) def remove_folder(path1): for dirpath, dirnames, filenames in os.walk(path1): for filename in filenames: if os.path.isfile(os.path.join(dirpath, filename)): os.remove(os.path.join(dirpath, filename)) shutil.rmtree(dirpath) def remove_part(path1, t): for dir in os.listdir(path1): if os.path.isfile(os.path.join(path1, dir)): os.remove(os.path.join(path1, dir)) elif datetime.strptime(dir, "%Y%m%d%H%M") + timedelta(hours=7) < datetime.strptime(t, "%Y%m%d%H%M"): try: remove_folder(os.path.join(path1, dir)) remove_log.info(" Clean prediction folder [" + dir + "]") except Exception as e: #remove_log.error(" Clean prediction folder error : ", e) print str(e) else: pass def main(): check1 = to_path check2 = train_pool check3 = radar_save_dir check_time = datetime.now().strftime("%Y%m%d%H%M") remove_part(check1, check_time) remove_all(check2) remove_part(check3, check_time) if __name__ == '__main__': main() ``` #### File: src/runtime/process_runtime_for_train.py ```python import datetime import imghdr import os import shutil from PIL import Image import numpy as np import sys from settings import * from mylog import mylog as lg preprocess_log = lg.init_logger(preprocess_log_path) def crop(input_dir, filename, output_dir): img = Image.open(os.path.join(input_dir, filename)) img = img.convert('RGB') q = np.asarray(img) q = q[0:800, 224:1024] q = q[100:500, 300:700] final = Image.fromarray(q.astype('uint8')).convert('RGB') final.save(os.path.join(output_dir, filename)) def wipeBaseMap(local_path, filename): img = Image.open(os.path.join(local_path, filename)) width = img.size[0] height = img.size[1] for i in range(0, width): for j in range(0, height): data = (img.getpixel((i, j))) if (data[0] == 1 and data[1] == 160 and data[2] == 246): n = 1 elif (data[0] == 0 and data[1] == 236 and data[2] == 236): n = 1 elif (data[0] == 0 and data[1] == 216 and data[2] == 0): n = 1 elif (data[0] == 1 and data[1] == 144 and data[2] == 0): n = 1 elif (data[0] == 255 and data[1] == 255 and data[2] == 0): n = 1 elif (data[0] == 231 and data[1] == 192 and data[2] == 0): n = 1 elif (data[0] == 255 and data[1] == 144 and data[2] == 0): n = 1 elif (data[0] == 255 and data[1] == 0 and data[2] == 0): n = 1 elif (data[0] == 214 and data[1] == 0 and data[2] == 0): n = 1 elif (data[0] == 192 and data[1] == 0 and data[2] == 0): n = 1 elif (data[0] == 255 and data[1] == 0 and data[2] == 240): n = 1 elif (data[0] == 150 and data[1] == 0 and data[2] == 180): n = 1 elif (data[0] == 173 and data[1] == 144 and data[2] == 240): n = 1 else: img.putpixel((i, j), (255, 255, 255)) n = 1 img = img.convert("RGB") img.save(os.path.join(local_path, filename)) def format_img(path1, filename, path2): name_new = filename[:12] + '.PNG' # local env # name_new = crop(path1, filename, path2) os.rename(os.path.join(path2, filename), os.path.join(path2, name_new)) wipeBaseMap(local_path=path2, filename=name_new) def check_dir(path0): if not os.path.exists(path0): os.makedirs(path0) assert os.path.exists(path0) def main(): raw_path = raw_image_path + '201904/' to_fold = train_pool check_dir(raw_path) check_dir(to_fold) time_now = datetime.now() - timedelta(hours=6) time_start = time_now - timedelta(days=1) while (time_start <= time_now): target = time_start.strftime("%Y%m%d%H%M") + '.PNG' if os.path.exists(os.path.join(raw_path, target)) and imghdr.what(os.path.join(raw_path, target)) != None: format_img(path1=raw_path, filename=target, path2=to_fold) else: preprocess_log.info(target + " doesn't exist or was broken !!!") pass time_start += timedelta(minutes=6) preprocess_log.info(time_now.strftime("%Y-%m-%d %H:%M") + " preprocess train data done !") preprocess_log.info("------- ------- ------- ------ ------ -------\r") if __name__ == '__main__': print datetime.now() main() print datetime.now() ``` #### File: src/runtime/runtime_test.py ```python from model_config import base_config import os from datetime import datetime, timedelta import sys sys.path.append(base_config['append_path']) from mylog import mylog as lg runtime_log = lg.init_logger(base_config['runtime_log_path']) def main(t1): #start_time = datetime(2018, 6, 30, 10, 0, 0) #end_time = datetime(2018, 6, 30, 11, 0, 0) start_time = t1 end_time = start_time while start_time <= end_time: now = start_time.strftime("%Y-%m-%d %H:%M") print start_time runtime_log.info(' Predict time: ' + now) try: os.system('/data/anaconda2/bin/python /data/python_scripts/Pre_processor.py ' + start_time.strftime("%Y%m%d%H%M")) runtime_log.info(' 1. Pre_precess Done!') except Exception as e: runtime_log.info(' Pre_preocess err: ' + e) sys.exit(0) try: os.system('/data/anaconda2/bin/python /data/python_scripts/bg_Transparent.py ' + start_time.strftime("%Y%m%d%H%M")) runtime_log.info(' 2. Background Transparent!') except Exception as e: runtime_log.info(' Calc err: ' + e) sys.exit(0) try: os.system('/data/anaconda2/bin/python /data/weather_update/src/runtime/deduce_runtime.py predict --src radar '+ start_time.strftime("%Y%m%d%H%M") + " " + start_time.strftime("%Y%m%d%H%M")) runtime_log.info(' 3.Predict ' + now + ' Done!') except Exception as e: runtime_log.info(' Predict err: ' + e) sys.exit(0) print "- > -> -> End " + now start_time = start_time + timedelta(minutes=6) if __name__ == '__main__': runtime_log.info(' Start...') time_now = datetime.now() t = datetime(time_now.date().year, time_now.date().month, time_now.date().day, time_now.time().hour, time_now.time().minute, 0) main(t) runtime_log.info(' End !!!') runtime_log.info(' ========================================\n') ``` #### File: sparnn/iterators/imdb_iterator.py ```python import numpy import logging import theano import theano.tensor as TT import theano.tensor.nnet import random import cPickle from sparnn.utils import * from sparnn.iterators import PklIterator logger = logging.getLogger(__name__) class IMDBIterator(PklIterator): def __init__(self, iterator_param): super(IMDBIterator, self).__init__(iterator_param) self.vocabulary_size = 10000 ``` #### File: layers/basic/conv_lstm_layer.py ```python import numpy import logging import theano import theano.tensor as TT from theano.gradient import grad_clip from sparnn.utils import * from sparnn.layers import Layer logger = logging.getLogger(__name__) class ConvLSTMLayer(Layer): def __init__(self, layer_param): super(ConvLSTMLayer, self).__init__(layer_param) if self.input is not None: assert 5 == self.input.ndim else: assert ("init_hidden_state" in layer_param or "init_cell_state" in layer_param) self.input_receptive_field = layer_param['input_receptive_field'] self.transition_receptive_field = layer_param['transition_receptive_field'] self.gate_activation = layer_param.get('gate_activation', 'sigmoid') self.modular_activation = layer_param.get('modular_activation', 'tanh') self.hidden_activation = layer_param.get('hidden_activation', 'tanh') self.init_hidden_state = layer_param.get("init_hidden_state", quick_theano_zero((self.minibatch_size,) + self.dim_out)) self.init_cell_state = layer_param.get("init_cell_state", quick_theano_zero((self.minibatch_size,) + self.dim_out)) self.init_hidden_state = TT.unbroadcast(self.init_hidden_state, *range(self.init_hidden_state.ndim)) self.init_cell_state = TT.unbroadcast(self.init_cell_state, *range(self.init_cell_state.ndim)) self.learn_padding = layer_param.get('learn_padding', False) self.input_padding = layer_param.get('input_padding', None) if self.input is None: assert 'n_steps' in layer_param self.n_steps = layer_param['n_steps'] else: self.n_steps = layer_param.get('n_steps', self.input.shape[0]) self.kernel_size = (self.feature_out, self.feature_in, self.input_receptive_field[0], self.input_receptive_field[1]) self.transition_mat_size = (self.feature_out, self.feature_out, self.transition_receptive_field[0], self.transition_receptive_field[1]) #print('ConvLSTMLayer', self.kernel_size, self.transition_mat_size) self.W_hi = quick_init_xavier(self.rng, self.transition_mat_size, self._s("W_hi")) self.W_hf = quick_init_xavier(self.rng, self.transition_mat_size, self._s("W_hf")) self.W_ho = quick_init_xavier(self.rng, self.transition_mat_size, self._s("W_ho")) self.W_hc = quick_init_xavier(self.rng, self.transition_mat_size, self._s("W_hc")) if self.input is not None: self.W_xi = quick_init_xavier(self.rng, self.kernel_size, self._s("W_xi")) self.W_xf = quick_init_xavier(self.rng, self.kernel_size, self._s("W_xf")) self.W_xo = quick_init_xavier(self.rng, self.kernel_size, self._s("W_xo")) self.W_xc = quick_init_xavier(self.rng, self.kernel_size, self._s("W_xc")) if self.learn_padding: self.hidden_padding = quick_zero((self.feature_out, ), self._s("hidden_padding")) else: self.hidden_padding = None self.b_i = quick_zero((self.feature_out, ), self._s("b_i")) self.b_f = quick_zero((self.feature_out, ), self._s("b_f")) self.b_o = quick_zero((self.feature_out, ), self._s("b_o")) self.b_c = quick_zero((self.feature_out, ), self._s("b_c")) self.W_ci = quick_zero((self.feature_out, ), self._s("W_ci")) self.W_cf = quick_zero((self.feature_out, ), self._s("W_cf")) self.W_co = quick_zero((self.feature_out, ), self._s("W_co")) if self.input is not None: self.param = [self.W_xi, self.W_hi, self.W_ci, self.b_i, self.W_xf, self.W_hf, self.W_cf, self.b_f, self.W_xo, self.W_ho, self.W_co, self.b_o, self.W_xc, self.W_hc, self.b_c] if self.learn_padding: self.param.append(self.hidden_padding) else: self.param = [self.W_hi, self.W_ci, self.b_i, self.W_hf, self.W_cf, self.b_f, self.W_ho, self.W_co, self.b_o, self.W_hc, self.b_c] if self.learn_padding: self.param.append(self.hidden_padding) self.is_recurrent = True self.fprop() def set_name(self): self.name = "ConvLSTMLayer-" + str(self.id) def step_fprop(self, x_t, mask_t, h_tm1, c_tm1): #print('step fprop in conv lstm layer:', self.dim_in, self.kernel_size) if x_t is not None: # input_gate = x_t*W + h_t*W + c_t W input_gate = quick_activation(conv2d_same(x_t, self.W_xi, (None, ) + self.dim_in, self.kernel_size, self.input_padding) + conv2d_same(h_tm1, self.W_hi, (None, ) + self.dim_out, self.transition_mat_size, self.hidden_padding) + c_tm1 * self.W_ci.dimshuffle('x', 0, 'x', 'x') + self.b_i.dimshuffle('x', 0, 'x', 'x'), "sigmoid") forget_gate = quick_activation(conv2d_same(x_t, self.W_xf, (None, ) + self.dim_in, self.kernel_size, self.input_padding) + conv2d_same(h_tm1, self.W_hf, (None, ) + self.dim_out, self.transition_mat_size, self.hidden_padding) + c_tm1 * self.W_cf.dimshuffle('x', 0, 'x', 'x') + self.b_f.dimshuffle('x', 0, 'x', 'x'), "sigmoid") c_t = forget_gate * c_tm1 \ + input_gate * quick_activation(conv2d_same(x_t, self.W_xc, (None, ) + self.dim_in, self.kernel_size, self.input_padding) + conv2d_same(h_tm1, self.W_hc, (None, ) + self.dim_out, self.transition_mat_size, self.hidden_padding) + self.b_c.dimshuffle('x', 0, 'x', 'x'), "tanh") output_gate = quick_activation(conv2d_same(x_t, self.W_xo, (None, ) + self.dim_in, self.kernel_size, self.input_padding) + conv2d_same(h_tm1, self.W_ho, (None, ) + self.dim_out, self.transition_mat_size, self.hidden_padding) + c_t * self.W_co.dimshuffle('x', 0, 'x', 'x') + self.b_o.dimshuffle('x', 0, 'x', 'x'), "sigmoid") h_t = output_gate * quick_activation(c_t, "tanh") else: #input_gate = h_t * W input_gate = quick_activation( conv2d_same(h_tm1, self.W_hi, (None, ) + self.dim_out, self.transition_mat_size, self.hidden_padding) + c_tm1 * self.W_ci.dimshuffle('x', 0, 'x', 'x') + self.b_i.dimshuffle('x', 0, 'x', 'x'), "sigmoid") forget_gate = quick_activation(conv2d_same(h_tm1, self.W_hf, (None, ) + self.dim_out, self.transition_mat_size, self.hidden_padding) + c_tm1 * self.W_cf.dimshuffle('x', 0, 'x', 'x') + self.b_f.dimshuffle('x', 0, 'x', 'x'), "sigmoid") c_t = forget_gate * c_tm1 \ + input_gate * quick_activation(conv2d_same(h_tm1, self.W_hc, (None, ) + self.dim_out, self.transition_mat_size, self.hidden_padding) + self.b_c.dimshuffle('x', 0, 'x', 'x'), "tanh") output_gate = quick_activation(conv2d_same(h_tm1, self.W_ho, (None, ) + self.dim_out, self.transition_mat_size, self.hidden_padding) + c_t * self.W_co.dimshuffle('x', 0, 'x', 'x') + self.b_o.dimshuffle('x', 0, 'x', 'x'), "sigmoid") h_t = output_gate * quick_activation(c_t, "tanh") if mask_t is not None: h_t = mask_t * h_t + (1 - mask_t) * h_tm1 c_t = mask_t * c_t + (1 - mask_t) * c_tm1 #print h_t.ndim, c_t.ndim #h_t = quick_aggregate_pooling(h_t, "max", mask=None) #c_t = quick_aggregate_pooling(c_t, "max", mask=None) return h_t, c_t def init_states(self): return self.init_hidden_state, self.init_cell_state def fprop(self): # The dimension of self.mask is (Timestep, Minibatch). # We need to pad it to (Timestep, Minibatch, FeatureDim, Row, Col) # and keep the last three added dimensions broadcastable. TT.shape_padright # function is thus a good choice if self.mask is None: if self.input is not None: scan_input = [self.input] scan_fn = lambda x_t, h_tm1, c_tm1: self.step_fprop(x_t, None, h_tm1, c_tm1) else: scan_input = None scan_fn = lambda h_tm1, c_tm1: self.step_fprop(None, None, h_tm1, c_tm1) else: if self.input is not None: scan_input = [self.input, TT.shape_padright(self.mask, 3)] scan_fn = lambda x_t, mask_t, h_tm1, c_tm1: self.step_fprop(x_t, mask_t, h_tm1, c_tm1) else: scan_input = [TT.shape_padright(self.mask, 3)] scan_fn = lambda mask_t, h_tm1, c_tm1: self.step_fprop(None, mask_t, h_tm1, c_tm1) #print('conv lstm output:', scan_fn, self.init_cell_state, scan_input, self.n_steps) [self.output, self.cell_output], self.output_update = quick_scan(fn=scan_fn, outputs_info=[self.init_hidden_state, self.init_cell_state], sequences=scan_input, name=self._s("lstm_output_func"), n_steps=self.n_steps ) ``` #### File: layers/basic/pooling_layer.py ```python import numpy import logging import theano import theano.tensor as TT from sparnn.utils import * from sparnn.layers import Layer logger = logging.getLogger(__name__) class PoolingLayer(Layer): def __init__(self, layer_param): super(PoolingLayer,self).__init__(layer_param) def set_name(self): self.name = "PoolingLayer-" + str(self.id) ``` #### File: sparnn/optimizers/rmsprop.py ```python import numpy import time import theano import logging import theano.tensor as TT from sparnn.utils import * from sparnn.optimizers import Optimizer logger = logging.getLogger(__name__) from model_config import base_config from mylog import mylog as lg # opt_log = lg.init_logger(base_config['deduce_log_path']) class RMSProp(Optimizer): """ RMSProp Introduced by Hinton(http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf) """ def __init__(self, model, train_data_iterator0, train_data_iterator1, train_data_iterator2, train_data_iterator3, train_data_iterator4, train_data_iterator5, valid_data_iterator, test_data_iterator, hyper_param, wind_train_iterator=None, wind_valid_iterator=None, wind_test_iterator=None ): super(RMSProp, self).__init__(model, train_data_iterator0, train_data_iterator1, train_data_iterator2, train_data_iterator3, train_data_iterator4, train_data_iterator5, valid_data_iterator, test_data_iterator, hyper_param, wind_train_iterator=wind_train_iterator, wind_valid_iterator=wind_valid_iterator, wind_test_iterator=wind_test_iterator) self.learning_rate = numpy_floatX(hyper_param["learning_rate"]) self.decay_rate = numpy_floatX(hyper_param["decay_rate"]) def set_name(self): self.name = "RMSProp-" + self.id def get_update_func(self): print('*** Update Function of Rmsprop ......') # opt_log.info("*** Update Function of Rmsprop ......") updates = [] lr = TT.scalar(self._s("learning_rate"), dtype=theano.config.floatX) rho = TT.scalar(self._s("decay_rate"), dtype=theano.config.floatX) eps = numpy_floatX(1E-6) self.meansquare = [theano.shared(p.get_value( ) * numpy_floatX(0.), name="%s.meansquare" % p.name) for p in self.model.param] g_msnew_list = [rho * g_ms + (1 - rho) * (TT.square(g)) for g, g_ms in zip(self.grad, self.meansquare)] updates += [(g_ms, g_msnew) for g_ms, g_msnew in zip(self.meansquare, g_msnew_list)] updates += [(p, p - lr * g / TT.sqrt(g_msnew + eps)) for p, g, g_msnew in zip(self.model.param, self.grad, g_msnew_list)] return self.model.get_update_func(updates, [lr, rho]) def learning_param(self): return [self.learning_rate, self.decay_rate] def print_stat(self): super(RMSProp, self).print_stat() logger.info(" Learning Parameters:") logger.info(" Clipping Threshold: " + str(self.clip_threshold)) logger.info(" Learning Rate: " + str(self.decay_rate)) logger.info(" Decay Rate: " + str(self.decay_rate)) ``` #### File: sparnn/optimizers/sgd.py ```python import numpy import time import theano import logging import theano.tensor as TT import cPickle from sparnn.utils import * from sparnn.optimizers import Optimizer logger = logging.getLogger(__name__) class SGD(Optimizer): """ First Order Stochastic Gradient Descent With Momentum The clipping strategy is the same as the ICML 2013 paper:On the difficulty of training recurrent neural networks """ def __init__(self, model, train_data_iterator, valid_data_iterator, test_data_iterator, hyper_param ): super(SGD, self).__init__(model, train_data_iterator, valid_data_iterator, test_data_iterator, hyper_param) self.learning_rate = hyper_param["learning_rate"] self.momentum = hyper_param["momentum"] self.decay_rate = hyper_param.get("decay_rate", numpy_floatX(0.1)) self.decay_step = hyper_param.get("decay_step", (self.max_epoch - self.start_epoch) / 3 + 1) self.decay_begin = hyper_param.get("decay_begin", 0) def set_name(self): self.name = "SGD-" + self.id def get_update_func(self): updates = [] lr = TT.scalar(self._s("learning_rate"), dtype=theano.config.floatX) momentum = TT.scalar(self._s("SGD.momentum"), dtype=theano.config.floatX) self.grad_last_update = [theano.shared(p.get_value() * numpy_floatX(0.), name="%s.grad_last_update" % p.name) for p in self.model.param] updates += [(p, p + momentum * p_last_update - lr * p_grad) for p, p_grad, p_last_update in zip(self.model.param, self.grad, self.grad_last_update)] updates += [(p_last_update, momentum * p_last_update - lr * p_grad) for p_grad, p_last_update in zip(self.grad, self.grad_last_update)] return self.model.get_update_func(updates, [lr, momentum]) def learning_param(self): if (0 == (self.current_epoch - self.start_epoch + 1) % self.decay_step) and ( self.current_epoch - self.start_epoch) > self.decay_begin: self.learning_rate *= self.decay_rate return [self.learning_rate, self.momentum] def print_stat(self): super(SGD, self).print_stat() logger.info(" Learning Parameters:") logger.info(" Learning Rate: " + str(self.learning_rate)) logger.info(" Momentum: " + str(self.momentum)) logger.info(" Decay Rate: " + str(self.decay_rate)) logger.info(" Decay Step: " + str(self.decay_step)) ``` #### File: src/tools/reader_backup.py ```python from sparnn.iterators import DataIterator import numpy as np from utils import * import theano class WeatherIterator(DataIterator): def __init__(self, iterator_param, mode='train'): self.use_input_mask = iterator_param.get('use_input_mask', None) self.use_output_mask = iterator_param.get('use_output_mask', None) self.name = iterator_param['name'] self.input_data_type = iterator_param.get('input_data_type', theano.config.floatX) self.output_data_type = iterator_param.get('output_data_type', theano.config.floatX) self.minibatch_size = iterator_param['minibatch_size'] self.is_output_sequence = iterator_param['is_output_sequence'] self.data = {} self.indices = {} self.current_position = 0 self.current_batch_size = 0 self.current_batch_indices = [] self.current_input_length = 0 self.current_output_length = 0 self.config = iterator_param self.mode = mode self.load() def load(self): self.data = self.raw_input(self.config) self.check_data() def raw_input(self, config): filenames = load_range_filenames(config) print("image length: ", len(filenames)) X, X_last = [], [] for i, filename in enumerate(filenames): # filenames = [201811230524.png, ..., ] #print(filename) X_seq = filenames[i: i+config['input_seq_length']+config['output_seq_length']] if len(X_seq) == (config['input_seq_length']+config['output_seq_length']): print("X_seq: ", X_seq) for filename1 in X_seq: try: X_hour = read_data(filename1, config) # X_hour is compressed point matrix #print(X_hour) if X_hour is not None: X.append(X_hour) X_last = X_hour elif len(X_last) > 0: X.append(X_last) except IOError: print(filename+' not exists!') pass else: break #if i % 240 == 0 and i > 1: # change day original:i % 240 #print('read to ', i, filename, len(filenames)) X = np.array(X, dtype=np.dtype("float32")) # print('read X', X.shape) X = np.reshape(X, (X.shape[0], 1, X[0].shape[0], X[0].shape[1])) # ??? #print('load ', X.shape, X.max(), X.min()) # normalize X = (X+config['offset'])/config['max'] # todo:Normalization #print('normalize ', X.shape, X.max(), X.min()) clips = [[] for i in range(2)] # [[],[]] minibatch_size = config['minibatch_size'] input_seq_length = config['input_seq_length'] output_seq_length = config['output_seq_length'] # print('minibatch_size:', minibatch_size) # print('input_seq_length:', input_seq_length) # print('output_seq_length:', output_seq_length) if self.mode == 'train': # load input+output #print(X.shape) #print('input+output:',input_seq_length+output_seq_length) for x in range(X.shape[0]/(input_seq_length+output_seq_length)): #print(x) #print([(input_seq_length+output_seq_length)*x, input_seq_length]) clips[0].append([(input_seq_length+output_seq_length)*x, input_seq_length]) #print([(input_seq_length+output_seq_length)*x+input_seq_length, output_seq_length]) clips[1].append([(input_seq_length+output_seq_length)*x+input_seq_length, output_seq_length]) elif self.mode == 'predict': # load input only for x in range(X.shape[0]/(input_seq_length)): # print(x) clips[0].append([(input_seq_length+output_seq_length)*x, input_seq_length]) clips[1].append([(input_seq_length+output_seq_length)*x+input_seq_length, 0]) clips = np.array(clips, dtype=np.dtype("int32")) #print('clips:', clips) dims = np.array([[1, X[0].shape[1], X[0].shape[2]]], dtype=np.dtype("int32")) #print('dims:', dims) return {'input_raw_data': X, 'dims': dims, "clips": clips} def load_data(config, mode='predict'): iterator = WeatherIterator(config, mode=mode) iterator.begin(do_shuffle=True) return iterator ```
{ "source": "joeinus134131/Stoikometrik-Apps", "score": 3 }
#### File: joeinus134131/Stoikometrik-Apps/stokiometric.py ```python import math import tkinter as tk from tkinter import StringVar import matplotlib.pyplot as plt import numpy as np from PIL import ImageTk, Image #kandungan kimia #Co2 #So2 #O2 #N2 #Parameter #carbon, hidrogen, sulfur, oxygen, nitrogen, ash, TM rho = 1.2 #density 1.2 kg/m3 m = 500 #massa udara yang dibutuhkan perjam aktualair = 11.25 #Gui Setting gui = tk.Tk() gui.title("Stokiometrik Apps Calculator") gui.geometry("650x650") gui.iconbitmap('E:\\PROJECT-KODINGAN\\1. PYTHON\\3. 2021 PENGUJIAN MODULE\\logo_itera_oke_bvD_icon.ico') #Gambar image=Image.open("E:\\PROJECT-KODINGAN\\1. PYTHON\\3. 2021 PENGUJIAN MODULE\\Logo_PLN.png") image.thumbnail((100,300),Image.ANTIALIAS) photo=ImageTk.PhotoImage(image) label_image=tk.Label(image=photo) label_image.place(x=430, y=50) #gambar=Image.open("E:\\PROJECT-KODINGAN\\1. PYTHON\\3. 2021 PENGUJIAN MODULE\\logo itera oke.png") #gambar.thumbnail((100,200),Image.ANTIALIAS) #foto=ImageTk.PhotoImage(gambar) #label_imager=tk.Label(gambar=foto) #label_imager.place(x=750, y=50) #Manual Input #aktual = input("Masukan nilai aktual : ") #stokiometri = input("Masukan data Stokiometrik : ") aktualdata = float() stokiometridata = float() #Gui Input massa unsur labelapp = tk.Label(gui, font="arial 20 bold", text="ITERA x PLTU UPK TARAHAN") labelapp.pack() labelkarbon = tk.Label(gui, font = "arial 12 bold", text = "Carbon: ") labelkarbon.place(x=10, y=50) karboninput = tk.Entry() karboninput.place(x=200, y=50) labelhsd = tk.Label(gui, font = "arial 12 bold", text = " kg ") labelhsd.place(x=330, y=50) labelhidrogen = tk.Label(gui, font = "arial 12 bold", text = "Hydrogen : ") labelhidrogen.place(x=10, y=80) hidrogeninput = tk.Entry() hidrogeninput.place(x=200, y=80) labelhsd = tk.Label(gui, font = "arial 12 bold", text = " kg ") labelhsd.place(x=330, y=80) labelsulfur = tk.Label(gui, font = "arial 12 bold", text = "Sulfur : ") labelsulfur.place(x=10, y=110) sulfurinput = tk.Entry() sulfurinput.place(x=200, y=110) labelhsd = tk.Label(gui, font = "arial 12 bold", text = " kg ") labelhsd.place(x=330, y=110) labeloksigen = tk.Label(gui, font = "arial 12 bold", text = "Oxygen : ") labeloksigen.place(x=10, y=140) oksigeninput = tk.Entry() oksigeninput.place(x=200, y=140) labelhsd = tk.Label(gui, font = "arial 12 bold", text = " kg ") labelhsd.place(x=330, y=140) labelnitrogen = tk.Label(gui, font = "arial 12 bold", text = "Nitrogen : ") labelnitrogen.place(x=10, y=170) nitrogeninput = tk.Entry() nitrogeninput.place(x=200, y=170) labelhsd = tk.Label(gui, font = "arial 12 bold", text = " kg ") labelhsd.place(x=330, y=170) labelash = tk.Label(gui, font = "arial 12 bold", text = "Ash : ") labelash.place(x=10, y=200) ashinput = tk.Entry() ashinput.place(x=200, y=200) labelhsd = tk.Label(gui, font = "arial 12 bold", text = " kg ") labelhsd.place(x=330, y=200) labeltm = tk.Label(gui, font = "arial 12 bold", text = "TM: ") labeltm.place(x=10, y=230) tminput = tk.Entry() tminput.place(x=200, y=230) labelhsd = tk.Label(gui, font = "arial 12 bold", text = " kg ") labelhsd.place(x=330, y=230) labeltcf = tk.Label(gui, font = "arial 12 bold", text = "TCF : ") labeltcf.place(x=10, y=260) tcfinput = tk.Entry() tcfinput.place(x=200, y=260) labelhsd = tk.Label(gui, font = "arial 12 bold", text = " kg ") labelhsd.place(x=330, y=260) labellhv = tk.Label(gui, font = "arial 12 bold", text = "LHV : ") labellhv.place(x=10, y=290) lhvinput = tk.Entry() lhvinput.place(x=200, y=290) labelhsd = tk.Label(gui, font = "arial 12 bold", text = " kg ") labelhsd.place(x=330, y=290) labelhhv = tk.Label(gui, font = "arial 12 bold", text = "HHV : ") labelhhv.place(x=10, y=320) hhvinput = tk.Entry() hhvinput.place(x=200, y=320) labelhsd = tk.Label(gui, font = "arial 12 bold", text = " kg ") labelhsd.place(x=330, y=320) labelo2 = tk.Label(gui, font = "arial 12 bold", text = "O2 : ") labelo2.place(x=10, y=350) o2input = tk.Entry() o2input.place(x=200, y=350) labelhsd = tk.Label(gui, font = "arial 12 bold", text = " % ") labelhsd.place(x=330, y=350) labelhsd = tk.Label(gui, font = "arial 12 bold", text = "Flow HSD : ") labelhsd.place(x=10, y=380) hsdinput = tk.Entry() hsdinput.place(x=200, y=380) labelhsd = tk.Label(gui, font = "arial 12 bold", text = " kL/H ") labelhsd.place(x=330, y=380) #fungsi hitung stokometri def hitung_stokiometrik(): #pengurangan = (float(aktualinput.get())-float(stokiometriinput.get())) #z = float(pengurangan) #persentase = float(z/float(stokiometriinput.get()))*100 #O2 yang diminta c = float(karboninput.get())*(32/12) h = float(hidrogeninput.get())*(16/2) s = float(sulfurinput.get())*(32/32) o = -1*(float(oksigeninput.get())) tcf = float(tcfinput.get())*(1000/3600) hhv = float(hhvinput.get())*4.1868 #o2 yg giminta total o2total = c+h+s+o n2 = o2total*(76.7/23.3) stoichair = o2total+n2 #produk #heat input heatinput = tcf*hhv stoichairflow = stoichair*tcf thermalefisiensi = (100/heatinput)*100 #exccessair excessair = (float(o2input.get())/(21-float(o2input.get())))*100 #excessairflow excessairflow = (excessair*stoichairflow)/100 #total air flow totalairflow = stoichairflow + excessairflow #primaryairflow primaryairflow = 1.8*tcf #secondaryairflow secondaryairflow = stoichairflow-primaryairflow #subtotalsaflow subtotalsaairflow = secondaryairflow + excessairflow textArea = tk.Text(gui,height=10,width=50) textArea.place(x=200, y=470) jawabano2total = " O2 : {o2} ,".format(o2=o2total) jawabann2 = " N2 : {n2plus} ,".format(n2plus=n2) jawabanstoichair = " Stoich Air : {stoich} ,".format(stoich=stoichair) jawabanheatinput = " Heat input : {heatin} Watt, ".format(heatin=heatinput) jawabanthermal = " Efisiensi Thermal : {thermal} tph,".format(thermal=thermalefisiensi) jawabansaf = " Stoich Air Flow : {saf} tph,".format(saf=stoichairflow) jawabanea = " Excess Air : {ea} %,".format(ea=excessair) jawabaneaf = " Excess Air Flow : {eaf} tph,".format(eaf=excessairflow) jawabanpaf = " Primary Air Flow : {paf} tph,".format(paf=primaryairflow) jawabansndaf = " Secondary Air Flow : {sndaf} tph,".format(sndaf=secondaryairflow) jawabanstaf = " subTotal Air Flow : {staf} tph,".format(staf=subtotalsaairflow) textArea.insert(tk.END, jawabano2total) textArea.insert(tk.END, jawabann2) textArea.insert(tk.END, jawabanstoichair) textArea.insert(tk.END, jawabanheatinput) textArea.insert(tk.END, jawabanthermal) textArea.insert(tk.END, jawabansaf) textArea.insert(tk.END, jawabanea) textArea.insert(tk.END, jawabaneaf) textArea.insert(tk.END, jawabanpaf) textArea.insert(tk.END, jawabansndaf) textArea.insert(tk.END, jawabanstaf) print("hasil total", o2total) #print("nilai z = ", z) #print("Hasil Persentase : ", persentase) def printdata(): O2 = 18.5 hsd = float(hsdinput.get()) rasioO2 = hsd*O2 textArea = tk.Text(gui,height=10,width=50) textArea.place(x=200, y=470) perbandingan = " HSD : {hsd2} : ".format(hsd2=hsd) rasioo2 = " O2 : {rasioo2}".format(rasioo2=rasioO2) textArea.insert(tk.END, perbandingan) textArea.insert(tk.END, rasioo2) def flowrate_fungsi(): flowrate = aktualair*(m/(rho*3600)) #satuan m3/s print(flowrate) def tampilgrafik(): series = np.array(4, 3) x = np.array(5, 10, 1) plt.plot(series, x) plt.show() def thermal_efisiensi(): efisiensi = (outlet/inlet)*100 print(efisiensi) #fungsi reset data def reset(): karboninput.delete(0) hidrogeninput.delete(0) sulfurinput.delete(0) oksigeninput.delete(0) ashinput.delete(0) tminput.delete(0) tcfinput.delete(0) lhvinput.delete(0) hhvinput.delete(0) o2input.delete(0) hsdinput.delete(0) #tombol hitung tombolhitung = tk.Button(gui, font="arial 13 bold", text = "Hitung", command = hitung_stokiometrik) tombolhitung.place(x=200, y=420) tombolreset = tk.Button(gui, font="arial 13 bold", text = "Reset", command = reset) tombolreset.place(x=430, y=420) #tombolhitungfr = tk.Button(gui, font="arial 13 bold", text = "Hitung Flow Rate", command = flowrate_fungsi) #tombolhitungfr.place(x=220, y=350) tampilkangrafik = tk.Button(gui, font="arial 13 bold", text = "Hitung Rasio", command = printdata) tampilkangrafik.place(x=290, y=420) #Hasil labelhasil=tk.Label(gui, font="arial 12 bold", text="Hasil :") labelhasil.place(x=10, y=470) gui.mainloop() ```
{ "source": "joein/zarnitsa", "score": 3 }
#### File: zarnitsa/zarnitsa/DataAugmenterInternally.py ```python from typing import Tuple import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from .DataAugmenter import AbstractDataAugmenter class DataAugmenterInternally(AbstractDataAugmenter): def __init__(self, n_jobs=1): self.n_jobs = n_jobs def augment_dataframe( self, df: pd.DataFrame, aug_type="normal", freq=0.2, return_only_aug=False, ) -> pd.DataFrame: """Augment dataframe data. Pandas dataframe""" augment_column_method = { "normal": self.augment_column_norm, "uniform": self.augment_column_uniform, "permutations": self.augment_column_permut, } not_to_aug, to_aug = self._prepare_data_to_aug(df, freq=freq) for col in df.columns: to_aug[col] = augment_column_method[aug_type]( to_aug[col], freq=1.0 ) return to_aug if return_only_aug else pd.concat([not_to_aug, to_aug]) def augment_column( self, col: pd.Series, aug_type="normal", freq=0.2, return_only_aug=False, ) -> pd.Series: """Augment Serial data. Pandas column""" augment_column_method = { "normal": self.augment_column_norm, "uniform": self.augment_column_uniform, "permutations": self.augment_column_permut, } not_to_aug, to_aug = self._prepare_data_to_aug(col, freq=freq) to_aug = augment_column_method[aug_type](to_aug, freq=1.0) return to_aug if return_only_aug else pd.concat([not_to_aug, to_aug]) def _prepare_data_to_aug( self, data, freq=0.2 ) -> Tuple[pd.Series, pd.Series]: """Get part of data. Not augment all of it excep case freq=1.0""" data = ( pd.Series(data) if type(data) is not pd.Series and type(data) is not pd.DataFrame else data ) if freq < 1: not_to_aug, to_aug = train_test_split(data, test_size=freq) return not_to_aug, to_aug elif freq == 1: return data.sample(0), data elif freq == 0: return data, data.sample(0) def augment_column_permut( self, col: pd.Series, freq=0.2, return_only_aug=False ) -> pd.Series: """Augment column data using permutations. Pandas column""" not_to_aug, to_aug = self._prepare_data_to_aug(col, freq=freq) indices_to_permute = to_aug.index to_aug = to_aug.sample(frac=1.0) to_aug.index = indices_to_permute return to_aug if return_only_aug else pd.concat([not_to_aug, to_aug]) def augment_column_norm( self, col: pd.Series, freq=0.2, return_only_aug=False ) -> pd.Series: """Augment column data using normal distribution. Pandas column""" not_to_aug, to_aug = self._prepare_data_to_aug(col, freq=freq) column_std = col.std() to_aug = to_aug.apply( lambda value: np.random.normal(value, column_std) ) return to_aug if return_only_aug else pd.concat([not_to_aug, to_aug]) def augment_column_uniform( self, col: pd.Series, freq=0.2, n_sigm=3, return_only_aug=False ) -> pd.Series: """Augment column data using uniform distribution. Pandas column""" not_to_aug, to_aug = self._prepare_data_to_aug(col, freq=freq) column_std = col.std() to_aug = to_aug.apply( lambda value: np.random.uniform( value - n_sigm * column_std, value + n_sigm * column_std ) ) return to_aug if return_only_aug else pd.concat([not_to_aug, to_aug]) ```
{ "source": "JoeIOU/metedata_fusion_tools", "score": 2 }
#### File: src/common/logger.py ```python import logging import logging.handlers import datetime,os _log = None #日志功能初始化 def init(log_format, log_format_error, log_level, log_path, env, date_format): global _log if _log is not None: return #dev环境,只打印控制台信息 if env == "dev": logging.basicConfig(level=log_level, format=log_format, datefmt=date_format) _log = logging return _log #其他环境,写入到日志文件 else: logger = logging.getLogger('mylogger') logger.setLevel(log_level) #logging.basicConfig(filename=__C.LOG_FILE, level=__C.LOG_LEVEL, format=__C.LOG_FORMAT, datefmt=__C._TIME_FORMAT) rf_handler = logging.handlers.TimedRotatingFileHandler(os.path.join(log_path, 'all.log'), when='midnight', interval=1, backupCount=7, atTime=datetime.time(0, 0, 0, 0), encoding='utf-8') rf_handler.setFormatter(logging.Formatter(log_format)) #rf_handler.encoding="utf-8" f_handler = logging.FileHandler(os.path.join(log_path, 'error.log'), encoding='utf-8') f_handler.setLevel(logging.ERROR) #f_handler.encoding="utf-8" f_handler.setFormatter(logging.Formatter(log_format_error)) logger.addHandler(rf_handler) logger.addHandler(f_handler) _log = logger return _log ``` #### File: src/db/neo4j_conn.py ```python from py2neo import Graph graph = None def get_graph(): graph = Graph(uri="http://localhost:7474/db/data", username="neo4j", password="<PASSWORD>") return graph def neo4j_graph(): global graph if graph is None: graph = get_graph() return graph ``` #### File: src/mdata/index_unique.py ```python from db.db_conn import db_connection_metedata as db_md from mdata import metadata as md from privilege import user_mngt as ur from config.config import cfg as config logger = config.logger FIELD_TYPE_TEXT = "Text" FIELD_TYPE_CHAR = "Char" FIELD_TYPE_INT = "Int" FIELD_TYPE_DECIMAL = "Decimal" FIELD_TYPE_DATE = "Date" MD_INDEX_ENTITY_MAPPING_NAME = "index_mapping_t" MD_ENTITY_INDEX_TEXT = "index_text_t" MD_ENTITY_INDEX_INT = "index_int_t" MD_ENTITY_INDEX_DEC = "index_decimal_t" MD_ENTITY_INDEX_DATE = "index_date_t" # MD_UNIQUE_ENTITY_MAPPING_NAME = "unique_mapping_t" # MD_ENTITY_UNIQUE_TEXT = "unique_text_t" # MD_ENTITY_UNIQUE_INT = "unique_int_t" # MD_ENTITY_UNIQUE_DEC = "unique_decimal_t" # MD_ENTITY_UNIQUE_DATE = "unique_date_t" # 保存索引值的字段 MD_ENTITY_INDEX_FIELD_TEXT = "text_value" MD_ENTITY_INDEX_FIELD_INT = "int_value" MD_ENTITY_INDEX_FIELD_DEC = "num_value" MD_ENTITY_INDEX_FIELD_DATE = "date_value" # 保存数据id,默认data_id MD_ENTITY_INDEX_DATA_FIELD = "data_id" SQL_QUERY_INDEX_FORMAT = """ SELECT t.index_mapping_id, t.tenant_id, t.md_entity_id, t.md_fields_id, t.mapping_type, t.unique_flag, f.md_fields_name, f.md_columns_id FROM index_mapping_t AS t INNER JOIN md_fields AS f ON f.tenant_id = t.tenant_id AND f.active_flag = 'Y' AND f.md_fields_id = t.md_fields_id WHERE t.tenant_id = %s AND t.md_entity_id = %s """ def query_index_mapping(tenant_id, entity_id): conn = db_md() cursor = conn.cursor() sql = SQL_QUERY_INDEX_FORMAT cursor.execute(sql, args=(tenant_id, entity_id,)) result = cursor.fetchall() logger.info("query_index_mapping,entity:{}".format(result)) conn.close() # 不是真正关闭,而是重新放回了连接池 return result def query_index_all_type_list(tenant_id): code_list = [] code_list.append(MD_ENTITY_INDEX_TEXT) code_list.append(MD_ENTITY_INDEX_DEC) code_list.append(MD_ENTITY_INDEX_INT) code_list.append(MD_ENTITY_INDEX_DATE) # code_list.append(MD_ENTITY_UNIQUE_TEXT) # code_list.append(MD_ENTITY_UNIQUE_DEC) # code_list.append(MD_ENTITY_UNIQUE_INT) # code_list.append(MD_ENTITY_UNIQUE_DATE) index_list = md.get_md_entities_id_by_code(code_list) return index_list def get_mapping_table_fields(mapping_type): mapping_code, value_field = None, None if mapping_type is not None and ( mapping_type.upper() == FIELD_TYPE_TEXT.upper() or mapping_type.upper() == FIELD_TYPE_CHAR.upper()): value_field = MD_ENTITY_INDEX_FIELD_TEXT mapping_code = MD_ENTITY_INDEX_TEXT elif mapping_type is not None and mapping_type.upper() == FIELD_TYPE_INT.upper(): value_field = MD_ENTITY_INDEX_FIELD_INT mapping_code = MD_ENTITY_INDEX_INT elif mapping_type is not None and mapping_type.upper() == FIELD_TYPE_DECIMAL.upper(): value_field = MD_ENTITY_INDEX_FIELD_DEC mapping_code = MD_ENTITY_INDEX_DEC elif mapping_type is not None and mapping_type.upper() == FIELD_TYPE_DATE.upper(): value_field = MD_ENTITY_INDEX_FIELD_DATE mapping_code = MD_ENTITY_INDEX_DATE return mapping_code, value_field def gen_index_mapping(tenant_id, data_list): index_list = query_index_all_type_list(tenant_id) classify_dict = {} for item in data_list: # unique_flag = item.get("unique_flag") mapping_type = item.get("mapping_type") # 删除非元数据存储字段信息,避免影响保存动作 item.pop("mapping_type") item.pop("unique_flag") # 是索引,在index对应的表有存记录。 mapping_code, value_field = get_mapping_table_fields(mapping_type) for itm in index_list: code = itm.get("md_entity_code") if code == mapping_code: entity_id = itm.get("md_entity_id") obj_list = classify_dict.get(str(entity_id)) if obj_list is None: tmp_li = [] tmp_li.append(item) classify_dict[str(entity_id)] = tmp_li else: obj_list.append(item) break return classify_dict def exec_index_action(user_id, tenant_id, new_data_list, delete_only=False): classify_dict = gen_index_mapping(tenant_id, new_data_list) re = None for key in classify_dict.keys(): if key is not None: entity_id1 = int(key) ls_tmp = classify_dict.get(key) ls_del = get_delete_list(ls_tmp) re = md.delete_execute(user_id, tenant_id, entity_id1, ls_del) if not delete_only: re = md.insert_execute(user_id, tenant_id, entity_id1, ls_tmp) return re def get_delete_list(del_list): if del_list is None: return None list_res = [] for item in del_list: itm = {} data_id = item.get(MD_ENTITY_INDEX_DATA_FIELD) if data_id is None: continue itm[MD_ENTITY_INDEX_DATA_FIELD] = data_id itm["md_entity_id"] = item.get("md_entity_id") itm["md_fields_id"] = item.get("md_fields_id") list_res.append(itm) return list_res def get_mapping_list(data_list, mapping_list, ids, delete_only=False): data_list_new = [] if data_list is None or len(data_list) <= 0: return None if mapping_list is not None and len(mapping_list) >= 0: for item in mapping_list: mapping_entity_id = item.get("md_entity_id") mapping_field_id = item.get("md_fields_id") mapping_field_name = item.get("md_fields_name") # unique_flag = item.get("unique_flag") mapping_type = item.get("mapping_type") mapping_code, value_field = get_mapping_table_fields(mapping_type) i = 0 for itm in data_list: id = ids[i] i += 1 if mapping_field_name is not None and mapping_field_name in itm.keys(): item_new = {} item_new["md_entity_id"] = mapping_entity_id item_new["unique_flag"] = "N" item_new["mapping_type"] = mapping_type item_new["md_fields_id"] = mapping_field_id if (not delete_only): item_new[value_field] = itm.get(mapping_field_name) item_new[MD_ENTITY_INDEX_DATA_FIELD] = id data_list_new.append(item_new) return data_list_new def insert_index_data(user_id, tenant_id, md_entity_id, data_list, ids): re = None if ids is None: logger.warning( "insert_index_data,insert ids is None,entity_id=[{}],data:{}.".format(md_entity_id, data_list)) return None new_list = None if md_entity_id is not None: mapping_list = query_index_mapping(tenant_id, md_entity_id) new_list = get_mapping_list(data_list, mapping_list, ids) if new_list is not None and len(new_list) > 0: re = exec_index_action(user_id, tenant_id, new_list) if new_list is not None and len(new_list) > 0 and re is None: logger.warning( "insert_index_data,insert nothing,entity_id=[{}],data:{}.".format(md_entity_id, data_list)) return re def update_index_data(user_id, tenant_id, md_entity_id, data_list, ids): re = None new_list = None if md_entity_id is not None: mapping_list = query_index_mapping(tenant_id, md_entity_id) new_list = get_mapping_list(data_list, mapping_list, ids) if new_list is not None and len(new_list) > 0: re = exec_index_action(user_id, tenant_id, new_list) if new_list is not None and len(new_list) > 0 and re is None: logger.warning( "update_index_data,update nothing,entity_id=[{}],data:{}.".format(md_entity_id, data_list)) return re def delete_index_data(user_id, tenant_id, md_entity_id, data_list, ids): re, new_list = None, None if md_entity_id is not None: mapping_list = query_index_mapping(tenant_id, md_entity_id) new_list = get_mapping_list(md_entity_id, mapping_list, ids, delete_only=True) if new_list is not None: re = exec_index_action(user_id, tenant_id, new_list, delete_only=True) if re is None: logger.warning( "delete_index_data,delete nothing,entity_id=[{}],data:{}.".format(md_entity_id, new_list)) return re if __name__ == '__main__': # ##insert the index data user = ur.get_user("test1") user_id = user.get("user_id") tenant_id = user.get("tenant_id") # data_list = [] datas = [{ 'test_fields': 'kiki-001', 'test_fields1': 'kiki', 'customer_name': "ABC.<EMAIL>", "md_entity_id": 30001 }, { 'test_fields': 'goog-001', 'test_fields1': 'gogo', 'customer_name': "HW.com", "md_entity_id": 30001 }] md_entity_id = 30001 re = query_index_mapping(tenant_id, md_entity_id) print(re) ids = [12421421412, 12421421411] re = insert_index_data(user_id, tenant_id, md_entity_id, datas, ids) # re = update_index_data(user_id, tenant_id, md_entity_id, datas, ids) # re = delete_index_data(user_id, tenant_id, md_entity_id, datas, ids) ``` #### File: src/mdata/metadata_initialize.py ```python from config.config import cfg as config from db.db_conn import db_connection_metedata as db_md from mdata import metadata as md from privilege import user_mngt as ur from model import model_graph as mg logger = config.logger # 数据表映射关系表名和字段元数据表名 MD_TABLES_NAME = "md_tables" MD_COLUMNS_NAME = "md_columns" # 数据表映射关系表名和字段元数据表名 MD_ENTITY_NAME = "md_entities" MD_FIELDS_NAME = "md_fields" MD_ENTITY_ID = "md_entity_id" MD_ENTITY_REL_NAME = "md_entities_rel" SQL_QUERY_ENTITY_FORMAT = """ SELECT DISTINCT e.md_entity_id, e.md_entity_code, e.md_entity_name, f.md_fields_id, f.md_fields_name, tt.schema_code, tt.database_id, tt.md_tables_id, tt.md_tables_name, tt.md_tables_desc, cc.md_columns_id, cc.md_columns_name FROM md_entities e INNER JOIN md_tables tt ON e.md_tables_id = tt.md_tables_id INNER JOIN md_columns cc ON cc.md_tables_id = tt.md_tables_id INNER JOIN md_fields f ON f.md_entity_id = e.md_entity_id AND f.tenant_id = e.tenant_id AND f.md_columns_id = cc.md_columns_id WHERE (e.tenant_id = %s or e.public_flag='Y') AND tt.md_tables_name in %s """ SQL_QUERY_ENTITY_ALL_REL_FORMAT = """ SELECT DISTINCT r.md_entity_rel_id,r.rel_type,r.md_entity_rel_desc, r.md_tables_id,r.from_columns_id,to_columns_id, e.md_entity_id frm_md_entity_id, e.md_entity_code frm_md_entity_code, e.md_entity_name frm_md_entity_name, e.md_entity_desc frm_md_entity_desc, e.tenant_id frm_tenant_id, e.public_flag frm_public_flag, f.md_fields_id frm_md_fields_id, f.md_fields_name frm_md_fields_name, e1.md_entity_id to_md_entity_id, e1.md_entity_code to_md_entity_code, e1.md_entity_name to_md_entity_name, e1.md_entity_desc to_md_entity_desc, e1.tenant_id to_tenant_id, e1.public_flag to_public_flag, e1.sys_flag, f1.md_fields_id to_md_fields_id, f1.md_fields_name to_md_fields_name FROM md_entities_rel r INNER JOIN md_entities e on e.md_entity_id=r.from_entity_id INNER JOIN md_fields f ON f.md_entity_id = e.md_entity_id AND f.tenant_id = e.tenant_id and f.md_fields_id=r.from_field_id INNER JOIN md_entities e1 on e1.md_entity_id=r.to_entity_id INNER JOIN md_fields f1 ON f1.md_entity_id = e1.md_entity_id AND f1.tenant_id = e1.tenant_id and f1.md_fields_id=r.to_field_id WHERE (e.tenant_id = %s or e.public_flag='Y') """ SQL_QUERY_ENTITY_REL_FORMAT = SQL_QUERY_ENTITY_ALL_REL_FORMAT + " AND (e.md_entity_code in %s or e1.md_entity_code in %s)" SQL_QUERY_ENTITY_FIELDS_COLUMNS_FORMAT = """ SELECT distinct * FROM ( SELECT 'N' blank_flag, e.md_entity_id, e.md_entity_code, e.md_entity_name, e.md_entity_name_en, e.md_entity_desc, e.public_flag entity_public_flag, f.md_fields_id, f.md_fields_name, f.md_fields_name_cn, f.md_fields_name_en, f.md_fields_type, f.md_fields_desc, f.md_fields_length, f.md_decimals_length, f.lookup_flag, f.lookup_entity, f.lookup_type, f.default_value, f.is_null, f.is_indexed, f.is_unique, f.public_flag, f.active_flag, tt.md_tables_id, tt.md_tables_name, tt.md_tables_desc, cc.md_columns_id, cc.md_columns_name, cc.md_columns_type, cc.md_columns_desc, cc.md_columns_length, cc.md_dec_length FROM md_entities e INNER JOIN md_tables tt ON e.md_tables_id = tt.md_tables_id AND tt.active_flag = 'Y' LEFT JOIN md_fields f ON f.md_entity_id = e.md_entity_id AND f.tenant_id = e.tenant_id LEFT JOIN md_columns cc ON cc.md_tables_id = tt.md_tables_id AND f.md_columns_id = cc.md_columns_id AND cc.active_flag = 'Y' WHERE (e.tenant_id = %s or e.public_flag='Y') AND e.md_entity_id = %s AND e.active_flag = 'Y' UNION SELECT 'Y' blank_flag, e.md_entity_id, e.md_entity_code, e.md_entity_name, e.md_entity_name_en, e.md_entity_desc, e.public_flag entity_public_flag, f.md_fields_id, f.md_fields_name, f.md_fields_name_cn, f.md_fields_name_en, f.md_fields_type, f.md_fields_desc, f.md_fields_length, f.md_decimals_length, f.lookup_flag, f.lookup_entity, f.lookup_type, f.default_value, f.is_null, f.is_indexed, f.is_unique, f.public_flag, f.active_flag, tt.md_tables_id, tt.md_tables_name, tt.md_tables_desc, cc.md_columns_id, cc.md_columns_name, cc.md_columns_type, cc.md_columns_desc, cc.md_columns_length, cc.md_dec_length FROM md_tables tt INNER JOIN md_entities e ON e.md_tables_id = tt.md_tables_id AND e.active_flag = 'Y' LEFT JOIN md_columns cc ON cc.md_tables_id = tt.md_tables_id AND cc.active_flag = 'Y' LEFT JOIN md_fields f ON f.md_entity_id = e.md_entity_id AND f.md_columns_id = cc.md_columns_id WHERE (e.tenant_id = %s or e.public_flag='Y') AND e.md_entity_id = %s AND tt.active_flag = 'Y' AND f.md_columns_id IS NULL ) aaa ORDER BY blank_flag,md_fields_id,md_columns_id """ # 查询实体和数据表属性和字段信息 def query_entity_fields_columns(tenant_id, entity_id): if entity_id is None: logger.warning("query_entity_fields_columns,entity_id should not be None") return None sql = SQL_QUERY_ENTITY_FIELDS_COLUMNS_FORMAT conn = db_md() cursor = conn.cursor() cursor.execute(sql, args=(tenant_id, entity_id, tenant_id, entity_id)) result = cursor.fetchall() return result # 查询实体关系信息 def query_entity_rel_by_entity(tenant_id, entity_codes): if entity_codes is None: sql = SQL_QUERY_ENTITY_ALL_REL_FORMAT else: sql = SQL_QUERY_ENTITY_REL_FORMAT conn = db_md() cursor = conn.cursor() if entity_codes is None: cursor.execute(sql, args=(tenant_id)) else: cursor.execute(sql, args=(tenant_id, entity_codes, entity_codes)) result = cursor.fetchall() return result def query_entity_by_tenant(tenant_id, table_names): sql = SQL_QUERY_ENTITY_FORMAT if table_names is None: logger.warning("query_all_entity_in_schema,table_names should not be None") return None conn = db_md() cursor = conn.cursor() cursor.execute(sql, args=(tenant_id, table_names)) result = cursor.fetchall() return result def initialize_md_entities_from_tables(user_id, tenant_id, entity_list): re = None if entity_list is None or len(entity_list) <= 0: return None md_table_ids = [] table_name_list = [] entity_code_list = [] try: for tabl in entity_list: entity_code = tabl.get("entity_code") table_name = tabl.get("table_name") entity_code_list.append(entity_code) table_name_list.append(table_name) tables = md.get_md_tables_by_name(tenant_id, table_name_list) for item in tables: record = item.get("md_tables_id") if md_table_ids.count(record) <= 0: md_table_ids.append(record) if tables is None: return None columns = md.get_md_columns_multi_table(tenant_id, md_table_ids) i = 0 res_col = None for code_ent in entity_code_list: tab_name = table_name_list[i] i += 1 for table in tables: tab_name1 = table.get("md_tables_name") if not (tab_name1 is not None and tab_name1 == tab_name): continue md_tables_id = table.get("md_tables_id") cols_new = get_columns_by_tables_id(md_tables_id, columns) is_sys_flag = True if cols_new is not None and len(cols_new) > 0: for cl in cols_new: if cl is not None: md_entity_id_new = cl.get("md_columns_name") # 存在MD_ENTITY_ID字段的表就不是系统表,而是租户数据表 if MD_ENTITY_ID == md_entity_id_new: is_sys_flag = False break res = ini_entities(user_id, tenant_id, code_ent, table, is_sys_flag) if res is None: logger.warning( "initialize_md_entities_from_tables,insert entity nothing ,user_id={},table:{}".format(user_id, table)) continue ids = res.get("data").get("ids") entity_id = ids[0] res_col = ini_fields(user_id, tenant_id, entity_id, cols_new) return res_col except Exception as e: logger.error("initialize_md_entities_from_tables insert error,msg:{}".format(e)) raise e def get_columns_by_tables_id(table_id, columns): if columns is None or table_id is None: return None cols = [] for col in columns: md_tables_id = col.get("md_tables_id") is_cols_null = col.get("is_cols_null") # 排除必填字段,因为必填字段在创建实体对象时,已经写入。 if md_tables_id == table_id and is_cols_null is not None and is_cols_null != 'N': cols.append(col) return cols def ini_entities(user_id, tenant_id, new_entity_code, table_dict, is_sys_flag): res = md.get_md_entities_id_by_code([MD_ENTITY_NAME]) if res is None: logger.warning("ini_entities,entity is None ,name:{}".format(MD_ENTITY_NAME)) return None md_entity_id = res[0].get("md_entity_id") entity_list = [] table = table_dict entity_dict = {} name = table.get("md_tables_desc") code = table.get("md_tables_name") if name is None or len(name.strip()) <= 0: name = code if new_entity_code is not None and len(new_entity_code.strip()) > 0: code = new_entity_code.strip() if name is not None and len(name) > 100: name = name.strip() name = name[:100] entity_dict["md_entity_name"] = name entity_dict["md_entity_code"] = code entity_dict["md_entity_name_en"] = code entity_dict["md_entity_desc"] = name entity_dict["tenant_id"] = tenant_id entity_dict["md_tables_id"] = table.get("md_tables_id") if is_sys_flag: entity_dict["sys_flag"] = "Y" else: entity_dict["sys_flag"] = "N" entity_list.append(entity_dict) re = md.insert_execute(user_id, tenant_id, md_entity_id, entity_list) logger.info("insert entity,name={}".format(code)) return re def ini_fields(user_id, tenant_id, obj_id, columns): res = md.get_md_entities_id_by_code([MD_FIELDS_NAME]) if res is None: logger.warning("ini_fields,entity is None ,name:{}".format(MD_FIELDS_NAME)) return None if columns is None or len(columns) <= 0: logger.warning("ini_fields,columns is None ") return None md_entity_id = res[0].get("md_entity_id") fields_list = [] for col in columns: field_dict = {} field_dict["md_entity_id"] = obj_id field_dict["md_columns_id"] = col.get("md_columns_id") field_dict["md_fields_name"] = col.get("md_columns_name") field_dict["md_fields_name_en"] = col.get("md_columns_name") type1 = col.get("md_columns_type") field_dict["md_fields_type"] = field_type_mapping(type1, col.get("md_dec_length")) field_dict["md_fields_length"] = col.get("md_columns_length") field_dict["md_decimals_length"] = col.get("md_dec_length") field_dict["is_null"] = col.get("is_cols_null") field_dict["md_fields_desc"] = col.get("md_columns_desc") field_dict["is_unique"] = "N" field_dict["is_indexed"] = "N" field_dict["tenant_id"] = col.get("tenant_id") fields_list.append(field_dict) re = md.insert_execute(user_id, tenant_id, md_entity_id, fields_list) return re def field_type_mapping(type, deci): new_type = None if (type is not None): if type.lower() == 'number' or type.lower() == 'smallint' or type.lower() == 'integer' \ or type.lower() == 'numeric' or type.lower() == 'real' or type.lower() == 'money': if deci is not None and int(deci) > 0: new_type = 'decimal' else: new_type = 'bigint' elif type.lower() == 'date' or type.lower() == 'datetime': new_type = 'timestamp' elif type.lower() == 'bit' or type.lower() == 'boolean': new_type = 'char' else: new_type = type.lower() return new_type def insert_metadata_table(user_id, tenant_id, tables): # 数据表md_tables的元数据实体ID # entity_id = 30018 rr = md.get_md_entities_id_by_code([MD_TABLES_NAME]) re = None if rr is not None and len(rr) > 0: entity_id = rr[0].get("md_entity_id") if entity_id is not None: re = md.insert_execute(user_id, tenant_id, entity_id, tables) if re is None: logger.warning("insert_metadata_table,get_md_entities_by_code is Null,tables=[{}].".format(MD_TABLES_NAME)) return re def insert_metadata_columns(user_id, tenant_id, columns): # 数据字段表md_columns的元数据实体ID # entity_id = 30014 rr = md.get_md_entities_id_by_code([MD_COLUMNS_NAME]) re = None if rr is not None and len(rr) > 0: entity_id = rr[0].get("md_entity_id") if entity_id is not None: re = md.insert_execute(user_id, tenant_id, entity_id, columns) if re is None: logger.warning("insert_metadata_columns,get_md_entities_by_code is Null,columns=[{}].".format(MD_COLUMNS_NAME)) return re def insert_metadata_entities_rel(user_id, tenant_id, entities_rel): rr = md.get_md_entities_id_by_code([MD_ENTITY_REL_NAME]) re = None if rr is not None and len(rr) > 0: entity_id = rr[0].get("md_entity_id") if entity_id is not None: re = md.insert_execute(user_id, tenant_id, entity_id, entities_rel) if re is None: logger.warning( "insert_metadata_entities_rel,get_md_entities_by_code is Null,rel_table=[{}].".format(MD_ENTITY_REL_NAME)) return re def graph_data_mapping(entiies_rel_list): list_entity = [] list_rel = [] if entiies_rel_list is not None: for item in entiies_rel_list: rel_id = item.get("md_entity_rel_id") rel_type = item.get("rel_type") rel_desc = item.get("md_entity_rel_desc") frm_md_entity_id = item.get("frm_md_entity_id") frm_md_entity_code = item.get("frm_md_entity_code") frm_md_entity_name = item.get("frm_md_entity_name") frm_md_entity_desc = item.get("frm_md_entity_desc") frm_md_fields_id = item.get("frm_md_fields_id") frm_md_fields_name = item.get("frm_md_fields_name") frm_tenant_id = item.get("frm_tenant_id") frm_public_flag = item.get("frm_public_flag") to_md_entity_id = item.get("to_md_entity_id") to_md_entity_code = item.get("to_md_entity_code") to_md_entity_name = item.get("to_md_entity_name") to_md_entity_desc = item.get("to_md_entity_desc") to_md_fields_id = item.get("to_md_fields_id") to_md_fields_name = item.get("to_md_fields_name") to_tenant_id = item.get("to_tenant_id") to_public_flag = item.get("to_public_flag") rel_dict = {} rel_dict["label"] = rel_type rel_dict["name"] = rel_desc rel_dict["relation_id"] = rel_id rel_dict["relation_desc"] = rel_desc rel_dict["relation_type"] = rel_type rel_dict["from_entity_id"] = frm_md_entity_id rel_dict["from_entity_name"] = frm_md_entity_name rel_dict["from_entity_code"] = frm_md_entity_code rel_dict["from_fields_id"] = frm_md_fields_id rel_dict["from_fields_name"] = frm_md_fields_name rel_dict["to_entity_id"] = to_md_entity_id rel_dict["to_entity_name"] = to_md_entity_name rel_dict["to_entity_code"] = to_md_entity_code rel_dict["to_fields_id"] = to_md_fields_id rel_dict["to_fields_name"] = to_md_fields_name list_rel.append(rel_dict) entity_dict = {} entity_dict["label"] = frm_md_entity_code entity_dict["name"] = frm_md_entity_name entity_dict["tenant_id"] = frm_tenant_id entity_dict["public_flag"] = frm_public_flag entity_dict["entity_id"] = frm_md_entity_id entity_dict["entity_code"] = frm_md_entity_code entity_dict["entity_name"] = frm_md_entity_name entity_dict["entity_desc"] = frm_md_entity_desc if not is_entity_in_list("entity_id", frm_md_entity_id, list_entity): list_entity.append(entity_dict) entity_dict = {} entity_dict["label"] = to_md_entity_code entity_dict["name"] = to_md_entity_name entity_dict["tenant_id"] = to_tenant_id entity_dict["public_flag"] = to_public_flag entity_dict["entity_id"] = to_md_entity_id entity_dict["entity_code"] = to_md_entity_code entity_dict["entity_name"] = to_md_entity_name entity_dict["entity_desc"] = to_md_entity_desc if not is_entity_in_list("entity_id", to_md_entity_id, list_entity): list_entity.append(entity_dict) return list_entity, list_rel def is_entity_in_list(key, value, entity_list): flag = False if key is None: return True if entity_list is None or len(entity_list) <= 0: return flag for item in entity_list: if item.get(key) == value: flag = True break return flag # 初始化数据模型关系模型图数据库 def ini_entity_model_graph(tenant_id, entity_codes, entity_catagory, schema): # entity_codes = ["md_entities"] result = query_entity_rel_by_entity(tenant_id, entity_codes) entitie_model_list, rel_list = graph_data_mapping(result) mg.create_object_from_metadata(entitie_model_list, entity_catagory, schema) mg.create_object_rel_from_metadata(rel_list) return (entitie_model_list, rel_list) if __name__ == '__main__': # [{"entity_code":"table_name"}] entity_list = [{"entity_code": "Contract", "table_name": "data_t"}, {"entity_code": "BoQ", "table_name": "data_t"}] user = ur.get_user("test1") user_id = user.get("user_id") tenant_id = user.get("tenant_id") # 从数据库反向工程,初始化表和字段元数据 # re = initialize_md_entities_from_tables(user_id, tenant_id, entity_list) tables = ["t001"] # 查询指定租户的所有实体和对应主键。 # re = query_entity_by_tenant(tenant_id, tables) # logger.info("query all tables ,re={}".format(re)) # entity_codes = ["md_entities"] # re = query_entity_rel_by_entity(tenant_id, entity_codes) # logger.info("query_entity_rel_by_entity ,re={}".format(re)) entity_codes = ["Part", "BOM"] entity_catagory = "DEMO" schema = "Test" # Noe4j模型关系初始化 # entity_codes = None # re = ini_entity_model_graph(tenant_id, entity_codes, entity_catagory, schema) # logger.info("ini_entity_model_graph ,re={}".format(re)) ``` #### File: metedata_fusion_tools/test/test_lookup.py ```python from data import lookup from privilege import user_mngt as ur def test_lookup(): # ##insert the lookup data user = ur.get_user("test1") user_id = user.get("user_id") tenant_id = user.get("tenant_id") data_list = [] data = {} md_entity_id = 30001 md_field_id = 40005 data_id = 800001 data["data_id"] = data_id data["md_entity_id"] = md_entity_id data["lookup_classify_id"] = 123 data["lookup_key"] = md_field_id data["lookup_value"] = "bbb" data_list.append(data) data = {} data["data_id"] = data_id data["md_entity_id"] = md_entity_id data["lookup_classify_id"] = 123 data["lookup_key"] = md_field_id data["lookup_value"] = "aaa" data_list.append(data) re= lookup.insert_lookup_data(user_id, tenant_id, data_list) assert re is not None re = lookup.update_lookup_data(user_id, tenant_id, md_entity_id, md_field_id, data_id, data_list) assert re is not None re = lookup.delete_lookup_data(user_id, tenant_id, md_entity_id, md_field_id, data_id) assert re is not None # ##query the lookup data where_dict = {"md_entity_id": 30041, "lookup_key": 40005} re = lookup.query_lookup_data(user_id, tenant_id, where_dict) assert re is not None test_lookup() ``` #### File: metedata_fusion_tools/test/test_privilege.py ```python from mdata import metadata as md from privilege import role_privilege as rp, data_privilege as dp, user_mngt as ur from common import constants as const def test_data_privilege(): user_account = "test1" user = ur.get_user(user_account) user_id = user.get("user_id") tenant_id = user.get("tenant_id") ## Entity md_entity_id = 30001 re = dp.query_data_privilege_info(tenant_id, user_id, md_entity_id, const.ENTITY_TYPE_ENTITY) assert re is not None ## View md_entity_id = 50001 re = dp.query_data_privilege_info(tenant_id, user_id, md_entity_id, const.ENTITY_TYPE_VIEW) assert re is not None or re is None def test_role_privilege(): user_account = "admin" user = ur.get_user(user_account) user_id = user.get("user_id") tenant_id = user.get("tenant_id") re = md.get_md_entities_id_by_code(["entity_privileges"]) if re is not None and len(re) > 0: insert_entity_id = re[0].get("md_entity_id") else: # entity_privileges实体表元数据实体ID insert_entity_id = 30029 # #1.实体权限导入 md_entity_ids = [30015] re = rp.insert_entity_privilege(user_id, tenant_id, const.ENTITY_TYPE_ENTITY, md_entity_ids) assert re is not None # #2.视图权限写入 view_ids = [50002] re = rp.insert_entity_privilege(user_id, tenant_id, const.ENTITY_TYPE_VIEW, view_ids) assert re is not None # re = query_user_priv_by_user_account(user_account) re = rp.query_user_privilege_by_userid(tenant_id, user_id) assert re is not None test_data_privilege() test_role_privilege() ```
{ "source": "joeirigoyen/MultiAgent-Projects", "score": 3 }
