metadata
dict
text
stringlengths
60
3.49M
{ "source": "johnjajeh/Sage", "score": 4 }
#### File: Sage/src/dealer.py ```python from random import randint def deal(): cards = [0, 0] while cards[1] - cards[0] <= 1: cards[0] = randint(1, 10) cards[1] = randint(1, 10) cards.sort() card3 = randint(1, 10) return (cards, card3) ``` #### File: Sage/src/player_factory.py ```python from players.always_bet import PlayerAlwaysBet from players.difference_plus import PlayerDifferencePlus from players.difference import PlayerDifference from players.hard_splits import PlayerHardSplits from players.spread import PlayerSpread from players.player import Player class PlayerFactory: def getPlayer1(self) -> Player: return self.player1 def getPlayer2(self) -> Player: return self.player2 def determinePlayers(self): self.printIntroduction() self.player1 = self.queryPlayer(1) self.player2 = self.queryPlayer(2) def queryPlayer(self, playerNum: int): switcher = { '1': lambda: PlayerAlwaysBet(), '2': lambda: PlayerDifference(), '3': lambda: PlayerDifferencePlus(), '4': lambda: PlayerHardSplits(), '5': lambda: PlayerSpread(), } selection = input('Select Player #{}: '.format(playerNum)) return switcher.get(selection, lambda: PlayerAlwaysBet()) def printIntroduction(self): print('-------------------------------') print('-- Pick Players --') print('-- Input a number from below --') print('-------------------------------') print('') print(' [1] Always bet') print(' [2] Difference') print(' [3] Difference plus 1') print(' [4] Hard splits') print(' [5] Spread') print('') ``` #### File: src/players/player.py ```python class Player: def __init__(self): self.score = 100 def getName(self): return self.__class__.__name__ def changeScore(self, change: int): self.score += change def play(self, low: int, high: int) -> int: #TODO add more info if needed (maybe round and other player score) pass ``` #### File: src/players/spread.py ```python from players.player import Player class PlayerSpread(Player): def play(self, low: int, high: int) -> int: if high - low >= 6: return 9 return 0; ``` #### File: Sage/src/sage_game.py ```python from players.player import Player from dealer import deal from reporter import Reporter class Sage: def __init__(self, player1: Player, player2: Player, reporter: Reporter): self.player1 = player1 self.player2 = player2 self.reporter = reporter def run(self): #Probably pass something in to record data for each round for roundNum in range(10): self.__playRound(self.player1) self.__playRound(self.player2) self.reporter.recordData(self.player1.score, self.player2.score) return (self.player1.score, self.player2.score) def __playRound(self, player: Player): cards, card3 = deal() bet = 1 + player.play(cards[0], cards[1]) if (cards[0] < card3 and card3 < cards[1]): player.changeScore(bet) else: player.changeScore(-bet) ```
{ "source": "john-james-ai/cvr", "score": 2 }
#### File: cvr/core/profile.py ```python import pandas as pd from pandas.api.types import is_categorical_dtype from pandas.api.types import is_string_dtype from pandas.api.types import is_numeric_dtype import numpy as np from typing import Union # plotting modules import seaborn as sns import matplotlib.pyplot as plt sns.set_style("whitegrid") sns.set_palette("mako") from cvr.data import categorical_columns, numeric_columns, criteo_columns from cvr.utils.printing import Printer from cvr.utils.format import titlelize, titlelize_df from cvr.visualize.features import ( CategoricalFeatureVisualizer, NumericFeatureVisualizer, ) # ---------------------------------------------------------------------------- # class DataProfiler: """Data profiler for Dataset objects.""" def __init__(self, data: pd.DataFrame) -> None: self._data = data self._title = "Criteo Sponsored Search Conversion Log Dataset" self._printer = Printer() self._categorical_visualizer = CategoricalFeatureVisualizer() self._numeric_visualizer = NumericFeatureVisualizer() # ------------------------------------------------------------------------ # @property def summary(self, verbose: bool = True) -> None: subtitle = "Dataset Summary" summary = self._data.summary if verbose: self._printer.print_title(self._title, subtitle) self._printer.print_dictionary(content=summary) else: return summary # ------------------------------------------------------------------------ # @property def info(self, verbose: bool = False) -> None: subtitle = "Overview of Columns" info = self._data.info if verbose: self._printer.print_title(self._title, subtitle) self._printer.print_dictionary(content=info) else: return info # ------------------------------------------------------------------------ # # DESCRIPTIVE STATISTICS # # ------------------------------------------------------------------------ # def describe(self, column: str, verbose=False) -> pd.DataFrame: self._data.describe(column) # ------------------------------------------------------------------------ # def topn_plot(self, column: str) -> None: data = self._data.rank_frequencies(column, 10) self._categorical_visualizer.fit(self._data[column]) self._categorical_visualizer.topn() def cfd_plot(self, column: str) -> None: self._categorical_visualizer.fit(self._data[column]) self._categorical_visualizer.cfd() def zipf_plot(self, column: str) -> None: self._categorical_visualizer.fit(self._data[column]) self._categorical_visualizer.zipf() ``` #### File: cvr/core/task.py ```python from abc import ABC, abstractmethod import pandas as pd import inspect from dataclasses import dataclass, field from datetime import datetime, timedelta from cvr.utils.printing import Printer from cvr.core.asset import AssetPassport from cvr.core.dataset import Dataset # ---------------------------------------------------------------------------- # # TASK RESULT # # ---------------------------------------------------------------------------- # @dataclass class TaskResult(ABC): """Standardized result object for all tasks""" executed: bool = field(default=False) passed: bool = field(default=False) complete: str = field(default=False) completed: datetime = field(init=False) comment: str = field(default="") def __post_init__(self) -> None: self._printer = Printer() def todict(self) -> dict: d = { "Executed": self.executed, "Passed": self.passed, "Complete": self.complete, "Completed": self.completed, "Comment": self.comment, } return d def print(self) -> None: d = self.todict() self._printer.print_title("Task Result") self._printer.print_dictionary(d) # ---------------------------------------------------------------------------- # # TASK RESPONSE # # ---------------------------------------------------------------------------- # @dataclass class TaskResponse(ABC): """Task specific metrics to be overridden by subclasses.""" start: datetime = field(init=False) end: datetime = field(init=False) duration: timedelta = field(init=False) def __post_init__(self) -> None: pass def begin(self) -> None: self.start = datetime.now() def stop(self) -> None: self.end = datetime.now() self.duration = self.end - self.start def __post_init__(self) -> None: self._printer = Printer() def todict(self) -> dict: d = {"Start": self.start, "End": self.end, "Duration": self.duration} return d def print(self) -> None: title = "Task Response" self._printer.print_title(title) d = self.todict() self._printer.print_dictionary(d) # ---------------------------------------------------------------------------- # # TASK SUMMARY # # ---------------------------------------------------------------------------- # @dataclass class TaskSummary(ABC): """Summarizes a Task. Args: passport (AssetPassport): Identity object start (datetime): start time for event end (datetime): end time for event duration (timedelta): the duration of the event in minutes passed (bool): True if the event passed executed (bool): True if the event was executed. An event may be skipped if its endpoint already exists response (dict): Event specific response result (str): result of the event """ passport: AssetPassport response: TaskResponse result: TaskResult def __post_init__(self) -> None: self._printer = Printer() def print(self) -> None: self.passport.print() self.response.print() self.result.print() # ---------------------------------------------------------------------------- # # TASK # # ---------------------------------------------------------------------------- # class Task(ABC): """Defines interface for task classes.""" def __init__(self, passport: AssetPassport, **kwargs) -> None: self._passport = passport self._config = None @property def config(self): return self._config @property @abstractmethod def passport(self): pass @property @abstractmethod def response(self) -> TaskResponse: pass @property @abstractmethod def result(self) -> TaskResult: pass @config.setter def config(self, config) -> None: self._config = config def setup(self, **kwargs) -> None: # Logging facility self._logger = self._config.logger # Subclass specific setup self._setup() def _setup(self) -> None: pass def teardown(self, **kwargs) -> None: # Subclass specific teardown. self._teardown() # Base class gets last word self._result.executed = "No" if self._result.executed is False else "Yes" self._result.passed = "No" if self._result.passed is False else "Yes" self._result.complete = "No" if self._result.complete is False else "Yes" self._summary = TaskSummary( passport=self.passport, response=self.response, result=self.result, ) def _teardown(self, **kwargs) -> None: pass @abstractmethod def run(self, data: pd.DataFrame = None) -> pd.DataFrame: """Runs the task through delegation to a private member on the subclass Args: df (pd.DataFrame): Input DataFrame object. Returns: df (pd.DataFrame): DataFrame object response (dict): Dictionary containing task response information. """ pass @abstractmethod def passed(self) -> bool: """Checks success of task. Returns True if conditions pass.""" pass def summary(self) -> TaskSummary: return self._summary def summarize(self) -> None: self._summary.print() # ============================================================================ # # DATASET FACTORY # # ============================================================================ # class DatasetFactory(Task): """Creates Dataset objects.""" def __init__(self, passport: AssetPassport, dataset_passport: AssetPassport) -> None: super(DatasetFactory, self).__init__(passport=passport) self._dataset_passport = dataset_passport def run(self, data: pd.DataFrame) -> Dataset: self.setup() self._logger.debug("\tStarted {} {}".format(self.__class__.__name__, inspect.stack()[0][3])) aid = self._config.dataset_repo.aid_gen() self._dataset_passport.aid = aid dataset = Dataset( passport=self._dataset_passport, data=data, ) dataset = self._config.dataset_repo.set_version(dataset) self._logger.debug( "\tCompleted {} {}".format(self.__class__.__name__, inspect.stack()[0][3]) ) self.teardown() return dataset def _setup(self) -> None: self._response = TaskResponse() self._response.begin() self._result = TaskResult() def _teardown(self) -> None: self._response.stop() self._result.executed = True self._result.passed = self.passed() self._result.complete = True self._result.completed = datetime.now() @property def passport(self) -> AssetPassport: return self._passport @property def response(self) -> TaskResponse: return self._response @property def result(self) -> TaskResult: return self._result def passed(self) -> bool: return True ``` #### File: cvr/data/outliers.py ```python from abc import ABC, abstractmethod import os import pandas as pd import numpy as np import logging import math from scipy import stats from sklearn import svm from sklearn.covariance import EllipticEnvelope from sklearn.ensemble import IsolationForest from sklearn.neighbors import LocalOutlierFactor from cvr.utils.printing import Printer # ------------------------------------------------------------------------------------------------------------------------ # logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # ------------------------------------------------------------------------------------------------------------------------ # DEFAULT_N_JOBS = 18 # ======================================================================================================================== # # OUTLIER DETECTION # # ======================================================================================================================== # class OutlierDetector: """Outlier detection with selected outlier detection algorithms. Args: criterion (str): Indicates criterion for final determination of an observation, given results from various outlier detection algorithms. Values include 'any', 'all', 'vote' for majority vote. numeric_algorithms(dict): Dictionary of instantiated numeric outlier detection algorithms categorical_algorithms(dict): Dictionary of instantiated categorical outlier detection algorithms random_state (int): Pseudo random generator seed for Isolation Forest Attributes: results_: Contains a nested dictionary with three numeric, categorical and combined outlier labels summary_: Returns: Numpy array containing the labels labels """ def __init__( self, criterion="vote", numeric_algorithms: dict = None, categorical_algorithms: dict = None, random_state=None, ) -> None: self._criterion = criterion self._random_state = random_state self.results_ = {} self._n = None # Numeric Outlier Detection Algorithms self._numeric_algorithms = ( numeric_algorithms if numeric_algorithms else { "Z-Score": OutlierZScore(), "IQR": OutlierIQR(), "Robust Covariance": OutlierEllipticEnvelope(random_state=random_state), "Isolation Forest": OutlierIsolationForest(random_state=random_state), "Local Outlier Factor": OutlierLocalOutlierFactor(), } ) # Categorical Outlier Detection Algorithms self._categorical_algorithms = ( categorical_algorithms if categorical_algorithms else { "Attribute Value Frequency": OutlierAVF(), "Square of Complement Frequency": OutlierSCF(), "Weighted Attribute Value Frequency": OutlierWAVF(), } ) # Algorithms for numeric and categorical (object) data outlier detection self._detectors = { "number": self._numeric_algorithms, "object": self._categorical_algorithms, } def fit(self, X, y=None): """Fits several outlier detection algorithms. Args: X (pd.DataFrame): Input """ self._n = len(X) labels_ensemble = {} for datatype, algorithms in self._detectors.items(): labels_datatype = {} X_datatype = X.select_dtypes(include=datatype) for name, algorithm in algorithms.items(): name_datatype = name + " (" + datatype + ")" print( "Currently fitting outlier detector {}.".format(name_datatype), end=" ", ) algorithm.fit(X_datatype) labels = algorithm.predict(X_datatype) o = labels.sum() p = round(o / self._n * 100, 2) print("Detected {} outliers, {}% of the data.".format(str(o), str(p))) labels_datatype[name] = labels labels_ensemble[name_datatype] = labels self.results_[datatype] = self._compute_results(labels_datatype, datatype) # Combine results for numeric and categorical outlier labels self.results_["ensemble"] = self._compute_results(labels_ensemble, "combined") def predict(self, X) -> pd.DataFrame: o = self.results_["ensemble"]["labels"].sum() p = round(o / self._n * 100, 2) print( "\nThe ensemble detected {} outliers constituting {}% of the data using the {} criterion.".format( str(o), str(p), str(self._criterion) ) ) return self.results_["ensemble"]["labels"].to_frame().reset_index() def _compute_results(self, labels: dict, datatype: str) -> dict: """Aggregates results for several outlier detection algorithms.""" d = {} # Store labels by algorithm d["labels_by_algorithm"] = pd.DataFrame.from_dict(labels, orient="columns") # Store aggregated labels based upon the criteria d["labels_any"] = d["labels_by_algorithm"].any(axis=1) d["labels_all"] = d["labels_by_algorithm"].all(axis=1) d["labels_vote"] = d["labels_by_algorithm"].mean(axis=1) > 0.5 # Store the labels according to the selected criterion if self._criterion == "any": d["labels"] = d["labels_any"] elif self._criterion == "all": d["labels"] = d["labels_all"] else: d["labels"] = d["labels_vote"] # Update labels by algorithms to include the labels aggregated by the three criteria all_desc = self._get_label_description(datatype, " (All)") any_desc = self._get_label_description(datatype, " (Any)") vote_desc = self._get_label_description(datatype, " (Majority Vote)") ensemble_desc = self._get_label_description(datatype, "") d["labels_by_algorithm"][all_desc] = d["labels_all"] d["labels_by_algorithm"][any_desc] = d["labels_any"] d["labels_by_algorithm"][vote_desc] = d["labels_vote"] d["labels_by_algorithm"][ensemble_desc] = d["labels"] # Aggregate the total counts for all algorithms for selected and criteria d["summary"] = d["labels_by_algorithm"].sum() return d def _get_label_description(self, datatype: str, criterion: str) -> str: if datatype == "number": return "Numeric Ensemble" + criterion elif datatype == "object": return "Categorical Ensemble" + criterion else: return "Combined Ensemble" + criterion # ------------------------------------------------------------------------------------------------------------------------ # # OUTLIER ANALYSIS Z-SCORE # # ------------------------------------------------------------------------------------------------------------------------ # class OutlierZScore: def __init__(self, threshold: int = 3) -> None: self._threshold = threshold self._labels = None def fit(self, X, y=None) -> None: """Computes the zscores for a 2 dimensional array. Args: X (pd.DataFrame): Input """ # Convert dataframe to numpy array. X = X.select_dtypes(include="number").values z = stats.zscore(X) labels = np.where(np.abs(z) > self._threshold, 1, 0) self._labels = np.any(labels, axis=1) def predict(self, X): """Returns the prediction Args: X (np.array): Input """ return self._labels # ------------------------------------------------------------------------------------------------------------------------ # # OUTLIER ANALYSIS IQR # # ------------------------------------------------------------------------------------------------------------------------ # class OutlierIQR: def __init__(self, threshold: float = 1.5) -> None: self._threshold = threshold self._labels = None def fit(self, X, y=None) -> None: """Computes the zscores for a 2 dimensional array. X (pd.DataFrame): Input """ # Convert dataframe to numpy array. X = X.select_dtypes(include="number").values q1, q3 = np.percentile(a=X, q=[25, 75], axis=0) iqr = q3 - q1 lower = q1 - (iqr * self._threshold) upper = q3 + (iqr * self._threshold) labels = np.where(np.greater(X, upper) | np.less(X, lower), 1, 0) self._labels = np.any(labels, axis=1) def predict(self, X) -> np.array: return self._labels # ======================================================================================================================== # # SKLEARN OUTLIER DETECTOR WRAPPERS # # ======================================================================================================================== # class OutliersSKLearn(ABC): """Abstract base class for sklearn outlier detectors wrappers. The SKLearn classifiers cannot handle NaNs. Hence, NaNs were replaced as follows: - Numeric variables replace NaNs with the mean. - Categorical variables replace NaNs with -1 """ def __init__( self, contamination: float = None, n_jobs: int = DEFAULT_N_JOBS, random_state: int = None, **kwargs ) -> None: self._contamination = contamination self._n_jobs = n_jobs self._random_state = random_state self._clf = self.get_clf() @abstractmethod def get_clf(self) -> None: pass def fit(self, X: pd.DataFrame, y: np.ndarray = None) -> None: X = X.select_dtypes(include="number") X = self._impute(X).values self._clf.fit(X) def predict(self, X: pd.DataFrame) -> np.ndarray: X = X.select_dtypes(include="number") X = self._impute(X).values labels = self._clf.predict(X) return np.where(labels == -1, 1, 0) def _impute(self, X) -> pd.DataFrame: """Imputes missing numerics with their means and missing categoricals with '-1'""" imputer = { "sale": 0, "sales_amount": X["sales_amount"].mean(), "conversion_time_delay": X["conversion_time_delay"].mean(), "click_ts": X["click_ts"].mean(), "n_clicks_1week": X["n_clicks_1week"].mean(), "product_price": X["product_price"].mean(), "product_age_group": "-1", "device_type": "-1", "audience_id": "-1", "product_gender": "-1", "product_brand": "-1", "product_category_1": "-1", "product_category_2": "-1", "product_category_3": "-1", "product_category_4": "-1", "product_category_5": "-1", "product_category_6": "-1", "product_category_7": "-1", "product_country": "-1", "product_id": "-1", "product_title": "-1", "partner_id": "-1", "user_id": "-1", } X.fillna(value=imputer, inplace=True) return X # ------------------------------------------------------------------------------------------------------------------------ # # OUTLIER ANALYSIS ELLIPTIC ENVELOPE # # ------------------------------------------------------------------------------------------------------------------------ # class OutlierEllipticEnvelope(OutliersSKLearn): """Wrapper for sklearn's Elliptic Envelope class which accepts dataframes as input. Args: support_fraction (float): The proportion of points to be included in the support of the raw MCD estimate. If None, the minimum value of support_fraction will be used within the algorithm: [n_sample + n_features + 1] / 2. Range is (0, 1). Default is None. contamination (float): The amount of contamination of the data set, i.e. the proportion of outliers in the data set. Range is (0, 0.5]. Default is 0.1 random_state (int): Pseudo random generator seed. Default is None. """ def __init__( self, support_fraction: float = 0.6, contamination: float = 0.1, random_state: int = None, ) -> None: self._support_fraction = support_fraction super(OutlierEllipticEnvelope, self).__init__( contamination=contamination, random_state=random_state ) def get_clf(self): return EllipticEnvelope( support_fraction=self._support_fraction, contamination=self._contamination, random_state=self._random_state, ) # ------------------------------------------------------------------------------------------------------------------------ # # OUTLIER ANALYSIS ISOLATION FOREST # # ------------------------------------------------------------------------------------------------------------------------ # class OutlierIsolationForest(OutliersSKLearn): """Wrapper for sklearn's Isolation Forest class which accepts dataframes as input. Args: contamination (float): The amount of contamination of the data set, i.e. the proportion of outliers in the data set. Range is (0, 0.5]. Default is 0.1 n_jobs (int). The number of jobs to run in parallel. random_state (int): Pseudo random generator seed. Default is None. """ def __init__( self, contamination="auto", n_jobs: int = DEFAULT_N_JOBS, random_state: int = None, ) -> None: super(OutlierIsolationForest, self).__init__( contamination=contamination, n_jobs=n_jobs, random_state=random_state ) def get_clf(self): return IsolationForest( contamination=self._contamination, n_jobs=self._n_jobs, random_state=self._random_state, ) # ------------------------------------------------------------------------------------------------------------------------ # # OUTLIER ANALYSIS ISOLATION FOREST # # ------------------------------------------------------------------------------------------------------------------------ # class OutlierLocalOutlierFactor(OutliersSKLearn): """Wrapper for sklearn's Local Outlier Factor class which accepts dataframes as input. Args: contamination (float): The amount of contamination of the data set, i.e. the proportion of outliers in the data set. Range is (0, 0.5]. Default is 0.1 n_jobs (int). The number of jobs to run in parallel. random_state (int): Pseudo random generator seed. Default is None. """ def __init__(self, contamination="auto", n_jobs: int = DEFAULT_N_JOBS) -> None: super(OutlierLocalOutlierFactor, self).__init__( contamination=contamination, n_jobs=n_jobs ) def get_clf(self): return LocalOutlierFactor( contamination=self._contamination, n_jobs=self._n_jobs ) def predict(self, X: pd.DataFrame) -> None: X = X.select_dtypes(include="number") X = self._impute(X).values labels = self._clf.fit_predict(X) return np.where(labels == -1, 1, 0) # ======================================================================================================================== # # OUTLIER CATEGORICAL ANALYSIS # # ======================================================================================================================== # # ------------------------------------------------------------------------------------------------------------------------ # # OUTLIER ANALYSIS ATTRIBUTE VALUE FREQUENCY # # ------------------------------------------------------------------------------------------------------------------------ # class OutlierAVF: """Detects outliers using the Attribute Value Frequency method. Args: threshold (float): The threshold used to determine the lowest M AVF scores. Assuming frequencies are normally distributed. """ def __init__(self, threshold: float = 0.1) -> None: self._threshold = threshold self._labels = None def fit(self, X, y=None) -> None: """Fits the model X (pd.DataFrame): Input """ X = X.select_dtypes(include="object") df = pd.DataFrame() # Iterative over columns and create dataframe that contains the frequencies of the values. for col in X.columns: # Create a one column dataframe df1 = X[col].to_frame() # Compute value counts and convert series to frame df2 = df1.value_counts().to_frame().reset_index() df2.columns = ["value", "count"] # Merge the two dataframes and extract the column with the frequencies and add to new dataframe merged = pd.merge(df1, df2, how="left", left_on=col, right_on="value") df[col] = merged["count"] # We need to determine a threhold in terms of the observations with the M lowest AVF scores. # Taking the assumption that frequences are normally distributed, we can select the # observations with avf scores below a number of standard deviations below the mean avf. avf = df.mean(axis=1) n = len(df) k = math.ceil(n * self._threshold) threshold = avf.sort_values().head(k).max() self._labels = avf < threshold def predict(self, X) -> np.array: # Convert the dataframe to a numpy array to comport with the other estimators. return self._labels.values # ------------------------------------------------------------------------------------------------------------------------ # # OUTLIER ANALYSIS WEIGHTED ATTRIBUTE VALUE FREQUENCY # # ------------------------------------------------------------------------------------------------------------------------ # class OutlierWAVF: """Detects outliers using the Weighted Attribute Value Frequency method. Args: threshold (float): The threshold used to determine the lowest M WAVF scores. Assuming frequencies are normally distributed. """ def __init__(self, threshold: float = 0.1) -> None: self._threshold = threshold self._labels = None def fit(self, X, y=None) -> None: """Fits the model X (pd.DataFrame): Input """ X = X.select_dtypes(include="object") weights = self._compute_weights(X) df = pd.DataFrame() # Iterative over columns and create dataframe that contains the frequencies of the values. for col in X.columns: # Create a one column dataframe df1 = X[col].to_frame() # Compute value counts and convert series to frame df2 = df1.value_counts().to_frame().reset_index() df2.columns = ["value", "count"] # Merge the two dataframes and extract the column with the frequencies and add to new dataframe merged = pd.merge(df1, df2, how="left", left_on=col, right_on="value") df[col] = merged["count"] * weights[col] # We need to determine a threhold in terms of the observations with the M lowest AVF scores. # Taking the assumption that frequences are normally distributed, we can select the # observations with avf scores below a number of standard deviations below the mean avf. avf = df.mean(axis=1) n = len(df) k = math.ceil(n * self._threshold) threshold = avf.sort_values().head(k).max() self._labels = avf < threshold def predict(self, X) -> np.array: # Convert the dataframe to a numpy array to comport with the other estimators. return self._labels.values def _compute_weights(self, X: pd.DataFrame) -> dict: """Computes the weights as the range of frequencies for each variable.""" weights = {} for col in X.columns: counts = X[col].value_counts() weights[col] = max(counts) - min(counts) return weights # ------------------------------------------------------------------------------------------------------------------------ # # OUTLIER ANALYSIS SQUARE OF THE COMPLEMENT FREQUENCY # # ------------------------------------------------------------------------------------------------------------------------ # class OutlierSCF: """Detects outliers using the Square of the Complement Frequency (SCF). Args: threshold (float): The threshold used to determine the lowest M SCF scores. Assuming frequencies are normally distributed. """ def __init__(self, threshold: float = 3) -> None: self._threshold = threshold self._labels = None def fit(self, X, y=None) -> None: """Fits the model X (pd.DataFrame): Input """ X = X.select_dtypes(include="object") df = pd.DataFrame() n = X.shape[0] # Iterative over columns and create dataframe that contains the frequencies of the values. for col in X.columns: # Create a one column dataframe df1 = X[col].to_frame() # Get the number of categories in col c = X[col].nunique() # Compute the marginal relative frequency (value counts / number of observations) p = df1.value_counts().to_frame() / n # Compute the square complement frequency df2 = (1 - p) ** 2 / c # Merge the two dataframes and extract the column with the frequencies and add to new dataframe df[col] = pd.merge(df1, df2, on=[col], how="left")[0] # Take the sum across columns scf = df.sum(axis=1) # Designate the scores above threshold standard deviations of the man as outliers upper_bound = scf.mean() + scf.std() * self._threshold self._labels = scf > upper_bound def predict(self, X) -> np.array: # Convert the dataframe to a numpy array to comport with the other estimators. return self._labels.values ``` #### File: cvr/utils/data.py ```python import numpy import pandas as pd # ---------------------------------------------------------------------------- # def to_list(x, ignore: str = None) -> list: """Converts a non iterable to a list if it isn't already a list.""" if x is ignore: result = x else: result = x if isinstance(x, list) else [x] return result def sample( data: pd.DataFrame, frac: float, stratify: str = None, random_state: int = None ) -> pd.DataFrame: """Sample from the current DataFrame. Args: data (pd.DataFrame): The data to sample frac (float): The fraction of observations to draw as fraction stratify (str): None or the column to stratify random_state (int): Pseudo random generator seed Returns: DataFrame containing the requested sample. """ # Sample if stratify if stratify is not None: df = data.groupby(by=[stratify]).sample(frac=frac, random_state=random_state) else: df = data.sample(frac=frac, random_state=random_state) return df ``` #### File: cvr/tests/test_etl.py ```python import os import pytest import logging import pandas as pd from datetime import datetime import inspect import time import shutil from cvr.core.lab import Project from cvr.core.pipeline import PipelineCommand from cvr.core.dataset import DatasetRequest from cvr.data.etl import Extract, TransformETL, LoadDataset from cvr.core.pipeline import ( DataPipelineBuilder, DataPipeline, DataPipelineCommand, ) from cvr.data import criteo_columns, criteo_dtypes from cvr.utils.config import CriteoConfig # ------------------------------------------------------------------------------------------------------------------------ # logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # ------------------------------------------------------------------------------------------------------------------------ # class ETLTests: def __init__(self): # Create Test Lab if it doesn't already exist wsm = Project() if wsm.exists("test_etl"): self._lab = wsm.get_lab("test_etl") else: self._lab = wsm.create_lab( name="test_etl", description="Test ETL", current=True ) # Get configuration for data source self._config = CriteoConfig() def test_tasks(self): logger.info( "\tStarted {} {}".format( self.__class__.__name__, inspect.stack()[0][3] ) ) self._extract = Extract(datasource_config=self._config) self._transform = TransformETL(value=[-1, "-1"]) self._load = LoadDataset() logger.info( "\tSuccessfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3] ) ) def test_builder(self): logger.info( "\tStarted {} {}".format( self.__class__.__name__, inspect.stack()[0][3] ) ) dataset_request = DatasetRequest( name="test_etl_dataset", description="Sample Dataset for ETL Test", stage="test", sample_size=1000, lab_name=self._lab.name, lab_directory=self._lab.directory, ) data_pipeline_request = DataPipelineCommand( name="test_etl_pipeline", description="Testing The Sax Man", stage="mezzanine", lab_name=self._lab.name, lab_directory=self._lab.directory, logging_level="info", force=True, verbose=True, progress=False, random_state=602, dataset_request=dataset_request, ) self._builder = DataPipelineBuilder() self._pipeline = ( self._builder.make_request(data_pipeline_request) .add_task(self._extract) .add_task(self._transform) .add_task(self._load) .build() .pipeline ) logger.info( "\tSuccessfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3] ) ) def test_pipeline(self): logger.info( "\tStarted {} {}".format( self.__class__.__name__, inspect.stack()[0][3] ) ) self.dataset = self._pipeline.run() self._pipeline.summary logger.info( "\tSuccessfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3] ) ) def data(self): logger.info( "\tStarted {} {}".format( self.__class__.__name__, inspect.stack()[0][3] ) ) self.dataset.info() self.dataset.profile.summary self.dataset.profile.datatypes self.dataset.profile.missing self.dataset.profile.cardinality self.dataset.profile.frequency_stats self.dataset.profile.analyze("product_brand") self.dataset.profile.analyze("sales_amount") logger.info( "\tSuccessfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3] ) ) if __name__ == "__main__": logger.info(" Started ETL Pipeline Tests ") t = ETLTests() t.test_tasks() t.test_builder() t.test_pipeline() t.data() logger.info(" Completed ETL Pipeline Tests ") #%% ```
{ "source": "john-james-ai/DeepCVR", "score": 2 }
#### File: deepcvr/data/dag.py ```python from abc import ABC, abstractmethod import importlib from typing import Any # ------------------------------------------------------------------------------------------------ # class AbstractDAG(ABC): """Abstract base class for directed acyclic graph of operations. Args: dag_id (str): Identifier for the dag dag_description (str): Brief description tasks (list): List of tasks to execute """ def __init__(self, dag_id: str, dag_description: str, tasks: list, context: Any = None) -> None: self._dag_id = dag_id self._dag_description = dag_description self._tasks = tasks self._context = context @abstractmethod def run(self) -> None: pass # ------------------------------------------------------------------------------------------------ # class Dag(AbstractDAG): """Directed acyclic graph of operations. Args: dag_id (str): Identifier for the dag dag_description (str): Brief description tasks (list): List of tasks to execute """ def __init__(self, dag_id: str, dag_description: str, tasks: list, context: Any = None) -> None: super(Dag, self).__init__( dag_id=dag_id, dag_description=dag_description, tasks=tasks, context=context ) def run(self) -> None: data = None for task in self._tasks: result = task.execute(data=data, context=self._context) data = result if result is not None else data # ------------------------------------------------------------------------------------------------ # class DagBuilder: """Constructs a DAG from a configuration dictionary Args: config (dict): Nested dictionary of tasks defined by a dag_id, dag_description and a nested dictionary of tasks, where each task is defined by: task_id: Sequence number of task task: Name of the class that executes the task module: The module containing the task task_name: A name for the task task_params: Any parameters required by the task """ def __init__(self, config: dict, context: dict = None) -> None: self._config = config self._context = context self._dag = None @property def dag(self) -> Dag: return self._dag def build(self) -> Dag: dag_id = self._config["dag_id"] dag_description = self._config["dag_description"] tasks = [] for _, task_config in self._config["tasks"].items(): # Create task object from string using importlib module = importlib.import_module(task_config["module"]) task = getattr(module, task_config["task"]) task_instance = task( task_id=task_config["task_id"], task_name=task_config["task_name"], params=task_config["task_params"], ) tasks.append(task_instance) self._dag = Dag( dag_id=dag_id, dag_description=dag_description, tasks=tasks, context=self._context ) return self._dag ``` #### File: deepcvr/data/operator.py ```python from abc import ABC, abstractmethod import pandas as pd from typing import Any # ------------------------------------------------------------------------------------------------ # class Operator(ABC): """Abstract class for operator classes Args: task_id (int): A number, typically used to indicate the sequence of the task within a DAG task_name (str): String name params (Any): Parameters for the task """ def __init__(self, task_id: int, task_name: str, params: list) -> None: self._task_id = task_id self._task_name = task_name self._params = params def __str__(self) -> str: return str( "Task id: {}\tTask name: {}\tParams: {}".format( self._task_id, self._task_name, self._params ) ) @property def task_id(self) -> int: return self._task_id @property def task_name(self) -> str: return self._task_name @property def params(self) -> Any: return self._params @abstractmethod def execute(self, data: pd.DataFrame = None, context: dict = None) -> Any: pass ``` #### File: deepcvr/data/transform.py ```python import re import logging from pyspark.sql import SparkSession from pyspark.sql.functions import pandas_udf, PandasUDFType from pyspark.sql.types import StringType, DoubleType, StructField, StructType, LongType import pandas as pd import numpy as np from typing import Any from deepcvr.base.operator import Operator from deepcvr.utils.decorators import operator # ------------------------------------------------------------------------------------------------ # logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # ------------------------------------------------------------------------------------------------ # MAX_PARTITION_SIZE = 1024 * 1024 * 100 # ------------------------------------------------------------------------------------------------ # # COLUMN LABELER # # ------------------------------------------------------------------------------------------------ # class ColumnLabeler(Operator): """Adds column names to a DataFrame. Includes support for threaded concurrency.""" def __init__(self, task_id: int, task_name: str, params: list) -> None: super(ColumnLabeler, self).__init__(task_id=task_id, task_name=task_name, params=params) @operator def execute(self, data: pd.DataFrame = None, context: Any = None) -> Any: """Executes the labeling task Args: data (pd.DataFrame): Data from the previous step context (dict): Context data shared by operators within a dag """ data.columns = self._params["names"] return data # ------------------------------------------------------------------------------------------------ # # TARGET LABELER # # ------------------------------------------------------------------------------------------------ # class TargetLabeler(Operator): """Adds the target labels for view, clicks, and conversions.""" def __init__(self, task_id: int, task_name: str, params: list) -> None: super(TargetLabeler, self).__init__(task_id=task_id, task_name=task_name, params=params) @operator def execute(self, data: pd.DataFrame = None, context: Any = None) -> Any: """Executes the preprocessing task Adds a target label variable Args: data (pd.DataFrame): Data from the previous step context (dict): Context data shared by operators within a dag """ return self._add_label(data=data) def _add_label(self, data: pd.DataFrame) -> pd.DataFrame: """Adds the appropriate label, either 'View', 'Click', and 'Convert' to core dataset""" data["target_label"] = np.where(data["conversion_label"] == 1, "Convert", "View") data["target_label"] = np.where(data["click_label"] == 1, "Click", "View") return data # ------------------------------------------------------------------------------------------------ # # DATA TYPER # # ------------------------------------------------------------------------------------------------ # class DataTyper(Operator): """Casts the datatypes in a DataFrame. Includes support for threaded concurrency.""" def __init__(self, task_id: int, task_name: str, params: list) -> None: super(DataTyper, self).__init__(task_id=task_id, task_name=task_name, params=params) @operator def execute(self, data: pd.DataFrame = None, context: Any = None) -> Any: """Executes the data typing task Args: data (pd.DataFrame): Data from the previous step context (dict): Context data shared by operators within a dag """ for k, v in self._params["dtype"].items(): data[k].astype(v, errors="ignore") return data # ------------------------------------------------------------------------------------------------ # # DATA SELECTOR # # ------------------------------------------------------------------------------------------------ # class DataSelector(Operator): """Reads and returns selected columns from the input DataFrame .""" def __init__(self, task_id: int, task_name: str, params: list) -> None: super(DataSelector, self).__init__(task_id=task_id, task_name=task_name, params=params) @operator def execute(self, data: pd.DataFrame = None, context: Any = None) -> Any: """Executes the data typing task Args: data (pd.DataFrame): Data from the previous step context (dict): Context data shared by operators within a dag """ return data[self._params["names"]] # ------------------------------------------------------------------------------------------------ # # FEATURE TRANSFORMER # # ------------------------------------------------------------------------------------------------ # class FeatureTransformer(Operator): """Extracts, reformats and stores core features in a format for loading. """ def __init__(self, task_id: int, task_name: str, params: list) -> None: super(FeatureTransformer, self).__init__( task_id=task_id, task_name=task_name, params=params ) @operator def execute(self, data: pd.DataFrame = None, context: Any = None) -> None: """Core feature extraction and conversion Args: data (pd.DataFrame): Context data for the DAG context (dict): Context data shared by operators within a dag """ logger.info(data.head()) data = self._partition_data(data, self._params["n_partitions"]) cores = str("local[" + str(self._params["cores"]) + "]") spark = ( SparkSession.builder.master(cores).appName("DeepCVR Core Features ETL").getOrCreate() ) spark.sparkContext.setLogLevel("ERROR") sdf = spark.createDataFrame(data) if self._is_sample_feature_data(data): logger.info("Sample data") logger.info(data.head()) result = sdf.groupby("partition").apply(sample_features) else: logger.info("Not sample data") logger.info(data.head()) result = sdf.groupby("partition").apply(common_features) df = result.toPandas() return df def _is_sample_feature_data(self, data: pd.DataFrame) -> bool: return "sample_id" in data.columns def _partition_data(self, data: pd.DataFrame, n_partitions: int) -> pd.DataFrame: """Partitions the dataset""" reindexed = data.reset_index() data["partition"] = reindexed.index % n_partitions return data # ------------------------------------------------------------------------------------------------ # sample_schema = StructType( [ StructField("sample_id", LongType(), False), StructField("feature_name", StringType(), False), StructField("feature_id", LongType(), False), StructField("feature_value", DoubleType(), False), ] ) # ------------------------------------------------------------------------------------------------ # @pandas_udf(sample_schema, PandasUDFType.GROUPED_MAP) def sample_features(partition): output = pd.DataFrame() for _, row in partition.iterrows(): sample_id = int(row[0]) num_features = int(row[1]) feature_string = row[2] df = parse_feature_string( id_name="sample_id", id_value=sample_id, num_features=num_features, feature_string=feature_string, ) output = pd.concat([output, df], axis=0) return output # ------------------------------------------------------------------------------------------------ # common_schema = StructType( [ StructField("common_features_index", StringType(), False), StructField("feature_name", StringType(), False), StructField("feature_id", LongType(), False), StructField("feature_value", DoubleType(), False), ] ) # ------------------------------------------------------------------------------------------------ # @pandas_udf(common_schema, PandasUDFType.GROUPED_MAP) def common_features(partition): output = pd.DataFrame() for _, row in partition.iterrows(): common_features_index = row[0] num_features = int(row[1]) feature_string = row[2] df = parse_feature_string( id_name="common_features_index", id_value=common_features_index, num_features=num_features, feature_string=feature_string, ) output = pd.concat([output, df], axis=0) return output # ------------------------------------------------------------------------------------------------ # def parse_feature_string( id_name: str, id_value: Any, num_features: int, feature_string: str ) -> dict: """Parses a feature string from a single observation in the dataset. Feature strings contain one or more feature structures, each deliminated by ASCII character '0x01'. Each feature structure contains three components, - feature_name (string), - feature_id (int), and - feature_value (float) This function parses the feature string and its feature structures into three column DataFrame comprised of one row per feature structure. Args: id_name (str): The column name for the id id_value (str,int): The column value for the id num_features (int): The number of feature structures in the list feature_string (str): String containing feature structures """ feature_names = [] feature_ids = [] feature_values = [] # Expand into a list of feature structures feature_structures = re.split("\x01", str(feature_string)) for structure in feature_structures: name, id, value = re.split("\x02|\x03", str(structure)) feature_names.append(name) feature_ids.append(int(id)) feature_values.append(float(value)) d = { id_name: id_value, "feature_name": feature_names, "feature_id": feature_ids, "feature_value": feature_values, } df = pd.DataFrame(data=d) # Confirms number of rows equals expected number of features. assert df.shape[0] == num_features, logger.error("Feature count doesn't not match num_features") return df ``` #### File: tests/test_data/test_decompress.py ```python import os import pytest import logging import inspect from deepcvr.data.extract import Decompress # ---------------------------------------------------------------------------- # logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) # ---------------------------------------------------------------------------- # @pytest.mark.decompress class TestDecompress: def test_decompress(self) -> None: logger.info("\tStarted {} {}".format(self.__class__.__name__, inspect.stack()[0][3])) source = "tests/data/development/external/taobao_test.tar.gz" destination = "tests/data/development/raw" target_1 = os.path.join(destination, "sample_skeleton_test.csv") target_2 = os.path.join(destination, "common_features_test.csv") decompress = Decompress(source=source, destination=destination) decompress.execute() assert os.path.exists(target_1), logger.error("Failure. {} is missing".format(target_1)) assert os.path.exists(target_2), logger.error("Failure. {} is missing".format(target_2)) source = "tests/data/development/external/taobao_train.tar.gz" target_1 = os.path.join(destination, "sample_skeleton_train.csv") target_2 = os.path.join(destination, "common_features_train.csv") decompress = Decompress(source=source, destination=destination) decompress.execute() assert os.path.exists(target_1), logger.error("Failure. {} is missing".format(target_1)) assert os.path.exists(target_2), logger.error("Failure. {} is missing".format(target_2)) logger.info( "\tSuccessfully completed {} {}".format(self.__class__.__name__, inspect.stack()[0][3]) ) if __name__ == "__main__": t = TestDecompress() t.test_decompress() #%% ```
{ "source": "john-james-ai/ml-studio", "score": 2 }
#### File: supervised_learning/training/metrics.py ```python from abc import ABC, abstractmethod import math import numpy as np from ml_studio.utils.data_manager import decode class Metric(ABC): """Abstract base class for all metrics.""" @abstractmethod def __init__(self): raise NotImplementedError("This method is not implemented for " "this Abstract Base Class.") @abstractmethod def __call__(self, y, y_pred): raise NotImplementedError("This method is not implemented for " "this Abstract Base Class.") class RegressionMetric(Metric): """Base class for regression metrics.""" @abstractmethod def __init__(self): raise NotImplementedError("This method is not implemented for " "this Abstract Base Class.") @abstractmethod def __call__(self, y, y_pred): raise NotImplementedError("This method is not implemented for " "this Abstract Base Class.") class ClassificationMetric(Metric): """Base class for classification metrics.""" @abstractmethod def __init__(self): raise NotImplementedError("This method is not implemented for " "this Abstract Base Class.") @abstractmethod def __call__(self, y, y_pred): raise NotImplementedError("This method is not implemented for " "this Abstract Base Class.") # --------------------------------------------------------------------------- # # REGRESSION METRICS # # --------------------------------------------------------------------------- # class SSR(RegressionMetric): """Computes sum squared residuals given""" def __init__(self): self.mode = 'min' self.name = 'residual_sum_squared_error' self.label = "Residual Sum Squared Error" self.stateful = False self.best = np.min self.better = np.less self.worst = np.Inf self.precision_factor = -1 def __call__(self, y, y_pred): e = y - y_pred return np.sum(e**2) class SST(RegressionMetric): """Computes total sum of squares""" def __init__(self): self.mode = 'min' self.name = 'total_sum_squared_error' self.label = "Total Sum Squared Error" self.stateful = False self.best = np.min self.better = np.less self.worst = np.Inf self.precision_factor = -1 def __call__(self, y, y_pred): y_avg = np.mean(y) e = y-y_avg return np.sum(e**2) class R2(RegressionMetric): """Computes coefficient of determination.""" def __init__(self): self.mode = 'max' self.name = 'R2' self.label = r"$R^2$" self.stateful = False self.best = np.max self.better = np.greater self.worst = -np.Inf self.precision_factor = 1 def __call__(self, y, y_pred): self._ssr = SSR() self._sst = SST() r2 = 1 - (self._ssr(y, y_pred)/self._sst(y, y_pred)) return r2 class VarExplained(RegressionMetric): """Computes proportion of variance explained.""" def __init__(self): self.mode = 'max' self.name = 'percent_variance_explained' self.label = "Percent Variance Explained" self.stateful = False self.best = np.max self.better = np.greater self.worst = -np.Inf self.precision_factor = 1 def __call__(self, y, y_pred): var_explained = 1 - (np.var(y-y_pred) / np.var(y)) return var_explained class MAE(RegressionMetric): """Computes mean absolute error given data and parameters.""" def __init__(self): self.mode = 'min' self.name = 'mean_absolute_error' self.label = "Mean Absolute Error" self.stateful = False self.best = np.min self.better = np.less self.worst = np.Inf self.precision_factor = -1 def __call__(self, y, y_pred): e = abs(y-y_pred) return np.mean(e) class MSE(RegressionMetric): """Computes mean squared error given data and parameters.""" def __init__(self): self.mode = 'min' self.name = 'mean_squared_error' self.label = "Mean Squared Error" self.stateful = False self.best = np.min self.better = np.less self.worst = np.Inf self.precision_factor = -1 def __call__(self, y, y_pred): e = y-y_pred return np.mean(e**2) class NMSE(RegressionMetric): """Computes negative mean squared error given data and parameters.""" def __init__(self): self.mode = 'max' self.name = 'neg_mean_squared_error' self.label = "Negative Mean Squared Error" self.stateful = False self.best = np.max self.better = np.greater self.worst = -np.Inf self.precision_factor = 1 def __call__(self, y, y_pred): e = y-y_pred return -np.mean(e**2) class RMSE(RegressionMetric): """Computes root mean squared error given data and parameters.""" def __init__(self): self.mode = 'min' self.name = 'root_mean_squared_error' self.label = "Root Mean Squared Error" self.stateful = False self.best = np.min self.better = np.less self.worst = np.Inf self.precision_factor = -1 def __call__(self, y, y_pred): e = y-y_pred return np.sqrt(np.mean(e**2)) class NRMSE(RegressionMetric): """Computes negative root mean squared error given data and parameters.""" def __init__(self): self.mode = 'max' self.name = 'neg_root_mean_squared_error' self.label = "Negative Root Mean Squared Error" self.stateful = False self.best = np.max self.better = np.greater self.worst = -np.Inf self.precision_factor = 1 def __call__(self, y, y_pred): e = y-y_pred return -np.sqrt(np.mean(e**2)) class MSLE(RegressionMetric): """Computes mean squared log error given data and parameters.""" def __init__(self): self.mode = 'min' self.name = 'mean_squared_log_error' self.label = "Mean Squared Log Error" self.stateful = False self.best = np.min self.better = np.less self.worst = np.Inf self.precision_factor = -1 def __call__(self, y, y_pred): e = np.log(y+1)-np.log(y_pred+1) return np.mean(e**2) class RMSLE(RegressionMetric): """Computes root mean squared log error given data and parameters.""" def __init__(self): self.mode = 'min' self.name = 'root_mean_squared_log_error' self.label = "Root Mean Squared Log Error" self.stateful = False self.best = np.min self.better = np.less self.worst = np.Inf self.precision_factor = -1 def __call__(self, y, y_pred): e = np.log(y+1)-np.log(y_pred+1) return np.sqrt(np.mean(e**2)) class MEDAE(RegressionMetric): """Computes median absolute error given data and parameters.""" def __init__(self): self.mode = 'min' self.name = 'median_absolute_error' self.label = "Median Absolute Error" self.stateful = False self.best = np.min self.better = np.less self.worst = np.Inf self.precision_factor = -1 def __call__(self, y, y_pred): return np.median(np.abs(y_pred-y)) class MAPE(RegressionMetric): """Computes mean absolute percentage given data and parameters.""" def __init__(self): self.mode = 'min' self.name = 'mean_absolute_percentage_error' self.label = "Mean Absolute Percentage Error" self.stateful = False self.best = np.min self.better = np.less self.worst = np.Inf self.precision_factor = -1 def __call__(self, y, y_pred): return 100*np.mean(np.abs((y-y_pred)/y)) class RegressionMetricFactory: """Returns the requested score class.""" def __call__(self, metric='mse'): dispatcher = {'r2': R2(), 'var_explained': VarExplained(), 'mae': MAE(), 'mse': MSE(), 'nmse': NMSE(), 'rmse': RMSE(), 'nrmse': NRMSE(), 'msle': MSLE(), 'rmsle': RMSLE(), 'medae': MEDAE(), 'mape': MAPE()} return(dispatcher.get(metric,False)) # --------------------------------------------------------------------------- # # CLASSIFICATION METRICS # # --------------------------------------------------------------------------- # class Accuracy(ClassificationMetric): """Computes accuracy.""" def __init__(self): self.mode = 'max' self.name = 'accuracy' self.label = "Accuracy" self.stateful = False self.best = np.max self.better = np.greater self.worst = -np.Inf self.precision_factor = 1 def __call__(self, y, y_pred): """Computes accuracy as correct over total.""" # If scoring multinomial logistical regression with one-hot vectors, # convert them back to 1d integers. if len(y.shape) > 1: y = decode(y) if len(y_pred.shape) > 1: y_pred = decode(y_pred) return np.sum(np.equal(y,y_pred)) / y.shape[0] class ClassificationMetricFactory: """Returns the requested score class.""" def __call__(self, metric='accuracy'): dispatcher = {'accuracy': Accuracy()} return(dispatcher.get(metric,False)) ``` #### File: ml_studio/utils/data_operations.py ```python import numpy as np import pandas as pd def is_array(a): if isinstance(a, (pd.Series, np.ndarray, list, tuple)): return True else: return False def is_simple_array(a): if isinstance(a, (list, tuple)): return True else: return False def is_homogeneous_array(a): if isinstance(a, (pd.Series, pd.Index, np.ndarray)): return True else: return False def is_numpy_convertable(a): """Evaluate whether an array can be converted to a numpy array.""" return hasattr(a, "__array__") or hasattr(a, "__array_interface__") def to_native_type(a): """Converts a numpy scalar or array to python native scalar or list.""" # Handle scalar if np.isscalar(a) and hasattr(a, "item"): return a.item() # Handle simplearray if is_simple_array(a): return [to_native_type(e) for e in a] # Handle numpy array if isinstance(a, np.ndarray) and a.ndim == 0: return a.item() # Handle pandas Series if isinstance(a, (pd.Series, pd.Index)): return [to_native_type(e) for e in a] # Handle convertable array if is_numpy_convertable(a): return to_native_type(np.array(a)) return a def coerce_homogeneous_array(value, kind=None, force_numeric=False): """Coerces homogeneous array to numeric numpy array if possible. This code was inspired by: ****************************************************************** * Title : copy_to_readonly_numpy_array * Author(s) : <NAME>, <NAME> * Date : December 26, 2019 * Version 4.4.1 * Availability : https://github.com/plotly/plotly.py/blob/90f237060092d86d5b8bd9ec8cf158e0e5a7f728/packages/python/plotly/_plotly_utils/basevalidators.py#L56 ****************************************************************** """ # Initialize kind if not kind: kind = () elif isinstance(kind, str): kind = (kind,) # Extract first kind first_kind = kind[0] if kind else None # Designate numeric kinds and default types numeric_kinds = {"u", "i", "f"} kind_default_dtypes = {"u": "uint32", "i": "int32", "f": \ "float64", "O": "object", "S": "string"} # Coerce pandas Series and Index objects if isinstance(value, (pd.Series, pd.Index)): if value.dtype.kind is numeric_kinds: # Extract the numeric numpy array value = value.values # If value is not a numpy array, then attempt to convert if not isinstance(value, np.ndarray): if is_numpy_convertable(value): return(coerce_homogeneous_array(value, kind, force_numeric=force_numeric)) else: # value is a simple array value = [to_native_type(e) for e in value] # Lookup dtype for the requested kind, if any dtype=kind_default_dtypes.get(first_kind, None) # Construct new array from list value = np.array(value, order="C", dtype=dtype) elif value.dtype.kind in numeric_kinds: # value is a homogeneous array if kind and value.dtype.kind not in kind: # Kind(s) specified but not matched # Convert to the default type for the first kind dtype = kind_default_dtypes.get(first_kind, None) value = np.ascontiguousarray(value.astype(dtype)) else: # Either no kind was requested or requested kind is satisfied value = np.ascontiguousarray(value.copy()) else: # value is a non-numeric homogeneous array value = value.copy() # Handle force numeric parameter if force_numeric and value.dtype.kind not in numeric_kinds: raise ValueError("Unable to force non-numeric to numeric") # Force non-numeric arrays to object type if "U" not in kind and value.dtype.kind \ not in kind_default_dtypes.keys(): value = np.array(value, dtype="object") return value ``` #### File: ml_studio/utils/file_manager.py ```python import os import time from matplotlib import animation, rc from matplotlib.animation import FuncAnimation import matplotlib.pyplot as plt import numpy as np import pandas as pd import plotly.offline as py from ml_studio.utils.misc import snake def save_fig(fig, directory, filename): if os.path.exists(directory): path = os.path.join(os.path.abspath(directory), filename) fig.savefig(path, facecolor='w', bbox_inches=None) else: os.makedirs(directory) path = os.path.join(os.path.abspath(directory),filename) fig.savefig(path, facecolor='w', bbox_inches=None) def save_gif(ani, directory, filename, fps): face_edge_colors = {'facecolor': 'w', 'edgecolor': 'w'} path = os.path.join(os.path.abspath(directory), filename) if os.path.exists(directory): ani.save(path, writer='imagemagick', fps=fps, savefig_kwargs = face_edge_colors) else: os.makedirs(directory) ani.save(path, writer='imagemagick', fps=fps, savefig_kwargs = face_edge_colors) def save_csv(df, directory, filename): path = os.path.join(os.path.abspath(directory), filename) if os.path.exists(directory): df.to_csv(path, index=False) else: os.makedirs(directory) df.to_csv(path, index=False) def save_numpy(a, directory, filename): path = os.path.join(os.path.abspath(directory), filename) if os.path.exists(directory): np.save(file=path, arr=a) else: os.makedirs(directory) np.save(file=path, arr=a) def save_plotly(a, directory, filename): path = os.path.join(os.path.abspath(directory), filename) if os.path.exists(directory): py.plot(a, filename=path, auto_open=False, include_mathjax='cdn') else: os.makedirs(directory) py.plot(a, filename=path, auto_open=False, include_mathjax='cdn') def get_filename(instance, fileext, element=None): """Creates a standard format filename for saving plots.""" # Obtain user id, class name and date time project = "ml_studio_" userhome = os.path.expanduser('~') username = os.path.split(userhome)[-1] + "_" clsname = instance.__class__.__name__ + "_" if element: element = element + "_" else: element = "" timestr = time.strftime("%Y%m%d-%H%M%S") # Snake case format filename filename = project + username + clsname + element + timestr + fileext filename = snake(filename) return filename ``` #### File: tests/test_operations/test_callbacks.py ```python import datetime import math import numpy as np import pytest from pytest import mark from ml_studio.supervised_learning.training.monitor import History from ml_studio.supervised_learning.training.metrics import RegressionMetricFactory class HistoryTests: @mark.history def test_history_on_train_begin(self, get_history): history = get_history history.on_train_begin() assert history.total_epochs == 0, "total_epochs is not zero" assert history.total_batches == 0, "total_batches is not zero" assert isinstance( history.start, datetime.datetime), "start is not a datetime object" assert isinstance(history.epoch_log, dict), "history.epoch_log is not a dictionary object" assert isinstance(history.batch_log, dict), "history.batch_log is not a dictionary object" assert len( history.epoch_log) == 0, "history.epoch_log has a non-zero length" assert len( history.batch_log) == 0, "history.batch_log has a non-zero length" @mark.history def test_history_on_batch_end(self, get_history): history = get_history history.on_train_begin() batch = 1 batch_size = 32 theta = np.random.normal(size=10) train_cost = 100 * np.random.random_sample((1)) batch_log = {'batch': batch, 'batch_size': batch_size, 'theta': theta, 'train_cost': train_cost} history.on_batch_end(batch, batch_log) assert history.total_batches == 1, "total_batches 1st iteration not equal 1" assert history.batch_log['batch'][0] == 1, "batch number 1st iteration not 1" assert history.batch_log['batch_size'][0] == 32, "batch_size not correct" assert history.batch_log['theta'][0].shape == ( 10,), "theta shape not correct" assert isinstance( history.batch_log['theta'][0], (list, np.ndarray)), "theta is not a list or ndarray" assert history.batch_log['train_cost'][0] == train_cost, "train_cost not valid" batch = 2 batch_size = 32 theta = np.random.normal(size=10) train_cost = 100 * np.random.random_sample((1)) batch_log = {'batch': batch, 'batch_size': batch_size, 'theta': theta, 'train_cost': train_cost} history.on_batch_end(batch, batch_log) assert history.total_batches == 2, "total_batches 1st iteration not equal 1" assert history.batch_log['batch'][1] == 2, "batch number 1st iteration not 1" assert history.batch_log['batch_size'][1] == 32, "batch_size not correct" assert history.batch_log['theta'][1].shape == ( 10,), "theta shape not correct" assert isinstance( history.batch_log['theta'][1], (list, np.ndarray)), "theta is not a list or ndarray" assert history.batch_log['train_cost'][1] == train_cost, "train_cost not valid" @mark.history def test_history_on_epoch_end_w_validation(self, get_history): # Evaluate batches history = get_history history.on_train_begin() total_costs = 0 for i in np.arange(1, 11): batch = i batch_size = 32 theta = np.random.normal(size=10) train_cost = 100 * np.random.random_sample((1)) total_costs += train_cost batch_log = {'batch': batch, 'batch_size': batch_size, 'theta': theta, 'train_cost': train_cost} history.on_batch_end(batch, batch_log) assert history.total_batches == 10, "number of batches is incorrect" assert np.sum(history.batch_log['batch']) == np.sum( np.arange(1, 11)), "batch number list incorrect" assert len(history.batch_log['batch']) == 10, "batch number is wrong shape" assert np.sum(history.batch_log['batch_size']) == np.sum( np.repeat(32, 10)), "batch size list incorrect" assert len(history.batch_log['batch_size']) == 10, "batch size is wrong shape" assert len(history.batch_log['theta']) == 10, "theta is wrong length" assert np.isclose(np.sum(history.batch_log['train_cost']), total_costs[0], 10**4), "train costs don't sum" assert len(history.batch_log['train_cost']) ==10, "train_cost not correct shape" assert isinstance( history.batch_log['batch'], list), "batch number is not a list" assert isinstance( history.batch_log['batch_size'], list), "batch size is not a list" assert isinstance( history.batch_log['theta'], list), "theta is not an ndarray" for theta in history.batch_log['theta']: assert isinstance(theta, np.ndarray), "thetas are not np.ndarrays" assert isinstance( history.batch_log['train_cost'], list), "train_cost is not a list" # Evaluate epochs epoch = 1 train_cost = 1000*np.random.random_sample((1)) train_score = 1000*np.random.random_sample((1)) val_cost = 1000*np.random.random_sample((1)) val_score = 1000*np.random.random_sample((1)) theta = np.random.normal(size=10) log = {'epoch':epoch, 'train_cost': train_cost, 'train_score': train_score, 'val_cost': val_cost, 'val_score': val_score, 'theta': theta} history.on_epoch_end(epoch, logs=log) assert history.epoch_log['train_cost'][0] == train_cost, "train_cost 1st iteration not correct" assert history.epoch_log['train_score'][0] == train_score, "train_score 1st iteration not correct" assert history.epoch_log['val_cost'][0] == val_cost, "val_cost 1st iteration not correct" assert history.epoch_log['val_score'][0] == val_score, "val_score 1st iteration not correct" assert (history.epoch_log['theta'][0]==theta).all(), "theta 1st iteration not correct" assert isinstance( history.epoch_log['epoch'], list), "epochs is not a list" assert isinstance( history.epoch_log['train_cost'], list), "train_cost is not a list" assert isinstance( history.epoch_log['train_score'], list), "train_score is not a list" assert isinstance( history.epoch_log['val_cost'], list), "val_cost is not a list" assert isinstance( history.epoch_log['val_score'], list), "val_score is not a list" epoch = 2 train_cost = 1000*np.random.random_sample((1)) train_score = 1000*np.random.random_sample((1)) val_cost = 1000*np.random.random_sample((1)) val_score = 1000*np.random.random_sample((1)) theta = np.random.normal(size=10) log = {'epoch':epoch, 'train_cost': train_cost, 'train_score': train_score, 'val_cost': val_cost, 'val_score': val_score, 'theta': theta} history.on_epoch_end(epoch, logs=log) assert history.epoch_log['epoch'][1] == 2, "epochs is not 1 on first iteration" assert history.epoch_log['train_cost'][1] == train_cost, "train_cost 1st iteration not correct" assert history.epoch_log['train_score'][1] == train_score, "train_score 1st iteration not correct" assert history.epoch_log['val_cost'][1] == val_cost, "val_cost 1st iteration not correct" assert history.epoch_log['val_score'][1] == val_score, "val_score 1st iteration not correct" assert (history.epoch_log['theta'][1]==theta).all(), "theta 2nd iteration not correct" assert len(history.epoch_log['epoch']) == 2, "epochs shape not correct on second iteration" assert len(history.epoch_log['train_cost']) == 2, "train_cost length not correct on second iteration" assert len(history.epoch_log['train_score']) == 2, "train_score shape not correct on second iteration" assert len(history.epoch_log['val_cost']) == 2, "val_cost shape not correct on second iteration" assert len(history.epoch_log['val_score']) == 2, "val_score shape not correct on second iteration" @mark.history def test_history_on_train_end(self, get_history): history = get_history history.on_train_begin() history.on_train_end() assert isinstance( history.end, datetime.datetime), "end is not a datetime object" assert isinstance(history.duration, float), "duration is not a float" ``` #### File: tests/test_operations/test_cost.py ```python import math import numpy as np import pytest from pytest import mark from ml_studio.supervised_learning.training.cost import Quadratic from ml_studio.supervised_learning.training.cost import BinaryCrossEntropy from ml_studio.supervised_learning.training.cost import CategoricalCrossEntropy class QuadraticCostTests: @mark.cost def test_quadratic_cost(self, get_quadratic_y, get_quadratic_y_pred, get_quadratic_cost): y = get_quadratic_y y_pred = get_quadratic_y_pred J = get_quadratic_cost J_test = 1/2 * np.mean((y_pred-y)**2) assert math.isclose(J, J_test, abs_tol=1) @mark.cost def test_quadratic_cost_gradient(self, get_quadratic_X, get_quadratic_y, get_quadratic_y_pred, get_quadratic_gradient): y = get_quadratic_y y_pred = get_quadratic_y_pred X = get_quadratic_X grad = get_quadratic_gradient grad_test = 1/y.shape[0] * (y_pred- y).dot(X) for a,b in zip(grad, grad_test): assert math.isclose(a, b, abs_tol=1.0) class BinaryCostTests: @mark.cost def test_binary_cost(self, get_binary_cost_y, get_binary_cost_y_pred, get_binary_cost): y = get_binary_cost_y y_pred = get_binary_cost_y_pred J = get_binary_cost J_test = -1*(1/y.shape[0] * np.sum(np.multiply(y,np.log(y_pred), np.multiply((1-y),np.log(1-y_pred))))) assert math.isclose(J, J_test, abs_tol=10**4) @mark.cost def test_binary_cost_gradient(self, get_binary_cost_X, get_binary_cost_y, get_binary_cost_y_pred, get_binary_cost_gradient): X = get_binary_cost_X y = get_binary_cost_y y_pred = get_binary_cost_y_pred grad = get_binary_cost_gradient grad_test = X.T.dot(y_pred-y) for a,b in zip(grad, grad_test): assert math.isclose(a, b, abs_tol=1.0) class CategoricalCostTests: @mark.cost def test_categorical_cost(self, get_categorical_cost_y, get_categorical_cost_y_pred, get_categorical_cost): y = get_categorical_cost_y y_pred = get_categorical_cost_y_pred J = get_categorical_cost J_test = -1*(1/y.shape[0] * np.sum(np.multiply(y,np.log(y_pred), np.multiply((1-y),np.log(1-y_pred))))) assert math.isclose(J, J_test, abs_tol=10**4) @mark.cost def test_categorical_cost_gradient(self, get_categorical_cost_X, get_categorical_cost_y, get_categorical_cost_y_pred, get_categorical_cost_gradient): X = get_categorical_cost_X y = get_categorical_cost_y y_pred = get_categorical_cost_y_pred grad = get_categorical_cost_gradient grad_test = 1/y.shape[0] * X.T.dot(y_pred-y) for array_a,array_b in zip(grad, grad_test): for a, b in zip(array_a, array_b): assert math.isclose(a, b, abs_tol=1.0) ``` #### File: tests/test_operations/test_learning_rate_schedules.py ```python import math import numpy as np import pytest from pytest import mark from ml_studio.supervised_learning.training.learning_rate_schedules import TimeDecay from ml_studio.supervised_learning.training.learning_rate_schedules import StepDecay from ml_studio.supervised_learning.training.learning_rate_schedules import NaturalExponentialDecay from ml_studio.supervised_learning.training.learning_rate_schedules import ExponentialDecay from ml_studio.supervised_learning.training.learning_rate_schedules import InverseScaling from ml_studio.supervised_learning.training.learning_rate_schedules import PolynomialDecay from ml_studio.supervised_learning.training.learning_rate_schedules import Adaptive from ml_studio.supervised_learning.regression import LinearRegression class LearningRateScheduleTests: # ----------------------------------------------------------------------- # # Time Decay # # ----------------------------------------------------------------------- # @mark.learning_rate_schedules @mark.learning_rate_schedules_time def test_time_decay_learning_rate_schedule_wo_staircase(self, get_regression_data): exp_result = [0.0909090909, 0.0833333333, 0.0769230769, 0.0714285714, 0.0666666667] act_result = [] lrs = TimeDecay(learning_rate=0.1, decay_rate=0.5, decay_steps=5) lrs.model = LinearRegression() iterations = [i+1 for i in range(5)] for i in iterations: lrs.on_epoch_end(i) act_result.append(lrs.model.eta) assert all(np.isclose(exp_result,act_result,rtol=1e-1)), "Time decay not working" @mark.learning_rate_schedules @mark.learning_rate_schedules_time_staircase def test_time_decay_learning_rate_schedule_w_staircase(self, get_regression_data): exp_result = [0.1000000000, 0.1000000000, 0.1000000000, 0.1000000000, 0.0666666667] act_result = [] lrs = TimeDecay(learning_rate=0.1, decay_steps=5, decay_rate=0.5, staircase=True) lrs.model = LinearRegression() iterations = [i+1 for i in range(5)] for i in iterations: lrs.on_epoch_end(i) act_result.append(lrs.model.eta) assert all(np.isclose(exp_result,act_result,rtol=1e-1)), "Time decay with step not working" # ----------------------------------------------------------------------- # # Step Decay # # ----------------------------------------------------------------------- # @mark.learning_rate_schedules @mark.learning_rate_schedules_step def test_step_decay_learning_rate_schedule(self, get_regression_data): exp_result = [0.1000000000, 0.1000000000, 0.1000000000, 0.0500000000, 0.0500000000] act_result = [] lrs = StepDecay(learning_rate=0.1, decay_rate=0.5, decay_steps=5) lrs.model = LinearRegression() iterations = [i+1 for i in range(5)] for i in iterations: lrs.on_epoch_end(i) act_result.append(lrs.model.eta) assert all(np.isclose(exp_result,act_result,rtol=1e-1)), "Step decay not working" # ----------------------------------------------------------------------- # # Natural Exponential Decay # # ----------------------------------------------------------------------- # @mark.learning_rate_schedules @mark.learning_rate_schedules_nat_exp_no_staircase def test_nat_exp_decay_learning_rate_schedule_wo_staircase(self, get_regression_data): exp_result = [0.0904837418,0.0818730753,0.0740818221,0.0670320046,0.0606530660] act_result = [] lrs = NaturalExponentialDecay(learning_rate=0.1, decay_rate=0.5, decay_steps=5) lrs.model = LinearRegression() iterations = [i+1 for i in range(5)] for i in iterations: lrs.on_epoch_end(i) act_result.append(lrs.model.eta) assert all(np.isclose(exp_result,act_result,rtol=1e-1)), "Natural exponential decay not working" @mark.learning_rate_schedules @mark.learning_rate_schedules_nat_exp_staircase def test_nat_exp_decay_learning_rate_schedule_w_staircase(self, get_regression_data): exp_result = [0.1000000000, 0.1000000000, 0.1000000000, 0.1000000000, 0.0606530660] act_result = [] lrs = NaturalExponentialDecay(learning_rate=0.1, decay_steps=5, decay_rate=0.5, staircase=True) lrs.model = LinearRegression() iterations = [i+1 for i in range(5)] for i in iterations: lrs.on_epoch_end(i) act_result.append(lrs.model.eta) assert all(np.isclose(exp_result,act_result,rtol=1e-1)), "Natural exponential decay with steps not working" # ----------------------------------------------------------------------- # # Exponential Decay # # ----------------------------------------------------------------------- # @mark.learning_rate_schedules def test_exp_decay_learning_rate_schedule_wo_staircase(self, get_regression_data): exp_result = [0.0870550563, 0.0757858283, 0.0659753955, 0.0574349177, 0.0500000000] act_result = [] lrs = ExponentialDecay(learning_rate=0.1, decay_rate=0.5, decay_steps=5) lrs.model = LinearRegression() iterations = [i+1 for i in range(5)] for i in iterations: lrs.on_epoch_end(i) act_result.append(lrs.model.eta) assert all(np.isclose(exp_result,act_result,rtol=1e-1)), "Exponential decay not working" @mark.learning_rate_schedules def test_exp_decay_learning_rate_schedule_w_staircase(self, get_regression_data): exp_result = [0.1,0.1,0.1,0.1,0.05] act_result = [] lrs = ExponentialDecay(learning_rate=0.1, decay_rate=0.5, decay_steps=5, staircase=True) lrs.model = LinearRegression() iterations = [i+1 for i in range(5)] for i in iterations: lrs.on_epoch_end(i) act_result.append(lrs.model.eta) assert all(np.isclose(exp_result,act_result,rtol=1e-1)), "Exponential decay with steps and staircase not working" # ----------------------------------------------------------------------- # # Inverse Scaling # # ----------------------------------------------------------------------- # @mark.learning_rate_schedules def test_inv_scaling_learning_rate_schedule(self, get_regression_data): exp_result = [0.1,0.070710678,0.057735027,0.05,0.04472136] act_result = [] lrs = InverseScaling(learning_rate=0.1, power=0.5) lrs.model = LinearRegression() iterations = [i+1 for i in range(5)] for i in iterations: lrs.on_epoch_end(i) act_result.append(lrs.model.eta) assert all(np.isclose(exp_result,act_result,rtol=1e-1)), "Inverse scaling not working" # ----------------------------------------------------------------------- # # Polynomial Decay # # ----------------------------------------------------------------------- # @mark.learning_rate_schedules def test_polynomial_decay_learning_rate_schedule_wo_cycle(self, get_regression_data): exp_result = [0.0895,0.0775,0.0633,0.0448,0.0001] act_result = [] lrs = PolynomialDecay(learning_rate=0.1, decay_steps=5, power=0.5, end_learning_rate=0.0001) lrs.model = LinearRegression() iterations = [i+1 for i in range(5)] for i in iterations: lrs.on_epoch_end(i) act_result.append(lrs.model.eta) assert all(np.isclose(exp_result,act_result,rtol=1e-1)), "Polynomial decay not working" @mark.learning_rate_schedules def test_polynomial_decay_learning_rate_schedule_w_cycle(self, get_regression_data): exp_result = [0.0895,0.0775,0.0633,0.0448,0.0001] act_result = [] lrs = PolynomialDecay(learning_rate=0.1, decay_steps=5, power=0.5, end_learning_rate=0.0001, cycle=True) lrs.model = LinearRegression() iterations = [i+1 for i in range(5)] for i in iterations: lrs.on_epoch_end(i) act_result.append(lrs.model.eta) assert all(np.isclose(exp_result,act_result,rtol=1e-1)), "Polynomial decay with cycle not working" # ----------------------------------------------------------------------- # # Adaptive # # ----------------------------------------------------------------------- # @mark.learning_rate_schedules @mark.learning_rate_schedules_adaptive def test_adaptive_learning_rate_schedule(self, get_regression_data): logs = {} exp_result = [0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.05,0.05,0.05] act_result = [] lrs = Adaptive(learning_rate=0.1, decay_rate=0.5, precision=0.01, patience=5) lrs.model = LinearRegression() lrs.model.eta = 0.1 logs['learning_rate'] = 0.1 cost = [5,5,5,5,4,4,4,4,4,4,4, 3] iterations = [i+1 for i in range(12)] for i in iterations: logs['train_cost'] = cost[i-1] lrs.on_epoch_end(i, logs) act_result.append(lrs.model.eta) logs['learning_rate'] = lrs.model.eta assert all(np.isclose(exp_result,act_result,rtol=1e-1)), "Adaptive decay with cycle not working" ``` #### File: tests/test_operations/test_regularizers.py ```python import math import numpy as np import pytest from pytest import mark from ml_studio.supervised_learning.training.regularizers import L1, L2, ElasticNet class L1Tests: @mark.regularization def test_l1_cost(self, get_alpha, get_weights, get_l1_cost): alpha = get_alpha w = get_weights l1_cost = get_l1_cost with pytest.raises(AssertionError): l1 = L1(alpha='f') l1_cost_test = l1(w) l1 = L1(alpha=alpha) l1_cost_test = l1(w) assert math.isclose(l1_cost, l1_cost_test, abs_tol=10**-4) @mark.regularization def test_l1_gradient(self, get_alpha, get_weights, get_l1_grad): alpha = get_alpha w = get_weights l1_grad = get_l1_grad with pytest.raises(AssertionError): l1 = L1(alpha='f') l1_grad_test = l1.gradient(w) l1 = L1(alpha=alpha) l1_grad_test = l1.gradient(w) for a,b in zip(l1_grad, l1_grad_test): assert math.isclose(a, b, abs_tol=10**-4) class L2Tests: @mark.regularization def test_l2_cost(self, get_alpha, get_weights, get_l2_cost): alpha = get_alpha w = get_weights l2_cost = get_l2_cost with pytest.raises(AssertionError): l2 = L2(alpha='f') l2_cost_test = l2(w) l2 = L2(alpha=alpha) l2_cost_test = l2(w) assert math.isclose(l2_cost, l2_cost_test, abs_tol=10**-4) @mark.regularization def test_l2_gradient(self, get_alpha, get_weights, get_l2_grad): alpha = get_alpha w = get_weights l2_grad = get_l2_grad with pytest.raises(AssertionError): l2 = L2(alpha='f') l2_grad_test = l2.gradient(w) l2 = L2(alpha=alpha) l2_grad_test = l2.gradient(w) for a,b in zip(l2_grad, l2_grad_test): assert math.isclose(a, b, abs_tol=10**-4) class ElasticNetTests: @mark.regularization def test_elasticnet_cost(self, get_alpha, get_ratio, get_weights, get_elasticnet_cost): alpha = get_alpha ratio = get_ratio w = get_weights elasticnet_cost = get_elasticnet_cost with pytest.raises(AssertionError): elasticnet = ElasticNet(alpha='f') elasticnet_cost_test = elasticnet(w) elasticnet = ElasticNet(alpha=alpha, ratio=ratio) elasticnet_cost_test = elasticnet(w) assert math.isclose(elasticnet_cost, elasticnet_cost_test, abs_tol=10**-4) @mark.regularization def test_elasticnet_gradient(self, get_alpha, get_ratio, get_weights, get_elasticnet_grad): alpha = get_alpha w = get_weights ratio = get_ratio elasticnet_grad = get_elasticnet_grad with pytest.raises(AssertionError): elasticnet = ElasticNet(alpha='f') elasticnet_grad_test = elasticnet.gradient(w) elasticnet = ElasticNet(alpha=alpha, ratio=ratio) elasticnet_grad_test = elasticnet.gradient(w) for a,b in zip(elasticnet_grad, elasticnet_grad_test): assert math.isclose(a, b, abs_tol=10**-4) ``` #### File: test_services/test_validation/test_rules.py ```python from collections import OrderedDict import numpy as np import pandas as pd import pytest from pytest import mark from ml_studio.services.validation.rules import Rule, RuleSet class SyntacticRuleTests: @mark.validation @mark.validation_rules @mark.validation_rules_syntactic @mark.validation_rules_none def test_validation_rules_none(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true answer = rule.on(test_object)\ .when('a_n')\ .is_none\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of none rule" # Evaluates to true answer = rule.on(test_object)\ .when('a_xn')\ .is_none\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of none rule" @mark.validation @mark.validation_rules @mark.validation_rules_syntactic @mark.validation_rules_not_none def test_validation_rules_not_none(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true answer = rule.on(test_object)\ .when('a_n')\ .is_not_none\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of not none rule" # Evaluates to false answer = rule.on(test_object)\ .when('a_xn')\ .is_not_none\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of not none rule" @mark.validation @mark.validation_rules @mark.validation_rules_syntactic @mark.validation_rules_empty def test_validation_rules_empty(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true answer = rule.on(test_object)\ .when('e')\ .is_empty\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of empty rule" # Evaluates to false answer = rule.on(test_object)\ .when('s')\ .is_empty\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of empty rule" @mark.validation @mark.validation_rules @mark.validation_rules_syntactic @mark.validation_rules_not_empty def test_validation_rules_not_empty(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true answer = rule.on(test_object)\ .when('e')\ .is_not_empty\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of not empty rule" # Evaluates to false answer = rule.on(test_object)\ .when('s')\ .is_not_empty\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of not empty rule" @mark.validation @mark.validation_rules @mark.validation_rules_syntactic @mark.validation_rules_bool def test_validation_rules_bool(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true answer = rule.on(test_object)\ .when('b')\ .is_bool\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of bool rule" # Evaluates to false answer = rule.on(test_object)\ .when('s')\ .is_bool\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of bool rule" @mark.validation @mark.validation_rules @mark.validation_rules_syntactic @mark.validation_rules_integer def test_validation_rules_integer(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true answer = rule.on(test_object)\ .when('i')\ .is_integer\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of integer rule" # Evaluates to false answer = rule.on(test_object)\ .when('s')\ .is_integer\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of integer rule" @mark.validation @mark.validation_rules @mark.validation_rules_syntactic @mark.validation_rules_number def test_validation_rules_number(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true answer = rule.on(test_object)\ .when('f')\ .is_number\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of number rule" # Evaluates to false answer = rule.on(test_object)\ .when('s')\ .is_number\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of number rule" @mark.validation @mark.validation_rules @mark.validation_rules_syntactic @mark.validation_rules_string def test_validation_rules_string(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true answer = rule.on(test_object)\ .when('a_s')\ .is_string\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of string rule" # Evaluates to false answer = rule.on(test_object)\ .when('a_l')\ .is_string\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of string rule" class SemanticRuleTests: @mark.validation @mark.validation_rules @mark.validation_rules_equal @mark.validation_rules_semantic @mark.validation_rules_equal_number def test_validation_rules_equal_number(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true with constant answer = rule.on(test_object)\ .when('i')\ .is_equal(5)\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of equal rule" # Evaluates to false with constant answer = rule.on(test_object)\ .when('a_g')\ .is_equal(50)\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of equal rule" # Evaluates to true with attribute answer = rule.on(test_object)\ .when('a_ge')\ .is_equal('a_g')\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of equal rule" # Evaluates to false with attribute answer = rule.on(test_object)\ .when('f')\ .is_equal('i')\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of equal rule" @mark.validation @mark.validation_rules @mark.validation_rules_equal @mark.validation_rules_semantic @mark.validation_rules_equal_string def test_validation_rules_equal_string(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true with constant answer = rule.on(test_object)\ .when('s')\ .is_equal("hats")\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of equal rule" # Evaluates to false with constant answer = rule.on(test_object)\ .when('s')\ .is_equal("fott")\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of equal rule" # Evaluates to true with attribute answer = rule.on(test_object)\ .when('a_s')\ .is_equal('a_s')\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of equal rule" # Evaluates to false with attribute answer = rule.on(test_object)\ .when('a_s')\ .is_equal('a_sg')\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of equal rule" @mark.validation @mark.validation_rules @mark.validation_rules_not_equal @mark.validation_rules_semantic @mark.validation_rules_not_equal_number def test_validation_rules_not_equal_number(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true with constant answer = rule.on(test_object)\ .when('i')\ .is_not_equal(6)\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of not_equal rule" # Evaluates to false with constant answer = rule.on(test_object)\ .when('i')\ .is_not_equal(5)\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of not_equal rule" # Evaluates to true with attribute answer = rule.on(test_object)\ .when('f')\ .is_not_equal('i')\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of not_equal rule" # Evaluates to false with attribute answer = rule.on(test_object)\ .when('a_ge')\ .is_not_equal('a_g')\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of not_equal rule" @mark.validation @mark.validation_rules @mark.validation_rules_not_equal @mark.validation_rules_semantic @mark.validation_rules_not_equal_string def test_validation_rules_not_equal_string(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true with constant answer = rule.on(test_object)\ .when('s')\ .is_not_equal("disc")\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of not_equal rule" # Evaluates to false with constant answer = rule.on(test_object)\ .when('s')\ .is_not_equal('hats')\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of not_equal rule" # Evaluates to true with attribute answer = rule.on(test_object)\ .when('a_s')\ .is_not_equal('a_sg')\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of not_equal rule" # Evaluates to false with attribute answer = rule.on(test_object)\ .when('a_s')\ .is_not_equal('a_s')\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of not_equal rule" @mark.validation @mark.validation_rules @mark.validation_rules_less @mark.validation_rules_semantic @mark.validation_rules_less_numbers def test_validation_rules_less_numbers(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true with constant answer = rule.on(test_object)\ .when('i')\ .is_less(6)\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of less rule" # Evaluates to false with constant answer = rule.on(test_object)\ .when('a_g')\ .is_less(4)\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of less rule" # Evaluates to true with attribute answer = rule.on(test_object)\ .when('f')\ .is_less('i')\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of less rule" # Evaluates to false with attribute answer = rule.on(test_object)\ .when('i')\ .is_less('f')\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of less rule" @mark.validation @mark.validation_rules @mark.validation_rules_less @mark.validation_rules_semantic @mark.validation_rules_less_strings def test_validation_rules_less_strings(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true with constant answer = rule.on(test_object)\ .when('s')\ .is_less('z')\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of less rule" # Evaluates to false with constant answer = rule.on(test_object)\ .when('s')\ .is_less('a')\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of less rule" # Evaluates to true with attribute answer = rule.on(test_object)\ .when('s')\ .is_less('z')\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of less rule" # Evaluates to false with attribute answer = rule.on(test_object)\ .when('s')\ .is_less('a_s')\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of less rule" @mark.validation @mark.validation_rules @mark.validation_rules_less_equal @mark.validation_rules_semantic @mark.validation_rules_less_equal_numbers def test_validation_rules_less_equal_numbers(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true with constant answer = rule.on(test_object)\ .when('i')\ .is_less_equal(5)\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of less_equal rule" # Evaluates to false with constant answer = rule.on(test_object)\ .when('a_g')\ .is_less_equal(7)\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of less_equal rule" # Evaluates to true with attribute answer = rule.on(test_object)\ .when('a_g')\ .is_less_equal('a_ge')\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of less_equal rule" # Evaluates to false with attribute answer = rule.on(test_object)\ .when('a_ge')\ .is_less_equal('a_le')\ .evaluate\ .is_valid assert answer is False, "Invalid evaluation of less_equal rule" @mark.validation @mark.validation_rules @mark.validation_rules_less_equal @mark.validation_rules_semantic @mark.validation_rules_less_equal_strings def test_validation_rules_less_equal_strings(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true with constant answer = rule.on(test_object)\ .when('s')\ .is_less_equal('hats')\ .evaluate\ .is_valid assert answer is True, "Invalid evaluation of less_equal rule" # Evaluates to false with constant answer = rule.on(test_object)\ .when('s')\ .is_less_equal('a')\ .evaluate.is_valid assert answer is False, "Invalid evaluation of less_equal rule" # Evaluates to true with attribute answer = rule.on(test_object)\ .when('a_s')\ .is_less_equal('a_s')\ .evaluate.is_valid assert answer is True, "Invalid evaluation of less_equal rule" # Evaluates to false with attribute answer = rule.on(test_object)\ .when('a_s')\ .is_less_equal('s')\ .evaluate.is_valid assert answer is False, "Invalid evaluation of less_equal rule" @mark.validation @mark.validation_rules @mark.validation_rules_greater @mark.validation_rules_semantic @mark.validation_rules_greater_numbers def test_validation_rules_greater_numbers(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true with constant answer = rule.on(test_object)\ .when('i')\ .is_greater(3)\ .evaluate.is_valid assert answer is True, "Invalid evaluation of greater rule" # Evaluates to false with constant answer = rule.on(test_object)\ .when('a_g')\ .is_greater(3)\ .evaluate.is_valid assert answer is False, "Invalid evaluation of greater rule" # Evaluates to true with attribute answer = rule.on(test_object)\ .when('i')\ .is_greater('f')\ .evaluate.is_valid assert answer is True, "Invalid evaluation of greater rule" # Evaluates to false with attribute answer = rule.on(test_object)\ .when('f')\ .is_greater('i')\ .evaluate.is_valid assert answer is False, "Invalid evaluation of greater rule" @mark.validation @mark.validation_rules @mark.validation_rules_greater @mark.validation_rules_semantic @mark.validation_rules_greater_strings def test_validation_rules_greater_strings(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true with constant answer = rule.on(test_object)\ .when('s')\ .is_greater('a')\ .evaluate.is_valid assert answer is True, "Invalid evaluation of greater rule" # Evaluates to false with constant answer = rule.on(test_object)\ .when('s')\ .is_greater('z')\ .evaluate.is_valid assert answer is False, "Invalid evaluation of greater rule" # Evaluates to true with attribute answer = rule.on(test_object)\ .when('a_sg')\ .is_greater('a_s')\ .evaluate.is_valid assert answer is True, "Invalid evaluation of greater rule" # Evaluates to false with attribute answer = rule.on(test_object)\ .when('a_s')\ .is_greater('a_sg')\ .evaluate.is_valid assert answer is False, "Invalid evaluation of greater rule" @mark.validation @mark.validation_rules @mark.validation_rules_greater_equal @mark.validation_rules_semantic @mark.validation_rules_greater_equal_numbers def test_validation_rules_greater_equal_numbers(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true with constant answer = rule.on(test_object)\ .when('i')\ .is_greater_equal(5)\ .evaluate.is_valid assert answer is True, "Invalid evaluation of greater_equal rule" # Evaluates to false with constant answer = rule.on(test_object)\ .when('a_g')\ .is_greater_equal(50)\ .evaluate.is_valid assert answer is False, "Invalid evaluation of greater_equal rule" # Evaluates to true with attribute answer = rule.on(test_object)\ .when('a_g')\ .is_greater_equal('a_ge')\ .evaluate.is_valid assert answer is True, "Invalid evaluation of greater_equal rule" # Evaluates to false with attribute answer = rule.on(test_object)\ .when('a_le')\ .is_greater_equal('a_ge')\ .evaluate.is_valid assert answer is False, "Invalid evaluation of greater_equal rule" @mark.validation @mark.validation_rules @mark.validation_rules_greater_equal @mark.validation_rules_semantic @mark.validation_rules_greater_equal_strings def test_validation_rules_greater_equal_strings(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true with constant answer = rule.on(test_object)\ .when('s')\ .is_greater_equal("hats")\ .evaluate.is_valid assert answer is True, "Invalid evaluation of greater_equal rule" # Evaluates to false with constant answer = rule.on(test_object)\ .when('s')\ .is_greater_equal('z')\ .evaluate.is_valid assert answer is False, "Invalid evaluation of greater_equal rule" # Evaluates to true with attribute answer = rule.on(test_object)\ .when('a_sg')\ .is_greater_equal('a_s')\ .evaluate.is_valid assert answer is True, "Invalid evaluation of greater_equal rule" # Evaluates to false with attribute answer = rule.on(test_object)\ .when('a_s')\ .is_greater_equal('a_sg')\ .evaluate.is_valid assert answer is False, "Invalid evaluation of greater_equal rule" @mark.validation @mark.validation_rules @mark.validation_rules_semantic @mark.validation_rules_match def test_validation_rules_match(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object rule = Rule() # Evaluates to true with constant answer = rule.on(test_object)\ .when('a_s')\ .is_match("[a-zA-Z]+")\ .evaluate.is_valid assert answer is True, "Invalid evaluation of match rule" # Evaluates to false with constant answer = rule.on(test_object)\ .when('a_s')\ .is_match("[0-9]+")\ .evaluate.is_valid assert answer is False, "Invalid evaluation of match rule" class RuleSetTests: @mark.validation @mark.validation_rules @mark.validation_rules_semantic @mark.validation_rules_set @mark.validation_rules_set_and def test_validation_rules_set_and(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object # Create True rule1 = Rule().on(test_object)\ .when('i')\ .is_equal(5) assert rule1.evaluate.is_valid is True, "Failed Rule 1 before assigning to set." # Create another True rule rule2 = Rule().on(test_object)\ .when('a_ge')\ .is_equal('a_g') assert rule2.evaluate.is_valid is True, "Failed Rule 2 before assigning to set." # Create a false rule rule3 = Rule().on(test_object)\ .when('a_g')\ .is_equal(50) assert rule3.evaluate.is_valid is False, "Failed Rule 3 before assigning to set." # Create another false rule rule4 = Rule().on(test_object)\ .when('a_g')\ .is_greater(50) assert rule4.evaluate.is_valid is False, "Failed Rule 4 before assigning to set." # Create True/True rule set where all must be true rs = RuleSet() rs.when_all_rules_are_true rs.add_rule(rule1).add_rule(rule2) # Check evaluation answer = rs.evaluate.is_valid assert answer is True, "Invalid evaluation of rules 1 and 2" # Create True/False rule set where all must be true rs.remove_rule(rule2).add_rule(rule3) # Check evaluation answer = rs.evaluate.is_valid assert answer is False, "Invalid evaluation of rules 1 and 3" # Create False/False rule where all must be true rs.remove_rule(rule3).add_rule(rule4) # Check evaluation answer = rs.evaluate.is_valid assert answer is False, "Invalid evaluation of rules 1 and 4" @mark.validation @mark.validation_rules @mark.validation_rules_semantic @mark.validation_rules_set @mark.validation_rules_set_or def test_validation_rules_set_or(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object # Create True rule1 = Rule().on(test_object)\ .when('i')\ .is_equal(5) # Create another True rule rule2 = Rule().on(test_object)\ .when('a_ge')\ .is_equal('a_g') # Create a false rule rule3 = Rule().on(test_object)\ .when('a_g')\ .is_equal(50) # Create another false rule rule4 = Rule().on(test_object)\ .when('a_g')\ .is_greater(50) # Create True/True rule set where all must be true rs = RuleSet() rs.when_any_rule_is_true rs.add_rule(rule1) rs.add_rule(rule2) answer = rs.evaluate.is_valid assert answer is True, "Invalid evaluation of rules 1 and 2" # Create True/False rule set where all must be true rs.remove_rule(rule2) rs.add_rule(rule3) answer = rs.evaluate.is_valid rs.print_rule_set assert answer is True, "Invalid evaluation of rules 1 and 3" # Create False/False rule where all must be true rs.remove_rule(rule1) rs.add_rule(rule4) answer = rs.evaluate.is_valid rs.print_rule_set assert answer is False, "Invalid evaluation of rules 3 and 4" @mark.validation @mark.validation_rules @mark.validation_rules_semantic @mark.validation_rules_set @mark.validation_rules_set_none def test_validation_rules_set_none(self, get_validation_rule_test_object): test_object = get_validation_rule_test_object # Create True rule1 = Rule().on(test_object)\ .when('i')\ .is_equal(5) # Create another True rule rule2 = Rule().on(test_object)\ .when('a_ge')\ .is_equal('a_g') # Create a false rule rule3 = Rule().on(test_object)\ .when('a_g')\ .is_equal(50) # Create another false rule rule4 = Rule().on(test_object)\ .when('a_g')\ .is_greater(50) # Create True/True rule set where all must be true rs = RuleSet() rs.when_no_rules_are_true rs.add_rule(rule1) rs.add_rule(rule2) answer = rs.evaluate.is_valid assert answer is False, "Invalid evaluation of rules 1 and 2" # Create True/False rule set where all must be true rs.remove_rule(rule2) rs.add_rule(rule3) answer = rs.evaluate.is_valid rs.print_rule_set assert answer is False, "Invalid evaluation of rules 1 and 3" # Create False/False rule where all must be true rs.remove_rule(rule1) rs.add_rule(rule4) answer = rs.evaluate.is_valid rs.print_rule_set assert answer is True, "Invalid evaluation of rules 3 and 4" class ChildNodeTests: @mark.validation @mark.validation_rules @mark.validation_rules_printing def test_validation_rules_printing(self, get_validation_rule_test_object): """Testing propagation of data down through child nodes.""" test_object = get_validation_rule_test_object # Create some rules # True Test Rule rule1 = Rule().on(test_object)\ .when('i')\ .is_equal(5) # Create another True rule rule2 = Rule().on(test_object)\ .when('a_ge')\ .is_equal('a_g') # Create a false rule rule3 = Rule().on(test_object)\ .when('a_g')\ .is_equal(50) # Create another false rule rule4 = Rule().on(test_object)\ .when('a_g')\ .is_greater(50) # Add 1 and 2 to a new Rule Set rs1 = RuleSet() rs1.add_rule(rule1).add_rule(rule2) # Add RS1 and rules 3 and 4 to new RuleSet rs2 = RuleSet() rs2.add_rule(rs1).add_rule(rule3).add_rule(rule4) rs2.when_no_rules_are_true # Print to see how it looks in the hierarchy rs2.print_rule_set @mark.validation @mark.validation_rules @mark.validation_rules_propagation def test_validation_rules_propagation(self, get_validation_rule_test_object): """Testing propagation of data down through child nodes.""" test_object = get_validation_rule_test_object # Create some rules # True Test Rule rule1 = Rule().on(test_object)\ .when('i')\ .is_equal(5) # Create another True rule rule2 = Rule().on(test_object)\ .when('a_ge')\ .is_equal('a_g') # Create a false rule rule3 = Rule().on(test_object)\ .when('a_g')\ .is_equal(50) # Create another false rule rule4 = Rule().on(test_object)\ .when('a_g')\ .is_greater(50) # Add 1 and 2 to a new Rule Set rs1 = RuleSet() rs1.add_rule(rule1).add_rule(rule2) # Add RS1 and rules 3 and 4 to new RuleSet rs2 = RuleSet() rs2.add_rule(rs1).add_rule(rule3).add_rule(rule4) rs2.when_no_rules_are_true # Set the target object and attribute rs2.on(test_object) rs2.attribute('a_g') # Traverse through confirming updates def traverse(rule): assert rule._evaluated_instance == test_object, "Test object not set" assert rule._evaluated_attribute == "a_g", "Attribute not set" if isinstance(rule, RuleSet): for _,rule in rule._rules.items(): return traverse(rule) else: assert rule._evaluated_instance == test_object, "Test object not set" assert rule._evaluated_attribute == "a_g", "Attribute not set" traverse(rs2) class ErrorHandlingTests: @mark.validation @mark.validation_rules @mark.validation_rules_error_handling def test_validation_rules_error_handling(self, get_validation_rule_test_object): """Testing propagation of data down through child nodes.""" test_object = get_validation_rule_test_object # Indicate action on error rule = Rule().on(test_object)\ .when('i')\ .is_equal(5)\ .on_fail_report_error assert rule._action_on_fail == "report", "Action assignment failed" # Report Error Message ForRule rule.error_message = "Dangerous for i to be 5." assert "Dangerous" in rule._error_message, "Error message assignment didn't work" ``` #### File: tests/test_supervised_learning/test_classification.py ```python import math import numpy as np import pandas as pd import pytest from pytest import mark from ml_studio.supervised_learning.classification import LogisticRegression from ml_studio.supervised_learning.classification import MultinomialLogisticRegression from ml_studio.supervised_learning.training.early_stop import EarlyStopImprovement from ml_studio.supervised_learning.training.early_stop import EarlyStopStrips from ml_studio.supervised_learning.training.metrics import Metric # --------------------------------------------------------------------------- # #%% # --------------------------------------------------------------------------- # # LOGISTIC REGRESSION # # --------------------------------------------------------------------------- # class LogisticRegressionTests: @mark.logistic_regression @mark.logistic_regression_name def test_logistic_regression_name(self, get_binary_classification_data): X, y = get_binary_classification_data clf = LogisticRegression(epochs=50) clf.fit(X,y) assert clf.name == 'Logistic Regression with Batch Gradient Descent' clf = LogisticRegression(epochs=50, batch_size=1) clf.fit(X,y) assert clf.name == 'Logistic Regression with Stochastic Gradient Descent' clf = LogisticRegression(epochs=50, batch_size=32) clf.fit(X,y) assert clf.name == 'Logistic Regression with Minibatch Gradient Descent' @mark.logistic_regression @mark.logistic_regression_val def test_logistic_regression_validation(self, get_binary_classification_data): X, y = get_binary_classification_data clf = LogisticRegression(epochs=50, metric='mean') with pytest.raises(ValueError): clf.fit(X,y) clf = LogisticRegression(epochs=50, cost='quadratic') with pytest.raises(ValueError): clf.fit(X,y) @mark.logistic_regression @mark.logistic_regression_predict def test_logistic_regression_predict(self, get_binary_classification_data): X, y = get_binary_classification_data clf = LogisticRegression(epochs=100, learning_rate=0.01, checkpoint=10) clf.fit(X,y) y_pred = clf._predict(X) assert y_pred.shape == (y.shape[0],), "y_pred has wrong shape for binary problem" y_pred = clf.predict(X) score = clf.score(X,y) assert y_pred.shape == (y.shape[0],), "y_pred has wrong shape for binary problem" assert score > 0.3, "Accuracy below 0.3" assert score < 1, "Accuracy is greater than or equal to 1" @mark.logistic_regression @mark.logistic_regression_history def test_logistic_regression_history_w_early_stop(self, get_binary_classification_data): X, y = get_binary_classification_data es = EarlyStopImprovement() clf = LogisticRegression(epochs=10, early_stop=es) clf.fit(X, y) # Test epoch history assert clf.history.total_epochs == len(clf.history.epoch_log.get('epoch')), "number of epochs in log doesn't match epochs" assert clf.history.total_epochs == len(clf.history.epoch_log.get('learning_rate')), "number of learning rates in log doesn't match epochs" assert clf.history.total_epochs == len(clf.history.epoch_log.get('theta')), "number of thetas in log doesn't match epochs" assert clf.history.total_epochs == len(clf.history.epoch_log.get('train_cost')), "number of train costs in log doesn't match epochs" assert clf.history.total_epochs == len(clf.history.epoch_log.get('val_cost')), "number of val costs in log doesn't match epochs" assert clf.history.total_epochs == len(clf.history.epoch_log.get('train_score')), "number of train score in log doesn't match epochs" assert clf.history.total_epochs == len(clf.history.epoch_log.get('val_score')), "number of val score in log doesn't match epochs" assert all(np.equal(clf.theta, clf.history.epoch_log.get('theta')[-1])), "Last theta in log doesn't equal final theta." assert clf.history.epoch_log.get('train_cost')[0] > clf.history.epoch_log.get('train_cost')[-1], "train_cost does not decrease" #assert clf.history.epoch_log.get('train_score')[0] > clf.history.epoch_log.get('train_score')[-1], "train_score does not decrease" assert clf.history.epoch_log.get('val_cost')[0] > clf.history.epoch_log.get('val_cost')[-1], "val_cost does not decrease" #assert clf.history.epoch_log.get('val_score')[0] > clf.history.epoch_log.get('val_score')[-1], "val_score does not decrease" # Test batch history assert clf.history.total_batches == len(clf.history.batch_log.get('batch')), "number of batches in log doesn't match total batches" assert clf.history.total_batches == len(clf.history.batch_log.get('batch_size')), "number of batch sizes in log doesn't match total batches" assert clf.history.total_batches == len(clf.history.batch_log.get('theta')), "number of thetas in log doesn't match total batches" assert clf.history.total_batches == len(clf.history.batch_log.get('train_cost')), "number of train_costs in log doesn't match total batches" @mark.logistic_regression @mark.logistic_regression_learning_rate_schedules def test_logistic_regression_learning_rate_schedules(self, learning_rate_schedules, get_binary_classification_data): X, y = get_binary_classification_data clf = LogisticRegression(epochs=200, checkpoint=10, learning_rate=learning_rate_schedules, patience=40) clf.fit(X, y) # Confirm learning rates decreased assert clf.history.epoch_log.get('learning_rate')[0] > clf.history.epoch_log.get('learning_rate')[-1], "Learning rate didn't decrease" assert clf.history.epoch_log.get('learning_rate')[0] != clf.eta, "Learning rate didn't change" @mark.logistic_regression def test_logistic_regression_early_stop_from_estimator_train_cost(self, get_binary_classification_data): X, y = get_binary_classification_data clf = LogisticRegression(epochs=5000, early_stop=False, val_size=0.3, metric=None) clf.fit(X, y) assert clf.convergence_monitor.monitor == 'train_cost', "Estimator is not sending correct metric" @mark.logistic_regression def test_logistic_regression_early_stop_from_estimator_train_score(self, get_binary_classification_data): X, y = get_binary_classification_data clf = LogisticRegression(epochs=5000, early_stop=False, val_size=0.3, metric='accuracy') clf.fit(X, y) assert clf.convergence_monitor.monitor == 'train_score', "Estimator is not sending correct metric" @mark.logistic_regression def test_logistic_regression_early_stop_from_estimator_val_cost(self, get_binary_classification_data): X, y = get_binary_classification_data clf = LogisticRegression(epochs=5000, early_stop=True, val_size=0.3, metric=None) clf.fit(X, y) assert clf.convergence_monitor.monitor == 'val_cost', "Estimator is not sending correct metric" @mark.logistic_regression def test_logistic_regression_early_stop_from_estimator_val_score(self, get_binary_classification_data): X, y = get_binary_classification_data clf = LogisticRegression(epochs=5000, early_stop=True, val_size=0.3, metric='accuracy') clf.fit(X, y) assert clf.convergence_monitor.monitor == 'val_score', "Estimator is not sending correct metric" # --------------------------------------------------------------------------- # # MULTINOMIAL LOGISTIC REGRESSION # # --------------------------------------------------------------------------- # class MultinomialLogisticRegressionTests: @mark.logistic_regression @mark.multinomial_logistic_regression @mark.multinomial_logistic_regression_name def test_multinomial_logistic_regression_name(self, get_multinomial_classification_data): X, y = get_multinomial_classification_data clf = MultinomialLogisticRegression(epochs=50, cost='categorical_cross_entropy') clf.fit(X,y) assert clf.name == 'Multinomial Logistic Regression with Batch Gradient Descent' clf = MultinomialLogisticRegression(epochs=50, batch_size=1,cost='categorical_cross_entropy') clf.fit(X,y) assert clf.name == 'Multinomial Logistic Regression with Stochastic Gradient Descent' clf = MultinomialLogisticRegression(epochs=50, batch_size=32, cost='categorical_cross_entropy') clf.fit(X,y) assert clf.name == 'Multinomial Logistic Regression with Minibatch Gradient Descent' @mark.logistic_regression @mark.multinomial_logistic_regression @mark.multinomial_logistic_regression_val def test_multinomial_logistic_regression_validation(self, get_multinomial_classification_data): X, y = get_multinomial_classification_data clf = MultinomialLogisticRegression(epochs=50, metric='mse') with pytest.raises(ValueError): clf.fit(X,y) clf = MultinomialLogisticRegression(epochs=50, cost='binary_cross_entropy') with pytest.raises(ValueError): clf.fit(X,y) @mark.logistic_regression @mark.multinomial_logistic_regression @mark.multinomial_logistic_regression_prep_data def test_multinomial_logistic_regression_prep_data(self, get_multinomial_classification_data): X, y = get_multinomial_classification_data clf = MultinomialLogisticRegression(epochs=50, cost='categorical_cross_entropy', val_size=0, early_stop=False) clf.fit(X,y) assert X.shape[0] == clf.X.shape[0], "X.shape[0] incorrect in prep data" assert X.shape[1]+1 == clf._X_design.shape[1], "X.shape[1] incorrect in prep data" @mark.logistic_regression @mark.multinomial_logistic_regression @mark.multinomial_logistic_regression_init_weights def test_multinomial_logistic_regression_init_weights(self, get_multinomial_classification_data): X, y = get_multinomial_classification_data n_features = X.shape[1]+1 n_classes = len(np.unique(y)) clf = MultinomialLogisticRegression(epochs=50) clf.fit(X,y) assert clf.theta.shape == (n_features,n_classes), "theta shape incorrect for multi classification" @mark.logistic_regression @mark.multinomial_logistic_regression @mark.multinomial_logistic_regression_predict def test_multinomial_logistic_regression_predict(self, get_multinomial_classification_data): X, y = get_multinomial_classification_data clf = MultinomialLogisticRegression(epochs=1000, cost='categorical_cross_entropy', patience=40) clf.fit(X,y) y_pred = clf._predict(X) assert y_pred.shape == (y.shape[0],3), "Shape of prediction is not correct." y_pred = clf.predict(X) score = clf.score(X,y) assert y_pred.shape == (y.shape[0],), "Shape of prediction is not correct." assert clf.history.epoch_log.get('train_cost')[0] > clf.history.epoch_log.get('train_cost')[-1], "Training costs didn't decrease" assert clf.history.epoch_log.get('train_score')[0] < clf.history.epoch_log.get('train_score')[-1], "Training score didn't increase" assert score >= 0.5, "Accuracy below 0.5" assert score < 1, "Accuracy is greater than or equal to 1" @mark.logistic_regression @mark.multinomial_logistic_regression @mark.multinomial_logistic_regression_early_stop def test_multinomial_logistic_regression_early_stop(self, get_multinomial_classification_data): X, y = get_multinomial_classification_data es = EarlyStopImprovement(precision=0.001, patience=5) clf = MultinomialLogisticRegression(epochs=100, early_stop=es, checkpoint=10) clf.fit(X, y) # Confirm early stop happened assert clf.history.total_epochs < clf.epochs, "Early stop didn't happen." # Test epoch history assert clf.history.total_epochs == len(clf.history.epoch_log.get('epoch')), "number of epochs in log doesn't match epochs" assert clf.history.total_epochs == len(clf.history.epoch_log.get('learning_rate')), "number of learning rates in log doesn't match epochs" assert clf.history.total_epochs == len(clf.history.epoch_log.get('theta')), "number of thetas in log doesn't match epochs" assert clf.history.total_epochs == len(clf.history.epoch_log.get('train_cost')), "number of train costs in log doesn't match epochs" assert clf.history.total_epochs == len(clf.history.epoch_log.get('val_cost')), "number of val costs in log doesn't match epochs" assert clf.history.total_epochs == len(clf.history.epoch_log.get('train_score')), "number of train score in log doesn't match epochs" assert clf.history.total_epochs == len(clf.history.epoch_log.get('val_score')), "number of val score in log doesn't match epochs" assert np.array_equal(clf.theta, clf.history.epoch_log.get('theta')[-1]) == True, "Last theta in log doesn't equal final theta." # Test Performance Trends assert clf.history.epoch_log.get('train_cost')[0] > clf.history.epoch_log.get('train_cost')[-1], "Training costs didn't decrease" #assert clf.history.epoch_log.get('train_score')[0] < clf.history.epoch_log.get('train_score')[-1], "Training score didn't increase" assert clf.history.epoch_log.get('val_cost')[0] > clf.history.epoch_log.get('val_cost')[-1], "Validation costs didn't decrease" #assert clf.history.epoch_log.get('val_score')[0] < clf.history.epoch_log.get('val_score')[-1], "Validation score didn't increase" # Test batch history assert clf.history.total_batches == len(clf.history.batch_log.get('batch')), "number of batches in log doesn't match total batches" assert clf.history.total_batches == len(clf.history.batch_log.get('batch_size')), "number of batch sizes in log doesn't match total batches" assert clf.history.total_batches == len(clf.history.batch_log.get('theta')), "number of thetas in log doesn't match total batches" assert clf.history.total_batches == len(clf.history.batch_log.get('train_cost')), "number of train_costs in log doesn't match total batches" @mark.logistic_regression @mark.multinomial_logistic_regression @mark.multinomial_logistic_regression_learning_rate_schedules def test_multinomial_logistic_regression_learning_rate_schedules(self, learning_rate_schedules, get_multinomial_classification_data): X, y = get_multinomial_classification_data clf = MultinomialLogisticRegression(epochs=50, checkpoint=10, learning_rate=learning_rate_schedules) clf.fit(X, y) # Confirm learning rates decreased assert clf.history.epoch_log.get('learning_rate')[0] > clf.history.epoch_log.get('learning_rate')[-1], "Learning rate didn't decrease" assert clf.history.epoch_log.get('learning_rate')[0] != clf.eta, "Learning rate didn't change" @mark.logistic_regression @mark.multinomial_logistic_regression def test_multinomial_logistic_regression_early_stop_from_estimator_train_cost(self, get_multinomial_classification_data): X, y = get_multinomial_classification_data clf = MultinomialLogisticRegression(epochs=5000, early_stop=False, val_size=0.3, metric=None) clf.fit(X, y) assert clf.convergence_monitor.monitor == 'train_cost', "Estimator is not sending correct metric" @mark.logistic_regression @mark.multinomial_logistic_regression def test_multinomial_logistic_regression_early_stop_from_estimator_train_score(self, get_multinomial_classification_data): X, y = get_multinomial_classification_data clf = MultinomialLogisticRegression(epochs=5000, early_stop=False, val_size=0.3, metric='accuracy') clf.fit(X, y) assert clf.convergence_monitor.monitor == 'train_score', "Estimator is not sending correct metric" @mark.logistic_regression @mark.multinomial_logistic_regression def test_multinomial_logistic_regression_early_stop_from_estimator_val_cost(self, get_multinomial_classification_data): X, y = get_multinomial_classification_data clf = MultinomialLogisticRegression(epochs=5000, early_stop=True, val_size=0.3, metric=None) clf.fit(X, y) assert clf.convergence_monitor.monitor == 'val_cost', "Estimator is not sending correct metric" @mark.logistic_regression @mark.multinomial_logistic_regression def test_multinomial_logistic_regression_early_stop_from_estimator_val_score(self, get_multinomial_classification_data): X, y = get_multinomial_classification_data clf = MultinomialLogisticRegression(epochs=5000, early_stop=True, val_size=0.3, metric='accuracy') clf.fit(X, y) assert clf.convergence_monitor.monitor == 'val_score', "Estimator is not sending correct metric" ```
{ "source": "john-james-ai/xrec", "score": 2 }
#### File: tests/test_data/test_data_source.py ```python import os import pytest import time import logging import inspect import pandas as pd import numpy as np from datetime import datetime from xrec.data.source import AmazonSource from xrec.utils.config import Config from xrec.data.extract import download_callback # ------------------------------------------------------------------------------------------------------------------------ # logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class AmazonSourceTests: def test_setup(self): logger.info("Started {}".format(self.__class__.__name__)) amazon = AmazonSource() amazon.reset_extract() def test_create_metadata(self): logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) c = Config() url = c.read('DATA', 'url') amazon = AmazonSource() amazon.create_metadata(url) assert isinstance(amazon.metadata, pd.DataFrame), \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) assert amazon.metadata.shape[0] == 58, \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) assert amazon.metadata.shape[1] == 12, \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) assert amazon.n_files == 58, \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) assert amazon.n_files_downloaded == 0, \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) def test_read_metadata(self): logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) c = Config() url = c.read('DATA', 'url') amazon = AmazonSource() # Test without parameters metadata = amazon.read_metadata() assert isinstance(metadata, pd.DataFrame), \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) assert metadata.shape[0] == 58, \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) assert metadata.shape[1] == 12, \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) # Test with key only metadata = amazon.read_metadata(key='books') assert isinstance(metadata, pd.DataFrame), \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) assert metadata.shape[0] == 2, \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) assert metadata.shape[1] == 12, \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) # Test with key and kind metadata = amazon.read_metadata(key='books', kind='p') assert isinstance(metadata, pd.DataFrame), \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) assert metadata.shape[0] == 1, \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) assert metadata.shape[1] == 12, \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) def test_update_metadata(self): logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) amazon = AmazonSource() key = 'video' kind = 'r' download_date = np.datetime64(datetime.now()) download_duration = 2398 download_size = 126543 downloaded = True amazon.update_metadata(key, kind, downloaded, download_date, download_duration, download_size) result = amazon.read_metadata(key, kind) assert result['downloaded'].values[0] == downloaded,\ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) assert result['download_date'].values[0] == download_date,\ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) assert result['download_duration'].values[0] == download_duration,\ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) assert result['download_size'].values[0] == download_size,\ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) def test_reset_extract(self): logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) amazon = AmazonSource() amazon.reset_extract() assert amazon.n_files_downloaded == 0,\ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) def test_get_extract(self): self._test_get_extract_tasks_all() self._test_get_extract_tasks_max_tasks() def _test_get_extract_tasks_all(self): logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) amazon = AmazonSource() tasks = amazon.get_extract_tasks() assert isinstance(tasks, list), \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) assert len(tasks) == 58, \ logger.error(" Failure in {}. Expected length=56, actual={}".format( inspect.stack()[0][3], len(tasks))) for task in tasks: assert isinstance(task, dict), \ logger.error(" Failure in {}.".format( inspect.stack()[0][3])) assert 'url' in task.keys(), \ logger.error(" Failure in {}.".format( inspect.stack()[0][3])) assert 'filepath' in task.keys(), \ logger.error(" Failure in {}.".format( inspect.stack()[0][3])) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) def _test_get_extract_tasks_max_tasks(self): logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) max_tasks = 2 amazon = AmazonSource() tasks = amazon.get_extract_tasks(max_tasks=max_tasks) assert len(tasks) == 2,\ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) assert tasks[0].get('kind') == 'reviews', \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) assert tasks[1].get('kind') == 'products', \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) def test_extract(self): logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) max_tasks = 2 amazon = AmazonSource() amazon.reset_extract() assert amazon.n_files == 58, \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) assert amazon.n_files_downloaded == 0, \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) n_downloads = 0 tasks = amazon.get_extract_tasks(max_tasks=max_tasks) while len(tasks) > 0: for task in tasks: result = self._simulate_download(task) download_callback(result) n_downloads += 1 print(amazon.describe(task['key'], task['kind'])) assert amazon.n_files_downloaded == n_downloads, \ logger.error(" Failure in {}.".format( inspect.stack()[0][3])) tasks = amazon.get_extract_tasks(max_tasks=max_tasks) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) def _simulate_download(self, task): start = datetime.now() end = datetime.now() duration = end - start task['downloaded'] = True task['download_date'] = np.datetime64(end) task['download_duration'] = duration task['download_size'] = np.random.randint(1000000, 99999999) return task def test_delete_metadata(self): logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) c = Config() url = c.read('DATA', 'url') amazon = AmazonSource() amazon.delete_metadata() assert amazon.metadata is None, \ logger.error(" Failure in {}.".format(inspect.stack()[0][3])) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) def test_teardown(self): logger.info("Successfully completed {}".format( self.__class__.__name__)) if __name__ == "__main__": t = AmazonSourceTests() t.test_setup() t.test_create_metadata() t.test_read_metadata() t.test_update_metadata() t.test_reset_extract() t.test_get_extract() t.test_extract() t.test_delete_metadata() t.test_teardown() # %% ```
{ "source": "john-james-sf/lab", "score": 2 }
#### File: experiments/parallel/pool_apply_with_log.py ```python import logging import logging.handlers import numpy as np import time import multiprocessing import pandas as pd log_file = 'log_file.log' def listener_configurer(): root = logging.getLogger() h = logging.FileHandler(log_file) f = logging.Formatter( '%(asctime)s %(processName)-10s %(name)s %(levelname)-8s %(message)s') h.setFormatter(f) root.addHandler(h) # This is the listener process top-level loop: wait for logging events # (LogRecords)on the queue and handle them, quit when you get a None for a # LogRecord. def listener_process(queue, configurer): configurer() while True: try: record = queue.get() if record is None: # We send this as a sentinel to tell the listener to quit. break logger = logging.getLogger(record.name) # No level or filter logic applied - just do it! logger.handle(record) except Exception: import sys import traceback print('Whoops! Problem:', file=sys.stderr) traceback.print_exc(file=sys.stderr) def worker_configurer_old(queue): h = logging.handlers.QueueHandler(queue) # Just the one handler needed root = logging.getLogger() root.addHandler(h) # send all messages, for demo; no other level or filter logic applied. root.setLevel(logging.DEBUG) def worker_configurer(queue): root = logging.getLogger() # print(f'{root.handlers=}') if len(root.handlers) == 0: h = logging.handlers.QueueHandler(queue) root.addHandler(h) root.setLevel(logging.DEBUG) # This is the worker process top-level loop, which just logs ten events with # random intervening delays before terminating. # The print messages are just so you know it's doing something! def worker_function(sleep_time, name, queue, configurer): configurer(queue) start_message = 'Worker {} started and will now sleep for {}s'.format( name, sleep_time) logging.info(start_message) time.sleep(sleep_time) success_message = 'Worker {} has finished sleeping for {}s'.format( name, sleep_time) logging.info(success_message) def main_with_pool(): start_time = time.time() queue = multiprocessing.Manager().Queue(-1) listener = multiprocessing.Process(target=listener_process, args=(queue, listener_configurer)) listener.start() pool = multiprocessing.Pool(processes=3) job_list = [np.random.randint(10) / 2 for i in range(10)] single_thread_time = np.sum(job_list) for i, sleep_time in enumerate(job_list): name = str(i) pool.apply_async(worker_function, args=(sleep_time, name, queue, worker_configurer)) pool.close() pool.join() queue.put_nowait(None) listener.join() end_time = time.time() print("Script execution time was {}s, but single-thread time was {}s".format( (end_time - start_time), single_thread_time )) if __name__ == "__main__": main_with_pool() # %% ```
{ "source": "john-james-sf/nlr", "score": 2 }
#### File: nlr/data/builder.py ```python from abc import ABC, abstractmethod import logging from nlr.data.base import Director # ------------------------------------------------------------------------------------------------------------------------ # logger = logging.getLogger(__name__) # ------------------------------------------------------------------------------------------------------------------------ # class DatasetBuilder(ABC): """Abstract dataset builder class. The DatasetBuilder class specifies the methods for obtaining, ingesting, processing, and presenting datasets for modeling. """ def __init__(self, dao: DatasetMetadataDAO) @property @abstractmethod def build_metadata(self) -> None: pass @abstractmethod def extract(self) -> None: pass @abstractmethod def explore(self) -> None: pass @abstractmethod def clean(self) -> None: pass @abstractmethod def transform(self) -> None: pass @abstractmethod def combine(self) -> None: pass @abstractmethod def split(self) -> None: pass @abstractmethod def combine(self) -> None: pass # ------------------------------------------------------------------------------------------------------------------------ # class DatasetBuilderRatings(DatasetBuilder): """Builder rating datasets. """ @property @abstractmethod def build_metadata(self) -> None: pass @abstractmethod def extract(self) -> None: pass @abstractmethod def explore(self) -> None: pass @abstractmethod def clean(self) -> None: pass @abstractmethod def transform(self) -> None: pass @abstractmethod def combine(self) -> None: pass @abstractmethod def split(self) -> None: pass @abstractmethod def combine(self) -> None: pass ``` #### File: nlr/lab/profiling.py ```python import collections import time from pprint import pprint from datetime import datetime import psutil p = psutil.Process() # print(datetime.now()) X = p.as_dict(attrs=['pid', 'create_time', 'cpu_percent', 'cpu_times', 'num_threads', 'num_handles', 'name', 'memory_percent']) T = ['io_counters', 'memory_full_info', 'num_ctx_switches'] X['resources'] = { 'num_open_files': len(p.open_files()), 'num_open_connections': len(p.connections()) } X['craate_time_format'] = datetime.fromtimestamp( p.create_time()).strftime("%Y-%m-%d %H:%M:%S") final = {} def flatten(d, prev='', sep='_'): items = {} pprint(X) final = {} sep = '_' for a, b in X.items(): if isinstance(b, tuple): for c, d in b._asdict().items(): if isinstance(d, tuple): for e, f in d._asdict().items(): if isinstance(f, tuple): for g, h in f._asdict().items(): knu = [a, c, e, g].join(sep) final[knu] = h elif isinstance(f, dict): for g, h in f.items(): knu = [a, c, e, g].join(sep) final[knu] = h else: knu = [a, c, e].join(sep) final[knu] = f elif isinstance(d, dict): for e, f in d.items(): if isinstance(f, ) for g, h in f.items(): knu = [a, c, e, g].join(sep) final[knu] = h d2 = v._asdict() d3 = {k: v for k, v in d2.items()} if isinstance(o, t) else: final[k] = v pprint(final) print(len(p.open_files())) print(len(p.connections())) print(p.name()) print(datetime.fromtimestamp( p.create_time()).strftime("%Y-%m-%d %H:%M:%S")) def flatten(d, parent_key='', sep='_'): items = [] if isinstance(d, dict): for k, v in d.items(): new_key = parent_key + sep + k if parent_key else k if isinstance(v, tuple): items.extend(flatten(v, new_key, sep=sep)) else: items.append((new_key, v)) return dict(items) elif isinstance(d, tuple): print(flatten(X)) # %% ``` #### File: nlr/nlr/nlr.py ```python import time from nlr.setup.folders import setup_folders from nlr.setup.database import setup_database from nlr.database.sequel import TABLES from nlr.database import DBNAME, SERVER, HOST, PORT # %% def authorize(): ok = input( "Do we have your authorization to download and organize data on your machine? [y/n]") or 'y' if 'y' in ok or 'Y' in ok: print("Most excellent. Let's get started.\n\n") time.sleep(1) return True else: print("Not worries. Please reference the README.md for this project and data setup instructions.\n\n") time.sleep(1) return False def main(): """Main entry point.""" config = {} print("Welcome to Natural Language Recommendation Project!\nLet's jump right in. We'll need to:\n\t1. Designate your project home and data directories,\n\t2. Setup your MySQL Database\n\t3. Select the data sources that we will be using on the project, and \n\t4. Launch a potentially time-intensive data extraction process. \n\n") time.sleep(1) print("This will obviously require us to create directories and download data onto your machine.") time.sleep(1) if authorize(): setup_folders() time.sleep(1) setup_database(SERVER, DBNAME, HOST, PORT, TABLES) if __name__ == "__main__": main() # %% ``` #### File: tests/test_database/test_admin.py ```python import os import pytest import pandas as pd import logging import inspect from nlr.database.connect import MySQLDatabase, MySQLServer from nlr.database.admin import DatabaseAdmin, TableAdmin from nlr.database import DBNAME from nlr.database.ddl import TABLES # ------------------------------------------------------------------------------------------------------------------------ # logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class DatabaseAdminTests: def test_drop(self): logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) db = DatabaseAdmin() server_con = MySQLServer() with server_con() as connection: db.drop(DBNAME, connection) assert not db.exists(DBNAME, connection), "Failure in {}".format( inspect.stack()[0][3]) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) def test_create(self): logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) db = DatabaseAdmin() server_conn = MySQLServer() with server_conn() as connection: db.create(DBNAME, connection, exist_ok=False) assert db.exists(DBNAME, connection), "Failure in {}".format( inspect.stack()[0][3]) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) def test_create_exist(self): # Should log an error logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) db = DatabaseAdmin() server_conn = MySQLServer() with server_conn() as connection: db.create(DBNAME, connection, exist_ok=False) assert db.exists(DBNAME, connection), "Failure in {}".format( inspect.stack()[0][3]) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) def test_create_exist_ok(self): # Should log at information level logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) db = DatabaseAdmin() server_conn = MySQLServer() with server_conn() as connection: db.create(DBNAME, connection, exist_ok=True) assert db.exists(DBNAME, connection), "Failure in {}".format( inspect.stack()[0][3]) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) class TableAdminTests: TABLE = 'datasources' def test_drop(self): logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) table_admin = TableAdmin() dbconn = MySQLDatabase() with dbconn(DBNAME) as connection: table.drop(TABLES, connection) assert not table.exists(self.TABLE, connection), "Failure in {}".format( inspect.stack()[0][3]) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) def test_create(self): logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) table_admin = TableAdmin() dbconn = MySQLDatabase() with dbconn(DBNAME) as connection: table_admin.create(TABLES, connection) for name in TABLES.keys(): assert table.exists(name, connection), "Failure in {}".format( inspect.stack()[0][3]) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) def test_create_exist(self): # Should log error. logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) table_admin = TableAdmin() dbconn = MySQLDatabase() with dbconn(DBNAME) as connection: table_admin.create(TABLES, connection, exist_ok=False) for name in TABLES.keys(): assert table.exists(name, connection), "Failure in {}".format( inspect.stack()[0][3]) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) def test_create_exist_ok(self): # Should log information logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) table_admin = TableAdmin() dbconn = MySQLDatabase() with dbconn(DBNAME) as connection: table_admin.create(TABLES, connection, exist_ok=True) for name in TABLES.keys(): assert table.exists(name, connection), "Failure in {}".format( inspect.stack()[0][3]) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) if __name__ == "__main__": t = DatabaseAdminTests() t.test_drop() t.test_create() t.test_create_exist() t.test_create_exist_ok() t = TableAdminTests() t.test_drop() t.test_create() t.test_create_exist() t.test_create_exist_ok() # %% ``` #### File: test_data/test__datasources/test_datasource.py ```python import os import pytest import pandas as pd import logging import inspect # from importlib import reload # logging.shutdown() # reload(logging) from nlr.data.sources import DataSource # ------------------------------------------------------------------------------------------------------------------------ # logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class DataSourceTests: def test_get_filenames(self): logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) ds = DataSource() filenames = ds.get_filenames() assert isinstance(filenames, list), "Failure in {}".format( inspect.stack()[0][3]) assert len(filenames) > 7, "Failure in {} ".format( inspect.stack()[0][3]) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) def test_bucket_exists(self): logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) ds = DataSource() assert ds.s3_bucket_exists(), "Failure in {} S3 bucket doesn't exist".format( inspect.stack()[0][3]) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) def test_local_metadata(self): logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) ds = DataSource() meta = ds.get_metadata(local=True) assert isinstance(meta, dict), "Failure in {} local data metadata {}".format( inspect.stack()[0][3]) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) def test_remote_metadata(self): logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) ds = DataSource() meta = ds.get_metadata(local=False) assert isinstance(meta, dict), "Failure in {} local data metadata {}".format( inspect.stack()[0][3]) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) if __name__ == "__main__": t = DataSourceTests() t.test_get_filenames() t.test_bucket_exists() t.test_local_metadata() t.test_remote_metadata() # %% ```
{ "source": "john-james-sf/predict-fda", "score": 2 }
#### File: predict-fda/src/main.py ```python from pathlib import Path import logging from src.infrastructure.setup import PlatformBuilder from src.infrastructure.data.config import pg_pg_login, DBCredentials # import click def setup_database(dbname: str, credentials: DBCredentials) -> None: print(credentials) mdata = "platform/metadata/metadata_table_create.sql" dsources = "..data/metadata/datasources.csv" builder = PlatformBuilder(pg_pg_login) builder.build_user(credentials) builder.build_database(dbname) builder.build_metadata(mdata) builder.build_datasources(dsources) def get_user_config(): dbname = 'rx2m' # username = input( # "Welcome. Please enter your credentials in the config file and enter\ # your username? ['j2']" # ) config = DBCredentials() credentials = config.get_config('j2') setup_database(dbname, credentials) # @click.command() # @click.argument('input_filepath', type=click.Path(exists=True)) # @click.argument('output_filepath', type=click.Path()) def main(): """ Runs data processing scripts to turn raw data from (../raw) into cleaned data ready to be analyzed (saved in ../processed). """ logger = logging.getLogger(__name__) logger.info('making final data set from raw data') get_user_config() if __name__ == '__main__': log_fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' logging.basicConfig(level=logging.INFO, format=log_fmt) # not used in this stub but often useful for finding various files project_dir = Path(__file__).resolve().parents[2] main() ```
{ "source": "johnjarman/octopus-energy-display", "score": 3 }
#### File: johnjarman/octopus-energy-display/octopusenergy.py ```python import logging import json import requests from datetime import datetime from dateutil import tz def load_api_key_from_file(filename): with open(filename) as f: s = f.read() return s.strip() class OctopusEnergy: def __init__(self, api_key, api_url='https://api.octopus.energy/v1/products/AGILE-18-02-21/electricity-tariffs/E-1R-AGILE-18-02-21-J/standard-unit-rates/'): self.api_key = api_key self.api_url = api_url self.date_format = '%Y-%m-%dT%H:%M:%SZ' self.data = None def get_elec_price(self, cache=True): """ Get current electricity price @param bool cache: Allow caching of fetched values """ price = None if cache: try: # RAM cache price = self._get_current_price_from_data(self.data) except: pass if price is None: logging.info('Loading price data over HTTP') # Get price via HTTP self.data = self._get_data_http() price = self._get_current_price_from_data(self.data) return price def _get_data_http(self): r = requests.get(self.api_url, auth=(self.api_key + ':', '')) return json.loads(r.text) def _get_current_price_from_data(self, data): current_time = datetime.now() utc = tz.tzutc() local_tz = tz.tzlocal() current_time.replace(tzinfo=local_tz) current_time = current_time.astimezone(utc) price = None try: for val in data['results']: valid_from = datetime.strptime(val['valid_from'], self.date_format).replace(tzinfo=utc) valid_to = datetime.strptime(val['valid_to'], self.date_format).replace(tzinfo=utc) if (valid_from <= current_time and valid_to > current_time): price = val['value_inc_vat'] except KeyError: try: logging.error("Could not get price data: " + data['detail']) except: logging.error("Could not get price data or error info.") except json.JSONDecodeError as err: logging.error('JSON decode error: {}'.format(err)) return price if __name__ == '__main__': api_key = load_api_key_from_file('api_key.txt') oe = OctopusEnergy(api_key) print(oe.get_elec_price()) ```
{ "source": "johnjarmitage/flem", "score": 3 }