#### File: ActividadIntegradora/Entregables/robot_server.py ```python __author__ = "<NAME>" from typing import Any from flask import Flask, request, jsonify from robot_agents import * from robot_model import * # Initial variables agents = 5 width = 20 height = 20 boxes = 25 step = 0 depot_x = 2 depot_y = 2 max_steps = 0 robot_model = None # App initialization app = Flask("Robot example") # Sort a list using a tuple's first element def get_first_in(elem: tuple) -> Any: return elem[0] # Return a list with the second element of each tuple in a given list def get_second_elems_from(arr: list) -> list[Any]: return [elem[1] for elem in arr] # Route to initialize model @app.route("/init", methods=["POST", "GET"]) def init_model(): global agents, width, height, boxes, robot_model, step, depot_x, depot_y, max_steps if request.method == "POST": # Define model's initial variables agents = int(request.form.get("agents")) width = int(request.form.get("width")) height = int(request.form.get("height")) boxes = int(request.form.get("boxes")) depot_x = int(request.form.get("depot_x")) depot_y = int(request.form.get("depot_y")) max_steps = int(request.form.get("max_steps")) step = 0 # Initialize model print(agents, boxes, width, height, depot_x, depot_y, max_steps) print(request.form) robot_model = RobotModel(agents, width, height, boxes, depot_x, depot_y, max_steps) # Return JSON message if post method was OK return jsonify({"message": "accepted"}) # Get trajectories from robots @app.route("/getRobotPath", methods=["GET"]) def get_robot_path(): global robot_model robot_position_tuples, robot_positions = [], [] if request.method == "GET": for (a, x, z) in robot_model.grid.coord_iter(): if len(a) > 0: for agent in a: if agent.type_id == agt.ROBOT: print("Added robot to list") robot_position_tuples.append((agent.unique_id, { "x": x, "y": 0, "z": z })) robot_position_tuples.sort(key=get_first_in) robot_positions = get_second_elems_from(robot_position_tuples) print(robot_position_tuples) return jsonify({"positions": robot_positions}) # Get trajectories from boxes @app.route("/getBoxPath", methods=["GET"]) def get_box_path(): global robot_model box_position_tuples, box_positions = [], [] if request.method == "GET": for (a, x, z) in robot_model.grid.coord_iter(): if len(a) > 0: for agent in a: if agent.type_id == agt.BOX: print("Added box to list") y = agent.y_pos box_position_tuples.append((agent.unique_id, { "x": x, "y": y, "z": z })) box_position_tuples.sort(key=get_first_in) print(box_position_tuples) box_positions = get_second_elems_from(box_position_tuples) return jsonify({"positions": box_positions}) # Get trajectories from depots @app.route("/getDepotPath", methods=["GET"]) def get_depot_path(): global robot_model depot_positions = [] if request.method == "GET": for (a, x, z) in robot_model.grid.coord_iter(): if len(a) > 0: for agent in a: if agent.type_id == agt.DEPOT: print("Added depot to list") depot_positions.append({"x": x, "y": 0, "z": z}) print(depot_positions) return jsonify({"positions": depot_positions}) # Make model advance one step further @app.route("/step", methods=["GET"]) def update_model(): global robot_model, step if request.method == "GET": robot_model.step() step += 1 return jsonify({"step": step}) if __name__ == "__main__": app.run(host="localhost", port=8585, debug=True) ``` #### File: FinalProject/Backend/astar.py ```python from mesa.model import Model from grid_manager import NodeTypes from grid_manager import Node, h from queue import PriorityQueue def get_nodes_in_path(came_from: dict, current: Node): path = [] while current in came_from: path.append((current.row, current.col)) current = came_from[current] path.reverse() return path def get_shortest_path(grid: list, start: Node, end: Node, model: Model) -> list: # Open destination Node momentarily so the algorithm can detect it model.standard_map[end.row][end.col].state = NodeTypes.END model.standard_map[end.row][end.col].update_adj() # Initialize counter, queue and set count = 0 open_set = PriorityQueue() open_set.put((0, count, start)) came_from = {} # Initialize each cell's f score and g score g_score = {node: float("inf") for row in grid for node in row} f_score = {node: float("inf") for row in grid for node in row} # Declare start node's scores g_score[start] = 0 f_score[start] = h(start, end) # Returns nodes in priority queue open_set_hash = {start} # Run until the open set is empty while not open_set.empty(): # Current node will be the start node current = open_set.get()[2] # Remove current node from the open set hash open_set_hash.remove(current) # Check if current node is already the destination if current == end: model.standard_map[end.row][end.col].state = NodeTypes.OBSTACLE model.standard_map[end.row][end.col].update_adj() return get_nodes_in_path(came_from, current) # Check the neighbors of the current node and add a temporary g score for neighbor in current.neighbors: # Check each neighbor's g score and look for the smallest one temp_g = g_score[current] + 1 if temp_g < g_score[neighbor]: # Tell program that the current path comes from the current node came_from[neighbor] = current # Set the neighbor's g score the new g score g_score[neighbor] = temp_g f_score[neighbor] = temp_g + h(neighbor, end) # If neighbor has not been visited, change it's state and add it to the priority queue if neighbor not in open_set_hash: count += 1 open_set.put((f_score[neighbor], count, neighbor)) open_set_hash.add(neighbor) neighbor.state = NodeTypes.VISITED if current != start: current.state = NodeTypes.CLOSED model.standard_map[end.row][end.col].state = NodeTypes.OBSTACLE model.standard_map[end.row][end.col].update_adj() return [] ``` #### File: FinalProject/Backend/grid_manager.py ```python from enum import Enum, auto from mesa import Model from directions import Directions as dirs class NodeTypes(Enum): START = auto() END = auto() OBSTACLE = auto() CLOSED = auto() UNVISITED = auto() VISITED = auto() class Node: def __init__(self, col: int, row: int, model: Model) -> None: self.col = col self.row = row self.state = NodeTypes.UNVISITED self.direction = None self.model = model self.neighbors = [] # Update the adjacent nodes of a node def update_adj(self) -> None: # Update every adjacent node self.model.standard_map[self.row][self.col + 1].update_neighbors() self.model.standard_map[self.row][self.col - 1].update_neighbors() self.model.standard_map[self.row + 1][self.col].update_neighbors() self.model.standard_map[self.row - 1][self.col].update_neighbors() # Update the neighbor list of a node def update_neighbors(self) -> None: self.neighbors.clear() if self.col < self.model.cols - 1 and not self.model.standard_map[self.row][self.col + 1].state == NodeTypes.OBSTACLE: if self.model.standard_map[self.row][self.col].direction != dirs.LEFT: if not (self.model.standard_map[self.row][self.col].direction == dirs.UP and self.model.standard_map[self.row][self.col + 1].direction == dirs.LEFT): self.neighbors.append(self.model.standard_map[self.row][self.col + 1]) if self.col > 0 and not self.model.standard_map[self.row][self.col - 1].state == NodeTypes.OBSTACLE: if self.model.standard_map[self.row][self.col].direction != dirs.RIGHT: if not (self.model.standard_map[self.row][self.col].direction == dirs.DOWN and self.model.standard_map[self.row][self.col - 1].direction == dirs.RIGHT): self.neighbors.append(self.model.standard_map[self.row][self.col - 1]) if self.row < self.model.rows - 1 and not self.model.standard_map[self.row + 1][self.col].state == NodeTypes.OBSTACLE: if self.model.standard_map[self.row][self.col].direction != dirs.UP: if not (self.model.standard_map[self.row][self.col].direction == dirs.RIGHT and self.model.standard_map[self.row + 1][self.col].direction == dirs.UP) and not (self.model.standard_map[self.row][self.col].direction == dirs.LEFT and self.model.standard_map[self.row + 1][self.col].direction == dirs.UP): self.neighbors.append(self.model.standard_map[self.row + 1][self.col]) if self.row > 0 and not self.model.standard_map[self.row - 1][self.col].state == NodeTypes.OBSTACLE: if self.model.standard_map[self.row][self.col].direction != dirs.DOWN: if not (self.model.standard_map[self.row][self.col].direction == dirs.RIGHT and self.model.standard_map[self.row - 1][self.col].direction == dirs.DOWN) and not (self.model.standard_map[self.row][self.col].direction == dirs.LEFT and self.model.standard_map[self.row - 1][self.col].direction == dirs.DOWN): self.neighbors.append(self.model.standard_map[self.row - 1][self.col]) # Update every node's neighbor list def init_neighborhood(grid: list) -> None: for i in range(len(grid)): for j in range(len(grid[i])): grid[i][j].update_neighbors() # Create a grid with empty nodes def make_grid(rows: int, cols: int, model: Model) -> list: grid = [] for row in range(rows): temp = [] for col in range(cols): node = Node(col, row, model) temp.append(node) grid.append(temp) return grid # Get Manhattan distance from one node to another def h(n1: Node, n2: Node): return abs(n1.col - n2.col) + abs(n1.row - n2.row) ``` #### File: FinalProject/Backend/traffic_agents.py ```python from mesa import Agent, Model from directions import Directions from agent_types import AgentTypes as agt from directions import Directions as dirs from grid_manager import NodeTypes from astar import * # Represents a building, not much will be happening with this agent since it's not even going to be added to the scheduler class Building(Agent): def __init__(self, unique_id: int, model: Model) -> None: super().__init__(unique_id, model) self.type_id = agt.BUILDING # Set the type of agent as Building # Represents a traffic light, has a direction since it's part of the road, and a state for the cars to check and decide if they will advance class Light(Agent): def __init__(self, unique_id: int, model: Model, direction: Directions) -> None: super().__init__(unique_id, model) self.type_id = agt.LIGHT # Agent type self.direction = direction # Direction of the road self.state = False if direction == dirs.UP or direction == dirs.DOWN else True # Initial state depending on it's direction # Represents the place where a car will try to get to class Destination(Agent): def __init__(self, unique_id: int, model: Model) -> None: super().__init__(unique_id, model) self.type_id = agt.DESTINATION # Agent type self.occupied = False # Determines if a destination has a car inside it (obsolete after implementation of new car spawns) # Represents a car within the model class Car(Agent): def __init__(self, unique_id: int, model: Model, start_pos: tuple) -> None: super().__init__(unique_id, model) # Set initial attributes self.type_id = agt.CAR # Agent type self.destination = self.random.choice(self.model.destinations) # Random destination from the model's destinations list self.has_arrived = False # Contains if the car has arrived or not # Set start and end in map self.map = model.standard_map # A copy of the model's graph self.map[start_pos[0]][start_pos[1]].state = NodeTypes.START self.map[self.destination.pos[0]][self.destination.pos[1]].state = NodeTypes.END # Find path to destination self.path = get_shortest_path(self.map, self.map[start_pos[0]][start_pos[1]], self.map[self.destination.pos[0]][self.destination.pos[1]], model) self.next_cell = None self.last_dir = self.map[start_pos[0]][start_pos[1]].direction self.turn_dir = None self.main_av = False # Check if destination cell is within the neighborhood def check_destination(self, neighborhood: list) -> tuple: # Check every cell in neighborhood for cell in neighborhood: # Check the content in every cell content = self.model.grid.get_cell_list_contents(cell) # Check every agent within the cell's content for agent in content: # Set next position as the destination cell if agent.type_id == agt.DESTINATION: return agent.pos # If nothing was found, don't return anything return None # Return whether the car is on a main avenue or not def is_in_main_av(self) -> bool: # If car is in the first two columns or in the last two columns, return True if (self.pos[0] >= 0 and self.pos[0] < 2) and (self.pos[0] >= self.model.cols - 2 and self.pos[0] < self.model.cols): return True # If car is in the first two rows or in the last two rows, return True elif (self.pos[1] >= 0 and self.pos[1] < 2) and (self.pos[1] >= self.model.rows - 2 and self.pos[1] < self.model.rows): return True # Otherwise, return False else: return False # Get the direction of the car's next move def get_turn_dir(self) -> tuple: return (self.next_cell[0] - self.pos[0], self.next_cell[1] - self.pos[1]) # Check if a car will let other car go first in a cell def give_priority(self, other: Agent) -> bool: # If the car is in the main avenue but the other isn't, don't give priority if self.main_av and not other.main_av: return False # If this car is not in the main avenue but the other is, give priority elif not self.main_av and other.main_av: return True # If this car is going straight and the other car is going to turn elif self.turn_dir == self.last_dir and other.turn_dir != other.last_dir: return False # If both cars are going to turn elif other.turn_dir != other.last_dir and self.turn_dir != self.last_dir: return True # If both cars are going straight else: return True # Check if next cell is being targeted by other agents and return if car can go to it def can_get_to_next_cell(self) -> bool: # If next cell is not the car's destination, check if it can move towards it if self.next_cell != self.destination.pos: # If next cell is empty: if self.model.grid.is_cell_empty(self.next_cell): # Get next cell's neighbors next_neighbors = self.model.grid.get_neighborhood(self.next_cell, moore=False, include_center=False) # Remove self position from the neighborhood if self.pos in next_neighbors: next_neighbors.remove(self.pos) # Check each cell within the neighborhood for cell in next_neighbors: # Check each cell's contents for agent in self.model.grid.get_cell_list_contents(cell): # If there's a car in that cell, check if it's going to this cell too if agent.type_id == agt.CAR: if not agent.has_arrived: # If they're going to the same cell, check if this car will let the other go first if agent.next_cell == self.next_cell: return not self.give_priority(agent) # If no agents were found in that cell, let the car advance return True # Otherwise, check if the contents of the next cell contain a car else: contents = self.model.grid.get_cell_list_contents(self.next_cell) for agent in contents: # If agent is a car, don't let it advance if agent.type_id == agt.CAR: return False # If no car was found, let the car advance return True # Else, just return True since it can move no matter what else: return True # Check if there are cars or lights in front of the car def has_green_light(self) -> bool: # If there's a light in the next cell, check if it's a light content = self.model.grid.get_cell_list_contents(self.next_cell) for agent in content: # If agent is a light, return it's state if agent.type_id == agt.LIGHT: return agent.state # If there is no light, advance to next cell return True # Try to move to the next cell def move_next(self) -> None: # Check if any other car is directed to the next cell if self.can_get_to_next_cell(): # If there's a green light, advance to it if self.has_green_light(): # Remove waypoint from path self.path.pop(0) # Move agent towards the next cell self.model.grid.move_agent(self, self.next_cell) # Return a boolean value representing if two cars are in the same position def check_crashes(self) -> bool: # Get contents from current cell cell_content = self.model.grid.get_cell_list_contents(self.pos) # Remove self from content cell_content.remove(self) # Check if there's content in the cell other than self if len(cell_content) > 0: # Check every agent that is a car for agent in cell_content: if agent.type_id == agt.CAR: # If the car's position is already in the car's definition, return false if agent.pos == agent.destination.pos: return False # Otherwise, return true else: print(f"Crash in {self.pos}") return True return False # Otherwise return false else: return False def step(self) -> None: # If car hasn't arrived to it's destination if not self.has_arrived: # Set car's current direction self.last_dir = self.map[self.pos[0]][self.pos[1]].direction # If path still has remaining cells, assign the first one to the car's next cell if len(self.path) > 0: # Remove the next cell from the path self.next_cell = self.path[0] self.turn_dir = self.get_turn_dir() self.main_av = self.is_in_main_av() self.turn_dir = self.map[self.next_cell[0]][self.next_cell[1]].direction # Try to move to the next cell self.move_next() # Check if car is in the same position as another car self.model.running = not self.check_crashes() # Otherwise, set the car's has_arrived attribute to True else: self.model.arrivals += 1 self.has_arrived = True ``` #### File: FinalProject/Backend/traffic_visualizer.py ```python from mesa import Agent from mesa.visualization.modules import CanvasGrid from mesa.visualization.ModularVisualization import ModularServer from agent_types import AgentTypes as agt from traffic_model import TrafficModel MAX_STEPS = 1000 CARS = 20 MODEL = TrafficModel(CARS, MAX_STEPS) GRID_WIDTH = 500 GRID_HEIGHT = 500 def agent_portrayal(agent: Agent) -> dict[str, str]: portrayal = {"Filled": "true", "Shape": "circle"} if agent.type_id == agt.CAR: portrayal["Layer"] = 2 portrayal["r"] = 0.5 portrayal["Color"] = '#000000' if agent.type_id == agt.BUILDING: portrayal["Layer"] = 0 portrayal["r"] = 1.1 portrayal["Color"] = "#192b36" if agent.type_id == agt.DESTINATION: portrayal["Layer"] = 1 portrayal["r"] = 1 portrayal["Color"] = "#b600d6" if agent.type_id == agt.LIGHT: portrayal["Layer"] = 0 portrayal["r"] = 0.8 if agent.state: portrayal["Color"] = "#00d62e" else: portrayal["Color"] = "#c20000" return portrayal if __name__ == "__main__": grid = CanvasGrid(agent_portrayal, MODEL.cols, MODEL.rows, GRID_WIDTH, GRID_HEIGHT) server = ModularServer(TrafficModel, [grid], "Traffic Model", {"cars": CARS, "max_steps": MAX_STEPS}) server.port = 8521 server.launch() ```
{ "source": "joeirigoyen/PathfindingVisualizer", "score": 2 }
#### File: PathfindingVisualizer/app/main.py ```python from flask import * app = Flask("Pathfinding Algorithms Visualizer") @app.route('/') def main(): return render_template('index.html') ```
{ "source": "joeirigoyen/PythonLexicon", "score": 3 }
#### File: PythonLexicon/source/reader.py ```python import time import os import os.path import re import html_writer as hw import pattern_finder as pf # Directories curr_state = 0 file_directory = "" source_directory = os.path.abspath("C:\\Users\\Joe\\Documents\\TEC\\Materias\\4to\\IMC\\PythonHighlighter\\PythonLexicon\\source\\source.txt") # Read full file by char def read_file(): global curr_state # Open file f = open(source_directory, "r") # Get lines lines = f.readlines() # Read lines by character for line in lines: # Add html paragraph hw.write_to_file("\t<p>") # Set state to 0 curr_state = 0 # Find regexps in line # Comments line = pf.find_matches(line, pf.comment_token, "comment") # Decorators line = pf.find_matches(line, pf.decorator_token, "decorator") # Arguments line = pf.find_matches(line, pf.arg_token, "argument") # Find tabs line = pf.find_matches(line, pf.tab_token, "tab") # Find function calls line = pf.find_matches(line, pf.function_token, "function") # Find numbers line = pf.find_matches(line, pf.number_token, "number") # Find special elements for word in line.split(): # Keywords if word.replace("</span>", "") in pf.keywords: line = pf.find_matches(line, word.replace("</span>", ""), "keyword") # Strings if "class=" not in word: if "\"" in word or "\'" in word: line = re.sub(word, "<span class=\"string\">" + word + "</span>", line) # End html paragraph if line != None: hw.write_to_file(line) hw.write_to_file("</p>\n\t\t\t") # Run full program if __name__ == '__main__': init_time = time.time() hw.init_file("test.html") pf.assign_regex() read_file() hw.end_file() finish_time = time.time() - init_time print("Runtime: " + str(finish_time)) ```
{ "source": "joeirimpan/git_kloc", "score": 2 }
#### File: git_kloc/user/views.py ```python import os from flask import ( request, session, Blueprint, render_template, jsonify, url_for, redirect ) from flask_login import login_user, logout_user, current_user from requests_oauthlib import OAuth2Session from .models import User from ..extensions import login_manager blueprint = Blueprint( 'user', __name__, static_folder='../static' ) GITHUB_OAUTH_URL = 'https://github.com/login/oauth/%s' @login_manager.user_loader def user_loader(user_id): if 'token' not in session: return return User(token=session['token']) @blueprint.route('/') def index(): """Home page """ return render_template('index.html') @blueprint.route('/is_logged_in') def is_logged_in(): return jsonify( isLoggedIn=current_user.is_authenticated ) @blueprint.route('/login') def login(): """Login handler """ github = OAuth2Session(os.environ['CLIENT_ID']) authorization_url, state = github.authorization_url( GITHUB_OAUTH_URL % 'authorize' ) session['oauth_state'] = state return jsonify(auth_url=authorization_url) @blueprint.route('/authorize') def authorize(): """Oauth2 callback route """ github = OAuth2Session( os.environ['CLIENT_ID'], state=session['oauth_state'] ) token = github.fetch_token( GITHUB_OAUTH_URL % 'access_token', client_secret=os.environ['CLIENT_SECRET'], authorization_response=request.url ) github.token = token user = User(token=token) session['token'] = token login_user(user) next_url = request.args.get('next') or url_for('user.index') return redirect(next_url) @blueprint.route('/logout') def logout(): """Logout handler """ session.clear() logout_user() return redirect(url_for('user.index')) ```
{ "source": "joeirimpan/nse_scraper", "score": 2 }
#### File: nse_scraper/nse_scraper/app.py ```python import json import cherrypy from cherrypy.process.plugins import BackgroundTask from .nse_api import NSE from .extensions import redis_store from .utils import fp class App(object): """Cherrypy Application """ def __init__(self, *args, **kwargs): self.nse = NSE() # Start the cherrypy background cron-like task BackgroundTask( interval=5 * 60, function=self.store_now, bus=cherrypy.engine ).start() @property def stock_data_key(self): """Return the stock data key """ return 'nse:stock_info' def store_now(self): """Persist data onto redis """ data = {} for type in ['gainers', 'losers']: # Serialize list of dict to string data[type] = json.dumps(self.nse.get_stocks_data(type)) # Store as hashmap datastructure to improve memory usage redis_store.hmset(self.stock_data_key, data) @cherrypy.expose def index(self): return file(fp('templates/index.html')) @cherrypy.expose(['stocks_info.json']) @cherrypy.tools.json_out() def get_stocks_info(self): """JSON endpoint which returns the stocks info """ data = redis_store.hgetall(self.stock_data_key) # De-serialiaze the values for key, value in data.iteritems(): data[key] = json.loads(value) return data ```
{ "source": "joeirimpan/pyosticket", "score": 3 }
#### File: pyosticket/pyosticket/pyosticket.py ```python import atexit import requests __all__ = ['OSTicketAPI', 'TicketModel'] class OSTicketAPI(object): def __init__(self, url, api_key): self.url = url self.session = requests.Session() atexit.register(self.session.close) self.session.headers["X-API-Key"] = api_key @property def ticket(self): return Ticket(connection=self) class TicketModel(object): __slots__ = [ "source", "name", "email", "ip", "subject", "topic_id", "attachments" ] def __init__(self, name, email, subject, topic_id, attachments, **kwargs): self.source = kwargs.get("source", "API") self.name = name self.email = email self.ip = kwargs.get("ip", "") self.subject = subject self.topic_id = topic_id self.attachments = attachments def to_dict(self): return { "source": self.source, "name": self.name, "email": self.email, "ip": self.ip, "subject": self.subject, "topicId": self.topic_id, "message": self.message, "attachments": self.attachments } class Ticket(object): def __init__(self, connection): self.connection = connection @property def url(self): return self.connection.url def _raise_or_return_json(self, response): """Raise HTTPError before converting response to json :param response: Request response object """ response.raise_for_status() try: json_value = response.json() except ValueError: return response.content, response.status_code else: return json_value, response.status_code def create(self, ticket): """Create a ticket :param ticket: An instance of `TicketModel` """ response = self.connection.session.post( "%s/api/tickets.json" % self.url, json=ticket.to_dict(), ) return self._raise_or_return_json(response) def all(self, email): """XXX: Custom API to fetch all tickets for this email :param email: Email of the user """ response = self.connection.session.get( "%s/api/tickets/all" % self.url, params={"email": email}, ) return self._raise_or_return_json(response) def get(self, ticket_number, email): """XXX: Custom API to fetch a specific ticket :param ticket_number: Ticket number :param email: Email of the user """ response = self.connection.session.get( "%s/api/tickets/%s" % (self.url, ticket_number), params={"email": email}, ) return self._raise_or_return_json(response) ```
{ "source": "joeirimpan/pyparallel", "score": 2 }
#### File: pyparallel/pyparallel/cli.py ```python import click from pyparallel import Downloader @click.command() @click.option('--url', required=True, help='Download URL') @click.option('--conns', required=True, help='Number of parts') @click.option('--filename', required=True, help='Output filename') def cli(url, conns, filename): downloader = Downloader( url=url, conns=int(conns), filename=filename ) downloader.start() ```
{ "source": "JoeIsHere/yakbarber", "score": 2 }
#### File: JoeIsHere/yakbarber/yakbarber.py ```python from codecs import open import os import sys import pystache from itertools import islice import argparse import imp import shutil import re import datetime import time import pytz import BeautifulSoup import markdown import mdx_smartypants import cProfile # Settings Import parser = argparse.ArgumentParser(description='Yak Barber is a fiddly little time sink, and blog system.') parser.add_argument('-s','--settings',nargs=1,help='Specify a settings.py file to use.') parser.add_argument('-c','--cprofile',action='store_true', default=False,help='Run cProfile to check run time and elements.') args = parser.parse_args() if args.settings is not None: settingsPath = args.settings[0] else: settingsPath = './settings.py' settings = imp.load_source('settings.py',settingsPath) # Settings Local root = settings.root webRoot = settings.webRoot contentDir = settings.contentDir templateDir = settings.templateDir outputDir = settings.outputDir sitename = settings.sitename author = settings.author postsPerPage = settings.postsPerPage typekitId = settings.typekitId # 'meta','fenced_code','footnotes','smart_strong','smarty' md = markdown.Markdown(extensions=['meta','smartypants','toc(anchorlink=True)']) def safeMkDir(f): d = f if not os.path.exists(d): os.makedirs(d) def splitEvery(n, iterable): i = iter(iterable) piece = list(islice(i, n)) while piece: yield piece piece = list(islice(i, n)) def removePunctuation(text): text = re.sub(r'\s[^a-zA-Z0-9]\s',' ',text) text = re.sub(r'[^a-zA-Z0-9\s]+','',text) text = text.encode('ascii','xmlcharrefreplace') return text def templateResources(): tList = os.listdir(templateDir) tList = [x for x in tList if ('.html' or '.xml') not in x] for tr in tList: fullPath = os.path.join(templateDir, tr) if (os.path.isfile(fullPath)): shutil.copy(fullPath, outputDir) def openConvert(mdfile): with open(mdfile, 'r', 'utf-8') as f: rawfile = f.read() converted = md.convert(rawfile) try: if re.match(r'[a-zA-Z0-9]+',md.Meta[u'title'][0]): converted = converted convertedMeta = [md.Meta, converted] return convertedMeta else: return None except: return None def aboutPage(): with open(contentDir + u'about.markdown', 'r', 'utf-8') as f: rawfile = f.read() converted = {'about': md.convert(rawfile),'sitename':sitename,'webRoot':webRoot} converted[u'typekitId'] = typekitId with open(templateDir + u'about.html','r','utf-8') as f: aboutTemplate = f.read() with open(outputDir + u'about.html', 'w', 'utf-8') as f: aboutResult = pystache.render(aboutTemplate,converted) return f.write(aboutResult) def renderPost(post, posts): metadata = {} for k, v in post[0].iteritems(): metadata[k] = v[0] metadata[u'content'] = post[1] metadata[u'sitename'] = sitename metadata[u'webRoot'] = webRoot metadata[u'author'] = author metadata[u'typekitId'] = typekitId postName = removePunctuation(metadata[u'title']) postName = metadata[u'date'].split(' ')[0] + '-' + postName.replace(u' ',u'-').replace(u'‑',u'-') postName = u'-'.join(postName.split('-')) postFileName = outputDir + postName + '.html' metadata[u'postURL'] = webRoot + postName + '.html' metadata[u'title'] = unicode(mdx_smartypants.unicode_entities(metadata[u'title'])) if u'link' in metadata: templateType = u'/post-content-link.html' else: templateType = u'/post-content.html' with open(templateDir + templateType,'r','utf-8') as f: postContentTemplate = f.read() postContent = pystache.render(postContentTemplate,metadata,decode_errors='ignore') metadata['post-content'] = postContent with open(templateDir + u'/post-page.html','r','utf-8') as f: postPageTemplate = f.read() postPageResult = pystache.render(postPageTemplate,metadata,decode_errors='ignore') with open(postFileName,'w','utf-8') as f: f.write(postPageResult) return posts.append(metadata) def extractTags(html,tag): soup = BeautifulSoup.BeautifulSoup(html) to_extract = soup.findAll(tag) for item in to_extract: item.extract() return unicode(soup) def RFC3339Convert(timeString): strip = time.strptime(timeString, '%Y-%m-%d %H:%M:%S') dt = datetime.datetime.fromtimestamp(time.mktime(strip)) pacific = pytz.timezone('US/Pacific') ndt = dt.replace(tzinfo=pacific) utc = pytz.utc return ndt.astimezone(utc).isoformat().split('+')[0] + 'Z' def feed(posts): feedDict = posts[0] entryList = str() feedDict['gen-time'] = datetime.datetime.utcnow().isoformat('T') + 'Z' with open(templateDir + u'/atom.xml','r','utf-8') as f: atomTemplate = f.read() with open(templateDir + u'/atom-entry.xml','r','utf-8') as f: atomEntryTemplate = f.read() for e,p in enumerate(posts): p[u'date'] = RFC3339Convert(p[u'date']) p[u'content'] = extractTags(p[u'content'],'script') p[u'content'] = extractTags(p[u'content'],'object') p[u'content'] = extractTags(p[u'content'],'iframe') if e < 100: atomEntryResult = pystache.render(atomEntryTemplate,p) entryList += atomEntryResult feedDict['atom-entry'] = entryList feedResult = pystache.render(atomTemplate,feedDict,string_encode='utf-8') with open(outputDir + 'feed','w','utf-8') as f: f.write(feedResult) def paginatedIndex(posts): indexList = sorted(posts,key=lambda k: k[u'date'])[::-1] feed(indexList) postList = [] for i in indexList: postList.append(i['post-content']) indexOfPosts = splitEvery(postsPerPage,indexList) with open(templateDir + u'/index.html','r','utf-8') as f: indexTemplate = f.read() indexDict = {} indexDict[u'sitename'] = sitename indexDict[u'typekitId'] = typekitId for e,p in enumerate(indexOfPosts): indexDict['post-content'] = p print e #for x in p: #print x['title'] if e == 0: fileName = u'index.html' if len(indexList) > postsPerPage: indexDict[u'previous'] = webRoot + u'index2.html' else: fileName = u'index' + str(e+1) + u'.html' if e == 1: indexDict[u'next'] = webRoot + u'index.html' indexDict[u'previous'] = webRoot + u'index' + str(e+2) + u'.html' else: indexDict[u'previous'] = webRoot + u'index' + str(e+2) + u'.html' if e < len(indexList): indexDict[u'next'] = webRoot + u'index' + str(e-1) + u'.html' indexPageResult = pystache.render(indexTemplate,indexDict) with open(outputDir + fileName,'w','utf-8') as f: f.write(indexPageResult) def start(): convertedList = [] posts =[] contentList = os.listdir(contentDir) for c in contentList: if c.endswith('.md') or c.endswith('.markdown'): mdc = openConvert(contentDir+c) if mdc is not None: convertedList.append(mdc) sortedList = sorted(convertedList, key=lambda x: x[0], reverse=True) #pprint.pprint(convertedList, indent=1, depth=4) aboutPage() for post in sortedList: renderPost(post,posts) paginatedIndex(posts) templateResources() def main(): safeMkDir(contentDir) safeMkDir(templateDir) safeMkDir(outputDir) start() if __name__ == "__main__": if args.cprofile: cProfile.run('main()') else: main() ```
{ "source": "joeization/cv_finalproject", "score": 3 }
#### File: joeization/cv_finalproject/demo.py ```python from imutils.video import VideoStream from imutils import face_utils import datetime import argparse import imutils import time import dlib import cv2 import threading import numpy as np from makeup import * # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-p", "--shape-predictor", required=True, help="path to facial landmark predictor") args = vars(ap.parse_args()) # initialize dlib's face detector (HOG-based) and then create # the facial landmark predictor print("[INFO] loading facial landmark predictor...") detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(args["shape_predictor"]) # initialize the video stream and allow the cammera sensor to warmup print("[INFO] camera sensor warming up...") vs = cv2.VideoCapture(0) time.sleep(2.0) fill = False blur = False #alpha = 0.5 #minit() a = mu() lip_color = (255, 96, 96) eyeshadow_color = (161, 125, 108) blush_color = (255, 216, 226) def nothing(x): pass lip_color = (lip_color[2], lip_color[1], lip_color[0]) eyeshadow_color = (eyeshadow_color[2], eyeshadow_color[1], eyeshadow_color[0]) blush_color = (blush_color[2], blush_color[1], blush_color[0]) cv2.namedWindow('frame') cv2.createTrackbar('R','frame',255,255,nothing) cv2.createTrackbar('G','frame',96,255,nothing) cv2.createTrackbar('B','frame',96,255,nothing) cv2.createTrackbar('R2','frame',161,255,nothing) cv2.createTrackbar('G2','frame',125,255,nothing) cv2.createTrackbar('B2','frame',108,255,nothing) switch = '0 : OFF \n1 : ON' cv2.createTrackbar(switch, 'frame',0,1,nothing) # loop over the frames from the video stream while True: # grab the frame from the threaded video stream, resize it to # have a maximum width of 400 pixels, and convert it to # grayscale _, frame = vs.read() #frame = imutils.resize(frame, width=400) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # detect faces in the grayscale frame rects = detector(gray, 0) # loop over the face detections for rect in rects: # determine the facial landmarks for the face region, then # convert the facial landmark (x, y)-coordinates to a NumPy # array shape = predictor(gray, rect) shape = face_utils.shape_to_np(shape) # loop over the (x, y)-coordinates for the facial landmarks # and draw them on the image #for (x, y) in shape: # cv2.circle(frame, (x, y), 1, (0, 0, 255), -1) #for i in range(16): # cv2.line(frame, (shape[i][0], shape[i][1]), (shape[i+1][0], shape[i+1][1]), (0, 255, 0)) if fill: a.add_lip(frame, gray, np.concatenate((shape[48:55], shape[60:65][::-1])), lip_color) a.add_lip(frame, gray, np.concatenate((shape[54:60], [shape[48]], [shape[60]], shape[64:68][::-1])), lip_color) a.add_eyeshadow(frame, gray, shape[36:40], np.int32([np.int32((shape[40][0]+shape[41][0])/2), np.int32((shape[40][1]+shape[41][1])/2)]), eyeshadow_color) a.add_eyeshadow(frame, gray, shape[42:46], np.int32([np.int32((shape[46][0]+shape[47][0])/2), np.int32((shape[46][1]+shape[47][1])/2)]), eyeshadow_color) #cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0, frame) if blur: dr = np.linalg.norm(shape[14]-shape[33])/3 dl = np.linalg.norm(shape[2]-shape[33])/3 d = np.linalg.norm(shape[14]-shape[35])/2.5 m = np.int32((shape[31][0]-d*1.5, shape[31][1]-d*dl/(dl+dr))) a.add_blush(frame, gray, m, np.int32(d), blush_color) #cv2.circle(frame, (shape[2][0], shape[2][1]), 1, (0, 0, 255), -1) #cv2.circle(frame, (shape[31][0], shape[31][1]), 1, (0, 0, 255), -1) m = np.int32((shape[35][0]+d*1.5, shape[35][1]-d*dr/(dl+dr))) a.add_blush(frame, gray, m, np.int32(d), blush_color) #cv2.circle(frame, (shape[14][0], shape[14][1]), 1, (0, 0, 255), -1) #cv2.circle(frame, (shape[35][0], shape[35][1]), 1, (0, 0, 255), -1) # show the frame cv2.imshow("frame", frame) r = cv2.getTrackbarPos('R','frame') g = cv2.getTrackbarPos('G','frame') b = cv2.getTrackbarPos('B','frame') r2 = cv2.getTrackbarPos('R2','frame') g2 = cv2.getTrackbarPos('G2','frame') b2 = cv2.getTrackbarPos('B2','frame') s = cv2.getTrackbarPos(switch,'frame') if s>0: lip_color = (b, g, r) eyeshadow_color = (b2, g2, r2) key = cv2.waitKey(1) & 0xFF # if the `q` key was pressed, break from the loop if key == ord("q"): break elif key == ord("a"): fill = not fill elif key == ord("s"): blur = not blur # do a bit of cleanup cv2.destroyAllWindows() vs.release() ```
{ "source": "joeization/CycleGAN", "score": 3 }
#### File: joeization/CycleGAN/CustomDataset.py ```python import random import matplotlib.pyplot as plt import numpy as np import torchvision.transforms as transforms from PIL import Image, ImageFilter from scipy.ndimage import generate_binary_structure from scipy.ndimage.filters import gaussian_filter from scipy.ndimage.interpolation import map_coordinates from scipy.ndimage.morphology import binary_dilation from scipy.signal import wiener from utility import elastic_transform class Affine(object): '''PyTorch affine adapter Args: img (PIL image): Images to be affined Usage: set the args for affine then call Affine(image), see the def for more information Returns: affined images ''' angle = None translations = None scale = None shear = None @staticmethod def __call__(img): return transforms.functional.affine(img, Affine.angle, Affine.translations, Affine.scale, Affine.shear) class DatasetStorage(): storage = {} label = {} def __init__(self): pass class CustomDataset(): # initial logic happens like transform def __init__(self, image_paths, fetch=False, f_size=0, train=True): # DatasetStorage.storage = {} # DatasetStorage.label = {} if fetch: ips = image_paths.copy() random.shuffle(ips) self.image_paths = ips[:f_size] else: self.image_paths = image_paths self.train = train self.transforms_distor = transforms.Compose([ transforms.Grayscale(), Affine(), transforms.ToTensor(), ]) self.transforms = transforms.Compose([ # transforms.Grayscale(), transforms.Scale(size=(128, 128)), # transforms.RandomCrop((32, 32)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), ]) self.transforms_no_scale = transforms.Compose([ # transforms.Grayscale(), # transforms.Scale(size=(256, 256)), # transforms.RandomCrop((32, 32)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), ]) def __getitem__(self, index): ''' if index in DatasetStorage.storage: return DatasetStorage.storage[index].clone() if self.train: return DatasetStorage.storage[index].clone() else: return DatasetStorage.storage[index].clone() else: ''' # plt.ion() image = Image.open(self.image_paths[index]) image = image.convert('RGB') if self.train: # Affine.angle, Affine.translations, Affine.scale, Affine.shear = transforms.RandomAffine.get_params( # degrees=(-30, 30), translate=(0.1, 0.1), scale_ranges=(0.95, 1.05), shears=None, img_size=image.size) # t_image = self.transforms_distor(image) t_image = self.transforms(image) # DatasetStorage.storage[index] = t_image.clone() # return DatasetStorage.storage[self.image_paths[index]].clone(), DatasetStorage.label[self.image_paths[index]] return t_image else: t_image = self.transforms_no_scale(image) # DatasetStorage.storage[index] = t_image.clone() # return DatasetStorage.storage[self.image_paths[index]].clone() return t_image def __len__(self): # return count of sample we have return len(self.image_paths) ``` #### File: joeization/CycleGAN/cyclegan.py ```python import glob import math import random import matplotlib.pyplot as plt import numpy as np import torch import torch.distributions as tdist import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision import torchvision.transforms as transforms import torchvision.transforms.functional as TF from PIL import Image from skimage import feature from tqdm import trange, tqdm from CustomDataset import CustomDataset from discriminator import Discriminator from UNet import UNet from utility import center_crop def KL_loss(mu, logvar): # -0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2) KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar) KLD = torch.mean(KLD_element).mul_(-0.5) return KLD class cropper(nn.Module): def __init__(self, img_size=64, crop_size=32): super(cropper, self).__init__() self.isz = img_size self.csz = crop_size def forward(self, x): sx = random.randint(0, self.isz-1-self.csz) sy = random.randint(0, self.isz-1-self.csz) return x[:, :, sx:sx+self.csz, sy:sy+self.csz] def run(): print('loop') # torch.backends.cudnn.enabled = False device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # device = torch.device("cpu") # Assuming that we are on a CUDA machine, this should print a CUDA device: print(device) Dx = Discriminator().to(device) Gx = UNet(3, 3).to(device) Dy = Discriminator().to(device) Gy = UNet(3, 3).to(device) ld = False if ld: try: Gx.load_state_dict(torch.load('./genx')) Dx.load_state_dict(torch.load('./fcnx')) Gy.load_state_dict(torch.load('./geny')) Dy.load_state_dict(torch.load('./fcny')) print('net loaded') except Exception as e: print(e) dataset = 'ukiyoe2photo' # A 562 image_path_A = './datasets/'+dataset+'/trainA/*.jpg' image_path_B = './datasets/'+dataset+'/trainB/*.jpg' plt.ion() train_image_paths_A = glob.glob(image_path_A) train_image_paths_B = glob.glob(image_path_B) print(len(train_image_paths_A), len(train_image_paths_B)) b_size = 8 train_dataset_A = CustomDataset( train_image_paths_A, train=True) train_loader_A = torch.utils.data.DataLoader( train_dataset_A, batch_size=b_size, shuffle=True, num_workers=4, pin_memory=False, drop_last=True) train_dataset_B = CustomDataset( train_image_paths_B, True, 562, train=True) train_loader_B = torch.utils.data.DataLoader( train_dataset_B, batch_size=b_size, shuffle=True, num_workers=4, pin_memory=False, drop_last=True) Gx.train() Dx.train() Gy.train() Dy.train() criterion = nn.BCEWithLogitsLoss().to(device) # criterion2 = nn.SmoothL1Loss().to(device) criterion2 = nn.L1Loss().to(device) g_lr = 2e-4 d_lr = 2e-4 optimizer_x = optim.Adam(Gx.parameters(), lr=g_lr, betas=(0.5, 0.999)) optimizer_x_d = optim.Adam(Dx.parameters(), lr=d_lr, betas=(0.5, 0.999)) optimizer_y = optim.Adam(Gy.parameters(), lr=g_lr, betas=(0.5, 0.999)) optimizer_y_d = optim.Adam(Dy.parameters(), lr=d_lr, betas=(0.5, 0.999)) # cp = cropper().to(device) _zero = torch.from_numpy( np.zeros((b_size, 1))).float().to(device) _zero.requires_grad = False _one = torch.from_numpy( np.ones((b_size, 1))).float().to(device) _one.requires_grad = False for epoch in trange(100, desc='epoch'): # loop = tqdm(zip(train_loader_A, train_loader_B), desc='iteration') loop = zip(tqdm(train_loader_A, desc='iteration'), train_loader_B) batch_idx = 0 for data_A, data_B in loop: batch_idx += 1 zero = _zero one = _one _data_A = data_A.to(device) _data_B = data_B.to(device) # Dy loss (A -> B) gen = Gy(_data_A) optimizer_y_d.zero_grad() output2_p = Dy(_data_B.detach()) output_p = Dy(gen.detach()) errD = (criterion(output2_p-torch.mean(output_p), one.detach()) + criterion(output_p-torch.mean(output2_p), zero.detach()))/2 errD.backward() optimizer_y_d.step() # Dx loss (B -> A) gen = Gx(_data_B) optimizer_x_d.zero_grad() output2_p = Dx(_data_A.detach()) output_p = Dx(gen.detach()) errD = (criterion(output2_p-torch.mean(output_p), one.detach()) + criterion(output_p-torch.mean(output2_p), zero.detach()))/2 errD.backward() optimizer_x_d.step() # Gy loss (A -> B) optimizer_y.zero_grad() gen = Gy(_data_A) output_p = Dy(gen) output2_p = Dy(_data_B.detach()) g_loss = (criterion(output2_p-torch.mean(output_p), zero.detach()) + criterion(output_p-torch.mean(output2_p), one.detach()))/2 # Gy cycle loss (B -> A -> B) fA = Gx(_data_B) gen = Gy(fA.detach()) c_loss = criterion2(gen, _data_B) errG = g_loss + c_loss errG.backward() optimizer_y.step() if batch_idx % 10 == 0: fig = plt.figure(1) fig.clf() plt.imshow((np.transpose( _data_B.detach().cpu().numpy()[0], (1, 2, 0))+1)/2) fig.canvas.draw() fig.canvas.flush_events() fig = plt.figure(2) fig.clf() plt.imshow((np.transpose( fA.detach().cpu().numpy()[0], (1, 2, 0))+1)/2) fig.canvas.draw() fig.canvas.flush_events() fig = plt.figure(3) fig.clf() plt.imshow((np.transpose( gen.detach().cpu().numpy()[0], (1, 2, 0))+1)/2) fig.canvas.draw() fig.canvas.flush_events() # Gx loss (B -> A) optimizer_x.zero_grad() gen = Gx(_data_B) output_p = Dx(gen) output2_p = Dx(_data_A.detach()) g_loss = (criterion(output2_p-torch.mean(output_p), zero.detach()) + criterion(output_p-torch.mean(output2_p), one.detach()))/2 # Gx cycle loss (A -> B -> A) fB = Gy(_data_A) gen = Gx(fB.detach()) c_loss = criterion2(gen, _data_A) errG = g_loss + c_loss errG.backward() optimizer_x.step() torch.save(Gx.state_dict(), './genx') torch.save(Dx.state_dict(), './fcnx') torch.save(Gy.state_dict(), './geny') torch.save(Dy.state_dict(), './fcny') print('\nFinished Training') if __name__ == '__main__': torch.backends.cudnn.benchmark = True random.seed() np.random.seed() torch.multiprocessing.freeze_support() run() ``` #### File: joeization/CycleGAN/UNet.py ```python import torch import torch.nn as nn from cbam import cbam_channel, cbam_spatial, cbam from unet_blocks import unet_down_conv, unet_output_conv, unet_up_conv from utility import center_crop class UNet(nn.Module): '''Implement of UNet <NAME>, <NAME>, and <NAME>. U-Net: Convolutional Networks for Biomedical Image Segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015. Args: in_ch (int): The channels of input n_classes (int): The output categories, default to 1 ''' def __init__(self, in_ch, n_classes=1, mode='add'): super(UNet, self).__init__() # self.drop = nn.Dropout2d(p=0.5) base = 32 # self.inconv = unet_double_conv(in_ch, base) self.down1 = unet_down_conv(in_ch, base*1) self.down2 = unet_down_conv(base*1, base*2) self.down3 = unet_down_conv(base*2, base*4) self.down4 = unet_down_conv(base*4, base*8) self.down5 = unet_down_conv(base*8, base*16) if mode == 'cat': self.up1 = unet_up_conv( base*16, base*16, base*8, mode=mode) self.up2 = unet_up_conv( base*8, base*8, base*4, mode=mode) self.up3 = unet_up_conv( base*4, base*4, base*2, mode=mode) self.up4 = unet_up_conv( base*2, base*2, base*1, mode=mode) else: self.up1 = unet_up_conv( base*16, base*8, base*8, mode=mode) self.up2 = unet_up_conv( base*8, base*4, base*4, mode=mode) self.up3 = unet_up_conv( base*4, base*2, base*2, mode=mode) self.up4 = unet_up_conv( base*2, base*1, base*1, mode=mode) '''UNet++ self.up11 = unet_up_conv(base*2, base*1*2, base*1) self.up21 = unet_up_conv(base*4, base*2*2, base*2) self.up22 = unet_up_conv(base*2, base*1*3, base*1) self.up31 = unet_up_conv(base*8, base*4*2, base*4) self.up32 = unet_up_conv(base*4, base*2*3, base*2) self.up33 = unet_up_conv(base*2, base*1*4, base*1) self.up41 = unet_up_conv(base*16, base*8*2, base*8) self.up42 = unet_up_conv(base*8, base*4*3, base*4) self.up43 = unet_up_conv(base*4, base*2*4, base*2) self.up44 = unet_up_conv(base*2, base*1*5, base*1) self.ds1 = unet_output_conv(base, n_classes) self.ds2 = unet_output_conv(base, n_classes) self.ds3 = unet_output_conv(base, n_classes) ''' self.outconv = unet_output_conv(base, n_classes) def forward(self, x): # x00 = self.inconv(x00) x00 = self.down1(x) x10 = self.down2(x00) x20 = self.down3(x10) x30 = self.down4(x20) x40 = self.down5(x30) # x30 = self.drop(x30) # x40 = self.cbam1(x40) # x30 = self.drop(x30) x31 = self.up1(x30, x40) x22 = self.up2(x20, x31) # x22 = self.cbam2(x22) x13 = self.up3(x10, x22) # x13 = self.cbam3(x13) x04 = self.up4(x00, x13) '''UNet++ x01 = self.up11([x00], x10) x11 = self.up21([x10], x20) x02 = self.up22([x00, x01], x11) x21 = self.up31([x20], x30) x12 = self.up32([x10, x11], x21) x03 = self.up33([x00, x01, x02], x12) x31 = self.up41([x30], x40) x22 = self.up42([x20, x21], x31) x13 = self.up43([x10, x11, x12], x22) x04 = self.up44([x00, x01, x02, x03], x13) x01 = center_crop(x01, x04.size()[2], x04.size()[3]) x02 = center_crop(x02, x04.size()[2], x04.size()[3]) x03 = center_crop(x03, x04.size()[2], x04.size()[3]) x1 = self.ds1(x01) x2 = self.ds2(x02) x3 = self.ds3(x03) ''' x = self.outconv(x04) x = torch.tanh(x) # x = torch.sigmoid(x) return x ```
{ "source": "Joeization/pyGaen", "score": 3 }
#### File: Joeization/pyGaen/choice.py ```python class Choice(object): '''Choice when you are playing a game there must be choices content = content ino = choice id font = font value = leads to which dialog weight = affect the 'san' l = text length ''' def __init__(self, ct, font, ino, val, wei): self.content = ct self.ino = ino self.font = font self.value = val self.weight = wei self.l = (350 - len(self.content) * 15) / 2 def blit(self, screen, pos, img): screen.blit(img, pos) text_surface = self.font.render(self.content, True, (0, 0, 0)) screen.blit(text_surface, (pos[0] + self.l, pos[1] + 15)) def id(self): return self.ino def to(self): return self.value def w(self): return self.weight def log(self): s = ['<'+self.content+'>\n'] return s def cgetpos(i): ''' get position of the ith choice ''' return (225, 150 + i * 62.5) ``` #### File: Joeization/pyGaen/main.py ```python import pygame try: import pygame._view except ImportError: pass from choice import * from bgm import * from dialog import * from settings import * from text import * from log import * def main(): pygame.init() pygame.font.init() screen = pygame.display.set_mode((800, 600), 0, 32) pygame.display.set_caption('alpha') imglib = {} imglib['load'] = pygame.image.load(resource_path('img/load.png')).convert_alpha() screen.blit(imglib['load'], (0, 0)) pygame.display.update() imgres = open(resource_path('src/img.txt'), 'r') for img in imgres: tag, tar = map(str, img.strip().split(' ')) imglib[tag] = pygame.image.load(resource_path(tar)).convert_alpha() sfxlib = {} sfxres = open(resource_path('src/sfx.txt'), 'r') for sfx in sfxres: tag, tar = map(str, sfx.strip().split(' ')) sfxlib[tag] = resource_path(tar) sfplayer = Bgm('') ft18 = pygame.font.SysFont('simhei', 18) ft24 = pygame.font.SysFont('simhei', 24) ftpk = (ft24, ft18) setting = Settings(ft18) cho = Text(resource_path('src/cho.ga')) dia = Text(resource_path('src/dia.ga')) dialoglib = {} choicelib = {} dpos = 'main' cpos = '-1' pick = -1 vmode = 0 ''' 0 = normal 1 = image 2 = log ''' clock = pygame.time.Clock() san = 0 ddone = False if dia.has(): while True: ne = dia.parse() if ne[0] == -1: break elif ne[0] == 0: dialoglib[ne[7]] = ne ddone = True del dia if cho.has(): while True: ne = cho.parse() if ne[0] == -1: break elif ne[0] == 1: choicelib[ne[2]] = ne del cho if not ddone: pygame.quit() sys.exit() ddone = False cdone = False ce = [] log = Log() while True: if not ddone: dg = Dialog(dialoglib[dpos][1], dialoglib[dpos][2], dialoglib[dpos][3], dialoglib[dpos][4], dialoglib[dpos][5], dialoglib[dpos][6], dialoglib[dpos][8], dialoglib[dpos][9]) log.add(dg.log()) ddone = True cpos = dg.ask() if not cdone: if cpos != '-1': ce = [] for chi in choicelib[cpos][1]: ce.append(Choice(chi[0], ft18, chi[1], chi[2], chi[3])) cdone = True (x, y) = pygame.mouse.get_pos() for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() if event.type == pygame.MOUSEBUTTONDOWN: if event.button == 3: if vmode == 0: vmode = 3 elif vmode == 3: vmode = 0 if event.button == 4: if vmode == 0: vmode = 2 if event.button == 5: if vmode == 2: vmode = 0 if event.button == 1: scl = setting.click((x, y), dpos, cpos, san) if scl[0] == 0: #reverse show pass elif scl[0] == 1: #save pass elif scl[0] == 2: #load dg.reset() dpos = scl[1][0] cpos = scl[1][1] san = scl[1][2] if vmode == 0 and scl[0] == -1: if cpos != u'-1': for c in ce: (lx, ly) = cgetpos(c.id()) if (x >= lx and x <= lx + 350 and y >= ly and y <= ly + 50): pick = c.id() if pick != -1: pass else: if dg.check(): if dg.nxt() != '-1': if dg.nxt() == '-2': pygame.quit() sys.exit() dg.reset() dpos = dg.next(san) ce = [] ddone = False cdone = False screen.blit(imglib['bk'], (0, 0)) if vmode == 0: dg.blit(screen, whe(dg.wh()), imglib, sfxlib, sfplayer, pygame.time.get_ticks(), ftpk) if len(ce) > 0: for c in ce: (lx, ly) = cgetpos(c.id()) if (x >= lx and x <= lx + 350 and y >= ly and y <= ly + 50): c.blit(screen, (lx, ly), imglib['chiy']) else: c.blit(screen, (lx, ly), imglib['chin']) else: dg.showimg(screen, whe(dg.wh()), imglib, False) if vmode == 1: dg.showimg(screen, whe(dg.wh()), imglib, False) elif vmode == 2: screen.blit(imglib['lg'], (200, 100)) log.blit(screen, ft24) setting.blit(screen, imglib, (x, y)) pygame.display.update() if pick != -1: pygame.time.delay(300) dg.reset() log.add(ce[pick].log()) dpos = ce[pick].to() san += ce[pick].w() ddone = False cdone = False ce = [] cpos = -1 pick = -1 clock.tick(60) #if python says run, then we should run if __name__ == '__main__': main() ``` #### File: Joeization/pyGaen/text.py ```python class Text(object): '''Load dialog and choice files to parse a dialog/choice file it is not necessary to separate into 2 files first we need to load the text ''' def __init__(self, tar): f = open(tar, 'r') self.content = [] for x in f: sen = x.decode('utf-8').strip() if len(sen) > 0: ''' leading # is for comments just like python ''' if sen[0] != '#': if sen[len(sen) - 1] == '\n': sen = sen[:-1] self.content.append(sen) f.close() self.pos = 0 self.len = 0 def parse(self): ''' parse the text file to dialog or choice file the code is very dirty ''' while self.pos < len(self.content) and len(self.content[self.pos]) == 0: self.pos += 1 #EOF if self.pos >= len(self.content): n = (-1, u'') # (type, content) return n else: if self.content[self.pos].find('dialog') == 0: ''' dialog name = dialog tag sfx = sfx poi = san threshold fi = jmp to fi if less than se = jmp to se else choi = choice tag wh = dialog position im = dialog image na = talker's name bk = background ''' s = [] t, name = self.content[self.pos].strip().split(' ') self.pos += 1 na = self.content[self.pos] self.pos += 1 sfx = str(self.content[self.pos]) self.pos += 1 poi, fi, se = self.content[self.pos].strip().split(' ') self.pos += 1 choi = str(self.content[self.pos]) self.pos += 1 wh = long(self.content[self.pos]) self.pos += 1 im = self.content[self.pos].strip().split(' ') self.pos += 1 bk = self.content[self.pos] self.pos += 1 ''' load content until end ''' while not (self.content[self.pos].find('end') == 0 and len(self.content[self.pos]) == 3): if len(self.content[self.pos]) != 0: s.append(self.content[self.pos]) self.pos += 1 self.pos += 1 ''' create a dialog ''' n = (0, s, choi, im, wh, sfx, (long(poi), fi, se), name, na, bk) # (type, content, ask, image, where, sfx, (beanch), name) return n elif self.content[self.pos].find('choice') == 0: ''' choice name = choice tag c = options ''' c = [] t, name = map(str, self.content[self.pos].strip().split(' ')) self.pos += 1 cnt = 0 while not (self.content[self.pos].find('end') == 0 and len(self.content[self.pos]) == 3): if len(self.content[self.pos]) != 0: s = self.content[self.pos].strip() self.pos += 1 v = self.content[self.pos].strip() self.pos += 1 w = long(self.content[self.pos]) self.pos += 1 c.append((s, cnt, v, w)) # (content, id, value, weight) cnt += 1 self.pos += 1 n = (1, c, name) # (type, pack, name) return n else: ''' other trash ''' n = (-1, u'') return n def has(self): return len(self.content) > 0 ```
{ "source": "joej164/Meeting_Scheduler", "score": 3 }
#### File: joej164/Meeting_Scheduler/meeting.py ```python from settings import settings from surveymonkey import surveymonkey def main(): config = settings.Settings() survey = surveymonkey.Surveymonkey(config) r = survey.create_new_survey() print(r) s = survey.get_survey_details() print(s) t = survey.update_survey_page() print(t) print(config.survey_href) print(config.pages_href) u = survey.add_survey_questions() print(u) v = survey.create_collector() print(v) print() print(f'The survey url is: {v["url"]}') main() ``` #### File: Meeting_Scheduler/settings/settings.py ```python import yaml from datetime import datetime class SurveySettingsError(Exception): pass class Settings(): def __init__(self): self.token = None self.valid_months = ["January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"] self.valid_days = list(range(1, 32)) self.valid_weekdays = ['Friday', 'Saturday', 'Sunday'] self.valid_years = list(range(2019, 2025)) # Update in 2026 self.meetup_month = None self.meetup_day = None self.meetup_weekday = None self.meetup_year = None self.meetup_time = None self.survey_api_url = "https://api.surveymonkey.com/v3/" self.survey_month = None self.survey_days = None self.survey_year = None self.survey_weekday = None self.survey_title = None self.survey_time = None self.survey_page_title = None self.question_filenames = ["question1.j2", "question2.j2", "question3.j2"] self.load_settings() self.prompt_for_missing_info() self.calculate_and_validate_weekdays() self.set_survey_names() self.calculate_meeting_time() # Load data from the settings.yml file def load_settings(self): with open("settings.yml", "r") as settings_file: data = yaml.safe_load(settings_file) for k, v in data.items(): setattr(self, k, v) def set_survey_names(self): if not self.survey_title: self.survey_title = f"{self.survey_month} {self.survey_year} - PDT Alumni Meetup" if not self.survey_page_title: self.survey_page_title = f"{self.survey_month} {self.survey_year} - PDT Alumni Meetup Test" def calculate_and_validate_weekdays(self): meetup_weekday = self.calculate_weekday(self.meetup_year, self.meetup_month, self.meetup_day) if meetup_weekday not in self.valid_weekdays: raise ValueError(f"The day of the next meetup is not in {self.valid_weekdays}") else: self.meetup_weekday = meetup_weekday survey_weekdays = [] for day in self.survey_days: survey_weekdays.append(self.calculate_weekday(self.survey_year, self.survey_month, day)) if not all(x == survey_weekdays[0] for x in survey_weekdays): raise ValueError(f"Not all of the survey days are on the same day") else: self.survey_weekday = survey_weekdays[0] @staticmethod def calculate_weekday(year, month, day): # Month is the name of the Full Month day = datetime.strptime(f"{year} {month} {day}", "%Y %B %d") weekday = datetime.strftime(day, "%A") return weekday def calculate_meeting_time(self): # Based on the day of week, return the time of the get together day_to_time = { "Friday": "7-9pm", "Saturday": "6-8pm", "Sunday": "1-3pm" } if self.survey_weekday not in day_to_time.keys(): raise SurveySettingsError(f"The value '{self.survey_weekday}' was not in the conversion dictionary") else: self.survey_time = day_to_time[self.survey_weekday] def prompt_for_missing_info(self): # Prompt the user for any data missing after the settings load while self.meetup_month not in self.valid_months: month = input("Enter the Month for the next Meetup: ") if month not in self.valid_months: print(f"Invalid Month! Enter a month in the following format: {self.valid_months}") else: self.meetup_month = month while self.meetup_day not in self.valid_days: try: meetup_day = int(input("Enter the day of the month for the next meetup: ")) except ValueError: meetup_day = None if meetup_day not in self.valid_days: print(f"Invalid Day! Enter a day in the following format: {self.valid_days}") else: self.meetup_day = meetup_day while self.meetup_year not in self.valid_years: try: meetup_year = int(input("Enter the year for the next meetup: ")) except ValueError: meetup_year = None if meetup_year not in self.valid_years: print(f"Enter a valid year from the list of valid years: {self.valid_years}") else: self.meetup_year = meetup_year while self.survey_month not in self.valid_months: month = input("Enter the Month for the next Survey: ") if month not in self.valid_months: print(f"Invalid Month! Enter a month in the following format: {self.valid_months}") else: self.survey_month = month while not self.survey_days or not all(True if x in self.valid_days else False for x in self.survey_days): survey_days = input("Enter the days of the month for the next meetup as numbers seperated by spaces (Ex: 2 4 6): ") days = [int(x) for x in survey_days.split() if x.isdigit() and int(x) in self.valid_days] if not days: print(f"No valid days. Enter a at least one valid day from the following list: {self.valid_days}") else: self.survey_days = days while self.survey_year not in self.valid_years: try: survey_year = int(input("Enter the year for the next survey: ")) except ValueError: survey_year = None if survey_year not in self.valid_years: print(f"Enter a valid year from the list of valid years: {self.valid_years}") else: self.survey_year = survey_year ```
{ "source": "joej164/molecule", "score": 2 }
#### File: unit/provisioner/test_ansible.py ```python import collections import os import pytest from molecule import config, util from molecule.provisioner import ansible, ansible_playbooks from molecule.test.conftest import is_subset @pytest.fixture def _patched_ansible_playbook(mocker): m = mocker.patch("molecule.provisioner.ansible_playbook.AnsiblePlaybook") m.return_value.execute.return_value = b"patched-ansible-playbook-stdout" return m @pytest.fixture def _patched_write_inventory(mocker): return mocker.patch("molecule.provisioner.ansible.Ansible._write_inventory") @pytest.fixture def _patched_remove_vars(mocker): return mocker.patch("molecule.provisioner.ansible.Ansible._remove_vars") @pytest.fixture def _patched_link_or_update_vars(mocker): return mocker.patch("molecule.provisioner.ansible.Ansible._link_or_update_vars") @pytest.fixture def _provisioner_section_data(): return { "provisioner": { "name": "ansible", "config_options": {"defaults": {"foo": "bar"}}, "connection_options": {"foo": "bar"}, "options": {"foo": "bar", "become": True, "v": True}, "env": { "FOO": "bar", "ANSIBLE_ROLES_PATH": "foo/bar", "ANSIBLE_LIBRARY": "foo/bar", "ANSIBLE_FILTER_PLUGINS": "foo/bar", }, "inventory": { "hosts": { "all": { "hosts": {"extra-host-01": {}}, "children": {"extra-group": {"hosts": ["extra-host-01"]}}, } }, "host_vars": { "instance-1": [{"foo": "bar"}], "localhost": [{"foo": "baz"}], }, "group_vars": { "example_group1": [{"foo": "bar"}], "example_group2": [{"foo": "bar"}], }, }, } } @pytest.fixture def _instance(_provisioner_section_data, config_instance): return ansible.Ansible(config_instance) def test_config_private_member(_instance): assert isinstance(_instance._config, config.Config) def test_default_config_options_property(_instance): x = { "defaults": { "ansible_managed": "Ansible managed: Do NOT edit this file manually!", "display_failed_stderr": True, "forks": 50, "host_key_checking": False, "interpreter_python": "auto", "nocows": 1, "retry_files_enabled": False, }, "ssh_connection": { "control_path": "%(directory)s/%%h-%%p-%%r", "scp_if_ssh": True, }, } assert x == _instance.default_config_options def test_default_options_property(_instance): assert {"skip-tags": "molecule-notest,notest"} == _instance.default_options def test_default_env_property(_instance): x = _instance._config.provisioner.config_file assert x == _instance.default_env["ANSIBLE_CONFIG"] assert "MOLECULE_FILE" in _instance.default_env assert "MOLECULE_INVENTORY_FILE" in _instance.default_env assert "MOLECULE_SCENARIO_DIRECTORY" in _instance.default_env assert "MOLECULE_INSTANCE_CONFIG" in _instance.default_env assert "ANSIBLE_CONFIG" in _instance.env assert "ANSIBLE_ROLES_PATH" in _instance.env assert "ANSIBLE_LIBRARY" in _instance.env assert "ANSIBLE_FILTER_PLUGINS" in _instance.env def test_name_property(_instance): assert "ansible" == _instance.name @pytest.mark.parametrize( "config_instance", ["_provisioner_section_data"], indirect=True ) def test_config_options_property(_instance): x = { "defaults": { "ansible_managed": "Ansible managed: Do NOT edit this file manually!", "display_failed_stderr": True, "foo": "bar", "forks": 50, "host_key_checking": False, "interpreter_python": "auto", "nocows": 1, "retry_files_enabled": False, }, "ssh_connection": { "control_path": "%(directory)s/%%h-%%p-%%r", "scp_if_ssh": True, }, } assert x == _instance.config_options @pytest.mark.parametrize( "config_instance", ["_provisioner_section_data"], indirect=True ) def test_options_property(_instance): x = {"become": True, "foo": "bar", "v": True, "skip-tags": "molecule-notest,notest"} assert x == _instance.options def test_options_property_does_not_merge(_instance): for action in ["create", "destroy"]: _instance._config.action = action assert {"skip-tags": "molecule-notest,notest"} == _instance.options def test_options_property_handles_cli_args(_instance): _instance._config.args = {"debug": True} x = { "vvv": True, "become": True, "diff": True, "skip-tags": "molecule-notest,notest", } assert x == _instance.options @pytest.mark.parametrize( "config_instance", ["_provisioner_section_data"], indirect=True ) def test_env_property(_instance): x = _instance._config.provisioner.config_file assert x == _instance.env["ANSIBLE_CONFIG"] assert "bar" == _instance.env["FOO"] @pytest.mark.parametrize( "config_instance", ["_provisioner_section_data"], indirect=True ) def test_env_appends_env_property(_instance): x = [ util.abs_path( os.path.join(_instance._config.scenario.ephemeral_directory, "roles") ), util.abs_path( os.path.join(_instance._config.project_directory, os.path.pardir) ), util.abs_path(os.path.join(os.path.expanduser("~"), ".ansible", "roles")), "/usr/share/ansible/roles", "/etc/ansible/roles", util.abs_path(os.path.join(_instance._config.scenario.directory, "foo", "bar")), ] assert x == _instance.env["ANSIBLE_ROLES_PATH"].split(":") x = _instance._get_modules_directories() x.append( util.abs_path(os.path.join(_instance._config.scenario.directory, "foo", "bar")) ) assert x == _instance.env["ANSIBLE_LIBRARY"].split(":") x = [ _instance._get_filter_plugin_directory(), util.abs_path( os.path.join( _instance._config.scenario.ephemeral_directory, "plugins", "filter" ) ), util.abs_path( os.path.join(_instance._config.project_directory, "plugins", "filter") ), util.abs_path( os.path.join(os.path.expanduser("~"), ".ansible", "plugins", "filter") ), "/usr/share/ansible/plugins/filter", util.abs_path(os.path.join(_instance._config.scenario.directory, "foo", "bar")), ] assert x == _instance.env["ANSIBLE_FILTER_PLUGINS"].split(":") @pytest.mark.parametrize( "config_instance", ["_provisioner_section_data"], indirect=True ) def test_host_vars_property(_instance): x = {"instance-1": [{"foo": "bar"}], "localhost": [{"foo": "baz"}]} assert x == _instance.host_vars @pytest.mark.parametrize( "config_instance", ["_provisioner_section_data"], indirect=True ) def test_group_vars_property(_instance): x = {"example_group1": [{"foo": "bar"}], "example_group2": [{"foo": "bar"}]} assert x == _instance.group_vars @pytest.mark.parametrize( "config_instance", ["_provisioner_section_data"], indirect=True ) def test_hosts_property(_instance): hosts = { "all": { "hosts": {"extra-host-01": {}}, "children": {"extra-group": {"hosts": ["extra-host-01"]}}, } } assert hosts == _instance.hosts def test_links_property(_instance): assert {} == _instance.links @pytest.mark.parametrize( "config_instance", ["_provisioner_section_data"], indirect=True ) def test_inventory_property(_instance): x = { "ungrouped": {"vars": {}}, "bar": { "hosts": {"instance-1": {"foo": "bar", "ansible_connection": "docker"}}, "children": { "child1": { "hosts": { "instance-1": {"foo": "bar", "ansible_connection": "docker"} } } }, "vars": { "molecule_file": "{{ lookup('env', 'MOLECULE_FILE') }}", "molecule_ephemeral_directory": "{{ lookup('env', 'MOLECULE_EPHEMERAL_DIRECTORY') }}", "molecule_scenario_directory": "{{ lookup('env', 'MOLECULE_SCENARIO_DIRECTORY') }}", "molecule_yml": "{{ lookup('file', molecule_file) | molecule_from_yaml }}", "molecule_instance_config": "{{ lookup('env', 'MOLECULE_INSTANCE_CONFIG') }}", "molecule_no_log": "{{ lookup('env', 'MOLECULE_NO_LOG') or not " "molecule_yml.provisioner.log|default(False) | bool }}", }, }, "all": { "hosts": { "instance-1": {"foo": "bar", "ansible_connection": "docker"}, "instance-2": {"foo": "bar", "ansible_connection": "docker"}, }, "vars": { "molecule_file": "{{ lookup('env', 'MOLECULE_FILE') }}", "molecule_ephemeral_directory": "{{ lookup('env', 'MOLECULE_EPHEMERAL_DIRECTORY') }}", "molecule_scenario_directory": "{{ lookup('env', 'MOLECULE_SCENARIO_DIRECTORY') }}", "molecule_yml": "{{ lookup('file', molecule_file) | molecule_from_yaml }}", "molecule_instance_config": "{{ lookup('env', 'MOLECULE_INSTANCE_CONFIG') }}", "molecule_no_log": "{{ lookup('env', 'MOLECULE_NO_LOG') or not " "molecule_yml.provisioner.log|default(False) | bool }}", }, }, "foo": { "hosts": { "instance-1": {"foo": "bar", "ansible_connection": "docker"}, "instance-2": {"foo": "bar", "ansible_connection": "docker"}, }, "children": { "child1": { "hosts": { "instance-1": {"foo": "bar", "ansible_connection": "docker"} } }, "child2": { "hosts": { "instance-2": {"foo": "bar", "ansible_connection": "docker"} } }, }, "vars": { "molecule_file": "{{ lookup('env', 'MOLECULE_FILE') }}", "molecule_ephemeral_directory": "{{ lookup('env', 'MOLECULE_EPHEMERAL_DIRECTORY') }}", "molecule_scenario_directory": "{{ lookup('env', 'MOLECULE_SCENARIO_DIRECTORY') }}", "molecule_yml": "{{ lookup('file', molecule_file) | molecule_from_yaml }}", "molecule_instance_config": "{{ lookup('env', 'MOLECULE_INSTANCE_CONFIG') }}", "molecule_no_log": "{{ lookup('env', 'MOLECULE_NO_LOG') or not " "molecule_yml.provisioner.log|default(False) | bool }}", }, }, "baz": { "hosts": {"instance-2": {"foo": "bar", "ansible_connection": "docker"}}, "children": { "child2": { "hosts": { "instance-2": {"foo": "bar", "ansible_connection": "docker"} } } }, "vars": { "molecule_file": "{{ lookup('env', 'MOLECULE_FILE') }}", "molecule_ephemeral_directory": "{{ lookup('env', 'MOLECULE_EPHEMERAL_DIRECTORY') }}", "molecule_scenario_directory": "{{ lookup('env', 'MOLECULE_SCENARIO_DIRECTORY') }}", "molecule_yml": "{{ lookup('file', molecule_file) | molecule_from_yaml }}", "molecule_instance_config": "{{ lookup('env', 'MOLECULE_INSTANCE_CONFIG') }}", "molecule_no_log": "{{ lookup('env', 'MOLECULE_NO_LOG') or not " "molecule_yml.provisioner.log|default(False) | bool }}", }, }, } assert is_subset(x, _instance.inventory) @pytest.mark.parametrize( "config_instance", ["_provisioner_section_data"], indirect=True ) def test_inventory_property_handles_missing_groups(temp_dir, _instance): platforms = [{"name": "instance-1"}, {"name": "instance-2"}] _instance._config.config["platforms"] = platforms x = { "ungrouped": { "hosts": { "instance-1": {"foo": "bar", "ansible_connection": "docker"}, "instance-2": {"foo": "bar", "ansible_connection": "docker"}, }, "vars": {}, }, "all": { "hosts": { "instance-1": {"foo": "bar", "ansible_connection": "docker"}, "instance-2": {"foo": "bar", "ansible_connection": "docker"}, }, "vars": { "molecule_file": "{{ lookup('env', 'MOLECULE_FILE') }}", "molecule_ephemeral_directory": "{{ lookup('env', 'MOLECULE_EPHEMERAL_DIRECTORY') }}", "molecule_scenario_directory": "{{ lookup('env', 'MOLECULE_SCENARIO_DIRECTORY') }}", "molecule_yml": "{{ lookup('file', molecule_file) | molecule_from_yaml }}", "molecule_instance_config": "{{ lookup('env', 'MOLECULE_INSTANCE_CONFIG') }}", "molecule_no_log": "{{ lookup('env', 'MOLECULE_NO_LOG') or not " "molecule_yml.provisioner.log|default(False) | bool }}", }, }, } assert is_subset(x, _instance.inventory) def test_inventory_directory_property(_instance): x = os.path.join(_instance._config.scenario.ephemeral_directory, "inventory") assert x == _instance.inventory_directory def test_inventory_file_property(_instance): x = os.path.join( _instance._config.scenario.inventory_directory, "ansible_inventory.yml" ) assert x == _instance.inventory_file def test_config_file_property(_instance): x = os.path.join(_instance._config.scenario.ephemeral_directory, "ansible.cfg") assert x == _instance.config_file def test_playbooks_property(_instance): assert isinstance(_instance.playbooks, ansible_playbooks.AnsiblePlaybooks) def test_directory_property(_instance): result = _instance.directory parts = pytest.helpers.os_split(result) assert ("molecule", "provisioner", "ansible") == parts[-3:] def test_playbooks_cleaned_property_is_optional(_instance): assert _instance.playbooks.cleanup is None def test_playbooks_create_property(_instance): x = os.path.join( _instance._config.provisioner.playbooks._get_playbook_directory(), "docker", "create.yml", ) assert x == _instance.playbooks.create def test_playbooks_converge_property(_instance): x = os.path.join(_instance._config.scenario.directory, "converge.yml") assert x == _instance.playbooks.converge def test_playbooks_destroy_property(_instance): x = os.path.join( _instance._config.provisioner.playbooks._get_playbook_directory(), "docker", "destroy.yml", ) assert x == _instance.playbooks.destroy def test_playbooks_side_effect_property(_instance): assert _instance.playbooks.side_effect is None @pytest.mark.parametrize( "config_instance", ["_provisioner_section_data"], indirect=True ) def test_connection_options(_instance): x = {"ansible_connection": "docker", "foo": "bar"} assert is_subset(x, _instance.connection_options("foo")) def test_check(_instance, mocker, _patched_ansible_playbook): _instance.check() _patched_ansible_playbook.assert_called_once_with( _instance._config.provisioner.playbooks.converge, _instance._config ) _patched_ansible_playbook.return_value.add_cli_arg.assert_called_once_with( "check", True ) _patched_ansible_playbook.return_value.execute.assert_called_once_with() def test_converge(_instance, mocker, _patched_ansible_playbook): result = _instance.converge() _patched_ansible_playbook.assert_called_once_with( _instance._config.provisioner.playbooks.converge, _instance._config ) # NOTE(retr0h): This is not the true return type. This is a mock return # which didn't go through str.decode(). assert result == b"patched-ansible-playbook-stdout" _patched_ansible_playbook.return_value.execute.assert_called_once_with() def test_converge_with_playbook(_instance, mocker, _patched_ansible_playbook): result = _instance.converge("playbook") _patched_ansible_playbook.assert_called_once_with("playbook", _instance._config) # NOTE(retr0h): This is not the true return type. This is a mock return # which didn't go through str.decode(). assert result == b"patched-ansible-playbook-stdout" _patched_ansible_playbook.return_value.execute.assert_called_once_with() def test_cleanup(_instance, mocker, _patched_ansible_playbook): _instance.cleanup() _patched_ansible_playbook.assert_called_once_with( _instance._config.provisioner.playbooks.cleanup, _instance._config ) _patched_ansible_playbook.return_value.execute.assert_called_once_with() def test_destroy(_instance, mocker, _patched_ansible_playbook): _instance.destroy() _patched_ansible_playbook.assert_called_once_with( _instance._config.provisioner.playbooks.destroy, _instance._config ) _patched_ansible_playbook.return_value.execute.assert_called_once_with() def test_side_effect(_instance, mocker, _patched_ansible_playbook): _instance.side_effect() _patched_ansible_playbook.assert_called_once_with( _instance._config.provisioner.playbooks.side_effect, _instance._config ) _patched_ansible_playbook.return_value.execute.assert_called_once_with() def test_create(_instance, mocker, _patched_ansible_playbook): _instance.create() _patched_ansible_playbook.assert_called_once_with( _instance._config.provisioner.playbooks.create, _instance._config ) _patched_ansible_playbook.return_value.execute.assert_called_once_with() def test_prepare(_instance, mocker, _patched_ansible_playbook): _instance.prepare() _patched_ansible_playbook.assert_called_once_with( _instance._config.provisioner.playbooks.prepare, _instance._config ) _patched_ansible_playbook.return_value.execute.assert_called_once_with() def test_syntax(_instance, mocker, _patched_ansible_playbook): _instance.syntax() _patched_ansible_playbook.assert_called_once_with( _instance._config.provisioner.playbooks.converge, _instance._config ) _patched_ansible_playbook.return_value.add_cli_arg.assert_called_once_with( "syntax-check", True ) _patched_ansible_playbook.return_value.execute.assert_called_once_with() def test_verify(_instance, mocker, _patched_ansible_playbook): _instance.verify() if _instance._config.provisioner.playbooks.verify: _patched_ansible_playbook.assert_called_once_with( _instance._config.provisioner.playbooks.verify, _instance._config ) _patched_ansible_playbook.return_value.execute.assert_called_once_with() def test_write_config(temp_dir, _instance): _instance.write_config() assert os.path.isfile(_instance.config_file) def test_manage_inventory( _instance, _patched_write_inventory, _patched_remove_vars, patched_add_or_update_vars, _patched_link_or_update_vars, ): _instance.manage_inventory() _patched_write_inventory.assert_called_once_with() _patched_remove_vars.assert_called_once_with() patched_add_or_update_vars.assert_called_once_with() assert not _patched_link_or_update_vars.called def test_manage_inventory_with_links( _instance, _patched_write_inventory, _patched_remove_vars, patched_add_or_update_vars, _patched_link_or_update_vars, ): c = _instance._config.config c["provisioner"]["inventory"]["links"] = {"foo": "bar"} _instance.manage_inventory() _patched_write_inventory.assert_called_once_with() _patched_remove_vars.assert_called_once_with() assert not patched_add_or_update_vars.called _patched_link_or_update_vars.assert_called_once_with() @pytest.mark.parametrize( "config_instance", ["_provisioner_section_data"], indirect=True ) def test_add_or_update_vars(_instance): inventory_dir = _instance._config.scenario.inventory_directory host_vars_directory = os.path.join(inventory_dir, "host_vars") host_vars = os.path.join(host_vars_directory, "instance-1") _instance._add_or_update_vars() assert os.path.isdir(host_vars_directory) assert os.path.isfile(host_vars) host_vars_localhost = os.path.join(host_vars_directory, "localhost") assert os.path.isfile(host_vars_localhost) group_vars_directory = os.path.join(inventory_dir, "group_vars") group_vars_1 = os.path.join(group_vars_directory, "example_group1") group_vars_2 = os.path.join(group_vars_directory, "example_group2") assert os.path.isdir(group_vars_directory) assert os.path.isfile(group_vars_1) assert os.path.isfile(group_vars_2) hosts = os.path.join(inventory_dir, "hosts") assert os.path.isfile(hosts) assert util.safe_load_file(hosts) == _instance.hosts @pytest.mark.parametrize( "config_instance", ["_provisioner_section_data"], indirect=True ) def test_add_or_update_vars_without_host_vars(_instance): c = _instance._config.config c["provisioner"]["inventory"]["host_vars"] = {} inventory_dir = _instance._config.scenario.inventory_directory host_vars_directory = os.path.join(inventory_dir, "host_vars") host_vars = os.path.join(host_vars_directory, "instance-1") _instance._add_or_update_vars() assert not os.path.isdir(host_vars_directory) assert not os.path.isfile(host_vars) host_vars_localhost = os.path.join(host_vars_directory, "localhost") assert not os.path.isfile(host_vars_localhost) group_vars_directory = os.path.join(inventory_dir, "group_vars") group_vars_1 = os.path.join(group_vars_directory, "example_group1") group_vars_2 = os.path.join(group_vars_directory, "example_group2") assert os.path.isdir(group_vars_directory) assert os.path.isfile(group_vars_1) assert os.path.isfile(group_vars_2) hosts = os.path.join(inventory_dir, "hosts") assert os.path.isfile(hosts) assert util.safe_load_file(hosts) == _instance.hosts def test_add_or_update_vars_does_not_create_vars(_instance): c = _instance._config.config c["provisioner"]["inventory"]["hosts"] = {} c["provisioner"]["inventory"]["host_vars"] = {} c["provisioner"]["inventory"]["group_vars"] = {} inventory_dir = _instance._config.scenario.inventory_directory hosts = os.path.join(inventory_dir, "hosts") host_vars_directory = os.path.join(inventory_dir, "host_vars") group_vars_directory = os.path.join(inventory_dir, "group_vars") _instance._add_or_update_vars() assert not os.path.isdir(host_vars_directory) assert not os.path.isdir(group_vars_directory) assert not os.path.isfile(hosts) @pytest.mark.parametrize( "config_instance", ["_provisioner_section_data"], indirect=True ) def test_write_inventory(temp_dir, _instance): _instance._write_inventory() assert os.path.isfile(_instance.inventory_file) data = util.safe_load_file(_instance.inventory_file) x = { "ungrouped": {"vars": {}}, "bar": { "hosts": {"instance-1": {"foo": "bar", "ansible_connection": "docker"}}, "children": { "child1": { "hosts": { "instance-1": {"foo": "bar", "ansible_connection": "docker"} } } }, "vars": { "molecule_file": "{{ lookup('env', 'MOLECULE_FILE') }}", "molecule_ephemeral_directory": "{{ lookup('env', 'MOLECULE_EPHEMERAL_DIRECTORY') }}", "molecule_scenario_directory": "{{ lookup('env', 'MOLECULE_SCENARIO_DIRECTORY') }}", "molecule_yml": "{{ lookup('file', molecule_file) | molecule_from_yaml }}", "molecule_instance_config": "{{ lookup('env', 'MOLECULE_INSTANCE_CONFIG') }}", "molecule_no_log": "{{ lookup('env', 'MOLECULE_NO_LOG') or not " "molecule_yml.provisioner.log|default(False) | bool }}", }, }, "all": { "hosts": { "instance-1": {"foo": "bar", "ansible_connection": "docker"}, "instance-2": {"foo": "bar", "ansible_connection": "docker"}, }, "vars": { "molecule_file": "{{ lookup('env', 'MOLECULE_FILE') }}", "molecule_ephemeral_directory": "{{ lookup('env', 'MOLECULE_EPHEMERAL_DIRECTORY') }}", "molecule_scenario_directory": "{{ lookup('env', 'MOLECULE_SCENARIO_DIRECTORY') }}", "molecule_yml": "{{ lookup('file', molecule_file) | molecule_from_yaml }}", "molecule_instance_config": "{{ lookup('env', 'MOLECULE_INSTANCE_CONFIG') }}", "molecule_no_log": "{{ lookup('env', 'MOLECULE_NO_LOG') or not " "molecule_yml.provisioner.log|default(False) | bool }}", }, }, "foo": { "hosts": { "instance-1": {"foo": "bar", "ansible_connection": "docker"}, "instance-2": {"foo": "bar", "ansible_connection": "docker"}, }, "children": { "child1": { "hosts": { "instance-1": {"foo": "bar", "ansible_connection": "docker"} } }, "child2": { "hosts": { "instance-2": {"foo": "bar", "ansible_connection": "docker"} } }, }, "vars": { "molecule_file": "{{ lookup('env', 'MOLECULE_FILE') }}", "molecule_ephemeral_directory": "{{ lookup('env', 'MOLECULE_EPHEMERAL_DIRECTORY') }}", "molecule_scenario_directory": "{{ lookup('env', 'MOLECULE_SCENARIO_DIRECTORY') }}", "molecule_yml": "{{ lookup('file', molecule_file) | molecule_from_yaml }}", "molecule_instance_config": "{{ lookup('env', 'MOLECULE_INSTANCE_CONFIG') }}", "molecule_no_log": "{{ lookup('env', 'MOLECULE_NO_LOG') or not " "molecule_yml.provisioner.log|default(False) | bool }}", }, }, "baz": { "hosts": {"instance-2": {"foo": "bar", "ansible_connection": "docker"}}, "children": { "child2": { "hosts": { "instance-2": {"foo": "bar", "ansible_connection": "docker"} } } }, "vars": { "molecule_file": "{{ lookup('env', 'MOLECULE_FILE') }}", "molecule_ephemeral_directory": "{{ lookup('env', 'MOLECULE_EPHEMERAL_DIRECTORY') }}", "molecule_scenario_directory": "{{ lookup('env', 'MOLECULE_SCENARIO_DIRECTORY') }}", "molecule_yml": "{{ lookup('file', molecule_file) | molecule_from_yaml }}", "molecule_instance_config": "{{ lookup('env', 'MOLECULE_INSTANCE_CONFIG') }}", "molecule_no_log": "{{ lookup('env', 'MOLECULE_NO_LOG') or not " "molecule_yml.provisioner.log|default(False) | bool }}", }, }, } assert is_subset(x, data) @pytest.mark.parametrize( "config_instance", ["_provisioner_section_data"], indirect=True ) def test_remove_vars(_instance): inventory_dir = _instance._config.scenario.inventory_directory hosts = os.path.join(inventory_dir, "hosts") host_vars_directory = os.path.join(inventory_dir, "host_vars") host_vars = os.path.join(host_vars_directory, "instance-1") _instance._add_or_update_vars() assert os.path.isfile(hosts) assert os.path.isdir(host_vars_directory) assert os.path.isfile(host_vars) host_vars_localhost = os.path.join(host_vars_directory, "localhost") assert os.path.isfile(host_vars_localhost) group_vars_directory = os.path.join(inventory_dir, "group_vars") group_vars_1 = os.path.join(group_vars_directory, "example_group1") group_vars_2 = os.path.join(group_vars_directory, "example_group2") assert os.path.isdir(group_vars_directory) assert os.path.isfile(group_vars_1) assert os.path.isfile(group_vars_2) _instance._remove_vars() assert not os.path.isfile(hosts) assert not os.path.isdir(host_vars_directory) assert not os.path.isdir(group_vars_directory) def test_remove_vars_symlinks(_instance): inventory_dir = _instance._config.scenario.inventory_directory source_group_vars = os.path.join(inventory_dir, os.path.pardir, "group_vars") target_group_vars = os.path.join(inventory_dir, "group_vars") os.mkdir(source_group_vars) os.symlink(source_group_vars, target_group_vars) _instance._remove_vars() assert not os.path.lexists(target_group_vars) def test_link_vars(_instance): c = _instance._config.config c["provisioner"]["inventory"]["links"] = { "hosts": "../hosts", "group_vars": "../group_vars", "host_vars": "../host_vars", } inventory_dir = _instance._config.scenario.inventory_directory scenario_dir = _instance._config.scenario.directory source_hosts = os.path.join(scenario_dir, os.path.pardir, "hosts") target_hosts = os.path.join(inventory_dir, "hosts") source_group_vars = os.path.join(scenario_dir, os.path.pardir, "group_vars") target_group_vars = os.path.join(inventory_dir, "group_vars") source_host_vars = os.path.join(scenario_dir, os.path.pardir, "host_vars") target_host_vars = os.path.join(inventory_dir, "host_vars") open(source_hosts, "w").close() os.mkdir(source_group_vars) os.mkdir(source_host_vars) _instance._link_or_update_vars() assert os.path.lexists(target_hosts) assert os.path.lexists(target_group_vars) assert os.path.lexists(target_host_vars) def test_link_vars_raises_when_source_not_found(_instance, patched_logger_critical): c = _instance._config.config c["provisioner"]["inventory"]["links"] = {"foo": "../bar"} with pytest.raises(SystemExit) as e: _instance._link_or_update_vars() assert 1 == e.value.code source = os.path.join(_instance._config.scenario.directory, os.path.pardir, "bar") msg = "The source path '{}' does not exist.".format(source) patched_logger_critical.assert_called_once_with(msg) def test_verify_inventory(_instance): _instance._verify_inventory() def test_verify_inventory_raises_when_missing_hosts( temp_dir, patched_logger_critical, _instance ): _instance._config.config["platforms"] = [] with pytest.raises(SystemExit) as e: _instance._verify_inventory() assert 1 == e.value.code msg = "Instances missing from the 'platform' section of molecule.yml." patched_logger_critical.assert_called_once_with(msg) def test_vivify(_instance): d = _instance._vivify() d["bar"]["baz"] = "qux" assert "qux" == str(d["bar"]["baz"]) def test_default_to_regular(_instance): d = collections.defaultdict() assert isinstance(d, collections.defaultdict) d = _instance._default_to_regular(d) assert isinstance(d, dict) def test_get_plugin_directory(_instance): result = _instance._get_plugin_directory() parts = pytest.helpers.os_split(result) assert ("molecule", "provisioner", "ansible", "plugins") == parts[-4:] def test_get_modules_directories(_instance, monkeypatch): result = _instance._get_modules_directories()[0] parts = pytest.helpers.os_split(result) x = ("molecule", "provisioner", "ansible", "plugins", "modules") assert x == parts[-5:] lib_prev = os.environ.get("ANSIBLE_LIBRARY") monkeypatch.setenv("ANSIBLE_LIBRARY", "/foo/bar") result = _instance._get_modules_directories()[-1] monkeypatch.setenv("ANSIBLE_LIBRARY", lib_prev if lib_prev else "") env_lib_result_parts = pytest.helpers.os_split(result) env_lib_expected_parts = ("foo", "bar") assert env_lib_result_parts == env_lib_expected_parts[-2:] def test_get_filter_plugin_directory(_instance): result = _instance._get_filter_plugin_directory() parts = pytest.helpers.os_split(result) x = ("molecule", "provisioner", "ansible", "plugins", "filter") assert x == parts[-5:] def test_absolute_path_for(_instance): env = {"foo": "foo:bar"} x = ":".join( [ os.path.join(_instance._config.scenario.directory, "foo"), os.path.join(_instance._config.scenario.directory, "bar"), ] ) assert x == _instance._absolute_path_for(env, "foo") def test_absolute_path_for_raises_with_missing_key(_instance): env = {"foo": "foo:bar"} with pytest.raises(KeyError): _instance._absolute_path_for(env, "invalid") ```
{ "source": "joejacobs/octodns", "score": 2 }
#### File: octodns/tests/test_octodns_provider_yaml.py ```python from __future__ import absolute_import, division, print_function, \ unicode_literals from os import makedirs from os.path import basename, dirname, isdir, isfile, join from unittest import TestCase from yaml import safe_load from yaml.constructor import ConstructorError from octodns.record import Create from octodns.provider.base import Plan from octodns.provider.yaml import _list_all_yaml_files, \ SplitYamlProvider, YamlProvider from octodns.zone import SubzoneRecordException, Zone from helpers import TemporaryDirectory class TestYamlProvider(TestCase): def test_provider(self): source = YamlProvider('test', join(dirname(__file__), 'config')) zone = Zone('unit.tests.', []) dynamic_zone = Zone('dynamic.tests.', []) # With target we don't add anything source.populate(zone, target=source) self.assertEquals(0, len(zone.records)) # without it we see everything source.populate(zone) self.assertEquals(18, len(zone.records)) source.populate(dynamic_zone) self.assertEquals(5, len(dynamic_zone.records)) # Assumption here is that a clean round-trip means that everything # worked as expected, data that went in came back out and could be # pulled in yet again and still match up. That assumes that the input # data completely exercises things. This assumption can be tested by # relatively well by running # ./script/coverage tests/test_octodns_provider_yaml.py and # looking at the coverage file # ./htmlcov/octodns_provider_yaml_py.html with TemporaryDirectory() as td: # Add some subdirs to make sure that it can create them directory = join(td.dirname, 'sub', 'dir') yaml_file = join(directory, 'unit.tests.yaml') dynamic_yaml_file = join(directory, 'dynamic.tests.yaml') target = YamlProvider('test', directory) # We add everything plan = target.plan(zone) self.assertEquals(15, len(filter(lambda c: isinstance(c, Create), plan.changes))) self.assertFalse(isfile(yaml_file)) # Now actually do it self.assertEquals(15, target.apply(plan)) self.assertTrue(isfile(yaml_file)) # Dynamic plan plan = target.plan(dynamic_zone) self.assertEquals(5, len(filter(lambda c: isinstance(c, Create), plan.changes))) self.assertFalse(isfile(dynamic_yaml_file)) # Apply it self.assertEquals(5, target.apply(plan)) self.assertTrue(isfile(dynamic_yaml_file)) # There should be no changes after the round trip reloaded = Zone('unit.tests.', []) target.populate(reloaded) self.assertDictEqual( {'included': ['test']}, filter( lambda x: x.name == 'included', reloaded.records )[0]._octodns) self.assertFalse(zone.changes(reloaded, target=source)) # A 2nd sync should still create everything plan = target.plan(zone) self.assertEquals(15, len(filter(lambda c: isinstance(c, Create), plan.changes))) with open(yaml_file) as fh: data = safe_load(fh.read()) # '' has some of both roots = sorted(data.pop(''), key=lambda r: r['type']) self.assertTrue('values' in roots[0]) # A self.assertTrue('geo' in roots[0]) # geo made the trip self.assertTrue('value' in roots[1]) # CAA self.assertTrue('values' in roots[2]) # SSHFP # these are stored as plural 'values' self.assertTrue('values' in data.pop('_srv._tcp')) self.assertTrue('values' in data.pop('mx')) self.assertTrue('values' in data.pop('naptr')) self.assertTrue('values' in data.pop('sub')) self.assertTrue('values' in data.pop('txt')) # these are stored as singular 'value' self.assertTrue('value' in data.pop('aaaa')) self.assertTrue('value' in data.pop('cname')) self.assertTrue('value' in data.pop('included')) self.assertTrue('value' in data.pop('ptr')) self.assertTrue('value' in data.pop('spf')) self.assertTrue('value' in data.pop('www')) self.assertTrue('value' in data.pop('www.sub')) # make sure nothing is left self.assertEquals([], data.keys()) with open(dynamic_yaml_file) as fh: data = safe_load(fh.read()) # make sure new dynamic records made the trip dyna = data.pop('a') self.assertTrue('values' in dyna) # self.assertTrue('dynamic' in dyna) # TODO: # make sure new dynamic records made the trip dyna = data.pop('aaaa') self.assertTrue('values' in dyna) # self.assertTrue('dynamic' in dyna) dyna = data.pop('cname') self.assertTrue('value' in dyna) # self.assertTrue('dynamic' in dyna) dyna = data.pop('real-ish-a') self.assertTrue('values' in dyna) # self.assertTrue('dynamic' in dyna) dyna = data.pop('simple-weighted') self.assertTrue('value' in dyna) # self.assertTrue('dynamic' in dyna) # make sure nothing is left self.assertEquals([], data.keys()) def test_empty(self): source = YamlProvider('test', join(dirname(__file__), 'config')) zone = Zone('empty.', []) # without it we see everything source.populate(zone) self.assertEquals(0, len(zone.records)) def test_unsorted(self): source = YamlProvider('test', join(dirname(__file__), 'config')) zone = Zone('unordered.', []) with self.assertRaises(ConstructorError): source.populate(zone) source = YamlProvider('test', join(dirname(__file__), 'config'), enforce_order=False) # no exception source.populate(zone) self.assertEqual(2, len(zone.records)) def test_subzone_handling(self): source = YamlProvider('test', join(dirname(__file__), 'config')) # If we add `sub` as a sub-zone we'll reject `www.sub` zone = Zone('unit.tests.', ['sub']) with self.assertRaises(SubzoneRecordException) as ctx: source.populate(zone) self.assertEquals('Record www.sub.unit.tests. is under a managed ' 'subzone', ctx.exception.message) class TestSplitYamlProvider(TestCase): def test_list_all_yaml_files(self): yaml_files = ('foo.yaml', '1.yaml', '$unit.tests.yaml') all_files = ('something', 'else', '1', '$$', '-f') + yaml_files all_dirs = ('dir1', 'dir2/sub', 'tricky.yaml') with TemporaryDirectory() as td: directory = join(td.dirname) # Create some files, some of them with a .yaml extension, all of # them empty. for emptyfile in all_files: open(join(directory, emptyfile), 'w').close() # Do the same for some fake directories for emptydir in all_dirs: makedirs(join(directory, emptydir)) # This isn't great, but given the variable nature of the temp dir # names, it's necessary. self.assertItemsEqual( yaml_files, (basename(f) for f in _list_all_yaml_files(directory))) def test_zone_directory(self): source = SplitYamlProvider( 'test', join(dirname(__file__), 'config/split')) zone = Zone('unit.tests.', []) self.assertEqual( join(dirname(__file__), 'config/split/unit.tests.'), source._zone_directory(zone)) def test_apply_handles_existing_zone_directory(self): with TemporaryDirectory() as td: provider = SplitYamlProvider('test', join(td.dirname, 'config')) makedirs(join(td.dirname, 'config', 'does.exist.')) zone = Zone('does.exist.', []) self.assertTrue(isdir(provider._zone_directory(zone))) provider.apply(Plan(None, zone, [], True)) self.assertTrue(isdir(provider._zone_directory(zone))) def test_provider(self): source = SplitYamlProvider( 'test', join(dirname(__file__), 'config/split')) zone = Zone('unit.tests.', []) dynamic_zone = Zone('dynamic.tests.', []) # With target we don't add anything source.populate(zone, target=source) self.assertEquals(0, len(zone.records)) # without it we see everything source.populate(zone) self.assertEquals(18, len(zone.records)) source.populate(dynamic_zone) self.assertEquals(5, len(dynamic_zone.records)) with TemporaryDirectory() as td: # Add some subdirs to make sure that it can create them directory = join(td.dirname, 'sub', 'dir') zone_dir = join(directory, 'unit.tests.') dynamic_zone_dir = join(directory, 'dynamic.tests.') target = SplitYamlProvider('test', directory) # We add everything plan = target.plan(zone) self.assertEquals(15, len(filter(lambda c: isinstance(c, Create), plan.changes))) self.assertFalse(isdir(zone_dir)) # Now actually do it self.assertEquals(15, target.apply(plan)) # Dynamic plan plan = target.plan(dynamic_zone) self.assertEquals(5, len(filter(lambda c: isinstance(c, Create), plan.changes))) self.assertFalse(isdir(dynamic_zone_dir)) # Apply it self.assertEquals(5, target.apply(plan)) self.assertTrue(isdir(dynamic_zone_dir)) # There should be no changes after the round trip reloaded = Zone('unit.tests.', []) target.populate(reloaded) self.assertDictEqual( {'included': ['test']}, filter( lambda x: x.name == 'included', reloaded.records )[0]._octodns) self.assertFalse(zone.changes(reloaded, target=source)) # A 2nd sync should still create everything plan = target.plan(zone) self.assertEquals(15, len(filter(lambda c: isinstance(c, Create), plan.changes))) yaml_file = join(zone_dir, '$unit.tests.yaml') self.assertTrue(isfile(yaml_file)) with open(yaml_file) as fh: data = safe_load(fh.read()) roots = sorted(data.pop(''), key=lambda r: r['type']) self.assertTrue('values' in roots[0]) # A self.assertTrue('geo' in roots[0]) # geo made the trip self.assertTrue('value' in roots[1]) # CAA self.assertTrue('values' in roots[2]) # SSHFP # These records are stored as plural "values." Check each file to # ensure correctness. for record_name in ('_srv._tcp', 'mx', 'naptr', 'sub', 'txt'): yaml_file = join(zone_dir, '{}.yaml'.format(record_name)) self.assertTrue(isfile(yaml_file)) with open(yaml_file) as fh: data = safe_load(fh.read()) self.assertTrue('values' in data.pop(record_name)) # These are stored as singular "value." Again, check each file. for record_name in ('aaaa', 'cname', 'included', 'ptr', 'spf', 'www.sub', 'www'): yaml_file = join(zone_dir, '{}.yaml'.format(record_name)) self.assertTrue(isfile(yaml_file)) with open(yaml_file) as fh: data = safe_load(fh.read()) self.assertTrue('value' in data.pop(record_name)) # Again with the plural, this time checking dynamic.tests. for record_name in ('a', 'aaaa', 'real-ish-a'): yaml_file = join( dynamic_zone_dir, '{}.yaml'.format(record_name)) self.assertTrue(isfile(yaml_file)) with open(yaml_file) as fh: data = safe_load(fh.read()) dyna = data.pop(record_name) self.assertTrue('values' in dyna) self.assertTrue('dynamic' in dyna) # Singular again. for record_name in ('cname', 'simple-weighted'): yaml_file = join( dynamic_zone_dir, '{}.yaml'.format(record_name)) self.assertTrue(isfile(yaml_file)) with open(yaml_file) as fh: data = safe_load(fh.read()) dyna = data.pop(record_name) self.assertTrue('value' in dyna) self.assertTrue('dynamic' in dyna) def test_empty(self): source = SplitYamlProvider( 'test', join(dirname(__file__), 'config/split')) zone = Zone('empty.', []) # without it we see everything source.populate(zone) self.assertEquals(0, len(zone.records)) def test_unsorted(self): source = SplitYamlProvider( 'test', join(dirname(__file__), 'config/split')) zone = Zone('unordered.', []) with self.assertRaises(ConstructorError): source.populate(zone) zone = Zone('unordered.', []) source = SplitYamlProvider( 'test', join(dirname(__file__), 'config/split'), enforce_order=False) # no exception source.populate(zone) self.assertEqual(2, len(zone.records)) def test_subzone_handling(self): source = SplitYamlProvider( 'test', join(dirname(__file__), 'config/split')) # If we add `sub` as a sub-zone we'll reject `www.sub` zone = Zone('unit.tests.', ['sub']) with self.assertRaises(SubzoneRecordException) as ctx: source.populate(zone) self.assertEquals('Record www.sub.unit.tests. is under a managed ' 'subzone', ctx.exception.message) ```
{ "source": "JoeJasinski/password-safe", "score": 3 }
#### File: password-safe/safe/crypto.py ```python from Crypto.Cipher import PKCS1_OAEP from Crypto.PublicKey import RSA from base64 import b64decode from safe.exceptions import * def get_key(text): try: key = RSA.importKey(text) except ValueError, e: raise EncryptionImportKeyException(e.message) key_cipher = PKCS1_OAEP.new(key) return key_cipher def encrypt(public_key, clear_text): """ param: public_key PublicKey to encrypt with param: clear_text String to encrypt return encrypted string """ ciphertext = public_key.encrypt(clear_text.encode("utf-8")) return ciphertext.encode('base64') def decrypt(private_key_string, ciphertext): ''' param: private_key_string string of your private key param: ciphertext String to be decrypted return decrypted string ''' try: private_key = RSA.importKey(private_key_string) except ValueError, e: raise DecryptionImportKeyException(e.message) private_key = PKCS1_OAEP.new(private_key) try: decrypted = private_key.decrypt(b64decode(ciphertext)) except TypeError, e: raise DecryptionBase64Exception(e.message) return decrypted ``` #### File: password-safe/safe/forms.py ```python import hashlib from django import forms from safe import crypto from safe.exceptions import * from safe.models import Credential class KeyField(forms.Field): def __init__(self, *args, **kw): kwargs = {'widget': forms.Textarea(attrs={'style': "width:100%;"})} kwargs.update(kw) super(KeyField, self).__init__(*args, **kwargs) def to_python(self, value): return value def validate(self, value): super(KeyField, self).validate(value) # try to import it as an RSA key try: crypto.get_key(value) except EncryptionImportKeyException as e: raise forms.ValidationError("Failed to import key: %s" % (e.message)) return value _hashit = lambda s: hashlib.sha1(s).hexdigest() class CreatePublicKeyForm(forms.Form): pubkey = KeyField() def __init__(self, *args, **kw): show_privkey = kw.pop('show_privkey', None) super(CreatePublicKeyForm, self).__init__(*args, **kw) self.fields['pubkey'].widget.attrs['rows'] = "6" self.fields['pubkey'].widget.attrs['id'] = "pubkey" if show_privkey: self.fields['privkey'] = KeyField(required=False) self.fields['privkey'].widget.attrs['rows'] = "15" self.fields['privkey'].widget.attrs['id'] = "privkey" self.fields.keyOrder = ['privkey', 'pubkey'] for name, field in self.fields.items(): if field.widget.attrs.has_key('class'): field.widget.attrs['class'] += ' form-control' else: field.widget.attrs.update({'class': 'form-control'}) @classmethod def calculate_hash(cls, value): return _hashit(value) def clean(self): cleaned_data = super(CreatePublicKeyForm, self).clean() cleaned_data['hash'] = CreatePublicKeyForm.calculate_hash( cleaned_data['pubkey']) return cleaned_data class CreateUpdateCredentialForm(forms.ModelForm): class Meta: model = Credential widgets = { 'tags': forms.Textarea(attrs={'rows': 1, 'cols': 30}), } fields = '__all__' def __init__(self, edit=False, *args, **kw): super(CreateUpdateCredentialForm, self).__init__(*args, **kw) if not edit: self.fields['secret'] = forms.CharField() for name, field in self.fields.items(): if field.widget.attrs.has_key('class'): field.widget.attrs['class'] += ' form-control' else: field.widget.attrs.update({'class': 'form-control'}) self.fields.keyOrder = ['title', 'login_name'] + \ [x for x in ['secret'] if not edit] + \ ['url', 'tags', 'notes'] class SearchTagField(forms.Form): q = forms.CharField(required=False) ```
{ "source": "JoeJasinski/WindyTransit", "score": 2 }
#### File: mobiletrans/mtapi/views.py ```python from django.contrib.gis.measure import D from mobiletrans.mtlocation.models import ( TransitRoute, TransitStop, Location, Neighborhood, Zipcode, TRANSIT_STOP_TYPE_STATION, CityBorder, CTARailLines ) from mobiletrans.mtcore import utils from django.shortcuts import get_object_or_404 from rest_framework import generics from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import serializers from .serializers import (CTARailLinesSerializer, CityBorderSerializer, NeighborhoodSerializer, LocationSerializer) class ListTransitRoutesSerializer(serializers.Serializer): pass class ListTransitRoutesView(generics.ListAPIView): serializer_class = ListTransitRoutesSerializer lookup_url_kwarg = "route_id" def get_queryset(self): kwargs = {} type = self.request.GET.get('type','').lower() if type in ['1','3','bus','train']: if type == "bus": type = 3 if type == "train": type = 1 kwargs.update({'type':type}) return TransitRoute.objects.filter(**kwargs) def get(self, request, *args, **kwargs): transit_routes = [] self.object_list = self.filter_queryset(self.get_queryset()) for route in self.object_list: transit_route = route.serialize() transit_routes.append(transit_route) return Response({'transit_routes':transit_routes}) class ListTransitRouteView(generics.ListAPIView): methods_allowed = ('GET',) def get(self, request, *args, **kwargs): transit_route_dict = {} if kwargs.get('uuid'): kwargs = {'uuid':kwargs['uuid']} elif kwargs.get('route_id'): kwargs = {'route_id':kwargs['route_id']} else: kwargs = {} try: transit_route = TransitRoute.objects.get(**kwargs) except: transit_route = [] else: transit_route_dict = transit_route.serialize() stops = map(lambda x: x.serialize(), transit_route.transitstop_set.all() ) transit_route_dict.update({'stops':stops,}) return Response({'transit_route':transit_route_dict}) class LocationDataView(generics.ListAPIView): methods_allowed = ('GET',) def get(self, request, *args, **kwargs): context = {} params = utils.PrepParams(request) location_objs = Location.objects.filter( point__distance_lte=(params.ref_pnt, D(**params.d) )).distance(params.ref_pnt).order_by('distance') if params.point_types_input: location_objs = location_objs.filter(content_type__model__in=params.point_types) if params.neighborhood: neighborhood = map(lambda x: x.serialize(), Neighborhood.objects.filter(area__contains=params.ref_pnt)) context.update({'neighborhood':neighborhood}) if params.zipcode: zipcode = map(lambda x: x.serialize(), Zipcode.objects.filter(area__contains=params.ref_pnt)) context.update({'zipcode':zipcode}) locations = [] for location, distance in [ (l, l.distance) for l in location_objs.distance(params.ref_pnt) ]: distance = location.distance location = location.as_leaf_class().serialize() location.update({'distance':str(distance)}) locations.append(location,) context.update({ 'locations': locations[:params.limit], }) return Response(context) class TransitStopDataView(generics.ListAPIView): methods_allowed = ('GET',) def get(self, request, *args, **kwargs): params = utils.PrepParams(request) location_objs = TransitStop.orig_objects.filter(location_type=TRANSIT_STOP_TYPE_STATION, point__distance_lte=(params.ref_pnt, D(**params.d) )).distance(params.ref_pnt).order_by('distance') if params.point_types_input: location_objs = location_objs.filter(content_type__model__in=params.point_types) locations = [] for location, distance in [ (l, l.distance) for l in location_objs.distance(params.ref_pnt) ]: distance = location.distance location = location.as_leaf_class().serialize() location.update({'distance':str(distance)}) locations.append(location,) return Response({ 'locations': locations[:params.limit], }) class CTARailLinesRoutesView(generics.ListAPIView): model = CTARailLines methods_allowed = ('GET',) serializer_class = CTARailLinesSerializer lookup_url_kwarg = "objectid" def get_queryset(self): if self.kwargs.get('objectid'): kwargs = {'objectid':self.kwargs['objectid']} else: kwargs = {} return self.model.objects.filter(**kwargs) class CityBorderView(generics.ListAPIView): model = CityBorder methods_allowed = ('GET',) serializer_class = CityBorderSerializer lookup_url_kwarg = "name" def get_queryset(self): if self.kwargs.get('name'): kwargs = {'name':self.kwargs['name']} else: kwargs = {} return self.model.objects.filter(**kwargs) class NeighborhoodFromCoordView(generics.RetrieveAPIView): model = Neighborhood methods_allowed = ('GET',) serializer_class = NeighborhoodSerializer lookup_url_kwarg = "name" def dispatch(self, request, *args, **kwargs): self.params = utils.PrepParams(self.request) return super(NeighborhoodFromCoordView, self).dispatch(request, *args, **kwargs) def get_object(self, queryset=None): queryset = self.filter_queryset(self.get_queryset()) if self.params.neighborhood: try: neighborhood = Neighborhood.sub_objects.filter(area__contains=self.params.ref_pnt)[0] except IndexError: neighborhood = "" #neighborhood = get_object_or_404(queryset, **filter_kwargs) self.check_object_permissions(self.request, neighborhood) return neighborhood def get(self, request, format=None): placemarks = Location.objects.all().displayable().get_closest(from_point=self.params.ref_pnt, distance_dict=self.params.d ) neighborhood = self.get_object() data = {'neighborhood':NeighborhoodSerializer(neighborhood).data, 'placemarks':LocationSerializer(placemarks).data,} return Response(data) class RailLinesRouteBorderView(APIView): def get(self, request, *args, **kwargs): routes = CTARailLines.objects.all() name = self.kwargs.get('name') border = get_object_or_404(CityBorder, name=name) kwargs = {'name':name} border = CityBorder.objects.filter(**kwargs) data = {'border':CityBorderSerializer(border).data, 'routes':CTARailLinesSerializer(routes).data,} return Response(data) ``` #### File: mobiletrans/mtdistmap/area_grid.py ```python import logging, json from Queue import Queue from threading import Thread, Semaphore from UserDict import DictMixin #from mobiletrans.mtdistmap.utils import shapefile import shapefile from django.contrib.gis.geos import Point from pyproj import Geod logger = logging.getLogger('simple_example') logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) g = Geod(ellps='WGS84') class GridPoint(object): """ This represents a geographic coordinate and where it falls on the Grid object. The value of x and y refer to the x or y distance from the origin. The xint and yint are the spacings between points. """ def __init__(self, x, y, point,): self.x = x self.y = y self.point = point @property def grid_coords(self): return (self.x, self.y) @property def geo_coords(self): return self.point.x, self.point.y @property def geo_coords_r(self): return self.point.y, self.point.x def __repr__(self): return "GridPoint(lng=%s (%s), lat=%s (%s))" % ( self.point.x, self.x, self.point.y, self.y) """ from mobiletrans.mtdistmap.area_grid import generate_grid, GridPoint region = CityBorder.objects.all()[0] gp = GridPoint(0, 0, region.area.centroid) g = generate_grid(region, gp) """ class Grid(DictMixin): """ This represents a grid of GridPoints, the center of which is at (0,0). The key to this dict-like object is an (x,y) tuple representing the distance from the origin (0,0). """ def __init__(self, xint, yint, *args, **kwargs): self.grid = {} self.xint = xint self.yint = yint def __getitem__(self, key): return self.grid[key] def __setitem__(self, key, item): self.grid[key] = item def __delitem__(self, key): del self.grid[key] def keys(self): return self.grid.keys() def json(self): features = [] for k, point in self.items(): d = { "type": "Feature", "geometry": {"type": "Point", "coordinates": point.geo_coords}, } features.append(d) json_dict = { "type": "FeatureCollection", "features": features } return json.dumps(json_dict) def generate_shapefile(self, shape_file_name='shapefiles/test'): """ Exports the data grid into a set of shapefiles. Input: shape_file_name="/home/test/shapefiles/myshape" Output: In directory /home/test/shapefiles/ myshape.shp myshape.shx myshape.dbf """ w = shapefile.Writer(shapeType=shapefile.POINT) w.autoBalance = 1 w.field('ID', 'N') # id field of type Number w.field('x' , "N") w.field('y', "N") count = 1 for i in self.items(): graphpoint = i[1] w.point(graphpoint.point.x, graphpoint.point.y) w.record(count, graphpoint.x, graphpoint.y, ) count += 1 w.save(shape_file_name) class GridGenerator(object): """ Generate a grid of evenly spaced points across the region area geography object. Executing the run() method will actually start the calculation. It will create generated a grid by first taking a start point and then visit points to the north, south, east, and west of that point. This will continue until all points in the region have been visited. Inputs: region - (required) the bounding region for the grid grid - (required) the empty new Grid object """ grid = None directions = ['north', 'south', 'east', 'west'] num_worker_threads=4 def __init__(self, region, grid, *args, **kwargs): self.q = Queue() self.region = region self.grid = grid @property def grid_point_class(self): return GridPoint def transpose(self, grid_point, azimuth, distance): return g.fwd(grid_point.point.x, grid_point.point.y, azimuth, distance) def north(self, grid_point): lng, lat, az = self.transpose(grid_point, 0, self.grid.yint) return self.grid_point_class(grid_point.x, grid_point.y + self.grid.yint, Point(lng, lat)) def south(self, grid_point): lng, lat, az = self.transpose(grid_point, 180, self.grid.yint) return self.grid_point_class(grid_point.x, grid_point.y - self.grid.yint, Point(lng, lat), ) def east(self, grid_point): lng, lat, az = self.transpose(grid_point, 90, self.grid.xint) return self.grid_point_class(grid_point.x + self.grid.xint, grid_point.y, Point(lng, lat), ) def west(self, grid_point): lng, lat, az = self.transpose(grid_point, 270, self.grid.xint) return self.grid_point_class(grid_point.x - self.grid.xint, grid_point.y, Point(lng, lat),) def create_grid(self, grid_point): for direction in self.directions: new_point = getattr(self, direction)(grid_point) if not self.grid.has_key((new_point.x, new_point.y)): self.grid[(new_point.x, new_point.y)] = new_point if self.region.area.contains(new_point.point): self.work(new_point) self.q.put(new_point) def work(self, new_point): pass def worker(self): while True: item = self.q.get() self.create_grid(item) self.q.task_done() def run(self, start_grid_point): for i in range(self.num_worker_threads): t = Thread(target=self.worker) t.daemon = True t.start() self.create_grid(start_grid_point) self.q.join() return self.grid """ #from mobiletrans.mtdistmap.area_grid import GridGenerator, GridPoint, Grid region = CityBorder.objects.all()[0] center = region.area.centroid grid = Grid(xint=300, yint=300) gridgen = GridGenerator(region, grid) g = gridgen.run(GridPoint(0,0,center)) """ from mobiletrans.mtdistmap.cta_conn import load_transitnetwork from mobiletrans.mtdistmap.route_planner import RoutePlanner from django.contrib.gis.geos import Point, fromstr class RouteGridGenerator(GridGenerator): """ Generate a grid a cross the region area geography object and calculate the routes to the given train stop (to_point) for each grid point. Inputs: region - (required) the bounding region for the grid grid - (required) the empty new RouteGrid object to_point - (required) train stop id where all the grid point should search to max_distance - (default 1500) the max search radius around each search point in which to search for a nearby start train stop. num_routes - (default 2) will perform a route calculation for the closest num_routes to a given grid point. """ def __init__(self, to_point, *args, **kwargs): self.to_point = to_point tn = load_transitnetwork() self.t = RoutePlanner(tn, max_distance=kwargs.get('max_distance', 1500), num_routes=kwargs.get('num_routes', 2)) super(RouteGridGenerator, self).__init__(*args, **kwargs) @property def grid_point_class(self): return RouteGridPoint def work(self, new_point): from_point = new_point.point p = self.t.fastest_route_from_point(from_point, self.to_point) new_point.routes += p class RouteGrid(Grid): def generate_shapefile(self, shape_file_name='shapefiles/test'): """ Exports the data grid into a set of shapefiles. Input: shape_file_name="/home/test/shapefiles/myshape" Output: In directory /home/test/shapefiles/ myshape.shp myshape.shx myshape.dbf """ w = shapefile.Writer(shapeType=shapefile.POINT) w.autoBalance = 1 w.field('ID', 'N') # id field of type Number w.field('NUM_ROUTES', 'N') # route field of type Number w.field('x' , "N") w.field('y', "N") w.field('total_time', 'N', decimal=4) # long count = 1 for i in self.items(): graphpoint = i[1] w.point(graphpoint.point.x, graphpoint.point.y) w.record(count, len(graphpoint.routes), graphpoint.x, graphpoint.y, "%s" % graphpoint.shortest_time() ) count += 1 w.save(shape_file_name) class RouteGridPoint(GridPoint): def __init__(self, *args, **kwargs): super(RouteGridPoint, self).__init__(*args, **kwargs) self.routes = [] def __repr__(self): return "Route" + super(RouteGridPoint, self).__repr__() def shortest_route(self): return_value = None if self.routes: return_value = sorted( self.routes, key=lambda x: x.total_time,reverse=True)[0] return return_value def shortest_time(self, default=9999999): return_value = default route = self.shortest_route() if route: return_value = route.total_time return return_value """ # generate the grid with routes from mobiletrans.mtlocation.models import CityBorder from mobiletrans.mtdistmap.area_grid import RouteGridGenerator, RouteGridPoint, RouteGrid region = CityBorder.objects.all()[0] center = region.area.centroid grid = RouteGrid(xint=300, yint=300) #gridgen = RouteGridGenerator('41320', region, grid, max_distance=2000, num_routes=3) gridgen = RouteGridGenerator('40170', region, grid, max_distance=2000, num_routes=3) g = gridgen.run(RouteGridPoint(0,0,center)) g.generate_shapefile('shapefiles/chicago_pts5') """ ``` #### File: mobiletrans/mtdistmap/cta_heatmap.py ```python import os import mapnik from django.conf import settings DB_NAME = settings.DATABASES['default']['NAME'] DB_USER = settings.DATABASES['default']['USER'] DB_HOST = settings.DATABASES['default']['HOST'] DB_PORT = settings.DATABASES['default']['PORT'] DB_PASSWORD = settings.DATABASES['default']['PASSWORD'] class CTAHeatmap(object): """ Usage: from mobiletrans.mtdistmap.cta_heatmap import CTAHeatmap import mapnik m = mapnik.Map(600,600) cta_map = CTAHeatmap(m) cta_map.render_image() """ def __init__(self, empty_map, *args, **kwargs): self.define_map(empty_map) def get_subqueries(self): subquery={} subquery[1] = """(SELECT * FROM public.mtlocation_region, public.mtlocation_neighborhood, public.django_content_type WHERE mtlocation_region.id = mtlocation_neighborhood.region_ptr_id AND mtlocation_region.content_type_id = django_content_type.id) as foo""" subquery[2] = """(SELECT * FROM mtlocation_location as loc inner join django_content_type as ct on (loc.content_type_id = ct.id) left outer join public.mtlocation_gplace as place on ( loc.id = place.location_ptr_id ) where ct.model not in ('transitstop')) as foo""" subquery[4] = """(SELECT l.id, l.created, l.modified, l.active, l.name, s.location_type, s.url, s.description, s.stop_code, s.stop_id, s.location_ptr_id, l.slug, l.uuid, l.content_type_id, l.point FROM mtlocation_location l, mtlocation_transitstop s WHERE s.location_ptr_id = l.id and s.location_type = 1) as bar """ return subquery def get_stylesheet(self): cta_heatmap_xml = os.path.join(settings.PROJECT_ROOT, 'mtdistmap', 'cta_heatmap.xml') f = open(cta_heatmap_xml) schema = f.read() f.close() return schema def define_map(self, map): subquery = self.get_subqueries() schema = self.get_stylesheet() mapnik.load_map_from_string(map, schema) connection_params = dict(dbname=DB_NAME, user=DB_USER, host=DB_HOST, password=<PASSWORD>, port=DB_PORT, ) ds = mapnik.PostGIS(table='mtlocation_cityborder', **connection_params) map.layers[0].datasource = ds ds = mapnik.PostGIS(table=subquery[1], geometry_table="mtlocation_region", geometry_field='area', **connection_params) map.layers[1].datasource = ds ds = mapnik.PostGIS(table=subquery[2], geometry_table="mtlocation_location", geometry_field='point', **connection_params) map.layers[2].datasource = ds ds = mapnik.PostGIS(table='mtlocation_ctaraillines', **connection_params) map.layers[3].datasource = ds ds = mapnik.PostGIS(table=subquery[4], geometry_table="mtlocation_location", geometry_field='point', **connection_params) map.layers[4].datasource = ds self.map = map def render_image(self): map = self.map map.zoom_all() #map.zoom_to_box(bbox) mapnik.render_to_file(map, 'chicago.png', 'png') ``` #### File: mtdistmap/dijkstra/graph_to_dot.py ```python def graph_to_dot(G): s = """digraph G {\nnode [width=.3,height=.3,shape=octagon,style=filled,color=skyblue];\noverlap="false";\nrankdir="LR";\n%s}""" r = '' for i in G: for j in G[i]: r+='%s -> %s [label="%s"];\n' % (i, j, str(G[i][j])) return s % (r) # http://graphviz-dev.appspot.com/ # http://ashitani.jp/gv/# ``` #### File: management/commands/shortest_path.py ```python import os from django.core.management.base import BaseCommand, CommandError from optparse import make_option from mobiletrans.mtdistmap.cta_conn import load_transitnetwork class Command(BaseCommand): args = '<stop_id stop_id >' help = 'caculates the shortest route between two transit stop ids.' def handle(self, *args, **options): if not len(args) == 2: self.stdout.write("2 args required") exit(1) tn = load_transitnetwork() sp = tn.shortest_path(args[0], args[1]) if sp: self.stdout.write(str(sp.to_json())) else: self.stdout.write({'error':'no route'}) ``` #### File: mobiletrans/mtimport/importer.py ```python import json, csv, logging, traceback from django.contrib.gis import gdal from xml.dom import minidom from mobiletrans.mtimport import models from mobiletrans.mtimport.exceptions import * import logging logger = logging.getLogger(__name__) class ImportBase(object): def __init__(self, input_record, input_data): self.stats = {'new':0, 'existing':0, 'errors':0} self.input_record = input_record self.input_data = input_data @classmethod def get_model_class(cls,): raise NotImplementedError("implement this get_model_class method in a subclass") @classmethod def data_import(cls, *input_parameters): data = [] status=None input_record = models.InputRecord() input_record.type = cls.get_model_class().