#### File: flem/flem/read_dem.py ```python import numpy as np import elevation as elv import os from osgeo import gdal from fenics import FunctionSpace, Function, Point from mshr import Rectangle, generate_mesh from scipy import interpolate def read_dem(bounds, res): """ Function to read in a DEM from SRTM amd interplolate it onto a dolphyn mesh. This function uses the python package 'elevation' (http://elevation.bopen.eu/en/stable/) and the gdal libraries. I will assume you want the 30m resolution SRTM model. :param bounds: west, south, east, north coordinates :return u_n, lx, ly: the elevation interpolated onto the dolphyn mesh and the lengths of the domain """ west, south, east, north = bounds # Create a temporary file to store the DEM and go get it using elevation dem_path = 'tmp.tif' output = os.getcwd() + '/' + dem_path elv.clip(bounds=bounds, output=output, product='SRTM1') # read in the DEM into a numpy array gdal_data = gdal.Open(output) data_array = gdal_data.ReadAsArray().astype(np.float) # The DEM is 30m per pixel, so lets make a array for x and y at 30 m ny, nx = np.shape(data_array) lx = nx*30 ly = ny*30 x, y = np.meshgrid(np.linspace(0, lx/ly, nx), np.linspace(1, 0, ny)) # Create mesh and define function space domain = Rectangle(Point(0, 0), Point(lx/ly, 1)) mesh = generate_mesh(domain, res) V = FunctionSpace(mesh, 'P', 1) u_n = Function(V) # Get the global coordinates gdim = mesh.geometry().dim() gc = V.tabulate_dof_coordinates().reshape((-1, gdim)) # Interpolate elevation into the initial condition elevation = interpolate.griddata((x.flatten(), y.flatten()), data_array.flatten(), (gc[:, 0], gc[:, 1]), method='nearest') u_n.vector()[:] = elevation/ly # remove tmp DEM os.remove(output) return u_n, lx, ly, mesh, V ```
{ "source": "johnjasa/CADRE", "score": 2 }
#### File: CADRE/attitude_dymos/ode_rate_comp.py ```python from __future__ import print_function, division from six import string_types, iteritems import numpy as np from scipy.sparse import csr_matrix from openmdao.api import ExplicitComponent from dymos.phases.grid_data import GridData from dymos.utils.misc import get_rate_units class ODERateComp(ExplicitComponent): """ Compute the approximated rates of a variable in the ODE. Currently this component only works in the ODE of Radau Pseudospectral phases since it requires input values to be provided at all nodes. Notes ----- .. math:: \\dot{p}_a = \\frac{d\\tau_s}{dt} \\left[ D \\right] p_a where :math:`p_a` are the values of the variable at all nodes, :math:`\\dot{p}_a` are the time-derivatives of the variable at all nodes, :math:`D` is the Lagrange differentiation matrix, and :math:`\\frac{d\\tau_s}{dt}` is the ratio of segment duration in segment tau space [-1 1] to segment duration in time. """ def initialize(self): self.options.declare( 'time_units', default=None, allow_none=True, types=string_types, desc='Units of time') self.options.declare( 'grid_data', types=GridData, desc='Container object for grid info') # Save the names of the dynamic controls/parameters self._dynamic_names = [] self._input_names = {} self._output_rate_names = {} self._var_options = {} def _setup_variables(self): num_nodes = self.num_nodes time_units = self.options['time_units'] for name, options in iteritems(self._var_options): self._input_names[name] = name self._output_rate_names[name] = 'dYdt:{0}'.format(name) shape = options['shape'] input_shape = (num_nodes,) + shape output_shape = (num_nodes,) + shape print(name, input_shape, output_shape) units = options['units'] rate_units = get_rate_units(units, time_units) self._dynamic_names.append(name) self.add_input(self._input_names[name], val=np.ones(input_shape), units=units) self.add_output(self._output_rate_names[name], shape=output_shape, units=rate_units) size = np.prod(shape) self.rate_jacs[name] = np.zeros((num_nodes, size, num_nodes, size)) for i in range(size): self.rate_jacs[name][:, i, :, i] = self.D self.rate_jacs[name] = self.rate_jacs[name].reshape((num_nodes * size, num_nodes * size), order='C') self.rate_jac_rows[name], self.rate_jac_cols[name] = \ np.where(self.rate_jacs[name] != 0) self.sizes[name] = size cs = np.tile(np.arange(num_nodes, dtype=int), reps=size) rs = np.concatenate([np.arange(0, num_nodes * size, size, dtype=int) + i for i in range(size)]) self.declare_partials(of=self._output_rate_names[name], wrt='dt_dstau', rows=rs, cols=cs) self.declare_partials(of=self._output_rate_names[name], wrt=self._input_names[name], rows=self.rate_jac_rows[name], cols=self.rate_jac_cols[name]) def setup(self): num_nodes = self.options['grid_data'].num_nodes time_units = self.options['time_units'] gd = self.options['grid_data'] self.add_input('dt_dstau', shape=num_nodes, units=time_units) # self._var_options = {} self.rate_jacs = {} self.rate_jac_rows = {} self.rate_jac_cols = {} self.sizes = {} self.num_nodes = num_nodes # The control interpolation matrix L is the product of M_index_to_disc and the nominal # pseudospectral interpolation matrix from the discretization nodes to all nodes. _, self.D = gd.phase_lagrange_matrices('all', 'all') self._setup_variables() self.set_check_partial_options('*', method='cs') def add_rate(self, name, shape, units): self._var_options[name] = {'shape': shape, 'units': units} def compute(self, inputs, outputs): var_options = self._var_options for name, options in iteritems(var_options): u = inputs[self._input_names[name]] a = np.tensordot(self.D, u, axes=(1, 0)).T # divide each "row" by dt_dstau or dt_dstau**2 outputs[self._output_rate_names[name]] = (a / inputs['dt_dstau']).T def compute_partials(self, inputs, partials): var_options = self._var_options num_nodes = self.options['grid_data'].subset_num_nodes['all'] for name, options in iteritems(var_options): control_name = self._input_names[name] size = self.sizes[name] rate_name = self._output_rate_names[name] # Unroll matrix-shaped controls into an array at each node u_d = np.reshape(inputs[control_name], (num_nodes, size)) dt_dstau = inputs['dt_dstau'] dt_dstau_tile = np.tile(dt_dstau, size) partials[rate_name, 'dt_dstau'] = \ (-np.dot(self.D, u_d).ravel(order='F') / dt_dstau_tile ** 2) dt_dstau_x_size = np.repeat(dt_dstau, size)[:, np.newaxis] r_nz, c_nz = self.rate_jac_rows[name], self.rate_jac_cols[name] partials[rate_name, control_name] = \ (self.rate_jacs[name] / dt_dstau_x_size)[r_nz, c_nz] ``` #### File: CADRE/attitude_dymos/VectorUnitizeComp.py ```python from six import string_types import numpy as np from openmdao.core.explicitcomponent import ExplicitComponent class VectorUnitizeComp(ExplicitComponent): """ Computes the unitized vector math:: \hat{a} = \bar{a} / np.sqrt(np.dot(a, a)) where a is of shape (vec_size, n) """ def initialize(self): """ Declare options. """ self.options.declare('vec_size', types=int, default=1, desc='The number of points at which the vector magnitude is computed') self.options.declare('length', types=int, default=3, desc='The length of the input vector at each point') self.options.declare('in_name', types=string_types, default='a', desc='The variable name for input vector.') self.options.declare('units', types=string_types, default=None, allow_none=True, desc='The units for the input and output vector.') self.options.declare('out_name', types=string_types, default='a_mag', desc='The variable name for output unitized vector.') def setup(self): """ Declare inputs, outputs, and derivatives for the vector magnitude component. """ opts = self.options vec_size = opts['vec_size'] m = opts['length'] self.add_input(name=opts['in_name'], shape=(vec_size, m), units=opts['units']) self.add_output(name=opts['out_name'], val=np.zeros(shape=(vec_size, m)), units=opts['units']) row_idxs = np.repeat(np.arange(vec_size * m, dtype=int), m) temp = np.reshape(np.arange(vec_size * m, dtype=int), newshape=(vec_size, m)) col_idxs = np.repeat(temp, m, axis=0).ravel() self.declare_partials(of=opts['out_name'], wrt=opts['in_name'], rows=row_idxs, cols=col_idxs, val=1.0) def compute(self, inputs, outputs): """ Compute the vector magnitude of input. Parameters ---------- inputs : Vector unscaled, dimensional input variables read via inputs[key] outputs : Vector unscaled, dimensional output variables read via outputs[key] """ opts = self.options a = inputs[opts['in_name']] a_mag = np.sqrt(np.einsum('ni,ni->n', a, a)) outputs[opts['out_name']] = a / a_mag[:, np.newaxis] def compute_partials(self, inputs, partials): """ Compute the sparse partials for the vector magnitude w.r.t. the inputs. Parameters ---------- inputs : Vector unscaled, dimensional input variables read via inputs[key] partials : Jacobian sub-jac components written to partials[output_name, input_name] """ opts = self.options m = opts['length'] a = inputs[opts['in_name']] a_mag = np.sqrt(np.einsum('ni,ni->n', a, a)) f = a[0, :] g = a_mag gp = a.ravel() / np.sqrt(np.einsum('ni,ni->n', a, a)) g_squared = np.einsum('ni,ni->n', a, a) print(a_mag - (a * a[0] / a_mag)[0] / (a_mag ** 2)) # print() # print(f) # # print(fp) # print(g) # print(gp) # print() partials[opts['out_name'], opts['in_name']] = 88 print() print('gp') print(gp.shape) print('f') print(f.shape) print((g - gp[0] * f[0]) / g_squared, end='') print((g - gp[1] * f[0]) / g_squared, end='') print((g - gp[2] * f[0]) / g_squared) print((g - gp[0] * f[1]) / g_squared, end='') print((g - gp[1] * f[1]) / g_squared, end='') print((g - gp[2] * f[1]) / g_squared) print((g - gp[0] * f[2]) / g_squared, end='') print((g - gp[1] * f[2]) / g_squared, end='') print((g - gp[2] * f[2]) / g_squared) diag = (g - gp * f) * g_squared # # "f' * g - g' * f / 2g" # fp = 1 # g = np.sqrt(np.einsum('ni,ni->n', a, a))[:, np.newaxis] # gp = a.ravel() / np.repeat(np.sqrt(np.einsum('ni,ni->n', a, a)), opts['length']) # f = a # # # Use the following for sparse partials # partials[opts['out_name'], opts['in_name']] = a.ravel() / np.repeat(np.sqrt(np.einsum('ni,ni->n', a, a)), opts['length']) ``` #### File: CADRE/comm_dymos/comm_group.py ```python from __future__ import print_function, division, absolute_import from openmdao.api import Group, VectorMagnitudeComp, MatrixVectorProductComp from .comm_ant_quaternion_comp import CommAntQuaternionComp from .comm_ant_rotation_matrix_comp import CommAntRotationMatrixComp from .comm_data_rate_comp import CommDataRateComp from .comm_earth_rotation_quaternion_comp import CommEarthRotationQuaternionComp from .comm_earth_rotation_matrix_comp import CommEarthRotationMatrixComp from .comm_gain_pattern_comp import CommGainPatternComp from .comm_gs_pos_eci_comp import CommGSPosECIComp from .comm_los_comp import CommLOSComp from .comm_vector_eci_comp import CommVectorECIComp from .comm_vector_spherical_comp import CommVectorSphericalComp class CommGroup(Group): """ The Comm subsystem for CADRE. Externally sourced inputs: t - time r_e2b_I - state antAngle - parameter P_comm - parameter """ def initialize(self): self.options.declare('num_nodes', types=(int,)) self.options.declare('lat_gs', types=(float,), default=42.2708, desc='ground station latitude (degrees)') self.options.declare('lon_gs', types=(float,), default=-83.7264, desc='ground station longitude (degrees)') self.options.declare('alt_gs', types=(float,), default=0.256, desc='ground station altitude (km)') self.options.declare('Re', types=(float,), default=6378.137, desc='Earth equatorial radius (km)') def setup(self): nn = self.options['num_nodes'] lat_gs = self.options['lat_gs'] lon_gs = self.options['lon_gs'] alt_gs = self.options['alt_gs'] self.add_subsystem('ant_quaternion_comp', CommAntQuaternionComp(num_nodes=nn), promotes_inputs=['antAngle'], promotes_outputs=['q_AB']) self.add_subsystem('ant_rotation_matrix_comp', CommAntRotationMatrixComp(num_nodes=nn), promotes_inputs=['q_AB'], promotes_outputs=['O_AB']) self.add_subsystem('comm_earth_rotation_quaternion_comp', CommEarthRotationQuaternionComp(num_nodes=nn, gha0=0.0), promotes_inputs=['t'], promotes_outputs=['q_IE']) self.add_subsystem('comm_earth_rotation_matrix_comp', CommEarthRotationMatrixComp(num_nodes=nn), promotes_inputs=['q_IE'], promotes_outputs=['O_IE']) self.add_subsystem('comm_gs_pos_eci_comp', CommGSPosECIComp(num_nodes=nn, lat=lat_gs, lon=lon_gs, alt=alt_gs), promotes_inputs=['O_IE'], promotes_outputs=['r_e2g_I']) self.add_subsystem('comm_vector_eci_comp', CommVectorECIComp(num_nodes=nn), promotes_inputs=['r_e2g_I', 'r_e2b_I'], promotes_outputs=['r_b2g_I']) self.add_subsystem('comm_vector_body_comp', MatrixVectorProductComp(vec_size=nn, A_name='O_BI', x_name='r_b2g_I', b_name='r_b2g_B', x_units='km', b_units='km'), promotes_inputs=['O_BI', 'r_b2g_I'], promotes_outputs=['r_b2g_B']) self.add_subsystem('comm_vector_ant_comp', MatrixVectorProductComp(vec_size=nn, A_name='O_AB', x_name='r_b2g_B', b_name='r_b2g_A', x_units='km', b_units='km'), promotes_inputs=['O_AB', 'r_b2g_B'], promotes_outputs=['r_b2g_A']) self.add_subsystem('comm_vector_spherical_comp', CommVectorSphericalComp(num_nodes=nn), promotes_inputs=['r_b2g_A'], promotes_outputs=['elevationGS', 'azimuthGS']) self.add_subsystem('comm_distance_comp', VectorMagnitudeComp(vec_size=nn, in_name='r_b2g_A', mag_name='GSdist', units='km'), promotes_inputs=['r_b2g_A'], promotes_outputs=['GSdist']) self.add_subsystem('comm_gain_pattern_comp', CommGainPatternComp(num_nodes=nn), promotes_inputs=['elevationGS', 'azimuthGS'], promotes_outputs=['gain']) self.add_subsystem('comm_los_comp', CommLOSComp(num_nodes=nn), promotes_inputs=['r_b2g_I', 'r_e2g_I'], promotes_outputs=['CommLOS']) self.add_subsystem('data_rate_comp', CommDataRateComp(num_nodes=nn), promotes_inputs=['P_comm', 'gain', 'CommLOS', 'GSdist'], promotes_outputs=['dXdt:data']) ``` #### File: CADRE/comm_dymos/comm_vector_spherical_comp.py ```python from __future__ import print_function, division, absolute_import import numpy as np from openmdao.api import ExplicitComponent from ..kinematics import computepositionspherical, computepositionsphericaljacobian class CommVectorSphericalComp(ExplicitComponent): """ Convert satellite-ground vector into Az-El. """ def initialize(self): self.options.declare('num_nodes', types=(int,)) def setup(self): nn = self.options['num_nodes'] # Inputs self.add_input('r_b2g_A', np.zeros((nn, 3)), units='km', desc='Position vector from satellite to ground station ' 'in antenna angle frame over time') # Outputs self.add_output('azimuthGS', np.zeros(nn), units='rad', desc='Azimuth angle from satellite to ground station in ' 'Earth-fixed frame over time') self.add_output('elevationGS', np.zeros(nn), units='rad', desc='Elevation angle from satellite to ground station ' 'in Earth-fixed frame over time') rows = np.tile(np.array([0, 0, 0]), nn) + np.repeat(np.arange(nn), 3) cols = np.arange(nn*3) self.declare_partials('elevationGS', 'r_b2g_A', rows=rows, cols=cols) self.declare_partials('azimuthGS', 'r_b2g_A', rows=rows, cols=cols) def compute(self, inputs, outputs): """ Calculate outputs. """ azimuthGS, elevationGS = computepositionspherical(self.options['num_nodes'], inputs['r_b2g_A']) outputs['azimuthGS'] = azimuthGS outputs['elevationGS'] = elevationGS def compute_partials(self, inputs, partials): """ Calculate and save derivatives. (i.e., Jacobian) """ nn = self.options['num_nodes'] Ja1, Ja2 = computepositionsphericaljacobian(nn, 3*nn, inputs['r_b2g_A']) partials['azimuthGS', 'r_b2g_A'] = Ja1 partials['elevationGS', 'r_b2g_A'] = Ja2 ``` #### File: CADRE/odes_dymos/cadre_orbit_ode.py ```python from __future__ import print_function, division, absolute_import from openmdao.api import Group, VectorMagnitudeComp from dymos import declare_state, declare_time, declare_parameter from CADRE.orbit_dymos.orbit_eom import OrbitEOMComp from CADRE.orbit_dymos.gravity_perturbations_comp import GravityPerturbationsComp from CADRE.orbit_dymos.ori_comp import ORIComp from CADRE.orbit_dymos.obr_comp import OBRComp from CADRE.orbit_dymos.obi_comp import OBIComp @declare_time(units='s') @declare_state('r_e2b_I', rate_source='orbit_eom_comp.dXdt:r_e2b_I', targets=['r_e2b_I'], units='km', shape=(3,)) @declare_state('v_e2b_I', rate_source='orbit_eom_comp.dXdt:v_e2b_I', targets=['v_e2b_I'], units='km/s', shape=(3,)) @declare_parameter('Gamma', targets=['Gamma'], units='rad') class CadreOrbitODE(Group): def initialize(self): self.options.declare('num_nodes', types=(int,)) def setup(self): nn = self.options['num_nodes'] self.add_subsystem('rmag_comp', VectorMagnitudeComp(vec_size=nn, length=3, in_name='r_e2b_I', mag_name='rmag_e2b_I', units='km'), promotes_inputs=['r_e2b_I'], promotes_outputs=['rmag_e2b_I']) self.add_subsystem('grav_pert_comp', GravityPerturbationsComp(num_nodes=nn), promotes_inputs=['r_e2b_I', 'rmag_e2b_I'], promotes_outputs=[('a_pert:J2', 'a_pert_I')]) self.add_subsystem('ori_comp', ORIComp(num_nodes=nn), promotes_inputs=['r_e2b_I', 'v_e2b_I'], promotes_outputs=['O_RI']) self.add_subsystem('obr_comp', OBRComp(num_nodes=nn), promotes_inputs=['Gamma'], promotes_outputs=['O_BR']) self.add_subsystem('obi_comp', OBIComp(num_nodes=nn), promotes_inputs=['O_BR', 'O_RI'], promotes_outputs=['O_BI']) self.add_subsystem('orbit_eom_comp', OrbitEOMComp(num_nodes=nn), promotes_inputs=['rmag_e2b_I', 'r_e2b_I', 'v_e2b_I', 'a_pert_I']) ``` #### File: odes_dymos/test/test_cadre_orbit_ode.py ```python from __future__ import print_function import unittest import numpy as np from openmdao.api import Problem, Group, pyOptSparseDriver from openmdao.utils.assert_utils import assert_rel_error, assert_check_partials from dymos import Phase from CADRE.odes_dymos.cadre_orbit_ode import CadreOrbitODE GM = 398600.44 rmag = 7000.0 period = 2 * np.pi * np.sqrt(rmag ** 3 / GM) vcirc = np.sqrt(GM / rmag) duration = period / 1 class TestCadreOrbitODE(unittest.TestCase): @classmethod def setUpClass(cls): p = cls.p = Problem(model=Group()) p.driver = pyOptSparseDriver() p.driver.options['optimizer'] = 'SNOPT' p.driver.options['dynamic_simul_derivs'] = True p.driver.opt_settings['Major iterations limit'] = 100 p.driver.opt_settings['Major feasibility tolerance'] = 1.0E-6 p.driver.opt_settings['Major optimality tolerance'] = 1.0E-6 p.driver.opt_settings['iSumm'] = 6 phase = Phase('radau-ps', ode_class=CadreOrbitODE, num_segments=10, transcription_order=7, compressed=False) p.model.add_subsystem('phase0', phase) phase.set_time_options(fix_initial=True, duration_bounds=(duration, duration)) phase.set_state_options('r_e2b_I', defect_scaler=1000, fix_initial=True, units='km') phase.set_state_options('v_e2b_I', defect_scaler=1000, fix_initial=True, units='km/s') # phase.set_state_options('SOC', defect_scaler=1, fix_initial=True, units=None) # phase.add_design_parameter('P_bat', opt=False, units='W') phase.add_design_parameter('Gamma', opt=False, units='rad') phase.add_objective('time', loc='final', scaler=10) # p.model.options['assembled_jac_type'] = 'csc' # p.model.linear_solver = DirectSolver(assemble_jac=True) p.setup(check=True, force_alloc_complex=True) p['phase0.t_initial'] = 0.0 p['phase0.t_duration'] = duration # print(phase.grid_data.num_nodes) # p['phase0.states:r_e2b_I'][:, 0] = rmag p['phase0.states:r_e2b_I'][:, 1] = 0.0 p['phase0.states:r_e2b_I'][:, 2] = 0.0 p['phase0.states:v_e2b_I'][:, 0] = 0.0 p['phase0.states:v_e2b_I'][:, 1] = vcirc p['phase0.states:v_e2b_I'][:, 2] = 0.0 # p['phase0.design_parameters:P_bat'] = 2.0 p['phase0.design_parameters:Gamma'] = 0.0 p.run_model() p.run_driver() def test_results(self): r_e2b_I = self.p.model.phase0.get_values('r_e2b_I') v_e2b_I = self.p.model.phase0.get_values('v_e2b_I') rmag_e2b = self.p.model.phase0.get_values('rmag_e2b_I') assert_rel_error(self, rmag_e2b, rmag * np.ones_like(rmag_e2b), tolerance=1.0E-9) delta_trua = 2 * np.pi * (duration / period) assert_rel_error(self, r_e2b_I[-1, :], rmag * np.array([np.cos(delta_trua), np.sin(delta_trua), 0]), tolerance=1.0E-9) assert_rel_error(self, v_e2b_I[-1, :], vcirc * np.array([-np.sin(delta_trua), np.cos(delta_trua), 0]), tolerance=1.0E-9) print(self.p.model.phase0.get_values('O_BI')) def test_partials(self): np.set_printoptions(linewidth=10000, edgeitems=1024) cpd = self.p.check_partials(compact_print=True) assert_check_partials(cpd, atol=1.0E-4, rtol=1.0) def test_simulate(self): phase = self.p.model.phase0 exp_out = phase.simulate(times=500) import matplotlib.pyplot as plt plt.figure() plt.plot(exp_out.get_values('r_e2b_I')[:, 0], exp_out.get_values('r_e2b_I')[:, 1], 'b-') plt.plot(phase.get_values('r_e2b_I')[:, 0], phase.get_values('r_e2b_I')[:, 1], 'ro') # plt.figure() # plt.plot(exp_out.get_values('time'), exp_out.get_values('SOC'), 'b-') # plt.plot(phase.get_values('time'), phase.get_values('SOC'), 'ro') plt.show() ``` #### File: CADRE/orbit_dymos/obi_comp.py ```python from __future__ import print_function, division, absolute_import import numpy as np from openmdao.api import ExplicitComponent class OBIComp(ExplicitComponent): """ Calculates the rotation matrix from body fixed to the roll frame. """ def initialize(self): self.options.declare('num_nodes', types=(int,)) def setup(self): nn = self.options['num_nodes'] # Inputs self.add_input('O_BR', np.zeros((nn, 3, 3)), units=None, desc='Rotation matrix from body-fixed frame to rolled body-fixed ' 'frame over time') self.add_input('O_RI', np.zeros((nn, 3, 3)), units=None, desc='Rotation matrix from rolled body-fixed to inertial ' 'frame over time') self.add_output('O_BI', np.zeros((nn, 3, 3)), units=None, desc='Rotation matrix from rolled body-fixed to inertial ' 'frame over time') template = np.kron(np.eye(nn, dtype=int), np.kron(np.ones((3, 3), dtype=int), np.eye(3, dtype=int))) rs, cs = template.nonzero() self.declare_partials('O_BI', 'O_BR', rows=rs, cols=cs, val=1.0) template = np.kron(np.eye(nn * 3, dtype=int), np.ones((3, 3), dtype=int)) cs, rs = template.nonzero() # Note we're transposing the matrix at each node here self.declare_partials('O_BI', 'O_RI', rows=rs, cols=cs) def compute(self, inputs, outputs): """ Calculate outputs. """ O_RI = inputs['O_RI'] O_BR = inputs['O_BR'] outputs['O_BI'] = np.matmul(O_RI, O_BR) def compute_partials(self, inputs, partials): """ Calculate and save derivatives. (i.e., Jacobian) """ nn = self.options['num_nodes'] partials['O_BI', 'O_BR'] = np.tile(inputs['O_RI'], 3).ravel() partials['O_BI', 'O_RI'] = np.tile(np.reshape(inputs['O_BR'], (nn, 9)), 3).ravel() ``` #### File: orbit_dymos/test/test_obi_comp.py ```python from __future__ import print_function import unittest import numpy as np from openmdao.api import Problem, IndepVarComp, Group from openmdao.utils.assert_utils import assert_check_partials from CADRE.orbit_dymos.obi_comp import OBIComp class TestOBIComp(unittest.TestCase): @classmethod def setUpClass(cls): nn = 10 cls.p = Problem(model=Group()) ivc = cls.p.model.add_subsystem('ivc', IndepVarComp(), promotes_outputs=['*']) ivc.add_output('O_BR', val=np.ones((nn, 3, 3))) ivc.add_output('O_RI', val=np.ones((nn, 3, 3))) cls.p.model.add_subsystem('obi_comp', OBIComp(num_nodes=nn), promotes_inputs=['*'], promotes_outputs=['*']) cls.p.setup(check=True, force_alloc_complex=True) cls.p['O_BR'] = np.random.rand(nn, 3, 3) cls.p['O_RI'] = np.random.rand(nn, 3, 3) cls.p.run_model() def test_results(self): pass def test_partials(self): np.set_printoptions(linewidth=1024, edgeitems=1000) cpd = self.p.check_partials(method='cs') assert_check_partials(cpd) ``` #### File: CADRE/power_dymos/power_cell_voltage.py ```python from __future__ import print_function, division, absolute_import from six.moves import range import os import numpy as np from openmdao.api import ExplicitComponent from MBI import MBI class PowerCellVoltage(ExplicitComponent): """ Compute the output voltage of the solar panels. """ def initialize(self): fpath = os.path.dirname(os.path.realpath(__file__)) self.options.declare('num_nodes', types=(int, ), desc="Number of time points.") self.options.declare('filename', fpath + '/../data/Power/curve.dat', desc="File containing surrogate model for voltage.") def setup(self): nn = self.options['num_nodes'] filename = self.options['filename'] dat = np.genfromtxt(filename) nT, nA, nI = dat[:3] nT = int(nT) nA = int(nA) nI = int(nI) T = dat[3:3 + nT] A = dat[3 + nT:3 + nT + nA] I = dat[3 + nT + nA:3 + nT + nA + nI] # noqa: E741 V = dat[3 + nT + nA + nI:].reshape((nT, nA, nI), order='F') self.MBI = MBI(V, [T, A, I], [6, 6, 15], [3, 3, 3]) self.x = np.zeros((84 * nn, 3), order='F') self.xV = self.x.reshape((nn, 7, 12, 3), order='F') # Inputs self.add_input('LOS', np.zeros((nn, )), units=None, desc='Line of Sight over Time') self.add_input('temperature', np.zeros((nn, 5)), units='degK', desc='Temperature of solar cells over time') self.add_input('exposed_area', np.zeros((nn, 7, 12)), units='m**2', desc='Exposed area to sun for each solar cell over time') self.add_input('Isetpt', np.zeros((nn, 12)), units='A', desc='Currents of the solar panels') # Outputs self.add_output('V_sol', np.zeros((nn, 12)), units='V', desc='Output voltage of solar panel over time') rows = np.arange(nn*12) cols = np.tile(np.repeat(0, 12), nn) + np.repeat(np.arange(nn), 12) self.declare_partials('V_sol', 'LOS', rows=rows, cols=cols) row = np.tile(np.repeat(0, 5), 12) + np.repeat(np.arange(12), 5) rows = np.tile(row, nn) + np.repeat(12*np.arange(nn), 60) col = np.tile(np.arange(5), 12) cols = np.tile(col, nn) + np.repeat(5*np.arange(nn), 60) self.declare_partials('V_sol', 'temperature', rows=rows, cols=cols) row = np.tile(np.arange(12), 7) rows = np.tile(row, nn) + np.repeat(12*np.arange(nn), 84) cols = np.arange(nn*7*12) self.declare_partials('V_sol', 'exposed_area', rows=rows, cols=cols) row_col = np.arange(nn*12) self.declare_partials('V_sol', 'Isetpt', rows=row_col, cols=row_col) def setx(self, inputs): temperature = inputs['temperature'] LOS = inputs['LOS'] exposed_area = inputs['exposed_area'] Isetpt = inputs['Isetpt'] for p in range(12): i = 4 if p < 4 else (p % 4) for c in range(7): self.xV[:, c, p, 0] = temperature[:, i] self.xV[:, c, p, 1] = LOS * exposed_area[:, c, p] self.xV[:, c, p, 2] = Isetpt[:, p] def compute(self, inputs, outputs): """ Calculate outputs. """ nn = self.options['num_nodes'] self.setx(inputs) self.raw = self.MBI.evaluate(self.x)[:, 0].reshape((nn, 7, 12), order='F') outputs['V_sol'] = np.zeros((nn, 12)) for c in range(7): outputs['V_sol'] += self.raw[:, c, :] def compute_partials(self, inputs, partials): """ Calculate and save derivatives. (i.e., Jacobian) """ nn = self.options['num_nodes'] exposed_area = inputs['exposed_area'] LOS = inputs['LOS'] raw1 = self.MBI.evaluate(self.x, 1)[:, 0].reshape((nn, 7, 12), order='F') raw2 = self.MBI.evaluate(self.x, 2)[:, 0].reshape((nn, 7, 12), order='F') raw3 = self.MBI.evaluate(self.x, 3)[:, 0].reshape((nn, 7, 12), order='F') dV_dL = np.empty((nn, 12)) dV_dT = np.zeros((nn, 12, 5)) dV_dA = np.zeros((nn, 7, 12)) dV_dI = np.empty((nn, 12)) for p in range(12): i = 4 if p < 4 else (p % 4) for c in range(7): dV_dL[:, p] += raw2[:, c, p] * exposed_area[:, c, p] dV_dT[:, p, i] += raw1[:, c, p] dV_dA[:, c, p] += raw2[:, c, p] * LOS dV_dI[:, p] += raw3[:, c, p] partials['V_sol', 'LOS'] = dV_dL.flatten() partials['V_sol', 'temperature'] = dV_dT.flatten() partials['V_sol', 'exposed_area'] = dV_dA.flatten() partials['V_sol', 'Isetpt'] = dV_dI.flatten() ``` #### File: CADRE/power_dymos/power_group.py ```python from __future__ import print_function, division, absolute_import import os from openmdao.api import Group from CADRE.power_dymos.power_cell_voltage import PowerCellVoltage from CADRE.power_dymos.power_solar_power import PowerSolarPower from CADRE.power_dymos.power_total import PowerTotal class PowerGroup(Group): """ The Sun subsystem for CADRE. Externally sourced inputs: w_RW - Reaction wheel angular velocity state. w_B - Body fixed angular velocity vector of satellite. T_RW - Reaction wheel torque. """ def initialize(self): fpath = os.path.dirname(os.path.realpath(__file__)) self.options.declare('num_nodes', types=(int,), desc="Number of time points.") self.options.declare('filename', fpath + '/../data/Power/curve.dat', desc="File containing surrogate model for voltage.") def setup(self): nn = self.options['num_nodes'] self.add_subsystem('cell_voltage_comp', PowerCellVoltage(num_nodes=nn, filename=self.options['filename']), promotes_inputs=['LOS', 'temperature', 'exposed_area', 'Isetpt'], promotes_outputs=['V_sol']) self.add_subsystem('solar_power_comp', PowerSolarPower(num_nodes=nn), promotes_inputs=['Isetpt', 'V_sol'], promotes_outputs=['P_sol']) self.add_subsystem('total_power_comp', PowerTotal(num_nodes=nn), promotes_inputs=['P_sol', 'P_comm', 'P_RW'], promotes_outputs=['P_bat']) ``` #### File: CADRE/power_dymos/power_solar_power.py ```python from __future__ import print_function, division, absolute_import from six.moves import range import numpy as np from openmdao.api import ExplicitComponent class PowerSolarPower(ExplicitComponent): """ Compute the output power of the solar panels. """ def initialize(self): self.options.declare('num_nodes', types=(int, ), desc="Number of time points.") def setup(self): nn = self.options['num_nodes'] # Inputs self.add_input('Isetpt', np.zeros((nn, 12)), units='A', desc='Currents of the solar panels') self.add_input('V_sol', np.zeros((nn, 12)), units='V', desc='Output voltage of solar panel over time') self.add_output('P_sol', np.zeros((nn, )), units='W', desc='Solar panels power over time') rows = np.tile(np.repeat(0, 12), nn) + np.repeat(np.arange(nn), 12) cols = np.arange(12*nn) self.declare_partials('P_sol', 'Isetpt', rows=rows, cols=cols) self.declare_partials('P_sol', 'V_sol', rows=rows, cols=cols) def compute(self, inputs, outputs): """ Calculate outputs. """ V_sol = inputs['V_sol'] Isetpt = inputs['Isetpt'] outputs['P_sol'] = np.einsum('ij,ij->i', V_sol, Isetpt) def compute_partials(self, inputs, partials): """ Calculate and save derivatives. (i.e., Jacobian) """ V_sol = inputs['V_sol'] Isetpt = inputs['Isetpt'] partials['P_sol', 'Isetpt'] = V_sol.flatten() partials['P_sol', 'V_sol'] = Isetpt.flatten() ``` #### File: CADRE/rw_dymos/rw_power.py ```python from __future__ import print_function, division, absolute_import from six.moves import range import numpy as np from openmdao.api import ExplicitComponent class ReactionWheelPowerComp(ExplicitComponent): """ Compute reaction wheel power. """ def initialize(self): self.options.declare('num_nodes', types=(int, ), desc="Number of time points.") # Curve fit from manufacturer-provided data. # I = I_0 + (a*w + b*T)**2 self.options.declare('I0', 0.017, desc="Base Current for zero torque and angular velocity.") self.options.declare('a', 4.9e-4, desc="Current coefficient for angular velocity.") self.options.declare('b', 4.5e2, desc="Current coefficient for torque.") self.options.declare('V', 4.0, desc='Reaction wheel voltage.') def setup(self): nn = self.options['num_nodes'] # Inputs self.add_input('w_RW', np.zeros((nn, 3)), units='1/s', desc='Angular velocity vector of reaction wheel over time') self.add_input('T_RW', np.zeros((nn, 3)), units='N*m', desc='Torque vector of reaction wheel over time') # Outputs self.add_output('P_RW', np.ones((nn, 3)), units='W', desc='Reaction wheel power over time') row_col = np.arange(3*nn) self.declare_partials('P_RW', 'w_RW', rows=row_col, cols=row_col) self.declare_partials('P_RW', 'T_RW', rows=row_col, cols=row_col) def compute(self, inputs, outputs): """ Calculate outputs. """ a = self.options['a'] b = self.options['b'] V = self.options['V'] I0 = self.options['I0'] w_RW = inputs['w_RW'] T_RW = inputs['T_RW'] outputs['P_RW'] = V * ((a * w_RW + b * T_RW)**2 + I0) def compute_partials(self, inputs, partials): """ Calculate and save derivatives. (i.e., Jacobian) """ a = self.options['a'] b = self.options['b'] V = self.options['V'] I0 = self.options['I0'] w_RW = inputs['w_RW'] T_RW = inputs['T_RW'] prod = 2.0 * V * (a * w_RW + b * T_RW) dP_dw = a * prod dP_dT = b * prod partials['P_RW', 'w_RW'] = dP_dw.flatten() partials['P_RW', 'T_RW'] = dP_dT.flatten() ``` #### File: CADRE/CADRE/solar_dymos.py ```python from __future__ import print_function, division, absolute_import from six.moves import range import os import numpy as np from openmdao.core.explicitcomponent import ExplicitComponent from CADRE.kinematics import fixangles from MBI import MBI try: from postprocessing.MultiView.MultiView import MultiView multiview_installed = True except: multiview_installed = False from smt.surrogate_models import RMTB, RMTC, KRG USE_SMT = True class SolarExposedAreaComp(ExplicitComponent): """ Exposed area calculation for a given solar cell p: panel ID [0,11] c: cell ID [0,6] a: fin angle [0,90] z: azimuth [0,360] e: elevation [0,180] LOS: line of sight with the sun [0,1] """ def initialize(self): fpath = os.path.dirname(os.path.realpath(__file__)) self.options.declare('num_nodes', types=(int, ), desc="Number of time points.") self.options.declare('raw1_file', fpath + '/data/Solar/Area10.txt', desc="angle, azimuth, elevation points for exposed area interpolation.") self.options.declare('raw2_file', fpath + '/data/Solar/Area_all.txt', desc="exposed area at points in raw1_file for exposed area interpolation.") def setup(self): nn = self.options['num_nodes'] raw1_file = self.options['raw1_file'] raw2_file = self.options['raw2_file'] raw1 = np.genfromtxt(raw1_file) raw2 = np.loadtxt(raw2_file) nc = self.nc = 7 self.np = 12 ncp = self.nc * self.np self.na = 10 self.nz = 73 self.ne = 37 angle = np.zeros(self.na) azimuth = np.zeros(self.nz) elevation = np.zeros(self.ne) index = 0 for i in range(self.na): angle[i] = raw1[index] index += 1 for i in range(self.nz): azimuth[i] = raw1[index] index += 1 index -= 1 azimuth[self.nz - 1] = 2.0 * np.pi for i in range(self.ne): elevation[i] = raw1[index] index += 1 angle[0] = 0.0 angle[-1] = np.pi / 2.0 azimuth[0] = 0.0 azimuth[-1] = 2 * np.pi elevation[0] = 0.0 elevation[-1] = np.pi counter = 0 data = np.zeros((self.na, self.nz, self.ne, self.np * self.nc)) flat_size = self.na * self.nz * self.ne for p in range(self.np): for c in range(nc): data[:, :, :, counter] = \ raw2[nc * p + c][119:119 + flat_size].reshape((self.na, self.nz, self.ne)) counter += 1 # self.MBI = MBI(data, [angle, azimuth, elevation], # [4, 10, 8], # [4, 4, 4]) angles, azimuths, elevations = np.meshgrid(angle, azimuth, elevation, indexing='ij') xt = np.array([angles.flatten(), azimuths.flatten(), elevations.flatten()]).T yt = np.zeros((flat_size, ncp)) counter = 0 for p in range(self.np): for c in range(nc): yt[:, counter] = data[:, :, :, counter].flatten() counter += 1 xlimits = np.array([ [angle[0], angle[-1]], [azimuth[0], azimuth[-1]], [elevation[0], elevation[-1]], ]) this_dir = os.path.split(__file__)[0] # Create the _smt_cache directory if it doesn't exist if not os.path.exists(os.path.join(this_dir, '_smt_cache')): os.makedirs(os.path.join(this_dir, '_smt_cache')) self.interp = interp = RMTB( xlimits=xlimits, num_ctrl_pts=8, order=4, approx_order=4, nonlinear_maxiter=2, solver_tolerance=1.e-20, energy_weight=1.e-4, regularization_weight=1.e-14, # smoothness=np.array([1., 1., 1.]), extrapolate=False, print_global=True, data_dir=os.path.join(this_dir, '_smt_cache'), ) interp.set_training_values(xt, yt) interp.train() if multiview_installed: info = {'nx':3, 'ny':ncp, 'user_func':interp.predict_values, 'resolution':100, 'plot_size':8, 'dimension_names':[ 'Angle', 'Azimuth', 'Elevation'], 'bounds':xlimits.tolist(), 'X_dimension':0, 'Y_dimension':1, 'scatter_points':[xt, yt], 'dist_range': 0.0, } # Initialize display parameters and draw GUI MultiView(info) self.x = np.zeros((nn, 3)) # Inputs self.add_input('fin_angle', 0.0, units='rad', desc='Fin angle of solar panel') self.add_input('azimuth', np.zeros((nn, )), units='rad', desc='Azimuth angle of the sun in the body-fixed frame over time') self.add_input('elevation', np.zeros((nn, )), units='rad', desc='Elevation angle of the sun in the body-fixed frame over time') # Outputs self.add_output('exposed_area', np.zeros((nn, self.nc, self.np)), desc='Exposed area to sun for each solar cell over time', units='m**2', lower=-5e-3, upper=1.834e-1) self.declare_partials('exposed_area', 'fin_angle') rows = np.tile(np.arange(ncp), nn) + np.repeat(ncp*np.arange(nn), ncp) cols = np.tile(np.repeat(0, ncp), nn) + np.repeat(np.arange(nn), ncp) self.declare_partials('exposed_area', 'azimuth', rows=rows, cols=cols) self.declare_partials('exposed_area', 'elevation', rows=rows, cols=cols) def compute(self, inputs, outputs): """ Calculate outputs. """ nn = self.options['num_nodes'] self.setx(inputs) if USE_SMT: P = self.interp.predict_values(self.x) else: P = self.MBI.evaluate(self.x) outputs['exposed_area'] = P.reshape(nn, self.nc, self.np, order='F') def setx(self, inputs): """ Sets our state array """ nn = self.options['num_nodes'] result = fixangles(nn, inputs['azimuth'], inputs['elevation']) self.x[:, 0] = inputs['fin_angle'] self.x[:, 1] = result[0] self.x[:, 2] = result[1] def compute_partials(self, inputs, partials): """ Calculate and save derivatives. (i.e., Jacobian) """ nn = self.options['num_nodes'] if USE_SMT: Jfin = self.interp.predict_derivatives(self.x, 0).reshape(nn, self.nc, self.np, order='F') Jaz = self.interp.predict_derivatives(self.x, 1).reshape(nn, self.nc, self.np, order='F') Jel = self.interp.predict_derivatives(self.x, 2).reshape(nn, self.nc, self.np, order='F') else: Jfin = self.MBI.evaluate(self.x, 1).reshape(nn, self.nc, self.np, order='F') Jaz = self.MBI.evaluate(self.x, 2).reshape(nn, self.nc, self.np, order='F') Jel = self.MBI.evaluate(self.x, 3).reshape(nn, self.nc, self.np, order='F') partials['exposed_area', 'fin_angle'] = Jfin.flatten() partials['exposed_area', 'azimuth'] = Jaz.flatten() partials['exposed_area', 'elevation'] = Jel.flatten() ``` #### File: CADRE/CADRE/sun.py ```python from six.moves import range import numpy as np import scipy.sparse from openmdao.core.explicitcomponent import ExplicitComponent from CADRE.kinematics import computepositionspherical, computepositionsphericaljacobian class Sun_LOS(ExplicitComponent): """ Compute the Satellite to sun line of sight. """ def __init__(self, n=2): super(Sun_LOS, self).__init__() self.n = n # Earth's radius is 6378 km. 0.85 is the alpha in John Hwang's paper self.r1 = 6378.137 * 0.85 self.r2 = 6378.137 def setup(self): n = self.n self.add_input('r_e2b_I', np.zeros((n, 6), order='F'), units=None, desc='Position and velocity vectors from ' 'Earth to satellite in Earth-centered ' 'inertial frame over time.') self.add_input('r_e2s_I', np.zeros((n, 3), order='F'), units='km', desc='Position vector from Earth to sun in Earth-centered ' 'inertial frame over time.') self.add_output('LOS', np.zeros((n, ), order='F'), units=None, desc='Satellite to sun line of sight over time') rows = np.tile(np.repeat(0, 3), n) + np.repeat(np.arange(n), 3) cols = np.tile(np.arange(3), n) + np.repeat(6*np.arange(n), 3) self.declare_partials('LOS', 'r_e2b_I', rows=rows, cols=cols) rows = np.tile(np.repeat(0, 3), n) + np.repeat(np.arange(n), 3) cols = np.arange(n*3) self.declare_partials('LOS', 'r_e2s_I', rows=rows, cols=cols) def compute(self, inputs, outputs): """ Calculate outputs. """ n = self.n r_e2b_I = inputs['r_e2b_I'] r_e2s_I = inputs['r_e2s_I'] LOS = outputs['LOS'] for i in range(n): r_b = r_e2b_I[i, :3] r_s = r_e2s_I[i, :3] dot = np.dot(r_b, r_s) cross = np.cross(r_b, r_s) dist = np.sqrt(cross.dot(cross)) if dot >= 0.0: LOS[i] = 1.0 elif dist <= self.r1: LOS[i] = 0.0 elif dist >= self.r2: LOS[i] = 1.0 else: x = (dist - self.r1) / (self.r2 - self.r1) LOS[i] = 3*x**2 - 2*x**3 def compute_partials(self, inputs, partials): """ Calculate and save derivatives. (i.e., Jacobian) """ r_e2b_I = inputs['r_e2b_I'] r_e2s_I = inputs['r_e2s_I'] nj = 3*self.n Jab = np.zeros(shape=(nj, ), dtype=np.float) Jas = np.zeros(shape=(nj, ), dtype=np.float) for i in range(self.n): r_b = r_e2b_I[i, :3] r_s = r_e2s_I[i, :3] dot = np.dot(r_b, r_s) cross = np.cross(r_b, r_s) dist = np.sqrt(np.dot(cross, cross)) if dot >= 0.0: continue elif dist <= self.r1: continue elif dist >= self.r2: continue else: x = (dist-self.r1)/(self.r2-self.r1) # LOS = 3*x**2 - 2*x**3 ddist_dcross = cross/dist dcross_drb = crossMatrix(-r_s) dcross_drs = crossMatrix(r_b) dx_ddist = 1.0/(self.r2 - self.r1) dLOS_dx = 6*x - 6*x**2 dLOS_drb = dLOS_dx * dx_ddist * np.dot(ddist_dcross, dcross_drb) dLOS_drs = dLOS_dx * dx_ddist * np.dot(ddist_dcross, dcross_drs) Jab[i*3:i*3+3] = dLOS_drb Jas[i*3:i*3+3] = dLOS_drs partials['LOS', 'r_e2b_I'] = Jab partials['LOS', 'r_e2s_I'] = Jas def crossMatrix(v): # so m[1,0] is v[2], for example m = np.array([[0.0, -v[2], v[1]], [v[2], 0.0, -v[0]], [-v[1], v[0], 0.0]]) return m class Sun_PositionBody(ExplicitComponent): """ Position vector from earth to sun in body-fixed frame. """ def __init__(self, n=2): super(Sun_PositionBody, self).__init__() self.n = n def setup(self): n = self.n # Inputs self.add_input('O_BI', np.zeros((n, 3, 3)), units=None, desc='Rotation matrix from the Earth-centered inertial frame ' 'to the satellite frame.') self.add_input('r_e2s_I', np.zeros((n, 3)), units='km', desc='Position vector from Earth to Sun in Earth-centered ' 'inertial frame over time.') # Outputs self.add_output('r_e2s_B', np.zeros((n, 3)), units='km', desc='Position vector from Earth to Sun in body-fixed ' 'frame over time.') row = np.tile(np.repeat(0, 3), 3) + np.repeat(np.arange(3), 3) col = np.tile(np.arange(3), 3) rows = np.tile(row, n) + np.repeat(3*np.arange(n), 9) cols = np.tile(col, n) + np.repeat(3*np.arange(n), 9) self.declare_partials('r_e2s_B', 'r_e2s_I', rows=rows, cols=cols) row = np.tile(np.array([0, 0, 0]), n) + np.repeat(3*np.arange(n), 3) col = np.tile(np.arange(3), n) + np.repeat(9*np.arange(n), 3) rows = np.concatenate([row, row+1, row+2]) cols = np.concatenate([col, col+3, col+6]) self.declare_partials('r_e2s_B', 'O_BI', rows=rows, cols=cols) def compute(self, inputs, outputs): """ Calculate outputs. """ outputs['r_e2s_B'] = np.einsum('ijk,ik->ij', inputs['O_BI'], inputs['r_e2s_I']) def compute_partials(self, inputs, partials): """ Calculate and save derivatives. (i.e., Jacobian) """ n = self.n O_BI = inputs['O_BI'] r_e2s_I = inputs['r_e2s_I'] partials['r_e2s_B', 'r_e2s_I'] = O_BI.flatten() nn = 3*n dO_AB = r_e2s_I.flatten() partials['r_e2s_B', 'O_BI'][:nn] = dO_AB partials['r_e2s_B', 'O_BI'][nn:2*nn] = dO_AB partials['r_e2s_B', 'O_BI'][2*nn:3*nn] = dO_AB class Sun_PositionECI(ExplicitComponent): """ Compute the position vector from Earth to Sun in Earth-centered inertial frame. """ # constants d2r = np.pi/180. def __init__(self, n=2): super(Sun_PositionECI, self).__init__() self.n = n def setup(self): n = self.n # Inputs self.add_input('LD', 0.0, units=None) self.add_input('t', np.zeros((n, )), units='s', desc='Time') # Outputs self.add_output('r_e2s_I', np.zeros((n, 3)), units='km', desc='Position vector from Earth to Sun in Earth-centered ' 'inertial frame over time.') self.declare_partials('r_e2s_I', 'LD') rows = np.arange(n*3) cols = np.tile(np.repeat(0, 3), n) + np.repeat(np.arange(n), 3) self.declare_partials('r_e2s_I', 't', rows=rows, cols=cols) def compute(self, inputs, outputs): """ Calculate outputs. """ n = self.n r_e2s_I = outputs['r_e2s_I'] T = inputs['LD'] + inputs['t'][:]/3600./24. for i in range(0, n): L = self.d2r*280.460 + self.d2r*0.9856474*T[i] g = self.d2r*357.528 + self.d2r*0.9856003*T[i] Lambda = L + self.d2r*1.914666*np.sin(g) + self.d2r*0.01999464*np.sin(2*g) eps = self.d2r*23.439 - self.d2r*3.56e-7*T[i] r_e2s_I[i, 0] = np.cos(Lambda) r_e2s_I[i, 1] = np.sin(Lambda)*np.cos(eps) r_e2s_I[i, 2] = np.sin(Lambda)*np.sin(eps) def compute_partials(self, inputs, partials): """ Calculate and save derivatives. (i.e., Jacobian) """ n = self.n tconv = (1.0 / 3600. / 24.) T = inputs['LD'] + inputs['t'][:] * tconv dr_dt = np.empty(3) Ja = np.zeros(3*n) dL_dt = self.d2r * 0.9856474 dg_dt = self.d2r * 0.9856003 deps_dt = -self.d2r*3.56e-7 for i in range(n): L = self.d2r*280.460 + self.d2r*0.9856474*T[i] g = self.d2r*357.528 + self.d2r*0.9856003*T[i] Lambda = L + self.d2r*1.914666*np.sin(g) + self.d2r*0.01999464*np.sin(2*g) eps = self.d2r*23.439 - self.d2r*3.56e-7*T[i] dlambda_dt = (dL_dt + self.d2r*1.914666*np.cos(g)*dg_dt + self.d2r*0.01999464*np.cos(2*g)*2*dg_dt) dr_dt[0] = -np.sin(Lambda)*dlambda_dt dr_dt[1] = np.cos(Lambda)*np.cos(eps)*dlambda_dt - np.sin(Lambda)*np.sin(eps)*deps_dt dr_dt[2] = np.cos(Lambda)*np.sin(eps)*dlambda_dt + np.sin(Lambda)*np.cos(eps)*deps_dt Ja[i*3:i*3+3] = dr_dt dr_e2s = Ja.flatten() partials['r_e2s_I', 'LD'] = dr_e2s partials['r_e2s_I', 't'] = dr_e2s * tconv class Sun_PositionSpherical(ExplicitComponent): """ Compute the elevation angle of the Sun in the body-fixed frame. """ def __init__(self, n=2): super(Sun_PositionSpherical, self).__init__() self.n = n def setup(self): n = self.n # Inputs self.add_input('r_e2s_B', np.zeros((n, 3)), units='km', desc='Position vector from Earth to Sun in body-fixed ' 'frame over time.') # Outputs self.add_output('azimuth', np.zeros((n, )), units='rad', desc='Ezimuth angle of the Sun in the body-fixed frame ' 'over time.') self.add_output('elevation', np.zeros((n, )), units='rad', desc='Elevation angle of the Sun in the body-fixed frame ' 'over time.') rows = np.tile(np.array([0, 0, 0]), n) + np.repeat(np.arange(n), 3) cols = np.arange(n*3) self.declare_partials('elevation', 'r_e2s_B', rows=rows, cols=cols) self.declare_partials('azimuth', 'r_e2s_B', rows=rows, cols=cols) def compute(self, inputs, outputs): """ Calculate outputs. """ azimuth, elevation = computepositionspherical(self.n, inputs['r_e2s_B']) outputs['azimuth'] = azimuth outputs['elevation'] = elevation def compute_partials(self, inputs, partials): """ Calculate and save derivatives. (i.e., Jacobian) """ n = self.n Ja1, Ja2 = computepositionsphericaljacobian(n, 3*n, inputs['r_e2s_B']) partials['azimuth', 'r_e2s_B'] = Ja1 partials['elevation', 'r_e2s_B'] = Ja2 ``` #### File: CADRE/examples/cadre_dymos.py ```python from __future__ import print_function import unittest import numpy as np from openmdao.api import Problem, Group, pyOptSparseDriver, DirectSolver, SqliteRecorder from dymos import Phase from dymos.utils.indexing import get_src_indices_by_row from dymos.phases.components import ControlInterpComp from CADRE.odes_dymos.cadre_orbit_ode import CadreOrbitODE from CADRE.attitude_dymos.angular_velocity_comp import AngularVelocityComp from CADRE.odes_dymos.cadre_systems_ode import CadreSystemsODE GM = 398600.44 rmag = 7000.0 period = 2 * np.pi * np.sqrt(rmag ** 3 / GM) vcirc = np.sqrt(GM / rmag) duration = period duration = 6 * 3600.0 p = Problem(model=Group()) p.driver = pyOptSparseDriver() p.driver.options['optimizer'] = 'SNOPT' p.driver.options['dynamic_simul_derivs'] = True p.driver.opt_settings['Major iterations limit'] = 1000 p.driver.opt_settings['Major feasibility tolerance'] = 1.0E-4 p.driver.opt_settings['Major optimality tolerance'] = 1.0E-4 p.driver.opt_settings['Major step limit'] = 0.1 p.driver.opt_settings['iSumm'] = 6 p.driver.recording_options['includes'] = ['*'] p.driver.recording_options['record_objectives'] = True p.driver.recording_options['record_constraints'] = True p.driver.recording_options['record_desvars'] = True recorder = SqliteRecorder("cases.sql") p.driver.add_recorder(recorder) NUM_SEG = 30 TRANSCRIPTION_ORDER = 3 orbit_phase = Phase('radau-ps', ode_class=CadreOrbitODE, num_segments=NUM_SEG, transcription_order=TRANSCRIPTION_ORDER, compressed=False) p.model.add_subsystem('orbit_phase', orbit_phase) orbit_phase.set_time_options(fix_initial=True, fix_duration=True, duration_ref=duration) orbit_phase.set_state_options('r_e2b_I', defect_scaler=1000, fix_initial=True, units='km') orbit_phase.set_state_options('v_e2b_I', defect_scaler=1000, fix_initial=True, units='km/s') # orbit_phase.set_state_options('SOC', defect_scaler=1, fix_initial=True, units=None) # orbit_phase.add_design_parameter('P_bat', opt=False, units='W') orbit_phase.add_control('Gamma', opt=True, lower=-90, upper=90, units='deg', ref0=-90, ref=90, continuity=True, rate_continuity=True) # Add a control interp comp to interpolate the rates of O_BI from the orbit phase. faux_control_options = {'O_BI': {'units': None, 'shape': (3, 3)}} p.model.add_subsystem('obi_rate_interp_comp', ControlInterpComp(control_options=faux_control_options, time_units='s', grid_data=orbit_phase.grid_data), promotes_outputs=[('control_rates:O_BI_rate', 'Odot_BI')]) control_input_nodes_idxs = orbit_phase.grid_data.subset_node_indices['control_input'] src_idxs = get_src_indices_by_row(control_input_nodes_idxs, shape=(3, 3)) p.model.connect('orbit_phase.rhs_all.O_BI', 'obi_rate_interp_comp.controls:O_BI', src_indices=src_idxs, flat_src_indices=True) p.model.connect('orbit_phase.time.dt_dstau', ('obi_rate_interp_comp.dt_dstau', 'w_B_rate_interp_comp.dt_dstau')) # Use O_BI and Odot_BI to compute the angular velocity vector p.model.add_subsystem('angular_velocity_comp', AngularVelocityComp(num_nodes=orbit_phase.grid_data.num_nodes)) p.model.connect('orbit_phase.rhs_all.O_BI', 'angular_velocity_comp.O_BI') p.model.connect('Odot_BI', 'angular_velocity_comp.Odot_BI') # Add another interpolation comp to compute the rate of w_B faux_control_options = {'w_B': {'units': '1/s', 'shape': (3,)}} p.model.add_subsystem('w_B_rate_interp_comp', ControlInterpComp(control_options=faux_control_options, time_units='s', grid_data=orbit_phase.grid_data), promotes_outputs=[('control_rates:w_B_rate', 'wdot_B')]) src_idxs = get_src_indices_by_row(control_input_nodes_idxs, shape=(3,)) p.model.connect('angular_velocity_comp.w_B', 'w_B_rate_interp_comp.controls:w_B', src_indices=src_idxs, flat_src_indices=True) # Now add the systems phase systems_phase = Phase('radau-ps', ode_class=CadreSystemsODE, num_segments=NUM_SEG, transcription_order=TRANSCRIPTION_ORDER, compressed=False) p.model.add_subsystem('systems_phase', systems_phase) systems_phase.set_time_options(fix_initial=True, fix_duration=True, duration_ref=duration) systems_phase.set_state_options('SOC', defect_ref=10, lower=0.2, fix_initial=True, units=None) systems_phase.set_state_options('w_RW', defect_ref=10000, fix_initial=True, units='1/s') systems_phase.set_state_options('data', defect_ref=10, fix_initial=True, units='Gibyte') systems_phase.set_state_options('temperature', ref0=273, ref=373, defect_ref=1000, fix_initial=True, units='degK') systems_phase.add_design_parameter('LD', opt=False, units='d') systems_phase.add_design_parameter('fin_angle', opt=True, lower=0., upper=np.pi / 2.) systems_phase.add_design_parameter('antAngle', opt=True, lower=-np.pi / 4, upper=np.pi / 4) systems_phase.add_design_parameter('cellInstd', opt=True, lower=0.0, upper=1.0, ref=1.0) # Add r_e2b_I and O_BI as non-optimized controls, allowing them to be connected to external sources systems_phase.add_control('r_e2b_I', opt=False, units='km') systems_phase.add_control('O_BI', opt=False) systems_phase.add_control('w_B', opt=False) systems_phase.add_control('wdot_B', opt=False) systems_phase.add_control('P_comm', opt=True, lower=0.0, upper=30.0, units='W') systems_phase.add_control('Isetpt', opt=True, lower=1.0E-4, upper=0.4, units='A') systems_phase.add_objective('data', loc='final', ref=-1.0) # Connect r_e2b_I and O_BI values from all nodes in the orbit phase to the input values # in the attitude phase. src_idxs = get_src_indices_by_row(control_input_nodes_idxs, shape=(3,)) p.model.connect('orbit_phase.states:r_e2b_I', 'systems_phase.controls:r_e2b_I', src_indices=src_idxs, flat_src_indices=True) p.model.connect('angular_velocity_comp.w_B', 'systems_phase.controls:w_B', src_indices=src_idxs, flat_src_indices=True) p.model.connect('wdot_B', 'systems_phase.controls:wdot_B', src_indices=src_idxs, flat_src_indices=True) src_idxs = get_src_indices_by_row(control_input_nodes_idxs, shape=(3, 3)) p.model.connect('orbit_phase.rhs_all.O_BI', 'systems_phase.controls:O_BI', src_indices=src_idxs, flat_src_indices=True) p.model.options['assembled_jac_type'] = 'csc' p.model.linear_solver = DirectSolver(assemble_jac=True) p.setup(check=True) # from openmdao.api import view_model # view_model(p.model) # Initialize values in the orbit phase p['orbit_phase.t_initial'] = 0.0 p['orbit_phase.t_duration'] = duration # p['systems_phase.states:w_RW'][:, 0] = 0.0 # p['systems_phase.states:w_RW'][:, 1] = 0.0 # p['systems_phase.states:w_RW'][:, 2] = 0.0 # Default starting orbit # [ 2.89078958e+03 5.69493134e+03 -2.55340189e+03 2.56640460e-01 # 3.00387409e+00 6.99018448e+00] p['orbit_phase.states:r_e2b_I'][:, 0] = 2.89078958e+03 p['orbit_phase.states:r_e2b_I'][:, 1] = 5.69493134e+03 p['orbit_phase.states:r_e2b_I'][:, 2] = -2.55340189e+03 p['orbit_phase.states:v_e2b_I'][:, 0] = 2.56640460e-01 p['orbit_phase.states:v_e2b_I'][:, 1] = 3.00387409e+00 p['orbit_phase.states:v_e2b_I'][:, 2] = 6.99018448e+00 # Initialize values in the systems phase p['systems_phase.t_initial'] = 0.0 p['systems_phase.t_duration'] = duration # p['systems_phase.states:w_RW'][:, 0] = 0.0 # p['systems_phase.states:w_RW'][:, 1] = 0.0 # p['systems_phase.states:w_RW'][:, 2] = 0.0 p['systems_phase.states:SOC'] = systems_phase.interpolate(ys=[1, .5], nodes='state_input') p['systems_phase.states:w_RW'] = 100.0 p['systems_phase.states:data'] = systems_phase.interpolate(ys=[0, 10], nodes='state_input') p['systems_phase.states:temperature'] = 273.0 # p['systems_phase.states:v_e2b_I'][:, 0] = 0.0 # p['systems_phase.states:v_e2b_I'][:, 1] = vcirc # p['systems_phase.states:v_e2b_I'][:, 2] = 0.0 p['systems_phase.controls:P_comm'] = 0.01 p['systems_phase.controls:Isetpt'] = 0.1 p['systems_phase.design_parameters:LD'] = 5233.5 p['systems_phase.design_parameters:fin_angle'] = np.radians(70.0) p['systems_phase.design_parameters:cellInstd'] = 0.0 p.run_model() # Simulate the orbit phase to get a (exact) guess to the orbit history solution. exp_out = orbit_phase.simulate() # import matplotlib.pyplot as plt # from mpl_toolkits import mplot3d # # plt.figure() # ax = plt.axes(projection='3d') # # plt.plot(exp_out.get_values('r_e2b_I')[:, 0], exp_out.get_values('r_e2b_I')[:, 1], 'b-') # ax.plot3D(exp_out.get_values('r_e2b_I')[:, 0], exp_out.get_values('r_e2b_I')[:, 1], exp_out.get_values('r_e2b_I')[:, 2], 'b-') # plt.show() p['orbit_phase.states:r_e2b_I'] = orbit_phase.interpolate(ys=exp_out.get_values('r_e2b_I'), xs=exp_out.get_values('time'), nodes='state_input') p['orbit_phase.states:v_e2b_I'] = orbit_phase.interpolate(ys=exp_out.get_values('v_e2b_I'), xs=exp_out.get_values('time'), nodes='state_input') p.run_driver() r_e2b_I = p.model.orbit_phase.get_values('r_e2b_I') v_e2b_I = p.model.orbit_phase.get_values('v_e2b_I') rmag_e2b = p.model.orbit_phase.get_values('rmag_e2b_I') # exp_out = systems_phase.simulate(times=500) import matplotlib.pyplot as plt plt.figure() plt.plot(orbit_phase.get_values('r_e2b_I')[:, 0], orbit_phase.get_values('r_e2b_I')[:, 1], 'ro') plt.figure() # plt.plot(exp_out.get_values('time')[:, 0], exp_out.get_values('data')[:, 1], 'b-') plt.plot(systems_phase.get_values('time'), systems_phase.get_values('data'), 'ro') plt.figure() # plt.plot(exp_out.get_values('time')[:, 0], exp_out.get_values('data')[:, 1], 'b-') plt.plot(systems_phase.get_values('time'), systems_phase.get_values('P_comm'), 'r-') plt.plot(systems_phase.get_values('time'), systems_phase.get_values('P_sol'), 'b-') plt.plot(systems_phase.get_values('time'), systems_phase.get_values('P_RW'), 'g-') plt.plot(systems_phase.get_values('time'), systems_phase.get_values('P_bat'), 'k-') plt.figure() plt.plot(systems_phase.get_values('time'), systems_phase.get_values('SOC'), 'r-') plt.plot(systems_phase.get_values('time'), systems_phase.get_values('dXdt:SOC'), 'r--') plt.show() # plt.figure() # plt.plot(exp_out.get_values('time'), exp_out.get_values('SOC'), 'b-') # plt.plot(phase.get_values('time'), phase.get_values('SOC'), 'ro') # assert_rel_error(self, rmag_e2b, rmag * np.ones_like(rmag_e2b), tolerance=1.0E-9) # delta_trua = 2 * np.pi * (duration / period) # assert_rel_error(self, r_e2b_I[-1, :], # rmag * np.array([np.cos(delta_trua), np.sin(delta_trua), 0]), # tolerance=1.0E-9) # assert_rel_error(self, v_e2b_I[-1, :], # vcirc * np.array([-np.sin(delta_trua), np.cos(delta_trua), 0]), # tolerance=1.0E-9) # def test_partials(self): # np.set_printoptions(linewidth=10000, edgeitems=1024) # cpd = self.p.check_partials(compact_print=True, out_stream=None) # assert_check_partials(cpd, atol=1.0E-4, rtol=1.0) # # def test_simulate(self): # phase = self.p.model.orbit_phase # exp_out = phase.simulate(times=500) # # import matplotlib.pyplot as plt # # plt.figure() # plt.plot(exp_out.get_values('r_e2b_I')[:, 0], exp_out.get_values('r_e2b_I')[:, 1], 'b-') # plt.plot(phase.get_values('r_e2b_I')[:, 0], phase.get_values('r_e2b_I')[:, 1], 'ro') # # # plt.figure() # # plt.plot(exp_out.get_values('time'), exp_out.get_values('SOC'), 'b-') # # plt.plot(phase.get_values('time'), phase.get_values('SOC'), 'ro') # # plt.show() ```
{ "source": "johnjasa/dt-qp-py-project", "score": 2 }
#### File: Linear-Quadratic/fowt/f_dtqp_fowt.py ```python from mat4py import loadmat from scipy.signal import filtfilt import numpy as np from scipy.interpolate import interp1d,PchipInterpolator import matplotlib.pyplot as plt import os import sys from dtqpy.src.classes.DTQPy_CLASS_OPTS import * from dtqpy.src.classes.DTQPy_CLASS_SETUP import * from dtqpy.src.DTQPy_solve import DTQPy_solve def f_dtqp_fowt(LinearModels,disturbance): # load linear models Chan = LinearModels['Chan'] #breakpoint() # obtain the size of the arrays nl = len(Chan) nx,nx = np.shape(Chan[0]['A']) nx,nu = np.shape(Chan[0]['B']) ny = len(LinearModels['OutName']) OutputName = LinearModels['OutName'] # initialize Aw = np.zeros((nl,nx,nx)) Bw = np.zeros((nl,nx,nu)) Cw = np.zeros((nl,ny,nx)) Dw = np.zeros((nl,ny,nu)) xw = np.zeros((nx,nl)) uw = np.zeros((nu,nl)) yw = np.zeros((nl,ny)) ws = np.zeros((nl)) # collect for i in range(nl): Aw[i,:,:] = np.array(Chan[i]['A']) Bw[i,:,:] = np.array(Chan[i]['B']) Cw[i,:,:] = np.array(Chan[i]['C']) Dw[i,:,:] = np.array(Chan[i]['D']) xw[:,i] = np.squeeze(np.array(Chan[i]['xop'])) uw[:,i] = np.squeeze(np.array(Chan[i]['uop'])) yw[i,:] = np.squeeze(np.array(Chan[i]['yop'])) ws[i] = Chan[i]['WindSpeed'] # construct LPV models # A matrix A_op_pp = PchipInterpolator(ws, Aw, axis = 0) A_op = lambda w: A_op_pp(w) # Bmatrix B_op_pp = PchipInterpolator(ws, Bw, axis = 0) B_op = lambda w: B_op_pp(w) # Cmatrix C_op_pp = PchipInterpolator(ws,Cw,axis = 0) C_op = lambda w: C_op_pp(w) # Dmatrix D_op_pp = PchipInterpolator(ws,Dw,axis = 0) D_op = lambda w: D_op_pp(w) # control operating points Uo_pp = PchipInterpolator(ws,uw,axis = 1) Uo_fun = lambda w: Uo_pp(w) # state operating points Xo_pp = PchipInterpolator(ws, xw, axis = 1) Xo_fun = lambda w: Xo_pp(w) # outputs Yo_pp = PchipInterpolator(ws, yw, axis = 0) Yo_fun = lambda w: Yo_pp(w) # first time derivative of state operating points DXo_pp = Xo_pp.derivative DXo_pp = DXo_pp(nu=1) DXo_fun = lambda w: DXo_pp(w) Wind_o = disturbance['Chan'] Wind_speed = np.array(Wind_o['RtVAvgxh']) tt = np.array(Wind_o['tt']) filterflag = 1 if filterflag: t_f = 1 dt = tt[2,0]-tt[1,0] nb = int(np.floor(t_f/dt)) b = np.ones((nb,))/nb a = b*nb Wind_speed = filtfilt(b,1,Wind_speed,axis = 0) opts = options() opts.dt.nt = 1000 opts.solver.tolerence = 1e-16 opts.solver.maxiters = 1000000 opts.solver.function = 'pyoptsparse' time = np.linspace(tt[0],tt[-1],opts.dt.nt) W_pp = PchipInterpolator(np.squeeze(tt),np.squeeze(Wind_speed)) dW_pp = W_pp.derivative dW_pp = dW_pp(nu = 1) DW_fun = lambda t: dW_pp(t) W_fun = lambda t: W_pp(t) DXoDt_fun = lambda t: (-DXo_fun(W_fun(t)).T*DW_fun(t)).T def BuildLambda(Ax): return lambda t: Ax(t) def TVmat2cell(f,time): """ function to convert nt*nx*nz matrix to nx*nx cell """ # evaluate function At = f(time) s = np.shape(At) if len(s) ==4: At = np.squeeze(At) elif len(s) == 3: At = np.squeeze(At) At= At.T # get size try: null,m,n = np.shape(At) except: null,m = np.shape(At) n = 1 # initialize storage A = np.empty((m,n),dtype = 'O') Aval = np.empty((8,8)) #breakpoint() for i in range(m): for j in range(n): try: Ax = PchipInterpolator(np.squeeze(time),At[:,i,j],axis = 0) except: Ax = PchipInterpolator(np.squeeze(time),At[:,i],axis = 0) # work around, as defining lambda functions in a loop in python is tricky A[i,j] = BuildLambda(Ax) return A ## Disc2 cont def BuildFunction(w_ops,X): Xpp = PchipInterpolator(w_ops,X) return lambda w: Xpp(w) # Generator speed function GS_fun = BuildFunction(ws,xw[4,:]) # -1*GS function GSn_fun = BuildFunction(ws,-xw[4,:]) # Generator torque GT_fun = BuildFunction(ws,uw[1,:]) # -Generator torque GTn_fun = BuildFunction(ws,-uw[1,:]) # Blade pitch BP_fun = BuildFunction(ws,uw[2,:]) # Generator power GP_fun = BuildFunction(ws,-uw[1,:]*xw[4,:]) # State operating point values r = Xo_fun(ws) # lambda function to find the values of lambda function at specific indices indexat = lambda expr,index: expr[index,:] # get shape nws,nx,nu = np.shape(Bw) # initialize ub = np.ones((nx,1))*np.inf lb = -np.ones((nx,1))*np.inf # set ub values for PtfmPitch and Genspeed ub[0] = np.deg2rad(6) ub[4] = 0.7913+0.0001 # initialize UBx = np.empty((nx,1),dtype = 'O') LBx = np.empty((nx,1),dtype = 'O') # need this function to define anaonymous functions in a loop in python def BuildLambdaUB(ub,indexat,Xo_fun,W_fun,i): return lambda t: ub - indexat(Xo_fun(W_fun(t)),i) # build ub and lb functions for i in range(nx): UBx[i,0] = BuildLambdaUB(ub[i],indexat,Xo_fun,W_fun,i) LBx[i,0] = BuildLambdaUB(lb[i],indexat,Xo_fun,W_fun,i) # control bounds UBc = np.array([[lambda t: W_fun(t)-W_fun(t)], [lambda t: max(uw[1,:])-GT_fun(W_fun(t))], [lambda t: max(uw[2,:])-BP_fun(W_fun(t))]]) LBc = np.array([[lambda t: W_fun(t)-W_fun(t)], [lambda t: min(uw[1,:])-GT_fun(W_fun(t))], [lambda t: min(uw[2,:])-BP_fun(W_fun(t))]]) # initial state X0_n = np.array( [[0.0493], [0.1957], [0.0000], [0.0001], [0.7913], [0], [0], [0]]) UBs = X0_n - Xo_fun(W_fun(0))[None].T LBs = X0_n - Xo_fun(W_fun(0))[None].T # UB,LB UB = [Simple_Bounds() for n in range(3)] LB = [Simple_Bounds() for n in range(3)] # states UB[0].right = 2 UB[0].matrix = UBx LB[0].right = 2 LB[0].matrix = LBx # control bounds UB[1].right = 1 UB[1].matrix = UBc LB[1].right = 1 LB[1].matrix = LBc # initial state UB[2].right = 4 UB[2].matrix = UBs LB[2].right = 4 LB[2].matrix = LBs # lagrange terms R1 = 1e-0; R2 = 1e+8 lx = 0 L = [LQ_objective() for n in range(5)] # uRu L[lx].left = 1 L[lx].right = 1 L[lx].matrix = np.diag([0,R1,R2]) lx = lx+1 # uPX L[lx].left = 1 L[lx].right = 2 Lmat = np.zeros((nu,nx)); Lmat[1,4] = -1 L[lx].matrix = Lmat lx = lx+1 L[lx].left = 0; L[lx].right = 1 L2mat = np.zeros((1,nu),dtype = 'O') L2mat[0,1] = lambda t: GSn_fun(W_fun(t)) L[lx].matrix = L2mat lx = lx+1 L[lx].left = 0 L[lx].right = 2 L3mat = np.zeros((1,nx),dtype = 'O') L3mat[0,4] = lambda t: GTn_fun(W_fun(t)) L[lx].matrix = L3mat lx = lx+1 L[lx].left = 0 L[lx].right = 0 L4mat = np.empty((1,1),dtype = 'O') L4mat[0,0] = lambda t: GP_fun(W_fun(t)) L[lx].matrix = L4mat # scale = Scaling(right = 1, matrix = np.array([1,1e-16,1e-4])) # setup s = setup() s.A = TVmat2cell(lambda t: A_op(W_fun(t)),time) s.B = TVmat2cell(lambda t: B_op(W_fun(t)),time) s.d = TVmat2cell(DXoDt_fun,time) s.Lagrange = L s.UB = UB s.LB = LB s.Scaling = scale s.t0 = 0 s.tf = 600 #breakpoint() [T,Ul,Xl,P,F,internal,opts] = DTQPy_solve(s,opts) # calculate offset Xo_off = np.squeeze(Xo_fun(W_fun(T))).T Uo_off = np.squeeze(Uo_fun(W_fun(T))).T # Add offset to estimated states X = Xl + Xo_off U = Ul + Uo_off # plot fig, ((ax1,ax2,ax3)) = plt.subplots(3,1,) # wind ax1.plot(T,U[:,0]) ax1.set_title('Wind Speed [m/s]') ax1.set_xlim([0,600]) # torue ax2.plot(T,U[:,1]/1e+07) ax2.set_ylim([1.8,2]) ax2.set_title('Gen Torque [MWm]') ax2.set_xlim([0,600]) # blade pitch ax3.plot(T,U[:,2]) #ax3.set_ylim([0.2, 0.3]) ax3.set_title('Bld Pitch [rad/s]') ax3.set_xlim([0,600]) fig.subplots_adjust(hspace = 0.65) fig2, ((ax1,ax2)) = plt.subplots(2,1) # PtfmPitch ax1.plot(T,np.rad2deg(X[:,0])) ax1.set_xlim([0,600]) ax1.set_title('Ptfm Pitch [deg]') # FenSpeed ax2.plot(T,X[:,4]) ax2.set_xlim([0,600]) ax2.set_title('Gen Speed [rad/s]') fig2.subplots_adjust(hspace = 0.65) plt.show() if __name__ == '__main__': ex_name = os.path.dirname(os.path.realpath(__file__)) Wind_file = ex_name + os.sep + '072720_183300.mat' Wind_o = loadmat(Wind_file) Linfile = ex_name + os.sep +'SS2py.mat' LinearModels = loadmat(Linfile) f_dtqp_fowt(LinearModels,Wind_o) ``` #### File: dtqpy/src/DTQPy_create.py ```python import numpy as np from scipy import sparse from dtqpy.src.classes.DTQPy_CLASS_INTERNAL import * from dtqpy.src.objective.DTQPy_createH import DTQPy_createH from dtqpy.src.objective.DTQPy_createf import DTQPy_createf from dtqpy.src.objective.DTQPy_createc import DTQPy_createc from dtqpy.src.defects.DTQPy_DEFECTS import DTQPy_DEFECTS from dtqpy.src.add_constraints.DTQPy_create_YZ import DTQPy_create_YZ from dtqpy.src.add_constraints.DTQPy_create_bnds import DTQPy_create_bnds def DTQPy_create(setup,opts): # initialize some stuff setup,internal = DTQPy_initialize(setup,opts.dt) # objective function H = DTQPy_createH(setup.Lquadratic,setup.Mquadratic,internal,opts) f = DTQPy_createf(setup.Llinear,setup.Mlinear,internal,opts) c = DTQPy_createc(setup.Lconstant,setup.Mconstant,internal,opts) # constraints # defect constraints Aeq1,beq1 = DTQPy_DEFECTS(setup.A,setup.B,setup.G,setup.d,internal,opts) # linear path and boundary equality constraints Aeq2,beq2 = DTQPy_create_YZ(setup.Y,internal) # combine linear equality constraints Aeq = sparse.vstack([Aeq1,Aeq2]) beq = sparse.vstack([beq1,beq2]) # path and boundary inequality constraints A,b = DTQPy_create_YZ(setup.Z,internal) # create simple bounds lb,ub = DTQPy_create_bnds(setup.LB,setup.UB,internal) return H,f,c,A,b,Aeq,beq,lb,ub,setup,internal,opts ``` #### File: dtqpy/src/DTQPy_scalingLinear.py ```python import numpy as np import types from scipy.sparse import csc_matrix from scipy import sparse def createScalingVector(y,ny,T,nt): # create the scaling vector for the particular input if type(y) is types.LambdaType: # evaluate time-varying function Y = y(T) # reshape time-based matrix to column vector Y.reshape(-1,1) elif np.size(y) == ny: # expand scalar scaling Y = np.repeat(y.reshape(-1,1),[nt]) Y = Y.reshape(-1,1) elif np.shape(y) == [nt,ny]: # reshape time-based matrix to column vector Y = y.reshape(-1,1) else: raise ValueError("Wrong Size") return Y def DTQPy_scalingLinear(H,f,c,A,b,Aeq,beq,lb,ub,internal,scaling): # extract values T = internal.t; nt = internal.nt; nu = internal.nu; ny = internal.ny; npl = internal.npl # initialize matrices s1mat = np.ones((nu*nt,1)); s2mat = np.ones((ny*nt,1)); s3mat = np.ones((npl,1)) s1con = np.zeros((nu*nt,1)); s2con = np.zeros((ny*nt,1)); s3con = np.zeros((npl,1)) for k in range(len(scaling)): # extract mat = scaling[k].matrix sc = scaling[k].constant right = scaling[k].right if right == 1: # controls s1mat = createScalingVector(mat,nu,T,nt) s1con = createScalingVector(sc,nu,T,nt) elif right == 2: # states s2mat = createScalingVector(mat,ny,T,nt) s2con = createScalingVector(sc,ny,T,nt) elif right ==3: # parameters s3mat = createScalingVector(mat,nu,[],nt) s3con = createScalingVector(sc,npl,[],nt) else: raise ValueError("") # combine sm = np.vstack([s1mat,s2mat,s3mat]) nR = len(sm) r = np.arange(nR) # scaling diagonal matrix sM = csc_matrix((np.squeeze(sm),(r,r)),shape = (nR,nR)) # scaling constant vector sC = sparse.vstack([s1con,s2con,s3con]) if any(f.nonzero()[0]): c = c+ ((f.T).dot(sC)).todense() if any(H.nonzero()[0]): c = c + 0.5*((sC.T).dot(H.dot(sC))).todense() if any(f.nonzero()[0]): f = sM*f if any(H.nonzero()[0]): if any(f.nonzero()[0]): f = f + sM.dot(H.dot(sC)) else: f = sM.dot(H.dot(sC)) H = sM.dot(H.dot(sM)) if any(A.nonzero()[0]): b = b - A.dot(sC) A = A.dot(sM) if any(Aeq.nonzero()[0]): beq = beq - Aeq.dot(sC) Aeq = Aeq.dot(sM) if any(ub): ub = (ub - np.squeeze(sC.todense()))/np.squeeze(sm) if any(lb): lb = (lb - np.squeeze(sC.todense()))/np.squeeze(sm) return H,f,c,A,b,Aeq,beq,lb.T,ub.T,internal,sm,sC.todense() ``` #### File: src/objective/DTQPy_M.py ```python import numpy as np from numpy.matlib import repmat # import DTQPy specific functions from dtqpy.src.utilities.DTQPy_tmultiprod import DTQPy_tmultiprod from dtqpy.src.DTQPy_getQPIndex import DTQPy_getQPIndex def DTQPy_M(Mfull,internal,opts): # extract variables nt = internal.nt; IN = internal.IN; I_stored = internal.I_stored # initialize storage arrays Isav = np.array([]); Jsav = np.array([]); Vsav = np.array([]) # go through each Mayer term for k in range(len(Mfull)): # obtain current substructure Mleft = Mfull[k].left Mright = Mfull[k].right Mmatrix = Mfull[k].matrix # obtain matrix Mt = DTQPy_tmultiprod(Mmatrix,[],np.array([0])) if Mleft != 0: R = IN[Mleft-1] else: R = np.array([0]) if Mright !=0: #breakpoint() C = IN[Mright-1] else: C = np.array([0]) # determine locations and matrix values at these points for i in range(len(R)): for j in range(len(C)): # get current matrix value Mv = Mt[:,i,j] if Mv.any(): # hessian index sequence r = DTQPy_getQPIndex(R[i],Mleft,0,nt,I_stored) c = DTQPy_getQPIndex(C[j],Mright,0,nt,I_stored) # assign Isav = np.append(Isav,r) Jsav = np.append(Jsav,c) Vsav = np.append(Vsav,Mv) return Isav,Jsav,Vsav ``` #### File: src/utilities/DTQPy_tmatrix.py ```python import numpy as np from numpy.matlib import repmat import types def DTQPy_tmatrix(A,p,*args): # check if another time mesh is imputted if len(args) !=0: t = args[0] else: t = p.t # convert lambda function to a np array of type object if type(A) is types.LambdaType: Ae = np.empty((1,1),dtype ='O') Ae[0,0] = A A = Ae # if A is empty if len(A)==0: At = np.array([]) elif A.dtype.kind == 'f' or A.dtype.kind == 'i': # constant matrix r,c = np.shape(A) # add dummy dimension Al = np.empty((1,r,c)) Al[0,:,:] = A # replicate the matrix nt times At = np.tile(Al,(len(t),1,1)) else: # obtain shape r,c = np.shape(A) # initialize At = np.zeros((len(t),r,c)) # go through each row and column in A for i in range(r): for j in range(c): if len(A)==0: # A is empty pass # do nothing elif type(A[i,j]) is types.LambdaType: # A is time varying if A[i,j].__code__.co_argcount == 2: At[:,i,j] = np.ravel(A[i,j](t,p)) elif A[i,j].__code__.co_argcount == 1: At[:,i,j] = np.ravel(A[i,j](t)) else: raise ValueError("not a properly defined function") elif A[i,j] == 0: pass else: At[:,i,j] = A[i,j] # A is time invariant return At ``` #### File: dtqpy/tests/DTPQy_TEST_scaling.py ```python import os import sys os.chdir('../') import numpy as np from dtqpy.src.classes.DTQPy_CLASS_OPTS import * from dtqpy.src.classes.DTQPy_CLASS_SETUP import * from dtqpy.src.DTQPy_solve import DTQPy_solve import matplotlib.pyplot as plt # Bryson Denham problems def problem(): opts = options() # options opts.dt.nt = 1000 opts.solver.function = 'pyoptsparse' s = setup() s.t0 = 0; s.tf = 1 A = np.array([[0,1],[0,0]]) B = np.array([[0],[1]]) # Lagrange term L = LQ_objective(left = 1, right = 1,matrix = 0.5*np.ones((1,1))) # ub and lb UB = [Simple_Bounds() for n in range(3)] LB = [Simple_Bounds() for n in range(2)] UB[0].right = 4; UB[0].matrix = np.array([[0],[1]]) LB[0].right = 4; LB[0].matrix = np.array([[0],[1]]) UB[1].right = 5; UB[1].matrix = np.array([[0],[-1]]) LB[1].right = 5; LB[1].matrix = np.array([[0],[-1]]) UB[2].right = 2; UB[2].matrix = np.array([[1/9],[np.inf]]) s.A = A; s.B = B; s.Lagrange = L; s.UB = UB; s.LB = LB return s,opts test = [1] [s,opts] = problem() T1 = [];U1 = [];X1 = [];P1 = [];F1 = [];internal1 = [];opts1 = [] fig,ax = plt.subplots() fig, a = plt.subplots() for k in range(len(test)): s.Scaling = [] if test[k] == 1: scaling = Scaling(right = 1, matrix = 6) s.Scaling = scaling elif test[k] == 2: scaling = Scaling(right = 2,matrix = np.array([1/9,1])) s.Scaling = scaling T,U,X,P,F,internal,opts = DTQPy_solve(s,opts) T1.append(T); U1.append(U); X1.append(X); P1.append(P); F1.append(F);internal1.append(internal);opts1.append(opts) # plot #plt.close('all') ax.plot(T, X[:,0], label="x1") ax.plot(T, X[:,1], label="x2") ax.set_xlabel('t') ax.set_ylabel('x') ax.set_title('States'); a.plot(T,U,label = "u") a.set_xlabel('t') a.set_ylabel('u') a.set_title('Controls'); ```
{ "source": "johnjasa/OpenMDAO", "score": 3 }
#### File: nonlinear/tests/test_newton.py ```python import unittest import numpy as np import openmdao.api as om from openmdao.core.tests.test_discrete import InternalDiscreteGroup from openmdao.test_suite.components.double_sellar import DoubleSellar, DoubleSellarImplicit, \ SubSellar from openmdao.test_suite.components.implicit_newton_linesearch import ImplCompTwoStates from openmdao.test_suite.components.sellar import SellarDerivativesGrouped, \ SellarNoDerivatives, SellarDerivatives, SellarStateConnection, StateConnection, \ SellarDis1withDerivatives, SellarDis2withDerivatives from openmdao.utils.assert_utils import assert_rel_error, assert_warning class TestNewton(unittest.TestCase): def test_specify_newton_linear_solver_in_system(self): my_newton = om.NewtonSolver() my_newton.linear_solver = om.DirectSolver() prob = om.Problem(model=SellarDerivatives(nonlinear_solver=my_newton)) prob.setup() self.assertIsInstance(prob.model.nonlinear_solver.linear_solver, om.DirectSolver) prob.run_model() assert_rel_error(self, prob['y1'], 25.58830273, .00001) assert_rel_error(self, prob['y2'], 12.05848819, .00001) def test_feature_newton_basic(self): """ Feature test for slotting a Newton solver and using it to solve Sellar. """ import openmdao.api as om from openmdao.test_suite.components.sellar import SellarDerivatives prob = om.Problem(model=SellarDerivatives(nonlinear_solver=om.NewtonSolver())) prob.setup() prob.run_model() assert_rel_error(self, prob['y1'], 25.58830273, .00001) assert_rel_error(self, prob['y2'], 12.05848819, .00001) def test_sellar_grouped(self): # Tests basic Newton solution on Sellar in a subgroup prob = om.Problem(model=SellarDerivativesGrouped(nonlinear_solver=om.NewtonSolver())) prob.setup() prob.set_solver_print(level=0) prob.run_model() assert_rel_error(self, prob['y1'], 25.58830273, .00001) assert_rel_error(self, prob['y2'], 12.05848819, .00001) # Make sure we aren't iterating like crazy self.assertLess(prob.model.nonlinear_solver._iter_count, 8) def test_sellar(self): # Just tests Newton on Sellar with FD derivs. prob = om.Problem(model=SellarNoDerivatives(nonlinear_solver=om.NewtonSolver())) prob.setup() prob.run_model() assert_rel_error(self, prob['y1'], 25.58830273, .00001) assert_rel_error(self, prob['y2'], 12.05848819, .00001) # Make sure we aren't iterating like crazy self.assertLess(prob.model.nonlinear_solver._iter_count, 8) def test_line_search_deprecated(self): top = om.Problem() top.model.add_subsystem('px', om.IndepVarComp('x', 1.0)) top.model.add_subsystem('comp', ImplCompTwoStates()) top.model.connect('px.x', 'comp.x') top.model.nonlinear_solver = om.NewtonSolver() top.model.nonlinear_solver.options['maxiter'] = 10 top.model.linear_solver = om.ScipyKrylov() msg = "The 'line_search' attribute provides backwards compatibility with OpenMDAO 1.x ; " \ "use 'linesearch' instead." with assert_warning(DeprecationWarning, msg): top.model.nonlinear_solver.line_search = om.ArmijoGoldsteinLS(bound_enforcement='vector') with assert_warning(DeprecationWarning, msg): ls = top.model.nonlinear_solver.line_search ls.options['maxiter'] = 10 ls.options['alpha'] = 1.0 top.setup() # Test lower bound: should go to the lower bound and stall top['px.x'] = 2.0 top['comp.y'] = 0.0 top['comp.z'] = 1.6 top.run_model() assert_rel_error(self, top['comp.z'], 1.5, 1e-8) # Test upper bound: should go to the upper bound and stall top['px.x'] = 0.5 top['comp.y'] = 0.0 top['comp.z'] = 2.4 top.run_model() assert_rel_error(self, top['comp.z'], 2.5, 1e-8) def test_sellar_derivs(self): # Test top level Sellar (i.e., not grouped). # Also, piggybacked testing that makes sure we only call apply_nonlinear # on the head component behind the cycle break. prob = om.Problem() prob.model = SellarDerivatives(nonlinear_solver=om.NewtonSolver(), linear_solver=om.LinearBlockGS()) prob.setup() prob.set_solver_print(level=0) prob.run_model() assert_rel_error(self, prob['y1'], 25.58830273, .00001) assert_rel_error(self, prob['y2'], 12.05848819, .00001) # Make sure we aren't iterating like crazy self.assertLess(prob.model.nonlinear_solver._iter_count, 8) ## Make sure we only call apply_linear on 'heads' #nd1 = prob.model.d1.execution_count #nd2 = prob.model.d2.execution_count #if prob.model.d1._run_apply == True: #self.assertEqual(nd1, 2*nd2) #else: #self.assertEqual(2*nd1, nd2) def test_sellar_derivs_with_Lin_GS(self): prob = om.Problem(model=SellarDerivatives(nonlinear_solver=om.NewtonSolver())) prob.setup() prob.set_solver_print(level=0) prob.run_model() assert_rel_error(self, prob['y1'], 25.58830273, .00001) assert_rel_error(self, prob['y2'], 12.05848819, .00001) # Make sure we aren't iterating like crazy self.assertLess(prob.model.nonlinear_solver._iter_count, 8) def test_sellar_state_connection(self): # Sellar model closes loop with state connection instead of a cycle. prob = om.Problem(model=SellarStateConnection(nonlinear_solver=om.NewtonSolver())) prob.set_solver_print(level=0) prob.setup() prob.run_model() assert_rel_error(self, prob['y1'], 25.58830273, .00001) assert_rel_error(self, prob['state_eq.y2_command'], 12.05848819, .00001) # Make sure we aren't iterating like crazy self.assertLess(prob.model.nonlinear_solver._iter_count, 8) def test_sellar_state_connection_fd_system(self): # Sellar model closes loop with state connection instead of a cycle. # This test is just fd. prob = om.Problem(model=SellarStateConnection(nonlinear_solver=om.NewtonSolver())) prob.model.approx_totals(method='fd') prob.setup() prob.set_solver_print(level=0) prob.run_model() assert_rel_error(self, prob['y1'], 25.58830273, .00001) assert_rel_error(self, prob['state_eq.y2_command'], 12.05848819, .00001) # Make sure we aren't iterating like crazy self.assertLess(prob.model.nonlinear_solver._iter_count, 6) def test_sellar_specify_linear_solver(self): prob = om.Problem() model = prob.model model.add_subsystem('px', om.IndepVarComp('x', 1.0), promotes=['x']) model.add_subsystem('pz', om.IndepVarComp('z', np.array([5.0, 2.0])), promotes=['z']) proms = ['x', 'z', 'y1', 'state_eq.y2_actual', 'state_eq.y2_command', 'd1.y2', 'd2.y2'] sub = model.add_subsystem('sub', om.Group(), promotes=proms) subgrp = sub.add_subsystem('state_eq_group', om.Group(), promotes=['state_eq.y2_actual', 'state_eq.y2_command']) subgrp.linear_solver = om.ScipyKrylov() subgrp.add_subsystem('state_eq', StateConnection()) sub.add_subsystem('d1', SellarDis1withDerivatives(), promotes=['x', 'z', 'y1']) sub.add_subsystem('d2', SellarDis2withDerivatives(), promotes=['z', 'y1']) model.connect('state_eq.y2_command', 'd1.y2') model.connect('d2.y2', 'state_eq.y2_actual') model.add_subsystem('obj_cmp', om.ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)', z=np.array([0.0, 0.0]), x=0.0, y1=0.0, y2=0.0), promotes=['x', 'z', 'y1', 'obj']) model.connect('d2.y2', 'obj_cmp.y2') model.add_subsystem('con_cmp1', om.ExecComp('con1 = 3.16 - y1'), promotes=['con1', 'y1']) model.add_subsystem('con_cmp2', om.ExecComp('con2 = y2 - 24.0'), promotes=['con2']) model.connect('d2.y2', 'con_cmp2.y2') model.nonlinear_solver = om.NewtonSolver() # Use bad settings for this one so that problem doesn't converge. # That way, we test that we are really using Newton's Lin Solver # instead. model.linear_solver = om.ScipyKrylov() model.linear_solver.options['maxiter'] = 1 # The good solver model.nonlinear_solver.linear_solver = om.ScipyKrylov() prob.set_solver_print(level=0) prob.setup() prob.run_model() assert_rel_error(self, prob['y1'], 25.58830273, .00001) assert_rel_error(self, prob['state_eq.y2_command'], 12.05848819, .00001) # Make sure we aren't iterating like crazy self.assertLess(model.nonlinear_solver._iter_count, 8) self.assertEqual(model.linear_solver._iter_count, 0) self.assertGreater(model.nonlinear_solver.linear_solver._iter_count, 0) def test_sellar_specify_linear_direct_solver(self): prob = om.Problem() model = prob.model model.add_subsystem('px', om.IndepVarComp('x', 1.0), promotes=['x']) model.add_subsystem('pz', om.IndepVarComp('z', np.array([5.0, 2.0])), promotes=['z']) proms = ['x', 'z', 'y1', 'state_eq.y2_actual', 'state_eq.y2_command', 'd1.y2', 'd2.y2'] sub = model.add_subsystem('sub', om.Group(), promotes=proms) subgrp = sub.add_subsystem('state_eq_group', om.Group(), promotes=['state_eq.y2_actual', 'state_eq.y2_command']) subgrp.linear_solver = om.ScipyKrylov() subgrp.add_subsystem('state_eq', StateConnection()) sub.add_subsystem('d1', SellarDis1withDerivatives(), promotes=['x', 'z', 'y1']) sub.add_subsystem('d2', SellarDis2withDerivatives(), promotes=['z', 'y1']) model.connect('state_eq.y2_command', 'd1.y2') model.connect('d2.y2', 'state_eq.y2_actual') model.add_subsystem('obj_cmp', om.ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)', z=np.array([0.0, 0.0]), x=0.0, y1=0.0, y2=0.0), promotes=['x', 'z', 'y1', 'obj']) model.connect('d2.y2', 'obj_cmp.y2') model.add_subsystem('con_cmp1', om.ExecComp('con1 = 3.16 - y1'), promotes=['con1', 'y1']) model.add_subsystem('con_cmp2', om.ExecComp('con2 = y2 - 24.0'), promotes=['con2']) model.connect('d2.y2', 'con_cmp2.y2') model.nonlinear_solver = om.NewtonSolver() # Use bad settings for this one so that problem doesn't converge. # That way, we test that we are really using Newton's Lin Solver # instead. sub.linear_solver = om.ScipyKrylov() sub.linear_solver.options['maxiter'] = 1 # The good solver model.nonlinear_solver.linear_solver = om.DirectSolver() prob.set_solver_print(level=0) prob.setup() prob.run_model() assert_rel_error(self, prob['y1'], 25.58830273, .00001) assert_rel_error(self, prob['state_eq.y2_command'], 12.05848819, .00001) # Make sure we aren't iterating like crazy self.assertLess(model.nonlinear_solver._iter_count, 8) self.assertEqual(model.linear_solver._iter_count, 0) def test_solve_subsystems_basic(self): prob = om.Problem(model=DoubleSellar()) model = prob.model g1 = model.g1 g1.nonlinear_solver = om.NewtonSolver() g1.nonlinear_solver.options['rtol'] = 1.0e-5 g1.linear_solver = om.DirectSolver(assemble_jac=True) g1.options['assembled_jac_type'] = 'dense' g2 = model.g2 g2.nonlinear_solver = om.NewtonSolver() g2.nonlinear_solver.options['rtol'] = 1.0e-5 g2.linear_solver = om.DirectSolver(assemble_jac=True) g2.options['assembled_jac_type'] = 'dense' model.nonlinear_solver = om.NewtonSolver() model.linear_solver = om.ScipyKrylov(assemble_jac=True) model.options['assembled_jac_type'] = 'dense' model.nonlinear_solver.options['solve_subsystems'] = True prob.setup() prob.run_model() assert_rel_error(self, prob['g1.y1'], 0.64, .00001) assert_rel_error(self, prob['g1.y2'], 0.80, .00001) assert_rel_error(self, prob['g2.y1'], 0.64, .00001) assert_rel_error(self, prob['g2.y2'], 0.80, .00001) def test_solve_subsystems_basic_csc(self): prob = om.Problem(model=DoubleSellar()) model = prob.model g1 = model.g1 g1.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g1.options['assembled_jac_type'] = 'dense' g1.linear_solver = om.DirectSolver(assemble_jac=True) g2 = model.g2 g2.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g2.linear_solver = om.DirectSolver(assemble_jac=True) g2.options['assembled_jac_type'] = 'dense' model.nonlinear_solver = om.NewtonSolver(solve_subsystems=True) model.linear_solver = om.ScipyKrylov(assemble_jac=True) prob.setup() prob.run_model() assert_rel_error(self, prob['g1.y1'], 0.64, .00001) assert_rel_error(self, prob['g1.y2'], 0.80, .00001) assert_rel_error(self, prob['g2.y1'], 0.64, .00001) assert_rel_error(self, prob['g2.y2'], 0.80, .00001) def test_solve_subsystems_basic_dense_jac(self): prob = om.Problem(model=DoubleSellar()) model = prob.model g1 = model.g1 g1.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g1.linear_solver = om.DirectSolver() g2 = model.g2 g2.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g2.linear_solver = om.DirectSolver() model.nonlinear_solver = om.NewtonSolver(solve_subsystems=True) model.linear_solver = om.ScipyKrylov(assemble_jac=True) model.options['assembled_jac_type'] = 'dense' prob.setup() prob.run_model() assert_rel_error(self, prob['g1.y1'], 0.64, .00001) assert_rel_error(self, prob['g1.y2'], 0.80, .00001) assert_rel_error(self, prob['g2.y1'], 0.64, .00001) assert_rel_error(self, prob['g2.y2'], 0.80, .00001) def test_solve_subsystems_basic_dense_jac_scaling(self): prob = om.Problem(model=DoubleSellar(units=None, scaling=True)) model = prob.model g1 = model.g1 g1.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g1.linear_solver = om.DirectSolver() g2 = model.g2 g2.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g2.linear_solver = om.DirectSolver() model.nonlinear_solver = om.NewtonSolver(solve_subsystems=True) model.linear_solver = om.ScipyKrylov(assemble_jac=True) model.options['assembled_jac_type'] = 'dense' prob.setup() prob.run_model() assert_rel_error(self, prob['g1.y1'], 0.64, .00001) assert_rel_error(self, prob['g1.y2'], 0.80, .00001) assert_rel_error(self, prob['g2.y1'], 0.64, .00001) assert_rel_error(self, prob['g2.y2'], 0.80, .00001) def test_solve_subsystems_basic_dense_jac_units_scaling(self): prob = om.Problem(model=DoubleSellar(units=True, scaling=True)) model = prob.model g1 = model.g1 g1.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g1.linear_solver = om.DirectSolver() g2 = model.g2 g2.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g2.linear_solver = om.DirectSolver() model.nonlinear_solver = om.NewtonSolver(solve_subsystems=True) model.linear_solver = om.ScipyKrylov(assemble_jac=True) model.options['assembled_jac_type'] = 'dense' prob.setup() prob.run_model() assert_rel_error(self, prob['g1.y1'], 0.0533333333, .00001) assert_rel_error(self, prob['g1.y2'], 0.80, .00001) assert_rel_error(self, prob['g2.y1'], 0.0533333333, .00001) assert_rel_error(self, prob['g2.y2'], 0.80, .00001) def test_solve_subsystems_assembled_jac_top(self): prob = om.Problem(model=DoubleSellar()) model = prob.model g1 = model.g1 g1.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g1.linear_solver = om.DirectSolver() g2 = model.g2 g2.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g2.linear_solver = om.DirectSolver() model.nonlinear_solver = om.NewtonSolver(solve_subsystems=True) model.linear_solver = om.ScipyKrylov(assemble_jac=True) model.options['assembled_jac_type'] = 'dense' prob.setup() prob.run_model() assert_rel_error(self, prob['g1.y1'], 0.64, .00001) assert_rel_error(self, prob['g1.y2'], 0.80, .00001) assert_rel_error(self, prob['g2.y1'], 0.64, .00001) assert_rel_error(self, prob['g2.y2'], 0.80, .00001) def test_solve_subsystems_assembled_jac_top_csc(self): prob = om.Problem(model=DoubleSellar()) model = prob.model g1 = model.g1 g1.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g1.linear_solver = om.DirectSolver() g2 = model.g2 g2.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g2.linear_solver = om.DirectSolver() model.nonlinear_solver = om.NewtonSolver(solve_subsystems=True) model.linear_solver = om.ScipyKrylov(assemble_jac=True) prob.setup() prob.run_model() assert_rel_error(self, prob['g1.y1'], 0.64, .00001) assert_rel_error(self, prob['g1.y2'], 0.80, .00001) assert_rel_error(self, prob['g2.y1'], 0.64, .00001) assert_rel_error(self, prob['g2.y2'], 0.80, .00001) def test_solve_subsystems_assembled_jac_top_implicit(self): prob = om.Problem(model=DoubleSellarImplicit()) model = prob.model g1 = model.g1 g1.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g1.linear_solver = om.DirectSolver() g2 = model.g2 g2.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g2.linear_solver = om.DirectSolver() model.nonlinear_solver = om.NewtonSolver(solve_subsystems=True) model.linear_solver = om.ScipyKrylov(assemble_jac=True) model.options['assembled_jac_type'] = 'dense' prob.setup() prob.run_model() assert_rel_error(self, prob['g1.y1'], 0.64, .00001) assert_rel_error(self, prob['g1.y2'], 0.80, .00001) assert_rel_error(self, prob['g2.y1'], 0.64, .00001) assert_rel_error(self, prob['g2.y2'], 0.80, .00001) def test_solve_subsystems_assembled_jac_top_implicit_scaling(self): prob = om.Problem(model=DoubleSellarImplicit(scaling=True)) model = prob.model g1 = model.g1 g1.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g1.linear_solver = om.DirectSolver() g2 = model.g2 g2.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g2.linear_solver = om.DirectSolver() model.nonlinear_solver = om.NewtonSolver(solve_subsystems=True) model.linear_solver = om.ScipyKrylov(assemble_jac=True) model.options['assembled_jac_type'] = 'dense' prob.setup() prob.run_model() assert_rel_error(self, prob['g1.y1'], 0.64, .00001) assert_rel_error(self, prob['g1.y2'], 0.80, .00001) assert_rel_error(self, prob['g2.y1'], 0.64, .00001) assert_rel_error(self, prob['g2.y2'], 0.80, .00001) def test_solve_subsystems_assembled_jac_top_implicit_scaling_units(self): prob = om.Problem(model=DoubleSellarImplicit(units=True, scaling=True)) model = prob.model g1 = model.g1 g1.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g1.linear_solver = om.DirectSolver() g2 = model.g2 g2.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g2.linear_solver = om.DirectSolver() model.nonlinear_solver = om.NewtonSolver(solve_subsystems=True) model.linear_solver = om.ScipyKrylov(assemble_jac=True) model.options['assembled_jac_type'] = 'dense' prob.setup() prob.run_model() assert_rel_error(self, prob['g1.y1'], 0.053333333, .00001) assert_rel_error(self, prob['g1.y2'], 0.80, .00001) assert_rel_error(self, prob['g2.y1'], 0.053333333, .00001) assert_rel_error(self, prob['g2.y2'], 0.80, .00001) def test_solve_subsystems_assembled_jac_subgroup(self): prob = om.Problem(model=DoubleSellar()) model = prob.model g1 = model.g1 g1.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g1.linear_solver = om.DirectSolver(assemble_jac=True) model.options['assembled_jac_type'] = 'dense' g2 = model.g2 g2.nonlinear_solver = om.NewtonSolver(rtol=1.0e-5) g2.linear_solver = om.DirectSolver() model.nonlinear_solver = om.NewtonSolver() model.linear_solver = om.ScipyKrylov() prob.setup() prob.run_model() assert_rel_error(self, prob['g1.y1'], 0.64, .00001) assert_rel_error(self, prob['g1.y2'], 0.80, .00001) assert_rel_error(self, prob['g2.y1'], 0.64, .00001) assert_rel_error(self, prob['g2.y2'], 0.80, .00001) def test_solve_subsystems_internals(self): # Here we test that this feature is doing what it should do by counting the # number of calls in various places. class CountNewton(om.NewtonSolver): """ This version of Newton also counts how many times it runs in total.""" def __init__(self, **kwargs): super(CountNewton, self).__init__(**kwargs) self.total_count = 0 def _single_iteration(self): super(CountNewton, self)._single_iteration() self.total_count += 1 class CountDS(om.DirectSolver): """ This version of Newton also counts how many times it linearizes""" def __init__(self, **kwargs): super(CountDS, self).__init__(**kwargs) self.lin_count = 0 def _linearize(self): super(CountDS, self)._linearize() self.lin_count += 1 prob = om.Problem(model=DoubleSellar()) model = prob.model # each SubSellar group converges itself g1 = model.g1 g1.nonlinear_solver = CountNewton() g1.nonlinear_solver.options['rtol'] = 1.0e-5 g1.linear_solver = CountDS() # used for derivatives g2 = model.g2 g2.nonlinear_solver = CountNewton() g2.nonlinear_solver.options['rtol'] = 1.0e-5 g2.linear_solver = om.DirectSolver() # Converge the outer loop with Gauss Seidel, with a looser tolerance. model.nonlinear_solver = om.NewtonSolver() model.linear_solver = om.ScipyKrylov() # Enfore behavior: max_sub_solves = 0 means we run once during init model.nonlinear_solver.options['maxiter'] = 5 model.nonlinear_solver.options['solve_subsystems'] = True model.nonlinear_solver.options['max_sub_solves'] = 0 prob.set_solver_print(level=0) prob.setup() prob.run_model() # Verifying subsolvers ran self.assertEqual(g1.nonlinear_solver.total_count, 2) self.assertEqual(g2.nonlinear_solver.total_count, 2) self.assertEqual(g1.linear_solver.lin_count, 2) prob = om.Problem(model=DoubleSellar()) model = prob.model # each SubSellar group converges itself g1 = model.g1 g1.nonlinear_solver = CountNewton() g1.nonlinear_solver.options['rtol'] = 1.0e-5 g1.linear_solver = CountDS() # used for derivatives g2 = model.g2 g2.nonlinear_solver = CountNewton() g2.nonlinear_solver.options['rtol'] = 1.0e-5 g2.linear_solver = om.DirectSolver() # Converge the outer loop with Gauss Seidel, with a looser tolerance. model.nonlinear_solver = om.NewtonSolver() model.linear_solver = om.ScipyKrylov() # Enforce Behavior: baseline model.nonlinear_solver.options['maxiter'] = 5 model.nonlinear_solver.options['solve_subsystems'] = True model.nonlinear_solver.options['max_sub_solves'] = 5 prob.set_solver_print(level=0) prob.setup() prob.run_model() # Verifying subsolvers ran self.assertEqual(g1.nonlinear_solver.total_count, 5) self.assertEqual(g2.nonlinear_solver.total_count, 5) self.assertEqual(g1.linear_solver.lin_count, 5) prob = om.Problem(model=DoubleSellar()) model = prob.model # each SubSellar group converges itself g1 = model.g1 g1.nonlinear_solver = CountNewton() g1.nonlinear_solver.options['rtol'] = 1.0e-5 g1.linear_solver = CountDS() # used for derivatives g2 = model.g2 g2.nonlinear_solver = CountNewton() g2.nonlinear_solver.options['rtol'] = 1.0e-5 g2.linear_solver = om.DirectSolver() # Converge the outer loop with Gauss Seidel, with a looser tolerance. model.nonlinear_solver = om.NewtonSolver() model.linear_solver = om.ScipyKrylov() # Enfore behavior: max_sub_solves = 1 means we run during init and first iteration of iter_execute model.nonlinear_solver.options['maxiter'] = 5 model.nonlinear_solver.options['solve_subsystems'] = True model.nonlinear_solver.options['max_sub_solves'] = 1 prob.set_solver_print(level=0) prob.setup() prob.run_model() # Verifying subsolvers ran self.assertEqual(g1.nonlinear_solver.total_count, 4) self.assertEqual(g2.nonlinear_solver.total_count, 4) self.assertEqual(g1.linear_solver.lin_count, 4) def test_maxiter_one(self): # Fix bug when maxiter was set to 1. # This bug caused linearize to run before apply in this case. class ImpComp(om.ImplicitComponent): def setup(self): self.add_input('a', val=1.) self.add_output('x', val=0.) self.applied = False self.declare_partials(of='*', wrt='*') def apply_nonlinear(self, inputs, outputs, residuals): residuals['x'] = np.exp(outputs['x']) - \ inputs['a']**2 * outputs['x']**2 self.applied = True def solve_nonlinear(self, inputs, outputs): pass def linearize(self, inputs, outputs, jacobian): jacobian['x', 'x'] = np.exp(outputs['x']) - \ 2 * inputs['a']**2 * outputs['x'] jacobian['x', 'a'] = -2 * inputs['a'] * outputs['x']**2 if not self.applied: raise RuntimeError("Bug! Linearize called before Apply!") prob = om.Problem() root = prob.model root.add_subsystem('p1', om.IndepVarComp('a', 1.0)) root.add_subsystem('comp', ImpComp()) root.connect('p1.a', 'comp.a') root.nonlinear_solver = om.NewtonSolver() root.nonlinear_solver.options['maxiter'] = 1 prob.set_solver_print(level=0) prob.setup() prob.run_model() def test_err_on_maxiter_deprecated(self): # Raise AnalysisError when it fails to converge prob = om.Problem() nlsolver = om.NewtonSolver() prob.model = SellarDerivatives(nonlinear_solver=nlsolver, linear_solver=om.LinearBlockGS()) nlsolver.options['err_on_maxiter'] = True nlsolver.options['maxiter'] = 1 prob.setup() prob.set_solver_print(level=0) msg = "The 'err_on_maxiter' option provides backwards compatibility " + \ "with earlier version of OpenMDAO; use options['err_on_non_converge'] " + \ "instead." #prob.final_setup() with assert_warning(DeprecationWarning, msg): prob.final_setup() with self.assertRaises(om.AnalysisError) as context: prob.run_model() msg = "Solver 'NL: Newton' on system '' failed to converge in 1 iterations." self.assertEqual(str(context.exception), msg) def test_err_on_non_converge(self): # Raise AnalysisError when it fails to converge prob = om.Problem() nlsolver = om.NewtonSolver() prob.model = SellarDerivatives(nonlinear_solver=nlsolver, linear_solver=om.LinearBlockGS()) nlsolver.options['err_on_non_converge'] = True nlsolver.options['maxiter'] = 1 prob.setup() prob.set_solver_print(level=0) with self.assertRaises(om.AnalysisError) as context: prob.run_driver() msg = "Solver 'NL: Newton' on system '' failed to converge in 1 iterations." self.assertEqual(str(context.exception), msg) def test_err_message_inf_nan(self): prob = om.Problem() nlsolver = om.NewtonSolver() prob.model = SellarDerivatives(nonlinear_solver=nlsolver, linear_solver=om.LinearBlockGS()) nlsolver.options['err_on_non_converge'] = True nlsolver.options['maxiter'] = 1 prob.setup() prob.set_solver_print(level=0) prob['x'] = np.nan with self.assertRaises(om.AnalysisError) as context: prob.run_model() msg = "Solver 'NL: Newton' on system '': residuals contain 'inf' or 'NaN' after 0 iterations." self.assertEqual(str(context.exception), msg) def test_relevancy_for_newton(self): class TestImplCompSimple(om.ImplicitComponent): def setup(self): self.add_input('a', val=1.) self.add_output('x', val=0.) self.declare_partials(of='*', wrt='*') def apply_nonlinear(self, inputs, outputs, residuals): residuals['x'] = np.exp(outputs['x']) - \ inputs['a']**2 * outputs['x']**2 def linearize(self, inputs, outputs, jacobian): jacobian['x', 'x'] = np.exp(outputs['x']) - \ 2 * inputs['a']**2 * outputs['x'] jacobian['x', 'a'] = -2 * inputs['a'] * outputs['x']**2 prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', 3.0)) model.add_subsystem('icomp', TestImplCompSimple()) model.add_subsystem('ecomp', om.ExecComp('y = x*p', p=1.0)) model.connect('p1.x', 'ecomp.x') model.connect('icomp.x', 'ecomp.p') model.add_design_var('p1.x', 3.0) model.add_objective('ecomp.y') model.nonlinear_solver = om.NewtonSolver() model.linear_solver = om.ScipyKrylov() prob.setup() prob.run_model() J = prob.compute_totals() assert_rel_error(self, J['ecomp.y', 'p1.x'][0][0], -0.703467422498, 1e-6) def test_linsearch_3_deprecation(self): prob = om.Problem(model=SellarDerivatives(nonlinear_solver=om.NewtonSolver())) prob.setup() msg = 'Deprecation warning: In V 3.0, the default Newton solver setup will change ' + \ 'to use the BoundsEnforceLS line search.' with assert_warning(DeprecationWarning, msg): prob.final_setup() class TestNewtonFeatures(unittest.TestCase): def test_feature_basic(self): import numpy as np import openmdao.api as om from openmdao.test_suite.components.sellar import SellarDis1withDerivatives, SellarDis2withDerivatives prob = om.Problem() model = prob.model model.add_subsystem('px', om.IndepVarComp('x', 1.0), promotes=['x']) model.add_subsystem('pz', om.IndepVarComp('z', np.array([5.0, 2.0])), promotes=['z']) model.add_subsystem('d1', SellarDis1withDerivatives(), promotes=['x', 'z', 'y1', 'y2']) model.add_subsystem('d2', SellarDis2withDerivatives(), promotes=['z', 'y1', 'y2']) model.add_subsystem('obj_cmp', om.ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)', z=np.array([0.0, 0.0]), x=0.0), promotes=['obj', 'x', 'z', 'y1', 'y2']) model.add_subsystem('con_cmp1', om.ExecComp('con1 = 3.16 - y1'), promotes=['con1', 'y1']) model.add_subsystem('con_cmp2', om.ExecComp('con2 = y2 - 24.0'), promotes=['con2', 'y2']) model.linear_solver = om.DirectSolver() model.nonlinear_solver = om.NewtonSolver() prob.setup() prob.run_model() assert_rel_error(self, prob['y1'], 25.58830273, .00001) assert_rel_error(self, prob['y2'], 12.05848819, .00001) def test_feature_maxiter(self): import numpy as np import openmdao.api as om from openmdao.test_suite.components.sellar import SellarDis1withDerivatives, SellarDis2withDerivatives prob = om.Problem() model = prob.model model.add_subsystem('px', om.IndepVarComp('x', 1.0), promotes=['x']) model.add_subsystem('pz', om.IndepVarComp('z', np.array([5.0, 2.0])), promotes=['z']) model.add_subsystem('d1', SellarDis1withDerivatives(), promotes=['x', 'z', 'y1', 'y2']) model.add_subsystem('d2', SellarDis2withDerivatives(), promotes=['z', 'y1', 'y2']) model.add_subsystem('obj_cmp', om.ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)', z=np.array([0.0, 0.0]), x=0.0), promotes=['obj', 'x', 'z', 'y1', 'y2']) model.add_subsystem('con_cmp1', om.ExecComp('con1 = 3.16 - y1'), promotes=['con1', 'y1']) model.add_subsystem('con_cmp2', om.ExecComp('con2 = y2 - 24.0'), promotes=['con2', 'y2']) model.linear_solver = om.DirectSolver() nlgbs = model.nonlinear_solver = om.NewtonSolver() nlgbs.options['maxiter'] = 2 prob.setup() prob.run_model() assert_rel_error(self, prob['y1'], 25.5878516779, .00001) assert_rel_error(self, prob['y2'], 12.0607416105, .00001) def test_feature_rtol(self): import numpy as np import openmdao.api as om from openmdao.test_suite.components.sellar import SellarDis1withDerivatives, SellarDis2withDerivatives prob = om.Problem() model = prob.model model.add_subsystem('px', om.IndepVarComp('x', 1.0), promotes=['x']) model.add_subsystem('pz', om.IndepVarComp('z', np.array([5.0, 2.0])), promotes=['z']) model.add_subsystem('d1', SellarDis1withDerivatives(), promotes=['x', 'z', 'y1', 'y2']) model.add_subsystem('d2', SellarDis2withDerivatives(), promotes=['z', 'y1', 'y2']) model.add_subsystem('obj_cmp', om.ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)', z=np.array([0.0, 0.0]), x=0.0), promotes=['obj', 'x', 'z', 'y1', 'y2']) model.add_subsystem('con_cmp1', om.ExecComp('con1 = 3.16 - y1'), promotes=['con1', 'y1']) model.add_subsystem('con_cmp2', om.ExecComp('con2 = y2 - 24.0'), promotes=['con2', 'y2']) model.linear_solver = om.DirectSolver() nlgbs = model.nonlinear_solver = om.NewtonSolver() nlgbs.options['rtol'] = 1e-3 prob.setup() prob.run_model() assert_rel_error(self, prob['y1'], 25.5878516779, .00001) assert_rel_error(self, prob['y2'], 12.0607416105, .00001) def test_feature_atol(self): import numpy as np import openmdao.api as om from openmdao.test_suite.components.sellar import SellarDis1withDerivatives, SellarDis2withDerivatives prob = om.Problem() model = prob.model model.add_subsystem('px', om.IndepVarComp('x', 1.0), promotes=['x']) model.add_subsystem('pz', om.IndepVarComp('z', np.array([5.0, 2.0])), promotes=['z']) model.add_subsystem('d1', SellarDis1withDerivatives(), promotes=['x', 'z', 'y1', 'y2']) model.add_subsystem('d2', SellarDis2withDerivatives(), promotes=['z', 'y1', 'y2']) model.add_subsystem('obj_cmp', om.ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)', z=np.array([0.0, 0.0]), x=0.0), promotes=['obj', 'x', 'z', 'y1', 'y2']) model.add_subsystem('con_cmp1', om.ExecComp('con1 = 3.16 - y1'), promotes=['con1', 'y1']) model.add_subsystem('con_cmp2', om.ExecComp('con2 = y2 - 24.0'), promotes=['con2', 'y2']) model.linear_solver = om.DirectSolver() nlgbs = model.nonlinear_solver = om.NewtonSolver() nlgbs.options['atol'] = 1e-4 prob.setup() prob.run_model() assert_rel_error(self, prob['y1'], 25.5882856302, .00001) assert_rel_error(self, prob['y2'], 12.05848819, .00001) def test_feature_linear_solver(self): import numpy as np import openmdao.api as om from openmdao.test_suite.components.sellar import SellarDis1withDerivatives, \ SellarDis2withDerivatives prob = om.Problem() model = prob.model model.add_subsystem('px', om.IndepVarComp('x', 1.0), promotes=['x']) model.add_subsystem('pz', om.IndepVarComp('z', np.array([5.0, 2.0])), promotes=['z']) model.add_subsystem('d1', SellarDis1withDerivatives(), promotes=['x', 'z', 'y1', 'y2']) model.add_subsystem('d2', SellarDis2withDerivatives(), promotes=['z', 'y1', 'y2']) model.add_subsystem('obj_cmp', om.ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)', z=np.array([0.0, 0.0]), x=0.0), promotes=['obj', 'x', 'z', 'y1', 'y2']) model.add_subsystem('con_cmp1', om.ExecComp('con1 = 3.16 - y1'), promotes=['con1', 'y1']) model.add_subsystem('con_cmp2', om.ExecComp('con2 = y2 - 24.0'), promotes=['con2', 'y2']) model.linear_solver = om.LinearBlockGS() nlgbs = model.nonlinear_solver = om.NewtonSolver() nlgbs.linear_solver = om.DirectSolver() prob.setup() prob.run_model() assert_rel_error(self, prob['y1'], 25.58830273, .00001) assert_rel_error(self, prob['y2'], 12.05848819, .00001) def test_feature_max_sub_solves(self): import numpy as np import openmdao.api as om from openmdao.test_suite.components.double_sellar import SubSellar prob = om.Problem() model = prob.model model.add_subsystem('g1', SubSellar()) model.add_subsystem('g2', SubSellar()) model.connect('g1.y2', 'g2.x') model.connect('g2.y2', 'g1.x') # Converge the outer loop with Gauss Seidel, with a looser tolerance. model.nonlinear_solver = om.NewtonSolver() model.linear_solver = om.DirectSolver() g1 = model.g1 g1.nonlinear_solver = om.NewtonSolver() g1.nonlinear_solver.options['rtol'] = 1.0e-5 g1.linear_solver = om.DirectSolver() g2 = model.g2 g2.nonlinear_solver = om.NewtonSolver() g2.nonlinear_solver.options['rtol'] = 1.0e-5 g2.linear_solver = om.DirectSolver() model.nonlinear_solver = om.NewtonSolver() model.linear_solver = om.ScipyKrylov() model.nonlinear_solver.options['solve_subsystems'] = True model.nonlinear_solver.options['max_sub_solves'] = 0 prob.setup() prob.run_model() def test_feature_err_on_non_converge(self): import numpy as np import openmdao.api as om from openmdao.test_suite.components.sellar import SellarDis1withDerivatives, SellarDis2withDerivatives prob = om.Problem() model = prob.model model.add_subsystem('px', om.IndepVarComp('x', 1.0), promotes=['x']) model.add_subsystem('pz', om.IndepVarComp('z', np.array([5.0, 2.0])), promotes=['z']) model.add_subsystem('d1', SellarDis1withDerivatives(), promotes=['x', 'z', 'y1', 'y2']) model.add_subsystem('d2', SellarDis2withDerivatives(), promotes=['z', 'y1', 'y2']) model.add_subsystem('obj_cmp', om.ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)', z=np.array([0.0, 0.0]), x=0.0), promotes=['obj', 'x', 'z', 'y1', 'y2']) model.add_subsystem('con_cmp1', om.ExecComp('con1 = 3.16 - y1'), promotes=['con1', 'y1']) model.add_subsystem('con_cmp2', om.ExecComp('con2 = y2 - 24.0'), promotes=['con2', 'y2']) model.linear_solver = om.DirectSolver() nlgbs = model.nonlinear_solver = om.NewtonSolver() nlgbs.options['maxiter'] = 1 nlgbs.options['err_on_non_converge'] = True prob.setup() try: prob.run_model() except om.AnalysisError: pass def test_solve_subsystems_basic(self): import openmdao.api as om from openmdao.test_suite.components.double_sellar import DoubleSellar prob = om.Problem(model=DoubleSellar()) model = prob.model g1 = model.g1 g1.nonlinear_solver = om.NewtonSolver() g1.nonlinear_solver.options['rtol'] = 1.0e-5 g1.linear_solver = om.DirectSolver() g2 = model.g2 g2.nonlinear_solver = om.NewtonSolver() g2.nonlinear_solver.options['rtol'] = 1.0e-5 g2.linear_solver = om.DirectSolver() model.nonlinear_solver = om.NewtonSolver() model.linear_solver = om.ScipyKrylov() model.nonlinear_solver.options['solve_subsystems'] = True prob.setup() prob.run_model() assert_rel_error(self, prob['g1.y1'], 0.64, .00001) assert_rel_error(self, prob['g1.y2'], 0.80, .00001) assert_rel_error(self, prob['g2.y1'], 0.64, .00001) assert_rel_error(self, prob['g2.y2'], 0.80, .00001) if __name__ == "__main__": unittest.main() ``` #### File: visualization/meta_model_viewer/meta_model_visualization.py ```python import math from itertools import product from scipy.spatial import cKDTree import numpy as np import logging from bokeh.io import curdoc from bokeh.layouts import row, column from bokeh.plotting import figure from bokeh.models import Slider, ColumnDataSource, HoverTool from bokeh.models import ColorBar, BasicTicker, LinearColorMapper, Range1d from bokeh.models.widgets import TextInput, Select from bokeh.server.server import Server from openmdao.components.meta_model_unstructured_comp import MetaModelUnStructuredComp from openmdao.components.meta_model_structured_comp import MetaModelStructuredComp from openmdao.core.problem import Problem def stack_outputs(outputs_dict): """ Stack the values of a dictionary. Parameters ---------- outputs_dict : dict Dictionary of outputs Returns ------- array np.stack of values """ return np.stack([np.asarray(v) for v in outputs_dict.values()], axis=-1) class MetaModelVisualization(object): """ Top-level container for the Meta Model Visualization. Attributes ---------- prob : Problem Name of variable corresponding to Problem Component meta_model : MetaModel Name of empty Meta Model Component object reference resolution : int Number used to calculate width and height of contour plot is_structured_meta_model : Bool Boolean used to signal whether the meta model is structured or unstructured slider_source : ColumnDataSource Data source containing dictionary of sliders contour_training_data_source : ColumnDataSource Data source containing dictionary of training data points bottom_plot_source : ColumnDataSource Data source containing data for the bottom subplot bottom_plot_scatter_source : ColumnDataSource Data source containing scatter point data for the bottom subplot right_plot_source : ColumnDataSource Data source containing data for the right subplot right_plot_scatter_source : ColumnDataSource Data source containing scatter point data for the right subplot contour_plot_source : ColumnDataSource Data source containing data for the contour plot input_names : list List of input data titles as strings output_names : list List of output data titles as strings training_inputs : dict Dictionary of input training data x_input_select : Select Bokeh Select object containing a list of inputs for the x axis y_input_select : Select Bokeh Select object containing a list of inputs for the y axis output_select : Select Bokeh Select object containing a list of inputs for the outputs x_input_slider : Slider Bokeh Slider object containing a list of input values for the x axis y_input_slider : Slider Bokeh Slider object containing a list of input values for the y axis slider_dict : dict Dictionary of slider names and their respective slider objects predict_inputs : dict Dictionary containing training data points to predict at. num_inputs : int Number of inputs num_outputs : int Number of outputs limit_range : array Array containing the range of each input scatter_distance : TextInput Text input for user to enter custom value to calculate distance of training points around slice line right_alphas : array Array of points containing alpha values for right plot bottom_alphas : array Array of points containing alpha values for bottom plot dist_range : float Value taken from scatter_distance used for calculating distance of training points around slice line x_index : int Value of x axis column y_index : int Value of y axis column output_variable : int Value of output axis column sliders_and_selects : layout Layout containing the sliders and select elements doc_layout : layout Contains first row of plots doc_layout2 : layout Contains second row of plots Z : array A 2D array containing contour plot data """ def __init__(self, model, resolution=50, doc=None): """ Initialize parameters. Parameters ---------- model : MetaModelComponent Reference to meta model component resolution : int Value used to calculate the size of contour plot meshgrid doc : Document The bokeh document to build. """ self.prob = Problem() self.resolution = resolution logging.getLogger("bokeh").setLevel(logging.ERROR) # If the surrogate model coming in is structured if isinstance(model, MetaModelUnStructuredComp): self.is_structured_meta_model = False # Create list of input names, check if it has more than one input, then create list # of outputs self.input_names = [name[0] for name in model._surrogate_input_names] if len(self.input_names) < 2: raise ValueError('Must have more than one input value') self.output_names = [name[0] for name in model._surrogate_output_names] # Create reference for untructured component self.meta_model = MetaModelUnStructuredComp( default_surrogate=model.options['default_surrogate']) # If the surrogate model coming in is unstructured elif isinstance(model, MetaModelStructuredComp): self.is_structured_meta_model = True self.input_names = [name for name in model._var_rel_names['input']] if len(self.input_names) < 2: raise ValueError('Must have more than one input value') self.output_names = [name for name in model._var_rel_names['output']] self.meta_model = MetaModelStructuredComp( distributed=model.options['distributed'], extrapolate=model.options['extrapolate'], method=model.options['method'], training_data_gradients=model.options['training_data_gradients'], vec_size=1) # Pair input list names with their respective data self.training_inputs = {} self._setup_empty_prob_comp(model) # Setup dropdown menus for x/y inputs and the output value self.x_input_select = Select(title="X Input:", value=[x for x in self.input_names][0], options=[x for x in self.input_names]) self.x_input_select.on_change('value', self._x_input_update) self.y_input_select = Select(title="Y Input:", value=[x for x in self.input_names][1], options=[x for x in self.input_names]) self.y_input_select.on_change('value', self._y_input_update) self.output_select = Select(title="Output:", value=[x for x in self.output_names][0], options=[x for x in self.output_names]) self.output_select.on_change('value', self._output_value_update) # Create sliders for each input self.slider_dict = {} self.predict_inputs = {} for title, values in self.training_inputs.items(): slider_data = np.linspace(min(values), max(values), self.resolution) self.predict_inputs[title] = slider_data # Calculates the distance between slider ticks slider_step = slider_data[1] - slider_data[0] slider_object = Slider(start=min(values), end=max(values), value=min(values), step=slider_step, title=str(title)) self.slider_dict[title] = slider_object self._slider_attrs() # Length of inputs and outputs self.num_inputs = len(self.input_names) self.num_outputs = len(self.output_names) # Precalculate the problem bounds. limits = np.array([[min(value), max(value)] for value in self.training_inputs.values()]) self.limit_range = limits[:, 1] - limits[:, 0] # Positional indicies self.x_index = 0 self.y_index = 1 self.output_variable = self.output_names.index(self.output_select.value) # Data sources are filled with initial values # Slider Column Data Source self.slider_source = ColumnDataSource(data=self.predict_inputs) # Contour plot Column Data Source self.contour_plot_source = ColumnDataSource(data=dict( z=np.random.rand(self.resolution, self.resolution))) self.contour_training_data_source = ColumnDataSource( data=dict(x=np.repeat(0, self.resolution), y=np.repeat(0, self.resolution))) # Bottom plot Column Data Source self.bottom_plot_source = ColumnDataSource(data=dict( x=np.repeat(0, self.resolution), y=np.repeat(0, self.resolution))) self.bottom_plot_scatter_source = ColumnDataSource(data=dict( bot_slice_x=np.repeat(0, self.resolution), bot_slice_y=np.repeat(0, self.resolution))) # Right plot Column Data Source self.right_plot_source = ColumnDataSource(data=dict( x=np.repeat(0, self.resolution), y=np.repeat(0, self.resolution))) self.right_plot_scatter_source = ColumnDataSource(data=dict( right_slice_x=np.repeat(0, self.resolution), right_slice_y=np.repeat(0, self.resolution))) # Text input to change the distance of reach when searching for nearest data points self.scatter_distance = TextInput(value="0.1", title="Scatter Distance") self.scatter_distance.on_change('value', self._scatter_input) self.dist_range = float(self.scatter_distance.value) # Grouping all of the sliders and dropdowns into one column sliders = [value for value in self.slider_dict.values()] sliders.extend( [self.x_input_select, self.y_input_select, self.output_select, self.scatter_distance]) self.sliders_and_selects = row( column(*sliders)) # Layout creation self.doc_layout = row(self._contour_data(), self._right_plot(), self.sliders_and_selects) self.doc_layout2 = row(self._bottom_plot()) if doc is None: doc = curdoc() doc.add_root(self.doc_layout) doc.add_root(self.doc_layout2) doc.title = 'Meta Model Visualization' def _setup_empty_prob_comp(self, metamodel): """ Take data from surrogate ref and pass it into new surrogate model with empty Problem model. Parameters ---------- metamodel : MetaModelComponent Reference to meta model component """ # Check for structured or unstructured if self.is_structured_meta_model: # Loop through the input names for idx, name in enumerate(self.input_names): # Check for no training data try: # Append the input data/titles to a dictionary self.training_inputs[name] = metamodel.params[idx] # Also, append the data as an 'add_input' to the model reference self.meta_model.add_input(name, 0., training_data=metamodel.params[idx]) except TypeError: msg = "No training data present for one or more parameters" raise TypeError(msg) # Add the outputs to the model reference for idx, name in enumerate(self.output_names): self.meta_model.add_output( name, 0., training_data=metamodel.training_outputs[name]) else: for name in self.input_names: try: self.training_inputs[name] = { title for title in metamodel.options['train:' + str(name)]} self.meta_model.add_input( name, 0., training_data=[ title for title in metamodel.options['train:' + str(name)]]) except TypeError: msg = "No training data present for one or more parameters" raise TypeError(msg) for name in self.output_names: self.meta_model.add_output( name, 0., training_data=[ title for title in metamodel.options['train:' + str(name)]]) # Add the subsystem and setup self.prob.model.add_subsystem('interp', self.meta_model) self.prob.setup() def _slider_attrs(self): """ Assign data to slider objects and callback functions. Parameters ---------- None """ for name, slider_object in self.slider_dict.items(): # Checks if there is a callback previously assigned and then clears it if len(slider_object._callbacks) == 1: slider_object._callbacks.clear() # Check if the name matches the 'x input' title if name == self.x_input_select.value: # Set the object and add an event handler self.x_input_slider = slider_object self.x_input_slider.on_change('value', self._scatter_plots_update) # Check if the name matches the 'y input' title elif name == self.y_input_select.value: # Set the object and add an event handler self.y_input_slider = slider_object self.y_input_slider.on_change('value', self._scatter_plots_update) else: # If it is not an x or y input then just assign it the event handler slider_object.on_change('value', self._update) def _make_predictions(self, data): """ Run the data parameter through the surrogate model which is given in prob. Parameters ---------- data : dict Dictionary containing training points. Returns ------- array np.stack of predicted points. """ # Create dictionary with an empty list outputs = {name: [] for name in self.output_names} # Parse dict into shape [n**2, number of inputs] list inputs = np.empty([self.resolution**2, self.num_inputs]) for idx, values in enumerate(data.values()): inputs[:, idx] = values.flatten() # Check for structured or unstructured if self.is_structured_meta_model: # Assign each row of the data coming in to a tuple. Loop through the tuple, and append # the name of the input and value. for idx, tup in enumerate(inputs): for name, val in zip(data.keys(), tup): self.prob[self.meta_model.name + '.' + name] = val self.prob.run_model() # Append the predicted value(s) for title in self.output_names: outputs[title].append( np.array(self.prob[self.meta_model.name + '.' + title])) else: for idx, tup in enumerate(inputs): for name, val in zip(data.keys(), tup): self.prob[self.meta_model.name + '.' + name] = val self.prob.run_model() for title in self.output_names: outputs[title].append( float(self.prob[self.meta_model.name + '.' + title])) return stack_outputs(outputs) def _contour_data_calcs(self): """ Parse input data into a dictionary to be predicted at. Parameters ---------- None Returns ------- dict Dictionary of training data to be predicted at. """ # Create initial data array of training points resolution = self.resolution x_data = np.zeros((resolution, resolution, self.num_inputs)) self._slider_attrs() # Broadcast the inputs to every row of x_data array x_data[:, :, :] = np.array(self.input_point_list) # Find the x/y input titles and match their index positions for idx, (title, values) in enumerate(self.slider_source.data.items()): if title == self.x_input_select.value: self.xlins_mesh = values x_index_position = idx if title == self.y_input_select.value: self.ylins_mesh = values y_index_position = idx # Make meshgrid from the x/y inputs to be plotted X, Y = np.meshgrid(self.xlins_mesh, self.ylins_mesh) # Move the x/y inputs to their respective positions in x_data x_data[:, :, x_index_position] = X x_data[:, :, y_index_position] = Y pred_dict = {} for idx, title in enumerate(self.slider_source.data): pred_dict.update({title: x_data[:, :, idx]}) return pred_dict def _contour_data(self): """ Create a contour plot. Parameters ---------- None Returns ------- Bokeh Image Plot """ resolution = self.resolution # Output data array initialization y_data = np.zeros((resolution, resolution, self.num_outputs)) self.input_point_list = [point.value for point in self.slider_dict.values()] # Pass the dict to make predictions and then reshape the output to # (resolution, resolution, number of outputs) y_data[:, :, :] = self._make_predictions(self._contour_data_calcs()).reshape( (resolution, resolution, self.num_outputs)) # Use the output variable to pull the correct column of data from the predicted # data (y_data) self.Z = y_data[:, :, self.output_variable] # Reshape it to be 2D self.Z = self.Z.reshape(resolution, resolution) # Update the data source with new data self.contour_plot_source.data = dict(z=[self.Z]) # Min to max of training data self.contour_x_range = xlins = self.xlins_mesh self.contour_y_range = ylins = self.ylins_mesh # Color bar formatting color_mapper = LinearColorMapper( palette="Viridis11", low=np.amin(self.Z), high=np.amax(self.Z)) color_bar = ColorBar(color_mapper=color_mapper, ticker=BasicTicker(), label_standoff=12, location=(0, 0)) # Contour Plot self.contour_plot = contour_plot = figure( match_aspect=False, tooltips=[(self.x_input_select.value, "$x"), (self.y_input_select.value, "$y"), (self.output_select.value, "@z")], tools='') contour_plot.x_range.range_padding = 0 contour_plot.y_range.range_padding = 0 contour_plot.plot_width = 600 contour_plot.plot_height = 500 contour_plot.xaxis.axis_label = self.x_input_select.value contour_plot.yaxis.axis_label = self.y_input_select.value contour_plot.min_border_left = 0 contour_plot.add_layout(color_bar, 'right') contour_plot.x_range = Range1d(min(xlins), max(xlins)) contour_plot.y_range = Range1d(min(ylins), max(ylins)) contour_plot.image(image='z', source=self.contour_plot_source, x=min(xlins), y=min(ylins), dh=(max(ylins) - min(ylins)), dw=(max(xlins) - min(xlins)), palette="Viridis11") # Adding training data points overlay to contour plot if self.is_structured_meta_model: data = self._structured_training_points() else: data = self._unstructured_training_points() if len(data): # Add training data points overlay to contour plot data = np.array(data) if self.is_structured_meta_model: self.contour_training_data_source.data = dict(x=data[:, 0], y=data[:, 1], z=self.meta_model.training_outputs[ self.output_select.value].flatten()) else: self.contour_training_data_source.data = dict(x=data[:, 0], y=data[:, 1], z=self.meta_model._training_output[ self.output_select.value]) training_data_renderer = self.contour_plot.circle( x='x', y='y', source=self.contour_training_data_source, size=5, color='white', alpha=0.50) self.contour_plot.add_tools(HoverTool(renderers=[training_data_renderer], tooltips=[ (self.x_input_select.value + " (train)", '@x'), (self.y_input_select.value + " (train)", '@y'), (self.output_select.value + " (train)", '@z'), ])) return self.contour_plot def _right_plot(self): """ Create the right side subplot to view the projected slice. Parameters ---------- None Returns ------- Bokeh figure """ # List of the current positions of the sliders self.input_point_list = [point.value for point in self.slider_dict.values()] # Find the title of the y input and match it with the data y_idx = self.y_input_select.value y_data = self.predict_inputs[y_idx] # Find the position of the x_input slider x_value = self.x_input_slider.value # Rounds the x_data to match the predict_inputs value subplot_value_index = np.where( np.around(self.predict_inputs[self.x_input_select.value], 5) == np.around(x_value, 5))[0] # Make slice in Z data at the point calculated before and add it to the data source z_data = self.Z[:, subplot_value_index].flatten() x = z_data y = self.slider_source.data[y_idx] # Update the data source with new data self.right_plot_source.data = dict(x=x, y=y) # Create and format figure self.right_plot_fig = right_plot_fig = figure( plot_width=250, plot_height=500, title="{} vs {}".format(y_idx, self.output_select.value), tools="pan") right_plot_fig.xaxis.axis_label = self.output_select.value right_plot_fig.yaxis.axis_label = y_idx right_plot_fig.xaxis.major_label_orientation = math.pi / 9 right_plot_fig.line(x='x', y='y', source=self.right_plot_source) right_plot_fig.x_range.range_padding = 0.1 right_plot_fig.y_range.range_padding = 0.02 # Determine distance and alpha opacity of training points if self.is_structured_meta_model: data = self._structured_training_points(compute_distance=True, source='right') else: data = self._unstructured_training_points(compute_distance=True, source='right') self.right_alphas = 1.0 - data[:, 2] / self.dist_range # Training data scatter plot scatter_renderer = right_plot_fig.scatter(x=data[:, 3], y=data[:, 1], line_color=None, fill_color='#000000', fill_alpha=self.right_alphas.tolist()) right_plot_fig.add_tools(HoverTool(renderers=[scatter_renderer], tooltips=[ (self.output_select.value + " (train)", '@x'), (y_idx + " (train)", '@y'), ])) right_plot_fig.scatter(x=data[:, 3], y=data[:, 1], line_color=None, fill_color='#000000', fill_alpha=self.right_alphas.tolist()) # Set the right_plot data source to new values self.right_plot_scatter_source.data = dict( right_slice_x=np.repeat(x_value, self.resolution), right_slice_y=y_data) self.contour_plot.line( 'right_slice_x', 'right_slice_y', source=self.right_plot_scatter_source, color='black', line_width=2) return self.right_plot_fig def _bottom_plot(self): """ Create the bottom subplot to view the projected slice. Parameters ---------- None Returns ------- Bokeh figure """ # List of the current positions of the sliders self.input_point_list = [point.value for point in self.slider_dict.values()] # Find the title of the x input and match it with the data x_idx = self.x_input_select.value x_data = self.predict_inputs[x_idx] # Find the position of the y_input slider y_value = self.y_input_slider.value # Rounds the y_data to match the predict_inputs value subplot_value_index = np.where( np.around(self.predict_inputs[self.y_input_select.value], 5) == np.around(y_value, 5))[0] # Make slice in Z data at the point calculated before and add it to the data source z_data = self.Z[subplot_value_index, :].flatten() x = self.slider_source.data[x_idx] y = z_data # Update the data source with new data self.bottom_plot_source.data = dict(x=x, y=y) # Create and format figure self.bottom_plot_fig = bottom_plot_fig = figure( plot_width=550, plot_height=250, title="{} vs {}".format(x_idx, self.output_select.value), tools="") bottom_plot_fig.xaxis.axis_label = x_idx bottom_plot_fig.yaxis.axis_label = self.output_select.value bottom_plot_fig.line(x='x', y='y', source=self.bottom_plot_source) bottom_plot_fig.x_range.range_padding = 0.02 bottom_plot_fig.y_range.range_padding = 0.1 # Determine distance and alpha opacity of training points if self.is_structured_meta_model: data = self._structured_training_points(compute_distance=True) else: data = self._unstructured_training_points(compute_distance=True) self.bottom_alphas = 1.0 - data[:, 2] / self.dist_range # Training data scatter plot scatter_renderer = bottom_plot_fig.scatter(x=data[:, 0], y=data[:, 3], line_color=None, fill_color='#000000', fill_alpha=self.bottom_alphas.tolist()) bottom_plot_fig.add_tools(HoverTool(renderers=[scatter_renderer], tooltips=[ (x_idx + " (train)", '@x'), (self.output_select.value + " (train)", '@y'), ])) # Set the right_plot data source to new values self.bottom_plot_scatter_source.data = dict( bot_slice_x=x_data, bot_slice_y=np.repeat(y_value, self.resolution)) self.contour_plot.line( 'bot_slice_x', 'bot_slice_y', source=self.bottom_plot_scatter_source, color='black', line_width=2) return self.bottom_plot_fig def _unstructured_training_points(self, compute_distance=False, source='bottom'): """ Calculate the training points and returns and array containing the position and alpha. Parameters ---------- compute_distance : bool If true, compute the distance of training points from surrogate line. source : str Which subplot the method is being called from. Returns ------- array The array of training points and their alpha opacity with respect to the surrogate line """ # Input training data and output training data x_training = self.meta_model._training_input training_output = np.squeeze(stack_outputs(self.meta_model._training_output), axis=1) # Index of input/output variables x_index = self.x_input_select.options.index(self.x_input_select.value) y_index = self.y_input_select.options.index(self.y_input_select.value) output_variable = self.output_names.index(self.output_select.value) # Vertically stack the x/y inputs and then transpose them infos = np.vstack((x_training[:, x_index], x_training[:, y_index])).transpose() if not compute_distance: return infos points = x_training.copy() # Normalize so each dimension spans [0, 1] points = np.divide(points, self.limit_range) dist_limit = np.linalg.norm(self.dist_range * self.limit_range) scaled_x0 = np.divide(self.input_point_list, self.limit_range) # Query the nearest neighbors tree for the closest points to the scaled x0 array # Nearest points to x slice if x_training.shape[1] < 3: tree = cKDTree(points) # Query the nearest neighbors tree for the closest points to the scaled x0 array dists, idxs = tree.query( scaled_x0, k=len(x_training), distance_upper_bound=self.dist_range) # kdtree query always returns requested k even if there are not enough valid points idx_finite = np.where(np.isfinite(dists)) dists = dists[idx_finite] idxs = idxs[idx_finite] else: dists, idxs = self._multidimension_input(scaled_x0, points, source=source) # data contains: # [x_value, y_value, ND-distance, func_value] data = np.zeros((len(idxs), 4)) for dist_index, j in enumerate(idxs): data[dist_index, 0:2] = infos[j, :] data[dist_index, 2] = dists[dist_index] data[dist_index, 3] = training_output[j, output_variable] return data def _structured_training_points(self, compute_distance=False, source='bottom'): """ Calculate the training points and return an array containing the position and alpha. Parameters ---------- compute_distance : bool If true, compute the distance of training points from surrogate line. source : str Which subplot the method is being called from. Returns ------- array The array of training points and their alpha opacity with respect to the surrogate line """ # Create tuple of the input parameters input_dimensions = tuple(self.meta_model.params) # Input training data and output training data x_training = np.array([z for z in product(*input_dimensions)]) training_output = self.meta_model.training_outputs[self.output_select.value].flatten() # Index of input/output variables x_index = self.x_input_select.options.index(self.x_input_select.value) y_index = self.y_input_select.options.index(self.y_input_select.value) # Vertically stack the x/y inputs and then transpose them infos = np.vstack((x_training[:, x_index], x_training[:, y_index])).transpose() if not compute_distance: return infos points = x_training.copy() # Normalize so each dimension spans [0, 1] points = np.divide(points, self.limit_range) self.dist_limit = np.linalg.norm(self.dist_range * self.limit_range) scaled_x0 = np.divide(self.input_point_list, self.limit_range) # Query the nearest neighbors tree for the closest points to the scaled x0 array # Nearest points to x slice if x_training.shape[1] < 3: x_tree, x_idx = self._two_dimension_input(scaled_x0, points, source=source) else: x_tree, x_idx = self._multidimension_input(scaled_x0, points, source=source) # format for 'data' # [x_value, y_value, ND-distance_(x or y), func_value] n = len(x_tree) data = np.zeros((n, 4)) for dist_index, j in enumerate(x_idx): data[dist_index, 0:2] = infos[j, :] data[dist_index, 2] = x_tree[dist_index] data[dist_index, 3] = training_output[j] return data def _two_dimension_input(self, scaled_points, training_points, source='bottom'): """ Calculate the distance of training points to the surrogate line. Parameters ---------- scaled_points : array Array of normalized slider positions. training_points : array Array of input training data. source : str Which subplot the method is being called from. Returns ------- idxs : array Index of closest points that are within the dist range. x_tree : array One dimentional array of points that are within the dist range. """ # Column of the input if source == 'right': col_idx = self.y_input_select.options.index(self.y_input_select.value) else: col_idx = self.x_input_select.options.index(self.x_input_select.value) # Delete the axis of input from source to predicted 1D distance x = np.delete(scaled_points, col_idx, axis=0) x_training_points = np.delete(training_points, col_idx, axis=1).flatten() # Tree of point distances x_tree = np.abs(x - x_training_points) # Only return points that are within our distance-viewing paramter. idx = np.where(x_tree <= self.dist_range) x_tree = x_tree[idx] return x_tree, idx[0] def _multidimension_input(self, scaled_points, training_points, source='bottom'): """ Calculate the distance of training points to the surrogate line. Parameters ---------- scaled_points : array Array of normalized slider positions. training_points : array Array of input training data. source : str Which subplot the method is being called from. Returns ------- idxs : array Index of closest points that are within the dist range. x_tree : array Array of points that are within the dist range. """ # Column of the input if source == 'right': col_idx = self.y_input_select.options.index(self.y_input_select.value) else: col_idx = self.x_input_select.options.index(self.x_input_select.value) # Delete the axis of input from source to predicted distance x = np.delete(scaled_points, col_idx, axis=0) x_training_points = np.delete(training_points, col_idx, axis=1) # Tree of point distances x_tree = cKDTree(x_training_points) # Query the nearest neighbors tree for the closest points to the scaled array dists, idx = x_tree.query(x, k=len(x_training_points), distance_upper_bound=self.dist_range) # kdtree query always returns requested k even if there are not enough valid points idx_finite = np.where(np.isfinite(dists)) dists_finite = dists[idx_finite] idx = idx[idx_finite] return dists_finite, idx # Event handler functions def _update_all_plots(self): self.doc_layout.children[0] = self._contour_data() self.doc_layout.children[1] = self._right_plot() self.doc_layout2.children[0] = self._bottom_plot() def _update_subplots(self): self.doc_layout.children[1] = self._right_plot() self.doc_layout2.children[0] = self._bottom_plot() def _update(self, attr, old, new): self._update_all_plots() def _scatter_plots_update(self, attr, old, new): self._update_subplots() def _scatter_input(self, attr, old, new): # Text input update function of dist range value self.dist_range = float(new) self._update_all_plots() def _x_input_update(self, attr, old, new): # Checks that x and y inputs are not equal to each other if new == self.y_input_select.value: raise ValueError("Inputs should not equal each other") else: self.x_input_select.value = new self._update_all_plots() def _y_input_update(self, attr, old, new): # Checks that x and y inputs are not equal to each other if new == self.x_input_select.value: raise ValueError("Inputs should not equal each other") else: self.y_input_select.value = new self._update_all_plots() def _output_value_update(self, attr, old, new): self.output_variable = self.output_names.index(new) self._update_all_plots() def view_metamodel(meta_model_comp, resolution, port_number): """ Visualize a metamodel. Parameters ---------- meta_model_comp : MetaModelStructuredComp or MetaModelUnStructuredComp The metamodel component. resolution : int Number of points to control contour plot resolution. port_number : int Bokeh plot port number. """ from bokeh.application.application import Application from bokeh.application.handlers import FunctionHandler def make_doc(doc): MetaModelVisualization(meta_model_comp, resolution, doc=doc) # print('Opening Bokeh application on http://localhost:5006/') server = Server({'/': Application(FunctionHandler(make_doc))}, port=int(port_number)) server.io_loop.add_callback(server.show, "/") server.io_loop.start() ```
{ "source": "johnjasa/ORBIT", "score": 2 }