__name__ input_record.save() try: data = cls.open_data(*input_parameters) except ImportException, error: stacktrace_text = traceback.format_exc(limit=50) models.InputRecord.objects.make_note( input_record=input_record, note='Data Error: %s\n\n%s' % (error, stacktrace_text), type=models.TRANSFER_NOTE_STATUS_ERROR, exception=error.__class__.__name__, ) models.InputRecord.objects.end_import(input_record, models.TRANSFER_STATUS_FAILED) raise ImportException("Data load problem: %s" % (error)) import_class = cls(input_record, data, ) stats = import_class.process() if not input_record.status == models.TRANSFER_STATUS_FAILED: if input_record.inputnote_set.filter(type__in=[models.TRANSFER_NOTE_STATUS_ERROR,]): status = models.TRANSFER_STATUS_PARTIAL else: status = models.TRANSFER_STATUS_SUCCESS models.InputRecord.objects.make_note( input_record=input_record, note='# new records %s - # existing records %s - error records %s' % ( stats['new'], stats['existing'], stats['errors']), type=models.TRANSFER_NOTE_STATUS_NOTE, ) models.InputRecord.objects.end_import(input_record, status) return input_record def process(self): count = 1 for row in self.get_iteration_root(): try: import_object = self.parse_row(row) except ValueError as error: stacktrace_text = traceback.format_exc(limit=50) models.InputRecord.objects.make_note( input_record=self.input_record, note="Row %s: ValueError Parse error: %s\n\n%s" % (count, error, stacktrace_text), type=models.TRANSFER_NOTE_STATUS_ERROR, exception=error.__class__.__name__, ) self.stats['errors'] += 1 models.InputRecord.objects.end_import(self.input_record, models.TRANSFER_STATUS_FAILED) except IndexError as error: stacktrace_text = traceback.format_exc(limit=50) models.InputRecord.objects.make_note( input_record=self.input_record, note="Row %s: IndexError Parse error: %s\n\n%s" % (count, error, stacktrace_text), type=models.TRANSFER_NOTE_STATUS_ERROR, exception=error.__class__.__name__, ) self.stats['errors'] += 1 models.InputRecord.objects.end_import(self.input_record, models.TRANSFER_STATUS_FAILED) except ImportException as error: stacktrace_text = traceback.format_exc(limit=50) models.InputRecord.objects.make_note( input_record=self.input_record, note="Row %s: Import Exception Parse error: %s\n\n%s" % (count, error, stacktrace_text), type=models.TRANSFER_NOTE_STATUS_ERROR, exception=error.__class__.__name__, ) self.stats['errors'] += 1 models.InputRecord.objects.end_import(self.input_record, models.TRANSFER_STATUS_FAILED) except Exception as error: stacktrace_text = traceback.format_exc(limit=50) models.InputRecord.objects.make_note( input_record=self.input_record, note="Row %s: Unknown Parse error: %s\n\n%s" % (count, error, stacktrace_text), type=models.TRANSFER_NOTE_STATUS_ERROR, exception=error.__class__.__name__, ) self.stats['errors'] += 1 models.InputRecord.objects.end_import(self.input_record, models.TRANSFER_STATUS_FAILED) else: try: logger.debug("%s" % vars(import_object)) import_object.full_clean() import_object.save() except Exception as error: stacktrace_text = traceback.format_exc(limit=50) models.InputRecord.objects.make_note( input_record=self.input_record, note="Row %s: Save Error: %s\n\n%s" % (count, error, stacktrace_text), type=models.TRANSFER_NOTE_STATUS_ERROR, exception=error.__class__.__name__, ) self.stats['errors'] += 1 count += 1 return self.stats def get_iteration_root(self): raise NotImplementedError("implement this get_iteration_root method in a subclass") def open_data(self, **input_parameters): raise NotImplementedError("implement this open_data method in a subclass") def parse_row(self, row): raise NotImplementedError("implement this parse_row method in a subclass") ######################################## # Format-Specific loader base classes ######################################## class JSONImportBase(ImportBase): @classmethod def open_data(cls, input_file_path): try: input_file = open(input_file_path,'r') input_data = json.load(input_file) except IOError as error: raise IOImportException("Error with file read: %s - %s" % (input_file_path, error, )) except ValueError: raise DataFormatImportException("Error with JSON read: %s - %s" % (input_file_path, error, )) except Exception as error: raise ImportException("Unknown import error: %s - %s" % (input_file_path, error, )) else: input_file.close() return input_data def get_iteration_root(self): if self.input_data.has_key('data'): data = self.input_data['data'] else: models.InputRecord.objects.make_note( input_record=self.input_record, note="Input file missing 'data' element.", type=models.TRANSFER_NOTE_STATUS_ERROR, ) models.InputRecord.objects.end_import(self.input_record, models.TRANSFER_STATUS_FAILED) raise ImportException("JSON missing 'data' element.") return data class CSVImportBase(ImportBase): @classmethod def open_data(cls, input_file_path): try: input_file = open(input_file_path,'r') input_data = csv.reader(input_file, delimiter=',', quotechar='"') for row in input_data: data.append(row) data = data[1:] except IOError as error: raise IOImportException("Error with file load %s - %s" % (input_file_path, error)) except Exception, error: raise ImportException("Unknown import error: %s - %s" % (input_file_path, error, )) else: input_file.close() return data def get_iteration_root(self): return self.input_data class KMLImportBase(ImportBase): @classmethod def open_data(cls, input_file_path): try: input_file = open(input_file_path,'r') input_data = minidom.parse(input_file) except IOError as error: raise IOImportException("Error with file read: %s - %s" % (input_file_path, error, )) except ValueError: raise DataFormatImportException("Error with KML read: %s - %s" % (input_file_path, error, )) except Exception as error: raise ImportException("Unknown import error: %s - %s" % (input_file_path, error, )) else: input_file.close() return input_data def get_iteration_root(self): placemarks = self.input_data.getElementsByTagName("Placemark") if not placemarks: models.InputRecord.objects.make_note( input_record=self.input_record, note="Missing 'Placemark' elements.", type=models.TRANSFER_NOTE_STATUS_ERROR, ) models.InputRecord.objects.end_import(self.input_record, models.TRANSFER_STATUS_FAILED) raise ImportException("Missing 'Placemark' elements.") return placemarks from django.db import connections, router class ShapeFileImportBase(ImportBase): def get_geom_field(self): raise NotImplementedError("subclasses must implement this to specify a field name string of the geography field.") def prepare_srid_transform(self, source_srs, model_class, geom_field, ): using = router.db_for_write(model_class) spatial_backend = connections[using].ops opts = model_class._meta geo_field, model, direct, m2m = opts.get_field_by_name(geom_field) SpatialRefSys = spatial_backend.spatial_ref_sys() target_srs = SpatialRefSys.objects.using(using).get(srid=geo_field.srid).srs return gdal.CoordTransform(source_srs, target_srs) @classmethod def open_data(cls, input_file_path): try: input_data = gdal.DataSource(input_file_path) except IOError as error: raise IOImportException("Error with ShapeFile read: %s - %s" % (input_file_path, error, )) except gdal.error.OGRException as error: raise DataFormatImportException("Error with ShapeFile read: %s - %s" % (input_file_path, error, )) except Exception as error: raise ImportException("Unknown import ShapeFile error: %s - %s" % (input_file_path, error, )) return input_data def get_iteration_root(self): try: input_data = self.input_data[0] except IndexError as error: raise ImportException("Root element not found: %s" % (error)) self.coord_transform = self.prepare_srid_transform( source_srs=input_data.srs, model_class=self.get_model_class(), geom_field=self.get_geom_field(), ) return input_data ######################################## ``` #### File: mtimport/importers/importer_cityborder.py ```python from django.core.exceptions import ObjectDoesNotExist, MultipleObjectsReturned from django.contrib.gis.geos import Point, fromstr, fromfile, GEOSGeometry, MultiPoint, MultiPolygon, Polygon from django.contrib.gis.gdal.error import OGRIndexError from autoslug.settings import slugify from mobiletrans.mtimport.importer import ShapeFileImportBase from mobiletrans.mtlocation import models as loc_models from mobiletrans.mtimport import models from mobiletrans.mtimport.exceptions import * class CityBorder(ShapeFileImportBase): @classmethod def get_model_class(cls,): return loc_models.CityBorder def get_geom_field(self): return "area" def parse_row(self, row): existing = False try: primary_key = row.get("OBJECTID") except OGRIndexError as error: raise ImportException("primary key 'OBJECTID' not available", error) try: cityborder = self.get_model_class().objects.get(objectid=primary_key) existing = True except ObjectDoesNotExist: cityborder = self.get_model_class()(objectid=primary_key) existing = False except MultipleObjectsReturned: raise ImportException("multiple objects returned with OBJECTID %s " % primary_key) try: cityborder.name = row.get("NAME") except OGRIndexError as error: raise ImportException("field 'NAME' not available", error) try: cityborder.shape_area = row.get("SHAPE_AREA") except OGRIndexError as error: raise ImportException("field 'SHAPE_AREA' not available", error) try: cityborder.shape_len = row.get("SHAPE_LEN") except OGRIndexError as error: raise ImportException("field 'SHAPE_LEN' not available", error) try: geom = row.geom geom.transform(self.coord_transform) cityborder.area = geom.wkt except Exception, error: raise ImportException("attribute 'geom' not available", error) if existing: self.stats['existing'] += 1 else: self.stats['new'] += 1 return cityborder ``` #### File: mtimport/importers/importer_googleplace.py ```python import decimal from django.core.exceptions import ObjectDoesNotExist, MultipleObjectsReturned from django.contrib.gis.geos import Point, fromstr, fromfile, GEOSGeometry, MultiPoint, MultiPolygon, Polygon from autoslug.settings import slugify from mobiletrans.mtimport.importer import ImportBase from mobiletrans.mtlocation import models as loc_models from mobiletrans.mtimport import models from mobiletrans.mtimport.exceptions import * from django.conf import settings from googleplaces import GooglePlaces, types, lang, GooglePlacesError class GoogleIOImportException(IOImportException): pass def search_places_from_lat_long(lag_lng, radius=3200, keyword=None, types=[]): google_places = GooglePlaces(settings.GOOGLE_PLACES_API_KEY) query_result = google_places.query( lat_lng=lag_lng, keyword=keyword, radius =radius, types=types) return query_result class GPlaceLocation(ImportBase): @classmethod def get_model_class(cls,): return loc_models.GPlace @classmethod def open_data(cls, lat_lng, radius): try: data = search_places_from_lat_long(lat_lng, radius=radius) except GooglePlacesError as error: raise GoogleIOImportException("GooglePlaces lookup error: %s" % (error)) except Exception as error: raise ImportException("Unknown import error: lat_lng [%s] radius [%s]: %s" % (lat_lng, radius, error, )) except: raise ImportException("Unknown import error: lat_lng [%s] radius [%s]" % (lat_lng, radius, )) return data def get_iteration_root(self): if hasattr(self.input_data, 'places'): data = self.input_data.places else: models.InputRecord.objects.make_note( input_record=self.input_record, note="query data missing 'places' element.", type=models.TRANSFER_NOTE_STATUS_ERROR, ) models.InputRecord.objects.end_import(self.input_record, models.TRANSFER_STATUS_FAILED) raise ImportException("query data missing 'places' element.") return data def parse_row(self, row): existing = False row.get_details() try: uuid = row.id except AttributeError as error: raise AttributeError("id %s: uuid %s" % (id, error)) try: place = self.get_model_class().objects.get(uuid=uuid) existing = True except ObjectDoesNotExist: place = self.get_model_class()(uuid=uuid) existing = False except MultipleObjectsReturned: raise ImportException("multiple objects returned with uuid %s " % uuid) try: name = row.name except AttributeError as error: raise AttributeError("id %s: name %s" % (id, error)) place.name = name try: geo = row.geo_location except AttributeError as error: raise AttributeError("id %s: geo_location %s" % (id, error)) else: if geo.has_key('lng'): longitude = geo['lng'] else: raise AttributeError("id %s: geo_location.lng" % (id)) if geo.has_key('lat'): lattitude = geo['lat'] else: raise AttributeError("id %s: geo_location.lat " % (id )) point = fromstr('POINT(%s %s)' % (longitude, lattitude)) place.point = point if hasattr(row, 'rating'): try: d = decimal.Decimal("%s" % row.rating) except decimal.InvalidOperation: pass else: place.rating = d if hasattr(row, 'vicinity'): place.vicinity = row.vicinity if hasattr(row, 'types'): place.types = row.types if hasattr(row, 'reference'): place.reference = row.reference if hasattr(row, 'international_phone_number'): place.international_phone_number = row.international_phone_number if hasattr(row, 'local_phone_number'): place.local_phone_number = row.local_phone_number if hasattr(row, 'website'): place.website = row.website if hasattr(row, 'formatted_address'): place.address = row.formatted_address if hasattr(row, 'url'): place.url = row.url if existing: self.stats['existing'] += 1 else: self.stats['new'] += 1 return place ``` #### File: mtimport/importers/importer_transitroute.py ```python from django.core.exceptions import ObjectDoesNotExist, MultipleObjectsReturned from django.contrib.gis.geos import Point, fromstr, fromfile, GEOSGeometry, MultiPoint, MultiPolygon, Polygon from autoslug.settings import slugify from mobiletrans.mtimport.importer import CSVImportBase from mobiletrans.mtlocation import models as loc_models from mobiletrans.mtimport import models from mobiletrans.mtimport.exceptions import * class TransitRoute(CSVImportBase): @classmethod def get_model_class(cls,): return loc_models.TransitRoute def parse_row(self, row): row = list(row) existing = False pk = "route_id" try: pk_val = row[0] except IndexError as error: raise IndexError("%s %s" % (pk, error)) try: transitroute = self.get_model_class().objects.get(route_id=pk_val) existing = True except ObjectDoesNotExist: transitroute = self.get_model_class()(route_id=pk_val) existing = False except MultipleObjectsReturned: raise ImportException("multiple objects returned with %s %s " % (pk, pk_val)) attr = (1, 'short_name') try: value = row[attr[0]] except IndexError as error: raise IndexError("%s %s: %s %s" % (pk, pk_val, attr[1], error)) setattr(transitroute, attr[1], value) attr = (2, 'long_name') try: value = row[attr[0]] except IndexError as error: raise IndexError("%s %s: %s %s" % (pk, pk_val, attr[1], error)) setattr(transitroute, attr[1], value) attr = (3, 'type') try: value = row[attr[0]] except IndexError as error: raise IndexError("%s %s: %s %s" % (pk, pk_val, attr[1], error)) setattr(transitroute, attr[1], value) attr = (4, 'url') try: value = row[attr[0]] except IndexError as error: raise IndexError("%s %s: %s %s" % (pk, pk_val, attr[1], error)) setattr(transitroute, attr[1], value) attr = (5, 'color') try: value = row[attr[0]] except IndexError as error: raise IndexError("%s %s: %s %s" % (pk, pk_val, attr[1], error)) setattr(transitroute, attr[1], value) attr = (6, 'text_color') try: value = row[attr[0]] except IndexError as error: raise IndexError("%s %s: %s %s" % (pk, pk_val, attr[1], error)) setattr(transitroute, attr[1], value) if existing: self.stats['existing'] += 1 else: self.stats['new'] += 1 return transitroute ``` #### File: mobiletrans/mtimport/models.py ```python from django.db import models import datetime import logging logger = logging.getLogger(__name__) TRANSFER_STATUS_RUNNING=1 TRANSFER_STATUS_SUCCESS=2 TRANSFER_STATUS_FAILED=3 TRANSFER_STATUS_PARTIAL=4 TRANSFER_STATUS = ( (TRANSFER_STATUS_RUNNING, "Running"), (TRANSFER_STATUS_FAILED, "Failed"), (TRANSFER_STATUS_SUCCESS, "Complete"), (TRANSFER_STATUS_PARTIAL, "Partial Import"), ) TRANSFER_NOTE_STATUS_NOTE = "note" TRANSFER_NOTE_STATUS_ERROR = "error" TRANSFER_NOTE_STATUS_WARNING = "warning" TRANSFER_NOTE_STATUS = ( (TRANSFER_NOTE_STATUS_NOTE, "Note"), (TRANSFER_NOTE_STATUS_ERROR, "Error"), (TRANSFER_NOTE_STATUS_WARNING, "Warning"), ) class InputRecordManager(models.Manager): def make_note(self, input_record, note, type, exception=None): ir = InputNote(note=note, type=type) ir.input_record = input_record ir.exception = exception getattr(logger, {'note':'info', 'error':'error', 'warning':'warning'}.get(type, 'debug'))("Transfer Note %s" % vars(ir)) #print "Transfer Note", vars(ir) ir.save() def end_import(self, input_record, status=None): if status: input_record.status = status input_record.end = datetime.datetime.now() input_record.save() class InputRecord(models.Model): start = models.DateTimeField(auto_now_add=True) end = models.DateTimeField(blank=True, null=True) type = models.CharField(max_length=64, blank=True, null=True) exception = models.CharField(max_length=128, blank=True, null=True) status = models.IntegerField(choices=TRANSFER_STATUS, default=TRANSFER_STATUS_RUNNING) objects = InputRecordManager() def __unicode__(self): return "%s" % self.start def get_notes(self): return self.inputnote_set.all() def get_errors(self): return self.get_notes().filter(type=TRANSFER_NOTE_STATUS_ERROR) def get_num_errors(self): return self.get_errors().count() get_num_errors.short_description = "Errors" def get_warnings(self): return self.get_notes().filter(type=TRANSFER_NOTE_STATUS_WARNING) def get_num_warnings(self): return self.get_warnings().count() get_num_warnings.short_description = "Warnings" class InputNote(models.Model): input_record = models.ForeignKey(InputRecord) note = models.TextField(blank=True, null=True) exception = models.CharField(max_length=128, blank=True, null=True) created = models.DateTimeField(auto_now_add=True) type = models.CharField(choices=TRANSFER_NOTE_STATUS, max_length=24) def __unicode__(self): return "%s" % self.created ``` #### File: mobiletrans/mtlocation/fields.py ```python from django.db import models from south.modelsinspector import add_introspection_rules from django_extensions.db.fields import UUIDField as ExtUUIDField class UUIDField(ExtUUIDField): def __init__(self, verbose_name=None, name=None, auto=True, version=1, node=None, clock_seq=None, namespace=None, **kwargs): kwargs['max_length'] = 40 if auto: self.empty_strings_allowed = False kwargs['blank'] = True kwargs.setdefault('editable', False) self.auto = auto self.version = version if version == 1: self.node, self.clock_seq = node, clock_seq elif version == 3 or version == 5: self.namespace, self.name = namespace, name models.CharField.__init__(self, verbose_name, name, **kwargs) class SeparatedValuesField(models.TextField): __metaclass__ = models.SubfieldBase def __init__(self, *args, **kwargs): self.token = kwargs.pop('token', ',') super(SeparatedValuesField, self).__init__(*args, **kwargs) def to_python(self, value): if not value: return if isinstance(value, list): return value return value.split(self.token) def get_db_prep_value(self, value, connection, *args, **kwargs): if not value: return assert(isinstance(value, list) or isinstance(value, tuple)) return self.token.join([unicode(s) for s in value]) def value_to_string(self, obj): value = self._get_val_from_obj(obj) add_introspection_rules([], ["^mobiletrans\.mtlocation\.fields\.SeparatedValuesField"]) ```
{ "source": "joejcollins/BagbatchWebsite", "score": 3 }
#### File: BagbatchWebsite/web_app/main.py ```python import logging import sys import traceback import forms from models import Settings from flask import Flask, render_template from google.appengine.api import app_identity # pylint: disable=E0401 from google.appengine.api import mail # pylint: disable=E0401 from google.appengine.api import users import pdb # Initialize the application with CSRF app = Flask(__name__) # pylint: disable=invalid-name # Set the Flask debug to false so you can use GAE debug app.config.update(DEBUG=False) app.secret_key = Settings.get('SECRET_KEY') app.config['RECAPTCHA_USE_SSL'] = False app.config['RECAPTCHA_PUBLIC_KEY'] = Settings.get('RECAPTCHA_PUBLIC_KEY') app.config['RECAPTCHA_PRIVATE_KEY'] = Settings.get('RECAPTCHA_PRIVATE_KEY') app.config['RECAPTCHA_OPTIONS'] = {'theme': 'white'} @app.before_request def enable_local_error_handling(): ''' test of log ''' app.logger.addHandler(logging.StreamHandler()) app.logger.setLevel(logging.INFO) @app.route('/', methods=['GET', 'POST']) def form(): ''' Show the message form for the user to fill in ''' message_form = forms.MessageForm() if message_form.validate_on_submit(): send_mail(message_form.email.data, message_form.message.data) return render_template('submitted_form.html', title="Thanks", form=message_form) return render_template('form.html', title="Message", form=message_form) def send_mail(their_email, their_message): ''' Send an email message to me ''' message = mail.EmailMessage(sender=app_identity.get_application_id() + '@appspot.gserviceaccount.com>') message.subject = 'Message from Bagbatch Website' message.to = Settings.get('EMAIL') message.body = """From: {}\n\n<<BEGINS>>\n\n{}\n\n<<ENDS>>""".format(their_email, their_message) message.send() @app.errorhandler(500) def server_error(error): ''' Log any errors to the browser because you are too lazy to look at the console The Flask DEBUG setting must the set to false for this to work ''' exception_type, exception_value, trace_back = sys.exc_info() no_limit = None exception = ''.join(traceback.format_exception(exception_type, exception_value, trace_back, no_limit)) logging.exception('An error occurred during a request. ' + str(error)) return render_template('500.html', title=error, exception=exception) @app.route('/admin', methods=['GET']) def admin_page(): ''' Authentication required page ''' user = users.get_current_user() return render_template('admin.html', email=user.email()) ```
{ "source": "joejcollins/lieutenant-dean", "score": 3 }
#### File: data/models/application.py ```python from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, String, INTEGER Base = declarative_base() metadata = Base.metadata class Application(Base): __tablename__ = 'application' id = Column(INTEGER, primary_key=True) name = Column(String(255)) def __repr__(self): return '<Application %r>' % self.name ``` #### File: lieutenant-dean/info_module/text.py ```python def reverse_string(string_to_reverse): """ Do the string reversal. """ reversed_string = string_to_reverse[::-1] return reversed_string ``` #### File: lieutenant-dean/info_module/text_test.py ```python import info_module.text as text def test_method_is_present(): """ Confirm that the methods are present. """ assert "reverse_string" in dir(text) def test_reverse_text(): """ Confirm the text is reversed. """ string_to_reverse = 'qwerty' reversed_text = text.reverse_string(string_to_reverse) assert reversed_text == 'ytrewq' ``` #### File: lieutenant-dean/rest_api/flask_app.py ```python import flask import flasgger import flasgger.utils as swag_utils import rest_api.flask_app_apidocs as apidocs import rest_api.text as text api = flask.Flask(__name__) api.register_blueprint(text.text_api) swagger_template = { "swagger": "2.0", "info": { "title": "Celery Demo API", "description": "Demo of Flask and Celery in action.", "version": "0.0.1" }, "basePath": "/" } swagger = flasgger.Swagger(api, template=swagger_template) @api.route('/', methods=['GET']) @swag_utils.swag_from(apidocs.INDEX) def index(): """ Confirm that the flask app is running. """ greeting = { 'message': "Hello there", 'docs': '/apidocs/' } return flask.jsonify(greeting) ``` #### File: lieutenant-dean/rest_api/text.py ```python import flask import flasgger.utils as swag_utils import rest_api.text_apidocs as apidocs import info_module.text as info_text import task_queuing.tasks.text as text_tasks text_api = flask.Blueprint("text_api", __name__, url_prefix="/text/") def _reverse_fast(string_to_reverse): """ Provide a json response with the reversal. """ reversed_string = info_text.reverse_string(string_to_reverse) message = { 'original': string_to_reverse, 'reversed': reversed_string } return message @text_api.route('/reverse/fast/<string_to_reverse>', methods=['GET']) @swag_utils.swag_from(apidocs.REVERSE_FAST_GET) def reverse_fast_get(string_to_reverse): """ Provide a json response with the reversal. """ message = _reverse_fast(string_to_reverse) return flask.jsonify(message) @text_api.route('/reverse/fast', methods=['POST']) @swag_utils.swag_from(apidocs.REVERSE_FAST_POST) def reverse_fast_post(): """ Provide a json response with the reversal. """ string_to_reverse = flask.request.json.get("string_to_reverse") message = _reverse_fast(string_to_reverse) return flask.jsonify(message) @text_api.route('/reverse/slow/<string_to_reverse>', methods=['GET']) @swag_utils.swag_from(apidocs.REVERSE_SLOW_GET) def reverse_slow_get(string_to_reverse): """ Provide a json response with the reversal. """ result = text_tasks.slowly_reverse_string.delay( string_to_reverse=string_to_reverse ) result_dict = vars(result) # Filter the dictionary to send back. result_dict = { k: v for (k, v) in result_dict.items() if isinstance(v, (str, bool, int)) } return flask.jsonify(result_dict) ``` #### File: lieutenant-dean/task_queuing/consumers.py ```python from celery import bootsteps from kombu import Consumer import time from task_queuing.queues import my_queues class SubstitutionCypher(bootsteps.ConsumerStep): """Custom handling of substitution cypher""" def handle_message(self, body, message): print('Received message: {0!r}'.format(body)) message.ack() # so it doesn't get redelivered. def get_consumers(self, channel): print(f"Registering custom consumer: {__class__}") return [Consumer(channel, queues=my_queues, callbacks=[self.handle_message], accept=['json'])] ``` #### File: lieutenant-dean/task_queuing/task_logging.py ```python import logging from celery.signals import task_prerun, task_postrun # Attempt to set up logger as per the example at: # https://stackoverflow.com/questions/25281612/celery-log-each-task-run-to-its-own-file # I could not get the decorator `@task_prerun.connect(sender='slowly_reverse_string', weak=False)` to work so # the selection of which tasks to log is made with a conditional statement in the @task_prerun.connect. @task_prerun.connect def prepare_logging(sender=None, task_id=None, **kwargs): """Log each task to a separate file.""" # Get a logger based on the unique name of the task. logger = logging.getLogger(task_id) logger.propagate = False # Logging to the console. stream_handler = logging.StreamHandler() formatter = logging.Formatter('[%(asctime)s][%(levelname)s] %(message)s') stream_handler.setFormatter(formatter) stream_handler.setLevel(logging.INFO) # @task_prerun.connect(sender='slowly_reverse_string', weak=False) did not work for my but YMMV so # add the file log for some tasks based on the name of the task. if sender.__name__ == 'slowly_reverse_string': # Adding File Handle with file path. Filename is task_id task_handler = logging.FileHandler(f'../logs/{task_id}.log') task_handler.setLevel(logging.INFO) logger.addHandler(task_handler) logger.addHandler(stream_handler) @task_postrun.connect def close_logging(sender=None, task_id=None, **kwargs): """Close the task logger, even if it wasn't opened.""" logger = logging.getLogger(task_id) for handler in logger.handlers: handler.flush() handler.close() logger.handlers = [] ``` #### File: task_queuing/tasks/custom.py ```python import task_queuing.celery_app as app class Capitalize(app.queue_broker.Task): """Custom task without the decorator""" def run(self, text): capitalized = text.upper() return capitalized @app.queue_broker.task(base=Capitalize) def shit(x): print('shit') return "val" # app.queues.tasks.register(Capitalize) ```
{ "source": "JoeJimFlood/NFLPrediction2014", "score": 3 }
#### File: JoeJimFlood/NFLPrediction2014/matchup.py ```python import os import sys import pandas as pd import numpy as np from numpy.random import poisson, uniform from numpy import mean import time import math po = True teamsheetpath = sys.path[0] + '/teamcsvs/' compstat = {'TDF': 'TDA', 'TDA': 'TDF', #Dictionary to use to compare team stats with opponent stats 'FGF': 'FGA', 'FGA': 'FGF', 'SFF': 'SFA', 'SFA': 'SFF', 'PAT1%F': 'PAT1%A', 'PAT1%A': 'PAT1%F', 'PAT2%F': 'PAT2%A', 'PAT2%A': 'PAT2%F'} def get_opponent_stats(opponent): #Gets summaries of statistics for opponent each week opponent_stats = {} global teamsheetpath opp_stats = pd.DataFrame.from_csv(teamsheetpath + opponent + '.csv') for stat in opp_stats.columns: if stat in ['TDF', 'FGF', 'SFF', 'TDA', 'FGA', 'SFA']: opponent_stats.update({stat: opp_stats[stat].mean()}) try: opponent_stats.update({'PAT1%F': float(opp_stats['PAT1FS'].sum()) / opp_stats['PAT1FA'].sum()}) except ZeroDivisionError: opponent_stats.update({'PAT1%F': .99}) try: opponent_stats.update({'PAT2%F': float(opp_stats['PAT2FS'].sum()) / opp_stats['PAT2FA'].sum()}) except ZeroDivisionError: opponent_stats.update({'PAT2%F': .5}) try: opponent_stats.update({'PAT1%A': float(opp_stats['PAT1AS'].sum()) / opp_stats['PAT1AA'].sum()}) except ZeroDivisionError: opponent_stats.update({'PAT1%A': .99}) try: opponent_stats.update({'PAT2%A': float(opp_stats['PAT2AS'].sum()) / opp_stats['PAT2AA'].sum()}) except ZeroDivisionError: opponent_stats.update({'PAT2%A': .5}) return opponent_stats def get_residual_performance(team): #Get how each team has done compared to the average performance of their opponents global teamsheetpath score_df = pd.DataFrame.from_csv(teamsheetpath + team + '.csv') residual_stats = {} score_df['PAT1%F'] = np.nan score_df['PAT2%F'] = np.nan score_df['PAT1%A'] = np.nan score_df['PAT2%A'] = np.nan for week in score_df.index: try: score_df['PAT1%F'][week] = float(score_df['PAT1FS'][week]) / score_df['PAT1FA'][week] except ZeroDivisionError: score_df['PAT1%F'][week] = 0.99 #print ('For: ' + str(score_df['PAT1%F'][week])) try: score_df['PAT2%F'][week] = float(score_df['PAT2FS'][week]) / score_df['PAT2FA'][week] except ZeroDivisionError: score_df['PAT2%F'][week] = 0.5 try: score_df['PAT1%A'][week] = float(score_df['PAT1AS'][week]) / score_df['PAT1AA'][week] except ZeroDivisionError: score_df['PAT1%A'][week] = 0.99 #print ('Against: ' + str(score_df['PAT1%F'][week])) try: score_df['PAT2%A'][week] = float(score_df['PAT2AS'][week]) / score_df['PAT2AA'][week] except ZeroDivisionError: score_df['PAT2%A'][week] = 0.5 opponent_stats = get_opponent_stats(score_df['OPP'][week]) for stat in opponent_stats: if week == 1: score_df['OPP_' + stat] = np.nan score_df['OPP_' + stat][week] = opponent_stats[stat] for stat in opponent_stats: score_df['R_' + stat] = score_df[stat] - score_df['OPP_' + compstat[stat]] if stat in ['TDF', 'FGF', 'SFF', 'TDA', 'FGA', 'SFA']: residual_stats.update({stat: score_df['R_' + stat].mean()}) elif stat == 'PAT1%F': residual_stats.update({stat: (score_df['R_PAT1%F'].multiply(score_df['PAT1FA'])).sum() / score_df['PAT1FA'].sum()}) elif stat == 'PAT2%F': residual_stats.update({stat: (score_df['R_PAT2%F'].multiply(score_df['PAT2FA'])).sum() / score_df['PAT2FA'].sum()}) elif stat == 'PAT1%A': residual_stats.update({stat: (score_df['R_PAT1%A'].multiply(score_df['PAT1AA'])).sum() / score_df['PAT1AA'].sum()}) elif stat == 'PAT2%A': residual_stats.update({stat: (score_df['R_PAT2%A'].multiply(score_df['PAT2AA'])).sum() / score_df['PAT2AA'].sum()}) try: residual_stats.update({'GOFOR2': float(score_df['PAT2FA'].sum()) / score_df['TDF'].sum()}) except ZeroDivisionError: residual_stats.update({'GOFOR2': .1}) #print team #print residual_stats return residual_stats def get_score(expected_scores): #Get the score for a team based on expected scores score = 0 if expected_scores['TD'] > 0: tds = poisson(expected_scores['TD']) else: tds = poisson(0.01) score = score + 6 * tds if expected_scores['FG'] > 0: fgs = poisson(expected_scores['FG']) else: fgs = poisson(0.01) score = score + 3 * fgs if expected_scores['S'] > 0: sfs = poisson(expected_scores['S']) else: sfs = poisson(0.01) score = score + 2 * sfs for td in range(tds): go_for_2_determinant = uniform(0, 1) if go_for_2_determinant <= expected_scores['GOFOR2']: #Going for 2 successful_pat_determinant = uniform(0, 1) if successful_pat_determinant <= expected_scores['PAT2PROB']: score = score + 2 else: continue else: #Going for 1 #print(expected_scores['PAT1PROB']) successful_pat_determinant = uniform(0, 1) if successful_pat_determinant <= expected_scores['PAT1PROB']: score = score + 1 else: continue return score def game(team_1, team_2, expected_scores_1, expected_scores_2, playoff): #Get two scores and determine a winner score_1 = get_score(expected_scores_1) score_2 = get_score(expected_scores_2) if score_1 > score_2: win_1 = 1 win_2 = 0 draw_1 = 0 draw_2 = 0 elif score_2 > score_1: win_1 = 0 win_2 = 1 draw_1 = 0 draw_2 = 0 else: if playoff: win_1 = 0.5 win_2 = 0.5 draw_1 = 0 draw_2 = 0 else: win_1 = 0 win_2 = 0 draw_1 = 1 draw_2 = 1 summary = {team_1: [win_1, draw_1, score_1]} summary.update({team_2: [win_2, draw_2, score_2]}) return summary def get_expected_scores(team_1_stats, team_2_stats, team_1_df, team_2_df): #Get the expected scores for a matchup based on the previous teams' performances expected_scores = {} for stat in team_1_stats: expected_scores.update({'TD': mean([team_1_stats['TDF'] + team_2_df['TDA'].mean(), team_2_stats['TDA'] + team_1_df['TDF'].mean()])}) expected_scores.update({'FG': mean([team_1_stats['FGF'] + team_2_df['FGA'].mean(), team_2_stats['FGA'] + team_1_df['FGF'].mean()])}) expected_scores.update({'S': mean([team_1_stats['SFF'] + team_2_df['SFA'].mean(), team_2_stats['SFA'] + team_1_df['SFF'].mean()])}) #print mean([team_1_stats['PAT1%F'] + team_2_df['PAT1AS'].astype('float').sum() / team_2_df['PAT1AA'].sum(), # team_2_stats['PAT1%A'] + team_1_df['PAT1FS'].astype('float').sum() / team_1_df['PAT1FA'].sum()]) expected_scores.update({'GOFOR2': team_1_stats['GOFOR2']}) pat1prob = mean([team_1_stats['PAT1%F'] + team_2_df['PAT1AS'].astype('float').sum() / team_2_df['PAT1AA'].sum(), team_2_stats['PAT1%A'] + team_1_df['PAT1FS'].astype('float').sum() / team_1_df['PAT1FA'].sum()]) if not math.isnan(pat1prob): expected_scores.update({'PAT1PROB': pat1prob}) else: expected_scores.update({'PAT1PROB': 0.99}) #print(expected_scores['PAT1PROB']) pat2prob = mean([team_1_stats['PAT2%F'] + team_2_df['PAT2AS'].astype('float').sum() / team_2_df['PAT2AA'].sum(), team_2_stats['PAT2%A'] + team_1_df['PAT2FS'].astype('float').sum() / team_1_df['PAT2FA'].sum()]) if not math.isnan(pat2prob): expected_scores.update({'PAT2PROB': pat2prob}) else: expected_scores.update({'PAT2PROB': 0.5}) #print(expected_scores) return expected_scores def matchup(team_1, team_2): ts = time.time() team_1_season = pd.DataFrame.from_csv(teamsheetpath + team_1 + '.csv') team_2_season = pd.DataFrame.from_csv(teamsheetpath + team_2 + '.csv') stats_1 = get_residual_performance(team_1) stats_2 = get_residual_performance(team_2) expected_scores_1 = get_expected_scores(stats_1, stats_2, team_1_season, team_2_season) expected_scores_2 = get_expected_scores(stats_2, stats_1, team_2_season, team_1_season) team_1_wins = 0 team_2_wins = 0 team_1_draws = 0 team_2_draws = 0 team_1_scores = [] team_2_scores = [] i = 0 error = 1 while error > 0.000001 or i < 5000000: #Run until convergence after 5 million iterations summary = game(team_1, team_2, expected_scores_1, expected_scores_2, po) team_1_prev_wins = team_1_wins team_1_wins += summary[team_1][0] team_2_wins += summary[team_2][0] team_1_draws += summary[team_1][1] team_2_draws += summary[team_2][1] team_1_scores.append(summary[team_1][2]) team_2_scores.append(summary[team_2][2]) team_1_prob = float(team_1_wins) / len(team_1_scores) team_2_prob = float(team_2_wins) / len(team_2_scores) if i > 0: team_1_prev_prob = float(team_1_prev_wins) / i error = team_1_prob - team_1_prev_prob i = i + 1 if i == 5000000: print('Probability converged within 5 million iterations') else: print('Probability converged after ' + str(i) + ' iterations') games = pd.DataFrame.from_items([(team_1, team_1_scores), (team_2, team_2_scores)]) summaries = games.describe(percentiles = [0.025, 0.1, 0.25, 0.5, 0.75, 0.9, 0.975]) output = {'ProbWin': {team_1: team_1_prob, team_2: team_2_prob}, 'Scores': summaries} print(team_1 + '/' + team_2 + ' score distributions computed in ' + str(round(time.time() - ts, 1)) + ' seconds') return output ``` #### File: JoeJimFlood/NFLPrediction2014/reorder_index.py ```python import pandas as pd import sys import os def reorder_index(team_csv): location = sys.path[0] + '\\teamcsvs' team_df = pd.DataFrame.from_csv(location + '\\' + team_csv) cols_df = pd.DataFrame.from_csv(location + '\\ARI.csv') cols = cols_df.columns team_df = team_df[cols] team_df.to_csv(location + '\\' + team_csv) files = os.listdir(sys.path[0] + '\\teamcsvs') for f in files: reorder_index(f) ```
{ "source": "JoeJimFlood/RugbyPredictifier", "score": 3 }
#### File: 2017SuperRugby/Validation/travelWeightValidation.py ```python import pandas as pd import numpy as np import os import sys def bin_scores(score, bins): if score <= bins[0]: return [1, 0, 0, 0] elif score <= bins[1]: return [0, 1, 0, 0] elif score <= bins[2]: return [0, 0, 1, 0] else: return [0, 0, 0, 1] base_path = os.path.split(__file__)[0] source_path = os.path.split(base_path)[0] sys.path.append(base_path) validation_file = os.path.join(base_path, 'ValidationData.xlsx') import matchup as m0 import matchup_w_distance as m1 rounds = list(range(8, 18)) + ['QF', 'SF', 'F'] #rounds = [17, 'QF', 'SF', 'F'] outdata0 = pd.DataFrame(columns = ['ROUND', 'TEAM', 'OPP', 'VENUE', 'SCORE', 'EXPECTED', 'Q1', 'Q2', 'Q3', 'INQ1', 'INQ2', 'INQ3', 'INQ4']) outdata1 = outdata0.copy() counter = 0 for round in rounds: print('ROUND {}'.format(round)) validation_data = pd.read_excel(validation_file, 'Round{}'.format(round)) for f in os.listdir(os.path.join(source_path, 'teamcsvs')): data = pd.read_csv(os.path.join(source_path, 'teamcsvs', f)) data['ROUND'] = data['ROUND'].astype(str) try: data.set_index('ROUND').loc[:str(round)].iloc[:-1].to_csv(os.path.join(base_path, 'teamcsvs', f)) except KeyError: try: last_round = round - 1 except TypeError: guide = {'QF': 17, 'SF': 'QF', 'F': 'SF'} last_round = guide[round] if last_round in data.index: data.set_index('ROUND').loc[:str(last_round)].to_csv(os.path.join(base_path, 'teamcsvs', f)) else: pass for matchupno in validation_data.index: (home_team, away_team, venue, hscore, ascore) = validation_data.loc[matchupno] results0 = m0.matchup(home_team, away_team) results1 = m1.matchup(home_team, away_team, venue) hexpected0 = results0['Scores'][home_team]['mean'] aexpected0 = results0['Scores'][away_team]['mean'] hexpected1 = results1['Scores'][home_team]['mean'] aexpected1 = results1['Scores'][away_team]['mean'] hq0 = list(results0['Scores'][home_team][['25%', '50%', '75%']]) aq0 = list(results0['Scores'][away_team][['25%', '50%', '75%']]) hq1 = list(results1['Scores'][home_team][['25%', '50%', '75%']]) aq1 = list(results1['Scores'][away_team][['25%', '50%', '75%']]) hb0 = bin_scores(hscore, hq0) ab0 = bin_scores(ascore, hq0) hb1 = bin_scores(hscore, hq1) ab1 = bin_scores(ascore, hq1) outdata0.loc[counter] = [round, home_team, away_team, venue, hscore, hexpected0] + hq0 + hb0 outdata1.loc[counter] = [round, home_team, away_team, venue, hscore, hexpected1] + hq1 + hb1 counter += 1 outdata0.loc[counter] = [round, away_team, home_team, venue, ascore, aexpected0] + aq0 + ab0 outdata1.loc[counter] = [round, away_team, home_team, venue, ascore, aexpected1] + aq1 + ab1 counter += 1 pd.Panel({'NoWeights': outdata0, 'Weights': outdata1}).to_excel(os.path.join(base_path, 'ValidationResultsRaw.xlsx')) print(outdata0) print(outdata1) ``` #### File: 2018SuperRugby/Validation/Validation.py ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt import statsmodels.api as sm from scipy.stats import pearsonr as correl from scipy.special import erfinv import os import sys def probit(p): ''' Probit function (inverse of standard normal cummulative distribution function) ''' return np.sqrt(2)*erfinv(2*p-1) #Set paths and read in data base_path = os.path.split(__file__)[0] sys.path.append(base_path) from validation_util import * infile = os.path.join(base_path, 'ValidationData.csv') data = pd.read_csv(infile) #Define regression data as data from after international break (Round 17 onwards) and perform regression analysis reg_data = data.query('Round >= 17') reg_data['Constant'] = np.ones_like(reg_data.index) reg = sm.OLS(reg_data['Actual Score'], reg_data[['Expected Score', 'Constant']]) res = reg.fit() #Write regression results to file regression_file = os.path.join(base_path, 'RegressionResults.txt') f = open(regression_file, 'w') f.write(str(res.summary())) f.close() #Obtain color gradient for plotting color_gradient = color_interpolate('#ff0000', '#0000ff', 19) #Create figure plt.figure(figsize = (7.5, 7.5)) #For each round plot actual vs expected scores with the size and color based on the round number for r in range(2, 21): label = 'Round %s'%(r) if r == 20: label = 'Finals' round_data = data.query('Round == @r') plt.scatter(round_data['Expected Score'], round_data['Actual Score'], s = r, color = color_gradient[r-2], alpha = 0.8, label = label) #Plot regression line against the data (xmin, xmax) = (reg_data['Expected Score'].min(), reg_data['Expected Score'].max()) (ymin, ymax) = (res.params[0]*xmin + res.params[1], res.params[0]*xmax + res.params[1]) plt.plot([xmin, xmax], [ymin, ymax], 'b--', label = 'Round 17+') #Format plot plt.xlabel('Expected Score') plt.ylabel('Actual Score') plt.xticks(range(-10, 90, 10)) plt.yticks(range(0, 90, 10)) plt.axis('equal') plt.legend(loc = 'upper right') title_lines = ['Rugby Predictifier Validation: 2018 Super Rugby Season', 'Actual Scores vs. Expected Scores (Average of 5,000,000 Simulations)', 'Round 17+: Actual = {0}\u00d7Expected - {1} + \u03b5, r\u00b2 = {2}'.format(round(res.params[0], 2), abs(round(res.params[1], 2)), round(res.rsquared_adj, 3))] plt.title('\n'.join(title_lines)) ax = plt.gca() ax.set_axisbelow(True) plt.grid(True) #Write plot to file scatterplot_file = os.path.join(base_path, 'ScoreScatterplot.png') plt.savefig(scatterplot_file) plt.clf() plt.close() #Compute percentage of actual scores in forecast quartiles #Scores on the boundary go half to lower and half to upper N_reg = len(reg_data.index) q1_l = (reg_data['Actual Score'] <= reg_data['25%']).sum() / N_reg q2_l = ((reg_data['Actual Score'] <= reg_data['50%']) * (reg_data['Actual Score'] > reg_data['25%'])).sum() / N_reg q3_l = ((reg_data['Actual Score'] <= reg_data['75%']) * (reg_data['Actual Score'] > reg_data['50%'])).sum() / N_reg q4_l = (reg_data['Actual Score'] > reg_data['75%']).sum() / N_reg q1_u = (reg_data['Actual Score'] < reg_data['25%']).sum() / N_reg q2_u = ((reg_data['Actual Score'] < reg_data['50%']) * (reg_data['Actual Score'] >= reg_data['25%'])).sum() / N_reg q3_u = ((reg_data['Actual Score'] < reg_data['75%']) * (reg_data['Actual Score'] >= reg_data['50%'])).sum() / N_reg q4_u = (reg_data['Actual Score'] >= reg_data['75%']).sum() / N_reg q1 = 0.5*(q1_l+q1_u) q2 = 0.5*(q2_l+q2_u) q3 = 0.5*(q3_l+q3_u) q4= 0.5*(q4_l+q4_u) p = np.array([q1, q2, q3, q4]) n = np.array(4*[N_reg]) se = np.sqrt(p*(1-p)/n) #Create bar plot plt.figure(figsize = (7.5, 2.5)) plt.plot([0, 1], [0.25, 0.25], 'k--') plt.bar([0, 0.25, 0.5, 0.75], p, 4*[0.25], yerr = probit(0.975)*se, error_kw = {'capsize': 7}, align = 'edge', facecolor = '#00d3ca', edgecolor = 'k') plt.xticks([0, 0.25, 0.5, 0.75, 1], ['', '1st Quartile', '2nd Quartile', '3rd Quartile', '']) plt.yticks(np.arange(0, 0.6, 0.1), ['0%', '10%', '20%', '30%', '40%', '50%']) plt.xlim(0, 1) plt.title('Round 17+ Score Distribution Validation') plt.ylabel('% of Scores within\nForecast Quartiles') #Write plot to file barplot_file = os.path.join(base_path, 'QuartileBarPlot.png') plt.savefig(barplot_file) plt.clf() plt.close() print('Done') ```
{ "source": "Joejiong/mindspore", "score": 3 }
#### File: nn/metrics/metric.py ```python from abc import ABCMeta, abstractmethod import numpy as np from mindspore.common.tensor import Tensor class Metric(metaclass=ABCMeta): """ Base class of metric. Note: For examples of subclasses, please refer to the definition of class `MAE`, 'Recall' etc. """ def __init__(self): pass def _convert_data(self, data): """ Convert data type to numpy array. Args: data (Object): Input data. Returns: Ndarray, data with `np.ndarray` type. """ if isinstance(data, Tensor): data = data.asnumpy() elif isinstance(data, list): data = np.array(data) elif isinstance(data, np.ndarray): pass else: raise TypeError('Input data type must be tensor, list or numpy.ndarray') return data def _check_onehot_data(self, data): """ Whether input data are one-hot encoding. Args: data (numpy.array): Input data. Returns: bool, return trun, if input data are one-hot encoding. """ if data.ndim > 1 and np.equal(data ** 2, data).all(): shp = (data.shape[0],) + data.shape[2:] if np.equal(np.ones(shp), data.sum(axis=1)).all(): return True return False def __call__(self, *inputs): """ Evaluate input data once. Args: inputs (tuple): The first item is predict array, the second item is target array. Returns: Float, compute result. """ self.clear() self.update(*inputs) return self.eval() @abstractmethod def clear(self): """ An interface describes the behavior of clearing the internal evaluation result. Note: All subclasses should override this interface. """ raise NotImplementedError('Must define clear function to use this base class') @abstractmethod def eval(self): """ An interface describes the behavior of computing the evaluation result. Note: All subclasses should override this interface. """ raise NotImplementedError('Must define eval function to use this base class') @abstractmethod def update(self, *inputs): """ An interface describes the behavior of updating the internal evaluation result. Note: All subclasses should override this interface. Args: inputs: A variable-length input argument list. """ raise NotImplementedError('Must define update function to use this base class') ``` #### File: infer/variational/svi.py ```python import mindspore.common.dtype as mstype from mindspore.common.tensor import Tensor from ....wrap.cell_wrapper import TrainOneStepCell class SVI: r""" Stochastic Variational Inference(SVI). Variational inference casts the inference problem as an optimization. Some distributions over the hidden variables that is indexed by a set of free parameters, and then optimize the parameters to make it closest to the posterior of interest. see more details in `Variational Inference: A Review for Statisticians<https://arxiv.org/abs/1601.00670>`_. Args: net_with_loss(Cell): Cell with loss function. optimizer (Cell): Optimizer for updating the weights. """ def __init__(self, net_with_loss, optimizer): self.net_with_loss = net_with_loss self.optimizer = optimizer self._loss = 0.0 def run(self, train_dataset, epochs=10): """ Optimize the parameters by training the probability network, and return the trained network. Args: epochs (int): Total number of iterations on the data. Default: 10. train_dataset (Dataset): A training dataset iterator. Outputs: Cell, the trained probability network. """ train_net = TrainOneStepCell(self.net_with_loss, self.optimizer) train_net.set_train() for _ in range(1, epochs+1): train_loss = 0 dataset_size = 0 for data in train_dataset.create_dict_iterator(): x = Tensor(data['image'], dtype=mstype.float32) y = Tensor(data['label'], dtype=mstype.int32) dataset_size += len(x) loss = train_net(x, y).asnumpy() train_loss += loss self._loss = train_loss / dataset_size model = self.net_with_loss.backbone_network return model def get_train_loss(self): """ Returns: numpy.dtype, the loss after training. """ return self._loss ``` #### File: composite/multitype_ops/getitem_impl.py ```python from . import _compile_utils as compile_utils from .. import base from ... import functional as F getitem = base.MultitypeFuncGraph('getitem') """ getitem is a metafuncgraph object which will get item from an object according to input type using ".register" decorator. """ class _TupleSlice(base.TupleSlice_): """ Slices a tuple. Inputs: data (tuple): A tuple to be sliced. s (slice): The index to slice tuple data. Outputs: Tuple, consists of some elements of data. """ def __init__(self, name): base.TupleSlice_.__init__(self, name) def __call__(self, *args): pass _tuple_slice = _TupleSlice('tuple_slice') """_tuple_slice is an metafuncgraph object which will slice a tuple.""" class _TupleGetItemTensor(base.TupleGetItemTensor_): """ Getting item of tuple by tensor index. Inputs: data (tuple): A tuple of items. index (Tensor): The index in tensor. Outputs: Type, is the same as the element type of data. """ def __init__(self, name): base.TupleGetItemTensor_.__init__(self, name) def __call__(self, *args): pass _tuple_get_item_tensor = _TupleGetItemTensor('tuple_get_item_tensor') """_tuple_get_item_tensor is an metafuncgraph object which will select indexed item.""" @getitem.register("Tuple", "Number") def _tuple_getitem_by_number(data, number_index): """ Getting item of tuple by number index. Inputs: data (tuple): A tuple to be sliced. number_index (Number): Index in scalar. Outputs: Type, is the same as the element type of data. """ return F.tuple_getitem(data, number_index) @getitem.register("Tuple", "Slice") def _tuple_getitem_by_slice(data, slice_index): """ Getting item of tuple by slice index. Inputs: data (tuple): data slice_index (Slice): Index in slice. Outputs: Tuple, element type is the same as the element type of data. """ return _tuple_slice(data, slice_index) @getitem.register("Tuple", "Tensor") def _tuple_getitem_by_tensor(data, tensor_index): """ Getting item out of tuple by tensor index. Inputs: data (tuple): A tuple of items to index. tensor_index (Tensor): Index to select item. Outputs: Type, is the same as the element type of data. """ return _tuple_get_item_tensor(data, tensor_index) @getitem.register("List", "Number") def _list_getitem_by_number(data, number_index): """ Getting item of list by number index. Inputs: data (list): data in list. number_index (Number): Index in scalar. Outputs: Type is the same as the element type of data. """ return F.list_getitem(data, number_index) @getitem.register("Dictionary", "String") def _dict_getitem_by_key(data, key): """ Getting item of dictionary by key which is a string. Inputs: data (Dictionary): data key (str): Key of the data. Outputs: Type, is as same as the element type of data. """ return F.dict_getitem(data, key) @getitem.register("Tensor", "Number") def _tensor_getitem_by_number(data, number_index): """ Getting item of tensor by number index. Inputs: data (Tensor): A tensor. number_index (Number): Index in scalar. Outputs: Tensor, element type is as same as the element type of data. """ return compile_utils.tensor_index_by_number(data, number_index) @getitem.register("Tensor", "None") def _tensor_getitem_by_none(data, index): """ For none indexing , expand data with one dim. Inputs: data (Tensor): A tensor. index (None): None. Outputs: Tensor, element type is as same as the element type of data. """ return F.expand_dims(data, 0) @getitem.register("Tensor", "Slice") def _tensor_getitem_by_slice(data, slice_index): """ Getting item of tensor by slice. Inputs: data (Tensor): A tensor. slice_index (Slice): Index in slice. Outputs: Tensor, element type is the same as the element type of data. """ return compile_utils.tensor_index_by_slice(data, slice_index) @getitem.register("Tensor", "Tensor") def _tensor_getitem_by_tensor(data, tensor_index): """ Getting item of tensor by tensor indice. Inputs: data (Tensor): A tensor. tensor_index (Tensor): An index expressed by tensor. Outputs: Tensor, element type is the same as the element type of data. """ return compile_utils.tensor_index_by_tensor(data, tensor_index) @getitem.register("Tensor", "Tuple") def _tensor_getitem_by_tuple(data, tuple_index): """ Getting item of tensor by tuple. Inputs: data (Tensor): A tensor. tuple_index (tuple): Index in tuple. Outputs: Tensor, element type is the same as the element type of data. """ return compile_utils.tensor_index_by_tuple(data, tuple_index) @getitem.register("Tensor", "Ellipsis") def _tensor_getitem_by_ellipsis(data, ellipsis_index): """ Getting item of tensor by Ellipsis. Inputs: data (Tensor): A tensor. ellipsis (Ellipsis): A Ellipsis object. Outputs: Tensor, same as data. """ return data ``` #### File: ops/operations/inner_ops.py ```python import numbers from ..._checkparam import Validator as validator from ..._checkparam import Rel from ...common.dtype import tensor, dtype_to_pytype from ..primitive import prim_attr_register, PrimitiveWithInfer class ScalarCast(PrimitiveWithInfer): """ Cast the input scalar to another type. Inputs: - **input_x** (scalar) - The input scalar. Only constant value is allowed. - **input_y** (mindspore.dtype) - The type should cast to be. Only constant value is allowed. Outputs: Scalar. The type is the same as the python type corresponding to `input_y`. Examples: >>> scalar_cast = P.ScalarCast() >>> output = scalar_cast(255.0, mindspore.int32) """ @prim_attr_register def __init__(self): pass def __infer__(self, x, t): validator.check_integer('x shape', len(x['shape']), 0, Rel.EQ, self.name) value, to = x['value'], t['value'] if value is not None: validator.check_value_type("value", value, [numbers.Number, bool], self.name) if isinstance(to, type(tensor)): to = to.element_type() np_type = dtype_to_pytype(to) value = np_type(value) out = {'shape': x['shape'], 'dtype': t['value'], 'value': value} return out ``` #### File: bert_thor/src/thor_layer.py ```python import numpy as np import mindspore.common.dtype as mstype from mindspore._checkparam import check_bool, check_int_positive from mindspore.common.initializer import TruncatedNormal, initializer from mindspore.common.parameter import Parameter from mindspore.common.tensor import Tensor from mindspore.nn.cell import Cell from mindspore.nn.layer.activation import get_activation from mindspore.ops import operations as P class Embedding_Thor(Cell): """ A embeddings lookup table with a fixed dictionary and size. Args: vocab_size (int): Size of the dictionary of embeddings. embedding_size (int): The size of each embedding vector. embedding_shape (list): [batch_size, seq_length, embedding_size], the shape of each embedding vector. use_one_hot_embeddings (bool): Specifies whether to use one hot encoding form. Default: False. initializer_range (float): Initialization value of TruncatedNormal. Default: 0.02. """ def __init__(self, vocab_size, embedding_size, embedding_shape, use_one_hot_embeddings=False, initializer_range=0.02, name='embedding_table', batch_size=12, damping=0.03, loss_scale=1, frequency=100, ): super(Embedding_Thor, self).__init__() self.vocab_size = vocab_size self.use_one_hot_embeddings = use_one_hot_embeddings self.embedding_table = Parameter(initializer (TruncatedNormal(initializer_range), [vocab_size, embedding_size]), name=name) self.thor = True self.expand = P.ExpandDims() self.shape_flat = (-1,) self.gather = P.GatherV2() self.one_hot = P.OneHot() self.on_value = Tensor(1.0, mstype.float32) self.off_value = Tensor(0.0, mstype.float32) self.array_mul = P.MatMul() self.reshape = P.Reshape() self.em_shape = tuple(embedding_shape) self.shape = P.Shape() self.loss_scale = Tensor(1 / loss_scale, mstype.float16) self.matrix_A_inv = Parameter(Tensor(np.zeros([vocab_size]).astype(np.float16)), name='matrix_A_inv', requires_grad=False) self.matrix_G_inv = Parameter(Tensor(np.zeros([embedding_size, embedding_size]).astype(np.float16)), name="matrix_G_inv", requires_grad=False) self.fake_G = Tensor(np.zeros([embedding_size, embedding_size]).astype(np.float16)) self.dampingA = Tensor(np.ones([vocab_size]).astype(np.float32)) self.dampingG = Tensor(np.identity(embedding_size), mstype.float32) self.cov_step = Parameter(initializer(0, [1], mstype.int32), name="cov_step", requires_grad=False) self.freq = Tensor(frequency, mstype.int32) self.axis = 0 self.damping = damping self.gather = P.GatherV2() self.sqrt = P.Sqrt() self.mul = P.Mul() self.cast = P.Cast() self.cube_matmul = P.CusMatMulCube(transpose_a=True) self.vector_matmul = P.CusBatchMatMul() self.cholesky = P.CusCholeskyTrsm() self.matrix_combine = P.CusMatrixCombine() self.reduce_sum = P.ReduceSum(keep_dims=False) self.inv = P.Inv() self.getG = P.InsertGradientOf(self.save_gradient) self.batch_size = batch_size def save_gradient(self, dout): """save_gradient""" bs = self.batch_size bs = self.cast(bs, mstype.float32) out = dout dout = self.mul(dout, self.loss_scale) dout = self.mul(dout, bs) shape = self.shape(dout) normalizer = self.cast(shape[0], mstype.float32) matrix_G = self.cube_matmul(dout, dout) matrix_G = self.mul(matrix_G, 1.0 / normalizer) damping_step = self.gather(self.damping, self.cov_step, 0) damping_step = self.cast(damping_step, mstype.float32) self.cov_step = self.cov_step + self.freq damping = self.sqrt(damping_step) dampingG = self.cast(self.dampingG, mstype.float32) matrix_G = matrix_G + damping * dampingG matrix_G_inv = self.cholesky(matrix_G) matrix_G_inv = self.vector_matmul(matrix_G_inv, matrix_G_inv) matrix_G_inv = self.matrix_combine(matrix_G_inv) matrix_G_inv = self.cast(matrix_G_inv, mstype.float16) self.matrix_G_inv = matrix_G_inv return out def construct(self, input_ids): """construct of Embedding_Thor""" flat_ids = self.reshape(input_ids, self.shape_flat) if self.use_one_hot_embeddings: one_hot_ids = self.one_hot(flat_ids, self.vocab_size, self.on_value, self.off_value) output_for_reshape = self.array_mul(one_hot_ids, self.embedding_table) else: if self.thor: one_hot_ids = self.one_hot(flat_ids, self.vocab_size, self.on_value, self.off_value) matrix_A = self.reduce_sum(one_hot_ids, 0) normalizer = self.batch_size normalizer = self.cast(normalizer, mstype.float32) matrix_A = self.mul(matrix_A, 1.0 / normalizer) damping_step = self.gather(self.damping, self.cov_step, self.axis) damping_step = self.cast(damping_step, mstype.float32) damping = self.sqrt(damping_step) dampingA = self.cast(self.dampingA, mstype.float32) matrix_A = matrix_A + damping * dampingA matrix_A_inv = self.inv(matrix_A) matrix_A_inv = self.cast(matrix_A_inv, mstype.float16) self.matrix_A_inv = matrix_A_inv self.matrix_G_inv = self.fake_G output_for_reshape = self.gather(self.embedding_table, flat_ids, 0) output_for_reshape = self.getG(output_for_reshape) else: output_for_reshape = self.gather(self.embedding_table, flat_ids, 0) output = self.reshape(output_for_reshape, self.em_shape) return output, self.embedding_table class Dense_Thor(Cell): """Dense_Thor""" def __init__(self, in_channels, out_channels, weight_init='normal', bias_init='zeros', damping=0.03, loss_scale=1, frequency=100, has_bias=False, activation=None, batch_size=12): super(Dense_Thor, self).__init__() self.in_channels = check_int_positive(in_channels) self.out_channels = check_int_positive(out_channels) self.has_bias = check_bool(has_bias) self.thor = True if isinstance(weight_init, Tensor): if weight_init.dim() != 2 or weight_init.shape()[0] != out_channels or \ weight_init.shape()[1] != in_channels: raise ValueError("weight_init shape error") self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight") if self.has_bias: if isinstance(bias_init, Tensor): if bias_init.dim() != 1 or bias_init.shape()[0] != out_channels: raise ValueError("bias_init shape error") self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias") self.matmul = P.MatMul(transpose_b=True) self.bias_add = P.BiasAdd() self.activation = get_activation(activation) self.activation_flag = self.activation is not None self.matrix_A_inv = Parameter(Tensor(np.zeros([in_channels, in_channels]).astype(np.float16)), name='matrix_A_inv', requires_grad=False) self.matrix_G_inv = Parameter(Tensor(np.zeros([out_channels, out_channels]).astype(np.float16)), name="matrix_G_inv", requires_grad=False) self.fake_G = Tensor(np.zeros([out_channels, out_channels]).astype(np.float16)) self.matmul = P.MatMul(transpose_b=True) self.cube_matmul = P.CusMatMulCube(transpose_a=True) self.matrix_combine = P.CusMatrixCombine() self.cholesky = P.CusCholeskyTrsm() self.shape = P.Shape() self.reshape = P.Reshape() self.transpose = P.Transpose() self.cov_step = Parameter(initializer(0, [1], mstype.int32), name="cov_step", requires_grad=False) self.mul = P.Mul() self.cast = P.Cast() self.damping = damping self.loss_scale = Tensor(1 / loss_scale, mstype.float16) self.vector_matmul = P.CusBatchMatMul() self.gather = P.GatherV2() self.assignadd = P.AssignAdd() self.freq = Tensor(frequency, mstype.int32) self.axis = 0 self.abs = P.Abs() self.reduce_max = P.ReduceMax(keep_dims=False) self.log = P.Log() self.exp = P.Exp() self.dampingA = Tensor(np.identity(in_channels), mstype.float32) self.dampingG = Tensor(np.identity(out_channels), mstype.float32) self.sqrt = P.Sqrt() self.getG = P.InsertGradientOf(self.save_gradient) self.batch_size = batch_size def save_gradient(self, dout): """save_gradient""" bs = self.cast(self.batch_size, mstype.float32) out = dout dout = self.mul(dout, self.loss_scale) dout = self.mul(dout, bs) shape = self.shape(dout) normalizer = self.cast(shape[0], mstype.float32) matrix_G = self.cube_matmul(dout, dout) matrix_G = self.mul(matrix_G, 1.0 / normalizer) damping_step = self.gather(self.damping, self.cov_step, 0) damping_step = self.cast(damping_step, mstype.float32) self.cov_step = self.cov_step + self.freq damping = self.sqrt(damping_step) dampingG = self.cast(self.dampingG, mstype.float32) matrix_G = matrix_G + damping * dampingG matrix_G_inv = self.cholesky(matrix_G) matrix_G_inv = self.vector_matmul(matrix_G_inv, matrix_G_inv) matrix_G_inv = self.matrix_combine(matrix_G_inv) matrix_G_inv = self.cast(matrix_G_inv, mstype.float16) self.matrix_G_inv = matrix_G_inv return out def construct(self, x): """construct""" if self.thor: inputs = self.cube_matmul(x, x) shape = self.shape(x) normalizer = self.cast(shape[0], mstype.float32) matrix_A = self.mul(inputs, 1.0 / normalizer) damping_step = self.gather(self.damping, self.cov_step, self.axis) damping_step = self.cast(damping_step, mstype.float32) damping = self.sqrt(damping_step) dampingA = self.cast(self.dampingA, mstype.float32) matrix_A = matrix_A + damping * dampingA matrix_A_inv = self.cholesky(matrix_A) matrix_A_inv = self.vector_matmul(matrix_A_inv, matrix_A_inv) matrix_A_inv = self.matrix_combine(matrix_A_inv) matrix_A_inv = self.cast(matrix_A_inv, mstype.float16) self.matrix_A_inv = matrix_A_inv self.matrix_G_inv = self.fake_G output = self.matmul(x, self.weight) output = self.getG(output) else: output = self.matmul(x, self.weight) if self.has_bias: output = self.bias_add(output, self.bias) if self.activation_flag: return self.activation(output) return output def extend_repr(self): """extend_repr""" str_info = 'in_channels={}, out_channels={}, weight={}, has_bias={}' \ .format(self.in_channels, self.out_channels, self.weight, self.has_bias) if self.has_bias: str_info = str_info + ', bias={}'.format(self.bias) if self.activation_flag: str_info = str_info + ', activation={}'.format(self.activation) return str_info ``` #### File: python/pynative_mode/test_implicit_conversion.py ```python import numpy as np import pytest from mindspore import Tensor, nn from mindspore.ops import composite as C def test_float_tensor_and_int_add(): x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32)) y = 2 ret_actual = x + y ret_expect = Tensor(np.array([[2.1, 2.2, 2.3], [2.4, 2.5, 2.6]], dtype=np.float32)) assert ret_actual.dtype == ret_expect.dtype assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all() def test_bool_tensor_and_float_add(): x = Tensor(np.array([[True, False], [False, True]], dtype=np.bool_)) y = 3.3 ret_actual = x + y ret_expect = Tensor(np.array([[4.3, 3.3], [3.3, 4.3]], dtype=np.float32)) assert ret_actual.dtype == ret_expect.dtype assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all() def test_bool_tensor_and_int_add(): x = Tensor(np.array([[True, False], [False, True]], dtype=np.bool_)) y = 3 ret_actual = x + y ret_expect = Tensor(np.array([[4, 3], [3, 4]], dtype=np.int32)) assert ret_actual.dtype == ret_expect.dtype assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all() def test_bool_and_int_tensor_add(): x = True y = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)) ret_actual = x + y ret_expect = Tensor(np.array([[2, 3, 4], [5, 6, 7]], dtype=np.int32)) assert ret_actual.dtype == ret_expect.dtype assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all() def test_float_tensor_and_int_tensor_add(): x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32)) y = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)) ret_actual = x + y ret_expect = Tensor(np.array([[1.1, 2.2, 3.3], [4.4, 5.5, 6.6]], dtype=np.float32)) assert ret_actual.dtype == ret_expect.dtype assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all() def test_float_tensor_and_float_tensor_add(): x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32)) y = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype=np.float16)) ret_actual = x + y ret_expect = Tensor(np.array([[1.1, 2.2, 3.3], [4.4, 5.5, 6.6]], dtype=np.float32)) assert ret_actual.dtype == ret_expect.dtype assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all() def test_int_tensor_and_int_tensor_add(): x = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int8)) y = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)) ret_actual = x + y ret_expect = Tensor(np.array([[2, 4, 6], [8, 10, 12]], dtype=np.int32)) assert ret_actual.dtype == ret_expect.dtype assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all() def test_float_tensor_and_bool_tensors_add(): x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32)) y = Tensor(np.array([[True, True, True], [False, False, False]], dtype=np.bool_)) ret_actual = x + y ret_expect = Tensor(np.array([[1.1, 1.2, 1.3], [0.4, 0.5, 0.6]], dtype=np.float32)) assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all() def test_float_tensor_and_str_add(): x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32)) y = "ok" with pytest.raises(TypeError) as er: ret = x + y assert "For 'TensorAdd', the 1th input is a not support implicit conversion type: str" in str(er.value) def test_float_tensor_and_tuple_add(): x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32)) y = (1, 2, 3) with pytest.raises(TypeError) as er: ret = x + y assert "For 'TensorAdd', the 1th input is a not support implicit conversion type: tuple" in str(er.value) def test_float_tensor_and_list_add(): x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32)) y = [1, 2, 3] with pytest.raises(TypeError) as er: ret = x + y assert "For 'TensorAdd', the 1th input is a not support implicit conversion type: list" in str(er.value) def test_float_tensor_and_bool_tensors_add_grad(): class Net(nn.Cell): def __init__(self): super(Net, self).__init__() def construct(self, x, y): return x + y class GradNet(nn.Cell): def __init__(self, net): super(GradNet, self).__init__() self.net = net def construct(self, x, y, sens): return C.grad_all_with_sens(self.net)(x, y, sens) x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32)) y = Tensor(np.array([[True, True, True], [False, False, False]], dtype=np.bool_)) sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32)) net = Net() grad_net = GradNet(net) ret = grad_net(x, y, sens) assert ret[0].dtype == x.dtype assert ret[1].dtype == y.dtype assert (ret[0].asnumpy() == sens.asnumpy()).all() assert (ret[1].asnumpy() == sens.asnumpy().astype(np.bool_)).all() def test_float_tensor_and_int_tensors_sub_grad(): class Net(nn.Cell): def __init__(self): super(Net, self).__init__() def construct(self, x, y): return x - y class GradNet(nn.Cell): def __init__(self, net): super(GradNet, self).__init__() self.net = net def construct(self, x, y, sens): return C.grad_all_with_sens(self.net)(x, y, sens) x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32)) y = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)) sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32)) net = Net() grad_net = GradNet(net) ret = grad_net(x, y, sens) print(ret) assert ret[0].dtype == x.dtype assert ret[1].dtype == y.dtype assert (ret[0].asnumpy() == sens.asnumpy()).all() assert (ret[1].asnumpy() == sens.asnumpy() * -1).all() def test_float16_tensor_and_float32_tensors_sub_grad(): class Net(nn.Cell): def __init__(self): super(Net, self).__init__() def construct(self, x, y): return x - y class GradNet(nn.Cell): def __init__(self, net): super(GradNet, self).__init__() self.net = net def construct(self, x, y, sens): return C.grad_all_with_sens(self.net)(x, y, sens) x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.int32)) y = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype=np.float32)) sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32)) net = Net() grad_net = GradNet(net) ret = grad_net(x, y, sens) print(ret) assert ret[0].dtype == x.dtype assert ret[1].dtype == y.dtype assert (ret[0].asnumpy() == sens.asnumpy()).all() assert (ret[1].asnumpy() == sens.asnumpy() * -1).all() def test_float_tensor_and_int_add_grad(): class Net(nn.Cell): def __init__(self): super(Net, self).__init__() def construct(self, x): return x + 2 class GradNet(nn.Cell): def __init__(self, net): super(GradNet, self).__init__() self.net = net def construct(self, x, sens): return C.grad_all_with_sens(self.net)(x, sens) x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32)) sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32)) net = Net() grad_net = GradNet(net) ret = grad_net(x, sens) assert ret[0].dtype == x.dtype assert (ret[0].asnumpy() == sens.asnumpy()).all() ```
{ "source": "Joejiong/models-1", "score": 2 }
#### File: video/reader/kinetics_reader.py ```python import os import sys import cv2 import math import random import functools try: import cPickle as pickle from cStringIO import StringIO except ImportError: import pickle from io import BytesIO import numpy as np import paddle try: from nvidia.dali.pipeline import Pipeline import nvidia.dali.ops as ops import nvidia.dali.types as types import tempfile from nvidia.dali.plugin.paddle import DALIGenericIterator except: print("DALI is not installed, you can improve performance if use DALI") from PIL import Image, ImageEnhance import logging from .reader_utils import DataReader logger = logging.getLogger(__name__) python_ver = sys.version_info class KineticsReader(DataReader): """ Data reader for kinetics dataset of two format mp4 and pkl. 1. mp4, the original format of kinetics400 2. pkl, the mp4 was decoded previously and stored as pkl In both case, load the data, and then get the frame data in the form of numpy and label as an integer. dataset cfg: format num_classes seg_num short_size target_size num_reader_threads buf_size image_mean image_std batch_size list """ def __init__(self, name, mode, cfg): super(KineticsReader, self).__init__(name, mode, cfg) self.format = cfg.MODEL.format self.num_classes = self.get_config_from_sec('model', 'num_classes') self.seg_num = self.get_config_from_sec('model', 'seg_num') self.seglen = self.get_config_from_sec('model', 'seglen') self.seg_num = self.get_config_from_sec(mode, 'seg_num', self.seg_num) self.short_size = self.get_config_from_sec(mode, 'short_size') self.target_size = self.get_config_from_sec(mode, 'target_size') self.num_reader_threads = self.get_config_from_sec(mode, 'num_reader_threads') self.buf_size = self.get_config_from_sec(mode, 'buf_size') self.fix_random_seed = self.get_config_from_sec(mode, 'fix_random_seed') self.img_mean = np.array(cfg.MODEL.image_mean).reshape( [3, 1, 1]).astype(np.float32) self.img_std = np.array(cfg.MODEL.image_std).reshape( [3, 1, 1]).astype(np.float32) # set batch size and file list self.batch_size = cfg[mode.upper()]['batch_size'] self.filelist = cfg[mode.upper()]['filelist'] # set num_trainers and trainer_id when distributed training is implemented self.num_trainers = self.get_config_from_sec(mode, 'num_trainers', 1) self.trainer_id = self.get_config_from_sec(mode, 'trainer_id', 0) self.use_dali = self.get_config_from_sec(mode, 'use_dali', False) self.dali_mean = cfg.MODEL.image_mean * (self.seg_num * self.seglen) self.dali_std = cfg.MODEL.image_std * (self.seg_num * self.seglen) if self.mode == 'infer': self.video_path = cfg[mode.upper()]['video_path'] else: self.video_path = '' if self.fix_random_seed: random.seed(0) np.random.seed(0) self.num_reader_threads = 1 def create_reader(self): # if use_dali to improve performance if self.use_dali: return self.build_dali_reader() # if set video_path for inference mode, just load this single video if (self.mode == 'infer') and (self.video_path != ''): # load video from file stored at video_path _reader = self._inference_reader_creator( self.video_path, self.mode, seg_num=self.seg_num, seglen=self.seglen, short_size=self.short_size, target_size=self.target_size, img_mean=self.img_mean, img_std=self.img_std) else: assert os.path.exists(self.filelist), \ '{} not exist, please check the data list'.format(self.filelist) _reader = self._reader_creator(self.filelist, self.mode, seg_num=self.seg_num, seglen = self.seglen, \ short_size = self.short_size, target_size = self.target_size, \ img_mean = self.img_mean, img_std = self.img_std, \ shuffle = (self.mode == 'train'), \ num_threads = self.num_reader_threads, \ buf_size = self.buf_size, format = self.format) def _batch_reader(): batch_out = [] for imgs, label in _reader(): if imgs is None: continue batch_out.append((imgs, label)) if len(batch_out) == self.batch_size: yield batch_out batch_out = [] return _batch_reader def _inference_reader_creator(self, video_path, mode, seg_num, seglen, short_size, target_size, img_mean, img_std): def reader(): try: imgs = mp4_loader(video_path, seg_num, seglen, mode) if len(imgs) < 1: logger.error('{} frame length {} less than 1.'.format( video_path, len(imgs))) yield None, None except: logger.error('Error when loading {}'.format(mp4_path)) yield None, None imgs_ret = imgs_transform(imgs, mode, seg_num, seglen, short_size, target_size, img_mean, img_std) label_ret = video_path yield imgs_ret, label_ret return reader def _reader_creator(self, pickle_list, mode, seg_num, seglen, short_size, target_size, img_mean, img_std, shuffle=False, num_threads=1, buf_size=1024, format='pkl'): def decode_mp4(sample, mode, seg_num, seglen, short_size, target_size, img_mean, img_std): sample = sample[0].split(' ') mp4_path = sample[0] # when infer, we store vid as label label = int(sample[1]) try: imgs = mp4_loader(mp4_path, seg_num, seglen, mode) if len(imgs) < 1: logger.error('{} frame length {} less than 1.'.format( mp4_path, len(imgs))) return None, None except: logger.error('Error when loading {}'.format(mp4_path)) return None, None return imgs_transform(imgs, mode, seg_num, seglen, \ short_size, target_size, img_mean, img_std, name = self.name), label def decode_pickle(sample, mode, seg_num, seglen, short_size, target_size, img_mean, img_std): pickle_path = sample[0] try: if python_ver < (3, 0): data_loaded = pickle.load(open(pickle_path, 'rb')) else: data_loaded = pickle.load( open(pickle_path, 'rb'), encoding='bytes') vid, label, frames = data_loaded if len(frames) < 1: logger.error('{} frame length {} less than 1.'.format( pickle_path, len(frames))) return None, None except: logger.info('Error when loading {}'.format(pickle_path)) return None, None if mode == 'train' or mode == 'valid' or mode == 'test': ret_label = label elif mode == 'infer': ret_label = vid imgs = video_loader(frames, seg_num, seglen, mode) return imgs_transform(imgs, mode, seg_num, seglen, \ short_size, target_size, img_mean, img_std, name = self.name), ret_label def reader_(): with open(pickle_list) as flist: full_lines = [line.strip() for line in flist] if self.mode == 'train': if (not hasattr(reader_, 'seed')): reader_.seed = 0 random.Random(reader_.seed).shuffle(full_lines) print("reader shuffle seed", reader_.seed) if reader_.seed is not None: reader_.seed += 1 per_node_lines = int( math.ceil(len(full_lines) * 1.0 / self.num_trainers)) total_lines = per_node_lines * self.num_trainers # aligned full_lines so that it can evenly divisible full_lines += full_lines[:(total_lines - len(full_lines))] assert len(full_lines) == total_lines # trainer get own sample lines = full_lines[self.trainer_id:total_lines: self.num_trainers] logger.info("trainerid %d, trainer_count %d" % (self.trainer_id, self.num_trainers)) logger.info( "read images from %d, length: %d, lines length: %d, total: %d" % (self.trainer_id * per_node_lines, per_node_lines, len(lines), len(full_lines))) assert len(lines) == per_node_lines for line in lines: pickle_path = line.strip() yield [pickle_path] if format == 'pkl': decode_func = decode_pickle elif format == 'mp4': decode_func = decode_mp4 else: raise "Not implemented format {}".format(format) mapper = functools.partial( decode_func, mode=mode, seg_num=seg_num, seglen=seglen, short_size=short_size, target_size=target_size, img_mean=img_mean, img_std=img_std) return paddle.reader.xmap_readers(mapper, reader_, num_threads, buf_size) def build_dali_reader(self): """ build dali training reader """ def reader_(): with open(self.filelist) as flist: full_lines = [line for line in flist] if self.mode == 'train': if (not hasattr(reader_, 'seed')): reader_.seed = 0 random.Random(reader_.seed).shuffle(full_lines) print("reader shuffle seed", reader_.seed) if reader_.seed is not None: reader_.seed += 1 per_node_lines = int( math.ceil(len(full_lines) * 1.0 / self.num_trainers)) total_lines = per_node_lines * self.num_trainers # aligned full_lines so that it can evenly divisible full_lines += full_lines[:(total_lines - len(full_lines))] assert len(full_lines) == total_lines # trainer get own sample lines = full_lines[self.trainer_id:total_lines: self.num_trainers] assert len(lines) == per_node_lines logger.info("trainerid %d, trainer_count %d" % (self.trainer_id, self.num_trainers)) logger.info( "read images from %d, length: %d, lines length: %d, total: %d" % (self.trainer_id * per_node_lines, per_node_lines, len(lines), len(full_lines))) video_files = '' for item in lines: video_files += item tf = tempfile.NamedTemporaryFile() tf.write(str.encode(video_files)) tf.flush() video_files = tf.name device_id = int(os.getenv('FLAGS_selected_gpus', 0)) print('---------- device id -----------', device_id) if self.mode == 'train': pipe = VideoPipe( batch_size=self.batch_size, num_threads=1, device_id=device_id, file_list=video_files, sequence_length=self.seg_num * self.seglen, seg_num=self.seg_num, seg_length=self.seglen, resize_shorter_scale=self.short_size, crop_target_size=self.target_size, is_training=(self.mode == 'train'), dali_mean=self.dali_mean, dali_std=self.dali_std) else: pipe = VideoTestPipe( batch_size=self.batch_size, num_threads=1, device_id=device_id, file_list=video_files, sequence_length=self.seg_num * self.seglen, seg_num=self.seg_num, seg_length=self.seglen, resize_shorter_scale=self.short_size, crop_target_size=self.target_size, is_training=(self.mode == 'train'), dali_mean=self.dali_mean, dali_std=self.dali_std) logger.info( 'initializing dataset, it will take several minutes if it is too large .... ' ) video_loader = DALIGenericIterator( [pipe], ['image', 'label'], len(lines), dynamic_shape=True, auto_reset=True) return video_loader dali_reader = reader_() def ret_reader(): for data in dali_reader: yield data[0]['image'], data[0]['label'] return ret_reader class VideoPipe(Pipeline): def __init__(self, batch_size, num_threads, device_id, file_list, sequence_length, seg_num, seg_length, resize_shorter_scale, crop_target_size, is_training=False, initial_prefetch_size=10, num_shards=1, shard_id=0, dali_mean=0., dali_std=1.0): super(VideoPipe, self).__init__(batch_size, num_threads, device_id) self.input = ops.VideoReader( device="gpu", file_list=file_list, sequence_length=sequence_length, seg_num=seg_num, seg_length=seg_length, is_training=is_training, num_shards=num_shards, shard_id=shard_id, random_shuffle=is_training, initial_fill=initial_prefetch_size) # the sequece data read by ops.VideoReader is of shape [F, H, W, C] # Because the ops.Resize does not support sequence data, # it will be transposed into [H, W, F, C], # then reshaped to [H, W, FC], and then resized like a 2-D image. self.transpose = ops.Transpose(device="gpu", perm=[1, 2, 0, 3]) self.reshape = ops.Reshape( device="gpu", rel_shape=[1.0, 1.0, -1], layout='HWC') self.resize = ops.Resize( device="gpu", resize_shorter=resize_shorter_scale) # crops and mirror are applied by ops.CropMirrorNormalize. # Normalization will be implemented in paddle due to the difficulty of dimension broadcast, # It is not sure whether dimension broadcast can be implemented correctly by dali, just take the Paddle Op instead. self.pos_rng_x = ops.Uniform(range=(0.0, 1.0)) self.pos_rng_y = ops.Uniform(range=(0.0, 1.0)) self.mirror_generator = ops.Uniform(range=(0.0, 1.0)) self.cast_mirror = ops.Cast(dtype=types.DALIDataType.INT32) self.crop_mirror_norm = ops.CropMirrorNormalize( device="gpu", crop=[crop_target_size, crop_target_size], mean=dali_mean, std=dali_std) self.reshape_back = ops.Reshape( device="gpu", shape=[ seg_num, seg_length * 3, crop_target_size, crop_target_size ], layout='FCHW') self.cast_label = ops.Cast(device="gpu", dtype=types.DALIDataType.INT64) def define_graph(self): output, label = self.input(name="Reader") output = self.transpose(output) output = self.reshape(output) output = self.resize(output) output = output / 255. pos_x = self.pos_rng_x() pos_y = self.pos_rng_y() mirror_flag = self.mirror_generator() mirror_flag = (mirror_flag > 0.5) mirror_flag = self.cast_mirror(mirror_flag) #output = self.crop(output, crop_pos_x=pos_x, crop_pos_y=pos_y) output = self.crop_mirror_norm( output, crop_pos_x=pos_x, crop_pos_y=pos_y, mirror=mirror_flag) output = self.reshape_back(output) label = self.cast_label(label) return output, label class VideoTestPipe(Pipeline): def __init__(self, batch_size, num_threads, device_id, file_list, sequence_length, seg_num, seg_length, resize_shorter_scale, crop_target_size, is_training=False, initial_prefetch_size=10, num_shards=1, shard_id=0, dali_mean=0., dali_std=1.0): super(VideoTestPipe, self).__init__(batch_size, num_threads, device_id) self.input = ops.VideoReader( device="gpu", file_list=file_list, sequence_length=sequence_length, seg_num=seg_num, seg_length=seg_length, is_training=is_training, num_shards=num_shards, shard_id=shard_id, random_shuffle=is_training, initial_fill=initial_prefetch_size) # the sequece data read by ops.VideoReader is of shape [F, H, W, C] # Because the ops.Resize does not support sequence data, # it will be transposed into [H, W, F, C], # then reshaped to [H, W, FC], and then resized like a 2-D image. self.transpose = ops.Transpose(device="gpu", perm=[1, 2, 0, 3]) self.reshape = ops.Reshape( device="gpu", rel_shape=[1.0, 1.0, -1], layout='HWC') self.resize = ops.Resize( device="gpu", resize_shorter=resize_shorter_scale) # crops and mirror are applied by ops.CropMirrorNormalize. # Normalization will be implemented in paddle due to the difficulty of dimension broadcast, # It is not sure whether dimension broadcast can be implemented correctly by dali, just take the Paddle Op instead. self.crop_mirror_norm = ops.CropMirrorNormalize( device="gpu", crop=[crop_target_size, crop_target_size], crop_pos_x=0.5, crop_pos_y=0.5, mirror=0, mean=dali_mean, std=dali_std) self.reshape_back = ops.Reshape( device="gpu", shape=[ seg_num, seg_length * 3, crop_target_size, crop_target_size ], layout='FCHW') self.cast_label = ops.Cast(device="gpu", dtype=types.DALIDataType.INT64) def define_graph(self): output, label = self.input(name="Reader") output = self.transpose(output) output = self.reshape(output) output = self.resize(output) output = output / 255. #output = self.crop(output, crop_pos_x=pos_x, crop_pos_y=pos_y) output = self.crop_mirror_norm(output) output = self.reshape_back(output) label = self.cast_label(label) return output, label def imgs_transform(imgs, mode, seg_num, seglen, short_size, target_size, img_mean, img_std, name=''): imgs = group_scale(imgs, short_size) if mode == 'train': if name == "TSM": imgs = group_multi_scale_crop(imgs, short_size) imgs = group_random_crop(imgs, target_size) imgs = group_random_flip(imgs) else: imgs = group_center_crop(imgs, target_size) np_imgs = (np.array(imgs[0]).astype('float32').transpose( (2, 0, 1))).reshape(1, 3, target_size, target_size) / 255 for i in range(len(imgs) - 1): img = (np.array(imgs[i + 1]).astype('float32').transpose( (2, 0, 1))).reshape(1, 3, target_size, target_size) / 255 np_imgs = np.concatenate((np_imgs, img)) imgs = np_imgs imgs -= img_mean imgs /= img_std imgs = np.reshape(imgs, (seg_num, seglen * 3, target_size, target_size)) return imgs def group_multi_scale_crop(img_group, target_size, scales=None, \ max_distort=1, fix_crop=True, more_fix_crop=True): scales = scales if scales is not None else [1, .875, .75, .66] input_size = [target_size, target_size] im_size = img_group[0].size # get random crop offset def _sample_crop_size(im_size): image_w, image_h = im_size[0], im_size[1] base_size = min(image_w, image_h) crop_sizes = [int(base_size * x) for x in scales] crop_h = [ input_size[1] if abs(x - input_size[1]) < 3 else x for x in crop_sizes ] crop_w = [ input_size[0] if abs(x - input_size[0]) < 3 else x for x in crop_sizes ] pairs = [] for i, h in enumerate(crop_h): for j, w in enumerate(crop_w): if abs(i - j) <= max_distort: pairs.append((w, h)) crop_pair = random.choice(pairs) if not fix_crop: w_offset = random.randint(0, image_w - crop_pair[0]) h_offset = random.randint(0, image_h - crop_pair[1]) else: w_step = (image_w - crop_pair[0]) / 4 h_step = (image_h - crop_pair[1]) / 4 ret = list() ret.append((0, 0)) # upper left if w_step != 0: ret.append((4 * w_step, 0)) # upper right if h_step != 0: ret.append((0, 4 * h_step)) # lower left if h_step != 0 and w_step != 0: ret.append((4 * w_step, 4 * h_step)) # lower right if h_step != 0 or w_step != 0: ret.append((2 * w_step, 2 * h_step)) # center if more_fix_crop: ret.append((0, 2 * h_step)) # center left ret.append((4 * w_step, 2 * h_step)) # center right ret.append((2 * w_step, 4 * h_step)) # lower center ret.append((2 * w_step, 0 * h_step)) # upper center ret.append((1 * w_step, 1 * h_step)) # upper left quarter ret.append((3 * w_step, 1 * h_step)) # upper right quarter ret.append((1 * w_step, 3 * h_step)) # lower left quarter ret.append((3 * w_step, 3 * h_step)) # lower righ quarter w_offset, h_offset = random.choice(ret) return crop_pair[0], crop_pair[1], w_offset, h_offset crop_w, crop_h, offset_w, offset_h = _sample_crop_size(im_size) crop_img_group = [ img.crop((offset_w, offset_h, offset_w + crop_w, offset_h + crop_h)) for img in img_group ] ret_img_group = [ img.resize((input_size[0], input_size[1]), Image.BILINEAR) for img in crop_img_group ] return ret_img_group def group_random_crop(img_group, target_size): w, h = img_group[0].size th, tw = target_size, target_size assert (w >= target_size) and (h >= target_size), \ "image width({}) and height({}) should be larger than crop size".format(w, h, target_size) out_images = [] x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) for img in img_group: if w == tw and h == th: out_images.append(img) else: out_images.append(img.crop((x1, y1, x1 + tw, y1 + th))) return out_images def group_random_flip(img_group): v = random.random() if v < 0.5: ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group] return ret else: return img_group def group_center_crop(img_group, target_size): img_crop = [] for img in img_group: w, h = img.size th, tw = target_size, target_size assert (w >= target_size) and (h >= target_size), \ "image width({}) and height({}) should be larger than crop size".format(w, h, target_size) x1 = int(round((w - tw) / 2.)) y1 = int(round((h - th) / 2.)) img_crop.append(img.crop((x1, y1, x1 + tw, y1 + th))) return img_crop def group_scale(imgs, target_size): resized_imgs = [] for i in range(len(imgs)): img = imgs[i] w, h = img.size if (w <= h and w == target_size) or (h <= w and h == target_size): resized_imgs.append(img) continue if w < h: ow = target_size oh = int(target_size * 4.0 / 3.0) resized_imgs.append(img.resize((ow, oh), Image.BILINEAR)) else: oh = target_size ow = int(target_size * 4.0 / 3.0) resized_imgs.append(img.resize((ow, oh), Image.BILINEAR)) return resized_imgs def imageloader(buf): if isinstance(buf, str): img = Image.open(StringIO(buf)) else: img = Image.open(BytesIO(buf)) return img.convert('RGB') def video_loader(frames, nsample, seglen, mode): videolen = len(frames) average_dur = int(videolen / nsample) imgs = [] for i in range(nsample): idx = 0 if mode == 'train': if average_dur >= seglen: idx = random.randint(0, average_dur - seglen) idx += i * average_dur elif average_dur >= 1: idx += i * average_dur else: idx = i else: if average_dur >= seglen: idx = (average_dur - seglen) // 2 idx += i * average_dur elif average_dur >= 1: idx += i * average_dur else: idx = i for jj in range(idx, idx + seglen): imgbuf = frames[int(jj % videolen)] img = imageloader(imgbuf) imgs.append(img) return imgs def mp4_loader(filepath, nsample, seglen, mode): cap = cv2.VideoCapture(filepath) videolen = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) sampledFrames = [] for i in range(videolen): ret, frame = cap.read() # maybe first frame is empty if ret == False: continue img = frame[:, :, ::-1] sampledFrames.append(img) average_dur = int(len(sampledFrames) / nsample) imgs = [] for i in range(nsample): idx = 0 if mode == 'train': if average_dur >= seglen: idx = random.randint(0, average_dur - seglen) idx += i * average_dur elif average_dur >= 1: idx += i * average_dur else: idx = i else: if average_dur >= seglen: idx = (average_dur - 1) // 2 idx += i * average_dur elif average_dur >= 1: idx += i * average_dur else: idx = i for jj in range(idx, idx + seglen): imgbuf = sampledFrames[int(jj % len(sampledFrames))] img = Image.fromarray(imgbuf, mode='RGB') imgs.append(img) return imgs ```
{ "source": "Joejiong/Paddle_AST_Infrastructure", "score": 2 }
#### File: Paddle_AST_Infrastructure/api_upgrade_src/modify_transformer.py ```python import astor import gast import inspect from api_upgrade_src.node_operation import get_attr_full_name, delete_keywords_from, rename_keywords_to, add_keywords_to from api_upgrade_src.upgrade_models_api_utils import print_info class AddParamTransformer(gast.NodeTransformer): def __init__(self, node): assert isinstance(node, gast.AST) self.root = node self.modify_dict = "" def add(self, modify_dict): self.modify_dict = modify_dict self.visit(self.root) def visit_Call(self, node): attribute_node = node.func attr_full_name = get_attr_full_name(attribute_node) if attr_full_name in self.modify_dict: if "add" not in self.modify_dict[attr_full_name]: return node add_dict = self.modify_dict[attr_full_name]["add"] add_keywords_to(node, add_dict) for param in add_dict: print_info("\033[1;33mAdd Params (%s) to API (%s)\033[0m" % (param, attr_full_name)) return node class DelParamTransformer(gast.NodeTransformer): def __init__(self, node): assert isinstance(node, gast.AST) self.root = node self.modify_dict = "" def delete(self, modify_dict): self.modify_dict = modify_dict self.visit(self.root) def visit_Call(self, node): attribute_node = node.func attr_full_name = get_attr_full_name(attribute_node) if attr_full_name in self.modify_dict: if "delete" not in self.modify_dict[attr_full_name]: return node delete_dict = self.modify_dict[attr_full_name]["delete"] delete_keywords_from(node, delete_dict) for param in delete_dict: print_info("\033[1;33mDelete Params (%s) from API (%s)\033[0m" % (param, attr_full_name)) return node class RenameParamTransformer(gast.NodeTransformer): def __init__(self, node): assert isinstance(node, gast.AST) self.root = node self.modify_dict = "" def replace(self, modify_dict): self.modify_dict = modify_dict self.visit(self.root) def visit_Call(self, node): attribute_node = node.func attr_full_name = get_attr_full_name(attribute_node) if attr_full_name in self.modify_dict: if "rename" not in self.modify_dict[attr_full_name]: return node modify_dict = self.modify_dict[attr_full_name]["rename"] rename_keywords_to(node, modify_dict) for param in modify_dict: print_info("\033[1;33mRename Params (%s->%s) in API (%s)\033[0m" % (param, modify_dict[param], attr_full_name)) return node class RepAttributeTransformer(gast.NodeTransformer): def __init__(self, node): assert isinstance(node, gast.AST) self.root = node self.modify_dict = "" def replace(self, modify_dict): self.modify_dict = modify_dict self.visit(self.root) def visit_Attribute(self, node): self.generic_visit(node) attr_full_name = get_attr_full_name(node) if attr_full_name in self.modify_dict: new_api_name = self.modify_dict[attr_full_name]['name'] new_api_node = gast.parse(new_api_name).body[0].value print_info("\033[1;33mUpgrade API (%s->%s)\033[0m" % (attr_full_name, new_api_name)) return new_api_node return node ``` #### File: api_upgrade_src/script/convert_dict.py ```python import sys import json def _num(s): try: return int(s) except ValueError: return float(s) def _string2bool(string): d = {'True': True, 'False': False} return d.get(string, string) def load_src_json(f): try: with open(f, 'r') as fr: json_dict = json.load(fr) except: json_dict = dict() return json_dict def get_key_value(term): value = term.strip("\"").strip("\'").split("|") key_value = {} for v in value: prek,prev = v.split('=') if prev == 'None': prev = None elif prev == 'False' or prev == 'True': prev = _string2bool(prev) elif prev.isnumeric(): prev = _num(prev) key_value[prek] = prev return key_value def get_key(term): value = term.strip("\"").strip("\'").split("|") key_value = {v: None for v in value} return key_value def check_conflict(add_dict, rename_dict): rename_list = rename_dict.values() add_list = add_dict.keys() inter = list(set(rename_list).intersection(set(add_list))) if not inter: return add_dict, rename_dict else: for c in inter: add_dict.pop(c) return add_dict, rename_dict def convert_dict(f): json_dict = load_src_json(f) upgrade_api = dict() if not json_dict: print("parser json dict error") exit(1) json_dict_src = json_dict["Sheet1"] for term in json_dict_src: name = term.get("paddle.17", None) upgrade_name = term.get("paddle2.0", None) assert name, "old version doesn't exist" assert upgrade_name, "new version doesn't exist" add_dict = dict() if "add" in term: add_dict = get_key_value(term["add"]) rename_dict = dict() if "rename" in term: rename_dict = get_key_value(term["rename"]) delete_dict = dict() if "delete" in term: delete_dict = get_key(term["delete"]) if rename_dict and add_dict: add_dict, rename_dict = check_conflict(add_dict, rename_dict) upgrade_api[name] = dict() upgrade_api[name]["name"] = upgrade_name if delete_dict: upgrade_api[name]["delete"] = delete_dict if add_dict: upgrade_api[name]["add"] = add_dict if rename_dict: upgrade_api[name]["rename"] = rename_dict res = json.dumps(upgrade_api, sort_keys=True, indent=4) return res if __name__ == "__main__": # ../dict/data.json json_file = convert_dict(sys.argv[1]) with open("../dict/modify.dict", "w") as outfile: outfile.write(json_file) ```
{ "source": "Joejiong/pytorch2paddle", "score": 3 }
#### File: pytorch2paddle/Joe_nn_transfer/paddle_leNet.py ```python import paddle import paddle.fluid as fluid import numpy as np from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, Conv2DTranspose from paddle.fluid.dygraph.base import to_variable # K.set_image_data_format('channels_first') # 定义 LeNet 网络结构 class LeNet(fluid.dygraph.Layer): def __init__(self, name_scope, num_classes=1): super(LeNet, self).__init__(name_scope) self.conv1 = Conv2D(num_channels=1, num_filters=6, filter_size=5, act='relu') self.pool1 = Pool2D(pool_size=2, pool_stride=2, pool_type='max') self.conv2 = Conv2D(num_channels=6, num_filters=16, filter_size=5, act='relu') self.pool2 = Pool2D(pool_size=2, pool_stride=2, pool_type='max') # self.conv3 = Conv2D(num_channels=16, num_filters=120, filter_size=4, act='relu') # 创建全连接层,第一个全连接层的输出神经元个数为64, 第二个全连接层输出神经元个数为分裂标签的类别数 self.fc1 = Linear(input_dim=16*5*5, output_dim=120, act='relu') self.fc2 = Linear(input_dim=120, output_dim=84, act='relu') self.fc3 = Linear(input_dim=84, output_dim=num_classes) # 网络的前向计算过程 def forward(self, x): x = self.conv1(x) x = self.pool1(x) x = self.conv2(x) x = self.pool2(x) x = self.conv3(x) x = fluid.layers.reshape(x, [x.shape[0], -1]) x = self.fc1(x) x = self.fc2(x) return x ``` #### File: pytorch2paddle/Joe_nn_transfer/pytorch2fluid.py ```python from __future__ import print_function from collections import OrderedDict import numpy as np import h5py import torch import paddle import paddle.fluid as fluid from . import util PADDLE_MOVING_MEAN_KEY = 'moving_mean' PADDLE_MOVING_VARIANCE_KEY = 'moving_variance' PADDLE_EPSILON = 1e-3 PYTORCH_EPSILON = 1e-5 def check_for_missing_layers(paddle_layer_names, pytorch_layer_names, verbose): if verbose: print("Layer names in PyTorch state_dict", pytorch_layer_names) print("Layer names in paddle state_dict", paddle_layer_names) if not all(x in paddle_layer_names for x in pytorch_layer_names): missing_layers = list(set(pytorch_layer_names) - set(paddle_layer_names)) raise Exception("Missing layer(s) in paddle HDF5 that are present" + " in state_dict: {}".format(missing_layers)) def pytorch_to_paddle(pytorch_model, paddle_model, flip_filters=False, flip_channels=None, verbose=True): paddle_dict = paddle_model.state_dict() fluid.save_dygraph(paddle_dict, "save_temp") pytorch_input_state_dict = pytorch_model.state_dict() pytorch_layer_names = util.state_dict_layer_names(pytorch_input_state_dict) with open('save_temp', 'a') as f: model_weights = f['model_weights'] target_layer_names = list(map(str, model_weights.keys())) check_for_missing_layers( target_layer_names, pytorch_layer_names, verbose) for layer in pytorch_layer_names: paddle_h5_layer_param = util.dig_to_params_pf(model_weights[layer]) weight_key = layer + '.weight' bias_key = layer + '.bias' running_mean_key = layer + '.running_mean' running_var_key = layer + '.running_var' # Load weights (or other learned parameters) if weight_key in pytorch_input_state_dict: weights = pytorch_input_state_dict[weight_key].numpy() weights = convert_weights(weights, to_pytorch=False, flip_filters=flip_filters, flip_channels=flip_channels) # Load bias if bias_key in pytorch_input_state_dict: bias = pytorch_input_state_dict[bias_key].numpy() if running_var_key in pytorch_input_state_dict: paddle_h5_layer_param[bias_key][:] = bias else: paddle_h5_layer_param[bias_key][:] = bias # Load batch normalization running mean if running_mean_key in pytorch_input_state_dict: running_mean = pytorch_input_state_dict[running_mean_key].numpy() paddle_h5_layer_param[PADDLE_MOVING_MEAN_KEY][:] = running_mean # Load batch normalization running variance if running_var_key in pytorch_input_state_dict: running_var = pytorch_input_state_dict[running_var_key].numpy() # account for difference in epsilon used running_var += PYTORCH_EPSILON - PADDLE_EPSILON paddle_h5_layer_param[PADDLE_MOVING_VARIANCE_KEY][:] = running_var # pytorch_model.load_state_dict(state_dict) paddle_model.load_weights('temp.h5') # TODO def convert_weights(weights, to_pytorch=False, flip_filters=False, flip_channels=False): if to_pytorch: # TODO weights = weights else: # TODO weights = weights return weights ```
{ "source": "joejnke/security", "score": 4 }
#### File: joejnke/security/caesar_cipher.py ```python L2I = dict(zip("ABCDEFGHIJKLMNOPQRSTUVWXYZ",range(26))) # A mapping from Interger to lettter I2L = dict(zip(range(26),"ABCDEFGHIJKLMNOPQRSTUVWXYZ")) '''------------------------------------------------------------------------------- Function: Get the encryption or decryption key if it is in range between 1- 26 Returns: Key Arguments: None ----------------------------------------------------------------------------------''' def getKey(): while True: print('Enter the key for encryption (between 1 - 26)') key = int(input()) if (key >= 1 and key <= 26): return key return key '''---------------------------------------------------------------------- Function: Encrypts a text input with a given key using caesar cipher Returns: Ciphered Text Arguments: None -------------------------------------------------------------------------''' def encryptCaesarCipher(): plainText = input("Enter text to be encrypted here:") key = getKey() cipherText ='' for letter in plainText.upper(): if letter.isalpha(): cipherText += I2L[ (L2I[letter] + key)%26 ] else: cipherText += letter return cipherText '''---------------------------------------------------------------------- Function: Descrypts a ciphered text with a given key using caesar cipher Returns: Plain Text Arguments: None -------------------------------------------------------------------------''' def decryptCaesarCipher(): cipherText = input("Enter text to be decrypted here:") key = getKey() print (key) plainText = '' for letter in cipherText.upper(): if letter.isalpha(): plainText += I2L[ (L2I[letter] - key)%26 ] else: plainText += letter return plainText ```
{ "source": "Joejn/myDrive", "score": 2 }
#### File: server/apis/users.py ```python import os import shutil from datetime import datetime from core.consts import DATA_PATH, HOME_DIR, TRASH_DIR from core.utils import Admin, Database, Password from flask import json, request from flask_jwt_extended import jwt_required from flask_jwt_extended.utils import get_jwt from flask_restx import Namespace, Resource api = Namespace("users", description="user related operations") @api.route("/get_all_users") class GetAllUsers(Resource): @api.doc("return all users") @jwt_required() def get(self): id = get_jwt()["id"] isAdmin = Admin.checkIfAdmin(id) if not isAdmin: return "Unauthorized", 401 db = Database() data = [] users = db.select( "SELECT id, username, firstname, lastname, birthday, email FROM public.users ORDER BY id;") for item in users: user_id, username, firstname, lastname, birthday, email = item data.append({ "id": user_id, "username": username, "firstname": firstname, "lastname": lastname, "birthday": birthday, "email": email }) return json.jsonify(data) @api.route("/add_user") class AddUser(Resource): @api.doc("Add a user") @jwt_required() def post(self): id = get_jwt()["id"] isAdmin = Admin.checkIfAdmin(id) if not isAdmin: return "Unauthorized", 401 data = json.loads(request.data) username, firstname, lastname, birthday, email, password = data.values() hashed_password = Password.hash(password).decode("utf-8") db = Database() statement = """ INSERT INTO public.users( username, firstname, lastname, birthday, email, password) VALUES (%(username)s , %(firstname)s, %(lastname)s, to_date(%(birthday)s, 'mm/dd/yyyy'), %(email)s, %(password)s); """ vars = { "username": username, "firstname": firstname, "lastname": lastname, "birthday": datetime.utcfromtimestamp(birthday).strftime("%m/%d/%y"), "email": email, "password": <PASSWORD> } db.exec(statement, vars) # Create home directory for new User ################## data_dir_of_user = os.path.join(DATA_PATH, username) os.mkdir(data_dir_of_user) os.mkdir(os.path.join(data_dir_of_user, HOME_DIR)) os.mkdir(os.path.join(data_dir_of_user, TRASH_DIR)) ####################################################### data = [] users = db.select( "SELECT id, username, firstname, lastname, birthday, email FROM public.users ORDER BY id;") for item in users: user_id, username, firstname, lastname, birthday, email = item data.append({ "id": user_id, "username": username, "firstname": firstname, "lastname": lastname, "birthday": birthday, "email": email }) return json.jsonify(data) @api.route("/delete_user") class DeleteUser(Resource): @api.doc("Delete a user") @jwt_required() def delete(self): id = get_jwt()["id"] isAdmin = Admin.checkIfAdmin(id) if not isAdmin: return "Unauthorized", 401 data = json.loads(request.data) user_id = data.get("id") username = data.get("username") db = Database() statement = "DELETE FROM public.users WHERE id=%(id)s;" db.exec(statement, {"id": user_id}) # Delete home directory from User ################## data_dir_of_user = os.path.join(DATA_PATH, username) shutil.rmtree(data_dir_of_user) ####################################################### data = [] users = db.select( "SELECT id, username, firstname, lastname, birthday, email FROM public.users ORDER BY id;") for item in users: user_id, username, firstname, lastname, birthday, email = item data.append({ "id": user_id, "username": username, "firstname": firstname, "lastname": lastname, "birthday": birthday, "email": email }) return json.jsonify(data) @api.route("/get_registerd_users_count") class GetRegisterdUsersCount(Resource): @api.doc("Get the count of the registered users") @jwt_required() def get(self): id = get_jwt()["id"] isAdmin = Admin.checkIfAdmin(id) if not isAdmin: return "Unauthorized", 401 db = Database() user_count = db.select("SELECT COUNT(id) FROM public.users;")[0][0] body = { "user_count": user_count } return json.jsonify(body) @api.route("/get_all_usernames_and_ids") class GetAllUsernamesAndIds(Resource): @api.doc("return all usernames and there ids") @jwt_required() def get(self): db = Database() data = [] users = db.select( "SELECT id, username FROM public.users ORDER BY id;") for item in users: user_id, username = item data.append({ "id": user_id, "name": username }) return json.jsonify(data) ```
{ "source": "joejoe233/-", "score": 4 }
#### File: joejoe233/-/SoftwareBlockchain-demo.py ```python import hashlib as hasher import datetime def create_genesis_block(): '''Constructs a block with index 0 and arbitrary previous hash''' return Block(0, datetime.datetime.now(), "Genesis Block" ,"0","0","0","0") #操作的是区块对象 class Block(): def __init__(self, index, timestamp, software,company, addr,cite,previous_hash): self.index = index self.timestamp = timestamp self.software = software self.company = company self.addr = addr self.cite = cite #引用字段 self.previous_hash = previous_hash self.hash = self.hash_block() def hash_block(self): sha = hasher.sha256() sha.update(str(self.index).encode("utf-8") + str(self.timestamp).encode("utf-8") + str(self.software).encode("utf-8") + str(self.company).encode("utf-8") + str(self.addr).encode("utf-8") + str(self.cite).encode("utf-8") + str(self.previous_hash).encode("utf-8") ) return sha.hexdigest() # Create the blockchain and add genesis block. blockchain = [create_genesis_block()] #print(blockchain[0].cite) previous_block = blockchain[0] #print(previous_block) # How many blocks to add after the genesis block? #num_of_blocks_to_add = 10 def next_block(last_block): this_index = last_block.index + 1 this_timestamp = datetime.datetime.now() #this_data = "Hey! I'm block " + str(this_index) this_software = input("请输入第 #{} 个区块的软件名 : ".format(this_index)) this_company = input("请输入第 #{} 个区块的公司名 : ".format(this_index)) this_addr = input("请输入第 #{} 个区块的软件地址 : ".format(this_index)) this_cite = input("请输入第 #{} 个区块的引用记录 : ".format(this_index)) return Block(this_index, this_timestamp, this_software, this_company,this_addr,this_cite,last_block.hash) # Add blocks to the chain. #for i in range(num_of_blocks_to_add): while 1: block_to_add = next_block(previous_block) blockchain.append(block_to_add) previous_block = block_to_add # Tell everyone about it! print("区块 #{} 成功上链!".format(block_to_add.index)) print("软件名 :{}".format(block_to_add.software)) print("公司名 :{}".format(block_to_add.company)) print("软件地址 :{}".format(block_to_add.addr)) print("引用记录: {}".format(block_to_add.cite)) print("哈希值: {}".format(block_to_add.hash)) print("时间戳: {}\n".format(block_to_add.timestamp)) #存入数据库 # print(blockchain[0].previous_hash) ```
{ "source": "joejoe233/TrafficClassification", "score": 3 }
#### File: joejoe233/TrafficClassification/LoadImage.py ```python import os import random import cv2 as cv import numpy as np import re import copy classkind= 10 labeldict = {} def train_image(path,classname=None,labeldicts = None): global labeldict count = 0 templabels = [0 for i in range(classkind)] images = [] labels = [] if labeldicts !=None: labeldict=labeldicts imagenamelist = [] if classname==None: imagenamelist = [path+"\\"+name for name in os.listdir(path) if name.lower().endswith('jpg')] #生成一个列表 lower()把所有大写字母转换成小写字母 else: imagenamelist = [path+"\\"+name for name in os.listdir(path) if name.lower().endswith('jpg')and name.lower().startswith(classname)] random.shuffle(imagenamelist) random.shuffle(imagenamelist) #随机排序 for i in imagenamelist: image = cv.imread(i,flags=0) #读入图像 image = image[:,:,np.newaxis] #添加数组维度 images.append(image) pattern = re.compile('^[a-z]+') vpnpattern = re.compile('(vpn_[a-z]+)') name = i.split('\\')[-1] if name.startswith('vpn'): name = vpnpattern.findall(name.lower())[0] else: name = pattern.findall(name.lower())[0] if name in labeldict: label = labeldict[name] labels.append(label) count +=1 else: labellength = len(labeldict) templabel = copy.deepcopy(templabels) templabel[labellength] = 1 labeldict.update({name:templabel}) label = templabel labels.append(label) count += 1 images = np.array(images) labels = np.array(labels) if classname!=None: return images, labels else: return images,labels,labeldict ```
{ "source": "joejoeyjoseph/mmctools", "score": 3 }