#### File: ORBIT/core/components.py ```python __author__ = "<NAME>" __copyright__ = "Copyright 2020, National Renewable Energy Laboratory" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" import simpy from ORBIT.core._defaults import process_times as pt from ORBIT.core.exceptions import ( ItemNotFound, CargoMassExceeded, DeckSpaceExceeded, InsufficientCable, ) # TODO: __str__ methods for Components class Crane: """Base Crane Class""" def __init__(self, crane_specs): """ Creates an instance of Crane. Parameters ---------- crane_specs : dict Dictionary containing crane system specifications. """ self.extract_crane_specs(crane_specs) def extract_crane_specs(self, crane_specs): """ Extracts and defines crane specifications. Parameters ---------- crane_specs : dict Dictionary of crane specifications. """ # Physical Dimensions self.boom_length = crane_specs.get("boom_length", None) self.radius = crane_specs.get("radius", None) # Operational Parameters self.max_lift = crane_specs.get("max_lift", None) self.max_hook_height = crane_specs.get("max_hook_height", None) self.max_windspeed = crane_specs.get("max_windspeed", 99) self._crane_rate = crane_specs.get("crane_rate", 100) def crane_rate(self, **kwargs): """Returns `self._crane_rate`.""" return self._crane_rate @staticmethod def reequip(**kwargs): """ Calculates time taken to change crane equipment. Parameters ---------- crane_reequip_time : int | float Time required to change crane equipment (h). Returns ------- reequip_time : float Time required to change crane equipment (h). """ _key = "crane_reequip_time" duration = kwargs.get(_key, pt[_key]) return duration class JackingSys: """Base Jacking System Class""" def __init__(self, jacksys_specs): """ Creates an instance of JackingSys. Parameters ---------- jacksys_specs : dict Dictionary containing jacking system specifications. """ self.extract_jacksys_specs(jacksys_specs) def extract_jacksys_specs(self, jacksys_specs): """ Extracts and defines jacking system specifications. Parameters ---------- jacksys_specs : dict Dictionary containing jacking system specifications. """ # Physical Dimensions self.num_legs = jacksys_specs.get("num_legs", None) self.leg_length = jacksys_specs.get("leg_length", None) self.air_gap = jacksys_specs.get("air_gap", None) self.leg_pen = jacksys_specs.get("leg_pen", None) # Operational Parameters self.max_depth = jacksys_specs.get("max_depth", None) self.max_extension = jacksys_specs.get("max_extension", None) self.speed_below_depth = jacksys_specs.get("speed_below_depth", None) self.speed_above_depth = jacksys_specs.get("speed_above_depth", None) def jacking_time(self, extension, depth): """ Calculates jacking time for a given depth. Parameters ---------- extension : int | float Height to jack-up to or jack-down from (m). depth : int | float Depth at jack-up location (m). Returns ------- extension_time : float Time required to jack-up to given extension (h). """ if extension > self.max_extension: raise Exception( "{} extension is greater than {} maximum" "".format(extension, self.max_extension) ) elif depth > self.max_depth: raise Exception( "{} is beyond the operating depth {}" "".format(depth, self.max_depth) ) elif depth > extension: raise Exception("Extension must be greater than depth") else: return ( depth / self.speed_below_depth + (extension - depth) / self.speed_above_depth ) / 60 class VesselStorage(simpy.FilterStore): """Vessel Storage Class""" required_keys = ["type", "mass", "deck_space"] def __init__( self, env, max_cargo, max_deck_space, max_deck_load, **kwargs ): """ Creates an instance of VesselStorage. Parameters ---------- env : simpy.Environment SimPy environment that simulation runs on. max_cargo : int | float Maximum mass the storage system can carry (t). max_deck_space : int | float Maximum deck space the storage system can use (m2). max_deck_load : int | float Maximum deck load that the storage system can apply (t/m2). """ capacity = kwargs.get("capacity", float("inf")) super().__init__(env, capacity) self.max_cargo_mass = max_cargo self.max_deck_space = max_deck_space self.max_deck_load = max_deck_load @property def current_cargo_mass(self): """Returns current cargo mass in tons.""" return sum([item.mass for item in self.items]) @property def current_deck_space(self): """Returns current deck space used in m2.""" return sum([item.deck_space for item in self.items]) def put_item(self, item): """ Checks VesselStorage specific constraints and triggers self.put() if successful. Items put into the instance should be a dictionary with the following attributes: - name - mass (t) - deck_space (m2) Parameters ---------- item : dict Dictionary of item properties. """ # if any(x not in item.keys() for x in self.required_keys): # raise ItemPropertyNotDefined(item, self.required_keys) if self.current_deck_space + item.deck_space > self.max_deck_space: raise DeckSpaceExceeded( self.max_deck_space, self.current_deck_space, item ) if self.current_cargo_mass + item.mass > self.max_cargo_mass: raise CargoMassExceeded( self.max_cargo_mass, self.current_cargo_mass, item ) self.put(item) def get_item(self, _type): """ Checks `self.items` for an item satisfying `item.type = _type`. Returns item if found, otherwise returns an error. Parameters ---------- _type : str Type of item to retrieve. """ target = None for i in self.items: if i.type == _type: target = i break if not target: raise ItemNotFound(_type) else: res = self.get(lambda x: x == target) return res.value def any_remaining(self, _type): """ Checks `self.items` for an item satisfying `item.type = _type`. Returns True/False depending on if an item is found. Used to trigger vessel release if empty without having to wait for next self.get_item() iteration. Parameters ---------- _type : str Type of item to retrieve. Returns ------- resp : bool Indicates if any items in self.items satisfy `_type`. """ target = None for i in self.items: if i.type == _type: target = i break if target: return True else: return False class ScourProtectionStorage(simpy.Container): """Scour Protection Storage Class""" def __init__(self, env, max_mass, **kwargs): """ Creates an instance of VesselStorage. Parameters ---------- env : simpy.Environment SimPy environment that simulation runs on. max_mass : int | float Maximum mass the storage system can carry (t). """ self.max_mass = max_mass super().__init__(env, self.max_mass) @property def available_capacity(self): """Returns available cargo capacity.""" return self.max_mass - self.level class CableCarousel(simpy.Container): """Cable Storage Class""" def __init__(self, env, max_mass, **kwargs): """ Creates an instance of CableCarousel. Parameters ---------- env : simpy.Environment SimPy environment that simulation runs on. max_mass : int | float Maximum mass the storage system can carry (t). """ self.cable = None self.max_mass = max_mass super().__init__(env) @property def available_mass(self): """Returns available cargo mass capacity.""" return self.max_mass - self.current_mass @property def current_mass(self): """Returns current cargo mass""" try: mass = self.level * self.cable.linear_density return mass except AttributeError: return 0 def available_length(self, cable): """Returns available length capacity based on input linear density.""" return self.available_mass / cable.linear_density def reset(self): """Resets `self.cable` and empties `self.level`.""" if self.level != 0.0: _ = self.get(self.level) self.cable = None def load_cable(self, cable, length=None): """ Loads input `cable` type onto `self.level`. If `length` isn't passed, defaults to maximum amount of cable that can be loaded. Parameters ---------- cable : Cable | SimpleCable length : int | float Raises ------ ValueError """ if self.cable and self.cable != cable: raise AttributeError("Carousel already has a cable type.") self.cable = cable if length is None: # Load maximum amount length = self.available_length(self.cable) self.put(length) else: # Load length of cable proposed = length * cable.linear_density if proposed > self.available_mass: raise ValueError( f"Length {length} of {cable} can't be loaded." ) self.put(length) def get_cable(self, length): """ Retrieves `length` of cable from `self.level`. Parameters ---------- length : int | float Length of cable to retrieve. Raises ------ InsufficientCable """ if self.cable is None: raise AttributeError("Carousel doesn't have any cable.") if length > self.level: raise InsufficientCable(self.level, length) else: return self.get(length).amount ``` #### File: ORBIT/core/port.py ```python __author__ = "<NAME>" __copyright__ = "Copyright 2020, National Renewable Energy Laboratory" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" import simpy from ORBIT.core.exceptions import ItemNotFound class Port(simpy.FilterStore): """Port Class""" def __init__(self, env, **kwargs): """ Creates an instance of Port. Parameters ---------- env : simpy.Environment SimPy environment that simulation runs on. """ capacity = kwargs.get("capacity", float("inf")) super().__init__(env, capacity) def get_item(self, _type): """ Checks self.items for an item satisfying `item.type = _type`, otherwise returns `ItemNotFound`. Parameters ---------- _type : str Type of item to match. Checks `item.type`. Returns ------- res.value : FilterStoreGet.value Returned item. Raises ------ ItemNotFound """ target = None for i in self.items: try: if i.type == _type: target = i break except AttributeError: continue if not target: raise ItemNotFound(_type) else: res = self.get(lambda x: x == target) return res.value class WetStorage(simpy.Store): """Storage infrastructure for floating substructures.""" def __init__(self, env, capacity): """ Creates an instance of WetStorage. Parameters ---------- capacity : int Number of substructures or assemblies that can be stored. """ super().__init__(env, capacity) ``` #### File: install/mooring_install/mooring.py ```python __author__ = "<NAME>" __copyright__ = "Copyright 2020, National Renewable Energy Laboratory" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" from marmot import process from ORBIT.core import Cargo, Vessel from ORBIT.core.logic import position_onsite, get_list_of_items_from_port from ORBIT.core._defaults import process_times as pt from ORBIT.phases.install import InstallPhase from ORBIT.core.exceptions import ItemNotFound class MooringSystemInstallation(InstallPhase): """Module to model the installation of mooring systems at sea.""" phase = "Mooring System Installation" #: expected_config = { "mooring_install_vessel": "dict | str", "site": {"depth": "m", "distance": "km"}, "plant": {"num_turbines": "int"}, "mooring_system": { "num_lines": "int", "line_mass": "t", "anchor_mass": "t", "anchor_type": "str (optional, default: 'Suction Pile')", }, } def __init__(self, config, weather=None, **kwargs): """ Creates an instance of `MooringSystemInstallation`. Parameters ---------- config : dict Simulation specific configuration. weather : np.array Weather data at site. """ super().__init__(weather, **kwargs) config = self.initialize_library(config, **kwargs) self.config = self.validate_config(config) self.extract_defaults() self.setup_simulation(**kwargs) def setup_simulation(self, **kwargs): """ Sets up the required simulation infrastructure: - initializes port - initializes installation vessel - initializes mooring systems at port. """ self.initialize_port() self.initialize_installation_vessel() self.initialize_components() depth = self.config["site"]["depth"] distance = self.config["site"]["distance"] install_mooring_systems( self.vessel, self.port, distance, depth, self.number_systems, **kwargs, ) def initialize_installation_vessel(self): """Initializes the mooring system installation vessel.""" vessel_specs = self.config.get("mooring_install_vessel", None) name = vessel_specs.get("name", "Mooring System Installation Vessel") vessel = Vessel(name, vessel_specs) self.env.register(vessel) vessel.initialize() vessel.at_port = True vessel.at_site = False self.vessel = vessel def initialize_components(self): """Initializes the Cargo components at port.""" system = MooringSystem(**self.config["mooring_system"]) self.number_systems = self.config["plant"]["num_turbines"] for _ in range(self.number_systems): self.port.put(system) @property def detailed_output(self): """Detailed outputs of the scour protection installation.""" outputs = {self.phase: {**self.agent_efficiencies}} return outputs @process def install_mooring_systems(vessel, port, distance, depth, systems, **kwargs): """ Logic for the Mooring System Installation Vessel. Parameters ---------- vessel : Vessel Mooring System Installation Vessel port : Port distance : int | float Distance between port and site (km). systems : int Total systems to install. """ n = 0 while n < systems: if vessel.at_port: try: # Get mooring systems from port. yield get_list_of_items_from_port( vessel, port, ["MooringSystem"], **kwargs ) except ItemNotFound: # If no items are at port and vessel.storage.items is empty, # the job is done if not vessel.storage.items: vessel.submit_debug_log( message="Item not found. Shutting down." ) break # Transit to site vessel.update_trip_data() vessel.at_port = False yield vessel.transit(distance) vessel.at_site = True if vessel.at_site: if vessel.storage.items: system = yield vessel.get_item_from_storage( "MooringSystem", **kwargs ) for _ in range(system.num_lines): yield position_onsite(vessel, **kwargs) yield perform_mooring_site_survey(vessel, **kwargs) yield install_mooring_anchor( vessel, depth, system.anchor_type, **kwargs ) yield install_mooring_line(vessel, depth, **kwargs) n += 1 else: # Transit to port vessel.at_site = False yield vessel.transit(distance) vessel.at_port = True vessel.submit_debug_log(message="Mooring systems installation complete!") @process def perform_mooring_site_survey(vessel, **kwargs): """ Calculates time required to perform a mooring system survey. Parameters ---------- vessel : Vessel Vessel to perform action. Yields ------ vessel.task representing time to "Perform Mooring Site Survey". """ key = "mooring_site_survey_time" survey_time = kwargs.get(key, pt[key]) yield vessel.task( "Perform Mooring Site Survey", survey_time, constraints=vessel.transit_limits, **kwargs, ) @process def install_mooring_anchor(vessel, depth, _type, **kwargs): """ Calculates time required to install a mooring system anchor. Parameters ---------- vessel : Vessel Vessel to perform action. depth : int | float Depth at site (m). _type : str Anchor type. 'Suction Pile' or 'Drag Embedment'. Yields ------ vessel.task representing time to install mooring anchor. """ if _type == "Suction Pile": key = "suction_pile_install_time" task = "Install Suction Pile Anchor" fixed = kwargs.get(key, pt[key]) elif _type == "Drag Embedment": key = "drag_embed_install_time" task = "Install Drag Embedment Anchor" fixed = kwargs.get(key, pt[key]) else: raise ValueError( f"Mooring System Anchor Type: {_type} not recognized." ) install_time = fixed + 0.005 * depth yield vessel.task( task, install_time, constraints=vessel.transit_limits, **kwargs ) @process def install_mooring_line(vessel, depth, **kwargs): """ Calculates time required to install a mooring system line. Parameters ---------- vessel : Vessel Vessel to perform action. depth : int | float Depth at site (m). Yields ------ vessel.task representing time to install mooring line. """ install_time = 0.005 * depth yield vessel.task( "Install Mooring Line", install_time, constraints=vessel.transit_limits, **kwargs, ) class MooringSystem(Cargo): """Mooring System Cargo""" def __init__( self, num_lines=None, line_mass=None, anchor_mass=None, anchor_type="Suction Pile", **kwargs, ): """Creates an instance of MooringSystem""" self.num_lines = num_lines self.line_mass = line_mass self.anchor_mass = anchor_mass self.anchor_type = anchor_type self.deck_space = 0 @property def mass(self): """Returns total system mass in t.""" return self.num_lines * (self.line_mass + self.anchor_mass) @staticmethod def fasten(**kwargs): """Dummy method to work with `get_list_of_items_from_port`.""" key = "mooring_system_load_time" time = kwargs.get(key, pt[key]) return "Load Mooring System", time @staticmethod def release(**kwargs): """Dummy method to work with `get_list_of_items_from_port`.""" return "", 0 def anchor_install_time(self, depth): """ Returns time to install anchor. Varies by depth. Parameters ---------- depth : int | float Depth at site (m). """ if self.anchor_type == "Suction Pile": fixed = 11 elif self.anchor_type == "Drag Embedment": fixed = 5 else: raise ValueError( f"Mooring System Anchor Type: {self.anchor_type} not recognized." ) return fixed + 0.005 * depth ``` #### File: api/wisdem/test_fixed_wisdem_api.py ```python __author__ = ["<NAME>"] __copyright__ = "Copyright 2020, National Renewable Energy Laboratory" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" import openmdao.api as om from ORBIT.api.wisdem import OrbitWisdemFixed def test_wisdem_monopile_api_default(): prob = om.Problem() prob.model = OrbitWisdemFixed() prob.setup() prob.run_driver() prob.model.list_inputs() prob.model.list_outputs() ``` #### File: tests/core/test_port.py ```python __author__ = "<NAME>" __copyright__ = "Copyright 2020, National Renewable Energy Laboratory" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" import pytest from marmot import Environment from ORBIT.core import Port, Cargo from ORBIT.core.exceptions import ItemNotFound class SampleItem(Cargo): def __init__(self): pass def test_port_creation(): env = Environment() port = Port(env) item = SampleItem() port.put(item) port.put(item) items = [item for item in port.items if item.type == "SampleItem"] assert len(items) == 2 def test_get_item(): env = Environment() port = Port(env) item = SampleItem() port.put(item) port.put(item) returned = port.get_item("SampleItem") assert returned == item assert len(port.items) == 1 port.put({"type": "Not type Cargo"}) with pytest.raises(ItemNotFound): _ = port.get_item("WrongItem") _ = port.get_item("SampleItem") with pytest.raises(ItemNotFound): _ = port.get_item("SampleItem") ``` #### File: phases/design/test_cable.py ```python __author__ = "<NAME>" __copyright__ = "Copyright 2020, National Renewable Energy Laboratory" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" import copy import itertools import numpy as np import pytest from ORBIT.phases.design._cables import Cable, Plant cables = { "empty": {}, "passes": { "conductor_size": 400, "current_capacity": 610, "rated_voltage": 33, "ac_resistance": 0.06, "inductance": 0.375, "capacitance": 225, "linear_density": 35, "cost_per_km": 300000, "name": "passes", }, } plant_config_calculate_all_ring = { "site": {"depth": 20}, "plant": { "layout": "ring", "row_spacing": 7, "turbine_spacing": 5, "num_turbines": 40, }, "turbine": {"rotor_diameter": 154, "turbine_rating": 10}, } plant_config_calculate_all_grid = { "site": {"depth": 20}, "plant": { "layout": "grid", "row_spacing": 7, "turbine_spacing": 5, "num_turbines": 40, }, "turbine": {"rotor_diameter": 154, "turbine_rating": 10}, } plant_config_distance_provided_ring = { "site": {"depth": 20}, "plant": { "layout": "ring", "row_distance": 0.4, "turbine_distance": 0.1, "num_turbines": 40, "substation_distance": 0.2, }, "turbine": {"rotor_diameter": 154, "turbine_rating": 10}, } plant_config_distance_provided_grid = { "site": {"depth": 20}, "plant": { "layout": "grid", "row_distance": 0.4, "turbine_distance": 0.1, "num_turbines": 40, "substation_distance": 0.2, }, "turbine": {"rotor_diameter": 154, "turbine_rating": 10}, } plant_config_custom = { "site": {"depth": 20}, "plant": { "layout": "custom", "row_distance": 0.4, "turbine_distance": 0.1, "num_turbines": 40, "substation_distance": 0.2, }, "turbine": {"rotor_diameter": 154, "turbine_rating": 10}, } def test_cable_creation(): cable = Cable(cables["passes"]) assert cable for r in cable.required: assert getattr(cable, r, None) == cables["passes"][r] def test_cable_required_inputs(): with pytest.raises(ValueError): Cable(cables["empty"]) def test_power_factor(): c = copy.deepcopy(cables["passes"]) results = [] for i in itertools.product( range(100, 1001, 150), # conductor size np.arange(0.01, 0.91, 0.1), # ac_resistance np.arange(0, 1, 0.15), # inductance range(100, 1001, 150), # capacitance ): c["conductor_size"] = i[0] c["ac_resistance"] = i[1] c["inductance"] = i[2] c["capacitance"] = i[3] cable = Cable(c) results.append(cable.power_factor) if any((a < 0) | (a > 1) for a in results): raise Exception("Invalid Power Factor.") @pytest.mark.parametrize( "config", ( plant_config_calculate_all_ring, plant_config_calculate_all_grid, plant_config_distance_provided_ring, plant_config_distance_provided_grid, ), ids=["calculate_ring", "calculate_grid", "provided_ring", "provided_grid"], ) def test_plant_creation(config): plant = Plant(config) assert plant.turbine_rating == config["turbine"]["turbine_rating"] assert plant.site_depth == config["site"]["depth"] / 1000.0 assert plant.layout == config["plant"]["layout"] assert plant.num_turbines == config["plant"]["num_turbines"] if "turbine_spacing" in config["plant"]: td = ( config["turbine"]["rotor_diameter"] * config["plant"]["turbine_spacing"] / 1000.0 ) else: td = config["plant"]["turbine_distance"] assert plant.turbine_distance == td if "row_spacing" in config["plant"]: if config["plant"]["layout"] == "grid": rd = ( config["turbine"]["rotor_diameter"] * config["plant"]["row_spacing"] / 1000.0 ) if config["plant"]["layout"] == "ring": rd = td else: rd = config["plant"]["row_distance"] assert plant.row_distance == rd if "substation_distance" in config["plant"]: sd = config["plant"]["substation_distance"] else: sd = td assert plant.substation_distance == sd def test_custom_plant_creation(): plant = Plant(plant_config_custom) for attr in ("row_distance", "turbine_distance", "substation_distance"): assert getattr(plant, attr, None) is None ``` #### File: install/turbine_install/test_turbine_install.py ```python __author__ = "<NAME>" __copyright__ = "Copyright 2019, National Renewable Energy Laboratory" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" from copy import deepcopy import pandas as pd import pytest from tests.data import test_weather from ORBIT.library import extract_library_specs from ORBIT.core._defaults import process_times as pt from ORBIT.phases.install import TurbineInstallation config_wtiv = extract_library_specs("config", "turbine_install_wtiv") config_long_mobilize = extract_library_specs( "config", "turbine_install_long_mobilize" ) config_wtiv_feeder = extract_library_specs("config", "turbine_install_feeder") config_wtiv_multi_feeder = deepcopy(config_wtiv_feeder) config_wtiv_multi_feeder["num_feeders"] = 2 @pytest.mark.parametrize( "config", (config_wtiv, config_wtiv_feeder, config_wtiv_multi_feeder), ids=["wtiv_only", "single_feeder", "multi_feeder"], ) def test_simulation_setup(config): sim = TurbineInstallation(config) assert sim.config == config assert sim.env assert sim.port.crane.capacity == config["port"]["num_cranes"] assert sim.num_turbines == config["plant"]["num_turbines"] t = len([i for i in sim.port.items if i.type == "TowerSection"]) assert t == sim.num_turbines n = len([i for i in sim.port.items if i.type == "Nacelle"]) assert n == sim.num_turbines b = len([i for i in sim.port.items if i.type == "Blade"]) assert b == sim.num_turbines * 3 @pytest.mark.parametrize( "config", (config_wtiv, config_wtiv_feeder, config_wtiv_multi_feeder), ids=["wtiv_only", "single_feeder", "multi_feeder"], ) def test_vessel_creation(config): sim = TurbineInstallation(config) assert sim.wtiv assert sim.wtiv.jacksys assert sim.wtiv.crane assert sim.wtiv.storage if config.get("feeder", None) is not None: assert len(sim.feeders) == config["num_feeders"] for feeder in sim.feeders: assert feeder.jacksys assert feeder.storage @pytest.mark.parametrize( "config, expected", [(config_wtiv, 72), (config_long_mobilize, 14 * 24)] ) def test_vessel_mobilize(config, expected): sim = TurbineInstallation(config) assert sim.wtiv mobilize = [a for a in sim.env.actions if a["action"] == "Mobilize"][0] assert mobilize["duration"] == expected @pytest.mark.parametrize( "config", (config_wtiv, config_wtiv_feeder, config_wtiv_multi_feeder), ids=["wtiv_only", "single_feeder", "multi_feeder"], ) @pytest.mark.parametrize( "weather", (None, test_weather), ids=["no_weather", "test_weather"] ) def test_for_complete_logging(weather, config): sim = TurbineInstallation(config, weather=weather) sim.run() df = pd.DataFrame(sim.env.actions) df = df.assign(shift=(df["time"] - df["time"].shift(1))) for vessel in df["agent"].unique(): _df = df[df["agent"] == vessel].copy() _df = _df.assign(shift=(_df["time"] - _df["time"].shift(1))) assert (_df["shift"] - _df["duration"]).abs().max() < 1e-9 assert ~df["cost"].isnull().any() _ = sim.agent_efficiencies _ = sim.detailed_output @pytest.mark.parametrize( "config", (config_wtiv, config_wtiv_feeder, config_wtiv_multi_feeder), ids=["wtiv_only", "single_feeder", "multi_feeder"], ) def test_for_complete_installation(config): sim = TurbineInstallation(config) sim.run() installed_nacelles = len( [a for a in sim.env.actions if a["action"] == "Attach Nacelle"] ) assert installed_nacelles == sim.num_turbines def test_kwargs(): sim = TurbineInstallation(config_wtiv) sim.run() baseline = sim.total_phase_time keywords = [ "tower_section_fasten_time", "tower_section_release_time", "tower_section_attach_time", "nacelle_fasten_time", "nacelle_release_time", "nacelle_attach_time", "blade_fasten_time", "blade_release_time", "blade_attach_time", "site_position_time", "crane_reequip_time", ] failed = [] for kw in keywords: default = pt[kw] kwargs = {kw: default + 2} new_sim = TurbineInstallation(config_wtiv, **kwargs) new_sim.run() new_time = new_sim.total_phase_time if new_time > baseline: pass else: failed.append(kw) if failed: raise Exception(f"'{failed}' not affecting results.") else: assert True def test_multiple_tower_sections(): sim = TurbineInstallation(config_wtiv) sim.run() baseline = len( [a for a in sim.env.actions if a["action"] == "Attach Tower Section"] ) two_sections = deepcopy(config_wtiv) two_sections["turbine"]["tower"]["sections"] = 2 sim2 = TurbineInstallation(two_sections) sim2.run() new = len( [a for a in sim2.env.actions if a["action"] == "Attach Tower Section"] ) assert new == 2 * baseline df = pd.DataFrame(sim.env.actions) for vessel in df["agent"].unique(): vl = df[df["agent"] == vessel].copy() vl = vl.assign(shift=(vl["time"] - vl["time"].shift(1))) assert (vl["shift"] - vl["duration"]).abs().max() < 1e-9 ``` #### File: ORBIT/tests/test_project_manager.py ```python __author__ = "<NAME>" __copyright__ = "Copyright 2020, National Renewable Energy Laboratory" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" from copy import deepcopy import pandas as pd import pytest from ORBIT import ProjectManager from tests.data import test_weather from ORBIT.library import extract_library_specs from ORBIT.manager import ProjectProgress from ORBIT.core.exceptions import ( MissingInputs, PhaseNotFound, WeatherProfileError, PhaseDependenciesInvalid, ) weather_df = pd.DataFrame(test_weather).set_index("datetime") config = extract_library_specs("config", "project_manager") complete_project = extract_library_specs("config", "complete_project") ### Top Level @pytest.mark.parametrize("weather", (None, weather_df)) def test_complete_run(weather): project = ProjectManager(config, weather=weather) project.run_project() actions = pd.DataFrame(project.project_actions) phases = ["MonopileInstallation", "TurbineInstallation"] assert all(p in list(actions["phase"]) for p in phases) ### Module Integrations def test_for_required_phase_structure(): """ Automated integration test to verify that all classes listed in ProjectManager.possible_phases are structured correctly. """ for p in ProjectManager._install_phases: assert isinstance(p.expected_config, dict) for p in ProjectManager._design_phases: assert isinstance(p.expected_config, dict) assert isinstance(p.output_config, dict) # TODO: Expand these tests ### Config Management def test_phase_specific_definitions(): """ Tests that phase specific information makes it to phase_config. """ project = ProjectManager(config) phase_config = project.create_config_for_phase("MonopileInstallation") assert phase_config["wtiv"]["name"] == "Phase Specific WTIV" assert phase_config["site"]["distance"] == 500 phase_config = project.create_config_for_phase("TurbineInstallation") assert phase_config["wtiv"]["name"] == "Example WTIV" assert phase_config["site"]["distance"] == 50 project.run_project() def test_expected_config_merging(): """ Tests for merging of expected configs """ config1 = { "site": {"distance": "float", "depth": "float"}, "plant": {"num_turbines": "int"}, } config2 = { "site": {"distance": "float", "wave_height": "float"}, "monopile": {"diameter": "float"}, } config = ProjectManager.merge_dicts(config1, config2) assert config == { "site": { "distance": "float", "depth": "float", "wave_height": "float", }, "plant": {"num_turbines": "int"}, "monopile": {"diameter": "float"}, } def test_find_key_match(): class SpecificTurbineInstallation: expected_config = {} TestProjectManager = deepcopy(ProjectManager) TestProjectManager._install_phases.append(SpecificTurbineInstallation) phase_dict = TestProjectManager.phase_dict() assert "SpecificTurbineInstallation" in phase_dict.keys() tests = [ ("TurbineInstallation", "TurbineInstallation"), ("TurbineInstallation_Test", "TurbineInstallation"), ("TurbineInstallation Test", "TurbineInstallation"), ("TurbineInstallation Test_1", "TurbineInstallation"), ("SpecificTurbineInstallation", "SpecificTurbineInstallation"), ("SpecificTurbineInstallation_Test", "SpecificTurbineInstallation"), ("SpecificTurbineInstallation Test", "SpecificTurbineInstallation"), ("SpecificTurbineInstallation Test_1", "SpecificTurbineInstallation"), ] for test in tests: i, expected = test response = TestProjectManager.find_key_match(i) assert response.__name__ == expected fails = [ "DifferentTurbineInstallation", "Other TurbineInstallation", "Extra Different TurbineInstallation_1", ] for f in fails: assert TestProjectManager.find_key_match(f) is None ### Overlapping Install Phases def test_install_phase_start_parsing(): config_mixed_starts = deepcopy(config) config_mixed_starts["install_phases"] = { "MonopileInstallation": 0, "TurbineInstallation": "10/22/2009", "ArrayCableInstallation": ("MonopileInstallation", 0.5), } project = ProjectManager(config_mixed_starts, weather=weather_df) defined, depends = project._parse_install_phase_values( config_mixed_starts["install_phases"] ) assert len(defined) == 2 assert len(depends) == 1 assert defined["MonopileInstallation"] == 0 assert defined["TurbineInstallation"] == 1 def test_chained_dependencies(): config_chained = deepcopy(config) config_chained["spi_vessel"] = "test_scour_protection_vessel" config_chained["scour_protection"] = {"tons_per_substructure": 200} config_chained["install_phases"] = { "ScourProtectionInstallation": 0, "MonopileInstallation": ("ScourProtectionInstallation", 0.1), "TurbineInstallation": ("MonopileInstallation", 0.5), } project = ProjectManager(config_chained) project.run_project() df = pd.DataFrame(project.project_actions) sp = list(df.loc[df["phase"] == "ScourProtectionInstallation"]["time"]) mp = list(df.loc[df["phase"] == "MonopileInstallation"]["time"]) tu = list(df.loc[df["phase"] == "TurbineInstallation"]["time"]) assert min(sp) == 0 assert min(mp) == (max(sp) - min(sp)) * 0.1 assert min(tu) == (max(mp) - min(mp)) * 0.5 + min(mp) @pytest.mark.parametrize( "m_start, t_start", [(0, 0), (0, 100), (100, 100), (100, 200)] ) def test_index_starts(m_start, t_start): """ Tests functionality related to passing index starts into 'install_phases' sub-dict. """ _target_diff = t_start - m_start config_with_index_starts = deepcopy(config) config_with_index_starts["install_phases"] = { "MonopileInstallation": m_start, "TurbineInstallation": t_start, } project = ProjectManager(config_with_index_starts) project.run_project() df = pd.DataFrame(project.project_actions) _m = df.loc[df["phase"] == "MonopileInstallation"].iloc[0] _t = df.loc[df["phase"] == "TurbineInstallation"].iloc[0] _diff = (_t["time"] - _t["duration"]) - (_m["time"] - _m["duration"]) assert _diff == _target_diff @pytest.mark.parametrize( "m_start, t_start, expected", [ (0, 0, 0), (0, 1000, 1000), (0, "05/01/2010", 4585), ("03/01/2010", "03/01/2010", 0), ("03/01/2010", "05/01/2010", 1464), ], ) def test_start_dates_with_weather(m_start, t_start, expected): config_with_defined_starts = deepcopy(config) config_with_defined_starts["install_phases"] = { "MonopileInstallation": m_start, "TurbineInstallation": t_start, } project = ProjectManager(config_with_defined_starts, weather=weather_df) project.run_project() df = pd.DataFrame(project.project_actions) _m = df.loc[df["phase"] == "MonopileInstallation"].iloc[0] _t = df.loc[df["phase"] == "TurbineInstallation"].iloc[0] _diff = (_t["time"] - _t["duration"]) - (_m["time"] - _m["duration"]) assert _diff == expected def test_duplicate_phase_definitions(): config_with_duplicates = deepcopy(config) config_with_duplicates["MonopileInstallation_1"] = { "plant": {"num_turbines": 5} } config_with_duplicates["MonopileInstallation_2"] = { "plant": {"num_turbines": 5}, "site": {"distance": 100}, } config_with_duplicates["install_phases"] = { "MonopileInstallation_1": 0, "MonopileInstallation_2": 800, "TurbineInstallation": 1600, } project = ProjectManager(config_with_duplicates) project.run_project() df = ( pd.DataFrame(project.project_actions) .groupby(["phase", "action"]) .count()["time"] ) assert df.loc[("MonopileInstallation_1", "Drive Monopile")] == 5 assert df.loc[("MonopileInstallation_2", "Drive Monopile")] == 5 assert df.loc[("TurbineInstallation", "Attach Tower Section")] == 10 ### Design Phase Interactions def test_design_phases(): config_with_design = deepcopy(config) # Add MonopileDesign config_with_design["design_phases"] = ["MonopileDesign"] # Add required parameters config_with_design["site"]["mean_windspeed"] = 9 config_with_design["turbine"]["rotor_diameter"] = 200 config_with_design["turbine"]["rated_windspeed"] = 10 config_with_design["monopile_design"] = {} # Remove monopile sub dictionary _ = config_with_design.pop("monopile") project = ProjectManager(config_with_design) project.run_project() assert isinstance(project.config["monopile"], dict) project = ProjectManager(config_with_design) project.run_project() ### Outputs def test_resolve_project_capacity(): # Missing turbine rating config1 = {"plant": {"capacity": 600, "num_turbines": 40}} out1 = ProjectManager.resolve_project_capacity(config1) assert out1["plant"]["capacity"] == config1["plant"]["capacity"] assert out1["plant"]["num_turbines"] == config1["plant"]["num_turbines"] assert out1["turbine"]["turbine_rating"] == 15 # Missing plant capacity config2 = { "plant": {"num_turbines": 40}, "turbine": {"turbine_rating": 15}, } out2 = ProjectManager.resolve_project_capacity(config2) assert out2["plant"]["capacity"] == 600 assert out2["plant"]["num_turbines"] == config2["plant"]["num_turbines"] assert ( out2["turbine"]["turbine_rating"] == config2["turbine"]["turbine_rating"] ) # Missing number of turbines config3 = {"plant": {"capacity": 600}, "turbine": {"turbine_rating": 15}} out3 = ProjectManager.resolve_project_capacity(config3) assert out3["plant"]["capacity"] == config3["plant"]["capacity"] assert out3["plant"]["num_turbines"] == 40 assert ( out3["turbine"]["turbine_rating"] == config3["turbine"]["turbine_rating"] ) # Test for float precision config4 = { "plant": {"capacity": 600, "num_turbines": 40}, "turbine": {"turbine_rating": 15.0}, } out4 = ProjectManager.resolve_project_capacity(config4) assert out4["plant"]["capacity"] == config4["plant"]["capacity"] assert out4["plant"]["num_turbines"] == config4["plant"]["num_turbines"] assert ( out4["turbine"]["turbine_rating"] == config4["turbine"]["turbine_rating"] ) # Non matching calculated value config5 = { "plant": {"capacity": 700, "num_turbines": 40}, "turbine": {"turbine_rating": 15.0}, } with pytest.raises(AttributeError): _ = ProjectManager.resolve_project_capacity(config5) # Test for not enough information config6 = {"plant": {"capacity": 600}} out6 = ProjectManager.resolve_project_capacity(config6) assert out6["plant"]["capacity"] == config6["plant"]["capacity"] with pytest.raises(KeyError): _ = out6["turbine"]["turbine_rating"] with pytest.raises(KeyError): _ = out6["plant"]["num_turbines"] ### Exceptions def test_incomplete_config(): incomplete_config = deepcopy(config) _ = incomplete_config["site"].pop("depth") with pytest.raises(MissingInputs): project = ProjectManager(incomplete_config) project.run_project() def test_wrong_phases(): wrong_phases = deepcopy(config) wrong_phases["install_phases"].append("IncorrectPhaseName") with pytest.raises(PhaseNotFound): project = ProjectManager(wrong_phases) project.run_project() def test_bad_dates(): bad_dates = deepcopy(config) bad_dates["install_phases"] = { "MonopileInstallation": "03/01/2015", "TurbineInstallation": "05/01/2015", } with pytest.raises(WeatherProfileError): project = ProjectManager(bad_dates, weather=weather_df) project.run_project() def test_no_defined_start(): missing_start = deepcopy(config) missing_start["install_phases"] = { "MonopileInstallation": ("TurbineInstallation", 0.1), "TurbineInstallation": ("MonopileInstallation", 0.1), } with pytest.raises(ValueError): project = ProjectManager(missing_start) project.run_project() def test_circular_dependencies(): circular_deps = deepcopy(config) circular_deps["spi_vessel"] = "test_scour_protection_vessel" circular_deps["scour_protection"] = {"tons_per_substructure": 200} circular_deps["install_phases"] = { "ScourProtectionInstallation": 0, "MonopileInstallation": ("TurbineInstallation", 0.1), "TurbineInstallation": ("MonopileInstallation", 0.1), } with pytest.raises(PhaseDependenciesInvalid): project = ProjectManager(circular_deps) project.run_project() def test_dependent_phase_ordering(): wrong_order = deepcopy(config) wrong_order["spi_vessel"] = "test_scour_protection_vessel" wrong_order["scour_protection"] = {"tons_per_substructure": 200} wrong_order["install_phases"] = { "ScourProtectionInstallation": ("TurbineInstallation", 0.1), "TurbineInstallation": ("MonopileInstallation", 0.1), "MonopileInstallation": 0, } project = ProjectManager(wrong_order) project.run_project() assert len(project.phase_times) == 3 def test_ProjectProgress(): data = [ ("Export System", 10), ("Offshore Substation", 20), ("Array String", 15), ("Array String", 25), ("Turbine", 5), ("Turbine", 10), ("Turbine", 15), ("Turbine", 20), ("Turbine", 25), ("Substructure", 6), ("Substructure", 9), ("Substructure", 14), ("Substructure", 22), ("Substructure", 26), ] progress = ProjectProgress(data) assert progress.parse_logs("Export System") == [10] turbines = progress.parse_logs("Turbine") assert len(turbines) == 5 chunks = list(progress.chunk_max(turbines, 2)) assert chunks[0] == 10 assert chunks[1] == 20 assert chunks[2] == 25 assert progress.complete_export_system == 20 times, _ = progress.complete_array_strings assert times == [15, 26] times, turbines = progress.energize_points assert times == [20, 26] assert sum(turbines) == 5 def test_ProjectProgress_with_incomplete_project(): project = ProjectManager(config) project.run_project() _ = project.progress.parse_logs("Substructure") _ = project.progress.parse_logs("Turbine") with pytest.raises(ValueError): project.progress.complete_export_system with pytest.raises(ValueError): project.progress.complete_array_strings def test_ProjectProgress_with_complete_project(): project = ProjectManager(complete_project) project.run_project() _ = project.progress.parse_logs("Substructure") _ = project.progress.parse_logs("Turbine") _ = project.progress.parse_logs("Array String") _ = project.progress.parse_logs("Export System") _ = project.progress.parse_logs("Offshore Substation") _ = project.progress.complete_export_system _ = project.progress.complete_array_strings _ = project.progress.energize_points new = deepcopy(complete_project) new["plant"]["num_turbines"] = 61 # Uneven strings project = ProjectManager(new) project.run_project() _ = project.progress.energize_points def test_monthly_expenses(): project = ProjectManager(complete_project) project.run_project() _ = project.monthly_expenses # Still report expenses for "incomplete" project config = deepcopy(complete_project) _ = config["install_phases"].pop("TurbineInstallation") project = ProjectManager(config) project.run_project() _ = project.monthly_expenses def test_monthly_revenue(): project = ProjectManager(complete_project) project.run_project() _ = project.monthly_revenue # Can't generate revenue with "incomplete" project config = deepcopy(complete_project) _ = config["install_phases"].pop("TurbineInstallation") project = ProjectManager(config) project.run_project() with pytest.raises(ValueError): _ = project.monthly_revenue def test_cash_flow(): project = ProjectManager(complete_project) project.run_project() _ = project.cash_flow # Can't generate revenue with "incomplete" project but cash flow will still # be reported config = deepcopy(complete_project) _ = config["install_phases"].pop("TurbineInstallation") project = ProjectManager(config) project.run_project() cash_flow = project.cash_flow assert all(v <= 0 for v in cash_flow.values()) def test_npv(): project = ProjectManager(complete_project) project.run_project() baseline = project.npv config = deepcopy(complete_project) config["ncf"] = 0.35 project = ProjectManager(config) project.run_project() assert project.npv != baseline config = deepcopy(complete_project) config["offtake_price"] = 70 project = ProjectManager(config) project.run_project() assert project.npv != baseline config = deepcopy(complete_project) config["project_lifetime"] = 30 project = ProjectManager(config) project.run_project() assert project.npv != baseline config = deepcopy(complete_project) config["discount_rate"] = 0.03 project = ProjectManager(config) project.run_project() assert project.npv != baseline config = deepcopy(complete_project) config["opex_rate"] = 120 project = ProjectManager(config) project.run_project() assert project.npv != baseline ```
{ "source": "johnjasa/WISDEM", "score": 4 }
#### File: docs/docstrings/getdocstrings.py ```python __all__ = ("get_docstrings", "print_docstrings") import ast from os.path import basename, splitext from itertools import groupby NODE_TYPES = {ast.ClassDef: "Class", ast.FunctionDef: "Function/Method", ast.Module: "Module"} def get_docstrings(source): """Parse Python source code and yield a tuple of ast node instance, name, line number and docstring for each function/method, class and module. The line number refers to the first line of the docstring. If there is no docstring, it gives the first line of the class, funcion or method block, and docstring is None. """ tree = ast.parse(source) for node in ast.walk(tree): if isinstance(node, tuple(NODE_TYPES)): docstring = ast.get_docstring(node) lineno = getattr(node, "lineno", None) if node.body and isinstance(node.body[0], ast.Expr) and isinstance(node.body[0].value, ast.Str): # lineno attribute of docstring node is where string ends lineno = node.body[0].lineno - len(node.body[0].value.s.splitlines()) + 1 yield (node, getattr(node, "name", None), lineno, docstring) def print_docstrings(source, module="<string>", print_flag=True): """Parse Python source code from file or string and print docstrings. For each class, method or function and the module, prints a heading with the type, name and line number and then the docstring with normalized indentation. The module name is determined from the filename, or, if the source is passed as a string, from the optional `module` argument. The line number refers to the first line of the docstring, if present, or the first line of the class, funcion or method block, if there is none. Output is ordered by type first, then name. """ if hasattr(source, "read"): filename = getattr(source, "name", module) module = splitext(basename(filename))[0] source = source.read() docstrings = sorted(get_docstrings(source), key=lambda x: (NODE_TYPES.get(type(x[0])), x[1])) grouped = groupby(docstrings, key=lambda x: NODE_TYPES.get(type(x[0]))) if print_flag: for type_, group in grouped: for node, name, lineno, docstring in group: name = name if name else module heading = "%s '%s', line %s" % (type_, name, lineno or "?") print(heading) print("-" * len(heading)) print("") print(docstring or "") print("\n") return grouped if __name__ == "__main__": import sys with open(sys.argv[1]) as fp: print_docstrings(fp) ``` #### File: examples/04_openmdao/betz_limit.py ```python import openmdao.api as om # -- # Specific the Actuator Disc theory into a derived OpenMDAO class class ActuatorDisc(om.ExplicitComponent): # Inputs and Outputs def setup(self): # Inputs into the the model self.add_input("a", 0.5, desc="Indcued velocity factor") self.add_input("Area", 10.0, units="m**2", desc="Rotor disc area") self.add_input("rho", 1.225, units="kg/m**3", desc="Air density") self.add_input("Vu", 10.0, units="m/s", desc="Freestream air velocity, upstream of rotor") # Outputs self.add_output("Vr", 0.0, units="m/s", desc="Air velocity at rotor exit plane") self.add_output("Vd", 0.0, units="m/s", desc="Slipstream air velocity, downstream of rotor") self.add_output("Ct", 0.0, desc="Thrust coefficient") self.add_output("Cp", 0.0, desc="Power coefficient") self.add_output("power", 0.0, units="W", desc="Power produced by the rotor") self.add_output("thrust", 0.0, units="m/s") # Declare which outputs are dependent on which inputs self.declare_partials("Vr", ["a", "Vu"]) self.declare_partials("Vd", "a") self.declare_partials("Ct", "a") self.declare_partials("thrust", ["a", "Area", "rho", "Vu"]) self.declare_partials("Cp", "a") self.declare_partials("power", ["a", "Area", "rho", "Vu"]) # -------- # Core theory def compute(self, inputs, outputs): a = inputs["a"] Vu = inputs["Vu"] rho = inputs["rho"] Area = inputs["Area"] qA = 0.5 * rho * Area * Vu ** 2 outputs["Vd"] = Vd = Vu * (1 - 2 * a) outputs["Vr"] = 0.5 * (Vu + Vd) outputs["Ct"] = Ct = 4 * a * (1 - a) outputs["thrust"] = Ct * qA outputs["Cp"] = Cp = Ct * (1 - a) outputs["power"] = Cp * qA * Vu # -------- # Derivatives of outputs wrt inputs def compute_partials(self, inputs, J): a = inputs["a"] Vu = inputs["Vu"] Area = inputs["Area"] rho = inputs["rho"] a_times_area = a * Area one_minus_a = 1.0 - a a_area_rho_vu = a_times_area * rho * Vu J["Vr", "a"] = -Vu J["Vr", "Vu"] = one_minus_a J["Vd", "a"] = -2.0 * Vu J["Ct", "a"] = 4.0 - 8.0 * a J["thrust", "a"] = 0.5 * rho * Vu ** 2 * Area * J["Ct", "a"] J["thrust", "Area"] = 2.0 * Vu ** 2 * a * rho * one_minus_a J["thrust", "Vu"] = 4.0 * a_area_rho_vu * one_minus_a J["Cp", "a"] = 4.0 * a * (2.0 * a - 2.0) + 4.0 * one_minus_a ** 2 J["power", "a"] = ( 2.0 * Area * Vu ** 3 * a * rho * (2.0 * a - 2.0) + 2.0 * Area * Vu ** 3 * rho * one_minus_a ** 2 ) J["power", "Area"] = 2.0 * Vu ** 3 * a * rho * one_minus_a ** 2 J["power", "rho"] = 2.0 * a_times_area * Vu ** 3 * (one_minus_a) ** 2 J["power", "Vu"] = 6.0 * Area * Vu ** 2 * a * rho * one_minus_a ** 2 # -- end the class # Optional: include underlying model in a group with Independent Variables class Betz(om.Group): """ Group containing the actuator disc equations for deriving the Betz limit. """ def setup(self): indeps = self.add_subsystem("indeps", om.IndepVarComp(), promotes=["*"]) indeps.add_output("a", 0.5) indeps.add_output("Area", 10.0, units="m**2") indeps.add_output("rho", 1.225, units="kg/m**3") indeps.add_output("Vu", 10.0, units="m/s") self.add_subsystem("a_disk", ActuatorDisc(), promotes=["a", "Area", "rho", "Vu"]) # -------- # Instantiate the model prob = om.Problem() prob.model = Betz() # ----- # Specify the optimization 'driver' prob.driver = om.ScipyOptimizeDriver() prob.driver.options["optimizer"] = "SLSQP" # ----- # Assign objective and design variables prob.model.add_design_var("a", lower=0.0, upper=1.0) prob.model.add_design_var("Area", lower=0.0, upper=1.0) prob.model.add_objective("a_disk.Cp", scaler=-1.0) # ----- # Execute! prob.setup() prob.run_driver() # -------- # Display the output print("Coefficient of power Cp = ", prob["a_disk.Cp"]) print("Induction factor a =", prob["a"]) print("Rotor disc Area =", prob["Area"], "m^2") prob.model.list_inputs(units=True) prob.model.list_outputs(units=True) # -------- ``` #### File: wisdem/commonse/akima.py ```python import numpy as np def abs_smooth_dv(x, x_deriv, delta_x): """ Compute the absolute value in a smooth differentiable manner. The valley is rounded off using a quadratic function. Parameters ---------- x : float Quantity value x_deriv : float Derivative value delta_x : float Half width of the rounded section. Returns ------- float Smooth absolute value of the quantity. float Smooth absolute value of the derivative. """ if x >= delta_x: y_deriv = x_deriv y = x elif x <= -delta_x: y_deriv = -x_deriv y = -x else: y_deriv = 2.0 * x * x_deriv / (2.0 * delta_x) y = x ** 2 / (2.0 * delta_x) + delta_x / 2.0 return y, y_deriv def akima_interp_with_derivs(xpt, ypt, x, delta_x=0.1): a = Akima(xpt, ypt, delta_x) return a.interp(x) class Akima(object): def __init__(self, xpt, ypt, delta_x=0.1, eps=1e-30): """ Train the akima spline and save the derivatives. Conversion of fortran function AKIMA_DV. Parameters ---------- xpt : ndarray Values at which the akima spline was trained. ypt : ndarray Training values for the akima spline. """ xpt = np.array(xpt) ncp = np.size(xpt) nbdirs = 2 * ncp ypt = np.array(ypt) self.flatFlag = ypt.ndim == 1 if self.flatFlag: assert xpt.size == ypt.size ypt = ypt.reshape((1, ypt.size)) if ypt.shape[0] == ncp: ypt = ypt.T vec_size = ypt.shape[0] # Poly points and derivs p1 = np.empty((vec_size, ncp - 1), dtype=ypt.dtype) p2 = np.empty((vec_size, ncp - 1), dtype=ypt.dtype) p3 = np.empty((vec_size, ncp - 1), dtype=ypt.dtype) p0d = np.empty((vec_size, nbdirs, ncp - 1), dtype=ypt.dtype) p1d = np.empty((vec_size, nbdirs, ncp - 1), dtype=ypt.dtype) p2d = np.empty((vec_size, nbdirs, ncp - 1), dtype=ypt.dtype) p3d = np.empty((vec_size, nbdirs, ncp - 1), dtype=ypt.dtype) md = np.zeros((nbdirs, ncp + 3), dtype=ypt.dtype) m = np.zeros((ncp + 3,), dtype=ypt.dtype) td = np.zeros((nbdirs, ncp), dtype=ypt.dtype) t = np.zeros((ncp,), dtype=ypt.dtype) xptd = np.vstack([np.eye(ncp, dtype=ypt.dtype), np.zeros((ncp, ncp), dtype=ypt.dtype)]) yptd = np.vstack([np.zeros((ncp, ncp), dtype=ypt.dtype), np.eye(ncp, dtype=ypt.dtype)]) dx = xpt[1:] - xpt[:-1] dx2 = dx ** 2 dxd = xptd[:, 1:] - xptd[:, :-1] p0 = ypt[:, :-1] for jj in range(vec_size): ypt_jj = ypt[jj, :] # Compute segment slopes temp = (yptd[:, 1:] - yptd[:, :-1]) * (xpt[1:] - xpt[:-1]) - (ypt_jj[1:] - ypt_jj[:-1]) * ( xptd[:, 1:] - xptd[:, :-1] ) md[:, 2 : ncp + 1] = np.divide( temp, (xpt[1:] - xpt[:-1]) ** 2, out=np.zeros_like(temp), where=(xpt[1:] - xpt[:-1]) != 0.0 ) # m[2:ncp + 1] = (ypt_jj[1:] - ypt_jj[:-1]) / (xpt[1:] - xpt[:-1]) m[2 : ncp + 1] = np.divide( ypt_jj[1:] - ypt_jj[:-1], xpt[1:] - xpt[:-1], out=np.zeros_like(ypt_jj[1:]), where=(xpt[1:] - xpt[:-1]) != 0.0, ) # Estimation for end points. md[:, 1] = 2.0 * md[:, 2] - md[:, 3] md[:, 0] = 2.0 * md[:, 1] - md[:, 2] md[:, ncp + 1] = 2.0 * md[:, ncp] - md[:, ncp - 1] md[:, ncp + 2] = 2.0 * md[:, ncp + 1] - md[:, ncp] m[1] = 2.0 * m[2] - m[3] m[0] = 2.0 * m[1] - m[2] m[ncp + 1] = 2.0 * m[ncp] - m[ncp - 1] m[ncp + 2] = 2.0 * m[ncp + 1] - m[ncp] # Slope at points. for i in range(2, ncp + 1): m1d = md[:, i - 2] m2d = md[:, i - 1] m3d = md[:, i] m4d = md[:, i + 1] arg1d = m4d - m3d m1 = m[i - 2] m2 = m[i - 1] m3 = m[i] m4 = m[i + 1] arg1 = m4 - m3 w1, w1d = abs_smooth_dv(arg1, arg1d, delta_x) arg1d = m2d - m1d arg1 = m2 - m1 w2, w2d = abs_smooth_dv(arg1, arg1d, delta_x) if w1 < eps and w2 < eps: # Special case to avoid divide by zero. td[:, i - 2] = 0.5 * (m2d + m3d) t[i - 2] = 0.5 * (m2 + m3) else: td[:, i - 2] = ( (w1d * m2 + w1 * m2d + w2d * m3 + w2 * m3d) * (w1 + w2) - (w1 * m2 + w2 * m3) * (w1d + w2d) ) / (w1 + w2) ** 2 t[i - 2] = (w1 * m2 + w2 * m3) / (w1 + w2) # Polynomial Coefficients t1 = t[:-1] t2 = t[1:] p1[jj, :] = t1 p2[jj, :] = np.divide( (3.0 * m[2 : ncp + 1] - 2.0 * t1 - t2), dx, out=np.zeros_like(p2[jj, :]), where=dx != 0.0 ) # (3.0 * m[2:ncp + 1] - 2.0 * t1 - t2) / dx p3[jj, :] = np.divide( (t1 + t2 - 2.0 * m[2 : ncp + 1]), dx2, out=np.zeros_like(p3[jj, :]), where=dx2 != 0.0 ) # (t1 + t2 - 2.0 * m[2:ncp + 1]) / dx2 p0d[jj, ...] = yptd[:, :-1] p1d[jj, ...] = td[:, :-1] temp = (3.0 * md[:, 2 : ncp + 1] - 2.0 * td[:, :-1] - td[:, 1:]) * dx - ( 3.0 * m[2 : ncp + 1] - 2.0 * t1 - t2 ) * dxd p2d[jj, ...] = np.divide(temp, dx2, out=np.zeros_like(p2d[jj, ...]), where=dx2 != 0.0) temp = (td[:, :-1] + td[:, 1:] - 2.0 * md[:, 2 : ncp + 1]) * dx2 - ( t1 + t2 - 2.0 * m[2 : ncp + 1] ) * 2 * dx * dxd p3d[jj, ...] = np.divide(temp, dx2 ** 2, out=np.zeros_like(p3d[jj, ...]), where=dx2 != 0.0) self.xpt = xpt self.p0 = p0 self.p1 = p1 self.p2 = p2 self.p3 = p3 self.dp0_dxcp = p0d[:, :ncp, :].transpose((0, 2, 1)) self.dp0_dycp = p0d[:, ncp:, :].transpose((0, 2, 1)) self.dp1_dxcp = p1d[:, :ncp, :].transpose((0, 2, 1)) self.dp1_dycp = p1d[:, ncp:, :].transpose((0, 2, 1)) self.dp2_dxcp = p2d[:, :ncp, :].transpose((0, 2, 1)) self.dp2_dycp = p2d[:, ncp:, :].transpose((0, 2, 1)) self.dp3_dxcp = p3d[:, :ncp, :].transpose((0, 2, 1)) self.dp3_dycp = p3d[:, ncp:, :].transpose((0, 2, 1)) def __call__(self, x): return self.interp(x) def interp(self, x): xcp = self.xpt ncp = np.size(xcp) n = np.size(x) vec_size = self.p0.shape[0] p0 = self.p0 p1 = self.p1 p2 = self.p2 p3 = self.p3 # All vectorized points uses same grid, so find these once. j_idx = np.zeros(n, dtype=np.int_) for i in range(n): # Find location in array (use end segments if out of bounds) if x[i] < xcp[0]: j = 0 else: # Linear search for now for j in range(ncp - 2, -1, -1): if x[i] >= xcp[j]: break j_idx[i] = j dx = x - xcp[j_idx] dx2 = dx * dx dx3 = dx2 * dx # Evaluate polynomial (and derivative) y = p0[:, j_idx] + p1[:, j_idx] * dx + p2[:, j_idx] * dx2 + p3[:, j_idx] * dx3 dydx = p1[:, j_idx] + 2.0 * p2[:, j_idx] * dx + 3.0 * p3[:, j_idx] * dx2 dydxcp = ( self.dp0_dxcp[:, j_idx, :] + np.einsum("kij,i->kij", self.dp1_dxcp[:, j_idx, :], dx) + np.einsum("kij,i->kij", self.dp2_dxcp[:, j_idx, :], dx2) + np.einsum("kij,i->kij", self.dp3_dxcp[:, j_idx, :], dx3) ) for jj in range(vec_size): for i in range(n): j = j_idx[i] dydxcp[jj, i, j] -= dydx[jj, i] dydycp = ( self.dp0_dycp[:, j_idx, :] + np.einsum("kij,i->kij", self.dp1_dycp[:, j_idx, :], dx) + np.einsum("kij,i->kij", self.dp2_dycp[:, j_idx, :], dx2) + np.einsum("kij,i->kij", self.dp3_dycp[:, j_idx, :], dx3) ) if self.flatFlag: y = np.squeeze(y) dydx = np.squeeze(dydx) dydxcp = np.squeeze(dydxcp) dydycp = np.squeeze(dydycp) return (y, dydx, dydxcp, dydycp) ``` #### File: wisdem/commonse/cross_sections.py ```python from __future__ import print_function import numpy as np from wisdem.commonse.utilities import nodal2sectional import openmdao.api as om class CylindricalShellProperties(om.ExplicitComponent): """ OpenMDAO wrapper for tube class to obtain cylindrical sheel properties. Parameters ---------- d : numpy array[nFull], [m] tower diameter at corresponding locations t : numpy array[nFull-1], [m] shell thickness at corresponding locations Returns ------- Az : numpy array[nFull-1], [m**2] cross-sectional area Asx : numpy array[nFull-1], [m**2] x shear area Asy : numpy array[nFull-1], [m**2] y shear area Jz : numpy array[nFull-1], [m**4] polar moment of inertia Ixx : numpy array[nFull-1], [m**4] area moment of inertia about x-axis Iyy : numpy array[nFull-1], [m**4] area moment of inertia about y-axis """ def initialize(self): self.options.declare("nFull") def setup(self): nFull = self.options["nFull"] self.add_input("d", np.zeros(nFull), units="m") self.add_input("t", np.zeros(nFull - 1), units="m") self.add_output("Az", np.zeros(nFull - 1), units="m**2") self.add_output("Asx", np.zeros(nFull - 1), units="m**2") self.add_output("Asy", np.zeros(nFull - 1), units="m**2") self.add_output("Jz", np.zeros(nFull - 1), units="m**4") self.add_output("Ixx", np.zeros(nFull - 1), units="m**4") self.add_output("Iyy", np.zeros(nFull - 1), units="m**4") # Derivatives self.declare_partials("*", "*", method="fd", form="central", step=1e-6) def compute(self, inputs, outputs): d, _ = nodal2sectional(inputs["d"]) tube = Tube(d, inputs["t"]) outputs["Az"] = tube.Area outputs["Asx"] = tube.Asx outputs["Asy"] = tube.Asy outputs["Jz"] = tube.J0 outputs["Ixx"] = tube.Jxx outputs["Iyy"] = tube.Jyy class Tube: """The Tube Class contains functions to calculate properties of tubular circular cross-sections for structural analyses.""" def __init__(self, D, t, Lgth=np.NaN, Kbuck=1.0): self.D = D self.t = t self.L = Lgth * np.ones(np.size(D)) # this makes sure we exapnd Lght if D,t, arrays self.Kbuck = Kbuck * np.ones(np.size(D)) # this makes sure we exapnd Kbuck if D,t, arrays @property def Area(self): # Cross sectional area of tube return (self.D ** 2 - (self.D - 2 * self.t) ** 2) * np.pi / 4 @property def derivArea(self): return {"D": 2 * np.pi / 4 * (self.D ** 2 - (self.D - 2 * self.t)) * (2 * self.D - 1), "t": 0} @property def Amid(self): # mid-thickness inscribed area of tube (thin wall torsion calculation) return (self.D - self.t) ** 2 * np.pi / 4 @property def Jxx(self): # 2nd area moment of inertia w.r.t. x-x axis (Jxx=Jyy for tube) return (self.D ** 4 - (self.D - 2 * self.t) ** 4) * np.pi / 64 @property def Jyy(self): # 2nd area moment of inertia w.r.t. x-x axis (Jxx=Jyy for tube) return self.Jxx @property def J0(self): # polar moment of inertia w.r.t. z-z axis (torsional) return 2.0 * self.Jxx @property def Asy(self): # Shear Area for tubular cross-section Ri = self.D / 2 - self.t Ro = self.D / 2 return self.Area / (1.124235 + 0.055610 * (Ri / Ro) + 1.097134 * (Ri / Ro) ** 2 - 0.630057 * (Ri / Ro) ** 3) @property def Asx(self): # Shear Area for tubular cross-section return self.Asy @property def BdgMxx(self): # Bending modulus for tubular cross-section return self.Jxx / (self.D / 2) @property def BdgMyy(self): # Bending modulus for tubular cross-section =BdgMxx return self.Jyy / (self.D / 2) @property def TorsConst(self): # Torsion shear constant for tubular cross-section return self.J0 / (self.D / 2) @property def S(self): # Bending modulus for tubular cross-section return self.BdgMxx @property def C(self): # Torsion shear constant for tubular cross-section return self.TorsConst @property def Rgyr(self): # Radius of Gyration for circular tube return np.sqrt(self.Jxx / self.Area) @property def Klr(self): # Klr buckling parameter return self.Kbuck * self.L / self.Rgyr class IBeam: def __init__(self, L_flange, t_flange, H_web, t_web): self.Lf = L_flange self.tf = t_flange self.Hw = H_web self.tw = t_web self.H = H_web + 2 * t_flange @property def AreaFlange(self): # Cross sectional area of tube return self.Lf * self.tf @property def AreaWeb(self): # Cross sectional area of tube return self.Hw * self.tw @property def Area(self): # Cross sectional area of tube return self.AreaWeb + 2 * self.AreaFlange @property def Iyy(self): # 2nd area moment of inertia w.r.t. y-y axis running parallel to flange through CG return (self.Lf * self.H ** 3 - (self.Lf - self.tw) * self.Hw ** 3) / 12.0 @property def Izz(self): # 2nd area moment of inertia w.r.t. z-z running through center of web return (2 * self.tw * self.Lf ** 3 + self.Hw * self.tw ** 3) / 12.0 @property def Jxx(self): # polar moment of inertia w.r.t. z-z axis (torsional) return 2 * self.Lf * self.tf ** 3 + self.H * self.tw ** 3 @property def Asy(self): # Shear Area for tubular cross-section return 1.64 * self.Lf * self.tf @property def Asz(self): # Shear Area for tubular cross-section return self.tw * self.H @property def BdgMyy(self): # Bending modulus for tubular cross-section return 2 * self.Iyy / self.H @property def BdgMzz(self): # Bending modulus for tubular cross-section =BdgMxx return 2 * self.Izz / self.Lf @property def TorsConst(self): # Torsion shear constant for tubular cross-section return self.Jxx / (1.28 * self.tf) @property def Syy(self): # Bending modulus for tubular cross-section return self.BdgMyy @property def Szz(self): # Bending modulus for tubular cross-section return self.BdgMzz @property def C(self): # Torsion shear constant for tubular cross-section return self.TorsConst @property def Rgyr(self): # Radius of Gyration for circular tube return np.sqrt(self.Jxx / self.Area) @property def CG(self): # Radius of Gyration for circular tube return 0.5 * self.Hw + self.tf ``` #### File: wisdem/commonse/csystem.py ```python from __future__ import print_function import numpy as np class DirectionVector(object): """Handles rotation of direction vectors to appropriate coordinate systems. All angles must be in degrees. """ def __init__(self, x, y, z, dx=None, dy=None, dz=None): """3-Dimensional vector that depends on direction only (not position). Parameters ---------- x : float or ndarray x-direction of vector(s) y : float or ndarray y-direction of vector(s) z : float or ndarray z-direction of vector(s) """ self.x = np.array(x) self.y = np.array(y) self.z = np.array(z) if dx is None: dx = {} dx["dx"] = np.ones_like(self.x) dx["dy"] = np.zeros_like(self.y) dx["dz"] = np.zeros_like(self.z) dy = {} dy["dx"] = np.zeros_like(self.x) dy["dy"] = np.ones_like(self.y) dy["dz"] = np.zeros_like(self.z) dz = {} dz["dx"] = np.zeros_like(self.x) dz["dy"] = np.zeros_like(self.y) dz["dz"] = np.ones_like(self.z) self.dx = dx self.dy = dy self.dz = dz @classmethod def fromArray(cls, array): """initialize with NumPy array Parameters ---------- array : ndarray construct DirectionVector using array of size 3 """ return cls(array[0], array[1], array[2]) def toArray(self): """convert DirectionVector to NumPy array Returns ------- array : ndarray NumPy array in order x, y, z containing DirectionVector data """ return np.c_[self.x, self.y, self.z] def _rotateAboutZ(self, xstring, ystring, zstring, theta, thetaname, reverse=False): """ x X y = z. rotate c.s. about z, +theta all angles in degrees """ thetaM = 1.0 if reverse: thetaM = -1.0 x = getattr(self, xstring) y = getattr(self, ystring) z = getattr(self, zstring) dx = getattr(self, "d" + xstring) dy = getattr(self, "d" + ystring) dz = getattr(self, "d" + zstring) theta = np.radians(theta * thetaM) c = np.cos(theta) s = np.sin(theta) xnew = x * c + y * s ynew = -x * s + y * c znew = z angles = [] for key in dx.keys(): if not key in ["dx", "dy", "dz"]: angles.append(key) dxnew = {} dxnew["dx"] = dx["dx"] * c + dy["dx"] * s dxnew["dy"] = dx["dy"] * c + dy["dy"] * s dxnew["dz"] = dx["dz"] * c + dy["dz"] * s dxnew["d" + thetaname] = (-x * s + y * c) * np.radians(thetaM) for dangle in angles: dxnew[dangle] = dx[dangle] * c + dy[dangle] * s dynew = {} dynew["dx"] = -dx["dx"] * s + dy["dx"] * c dynew["dy"] = -dx["dy"] * s + dy["dy"] * c dynew["dz"] = -dx["dz"] * s + dy["dz"] * c dynew["d" + thetaname] = (-x * c - y * s) * np.radians(thetaM) for dangle in angles: dynew[dangle] = -dx[dangle] * s + dy[dangle] * c dznew = {} dznew["dx"] = dz["dx"] * np.ones_like(theta) # multiply by ones just to get right size in case of float dznew["dy"] = dz["dy"] * np.ones_like(theta) dznew["dz"] = dz["dz"] * np.ones_like(theta) dznew["d" + thetaname] = np.zeros_like(theta) for dangle in angles: dznew[dangle] = dz[dangle] return xnew, ynew, znew, dxnew, dynew, dznew def windToInertial(self, beta): """Rotates from wind-aligned to inertial Parameters ---------- beta : float (deg) wind angle Returns ------- vector : DirectionVector a DirectionVector in the inertial coordinate system """ xw, yw, zw, dxw, dyw, dzw = self._rotateAboutZ("x", "y", "z", beta, "beta", reverse=True) return DirectionVector(xw, yw, zw, dxw, dyw, dzw) def inertialToWind(self, beta): """Rotates from inertial to wind-aligned Parameters ---------- beta : float (deg) wind angle Returns ------- vector : DirectionVector a DirectionVector in the wind-aligned coordinate system """ xw, yw, zw, dxw, dyw, dzw = self._rotateAboutZ("x", "y", "z", beta, "beta") return DirectionVector(xw, yw, zw, dxw, dyw, dzw) def yawToWind(self, Psi): """Rotates from yaw-aligned to wind-aligned Parameters ---------- Psi : float (deg) yaw angle Returns ------- vector : DirectionVector a DirectionVector in the wind-aligned coordinate system """ xw, yw, zw, dxw, dyw, dzw = self._rotateAboutZ("x", "y", "z", Psi, "yaw", reverse=True) return DirectionVector(xw, yw, zw, dxw, dyw, dzw) def windToYaw(self, Psi): """Rotates from wind-aligned to yaw-aligned Parameters ---------- Psi : float (deg) yaw angle Returns ------- vector : DirectionVector a DirectionVector in the yaw-aligned coordinate system """ xy, yy, zy, dxy, dyy, dzy = self._rotateAboutZ("x", "y", "z", Psi, "yaw") return DirectionVector(xy, yy, zy, dxy, dyy, dzy) def hubToYaw(self, Theta, derivatives=False): """Rotates from hub-aligned to yaw-aligned Parameters ---------- Theta : float (deg) tilt angle Returns ------- vector : DirectionVector a DirectionVector in the yaw-aligned coordinate system """ zy, xy, yy, dzy, dxy, dyy = self._rotateAboutZ("z", "x", "y", Theta, "tilt", reverse=True) return DirectionVector(xy, yy, zy, dxy, dyy, dzy) def yawToHub(self, Theta): """Rotates from yaw-aligned to hub-aligned Parameters ---------- Theta : float (deg) tilt angle Returns ------- vector : DirectionVector a DirectionVector in the hub-aligned coordinate system """ zh, xh, yh, dzh, dxh, dyh = self._rotateAboutZ("z", "x", "y", Theta, "tilt") return DirectionVector(xh, yh, zh, dxh, dyh, dzh) def hubToAzimuth(self, Lambda): """Rotates from hub-aligned to azimuth-aligned Parameters ---------- Lambda : float or ndarray (deg) azimuth angle Returns ------- vector : DirectionVector a DirectionVector in the azimuth-aligned coordinate system """ yz, zz, xz, dyz, dzz, dxz = self._rotateAboutZ("y", "z", "x", Lambda, "azimuth") return DirectionVector(xz, yz, zz, dxz, dyz, dzz) def azimuthToHub(self, Lambda): """Rotates from azimuth-aligned to hub-aligned Parameters ---------- Lambda : float or ndarray (deg) azimuth angle Returns ------- vector : DirectionVector a DirectionVector in the hub-aligned coordinate system """ yh, zh, xh, dyh, dzh, dxh = self._rotateAboutZ("y", "z", "x", Lambda, "azimuth", reverse=True) return DirectionVector(xh, yh, zh, dxh, dyh, dzh) def azimuthToBlade(self, Phi): """Rotates from azimuth-aligned to blade-aligned Parameters ---------- Phi : float (deg) precone angle Returns ------- vector : DirectionVector a DirectionVector in the blade-aligned coordinate system """ zb, xb, yb, dzb, dxb, dyb = self._rotateAboutZ("z", "x", "y", Phi, "precone", reverse=True) return DirectionVector(xb, yb, zb, dxb, dyb, dzb) def bladeToAzimuth(self, Phi): """Rotates from blade-aligned to azimuth-aligned Parameters ---------- Phi : float (deg) precone angle Returns ------- vector : DirectionVector a DirectionVector in the azimuth-aligned coordinate system """ za, xa, ya, dza, dxa, dya = self._rotateAboutZ("z", "x", "y", Phi, "precone") return DirectionVector(xa, ya, za, dxa, dya, dza) def airfoilToBlade(self, theta): """Rotates from airfoil-aligned to blade-aligned Parameters ---------- theta : float (deg) twist angle Returns ------- vector : DirectionVector a DirectionVector in the blade-aligned coordinate system """ xb, yb, zb, dxb, dyb, dzb = self._rotateAboutZ("x", "y", "z", theta, "theta") return DirectionVector(xb, yb, zb, dxb, dyb, dzb) def bladeToAirfoil(self, theta): """Rotates from blade-aligned to airfoil-aligned Parameters ---------- theta : float (deg) twist angle Returns ------- vector : DirectionVector a DirectionVector in the airfoil-aligned coordinate system """ xa, ya, za, dxa, dya, dza = self._rotateAboutZ("x", "y", "z", theta, "theta", reverse=True) return DirectionVector(xa, ya, za, dxa, dya, dza) def airfoilToProfile(self): """Rotates from airfoil-aligned to profile Returns ------- vector : DirectionVector a DirectionVector in the profile coordinate system """ return DirectionVector(self.y, self.x, self.z, self.dy, self.dx, self.dz) def profileToAirfoil(self): """Rotates from profile to airfoil-aligned Returns ------- vector : DirectionVector a DirectionVector in the airfoil-aligned coordinate system """ return DirectionVector(self.y, self.x, self.z, self.dy, self.dx, self.dz) def cross(self, other): """cross product between two DirectionVectors Parameters ---------- other : DirectionVector other vector to cross with Returns ------- vector : DirectionVector vector = self X other """ v1 = np.c_[self.x, self.y, self.z] v2 = np.c_[other.x, other.y, other.z] v = np.cross(v1, v2) if len(v.shape) > 1: return DirectionVector(v[:, 0], v[:, 1], v[:, 2]) else: return DirectionVector(v[0], v[1], v[2]) def cross_deriv(self, other, namea="a", nameb="b"): """defined only for floats for now""" # c = a X b a = self b = other dx = {} dx[namea] = np.r_[0.0, b.z, -b.y] dx[nameb] = np.r_[0.0, -a.z, a.y] dy = {} dy[namea] = np.r_[-b.z, 0.0, b.x] dy[nameb] = np.r_[a.z, 0.0, -a.x] dz = {} dz[namea] = np.r_[b.y, -b.x, 0.0] dz[nameb] = np.r_[-a.y, a.x, 0.0] return dx, dy, dz def cross_deriv_array(self, other, namea="a", nameb="b"): # c = a X b a = self b = other dx = {} dx["d" + namea + "x"] = np.zeros_like(b.x) dx["d" + namea + "y"] = b.z dx["d" + namea + "z"] = -b.y dx["d" + nameb + "x"] = np.zeros_like(a.x) dx["d" + nameb + "y"] = -a.z dx["d" + nameb + "z"] = a.y dy = {} dy["d" + namea + "x"] = -b.z dy["d" + namea + "y"] = np.zeros_like(b.y) dy["d" + namea + "z"] = b.x dy["d" + nameb + "x"] = a.z dy["d" + nameb + "y"] = np.zeros_like(a.y) dy["d" + nameb + "z"] = -a.x dz = {} dz["d" + namea + "x"] = b.y dz["d" + namea + "y"] = -b.x dz["d" + namea + "z"] = np.zeros_like(b.z) dz["d" + nameb + "x"] = -a.y dz["d" + nameb + "y"] = a.x dz["d" + nameb + "z"] = np.zeros_like(a.z) return dx, dy, dz def __neg__(self): """negate direction vector""" return DirectionVector(-self.x, -self.y, -self.z) def __add__(self, other): """add two DirectionVector objects (v1 = v2 + v3)""" if isinstance(other, DirectionVector): return DirectionVector(self.x + other.x, self.y + other.y, self.z + other.z) else: return DirectionVector(self.x + other, self.y + other, self.z + other) def __sub__(self, other): """subtract DirectionVector objects (v1 = v2 - v3)""" if isinstance(other, DirectionVector): return DirectionVector(self.x - other.x, self.y - other.y, self.z - other.z) else: return DirectionVector(self.x - other, self.y - other, self.z - other) def __iadd__(self, other): """add DirectionVector object to self (v1 += v2)""" if isinstance(other, DirectionVector): self.x += other.x self.y += other.y self.z += other.z else: self.x += other self.y += other self.z += other return self def __isub__(self, other): """subract DirectionVector object from self (v1 -= v2)""" if isinstance(other, DirectionVector): self.x -= other.x self.y -= other.y self.z -= other.z else: self.x -= other self.y -= other self.z -= other return self def __mul__(self, other): """multiply vector times a scalar or element by element muiltiply times another vector (v1 = alpha * v2 or v1 = v2 * v3)""" if isinstance(other, DirectionVector): return DirectionVector(self.x * other.x, self.y * other.y, self.z * other.z) else: return DirectionVector(self.x * other, self.y * other, self.z * other) def __truediv__(self, other): """divide vector by a scalar or element by element division with another vector (v1 = v2 / alpha or v1 = v2 / v3)""" if isinstance(other, DirectionVector): return DirectionVector(self.x / other.x, self.y / other.y, self.z / other.z) else: return DirectionVector(self.x / float(other), self.y / float(other), self.z / float(other)) def __imul__(self, other): """multiply self times a scalar or element by element muiltiply times another vector (v1 *= alpha or v1 *= v2)""" if isinstance(other, DirectionVector): self.x *= other.x self.y *= other.y self.z *= other.z else: self.x *= other self.y *= other self.z *= other return self def __str__(self): """print string representation""" return "{0}, {1}, {2}".format(self.x, self.y, self.z) ``` #### File: wisdem/commonse/mpi_tools.py ```python import os import sys try: from mpi4py import MPI except: MPI = False def under_mpirun(): """Return True if we're being executed under mpirun.""" # this is a bit of a hack, but there appears to be # no consistent set of environment vars between MPI # implementations. for name in os.environ.keys(): if ( name == "OMPI_COMM_WORLD_RANK" or name == "MPIEXEC_HOSTNAME" or name.startswith("MPIR_") or name.startswith("MPICH_") ): return True return False if under_mpirun(): from mpi4py import MPI def debug(*msg): # pragma: no cover newmsg = ["%d: " % MPI.COMM_WORLD.rank] + list(msg) for m in newmsg: sys.stdout.write("%s " % m) sys.stdout.write("\n") sys.stdout.flush() else: MPI = None def map_comm_heirarchical(K, K2): """ Heirarchical parallelization communicator mapping. Assumes K top level processes with K2 subprocessors each. Requires comm_world_size >= K + K*K2. Noninclusive, Ki not included in K2i execution. (TODO, this is not the most efficient architecture, could be achieve with K fewer processors, but this was easier to generalize) """ N = K + K * K2 comm_map_down = {} comm_map_up = {} color_map = [0] * K for i in range(K): comm_map_down[i] = [K + j + i * K2 for j in range(K2)] color_map.extend([i + 1] * K2) for j in comm_map_down[i]: comm_map_up[j] = i return comm_map_down, comm_map_up, color_map def subprocessor_loop(comm_map_up): """ Subprocessors loop, waiting to receive a function and its arguements to evaluate. Output of the function is returned. Loops until a stop signal is received Input data format: data[0] = function to be evaluated data[1] = [list of arguments] If the function to be evaluated does not fit this format, then a wrapper function should be created and passed, that handles the setup, argument assignment, etc for the actual function. Stop sigal: data[0] = False """ # comm = impl.world_comm() rank = MPI.COMM_WORLD.Get_rank() rank_target = comm_map_up[rank] keep_running = True while keep_running == True: data = MPI.COMM_WORLD.recv(source=(rank_target), tag=0) if data[0] == False: break else: func_execution = data[0] args = data[1] output = func_execution(args) MPI.COMM_WORLD.send(output, dest=(rank_target), tag=1) def subprocessor_stop(comm_map_down): """ Send stop signal to subprocessors """ # comm = MPI.COMM_WORLD for rank in comm_map_down.keys(): subranks = comm_map_down[rank] for subrank_i in subranks: MPI.COMM_WORLD.send([False], dest=subrank_i, tag=0) print("All MPI subranks closed.") if __name__ == "__main__": from mpi4py import MPI ( _, _, _, ) = map_comm_heirarchical(2, 4) ``` #### File: wisdem/drivetrainse/generator_models.py ```python import sys import numpy as np import pandas as pd import openmdao.api as om from wisdem.commonse import gravity eps = 1e-3 # Convenience functions for computing McDonald's C and F parameters def chsMshc(x): return np.cosh(x) * np.sin(x) - np.sinh(x) * np.cos(x) def chsPshc(x): return np.cosh(x) * np.sin(x) + np.sinh(x) * np.cos(x) def carterFactor(airGap, slotOpening, slotPitch): """Return Carter factor (based on Langsdorff's empirical expression) See page 3-13 Boldea Induction machines Chapter 3 """ gma = (2 * slotOpening / airGap) ** 2 / (5 + 2 * slotOpening / airGap) return slotPitch / (slotPitch - airGap * gma * 0.5) # --------------- def carterFactorMcDonald(airGap, h_m, slotOpening, slotPitch): """Return Carter factor using Carter's equation (based on Schwartz-Christoffel's conformal mapping on simplified slot geometry) This code is based on Eq. B.3-5 in Appendix B of McDonald's thesis. It is used by PMSG_arms and PMSG_disc. h_m : magnet height (m) b_so : stator slot opening (m) tau_s : Stator slot pitch (m) """ mu_r = 1.06 # relative permeability (probably for neodymium magnets, often given as 1.05 - GNS) g_1 = airGap + h_m / mu_r # g b_over_a = slotOpening / (2 * g_1) gamma = 4 / np.pi * (b_over_a * np.arctan(b_over_a) - np.log(np.sqrt(1 + b_over_a ** 2))) return slotPitch / (slotPitch - gamma * g_1) # --------------- def carterFactorEmpirical(airGap, slotOpening, slotPitch): """Return Carter factor using Langsdorff's empirical expression""" sigma = (slotOpening / airGap) / (5 + slotOpening / airGap) return slotPitch / (slotPitch - sigma * slotOpening) # --------------- def carterFactorSalientPole(airGap, slotWidth, slotPitch): """Return Carter factor for salient pole rotor Where does this equation come from? It's different from other approximations above. Original code: tau_s = np.pi * dia / S # slot pitch b_s = tau_s * b_s_tau_s # slot width b_t = tau_s - b_s # tooth width K_C1 = (tau_s + 10 * g_a) / (tau_s - b_s + 10 * g_a) # salient pole rotor slotPitch - slotWidth == toothWidth """ return (slotPitch + 10 * airGap) / (slotPitch - slotWidth + 10 * airGap) # salient pole rotor # --------------------------------- def array_seq(q1, b, c, Total_number): Seq = np.array([1, 0, 0, 1, 0]) diff = Total_number * 5 / 6 G = np.prod(Seq.shape) return Seq, diff, G # --------------------------------- def winding_factor(Sin, b, c, p, m): S = int(Sin) # Step 1 Writing q1 as a fraction q1 = b / c # Step 2: Writing a binary sequence of b-c zeros and b ones Total_number = int(S / b) L = array_seq(q1, b, c, Total_number) # STep 3 : Repeat binary sequence Q_s/b times New_seq = np.tile(L[0], Total_number) Actual_seq1 = pd.DataFrame(New_seq[:, None].T) Winding_sequence = ["A", "C1", "B", "A1", "C", "B1"] New_seq2 = np.tile(Winding_sequence, int(L[1])) Actual_seq2 = pd.DataFrame(New_seq2[:, None].T) Seq_f = pd.concat([Actual_seq1, Actual_seq2], ignore_index=True) Seq_f.reset_index(drop=True) Slots = S R = S if S % 2 == 0 else S + 1 Windings_arrange = (pd.DataFrame(index=Seq_f.index, columns=Seq_f.columns[1:R])).fillna(0) counter = 1 # Step #4 Arranging winding in Slots for i in range(0, len(New_seq)): if Seq_f.loc[0, i] == 1: Windings_arrange.loc[0, counter] = Seq_f.loc[1, i] counter = counter + 1 Windings_arrange.loc[1, 1] = "C1" for k in range(1, R): if Windings_arrange.loc[0, k] == "A": Windings_arrange.loc[1, k + 1] = "A1" elif Windings_arrange.loc[0, k] == "B": Windings_arrange.loc[1, k + 1] = "B1" elif Windings_arrange.loc[0, k] == "C": Windings_arrange.loc[1, k + 1] = "C1" elif Windings_arrange.loc[0, k] == "A1": Windings_arrange.loc[1, k + 1] = "A" elif Windings_arrange.loc[0, k] == "B1": Windings_arrange.loc[1, k + 1] = "B" elif Windings_arrange.loc[0, k] == "C1": Windings_arrange.loc[1, k + 1] = "C" Phase_A = np.zeros((1000, 1), dtype=float) counter_A = 0 # Windings_arrange.to_excel('test.xlsx') # Winding vector, W_A for Phase A for l in range(1, R): if Windings_arrange.loc[0, l] == "A" and Windings_arrange.loc[1, l] == "A": Phase_A[counter_A, 0] = l Phase_A[counter_A + 1, 0] = l counter_A = counter_A + 2 elif Windings_arrange.loc[0, l] == "A1" and Windings_arrange.loc[1, l] == "A1": Phase_A[counter_A, 0] = -1 * l Phase_A[counter_A + 1, 0] = -1 * l counter_A = counter_A + 2 elif Windings_arrange.loc[0, l] == "A" or Windings_arrange.loc[1, l] == "A": Phase_A[counter_A, 0] = l counter_A = counter_A + 1 elif Windings_arrange.loc[0, l] == "A1" or Windings_arrange.loc[1, l] == "A1": Phase_A[counter_A, 0] = -1 * l counter_A = counter_A + 1 W_A = (np.trim_zeros(Phase_A)).T # Calculate winding factor K_w = 0 for r in range(0, int(2 * (S) / 3)): Gamma = 2 * np.pi * p * np.abs(W_A[0, r]) / S K_w += np.sign(W_A[0, r]) * (np.exp(Gamma * 1j)) K_w = np.abs(K_w) / (2 * S / 3) CPMR = np.lcm(S, int(2 * p)) N_cog_s = CPMR / S N_cog_p = CPMR / p N_cog_t = CPMR * 0.5 / p A = np.lcm(S, int(2 * p)) b_p_tau_p = 2 * 1 * p / S - 0 b_t_tau_s = (2) * S * 0.5 / p - 2 return K_w # --------------------------------- def shell_constant(R, t, l, x, E, v): Lambda = (3 * (1 - v ** 2) / (R ** 2 * t ** 2)) ** 0.25 D = E * t ** 3 / (12 * (1 - v ** 2)) C_14 = (np.sinh(Lambda * l)) ** 2 + (np.sin(Lambda * l)) ** 2 C_11 = (np.sinh(Lambda * l)) ** 2 - (np.sin(Lambda * l)) ** 2 F_2 = np.cosh(Lambda * x) * np.sin(Lambda * x) + np.sinh(Lambda * x) * np.cos(Lambda * x) C_13 = np.cosh(Lambda * l) * np.sinh(Lambda * l) - np.cos(Lambda * l) * np.sin(Lambda * l) F_1 = np.cosh(Lambda * x) * np.cos(Lambda * x) F_4 = np.cosh(Lambda * x) * np.sin(Lambda * x) - np.sinh(Lambda * x) * np.cos(Lambda * x) return D, Lambda, C_14, C_11, F_2, C_13, F_1, F_4 # --------------------------------- def plate_constant(a, b, E, v, r_o, t): D = E * t ** 3 / (12 * (1 - v ** 2)) C_2 = 0.25 * (1 - (b / a) ** 2 * (1 + 2 * np.log(a / b))) C_3 = 0.25 * (b / a) * (((b / a) ** 2 + 1) * np.log(a / b) + (b / a) ** 2 - 1) C_5 = 0.5 * (1 - (b / a) ** 2) C_6 = 0.25 * (b / a) * ((b / a) ** 2 - 1 + 2 * np.log(a / b)) C_8 = 0.5 * (1 + v + (1 - v) * (b / a) ** 2) C_9 = (b / a) * (0.5 * (1 + v) * np.log(a / b) + 0.25 * (1 - v) * (1 - (b / a) ** 2)) L_11 = (1 / 64) * ( 1 + 4 * (r_o / a) ** 2 - 5 * (r_o / a) ** 4 - 4 * (r_o / a) ** 2 * (2 + (r_o / a) ** 2) * np.log(a / r_o) ) L_17 = 0.25 * (1 - 0.25 * (1 - v) * ((1 - (r_o / a) ** 4) - (r_o / a) ** 2 * (1 + (1 + v) * np.log(a / r_o)))) return D, C_2, C_3, C_5, C_6, C_8, C_9, L_11, L_17 # --------------------------------- debug = False # --------------------------------- class GeneratorBase(om.ExplicitComponent): """ Base class for generators Parameters ---------- B_r : float, [T] Remnant flux density E : float, [Pa] youngs modulus G : float, [Pa] Shear modulus P_Fe0e : float, [W/kg] specific eddy losses @ 1.5T, 50Hz P_Fe0h : float, [W/kg] specific hysteresis losses W / kg @ 1.5 T @50 Hz S_N : float Slip alpha_p : float b_r_tau_r : float Rotor Slot width / Slot pitch ratio b_ro : float, [m] Rotor slot opening width b_s_tau_s : float Stator Slot width/Slot pitch ratio b_so : float, [m] Stator slot opening width cofi : float power factor freq : float, [Hz] grid frequency h_i : float, [m] coil insulation thickness h_sy0 : float h_w : float, [m] Slot wedge height k_fes : float Stator iron fill factor per Grauers k_fillr : float Rotor slot fill factor k_fills : float Stator Slot fill factor k_s : float magnetic saturation factor for iron m : int Number of phases mu_0 : float, [m*kg/s**2/A**2] permeability of free space mu_r : float, [m*kg/s**2/A**2] relative permeability (neodymium) p : float number of pole pairs (taken as int within code) phi : numpy array[90], [rad] tilt angle (during transportation) q1 : int Stator slots per pole per phase q2 : int Rotor slots per pole per phase ratio_mw2pp : float ratio of magnet width to pole pitch(bm / self.tau_p) resist_Cu : float, [ohm/m] Copper resistivity sigma : float, [Pa] assumed max shear stress v : float poisson ratio y_tau_p : float Stator coil span to pole pitch y_tau_pr : float Rotor coil span to pole pitch I_0 : float, [A] no-load excitation current T_rated : float, [N*m] Rated torque d_r : float, [m] arm depth d_r h_m : float, [m] magnet height h_0 : float, [m] Slot height h_s : float, [m] Yoke height h_s len_s : float, [m] Stator core length machine_rating : float, [W] Machine rating shaft_rpm : numpy array[n_pc], [rpm] rated speed of input shaft (lss for direct, hss for geared) n_r : float number of arms n rad_ag : float, [m] airgap radius t_wr : float, [m] arm depth thickness n_s : float number of stator arms n_s b_st : float, [m] arm width b_st d_s : float, [m] arm depth d_s t_ws : float, [m] arm depth thickness D_shaft : float, [m] Shaft diameter rho_Copper : float, [kg*m**-3] Copper density rho_Fe : float, [kg*m**-3] Magnetic Steel density rho_Fes : float, [kg*m**-3] Structural Steel density rho_PM : float, [kg*m**-3] Magnet density Returns ------- B_rymax : float, [T] Peak Rotor yoke flux density B_trmax : float, [T] maximum tooth flux density in rotor B_tsmax : float, [T] maximum tooth flux density in stator B_g : float, [T] Peak air gap flux density B_g B_g1 : float, [T] air gap flux density fundamental B_pm1 : float Fundamental component of peak air gap flux density N_s : float Number of turns in the stator winding b_s : float, [m] slot width b_t : float, [m] tooth width A_Curcalc : float, [mm**2] Conductor cross-section mm^2 A_Cuscalc : float, [mm**2] Stator Conductor cross-section mm^2 b_m : float magnet width mass_PM : float, [kg] Magnet mass Copper : float, [kg] Copper Mass Iron : float, [kg] Electrical Steel Mass Structural_mass : float, [kg] Structural Mass generator_mass : float, [kg] Actual mass f : float Generator output frequency I_s : float, [A] Generator output phase current R_s : float, [ohm] Stator resistance L_s : float Stator synchronising inductance J_s : float, [A*m**-2] Stator winding current density A_1 : float Specific current loading K_rad : float Stack length ratio Losses : numpy array[n_pc], [W] Total loss generator_efficiency : numpy array[n_pc] Generator electromagnetic efficiency values (<1) u_ar : float, [m] Rotor radial deflection u_as : float, [m] Stator radial deflection u_allow_r : float, [m] Allowable radial rotor u_allow_s : float, [m] Allowable radial stator y_ar : float, [m] Rotor axial deflection y_as : float, [m] Stator axial deflection y_allow_r : float, [m] Allowable axial y_allow_s : float, [m] Allowable axial z_ar : float, [m] Rotor circumferential deflection z_as : float, [m] Stator circumferential deflection z_allow_r : float, [m] Allowable circum rotor z_allow_s : float, [m] Allowable circum stator b_allow_r : float, [m] Allowable arm dimensions b_allow_s : float, [m] Allowable arm TC1 : float, [m**3] Torque constraint TC2r : float, [m**3] Torque constraint-rotor TC2s : float, [m**3] Torque constraint-stator R_out : float, [m] Outer radius S : float Stator slots Slot_aspect_ratio : float Slot aspect ratio Slot_aspect_ratio1 : float Stator slot aspect ratio Slot_aspect_ratio2 : float Rotor slot aspect ratio D_ratio : float Stator diameter ratio J_r : float Rotor winding Current density L_sm : float mutual inductance Q_r : float Rotor slots R_R : float Rotor resistance b_r : float rotor slot width b_tr : float rotor tooth width b_trmin : float minimum tooth width """ def initialize(self): self.options.declare("n_pc", default=20) def setup(self): n_pc = self.options["n_pc"] # Constants and parameters self.add_input("B_r", val=1.2, units="T") self.add_input("E", val=0.0, units="Pa") self.add_input("G", val=0.0, units="Pa") self.add_input("P_Fe0e", val=1.0, units="W/kg") self.add_input("P_Fe0h", val=4.0, units="W/kg") self.add_input("S_N", val=-0.002) self.add_input("alpha_p", val=0.5 * np.pi * 0.7) self.add_input("b_r_tau_r", val=0.45) self.add_input("b_ro", val=0.004, units="m") self.add_input("b_s_tau_s", val=0.45) self.add_input("b_so", val=0.004, units="m") self.add_input("cofi", val=0.85) self.add_input("freq", val=60, units="Hz") self.add_input("h_i", val=0.001, units="m") self.add_input("h_sy0", val=0.0) self.add_input("h_w", val=0.005, units="m") self.add_input("k_fes", val=0.9) self.add_input("k_fillr", val=0.7) self.add_input("k_fills", val=0.65) self.add_input("k_s", val=0.2) self.add_discrete_input("m", val=3) self.add_input("mu_0", val=np.pi * 4e-7, units="m*kg/s**2/A**2") self.add_input("mu_r", val=1.06, units="m*kg/s**2/A**2") self.add_input("p", val=3.0) self.add_input("phi", val=np.deg2rad(90), units="rad") self.add_discrete_input("q1", val=6) self.add_discrete_input("q2", val=4) self.add_input("ratio_mw2pp", val=0.7) self.add_input("resist_Cu", val=1.8e-8 * 1.4, units="ohm/m") self.add_input("sigma", val=40e3, units="Pa") self.add_input("v", val=0.3) self.add_input("y_tau_p", val=1.0) self.add_input("y_tau_pr", val=10.0 / 12) # General inputs # self.add_input('r_s', val=0.0, units='m', desc='airgap radius r_s') self.add_input("I_0", val=0.0, units="A") self.add_input("rated_torque", val=0.0, units="N*m") self.add_input("d_r", val=0.0, units="m") self.add_input("h_m", val=0.0, units="m") self.add_input("h_0", val=0.0, units="m") self.add_input("h_s", val=0.0, units="m") self.add_input("len_s", val=0.0, units="m") self.add_input("machine_rating", val=0.0, units="W") self.add_input("shaft_rpm", val=np.zeros(n_pc), units="rpm") self.add_input("n_r", val=0.0) self.add_input("rad_ag", val=0.0, units="m") self.add_input("t_wr", val=0.0, units="m") # Structural design variables self.add_input("n_s", val=0.0) self.add_input("b_st", val=0.0, units="m") self.add_input("d_s", val=0.0, units="m") self.add_input("t_ws", val=0.0, units="m") self.add_input("D_shaft", val=0.0, units="m") # Material properties self.add_input("rho_Copper", val=8900.0, units="kg*m**-3") self.add_input("rho_Fe", val=7700.0, units="kg*m**-3") self.add_input("rho_Fes", val=7850.0, units="kg*m**-3") self.add_input("rho_PM", val=7450.0, units="kg*m**-3") # Magnetic loading self.add_output("B_rymax", val=0.0, units="T") self.add_output("B_trmax", val=0.0, units="T") self.add_output("B_tsmax", val=0.0, units="T") self.add_output("B_g", val=0.0, units="T") self.add_output("B_g1", val=0.0, units="T") self.add_output("B_pm1", val=0.0) # Stator design self.add_output("N_s", val=0.0) self.add_output("b_s", val=0.0, units="m") self.add_output("b_t", val=0.0, units="m") self.add_output("A_Curcalc", val=0.0, units="mm**2") self.add_output("A_Cuscalc", val=0.0, units="mm**2") # Rotor magnet dimension self.add_output("b_m", val=0.0) # Mass Outputs self.add_output("mass_PM", val=0.0, units="kg") self.add_output("Copper", val=0.0, units="kg") self.add_output("Iron", val=0.0, units="kg") self.add_output("Structural_mass", val=0.0, units="kg") self.add_output("generator_mass", val=0.0, units="kg") # Electrical performance self.add_output("f", val=np.zeros(n_pc)) self.add_output("I_s", val=np.zeros(n_pc), units="A") self.add_output("R_s", val=np.zeros(n_pc), units="ohm") self.add_output("L_s", val=0.0) self.add_output("J_s", val=np.zeros(n_pc), units="A*m**-2") self.add_output("A_1", val=np.zeros(n_pc)) # Objective functions self.add_output("K_rad", val=0.0) self.add_output("Losses", val=np.zeros(n_pc), units="W") self.add_output("eandm_efficiency", val=np.zeros(n_pc)) # Structural performance self.add_output("u_ar", val=0.0, units="m") self.add_output("u_as", val=0.0, units="m") self.add_output("u_allow_r", val=0.0, units="m") self.add_output("u_allow_s", val=0.0, units="m") self.add_output("y_ar", val=0.0, units="m") self.add_output("y_as", val=0.0, units="m") self.add_output("y_allow_r", val=0.0, units="m") self.add_output("y_allow_s", val=0.0, units="m") self.add_output("z_ar", val=0.0, units="m") self.add_output("z_as", val=0.0, units="m") self.add_output("z_allow_r", val=0.0, units="m") self.add_output("z_allow_s", val=0.0, units="m") self.add_output("b_allow_r", val=0.0, units="m") self.add_output("b_allow_s", val=0.0, units="m") self.add_output("TC1", val=0.0, units="m**3") self.add_output("TC2r", val=0.0, units="m**3") self.add_output("TC2s", val=0.0, units="m**3") # Other parameters self.add_output("R_out", val=0.0, units="m") self.add_output("S", val=0.0) self.add_output("Slot_aspect_ratio", val=0.0) self.add_output("Slot_aspect_ratio1", val=0.0) self.add_output("Slot_aspect_ratio2", val=0.0) self.add_output("D_ratio", val=0.0) self.add_output("J_r", val=np.zeros(n_pc)) self.add_output("L_sm", val=0.0) self.add_output("Q_r", val=0.0) self.add_output("R_R", val=0.0) self.add_output("b_r", val=0.0) self.add_output("b_tr", val=0.0) self.add_output("b_trmin", val=0.0) # ---------------------------------------------------------------------------------------- class PMSG_Outer(GeneratorBase): """ Estimates overall electromagnetic dimensions and Efficiency of PMSG -arms generator. Parameters ---------- P_mech : float, [W] Shaft mechanical power N_c : float Number of turns per coil b : float Slot pole combination c : float Slot pole combination E_p : float, [V] Stator phase voltage h_yr : float, [m] rotor yoke height h_ys : float, [m] Yoke height h_sr : float, [m] Structural Mass h_ss : float, [m] Stator yoke height t_r : float, [m] Rotor disc thickness t_s : float, [m] Stator disc thickness y_sh : float, [m] Shaft deflection theta_sh : float, [rad] slope of shaft D_nose : float, [m] Nose outer diameter y_bd : float, [m] Deflection of the bedplate theta_bd : float, [rad] Slope at the bedplate u_allow_pcent : float Radial deflection as a percentage of air gap diameter y_allow_pcent : float Radial deflection as a percentage of air gap diameter z_allow_deg : float, [deg] Allowable torsional twist B_tmax : float, [T] Peak Teeth flux density Returns ------- B_smax : float, [T] Peak Stator flux density B_symax : float, [T] Peak Stator flux density tau_p : float, [m] Pole pitch q : float, [N/m**2] Normal stress len_ag : float, [m] Air gap length h_t : float, [m] tooth height tau_s : float, [m] Slot pitch J_actual : float, [A/m**2] Current density T_e : float, [N*m] Electromagnetic torque twist_r : float, [deg] torsional twist twist_s : float, [deg] Stator torsional twist Structural_mass_rotor : float, [kg] Rotor mass (kg) Structural_mass_stator : float, [kg] Stator mass (kg) Mass_tooth_stator : float, [kg] Teeth and copper mass Mass_yoke_rotor : float, [kg] Rotor yoke mass Mass_yoke_stator : float, [kg] Stator yoke mass rotor_mass : float, [kg] Total rotor mass stator_mass : float, [kg] Total stator mass """ def initialize(self): super(PMSG_Outer, self).initialize() def setup(self): super(PMSG_Outer, self).setup() n_pc = self.options["n_pc"] # PMSG_structrual inputs self.add_input("P_mech", units="W") self.add_input("N_c", 0.0) self.add_input("b", 0.0) self.add_input("c", 0.0) self.add_input("E_p", 0.0, units="V") self.add_input("h_yr", val=0.0, units="m") self.add_input("h_ys", val=0.0, units="m") self.add_input("h_sr", 0.0, units="m") self.add_input("h_ss", 0.0, units="m") self.add_input("t_r", 0.0, units="m") self.add_input("t_s", 0.0, units="m") self.add_input("y_sh", units="m") self.add_input("theta_sh", 0.0, units="rad") self.add_input("D_nose", 0.0, units="m") self.add_input("y_bd", units="m") self.add_input("theta_bd", 0.0, units="rad") self.add_input("u_allow_pcent", 0.0) self.add_input("y_allow_pcent", 0.0) self.add_input("z_allow_deg", 0.0, units="deg") # Magnetic loading self.add_input("B_tmax", 0.0, units="T") self.add_output("B_smax", val=0.0, units="T") self.add_output("B_symax", val=0.0, units="T") self.add_output("tau_p", 0.0, units="m") self.add_output("q", 0.0, units="N/m**2") self.add_output("len_ag", 0.0, units="m") # Stator design self.add_output("h_t", 0.0, units="m") self.add_output("tau_s", 0.0, units="m") # Electrical performance self.add_output("J_actual", val=np.zeros(n_pc), units="A/m**2") self.add_output("T_e", 0.0, units="N*m") # Material properties self.add_output("twist_r", 0.0, units="deg") self.add_output("twist_s", 0.0, units="deg") # Mass Outputs self.add_output("Structural_mass_rotor", 0.0, units="kg") self.add_output("Structural_mass_stator", 0.0, units="kg") self.add_output("Mass_tooth_stator", 0.0, units="kg") self.add_output("Mass_yoke_rotor", 0.0, units="kg") self.add_output("Mass_yoke_stator", 0.0, units="kg") self.add_output("rotor_mass", 0.0, units="kg") self.add_output("stator_mass", 0.0, units="kg") def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): # Unpack inputs rad_ag = float(inputs["rad_ag"]) len_s = float(inputs["len_s"]) p = float(inputs["p"]) b = float(inputs["b"]) c = float(inputs["c"]) h_m = float(inputs["h_m"]) h_ys = float(inputs["h_ys"]) h_yr = float(inputs["h_yr"]) h_s = float(inputs["h_s"]) h_ss = float(inputs["h_ss"]) h_0 = float(inputs["h_0"]) B_tmax = float(inputs["B_tmax"]) E_p = float(inputs["E_p"]) P_mech = float(inputs["P_mech"]) P_av_v = float(inputs["machine_rating"]) h_sr = float(inputs["h_sr"]) t_r = float(inputs["t_r"]) t_s = float(inputs["t_s"]) R_sh = 0.5 * float(inputs["D_shaft"]) R_no = 0.5 * float(inputs["D_nose"]) y_sh = float(inputs["y_sh"]) y_bd = float(inputs["y_bd"]) rho_Fes = float(inputs["rho_Fes"]) rho_Fe = float(inputs["rho_Fe"]) sigma = float(inputs["sigma"]) shaft_rpm = inputs["shaft_rpm"] # Grab constant values B_r = float(inputs["B_r"]) E = float(inputs["E"]) G = float(inputs["G"]) P_Fe0e = float(inputs["P_Fe0e"]) P_Fe0h = float(inputs["P_Fe0h"]) cofi = float(inputs["cofi"]) h_w = float(inputs["h_w"]) k_fes = float(inputs["k_fes"]) k_fills = float(inputs["k_fills"]) m = int(discrete_inputs["m"]) mu_0 = float(inputs["mu_0"]) mu_r = float(inputs["mu_r"]) p = float(inputs["p"]) phi = float(inputs["phi"]) ratio_mw2pp = float(inputs["ratio_mw2pp"]) resist_Cu = float(inputs["resist_Cu"]) v = float(inputs["v"]) """ #Assign values to universal constants B_r = 1.279 # Tesla remnant flux density E = 2e11 # N/m^2 young's modulus ratio = 0.8 # ratio of magnet width to pole pitch(bm/self.tau_p) mu_0 = np.pi*4e-7 # permeability of free space mu_r = 1.06 # relative permeability cofi = 0.85 # power factor #Assign values to design constants h_0 = 0.005 # Slot opening height h_w = 0.004 # Slot wedge height m = 3 # no of phases #b_s_tau_s = 0.45 # slot width to slot pitch ratio k_fills = 0.65 # Slot fill factor P_Fe0h = 4 # specific hysteresis losses W/kg @ 1.5 T P_Fe0e = 1 # specific hysteresis losses W/kg @ 1.5 T k_fes = 0.8 # Iron fill factor #Assign values to universal constants phi = 90*2*np.pi/360 # tilt angle (rotor tilt -90 degrees during transportation) v = 0.3 # Poisson's ratio G = 79.3e9 """ ######################## Electromagnetic design ################################### K_rad = len_s / (2 * rad_ag) # Aspect ratio # Calculating air gap length dia = 2 * rad_ag # air gap diameter len_ag = 0.001 * dia # air gap length r_s = rad_ag - len_ag # Stator outer radius b_so = 2 * len_ag # Slot opening tau_p = np.pi * dia / (2 * p) # pole pitch # Calculating winding factor Slot_pole = b / c S = Slot_pole * 2 * p * m testval = S / (m * np.gcd(int(S), int(p))) if float(np.round(testval, 3)).is_integer(): k_w = winding_factor(int(S), b, c, int(p), m) b_m = ratio_mw2pp * tau_p # magnet width alpha_p = np.pi / 2 * ratio_mw2pp tau_s = np.pi * (dia - 2 * len_ag) / S # Calculating Carter factor for statorand effective air gap length gamma = ( 4 / np.pi * ( b_so / 2 / (len_ag + h_m / mu_r) * np.arctan(b_so / 2 / (len_ag + h_m / mu_r)) - np.log(np.sqrt(1 + (b_so / 2 / (len_ag + h_m / mu_r)) ** 2)) ) ) k_C = tau_s / (tau_s - gamma * (len_ag + h_m / mu_r)) # carter coefficient g_eff = k_C * (len_ag + h_m / mu_r) # angular frequency in radians om_m = 2 * np.pi * shaft_rpm / 60 om_e = p * om_m freq = om_e / 2 / np.pi # outout frequency # Calculating magnetic loading B_pm1 = B_r * h_m / mu_r / (g_eff) B_g = B_r * h_m / (mu_r * g_eff) * (4 / np.pi) * np.sin(alpha_p) B_symax = B_pm1 * b_m / (2 * h_ys) * k_fes B_rymax = B_pm1 * b_m * k_fes / (2 * h_yr) b_t = B_pm1 * tau_s / B_tmax N_c = 2 # Number of turns per coil q = (B_g) ** 2 / 2 / mu_0 # Stator winding length ,cross-section and resistance l_Cus = 2 * (len_s + np.pi / 4 * (tau_s + b_t)) # length of a turn # Calculating no-load voltage induced in the stator N_s = np.rint(E_p / (np.sqrt(2) * len_s * r_s * k_w * om_m * B_g)) # Z = P_av_v / (m*E_p) # Calculating leakage inductance in stator V_1 = E_p / 1.1 I_n = P_av_v / 3 / cofi / V_1 J_s = 6.0 A_Cuscalc = I_n / J_s A_slot = 2 * N_c * A_Cuscalc * (10 ** -6) / k_fills tau_s_new = np.pi * (dia - 2 * len_ag - 2 * h_w - 2 * h_0) / S b_s2 = tau_s_new - b_t # Slot top width b_s1 = np.sqrt(b_s2 ** 2 - 4 * np.pi * A_slot / S) b_s = (b_s1 + b_s2) * 0.5 N_coil = 2 * S P_s = mu_0 * (h_s / 3 / b_s + h_w * 2 / (b_s2 + b_so) + h_0 / b_so) # Slot permeance function L_ssigmas = S / 3 * 4 * N_c ** 2 * len_s * P_s # slot leakage inductance L_ssigmaew = ( N_coil * N_c ** 2 * mu_0 * tau_s * np.log((0.25 * np.pi * tau_s ** 2) / (0.5 * h_s * b_s)) ) # end winding leakage inductance L_aa = 2 * np.pi / 3 * (N_c ** 2 * mu_0 * len_s * r_s / g_eff) L_m = L_aa L_ssigma = L_ssigmas + L_ssigmaew L_s = L_m + L_ssigma G_leak = np.abs((1.1 * E_p) ** 4 - (1 / 9) * (P_av_v * om_e * L_s) ** 2) # Calculating stator current and electrical loading I_s = np.sqrt(2 * (np.abs((E_p * 1.1) ** 2 - G_leak ** 0.5)) / (om_e * L_s) ** 2) A_1 = 6 * I_s * N_s / np.pi / dia J_actual = I_s / (A_Cuscalc * 2 ** 0.5) L_Cus = N_s * l_Cus R_s = inputs["resist_Cu"] * (N_s) * l_Cus / (A_Cuscalc * (10 ** -6)) B_smax = np.sqrt(2) * I_s * mu_0 / g_eff # Calculating Electromagnetically active mass wedge_area = (b_s * 0.5 - b_so * 0.5) * (2 * h_0 + h_w) V_Cus = m * L_Cus * (A_Cuscalc * (10 ** -6)) # copper volume h_t = h_s + h_w + h_0 V_Fest = len_s * S * (b_t * (h_s + h_w + h_0) + wedge_area) # volume of iron in stator tooth V_Fesy = ( len_s * np.pi * ((rad_ag - len_ag - h_s - h_w - h_0) ** 2 - (rad_ag - len_ag - h_s - h_w - h_0 - h_ys) ** 2) ) # volume of iron in stator yoke V_Fery = len_s * np.pi * ((rad_ag + h_m + h_yr) ** 2 - (rad_ag + h_m) ** 2) Copper = V_Cus[-1] * inputs["rho_Copper"] M_Fest = V_Fest * rho_Fe # Mass of stator tooth M_Fesy = V_Fesy * rho_Fe # Mass of stator yoke M_Fery = V_Fery * rho_Fe # Mass of rotor yoke Iron = M_Fest + M_Fesy + M_Fery mass_PM = 2 * np.pi * (rad_ag + h_m) * len_s * h_m * ratio_mw2pp * inputs["rho_PM"] # Calculating Losses ##1. Copper Losses K_R = 1.0 # Skin effect correction co-efficient P_Cu = m * (I_s / 2 ** 0.5) ** 2 * R_s * K_R # Iron Losses ( from Hysteresis and eddy currents) P_Hyys = ( M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) ) # Hysteresis losses in stator yoke P_Ftys = ( M_Fesy * ((B_symax / 1.5) ** 2) * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2) ) # Eddy losses in stator yoke P_Fesynom = P_Hyys + P_Ftys P_Hyd = ( M_Fest * (B_tmax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) ) # Hysteresis losses in stator teeth P_Ftd = ( M_Fest * (B_tmax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2) ) # Eddy losses in stator teeth P_Festnom = P_Hyd + P_Ftd # Iron Losses ( from Hysteresis and eddy currents) P_Hyyr = ( M_Fery * (B_rymax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) ) # Hysteresis losses in stator yoke P_Ftyr = ( M_Fery * ((B_rymax / 1.5) ** 2) * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2) ) # Eddy losses in stator yoke P_Ferynom = P_Hyyr + P_Ftyr # additional stray losses due to leakage flux P_ad = 0.2 * (P_Hyys + P_Ftys + P_Hyd + P_Ftd + P_Hyyr + P_Ftyr) pFtm = 300 # specific magnet loss P_Ftm = pFtm * 2 * p * b_m * len_s Losses = P_Cu + P_Festnom + P_Fesynom + P_ad + P_Ftm + P_Ferynom gen_eff = (P_mech - Losses) / (P_mech) I_snom = gen_eff * (P_mech / m / E_p / cofi) # rated current I_qnom = gen_eff * P_mech / (m * E_p) X_snom = om_e * (L_m + L_ssigma) T_e = np.pi * rad_ag ** 2 * len_s * 2 * sigma Stator = M_Fesy + M_Fest + Copper # modified mass_stru_steel Rotor = M_Fery + mass_PM # modified (N_r*(R_1-self.R_sh)*a_r*self.rho_Fes)) Mass_tooth_stator = M_Fest + Copper Mass_yoke_rotor = M_Fery Mass_yoke_stator = M_Fesy R_out = (dia + 2 * h_m + 2 * h_yr + 2 * inputs["h_sr"]) * 0.5 Losses = Losses generator_efficiency = gen_eff else: # Bad design for k in outputs.keys(): outputs[k] = 1e30 return ######################## Rotor inactive (structural) design ################################### # Radial deformation of rotor R = rad_ag + h_m L_r = len_s + t_r + 0.125 constants_x_0 = shell_constant(R, t_r, L_r, 0, E, v) constants_x_L = shell_constant(R, t_r, L_r, L_r, E, v) f_d_denom1 = R / (E * ((R) ** 2 - (R_sh) ** 2)) * ((1 - v) * R ** 2 + (1 + v) * (R_sh) ** 2) f_d_denom2 = ( t_r / (2 * constants_x_0[0] * (constants_x_0[1]) ** 3) * ( constants_x_0[2] / (2 * constants_x_0[3]) * constants_x_0[4] - constants_x_0[5] / constants_x_0[3] * constants_x_0[6] - 0.5 * constants_x_0[7] ) ) f = q * (R) ** 2 * t_r / (E * (h_yr + h_sr) * (f_d_denom1 + f_d_denom2)) u_d = ( f / (constants_x_L[0] * (constants_x_L[1]) ** 3) * ( ( constants_x_L[2] / (2 * constants_x_L[3]) * constants_x_L[4] - constants_x_L[5] / constants_x_L[3] * constants_x_L[6] - 0.5 * constants_x_L[7] ) ) + y_sh ) u_ar = (q * (R) ** 2) / (E * (h_yr + h_sr)) - u_d u_ar = np.abs(u_ar + y_sh) u_allow_r = 2 * rad_ag / 1000 * inputs["u_allow_pcent"] / 100 # axial deformation of rotor W_back_iron = plate_constant(R + h_sr + h_yr, R_sh, E, v, 0.5 * h_yr + R, t_r) W_ssteel = plate_constant(R + h_sr + h_yr, R_sh, E, v, h_yr + R + h_sr * 0.5, t_r) W_mag = plate_constant(R + h_sr + h_yr, R_sh, E, v, h_yr + R - 0.5 * h_m, t_r) W_ir = rho_Fe * gravity * np.sin(phi) * (L_r - t_r) * h_yr y_ai1r = ( -W_ir * (0.5 * h_yr + R) ** 4 / (R_sh * W_back_iron[0]) * (W_back_iron[1] * W_back_iron[4] / W_back_iron[3] - W_back_iron[2]) ) W_sr = rho_Fes * gravity * np.sin(phi) * (L_r - t_r) * h_sr y_ai2r = ( -W_sr * (h_sr * 0.5 + h_yr + R) ** 4 / (R_sh * W_ssteel[0]) * (W_ssteel[1] * W_ssteel[4] / W_ssteel[3] - W_ssteel[2]) ) W_m = np.sin(phi) * mass_PM / (2 * np.pi * (R - h_m * 0.5)) y_ai3r = -W_m * (R - h_m) ** 4 / (R_sh * W_mag[0]) * (W_mag[1] * W_mag[4] / W_mag[3] - W_mag[2]) w_disc_r = rho_Fes * gravity * np.sin(phi) * t_r a_ii = R + h_sr + h_yr r_oii = R_sh M_rb = ( -w_disc_r * a_ii ** 2 / W_ssteel[5] * (W_ssteel[6] * 0.5 / (a_ii * R_sh) * (a_ii ** 2 - r_oii ** 2) - W_ssteel[8]) ) Q_b = w_disc_r * 0.5 / R_sh * (a_ii ** 2 - r_oii ** 2) y_aiir = ( M_rb * a_ii ** 2 / W_ssteel[0] * W_ssteel[1] + Q_b * a_ii ** 3 / W_ssteel[0] * W_ssteel[2] - w_disc_r * a_ii ** 4 / W_ssteel[0] * W_ssteel[7] ) I = np.pi * 0.25 * (R ** 4 - (R_sh) ** 4) F_ecc = q * 2 * np.pi * K_rad * rad_ag ** 3 M_ar = F_ecc * L_r * 0.5 y_ar = ( np.abs(y_ai1r + y_ai2r + y_ai3r) + y_aiir + (R + h_yr + h_sr) * inputs["theta_sh"] + M_ar * L_r ** 2 * 0 / (2 * E * I) ) y_allow_r = L_r / 100 * inputs["y_allow_pcent"] # Torsional deformation of rotor J_dr = 0.5 * np.pi * ((R + h_yr + h_sr) ** 4 - R_sh ** 4) J_cylr = 0.5 * np.pi * ((R + h_yr + h_sr) ** 4 - R ** 4) twist_r = 180 / np.pi * inputs["rated_torque"] / G * (t_r / J_dr + (L_r - t_r) / J_cylr) Structural_mass_rotor = ( rho_Fes * np.pi * (((R + h_yr + h_sr) ** 2 - (R_sh) ** 2) * t_r + ((R + h_yr + h_sr) ** 2 - (R + h_yr) ** 2) * len_s) ) TC1 = inputs["rated_torque"] / (2 * np.pi * sigma) TC2r = (R + (h_yr + h_sr)) ** 2 * L_r ######################## Stator inactive (structural) design ################################### # Radial deformation of Stator L_stator = len_s + t_s + 0.1 R_stator = rad_ag - len_ag - h_t - h_ys - h_ss constants_x_0 = shell_constant(R_stator, t_s, L_stator, 0, E, v) constants_x_L = shell_constant(R_stator, t_s, L_stator, L_stator, E, v) f_d_denom1 = ( R_stator / (E * ((R_stator) ** 2 - (R_no) ** 2)) * ((1 - v) * R_stator ** 2 + (1 + v) * (R_no) ** 2) ) f_d_denom2 = ( t_s / (2 * constants_x_0[0] * (constants_x_0[1]) ** 3) * ( constants_x_0[2] / (2 * constants_x_0[3]) * constants_x_0[4] - constants_x_0[5] / constants_x_0[3] * constants_x_0[6] - 0.5 * constants_x_0[7] ) ) f = q * (R_stator) ** 2 * t_s / (E * (h_ys + h_ss) * (f_d_denom1 + f_d_denom2)) # TODO: Adds y_bd twice? u_as = ( (q * (R_stator) ** 2) / (E * (h_ys + h_ss)) - f * 0 / (constants_x_L[0] * (constants_x_L[1]) ** 3) * ( ( constants_x_L[2] / (2 * constants_x_L[3]) * constants_x_L[4] - constants_x_L[5] / constants_x_L[3] * constants_x_L[6] - 1 / 2 * constants_x_L[7] ) ) + y_bd ) u_as = np.abs(u_as + y_bd) u_allow_s = 2 * rad_ag / 1000 * inputs["u_allow_pcent"] / 100 # axial deformation of stator W_back_iron = plate_constant(R_stator + h_ss + h_ys + h_t, R_no, E, v, 0.5 * h_ys + h_ss + R_stator, t_s) W_ssteel = plate_constant(R_stator + h_ss + h_ys + h_t, R_no, E, v, R_stator + h_ss * 0.5, t_s) W_active = plate_constant(R_stator + h_ss + h_ys + h_t, R_no, E, v, R_stator + h_ss + h_ys + h_t * 0.5, t_s) W_is = rho_Fe * gravity * np.sin(phi) * (L_stator - t_s) * h_ys y_ai1s = ( -W_is * (0.5 * h_ys + R_stator) ** 4 / (R_no * W_back_iron[0]) * (W_back_iron[1] * W_back_iron[4] / W_back_iron[3] - W_back_iron[2]) ) W_ss = rho_Fes * gravity * np.sin(phi) * (L_stator - t_s) * h_ss y_ai2s = ( -W_ss * (h_ss * 0.5 + h_ys + R_stator) ** 4 / (R_no * W_ssteel[0]) * (W_ssteel[1] * W_ssteel[4] / W_ssteel[3] - W_ssteel[2]) ) W_cu = np.sin(phi) * Mass_tooth_stator / (2 * np.pi * (R_stator + h_ss + h_ys + h_t * 0.5)) y_ai3s = ( -W_cu * (R_stator + h_ss + h_ys + h_t * 0.5) ** 4 / (R_no * W_active[0]) * (W_active[1] * W_active[4] / W_active[3] - W_active[2]) ) w_disc_s = rho_Fes * gravity * np.sin(phi) * t_s a_ii = R_stator + h_ss + h_ys + h_t r_oii = R_no M_rb = ( -w_disc_s * a_ii ** 2 / W_ssteel[5] * (W_ssteel[6] * 0.5 / (a_ii * R_no) * (a_ii ** 2 - r_oii ** 2) - W_ssteel[8]) ) Q_b = w_disc_s * 0.5 / R_no * (a_ii ** 2 - r_oii ** 2) y_aiis = ( M_rb * a_ii ** 2 / W_ssteel[0] * W_ssteel[1] + Q_b * a_ii ** 3 / W_ssteel[0] * W_ssteel[2] - w_disc_s * a_ii ** 4 / W_ssteel[0] * W_ssteel[7] ) I = np.pi * 0.25 * (R_stator ** 4 - (R_no) ** 4) F_ecc = q * 2 * np.pi * K_rad * rad_ag ** 2 M_as = F_ecc * L_stator * 0.5 y_as = np.abs( y_ai1s + y_ai2s + y_ai3s + y_aiis + (R_stator + h_ys + h_ss + h_t) * inputs["theta_bd"] ) + M_as * L_stator ** 2 * 0 / (2 * E * I) y_allow_s = L_stator * inputs["y_allow_pcent"] / 100 # Torsional deformation of stator J_ds = 0.5 * np.pi * ((R_stator + h_ys + h_ss + h_t) ** 4 - R_no ** 4) J_cyls = 0.5 * np.pi * ((R_stator + h_ys + h_ss + h_t) ** 4 - R_stator ** 4) twist_s = 180.0 / np.pi * inputs["rated_torque"] / G * (t_s / J_ds + (L_stator - t_s) / J_cyls) Structural_mass_stator = rho_Fes * ( np.pi * ((R_stator + h_ys + h_ss + h_t) ** 2 - (R_no) ** 2) * t_s + np.pi * ((R_stator + h_ss) ** 2 - R_stator ** 2) * len_s ) TC2s = (R_stator + h_ys + h_ss + h_t) ** 2 * L_stator ######################## Outputs ################################### outputs["K_rad"] = K_rad outputs["len_ag"] = len_ag outputs["tau_p"] = tau_p outputs["S"] = S outputs["tau_s"] = tau_s outputs["b_m"] = b_m outputs["f"] = freq outputs["B_pm1"] = B_pm1 outputs["B_g"] = B_g outputs["B_symax"] = B_symax outputs["B_rymax"] = B_rymax outputs["b_t"] = b_t outputs["q"] = q outputs["N_s"] = N_s[-1] outputs["A_Cuscalc"] = A_Cuscalc outputs["b_s"] = b_s outputs["L_s"] = L_s outputs["J_s"] = J_s outputs["Slot_aspect_ratio"] = h_s / b_s outputs["I_s"] = I_s outputs["A_1"] = A_1 outputs["J_actual"] = J_actual outputs["R_s"] = R_s outputs["B_smax"] = B_smax[-1] outputs["h_t"] = h_t outputs["Copper"] = Copper outputs["Iron"] = Iron outputs["mass_PM"] = mass_PM outputs["T_e"] = T_e outputs["Mass_tooth_stator"] = Mass_tooth_stator outputs["Mass_yoke_rotor"] = Mass_yoke_rotor outputs["Mass_yoke_stator"] = Mass_yoke_stator outputs["R_out"] = R_out outputs["Losses"] = Losses outputs["eandm_efficiency"] = np.maximum(eps, gen_eff) outputs["u_ar"] = u_ar outputs["u_allow_r"] = u_allow_r outputs["y_ar"] = y_ar outputs["y_allow_r"] = y_allow_r outputs["twist_r"] = twist_r outputs["Structural_mass_rotor"] = Structural_mass_rotor outputs["TC1"] = TC1 outputs["TC2r"] = TC2r outputs["u_as"] = u_as outputs["u_allow_s"] = u_allow_s outputs["y_as"] = y_as outputs["y_allow_s"] = y_allow_s outputs["twist_s"] = twist_s outputs["Structural_mass_stator"] = Structural_mass_stator outputs["TC2s"] = TC2s outputs["Structural_mass"] = outputs["Structural_mass_rotor"] + outputs["Structural_mass_stator"] outputs["stator_mass"] = Stator + outputs["Structural_mass_stator"] outputs["rotor_mass"] = Rotor + outputs["Structural_mass_rotor"] outputs["generator_mass"] = Stator + Rotor + outputs["Structural_mass"] # ---------------------------------------------------------------------------------------- class PMSG_Disc(GeneratorBase): """ Estimates overall mass dimensions and Efficiency of PMSG-disc rotor generator. Parameters ---------- tau_p : float, [m] Pole pitch self.tau_p t_d : float, [m] disc thickness h_yr : float, [m] rotor yoke height h_ys : float, [m] Yoke height Returns ------- B_tmax : float, [T] Peak Teeth flux density B_smax : float, [T] Peak Stator Yoke flux density B_ymax B_symax : float, [T] Peak Stator Yoke flux density B_ymax E_p : float Stator phase voltage """ def initialize(self): super(PMSG_Disc, self).initialize() def setup(self): super(PMSG_Disc, self).setup() self.add_input("tau_p", val=0.0, units="m") self.add_input("t_d", val=0.0, units="m") self.add_input("h_yr", val=0.0, units="m") self.add_input("h_ys", val=0.0, units="m") self.add_output("B_tmax", val=0.0, units="T") self.add_output("B_smax", val=0.0, units="T") self.add_output("B_symax", val=0.0, units="T") self.add_output("E_p", val=np.zeros(self.options["n_pc"])) def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): # Unpack inputs rad_ag = inputs["rad_ag"] len_s = inputs["len_s"] h_s = inputs["h_s"] tau_p = inputs["tau_p"] h_m = inputs["h_m"] h_ys = inputs["h_ys"] h_yr = inputs["h_yr"] machine_rating = inputs["machine_rating"] shaft_rpm = inputs["shaft_rpm"] Torque = inputs["rated_torque"] b_st = inputs["b_st"] d_s = inputs["d_s"] t_ws = inputs["t_ws"] n_s = inputs["n_s"] t_d = inputs["t_d"] R_sh = 0.5 * inputs["D_shaft"] rho_Fe = inputs["rho_Fe"] rho_Copper = inputs["rho_Copper"] rho_Fes = inputs["rho_Fes"] rho_PM = inputs["rho_PM"] # Grab constant values B_r = inputs["B_r"] E = inputs["E"] P_Fe0e = inputs["P_Fe0e"] P_Fe0h = inputs["P_Fe0h"] S_N = inputs["S_N"] alpha_p = inputs["alpha_p"] b_r_tau_r = inputs["b_r_tau_r"] b_ro = inputs["b_ro"] b_s_tau_s = inputs["b_s_tau_s"] b_so = inputs["b_so"] cofi = inputs["cofi"] freq = inputs["freq"] h_i = inputs["h_i"] h_sy0 = inputs["h_sy0"] h_w = inputs["h_w"] k_fes = inputs["k_fes"] k_fillr = inputs["k_fillr"] k_fills = inputs["k_fills"] k_s = inputs["k_s"] m = discrete_inputs["m"] mu_0 = inputs["mu_0"] mu_r = inputs["mu_r"] p = inputs["p"] phi = inputs["phi"] q1 = discrete_inputs["q1"] ratio_mw2pp = inputs["ratio_mw2pp"] resist_Cu = inputs["resist_Cu"] sigma = inputs["sigma"] v = inputs["v"] y_tau_p = inputs["y_tau_p"] y_tau_pr = inputs["y_tau_pr"] """ # Assign values to universal constants B_r = 1.2 # remnant flux density (Tesla = kg / (s^2 A)) E = 2e11 # N / m^2 young's modulus sigma = 40000.0 # shear stress assumed ratio_mw2pp = 0.7 # ratio of magnet width to pole pitch(bm / self.tau_p) mu_0 = np.pi * 4e-7 # permeability of free space in m * kg / (s**2 * A**2) mu_r = 1.06 # relative permeability (probably for neodymium magnets, often given as 1.05 - GNS) phi = np.deg2rad(90) # tilt angle (rotor tilt -90 degrees during transportation) cofi = 0.85 # power factor # Assign values to design constants h_w = 0.005 # wedge height y_tau_p = 1.0 # coil span to pole pitch m = 3 # no of phases q1 = 1 # no of slots per pole per phase b_s_tau_s = 0.45 # slot width / slot pitch ratio k_fills = 0.65 # Slot fill factor P_Fe0h = 4.0 # specific hysteresis losses W / kg @ 1.5 T P_Fe0e = 1.0 # specific hysteresis losses W / kg @ 1.5 T resist_Cu = 1.8e-8 * 1.4 # resistivity of copper b_so = 0.004 # stator slot opening k_fes = 0.9 # useful iron stack length #T = Torque v = 0.3 # poisson's ratio """ # back iron thickness for rotor and stator t_s = h_ys t = h_yr # Aspect ratio K_rad = len_s / (2 * rad_ag) # aspect ratio ###################################################### Electromagnetic design############################################# dia_ag = 2 * rad_ag # air gap diameter len_ag = 0.001 * dia_ag # air gap length b_m = ratio_mw2pp * tau_p # magnet width l_u = k_fes * len_s # useful iron stack length l_e = len_s + 2 * 0.001 * rad_ag # equivalent core length r_r = rad_ag - len_ag # rotor radius p = np.round(np.pi * rad_ag / tau_p) # pole pairs Eq.(11) f = p * shaft_rpm / 60.0 # rpm to frequency (Hz) S = 2 * p * q1 * m # Stator slots Eq.(12) N_conductors = S * 2 N_s = N_conductors / 2 / m # Stator turns per phase tau_s = np.pi * dia_ag / S # slot pitch Eq.(13) b_s = b_s_tau_s * tau_s # slot width b_t = tau_s - b_s # tooth width Eq.(14) Slot_aspect_ratio = h_s / b_s alpha_p = np.pi / 2 * 0.7 # Calculating Carter factor for stator and effective air gap length gamma = ( 4 / np.pi * ( b_so / 2 / (len_ag + h_m / mu_r) * np.arctan(b_so / 2 / (len_ag + h_m / mu_r)) - np.log(np.sqrt(1 + (b_so / 2 / (len_ag + h_m / mu_r)) ** 2)) ) ) k_C = tau_s / (tau_s - gamma * (len_ag + h_m / mu_r)) # carter coefficient g_eff = k_C * (len_ag + h_m / mu_r) # angular frequency in radians / sec om_m = 2 * np.pi * (shaft_rpm / 60.0) # rpm to rad/s om_e = p * om_m / 2 # Calculating magnetic loading B_pm1 = B_r * h_m / mu_r / g_eff B_g = B_r * h_m / mu_r / g_eff * (4.0 / np.pi) * np.sin(alpha_p) B_symax = B_g * b_m * l_e / (2 * h_ys * l_u) B_rymax = B_g * b_m * l_e / (2 * h_yr * len_s) B_tmax = B_g * tau_s / b_t k_wd = np.sin(np.pi / 6) / q1 / np.sin(np.pi / 6 / q1) # winding factor L_t = len_s + 2 * tau_p # Stator winding length, cross-section and resistance l_Cus = 2 * N_s * (2 * tau_p + L_t) A_s = b_s * (h_s - h_w) * q1 * p # m^2 A_scalc = b_s * 1e3 * (h_s - h_w) * 1e3 * q1 * p # mm^2 A_Cus = A_s * k_fills / N_s A_Cuscalc = A_scalc * k_fills / N_s R_s = l_Cus * resist_Cu / A_Cus # Calculating leakage inductance in stator L_m = 2 * mu_0 * N_s ** 2 / p * m * k_wd ** 2 * tau_p * L_t / np.pi ** 2 / g_eff L_ssigmas = ( 2 * mu_0 * N_s ** 2 / p / q1 * len_s * ((h_s - h_w) / (3 * b_s) + h_w / b_so) ) # slot leakage inductance L_ssigmaew = ( 2 * mu_0 * N_s ** 2 / p / q1 * len_s * 0.34 * len_ag * (l_e - 0.64 * tau_p * y_tau_p) / len_s ) # end winding leakage inductance L_ssigmag = ( 2 * mu_0 * N_s ** 2 / p / q1 * len_s * (5 * (len_ag * k_C / b_so) / (5 + 4 * (len_ag * k_C / b_so))) ) # tooth tip leakage inductance L_ssigma = L_ssigmas + L_ssigmaew + L_ssigmag L_s = L_m + L_ssigma # Calculating no-load voltage induced in the stator and stator current E_p = np.sqrt(2) * N_s * L_t * rad_ag * k_wd * om_m * B_g Z = machine_rating / (m * E_p) G = np.maximum(0.0, E_p ** 2 - (om_e * L_s * Z) ** 2) # Calculating stator current and electrical loading I_s = np.sqrt(Z ** 2 + (((E_p - G ** 0.5) / (om_e * L_s) ** 2) ** 2)) B_smax = np.sqrt(2) * I_s * mu_0 / g_eff J_s = I_s / A_Cuscalc A_1 = 6 * N_s * I_s / (np.pi * dia_ag) I_snom = machine_rating / (m * E_p * cofi) # rated current I_qnom = machine_rating / (m * E_p) X_snom = om_e * (L_m + L_ssigma) # Calculating electromagnetically active mass V_Cus = m * l_Cus * A_Cus # copper volume V_Fest = L_t * 2 * p * q1 * m * b_t * h_s # volume of iron in stator tooth V_Fesy = L_t * np.pi * ((rad_ag + h_s + h_ys) ** 2 - (rad_ag + h_s) ** 2) # volume of iron in stator yoke V_Fery = L_t * np.pi * ((r_r - h_m) ** 2 - (r_r - h_m - h_yr) ** 2) # volume of iron in rotor yoke Copper = V_Cus * rho_Copper M_Fest = V_Fest * rho_Fe # mass of stator tooth M_Fesy = V_Fesy * rho_Fe # mass of stator yoke M_Fery = V_Fery * rho_Fe # mass of rotor yoke Iron = M_Fest + M_Fesy + M_Fery # Calculating losses # 1.Copper losses K_R = 1.2 # Skin effect correction co - efficient P_Cu = m * I_snom ** 2 * R_s * K_R # Iron Losses ( from Hysteresis and eddy currents) P_Hyys = M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) # Hysteresis losses in stator yoke P_Ftys = ( M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2) ) # Eddy losses in stator yoke P_Fesynom = P_Hyys + P_Ftys P_Hyd = M_Fest * (B_tmax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) # Hysteresis losses in stator teeth P_Ftd = ( M_Fest * (B_tmax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2) ) # Eddy losses in stator teeth P_Festnom = P_Hyd + P_Ftd P_ad = 0.2 * (P_Hyys + P_Ftys + P_Hyd + P_Ftd) # additional stray losses due to leakage flux pFtm = 300 # specific magnet loss P_Ftm = pFtm * 2 * p * b_m * len_s # magnet losses Losses = P_Cu + P_Festnom + P_Fesynom + P_ad + P_Ftm gen_eff = machine_rating / (machine_rating + Losses) ################################################## Structural Design ############################################################ ## Structural deflection calculations # rotor structure R = rad_ag - len_ag - h_m - 0.5 * t # mean radius of the rotor rim # l = L_t using L_t everywhere now b = R_sh # Shaft radius (not used) R_b = R - 0.5 * t # Inner radius of the rotor R_a = R + 0.5 * h_yr # Outer radius of rotor yoke a = R - 0.5 * t # same as R_b a_1 = R_b # same as R_b, a c = R / 500 u_allow_r = c / 20 # allowable radial deflection y_allow = 2 * L_t / 100 # allowable axial deflection R_1 = R - 0.5 * t # inner radius of rotor cylinder # same as R_b, a, a_1 (not used) K = 4 * (np.sin(ratio_mw2pp * np.pi / 2)) / np.pi # (not used) q3 = B_g ** 2 / (2 * mu_0) # normal component of Maxwell's stress mass_PM = 2 * np.pi * (R + 0.5 * t) * L_t * h_m * ratio_mw2pp * rho_PM # magnet mass mass_st_lam = rho_Fe * 2 * np.pi * R * L_t * h_yr # mass of rotor yoke steel # Calculation of radial deflection of rotor # cylindrical shell function and circular plate parameters for disc rotor based on Table 11.2 Roark's formulas # lamb, C* and F* parameters are from Appendix A of McDonald lamb = (3 * (1 - v ** 2) / R_a ** 2 / h_yr ** 2) ** 0.25 # m^-1 x1 = lamb * L_t # no units # ---------------- C_2 = chsPshc(x1) C_4 = chsMshc(x1) C_13 = chsMshc(x1) # (not used) C_a2 = chsPshc(x1 * 0.5) F_2_x0 = chsPshc(lamb * 0) F_2_ls2 = chsPshc(x1 / 2) F_a4_x0 = chsMshc(lamb * (0)) Fa4arg = np.pi / 180 * lamb * (0.5 * len_s - a) F_a4_ls2 = chsMshc(Fa4arg) # print('pmsg_disc: F_a4_ls2, Fa4arg, lamb, len_s, a ', F_a4_ls2, Fa4arg, lamb, len_s, a) # if np.isnan(F_a4_ls2): # sys.stderr.write('*** pmsg_discSE error: F_a4_ls2 is nan\n') # C_2 = np.cosh(x1) * np.sin(x1) + np.sinh(x1) * np.cos(x1) C_3 = np.sinh(x1) * np.sin(x1) # C_4 = np.cosh(x1) * np.sin(x1) - np.sinh(x1) * np.cos(x1) C_11 = (np.sinh(x1)) ** 2 - (np.sin(x1)) ** 2 # C_13 = np.cosh(x1) * np.sinh(x1) - np.cos(x1) * np.sin(x1) # (not used) C_14 = np.sinh(x1) ** 2 + np.sin(x1) ** 2 # (not used) C_a1 = np.cosh(x1 * 0.5) * np.cos(x1 * 0.5) # C_a2 = np.cosh(x1 * 0.5) * np.sin(x1 * 0.5) + np.sinh(x1 * 0.5) * np.cos(x1 * 0.5) F_1_x0 = np.cosh(lamb * 0) * np.cos(lamb * 0) F_1_ls2 = np.cosh(lamb * 0.5 * len_s) * np.cos(lamb * 0.5 * len_s) # F_2_x0 = np.cosh(lamb * 0) * np.sin(lamb * 0) + np.sinh(lamb * 0) * np.cos(lamb * 0) # F_2_ls2 = np.cosh(x1 / 2) * np.sin(x1 / 2) + np.sinh(x1 / 2) * np.cos(x1 / 2) if len_s < 2 * a: a = len_s / 2 else: a = len_s * 0.5 - 1 # F_a4_x0 = np.cosh(lamb * (0)) * np.sin(lamb * (0)) \ # - np.sinh(lamb * (0)) * np.cos(lamb * (0)) # F_a4_ls2 = np.cosh(np.pi / 180 * lamb * (0.5 * len_s - a)) * np.sin(np.pi / 180 * lamb * (0.5 * len_s - a)) \ # - np.sinh(np.pi / 180 * lamb * (0.5 * len_s - a)) * np.cos(np.pi / 180 * lamb * (0.5 * len_s - a)) """ Where did the np.pi/180 factor (conversion to radians) come from? lamb is m^-1 0.5*len_s - a is m """ # ---------------- D_r = E * h_yr ** 3 / (12 * (1 - v ** 2)) D_ax = E * t_d ** 3 / (12 * (1 - v ** 2)) # Radial deflection analytical model from McDonald's thesis defined in parts Part_1 = R_b * ((1 - v) * R_b ** 2 + (1 + v) * R_sh ** 2) / (R_b ** 2 - R_sh ** 2) / E Part_2 = (C_2 * C_a2 - 2 * C_3 * C_a1) / 2 / C_11 Part_3 = (C_3 * C_a2 - C_4 * C_a1) / C_11 Part_4 = 0.25 / D_r / lamb ** 3 Part_5 = q3 * R_b ** 2 / (E * (R_a - R_b)) f_d = Part_5 / (Part_1 - t_d * (Part_4 * Part_2 * F_2_ls2 - Part_3 * 2 * Part_4 * F_1_ls2 - Part_4 * F_a4_ls2)) fr = f_d * t_d u_ar = abs( Part_5 + fr / (2 * D_r * lamb ** 3) * ( (-F_1_x0 / C_11) * (C_3 * C_a2 - C_4 * C_a1) + (F_2_x0 / 2 / C_11) * (C_2 * C_a2 - 2 * C_3 * C_a1) - F_a4_x0 / 2 ) ) # Calculation of Axial deflection of rotor W = ( 0.5 * gravity * np.sin(phi) * ((L_t - t_d) * h_yr * rho_Fes) ) # uniform annular line load acting on rotor cylinder assumed as an annular plate w = rho_Fes * gravity * np.sin(phi) * t_d # disc assumed as plate with a uniformly distributed pressure between a_i = R_sh # Flat circular plate constants according to Roark's table 11.2 C_2p = 0.25 * (1 - (((R_sh / R) ** 2) * (1 + (2 * np.log(R / R_sh))))) C_3p = (R_sh / 4 / R) * ((1 + (R_sh / R) ** 2) * np.log(R / R_sh) + (R_sh / R) ** 2 - 1) C_6 = (R_sh / 4 / R_a) * ((R_sh / R_a) ** 2 - 1 + 2 * np.log(R_a / R_sh)) C_5 = 0.5 * (1 - (R_sh / R) ** 2) C_8 = 0.5 * (1 + v + (1 - v) * ((R_sh / R) ** 2)) C_9 = (R_sh / R) * (0.5 * (1 + v) * np.log(R / R_sh) + (1 - v) / 4 * (1 - (R_sh / R) ** 2)) # Flat circular plate loading constants L_11 = ( 1 + 4 * (R_sh / a_1) ** 2 - 5 * (R_sh / a_1) ** 4 - 4 * ((R_sh / a_1) ** 2) * np.log(a_1 / R_sh) * (2 + (R_sh / a_1) ** 2) ) / 64 L_14 = (1 - (R_sh / R_b) ** 4 - 4 * (R_sh / R_b) ** 2 * np.log(R_b / R_sh)) / 16 y_ai = ( -W * (a_1 ** 3) * (C_2p * (C_6 * a_1 / R_sh - C_6) / C_5 - a_1 * C_3p / R_sh + C_3p) / D_ax ) # Axial deflection of plate due to deflection of an annular plate with a uniform annular line load # Axial Deflection due to uniformaly distributed pressure load M_rb = -w * R ** 2 * (C_6 * (R ** 2 - R_sh ** 2) * 0.5 / R / R_sh - L_14) / C_5 Q_b = w * 0.5 * (R ** 2 - R_sh ** 2) / R_sh y_aii = M_rb * R_a ** 2 * C_2p / D_ax + Q_b * R_a ** 3 * C_3p / D_ax - w * R_a ** 4 * L_11 / D_ax y_ar = abs(y_ai + y_aii) z_allow_r = np.deg2rad(0.05 * R) # allowable torsional deflection of rotor # stator structure deflection calculation R_out = R / 0.995 + h_s + h_ys a_s = (b_st * d_s) - ((b_st - 2 * t_ws) * (d_s - 2 * t_ws)) # cross-sectional area of stator armms A_st = L_t * t_s # cross-sectional area of rotor cylinder N_st = np.round(n_s) theta_s = np.pi * 1 / N_st # half angle between spokes I_st = L_t * t_s ** 3 / 12 # second moment of area of stator cylinder I_arm_axi_s = ( (b_st * d_s ** 3) - ((b_st - 2 * t_ws) * (d_s - 2 * t_ws) ** 3) ) / 12 # second moment of area of stator arm I_arm_tor_s = ( (d_s * b_st ** 3) - ((d_s - 2 * t_ws) * (b_st - 2 * t_ws) ** 3) ) / 12 # second moment of area of rotot arm w.r.t torsion R_st = rad_ag + h_s + h_ys * 0.5 k_2 = np.sqrt(I_st / A_st) # radius of gyration b_allow_s = 2 * np.pi * R_sh / N_st m2 = (k_2 / R_st) ** 2 c1 = R_st / 500 R_1s = R_st - t_s * 0.5 d_se = dia_ag + 2 * (h_ys + h_s + h_w) # stator outer diameter # Calculation of radial deflection of stator Numers = R_st ** 3 * ( (0.25 * (np.sin(theta_s) - (theta_s * np.cos(theta_s))) / (np.sin(theta_s)) ** 2) - (0.5 / np.sin(theta_s)) + (0.5 / theta_s) ) Povs = ((theta_s / (np.sin(theta_s)) ** 2) + 1 / np.tan(theta_s)) * ( (0.25 * R_st / A_st) + (0.25 * R_st ** 3 / I_st) ) Qovs = R_st ** 3 / (2 * I_st * theta_s * (m2 + 1)) Lovs = (R_1s - R_sh) * 0.5 / a_s Denoms = I_st * (Povs - Qovs + Lovs) u_as = (q3 * R_st ** 2 / E / t_s) * (1 + Numers / Denoms) # Calculation of axial deflection of stator mass_st_lam_s = M_Fest + np.pi * L_t * rho_Fe * ((R_st + 0.5 * h_ys) ** 2 - (R_st - 0.5 * h_ys) ** 2) W_is = ( 0.5 * gravity * np.sin(phi) * (rho_Fes * L_t * d_s ** 2) ) # length of stator arm beam at which self-weight acts W_iis = ( gravity * np.sin(phi) * (mass_st_lam_s + V_Cus * rho_Copper) / 2 / N_st ) # weight of stator cylinder and teeth w_s = rho_Fes * gravity * np.sin(phi) * a_s * N_st # uniformly distributed load of the arms l_is = R_st - R_sh # distance at which the weight of the stator cylinder acts l_iis = l_is # distance at which the weight of the stator cylinder acts l_iiis = l_is # distance at which the weight of the stator cylinder acts u_allow_s = c1 / 20 X_comp1 = ( W_is * l_is ** 3 / 12 / E / I_arm_axi_s ) # deflection component due to stator arm beam at which self-weight acts X_comp2 = W_iis * l_iis ** 4 / 24 / E / I_arm_axi_s # deflection component due to 1/nth of stator cylinder X_comp3 = w_s * l_iiis ** 4 / 24 / E / I_arm_axi_s # deflection component due to weight of arms y_as = X_comp1 + X_comp2 + X_comp3 # axial deflection # Stator circumferential deflection z_allow_s = np.deg2rad(0.05 * R_st) # allowable torsional deflection z_as = ( 2 * np.pi * (R_st + 0.5 * t_s) * L_t / (2 * N_st) * sigma * (l_is + 0.5 * t_s) ** 3 / (3 * E * I_arm_tor_s) ) mass_stru_steel = 2 * (N_st * (R_1s - R_sh) * a_s * rho_Fes) TC1 = Torque * 1.0 / (2 * np.pi * sigma) # Torque / shear stress TC2r = R ** 2 * L_t # Evaluating Torque constraint for rotor TC2s = R_st ** 2 * L_t # Evaluating Torque constraint for stator Structural_mass = mass_stru_steel + (np.pi * (R ** 2 - R_sh ** 2) * t_d * rho_Fes) Mass = Structural_mass + Iron + Copper + mass_PM outputs["B_tmax"] = B_tmax outputs["B_rymax"] = B_rymax outputs["B_symax"] = B_symax outputs["B_smax"] = B_smax[-1] outputs["B_pm1"] = B_pm1 outputs["B_g"] = B_g outputs["N_s"] = N_s outputs["b_s"] = b_s outputs["b_t"] = b_t outputs["A_Cuscalc"] = A_Cuscalc outputs["b_m"] = b_m outputs["E_p"] = E_p outputs["f"] = f outputs["I_s"] = I_s outputs["R_s"] = R_s outputs["L_s"] = L_s outputs["A_1"] = A_1 outputs["J_s"] = J_s outputs["Losses"] = Losses outputs["K_rad"] = K_rad outputs["eandm_efficiency"] = np.maximum(eps, gen_eff) outputs["S"] = S outputs["Slot_aspect_ratio"] = Slot_aspect_ratio outputs["Copper"] = Copper outputs["Iron"] = Iron outputs["u_ar"] = u_ar outputs["y_ar"] = y_ar outputs["u_as"] = u_as outputs["y_as"] = y_as outputs["z_as"] = z_as outputs["u_allow_r"] = u_allow_r outputs["u_allow_s"] = u_allow_s outputs["y_allow_r"] = outputs["y_allow_s"] = y_allow outputs["z_allow_s"] = z_allow_s outputs["z_allow_r"] = z_allow_r outputs["b_allow_s"] = b_allow_s outputs["TC1"] = TC1 outputs["TC2r"] = TC2r outputs["TC2s"] = TC2s outputs["R_out"] = R_out outputs["Structural_mass"] = Structural_mass outputs["generator_mass"] = Mass outputs["mass_PM"] = mass_PM # ---------------------------------------------------------------------------------------- class PMSG_Arms(GeneratorBase): """ Estimates overall mass dimensions and Efficiency of PMSG-disc rotor generator. Parameters ---------- b_arm : float, [m] arm width tau_p : float, [m] Pole pitch self.tau_p h_yr : float, [m] rotor yoke height h_ys : float, [m] Yoke height Returns ------- B_tmax : float, [T] Peak Teeth flux density B_smax : float, [T] Peak Stator Yoke flux density B_ymax B_symax : float, [T] Peak Stator Yoke flux density B_ymax E_p : float Stator phase voltage """ def initialize(self): super(PMSG_Arms, self).initialize() def setup(self): super(PMSG_Arms, self).setup() self.add_input("b_arm", val=0.0, units="m") self.add_input("tau_p", val=0.0, units="m") self.add_input("h_yr", val=0.0, units="m") self.add_input("h_ys", val=0.0, units="m") self.add_output("B_tmax", val=0.0, units="T") self.add_output("B_smax", val=0.0, units="T") self.add_output("B_symax", val=0.0, units="T") self.add_output("E_p", val=np.zeros(self.options["n_pc"])) def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): # Unpack inputs # r_s = inputs['r_s'] rad_ag = inputs["rad_ag"] len_s = inputs["len_s"] h_s = inputs["h_s"] tau_p = inputs["tau_p"] h_m = inputs["h_m"] h_ys = inputs["h_ys"] h_yr = inputs["h_yr"] machine_rating = inputs["machine_rating"] shaft_rpm = inputs["shaft_rpm"] Torque = inputs["rated_torque"] b_st = inputs["b_st"] d_s = inputs["d_s"] t_ws = inputs["t_ws"] n_r = inputs["n_r"] n_s = inputs["n_s"] b_r = inputs["b_arm"] d_r = inputs["d_r"] t_wr = inputs["t_wr"] R_sh = 0.5 * inputs["D_shaft"] rho_Fe = inputs["rho_Fe"] rho_Copper = inputs["rho_Copper"] rho_Fes = inputs["rho_Fes"] rho_PM = inputs["rho_PM"] # Grab constant values B_r = inputs["B_r"] E = inputs["E"] P_Fe0e = inputs["P_Fe0e"] P_Fe0h = inputs["P_Fe0h"] S_N = inputs["S_N"] alpha_p = inputs["alpha_p"] b_r_tau_r = inputs["b_r_tau_r"] b_ro = inputs["b_ro"] b_s_tau_s = inputs["b_s_tau_s"] b_so = inputs["b_so"] cofi = inputs["cofi"] freq = inputs["freq"] h_i = inputs["h_i"] h_sy0 = inputs["h_sy0"] h_w = inputs["h_w"] k_fes = inputs["k_fes"] k_fillr = inputs["k_fillr"] k_fills = inputs["k_fills"] k_s = inputs["k_s"] m = discrete_inputs["m"] mu_0 = inputs["mu_0"] mu_r = inputs["mu_r"] p = inputs["p"] phi = inputs["phi"] q1 = discrete_inputs["q1"] ratio_mw2pp = inputs["ratio_mw2pp"] resist_Cu = inputs["resist_Cu"] sigma = inputs["sigma"] v = inputs["v"] y_tau_p = inputs["y_tau_p"] y_tau_pr = inputs["y_tau_pr"] """ # Assign values to universal constants B_r = 1.2 # Tesla remnant flux density E = 2e11 # N / m^2 young's modulus sigma = 40e3 # shear stress assumed (yield strength of ?? steel, in psi - GNS) ratio_mw2pp = 0.7 # ratio of magnet width to pole pitch(bm / tau_p) mu_0 = np.pi * 4e-7 # permeability of free space in m * kg / (s**2 * A**2) mu_r = 1.06 # relative permeability (probably for neodymium magnets, often given as 1.05 - GNS) phi = np.deg2rad(90) # tilt angle (rotor tilt -90 degrees during transportation) cofi = 0.85 # power factor # Assign values to design constants h_w = 0.005 # Slot wedge height h_i = 0.001 # coil insulation thickness y_tau_p = 1 # Coil span to pole pitch m = 3 # no of phases q1 = 1 # no of slots per pole per phase b_s_tau_s = 0.45 # slot width to slot pitch ratio k_fills = 0.65 # Slot fill factor P_Fe0h = 4 # specific hysteresis losses W / kg @ 1.5 T P_Fe0e = 1 # specific eddy losses W / kg @ 1.5 T resist_Cu = 1.8e-8 * 1.4 # Copper resisitivty k_fes = 0.9 # Stator iron fill factor per Grauers b_so = 0.004 # Slot opening alpha_p = np.pi / 2 * 0.7 """ # back iron thickness for rotor and stator t_s = h_ys t = h_yr ###################################################### Electromagnetic design############################################# K_rad = len_s / (2 * rad_ag) # Aspect ratio # T = Torque # rated torque l_u = k_fes * len_s # useful iron stack length We = tau_p l_b = 2 * tau_p # end winding length l_e = len_s + 2 * 0.001 * rad_ag # equivalent core length b_m = 0.7 * tau_p # magnet width # Calculating air gap length dia_ag = 2 * rad_ag # air gap diameter len_ag = 0.001 * dia_ag # air gap length r_m = rad_ag + h_ys + h_s # magnet radius r_r = rad_ag - len_ag # rotor radius p = np.round(np.pi * dia_ag / (2 * tau_p)) # pole pairs f = shaft_rpm * p / 60.0 # outout frequency rpm to Hz S = 2 * p * q1 * m # Stator slots N_conductors = S * 2 N_s = N_conductors / (2 * m) # Stator turns per phase tau_s = np.pi * dia_ag / S # Stator slot pitch b_s = b_s_tau_s * tau_s # slot width b_t = tau_s - b_s # tooth width Slot_aspect_ratio = h_s / b_s # Calculating Carter factor for stator and effective air gap length ahm = len_ag + h_m / mu_r ba = b_so / (2 * ahm) gamma = 4 / np.pi * (ba * np.arctan(ba) - np.log(np.sqrt(1 + ba ** 2))) k_C = tau_s / (tau_s - gamma * ahm) # carter coefficient g_eff = k_C * ahm # angular frequency in radians om_m = 2 * np.pi * shaft_rpm / 60.0 # rpm to radians per second om_e = p * om_m / 2 # electrical output frequency (Hz) # Calculating magnetic loading B_pm1 = B_r * h_m / mu_r / g_eff B_g = B_r * h_m / mu_r / g_eff * (4 / np.pi) * np.sin(alpha_p) B_symax = B_g * b_m * l_e / (2 * h_ys * l_u) B_rymax = B_g * b_m * l_e / (2 * h_yr * len_s) B_tmax = B_g * tau_s / b_t # Calculating winding factor k_wd = np.sin(np.pi / 6) / q1 / np.sin(np.pi / 6 / q1) L_t = len_s + 2 * tau_p # overall stator len w/end windings - should be tau_s??? # l = L_t # length - now using L_t everywhere # Stator winding length, cross-section and resistance l_Cus = 2 * N_s * (2 * tau_p + L_t) A_s = b_s * (h_s - h_w) * q1 * p A_scalc = b_s * 1000 * (h_s - h_w) * 1000 * q1 * p A_Cus = A_s * k_fills / N_s A_Cuscalc = A_scalc * k_fills / N_s R_s = l_Cus * resist_Cu / A_Cus # Calculating leakage inductance in stator L_m = 2 * mu_0 * N_s ** 2 / p * m * k_wd ** 2 * tau_p * L_t / np.pi ** 2 / g_eff L_ssigmas = ( 2 * mu_0 * N_s ** 2 / p / q1 * len_s * ((h_s - h_w) / (3 * b_s) + h_w / b_so) ) # slot leakage inductance L_ssigmaew = ( 2 * mu_0 * N_s ** 2 / p / q1 * len_s * 0.34 * len_ag * (l_e - 0.64 * tau_p * y_tau_p) / len_s ) # end winding leakage inductance L_ssigmag = ( 2 * mu_0 * N_s ** 2 / p / q1 * len_s * (5 * (len_ag * k_C / b_so) / (5 + 4 * (len_ag * k_C / b_so))) ) # tooth tip leakage inductance L_ssigma = L_ssigmas + L_ssigmaew + L_ssigmag L_s = L_m + L_ssigma # Calculating no-load voltage induced in the stator E_p = 2 * N_s * L_t * rad_ag * k_wd * om_m * B_g / np.sqrt(2) Z = machine_rating / (m * E_p) G = np.maximum(0.0, E_p ** 2 - (om_e * L_s * Z) ** 2) # Calculating stator current and electrical loading is2 = Z ** 2 + (((E_p - G ** 0.5) / (om_e * L_s) ** 2) ** 2) I_s = np.sqrt(Z ** 2 + (((E_p - G ** 0.5) / (om_e * L_s) ** 2) ** 2)) J_s = I_s / A_Cuscalc A_1 = 6 * N_s * I_s / (np.pi * dia_ag) I_snom = machine_rating / (m * E_p * cofi) # rated current I_qnom = machine_rating / (m * E_p) X_snom = om_e * (L_m + L_ssigma) B_smax = np.sqrt(2) * I_s * mu_0 / g_eff # Calculating Electromagnetically active mass V_Cus = m * l_Cus * A_Cus # copper volume V_Fest = L_t * 2 * p * q1 * m * b_t * h_s # volume of iron in stator tooth V_Fesy = L_t * np.pi * ((rad_ag + h_s + h_ys) ** 2 - (rad_ag + h_s) ** 2) # volume of iron in stator yoke V_Fery = L_t * np.pi * ((r_r - h_m) ** 2 - (r_r - h_m - h_yr) ** 2) Copper = V_Cus * rho_Copper M_Fest = V_Fest * rho_Fe # Mass of stator tooth M_Fesy = V_Fesy * rho_Fe # Mass of stator yoke M_Fery = V_Fery * rho_Fe # Mass of rotor yoke Iron = M_Fest + M_Fesy + M_Fery # Calculating Losses ##1. Copper Losses K_R = 1.2 # Skin effect correction co-efficient P_Cu = m * I_snom ** 2 * R_s * K_R # Iron Losses ( from Hysteresis and eddy currents) P_Hyys = M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) # Hysteresis losses in stator yoke P_Ftys = ( M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2) ) # Eddy losses in stator yoke P_Fesynom = P_Hyys + P_Ftys P_Hyd = M_Fest * (B_tmax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) # Hysteresis losses in stator teeth P_Ftd = ( M_Fest * (B_tmax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2) ) # Eddy losses in stator teeth P_Festnom = P_Hyd + P_Ftd # additional stray losses due to leakage flux P_ad = 0.2 * (P_Hyys + P_Ftys + P_Hyd + P_Ftd) pFtm = 300 # specific magnet loss P_Ftm = pFtm * 2 * p * b_m * len_s Losses = P_Cu + P_Festnom + P_Fesynom + P_ad + P_Ftm gen_eff = machine_rating / (machine_rating + Losses) #################################################### Structural Design ############################################################ ## Deflection Calculations ## # rotor structure calculations a_r = (b_r * d_r) - ((b_r - 2 * t_wr) * (d_r - 2 * t_wr)) # cross-sectional area of rotor arms A_r = L_t * t # cross-sectional area of rotor cylinder N_r = np.round(n_r) # rotor arms theta_r = np.pi * 1 / N_r # half angle between spokes I_r = L_t * t ** 3 / 12 # second moment of area of rotor cylinder I_arm_axi_r = ( (b_r * d_r ** 3) - ((b_r - 2 * t_wr) * (d_r - 2 * t_wr) ** 3) ) / 12 # second moment of area of rotor arm I_arm_tor_r = ( (d_r * b_r ** 3) - ((d_r - 2 * t_wr) * (b_r - 2 * t_wr) ** 3) ) / 12 # second moment of area of rotot arm w.r.t torsion R = rad_ag - len_ag - h_m - 0.5 * t # Rotor mean radius c = R / 500 u_allow_r = c / 20 # allowable radial deflection R_1 = R - t * 0.5 # inner radius of rotor cylinder k_1 = np.sqrt(I_r / A_r) # radius of gyration m1 = (k_1 / R) ** 2 l_ir = R # length of rotor arm beam at which rotor cylinder acts l_iir = R_1 b_allow_r = 2 * np.pi * R_sh / N_r # allowable circumferential arm dimension for rotor q3 = B_g ** 2 / 2 / mu_0 # normal component of Maxwell stress mass_PM = 2 * np.pi * (R + 0.5 * t) * L_t * h_m * ratio_mw2pp * rho_PM # magnet mass # Calculating radial deflection of the rotor Numer = R ** 3 * ( (0.25 * (np.sin(theta_r) - (theta_r * np.cos(theta_r))) / (np.sin(theta_r)) ** 2) - (0.5 / np.sin(theta_r)) + (0.5 / theta_r) ) Pov = ((theta_r / (np.sin(theta_r)) ** 2) + 1 / np.tan(theta_r)) * ((0.25 * R / A_r) + (0.25 * R ** 3 / I_r)) Qov = R ** 3 / (2 * I_r * theta_r * (m1 + 1)) Lov = (R_1 - R_sh) / a_r Denom = I_r * (Pov - Qov + Lov) # radial deflection % rotor u_ar = (q3 * R ** 2 / E / t) * (1 + Numer / Denom) # Calculating axial deflection of the rotor under its own weight w_r = rho_Fes * gravity * np.sin(phi) * a_r * N_r # uniformly distributed load of the weight of the rotor arm mass_st_lam = rho_Fe * 2 * np.pi * R * L_t * h_yr # mass of rotor yoke steel W = gravity * np.sin(phi) * (mass_st_lam / N_r + mass_PM / N_r) # weight of 1/nth of rotor cylinder y_a1 = W * l_ir ** 3 / 12 / E / I_arm_axi_r # deflection from weight component of back iron y_a2 = w_r * l_iir ** 4 / 24 / E / I_arm_axi_r # deflection from weight component of the arms y_ar = y_a1 + y_a2 # axial deflection y_allow = 2 * L_t / 100 # allowable axial deflection # Calculating # circumferential deflection of the rotor z_allow_r = np.deg2rad(0.05 * R) # allowable torsional deflection z_ar = ( (2 * np.pi * (R - 0.5 * t) * L_t / N_r) * sigma * (l_ir - 0.5 * t) ** 3 / 3 / E / I_arm_tor_r ) # circumferential deflection val_str_rotor = mass_PM + (mass_st_lam + (N_r * (R_1 - R_sh) * a_r * rho_Fes)) # rotor mass # stator structure deflection calculation a_s = (b_st * d_s) - ((b_st - 2 * t_ws) * (d_s - 2 * t_ws)) # cross-sectional area of stator armms A_st = L_t * t_s # cross-sectional area of stator cylinder N_st = np.round(n_s) # stator arms theta_s = np.pi * 1 / N_st # half angle between spokes I_st = L_t * t_s ** 3 / 12 # second moment of area of stator cylinder k_2 = np.sqrt(I_st / A_st) # radius of gyration I_arm_axi_s = ( (b_st * d_s ** 3) - ((b_st - 2 * t_ws) * (d_s - 2 * t_ws) ** 3) ) / 12 # second moment of area of stator arm I_arm_tor_s = ( (d_s * b_st ** 3) - ((d_s - 2 * t_ws) * (b_st - 2 * t_ws) ** 3) ) / 12 # second moment of area of rotot arm w.r.t torsion R_st = rad_ag + h_s + h_ys * 0.5 # stator cylinder mean radius R_1s = R_st - t_s * 0.5 # inner radius of stator cylinder, m m2 = (k_2 / R_st) ** 2 d_se = dia_ag + 2 * (h_ys + h_s + h_w) # stator outer diameter # allowable radial deflection of stator c1 = R_st / 500 u_allow_s = c1 / 20 R_out = R / 0.995 + h_s + h_ys l_is = R_st - R_sh # distance at which the weight of the stator cylinder acts l_iis = l_is # distance at which the weight of the stator cylinder acts l_iiis = l_is # distance at which the weight of the stator cylinder acts mass_st_lam_s = M_Fest + np.pi * L_t * rho_Fe * ((R_st + 0.5 * h_ys) ** 2 - (R_st - 0.5 * h_ys) ** 2) W_is = ( 0.5 * gravity * np.sin(phi) * (rho_Fes * L_t * d_s ** 2) ) # length of stator arm beam at which self-weight acts W_iis = ( gravity * np.sin(phi) * (mass_st_lam_s + V_Cus * rho_Copper) / 2 / N_st ) # weight of stator cylinder and teeth w_s = rho_Fes * gravity * np.sin(phi) * a_s * N_st # uniformly distributed load of the arms mass_stru_steel = 2 * (N_st * (R_1s - R_sh) * a_s * rho_Fes) # Structural mass of stator arms # Calculating radial deflection of the stator Numers = R_st ** 3 * ( (0.25 * (np.sin(theta_s) - (theta_s * np.cos(theta_s))) / (np.sin(theta_s)) ** 2) - (0.5 / np.sin(theta_s)) + (0.5 / theta_s) ) Povs = ((theta_s / (np.sin(theta_s)) ** 2) + 1 / np.tan(theta_s)) * ( (0.25 * R_st / A_st) + (0.25 * R_st ** 3 / I_st) ) Qovs = R_st ** 3 / (2 * I_st * theta_s * (m2 + 1)) Lovs = (R_1s - R_sh) * 0.5 / a_s Denoms = I_st * (Povs - Qovs + Lovs) u_as = (q3 * R_st ** 2 / E / t_s) * (1 + Numers / Denoms) # Calculating axial deflection of the stator X_comp1 = ( W_is * l_is ** 3 / 12 / E / I_arm_axi_s ) # deflection component due to stator arm beam at which self-weight acts X_comp2 = W_iis * l_iis ** 4 / 24 / E / I_arm_axi_s # deflection component due to 1 / nth of stator cylinder X_comp3 = w_s * l_iiis ** 4 / 24 / E / I_arm_axi_s # deflection component due to weight of arms y_as = X_comp1 + X_comp2 + X_comp3 # axial deflection # Calculating circumferential deflection of the stator z_as = 2 * np.pi * (R_st + 0.5 * t_s) * L_t / (2 * N_st) * sigma * (l_is + 0.5 * t_s) ** 3 / 3 / E / I_arm_tor_s z_allow_s = np.deg2rad(0.05 * R_st) # allowable torsional deflection b_allow_s = 2 * np.pi * R_sh / N_st # allowable circumferential arm dimension val_str_stator = mass_stru_steel + mass_st_lam_s val_str_mass = val_str_rotor + val_str_stator TC1 = Torque / (2 * np.pi * sigma) # Desired shear stress TC2r = R ** 2 * L_t # Evaluating Torque constraint for rotor TC2s = R_st ** 2 * L_t # Evaluating Torque constraint for stator Structural_mass = mass_stru_steel + (N_r * (R_1 - R_sh) * a_r * rho_Fes) Stator = mass_st_lam_s + mass_stru_steel + Copper Rotor = ((2 * np.pi * t * L_t * R * rho_Fe) + (N_r * (R_1 - R_sh) * a_r * rho_Fes)) + mass_PM Mass = Stator + Rotor outputs["B_tmax"] = B_tmax outputs["B_rymax"] = B_rymax outputs["B_symax"] = B_symax outputs["B_smax"] = B_smax[-1] outputs["B_pm1"] = B_pm1 outputs["B_g"] = B_g outputs["N_s"] = N_s outputs["b_s"] = b_s outputs["b_t"] = b_t outputs["A_Cuscalc"] = A_Cuscalc outputs["b_m"] = b_m outputs["E_p"] = E_p outputs["f"] = f outputs["I_s"] = I_s outputs["R_s"] = R_s outputs["L_s"] = L_s outputs["A_1"] = A_1 outputs["J_s"] = J_s outputs["Losses"] = Losses outputs["K_rad"] = K_rad outputs["eandm_efficiency"] = np.maximum(eps, gen_eff) outputs["S"] = S outputs["Slot_aspect_ratio"] = Slot_aspect_ratio outputs["Copper"] = Copper outputs["Iron"] = Iron outputs["u_ar"] = u_ar outputs["y_ar"] = y_ar outputs["z_ar"] = z_ar outputs["u_as"] = u_as outputs["y_as"] = y_as outputs["z_as"] = z_as outputs["u_allow_r"] = u_allow_r outputs["u_allow_s"] = u_allow_s outputs["y_allow_r"] = outputs["y_allow_s"] = y_allow outputs["z_allow_s"] = z_allow_s outputs["z_allow_r"] = z_allow_r outputs["b_allow_s"] = b_allow_s outputs["b_allow_r"] = b_allow_r outputs["TC1"] = TC1 outputs["TC2r"] = TC2r outputs["TC2s"] = TC2s outputs["R_out"] = R_out outputs["Structural_mass"] = Structural_mass outputs["generator_mass"] = Mass outputs["mass_PM"] = mass_PM # ---------------------------------------------------------------------------------------- class DFIG(GeneratorBase): """ Estimates overall mass, dimensions and Efficiency of DFIG generator. Parameters ---------- S_Nmax : float Max rated Slip B_symax : float, [T] Peak Stator Yoke flux density B_ymax Returns ------- N_r : float Rotor turns L_r : float Rotor inductance h_yr : float rotor yoke height h_ys : float Stator Yoke height tau_p : float Pole pitch Current_ratio : float Rotor current ratio E_p : float Stator phase voltage """ def initialize(self): super(DFIG, self).initialize() def setup(self): super(DFIG, self).setup() n_pc = self.options["n_pc"] self.add_input("S_Nmax", val=0.0) self.add_input("B_symax", val=0.0, units="T") self.add_output("N_r", val=0.0) self.add_output("L_r", val=0.0) self.add_output("h_yr", val=0.0) self.add_output("h_ys", val=0.0) self.add_output("tau_p", val=0.0) self.add_output("Current_ratio", val=np.zeros(n_pc)) self.add_output("E_p", val=np.zeros(n_pc)) def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): # Unpack inputs rad_ag = inputs["rad_ag"] len_s = inputs["len_s"] h_s = inputs["h_s"] h_0 = inputs["h_0"] I_0 = inputs["I_0"] machine_rating = inputs["machine_rating"] shaft_rpm = inputs["shaft_rpm"] rho_Fe = inputs["rho_Fe"] rho_Copper = inputs["rho_Copper"] B_symax = inputs["B_symax"] S_Nmax = inputs["S_Nmax"] # Grab constant values B_r = inputs["B_r"] E = inputs["E"] P_Fe0e = inputs["P_Fe0e"] P_Fe0h = inputs["P_Fe0h"] S_N = inputs["S_N"] alpha_p = inputs["alpha_p"] b_r_tau_r = inputs["b_r_tau_r"] b_ro = inputs["b_ro"] b_s_tau_s = inputs["b_s_tau_s"] b_so = inputs["b_so"] cofi = inputs["cofi"] freq = inputs["freq"] h_i = inputs["h_i"] h_sy0 = inputs["h_sy0"] h_w = inputs["h_w"] k_fes = inputs["k_fes"] k_fillr = inputs["k_fillr"] k_s = inputs["k_s"] m = discrete_inputs["m"] mu_0 = inputs["mu_0"] mu_r = inputs["mu_r"] p = inputs["p"] phi = inputs["phi"] q1 = discrete_inputs["q1"] q2 = q1 - 1 # Rotor slots per pole per phase ratio_mw2pp = inputs["ratio_mw2pp"] resist_Cu = inputs["resist_Cu"] sigma = inputs["sigma"] v = inputs["v"] y_tau_p = inputs["y_tau_p"] y_tau_pr = inputs["y_tau_pr"] """ #Assign values to universal constants sigma = 21.5e3 # shear stress in psi (what material? Al, brass, Cu?) ~148e6 Pa mu_0 = np.pi * 4e-7 # permeability of free space in m * kg / (s**2 * A**2) cofi = 0.9 # power factor h_w = 0.005 # wedge height m = 3 # Number of phases resist_Cu = 1.8e-8 * 1.4 # copper resisitivity h_sy0 = 0 #Assign values to design constants b_so = 0.004 # Stator slot opening width b_ro = 0.004 # Rotor slot opening width q1 = 5 # Stator slots per pole per phase b_s_tau_s = 0.45 # Stator slot-width / slot-pitch ratio b_r_tau_r = 0.45 # Rotor slot-width / slot-pitch ratio y_tau_p = 12. / 15 # Stator coil span to pole pitch y_tau_pr = 10. / 12 # Rotor coil span to pole pitch p = 3 # pole pairs freq = 60 # grid frequency in Hz k_fillr = 0.55 # Rotor Slot fill factor P_Fe0h = 4 # specific hysteresis losses W / kg @ 1.5 T P_Fe0e = 1 # specific eddy losses W / kg @ 1.5 T """ K_rs = 1 / (-1 * S_Nmax) # Winding turns ratio between rotor and Stator I_SN = machine_rating / (np.sqrt(3) * 3000) # Rated current I_SN_r = I_SN / K_rs # Stator rated current reduced to rotor # Calculating winding factor for stator and rotor k_y1 = np.sin(np.pi / 2 * y_tau_p) # winding chording factor k_q1 = np.sin(np.pi / 6) / (q1 * np.sin(np.pi / (6 * q1))) # winding zone factor k_y2 = np.sin(np.pi / 2 * y_tau_pr) # winding chording factor k_q2 = np.sin(np.pi / 6) / (q2 * np.sin(np.pi / (6 * q2))) # winding zone factor k_wd1 = k_y1 * k_q1 # Stator winding factor k_wd2 = k_q2 * k_y2 # Rotor winding factor ag_dia = 2 * rad_ag # air gap diameter ag_len = (0.1 + 0.012 * machine_rating ** (1.0 / 3)) * 0.001 # air gap length in m K_rad = len_s / ag_dia # Aspect ratio rad_r = rad_ag - ag_len # rotor radius (was r_r) tau_p = np.pi * ag_dia / (2 * p) # pole pitch S = 2 * p * q1 * m # Stator slots N_slots_pp = S / (m * p * 2) # Number of stator slots per pole per phase n = S / 2 * p / q1 # no of slots per pole per phase tau_s = tau_p / (m * q1) # Stator slot pitch b_s = b_s_tau_s * tau_s # Stator slot width b_t = tau_s - b_s # Stator tooth width Q_r = 2 * p * m * q2 # Rotor slots tau_r = np.pi * (ag_dia - 2 * ag_len) / Q_r # Rotor slot pitch b_r = b_r_tau_r * tau_r # Rotor slot width b_tr = tau_r - b_r # Rotor tooth width # Calculating equivalent slot openings mu_rs = 0.005 mu_rr = 0.005 W_s = (b_s / mu_rs) * 1e-3 # Stator, in m W_r = (b_r / mu_rr) * 1e-3 # Rotor, in m Slot_aspect_ratio1 = h_s / b_s Slot_aspect_ratio2 = h_0 / b_r # Calculating Carter factor for stator,rotor and effective air gap length gamma_s = (2 * W_s / ag_len) ** 2 / (5 + 2 * W_s / ag_len) K_Cs = tau_s / (tau_s - ag_len * gamma_s * 0.5) # page 3 - 13 gamma_r = (2 * W_r / ag_len) ** 2 / (5 + 2 * W_r / ag_len) K_Cr = tau_r / (tau_r - ag_len * gamma_r * 0.5) # page 3 - 13 K_C = K_Cs * K_Cr g_eff = K_C * ag_len om_m = 2 * np.pi * shaft_rpm / 60 # mechanical frequency om_e = p * om_m # electrical frequency f = shaft_rpm * p / 60 # generator output freq K_s = 0.3 # saturation factor for Iron n_c1 = 2 # number of conductors per coil a1 = 2 # number of parallel paths N_s = np.round(2 * p * N_slots_pp * n_c1 / a1) # Stator winding turns per phase N_r = np.round(N_s * k_wd1 * K_rs / k_wd2) # Rotor winding turns per phase n_c2 = N_r / (Q_r / m) # rotor turns per coil # Calculating peak flux densities and back iron thickness B_g1 = mu_0 * 3 * N_r * I_0 * np.sqrt(2) * k_y2 * k_q2 / (np.pi * p * g_eff * (1 + K_s)) B_g = B_g1 * K_C h_ys = B_g * tau_p / (B_symax * np.pi) B_rymax = B_symax h_yr = h_ys B_tsmax = B_g * tau_s / b_t d_se = ag_dia + 2 * (h_ys + h_s + h_w) # stator outer diameter D_ratio = d_se / ag_dia # Diameter ratio # Stator slot fill factor if ag_dia > 2: k_fills = 0.65 else: k_fills = 0.4 # Stator winding calculation # End connection length for stator winding coils l_fs = 2 * (0.015 + y_tau_p * tau_p / (2 * np.cos(np.deg2rad(40)))) + np.pi * h_s # added radians() 2019 09 11 l_Cus = 2 * N_s * (l_fs + len_s) / a1 # Length of Stator winding # Conductor cross-section A_s = b_s * (h_s - h_w) A_scalc = b_s * 1000 * (h_s - h_w) * 1000 A_Cus = A_s * q1 * p * k_fills / N_s A_Cuscalc = A_scalc * q1 * p * k_fills / N_s # Stator winding resistance R_s = l_Cus * resist_Cu / A_Cus tau_r_min = np.pi * (ag_dia - 2 * (ag_len + h_0)) / Q_r # Peak magnetic loading on the rotor tooth b_trmin = tau_r_min - b_r_tau_r * tau_r_min B_trmax = B_g * tau_r / b_trmin # Calculating leakage inductance in stator K_01 = 1 - 0.033 * (W_s ** 2 / ag_len / tau_s) sigma_ds = 0.0042 L_ssigmas = (2 * mu_0 * len_s * n_c1 ** 2 * S / m / a1 ** 2) * ( (h_s - h_w) / (3 * b_s) + h_w / b_so ) # slot leakage inductance L_ssigmaew = ( (2 * mu_0 * len_s * n_c1 ** 2 * S / m / a1 ** 2) * 0.34 * q1 * (l_fs - 0.64 * tau_p * y_tau_p) / len_s ) # end winding leakage inductance L_ssigmag = (2 * mu_0 * len_s * n_c1 ** 2 * S / m / a1 ** 2) * ( 0.9 * tau_s * q1 * k_wd1 * K_01 * sigma_ds / g_eff ) # tooth tip leakage inductance L_ssigma = L_ssigmas + L_ssigmaew + L_ssigmag # stator leakage inductance L_sm = 6 * mu_0 * len_s * tau_p * (k_wd1 * N_s) ** 2 / (np.pi ** 2 * (p) * g_eff * (1 + K_s)) L_s = L_ssigmas + L_ssigmaew + L_ssigmag # stator inductance # Calculating leakage inductance in rotor K_02 = 1 - 0.033 * (W_r ** 2 / ag_len / tau_r) sigma_dr = 0.0062 l_fr = (0.015 + y_tau_pr * tau_r / 2 / np.cos(np.deg2rad(40))) + np.pi * h_0 # Rotor end connection length L_rsl = (mu_0 * len_s * (2 * n_c2) ** 2 * Q_r / m) * ( (h_0 - h_w) / (3 * b_r) + h_w / b_ro ) # slot leakage inductance L_rel = ( (mu_0 * len_s * (2 * n_c2) ** 2 * Q_r / m) * 0.34 * q2 * (l_fr - 0.64 * tau_r * y_tau_pr) / len_s ) # end winding leakage inductance L_rtl = (mu_0 * len_s * (2 * n_c2) ** 2 * Q_r / m) * ( 0.9 * tau_s * q2 * k_wd2 * K_02 * sigma_dr / g_eff ) # tooth tip leakage inductance L_r = (L_rsl + L_rtl + L_rel) / K_rs ** 2 # rotor leakage inductance sigma1 = 1 - (L_sm ** 2 / L_s / L_r) # Rotor Field winding # conductor cross-section diff = h_0 - h_w A_Cur = k_fillr * p * q2 * b_r * diff / N_r A_Curcalc = A_Cur * 1e6 L_cur = 2 * N_r * (l_fr + len_s) # rotor winding length Resist_r = resist_Cu * L_cur / A_Cur # Rotor resistance R_R = Resist_r / K_rs ** 2 # Equivalent rotor resistance reduced to stator om_s = shaft_rpm * 2 * np.pi / 60 # synchronous speed in rad / s P_e = machine_rating / (1 - S_Nmax) # Air gap power # Calculating No-load voltage E_p = om_s * N_s * k_wd1 * rad_ag * len_s * B_g1 * np.sqrt(2) I_r = P_e / m / E_p # rotor active current I_sm = E_p / (2 * np.pi * freq * (L_s + L_sm)) # stator reactive current I_s = np.sqrt(I_r ** 2 + I_sm ** 2) # Stator current I_srated = machine_rating / 3 / K_rs / E_p # Rated current # Calculating winding current densities and specific current loading J_s = I_s / A_Cuscalc J_r = I_r / A_Curcalc A_1 = 2 * m * N_s * I_s / (np.pi * 2 * rad_ag) Current_ratio = I_0 / I_srated # Ratio of magnetization current to rated current # Calculating masses of the electromagnetically active materials V_Cuss = m * l_Cus * A_Cus V_Cusr = m * L_cur * A_Cur V_Fest = len_s * np.pi * ((rad_ag + h_s) ** 2 - rad_ag ** 2) - (2 * m * q1 * p * b_s * h_s * len_s) V_Fesy = len_s * np.pi * ((rad_ag + h_s + h_ys) ** 2 - (rad_ag + h_s) ** 2) V_Fert = len_s * np.pi * (rad_r ** 2 - (rad_r - h_0) ** 2) - 2 * m * q2 * p * b_r * h_0 * len_s V_Fery = len_s * np.pi * ((rad_r - h_0) ** 2 - (rad_r - h_0 - h_yr) ** 2) Copper = (V_Cuss + V_Cusr) * rho_Copper M_Fest = V_Fest * rho_Fe M_Fesy = V_Fesy * rho_Fe M_Fert = V_Fert * rho_Fe M_Fery = V_Fery * rho_Fe Iron = M_Fest + M_Fesy + M_Fert + M_Fery M_gen = (Copper) + (Iron) # K_gen = Cu * C_Cu + (Iron) * C_Fe #%M_pm * K_pm L_tot = len_s Structural_mass = 0.0002 * M_gen ** 2 + 0.6457 * M_gen + 645.24 Mass = M_gen + Structural_mass # Calculating Losses and efficiency # 1. Copper losses K_R = 1.2 # skin effect correction coefficient P_Cuss = m * I_s ** 2 * R_s * K_R # Copper loss - stator P_Cusr = m * I_r ** 2 * R_R # Copper loss - rotor P_Cusnom = P_Cuss + P_Cusr # Copper loss - total # Iron Losses ( from Hysteresis and eddy currents) P_Hyys = M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) # Hysteresis losses in stator yoke P_Ftys = M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2) # Eddy losses in stator yoke P_Hyd = M_Fest * (B_tsmax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) # Hysteresis losses in stator teeth P_Ftd = M_Fest * (B_tsmax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2) # Eddy losses in stator teeth P_Hyyr = ( M_Fery * (B_rymax / 1.5) ** 2 * (P_Fe0h * abs(S_Nmax) * om_e / (2 * np.pi * 60)) ) # Hysteresis losses in rotor yoke P_Ftyr = ( M_Fery * (B_rymax / 1.5) ** 2 * (P_Fe0e * (abs(S_Nmax) * om_e / (2 * np.pi * 60)) ** 2) ) # Eddy losses in rotor yoke P_Hydr = ( M_Fert * (B_trmax / 1.5) ** 2 * (P_Fe0h * abs(S_Nmax) * om_e / (2 * np.pi * 60)) ) # Hysteresis losses in rotor teeth P_Ftdr = ( M_Fert * (B_trmax / 1.5) ** 2 * (P_Fe0e * (abs(S_Nmax) * om_e / (2 * np.pi * 60)) ** 2) ) # Eddy losses in rotor teeth P_add = 0.5 * machine_rating / 100 # additional losses P_Fesnom = P_Hyys + P_Ftys + P_Hyd + P_Ftd + P_Hyyr + P_Ftyr + P_Hydr + P_Ftdr # Total iron loss delta_v = 1 # allowable brush voltage drop p_b = 3 * delta_v * I_r # Brush loss Losses = P_Cusnom + P_Fesnom + p_b + P_add gen_eff = (P_e - Losses) / P_e # Calculating stator winding current density J_s = I_s / A_Cuscalc # Calculating electromagnetic torque T_e = p * (machine_rating * 1.01) / (2 * np.pi * freq * (1 - S_Nmax)) # Calculating for tangential stress constraints TC1 = T_e / (2 * np.pi * sigma) TC2r = rad_ag ** 2 * len_s r_out = d_se * 0.5 outputs["R_out"] = r_out outputs["B_g"] = B_g outputs["B_g1"] = B_g1 outputs["B_rymax"] = B_rymax outputs["B_tsmax"] = B_tsmax outputs["B_trmax"] = B_trmax outputs["N_s"] = N_s outputs["S"] = S outputs["h_ys"] = h_ys outputs["b_s"] = b_s outputs["b_t"] = b_t outputs["D_ratio"] = D_ratio outputs["A_Cuscalc"] = A_Cuscalc outputs["Slot_aspect_ratio1"] = Slot_aspect_ratio1 outputs["h_yr"] = h_yr outputs["tau_p"] = tau_p outputs["Q_r"] = Q_r outputs["N_r"] = N_r outputs["b_r"] = b_r outputs["b_trmin"] = b_trmin outputs["b_tr"] = b_tr outputs["A_Curcalc"] = A_Curcalc outputs["Slot_aspect_ratio2"] = Slot_aspect_ratio2 outputs["E_p"] = E_p outputs["f"] = f outputs["I_s"] = I_s outputs["A_1"] = A_1 outputs["J_s"] = J_s outputs["J_r"] = J_r outputs["R_s"] = R_s outputs["R_R"] = R_R outputs["L_r"] = L_r outputs["L_s"] = L_s outputs["L_sm"] = L_sm outputs["generator_mass"] = Mass outputs["K_rad"] = K_rad outputs["Losses"] = Losses outputs["eandm_efficiency"] = np.maximum(eps, gen_eff) outputs["Copper"] = Copper outputs["Iron"] = Iron outputs["Structural_mass"] = Structural_mass outputs["TC1"] = TC1 outputs["TC2r"] = TC2r outputs["Current_ratio"] = Current_ratio # ---------------------------------------------------------------------------------------- class SCIG(GeneratorBase): """ Estimates overall mass dimensions and Efficiency of Squirrel cage Induction generator. Parameters ---------- B_symax : float, [T] Peak Stator Yoke flux density B_ymax Returns ------- h_yr : float rotor yoke height h_ys : float Stator Yoke height tau_p : float Pole pitch D_ratio_UL : float Dia ratio upper limit D_ratio_LL : float Dia ratio Lower limit K_rad_UL : float Aspect ratio upper limit K_rad_LL : float Aspect ratio Lower limit rad_r : float rotor radius A_bar : float Rotor Conductor cross-section mm^2 E_p : float Stator phase voltage """ def initialize(self): super(SCIG, self).initialize() def setup(self): super(SCIG, self).setup() self.add_input("B_symax", val=0.0, units="T") self.add_output("h_yr", val=0.0) self.add_output("h_ys", val=0.0) self.add_output("tau_p", val=0.0) self.add_output("D_ratio_UL", val=0.0) self.add_output("D_ratio_LL", val=0.0) self.add_output("K_rad_UL", val=0.0) self.add_output("K_rad_LL", val=0.0) self.add_output("rad_r", val=0.0) self.add_output("A_bar", val=0.0) self.add_output("E_p", val=np.zeros(self.options["n_pc"])) def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): # Unpack inputs rad_ag = inputs["rad_ag"] len_s = inputs["len_s"] h_s = inputs["h_s"] h_0 = inputs["h_0"] machine_rating = inputs["machine_rating"] shaft_rpm = inputs["shaft_rpm"] I_0 = inputs["I_0"] rho_Fe = inputs["rho_Fe"] rho_Copper = inputs["rho_Copper"] B_symax = inputs["B_symax"] # Grab constant values B_r = inputs["B_r"] E = inputs["E"] P_Fe0e = inputs["P_Fe0e"] P_Fe0h = inputs["P_Fe0h"] S_N = inputs["S_N"] alpha_p = inputs["alpha_p"] b_r_tau_r = inputs["b_r_tau_r"] b_ro = inputs["b_ro"] b_s_tau_s = inputs["b_s_tau_s"] b_so = inputs["b_so"] cofi = inputs["cofi"] freq = inputs["freq"] h_i = inputs["h_i"] h_sy0 = inputs["h_sy0"] h_w = inputs["h_w"] k_fes = inputs["k_fes"] k_fillr = inputs["k_fillr"] k_s = inputs["k_s"] m = discrete_inputs["m"] mu_0 = inputs["mu_0"] mu_r = inputs["mu_r"] p = inputs["p"] phi = inputs["phi"] q1 = discrete_inputs["q1"] q2 = discrete_inputs["q2"] ratio_mw2pp = inputs["ratio_mw2pp"] resist_Cu = inputs["resist_Cu"] sigma = inputs["sigma"] v = inputs["v"] y_tau_p = inputs["y_tau_p"] y_tau_pr = inputs["y_tau_pr"] """ # Assign values to universal constants sigma = 21.5e3 # shear stress (psi) what material? mu_0 = np.pi*4e-7 # permeability of free space in m * kg / (s**2 * A**2) cofi = 0.9 # power factor h_w = 0.005 # wedge height m = 3 # Number of phases resist_Cu = 1.8e-8 * 1.4 # Copper resistivity #Assign values to design constants b_so = 0.004 # Stator slot opening width b_ro = 0.004 # Rotor slot opening width q1 = 6 # Stator slots per pole per phase q2 = 4 # Rotor slots per pole per phase b_s_tau_s = 0.45 # Stator Slot width/Slot pitch ratio b_r_tau_r = 0.45 # Rotor Slot width/Slot pitch ratio y_tau_p = 12./15 # Coil span/pole pitch p = 3 # number of pole pairs freq = 60 # frequency in Hz k_fillr = 0.7 # Rotor slot fill factor P_Fe0h = 4 # specific hysteresis losses W / kg @ 1.5 T @50 Hz P_Fe0e = 1 # specific eddy losses W / kg @ 1.5 T @50 Hz S_N = -0.002 # Slip """ n_1 = shaft_rpm / (1 - S_N) # actual rotor speed (rpm) # Calculating winding factor k_y1 = np.sin(np.pi / 2 * y_tau_p) # winding chording factor k_q1 = np.sin(np.pi / 6) / (q1 * np.sin(np.pi / (6 * q1))) # zone factor k_wd = k_y1 * k_q1 # winding factor # Calculating air gap length ag_dia = 2 * rad_ag # air gap diameter ag_len = (0.1 + 0.012 * machine_rating ** (1.0 / 3)) * 0.001 # air gap length in m K_rad = len_s / ag_dia # Aspect ratio K_rad_LL = 0.5 # lower limit on aspect ratio K_rad_UL = 1.5 # upper limit on aspect ratio rad_r = rad_ag - ag_len # rotor radius tau_p = np.pi * ag_dia / (2 * p) # pole pitch S = 2 * p * q1 * m # Stator slots N_slots_pp = S / (m * p * 2) # Number of stator slots per pole per phase tau_s = tau_p / (m * q1) # Stator slot pitch b_s = b_s_tau_s * tau_s # Stator slot width b_t = tau_s - b_s # Stator tooth width Q_r = 2 * p * m * q2 # Rotor slots tau_r = np.pi * (ag_dia - 2 * ag_len) / Q_r # Rotor slot pitch b_r = b_r_tau_r * tau_r # Rotor slot width b_tr = tau_r - b_r # Rotor tooth width tau_r_min = np.pi * (ag_dia - 2 * (ag_len + h_0)) / Q_r b_trmin = tau_r_min - b_r_tau_r * tau_r_min # minumum rotor tooth width # Calculating equivalent slot openings mu_rs = 0.005 mu_rr = 0.005 W_s = (b_s / mu_rs) * 1e-3 # Stator, in m W_r = (b_r / mu_rr) * 1e-3 # Rotor, in m Slot_aspect_ratio1 = h_s / b_s # Stator slot aspect ratio Slot_aspect_ratio2 = h_0 / b_r # Rotor slot aspect ratio # Calculating Carter factor for stator,rotor and effective air gap length """ gamma_s = (2 * W_s / ag_len)**2 / (5 + 2 * W_s / ag_len) K_Cs = tau_s / (tau_s - ag_len * gamma_s * 0.5) # page 3-13 Boldea Induction machines Chapter 3 gamma_r = (2 * W_r / ag_len)**2 / (5 + 2 * W_r / ag_len) K_Cr = tau_r / (tau_r - ag_len * gamma_r * 0.5) # page 3-13 Boldea Induction machines Chapter 3 """ K_Cs = carterFactor(ag_len, W_s, tau_s) K_Cr = carterFactor(ag_len, W_r, tau_r) K_C = K_Cs * K_Cr g_eff = K_C * ag_len om_m = 2 * np.pi * shaft_rpm / 60 # mechanical frequency om_e = p * om_m # electrical frequency f = shaft_rpm * p / 60 # generator output freq K_s = 0.3 # saturation factor for Iron n_c = 2 # number of conductors per coil a1 = 2 # number of parallel paths # Calculating stator winding turns N_s = np.round(2 * p * N_slots_pp * n_c / a1) # Calculating Peak flux densities B_g1 = mu_0 * 3 * N_s * I_0 * np.sqrt(2) * k_y1 * k_q1 / (np.pi * p * g_eff * (1 + K_s)) B_g = B_g1 * K_C B_rymax = B_symax # calculating back iron thickness h_ys = B_g * tau_p / (B_symax * np.pi) h_yr = h_ys d_se = ag_dia + 2 * (h_ys + h_s + h_w) # stator outer diameter D_ratio = d_se / ag_dia # Diameter ratio # limits for Diameter ratio depending on pole pair if 2 * p == 2: D_ratio_LL = 1.65 D_ratio_UL = 1.69 elif 2 * p == 4: D_ratio_LL = 1.46 D_ratio_UL = 1.49 elif 2 * p == 6: D_ratio_LL = 1.37 D_ratio_UL = 1.4 elif 2 * p == 8: D_ratio_LL = 1.27 D_ratio_UL = 1.3 else: D_ratio_LL = 1.2 D_ratio_UL = 1.24 # Stator slot fill factor if ag_dia > 2: k_fills = 0.65 else: k_fills = 0.4 # Stator winding length and cross-section l_fs = 2 * (0.015 + y_tau_p * tau_p / 2 / np.cos(np.deg2rad(40))) + np.pi * h_s # end connection l_Cus = 2 * N_s * (l_fs + len_s) / a1 # shortpitch A_s = b_s * (h_s - h_w) # Slot area A_scalc = b_s * 1000 * (h_s - h_w) * 1000 # Conductor cross-section (mm^2) A_Cus = A_s * q1 * p * k_fills / N_s # Conductor cross-section (m^2) A_Cuscalc = A_scalc * q1 * p * k_fills / N_s # Stator winding resistance R_s = l_Cus * resist_Cu / A_Cus # Calculating no-load voltage om_s = shaft_rpm * 2 * np.pi / 60 # rated angular frequency P_e = machine_rating / (1 - S_N) # Electrical power E_p = om_s * N_s * k_wd * rad_ag * len_s * B_g1 * np.sqrt(2) S_GN = (1.0 - S_N) * machine_rating # same as P_e? T_e = p * S_GN / (2 * np.pi * freq * (1 - S_N)) I_srated = machine_rating / (3 * E_p * cofi) # Rotor design diff = h_0 - h_w A_bar = b_r * diff # bar cross section Beta_skin = np.sqrt(np.pi * mu_0 * freq / 2 / resist_Cu) # coefficient for skin effect correction k_rm = Beta_skin * h_0 # coefficient for skin effect correction J_b = 6e06 # Bar current density K_i = 0.864 I_b = 2 * m * N_s * k_wd * I_srated / Q_r # bar current # Calculating bar resistance R_rb = resist_Cu * k_rm * len_s / A_bar I_er = I_b / (2 * np.sin(np.pi * p / Q_r)) # End ring current J_er = 0.8 * J_b # End ring current density A_er = I_er / J_er # End ring cross-section b = h_0 # End ring dimension a = A_er / b # End ring dimension D_er = (rad_ag * 2 - 2 * ag_len) - 0.003 # End ring diameter l_er = np.pi * (D_er - b) / Q_r # End ring segment length if debug: sys.stderr.write("l_er {:.4f} A_er {:.4f} D_er {:.4f}\n".format(l_er[0], A_er[0], D_er[0])) # Calculating end ring resistance R_re = resist_Cu * l_er / (2 * A_er * (np.sin(np.pi * p / Q_r)) ** 2) # Calculating equivalent rotor resistance if debug: sys.stderr.write("R_rb {:.3e} R_re {:.3e} k_wd {:.4f} N_s {} Q_r {}\n".format(R_rb, R_re, k_wd, N_s, Q_r)) R_R = (R_rb + R_re) * 4 * m * (k_wd * N_s) ** 2 / Q_r # Calculating Rotor and Stator teeth flux density B_trmax = B_g * tau_r / b_trmin B_tsmax = B_g * tau_s / b_t # Calculating Equivalent core lengths l_r = len_s + 4 * ag_len # for axial cooling l_se = len_s + (2 / 3) * ag_len K_fe = 0.95 # Iron factor L_e = l_se * K_fe # radial cooling # Calculating leakage inductance in stator if debug: sys.stderr.write("b_s {:.3e} b_so {:.3e}\n".format(b_s[0], b_so[0])) L_ssigmas = ( 2 * mu_0 * len_s * N_s ** 2 / p / q1 * ((h_s - h_w) / (3 * b_s) + h_w / b_so) ) # slot leakage inductance L_ssigmaew = ( 2 * mu_0 * len_s * N_s ** 2 / p / q1 * 0.34 * q1 * (l_fs - 0.64 * tau_p * y_tau_p) / len_s ) # end winding leakage inductance L_ssigmag = ( 2 * mu_0 * len_s * N_s ** 2 / p / q1 * (5 * (ag_len * K_C / b_so) / (5 + 4 * (ag_len * K_C / b_so))) ) # tooth tip leakage inductance L_s = L_ssigmas + L_ssigmaew + L_ssigmag # stator leakage inductance L_sm = 6 * mu_0 * len_s * tau_p * (k_wd * N_s) ** 2 / (np.pi ** 2 * p * g_eff * (1 + K_s)) # Calculating leakage inductance in rotor lambda_ei = 2.3 * D_er / (4 * Q_r * len_s * (np.sin(np.pi * p / Q_r) ** 2)) * np.log(4.7 * ag_dia / (a + 2 * b)) lambda_b = h_0 / (3 * b_r) + h_w / b_ro L_i = np.pi * ag_dia / Q_r L_rsl = mu_0 * len_s * ((h_0 - h_w) / (3 * b_r) + h_w / b_ro) # slot leakage inductance L_rel = mu_0 * (len_s * lambda_b + 2 * lambda_ei * L_i) # end winding leakage inductance L_rtl = mu_0 * len_s * (0.9 * tau_r * 0.09 / g_eff) # tooth tip leakage inductance L_rsigma = (L_rsl + L_rtl + L_rel) * 4 * m * (k_wd * N_s) ** 2 / Q_r # rotor leakage inductance # Calculating rotor current if debug: sys.stderr.write( "S_N {} P_e {:.1f} m {} R_R {:.4f} = {:.1f}\n".format(S_N, P_e, m, R_R, -S_N * P_e / m / R_R) ) I_r = np.sqrt(-S_N * P_e / m / R_R) I_sm = E_p / (2 * np.pi * freq * L_sm) # Calculating stator currents and specific current loading I_s = np.sqrt((I_r ** 2 + I_sm ** 2)) A_1 = 2 * m * N_s * I_s / (np.pi * 2 * rad_ag) # Calculating masses of the electromagnetically active materials V_Cuss = m * l_Cus * A_Cus # Volume of copper in stator V_Cusr = Q_r * len_s * A_bar + np.pi * (D_er * A_er - A_er * b) # Volume of copper in rotor V_Fest = ( len_s * np.pi * ((rad_ag + h_s) ** 2 - rad_ag ** 2) - 2 * m * q1 * p * b_s * h_s * len_s ) # Volume of iron in stator teeth V_Fesy = len_s * np.pi * ((rad_ag + h_s + h_ys) ** 2 - (rad_ag + h_s) ** 2) # Volume of iron in stator yoke rad_r = rad_ag - ag_len # rotor radius V_Fert = ( np.pi * len_s * (rad_r ** 2 - (rad_r - h_0) ** 2) - 2 * m * q2 * p * b_r * h_0 * len_s ) # Volume of iron in rotor teeth V_Fery = np.pi * len_s * ((rad_r - h_0) ** 2 - (rad_r - h_0 - h_yr) ** 2) # Volume of iron in rotor yoke Copper = (V_Cuss + V_Cusr)[-1] * rho_Copper # Mass of Copper M_Fest = V_Fest * rho_Fe # Mass of stator teeth M_Fesy = V_Fesy * rho_Fe # Mass of stator yoke M_Fert = V_Fert * rho_Fe # Mass of rotor tooth M_Fery = V_Fery * rho_Fe # Mass of rotor yoke Iron = M_Fest + M_Fesy + M_Fert + M_Fery Active_mass = Copper + Iron L_tot = len_s Structural_mass = 0.0001 * Active_mass ** 2 + 0.8841 * Active_mass - 132.5 Mass = Active_mass + Structural_mass # Calculating Losses and efficiency # 1. Copper losses K_R = 1.2 # skin effect correction coefficient P_Cuss = m * I_s ** 2 * R_s * K_R # Copper loss - stator P_Cusr = m * I_r ** 2 * R_R # Copper loss - rotor P_Cusnom = P_Cuss + P_Cusr # Copper loss - total # Iron Losses ( from Hysteresis and eddy currents) P_Hyys = M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) # Hysteresis losses in stator yoke P_Ftys = ( M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2) ) # Eddy losses in stator yoke P_Hyd = M_Fest * (B_tsmax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) # Hysteresis losses in stator tooth P_Ftd = ( M_Fest * (B_tsmax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2) ) # Eddy losses in stator tooth P_Hyyr = ( M_Fery * (B_rymax / 1.5) ** 2 * (P_Fe0h * abs(S_N) * om_e / (2 * np.pi * 60)) ) # Hysteresis losses in rotor yoke P_Ftyr = ( M_Fery * (B_rymax / 1.5) ** 2 * (P_Fe0e * (abs(S_N) * om_e / (2 * np.pi * 60)) ** 2) ) # Eddy losses in rotor yoke P_Hydr = ( M_Fert * (B_trmax / 1.5) ** 2 * (P_Fe0h * abs(S_N) * om_e / (2 * np.pi * 60)) ) # Hysteresis losses in rotor tooth P_Ftdr = ( M_Fert * (B_trmax / 1.5) ** 2 * (P_Fe0e * (abs(S_N) * om_e / (2 * np.pi * 60)) ** 2) ) # Eddy losses in rotor tooth # Calculating Additional losses P_add = 0.5 * machine_rating / 100 P_Fesnom = P_Hyys + P_Ftys + P_Hyd + P_Ftd + P_Hyyr + P_Ftyr + P_Hydr + P_Ftdr Losses = P_Cusnom + P_Fesnom + P_add gen_eff = (P_e - Losses) / P_e # Calculating current densities in the stator and rotor J_s = I_s / A_Cuscalc J_r = I_r / A_bar / 1e6 # Calculating Tangential stress constraints TC1 = T_e / (2 * np.pi * sigma) TC2r = rad_ag ** 2 * len_s # Calculating mass moments of inertia and center of mass r_out = d_se * 0.5 outputs["R_out"] = r_out outputs["B_tsmax"] = B_tsmax outputs["B_trmax"] = B_trmax outputs["B_rymax"] = B_rymax outputs["B_g"] = B_g outputs["B_g1"] = B_g1 outputs["N_s"] = N_s outputs["S"] = S outputs["h_ys"] = h_ys outputs["b_s"] = b_s outputs["b_t"] = b_t outputs["D_ratio"] = D_ratio outputs["D_ratio_UL"] = D_ratio_UL outputs["D_ratio_LL"] = D_ratio_LL outputs["A_Cuscalc"] = A_Cuscalc outputs["Slot_aspect_ratio1"] = Slot_aspect_ratio1 outputs["h_yr"] = h_yr outputs["tau_p"] = tau_p outputs["Q_r"] = Q_r outputs["b_r"] = b_r outputs["b_trmin"] = b_trmin outputs["b_tr"] = b_tr outputs["rad_r"] = rad_r outputs["A_bar"] = A_bar outputs["Slot_aspect_ratio2"] = Slot_aspect_ratio2 outputs["E_p"] = E_p outputs["f"] = f outputs["I_s"] = I_s outputs["A_1"] = A_1 outputs["J_s"] = J_s outputs["J_r"] = J_r outputs["R_s"] = R_s outputs["R_R"] = R_R[-1] outputs["L_s"] = L_s outputs["L_sm"] = L_sm outputs["generator_mass"] = Mass outputs["K_rad"] = K_rad outputs["K_rad_UL"] = K_rad_UL outputs["K_rad_LL"] = K_rad_LL outputs["Losses"] = Losses outputs["eandm_efficiency"] = np.maximum(eps, gen_eff) outputs["Copper"] = Copper outputs["Iron"] = Iron outputs["Structural_mass"] = Structural_mass outputs["TC1"] = TC1 outputs["TC2r"] = TC2r # ---------------------------------------------------------------------------------------- class EESG(GeneratorBase): """ Estimates overall mass dimensions and Efficiency of Electrically Excited Synchronous generator. Parameters ---------- I_f : float, [A] Excitation current N_f : float field turns b_arm : float, [m] arm width h_yr : float, [m] rotor yoke height h_ys : float, [m] Yoke height tau_p : float, [m] Pole pitch self.tau_p Returns ------- n_brushes : float number of brushes h_p : float, [m] Pole height b_p : float, [m] Pole width L_m : float, [H] Stator synchronising inductance R_r : float, [ohm] Rotor resistance B_tmax : float, [T] Peak Teeth flux density B_gfm : float, [T] Average air gap flux density B_g B_pc : float, [T] Pole core flux density B_symax : float, [T] Peak Stator Yoke flux density B_ymax E_s : float, [V] Stator phase voltage J_f : float, [A*m**-2] rotor Current density Power_ratio : float Power_ratio Load_mmf_ratio : float mmf_ratio """ def initialize(self): super(EESG, self).initialize() def setup(self): super(EESG, self).setup() self.add_input("I_f", val=0.0, units="A") self.add_input("N_f", val=0.0) self.add_input("b_arm", val=0.0, units="m") self.add_input("h_yr", val=0.0, units="m") self.add_input("h_ys", val=0.0, units="m") self.add_input("tau_p", val=0.0, units="m") self.add_output("n_brushes", val=0.0) self.add_output("h_p", val=0.0, units="m") self.add_output("b_p", val=0.0, units="m") self.add_output("L_m", val=0.0, units="H") self.add_output("R_r", val=0.0, units="ohm") self.add_output("B_tmax", val=0.0, units="T") self.add_output("B_gfm", val=0.0, units="T") self.add_output("B_pc", val=0.0, units="T") self.add_output("B_symax", val=0.0, units="T") self.add_output("E_s", val=np.zeros(self.options["n_pc"]), units="V") self.add_output("J_f", val=0.0, units="A*m**-2") self.add_output("Power_ratio", val=0.0) self.add_output("Load_mmf_ratio", val=0.0) def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): # Unpack inputs rad_ag = inputs["rad_ag"] len_s = inputs["len_s"] h_s = inputs["h_s"] tau_p = inputs["tau_p"] N_f = inputs["N_f"] I_f = inputs["I_f"] h_ys = inputs["h_ys"] h_yr = inputs["h_yr"] machine_rating = inputs["machine_rating"] shaft_rpm = inputs["shaft_rpm"] Torque = inputs["rated_torque"] b_st = inputs["b_st"] d_s = inputs["d_s"] t_ws = inputs["t_ws"] n_r = inputs["n_r"] n_s = inputs["n_s"] b_r = inputs["b_arm"] d_r = inputs["d_r"] t_wr = inputs["t_wr"] R_sh = 0.5 * inputs["D_shaft"] rho_Fe = inputs["rho_Fe"] rho_Copper = inputs["rho_Copper"] rho_Fes = inputs["rho_Fes"] # Grab constant values B_r = inputs["B_r"] E = inputs["E"] P_Fe0e = inputs["P_Fe0e"] P_Fe0h = inputs["P_Fe0h"] S_N = inputs["S_N"] alpha_p = inputs["alpha_p"] b_r_tau_r = inputs["b_r_tau_r"] b_ro = inputs["b_ro"] b_s_tau_s = inputs["b_s_tau_s"] b_so = inputs["b_so"] cofi = inputs["cofi"] freq = inputs["freq"] h_i = inputs["h_i"] h_sy0 = inputs["h_sy0"] h_w = inputs["h_w"] k_fes = inputs["k_fes"] k_fillr = inputs["k_fillr"] k_fills = inputs["k_fills"] k_s = inputs["k_s"] m = discrete_inputs["m"] mu_0 = inputs["mu_0"] mu_r = inputs["mu_r"] p = inputs["p"] phi = inputs["phi"] q1 = discrete_inputs["q1"] q2 = discrete_inputs["q2"] ratio_mw2pp = inputs["ratio_mw2pp"] resist_Cu = inputs["resist_Cu"] sigma = inputs["sigma"] v = inputs["v"] y_tau_p = inputs["y_tau_p"] y_tau_pr = inputs["y_tau_pr"] """ # Assign values to universal constants E = 2e11 # N / m^2 young's modulus sigma = 48.373e3 # shear stress of steel in psi (~333 MPa) mu_0 = np.pi * 4e-7 # permeability of free space in m * kg / (s**2 * A**2) phi = np.deg2rad(90) # Assign values to design constants h_w = 0.005 b_so = 0.004 # Stator slot opening m = 3 # number of phases q1 = 2 # no of stator slots per pole per phase b_s_tau_s = 0.45 # ratio of slot width to slot pitch P_Fe0h = 4 # specific hysteresis losses W / kg @ 1.5 T @50 Hz P_Fe0e = 1 # specific eddy losses W / kg @ 1.5 T @50 Hz resist_Cu = 1.8e-8 * 1.4 # resisitivity of copper # ohm-meter (Why the 1.4 factor?) k_fes = 0.9 # iron fill factor (not used) y_tau_p = 1 # coil span / pole pitch fullpitch k_fillr = 0.7 # rotor slot fill factor k_s = 0.2 # magnetic saturation factor for iron cofi = 0.85 # power factor """ T = Torque # back iron thickness for rotor and stator t_s = h_ys t = h_yr # Aspect ratio K_rad = len_s / (2 * rad_ag) ###################################################### Electromagnetic design############################################# alpha_p = np.pi / 2 * 0.7 # (not used) dia = 2 * rad_ag # air gap diameter # air gap length and minimum values g = 0.001 * dia if g < 0.005: g = 0.005 r_r = rad_ag - g # rotor radius d_se = dia + 2 * h_s + 2 * h_ys # stator outer diameter (not used) p = np.round(np.pi * dia / (2 * tau_p)) # number of pole pairs S = 2 * p * q1 * m # number of slots of stator phase winding N_conductors = S * 2 N_s = N_conductors / 2 / m # Stator turns per phase alpha = 180 / S / p # electrical angle (not used) tau_s = np.pi * dia / S # slot pitch h_ps = 0.1 * tau_p # height of pole shoe b_pc = 0.4 * tau_p # width of pole core h_pc = 0.6 * tau_p # height of pole core h_p = 0.7 * tau_p # pole height b_p = h_p b_s = tau_s * b_s_tau_s # slot width Slot_aspect_ratio = h_s / b_s b_t = tau_s - b_s # tooth width # Calculating Carter factor and effective air gap g_a = g K_C1 = (tau_s + 10 * g_a) / (tau_s - b_s + 10 * g_a) # salient pole rotor g_1 = K_C1 * g # calculating angular frequency om_m = 2 * np.pi * shaft_rpm / 60 om_e = 60 f = shaft_rpm * p / 60 # Slot fill factor according to air gap radius if 2 * rad_ag > 2: K_fills = 0.65 else: K_fills = 0.4 # Calculating Stator winding factor k_y1 = np.sin(y_tau_p * np.pi / 2) # chording factor k_q1 = np.sin(np.pi / 6) / q1 / np.sin(np.pi / 6 / q1) # winding zone factor k_wd = k_y1 * k_q1 # Calculating stator winding conductor length, cross-section and resistance shortpitch = 0 l_Cus = 2 * N_s * (2 * (tau_p - shortpitch / m / q1) + len_s) # length of winding A_s = b_s * (h_s - h_w) A_scalc = b_s * 1000 * (h_s - h_w) * 1000 # cross section in mm^2 A_Cus = A_s * q1 * p * K_fills / N_s A_Cuscalc = A_scalc * q1 * p * K_fills / N_s R_s = l_Cus * resist_Cu / A_Cus # field winding design, conductor length, cross-section and resistance N_f = np.round(N_f) # rounding the field winding turns to the nearest integer I_srated = machine_rating / (np.sqrt(3) * 5000 * cofi) l_pole = len_s - 0.050 + 0.120 # 50mm smaller than stator and 120mm longer to accommodate end stack K_fe = 0.95 l_pfe = l_pole * K_fe l_Cur = 4 * p * N_f * (l_pfe + b_pc + np.pi / 4 * (np.pi * (r_r - h_pc - h_ps) / p - b_pc)) A_Cur = k_fillr * h_pc * 0.5 / N_f * (np.pi * (r_r - h_pc - h_ps) / p - b_pc) A_Curcalc = k_fillr * h_pc * 1000 * 0.5 / N_f * (np.pi * (r_r - h_pc - h_ps) / p - b_pc) * 1000 Slot_Area = A_Cur * 2 * N_f / k_fillr # (not used) R_r = resist_Cu * l_Cur / A_Cur # ohms # field winding current density J_f = I_f / A_Curcalc # calculating air flux density B_gfm = mu_0 * N_f * I_f / (g_1 * (1 + k_s)) # No-load air gap flux density B_g = B_gfm * 4 * np.sin(0.5 * b_p * np.pi / tau_p) / np.pi # fundamental component B_symax = tau_p * B_g / np.pi / h_ys # stator yoke flux density L_fg = ( 2 * mu_0 * p * len_s * 4 * N_f ** 2 * ((h_ps / (tau_p - b_p)) + (h_pc / (3 * np.pi * (r_r - h_pc - h_ps) / p - b_pc))) ) # (not used) # calculating no-load voltage and stator current E_s = 2 * N_s * len_s * rad_ag * k_wd * om_m * B_g / np.sqrt(2) # no-load voltage # I_s = (E_s - (E_s**2 - 4 * R_s * machine_rating / m)**0.5) / (2 * R_s) erm = np.maximum(0.0, E_s ** 2 - 4 * R_s * machine_rating / m) I_s = (E_s - erm ** 0.5) / (2 * R_s) # Calculating stator winding current density and specific current loading A_1 = 6 * N_s * I_s / (np.pi * dia) J_s = I_s / A_Cuscalc # Calculating magnetic loading in other parts of the machine delta_m = 0 # Initialising load angle # peak flux density in pole core, rotor yoke and stator teeth B_pc = (1 / b_pc) * ( (2 * tau_p / np.pi) * B_g * np.cos(delta_m) + (2 * mu_0 * I_f * N_f * ((2 * h_ps / (tau_p - b_p)) + (h_pc / (tau_p - b_pc)))) ) B_rymax = 0.5 * b_pc * B_pc / h_yr B_tmax = (B_gfm + B_g) * tau_s * 0.5 / b_t # Calculating leakage inductances in the stator L_ssigmas = ( 2 * mu_0 * len_s * N_s ** 2 / p / q1 * ((h_s - h_w) / (3 * b_s) + h_w / b_so) ) # slot leakage inductance L_ssigmaew = mu_0 * 1.2 * N_s ** 2 / p * 1.2 * (2 / 3 * tau_p + 0.01) # end winding leakage inductance L_ssigmag = ( 2 * mu_0 * len_s * N_s ** 2 / p / q1 * (5 * (g / b_so) / (5 + 4 * (g / b_so))) ) # tooth tip leakage inductance L_ssigma = L_ssigmas + L_ssigmaew + L_ssigmag # stator leakage inductance # Calculating effective air gap """ What is the source of this function that combines 1st and 13th powers? Very suspicious... Inputs appear to be in the range of 0.45 to 2.2, so outputs are 180 to 178000 Equations given without reference in: <NAME>, <NAME> . “Design optimization of a synchronous generator for a direct-drive wind turbine,” (paper presented at the European Wind Energy Conference, Copenhagen, Denmark, July2–6, 2001 def airGapFn(B, fact): val = 400 * B + 7 * B**13 ans = val * fact sys.stderr.write('aGF: B {} val {} ans {}\n'.format(B, val, ans)) return val At_t = h_s * airGapFn(B_tmax, h_s) At_sy = tau_p / 2 * airGapFn(B_symax, tau_p/2) At_pc = (h_pc + h_ps) * airGapFn(B_pc, h_pc + h_ps) At_ry = tau_p / 2 * airGapFn(B_rymax, tau_p/2) """ At_g = g_1 * B_gfm / mu_0 At_t = h_s * (400 * B_tmax + 7 * B_tmax ** 13) At_sy = tau_p * 0.5 * (400 * B_symax + 7 * B_symax ** 13) At_pc = (h_pc + h_ps) * (400 * B_pc + 7 * B_pc ** 13) At_ry = tau_p * 0.5 * (400 * B_rymax + 7 * B_rymax ** 13) g_eff = (At_g + At_t + At_sy + At_pc + At_ry) * g_1 / At_g L_m = 6 * k_wd ** 2 * N_s ** 2 * mu_0 * rad_ag * len_s / np.pi / g_eff / p ** 2 B_r1 = (mu_0 * I_f * N_f * 4 * np.sin(0.5 * (b_p / tau_p) * np.pi)) / g_eff / np.pi # (not used) # Calculating direct axis and quadrature axes inductances L_dm = (b_p / tau_p + (1 / np.pi) * np.sin(np.pi * b_p / tau_p)) * L_m L_qm = ( b_p / tau_p - (1 / np.pi) * np.sin(np.pi * b_p / tau_p) + 2 / (3 * np.pi) * np.cos(b_p * np.pi / 2 * tau_p) ) * L_m # Calculating actual load angle delta_m = np.arctan(om_e * L_qm * I_s / E_s) L_d = L_dm + L_ssigma # (not used) L_q = L_qm + L_ssigma # (not used) I_sd = I_s * np.sin(delta_m) I_sq = I_s * np.cos(delta_m) # induced voltage E_p = om_e * L_dm * I_sd + np.sqrt(E_s ** 2 - (om_e * L_qm * I_sq) ** 2) # (not used) # M_sf = mu_0 * 8*rad_ag * len_s * k_wd * N_s * N_f * np.sin(0.5 * b_p / tau_p * np.pi) / (p * g_eff * np.pi) # I_f1 = np.sqrt(2) * (E_p) / (om_e * M_sf) # I_f2 = (E_p / E_s) * B_g * g_eff * np.pi / (4 * N_f * mu_0 * np.sin(np.pi * b_p / 2/tau_p)) # phi_max_stator = k_wd * N_s * np.pi * rad_ag * len_s * 2*mu_0 * N_f * I_f * 4*np.sin(0.5 * b_p / tau_p / np.pi) / (p * np.pi * g_eff * np.pi) # M_sf = mu_0 * 8*rad_ag * len_s * k_wd * N_s * N_f * np.sin(0.5 * b_p / tau_p / np.pi) / (p * g_eff * np.pi) L_tot = len_s + 2 * tau_p # Excitation power V_fn = 500 Power_excitation = V_fn * 2 * I_f # total rated power in excitation winding Power_ratio = Power_excitation * 100 / machine_rating # Calculating Electromagnetically Active mass L_tot = len_s + 2 * tau_p # (not used) V_Cuss = m * l_Cus * A_Cus # volume of copper in stator V_Cusr = l_Cur * A_Cur # volume of copper in rotor V_Fest = ( len_s * np.pi * ((rad_ag + h_s) ** 2 - rad_ag ** 2) - 2 * m * q1 * p * b_s * h_s * len_s ) # volume of iron in stator tooth V_Fesy = len_s * np.pi * ((rad_ag + h_s + h_ys) ** 2 - (rad_ag + h_s) ** 2) # volume of iron in stator yoke V_Fert = l_pfe * 2 * p * (h_pc * b_pc + b_p * h_ps) # volume of iron in rotor pole V_Fery = ( l_pfe * np.pi * ((r_r - h_ps - h_pc) ** 2 - (r_r - h_ps - h_pc - h_yr) ** 2) ) # volume of iron in rotor yoke Copper = (V_Cuss + V_Cusr) * rho_Copper M_Fest = V_Fest * rho_Fe M_Fesy = V_Fesy * rho_Fe M_Fert = V_Fert * rho_Fe M_Fery = V_Fery * rho_Fe Iron = M_Fest + M_Fesy + M_Fert + M_Fery I_snom = machine_rating / (3 * E_s * cofi) ## Optional## Calculating mmf ratio F_1no_load = 3 * 2 ** 0.5 * N_s * k_wd * I_s / (np.pi * p) # (not used) Nf_If_no_load = N_f * I_f F_1_rated = (3 * 2 ** 0.5 * N_s * k_wd * I_srated) / (np.pi * p) Nf_If_rated = 2 * Nf_If_no_load Load_mmf_ratio = Nf_If_rated / F_1_rated ## Calculating losses # 1. Copper losses K_R = 1.2 # skin effect correction coefficient P_Cuss = m * I_snom ** 2 * R_s * K_R P_Cusr = I_f ** 2 * R_r P_Cusnom_total = P_Cuss + P_Cusr # Watts # 2. Iron losses ( Hysteresis and Eddy currents) P_Hyys = M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) # Hysteresis losses in stator yoke P_Ftys = M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2) # Eddy losses in stator yoke P_Fesynom = P_Hyys + P_Ftys P_Hyd = M_Fest * (B_tmax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) # Hysteresis losses in stator teeth P_Ftd = M_Fest * (B_tmax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2) # Eddy losses in stator teeth P_Festnom = P_Hyd + P_Ftd # brushes delta_v = 1 n_brushes = I_f * 2 / 120 if n_brushes < 0.5: n_brushes = 1 else: n_brushes = np.round(n_brushes) # 3. brush losses p_b = 2 * delta_v * I_f Losses = P_Cusnom_total + P_Festnom + P_Fesynom + p_b gen_eff = machine_rating / (Losses + machine_rating) ################################################## Structural Design ######################################################## ## Structural deflection calculations # rotor structure q3 = B_g ** 2 / 2 / mu_0 # normal component of Maxwell's stress # l = l_s # l - stator core length - now using l_s everywhere l_b = 2 * tau_p # end winding length # (not used) l_e = len_s + 2 * 0.001 * rad_ag # equivalent core length # (not used) a_r = (b_r * d_r) - ((b_r - 2 * t_wr) * (d_r - 2 * t_wr)) # cross-sectional area of rotor armms A_r = len_s * t # cross-sectional area of rotor cylinder N_r = np.round(n_r) theta_r = np.pi / N_r # half angle between spokes I_r = len_s * t ** 3 / 12 # second moment of area of rotor cylinder I_arm_axi_r = ( (b_r * d_r ** 3) - ((b_r - 2 * t_wr) * (d_r - 2 * t_wr) ** 3) ) / 12 # second moment of area of rotor arm I_arm_tor_r = ( (d_r * b_r ** 3) - ((d_r - 2 * t_wr) * (b_r - 2 * t_wr) ** 3) ) / 12 # second moment of area of rotot arm w.r.t torsion R = r_r - h_ps - h_pc - 0.5 * h_yr R_1 = R - h_yr * 0.5 # inner radius of rotor cylinder k_1 = np.sqrt(I_r / A_r) # radius of gyration m1 = (k_1 / R) ** 2 c = R / 500 # (not used) u_allow_r = R / 10000 # allowable radial deflection b_allow_r = 2 * np.pi * R_sh / N_r # allowable circumferential arm dimension # Calculating radial deflection of rotor structure according to Mc Donald's Numer = R ** 3 * ( (0.25 * (np.sin(theta_r) - (theta_r * np.cos(theta_r))) / (np.sin(theta_r)) ** 2) - (0.5 / np.sin(theta_r)) + (0.5 / theta_r) ) Pov = ((theta_r / (np.sin(theta_r)) ** 2) + 1 / np.tan(theta_r)) * ((0.25 * R / A_r) + (0.25 * R ** 3 / I_r)) Qov = R ** 3 / (2 * I_r * theta_r * (m1 + 1)) Lov = (R_1 - R_sh) / a_r Denom = I_r * (Pov - Qov + Lov) # radial deflection % rotor u_ar = (q3 * R ** 2 / E / h_yr) * (1 + Numer / Denom) # Calculating axial deflection of rotor structure w_r = rho_Fes * gravity * np.sin(phi) * a_r * N_r mass_st_lam = rho_Fe * 2 * np.pi * (R + 0.5 * h_yr) * len_s * h_yr # mass of rotor yoke steel W = gravity * np.sin(phi) * (mass_st_lam + (V_Cusr * rho_Copper) + M_Fert) / N_r # weight of rotor cylinder l_ir = R # length of rotor arm beam at which rotor cylinder acts l_iir = R_1 y_ar = (W * l_ir ** 3 / 12 / E / I_arm_axi_r) + (w_r * l_iir ** 4 / 24 / E / I_arm_axi_r) # axial deflection # Calculating torsional deflection of rotor structure z_allow_r = np.deg2rad(0.05 * R) # allowable torsional deflection z_ar = ( (2 * np.pi * (R - 0.5 * h_yr) * len_s / N_r) * sigma * (l_ir - 0.5 * h_yr) ** 3 / (3 * E * I_arm_tor_r) ) # circumferential deflection # STATOR structure A_st = len_s * t_s a_s = (b_st * d_s) - ((b_st - 2 * t_ws) * (d_s - 2 * t_ws)) N_st = np.round(n_s) theta_s = np.pi / N_st I_st = len_s * t_s ** 3 / 12 I_arm_axi_s = ( (b_st * d_s ** 3) - ((b_st - 2 * t_ws) * (d_s - 2 * t_ws) ** 3) ) / 12 # second moment of area of stator arm I_arm_tor_s = ( (d_s * b_st ** 3) - ((d_s - 2 * t_ws) * (b_st - 2 * t_ws) ** 3) ) / 12 # second moment of area of rotot arm w.r.t torsion R_st = rad_ag + h_s + h_ys * 0.5 R_1s = R_st - h_ys * 0.5 k_2 = np.sqrt(I_st / A_st) m2 = (k_2 / R_st) ** 2 # allowable deflections b_allow_s = 2 * np.pi * R_sh / N_st u_allow_s = R_st / 10000 y_allow = 2 * len_s / 100 # allowable axial deflection z_allow_s = np.deg2rad(0.05 * R_st) # allowable torsional deflection # Calculating radial deflection according to McDonald's Numers = R_st ** 3 * ( (0.25 * (np.sin(theta_s) - (theta_s * np.cos(theta_s))) / (np.sin(theta_s)) ** 2) - (0.5 / np.sin(theta_s)) + (0.5 / theta_s) ) Povs = ((theta_s / (np.sin(theta_s)) ** 2) + 1 / np.tan(theta_s)) * ( (0.25 * R_st / A_st) + (0.25 * R_st ** 3 / I_st) ) Qovs = R_st ** 3 / (2 * I_st * theta_s * (m2 + 1)) Lovs = (R_1s - R_sh) * 0.5 / a_s Denoms = I_st * (Povs - Qovs + Lovs) R_out = R / 0.995 + h_s + h_ys u_as = (q3 * R_st ** 2 / E / t_s) * (1 + Numers / Denoms) # Calculating axial deflection according to McDonald l_is = R_st - R_sh l_iis = l_is l_iiis = l_is # length of rotor arm beam at which self-weight acts mass_st_lam_s = M_Fest + np.pi * len_s * rho_Fe * ((R_st + 0.5 * h_ys) ** 2 - (R_st - 0.5 * h_ys) ** 2) W_is = gravity * np.sin(phi) * (rho_Fes * len_s * d_s ** 2 * 0.5) # weight of rotor cylinder W_iis = gravity * np.sin(phi) * (V_Cuss * rho_Copper + mass_st_lam_s) / 2 / N_st w_s = rho_Fes * gravity * np.sin(phi) * a_s * N_st X_comp1 = W_is * l_is ** 3 / (12 * E * I_arm_axi_s) X_comp2 = W_iis * l_iis ** 4 / (24 * E * I_arm_axi_s) X_comp3 = w_s * l_iiis ** 4 / (24 * E * I_arm_axi_s) y_as = X_comp1 + X_comp2 + X_comp3 # axial deflection # Calculating torsional deflection z_as = ( 2 * np.pi * (R_st + 0.5 * t_s) * len_s / (2 * N_st) * sigma * (l_is + 0.5 * t_s) ** 3 / (3 * E * I_arm_tor_s) ) # tangential stress constraints TC1 = T / (2 * np.pi * sigma) TC2r = R ** 2 * len_s TC2s = R_st ** 2 * len_s # Calculating inactive mass and total mass mass_stru_steel = 2 * N_st * (R_1s - R_sh) * a_s * rho_Fes Structural_mass = mass_stru_steel + (N_r * (R_1 - R_sh) * a_r * rho_Fes) Mass = Copper + Iron + Structural_mass outputs["B_symax"] = B_symax outputs["B_tmax"] = B_tmax outputs["B_rymax"] = B_rymax outputs["B_gfm"] = B_gfm outputs["B_g"] = B_g outputs["B_pc"] = B_pc outputs["N_s"] = N_s outputs["b_s"] = b_s outputs["b_t"] = b_t outputs["A_Cuscalc"] = A_Cuscalc outputs["A_Curcalc"] = A_Curcalc outputs["b_p"] = b_p outputs["h_p"] = h_p outputs["E_s"] = E_s outputs["f"] = f outputs["I_s"] = I_s outputs["R_s"] = R_s outputs["L_m"] = L_m outputs["A_1"] = A_1 outputs["J_s"] = J_s outputs["R_r"] = R_r outputs["Losses"] = Losses outputs["Load_mmf_ratio"] = Load_mmf_ratio outputs["Power_ratio"] = Power_ratio outputs["n_brushes"] = n_brushes outputs["J_f"] = J_f outputs["K_rad"] = K_rad outputs["eandm_efficiency"] = np.maximum(eps, gen_eff) outputs["S"] = S outputs["Slot_aspect_ratio"] = Slot_aspect_ratio outputs["Copper"] = Copper outputs["Iron"] = Iron outputs["u_ar"] = u_ar outputs["y_ar"] = y_ar outputs["z_ar"] = z_ar outputs["u_as"] = u_as outputs["y_as"] = y_as outputs["z_as"] = z_as outputs["u_allow_r"] = u_allow_r outputs["u_allow_s"] = u_allow_s outputs["y_allow_r"] = outputs["y_allow_s"] = y_allow outputs["z_allow_s"] = z_allow_s outputs["z_allow_r"] = z_allow_r outputs["b_allow_s"] = b_allow_s outputs["b_allow_r"] = b_allow_r outputs["TC1"] = TC1 outputs["TC2r"] = TC2r outputs["TC2s"] = TC2s outputs["R_out"] = R_out outputs["Structural_mass"] = Structural_mass outputs["generator_mass"] = Mass # ---------------------------------------------------------------------------------------- ``` #### File: wisdem/drivetrainse/generator.py ```python import numpy as np import openmdao.api as om import wisdem.drivetrainse.generator_models as gm # ---------------------------------------------------------------------------------------------- class Constraints(om.ExplicitComponent): """ Provides a material cost estimate for a PMSG _arms generator. Manufacturing costs are excluded. Parameters ---------- u_allow_s : float, [m] u_as : float, [m] z_allow_s : float, [m] z_as : float, [m] y_allow_s : float, [m] y_as : float, [m] b_allow_s : float, [m] b_st : float, [m] u_allow_r : float, [m] u_ar : float, [m] y_allow_r : float, [m] y_ar : float, [m] z_allow_r : float, [m] z_ar : float, [m] b_allow_r : float, [m] b_arm : float, [m] TC1 : float, [m**3] TC2r : float, [m**3] TC2s : float, [m**3] B_g : float, [T] B_smax : float, [T] K_rad : float K_rad_LL : float K_rad_UL : float D_ratio : float D_ratio_LL : float D_ratio_UL : float Returns ------- con_uas : float, [m] con_zas : float, [m] con_yas : float, [m] con_bst : float, [m] con_uar : float, [m] con_yar : float, [m] con_zar : float, [m] con_br : float, [m] TCr : float, [m**3] TCs : float, [m**3] con_TC2r : float, [m**3] con_TC2s : float, [m**3] con_Bsmax : float, [T] K_rad_L : float K_rad_U : float D_ratio_L : float D_ratio_U : float """ def setup(self): self.add_input("u_allow_s", val=0.0, units="m") self.add_input("u_as", val=0.0, units="m") self.add_input("z_allow_s", val=0.0, units="m") self.add_input("z_as", val=0.0, units="m") self.add_input("y_allow_s", val=0.0, units="m") self.add_input("y_as", val=0.0, units="m") self.add_input("b_allow_s", val=0.0, units="m") self.add_input("b_st", val=0.0, units="m") self.add_input("u_allow_r", val=0.0, units="m") self.add_input("u_ar", val=0.0, units="m") self.add_input("y_allow_r", val=0.0, units="m") self.add_input("y_ar", val=0.0, units="m") self.add_input("z_allow_r", val=0.0, units="m") self.add_input("z_ar", val=0.0, units="m") self.add_input("b_allow_r", val=0.0, units="m") self.add_input("b_arm", val=0.0, units="m") self.add_input("TC1", val=0.0, units="m**3") self.add_input("TC2r", val=0.0, units="m**3") self.add_input("TC2s", val=0.0, units="m**3") self.add_input("B_g", val=0.0, units="T") self.add_input("B_smax", val=0.0, units="T") self.add_input("K_rad", val=0.0) self.add_input("K_rad_LL", val=0.0) self.add_input("K_rad_UL", val=0.0) self.add_input("D_ratio", val=0.0) self.add_input("D_ratio_LL", val=0.0) self.add_input("D_ratio_UL", val=0.0) self.add_output("con_uas", val=0.0, units="m") self.add_output("con_zas", val=0.0, units="m") self.add_output("con_yas", val=0.0, units="m") self.add_output("con_bst", val=0.0, units="m") self.add_output("con_uar", val=0.0, units="m") self.add_output("con_yar", val=0.0, units="m") self.add_output("con_zar", val=0.0, units="m") self.add_output("con_br", val=0.0, units="m") self.add_output("TCr", val=0.0, units="m**3") self.add_output("TCs", val=0.0, units="m**3") self.add_output("con_TC2r", val=0.0, units="m**3") self.add_output("con_TC2s", val=0.0, units="m**3") self.add_output("con_Bsmax", val=0.0, units="T") self.add_output("K_rad_L", val=0.0) self.add_output("K_rad_U", val=0.0) self.add_output("D_ratio_L", val=0.0) self.add_output("D_ratio_U", val=0.0) def compute(self, inputs, outputs): outputs["con_uas"] = inputs["u_allow_s"] - inputs["u_as"] outputs["con_zas"] = inputs["z_allow_s"] - inputs["z_as"] outputs["con_yas"] = inputs["y_allow_s"] - inputs["y_as"] outputs["con_bst"] = inputs["b_allow_s"] - inputs["b_st"] # b_st={'units':'m'} outputs["con_uar"] = inputs["u_allow_r"] - inputs["u_ar"] outputs["con_yar"] = inputs["y_allow_r"] - inputs["y_ar"] outputs["con_TC2r"] = inputs["TC2s"] - inputs["TC1"] outputs["con_TC2s"] = inputs["TC2s"] - inputs["TC1"] outputs["con_Bsmax"] = inputs["B_g"] - inputs["B_smax"] outputs["con_zar"] = inputs["z_allow_r"] - inputs["z_ar"] outputs["con_br"] = inputs["b_allow_r"] - inputs["b_arm"] # b_r={'units':'m'} outputs["TCr"] = inputs["TC2r"] - inputs["TC1"] outputs["TCs"] = inputs["TC2s"] - inputs["TC1"] outputs["K_rad_L"] = inputs["K_rad"] - inputs["K_rad_LL"] outputs["K_rad_U"] = inputs["K_rad"] - inputs["K_rad_UL"] outputs["D_ratio_L"] = inputs["D_ratio"] - inputs["D_ratio_LL"] outputs["D_ratio_U"] = inputs["D_ratio"] - inputs["D_ratio_UL"] # ---------------------------------------------------------------------------------------------- class MofI(om.ExplicitComponent): """ Compute moments of inertia. Parameters ---------- R_out : float, [m] Outer radius stator_mass : float, [kg] Total rotor mass rotor_mass : float, [kg] Total rotor mass generator_mass : float, [kg] Actual mass len_s : float, [m] Stator core length Returns ------- generator_I : numpy array[3], [kg*m**2] Moments of Inertia for the component [Ixx, Iyy, Izz] around its center of mass rotor_I : numpy array[3], [kg*m**2] Moments of Inertia for the rotor about its center of mass stator_I : numpy array[3], [kg*m**2] Moments of Inertia for the stator about its center of mass """ def setup(self): self.add_input("R_out", val=0.0, units="m") self.add_input("stator_mass", val=0.0, units="kg") self.add_input("rotor_mass", val=0.0, units="kg") self.add_input("generator_mass", val=0.0, units="kg") self.add_input("len_s", val=0.0, units="m") self.add_output("generator_I", val=np.zeros(3), units="kg*m**2") self.add_output("rotor_I", val=np.zeros(3), units="kg*m**2") self.add_output("stator_I", val=np.zeros(3), units="kg*m**2") def compute(self, inputs, outputs): R_out = inputs["R_out"] Mass = inputs["generator_mass"] m_stator = inputs["stator_mass"] m_rotor = inputs["rotor_mass"] len_s = inputs["len_s"] I = np.zeros(3) I[0] = 0.50 * Mass * R_out ** 2 I[1] = I[2] = 0.5 * I[0] + Mass * len_s ** 2 / 12.0 outputs["generator_I"] = I coeff = m_stator / Mass if m_stator > 0.0 else 0.5 outputs["stator_I"] = coeff * I coeff = m_rotor / Mass if m_rotor > 0.0 else 0.5 outputs["rotor_I"] = coeff * I # ---------------------------------------------------------------------------------------------- class Cost(om.ExplicitComponent): """ Provides a material cost estimate for a PMSG _arms generator. Manufacturing costs are excluded. Parameters ---------- C_Cu : float, [USD/kg] Specific cost of copper C_Fe : float, [USD/kg] Specific cost of magnetic steel/iron C_Fes : float, [USD/kg] Specific cost of structural steel C_PM : float, [USD/kg] Specific cost of Magnet Copper : float, [kg] Copper mass Iron : float, [kg] Iron mass mass_PM : float, [kg] Magnet mass Structural_mass : float, [kg] Structural mass Returns ------- generator_cost : float, [USD] Total cost """ def setup(self): # Specific cost of material by type self.add_input("C_Cu", val=0.0, units="USD/kg") self.add_input("C_Fe", val=0.0, units="USD/kg") self.add_input("C_Fes", val=0.0, units="USD/kg") self.add_input("C_PM", val=0.0, units="USD/kg") # Mass of each material type self.add_input("Copper", val=0.0, units="kg") self.add_input("Iron", val=0.0, units="kg") self.add_input("mass_PM", val=0.0, units="kg") self.add_input("Structural_mass", val=0.0, units="kg") # Outputs self.add_output("generator_cost", val=0.0, units="USD") # self.declare_partials('*', '*', method='fd', form='central', step=1e-6) def compute(self, inputs, outputs): Copper = inputs["Copper"] Iron = inputs["Iron"] mass_PM = inputs["mass_PM"] Structural_mass = inputs["Structural_mass"] C_Cu = inputs["C_Cu"] C_Fes = inputs["C_Fes"] C_Fe = inputs["C_Fe"] C_PM = inputs["C_PM"] # Industrial electricity rate $/kWh https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a k_e = 0.064 # Material cost ($/kg) and electricity usage cost (kWh/kg)*($/kWh) for the materials with waste fraction K_copper = Copper * (1.26 * C_Cu + 96.2 * k_e) K_iron = Iron * (1.21 * C_Fe + 26.9 * k_e) K_pm = mass_PM * (1.0 * C_PM + 79.0 * k_e) K_steel = Structural_mass * (1.21 * C_Fes + 15.9 * k_e) # Account for capital cost and labor share from BLS MFP by NAICS outputs["generator_cost"] = (K_copper + K_pm) / 0.619 + (K_iron + K_steel) / 0.684 # ---------------------------------------------------------------------------------------------- class PowerElectronicsEff(om.ExplicitComponent): """ Compute representative efficiency of power electronics Parameters ---------- machine_rating : float, [W] Machine rating shaft_rpm : numpy array[n_pc], [rpm] rated speed of input shaft (lss for direct, hss for geared) eandm_efficiency : numpy array[n_pc] Generator electromagnetic efficiency values (<1) Returns ------- converter_efficiency : numpy array[n_pc] Converter efficiency values (<1) transformer_efficiency : numpy array[n_pc] Transformer efficiency values (<1) generator_efficiency : numpy array[n_pc] Full generato and power electronics efficiency values (<1) """ def initialize(self): self.options.declare("n_pc", default=20) def setup(self): n_pc = self.options["n_pc"] self.add_input("machine_rating", val=0.0, units="W") self.add_input("shaft_rpm", val=np.zeros(n_pc), units="rpm") self.add_input("eandm_efficiency", val=np.zeros(n_pc)) self.add_output("converter_efficiency", val=np.zeros(n_pc)) self.add_output("transformer_efficiency", val=np.zeros(n_pc)) self.add_output("generator_efficiency", val=np.zeros(n_pc)) def compute(self, inputs, outputs): # Unpack inputs rating = inputs["machine_rating"] rpmData = inputs["shaft_rpm"] rpmRatio = rpmData / rpmData[-1] # This converter efficiency is from the APEEM Group in 2020 # See <NAME>, <NAME>, <NAME>, <NAME> # Converter constants v_dc, v_dc0, c0, c1, c2, c3 = 6600, 6200, -2.1e-10, 1.2e-5, 1.46e-3, -2e-4 p_ac0, p_dc0 = 0.99 * rating, rating p_s0 = 1e-3 * p_dc0 # calculated parameters a = p_dc0 * (1.0 + c1 * (v_dc - v_dc0)) b = p_s0 * (1.0 + c2 * (v_dc - v_dc0)) c = c0 * (1.0 + c3 * (v_dc - v_dc0)) # Converter efficiency p_dc = rpmRatio * p_dc0 p_ac = (p_ac0 / (a - b) - c * (a - b)) * (p_dc - b) + c * ((p_dc - b) ** 2) conv_eff = p_ac / p_dc # Transformer loss model is P_loss = P_0 + a^2 * P_k # a is output power/rated p0, pk, rT = 16.0, 111.0, 5.0 / 3.0 a = rpmRatio * (1 / rT) # This gives loss in kW, so need to convert to efficiency trans_eff = 1.0 - (p0 + a * a * pk) / (1e-3 * rating) # Store outputs outputs["converter_efficiency"] = conv_eff outputs["transformer_efficiency"] = trans_eff outputs["generator_efficiency"] = conv_eff * trans_eff * inputs["eandm_efficiency"] # ---------------------------------------------------------------------------------------------- class Generator(om.Group): def initialize(self): genTypes = ["scig", "dfig", "eesg", "pmsg_arms", "pmsg_disc", "pmsg_outer"] self.options.declare("design", values=genTypes + [m.upper() for m in genTypes]) self.options.declare("n_pc", default=20) def setup(self): genType = self.options["design"] n_pc = self.options["n_pc"] # ivc = om.IndepVarComp() # sivc = om.IndepVarComp() self.set_input_defaults("B_r", val=1.2, units="T") self.set_input_defaults("P_Fe0e", val=1.0, units="W/kg") self.set_input_defaults("P_Fe0h", val=4.0, units="W/kg") self.set_input_defaults("S_N", val=-0.002) self.set_input_defaults("alpha_p", val=0.5 * np.pi * 0.7) self.set_input_defaults("b_r_tau_r", val=0.45) self.set_input_defaults("b_ro", val=0.004, units="m") self.set_input_defaults("b_s_tau_s", val=0.45) self.set_input_defaults("b_so", val=0.004, units="m") self.set_input_defaults("cofi", val=0.85) self.set_input_defaults("freq", val=60, units="Hz") self.set_input_defaults("h_i", val=0.001, units="m") self.set_input_defaults("h_sy0", val=0.0) self.set_input_defaults("h_w", val=0.005, units="m") self.set_input_defaults("k_fes", val=0.9) self.set_input_defaults("k_fillr", val=0.7) self.set_input_defaults("k_fills", val=0.65) self.set_input_defaults("k_s", val=0.2) self.set_input_defaults("m", val=3) self.set_input_defaults("mu_0", val=np.pi * 4e-7, units="m*kg/s**2/A**2") self.set_input_defaults("mu_r", val=1.06, units="m*kg/s**2/A**2") self.set_input_defaults("p", val=3.0) self.set_input_defaults("phi", val=np.deg2rad(90), units="rad") self.set_input_defaults("q1", val=6) self.set_input_defaults("q2", val=4) self.set_input_defaults("ratio_mw2pp", val=0.7) self.set_input_defaults("resist_Cu", val=1.8e-8 * 1.4, units="ohm/m") self.set_input_defaults("sigma", val=40e3, units="Pa") self.set_input_defaults("y_tau_p", val=1.0) self.set_input_defaults("y_tau_pr", val=10.0 / 12) # self.set_input_defaults('I_0', val=0.0, units='A') # self.set_input_defaults('d_r', val=0.0, units='m') # self.set_input_defaults('h_m', val=0.0, units='m') # self.set_input_defaults('h_0', val=0.0, units ='m') # self.set_input_defaults('h_s', val=0.0, units='m') # self.set_input_defaults('len_s', val=0.0, units='m') # self.set_input_defaults('n_r', val=0.0) # self.set_input_defaults('rad_ag', val=0.0, units='m') # self.set_input_defaults('t_wr', val=0.0, units='m') # self.set_input_defaults('n_s', val=0.0) # self.set_input_defaults('b_st', val=0.0, units='m') # self.set_input_defaults('d_s', val=0.0, units='m') # self.set_input_defaults('t_ws', val=0.0, units='m') # self.set_input_defaults('rho_Copper', val=0.0, units='kg*m**-3') # self.set_input_defaults('rho_Fe', val=0.0, units='kg*m**-3') # self.set_input_defaults('rho_Fes', val=0.0, units='kg*m**-3') # self.set_input_defaults('rho_PM', val=0.0, units='kg*m**-3') # self.set_input_defaults('C_Cu', val=0.0, units='USD/kg') # self.set_input_defaults('C_Fe', val=0.0, units='USD/kg') # self.set_input_defaults('C_Fes', val=0.0, units='USD/kg') # self.set_input_defaults('C_PM', val=0.0, units='USD/kg') # if genType.lower() in ['pmsg_outer']: # self.set_input_defaults('r_g',0.0, units ='m') # self.set_input_defaults('N_c',0.0) # self.set_input_defaults('b',0.0) # self.set_input_defaults('c',0.0) # self.set_input_defaults('E_p',0.0, units ='V') # self.set_input_defaults('h_yr', val=0.0, units ='m') # self.set_input_defaults('h_ys', val=0.0, units ='m') # self.set_input_defaults('h_sr',0.0,units='m',desc='Structural Mass') # self.set_input_defaults('h_ss',0.0, units ='m') # self.set_input_defaults('t_r',0.0, units ='m') # self.set_input_defaults('t_s',0.0, units ='m') # self.set_input_defaults('u_allow_pcent',0.0) # self.set_input_defaults('y_allow_pcent',0.0) # self.set_input_defaults('z_allow_deg',0.0,units='deg') # self.set_input_defaults('B_tmax',0.0, units='T') # self.set_input_defaults('P_mech', 0.0, units='W') # self.set_input_defaults('y_sh', units ='m') # self.set_input_defaults('theta_sh', 0.0, units='rad') # self.set_input_defaults('D_nose',0.0, units ='m') # self.set_input_defaults('y_bd', units ='m') # self.set_input_defaults('theta_bd', 0.0, units='rad') # if genType.lower() in ['eesg','pmsg_arms','pmsg_disc']: # self.set_input_defaults('tau_p', val=0.0, units='m') # self.set_input_defaults('h_ys', val=0.0, units='m') # self.set_input_defaults('h_yr', val=0.0, units='m') # self.set_input_defaults('b_arm', val=0.0, units='m') # elif genType.lower() in ['scig','dfig']: # self.set_input_defaults('B_symax', val=0.0, units='T') # self.set_input_defaults('S_Nmax', val=-0.2) # if topLevelFlag: # self.add_subsystem('ivc', ivc, promotes=['*']) # self.set_input_defaults('machine_rating', 0.0, units='W') # self.set_input_defaults('shaft_rpm', np.linspace(1.0, 10.0, n_pc), units='rpm') # self.set_input_defaults('rated_torque', 0.0, units='N*m') # self.set_input_defaults('D_shaft', val=0.0, units='m') self.set_input_defaults("E", val=210e9, units="Pa") self.set_input_defaults("G", val=81e9, units="Pa") # self.add_subsystem('sivc', sivc, promotes=['*']) # Easy Poisson ratio assuming isotropic self.add_subsystem( "poisson", om.ExecComp("v = 0.5*E/G - 1.0", E={"units": "Pa"}, G={"units": "Pa"}), promotes=["*"] ) # Add generator design component and cost if genType.lower() == "scig": mygen = gm.SCIG elif genType.lower() == "dfig": mygen = gm.DFIG elif genType.lower() == "eesg": mygen = gm.EESG elif genType.lower() == "pmsg_arms": mygen = gm.PMSG_Arms elif genType.lower() == "pmsg_disc": mygen = gm.PMSG_Disc elif genType.lower() == "pmsg_outer": mygen = gm.PMSG_Outer self.add_subsystem("generator", mygen(n_pc=n_pc), promotes=["*"]) self.add_subsystem("mofi", MofI(), promotes=["*"]) self.add_subsystem("gen_cost", Cost(), promotes=["*"]) self.add_subsystem("constr", Constraints(), promotes=["*"]) self.add_subsystem("eff", PowerElectronicsEff(n_pc=n_pc), promotes=["*"]) ``` #### File: wisdem/floatingse/floating_frame.py ```python import numpy as np import openmdao.api as om import wisdem.commonse.utilities as util import wisdem.pyframe3dd.pyframe3dd as pyframe3dd import wisdem.commonse.utilization_dnvgl as util_dnvgl import wisdem.commonse.utilization_constraints as util_con from wisdem.commonse import NFREQ, gravity from wisdem.floatingse.member import NULL, MEMMAX, Member NNODES_MAX = 1000 NELEM_MAX = 1000 RIGID = 1e30 EPS = 1e-6 class PlatformFrame(om.ExplicitComponent): def initialize(self): self.options.declare("options") def setup(self): opt = self.options["options"] n_member = opt["floating"]["members"]["n_members"] for k in range(n_member): self.add_input(f"member{k}:nodes_xyz", NULL * np.ones((MEMMAX, 3)), units="m") self.add_input(f"member{k}:nodes_r", NULL * np.ones(MEMMAX), units="m") self.add_input(f"member{k}:section_D", NULL * np.ones(MEMMAX), units="m") self.add_input(f"member{k}:section_t", NULL * np.ones(MEMMAX), units="m") self.add_input(f"member{k}:section_A", NULL * np.ones(MEMMAX), units="m**2") self.add_input(f"member{k}:section_Asx", NULL * np.ones(MEMMAX), units="m**2") self.add_input(f"member{k}:section_Asy", NULL * np.ones(MEMMAX), units="m**2") self.add_input(f"member{k}:section_Ixx", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input(f"member{k}:section_Iyy", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input(f"member{k}:section_Izz", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input(f"member{k}:section_rho", NULL * np.ones(MEMMAX), units="kg/m**3") self.add_input(f"member{k}:section_E", NULL * np.ones(MEMMAX), units="Pa") self.add_input(f"member{k}:section_G", NULL * np.ones(MEMMAX), units="Pa") self.add_input(f"member{k}:section_sigma_y", NULL * np.ones(MEMMAX), units="Pa") self.add_input(f"member{k}:idx_cb", 0) self.add_input(f"member{k}:buoyancy_force", 0.0, units="N") self.add_input(f"member{k}:displacement", 0.0, units="m**3") self.add_input(f"member{k}:center_of_buoyancy", np.zeros(3), units="m") self.add_input(f"member{k}:center_of_mass", np.zeros(3), units="m") self.add_input(f"member{k}:ballast_mass", 0.0, units="kg") self.add_input(f"member{k}:total_mass", 0.0, units="kg") self.add_input(f"member{k}:total_cost", 0.0, units="USD") self.add_input(f"member{k}:I_total", np.zeros(6), units="kg*m**2") self.add_input(f"member{k}:Awater", 0.0, units="m**2") self.add_input(f"member{k}:Iwater", 0.0, units="m**4") self.add_input(f"member{k}:added_mass", np.zeros(6), units="kg") self.add_input(f"member{k}:waterline_centroid", np.zeros(2), units="m") self.add_input(f"member{k}:variable_ballast_capacity", val=0.0, units="m**3") self.add_input(f"member{k}:Px", np.zeros(MEMMAX), units="N/m") self.add_input(f"member{k}:Py", np.zeros(MEMMAX), units="N/m") self.add_input(f"member{k}:Pz", np.zeros(MEMMAX), units="N/m") self.add_input(f"member{k}:qdyn", np.zeros(MEMMAX), units="Pa") self.add_input("transition_node", np.zeros(3), units="m") self.add_input("transition_piece_mass", 0.0, units="kg") self.add_input("transition_piece_cost", 0.0, units="USD") self.add_output("transition_piece_I", np.zeros(6), units="kg*m**2") self.add_output("platform_nodes", NULL * np.ones((NNODES_MAX, 3)), units="m") self.add_output("platform_Fnode", NULL * np.ones((NNODES_MAX, 3)), units="N") self.add_output("platform_Rnode", NULL * np.ones(NNODES_MAX), units="m") self.add_output("platform_elem_n1", NULL * np.ones(NELEM_MAX, dtype=np.int_)) self.add_output("platform_elem_n2", NULL * np.ones(NELEM_MAX, dtype=np.int_)) self.add_output("platform_elem_D", NULL * np.ones(NELEM_MAX), units="m") self.add_output("platform_elem_t", NULL * np.ones(NELEM_MAX), units="m") self.add_output("platform_elem_A", NULL * np.ones(NELEM_MAX), units="m**2") self.add_output("platform_elem_Asx", NULL * np.ones(NELEM_MAX), units="m**2") self.add_output("platform_elem_Asy", NULL * np.ones(NELEM_MAX), units="m**2") self.add_output("platform_elem_Ixx", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_output("platform_elem_Iyy", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_output("platform_elem_Izz", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_output("platform_elem_rho", NULL * np.ones(NELEM_MAX), units="kg/m**3") self.add_output("platform_elem_E", NULL * np.ones(NELEM_MAX), units="Pa") self.add_output("platform_elem_G", NULL * np.ones(NELEM_MAX), units="Pa") self.add_output("platform_elem_sigma_y", NULL * np.ones(NELEM_MAX), units="Pa") self.add_output("platform_elem_Px1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("platform_elem_Px2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("platform_elem_Py1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("platform_elem_Py2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("platform_elem_Pz1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("platform_elem_Pz2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("platform_elem_qdyn", NULL * np.ones(NELEM_MAX), units="Pa") self.add_discrete_output("platform_elem_memid", [-1] * NELEM_MAX) self.add_output("platform_displacement", 0.0, units="m**3") self.add_output("platform_center_of_buoyancy", np.zeros(3), units="m") self.add_output("platform_hull_center_of_mass", np.zeros(3), units="m") self.add_output("platform_centroid", np.zeros(3), units="m") self.add_output("platform_ballast_mass", 0.0, units="kg") self.add_output("platform_hull_mass", 0.0, units="kg") self.add_output("platform_mass", 0.0, units="kg") self.add_output("platform_I_hull", np.zeros(6), units="kg*m**2") self.add_output("platform_cost", 0.0, units="USD") self.add_output("platform_Awater", 0.0, units="m**2") self.add_output("platform_Iwater", 0.0, units="m**4") self.add_output("platform_added_mass", np.zeros(6), units="kg") self.add_output("platform_variable_capacity", np.zeros(n_member), units="m**3") self.node_mem2glob = {} def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): # Seems like we have to run this each time as numbering can change during optimization self.node_mem2glob = {} self.set_connectivity(inputs, outputs) self.set_node_props(inputs, outputs) self.set_element_props(inputs, outputs, discrete_inputs, discrete_outputs) def set_connectivity(self, inputs, outputs): # Load in number of members opt = self.options["options"] n_member = opt["floating"]["members"]["n_members"] # Initialize running lists across all members nodes_temp = np.empty((0, 3)) elem_n1 = np.array([], dtype=np.int_) elem_n2 = np.array([], dtype=np.int_) # Look over members and grab all nodes and internal connections for k in range(n_member): inode_xyz = inputs[f"member{k}:nodes_xyz"] inodes = np.where(inode_xyz[:, 0] == NULL)[0][0] inode_xyz = inode_xyz[:inodes, :] inode_range = np.arange(inodes - 1) n = nodes_temp.shape[0] for ii in range(inodes): self.node_mem2glob[(k, ii)] = n + ii elem_n1 = np.append(elem_n1, n + inode_range) elem_n2 = np.append(elem_n2, n + inode_range + 1) nodes_temp = np.append(nodes_temp, inode_xyz, axis=0) # Reveal connectivity by using mapping to unique node positions nodes, idx, inv = np.unique(nodes_temp.round(8), axis=0, return_index=True, return_inverse=True) nnode = nodes.shape[0] outputs["platform_nodes"] = NULL * np.ones((NNODES_MAX, 3)) outputs["platform_nodes"][:nnode, :] = nodes outputs["platform_centroid"] = nodes.mean(axis=0) # Use mapping to set references to node joints nelem = elem_n1.size outputs["platform_elem_n1"] = NULL * np.ones(NELEM_MAX, dtype=np.int_) outputs["platform_elem_n2"] = NULL * np.ones(NELEM_MAX, dtype=np.int_) outputs["platform_elem_n1"][:nelem] = inv[elem_n1] outputs["platform_elem_n2"][:nelem] = inv[elem_n2] # Update global 2 member mappings for k in self.node_mem2glob.keys(): self.node_mem2glob[k] = inv[self.node_mem2glob[k]] def set_node_props(self, inputs, outputs): # Load in number of members opt = self.options["options"] n_member = opt["floating"]["members"]["n_members"] # Number of valid nodes node_platform = outputs["platform_nodes"] nnode = np.where(node_platform[:, 0] == NULL)[0][0] node_platform = node_platform[:nnode, :] # Find greatest radius of all members at node intersections Rnode = np.zeros(nnode) for k in range(n_member): irnode = inputs[f"member{k}:nodes_r"] n = np.where(irnode == NULL)[0][0] for ii in range(n): iglob = self.node_mem2glob[(k, ii)] Rnode[iglob] = np.array([Rnode[iglob], irnode[ii]]).max() # Find forces on nodes Fnode = np.zeros((nnode, 3)) for k in range(n_member): icb = int(inputs[f"member{k}:idx_cb"]) iglob = self.node_mem2glob[(k, icb)] Fnode[iglob, 2] += inputs[f"member{k}:buoyancy_force"] # Get transition piece inertial properties itrans_platform = util.closest_node(node_platform, inputs["transition_node"]) m_trans = float(inputs["transition_piece_mass"]) r_trans = Rnode[itrans_platform] I_trans = m_trans * r_trans ** 2.0 * np.r_[0.5, 0.5, 1.0, np.zeros(3)] outputs["transition_piece_I"] = I_trans # Store outputs outputs["platform_Rnode"] = NULL * np.ones(NNODES_MAX) outputs["platform_Rnode"][:nnode] = Rnode outputs["platform_Fnode"] = NULL * np.ones((NNODES_MAX, 3)) outputs["platform_Fnode"][:nnode, :] = Fnode def set_element_props(self, inputs, outputs, discrete_inputs, discrete_outputs): # Load in number of members opt = self.options["options"] n_member = opt["floating"]["members"]["n_members"] # Initialize running lists across all members elem_D = np.array([]) elem_t = np.array([]) elem_A = np.array([]) elem_Asx = np.array([]) elem_Asy = np.array([]) elem_Ixx = np.array([]) elem_Iyy = np.array([]) elem_Izz = np.array([]) elem_rho = np.array([]) elem_E = np.array([]) elem_G = np.array([]) elem_sigy = np.array([]) elem_Px1 = np.array([]) elem_Px2 = np.array([]) elem_Py1 = np.array([]) elem_Py2 = np.array([]) elem_Pz1 = np.array([]) elem_Pz2 = np.array([]) elem_qdyn = np.array([]) elem_memid = np.array([], dtype=np.int_) mass = 0.0 m_ball = 0.0 cost = 0.0 volume = 0.0 Awater = 0.0 Iwater = 0.0 m_added = np.zeros(6) cg_plat = np.zeros(3) cb_plat = np.zeros(3) centroid = outputs["platform_centroid"][:2] variable_capacity = np.zeros(n_member) # Append all member data for k in range(n_member): n = np.where(inputs[f"member{k}:section_A"] == NULL)[0][0] elem_D = np.append(elem_D, inputs[f"member{k}:section_D"][:n]) elem_t = np.append(elem_t, inputs[f"member{k}:section_t"][:n]) elem_A = np.append(elem_A, inputs[f"member{k}:section_A"][:n]) elem_Asx = np.append(elem_Asx, inputs[f"member{k}:section_Asx"][:n]) elem_Asy = np.append(elem_Asy, inputs[f"member{k}:section_Asy"][:n]) elem_Ixx = np.append(elem_Ixx, inputs[f"member{k}:section_Ixx"][:n]) elem_Iyy = np.append(elem_Iyy, inputs[f"member{k}:section_Iyy"][:n]) elem_Izz = np.append(elem_Izz, inputs[f"member{k}:section_Izz"][:n]) elem_rho = np.append(elem_rho, inputs[f"member{k}:section_rho"][:n]) elem_E = np.append(elem_E, inputs[f"member{k}:section_E"][:n]) elem_G = np.append(elem_G, inputs[f"member{k}:section_G"][:n]) elem_sigy = np.append(elem_sigy, inputs[f"member{k}:section_sigma_y"][:n]) elem_qdyn = np.append(elem_qdyn, inputs[f"member{k}:qdyn"][:n]) elem_memid = np.append(elem_memid, k * np.ones(n, dtype=np.int_)) # The loads should come in with length n+1 elem_Px1 = np.append(elem_Px1, inputs[f"member{k}:Px"][:n]) elem_Px2 = np.append(elem_Px2, inputs[f"member{k}:Px"][1 : (n + 1)]) elem_Py1 = np.append(elem_Py1, inputs[f"member{k}:Py"][:n]) elem_Py2 = np.append(elem_Py2, inputs[f"member{k}:Py"][1 : (n + 1)]) elem_Pz1 = np.append(elem_Pz1, inputs[f"member{k}:Pz"][:n]) elem_Pz2 = np.append(elem_Pz2, inputs[f"member{k}:Pz"][1 : (n + 1)]) # Mass, volume, cost tallies imass = inputs[f"member{k}:total_mass"] ivol = inputs[f"member{k}:displacement"] mass += imass volume += ivol cost += inputs[f"member{k}:total_cost"] m_ball += inputs[f"member{k}:ballast_mass"] Awater_k = inputs[f"member{k}:Awater"] Awater += Awater_k Rwater2 = np.sum((inputs[f"member{k}:waterline_centroid"] - centroid) ** 2) Iwater += inputs[f"member{k}:Iwater"] + Awater_k * Rwater2 m_added += inputs[f"member{k}:added_mass"] variable_capacity[k] = inputs[f"member{k}:variable_ballast_capacity"] # Center of mass / buoyancy tallies cg_plat += imass * inputs[f"member{k}:center_of_mass"] cb_plat += ivol * inputs[f"member{k}:center_of_buoyancy"] # Add transition piece m_trans = inputs["transition_piece_mass"] cg_trans = inputs["transition_node"] I_trans = util.assembleI(outputs["transition_piece_I"]) mass += m_trans cost += inputs["transition_piece_cost"] cg_plat += m_trans * cg_trans # Finalize outputs cg_plat /= mass cb_plat /= volume # With CG known, loop back through to compute platform I unit_z = np.array([0.0, 0.0, 1.0]) I_hull = np.zeros((3, 3)) for k in range(n_member): xyz_k = inputs[f"member{k}:nodes_xyz"] inodes = np.where(xyz_k[:, 0] == NULL)[0][0] xyz_k = xyz_k[:inodes, :] imass = inputs[f"member{k}:total_mass"] cg_k = inputs[f"member{k}:center_of_mass"] R = cg_plat - cg_k # Figure out angle to make member parallel to global c.s. vec_k = xyz_k[-1, :] - xyz_k[0, :] T = util.rotate_align_vectors(vec_k, unit_z) # Rotate member inertia tensor I_k = util.assembleI(inputs[f"member{k}:I_total"]) I_k_rot = T @ I_k @ T.T # Now do parallel axis theorem I_hull += np.array(I_k_rot) + imass * (np.dot(R, R) * np.eye(3) - np.outer(R, R)) # Add in transition piece R = cg_plat - cg_trans I_hull += I_trans + m_trans * (np.dot(R, R) * np.eye(3) - np.outer(R, R)) # Store outputs nelem = elem_A.size outputs["platform_elem_D"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_t"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_A"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Asx"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Asy"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Ixx"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Iyy"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Izz"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_rho"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_E"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_G"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_sigma_y"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Px1"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Px2"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Py1"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Py2"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Pz1"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Pz2"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_qdyn"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_D"][:nelem] = elem_D outputs["platform_elem_t"][:nelem] = elem_t outputs["platform_elem_A"][:nelem] = elem_A outputs["platform_elem_Asx"][:nelem] = elem_Asx outputs["platform_elem_Asy"][:nelem] = elem_Asy outputs["platform_elem_Ixx"][:nelem] = elem_Ixx outputs["platform_elem_Iyy"][:nelem] = elem_Iyy outputs["platform_elem_Izz"][:nelem] = elem_Izz outputs["platform_elem_rho"][:nelem] = elem_rho outputs["platform_elem_E"][:nelem] = elem_E outputs["platform_elem_G"][:nelem] = elem_G outputs["platform_elem_sigma_y"][:nelem] = elem_sigy outputs["platform_elem_Px1"][:nelem] = elem_Px1 outputs["platform_elem_Px2"][:nelem] = elem_Px2 outputs["platform_elem_Py1"][:nelem] = elem_Py1 outputs["platform_elem_Py2"][:nelem] = elem_Py2 outputs["platform_elem_Pz1"][:nelem] = elem_Pz1 outputs["platform_elem_Pz2"][:nelem] = elem_Pz2 outputs["platform_elem_qdyn"][:nelem] = elem_qdyn discrete_outputs["platform_elem_memid"] = elem_memid outputs["platform_mass"] = mass outputs["platform_ballast_mass"] = m_ball outputs["platform_hull_mass"] = mass - m_ball outputs["platform_cost"] = cost outputs["platform_displacement"] = volume outputs["platform_hull_center_of_mass"] = cg_plat outputs["platform_center_of_buoyancy"] = cb_plat outputs["platform_I_hull"] = util.unassembleI(I_hull) outputs["platform_Awater"] = Awater outputs["platform_Iwater"] = Iwater outputs["platform_added_mass"] = m_added outputs["platform_variable_capacity"] = variable_capacity class TowerPreMember(om.ExplicitComponent): def setup(self): self.add_input("transition_node", np.zeros(3), units="m") self.add_input("tower_height", 0.0, units="m") self.add_output("tower_top_node", np.zeros(3), units="m") def compute(self, inputs, outputs): transition_node = inputs["transition_node"] tower_top_node = 0 # previous code altered the original definition of transition_node tower_top_node += transition_node tower_top_node[2] += float(inputs["tower_height"]) outputs["tower_top_node"] = tower_top_node class PlatformTowerFrame(om.ExplicitComponent): def initialize(self): self.options.declare("options") def setup(self): opt = self.options["options"] n_member = opt["floating"]["members"]["n_members"] n_attach = opt["mooring"]["n_attach"] self.add_input("platform_nodes", NULL * np.ones((NNODES_MAX, 3)), units="m") self.add_input("platform_Fnode", NULL * np.ones((NNODES_MAX, 3)), units="N") self.add_input("platform_Rnode", NULL * np.ones(NNODES_MAX), units="m") self.add_input("platform_elem_n1", NULL * np.ones(NELEM_MAX, dtype=np.int_)) self.add_input("platform_elem_n2", NULL * np.ones(NELEM_MAX, dtype=np.int_)) self.add_input("platform_elem_D", NULL * np.ones(NELEM_MAX), units="m") self.add_input("platform_elem_t", NULL * np.ones(NELEM_MAX), units="m") self.add_input("platform_elem_A", NULL * np.ones(NELEM_MAX), units="m**2") self.add_input("platform_elem_Asx", NULL * np.ones(NELEM_MAX), units="m**2") self.add_input("platform_elem_Asy", NULL * np.ones(NELEM_MAX), units="m**2") self.add_input("platform_elem_Ixx", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_input("platform_elem_Iyy", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_input("platform_elem_Izz", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_input("platform_elem_rho", NULL * np.ones(NELEM_MAX), units="kg/m**3") self.add_input("platform_elem_E", NULL * np.ones(NELEM_MAX), units="Pa") self.add_input("platform_elem_G", NULL * np.ones(NELEM_MAX), units="Pa") self.add_input("platform_elem_sigma_y", NULL * np.ones(NELEM_MAX), units="Pa") self.add_input("platform_elem_Px1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("platform_elem_Px2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("platform_elem_Py1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("platform_elem_Py2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("platform_elem_Pz1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("platform_elem_Pz2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("platform_elem_qdyn", NULL * np.ones(NELEM_MAX), units="Pa") self.add_input("platform_hull_center_of_mass", np.zeros(3), units="m") self.add_input("platform_mass", 0.0, units="kg") self.add_input("platform_I_hull", np.zeros(6), units="kg*m**2") self.add_input("platform_displacement", 0.0, units="m**3") self.add_input("tower_nodes", NULL * np.ones((MEMMAX, 3)), units="m") self.add_output("tower_Fnode", copy_shape="tower_nodes", units="N") self.add_input("tower_Rnode", NULL * np.ones(MEMMAX), units="m") self.add_output("tower_elem_n1", copy_shape="tower_elem_A") self.add_output("tower_elem_n2", copy_shape="tower_elem_A") self.add_output("tower_elem_L", copy_shape="tower_elem_A", units="m") self.add_input("tower_elem_D", NULL * np.ones(MEMMAX), units="m") self.add_input("tower_elem_t", NULL * np.ones(MEMMAX), units="m") self.add_input("tower_elem_A", NULL * np.ones(MEMMAX), units="m**2") self.add_input("tower_elem_Asx", NULL * np.ones(MEMMAX), units="m**2") self.add_input("tower_elem_Asy", NULL * np.ones(MEMMAX), units="m**2") self.add_input("tower_elem_Ixx", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input("tower_elem_Iyy", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input("tower_elem_Izz", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input("tower_elem_rho", NULL * np.ones(MEMMAX), units="kg/m**3") self.add_input("tower_elem_E", NULL * np.ones(MEMMAX), units="Pa") self.add_input("tower_elem_G", NULL * np.ones(MEMMAX), units="Pa") self.add_input("tower_elem_sigma_y", NULL * np.ones(MEMMAX), units="Pa") self.add_input("tower_elem_Px", NULL * np.ones(MEMMAX), units="N/m") self.add_output("tower_elem_Px1", NULL * np.ones(MEMMAX), units="N/m") self.add_output("tower_elem_Px2", NULL * np.ones(MEMMAX), units="N/m") self.add_input("tower_elem_Py", NULL * np.ones(MEMMAX), units="N/m") self.add_output("tower_elem_Py1", NULL * np.ones(MEMMAX), units="N/m") self.add_output("tower_elem_Py2", NULL * np.ones(MEMMAX), units="N/m") self.add_input("tower_elem_Pz", NULL * np.ones(MEMMAX), units="N/m") self.add_output("tower_elem_Pz1", NULL * np.ones(MEMMAX), units="N/m") self.add_output("tower_elem_Pz2", NULL * np.ones(MEMMAX), units="N/m") self.add_input("tower_elem_qdyn", NULL * np.ones(MEMMAX), units="Pa") self.add_input("tower_center_of_mass", np.zeros(3), units="m") self.add_input("tower_mass", 0.0, units="kg") self.add_input("rho_water", 0.0, units="kg/m**3") self.add_input("tower_top_node", np.zeros(3), units="m") self.add_input("transition_node", np.zeros(3), units="m") self.add_input("rna_mass", 0.0, units="kg") self.add_input("rna_cg", np.zeros(3), units="m") self.add_input("mooring_neutral_load", np.zeros((n_attach, 3)), units="N") self.add_input("platform_variable_capacity", np.zeros(n_member), units="m**3") for k in range(n_member): self.add_input(f"member{k}:nodes_xyz", NULL * np.ones((MEMMAX, 3)), units="m") self.add_input(f"member{k}:variable_ballast_Vpts", val=np.zeros(10), units="m**3") self.add_input(f"member{k}:variable_ballast_spts", val=np.zeros(10)) self.add_output("system_nodes", NULL * np.ones((NNODES_MAX, 3)), units="m") self.add_output("system_Fnode", NULL * np.ones((NNODES_MAX, 3)), units="N") self.add_output("system_Rnode", NULL * np.ones(NNODES_MAX), units="m") self.add_output("system_elem_n1", NULL * np.ones(NELEM_MAX, dtype=np.int_)) self.add_output("system_elem_n2", NULL * np.ones(NELEM_MAX, dtype=np.int_)) self.add_output("system_elem_L", NULL * np.ones(NELEM_MAX), units="m") self.add_output("system_elem_D", NULL * np.ones(NELEM_MAX), units="m") self.add_output("system_elem_t", NULL * np.ones(NELEM_MAX), units="m") self.add_output("system_elem_A", NULL * np.ones(NELEM_MAX), units="m**2") self.add_output("system_elem_Asx", NULL * np.ones(NELEM_MAX), units="m**2") self.add_output("system_elem_Asy", NULL * np.ones(NELEM_MAX), units="m**2") self.add_output("system_elem_Ixx", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_output("system_elem_Iyy", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_output("system_elem_Izz", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_output("system_elem_rho", NULL * np.ones(NELEM_MAX), units="kg/m**3") self.add_output("system_elem_E", NULL * np.ones(NELEM_MAX), units="Pa") self.add_output("system_elem_G", NULL * np.ones(NELEM_MAX), units="Pa") self.add_output("system_elem_sigma_y", NULL * np.ones(NELEM_MAX), units="Pa") self.add_output("system_elem_Px1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("system_elem_Px2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("system_elem_Py1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("system_elem_Py2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("system_elem_Pz1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("system_elem_Pz2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("system_elem_qdyn", NULL * np.ones(NELEM_MAX), units="Pa") self.add_output("system_structural_center_of_mass", np.zeros(3), units="m") self.add_output("system_structural_mass", 0.0, units="kg") self.add_output("system_center_of_mass", np.zeros(3), units="m") self.add_output("system_mass", 0.0, units="kg") self.add_output("variable_ballast_mass", 0.0, units="kg") self.add_output("variable_center_of_mass", val=np.zeros(3), units="m") self.add_output("constr_variable_margin", val=0.0) self.add_output("member_variable_volume", val=np.zeros(n_member), units="m**3") self.add_output("member_variable_height", val=np.zeros(n_member)) self.add_output("platform_total_center_of_mass", np.zeros(3), units="m") self.add_output("platform_I_total", np.zeros(6), units="kg*m**2") def compute(self, inputs, outputs): # Combine nodes node_platform = inputs["platform_nodes"] node_tower = inputs["tower_nodes"] nnode_platform = np.where(node_platform[:, 0] == NULL)[0][0] nnode_tower = np.where(node_tower[:, 0] == NULL)[0][0] nnode_system = nnode_platform + np.maximum(1, nnode_tower) - 1 nelem_platform = np.where(inputs["platform_elem_A"] == NULL)[0][0] nelem_tower = np.where(inputs["tower_elem_A"] == NULL)[0][0] nelem_system = nelem_platform + nelem_tower # Combine elements indices and have tower base node point to platform transition node outputs["tower_Fnode"] = np.zeros(node_tower.shape) outputs["tower_elem_n1"] = NULL * np.ones(MEMMAX, dtype=np.int_) outputs["tower_elem_n2"] = NULL * np.ones(MEMMAX, dtype=np.int_) outputs["tower_elem_L"] = NULL * np.ones(MEMMAX) tower_n1 = np.arange(nelem_tower, dtype=np.int_) tower_n2 = np.arange(nelem_tower, dtype=np.int_) + 1 outputs["tower_elem_n1"][:nelem_tower] = idx1 = tower_n1.copy() outputs["tower_elem_n2"][:nelem_tower] = idx2 = tower_n2.copy() itrans_platform = util.closest_node(node_platform[:nnode_platform, :], inputs["transition_node"]) tower_n1 += nnode_platform - 1 tower_n2 += nnode_platform - 1 tower_n1[0] = itrans_platform outputs["tower_elem_L"][:nelem_tower] = np.sqrt( np.sum((node_tower[idx2, :] - node_tower[idx1, :]) ** 2, axis=1) ) # Store all outputs outputs["system_nodes"] = NULL * np.ones((NNODES_MAX, 3)) outputs["system_Fnode"] = NULL * np.ones((NNODES_MAX, 3)) outputs["system_Rnode"] = NULL * np.ones(NNODES_MAX) outputs["system_elem_n1"] = NULL * np.ones(NELEM_MAX, dtype=np.int_) outputs["system_elem_n2"] = NULL * np.ones(NELEM_MAX, dtype=np.int_) outputs["system_elem_L"] = NULL * np.ones(NELEM_MAX) outputs["system_nodes"][:nnode_system, :] = sysnode = np.vstack( (node_platform[:nnode_platform, :], node_tower[1:nnode_tower, :]) ) outputs["system_Fnode"][:nnode_system, :] = np.vstack( (inputs["platform_Fnode"][:nnode_platform, :], outputs["tower_Fnode"][1:nnode_tower, :]) ) outputs["system_Rnode"][:nnode_system] = np.r_[ inputs["platform_Rnode"][:nnode_platform], inputs["tower_Rnode"][1:nnode_tower] ] outputs["system_elem_n1"][:nelem_system] = idx1 = np.r_[ inputs["platform_elem_n1"][:nelem_platform], tower_n1, ] outputs["system_elem_n2"][:nelem_system] = idx2 = np.r_[ inputs["platform_elem_n2"][:nelem_platform], tower_n2, ] outputs["system_elem_L"][:nelem_system] = np.sqrt( np.sum((sysnode[np.int_(idx2), :] - sysnode[np.int_(idx1), :]) ** 2, axis=1) ) for var in [ "elem_D", "elem_t", "elem_A", "elem_Asx", "elem_Asy", "elem_Ixx", "elem_Iyy", "elem_Izz", "elem_rho", "elem_E", "elem_G", "elem_sigma_y", "elem_qdyn", ]: outputs["system_" + var] = NULL * np.ones(NELEM_MAX) outputs["system_" + var][:nelem_system] = np.r_[ inputs["platform_" + var][:nelem_platform], inputs["tower_" + var][:nelem_tower] ] # Have to divide up tower member loads to beginning and end points for var in ["elem_Px1", "elem_Py1", "elem_Pz1", "elem_Px2", "elem_Py2", "elem_Pz2"]: outputs["system_" + var] = NULL * np.ones(NELEM_MAX) outputs["tower_" + var] = NULL * np.ones(MEMMAX) tower_P = inputs["tower_" + var[:-1]] outputs["tower_" + var][:nelem_tower] = ( tower_P[:nelem_tower] if var[-1] == "1" else tower_P[1 : (nelem_tower + 1)] ) outputs["system_" + var][:nelem_system] = np.r_[ inputs["platform_" + var][:nelem_platform], outputs["tower_" + var][:nelem_tower] ] # Mass summaries m_platform = inputs["platform_mass"] cg_platform = inputs["platform_hull_center_of_mass"] I_platform = util.assembleI(inputs["platform_I_hull"]) m_tower = inputs["tower_mass"] m_rna = inputs["rna_mass"] m_sys = m_platform + m_tower + m_rna outputs["system_structural_mass"] = m_sys outputs["system_structural_center_of_mass"] = ( m_platform * cg_platform + m_tower * inputs["tower_center_of_mass"] + m_rna * (inputs["rna_cg"] + inputs["tower_top_node"]) ) / m_sys # Balance out variable ballast mooringFz = inputs["mooring_neutral_load"][:, 2].sum() capacity = inputs["platform_variable_capacity"] capacity_sum = capacity.sum() + EPS # Avoid divide by zeros rho_water = inputs["rho_water"] m_variable = inputs["platform_displacement"] * rho_water - m_sys + mooringFz / gravity V_variable = m_variable / rho_water outputs["variable_ballast_mass"] = m_variable outputs["constr_variable_margin"] = V_variable / capacity_sum V_variable_member = V_variable * capacity / capacity_sum outputs["member_variable_volume"] = V_variable_member m_variable_member = V_variable_member * rho_water # Now find the CG of the variable mass assigned to each member n_member = capacity.size outputs["member_variable_height"] = np.zeros(n_member) cg_variable_member = np.zeros((n_member, 3)) for k in range(n_member): if V_variable_member[k] == 0.0: continue xyz = inputs[f"member{k}:nodes_xyz"] inodes = np.where(xyz[:, 0] == NULL)[0][0] xyz = xyz[:inodes, :] dxyz = xyz[-1, :] - xyz[0, :] spts = inputs[f"member{k}:variable_ballast_spts"] Vpts = inputs[f"member{k}:variable_ballast_Vpts"] s_cg = np.interp(0.5 * V_variable_member[k], Vpts, spts) cg_variable_member[k, :] = xyz[0, :] + s_cg * dxyz s_end = np.interp(V_variable_member[k], Vpts, spts) outputs["member_variable_height"][k] = s_end - spts[0] cg_variable = np.dot(V_variable_member, cg_variable_member) / V_variable outputs["variable_center_of_mass"] = cg_variable # Now find total system mass outputs["system_mass"] = m_sys + m_variable outputs["system_center_of_mass"] = ( m_sys * outputs["system_structural_center_of_mass"] + m_variable * cg_variable ) / (m_sys + m_variable) # Compute the total cg for the platform and the variable ballast together using a weighted sum approach cg_plat_total = (m_variable * cg_variable + m_platform * cg_platform) / (m_variable + m_platform) outputs["platform_total_center_of_mass"] = cg_plat_total # Now loop again to compute variable I unit_z = np.array([0.0, 0.0, 1.0]) I_variable = np.zeros((3, 3)) for k in range(n_member): if V_variable_member[k] == 0.0: continue xyz = inputs[f"member{k}:nodes_xyz"] inodes = np.where(xyz[:, 0] == NULL)[0][0] xyz = xyz[:inodes, :] vec_k = xyz[-1, :] - xyz[0, :] ds = outputs["member_variable_height"][k] # Compute I aligned with member h_k = ds * np.sqrt(np.sum(vec_k ** 2)) if h_k == 0.0: continue r_k = np.sqrt(V_variable_member[k] / h_k / np.pi) I_k = ( m_variable_member[k] * np.r_[(3 * r_k ** 2 + h_k ** 2) / 12.0 * np.ones(2), 0.5 * r_k ** 2, np.ones(3)] ) # Rotate I to global c.s. T = util.rotate_align_vectors(vec_k, unit_z) I_k_rot = T @ util.assembleI(I_k) @ T.T # Now do parallel axis theorem R = cg_variable - cg_variable_member[k, :] I_variable += np.array(I_k_rot) + m_variable_member[k] * (np.dot(R, R) * np.eye(3) - np.outer(R, R)) # Find platform I with variable contribution I_total = np.zeros((3, 3)) # Compute the full moment of inertia for the platform and variable ballast R = cg_plat_total - cg_platform I_total += I_platform + m_platform * (np.dot(R, R) * np.eye(3) - np.outer(R, R)) R = cg_plat_total - cg_variable I_total += I_variable + m_variable * (np.dot(R, R) * np.eye(3) - np.outer(R, R)) outputs["platform_I_total"] = util.unassembleI(I_total) class FrameAnalysis(om.ExplicitComponent): def initialize(self): self.options.declare("options") def setup(self): opt = self.options["options"] n_attach = opt["mooring"]["n_attach"] self.add_input("platform_mass", 0.0, units="kg") self.add_input("platform_hull_center_of_mass", np.zeros(3), units="m") self.add_input("platform_added_mass", np.zeros(6), units="kg") self.add_input("platform_center_of_buoyancy", np.zeros(3), units="m") self.add_input("platform_displacement", 0.0, units="m**3") self.add_input("tower_nodes", NULL * np.ones((MEMMAX, 3)), units="m") self.add_input("tower_Fnode", NULL * np.ones((MEMMAX, 3)), units="N") self.add_input("tower_Rnode", NULL * np.ones(MEMMAX), units="m") self.add_input("tower_elem_n1", NULL * np.ones(MEMMAX)) self.add_input("tower_elem_n2", NULL * np.ones(MEMMAX)) self.add_input("tower_elem_D", NULL * np.ones(MEMMAX), units="m") self.add_input("tower_elem_t", NULL * np.ones(MEMMAX), units="m") self.add_input("tower_elem_L", NULL * np.ones(MEMMAX), units="m") self.add_input("tower_elem_A", NULL * np.ones(MEMMAX), units="m**2") self.add_input("tower_elem_Asx", NULL * np.ones(MEMMAX), units="m**2") self.add_input("tower_elem_Asy", NULL * np.ones(MEMMAX), units="m**2") self.add_input("tower_elem_Ixx", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input("tower_elem_Iyy", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input("tower_elem_Izz", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input("tower_elem_rho", NULL * np.ones(MEMMAX), units="kg/m**3") self.add_input("tower_elem_E", NULL * np.ones(MEMMAX), units="Pa") self.add_input("tower_elem_G", NULL * np.ones(MEMMAX), units="Pa") self.add_input("tower_elem_Px1", NULL * np.ones(MEMMAX), units="N/m") self.add_input("tower_elem_Px2", NULL * np.ones(MEMMAX), units="N/m") self.add_input("tower_elem_Py1", NULL * np.ones(MEMMAX), units="N/m") self.add_input("tower_elem_Py2", NULL * np.ones(MEMMAX), units="N/m") self.add_input("tower_elem_Pz1", NULL * np.ones(MEMMAX), units="N/m") self.add_input("tower_elem_Pz2", NULL * np.ones(MEMMAX), units="N/m") self.add_input("system_nodes", NULL * np.ones((NNODES_MAX, 3)), units="m") self.add_input("system_Fnode", NULL * np.ones((NNODES_MAX, 3)), units="N") self.add_input("system_Rnode", NULL * np.ones(NNODES_MAX), units="m") self.add_input("system_elem_n1", NULL * np.ones(NELEM_MAX, dtype=np.int_)) self.add_input("system_elem_n2", NULL * np.ones(NELEM_MAX, dtype=np.int_)) self.add_input("system_elem_D", NULL * np.ones(NELEM_MAX), units="m") self.add_input("system_elem_t", NULL * np.ones(NELEM_MAX), units="m") self.add_input("system_elem_L", NULL * np.ones(NELEM_MAX), units="m") self.add_input("system_elem_A", NULL * np.ones(NELEM_MAX), units="m**2") self.add_input("system_elem_Asx", NULL * np.ones(NELEM_MAX), units="m**2") self.add_input("system_elem_Asy", NULL * np.ones(NELEM_MAX), units="m**2") self.add_input("system_elem_Ixx", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_input("system_elem_Iyy", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_input("system_elem_Izz", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_input("system_elem_rho", NULL * np.ones(NELEM_MAX), units="kg/m**3") self.add_input("system_elem_E", NULL * np.ones(NELEM_MAX), units="Pa") self.add_input("system_elem_G", NULL * np.ones(NELEM_MAX), units="Pa") self.add_input("system_elem_Px1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("system_elem_Px2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("system_elem_Py1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("system_elem_Py2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("system_elem_Pz1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("system_elem_Pz2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("transition_node", np.zeros(3), units="m") self.add_input("transition_piece_mass", 0.0, units="kg") self.add_input("transition_piece_I", np.zeros(6), units="kg*m**2") self.add_input("rna_F", np.zeros(3), units="N") self.add_input("rna_M", np.zeros(3), units="N*m") self.add_input("mooring_neutral_load", np.zeros((n_attach, 3)), units="N") self.add_input("mooring_fairlead_joints", np.zeros((n_attach, 3)), units="m") self.add_input("mooring_stiffness", np.zeros((6, 6)), units="N/m") self.add_input("variable_ballast_mass", 0.0, units="kg") self.add_input("variable_center_of_mass", val=np.zeros(3), units="m") NFREQ2 = int(NFREQ / 2) self.add_output("tower_freqs", val=np.zeros(NFREQ), units="Hz") self.add_output("tower_fore_aft_modes", val=np.zeros((NFREQ2, 5))) self.add_output("tower_side_side_modes", val=np.zeros((NFREQ2, 5))) self.add_output("tower_torsion_modes", val=np.zeros((NFREQ2, 5))) self.add_output("tower_fore_aft_freqs", val=np.zeros(NFREQ2)) self.add_output("tower_side_side_freqs", val=np.zeros(NFREQ2)) self.add_output("tower_torsion_freqs", val=np.zeros(NFREQ2)) self.add_output("system_base_F", np.zeros(3), units="N") self.add_output("system_base_M", np.zeros(3), units="N*m") self.add_output("system_Fz", NULL * np.ones(NELEM_MAX), units="N") self.add_output("system_Vx", NULL * np.ones(NELEM_MAX), units="N") self.add_output("system_Vy", NULL * np.ones(NELEM_MAX), units="N") self.add_output("system_Mxx", NULL * np.ones(NELEM_MAX), units="N*m") self.add_output("system_Myy", NULL * np.ones(NELEM_MAX), units="N*m") self.add_output("system_Mzz", NULL * np.ones(NELEM_MAX), units="N*m") self.add_output("tower_base_F", np.zeros(3), units="N") self.add_output("tower_base_M", np.zeros(3), units="N*m") self.add_output("tower_Fz", NULL * np.ones(NELEM_MAX), units="N") self.add_output("tower_Vx", NULL * np.ones(NELEM_MAX), units="N") self.add_output("tower_Vy", NULL * np.ones(NELEM_MAX), units="N") self.add_output("tower_Mxx", NULL * np.ones(NELEM_MAX), units="N*m") self.add_output("tower_Myy", NULL * np.ones(NELEM_MAX), units="N*m") self.add_output("tower_Mzz", NULL * np.ones(NELEM_MAX), units="N*m") def compute(self, inputs, outputs): # Unpack variables opt = self.options["options"] n_attach = opt["mooring"]["n_attach"] cb = inputs["platform_center_of_buoyancy"] V_total = inputs["platform_displacement"] I_trans = inputs["transition_piece_I"] m_variable = float(inputs["variable_ballast_mass"]) cg_variable = inputs["variable_center_of_mass"] fairlead_joints = inputs["mooring_fairlead_joints"] mooringF = inputs["mooring_neutral_load"] mooringK = np.abs(np.diag(inputs["mooring_stiffness"])) # Create frame3dd instance: nodes, elements, reactions, and options for frame in ["tower", "system"]: nodes = inputs[f"{frame}_nodes"] nnode = np.where(nodes[:, 0] == NULL)[0][0] nodes = nodes[:nnode, :] rnode = np.zeros(nnode) # inputs[f"{frame}_Rnode"][:nnode] Fnode = inputs[f"{frame}_Fnode"][:nnode, :] Mnode = np.zeros((nnode, 3)) ihub = np.argmax(nodes[:, 2]) - 1 itrans = util.closest_node(nodes, inputs["transition_node"]) N1 = np.int_(inputs[f"{frame}_elem_n1"]) nelem = np.where(N1 == NULL)[0][0] N1 = N1[:nelem] N2 = np.int_(inputs[f"{frame}_elem_n2"][:nelem]) A = inputs[f"{frame}_elem_A"][:nelem] Asx = inputs[f"{frame}_elem_Asx"][:nelem] Asy = inputs[f"{frame}_elem_Asy"][:nelem] Ixx = inputs[f"{frame}_elem_Ixx"][:nelem] Iyy = inputs[f"{frame}_elem_Iyy"][:nelem] Izz = inputs[f"{frame}_elem_Izz"][:nelem] rho = inputs[f"{frame}_elem_rho"][:nelem] E = inputs[f"{frame}_elem_E"][:nelem] G = inputs[f"{frame}_elem_G"][:nelem] roll = np.zeros(nelem) L = inputs[f"{frame}_elem_L"][:nelem] # np.sqrt(np.sum((nodes[N2, :] - nodes[N1, :]) ** 2, axis=1)) inodes = np.arange(nnode) + 1 node_obj = pyframe3dd.NodeData(inodes, nodes[:, 0], nodes[:, 1], nodes[:, 2], rnode) ielem = np.arange(nelem) + 1 elem_obj = pyframe3dd.ElementData(ielem, N1 + 1, N2 + 1, A, Asx, Asy, Izz, Ixx, Iyy, E, G, roll, rho) # Use Mooring stiffness (TODO Hydro_K too) if frame == "tower": rid = np.array([itrans]) # np.array([np.argmin(nodes[:, 2])]) else: ind = [] for k in range(n_attach): ind.append(util.closest_node(nodes, fairlead_joints[k, :])) rid = np.array([ind]) # np.array([np.argmin(nodes[:, 2])]) Rx = Ry = Rz = Rxx = Ryy = Rzz = RIGID * np.ones(rid.size) # Rx, Ry, Rz = [mooringK[0]], [mooringK[1]], [mooringK[2]] # Only this solution works and there isn't much different with fully rigid # Rx, Ry, Rz = [RIGID], [RIGID], [mooringK[2]] # Rxx, Ryy, Rzz = [RIGID], [RIGID], [RIGID] react_obj = pyframe3dd.ReactionData(rid + 1, Rx, Ry, Rz, Rxx, Ryy, Rzz, rigid=RIGID) frame3dd_opt = opt["WISDEM"]["FloatingSE"]["frame3dd"] opt_obj = pyframe3dd.Options(frame3dd_opt["shear"], frame3dd_opt["geom"], -1.0) myframe = pyframe3dd.Frame(node_obj, react_obj, elem_obj, opt_obj) # Added mass m_trans = float(inputs["transition_piece_mass"]) if frame == "tower": m_trans += float(inputs["platform_mass"]) + inputs["platform_added_mass"][0] + m_variable cg_trans = inputs["transition_node"] - inputs["platform_hull_center_of_mass"] I_trans[:3] += inputs["platform_added_mass"][3:] else: m_trans += m_variable cg_trans = np.zeros(3) add_gravity = True mID = np.array([itrans], dtype=np.int_).flatten() m_add = np.array([m_trans]).flatten() I_add = np.c_[I_trans] cg_add = np.c_[cg_trans] myframe.changeExtraNodeMass( mID + 1, m_add, I_add[0, :], I_add[1, :], I_add[2, :], I_add[3, :], I_add[4, :], I_add[5, :], cg_add[0, :], cg_add[1, :], cg_add[2, :], add_gravity, ) # Dynamics if frame == "tower" and frame3dd_opt["modal"]: Mmethod = 1 lump = 0 shift = 0.0 myframe.enableDynamics(2 * NFREQ, Mmethod, lump, frame3dd_opt["tol"], shift) # Initialize loading with gravity, mooring line forces, and buoyancy (already in nodal forces) gx = gy = 0.0 gz = -gravity load_obj = pyframe3dd.StaticLoadCase(gx, gy, gz) if frame == "system": for k in range(n_attach): ind = util.closest_node(nodes, fairlead_joints[k, :]) Fnode[ind, :] += mooringF[k, :] else: # Combine all buoyancy forces into one ind = util.closest_node(nodes, cb) Fnode[ind, -1] += V_total * 1025 * gravity Fnode[ihub, :] += inputs["rna_F"] Mnode[ihub, :] += inputs["rna_M"] nF = np.where(np.abs(Fnode).sum(axis=1) > 0.0)[0] load_obj.changePointLoads( nF + 1, Fnode[nF, 0], Fnode[nF, 1], Fnode[nF, 2], Mnode[nF, 0], Mnode[nF, 1], Mnode[nF, 2] ) # trapezoidally distributed loads xx1 = xy1 = xz1 = np.zeros(ielem.size) xx2 = xy2 = xz2 = 0.99 * L # multiply slightly less than unity b.c. of precision wx1 = inputs[f"{frame}_elem_Px1"][:nelem] wx2 = inputs[f"{frame}_elem_Px2"][:nelem] wy1 = inputs[f"{frame}_elem_Py1"][:nelem] wy2 = inputs[f"{frame}_elem_Py2"][:nelem] wz1 = inputs[f"{frame}_elem_Pz1"][:nelem] wz2 = inputs[f"{frame}_elem_Pz2"][:nelem] load_obj.changeTrapezoidalLoads(ielem, xx1, xx2, wx1, wx2, xy1, xy2, wy1, wy2, xz1, xz2, wz1, wz2) # Add the load case and run myframe.addLoadCase(load_obj) # myframe.write(f"{frame}.3dd") # myframe.draw() displacements, forces, reactions, internalForces, mass, modal = myframe.run() # natural frequncies if frame == "tower" and frame3dd_opt["modal"]: outputs[f"{frame}_freqs"] = modal.freq[:NFREQ] # Get all mode shapes in batch NFREQ2 = int(NFREQ / 2) freq_x, freq_y, freq_z, mshapes_x, mshapes_y, mshapes_z = util.get_xyz_mode_shapes( nodes[:, 2], modal.freq, modal.xdsp, modal.ydsp, modal.zdsp, modal.xmpf, modal.ympf, modal.zmpf ) outputs[f"{frame}_fore_aft_freqs"] = freq_x[:NFREQ2] outputs[f"{frame}_side_side_freqs"] = freq_y[:NFREQ2] outputs[f"{frame}_torsion_freqs"] = freq_z[:NFREQ2] outputs[f"{frame}_fore_aft_modes"] = mshapes_x[:NFREQ2, :] outputs[f"{frame}_side_side_modes"] = mshapes_y[:NFREQ2, :] outputs[f"{frame}_torsion_modes"] = mshapes_z[:NFREQ2, :] # Determine reaction forces outputs[f"{frame}_base_F"] = -np.array([reactions.Fx.sum(), reactions.Fy.sum(), reactions.Fz.sum()]) outputs[f"{frame}_base_M"] = -np.array([reactions.Mxx.sum(), reactions.Myy.sum(), reactions.Mzz.sum()]) # Forces and moments along the structure ic = 0 # case number outputs[f"{frame}_Fz"] = NULL * np.ones(NELEM_MAX) outputs[f"{frame}_Vx"] = NULL * np.ones(NELEM_MAX) outputs[f"{frame}_Vy"] = NULL * np.ones(NELEM_MAX) outputs[f"{frame}_Mxx"] = NULL * np.ones(NELEM_MAX) outputs[f"{frame}_Myy"] = NULL * np.ones(NELEM_MAX) outputs[f"{frame}_Mzz"] = NULL * np.ones(NELEM_MAX) outputs[f"{frame}_Fz"][:nelem] = forces.Nx[ic, 1::2] outputs[f"{frame}_Vx"][:nelem] = -forces.Vz[ic, 1::2] outputs[f"{frame}_Vy"][:nelem] = forces.Vy[ic, 1::2] outputs[f"{frame}_Mxx"][:nelem] = -forces.Mzz[ic, 1::2] outputs[f"{frame}_Myy"][:nelem] = forces.Myy[ic, 1::2] outputs[f"{frame}_Mzz"][:nelem] = forces.Txx[ic, 1::2] class FloatingPost(om.ExplicitComponent): def initialize(self): self.options.declare("options") def setup(self): self.add_input("tower_elem_L", NULL * np.ones(MEMMAX), units="m") self.add_input("tower_elem_D", NULL * np.ones(MEMMAX), units="m") self.add_input("tower_elem_t", NULL * np.ones(MEMMAX), units="m") self.add_input("tower_elem_A", NULL * np.ones(MEMMAX), units="m**2") self.add_input("tower_elem_Asx", NULL * np.ones(MEMMAX), units="m**2") self.add_input("tower_elem_Asy", NULL * np.ones(MEMMAX), units="m**2") self.add_input("tower_elem_Ixx", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input("tower_elem_Iyy", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input("tower_elem_Izz", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input("tower_elem_E", NULL * np.ones(MEMMAX), units="Pa") self.add_input("tower_elem_G", NULL * np.ones(MEMMAX), units="Pa") self.add_input("tower_elem_sigma_y", NULL * np.ones(MEMMAX), units="Pa") self.add_input("tower_elem_qdyn", NULL * np.ones(MEMMAX), units="Pa") self.add_input("system_elem_L", NULL * np.ones(NELEM_MAX), units="m") self.add_input("system_elem_D", NULL * np.ones(NELEM_MAX), units="m") self.add_input("system_elem_t", NULL * np.ones(NELEM_MAX), units="m") self.add_input("system_elem_A", NULL * np.ones(NELEM_MAX), units="m**2") self.add_input("system_elem_Asx", NULL * np.ones(NELEM_MAX), units="m**2") self.add_input("system_elem_Asy", NULL * np.ones(NELEM_MAX), units="m**2") self.add_input("system_elem_Ixx", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_input("system_elem_Iyy", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_input("system_elem_Izz", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_input("system_elem_E", NULL * np.ones(NELEM_MAX), units="Pa") self.add_input("system_elem_G", NULL * np.ones(NELEM_MAX), units="Pa") self.add_input("system_elem_sigma_y", NULL * np.ones(NELEM_MAX), units="Pa") self.add_input("system_elem_qdyn", NULL * np.ones(NELEM_MAX), units="Pa") # Processed Frame3DD/OpenFAST outputs self.add_input("system_Fz", NULL * np.ones(NELEM_MAX), units="N") self.add_input("system_Vx", NULL * np.ones(NELEM_MAX), units="N") self.add_input("system_Vy", NULL * np.ones(NELEM_MAX), units="N") self.add_input("system_Mxx", NULL * np.ones(NELEM_MAX), units="N*m") self.add_input("system_Myy", NULL * np.ones(NELEM_MAX), units="N*m") self.add_input("system_Mzz", NULL * np.ones(NELEM_MAX), units="N*m") self.add_input("tower_Fz", NULL * np.ones(NELEM_MAX), units="N") self.add_input("tower_Vx", NULL * np.ones(NELEM_MAX), units="N") self.add_input("tower_Vy", NULL * np.ones(NELEM_MAX), units="N") self.add_input("tower_Mxx", NULL * np.ones(NELEM_MAX), units="N*m") self.add_input("tower_Myy", NULL * np.ones(NELEM_MAX), units="N*m") self.add_input("tower_Mzz", NULL * np.ones(NELEM_MAX), units="N*m") self.add_output("constr_tower_stress", NULL * np.ones(NELEM_MAX)) self.add_output("constr_tower_shell_buckling", NULL * np.ones(NELEM_MAX)) self.add_output("constr_tower_global_buckling", NULL * np.ones(NELEM_MAX)) self.add_output("constr_system_stress", NULL * np.ones(NELEM_MAX)) self.add_output("constr_system_shell_buckling", NULL * np.ones(NELEM_MAX)) self.add_output("constr_system_global_buckling", NULL * np.ones(NELEM_MAX)) def compute(self, inputs, outputs): # Loop over tower and system analysis for frame in ["tower", "system"]: # Unpack some variables d = inputs[f"{frame}_elem_D"] nelem = np.where(d == NULL)[0][0] d = d[:nelem] t = inputs[f"{frame}_elem_t"][:nelem] h = inputs[f"{frame}_elem_L"][:nelem] Az = inputs[f"{frame}_elem_A"][:nelem] Asx = inputs[f"{frame}_elem_Asx"][:nelem] Jz = inputs[f"{frame}_elem_Izz"][:nelem] Iyy = inputs[f"{frame}_elem_Iyy"][:nelem] sigy = inputs[f"{frame}_elem_sigma_y"][:nelem] E = inputs[f"{frame}_elem_E"][:nelem] G = inputs[f"{frame}_elem_G"][:nelem] qdyn = inputs[f"{frame}_elem_qdyn"][:nelem] r = 0.5 * d gamma_f = self.options["options"]["gamma_f"] gamma_m = self.options["options"]["gamma_m"] gamma_n = self.options["options"]["gamma_n"] gamma_b = self.options["options"]["gamma_b"] # Get loads from Framee3dd/OpenFAST Fz = inputs[f"{frame}_Fz"][:nelem] Vx = inputs[f"{frame}_Vx"][:nelem] Vy = inputs[f"{frame}_Vy"][:nelem] Mxx = inputs[f"{frame}_Mxx"][:nelem] Myy = inputs[f"{frame}_Myy"][:nelem] Mzz = inputs[f"{frame}_Mzz"][:nelem] M = np.sqrt(Mxx ** 2 + Myy ** 2) V = np.sqrt(Vx ** 2 + Vy ** 2) # Initialize outputs outputs[f"constr_{frame}_stress"] = NULL * np.ones(NELEM_MAX) outputs[f"constr_{frame}_shell_buckling"] = NULL * np.ones(NELEM_MAX) outputs[f"constr_{frame}_global_buckling"] = NULL * np.ones(NELEM_MAX) # See http://svn.code.sourceforge.net/p/frame3dd/code/trunk/doc/Frame3DD-manual.html#structuralmodeling # print(Fz.shape, Az.shape, M.shape, r.shape, Iyy.shape) axial_stress = Fz / Az + M * r / Iyy shear_stress = np.abs(Mzz) / Jz * r + V / Asx hoop_stress = util_con.hoopStress(d, t, qdyn) outputs[f"constr_{frame}_stress"][:nelem] = util_con.vonMisesStressUtilization( axial_stress, hoop_stress, shear_stress, gamma_f * gamma_m * gamma_n, sigy ) # Use DNV-GL CP202 Method check = util_dnvgl.CylinderBuckling(h, d, t, E=E, G=G, sigma_y=sigy, gamma=gamma_f * gamma_b) results = check.run_buckling_checks(Fz, M, axial_stress, hoop_stress, shear_stress) outputs[f"constr_{frame}_shell_buckling"][:nelem] = results["Shell"] outputs[f"constr_{frame}_global_buckling"][:nelem] = results["Global"] class FloatingFrame(om.Group): def initialize(self): self.options.declare("modeling_options") def setup(self): opt = self.options["modeling_options"] self.add_subsystem("plat", PlatformFrame(options=opt), promotes=["*"]) self.add_subsystem("pre", TowerPreMember(), promotes=["*"]) prom = [ "E_mat", "G_mat", "sigma_y_mat", "sigma_ult_mat", "wohler_exp_mat", "wohler_A_mat", "rho_mat", "rho_water", "unit_cost_mat", "material_names", "painting_cost_rate", "labor_cost_rate", ] prom += [ ("nodes_xyz", "tower_nodes"), ("nodes_r", "tower_Rnode"), ("total_mass", "tower_mass"), ("total_cost", "tower_cost"), ("center_of_mass", "tower_center_of_mass"), ("joint1", "transition_node"), ("joint2", "tower_top_node"), ("Px", "tower_elem_Px"), ("Py", "tower_elem_Py"), ("Pz", "tower_elem_Pz"), ("qdyn", "tower_elem_qdyn"), ] for var in ["D", "t", "A", "Asx", "Asy", "rho", "Ixx", "Iyy", "Izz", "E", "G", "sigma_y"]: prom += [("section_" + var, "tower_elem_" + var)] prom += [ "Uref", "zref", "z0", "shearExp", "cd_usr", "cm", "beta_wind", "rho_air", "mu_air", "beta_wave", "mu_water", "Uc", "Hsig_wave", "Tsig_wave", "water_depth", ] self.add_subsystem( "tower", Member(column_options=opt["floating"]["tower"], idx=0, n_mat=opt["materials"]["n_mat"]), promotes=prom, ) self.add_subsystem("mux", PlatformTowerFrame(options=opt), promotes=["*"]) self.add_subsystem("frame", FrameAnalysis(options=opt), promotes=["*"]) self.add_subsystem("post", FloatingPost(options=opt["WISDEM"]["FloatingSE"]), promotes=["*"]) ``` #### File: wisdem/floatingse/floating.py ```python import openmdao.api as om from wisdem.floatingse.member import Member from wisdem.floatingse.mooring import Mooring from wisdem.floatingse.constraints import FloatingConstraints from wisdem.floatingse.floating_frame import FloatingFrame class FloatingSE(om.Group): def initialize(self): self.options.declare("modeling_options") def setup(self): opt = self.options["modeling_options"] # self.set_input_defaults("mooring_type", "chain") # self.set_input_defaults("anchor_type", "SUCTIONPILE") # self.set_input_defaults("loading", "hydrostatic") # self.set_input_defaults("wave_period_range_low", 2.0, units="s") # self.set_input_defaults("wave_period_range_high", 20.0, units="s") # self.set_input_defaults("cd_usr", -1.0) # self.set_input_defaults("zref", 100.0) # self.set_input_defaults("number_of_offset_columns", 0) # self.set_input_defaults("material_names", ["steel"]) n_member = opt["floating"]["members"]["n_members"] mem_prom = [ "E_mat", "G_mat", "sigma_y_mat", "sigma_ult_mat", "wohler_exp_mat", "wohler_A_mat", "rho_mat", "rho_water", "unit_cost_mat", "material_names", "painting_cost_rate", "labor_cost_rate", ] mem_prom += [ "Uref", "zref", "z0", "shearExp", "cd_usr", "cm", "beta_wind", "rho_air", "mu_air", "beta_wave", "mu_water", "Uc", "Hsig_wave", "Tsig_wave", "water_depth", ] for k in range(n_member): self.add_subsystem( f"member{k}", Member(column_options=opt["floating"]["members"], idx=k, n_mat=opt["materials"]["n_mat"]), promotes=mem_prom, ) # Next run MapMooring self.add_subsystem( "mm", Mooring(options=opt["mooring"], gamma=opt["WISDEM"]["FloatingSE"]["gamma_f"]), promotes=["*"] ) # Add in the connecting truss self.add_subsystem("load", FloatingFrame(modeling_options=opt), promotes=["*"]) # Evaluate system constraints self.add_subsystem("cons", FloatingConstraints(modeling_options=opt), promotes=["*"]) # Connect all input variables from all models mem_vars = [ "nodes_xyz", "nodes_r", "section_D", "section_t", "section_A", "section_Asx", "section_Asy", "section_Ixx", "section_Iyy", "section_Izz", "section_rho", "section_E", "section_G", "section_sigma_y", "idx_cb", "variable_ballast_capacity", "variable_ballast_Vpts", "variable_ballast_spts", "constr_ballast_capacity", "buoyancy_force", "displacement", "center_of_buoyancy", "center_of_mass", "ballast_mass", "total_mass", "total_cost", "I_total", "Awater", "Iwater", "added_mass", "waterline_centroid", "Px", "Py", "Pz", "qdyn", ] for k in range(n_member): for var in mem_vars: self.connect(f"member{k}." + var, f"member{k}:" + var) ``` #### File: wisdem/floatingse/visualize.py ```python import numpy as np from mayavi import mlab def sectional2nodal(x): return np.r_[x[0], np.convolve(x, [0.5, 0.5], "valid"), x[-1]] def nodal2sectional(x): return 0.5 * (x[:-1] + x[1:]) def set_axes_equal(ax): """Make axes of 3D plot have equal scale so that spheres appear as spheres, cubes as cubes, etc.. This is one possible solution to Matplotlib's ax.set_aspect('equal') and ax.axis('equal') not working for 3D. Input ax: a matplotlib axis, e.g., as output from plt.gca(). """ x_limits = ax.get_xlim3d() y_limits = ax.get_ylim3d() z_limits = ax.get_zlim3d() x_range = abs(x_limits[1] - x_limits[0]) x_middle = np.mean(x_limits) y_range = abs(y_limits[1] - y_limits[0]) y_middle = np.mean(y_limits) z_range = abs(z_limits[1] - z_limits[0]) z_middle = np.mean(z_limits) # The plot bounding box is a sphere in the sense of the infinity # norm, hence I call half the max range the plot radius. plot_radius = 0.5 * max([x_range, y_range, z_range]) ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius]) ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius]) ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius]) class Visualize(object): def __init__(self, prob): prob.run_model() self.prob = prob self.fig = None def draw_spar(self, fname="spar.png"): self.init_figure() self.draw_ocean() self.draw_mooring(self.prob["mooring_plot_matrix"]) zcut = 1.0 + self.prob["main_freeboard"] self.draw_pontoons(self.prob["plot_matrix"], 0.5 * self.prob["fairlead_support_outer_diameter"], zcut) self.draw_column( [0.0, 0.0], self.prob["main_freeboard"], self.prob["main.section_height"], 0.5 * self.prob["main.outer_diameter"], self.prob["main.stiffener_spacing"], ) t_full = sectional2nodal(self.prob["main.wall_thickness"]) self.draw_ballast( [0.0, 0.0], self.prob["main_freeboard"], self.prob["main.section_height"], 0.5 * self.prob["main.outer_diameter"] - t_full, self.prob["main.permanent_ballast_height"], self.prob["variable_ballast_height"], ) self.draw_column( [0.0, 0.0], self.prob["hub_height"], self.prob["tow.tower_section_height"], 0.5 * self.prob["tow.tower_outer_diameter"], None, (0.9,) * 3, ) if self.prob["main.buoyancy_tank_mass"] > 0.0: self.draw_buoyancy_tank( [0.0, 0.0], self.prob["main_freeboard"], self.prob["main.section_height"], self.prob["main.buoyancy_tank_location"], 0.5 * self.prob["main.buoyancy_tank_diameter"], self.prob["main.buoyancy_tank_height"], ) self.set_figure(fname) def draw_semi(self, fname="semi.png"): self.init_figure() self.draw_ocean() self.draw_mooring(self.prob["mooring_plot_matrix"]) pontoonMat = self.prob["plot_matrix"] zcut = 1.0 + np.maximum(self.prob["main_freeboard"], self.prob["offset_freeboard"]) self.draw_pontoons(pontoonMat, 0.5 * self.prob["pontoon_outer_diameter"], zcut) self.draw_column( [0.0, 0.0], self.prob["main_freeboard"], self.prob["main.section_height"], 0.5 * self.prob["main.outer_diameter"], self.prob["main.stiffener_spacing"], ) t_full = sectional2nodal(self.prob["main.wall_thickness"]) self.draw_ballast( [0.0, 0.0], self.prob["main_freeboard"], self.prob["main.section_height"], 0.5 * self.prob["main.outer_diameter"] - t_full, self.prob["main.permanent_ballast_height"], self.prob["variable_ballast_height"], ) if self.prob["main.buoyancy_tank_mass"] > 0.0: self.draw_buoyancy_tank( [0.0, 0.0], self.prob["main_freeboard"], self.prob["main.section_height"], self.prob["main.buoyancy_tank_location"], 0.5 * self.prob["main.buoyancy_tank_diameter"], self.prob["main.buoyancy_tank_height"], ) R_semi = self.prob["radius_to_offset_column"] ncolumn = int(self.prob["number_of_offset_columns"]) angles = np.linspace(0, 2 * np.pi, ncolumn + 1) x = R_semi * np.cos(angles) y = R_semi * np.sin(angles) for k in range(ncolumn): self.draw_column( [x[k], y[k]], self.prob["offset_freeboard"], self.prob["off.section_height"], 0.5 * self.prob["off.outer_diameter"], self.prob["off.stiffener_spacing"], ) t_full = sectional2nodal(self.prob["off.wall_thickness"]) self.draw_ballast( [x[k], y[k]], self.prob["offset_freeboard"], self.prob["off.section_height"], 0.5 * self.prob["off.outer_diameter"] - t_full, self.prob["off.permanent_ballast_height"], 0.0, ) if self.prob["off.buoyancy_tank_mass"] > 0.0: self.draw_buoyancy_tank( [x[k], y[k]], self.prob["offset_freeboard"], self.prob["off.section_height"], self.prob["off.buoyancy_tank_location"], 0.5 * self.prob["off.buoyancy_tank_diameter"], self.prob["off.buoyancy_tank_height"], ) self.draw_column( [0.0, 0.0], self.prob["hub_height"], self.prob["tow.tower_section_height"], 0.5 * self.prob["tow.tower_outer_diameter"], None, (0.9,) * 3, ) self.set_figure(fname) def init_figure(self): mysky = np.array([135, 206, 250]) / 255.0 mysky = tuple(mysky.tolist()) # fig = plt.figure() # ax = fig.add_subplot(111, projection='3d') # fig = mlab.figure(bgcolor=(1,)*3, size=(1600,1100)) # fig = mlab.figure(bgcolor=mysky, size=(1600,1100)) self.fig = mlab.figure(bgcolor=(0,) * 3, size=(1600, 1100)) def draw_ocean(self): if self.fig is None: self.init_figure() npts = 100 # mybrown = np.array([244, 170, 66]) / 255.0 # mybrown = tuple(mybrown.tolist()) mywater = np.array([95, 158, 160]) / 255.0 # (0.0, 0.0, 0.8) [143, 188, 143] mywater = tuple(mywater.tolist()) alpha = 0.3 # Waterplane box x = y = 100 * np.linspace(-1, 1, npts) X, Y = np.meshgrid(x, y) Z = np.sin(100 * X * Y) # np.zeros(X.shape) # ax.plot_surface(X, Y, Z, alpha=alpha, color=mywater) mlab.mesh(X, Y, Z, opacity=alpha, color=mywater, figure=self.fig) # Sea floor Z = -self.prob["water_depth"] * np.ones(X.shape) # ax.plot_surface(10*X, 10*Y, Z, alpha=1.0, color=mybrown) # mlab.mesh(10*X,10*Y,Z, opacity=1.0, color=mybrown, figure=self.fig) # Sides # x = 500 * np.linspace(-1, 1, npts) # z = self.prob['water_depth'] * np.linspace(-1, 0, npts) # X,Z = np.meshgrid(x,z) # Y = x.max()*np.ones(Z.shape) ##ax.plot_surface(X, Y, Z, alpha=alpha, color=mywater) # mlab.mesh(X,Y,Z, opacity=alpha, color=mywater, figure=self.fig) # mlab.mesh(X,-Y,Z, opacity=alpha, color=mywater, figure=self.fig) # mlab.mesh(Y,X,Z, opacity=alpha, color=mywater, figure=self.fig) ##mlab.mesh(-Y,X,Z, opacity=alpha, color=mywater, figure=self.fig) def draw_mooring(self, mooring): mybrown = np.array([244, 170, 66]) / 255.0 mybrown = tuple(mybrown.tolist()) npts = 100 # Sea floor print(self.prob["anchor_radius"]) r = np.linspace(0, self.prob["anchor_radius"], npts) th = np.linspace(0, 2 * np.pi, npts) R, TH = np.meshgrid(r, th) X = R * np.cos(TH) Y = R * np.sin(TH) Z = -self.prob["water_depth"] * np.ones(X.shape) # ax.plot_surface(X, Y, Z, alpha=1.0, color=mybrown) mlab.mesh(X, Y, Z, opacity=1.0, color=mybrown, figure=self.fig) cmoor = (0, 0.8, 0) nlines = int(self.prob["number_of_mooring_connections"] * self.prob["mooring_lines_per_connection"]) for k in range(nlines): # ax.plot(mooring[k,:,0], mooring[k,:,1], mooring[k,:,2], 'k', lw=2) mlab.plot3d( mooring[k, :, 0], mooring[k, :, 1], mooring[k, :, 2], color=cmoor, tube_radius=0.5 * self.prob["mooring_diameter"], figure=self.fig, ) def draw_pontoons(self, truss, R, freeboard): nE = truss.shape[0] c = (0.5, 0, 0) for k in range(nE): if np.any(truss[k, 2, :] > freeboard): continue mlab.plot3d(truss[k, 0, :], truss[k, 1, :], truss[k, 2, :], color=c, tube_radius=R, figure=self.fig) def draw_column(self, centerline, freeboard, h_section, r_nodes, spacingVec=None, ckIn=None): npts = 20 nsection = h_section.size z_nodes = np.flipud(freeboard - np.r_[0.0, np.cumsum(np.flipud(h_section))]) th = np.linspace(0, 2 * np.pi, npts) for k in range(nsection): rk = np.linspace(r_nodes[k], r_nodes[k + 1], npts) z = np.linspace(z_nodes[k], z_nodes[k + 1], npts) R, TH = np.meshgrid(rk, th) Z, _ = np.meshgrid(z, th) X = R * np.cos(TH) + centerline[0] Y = R * np.sin(TH) + centerline[1] # Draw parameters if ckIn is None: ck = (0.6,) * 3 if np.mod(k, 2) == 0 else (0.4,) * 3 else: ck = ckIn # ax.plot_surface(X, Y, Z, alpha=0.5, color=ck) mlab.mesh(X, Y, Z, opacity=0.7, color=ck, figure=self.fig) if spacingVec is None: continue z = z_nodes[k] + spacingVec[k] while z < z_nodes[k + 1]: rk = np.interp(z, z_nodes[k:], r_nodes[k:]) # ax.plot(rk*np.cos(th), rk*np.sin(th), z*np.ones(th.shape), 'r', lw=0.25) mlab.plot3d( rk * np.cos(th) + centerline[0], rk * np.sin(th) + centerline[1], z * np.ones(th.shape), color=(0.5, 0, 0), figure=self.fig, ) z += spacingVec[k] """ # Web r = np.linspace(rk - self.prob['stiffener_web_height'][k], rk, npts) R, TH = np.meshgrid(r, th) Z, _ = np.meshgrid(z, th) X = R*np.cos(TH) Y = R*np.sin(TH) ax.plot_surface(X, Y, Z, alpha=0.7, color='r') # Flange r = r[0] h = np.linspace(0, self.prob['stiffener_flange_width'][k], npts) zflange = z + h - 0.5*self.prob['stiffener_flange_width'][k] R, TH = np.meshgrid(r, th) Z, _ = np.meshgrid(zflange, th) X = R*np.cos(TH) Y = R*np.sin(TH) ax.plot_surface(X, Y, Z, alpha=0.7, color='r') """ def draw_ballast(self, centerline, freeboard, h_section, r_nodes, h_perm, h_water): npts = 40 th = np.linspace(0, 2 * np.pi, npts) z_nodes = np.flipud(freeboard - np.r_[0.0, np.cumsum(np.flipud(h_section))]) # Permanent ballast z_perm = z_nodes[0] + np.linspace(0, h_perm, npts) r_perm = np.interp(z_perm, z_nodes, r_nodes) R, TH = np.meshgrid(r_perm, th) Z, _ = np.meshgrid(z_perm, th) X = R * np.cos(TH) + centerline[0] Y = R * np.sin(TH) + centerline[1] ck = np.array([122, 85, 33]) / 255.0 ck = tuple(ck.tolist()) mlab.mesh(X, Y, Z, color=ck, figure=self.fig) # Water ballast z_water = z_perm[-1] + np.linspace(0, h_water, npts) r_water = np.interp(z_water, z_nodes, r_nodes) R, TH = np.meshgrid(r_water, th) Z, _ = np.meshgrid(z_water, th) X = R * np.cos(TH) + centerline[0] Y = R * np.sin(TH) + centerline[1] ck = (0.0, 0.1, 0.8) # Dark blue mlab.mesh(X, Y, Z, color=ck, figure=self.fig) def draw_buoyancy_tank(self, centerline, freeboard, h_section, loc, r_box, h_box): npts = 20 z_nodes = np.flipud(freeboard - np.r_[0.0, np.cumsum(np.flipud(h_section))]) z_lower = loc * (z_nodes[-1] - z_nodes[0]) + z_nodes[0] # Lower and Upper surfaces r = np.linspace(0, r_box, npts) th = np.linspace(0, 2 * np.pi, npts) R, TH = np.meshgrid(r, th) X = R * np.cos(TH) + centerline[0] Y = R * np.sin(TH) + centerline[1] Z = z_lower * np.ones(X.shape) ck = (0.9,) * 3 mlab.mesh(X, Y, Z, opacity=0.5, color=ck, figure=self.fig) Z += h_box mlab.mesh(X, Y, Z, opacity=0.5, color=ck, figure=self.fig) # Cylinder part z = z_lower + np.linspace(0, h_box, npts) Z, TH = np.meshgrid(z, th) R = r_box * np.ones(Z.shape) X = R * np.cos(TH) + centerline[0] Y = R * np.sin(TH) + centerline[1] mlab.mesh(X, Y, Z, opacity=0.5, color=ck, figure=self.fig) def set_figure(self, fname=None): # ax.set_aspect('equal') # set_axes_equal(ax) # ax.autoscale_view(tight=True) # ax.set_xlim([-125, 125]) # ax.set_ylim([-125, 125]) # ax.set_zlim([-220, 30]) # plt.axis('off') # plt.show() # mlab.move([-517.16728532, -87.0711504, 5.60826224], [1.35691603e+01, -2.84217094e-14, -1.06547500e+02]) # mlab.view(-170.68320804213343, 78.220729198686854, 549.40101471336777, [1.35691603e+01, 0.0, -1.06547500e+02]) if not fname is None: fpart = fname.split(".") if len(fpart) == 1 or not fpart[-1].lower() in ["jpg", "png", "bmp"]: fname += ".png" mlab.savefig(fname, figure=self.fig) mlab.show() ``` #### File: wisdem/glue_code/gc_LoadInputs.py ```python import numpy as np import wisdem.inputs as sch class WindTurbineOntologyPython(object): # Pure python class to load the input yaml file and break into few sub-dictionaries, namely: # - modeling_options: dictionary with all the inputs that will be passed as options to the openmdao components, such as the length of the arrays # - blade: dictionary representing the entry blade in the yaml file # - tower: dictionary representing the entry tower in the yaml file # - nacelle: dictionary representing the entry nacelle in the yaml file # - materials: dictionary representing the entry materials in the yaml file # - airfoils: dictionary representing the entry airfoils in the yaml file def __init__(self, fname_input_wt, fname_input_modeling, fname_input_analysis): self.modeling_options = sch.load_modeling_yaml(fname_input_modeling) self.analysis_options = sch.load_analysis_yaml(fname_input_analysis) if fname_input_wt is None: self.wt_init = None else: self.wt_init = sch.load_geometry_yaml(fname_input_wt) self.set_run_flags() self.set_openmdao_vectors() self.set_opt_flags() def get_input_data(self): return self.wt_init, self.modeling_options, self.analysis_options def set_run_flags(self): # Create components flag struct self.modeling_options["flags"] = {} # Backwards compatibility modules = ["RotorSE", "DriveSE", "GeneratorSE", "TowerSE", "FloatingSE", "Loading", "BOS"] for m in modules: if m in self.modeling_options: self.modeling_options["WISDEM"][m].update(self.modeling_options[m]) for k in ["blade", "hub", "nacelle", "tower", "monopile", "floating_platform", "mooring", "RNA"]: self.modeling_options["flags"][k] = k in self.wt_init["components"] for k in ["assembly", "components", "airfoils", "materials", "control", "environment", "bos", "costs"]: self.modeling_options["flags"][k] = k in self.wt_init # Generator flag self.modeling_options["flags"]["generator"] = False if self.modeling_options["flags"]["nacelle"] and "generator" in self.wt_init["components"]["nacelle"]: self.modeling_options["flags"]["generator"] = True if not "GeneratorSE" in self.modeling_options["WISDEM"]: self.modeling_options["WISDEM"]["GeneratorSE"] = {} self.modeling_options["WISDEM"]["GeneratorSE"]["type"] = self.wt_init["components"]["nacelle"]["generator"][ "generator_type" ].lower() # Offshore flags self.modeling_options["flags"]["floating"] = self.modeling_options["flags"]["floating_platform"] self.modeling_options["flags"]["offshore"] = ( self.modeling_options["flags"]["floating"] or self.modeling_options["flags"]["monopile"] ) # Put in some logic about what needs to be in there flags = self.modeling_options["flags"] # Even if the block is in the inputs, the user can turn off via modeling options if flags["bos"]: flags["bos"] = self.modeling_options["WISDEM"]["BOS"]["flag"] if flags["blade"]: flags["blade"] = self.modeling_options["WISDEM"]["RotorSE"]["flag"] if flags["tower"]: flags["tower"] = self.modeling_options["WISDEM"]["TowerSE"]["flag"] if flags["hub"]: flags["hub"] = self.modeling_options["WISDEM"]["DriveSE"]["flag"] if flags["nacelle"]: flags["nacelle"] = self.modeling_options["WISDEM"]["DriveSE"]["flag"] if flags["generator"]: flags["generator"] = self.modeling_options["WISDEM"]["DriveSE"]["flag"] flags["hub"] = flags["nacelle"] = flags["hub"] or flags["nacelle"] # Hub and nacelle have to go together # Blades and airfoils if flags["blade"] and not flags["airfoils"]: raise ValueError("Blades/rotor analysis is requested but no airfoils are found") if flags["airfoils"] and not flags["blade"]: print("WARNING: Airfoils provided but no blades/rotor found or RotorSE deactivated") # Blades, tower, monopile and environment if flags["blade"] and not flags["environment"]: raise ValueError("Blades/rotor analysis is requested but no environment input found") if flags["tower"] and not flags["environment"]: raise ValueError("Tower analysis is requested but no environment input found") if flags["monopile"] and not flags["environment"]: raise ValueError("Monopile analysis is requested but no environment input found") if flags["floating_platform"] and not flags["environment"]: raise ValueError("Floating analysis is requested but no environment input found") if flags["environment"] and not ( flags["blade"] or flags["tower"] or flags["monopile"] or flags["floating_platform"] ): print("WARNING: Environment provided but no related component found found") # Floating/monopile if flags["floating_platform"] and flags["monopile"]: raise ValueError("Cannot have both floating and monopile components") # Water depth check if "water_depth" in self.wt_init["environment"]: if self.wt_init["environment"]["water_depth"] <= 0.0 and flags["offshore"]: raise ValueError("Water depth must be > 0 to do monopile or floating analysis") def set_openmdao_vectors(self): # Class instance to determine all the parameters used to initialize the openmdao arrays, i.e. number of airfoils, number of angles of attack, number of blade spanwise stations, etc # ==modeling_options = {} # Materials self.modeling_options["materials"] = {} self.modeling_options["materials"]["n_mat"] = len(self.wt_init["materials"]) # Airfoils if self.modeling_options["flags"]["airfoils"]: self.modeling_options["WISDEM"]["RotorSE"]["n_af"] = len(self.wt_init["airfoils"]) self.modeling_options["WISDEM"]["RotorSE"]["n_aoa"] = self.modeling_options["WISDEM"]["RotorSE"]["n_aoa"] if self.modeling_options["WISDEM"]["RotorSE"]["n_aoa"] / 4.0 == int( self.modeling_options["WISDEM"]["RotorSE"]["n_aoa"] / 4.0 ): # One fourth of the angles of attack from -pi to -pi/6, half between -pi/6 to pi/6, and one fourth from pi/6 to pi self.modeling_options["WISDEM"]["RotorSE"]["aoa"] = np.unique( np.hstack( [ np.linspace( -np.pi, -np.pi / 6.0, int(self.modeling_options["WISDEM"]["RotorSE"]["n_aoa"] / 4.0 + 1) ), np.linspace( -np.pi / 6.0, np.pi / 6.0, int(self.modeling_options["WISDEM"]["RotorSE"]["n_aoa"] / 2.0), ), np.linspace( np.pi / 6.0, np.pi, int(self.modeling_options["WISDEM"]["RotorSE"]["n_aoa"] / 4.0 + 1) ), ] ) ) else: self.modeling_options["WISDEM"]["RotorSE"]["aoa"] = np.linspace( -np.pi, np.pi, self.modeling_options["WISDEM"]["RotorSE"]["n_aoa"] ) print( "WARNING: If you like a grid of angles of attack more refined between +- 30 deg, please choose a n_aoa in the analysis option input file that is a multiple of 4. The current value of " + str(self.modeling_options["WISDEM"]["RotorSE"]["n_aoa"]) + " is not a multiple of 4 and an equally spaced grid is adopted." ) Re_all = [] self.modeling_options["WISDEM"]["RotorSE"]["AFTabMod"] = 1 for i in range(self.modeling_options["WISDEM"]["RotorSE"]["n_af"]): for j in range(len(self.wt_init["airfoils"][i]["polars"])): Re_all.append(self.wt_init["airfoils"][i]["polars"][j]["re"]) if len(self.wt_init["airfoils"][i]["polars"]) > 1: self.modeling_options["WISDEM"]["RotorSE"]["AFTabMod"] = 2 self.modeling_options["WISDEM"]["RotorSE"]["n_Re"] = len(np.unique(Re_all)) self.modeling_options["WISDEM"]["RotorSE"]["n_tab"] = 1 self.modeling_options["WISDEM"]["RotorSE"]["n_xy"] = self.modeling_options["WISDEM"]["RotorSE"]["n_xy"] self.modeling_options["WISDEM"]["RotorSE"]["af_used"] = self.wt_init["components"]["blade"][ "outer_shape_bem" ]["airfoil_position"]["labels"] # Blade if self.modeling_options["flags"]["blade"]: self.modeling_options["WISDEM"]["RotorSE"]["nd_span"] = np.linspace( 0.0, 1.0, self.modeling_options["WISDEM"]["RotorSE"]["n_span"] ) # Equally spaced non-dimensional spanwise grid self.modeling_options["WISDEM"]["RotorSE"]["n_af_span"] = len( self.wt_init["components"]["blade"]["outer_shape_bem"]["airfoil_position"]["labels"] ) # This is the number of airfoils defined along blade span and it is often different than n_af, which is the number of airfoils defined in the airfoil database self.modeling_options["WISDEM"]["RotorSE"]["n_webs"] = len( self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["webs"] ) self.modeling_options["WISDEM"]["RotorSE"]["n_layers"] = len( self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"] ) self.modeling_options["WISDEM"]["RotorSE"]["lofted_output"] = False self.modeling_options["WISDEM"]["RotorSE"]["n_freq"] = 10 # Number of blade nat frequencies computed self.modeling_options["WISDEM"]["RotorSE"]["layer_name"] = self.modeling_options["WISDEM"]["RotorSE"][ "n_layers" ] * [""] self.modeling_options["WISDEM"]["RotorSE"]["layer_mat"] = self.modeling_options["WISDEM"]["RotorSE"][ "n_layers" ] * [""] for i in range(self.modeling_options["WISDEM"]["RotorSE"]["n_layers"]): self.modeling_options["WISDEM"]["RotorSE"]["layer_name"][i] = self.wt_init["components"]["blade"][ "internal_structure_2d_fem" ]["layers"][i]["name"] self.modeling_options["WISDEM"]["RotorSE"]["layer_mat"][i] = self.wt_init["components"]["blade"][ "internal_structure_2d_fem" ]["layers"][i]["material"] self.modeling_options["WISDEM"]["RotorSE"]["web_name"] = self.modeling_options["WISDEM"]["RotorSE"][ "n_webs" ] * [""] for i in range(self.modeling_options["WISDEM"]["RotorSE"]["n_webs"]): self.modeling_options["WISDEM"]["RotorSE"]["web_name"][i] = self.wt_init["components"]["blade"][ "internal_structure_2d_fem" ]["webs"][i]["name"] # Distributed aerodynamic control devices along blade self.modeling_options["WISDEM"]["RotorSE"]["n_te_flaps"] = 0 if "aerodynamic_control" in self.wt_init["components"]["blade"]: if "te_flaps" in self.wt_init["components"]["blade"]["aerodynamic_control"]: self.modeling_options["WISDEM"]["RotorSE"]["n_te_flaps"] = len( self.wt_init["components"]["blade"]["aerodynamic_control"]["te_flaps"] ) self.modeling_options["WISDEM"]["RotorSE"]["n_tab"] = 3 else: raise RuntimeError( "A distributed aerodynamic control device is provided in the yaml input file, but not supported by wisdem." ) # Drivetrain if self.modeling_options["flags"]["nacelle"]: self.modeling_options["WISDEM"]["DriveSE"]["direct"] = self.wt_init["assembly"]["drivetrain"].lower() in [ "direct", "direct_drive", "pm_direct_drive", ] # Tower if self.modeling_options["flags"]["tower"]: self.modeling_options["WISDEM"]["TowerSE"]["n_height_tower"] = len( self.wt_init["components"]["tower"]["outer_shape_bem"]["outer_diameter"]["grid"] ) self.modeling_options["WISDEM"]["TowerSE"]["n_layers_tower"] = len( self.wt_init["components"]["tower"]["internal_structure_2d_fem"]["layers"] ) self.modeling_options["WISDEM"]["TowerSE"]["n_height"] = self.modeling_options["WISDEM"]["TowerSE"][ "n_height_tower" ] self.modeling_options["WISDEM"]["TowerSE"]["n_height_monopile"] = 0 self.modeling_options["WISDEM"]["TowerSE"]["n_layers_monopile"] = 0 # Monopile if self.modeling_options["flags"]["monopile"]: self.modeling_options["WISDEM"]["TowerSE"]["n_height_monopile"] = len( self.wt_init["components"]["monopile"]["outer_shape_bem"]["outer_diameter"]["grid"] ) self.modeling_options["WISDEM"]["TowerSE"]["n_layers_monopile"] = len( self.wt_init["components"]["monopile"]["internal_structure_2d_fem"]["layers"] ) self.modeling_options["WISDEM"]["TowerSE"]["n_height"] += ( self.modeling_options["WISDEM"]["TowerSE"]["n_height_monopile"] - 1 ) # Floating platform self.modeling_options["floating"] = {} if self.modeling_options["flags"]["floating_platform"]: n_joints = len(self.wt_init["components"]["floating_platform"]["joints"]) self.modeling_options["floating"]["joints"] = {} self.modeling_options["floating"]["joints"]["n_joints"] = n_joints self.modeling_options["floating"]["joints"]["name"] = [""] * n_joints self.modeling_options["floating"]["joints"]["transition"] = [False] * n_joints self.modeling_options["floating"]["joints"]["cylindrical"] = [False] * n_joints for i in range(n_joints): self.modeling_options["floating"]["joints"]["name"][i] = self.wt_init["components"][ "floating_platform" ]["joints"][i]["name"] self.modeling_options["floating"]["joints"]["transition"][i] = self.wt_init["components"][ "floating_platform" ]["joints"][i]["transition"] self.modeling_options["floating"]["joints"]["cylindrical"][i] = self.wt_init["components"][ "floating_platform" ]["joints"][i]["cylindrical"] # Create name->index dictionary for joint names, will add on axial joints later name2idx = dict(zip(self.modeling_options["floating"]["joints"]["name"], range(n_joints))) # Check that there is at most one transition joint if self.modeling_options["floating"]["joints"]["transition"].count(True) > 1: raise ValueError("Can only support one tower on the floating platform for now") try: itrans = self.modeling_options["floating"]["joints"]["transition"].index(True) self.modeling_options["floating"]["transition_joint"] = itrans except: self.modeling_options["floating"]["transition_joint"] = None n_members = len(self.wt_init["components"]["floating_platform"]["members"]) self.modeling_options["floating"]["members"] = {} self.modeling_options["floating"]["members"]["n_members"] = n_members self.modeling_options["floating"]["members"]["name"] = [""] * n_members self.modeling_options["floating"]["members"]["joint1"] = [""] * n_members self.modeling_options["floating"]["members"]["joint2"] = [""] * n_members self.modeling_options["floating"]["members"]["outer_shape"] = [""] * n_members self.modeling_options["floating"]["members"]["n_height"] = np.zeros(n_members, dtype=int) self.modeling_options["floating"]["members"]["n_layers"] = np.zeros(n_members, dtype=int) self.modeling_options["floating"]["members"]["n_ballasts"] = np.zeros(n_members, dtype=int) self.modeling_options["floating"]["members"]["n_bulkheads"] = np.zeros(n_members, dtype=int) self.modeling_options["floating"]["members"]["n_axial_joints"] = np.zeros(n_members, dtype=int) for i in range(n_members): self.modeling_options["floating"]["members"]["name"][i] = self.wt_init["components"][ "floating_platform" ]["members"][i]["name"] self.modeling_options["floating"]["members"]["joint1"][i] = self.wt_init["components"][ "floating_platform" ]["members"][i]["joint1"] self.modeling_options["floating"]["members"]["joint2"][i] = self.wt_init["components"][ "floating_platform" ]["members"][i]["joint2"] self.modeling_options["floating"]["members"]["outer_shape"][i] = self.wt_init["components"][ "floating_platform" ]["members"][i]["outer_shape"]["shape"] grid = self.wt_init["components"]["floating_platform"]["members"][i]["outer_shape"]["outer_diameter"][ "grid" ][:] n_layers = len( self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"]["layers"] ) self.modeling_options["floating"]["members"]["n_layers"][i] = n_layers if "ballasts" in self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"]: n_ballasts = len( self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"]["ballasts"] ) else: n_ballasts = 0 self.modeling_options["floating"]["members"]["n_ballasts"][i] = n_ballasts # Add in bulkheads and enforce at least endcaps for submerged environment # Don't add to master grid as they are handled differently in FloatingSE if "bulkhead" in self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"]: bulkgrid = self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"][ "bulkhead" ]["thickness"]["grid"] if not 0.0 in bulkgrid: self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"]["bulkhead"][ "thickness" ]["grid"].append(0.0) self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"]["bulkhead"][ "thickness" ]["values"].append(0.02) if not 1.0 in bulkgrid: self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"]["bulkhead"][ "thickness" ]["grid"].append(1.0) self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"]["bulkhead"][ "thickness" ]["values"].append(0.02) # grid += bulkgrid # Handled differently in the floating code else: self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"]["bulkhead"] = {} self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"]["bulkhead"][ "material" ] = self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"]["layers"][ 0 ][ "material" ] self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"]["bulkhead"][ "thickness" ] = {} self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"]["bulkhead"][ "thickness" ]["grid"] = [0.0, 1.0] self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"]["bulkhead"][ "thickness" ]["values"] = [0.02, 0.02] n_bulk = len( self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"]["bulkhead"][ "thickness" ]["grid"] ) self.modeling_options["floating"]["members"]["n_bulkheads"][i] = n_bulk self.modeling_options["floating"]["members"][ "layer_mat_member_" + self.modeling_options["floating"]["members"]["name"][i] ] = [""] * n_layers for j in range(n_layers): self.modeling_options["floating"]["members"][ "layer_mat_member_" + self.modeling_options["floating"]["members"]["name"][i] ][j] = self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"][ "layers" ][ j ][ "material" ] grid += self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"][ "layers" ][j]["thickness"]["grid"] self.modeling_options["floating"]["members"][ "ballast_flag_member_" + self.modeling_options["floating"]["members"]["name"][i] ] = [False] * n_ballasts self.modeling_options["floating"]["members"][ "ballast_mat_member_" + self.modeling_options["floating"]["members"]["name"][i] ] = [""] * n_ballasts for k in range(n_ballasts): self.modeling_options["floating"]["members"][ "ballast_flag_member_" + self.modeling_options["floating"]["members"]["name"][i] ][k] = self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"][ "ballasts" ][ k ][ "variable_flag" ] if ( self.modeling_options["floating"]["members"][ "ballast_flag_member_" + self.modeling_options["floating"]["members"]["name"][i] ][k] == False ): self.modeling_options["floating"]["members"][ "ballast_mat_member_" + self.modeling_options["floating"]["members"]["name"][i] ][k] = self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"][ "ballasts" ][ k ][ "material" ] grid += self.wt_init["components"]["floating_platform"]["members"][i]["internal_structure"][ "ballasts" ][k]["grid"] if "axial_joints" in self.wt_init["components"]["floating_platform"]["members"][i]: n_axial_joints = len(self.wt_init["components"]["floating_platform"]["members"][i]["axial_joints"]) self.modeling_options["floating"]["members"]["n_axial_joints"][i] = n_axial_joints self.modeling_options["floating"]["members"][ "axial_joint_name_member_" + self.modeling_options["floating"]["members"]["name"][i] ] = [""] * n_axial_joints for m in range(n_axial_joints): self.modeling_options["floating"]["members"][ "axial_joint_name_member_" + self.modeling_options["floating"]["members"]["name"][i] ][m] = self.wt_init["components"]["floating_platform"]["members"][i]["axial_joints"][m]["name"] grid.append( self.wt_init["components"]["floating_platform"]["members"][i]["axial_joints"][m]["grid"] ) name2idx[ self.wt_init["components"]["floating_platform"]["members"][i]["axial_joints"][m]["name"] ] = len(name2idx) else: self.modeling_options["floating"]["members"]["n_axial_joints"][i] = 0 final_grid = np.unique(grid) self.modeling_options["floating"]["members"][ "grid_member_" + self.modeling_options["floating"]["members"]["name"][i] ] = final_grid self.modeling_options["floating"]["members"]["n_height"][i] = len(final_grid) # Store joint info self.modeling_options["floating"]["joints"]["name2idx"] = name2idx # Floating tower params self.modeling_options["floating"]["tower"] = {} self.modeling_options["floating"]["tower"]["n_ballasts"] = [0] self.modeling_options["floating"]["tower"]["n_bulkheads"] = [0] self.modeling_options["floating"]["tower"]["n_axial_joints"] = [0] if self.modeling_options["flags"]["tower"]: self.modeling_options["floating"]["tower"]["n_height"] = [ self.modeling_options["WISDEM"]["TowerSE"]["n_height_tower"] ] self.modeling_options["floating"]["tower"]["n_layers"] = [ self.modeling_options["WISDEM"]["TowerSE"]["n_layers_tower"] ] else: self.modeling_options["floating"]["tower"]["n_height"] = [0] self.modeling_options["floating"]["tower"]["n_layers"] = [0] # Mooring self.modeling_options["mooring"] = {} if self.modeling_options["flags"]["mooring"]: n_nodes = len(self.wt_init["components"]["mooring"]["nodes"]) n_lines = len(self.wt_init["components"]["mooring"]["lines"]) n_line_types = len(self.wt_init["components"]["mooring"]["line_types"]) n_anchor_types = len(self.wt_init["components"]["mooring"]["anchor_types"]) self.modeling_options["mooring"]["symmetric"] = self.modeling_options["WISDEM"]["FloatingSE"][ "symmetric_moorings" ] self.modeling_options["mooring"]["n_nodes"] = n_nodes self.modeling_options["mooring"]["n_lines"] = n_lines self.modeling_options["mooring"]["n_anchors"] = n_lines self.modeling_options["mooring"]["n_line_types"] = n_line_types self.modeling_options["mooring"]["n_anchor_types"] = n_anchor_types self.modeling_options["mooring"]["node_type"] = [""] * n_nodes self.modeling_options["mooring"]["node_names"] = [""] * n_nodes self.modeling_options["mooring"]["anchor_type"] = [""] * n_nodes self.modeling_options["mooring"]["fairlead_type"] = [""] * n_nodes for i in range(n_nodes): self.modeling_options["mooring"]["node_type"][i] = self.wt_init["components"]["mooring"]["nodes"][i][ "node_type" ] self.modeling_options["mooring"]["node_names"][i] = self.wt_init["components"]["mooring"]["nodes"][i][ "name" ] self.modeling_options["mooring"]["anchor_type"][i] = self.wt_init["components"]["mooring"]["nodes"][i][ "anchor_type" ] self.modeling_options["mooring"]["fairlead_type"][i] = self.wt_init["components"]["mooring"]["nodes"][ i ]["fairlead_type"] self.modeling_options["mooring"]["node1"] = [""] * n_lines self.modeling_options["mooring"]["node2"] = [""] * n_lines self.modeling_options["mooring"]["line_type"] = [""] * n_lines self.modeling_options["mooring"]["line_material"] = [""] * n_lines self.modeling_options["mooring"]["line_anchor"] = [""] * n_lines fairlead_nodes = [] for i in range(n_lines): self.modeling_options["mooring"]["node1"][i] = self.wt_init["components"]["mooring"]["lines"][i][ "node1" ] self.modeling_options["mooring"]["node2"][i] = self.wt_init["components"]["mooring"]["lines"][i][ "node2" ] self.modeling_options["mooring"]["line_type"][i] = self.wt_init["components"]["mooring"]["lines"][i][ "line_type" ] # For the vessel attachments, find the list of fairlead nodes on the structure node1id = self.modeling_options["mooring"]["node_names"].index( self.modeling_options["mooring"]["node1"][i] ) node2id = self.modeling_options["mooring"]["node_names"].index( self.modeling_options["mooring"]["node2"][i] ) if self.modeling_options["mooring"]["node_type"][node1id] == "vessel": fairlead_nodes.append(self.wt_init["components"]["mooring"]["nodes"][node1id]["joint"]) if self.modeling_options["mooring"]["node_type"][node2id] == "vessel": fairlead_nodes.append(self.wt_init["components"]["mooring"]["nodes"][node2id]["joint"]) # Store the anchor type names to start if "fix" in self.modeling_options["mooring"]["node_type"][node1id]: self.modeling_options["mooring"]["line_anchor"][i] = self.modeling_options["mooring"][ "anchor_type" ][node1id] if "fix" in self.modeling_options["mooring"]["node_type"][node2id]: self.modeling_options["mooring"]["line_anchor"][i] = self.modeling_options["mooring"][ "anchor_type" ][node2id] self.modeling_options["mooring"]["line_type_name"] = [""] * n_line_types self.modeling_options["mooring"]["line_type_type"] = [""] * n_line_types for i in range(n_line_types): self.modeling_options["mooring"]["line_type_name"][i] = self.wt_init["components"]["mooring"][ "line_types" ][i]["name"] self.modeling_options["mooring"]["line_type_type"][i] = self.wt_init["components"]["mooring"][ "line_types" ][i]["type"].lower() for j in range(n_lines): if ( self.modeling_options["mooring"]["line_type"][j] == self.modeling_options["mooring"]["line_type_name"][i] ): self.modeling_options["mooring"]["line_material"][j] = self.modeling_options["mooring"][ "line_type_type" ][i] self.modeling_options["mooring"]["anchor_type_name"] = [""] * n_anchor_types self.modeling_options["mooring"]["anchor_type_type"] = [""] * n_anchor_types for i in range(n_anchor_types): self.modeling_options["mooring"]["anchor_type_name"][i] = self.wt_init["components"]["mooring"][ "anchor_types" ][i]["name"] self.modeling_options["mooring"]["anchor_type_type"][i] = self.wt_init["components"]["mooring"][ "anchor_types" ][i]["type"].lower() for j in range(n_lines): if ( self.modeling_options["mooring"]["line_anchor"][j] == self.modeling_options["mooring"]["anchor_type_name"][i] ): self.modeling_options["mooring"]["line_anchor"][j] = self.modeling_options["mooring"][ "anchor_type_type" ][i] self.modeling_options["mooring"]["n_attach"] = len(set(fairlead_nodes)) # Assembly self.modeling_options["assembly"] = {} self.modeling_options["assembly"]["number_of_blades"] = int(self.wt_init["assembly"]["number_of_blades"]) def set_opt_flags(self): # Recursively look for flags to set global optimization flag def recursive_flag(d): opt_flag = False for k, v in d.items(): if isinstance(v, dict): opt_flag = opt_flag or recursive_flag(v) elif k == "flag": opt_flag = opt_flag or v return opt_flag # The user can provide `opt_flag` in analysis_options.yaml, # but if it's not provided, we check the individual opt flags # from analysis_options.yaml and set a global `opt_flag` if "opt_flag" in self.analysis_options["driver"]: self.analysis_options["opt_flag"] = self.analysis_options["driver"]["opt_flag"] else: self.analysis_options["opt_flag"] = recursive_flag(self.analysis_options["design_variables"]) # If not an optimization DV, then the number of points should be same as the discretization blade_opt_options = self.analysis_options["design_variables"]["blade"] if not blade_opt_options["aero_shape"]["twist"]["flag"]: blade_opt_options["aero_shape"]["twist"]["n_opt"] = self.modeling_options["WISDEM"]["RotorSE"]["n_span"] elif blade_opt_options["aero_shape"]["twist"]["n_opt"] < 4: raise ValueError("Cannot optimize twist with less than 4 control points along blade span") if not blade_opt_options["aero_shape"]["chord"]["flag"]: blade_opt_options["aero_shape"]["chord"]["n_opt"] = self.modeling_options["WISDEM"]["RotorSE"]["n_span"] elif blade_opt_options["aero_shape"]["chord"]["n_opt"] < 4: raise ValueError("Cannot optimize chord with less than 4 control points along blade span") if not blade_opt_options["aero_shape"]["t/c"]["flag"]: blade_opt_options["aero_shape"]["t/c"]["n_opt"] = self.modeling_options["WISDEM"]["RotorSE"]["n_span"] elif blade_opt_options["aero_shape"]["t/c"]["n_opt"] < 4: raise ValueError("Cannot optimize t/c with less than 4 control points along blade span") if not blade_opt_options["aero_shape"]["L/D"]["flag"]: blade_opt_options["aero_shape"]["L/D"]["n_opt"] = self.modeling_options["WISDEM"]["RotorSE"]["n_span"] elif blade_opt_options["aero_shape"]["L/D"]["n_opt"] < 4: raise ValueError("Cannot optimize L/D with less than 4 control points along blade span") if not blade_opt_options["structure"]["spar_cap_ss"]["flag"]: blade_opt_options["structure"]["spar_cap_ss"]["n_opt"] = self.modeling_options["WISDEM"]["RotorSE"][ "n_span" ] elif blade_opt_options["structure"]["spar_cap_ss"]["n_opt"] < 4: raise ValueError("Cannot optimize spar cap suction side with less than 4 control points along blade span") if not blade_opt_options["structure"]["spar_cap_ps"]["flag"]: blade_opt_options["structure"]["spar_cap_ps"]["n_opt"] = self.modeling_options["WISDEM"]["RotorSE"][ "n_span" ] elif blade_opt_options["structure"]["spar_cap_ps"]["n_opt"] < 4: raise ValueError("Cannot optimize spar cap pressure side with less than 4 control points along blade span") if not blade_opt_options["structure"]["te_ss"]["flag"]: blade_opt_options["structure"]["te_ss"]["n_opt"] = self.modeling_options["WISDEM"]["RotorSE"]["n_span"] elif blade_opt_options["structure"]["te_ss"]["n_opt"] < 4: raise ValueError( "Cannot optimize trailing edge suction side with less than 4 control points along blade span" ) if not blade_opt_options["structure"]["te_ps"]["flag"]: blade_opt_options["structure"]["te_ps"]["n_opt"] = self.modeling_options["WISDEM"]["RotorSE"]["n_span"] elif blade_opt_options["structure"]["te_ps"]["n_opt"] < 4: raise ValueError( "Cannot optimize trailing edge pressure side with less than 4 control points along blade span" ) # Handle linked joints and members in floating platform if self.modeling_options["flags"]["floating"]: float_opt_options = self.analysis_options["design_variables"]["floating"] # First the joints dv_info = [] for c in ["z", "r"]: for idv in float_opt_options["joints"][c + "_coordinate"]: inames = idv["names"] idx = [self.modeling_options["floating"]["joints"]["name"].index(m) for m in inames] idict = {} idict["indices"] = idx idict["dimension"] = 0 if c == "r" else 2 dv_info.append(idict) # Check for r-coordinate dv and cylindrical consistency for idict in dv_info: if idict["dimension"] != 0: continue for k in idict["indices"]: m = self.modeling_options["floating"]["joints"]["name"][k] if not self.modeling_options["floating"]["joints"]["cylindrical"][k]: raise ValueError(f"Cannot optimize r-coordinate of, {m}, becase it is not a cylindrical joint") # Store DV information for needed linking and IVC assignment self.modeling_options["floating"]["joints"]["design_variable_data"] = dv_info # Now the members memgrps = [[m] for m in self.modeling_options["floating"]["members"]["name"]] for idv in float_opt_options["members"]["groups"]: inames = idv["names"] idx = [self.modeling_options["floating"]["members"]["name"].index(m) for m in inames] for k in range(1, len(idx)): try: memgrps[idx[k]].remove(inames[k]) memgrps[idx[0]].append(inames[k]) except ValueError: raise ValueError("Cannot put member," + inames[k] + ", as part of multiple groups") # Remove entries for members that are now linked with others while [] in memgrps: memgrps.remove([]) self.modeling_options["floating"]["members"]["linked_members"] = memgrps # Make a name 2 group index lookup name2grp = {} for k, kgrp in enumerate(memgrps): for kname in kgrp: name2grp[kname] = k self.modeling_options["floating"]["members"]["name2idx"] = name2grp def write_ontology(self, wt_opt, fname_output): # Update blade if self.modeling_options["flags"]["blade"]: # Update blade outer shape self.wt_init["components"]["blade"]["outer_shape_bem"]["airfoil_position"]["grid"] = wt_opt[ "blade.opt_var.af_position" ].tolist() self.wt_init["components"]["blade"]["outer_shape_bem"]["chord"]["grid"] = wt_opt[ "blade.outer_shape_bem.s" ].tolist() self.wt_init["components"]["blade"]["outer_shape_bem"]["chord"]["values"] = wt_opt[ "blade.pa.chord_param" ].tolist() self.wt_init["components"]["blade"]["outer_shape_bem"]["twist"]["grid"] = wt_opt[ "blade.outer_shape_bem.s" ].tolist() self.wt_init["components"]["blade"]["outer_shape_bem"]["twist"]["values"] = wt_opt["rotorse.theta"].tolist() self.wt_init["components"]["blade"]["outer_shape_bem"]["pitch_axis"]["grid"] = wt_opt[ "blade.outer_shape_bem.s" ].tolist() self.wt_init["components"]["blade"]["outer_shape_bem"]["pitch_axis"]["values"] = wt_opt[ "blade.outer_shape_bem.pitch_axis" ].tolist() if self.modeling_options["WISDEM"]["RotorSE"]["inn_af"]: self.wt_init["components"]["blade"]["outer_shape_bem"]["t/c"]["grid"] = wt_opt[ "blade.outer_shape_bem.s" ].tolist() self.wt_init["components"]["blade"]["outer_shape_bem"]["t/c"]["values"] = wt_opt[ "blade.interp_airfoils.r_thick_interp" ].tolist() self.wt_init["components"]["blade"]["outer_shape_bem"]["L/D"]["grid"] = wt_opt[ "blade.outer_shape_bem.s" ].tolist() self.wt_init["components"]["blade"]["outer_shape_bem"]["L/D"]["values"] = wt_opt[ "rotorse.rp.powercurve.L_D" ].tolist() self.wt_init["components"]["blade"]["outer_shape_bem"]["c_d"]["grid"] = wt_opt[ "blade.outer_shape_bem.s" ].tolist() self.wt_init["components"]["blade"]["outer_shape_bem"]["c_d"]["values"] = wt_opt[ "rotorse.rp.powercurve.cd_regII" ].tolist() self.wt_init["components"]["blade"]["outer_shape_bem"]["stall_margin"]["grid"] = wt_opt[ "blade.outer_shape_bem.s" ].tolist() stall_margin = np.deg2rad( wt_opt["rotorse.stall_check.stall_angle_along_span"] - wt_opt["rotorse.stall_check.aoa_along_span"] ) self.wt_init["components"]["blade"]["outer_shape_bem"]["stall_margin"]["values"] = stall_margin.tolist() self.wt_init["components"]["blade"]["outer_shape_bem"]["reference_axis"]["x"]["grid"] = wt_opt[ "blade.outer_shape_bem.s" ].tolist() self.wt_init["components"]["blade"]["outer_shape_bem"]["reference_axis"]["y"]["grid"] = wt_opt[ "blade.outer_shape_bem.s" ].tolist() self.wt_init["components"]["blade"]["outer_shape_bem"]["reference_axis"]["z"]["grid"] = wt_opt[ "blade.outer_shape_bem.s" ].tolist() self.wt_init["components"]["blade"]["outer_shape_bem"]["reference_axis"]["x"]["values"] = wt_opt[ "blade.outer_shape_bem.ref_axis" ][:, 0].tolist() self.wt_init["components"]["blade"]["outer_shape_bem"]["reference_axis"]["y"]["values"] = wt_opt[ "blade.outer_shape_bem.ref_axis" ][:, 1].tolist() self.wt_init["components"]["blade"]["outer_shape_bem"]["reference_axis"]["z"]["values"] = wt_opt[ "blade.outer_shape_bem.ref_axis" ][:, 2].tolist() # Update blade structure # Reference axis from blade outer shape self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["reference_axis"] = self.wt_init[ "components" ]["blade"]["outer_shape_bem"]["reference_axis"] # Webs positions for i in range(self.modeling_options["WISDEM"]["RotorSE"]["n_webs"]): if "rotation" in self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["webs"]: self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["webs"][i]["rotation"][ "grid" ] = wt_opt["blade.internal_structure_2d_fem.s"].tolist() self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["webs"][i]["rotation"][ "values" ] = wt_opt["blade.internal_structure_2d_fem.web_rotation"][i, :].tolist() self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["webs"][i]["offset_y_pa"][ "grid" ] = wt_opt["blade.internal_structure_2d_fem.s"].tolist() self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["webs"][i]["offset_y_pa"][ "values" ] = wt_opt["blade.internal_structure_2d_fem.web_offset_y_pa"][i, :].tolist() if "start_nd_arc" not in self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["webs"][i]: self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["webs"][i]["start_nd_arc"] = {} if "end_nd_arc" not in self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["webs"][i]: self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["webs"][i]["end_nd_arc"] = {} self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["webs"][i]["start_nd_arc"][ "grid" ] = wt_opt["blade.internal_structure_2d_fem.s"].tolist() self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["webs"][i]["start_nd_arc"][ "values" ] = wt_opt["blade.internal_structure_2d_fem.web_start_nd"][i, :].tolist() self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["webs"][i]["end_nd_arc"][ "grid" ] = wt_opt["blade.internal_structure_2d_fem.s"].tolist() self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["webs"][i]["end_nd_arc"][ "values" ] = wt_opt["blade.internal_structure_2d_fem.web_end_nd"][i, :].tolist() # Structural layers for i in range(self.modeling_options["WISDEM"]["RotorSE"]["n_layers"]): self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i]["thickness"][ "grid" ] = wt_opt["blade.internal_structure_2d_fem.s"].tolist() self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i]["thickness"][ "values" ] = wt_opt["blade.ps.layer_thickness_param"][i, :].tolist() if wt_opt["blade.internal_structure_2d_fem.definition_layer"][i] < 7: if ( "start_nd_arc" not in self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i] ): self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i][ "start_nd_arc" ] = {} if ( "end_nd_arc" not in self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i] ): self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i]["end_nd_arc"] = {} self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i]["start_nd_arc"][ "grid" ] = wt_opt["blade.internal_structure_2d_fem.s"].tolist() self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i]["start_nd_arc"][ "values" ] = wt_opt["blade.internal_structure_2d_fem.layer_start_nd"][i, :].tolist() self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i]["end_nd_arc"][ "grid" ] = wt_opt["blade.internal_structure_2d_fem.s"].tolist() self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i]["end_nd_arc"][ "values" ] = wt_opt["blade.internal_structure_2d_fem.layer_end_nd"][i, :].tolist() if ( wt_opt["blade.internal_structure_2d_fem.definition_layer"][i] > 1 and wt_opt["blade.internal_structure_2d_fem.definition_layer"][i] < 6 ): self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i]["width"][ "grid" ] = wt_opt["blade.internal_structure_2d_fem.s"].tolist() self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i]["width"][ "values" ] = wt_opt["blade.internal_structure_2d_fem.layer_width"][i, :].tolist() if ( wt_opt["blade.internal_structure_2d_fem.definition_layer"][i] == 2 or wt_opt["blade.internal_structure_2d_fem.definition_layer"][i] == 3 ): self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i]["rotation"][ "grid" ] = wt_opt["blade.internal_structure_2d_fem.s"].tolist() self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i]["rotation"][ "values" ] = wt_opt["blade.internal_structure_2d_fem.layer_rotation"][i, :].tolist() self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i]["offset_y_pa"][ "grid" ] = wt_opt["blade.internal_structure_2d_fem.s"].tolist() self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i]["offset_y_pa"][ "values" ] = wt_opt["blade.internal_structure_2d_fem.layer_offset_y_pa"][i, :].tolist() if ( wt_opt["blade.internal_structure_2d_fem.definition_layer"][i] == 4 or wt_opt["blade.internal_structure_2d_fem.definition_layer"][i] == 5 ): self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i]["midpoint_nd_arc"][ "grid" ] = wt_opt["blade.internal_structure_2d_fem.s"].tolist() self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i]["midpoint_nd_arc"][ "values" ] = wt_opt["blade.internal_structure_2d_fem.layer_midpoint_nd"][i, :].tolist() self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i]["fiber_orientation"] = {} self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i]["fiber_orientation"][ "grid" ] = wt_opt["blade.internal_structure_2d_fem.s"].tolist() self.wt_init["components"]["blade"]["internal_structure_2d_fem"]["layers"][i]["fiber_orientation"][ "values" ] = np.zeros(len(wt_opt["blade.internal_structure_2d_fem.s"])).tolist() # Elastic properties of the blade self.wt_init["components"]["blade"]["elastic_properties_mb"] = {} self.wt_init["components"]["blade"]["elastic_properties_mb"]["six_x_six"] = {} self.wt_init["components"]["blade"]["elastic_properties_mb"]["six_x_six"]["reference_axis"] = self.wt_init[ "components" ]["blade"]["internal_structure_2d_fem"]["reference_axis"] self.wt_init["components"]["blade"]["elastic_properties_mb"]["six_x_six"]["twist"] = self.wt_init[ "components" ]["blade"]["outer_shape_bem"]["twist"] self.wt_init["components"]["blade"]["elastic_properties_mb"]["six_x_six"]["stiff_matrix"] = {} self.wt_init["components"]["blade"]["elastic_properties_mb"]["six_x_six"]["stiff_matrix"]["grid"] = wt_opt[ "blade.outer_shape_bem.s" ].tolist() K = [] for i in range(self.modeling_options["WISDEM"]["RotorSE"]["n_span"]): Ki = np.zeros(21) Ki[11] = wt_opt["rotorse.EA"][i] Ki[15] = wt_opt["rotorse.EIxx"][i] Ki[18] = wt_opt["rotorse.EIyy"][i] Ki[20] = wt_opt["rotorse.GJ"][i] K.append(Ki.tolist()) self.wt_init["components"]["blade"]["elastic_properties_mb"]["six_x_six"]["stiff_matrix"]["values"] = K self.wt_init["components"]["blade"]["elastic_properties_mb"]["six_x_six"]["inertia_matrix"] = {} self.wt_init["components"]["blade"]["elastic_properties_mb"]["six_x_six"]["inertia_matrix"][ "grid" ] = wt_opt["blade.outer_shape_bem.s"].tolist() I = [] for i in range(self.modeling_options["WISDEM"]["RotorSE"]["n_span"]): Ii = np.zeros(21) Ii[0] = wt_opt["rotorse.rhoA"][i] Ii[5] = -wt_opt["rotorse.rhoA"][i] * wt_opt["rotorse.re.y_cg"][i] Ii[6] = wt_opt["rotorse.rhoA"][i] Ii[10] = wt_opt["rotorse.rhoA"][i] * wt_opt["rotorse.re.x_cg"][i] Ii[11] = wt_opt["rotorse.rhoA"][i] Ii[12] = wt_opt["rotorse.rhoA"][i] * wt_opt["rotorse.re.y_cg"][i] Ii[13] = -wt_opt["rotorse.rhoA"][i] * wt_opt["rotorse.re.x_cg"][i] Ii[15] = wt_opt["rotorse.re.precomp.edge_iner"][i] Ii[16] = wt_opt["rotorse.re.precomp.edge_iner"][i] # Ii[18] = wt_opt['re.precomp.edge_iner'][i] Ii[20] = wt_opt["rotorse.rhoJ"][i] I.append(Ii.tolist()) self.wt_init["components"]["blade"]["elastic_properties_mb"]["six_x_six"]["inertia_matrix"]["values"] = I # Update hub if self.modeling_options["flags"]["hub"]: # Update hub self.wt_init["components"]["hub"]["cone_angle"] = float(wt_opt["hub.cone"]) self.wt_init["components"]["hub"]["flange_t2shell_t"] = float(wt_opt["hub.flange_t2shell_t"]) self.wt_init["components"]["hub"]["flange_OD2hub_D"] = float(wt_opt["hub.flange_OD2hub_D"]) self.wt_init["components"]["hub"]["flange_ID2OD"] = float(wt_opt["hub.flange_ID2flange_OD"]) self.wt_init["components"]["hub"]["hub_blade_spacing_margin"] = float(wt_opt["hub.hub_in2out_circ"]) self.wt_init["components"]["hub"]["hub_stress_concentration"] = float( wt_opt["hub.hub_stress_concentration"] ) self.wt_init["components"]["hub"]["n_front_brackets"] = int(wt_opt["hub.n_front_brackets"]) self.wt_init["components"]["hub"]["n_rear_brackets"] = int(wt_opt["hub.n_rear_brackets"]) self.wt_init["components"]["hub"]["clearance_hub_spinner"] = float(wt_opt["hub.clearance_hub_spinner"]) self.wt_init["components"]["hub"]["spin_hole_incr"] = float(wt_opt["hub.spin_hole_incr"]) self.wt_init["components"]["hub"]["pitch_system_scaling_factor"] = float( wt_opt["hub.pitch_system_scaling_factor"] ) self.wt_init["components"]["hub"]["spinner_gust_ws"] = float(wt_opt["hub.spinner_gust_ws"]) # Update nacelle if self.modeling_options["flags"]["nacelle"]: # Common direct and geared self.wt_init["components"]["nacelle"]["drivetrain"]["uptilt"] = float(wt_opt["nacelle.uptilt"]) self.wt_init["components"]["nacelle"]["drivetrain"]["distance_tt_hub"] = float( wt_opt["nacelle.distance_tt_hub"] ) self.wt_init["components"]["nacelle"]["drivetrain"]["overhang"] = float(wt_opt["nacelle.overhang"]) self.wt_init["components"]["nacelle"]["drivetrain"]["distance_hub_mb"] = float( wt_opt["nacelle.distance_hub2mb"] ) self.wt_init["components"]["nacelle"]["drivetrain"]["distance_mb_mb"] = float( wt_opt["nacelle.distance_mb2mb"] ) self.wt_init["components"]["nacelle"]["drivetrain"]["generator_length"] = float( wt_opt["nacelle.L_generator"] ) s_lss = np.linspace(0.0, 1.0, len(wt_opt["nacelle.lss_diameter"])).tolist() self.wt_init["components"]["nacelle"]["drivetrain"]["lss_diameter"] = wt_opt[ "nacelle.lss_diameter" ].tolist() self.wt_init["components"]["nacelle"]["drivetrain"]["lss_wall_thickness"] = wt_opt[ "nacelle.lss_wall_thickness" ].tolist() self.wt_init["components"]["nacelle"]["drivetrain"]["gear_ratio"] = float(wt_opt["nacelle.gear_ratio"]) self.wt_init["components"]["nacelle"]["drivetrain"]["gearbox_efficiency"] = float( wt_opt["nacelle.gearbox_efficiency"] ) self.wt_init["components"]["nacelle"]["drivetrain"]["mb1Type"] = wt_opt["nacelle.mb1Type"] self.wt_init["components"]["nacelle"]["drivetrain"]["mb2Type"] = wt_opt["nacelle.mb2Type"] self.wt_init["components"]["nacelle"]["drivetrain"]["uptower"] = wt_opt["nacelle.uptower"] self.wt_init["components"]["nacelle"]["drivetrain"]["lss_material"] = wt_opt["nacelle.lss_material"] self.wt_init["components"]["nacelle"]["drivetrain"]["bedplate_material"] = wt_opt[ "nacelle.bedplate_material" ] if self.modeling_options["WISDEM"]["DriveSE"]["direct"]: # Direct only s_nose = np.linspace(0.0, 1.0, len(wt_opt["nacelle.nose_diameter"])).tolist() s_bed = np.linspace(0.0, 1.0, len(wt_opt["nacelle.bedplate_wall_thickness"])).tolist() self.wt_init["components"]["nacelle"]["drivetrain"]["nose_diameter"] = wt_opt[ "nacelle.nose_diameter" ].tolist() self.wt_init["components"]["nacelle"]["drivetrain"]["nose_wall_thickness"] = wt_opt[ "nacelle.nose_wall_thickness" ].tolist() self.wt_init["components"]["nacelle"]["drivetrain"]["bedplate_wall_thickness"]["grid"] = s_bed self.wt_init["components"]["nacelle"]["drivetrain"]["bedplate_wall_thickness"]["values"] = wt_opt[ "nacelle.bedplate_wall_thickness" ].tolist() else: # Geared only s_hss = np.linspace(0.0, 1.0, len(wt_opt["nacelle.hss_diameter"])).tolist() self.wt_init["components"]["nacelle"]["drivetrain"]["hss_length"] = float(wt_opt["nacelle.hss_length"]) self.wt_init["components"]["nacelle"]["drivetrain"]["hss_diameter"] = wt_opt[ "nacelle.hss_diameter" ].tolist() self.wt_init["components"]["nacelle"]["drivetrain"]["hss_wall_thickness"] = wt_opt[ "nacelle.hss_wall_thickness" ].tolist() self.wt_init["components"]["nacelle"]["drivetrain"]["bedplate_flange_width"] = float( wt_opt["nacelle.bedplate_flange_width"] ) self.wt_init["components"]["nacelle"]["drivetrain"]["bedplate_flange_thickness"] = float( wt_opt["nacelle.bedplate_flange_thickness"] ) self.wt_init["components"]["nacelle"]["drivetrain"]["bedplate_web_thickness"] = float( wt_opt["nacelle.bedplate_web_thickness"] ) self.wt_init["components"]["nacelle"]["drivetrain"]["gear_configuration"] = wt_opt[ "nacelle.gear_configuration" ] self.wt_init["components"]["nacelle"]["drivetrain"]["planet_numbers"] = wt_opt["nacelle.planet_numbers"] self.wt_init["components"]["nacelle"]["drivetrain"]["hss_material"] = wt_opt["nacelle.hss_material"] # Update generator if self.modeling_options["flags"]["generator"]: self.wt_init["components"]["nacelle"]["generator"]["B_r"] = float(wt_opt["generator.B_r"]) self.wt_init["components"]["nacelle"]["generator"]["P_Fe0e"] = float(wt_opt["generator.P_Fe0e"]) self.wt_init["components"]["nacelle"]["generator"]["P_Fe0h"] = float(wt_opt["generator.P_Fe0h"]) self.wt_init["components"]["nacelle"]["generator"]["S_N"] = float(wt_opt["generator.S_N"]) self.wt_init["components"]["nacelle"]["generator"]["alpha_p"] = float(wt_opt["generator.alpha_p"]) self.wt_init["components"]["nacelle"]["generator"]["b_r_tau_r"] = float(wt_opt["generator.b_r_tau_r"]) self.wt_init["components"]["nacelle"]["generator"]["b_ro"] = float(wt_opt["generator.b_ro"]) self.wt_init["components"]["nacelle"]["generator"]["b_s_tau_s"] = float(wt_opt["generator.b_s_tau_s"]) self.wt_init["components"]["nacelle"]["generator"]["b_so"] = float(wt_opt["generator.b_so"]) self.wt_init["components"]["nacelle"]["generator"]["cofi"] = float(wt_opt["generator.cofi"]) self.wt_init["components"]["nacelle"]["generator"]["freq"] = float(wt_opt["generator.freq"]) self.wt_init["components"]["nacelle"]["generator"]["h_i"] = float(wt_opt["generator.h_i"]) self.wt_init["components"]["nacelle"]["generator"]["h_sy0"] = float(wt_opt["generator.h_sy0"]) self.wt_init["components"]["nacelle"]["generator"]["h_w"] = float(wt_opt["generator.h_w"]) self.wt_init["components"]["nacelle"]["generator"]["k_fes"] = float(wt_opt["generator.k_fes"]) self.wt_init["components"]["nacelle"]["generator"]["k_fillr"] = float(wt_opt["generator.k_fillr"]) self.wt_init["components"]["nacelle"]["generator"]["k_fills"] = float(wt_opt["generator.k_fills"]) self.wt_init["components"]["nacelle"]["generator"]["k_s"] = float(wt_opt["generator.k_s"]) self.wt_init["components"]["nacelle"]["generator"]["m"] = float(wt_opt["generator.m"]) self.wt_init["components"]["nacelle"]["generator"]["mu_0"] = float(wt_opt["generator.mu_0"]) self.wt_init["components"]["nacelle"]["generator"]["mu_r"] = float(wt_opt["generator.mu_r"]) self.wt_init["components"]["nacelle"]["generator"]["p"] = float(wt_opt["generator.p"]) self.wt_init["components"]["nacelle"]["generator"]["phi"] = float(wt_opt["generator.phi"]) self.wt_init["components"]["nacelle"]["generator"]["q1"] = float(wt_opt["generator.q1"]) self.wt_init["components"]["nacelle"]["generator"]["q2"] = float(wt_opt["generator.q2"]) self.wt_init["components"]["nacelle"]["generator"]["ratio_mw2pp"] = float(wt_opt["generator.ratio_mw2pp"]) self.wt_init["components"]["nacelle"]["generator"]["resist_Cu"] = float(wt_opt["generator.resist_Cu"]) self.wt_init["components"]["nacelle"]["generator"]["sigma"] = float(wt_opt["generator.sigma"]) self.wt_init["components"]["nacelle"]["generator"]["y_tau_p"] = float(wt_opt["generator.y_tau_p"]) self.wt_init["components"]["nacelle"]["generator"]["y_tau_pr"] = float(wt_opt["generator.y_tau_pr"]) self.wt_init["components"]["nacelle"]["generator"]["I_0"] = float(wt_opt["generator.I_0"]) self.wt_init["components"]["nacelle"]["generator"]["d_r"] = float(wt_opt["generator.d_r"]) self.wt_init["components"]["nacelle"]["generator"]["h_m"] = float(wt_opt["generator.h_m"]) self.wt_init["components"]["nacelle"]["generator"]["h_0"] = float(wt_opt["generator.h_0"]) self.wt_init["components"]["nacelle"]["generator"]["h_s"] = float(wt_opt["generator.h_s"]) self.wt_init["components"]["nacelle"]["generator"]["len_s"] = float(wt_opt["generator.len_s"]) self.wt_init["components"]["nacelle"]["generator"]["n_r"] = float(wt_opt["generator.n_r"]) self.wt_init["components"]["nacelle"]["generator"]["rad_ag"] = float(wt_opt["generator.rad_ag"]) self.wt_init["components"]["nacelle"]["generator"]["t_wr"] = float(wt_opt["generator.t_wr"]) self.wt_init["components"]["nacelle"]["generator"]["n_s"] = float(wt_opt["generator.n_s"]) self.wt_init["components"]["nacelle"]["generator"]["b_st"] = float(wt_opt["generator.b_st"]) self.wt_init["components"]["nacelle"]["generator"]["d_s"] = float(wt_opt["generator.d_s"]) self.wt_init["components"]["nacelle"]["generator"]["t_ws"] = float(wt_opt["generator.t_ws"]) self.wt_init["components"]["nacelle"]["generator"]["rho_Copper"] = float(wt_opt["generator.rho_Copper"]) self.wt_init["components"]["nacelle"]["generator"]["rho_Fe"] = float(wt_opt["generator.rho_Fe"]) self.wt_init["components"]["nacelle"]["generator"]["rho_Fes"] = float(wt_opt["generator.rho_Fes"]) self.wt_init["components"]["nacelle"]["generator"]["rho_PM"] = float(wt_opt["generator.rho_PM"]) self.wt_init["components"]["nacelle"]["generator"]["C_Cu"] = float(wt_opt["generator.C_Cu"]) self.wt_init["components"]["nacelle"]["generator"]["C_Fe"] = float(wt_opt["generator.C_Fe"]) self.wt_init["components"]["nacelle"]["generator"]["C_Fes"] = float(wt_opt["generator.C_Fes"]) self.wt_init["components"]["nacelle"]["generator"]["C_PM"] = float(wt_opt["generator.C_PM"]) if self.modeling_options["WISDEM"]["GeneratorSE"]["type"] in ["pmsg_outer"]: self.wt_init["components"]["nacelle"]["generator"]["N_c"] = float(wt_opt["generator.N_c"]) self.wt_init["components"]["nacelle"]["generator"]["b"] = float(wt_opt["generator.b"]) self.wt_init["components"]["nacelle"]["generator"]["c"] = float(wt_opt["generator.c"]) self.wt_init["components"]["nacelle"]["generator"]["E_p"] = float(wt_opt["generator.E_p"]) self.wt_init["components"]["nacelle"]["generator"]["h_yr"] = float(wt_opt["generator.h_yr"]) self.wt_init["components"]["nacelle"]["generator"]["h_ys"] = float(wt_opt["generator.h_ys"]) self.wt_init["components"]["nacelle"]["generator"]["h_sr"] = float(wt_opt["generator.h_sr"]) self.wt_init["components"]["nacelle"]["generator"]["h_ss"] = float(wt_opt["generator.h_ss"]) self.wt_init["components"]["nacelle"]["generator"]["t_r"] = float(wt_opt["generator.t_r"]) self.wt_init["components"]["nacelle"]["generator"]["t_s"] = float(wt_opt["generator.t_s"]) self.wt_init["components"]["nacelle"]["generator"]["u_allow_pcent"] = float( wt_opt["generator.u_allow_pcent"] ) self.wt_init["components"]["nacelle"]["generator"]["y_allow_pcent"] = float( wt_opt["generator.y_allow_pcent"] ) self.wt_init["components"]["nacelle"]["generator"]["z_allow_deg"] = float( wt_opt["generator.z_allow_deg"] ) self.wt_init["components"]["nacelle"]["generator"]["B_tmax"] = float(wt_opt["generator.B_tmax"]) if self.modeling_options["WISDEM"]["GeneratorSE"]["type"] in ["eesg", "pmsg_arms", "pmsg_disc"]: self.wt_init["components"]["nacelle"]["generator"]["tau_p"] = float(wt_opt["generator.tau_p"]) self.wt_init["components"]["nacelle"]["generator"]["h_ys"] = float(wt_opt["generator.h_ys"]) self.wt_init["components"]["nacelle"]["generator"]["h_yr"] = float(wt_opt["generator.h_yr"]) self.wt_init["components"]["nacelle"]["generator"]["b_arm"] = float(wt_opt["generator.b_arm"]) elif self.modeling_options["WISDEM"]["GeneratorSE"]["type"] in ["scig", "dfig"]: self.wt_init["components"]["nacelle"]["generator"]["B_symax"] = float(wt_opt["generator.B_symax"]) self.wt_init["components"]["nacelle"]["generator"]["S_Nmax"] = float(wt_opt["generator.S_Nmax"]) # Update tower if self.modeling_options["flags"]["tower"]: self.wt_init["components"]["tower"]["outer_shape_bem"]["outer_diameter"]["grid"] = wt_opt[ "tower_grid.s" ].tolist() self.wt_init["components"]["tower"]["outer_shape_bem"]["outer_diameter"]["values"] = wt_opt[ "tower.diameter" ].tolist() self.wt_init["components"]["tower"]["outer_shape_bem"]["reference_axis"]["x"]["grid"] = wt_opt[ "tower_grid.s" ].tolist() self.wt_init["components"]["tower"]["outer_shape_bem"]["reference_axis"]["y"]["grid"] = wt_opt[ "tower_grid.s" ].tolist() self.wt_init["components"]["tower"]["outer_shape_bem"]["reference_axis"]["z"]["grid"] = wt_opt[ "tower_grid.s" ].tolist() self.wt_init["components"]["tower"]["outer_shape_bem"]["reference_axis"]["x"]["values"] = wt_opt[ "tower.ref_axis" ][:, 0].tolist() self.wt_init["components"]["tower"]["outer_shape_bem"]["reference_axis"]["y"]["values"] = wt_opt[ "tower.ref_axis" ][:, 1].tolist() self.wt_init["components"]["tower"]["outer_shape_bem"]["reference_axis"]["z"]["values"] = wt_opt[ "tower.ref_axis" ][:, 2].tolist() self.wt_init["components"]["tower"]["internal_structure_2d_fem"]["outfitting_factor"] = float( wt_opt["tower.outfitting_factor"] ) for i in range(self.modeling_options["WISDEM"]["TowerSE"]["n_layers_tower"]): self.wt_init["components"]["tower"]["internal_structure_2d_fem"]["layers"][i]["thickness"][ "grid" ] = wt_opt["tower_grid.s"].tolist() self.wt_init["components"]["tower"]["internal_structure_2d_fem"]["layers"][i]["thickness"][ "values" ] = wt_opt["tower.layer_thickness"][i, :].tolist() # Update monopile if self.modeling_options["flags"]["monopile"]: self.wt_init["components"]["monopile"]["outer_shape_bem"]["outer_diameter"]["grid"] = wt_opt[ "monopile.s" ].tolist() self.wt_init["components"]["monopile"]["outer_shape_bem"]["outer_diameter"]["values"] = wt_opt[ "monopile.diameter" ].tolist() self.wt_init["components"]["monopile"]["outer_shape_bem"]["reference_axis"]["x"]["grid"] = wt_opt[ "monopile.s" ].tolist() self.wt_init["components"]["monopile"]["outer_shape_bem"]["reference_axis"]["y"]["grid"] = wt_opt[ "monopile.s" ].tolist() self.wt_init["components"]["monopile"]["outer_shape_bem"]["reference_axis"]["z"]["grid"] = wt_opt[ "monopile.s" ].tolist() self.wt_init["components"]["monopile"]["outer_shape_bem"]["reference_axis"]["x"]["values"] = wt_opt[ "monopile.ref_axis" ][:, 0].tolist() self.wt_init["components"]["monopile"]["outer_shape_bem"]["reference_axis"]["y"]["values"] = wt_opt[ "monopile.ref_axis" ][:, 1].tolist() self.wt_init["components"]["monopile"]["outer_shape_bem"]["reference_axis"]["z"]["values"] = wt_opt[ "monopile.ref_axis" ][:, 2].tolist() self.wt_init["components"]["monopile"]["internal_structure_2d_fem"]["outfitting_factor"] = float( wt_opt["monopile.outfitting_factor"] ) for i in range(self.modeling_options["WISDEM"]["TowerSE"]["n_layers_monopile"]): self.wt_init["components"]["monopile"]["internal_structure_2d_fem"]["layers"][i]["thickness"][ "grid" ] = wt_opt["monopile.s"].tolist() self.wt_init["components"]["monopile"]["internal_structure_2d_fem"]["layers"][i]["thickness"][ "values" ] = wt_opt["monopile.layer_thickness"][i, :].tolist() # Update floating platform and mooring if self.modeling_options["flags"]["floating"]: yaml_out = self.wt_init["components"]["floating_platform"] n_joints = self.modeling_options["floating"]["joints"]["n_joints"] for i in range(n_joints): yaml_out["joints"][i]["location"] = wt_opt["floating.location"][i, :].tolist() n_members = self.modeling_options["floating"]["members"]["n_members"] for i in range(n_members): name_member = self.modeling_options["floating"]["members"]["name"][i] idx = self.modeling_options["floating"]["members"]["name2idx"][name_member] yaml_out["members"][i]["outer_shape"]["outer_diameter"]["grid"] = wt_opt[ f"floating.memgrp{idx}.s" ].tolist() yaml_out["members"][i]["outer_shape"]["outer_diameter"]["values"] = wt_opt[ f"floating.memgrp{idx}.outer_diameter" ].tolist() istruct = yaml_out["members"][i]["internal_structure"] n_layers = self.modeling_options["floating"]["members"]["n_layers"][i] for j in range(n_layers): istruct["layers"][j]["thickness"]["grid"] = wt_opt[f"floating.memgrp{idx}.s"].tolist() istruct["layers"][j]["thickness"]["values"] = wt_opt[f"floating.memgrp{idx}.layer_thickness"][ j, : ].tolist() if "ring_stiffeners" in istruct: istruct["ring_stiffeners"]["web_height"] = float( wt_opt[f"floating.memgrp{idx}.ring_stiffener_web_height"] ) istruct["ring_stiffeners"]["web_thickness"] = float( wt_opt[f"floating.memgrp{idx}.ring_stiffener_web_thickness"] ) istruct["ring_stiffeners"]["flange_thickness"] = float( wt_opt[f"floating.memgrp{idx}.ring_stiffener_flange_thickness"] ) istruct["ring_stiffeners"]["flange_width"] = float( wt_opt[f"floating.memgrp{idx}.ring_stiffener_flange_width"] ) istruct["ring_stiffeners"]["spacing"] = float( wt_opt[f"floating.memgrp{idx}.ring_stiffener_spacing"] ) if "longitudinal_stiffeners" in istruct: istruct["longitudinal_stiffeners"]["web_height"] = float( wt_opt[f"floating.memgrp{idx}.axial_stiffener_web_height"] ) istruct["longitudinal_stiffeners"]["web_thickness"] = float( wt_opt[f"floating.memgrp{idx}.axial_stiffener_web_thickness"] ) istruct["longitudinal_stiffeners"]["flange_thickness"] = float( wt_opt[f"floating.memgrp{idx}.axial_stiffener_flange_thickness"] ) istruct["longitudinal_stiffeners"]["flange_width"] = float( wt_opt[f"floating.memgrp{idx}.axial_stiffener_flange_width"] ) istruct["longitudinal_stiffeners"]["spacing"] = float( wt_opt[f"floating.memgrp{idx}.axial_stiffener_spacing"] ) n_ballasts = self.modeling_options["floating"]["members"]["n_ballasts"][i] for j in range(n_ballasts): if self.modeling_options["floating"]["members"]["ballast_flag_member_" + name_member][j] == False: istruct["ballasts"][j]["volume"] = float(wt_opt[f"floating.memgrp{idx}.ballast_volume"][j]) if self.modeling_options["floating"]["members"]["n_axial_joints"][i] > 0: for j in range(self.modeling_options["floating"]["members"]["n_axial_joints"][i]): yaml_out["members"][i]["axial_joints"][j]["grid"] = float( wt_opt[f"floating.memgrp{idx}.grid_axial_joints"][j] ) if self.modeling_options["flags"]["mooring"]: n_lines = self.modeling_options["mooring"]["n_lines"] n_line_types = self.modeling_options["mooring"]["n_line_types"] line_names = [self.wt_init["components"]["mooring"]["line_types"][i]["name"] for i in range(n_line_types)] line_id = [self.wt_init["components"]["mooring"]["lines"][i]["line_type"] for i in range(n_lines)] for i in range(n_lines): self.wt_init["components"]["mooring"]["lines"][i]["unstretched_length"] = float( wt_opt["mooring.unstretched_length"][i] ) for jj, jname in enumerate(line_id): for ii, iname in enumerate(line_names): if jname == iname: self.wt_init["components"]["mooring"]["line_types"][ii]["diameter"] = float( wt_opt["mooring.line_diameter"][jj] ) # Update rotor nacelle assembly if self.modeling_options["flags"]["RNA"]: self.wt_init["components"]["RNA"] = {} self.wt_init["components"]["RNA"]["elastic_properties_mb"] = {} self.wt_init["components"]["RNA"]["elastic_properties_mb"]["mass"] = float(wt_opt["drivese.rna_mass"]) self.wt_init["components"]["RNA"]["elastic_properties_mb"]["inertia"] = wt_opt["drivese.rna_I_TT"].tolist() self.wt_init["components"]["RNA"]["elastic_properties_mb"]["center_mass"] = wt_opt[ "drivese.rna_cm" ].tolist() # Update rotor diameter and hub height if self.modeling_options["flags"]["blade"]: self.wt_init["assembly"]["rotor_diameter"] = float(wt_opt["blade.high_level_blade_props.rotor_diameter"]) self.wt_init["assembly"]["hub_height"] = float(wt_opt["high_level_tower_props.hub_height"]) # Update controller if self.modeling_options["flags"]["control"]: self.wt_init["control"]["torque"]["tsr"] = float(wt_opt["control.rated_TSR"]) # Write yamls with updated values sch.write_geometry_yaml(self.wt_init, fname_output) def write_options(self, fname_output): sch.write_modeling_yaml(self.modeling_options, fname_output) sch.write_analysis_yaml(self.analysis_options, fname_output) ``` #### File: landbosse/landbosse_omdao/landbosse.py ```python import warnings from math import ceil import numpy as np import openmdao.api as om from wisdem.landbosse.model.Manager import Manager from wisdem.landbosse.model.DefaultMasterInputDict import DefaultMasterInputDict from wisdem.landbosse.landbosse_omdao.OpenMDAODataframeCache import OpenMDAODataframeCache from wisdem.landbosse.landbosse_omdao.WeatherWindowCSVReader import read_weather_window with warnings.catch_warnings(): warnings.filterwarnings("ignore", message="numpy.ufunc size changed") import pandas as pd use_default_component_data = -1.0 class LandBOSSE(om.Group): def setup(self): # Add a tower section height variable. The default value of 30 m is for transportable tower sections. self.set_input_defaults("tower_section_length_m", 30.0, units="m") self.set_input_defaults("blade_drag_coefficient", use_default_component_data) # Unitless self.set_input_defaults("blade_lever_arm", use_default_component_data, units="m") self.set_input_defaults("blade_install_cycle_time", use_default_component_data, units="h") self.set_input_defaults("blade_offload_hook_height", use_default_component_data, units="m") self.set_input_defaults("blade_offload_cycle_time", use_default_component_data, units="h") self.set_input_defaults("blade_drag_multiplier", use_default_component_data) # Unitless self.set_input_defaults("turbine_spacing_rotor_diameters", 4) self.set_input_defaults("row_spacing_rotor_diameters", 10) self.set_input_defaults("commissioning_pct", 0.01) self.set_input_defaults("decommissioning_pct", 0.15) self.set_input_defaults("trench_len_to_substation_km", 50.0, units="km") self.set_input_defaults("interconnect_voltage_kV", 130.0, units="kV") self.set_input_defaults("foundation_height", 0.0, units="m") self.set_input_defaults("blade_mass", 8000.0, units="kg") self.set_input_defaults("hub_mass", 15.4e3, units="kg") self.set_input_defaults("nacelle_mass", 50e3, units="kg") self.set_input_defaults("tower_mass", 240e3, units="kg") self.set_input_defaults("turbine_rating_MW", 1500.0, units="kW") self.add_subsystem("landbosse", LandBOSSE_API(), promotes=["*"]) class LandBOSSE_API(om.ExplicitComponent): def setup(self): # Clear the cache OpenMDAODataframeCache._cache = {} self.setup_inputs() self.setup_outputs() self.setup_discrete_outputs() self.setup_discrete_inputs_that_are_not_dataframes() self.setup_discrete_inputs_that_are_dataframes() def setup_inputs(self): """ This method sets up the inputs. """ self.add_input("blade_drag_coefficient", use_default_component_data) # Unitless self.add_input("blade_lever_arm", use_default_component_data, units="m") self.add_input("blade_install_cycle_time", use_default_component_data, units="h") self.add_input("blade_offload_hook_height", use_default_component_data, units="m") self.add_input("blade_offload_cycle_time", use_default_component_data, units="h") self.add_input("blade_drag_multiplier", use_default_component_data) # Unitless # Even though LandBOSSE doesn't use foundation height, TowerSE does, # and foundation height can be used with hub height to calculate # tower height. self.add_input("foundation_height", 0.0, units="m") self.add_input("tower_section_length_m", 30.0, units="m") self.add_input("nacelle_mass", 0.0, units="kg") self.add_input("tower_mass", 0.0, units="kg") # A discrete input below, number_of_blades, gives the number of blades # on the rotor. # # The total mass of the rotor nacelle assembly (RNA) is the following # sum: # # (blade_mass * number_of_blades) + nac_mass + hub_mass self.add_input("blade_mass", use_default_component_data, units="kg", desc="The mass of one rotor blade.") self.add_input("hub_mass", use_default_component_data, units="kg", desc="Mass of the rotor hub") self.add_input( "crane_breakdown_fraction", val=0.0, desc="0 means the crane is never broken down. 1 means it is broken down every turbine.", ) self.add_input("construct_duration", val=9, desc="Total project construction time (months)") self.add_input("hub_height_meters", val=80, units="m", desc="Hub height m") self.add_input("rotor_diameter_m", val=77, units="m", desc="Rotor diameter m") self.add_input("wind_shear_exponent", val=0.2, desc="Wind shear exponent") self.add_input("turbine_rating_MW", val=1.5, units="MW", desc="Turbine rating MW") self.add_input("fuel_cost_usd_per_gal", val=1.5, desc="Fuel cost USD/gal") self.add_input( "breakpoint_between_base_and_topping_percent", val=0.8, desc="Breakpoint between base and topping (percent)" ) # Could not place units in turbine_spacing_rotor_diameters self.add_input("turbine_spacing_rotor_diameters", desc="Turbine spacing (times rotor diameter)", val=4) self.add_input("depth", units="m", desc="Foundation depth m", val=2.36) self.add_input("rated_thrust_N", units="N", desc="Rated Thrust (N)", val=5.89e5) # Can't set units self.add_input("bearing_pressure_n_m2", desc="Bearing Pressure (n/m2)", val=191521) self.add_input("gust_velocity_m_per_s", units="m/s", desc="50-year Gust Velocity (m/s)", val=59.5) self.add_input("road_length_adder_m", units="m", desc="Road length adder (m)", val=5000) # Can't set units self.add_input("fraction_new_roads", desc="Percent of roads that will be constructed (0.0 - 1.0)", val=0.33) self.add_input("road_quality", desc="Road Quality (0-1)", val=0.6) self.add_input("line_frequency_hz", units="Hz", desc="Line Frequency (Hz)", val=60) # Can't set units self.add_input("row_spacing_rotor_diameters", desc="Row spacing (times rotor diameter)", val=10) self.add_input( "trench_len_to_substation_km", units="km", desc="Combined Homerun Trench Length to Substation (km)", val=50 ) self.add_input("distance_to_interconnect_mi", units="mi", desc="Distance to interconnect (miles)", val=5) self.add_input("interconnect_voltage_kV", units="kV", desc="Interconnect Voltage (kV)", val=130) self.add_input( "critical_speed_non_erection_wind_delays_m_per_s", units="m/s", desc="Non-Erection Wind Delay Critical Speed (m/s)", val=15, ) self.add_input( "critical_height_non_erection_wind_delays_m", units="m", desc="Non-Erection Wind Delay Critical Height (m)", val=10, ) self.add_discrete_input("road_distributed_winnd", val=False) self.add_input("road_width_ft", units="ft", desc="Road width (ft)", val=20) self.add_input("road_thickness", desc="Road thickness (in)", val=8) self.add_input("crane_width", units="m", desc="Crane width (m)", val=12.2) self.add_input("overtime_multiplier", desc="Overtime multiplier", val=1.4) self.add_input("markup_contingency", desc="Markup contingency", val=0.03) self.add_input("markup_warranty_management", desc="Markup warranty management", val=0.0002) self.add_input("markup_sales_and_use_tax", desc="Markup sales and use tax", val=0) self.add_input("markup_overhead", desc="Markup overhead", val=0.05) self.add_input("markup_profit_margin", desc="Markup profit margin", val=0.05) self.add_input("Mass tonne", val=(1.0,), desc="", units="t") self.add_input( "development_labor_cost_usd", val=1e6, desc="The cost of labor in the development phase", units="USD" ) # Disabled due to Pandas conflict right now. self.add_input("labor_cost_multiplier", val=1.0, desc="Labor cost multiplier") self.add_input("commissioning_pct", 0.01) self.add_input("decommissioning_pct", 0.15) def setup_discrete_inputs_that_are_not_dataframes(self): """ This method sets up the discrete inputs that aren't dataframes. """ self.add_discrete_input("num_turbines", val=100, desc="Number of turbines in project") # Since 3 blades are so common on rotors, that is a reasonable default # value that will not need to be checked during component list # assembly. self.add_discrete_input("number_of_blades", val=3, desc="Number of blades on the rotor") self.add_discrete_input( "user_defined_home_run_trench", val=0, desc="Flag for user-defined home run trench length (0 = no; 1 = yes)" ) self.add_discrete_input( "allow_same_flag", val=False, desc="Allow same crane for base and topping (True or False)", ) self.add_discrete_input( "hour_day", desc="Dictionary of normal and long hours for construction in a day in the form of {'long': 24, 'normal': 10}", val={"long": 24, "normal": 10}, ) self.add_discrete_input( "time_construct", desc="One of the keys in the hour_day dictionary to specify how many hours per day construction happens.", val="normal", ) self.add_discrete_input( "user_defined_distance_to_grid_connection", desc="Flag for user-defined home run trench length (True or False)", val=False, ) # Could not place units in rate_of_deliveries self.add_discrete_input("rate_of_deliveries", val=10, desc="Rate of deliveries (turbines per week)") self.add_discrete_input("new_switchyard", desc="New Switchyard (True or False)", val=True) self.add_discrete_input("num_hwy_permits", desc="Number of highway permits", val=10) self.add_discrete_input("num_access_roads", desc="Number of access roads", val=2) def setup_discrete_inputs_that_are_dataframes(self): """ This sets up the default inputs that are dataframes. They are separate because they hold the project data and the way we need to hold their data is different. They have defaults loaded at the top of the file which can be overridden outside by setting the properties listed below. """ # Read in default sheets for project data default_project_data = OpenMDAODataframeCache.read_all_sheets_from_xlsx("ge15_public") self.add_discrete_input( "site_facility_building_area_df", val=default_project_data["site_facility_building_area"], desc="site_facility_building_area DataFrame", ) self.add_discrete_input( "components", val=default_project_data["components"], desc="Dataframe of components for tower, blade, nacelle", ) self.add_discrete_input( "crane_specs", val=default_project_data["crane_specs"], desc="Dataframe of specifications of cranes" ) self.add_discrete_input( "weather_window", val=read_weather_window(default_project_data["weather_window"]), desc="Dataframe of wind toolkit data", ) self.add_discrete_input("crew", val=default_project_data["crew"], desc="Dataframe of crew configurations") self.add_discrete_input( "crew_price", val=default_project_data["crew_price"], desc="Dataframe of costs per hour for each type of worker.", ) self.add_discrete_input( "equip", val=default_project_data["equip"], desc="Collections of equipment to perform erection operations." ) self.add_discrete_input( "equip_price", val=default_project_data["equip_price"], desc="Prices for various type of equipment." ) self.add_discrete_input("rsmeans", val=default_project_data["rsmeans"], desc="RSMeans price data") self.add_discrete_input( "cable_specs", val=default_project_data["cable_specs"], desc="cable specs for collection system" ) self.add_discrete_input( "material_price", val=default_project_data["material_price"], desc="Prices of materials for foundations and roads", ) self.add_discrete_input("project_data", val=default_project_data, desc="Dictionary of all dataframes of data") def setup_outputs(self): """ This method sets up the continuous outputs. This is where total costs and installation times go. To see how cost totals are calculated see, the compute_total_bos_costs method below. """ self.add_output( "bos_capex", 0.0, units="USD", desc="Total BOS CAPEX not including commissioning or decommissioning." ) self.add_output( "bos_capex_kW", 0.0, units="USD/kW", desc="Total BOS CAPEX per kW not including commissioning or decommissioning.", ) self.add_output( "total_capex", 0.0, units="USD", desc="Total BOS CAPEX including commissioning and decommissioning." ) self.add_output( "total_capex_kW", 0.0, units="USD/kW", desc="Total BOS CAPEX per kW including commissioning and decommissioning.", ) self.add_output("installation_capex", 0.0, units="USD", desc="Total foundation and erection installation cost.") self.add_output( "installation_capex_kW", 0.0, units="USD", desc="Total foundation and erection installation cost per kW." ) self.add_output("installation_time_months", 0.0, desc="Total balance of system installation time (months).") def setup_discrete_outputs(self): """ This method sets up discrete outputs. """ self.add_discrete_output( "landbosse_costs_by_module_type_operation", desc="The costs by module, type and operation", val=None ) self.add_discrete_output( "landbosse_details_by_module", desc="The details from the run of LandBOSSE. This includes some costs, but mostly other things", val=None, ) self.add_discrete_output("erection_crane_choice", desc="The crane choices for erection.", val=None) self.add_discrete_output( "erection_component_name_topvbase", desc="List of components and whether they are a topping or base operation", val=None, ) self.add_discrete_output( "erection_components", desc="List of components with their values modified from the defaults.", val=None ) def compute(self, inputs, outputs, discrete_inputs=None, discrete_outputs=None): """ This runs the ErectionCost module using the inputs and outputs into and out of this module. Note: inputs, discrete_inputs are not dictionaries. They do support [] notation. inputs is of class 'openmdao.vectors.default_vector.DefaultVector' discrete_inputs is of class openmdao.core.component._DictValues. Other than [] brackets, they do not behave like dictionaries. See the following documentation for details. http://openmdao.org/twodocs/versions/latest/_srcdocs/packages/vectors/default_vector.html https://mdolab.github.io/OpenAeroStruct/_modules/openmdao/core/component.html Parameters ---------- inputs : openmdao.vectors.default_vector.DefaultVector A dictionary-like object with NumPy arrays that hold float inputs. Note that since these are NumPy arrays, they need indexing to pull out simple float64 values. outputs : openmdao.vectors.default_vector.DefaultVector A dictionary-like object to store outputs. discrete_inputs : openmdao.core.component._DictValues A dictionary-like with the non-numeric inputs (like pandas.DataFrame) discrete_outputs : openmdao.core.component._DictValues A dictionary-like for non-numeric outputs (like pandas.DataFrame) """ # Put the inputs together and run all the modules master_output_dict = dict() master_input_dict = self.prepare_master_input_dictionary(inputs, discrete_inputs) manager = Manager(master_input_dict, master_output_dict) result = manager.execute_landbosse("WISDEM") # Check if everything executed correctly if result != 0: raise Exception("LandBOSSE didn't execute correctly") # Gather the cost and detail outputs costs_by_module_type_operation = self.gather_costs_from_master_output_dict(master_output_dict) discrete_outputs["landbosse_costs_by_module_type_operation"] = costs_by_module_type_operation details = self.gather_details_from_master_output_dict(master_output_dict) discrete_outputs["landbosse_details_by_module"] = details # This is where we have access to the modified components, so put those # in the outputs of the component discrete_outputs["erection_components"] = master_input_dict["components"] # Now get specific outputs. These have been refactored to methods that work # with each module so as to keep this method as compact as possible. self.gather_specific_erection_outputs(master_output_dict, outputs, discrete_outputs) # Compute the total BOS costs self.compute_total_bos_costs(costs_by_module_type_operation, master_output_dict, inputs, outputs) def prepare_master_input_dictionary(self, inputs, discrete_inputs): """ This prepares a master input dictionary by applying all the necessary modifications to the inputs. Parameters ---------- inputs : openmdao.vectors.default_vector.DefaultVector A dictionary-like object with NumPy arrays that hold float inputs. Note that since these are NumPy arrays, they need indexing to pull out simple float64 values. discrete_inputs : openmdao.core.component._DictValues A dictionary-like with the non-numeric inputs (like pandas.DataFrame) Returns ------- dict The prepared master input to go to the Manager. """ inputs_dict = {key: inputs[key][0] for key in inputs.keys()} discrete_inputs_dict = {key: value for key, value in discrete_inputs.items()} incomplete_input_dict = {**inputs_dict, **discrete_inputs_dict} # Modify the default component data if needed and copy it into the # appropriate values of the input dictionary. modified_components = self.modify_component_lists(inputs, discrete_inputs) incomplete_input_dict["project_data"]["components"] = modified_components incomplete_input_dict["components"] = modified_components # FoundationCost needs to have all the component data split into separate # NumPy arrays. incomplete_input_dict["component_data"] = modified_components for component in incomplete_input_dict["component_data"].keys(): incomplete_input_dict[component] = np.array(incomplete_input_dict["component_data"][component]) # These are aliases because parts of the code call the same thing by # difference names. incomplete_input_dict["crew_cost"] = discrete_inputs["crew_price"] incomplete_input_dict["cable_specs_pd"] = discrete_inputs["cable_specs"] # read in RSMeans per diem: crew_cost = discrete_inputs["crew_price"] crew_cost = crew_cost.set_index("Labor type ID", drop=False) incomplete_input_dict["rsmeans_per_diem"] = crew_cost.loc["RSMeans", "Per diem USD per day"] # Calculate project size in megawatts incomplete_input_dict["project_size_megawatts"] = float( discrete_inputs["num_turbines"] * inputs["turbine_rating_MW"] ) # Needed to avoid distributed wind keys incomplete_input_dict["road_distributed_wind"] = False defaults = DefaultMasterInputDict() master_input_dict = defaults.populate_input_dict(incomplete_input_dict) return master_input_dict def gather_costs_from_master_output_dict(self, master_output_dict): """ This method extract all the cost_by_module_type_operation lists for output in an Excel file. It finds values for the keys ending in '_module_type_operation'. It then concatenates them together so they can be easily written to a .csv or .xlsx On every row, it includes the: Rotor diameter m Turbine rating MW Number of turbines This enables easy mapping of new columns if need be. The columns have spaces in the names so that they can be easily written to a user-friendly output. Parameters ---------- runs_dict : dict Values are the names of the projects. Keys are the lists of dictionaries that are lines for the .csv Returns ------- list List of dicts to write to the .csv. """ line_items = [] # Gather the lists of costs cost_lists = [value for key, value in master_output_dict.items() if key.endswith("_module_type_operation")] # Flatten the list of lists that is the result of the gathering for cost_list in cost_lists: line_items.extend(cost_list) # Filter out the keys needed and rename them to meaningful values final_costs = [] for line_item in line_items: item = { "Module": line_item["module"], "Type of cost": line_item["type_of_cost"], "Cost / kW": line_item["usd_per_kw_per_project"], "Cost / project": line_item["cost_per_project"], "Cost / turbine": line_item["cost_per_turbine"], "Number of turbines": line_item["num_turbines"], "Rotor diameter (m)": line_item["rotor_diameter_m"], "Turbine rating (MW)": line_item["turbine_rating_MW"], "Project ID with serial": line_item["project_id_with_serial"], } final_costs.append(item) return final_costs def gather_details_from_master_output_dict(self, master_output_dict): """ This extracts the detail lists from all the modules to output the detailed non-cost data from the model run. Parameters ---------- master_output_dict : dict The master output dict with the finished module output in it. Returns ------- list List of dicts with detailed data. """ line_items = [] # Gather the lists of costs details_lists = [value for key, value in master_output_dict.items() if key.endswith("_csv")] # Flatten the list of lists for details_list in details_lists: line_items.extend(details_list) return line_items def gather_specific_erection_outputs(self, master_output_dict, outputs, discrete_outputs): """ This method gathers specific outputs from the ErectionCost module and places them on the outputs. The method does not return anything. Rather, it places the outputs directly on the continuous of discrete outputs. Parameters ---------- master_output_dict: dict The master output dictionary out of LandBOSSE outputs : openmdao.vectors.default_vector.DefaultVector A dictionary-like object to store outputs. discrete_outputs : openmdao.core.component._DictValues A dictionary-like for non-numeric outputs (like pandas.DataFrame) """ discrete_outputs["erection_crane_choice"] = master_output_dict["crane_choice"] discrete_outputs["erection_component_name_topvbase"] = master_output_dict["component_name_topvbase"] def compute_total_bos_costs(self, costs_by_module_type_operation, master_output_dict, inputs, outputs): """ This computes the total BOS costs from the master output dictionary and places them on the necessary outputs. Parameters ---------- costs_by_module_type_operation: List[Dict[str, Any]] The lists of costs by module, type and operation. master_output_dict: Dict[str, Any] The master output dictionary from the run. Used to obtain the construction time, outputs : openmdao.vectors.default_vector.DefaultVector The outputs in which to place the results of the computations """ bos_per_kw = 0.0 bos_per_project = 0.0 installation_per_project = 0.0 installation_per_kW = 0.0 for row in costs_by_module_type_operation: bos_per_kw += row["Cost / kW"] bos_per_project += row["Cost / project"] if row["Module"] in ["ErectionCost", "FoundationCost"]: installation_per_project += row["Cost / project"] installation_per_kW += row["Cost / kW"] commissioning_pct = inputs["commissioning_pct"] decommissioning_pct = inputs["decommissioning_pct"] commissioning_per_project = bos_per_project * commissioning_pct decomissioning_per_project = bos_per_project * decommissioning_pct commissioning_per_kW = bos_per_kw * commissioning_pct decomissioning_per_kW = bos_per_kw * decommissioning_pct outputs["total_capex_kW"] = np.round(bos_per_kw + commissioning_per_kW + decomissioning_per_kW, 0) outputs["total_capex"] = np.round(bos_per_project + commissioning_per_project + decomissioning_per_project, 0) outputs["bos_capex"] = round(bos_per_project, 0) outputs["bos_capex_kW"] = round(bos_per_kw, 0) outputs["installation_capex"] = round(installation_per_project, 0) outputs["installation_capex_kW"] = round(installation_per_kW, 0) actual_construction_months = master_output_dict["actual_construction_months"] outputs["installation_time_months"] = round(actual_construction_months, 0) def modify_component_lists(self, inputs, discrete_inputs): """ This method modifies the previously loaded default component lists with data about blades, tower sections, if they have been provided as input to the component. It only modifies the project component data if default data for the proper inputs have been overridden. The default blade data is assumed to be the first component that begins with the word "Blade" This should take mass from the tower in WISDEM. Ideally, this should have an input for transportable tower 4.3, large diameter steel tower LDST 6.2m, or unconstrained key stone tower. Or give warnings about the boundaries that we assume. Parameters ---------- inputs : openmdao.vectors.default_vector.DefaultVector A dictionary-like object with NumPy arrays that hold float inputs. Note that since these are NumPy arrays, they need indexing to pull out simple float64 values. discrete_inputs : openmdao.core.component._DictValues A dictionary-like with the non-numeric inputs (like pandas.DataFrame) Returns ------- pd.DataFrame The dataframe with the modified components. """ input_components = discrete_inputs["components"] # This list is a sequence of pd.Series instances that have the # specifications of each component. output_components_list = [] # Need to convert kg to tonnes kg_per_tonne = 1000 # Get the hub height hub_height_meters = inputs["hub_height_meters"][0] # Make the nacelle. This does not include the hub or blades. nacelle_mass_kg = inputs["nacelle_mass"][0] nacelle = input_components[input_components["Component"].str.startswith("Nacelle")].iloc[0].copy() if inputs["nacelle_mass"] != use_default_component_data: nacelle["Mass tonne"] = nacelle_mass_kg / kg_per_tonne nacelle["Component"] = "Nacelle" nacelle["Lift height m"] = hub_height_meters output_components_list.append(nacelle) # Make the hub hub_mass_kg = inputs["hub_mass"][0] hub = input_components[input_components["Component"].str.startswith("Hub")].iloc[0].copy() hub["Lift height m"] = hub_height_meters if hub_mass_kg != use_default_component_data: hub["Mass tonne"] = hub_mass_kg / kg_per_tonne output_components_list.append(hub) # Make blades blade = input_components[input_components["Component"].str.startswith("Blade")].iloc[0].copy() # There is always a hub height, so use that as the lift height blade["Lift height m"] = hub_height_meters if inputs["blade_drag_coefficient"][0] != use_default_component_data: blade["Coeff drag"] = inputs["blade_drag_coefficient"][0] if inputs["blade_lever_arm"][0] != use_default_component_data: blade["Lever arm m"] = inputs["blade_lever_arm"][0] if inputs["blade_install_cycle_time"][0] != use_default_component_data: blade["Cycle time installation hrs"] = inputs["blade_install_cycle_time"][0] if inputs["blade_offload_hook_height"][0] != use_default_component_data: blade["Offload hook height m"] = hub_height_meters if inputs["blade_offload_cycle_time"][0] != use_default_component_data: blade["Offload cycle time hrs"] = inputs["blade_offload_cycle_time"] if inputs["blade_drag_multiplier"][0] != use_default_component_data: blade["Multiplier drag rotor"] = inputs["blade_drag_multiplier"] if inputs["blade_mass"][0] != use_default_component_data: blade["Mass tonne"] = inputs["blade_mass"][0] / kg_per_tonne # Assume that number_of_blades always has a reasonable value. It's # default count when the discrete input is declared of 3 is always # reasonable unless overridden by another input. number_of_blades = discrete_inputs["number_of_blades"] for i in range(number_of_blades): component = f"Blade {i + 1}" blade_i = blade.copy() blade_i["Component"] = component output_components_list.append(blade_i) # Make tower sections tower_mass_tonnes = inputs["tower_mass"][0] / kg_per_tonne tower_height_m = hub_height_meters - inputs["foundation_height"][0] default_tower_section = input_components[input_components["Component"].str.startswith("Tower")].iloc[0] tower_sections = self.make_tower_sections(tower_mass_tonnes, tower_height_m, default_tower_section) output_components_list.extend(tower_sections) # Make the output component dataframe and return it. output_components = pd.DataFrame(output_components_list) return output_components @staticmethod def make_tower_sections(tower_mass_tonnes, tower_height_m, default_tower_section): """ This makes tower sections for a transportable tower. Approximations: - Weight is distributed uniformly among the sections - The number of sections is either the maximum allowed by mass or the maximum allowed by height, to maintain transportability. For each tower section, calculate: - lift height - lever arm - surface area The rest of values should remain at their defaults. Note: Tower sections are constrained in maximum diameter to 4.5 m. However, their surface area is calculated with a 1.3 m radius to agree more closely with empirical data. Also, tower sections are approximated as cylinders. Parameters ---------- tower_mass_tonnes: float The total tower mass in tonnes tower_height_m: float The total height of the tower in meters. default_tower_section: pd.Series There are a number of values that are kept constant in creating the tower sections. This series holds the values. Returns ------- List[pd.Series] A list of series to be appended onto an output component list. It is not a dataframe, because it is faster to append to a list and make a dataframe once. """ tower_radius = 1.3 number_of_sections = max(ceil(tower_height_m / 30), ceil(tower_mass_tonnes / 80)) tower_section_height_m = tower_height_m / number_of_sections tower_section_mass = tower_mass_tonnes / number_of_sections tower_section_surface_area_m2 = np.pi * tower_section_height_m * (tower_radius ** 2) sections = [] for i in range(number_of_sections): lift_height_m = (i * tower_section_height_m) + tower_section_height_m lever_arm = (i * tower_section_height_m) + (0.5 * tower_section_height_m) name = f"Tower {i + 1}" section = default_tower_section.copy() section["Component"] = name section["Mass tonne"] = tower_section_mass section["Lift height m"] = lift_height_m section["Surface area sq m"] = tower_section_surface_area_m2 section["Section height m"] = tower_section_height_m section["Lever arm m"] = lever_arm sections.append(section) return sections ``` #### File: landbosse/model/DevelopmentCost.py ```python import math import traceback import pandas as pd from wisdem.landbosse.model.CostModule import CostModule class DevelopmentCost(CostModule): """ **DevelopmentCost.py -Created by <NAME> on June 30, 2019 Creating a simple DevelopmentCost module for now. This module reads in a user input from the detailed input Excel file and outputs this in the detailed output excel file. """ def __init__(self, input_dict, output_dict, project_name): self.input_dict = input_dict self.output_dict = output_dict self.project_name = project_name def calculate_costs(self): """ Sets the total cost for development. If there is a key of 'development_labor_cost_usd' in the input dictionary, then that is used as the development cost and a dataframe is created that holds that labor cost. If the key is not present in the dictionary, the development cost is retrieved from the project data. Returns ------------------------------------ total_development_cost : pd.DataFrame data frame with total development cost by type of cost (e.g., Labor) """ if "development_labor_cost_usd" in self.input_dict: total_development_cost = pd.DataFrame( [ {"Type of cost": "Equipment rental", "Cost USD": 0, "Phase of construction": "Development"}, { "Type of cost": "Labor", "Cost USD": self.input_dict["development_labor_cost_usd"], "Phase of construction": "Development", }, {"Type of cost": "Materials", "Cost USD": 0, "Phase of construction": "Development"}, {"Type of cost": "Mobilization", "Cost USD": 0, "Phase of construction": "Development"}, {"Type of cost": "Other", "Cost USD": 0, "Phase of construction": "Development"}, ] ) else: total_development_cost = self.input_dict["development_df"] self.output_dict["total_development_cost"] = total_development_cost return total_development_cost def outputs_for_detailed_tab(self): """ Creates a list of dictionaries which can be used on their own or used to make a dataframe. Must be called after self.run_module() Returns ------- list(dict) A list of dicts, with each dict representing a row of the data. """ result = [] module = type(self).__name__ for _, row in self.output_dict["total_development_cost"].iterrows(): dashed_row = "{} - {} - {}".format( row["Type of cost"], row["Phase of construction"], math.ceil(row["Cost USD"]) ) result.append( { "unit": "", "type": "dataframe", "variable_df_key_col_name": "Type of Cost - Phase of Construction - Cost in USD", "value": dashed_row, "last_number": row[2], } ) for _dict in result: _dict["project_id_with_serial"] = self.project_name _dict["module"] = module self.output_dict["development_cost_csv"] = result return result def run_module(self): """ Runs the DevelopmentCost module and populates the IO dictionaries with calculated values. """ try: self.calculate_costs() self.outputs_for_detailed_tab() self.output_dict["development_module_type_operation"] = self.outputs_for_costs_by_module_type_operation( input_df=self.output_dict["total_development_cost"], project_id=self.project_name, total_or_turbine=True ) return 0, 0 # module ran successfully except Exception as error: traceback.print_exc() print(f"Fail {self.project_name} DevelopmentCost") return 1, error # module did not run successfully ``` #### File: WISDEM/wisdem/main.py ```python import numpy as np import os import sys from wisdem.glue_code.runWISDEM import run_wisdem from wisdem.inputs import load_yaml from wisdem.inputs.gui import run as guirun np.warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning) def read_master_file(fyaml): if os.path.exists(fyaml): print("...Reading master input file,", fyaml) else: raise FileNotFoundError("The master input file, " + fyaml + ", cannot be found.") input_yaml = load_yaml(fyaml) check_list = ["geometry_file", "modeling_file", "analysis_file"] for f in check_list: if not os.path.exists(input_yaml[f]): raise FileNotFoundError("The " + f + " entry, " + input_yaml[f] + ", cannot be found.") return input_yaml def wisdem_cmd(): usg_msg = "WISDEM command line launcher\n Arguments: \n wisdem : Starts GUI\n wisdem input.yaml : Runs master yaml file that specifies geometry, modeling, and analysis files\n wisdem geom.yaml modeling.yaml analysis.yaml : Runs specific geometry, modeling, and analysis files\n" # Look for help message help_flag = False for k in range(len(sys.argv)): if sys.argv[k] in ["-h", "--help"]: help_flag = True if help_flag: print(usg_msg) elif len(sys.argv) == 1: # Launch GUI guirun() elif len(sys.argv) == 2: # Grab master input file fyaml = sys.argv[1] if os.path.exists(fyaml): print("...Reading master input file,", fyaml) else: raise FileNotFoundError("The master input file, " + fyaml + ", cannot be found.") yaml_dict = load_yaml(fyaml) check_list = ["geometry_file", "modeling_file", "analysis_file"] for f in check_list: if not os.path.exists(yaml_dict[f]): raise FileNotFoundError("The " + f + " entry, " + yaml_dict[f] + ", cannot be found.") # Run WISDEM (also saves output) wt_opt, modeling_options, opt_options = run_wisdem( yaml_dict["geometry_file"], yaml_dict["modeling_file"], yaml_dict["analysis_file"] ) elif len(sys.argv) == 4: check_list = ["geometry", "modeling", "analysis"] for k, f in enumerate(sys.argv[1:]): if not os.path.exists(f): raise FileNotFoundError("The " + check_list[k] + " file, " + f + ", cannot be found.") # Run WISDEM (also saves output) wt_opt, modeling_options, opt_options = run_wisdem(sys.argv[1], sys.argv[2], sys.argv[3]) else: # As if asked for help print("Unrecognized set of inputs. Usage:") print(usg_msg) sys.exit(0) if __name__ == "__main__": wisdem_cmd() ``` #### File: wisdem/moorpy/body.py ```python import numpy as np from wisdem.moorpy.helpers import ( getH, printVec, rotatePosition, rotationMatrix, transformPosition, translateForce3to6DOF, ) class Body: """A class for any object in the mooring system that will have its own reference frame""" def __init__(self, mooringSys, num, type, r6, m=0, v=0, rCG=np.zeros(3), AWP=0, rM=np.zeros(3), f6Ext=np.zeros(6)): """Initialize Body attributes Parameters ---------- mooringSys : system object The system object that contains the body object num : int indentifier number type : int the body type: 0 free to move, 1 fixed, -1 coupled externally r6 : array 6DOF position and orientation vector [m, rad] m : float, optional mass, centered at CG [kg]. The default is 0. v : float, optional volume, centered at reference point [m^3]. The default is 0. rCG : array, optional center of gravity position in body reference frame [m]. The default is np.zeros(3). AWP : float, optional waterplane area - used for hydrostatic heave stiffness if nonzero [m^2]. The default is 0. rM : float or array, optional coorindates or height of metacenter relative to body reference frame [m]. The default is np.zeros(3). f6Ext : array, optional applied external forces and moments vector in global orientation (not including weight/buoyancy) [N]. The default is np.zeros(6). attachedP: list, int list of ID numbers of any Points attached to the Body rPointRel: list, float list of coordinates of each attached Point relative to the Body reference frame [m] Returns ------- None. """ self.sys = mooringSys # store a reference to the overall mooring system (instance of System class) self.number = num self.type = type # 0 free to move, or -1 coupled externally self.r6 = np.array(r6, dtype=np.float_) # 6DOF position and orientation vector [m, rad] self.m = m # mass, centered at CG [kg] self.v = v # volume, assumed centered at reference point [m^3] self.rCG = np.array(rCG, dtype=np.float_) # center of gravity position in body reference frame [m] self.AWP = AWP # waterplane area - used for hydrostatic heave stiffness if nonzero [m^2] if np.isscalar(rM): self.rM = np.array( [0, 0, rM], dtype=np.float_ ) # coordinates of body metacenter relative to body reference frame [m] else: self.rM = np.array(rM, dtype=np.float_) self.f6Ext = np.array( f6Ext, dtype=np.float_ ) # for adding external forces and moments in global orientation (not including weight/buoyancy) self.attachedP = [] # ID numbers of any Points attached to the Body self.rPointRel = [] # coordinates of each attached Point relative to the Body reference frame self.attachedR = [] # ID numbers of any Rods attached to the Body (not yet implemented) self.sharedLineTheta = [] self.fairR = 0.0 self.R = np.eye(3) # body orientation rotation matrix # print("Created Body "+str(self.number)) def attachPoint(self, pointID, rAttach): """Adds a Point to the Body, at the specified relative position on the body. Parameters ---------- pointID : int The identifier ID number of a point rAttach : array The position of the point relative to the body's frame [m] Returns ------- None. """ self.attachedP.append(pointID) self.rPointRel.append(np.array(rAttach)) # print("attached Point "+str(pointID)+" to Body "+str(self.number)) def setPosition(self, r6): """Sets the position of the Body, along with that of any dependent objects. Parameters ---------- r6 : array 6DOF position and orientation vector of the body [m, rad] Raises ------ ValueError If the length of the input r6 array is not of length 6 Returns ------- None. """ if len(r6) == 6: self.r6 = np.array(r6, dtype=np.float_) # update the position of the Body itself else: raise ValueError( f"Body setPosition method requires an argument of size 6, but size {len(r6):d} was provided" ) self.R = rotationMatrix(self.r6[3], self.r6[4], self.r6[5]) # update body rotation matrix # update the position of any attached Points for PointID, rPointRel in zip(self.attachedP, self.rPointRel): rPoint = np.matmul(self.R, rPointRel) + self.r6[:3] # rPoint = transformPosition(rPointRel, r6) self.sys.pointList[PointID - 1].setPosition(rPoint) if self.sys.display > 3: printVec(rPoint) breakpoint() def getForces(self, lines_only=False): """Sums the forces and moments on the Body, including its own plus those from any attached objects. Parameters ---------- lines_only : boolean, optional An option for calculating forces from just the mooring lines or not. The default is False. Returns ------- f6 : array The 6DOF forces and moments applied to the body in its current position [N, Nm] """ f6 = np.zeros(6) # TODO: could save time in below by storing the body's rotation matrix when it's position is set rather than # recalculating it in each of the following function calls. if lines_only == False: # add weight, which may result in moments as well as a force rCG_rotated = rotatePosition( self.rCG, self.r6[3:] ) # relative position of CG about body ref point in unrotated reference frame f6 += translateForce3to6DOF( rCG_rotated, np.array([0, 0, -self.m * self.sys.g]) ) # add to net forces/moments # add buoyancy force and moments if applicable (this can include hydrostatic restoring moments # if rM is considered the metacenter location rather than the center of buoyancy) rM_rotated = rotatePosition( self.rM, self.r6[3:] ) # relative position of metacenter about body ref point in unrotated reference frame f6 += translateForce3to6DOF( rM_rotated, np.array([0, 0, self.sys.rho * self.sys.g * self.v]) ) # add to net forces/moments # add hydrostatic heave stiffness (if AWP is nonzero) f6[2] -= self.sys.rho * self.sys.g * self.AWP * self.r6[2] # add any externally applied forces/moments (in global orientation) f6 += self.f6Ext # add forces from any attached Points (and their attached lines) for PointID, rPointRel in zip(self.attachedP, self.rPointRel): fPoint = self.sys.pointList[PointID - 1].getForces(lines_only=lines_only) # get net force on attached Point rPoint_rotated = rotatePosition( rPointRel, self.r6[3:] ) # relative position of Point about body ref point in unrotated reference frame f6 += translateForce3to6DOF( rPoint_rotated, fPoint ) # add net force and moment resulting from its position to the Body # All forces and moments on the body should now be summed, and are in global/unrotated orientations. # For application to the body DOFs, convert the moments to be about the body's local/rotated x/y/z axes <<< do we want this in all cases? rotMat = rotationMatrix(*self.r6[3:]) # get rotation matrix for body moment_about_body_ref = np.matmul( rotMat.T, f6[3:] ) # transform moments so that they are about the body's local/rotated axes f6[3:] = moment_about_body_ref # use these moments return f6 def getStiffness(self, X=[], tol=0.0001, dx=0.1): """Gets the stiffness matrix of a Body due only to mooring lines with all other objects free to equilibriate. The rotational indicies of the stiffness matrix correspond to the local/rotated axes of the body rather than the global x/y/z directions. Parameters ---------- X1 : array The position vector (6DOF) of the main axes of the Body at which the stiffness matrix is to be calculated. dx : float, optional The change in displacement to be used for calculating the change in force. The default is 0.01. Returns ------- K : matrix The stiffness matrix of the body at the given position X1. """ # print("Getting Body "+str(self.number)+" stiffness matrix...") if len(X) == 6: X1 = np.array(X) elif len(X) == 0: X1 = self.r6 else: raise ValueError("Body.getStiffness expects the optional X parameter to be size 6") # set this Body's type to fixed so mooring system equilibrium response to its displacements can be found type0 = self.type # store original type to restore later self.type = 1 # set type to 1 (not free) so that it won't be adjusted when finding equilibrium # ensure this Body is positioned at the desired linearization point self.setPosition(X1) # set position to linearization point self.sys.solveEquilibrium3(tol=tol) # find equilibrium of mooring system given this Body in current position f6 = self.getForces(lines_only=True) # get the net 6DOF forces/moments from any attached lines # Build a stiffness matrix by perturbing each DOF in turn K = np.zeros([6, 6]) for i in range(len(K)): X2 = X1 + np.insert(np.zeros(5), i, dx) # calculate perturbed Body position by adding dx to DOF in question self.setPosition(X2) # perturb this Body's position self.sys.solveEquilibrium3(tol=tol) # find equilibrium of mooring system given this Body's new position f6_2 = self.getForces(lines_only=True) # get the net 6DOF forces/moments from any attached lines K[i, :] = -(f6_2 - f6) / dx # get stiffness in this DOF via finite difference and add to matrix column # ----------------- restore the system back to previous positions ------------------ self.setPosition(X1) # set position to linearization point self.sys.solveEquilibrium3(tol=tol) # find equilibrium of mooring system given this Body in current position self.type = type0 # restore the Body's type to its original value return K def getStiffnessA(self, lines_only=False): """Gets the analytical stiffness matrix of the Body with other objects fixed. Returns ------- K : matrix 6x6 analytic stiffness matrix. """ # print("Getting Body "+str(self.number)+" stiffness matrix...") K = np.zeros([6, 6]) for PointID, rPointRel in zip(self.attachedP, self.rPointRel): r = rotatePosition( rPointRel, self.r6[3:] ) # relative position of Point about body ref point in unrotated reference frame f3 = self.sys.pointList[ PointID - 1 ].getForces() # total force on point (for additional rotational stiffness term due to change in moment arm) K3 = self.sys.pointList[PointID - 1].getStiffnessA() # local 3D stiffness matrix of the point # following are from functions translateMatrix3to6 H = getH(r) K[:3, :3] += K3 K[:3, 3:] += np.matmul( K3, H ) # only add up one off-diagonal sub-matrix for now, then we'll mirror at the end K[3:, 3:] += np.matmul(np.matmul(H, K3), H.T) + np.matmul(getH(f3), H.T) K[3:, :3] = K[:3, 3:].T # copy over other off-diagonal sub-matrix if lines_only == False: # rotational stiffness effect of weight rCG_rotated = rotatePosition( self.rCG, self.r6[3:] ) # relative position of CG about body ref point in unrotated reference frame Kw = -np.matmul(getH([0, 0, -self.m * self.sys.g]), getH(rCG_rotated)) # rotational stiffness effect of buoyancy at metacenter rM_rotated = rotatePosition( self.rM, self.r6[3:] ) # relative position of metacenter about body ref point in unrotated reference frame Kb = -np.matmul(getH([0, 0, self.sys.rho * self.sys.g * self.v]), getH(rM_rotated)) # hydrostatic heave stiffness (if AWP is nonzero) Kwp = self.sys.rho * self.sys.g * self.AWP K[3:, 3:] += Kw + Kb K[2, 2] += Kwp return K def draw(self, ax): """Draws the reference axis of the body Parameters ---------- ax : axes matplotlib.pyplot axes to be used for drawing and plotting. Returns ------- linebit : list a list to hold plotted lines of the body's frame axes. """ linebit = [] # make empty list to hold plotted lines, however many there are rx = transformPosition(np.array([5, 0, 0]), self.r6) ry = transformPosition(np.array([0, 5, 0]), self.r6) rz = transformPosition(np.array([0, 0, 5]), self.r6) linebit.append(ax.plot([self.r6[0], rx[0]], [self.r6[1], rx[1]], [self.r6[2], rx[2]], color="r")) linebit.append(ax.plot([self.r6[0], ry[0]], [self.r6[1], ry[1]], [self.r6[2], ry[2]], color="g")) linebit.append(ax.plot([self.r6[0], rz[0]], [self.r6[1], rz[1]], [self.r6[2], rz[2]], color="b")) self.linebit = linebit return linebit def redraw(self): """Redraws the reference axis of the body Returns ------- linebit : list a list to hold redrawn lines of the body's frame axes. """ linebit = self.linebit rx = transformPosition(np.array([5, 0, 0]), self.r6) ry = transformPosition(np.array([0, 5, 0]), self.r6) rz = transformPosition(np.array([0, 0, 5]), self.r6) linebit[0][0].set_data([self.r6[0], rx[0]], [self.r6[1], rx[1]]) linebit[0][0].set_3d_properties([self.r6[2], rx[2]]) linebit[1][0].set_data([self.r6[0], ry[0]], [self.r6[1], ry[1]]) linebit[1][0].set_3d_properties([self.r6[2], ry[2]]) linebit[2][0].set_data([self.r6[0], rz[0]], [self.r6[1], rz[1]]) linebit[2][0].set_3d_properties([self.r6[2], rz[2]]) return linebit # ``` #### File: wisdem/moorpy/MoorProps.py ```python import numpy as np import wisdem.moorpy as mp def getLineProps(dmm, type="chain", stud="studless", source="Orcaflex-altered", name=""): """getLineProps version 3.2: Restructuring v3.1 to 'Orcaflex-original' and 'Orcaflex-altered' Motivation: The existing public, and NREL-internal references for mooring line component property data are either proprietary, or unreliable and incomplete. The best way to derive new equations as a function of diameter is to use data from mooring line manufacturer's catalogs. Once developed, these new equations will serve as an updated version to compare against existing expressions. The goal is to have NREL's own library of mooring line property equations, but more research is needed. The original Orcaflex equations are the best we have right now and have been altered to include a quadratic chain MBL equation rather than a cubic, to avoid negative MBLs. Also, different cost models are put in to the altered version to avoid the Equimar data. Many sources researched for cost data, coefficients used are close to the old NREL internal data, but still an approximation. For more info, see the Mooring Component Properties Word doc. - This function requires at least one input: the line diameter in millimeters. - The rest of the inputs are optional: describe the desired type of line (chain, polyester, wire, etc.), the type of chain (studless or studlink), the source of data (Orcaflex-original or altered), or a name identifier - The function will output a MoorPy linetype object """ if source == "Orcaflex-original": d = dmm / 1000 # orcaflex uses meters https://www.orcina.com/webhelp/OrcaFlex/ if type == "chain": c = 1.96e4 # grade 2=1.37e4; grade 3=1.96e4; ORQ=2.11e4; R4=2.74e4 MBL = c * d ** 2 * (44 - 80 * d) * 1000 # [N] The same for both studless and studlink if stud == "studless": massden = 19.9 * d ** 2 * 1000 # [kg/m] EA = 0.854e8 * d ** 2 * 1000 # [N] d_vol = 1.8 * d # [m] elif stud == "studlink" or stud == "stud": massden = 21.9 * d ** 2 * 1000 # [kg/m] EA = 1.010e8 * d ** 2 * 1000 # [N] d_vol = 1.89 * d ** 2 # [m] else: raise ValueError("getLineProps error: Choose either studless or stud chain type ") elif type == "nylon": massden = 0.6476 * d ** 2 * 1000 # [kg/m] EA = 1.18e5 * d ** 2 * 1000 # [N] MBL = 139357 * d ** 2 * 1000 # [N] for wet nylon line, 163950d^2 for dry nylon line d_vol = 0.85 * d # [m] elif type == "polyester": massden = 0.7978 * d ** 2 * 1000 # [kg/m] EA = 1.09e6 * d ** 2 * 1000 # [N] MBL = 170466 * d ** 2 * 1000 # [N] d_vol = 0.86 * d # [m] elif type == "polypropylene": massden = 0.4526 * d ** 2 * 1000 # [kg/m] EA = 1.06e6 * d ** 2 * 1000 # [N] MBL = 105990 * d ** 2 * 1000 # [N] d_vol = 0.80 * d # [m] elif type == "wire-fiber" or type == "fiber": massden = 3.6109 * d ** 2 * 1000 # [kg/m] EA = 3.67e7 * d ** 2 * 1000 # [N] MBL = 584175 * d ** 2 * 1000 # [N] d_vol = 0.82 * d # [m] elif type == "wire-wire" or type == "wire" or type == "IWRC": massden = 3.9897 * d ** 2 * 1000 # [kg/m] EA = 4.04e7 * d ** 2 * 1000 # [N] MBL = 633358 * d ** 2 * 1000 # [N] d_vol = 0.80 * d # [m] else: raise ValueError("getLineProps error: Linetype not valid. Choose from given rope types or chain ") # cost # Derived from Equimar graph: https://tethys.pnnl.gov/sites/default/files/publications/EquiMar_D7.3.2.pdf if type == "chain": cost = (0.21 * (MBL / 9.81 / 1000)) * 1.29 # [$/m] elif type == "nylon" or type == "polyester" or type == "polypropylene": cost = (0.235 * (MBL / 9.81 / 1000)) * 1.29 # [$/m] elif type == "wire" or type == "wire-wire" or type == "IWRC" or type == "fiber" or type == "wire-fiber": cost = (0.18 * (MBL / 9.81 / 1000) + 90) * 1.29 # [$/m] else: raise ValueError("getLineProps error: Linetype not valid. Choose from given rope types or chain ") elif source == "Orcaflex-altered": d = dmm / 1000 # orcaflex uses meters https://www.orcina.com/webhelp/OrcaFlex/ if type == "chain": c = 2.74e4 # grade 2=1.37e4; grade 3=1.96e4; ORQ=2.11e4; R4=2.74e4 MBL = ( (371360 * d ** 2 + 51382.72 * d) * (c / 2.11e4) * 1000 ) # this is a fit quadratic term to the cubic MBL equation. No negatives if stud == "studless": massden = 19.9 * d ** 2 * 1000 # [kg/m] EA = 0.854e8 * d ** 2 * 1000 # [N] d_vol = 1.8 * d # [m] elif stud == "studlink" or stud == "stud": massden = 21.9 * d ** 2 * 1000 # [kg/m] EA = 1.010e8 * d ** 2 * 1000 # [N] d_vol = 1.89 * d ** 2 # [m] else: raise ValueError("getLineProps error: Choose either studless or stud chain type ") # cost = 2.5*massden # a ballpark for R4 chain # cost = (0.58*MBL/1000/9.81) - 87.6 # [$/m] from old NREL-internal # cost = 3.0*massden # rough value similar to old NREL-internal cost = 2.585 * massden # [($/kg)*(kg/m)=($/m)] # cost = 0.0 elif type == "nylon": massden = 0.6476 * d ** 2 * 1000 # [kg/m] EA = 1.18e5 * d ** 2 * 1000 # [N] MBL = 139357 * d ** 2 * 1000 # [N] for wet nylon line, 163950d^2 for dry nylon line d_vol = 0.85 * d # [m] cost = (0.42059603 * MBL / 1000 / 9.81) + 109.5 # [$/m] from old NREL-internal elif type == "polyester": massden = 0.7978 * d ** 2 * 1000 # [kg/m] EA = 1.09e6 * d ** 2 * 1000 # [N] MBL = 170466 * d ** 2 * 1000 # [N] d_vol = 0.86 * d # [m] # cost = (0.42059603*MBL/1000/9.81) + 109.5 # [$/m] from old NREL-internal # cost = 1.1e-4*MBL # rough value similar to old NREL-internal cost = 0.162 * (MBL / 9.81 / 1000) # [$/m] elif type == "polypropylene": massden = 0.4526 * d ** 2 * 1000 # [kg/m] EA = 1.06e6 * d ** 2 * 1000 # [N] MBL = 105990 * d ** 2 * 1000 # [N] d_vol = 0.80 * d # [m] cost = (0.42059603 * MBL / 1000 / 9.81) + 109.5 # [$/m] from old NREL-internal elif type == "wire-fiber" or type == "fiber": massden = 3.6109 * d ** 2 * 1000 # [kg/m] EA = 3.67e7 * d ** 2 * 1000 # [N] MBL = 584175 * d ** 2 * 1000 # [N] d_vol = 0.82 * d # [m] cost = 0.53676471 * MBL / 1000 / 9.81 # [$/m] from old NREL-internal elif type == "wire-wire" or type == "wire" or type == "IWRC": massden = 3.9897 * d ** 2 * 1000 # [kg/m] EA = 4.04e7 * d ** 2 * 1000 # [N] MBL = 633358 * d ** 2 * 1000 # [N] d_vol = 0.80 * d # [m] # cost = MBL * 900./15.0e6 # cost = (0.33*MBL/1000/9.81) + 139.5 # [$/m] from old NREL-internal cost = 5.6e-5 * MBL # rough value similar to old NREL-internal else: raise ValueError("getLineProps error: Linetype not valid. Choose from given rope types or chain ") elif source == "NREL": """ getLineProps v3.1 used to have old NREL-internal equations here as a placeholder, but they were not trustworthy. - The chain equations used data from Vicinay which matched OrcaFlex data. The wire rope equations matched OrcaFlex well, the synthetic rope equations did not The idea is to have NREL's own library of mooring line property equations, but more research needs to be done. The 'OrcaFlex-altered' source version is a start and can change name to 'NREL' in the future, but it is still 'OrcaFlex-altered' because most of the equations are from OrcaFlex, which is the best we have right now. Future equations need to be optimization proof = no negative numbers anywhere (need to write an interpolation function) Can add new line types as well, such as Aramid or HMPE """ pass # Set up a main identifier for the linetype. Useful for things like "chain_bot" or "chain_top" if name == "": typestring = f"{type}{dmm:.0f}" else: typestring = name notes = f"made with getLineProps - source: {source}" return mp.LineType(typestring, d_vol, massden, EA, MBL=MBL, cost=cost, notes=notes, input_type=type, input_d=dmm) def getAnchorProps(fx, fz, type="drag-embedment", display=0): """ Calculates anchor required capacity and cost based on specified loadings and anchor type""" # for now this is based on API RP-2SK guidance for static analysis of permanent mooring systems # fx and fz are horizontal and vertical load components assumed to come from a dynamic (or equivalent) analysis. # mooring line tenLimit specified in yaml and inversed for a SF in constraints # take the line forces on the anchor and give 20% consideration for dynamic loads on lines # coefficients in front of fx and fz in each anchorType are the SF for that anchor for quasi-static (pages 30-31 of RP-2SK) # scale QS loads by 20% to approximate dynamic loads fx = 1.2 * fx fz = 1.2 * fz # note: capacity is measured here in kg force euros2dollars = 1.18 # the number of dollars there currently are in a euro (3-31-21) if type == "drag-embedment": capacity_x = 1.5 * fx / 9.81 fzCost = 0 # if fz > 0: # fzCost = 1e3*fz # if display > 0: print('WARNING: Nonzero vertical load specified for a drag embedment anchor.') anchorMatCost = 0.188 * capacity_x + fzCost # material cost anchorInstCost = 163548 * euros2dollars # installation cost anchorDecomCost = 228967 * euros2dollars # decommissioning cost elif type == "suction": capacity_x = 1.6 * fx / 9.81 capacity_z = 2.0 * fz / 9.81 capacity = np.linalg.norm([capacity_x, capacity_z]) # overall capacity, assuming in any direction for now anchorMatCost = 1.08 * capacity # material cost anchorInstCost = 179331 * euros2dollars # installation cost anchorDecomCost = 125532 * euros2dollars # decommissioning cost elif type == "plate": capacity_x = 2.0 * fx / 9.81 capacity_z = 2.0 * fz / 9.81 capacity = np.linalg.norm([capacity_x, capacity_z]) # overall capacity, assuming in any direction for now raise ValueError("plate anchors not yet supported") elif type == "micropile": # note: no API guidance on this one capacity_x = 2.0 * fx / 9.81 capacity_z = 2.0 * fz / 9.81 capacity = np.linalg.norm([capacity_x, capacity_z]) # overall capacity, assuming in any direction for now anchorMatCost = ( 200000 * 1.2 / 500000 ) * capacity # [(Euros*($/Euros)/kg)*kg] linear interpolation of material cost anchorInstCost = 0 # installation cost anchorDecomCost = 0 # decommissioning cost elif type == "SEPLA": # cross between suction and plate capacity_x = 2.0 * fx / 9.81 capacity_z = 2.0 * fz / 9.81 capacity = np.linalg.norm([capacity_x, capacity_z]) # overall capacity, assuming in any direction for now anchorMatCost = 0.45 * capacity # material cost anchorInstCost = 0 # installation cost anchorDecomCost = 0 # decommissioning cost else: raise ValueError(f"getAnchorProps received an unsupported anchor type ({type})") # mooring line sizing: Tension limit for QS: 50% MBS. Or FOS = 2 return anchorMatCost, anchorInstCost, anchorDecomCost # [USD] ``` #### File: wisdem/nrelcsm/nrel_csm_cost_2015.py ```python import openmdao.api as om import numpy as np ###### Rotor # ------------------------------------------------------------------------------- class BladeCost2015(om.ExplicitComponent): """ Compute blade cost in the form of :math:`cost = k*mass`. Value of :math:`k` was updated in 2015 to be $14.6 USD/kg. Cost includes materials and manufacturing costs. Cost can be overridden with use of `blade_cost_external` Parameters ---------- blade_mass : float, [kg] component mass blade_mass_cost_coeff : float, [USD/kg] blade mass-cost coeff blade_cost_external : float, [USD] Blade cost computed by RotorSE Returns ------- blade_cost : float, [USD] Blade cost """ def setup(self): self.add_input("blade_mass", 0.0, units="kg") self.add_input("blade_mass_cost_coeff", 14.6, units="USD/kg") self.add_input("blade_cost_external", 0.0, units="USD") self.add_output("blade_cost", 0.0, units="USD") def compute(self, inputs, outputs): blade_mass = inputs["blade_mass"] blade_mass_cost_coeff = inputs["blade_mass_cost_coeff"] # calculate component cost if inputs["blade_cost_external"] < 1.0: outputs["blade_cost"] = blade_mass_cost_coeff * blade_mass else: outputs["blade_cost"] = inputs["blade_cost_external"] # ----------------------------------------------------------------------------------------------- class HubCost2015(om.ExplicitComponent): """ Compute hub cost in the form of :math:`cost = k*mass`. Value of :math:`k` was updated in 2015 to be $3.9 USD/kg. Cost includes materials and manufacturing costs. Parameters ---------- hub_mass : float, [kg] component mass hub_mass_cost_coeff : float, [USD/kg] hub mass-cost coeff Returns ------- hub_cost : float, [USD] Hub cost """ def setup(self): self.add_input("hub_mass", 0.0, units="kg") self.add_input("hub_mass_cost_coeff", 3.9, units="USD/kg") self.add_output("hub_cost", 0.0, units="USD") def compute(self, inputs, outputs): hub_mass_cost_coeff = inputs["hub_mass_cost_coeff"] hub_mass = inputs["hub_mass"] # calculate component cost outputs["hub_cost"] = hub_mass_cost_coeff * hub_mass # ------------------------------------------------------------------------------- class PitchSystemCost2015(om.ExplicitComponent): """ Compute pitch system cost in the form of :math:`cost = k*mass`. Value of :math:`k` was NOT updated in 2015 and remains the same as original CSM, $22.1 USD/kg. Cost includes materials and manufacturing costs. Parameters ---------- pitch_system_mass : float, [kg] component mass pitch_system_mass_cost_coeff : float, [USD/kg] pitch system mass-cost coeff Returns ------- pitch_system_cost : float, [USD] Pitch system cost """ def setup(self): self.add_input("pitch_system_mass", 0.0, units="kg") self.add_input("pitch_system_mass_cost_coeff", 22.1, units="USD/kg") self.add_output("pitch_system_cost", 0.0, units="USD") def compute(self, inputs, outputs): pitch_system_mass = inputs["pitch_system_mass"] pitch_system_mass_cost_coeff = inputs["pitch_system_mass_cost_coeff"] # calculate system costs outputs["pitch_system_cost"] = pitch_system_mass_cost_coeff * pitch_system_mass # ------------------------------------------------------------------------------- class SpinnerCost2015(om.ExplicitComponent): """ Compute spinner cost in the form of :math:`cost = k*mass`. Value of :math:`k` was updated in 2015 to be $11.1 USD/kg. Cost includes materials and manufacturing costs. Parameters ---------- spinner_mass : float, [kg] component mass spinner_mass_cost_coeff : float, [USD/kg] spinner/nose cone mass-cost coeff Returns ------- spinner_cost : float, [USD] Spinner cost """ def setup(self): self.add_input("spinner_mass", 0.0, units="kg") self.add_input("spinner_mass_cost_coeff", 11.1, units="USD/kg") self.add_output("spinner_cost", 0.0, units="USD") def compute(self, inputs, outputs): spinner_mass_cost_coeff = inputs["spinner_mass_cost_coeff"] spinner_mass = inputs["spinner_mass"] # calculate system costs outputs["spinner_cost"] = spinner_mass_cost_coeff * spinner_mass # ------------------------------------------------------------------------------- class HubSystemCostAdder2015(om.ExplicitComponent): """ Aggregates the hub, pitch system, and spinner costs into a single component that is transported to the project site and could therefore incur additional costs. Cost multipliers are of the form, :math:`c_{hubsys} = (1+kt_{hubsys}+kp_{hubsys}) (1+ko_{hubsys}+ka_{hubsys}) (c_{hub} + c_{pitch} + c_{spinner})` Where conceptually, :math:`kt` is a transportation multiplier, :math:`kp` is a profit multiplier, :math:`ko` is an overhead cost multiplier, and :math:`ka` is an assembly cost multiplier By default, :math:`kt=kp=ko=ka=0`. Parameters ---------- hub_cost : float, [USD] Hub component cost hub_mass : float, [kg] Hub component mass pitch_system_cost : float, [USD] Pitch system cost pitch_system_mass : float, [kg] Pitch system mass spinner_cost : float, [USD] Spinner component cost spinner_mass : float, [kg] Spinner component mass hub_assemblyCostMultiplier : float Rotor assembly cost multiplier hub_overheadCostMultiplier : float Rotor overhead cost multiplier hub_profitMultiplier : float Rotor profit multiplier hub_transportMultiplier : float Rotor transport multiplier Returns ------- hub_system_mass_tcc : float, [kg] Mass of the hub system, including hub, spinner, and pitch system for the blades hub_system_cost : float, [USD] Overall wind sub-assembly capial costs including transportation costs """ def setup(self): self.add_input("hub_cost", 0.0, units="USD") self.add_input("hub_mass", 0.0, units="kg") self.add_input("pitch_system_cost", 0.0, units="USD") self.add_input("pitch_system_mass", 0.0, units="kg") self.add_input("spinner_cost", 0.0, units="USD") self.add_input("spinner_mass", 0.0, units="kg") self.add_input("hub_assemblyCostMultiplier", 0.0) self.add_input("hub_overheadCostMultiplier", 0.0) self.add_input("hub_profitMultiplier", 0.0) self.add_input("hub_transportMultiplier", 0.0) self.add_output("hub_system_mass_tcc", 0.0, units="kg") self.add_output("hub_system_cost", 0.0, units="USD") def compute(self, inputs, outputs): hub_cost = inputs["hub_cost"] pitch_system_cost = inputs["pitch_system_cost"] spinner_cost = inputs["spinner_cost"] hub_mass = inputs["hub_mass"] pitch_system_mass = inputs["pitch_system_mass"] spinner_mass = inputs["spinner_mass"] hub_assemblyCostMultiplier = inputs["hub_assemblyCostMultiplier"] hub_overheadCostMultiplier = inputs["hub_overheadCostMultiplier"] hub_profitMultiplier = inputs["hub_profitMultiplier"] hub_transportMultiplier = inputs["hub_transportMultiplier"] # Updated calculations below to account for assembly, transport, overhead and profit outputs["hub_system_mass_tcc"] = hub_mass + pitch_system_mass + spinner_mass partsCost = hub_cost + pitch_system_cost + spinner_cost outputs["hub_system_cost"] = (1 + hub_transportMultiplier + hub_profitMultiplier) * ( (1 + hub_overheadCostMultiplier + hub_assemblyCostMultiplier) * partsCost ) # ------------------------------------------------------------------------------- class RotorCostAdder2015(om.ExplicitComponent): """ Sum of individual component costs to get overall rotor cost. No additional transport and assembly multipliers are included because it is assumed that each component is transported separately. Parameters ---------- blade_cost : float, [USD] Individual blade cost blade_mass : float, [kg] Individual blade mass hub_system_cost : float, [USD] Cost for hub system hub_system_mass_tcc : float, [kg] Mass for hub system blade_number : int Number of rotor blades Returns ------- rotor_cost : float, [USD] Rotor cost rotor_mass_tcc : float, [kg] Rotor mass, including blades, pitch system, hub, and spinner """ def setup(self): self.add_input("blade_cost", 0.0, units="USD") self.add_input("blade_mass", 0.0, units="kg") self.add_input("hub_system_cost", 0.0, units="USD") self.add_input("hub_system_mass_tcc", 0.0, units="kg") self.add_discrete_input("blade_number", 3) self.add_output("rotor_cost", 0.0, units="USD") self.add_output("rotor_mass_tcc", 0.0, units="kg") def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): blade_cost = inputs["blade_cost"] blade_mass = inputs["blade_mass"] blade_number = discrete_inputs["blade_number"] hub_system_cost = inputs["hub_system_cost"] hub_system_mass = inputs["hub_system_mass_tcc"] outputs["rotor_cost"] = blade_cost * blade_number + hub_system_cost outputs["rotor_mass_tcc"] = blade_mass * blade_number + hub_system_mass # ------------------------------------------------------------------------------- ###### Nacelle # ------------------------------------------------- class LowSpeedShaftCost2015(om.ExplicitComponent): """ Compute low speed shaft cost in the form of :math:`cost = k*mass`. Value of :math:`k` was updated in 2015 to be $11.9 USD/kg. Cost includes materials and manufacturing costs. Parameters ---------- lss_mass : float, [kg] component mass lss_mass_cost_coeff : float, [USD/kg] low speed shaft mass-cost coeff Returns ------- lss_cost : float, [USD] Low speed shaft cost """ def setup(self): self.add_input("lss_mass", 0.0, units="kg") # mass input self.add_input("lss_mass_cost_coeff", 11.9, units="USD/kg") self.add_output("lss_cost", 0.0, units="USD") def compute(self, inputs, outputs): lss_mass_cost_coeff = inputs["lss_mass_cost_coeff"] lss_mass = inputs["lss_mass"] outputs["lss_cost"] = lss_mass_cost_coeff * lss_mass # ------------------------------------------------------------------------------- class BearingCost2015(om.ExplicitComponent): """ Compute (single) main bearing cost in the form of :math:`cost = k*mass`. Value of :math:`k` was updated in 2015 to be $4.5 USD/kg. Cost includes materials and manufacturing costs. Parameters ---------- main_bearing_mass : float, [kg] component mass bearing_mass_cost_coeff : float, [USD/kg] main bearing mass-cost coeff Returns ------- main_bearing_cost : float, [USD] Main bearing cost """ def setup(self): self.add_input("main_bearing_mass", 0.0, units="kg") # mass input self.add_input("bearing_mass_cost_coeff", 4.5, units="USD/kg") self.add_output("main_bearing_cost", 0.0, units="USD") def compute(self, inputs, outputs): main_bearing_mass = inputs["main_bearing_mass"] bearing_mass_cost_coeff = inputs["bearing_mass_cost_coeff"] outputs["main_bearing_cost"] = bearing_mass_cost_coeff * main_bearing_mass # ------------------------------------------------------------------------------- class GearboxCost2015(om.ExplicitComponent): """ Compute gearbox cost in the form of :math:`cost = k*mass`. Value of :math:`k` was updated in 2015 to be $12.9 USD/kg. Cost includes materials and manufacturing costs. Parameters ---------- gearbox_mass : float, [kg] component mass gearbox_mass_cost_coeff : float, [USD/kg] gearbox mass-cost coeff Returns ------- gearbox_cost : float, [USD] Gearbox cost """ def setup(self): self.add_input("gearbox_mass", 0.0, units="kg") self.add_input("gearbox_mass_cost_coeff", 12.9, units="USD/kg") self.add_output("gearbox_cost", 0.0, units="USD") def compute(self, inputs, outputs): gearbox_mass = inputs["gearbox_mass"] gearbox_mass_cost_coeff = inputs["gearbox_mass_cost_coeff"] outputs["gearbox_cost"] = gearbox_mass_cost_coeff * gearbox_mass # ------------------------------------------------------------------------------- class BrakeCost2020(om.ExplicitComponent): """ Compute brake cost in the form of :math:`cost = k*mass`. Value of :math:`k` was updated in 2020 to be $3.6254 USD/kg. Cost includes materials and manufacturing costs. Parameters ---------- brake_mass : float, [kg] component mass brake_mass_cost_coeff : float, [USD/kg] brake mass-cost coeff Returns ------- brake_cost : float, [USD] Brake cost """ def setup(self): self.add_input("brake_mass", 0.0, units="kg") self.add_input("brake_mass_cost_coeff", 3.6254, units="USD/kg") self.add_output("brake_cost", 0.0, units="USD") def compute(self, inputs, outputs): brake_mass = inputs["brake_mass"] brake_mass_cost_coeff = inputs["brake_mass_cost_coeff"] outputs["brake_cost"] = brake_mass_cost_coeff * brake_mass # ------------------------------------------------------------------------------- class HighSpeedShaftCost2015(om.ExplicitComponent): """ Compute high speed shaft cost in the form of :math:`cost = k*mass`. Value of :math:`k` was updated in 2015 to be $6.8 USD/kg. Cost includes materials and manufacturing costs. Parameters ---------- hss_mass : float, [kg] component mass hss_mass_cost_coeff : float, [USD/kg] high speed shaft mass-cost coeff Returns ------- hss_cost : float, [USD] High speed shaft cost """ def setup(self): self.add_input("hss_mass", 0.0, units="kg") self.add_input("hss_mass_cost_coeff", 6.8, units="USD/kg") self.add_output("hss_cost", 0.0, units="USD") def compute(self, inputs, outputs): hss_mass = inputs["hss_mass"] hss_mass_cost_coeff = inputs["hss_mass_cost_coeff"] outputs["hss_cost"] = hss_mass_cost_coeff * hss_mass # ------------------------------------------------------------------------------- class GeneratorCost2015(om.ExplicitComponent): """ Compute generator cost in the form of :math:`cost = k*mass`. Value of :math:`k` was updated in 2015 to be $12.4 USD/kg. Cost includes materials and manufacturing costs. Cost can be overridden with use of `generator_cost_external` Parameters ---------- generator_mass : float, [kg] component mass generator_mass_cost_coeff : float, [USD/kg] generator mass cost coeff generator_cost_external : float, [USD] Generator cost computed by GeneratorSE Returns ------- generator_cost : float, [USD] Generator cost """ def setup(self): self.add_input("generator_mass", 0.0, units="kg") self.add_input("generator_mass_cost_coeff", 12.4, units="USD/kg") self.add_input("generator_cost_external", 0.0, units="USD") self.add_output("generator_cost", 0.0, units="USD") def compute(self, inputs, outputs): generator_mass = inputs["generator_mass"] generator_mass_cost_coeff = inputs["generator_mass_cost_coeff"] if inputs["generator_cost_external"] < 1.0: outputs["generator_cost"] = generator_mass_cost_coeff * generator_mass else: outputs["generator_cost"] = inputs["generator_cost_external"] # ------------------------------------------------------------------------------- class BedplateCost2015(om.ExplicitComponent): """ Compute bedplate cost in the form of :math:`cost = k*mass`. Value of :math:`k` was updated in 2015 to be $2.9 USD/kg. Cost includes materials and manufacturing costs. Parameters ---------- bedplate_mass : float, [kg] component mass bedplate_mass_cost_coeff : float, [USD/kg] bedplate mass-cost coeff Returns ------- bedplate_cost : float, [USD] Bedplate cost """ def setup(self): self.add_input("bedplate_mass", 0.0, units="kg") self.add_input("bedplate_mass_cost_coeff", 2.9, units="USD/kg") self.add_output("bedplate_cost", 0.0, units="USD") def compute(self, inputs, outputs): bedplate_mass = inputs["bedplate_mass"] bedplate_mass_cost_coeff = inputs["bedplate_mass_cost_coeff"] outputs["bedplate_cost"] = bedplate_mass_cost_coeff * bedplate_mass # --------------------------------------------------------------------------------- class YawSystemCost2015(om.ExplicitComponent): """ Compute yaw system cost in the form of :math:`cost = k*mass`. Value of :math:`k` was NOT updated in 2015 and remains the same as original CSM, $8.3 USD/kg. Cost includes materials and manufacturing costs. Parameters ---------- yaw_mass : float, [kg] component mass yaw_mass_cost_coeff : float, [USD/kg] yaw system mass cost coeff Returns ------- yaw_system_cost : float, [USD] Yaw system cost """ def setup(self): self.add_input("yaw_mass", 0.0, units="kg") self.add_input("yaw_mass_cost_coeff", 8.3, units="USD/kg") self.add_output("yaw_system_cost", 0.0, units="USD") def compute(self, inputs, outputs): yaw_mass = inputs["yaw_mass"] yaw_mass_cost_coeff = inputs["yaw_mass_cost_coeff"] outputs["yaw_system_cost"] = yaw_mass_cost_coeff * yaw_mass # --------------------------------------------------------------------------------- class ConverterCost2015(om.ExplicitComponent): """ Compute converter cost in the form of :math:`cost = k*mass`. Value of :math:`k` was updated in 2015 to be $18.8 USD/kg. Cost includes materials and manufacturing costs. Parameters ---------- converter_mass : float, [kg] component mass converter_mass_cost_coeff : float, [USD/kg] variable speed electronics mass cost coeff Returns ------- converter_cost : float, [USD] Converter cost """ def setup(self): self.add_input("converter_mass", 0.0, units="kg") self.add_input("converter_mass_cost_coeff", 18.8, units="USD/kg") self.add_output("converter_cost", 0.0, units="USD") def compute(self, inputs, outputs): converter_mass = inputs["converter_mass"] converter_mass_cost_coeff = inputs["converter_mass_cost_coeff"] outputs["converter_cost"] = converter_mass_cost_coeff * converter_mass # --------------------------------------------------------------------------------- class HydraulicCoolingCost2015(om.ExplicitComponent): """ Compute hydraulic cooling cost in the form of :math:`cost = k*mass`. Value of :math:`k` was NOT updated in 2015 and remains the same as original CSM, $124.0 USD/kg. Cost includes materials and manufacturing costs. Parameters ---------- hvac_mass : float, [kg] component mass hvac_mass_cost_coeff : float, [USD/kg] hydraulic and cooling system mass cost coeff Returns ------- hvac_cost : float, [USD] HVAC cost """ def setup(self): self.add_input("hvac_mass", 0.0, units="kg") self.add_input("hvac_mass_cost_coeff", 124.0, units="USD/kg") self.add_output("hvac_cost", 0.0, units="USD") def compute(self, inputs, outputs): hvac_mass = inputs["hvac_mass"] hvac_mass_cost_coeff = inputs["hvac_mass_cost_coeff"] # calculate cost outputs["hvac_cost"] = hvac_mass_cost_coeff * hvac_mass # --------------------------------------------------------------------------------- class NacelleCoverCost2015(om.ExplicitComponent): """ Compute nacelle cover cost in the form of :math:`cost = k*mass`. Value of :math:`k` was NOT updated in 2015 and remains the same as original CSM, $5.7 USD/kg. Cost includes materials and manufacturing costs. Parameters ---------- cover_mass : float, [kg] component mass cover_mass_cost_coeff : float, [USD/kg] nacelle cover mass cost coeff Returns ------- cover_cost : float, [USD] Cover cost """ def setup(self): self.add_input("cover_mass", 0.0, units="kg") self.add_input("cover_mass_cost_coeff", 5.7, units="USD/kg") self.add_output("cover_cost", 0.0, units="USD") def compute(self, inputs, outputs): cover_mass = inputs["cover_mass"] cover_mass_cost_coeff = inputs["cover_mass_cost_coeff"] outputs["cover_cost"] = cover_mass_cost_coeff * cover_mass # --------------------------------------------------------------------------------- class ElecConnecCost2015(om.ExplicitComponent): """ Compute electrical connection cost in the form of :math:`cost = k*mass`. Value of :math:`k` was NOT updated in 2015 and remains the same as original CSM, $41.85 USD/kg. Cost includes materials and manufacturing costs. Parameters ---------- machine_rating : float machine rating elec_connec_machine_rating_cost_coeff : float, [USD/kg] electrical connections cost coefficient per kW Returns ------- elec_cost : float, [USD] Electrical connection costs """ def setup(self): self.add_input("machine_rating", 0.0, units="kW") self.add_input("elec_connec_machine_rating_cost_coeff", 41.85, units="USD/kW") self.add_output("elec_cost", 0.0, units="USD") def compute(self, inputs, outputs): machine_rating = inputs["machine_rating"] elec_connec_machine_rating_cost_coeff = inputs["elec_connec_machine_rating_cost_coeff"] outputs["elec_cost"] = elec_connec_machine_rating_cost_coeff * machine_rating # --------------------------------------------------------------------------------- class ControlsCost2015(om.ExplicitComponent): """ Compute controls cost in the form of :math:`cost = k*mass`. Value of :math:`k` was NOT updated in 2015 and remains the same as original CSM, $21.15 USD/kg. Cost includes materials and manufacturing costs. Parameters ---------- machine_rating : float machine rating controls_machine_rating_cost_coeff : float, [USD/kg] controls cost coefficient per kW Returns ------- controls_cost : float, [USD] Controls cost """ def setup(self): self.add_input("machine_rating", 0.0, units="kW") self.add_input("controls_machine_rating_cost_coeff", 21.15, units="USD/kW") self.add_output("controls_cost", 0.0, units="USD") def compute(self, inputs, outputs): machine_rating = inputs["machine_rating"] coeff = inputs["controls_machine_rating_cost_coeff"] outputs["controls_cost"] = machine_rating * coeff # --------------------------------------------------------------------------------- class PlatformsMainframeCost2015(om.ExplicitComponent): """ Compute platforms cost in the form of :math:`cost = k*mass`. Value of :math:`k` was NOT updated in 2015 and remains the same as original CSM, $17.1 USD/kg. Cost includes materials and manufacturing costs. Parameters ---------- platforms_mass : float, [kg] component mass platforms_mass_cost_coeff : float, [USD/kg] nacelle platforms mass cost coeff crane : boolean flag for presence of onboard crane crane_cost : float, [USD] crane cost if present Returns ------- platforms_cost : float, [USD] Platforms cost """ def setup(self): self.add_input("platforms_mass", 0.0, units="kg") self.add_input("platforms_mass_cost_coeff", 17.1, units="USD/kg") self.add_discrete_input("crane", False) self.add_input("crane_cost", 12000.0, units="USD") self.add_output("platforms_cost", 0.0, units="USD") def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): platforms_mass = inputs["platforms_mass"] platforms_mass_cost_coeff = inputs["platforms_mass_cost_coeff"] crane = discrete_inputs["crane"] crane_cost = inputs["crane_cost"] # bedplate_cost = inputs['bedplate_cost'] # base_hardware_cost_coeff = inputs['base_hardware_cost_coeff'] # nacelle platform cost # crane cost if crane: craneCost = crane_cost craneMass = 3e3 NacellePlatformsCost = platforms_mass_cost_coeff * (platforms_mass - craneMass) else: craneCost = 0.0 NacellePlatformsCost = platforms_mass_cost_coeff * platforms_mass # base hardware cost # BaseHardwareCost = bedplate_cost * base_hardware_cost_coeff # aggregate all three mainframe costs outputs["platforms_cost"] = NacellePlatformsCost + craneCost # + BaseHardwareCost # ------------------------------------------------------------------------------- class TransformerCost2015(om.ExplicitComponent): """ Compute transformer cost in the form of :math:`cost = k*mass`. Value of :math:`k` was updated in 2015 to be $18.8 USD/kg. Cost includes materials and manufacturing costs. Parameters ---------- transformer_mass : float, [kg] component mass transformer_mass_cost_coeff : float, [USD/kg] transformer mass cost coeff Returns ------- transformer_cost : float, [USD] Transformer cost """ def setup(self): self.add_input("transformer_mass", 0.0, units="kg") self.add_input("transformer_mass_cost_coeff", 18.8, units="USD/kg") # mass-cost coeff with default from ppt self.add_output("transformer_cost", 0.0, units="USD") def compute(self, inputs, outputs): transformer_mass = inputs["transformer_mass"] transformer_mass_cost_coeff = inputs["transformer_mass_cost_coeff"] outputs["transformer_cost"] = transformer_mass_cost_coeff * transformer_mass # ------------------------------------------------------------------------------- class NacelleSystemCostAdder2015(om.ExplicitComponent): """ Aggregates the nacelle system costs into a single component that is transported to the project site and could therefore incur additional costs. Cost multipliers are of the form, :math:`c_{nacellesys} = (1+kt_{nacelle}+kp_{nacelle}) (1+ko_{nacelle}+ka_{nacelle}) c_{nacelle}` Where conceptually, :math:`kt` is a transportation multiplier, :math:`kp` is a profit multiplier, :math:`ko` is an overhead cost multiplier, and :math:`ka` is an assembly cost multiplier By default, :math:`kt=kp=ko=ka=0`. Parameters ---------- lss_cost : float, [USD] Component cost lss_mass : float, [kg] Component mass main_bearing_cost : float, [USD] Component cost main_bearing_mass : float, [kg] Component mass gearbox_cost : float, [USD] Component cost gearbox_mass : float, [kg] Component mass brake_cost : float, [USD] Component cost brake_mass : float, [kg] Component mass hss_cost : float, [USD] Component cost hss_mass : float, [kg] Component mass generator_cost : float, [USD] Component cost generator_mass : float, [kg] Component mass bedplate_cost : float, [USD] Component cost bedplate_mass : float, [kg] Component mass yaw_system_cost : float, [USD] Component cost yaw_mass : float, [kg] Component mass converter_cost : float, [USD] Component cost converter_mass : float, [kg] Component mass hvac_cost : float, [USD] Component cost hvac_mass : float, [kg] Component mass cover_cost : float, [USD] Component cost cover_mass : float, [kg] Component mass elec_cost : float, [USD] Component cost controls_cost : float, [USD] Component cost platforms_mass : float, [kg] Component cost platforms_cost : float, [USD] Component cost transformer_cost : float, [USD] Component cost transformer_mass : float, [kg] Component mass main_bearing_number : int number of bearings nacelle_assemblyCostMultiplier : float nacelle assembly cost multiplier nacelle_overheadCostMultiplier : float nacelle overhead cost multiplier nacelle_profitMultiplier : float nacelle profit multiplier nacelle_transportMultiplier : float nacelle transport multiplier Returns ------- nacelle_cost : float, [USD] component cost nacelle_mass_tcc : float Nacelle mass, with all nacelle components, without the rotor """ def setup(self): self.add_input("lss_cost", 0.0, units="USD") self.add_input("lss_mass", 0.0, units="kg") self.add_input("main_bearing_cost", 0.0, units="USD") self.add_input("main_bearing_mass", 0.0, units="kg") self.add_input("gearbox_cost", 0.0, units="USD") self.add_input("gearbox_mass", 0.0, units="kg") self.add_input("hss_cost", 0.0, units="USD") self.add_input("hss_mass", 0.0, units="kg") self.add_input("brake_cost", 0.0, units="USD") self.add_input("brake_mass", 0.0, units="kg") self.add_input("generator_cost", 0.0, units="USD") self.add_input("generator_mass", 0.0, units="kg") self.add_input("bedplate_cost", 0.0, units="USD") self.add_input("bedplate_mass", 0.0, units="kg") self.add_input("yaw_system_cost", 0.0, units="USD") self.add_input("yaw_mass", 0.0, units="kg") self.add_input("converter_cost", 0.0, units="USD") self.add_input("converter_mass", 0.0, units="kg") self.add_input("hvac_cost", 0.0, units="USD") self.add_input("hvac_mass", 0.0, units="kg") self.add_input("cover_cost", 0.0, units="USD") self.add_input("cover_mass", 0.0, units="kg") self.add_input("elec_cost", 0.0, units="USD") self.add_input("controls_cost", 0.0, units="USD") self.add_input("platforms_mass", 0.0, units="kg") self.add_input("platforms_cost", 0.0, units="USD") self.add_input("transformer_cost", 0.0, units="USD") self.add_input("transformer_mass", 0.0, units="kg") self.add_discrete_input("main_bearing_number", 2) # multipliers self.add_input("nacelle_assemblyCostMultiplier", 0.0) self.add_input("nacelle_overheadCostMultiplier", 0.0) self.add_input("nacelle_profitMultiplier", 0.0) self.add_input("nacelle_transportMultiplier", 0.0) self.add_output("nacelle_cost", 0.0, units="USD") self.add_output("nacelle_mass_tcc", 0.0, units="kg") def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): lss_cost = inputs["lss_cost"] main_bearing_cost = inputs["main_bearing_cost"] gearbox_cost = inputs["gearbox_cost"] hss_cost = inputs["hss_cost"] brake_cost = inputs["brake_cost"] generator_cost = inputs["generator_cost"] bedplate_cost = inputs["bedplate_cost"] yaw_system_cost = inputs["yaw_system_cost"] converter_cost = inputs["converter_cost"] hvac_cost = inputs["hvac_cost"] cover_cost = inputs["cover_cost"] elec_cost = inputs["elec_cost"] controls_cost = inputs["controls_cost"] platforms_cost = inputs["platforms_cost"] transformer_cost = inputs["transformer_cost"] lss_mass = inputs["lss_mass"] main_bearing_mass = inputs["main_bearing_mass"] gearbox_mass = inputs["gearbox_mass"] hss_mass = inputs["hss_mass"] brake_mass = inputs["brake_mass"] generator_mass = inputs["generator_mass"] bedplate_mass = inputs["bedplate_mass"] yaw_mass = inputs["yaw_mass"] converter_mass = inputs["converter_mass"] hvac_mass = inputs["hvac_mass"] cover_mass = inputs["cover_mass"] platforms_mass = inputs["platforms_mass"] transformer_mass = inputs["transformer_mass"] main_bearing_number = discrete_inputs["main_bearing_number"] nacelle_assemblyCostMultiplier = inputs["nacelle_assemblyCostMultiplier"] nacelle_overheadCostMultiplier = inputs["nacelle_overheadCostMultiplier"] nacelle_profitMultiplier = inputs["nacelle_profitMultiplier"] nacelle_transportMultiplier = inputs["nacelle_transportMultiplier"] # apply multipliers for assembly, transport, overhead, and profits outputs["nacelle_mass_tcc"] = ( lss_mass + main_bearing_number * main_bearing_mass + gearbox_mass + hss_mass + brake_mass + generator_mass + bedplate_mass + yaw_mass + converter_mass + hvac_mass + cover_mass + platforms_mass + transformer_mass ) partsCost = ( lss_cost + main_bearing_number * main_bearing_cost + gearbox_cost + hss_cost + brake_cost + generator_cost + bedplate_cost + yaw_system_cost + converter_cost + hvac_cost + cover_cost + elec_cost + controls_cost + platforms_cost + transformer_cost ) outputs["nacelle_cost"] = (1 + nacelle_transportMultiplier + nacelle_profitMultiplier) * ( (1 + nacelle_overheadCostMultiplier + nacelle_assemblyCostMultiplier) * partsCost ) ###### Tower # ------------------------------------------------------------------------------- class TowerCost2015(om.ExplicitComponent): """ Compute tower cost in the form of :math:`cost = k*mass`. Value of :math:`k` was updated in 2015 to be $2.9 USD/kg. Cost includes materials and manufacturing costs. Cost can be overridden with use of `tower_cost_external` Parameters ---------- tower_mass : float, [kg] tower mass tower_mass_cost_coeff : float, [USD/kg] tower mass-cost coeff tower_cost_external : float Tower cost computed by TowerSE Returns ------- tower_parts_cost : float, [USD] Tower parts cost """ def setup(self): self.add_input("tower_mass", 0.0, units="kg") self.add_input("tower_mass_cost_coeff", 2.9, units="USD/kg") self.add_input("tower_cost_external", 0.0, units="USD") self.add_output("tower_parts_cost", 0.0, units="USD") def compute(self, inputs, outputs): tower_mass = inputs["tower_mass"] tower_mass_cost_coeff = inputs["tower_mass_cost_coeff"] # calculate component cost if inputs["tower_cost_external"] < 1.0: outputs["tower_parts_cost"] = tower_mass_cost_coeff * tower_mass else: outputs["tower_parts_cost"] = inputs["tower_cost_external"] if outputs["tower_parts_cost"] == 0.0: print( "Warning: turbine_costsse_2015.py : TowerCost2015.compute : No tower mass provided. Assuming $0 for tower cost, LCOE will be artificially low." ) # ------------------------------------------------------------------------------- class TowerCostAdder2015(om.ExplicitComponent): """ The tower is not aggregated with any other component, but for consistency there are allowances for additional costs incurred from transportation and assembly complexity, :math:`c_{towersys} = (1+kt_{tower}+kp_{tower}) (1+ko_{tower}+ka_{tower}) c_{tower}` Where conceptually, :math:`kt` is a transportation multiplier, :math:`kp` is a profit multiplier, :math:`ko` is an overhead cost multiplier, and :math:`ka` is an assembly cost multiplier By default, :math:`kt=kp=ko=ka=0`. Parameters ---------- tower_parts_cost : float, [USD] component cost tower_assemblyCostMultiplier : float tower assembly cost multiplier tower_overheadCostMultiplier : float tower overhead cost multiplier tower_profitMultiplier : float tower profit cost multiplier tower_transportMultiplier : float tower transport cost multiplier Returns ------- tower_cost : float, [USD] tower cost """ def setup(self): self.add_input("tower_parts_cost", 0.0, units="USD") self.add_input("tower_assemblyCostMultiplier", 0.0) self.add_input("tower_overheadCostMultiplier", 0.0) self.add_input("tower_profitMultiplier", 0.0) self.add_input("tower_transportMultiplier", 0.0) self.add_output("tower_cost", 0.0, units="USD") def compute(self, inputs, outputs): tower_parts_cost = inputs["tower_parts_cost"] tower_assemblyCostMultiplier = inputs["tower_assemblyCostMultiplier"] tower_overheadCostMultiplier = inputs["tower_overheadCostMultiplier"] tower_profitMultiplier = inputs["tower_profitMultiplier"] tower_transportMultiplier = inputs["tower_transportMultiplier"] partsCost = tower_parts_cost outputs["tower_cost"] = (1 + tower_transportMultiplier + tower_profitMultiplier) * ( (1 + tower_overheadCostMultiplier + tower_assemblyCostMultiplier) * partsCost ) # ------------------------------------------------------------------------------- class TurbineCostAdder2015(om.ExplicitComponent): """ Aggregates the turbine system costs into a single value with allowances for additional costs incurred from transportation and assembly complexity. Costs are reported per kW. Cost multipliers are of the form, :math:`c_{turbine} = (1+kt_{turbine}+kp_{turbine}) (1+ko_{turbine}+ka_{turbine}) (c_{rotor} + c_{nacelle} + c_{tower})` Where conceptually, :math:`kt` is a transportation multiplier, :math:`kp` is a profit multiplier, :math:`ko` is an overhead cost multiplier, and :math:`ka` is an assembly cost multiplier By default, :math:`kt=kp=ko=ka=0`. Parameters ---------- rotor_cost : float, [USD] Rotor cost rotor_mass_tcc : float Rotor mass nacelle_cost : float, [USD] Nacelle cost nacelle_mass_tcc : float Nacelle mass tower_cost : float, [USD] Tower cost tower_mass : float, [kg] Tower mass machine_rating : float Machine rating turbine_assemblyCostMultiplier : float Turbine multiplier for assembly cost in manufacturing turbine_overheadCostMultiplier : float Turbine multiplier for overhead turbine_profitMultiplier : float Turbine multiplier for profit markup turbine_transportMultiplier : float Turbine multiplier for transport costs Returns ------- turbine_mass_tcc : float Turbine total mass, without foundation turbine_cost : float, [USD] Overall wind turbine capital costs including transportation costs turbine_cost_kW : float Overall wind turbine capial costs including transportation costs """ def setup(self): self.add_input("rotor_cost", 0.0, units="USD") self.add_input("rotor_mass_tcc", 0.0, units="kg") self.add_input("nacelle_cost", 0.0, units="USD") self.add_input("nacelle_mass_tcc", 0.0, units="kg") self.add_input("tower_cost", 0.0, units="USD") self.add_input("tower_mass", 0.0, units="kg") self.add_input("machine_rating", 0.0, units="kW") self.add_input("turbine_assemblyCostMultiplier", 0.0) self.add_input("turbine_overheadCostMultiplier", 0.0) self.add_input("turbine_profitMultiplier", 0.0) self.add_input("turbine_transportMultiplier", 0.0) self.add_output("turbine_mass_tcc", 0.0, units="kg") self.add_output("turbine_cost", 0.0, units="USD") self.add_output("turbine_cost_kW", 0.0, units="USD/kW") def compute(self, inputs, outputs): rotor_cost = inputs["rotor_cost"] nacelle_cost = inputs["nacelle_cost"] tower_cost = inputs["tower_cost"] rotor_mass_tcc = inputs["rotor_mass_tcc"] nacelle_mass_tcc = inputs["nacelle_mass_tcc"] tower_mass = inputs["tower_mass"] turbine_assemblyCostMultiplier = inputs["turbine_assemblyCostMultiplier"] turbine_overheadCostMultiplier = inputs["turbine_overheadCostMultiplier"] turbine_profitMultiplier = inputs["turbine_profitMultiplier"] turbine_transportMultiplier = inputs["turbine_transportMultiplier"] partsCost = rotor_cost + nacelle_cost + tower_cost outputs["turbine_mass_tcc"] = rotor_mass_tcc + nacelle_mass_tcc + tower_mass outputs["turbine_cost"] = (1 + turbine_transportMultiplier + turbine_profitMultiplier) * ( (1 + turbine_overheadCostMultiplier + turbine_assemblyCostMultiplier) * partsCost ) outputs["turbine_cost_kW"] = outputs["turbine_cost"] / inputs["machine_rating"] class Outputs2Screen(om.ExplicitComponent): """ Print cost outputs to the terminal Parameters ---------- blade_cost : float, [USD] blade cost blade_mass : float, [kg] Blade mass hub_cost : float, [USD] hub cost hub_mass : float, [kg] Hub mass pitch_system_cost : float, [USD] pitch_system cost pitch_system_mass : float, [kg] Pitch system mass spinner_cost : float, [USD] spinner cost spinner_mass : float, [kg] Spinner mass lss_cost : float, [USD] lss cost lss_mass : float, [kg] LSS mass main_bearing_cost : float, [USD] main_bearing cost main_bearing_mass : float, [kg] Main bearing mass gearbox_cost : float, [USD] gearbox cost gearbox_mass : float, [kg] LSS mass hss_cost : float, [USD] hss cost hss_mass : float, [kg] HSS mass brake_cost : float, [USD] brake cost brake_mass : float, [kg] brake mass generator_cost : float, [USD] generator cost generator_mass : float, [kg] Generator mass bedplate_cost : float, [USD] bedplate cost bedplate_mass : float, [kg] Bedplate mass yaw_system_cost : float, [USD] yaw_system cost yaw_mass : float, [kg] Yaw system mass hvac_cost : float, [USD] hvac cost hvac_mass : float, [kg] HVAC mass cover_cost : float, [USD] cover cost cover_mass : float, [kg] Cover mass elec_cost : float, [USD] elec cost controls_cost : float, [USD] controls cost platforms_cost : float, [USD] platforms cost transformer_cost : float, [USD] transformer cost transformer_mass : float, [kg] Transformer mass converter_cost : float, [USD] converter cost converter_mass : float, [kg] Converter mass rotor_cost : float, [USD] rotor cost rotor_mass_tcc : float Rotor mass nacelle_cost : float, [USD] nacelle cost nacelle_mass_tcc : float Nacelle mass tower_cost : float, [USD] tower cost tower_mass : float, [kg] Tower mass turbine_cost : float, [USD] Overall turbine costs turbine_cost_kW : float Overall wind turbine capital costs including transportation costs per kW turbine_mass_tcc : float Turbine mass """ def initialize(self): self.options.declare("verbosity", default=False) def setup(self): self.add_input("blade_cost", 0.0, units="USD") self.add_input("blade_mass", 0.0, units="kg") self.add_input("hub_cost", 0.0, units="USD") self.add_input("hub_mass", 0.0, units="kg") self.add_input("pitch_system_cost", 0.0, units="USD") self.add_input("pitch_system_mass", 0.0, units="kg") self.add_input("spinner_cost", 0.0, units="USD") self.add_input("spinner_mass", 0.0, units="kg") self.add_input("lss_cost", 0.0, units="USD") self.add_input("lss_mass", 0.0, units="kg") self.add_input("main_bearing_cost", 0.0, units="USD") self.add_input("main_bearing_mass", 0.0, units="kg") self.add_input("gearbox_cost", 0.0, units="USD") self.add_input("gearbox_mass", 0.0, units="kg") self.add_input("hss_cost", 0.0, units="USD") self.add_input("hss_mass", 0.0, units="kg") self.add_input("brake_cost", 0.0, units="USD") self.add_input("brake_mass", 0.0, units="kg") self.add_input("generator_cost", 0.0, units="USD") self.add_input("generator_mass", 0.0, units="kg") self.add_input("bedplate_cost", 0.0, units="USD") self.add_input("bedplate_mass", 0.0, units="kg") self.add_input("yaw_system_cost", 0.0, units="USD") self.add_input("yaw_mass", 0.0, units="kg") self.add_input("hvac_cost", 0.0, units="USD") self.add_input("hvac_mass", 0.0, units="kg") self.add_input("cover_cost", 0.0, units="USD") self.add_input("cover_mass", 0.0, units="kg") self.add_input("elec_cost", 0.0, units="USD") self.add_input("controls_cost", 0.0, units="USD") self.add_input("platforms_cost", 0.0, units="USD") self.add_input("transformer_cost", 0.0, units="USD") self.add_input("transformer_mass", 0.0, units="kg") self.add_input("converter_cost", 0.0, units="USD") self.add_input("converter_mass", 0.0, units="kg") self.add_input("rotor_cost", 0.0, units="USD") self.add_input("rotor_mass_tcc", 0.0, units="kg") self.add_input("nacelle_cost", 0.0, units="USD") self.add_input("nacelle_mass_tcc", 0.0, units="kg") self.add_input("tower_cost", 0.0, units="USD") self.add_input("tower_mass", 0.0, units="kg") self.add_input("turbine_cost", 0.0, units="USD") self.add_input("turbine_cost_kW", 0.0, units="USD/kW") self.add_input("turbine_mass_tcc", 0.0, units="kg") def compute(self, inputs, outputs): if self.options["verbosity"] == True: print("################################################") print("Computation of costs of the main turbine components from TurbineCostSE") print( "Blade cost %.3f k USD mass %.3f kg" % (inputs["blade_cost"] * 1.0e-003, inputs["blade_mass"]) ) print( "Pitch system cost %.3f k USD mass %.3f kg" % (inputs["pitch_system_cost"] * 1.0e-003, inputs["pitch_system_mass"]) ) print( "Hub cost %.3f k USD mass %.3f kg" % (inputs["hub_cost"] * 1.0e-003, inputs["hub_mass"]) ) print( "Spinner cost %.3f k USD mass %.3f kg" % (inputs["spinner_cost"] * 1.0e-003, inputs["spinner_mass"]) ) print("------------------------------------------------") print( "Rotor cost %.3f k USD mass %.3f kg" % (inputs["rotor_cost"] * 1.0e-003, inputs["rotor_mass_tcc"]) ) print("") print( "LSS cost %.3f k USD mass %.3f kg" % (inputs["lss_cost"] * 1.0e-003, inputs["lss_mass"]) ) print( "Main bearing cost %.3f k USD mass %.3f kg" % (inputs["main_bearing_cost"] * 1.0e-003, inputs["main_bearing_mass"]) ) print( "Gearbox cost %.3f k USD mass %.3f kg" % (inputs["gearbox_cost"] * 1.0e-003, inputs["gearbox_mass"]) ) print( "HSS cost %.3f k USD mass %.3f kg" % (inputs["hss_cost"] * 1.0e-003, inputs["hss_mass"]) ) print( "Brake cost %.3f k USD mass %.3f kg" % (inputs["brake_cost"] * 1.0e-003, inputs["brake_mass"]) ) print( "Generator cost %.3f k USD mass %.3f kg" % (inputs["generator_cost"] * 1.0e-003, inputs["generator_mass"]) ) print( "Bedplate cost %.3f k USD mass %.3f kg" % (inputs["bedplate_cost"] * 1.0e-003, inputs["bedplate_mass"]) ) print( "Yaw system cost %.3f k USD mass %.3f kg" % (inputs["yaw_system_cost"] * 1.0e-003, inputs["yaw_mass"]) ) print( "HVAC cost %.3f k USD mass %.3f kg" % (inputs["hvac_cost"] * 1.0e-003, inputs["hvac_mass"]) ) print( "Nacelle cover cost %.3f k USD mass %.3f kg" % (inputs["cover_cost"] * 1.0e-003, inputs["cover_mass"]) ) print("Electr connection cost %.3f k USD" % (inputs["elec_cost"] * 1.0e-003)) print("Controls cost %.3f k USD" % (inputs["controls_cost"] * 1.0e-003)) print("Other main frame cost %.3f k USD" % (inputs["platforms_cost"] * 1.0e-003)) print( "Transformer cost %.3f k USD mass %.3f kg" % (inputs["transformer_cost"] * 1.0e-003, inputs["transformer_mass"]) ) print( "Converter cost %.3f k USD mass %.3f kg" % (inputs["converter_cost"] * 1.0e-003, inputs["converter_mass"]) ) print("------------------------------------------------") print( "Nacelle cost %.3f k USD mass %.3f kg" % (inputs["nacelle_cost"] * 1.0e-003, inputs["nacelle_mass_tcc"]) ) print("") print( "Tower cost %.3f k USD mass %.3f kg" % (inputs["tower_cost"] * 1.0e-003, inputs["tower_mass"]) ) print("------------------------------------------------") print("------------------------------------------------") print( "Turbine cost %.3f k USD mass %.3f kg" % (inputs["turbine_cost"] * 1.0e-003, inputs["turbine_mass_tcc"]) ) print("Turbine cost per kW %.3f k USD/kW" % inputs["turbine_cost_kW"]) print("################################################") # ------------------------------------------------------------------------------- class Turbine_CostsSE_2015(om.Group): """ Print cost outputs to the terminal """ def initialize(self): self.options.declare("verbosity", default=False) def setup(self): self.verbosity = self.options["verbosity"] self.set_input_defaults("blade_mass_cost_coeff", units="USD/kg", val=14.6) self.set_input_defaults("hub_mass_cost_coeff", units="USD/kg", val=3.9) self.set_input_defaults("pitch_system_mass_cost_coeff", units="USD/kg", val=22.1) self.set_input_defaults("spinner_mass_cost_coeff", units="USD/kg", val=11.1) self.set_input_defaults("lss_mass_cost_coeff", units="USD/kg", val=11.9) self.set_input_defaults("bearing_mass_cost_coeff", units="USD/kg", val=4.5) self.set_input_defaults("gearbox_mass_cost_coeff", units="USD/kg", val=12.9) self.set_input_defaults("hss_mass_cost_coeff", units="USD/kg", val=6.8) self.set_input_defaults("brake_mass_cost_coeff", units="USD/kg", val=3.6254) self.set_input_defaults("generator_mass_cost_coeff", units="USD/kg", val=12.4) self.set_input_defaults("bedplate_mass_cost_coeff", units="USD/kg", val=2.9) self.set_input_defaults("yaw_mass_cost_coeff", units="USD/kg", val=8.3) self.set_input_defaults("converter_mass_cost_coeff", units="USD/kg", val=18.8) self.set_input_defaults("transformer_mass_cost_coeff", units="USD/kg", val=18.8) self.set_input_defaults("hvac_mass_cost_coeff", units="USD/kg", val=124.0) self.set_input_defaults("cover_mass_cost_coeff", units="USD/kg", val=5.7) self.set_input_defaults("elec_connec_machine_rating_cost_coeff", units="USD/kW", val=41.85) self.set_input_defaults("platforms_mass_cost_coeff", units="USD/kg", val=17.1) self.set_input_defaults("tower_mass_cost_coeff", units="USD/kg", val=2.9) self.set_input_defaults("controls_machine_rating_cost_coeff", units="USD/kW", val=21.15) self.set_input_defaults("crane_cost", units="USD", val=12e3) self.set_input_defaults("hub_assemblyCostMultiplier", val=0.0) self.set_input_defaults("hub_overheadCostMultiplier", val=0.0) self.set_input_defaults("nacelle_assemblyCostMultiplier", val=0.0) self.set_input_defaults("nacelle_overheadCostMultiplier", val=0.0) self.set_input_defaults("tower_assemblyCostMultiplier", val=0.0) self.set_input_defaults("tower_overheadCostMultiplier", val=0.0) self.set_input_defaults("turbine_assemblyCostMultiplier", val=0.0) self.set_input_defaults("turbine_overheadCostMultiplier", val=0.0) self.set_input_defaults("hub_profitMultiplier", val=0.0) self.set_input_defaults("nacelle_profitMultiplier", val=0.0) self.set_input_defaults("tower_profitMultiplier", val=0.0) self.set_input_defaults("turbine_profitMultiplier", val=0.0) self.set_input_defaults("hub_transportMultiplier", val=0.0) self.set_input_defaults("nacelle_transportMultiplier", val=0.0) self.set_input_defaults("tower_transportMultiplier", val=0.0) self.set_input_defaults("turbine_transportMultiplier", val=0.0) self.add_subsystem("blade_c", BladeCost2015(), promotes=["*"]) self.add_subsystem("hub_c", HubCost2015(), promotes=["*"]) self.add_subsystem("pitch_c", PitchSystemCost2015(), promotes=["*"]) self.add_subsystem("spinner_c", SpinnerCost2015(), promotes=["*"]) self.add_subsystem("hub_adder", HubSystemCostAdder2015(), promotes=["*"]) self.add_subsystem("rotor_adder", RotorCostAdder2015(), promotes=["*"]) self.add_subsystem("lss_c", LowSpeedShaftCost2015(), promotes=["*"]) self.add_subsystem("bearing_c", BearingCost2015(), promotes=["*"]) self.add_subsystem("gearbox_c", GearboxCost2015(), promotes=["*"]) self.add_subsystem("hss_c", HighSpeedShaftCost2015(), promotes=["*"]) self.add_subsystem("brake_c", BrakeCost2020(), promotes=["*"]) self.add_subsystem("generator_c", GeneratorCost2015(), promotes=["*"]) self.add_subsystem("bedplate_c", BedplateCost2015(), promotes=["*"]) self.add_subsystem("yaw_c", YawSystemCost2015(), promotes=["*"]) self.add_subsystem("hvac_c", HydraulicCoolingCost2015(), promotes=["*"]) self.add_subsystem("controls_c", ControlsCost2015(), promotes=["*"]) self.add_subsystem("converter_c", ConverterCost2015(), promotes=["*"]) self.add_subsystem("elec_c", ElecConnecCost2015(), promotes=["*"]) self.add_subsystem("cover_c", NacelleCoverCost2015(), promotes=["*"]) self.add_subsystem("platforms_c", PlatformsMainframeCost2015(), promotes=["*"]) self.add_subsystem("transformer_c", TransformerCost2015(), promotes=["*"]) self.add_subsystem("nacelle_adder", NacelleSystemCostAdder2015(), promotes=["*"]) self.add_subsystem("tower_c", TowerCost2015(), promotes=["*"]) self.add_subsystem("tower_adder", TowerCostAdder2015(), promotes=["*"]) self.add_subsystem("turbine_c", TurbineCostAdder2015(), promotes=["*"]) self.add_subsystem("outputs", Outputs2Screen(verbosity=self.verbosity), promotes=["*"]) ``` #### File: phases/design/semi_submersible_design.py ```python __author__ = "<NAME>" __copyright__ = "Copyright 2020, National Renewable Energy Laboratory" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" from wisdem.orbit.phases.design import DesignPhase class SemiSubmersibleDesign(DesignPhase): """Semi-Submersible Substructure Design""" expected_config = { "site": {"depth": "m"}, "plant": {"num_turbines": "int"}, "turbine": {"turbine_rating": "MW"}, "semisubmersible_design": { "stiffened_column_CR": "$/t (optional, default: 3120)", "truss_CR": "$/t (optional, default: 6250)", "heave_plate_CR": "$/t (optional, default: 6250)", "secondary_steel_CR": "$/t (optional, default: 7250)", "towing_speed": "km/h (optional, default: 6)", }, } output_config = { "substructure": { "mass": "t", "unit_cost": "USD", "towing_speed": "km/h", } } def __init__(self, config, **kwargs): """ Creates an instance of `SemiSubmersibleDesign`. Parameters ---------- config : dict """ config = self.initialize_library(config, **kwargs) self.config = self.validate_config(config) self._design = self.config.get("semisubmersible_design", {}) self._outputs = {} def run(self): """Main run function.""" substructure = { "mass": self.substructure_mass, "unit_cost": self.substructure_cost, "towing_speed": self._design.get("towing_speed", 6), } self._outputs["substructure"] = substructure @property def stiffened_column_mass(self): """ Calculates the mass of the stiffened column for a single semi-submersible in tonnes. From original OffshoreBOS model. """ rating = self.config["turbine"]["turbine_rating"] mass = -0.9581 * rating ** 2 + 40.89 * rating + 802.09 return mass @property def stiffened_column_cost(self): """ Calculates the cost of the stiffened column for a single semi-submersible. From original OffshoreBOS model. """ cr = self._design.get("stiffened_column_CR", 3120) return self.stiffened_column_mass * cr @property def truss_mass(self): """ Calculates the truss mass for a single semi-submersible in tonnes. From original OffshoreBOS model. """ rating = self.config["turbine"]["turbine_rating"] mass = 2.7894 * rating ** 2 + 15.591 * rating + 266.03 return mass @property def truss_cost(self): """ Calculates the cost of the truss for a signle semi-submerisble. From original OffshoreBOS model. """ cr = self._design.get("truss_CR", 6250) return self.truss_mass * cr @property def heave_plate_mass(self): """ Calculates the heave plate mass for a single semi-submersible in tonnes. From original OffshoreBOS model. """ rating = self.config["turbine"]["turbine_rating"] mass = -0.4397 * rating ** 2 + 21.545 * rating + 177.42 return mass @property def heave_plate_cost(self): """ Calculates the heave plate cost for a single semi-submersible. From original OffshoreBOS model. """ cr = self._design.get("heave_plate_CR", 6250) return self.heave_plate_mass * cr @property def secondary_steel_mass(self): """ Calculates the mass of the required secondary steel for a single semi-submersible. From original OffshoreBOS model. """ rating = self.config["turbine"]["turbine_rating"] mass = -0.153 * rating ** 2 + 6.54 * rating + 128.34 return mass @property def secondary_steel_cost(self): """ Calculates the cost of the required secondary steel for a single semi-submersible. For original OffshoreBOS model. """ cr = self._design.get("secondary_steel_CR", 7250) return self.secondary_steel_mass * cr @property def substructure_mass(self): """Returns single substructure mass.""" return self.stiffened_column_mass + self.truss_mass + self.heave_plate_mass + self.secondary_steel_mass @property def substructure_cost(self): """Returns single substructure cost.""" return self.stiffened_column_cost + self.truss_cost + self.heave_plate_cost + self.secondary_steel_cost @property def total_substructure_mass(self): """Returns mass of all substructures.""" num = self.config["plant"]["num_turbines"] return num * self.substructure_mass @property def design_result(self): """Returns the result of `self.run()`""" if not self._outputs: raise Exception("Has `SemiSubmersibleDesign` been ran yet?") return self._outputs @property def total_cost(self): """Returns total phase cost in $USD.""" num = self.config["plant"]["num_turbines"] return num * self.substructure_cost @property def detailed_output(self): """Returns detailed phase information.""" _outputs = { "stiffened_column_mass": self.stiffened_column_mass, "stiffened_column_cost": self.stiffened_column_cost, "truss_mass": self.truss_mass, "truss_cost": self.truss_cost, "heave_plate_mass": self.heave_plate_mass, "heave_plate_cost": self.heave_plate_cost, "secondary_steel_mass": self.secondary_steel_mass, "secondary_steel_cost": self.secondary_steel_cost, } return _outputs ``` #### File: test/test_ccblade/test_polar.py ```python import unittest from math import pi import numpy as np from wisdem.ccblade.Polar import Polar, blend class TestBlend(unittest.TestCase): def setUp(self): alpha = [ -3.04, -2.03, -1.01, 0.01, 1.03, 2.05, 3.07, 4.09, 5.11, 6.13, 7.14, 8.16, 9.17, 10.18, 11.18, 12.19, 13.18, 14.18, 15.18, 16.17, 17.14, 18.06, 19.06, 20.07, 25, ] cl = [ -0.071, 0.044, 0.144, 0.241, 0.338, 0.435, 0.535, 0.632, 0.728, 0.813, 0.883, 0.946, 1.001, 1.054, 1.056, 1.095, 1.138, 1.114, 1.073, 1.008, 0.95, 0.902, 0.795, 0.797, 0.8, ] cd = [ 0.0122, 0.0106, 0.0114, 0.0134, 0.0136, 0.014, 0.0147, 0.0156, 0.0162, 0.0173, 0.0191, 0.0215, 0.0248, 0.0339, 0.0544, 0.0452, 0.0445, 0.067, 0.0748, 0.1028, 0.1473, 0.2819, 0.2819, 0.2819, 0.3, ] cm = [ -0.0044, -0.0051, 