#### File: mmctools/mmctools/mmcdata.py ```python from math import * import collections import numpy as np import datetime as dt import pandas as pd import xarray import pickle from matplotlib import pyplot as plt from matplotlib import rcParams, cycler import matplotlib.dates as mdates from matplotlib.ticker import AutoMinorLocator # legacy file format header = """INSTITUTION:{institution:s} LOCATION:{location:s} LATITUDE:{latitude:10.4f} LONGITUDE:{longitude:10.4f} CODENAME:{codename:s} CODETYPE:{codetype:s} CASENAME:{casename:s} BENCHMARK:{benchmark:s} LEVELS:{levels:7d} """ record = """ DATE:{date:s} TIME:{time:s} FRICTION VELOCITY [m/s] = {ustar:10.5f} SURFACE ROUGHNESS [m] = {z0:10.5f} SKIN TEMPERATURE [K] = {T0:10.5f} SURFACE FLUX [Km/s] = {qwall:10.5f} Z [m] U [m/s] V [m/s] W [m/s] TH [K] P [mbar] TKE [m^2/s^2] TAU11 [m^2/s^2] TAU12 [m^2/s^2] TAU13 [m^2/s^2] TAU22 [m^2/s^2] TAU23 [m^2/s^2] TAU33 [m^2/s^2] HFLUX [Km/s] """ datarow = 4*'{:18.3f}' + 2*'{:18.2f}' + '{:18.3f}' + 7*'{:18.5f}' + '\n' class MMCData(): """A given set of 'observed' (via instrument or model) timeseries of U,V,W, and other state variables and any 'derived' (via calculation methods) data like mean, perturbation, variance, correlations, etc... that are attributes (could be defined or missing a value) in a given MMCData instance """ def __init__(self,asciifile=None,pklfile=None,pkldata=None,**kwargs): """Read ascii data in the legacy MMC format from `asciifile` or pickled data in list form from `pklfile`. **kwargs can include convert_ft_to_m=True, or specified_date="YYYY-MM-DD", e.g. specified_date='2013-11-08' if necessary for specific legacy data files. """ self.description = None self.records = [] self.dataDict = collections.defaultdict(list) if asciifile: with open(asciifile,'r') as f: data = self._read_ascii(f) if self.dataSetLength > 0: self._process_data(data,**kwargs) elif pklfile or pkldata: if pkldata is None: with open(pklfile,'rb') as f: pkldata = pickle.load(f) # first item is a dictionary with metadata self.dataSetLength = len(pkldata) - 1 self.description = pkldata[0] if self.dataSetLength > 0: self._process_data(pkldata[1:],**kwargs) else: raise ValueError('Need to specify asciifile, pklfile, or pkldata') def _read_ascii(self,f): """Read entire legacy MMC file""" self.description = read_ascii_header(f) self.dataSetLength = 0 data = [] while True: recordheader = read_ascii_recordheader(f); if (len(recordheader)==0) or (recordheader is None): #is recordheader={} or Null value? if so break, otherwise read a record break else: recordarray = read_ascii_records(f,self.description['levels']) data.append([recordheader, recordarray]) self.dataSetLength += 1 return data def _process_data(self,data,convert_ft_to_m=False,specified_date=None,map_to_met_coords=False): """Updates dataset description, records, and dataDict""" time=[] datetime=[] z=[] u=[] v=[] w=[] theta=[] pres=[] tke=[] tau11=[] tau12=[] tau13=[] tau22=[] tau23=[] tau33=[] hflux=[] for record in data: recordheader, recordarray = record self.records.append(recordheader) time.append(recordheader['time'].strip()) if specified_date is None: dtstr = recordheader['date'] + "_" + recordheader['time'].strip() else: dtstr = '{:s}_{:s}'.format(specified_date,recordheader['time'].strip()) datetime.append(dt.datetime.strptime(dtstr, '%Y-%m-%d_%H:%M:%S')) z.append(recordarray[:,0]) u.append(recordarray[:,1]) v.append(recordarray[:,2]) w.append(recordarray[:,3]) theta.append(recordarray[:,4]) pres.append(recordarray[:,5]) tke.append(recordarray[:,6]) tau11.append(recordarray[:,7]) tau12.append(recordarray[:,8]) tau13.append(recordarray[:,9]) tau22.append(recordarray[:,10]) tau23.append(recordarray[:,11]) tau33.append(recordarray[:,12]) hflux.append(recordarray[:,13]) assert len(z) == self.dataSetLength # Re-cast fields as numpy arrays and add to 'dataDict' object attribute self.dataDict['datetime'] = np.asarray(datetime) if convert_ft_to_m: # Convert TTU/SWiFT height to meters from feet ;-( self.dataDict['z'] = np.asarray(z)*0.3048 else: # Otherwise expect heights in meters as they should be self.dataDict['z'] = np.asarray(z) if map_to_met_coords: #map TTU-sonic (unorth, vwest) coords to standard meteorology coordinates self.dataDict['u'] = np.asarray(v) self.dataDict['v'] = -np.asarray(u) else: self.dataDict['u'] = np.asarray(u) self.dataDict['v'] = np.asarray(v) self.dataDict['w'] = np.asarray(w) self.dataDict['theta'] = np.asarray(theta) self.dataDict['pres'] = np.asarray(pres) self.dataDict['tke'] = np.asarray(tke) self.dataDict['tau11'] = np.asarray(tau11) self.dataDict['tau12'] = np.asarray(tau12) self.dataDict['tau13'] = np.asarray(tau13) self.dataDict['tau22'] = np.asarray(tau22) self.dataDict['tau23'] = np.asarray(tau23) self.dataDict['tau33'] = np.asarray(tau33) self.dataDict['hflux'] = np.asarray(hflux) self.dataDict['wspd'] = np.sqrt(self.dataDict['u']**2 + self.dataDict['v']**2) self.dataDict['wdir'] = (270.0-np.arctan2(self.dataDict['v'],self.dataDict['u'])*180./np.pi)%360 ### The follwing will yield correct results, but sneaky usage of arctan2 where first argument is defined as y-oriented ### self.dataDict['wdir'] = 180. + np.arctan2(self.dataDict['v'],self.dataDict['u'])*180./np.pi #Declare and initialize to 0 the *_mean arrays self.dataDict['u_mean'] = np.zeros(self.dataDict['u'].shape) self.dataDict['v_mean'] = np.zeros(self.dataDict['u'].shape) self.dataDict['w_mean'] = np.zeros(self.dataDict['u'].shape) self.dataDict['theta_mean'] = np.zeros(self.dataDict['u'].shape) self.dataDict['tke_mean'] = np.zeros(self.dataDict['u'].shape) self.dataDict['hflux_mean'] = np.zeros(self.dataDict['u'].shape) self.dataDict['uu_mean'] = np.zeros(self.dataDict['u'].shape) self.dataDict['uv_mean'] = np.zeros(self.dataDict['u'].shape) self.dataDict['uw_mean'] = np.zeros(self.dataDict['u'].shape) self.dataDict['vv_mean'] = np.zeros(self.dataDict['u'].shape) self.dataDict['vw_mean'] = np.zeros(self.dataDict['u'].shape) self.dataDict['ww_mean'] = np.zeros(self.dataDict['u'].shape) self.dataDict['wt_mean'] = np.zeros(self.dataDict['u'].shape) self.dataDict['wspd_mean'] = np.zeros(self.dataDict['u'].shape) self.dataDict['wdir_mean'] = np.zeros(self.dataDict['u'].shape) self.dataDict['shear_mean'] = np.zeros(self.dataDict['u'].shape) def to_pickle(self,pklfile): """pickle the entire class instance""" with open(pklfile,'wb') as f: pickle.dump(self,f) def to_dataframe(self): """return a multi-indexed pandas dataframe with standard variables """ df = self.to_xarray().to_dataframe() # the resulting dataframe has an integer multiindex formed by # range(num_samples) and range(num_levels) df = df.reset_index().drop(columns=['Times','bottom_top']) return df.set_index(['datetime','height']) def to_xarray(self,timedim='Times',heightdim='bottom_top'): """return an xarray dataset with standard variables""" coords = { 'datetime': xarray.DataArray(self.dataDict['datetime'], name='datetime', dims=[timedim]), 'height': xarray.DataArray(self.dataDict['z'], name='height', dims=[timedim, heightdim], attrs={'units':'m'}), } data_vars = { 'u': xarray.DataArray(self.dataDict['u'], name='west-east velocity', dims=[timedim, heightdim], attrs={'units':'m s-1'}), 'v': xarray.DataArray(self.dataDict['v'], name='south-north velocity', dims=[timedim, heightdim], attrs={'units':'m s-1'}), 'w': xarray.DataArray(self.dataDict['w'], name='vertical velocity', dims=[timedim, heightdim], attrs={'units':'m s-1'}), 'theta': xarray.DataArray(self.dataDict['theta'], name='potential temperature', dims=[timedim, heightdim], attrs={'units':'K'}), 'pres': xarray.DataArray(self.dataDict['pres'], name='pressure', dims=[timedim, heightdim], attrs={'units':'mbar'}), } #ds=xarray.decode_cf(xarray.Dataset(data_vars,coords)) ds=xarray.Dataset(data_vars,coords) #Remove the time dependence of heights by setting heights from each level as their temporal mean heights=ds['height'].groupby('bottom_top').mean() Nt,Nz = ds['height'].shape for i in range(Nt): ds['height'][i,:]=heights return ds def getDataSetDict(self): return self.description def getDataSetFieldShape(self): return self.dataDict['u'].shape def getRecordDict(self,recNum): return self.records[recNum] def setRunningMeans(self,windowLength,levels): #def getDataSetRunningMean(self,windowLength,levels, start_datetime,stop_datetime): for k in range(levels): #print("setRunningMeans: k = {:d}".format(k)) self.dataDict['u_mean'][:,k] = running_mean(self.dataDict['u'][:,k],windowLength) self.dataDict['v_mean'][:,k] = running_mean(self.dataDict['v'][:,k],windowLength) self.dataDict['w_mean'][:,k] = running_mean(self.dataDict['w'][:,k],windowLength) self.dataDict['theta_mean'][:,k] = running_mean(self.dataDict['theta'][:,k],windowLength) self.dataDict['tke_mean'][:,k] = running_mean(self.dataDict['tke'][:,k],windowLength) self.dataDict['hflux_mean'][:,k] = running_mean(self.dataDict['hflux'][:,k],windowLength) self.dataDict['uu_mean'][:,k] = running_mean( np.square(np.subtract(self.dataDict['u'][:,k],self.dataDict['u_mean'][:,k])),windowLength) self.dataDict['uv_mean'][:,k] = running_mean( np.multiply(np.subtract(self.dataDict['u'][:,k],self.dataDict['u_mean'][:,k]), np.subtract(self.dataDict['v'][:,k],self.dataDict['v_mean'][:,k])) ,windowLength) self.dataDict['uw_mean'][:,k] = running_mean( np.multiply(np.subtract(self.dataDict['u'][:,k],self.dataDict['u_mean'][:,k]), np.subtract(self.dataDict['w'][:,k],self.dataDict['w_mean'][:,k])) ,windowLength) self.dataDict['vv_mean'][:,k] = running_mean( np.square(np.subtract(self.dataDict['v'][:,k],self.dataDict['v_mean'][:,k])),windowLength) self.dataDict['vw_mean'][:,k] = running_mean( np.multiply(np.subtract(self.dataDict['v'][:,k],self.dataDict['v_mean'][:,k]), np.subtract(self.dataDict['w'][:,k],self.dataDict['w_mean'][:,k])) ,windowLength) self.dataDict['ww_mean'][:,k] = running_mean( np.square(np.subtract(self.dataDict['w'][:,k],self.dataDict['w_mean'][:,k])),windowLength) self.dataDict['wt_mean'][:,k] = running_mean( np.multiply(np.subtract(self.dataDict['w'][:,k],self.dataDict['w_mean'][:,k]), np.subtract(self.dataDict['theta'][:,k],self.dataDict['theta_mean'][:,k])) ,windowLength) self.dataDict['wspd_mean'] = np.sqrt(np.square(self.dataDict['u_mean'])+np.square(self.dataDict['v_mean'])) #self.dataDict['wdir_mean'] = np.arctan2(self.dataDict['v_mean'],self.dataDict['u_mean'])*180./np.pi+180.0 #From Branko's original, but this seems incorrect... self.dataDict['wdir_mean'] = (270.0-np.arctan2(self.dataDict['v_mean'],self.dataDict['u_mean'])*180./np.pi)%360 # self.dataDict['shear_mean']=np.sqrt(np.square(self.uw_mean)+np.square(self.vw_mean)) # # Plotting functions (TODO: move to plotting.py) # def plotDataSetByKey(self,xVarKey,yVarKey): plt.figure() plt.plot(self.dataDict[xVarKey],self.dataDict[yVarKey],'bo-') #plt.show(block=False) plt.draw() #plt.show() #plt.pause(0.0001) def plotObsVsModelProfileAsSubplot(self,fig,axs,fldString,obsData,obsIndepVar,obsLabel,modelData,modelIndepVar,modelLabel): #Set the Marker styles obs_marker_style = dict(color='r', linestyle='None', marker='s', markersize=5, markerfacecolor='None') model_marker_style = dict(color='b', linestyle='--', marker='o', markersize=3, markerfacecolor='None') #Setup up the shared y-axis ticks and labels yticks=np.arange(0,251,50) ylabels=[] ylabels.extend(str(z) for z in range(0,251,50)) #Compute the standard deviation of obsField obs_std = np.std(obsData,axis=0) model_std = np.std(modelData,axis=0) #Find the x-axis Min,Max, and Interval deltaXp = np.nanmax(np.append(np.abs(np.nanmax(np.mean(obsData,axis=0))- \ np.nanmax(np.mean(modelData,axis=0))) \ ,np.nanmax(obs_std))) deltaXm = np.nanmax(np.append(np.abs(np.nanmin(np.mean(obsData,axis=0))- \ np.nanmin(np.mean(modelData,axis=0))) \ ,np.nanmax(obs_std))) deltaX = np.nanmax(np.append(deltaXp,deltaXm)) xTickMin = np.floor(np.nanmin(np.mean(obsData,axis=0))-deltaX) xTickMax = np.ceil(np.nanmax(np.mean(obsData,axis=0))+deltaX) xTickInterval = np.round_((xTickMax-xTickMin)/3.0,0) #print the x-axis characteristics print('{:s}'.format(fldString+" x-axis traits...")) print('{:s}'.format("xTickMin ="+str(xTickMin))) print('{:s}'.format("xTickMax ="+str(xTickMax))) print('{:s}'.format("xTickInterval ="+str(xTickInterval))) #Setup the x-axis ticks and labels xticks=np.arange(xTickMin,xTickMax+xTickInterval,xTickInterval) xlabels=[] xlabels.extend(str(u).split('.')[0] for u in xticks.tolist()) #Plot the observations (and uncertainty via errorbars) axs.errorbar(np.mean(obsData,axis=0), obsIndepVar, xerr=obs_std, capsize=2, \ label=obsLabel, **obs_marker_style) axs.errorbar(np.mean(modelData,axis=0), modelIndepVar, xerr=model_std, capsize=2, \ label=modelLabel, **model_marker_style) #axs.plot(np.mean(modelData,axis=0), modelIndepVar, \ # label=modelLabel, **model_marker_style) axs.set(xticks=xticks,xticklabels=xlabels,yticks=yticks,yticklabels=ylabels) #Format and beautify the axes ticks and limits axs.yaxis.set_minor_locator(AutoMinorLocator(4)) axs.xaxis.set_minor_locator(AutoMinorLocator(4)) axs.tick_params(direction='in',top=True,right=True,length=10, width=2, which='major') axs.tick_params(direction='in',top=True,right=True,length=5, width=1, which='minor') axs.tick_params(axis='both', which='major', labelsize=8) axs.tick_params(axis='both', which='minor', labelsize=6) axs.set_ylim(0.0,np.max(obsIndepVar+50)) axs.set_xlim(xTickMin,xTickMax) def plotObsVsModelTimeSeriesAsSubplot(self,fig,axs,fldString, \ obsData,obsIndepVar,obsLabel,obsLevs, \ modelData,modelIndepVar,modelLabel,modelLevs): obs_marker_style = dict(linestyle='-') model_marker_style = dict(linestyle=':') for lev in range(obsData.shape[1]): axs.plot(obsIndepVar,obsData[:,lev],label = obsLabel+": "+str(obsLevs[0,lev]),**obs_marker_style) for lev in range(modelData.shape[1]): axs.plot(modelIndepVar,modelData[:,lev],label = modelLabel+": "+str(modelLevs[0,lev]),**model_marker_style) def plotSingleSourceTimeSeriesAsSubplot(self,fig,axs,fldString, \ fldData,fldIndepVar,fldLabel,fldLevs): fld_marker_style = dict(linestyle='-') for lev in range(fldData.shape[1]): axs.plot(fldIndepVar,fldData[:,lev],label = fldLabel+": "+str(fldLevs[0,lev]),**fld_marker_style) #####END OF the MMC_CLASS ### Readers for legacy MMC data def read_ascii_header(f): """Read header from legacy MMC file, called by _read_ascii()""" head1 = f.readline() head2 = f.readline() head3 = f.readline() head4 = f.readline() head5 = f.readline() head6 = f.readline() head7 = f.readline() head8 = f.readline() head9 = f.readline() lab = head1[12:25].strip() print("lab: {:s}".format(lab)) location = head2[12:25].strip() latitude = float(head3[12:25].strip()) longitude = float(head4[12:25].strip()) codename = head5[12:25].strip() print("codename: {:s}".format(codename)) codetype = head6[12:25].strip() casename = head7[12:25].strip() benchmark = head8[12:25].strip() levels = int(head9[12:25].strip()) print("levels: {:d}".format(levels)) fileheader = { 'lab':lab, 'location':location, 'latitude':latitude, 'longitude':longitude, 'codename':codename, 'codetype':codetype, 'casename':casename, 'benchmark':benchmark, 'levels':levels, } return fileheader def read_ascii_recordheader(f): """Read a record from legacy MMC file, called by _read_ascii()""" try: pos0=f.tell() head0 = f.readline() pos1=f.tell() if pos1==pos0: recordheader = {} else: head1 = f.readline() head2 = f.readline() head3 = f.readline() head4 = f.readline() head5 = f.readline() head6 = f.readline() head7 = f.readline() date = head1[12:22] time = head2[12:22] ustar = float(head3[26:36].strip()) z0 = float(head4[26:36].strip()) tskin = float(head5[26:36]) hflux = float(head6[26:36]) varlist = head7.split() varnames=[] varunits=[] for i in range(len(varlist)): if (i % 2) == 0: varnames.append(varlist[i]) if (i % 2) == 1: varunits.append(varlist[i]) recordheader = { 'date':date, 'time':time, 'ustar':ustar, 'z0':z0, 'tskin':tskin, 'hflux':hflux, 'varnames':varnames, 'varunits':varunits, } except: print("Error in readrecordheader... Check your datafile for bad records!!\n Lines read are") print("head1 = ",head1) print("head2 = ",head2) print("head3 = ",head3) print("head4 = ",head4) print("head5 = ",head5) print("head6 = ",head6) print("head7 = ",head7) return recordheader def read_ascii_records(f,Nlevels): """Read specified number of records from legacy MMC file, called by _read_ascii(). """ record=[] for i in range(Nlevels): line = f.readline() #data = map(float,line.split()) for data in map(float,line.split()): record.append(data) #print("len(data) = {:d}",len(data)) #record.append(data) #print("len(record) = {:d}",len(record)) recordarray=np.array(record).reshape(Nlevels,floor(len(record)/Nlevels)) #print("recordarray.shape = ",recordarray.shape) return recordarray ### Utility functions for MMC class def linearly_interpolate_nans(y): # Fit a linear regression to the non-nan y values # Create X matrix for linreg with an intercept and an index X = np.vstack((np.ones(len(y)), np.arange(len(y)))) # Get the non-NaN values of X and y X_fit = X[:, ~np.isnan(y)] y_fit = y[~np.isnan(y)].reshape(-1, 1) # Estimate the coefficients of the linear regression beta = np.linalg.lstsq(X_fit.T, y_fit, rcond=None)[0] # Fill in all the nan values using the predicted coefficients y.flat[np.isnan(y)] = np.dot(X[:, np.isnan(y)].T, beta) return y def running_mean(x, N): M = len(x) bad = np.where(np.isnan(x)) B = bad[0].size if (B > 0) and (float(B)/float(M) <= 0.1): x = linearly_interpolate_nans(x) if (B > 0) and (float(B)/float(M) > 0.1): sys.exit("More than 10% data is NaN!") y = x cumsum = np.cumsum(np.insert(x, 0, 0)) xavg = (cumsum[N:] - cumsum[:-N]) / N for i in range(0,floor(N/2)): xavg = np.insert(xavg,i,np.nanmean(y[i:i+N])) for i in range(M-floor(N/2)+1,M): xavg = np.append(xavg,np.nanmean(y[i-N:i])) return xavg def running_mean2(x,N): xavg=[] M=len(x) for i in range(0,floor(N/2)): xavg.append(np.nanmean(x[i:i+N])) for i in range(floor(N/2),M-floor(N/2)): xavg.append(np.nanmean(x[i-floor(N/2):i+floor(N/2)])) for i in range(M-floor(N/2),M): xavg.append(np.nanmean(x[i-N:i])) return xavg ``` #### File: mmctools/mmctools/similarity.py ```python import numpy as np def Paulson_m(x): """Momentum similarity function for unstable conditions Ref: <NAME>., 1970: The mathematical representation of wind speed and temperature in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857-861. """ return np.pi/2 - 2*np.arctan(x) + np.log((1+x)**2 * (1 + x**2) / 8) def Paulson_h(x): """Heat similarity function for unstable conditions Ref: <NAME>., 1970: The mathematical representation of wind speed and temperature in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857-861. """ return 2 * np.log((1 + x**2) / 2) def Jimenez_m(z_L, a=6.1, b=2.5, alpha_m=10.0): """Momentum similarity function used by WRF Ref: <NAME>., <NAME>, <NAME>, <NAME>. Montavez and <NAME>, 2012: A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather Rev., 140, 898-918. """ zeta = np.array(z_L) psi = np.zeros(zeta.shape) # Unstable conditions (Eqn. 17) uns = np.where(zeta < 0) x = (1 - 16*zeta[uns])**0.25 paulson_func = Paulson_m(x) # "Kansas-type" functions y = (1 - alpha_m*zeta[uns])**(1./3) conv_func = 3./2 * np.log(y**2 + y + 1./3) \ - np.sqrt(3) * np.arctan(2*y + 1/np.sqrt(3)) \ + np.pi/np.sqrt(3) # convective contribution psi[uns] = (paulson_func + zeta[uns]**2 * conv_func) \ / (1 + zeta[uns]**2) # Stable conditions (Eqn. 18) sta = np.where(zeta >= 0) psi[sta] = -a * np.log(zeta[sta] + (1 + zeta[sta]**b)**(1./b)) return psi def Jimenez_h(z_L, c=5.3, d=1.1, alpha_h=34.0): """Heat similarity function used by WRF Ref: <NAME>., <NAME>, <NAME>, <NAME>, J.P. Montavez and <NAME>, 2012: A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather Rev., 140, 898-918. """ zeta = np.array(z_L) psi = np.zeros(zeta.shape) # Unstable conditions (Eqn. 17) uns = np.where(zeta < 0) x = (1 - 16*zeta[uns])**0.25 paulson_func = Paulson_h(x) # "Kansas-type" functions y = (1 - alpha_h*zeta[uns])**(1./3) conv_func = 3./2 * np.log(y**2 + y + 1./3) \ - np.sqrt(3) * np.arctan(2*y + 1/np.sqrt(3)) \ + np.pi/np.sqrt(3) # convective contribution psi[uns] = (paulson_func + zeta[uns]**2 * conv_func) \ / (1 + zeta[uns]**2) # Stable conditions (Eqn. 19) sta = np.where(zeta >= 0) psi[sta] = -c * np.log(zeta[sta] + (1 + zeta[sta]**d)**(1./d)) return psi ``` #### File: windtools/windtools/openfoam.py ```python import re class InputFile(dict): """Object to parse and store openfoam input file data Written by <NAME> (<EMAIL>) Includes support for parsing: - single values, with attempted cast to float/bool - lists - dictionaries """ DEBUG = False block_defs = [ ('{','}',dict), ('(',')',list), ('[',']',list), ] true_values = [ 'true', 'on', 'yes', ] false_values = [ 'false', 'off', 'no', 'none', ] special_keywords = [ 'uniform', 'nonuniform', 'table', ] def __init__(self,fpath,nodef=False): """Create a dictionary of definitions from an OpenFOAM-style input file. Inputs ------ fpath : str Path to OpenFOAM file nodef : bool, optional If the file only contains OpenFOAM data, e.g., a table of vector values to be included from another OpenFOAM file, then create a generic 'data' parent object to contain the file data. """ # read full file with open(fpath) as f: lines = f.readlines() if nodef: lines = ['data ('] + lines + [')'] # trim single-line comments and remove directives for i,line in enumerate(lines): line = line.strip() if line.startswith('#'): if self.DEBUG: print('Ignoring directive:',line) lines[i] = '' else: idx = line.find('//') if idx >= 0: lines[i] = line[:idx].strip() # trim multi-line comments txt = '\n'.join(lines) idx0 = txt.find('/*') while idx0 >= 0: idx1 = txt.find('*/',idx0+1) assert (idx1 > idx0), 'Mismatched comment block' if self.DEBUG: print('Remove comment block:',txt[idx0:idx1]) txt = txt[:idx0] + txt[idx1+2:] idx0 = txt.find('/*') # consolidate definitions into single lines txt = txt.replace('\n',' ') txt = txt.replace('\t',' ') txt = txt.strip() # now parse each line for name,line,containertype in self._split_defs(txt): if self.DEBUG: print('\nPARSING',name,'FROM',line,'of TYPE',containertype) self._parse(name,line,containertype) self._sanitycheck() def _sanitycheck(self): """Make sure the InputFile was read properly""" noparent = [key is None for key in self.keys()] if any(noparent): print('Definitions improperly read, some values without keys') print('If you believe this is an error, then re-run with the nodef keyword') def _format_item_str(self,val,maxstrlen=60): printval = str(val) if isinstance(val,list) and (len(printval) > maxstrlen): printval = '[list of length {:d}]'.format(len(val)) return printval def __repr__(self): descstrs = [ '{:s} : {:s}'.format(key, self._format_item_str(val)) for key,val in self.items() ] return '\n'.join(descstrs) def _split_defs(self,txt): """Splits blocks of text into lines in the following forms: key value; key (values...) key {values...} (values...) ((values...) (values...)) where lists and dicts may be nested. The outlier case is the (nested) list which takes on the key of its parent. """ names, lines, container = [], [], [] while len(txt) > 0: if self.DEBUG: print('current text:',txt) if (txt[0] == '('): # special treatment for lists, or lists within a list name = None else: # - find first word (name) idx = txt.find(' ') name = txt[:idx] if self.DEBUG: print('name=',name) txt = txt[idx+1:].strip() # - find next word (either a value/block) idx = txt.find(' ') if idx < 0: # EOF string = txt txt = '' # to exit loop if self.DEBUG: print('EOF',string) else: string = txt[:idx].strip() if string in self.special_keywords: # append special keyword to name and read the next word name += '_'+string txt = txt[idx+1:].strip() idx = txt.find(' ') assert (idx > 0), 'problem parsing '+string+' field' string = txt[:idx].strip() if string.endswith(';'): # found single definition if self.DEBUG: print('value=',string[:-1]) names.append(name) lines.append(string[:-1]) # strip ; container.append(None) else: # found block if self.DEBUG: print('current string:',string) blockstart = string[0] blockend = None blocktype = None for block in self.block_defs: if blockstart == block[0]: blockend = block[1] blocktype = block[2] break assert (blockend is not None), 'Unknown input block '+blockstart # find end of block idx = txt.find(blockend) + 1 assert (idx > 0), 'Mismatched input block' # consolidate spaces blockdef = re.sub(' +',' ',txt[:idx].strip()) Nopen = blockdef.count(blockstart) Nclose = blockdef.count(blockend) while Nopen != Nclose: if self.DEBUG: print(' incomplete:',blockdef) idx = txt.find(blockend, idx) + 1 blockdef = txt[:idx].strip() Nopen = blockdef.count(blockstart) Nclose = blockdef.count(blockend) # select block if self.DEBUG: print('complete block=',blockdef) names.append(name) lines.append(blockdef) container.append(blocktype) if self.DEBUG: print('container type=',container[-1]) # trim text block txt = txt[idx+1:].strip() return zip(names, lines, container) def _parse(self,name,defn,containertype,parent=None): """Parse values split up by _split_defs() Casts to float and bool (the latter by checking against a list of known true/false values, since bool(some_str) will return True if the string has a nonzero length) will be attempted. If the value is a container (i.e., list or dict), then _split_defs() and _parse() will be called recursively. """ if self.DEBUG: print('----------- parsing block -----------') if parent is not None: print('name:',name,'parent:',str(parent)) if containertype is not None: print('container type:',containertype) defn = defn.strip() if containertype is None: # set single value in parent defn = self._try_cast(defn) # SET VALUE HERE if self.DEBUG: print(name,'-->',defn) if parent is None: self.__setitem__(name, defn) elif isinstance(parent, dict): parent[name] = defn else: assert isinstance(parent, list) parent.append(defn) else: # we have a subblock, create new container if parent is None: # parent is the InputFile object if self.DEBUG: print('CREATING',containertype,'named',name) self.__setitem__(name, containertype()) newparent = self.__getitem__(name) elif isinstance(parent, dict): # parent is a dictionary if self.DEBUG: print('ADDING dictionary entry,',name) parent[name] = containertype() newparent = parent[name] else: assert isinstance(parent, list) # parent is a list if self.DEBUG: print('ADDING list item, name=',name) if name is not None: # if we have nested nists with mixed types we could # end up here... parent.append(self._try_cast(name)) newparent = containertype() parent.append(newparent) newdefn = defn[1:-1].strip() if (containertype is list) \ and ('(' not in newdefn) and (')' not in newdefn): # special treatment for lists for val in newdefn.split(): # recursively call parse wihout a name (None for # list) and without a container type to indicate # that a new value should be set self._parse(None,val,None,parent=newparent) else: for newname,newdef,newcontainertype in self._split_defs(newdefn): self._parse(newname,newdef,newcontainertype,parent=newparent) def _try_cast(self,s): assert(s.find(' ') < 0) try: # attempt float cast s = float(s) except ValueError: # THIS IS A TRAP #try: # # attempt boolean cast # s = bool(s) #except ValueError: # # default to string # pass if s.lower() in self.true_values: s = True elif s.lower() in self.false_values: s = False else: # default to string s = s.strip('"') s = s.strip('\'') return s ``` #### File: mmctools/wrf/ts.py ```python import os, glob import time import numpy as np import pandas as pd import xarray as xr import f90nml from .utils import Tower from .utils import combine_towers def read_tslist(fpath, snap_to_grid=None,grid_order='F',max_shift=1e-3, convert_to_xy=None, latlon_ref=(0,0)): """Read the description of sampling locations Parameters ---------- fpath : str Path to tslist file snap_to_grid : list or tuple, or None If not None, then adjust the lat/lon coordinates so that they lie on a regular grid with shape (Nlat, Nlon). Assume that the sampling locations are regularly ordered. grid_order : str Either 'F' or 'C' for Fortran (axis=0 changes fastest) and C ordering (axis=-1 changes fastest), respectively. max_shift : float If snap_to_grid is True, then this is the maximum amount (in degrees) that a tower location will change in latitude or longitude. convert_to_xy : str or None Mapping to use for converting from lat/lon to x/y coordinates. If None, x and y are not calculated latlon_ref : list or tuple Latitude and longitude to use as a reference to determine the zone number and relative distances x,y. """ df = pd.read_csv(fpath,comment='#',delim_whitespace=True, names=['name','prefix','lat','lon']) if snap_to_grid is not None: print('Attemping to adjust grid lat/lon') assert (len(snap_to_grid) == 2), 'snap_to_grid should be (Nlat,Nlon)' Nlat,Nlon = snap_to_grid # original center of sampling grid lat0 = df['lat'].mean() lon0 = df['lon'].mean() # lat/lon have correspond to the first and second dims, respectively lat = np.reshape(df['lat'].values, snap_to_grid, order=grid_order) lon = np.reshape(df['lon'].values, snap_to_grid, order=grid_order) # calculate 1-d lat/lon vectors from average spacing delta_lat = np.mean(np.diff(lat, axis=0)) delta_lon = np.mean(np.diff(lon, axis=1)) print(' lat/lon spacings:',delta_lat,delta_lon) new_lat1 = np.linspace(lat[0,0], lat[0,0]+(Nlat-1)*delta_lat, Nlat) new_lon1 = np.linspace(lon[0,0], lon[0,0]+(Nlon-1)*delta_lon, Nlon) # calculate new lat/lon grid new_lat, new_lon = np.meshgrid(new_lat1, new_lon1, indexing='ij') # calculate new center new_lat0 = np.mean(new_lat1) new_lon0 = np.mean(new_lon1) # shift lat_shift = lat0 - new_lat0 lon_shift = lon0 - new_lon0 if (np.abs(lat_shift) < max_shift) and (np.abs(lon_shift) < max_shift): print(' shifting lat/lon grid by ({:g}, {:g})'.format(lat_shift, lon_shift)) new_lat += lat_shift new_lon += lon_shift new_lat = new_lat.ravel(order=grid_order) new_lon = new_lon.ravel(order=grid_order) # one last sanity check, to make sure we didn't screw up # anything during renumbering assert np.all(np.abs(new_lat - df['lat']) < max_shift) assert np.all(np.abs(new_lon - df['lon']) < max_shift) # now update the df df['lat'] = new_lat df['lon'] = new_lon else: print(' grid NOT shifted, delta lat/lon ({:g}, {:g}) > {:g}'.format( lat_shift, lon_shift, max_shift)) if convert_to_xy == 'utm': import utm x0,y0,zone0,_ = utm.from_latlon(*latlon_ref) for prefix,row in df.iterrows(): x,y,_,_ = utm.from_latlon(row['lat'], row['lon'], force_zone_number=zone0) df.loc[prefix,'x'] = x - x0 df.loc[prefix,'y'] = y - y0 elif convert_to_xy is not None: print('Unrecognized mapping:',convert_to_xy) return df class Toof(object): """Class for processing WRF outputs for coupling to microscale solvers. The name toof stems from the original fortran implementation of "wrftoof" (i.e., WRF to OpenFOAM) found at https://github.com/NREL/SOWFA/tree/master/tools/WRFextraction. """ def __init__(self,dpath, prefixes, starttime, targetdomain, wrfdomain=-1, namelist='namelist.input', tsdir='tsout', verbose=True): """Process a series of tsout files representing a grid of WRF profiles from tslist sampling. Parameters ---------- dpath : str Path to wrf case directory prefixes : list List of tslist prefixes to use for constructing a WRF subdomain; virtual towers should form an ordered grid starttime : str or timestamp Datetime to convert ts output (in hours) to timestamps targetdomain : Domain object Instance of mmctools.coupling.domain.Domain class describing the microscale domain wrfdomain : int, optional Index (0-based) of wrf domain from which to sample (default: -1, i.e., the innermost domain) namelist : str, optional Filename in `dpath` of wrf namelist input tsdir : str, optional Path to subdirectory containing tsout files """ self.dpath = dpath self.prefixes = prefixes self.starttime = starttime self.domain = targetdomain self.wrfdomain = wrfdomain self.namelist = namelist self.tsdir = os.path.join(dpath,tsdir) self.verbose = verbose self._setup() self._read_towers() def _setup(self): # scrape WRF namelist for additional parameters nmlpath = os.path.join(self.dpath,'namelist.input') nml = f90nml.read(nmlpath) self.max_dom = int(nml['domains']['max_dom']) dxlist = nml['domains']['dx'] dylist = nml['domains']['dy'] if self.wrfdomain >= 0: assert self.wrfdomain < self.max_dom,\ 'Requested domain {:d}, max_dom={:d}'.format(domain,self.max_dom) idx = self.wrfdomain else: idx = self.max_dom + self.wrfdomain # update prefixes self.prefixes = [prefix+'.d{:02d}'.format(idx+1) for prefix in self.prefixes] # get grid spacing self.dx = float(dxlist[idx]) self.dy = float(dylist[idx]) if self.verbose: print('Read',nmlpath) print(' max_dom =',self.max_dom) print(' dx,dy =',self.dx,self.dy) # get lat/lon if needed if not self.domain.have_latlon: if self.verbose: print('Calculating grid lat/lon') self.domain.calc_latlon() def _read_towers(self): if self.verbose: print('Calling combine_towers for',self.tsdir,'...') print(' interpolating to z= [', self.domain.z[0], self.domain.z[1], self.domain.z[2], '..', self.domain.z[-2], self.domain.z[-1], ']') self.ds = combine_towers( self.tsdir, restarts=None, simulation_start=self.starttime, fname=self.prefixes, structure='ordered', dx=self.dx, dy=self.dy, heights=self.domain.z, height_var='ph', # geopotential height agl=True, verbose=self.verbose ) self.ds = self.ds.swap_dims({'nz':'height'}) # to facilitate ds.interp() if self.verbose: print('... done reading ts outputs') def interp_to_latlon(self,latlon): """Get data column at specified latlon Based on original wrftoof "cavalier approach" ignoring curvature and assuming grid cells are square (i.e., WRF lat/lon are Cartesian. """ tgtlat,tgtlon = latlon # Not guaranteed to find correct indices: #lat1 = self.ds.coords['lat'].mean(dim='nx').values #lon1 = self.ds.coords['lon'].mean(dim='ny').values #dlat = np.mean(np.diff(lat1)) #dlon = np.mean(np.diff(lon1)) #j = int((tgtlat - lat1[0]) / dlat) # lat changes over ny dimension #i = int((tgtlon - lon1[0]) / dlon) # lon changes over nx dimension #if self.verbose: # print('Interpolating',latlon,'from') # print(' approx lat {:g} and {:g}'.format(lat1[j], lat1[j+1])) # print(' approx lon {:g} and {:g}'.format(lon1[i], lon1[i+1])) #assert (tgtlat >= lat1[j]) and (tgtlat < lat1[j+1]) #assert (tgtlon >= lon1[i]) and (tgtlon < lon1[i+1]) wrflat = self.ds.coords['lat'].transpose('nx','ny',transpose_coords=True).values wrflon = self.ds.coords['lon'].transpose('nx','ny',transpose_coords=True).values dmin = 9e9 i,j = None,None for ii in range(self.ds.dims['nx']-1): for jj in range(self.ds.dims['ny']-1): # "error" in distances from 4 corners d = ((tgtlat - wrflat[ii,jj])**2 + (tgtlon - wrflon[ii,jj])**2)**0.5 if (d < dmin) and (tgtlat >= wrflat[ii,jj]) and (tgtlon >= wrflon[ii,jj]): dmin = d i,j = ii,jj #print('selected',i,j) assert (tgtlat >= wrflat[i,j]) and (tgtlat < wrflat[i,j+1]) assert (tgtlon >= wrflon[i,j]) and (tgtlon < wrflon[i+1,j]) # bilinear interpolation f00 = self.ds.sel(nx=i ,ny=j) f10 = self.ds.sel(nx=i+1,ny=j) f01 = self.ds.sel(nx=i ,ny=j+1) f11 = self.ds.sel(nx=i+1,ny=j+1) finterp = f00 * (wrflon[i+1,j] - tgtlon ) * (wrflat[i,j+1] - tgtlat ) + \ f10 * (tgtlon - wrflon[i,j]) * (wrflat[i,j+1] - tgtlat ) + \ f01 * (wrflon[i+1,j] - tgtlon ) * (tgtlat - wrflat[i,j]) + \ f11 * (tgtlon - wrflon[i,j]) * (tgtlat - wrflat[i,j]) finterp = finterp / ((wrflon[i+1,j] - wrflon[i,j]) * (wrflat[i,j+1] - wrflat[i,j])) # note: y and z coordinates don't get interpolated finterp = finterp.assign_coords({'lon':tgtlon,'lat':tgtlat}) return finterp.drop_vars(['y','z']) def map_to_boundary(self,i=None,j=None,k=None,allpts=False): """Get boundary data over time on the specified boundary from the target domain. Setting `allpts` to True will interpolate to all points at the target domain resolution; otherwise, interpolate to data columns at the domain corners. """ assert np.count_nonzero([idx is not None for idx in [i,j,k]])==1, \ 'Specify i, j, or k' if allpts: print('WARNING: current implementation of allpts is likely to result in extreme memory usage and may crash') # interpolate to selected lat/lon selected_x, selected_y, selected_lat, selected_lon = \ self._select_boundary_latlon(i,j,k,allpts) if self.verbose: print('selected lat:',selected_lat) print('selected lon:',selected_lon) dslist = self._get_datasets_at_locations( selected_x,selected_y,selected_lat,selected_lon) # combine all interpolated profiles boundarydata = self._create_dataset_from_list(i,j,k,allpts,dslist) return boundarydata def _get_datasets_at_locations(self,selected_x, selected_y, selected_lat, selected_lon): dslist = [] for x,y,lat,lon in zip(selected_x, selected_y, selected_lat, selected_lon): ds = self.interp_to_latlon((lat,lon)) ds = ds.expand_dims({'x':[x],'y':[y]}) dslist.append(ds) return dslist def _create_dataset_from_list(self,i,j,k,allpts,dslist): ds = xr.combine_by_coords(dslist) if (i is not None): mydim = 'x' idx = i elif (j is not None): mydim = 'y' idx = j elif (k is not None): mydim = 'height' idx = k if ((i is not None) or (j is not None)) and allpts: # if allpts, interpolate side boundary profiles to exact domain heights ds = ds.interp(height=self.domain.z) elif k is not None: # if horizontal boundary, interpolate to constant z if self.verbose: print('interpolating to',self.domain.z[k]) ds = ds.interp(height=self.domain.z[k]) else: ds = ds.sel({mydim: ds.coords[mydim][idx]}) return ds def _select_boundary_latlon(self,i,j,k,allpts): """Helper function for map_to_boundary""" selected_lat = None selected_lon = None if i is not None: assert i in [0,-1] selected_x = self.domain.x[i] if allpts: selected_lat = self.domain.lat[i,:] selected_lon = self.domain.lon[i,:] selected_y = self.domain.y else: selected_lat = self.domain.lat[i,::self.domain.ny] selected_lon = self.domain.lon[i,::self.domain.ny] selected_y = self.domain.y[::self.domain.ny] selected_x = np.repeat(selected_x, len(selected_y)) elif j is not None: assert j in [0,-1] selected_y = self.domain.y[j] if allpts: selected_lat = self.domain.lat[:,j] selected_lon = self.domain.lon[:,j] selected_x = self.domain.x else: selected_lat = self.domain.lat[::self.domain.nx,j] selected_lon = self.domain.lon[::self.domain.nx,j] selected_x = self.domain.x[::self.domain.nx] selected_y = np.repeat(selected_y, len(selected_x)) elif k is not None: assert k in [0,-1] if allpts: raise NotImplementedError("I don't think there's a use case for this...") else: selected_lat = self.domain.lat[::self.domain.nx,::self.domain.ny] selected_lon = self.domain.lon[::self.domain.nx,::self.domain.ny] selected_x = self.domain.x[::self.domain.nx] selected_y = self.domain.y[::self.domain.ny] selected_lat = selected_lat.ravel() selected_lon = selected_lon.ravel() xx,yy = np.meshgrid(selected_x, selected_y, indexing='ij') selected_x = xx.ravel() selected_y = yy.ravel() assert (selected_lat is not None) and (selected_lon is not None) return selected_x, selected_y, selected_lat, selected_lon def map_to_internal_field(self,datetime): """Get internal field by interpolating between profiles at domain corners """ dslist = [] for i in [0,-1]: for j in [0,-1]: ds = self.interp_to_latlon((self.domain.lat[i,j], self.domain.lon[i,j])) ds = ds.expand_dims({'x': [self.domain.x[i]], 'y': [self.domain.y[j]]}) dslist.append(ds.sel(datetime=datetime)) # combine all interpolated profiles internaldata = xr.combine_by_coords(dslist) # interpolate to cell centers xcc = (self.domain.x[1:] + self.domain.x[:-1]) / 2 ycc = (self.domain.y[1:] + self.domain.y[:-1]) / 2 zcc = (self.domain.z[1:] + self.domain.z[:-1]) / 2 internaldata = internaldata.interp(x=xcc, y=ycc, height=zcc) return internaldata def estimate_horizontal_gradient(self,i=1,j=1,k=1,field='p'): """Estimate horizontal gradients centered at the specified tower (i,j,k). """ print('stub') class TowerArray(object): """Read and store an array of Tower objects sampled from WRF using the tslist """ varnames = ['uu','vv','ww','th','pr','ph','ts'] def __init__(self,outdir,towerdir,domain, starttime,timestep=10.0, tslistpath=None, verbose=True, **tslist_args): """Create a TowerArray object from a WRF simulation with tslist output. DEPRECATED--use wrf.utils.combine_towers() instead Parameters ---------- outdir : str Directory path to where data products, e.g., tower output converted into netcdf files, are to be stored. towerdir : str Path to directory where tslist sampling outputs are stored. domain : int WRF domain to use (domain >= 1) starttime : str or Timestamp The datetime at which the simulation was started (corresponding to t=0 in the sampling output), which should correspond to the start_* namelist parameters in the WRF namelist.input. timestep : float The timestep for the selected WRF domain, in seconds. tslistpath : str, optional Path to tslist file, which explicitly specifies the names and lat/lon values for each tower. tslist_args : optional Keyword arguments passed to read_tslist, e.g., `snap_to_grid` to enforce a regular lat/lon grid. """ self.verbose = verbose # for debugging self.outdir = outdir self.towerdir = towerdir self.domain = domain self.starttime = pd.to_datetime(starttime) self.timestep = timestep self.tslistpath = tslistpath self._check_inputs() self._load_tslist(**tslist_args) def _check_inputs(self): if not os.path.isdir(self.outdir): os.makedirs(self.outdir) if self.tslistpath is not None: assert os.path.isfile(self.tslistpath), 'tslist not found' assert os.path.isdir(self.towerdir), 'tower directory not found' def _load_tslist(self,**kwargs): try: self.tslist = read_tslist(self.tslistpath, **kwargs) except (ValueError,IOError): self.tslist = None # manually determine list of available tower prefixes files = glob.glob( os.path.join(self.towerdir, '*.d{:02d}.TS'.format(self.domain))) self.prefixlist = [ os.path.split(fpath)[1].split('.d')[0] for fpath in files ] else: # tslist was read successfully self.prefixlist = list(self.tslist['prefix']) self.tslist.set_index('prefix',inplace=True) self._catalog_files() def _catalog_files(self): """Check availability of all towers and then create a list of filepaths for each tower, domain, and output variable. """ self.tsfiles = {} for prefix in self.prefixlist: self.tsfiles[prefix] = {} for varname in self.varnames: fpath = os.path.join(self.towerdir, '{:s}.d{:02d}.{:2s}'.format(prefix, self.domain, varname.upper())) assert os.path.isfile(fpath), '{:s} not found'.format(fpath) self.tsfiles[prefix][varname] = fpath def load_data(self, heights=None,height_var='height',approx_height=True, overwrite=False): """Load ncfile(s) if they exist, or generate them using the Tower class Parameters ---------- heights : array-like or None Interpolate to these heights at all times; ignored if data are read from disk instead of processed from WRF output. height_var : str If `heights` is not None, this indicates how the height values are determined: - 'height': Tower.height has been loaded; no actions are performed - 'ph': The tower elevation has been stored in the geo- potential variable; the height (above ground level) will be automatically calculated as Tower.ph - Tower.stationz. approx_height : bool If `heights` is not None, then assume that height is approximately constant in time. This speeds up the interpolation because interpolation does not need to be performed at each time step. overwrite : bool Generate new data (to be written as nc files). """ self.data = {} for prefix in self.prefixlist: fpath = os.path.join(self.outdir, prefix+'.nc') if os.path.isfile(fpath) and not overwrite: if self.verbose: print('Reading',fpath) self.data[prefix] = xr.open_dataset(fpath) else: if self.verbose: print('Creating',fpath) self.data[prefix] = self._process_tower(prefix, heights=heights, height_var=height_var, approx_height=approx_height, outfile=fpath) def load_combined_data(self,fpath,chunks=None): """Load data generated with combine() to avoid having to reload the combined dataset. The `chunks` kwarg may be used to load the dataset with dask. Tips: http://xarray.pydata.org/en/stable/dask.html#chunking-and-performance Parameters ---------- chunks : int or dict, optional If chunks is provided, it used to load the new dataset into dask arrays. ``chunks={}`` loads the dataset with dask using a single chunk for all arrays. """ self.ds = xr.open_dataset(fpath, chunks=chunks) return self.ds def _process_tower(self,prefix, heights=None,height_var=None,approx_height=True, outfile=None): """Use Tower.to_dataframe() to create a dataframe, to which we add tower latitude/longitude. Setting them as indices makes the recognizable as coordinates by xarray. """ towerfile = '{:s}.d{:02d}.*'.format(prefix, self.domain) fpath = os.path.join(self.towerdir,towerfile) # create Tower object totaltime0 = time.time() tow = Tower(fpath,varlist=self.varnames) excludelist = ['ts'] # skip surface data # set up height variable if needed if heights is not None: assert (height_var is not None), 'height attribute unknown' if height_var == 'ph': # this creates a time-heightlevel varying height tow.height = getattr(tow,height_var) - tow.stationz excludelist += [height_var] if approx_height: mean_height = np.mean(tow.height, axis=0) if self.verbose: # diagnostics stdev0 = np.std(tow.height, axis=0) kmax0 = np.argmax(stdev0) print(' max stdev in height at (z~={:g}m) : {:g}'.format( mean_height[kmax0], stdev0[kmax0])) if heights is not None: zmax = np.max(heights) heights_within_micro_dom = np.ma.masked_array( tow.height, tow.height > zmax) stdev = np.std(heights_within_micro_dom, axis=0) kmax = np.argmax(stdev) print(' max stdev in height (up to z={:g} m) at (z~={:g} m) : {:g}'.format( np.max(heights_within_micro_dom), mean_height[kmax], stdev[kmax])) tow.height = mean_height elif height_var != 'height': raise ValueError('Unexpected height_var='+height_var+'; heights not calculated') # now convert to a dataframe (note that height interpolation # will be (optionally) performed here time0 = time.time() ds = tow.to_xarray(start_time=self.starttime, time_step=self.timestep, heights=heights, exclude=excludelist) time1 = time.time() if self.verbose: print(' to_xarray() time = {:g}s'.format(time1-time0)) # save time0 = time.time() if outfile is not None: ds.to_netcdf(outfile) totaltime1 = time.time() if self.verbose: print(' xarray output time = {:g}s'.format(totaltime1-time0)) print(' TOTAL time = {:g}s'.format(totaltime1-totaltime0)) return ds def combine(self,cleanup=False): """Create volume data (excluding surface data) by combining lat/lon coordinates across all datasets. Tested for data on a regular grid. Notes: - This has a _very_ large memory overhead, i.e., need enough memory to store and manipulate all of the tower data simultaneously, otherwise it may hang. - xarray.combine_by_coords fails with a cryptic "the supplied objects do not form a hypercube" message if the lat/lon values do not form a regular grid """ datalist = [ data for key,data in self.data.items() ] self.ds = xr.combine_by_coords(datalist) if cleanup is True: import gc # garbage collector try: del self.data except AttributeError: pass else: if self.verbose: print('Cleared data dict from memory') finally: gc.collect() return self.ds ```
{ "source": "joejoeyjoseph/playground", "score": 3 }
#### File: advance_py/05 Classes/enums_start.py ```python def main(): pass # TODO: enums have human-readable values and types # TODO: enums have name and value properties # TODO: print the auto-generated value # TODO: enums are hashable - can be used as keys if __name__ == "__main__": main() ``` #### File: advance_py/06 Logging/basiclog_finished.py ```python import logging def main(): # Use basicConfig to configure logging # this is only executed once, subsequent calls to # basicConfig will have no effect logging.basicConfig(level=logging.DEBUG, filemode="w", filename="output.log") # Try out each of the log levels logging.debug("This is a debug-level log message") logging.info("This is an info-level log message") logging.warning("This is a warning-level message") logging.error("This is an error-level message") logging.critical("This is a critical-level message") # Output formatted string to the log logging.info("Here's a {} variable and an int: {}".format("string", 10)) if __name__ == "__main__": main() ``` #### File: advance_py/06 Logging/customlog_start.py ```python import logging # TODO: add another function to log from def main(): # set the output file and debug level, and # TODO: use a custom formatting specification logging.basicConfig(filename="output.log", level=logging.DEBUG) logging.info("This is an info-level log message") logging.warning("This is a warning-level message") if __name__ == "__main__": main() ``` #### File: advance_py/07 Comprehensions/dictcomp_start.py ```python def main(): # define a list of temperature values ctemps = [0, 12, 34, 100] # TODO: Use a comprehension to build a dictionary # TODO: Merge two dictionaries with a comprehension team1 = {"Jones": 24, "Jameson": 18, "Smith": 58, "Burns": 7} team2 = {"White": 12, "Macke": 88, "Perce": 4} if __name__ == "__main__": main() ```
{ "source": "joejohnston203/ricochet_cevns_spectra", "score": 3 }
#### File: bump/fit_bump/fit_neos.py ```python import numpy as np from scipy.optimize import curve_fit import matplotlib.pyplot as plt data = np.loadtxt("neos_bump_ratio.csv", delimiter=",") x = data[:, 0] # x was from 0 to 8, but it should have been 1 to 8 x = 1+7./8.*x y = data[:, 1] x_fit = x[np.logical_and(0<x,x<8.)] y_fit = y[np.logical_and(0<x,x<8.)] def f(x, a0, b0, mu, sig): return a0 + b0*np.exp(-(x-mu)**2/ (2*sig**2)) f = np.vectorize(f) res = curve_fit(f, x, y, [1., 0.1, 4.5, 0.5]) plt.figure() plt.plot(x, y, "k-", label="NEOS Ratio") plt.plot(x_fit, f(x_fit, *res[0]), label="Gaussian Fit") plt.title("Fit Res: a0=%.3f, b0=%.3f, mu=%.2f, sig=%.3f"%tuple(res[0])) plt.xlabel("Prompt Energy (MeV)") plt.ylabel("Ratio to Prediction") plt.legend() plt.savefig("neos_fit.png") print("Fit results: %s"%res[0]) ``` #### File: results/cevns_xsec/make_cevns_plots.py ```python from reactor_tools import NeutrinoSpectrum import cevns_spectra from cevns_spectra import dsigmadT_cns, dsigmadT_cns_rate, dsigmadT_cns_rate_compound, total_cns_rate_an, total_cns_rate_an_compound, total_XSec_cns, total_XSec_cns_compound, total_XSec_cns_compound_in_bin, get_atomic_arrs import numpy as np from scipy.optimize import curve_fit import scipy.integrate as spint from scipy.interpolate import interp1d import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import os #plt.rcParams.update({'font.size': 18}) def plot_cevns_rate_fixed_T(): fig2 = plt.figure() Tmin = 0.001 Z = 32 N = 74. e_arr = np.linspace(0.,1e7, 10000) fig2.patch.set_facecolor('white') plt.ylim((1e-44, 1e-42)) plt.semilogy(e_arr*1e-6,dsigmadT_cns(10.,e_arr,Z,N),'k:',label='T=10 eV',linewidth=2) plt.semilogy(e_arr*1e-6,dsigmadT_cns(50.,e_arr,Z,N),'b-',label='T=50 eV',linewidth=2) plt.semilogy(e_arr*1e-6,dsigmadT_cns(100.,e_arr,Z,N),'r--',label='T=100 eV',linewidth=2) plt.semilogy(e_arr*1e-6,dsigmadT_cns(200.,e_arr,Z,N),'g-.',label='T=200 eV',linewidth=2) plt.legend(prop={'size':11}) plt.xlabel('Neutrino Energy (MeV)') plt.ylabel('Differential XSec, cm^2/eV') plt.title('Ge-74 Differential CEvNS XSec, Fixed T') plt.savefig('plots/diff_xsec_fixed_T.png') fig2.clf() def plot_cevns_rate_fixed_Enu(): fig2 = plt.figure() Tmin = 0.001 Z = 32 N = 74 t_arr = np.logspace(0, 4, 10000) fig2.patch.set_facecolor('white') plt.ylim((1e-44, 1e-42)) plt.loglog(t_arr,dsigmadT_cns(t_arr,1e6,Z,N),'k:',label='Enu = 1 MeV',linewidth=2) plt.loglog(t_arr,dsigmadT_cns(t_arr,2e6,Z,N),'b-',label='Enu = 2 MeV',linewidth=2) plt.loglog(t_arr,dsigmadT_cns(t_arr,4e6,Z,N),'r--',label='Enu = 4 MeV',linewidth=2) plt.loglog(t_arr,dsigmadT_cns(t_arr,6e6,Z,N),'g-.',label='Enu = 6 MeV',linewidth=2) plt.legend(prop={'size':11}) plt.xlabel('Recoil Energy (eV)') plt.ylabel('Differential XSec, cm^2/eV') plt.title('Ge-74 Differential CEvNS XSec, Fixed Enu') plt.savefig('plots/diff_xsec_fixed_Enu.png') fig2.clf() def plot_cevns_rate_vs_T_Enu(nu_spec=None, nbins=1000): fig = plt.figure() fig.patch.set_facecolor('white') e_arr = np.linspace(0.,1e7, nbins) Tmin = 0.001 t_arr = np.logspace(0, 3, nbins) Z = 32 N = 74 T, E = np.meshgrid(t_arr,e_arr) spec = dsigmadT_cns(T,E,Z,N) smax = spec.max() smin = smax*1e-3 spec[spec<smin] = smin im = plt.pcolor(T, E*1e-6, spec, norm=LogNorm(vmin=smin, vmax=smax), cmap='PuBu_r') fig.colorbar(im) plt.xlabel("Recoil Energy T (eV)") plt.ylabel("Neutrino Energy Enu (MeV)") plt.title("Ge-74 Differential XSec, cm^2/eV") plt.savefig('plots/diff_xsec_vs_E_T.png') if __name__ == "__main__": try: os.mkdir('plots') except OSError as e: pass # CEvNS Differential Cross Section plot_cevns_rate_fixed_T() plot_cevns_rate_fixed_Enu() plot_cevns_rate_vs_T_Enu(nbins=10) labels=["Ge", "Zn", "Si", "CaWO4", "Al2O3"] thresholds = [0., 10., 100.] emin = 0. emax = 12.e6 bin_size = 1.e4 # 10 keV elbs = np.arange(emin, emax, bin_size) for i in range(len(labels)): (Z_arr, N_arr, atom_arr) = get_atomic_arrs(labels[i]) f = open("cevns_xsec_binned_%s.txt"%labels[i], 'w') f.write("# "+labels[i]+"\n") f.write("# Z=%s, N=%s, atoms=%s\n"%(Z_arr, N_arr, atom_arr)) f.write("# Columns 2-4 contain CEvNS xsec averaged over a %.2e keV bin\n"%(bin_size/1.e3)) f.write("# xsec units: cm^2\n") f.write("#\n") f.write("# Enu (keV) Thr=0 eV Thr=10 eV Thr=100 eV\n") for elb in elbs: line = "%.4e, "%(elb/1.e3) for Tmin in thresholds: line += "%.5e, "%\ (total_XSec_cns_compound_in_bin(Tmin, elb, elb+bin_size, Z_arr, N_arr, atom_arr)/bin_size) line = line[:-2]+"\n" f.write(line) f.close() for i in range(len(labels)): (Z_arr, N_arr, atom_arr) = get_atomic_arrs(labels[i]) f = open("cevns_xsec_%s.txt"%labels[i], 'w') f.write("# "+labels[i]+"\n") f.write("# Z=%s, N=%s, atoms=%s\n"%(Z_arr, N_arr, atom_arr)) f.write("# Columns 2-4 contain CEvNS xsec in cm^2\n") f.write("#\n") f.write("# Enu (keV) Thr=0 eV Thr=10 eV Thr=100 eV\n") for elb in elbs: line = "%.4e, "%(elb/1.e3) for Tmin in thresholds: line += "%.5e, "%\ total_XSec_cns_compound(Tmin, elb, Z_arr, N_arr, atom_arr, form_factor=True, helm_ff=True) line = line[:-2]+"\n" f.write(line) f.close() ``` #### File: results/commercial_reactor/make_commercial_reactor_plots.py ```python from reactor_tools import NeutrinoSpectrum import cevns_spectra from cevns_spectra import dsigmadT_cns, dsigmadT_cns_rate, dsigmadT_cns_rate_compound, total_cns_rate_an, total_cns_rate_an_compound, cns_total_rate_integrated, cns_total_rate_integrated_compound, total_XSec_cns, total_XSec_cns_compound, cevns_yield_compound, ibd_yield, get_atomic_arrs import numpy as np from scipy.optimize import curve_fit import scipy.integrate as spint from scipy.interpolate import interp1d import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import os plt.rcParams.update({'font.size': 18}) Mn = cevns_spectra.Mn Mn_eV = Mn*1e3 s_per_day = 60.0*60.0*24.0 def store_reactor_flux_kev(nu_spec1, outfile="flux.txt", e_kev_lb=0., e_kev_ub=1.e4, num_points=10000): ''' Store the flux in a text file Output is in two columns: E_nu (keV), Flux (nu/(keV*day*cm^2)) The stored flux is always from 1 eV to 10 MeV. e_kev_lb and e_kev_ub are used to set the stored flux to 0 outside of that region ''' e_arr = np.linspace(1., 1.e7, num_points) spec = s_per_day*nu_spec1.d_phi_d_enu_ev(e_arr)*1e3 spec[np.logical_or(e_arr<e_kev_lb*1000., e_arr>e_kev_ub*1000.)] = 0. np.savetxt(outfile, np.stack((e_arr/1.e3, spec), 1), header="E_nu (keV), Flux (nu/(keV*day*cm^2))") def plot_neutrino_spectrum_comparison(nu_spec1, nu_spec_kopeikin, num_points=1000): ''' Make a plot of the comparison of two neutrino spectra Args: nu_spec1, nu_spec_kopeikin: Initialized NeutrinoSpectrum object ''' # Plot neutrino spectrum + kopeikin spectrum e_arr = np.linspace(0., 1e7, num_points) fig0 = plt.figure() fig0.patch.set_facecolor('white') spec_tot1 = s_per_day*nu_spec1.d_phi_d_enu_ev(e_arr) plt.plot(e_arr*1e-6,spec_tot1*1e6, "r-",linewidth=1, label="Bestiole") spec_tot_kopeikin = s_per_day*nu_spec_kopeikin.d_phi_d_enu_ev(e_arr) plt.plot(e_arr*1e-6,spec_tot_kopeikin*1e6, "b-", linewidth=1, label="Kopeikin") plt.legend(prop={'size':11}) plt.xlabel('Neutrino Energy (MeV)') plt.ylabel('Flux, nu/(MeV*day*cm^2)') plt.title('Commercial Reactor (%s) Neutrino Flux'% nu_spec1.get_settings_string()) plt.savefig('plots/commercial_reactor_neutrino_spectrum.png') fig0.clf() # Difference fig0 = plt.figure() fig0.patch.set_facecolor('white') #diff = (spec_tot1-spec_tot_kopeikin)/spec_tot1 diff = spec_tot1/spec_tot_kopeikin plt.plot(e_arr*1e-6,diff, "k-", linewidth=1) plt.plot(e_arr*1e-6,0*e_arr+1.0, "r--", linewidth=1) plt.legend(prop={'size':11}) plt.xlabel('Neutrino Energy (MeV)') plt.ylabel('Bestiole/Kopeikin') plt.ylim(0., 2.) plt.xlim(0., 4.) plt.title('Commercial Reactor Spectrum Comparison With Kopeikin') plt.savefig('plots/commercial_reactor_kopeikin_comparison.png') fig0.clf() def plot_neutrino_spectrum_other(nu_spec, num_points=1000): ''' Make a plot of the fission and other spectra Args: nu_spec: Initialized NeutrinoSpectrum object ''' # Plot neutrino spectrum + kopeikin spectrum e_arr = np.linspace(0., 10.e6, num_points) fig0 = plt.figure() fig0.patch.set_facecolor('white') spec_tot = s_per_day*nu_spec.d_phi_d_enu_ev(e_arr) plt.plot(e_arr*1e-6,spec_tot*1e6, "k-",linewidth=2, label="Total") include_other = nu_spec.include_other nu_spec.include_other = False spec_fission = s_per_day*nu_spec.d_phi_d_enu_ev(e_arr) plt.plot(e_arr*1e-6,spec_fission*1e6, 'r:', linewidth=2, label="Fission") nu_spec.include_other = include_other fractions = nu_spec.get_fractions() nu_spec.set_fractions([0., 0., 0., 0.]) spec_other = s_per_day*nu_spec.d_phi_d_enu_ev(e_arr) plt.plot(e_arr*1e-6,spec_other*1e6, 'b--', linewidth=2, label="Capture") nu_spec.set_fractions(fractions) plt.legend(prop={'size':11}) plt.xlabel('Neutrino Energy (MeV)') plt.ylabel('Flux, nu/(MeV*day*cm^2)') plt.xlim(0., 8.) plt.ylim(0., 1.7e17) plt.grid() #plt.title('Commercial Reactor Neutrino Flux') plt.savefig('plots/commercial_reactor_fission_vs_capture.png') fig0.clf() # Fractional Contribution fig0 = plt.figure(figsize=(4., 3.)) fig0.patch.set_facecolor('white') plt.plot(e_arr*1e-6, spec_tot/spec_tot, "k-", linewidth=1) plt.plot(e_arr*1e-6, spec_fission/spec_tot, "r:", linewidth=1) plt.plot(e_arr*1e-6, spec_other/spec_tot, "b--", linewidth=1) #plt.xlabel('Neutrino Energy (MeV)') #plt.ylabel('Fractional Contribution') plt.xlim(0., 2.) plt.ylim(0., 1.1) plt.savefig('plots/commercial_reactor_fission_vs_capture_fraction.png') fig0.clf() def plot_dsigmadT_cns_rate(nu_spec, bounds=[1e-4, 1e1], num_points=100): t_arr = np.logspace(0, 3, num=num_points) fig3 = plt.figure() fig3.patch.set_facecolor('white') plt.ylim(bounds) plt.xlim(1e0, 1e3) labels = ["Si", "Zn", "Ge", "Al2O3", "CaWO4"] lines = ['g-', 'b-', 'r-', 'c-.', 'm:'] widths = [1,1,1,2,2] for i in range(len(labels)): (Z_arr, N_arr, atom_arr) = get_atomic_arrs(labels[i]) plt.loglog(t_arr,dsigmadT_cns_rate_compound(t_arr, Z_arr, N_arr, atom_arr, nu_spec),lines[i],label=labels[i],linewidth=widths[i]) plt.legend(prop={'size':11}) plt.xlabel('Recoil Energy T (eV)') plt.ylabel('Differential Event Rate (Events/kg/day/eV)') plt.title("Commercial Reactor (%s) Differential Rate"% nu_spec.get_settings_string()) plt.axvline(x=10.) plt.axvline(x=100.) plt.savefig('plots/commercial_reactor_dsigmadT_event_rate.png') fig3.clf() def plot_total_cns_rate(nu_spec, num_points=100): # Make a plot of integrated event rate per eV vs threshold energy t_arr = np.logspace(0, 3, num=num_points) fig4 = plt.figure() fig4.patch.set_facecolor('white') labels = ["Si", "Zn", "Ge", "Al2O3", "CaWO4"] lines = ['g-', 'b-', 'r-', 'c-.', 'm:'] widths = [1,1,1,2,2] for i in range(len(labels)): (Z_arr, N_arr, atom_arr) = get_atomic_arrs(labels[i]) plt.loglog(t_arr,total_cns_rate_an_compound(t_arr, 1e7, Z_arr, N_arr, atom_arr, nu_spec),lines[i],label=labels[i],linewidth=widths[i]) plt.legend(prop={'size':11}) plt.xlabel('Recoil Threshold (eV)') plt.ylabel('Event Rate (Events/kg/day)') plt.title("Commercial Reactor (%s) Total Rate"% nu_spec.get_settings_string()) plt.axvline(x=10.) plt.axvline(x=100.) plt.savefig('plots/commercial_reactor_event_rate_integrated.png') def lighten_color(color, amount=0.5): """ Lightens the given color by multiplying (1-luminosity) by the given amount. Input can be matplotlib color string, hex string, or RGB tuple. Examples: >> lighten_color('g', 0.3) >> lighten_color('#F034A3', 0.6) >> lighten_color((.3,.55,.1), 0.5) """ import matplotlib.colors as mc import colorsys try: c = mc.cnames[color] except: c = color c = colorsys.rgb_to_hls(*mc.to_rgb(c)) return colorsys.hls_to_rgb(c[0], 1 - amount * (1 - c[1]), c[2]) def plot_flux_xsec(nu_spec): # Ge (Z_arr, N_arr, atom_arr) = get_atomic_arrs("Ge") e_arr = np.linspace(0., 1e7, 100000) # Plot neutrino flux fig, host = plt.subplots(figsize=(7, 4)) fig.subplots_adjust(left=0.075, right=0.95, bottom=0.15, top=0.95) fig.patch.set_facecolor('white') par1 = host.twinx() par2 = host.twinx() # Offset the right spine of par2. The ticks and label have already been # placed on the right by twinx above. #par2.spines["right"].set_position(("axes", 1.2)) # Having been created by twinx, par2 has its frame off, so the line of its # detached spine is invisible. First, activate the frame but make the patch # and spines invisible. #make_patch_spines_invisible(par2) # Second, show the right spine. #par2.spines["right"].set_visible(True) lines = [] # Spectrum in nu/(MeV*day*cm^2) spec_tot = s_per_day*nu_spec.d_phi_d_enu_ev(e_arr)*1e6 p_spec, = host.plot(e_arr*1e-6,spec_tot, "k-", label=r"$\nu$ Flux", linewidth=2.) lines.append(p_spec) xsec_0eV = total_XSec_cns_compound(0., e_arr, Z_arr, N_arr, atom_arr) p_xsec_0, = par1.plot(e_arr*1e-6,xsec_0eV, color="#e41a1c", linestyle="-", label=r'T$_{Thr}$=0 eV') lines.append(p_xsec_0) prod_0eV = spec_tot*xsec_0eV p_prod_0, = par2.plot(e_arr*1e-6,spec_tot*xsec_0eV, color=lighten_color("#e41a1c", 1.0), linestyle="-") xsec_10eV = total_XSec_cns_compound(10., e_arr, Z_arr, N_arr, atom_arr) p_xsec_10, = par1.plot(e_arr*1e-6,xsec_10eV, color="#377eb8", linestyle="--", label='T$_{Thr}$=10 eV') lines.append(p_xsec_10) prod_10eV = spec_tot*xsec_10eV p_prod_10, = par2.plot(e_arr*1e-6,spec_tot*xsec_10eV, color=lighten_color("#377eb8", 1.0), linestyle="--") xsec_50eV = total_XSec_cns_compound(50., e_arr, Z_arr, N_arr, atom_arr) p_xsec_50, = par1.plot(e_arr*1e-6,xsec_50eV, color="#4daf4a", linestyle=":", label='T$_{Thr}$=50 eV') lines.append(p_xsec_50) prod_50eV = spec_tot*xsec_50eV p_prod_50, = par2.plot(e_arr*1e-6,spec_tot*xsec_50eV, color=lighten_color('#4daf4a', 1.0), linestyle=":") xsec_100eV = total_XSec_cns_compound(100., e_arr, Z_arr, N_arr, atom_arr) p_xsec_100, = par1.plot(e_arr*1e-6,xsec_100eV, color="#984ea3", linestyle="-.", label='T$_{Thr}$=100 eV') lines.append(p_xsec_100) prod_100eV = spec_tot*xsec_100eV p_prod_100, = par2.plot(e_arr*1e-6,spec_tot*xsec_100eV, color=lighten_color("#984ea3", 1.0), linestyle="-.") host.set_xlim(0, 8) '''host.set_xlim(0, 2) host.set_ylim(0, 2) par1.set_ylim(0, 4) par2.set_ylim(1, 65)''' host.set_xlabel("Neutrino Energy (MeV)") host.set_ylabel("Arbitrary Units") #par1.set_ylabel("CEvNS XSec [cm^2]") #par2.set_ylabel("Product [nu/(MeV*day)]") #plt.text(9.8, 1.96*1.e-24, "1.e-40", bbox=dict(facecolor='white', alpha=1.0)) #plt.text(12., 1.96*1.e-24, "1.e-24", bbox=dict(facecolor='white', alpha=1.0)) #host.yaxis.label.set_color('k') #par1.yaxis.label.set_color('k') #par2.yaxis.label.set_color('k') tkw = dict(size=4, width=1.5) #host.tick_params(axis='y', colors='k', **tkw) #par1.tick_params(axis='y', colors='k', **tkw) #par2.tick_params(axis='y', colors='k', **tkw) host.tick_params(axis='x', **tkw) host.tick_params(axis='y', which='both', # both major and minor ticks are affected left=True, # ticks along the bottom edge are off right=False, # ticks along the top edge are off labelleft=False, # labels along the bottom edge are off labelcolor='white') #host.get_yaxis().set_visible(False) par1.get_yaxis().set_visible(False) par2.get_yaxis().set_visible(False) host.legend(lines, [l.get_label() for l in lines], loc=(0.585, 0.5), prop={'size':14}, framealpha=0.9) #plt.legend(loc=4) plt.axvline(1.8, color='k') host.set_ylim(bottom=0) par1.set_ylim(bottom=0) par2.set_ylim(bottom=0) plt.title('') host.grid() plt.savefig('plots/flux_xsec_product.pdf', bbox_inches='tight') fig.clf() # Save results to file np.savetxt("plots/flux_xsec_product.txt", np.column_stack((1e-6*e_arr,spec_tot, xsec_0eV, prod_0eV, xsec_10eV, prod_10eV, xsec_50eV, prod_50eV, xsec_100eV, prod_100eV)), header="Neutrino Energies: MeV\n"+ "Neutrino Flux: nu/(MeV*day*cm^2)\n"+ "Cross Sections: cm^2\n"+ "Product: nu/(MeV*day)\n"+ "Neutrino Energy, Neutrino Flux, Ethr=0eV xsec, Ethr=0eV xsec,"+ "Ethr=10eV xsec, Ethr=10eV xsec, Ethr=50eV xsec, Ethr=50eV xsec,"+ "Ethr=100eV xsec, Ethr=100eV xsec, Ethr=200eV xsec, Ethr=200eV xsec") def print_cevns_xsec(nu_spec): print("CEvNS Yields per Average Atom (10^-43 cm^2/fission):") labels = ["Al2O3", "Si", "Zn", "Ge", "CaWO4"] for i in range(len(labels)): (Z_arr, N_arr, atom_arr) = get_atomic_arrs(labels[i]) print("\t%s 10 eV: %.3e"% (labels[i], (cevns_yield_compound(10., 1.e8, Z_arr, N_arr, atom_arr, nu_spec)/1.e-43))) print("\t%s 100 eV: %.3e"% (labels[i], (cevns_yield_compound(100., 1.e8, Z_arr, N_arr, atom_arr, nu_spec)/1.e-43))) print("IBD Yield per Nucleon (10^-43 cm^2/fission): %.3e"%(ibd_yield(nu_spec)/1.e-43)) print("") print("CEvNS Yields per Gram (10^-20 cm^2/fission/g):") for i in range(len(labels)): (Z_arr, N_arr, atom_arr) = get_atomic_arrs(labels[i]) print("\t%s 10 eV: %.3e"% (labels[i], (cevns_yield_compound(10., 1.e8, Z_arr, N_arr, atom_arr, nu_spec, per_gram=True)/1.e-43))) print("\t%s 100 eV: %.3e"% (labels[i], (cevns_yield_compound(100., 1.e8, Z_arr, N_arr, atom_arr, nu_spec, per_gram=True)/1.e-43))) print("IBD Yield (10^-20 cm^2/fission/g): %.3e"%(ibd_yield(nu_spec, per_gram=True)/1.e-20)) def plot_lowe_spectra(nu_spec, output_path_prefix="plots/", Z=32, A=74, isotope_name='Ge-74', site_title="Commerical Reactor", enu_low=1.8e6, lt18=False, u238n=False, neutron_shapes=True, neutron_levels=True): t_arr = np.logspace(0, 3, num=100) fig3 = plt.figure(figsize=[8., 4.8]) fig3.patch.set_facecolor('white') plt.loglog(t_arr*1.e-3,dsigmadT_cns_rate(t_arr, Z, A-Z, nu_spec)*1.e3,'k-',label='CEvNS Total',linewidth=1.) if(lt18): plt.loglog(t_arr*1.e-3,dsigmadT_cns_rate(t_arr, Z, A-Z, nu_spec, enu_min=enu_low)*1.e3, color="#e41a1c", linestyle="--", label='CEvNS %s>%.1f MeV'%(r'E$_\nu$', enu_low/1.e6), linewidth=2.) plt.loglog(t_arr*1.e-3,dsigmadT_cns_rate(t_arr, Z, A-Z, nu_spec, enu_max=enu_low)*1.e3, color="#377eb8", linestyle=":", label='CEvNS %s<%.1f MeV'%(r'E$_\nu$', enu_low/1.e6), linewidth=2.) if(u238n): include_other = nu_spec.include_other nu_spec.include_other = False plt.loglog(t_arr*1.e-3,dsigmadT_cns_rate(t_arr, Z, A-Z, nu_spec)*1.e3, color="#e41a1c", linestyle="--", label='Fission', linewidth=2.) nu_spec.include_other = include_other fractions = nu_spec.get_fractions() nu_spec.set_fractions([0., 0., 0., 0.]) plt.loglog(t_arr*1.e-3,dsigmadT_cns_rate(t_arr, Z, A-Z, nu_spec)*1.e3, color="#377eb8", linestyle=":", label='U-238 n', linewidth=2.) nu_spec.set_fractions(fractions) def n_back(T_keV, tau_1, tau_2, fac_2, scale, norm=1., n_xsec=0.081): # Returns rate in evts/kg/day/keV rescale = n_xsec/0.081 return 1.e-3*norm*rescale*scale*\ (np.exp(-tau_1*T_keV)+fac_2*np.exp(-tau_2*T_keV)) n_back = np.vectorize(n_back) n_cons_int = spint.quad(n_back, 0.01, 0.9, args=(0.081*1.e3, 0.0086*1.e3, 0.23/0.38, 1.))[0] n_cons_scale = 1/n_cons_int if(neutron_levels): plt.loglog(t_arr*1.e-3, n_back(t_arr*1.e-3, 0.081*1.e3, 0.0086*1.e3, 0.23/0.38, n_cons_scale, 1000.*1.e-3)*1.e3, ':', color='darkorange', label="B=100., Cons") plt.loglog(t_arr*1.e-3, n_back(t_arr*1.e-3, 0.081*1.e3, 0.0086*1.e3, 0.23/0.38, n_cons_scale, 100.*1.e-3)*1.e3, ':', color='orange', label="B=10., Cons") if(neutron_shapes or neutron_levels): plt.loglog(t_arr*1.e-3, n_back(t_arr*1.e-3, 0.081*1.e3, 0.0086*1.e3, 0.23/0.38, n_cons_scale, 1000.*1.e-3)*1.e3, color="#4daf4a", linestyle='-.', linewidth=1., label="B (Conservative)") if(neutron_shapes): n_med_int = spint.quad(n_back, 0.01, 0.9, args=(0.004*1.e3, 0.0005*1.e3, 0.64, 1.))[0] n_med_scale = 1./n_med_int plt.loglog(t_arr*1.e-3, n_back(t_arr*1.e-3, 0.004*1.e3, 0.0005*1.e3, 0.64, n_med_scale, 100.*1.e-3)*1.e3, color="#984ea3", linestyle='-.', linewidth=1.5, label="B (Medium)") n_opt_int = spint.quad(n_back, 0.01, 0.9, args=(0.0004*1.e3, 0.00006*1.e3, 0.64, 1.))[0] n_opt_scale = 1./n_opt_int plt.loglog(t_arr*1.e-3, n_back(t_arr*1.e-3, 0.0004*1.e3, 0.00006*1.e3, 0.64, n_opt_scale, 10.