0.0018, -0.0216, -0.0282, -0.0346, -0.0405, -0.0455, -0.0507, -0.0404, -0.0321, -0.0281, -0.0284, -0.0322, -0.0361, -0.0363, -0.0393, -0.0398, -0.0983, -0.1242, -0.1155, -0.1068, -0.0981, -0.0894, -0.0807, ] Re = 1 self.polar1 = Polar(Re, alpha, cl, cd, cm) alpha = [ -3.04, -2.03, -1.01, 0.01, 1.03, 2.05, 3.07, 4.09, 5.11, 6.13, 7.14, 8.16, 9.17, 10.18, 11.18, 12.19, 13.18, 14.18, 15.189, 16.17, 17.14, 18.06, 19.06, 20.07, 21.08, 22.09, 23.1, 25, ] cl = [ -0.0852, 0.0528, 0.1728, 0.2892, 0.4056, 0.522, 0.642, 0.7584, 0.8736, 0.9756, 1.0596, 1.1352, 1.2012, 1.2648, 1.2672, 1.314, 1.3656, 1.3368, 1.2876, 1.2096, 1.14, 1.0824, 0.954, 0.9564, 1, 1.2, 1.4, 1.6, ] cd = [ 0.01464, 0.01272, 0.01368, 0.01608, 0.01632, 0.0168, 0.01764, 0.01872, 0.01944, 0.02076, 0.02292, 0.0258, 0.02976, 0.04068, 0.06528, 0.05424, 0.0534, 0.0804, 0.08976, 0.12336, 0.17676, 0.33828, 0.33828, 0.33828, 0.35, 0.4, 0.45, 0.5, ] cm = [ -0.0037, -0.0044, -0.0051, 0.0018, -0.0216, -0.0282, -0.0346, -0.0405, -0.0455, -0.0507, -0.0404, -0.0321, -0.0281, -0.0284, -0.0322, -0.0361, -0.0363, -0.0393, -0.0398, -0.0983, -0.1242, -0.1155, -0.1068, -0.0981, -0.0894, -0.0807, -0.072, -0.0633, ] self.polar2 = Polar(Re, alpha, cl, cd, cm) def test_blend1(self): polar3 = blend(self.polar1, self.polar2, 0.5) alpha_blend = [ -3.04, -2.03, -1.01, 0.01, 1.03, 2.05, 3.07, 4.09, 5.11, 6.13, 7.14, 8.16, 9.17, 10.18, 11.18, 12.19, 13.18, 14.18, 15.18, 16.17, 17.14, 18.06, 19.06, 20.07, 25, ] cl_blend = [ -0.078, 0.048, 0.158, 0.265, 0.372, 0.479, 0.589, 0.695, 0.801, 0.894, 0.971, 1.041, 1.101, 1.159, 1.162, 1.205, 1.252, 1.225, 1.181, 1.109, 1.045, 0.992, 0.875, 0.877, 1.200, ] cd_blend = [ 0.0134, 0.0117, 0.0125, 0.0147, 0.0150, 0.0154, 0.0162, 0.0172, 0.0178, 0.0190, 0.0210, 0.0237, 0.0273, 0.0373, 0.0598, 0.0497, 0.0490, 0.0737, 0.0822, 0.1131, 0.1620, 0.3101, 0.3101, 0.3101, 0.4000, ] cm_blend = [ -0.00405, -0.00475, -0.00165, -0.0099, -0.0249, -0.0314, -0.03755, -0.043, -0.0481, -0.04555, -0.03625, -0.0301, -0.02825, -0.0303, -0.03415, -0.0362, -0.0378, -0.03955, -0.06905, -0.11125, -0.11985, -0.11115, -0.10245, -0.09375, -0.072, ] # re-interpolate b/c angles of attack are different cl3 = np.interp(alpha_blend, polar3.alpha, polar3.cl) cd3 = np.interp(alpha_blend, polar3.alpha, polar3.cd) cm3 = np.interp(alpha_blend, polar3.alpha, polar3.cm) # should be within 1e-3 np.testing.assert_allclose(cl3, cl_blend, atol=1e-3) np.testing.assert_allclose(cd3, cd_blend, atol=1e-3) np.testing.assert_allclose(cm3, cm_blend, atol=1e-3) def test_blend2(self): polar3 = blend(self.polar1, self.polar2, 0.7) alpha_blend = [ -3.04, -2.03, -1.01, 0.01, 1.03, 2.05, 3.07, 4.09, 5.11, 6.13, 7.14, 8.16, 9.17, 10.18, 11.18, 12.19, 13.18, 14.18, 15.18, 16.17, 17.14, 18.06, 19.06, 20.07, 25, ] cl_blend = [ -0.081, 0.050, 0.164, 0.275, 0.385, 0.496, 0.610, 0.720, 0.830, 0.927, 1.007, 1.078, 1.141, 1.202, 1.204, 1.248, 1.297, 1.270, 1.224, 1.149, 1.083, 1.028, 0.906, 0.909, 1.360, ] cd_blend = [ 0.0139, 0.0121, 0.0130, 0.0153, 0.0155, 0.0160, 0.0168, 0.0178, 0.0185, 0.0197, 0.0218, 0.0245, 0.0283, 0.0386, 0.0620, 0.0515, 0.0507, 0.0764, 0.0852, 0.1172, 0.1679, 0.3214, 0.3214, 0.3214, 0.4400, ] cm_blend = [ -0.00391, -0.00461, -0.00303, -0.00522, -0.02358, -0.03012, -0.03637, -0.042, -0.04706, -0.04761, -0.03791, -0.0309, -0.02819, -0.02954, -0.03337, -0.03616, -0.0372, -0.03945, -0.057347, -0.10607, -0.12159, -0.11289, -0.10419, -0.09549, -0.06852, ] # re-interpolate b/c angles of attack are different cl3 = np.interp(alpha_blend, polar3.alpha, polar3.cl) cd3 = np.interp(alpha_blend, polar3.alpha, polar3.cd) cm3 = np.interp(alpha_blend, polar3.alpha, polar3.cm) # should be within 1e-3 np.testing.assert_allclose(cl3, cl_blend, atol=1e-3) np.testing.assert_allclose(cd3, cd_blend, atol=1e-3) np.testing.assert_allclose(cm3, cm_blend, atol=1e-3) def test_blend3(self): polar3 = blend(self.polar1, self.polar2, 0.2) alpha_blend = [ -3.04, -2.03, -1.01, 0.01, 1.03, 2.05, 3.07, 4.09, 5.11, 6.13, 7.14, 8.16, 9.17, 10.18, 11.18, 12.19, 13.18, 14.18, 15.18, 16.17, 17.14, 18.06, 19.06, 20.07, 25, ] cl_blend = [ -0.074, 0.046, 0.150, 0.251, 0.352, 0.452, 0.556, 0.657, 0.757, 0.846, 0.918, 0.984, 1.041, 1.096, 1.098, 1.139, 1.184, 1.159, 1.116, 1.048, 0.988, 0.938, 0.827, 0.829, 0.960, ] cd_blend = [ 0.0127, 0.0110, 0.0119, 0.0139, 0.0141, 0.0146, 0.0153, 0.0162, 0.0168, 0.0180, 0.0199, 0.0224, 0.0258, 0.0353, 0.0566, 0.0470, 0.0463, 0.0697, 0.0778, 0.1069, 0.1532, 0.2932, 0.2932, 0.2932, 0.3400, ] cm_blend = [ -0.00426, -0.00496, 0.00042, -0.01692, -0.02688, -0.03332, -0.03932, -0.0445, -0.04966, -0.04246, -0.03376, -0.0289, -0.02834, -0.03144, -0.03532, -0.03626, -0.0387, -0.0397, -0.0866, -0.11902, -0.11724, -0.10854, -0.09984, -0.09114, -0.07722, ] # re-interpolate b/c angles of attack are different cl3 = np.interp(alpha_blend, polar3.alpha, polar3.cl) cd3 = np.interp(alpha_blend, polar3.alpha, polar3.cd) cm3 = np.interp(alpha_blend, polar3.alpha, polar3.cm) # should be within 1e-3 np.testing.assert_allclose(cl3, cl_blend, atol=1e-3) np.testing.assert_allclose(cd3, cd_blend, atol=1e-3) np.testing.assert_allclose(cm3, cm_blend, atol=1e-3) class Test3DStall(unittest.TestCase): def setUp(self): alpha = [ -9.000, -8.000, -7.000, -6.000, -5.000, -4.000, -3.000, -2.000, -1.000, 0.000, 1.000, 2.000, 3.000, 4.000, 5.000, 6.000, 7.000, 8.000, 9.000, 10.000, 11.000, 12.000, 13.000, 14.000, 15.000, 16.000, 17.000, 18.000, 19.000, 20.000, 30.000, 40.000, 50.000, ] cl = [ -0.802, -0.721, -0.611, -0.506, -0.408, -0.313, -0.220, -0.133, -0.060, 0.036, 0.227, 0.342, 0.436, 0.556, 0.692, 0.715, 0.761, 0.830, 0.893, 0.954, 1.013, 1.042, 1.061, 1.083, 1.078, 0.882, 0.811, 0.793, 0.793, 0.798, 0.772, 0.757, 0.700, ] cd = [ 0.027, 0.025, 0.024, 0.023, 0.022, 0.022, 0.023, 0.025, 0.027, 0.028, 0.024, 0.019, 0.017, 0.015, 0.017, 0.019, 0.021, 0.024, 0.027, 0.031, 0.037, 0.046, 0.058, 0.074, 0.088, 0.101, 0.114, 0.128, 0.142, 0.155, 0.321, 0.525, 0.742, ] cm = [ -0.0037, -0.0044, -0.0051, 0.0018, -0.0216, -0.0282, -0.0346, -0.0405, -0.0455, -0.0507, -0.0404, -0.0321, -0.0281, -0.0284, -0.0322, -0.0361, -0.0363, -0.0393, -0.0398, -0.0983, -0.1242, -0.1155, -0.1068, -0.0981, -0.0894, -0.0807, -0.072, -0.0633, -0.054, -0.045, -0.036, -0.22, -0.13, ] cm_zeros = np.zeros(len(cm)) Re = 1 self.polar = Polar(Re, alpha, cl, cd, cm) self.polar2 = Polar(Re, alpha, cl, cd, cm_zeros) def test_stall1(self): R = 2.4 r = 0.25 * R chord = 0.18 Omega = 200 * pi / 30 Uinf = 10.0 tsr = Omega * R / Uinf newpolar = self.polar.correction3D( r / R, chord / r, tsr, alpha_max_corr=30, alpha_linear_min=-4, alpha_linear_max=4 ) cl_3d = [-0.84628298, -0.75228154, -0.64170322, -0.53398298, -0.43026406, -0.32825998, -0.22739914, -0.12996799, -0.04053948, 0.06203622, 0.21891545, 0.33235184, 0.4337843 , 0.55007878, 0.67551912, 0.73636683, 0.81036171, 0.89750377, 0.98121612, 1.06378525, 1.14521114, 1.20948854, 1.26804979, 1.32832588, 1.328 , 1.132 , 1.061 , 1.043 , 1.043 , 1.048 , 0.9595 , 0.8195 , 0.7] cd_3d = [0.027, 0.025, 0.024, 0.023, 0.022, 0.022, 0.023, 0.025, 0.027, 0.028, 0.024, 0.019, 0.017, 0.015, 0.017, 0.019, 0.021, 0.024, 0.027, 0.031, 0.037, 0.046, 0.058, 0.074, 0.088, 0.101, 0.114, 0.128, 0.142, 0.155, 0.321, 0.525, 0.742] # test equality np.testing.assert_allclose(newpolar.cl, cl_3d, atol=1e-3, rtol=1e-3) np.testing.assert_allclose(newpolar.cd, cd_3d, atol=1e-3, rtol=1e-3) def test_stall2(self): R = 2.4 r = 0.75 * R chord = 0.28 Omega = 200 * pi / 30 Uinf = 14.0 tsr = Omega * R / Uinf newpolar = self.polar.correction3D( r / R, chord / r, tsr, alpha_max_corr=30, alpha_linear_min=-4, alpha_linear_max=4 ) cl_3d = [-0.81312305, -0.72885733, -0.61871207, -0.5130288 , -0.41359231, -0.31683302, -0.22185852, -0.13223842, -0.05511188, 0.04253981, 0.22496931, 0.33957657, 0.43544346, 0.5545127 , 0.68786031, 0.72036695, 0.77339873, 0.84695567, 0.91515823, 0.98157599, 1.04620895, 1.08406997, 1.113007 , 1.14462124, 1.15214072, 0.98921218, 0.93783339, 0.9337517 , 0.94573318, 0.96217664, 0.9595 , 0.8195 , 0.7] cd_3d = [0.027, 0.025, 0.024, 0.023, 0.022, 0.022, 0.023, 0.025, 0.027, 0.028, 0.024, 0.019, 0.017, 0.015, 0.017, 0.019, 0.021, 0.024, 0.027, 0.031, 0.037, 0.046, 0.058, 0.074, 0.088, 0.101, 0.114, 0.128, 0.142, 0.155, 0.321, 0.525, 0.742] # test equality np.testing.assert_allclose(newpolar.cl, cl_3d, atol=1e-3) np.testing.assert_allclose(newpolar.cd, cd_3d, atol=1e-3) def test_stall3(self): R = 5.0 r = 0.5 * R chord = 0.5 Omega = 100 * pi / 30 Uinf = 10.0 tsr = Omega * R / Uinf newpolar = self.polar.correction3D( r / R, chord / r, tsr, alpha_max_corr=30, alpha_linear_min=-4, alpha_linear_max=4 ) cl_3d = [-0.82374342, -0.73635957, -0.62607561, -0.51973994, -0.41893189, -0.32049281, -0.22363306, -0.13151125, -0.05044467, 0.04878406, 0.2230304 , 0.33726265, 0.43491207, 0.55309262, 0.68390771, 0.72549134, 0.78523713, 0.86314507, 0.93631506, 1.00790573, 1.07791708, 1.12423867, 1.16266366, 1.20345763, 1.22293081, 1.09157913, 1.05893482, 1.043 , 1.043 , 1.048 , 0.9595 , 0.8195 , 0.7] cd_3d = [0.027, 0.025, 0.024, 0.023, 0.022, 0.022, 0.023, 0.025, 0.027, 0.028, 0.024, 0.019, 0.017, 0.015, 0.017, 0.019, 0.021, 0.024, 0.027, 0.031, 0.037, 0.046, 0.058, 0.074, 0.088, 0.101, 0.114, 0.128, 0.142, 0.155, 0.321, 0.525, 0.742 ] # test equality np.testing.assert_allclose(newpolar.cl, cl_3d, atol=1e-3) np.testing.assert_allclose(newpolar.cd, cd_3d, atol=1e-3) def test_stall4_cm(self): R = 5.0 r = 0.5 * R chord = 0.5 Omega = 100 * pi / 30 Uinf = 10.0 tsr = Omega * R / Uinf newpolar = self.polar2.correction3D( r / R, chord / r, tsr, alpha_max_corr=30, alpha_linear_min=-4, alpha_linear_max=4 ) cl_3d = [-0.82374342, -0.73635957, -0.62607561, -0.51973994, -0.41893189, -0.32049281, -0.22363306, -0.13151125, -0.05044467, 0.04878406, 0.2230304 , 0.33726265, 0.43491207, 0.55309262, 0.68390771, 0.72549134, 0.78523713, 0.86314507, 0.93631506, 1.00790573, 1.07791708, 1.12423867, 1.16266366, 1.20345763, 1.22293081, 1.09157913, 1.05893482, 1.043 , 1.043 , 1.048 , 0.9595 , 0.8195 , 0.7] cd_3d = [0.027, 0.025, 0.024, 0.023, 0.022, 0.022, 0.023, 0.025, 0.027, 0.028, 0.024, 0.019, 0.017, 0.015, 0.017, 0.019, 0.021, 0.024, 0.027, 0.031, 0.037, 0.046, 0.058, 0.074, 0.088, 0.101, 0.114, 0.128, 0.142, 0.155, 0.321, 0.525, 0.742] cm_zeros = np.zeros(len(cd_3d)) # test equality np.testing.assert_allclose(newpolar.cl, cl_3d, atol=1e-3) np.testing.assert_allclose(newpolar.cd, cd_3d, atol=1e-3) np.testing.assert_allclose(newpolar.cm, cm_zeros, atol=1e-3) class TestExtrap(unittest.TestCase): def setUp(self): alpha = [ -10.1, -8.2, -6.1, -4.1, -2.1, 0.1, 2, 4.1, 6.2, 8.1, 10.2, 11.3, 12.1, 13.2, 14.2, 15.3, 16.3, 17.1, 18.1, 19.1, 20.1, ] cl = [ -0.6300, -0.5600, -0.6400, -0.4200, -0.2100, 0.0500, 0.3000, 0.5400, 0.7900, 0.9000, 0.9300, 0.9200, 0.9500, 0.9900, 1.0100, 1.0200, 1.0000, 0.9400, 0.8500, 0.7000, 0.6600, ] cd = [ 0.0390, 0.0233, 0.0131, 0.0134, 0.0119, 0.0122, 0.0116, 0.0144, 0.0146, 0.0162, 0.0274, 0.0303, 0.0369, 0.0509, 0.0648, 0.0776, 0.0917, 0.0994, 0.2306, 0.3142, 0.3186, ] cm = [ -0.0044, -0.0051, 0.0018, -0.0216, -0.0282, -0.0346, -0.0405, -0.0455, -0.0507, -0.0404, -0.0321, -0.0281, -0.0284, -0.0322, -0.0361, -0.0363, -0.0393, -0.0398, -0.0983, -0.1242, -0.1155, ] cm_zeros = np.zeros(len(cm)) Re = 1 self.polar = Polar(Re, alpha, cl, cd, cm) self.polar2 = Polar(Re, alpha, cl, cd, cm_zeros) def test_extrap1(self): cdmax = 1.29 newpolar = self.polar.extrapolate(cdmax=cdmax) alpha_extrap = [ -180, -170, -160, -150, -140, -130, -120, -110, -100, -90, -80, -70, -60, -50, -40, -30, -20, -10.1, -8.2, -6.1, -4.1, -2.1, 0.1, 2, 4.1, 6.2, 8.1, 10.2, 11.3, 12.1, 13.2, 14.2, 15.3, 16.3, 17.1, 18.1, 19.1, 20.1, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, ] cl_extrap = [ 0.0000, 0.2299, 0.4597, 0.4907, 0.5053, 0.4805, 0.4102, 0.2985, 0.1565, 0.0000, -0.1565, -0.2985, -0.4102, -0.4805, -0.5053, -0.4907, -0.4637, -0.6300, -0.5600, -0.6400, -0.4200, -0.2100, 0.0500, 0.3000, 0.5400, 0.7900, 0.9000, 0.9300, 0.9200, 0.9500, 0.9900, 1.0100, 1.0200, 1.0000, 0.9400, 0.8500, 0.7000, 0.6600, 0.7010, 0.7219, 0.6864, 0.5860, 0.4264, 0.2235, 0.0000, -0.1565, -0.2985, -0.4102, -0.4805, -0.5053, -0.4907, -0.4597, -0.2299, 0.0000, ] cd_extrap = [ 0.1770, 0.2132, 0.3173, 0.4758, 0.6686, 0.8708, 1.0560, 1.1996, 1.2818, 1.2900, 1.2818, 1.1996, 1.0560, 0.8708, 0.6686, 0.4758, 0.3158, 0.0390, 0.0233, 0.0131, 0.0134, 0.0119, 0.0122, 0.0116, 0.0144, 0.0146, 0.0162, 0.0274, 0.0303, 0.0369, 0.0509, 0.0648, 0.0776, 0.0917, 0.0994, 0.2306, 0.3142, 0.3186, 0.4758, 0.6686, 0.8708, 1.0560, 1.1996, 1.2818, 1.2900, 1.2818, 1.1996, 1.0560, 0.8708, 0.6686, 0.4758, 0.3173, 0.2132, 0.1770, ] cm_extrap = [ 0.0000, 0.4000, 0.2431, 0.2568, 0.2865, 0.3185, 0.3458, 0.3632, 0.3672, 0.3559, 0.3443, 0.3182, 0.2808, 0.2362, 0.1886, 0.1414, 0.0942, -0.0044, -0.0051, 0.0018, -0.0216, -0.0282, -0.0346, -0.0405, -0.0455, -0.0507, -0.0404, -0.0321, -0.0281, -0.0284, -0.0322, -0.0361, -0.0363, -0.0393, -0.0398, -0.0983, -0.1242, -0.1155, -0.1710, -0.2202, -0.2637, -0.3002, -0.3284, -0.3471, -0.3559, -0.3672, -0.3632, -0.3458, -0.3185, -0.2865, -0.2568, -0.2431, -0.5000, 0.0000, ] # re-interpolate b/c angles of attack are different cl = np.interp(alpha_extrap, newpolar.alpha, newpolar.cl) cd = np.interp(alpha_extrap, newpolar.alpha, newpolar.cd) cm = np.interp(alpha_extrap, newpolar.alpha, newpolar.cm) # test equality np.testing.assert_allclose(cl, cl_extrap, atol=1.5e-4) np.testing.assert_allclose(cd, cd_extrap, atol=1.5e-4) np.testing.assert_allclose(cm, cm_extrap, atol=5e-3) def test_extrap2(self): cdmax = 1.0 newpolar = self.polar.extrapolate(cdmax=cdmax) alpha_extrap = [ -180, -170, -160, -150, -140, -130, -120, -110, -100, -90, -80, -70, -60, -50, -40, -30, -20, -10.1, -8.2, -6.1, -4.1, -2.1, 0.1, 2, 4.1, 6.2, 8.1, 10.2, 11.3, 12.1, 13.2, 14.2, 15.3, 16.3, 17.1, 18.1, 19.1, 20.1, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, ] cl_extrap = [ 0.0000, 0.2299, 0.4597, 0.4411, 0.4287, 0.3943, 0.3297, 0.2364, 0.1225, 0.0000, -0.1225, -0.2364, -0.3297, -0.3943, -0.4287, -0.4411, -0.4637, -0.6300, -0.5600, -0.6400, -0.4200, -0.2100, 0.0500, 0.3000, 0.5400, 0.7900, 0.9000, 0.9300, 0.9200, 0.9500, 0.9900, 1.0100, 1.0200, 1.0000, 0.9400, 0.8500, 0.7000, 0.6600, 0.6302, 0.6124, 0.5633, 0.4710, 0.3378, 0.1750, 0.0000, -0.1225, -0.2364, -0.3297, -0.3943, -0.4287, -0.4411, -0.4597, -0.2299, 0.0000, ] cd_extrap = [ 0.2135, 0.2404, 0.3176, 0.4349, 0.5767, 0.7241, 0.8568, 0.9560, 1.0069, 1.0000, 1.0069, 0.9560, 0.8568, 0.7241, 0.5767, 0.4349, 0.3158, 0.0390, 0.0233, 0.0131, 0.0134, 0.0119, 0.0122, 0.0116, 0.0144, 0.0146, 0.0162, 0.0274, 0.0303, 0.0369, 0.0509, 0.0648, 0.0776, 0.0917, 0.0994, 0.2306, 0.3142, 0.3186, 0.4349, 0.5767, 0.7241, 0.8568, 0.9560, 1.0069, 1.0000, 1.0069, 0.9560, 0.8568, 0.7241, 0.5767, 0.4349, 0.3176, 0.2404, 0.2135, ] cm_extrap = [ 0.0000, 0.4000, 0.2432, 0.2354, 0.2500, 0.2695, 0.2864, 0.2961, 0.2956, 0.2834, 0.2776, 0.2603, 0.2337, 0.2013, 0.1663, 0.1310, 0.0942, -0.0044, -0.0051, 0.0018, -0.0216, -0.0282, -0.0346, -0.0405, -0.0455, -0.0507, -0.0404, -0.0321, -0.0281, -0.0284, -0.0322, -0.0361, -0.0363, -0.0393, -0.0398, -0.0983, -0.1242, -0.1155, -0.1577, -0.1930, -0.2239, -0.2494, -0.2683, -0.2798, -0.2834, -0.2956, -0.2961, -0.2864, -0.2695, -0.2500, -0.2354, -0.2432, -0.5000, 0.0000, ] # re-interpolate b/c angles of attack are different cl = np.interp(alpha_extrap, newpolar.alpha, newpolar.cl) cd = np.interp(alpha_extrap, newpolar.alpha, newpolar.cd) cm = np.interp(alpha_extrap, newpolar.alpha, newpolar.cm) # test equality np.testing.assert_allclose(cl, cl_extrap, atol=1.5e-4) np.testing.assert_allclose(cd, cd_extrap, atol=1.5e-4) np.testing.assert_allclose(cm, cm_extrap, atol=5e-3) def test_extrap3(self): cdmax = 1.5 newpolar = self.polar.extrapolate(cdmax) alpha_extrap = [ -180, -170, -160, -150, -140, -130, -120, -110, -100, -90, -80, -70, -60, -50, -40, -30, -20, -10.1, -8.2, -6.1, -4.1, -2.1, 0.1, 2, 4.1, 6.2, 8.1, 10.2, 11.3, 12.1, 13.2, 14.2, 15.3, 16.3, 17.1, 18.1, 19.1, 20.1, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, ] cl_extrap = [ 0.0000, 0.2299, 0.4597, 0.5266, 0.5608, 0.5429, 0.4685, 0.3434, 0.1810, 0.0000, -0.1810, -0.3434, -0.4685, -0.5429, -0.5608, -0.5266, -0.4637, -0.6300, -0.5600, -0.6400, -0.4200, -0.2100, 0.0500, 0.3000, 0.5400, 0.7900, 0.9000, 0.9300, 0.9200, 0.9500, 0.9900, 1.0100, 1.0200, 1.0000, 0.9400, 0.8500, 0.7000, 0.6600, 0.7523, 0.8012, 0.7756, 0.6693, 0.4906, 0.2586, 0.0000, -0.1810, -0.3434, -0.4685, -0.5429, -0.5608, -0.5266, -0.4597, -0.2299, 0.0000, ] cd_extrap = [ 0.1506, 0.1936, 0.3170, 0.5054, 0.7351, 0.9771, 1.2003, 1.3760, 1.4809, 1.5000, 1.4809, 1.3760, 1.2003, 0.9771, 0.7351, 0.5054, 0.3158, 0.0390, 0.0233, 0.0131, 0.0134, 0.0119, 0.0122, 0.0116, 0.0144, 0.0146, 0.0162, 0.0274, 0.0303, 0.0369, 0.0509, 0.0648, 0.0776, 0.0917, 0.0994, 0.2306, 0.3142, 0.3186, 0.5054, 0.7351, 0.9771, 1.2003, 1.3760, 1.4809, 1.5000, 1.4809, 1.3760, 1.2003, 0.9771, 0.7351, 0.5054, 0.3170, 0.1936, 0.1506, ] cm_extrap = [ 0.0000, 0.4000, 0.2431, 0.2723, 0.3130, 0.3540, 0.3888, 0.4118, 0.4190, 0.4084, 0.3926, 0.3602, 0.3148, 0.2614, 0.2049, 0.1488, 0.0942, -0.0044, -0.0051, 0.0018, -0.0216, -0.0282, -0.0346, -0.0405, -0.0455, -0.0507, -0.0404, -0.0321, -0.0281, -0.0284, -0.0322, -0.0361, -0.0363, -0.0393, -0.0398, -0.0983, -0.1242, -0.1155, -0.1807, -0.2399, -0.2925, -0.3370, -0.3719, -0.3959, -0.4084, -0.4190, -0.4118, -0.3888, -0.3540, -0.3130, -0.2723, -0.2431, -0.5000, 0.0000, ] # re-interpolate b/c angles of attack are different cl = np.interp(alpha_extrap, newpolar.alpha, newpolar.cl) cd = np.interp(alpha_extrap, newpolar.alpha, newpolar.cd) cm = np.interp(alpha_extrap, newpolar.alpha, newpolar.cm) # test equality np.testing.assert_allclose(cl, cl_extrap, atol=1.5e-4) np.testing.assert_allclose(cd, cd_extrap, atol=1.5e-4) np.testing.assert_allclose(cm, cm_extrap, atol=5e-3) class TestMisc(unittest.TestCase): def setUp(self): alpha = [ -10.1, -8.2, -6.1, -4.1, -2.1, 0.1, 2, 4.1, 6.2, 8.1, 10.2, 11.3, 12.1, 13.2, 14.2, 15.3, 16.3, 17.1, 18.1, 19.1, 20.1, ] cl = [ -0.6300, -0.5600, -0.6400, -0.4200, -0.2100, 0.0500, 0.3000, 0.5400, 0.7900, 0.9000, 0.9300, 0.9200, 0.9500, 0.9900, 1.0100, 1.0200, 1.0000, 0.9400, 0.8500, 0.7000, 0.6600, ] cd = [ 0.0390, 0.0233, 0.0131, 0.0134, 0.0119, 0.0122, 0.0116, 0.0144, 0.0146, 0.0162, 0.0274, 0.0303, 0.0369, 0.0509, 0.0648, 0.0776, 0.0917, 0.0994, 0.2306, 0.3142, 0.3186, ] cm = [ -0.0044, -0.0051, 0.0018, -0.0216, -0.0282, -0.0346, -0.0405, -0.0455, -0.0507, -0.0404, -0.0321, -0.0281, -0.0284, -0.0322, -0.0361, -0.0363, -0.0393, -0.0398, -0.0983, -0.1242, -0.1155, ] cm_zeros = np.zeros(len(cm)) Re = 1 self.polar = Polar(Re, alpha, cl, cd, cm) self.polar2 = Polar(Re, alpha, cl, cd, cm_zeros) def test_unsteady(self): alpha0, alpha1, alpha2, cnSlope, cn1, cn2, cd0, cm0 = self.polar.unsteadyParams() np.testing.assert_allclose(alpha0, -0.32307692307692304) np.testing.assert_allclose(alpha1, 9.260783831245934) np.testing.assert_allclose(alpha2, -6.779334979177289) np.testing.assert_allclose(cnSlope, 6.4380618436681765) np.testing.assert_allclose(cn1, 0.9201540372961516) np.testing.assert_allclose(cn2, -0.6377683435797556) np.testing.assert_allclose(cd0, 0.012142307692307694) np.testing.assert_allclose(cm0, -0.03336923076923077) def test_fully_separated(self): cl_fs, f_st = self.polar.cl_fully_separated() cl_fs_ref = np.array( [ -0.63, -0.42017185, -0.35815607, -0.23440711, -0.11213462, 0.02669872, 0.15, 0.2815297, 0.41432191, 0.51685242, 0.60852946, 0.6464375, 0.68202361, 0.7299095, 0.76769179, 0.8037866, 0.82370687, 0.81723832, 0.78926905, 0.69419819, 0.65999953, ] ) f_st_ref = np.array( [ 0.00000000e00, 2.34199688e-01, 7.26644559e-01, 7.32580663e-01, 8.34063987e-01, 8.34063987e-01, 1.00000000e00, 8.92315821e-01, 8.77625013e-01, 6.71133852e-01, 4.28392660e-01, 3.20122429e-01, 2.90558283e-01, 2.55881726e-01, 2.18728235e-01, 1.78134763e-01, 1.33254382e-01, 8.56818538e-02, 3.81986876e-02, 3.19820908e-03, 2.39632149e-07, ] ) np.testing.assert_allclose(cl_fs, cl_fs_ref) np.testing.assert_allclose(f_st, f_st_ref) def test_cl_max(self): cl_max, alpha_cl_max = self.polar.cl_max() np.testing.assert_allclose(cl_max, 1.02) np.testing.assert_allclose(alpha_cl_max, 15.3) def test_linear_region(self): alpha_linear_region, cl_linear_region, slope, alpha0 = self.polar.linear_region() np.testing.assert_allclose(alpha_linear_region, np.array([-3.36474623, 5.96375])) np.testing.assert_allclose(cl_linear_region, np.array([-0.39279835, 0.811875])) np.testing.assert_allclose(slope, 0.1291390728476821) np.testing.assert_allclose(alpha0, -0.32307692307692304) def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestBlend)) suite.addTest(unittest.makeSuite(Test3DStall)) suite.addTest(unittest.makeSuite(TestExtrap)) suite.addTest(unittest.makeSuite(TestMisc)) return suite if __name__ == "__main__": result = unittest.TextTestRunner().run(suite()) if result.wasSuccessful(): exit(0) else: exit(1) ``` #### File: test/test_commonse/test_environment.py ```python import unittest import numpy as np import openmdao.api as om import numpy.testing as npt import wisdem.commonse.environment as env from wisdem.commonse import gravity as g from openmdao.utils.assert_utils import assert_check_partials npts = 100 myones = np.ones((npts,)) class TestPowerWind(unittest.TestCase): def setUp(self): self.params = {} self.unknowns = {} self.resid = None self.params["shearExp"] = 2.0 self.params["Uref"] = 5.0 self.params["zref"] = 3.0 self.params["z0"] = 0.0 self.params["z"] = 9.0 * myones self.wind = env.PowerWind(nPoints=npts) def testRegular(self): self.wind.compute(self.params, self.unknowns) expect = 45.0 * myones npt.assert_equal(self.unknowns["U"], expect) def testIndex(self): self.params["z"][1:] = -1.0 self.wind.compute(self.params, self.unknowns) expect = 45.0 * myones expect[1:] = 0.0 npt.assert_equal(self.unknowns["U"], expect) def testZ0(self): self.params["z0"] = 10.0 self.params["z"] += 10.0 self.params["zref"] += 10.0 self.wind.compute(self.params, self.unknowns) expect = 45.0 * myones npt.assert_equal(self.unknowns["U"], expect) class TestLinearWaves(unittest.TestCase): def setUp(self): self.params = {} self.unknowns = {} self.resid = None self.params["rho_water"] = 1e3 self.params["Hsig_wave"] = 2.0 self.params["Uc"] = 5.0 self.params["z_floor"] = -30.0 self.params["z_surface"] = 0.0 self.params["z"] = -2.0 * myones self.wave = env.LinearWaves(nPoints=npts) def testRegular(self): D = np.abs(self.params["z_floor"]) k = 2.5 omega = np.sqrt(g * k * np.tanh(k * D)) self.params["Tsig_wave"] = 2.0 * np.pi / omega self.wave.compute(self.params, self.unknowns) a = 1.0 # 0.5*Hsig_wave z = -2.0 rho = 1e3 U_exp = 5 + omega * a * np.cosh(k * (z + D)) / np.sinh(k * D) W_exp = -omega * a * np.sinh(k * (z + D)) / np.sinh(k * D) V_exp = np.sqrt(U_exp ** 2 + W_exp ** 2) A_exp = omega * omega * a * np.cosh(k * (z + D)) / np.sinh(k * D) p_exp = -rho * g * (z - a * np.cosh(k * (z + D)) / np.cosh(k * D)) npt.assert_almost_equal(self.unknowns["U"], U_exp) npt.assert_almost_equal(self.unknowns["W"], W_exp) npt.assert_almost_equal(self.unknowns["V"], V_exp) npt.assert_almost_equal(self.unknowns["A"], A_exp) npt.assert_almost_equal(self.unknowns["p"], p_exp) # Positive depth input self.params["z_floor"] = 30.0 self.wave.compute(self.params, self.unknowns) npt.assert_almost_equal(self.unknowns["U"], U_exp) npt.assert_almost_equal(self.unknowns["W"], W_exp) npt.assert_almost_equal(self.unknowns["V"], V_exp) npt.assert_almost_equal(self.unknowns["A"], A_exp) npt.assert_almost_equal(self.unknowns["p"], p_exp) def testPositiveZ(self): self.params["Tsig_wave"] = 2.0 self.params["z"] = 2.0 * myones self.wave.compute(self.params, self.unknowns) npt.assert_equal(self.unknowns["U"], 0.0) npt.assert_equal(self.unknowns["W"], 0.0) npt.assert_equal(self.unknowns["V"], 0.0) npt.assert_equal(self.unknowns["A"], 0.0) npt.assert_equal(self.unknowns["p"], 0.0) def testQuiet(self): self.params["Hsig_wave"] = 0.0 self.params["Tsig_wave"] = 2.0 self.wave.compute(self.params, self.unknowns) p_exp = 2e3 * g npt.assert_equal(self.unknowns["U"], 5.0) npt.assert_equal(self.unknowns["W"], 0.0) npt.assert_equal(self.unknowns["V"], 5.0) npt.assert_equal(self.unknowns["A"], 0.0) npt.assert_equal(self.unknowns["p"], p_exp) class TestPowerWindGradients(unittest.TestCase): def test(self): z = np.linspace(0.0, 100.0, 20) nPoints = len(z) prob = om.Problem() root = prob.model = om.Group() root.add_subsystem("p", env.PowerWind(nPoints=nPoints)) prob.setup() prob["p.Uref"] = 10.0 prob["p.zref"] = 100.0 prob["p.z0"] = 0.001 # Fails when z0 = 0, What to do here? prob["p.shearExp"] = 0.2 prob.run_model() check = prob.check_partials(out_stream=None, compact_print=True, method="fd") assert_check_partials(check) class TestLogWindGradients(unittest.TestCase): def test(self): nPoints = 20 z = np.linspace(0.1, 100.0, nPoints) prob = om.Problem() root = prob.model = om.Group() root.add_subsystem("p", env.LogWind(nPoints=nPoints)) prob.setup() prob["p.Uref"] = 10.0 prob["p.zref"] = 100.0 prob["p.z0"] = 0.1 # Fails when z0 = 0 prob.run_model() check = prob.check_partials(out_stream=None, compact_print=True, method="fd") assert_check_partials(check) ### These partials are wrong; do not test # class TestLinearWaveGradients(unittest.TestCase): # # def test(self): # # z_floor = 0.1 # z_surface = 20. # z = np.linspace(z_floor, z_surface, 20) # nPoints = len(z) # # prob = om.Problem() # root = prob.model = om.Group() # root.add_subsystem('p', env.LinearWaves(nPoints=nPoints)) # # prob.setup() # # prob['p.Uc'] = 7.0 # prob['p.z_floor'] = z_floor # prob['p.z_surface'] = z_surface # prob['p.Hsig_wave'] = 10.0 # prob['p.Tsig_wave'] = 2.0 # # prob.run_model() # # check = prob.check_partials(out_stream=None, compact_print=True, method='fd') # # assert_check_partials(check) ### The partials are currently not correct, so skip this test # class TestSoilGradients(unittest.TestCase): # # def test(self): # # d0 = 10.0 # depth = 30.0 # G = 140e6 # nu = 0.4 # # prob = om.Problem() # root = prob.model = om.Group() # root.add_subsystem('p', env.TowerSoil()) # # prob.setup() # # prob['p.G'] = G # prob['p.nu'] = nu # prob['p.d0'] = d0 # prob['p.depth'] = depth # # prob.run_model() # # check = prob.check_partials(out_stream=None, compact_print=True, method='fd') # # assert_check_partials(check) def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestPowerWind)) suite.addTest(unittest.makeSuite(TestLinearWaves)) suite.addTest(unittest.makeSuite(TestPowerWindGradients)) suite.addTest(unittest.makeSuite(TestLogWindGradients)) return suite if __name__ == "__main__": result = unittest.TextTestRunner().run(suite()) if result.wasSuccessful(): exit(0) else: exit(1) ``` #### File: test/test_commonse/test_frustum.py ```python import unittest import numpy as np import numpy.testing as npt import wisdem.commonse.frustum as f from wisdem.commonse import eps myones = np.ones((100,)) rb = 4.0 rt = 2.0 t = 0.1 h = 3.0 class TestFrustum(unittest.TestCase): def testFrustumVol(self): V = np.pi / 3 * h * (rb ** 2 + rt ** 2 + rb * rt) # Test volume- scalar and vector inputs self.assertEqual(f.frustumVol(rb, rt, h, False), V) self.assertEqual(f.frustumVol(2 * rb, 2 * rt, h, True), V) npt.assert_equal(f.frustumVol(rb * myones, rt * myones, h * myones, False), V * myones) npt.assert_equal(f.frustumVol(2 * rb * myones, 2 * rt * myones, h * myones, True), V * myones) def testFrustumCG_solid(self): cg_solid = h / 4 * (rb ** 2 + 3 * rt ** 2 + 2 * rb * rt) / (rb ** 2 + rt ** 2 + rb * rt) # Test cg of solid- scalar and vector inputs self.assertEqual(f.frustumCG(rb, rt, h, False), cg_solid) self.assertEqual(f.frustumCG(2 * rb, 2 * rt, h, True), cg_solid) npt.assert_equal(f.frustumCG(rb * myones, rt * myones, h * myones, False), cg_solid * myones) npt.assert_equal(f.frustumCG(2 * rb * myones, 2 * rt * myones, h * myones, True), cg_solid * myones) def testFrustum_shell(self): # In limit of thickness approaching radius, should recover regular formulas self.assertEqual(f.frustumShellVol(rb, rb, rb, h, False), f.frustumVol(rb, rb, h, False)) self.assertEqual(f.frustumShellVol(2 * rt, 2 * rt, rt, h, True), f.frustumVol(rt, rt, h, False)) self.assertEqual(f.frustumShellCG(rb, rb, rb, h, False), f.frustumCG(rb, rb, h, False)) self.assertEqual(f.frustumShellCG(2 * rt, 2 * rt, rt, h, True), f.frustumCG(rt, rt, h, False)) self.assertEqual(f.frustumShellIzz(rb, rb, rb, h, False), f.frustumIzz(rb, rb, h, False)) self.assertEqual(f.frustumShellIzz(2 * rt, 2 * rt, rt, h, True), f.frustumIzz(rt, rt, h, False)) self.assertAlmostEqual(f.frustumShellIxx(rb, rb, rb - eps, h, False), f.frustumIxx(rb, rb, h, False)) self.assertAlmostEqual(f.frustumShellIxx(2 * rt, 2 * rt, rt - eps, h, True), f.frustumIxx(rt, rt, h, False)) def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestFrustum)) return suite if __name__ == "__main__": result = unittest.TextTestRunner().run(suite()) if result.wasSuccessful(): exit(0) else: exit(1) ``` #### File: test/test_examples/test_examples.py ```python import os import unittest import importlib from time import time from pathlib import Path thisdir = os.path.dirname(os.path.realpath(__file__)) # Find examples directory- outside the module path root_dir = os.path.dirname(os.path.dirname(os.path.dirname(thisdir))) examples_dir = os.path.join(root_dir, "examples") all_examples = Path(examples_dir).rglob("*.py") if os.path.exists(examples_dir) else [] # 02_ref turbines are regression tested in test_gluecode, no need to duplicate runtime all_scripts = [ "01_nrel_csm/costs", "01_nrel_csm/mass", "01_nrel_csm/mass_and_cost", "01_nrel_csm/parametric", "02_reference_turbines/iea10mw_driver", "03_blade/blade_driver", "04_openmdao/betz_limit", "04_openmdao/sellar", "05_tower_monopile/monopile_direct", "05_tower_monopile/monopile_driver", "05_tower_monopile/tower_direct", "05_tower_monopile/tower_driver", "06_drivetrain/drivetrain_direct", "06_drivetrain/drivetrain_geared", "07_generator/dfig", "07_generator/eesg", "07_generator/pmsg_arms", "07_generator/pmsg_disc", "07_generator/pmsg_outer", "07_generator/scig", "08_plant_finance/example", "09_floating/mooring_opt", "09_floating/semi_only_driver", "09_floating/spar_only_driver", "09_floating/spar_opt", "09_floating/tlp_example", "09_floating/nrel5mw-spar_oc3_driver", "09_floating/nrel5mw-semi_oc4_driver", "09_floating/iea15mw_driver", "10_ccblade/example", "10_ccblade/gradients", "10_ccblade/precurve", "11_airfoilprep/example", "12_pyframe3dd/exB", "13_design_of_experiments/doe_driver", "14_overridden_values/driver", "15_step_size_study/driver", "16_inverse_design/inverse_spar_design", ] def execute_script(fscript): # Go to location due to relative path use for airfoil files print("\n\n") print("NOW RUNNING:", fscript) print() fullpath = os.path.join(examples_dir, fscript + ".py") basepath = os.path.join(examples_dir, fscript.split("/")[0]) os.chdir(basepath) # Get script/module name froot = fscript.split("/")[-1] # Use dynamic import capabilities # https://www.blog.pythonlibrary.org/2016/05/27/python-201-an-intro-to-importlib/ print(froot, os.path.realpath(fullpath)) spec = importlib.util.spec_from_file_location(froot, os.path.realpath(fullpath)) mod = importlib.util.module_from_spec(spec) s = time() spec.loader.exec_module(mod) print(time() - s, "seconds to run") class TestExamples(unittest.TestCase): def test_all_scripts(self): for ks, s in enumerate(all_scripts): with self.subTest(f"Running: {s}", i=ks): try: execute_script(s) self.assertTrue(True) except: self.assertEqual(s, "Success") def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestExamples)) return suite if __name__ == "__main__": result = unittest.TextTestRunner().run(suite()) if result.wasSuccessful(): exit(0) else: exit(1) ``` #### File: test/test_optimization_drivers/test_dakota_driver.py ```python import unittest import numpy as np from openmdao.utils.assert_utils import assert_near_equal from wisdem.optimization_drivers.dakota_driver import DakotaOptimizer try: import dakota except ImportError: dakota = None @unittest.skipIf(dakota is None, "only run if Dakota is installed.") class TestDakotaOptimization(unittest.TestCase): def test_2D_opt_max_iterations(self): bounds = {"x": np.array([[0.0, 1.0], [0.0, 1.0]])} desvars = {"x": np.array([0.0, 0.25])} outputs = ["y"] template_dir = "template_dir/" model_string = "from weis.multifidelity.models.testbed_components import simple_2D_high_model as model" output_scalers = [1.0] options = {"method": "coliny_cobyla", "max_function_evaluations": 3} opt = DakotaOptimizer(template_dir) results = opt.optimize(desvars, outputs, bounds, model_string, output_scalers, options) assert_near_equal(np.min(np.array(results["y"])), -9.5) def test_2D_opt_EGO(self): bounds = {"x": np.array([[0.0, 1.0], [0.0, 1.0]])} desvars = {"x": np.array([0.0, 0.25])} outputs = ["y"] template_dir = "template_dir/" model_string = "from weis.multifidelity.models.testbed_components import simple_2D_high_model as model" output_scalers = [1.0] options = {"initial_samples": 5, "method": "efficient_global", "seed": 123456} opt = DakotaOptimizer(template_dir) results = opt.optimize(desvars, outputs, bounds, model_string, output_scalers, options) assert_near_equal(np.min(np.array(results["y"])), -9.999996864) def test_two_variables(self): bounds = {"x": np.array([[0.0, 1.0], [0.0, 1.0]]), "z": [1.0, 2.0]} desvars = {"x": np.array([0.0, 0.25]), "z": 1.5} outputs = ["y"] template_dir = "template_dir/" model_string = "from weis.multifidelity.models.testbed_components import simple_two_variable as model" output_scalers = [1.0] options = {"method": "coliny_cobyla", "max_function_evaluations": 3} opt = DakotaOptimizer(template_dir) results = opt.optimize(desvars, outputs, bounds, model_string, output_scalers, options) assert_near_equal(np.min(np.array(results["y"])), 1.0) def test_constraint(self): bounds = {"x": np.array([[0.0, 1.0], [0.0, 1.0]])} desvars = {"x": np.array([0.0, 0.25])} outputs = ["y", "con"] template_dir = "template_dir/" model_string = "from weis.multifidelity.models.testbed_components import simple_2D_low_model as model" output_scalers = [1.0, 1.0] options = {"method": "coliny_cobyla", "max_function_evaluations": 3} opt = DakotaOptimizer(template_dir) results = opt.optimize(desvars, outputs, bounds, model_string, output_scalers, options) assert_near_equal(np.min(np.array(results["y"])), 0.5) assert_near_equal(np.min(np.array(results["con"])), 0.0) if __name__ == "__main__": unittest.main() ``` #### File: test/test_rotorse/test_rotor_cost.py ```python import os import unittest import openmdao.api as om from wisdem.glue_code.gc_LoadInputs import WindTurbineOntologyPython from wisdem.glue_code.gc_PoseOptimization import PoseOptimization from wisdem.rotorse.rotor_cost import StandaloneRotorCost, initialize_omdao_prob wisdem_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))) example_dir = os.path.join(wisdem_dir, "examples", "02_reference_turbines") # get path example 03_blade fname_opt_options = os.path.join(example_dir ,"analysis_options.yaml") accuracy = 0 class TestRC(unittest.TestCase): def testRotorCostIEA3p4(self): fname_modeling_options = os.path.join(example_dir, "modeling_options.yaml") fname_wt_input = os.path.join(example_dir, "IEA-3p4-130-RWT.yaml") wt_initial = WindTurbineOntologyPython(fname_wt_input, fname_modeling_options, fname_opt_options) wt_init, modeling_options, opt_options = wt_initial.get_input_data() modeling_options["WISDEM"]["RotorSE"]["flag"] = False wt_opt = om.Problem(model=StandaloneRotorCost(modeling_options=modeling_options ,opt_options=opt_options)) wt_opt.setup(derivatives=False) myopt = PoseOptimization(wt_init, modeling_options, opt_options) wt_opt = myopt.set_initial(wt_opt, wt_init) wt_opt = initialize_omdao_prob(wt_opt, modeling_options, wt_init) wt_opt.run_model() self.assertAlmostEqual(wt_opt["rc.total_labor_hours"][0], 942.2580090792371, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_non_gating_ct"][0], 125.47743556393156, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_metallic_parts_cost"][0], 4667.410277624349, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_consumable_cost_w_waste"][0], 7200.344422290056, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_blade_mat_cost_w_waste"][0], 69743.70423837316, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_cost_labor"][0], 31792.709454484186, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_cost_utility"][0], 638.5561660415175, places=accuracy) self.assertAlmostEqual(wt_opt["rc.blade_variable_cost"][0], 102174.96985889885, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_cost_equipment"][0], 3334.488593496729, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_cost_tooling"][0], 9970.668209900952, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_cost_building"][0], 544.3309391994371, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_maintenance_cost"][0], 3582.2994780221684, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_labor_overhead"][0], 9537.812836345256, places=accuracy) self.assertAlmostEqual(wt_opt["rc.cost_capital"][0], 7223.287108846724, places=accuracy) self.assertAlmostEqual(wt_opt["rc.blade_fixed_cost"][0], 34192.88716581127, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_blade_cost"][0], 136367.85702471013, places=accuracy) def testRotorCostIEA10(self): fname_modeling_options = os.path.join(example_dir, "modeling_options_iea10.yaml") fname_wt_input = os.path.join(example_dir, "IEA-10-198-RWT.yaml") wt_initial = WindTurbineOntologyPython(fname_wt_input, fname_modeling_options, fname_opt_options) wt_init, modeling_options, opt_options = wt_initial.get_input_data() modeling_options["WISDEM"]["RotorSE"]["flag"] = False modeling_options["WISDEM"]["DriveSE"]["direct"] = False wt_opt = om.Problem(model=StandaloneRotorCost(modeling_options=modeling_options ,opt_options=opt_options)) wt_opt.setup(derivatives=False) myopt = PoseOptimization(wt_init, modeling_options, opt_options) wt_opt = myopt.set_initial(wt_opt, wt_init) wt_opt = initialize_omdao_prob(wt_opt, modeling_options, wt_init) wt_opt.run_model() self.assertAlmostEqual(wt_opt["rc.total_labor_hours"][0], 2104.669926420341, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_non_gating_ct"][0], 224.7722030790102, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_metallic_parts_cost"][0], 7621.331066101973, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_consumable_cost_w_waste"][0], 12913.891638670682, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_blade_mat_cost_w_waste"][0], 195975.7612745464, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_cost_labor"][0], 71148.57041818449, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_cost_utility"][0], 2582.596384597327, places=accuracy) self.assertAlmostEqual(wt_opt["rc.blade_variable_cost"][0], 269706.9280773282, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_cost_equipment"][0], 7975.896398389559, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_cost_tooling"][0], 34012.403410785664, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_cost_building"][0], 1960.741347506985, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_maintenance_cost"][0], 10985.232722089915, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_labor_overhead"][0], 21344.571125455346, places=accuracy) self.assertAlmostEqual(wt_opt["rc.cost_capital"][0], 21348.39972589469, places=accuracy) self.assertAlmostEqual(wt_opt["rc.blade_fixed_cost"][0], 97627.24473012217, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_blade_cost"][0], 367334.17280745035, places=accuracy) def testRotorCostIEA15(self): fname_modeling_options = os.path.join(example_dir, "modeling_options.yaml") fname_wt_input = os.path.join(example_dir, "IEA-15-240-RWT.yaml") wt_initial = WindTurbineOntologyPython(fname_wt_input, fname_modeling_options, fname_opt_options) wt_init, modeling_options, opt_options = wt_initial.get_input_data() modeling_options["WISDEM"]["RotorSE"]["flag"] = False modeling_options["WISDEM"]["DriveSE"]["direct"] = False wt_opt = om.Problem(model=StandaloneRotorCost(modeling_options=modeling_options ,opt_options=opt_options)) wt_opt.setup(derivatives=False) myopt = PoseOptimization(wt_init, modeling_options, opt_options) wt_opt = myopt.set_initial(wt_opt, wt_init) wt_opt = initialize_omdao_prob(wt_opt, modeling_options, wt_init) wt_opt.run_model() self.assertAlmostEqual(wt_opt["rc.total_labor_hours"][0], 3144.546512161421, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_non_gating_ct"][0], 275.33521169175623, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_metallic_parts_cost"][0], 8885.377394584766, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_consumable_cost_w_waste"][0], 15040.127644116868, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_blade_mat_cost_w_waste"][0], 360963.0848169348, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_cost_labor"][0], 106238.75799444572, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_cost_utility"][0], 3682.6931230180785, places=accuracy) self.assertAlmostEqual(wt_opt["rc.blade_variable_cost"][0], 470884.5359343986, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_cost_equipment"][0], 25446.017337652025, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_cost_tooling"][0], 32255.212178863818, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_cost_building"][0], 2370.92487015942, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_maintenance_cost"][0], 18184.350727870325, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_labor_overhead"][0], 31871.627398333716, places=accuracy) self.assertAlmostEqual(wt_opt["rc.cost_capital"][0], 35744.711245853185, places=accuracy) self.assertAlmostEqual(wt_opt["rc.blade_fixed_cost"][0], 145872.8437587325, places=accuracy) self.assertAlmostEqual(wt_opt["rc.total_blade_cost"][0], 616757.3796931311, places=accuracy) def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestRC)) return suite if __name__ == "__main__": result = unittest.TextTestRunner().run(suite()) if result.wasSuccessful(): exit(0) else: exit(1) ```
{ "source": "johnjchang/carnival", "score": 2 }
#### File: deep_rl/utils/misc.py ```python import numpy as np import pickle import os import datetime import torch import time from .torch_utils import * try: # python >= 3.5 from pathlib import Path except: # python == 2.7 from pathlib2 import Path def run_steps(agent): random_seed() config = agent.config agent_name = agent.__class__.__name__ t0 = time.time() while True: if config.save_interval and not agent.total_steps % config.save_interval: agent.save('data/model-%s-%s-%s.bin' % (agent_name, config.task_name, config.tag)) if config.log_interval and not agent.total_steps % config.log_interval and len(agent.episode_rewards): rewards = agent.episode_rewards agent.episode_rewards = [] config.logger.info('total steps %d, returns %.2f/%.2f/%.2f/%.2f (mean/median/min/max), %.2f steps/s' % ( agent.total_steps, np.mean(rewards), np.median(rewards), np.min(rewards), np.max(rewards), config.log_interval / (time.time() - t0))) t0 = time.time() if config.eval_interval and not agent.total_steps % config.eval_interval: agent.eval_episodes() if config.max_steps and agent.total_steps >= config.max_steps: agent.close() break agent.step() def get_time_str(): return datetime.datetime.now().strftime("%y%m%d-%H%M%S") def get_default_log_dir(name): return './log/%s-%s' % (name, get_time_str()) def mkdir(path): Path(path).mkdir(parents=True, exist_ok=True) def close_obj(obj): if hasattr(obj, 'close'): obj.close() class Batcher: def __init__(self, batch_size, data): self.batch_size = batch_size self.data = data self.num_entries = len(data[0]) self.reset() def reset(self): self.batch_start = 0 self.batch_end = self.batch_start + self.batch_size def end(self): return self.batch_start >= self.num_entries def next_batch(self): batch = [] for d in self.data: batch.append(d[self.batch_start: self.batch_end]) self.batch_start = self.batch_end self.batch_end = min(self.batch_start + self.batch_size, self.num_entries) return batch def shuffle(self): indices = np.arange(self.num_entries) np.random.shuffle(indices) self.data = [d[indices] for d in self.data] ```
{ "source": "johnjdailey/authlib", "score": 2 }
#### File: jose/rfc7517/models.py ```python from authlib.common.encoding import json_dumps class Key(dict): kty = '_' ALLOWED_PARAMS = [ 'use', 'key_ops', 'alg', 'kid', 'x5u', 'x5c', 'x5t', 'x5t#S256' ] PRIVATE_KEY_OPS = [ 'sign', 'decrypt', 'unwrapKey', ] PUBLIC_KEY_OPS = [ 'verify', 'encrypt', 'wrapKey', ] REQUIRED_JSON_FIELDS = [] RAW_KEY_CLS = bytes def __init__(self, payload): super(Key, self).__init__(payload) self.key_type = 'secret' self.raw_key = None def get_op_key(self, key_op): self.check_key_op(key_op) if key_op in self.PUBLIC_KEY_OPS and self.key_type == 'private': return self.raw_key.public_key() return self.raw_key def check_key_op(self, key_op): allowed_key_ops = self.get('key_ops') if allowed_key_ops is not None and key_op not in allowed_key_ops: raise ValueError('Unsupported key_op "{}"'.format(key_op)) if key_op in self.PRIVATE_KEY_OPS and self.key_type == 'public': raise ValueError('Invalid key_op "{}" for public key'.format(key_op)) def as_dict(self): obj = dict(self) obj['kty'] = self.kty return obj def as_json(self): obj = self.as_dict() return json_dumps(obj) def as_pem(self): raise RuntimeError('Not supported') @classmethod def check_required_fields(cls, data): for k in cls.REQUIRED_JSON_FIELDS: if k not in data: raise ValueError('Missing required field: "{}"'.format(k)) @classmethod def generate_key(cls, crv_or_size, options=None, is_private=False): raise NotImplementedError() @classmethod def import_key(cls, raw, options=None): raise NotImplementedError() class KeySet(object): def __init__(self, keys): self.keys = keys def as_dict(self): return {'keys': [k.as_dict() for k in self.keys]} def find_by_kid(self, kid): for k in self.keys: if k.get('kid') == kid: return k raise ValueError('Invalid JSON Web Key Set') ``` #### File: jose/rfc7518/oct_key.py ```python from authlib.common.encoding import ( to_bytes, to_unicode, urlsafe_b64encode, urlsafe_b64decode, ) from authlib.common.security import generate_token from authlib.jose.rfc7517 import Key class OctKey(Key): kty = 'oct' REQUIRED_JSON_FIELDS = ['k'] def get_op_key(self, key_op): self.check_key_op(key_op) return self.raw_key @classmethod def import_key(cls, raw, options=None): if isinstance(raw, dict): cls.check_required_fields(raw) payload = raw raw_key = urlsafe_b64decode(to_bytes(payload['k'])) else: raw_key = to_bytes(raw) k = to_unicode(urlsafe_b64encode(raw_key)) payload = {'k': k} if options is not None: payload.update(options) obj = cls(payload) obj.raw_key = raw_key obj.key_type = 'secret' return obj @classmethod def generate_key(cls, bit_size=256, options=None, is_private=True): if not is_private: raise ValueError('oct key can not be generated as public') if bit_size % 8 != 0: raise ValueError('Invalid bit size for oct key') return cls.import_key(generate_token(bit_size / 8), options) ``` #### File: jose/rfc8037/okp_key.py ```python from cryptography.hazmat.primitives.asymmetric.ed25519 import ( Ed25519PublicKey, Ed25519PrivateKey ) from cryptography.hazmat.primitives.asymmetric.ed448 import ( Ed448PublicKey, Ed448PrivateKey ) from cryptography.hazmat.primitives.asymmetric.x25519 import ( X25519PublicKey, X25519PrivateKey ) from cryptography.hazmat.primitives.asymmetric.x448 import ( X448PublicKey, X448PrivateKey ) from cryptography.hazmat.primitives.serialization import ( Encoding, PublicFormat, PrivateFormat, NoEncryption ) from authlib.common.encoding import ( to_unicode, to_bytes, urlsafe_b64decode, urlsafe_b64encode, ) from authlib.jose.rfc7517 import Key from ..rfc7518 import import_key PUBLIC_KEYS_MAP = { 'Ed25519': Ed25519PublicKey, 'Ed448': Ed448PublicKey, 'X25519': X25519PublicKey, 'X448': X448PublicKey, } PRIVATE_KEYS_MAP = { 'Ed25519': Ed25519PrivateKey, 'Ed448': Ed448PrivateKey, 'X25519': X25519PrivateKey, 'X448': X448PrivateKey, } PUBLIC_KEY_TUPLE = tuple(PUBLIC_KEYS_MAP.values()) PRIVATE_KEY_TUPLE = tuple(PRIVATE_KEYS_MAP.values()) class OKPKey(Key): kty = 'OKP' REQUIRED_JSON_FIELDS = ['crv', 'x'] RAW_KEY_CLS = ( Ed25519PublicKey, Ed25519PrivateKey, Ed448PublicKey, Ed448PrivateKey, X25519PublicKey, X25519PrivateKey, X448PublicKey, X448PrivateKey, ) @staticmethod def get_key_curve(key): if isinstance(key, (Ed25519PublicKey, Ed25519PrivateKey)): return 'Ed25519' elif isinstance(key, (Ed448PublicKey, Ed448PrivateKey)): return 'Ed448' elif isinstance(key, (X25519PublicKey, X25519PrivateKey)): return 'X25519' elif isinstance(key, (X448PublicKey, X448PrivateKey)): return 'X448' @staticmethod def loads_private_key(obj): crv_key = PRIVATE_KEYS_MAP[obj['crv']] d_bytes = urlsafe_b64decode(to_bytes(obj['d'])) return crv_key.from_private_bytes(d_bytes) @staticmethod def loads_public_key(obj): crv_key = PUBLIC_KEYS_MAP[obj['crv']] x_bytes = urlsafe_b64decode(to_bytes(obj['x'])) return crv_key.from_public_bytes(x_bytes) @staticmethod def dumps_private_key(raw_key): obj = OKPKey.dumps_public_key(raw_key.public_key()) d_bytes = raw_key.private_bytes( Encoding.Raw, PrivateFormat.Raw, NoEncryption() ) obj['d'] = to_unicode(urlsafe_b64encode(d_bytes)) return obj @staticmethod def dumps_public_key(raw_key): x_bytes = raw_key.public_bytes(Encoding.Raw, PublicFormat.Raw) return { 'crv': OKPKey.get_key_curve(raw_key), 'x': to_unicode(urlsafe_b64encode(x_bytes)), } @classmethod def import_key(cls, raw, options=None): return import_key( cls, raw, PUBLIC_KEY_TUPLE, PRIVATE_KEY_TUPLE, b'ssh-ed25519', options ) @classmethod def generate_key(cls, crv, options=None, is_private=False): pass ```
{ "source": "johnjdailey/aws-crt-python", "score": 2 }
#### File: aws-crt-python/awscrt/auth.py ```python from __future__ import absolute_import import _awscrt from awscrt import isinstance_str, NativeResource import awscrt.exceptions from awscrt.http import HttpRequest from awscrt.io import ClientBootstrap from concurrent.futures import Future import datetime from enum import IntEnum import time try: _utc = datetime.timezone.utc except AttributeError: # Python 2 lacks the datetime.timestamp() method. # We can do the timestamp math ourselves, but only if datetime.tzinfo is set. # Python 2 also lacks any predefined tzinfo classes (ex: datetime.timezone.utc), # so we must define our own. class _UTC(datetime.tzinfo): ZERO = datetime.timedelta(0) def utcoffset(self, dt): return _UTC.ZERO def tzname(self, dt): return "UTC" def dst(self, dt): return _UTC.ZERO _utc = _UTC() class AwsCredentials(NativeResource): """ AwsCredentials are the public/private data needed to sign an authenticated AWS request. AwsCredentials are immutable. """ __slots__ = () def __init__(self, access_key_id, secret_access_key, session_token=None): assert isinstance_str(access_key_id) assert isinstance_str(secret_access_key) assert isinstance_str(session_token) or session_token is None super(AwsCredentials, self).__init__() self._binding = _awscrt.credentials_new(access_key_id, secret_access_key, session_token) @property def access_key_id(self): return _awscrt.credentials_access_key_id(self._binding) @property def secret_access_key(self): return _awscrt.credentials_secret_access_key(self._binding) @property def session_token(self): return _awscrt.credentials_session_token(self._binding) def __deepcopy__(self, memo): # AwsCredentials is immutable, so just return self. return self class AwsCredentialsProviderBase(NativeResource): """ Base class for providers that source the AwsCredentials needed to sign an authenticated AWS request. """ __slots__ = () def __init__(self, binding=None): super(AwsCredentialsProviderBase, self).__init__() if binding is None: # TODO: create binding type that lets native code call into python subclass raise NotImplementedError("Custom subclasses of AwsCredentialsProviderBase are not yet supported") self._binding = binding def get_credentials(self): """ Asynchronously fetch AwsCredentials. Returns a Future which will contain AwsCredentials (or an exception) when the call completes. The call may complete on a different thread. """ raise NotImplementedError() class AwsCredentialsProvider(AwsCredentialsProviderBase): """ Credentials providers source the AwsCredentials needed to sign an authenticated AWS request. This class provides new() functions for several built-in provider types. """ __slots__ = () @classmethod def new_default_chain(cls, client_bootstrap): """ Create the default provider chain used by most AWS SDKs. Generally: (1) Environment (2) Profile (3) (conditional, off by default) ECS (4) (conditional, on by default) EC2 Instance Metadata """ assert isinstance(client_bootstrap, ClientBootstrap) binding = _awscrt.credentials_provider_new_chain_default(client_bootstrap) return cls(binding) @classmethod def new_static(cls, access_key_id, secret_access_key, session_token=None): """ Create a simple provider that just returns a fixed set of credentials """ assert isinstance_str(access_key_id) assert isinstance_str(secret_access_key) assert isinstance_str(session_token) or session_token is None binding = _awscrt.credentials_provider_new_static(access_key_id, secret_access_key, session_token) return cls(binding) def get_credentials(self): future = Future() def _on_complete(error_code, access_key_id, secret_access_key, session_token): try: if error_code: future.set_exception(awscrt.exceptions.from_code(error_code)) else: credentials = AwsCredentials(access_key_id, secret_access_key, session_token) future.set_result(credentials) except Exception as e: future.set_exception(e) try: _awscrt.credentials_provider_get_credentials(self._binding, _on_complete) except Exception as e: future.set_result(e) return future class AwsSigningAlgorithm(IntEnum): """ Which signing algorithm to use. SigV4Header: Use Signature Version 4 to sign headers. SigV4QueryParam: Use Signature Version 4 to sign query parameters. """ SigV4Header = 0 SigV4QueryParam = 1 class AwsBodySigningConfigType(IntEnum): """Body Signing config BodySigningOff: No attempts will be made to sign the payload, and no x-amz-content-sha256 header will be added to the request. BodySigningOn: The body will be signed and x-amz-content-sha256 will contain the value of the signature UnsignedPayload: The body will not be signed, but x-amz-content-sha256 will contain the value UNSIGNED-PAYLOAD. This value is currently only used for Amazon S3. """ BodySigningOff = 0 BodySigningOn = 1 UnsignedPayload = 2 class AwsSigningConfig(NativeResource): """ Configuration for use in AWS-related signing. AwsSigningConfig is immutable. It is good practice to use a new config for each signature, or the date might get too old. Naive dates (lacking timezone info) are assumed to be in local time. """ __slots__ = ('_priv_should_sign_cb') _attributes = ('algorithm', 'credentials_provider', 'region', 'service', 'date', 'should_sign_param', 'use_double_uri_encode', 'should_normalize_uri_path', 'body_signing_type') def __init__(self, algorithm, # type: AwsSigningAlgorithm credentials_provider, # type: AwsCredentialsProviderBase region, # type: str service, # type: str date=None, # type: Optional[datetime.datetime] should_sign_param=None, # type: Optional[Callable[[str], bool]] use_double_uri_encode=False, # type: bool should_normalize_uri_path=True, # type: bool body_signing_type=AwsBodySigningConfigType.BodySigningOn # type: AwsBodySigningConfigType ): # type: (...) -> None assert isinstance(algorithm, AwsSigningAlgorithm) assert isinstance(credentials_provider, AwsCredentialsProviderBase) assert isinstance_str(region) assert isinstance_str(service) assert isinstance(date, datetime.datetime) or date is None assert callable(should_sign_param) or should_sign_param is None assert isinstance(body_signing_type, AwsBodySigningConfigType) super(AwsSigningConfig, self).__init__() if date is None: date = datetime.datetime.now(_utc) try: timestamp = date.timestamp() except AttributeError: # Python 2 doesn't have datetime.timestamp() function. # If it did we could just call it from binding code instead of calculating it here. if date.tzinfo is None: timestamp = time.mktime(date.timetuple()) else: epoch = datetime.datetime(1970, 1, 1, tzinfo=_utc) timestamp = (date - epoch).total_seconds() self._priv_should_sign_cb = should_sign_param if should_sign_param is not None: def should_sign_param_wrapper(name): return should_sign_param(name=name) else: should_sign_param_wrapper = None self._binding = _awscrt.signing_config_new( algorithm, credentials_provider, region, service, date, timestamp, should_sign_param_wrapper, use_double_uri_encode, should_normalize_uri_path, body_signing_type) def replace(self, **kwargs): """ Return an AwsSigningConfig with the same attributes, except for those attributes given new values by whichever keyword arguments are specified. """ args = {x: kwargs.get(x, getattr(self, x)) for x in AwsSigningConfig._attributes} return AwsSigningConfig(**args) @property def algorithm(self): """Which AwsSigningAlgorithm to invoke""" return AwsSigningAlgorithm(_awscrt.signing_config_get_algorithm(self._binding)) @property def credentials_provider(self): """AwsCredentialsProvider to fetch signing credentials with""" return _awscrt.signing_config_get_credentials_provider(self._binding) @property def region(self): """The region to sign against""" return _awscrt.signing_config_get_region(self._binding) @property def service(self): """Name of service to sign a request for""" return _awscrt.signing_config_get_service(self._binding) @property def date(self): """ datetime.datetime to use during the signing process. If None is provided to constructor then datetime.datetime.now(datetime.timezone.utc) is used. """ return _awscrt.signing_config_get_date(self._binding) @property def should_sign_param(self): """ Optional function to control which parameters (header or query) are a part of the canonical request. Function signature is: (name) -> bool Skipping auth-required params will result in an unusable signature. Headers injected by the signing process are not skippable. This function does not override the internal check function (x-amzn-trace-id, user-agent), but rather supplements it. In particular, a header will get signed if and only if it returns true to both the internal check (skips x-amzn-trace-id, user-agent) and this function (if defined). """ return self._priv_should_sign_cb @property def use_double_uri_encode(self): """ We assume the uri will be encoded once in preparation for transmission. Certain services do not decode before checking signature, requiring us to actually double-encode the uri in the canonical request in order to pass a signature check. """ return _awscrt.signing_config_get_use_double_uri_encode(self._binding) @property def should_normalize_uri_path(self): """Controls whether or not the uri paths should be normalized when building the canonical request""" return _awscrt.signing_config_get_should_normalize_uri_path(self._binding) @property def body_signing_type(self): """ BodySigningOff: No attempts will be made to sign the payload, and no x-amz-content-sha256 header will be added to the request. BodySigningOn: The body will be signed and x-amz-content-sha256 will contain the value of the signature UnsignedPayload: The body will not be signed, but x-amz-content-sha256 will contain the value UNSIGNED-PAYLOAD. This value is currently only used for Amazon S3. """ return AwsBodySigningConfigType(_awscrt.signing_config_get_body_signing_type(self._binding)) def aws_sign_request(http_request, signing_config): """ Perform AWS HTTP request signing. The HttpRequest is transformed asynchronously, according to the AwsSigningConfig. Returns a Future whose result will be the signed HttpRequest. When signing: (1) It is good practice to use a new config for each signature, or the date might get too old. (2) Do not add the following headers to requests before signing, they may be added by the signer: x-amz-content-sha256, X-Amz-Date, Authorization (3) Do not add the following query params to requests before signing, they may be added by the signer: X-Amz-Signature, X-Amz-Date, X-Amz-Credential, X-Amz-Algorithm, X-Amz-SignedHeaders """ assert isinstance(http_request, HttpRequest) assert isinstance(signing_config, AwsSigningConfig) future = Future() def _on_complete(error_code): try: if error_code: future.set_exception(awscrt.exceptions.from_code(error_code)) else: future.set_result(http_request) except Exception as e: future.set_exception(e) _awscrt.sign_request_aws(http_request, signing_config, _on_complete) return future ``` #### File: aws-crt-python/awscrt/http.py ```python from __future__ import absolute_import import _awscrt from concurrent.futures import Future from awscrt import NativeResource, isinstance_str import awscrt.exceptions from awscrt.io import ClientBootstrap, EventLoopGroup, DefaultHostResolver, InputStream, TlsConnectionOptions, SocketOptions from enum import IntEnum class HttpConnectionBase(NativeResource): """ Base for HTTP connection classes. Attributes: shutdown_future (concurrent.futures.Future): Completes when the connection has finished shutting down. Future will contain a result of None, or an exception indicating why shutdown occurred. Note that the connection may have been garbage-collected before this future completes. """ __slots__ = ('shutdown_future') def __init__(self): super(HttpConnectionBase, self).__init__() self.shutdown_future = Future() def close(self): """ Close the connection. Returns the connect's `shutdown_future`, which completes when shutdown has finished. """ _awscrt.http_connection_close(self._binding) return self.shutdown_future def is_open(self): """ Returns True if the connection is open and usable, False otherwise. """ return _awscrt.http_connection_is_open(self._binding) class HttpClientConnection(HttpConnectionBase): """ An HTTP client connection. All operations are async. Use HttpClientConnection.new() to establish a new connection. """ __slots__ = ('_host_name', '_port') @classmethod def new(cls, host_name, port, bootstrap, socket_options=None, tls_connection_options=None, proxy_options=None): """ Initiates a new connection to host_name and port using socket_options and tls_connection_options if supplied. if tls_connection_options is None, then the connection will be attempted over plain-text. Returns a future where the result is a new instance to HttpClientConnection, once the connection has completed and is ready for use. """ assert isinstance(bootstrap, ClientBootstrap) or bootstrap is None assert isinstance_str(host_name) assert isinstance(port, int) assert isinstance(tls_connection_options, TlsConnectionOptions) or tls_connection_options is None assert isinstance(socket_options, SocketOptions) or socket_options is None assert isinstance(proxy_options, HttpProxyOptions) or proxy_options is None future = Future() try: if not socket_options: socket_options = SocketOptions() if not bootstrap: event_loop_group = EventLoopGroup(1) host_resolver = DefaultHostResolver(event_loop_group) bootstrap = ClientBootstrap(event_loop_group, host_resolver) connection = cls() connection._host_name = host_name connection._port = port def on_connection_setup(binding, error_code): if error_code == 0: connection._binding = binding future.set_result(connection) else: future.set_exception(awscrt.exceptions.from_code(error_code)) # on_shutdown MUST NOT reference the connection itself, just the shutdown_future within it. # Otherwise we create a circular reference that prevents the connection from getting GC'd. shutdown_future = connection.shutdown_future def on_shutdown(error_code): if error_code: shutdown_future.set_exception(awscrt.exceptions.from_code(error_code)) else: shutdown_future.set_result(None) _awscrt.http_client_connection_new( bootstrap, on_connection_setup, on_shutdown, host_name, port, socket_options, tls_connection_options, proxy_options) except Exception as e: future.set_exception(e) return future @property def host_name(self): return self._host_name @property def port(self): return self._port def request(self, request, on_response=None, on_body=None): return HttpClientStream(self, request, on_response, on_body) class HttpStreamBase(NativeResource): __slots__ = ('_connection', '_completion_future', '_on_body_cb') def __init__(self, connection, on_body=None): super(HttpStreamBase, self).__init__() self._connection = connection self._completion_future = Future() self._on_body_cb = on_body @property def connection(self): return self._connection @property def completion_future(self): return self._completion_future def _on_body(self, chunk): if self._on_body_cb: self._on_body_cb(http_stream=self, chunk=chunk) class HttpClientStream(HttpStreamBase): __slots__ = ('_response_status_code', '_on_response_cb', '_on_body_cb') def __init__(self, connection, request, on_response=None, on_body=None): assert isinstance(connection, HttpClientConnection) assert isinstance(request, HttpRequest) assert callable(on_response) or on_response is None assert callable(on_body) or on_body is None super(HttpClientStream, self).__init__(connection, on_body) self._on_response_cb = on_response self._response_status_code = None _awscrt.http_client_stream_new(self, connection, request) @property def response_status_code(self): return self._response_status_code def _on_response(self, status_code, name_value_pairs): self._response_status_code = status_code if self._on_response_cb: self._on_response_cb(http_stream=self, status_code=status_code, headers=name_value_pairs) def _on_complete(self, error_code): if error_code == 0: self._completion_future.set_result(self._response_status_code) else: self._completion_future.set_exception(awscrt.exceptions.from_code(error_code)) class HttpMessageBase(NativeResource): """ Base for HttpRequest and HttpResponse classes. """ __slots__ = ('_headers') def __init__(self, binding, headers, body_stream=None): assert isinstance(headers, HttpHeaders) super(HttpMessageBase, self).__init__() self._binding = binding self._headers = headers if body_stream: self.body_stream = body_stream @property def headers(self): return self._headers @property def body_stream(self): return _awscrt.http_message_get_body_stream(self._binding) @body_stream.setter def body_stream(self, stream): stream = InputStream.wrap(stream) return _awscrt.http_message_set_body_stream(self._binding, stream) class HttpRequest(HttpMessageBase): """ Definition for an outgoing HTTP request. The request may be transformed (ex: signing the request) before its data is eventually sent. """ __slots__ = () def __init__(self, method='GET', path='/', headers=None, body_stream=None): assert isinstance(headers, HttpHeaders) or headers is None if headers is None: headers = HttpHeaders() binding = _awscrt.http_message_new_request(headers) super(HttpRequest, self).__init__(binding, headers, body_stream) self.method = method self.path = path @classmethod def _from_bindings(cls, request_binding, headers_binding): """Construct HttpRequest and its HttpHeaders from pre-existing native objects""" # avoid class's default constructor # just invoke parent class's __init__() request = cls.__new__(cls) headers = HttpHeaders._from_binding(headers_binding) super(cls, request).__init__(request_binding, headers) return request @property def method(self): return _awscrt.http_message_get_request_method(self._binding) @method.setter def method(self, method): _awscrt.http_message_set_request_method(self._binding, method) @property def path(self): return _awscrt.http_message_get_request_path(self._binding) @path.setter def path(self, path): return _awscrt.http_message_set_request_path(self._binding, path) class HttpHeaders(NativeResource): """ Collection of HTTP headers. A given header name may have multiple values. Header names are always treated in a case-insensitive manner. HttpHeaders can be iterated over as (name,value) pairs. """ __slots__ = () def __init__(self, name_value_pairs=None): """ Construct from a collection of (name,value) pairs. """ super(HttpHeaders, self).__init__() self._binding = _awscrt.http_headers_new() if name_value_pairs: self.add_pairs(name_value_pairs) @classmethod def _from_binding(cls, binding): """Construct from a pre-existing native object""" headers = cls.__new__(cls) # avoid class's default constructor super(cls, headers).__init__() # just invoke parent class's __init__() headers._binding = binding return headers def add(self, name, value): """ Add a name-value pair. """ assert isinstance_str(name) assert isinstance_str(value) _awscrt.http_headers_add(self._binding, name, value) def add_pairs(self, name_value_pairs): """ Add list of (name,value) pairs. """ _awscrt.http_headers_add_pairs(self._binding, name_value_pairs) def set(self, name, value): """ Set a name-value pair, any existing values for the name are removed. """ assert isinstance_str(name) assert isinstance_str(value) _awscrt.http_headers_set(self._binding, name, value) def get_values(self, name): """ Return an iterator over the values for this name. """ assert isinstance_str(name) name = name.lower() for i in range(_awscrt.http_headers_count(self._binding)): name_i, value_i = _awscrt.http_headers_get_index(self._binding, i) if name_i.lower() == name: yield value_i def get(self, name, default=None): """ Get the first value for this name, ignoring any additional values. Returns `default` if no values exist. """ assert isinstance_str(name) return _awscrt.http_headers_get(self._binding, name, default) def remove(self, name): """ Remove all values for this name. Raises a KeyError if name not found. """ assert isinstance_str(name) _awscrt.http_headers_remove(self._binding, name) def remove_value(self, name, value): """ Remove a specific value for this name. Raises a ValueError if value not found. """ assert isinstance_str(name) assert isinstance_str(value) _awscrt.http_headers_remove_value(self._binding, name, value) def clear(self): """ Clear all headers """ _awscrt.http_headers_clear(self._binding) def __iter__(self): """ Iterate over all (name,value) pairs. """ for i in range(_awscrt.http_headers_count(self._binding)): yield _awscrt.http_headers_get_index(self._binding, i) def __str__(self): return self.__class__.__name__ + "(" + str([pair for pair in self]) + ")" class HttpProxyAuthenticationType(IntEnum): """ Which proxy authentication type to use. Nothing: no authentication Basic: username and password """ Nothing = 0 Basic = 1 class HttpProxyOptions(object): """ Proxy options for HTTP clients. host_name: Name of the proxy server to connect through. port: Port number of the proxy server to connect through. tls_connection_options: Optional TlsConnectionOptions for the Local <-> Proxy connection. Must be distinct from the TlsConnectionOptions provided to the HTTP connection. auth_type: Type of proxy authentication to use. Default is HttpProxyAuthenticationType.Nothing. basic_auth_username: Username to use when auth_type is HttpProxyAuthenticationType.Basic. basic_auth_password: Username to use when auth_type is HttpProxyAuthenticationType.Basic. """ def __init__(self, host_name, port, tls_connection_options=None, auth_type=HttpProxyAuthenticationType.Nothing, auth_username=None, auth_password=None): self.host_name = host_name self.port = port self.tls_connection_options = tls_connection_options self.auth_type = auth_type self.auth_username = auth_username self.auth_password = <PASSWORD> ``` #### File: johnjdailey/aws-crt-python/setup.py ```python from __future__ import print_function import distutils.ccompiler import glob import os import os.path import platform import setuptools import setuptools.command.build_ext import subprocess import sys def is_64bit(): return sys.maxsize > 2**32 def is_32bit(): return is_64bit() == False def is_arm(): return platform.machine().startswith('arm') def determine_cross_compile_args(): host_arch = platform.machine() if (host_arch == 'AMD64' or host_arch == 'x86_64') and is_32bit() and sys.platform != 'win32': return ['-DCMAKE_C_FLAGS=-m32'] return [] def determine_generator_args(): if sys.platform == 'win32': try: # See which compiler python picks compiler = distutils.ccompiler.new_compiler() compiler.initialize() # Look at compiler path to divine the Visual Studio version. # This technique may not work with customized VS install paths. # An alternative would be to utilize private python calls: # (distutils._msvccompiler._find_vc2017() and _find_vc2015()). if '\\Microsoft Visual Studio\\2019' in compiler.cc: vs_version = 16 vs_year = 2019 elif '\\Microsoft Visual Studio\\2017' in compiler.cc: vs_version = 15 vs_year = 2017 elif '\\Microsoft Visual Studio 14.0' in compiler.cc: vs_version = 14 vs_year = 2015 assert(vs_version and vs_year) except BaseException: raise RuntimeError('No supported version of MSVC compiler could be found!') print('Using Visual Studio', vs_version, vs_year) vs_version_gen_str = "Visual Studio {} {}".format(vs_version, vs_year) if vs_year <= 2017: # For VS2017 and earlier, architecture goes at end of generator string if is_64bit(): vs_version_gen_str += " Win64" return ['-G', vs_version_gen_str] # For VS2019 (and presumably later), architecture is passed via -A flag arch_str = "x64" if is_64bit() else "Win32" return ['-G', vs_version_gen_str, '-A', arch_str] return [] class AwsLib(object): def __init__(self, name, extra_cmake_args=[]): self.name = name self.extra_cmake_args = extra_cmake_args # The extension depends on these libs. # They're built along with the extension, in the order listed. AWS_LIBS = [] if sys.platform != 'darwin' and sys.platform != 'win32': AWS_LIBS.append(AwsLib('s2n')) AWS_LIBS.append(AwsLib('aws-c-common')) AWS_LIBS.append(AwsLib('aws-c-io')) AWS_LIBS.append(AwsLib('aws-c-cal')) AWS_LIBS.append(AwsLib('aws-c-compression')) AWS_LIBS.append(AwsLib('aws-c-http')) AWS_LIBS.append(AwsLib('aws-c-auth')) AWS_LIBS.append(AwsLib('aws-c-mqtt')) PROJECT_DIR = os.path.dirname(os.path.realpath(__file__)) DEP_BUILD_DIR = os.path.join(PROJECT_DIR, 'build', 'deps') DEP_INSTALL_PATH = os.environ.get('AWS_C_INSTALL', os.path.join(DEP_BUILD_DIR, 'install')) class awscrt_build_ext(setuptools.command.build_ext.build_ext): def _build_dependency(self, aws_lib): prev_cwd = os.getcwd() # restore cwd at end of function lib_source_dir = os.path.join(PROJECT_DIR, 'aws-common-runtime', aws_lib.name) build_type = 'Debug' if self.debug else 'RelWithDebInfo' # Skip library if it wasn't pulled if not os.path.exists(os.path.join(lib_source_dir, 'CMakeLists.txt')): print("--- Skipping dependency: '{}' source not found ---".format(aws_lib.name)) return print("--- Building dependency: {} ({}) ---".format(aws_lib.name, build_type)) lib_build_dir = os.path.join(DEP_BUILD_DIR, aws_lib.name) if not os.path.exists(lib_build_dir): os.makedirs(lib_build_dir) os.chdir(lib_build_dir) # cmake configure cmake_args = ['cmake'] cmake_args.extend(determine_generator_args()) cmake_args.extend(determine_cross_compile_args()) cmake_args.extend([ '-DCMAKE_PREFIX_PATH={}'.format(DEP_INSTALL_PATH), '-DCMAKE_INSTALL_PREFIX={}'.format(DEP_INSTALL_PATH), '-DBUILD_SHARED_LIBS=OFF', '-DCMAKE_BUILD_TYPE={}'.format(build_type), '-DBUILD_TESTING=OFF', '-DS2N_NO_PQ_ASM=ON', ]) if self.include_dirs: cmake_args.append('-DCMAKE_INCLUDE_PATH={}'.format(';'.join(self.include_dirs))) if self.library_dirs: cmake_args.append('-DCMAKE_LIBRARY_PATH={}'.format(';'.join(self.library_dirs))) cmake_args.extend(aws_lib.extra_cmake_args) cmake_args.append(lib_source_dir) subprocess.check_call(cmake_args) # cmake build/install build_cmd = [ 'cmake', '--build', './', '--config', build_type, '--target', 'install', ] subprocess.check_call(build_cmd) os.chdir(prev_cwd) def run(self): # build dependencies for lib in AWS_LIBS: self._build_dependency(lib) # update paths so awscrt_ext can access dependencies self.include_dirs.append(os.path.join(DEP_INSTALL_PATH, 'include')) # some platforms (ex: fedora) use /lib64 instead of just /lib lib_dir = 'lib' if is_64bit() and os.path.exists(os.path.join(DEP_INSTALL_PATH, 'lib64')): lib_dir = 'lib64' if is_32bit() and os.path.exists(os.path.join(DEP_INSTALL_PATH, 'lib32')): lib_dir = 'lib32' self.library_dirs.append(os.path.join(DEP_INSTALL_PATH, lib_dir)) # continue with normal build_ext.run() setuptools.command.build_ext.build_ext.run(self) # python2 breaks if we use super().run() def awscrt_ext(): # fetch the CFLAGS/LDFLAGS from env extra_compile_args = os.environ.get('CFLAGS', '').split() extra_link_args = os.environ.get('LDFLAGS', '').split() extra_objects = [] libraries = [x.name for x in AWS_LIBS] # libraries must be passed to the linker with upstream dependencies listed last. libraries.reverse() if sys.platform == 'win32': # the windows apis being used under the hood. Since we're static linking we have to follow the entire chain down libraries += ['Secur32', 'Crypt32', 'Advapi32', 'BCrypt', 'Kernel32', 'Ws2_32', 'Shlwapi'] # Ensure that debug info is in the obj files, and that it is linked into the .pyd so that # stack traces and dumps are useful extra_compile_args += ['/Z7'] extra_link_args += ['/DEBUG'] elif sys.platform == 'darwin': extra_link_args += ['-framework', 'Security'] # HACK: Don't understand why, but if AWS_LIBS are linked normally on macos, we get this error: # ImportError: dlopen(_awscrt.cpython-37m-darwin.so, 2): Symbol not found: _aws_byte_cursor_eq_ignore_case # Workaround is to pass them as 'extra_objects' instead of 'libraries'. extra_objects = [os.path.join(DEP_INSTALL_PATH, 'lib', 'lib{}.a'.format(x.name)) for x in AWS_LIBS] libraries = [] else: # unix # linker will prefer shared libraries over static if it can find both. # force linker to choose static one by using using "-l:libcrypto.a" syntax instead of just "-lcrypto". libraries += [':libcrypto.a', 'rt'] if distutils.ccompiler.get_default_compiler() != 'msvc': extra_compile_args += ['-Wextra', '-Werror', '-Wno-strict-aliasing', '-std=gnu99'] return setuptools.Extension( '_awscrt', language='c', libraries=libraries, sources=glob.glob('source/*.c'), extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, extra_objects=extra_objects ) setuptools.setup( name="awscrt", version="0.5.6", author="Amazon Web Services, Inc", author_email="<EMAIL>", description="A common runtime for AWS Python projects", url="https://github.com/awslabs/aws-crt-python", packages=['awscrt'], classifiers=[ "Programming Language :: Python :: 2", "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ], install_requires=[ 'enum34;python_version<"3.4"', 'futures;python_version<"3.2"', ], ext_modules=[awscrt_ext()], cmdclass={'build_ext': awscrt_build_ext}, test_suite='test', tests_require=[ 'boto3' ], ) ``` #### File: aws-crt-python/test/test_auth.py ```python from __future__ import absolute_import import awscrt.auth import awscrt.io import datetime import os from test import NativeResourceTest, TIMEOUT EXAMPLE_ACCESS_KEY_ID = 'example_access_key_id' EXAMPLE_SECRET_ACCESS_KEY = 'example_secret_access_key' EXAMPLE_SESSION_TOKEN = 'example_session_token' class ScopedEnvironmentVariable(object): """ Set environment variable for lifetime of this object. """ def __init__(self, key, value): self.key = key self.prev_value = os.environ.get(key) os.environ[key] = value def __del__(self): if self.prev_value is None: del os.environ[self.key] else: os.environ[self.key] = self.prev_value class TestCredentials(NativeResourceTest): def test_create(self): credentials = awscrt.auth.AwsCredentials( EXAMPLE_ACCESS_KEY_ID, EXAMPLE_SECRET_ACCESS_KEY, EXAMPLE_SESSION_TOKEN) self.assertEqual(EXAMPLE_ACCESS_KEY_ID, credentials.access_key_id) self.assertEqual(EXAMPLE_SECRET_ACCESS_KEY, credentials.secret_access_key) self.assertEqual(EXAMPLE_SESSION_TOKEN, credentials.session_token) def test_create_no_session_token(self): credentials = awscrt.auth.AwsCredentials(EXAMPLE_ACCESS_KEY_ID, EXAMPLE_SECRET_ACCESS_KEY) self.assertEqual(EXAMPLE_ACCESS_KEY_ID, credentials.access_key_id) self.assertEqual(EXAMPLE_SECRET_ACCESS_KEY, credentials.secret_access_key) self.assertIsNone(credentials.session_token) class TestProvider(NativeResourceTest): def test_static_provider(self): provider = awscrt.auth.AwsCredentialsProvider.new_static( EXAMPLE_ACCESS_KEY_ID, EXAMPLE_SECRET_ACCESS_KEY, EXAMPLE_SESSION_TOKEN) future = provider.get_credentials() credentials = future.result(TIMEOUT) self.assertEqual(EXAMPLE_ACCESS_KEY_ID, credentials.access_key_id) self.assertEqual(EXAMPLE_SECRET_ACCESS_KEY, credentials.secret_access_key) self.assertEqual(EXAMPLE_SESSION_TOKEN, credentials.session_token) # TODO: test currently broken because None session_token comes back as empty string do to inconsistent use of # aws_byte_cursor by value/pointer in aws-c-auth APIs. # # def test_static_provider_no_session_token(self): # provider = AwsCredentialsProvider.new_static( # self.example_access_key_id, # self.example_secret_access_key) # future = provider.get_credentials() # credentials = future.result(TIMEOUT) # self.assertEqual(self.example_access_key_id, credentials.access_key_id) # self.assertEqual(self.example_secret_access_key, credentials.secret_access_key) # self.assertIsNone(credentials.session_token) def test_default_provider(self): # Use environment variable to force specific credentials file scoped_env = ScopedEnvironmentVariable('AWS_SHARED_CREDENTIALS_FILE', 'test/resources/credentials_test') event_loop_group = awscrt.io.EventLoopGroup() host_resolver = awscrt.io.DefaultHostResolver(event_loop_group) bootstrap = awscrt.io.ClientBootstrap(event_loop_group, host_resolver) provider = awscrt.auth.AwsCredentialsProvider.new_default_chain(bootstrap) future = provider.get_credentials() credentials = future.result(TIMEOUT) self.assertEqual('credentials_test_access_key_id', credentials.access_key_id) self.assertEqual('credentials_test_secret_access_key', credentials.secret_access_key) self.assertIsNone(credentials.session_token) del scoped_env class TestSigningConfig(NativeResourceTest): def test_create(self): algorithm = awscrt.auth.AwsSigningAlgorithm.SigV4QueryParam credentials_provider = awscrt.auth.AwsCredentialsProvider.new_static( EXAMPLE_ACCESS_KEY_ID, EXAMPLE_SECRET_ACCESS_KEY) region = 'us-west-2' service = 'aws-suborbital-ion-cannon' date = datetime.datetime(year=2000, month=1, day=1) def should_sign_param(name): return not name.tolower().startswith('x-do-not-sign') use_double_uri_encode = True should_normalize_uri_path = False body_signing_type = awscrt.auth.AwsBodySigningConfigType.BodySigningOff cfg = awscrt.auth.AwsSigningConfig(algorithm=algorithm, credentials_provider=credentials_provider, region=region, service=service, date=date, should_sign_param=should_sign_param, use_double_uri_encode=use_double_uri_encode, should_normalize_uri_path=should_normalize_uri_path, body_signing_type=body_signing_type) self.assertIs(algorithm, cfg.algorithm) # assert IS enum, not just EQUAL self.assertIs(credentials_provider, cfg.credentials_provider) self.assertEqual(region, cfg.region) self.assertEqual(service, cfg.service) self.assertEqual(date, cfg.date) self.assertIs(should_sign_param, cfg.should_sign_param) self.assertEqual(use_double_uri_encode, cfg.use_double_uri_encode) self.assertEqual(should_normalize_uri_path, cfg.should_normalize_uri_path) self.assertIs(body_signing_type, cfg.body_signing_type) def test_replace(self): credentials_provider = awscrt.auth.AwsCredentialsProvider.new_static( EXAMPLE_ACCESS_KEY_ID, EXAMPLE_SECRET_ACCESS_KEY) # nondefault values, to be sure they're carried over correctly orig_cfg = awscrt.auth.AwsSigningConfig(algorithm=awscrt.auth.AwsSigningAlgorithm.SigV4QueryParam, credentials_provider=credentials_provider, region='us-west-1', service='aws-suborbital-ion-cannon', date=datetime.datetime(year=2000, month=1, day=1), should_sign_param=lambda x: False, use_double_uri_encode=True, should_normalize_uri_path=False, body_signing_type=awscrt.auth.AwsBodySigningConfigType.BodySigningOff) # Call replace on single attribute, then assert that ONLY the one attribute differs def _replace_attr(name, value): new_cfg = orig_cfg.replace(**{name: value}) self.assertIsNot(orig_cfg, new_cfg) # must return new object self.assertEqual(value, getattr(new_cfg, name)) # must replace specified value # check that only the one attribute differs for attr in awscrt.auth.AwsSigningConfig._attributes: if attr == name: self.assertNotEqual(getattr(orig_cfg, attr), getattr(new_cfg, attr), "replaced value should not match original") else: self.assertEqual(getattr(orig_cfg, attr), getattr(new_cfg, attr), "value should match original") _replace_attr('algorithm', awscrt.auth.AwsSigningAlgorithm.SigV4Header) _replace_attr('credentials_provider', awscrt.auth.AwsCredentialsProvider.new_static(EXAMPLE_ACCESS_KEY_ID, EXAMPLE_SECRET_ACCESS_KEY)) _replace_attr('region', 'us-west-2') _replace_attr('service', 'aws-nothing-but-bees') _replace_attr('date', datetime.datetime(year=2001, month=1, day=1)) _replace_attr('should_sign_param', lambda x: True) _replace_attr('use_double_uri_encode', False) _replace_attr('should_normalize_uri_path', True) _replace_attr('body_signing_type', awscrt.auth.AwsBodySigningConfigType.BodySigningOn) # check that we can replace multiple values at once new_cfg = orig_cfg.replace(region='us-west-3', service='aws-slow-blinking') self.assertEqual('us-west-3', new_cfg.region) self.assertEqual('aws-slow-blinking', new_cfg.service) self.assertEqual(orig_cfg.should_sign_param, new_cfg.should_sign_param) # Test values copied from aws-c-auth/tests/aws-sig-v4-test-suite/get-vanilla" SIGV4TEST_ACCESS_KEY_ID = 'AKIDEXAMPLE' SIGV4TEST_SECRET_ACCESS_KEY = '<KEY>' SIGV4TEST_SESSION_TOKEN = None SIGV4TEST_SERVICE = 'service' SIGV4TEST_REGION = 'us-east-1' SIGV4TEST_METHOD = 'GET' SIGV4TEST_PATH = '/' SIGV4TEST_DATE = datetime.datetime(year=2015, month=8, day=30, hour=12, minute=36, second=0, tzinfo=awscrt.auth._utc) SIGV4TEST_UNSIGNED_HEADERS = [ ('Host', 'example.amazonaws.com'), ] SIGV4TEST_SIGNED_HEADERS = [ ('Host', 'example.amazonaws.com'), ('X-Amz-Date', '20150830T123600Z'), ('Authorization', 'AWS4-HMAC-SHA256 Credential=AKIDEXAMPLE/20150830/us-east-1/service/aws4_request, SignedHeaders=host;x-amz-date, Signature=5fa00fa31553b73ebf1942676e86291e8372ff2a2260956d9b8aae1d763fbf31')] class TestSigner(NativeResourceTest): def test_signing_sigv4_headers(self): credentials_provider = awscrt.auth.AwsCredentialsProvider.new_static( SIGV4TEST_ACCESS_KEY_ID, SIGV4TEST_SECRET_ACCESS_KEY, SIGV4TEST_SESSION_TOKEN) signing_config = awscrt.auth.AwsSigningConfig( algorithm=awscrt.auth.AwsSigningAlgorithm.SigV4Header, credentials_provider=credentials_provider, region=SIGV4TEST_REGION, service=SIGV4TEST_SERVICE, date=SIGV4TEST_DATE, body_signing_type=awscrt.auth.AwsBodySigningConfigType.BodySigningOff) http_request = awscrt.http.HttpRequest( method=SIGV4TEST_METHOD, path=SIGV4TEST_PATH, headers=awscrt.http.HttpHeaders(SIGV4TEST_UNSIGNED_HEADERS)) signing_future = awscrt.auth.aws_sign_request(http_request, signing_config) signing_result = signing_future.result(TIMEOUT) self.assertIs(http_request, signing_result) # should be same object self.assertEqual(SIGV4TEST_METHOD, http_request.method) self.assertEqual(SIGV4TEST_PATH, http_request.path) # existing headers should remain for prev_header in SIGV4TEST_UNSIGNED_HEADERS: self.assertIn(prev_header, http_request.headers) # signed headers must be present for signed_header in SIGV4TEST_SIGNED_HEADERS: self.assertIn(signed_header, http_request.headers) ```
{ "source": "johnjdailey/DS", "score": 3 }
#### File: app/api/recommends.py ```python import logging from typing import List, Optional from fastapi import APIRouter from pydantic import BaseModel, Field from ..recommend import get_recommendations log = logging.getLogger(__name__) router = APIRouter() class RecommendRequest(BaseModel): """Input schema - the user's choices for effects and issues.""" effects: List[str] = Field( ..., # required field, no default title='Preferred effects', description='List of strings containing preferred dominant effects.', example=['euphoric', 'energetic'] ) helps: List[str] = Field( ..., # required field, no default title='Effective for these issues', description=('List of strings containing issues ' 'which strains are reported to help.'), example=['add/adhd', 'anorexia'] ) text: Optional[str] = Field('', example='I prefer sativa heavy hybrids.') count: Optional[int] = Field(4, gt=0, le=25, example=4) def format(self, model='nn'): """Combine input data into format ready for preprocessing.""" if 'nn' == model: return ' '.join(self.effects + self.helps + [self.text]) class RecommendItem(BaseModel): """Output schema - strain information.""" strain: str = Field(..., title='Strain Name') strain_type: str = Field(..., title='Strain Type') description: str = Field(..., title='Strain Description') effects: List[str] = Field(..., example=['euphoric', 'energetic']) helps: List[str] = Field(..., example=['add/adhd', 'anorexia']) class RecommendResponse(BaseModel): """Output schema - List of recommended strains.""" strains: List[RecommendItem] = Field(...) @router.post('/recommends', response_model=RecommendResponse) async def recommends(item: RecommendRequest): """ Routes for user reccomendations. ### Request: user selected labels, user text, and desired number of recommendations - `effects`: list of strings of effects - `helps`: list of strings of medical conditions it can help - `text`: optional string that decribes users preferences - `count`: optional integer, number of recommendations to return ### Response: a list of information about each recommended strains - `strain`: name of strain - `strain_type`: indica or sativa - `description`: user descriptions of strains - `effects`: specific to the particular strain - `helps`: specific to the particular strain """ return { 'strains': get_recommendations(user_input=item.format('nn'), num=item.count), } ``` #### File: app/tests/test_recommends.py ```python from fastapi.testclient import TestClient from app.main import app client = TestClient(app) def test_valid_input(): """Return 200 Success on request to route.""" request_data = { 'effects': ['happy', 'focused', 'giggly', 'hungry', 'sleepy'], 'helps': ['migranes', 'nausea'], 'text': 'I prefer sativa heavy hybrids.', 'count': 6 } response = client.post('/recommends', json=request_data) json_body = response.json() assert response.status_code == 200 assert 'strains' in json_body.keys() assert len(json_body['strains']) == 6 for strain in json_body['strains']: assert 'strain' in strain.keys() assert 'strain_type' in strain.keys() assert 'description' in strain.keys() assert 'effects' in strain.keys() assert 'helps' in strain.keys() def test_no_input(): """Return 422 Unprocessable Entity on empty POST request.""" response = client.post('/recommends') assert response.status_code == 422 assert isinstance(response.json(), dict) def test_request_get(): """Return 405 Method Not Allowed on get request.""" response = client.get('/recommends') assert response.status_code == 405 assert isinstance(response.json(), dict) ``` #### File: leafly/spiders/leafly_spider.py ```python import scrapy class LeaflySpider(scrapy.Spider): name = "leafly" def start_requests(self): urls = [ f'https://www.leafly.com/strains?sort=name&page={i}' for i in range(1, 116) ] for url in urls: yield scrapy.Request(url=url, callback=self.parse) def parse(self, response): for strain_link in response.css('div.strain-playlist-grid a::attr(href)'): strain_link = response.urljoin(strain_link.get()) yield scrapy.Request(strain_link, self.parse_strain) def parse_strain(self, response): strain = response.css('#strain-card-data > header > div.flex.flex-row.justify-between.items-center.border-t.border-deep-green-40.py-xs > div > h1').css('::text').get() aka = response.css('#strain-card-data > header > div.flex.flex-row.justify-between.items-center.border-t.border-deep-green-40.py-xs > div > h2').css('::text').get() if aka and aka.startswith('aka '): aka = aka[4:] type_ = response.css('#strain-card-data > header > div.flex.flex-row.justify-between.items-center.pb-xs > h2 > a').css('::text').get() rating = response.css('#strain-card-data > header > div.flex.flex-row.justify-between.items-center.pb-xs > div > p > span').css('::text').get() try: rating = float(rating.strip()) except: rating = None num_reviews = response.css('#strain-card-data > header > div.flex.flex-row.justify-between.items-center.pb-xs > div > p > a').css('::text').get() try: num_reviews = int(num_reviews.split()[0]) except: num_reviews = None description = response.css('#strain-description > div > p') try: description = ''.join(description.css('::text').getall()) except: description = response.css('#strain-description > div > p').css('::text').get() num_effects_reports = response.css('#strain-effects-section > div.flex.items-center.font-mono.text-xs').css('::text').get() try: num_effects_reports = int(num_effects_reports.split()[0]) except: num_effects_reports = None if num_effects_reports is not None: effects = response.css('#strain-effects-section > div.react-tabs.mt-lg > div > div') else: effects = None if effects and len(effects) == 3: feelings = self.parse_effects(effects[0]) helps = self.parse_effects(effects[1]) negative = self.parse_effects(effects[2]) else: feelings = helps = negative = [(None, None)] * 5 yield { 'strain': strain, 'aka': aka, 'type': type_, 'rating': rating, 'num_reviews': num_reviews, 'num_effects_reports': num_effects_reports, 'feeling_1': feelings[0][0], 'feeling_1_pct': feelings[0][1], 'feeling_2': feelings[1][0], 'feeling_2_pct': feelings[1][1], 'feeling_3': feelings[2][0], 'feeling_3_pct': feelings[2][1], 'feeling_4': feelings[3][0], 'feeling_4_pct': feelings[3][1], 'feeling_5': feelings[4][0], 'feeling_5_pct': feelings[4][1], 'helps_1': helps[0][0], 'helps_1_pct': helps[0][1], 'helps_2': helps[1][0], 'helps_2_pct': helps[1][1], 'helps_3': helps[2][0], 'helps_3_pct': helps[2][1], 'helps_4': helps[3][0], 'helps_4_pct': helps[3][1], 'helps_5': helps[4][0], 'helps_5_pct': helps[4][1], 'negative_1': negative[0][0], 'negative_1_pct': negative[0][1], 'negative_2': negative[1][0], 'negative_2_pct': negative[1][1], 'negative_3': negative[2][0], 'negative_3_pct': negative[2][1], 'negative_4': negative[3][0], 'negative_4_pct': negative[3][1], 'negative_5': negative[4][0], 'negative_5_pct': negative[4][1], 'description': description, 'url':response.url, } def parse_effects(self, sl:scrapy.selector.unified.SelectorList): texts = sl.css('::text').getall() effects = [] for i in range(0, len(texts), 4): effects.append((texts[i], float(texts[i+2]) / 100)) for i in range(5 - len(effects)): effects.append((None, None)) return effects ```
{ "source": "johnjdailey/FinMesh", "score": 4 }
#### File: FinMesh/auxiliary/__init__.py ```python from nltk.corpus import words def pick_bad_apples(word,ignore_list): ## Determines whether or not to ignore certain words ignore = False for n in range(len(ignore_list)): for i in ignore_list: if i in word: ignore = True return ignore def real_word_frequency(file): ## Returns a list fo real words sorted by use frequency with open(file,'r') as f: word_list = words.words() alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] file_words = [] # Quick sieve that is used in bad_apples function to quickly throw out obvious unreal words ignore = ['-','_','/','=',':',';','<','>','#','$','@','*','\\'] lines = f.readlines() word_freq = {} final_checked = {} # Iterate lines from file for line in lines: words = line.lower().strip().split(' ') # Iterate words from line for word in words: if not pick_bad_apples(word, ignore): file_words.append(word) # Iterate words that pass bad apple check for w in file_words: if not w == '': length = len(w)-1 # Checks if the first and last letter are in the alphabet if w[0] and w[length] in alphabet: w.replace('.','').strip('\"') if w in word_freq.keys(): word_freq[w] += 1 else: word_freq[w] = 1 # Runs a final check against an actual dictionary for key in word_freq.keys(): if key in word_list: val = word_freq.get(key) final_checked[key] = val # Sort the words by frequency final_checked_sorted = {k: v for k, v in sorted(final_checked.items(), key=lambda item: item[1])} return final_checked_sorted ``` #### File: FinMesh/iex/forex.py ```python from ._common import * # Latest Rates FOREX_LATEST_URL = prepend_iex_url('fx') + 'latest?' def forex_latest_rate(symbols, vprint=False): ## Returns the latest FOREX rate for the requested currency pair symbol. url = FOREX_LATEST_URL + f'symbols={symbols}' return get_iex_json_request(url, vprint=vprint) # Currency Conversion FOREX_CONVERSION_URL = prepend_iex_url('fx') + 'convert?' def forex_conversion(symbols, amount, vprint=False): ## Converts one currency to another using up-to-date currency information. url = FOREX_CONVERSION_URL + f'symbols={symbols}&amount={amount}' return get_iex_json_request(url, vprint=vprint) # Historical Data FOREX_HISTORICAL_URL = prepend_iex_url('fx') + 'historical?' def forex_historical(symbols, vprint=False, **queries): ## Returns historical FOREX rates for the requested currency pair symbol. url = FOREX_HISTORICAL_URL + f'symbols={symbols}' for key, value in queries.items(): url += (f"&{key}={value}") url =+ '&' return get_iex_json_request(url, vprint=vprint) ``` #### File: FinMesh/usgov/__init__.py ```python import os import requests import xmltodict import csv import json # # # # # # # # # # # FRED DATA BELOW # # # # # # # # # # # FRED_BASE_URL = 'https://api.stlouisfed.org/fred/' GEOFRED_BASE_URL = 'https://api.stlouisfed.org/geofred/' def append_fred_token(url): token = os.getenv('FRED_TOKEN') return f'{url}&api_key={token}' FRED_SERIES_OBS_URL = FRED_BASE_URL + 'series/observations?' def fred_series(series, file_type=None, realtime_start=None, realtime_end=None, limit=None, offset=None, sort_order=None, observation_start=None, observation_end=None, units=None, frequency=None, aggregation_method=None, output_type=None, vintage_dates=None): ## Returns time series historical data for the requested FRED data. url = FRED_SERIES_OBS_URL + f'series_id={series}' if file_type: url += f'&file_type={file_type}' if realtime_start: url += f'&realtime_start={realtime_start}' if realtime_end: url += f'&realtime_end={realtime_end}' if limit: url += f'&limit={limit}' if offset: url += f'&offset={offset}' if sort_order: url += f'&sort_order={sort_order}' if observation_start: url += f'&observation_start={observation_start}' if observation_end: url += f'&observation_end={observation_end}' if units: url += f'&units={units}' if frequency: url += f'&frequency={frequency}' if aggregation_method: url += f'&aggregation_method={aggregation_method}' if output_type: url += f'&output_type={output_type}' if vintage_dates: url += f'&vintage_dates={vintage_dates}' url = append_fred_token(url) result = requests.get(url) return result.text GEOFRED_SERIES_META_URL = GEOFRED_BASE_URL + 'series/group?' def geofred_series_meta(series_id, file_type=None): ## Returns meta data for the requested FRED data. url = GEOFRED_SERIES_META_URL + f'series_id={series_id}' if file_type: url += f'&file_type={file_type}' url = append_fred_token(url) result = requests.get(url) return result.text GEOFRED_REGIONAL_SERIES_URL = GEOFRED_BASE_URL + 'series/data?' def geofred_regional_series(series_id, file_type=None, date=None, start_date=None): ## Returns the historical, geographically organized time series data for the requested FRED data. url = GEOFRED_REGIONAL_SERIES_URL + f'series_id={series_id}' if file_type: url += f'&file_type={file_type}' if date: url += f'&date={date}' if start_date: url += f'&start_date={start_date}' url = append_fred_token(url) result = requests.get(url) return result.text # # # # # # # # # # # # # # # # # GOVERNMENT YIELD CURVE DATA # # # # # # # # # # # # # # # # # GOV_YIELD_URL = 'https://data.treasury.gov/feed.svc/DailyTreasuryYieldCurveRateData?$filter=month(NEW_DATE)%20eq%204%20and%20year(NEW_DATE)%20eq%202019' def get_yield(): ## Returns government treasury bond yields. Organized in Python dictionary format by bond length. # Formatting of XML to Python Dict curve = requests.get(GOV_YIELD_URL) parse_curve = xmltodict.parse(curve.content) # This is based around retrieving the n last dates or average of n days. feed = parse_curve['feed'] entry = feed['entry'] last_entry = len(entry)-1 content = entry[last_entry]['content']['m:properties'] # Dict that contains the whole yield curve so there is no need to bring in each rate. yield_curve_values = { 'date' : entry[last_entry]['content']['m:properties']['d:NEW_DATE']['#text'], '1month' : float(content['d:BC_1MONTH']['#text']), '2month' : float(content['d:BC_2MONTH']['#text']), '3month' : float(content['d:BC_3MONTH']['#text']), '6month' : float(content['d:BC_6MONTH']['#text']), '1year' : float(content['d:BC_1YEAR']['#text']), '2year' : float(content['d:BC_2YEAR']['#text']), '3year' : float(content['d:BC_3YEAR']['#text']), '5year' : float(content['d:BC_5YEAR']['#text']), '10year' : float(content['d:BC_10YEAR']['#text']), '20year' : float(content['d:BC_20YEAR']['#text']), '30year' : float(content['d:BC_30YEAR']['#text']), } return yield_curve_values ```
{ "source": "johnjdailey/JS-Realtime-Dashboard", "score": 3 }
#### File: blueprints/btc/btc.py ```python from flask import Blueprint, jsonify from numpy import minimum from datetime import datetime import requests import psycopg2 import warnings import pandas as pd from sklearn.metrics import r2_score from sklearn.metrics import mean_squared_error, mean_absolute_error warnings.filterwarnings("ignore") btcData = Blueprint('btc', __name__) conn = psycopg2.connect(database="postgres", user="postgres", password="password", host="127.0.0.1", port="5432") @btcData.route("/btc/profit/deals", methods=["GET"]) def get_btc_deals(): res = {} cur = conn.cursor() cur.execute( '''SELECT COUNT(*)/3 FROM Recommendations''') rows = cur.fetchall() conn.commit() res["count"] = int(rows[0][0]) result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result @btcData.route("/btc/recommendation/sell", methods=["GET"]) def post_btc_recommendation_sell(): ACTUAL_URL = "http://localhost:9000/btc/price" actual_res = requests.get(url=ACTUAL_URL) actual_data = actual_res.json()[-1:] current_time_str = actual_data[0]["datetime"].split(":") price = actual_data[0]["price"] current_time = datetime.now() current_time = current_time.replace(hour=int(current_time_str[0]), minute=int( current_time_str[1]), second=int(current_time_str[2]), microsecond=0) cur = conn.cursor() cur.execute( f"INSERT INTO Recommendations (Created_at,recommendation,price) VALUES ('{str(current_time)}', 'SELL', {price})") conn.commit() res = {} res["status"] = "Success" result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result @btcData.route("/btc/recommendation/buy", methods=["GET"]) def post_btc_recommendation_buy(): ACTUAL_URL = "http://localhost:9000/btc/price" actual_res = requests.get(url=ACTUAL_URL) actual_data = actual_res.json()[-1:] current_time_str = actual_data[0]["datetime"].split(":") price = actual_data[0]["price"] current_time = datetime.now() current_time = current_time.replace(hour=int(current_time_str[0]), minute=int( current_time_str[1]), second=int(current_time_str[2]), microsecond=0) cur = conn.cursor() cur.execute( f"INSERT INTO Recommendations (Created_at,recommendation,price) VALUES ('{str(current_time)}', 'BUY', {price})") conn.commit() res = {} res["status"] = "Success" result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result @btcData.route("/btc/profit/details/lastOperation", methods=["GET"]) def get_btc_profit_details_last_operation(): res = {} cur = conn.cursor() cur.execute( '''SELECT created_at, recommendation, price FROM Recommendations ORDER BY created_at DESC LIMIT 1''') rows = cur.fetchall() conn.commit() if rows[0][1] == "BUY": res["price"] = rows[0][2] else: res["price"] = 0.0 res["operation"] = rows[0][1] res["datetime"] = str(rows[0][0]).split(" ")[1] result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result @btcData.route("/btc/profit/details", methods=["GET"]) def get_btc_profit_details(): res = [] cur = conn.cursor() cur.execute( '''SELECT created_at, recommendation, price FROM Recommendations ORDER BY created_at DESC LIMIT 14''') rows = cur.fetchall() conn.commit() rows.reverse() if len(rows) > 2: if rows[0][1] == "SELL": rows = rows[1:] previous_buy = 0 for i in range(len(rows)): current_res = {} if str(rows[i][1]) == "BUY": previous_buy = rows[i][2] current_res["profit/loss"] = 0.0 else: current_res["profit/loss"] = rows[i][2] - previous_buy current_res["datetime"] = str(rows[i][0]) current_res["recommendation"] = str(rows[i][1]) current_res["price"] = str(rows[i][2]) if str(rows[i][1]) != "BUY": res.append(current_res) result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result @btcData.route("/btc/profit", methods=["GET"]) def get_btc_profit(): res = {} cur = conn.cursor() cur.execute( '''SELECT created_at, recommendation, price FROM Recommendations''') rows = cur.fetchall() conn.commit() # if the 1st operation is sell remove it if rows[0][1] == "SELL": rows = rows[1:] # if the last operation is buy remove it if rows[len(rows) - 1][1] == "BUY": rows = rows[:-1] df = pd.DataFrame(rows, columns=['time', 'recommendation', 'price']) df["pct"] = 0 df["runing_amount"] = 0 # Investment amount = 10000 for i in range(len(df)): if df["recommendation"].iloc[i] == "SELL": # to keep track of profit/loss percentage df["pct"].iloc[i] = (df["price"].iloc[i] - df["price"].iloc[i-1])/df["price"].iloc[i-1] # to keep track of the running amount after selling if i <= 1: df["runing_amount"].iloc[i] = (1+df["pct"].iloc[i])*amount else: df["runing_amount"].iloc[i] = ( 1+df["pct"].iloc[i])*df["runing_amount"].iloc[i-2] # to get the percentage of profit/loss from the inital investment rtn_pct = (df["runing_amount"].iloc[-1]) / amount * 100 # dollar profit/loss profit_loss = df["runing_amount"].iloc[-1] - amount res["rtn_pct"] = rtn_pct res["profit_loss"] = profit_loss res["runing_amount"] = df["runing_amount"].iloc[-1] result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result @btcData.route("/btc/price", methods=["GET"]) def get_btc_price(): res = [] cur = conn.cursor() cur.execute('''SELECT avg(price) , to_timestamp(floor((extract('epoch' from Created_at) / 30 )) * 30) AT TIME ZONE 'UTC' new_time FROM BT_Price WHERE created_at <= date_trunc('hour', now() + interval '1 hour') and created_at >= (now() - interval '28 minute') GROUP BY new_time ORDER BY new_time''') rows = cur.fetchall() for row in rows: row_item = {} row_item["datetime"] = str(row[1]).split("+")[0].split(" ")[1][:8] row_item["price"] = row[0] res.append(row_item) conn.commit() result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result #### PREDICTIONS ### @btcData.route("/predict/ARIMA", methods=["GET"]) def predict_btc_price_arima(): res = [] cur = conn.cursor() cur.execute('''SELECT to_timestamp(floor((extract('epoch' from Created_at) / 30 )) * 30) AT TIME ZONE 'UTC' time_ , avg(price) price_ FROM BTC_Price_Prediction WHERE created_at <= date_trunc('hour', now() + interval '1 hour') and created_at >= (now() - interval '30 minute') GROUP BY time_ ORDER BY time_''') rows = cur.fetchall() for row in rows: row_item = {} row_item["datetime"] = str(row[0]).split("+")[0].split(" ")[1][:8] row_item["price"] = row[1] res.append(row_item) conn.commit() result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result @btcData.route("/predict/VARMAX", methods=["GET"]) def predict_btc_price_varmax(): res = [] cur = conn.cursor() cur.execute('''SELECT to_timestamp(floor((extract('epoch' from Created_at) / 30 )) * 30) AT TIME ZONE 'UTC' time_ , avg(price) price_ FROM BTC_Price_Prediction_VARMAX WHERE created_at <= date_trunc('hour', now() + interval '1 hour') and created_at >= (now() - interval '30 minute') GROUP BY time_ ORDER BY time_''') rows = cur.fetchall() for row in rows: row_item = {} row_item["datetime"] = str(row[0]).split("+")[0].split(" ")[1][:8] row_item["price"] = row[1] res.append(row_item) conn.commit() result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result @btcData.route("/predict/SES", methods=["GET"]) def predict_btc_price_ses(): res = [] cur = conn.cursor() cur.execute('''SELECT to_timestamp(floor((extract('epoch' from Created_at) / 30 )) * 30) AT TIME ZONE 'UTC' time_ , avg(price) price_ FROM BTC_Price_Prediction_SES WHERE created_at <= date_trunc('hour', now() + interval '1 hour') and created_at >= (now() - interval '30 minute') GROUP BY time_ ORDER BY time_''') rows = cur.fetchall() for row in rows: row_item = {} row_item["datetime"] = str(row[0]).split("+")[0].split(" ")[1][:8] row_item["price"] = row[1] res.append(row_item) conn.commit() result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result @btcData.route("/predict/RF", methods=["GET"]) def predict_btc_price_rf(): res = [] cur = conn.cursor() cur.execute('''SELECT to_timestamp(floor((extract('epoch' from Created_at) / 30 )) * 30) AT TIME ZONE 'UTC' time_ , avg(price) price_ FROM BTC_Price_Prediction_RF WHERE created_at <= date_trunc('hour', now() + interval '1 hour') and created_at >= (now() - interval '30 minute') GROUP BY time_ ORDER BY time_''') rows = cur.fetchall() for row in rows: row_item = {} row_item["datetime"] = str(row[0]).split("+")[0].split(" ")[1][:8] row_item["price"] = row[1] res.append(row_item) conn.commit() result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result @btcData.route("/predict/overall", methods=["GET"]) def predict_btc_price_overall(): res = [] cur = conn.cursor() cur.execute('''SELECT to_timestamp(floor((extract('epoch' from Created_at) / 30 )) * 30) AT TIME ZONE 'UTC' time_ , avg(price) price_ FROM BTC_Price_Prediction_Overall WHERE created_at <= date_trunc('hour', now() + interval '1 hour') and created_at >= (now() - interval '30 minute') GROUP BY time_ ORDER BY time_''') rows = cur.fetchall() for row in rows: row_item = {} row_item["datetime"] = str(row[0]).split("+")[0].split(" ")[1][:8] row_item["price"] = row[1] res.append(row_item) conn.commit() result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result #### SCORES ### @btcData.route("/score/ARIMA", methods=["GET"]) def get_model_score_arima(): res = {} cur = conn.cursor() cur.execute('''SELECT to_timestamp(floor((extract('epoch' from Created_at) / 30 )) * 30) AT TIME ZONE 'UTC' time_ , avg(price) price_ FROM BTC_Price_Prediction WHERE created_at <= date_trunc('hour', now() + interval '1 hour') and created_at >= (now() - interval '30 minute') GROUP BY time_ ORDER BY time_''') pred_rows = cur.fetchall() cur.execute('''SELECT to_timestamp(floor((extract('epoch' from Created_at) / 30 )) * 30) AT TIME ZONE 'UTC' new_time, avg(price) FROM BT_Price WHERE created_at <= date_trunc('hour', now() + interval '1 hour') and created_at >= (now() - interval '30 minute') GROUP BY new_time ORDER BY new_time''') actual_rows = cur.fetchall() conn.commit() actual_df = pd.DataFrame(actual_rows, columns=['time', 'price']) preds_df = pd.DataFrame(pred_rows, columns=['time', 'preds']) actual_values = [x for x in actual_df["price"]] preds_values = [x for x in preds_df["preds"]] preds_values = preds_values[:len(actual_values) - 1] actual_values = actual_values[:len(preds_values)] res["RMSE"] = mean_squared_error( actual_values, preds_values, squared=False) res["MAE"] = mean_absolute_error(actual_values, preds_values) res["MSE"] = mean_squared_error(actual_values, preds_values) result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result @btcData.route("/score/VARMAX", methods=["GET"]) def get_model_score_varmax(): res = {} cur = conn.cursor() cur.execute('''SELECT to_timestamp(floor((extract('epoch' from Created_at) / 30 )) * 30) AT TIME ZONE 'UTC' time_ , avg(price) price_ FROM BTC_Price_Prediction_VARMAX WHERE created_at <= date_trunc('hour', now() + interval '1 hour') and created_at >= (now() - interval '30 minute') GROUP BY time_ ORDER BY time_''') pred_rows = cur.fetchall() cur.execute('''SELECT to_timestamp(floor((extract('epoch' from Created_at) / 30 )) * 30) AT TIME ZONE 'UTC' new_time, avg(price) FROM BT_Price WHERE created_at <= date_trunc('hour', now() + interval '1 hour') and created_at >= (now() - interval '30 minute') GROUP BY new_time ORDER BY new_time''') actual_rows = cur.fetchall() conn.commit() actual_df = pd.DataFrame(actual_rows, columns=['time', 'price']) preds_df = pd.DataFrame(pred_rows, columns=['time', 'preds']) actual_values = [x for x in actual_df["price"]] preds_values = [x for x in preds_df["preds"]] preds_values = preds_values[:len(actual_values) - 1] actual_values = actual_values[:len(preds_values)] res["RMSE"] = mean_squared_error( actual_values, preds_values, squared=False) res["MAE"] = mean_absolute_error(actual_values, preds_values) res["MSE"] = mean_squared_error(actual_values, preds_values) result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result @btcData.route("/score/SES", methods=["GET"]) def get_model_score_ses(): res = {} cur = conn.cursor() cur.execute('''SELECT to_timestamp(floor((extract('epoch' from Created_at) / 30 )) * 30) AT TIME ZONE 'UTC' time_ , avg(price) price_ FROM BTC_Price_Prediction WHERE created_at <= date_trunc('hour', now() + interval '1 hour') and created_at >= (now() - interval '30 minute') GROUP BY time_ ORDER BY time_''') pred_rows = cur.fetchall() cur.execute('''SELECT to_timestamp(floor((extract('epoch' from Created_at) / 30 )) * 30) AT TIME ZONE 'UTC' new_time, avg(price) FROM BTC_Price_Prediction_SES WHERE created_at <= date_trunc('hour', now() + interval '1 hour') and created_at >= (now() - interval '30 minute') GROUP BY new_time ORDER BY new_time''') actual_rows = cur.fetchall() conn.commit() actual_df = pd.DataFrame(actual_rows, columns=['time', 'price']) preds_df = pd.DataFrame(pred_rows, columns=['time', 'preds']) actual_values = [x for x in actual_df["price"]] preds_values = [x for x in preds_df["preds"]] preds_values = preds_values[:len(actual_values) - 1] actual_values = actual_values[:len(preds_values)] res["RMSE"] = mean_squared_error( actual_values, preds_values, squared=False) res["MAE"] = mean_absolute_error(actual_values, preds_values) res["MSE"] = mean_squared_error(actual_values, preds_values) result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result @btcData.route("/score/RF", methods=["GET"]) def get_model_score_RF(): res = {} cur = conn.cursor() cur.execute('''SELECT to_timestamp(floor((extract('epoch' from Created_at) / 30 )) * 30) AT TIME ZONE 'UTC' time_ , avg(price) price_ FROM BTC_Price_Prediction WHERE created_at <= date_trunc('hour', now() + interval '1 hour') and created_at >= (now() - interval '30 minute') GROUP BY time_ ORDER BY time_''') pred_rows = cur.fetchall() cur.execute('''SELECT to_timestamp(floor((extract('epoch' from Created_at) / 30 )) * 30) AT TIME ZONE 'UTC' new_time, avg(price) FROM BTC_Price_Prediction_RF WHERE created_at <= date_trunc('hour', now() + interval '1 hour') and created_at >= (now() - interval '30 minute') GROUP BY new_time ORDER BY new_time''') actual_rows = cur.fetchall() conn.commit() actual_df = pd.DataFrame(actual_rows, columns=['time', 'price']) preds_df = pd.DataFrame(pred_rows, columns=['time', 'preds']) actual_values = [x for x in actual_df["price"]] preds_values = [x for x in preds_df["preds"]] min_val = minimum(len(actual_values), len(preds_values)) preds_values = preds_values[:min_val-1] actual_values = actual_values[:min_val-1] res["RMSE"] = mean_squared_error( actual_values, preds_values, squared=False) res["MAE"] = mean_absolute_error(actual_values, preds_values) res["MSE"] = mean_squared_error(actual_values, preds_values) result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result @btcData.route("/score/overall", methods=["GET"]) def get_model_score_overall(): cur = conn.cursor() cur.execute('''SELECT to_timestamp(floor((extract('epoch' from Created_at) / 30 )) * 30) AT TIME ZONE 'UTC' time_ , avg(price) price_ FROM BT_Price WHERE created_at <= date_trunc('hour', now() + interval '1 hour') and created_at >= (now() - interval '1 hour') GROUP BY time_ ORDER BY time_''') actual_rows = cur.fetchall() cur.execute('''SELECT to_timestamp(floor((extract('epoch' from Created_at) / 30 )) * 30) AT TIME ZONE 'UTC' time_ , avg(price) price_ FROM BTC_Price_Prediction_Overall WHERE created_at <= date_trunc('hour', now() + interval '1 hour') and created_at >= (now() - interval '1 hour') GROUP BY time_ ORDER BY time_''') preds_rows = cur.fetchall() conn.commit() actual_df = pd.DataFrame(actual_rows, columns=['time', 'price']) preds_df = pd.DataFrame(preds_rows, columns=['time', 'preds']) actual_values = [x for x in actual_df["price"]] preds_values = [x for x in preds_df["preds"]] min_val = minimum(len(actual_values), len(preds_values)) preds_values = preds_values[:min_val-1] actual_values = actual_values[:min_val-1] r2 = r2_score(actual_values, preds_values) res = {} res["R2"] = r2 result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result ``` #### File: blueprints/tweets/tweets.py ```python from flask import Blueprint, jsonify import psycopg2 import warnings from datetime import datetime warnings.filterwarnings("ignore") tweetsData = Blueprint('tweets', __name__) conn = psycopg2.connect(database="postgres", user="postgres", password="password", host="127.0.0.1", port="5432") @tweetsData.route("/tweets/pos", methods=["GET"]) def get_positive_tweets(): res = [] cur = conn.cursor() cur.execute('''SELECT sum(Positive) , to_timestamp(floor((extract('epoch' from Created_at AT TIME ZONE 'UTC') / 30 )) * 30) new_time FROM tweets WHERE Created_at <= date_trunc('hour', now() + interval '1 hour') AT TIME ZONE 'UTC' and Created_at > (now() - interval '30 minute') AT TIME ZONE 'UTC' GROUP BY new_time ORDER BY new_time''') rows = cur.fetchall() for row in rows: row_item = {} row_item["datetime"] = str(row[1]).split("+")[0].split(" ")[1][:8] row_item["count"] = row[0] res.append(row_item) conn.commit() result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result @tweetsData.route("/tweets/neg", methods=["GET"]) def get_negative_tweets(): res = [] cur = conn.cursor() cur.execute('''SELECT sum(Negative) , to_timestamp(floor((extract('epoch' from Created_at AT TIME ZONE 'UTC') / 30 )) * 30) new_time FROM tweets WHERE Created_at <= date_trunc('hour', now() + interval '1 hour') AT TIME ZONE 'UTC' and Created_at > (now() - interval '30 minute') AT TIME ZONE 'UTC' GROUP BY new_time ORDER BY new_time''') rows = cur.fetchall() for row in rows: row_item = {} row_item["datetime"] = str(row[1]).split("+")[0].split(" ")[1][:8] row_item["count"] = row[0] res.append(row_item) conn.commit() result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result @tweetsData.route("/tweets/count", methods=["GET"]) def get_count_tweets(): res = {} cur = conn.cursor() cur.execute( '''SELECT sum(Positive) pos_sum, sum(Negative) neg_sum FROM tweets''') rows = cur.fetchall() res["Total_pos"] = rows[0][0] res["Total_neg"] = rows[0][1] conn.commit() result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result @tweetsData.route(" ", methods=["GET"]) def get_daily_tweets(): res = [] cur = conn.cursor() cur.execute('''SELECT sum(Negative), sum(Positive) , extract(hour from created_at AT TIME ZONE 'UTC') new_time FROM tweets WHERE created_at <= date_trunc('day', now() + interval '1 day') AT TIME ZONE 'UTC' and created_at >= date_trunc('day', now()) AT TIME ZONE 'UTC' GROUP BY new_time ORDER BY new_time''') rows = cur.fetchall() for row in rows: current_time = datetime.now() newdatetime = current_time.replace(hour=int(row[2]), minute=0) row_item = {} row_item["datetime"] = str(newdatetime).split(" ")[1].split(".")[0][:5] row_item["neg"] = row[0] row_item["pos"] = row[1] res.append(row_item) conn.commit() result = jsonify(res) result.headers.add('Access-Control-Allow-Origin', '*') return result ``` #### File: server/models/bitcoin_price_prediction_VARMAX.py ```python import pandas as pd from datetime import datetime, timedelta from statsmodels.tsa.statespace.varmax import VARMAX import time import SQL_STATEMENTS def date_formating(current_time): if current_time.second < 30: newdatetime = current_time.replace(second=30, microsecond=0) elif current_time.minute + 1 <= 59: newdatetime = current_time.replace( minute=(current_time.minute + (1)), second=0, microsecond=0) elif (current_time.minute == 59 and current_time.hour != 23): newdatetime = current_time.replace( hour=(current_time.hour + 1), minute=0, second=0, microsecond=0) elif(current_time.minute == 59 and current_time.hour == 23): newdatetime = current_time.replace( day=(current_time.day + 1), hour=0, minute=0, second=0, microsecond=0) else: newdatetime = current_time.replace( hour=(current_time.hour + 1), minute=0, second=0, microsecond=0) return newdatetime def predict_VARMAX(): conn = SQL_STATEMENTS.setup() while(1): cur = conn.cursor() cur.execute(SQL_STATEMENTS.BTC_PRICE_1_HOUR_WINDOW) btc_rows = cur.fetchall() conn.commit() cur = conn.cursor() cur.execute(SQL_STATEMENTS.TWEETS_1_HOUR_WINDOW) tweets_rows = cur.fetchall() conn.commit() btc_df = pd.DataFrame(btc_rows, columns=['time', 'price']) tweets_df = pd.DataFrame(tweets_rows, columns=['time', 'count']) btc_df.time = btc_df["time"].astype(str) tweets_df.time = tweets_df["time"].astype(str) tweets_df.time = tweets_df["time"].map(lambda x: x.split("+")[0]) merge_df = pd.merge(btc_df, tweets_df, on='time') merge_df = merge_df.drop(["time"], axis=1) history = [list(x) for x in merge_df.values] # (BTC Price, Count of tweets) try: for i in range(0, 2): current_time = datetime.now() + timedelta(seconds=(i * 30)) model = VARMAX(history, order=(1, 1)) model_fit = model.fit(disp=False) output = model_fit.forecast() yhat = output[0] newdatetime = date_formating(current_time) if yhat[0] < 0: yhat[0] = merge_df["price"].mean() history.append(yhat) cur = conn.cursor() cur.execute( f"INSERT INTO BTC_Price_Prediction_VARMAX (created_at,price) VALUES ('{str(newdatetime)}', {yhat[0]})") conn.commit() except: continue time.sleep(15) ``` #### File: server/models/bitcoin_price_web.py ```python from selenium import webdriver from datetime import datetime import psycopg2 import time def setup(): # Create database connection conn = psycopg2.connect(database="postgres", user="postgres", password="password", host="127.0.0.1", port="5432") # create selenium web driver opts = webdriver.ChromeOptions() opts.add_experimental_option("detach", True) driver = webdriver.Chrome(executable_path=r"./chromedriver") return conn, driver def scrape_data(): conn, driver = setup() driver.get( "https://coinmarketcap.com/currencies/bitcoin/") previous_price = 0 while (1): time.sleep(3) # get currently displayed price price = driver.find_elements_by_xpath( "//div[@class='priceValue___11gHJ ']") price = price[0].text[1:].replace(',', '') # in case the website close the session if price == previous_price: driver.refresh() time.sleep(1) price = driver.find_elements_by_xpath( "//div[@class='priceValue___11gHJ ']") price = price[0].text[1:].replace(',', '') previous_price = price current_time = datetime.now() cur = conn.cursor() cur.execute( f"INSERT INTO BT_Price (Created_at,Price) VALUES ('{str(current_time)}', {price})") conn.commit() time.sleep(20) if __name__ == "__main__": scrape_data() ```
{ "source": "johnjdailey/jupyter-archive", "score": 3 }
#### File: jupyter-archive/jupyter_archive/handlers.py ```python import os import asyncio import zipfile import tarfile import pathlib from tornado import gen, web, iostream, ioloop from notebook.base.handlers import IPythonHandler from notebook.utils import url2path # The delay in ms at which we send the chunk of data # to the client. ARCHIVE_DOWNLOAD_FLUSH_DELAY = 100 SUPPORTED_FORMAT = [ "zip", "tgz", "tar.gz", "tbz", "tbz2", "tar.bz", "tar.bz2", "txz", "tar.xz" ] class ArchiveStream(): def __init__(self, handler): self.handler = handler self.position = 0 def write(self, data): self.position += len(data) self.handler.write(data) del data def tell(self): return self.position def flush(self): # Note: Flushing is done elsewhere, in the main thread # because `write()` is called in a background thread. # self.handler.flush() pass def make_writer(handler, archive_format="zip"): fileobj = ArchiveStream(handler) if archive_format == "zip": archive_file = zipfile.ZipFile(fileobj, mode='w', compression=zipfile.ZIP_DEFLATED) archive_file.add = archive_file.write elif archive_format in ["tgz", "tar.gz"]: archive_file = tarfile.open(fileobj=fileobj, mode='w|gz') elif archive_format in ["tbz", "tbz2", "tar.bz", "tar.bz2"]: archive_file = tarfile.open(fileobj=fileobj, mode='w|bz2') elif archive_format in ["txz", "tar.xz"]: archive_file = tarfile.open(fileobj=fileobj, mode='w|xz') else: raise ValueError("'{}' is not a valid archive format.".format(archive_format)) return archive_file def make_reader(archive_path): archive_format = ''.join(archive_path.suffixes)[1:] if archive_format == "zip": archive_file = zipfile.ZipFile(archive_path, mode='r') elif archive_format in ["tgz", "tar.gz"]: archive_file = tarfile.open(archive_path, mode='r|gz') elif archive_format in ["tbz", "tbz2", "tar.bz", "tar.bz2"]: archive_file = tarfile.open(archive_path, mode='r|bz2') elif archive_format in ["txz", "tar.xz"]: archive_file = tarfile.open(archive_path, mode='r|xz') else: raise ValueError("'{}' is not a valid archive format.".format(archive_format)) return archive_file class DownloadArchiveHandler(IPythonHandler): @web.authenticated @gen.coroutine def get(self, archive_path, include_body=False): # /directories/ requests must originate from the same site self.check_xsrf_cookie() cm = self.contents_manager if cm.is_hidden(archive_path) and not cm.allow_hidden: self.log.info("Refusing to serve hidden file, via 404 Error") raise web.HTTPError(404) archive_token = self.get_argument('archiveToken') archive_format = self.get_argument('archiveFormat', 'zip') if archive_format not in SUPPORTED_FORMAT: self.log.error("Unsupported format {}.".format(archive_format)) raise web.HTTPError(404) archive_path = os.path.join(cm.root_dir, url2path(archive_path)) archive_path = pathlib.Path(archive_path) archive_name = archive_path.name archive_filename = archive_path.with_suffix(".{}".format(archive_format)).name self.log.info('Prepare {} for archiving and downloading.'.format(archive_filename)) self.set_header('content-type', 'application/octet-stream') self.set_header('cache-control', 'no-cache') self.set_header('content-disposition', 'attachment; filename={}'.format(archive_filename)) self.canceled = False self.flush_cb = ioloop.PeriodicCallback(self.flush, ARCHIVE_DOWNLOAD_FLUSH_DELAY) self.flush_cb.start() args = (archive_path, archive_format, archive_token) yield ioloop.IOLoop.current().run_in_executor(None, self.archive_and_download, *args) if self.canceled: self.log.info('Download canceled.') else: self.flush() self.log.info('Finished downloading {}.'.format(archive_filename)) self.set_cookie("archiveToken", archive_token) self.flush_cb.stop() self.finish() def archive_and_download(self, archive_path, archive_format, archive_token): with make_writer(self, archive_format) as archive: prefix = len(str(archive_path.parent)) + len(os.path.sep) for root, _, files in os.walk(archive_path): for file_ in files: file_name = os.path.join(root, file_) if not self.canceled: self.log.debug("{}\n".format(file_name)) archive.add(file_name, os.path.join(root[prefix:], file_)) else: break def on_connection_close(self): super().on_connection_close() self.canceled = True self.flush_cb.stop() class ExtractArchiveHandler(IPythonHandler): @web.authenticated @gen.coroutine def get(self, archive_path, include_body=False): # /extract-archive/ requests must originate from the same site self.check_xsrf_cookie() cm = self.contents_manager if cm.is_hidden(archive_path) and not cm.allow_hidden: self.log.info("Refusing to serve hidden file, via 404 Error") raise web.HTTPError(404) archive_path = os.path.join(cm.root_dir, url2path(archive_path)) archive_path = pathlib.Path(archive_path) yield ioloop.IOLoop.current().run_in_executor(None, self.extract_archive, archive_path) self.finish() def extract_archive(self, archive_path): archive_destination = archive_path.parent self.log.info('Begin extraction of {} to {}.'.format(archive_path, archive_destination)) archive_reader = make_reader(archive_path) with archive_reader as archive: archive.extractall(archive_destination) self.log.info('Finished extracting {} to {}.'.format(archive_path, archive_destination)) ```
{ "source": "johnjdailey/lambdata-johnjdailey", "score": 4 }
#### File: lambdata-johnjdailey/buyholdsell/assignment_inherit.py ```python from pandas import DataFrame # State abbreviation -> Full Name and vice versa. Fl -> Florida, etc. class MyFrame(DataFrame): def add_state_names(self): # was originally my_df, doesn't matter """ Adds a column of state names to accompany and corresponding column of state abbreviations. """ names_map = {"CA": "Cali", "CO": "Colo", "CT": "Conn"} self["name"] = self["abbrev"].map(names_map) # https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.map.html if __name__ == '__main__': #df = DataFrame({"abbrev":["CA","CO","CT","DC","TX"]}) my_frame = MyFrame({"abbrev": ["CA", "CO", "CT", "CT", "DC", "TX"]}) print(my_frame.columns) print(my_frame.head()) my_frame.add_state_names() print(my_frame.head()) ```
{ "source": "johnjdailey/NeMo", "score": 2 }
#### File: nlp/dialogue_state_tracking/dialogue_state_tracking_sgd.py ```python import argparse import math import os import nemo.collections.nlp as nemo_nlp import nemo.collections.nlp.data.datasets.sgd_dataset.data_processor as data_processor from nemo.collections.nlp.callbacks.sgd_callback import eval_epochs_done_callback, eval_iter_callback from nemo.collections.nlp.data.datasets.sgd_dataset.schema_processor import SchemaPreprocessor from nemo.collections.nlp.nm.trainables import SGDDecoderNM, SGDEncoderNM from nemo.core import Backend, CheckpointCallback, EvaluatorCallback, NeuralModuleFactory, SimpleLossLoggerCallback from nemo.utils import logging from nemo.utils.lr_policies import get_lr_policy # Parsing arguments parser = argparse.ArgumentParser(description='Schema_guided_dst') # BERT based utterance encoder related arguments parser.add_argument( "--max_seq_length", default=80, type=int, help="The maximum total input sequence length after WordPiece tokenization. " "Sequences longer than this will be truncated, and sequences shorter " "than this will be padded.", ) parser.add_argument("--dropout", default=0.1, type=float, help="Dropout rate for BERT representations.") parser.add_argument( "--pretrained_model_name", default="bert-base-cased", type=str, help="Name of the pre-trained model", choices=nemo_nlp.nm.trainables.get_pretrained_lm_models_list(), ) parser.add_argument("--bert_checkpoint", default=None, type=str, help="Path to model checkpoint") parser.add_argument("--bert_config", default=None, type=str, help="Path to bert config file in json format") parser.add_argument( "--tokenizer_model", default=None, type=str, help="Path to pretrained tokenizer model, only used if --tokenizer is sentencepiece", ) parser.add_argument( "--tokenizer", default="nemobert", type=str, choices=["nemobert", "sentencepiece"], help="tokenizer to use, only relevant when using custom pretrained checkpoint.", ) parser.add_argument("--vocab_file", default=None, help="Path to the vocab file.") parser.add_argument( "--do_lower_case", action='store_true', help="Whether to lower case the input text. True for uncased models, False for cased models. " + "Only applicable when tokenizer is build with vocab file", ) # Hyperparameters and optimization related flags. parser.add_argument( "--checkpoint_dir", default=None, type=str, help="The folder containing the checkpoints for the model to continue training", ) parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=8, type=int, help="Total batch size for eval.") parser.add_argument("--num_epochs", default=80, type=int, help="Total number of training epochs to perform.") parser.add_argument("--optimizer_kind", default="adam_w", type=str) parser.add_argument("--learning_rate", default=1e-4, type=float, help="The initial learning rate for Adam.") parser.add_argument("--lr_policy", default="PolynomialDecayAnnealing", type=str) parser.add_argument("--weight_decay", default=0.01, type=float) parser.add_argument( "--lr_warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10% of training.", ) parser.add_argument("--grad_norm_clip", type=float, default=1, help="Gradient clipping") parser.add_argument("--local_rank", default=None, type=int) parser.add_argument("--amp_opt_level", default="O0", type=str, choices=["O0", "O1", "O2"]) parser.add_argument("--num_gpus", default=1, type=int) # Input and output paths and other flags. parser.add_argument( "--task_name", default="sgd_single_domain", type=str, choices=data_processor.FILE_RANGES.keys(), help="The name of the task to train.", ) parser.add_argument( "--data_dir", type=str, required=True, help="Directory for the downloaded SGD data, which contains the dialogue files" " and schema files of all datasets (eg train, dev)", ) parser.add_argument( "--work_dir", type=str, default="output/SGD", help="The output directory where the model checkpoints will be written.", ) parser.add_argument( "--schema_embedding_dir", type=str, default='schema_embedding_dir', help="Directory where .npy file for embedding of entities (slots, values, intents) in the dataset_split's schema are stored.", ) parser.add_argument( "--no_overwrite_schema_emb_files", action="store_false", help="Whether to generate a new file saving the dialogue examples.", dest="overwrite_schema_emb_files", ) parser.add_argument( "--joint_acc_across_turn", action="store_true", help="Whether to compute joint accuracy across turn instead of across service. Should be set to True when conducting multiwoz style evaluation.", ) parser.add_argument( "--no_fuzzy_match", action="store_true", help="Whether to use fuzzy string matching when comparing non-categorical slot values. Fuzz match should not be used when conducting multiwoz style evaluation.", ) parser.add_argument( "--dialogues_example_dir", type=str, default="dialogues_example_dir", help="Directory where preprocessed SGD dialogues are stored.", ) parser.add_argument( "--no_overwrite_dial_files", action="store_false", help="Whether to generate a new file saving the dialogue examples.", dest="overwrite_dial_files", ) parser.add_argument("--no_shuffle", action="store_true", help="Whether to shuffle training data") parser.add_argument("--no_time_to_log_dir", action="store_true", help="whether to add time to work_dir or not") parser.add_argument( "--eval_dataset", type=str, default="dev_test", choices=["dev", "test", "dev_test"], help="Dataset splits for evaluation.", ) parser.add_argument( "--save_epoch_freq", default=1, type=int, help="Frequency of saving checkpoint '-1' - step checkpoint won't be saved", ) parser.add_argument( "--save_step_freq", default=-1, type=int, help="Frequency of saving checkpoint '-1' - step checkpoint won't be saved", ) parser.add_argument( "--loss_log_freq", default=-1, type=int, help="Frequency of logging loss values, '-1' - at the end of the epoch", ) parser.add_argument( "--loss_reduction", default='mean', type=str, help="specifies the reduction to apply to the final loss, choose 'mean' or 'sum'", ) parser.add_argument( "--eval_epoch_freq", default=1, type=int, help="Frequency of evaluation", ) parser.add_argument( "--num_workers", default=2, type=int, help="Number of workers for data loading, -1 means set it automatically to the number of CPU cores", ) parser.add_argument( "--enable_pin_memory", action="store_true", help="Enables the pin_memory feature of Pytroch's DataLoader", ) parser.add_argument( "--state_tracker", type=str, default='baseline', choices=['baseline', 'ret_sys_act'], help="Specifies the state tracker mode", ) parser.add_argument( "--schema_emb_init", type=str, default='baseline', choices=['baseline', 'random', 'last_layer_average'], help="Specifies how schema embeddings are generated. Baseline uses ['CLS'] token", ) parser.add_argument( "--train_schema_emb", action="store_true", help="Specifies whether schema embeddings are trainables.", ) parser.add_argument( "--add_attention_head", action="store_true", help="Whether to use attention when computing projections. When False, uses linear projection.", ) parser.add_argument( "--debug_mode", action="store_true", help="Enables debug mode with more info on data preprocessing and evaluation", ) parser.add_argument( "--checkpoints_to_keep", default=1, type=int, help="The number of last checkpoints to keep", ) args = parser.parse_args() logging.info(args) if args.debug_mode: logging.setLevel("DEBUG") if args.task_name == "multiwoz": schema_config = { "MAX_NUM_CAT_SLOT": 9, "MAX_NUM_NONCAT_SLOT": 4, "MAX_NUM_VALUE_PER_CAT_SLOT": 47, "MAX_NUM_INTENT": 1, } else: schema_config = { "MAX_NUM_CAT_SLOT": 6, "MAX_NUM_NONCAT_SLOT": 12, "MAX_NUM_VALUE_PER_CAT_SLOT": 12, "MAX_NUM_INTENT": 4, } if not os.path.exists(args.data_dir): raise ValueError(f'Data not found at {args.data_dir}') nf = NeuralModuleFactory( backend=Backend.PyTorch, local_rank=args.local_rank, optimization_level=args.amp_opt_level, log_dir=args.work_dir, create_tb_writer=True, checkpoint_dir=args.checkpoint_dir, files_to_copy=[__file__], add_time_to_log_dir=not args.no_time_to_log_dir, ) pretrained_bert_model = nemo_nlp.nm.trainables.get_pretrained_lm_model( pretrained_model_name=args.pretrained_model_name, config=args.bert_config, vocab=args.vocab_file, checkpoint=args.bert_checkpoint, ) schema_config["EMBEDDING_DIMENSION"] = pretrained_bert_model.hidden_size schema_config["MAX_SEQ_LENGTH"] = args.max_seq_length tokenizer = nemo_nlp.data.tokenizers.get_tokenizer( tokenizer_name=args.tokenizer, pretrained_model_name=args.pretrained_model_name, tokenizer_model=args.tokenizer_model, vocab_file=args.vocab_file, do_lower_case=args.do_lower_case, ) hidden_size = pretrained_bert_model.hidden_size # Run SGD preprocessor to generate and store schema embeddings schema_preprocessor = SchemaPreprocessor( data_dir=args.data_dir, schema_embedding_dir=args.schema_embedding_dir, schema_config=schema_config, tokenizer=tokenizer, bert_model=pretrained_bert_model, overwrite_schema_emb_files=args.overwrite_schema_emb_files, bert_ckpt_dir=args.checkpoint_dir, nf=nf, mode=args.schema_emb_init, is_trainable=args.train_schema_emb, ) dialogues_processor = data_processor.SGDDataProcessor( task_name=args.task_name, data_dir=args.data_dir, dialogues_example_dir=args.dialogues_example_dir, tokenizer=tokenizer, schema_emb_processor=schema_preprocessor, overwrite_dial_files=args.overwrite_dial_files, ) # define model pipeline sgd_encoder = SGDEncoderNM(hidden_size=hidden_size, dropout=args.dropout) sgd_decoder = SGDDecoderNM( embedding_dim=hidden_size, schema_emb_processor=schema_preprocessor, add_attention_head=args.add_attention_head ) dst_loss = nemo_nlp.nm.losses.SGDDialogueStateLossNM(reduction=args.loss_reduction) def create_pipeline(dataset_split='train'): datalayer = nemo_nlp.nm.data_layers.SGDDataLayer( dataset_split=dataset_split, dialogues_processor=dialogues_processor, batch_size=args.train_batch_size, shuffle=not args.no_shuffle if dataset_split == 'train' else False, num_workers=args.num_workers, pin_memory=args.enable_pin_memory, ) data = datalayer() # Encode the utterances using BERT. token_embeddings = pretrained_bert_model( input_ids=data.utterance_ids, attention_mask=data.utterance_mask, token_type_ids=data.utterance_segment, ) encoded_utterance, token_embeddings = sgd_encoder(hidden_states=token_embeddings) ( logit_intent_status, logit_req_slot_status, logit_cat_slot_status, logit_cat_slot_value, logit_noncat_slot_status, logit_noncat_slot_start, logit_noncat_slot_end, ) = sgd_decoder( encoded_utterance=encoded_utterance, token_embeddings=token_embeddings, utterance_mask=data.utterance_mask, cat_slot_values_mask=data.cat_slot_values_mask, intent_status_mask=data.intent_status_mask, service_ids=data.service_id, ) if dataset_split == 'train': loss = dst_loss( logit_intent_status=logit_intent_status, intent_status_labels=data.intent_status_labels, logit_req_slot_status=logit_req_slot_status, requested_slot_status=data.requested_slot_status, req_slot_mask=data.req_slot_mask, logit_cat_slot_status=logit_cat_slot_status, categorical_slot_status=data.categorical_slot_status, cat_slot_status_mask=data.cat_slot_status_mask, logit_cat_slot_value=logit_cat_slot_value, categorical_slot_values=data.categorical_slot_values, logit_noncat_slot_status=logit_noncat_slot_status, noncategorical_slot_status=data.noncategorical_slot_status, noncat_slot_status_mask=data.noncat_slot_status_mask, logit_noncat_slot_start=logit_noncat_slot_start, logit_noncat_slot_end=logit_noncat_slot_end, noncategorical_slot_value_start=data.noncategorical_slot_value_start, noncategorical_slot_value_end=data.noncategorical_slot_value_end, ) tensors = [loss] else: tensors = [ data.example_id_num, data.service_id, data.is_real_example, data.start_char_idx, data.end_char_idx, logit_intent_status, logit_req_slot_status, logit_cat_slot_status, logit_cat_slot_value, logit_noncat_slot_status, logit_noncat_slot_start, logit_noncat_slot_end, data.intent_status_labels, data.requested_slot_status, data.categorical_slot_status, data.categorical_slot_values, data.noncategorical_slot_status, ] steps_per_epoch = math.ceil(len(datalayer) / (args.train_batch_size * args.num_gpus)) return steps_per_epoch, tensors steps_per_epoch, train_tensors = create_pipeline() logging.info(f'Steps per epoch: {steps_per_epoch}') # Create trainer and execute training action train_callback = SimpleLossLoggerCallback( tensors=train_tensors, print_func=lambda x: logging.info("Loss: {:.8f}".format(x[0].item())), get_tb_values=lambda x: [["loss", x[0]]], tb_writer=nf.tb_writer, step_freq=args.loss_log_freq if args.loss_log_freq > 0 else steps_per_epoch, ) def get_eval_callback(eval_dataset): _, eval_tensors = create_pipeline(dataset_split=eval_dataset) eval_callback = EvaluatorCallback( eval_tensors=eval_tensors, user_iter_callback=lambda x, y: eval_iter_callback(x, y, schema_preprocessor, eval_dataset), user_epochs_done_callback=lambda x: eval_epochs_done_callback( x, args.task_name, eval_dataset, args.data_dir, nf.work_dir, args.state_tracker, args.debug_mode, schema_preprocessor, args.joint_acc_across_turn, args.no_fuzzy_match, ), tb_writer=nf.tb_writer, eval_step=args.eval_epoch_freq * steps_per_epoch, ) return eval_callback if args.eval_dataset == 'dev_test': eval_callbacks = [get_eval_callback('dev'), get_eval_callback('test')] else: eval_callbacks = [get_eval_callback(args.eval_dataset)] ckpt_callback = CheckpointCallback( folder=nf.checkpoint_dir, epoch_freq=args.save_epoch_freq, step_freq=args.save_step_freq, checkpoints_to_keep=1 ) lr_policy_fn = get_lr_policy( args.lr_policy, total_steps=args.num_epochs * steps_per_epoch, warmup_ratio=args.lr_warmup_proportion ) nf.train( tensors_to_optimize=train_tensors, callbacks=[train_callback, ckpt_callback] + eval_callbacks, lr_policy=lr_policy_fn, optimizer=args.optimizer_kind, optimization_params={ "num_epochs": args.num_epochs, "lr": args.learning_rate, "eps": 1e-6, "weight_decay": args.weight_decay, "grad_norm_clip": args.grad_norm_clip, }, ) ```
{ "source": "JohnJDyer/raft", "score": 2 }
#### File: raft/raft/raft.py ```python import enum import signal import random import asyncio import heapq import uuid import functools import traceback import socket import os import raft.raft_pb2 as raft_pb2 from raft.util import RaftDebugger, ignore_stale # TODO: implement signal handlers. # TODO: multiplex commands + logs # TODO: create isready method to block until leader known leader OR queue up messages. # TODO: Snapshotting. Maybe use loop.sock_sendfile() class ACT(enum.Enum): NO_OP = enum.auto() TIMEOUT = enum.auto() NEW_TERM = enum.auto() NEW_LEADER = enum.auto() MAJORITY = enum.auto() START = enum.auto() ERROR = enum.auto() class STATE(enum.Enum): FOLLOWER = enum.auto() CANDIDATE = enum.auto() LEADER = enum.auto() OFF = enum.auto() ERROR = enum.auto() class Raft(RaftDebugger): TRANSITIONS = { STATE.OFF: { ACT.START: STATE.FOLLOWER, }, STATE.FOLLOWER: { ACT.TIMEOUT: STATE.CANDIDATE, ACT.NEW_LEADER: STATE.FOLLOWER, ACT.NEW_TERM: STATE.FOLLOWER, }, STATE.CANDIDATE: { ACT.TIMEOUT: STATE.CANDIDATE, ACT.MAJORITY: STATE.LEADER, ACT.NEW_LEADER: STATE.FOLLOWER, ACT.NEW_TERM: STATE.FOLLOWER, }, STATE.LEADER: { ACT.NEW_TERM: STATE.FOLLOWER, # ACT.TIMEOUT: ACT.LEADER, }, } def __init__( self, id, server_ids, listen_address='0.0.0.0', send_address='<broadcast>', port=27182, debug=1, execute_callback=None, ): self.id = uuid.uuid4().int % (1 << 62) if id is None else id self.port = port self.listen_address = listen_address self.send_address = send_address self.term = 0 self.servers = {} self.quorum = len(server_ids) // 2 + 1 self.state = STATE.OFF entry = raft_pb2.LogEntries() entry.term = self.term entry.command = "Start Up".encode('utf-8') self.log = [entry] self.execute_idx = 0 # monotonic self.commit_idx = 0 # monotonic self.execute_callback = execute_callback # Do we need this: self.msg_idx = {s: 1 for s in server_ids} self.log_idx = {s: 1 for s in server_ids} self.new_term() self.election_timeout_ = 100 self.service_task = None self.heartbeat_event = asyncio.Event() self.command_queue = asyncio.PriorityQueue() # TODO We could limit features to make FIFO work. self.transport = None self.DISPATCH_TABLE = { STATE.FOLLOWER: { raft_pb2.RaftUDPMessage.HEART: [self.handle_heartbeat], raft_pb2.RaftUDPMessage.POLL: [self.handle_poll], raft_pb2.RaftUDPMessage.APPEND: [self.run_append], }, STATE.CANDIDATE: { raft_pb2.RaftUDPMessage.VOTE: [self.handle_vote], }, STATE.LEADER: { raft_pb2.RaftUDPMessage.COMMAND: [self.handle_status, self.handle_command], raft_pb2.RaftUDPMessage.STATUS: [self.handle_status], }, } self.SERVICES = { STATE.FOLLOWER : self.service_failure_detector, STATE.CANDIDATE: self.service_election, STATE.LEADER : self.service_heartbeat} RaftDebugger.__init__(self, debug=debug) async def listen(self): class UDPBroadcast(asyncio.DatagramProtocol): def datagram_received(__, data, addr): self.udp_callback(data, addr) self.transport, _protocol = await asyncio.get_event_loop().create_datagram_endpoint( protocol_factory=lambda: UDPBroadcast(), allow_broadcast=True, local_addr=(self.listen_address, self.port)) def __repr__(self): return f"Raft({self.state}, commited {self.commit_idx + 1} of {len(self.log)} log entries)" def __del__(self): # TODO graceful shutdown server via state transition. if self.transport: self.transport.close() async def start(self): await self.listen() self.transition(ACT.START) return self def new_term(self, term=0): self.term = max(self.term + 1, term) self.vote_cast = False self.leader = None self.supporters = set() def udp_broadcast(self, message_type, log_idx=float("inf"), leader=None, command=None): leader = self.leader if leader is None else leader msg = raft_pb2.RaftUDPMessage() msg.type = message_type msg.term = self.term msg.sender = self.id msg.commit_idx = self.commit_idx if leader is not None: msg.leader = leader msg.log_idx = min(log_idx, len(self.log)) if command is not None: msg.command = command else: msg.log.extend(self.log[msg.log_idx:]) self.transport.sendto(msg.SerializeToString(), (self.send_address, self.port)) # ================= DATABASE ================== def commit(self, commit_idx): if commit_idx > self.commit_idx: self.commit_idx = min(commit_idx, len(self.log) - 1) self.execute() # TODO This feels heavy; better way? asyncio.create_task(self.signal_commands()) def execute(self): while self.execute_idx < self.commit_idx: self.execute_idx += 1 if self.execute_callback: self.execute_callback(self) # TODO This feels heavy; better way? async def signal_commands(self): while not self.command_queue.empty() and self.command_queue._queue[0][0] <= self.commit_idx: _, _, event = await self.command_queue.get() event.set() # ================= TRANSPORT PROTOCOLS ================== def udp_callback(self, data, addr): message = raft_pb2.RaftUDPMessage() message.ParseFromString(data) self.handle_message(message=message) def handle_message(self, message): if self.term < message.term: self.new_term(message.term) self.transition(ACT.NEW_TERM) for f in self.DISPATCH_TABLE.get(self.state, {}).get(message.type, []): action = f(message=message) if action: self.transition(action) # ================= SERVICES ================== async def service_failure_detector(self): while True: try: await asyncio.wait_for(self.heartbeat_event.wait(), timeout=1.1) self.heartbeat_event.clear() except asyncio.TimeoutError: self.transition(ACT.TIMEOUT) async def service_heartbeat(self): while True: self.udp_broadcast(raft_pb2.RaftUDPMessage.HEART) await asyncio.sleep(.5) async def service_election(self): while True: self.new_term() self.supporters = {self.id} self.udp_broadcast(raft_pb2.RaftUDPMessage.POLL, leader=self.id) await asyncio.sleep(random.uniform(150, 300) / 1000) # ================= STATE MACHINE ================== def transition(self, action): s = Raft.TRANSITIONS.get(self.state, {}).get(action, STATE.ERROR) if self.state != s: if self.service_task is not None: self.service_task.cancel() self.state = s service = self.SERVICES[s] self.service_task = asyncio.create_task(service()) # ================= SEND MESSAGE ================== def send_logs(self): msg_idx = min(self.msg_idx.values()) if msg_idx < len(self.log): self.udp_broadcast(raft_pb2.RaftUDPMessage.APPEND, log_idx=msg_idx - 1) # TODO: shield from cancellation? # TODO: retry sending message? # TODO: timeout? async def send_command(self, command, idx=-1): """ Replicate command (bytes) in every server's logs at position idx. If command depends on raft.log then do: (1) n=len(raft.log) (2) message = F(raft.log) (3) send_command(message, idx=n) This guarantees the log/state machine has not changed since message calculation. Returns true when message is COMMITED to the local log and false if message cannot be applied at position idx. Use idx=-1 for simple append. :param command: bytes :param idx: int, target log index; -1 for any index :return: bool, True if message successfully COMMITED. """ self.udp_broadcast(raft_pb2.RaftUDPMessage.COMMAND, command=command, log_idx=idx) event = asyncio.Event() self.command_queue.put_nowait((idx, command, event)) await event.wait() return self.log[idx].command == command # TODO: assumes commands are unique. def send_command_nowait(self, command, idx=-1): return asyncio.create_task(self.send_command(command, idx=idx)) # ================ OTHER STUFF ==================== @ignore_stale def handle_heartbeat(self, message): if self.leader is None: self.leader = message.leader return ACT.NEW_LEADER self.heartbeat_event.set() if not len(message.log): return if not self.merge_logs(message): self.udp_broadcast(raft_pb2.RaftUDPMessage.STATUS, log_idx=len(self.log) - 1) @ignore_stale def handle_command(self, message): entry = raft_pb2.LogEntries() entry.term = self.term entry.command = message.command if message.log_idx == -1 or message.log_idx == len(self.log): self.log.append(entry) self.msg_idx[self.id] = len(self.log) self.log_idx[self.id] = len(self.log) self.send_logs() @ignore_stale def handle_poll(self, message): if self.vote_cast or len(self.log) > message.log_idx: return self.vote_cast = True print("Vote Cast") self.udp_broadcast(raft_pb2.RaftUDPMessage.VOTE, leader=message.leader) @ignore_stale def handle_vote(self, message): if message.leader == self.id: self.supporters.add(message.sender) if len(self.supporters) >= self.quorum: self.leader = self.id return ACT.MAJORITY def handle_status(self, message): for idx, log_entry in enumerate(message.log, message.log_idx): if idx < len(self.log): if self.log[idx].term == log_entry.term: self.msg_idx[message.sender] = idx + 1 self.log_idx[message.sender] = idx + 1 if self.log[idx].term == self.term and idx > self.commit_idx: best_idx = heapq.nlargest(self.quorum, self.log_idx.values())[-1] - 1 self.commit(best_idx) else: self.msg_idx[message.sender] = idx break else: break if self.msg_idx.get(message.sender, 0) < len(self.log) or message.commit_idx < self.commit_idx: self.send_logs() @ignore_stale def run_append(self, message): assert len(message.log) >= 2 self.merge_logs(message) self.udp_broadcast(raft_pb2.RaftUDPMessage.STATUS, log_idx=len(self.log) - 1) self.commit(message.commit_idx) return # ======= HELPERS ========= def merge_logs(self, message): if message.log_idx >= len(self.log): return False if message.log[0].term == self.log[message.log_idx].term: idx = max((i for i, (a, b) in enumerate(zip(message.log, self.log[message.log_idx:])) if a.term == b.term)) + 1 self.log = self.log[:message.log_idx + idx] self.log.extend(message.log[idx:]) return message.log_idx + idx == len(self.log) else: self.log = self.log[:message.log_idx] return False ```
{ "source": "johnjichaowei/etf-holdings-publisher", "score": 2 }
#### File: bin/deploy/update_lambda_code.py ```python import boto3 def update_lambda_code(func_name, source_code_bucket_name, source_code_key): print("Start to update function code for lambda {} with {} - {} in S3".format( func_name, source_code_bucket_name, source_code_key )) client = boto3.client('lambda') client.update_function_code( FunctionName=func_name, S3Bucket=source_code_bucket_name, S3Key=source_code_key ) print("Updating lambda function code finished") ``` #### File: etf-holdings-publisher/src/holding.py ```python class Holding(object): def __init__(self, name, symbol, sector, market_val_percent, market_value, number_of_shares): self.name = name self.symbol = symbol self.sector = sector self.market_val_percent = market_val_percent self.market_value = market_value self.number_of_shares = number_of_shares def __eq__(self, other): return ( self.__class__ == other.__class__ and self.name == other.name and self.symbol == other.symbol and self.sector == other.sector and self.market_val_percent == other.market_val_percent and self.market_value == other.market_value and self.number_of_shares == other.number_of_shares ) ``` #### File: etf-holdings-publisher/src/holding_schema.py ```python from marshmallow import Schema, fields, validates, ValidationError, EXCLUDE # {"holding":"Commonwealth Bank of Australia","marketValPercent":8.25647,"marketValue":1.04168334081E9, # "symbol":"CBA","countryCode":"AU","sectorName":"Diversified Banks","numberofshares":1.4389879E7, # "currencySymbol":"$"} class HoldingSchema(Schema): class Meta: unknown = EXCLUDE ordered = True name = fields.Str(required=True, data_key='holding') symbol = fields.Str(required=True, data_key='symbol') sector = fields.Str(data_key='sectorName') market_val_percent = fields.Decimal(data_key='marketValPercent', as_string=True) market_value = fields.Decimal(data_key='marketValue', as_string=True) number_of_shares = fields.Decimal(data_key='numberofshares', as_string=True) @validates('name') def validate_name(self, value): self.validate_non_empty_string(value, 'Holding name') @validates('symbol') def validate_symbol(self, value): self.validate_non_empty_string(value, 'Holding symbol') def validate_non_empty_string(self, value, field_name): if value == '': raise ValidationError("{} can't be empty.".format(field_name)) if value.strip() == '': raise ValidationError("{} can't be only white spaces.".format(field_name)) ``` #### File: etf-holdings-publisher/tests/test_holding_schema.py ```python from src.holding_schema import * from decimal import Decimal def test_data_key_for_holding_name(): schema = HoldingSchema(only=['name']) result = {'name': 'Commonwealth Bank of Australia'} assert schema.loads('{"holding":"Commonwealth Bank of Australia"}') == result def test_holding_name_is_required(): schema = HoldingSchema(only=['name']) assert schema.validate({}) == {'holding': ['Missing data for required field.']} def test_holding_name_can_not_be_empty(): schema = HoldingSchema(only=['name']) assert schema.validate({'holding': ''}) == {'holding': ["Holding name can't be empty."]} def test_holding_name_can_not_be_only_white_spaces(): schema = HoldingSchema(only=['name']) assert schema.validate({'holding': ' '}) == {'holding': ["Holding name can't be only white spaces."]} def test_data_key_for_holding_symbol(): schema = HoldingSchema(only=['symbol']) result = {'symbol': 'CBA'} assert schema.loads('{"symbol":"CBA"}') == result def test_holding_symbol_is_required(): schema = HoldingSchema(only=['symbol']) assert schema.validate({}) == {'symbol': ['Missing data for required field.']} def test_holding_symbol_can_not_be_empty(): schema = HoldingSchema(only=['symbol']) assert schema.validate({'symbol': ''}) == {'symbol': ["Holding symbol can't be empty."]} def test_holding_symbol_can_not_be_only_white_spaces(): schema = HoldingSchema(only=['symbol']) assert schema.validate({'symbol': ' '}) == {'symbol': ["Holding symbol can't be only white spaces."]} def test_data_key_for_holding_sector(): schema = HoldingSchema(only=['sector']) result = {'sector': 'Diversified Banks'} assert schema.loads('{"sectorName":"Diversified Banks"}') == result def test_data_key_for_market_val_percent(): schema = HoldingSchema(only=['market_val_percent']) result = {'market_val_percent': Decimal('8.25647')} assert schema.loads('{"marketValPercent":8.25647}') == result def test_market_val_percent_must_be_a_valid_number(): schema = HoldingSchema(only=['market_val_percent']) assert schema.validate({'marketValPercent': 'bla'}) == {'marketValPercent': ['Not a valid number.']} def test_data_key_for_market_value(): schema = HoldingSchema(only=['market_value']) result = {'market_value': Decimal('1041683340.81')} assert schema.loads('{"marketValue":1.04168334081E9}') == result def test_market_value_must_be_a_valid_number(): schema = HoldingSchema(only=['market_value']) assert schema.validate({'marketValue': 'bla'}) == {'marketValue': ['Not a valid number.']} def test_data_key_for_(): schema = HoldingSchema(only=['number_of_shares']) result = {'number_of_shares': Decimal('14389879')} assert schema.loads('{"numberofshares":1.4389879E7}') == result def test_market_value_must_be_a_valid_number(): schema = HoldingSchema(only=['number_of_shares']) assert schema.validate({'numberofshares': 'bla'}) == {'numberofshares': ['Not a valid number.']} def test_schema_excludes_unknown_field(): assert HoldingSchema().unknown == EXCLUDE def test_dumps_can_serialize_the_data(): holding = { "name": "Commonwealth Bank of Australia", "symbol": "CBA", "sector": "Diversified Banks", "market_val_percent": Decimal('8.25647'), "market_value": Decimal('1041683340.81'), "number_of_shares": Decimal('14389879') } expected_json_str = '{"holding": "Commonwealth Bank of Australia", "symbol": "CBA", "sectorName": "Diversified Banks", "marketValPercent": "8.25647", "marketValue": "1041683340.81", "numberofshares": "14389879"}' assert HoldingSchema().dumps(holding) == expected_json_str ```
{ "source": "johnjichaowei/market-values-api", "score": 3 }
#### File: market_values_api/handlers/market_values_handler.py ```python from aiohttp import web import logging import simplejson import market_values_api.services as services class MarketValuesHandler(object): async def get(self, request): logging.info(f"Handling get market values request: {request.query_string}") companies = self._parse_companies_param(request.query) service = services.MarketValuesService(request.app['client_session']) market_values = await service.get(companies) logging.info(f"Finishing get market values request") return self._json_response(market_values) def _parse_companies_param(self, query): if 'companies' not in query: raise web.HTTPBadRequest(reason='The companies param is required') param = query['companies'] return param.split(',') def _json_response(self, data): response = web.Response() response.headers.add('Content-Type', 'application/json') response.text = simplejson.dumps(data) return response ``` #### File: market_values_api/parsers/parse_market_value.py ```python import re from decimal import Decimal from market_values_api.exceptions import ParseMarketValueError class ParseMarketValue(object): def __init__(self, raw_text): self.raw_text = raw_text def call(self): return self._parse_market_value() def _parse_market_value(self): p = re.compile( r'<td.+?data-test="MARKET_CAP-value".*?><span.*?>\s*(?P<value>\d*\.?\d*)(?P<unit>[BbMmKk]?)\s*</span></td>' ) match = p.search(self.raw_text) if match != None: return self._convert_value(match.group('value'), match.group('unit')) raise ParseMarketValueError('Failed to parse market value') def _convert_value(self, value, unit): multiplier = { 'B': 1000000000, 'M': 1000000, 'K': 1000, '': 1 }[unit.upper()] return Decimal(value) * multiplier ``` #### File: tests/services/test_market_values_service.py ```python import asynctest import pytest from decimal import Decimal from market_values_api.services import MarketValuesService class TestMarketValuesService(object): @pytest.fixture def company_list(self): return ['CBA', 'ANZ', 'REA'] @pytest.fixture def market_values(self): return {'CBA': Decimal('123'), 'ANZ': Decimal('321'), 'REA': Decimal('789')} @pytest.fixture def repository_class(self): with asynctest.patch( 'market_values_api.repositories.MarketValueRepository', autospec=True, scope=asynctest.LIMITED ) as repository_class: yield repository_class @pytest.fixture def repository(self, repository_class, market_values): def _side_effect(company): if market_values.get(company) == None: raise Exception('Unexpected error') return (company, market_values[company]) repository = repository_class.return_value repository.get.side_effect = _side_effect return repository @pytest.mark.usefixtures("repository") async def test_get_instantiate_one_market_value_repository(self, session, company_list, repository_class): await MarketValuesService(session).get(company_list) repository_class.assert_called_once_with(session) async def test_get_calls_market_value_repository_for_each_company(self, session, company_list, repository): await MarketValuesService(session).get(company_list) assert repository.get.call_count == 3 @pytest.mark.usefixtures("repository") async def test_get_returns_market_values_as_a_dict(self, session, company_list, market_values): result = await MarketValuesService(session).get(company_list) assert result == market_values @pytest.mark.usefixtures("repository") async def test_get_reraises_exception_occurred_in_async_task(self, session, company_list): with pytest.raises(Exception) as err: await MarketValuesService(session).get(company_list + ['CompanyNotExist']) assert 'Unexpected error' in str(err) ```
{ "source": "johnjihong/fastapi-reactjs-template", "score": 2 }
#### File: fastapi-reactjs-template/app/server.py ```python from fastapi import FastAPI from starlette.middleware.cors import CORSMiddleware from datetime import datetime app = FastAPI() app.add_middleware(CORSMiddleware, allow_origins=['*']) @app.get('/api/foo') def example(): return {'text': f'Hello World and utc now is {datetime.utcnow()}'} ```
{ "source": "johnjihong/Gadget", "score": 3 }
#### File: Gadget/Gadget/tracker.py ```python from time import time from .log import logger from .utils import display from typing import Callable from threading import Thread from ipywidgets.widgets import HTML class Track: def __init__(self): self.elapsed = 0.0 self.start_at = None self.result = None def run(self, *args, **kwargs): raise NotImplementedError def start(self, *args, **kwargs): if self.start_at is not None: raise RuntimeError('Already started.') self.start_at = time() thread = Thread(target=self.run, args=args, kwargs=kwargs) thread.start() def stop(self): if self.start_at is None: raise RuntimeError('No started.') self.elapsed = time() - self.start_at self.start_at = None def reset(self): self.elapsed = 0.0 @property def running(self): return self.start_at is not None class Spinner(HTML, Track): """Run a task in a separate thread and display spinner during the execution. Notebook example: from time import sleep def long_running_task(): for i in range(10): sleep(1) foo = Spinner(long_running_task) foo.start() foo """ def __init__(self, task: Callable, *args, **kwargs): super().__init__(*args, **kwargs) self.task = task self.value = '<i class="fa fa-spinner fa-spin" style="font-size: 80px; color: red;"></i>' def run(self, task: Callable): display(self, True) try: self.result = self.task() except Exception as err: logger.exception(err) finally: self.stop() def start(self, task: Callable): super().start(task) def stop(self): super().stop() display(self, False) ```
{ "source": "johnjihong/Robot", "score": 2 }
#### File: Robot/Robot/core.py ```python from __future__ import absolute_import from Robot.log import logger from typing import Callable from seleniumrequests import PhantomJS from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.common.exceptions import NoSuchElementException, WebDriverException class is_page_read: def __call__(self, driver): is_dom_ready = driver.execute_script("return document.readyState === 'complete';") try: has_ajax_completed = driver.execute_script('return jQuery.active === 0;') except WebDriverException: logger.exception(exc_info=True) return is_dom_ready else: return is_dom_ready and has_ajax_completed class Factory: def __init__(self, username: str, password: str, timeout: int=30, executable_path: str=None): self.username = username self.password = password self.timeout = timeout self.executable_path = executable_path if executable_path else 'phantomjs' def login(self, url): self.driver = PhantomJS(executable_path=self.executable_path) self.driver.get(url) self.driver.find_element_by_id('userID').send_keys(self.username) self.driver.find_element_by_id('password').send_keys(self.password) self.driver.find_element_by_xpath("//input[@value='Log in']").click() WebDriverWait(self.driver, self.timeout).until( EC.text_to_be_present_in_element((By.XPATH, "//a[@alt='logout']"), 'Log Out'), '%s failed to login within %d seconds timeout' % (self.username, self.timeout) ) def start(self, method: Callable): method() WebDriverWait(self.driver, self.timeout).until( is_page_read(), 'Opertation failed to be completed before the %d seconds timeout' % self.timeout ) ```
{ "source": "JohnJim0816/rl-tutorials", "score": 3 }
#### File: rl-tutorials/A2C/agent.py ```python import torch.optim as optim import torch.nn as nn import torch.nn.functional as F from torch.distributions import Categorical class ActorCritic(nn.Module): ''' A2C网络模型,包含一个Actor和Critic ''' def __init__(self, input_dim, output_dim, hidden_dim): super(ActorCritic, self).__init__() self.critic = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 1) ) self.actor = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, output_dim), nn.Softmax(dim=1), ) def forward(self, x): value = self.critic(x) probs = self.actor(x) dist = Categorical(probs) return dist, value class A2C: ''' A2C算法 ''' def __init__(self,state_dim,action_dim,cfg) -> None: self.gamma = cfg.gamma self.device = cfg.device self.model = ActorCritic(state_dim, action_dim, cfg.hidden_size).to(self.device) self.optimizer = optim.Adam(self.model.parameters()) def compute_returns(self,next_value, rewards, masks): R = next_value returns = [] for step in reversed(range(len(rewards))): R = rewards[step] + self.gamma * R * masks[step] returns.insert(0, R) return returns ```
{ "source": "johnjim0816/rl-tutorials", "score": 3 }
#### File: codes/DQN/dqn_cnn2.py ```python import torch import torch.nn as nn import torch.optim as optim import torch.autograd as autograd import random import math import numpy as np class CNN(nn.Module): def __init__(self, n_frames, n_actions): super(CNN,self).__init__() self.n_frames = n_frames self.n_actions = n_actions # Layers self.conv1 = nn.Conv2d( in_channels=n_frames, out_channels=16, kernel_size=8, stride=4, padding=2 ) self.conv2 = nn.Conv2d( in_channels=16, out_channels=32, kernel_size=4, stride=2, padding=1 ) self.fc1 = nn.Linear( in_features=3200, out_features=256, ) self.fc2 = nn.Linear( in_features=256, out_features=n_actions, ) # Activation Functions self.relu = nn.ReLU() def flatten(self, x): batch_size = x.size()[0] x = x.view(batch_size, -1) return x def forward(self, x): # Forward pass x = self.relu(self.conv1(x)) # In: (80, 80, 4) Out: (20, 20, 16) x = self.relu(self.conv2(x)) # In: (20, 20, 16) Out: (10, 10, 32) x = self.flatten(x) # In: (10, 10, 32) Out: (3200,) x = self.relu(self.fc1(x)) # In: (3200,) Out: (256,) x = self.fc2(x) # In: (256,) Out: (4,) return x class ReplayBuffer: def __init__(self, capacity): self.capacity = capacity # 经验回放的容量 self.buffer = [] # 缓冲区 self.position = 0 def push(self, state, action, reward, next_state, done): ''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition) ''' if len(self.buffer) < self.capacity: self.buffer.append(None) self.buffer[self.position] = (state, action, reward, next_state, done) self.position = (self.position + 1) % self.capacity def sample(self, batch_size): batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移 state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等 return state, action, reward, next_state, done def __len__(self): ''' 返回当前存储的量 ''' return len(self.buffer) class DQN: def __init__(self, n_states, n_actions, cfg): self.n_actions = n_actions # 总的动作个数 self.device = cfg.device # 设备,cpu或gpu等 self.gamma = cfg.gamma # 奖励的折扣因子 # e-greedy策略相关参数 self.frame_idx = 0 # 用于epsilon的衰减计数 self.epsilon = lambda frame_idx: cfg.epsilon_end + \ (cfg.epsilon_start - cfg.epsilon_end) * \ math.exp(-1. * frame_idx / cfg.epsilon_decay) self.batch_size = cfg.batch_size self.policy_net = CNN(n_states, n_actions).to(self.device) self.target_net = CNN(n_states, n_actions).to(self.device) for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net target_param.data.copy_(param.data) self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器 self.memory = ReplayBuffer(cfg.memory_capacity) # 经验回放 def choose_action(self, state): ''' 选择动作 ''' self.frame_idx += 1 if random.random() > self.epsilon(self.frame_idx): with torch.no_grad(): state = torch.tensor([state], device=self.device, dtype=torch.float32) q_values = self.policy_net(state) action = q_values.max(1)[1].item() # 选择Q值最大的动作 else: action = random.randrange(self.n_actions) return action def update(self): if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略 return # 从经验回放中(replay memory)中随机采样一个批量的转移(transition) state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample( self.batch_size) # 转为张量 state_batch = torch.tensor(state_batch, device=self.device, dtype=torch.float) action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1) reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float) next_state_batch = torch.tensor(next_state_batch, device=self.device, dtype=torch.float) done_batch = torch.tensor(np.float32(done_batch), device=self.device) q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch) # 计算当前状态(s_t,a)对应的Q(s_t, a) next_q_values = self.target_net(next_state_batch).max(1)[0].detach() # 计算下一时刻的状态(s_t_,a)对应的Q值 # 计算期望的Q值,对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward expected_q_values = reward_batch + self.gamma * next_q_values * (1-done_batch) loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算均方根损失 # 优化更新模型 self.optimizer.zero_grad() loss.backward() for param in self.policy_net.parameters(): # clip防止梯度爆炸 param.grad.data.clamp_(-1, 1) self.optimizer.step() def save(self, path): torch.save(self.target_net.state_dict(), path+'dqn_checkpoint.pth') def load(self, path): self.target_net.load_state_dict(torch.load(path+'dqn_checkpoint.pth')) for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()): param.data.copy_(target_param.data) ``` #### File: codes/PPO/ppo2.py ```python import os import numpy as np import torch import torch.optim as optim import torch.nn as nn from torch.distributions.categorical import Categorical class PPOMemory: def __init__(self, batch_size): self.states = [] self.probs = [] self.vals = [] self.actions = [] self.rewards = [] self.dones = [] self.batch_size = batch_size def sample(self): batch_step = np.arange(0, len(self.states), self.batch_size) indices = np.arange(len(self.states), dtype=np.int64) np.random.shuffle(indices) batches = [indices[i:i+self.batch_size] for i in batch_step] return np.array(self.states),np.array(self.actions),np.array(self.probs),\ np.array(self.vals),np.array(self.rewards),np.array(self.dones),batches def push(self, state, action, probs, vals, reward, done): self.states.append(state) self.actions.append(action) self.probs.append(probs) self.vals.append(vals) self.rewards.append(reward) self.dones.append(done) def clear(self): self.states = [] self.probs = [] self.actions = [] self.rewards = [] self.dones = [] self.vals = [] class Actor(nn.Module): def __init__(self,n_states, n_actions, hidden_dim): super(Actor, self).__init__() self.actor = nn.Sequential( nn.Linear(n_states, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, n_actions), nn.Softmax(dim=-1) ) def forward(self, state): dist = self.actor(state) dist = Categorical(dist) return dist class Critic(nn.Module): def __init__(self, n_states,hidden_dim): super(Critic, self).__init__() self.critic = nn.Sequential( nn.Linear(n_states, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 1) ) def forward(self, state): value = self.critic(state) return value class PPO: def __init__(self, n_states, n_actions,cfg): self.gamma = cfg.gamma self.continuous = cfg.continuous self.policy_clip = cfg.policy_clip self.n_epochs = cfg.n_epochs self.gae_lambda = cfg.gae_lambda self.device = cfg.device self.actor = Actor(n_states, n_actions,cfg.hidden_dim).to(self.device) self.critic = Critic(n_states,cfg.hidden_dim).to(self.device) self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.actor_lr) self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=cfg.critic_lr) self.memory = PPOMemory(cfg.batch_size) self.loss = 0 def choose_action(self, state): state = np.array([state]) # 先转成数组再转tensor更高效 state = torch.tensor(state, dtype=torch.float).to(self.device) dist = self.actor(state) value = self.critic(state) action = dist.sample() probs = torch.squeeze(dist.log_prob(action)).item() if self.continuous: action = torch.tanh(action) else: action = torch.squeeze(action).item() value = torch.squeeze(value).item() return action, probs, value def update(self): for _ in range(self.n_epochs): state_arr, action_arr, old_prob_arr, vals_arr,reward_arr, dones_arr, batches = self.memory.sample() values = vals_arr[:] ### compute advantage ### advantage = np.zeros(len(reward_arr), dtype=np.float32) for t in range(len(reward_arr)-1): discount = 1 a_t = 0 for k in range(t, len(reward_arr)-1): a_t += discount*(reward_arr[k] + self.gamma*values[k+1]*\ (1-int(dones_arr[k])) - values[k]) discount *= self.gamma*self.gae_lambda advantage[t] = a_t advantage = torch.tensor(advantage).to(self.device) ### SGD ### values = torch.tensor(values).to(self.device) for batch in batches: states = torch.tensor(state_arr[batch], dtype=torch.float).to(self.device) old_probs = torch.tensor(old_prob_arr[batch]).to(self.device) actions = torch.tensor(action_arr[batch]).to(self.device) dist = self.actor(states) critic_value = self.critic(states) critic_value = torch.squeeze(critic_value) new_probs = dist.log_prob(actions) prob_ratio = new_probs.exp() / old_probs.exp() weighted_probs = advantage[batch] * prob_ratio weighted_clipped_probs = torch.clamp(prob_ratio, 1-self.policy_clip, 1+self.policy_clip)*advantage[batch] actor_loss = -torch.min(weighted_probs, weighted_clipped_probs).mean() returns = advantage[batch] + values[batch] critic_loss = (returns-critic_value)**2 critic_loss = critic_loss.mean() total_loss = actor_loss + 0.5*critic_loss self.loss = total_loss self.actor_optimizer.zero_grad() self.critic_optimizer.zero_grad() total_loss.backward() self.actor_optimizer.step() self.critic_optimizer.step() self.memory.clear() def save(self,path): actor_checkpoint = os.path.join(path, 'ppo_actor.pt') critic_checkpoint= os.path.join(path, 'ppo_critic.pt') torch.save(self.actor.state_dict(), actor_checkpoint) torch.save(self.critic.state_dict(), critic_checkpoint) def load(self,path): actor_checkpoint = os.path.join(path, 'ppo_actor.pt') critic_checkpoint= os.path.join(path, 'ppo_critic.pt') self.actor.load_state_dict(torch.load(actor_checkpoint)) self.critic.load_state_dict(torch.load(critic_checkpoint)) ``` #### File: codes/QLearning/qlearning.py ```python import numpy as np import math import torch from collections import defaultdict class QLearning(object): def __init__(self,n_states, n_actions,cfg): self.n_actions = n_actions self.lr = cfg.lr # 学习率 self.gamma = cfg.gamma self.epsilon = 0 self.sample_count = 0 self.epsilon_start = cfg.epsilon_start self.epsilon_end = cfg.epsilon_end self.epsilon_decay = cfg.epsilon_decay self.Q_table = defaultdict(lambda: np.zeros(n_actions)) # 用嵌套字典存放状态->动作->状态-动作值(Q值)的映射,即Q表 def choose_action(self, state): self.sample_count += 1 self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \ math.exp(-1. * self.sample_count / self.epsilon_decay) # epsilon是会递减的,这里选择指数递减 # e-greedy 策略 if np.random.uniform(0, 1) > self.epsilon: action = np.argmax(self.Q_table[str(state)]) # 选择Q(s,a)最大对应的动作 else: action = np.random.choice(self.n_actions) # 随机选择动作 return action def predict(self,state): action = np.argmax(self.Q_table[str(state)]) return action def update(self, state, action, reward, next_state, done): Q_predict = self.Q_table[str(state)][action] if done: # 终止状态 Q_target = reward else: Q_target = reward + self.gamma * np.max(self.Q_table[str(next_state)]) self.Q_table[str(state)][action] += self.lr * (Q_target - Q_predict) def save(self,path): import dill torch.save( obj=self.Q_table, f=path+"Qleaning_model.pkl", pickle_module=dill ) print("保存模型成功!") def load(self, path): import dill self.Q_table =torch.load(f=path+'Qleaning_model.pkl',pickle_module=dill) print("加载模型成功!") ``` #### File: codes/RainbowDQN/rainbow_dqn.py ```python import math import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable import random class ReplayBuffer: def __init__(self, capacity): self.capacity = capacity # 经验回放的容量 self.buffer = [] # 缓冲区 self.position = 0 def push(self, state, action, reward, next_state, done): ''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition) ''' if len(self.buffer) < self.capacity: self.buffer.append(None) self.buffer[self.position] = (state, action, reward, next_state, done) self.position = (self.position + 1) % self.capacity def sample(self, batch_size): batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移 state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等 return state, action, reward, next_state, done def __len__(self): ''' 返回当前存储的量 ''' return len(self.buffer) class NoisyLinear(nn.Module): def __init__(self, input_dim, output_dim, device, std_init=0.4): super(NoisyLinear, self).__init__() self.device = device self.input_dim = input_dim self.output_dim = output_dim self.std_init = std_init self.weight_mu = nn.Parameter(torch.FloatTensor(output_dim, input_dim)) self.weight_sigma = nn.Parameter(torch.FloatTensor(output_dim, input_dim)) self.register_buffer('weight_epsilon', torch.FloatTensor(output_dim, input_dim)) self.bias_mu = nn.Parameter(torch.FloatTensor(output_dim)) self.bias_sigma = nn.Parameter(torch.FloatTensor(output_dim)) self.register_buffer('bias_epsilon', torch.FloatTensor(output_dim)) self.reset_parameters() self.reset_noise() def forward(self, x): if self.device: weight_epsilon = self.weight_epsilon.cuda() bias_epsilon = self.bias_epsilon.cuda() else: weight_epsilon = self.weight_epsilon bias_epsilon = self.bias_epsilon if self.training: weight = self.weight_mu + self.weight_sigma.mul(Variable(weight_epsilon)) bias = self.bias_mu + self.bias_sigma.mul(Variable(bias_epsilon)) else: weight = self.weight_mu bias = self.bias_mu return F.linear(x, weight, bias) def reset_parameters(self): mu_range = 1 / math.sqrt(self.weight_mu.size(1)) self.weight_mu.data.uniform_(-mu_range, mu_range) self.weight_sigma.data.fill_(self.std_init / math.sqrt(self.weight_sigma.size(1))) self.bias_mu.data.uniform_(-mu_range, mu_range) self.bias_sigma.data.fill_(self.std_init / math.sqrt(self.bias_sigma.size(0))) def reset_noise(self): epsilon_in = self._scale_noise(self.input_dim) epsilon_out = self._scale_noise(self.output_dim) self.weight_epsilon.copy_(epsilon_out.ger(epsilon_in)) self.bias_epsilon.copy_(self._scale_noise(self.output_dim)) def _scale_noise(self, size): x = torch.randn(size) x = x.sign().mul(x.abs().sqrt()) return x class RainbowModel(nn.Module): def __init__(self, n_states, n_actions, n_atoms, Vmin, Vmax): super(RainbowModel, self).__init__() self.n_states = n_states self.n_actions = n_actions self.n_atoms = n_atoms self.Vmin = Vmin self.Vmax = Vmax self.linear1 = nn.Linear(n_states, 32) self.linear2 = nn.Linear(32, 64) self.noisy_value1 = NoisyLinear(64, 64, device=device) self.noisy_value2 = NoisyLinear(64, self.n_atoms, device=device) self.noisy_advantage1 = NoisyLinear(64, 64, device=device) self.noisy_advantage2 = NoisyLinear(64, self.n_atoms * self.n_actions, device=device) def forward(self, x): batch_size = x.size(0) x = F.relu(self.linear1(x)) x = F.relu(self.linear2(x)) value = F.relu(self.noisy_value1(x)) value = self.noisy_value2(value) advantage = F.relu(self.noisy_advantage1(x)) advantage = self.noisy_advantage2(advantage) value = value.view(batch_size, 1, self.n_atoms) advantage = advantage.view(batch_size, self.n_actions, self.n_atoms) x = value + advantage - advantage.mean(1, keepdim=True) x = F.softmax(x.view(-1, self.n_atoms)).view(-1, self.n_actions, self.n_atoms) return x def reset_noise(self): self.noisy_value1.reset_noise() self.noisy_value2.reset_noise() self.noisy_advantage1.reset_noise() self.noisy_advantage2.reset_noise() def act(self, state): state = Variable(torch.FloatTensor(state).unsqueeze(0), volatile=True) dist = self.forward(state).data.cpu() dist = dist * torch.linspace(self.Vmin, self.Vmax, self.n_atoms) action = dist.sum(2).max(1)[1].numpy()[0] return action class RainbowDQN(nn.Module): def __init__(self, n_states, n_actions, n_atoms, Vmin, Vmax,cfg): super(RainbowDQN, self).__init__() self.n_states = n_states self.n_actions = n_actions self.n_atoms = cfg.n_atoms self.Vmin = cfg.Vmin self.Vmax = cfg.Vmax self.policy_model = RainbowModel(n_states, n_actions, n_atoms, Vmin, Vmax) self.target_model = RainbowModel(n_states, n_actions, n_atoms, Vmin, Vmax) self.batch_size = cfg.batch_size self.memory = ReplayBuffer(cfg.memory_capacity) # 经验回放 self.optimizer = optim.Adam(self.policy_model.parameters(), 0.001) def choose_action(self,state): state = Variable(torch.FloatTensor(state).unsqueeze(0), volatile=True) dist = self.policy_model(state).data.cpu() dist = dist * torch.linspace(self.Vmin, self.Vmax, self.n_atoms) action = dist.sum(2).max(1)[1].numpy()[0] return action def projection_distribution(self,next_state, rewards, dones): delta_z = float(self.Vmax - self.Vmin) / (self.n_atoms - 1) support = torch.linspace(self.Vmin, self.Vmax, self.n_atoms) next_dist = self.target_model(next_state).data.cpu() * support next_action = next_dist.sum(2).max(1)[1] next_action = next_action.unsqueeze(1).unsqueeze(1).expand(next_dist.size(0), 1, next_dist.size(2)) next_dist = next_dist.gather(1, next_action).squeeze(1) rewards = rewards.unsqueeze(1).expand_as(next_dist) dones = dones.unsqueeze(1).expand_as(next_dist) support = support.unsqueeze(0).expand_as(next_dist) Tz = rewards + (1 - dones) * 0.99 * support Tz = Tz.clamp(min=self.Vmin, max=self.Vmax) b = (Tz - self.Vmin) / delta_z l = b.floor().long() u = b.ceil().long() offset = torch.linspace(0, (self.batch_size - 1) * self.n_atoms, self.batch_size).long()\ .unsqueeze(1).expand(self.batch_size, self.n_atoms) proj_dist = torch.zeros(next_dist.size()) proj_dist.view(-1).index_add_(0, (l + offset).view(-1), (next_dist * (u.float() - b)).view(-1)) proj_dist.view(-1).index_add_(0, (u + offset).view(-1), (next_dist * (b - l.float())).view(-1)) return proj_dist def update(self): if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略 return state, action, reward, next_state, done = self.memory.sample(self.batch_size) state = Variable(torch.FloatTensor(np.float32(state))) next_state = Variable(torch.FloatTensor(np.float32(next_state)), volatile=True) action = Variable(torch.LongTensor(action)) reward = torch.FloatTensor(reward) done = torch.FloatTensor(np.float32(done)) proj_dist = self.projection_distribution(next_state, reward, done) dist = self.policy_model(state) action = action.unsqueeze(1).unsqueeze(1).expand(self.batch_size, 1, self.n_atoms) dist = dist.gather(1, action).squeeze(1) dist.data.clamp_(0.01, 0.99) loss = -(Variable(proj_dist) * dist.log()).sum(1) loss = loss.mean() self.optimizer.zero_grad() loss.backward() self.optimizer.step() self.policy_model.reset_noise() self.target_model.reset_noise() ``` #### File: codes/TD3/task1_train.py ```python import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加路径到系统路径 import torch import gym import numpy as np import datetime from TD3.agent import TD3 from common.plot import plot_rewards from common.utils import save_results,make_dir curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 class TD3Config: def __init__(self) -> None: self.algo = 'TD3' # 算法名称 self.env_name = 'Pendulum-v1' # 环境名称 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU self.train_eps = 600 # 训练的回合数 self.start_timestep = 25e3 # Time steps initial random policy is used self.epsilon_start = 50 # Episodes initial random policy is used self.eval_freq = 10 # How often (episodes) we evaluate self.max_timestep = 100000 # Max time steps to run environment self.expl_noise = 0.1 # Std of Gaussian exploration noise self.batch_size = 256 # Batch size for both actor and critic self.gamma = 0.9 # gamma factor self.lr = 0.0005 # 学习率 self.policy_noise = 0.2 # Noise added to target policy during critic update self.noise_clip = 0.3 # Range to clip target policy noise self.policy_freq = 2 # Frequency of delayed policy updates class PlotConfig(TD3Config): def __init__(self) -> None: super().__init__() self.result_path = curr_path+"/outputs/" + self.env_name + \ '/'+curr_time+'/results/' # 保存结果的路径 self.model_path = curr_path+"/outputs/" + self.env_name + \ '/'+curr_time+'/models/' # 保存模型的路径 self.save = True # 是否保存图片 # Runs policy for X episodes and returns average reward # A fixed seed is used for the eval environment def eval(env,agent, seed, eval_episodes=10): eval_env = gym.make(env) eval_env.seed(seed + 100) avg_reward = 0. for _ in range(eval_episodes): state, done = eval_env.reset(), False while not done: # eval_env.render() action = agent.choose_action(np.array(state)) state, reward, done, _ = eval_env.step(action) avg_reward += reward avg_reward /= eval_episodes print("---------------------------------------") print(f"Evaluation over {eval_episodes} episodes: {avg_reward:.3f}") print("---------------------------------------") return avg_reward def train(cfg,env,agent): print('开始训练!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}') rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 for i_ep in range(int(cfg.train_eps)): ep_reward = 0 ep_timesteps = 0 state, done = env.reset(), False while not done: ep_timesteps += 1 # Select action randomly or according to policy if i_ep < cfg.epsilon_start: action = env.action_space.sample() else: action = ( agent.choose_action(np.array(state)) + np.random.normal(0, max_action * cfg.expl_noise, size=n_actions) ).clip(-max_action, max_action) # Perform action next_state, reward, done, _ = env.step(action) done_bool = float(done) if ep_timesteps < env._max_episode_steps else 0 # Store data in replay buffer agent.memory.push(state, action, next_state, reward, done_bool) state = next_state ep_reward += reward # Train agent after collecting sufficient data if i_ep+1 >= cfg.epsilon_start: agent.update() if (i_ep+1)%10 == 0: print('回合:{}/{}, 奖励:{:.2f}'.format(i_ep+1, cfg.train_eps, ep_reward)) rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('完成训练!') return rewards, ma_rewards if __name__ == "__main__": cfg = TD3Config() plot_cfg = PlotConfig() env = gym.make(cfg.env_name) env.seed(1) # 随机种子 torch.manual_seed(1) np.random.seed(1) n_states = env.observation_space.shape[0] n_actions = env.action_space.shape[0] max_action = float(env.action_space.high[0]) agent = TD3(n_states,n_actions,max_action,cfg) rewards,ma_rewards = train(cfg,env,agent) make_dir(plot_cfg.result_path,plot_cfg.model_path) agent.save(path=plot_cfg.model_path) save_results(rewards,ma_rewards,tag='train',path=plot_cfg.result_path) plot_rewards(rewards,ma_rewards,plot_cfg,tag="train") ```
{ "source": "JohnJim0816/rl-tutorials", "score": 2 }
#### File: rl-tutorials/common/utils.py ```python import os import numpy as np from pathlib import Path import matplotlib.pyplot as plt import seaborn as sns from matplotlib.font_manager import FontProperties # 导入字体模块 def chinese_font(): ''' 设置中文字体,注意需要根据自己电脑情况更改字体路径,否则还是默认的字体 ''' try: font = FontProperties( fname='/System/Library/Fonts/STHeiti Light.ttc', size=15) # fname系统字体路径,此处是mac的 except: font = None return font def plot_rewards_cn(rewards, ma_rewards, plot_cfg, tag='train'): ''' 中文画图 ''' sns.set() plt.figure() plt.title(u"{}环境下{}算法的学习曲线".format(plot_cfg.env_name, plot_cfg.algo_name), fontproperties=chinese_font()) plt.xlabel(u'回合数', fontproperties=chinese_font()) plt.plot(rewards) plt.plot(ma_rewards) plt.legend((u'奖励', u'滑动平均奖励',), loc="best", prop=chinese_font()) if plot_cfg.save: plt.savefig(plot_cfg.result_path+f"{tag}_rewards_curve_cn") # plt.show() def plot_rewards(rewards, ma_rewards, plot_cfg, tag='train'): sns.set() plt.figure() # 创建一个图形实例,方便同时多画几个图 plt.title("learning curve on {} of {} for {}".format( plot_cfg.device, plot_cfg.algo_name, plot_cfg.env_name)) plt.xlabel('epsiodes') plt.plot(rewards, label='rewards') plt.plot(ma_rewards, label='ma rewards') plt.legend() if plot_cfg.save: plt.savefig(plot_cfg.result_path+"{}_rewards_curve".format(tag)) plt.show() def plot_losses(losses, algo="DQN", save=True, path='./'): sns.set() plt.figure() plt.title("loss curve of {}".format(algo)) plt.xlabel('epsiodes') plt.plot(losses, label='rewards') plt.legend() if save: plt.savefig(path+"losses_curve") plt.show() def save_results(rewards, ma_rewards, tag='train', path='./results'): ''' 保存奖励 ''' np.save(path+'{}_rewards.npy'.format(tag), rewards) np.save(path+'{}_ma_rewards.npy'.format(tag), ma_rewards) print('结果保存完毕!') def make_dir(*paths): ''' 创建文件夹 ''' for path in paths: Path(path).mkdir(parents=True, exist_ok=True) def del_empty_dir(*paths): ''' 删除目录下所有空文件夹 ''' for path in paths: dirs = os.listdir(path) for dir in dirs: if not os.listdir(os.path.join(path, dir)): os.removedirs(os.path.join(path, dir)) ``` #### File: rl-tutorials/DQN/dqn.py ```python '''off-policy ''' import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import random import math import numpy as np class MLP(nn.Module): def __init__(self, state_dim,action_dim,hidden_dim=128): """ 初始化q网络,为全连接网络 state_dim: 输入的特征数即环境的状态维度 action_dim: 输出的动作维度 """ super(MLP, self).__init__() self.fc1 = nn.Linear(state_dim, hidden_dim) # 输入层 self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层 self.fc3 = nn.Linear(hidden_dim, action_dim) # 输出层 def forward(self, x): # 各层对应的激活函数 x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) return self.fc3(x) class ReplayBuffer: def __init__(self, capacity): self.capacity = capacity # 经验回放的容量 self.buffer = [] # 缓冲区 self.position = 0 def push(self, state, action, reward, next_state, done): ''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition) ''' if len(self.buffer) < self.capacity: self.buffer.append(None) self.buffer[self.position] = (state, action, reward, next_state, done) self.position = (self.position + 1) % self.capacity def sample(self, batch_size): batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移 state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等 return state, action, reward, next_state, done def __len__(self): ''' 返回当前存储的量 ''' return len(self.buffer) class DQN: def __init__(self, state_dim, action_dim, cfg): self.action_dim = action_dim # 总的动作个数 self.device = cfg.device # 设备,cpu或gpu等 self.gamma = cfg.gamma # 奖励的折扣因子 # e-greedy策略相关参数 self.frame_idx = 0 # 用于epsilon的衰减计数 self.epsilon = lambda frame_idx: cfg.epsilon_end + \ (cfg.epsilon_start - cfg.epsilon_end) * \ math.exp(-1. * frame_idx / cfg.epsilon_decay) self.batch_size = cfg.batch_size self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device) self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device) for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net target_param.data.copy_(param.data) self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器 self.memory = ReplayBuffer(cfg.memory_capacity) # 经验回放 def choose_action(self, state): ''' 选择动作 ''' self.frame_idx += 1 if random.random() > self.epsilon(self.frame_idx): with torch.no_grad(): state = torch.tensor([state], device=self.device, dtype=torch.float32) q_values = self.policy_net(state) action = q_values.max(1)[1].item() # 选择Q值最大的动作 else: action = random.randrange(self.action_dim) return action def update(self): if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略 return # 从经验回放中(replay memory)中随机采样一个批量的转移(transition) state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample( self.batch_size) # 转为张量 state_batch = torch.tensor(state_batch, device=self.device, dtype=torch.float) action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1) reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float) next_state_batch = torch.tensor(next_state_batch, device=self.device, dtype=torch.float) done_batch = torch.tensor(np.float32(done_batch), device=self.device) q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch) # 计算当前状态(s_t,a)对应的Q(s_t, a) next_q_values = self.target_net(next_state_batch).max(1)[0].detach() # 计算下一时刻的状态(s_t_,a)对应的Q值 # 计算期望的Q值,对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward expected_q_values = reward_batch + self.gamma * next_q_values * (1-done_batch) loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算均方根损失 # 优化更新模型 self.optimizer.zero_grad() loss.backward() for param in self.policy_net.parameters(): # clip防止梯度爆炸 param.grad.data.clamp_(-1, 1) self.optimizer.step() def save(self, path): torch.save(self.target_net.state_dict(), path+'dqn_checkpoint.pth') def load(self, path): self.target_net.load_state_dict(torch.load(path+'dqn_checkpoint.pth')) for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()): param.data.copy_(target_param.data) ``` #### File: rl-tutorials/PPO/task0.py ```python import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加路径到系统路径 import gym import torch import numpy as np import datetime from common.utils import plot_rewards from common.utils import save_results,make_dir from PPO.ppo2 import PPO curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 class Config: def __init__(self) -> None: ################################## 环境超参数 ################################### self.algo_name = "DQN" # 算法名称 self.env_name = 'CartPole-v0' # 环境名称 self.continuous = False # 环境是否为连续动作 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU self.seed = 10 # 随机种子,置0则不设置随机种子 self.train_eps = 200 # 训练的回合数 self.test_eps = 20 # 测试的回合数 ################################################################################ ################################## 算法超参数 #################################### self.batch_size = 5 # mini-batch SGD中的批量大小 self.gamma = 0.95 # 强化学习中的折扣因子 self.n_epochs = 4 self.actor_lr = 0.0003 # actor的学习率 self.critic_lr = 0.0003 # critic的学习率 self.gae_lambda = 0.95 self.policy_clip = 0.2 self.hidden_dim = 256 self.update_fre = 20 # 策略更新频率 ################################################################################ ################################# 保存结果相关参数 ################################ self.result_path = curr_path+"/outputs/" + self.env_name + \ '/'+curr_time+'/results/' # 保存结果的路径 self.model_path = curr_path+"/outputs/" + self.env_name + \ '/'+curr_time+'/models/' # 保存模型的路径 self.save = True # 是否保存图片 ################################################################################ def env_agent_config(cfg): ''' 创建环境和智能体 ''' env = gym.make(cfg.env_name) # 创建环境 state_dim = env.observation_space.shape[0] # 状态维度 if cfg.continuous: action_dim = env.action_space.shape[0] # 动作维度 else: action_dim = env.action_space.n # 动作维度 agent = PPO(state_dim, action_dim, cfg) # 创建智能体 if cfg.seed !=0: # 设置随机种子 torch.manual_seed(cfg.seed) env.seed(cfg.seed) np.random.seed(cfg.seed) return env, agent def train(cfg,env,agent): print('开始训练!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}') rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 steps = 0 for i_ep in range(cfg.train_eps): state = env.reset() done = False ep_reward = 0 while not done: action, prob, val = agent.choose_action(state) state_, reward, done, _ = env.step(action) steps += 1 ep_reward += reward agent.memory.push(state, action, prob, val, reward, done) if steps % cfg.update_fre == 0: agent.update() state = state_ rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) if (i_ep+1)%10 == 0: print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f}") print('完成训练!') return rewards,ma_rewards def test(cfg,env,agent): print('开始测试!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}') rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 for i_ep in range(cfg.test_eps): state = env.reset() done = False ep_reward = 0 while not done: action, prob, val = agent.choose_action(state) state_, reward, done, _ = env.step(action) ep_reward += reward state = state_ rewards.append(ep_reward) if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.test_eps, ep_reward)) print('完成训练!') return rewards,ma_rewards if __name__ == "__main__": cfg = Config() # 训练 env,agent = env_agent_config(cfg) rewards, ma_rewards = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹 agent.save(path=cfg.model_path) save_results(rewards, ma_rewards, tag='train', path=cfg.result_path) plot_rewards(rewards, ma_rewards, cfg, tag="train") # 测试 env,agent = env_agent_config(cfg) agent.load(path=cfg.model_path) rewards,ma_rewards = test(cfg,env,agent) save_results(rewards,ma_rewards,tag='test',path=cfg.result_path) plot_rewards(rewards,ma_rewards,cfg,tag="test") ``` #### File: rl-tutorials/Sarsa/agent.py ```python import numpy as np from collections import defaultdict import torch class Sarsa(object): def __init__(self, action_dim,sarsa_cfg,): self.action_dim = action_dim # number of actions self.lr = sarsa_cfg.lr # learning rate self.gamma = sarsa_cfg.gamma self.epsilon = sarsa_cfg.epsilon self.Q = defaultdict(lambda: np.zeros(action_dim)) # self.Q = np.zeros((state_dim, action_dim)) # Q表 def choose_action(self, state): best_action = np.argmax(self.Q[state]) # action = best_action action_probs = np.ones(self.action_dim, dtype=float) * self.epsilon / self.action_dim action_probs[best_action] += (1.0 - self.epsilon) action = np.random.choice(np.arange(len(action_probs)), p=action_probs) return action def update(self, state, action, reward, next_state, next_action,done): Q_predict = self.Q[state][action] if done: Q_target = reward # terminal state else: Q_target = reward + self.gamma * self.Q[next_state][next_action] self.Q[state][action] += self.lr * (Q_target - Q_predict) def save(self,path): '''把 Q表格 的数据保存到文件中 ''' import dill torch.save( obj=self.Q, f=path+"sarsa_model.pkl", pickle_module=dill ) def load(self, path): '''从文件中读取数据到 Q表格 ''' import dill self.Q =torch.load(f=path+'sarsa_model.pkl',pickle_module=dill) ```
{ "source": "johnjmolina/MLKyoto", "score": 3 }
#### File: utils/pdesolver/etdrk.py ```python import numpy as np from . import phi class _etdrk: def __init__(self, *, G, dt): self.G = G self.dt = dt class etdrk1(_etdrk): def __init__(self, *, L, G, dt, dps=100): super().__init__(G=G, dt=dt) hL = dt*L.reshape(-1) self.phi = np.array([phi.phin(n, hL, dps=dps).reshape(L.shape) for n in range(2)]) def step(self, u): u[...] = self.phi[0,...] * u[...] + self.dt * self.phi[1,...] * self.G(u) return u class etdrk2(_etdrk): def __init__(self, *, L, G, dt, dtype, dps=100): super().__init__(G=G, dt=dt) hL = dt*L.reshape(-1) hLh = hL / 2 phi1 = phi.phin(1, hL, dps=dps).reshape(L.shape) phi2 = phi.phin(2, hL, dps=dps).reshape(L.shape) self.phi = np.array([phi.phin(n, hL, dps=dps).reshape(L.shape) for n in range(1)]) self.phih = np.array([phi.phin(n, hLh, dps=dps).reshape(L.shape) for n in range(2)]) self.aux = np.zeros((3,) + L.shape, dtype=dtype) self.hc1 = self.dt*(phi1[...]-2.0*phi2[...]) self.hc2 = 2.0*self.dt*phi2[...] def step(self, u): Ui, G1, G2 = self.aux[0,...], self.aux[1,...], self.aux[2,...] # G1 G1[...] = self.G(u) # U2, G2 Ui[...] = self.phih[0,...]*u[...] + self.dt*(0.5*self.phih[1,...]*G1[...]) G2[...] = self.G(Ui) # u_{n+1} u[...] = self.phi[0,...]*u[...] + self.hc1[...]*G1[...] + self.hc2[...]*G2[...] return u class etdrk3(_etdrk): """ Heun's method : worst case order 2.75""" def __init__(self, *, L, G, dt, dtype, dps=100): super().__init__(G=G, dt=dt) hL = dt*L.reshape(-1) hL13 = hL/3.0 hL23 = 2.0*hL13 phi1 = phi.phin(1, hL, dps=dps).reshape(L.shape) phi1_13 = phi.phin(1, hL13, dps=dps).reshape(L.shape) phi1_23 = phi.phin(1, hL23, dps=dps).reshape(L.shape) phi2 = phi.phin(2, hL, dps=dps).reshape(L.shape) phi2_23 = phi.phin(2, hL23, dps=dps).reshape(L.shape) self.phi = np.array([phi.phin(n, hL, dps=dps).reshape(L.shape) for n in range(1)]) self.phi13 = np.array([phi.phin(n, hL13,dps=dps).reshape(L.shape) for n in range(1)]) self.phi23 = np.array([phi.phin(n, hL23,dps=dps).reshape(L.shape) for n in range(1)]) self.hc1 = self.dt*(phi1 - 1.5*phi2) self.hc3 = self.dt*1.5*phi2 self.hc1_2 = self.dt/3.0*phi1_13 self.hc1_3 = self.dt/3.0*(2.0*phi1_23 - 4.0*phi2_23) self.hc2_3 = self.dt/3.0*(4.0*phi2_23) self.aux = np.zeros((3,) + L.shape, dtype=dtype) def step(self, u): Ui = self.aux[0,...] G1 = self.aux[1,...] G2 = self.aux[2,...] G3 = self.aux[2,...] # yes G3 and G2 are aliased #G1 G1[...] = self.G(u) #U2(G1), G2 Ui[...] = self.phi13[0,...]*u[...] + self.hc1_2[...]*G1[...] G2[...] = self.G(Ui) #U3(G1, G2), G3 Ui[...] = self.phi23[0,...]*u[...] + self.hc1_3[...]*G1[...] + self.hc2_3[...]*G2[...] G3[...] = self.G(Ui) #u_{n+1}(G1, G3) u[...] = self.phi[0,...]*u[...] + self.hc1[...]*G1[...] + self.hc3[...]*G3[...] return u class etdrk45(_etdrk): """ Hochbruck and Ostermann's fourth order ETDRK method""" def __init__(self, *, L, G, dt, dtype, dps=100): super().__init__(G=G, dt=dt) # temporary data hL = dt*L.reshape(-1) hLh = hL/2 phi3 = phi.phin(3, hL, dps=dps).reshape(L.shape) phih3 = phi.phin(3, hLh,dps=dps).reshape(L.shape) # persistent data self.phi = np.array([phi.phin(n, hL, dps=dps).reshape(L.shape) for n in range(3)]) self.phih = np.array([phi.phin(n, hLh, dps=dps).reshape(L.shape) for n in range(3)]) self.a52 = phi.phi_a52(phi2_dt = self.phi[2], phi3_dt = phi3, phi2_hdt = self.phih[2], phi3_hdt = phih3) self.aux = np.zeros((6,)+L.shape, dtype=dtype) self.hc1 = self.dt*(self.phi[1,:] - 3*self.phi[2,:] + 4*phi3[:]) self.hc4 = self.dt*(4*phi3[:] - self.phi[2,:]) self.hc5 = self.dt*(4.0*self.phi[2,:] - 8.0*phi3[:]) def step(self, u): Ui = self.aux[0,...] G1 = self.aux[1,...] G2 = self.aux[2,...] G3 = self.aux[3,...] G4 = self.aux[4,...] G5 = self.aux[5,...] uh = self.aux[5,...] # yes, uh and G5 are aliased uh[...] = self.phih[0,...]*u[...] #G1 G1[...] = self.G(u) #U2(G1),G2 Ui[...] = uh[...] + self.dt*(0.5*self.phih[1,...]*G1[...]) G2[...] = self.G(Ui) #U3(G1, G2),G3 Ui[...] = uh[...] + self.dt*((0.5*self.phih[1,...]-self.phih[2,...])*G1[...] + self.phih[2,...]*G2[...]) G3[...] = self.G(Ui) #U4(G1, G2, G3),G4 Ui[...] = self.phi[0,...]*u[...] + self.dt*((self.phi[1,...] - 2*self.phi[2,...])*G1[...] + self.phi[2,...]*(G2[...] + G3[...])) G4[...] = self.G(Ui) #U5(G1, G2, G3, G4),G5 Ui[...] = uh[...] + self.dt*((0.5*self.phih[1,...] - 0.25*self.phih[2,...] - self.a52[...])*G1[...] + self.a52[...]*(G2[...] + G3[...]) + (0.25*self.phih[2,...] - self.a52[...])*G4[...]) G5[...] = self.G(Ui) # u_{n+1}(G1, G4, G5) u[...] = self.phi[0,...]*u[...] + self.hc1[...]*G1[...] + self.hc4[...]*G4[...] + self.hc5[...]*G5[...] return u ```
{ "source": "johnjohndoe/buildnotify", "score": 2 }
#### File: buildnotify/buildnotifylib/app_notification.py ```python from typing import Optional from PyQt5.QtWidgets import QWidget from buildnotifylib.core.projects import OverallIntegrationStatus from buildnotifylib.config import Config from buildnotifylib.notifications import Notification from buildnotifylib.project_status_notification import ProjectStatusNotification class AppNotification(object): def __init__(self, config: Config, widget: QWidget): self.config = config self.notification = Notification(widget) self.integration_status: Optional[OverallIntegrationStatus] = None def update_projects(self, new_integration_status: OverallIntegrationStatus): if self.integration_status is not None: ProjectStatusNotification(self.config, self.integration_status, new_integration_status, self.notification).show_notifications() self.integration_status = new_integration_status ``` #### File: buildnotifylib/core/background_event.py ```python from typing import Callable, Any from PyQt5.QtCore import QThread, pyqtSignal, QObject class BackgroundEvent(QThread): completed = pyqtSignal('PyQt_PyObject') def __init__(self, task: Callable[[], Any], parent: QObject = None): QThread.__init__(self, parent) self.task = task def run(self): data = self.task() self.completed.emit(data) ``` #### File: buildnotifylib/core/filtered_continuous_integration_server.py ```python from typing import List from buildnotifylib.core.project import Project from buildnotifylib.core.continous_integration_server import ContinuousIntegrationServer class FilteredContinuousIntegrationServer(object): def __init__(self, server: ContinuousIntegrationServer, filter_projects: List[str]): self.server = server self.filter_projects = filter_projects self.unavailable = server.unavailable self.url = server.url def get_projects(self) -> List[Project]: return [project for project in self.server.get_projects() if project.name not in self.filter_projects] ``` #### File: buildnotify/buildnotifylib/preferences.py ```python from typing import Optional, List, Tuple from PyQt5.QtCore import QStringListModel from PyQt5.QtWidgets import QDialog, QWidget from buildnotifylib.config import Config, Preferences from buildnotifylib.generated.preferences_ui import Ui_Preferences from buildnotifylib.server_configuration_dialog import ServerConfigurationDialog class PreferencesDialog(QDialog): def __init__(self, conf: Config, parent: QWidget = None): QDialog.__init__(self, parent) self.conf = conf self.ui = Ui_Preferences() self.ui.setupUi(self) self.checkboxes = dict(successfulBuild=self.ui.successfulBuildsCheckbox, brokenBuild=self.ui.brokenBuildsCheckbox, fixedBuild=self.ui.fixedBuildsCheckbox, stillFailingBuild=self.ui.stillFailingBuildsCheckbox, connectivityIssues=self.ui.connectivityIssuesCheckbox, lastBuildTimeForProject=self.ui.showLastBuildTimeCheckbox) self.set_values_from_config() # Connect up the buttons. self.ui.addButton.clicked.connect(self.add_server) self.ui.removeButton.clicked.connect(self.remove_element) self.ui.buttonBox.accepted.connect(self.accept) self.ui.configureProjectButton.clicked.connect(self.configure_projects) def set_values_from_config(self): self.ui.cctrayPathList.setModel(QStringListModel(self.conf.get_urls())) self.ui.cctrayPathList.clicked.connect(lambda _: self.item_selection_changed(True)) self.ui.cctrayPathList.doubleClicked.connect(self.configure_projects) self.ui.removeButton.clicked.connect(lambda _: self.item_selection_changed(False)) for key, checkbox in self.checkboxes.items(): checkbox.setChecked(self.conf.get_value(str(key))) self.ui.pollingIntervalSpinBox.setValue(self.conf.get_interval_in_seconds()) self.ui.scriptCheckbox.setChecked(self.conf.get_custom_script_enabled()) self.ui.scriptLineEdit.setText(self.conf.get_custom_script()) self.ui.sortBuildByLastBuildTime.setChecked(self.conf.get_sort_by_last_build_time()) self.ui.sortBuildByName.setChecked(self.conf.get_sort_by_name()) self.ui.showLastBuildLabelCheckbox.setChecked(self.conf.get_show_last_build_label()) def item_selection_changed(self, status): self.ui.configureProjectButton.setEnabled(status) def add_server(self): server_config = ServerConfigurationDialog(None, self.conf, self).open() if server_config is not None: self.conf.save_server_config(server_config) urls = self.ui.cctrayPathList.model().stringList() urls.append(server_config.url) self.ui.cctrayPathList.setModel(QStringListModel(urls)) def remove_element(self): index = self.ui.cctrayPathList.selectionModel().currentIndex() urls = self.ui.cctrayPathList.model().stringList() urls.pop(index.row()) self.ui.cctrayPathList.setModel(QStringListModel(urls)) def configure_projects(self): url = self.ui.cctrayPathList.selectionModel().currentIndex().data() if not url: return server_config = ServerConfigurationDialog(url, self.conf, self).open() if server_config is not None: self.conf.save_server_config(server_config) def get_urls(self) -> List[str]: return [str(url) for url in self.ui.cctrayPathList.model().stringList()] def get_interval_in_seconds(self) -> int: return self.ui.pollingIntervalSpinBox.value() def get_selections(self) -> List[Tuple[str, bool]]: return [(key, checkbox.isChecked()) for (key, checkbox) in list(self.checkboxes.items())] def open(self) -> Optional[Preferences]: # type: ignore if self.exec_() == QDialog.Accepted: return Preferences( urls=self.get_urls(), interval=self.get_interval_in_seconds(), custom_script_text=self.ui.scriptLineEdit.text(), custom_script_checked=self.ui.scriptCheckbox.isChecked(), sort_by_build_time=self.ui.sortBuildByLastBuildTime.isChecked(), sort_by_name=self.ui.sortBuildByName.isChecked(), selections=self.get_selections(), show_last_build_label=self.ui.showLastBuildLabelCheckbox.isChecked() ) return None ``` #### File: buildnotify/buildnotifylib/version.py ```python from os import getenv VERSION = "2.1.0" def version(key='BUILD_LABEL') -> str: build = getenv(key) label = '' if build is None else '.dev' + build return VERSION + label if __name__ == '__main__': print((version())) ```
{ "source": "johnjohndoe/c3nav", "score": 2 }
#### File: c3nav/api/models.py ```python import string from django.conf import settings from django.db import models from django.utils.crypto import constant_time_compare, get_random_string from django.utils.translation import ugettext_lazy as _ class Token(models.Model): """ Token for log in via API """ user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) secret = models.CharField(max_length=64, verbose_name=_('secret')) session_auth_hash = models.CharField(_('session auth hash'), max_length=128) class Meta: verbose_name = _('login tokens') verbose_name_plural = _('login tokens') default_related_name = 'login_tokens' def save(self, *args, **kwargs): if not self.secret: self.secret = get_random_string(64, string.ascii_letters + string.digits) if not self.session_auth_hash: # noinspection PyUnresolvedReferences self.session_auth_hash = self.user.get_session_auth_hash() super().save(*args, **kwargs) def get_token(self): return '%d:%s' % (self.pk, self.secret) def verify(self): # noinspection PyUnresolvedReferences return constant_time_compare( self.session_auth_hash, self.user.get_session_auth_hash() ) @classmethod def get_by_token(cls, token: str): try: pk, secret = token.split(':', 1) except ValueError: raise cls.DoesNotExist if not pk.isdigit() or not secret: raise cls.DoesNotExist obj = cls.objects.select_related('user').get(pk=pk, secret=secret) if not obj.verify(): obj.delete() raise cls.DoesNotExist return obj ``` #### File: c3nav/control/admin.py ```python from django.contrib import admin from django.contrib.auth.admin import UserAdmin as BaseUserAdmin from django.contrib.auth.models import User from django.urls import reverse from django.utils.translation import ugettext_lazy as _ from c3nav.control.models import UserPermissions class UserPermissionsInline(admin.StackedInline): model = UserPermissions can_delete = False class UserAdmin(BaseUserAdmin): fieldsets = ( (None, {'fields': ('username', 'password', 'email')}), (_('Permissions'), {'fields': ('is_active', 'is_staff', 'is_superuser')}), (_('Important dates'), {'fields': ('last_login', 'date_joined')}), ) readonly_fields = ('last_login', 'date_joined') inlines = (UserPermissionsInline, ) def get_view_on_site_url(self, obj=None): return None if obj is None else reverse('control.users.detail', args=[obj.pk]) admin.site.unregister(User) admin.site.register(User, UserAdmin) ``` #### File: c3nav/editor/signals.py ```python from c3nav.editor.models import ChangeSet def set_changeset_author_on_login(sender, user, request, **kwargs): try: changeset = request.changeset except AttributeError: changeset = ChangeSet.get_for_request(request, as_logged_out=True) if changeset.pk is not None: changeset.author = user changeset.save() ``` #### File: c3nav/editor/utils.py ```python class DefaultEditUtils: def __init__(self, request): self.request = request @classmethod def from_obj(cls, obj, request): return cls(request) @property def can_access_child_base_mapdata(self): return self.request.user_permissions.can_access_base_mapdata @property def can_create(self): return self.can_access_child_base_mapdata @property def _geometry_url(self): return None @property def geometry_url(self): return self._geometry_url if self.can_access_child_base_mapdata else None class LevelChildEditUtils(DefaultEditUtils): def __init__(self, level, request): super().__init__(request) self.level = level @classmethod def from_obj(cls, obj, request): return cls(obj.level, request) @property def _geometry_url(self): return '/api/editor/geometries/?level=' + str(self.level.primary_level_pk) class SpaceChildEditUtils(DefaultEditUtils): def __init__(self, space, request): super().__init__(request) self.space = space @classmethod def from_obj(cls, obj, request): return cls(obj.space, request) @property def can_access_child_base_mapdata(self): return (self.request.user_permissions.can_access_base_mapdata or self.space.base_mapdata_accessible or self.space.pk in self.request.user_space_accesses) @property def _geometry_url(self): return '/api/editor/geometries/?space='+str(self.space.pk) ``` #### File: editor/views/edit.py ```python import mimetypes import os import typing from contextlib import suppress from django.conf import settings from django.contrib import messages from django.core.cache import cache from django.core.exceptions import FieldDoesNotExist, ObjectDoesNotExist, PermissionDenied from django.db import IntegrityError, models from django.db.models import Q from django.http import Http404, HttpResponse from django.shortcuts import get_object_or_404, redirect, render from django.urls import reverse from django.utils.translation import ugettext_lazy as _ from django.views.decorators.http import etag from c3nav.editor.forms import GraphEdgeSettingsForm, GraphEditorActionForm from c3nav.editor.utils import DefaultEditUtils, LevelChildEditUtils, SpaceChildEditUtils from c3nav.editor.views.base import (APIHybridError, APIHybridFormTemplateResponse, APIHybridLoginRequiredResponse, APIHybridMessageRedirectResponse, APIHybridTemplateContextResponse, etag_func, sidebar_view) from c3nav.mapdata.models.access import AccessPermission from c3nav.mapdata.utils.user import can_access_editor def child_model(request, model: typing.Union[str, models.Model], kwargs=None, parent=None): model = request.changeset.wrap_model(model) related_name = model._meta.default_related_name if parent is not None: qs = getattr(parent, related_name) if hasattr(model, 'q_for_request'): qs = qs.filter(model.q_for_request(request)) count = qs.count() else: count = None return { 'title': model._meta.verbose_name_plural, 'url': reverse('editor.'+related_name+'.list', kwargs=kwargs), 'count': count, } @sidebar_view(api_hybrid=True) @etag(etag_func) def main_index(request): Level = request.changeset.wrap_model('Level') return APIHybridTemplateContextResponse('editor/index.html', { 'levels': Level.objects.filter(Level.q_for_request(request), on_top_of__isnull=True), 'can_create_level': (request.user_permissions.can_access_base_mapdata and request.changeset.can_edit(request)), 'child_models': [ child_model(request, 'LocationGroupCategory'), child_model(request, 'LocationGroup'), child_model(request, 'DynamicLocation'), child_model(request, 'WayType'), child_model(request, 'AccessRestriction'), child_model(request, 'AccessRestrictionGroup'), child_model(request, 'LabelSettings'), child_model(request, 'Source'), ], }, fields=('can_create_level', 'child_models')) @sidebar_view(api_hybrid=True) @etag(etag_func) def level_detail(request, pk): Level = request.changeset.wrap_model('Level') qs = Level.objects.filter(Level.q_for_request(request)) level = get_object_or_404(qs.select_related('on_top_of').prefetch_related('levels_on_top'), pk=pk) if request.user_permissions.can_access_base_mapdata: submodels = ('Building', 'Space', 'Door') else: submodels = ('Space', ) return APIHybridTemplateContextResponse('editor/level.html', { 'levels': Level.objects.filter(Level.q_for_request(request), on_top_of__isnull=True), 'level': level, 'level_url': 'editor.levels.detail', 'level_as_pk': True, 'can_edit_graph': request.user_permissions.can_access_base_mapdata, 'can_create_level': (request.user_permissions.can_access_base_mapdata and request.changeset.can_edit(request)), 'child_models': [child_model(request, model_name, kwargs={'level': pk}, parent=level) for model_name in submodels], 'levels_on_top': level.levels_on_top.filter(Level.q_for_request(request)).all(), 'geometry_url': ('/api/editor/geometries/?level='+str(level.primary_level_pk) if request.user_permissions.can_access_base_mapdata else None), }, fields=('level', 'can_edit_graph', 'can_create_level', 'child_models', 'levels_on_top')) @sidebar_view(api_hybrid=True) @etag(etag_func) def space_detail(request, level, pk): Level = request.changeset.wrap_model('Level') Space = request.changeset.wrap_model('Space') qs = Space.objects.filter(Space.q_for_request(request)) space = get_object_or_404(qs.select_related('level'), level__pk=level, pk=pk) edit_utils = SpaceChildEditUtils(space, request) if edit_utils.can_access_child_base_mapdata: submodels = ('POI', 'Area', 'Obstacle', 'LineObstacle', 'Stair', 'Ramp', 'Column', 'Hole', 'AltitudeMarker', 'LeaveDescription', 'CrossDescription', 'WifiMeasurement') else: submodels = ('POI', 'Area', 'AltitudeMarker', 'LeaveDescription', 'CrossDescription') return APIHybridTemplateContextResponse('editor/space.html', { 'levels': Level.objects.filter(Level.q_for_request(request), on_top_of__isnull=True), 'level': space.level, 'level_url': 'editor.spaces.list', 'space': space, 'can_edit_graph': request.user_permissions.can_access_base_mapdata, 'child_models': [child_model(request, model_name, kwargs={'space': pk}, parent=space) for model_name in submodels], 'geometry_url': edit_utils.geometry_url, }, fields=('level', 'space', 'can_edit_graph', 'child_models')) def get_changeset_exceeded(request): return request.user_permissions.max_changeset_changes <= request.changeset.changed_objects_count @sidebar_view(api_hybrid=True) @etag(etag_func) def edit(request, pk=None, model=None, level=None, space=None, on_top_of=None, explicit_edit=False): changeset_exceeded = get_changeset_exceeded(request) model_changes = {} if changeset_exceeded: model_changes = request.changeset.get_changed_objects_by_model(model) model = request.changeset.wrap_model(model) related_name = model._meta.default_related_name Level = request.changeset.wrap_model('Level') Space = request.changeset.wrap_model('Space') can_edit_changeset = request.changeset.can_edit(request) obj = None edit_utils = DefaultEditUtils(request) if pk is not None: # Edit existing map item kwargs = {'pk': pk} qs = model.objects.all() if hasattr(model, 'q_for_request'): qs = qs.filter(model.q_for_request(request)) utils_cls = DefaultEditUtils if level is not None: # parent object is a level kwargs.update({'level__pk': level}) qs = qs.select_related('level') utils_cls = LevelChildEditUtils elif space is not None: # parent object is a space kwargs.update({'space__pk': space}) qs = qs.select_related('space') utils_cls = SpaceChildEditUtils obj = get_object_or_404(qs, **kwargs) edit_utils = utils_cls.from_obj(obj, request) elif level is not None: level = get_object_or_404(Level.objects.filter(Level.q_for_request(request)), pk=level) edit_utils = LevelChildEditUtils(level, request) elif space is not None: space = get_object_or_404(Space.objects.filter(Space.q_for_request(request)), pk=space) edit_utils = SpaceChildEditUtils(space, request) elif on_top_of is not None: on_top_of = get_object_or_404(Level.objects.filter(Level.q_for_request(request), on_top_of__isnull=True), pk=on_top_of) new = obj is None if new and not edit_utils.can_create: raise PermissionDenied geometry_url = edit_utils.geometry_url if model.__name__ == 'Space' and not new: geometry_url = SpaceChildEditUtils(obj, request).geometry_url # noinspection PyProtectedMember ctx = { 'path': request.path, 'pk': pk, 'model_name': model.__name__.lower(), 'model_title': model._meta.verbose_name, 'can_edit': can_edit_changeset, 'new': new, 'title': obj.title if obj else None, 'geometry_url': geometry_url, } with suppress(FieldDoesNotExist): ctx.update({ 'geomtype': model._meta.get_field('geometry').geomtype, }) space_id = None if model == Level: ctx.update({ 'level': obj, 'back_url': reverse('editor.index') if new else reverse('editor.levels.detail', kwargs={'pk': pk}), 'nozoom': True, }) if not new: ctx.update({ 'on_top_of': obj.on_top_of, }) elif on_top_of: ctx.update({ 'on_top_of': on_top_of, 'back_url': reverse('editor.levels.detail', kwargs={'pk': on_top_of.pk}), }) elif model == Space and not new: level = obj.level ctx.update({ 'level': obj.level, 'back_url': reverse('editor.spaces.detail', kwargs={'level': obj.level.pk, 'pk': pk}), 'nozoom': True, }) elif model == Space and new: ctx.update({ 'level': level, 'back_url': reverse('editor.spaces.list', kwargs={'level': level.pk}), 'nozoom': True, }) elif hasattr(model, 'level') and 'Dynamic' not in model.__name__: if not new: level = obj.level ctx.update({ 'level': level, 'back_url': reverse('editor.'+related_name+'.list', kwargs={'level': level.pk}), }) elif hasattr(model, 'space'): if not new: space = obj.space space_id = space.pk ctx.update({ 'level': space.level, 'back_url': reverse('editor.'+related_name+'.list', kwargs={'space': space.pk}), }) else: kwargs = {} if level is not None: kwargs.update({'level': level}) elif space is not None: kwargs.update({'space': space}) kwargs.update(get_visible_spaces_kwargs(model, request)) ctx.update({ 'back_url': reverse('.'.join(request.resolver_match.url_name.split('.')[:-1]+['list']), kwargs=kwargs), }) nosave = False if changeset_exceeded: if new: return APIHybridMessageRedirectResponse( level='error', message=_('You can not create new objects because your changeset is full.'), redirect_to=ctx['back_url'], status_code=409, ) elif obj.pk not in model_changes: messages.warning(request, _('You can not edit this object because your changeset is full.')) nosave = True ctx.update({ 'nosave': nosave }) if new: ctx.update({ 'nozoom': True }) if new and model.__name__ == 'WifiMeasurement' and not request.user.is_authenticated: return APIHybridLoginRequiredResponse(next=request.path_info, login_url='editor.login', level='info', message=_('You need to log in to create Wifi Measurements.')) error = None delete = getattr(request, 'is_delete', None) if request.method == 'POST' or (not new and delete): if nosave: return APIHybridMessageRedirectResponse( level='error', message=_('You can not edit this object because your changeset is full.'), redirect_to=request.path, status_code=409, ) if not can_edit_changeset: return APIHybridMessageRedirectResponse( level='error', message=_('You can not edit changes on this changeset.'), redirect_to=request.path, status_code=403, ) if not new and ((request.POST.get('delete') == '1' and delete is not False) or delete): # Delete this mapitem! try: if not request.changeset.get_changed_object(obj).can_delete(): raise PermissionError except (ObjectDoesNotExist, PermissionError): return APIHybridMessageRedirectResponse( level='error', message=_('You can not delete this object because other objects still depend on it.'), redirect_to=request.path, status_code=409, ) if request.POST.get('delete_confirm') == '1' or delete: with request.changeset.lock_to_edit(request) as changeset: if changeset.can_edit(request): obj.delete() else: return APIHybridMessageRedirectResponse( level='error', message=_('You can not edit changes on this changeset.'), redirect_to=request.path, status_code=403, ) if model == Level: if obj.on_top_of_id is not None: redirect_to = reverse('editor.levels.detail', kwargs={'pk': obj.on_top_of_id}) else: redirect_to = reverse('editor.index') elif model == Space: redirect_to = reverse('editor.spaces.list', kwargs={'level': obj.level.pk}) else: redirect_to = ctx['back_url'] return APIHybridMessageRedirectResponse( level='success', message=_('Object was successfully deleted.'), redirect_to=redirect_to ) ctx['obj_title'] = obj.title return APIHybridTemplateContextResponse('editor/delete.html', ctx, fields=()) json_body = getattr(request, 'json_body', None) data = json_body if json_body is not None else request.POST form = model.EditorForm(instance=model() if new else obj, data=data, is_json=json_body is not None, request=request, space_id=space_id, geometry_editable=edit_utils.can_access_child_base_mapdata) if form.is_valid(): # Update/create objects obj = form.save(commit=False) if level is not None: obj.level = level if space is not None: obj.space = space if on_top_of is not None: obj.on_top_of = on_top_of with request.changeset.lock_to_edit(request) as changeset: if changeset.can_edit(request): try: obj.save() except IntegrityError: error = APIHybridError(status_code=400, message=_('Duplicate entry.')) else: if form.redirect_slugs is not None: for slug in form.add_redirect_slugs: obj.redirects.create(slug=slug) for slug in form.remove_redirect_slugs: obj.redirects.filter(slug=slug).delete() form.save_m2m() return APIHybridMessageRedirectResponse( level='success', message=_('Object was successfully saved.'), redirect_to=ctx['back_url'] ) else: error = APIHybridError(status_code=403, message=_('You can not edit changes on this changeset.')) else: form = model.EditorForm(instance=obj, request=request, space_id=space_id, geometry_editable=edit_utils.can_access_child_base_mapdata) ctx.update({ 'form': form, }) return APIHybridFormTemplateResponse('editor/edit.html', ctx, form=form, error=error) def get_visible_spaces(request): cache_key = 'editor:visible_spaces:%s:%s' % ( request.changeset.raw_cache_key_by_changes, AccessPermission.cache_key_for_request(request, with_update=False) ) visible_spaces = cache.get(cache_key, None) if visible_spaces is None: Space = request.changeset.wrap_model('Space') visible_spaces = tuple(Space.qs_for_request(request).values_list('pk', flat=True)) cache.set(cache_key, visible_spaces, 900) return visible_spaces def get_visible_spaces_kwargs(model, request): kwargs = {} if hasattr(model, 'target_space'): visible_spaces = get_visible_spaces(request) kwargs['target_space_id__in'] = visible_spaces if hasattr(model, 'origin_space'): kwargs['origin_space_id__in'] = visible_spaces return kwargs @sidebar_view(api_hybrid=True) @etag(etag_func) def list_objects(request, model=None, level=None, space=None, explicit_edit=False): resolver_match = getattr(request, 'sub_resolver_match', request.resolver_match) if not resolver_match.url_name.endswith('.list'): raise ValueError('url_name does not end with .list') model = request.changeset.wrap_model(model) Level = request.changeset.wrap_model('Level') Space = request.changeset.wrap_model('Space') can_edit = request.changeset.can_edit(request) ctx = { 'path': request.path, 'model_name': model.__name__.lower(), 'model_title': model._meta.verbose_name, 'model_title_plural': model._meta.verbose_name_plural, 'explicit_edit': explicit_edit, } queryset = model.objects.all().order_by('id') if hasattr(model, 'q_for_request'): queryset = queryset.filter(model.q_for_request(request)) reverse_kwargs = {} add_cols = [] if level is not None: reverse_kwargs['level'] = level level = get_object_or_404(Level.objects.filter(Level.q_for_request(request)), pk=level) queryset = queryset.filter(level=level).defer('geometry') edit_utils = LevelChildEditUtils(level, request) ctx.update({ 'back_url': reverse('editor.levels.detail', kwargs={'pk': level.pk}), 'back_title': _('back to level'), 'levels': Level.objects.filter(Level.q_for_request(request), on_top_of__isnull=True), 'level': level, 'level_url': resolver_match.url_name, }) elif space is not None: reverse_kwargs['space'] = space sub_qs = Space.objects.filter(Space.q_for_request(request)).select_related('level').defer('geometry') space = get_object_or_404(sub_qs, pk=space) queryset = queryset.filter(space=space).filter(**get_visible_spaces_kwargs(model, request)) edit_utils = SpaceChildEditUtils(space, request) with suppress(FieldDoesNotExist): model._meta.get_field('geometry') queryset = queryset.defer('geometry') with suppress(FieldDoesNotExist): model._meta.get_field('origin_space') queryset = queryset.select_related('origin_space') with suppress(FieldDoesNotExist): model._meta.get_field('target_space') queryset = queryset.select_related('target_space') ctx.update({ 'levels': Level.objects.filter(Level.q_for_request(request), on_top_of__isnull=True), 'level': space.level, 'level_url': 'editor.spaces.list', 'space': space, 'back_url': reverse('editor.spaces.detail', kwargs={'level': space.level.pk, 'pk': space.pk}), 'back_title': _('back to space'), }) else: edit_utils = DefaultEditUtils(request) with suppress(FieldDoesNotExist): model._meta.get_field('category') queryset = queryset.select_related('category') with suppress(FieldDoesNotExist): model._meta.get_field('priority') add_cols.append('priority') queryset = queryset.order_by('-priority') ctx.update({ 'back_url': reverse('editor.index'), 'back_title': _('back to overview'), }) edit_url_name = resolver_match.url_name[:-4]+('detail' if explicit_edit else 'edit') for obj in queryset: reverse_kwargs['pk'] = obj.pk obj.edit_url = reverse(edit_url_name, kwargs=reverse_kwargs) obj.add_cols = tuple(getattr(obj, col) for col in add_cols) reverse_kwargs.pop('pk', None) if model.__name__ == 'LocationGroup': LocationGroupCategory = request.changeset.wrap_model('LocationGroupCategory') grouped_objects = tuple( { 'title': category.title_plural, 'objects': tuple(obj for obj in queryset if obj.category_id == category.pk) } for category in LocationGroupCategory.objects.order_by('-priority') ) else: grouped_objects = ( { 'objects': queryset, }, ) ctx.update({ 'can_create': edit_utils.can_create and can_edit, 'geometry_url': edit_utils.geometry_url, 'add_cols': add_cols, 'create_url': reverse(resolver_match.url_name[:-4] + 'create', kwargs=reverse_kwargs), 'grouped_objects': grouped_objects, }) return APIHybridTemplateContextResponse('editor/list.html', ctx, fields=('can_create', 'create_url', 'objects')) def connect_nodes(request, active_node, clicked_node, edge_settings_form): if not request.user_permissions.can_access_base_mapdata: raise PermissionDenied changeset_exceeded = get_changeset_exceeded(request) graphedge_changes = {} if changeset_exceeded: graphedge_changes = request.changeset.get_changed_objects_by_model('GraphEdge') new_connections = [] new_connections.append((active_node, clicked_node, False)) if not edge_settings_form.cleaned_data['oneway']: new_connections.append((clicked_node, active_node, True)) instance = edge_settings_form.instance for from_node, to_node, is_reverse in new_connections: existing = from_node.edges_from_here.filter(to_node=to_node).first() if changeset_exceeded and (not existing or existing.pk not in graphedge_changes): messages.error(request, _('Could not edit edge because your changeset is full.')) return if existing is None: instance.pk = None instance.from_node = from_node instance.to_node = to_node instance.save() messages.success(request, _('Reverse edge created.') if is_reverse else _('Edge created.')) elif existing.waytype == instance.waytype and existing.access_restriction == instance.access_restriction: existing.delete() messages.success(request, _('Reverse edge deleted.') if is_reverse else _('Edge deleted.')) else: existing.waytype = instance.waytype existing.access_restriction = instance.access_restriction existing.save() messages.success(request, _('Reverse edge overwritten.') if is_reverse else _('Edge overwritten.')) @sidebar_view @etag(etag_func) def graph_edit(request, level=None, space=None): if not request.user_permissions.can_access_base_mapdata: raise PermissionDenied Level = request.changeset.wrap_model('Level') Space = request.changeset.wrap_model('Space') GraphNode = request.changeset.wrap_model('GraphNode') GraphEdge = request.changeset.wrap_model('GraphEdge') can_edit = request.changeset.can_edit(request) ctx = { 'path': request.path, 'can_edit': can_edit, 'levels': Level.objects.filter(Level.q_for_request(request), on_top_of__isnull=True), 'level_url': 'editor.levels.graph', } create_nodes = False if level is not None: level = get_object_or_404(Level.objects.filter(Level.q_for_request(request)), pk=level) ctx.update({ 'back_url': reverse('editor.levels.detail', kwargs={'pk': level.pk}), 'back_title': _('back to level'), 'level': level, 'geometry_url': '/api/editor/geometries/?level='+str(level.primary_level_pk), }) elif space is not None: queryset = Space.objects.filter(Space.q_for_request(request)).select_related('level').defer('geometry') space = get_object_or_404(queryset, pk=space) level = space.level ctx.update({ 'space': space, 'level': space.level, 'back_url': reverse('editor.spaces.detail', kwargs={'level': level.pk, 'pk': space.pk}), 'back_title': _('back to space'), 'parent_url': reverse('editor.levels.graph', kwargs={'level': level.pk}), 'parent_title': _('to level graph'), 'geometry_url': '/api/editor/geometries/?space='+str(space.pk), }) create_nodes = True if request.method == 'POST': changeset_exceeded = get_changeset_exceeded(request) graphnode_changes = {} if changeset_exceeded: graphnode_changes = request.changeset.get_changed_objects_by_model('GraphNode') if request.POST.get('delete') == '1': # Delete this graphnode! node = get_object_or_404(GraphNode, pk=request.POST.get('pk')) if changeset_exceeded and node.pk not in graphnode_changes: messages.error(request, _('You can not delete this graph node because your changeset is full.')) return redirect(request.path) if request.POST.get('delete_confirm') == '1': with request.changeset.lock_to_edit(request) as changeset: if changeset.can_edit(request): node.edges_from_here.all().delete() node.edges_to_here.all().delete() node.delete() else: messages.error(request, _('You can not edit changes on this changeset.')) return redirect(request.path) messages.success(request, _('Graph Node was successfully deleted.')) return redirect(request.path) return render(request, 'editor/delete.html', { 'model_title': GraphNode._meta.verbose_name, 'pk': node.pk, 'obj_title': node.title }) permissions = AccessPermission.get_for_request(request) | set([None]) edge_settings_form = GraphEdgeSettingsForm(instance=GraphEdge(), request=request, data=request.POST) graph_action_form = GraphEditorActionForm(request=request, allow_clicked_position=create_nodes, data=request.POST) if edge_settings_form.is_valid() and graph_action_form.is_valid(): goto_space = graph_action_form.cleaned_data['goto_space'] if goto_space is not None: return redirect(reverse('editor.spaces.graph', kwargs={'space': goto_space.pk})) set_active_node = False active_node = graph_action_form.cleaned_data['active_node'] clicked_node = graph_action_form.cleaned_data['clicked_node'] clicked_position = graph_action_form.cleaned_data.get('clicked_position') if clicked_node is not None and clicked_position is None: if active_node is None: active_node = clicked_node set_active_node = True elif active_node == clicked_node: active_node = None set_active_node = True else: with request.changeset.lock_to_edit(request) as changeset: if changeset.can_edit(request): connect_nodes(request, active_node, clicked_node, edge_settings_form) active_node = clicked_node if edge_settings_form.cleaned_data['activate_next'] else None set_active_node = True else: messages.error(request, _('You can not edit changes on this changeset.')) elif (clicked_node is None and clicked_position is not None and active_node is None and space.geometry.contains(clicked_position)): if changeset_exceeded: messages.error(request, _('You can not add graph nodes because your changeset is full.')) return redirect(request.path) with request.changeset.lock_to_edit(request) as changeset: if changeset.can_edit(request): node = GraphNode(space=space, geometry=clicked_position) node.save() messages.success(request, _('New graph node created.')) active_node = None set_active_node = True else: messages.error(request, _('You can not edit changes on this changeset.')) if set_active_node: connections = {} if active_node: for self_node, other_node in (('from_node', 'to_node'), ('to_node', 'from_node')): conn_qs = GraphEdge.objects.filter(Q(**{self_node+'__pk': active_node.pk})) conn_qs = conn_qs.select_related(other_node+'__space', other_node+'__space__level', 'waytype', 'access_restriction') for edge in conn_qs: edge.other_node = getattr(edge, other_node) if (edge.other_node.space.access_restriction_id not in permissions or edge.other_node.space.level.access_restriction_id not in permissions): continue connections.setdefault(edge.other_node.space_id, []).append(edge) connections = sorted( connections.values(), key=lambda c: (c[0].other_node.space.level == level, c[0].other_node.space == space, c[0].other_node.space.level.base_altitude) ) ctx.update({ 'set_active_node': set_active_node, 'active_node': active_node, 'active_node_connections': connections, }) else: edge_settings_form = GraphEdgeSettingsForm(request=request) graph_action_form = GraphEditorActionForm(request=request, allow_clicked_position=create_nodes) ctx.update({ 'edge_settings_form': edge_settings_form, 'graph_action_form': graph_action_form, 'create_nodes': create_nodes, }) return render(request, 'editor/graph.html', ctx) def sourceimage(request, filename): if not request.user.is_superuser: raise PermissionDenied if not can_access_editor(request): return PermissionDenied try: return HttpResponse(open(os.path.join(settings.SOURCES_ROOT, filename), 'rb'), content_type=mimetypes.guess_type(filename)[0]) except FileNotFoundError: raise Http404 ``` #### File: management/commands/cleangeometries.py ```python from django.core.management.base import BaseCommand from django.db import transaction from c3nav.mapdata.models.geometry.base import GeometryMixin from c3nav.mapdata.utils.models import get_submodels class Command(BaseCommand): help = 'clean-up/fix all geometries in the database' def handle(self, *args, **options): with transaction.atomic(): for model in get_submodels(GeometryMixin): for instance in model.objects.all(): old_geom = instance.geometry.wrapped_geojson if instance.geometry.is_empty: print('Deleted %s' % instance) instance.delete() continue instance.save() instance.refresh_from_db() if instance.geometry.wrapped_geojson != old_geom: print('Fixed %s' % instance) ``` #### File: management/commands/importsvg.py ```python import argparse import logging import re from xml.etree import ElementTree from django.core.management.base import BaseCommand, CommandError from django.utils.translation import ugettext_lazy as _ from shapely.affinity import scale, translate from shapely.geometry import Polygon from c3nav.mapdata.models import Area, MapUpdate, Obstacle, Space from c3nav.mapdata.utils.cache.changes import changed_geometries class Command(BaseCommand): help = 'render the map' @staticmethod def space_value(value): try: space = Space.objects.get(pk=value) except Space.DoesNotExist: raise argparse.ArgumentTypeError( _('unknown space') ) return space def add_arguments(self, parser): parser.add_argument('svgfile', type=argparse.FileType('r'), help=_('svg file to import')) parser.add_argument('name', type=str, help=_('name of the import')) parser.add_argument('--type', type=str, required=True, choices=('areas', 'obstacles'), help=_('type of objects to create')) parser.add_argument('--space', type=self.space_value, required=True, help=_('space to add the objects to')) parser.add_argument('--minx', type=float, required=True, help=_('minimum x coordinate, everthing left of it will be cropped')) parser.add_argument('--miny', type=float, required=True, help=_('minimum y coordinate, everthing below it will be cropped')) parser.add_argument('--maxx', type=float, required=True, help=_('maximum x coordinate, everthing right of it will be cropped')) parser.add_argument('--maxy', type=float, required=True, help=_('maximum y coordinate, everthing above it will be cropped')) @staticmethod def parse_svg_data(data): first = False last_point = (0, 0) last_end_point = None done_subpaths = [] current_subpath = [] while data: data = data.lstrip().replace(',', ' ') command = data[0] if first and command not in 'Mm': raise ValueError('path data has to start with moveto command.') data = data[1:].lstrip() first = False numbers = [] while True: match = re.match(r'^-?[0-9]+(\.[0-9]+)?(e-?[0-9]+)?', data) if match is None: break numbers.append(float(match.group(0))) data = data[len(match.group(0)):].lstrip() relative = command.islower() if command in 'Mm': if not len(numbers) or len(numbers) % 2: raise ValueError('Invalid number of arguments for moveto command!') numbers = iter(numbers) first = True for x, y in zip(numbers, numbers): if relative: x, y = last_point[0] + x, last_point[1] + y if first: first = False if current_subpath: done_subpaths.append(current_subpath) last_end_point = current_subpath[-1] current_subpath = [] current_subpath.append((x, y)) last_point = (x, y) elif command in 'Ll': if not len(numbers) or len(numbers) % 2: raise ValueError('Invalid number of arguments for lineto command!') numbers = iter(numbers) for x, y in zip(numbers, numbers): if relative: x, y = last_point[0] + x, last_point[1] + y if not current_subpath: current_subpath.append(last_end_point) current_subpath.append((x, y)) last_point = (x, y) elif command in 'Hh': if not len(numbers): raise ValueError('Invalid number of arguments for horizontal lineto command!') y = last_point[1] for x in numbers: if relative: x = last_point[0] + x if not current_subpath: current_subpath.append(last_end_point) current_subpath.append((x, y)) last_point = (x, y) elif command in 'Vv': if not len(numbers): raise ValueError('Invalid number of arguments for vertical lineto command!') x = last_point[0] for y in numbers: if relative: y = last_point[1] + y if not current_subpath: current_subpath.append(last_end_point) current_subpath.append((x, y)) last_point = (x, y) elif command in 'Zz': if numbers: raise ValueError('Invalid number of arguments for closepath command!') current_subpath.append(current_subpath[0]) done_subpaths.append(current_subpath) last_end_point = current_subpath[-1] current_subpath = [] else: raise ValueError('unknown svg command: ' + command) if current_subpath: done_subpaths.append(current_subpath) return done_subpaths def handle(self, *args, **options): minx = options['minx'] miny = options['miny'] maxx = options['maxx'] maxy = options['maxy'] if minx >= maxx: raise CommandError(_('minx has to be lower than maxx')) if miny >= maxy: raise CommandError(_('miny has to be lower than maxy')) width = maxx-minx height = maxy-miny model = {'areas': Area, 'obstacles': Obstacle}[options['type']] namespaces = {'svg': 'http://www.w3.org/2000/svg'} svg = ElementTree.fromstring(options['svgfile'].read()) svg_width = float(svg.attrib['width']) svg_height = float(svg.attrib['height']) svg_viewbox = svg.attrib.get('viewBox') if svg_viewbox: offset_x, offset_y, svg_width, svg_height = [float(i) for i in svg_viewbox.split(' ')] else: offset_x, offset_y = 0, 0 for element in svg.findall('.//svg:clipPath/..', namespaces): for clippath in element.findall('./svg:clipPath', namespaces): element.remove(clippath) for element in svg.findall('.//svg:symbol/..', namespaces): for clippath in element.findall('./svg:symbol', namespaces): element.remove(clippath) if svg.findall('.//*[@transform]'): raise CommandError(_('svg contains transform attributes. Use inkscape apply transforms.')) if model.objects.filter(space=options['space'], import_tag=options['name']).exists(): raise CommandError(_('objects with this import tag already exist in this space.')) with MapUpdate.lock(): changed_geometries.reset() for path in svg.findall('.//svg:path', namespaces): for polygon in self.parse_svg_data(path.attrib['d']): if len(polygon) < 3: continue polygon = Polygon(polygon) polygon = translate(polygon, xoff=-offset_x, yoff=-offset_y) polygon = scale(polygon, xfact=1, yfact=-1, origin=(0, svg_height/2)) polygon = scale(polygon, xfact=width / svg_width, yfact=height / svg_height, origin=(0, 0)) polygon = translate(polygon, xoff=minx, yoff=miny) obj = model(geometry=polygon, space=options['space'], import_tag=options['name']) obj.save() MapUpdate.objects.create(type='importsvg') logger = logging.getLogger('c3nav') logger.info('Imported, map update created.') logger.info('Next step: go into the shell and edit them using ' '%s.objects.filter(space_id=%r, import_tag=%r)' % (model.__name__, options['space'].pk, options['name'])) ``` #### File: management/commands/processupdates.py ```python import logging from django.conf import settings from django.core.management.base import BaseCommand from django.db import DatabaseError from django.utils.translation import ugettext_lazy as _ from c3nav.mapdata.tasks import process_map_updates class Command(BaseCommand): help = 'process unprocessed map updates' def handle(self, *args, **options): logger = logging.getLogger('c3nav') try: process_map_updates() except DatabaseError: logger.error(_('There is already map update processing in progress.')) if not settings.HAS_REAL_CACHE: print(_('You have no external cache configured, so don\'t forget to restart your c3nav instance!')) ``` #### File: c3nav/mapdata/middleware.py ```python import re from functools import wraps from c3nav.mapdata.utils.user import get_user_data_lazy class NoLanguageMiddleware: """ Middleware that allows unsetting the Language HTTP header usind the @no_language decorator. """ def __init__(self, get_response): self.get_response = get_response def __call__(self, request): response = self.get_response(request) if not getattr(response, 'no_language', False): return response if not getattr(response, 'keep_content_language', False): del response['Content-Language'] if not response.has_header('Vary'): return response vary = tuple(s for s in re.split(r'\s*,\s*', response['Vary']) if s.lower() != 'accept-language') if vary: response['Vary'] = ', '.join(vary) else: del response['Vary'] return response def no_language(keep_content_language=False): def decorator(func): @wraps(func) def wrapper(*args, **kwargs): response = func(*args, **kwargs) response.no_language = True response.keep_content_language = keep_content_language return response return wrapper return decorator class UserDataMiddleware: """ Enables getting user_data using request.user_data. """ def __init__(self, get_response): self.get_response = get_response def __call__(self, request): request.user_data = get_user_data_lazy(request) return self.get_response(request) ``` #### File: mapdata/migrations/0002_fix_broken_spaces.py ```python from django.db import migrations from shapely.geometry import Polygon def fix_broken_spaces(apps, schema_editor): Space = apps.get_model('mapdata', 'Space') for space in Space.objects.all(): geometry = space.geometry space.geometry = Polygon(shell=geometry.exterior) space.save() class Migration(migrations.Migration): dependencies = [ ('mapdata', '0001_squashed_2018'), ] operations = [ migrations.RunPython(fix_broken_spaces, migrations.RunPython.noop) ] ``` #### File: mapdata/migrations/0007_assign_hole_space.py ```python from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion def assign_hole_to_space(apps, schema_editor): Hole = apps.get_model('mapdata', 'Hole') Space = apps.get_model('mapdata', 'Space') for hole in Hole.objects.filter(): space = max(hole.section.spaces.filter(level='normal'), key=lambda s: s.geometry.intersection(hole.geometry).area) hole.space = space hole.save() class Migration(migrations.Migration): dependencies = [ ('mapdata', '0006_remove_section_name'), ] operations = [ migrations.AddField( model_name='hole', name='space', field=models.ForeignKey(default=0, on_delete=django.db.models.deletion.CASCADE, related_name='holes', to='mapdata.Space', verbose_name='space'), preserve_default=False, ), migrations.RunPython(assign_hole_to_space), ] ``` #### File: mapdata/migrations/0010_on_top_of.py ```python from __future__ import unicode_literals from decimal import Decimal from django.db import migrations, models import django.db.models.deletion def move_upper_spaces_to_section_on_top(apps, schema_editor): Section = apps.get_model('mapdata', 'Section') Space = apps.get_model('mapdata', 'Space') Space.objects.filter(level='lower').delete() for section in Section.objects.all(): if Space.objects.filter(level='upper', section=section).exists(): section_on_top_of = section.sections_on_top.create(altitude=section.altitude+Decimal('0.01'), public=section.public, can_search=False, can_describe=False) Space.objects.filter(level='upper', section=section).update(section=section_on_top_of, outside=True) class Migration(migrations.Migration): dependencies = [ ('mapdata', '0009_column'), ] operations = [ migrations.AddField( model_name='section', name='on_top_of', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='sections_on_top', to='mapdata.Section', verbose_name='on top of'), ), migrations.RunPython(move_upper_spaces_to_section_on_top), migrations.RemoveField( model_name='space', name='level', ), ] ``` #### File: mapdata/migrations/0015_auto_20170706_1334.py ```python from __future__ import unicode_literals from django.db import migrations def set_blank_to_null(apps, schema_editor): for model_name in ('Area', 'Point', 'Level', 'Space', 'LocationGroup'): model = apps.get_model('mapdata', model_name) model.objects.filter(color='').update(color=None) class Migration(migrations.Migration): dependencies = [ ('mapdata', '0014_mapupdate'), ] operations = [ migrations.RunPython(set_blank_to_null), ] ``` #### File: mapdata/models/update.py ```python import logging import os import pickle import time from contextlib import contextmanager, suppress from sqlite3 import DatabaseError from django.conf import settings from django.core.cache import cache from django.db import models, transaction from django.utils.http import int_to_base36 from django.utils.timezone import make_naive from django.utils.translation import ugettext_lazy as _ from c3nav.mapdata.tasks import process_map_updates class MapUpdate(models.Model): """ A map update. created whenever mapdata is changed. """ TYPES = ( ('changeset', _('changeset applied')), ('direct_edit', _('direct edit')), ('control_panel', _('via control panel')), ('management', 'manage.py clearmapcache'), ) datetime = models.DateTimeField(auto_now_add=True, db_index=True) user = models.ForeignKey(settings.AUTH_USER_MODEL, null=True, on_delete=models.PROTECT) type = models.CharField(max_length=32, choices=TYPES) processed = models.BooleanField(default=False) geometries_changed = models.BooleanField() class Meta: verbose_name = _('Map update') verbose_name_plural = _('Map updates') default_related_name = 'mapupdates' ordering = ('datetime', ) get_latest_by = 'datetime' def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.was_processed = self.processed @classmethod def last_update(cls, force=False): if not force: last_update = cache.get('mapdata:last_update', None) if last_update is not None: return last_update try: with cls.lock(): last_update = cls.objects.latest().to_tuple cache.set('mapdata:last_update', last_update, None) except cls.DoesNotExist: last_update = (0, 0) cache.set('mapdata:last_update', last_update, None) return last_update @classmethod def last_processed_update(cls, force=False): if not force: last_processed_update = cache.get('mapdata:last_processed_update', None) if last_processed_update is not None: return last_processed_update try: with cls.lock(): last_processed_update = cls.objects.filter(processed=True).latest().to_tuple cache.set('mapdata:last_processed_update', last_processed_update, None) except cls.DoesNotExist: last_processed_update = (0, 0) cache.set('mapdata:last_processed_update', last_processed_update, None) return last_processed_update @property def to_tuple(self): return self.pk, int(make_naive(self.datetime).timestamp()) @property def cache_key(self): return self.build_cache_key(self.pk, int(make_naive(self.datetime).timestamp())) @classmethod def current_cache_key(cls, request=None): return cls.build_cache_key(*cls.last_update()) @classmethod def current_processed_cache_key(cls, request=None): return cls.build_cache_key(*cls.last_processed_update()) @staticmethod def build_cache_key(pk, timestamp): return int_to_base36(pk)+'_'+int_to_base36(timestamp) @classmethod @contextmanager def lock(cls): with transaction.atomic(): try: earliest = cls.objects.earliest() except cls.DoesNotExist: yield else: yield cls.objects.select_for_update().get(pk=earliest.pk) def _changed_geometries_filename(self): return os.path.join(settings.CACHE_ROOT, 'changed_geometries', 'update_%d.pickle' % self.pk) class ProcessUpdatesAlreadyRunning(Exception): pass @classmethod @contextmanager def get_updates_to_process(cls): queryset = cls.objects.filter(processed=False) with transaction.atomic(): if settings.HAS_REDIS: import redis lock_aquired = None lock = redis.Redis().lock('mapupdate:process_updates:lock') try: lock_aquired = lock.acquire(blocking=False, blocking_timeout=1800) if not lock_aquired: raise cls.ProcessUpdatesAlreadyRunning cache.set('mapdata:last_process_updates_start', int(time.time()), None) yield tuple(queryset) finally: if lock_aquired: lock.release() else: try: yield tuple(queryset.select_for_update(nowait=True)) except DatabaseError: raise cls.ProcessUpdatesAlreadyRunning @classmethod def process_updates(cls): logger = logging.getLogger('c3nav') with cls.get_updates_to_process() as new_updates: if not new_updates: return () if any(update.geometries_changed for update in new_updates): from c3nav.mapdata.utils.cache.changes import changed_geometries changed_geometries.reset() logger.info('Recalculating altitude areas...') from c3nav.mapdata.models import AltitudeArea AltitudeArea.recalculate() logger.info('%.3f m² of altitude areas affected.' % changed_geometries.area) last_processed_update = cls.last_processed_update(force=True) for new_update in new_updates: logger.info('Applying changed geometries from MapUpdate #%(id)s (%(type)s)...' % {'id': new_update.pk, 'type': new_update.type}) try: new_changes = pickle.load(open(new_update._changed_geometries_filename(), 'rb')) except FileNotFoundError: logger.warning('changed_geometries pickle file not found.') else: logger.info('%.3f m² affected by this update.' % new_changes.area) changed_geometries.combine(new_changes) logger.info('%.3f m² of geometries affected in total.' % changed_geometries.area) changed_geometries.save(last_processed_update, new_updates[-1].to_tuple) logger.info('Rebuilding level render data...') from c3nav.mapdata.render.renderdata import LevelRenderData LevelRenderData.rebuild() else: logger.info('No geometries affected.') logger.info('Rebuilding router...') from c3nav.routing.router import Router Router.rebuild(new_updates[-1].to_tuple) logger.info('Rebuilding locator...') from c3nav.routing.locator import Locator Locator.rebuild(new_updates[-1].to_tuple) for new_update in reversed(new_updates): new_update.processed = True new_update.save() transaction.on_commit( lambda: cache.set('mapdata:last_processed_update', new_updates[-1].to_tuple, None) ) return new_updates def save(self, **kwargs): new = self.pk is None if not new and (self.was_processed or not self.processed): raise TypeError from c3nav.mapdata.utils.cache.changes import changed_geometries if self.geometries_changed is None: self.geometries_changed = not changed_geometries.is_empty super().save(**kwargs) with suppress(FileExistsError): os.mkdir(os.path.dirname(self._changed_geometries_filename())) if self.geometries_changed: pickle.dump(changed_geometries, open(self._changed_geometries_filename(), 'wb')) if new: transaction.on_commit( lambda: cache.set('mapdata:last_update', self.to_tuple, None) ) if settings.HAS_CELERY and settings.AUTO_PROCESS_UPDATES: transaction.on_commit( lambda: process_map_updates.delay() ) ``` #### File: render/geometry/altitudearea.py ```python from collections import deque from itertools import chain import numpy as np from c3nav.mapdata.models import AltitudeArea from c3nav.mapdata.render.geometry.hybrid import HybridGeometry class AltitudeAreaGeometries: def __init__(self, altitudearea=None, colors=None, obstacles=None): if altitudearea is not None: self.geometry = altitudearea.geometry self.altitude = int(altitudearea.altitude * 1000) self.altitude2 = None if altitudearea.altitude2 is None else int(altitudearea.altitude2 * 1000) self.point1 = altitudearea.point1 self.point2 = altitudearea.point2 else: self.geometry = None self.altitude = None self.altitude2 = None self.point1 = None self.point2 = None self.base = None self.bottom = None self.colors = colors self.obstacles = obstacles def get_altitudes(self, points): # noinspection PyCallByClass,PyTypeChecker return AltitudeArea.get_altitudes(self, points/1000).astype(np.int32) def create_hybrid_geometries(self, face_centers, vertices_offset, faces_offset): self.geometry = HybridGeometry.create(self.geometry, face_centers) vertices = deque() faces = deque() for color, areas in self.colors.items(): for height in tuple(areas.keys()): faces_offset, vertices_offset = self._call_create_full(areas, height, faces, vertices, faces_offset, vertices_offset) for height_obstacles in self.obstacles.values(): for color_obstacles in height_obstacles.values(): for i in range(len(color_obstacles)): faces_offset, vertices_offset = self._call_create_full(color_obstacles, i, faces, vertices, faces_offset, vertices_offset) if not vertices: return np.empty((0, 2), dtype=np.int32), np.empty((0, 3), dtype=np.uint32) return np.vstack(vertices), np.vstack(faces) def _call_create_full(self, mapping, key, faces, vertices, faces_offset, vertices_offset): geom = mapping[key] new_geom, new_vertices, new_faces = HybridGeometry.create_full(geom, vertices_offset, faces_offset) mapping[key] = new_geom vertices_offset += new_vertices.shape[0] faces_offset += new_faces.shape[0] vertices.append(new_vertices) faces.append(new_faces) return faces_offset, vertices_offset def remove_faces(self, faces): self.geometry.remove_faces(faces) for areas in self.colors.values(): for area in areas.values(): area.remove_faces(faces) def create_polyhedrons(self, create_polyhedron, altitudes, min_altitude, crops): if self.altitude2 is None: altitudes = self.altitude self.base = HybridGeometry(self.geometry.geom, self.geometry.faces) self.bottom = HybridGeometry(self.geometry.geom, self.geometry.faces) self.geometry.build_polyhedron(create_polyhedron, lower=altitudes - int(0.7 * 1000), upper=altitudes, crops=crops) self.base.build_polyhedron(create_polyhedron, lower=min_altitude - int(0.7 * 1000), upper=altitudes - int(0.7 * 1000), crops=crops, top=False, bottom=False) self.bottom.build_polyhedron(create_polyhedron, lower=0, upper=1, crops=crops, top=False) for geometry in chain(*(areas.values() for areas in self.colors.values())): geometry.build_polyhedron(create_polyhedron, lower=altitudes, upper=altitudes + int(0.001 * 1000), crops=crops) # todo: treat altitude properly for height, height_geometries in self.obstacles.items(): for color, color_geometries in height_geometries.items(): for geometry in color_geometries: geometry.build_polyhedron(create_polyhedron, lower=altitudes, upper=altitudes + height, crops=crops) ``` #### File: utils/cache/accessrestrictions.py ```python import operator import struct from functools import reduce import numpy as np from c3nav.mapdata.utils.cache.indexed import LevelGeometryIndexed class AccessRestrictionAffected(LevelGeometryIndexed): # metadata format: # 64 times: # 4 bytes (uint32): access restriction id (or 0x00 if empty) # each uint64 cell contains a bitmask of restrictions. # e.g.: 2^n bit set → restriction with index 2^n does apply dtype = np.uint64 variant_id = 2 variant_name = 'restrictions' def __init__(self, restrictions=None, **kwargs): super().__init__(**kwargs) self.restrictions = [] if restrictions is None else restrictions self.restrictions_lookup = {restriction: i for i, restriction in enumerate(self.restrictions)} @classmethod def _read_metadata(cls, f, kwargs): restrictions = list(struct.unpack('<'+'I'*64, f.read(4*64))) while restrictions and restrictions[-1] == 0: restrictions.pop() kwargs['restrictions'] = restrictions def _write_metadata(self, f): f.write(struct.pack('<'+'I'*64, *self.restrictions, *((0, )*(64-len(self.restrictions))))) @classmethod def build(cls, access_restriction_affected): result = cls() for restriction, area in access_restriction_affected.items(): result[area.buffer(1)].add(restriction) return result @classmethod def open(cls, filename): try: instance = super().open(filename) except FileNotFoundError: instance = cls(restrictions=[], filename=filename) return instance def _get_restriction_index(self, restriction, create=False): i = self.restrictions_lookup.get(restriction) if create and i is None: i = len(self.restrictions) self.restrictions_lookup[restriction] = i self.restrictions.append(restriction) return i def __getitem__(self, selector): return AccessRestrictionAffectedCells(self, selector) def __setitem__(self, selector, value): raise TypeError('__setitem__ not supported for AccessRestriction matrix') class AccessRestrictionAffectedCells: def __init__(self, parent: AccessRestrictionAffected, selector): self.parent = parent self.selector = selector self.values = self._get_values() def _get_values(self): return LevelGeometryIndexed.__getitem__(self.parent, self.selector) def _set(self, values): self.values = values LevelGeometryIndexed.__setitem__(self.parent, self.selector, values) def __contains__(self, restriction): i = self.parent._get_restriction_index(restriction) return (self.values & (2**i)).any() def add(self, restriction): from shapely.geometry.base import BaseGeometry if not isinstance(self.selector, BaseGeometry): raise TypeError('Can only add restrictions with Geometry based selectors') # expand array bounds = self.parent._get_geometry_bounds(self.selector) self.parent.fit_bounds(*bounds) self.values = self._get_values() i = self.parent._get_restriction_index(restriction, create=True) self._set(self.values | (2**i)) def discard(self, restriction): from shapely.geometry.base import BaseGeometry if not isinstance(self.selector, BaseGeometry): raise TypeError('Can only discard restrictions with Geometry based selectors') i = self.parent._get_restriction_index(restriction) self._set(self.values & ((2**64-1) ^ (2**i))) def __iter__(self): all = reduce(operator.or_, self.values.tolist(), 0) yield from (restriction for i, restriction in enumerate(self.parent.restrictions) if (all & 2**i)) ``` #### File: utils/cache/local.py ```python from collections import OrderedDict from django.core.cache import cache from c3nav.mapdata.models import MapUpdate class NoneFromCache: pass class LocalCacheProxy: # django cache, buffered using a LRU cache # only usable for stuff that never changes, obviously def __init__(self, maxsize=128): self._maxsize = maxsize self._mapupdate = None self._items = OrderedDict() def get(self, key, default=None): if self._mapupdate is None: self._check_mapupdate() try: # first check out cache result = self._items[key] except KeyError: # not in our cache result = cache.get(key, default=NoneFromCache) if result is not NoneFromCache: self._items[key] = result self._prune() else: result = default else: self._items.move_to_end(key, last=True) return result def _prune(self): # remove old items while len(self._items) > self._maxsize: self._items.pop(next(iter(self._items.keys()))) def _check_mapupdate(self): mapupdate = MapUpdate.current_cache_key() if self._mapupdate != mapupdate: self._items = OrderedDict() self._mapupdate = mapupdate def set(self, key, value, expire): self._check_mapupdate() cache.set(key, value, expire) self._items[key] = value self._prune() ``` #### File: mapdata/utils/color.py ```python from functools import lru_cache @lru_cache() def color_to_rgb(color, alpha=None): if color.startswith('#'): return (*(int(color[i:i + 2], 16) / 255 for i in range(1, 6, 2)), 1 if alpha is None else alpha) if color.startswith('rgba('): color = tuple(float(i.strip()) for i in color.strip()[5:-1].split(',')) return (*(i/255 for i in color[:3]), color[3] if alpha is None else alpha) raise ValueError('invalid color string!') @lru_cache() def rgb_to_color(rgb): # noinspection PyStringFormat return 'rgba(%d, %d, %d, %.1f)' % (*(i*255 for i in rgb[:3]), rgb[3]) ``` #### File: mapdata/utils/mpl.py ```python from abc import ABC, abstractmethod import numpy as np from matplotlib.path import Path from shapely.geometry import GeometryCollection, MultiPolygon, Polygon from c3nav.mapdata.utils.geometry import assert_multipolygon class MplPathProxy(ABC): @abstractmethod def intersects_path(self, path): pass @abstractmethod def contains_point(self, point): pass class MplMultipolygonPath(MplPathProxy): __slots__ = ('polygons') def __init__(self, polygon): self.polygons = tuple(MplPolygonPath(polygon) for polygon in assert_multipolygon(polygon)) @property def exteriors(self): return tuple(polygon.exterior for polygon in self.polygons) def intersects_path(self, path, filled=False): for polygon in self.polygons: if polygon.intersects_path(path, filled=filled): return True return False def contains_point(self, point): for polygon in self.polygons: if polygon.contains_point(point): return True return False def contains_points(self, points): result = np.full((len(points),), fill_value=False, dtype=np.bool) for polygon in self.polygons: ix = np.argwhere(np.logical_not(result)).flatten() result[ix] = polygon.contains_points(points[ix]) return result class MplPolygonPath(MplPathProxy): __slots__ = ('exterior', 'interiors') def __init__(self, polygon): self.exterior = linearring_to_mpl_path(polygon.exterior) self.interiors = [linearring_to_mpl_path(interior) for interior in polygon.interiors] @property def exteriors(self): return (self.exterior, ) def intersects_path(self, path, filled=False): if filled: if not self.exterior.intersects_path(path, filled=True): return False for interior in self.interiors: if interior.contains_path(path): return False return True else: if self.exterior.intersects_path(path, filled=False): return True for interior in self.interiors: if interior.intersects_path(path, filled=False): return True return False def contains_points(self, points): result = self.exterior.contains_points(points) for interior in self.interiors: if not result.any(): break ix = np.argwhere(result).flatten() result[ix] = np.logical_not(interior.contains_points(points[ix])) return result def contains_point(self, point): if not self.exterior.contains_point(point): return False for interior in self.interiors: if interior.contains_point(point): return False return True def shapely_to_mpl(geometry): """ convert a shapely Polygon or Multipolygon to a matplotlib Path :param polygon: shapely Polygon or Multipolygon :return: MplPathProxy """ if isinstance(geometry, Polygon): return MplPolygonPath(geometry) elif isinstance(geometry, MultiPolygon) or geometry.is_empty or isinstance(geometry, GeometryCollection): return MplMultipolygonPath(geometry) raise TypeError def linearring_to_mpl_path(linearring): return Path(np.array(linearring), (Path.MOVETO, *([Path.LINETO] * (len(linearring.coords)-2)), Path.CLOSEPOLY), readonly=True) ``` #### File: routing/utils/draw.py ```python from django.conf import settings def _ellipse_bbox(x, y, height): x *= settings.RENDER_SCALE y *= settings.RENDER_SCALE y = height-y return ((x - 2, y - 2), (x + 2, y + 2)) def _line_coords(from_point, to_point, height): return (from_point.x * settings.RENDER_SCALE, height - (from_point.y * settings.RENDER_SCALE), to_point.x * settings.RENDER_SCALE, height - (to_point.y * settings.RENDER_SCALE)) ``` #### File: site/templatetags/route_render.py ```python from django import template register = template.Library() @register.filter def negate(value): return -value @register.filter def subtract(value, arg): return value - arg ``` #### File: c3nav/tools/fakemobileclient.py ```python import http.server import json import socketserver import subprocess import sys import time PORT = int(sys.argv[1]) if sys.argv[1:] else 8042 def get_from_lines(lines, keyword): return next(iter(l for l in lines if l.startswith(keyword))).split(keyword)[1].strip() class FakeMobileClientHandler(http.server.BaseHTTPRequestHandler): def do_GET(self): """Serve a GET request.""" if self.path != '/scan': self.send_error(404, explain='Look at /scan') return while True: p = subprocess.Popen(['iwlist', 'scan'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) output = p.communicate()[0].decode().split('Cell')[1:] if not output: print('scan failed, try again…') time.sleep(0.2) continue stations = [] for data in output: lines = [l.strip() for l in data[5:].split('\n')] stations.append({ 'bssid': get_from_lines(lines, 'Address:'), 'ssid': get_from_lines(lines, 'ESSID:')[1:-1], 'level': int(get_from_lines(lines, 'Quality=').split('=')[-1][:-4]), 'frequency': int(float(get_from_lines(lines, 'Frequency:').split(' ')[0]) * 1000) }) if not stations: continue break self.send_response(200) self.send_header('Content-Type', 'application/json') self.send_header('Access-Control-Allow-Origin', '*') self.end_headers() self.wfile.write(json.dumps({'data': stations}).encode()) return True class ThreadedTCPServer(socketserver.ThreadingMixIn, socketserver.TCPServer): pass with ThreadedTCPServer(('127.0.0.1', PORT), FakeMobileClientHandler) as server: print('fakemobilelient on 127.0.0.1:%d' % PORT) server.serve_forever() ```
{ "source": "JohnJohnsonOkah/myshop", "score": 2 }
#### File: myshop/orders/views.py ```python from django.conf import settings from django.contrib.admin.views.decorators import staff_member_required from django.template.loader import render_to_string from django.http import HttpResponse from django.shortcuts import get_object_or_404, render, redirect from django.urls import reverse import weasyprint from cart.cart import Cart from .forms import OrderCreateForm from .models import Order, OrderItem from .tasks import order_created def order_create(request): """ Create a new Order with - checkout details (OrderCreateForm()) & - items in the cart (Cart()) """ cart = Cart(request) if request.method == "POST": form = OrderCreateForm(request.POST) if form.is_valid(): order = form.save(commit=False) if cart.coupon: order.coupon = cart.coupon order.discount = cart.coupon.discount order.save() for item in cart: OrderItem.objects.create( order=order, product=item["product"], price=item["price"], quantity=item["quantity"], ) # clear the cart cart.clear() # launch asynchronous task order_created.apply_async((order.id,), countdown=3) # set the order in the session request.session["order_id"] = order.id # redirect for payment return redirect(reverse("payment:process")) else: form = OrderCreateForm() return render(request, "orders/order/create.html", {"cart": cart, "form": form}) @staff_member_required def admin_order_detail(request, order_id): """ This view displays the information about an order on admin site """ order = get_object_or_404(Order, id=order_id) return render(request, "admin/orders/order/detail.html", {"order": order}) @staff_member_required def admin_order_pdf(request, order_id): """ This view generate PDF invoices for existing Orders """ order = get_object_or_404(Order, id=order_id) html = render_to_string("orders/order/pdf.html", {"order": order}) response = HttpResponse(content_type="application/pdf") response["Content-Disposition"] = f"filename=order_{order.id}.pdf" weasyprint.HTML(string=html).write_pdf( response, stylesheets=[weasyprint.CSS(settings.STATIC_ROOT + "/css/pdf.css")] ) return response ``` #### File: myshop/shop/models.py ```python from django.db import models from django.urls import reverse from cloudinary.models import CloudinaryField class Category(models.Model): """ The category model each product is classified into. """ name = models.CharField(max_length=200, db_index=True) slug = models.SlugField(max_length=200, unique=True) class Meta: ordering = ("name",) verbose_name = "category" verbose_name_plural = "categories" def __str__(self): return self.name def get_absolute_url(self): """Retrieve url for list of product in a given category""" return reverse("shop:product_list_by_category", args=[self.slug]) class Product(models.Model): """ The product model of an item in the shop. """ category = models.ForeignKey( Category, related_name="products", on_delete=models.CASCADE ) name = models.CharField(max_length=200, db_index=True) slug = models.SlugField(max_length=200, db_index=True) image = models.ImageField(upload_to="products/%Y/%m/%d", blank=True) description = models.TextField(blank=True) price = models.DecimalField(max_digits=10, decimal_places=2) available = models.BooleanField(default=True) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) class Meta: ordering = ("name",) index_together = (("id", "slug"),) def __str__(self): return self.name def get_absolute_url(self): """Retrieves url for a given product""" return reverse("shop:product_detail", args=[self.id, self.slug]) ```
{ "source": "JohnJohnstone/opsmop", "score": 2 }
#### File: opsmop/core/scope.py ```python class Scope(object): """ Scope is used to prepare variable stacks during the executor phase to implement variable scoping rules """ __slots__ = [ '_parent', '_level', '_resource', '_variables', '_role', '_root', '_ancestors'] def __init__(self, variables=None, level=0, parent=None, resource=None): if variables is None: variables = dict() self._parent = parent self._level = level self._resource = resource self._variables = variables self._role = None self._root = None from opsmop.core.policy import Policy from opsmop.core.role import Role if issubclass(type(resource), Role): self._role = resource elif self._parent and self._parent._role: self._role = self._parent._role if issubclass(type(resource), Policy): self._root = resource self._ancestors = [ ] elif self._parent: self._root = self._parent._root self._ancestors = self._parent._ancestors[:] self._ancestors.append(self._parent) # load the resource variables into the scope # set_variables method on the object win out over keyword args self.update_variables(resource.variables) self.update_variables(resource.extra_variables) def resource(self): return self._resource def parent(self): return self._parent def role(self): return self._role @classmethod def for_top_level(cls, resource): return cls(variables=resource.variables, level=0, parent=None, resource=resource) def top_level_scope(self): if self.parent() is None: return self else: return self.parent().top_level_scope() def top_level_resource(self): top_scope = self.top_level_scope() return top_scope._resource def deeper_scope_for(self, resource): return Scope(variables=self._variables.copy(), level=self._level+1, parent=self, resource=resource) def ancestors(self): return self._ancestors def root_scope(self): return self._root def variables(self): scopes = self.ancestors() scopes.append(self) vstack = [ s._variables for s in scopes] results = dict() for variables in vstack: results.update(variables) return results def update_parent_variables(self, variables): """ Resources setting/registering variables should always update the scope one level up. """ self.parent().update_variables(variables) def update_variables(self, variables): """ Variables on a Resource should update just that resource. """ self._variables.update(variables) def update_global_variables(self, variables): root = self.root_scope() root.update_variables(variables) def __str__(self): return "<Scope resource=%s, level=%s, parent=%s, variables=%s>" % (self._resource, self._level, self.parent(), self._variables) ``` #### File: opsmop/facts/filetests.py ```python import hashlib import os import stat from opsmop.core.context import Context from opsmop.facts.facts import Facts class FileTestFacts(Facts): """ As this evolves, facts can be dynamically injected into this base class based on platform, allowing a subclass for things like LinuxFacts. When this happens, we can have a "facts/" package. """ def exists(self, fname): return os.path.exists(fname) def executable(self, fname): return os.path.isfile(fname) and os.access(fname, os.X_OK) def is_file(self, fname): from pathlib import Path if not self.exists(fname): return None return Path(fname).is_file() def is_directory(self, fname): from pathlib import Path if not self.exists(fname): return None return Path(fname).is_dir() def mode(self, fname): from pathlib import Path if not self.exists(fname): return None lstat = Path(fname).lstat() return stat.S_IMODE(lstat.st_mode) def owner(self, fname): from pathlib import Path if not self.exists(fname): return None return Path(fname).owner() def group(self, fname): from pathlib import Path if not self.exists(fname): return None return Path(fname).group() def checksum(self, fname, blocksize=65535): m = hashlib.sha256() with open(fname, "rb") as f: block = f.read(blocksize) while len(block) > 0: block = f.read(blocksize) m.update(block) return m.hexdigest() def string_checksum(self, msg): m = hashlib.sha256() m.update(msg.encode()) return m.hexdigest() def same_contents(self, dest, src, remote=False): if not self.exists(dest): return False m = hashlib.sha256() c1 = self.checksum(dest) c2 = None if not remote: c2 = self.checksum(src) else: # FIXME: this is slightly duplicated with provider code if not src.startswith('/'): src = os.path.join(Context().relative_root(), src) c2 = Context().get_checksum(src) return (c1 == c2) FileTests = FileTestFacts() ```
{ "source": "johnjones4/Doomsday-Machine-2", "score": 2 }
#### File: Doomsday-Machine-2/doomsdaymachine/webserver.py ```python from flask import Flask, jsonify, send_from_directory from doomsdaymachine.util import load_config from doomsdaymachine.backup_log import BackupLog APP = Flask(__name__) config = load_config() ALLOWED_STATIC_FILES = [ "index.html", "script.js", "style.css", "reset.css", ] @APP.route("/") def home_file(): return send_from_directory("../static", "index.html") @APP.route("/<file>") def static_file(file): if file in ALLOWED_STATIC_FILES: return send_from_directory("../static", file) @APP.route("/api/status") def status(): backup_log = BackupLog(config) active_job = backup_log.get_active_job() jobs = list(map(lambda job: dict( name=job["name"], type=job["type"], id=job["id"], start_time=active_job["start_time"] if active_job["job"] == job["id"] else None, last_execution_time=backup_log.get_last_execution_time(job["id"]) ), config["jobs"])) return jsonify(dict(jobs=jobs)) ```
{ "source": "johnjones4/e-dashboard", "score": 3 }
#### File: e-dashboard/lib/dashboard.py ```python from PIL import Image, ImageDraw, ImageFont from datetime import datetime class Dashboard: def __init__(self, width, height, rows, cols, gutter, show_status, font_size, font_path): self.show_status = show_status self.font_size = font_size self.font_path = font_path self.width = width self.height = height self.widgets_height = height if not self.show_status else (height - (font_size + gutter)) self.rows = rows self.cols = cols self.row_size = (self.widgets_height / self.rows) self.col_size = (self.width / self.cols) self.gutter = gutter self.widgets = [] def add_widget(self, widget): (row, col, row_span, col_span) = widget.get_position() if row < 0 or row >= self.rows: raise Exception("Invalid row: %d" % (row)) if col < 0 or col >= self.cols: raise Exception("Invalid col: %d" % (col)) if row_span < 0 or row + row_span > self.rows: raise Exception("Invalid row span: %d" % (row_span)) if col_span < 0 or col + col_span > self.cols: raise Exception("Invalid col span: %d" % (col_span)) self.widgets.append((widget, row, col, row_span, col_span)) def draw_status(self, image): font = ImageFont.truetype(self.font_path, self.font_size, 0) drawable = ImageDraw.Draw(image) x = self.gutter / 2.0 y = self.widgets_height drawable.text((x, y), "Last Updated At %s" % (datetime.now().strftime("%m/%d/%Y, %H:%M:%S")), font=font) def generate(self): mode = "L" color = 255 generated_image = Image.new(mode, (self.width, self.height), color=color) for (widget, row, col, row_span, col_span) in self.widgets: x = int(self.col_size * col + (self.gutter / 2.0)) y = int(self.row_size * row + (self.gutter / 2.0)) width = int(self.col_size * col_span - self.gutter) height = int(self.row_size * row_span - self.gutter) image = widget.generate(mode, width, height, color) generated_image.paste(image, (x, y)) if self.show_status: self.draw_status(generated_image) return generated_image ```
{ "source": "johnjones4/model-rocket-telemetry", "score": 2 }
#### File: air/tests/test_utils.py ```python import io import random import time from queue import Queue from threading import Thread from whitevest.lib.atomic_buffer import AtomicBuffer from whitevest.lib.atomic_value import AtomicValue from whitevest.lib.configuration import Configuration from whitevest.lib.const import TELEMETRY_TUPLE_LENGTH from whitevest.lib.utils import ( digest_next_sensor_reading, take_gps_reading, transmit_latest_readings, write_queue_log, write_sensor_log, ) class MockSerial: def __init__(self, line): self.line = line def readline(self): return self.line def test_write_queue_log(): outfile = io.StringIO("") data_queue = Queue() configuration = Configuration(None, dict(output_directory="./data")) while data_queue.qsize() < 10: data_queue.put((random.random(), random.random(), random.random())) write_queue_log(outfile, data_queue) contents = outfile.getvalue() assert contents assert len(contents.split("\n")) == 11 def test_take_gps_reading(): line = f"$GPGGA,134658.00,5106.9792,N,11402.3003,W,2,09,1.0,1048.47,M,-16.27,M,08,AAAA*60" sio = MockSerial(line) val = AtomicValue() take_gps_reading(sio, val) assert val.get_value() == (51.11632, -114.03833833333333, 2, 9) class MockRFM9X: def send(self, value): self.sent = value def test_digest_next_sensor_reading(): start_time = time.time() altimeter_value = [random.random() for _ in range(2)] gps_value = [random.random() for _ in range(4)] magnetometer_accelerometer_value = [random.random() for _ in range(6)] data_queue = Queue() current_reading = AtomicBuffer(1) now = digest_next_sensor_reading( start_time, data_queue, current_reading, gps_value, altimeter_value, magnetometer_accelerometer_value, ) logged = data_queue.get() expected_tuple = ( now - start_time, *altimeter_value, *magnetometer_accelerometer_value, *gps_value, ) assert logged assert logged == expected_tuple assert current_reading.read()[0] == expected_tuple assert len(logged) == TELEMETRY_TUPLE_LENGTH def test_write_sensor_log(): start_time = time.time() outfile = io.StringIO("") data_queue = Queue() while data_queue.qsize() < 100: data_queue.put((random.random(), random.random(), random.random())) continue_running = AtomicValue(True) thread = Thread( target=write_sensor_log, args=(start_time, outfile, data_queue, continue_running, continue_running), ) thread.start() time.sleep(5) continue_running.update(False) thread.join() contents = outfile.getvalue() assert contents assert len(contents.split("\n")) > 0 def test_transmit_latest_readings(): last_check = 1 readings_sent = 0 start_time = time.time() rfm9x = MockRFM9X() camera_is_running = AtomicValue(0.0) current_reading = AtomicBuffer(2) current_reading.put([random.random() for _ in range(TELEMETRY_TUPLE_LENGTH)]) current_reading.put([random.random() for _ in range(TELEMETRY_TUPLE_LENGTH)]) readings_sent_1, last_check_1 = transmit_latest_readings( camera_is_running, rfm9x, last_check, readings_sent, start_time, current_reading ) assert readings_sent_1 > readings_sent assert last_check < last_check_1 assert last_check_1 <= time.time() assert len(rfm9x.sent) == (TELEMETRY_TUPLE_LENGTH * 8 * 2) + 8 ``` #### File: whitevest/bin/air.py ```python import logging import os import time from queue import Queue from threading import Thread from whitevest.lib.atomic_buffer import AtomicBuffer from whitevest.lib.atomic_value import AtomicValue from whitevest.lib.configuration import Configuration from whitevest.lib.hardware import init_reset_button from whitevest.lib.utils import create_gps_thread from whitevest.threads.air import ( camera_thread, sensor_log_writing_loop, sensor_reading_loop, transmitter_thread, ) def main(): """Inboard data capture and transmission script""" # Load up the system configuration configuration = Configuration( os.getenv("AIR_CONFIG_FILE", None), Configuration.default_air_configuration ) # Queue to manage data synchronization between sensor reading, transmission, and data logging data_queue = Queue(1000) # Timestamp to use for log files and log saving cutoff start_time = time.time() # Thread safe place to store altitude reading current_readings = AtomicBuffer(50) # Holds the most recent GPS data gps_value = AtomicValue((0.0, 0.0, 0.0, 0.0)) # pcnt counter to runtime limit pcnt_to_limit = AtomicValue(0.0) # Thread safe place to store continue value continue_running = AtomicValue(True) # Thread safe place to store continue value continue_logging = AtomicValue(True) # Setup listener for reset button init_reset_button(configuration, continue_running) gps_thread = create_gps_thread(configuration, gps_value, continue_running) gps_thread.start() write_thread = Thread( target=sensor_log_writing_loop, args=( configuration, start_time, data_queue, continue_running, continue_logging, ), daemon=True, ) write_thread.start() camera_thread_handle = Thread( target=camera_thread, args=(configuration, start_time, continue_running, continue_logging), daemon=True, ) camera_thread_handle.start() transmitter_thread_handle = Thread( target=transmitter_thread, args=( configuration, start_time, current_readings, pcnt_to_limit, continue_running, ), daemon=True, ) transmitter_thread_handle.start() sensor_reading_thread = Thread( target=sensor_reading_loop, args=( configuration, start_time, data_queue, current_readings, gps_value, continue_running, ), daemon=True, ) sensor_reading_thread.start() runtime_limit = configuration.get("runtime_limit") while continue_running.get_value() and time.time() - start_time <= runtime_limit: pcnt_to_limit.update((time.time() - start_time) / runtime_limit) time.sleep(1) logging.info("Stopping write activities") continue_logging.update(False) write_thread.join() camera_thread_handle.join() pcnt_to_limit.update(1) logging.info("Write activities ended") gps_thread.join() transmitter_thread_handle.join() sensor_reading_thread.join() if __name__ == "__main__": main() ``` #### File: whitevest/lib/atomic_value.py ```python from threading import Lock class AtomicValue: """Thread-safe class for holding a value""" def __init__(self, value=None): """Initialize the class""" self.value = value self.lock = Lock() def try_update(self, value): """Try to update the latest value without blocking""" # pylint: disable=bad-option-value,consider-using-with if self.lock.acquire(False): self.value = value self.lock.release() return True return False def update(self, value): """Block until we can write a value""" with self.lock: self.value = value def get_value(self): """Block until the latest value is available""" with self.lock: return self.value ``` #### File: whitevest/lib/configuration.py ```python from typing import Dict import yaml from whitevest.lib.const import TESTING_MODE if not TESTING_MODE: import board from adafruit_blinka.microcontroller.bcm283x.pin import Pin else: class Pin: # pylint: disable=too-few-public-methods """Dummy class for when GPIO modules are not available""" class Configuration: """Class to manage system configuration""" def __init__(self, config_file: str, default_configuration): """Create a new configuration based on the supplied yml file path or a default config""" if config_file: try: with open(config_file, "r", encoding="utf8") as config_file_handle: self.config = yaml.full_load(config_file_handle) except: # pylint: disable=bare-except pass return self.config = default_configuration def get(self, key: str, default=None): """Get a configuration value""" return self.config.get(key, default) def get_device_configuration(self, device: str, key: str, default=None): """Get a device configuration value""" if device in self.config.get("devices", {}): return self.config["devices"][device].get(key, default) return None def get_pin_assignments(self, device: str) -> Dict[str, Pin]: """Get a set of pin assignments for a device""" if device in self.config.get("devices", {}): config = self.config["devices"][device] assignments = {} for name in config: assignments[name] = getattr(board, config[name]) return assignments return None default_air_configuration = dict( runtime_limit=600, output_directory="./data", devices=dict( rfm9x=dict( sck="SCK", mosi="MOSI", miso="MISO", cs="D5", reset="CE1", ), bmp3xx=dict( scl="SCL", sda="SDA", ), lsm303=dict( scl="SCL", sda="SDA", ), reset=dict(pin="16"), gps=dict(serial_device="/dev/ttyAMA0"), ), ) ```
{ "source": "johnjones4/mqtt2kasa", "score": 2 }