*1.e-3)*1.e3, color="#ff7f00", linestyle='-.', linewidth=2., label="B (Optimistic)") ax = plt.gca() plt.subplots_adjust(right=0.8) ax.legend(bbox_to_anchor=(1.04,1), borderaxespad=0, prop={'size':14}) plt.xlabel('Recoil Energy (keV)') plt.ylabel('Differential Event Rate (dru)') pre_label = "%s (A=%.1f)"%(isotope_name, A) #plt.title(site_title+" "+pre_label+" Differential Rates") plt.xlim(1.e-3, 1.0) plt.ylim(1e-1, 1.e5) plt.axvline(x=1.e-3, color="k") plt.axvline(x=10.e-3, color="k") plt.axvline(x=50.e-3, color="k") plt.grid() filename = output_path_prefix+'lowe_'+isotope_name if(lt18): filename += "_lt18" if(u238n): filename += "_u238n" if(neutron_shapes): filename += "_nShapes" if(neutron_levels): filename += "_nLevels" filename += '.pdf' plt.savefig(filename, bbox_inches='tight') fig3.clf() def plot_lowe_spectra_isotopes(nu_spec, output_path_prefix="plots/", Z_arrs=[[32]], A_arrs=[[72.64]], weights=[[1]], isotope_names=['Ge'], site_title="Commerical Reactor", enu_low=1.8e6, lt18=False, u238n=False, plot_total=False, plot_low=True, plot_high=False, plot_back=True): t_arr = np.logspace(0, 3, num=100) fig3 = plt.figure() fig3.patch.set_facecolor('white') high_colors = ["#a6cee3", "#b2df8a", "#fb9a99", "#fdbf6f", "#cab2d6"] low_colors = ["#1f78b4", "#33a02c", "#e31a1c", "#ff7f00", "#6a3d9a"] for i in range(len(Z_arrs)): Z_arr = np.array(Z_arrs[i]) A_arr = np.array(A_arrs[i]) weight_arr = weights[i] name = isotope_names[i] if(plot_total): plt.loglog(t_arr*1.e-3,dsigmadT_cns_rate_compound(t_arr, Z_arr, A_arr-Z_arr, weight_arr, nu_spec)*1.e3,'-.', color=high_colors[i], label='%s Tot'%name,linewidth=float(i)/2.+0.5) if(lt18): if(plot_high): plt.loglog(t_arr*1.e-3,dsigmadT_cns_rate_compound(t_arr, Z_arr, A_arr-Z_arr, weight_arr, nu_spec, enu_min=enu_low)*1.e3, color=high_colors[i], linestyle="--", label='%s enu>%.1f MeV'%(name, enu_low/1.e6), linewidth=float(i)/2.+0.5) if(plot_low): plt.loglog(t_arr*1.e-3,dsigmadT_cns_rate_compound(t_arr, Z_arr, A_arr-Z_arr, weight_arr, nu_spec, enu_max=enu_low)*1.e3, color=low_colors[i], linestyle="-", label='%s enu<%.1f MeV'%(name, enu_low/1.e6), linewidth=float(i)/2.+0.5) if(u238n): if(plot_high): include_other = nu_spec.include_other nu_spec.include_other = False plt.loglog(t_arr*1.e-3,dsigmadT_cns_rate_compound(t_arr, Z_arr, A_arr-Z_arr, weight_arr, nu_spec)*1.e3, color=high_colors[i], linestyle="--", label='%s Fission'%name, linewidth=float(i)/2.+0.5) nu_spec.include_other = include_other if(plot_low): fractions = nu_spec.get_fractions() nu_spec.set_fractions([0., 0., 0., 0.]) plt.loglog(t_arr*1.e-3,dsigmadT_cns_rate_compound(t_arr, Z_arr, A_arr-Z_arr, weight_arr, nu_spec)*1.e3, color=low_colors[i], linestyle="-", label='%s U-238 n'%name, linewidth=float(i)/2.+0.5) nu_spec.set_fractions(fractions) if(plot_back): def n_back(T_keV, tau_1, tau_2, fac_2, scale, norm=1., n_xsec=0.081): # Returns rate in evts/kg/day/keV rescale = n_xsec/0.081 return 1.e-3*norm*rescale*scale*\ (np.exp(-tau_1*T_keV)+fac_2*np.exp(-tau_2*T_keV)) n_back = np.vectorize(n_back) n_cons_int = spint.quad(n_back, 0.01, 0.9, args=(0.081*1.e3, 0.0086*1.e3, 0.23/0.38, 1.))[0] n_cons_scale = 1/n_cons_int plt.loglog(t_arr*1.e-3, n_back(t_arr*1.e-3, 0.081*1.e3, 0.0086*1.e3, 0.23/0.38, n_cons_scale, 10.*1.e-3)*1.e3, color="lightgrey", linestyle=':', linewidth=2., label="B=10, Conservative") n_med_int = spint.quad(n_back, 0.01, 0.9, args=(0.004*1.e3, 0.0005*1.e3, 0.64, 1.))[0] n_med_scale = 1./n_med_int plt.loglog(t_arr*1.e-3, n_back(t_arr*1.e-3, 0.004*1.e3, 0.0005*1.e3, 0.64, n_med_scale, 10.*1.e-3)*1.e3, color="grey", linestyle=':', linewidth=1.5, label="B=10, Medium") n_opt_int = spint.quad(n_back, 0.01, 0.9, args=(0.0004*1.e3, 0.00006*1.e3, 0.64, 1.))[0] n_opt_scale = 1./n_opt_int plt.loglog(t_arr*1.e-3, n_back(t_arr*1.e-3, 0.0004*1.e3, 0.00006*1.e3, 0.64, n_opt_scale, 10.*1.e-3)*1.e3, color="k", linestyle=':', linewidth=1., label="B=10, Optimistic") plt.legend(prop={'size':9}) plt.xlabel('Recoil Energy (keV)') plt.ylabel('Differential Event Rate (dru)') plt.ylim(1e-1, 1.e4) plt.axvline(x=1.e-3, color="k") plt.axvline(x=10.e-3, color="k") plt.axvline(x=50.e-3, color="k") title="CEvNS Spectrum for " if(lt18): title += "Enu<1.8/Enu>1.8 MeV" if(u238n): title += " and " if(u238n): title += "U-238 n Capture/Fission" plt.title(title) filename = output_path_prefix+'lowe' for name in isotope_names: filename += '_'+name if(lt18): filename += "_lt18" if(u238n): filename += "_u238n" if(plot_total): filename += "_tot" if(plot_low): filename += "_low" if(plot_high): filename += "_high" if(plot_back): filename += "_back" filename += '.png' plt.savefig(filename) fig3.clf() def calc_lowe_fraction(nu_spec, output_path_prefix="", Z_arr=[32], A_arr=[72.64], weights_arr=[1], isotope_name='Ge', site_title="Commerical Reactor"): enu_low = 1.8e6 t_arr = np.logspace(-2, 4, num=200) N_arr = [] for i in range(len(Z_arr)): N_arr.append(A_arr[i]-Z_arr[i]) A_sum = 0 weight_sum = 0 for j in range(len(Z_arr)): A_sum += (Z_arr[j]+N_arr[j])*weights_arr[j] weight_sum += weights_arr[j] frac = total_cns_rate_an_compound(t_arr, enu_low, Z_arr, N_arr, weights_arr, nu_spec)/\ total_cns_rate_an_compound(t_arr, 1e7, Z_arr, N_arr, weights_arr, nu_spec) frac[np.isnan(frac)] = 0 frac[frac>1.] = 1.1 # It's a fraction, so it should be <1.0 np.savetxt("%sthresh_vs_fraction_lt_1_8_%s.txt"% (output_path_prefix,isotope_name), np.column_stack((t_arr, frac)), header="# T (eV), Fraction") flux_lt_18 = spint.quad(lambda enu: nu_spec.d_phi_d_enu_ev(enu), 0., 1.8e6)[0] flux_tot = spint.quad(lambda enu: nu_spec.d_phi_d_enu_ev(enu), 0., 20.e6)[0] print("Isotope: %s"%isotope_name) print("\tFraction of flux <1.8 MeV: %.4f"%(flux_lt_18/flux_tot)) for thresh in [0.0001, 1., 10., 50.]: frac = total_cns_rate_an_compound(thresh, enu_low, Z_arr, N_arr, weights_arr, nu_spec)/\ total_cns_rate_an_compound(thresh, 1e7, Z_arr, N_arr, weights_arr, nu_spec) print("\tT=%.2e, Frac=%.5f"%(thresh,frac)) if __name__ == "__main__": try: os.mkdir('plots') except OSError as e: pass # The averaged spectrum is stored in U-235 fractions = [1.0, 0.0, 0.0, 0.0] # Chooz reactors are at 102 m and 72, each 4.25 GW # With both on, this is equivalent to 58.82 m from one 4.25 GW reactor power = 4250 distance = 5882 # cm # The stored spectra are in neutrinos/MeV/s for a 4250 MW reactor # reactor_tools will multiply by: power*200./2.602176565e-19 # We need to rescale to undo this scale = 1./(power/200.0/1.602176565e-19) nu_spec = NeutrinoSpectrum(distance, power, False, *fractions, include_other=True) nu_spec.initialize_d_r_d_enu("u235", "root", "../../../final_spectra/sum_U_Pu_20gspt_Tengblad-TAGSnew-ENSDF2020-Qbeta5br_FERMI.screen.QED.aW.root", "nsim_Fission_avg", scale=scale) nu_spec.initialize_d_r_d_enu("u238", "zero") nu_spec.initialize_d_r_d_enu("pu239", "zero") nu_spec.initialize_d_r_d_enu("pu241", "zero") nu_spec.initialize_d_r_d_enu("other", "root", "../../../final_spectra/sum_U_Pu_20gspt_Tengblad-TAGSnew-ENSDF2020-Qbeta5br_FERMI.screen.QED.aW.root", "nsim_U239_Np239_Pu239_avg", scale=scale) # Kopeikin spectra nu_spec_kopeikin = NeutrinoSpectrum(nu_spec.distance, nu_spec.power, False, *fractions) nu_spec_kopeikin.initialize_d_r_d_enu("u235", "txt", "../../data/kopeikin_spectrum.txt") nu_spec_kopeikin.initialize_d_r_d_enu("u238", "zero") nu_spec_kopeikin.initialize_d_r_d_enu("pu239", "zero") nu_spec_kopeikin.initialize_d_r_d_enu("pu241", "zero") nu_spec_kopeikin.initialize_d_r_d_enu("other", "zero") # Mueller spectra nu_spec_mueller = NeutrinoSpectrum(nu_spec.distance, nu_spec.power, True, 0.564, 0.076, 0.304, 0.056) # Daya Bay Numbers (10.1103/PhysRevD.100.052004) nu_spec_mueller.initialize_d_r_d_enu("u235", "txt", "../../data/huber/U235-anti-neutrino-flux-250keV.dat") nu_spec_mueller.initialize_d_r_d_enu("u238", "mueller") nu_spec_mueller.initialize_d_r_d_enu("pu239", "txt", "../../data/huber/Pu239-anti-neutrino-flux-250keV.dat") nu_spec_mueller.initialize_d_r_d_enu("pu241", "txt", "../../data/huber/Pu241-anti-neutrino-flux-250keV.dat") nu_spec_mueller.initialize_d_r_d_enu("other", "mueller") # Store flux to file, for use by statistical code store_reactor_flux_kev(nu_spec, "flux_commercial_reactor_all.txt") store_reactor_flux_kev(nu_spec, "flux_commercial_reactor_lt1800.txt", 0., 1800.) store_reactor_flux_kev(nu_spec, "flux_commercial_reactor_gt1800.txt", 1800., 1.e4) nu_spec.include_other = False nu_spec.set_fractions(fractions) store_reactor_flux_kev(nu_spec, "flux_commercial_reactor_fission.txt") store_reactor_flux_kev(nu_spec, "flux_commercial_reactor_fission_lt1800.txt", 0., 1800.) store_reactor_flux_kev(nu_spec, "flux_commercial_reactor_fission_gt1800.txt", 1800., 1.e4) nu_spec.include_other = True nu_spec.set_fractions([0., 0., 0., 0.]) store_reactor_flux_kev(nu_spec, "flux_commercial_reactor_u238n.txt") store_reactor_flux_kev(nu_spec, "flux_commercial_reactor_u238n_lt1800.txt", 0., 1800.) store_reactor_flux_kev(nu_spec, "flux_commercial_reactor_u238n_gt1800.txt", 1800., 1.e4) nu_spec.set_fractions(fractions) # Plot neutrino spectrum and CEvNS Rates plot_neutrino_spectrum_comparison(nu_spec, nu_spec_kopeikin, num_points=1000) plot_dsigmadT_cns_rate(nu_spec, num_points=100) plot_total_cns_rate(nu_spec, num_points=100) # Plot flux spectrum CEvNS xsec, and product plot_flux_xsec(nu_spec) print_cevns_xsec(nu_spec) print("IBD Yield Summation: %.3e [cm^2/fission]"%ibd_yield(nu_spec, per_gram=False)) print("IBD Yield Mueller: %.3e [cm^2/fission]"%ibd_yield(nu_spec_mueller, per_gram=False)) # Compare fission and n capture neutrino spectra plot_neutrino_spectrum_other(nu_spec, num_points=1000) plot_lowe_spectra(nu_spec, "plots/", Z=32, A=74, isotope_name='Ge-74', lt18=True, neutron_levels=False) plot_lowe_spectra(nu_spec, "plots/", Z=32, A=74, isotope_name='Ge-74', u238n=True, neutron_levels=False) labels = ["CaWO4", "Ge", "Zn", "Si", "Al2O3"] Z_arrs = list() A_arrs = list() weight_arrs = list() for i in range(len(labels)): (Z_arr, N_arr, atom_arr) = get_atomic_arrs(labels[i]) Z_arrs.append(Z_arr) A_arr = np.array(Z_arr)+np.array(N_arr) A_arrs.append(A_arr) weight_arrs.append(atom_arr) plot_lowe_spectra_isotopes(nu_spec, "plots/", Z_arrs=Z_arrs, A_arrs=A_arrs, weights=weight_arrs, isotope_names=labels, lt18=True) plot_lowe_spectra_isotopes(nu_spec, "plots/", Z_arrs=Z_arrs, A_arrs=A_arrs, weights=weight_arrs, isotope_names=labels, lt18=True, plot_high=True, plot_back=False) plot_lowe_spectra_isotopes(nu_spec, "plots/", Z_arrs=Z_arrs, A_arrs=A_arrs, weights=weight_arrs, isotope_names=labels, u238n=True) plot_lowe_spectra_isotopes(nu_spec, "plots/", Z_arrs=Z_arrs, A_arrs=A_arrs, weights=weight_arrs, isotope_names=labels, u238n=True, plot_high=True, plot_back=False) # Store fraction of neutrinos below 1.8 MeV for various threshold try: os.mkdir("fractions") except OSError: pass labels = ["CaWO4", "Ge", "Zn", "Si", "Al2O3"] for i in range(len(labels)): (Z_arr, N_arr, atom_arr) = get_atomic_arrs(labels[i]) A_arr = np.array(Z_arr)+np.array(N_arr) calc_lowe_fraction(nu_spec, "fractions/", Z_arr=Z_arr, A_arr=A_arr, weights_arr=atom_arr, isotope_name=labels[i]) ``` #### File: results/precision_plot/make_precision_plot.py ```python import numpy as np import matplotlib.pyplot as plt import os from scipy.interpolate import make_interp_spline, BSpline def comparison_plots(shape="medium", bkgd="1.0e+02", label="medium"): # PAPER PLOT- Medium case, 5% signal uncertainty and 0% uncertainty fig = plt.figure() fig.patch.set_facecolor('white') data_var = np.loadtxt("lowe_nu_commercial_allLowE_precision_varying/ge_bkgd_"+shape+"_"+bkgd+"_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_var = data_var[:,0]*data_var[:,1]/365. # Precision in pct y_var = data_var[:,4]*100. spl_var = make_interp_spline(np.log10(x_var), y_var, k=3) x_var_new = np.logspace(np.log10(x_var[0]), np.log10(x_var[-1])) y_var_new = spl_var(np.log10(x_var_new)) plt.semilogx(x_var_new, y_var_new, 'r-', label="5% Uncertainty, One Shape") data_fix = np.loadtxt("lowe_nu_commercial_allLowE_precision_fixed/ge_bkgd_"+shape+"_"+bkgd+"_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_fix = data_fix[:,0]*data_fix[:,1]/365. # Precision in pct y_fix = data_fix[:,4]*100. spl_fix = make_interp_spline(np.log10(x_fix), y_fix, k=3) x_fix_new = np.logspace(np.log10(x_fix[0]), np.log10(x_fix[-1])) y_fix_new = spl_fix(np.log10(x_fix_new)) plt.semilogx(x_fix_new, y_fix_new, 'b-.', label="No Uncertainty, One Shape") plt.axhline(y=1., color='k', linestyle=":") plt.axhline(y=5., color='k', linestyle=":") plt.legend(prop={'size':11}) plt.gca().set_xlim(1.e-1, 100.) plt.gca().set_ylim(0., 20.) plt.xlabel("Exposure (kg*years)") plt.ylabel("Precision (%)") plt.title("Precision vs Exposure, %s Shape, Bkgd %s"%(shape, bkgd)) plt.savefig('plots/lowenu_comm_precision_'+label+'.png') data_var = np.loadtxt("lowe_nu_commercial_allLowE_precision_summed_shapes_varying/ge_bkgd_"+shape+"_"+bkgd+"_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_var = data_var[:,0]*data_var[:,1]/365. # Precision in pct y_var = data_var[:,4]*100. spl_var = make_interp_spline(np.log10(x_var), y_var, k=3) x_var_new = np.logspace(np.log10(x_var[0]), np.log10(x_var[-1])) y_var_new = spl_var(np.log10(x_var_new)) plt.semilogx(x_var_new, y_var_new, 'k--', label="5% Uncertainty, Summed Shapes") data_fix = np.loadtxt("lowe_nu_commercial_allLowE_precision_summed_shapes_fixed/ge_bkgd_"+shape+"_"+bkgd+"_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_fix = data_fix[:,0]*data_fix[:,1]/365. # Precision in pct y_fix = data_fix[:,4]*100. spl_fix = make_interp_spline(np.log10(x_fix), y_fix, k=3) x_fix_new = np.logspace(np.log10(x_fix[0]), np.log10(x_fix[-1])) y_fix_new = spl_fix(np.log10(x_fix_new)) plt.semilogx(x_fix_new, y_fix_new, 'c:', label="No Uncertainty, Summed Shapes") plt.legend(prop={'size':11}) plt.savefig('plots/lowenu_comm_precision_summed_shapes_'+label+'.png') def debug_plots(dir_prefix="lowe_nu_commercial_allLowE_precision_", label="one_shape"): # DEBUG PLOT: Varying low e envelope fig = plt.figure() fig.patch.set_facecolor('white') data_var = np.loadtxt(dir_prefix+"varying/ge_bkgd_conservative_1.0e+03_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_var = data_var[:,0]*data_var[:,1]/365. # Precision in pct y_var = data_var[:,4]*100. plt.semilogx(x_var, y_var, linestyle='-', label="B=1000, Conservative") data_var = np.loadtxt(dir_prefix+"varying/ge_bkgd_medium_1.0e+03_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_var = data_var[:,0]*data_var[:,1]/365. # Precision in pct y_var = data_var[:,4]*100. plt.semilogx(x_var, y_var, linestyle='-', label="B=1000, Medium") data_var = np.loadtxt(dir_prefix+"varying/ge_bkgd_optimistic_1.0e+03_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_var = data_var[:,0]*data_var[:,1]/365. # Precision in pct y_var = data_var[:,4]*100. plt.semilogx(x_var, y_var, linestyle='-', label="B=1000, Optimistic") data_var = np.loadtxt(dir_prefix+"varying/ge_bkgd_conservative_1.0e+02_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_var = data_var[:,0]*data_var[:,1]/365. # Precision in pct y_var = data_var[:,4]*100. plt.semilogx(x_var, y_var, linestyle='--', label="B=100, Conservative") data_var = np.loadtxt(dir_prefix+"varying/ge_bkgd_medium_1.0e+02_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_var = data_var[:,0]*data_var[:,1]/365. # Precision in pct y_var = data_var[:,4]*100. plt.semilogx(x_var, y_var, linestyle='--', label="B=100, Medium") data_var = np.loadtxt(dir_prefix+"varying/ge_bkgd_optimistic_1.0e+02_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_var = data_var[:,0]*data_var[:,1]/365. # Precision in pct y_var = data_var[:,4]*100. plt.semilogx(x_var, y_var, linestyle='--', label="B=100, Optimistic") data_var = np.loadtxt(dir_prefix+"varying/ge_bkgd_conservative_1.0e+01_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_var = data_var[:,0]*data_var[:,1]/365. # Precision in pct y_var = data_var[:,4]*100. plt.semilogx(x_var, y_var, linestyle='--', label="B=10, Conservative") data_var = np.loadtxt(dir_prefix+"varying/ge_bkgd_medium_1.0e+01_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_var = data_var[:,0]*data_var[:,1]/365. # Precision in pct y_var = data_var[:,4]*100. plt.semilogx(x_var, y_var, linestyle='--', label="B=10, Medium") data_var = np.loadtxt(dir_prefix+"varying/ge_bkgd_optimistic_1.0e+01_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_var = data_var[:,0]*data_var[:,1]/365. # Precision in pct y_var = data_var[:,4]*100. plt.semilogx(x_var, y_var, linestyle='--', label="B=10, Optimistic") plt.axhline(y=1., color='k', linestyle=":") plt.axhline(y=5., color='k', linestyle=":") plt.legend(prop={'size':11}) plt.gca().set_xlim(1.e-1, 100.) plt.gca().set_ylim(0., 20.) plt.xlabel("Exposure (kg*years)") plt.ylabel("Precision (%)") plt.title("Precision with 5% Uncertainty on Enu<1.8 MeV") plt.savefig('plots/lowenu_comm_precision_debug_5'+label+'.png') # DEBUG PLOT: Fixed low e envelope fig = plt.figure() fig.patch.set_facecolor('white') data_fix = np.loadtxt(dir_prefix+"fixed/ge_bkgd_conservative_1.0e+03_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_fix = data_fix[:,0]*data_fix[:,1]/365. # Precision in pct y_fix = data_fix[:,4]*100. plt.semilogx(x_fix, y_fix, linestyle='-', label="B=1000, Conservative") data_fix = np.loadtxt(dir_prefix+"fixed/ge_bkgd_medium_1.0e+03_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_fix = data_fix[:,0]*data_fix[:,1]/365. # Precision in pct y_fix = data_fix[:,4]*100. plt.semilogx(x_fix, y_fix, linestyle='-', label="B=1000, Medium") data_fix = np.loadtxt(dir_prefix+"fixed/ge_bkgd_optimistic_1.0e+03_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_fix = data_fix[:,0]*data_fix[:,1]/365. # Precision in pct y_fix = data_fix[:,4]*100. plt.semilogx(x_fix, y_fix, linestyle='-', label="B=1000, Optimistic") data_fix = np.loadtxt(dir_prefix+"fixed/ge_bkgd_conservative_1.0e+02_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_fix = data_fix[:,0]*data_fix[:,1]/365. # Precision in pct y_fix = data_fix[:,4]*100. plt.semilogx(x_fix, y_fix, linestyle='--', label="B=100, Conservative") data_fix = np.loadtxt(dir_prefix+"fixed/ge_bkgd_medium_1.0e+02_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_fix = data_fix[:,0]*data_fix[:,1]/365. # Precision in pct y_fix = data_fix[:,4]*100. plt.semilogx(x_fix, y_fix, linestyle='--', label="B=100, Medium") data_fix = np.loadtxt(dir_prefix+"fixed/ge_bkgd_optimistic_1.0e+02_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_fix = data_fix[:,0]*data_fix[:,1]/365. # Precision in pct y_fix = data_fix[:,4]*100. plt.semilogx(x_fix, y_fix, linestyle='--', label="B=100, Optimistic") data_fix = np.loadtxt(dir_prefix+"fixed/ge_bkgd_conservative_1.0e+01_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_fix = data_fix[:,0]*data_fix[:,1]/365. # Precision in pct y_fix = data_fix[:,4]*100. plt.semilogx(x_fix, y_fix, linestyle=':', label="B=10, Conservative") data_fix = np.loadtxt(dir_prefix+"fixed/ge_bkgd_medium_1.0e+01_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_fix = data_fix[:,0]*data_fix[:,1]/365. # Precision in pct y_fix = data_fix[:,4]*100. plt.semilogx(x_fix, y_fix, linestyle=':', label="B=10, Medium") data_fix = np.loadtxt(dir_prefix+"fixed/ge_bkgd_optimistic_1.0e+01_thresh_1.0e-02/precision_ge.txt") # Exposure in kg*years x_fix = data_fix[:,0]*data_fix[:,1]/365. # Precision in pct y_fix = data_fix[:,4]*100. plt.semilogx(x_fix, y_fix, linestyle=':', label="B=10, Optimistic") plt.axhline(y=1., color='k', linestyle=":") plt.axhline(y=5., color='k', linestyle=":") plt.legend(prop={'size':11}) plt.gca().set_xlim(1.e-1, 100.) plt.gca().set_ylim(0., 20.) plt.xlabel("Exposure (kg*years)") plt.ylabel("Precision (%)") plt.title("Precision with No Uncertainty on Enu<1.8 MeV") plt.savefig('plots/lowenu_comm_precision_debug_0'+label+'.png') if __name__ == "__main__": try: os.mkdir('plots') except OSError as e: pass comparison_plots("optimistic", "1.0e+01", "optimistic") comparison_plots("medium", "1.0e+02", "medium") comparison_plots() debug_plots() debug_plots("lowe_nu_commercial_allLowE_precision_summed_shapes_", "summed_shapes") ```
{ "source": "joe-jordan/minimalisp", "score": 3 }
#### File: minimalisp/minimalisp/parse.py ```python import re class sexpr(list): def __init__(self, *args, **kwargs): self.quoted = False super(sexpr, self).__init__(*args, **kwargs) def __repr__(self): outer = super(sexpr, self).__repr__() if self.quoted: return "'" + outer return outer def remove_comments(inp): commentless_lines = [] # kill comment characters ; onwards, when not inside a string. for l in inp.split("\n"): splits = l.split(';') if len(splits) == 1: commentless_lines.append(l) continue previous_string = splits.pop(0) while len(re.findall(r'(?<!\\)"', previous_string)) % 2 != 0: previous_string += ';' + splits.pop() commentless_lines.append(previous_string) return "\n".join(commentless_lines) def clever_split(inp): commentless_inp = remove_comments(inp) # rather than splitting on all whitespace, we want to split only on # whitespace not inside a string. # strings cannot contain newlines, so start by splitting on those: lines = commentless_inp.split("\n") tokens = [] for i, l in enumerate(lines): splits = [s for s in l.split('"')] # if there were no "s in this line, split the whole thing by whitespace: if len(splits) == 1: tokens.extend(l.split()) continue # first " can't be escaped. tokens.extend(splits.pop(0).split()) while splits: this_string = splits.pop(0) # while the quotes are escaped: while this_string[-1] == "\\": assert len(splits) > 0, "string on line %d is not terminated correctly." % i this_string = this_string[:-1] + '\\"' + splits.pop(0) # we've got to the end of this string, add it as its own token: tokens.append('"' + this_string + '"') # the next tokens are not strings, so just extend them (if any): if splits: tokens.extend(splits.pop(0).split()) return tokens def parse(inp): toks = clever_split(inp) parents = {} output_list = sexpr() current_list = output_list while True: try: tok = toks.pop(0) except IndexError: break while tok and tok[0] in "'(" and (tok[0] == '(' or tok[:2] == "'("): current_list.append(sexpr()) parents[id(current_list[-1])] = current_list current_list = current_list[-1] if tok[0] == '(': tok = tok[1:] else: tok = tok[2:] current_list.quoted = True end_here = 0 while tok and tok[-1] == ')': end_here += 1 tok = tok[:-1] if tok: current_list.append(tok) while end_here: end_here -= 1 current_list = parents[id(current_list)] assert id(current_list) == id(output_list), "s expressions not closed" return output_list PAIR_SEPARATOR = '.' class PAIR_LITERALS(object): def __repr__(self): return '.' PAIR_LITERAL = PAIR_LITERALS() NUMERIC = "0123456789" BEGIN_HEXANUMERIC = "#" HEXANUMERIC = NUMERIC + "aAbBcCdDeEfF" STRINGY = '"' DUBIOUS = "+-" ALLOWED_IN_NUMERIC = NUMERIC + DUBIOUS + "eE." from values import Value, Symbol, NIL, Pair, LispType def parse_token(t): char1 = t[0] # shift the decision onto the second char. if char1 in DUBIOUS: # check ahead to see what type we're dealing with. if len(t) == 1: # this is a single + or - as a symbol. do nothing. pass elif t[1] in NUMERIC: # if numeric, just set char1 so that the next section categorises properly. char1 = t[1] if char1 in NUMERIC: assert all([c in ALLOWED_IN_NUMERIC for c in t]), "token %s contains invalid characters to be a numeric literal." % t v = Value(t) elif char1 in STRINGY: v = Value(t) elif char1 in BEGIN_HEXANUMERIC: assert all([c in HEXANUMERIC for c in t[1:]]), "token %s contains invalid characters for a hexadecimal literal." % t t = t.replace('#', '0x').upper() v = Value(t) elif char1 in PAIR_SEPARATOR and len(t) == 1: v = PAIR_LITERAL else: if t.upper() == "NIL": v = NIL() elif t[0] in "'": v = Symbol(t[1:], True) else: v = Symbol(t) return v def parse_token_prompt(t): v = parse_token(t) if v == PAIR_LITERAL: return Value('"."') elif isinstance(v, Symbol): return Value('"%s"' % t) return v def parse_tokens(s): for i, t in enumerate(s): if type(t) == sexpr: parse_tokens(t) continue s[i] = parse_token(t) if s[i] == PAIR_LITERAL: assert i == 1 and len(s) == 3, "incorrect context for a pair literal, %s." % repr(s) def do_pair_literals(s): for i, t in enumerate(s): if type(t) == sexpr: do_pair_literals(t) if len(t) == 3 and t[1] == PAIR_LITERAL: s[i] = Pair(t[0], t[2], t.quoted) def sexprs_to_pairs(s): if isinstance(s, LispType): # value literal or pair literal at top level in source, not a problem. return s for i, t in enumerate(s): if type(t) == sexpr: s[i] = sexprs_to_pairs(t) elif type(t) == Pair: # was specified as a pair literal in the source, may contain s-expressions inside. if type(t.left) == sexpr: t.left = sexprs_to_pairs(t.left) if type(t.right) == sexpr: t.right = sexprs_to_pairs(t.right) assert all([type(t) is not sexpr for t in s]), "programming error in parser." return Pair.pair_list_from_sexpr(s, s.quoted) def parse_program(inp): prog = parse(inp) # now recursively walk over all s-expressions, building tokens into Values, Symbols, and Pair Separator placeholders. parse_tokens(prog) # identify any pair literals and instantiate those first: do_pair_literals(prog) # finally, build actual Pairs for all the proper S-expressions: prog = [sexprs_to_pairs(s) for s in prog] return prog ``` #### File: minimalisp/minimalisp/values.py ```python from __future__ import print_function def crepr(s): assert type(s) is str, "crepr is for strings, i.e. str() instances." prepr = repr(s) if prepr[:3] == '"""': # anything goes, need to manually escape everything. raise NotImplementedError("not implemented for this repr type.") elif prepr[0] == '"': return prepr else: assert prepr[0] == "'", "unknown repr output from python." return '"' + prepr[1:-1].replace("\\'", "'").replace('"', '\\"') + '"' def lrepr(s): if type(s) is str: return crepr(s) return repr(s) class LispType(object): pass class Symbol(LispType): """only stores its text representation as a python string in upper case - can therefore be used as a dict key.""" def __init__(self, s, quoted=False): self.s = s.upper() self.quoted = quoted def __eq__(self, other): if type(other) is not Symbol: return False return self.s == other.s def __ne__(self, other): return not self == other def __repr__(self): if self.quoted: return "'" + self.s return self.s def __hash__(self): return hash(self.s) class LispValue(LispType): pass class NIL(LispValue): def __eq__(self, other): return isinstance(other, NIL) def __ne__(self, other): return not self == other def __repr__(self): return 'NIL' class Value(LispValue): """stored simply as the relevant python type (string, int or float).""" def __init__(self, v, actual=False): if actual: self.v = v else: self.v = eval(v) def __eq__(self, other): if not isinstance(other, Value): return False return self.v == other.v def __ne__(self, other): return not self == other def __repr__(self): if isinstance(self.v, (str, unicode)): return self.v else: return repr(self.v) class Pair(LispType): def __init__(self, left=None, right=None, quoted=False): self.left = left self.right = right self.quoted = quoted def __eq__(self, other): if not isinstance(other, Pair): return False # This is recursive for large pair structures, and should test equality of all # leaf values. # We change the order to avoid making depth-first the enemy of speed (one side may be a # single different value, the other may be a large, equal linked list.) left_is_pair = isinstance(self.left, Pair) and isinstance(other.left, Pair) right_is_pair = isinstance(self.right, Pair) and isinstance(other.right, Pair) if left_is_pair and not right_is_pair: return (self.right == other.right and self.left == other.left) return (self.left == other.left and self.right == other.right) def __ne__(self, other): return not self == other @classmethod def pair_list_from_sexpr(cls, s, outermost_quoted = False): right = NIL() for v in reversed(s): right = Pair(v, right) if outermost_quoted: right.quoted = True return right def __repr__(self): q = "" if self.quoted: q = "'" return "%s(%s . %s)" % (q, self.left, self.right) ``` #### File: minimalisp/minimalisp/vm.py ```python from __future__ import print_function, division from values import NIL, LispType, LispValue, Symbol, Value, Pair from parse import parse_token_prompt, parse_program from operator import mul import random random.seed() import os.path # overwritten in the executible PERMISSIVE = False class LispRuntimeError(BaseException): pass class UnboundSymbolError(LispRuntimeError): pass def sexpr_from_iterator(it): pair = NIL() for i in reversed(it): pair = Pair(i, pair) return pair class Context(dict): """stack-like dictionary.""" def __init__(self, *args, **kwargs): # default arg that can only be specified by keyword. Python 3 fixes this problem. self.parent = kwargs.pop('parent', None) self.env = kwargs.pop('environment', None) if self.env is None: try: self.env = self.parent.env except AttributeError: raise LispRuntimeError('context constructor passed neither parent nor environment.') super(Context, self).__init__(*args, **kwargs) def __getitem__(self, key): try: return super(Context, self).__getitem__(key) except KeyError: if self.parent is None: if PERMISSIVE: return NIL() raise UnboundSymbolError("symbol %r was used unbound." % key) return self.parent[key] def __contains__(self, key): ret = super(Context, self).__contains__(key) if ret is False and self.parent is not None: ret = key in self.parent return ret # evaluate - should be a Symbol, Value or a Pair. def peval(context, o): if not isinstance(o, LispType): raise LispRuntimeError("peval was passed %r, which is not a LispType instance." % o) # Value's and NIL if isinstance(o, LispValue): return o # if object is quoted, un-quote it: if isinstance(o, Pair) and o.quoted: return Pair(o.left, o.right) if isinstance(o, Symbol) and o.quoted: return Symbol(o.s) # if object is a bound symbol, substitute its value: if isinstance(o, Symbol): return context[o] # if o is a function: if hasattr(o, '__call__'): raise LispRuntimeError("cannot evaluate a function") # in other cases, o must be a pair. if not isinstance(o, Pair): raise LispRuntimeError("cannot evaluate %s", o) pair = o # in which case, if we have been asked to run a function! if isinstance(pair.left, Symbol): try: function = context[pair.left] except KeyError: raise LispRuntimeError("unbound symbol %r" % pair.left) if not hasattr(function, '__call__'): raise LispRuntimeError("symbol %r is not bound to a function, but %r" % (pair.left, function)) elif isinstance(pair.left, Pair): # pair.left is a pair. it is important to eval it here - this is the one context in which # it won't be evaled by pre_execute_impl, which only acts on arguments - and check we get a # function, rather than dying here. function = peval(context, pair.left) if not hasattr(function, '__call__'): raise LispRuntimeError("result %r cannot be executed as a function" % function) elif hasattr(pair.left, '__call__'): # someone has got a function object in the right place for us. Go them! function = pair.left else: # pair.left is a Value, or something. raise LispRuntimeError("result %r cannot be executed as a function" % pair.left) return function(context, pair.right) def pre_execute_impl(context, arguments): """This function is run before ANY user or library function, and evaluates the arguments to be passed in. This step cannot be skipped, by anyone.""" pair = arguments evaled_args = [] while not isinstance(pair, NIL): evaled_args.append(peval(context, pair.left)) pair = pair.right return evaled_args def pre_execute(method="", minc=0, maxc=float('inf')): def inner_decorator(execute): def actual_execute(context, arguments): evaled_arguments = pre_execute_impl(context, arguments) count = len(evaled_arguments) if not PERMISSIVE and (count < minc or count > maxc): raise LispRuntimeError("%s: incorrect number of arguments. accepts %r-%r, recieved %r." % ( method, minc, maxc, count)) return execute(*([context] + evaled_arguments)) return actual_execute return inner_decorator def instance_pre_execute(method=""): def inner_decorator(execute): def actual_execute(self, context, arguments): evaled_arguments = pre_execute_impl(context, arguments) count = len(evaled_arguments) if not PERMISSIVE and (count < self.minc or count > self.maxc): raise LispRuntimeError("%s: incorrect number of arguments. accepts %r-%r, recieved %r." % ( method, self.minc, self.maxc, count)) return execute(self, *([context] + evaled_arguments)) return actual_execute return inner_decorator # numeric functions use the static_validate_value_type decorator: numbers = (int, long, float) integers = (int, long) floats = (float,) strings = (str, unicode) values = numbers + strings def static_validate_value_type(method="", types=(object,)): def inner_decorator(execute): def actual_validate(context, *terms): for t in terms: if not isinstance(t, Value): raise ValueError("%s: cannot compute with non-value %r" % (method, t)) if not isinstance(t.v, types): raise ValueError("%s: expected %r, found %r" % (method, types, t)) # *args arrives as a tuple, not a list. return execute(*([context] + list(terms))) return actual_validate return inner_decorator @pre_execute("BIND", 2, 2) def bind(context, symbol=None, value=NIL(), *args): if not isinstance(symbol, Symbol): if not PERMISSIVE: raise LispRuntimeError('cannot BIND value %r to non-symbol %r' % (value, symbol)) else: context[symbol] = value return NIL() def noop(*args): pass @pre_execute("WITH", 2) def _with(context, arg_bindings=NIL(), *lines_of_function_body): # unwind with's arguments; two pairs. args_as_list = False if not (isinstance(arg_bindings, Pair) or isinstance(arg_bindings, Symbol)): if not PERMISSIVE: raise LispRuntimeError('WITH: %r is not an argument list.' % arg_bindings) else: if isinstance(arg_bindings, Symbol): args_as_list = True if not lines_of_function_body: if PERMISSIVE: return noop else: raise LispRuntimeError('WITH: cannot define an empty function.') # actually build the LispFunction object: return UserLispFunction(arg_bindings, lines_of_function_body, context.env, args_as_list=args_as_list) @pre_execute("EVAL", 1) def _eval(context, *lines): retval = NIL() for l in lines: retval = peval(context, l) return retval import_cache = {} def eval_library(context, canonical_module_name, program): fn = UserLispFunction(NIL(), program, canonical_module_name) fn(Context(default_context_bindings(), environment=canonical_module_name), NIL()) import_cache[canonical_module_name] = fn.last_execute_context def internal_import(context, canonical_module_name, program): """For importing names from within the minimalisp implementation""" if canonical_module_name not in import_cache: eval_library(context, canonical_module_name, program) context.update(import_cache[canonical_module_name]) @pre_execute("IMPORT", 1) @static_validate_value_type('IMPORT', strings) def _import(context, source_file): global import_cache canonical_module_name = os.path.abspath(source_file.v) if canonical_module_name not in import_cache: try: program = parse_program(open(canonical_module_name, 'r').read()) except IOError: raise LispRuntimeError('IMPORT: invalid file to load "%s"' % canonical_module_name) eval_library(context, canonical_module_name, program) context.update(import_cache[canonical_module_name]) return NIL() @pre_execute("PUTS") def puts(context, *values): if not PERMISSIVE and any([ not isinstance(v, (Value, Pair, Symbol, NIL)) and not hasattr(v, '__call__') for v in values ]): raise LispRuntimeError("expected lisp objects, got %s" % repr(values)) print("".join([repr(value) for value in values])) return NIL() @pre_execute("GETS", 0) def gets(context, *symbols_to_bind): # if called with no arguments, returns a single gets. if len(symbols_to_bind) == 0: return parse_token_prompt(raw_input(">")) # with arguments, binds N gets' to them. for s in symbols_to_bind: if not isinstance(s, Symbol): if not PERMISSIVE: raise LispRuntimeError("GETS: cannot bind to non-symbol %r." % s) else: context[s] = parse_token_prompt(raw_input("%s>" % repr(s))) return NIL() @pre_execute("CONS", 2, 2) def cons(context, left=NIL(), right=NIL(), *args): return Pair(left, right) @pre_execute("CAR", 1, 1) def car(context, pair=NIL(), *args): if not isinstance(pair, Pair): if PERMISSIVE: return pair raise LispRuntimeError('CAR: %r is not a pair.' % pair) return pair.left @pre_execute("CDR", 1, 1) def cdr(context, pair=NIL(), *args): if not isinstance(pair, Pair): if PERMISSIVE: return pair raise LispRuntimeError('CDR: %r is not a pair.' % pair) return pair.right @pre_execute("+") @static_validate_value_type("+", numbers) def plus(context, *terms): return Value(sum([i.v for i in terms]), actual=True) @pre_execute("-", 1) @static_validate_value_type("-", numbers) def minus(context, *terms): return Value(terms[0].v - sum([i.v for i in terms[1:]]), actual=True) @pre_execute("*") @static_validate_value_type("*", numbers) def multiply(context, *terms): return Value(reduce(mul, [i.v for i in terms], 1), actual=True) @pre_execute("/", 1) @static_validate_value_type("/", numbers) def divide(context, *terms): # We use python 3's "true division", which gives floats for two int arguments. return Value(terms[0].v / reduce(mul, [i.v for i in terms[1:]], 1), actual=True) @pre_execute("i/", 1) @static_validate_value_type("i/", integers) def idivide(context, *terms): return Value(terms[0].v // reduce(mul, [i.v for i in terms[1:]], 1), actual=True) @pre_execute("%", 2) @static_validate_value_type("%", integers) def modulo(context, *terms): return Value(terms[0].v % reduce(mul, [i.v for i in terms[1:]], 1), actual=True) @pre_execute("ROUND", 1, 1) @static_validate_value_type("ROUND", floats) def _round(context, f): return Value(int(round(f.v)), actual=True) @pre_execute("JOIN") @static_validate_value_type("JOIN", strings) def concatinate(context, *terms): return Value("".join([t.v for t in terms]), actual=True) @pre_execute('SPLIT', 1, 2) @static_validate_value_type('SPLIT', strings) def split(context, input, substring=None): retvalue = NIL() args = [] if substring: args.append(substring) for tok in reversed(input.v.split(*args)): retvalue = Pair(Value(tok, actual=True), retvalue) return retvalue @pre_execute("RAND", 0, 0) def rand(context): return Value(random.random(), actual=True) # Logical Functions: # By convention we use NIL as false, as well as using 0, the empty string and unbound Symbols # likewise. Thus, any other numeric value is true, as is a string, Pair or bound Symbol. # We must choose a value to return from logical comparisons. The value that was compared is not # sufficient, since this breaks (== 0 x), and so on. We also do not want to introduce another type # (boolean) when we only want True but not False. # So, we choose to return Value(1, actual=True). This means we can (+ test test2 test3) and see how # many passed, among other things. @pre_execute("IF", 2, 3) def _if(context, test, then_do, else_do=None): retvalue = NIL() if (isinstance(test, Pair) or (isinstance(test, Symbol) and test in context) or (isinstance(test, Value) and test.v)): retvalue = peval(context, then_do) elif else_do: retvalue = peval(context, else_do) return retvalue @pre_execute("=", 2) def equal(context, *terms): retvalue = Value(1, actual=True) lvalue = terms[0] for rvalue in terms[1:]: if lvalue != rvalue: retvalue = NIL() break return retvalue @pre_execute("==", 2) def identical(context, *terms): """This function is not very useful, I think, but can't possibly be implemented in the language without a minimalisp version of python's `id`, which is even worse.""" retvalue = Value(1, actual=True) lvalue = terms[0] for rvalue in terms[1:]: if id(lvalue) != id(rvalue): retvalue = NIL() break return retvalue @pre_execute(">", 2) @static_validate_value_type(">", values) def greater_than(context, *terms): retvalue = Value(1, actual=True) lvalue = terms[0] for rvalue in terms[1:]: if lvalue.v <= rvalue.v: retvalue = NIL() break return retvalue @pre_execute("<", 2) @static_validate_value_type("<", values) def less_than(context, *terms): retvalue = Value(1, actual=True) lvalue = terms[0] for rvalue in terms[1:]: if lvalue.v >= rvalue.v: retvalue = NIL() break return retvalue @pre_execute("DOWHILE", 1) def dowhile(context, *body): """works like EVAL, except it repeats the function body again and again until its return value is NIL or 0. Always returns NIL, but leaks bindings.""" result = NIL() for line in body: result = peval(context, line) while (isinstance(result, Pair) or (isinstance(result, Symbol) and result in context) or (isinstance(result, Value) and result.v)): for line in body: result = peval(context, line) return NIL() class UserLispFunction(object): def __init__(self, argbindings, functionbody, definition_env, args_as_list=False): # both are unquoted pairs, which WITH will check for us. self.args_as_list = args_as_list self.argbindings = argbindings self.functionbody = functionbody self.minc = 0 self.env = definition_env if args_as_list: # a list of arguments may be arbitrarily long. self.maxc = float('inf') else: # find out how long argbindings is: args = [] sargs = argbindings while not isinstance(sargs, NIL): args.append(sargs.left) sargs = sargs.right self.maxc = len(args) self.argbindings = args def __repr__(self): return "(user function)" @instance_pre_execute("(user function)") def __call__(self, outer_context, *ap): # initialise a new context, with arguments bound to names specified (or NIL if none passed): if self.env == outer_context.env: context = Context(parent=outer_context) else: # executing a function defined in a different file: go and retrieve # the correct outer scope. context = Context(parent=import_cache[self.env], environment=self.env) ab = self.argbindings # bind the arguments passed: if self.args_as_list: context[ab] = sexpr_from_iterator(ap) else: for i, arg_passed in enumerate(ap): # instance_pre_execute should have checked we don't have too many args passed. arg_binding = ab[i] context[arg_binding] = arg_passed retval = NIL() for line in self.functionbody: retval = peval(context, line) self.last_execute_context = context return retval lib = { Symbol('bind'): bind, Symbol('with'): _with, Symbol('eval'): _eval, Symbol('import'): _import, Symbol('puts'): puts, Symbol('gets'): gets, Symbol('cons'): cons, Symbol('car'): car, Symbol('cdr'): cdr, Symbol('+'): plus, Symbol('-'): minus, Symbol('*'): multiply, Symbol('/'): divide, Symbol('i/'): idivide, Symbol('%'): modulo, Symbol('round'): _round, Symbol('join'): concatinate, Symbol('split'): split, Symbol('rand'): rand, Symbol('if'): _if, Symbol('>'): greater_than, Symbol('<'): less_than, Symbol('='): equal, Symbol('=='): identical, Symbol('dowhile'): dowhile } def default_context_bindings(): return lib def run(program, program_environment, with_math=False): if with_math: import maths lib.update(maths.maths_functions) # we initialise the functions not implemented in the language (who do not # care about contexts) as being in the user's own environment. context = Context(default_context_bindings(), environment=program_environment) # before we execute the program, ensure it's context is registered in the # import cache so that the functions can load an environment when run as # callbacks. import_cache[program_environment] = context UserLispFunction(NIL(), program, program_environment)(context, NIL()) ```
{ "source": "joe-jordan/picosdk-python-wrappers", "score": 3 }
#### File: picosdk-python-wrappers/test/test_open_close_unit.py ```python from __future__ import print_function from test.test_helpers import DriverTest, drivers_to_load, drivers_with_device_connected from picosdk.library import DeviceNotFoundError class OpenCloseTest(DriverTest): def test_open_unit_failure(self): """test_open_unit_failure note: test assumes that at maximum one device is attached for each driver.""" drivers_to_use = drivers_to_load def test(driver): threw = False devices = [] try: devices.append(driver.open_unit()) devices.append(driver.open_unit()) except DeviceNotFoundError: threw = True finally: for device in devices: device.close() if not threw: return "didn't throw a DeviceNotFoundError." self.run_snippet_and_count_problems(drivers_to_use, test) def test_open_unit_success(self): """test_open_unit_success note: test assumes you have set test_helpers.drivers_with_device_connected""" if not drivers_with_device_connected: return drivers_to_use = drivers_with_device_connected[:] def test(driver): threw = False devices = [] try: devices.append(driver.open_unit()) except DeviceNotFoundError as e: threw = e finally: for device in devices: print("closing device %s" % device.handle) device.close() if threw is not False: return "no device found (%s)." % threw self.run_snippet_and_count_problems(drivers_to_use, test) def test_close_unit_success(self): """test_close_unit_success note: test assumes you have set test_helpers.drivers_with_device_connected""" if not drivers_with_device_connected: return drivers_to_use = drivers_with_device_connected def test(driver): devices = [] try: devices.append(driver.open_unit()) except DeviceNotFoundError as e: return "no device found (%s)." % e device = devices.pop() info = device.info device.close() # To test the success of close(), we try to re-open the device. # If we fail, then we have not closed it correctly. try: devices.append(driver.open_unit(serial=info.serial)) except DeviceNotFoundError as e: return "Could not close and then re-open the device (%s)." % e finally: for device in devices: device.close() self.run_snippet_and_count_problems(drivers_to_use, test) def test_with_statement_open_close(self): """test_with_statement_open_close note: test assumes you have set test_helpers.drivers_with_device_connected""" if not drivers_with_device_connected: return drivers_to_use = drivers_with_device_connected[:] def test(driver): threw = False was_open = False was_closed = False outer_scope_device = None try: with driver.open_unit() as device: was_open = device.is_open outer_scope_device = device was_closed = not outer_scope_device.is_open except DeviceNotFoundError as e: threw = e finally: if outer_scope_device is not None and not was_closed: outer_scope_device.close() if threw is not False: return "no device found (%s)." % threw elif not was_open: return "device was not opened correctly" elif not was_closed: return "device was not closed after exiting the scope" self.run_snippet_and_count_problems(drivers_to_use, test) ```
{ "source": "joejulian/saltstack-debug", "score": 3 }
#### File: saltstack-debug/_modules/logger_mod.py ```python __virtualname__ = 'logger' import logging as log from pprint import pformat import json import yaml def pretty(var): return pformat(yaml.load(json.dumps(var))) def __virtual__(): return __virtualname__ def debug(var, string = ""): ''' Print a var to a debug output. ''' ret = string + pretty(var) log.debug(ret) return ret def info(var, string = ""): ''' Print a var to a info output. ''' ret = string + pretty(var) log.info(ret) return ret def warning(var, string = ""): ''' Print a var to a warning output. ''' ret = string + pretty(var) log.warning(ret) return ret def error(var, string = ""): ''' Print a var to a error output. ''' ret = string + pretty(var) log.error(ret) return ret def critical(var, string = ""): ''' Print a var to a critical output. ''' ret = string + pretty(var) log.critical(ret) return ret ```
{ "source": "joejuzl/pipenv", "score": 2 }
#### File: tests/integration/test_install_uri.py ```python import pytest from flaky import flaky @pytest.mark.vcs @pytest.mark.install @pytest.mark.needs_internet @flaky def test_basic_vcs_install(PipenvInstance, pip_src_dir, pypi): with PipenvInstance(pypi=pypi, chdir=True) as p: c = p.pipenv('install git+https://github.com/benjaminp/six.git#egg=six') assert c.return_code == 0 # edge case where normal package starts with VCS name shouldn't be flagged as vcs c = p.pipenv('install gitdb2') assert c.return_code == 0 assert all(package in p.pipfile['packages'] for package in ['six', 'gitdb2']) assert 'git' in p.pipfile['packages']['six'] assert p.lockfile['default']['six'] == {"git": "https://github.com/benjaminp/six.git"} assert 'gitdb2' in p.lockfile['default'] @pytest.mark.files @pytest.mark.urls @pytest.mark.needs_internet @flaky def test_urls_work(PipenvInstance, pypi, pip_src_dir): with PipenvInstance(pypi=pypi) as p: c = p.pipenv('install https://github.com/divio/django-cms/archive/release/3.4.x.zip') assert c.return_code == 0 dep = list(p.pipfile['packages'].values())[0] assert 'file' in dep, p.pipfile dep = list(p.lockfile['default'].values())[0] assert 'file' in dep, p.lockfile @pytest.mark.files @pytest.mark.urls @pytest.mark.needs_internet @flaky def test_install_remote_requirements(PipenvInstance, pypi): with PipenvInstance(pypi=pypi) as p: # using a github hosted requirements.txt file c = p.pipenv('install -r https://raw.githubusercontent.com/kennethreitz/pipenv/3688148ac7cfecefb085c474b092c31d791952c1/tests/test_artifacts/requirements.txt') assert c.return_code == 0 # check Pipfile with versions assert 'requests' in p.pipfile['packages'] assert p.pipfile['packages']['requests'] == u'==2.18.4' assert 'records' in p.pipfile['packages'] assert p.pipfile['packages']['records'] == u'==0.5.2' # check Pipfile.lock assert 'requests' in p.lockfile['default'] assert 'records' in p.lockfile['default'] @pytest.mark.e @pytest.mark.vcs @pytest.mark.install @pytest.mark.needs_internet @flaky def test_editable_vcs_install(PipenvInstance, pip_src_dir, pypi): with PipenvInstance(pypi=pypi) as p: c = p.pipenv('install -e git+https://github.com/requests/requests.git#egg=requests') assert c.return_code == 0 assert 'requests' in p.pipfile['packages'] assert 'git' in p.pipfile['packages']['requests'] assert 'editable' in p.pipfile['packages']['requests'] assert 'editable' in p.lockfile['default']['requests'] assert 'chardet' in p.lockfile['default'] assert 'idna' in p.lockfile['default'] assert 'urllib3' in p.lockfile['default'] assert 'certifi' in p.lockfile['default'] @pytest.mark.install @pytest.mark.vcs @pytest.mark.tablib @pytest.mark.needs_internet @flaky def test_install_editable_git_tag(PipenvInstance, pip_src_dir, pypi): # This uses the real PyPI since we need Internet to access the Git # dependency anyway. with PipenvInstance(pypi=pypi) as p: c = p.pipenv('install -e git+https://github.com/benjaminp/[email protected]#egg=six') assert c.return_code == 0 assert 'six' in p.pipfile['packages'] assert 'six' in p.lockfile['default'] assert 'git' in p.lockfile['default']['six'] assert p.lockfile['default']['six']['git'] == 'https://github.com/benjaminp/six.git' assert 'ref' in p.lockfile['default']['six'] ```
{ "source": "joek295/brainfuck", "score": 4 }
#### File: brainfuck/tools/bfify.py ```python import sys from collections import Counter try: string = sys.argv[1] except IndexError: print "Fatal Error: Brainfuck expected a source file." sys.exit(1) try: with open(string,"r") as srcfile: string = srcfile.read() except IOError: pass codes = [ord(c) for c in string] def bfify(codes): c = Counter(codes) sorted_codes = [] for i in c.most_common(): sorted_codes.append(i[0]) source = ">" prevcode = 0 change = "" for i in sorted_codes: codediff = (max(i,prevcode) - min(i,prevcode)) # if we would make a saving by copy and alter, rather than writing from scratch, do so... alter = "<[->+>+<<]>>[-<<+>>]" if i > prevcode: alter += "<" + "+"*codediff + ">" elif i < prevcode: alter += "<" + "-"*codediff + ">" tenth = i/10 new = ">" + "+"*10 + "[<" + "+" * tenth + ">-]<" + "+" * (i - 10*tenth) + ">" prevcode = i if len(new) < len(alter): source += new else: source += alter source += "<" for i in codes: if sorted_codes.index(i) < len(sorted_codes)/2: if sorted_codes.index(prevcode) <= sorted_codes.index(i): move = (sorted_codes.index(i) - sorted_codes.index(prevcode))*">" + "." elif (sorted_codes.index(prevcode) - sorted_codes.index(i)) < sorted_codes.index(i): move = (sorted_codes.index(prevcode) - sorted_codes.index(i))*"<" + "." else: move = "[<]>" + ">"*sorted_codes.index(i) + "." else: if sorted_codes.index(prevcode) >= sorted_codes.index(i): move = (sorted_codes.index(prevcode) - sorted_codes.index(i))*"<" + "." elif (sorted_codes.index(i) - sorted_codes.index(prevcode)) < len(sorted_codes) - sorted_codes.index(i): move = (sorted_codes.index(i) - sorted_codes.index(prevcode))*">" + "." else: move = "[>]<" + "<"*(len(sorted_codes) - sorted_codes.index(i) - 1) + "." source += move prevcode = i cleansource(source) def cleansource(source): cleansource = "" last = "" for i in source: if i == "<" and last == ">": cleansource = cleansource [0:-1] last = "" elif i == ">" and last == "<": cleansource = cleansource [0:-1] last = "" else: cleansource += i last = i print cleansource bfify(codes) ```
{ "source": "joekabucho/ppe-detection-", "score": 3 }
#### File: ppe-detection-/backend/main.py ```python from datetime import datetime from flask import Flask, jsonify, request from config import config from notification.factory import NotificationFactory notification_svc = NotificationFactory.instance(config) MSG_TEMPLATE = """ ### ppe demo **Alert** at **{point}** at {time} > total_person={total_person} without_hardhat={without_hardhat} without_vest={without_vest} without_both={without_both} """ def _construct_msg(ts, point, total_person, without_hardhat, without_vest, without_both): t = datetime.utcfromtimestamp(ts / 1000).strftime("%Y-%m-%d %H:%M:%S UTC") return MSG_TEMPLATE.format( time=t, point=point, total_person=total_person, without_hardhat=without_hardhat, without_vest=without_vest, without_both=without_both) class HttpError(Exception): status_code = 400 def __init__(self, message, status_code=None, payload=None): Exception.__init__(self) self.message = message if status_code is not None: self.status_code = status_code self.payload = payload def to_dict(self): rv = dict(self.payload or ()) rv['message'] = self.message return rv app = Flask(__name__) @app.errorhandler(HttpError) def handle_http_error(error): response = jsonify(error.to_dict()) response.status_code = error.status_code print("[Error]:", error.message) return response @app.route("/") def home(): return "ok" # { # "id": "331404be-7c57-11e9-a345-dca90488d3b9", # "cameraId": "camera1", # "timestamp": 1558506692, # "persons": [ # { # "hardhat": true, # "vest": true # }, # { # "hardhat": true, # "vest": true # } # ], # "image": { # "height": 200, # "width": 300, # "format": "jpeg", # "raw": "base64 encoded data", # "url": "http://ppe-backend:7200/images/uuid1" # }, # "createdAt": 1558506697000, # "updatedAt": 1558506697000 # } @app.route("/v1/detections", methods=["POST"]) def create_detections_v1(): js = request.json js["image"]["raw"] = "omited" cameraId = js.get("cameraId") if cameraId is None: print("json field missing") raise HttpError("cameraId missing", status_code=400) print("[Info] recieved:", js["cameraId"], js["timestamp"]) without_hardhat = len(list(filter(lambda p: not p["hardhat"], js["persons"]))) without_vest = len(list(filter(lambda p: not p["vest"], js["persons"]))) without_both = len(list(filter(lambda p: not p["vest"] and not p["hardhat"], js["persons"]))) if without_hardhat > 0 or without_vest > 0 or without_both > 0: print("[Warn]", "someone violate the rule") msg = _construct_msg(js["timestamp"], js["cameraId"], len(js["persons"]), without_hardhat - without_both, without_vest - without_both, without_both) notification_svc.send(msg) else: print("[Info]", "no one violate the rule the person is not properly equipped") return jsonify(request.json), 201 if __name__ == "__main__": app.run(host="0.0.0.0", port=config["port"]) ```
{ "source": "joekaiser/ulauncher-raindrop", "score": 2 }
#### File: ulauncher-raindrop/raindrop/extension.py ```python import logging from ulauncher.api.client.Extension import Extension from ulauncher.api.shared.event import KeywordQueryEvent, PreferencesEvent, PreferencesUpdateEvent from ulauncher.api.shared.item.ExtensionResultItem import ExtensionResultItem from ulauncher.api.shared.action.RenderResultListAction import RenderResultListAction from ulauncher.api.shared.action.OpenUrlAction import OpenUrlAction from raindrop.preferences import PreferencesEventListener, PreferencesUpdateEventListener from raindropio import Raindrop from raindrop.query_listener import KeywordQueryEventListener logger = logging.getLogger(__name__) class RaindropExtension(Extension): """ Main Extension Class """ def __init__(self): """ Initializes the extension """ super(RaindropExtension, self).__init__() self.subscribe(KeywordQueryEvent, KeywordQueryEventListener()) self.subscribe(PreferencesEvent, PreferencesEventListener()) self.subscribe(PreferencesUpdateEvent, PreferencesUpdateEventListener()) def get_keyword_id(self, keyword): for key, value in self.preferences.items(): if value == keyword: return key return "" def show_open_app_menu(self): """ Shows the menu to Open Raindrop website """ return RenderResultListAction([ ExtensionResultItem( icon='images/icon.png', name='Open Raindrop Website', on_enter=OpenUrlAction('https://app.raindrop.io')) ]) def search(self, query): drops = Raindrop.search(self.rd_client, word=query, perpage=10) if len(drops) == 0: return RenderResultListAction([ ExtensionResultItem( icon='images/icon.png', name='No results found matcing your criteria', highlightable=False) ]) items = [] for drop in drops: items.append( ExtensionResultItem(icon='images/icon.png', name=drop.title, description=drop.excerpt, on_enter=OpenUrlAction(drop.link))) return RenderResultListAction(items) ```
{ "source": "joekakone/deputes-fr", "score": 3 }
#### File: deputes-fr/dashboard/main.py ```python import pandas as pd from bokeh.io import curdoc # Charts module from plot import draw_piechart, draw_barplot, draw_age_bar, create_table # Paths & Config DATA_PATH = "dashboard/data/deputes-active.csv" ##### title #### curdoc().title = 'Tableau de board | Assemblée Nationale' # 1. Import data data = pd.read_csv(DATA_PATH) # 2. Prepare data # Remove "ans" in the `experienceDepute` column data["experienceDepute"] = data["experienceDepute"].apply(lambda x: int(x.split()[0])) # Add Full name column data["nomComplet"] = data["prenom"] + " " + data["nom"] ##### KPIS ##### # Nombre de députés total_deputies = len(data) # Nombre de groupes total_groups = len(data["groupe"].unique()) # Age moyen mean_age = data["age"].mean() mean_age = round(mean_age, 1) # Expérience moyenne mean_experience = data["experienceDepute"].mean() mean_experience = round(mean_experience, 1) # make variables available in html templates curdoc().template_variables['totalDeputies'] = str(total_deputies) curdoc().template_variables['totalGroups'] = str(total_groups) curdoc().template_variables['meanAge'] = str(mean_age) curdoc().template_variables['meanExperienceDepute'] = str(mean_experience) ##### Bokeh Plots #### ### Start Pie Chart ### piechart = draw_piechart(data, 'piechart') curdoc().add_root(piechart) ### End Pie Chart ### ### Start Line Plot ### bar = draw_barplot(data, "age_bar") curdoc().add_root(bar) ### End Line Plot ### ##### Charts ##### barchart = draw_age_bar(data, 'barchart') curdoc().add_root(barchart) ### End Bar Chart ### # ### Map Plot ### # def gen_geo_data(): # geodata = { # 'city': ['Cotonou', 'Porto-Novo', 'Ouidah'], # 'latitude': [6.366667, 6.497222, 6.366667], # 'longitude': [2.433333, 2.605, 2.083333] # } # geodata = pd.DataFrame(geodata) # return geodata # geodata = gen_geo_data() # def MapPlot(data): # def wgs84_to_web_mercator(df, lon="longitude", lat="latitude"): # """Converts decimal longitude/latitude to Web Mercator format""" # k = 6378137 # df["x"] = df[lon] * (k * np.pi/180.0) # df["y"] = np.log(np.tan((90 + df[lat]) * np.pi/360.0)) * k # return df # data = wgs84_to_web_mercator(data) # x_range = (data['x'].min()-10000, data['x'].max()+10000) # y_range = (data['y'].min() ,data['y'].max()) # # convert into ColumnDataSource # source = ColumnDataSource(data) # mapplot = figure(plot_width=540, # plot_height=250, # x_range=x_range, # y_range=y_range, # x_axis_type="mercator", # y_axis_type="mercator", # toolbar_location=None, # tools='', # name='geoplot') # # credits # MAP_URL = 'http://a.basemaps.cartocdn.com/rastertiles/voyager/{Z}/{X}/{Y}.png' # attribution = "Tiles by Carto, under CC BY 3.0. Data by OSM, under ODbL" # mapplot.add_tile(WMTSTileSource(url=MAP_URL, attribution=attribution)) # mapplot.circle(x='x', y='y', fill_color='pink', size=20, fill_alpha=0.3, line_color=None, source=source) # # hover # mapplot.add_tools(HoverTool(tooltips=[ # ('City', '@city'), # ('Latitude', "@latitude"), # ('Longitude', "@longitude") # ])) # # others params # mapplot.axis.visible = False # return mapplot # mapplot = MapPlot(geodata) # curdoc().add_root(mapplot) # ### End Map Plot ### ### Start Table ### def gen_client_top10(): clients = { 'client': [ '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>ine', '<NAME>' ], 'orders': [1200, 3750, 2500, 2080, 2275, 750, 2000, 6200, 4500, 4850] } clients = pd.DataFrame(clients) clients = clients.sort_values(by='orders', ascending=False) return clients table = create_table(data, 'table') curdoc().add_root(table) ### End Table ### ```
{ "source": "joekakone/image-similarity-detection", "score": 3 }
#### File: joekakone/image-similarity-detection/encode.py ```python import os import argparse import json import tqdm import glob import numpy as np import pandas as pd import tensorflow as tf from functions import read_data, \ load_model, load_image, extract_image_id def encode_image(image): features = encoder(image) features = np.squeeze(features) return features def main(): # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-d", "--data_dir", required=True, help="Path to the images directory") ap.add_argument("-m", "--model_path", required=True, help="Path to the the model") ap.add_argument("-i", "--input", type=int, required=True, default=299, help="The input size") ap.add_argument("-o", "--output", required=True, help="Path to the output file") args = vars(ap.parse_args()) size = args['input'] # model print("Loading model...") subdir = args["model_path"] model_path = glob.glob(subdir+'*.h5')[-1] model = load_model(model_path) # data print("Reading data...") filenames, _, _ = read_data(args["data_dir"]) n_files = len(filenames) # encoding print("Encoding images...") index_to_filename = {} filename_to_path = {} features = np.zeros((n_files, model.output.shape[1])) for i in tqdm.tqdm(range(n_files)): image_id = extract_image_id(filenames[i]) index_to_filename[i] = image_id filename_to_path[image_id] = filenames[i] #print("->", image_id) image = load_image(filenames[i], (size, size)) image = image.reshape((1,)+image.shape) features[i] = np.squeeze(model(image)) # save transfer values np.save(args["output"], features) with open("index_to_filename.json", "w") as f: json.dump(index_to_filename, f, indent=4, ensure_ascii=False) with open("filename_to_path.json", "w") as f: json.dump(filename_to_path, f, indent=4, ensure_ascii=False) if __name__ == "__main__": main() ```
{ "source": "joekallen/dotfiles", "score": 2 }
#### File: workflows/user.workflow.BC9837BA-F60E-475C-B524-E761FBD0E1EB/common.py ```python import os import argparse import subprocess from workflow import Workflow def get_kubectl_cmd_path(): wf = Workflow() return wf.settings.get("KUBECTL_CMD_PATH") or os.environ.get("KUBECTL_CMD_PATH", '/usr/local/bin/kubectl') class KService: def __init__(self, type, name, age, status): self.type = type self.name = name self.age = age self.status = status def get_args(args): parser = argparse.ArgumentParser() parser.add_argument('query', nargs='?', default="") return parser.parse_args(args) def get_pods(): res = [] pods = subprocess.Popen("%s get pods" % get_kubectl_cmd_path(), shell=True, stdout=subprocess.PIPE).stdout.read().split( '\n')[ 1:-1] for pod_str in pods: try: dep_name, _, status, _, age = " ".join(pod_str.split()).split(' ') res.append(KService("Pod", dep_name, age, status)) except: print("ASd") return res def get_deployments(): res = [] deps = subprocess.Popen("%s get deploy" % get_kubectl_cmd_path(), shell=True, stdout=subprocess.PIPE).stdout.read().split( '\n')[1:-1] for dep_str in deps: dep_name, _, current, _, _, age = " ".join(dep_str.split()).split(' ') res.append(KService("Deploy", dep_name, age, current)) return res def get_replica_sets(): res = [] deps = subprocess.Popen("%s get rs" % get_kubectl_cmd_path(), shell=True, stdout=subprocess.PIPE).stdout.read().split( '\n')[1:-1] for dep_str in deps: dep_name, desired, current, _, age = " ".join(dep_str.split()).split(' ') res.append(KService("Deploy", dep_name, age, "%s/%s" % (desired, current))) return res def get_services(): res = [] res += get_pods() res += get_deployments() return res def search_key_for_service(service): return u' '.join([ service.name ]) def process_and_feedback(wf, wf_cached_data_key, data_func, icon, include_type_in_arg=False): args = get_args(wf.args) data = wf.cached_data(wf_cached_data_key, data_func, max_age=60) query = args.query.strip() if query: data = wf.filter(query, data, key=search_key_for_service, min_score=20) for d in data: if include_type_in_arg: arg = "{type} {name}".format(type=d.type.lower(), name=d.name) else: arg = d.name wf.add_item(title=d.name, subtitle="%s - Age: %s | Extra: %s" % (d.type, d.age, d.status), arg=arg, valid=True, icon=icon) wf.send_feedback() def update_local_path_vars(wf): set_path_to = os.environ.get('set_path_to') configured_path = os.environ.get('configured_path') wf.settings[set_path_to] = configured_path wf.settings.save() print("Successfully set path to %s with %s" % (set_path_to, wf.settings[set_path_to])) def _report_missing_var(wf, var_name): print("Missing dashbaord url; use *ksetenv*") """ wf.add_item(title="Hit enter to set %s environment variable." % var_name, arg="setenv", valid=True) wf.send_feedback() """ ``` #### File: workflows/user.workflow.BC9837BA-F60E-475C-B524-E761FBD0E1EB/kdr.py ```python import sys from icons import SHELL from workflow import Workflow from common import process_and_feedback, get_replica_sets def main(wf): process_and_feedback(wf, 'kube_replica_sets', get_replica_sets, SHELL) if __name__ == u"__main__": wf = Workflow() sys.exit(wf.run(main)) ```
{ "source": "joekarasek/webfaction-deploy-tools", "score": 3 }
#### File: webfaction-deploy-tools/scripts/hwdevs.py ```python class Webfaction(object): def __init__(self, server, siteConfig): self.siteConfig = siteConfig self.server = server self.session_id, self.account = server.login( siteConfig.userName, siteConfig.userPass, siteConfig.machineName, 1) def checkApp(self): appList = self.server.list_apps(self.session_id) for app in appList: if self.siteConfig.appName == app['name']: return True return False def createApp(self, appType='static_php56'): self.server.create_app( self.session_id, self.siteConfig.appName, appType, False, '', False) def checkLink(self): appList = self.server.list_apps(self.session_id) for app in appList: if self.siteConfig.appLink == app['name']: return True return False def createLink(self, appType='symlink56'): self.server.create_app( self.session_id, self.siteConfig.appLink, appType, False, "/home/danlinn/webapps/"+self.siteConfig.appName+"/build", False) def checkSite(self): websiteList = self.server.list_websites(self.session_id) for website in websiteList: if self.siteConfig.websiteName == website['name']: return website return False def createSite(self): self.server.create_website(self.session_id, self.siteConfig.websiteName, self.siteConfig.ipAddress, False, [self.siteConfig.domainName], [self.siteConfig.appLink, '/']) def checkDomain(self): domainList = self.server.list_domains(self.session_id) for domain in domainList: if domain['domain'] == self.siteConfig.domainName: return True return False def createDomain(self): self.server.create_domain( self.session_id, self.siteConfig.domainName) def runCmd(self, command): commandAtApp = "cd /home/danlinn/webapps/"+self.siteConfig.appName+" && "+command self.server.system(self.session_id, commandAtApp) def gitClone(self): initGit = "cd /home/danlinn/webapps/"+self.siteConfig.appName+" && if [ -e index.html ]; then rm index.html; fi && git clone -q "+self.siteConfig.repoUrl+" ." self.server.system(self.session_id, initGit) def gitPull(self): gitPull = "cd /home/danlinn/webapps/"+self.siteConfig.appName+" && git pull -q origin master" self.server.system(self.session_id, gitPull) def npmInstall(self): installCmd = "cd /home/danlinn/webapps/"+self.siteConfig.appName+" && ~/bin/npm run install --silent" self.server.system(self.session_id, installCmd) def buildSite(self): buildCmd = "cd /home/danlinn/webapps/"+self.siteConfig.appName+" && ~/bin/npm run build --silent" self.server.system(self.session_id, buildCmd) # def addHtaccess(server, session_id, siteConfig): ```
{ "source": "joekelley120/PyTorchTimeSeries", "score": 3 }
#### File: PyTorchTimeSeries/Optimizer/particle.py ```python import torch from torch.optim import Optimizer class PARTICLE(Optimizer): """ Implements Gradient based Particle Optimization. ... warning:: This optimizer doesn't support per-parameter options and parameters groups. Arguments: ds (float) - step size for particle swarm """ def __init__(self, params, ds=0.01, contraction=0.8, expansion=1.2, number_batches=1): """ Initializer for implementation of particle optimization. :param params: model parameters :param ds: step size for particle swarm :param contraction: coefficient for contraction of swarm :param expansion: coefficient for expansion of swarm :param number_batches: number of batches during training """ defaults = dict( ds=ds, contraction=contraction, expansion=expansion, number_batches=number_batches, ) super(PARTICLE, self).__init__(params, defaults) if len(self.param_groups) != 1: raise ValueError("Particle doesn't support per-parameter options " "(parameter group)") self._params = self.param_groups[0]['params'] self.state.setdefault('ds', ds) self.state.setdefault('contraction', contraction) self.state.setdefault('expansion', expansion) self.state.setdefault('iteration', 0) self.state.setdefault('ds_min', 1e-7) self.state.setdefault('ds_max', 5) self.state.setdefault('number_batches', number_batches) self.state.setdefault('reset', False) def _clone_param(self): """ Clone model parameters. :return: cloned model parameters. """ return [p.clone() for p in self._params if p.requires_grad] @staticmethod def _clone_passed_params(params): """ Clone passed in parameters. :param params: parameters :return: cloned parameters """ return [p.clone() for p in params if p.requires_grad] def _set_param(self, params_data): """ Set model parameters. :param params_data: desired parameters for model. :return: none """ i = 0 for p in self._params: if p.requires_grad: p.data.copy_(params_data[i].data) i += 1 def _set_param_vector(self, vector): """ Set model parameters from a vector of parameters. :param vector: parameters :return: none """ new_param = self._clone_passed_params(self._params) torch.nn.utils.vector_to_parameters(vector, new_param) self._set_param(new_param) def step(self, closure): """ Performs a single optimization step. :param closure: A closure evaluates the model gradient and returns a loss. :return: loss """ assert len(self.param_groups) == 1 # Model parameters params = self._clone_param() # Perform a step of particle final_loss = self._particle(closure, params) return final_loss def _particle(self, closure, params): """ Perform a step of the particle optimization algorithm. :param closure: forward pass though network :return: loss """ contraction = self.state['contraction'] expansion = self.state['expansion'] xb = self.state['xb'] fb = self.state['fb'] ds = self.state['ds'] ds_min = self.state['ds_min'] ds_max = self.state['ds_max'] n = self.state['number_batches'] iteration = self.state['iteration'] reset = self.state['reset'] def grad(): """ Calculate gradient. :return: gradients """ # Calculate loss and gradients _loss = closure() # Create a list of gradients g = [p.grad for p in self._params if p.requires_grad] # return loss value and vector for the gradients return _loss.item(), torch.nn.utils.parameters_to_vector(g) # Convert parameters to vector xo = torch.nn.utils.parameters_to_vector(params) if iteration is 0 or reset: xb = xo.clone() fb, _ = grad() reset = False # Evaluate fitness self._set_param_vector(xo) _, gradient = grad() # Calculate learning rate step = ds / torch.sqrt(torch.sum(torch.pow(gradient, 2))) # Update Particle random = xo.new(xo.size(0)).uniform_() x = xo + 2.0 * random * (xb - xo) - step * gradient # Evaluate fitness self._set_param_vector(x) loss, gradient = grad() # Determine if player has improved if loss >= fb: ds = max([contraction * ds, ds_min]) if ds is ds_min: reset = True elif loss <= fb: ds = min([expansion * ds, ds_max]) fb = fb + (1 / n) * (loss - fb) xb = xb + (1 / n) * (x - xb) self._set_param_vector(x) self.state['contraction'] = contraction self.state['expansion'] = expansion self.state['xb'] = xb self.state['fb'] = fb self.state['ds'] = ds self.state['iteration'] = iteration + 1 self.state['reset'] = reset return loss ```
{ "source": "joekendal/forex-arbitrage", "score": 3 }
#### File: joekendal/forex-arbitrage/main.py ```python import requests, json, math CURRENCIES = {'GBP', 'USD', 'JPY', 'EUR'} API_KEY = '' class Node(object): def __init__(self, currency_id, CURRENCIES): super(Node, self).__init__() self.id = currency_id self.childs = [] for id in CURRENCIES: if id == self.id: pass else: self.childs.append(id) self.rates = [] for child in self.childs: url = 'https://v3.exchangerate-api.com/pair/{}/{}/{}'.format(API_KEY, self.id, child) response = requests.get(url) data = response.json() self.rates.append((child, math.log(data['rate']))) self.rates = dict(self.rates) def pull_data(): nodes = [] for currency_id in CURRENCIES: node = Node(currency_id, CURRENCIES) node = (node.id, node.rates) nodes.append(node) return nodes currencies = pull_data() currencies = dict(currencies) def initialize(graph, source): destination = {} predecessor = {} for node in graph: destination[node] = float('Inf') predecessor[node] = None destination[source] = 0 return destination, predecessor def relax(node, neighbour, graph, destination, predecessor): if destination[neighbour] > destination[node] + graph[node][neighbour]: destination[neighbour] = destination[node] + graph[node][neighbour] predecessor[neighbour] = node def retrace_negative_loop(p, start): arbitrageLoop = [start] next_node = start while True: next_node = p[next_node] if next_node not in arbitrageLoop: arbitrageLoop.append(next_node) else: arbitrageLoop.append(next_node) arbitrageLoop = arbitrageLoop[arbitrageLoop.index(next_node):] return arbitrageLoop def bellman_ford(graph, source): destination, predecessor = initialize(graph, source) for i in range(len(graph)-1): for u in graph: for v in graph[u]: relax(u, v, graph, destination, predecessor) for u in graph: for v in graph[u]: return(retrace_negative_loop(predecessor, source)) return None paths = [] graph = currencies for key in graph: path = bellman_ford(graph, key) if path not in paths and not None: paths.append(path) for path in paths: if path == None: pass elif len(path) < 4: pass else: x = 100000 print("x = {} {}".format(x, path[0])) for i,value in enumerate(path): if i+1 < len(path): start = path[i] end = path[i+1] rate = math.exp(-graph[start][end]) x *= rate print("\t{}->{} @{} = {} {}".format(start, end, rate, x, end)) print("\n") ```
{ "source": "joekickass/python-kinesis-logger", "score": 3 }
#### File: python-kinesis-logger/kinesishandler/kinesishandler.py ```python from logging.handlers import BufferingHandler class KinesisHandler(BufferingHandler): """ Sends logs in batches to Kinesis Uses a queue to dispatch batched data to worker thread """ def __init__(self, capacity, queue): """ Initialize the handler with buffer size and queue """ BufferingHandler.__init__(self, capacity) self.queue = queue def prepare(self, records): """ Prepare data for queuing TODO: Is self.format() keeping all info? what about errors? """ return [self.format(record) for record in records] def flush(self): """ Put buffered data in queue and zap buffer. """ self.acquire() try: self.queue.put(self.prepare(self.buffer)) self.buffer = [] finally: self.release() ```
{ "source": "JoeKifle/ISPR-RBM-From-scratch-implementaion", "score": 3 }
#### File: JoeKifle/ISPR-RBM-From-scratch-implementaion/RBM.py ```python import math import numpy as np from scipy.special import expit # sigmoid import matplotlib.pyplot as plt class RBM(): def __init__(self, visibleLayers=784, hiddenLayers=100): self.visibleLayers = visibleLayers self.visibleLayers = visibleLayers # Parameters self.vhW = 0.1 * np.random.randn(visibleLayers, hiddenLayers) self.vlbias = np.zeros(visibleLayers) self.hlbias = -4.0 * np.ones(hiddenLayers) # Gradients self.vhW_delta = np.zeros(self.vhW.shape) # W_gradient self.vb_delta = np.zeros(visibleLayers) # visible unit bias gradient self.hb_delta = np.zeros(hiddenLayers) # hidden unit bias gradient def posetivePhase(self, visibleLayer): # probability distribution of the hidden layer. pdH = self.sigmoid(np.matmul(visibleLayer, self.vhW) + self.hlbias) return (pdH, np.random.binomial(1, p=pdH)) def negativePhase(self, hiddenLayer): # probability distribution of the visible layer. pdV = self.sigmoid(np.matmul(hiddenLayer, self.vhW.T) + self.vlbias) return (pdV, np.random.binomial(1, p=pdV)) def compute_error_and_grads(self, batch): batchSize = batch.shape[0] v0 = batch.reshape(batchSize, -1) # Compute gradients - Positive Phase ph0, h0 = self.posetivePhase(v0) vhW_delta = np.matmul(v0.T, ph0) vb_delta = np.sum(v0, axis=0) hb_delta = np.sum(ph0, axis=0) # Compute gradients - Negative Phase pv1, v1 = self.negativePhase(h0) ph1, h1 = self.posetivePhase(pv1) vhW_delta -= np.matmul(pv1.T, ph1) vb_delta -= np.sum(pv1, axis=0) hb_delta -= np.sum(ph1, axis=0) self.vhW_delta = vhW_delta/batchSize self.hb_delta = hb_delta/batchSize self.vb_delta = vb_delta/batchSize recon_err = np.mean(np.sum((v0 - pv1)**2, axis=1), axis=0) # sum of squared error averaged over the batch return recon_err def update_params(self, eta): self.vhW += (eta * self.vhW_delta) self.vlbias +=(eta * self.vb_delta) self.hlbias += (eta * self.hb_delta) def plot_weights(self, weight, savefile=""): plt.clf() fig, axes = plt.subplots(10, 10, gridspec_kw = {'wspace':0.1, 'hspace':0.1}, figsize=(10, 10)) for i in range(10): for j in range(10): axes[i, j].imshow(weight[:,i*10+j].reshape(28, 28), cmap='gray') axes[i, j].axis('off') plt.savefig(savefile) def reconstruct(self, V): Hp, Hs = self.posetivePhase(V) Vp, Vs = self.negativePhase(Hs) # reconstructionPhase return Vp,Hs def sigmoid(self,x): return 1 / (1 + np.exp(-x)) ```
{ "source": "Joe-Kileel/manifold-learning-arbitrary-norms", "score": 3 }
#### File: Joe-Kileel/manifold-learning-arbitrary-norms/pickler.py ```python import os import pickle import gzip import errno import inspect import time CURRENT_DIR = os.path.dirname(os.path.realpath(__file__)) PICKLES_PATH = os.path.join(CURRENT_DIR, 'pickles') def _pickled_name(name): return os.path.join(PICKLES_PATH, name) + '.pickle.gz' def dump(filename, **kwargs): os.makedirs(PICKLES_PATH, exist_ok=True) filename = _pickled_name(filename) metadata = {'date': time.ctime()} print('Saving to', filename) print("Saved fields: ", ', '.join(sorted(kwargs.keys()))) with gzip.GzipFile(filename, 'wb') as f: pickle.dump({'metadata': metadata, 'data': kwargs}, f, 2) class StructFromDict(object): def __init__(self, d): self.__dict__.update(d) def __repr__(self): return repr(self.__dict__) def load(name): filename = _pickled_name(name) print('Loading', filename) with gzip.GzipFile(filename, 'rb') as f: d = pickle.load(f) print('Creation time:', d['metadata']['date']) return StructFromDict(d['data']) ``` #### File: Joe-Kileel/manifold-learning-arbitrary-norms/produce_all_figures.py ```python import os import matplotlib.pyplot as plt import numpy as np import ATP_synthase_datagen import euclidean_vs_wemd_metrics import euclidean_vs_wemd_embeddings import weighted_L1_eigenfunctions_on_circle WAVELET = 'sym3' LEVEL = 6 FIGURES_DIR = 'figures' def figure_rotor_slice(figures_dir): VMIN =-0.06 VMAX = 0.150 (volumes, angles) = ATP_synthase_datagen.build_dataset(1, angles_deg=[0]) m = volumes[0] plt.figure() plt.imshow(m[25,::-1,:], vmin=VMIN, vmax=VMAX) fn = os.path.join(figures_dir, 'slice_noiseless.png') print('Saving', fn) plt.savefig(fn, bbox_inches='tight', pad_inches=0) plt.figure() noisy_m = m + np.random.normal(loc=0, scale=euclidean_vs_wemd_embeddings.STD, size=m.shape) plt.imshow(noisy_m[25,::-1,:], vmin=VMIN, vmax=VMAX) fn = os.path.join(figures_dir, 'slice_noisy.png') print('Saving', fn) plt.savefig(fn, bbox_inches='tight', pad_inches=0) def main(): os.makedirs(FIGURES_DIR, exist_ok=True) print('==== Saving rotor slices =========================================================') figure_rotor_slice(FIGURES_DIR) print('= Computing and saving WEMD vs Euclidean figure') euclidean_vs_wemd_metrics.compute_and_plot(WAVELET, LEVEL, FIGURES_DIR) print(' ==== Running all WEMD embedding calculations ====') euclidean_vs_wemd_embeddings.precalc_all(WAVELET, LEVEL) print(' ==== Producing all WEMD embedding figures ====') euclidean_vs_wemd_embeddings.plot_all_gaussian_kernel(FIGURES_DIR) print(' ==== Computing and plotting all sanity check figures for the empirical L1 Laplacian ====') weighted_L1_eigenfunctions_on_circle.plot_all_check_L1_laplacian() print(' ==== Computing and plotting first eigenvectors of the weighted L1 norm Laplacian on the circle') weighted_L1_eigenfunctions_on_circle.plot_all_first_eigenvectors() if __name__ == '__main__': main() ```
{ "source": "joekiller/moto", "score": 2 }
#### File: moto/dynamodb2/responses.py ```python from __future__ import unicode_literals import json import six from moto.core.responses import BaseResponse from moto.core.utils import camelcase_to_underscores from .models import dynamodb_backend2, dynamo_json_dump GET_SESSION_TOKEN_RESULT = """ <GetSessionTokenResponse xmlns="https://sts.amazonaws.com/doc/2011-06-15/"> <GetSessionTokenResult> <Credentials> <SessionToken> <KEY> </SessionToken> <SecretAccessKey> <KEY> </SecretAccessKey> <Expiration>2011-07-11T19:55:29.611Z</Expiration> <AccessKeyId>AKIAIOSFODNN7EXAMPLE</AccessKeyId> </Credentials> </GetSessionTokenResult> <ResponseMetadata> <RequestId>58c5dbae-abef-11e0-8cfe-09039844ac7d</RequestId> </ResponseMetadata> </GetSessionTokenResponse>""" def sts_handler(): return GET_SESSION_TOKEN_RESULT class DynamoHandler(BaseResponse): def get_endpoint_name(self, headers): """Parses request headers and extracts part od the X-Amz-Target that corresponds to a method of DynamoHandler ie: X-Amz-Target: DynamoDB_20111205.ListTables -> ListTables """ # Headers are case-insensitive. Probably a better way to do this. match = headers.get('x-amz-target') or headers.get('X-Amz-Target') if match: return match.split(".")[1] def error(self, type_, status=400): return status, self.response_headers, dynamo_json_dump({'__type': type_}) def call_action(self): body = self.body.decode('utf-8') if 'GetSessionToken' in body: return 200, self.response_headers, sts_handler() self.body = json.loads(body or '{}') endpoint = self.get_endpoint_name(self.headers) if endpoint: endpoint = camelcase_to_underscores(endpoint) response = getattr(self, endpoint)() if isinstance(response, six.string_types): return 200, self.response_headers, response else: status_code, new_headers, response_content = response self.response_headers.update(new_headers) return status_code, self.response_headers, response_content else: return 404, self.response_headers, "" def list_tables(self): body = self.body limit = body.get('Limit') if body.get("ExclusiveStartTableName"): last = body.get("ExclusiveStartTableName") start = list(dynamodb_backend2.tables.keys()).index(last) + 1 else: start = 0 all_tables = list(dynamodb_backend2.tables.keys()) if limit: tables = all_tables[start:start + limit] else: tables = all_tables[start:] response = {"TableNames": tables} if limit and len(all_tables) > start + limit: response["LastEvaluatedTableName"] = tables[-1] return dynamo_json_dump(response) def create_table(self): body = self.body #get the table name table_name = body['TableName'] #get the throughput throughput = body["ProvisionedThroughput"] #getting the schema key_schema = body['KeySchema'] #getting attribute definition attr = body["AttributeDefinitions"] #getting the indexes table = dynamodb_backend2.create_table(table_name, schema = key_schema, throughput = throughput, attr = attr) return dynamo_json_dump(table.describe) def delete_table(self): name = self.body['TableName'] table = dynamodb_backend2.delete_table(name) if table is not None: return dynamo_json_dump(table.describe) else: er = 'com.amazonaws.dynamodb.v20111205#ResourceNotFoundException' return self.error(er) def update_table(self): name = self.body['TableName'] throughput = self.body["ProvisionedThroughput"] table = dynamodb_backend2.update_table_throughput(name, throughput) return dynamo_json_dump(table.describe) def describe_table(self): name = self.body['TableName'] try: table = dynamodb_backend2.tables[name] except KeyError: er = 'com.amazonaws.dynamodb.v20111205#ResourceNotFoundException' return self.error(er) return dynamo_json_dump(table.describe) def put_item(self): name = self.body['TableName'] item = self.body['Item'] result = dynamodb_backend2.put_item(name, item) if result: item_dict = result.to_json() item_dict['ConsumedCapacityUnits'] = 1 return dynamo_json_dump(item_dict) else: er = 'com.amazonaws.dynamodb.v20111205#ResourceNotFoundException' return self.error(er) def batch_write_item(self): table_batches = self.body['RequestItems'] for table_name, table_requests in table_batches.items(): for table_request in table_requests: request_type = list(table_request.keys())[0] request = list(table_request.values())[0] if request_type == 'PutRequest': item = request['Item'] dynamodb_backend2.put_item(table_name, item) elif request_type == 'DeleteRequest': keys = request['Key'] item = dynamodb_backend2.delete_item(table_name, keys) response = { "Responses": { "Thread": { "ConsumedCapacityUnits": 1.0 }, "Reply": { "ConsumedCapacityUnits": 1.0 } }, "UnprocessedItems": {} } return dynamo_json_dump(response) def get_item(self): name = self.body['TableName'] key = self.body['Key'] try: item = dynamodb_backend2.get_item(name, key) except ValueError: er = 'com.amazon.coral.validate#ValidationException' return self.error(er, status=400) if item: item_dict = item.describe_attrs(attributes = None) item_dict['ConsumedCapacityUnits'] = 0.5 return dynamo_json_dump(item_dict) else: # Item not found er = 'com.amazonaws.dynamodb.v20111205#ResourceNotFoundException' return self.error(er, status=404) def batch_get_item(self): table_batches = self.body['RequestItems'] results = { "ConsumedCapacity":[], "Responses": { }, "UnprocessedKeys": { } } for table_name, table_request in table_batches.items(): items = [] keys = table_request['Keys'] attributes_to_get = table_request.get('AttributesToGet') results["Responses"][table_name]=[] for key in keys: item = dynamodb_backend2.get_item(table_name, key) if item: item_describe = item.describe_attrs(attributes_to_get) results["Responses"][table_name].append(item_describe["Item"]) results["ConsumedCapacity"].append({ "CapacityUnits": len(keys), "TableName": table_name }) return dynamo_json_dump(results) def query(self): name = self.body['TableName'] keys = self.body['KeyConditions'] hash_key_name, range_key_name = dynamodb_backend2.get_table_keys_name(name) if hash_key_name is None: er = "'com.amazonaws.dynamodb.v20120810#ResourceNotFoundException" return self.error(er) hash_key = keys[hash_key_name]['AttributeValueList'][0] if len(keys) == 1: range_comparison = None range_values = [] else: if range_key_name == None: er = "com.amazon.coral.validate#ValidationException" return self.error(er) else: range_condition = keys[range_key_name] if range_condition: range_comparison = range_condition['ComparisonOperator'] range_values = range_condition['AttributeValueList'] else: range_comparison = None range_values = [] items, last_page = dynamodb_backend2.query(name, hash_key, range_comparison, range_values) if items is None: er = 'com.amazonaws.dynamodb.v20111205#ResourceNotFoundException' return self.error(er) limit = self.body.get("Limit") if limit: items = items[:limit] reversed = self.body.get("ScanIndexForward") if reversed != False: items.reverse() result = { "Count": len(items), "Items": [item.attrs for item in items], "ConsumedCapacityUnits": 1, } # Implement this when we do pagination # if not last_page: # result["LastEvaluatedKey"] = { # "HashKeyElement": items[-1].hash_key, # "RangeKeyElement": items[-1].range_key, # } return dynamo_json_dump(result) def scan(self): name = self.body['TableName'] filters = {} scan_filters = self.body.get('ScanFilter', {}) for attribute_name, scan_filter in scan_filters.items(): # Keys are attribute names. Values are tuples of (comparison, comparison_value) comparison_operator = scan_filter["ComparisonOperator"] comparison_values = scan_filter.get("AttributeValueList", []) filters[attribute_name] = (comparison_operator, comparison_values) items, scanned_count, last_page = dynamodb_backend2.scan(name, filters) if items is None: er = 'com.amazonaws.dynamodb.v20111205#ResourceNotFoundException' return self.error(er) limit = self.body.get("Limit") if limit: items = items[:limit] result = { "Count": len(items), "Items": [item.attrs for item in items], "ConsumedCapacityUnits": 1, "ScannedCount": scanned_count } # Implement this when we do pagination # if not last_page: # result["LastEvaluatedKey"] = { # "HashKeyElement": items[-1].hash_key, # "RangeKeyElement": items[-1].range_key, # } return dynamo_json_dump(result) def delete_item(self): name = self.body['TableName'] keys = self.body['Key'] return_values = self.body.get('ReturnValues', '') item = dynamodb_backend2.delete_item(name, keys) if item: if return_values == 'ALL_OLD': item_dict = item.to_json() else: item_dict = {'Attributes': []} item_dict['ConsumedCapacityUnits'] = 0.5 return dynamo_json_dump(item_dict) else: er = 'com.amazonaws.dynamodb.v20120810#ConditionalCheckFailedException' return self.error(er) ``` #### File: moto/s3/utils.py ```python from __future__ import unicode_literals import re import sys from six.moves.urllib.parse import urlparse, unquote bucket_name_regex = re.compile("(.+).s3.amazonaws.com") def bucket_name_from_url(url): domain = urlparse(url).netloc if domain.startswith('www.'): domain = domain[4:] if 'amazonaws.com' in domain: bucket_result = bucket_name_regex.search(domain) if bucket_result: return bucket_result.groups()[0] else: if '.' in domain: return domain.split(".")[0] else: # No subdomain found. return None def clean_key_name(key_name): return unquote(key_name) class _VersionedKeyStore(dict): """ A simplified/modified version of Django's `MultiValueDict` taken from: https://github.com/django/django/blob/70576740b0bb5289873f5a9a9a4e1a26b2c330e5/django/utils/datastructures.py#L282 """ def __sgetitem__(self, key): return super(_VersionedKeyStore, self).__getitem__(key) def __getitem__(self, key): return self.__sgetitem__(key)[-1] def __setitem__(self, key, value): try: current = self.__sgetitem__(key) current.append(value) except (KeyError, IndexError): current = [value] super(_VersionedKeyStore, self).__setitem__(key, current) def get(self, key, default=None): try: return self[key] except (KeyError, IndexError): pass return default def getlist(self, key, default=None): try: return self.__sgetitem__(key) except (KeyError, IndexError): pass return default def setlist(self, key, list_): if isinstance(list_, tuple): list_ = list(list_) elif not isinstance(list_, list): list_ = [list_] super(_VersionedKeyStore, self).__setitem__(key, list_) def _iteritems(self): for key in self: yield key, self[key] def _itervalues(self): for key in self: yield self[key] def _iterlists(self): for key in self: yield key, self.getlist(key) items = iteritems = _iteritems lists = iterlists = _iterlists values = itervalues = _itervalues if sys.version_info[0] < 3: def items(self): return list(self.iteritems()) def values(self): return list(self.itervalues()) def lists(self): return list(self.iterlists()) ``` #### File: tests/test_sns/test_publishing.py ```python from __future__ import unicode_literals from six.moves.urllib.parse import parse_qs import boto from freezegun import freeze_time import httpretty import sure # noqa from moto import mock_sns, mock_sqs @mock_sqs @mock_sns def test_publish_to_sqs(): conn = boto.connect_sns() conn.create_topic("some-topic") topics_json = conn.get_all_topics() topic_arn = topics_json["ListTopicsResponse"]["ListTopicsResult"]["Topics"][0]['TopicArn'] sqs_conn = boto.connect_sqs() sqs_conn.create_queue("test-queue") conn.subscribe(topic_arn, "sqs", "arn:aws:sqs:us-east-1:123456789012:test-queue") conn.publish(topic=topic_arn, message="my message") queue = sqs_conn.get_queue("test-queue") message = queue.read(1) message.get_body().should.equal('my message') @freeze_time("2013-01-01") @mock_sns def test_publish_to_http(): httpretty.HTTPretty.register_uri( method="POST", uri="http://example.com/foobar", ) conn = boto.connect_sns() conn.create_topic("some-topic") topics_json = conn.get_all_topics() topic_arn = topics_json["ListTopicsResponse"]["ListTopicsResult"]["Topics"][0]['TopicArn'] conn.subscribe(topic_arn, "http", "http://example.com/foobar") response = conn.publish(topic=topic_arn, message="my message", subject="my subject") message_id = response['PublishResponse']['PublishResult']['MessageId'] last_request = httpretty.last_request() last_request.method.should.equal("POST") parse_qs(last_request.body.decode('utf-8')).should.equal({ "Type": ["Notification"], "MessageId": [message_id], "TopicArn": ["arn:aws:sns:us-east-1:123456789012:some-topic"], "Subject": ["my subject"], "Message": ["my message"], "Timestamp": ["2013-01-01T00:00:00Z"], "SignatureVersion": ["1"], "Signature": ["<KEY>], "SigningCertURL": ["https://sns.us-east-1.amazonaws.com/SimpleNotificationService-f3ecfb7224c7233fe7bb5f59f96de52f.pem"], "UnsubscribeURL": ["https://sns.us-east-1.amazonaws.com/?Action=Unsubscribe&SubscriptionArn=arn:aws:sns:us-east-1:123456789012:some-topic:2bcfbf39-05c3-41de-beaa-fcfcc21c8f55"], }) ``` #### File: tests/test_sns/test_subscriptions.py ```python from __future__ import unicode_literals import boto import sure # noqa from moto import mock_sns @mock_sns def test_creating_subscription(): conn = boto.connect_sns() conn.create_topic("some-topic") topics_json = conn.get_all_topics() topic_arn = topics_json["ListTopicsResponse"]["ListTopicsResult"]["Topics"][0]['TopicArn'] conn.subscribe(topic_arn, "http", "http://example.com/") subscriptions = conn.get_all_subscriptions()["ListSubscriptionsResponse"]["ListSubscriptionsResult"]["Subscriptions"] subscriptions.should.have.length_of(1) subscription = subscriptions[0] subscription["TopicArn"].should.equal(topic_arn) subscription["Protocol"].should.equal("http") subscription["SubscriptionArn"].should.contain(topic_arn) subscription["Endpoint"].should.equal("http://example.com/") # Now unsubscribe the subscription conn.unsubscribe(subscription["SubscriptionArn"]) # And there should be zero subscriptions left subscriptions = conn.get_all_subscriptions()["ListSubscriptionsResponse"]["ListSubscriptionsResult"]["Subscriptions"] subscriptions.should.have.length_of(0) @mock_sns def test_getting_subscriptions_by_topic(): conn = boto.connect_sns() conn.create_topic("topic1") conn.create_topic("topic2") topics_json = conn.get_all_topics() topics = topics_json["ListTopicsResponse"]["ListTopicsResult"]["Topics"] topic1_arn = topics[0]['TopicArn'] topic2_arn = topics[1]['TopicArn'] conn.subscribe(topic1_arn, "http", "http://example1.com/") conn.subscribe(topic2_arn, "http", "http://example2.com/") topic1_subscriptions = conn.get_all_subscriptions_by_topic(topic1_arn)["ListSubscriptionsByTopicResponse"]["ListSubscriptionsByTopicResult"]["Subscriptions"] topic1_subscriptions.should.have.length_of(1) topic1_subscriptions[0]['Endpoint'].should.equal("http://example1.com/") ```
{ "source": "joekir/crypt-van-impl", "score": 3 }
#### File: python/Cryptography/crypt.py ```python import sys from cryptography.hazmat.primitives.ciphers import ( Cipher, algorithms, modes ) from cryptography.hazmat.backends import default_backend def encrypt(ptext, iv, aad, key): encryptor = Cipher( algorithms.AES(key), modes.GCM(iv), backend=default_backend() ).encryptor() encryptor.authenticate_additional_data(aad) # Encrypt the plaintext and get the associated ciphertext. # GCM does not require padding. ciphertext = encryptor.update(ptext) + encryptor.finalize() return (ciphertext.hex(), encryptor.tag.hex()) ptext = bytes(sys.argv[1],'utf8') iv = bytes.fromhex(sys.argv[2]) aad = bytes(sys.argv[3],'utf8') key = bytes.fromhex(sys.argv[4]) #print(ptext,iv,aad,key) print(encrypt(ptext,iv,aad,key)) ```
{ "source": "JoeKlemmer/sinktheship", "score": 4 }
#### File: JoeKlemmer/sinktheship/sinktheship.py ```python import random import os random.seed() # Variables playing_the_game = True ship_location = [[int(j) for j in range(25)] for _ in range(25)] playing_grid = [[int(j) for j in range(25)] for _ in range(25)] display_help_info = """ The object of the game is to sink the ship. There will be one ship on the grid. The player will choose horizontal and virtical coordinates and the game will calculate whether those coordiantes were a hit or a miss. An \"X\" will mark a hit and \"*\" a miss. The difficulty levels will be set as follows; - Easy will be a grid of 10 x 10 - Normal will be a grid of 15 x 15 - Hard will be a grid of 20 x 20 You will have 15, 20, and 25 attempts, respectively, to sink the ship. If you do not, the ship will escape and you lose. You may exit the game at any time by hitting \"Ctrl-C\". """ # Build a 2 dimensional array of the size chosen def build_grid(gsize): for i in range(gsize): for j in range(gsize): playing_grid[i][j] = " ." # Display the playing grid the size chosen def display_grid(gsize): os.system("clear") for x in range(gsize): if x < 10: print(" " + str(x+1), end="") else: print(" " + str(x+1), end="") print() for y in range(gsize): if y == 0: print(" --", end="") else: print("---", end="") if y == gsize - 1: print("-\\") for i in range(gsize): for j in range(gsize): print(playing_grid[i][j], end="") print(" |" + str(i+1)) # Get the users coordinates def get_users_coordinates(gsize): while True: try: global acrossCoord acrossCoord = int(input("Enter across coordinate: ")) except ValueError: print("Value must be a number") else: if acrossCoord > gsize or acrossCoord <= 0: print("Value must be greater than zero and less than or equal to " + str(gsize)) else: break while True: try: global downCoord downCoord = int(input("Enter down coordinate: ")) except ValueError: print("Value must be a number") else: if (downCoord > gsize or downCoord <= 0): print("Value must be greater than zero and less than or equal to " + str(gsize)) else: break # Determin where and in what doirecton to place the ship def place_ship(gsize): direction = random.randint(1, 4) # The limiter keeps the ship from being placed outside the grid limiter = random.randint(0, 5) gridsize = random.randint(0, (gsize - 1)) i = 0 while i < 4: if direction == 1: # North # playing_grid[limiter+i][gridsize] = " @" # <-- Used for debugging ship_location[limiter+i][gridsize] = " @" elif direction == 2: #South # playing_grid[(limiter + 3) - i][gridsize] = " @" # <-- Used for debugging ship_location[(limiter + 3) - i][gridsize] = " @" elif direction == 3: #East # playing_grid[gridsize][(limiter + 3) - i] = " @" # <-- Used for debugging ship_location[gridsize][(limiter + 3) - i] = " @" elif direction == 4: #West # playing_grid[gridsize][limiter + i] = " @" # <-- Used for debugging ship_location[gridsize][limiter + i] = " @" else: # If we end up here, something broke print("Shit done did blowed up!") i += 1 # CHeck to see if the coordinates the user entered hit the ship def calculate_hit(): hit_counter = 0 if playing_grid[downCoord - 1][acrossCoord - 1] == ship_location[downCoord - 1][acrossCoord - 1]: playing_grid[downCoord-1][acrossCoord-1] = " X" hit_counter += 1 else: playing_grid[downCoord-1][acrossCoord-1] = " *" return hit_counter # Basically, the main game loop def play_game(gsize): is_it_sunk = 0 play_counter = 0 build_grid(gsize) place_ship(gsize) display_grid(gsize) while is_it_sunk < 4 and play_counter < gsize + 5: play_counter += 1 print("You have " + str((gsize + 6) - play_counter) + " attempts left") get_users_coordinates(gsize) is_it_sunk += calculate_hit() display_grid(gsize) if is_it_sunk == 4: print("\n\"Hey! You sunk my ship!\"") print("\"It took you " + str(play_counter) + " shots to sink it.\"") else: print("\n\"Ha! You took too long. I got away!\"") print("Better luck next time.") # Initial game menu print("\nGreetings <NAME>.") print("Welcome to \"Sink My Ship\"") while playing_the_game: print("\nPlease make a selection:") print("1 - Easy") print("2 - Normal") print("3 - Hard") print() print("H - Help") print("Q - Quit") print("-------------------------") choice = input("Enter your choice: ") if str(choice) == "1": play_game(10) break elif str(choice) == "2": play_game(15) break elif str(choice) == "3": play_game(20) break elif str(choice) == "H" or str(choice) == "h": print(display_help_info) elif str(choice) == "Q" or str(choice) == "q": playing_the_game = False print("\n\nThank you for playing.") print("Goodbye.\n") break else: print("\nError: You must enter one of the above options\n") pause = input("Press any key to continue...") ```
{ "source": "Joeklepko/akshare", "score": 2 }
#### File: akshare/economic/macro_canada.py ```python import pandas as pd import requests from akshare.utils import demjson # 新屋开工 def macro_canada_new_house_rate(): """ 东方财富-经济数据-加拿大-新屋开工 http://data.eastmoney.com/cjsj/foreign_7_0.html :return: 新屋开工 :rtype: pandas.DataFrame """ url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "7", "stat": "0", "pageNo": "1", "pageNum": "1", "_": "1625474966006", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df["前值"] = pd.to_numeric(temp_df["前值"]) temp_df["现值"] = pd.to_numeric(temp_df["现值"]) return temp_df # 失业率 def macro_canada_unemployment_rate(): """ 东方财富-经济数据-加拿大-失业率 http://data.eastmoney.com/cjsj/foreign_7_1.html :return: 失业率 :rtype: pandas.DataFrame """ url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "7", "stat": "1", "pageNo": "1", "pageNum": "1", "_": "1625474966006", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df["前值"] = pd.to_numeric(temp_df["前值"]) temp_df["现值"] = pd.to_numeric(temp_df["现值"]) return temp_df # 贸易帐 def macro_canada_trade(): """ 东方财富-经济数据-加拿大-贸易帐 http://data.eastmoney.com/cjsj/foreign_7_2.html :return: 贸易帐 :rtype: pandas.DataFrame """ url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "7", "stat": "2", 'pageNo': '1', 'pageNum': '1', "_": "1625474966006", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df["前值"] = pd.to_numeric(temp_df["前值"]) / 100 temp_df["现值"] = pd.to_numeric(temp_df["现值"]) / 100 return temp_df # 零售销售月率 def macro_canada_retail_rate_monthly(): """ 东方财富-经济数据-加拿大-零售销售月率 http://data.eastmoney.com/cjsj/foreign_7_3.html :return: 零售销售月率 :rtype: pandas.DataFrame """ url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "7", "stat": "3", 'pageNo': '1', 'pageNum': '1', "_": "1625474966006", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df["前值"] = pd.to_numeric(temp_df["前值"]) temp_df["现值"] = pd.to_numeric(temp_df["现值"]) return temp_df # 央行公布利率决议 def macro_canada_bank_rate(): """ 东方财富-经济数据-加拿大-央行公布利率决议 http://data.eastmoney.com/cjsj/foreign_7_4.html :return: 央行公布利率决议 :rtype: pandas.DataFrame """ url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "7", "stat": "4", 'pageNo': '1', 'pageNum': '1', "_": "1625474966006", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df["前值"] = pd.to_numeric(temp_df["前值"]) temp_df["现值"] = pd.to_numeric(temp_df["现值"]) return temp_df # 核心消费者物价指数年率 def macro_canada_core_cpi_yearly(): """ 东方财富-经济数据-加拿大-核心消费者物价指数年率 http://data.eastmoney.com/cjsj/foreign_7_5.html :return: 核心消费者物价指数年率 :rtype: pandas.DataFrame """ url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "7", "stat": "5", 'pageNo': '1', 'pageNum': '1', "_": "1625474966006", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df["前值"] = pd.to_numeric(temp_df["前值"]) temp_df["现值"] = pd.to_numeric(temp_df["现值"]) return temp_df # 核心消费者物价指数月率 def macro_canada_core_cpi_monthly(): """ 东方财富-经济数据-加拿大-核心消费者物价指数月率 http://data.eastmoney.com/cjsj/foreign_7_6.html :return: 核心消费者物价指数月率 :rtype: pandas.DataFrame """ url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "7", "stat": "6", 'pageNo': '1', 'pageNum': '1', "_": "1625474966006", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df["前值"] = pd.to_numeric(temp_df["前值"]) temp_df["现值"] = pd.to_numeric(temp_df["现值"]) return temp_df # 消费者物价指数年率 def macro_canada_cpi_yearly(): """ 东方财富-经济数据-加拿大-消费者物价指数年率 http://data.eastmoney.com/cjsj/foreign_7_7.html :return: 消费者物价指数年率 :rtype: pandas.DataFrame """ url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "7", "stat": "7", 'pageNo': '1', 'pageNum': '1', "_": "1625474966006", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df["前值"] = pd.to_numeric(temp_df["前值"]) temp_df["现值"] = pd.to_numeric(temp_df["现值"]) return temp_df # 消费者物价指数月率 def macro_canada_cpi_monthly(): """ 东方财富-经济数据-加拿大-消费者物价指数月率 http://data.eastmoney.com/cjsj/foreign_7_8.html :return: 消费者物价指数月率 :rtype: pandas.DataFrame """ url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "7", "stat": "8", 'pageNo': '1', 'pageNum': '1', "_": "1625474966006", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df["前值"] = pd.to_numeric(temp_df["前值"]) temp_df["现值"] = pd.to_numeric(temp_df["现值"]) return temp_df # GDP 月率 def macro_canada_gdp_monthly(): """ 东方财富-经济数据-加拿大-GDP 月率 http://data.eastmoney.com/cjsj/foreign_7_9.html :return: GDP 月率 :rtype: pandas.DataFrame """ url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "7", "stat": "9", 'pageNo': '1', 'pageNum': '1', "_": "1625474966006", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df["前值"] = pd.to_numeric(temp_df["前值"]) temp_df["现值"] = pd.to_numeric(temp_df["现值"]) return temp_df if __name__ == '__main__': macro_canada_new_house_rate_df = macro_canada_new_house_rate() print(macro_canada_new_house_rate_df) macro_canada_unemployment_rate_df = macro_canada_unemployment_rate() print(macro_canada_unemployment_rate_df) macro_canada_trade_df = macro_canada_trade() print(macro_canada_trade_df) macro_canada_retail_rate_monthly_df = macro_canada_retail_rate_monthly() print(macro_canada_retail_rate_monthly_df) macro_canada_bank_rate_df = macro_canada_bank_rate() print(macro_canada_bank_rate_df) macro_canada_core_cpi_yearly_df = macro_canada_core_cpi_yearly() print(macro_canada_core_cpi_yearly_df) macro_canada_core_cpi_monthly_df = macro_canada_core_cpi_monthly() print(macro_canada_core_cpi_monthly_df) macro_canada_cpi_yearly_df = macro_canada_cpi_yearly() print(macro_canada_cpi_yearly_df) macro_canada_cpi_monthly_df = macro_canada_cpi_monthly() print(macro_canada_cpi_monthly_df) macro_canada_gdp_monthly_df = macro_canada_gdp_monthly() print(macro_canada_gdp_monthly_df) ``` #### File: akshare/futures_derivative/nh_index_return.py ```python import time import requests import pandas as pd def num_to_str_data(str_date: int) -> str: """ num to str format :param str_date: time of int format :type str_date: int :return: format time :rtype: str """ str_date = str_date / 1000 str_date = time.localtime(str_date) strp_time = time.strftime("%Y-%m-%d %H:%M:%S", str_date) return strp_time def get_nh_list_table() -> pd.DataFrame: """ 南华期货-南华指数所有品种一览表 :return: 所有品种一览表 :rtype: pandas.DataFrame """ url_name = "http://www.nanhua.net/ianalysis/plate-variety.json" res = requests.get(url_name) futures_name = [item["name"] for item in res.json()] futures_code = [item["code"] for item in res.json()] futures_exchange = [item["exchange"] for item in res.json()] futures_first_day = [item["firstday"] for item in res.json()] futures_index_cat = [item["indexcategory"] for item in res.json()] futures_df = pd.DataFrame( [ futures_code, futures_exchange, futures_first_day, futures_index_cat, futures_name, ] ).T futures_df.columns = ["code", "exchange", "start_date", "category", "name"] return futures_df def nh_return_index(code: str = "Y") -> pd.DataFrame: """ 南华期货-南华指数单品种所有历史数据 :param code: str 通过 get_nh_list 提供 :return: pandas.Series """ if code in get_nh_list_table()["code"].tolist(): t = time.time() base_url = f"http://www.nanhua.net/ianalysis/varietyindex/index/{code}.json?t={int(round(t * 1000))}" r = requests.get(base_url) date = [num_to_str_data(item[0]).split(" ")[0] for item in r.json()] data = [item[1] for item in r.json()] df_all = pd.DataFrame([date, data]).T df_all.columns = ["date", "value"] df_all.index = pd.to_datetime(df_all["date"]) del df_all["date"] return df_all if __name__ == "__main__": nh_return_index_df = nh_return_index() print(nh_return_index_df) ``` #### File: akshare/futures/futures_inventory.py ```python import os import pandas as pd import requests from bs4 import BeautifulSoup from akshare.futures.cons import ( qh_headers, sample_headers, inventory_temp_headers, ) def futures_inventory_99( exchange: int = 3, symbol: int = 11, plot: bool = False ) -> pd.DataFrame: """ 调用此函数, 请调用 try except # 交易所代码 {'1': '上海期货交易所', '2': '郑州商品交易所', '3': '大连商品交易所', '7': 'LME', '8': 'NYMEX', '9': 'CBOT', '11': 'NYBOT', '12': 'TOCOM', '14': '上海国际能源交易中心', '15': 'OSE'} # 交易所对应合约代码 '上海期货交易所': {'6': '铜', '7': '铝', '8': '橡胶', '21': '燃料油', '54': '锌', '58': '黄金', '59': '螺纹钢', '62': '线材', '64': '铅', '69': '白银', '78': '石油沥青', '85': '热轧卷板', '93': '锡', '94': '镍', '103': '纸浆', '109': '不锈钢'}, '郑州商品交易所': {'9': '强麦', '10': '硬麦', '23': '一号棉', '51': '白糖', '53': 'PTA', '55': '菜籽油', '60': '早籼稻', '66': '甲醇', '67': '普麦', '72': '玻璃', '73': '油菜籽', '74': '菜籽粕', '81': '粳稻', '88': '晚籼稻', '90': '硅铁', '91': '锰硅', '99': '棉纱', '100': '苹果', '105': '红枣', '106': '尿素', '111': '纯碱'}, '大连商品交易所': {'11': '豆一', '12': '豆二', '16': '豆粕', '24': '玉米', '52': '豆油', '56': '聚乙烯', '57': '棕榈油', '61': '聚氯乙烯', '65': '焦炭', '75': '焦煤', '79': '铁矿石', '80': '鸡蛋', '82': '中密度纤维板', '83': '细木工板', '84': '聚丙烯', '92': '玉米淀粉', '104': '乙二醇', '108': '粳米', '110': '苯乙烯', '112': '纤维板', '113': '液化石油气'}, '上海国际能源交易中心': {'102': '原油', '107': '20号胶', '114': '低硫燃料油'}} 'LME': {'18': 'LME铜', '19': 'LME铝', '25': 'LME镍', '26': 'LME铅', '27': 'LME锌', '45': 'LME锡', '50': 'LME铝合金'}, 'NYMEX': {'20': 'COMEX铜', '31': 'COMEX金', '32': 'COMEX银'}, 'CBOT': {'22': 'CBOT大豆', '46': 'CBOT小麦', '47': 'CBOT玉米', '48': 'CBOT燕麦', '49': 'CBOT糙米'}, 'NYBOT': {'30': 'NYBOT2号棉'} 'TOCOM': {'44': 'TOCOM橡胶'} 'OSE': {'44': 'OSE橡胶'} :param exchange: int 交易所, 请对照 __doc__ 中的代码输入 :param symbol: int 品种, 请对照 __doc__ 中的代码输入对应交易所的品种 # :param dir_path: str 存放图片的目录 :param plot: Bool 画出历史库存曲线图 :return: pandas.DataFrame and picture """ data_code = { "1": [ "6", "7", "8", "21", "54", "58", "59", "62", "64", "69", "78", "85", "93", "94", "103", "109", ], "2": [ "9", "10", "23", "51", "53", "55", "60", "66", "67", "72", "73", "74", "81", "88", "90", "91", "99", "100", "105", "106", "111", ], "3": [ "11", "12", "16", "24", "52", "56", "57", "61", "65", "75", "79", "80", "82", "83", "84", "92", "104", '108', '110', '112', '113', ], "7": ["18", "19", "25", "26", "27", "45", "50"], "8": ["20", "31", "32"], "9": ["22", "46", "47", "48", "49"], "11": ["30"], "12": ["44"], "14": ["102", '107', '114'], "15": ["6"], } data_name = { "1": [ "铜", "铝", "橡胶", "燃料油", "锌", "黄金", "螺纹钢", "线材", "铅", "白银", "石油沥青", "热轧卷板", "锡", "镍", "纸浆", "不锈钢", ], "2": [ "强麦", "硬麦", "一号棉", "白糖", "PTA", "菜籽油", "早籼稻", "甲醇", "普麦", "玻璃", "油菜籽", "菜籽粕", "粳稻", "晚籼稻", "硅铁", "锰硅", "棉纱", "苹果", "红枣", "尿素", "纯碱", ], "3": [ "豆一", "豆二", "豆粕", "玉米", "豆油", "聚乙烯", "棕榈油", "聚氯乙烯", "焦炭", "焦煤", "铁矿石", "鸡蛋", "中密度纤维板", "细木工板", "聚丙烯", "玉米淀粉", "乙二醇", '粳米', '苯乙烯', '纤维板', '液化石油气', ], "7": ["LME铜", "LME铝", "LME镍", "LME铅", "LME锌", "LME锡", "LME铝合金"], "8": ["COMEX铜", "COMEX金", "COMEX银"], "9": ["CBOT大豆", "CBOT小麦", "CBOT玉米", "CBOT燕麦", "CBOT糙米"], "11": ["NYBOT2号棉"], "12": ["TOCOM橡胶"], "14": ["原油", '20号胶', '低硫燃料油'], "15": ["OSE橡胶"], } out_exchange_name = { "1": "上海期货交易所", "2": "郑州商品交易所", "3": "大连商品交易所", "7": "LME", "8": "NYMEX", "9": "CBOT", "11": "NYBOT", "12": "TOCOM", "14": "上海国际能源交易中心", "15": "OSE", } name_temp_dict = {} code_temp_dict = {} for num in data_code.keys(): name_temp_dict[out_exchange_name[num]] = dict( zip(data_code[num], data_name[num]) ) code_temp_dict[num] = dict(zip(data_code[num], data_name[num])) while True: try: if exchange != 1: url = "http://service.99qh.com/Storage/Storage.aspx" params = { "page": "99qh" } res = requests.get(url, params=params, headers=sample_headers) soup = BeautifulSoup(res.text, "lxml") view_state = soup.find_all(attrs={"id": "__VIEWSTATE"})[0]["value"] even_validation = soup.find_all(attrs={"id": "__EVENTVALIDATION"})[0][ "value" ] # print(symbol) payload = { "__EVENTTARGET": "ddlExchName", "__EVENTARGUMENT": "", "__LASTFOCUS": "", "__VIEWSTATE": view_state, "__VIEWSTATEGENERATOR": "6EAC22FA", "__EVENTVALIDATION": even_validation, "ddlExchName": int(exchange), "ddlGoodsName": 6, } res = requests.post(url, data=payload, headers=qh_headers) soup = BeautifulSoup(res.text, "lxml") exchange_name = ( soup.find_all("select")[0] .find_all(attrs={"selected": "selected"})[0] .get_text() ) # print("切换后", exchange_name) view_state = soup.find_all(attrs={"id": "__VIEWSTATE"})[0]["value"] even_validation = soup.find_all(attrs={"id": "__EVENTVALIDATION"})[0][ "value" ] payload = { "__EVENTTARGET": "ddlGoodsName", "__EVENTARGUMENT": "", "__LASTFOCUS": "", "__VIEWSTATE": view_state, "__VIEWSTATEGENERATOR": "6EAC22FA", "__EVENTVALIDATION": even_validation, "ddlExchName": int(exchange), "ddlGoodsName": int(symbol), } res = requests.post(url, data=payload, headers=qh_headers) soup = BeautifulSoup(res.text, "lxml") small_code = ( soup.find_all(attrs={"id": "chartData"})[0]["src"] .split("&")[-2] .split("=")[1] ) # print(small_code) payload = { "__EVENTTARGET": "btnZoomAll", "__EVENTARGUMENT": "", "__LASTFOCUS": "", "__VIEWSTATE": view_state, "__VIEWSTATEGENERATOR": "6EAC22FA", "__EVENTVALIDATION": even_validation, "ddlExchName": int(exchange), "ddlGoodsName": int(symbol), } res = requests.post(url, data=payload, headers=qh_headers) soup = BeautifulSoup(res.text, "lxml") inventory_table = pd.read_html(res.text)[-1].T inventory_table.columns = inventory_table.iloc[0, :] inventory_table = inventory_table.iloc[1:, :] inventory_table.reset_index(inplace=True, drop=True) inventory_table.columns.name = None params = { "ChartDirectorChartImage": "chart_chartData", "cacheId": soup.find_all(attrs={"id": "chartData"})[0]["src"] .split("&")[-2] .split("=")[1], "page": "99qh", } res = requests.get( "http://service.99qh.com/Storage/Storage.aspx", params=params, headers=inventory_temp_headers, ) if plot: with open( "{}_{}.jpg".format( exchange_name, code_temp_dict[str(exchange)][str(symbol)] ), "wb", ) as fs: print("保存图片到本地: {}".format(os.getcwd())) fs.write(res.content) return inventory_table else: url = "http://service.99qh.com/Storage/Storage.aspx" params = { "page": "99qh" } res = requests.get(url, params=params, headers=sample_headers) soup = BeautifulSoup(res.text, "lxml") view_state = soup.find_all(attrs={"id": "__VIEWSTATE"})[0]["value"] even_validation = soup.find_all(attrs={"id": "__EVENTVALIDATION"})[0][ "value" ] url = "http://service.99qh.com/Storage/Storage.aspx" params = { "page": "99qh" } res = requests.get(url, params=params, headers=sample_headers) soup = BeautifulSoup(res.text, "lxml") view_state = soup.find_all(attrs={"id": "__VIEWSTATE"})[0]["value"] even_validation = soup.find_all(attrs={"id": "__EVENTVALIDATION"})[0][ "value" ] # print(symbol) payload = { "__EVENTTARGET": "btnZoomAll", "__EVENTARGUMENT": "", "__LASTFOCUS": "", "__VIEWSTATE": view_state, "__VIEWSTATEGENERATOR": "6EAC22FA", "__EVENTVALIDATION": even_validation, "ddlExchName": int(exchange), "ddlGoodsName": int(symbol), } res = requests.post(url, data=payload, headers=qh_headers) inventory_table = pd.read_html(res.text)[-1].T inventory_table.columns = inventory_table.iloc[0, :] inventory_table = inventory_table.iloc[1:, :] inventory_table.reset_index(inplace=True, drop=True) inventory_table.columns.name = None soup = BeautifulSoup(res.text, "lxml") exchange_name = ( soup.find_all("select")[0] .find_all(attrs={"selected": "selected"})[0] .get_text() ) params = { "ChartDirectorChartImage": "chart_chartData", "cacheId": soup.find_all(attrs={"id": "chartData"})[0]["src"] .split("&")[-2] .split("=")[1], "page": "99qh", } res = requests.get( "http://service.99qh.com/Storage/Storage.aspx", params=params, headers=inventory_temp_headers, ) if plot: with open( "{}_{}.jpg".format( exchange_name, code_temp_dict[str(exchange)][str(symbol)] ), "wb", ) as fs: print("保存图片到本地: {}".format(os.getcwd())) fs.write(res.content) return inventory_table except: continue if __name__ == "__main__": futures_inventory_99_df = futures_inventory_99(exchange=1, symbol=6, plot=False) print(futures_inventory_99_df) ``` #### File: akshare/stock_fundamental/stock_finance_hk.py ```python import pandas as pd import requests def stock_financial_hk_report_em( stock: str = "00700", symbol: str = "现金流量表", indicator: str = "年度" ) -> pd.DataFrame: """ 东方财富-港股-财务报表-三大报表 https://emweb.securities.eastmoney.com/PC_HKF10/FinancialAnalysis/index?type=web&code=00700 :param stock: 股票代码 :type stock: str :param symbol: choice of {"资产负债表", "利润表", "现金流量表"} :type symbol: :param indicator: choice of {"年度", "报告期"} :type indicator: :return: 东方财富-港股-财务报表-三大报表 :rtype: pandas.DataFrame """ if indicator == "年度": rtype = 6 elif indicator == "报告期": rtype = 0 else: raise Exception("非法的关键字!", indicator) if symbol == "资产负债表": url = f"https://emweb.securities.eastmoney.com/PC_HKF10/NewFinancialAnalysis/GetZCFZB?code={stock}&startdate=&ctype=4&rtype={rtype}" # 资产负债表 elif symbol == "利润表": url = f"https://emweb.securities.eastmoney.com/PC_HKF10/NewFinancialAnalysis/GetLRB?code={stock}&startdate=&ctype=4&rtype={rtype}" # 利润表 elif symbol == "现金流量表": url = f"https://emweb.securities.eastmoney.com/PC_HKF10/NewFinancialAnalysis/GetXJLLB?code={stock}&startdate=&rtype={rtype}" # 现金流量表 r = requests.get(url) temp_df = pd.DataFrame(eval(r.text)["data"]) temp_df.columns = temp_df.loc[0] temp_df = temp_df.drop(0, axis=0) temp_df['截止日期'] = pd.to_datetime(temp_df["截止日期"], format="%y-%m-%d").dt.date temp_df.reset_index(drop=True, inplace=True) temp_df.columns.name = None return temp_df def stock_financial_hk_analysis_indicator_em( stock: str = "00700", indicator: str = "年度" ) -> pd.DataFrame: """ 东方财富-港股-财务分析-主要指标 https://emweb.securities.eastmoney.com/PC_HKF10/NewFinancialAnalysis/index?type=web&code=00700 :param stock: 股票代码 :type stock: str :param indicator: choice of {"年度", "报告期"} :type indicator: str :return: 新浪财经-港股-财务分析-主要指标 :rtype: pandas.DataFrame """ if indicator == "年度": key = "zyzb_an" elif indicator == "报告期": key = "zyzb_abgq" else: raise Exception("非法的关键字!", indicator) url = f"http://emweb.securities.eastmoney.com/PC_HKF10/NewFinancialAnalysis/GetZYZB?code={stock}" r = requests.get(url) temp_df = pd.DataFrame.from_records(eval(r.text)["data"][key]) temp_df.columns = temp_df.loc[0] temp_df = temp_df.drop(0, axis=0) temp_df["周期"] = pd.to_datetime(temp_df["每股指标"], format="%y-%m-%d").dt.date temp_df = temp_df.drop("每股指标", axis=1) temp_df = temp_df[ [ "周期", "基本每股收益(元)", "稀释每股收益(元)", "TTM每股收益(元)", "每股净资产(元)", "每股经营现金流(元)", "每股营业收入(元)", "成长能力指标", "营业总收入(元)", "毛利润", "归母净利润", "营业总收入同比增长(%)", "毛利润同比增长(%)", "归母净利润同比增长(%)", "营业总收入滚动环比增长(%)", "毛利润滚动环比增长(%)", "归母净利润滚动环比增长(%)", "盈利能力指标", "平均净资产收益率(%)", "年化净资产收益率(%)", "总资产净利率(%)", "毛利率(%)", "净利率(%)", "年化投资回报率(%)", "盈利质量指标", "所得税/利润总额(%)", "经营现金流/营业收入(%)", "财务风险指标", "资产负债率(%)", "流动负债/总负债(%)", "流动比率", ] ] temp_df.reset_index(drop=True, inplace=True) temp_df.columns.name = None temp_df['周期'] = pd.to_datetime(temp_df['周期']).dt.date return temp_df if __name__ == "__main__": stock_financial_hk_analysis_indicator_em_df = ( stock_financial_hk_analysis_indicator_em(stock="00700", indicator="年度") ) print(stock_financial_hk_analysis_indicator_em_df) stock_financial_hk_analysis_indicator_em_df = ( stock_financial_hk_analysis_indicator_em(stock="00700", indicator="报告期") ) print(stock_financial_hk_analysis_indicator_em_df) stock_financial_hk_report_em_df = stock_financial_hk_report_em( stock="00700", symbol="资产负债表", indicator="年度" ) print(stock_financial_hk_report_em_df) stock_financial_hk_report_em_df = stock_financial_hk_report_em( stock="00700", symbol="资产负债表", indicator="报告期" ) print(stock_financial_hk_report_em_df) stock_financial_hk_report_em_df = stock_financial_hk_report_em( stock="00700", symbol="利润表", indicator="年度" ) print(stock_financial_hk_report_em_df) stock_financial_hk_report_em_df = stock_financial_hk_report_em( stock="00700", symbol="利润表", indicator="报告期" ) print(stock_financial_hk_report_em_df) stock_financial_hk_report_em_df = stock_financial_hk_report_em( stock="00700", symbol="现金流量表", indicator="年度" ) print(stock_financial_hk_report_em_df) stock_financial_hk_report_em_df = stock_financial_hk_report_em( stock="00700", symbol="现金流量表", indicator="报告期" ) print(stock_financial_hk_report_em_df) ```