#### File: mqtt2kasa/mqtt2kasa/log.py ```python import logging from logging.handlers import SysLogHandler from os import path def getLogger(): return logging.getLogger("mqtt2kasa") def initLogger(testing=False): logger = getLogger() logger.setLevel(logging.INFO) log_to_console() if testing: set_log_level_debug() def log_to_console(): consoleHandler = logging.StreamHandler() format = "%(asctime)s %(module)12s:%(lineno)-d %(levelname)-8s %(message)s" formatter = logging.Formatter(format) consoleHandler.setFormatter(formatter) getLogger().addHandler(consoleHandler) def set_log_level_debug(): getLogger().setLevel(logging.DEBUG) ```
{ "source": "johnjones4/Weather-Ship-Tango-Delta", "score": 3 }
#### File: eink/weatherstation/render.py ```python from PIL import Image, ImageDraw, ImageFont from datetime import datetime import urllib.request import json DIRECTION_UP = 0 DIRECTION_DOWN = 1 DIRECTION_NONE = 2 FONT_PATH = "./Questrial-Regular.ttf" API_PATH = "http://weather.apps.local.johnjonesfour.com/api/weather/average?range=10" def fetch_weather(): try: with urllib.request.urlopen(API_PATH) as response: return json.loads(response.read()) except: return None def get_direction(old_value, new_value): if old_value < new_value: return DIRECTION_UP elif old_value > new_value: return DIRECTION_DOWN else: return DIRECTION_NONE def do_conversion(key, value): if key == "avg_wind_speed" or key == "min_wind_speed" or key == "max_wind_speed": val = value * 2.237 return round(val, 1) if val < 10 else int(round(val)) elif key == "temperature": return int(round(value * 1.8 + 32)) elif key == "relative_humidity": return int(round(value)) elif key == "pressure": return int(round(value / 3386 * 100)) else: return int(round(value)) def convert_weather(weather): outcome = dict() for key in weather: outcome[key] = dict( value= do_conversion(key, weather[key]["current_value"]), direction= get_direction(weather[key]["previous_value"], weather[key]["current_value"]) ) return outcome def draw_datapoint(draw, direction, value, label, x, y, width, height): value_height = int(height * 0.55) direction_height = int(value_height * 0.4) top_padding = int(height * 0.15) label_padding = int(height * 0.05) label_height = int(height * 0.11) direction_text = "↑" if direction == DIRECTION_UP else "↓" if direction == DIRECTION_DOWN else None value_fnt = ImageFont.truetype(FONT_PATH, value_height) value_width, value_height = draw.textsize(value, font=value_fnt) value_x = x + int((width - value_width) / 2) value_y = y + top_padding draw.text((value_x, value_y), value, font=value_fnt, fill=0) if direction_text: direction_fnt = ImageFont.truetype(FONT_PATH, direction_height) direction_width, direction_height = draw.textsize(direction_text, font=direction_fnt) direction_x = value_x - direction_width direction_y = value_y + int((value_height - direction_width) / 2) draw.text((direction_x, direction_y), direction_text, font=direction_fnt, fill=0) label_fnt = ImageFont.truetype(FONT_PATH, label_height) label_width, _ = draw.textsize(label, font=label_fnt) draw.text((x + int((width - label_width) / 2), y + top_padding + value_height + label_padding), label, font=label_fnt, fill=0) def draw_weather(weather, width, height): subpoints = [ (weather["max_wind_speed"]["direction"], str(weather["max_wind_speed"]["value"]), "Wind Gusts (MPH)"), (weather["relative_humidity"]["direction"], f"{weather['relative_humidity']['value']}%", "Humidity"), (weather["pressure"]["direction"], str(weather["pressure"]["value"]), "Pressure (inHg)"), ] image = Image.new("1", (width, height), 255) draw = ImageDraw.Draw(image) # draw.rectangle((0, 0, width, height), fill=1) subpoint_width = int(width / 3.0) subpoint_x = width - subpoint_width draw.line((subpoint_x, 0, subpoint_x, height), fill=0) subpoint_spacing = height / len(subpoints) for i, (direction, value, label) in enumerate(subpoints): y = int(i * subpoint_spacing) if i != len(subpoints) - 1: draw.line((subpoint_x, y + subpoint_spacing, subpoint_x + subpoint_width, y + subpoint_spacing), fill=0) draw_datapoint(draw, direction, value, label, subpoint_x, y, subpoint_width, subpoint_spacing) draw_datapoint(draw, weather["temperature"]["direction"], f"{weather['temperature']['value']}°", "Temperature (F)", 0, 0, subpoint_x, height) date_padding = int(height * 0.01) date_height = int(height * 0.04) date_fnt = ImageFont.truetype(FONT_PATH, date_height) now = datetime.now() date_str = now.strftime("%A, %d. %B %Y %I:%M%p") date_x = date_padding date_y = height - date_height - date_padding draw.text((date_x, date_y), date_str, font=date_fnt, fill=0) return image def render(width, height): raw_weather = fetch_weather() if raw_weather: weather = convert_weather(raw_weather) return draw_weather(weather, width, height) else: return Image.open("./fallback.png") ```
{ "source": "johnjoo1/scrape-linkedin", "score": 3 }
#### File: scrape-linkedin/pylinkedin/cli.py ```python import click from .scraper import LinkedinItem from pprint import pprint def read_text(file_path): with open(file_path, 'r') as f: return f.read() @click.command() @click.option('--url', '-u', type=str, help='Url of the profile you want to scrape') @click.option('--attribute', '-a', type=click.Choice(LinkedinItem.attributes_key), default=None, help='Display only a specific attribute, display everything by default') @click.option('--file_path', '-f', type=click.Path(exists=True), default=None, help='Raw path to html of the profile you want to scrape') def scrape(url, attribute, file_path): """Simple command line to scrape a profile""" if file_path is not None: linkedin_profile = LinkedinItem(html_string=read_text(file_path)) else: linkedin_profile = LinkedinItem(url=url) if attribute is not None: pprint(linkedin_profile.__getattribute__(attribute)) else: pprint(linkedin_profile.to_dict()) ``` #### File: scrape-linkedin/pylinkedin/utils.py ```python import random #import json import time import requests from lxml import html from .exceptions import ServerIpBlacklisted, BadStatusCode, ProfileNotFound ######################################################### # Helpers ######################################################### # Requests with rotating proxies and user-agent def to_requests_format(ip, port): """ Returns the proxy format for requests package """ return {'http': 'http://{}:{}'.format(ip, port), 'https': 'http://{}:{}'.format(ip, port)} class CustomRequest(object): """ This is a Class based on top of the requests package providing the ability to easily to request rotating user-agent and/or proxies Arguments --------- list_user_agent: a list of user-agent by default the list provided in the beginning of the program list_proxies : a list of dictionnary of proxies : [{'https': 'https://172.16.31.10:8080'},{...},], default [] Returns ------- A class with a get method that is just a customization of requests.get() """ def __init__(self, list_user_agent=None, rotate_ua=False, list_proxies=None): if not list_user_agent: self.list_user_agent = [ "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1" "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6", "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5", "Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24", "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24" ] else: self.list_user_agent = list_user_agent self.list_proxies = [] if not list_proxies else list_proxies self.rotate_ua = rotate_ua # GoogleBot by default self.headers = {'User-Agent': "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1", 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3', 'Accept-Encoding': 'none', 'Accept-Language': 'en-US,en;q=0.8', 'Connection': 'keep-alive'} self.proxy = {} def set_random_ua(self): self.headers['User-Agent'] = random.choice(self.list_user_agent) def set_random_proxy(self): self.proxy = random.choice(self.list_proxies) def _get(self, url, *args, **kwargs): """ Get helpers to handle exceptions """ try: r = requests.get(url=url, *args, **kwargs) if r.status_code == 999: msg_error = "Linkedin blacklists ips for unauthentified http requests, Aws, Digital Ocean" raise ServerIpBlacklisted(msg_error) elif r.status_code == 404: raise ProfileNotFound("The following url :{} can not be publicely found on Linkedin (404 error)".format(url)) elif r.status_code != 200: raise BadStatusCode("The status code of the get requests is: {}".format(r.status_code)) return r except requests.exceptions.Timeout: raise Exception("Request timeout") except requests.exceptions.RequestException as e: print(e) def get(self, url, *args, **kwargs): if self.rotate_ua is True: self.set_random_ua() if self.list_proxies: self.set_random_proxy() return self._get(url=url, headers=self.headers, proxies=self.proxy, *args, **kwargs) else: return self._get(url=url, headers=self.headers, *args, **kwargs) # Read and write to a pretty json def random_delay(static=0.5, variable=1): time.sleep(static + variable * random.random()) def write_to_json(json_file_path, data): with open(json_file_path, "a") as f: f.write("{}\n".format(json.dumps(data))) def read_from_json(json_file_path): data = [] with open(json_file_path, "r") as f: for line in f: data.append(json.loads(line)) return data # Others def create_search_url(list_keyword): return '%20'.join(list_keyword) ```
{ "source": "JohnJorgensen19/salesforce", "score": 2 }
#### File: salesforce/backend/client.py ```python from salesforce import DJANGO_18_PLUS from django.core.exceptions import ImproperlyConfigured if DJANGO_18_PLUS: from django.db.backends.base.client import BaseDatabaseClient else: from django.db.backends import BaseDatabaseClient def complain(*args, **kwargs): raise ImproperlyConfigured("DatabaseClient: Not yet implemented for the Salesforce backend.") class DatabaseClient(BaseDatabaseClient): runshell = complain ``` #### File: salesforce/backend/test_helpers.py ```python from django.conf import settings from salesforce import router import uuid from unittest import skip, skipUnless, expectedFailure # random string for tests that accidentally run concurrent uid = '-' + str(uuid.uuid4())[:7] sf_alias = getattr(settings, 'SALESFORCE_DB_ALIAS', 'salesforce') default_is_sf = router.is_sf_database(sf_alias) current_user = settings.DATABASES[sf_alias]['USER'] def expectedFailureIf(condition): """Conditional 'expectedFailure' decorator for TestCase""" if condition: return expectedFailure else: return lambda func: func ```
{ "source": "johnjosephmorgan/espnet", "score": 2 }
#### File: espnet/test/test_transformer_decode.py ```python import numpy import pytest import torch from espnet.nets.pytorch_backend.transformer.decoder import Decoder from espnet.nets.pytorch_backend.transformer.mask import subsequent_mask @pytest.mark.parametrize("normalize_before", [True, False]) def test_decoder_cache(normalize_before): adim = 4 odim = 5 decoder = Decoder( odim=odim, attention_dim=adim, linear_units=3, num_blocks=2, normalize_before=normalize_before, dropout_rate=0.0) dlayer = decoder.decoders[0] memory = torch.randn(2, 5, adim) x = torch.randn(2, 5, adim) * 100 mask = subsequent_mask(x.shape[1]).unsqueeze(0) prev_mask = mask[:, :-1, :-1] decoder.eval() with torch.no_grad(): # layer-level test y = dlayer(x, mask, memory, None)[0] cache = dlayer(x[:, :-1], prev_mask, memory, None)[0] y_fast = dlayer(x, mask, memory, None, cache=cache)[0] numpy.testing.assert_allclose(y.numpy(), y_fast.numpy(), rtol=1e-5) # decoder-level test x = torch.randint(0, odim, x.shape[:2]) y, _ = decoder.forward_one_step(x, mask, memory) y_, cache = decoder.forward_one_step(x[:, :-1], prev_mask, memory, cache=decoder.init_state()) y_fast, _ = decoder.forward_one_step(x, mask, memory, cache=cache) numpy.testing.assert_allclose(y.numpy(), y_fast.numpy(), rtol=1e-5) if __name__ == "__main__": # benchmark with synth dataset from time import time import matplotlib.pyplot as plt adim = 4 odim = 5 decoder = Decoder( odim=odim, attention_dim=adim, linear_units=3, num_blocks=2, dropout_rate=0.0) dlayer = decoder.decoders[0] xlen = 100 xs = torch.randint(0, odim, (1, xlen)) memory = torch.randn(2, 500, adim) mask = subsequent_mask(xlen).unsqueeze(0) result = {"cached": [], "baseline": []} n_avg = 10 decoder.eval() for key, value in result.items(): cache = decoder.init_state() print(key) for i in range(xlen): x = xs[:, :i + 1] m = mask[:, :i + 1, :i + 1] start = time() for _ in range(n_avg): with torch.no_grad(): if key == "baseline": cache = None y, new_cache = decoder.forward_one_step(x, m, memory, cache=cache) if key == "cached": cache = new_cache dur = (time() - start) / n_avg value.append(dur) plt.plot(range(xlen), value, label=key) plt.xlabel("hypothesis length") plt.ylabel("average time [sec]") plt.grid() plt.legend() plt.savefig("benchmark.png") ```
{ "source": "johnjosephmorgan/kaldi", "score": 3 }
#### File: s5/local/prepare_data.py ```python import sys import os import argparse import subprocess import itertools from collections import defaultdict from pathlib import Path import numpy as np import pandas as pd class Segment: """ Field 5 (SAD segment label) can have one of the following values: S : speech segment NS : non-speech segment NT : "button-off" segment (not transmitted according to PTT log) RX : "button-off" segment (not transmitted according to RMS scan) Filenames: transceiver files: {iiiii}_{jjjjj}_{lng}_{c}.{type} where: {iiiii} is a 5-digit source audio identifier {jjjjj} is a 5-digit transmission session identifier {lng} is one of: alv: Levantine Arabic eng: American English fas: Farsi (Persian) pus: Pashto urd: Urdu {c} is one of: A B C D E F G H """ def __init__(self, fields): self.partition = fields[0] self.reco_id = fields[1] self.start_time = float(fields[2]) self.end_time = float(fields[3]) self.dur = self.end_time - self.start_time self.sad_label = fields[4] self.sad_provenance = fields[5] # self.speaker_id = fields[6] # self.sid_provenance = fields[7] # self.language_id = fields[8] self.language_id = fields[6] # self.lid_provenance = fields[9] self.lid_provenance = fields[7] # self.transcript = fields[10] # self.transcript_provenance = fields[11] rec_info = self.reco_id.split('_') if len(rec_info) == 3: src_audio_id = rec_info[0] lng = rec_info[1] src = rec_info[2] self.spk_id = src_audio_id elif len(rec_info) == 4: src_audio_id = rec_info[0] transmission_session_id = rec_info[1] lng = rec_info[2] channel = rec_info[3] self.spk_id = src_audio_id def groupby(iterable, keyfunc): """Wrapper around ``itertools.groupby`` which sorts data first.""" iterable = sorted(iterable, key=keyfunc) for key, group in itertools.groupby(iterable, keyfunc): yield key, group def read_annotations(file_path): segments = [] with open(file_path, 'r') as f: for line in f.readlines(): fields = line.strip().split() segments.append(Segment(fields)) return segments def find_audios(wav_path, file_list): # Get all .flac file names from audio directory wav_path = Path(wav_path) wavs_glob = wav_path.rglob('*.flac') wavs = [ w for w in wavs_glob ] keys = [ Path(wf).stem for wf in wavs ] data = {'key': keys, 'file_path': wavs} df_wav = pd.DataFrame(data) # Filter list to keep only those in annotations (for the specific data split) file_names_str = "|".join(file_list) df_wav = df_wav.loc[df_wav['key'].str.contains(file_names_str)].sort_values('key') return df_wav def write_wav(df_wav, output_path, bin_wav=True): with open(output_path + '/wav.scp', 'w') as f: for key,file_path in zip(df_wav['key'], df_wav['file_path']): key = key.split('.')[0] if bin_wav: f.write('%s sox %s -t wav - remix 1 | \n' % (key, file_path)) else: f.write('%s %s\n' % (key, file_path)) def write_output(segments, out_path, min_length): reco_and_spk_to_segs = defaultdict(list, {uid : list(g) for uid, g in groupby(segments, lambda x: (x.reco_id,x.spk_id))}) # write 5 places after the decimal point rttm_str = "SPEAKER {0} 1 {1:7.5f} {2:7.5f} <NA> <NA> {3} <NA> <NA>\n" with open(out_path+'/rttm.annotation','w') as rttm_writer: for uid in sorted(reco_and_spk_to_segs): segs = sorted(reco_and_spk_to_segs[uid], key=lambda x: x.start_time) reco_id, spk_id = uid for seg in segs: # skip the non-speech segments if seg.sad_label == 'NS': continue elif seg.sad_label == 'NT': continue elif seg.sad_label == 'RX': continue elif seg.dur >= min_length: rttm_writer.write(rttm_str.format(reco_id, seg.start_time, seg.dur, spk_id)) else: print('Bad segment', seg) def make_sad_data(annotations, wav_path, output_path, min_length): if not os.path.exists(output_path): os.makedirs(output_path) print ('read annotations to get segments') segments = read_annotations(annotations) reco_to_segs = defaultdict(list, {reco_id : list(g) for reco_id, g in groupby(segments, lambda x: x.reco_id)}) file_list = list(reco_to_segs.keys()) print('read audios') df_wav = find_audios(wav_path, file_list) print('make wav.scp') write_wav(df_wav, output_path) print('write annotation rttm') write_output(segments, output_path, min_length) if __name__ == "__main__": parser=argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, fromfile_prefix_chars='@', description='Prepare rats_sad corpus for Speech Activity Detection') parser.add_argument('annotations', help="Output path to annotations file") parser.add_argument('wav_path', help="Path to source rats_sad corpus audio files directory") parser.add_argument('output_path', help="Path to data directory") parser.add_argument('--min-length', default=0.0001, type=float, help="minimum length of segments to create") args=parser.parse_args() make_sad_data(**vars(args)) ```
{ "source": "johnj/salt", "score": 2 }
#### File: salt/states/win_lgpo.py ```python from __future__ import absolute_import, unicode_literals, print_function import logging # Import salt libs import salt.utils.data import salt.utils.dictdiffer import salt.utils.json # Import 3rd party libs from salt.ext import six log = logging.getLogger(__name__) __virtualname__ = 'lgpo' __func_alias__ = {'set_': 'set'} def __virtual__(): ''' load this state if the win_lgpo module exists ''' return __virtualname__ if 'lgpo.set' in __salt__ else False def _compare_policies(new_policy, current_policy): ''' Helper function that returns ``True`` if the policies are the same, otherwise ``False`` ''' # Compared dicts, lists, and strings if isinstance(new_policy, six.string_types): return new_policy == current_policy elif isinstance(new_policy, list): if isinstance(current_policy, list): return salt.utils.data.compare_lists(new_policy, current_policy) == {} else: return False elif isinstance(new_policy, dict): if isinstance(current_policy, dict): return salt.utils.data.compare_dicts(new_policy, current_policy) == {} else: return False def set_(name, setting=None, policy_class=None, computer_policy=None, user_policy=None, cumulative_rights_assignments=True, adml_language='en-US'): ''' Ensure the specified policy is set name the name of a single policy to configure setting the configuration setting for the single named policy if this argument is used the computer_policy/user_policy arguments will be ignored policy_class the policy class of the single named policy to configure this can "machine", "user", or "both" computer_policy a dict of policyname: value pairs of a set of computer policies to configure if this argument is used, the name/setting/policy_class arguments will be ignored user_policy a dict of policyname: value pairs of a set of user policies to configure if this argument is used, the name/setting/policy_class arguments will be ignored cumulative_rights_assignments determine if any user right assignment policies specified will be cumulative or explicit adml_language the adml language to use for AMDX policy data/display conversions ''' ret = {'name': name, 'result': True, 'changes': {}, 'comment': ''} policy_classes = ['machine', 'computer', 'user', 'both'] if not setting and not computer_policy and not user_policy: msg = 'At least one of the parameters setting, computer_policy, or user_policy' msg = msg + ' must be specified.' ret['result'] = False ret['comment'] = msg return ret if setting and not policy_class: msg = 'A single policy setting was specified but the policy_class was not specified.' ret['result'] = False ret['comment'] = msg return ret if setting and (computer_policy or user_policy): msg = 'The setting and computer_policy/user_policy parameters are mutually exclusive. Please' msg = msg + ' specify either a policy name and setting or a computer_policy and/or user_policy' msg = msg + ' dict' ret['result'] = False ret['comment'] = msg return ret if policy_class and policy_class.lower() not in policy_classes: msg = 'The policy_class parameter must be one of the following: {0}' ret['result'] = False ret['comment'] = msg return ret if not setting: if computer_policy and user_policy: policy_class = 'both' elif computer_policy: policy_class = 'machine' elif user_policy: policy_class = 'user' if computer_policy and not isinstance(computer_policy, dict): msg = 'The computer_policy must be specified as a dict.' ret['result'] = False ret['comment'] = msg return ret if user_policy and not isinstance(user_policy, dict): msg = 'The user_policy must be specified as a dict.' ret['result'] = False ret['comment'] = msg return ret else: user_policy = {} computer_policy = {} if policy_class.lower() == 'both': user_policy[name] = setting computer_policy[name] = setting elif policy_class.lower() == 'user': user_policy[name] = setting elif policy_class.lower() == 'machine' or policy_class.lower() == 'computer': computer_policy[name] = setting pol_data = {} pol_data['user'] = {'output_section': 'User Configuration', 'requested_policy': user_policy, 'policy_lookup': {}} pol_data['machine'] = {'output_section': 'Computer Configuration', 'requested_policy': computer_policy, 'policy_lookup': {}} for p_class, p_data in six.iteritems(pol_data): if p_data['requested_policy']: for policy_name, policy_setting in six.iteritems(p_data['requested_policy']): lookup = __salt__['lgpo.get_policy_info'](policy_name, p_class, adml_language=adml_language) if lookup['policy_found']: pol_data[p_class]['policy_lookup'][policy_name] = lookup else: ret['comment'] = ' '.join([ret['comment'], lookup['message']]) ret['result'] = False if not ret['result']: return ret current_policy = __salt__['lgpo.get'](policy_class=policy_class, adml_language=adml_language, hierarchical_return=False) log.debug('current policy == %s', current_policy) # compare policies policy_changes = [] for policy_section, policy_data in six.iteritems(pol_data): pol_id = None if policy_data and policy_data['output_section'] in current_policy: for policy_name, policy_setting in six.iteritems(policy_data['requested_policy']): currently_set = False # Check Case sensitive first (faster) if policy_name in current_policy[policy_data['output_section']]: currently_set = True pol_id = policy_name # Check case insensitive elif policy_name.lower() in (k.lower() for k in current_policy[policy_data['output_section']]): for p_name in current_policy[policy_data['output_section']]: if policy_name.lower() == p_name.lower(): currently_set = True pol_id = p_name break # Check aliases else: for alias in policy_data['policy_lookup'][policy_name]['policy_aliases']: log.debug('checking alias %s', alias) if alias in current_policy[policy_data['output_section']]: currently_set = True pol_id = alias break if currently_set: # compare log.debug('need to compare %s from ' 'current/requested policy', policy_name) changes = False requested_policy_json = salt.utils.json.dumps(policy_data['requested_policy'][policy_name], sort_keys=True).lower() current_policy_json = salt.utils.json.dumps(current_policy[policy_data['output_section']][pol_id], sort_keys=True).lower() requested_policy_check = salt.utils.json.loads(requested_policy_json) current_policy_check = salt.utils.json.loads(current_policy_json) # Are the requested and current policies identical policies_are_equal = _compare_policies( requested_policy_check, current_policy_check) if not policies_are_equal: additional_policy_comments = [] if policy_data['policy_lookup'][policy_name]['rights_assignment'] and cumulative_rights_assignments: for user in policy_data['requested_policy'][policy_name]: if user not in current_policy[policy_data['output_section']][pol_id]: changes = True else: additional_policy_comments.append('"{0}" is already granted the right'.format(user)) else: changes = True if changes: log.debug('%s current policy != requested policy', policy_name) log.debug( 'we compared %s to %s', requested_policy_json, current_policy_json ) policy_changes.append(policy_name) else: if additional_policy_comments: ret['comment'] = '"{0}" is already set ({1})\n'.format(policy_name, ', '.join(additional_policy_comments)) else: ret['comment'] = '"{0}" is already set\n'.format(policy_name) + ret['comment'] else: log.debug('%s current setting matches ' 'the requested setting', policy_name) ret['comment'] = '"{0}" is already set\n'.format(policy_name) + ret['comment'] else: policy_changes.append(policy_name) log.debug('policy %s is not set, we will configure it', policy_name) if __opts__['test']: if policy_changes: ret['result'] = None ret['comment'] = 'The following policies are set to change:\n{0}'.format( '\n'.join(policy_changes)) else: ret['comment'] = 'All specified policies are properly configured' else: if policy_changes: _ret = __salt__['lgpo.set'](computer_policy=computer_policy, user_policy=user_policy, cumulative_rights_assignments=cumulative_rights_assignments, adml_language=adml_language) if _ret: ret['result'] = _ret ret['changes'] = salt.utils.dictdiffer.deep_diff( current_policy, __salt__['lgpo.get'](policy_class=policy_class, adml_language=adml_language, hierarchical_return=False)) if ret['changes']: ret['comment'] = 'The following policies changed:\n{0}' \ ''.format('\n'.join(policy_changes)) else: ret['comment'] = 'The following policies are in the correct state:\n{0}' \ ''.format('\n'.join(policy_changes)) else: ret['result'] = False ret['comment'] = 'Errors occurred while attempting to configure policies: {0}'.format(_ret) return ret ``` #### File: cloud/clouds/test_linode.py ```python from __future__ import absolute_import, print_function, unicode_literals # Create the cloud instance name to be used throughout the tests from tests.integration.cloud.helpers.cloud_test_base import CloudTest, TIMEOUT class LinodeTest(CloudTest): ''' Integration tests for the Linode cloud provider in Salt-Cloud ''' PROVIDER = 'linode' REQUIRED_PROVIDER_CONFIG_ITEMS = ('apikey', 'password') def test_instance(self): ''' Test creating an instance on Linode ''' # check if instance with salt installed returned ret_str = self.run_cloud('-p linode-test {0}'.format(self.instance_name), timeout=TIMEOUT) self.assertInstanceExists(ret_str) self.assertDestroyInstance() ``` #### File: integration/modules/test_supervisord.py ```python from __future__ import absolute_import, unicode_literals, print_function import os import time import subprocess # Import Salt Testing libs from tests.support.case import ModuleCase from tests.support.unit import skipIf from tests.support.paths import TMP # Import salt libs import salt.utils.path from salt.modules.virtualenv_mod import KNOWN_BINARY_NAMES # Import 3rd-party libs from salt.ext import six @skipIf(six.PY3, 'supervisor does not work under python 3') @skipIf(salt.utils.path.which_bin(KNOWN_BINARY_NAMES) is None, 'virtualenv not installed') @skipIf(salt.utils.path.which('supervisorctl') is None, 'supervisord not installed') class SupervisordModuleTest(ModuleCase): ''' Validates the supervisorctl functions. ''' def setUp(self): super(SupervisordModuleTest, self).setUp() self.venv_test_dir = os.path.join(TMP, 'supervisortests') self.venv_dir = os.path.join(self.venv_test_dir, 'venv') self.supervisor_sock = os.path.join(self.venv_dir, 'supervisor.sock') if not os.path.exists(self.venv_dir): os.makedirs(self.venv_test_dir) self.run_function('virtualenv.create', [self.venv_dir]) self.run_function( 'pip.install', [], pkgs='supervisor', bin_env=self.venv_dir) self.supervisord = os.path.join(self.venv_dir, 'bin', 'supervisord') if not os.path.exists(self.supervisord): self.skipTest('Failed to install supervisor in test virtualenv') self.supervisor_conf = os.path.join(self.venv_dir, 'supervisor.conf') def start_supervisord(self, autostart=True): self.run_state( 'file.managed', name=self.supervisor_conf, source='salt://supervisor.conf', template='jinja', context={ 'supervisor_sock': self.supervisor_sock, 'virtual_env': self.venv_dir, 'autostart': autostart } ) if not os.path.exists(self.supervisor_conf): self.skipTest('failed to create supervisor config file') self.supervisor_proc = subprocess.Popen( [self.supervisord, '-c', self.supervisor_conf] ) if self.supervisor_proc.poll() is not None: self.skipTest('failed to start supervisord') timeout = 10 while not os.path.exists(self.supervisor_sock): if timeout == 0: self.skipTest( 'supervisor socket not found - failed to start supervisord' ) break else: time.sleep(1) timeout -= 1 def tearDown(self): if hasattr(self, 'supervisor_proc') and \ self.supervisor_proc.poll() is not None: self.run_function( 'supervisord.custom', ['shutdown'], conf_file=self.supervisor_conf, bin_env=self.venv_dir) self.supervisor_proc.wait() del self.venv_dir del self.venv_test_dir del self.supervisor_sock del self.supervisord del self.supervisor_conf def test_start_all(self): ''' Start all services when they are not running. ''' self.start_supervisord(autostart=False) ret = self.run_function( 'supervisord.start', [], conf_file=self.supervisor_conf, bin_env=self.venv_dir) self.assertIn('sleep_service: started', ret) self.assertIn('sleep_service2: started', ret) def test_start_all_already_running(self): ''' Start all services when they are running. ''' self.start_supervisord(autostart=True) ret = self.run_function( 'supervisord.start', [], conf_file=self.supervisor_conf, bin_env=self.venv_dir ) self.assertEqual(ret, '') def test_start_one(self): ''' Start a specific service that is not running. ''' self.start_supervisord(autostart=False) ret = self.run_function( 'supervisord.start', ['sleep_service'], conf_file=self.supervisor_conf, bin_env=self.venv_dir) self.assertEqual(ret, 'sleep_service: started') def test_start_one_already_running(self): ''' Try to start a specific service that is running. ''' self.start_supervisord(autostart=True) ret = self.run_function( 'supervisord.start', ['sleep_service'], conf_file=self.supervisor_conf, bin_env=self.venv_dir) self.assertEqual(ret, 'sleep_service: ERROR (already started)') def test_restart_all(self): ''' Restart all services when they are running. ''' self.start_supervisord(autostart=True) ret = self.run_function( 'supervisord.restart', [], conf_file=self.supervisor_conf, bin_env=self.venv_dir) self.assertIn('sleep_service: stopped', ret) self.assertIn('sleep_service2: stopped', ret) self.assertIn('sleep_service: started', ret) self.assertIn('sleep_service2: started', ret) def test_restart_all_not_running(self): ''' Restart all services when they are not running. ''' self.start_supervisord(autostart=False) ret = self.run_function( 'supervisord.restart', [], conf_file=self.supervisor_conf, bin_env=self.venv_dir) # These 2 services might return in different orders so test separately self.assertIn('sleep_service: started', ret) self.assertIn('sleep_service2: started', ret) def test_restart_one(self): ''' Restart a specific service that is running. ''' self.start_supervisord(autostart=True) ret = self.run_function( 'supervisord.restart', ['sleep_service'], conf_file=self.supervisor_conf, bin_env=self.venv_dir) self.assertEqual(ret, 'sleep_service: stopped\nsleep_service: started') def test_restart_one_not_running(self): ''' Restart a specific service that is not running. ''' self.start_supervisord(autostart=False) ret = self.run_function( 'supervisord.restart', ['sleep_service'], conf_file=self.supervisor_conf, bin_env=self.venv_dir) self.assertIn('sleep_service: ERROR (not running)', ret) self.assertIn('sleep_service: started', ret) def test_stop_all(self): ''' Stop all services when they are running. ''' self.start_supervisord(autostart=True) ret = self.run_function( 'supervisord.stop', [], conf_file=self.supervisor_conf, bin_env=self.venv_dir) self.assertIn('sleep_service: stopped', ret) self.assertIn('sleep_service2: stopped', ret) def test_stop_all_not_running(self): ''' Stop all services when they are not running. ''' self.start_supervisord(autostart=False) ret = self.run_function( 'supervisord.stop', [], conf_file=self.supervisor_conf, bin_env=self.venv_dir) self.assertEqual(ret, '') def test_stop_one(self): ''' Stop a specific service that is running. ''' self.start_supervisord(autostart=True) ret = self.run_function( 'supervisord.stop', ['sleep_service'], conf_file=self.supervisor_conf, bin_env=self.venv_dir) self.assertEqual(ret, 'sleep_service: stopped') def test_stop_one_not_running(self): ''' Stop a specific service that is not running. ''' self.start_supervisord(autostart=False) ret = self.run_function( 'supervisord.stop', ['sleep_service'], conf_file=self.supervisor_conf, bin_env=self.venv_dir) self.assertEqual(ret, 'sleep_service: ERROR (not running)') def test_status_all(self): ''' Status for all services ''' self.start_supervisord(autostart=True) ret = self.run_function( 'supervisord.status', [], conf_file=self.supervisor_conf, bin_env=self.venv_dir) self.assertEqual(sorted(ret), ['sleep_service', 'sleep_service2']) def test_status_one(self): ''' Status for a specific service. ''' self.start_supervisord(autostart=True) ret = self.run_function( 'supervisord.status', ['sleep_service'], conf_file=self.supervisor_conf, bin_env=self.venv_dir) self.assertTrue(ret) ``` #### File: unit/modules/test_win_lgpo.py ```python from __future__ import absolute_import, unicode_literals, print_function # Import Salt Testing Libs from tests.support.unit import TestCase # Import Salt Libs import salt.modules.win_lgpo as win_lgpo class WinSystemTestCase(TestCase): ''' Test cases for salt.modules.win_lgpo ''' encoded_null = chr(0).encode('utf-16-le') def test__encode_string(self): ''' ``_encode_string`` should return a null terminated ``utf-16-le`` encoded string when a string value is passed ''' encoded_value = b''.join(['Salt is awesome'.encode('utf-16-le'), self.encoded_null]) value = win_lgpo._encode_string('Salt is awesome') self.assertEqual(value, encoded_value) def test__encode_string_empty_string(self): ''' ``_encode_string`` should return an encoded null when an empty string value is passed ''' value = win_lgpo._encode_string('') self.assertEqual(value, self.encoded_null) def test__encode_string_error(self): ''' ``_encode_string`` should raise an error if a non-string value is passed ''' self.assertRaises(TypeError, win_lgpo._encode_string, [1]) test_list = ['item1', 'item2'] self.assertRaises(TypeError, win_lgpo._encode_string, [test_list]) test_dict = {'key1': 'value1', 'key2': 'value2'} self.assertRaises(TypeError, win_lgpo._encode_string, [test_dict]) def test__encode_string_none(self): ''' ``_encode_string`` should return an encoded null when ``None`` is passed ''' value = win_lgpo._encode_string(None) self.assertEqual(value, self.encoded_null) ``` #### File: unit/states/test_boto_cloudtrail.py ```python from __future__ import absolute_import, print_function, unicode_literals import logging import random import string import logging # Import Salt Testing libs from tests.support.mixins import LoaderModuleMockMixin from tests.support.unit import skipIf, TestCase from tests.support.mock import ( MagicMock, NO_MOCK, NO_MOCK_REASON, patch ) # Import Salt libs import salt.config import salt.loader from salt.utils.versions import LooseVersion # pylint: disable=import-error,no-name-in-module,unused-import from tests.unit.modules.test_boto_cloudtrail import BotoCloudTrailTestCaseMixin # Import 3rd-party libs from salt.ext.six.moves import range # pylint: disable=import-error,redefined-builtin try: import boto import boto3 from botocore.exceptions import ClientError HAS_BOTO = True except ImportError: HAS_BOTO = False # pylint: enable=import-error,no-name-in-module,unused-import # Import Salt Libs import salt.states.boto_cloudtrail as boto_cloudtrail # the boto_cloudtrail module relies on the connect_to_region() method # which was added in boto 2.8.0 # https://github.com/boto/boto/commit/33ac26b416fbb48a60602542b4ce15dcc7029f12 required_boto3_version = '1.2.1' log = logging.getLogger(__name__) def _has_required_boto(): ''' Returns True/False boolean depending on if Boto is installed and correct version. ''' if not HAS_BOTO: return False elif LooseVersion(boto3.__version__) < LooseVersion(required_boto3_version): return False else: return True if _has_required_boto(): region = 'us-east-1' access_key = '<KEY>' secret_key = '<KEY>' conn_parameters = {'region': region, 'key': access_key, 'keyid': secret_key, 'profile': {}} error_message = 'An error occurred (101) when calling the {0} operation: Test-defined error' not_found_error = ClientError({ 'Error': { 'Code': 'TrailNotFoundException', 'Message': "Test-defined error" } }, 'msg') error_content = { 'Error': { 'Code': 101, 'Message': "Test-defined error" } } trail_ret = dict(Name='testtrail', IncludeGlobalServiceEvents=True, KmsKeyId=None, LogFileValidationEnabled=False, S3BucketName='auditinfo', TrailARN='arn:aws:cloudtrail:us-east-1:214351231622:trail/testtrail') status_ret = dict(IsLogging=False, LatestCloudWatchLogsDeliveryError=None, LatestCloudWatchLogsDeliveryTime=None, LatestDeliveryError=None, LatestDeliveryTime=None, LatestDigestDeliveryError=None, LatestDigestDeliveryTime=None, LatestNotificationError=None, LatestNotificationTime=None, StartLoggingTime=None, StopLoggingTime=None) @skipIf(HAS_BOTO is False, 'The boto module must be installed.') @skipIf(_has_required_boto() is False, 'The boto3 module must be greater than' ' or equal to version {0}' .format(required_boto3_version)) @skipIf(NO_MOCK, NO_MOCK_REASON) class BotoCloudTrailStateTestCaseBase(TestCase, LoaderModuleMockMixin): conn = None def setup_loader_modules(self): ctx = {} utils = salt.loader.utils( self.opts, whitelist=['boto', 'boto3', 'args', 'systemd', 'path', 'platform', 'reg'], context=ctx) serializers = salt.loader.serializers(self.opts) self.funcs = funcs = salt.loader.minion_mods(self.opts, context=ctx, utils=utils, whitelist=['boto_cloudtrail']) self.salt_states = salt.loader.states(opts=self.opts, functions=funcs, utils=utils, whitelist=['boto_cloudtrail'], serializers=serializers) return { boto_cloudtrail: { '__opts__': self.opts, '__salt__': funcs, '__utils__': utils, '__states__': self.salt_states, '__serializers__': serializers, } } @classmethod def setUpClass(cls): cls.opts = salt.config.DEFAULT_MINION_OPTS.copy() cls.opts['grains'] = salt.loader.grains(cls.opts) @classmethod def tearDownClass(cls): del cls.opts # Set up MagicMock to replace the boto3 session def setUp(self): self.addCleanup(delattr, self, 'funcs') self.addCleanup(delattr, self, 'salt_states') # Set up MagicMock to replace the boto3 session # connections keep getting cached from prior tests, can't find the # correct context object to clear it. So randomize the cache key, to prevent any # cache hits conn_parameters['key'] = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(50)) self.patcher = patch('boto3.session.Session') self.addCleanup(self.patcher.stop) self.addCleanup(delattr, self, 'patcher') mock_session = self.patcher.start() session_instance = mock_session.return_value self.conn = MagicMock() self.addCleanup(delattr, self, 'conn') session_instance.client.return_value = self.conn class BotoCloudTrailTestCase(BotoCloudTrailStateTestCaseBase, BotoCloudTrailTestCaseMixin): ''' TestCase for salt.modules.boto_cloudtrail state.module ''' def test_present_when_trail_does_not_exist(self): ''' Tests present on a trail that does not exist. ''' self.conn.get_trail_status.side_effect = [not_found_error, status_ret] self.conn.create_trail.return_value = trail_ret self.conn.describe_trails.return_value = {'trailList': [trail_ret]} with patch.dict(self.funcs, {'boto_iam.get_account_id': MagicMock(return_value='1234')}): result = self.salt_states['boto_cloudtrail.present']( 'trail present', Name=trail_ret['Name'], S3BucketName=trail_ret['S3BucketName']) self.assertTrue(result['result']) self.assertEqual(result['changes']['new']['trail']['Name'], trail_ret['Name']) def test_present_when_trail_exists(self): self.conn.get_trail_status.return_value = status_ret self.conn.create_trail.return_value = trail_ret self.conn.describe_trails.return_value = {'trailList': [trail_ret]} with patch.dict(self.funcs, {'boto_iam.get_account_id': MagicMock(return_value='1234')}): result = self.salt_states['boto_cloudtrail.present']( 'trail present', Name=trail_ret['Name'], S3BucketName=trail_ret['S3BucketName'], LoggingEnabled=False) self.assertTrue(result['result']) self.assertEqual(result['changes'], {}) def test_present_with_failure(self): self.conn.get_trail_status.side_effect = [not_found_error, status_ret] self.conn.create_trail.side_effect = ClientError(error_content, 'create_trail') with patch.dict(self.funcs, {'boto_iam.get_account_id': MagicMock(return_value='1234')}): result = self.salt_states['boto_cloudtrail.present']( 'trail present', Name=trail_ret['Name'], S3BucketName=trail_ret['S3BucketName'], LoggingEnabled=False) self.assertFalse(result['result']) self.assertTrue('An error occurred' in result['comment']) def test_absent_when_trail_does_not_exist(self): ''' Tests absent on a trail that does not exist. ''' self.conn.get_trail_status.side_effect = not_found_error result = self.salt_states['boto_cloudtrail.absent']('test', 'mytrail') self.assertTrue(result['result']) self.assertEqual(result['changes'], {}) def test_absent_when_trail_exists(self): self.conn.get_trail_status.return_value = status_ret result = self.salt_states['boto_cloudtrail.absent']('test', trail_ret['Name']) self.assertTrue(result['result']) self.assertEqual(result['changes']['new']['trail'], None) def test_absent_with_failure(self): self.conn.get_trail_status.return_value = status_ret self.conn.delete_trail.side_effect = ClientError(error_content, 'delete_trail') result = self.salt_states['boto_cloudtrail.absent']('test', trail_ret['Name']) self.assertFalse(result['result']) self.assertTrue('An error occurred' in result['comment']) ```
{ "source": "john-judge/FitTest", "score": 3 }
#### File: FitTest/source/dynamic_fit_unit.py ```python from source.field import Field class Position: def __init__(self, position_name, default_value, bounds): self.name = position_name self.x = Field(position_name + "_x", default_value=default_value[0], bounds=bounds[0]) self.y = Field(position_name + "_y", default_value=default_value[1], bounds=bounds[1]) class DynamicFitUnit: def __init__(self, saddle_default, handlebars_default, saddle_bounds, handlebars_bounds, step_size): self.saddle = Position("Saddle", saddle_default, saddle_bounds) self.handlebars = Position("Handlebars", handlebars_default, handlebars_bounds) self.step_size = step_size def get_fields(self): return [self.saddle.x, self.saddle.y, self.handlebars.x, self.handlebars.y] # calculate stack def get_stack(self): return self.handlebars.y # calculate reach def get_reach(self): return self.handlebars.x ```
{ "source": "john-judge/qiskit-terra", "score": 3 }
#### File: passes/optimization/optimize_1q_decomposition.py ```python import copy import logging import warnings import numpy as np from qiskit.circuit.library.standard_gates import U3Gate from qiskit.transpiler.basepasses import TransformationPass from qiskit.quantum_info.synthesis import one_qubit_decompose from qiskit.converters import circuit_to_dag logger = logging.getLogger(__name__) class Optimize1qGatesDecomposition(TransformationPass): """Optimize chains of single-qubit gates by combining them into a single gate.""" def __init__(self, basis=None): """Optimize1qGatesDecomposition initializer. Args: basis (list[str]): Basis gates to consider, e.g. `['u3', 'cx']`. For the effects of this pass, the basis is the set intersection between the `basis` parameter and the Euler basis. """ super().__init__() self._target_basis = basis self._decomposers = None if basis: self._decomposers = [] basis_set = set(basis) euler_basis_gates = one_qubit_decompose.ONE_QUBIT_EULER_BASIS_GATES for euler_basis_name, gates in euler_basis_gates.items(): if set(gates).issubset(basis_set): basis_copy = copy.copy(self._decomposers) for base in basis_copy: # check if gates are a superset of another basis # and if so, remove that basis if set(euler_basis_gates[base.basis]).issubset(set(gates)): self._decomposers.remove(base) # check if the gates are a subset of another basis elif set(gates).issubset(set(euler_basis_gates[base.basis])): break # if not a subset, add it to the list else: self._decomposers.append( one_qubit_decompose.OneQubitEulerDecomposer(euler_basis_name) ) def run(self, dag): """Run the Optimize1qGatesDecomposition pass on `dag`. Args: dag (DAGCircuit): the DAG to be optimized. Returns: DAGCircuit: the optimized DAG. """ if not self._decomposers: logger.info("Skipping pass because no basis is set") return dag runs = dag.collect_1q_runs() for run in runs: # SPECIAL CASE: Don't bother to optimize single U3 gates which are in the basis set. # The U3 decomposer is only going to emit a sequence of length 1 anyhow. if "u3" in self._target_basis and len(run) == 1 and isinstance(run[0].op, U3Gate): # Toss U3 gates equivalent to the identity; there we get off easy. if np.allclose(run[0].op.to_matrix(), np.eye(2), 1e-15, 0): dag.remove_op_node(run[0]) continue # We might rewrite into lower `u`s if they're available. if "u2" not in self._target_basis and "u1" not in self._target_basis: continue new_circs = [] operator = run[0].op.to_matrix() for gate in run[1:]: operator = gate.op.to_matrix().dot(operator) for decomposer in self._decomposers: new_circs.append(decomposer._decompose(operator)) if new_circs: new_circ = min(new_circs, key=len) # do we even have calibrations? has_cals_p = dag.calibrations is not None and len(dag.calibrations) > 0 # is this run all in the target set and also uncalibrated? rewriteable_and_in_basis_p = all( g.name in self._target_basis and (not has_cals_p or not dag.has_calibration_for(g)) for g in run ) # does this run have uncalibrated gates? uncalibrated_p = not has_cals_p or any(not dag.has_calibration_for(g) for g in run) # does this run have gates not in the image of ._decomposers _and_ uncalibrated? uncalibrated_and_not_basis_p = any( g.name not in self._target_basis and (not has_cals_p or not dag.has_calibration_for(g)) for g in run ) if rewriteable_and_in_basis_p and len(run) < len(new_circ): # NOTE: This is short-circuited on calibrated gates, which we're timid about # reducing. warnings.warn( f"Resynthesized {run} and got {new_circ}, " f"but the original was native and the new value is longer. This " f"indicates an efficiency bug in synthesis. Please report it by " f"opening an issue here: " f"https://github.com/Qiskit/qiskit-terra/issues/new/choose", stacklevel=2, ) # if we're outside of the basis set, we're obligated to logically decompose. # if we're outside of the set of gates for which we have physical definitions, # then we _try_ to decompose, using the results if we see improvement. # NOTE: Here we use circuit length as a weak proxy for "improvement"; in reality, # we care about something more like fidelity at runtime, which would mean, # e.g., a preference for `RZGate`s over `RXGate`s. In fact, users sometimes # express a preference for a "canonical form" of a circuit, which may come in # the form of some parameter values, also not visible at the level of circuit # length. Since we don't have a framework for the caller to programmatically # express what they want here, we include some special casing for particular # gates which we've promised to normalize --- but this is fragile and should # ultimately be done away with. if ( uncalibrated_and_not_basis_p or (uncalibrated_p and len(run) > len(new_circ)) or isinstance(run[0].op, U3Gate) ): new_dag = circuit_to_dag(new_circ) dag.substitute_node_with_dag(run[0], new_dag) # Delete the other nodes in the run for current_node in run[1:]: dag.remove_op_node(current_node) return dag ```
{ "source": "john-judge/ZDA_Explorer", "score": 3 }
#### File: ZDA_Explorer/lib/snr.py ```python import numpy as np from yellowbrick.cluster import KElbowVisualizer from sklearn.metrics import silhouette_samples, silhouette_score from sklearn.cluster import AgglomerativeClustering from sklearn.cluster import KMeans import matplotlib.pyplot as plt class AnalyzerSNR: def __init__(self, data): self.data = data self.snr = None self.k_clusters = None self.snr_cutoff = None self.clustered = None self.cluster_indices_by_snr = None def get_snr(self, plot=False): """ Given a single trial, compute the SNR image for this trial """ self.snr = np.mean(self.data, axis=2) / np.std(self.data, axis=2) if plot: plt.imshow(self.snr, cmap='jet', interpolation='nearest') plt.show() return self.snr def cluster_on_snr(self, k_clusters=3, snr_cutoff=0.7, plot=False): """ Perform 1-D clustering on SNR after masking out the pixels whose snr is below snr_cutoff (a percentile in range [0,1]) """ self.k_clusters = k_clusters self.snr_cutoff = np.percentile(self.snr, snr_cutoff * 100) if self.snr is None: raise ValueError("No SNR data found.") mask = (self.snr >= self.snr_cutoff).astype(np.float) if plot: # masked image: reasonability check plt.imshow(self.snr * mask, cmap='jet', interpolation='nearest') plt.show() # +1 for the masked 0's snr_copy = self.snr snr_orig_shape = self.snr.shape km = KMeans(n_clusters=k_clusters+1).fit(self.snr.reshape(-1,1)) self.clustered = np.array(km.labels_).reshape(self.snr.shape) + 1 self.clustered = self.clustered.astype(np.int) self.snr.reshape(snr_orig_shape) if plot: plt.imshow(self.clustered * mask, cmap='viridis', interpolation='nearest') plt.show() return self.clustered def get_average_snr_by_cluster(self): """ Returns a list of average SNR values by cluster, where the float at index i is the average SNR for cluster i+1 """ if self.k_clusters is None: raise ValueError("must call method cluster_on_snr() before getting average SNRs for clusters") return [np.average(self.snr[np.where(self.clustered==i)[0]]) for i in range(1, self.k_clusters+2)] def get_kth_cluster(self, k, plot=False): """ Returns iterable of indexes of pixels in the kth cluster (k=0,...,k_clusters) """ if self.k_clusters is None: raise ValueError("must call method cluster_on_snr() before getting kth cluster") if k > self.k_clusters: raise ValueError("k is greater than number of clusters") # sort clusters by SNR (which can differ from cluster label) if self.cluster_indices_by_snr is None: # SNR by cluster avg_snr_by_cluster = self.get_average_snr_by_cluster() self.cluster_indices_by_snr = np.argsort(np.array(avg_snr_by_cluster)) + 1 k_selection = self.cluster_indices_by_snr[-1-k] mask = (self.snr >= self.snr_cutoff).astype(np.float) # Select the pixels in this SNR cluster, above SNR cutoff arg_selection = np.stack(np.where(self.clustered * mask == k_selection)) if plot: for i in range(arg_selection.shape[1]): x_max = arg_selection[0][i] y_max = arg_selection[1][i] mask[x_max, y_max] *= 3 # highlight plt.imshow(self.clustered * mask, cmap='jet', interpolation='nearest') plt.show() return arg_selection def get_silhouette_score(self, plot_elbow=True): """ Return silhouette score and plot Elbow plot for this K-means clustering """ raise NotImplementedError print("Silhouette score:", silhouette_score(features, label)) # Instantiate a scikit-learn K-Means model model = KMeans(random_state=0) # Instantiate the KElbowVisualizer with the number of clusters and the metric visualizer = KElbowVisualizer(model, k=(2,6), metric='silhouette', timings=False) # Fit the data and visualize visualizer.fit(features) visualizer.poof() ```
{ "source": "johnjung/weather", "score": 4 }
#### File: weather/speculative_weather_report/classes.py ```python import astral import csv import datetime import math import os import random import re import statistics def load_historical_data_headers(): """Load the headers for historical weather data.""" with open(os.path.dirname(os.path.realpath(__file__)) + '/../data/1711054.csv') as f: reader = csv.reader(f) return next(reader, None) def load_historical_data(): """Load historical weather data.""" with open(os.path.dirname(os.path.realpath(__file__)) + '/../data/1711054.csv') as f: reader = csv.reader(f) next(reader, None) historical_data = [] for row in reader: historical_data.append(row) return historical_data class Forecast: """Contains the display elements of a speculative weather forecast. Notes: This display creates a fictional future weather forecast from historical weather data. It does this using three different dates and two different places. To start, the current date and location let us calculate the day of week, sunrise time, sunset time, and other events like high tides or eclipses. An alternate location allows the display to show historical weather data from a place with different climate. For example, on May 1st of this year in Chicago, Illinois, the forecast might display weather data from May 1st, 2010 in Austin, Texas. Using historical data gives us realistic looking data without having to do any weather modeling. Finally, the forecast displays a year in the future where the day of week (e.g. Tuesday) matches the current day of the week. The forecast also includes a news feed and advertisements, to explore the context around the weather. This object is designed to be instantiated once for each weather forecast display. """ def __init__(self, dt): """constructor. Creates a new Forecast object, and instantiates Weather objects to display the current weather along with daily and hourly forecasts, as well objects to display the news and advertisements. Args: dt (datetime.datetime): the current datetime, i.e. datetime.datetime.now() """ self.dt = dt self.astral = astral.Astral() self.astral_city = 'Chicago' self.current_weather = CurrentWeather(dt) self.daily = [] d = self.current_weather.dt.replace(hour=0, minute=0, second=0) for i in range(1, 7): self.daily.append( DailyWeather( d + datetime.timedelta(days=i) ) ) self.hourly = [] d = self.current_weather.dt.replace(minute=0, second=0) for i in range(1, 25): self.hourly.append( HourlyWeather(d + datetime.timedelta(hours=i)) ) self.news = News() def moon_phase(self): """Get the current moon phase. Returns: str: One of four possible moon phases. """ return ( 'New Moon', 'First Quarter', 'Full Moon', 'Last Quarter', 'New Moon' )[int(float(self.astral.moon_phase(date=self.dt) / 7.0))] def next_sunrise(self): """sunrise. Returns: datetime.datetime: the time of the next sunrise. """ sun = self.astral_city.sun(date=self.dt) if self.sun['sunrise'] > self.dt: return self.sun['sunset'] else: sun = self.astral_city.sun( date=self.dt + datetime.timedelta(days=1) ) return self.sun['sunset'] def next_sunset(self): """sunset. Returns: datetime.datetime: the time of the next sunset. """ sun = self.astral_city.sun(date=self.dt) if self.sun['sunset'] > self.dt: return self.sun['sunset'] else: sun = self.astral_city.sun( date=self.dt + datetime.timedelta(days=1) ) return self.sun['sunset'] def next_high_tide(self): """high tide. Returns: datetime.datetime: the time of the next high tide. """ raise NotImplementedError def next_low_tide(self): """low tide. Returns: datetime.datetime: the time of the next low tide. """ raise NotImplementedError def next_partial_solar_eclipse(self): """partial solar eclipse. Returns: datetime.datetime: the time of the next partial solar eclipse. """ raise NotImplementedError def next_total_solar_eclipse(self): """total solar eclipse. Returns: datetime.datetime: the time of the next total solar eclipse. """ raise NotImplementedError def next_transit_of_mercury(self): """transit of mercury. Returns: datetime.datetime: the time of the next transit of Mercury. """ raise NotImplementedError def next_transit_of_venus(self): """transit of Venus. Returns: datetime.datetime: the time of the next transit of Venus. """ raise NotImplementedError def asdict(self): """get the forecast as a dict, for display in Jinja templates. Returns: dict: a dictionary containing the current weather, daily and hourly weather forecasts and astronomical events, news and advertisements. """ return { 'current_weather': self.current_weather.asdict(), 'daily': [d.asdict() for d in self.daily], 'hourly': [h.asdict() for h in self.hourly], 'news': self.news.asdict() } class Weather: historical_headers = load_historical_data_headers() historical_data = load_historical_data() def __init__(self, dt): """Constructor Args: dt (datetime.datetime) """ self.dt = dt def as_of(self): """Get the most recent reading time from historical data. Returns: str: the date and time of the most recent weather data reading in YYYY-mm-ddTHH:MM:SS format. """ return datetime.datetime.strptime( self._get_historical('DATE'), '%Y-%m-%dT%H:%M:%S' ).strftime('%-I:%M%p') def carbon_count(self, temperature_increase): """Get an estimated carbon count for a given temperature increase. Args: temperature_increase (int): in Fahrenheit, starting from 0. Notes: This is a very rough estimate based on the following document: http://dels.nas.edu/resources/static-assets/ materials-based-on-reports/booklets/warming_world_final.pdf Returns: int: the carbon count. """ carbon_counts = (410, 480, 550, 630, 700, 800, 900, 1000, 1200, 1400) return carbon_counts[temperature_increase] def dew_point(self): """Get the dew point. Returns: int: the dew point temperature in Fahrenheit. """ return int(self._get_historical('HourlyDewPointTemperature')) def heat_index(self): """Calculate the heat index: see https://en.wikipedia.org/wiki/Heat_index. Returns: int: a heat index temperature in Fahrenheit. """ t = self.temperature() if t < 80: return None r = self.relative_humidity() if r < 40: return None return int( sum( [-42.379, 2.04901523 * t, 10.14333127 * r, -0.22475541 * t * r, -6.83783e-03 * math.pow(t, 2), -5.481717e-02 * math.pow(r, 2), 1.22874e-03 * math.pow(t, 2) * r, 8.5282e-04 * t * math.pow(r, 2), -1.99e-06 * math.pow(t, 2) * math.pow(r, 2)] ) ) def human_readable_datetime(self): """Get a human readable datetime string for this object. Raises: NotImplementedError: Implement this method in subclasses. """ raise NotImplementedError def relative_humidity(self): """Get the relative humidity. Returns: int: the relative humidity from 0 to 100. """ return int(self._get_historical('HourlyRelativeHumidity')) def sky_conditions(self): """Get sky conditions. Notes: These are recorded in the data in a string like: FEW:02 70 SCT:04 200 BKN:07 250 Although this data field is often blank, very often zero or more data chunks in the following format will be included: [A-Z]{3}:[0-9]{2} [0-9]{2} The three letter sequence indicates cloud cover according to the dict below. The two digit sequence immediately following indicates the coverage of a layer in oktas (i.e. eigths) of sky covered. The final three digit sequence describes the height of the cloud layer, in hundreds of feet: e.g., 50 = 5000 feet. It is also possible for this string to include data that indicates that it was not possible to observe the sky because of obscuring phenomena like smoke or fog. The last three-character chunk provides the best summary of current sky conditions. Returns: str: current sky conditions, e.g. 'clear sky' """ conditions = { 'CLR': 'clear sky', 'FEW': 'few clouds', 'SCT': 'scattered clouds', 'BKN': 'broken clouds', 'OVC': 'overcast' } matches = re.search( '([A-Z]{3}).*$', self._get_historical('HourlySkyConditions') ) try: return conditions[matches.group(1)] except AttributeError: return self._get_historical('HourlySkyConditions') def temperature(self): """Get the dry bulb temperature ("the temperature") Returns: int: the temperature in Fahrenheit. """ return int(self._get_historical('HourlyDryBulbTemperature')) def temperature_min(self): """Get the minimum daily temperature. Returns: int: the temperature in Fahrenheit. """ return self._temperature_summary('min') def temperature_mean(self): """Get the mean daily temperature. Returns: int: the temperature in Fahrenheit. """ return self._temperature_summary('mean') def temperature_max(self): """Get the maximum daily temperature. Returns: int: the temperature in Fahrenheit. """ return self._temperature_summary('max') def visibility(self): """Get the visibility. Returns: int: visibility in miles. """ return int(float(self._get_historical('HourlyVisibility'))) def weather_type(self): """Get the type of weather. Returns: str: a description of the current weather, e.g. 'fog' """ weather_strings = { 'FG': 'fog', 'TS': 'thunder', 'PL': 'sleet', 'GR': 'hail', 'GL': 'ice sheeting', 'DU': 'dust', 'HZ': 'haze', 'BLSN': 'drifing snow', 'FC': 'funnel cloud', 'WIND': 'high winds', 'BLPY': 'blowing spray', 'BR': 'mist', 'DZ': 'drizzle', 'FZDZ': 'freezing drizzle', 'RA': 'rain', 'FZRA': 'freezing rain', 'SN': 'snow', 'UP': 'precipitation', 'MIFG': 'ground fog', 'FZFG': 'freezing fog' } types = set() present_weather = self._get_historical('HourlyPresentWeatherType') for p in present_weather.split('|'): m = re.search('[A-Z]+', p) if m: types.add(weather_strings[m.group(0)]) return ', '.join(list(types)) def wind_direction_and_speed(self): """Get the wind direction and speed. Returns: str: e.g., '13mph SW' """ d = int(self._get_historical('HourlyWindDirection')) if d == 0: return 'still' directions = ('N', 'NNE', 'NE', 'ENE', 'E', 'ESE', 'SE', 'SSE', 'S', 'SSW', 'SW', 'WSW', 'W', 'WNW', 'NW', 'NNW', 'N') i = int(round(float(d) / 22.5)) direction = directions[i % 16] s = self._get_historical('HourlyWindSpeed') return '{}mph {}'.format(s, direction) def _get_closest_past_index(self, dt=None): """Find the closest past index represented in historical data for a given date/time string. Args: dt (datetime.datetime): A datetime to look up other than self.dt. Returns: int: an index (record number) in the historical data. """ if not dt: dt = self.dt dt_string = dt.replace(year=2010).strftime('%Y-%m-%dT%H:%M:%S') f = self.historical_headers.index('DATE') i = len(self.historical_data) - 1 while i >= 0: if self.historical_data[i][f] < dt_string: break i -= 1 return i def _get_historical(self, field): """Get a single historical data point. If the current data point is blank, the function searches backwards for the last available data. Args: field (str): the field name. Returns: str: the data. """ i = self._get_closest_past_index() f = self.historical_headers.index(field) while i > 0: if self.historical_data[i][f]: return self.historical_data[i][f] i -= 1 return '' def _get_historical_daily_range(self, field): """Get a range of historical data points. Args: field (str): the field name. Returns: str: the data. """ start_of_day = self.dt.replace(hour=0, minute=0, second=0) i1 = self._get_closest_past_index(start_of_day) i2 = self._get_closest_past_index( start_of_day + datetime.timedelta(days=1) ) f = self.historical_headers.index(field) return [self.historical_data[i][f] for i in range(i1, i2 + 1)] def _temperature_summary(self, summary_type): """Get a temperature summary for the day. Args: summary_type (str): one of 'min', 'max', 'mean' Returns: int: the temperature summary in Fahrenheit. """ temperatures = map( int, filter( bool, self._get_historical_daily_range('HourlyDryBulbTemperature') ) ) if summary_type == 'min': return min(temperatures) elif summary_type == 'max': return max(temperatures) elif summary_type == 'mean': return int(statistics.mean(temperatures)) else: raise ValueError def future_year_with_same_weekday(self, min_future_year): """Get a future year with the same weekday (e.g. "Tuesday") as self.dt. Args: min_future_year (int): year to start checking for matching weekdays. Returns: int: the future year. """ year = min_future_year while True: if self.dt.replace(year=year).weekday() == self.dt.weekday(): return year year += 1 def asdict(self): """Get this object as a dict, for rendering in Jinja templates. Returns: dict: template data. """ return { 'as_of': self.as_of(), 'human_readable_datetime': self.human_readable_datetime(), 'simulation_year': self.future_year_with_same_weekday(2060), 'carbon_count': self.carbon_count(0), 'dew_point': self.dew_point(), 'heat_index': self.heat_index(), 'relative_humidity': self.relative_humidity(), 'sky_conditions': self.sky_conditions(), 'temperature': self.temperature(), 'temperature_min': self.temperature_min(), 'temperature_mean': self.temperature_mean(), 'temperature_max': self.temperature_max(), 'visibility': self.visibility(), 'weather_type': self.weather_type(), 'wind_direction_and_speed': self.wind_direction_and_speed() } class CurrentWeather(Weather): def human_readable_datetime(self): """Get a human readable date and time for the current weather, e.g. 'Tuesday, May 1.' Returns: str: the current time. """ return self.dt.strftime('%A, %B %-d') class DailyWeather(Weather): def human_readable_datetime(self): """Get a human readable date and time for each cell in a daily weather forecast, e.g. 'Tuesday' Returns: str: the weekday. """ return self.dt.strftime('%a') def asdict(self): """Get information for an daily weather forecast cell. Returns: dict: forecast data. """ return { 'as_of': self.as_of(), 'dt': self.dt, 'human_readable_datetime': self.human_readable_datetime(), 'temperature_min': self.temperature_min(), 'temperature_mean': self.temperature_mean(), 'temperature_max': self.temperature_max(), } class HourlyWeather(Weather): def human_readable_datetime(self): """Get a human readable date and time for each cell in an hourly forecast, e.g. '2PM' Returns: str: the time. """ return self.dt.strftime('%-I%p') def asdict(self): """Get information for an hourly weather forecast cell. Returns: dict: forecast data. """ return { 'as_of': self.as_of(), 'dt': self.dt, 'human_readable_datetime': self.human_readable_datetime(), 'temperature': self.temperature(), } class Sunrise(Weather): def human_readable_datetime(self): raise NotImplementedError class Sunset(Weather): def human_readable_datetime(self): raise NotImplementedError class News: def get_advertisement(self): ads = (("Skirts, blouses and accessories. Up to 45% off. Shop Now.", "Noracora"), ("Your future's looking up with our new student loan. Competitive interest rates. Multiple repayment options. No origination fee. Get started now.", "<NAME>"), ("Shop non-traditional jewelry designs.", "Brilliant Earth"), ("Khakis for all seasons. All season tech.", "Dockers")) return random.choice(ads)[0] def get_news(self): # short headline, source note. news = (("Troubling Trend Since 2020s for Great Lakes. Superior, Huron and Erie have seen the greatest declines.", "weather.com 2019/04/28 (modified date)"), ("Freeze in May? Here's Who Is Likely to See One.", "weather.com 2019/04/28 (verbatim)"), ("Incoming Severe Threat This Week", "weather.com 2019/04/28 (verbatim)"), ("Winter Storm Central: Blizzard Conditions Likely; Travel Nearly Impossible", "weather.com 2019/04/28 (verbatim)"), ("Allergy: Tips for An Allergy-Free Spring Road Trip", "weather.com 2019/04/28 (verbatim)"), ("Allergy: Worst Plants for Spring Allergies", "weather.com 2019/04/28 (verbatim)"), ("Tornado Safety and Preparedness: Safest Places to Wait Out A Tornado", "weather.com 2019/04/28 (verbatim)"), ("Allergy: Spring Allergy Capitals: Which City Ranks the Worst", "weather.com 2019/04/28 (verbatim)")) # short headline, story body, source URL. # stories are lightly modified, mostly changing the names of places. news = [("""Two Killed as Tornado Strikes Stillwater, Oklahoma; Apparent Tornado Leaves Swath of Damage in Norman.""", """A tornado tore through Stillwater, Oklahoma last night, touching down at approximately 10:20pm on the leading edge of a squall line of severe thunderstorms. The Western Value Inn at 51 and 177 was destroyed. Image from the scene showed emergency crews sifting through rubble after part of the motel's second story collapsed into a pile of debris strewn about the first floor and parking lot. Two deaths have been confirmed by county emergency management. Another apparent tornado produced damage in the Norman area after midnight.""", "https://weather.com/news/news/2019-05-26-oklahoma-tornadoes-el-reno-sapulpa"), ("""Powerful 8.0 Magnitude Earthquake Strikes north-central Bolivia.""", """An 8.0 magnitude earthquake shook north-central Bolivia yesterday morning, acording to the U.S. Geological Survey. There were no immediate reports of deaths or major damage. The quake, at a moderate depth of 71 miles, strike at 2:41 a.m., 50 miles southeast of Sorata. There were no immediate reports of deaths. The mayor of Sorata told local radio station RPP that the quake was felt very strongly there, but it was not possible to move around the town because of the darkness. A number of old houses collapsed, and the electricity was cut, according to the National Emergency Operations Center.""", "https://weather.com/news/news/2019-05-26-earthquake-north-central-peru-may"), ("", """Our primary journalistic mission is to report on breaking weather news and the environment. This story does not necessarily represent the position of our parent company.""", ""), ("""Has Government Turned Us Into a Nation of Makers and Takers?""", """In a recent article produced by the Tax Policy Center, tax analyst <NAME> reports that 43% of Americans won't pay federal income taxes this year. Roberts, a former deputy assistant director for the Congressional Budget Office, also states that "many commentators" have twisted such statistics to suggest "that nearly half of all households paid no tax at all when, in fact, nearly everyone pays something." Roberts is correct that the federal income tax is just one of many taxes, and hence, it is misleading to ignore other taxes when discussing makers and takers. However, he ignores another crucial aspect of this issue, which is that the person who pays $1,000 in taxes and receives $10,000 in government benefits is a taker on the net. Even though this person pays "something", as Roberts notes, he receives far more from the government than he pays in taxes.""", "https://www.justfactsdaily.com/has-government-turned-us-into-a-nation-of-makers-and-takers/"), ("", """The Intergovernmental Panel on Climate Change (IPCC) is "the leading international body for the assessment of climate change," and its "work serves as the key basis for climate policy decisions made by governments throughout the world. The IPCC states: "To determine whether current warming is unusual, it is essential to place it in the context of longer-term climate variability." The first IPCC report stated that "some of the global warming since 1850 could be a recovery from the Little Ice Age rather than a direct result of human activities. So it is important to recognize the natural variations of climate are appreciable and will modulate any future changes induced by man." The second IPCC report stated that "data prior to 1400 are too sparse to allow the reliable estimate of global mean temperature" and show a graph of proxy-derived temperatures for Earth's Northern Hemisphere from 1400 onward." The third IPCC report stated that the latest proxy studies indicate "the conventional terms of 'Little Ice Age' and 'Medieval Warm Period' appear to have limited utility in describing...global mean temperature change in the past centuries.""", "https://www.justfacts.com/globalwarming.asp")] random.shuffle(news) output = [] for n in news: output.append(re.sub(r'\s+', ' ', n[1]).strip()) return output def asdict(self): return {} ``` #### File: johnjung/weather/web.py ```python import datetime from speculative_weather_report import CurrentWeather, DailyWeather, \ Forecast, HourlyWeather, News, \ Sunrise, Sunset, Weather from flask import Flask, render_template app = Flask(__name__) app.debug = True @app.route('/', methods=['GET']) def index(): f = Forecast(datetime.datetime.now()) return render_template('weather.html', **f.asdict()) ```
{ "source": "johnjz30/Phy-Net", "score": 2 }
#### File: Phy-Net/input/lat_inputs.py ```python import os import numpy as np import tensorflow as tf import systems.fluid_createTFRecords as fluid_createTFRecords import systems.em_createTFRecords as em_createTFRecords from glob import glob as glb from tqdm import * FLAGS = tf.app.flags.FLAGS # Constants describing the input pipline. tf.app.flags.DEFINE_integer('min_queue_examples', 400, """ min examples to queue up""") tf.app.flags.DEFINE_integer('num_preprocess_threads', 2, """ number of process threads for que runner """) tf.app.flags.DEFINE_string('data_dir', '/data', """ base dir for all data""") tf.app.flags.DEFINE_string('tf_data_dir', '../data', """ base dir for saving tf records data""") tf.app.flags.DEFINE_integer('tf_seq_length', 30, """ seq length of tf saved records """) def lat_distortions(lat, distortions): if len(lat.get_shape()) == 5: lat = tf.cond(distortions[0]>0.50, lambda: tf.reverse(lat, axis=[2]), lambda: lat) elif len(lat.get_shape()) == 6: lat = tf.cond(distortions[0]>0.50, lambda: tf.reverse(lat, axis=[2]), lambda: lat) lat = tf.cond(0.75<distortions[0], lambda: tf.reverse(lat, axis=[3]), lambda: lat) lat = tf.cond(distortions[0]<0.25, lambda: tf.reverse(lat, axis=[3]), lambda: lat) return lat def read_data_fluid(filename_queue, seq_length, shape, num_frames): # make reader reader = tf.TFRecordReader() key, serialized_example = reader.read(filename_queue) # make feature dict feature_dict = {} for i in xrange(FLAGS.tf_seq_length): feature_dict['flow/frame_' + str(i)] = tf.FixedLenFeature([np.prod(np.array(shape))*num_frames],tf.float32) feature_dict['boundary'] = tf.FixedLenFeature([np.prod(np.array(shape))],tf.float32) features = tf.parse_single_example( serialized_example, features=feature_dict) # read seq from record seq_of_flow = [] seq_of_boundary = [] for sq in xrange(FLAGS.tf_seq_length - seq_length): flow = [] for i in xrange(seq_length): flow.append(features['flow/frame_' + str(i+sq)]) boundary = features['boundary'] # reshape it flow = tf.stack(flow) flow = tf.reshape(flow, [seq_length] + shape + [num_frames]) flow = tf.to_float(flow) boundary = tf.reshape(boundary, [1] + shape + [1]) boundary = tf.to_float(boundary) seq_of_flow.append(flow) seq_of_boundary.append(boundary) seq_of_flow = tf.stack(seq_of_flow) seq_of_boundary = tf.stack(seq_of_boundary) return seq_of_flow, seq_of_boundary def read_data_em(filename_queue, seq_length, shape, num_frames): # make reader reader = tf.TFRecordReader() key, serialized_example = reader.read(filename_queue) # make feature dict feature_dict = {} for i in xrange(seq_length): feature_dict['em/frame_' + str(i)] = tf.FixedLenFeature([np.prod(np.array(shape))*num_frames],tf.float32) feature_dict['boundary'] = tf.FixedLenFeature([np.prod(np.array(shape))],tf.float32) features = tf.parse_single_example( serialized_example, features=feature_dict) # read seq from record seq_of_em = [] seq_of_boundary = [] for sq in xrange(FLAGS.tf_seq_length - seq_length): em = [] for i in xrange(seq_length): em.append(features['em/frame_' + str(i)]) boundary = features['boundary'] # reshape it em = tf.stack(em) em = tf.reshape(em, [seq_length] + shape + [num_frames]) em = tf.to_float(em) boundary = tf.reshape(boundary, [1] + shape + [1]) boundary = tf.to_float(boundary) seq_of_em.append(em) seq_of_boundary.append(boundary) seq_of_em = tf.stack(seq_of_em) seq_of_boundary = tf.stack(seq_of_boundary) return seq_of_em, seq_of_boundary def _generate_fluid_batch(seq_of_flow, seq_of_boundary, batch_size): num_preprocess_threads = FLAGS.num_preprocess_threads flows, boundarys = tf.train.shuffle_batch( [seq_of_flow, seq_of_boundary], batch_size=batch_size, num_threads=num_preprocess_threads, enqueue_many=True, capacity=FLAGS.min_queue_examples + 3 * batch_size, min_after_dequeue=FLAGS.min_queue_examples) return flows, boundarys def _generate_em_batch(seq_of_em, seq_of_boundary, batch_size): num_preprocess_threads = FLAGS.num_preprocess_threads ems, boundarys = tf.train.shuffle_batch( [seq_of_em, seq_of_boundary], batch_size=batch_size, num_threads=num_preprocess_threads, enqueue_many=True, capacity=FLAGS.min_queue_examples + 3 * batch_size, min_after_dequeue=FLAGS.min_queue_examples) return ems, boundarys def fluid_inputs(batch_size, seq_length, shape, num_frames, train=True): # number of train simulations run_num = 1 # make dir name based on shape of simulation dir_name = 'fluid_flow_' + str(shape[0]) + 'x' + str(shape[1]) if len(shape) > 2: dir_name = dir_name + 'x' + str(shape[2]) dir_name = dir_name + '_' print("begining to generate tf records") fluid_createTFRecords.generate_tfrecords(FLAGS.tf_seq_length, run_num, shape, num_frames, dir_name) # get tfrecord files tfrecord_filename = glb(FLAGS.tf_data_dir + '/tfrecords/' + str(dir_name) + '/*_seq_length_' + str(FLAGS.tf_seq_length) + '.tfrecords') # make filename que filename_queue = tf.train.string_input_producer(tfrecord_filename) # read tfrecords seq_of_flow, seq_of_boundary = read_data_fluid(filename_queue, seq_length, shape, num_frames) # flip flow as a distortion distortions = tf.random_uniform([1], 0, 1.0, dtype=tf.float32) seq_of_flow = lat_distortions(seq_of_flow, distortions) seq_of_boundary = lat_distortions(seq_of_boundary, distortions) # construct batch of flows flows, boundarys = _generate_fluid_batch(seq_of_flow, seq_of_boundary, batch_size) return flows, boundarys def em_inputs(batch_size, seq_length, shape, num_frames, train=True): # number of train simulations run_num = 50 # make dir name based on shape of simulation dir_name = 'em_' + str(shape[0]) + 'x' + str(shape[1]) if len(shape) > 2: dir_name = dir_name + 'x' + str(shape[2]) dir_name = dir_name + '_' print("begining to generate tf records") em_createTFRecords.generate_tfrecords(FLAGS.tf_seq_length, run_num, shape, num_frames, dir_name) # get tfrecord files tfrecord_filename = glb(FLAGS.tf_data_dir + '/tfrecords/' + str(dir_name) + '/*_seq_length_' + str(FLAGS.tf_seq_length) + '.tfrecords') # make filename que filename_queue = tf.train.string_input_producer(tfrecord_filename) # read tfrecords seq_of_em, seq_of_boundary = read_data_em(filename_queue, seq_length, shape, num_frames) # flip flow as a distortion distortions = tf.random_uniform([1], 0, 1.0, dtype=tf.float32) seq_of_em = lat_distortions(seq_of_em, distortions) seq_of_boundary = lat_distortions(seq_of_boundary, distortions) # construct batch of em ems, boundarys = _generate_em_batch(seq_of_em, seq_of_boundary, batch_size) return ems, boundarys ``` #### File: Phy-Net/model/lat_net.py ```python import tensorflow as tf import numpy as np from nn import * import input.lat_inputs as lat_inputs import systems.fluid_createTFRecords as fluid import systems.em_createTFRecords as em FLAGS = tf.app.flags.FLAGS # Constants describing the training process. ################# system params tf.app.flags.DEFINE_string('system', 'fluid_flow', """ system to compress """) tf.app.flags.DEFINE_integer('lattice_size', 9, """ size of lattice """) tf.app.flags.DEFINE_integer('boundary_size', 4, """ size of boundary """) tf.app.flags.DEFINE_string('dimensions', '512x512', """ dimension of simulation with x between value """) ################# running params tf.app.flags.DEFINE_string('base_dir', '../checkpoints', """dir to store trained net """) tf.app.flags.DEFINE_bool('restore', True, """ restore model if there is one """) ################# model params ## resnet params tf.app.flags.DEFINE_integer('nr_residual', 2, """ number of residual blocks before down sizing """) tf.app.flags.DEFINE_integer('nr_downsamples', 3, """ numper of downsamples """) tf.app.flags.DEFINE_string('nonlinearity', "leaky_relu", """ what nonlinearity to use, leaky_relu, relu, elu, concat_elu """) tf.app.flags.DEFINE_float('keep_p', 1.0, """ keep probability for res blocks """) tf.app.flags.DEFINE_bool('gated', False, """ gated res blocks """) tf.app.flags.DEFINE_integer('filter_size', 16, """ filter size for first res block. the rest of the filters are 2x every downsample """) ## compression params tf.app.flags.DEFINE_bool('lstm', False, """ lstm or non recurrent""") tf.app.flags.DEFINE_integer('nr_residual_compression', 3, """ number of residual compression layers """) tf.app.flags.DEFINE_integer('filter_size_compression', 128, """ filter size for compression piece """) tf.app.flags.DEFINE_integer('nr_discriminators', 1, """ number of discriminators to train """) tf.app.flags.DEFINE_integer('z_size', 50, """ size of z vector """) tf.app.flags.DEFINE_integer('nr_residual_discriminator', 1, """ number of residual blocks before down sizing """) tf.app.flags.DEFINE_integer('nr_downsamples_discriminator', 3, """ numper of downsamples """) tf.app.flags.DEFINE_float('keep_p_discriminator', 1.0, """ keep probability for res blocks """) tf.app.flags.DEFINE_integer('filter_size_discriminator', 32, """ filter size for first res block of discriminator """) tf.app.flags.DEFINE_integer('lstm_size_discriminator', 512, """ size of lstm cell in discriminator """) ## gan params (currently not in use) tf.app.flags.DEFINE_bool('gan', False, """ use gan training """) ################# optimize params tf.app.flags.DEFINE_string('optimizer', "adam", """ what optimizer to use (currently adam is the only option)""") tf.app.flags.DEFINE_float('reconstruction_lr', 0.0004, """ learning rete for reconstruction """) tf.app.flags.DEFINE_float('gan_lr', 2e-5, """ learning rate for training gan """) tf.app.flags.DEFINE_float('lambda_divergence', 0.2, """ weight of divergence or gradient differnce error """) ################# train params tf.app.flags.DEFINE_integer('max_steps', 1000000, """ max steps to train """) tf.app.flags.DEFINE_integer('unroll_length', 5, """ unroll length """) tf.app.flags.DEFINE_integer('init_unroll_length', 0, """ inital unroll length before training """) tf.app.flags.DEFINE_bool('unroll_from_true', False, """ use the true data when unrolling the network (probably just used for unroll_length 1 when doing curriculum learning""") tf.app.flags.DEFINE_integer('batch_size', 4, """ batch size """) tf.app.flags.DEFINE_integer('nr_gpus', 1, """ number of gpus for training (each gpu with have batch size FLAGS.batch_size""") ################# test params tf.app.flags.DEFINE_bool('train', True, """ train or test """) tf.app.flags.DEFINE_string('test_dimensions', '512x512', """ test video dimentions """) tf.app.flags.DEFINE_integer('video_length', 200, """ video dimentions """) tf.app.flags.DEFINE_integer('test_length', 50, """ sequence length for testing (making error plots) """) tf.app.flags.DEFINE_integer('test_nr_runs', 10, """ number of simulations to test on (making error plots) """) tf.app.flags.DEFINE_integer('test_nr_per_simulation', 1, """ number of test runs per simulations (making error plots) """) tf.app.flags.DEFINE_string('extract_type', 'line', """ if extracting in decoder of timing tests """) tf.app.flags.DEFINE_integer('extract_pos', 5, """ where to extract in decoder for timing tests """) ####### inputs ####### def inputs(empty=False, name="inputs", shape=None, batch_size=1, single_step=False): """makes input vector Args: empty: will just return an empty state to fill with a feed dict name: name for variables shape: shape of input. if None then will use the shape of FLAGS.dimensions Return: state: state of simulation boundary: boundary of simulation """ if shape is None: shape = FLAGS.dimensions.split('x') shape = map(int, shape) frame_num = FLAGS.lattice_size boundary_num = FLAGS.boundary_size if empty: if not single_step: state = tf.placeholder(tf.float32, [batch_size, FLAGS.unroll_length] + shape + [frame_num], name=name) boundary = tf.placeholder(tf.float32, [batch_size, 1] + shape + [boundary_num], name=name) elif single_step: state = tf.placeholder(tf.float32, [batch_size] + shape + [frame_num], name=name) boundary = tf.placeholder(tf.float32, [batch_size] + shape + [boundary_num], name=name) elif FLAGS.system == "fluid_flow": state, boundary = lat_inputs.fluid_inputs(FLAGS.batch_size, FLAGS.init_unroll_length + FLAGS.unroll_length, shape, frame_num, FLAGS.train) elif FLAGS.system == "em": state, boundary = lat_inputs.em_inputs(FLAGS.batch_size, FLAGS.init_unroll_length + FLAGS.unroll_length, shape, frame_num, FLAGS.train) if FLAGS.gan: z = tf.placeholder("float", [None, total_unroll_length, FLAGS.z_size]) return state, boundary, z else: return state, boundary ####### feed_dict ####### def feed_dict(seq_length, shape, lattice_size, run_num, start_index): """makes feed dict for testing Args: seq_length: length of seq out shape: shape of simulation lattice_size: int of lattice dims (9 for 2D fluid simulations) run_num: int index of simulation frame_num: int index of where state to start simulation Return: state: state of simulation boundary: boundary of simulation """ if FLAGS.system == "fluid_flow": dir_name = "fluid_flow_" if len(shape) == 2: dir_name = dir_name + str(shape[0]) + 'x' + str(shape[1]) + '_test' else: dir_name = dir_name + str(shape[0]) + 'x' + str(shape[1]) + 'x' + str(shape[2]) + '_test' state, boundary = fluid.generate_feed_dict(seq_length, shape, lattice_size, dir_name, run_num, start_index) elif FLAGS.system == "em": dir_name = "em_" dir_name = dir_name + str(shape[0]) + 'x' + str(shape[1]) + '_test' state, boundary = em.generate_feed_dict(seq_length, shape, lattice_size, dir_name, run_num, start_index) return state, boundary ####### encoding ####### def encoding(inputs, name='', boundary=False): """Builds encoding mapping of LatNet. Args: inputs: input to encoder name: name for variables boundary: bool for whether encoding the boundary or the state of the simulation Return: x_i: encoded state """ x_i = inputs nonlinearity = set_nonlinearity(FLAGS.nonlinearity) if FLAGS.system == "fluid_flow": padding = (len(x_i.get_shape())-3)*["mobius"] + ["zeros"] elif FLAGS.system == "em": padding = ["mobius", "mobius"] print("encoding input shape " + str(x_i.get_shape())) for i in xrange(FLAGS.nr_downsamples): filter_size = FLAGS.filter_size*(pow(2,i)) x_i = res_block(x_i, filter_size=filter_size, nonlinearity=nonlinearity, keep_p=FLAGS.keep_p, stride=2, gated=FLAGS.gated, padding=padding, name=name + "resnet_down_sampled_" + str(i) + "_nr_residual_0", begin_nonlinearity=False) print("filter size for layer " + str(i) + " of encoding is " + str(filter_size) + " with shape " + str(x_i.get_shape())) for j in xrange(FLAGS.nr_residual - 1): x_i = res_block(x_i, filter_size=filter_size, nonlinearity=nonlinearity, keep_p=FLAGS.keep_p, stride=1, gated=FLAGS.gated, padding=padding, name=name + "resnet_down_sampled_" + str(i) + "_nr_residual_" + str(j+1)) if boundary: x_i = res_block(x_i, filter_size=FLAGS.filter_size_compression*2, nonlinearity=nonlinearity, keep_p=FLAGS.keep_p, stride=1, gated=FLAGS.gated, padding=padding, name=name + "resnet_last_before_compression") else: x_i = res_block(x_i, filter_size=FLAGS.filter_size_compression, nonlinearity=nonlinearity, keep_p=FLAGS.keep_p, stride=1, gated=FLAGS.gated, padding=padding, name=name + "resnet_last_before_compression") return x_i ####### encoding template ####### encode_state_template = tf.make_template('encode_state_template', encoding) encode_boundary_template = tf.make_template('encode_boundary_template', encoding) ################################# ####### compression ############# def compression(inputs): """Builds compressed mapping of LatNet. Args: inputs: input to compression network Return: x_i """ x_i = inputs nonlinearity = set_nonlinearity(FLAGS.nonlinearity) if FLAGS.system == "fluid_flow": padding = (len(x_i.get_shape())-3)*["mobius"] + ["zeros"] elif FLAGS.system == "em": padding = ["mobius", "mobius"] for i in xrange(FLAGS.nr_residual_compression): x_i = res_block(x_i, filter_size=FLAGS.filter_size_compression, nonlinearity=nonlinearity, keep_p=FLAGS.keep_p, stride=1, gated=FLAGS.gated, padding=padding, name="resnet_compression_" + str(i)) return x_i ####### compression template ###### compress_template = tf.make_template('compress_template', compression) ################################# ####### decoding ####### def decoding(inputs, extract_type=None, extract_pos=64): """Builds decoding mapping of LatNet. Args: inputs: input to decoder extract_type: string that specifies to extract plane, line or point from compresses state. If None then no extraction extract_pos: int pos to extract Return: x_i: decompressed state """ x_i = inputs nonlinearity = set_nonlinearity(FLAGS.nonlinearity) if FLAGS.system == "fluid_flow": padding = (len(x_i.get_shape())-3)*["mobius"] + ["zeros"] elif FLAGS.system == "em": padding = ["mobius", "mobius"] if (extract_type is not None) and (extract_type != 'False'): width = (FLAGS.nr_downsamples-1)*FLAGS.nr_residual*2 ### hard setting extract_pos for now ### extract_pos = width + 1 ######################################## x_i = trim_tensor(x_i, extract_pos, width, extract_type) for i in xrange(FLAGS.nr_downsamples-1): filter_size = FLAGS.filter_size*pow(2,FLAGS.nr_downsamples-i-2) print("decoding filter size for layer " + str(i) + " of encoding is " + str(filter_size)) x_i = transpose_conv_layer(x_i, 4, 2, filter_size, padding, "up_conv_" + str(i)) for j in xrange(FLAGS.nr_residual): x_i = res_block(x_i, filter_size=filter_size, nonlinearity=nonlinearity, keep_p=FLAGS.keep_p, stride=1, gated=FLAGS.gated, padding=padding, name="resnet_up_sampled_" + str(i) + "_nr_residual_" + str(j+1)) if (extract_type is not None) and (extract_type != 'False'): width = width-2 x_i = trim_tensor(x_i, width+2, width, extract_type) x_i = transpose_conv_layer(x_i, 4, 2, FLAGS.lattice_size, padding, "up_conv_" + str(FLAGS.nr_downsamples)) return tf.nn.tanh(x_i) ####### decoding template ####### decoding_template = tf.make_template('decoding_template', decoding) ################################# ####### unroll ####### def unroll(state, boundary, z=None): """unrolls LatNet. Args: state: seq of states to train on boundary: seq of boundary states to train on Return: x_out: predicted seq of states """ total_unroll_length = FLAGS.init_unroll_length + FLAGS.unroll_length if FLAGS.lstm: print("lstm not implemented yet") exit() else: # store all out x_out = [] # encode y_1 = encode_state_template(state[:,0]) small_boundary = encode_boundary_template(boundary[:,0], name='boundry_', boundary=True) # apply boundary [small_boundary_mul, small_boundary_add] = tf.split(small_boundary, 2, len(small_boundary.get_shape())-1) y_1 = (small_boundary_mul * y_1) + small_boundary_add # add z if gan training if FLAGS.gan: y_1 = add_z(y_1, z) # unroll all for i in xrange(FLAGS.unroll_length): # decode and add to list x_2 = decoding_template(y_1) x_out.append(x_2) # compression if FLAGS.unroll_length > 1: # compression mapping y_1 = compress_template(y_1) # apply boundary y_1 = (small_boundary_mul * y_1) + small_boundary_add # add z if gan training if FLAGS.gan: y_1 = add_z(y_1, z) x_out = tf.stack(x_out) perm = np.concatenate([np.array([1,0]), np.arange(2,len(x_2.get_shape())+1,1)], 0) x_out = tf.transpose(x_out, perm=perm) return x_out ####### unroll template ####### unroll_template = tf.make_template('unroll_template', unroll) ############################### ####### continual unroll ####### def continual_unroll(state, boundary, z=None, extract_type=None, extract_pos=None): """unrolls LatNet one step to generate continual simulations Args: state: seq of states to train on boundary: seq of boundary states to train on extract_type: string that specifies to extract plane, line or point from compresses state. If None then no extraction extract_pos: int pos to extract Return: y_1: compressed state small_boundary_mul: compressed state small_boundary_add: compressed state x_2: decompresed state y_2: compressed state after one compression mapping """ if FLAGS.lstm: print("lstm not implemented yet") exit() else: # store all out y_1 = encode_state_template(state) small_boundary = encode_boundary_template(boundary, name='boundry_', boundary=True) # apply boundary [small_boundary_mul, small_boundary_add] = tf.split(small_boundary, 2, len(small_boundary.get_shape())-1) y_1_boundary = (small_boundary_mul * y_1) + small_boundary_add # add z if gan training if FLAGS.gan: y_1_boundary = add_z(y_1_boundary, z) # unroll one step x_2 = decoding_template(y_1_boundary, extract_type=extract_type, extract_pos=extract_pos) y_2 = compress_template(y_1_boundary) return y_1, small_boundary_mul, small_boundary_add, x_2, y_2 ####### continual unroll template ####### continual_unroll_template = tf.make_template('unroll_template', continual_unroll) # same variable scope as unroll_template ######################################### ``` #### File: Phy-Net/model/optimizer.py ```python import tensorflow as tf import numpy as np FLAGS = tf.app.flags.FLAGS def adam_updates(params, cost_or_grads, lr=0.001, mom1=0.9, mom2=0.999): ''' Adam optimizer ''' updates = [] if type(cost_or_grads) is not list: grads = tf.gradients(cost_or_grads, params) else: grads = cost_or_grads t = tf.Variable(1., 'adam_t') for p, g in zip(params, grads): mg = tf.Variable(tf.zeros(p.get_shape()), p.name + '_adam_mg') if mom1>0: v = tf.Variable(tf.zeros(p.get_shape()), p.name + '_adam_v') v_t = mom1*v + (1. - mom1)*g v_hat = v_t / (1. - tf.pow(mom1,t)) updates.append(v.assign(v_t)) else: v_hat = g mg_t = mom2*mg + (1. - mom2)*tf.square(g) mg_hat = mg_t / (1. - tf.pow(mom2,t)) g_t = v_hat / tf.sqrt(mg_hat + 1e-8) p_t = p - lr * g_t updates.append(mg.assign(mg_t)) updates.append(p.assign(p_t)) updates.append(t.assign_add(1)) return tf.group(*updates) ``` #### File: Phy-Net/systems/em_createTFRecords.py ```python import numpy as np import tensorflow as tf from glob import glob as glb import h5py from tqdm import * from model.lattice import * FLAGS = tf.app.flags.FLAGS # helper function def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _float_feature(value): return tf.train.Feature(float_list=tf.train.FloatList(value=value)) def tryint(s): try: return int(s) except: return s def alphanum_key(s): return [ tryint(c) for c in re.split('([0-9]+)', s) ] def load_em(filename, shape, frame_num): # load file stream_em = h5py.File(filename, 'r') # process lattice state em_state = np.array(stream_em['State'][:]) if len(shape) == 2: shape = [1] + shape em_state = 10.0*em_state.reshape(shape + [frame_num]) stream_em.close() return em_state def load_boundary(filename, shape, frame_num): stream_boundary = h5py.File(filename, 'r') boundary_cond = np.array(stream_boundary['Epsilon'][:]) boundary_cond = boundary_cond.reshape([1]+shape+[1]) stream_boundary.close() return boundary_cond def make_feature_from_seq(seq_frames, seq_length, shape, frame_num): feature = {} for i in xrange(seq_length): frame = seq_frames[i] frame = np.float32(frame) frame = frame.reshape([np.prod(np.array(shape))*frame_num]) frame = frame.astype(np.float) feature['em/frame_' + str(i)] = _float_feature(frame) return feature def generate_feed_dict(seq_length, shape, frame_num, dir_name, run_number, start_index): # generate boundry boundary_cond = load_boundary(FLAGS.data_dir + '/' + dir_name + '/sample_' + str(run_number) + '/em_0000.h5', shape, frame_num) # doesnt mater what boundary is loaded # generate em state em_state = np.zeros([seq_length] + shape + [frame_num]) for i in xrange(seq_length): em_state[i] = load_em(FLAGS.data_dir + '/' + dir_name + '/sample_' + str(run_number) + '/em_' + str(start_index + i).zfill(4) + '.h5', shape, frame_num) return em_state, boundary_cond def generate_tfrecords(seq_length, num_runs, shape, frame_num, dir_name): if not tf.gfile.Exists(FLAGS.tf_data_dir + '/tfrecords/' + dir_name): tf.gfile.MakeDirs(FLAGS.tf_data_dir + '/tfrecords/' + dir_name) for run in tqdm(xrange(num_runs)): filename = FLAGS.tf_data_dir + '/tfrecords/' + dir_name + '/run_' + str(run) + '_seq_length_' + str(seq_length) + '.tfrecords' tfrecord_filename = glb(FLAGS.tf_data_dir + '/tfrecords/' + dir_name + '/*') if filename not in tfrecord_filename: writer = tf.python_io.TFRecordWriter(filename) h5_filenames = glb(FLAGS.data_dir + '/' + dir_name + '/sample_' + str(run) + '/*.h5') num_samples = len(h5_filenames) # first calc boundary (from first sample) boundary_cond = load_boundary(FLAGS.data_dir + '/' + dir_name + '/sample_' + str(run) + '/em_0000.h5', shape, frame_num) boundary_cond = np.float32(boundary_cond) boundary_flat = boundary_cond.reshape([np.prod(np.array(shape))]) boundary_raw = boundary_flat.astype(np.float) # save tf records ind_dat = 0 while ind_dat < (num_samples - seq_length - 1): seq_frames = np.zeros([seq_length] + shape + [frame_num]) for i in xrange(seq_length): em_state = load_em(FLAGS.data_dir + '/' + dir_name + '/sample_' + str(run) + '/em_' + str(i+ind_dat).zfill(4) + '.h5', shape, frame_num) em_state = np.float32(em_state) seq_frames[i] = em_state overlap = min(4, seq_length) ind_dat += seq_length - overlap # overlap between frames # make feature map feature = make_feature_from_seq(seq_frames, seq_length, shape, frame_num) feature['boundary'] = _float_feature(boundary_raw) # create example and write it example = tf.train.Example(features=tf.train.Features(feature=feature)) writer.write(example.SerializeToString()) writer.close() ```
{ "source": "johnk314/Python-Projects", "score": 3 }
#### File: Python-Projects/tool_belt/connect.py ```python import geopandas import os import pandas import psycopg2 import pyodbc import requests import sqlalchemy class GISODBC: """""" def __init__(self): # TODO: psycopg2 vs sqlalchemy: https://hackersandslackers.com/psycopg2-postgres-python/ # TODO: sqlalchemy ORM tutorials: https://hackersandslackers.com/series/mastering-sqlalchemy/ # TODO: Connect with sqlalchemy self.engine = sqlalchemy.create_engine(r'postgresql://postgres:Jck258-5049@localhost:5433/GIS') # TODO: Connect with psycopg2. # host = 'localhost' # port = 5433 # database = 'GIS' # user = 'postgres' # password = '<PASSWORD>' # self.con = psycopg2.connect(host=host, port=port, database=database, user=user, password=password) # Helper function for accessing pd.read_sql_query AND pd.read_sql_table(). # Read query results into a DataFrame. # pd.read_sql(sql=None, con=self.con, index_col=None, coerce_float=None, params=None, parse_dates=None, columns=None, chunksize=None) # Returns a DataFrame corresponding to the result set of the query string. # pd.read_sql_query(sql=None, con=self.con, index_col=None, coerce_float=None, params=None, parse_dates=None, chunksize=None) # Given a table name and connection, returns a DataFrame. # pd.read_sql_table(table_name=None, con=self.con, schema=None, index_col=None, coerce_float=None,parse_dates=None, columns=None, chunksize=None) # pd.to_sql() def show_schemas(self): q = r'SELECT schema_name FROM information_schema.schemata;' return pandas.read_sql(sql=q, con=self.engine) def show_tables(self, schema_name): q = r"SELECT * FROM information_schema.tables WHERE table_schema = '{}' AND table_type = 'BASE TABLE';".format(schema_name) return pandas.read_sql(sql=q, con=self.engine) def show_views(self, schema_name): q = r"SELECT * FROM information_schema.tables WHERE table_schema = '{}' AND table_type = 'VIEW';".format(schema_name) return pandas.read_sql(sql=q, con=self.engine) def get_unemployment(self): q = r'SELECT * FROM "FRED_Unemployment";' return pandas.read_sql(sql=q, con=self.engine) def get_geo(self): # https://geopandas.org/reference/geopandas.read_postgis.html#geopandas.read_postgis geopandas.read_postgis(sql=r'', con=self.engine, geom_col='geom', crs=None, index_col=None, coerce_float=True, parse_dates=None, params=None, chunksize=None) def write_dataframe(self, dataframe, schema_name, table_name, if_exists='fail'): """ :param dataframe: Write the incoming dataframe as a table. :param schema_name: The schema to write the table to. :param table_name: The name of the table to write. :param if_exists: What to do it the table exists in the specified database. Options include:'fail', 'replace', 'append' :return: None s """ # https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_sql.html dataframe.to_sql(name=table_name, con=self.engine, if_exists=if_exists, schema=schema_name) def write_geodataframe(self, geodataframe, table_name, schema_name): """ :param geodataframe: Input geodataframe to be written. :param table_name: Name of the table to be created and/or written to. :param schema_name: Schema of the table to be created and/or written to. :return: None """ # https://geopandas.org/io.html # https://geopandas.org/reference.html#geopandas.GeoDataFrame.to_postgis geodataframe.to_postgis(name=table_name, con=self.engine, if_exists='fail', schema=schema_name, chunksize=5000) class Files: def __init__(self): # TODO: List recursively into a dictionary. use pprint.pprint to show the levels. for f in os.listdir('data'): print(f) if __name__ == '__main__': # Put test-harness here. pass ```
{ "source": "johnkabage/book-a-meal-API", "score": 3 }
#### File: Api/v1/models.py ```python from werkzeug.security import generate_password_hash from datetime import datetime users = [] meal_orders = [] class MealOrder: meal_id = 1 def __init__(self, city, area, meal, quantity, price, receiver): self.city = city self.area = area self.meal = meal self.quantity = quantity self.price = price self.receiver = receiver self.date = str(datetime.now()) self.id = MealOrder.meal_id MealOrder.meal_id += 1 def get_meal_by_id(self, id): for meal in meal_orders: if meal.id == id: return meal def get_meal_by_user(self,user): users_meal = [meal for meal in meal_orders if meal.user == user] return users_meal class User: user_id = 1 def __init__(self, fname, lname, username, email, password, confirm_password): self.fname = first_name self.lname = last_name self.username = username self.email = email if password: self.password = generate_password_hash(password) if confirm_password: self.confirm_password = generate_password_hash(confirm_password) self.id = User. def get_user_by_username(self, user): for user in users: if user.id == id: return user def get_user_by_id(self, id): for user in users: if user.id == id: return user def serialize(self): return dict( id = self.id username = self.username email = self.email ) ```
{ "source": "johnkabler/PyRyx", "score": 2 }
#### File: johnkabler/PyRyx/pyryx.py ```python from requests_oauthlib import OAuth1Session from requests_oauthlib import OAuth1 import requests import pandas as pd import csv import sys if sys.version_info[0] < 3: from StringIO import StringIO else: from io import StringIO import time class PyRyxApi: def __init__(self, client_key, client_secret, gallery_url): self.client_key = client_key self.client_secret = client_secret self.gallery_url = gallery_url def generateAyxEndpoint(self, operation, method): req_url = self.gallery_url + '{operation}/{method}/'.format(operation=operation, method=method) return req_url def generateAyxRequest(self, endpoint): queryoauth = OAuth1(self.client_key, self.client_secret, signature_type='query') return requests.get(endpoint, auth=queryoauth) def getSubscriptionWorkflows(self): endpoint = self.generateAyxEndpoint('workflows', 'subscription') return self.generateAyxRequest(endpoint).json() def getWorkflowQuestions(self, app_id): endpoint = self.generateAyxEndpoint('workflows', app_id) + 'questions/' return self.generateAyxRequest(endpoint).json() def getWorkflowJobs(self, app_id): endpoint = self.generateAyxEndpoint('workflows', app_id) + 'jobs/' return self.generateAyxRequest(endpoint).json() def checkJobState(self, job_id): endpoint = self.generateAyxEndpoint('jobs', job_id) return self.generateAyxRequest(endpoint).json() def getJobOutput(self, job_id, output_id): endpoint = self.generateAyxEndpoint('jobs', job_id) endpoint = endpoint + 'output/{output_id}/'.format(output_id=output_id) queryoauth = OAuth1(self.client_key, self.client_secret, signature_type='query') payload = {'format': 'Csv'} DATA = StringIO(requests.get(endpoint, auth=queryoauth, params=payload).text) return pd.read_csv(DATA) def fetchJobOutput(self, job_id): job_info = self.checkJobState(job_id) result_list = [] output_id_list = [output['id'] for output in job_info['outputs']] for output_id in output_id_list: output_df = self.getJobOutput(job_id, output_id) result_list.append(output_df) if (len(result_list) > 1): df = pd.concat(result_list) else: df = result_list[:1] return df[:-1] def executeWorkflow(self, app_id, question_payload): endpoint = self.generateAyxEndpoint('workflows', app_id) + 'jobs/' queryoauth = OAuth1(self.client_key, self.client_secret, signature_type='query') return requests.post(endpoint, auth=queryoauth, json=question_payload) def executeAndFetchResults(self, app_id, question_payload): response = self.executeWorkflow(app_id, question_payload) job_id = response.json()['id'] job_state = 'Queued' while(job_state == 'Queued'): job = self.checkJobState(job_id) j_state = job['status'] print(j_state) if (j_state == 'Completed'): job_state = j_state time.sleep(1) return self.fetchJobOutput(job_id) ```
{ "source": "johnkalinowski/llk", "score": 3 }
#### File: llk/typeclasses/characters.py ```python import random import evennia from enum import Enum from evennia.utils import create from evennia.contrib import gendersub from world.languages import Language from world.occupations import Occupation from world.occupations import OccupationTable import typeclasses.auras as auras from world.birthaugur import BirthAugur from world.birthaugur import BirthAugurTable from world.races import Race from world.weapons import WeaponType # PLACED IN THIS FILE UNTIL A BETTER SPOT FOUND def roll_dice(num_dice, die_type): """ 3d6, for example, would be num_dice = 3, die_type = 6 """ result = 0 for i in range(num_dice): result += random.randint(1, die_type) return result def calculate_ability_modifier(ability_score): modifier = 0 if ability_score <= 3: modifier = -3 elif ability_score <= 5: modifier = -2 elif ability_score <= 8: modifier = -1 elif ability_score <= 12: modifier = 0 elif ability_score <= 15: modifier = 1 elif ability_score <= 17: modifier = 2 elif ability_score > 17: modifier = 3 return modifier class Alignment(Enum): Lawful = 0 Neutral = 1 Chaotic = 2 def __str__(self): if self == Alignment.Lawful: return "Lawful" elif self == Alignment.Neutral: return "Neutral" elif self == Alignment.Chaotic: return "Chaotic" else: return "unknown" # PLACED IN THIS FILE UNTIL A BETTER SPOT FOUND class Character(gendersub.GenderCharacter): """ The Character defaults to reimplementing some of base Object's hook methods with the following functionality: at_basetype_setup - always assigns the DefaultCmdSet to this object type (important!)sets locks so character cannot be picked up and its commands only be called by itself, not anyone else. (to change things, use at_object_creation() instead). at_after_move(source_location) - Launches the "look" command after every move. at_post_unpuppet(account) - when Account disconnects from the Character, we store the current location in the pre_logout_location Attribute and move it to a None-location so the "unpuppeted" character object does not need to stay on grid. Echoes "Account has disconnected" to the room. at_pre_puppet - Just before Account re-connects, retrieves the character's pre_logout_location Attribute and move it back on the grid. at_post_puppet - Echoes "AccountName has entered the game" to the room. """ def get_modified_hp(self): stam = self.get_modified_stamina() modifier = calculate_ability_modifier(stam) for aura in self.db.auras: if auras.AuraEffect.HP in aura.db.effect_modifiers.keys(): modifier += aura.db.effect_modifiers[auras.AuraEffect.HP] return (self.db.hp + modifier) def get_modified_strength(self): modifier = 0 for aura in self.db.auras: if auras.AuraEffect.Strength in aura.db.effect_modifiers.keys(): modifier += aura.db.effect_modifiers[auras.AuraEffect.Strength] return (self.db.strength + modifier) def get_modified_agility(self): modifier = 0 for aura in self.db.auras: if auras.AuraEffect.Agility in aura.db.effect_modifiers.keys(): modifier += aura.db.effect_modifiers[auras.AuraEffect.Agility] return (self.db.agility + modifier) def get_modified_stamina(self): modifier = 0 for aura in self.db.auras: if auras.AuraEffect.Stamina in aura.db.effect_modifiers.keys(): modifier += aura.db.effect_modifiers[auras.AuraEffect.Stamina] return (self.db.stamina + modifier) def get_modified_personality(self): modifier = 0 for aura in self.db.auras: if auras.AuraEffect.Personality in aura.db.effect_modifiers.keys(): modifier += aura.db.effect_modifiers[auras.AuraEffect.Personality] return (self.db.personality + modifier) def get_modified_intelligence(self): modifier = 0 for aura in self.db.auras: if auras.AuraEffect.Intelligence in aura.db.effect_modifiers.keys(): modifier += aura.db.effect_modifiers[auras.AuraEffect.Intelligence] return (self.db.intelligence + modifier) def get_modified_luck(self): modifier = 0 for aura in self.db.auras: if auras.AuraEffect.Luck in aura.db.effect_modifiers.keys(): modifier += aura.db.effect_modifiers[auras.AuraEffect.Luck] return (self.db.luck + modifier) def get_modified_speed(self): modifier = 0 for aura in self.db.auras: if auras.AuraEffect.Speed in aura.db.effect_modifiers.keys(): modifier += aura.db.effect_modifiers[auras.AuraEffect.Speed] return (self.db.speed + modifier) def get_modified_ac(self): agi = self.get_modified_agility() modifier = calculate_ability_modifier(agi) for aura in self.db.auras: if auras.AuraEffect.AC in aura.db.effect_modifiers.keys(): modifier += aura.db.effect_modifiers[auras.AuraEffect.AC] return (self.db.ac + modifier) def at_object_creation(self): super().at_object_creation() self.db.level = 0 self.db.ac = 0 self.db.xp = 0 self.db.alignment = Alignment.Neutral # TODO: alignment selection # these are base stats before any modifiers or active effects self.db.strength = roll_dice(3, 6) self.db.agility = roll_dice(3, 6) self.db.stamina = roll_dice(3, 6) self.db.personality = roll_dice(3, 6) self.db.intelligence = roll_dice(3, 6) self.db.luck = roll_dice(3, 6) self.db.hp = roll_dice(1, 4) self.db.speed = 30 self.db.birth_augur = BirthAugur(roll_dice(1, 30)) luck_modifier = calculate_ability_modifier(self.db.luck) self.db.auras = [] augur_data = BirthAugurTable[str(self.db.birth_augur)] if "effects" in augur_data and luck_modifier != 0: aura_effects = {} for m in augur_data["effects"]: if "modifier_multiplier" in augur_data: aura_effects[m] = \ luck_modifier * augur_data["modifier_multiplier"] else: aura_effects[m] = luck_modifier aura = create.create_object( auras.PersistentEffectAura, key=augur_data["name"], location=self, attributes=[ ("desc", augur_data["desc"]), ("effect_modifiers", aura_effects) ] ) aura.build_modifier_description() self.db.auras.append(aura) self.db.known_languages = [] self.db.known_languages.append(Language.Common) self.db.weapon_proficiencies = [] self.db.weapon_proficiencies.append(WeaponType.Basic) self.db.gold = 0 self.db.silver = 0 self.db.copper = roll_dice(5, 12) self.db.occupation = Occupation(roll_dice(1, 100)) occupation = str(self.db.occupation) if "weapon_proficiencies" in OccupationTable[occupation]: self.db.weapon_proficiencies.append( OccupationTable[occupation]["weapon_proficiencies"] ) for item in OccupationTable[occupation]["items"]: item_clone = dict(item) item_clone["location"] = self evennia.prototypes.spawner.spawn(item_clone) if "race" in OccupationTable[occupation]: self.db.race = OccupationTable[occupation]["race"] else: self.db.race = Race.Human if self.db.race == Race.Dwarf or self.db.race == Race.Halfling: self.db.speed = 20 if self.db.race == Race.Human: self.db.age = random.randint(18, 45) elif self.db.race == Race.Dwarf: self.db.age = random.randint(37, 75) elif self.db.race == Race.Elf: self.db.age = random.randint(35, 100) elif self.db.race == Race.Halfling: self.db.age = random.randint(20, 55) if "money" in OccupationTable[occupation]: money_data = OccupationTable[occupation]["money"] if "gold" in money_data: self.db.gold += money_data["gold"] if "silver" in money_data: self.db.silver += money_data["silver"] if "copper" in money_data: self.db.copper += money_data["copper"] if self.db.intelligence >= 8: if self.db.race == Race.Dwarf: self.db.known_languages.append(Language.Dwarf) elif self.db.race == Race.Elf: self.db.known_languages.append(Language.Elf) elif self.db.race == Race.Halfling: self.db.known_languages.append(Language.Halfling) self.db.current_hp = self.get_modified_hp() ```
{ "source": "johnkangw/dash-labs", "score": 2 }
#### File: johnkangw/dash-labs/setup.py ```python from setuptools import setup, find_packages import os from pathlib import Path here = Path(os.path.dirname(os.path.abspath(__file__))) main_ns = {} with (here / "dash_labs" / "version.py").open() as f: exec(f.read(), main_ns) # pylint: disable=exec-used def requirements_txt(): with open(here / "requirements.txt", "rt") as f: return [line.strip() for line in f.read().split("\n")] def readme(): with open(here / "README.md", "rt") as f: return f.read() setup( name="dash-labs", version=main_ns["__version__"], author="<NAME>", author_email="<EMAIL>", maintainer="<NAME>", maintainer_email="<EMAIL>", url="https://github.com/plotly/dash-labs", project_urls={"Github": "https://github.com/plotly/dash-labs"}, description="Experimental enhancements for potential inclusion in Dash", long_description=readme(), long_description_content_type="text/markdown", classifiers=[ "Development Status :: 4 - Beta", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Topic :: Scientific/Engineering :: Visualization", "Framework :: Dash", ], license="MIT", license_files=["LICENSE.txt"], python_requires=">=3.6.*", packages=find_packages(exclude=["tests", "tests.*"]), ) ```
{ "source": "johnkarasev/cs446_project", "score": 3 }
#### File: johnkarasev/cs446_project/main.py ```python import numpy as np import json import preprocess from word2vec import Word2Vec def main(): contexts = np.fromfile("./data/npcontexts.dat", dtype=int) neighbors = np.fromfile("./data/npneighbors.dat", dtype=int) skipgram = Word2Vec(contexts, neighbors, 35000, 10, 0.001, 64, "sg.ckpt", batch_size=500) skipgram.train(2) if __name__ == "__main__": main() ```
{ "source": "JohnKarima/blog", "score": 2 }
#### File: app/main/views.py ```python from flask import render_template, request, redirect, url_for, abort, flash from flask_login import login_required, current_user from . import main from ..request import get_quotes from ..models import User, Blog, Comment from .forms import UpdateProfile, BlogForm, CommentForm from .. import db, photos import markdown2 @main.route('/') def index(): ''' View root page function that returns the index page and its data ''' title = 'TheVoid.com' message = 'Blog Gang Rise UP!!!' quotes = get_quotes() blogs = Blog.get_all_blogs() return render_template('index.html', message = message, title = title, quotes=quotes, blogs = blogs) @main.route('/user/<uname>') def profile(uname): user = User.query.filter_by(username = uname).first() blogs = Blog.query.filter_by(user_id = user.id) title = 'Profile' if user is None: abort(404) return render_template("profile/profile.html", user = user, blogs = blogs, title = title) @main.route('/user/<uname>/update',methods = ['GET','POST']) @login_required def update_profile(uname): user = User.query.filter_by(username = uname).first() title = 'Edit profile' if user is None: abort(404) form = UpdateProfile() if form.validate_on_submit(): user.bio = form.bio.data db.session.add(user) db.session.commit() return redirect(url_for('.profile',uname=user.username)) return render_template('profile/update.html',form =form, title = title) @main.route('/user/<uname>/update/pic',methods= ['POST']) @login_required def update_pic(uname): user = User.query.filter_by(username = uname).first() if 'photo' in request.files: filename = photos.save(request.files['photo']) path = f'photos/{filename}' user.profile_pic_path = path db.session.commit() return redirect(url_for('main.profile',uname=uname)) @main.route('/new_blog', methods = ['GET','POST']) def new_blog(): form = BlogForm() title = 'New Blog Post' if form.validate_on_submit(): blog = form.blog_post.data new_blog = Blog(blog = blog, user = current_user) new_blog.save_blog() return redirect(url_for('main.index')) return render_template('/new_blog.html',blog_form = form, title = title) @main.route("/blog/<int:id>",methods = ["GET","POST"]) def blog_page(id): blog = Blog.query.filter_by(id = id).first() title = 'Blog Post' form = CommentForm() if form.validate_on_submit(): comment = form.comment.data new_comment = Comment(comment = comment, blog = blog) new_comment.save_comments() return redirect(url_for('main.blog_page', id = blog.id)) comments = Comment.query.filter_by(blog_id = blog.id) return render_template("blog.html", title = title, blog = blog, comment_form = form, comments = comments) # @main.route("/delete/<id>") # def delete(id): # blog = Blog.query.filter_by(id = id).first() # user_id = blog.user_id # db.session.delete(blog) # db.session.commit() # return redirect(url_for('blog.html',id = user_id)) ```
{ "source": "JohnKarima/news-hub", "score": 3 }
#### File: app/main/views.py ```python from flask import render_template from . import main from ..request import get_source, get_article @main.route('/') def index(): ''' View root page function that returns the index page and its data ''' sources_english = get_source('en') sources_strange = get_source('fr') print(sources_english) print(sources_strange) title = 'Home - Welcome to NewsHub' return render_template('index.html', title = title, en = sources_english, fr = sources_strange) @main.route('/articles/<id>') def article(id): ''' View articles page function that returns the articles details page and its data ''' title = 'Sources' article = get_article(id) print(article) return render_template('articles.html', title=title, article = article) ``` #### File: news-hub/tests/test_article.py ```python import unittest from app.models import Article class ArticleTest(unittest.TestCase): ''' Test Class to test the behaviour of the Article class ''' def setUp(self): ''' Set up method that will run before every Test ''' self.new_article = Article('NewsDaily', 'NewsDailyTrue','<NAME>', 'Hummus...thoughts?','Literally talking about hummus sir','www.newsdaily.net','www.newsdaily.net/picOfHummus6', '2020/2/3', 'lorem gang et all') def test_instance(self): self.assertTrue(isinstance(self.new_article,Article)) ```
{ "source": "JohnKarima/password-locker", "score": 3 }
#### File: JohnKarima/password-locker/run.py ```python from password import User, Credentials import pyfiglet, pyperclip ascii_banner = pyfiglet.figlet_format("Pass Lock!") print(ascii_banner) def create_users(username, password): ''' function to create a new user ''' new_user = User(username,password) return new_user def save_users(user): ''' Function to save users ''' user.save_users() def delete_users(user): ''' Function to delete a user ''' user.delete_users() def user_exists(username, password): ''' function that checks if a user exists from the user list ''' return User.user_exists(username, password) def find_by_username_user(username): ''' Function that finds a user by username ''' return User.find_by_username_user(username) def display_users(): ''' Function that returns all the saved users ''' return User.display_users() def create_credentials(site, username, password): ''' function to create a new credential ''' new_credentials = Credentials(site, username,password) return new_credentials def save_credentials(credentials): ''' Function to save credentials ''' credentials.save_credentials() def delete_credentials(credentials): ''' Function to delete a credential ''' credentials.delete_credentials() def find_by_site(site): ''' Function that finds a credential by site and returns the credentials ''' return Credentials.find_by_site(site) def credential_exists(site): ''' function that checks if a credential exists from the credentials list ''' return Credentials.credential_exists(site) def display_credentials(): ''' Function that returns all the saved credentials ''' return Credentials.display_credentials() def main(): print("Hello Welcome to Password_Locker.") print("Let's get you started by creating your new account") print("="*50) print("Please input a Password_Locker UserName of your choice...") u_name_login = input() print("Please input the Password_Locker Password you'll be using...") password_login = input() save_users(create_users(u_name_login,password_login)) print ('\n') print(f"New User Username: {u_name_login}, with Password: {password_login}, saved!") print("Now let's login to Password_Locker") print("="*50) print("Enter your Username and your Password to log in:") username = input("Username: ") password = input("Password: ") if user_exists(username, password): login = user_exists(username,password) print('\n') print(f"Hello {username}. Welcome To Password_Locker!") else: while user_exists(username,password) == False: print('\n') print("Wrong Password_Locker login Credentials!") print("Please try again") print('\n') username = input("Username: ") password = input("Password: ") login = user_exists(username,password) while login == True: print('\n') print("Use these short codes to : \ncc -Create a new credential, dc -Display credentials, \nfc -Find a credential by site, d -Delete a credential by site, \nex -Exit Password_Locker") short_code = input().lower() if short_code == 'cc': print("New Credential") print("="*50) print ("Site name ....") s_name = input() print ("User name ....") u_name = input() print("Password ...") password = input() save_credentials(create_credentials(s_name, u_name,password)) print('\n') print(f"New Credential for -{s_name} account:\n Username: {u_name}\n Password: {password} created") print("="*50) elif short_code == 'dc': if display_credentials(): print("Here is a list of all your credentials:") print('\n') for credentials in display_credentials(): print(f" Site: {credentials.site} Username: {credentials.username} Password: {credentials.password} .....") print("-"*50) else: print('\n') print("You don't seem to have any credentials saved yet") print("="*50) print('\n') elif short_code == 'fc': print("Enter the site name you want to search for") search_site = input() if credential_exists(search_site): search_credentials = find_by_site(search_site) print('\n') print(f"Found. Site: {search_credentials.site} Username: {search_credentials.username} Password: {search_credentials.password}") print('=' *50) else: print("That credential does not exist") print("="*50) elif short_code == "d": print("Enter the account site name of the credentials you want to delete") search_name = input().lower() if find_by_site(search_name): search_credential = find_by_site(search_name) print("="*50) search_credential.delete_credentials() print('\n') print(f"Your stored credentials for : {search_credential.site} have successfully been deleted!!!") print('\n') else: print("That Credential you want to delete does not exist in your store yet") elif short_code == "ex": ascii_banner = pyfiglet.figlet_format("Bye Bye!") print(ascii_banner) print("See you again .......") break else: print("I really didn't get that. Please use the short codes") if __name__ == '__main__': main() ```
{ "source": "Johnkariungi/worldtravel", "score": 3 }
#### File: Johnkariungi/worldtravel/utils.py ```python from wit import Wit access_token = "<KEY>" client = Wit(access_token = access_token) #message_text = "I like cool places" def wit_response(message_text): resp = client.message(message_text) entity = None value = None print(resp) for k, v in resp['entities'].items(): entity = k value = v[0]['value'] print(value) #try: #entity = list(resp['entities'])[0] #value = resp['entities']['entity'][0]['value'] #except Exception as e: return (entity, value) #print(resp) print(wit_response('I like cool places')) ```
{ "source": "johnkarlen/cookiecutter-data-science", "score": 2 }
#### File: src/deploy/model_deploy.py ```python from mmmm import new_model import os import sys import vertica_python def run_from_ipython(): try: __IPYTHON__ return True except NameError: return False if run_from_ipython(): from IPython import get_ipython ipython = get_ipython() ipython.magic("matplotlib inline") project_dir = os.getcwd() else: project_dir = os.path.join(os.path.dirname(__file__), os.pardir, os.pardir) src_dir = os.path.join(project_dir, "src") sys.path.append(src_dir) # What is the name of the model model_name = '' # What is the domain - options are D (digital), I (investments), # O (operations), SM (sales and marketing), RP (risk and product) domain = '' # What is the current model version? Model version should take the form of # {major}.{minor} where both {major} and {minor} are integers. version = '' # Who should be contacted in case of failure owner = '' # If the primary owner cannot be contacted who should be # contacted in case of failure secondary_owner = '' # Where is the model object being stored? # Typically this is a location in S3 or hdfs location = '' # What date is the model being deployed? # Dates should be formatted as YYYY-mm-dd deploy_date = '' # In order to monitor accuracy we need a baseline measurement # First, how are you measuring your model? AUC? RMSE? Put the name # of the metric below metric = '' # What is the value of the metric above? Typically this value would # derived by measuring performance on a held out testing set or through # cross validation value = '' # The memo column below is optional. It can be used to provide a brief # description of the deployment memo = '' # What is the name of the training pd.Dataframe in Python? # Do not enter as a string training_data = '' # What columns should we consider categorical? For these columns model # monitoring will count the number in each bin. Include model output # if appropriate. DO NOT include the true label categorical_cols = ['', '', ...] # What columns should we consider numerical? For these columns model # monitoring will compute deciles and monitor the counts in these deciles over # time. Include model output if appropriate. DO NOT include the true label # If you would like to specify your own bins please reach out to Xiaomin # for instruction. continuous_cols = ['', '', ...] # What columns are model output? DO NOT include the true label output_cols = ['', '', ...] # Establish a connection to vertica db_conn = vertica_python.connect( host='vertica.private.massmutual.com', port=int("5433"), user='model_monitoring_batch', password='[<PASSWORD>]', database='advana' ) # Execute this function, given user does not offer self-defined bins new_model( model_name, version, domain, owner=owner, secondary_owner=secondary_owner, location=location, deploy_date=deploy_date, metric=metric, value=value, memo=memo, categorical_cols=categorical_cols, continuous_cols=continuous_cols, output_cols=output_cols, db_conn=db_conn) db_conn.close() ```
{ "source": "JohnKatsa/FS_Monitoring", "score": 3 }
#### File: JohnKatsa/FS_Monitoring/statsCalculator.py ```python class statsCalculator: # Average of file sizes that were opened, written or read. (Before write operation) avgFileSizes_open = 0 open_counter = 0 avgFileSizes_read = 0 read_counter = 0 avgFileSizes_write = 0 write_counter = 0 def avgFileSizes_update(self, filesMap, fileName, type): if filesMap.get(fileName): if type == "open": self.avgFileSizes_open += filesMap.get(fileName) self.open_counter += 1 elif type == "read": self.avgFileSizes_read += filesMap.get(fileName) self.read_counter += 1 elif type == "write": self.avgFileSizes_write += filesMap.get(fileName) self.write_counter += 1 def avgFileSizes(self): return {"open" : 0 if self.open_counter == 0 else self.avgFileSizes_open/self.open_counter,\ "read" : 0 if self.read_counter == 0 else self.avgFileSizes_read/self.read_counter,\ "write" : 0 if self.write_counter == 0 else self.avgFileSizes_write/self.write_counter} ################################################################################### x = statsCalculator() print(x.avgFileSizes()) ```
{ "source": "Johnkayode/django-rest-framework-email-accounts", "score": 3 }
#### File: Johnkayode/django-rest-framework-email-accounts/models.py ```python from __future__ import unicode_literals from django.contrib.auth.models import (BaseUserManager, AbstractBaseUser) from django.db import models from django.utils.translation import ugettext as _ import uuid class AppUserManager(BaseUserManager): """AppUser manager class.""" def create_user(self, email, first_name, last_name, password=None): """Create and save a User with the given email, date of birth and password.""" if not email: raise ValueError(_('Users must have an email address')) user = self.model( email=self.normalize_email(email), first_name=first_name, last_name=last_name ) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, first_name, last_name, password): """Create and save a superuser with the given email.""" user = self.create_user(email, password=password, first_name=first_name, last_name=last_name) user.is_admin = True user.save(using=self._db) return user class AppUser(AbstractBaseUser): """AppUser model class (for customizing user model).""" # Fields id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) email = models.EmailField(verbose_name=_('E-mail address'), max_length=255, unique=True) first_name = models.CharField(max_length=50) last_name = models.CharField(max_length=50) is_active = models.BooleanField(default=True) is_verified = models.BooleanField(default=False) is_admin = models.BooleanField(default=False) timestamp_subscription = models.DateTimeField(auto_now_add=True) timestamp_modified = models.DateTimeField(auto_now=True) objects = AppUserManager() USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['first_name', 'last_name'] # Methods def get_full_name(self): """Return the user full name.""" # The user is identified by their email address return self.first_name+' '+self.last_name def get_short_name(self): """Return the user first name.""" # The user is identified by their email address return self.first_name def __unicode__(self): """Unicode representation of the class.""" return self.email def __str__(self): # __unicode__ on Python 2 """String representation of the class.""" return self.email def has_perm(self, perm, obj=None): """Do the user have a specific permission? Checking it.""" # Simplest possible answer: Yes, always return True def has_module_perms(self, app_label): """Do the user have permissions to view the app `Accounts`? Checking it.""" # Simplest possible answer: Yes, always return True @property def is_staff(self): """Checking if the user is a member of staff.""" # Simplest possible answer: All admins are staff return self.is_admin ```
{ "source": "Johnkayode/Voting", "score": 2 }
#### File: Voting/Choice_Coin_Voting/__init__.py ```python from flask import Flask from flask_sqlalchemy import SQLAlchemy from os import environ, path from dotenv import load_dotenv basedir = path.dirname(path.abspath(__file__)) load_dotenv(path.join(basedir, ".env"), verbose=True) db = SQLAlchemy() def create_app(): app = Flask(__name__) app.config['FLASK_DEBUG'] = environ.get("FLASK_DEBUG") app.config['SECRET_KEY'] = environ.get("SECRET_KEY") app.config['SQLALCHEMY_DATABASE_URI'] = environ.get("SQLALCHEMY_DATABASE_URI") app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db.init_app(app) with app.app_context(): from . import models, routes return app ``` #### File: Johnkayode/Voting/run.py ```python from Choice_Coin_Voting import create_app, db app = create_app() @app.before_first_request def create_db_tables(): db.create_all() if __name__=="__main__": app.run(debug=True) ```
{ "source": "JohnKazantzis/GreenWallet", "score": 2 }
#### File: GreenWallet/backend/server.py ```python import sqlite3 from flask import Flask, request import flask from flask_classful import FlaskView, route from flask_cors import CORS import requests import json from sqlalchemy import create_engine from sqlalchemy import Column, String, Integer from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker import hashlib from JWTTokenUtils import * from wallet import * app = Flask(__name__) CORS(app) # Heroku test @app.route('/') def index(): return "<h1>Welcome to our server !!</h1>" db_string = 'postgres://ihqfpqjelgtxop:<EMAIL>:5432/d9isbfunrbk25g' db = create_engine(db_string) base = declarative_base() class Contract(base): __tablename__ = 'Contracts' Name = Column(String) Address = Column(String, primary_key=True) FunctionName = Column(String) userId = Column(Integer) class User(base): __tablename__ = 'Users' Id = Column(Integer, primary_key=True, autoincrement=True) FirstName = Column(String) LastName = Column(String) Username = Column(String) Password = Column(String) Mnemonic = Column(String) class UserUtils: @staticmethod def passwordHashing(password): # Creating the user's password hash return hashlib.sha224(password).hexdigest() @staticmethod @app.route('/checkToken/', methods=['GET']) def checkToken(): data = request.args.to_dict() print('####################') print(data) token = data['token'] #print(token = request.args.get("token", None)) result = JWTTokenUtils.checkToken(token) if result is None: return '0' return '1' @staticmethod @app.route('/login/', methods=['GET']) def login(): # Getting calls's parameters data = request.args.to_dict() # Creating session Session = sessionmaker(db) session = Session() # Querying the database to validate the user's credentials users = session.query(User).filter(User.Username == data['username']).filter(User.Password == UserUtils.passwordHashing(data['password'].encode('utf-8'))) for user in users: print('User found: {}, {}'.format(user.Username, user.Password)) # Creating token token = JWTTokenUtils.createToken(user.Id) return {'token': token.decode('utf-8'), 'mnemonic': user.Mnemonic} session.commit() return 'User not found!' @staticmethod @app.route('/createUser/', methods=['POST']) def createUser(): data = request.values.to_dict() for key in data.keys(): formData = json.loads(key) print(formData) # Creating Mnemonic seed = walletUtils.createSeed() print(seed) # Creating session Session = sessionmaker(db) session = Session() genesys = User(Username=formData['username'], Password=UserUtils.passwordHashing(formData['password'].encode('utf-8')), Mnemonic=seed) session.add(genesys) session.commit() # The details of the new user userDetails = {'username': formData['username'], 'mnemonic': seed} return userDetails @staticmethod @app.route('/deleteUser/', methods=['DELETE']) def deleteUser(): data = request.args.to_dict() print(data) session.query(User).filter(User.Username == data['username']).filter(User.Password == UserUtils.passwordHashing(data['password'].encode('utf-8'))).delete() session.commit() return 'OK' class ContractUtils: # @staticmethod # def getLocalContracts(): # f = open('../client/src/contracts/scooterTransactions.json') # data = json.load(f) # scooterTransactionsAddr = data['networks']['5777']['address'] # print(scooterTransactionsAddr) # return scooterTransactionsAddr @staticmethod @app.route('/getContracts/', methods=['GET']) def getContracts(): # # Returning all the Contract entries in the db # Session = sessionmaker(db) session = Session() # Retrieving and checking the token data = request.args.to_dict() result = JWTTokenUtils.checkToken(data['token']) print('Get Contracts token: ' + str(result)) if result is None: return 0, 201 else: contracts = session.query(Contract).filter(Contract.userId==result).order_by(Contract.Address) data = {} for contract in contracts: data[contract.Address] = {'Name': contract.Name, 'FunctionName': contract.FunctionName, 'Address': contract.Address} session.commit() print(data) responseToReact = flask.Response(json.dumps(data)) responseToReact.headers['Access-Control-Allow-Origin'] = '*' return responseToReact @staticmethod @app.route('/deleteContract/<address>/', methods=['DELETE']) def deleteContract(address): print(address) Session = sessionmaker(db) session = Session() # genesys = Contract(Address=address) # session.delete(genesys) session.query(Contract).filter(Contract.Address == address).delete() session.commit() return 'Contact Deleted' @staticmethod @app.route('/updateAddContract/', methods=['POST']) def updateContract(): data = request.values.to_dict() for key in data.keys(): formData = json.loads(key) # Retrieving and checking the token result = JWTTokenUtils.checkToken(formData['token']) Session = sessionmaker(db) session = Session() # Checking if the Contract (address) already exists contracts = session.query(Contract) for contract in contracts: if formData['address'] == contract.Address: # If any field is different, update data! if (formData['name'] != contract.Name) or (formData['functionName'] != contract.FunctionName): contract.Name = formData['name'] contract.FunctionName = formData['functionName'] contract.userId = result session.commit() return 'Contract Updated' return 'Contract Already exists' genesys = Contract(Name=formData['name'], Address=formData['address'], FunctionName=formData['functionName'], userId=result) session.add(genesys) session.commit() return 'OK' class APICalls: @staticmethod @app.route('/getExchangeRates/', methods=['GET']) def getExchangeRates(): # # Making an API call to the CoinLayer API # to get the current exchange rates # data = request.args.to_dict() coin = data['target'] COINLAYER_URL = 'http://api.coinlayer.com/live' COINLAYER_API_KEY = '<KEY>' PARAMS = { 'access_key': COINLAYER_API_KEY, 'target': coin } HEADERS = {'content-type':'application/json'} response = requests.get(url=COINLAYER_URL, params=PARAMS, headers=HEADERS) data = json.loads(response.text) dataToSent = {'ETH': data['rates']['ETH'], 'BTC': data['rates']['BTC'], 'XRP': data['rates']['XRP'] } responseToReact = flask.Response(json.dumps(dataToSent)) responseToReact.headers['Access-Control-Allow-Origin'] = '*' return responseToReact # Getting the address of the contract # scooterTransactionsAddr = ContractUtils.getLocalContracts() Session = sessionmaker(db) session = Session() base.metadata.create_all(db) session.commit() # users = session.query(User) # for x in users: # print(x.LastName) # # Connecting to the database # db, base = ContractUtils.dbInit() # # Creating Tables # ContractUtils.create_tables(db) token = JWTTokenUtils.createToken(1) JWTTokenUtils.checkToken(token) if __name__ == '__main__': app.run() ```
{ "source": "johnkbyrne/one-thousand-miles", "score": 3 }
#### File: one-thousand-miles/one_k_km/actual_vs_goal_cumulative.py ```python import pandas as pd from bokeh.plotting import figure from bokeh.models import ColumnDataSource, HoverTool def actual_goal_cumulative(source, x_axis): cds_bar = source fig = figure( title='Actual KMs versus goal KMs', plot_height=500, plot_width=800, x_axis_label='Week Number', y_axis_label='Cumulative KMs', x_minor_ticks=2, y_range=(0, 50), x_range=x_axis, toolbar_location=None, ) fig.vbar( x='day_of_week', bottom=0, top='weekly_actual_cumulative', color='#084594', width=0.75, legend='KMs Run', source=cds_bar, ) fig.line( x='day_of_week', y='weekly_goal_cumulative', color='#9ecae1', line_width=4, legend='Goal KMs', source=cds_bar, ) # Put the legend in the upper left corner fig.legend.location = 'top_left' tooltips = [ ('Cumulative Kilometers','@weekly_goal_cumulative'), ('Cumulative goal KMS', '@week'), ] # Add the HoverTool to the figure fig.add_tools(HoverTool(tooltips=tooltips)) return fig ``` #### File: one-thousand-miles/one_k_km/static_summary.py ```python import pandas as pd from bokeh.plotting import figure from bokeh.models import ColumnDataSource, HoverTool def summary_cumulative(source, X_AXIS): source = source X_AXIS = [str(x) for x in X_AXIS] km_fig = figure( plot_height=300, plot_width=800, title='Cumulative KMs Run vs Goal KMs', x_axis_label='week_number', y_axis_label='Kms', x_range=X_AXIS, y_range=(0, 1010), toolbar_location=None) km_fig.line( x='week_number', y='cumulative_weekly_kms', color='#9ecae1', line_width=3, legend='Cumulative weekly kms',source=source ) km_fig.vbar( x='week_number', bottom=0, top='cumulative_weekly_kms', color='#084594', width=0.75, legend='KMs Run', source=source ) km_fig.line( x='week_number', y='cumulative_weekly_goal_kms', color='#9ecae1', line_width=3, legend='Cumulative goal kms',source=source ) km_fig.legend.location = 'top_left' tooltips = [ ('Cumulative actual Kilometers','@cumulative_weekly_kms'), ('Cumulative goal kilometers', '@cumulative_weekly_goal_kms'), ('Week number', '@week') ] # Add the HoverTool to the figure km_fig.add_tools(HoverTool(tooltips=tooltips)) return km_fig def actual_weekly_vs_goal(source, X_AXIS): cds_bar = source X_AXIS = [str(x) for x in X_AXIS] # Create a figure with a datetime type x-axis fig = figure( title='Actual KMs Run versus Goal KMs', plot_height=300, plot_width=800, x_axis_label='Week number', y_axis_label='KMs', x_minor_ticks=2, y_range=(0, 50), x_range=X_AXIS, toolbar_location=None ) # The daily words will be represented as vertical bars (columns) fig.vbar( x='week_number', bottom=0, top='kms', color='#084594', width=0.75, legend='KMS Run', source=cds_bar ) # The cumulative sum will be a trend line fig.line( x='week_number', y='weekly_goal', color='#9ecae1', line_width=1, legend='Goal KMs', source=cds_bar ) # Put the legend in the upper left corner fig.legend.location = 'top_left' tooltips = [ ('Kilometers','@kms'), ('Week number', '@week_number'), ] # Add the HoverTool to the figure fig.add_tools(HoverTool(tooltips=tooltips)) return fig ```
{ "source": "johnkchan/jay-bot", "score": 3 }
#### File: jay-bot/cogs/APICommands.py ```python import discord from discord.ext import commands from googletrans import Translator from datetime import datetime import asyncio import random import praw import requests import os class APICommands(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command(name="advice") async def advice(self, ctx): URL = "https://api.adviceslip.com/advice" try: r = requests.get(url=URL) except Exception as e: print(e) return advice = r.json() if advice: return await ctx.send(advice["slip"]["advice"]) @commands.command(name="gif", description="It's so fluffy!") async def gif(self, ctx, *, search_term: str): URL = "http://api.giphy.com/v1/gifs/random?" PARAMS = {"api_key": os.environ["GIPHY_API_KEY"], "tag": search_term} try: r = requests.get(url=URL, params=PARAMS) except Exception as e: print(e) return data = r.json() if data["data"]: return await ctx.send(data["data"]["images"]["original"]["url"]) @commands.command(name="weather", description="Jay Bot tells you the weather forecast", help="Shows latest weather forecast", aliases=["weatherc"]) async def weather(self, ctx, *, location: str = "New York City"): command = ctx.message.content # Should return temperature in Celsius if user specifies weatherc command units = "metric" if ".weatherc" in command else "imperial" scale = "C" if ".weatherc" in command else "F" speed = "mps" if ".weatherc" in command else "mph" URL = "http://api.openweathermap.org/data/2.5/weather?" PARAMS = {"appid": os.getenv('OPENWEATHER_API_KEY'), "q": location, "units": units} try: r = requests.get(url=URL, params=PARAMS) except Exception as e: print(e) return data = r.json() # Convert Latitude & Longitude to Float latitude = float(data['coord']['lat']) longitude = float(data['coord']['lon']) embed = discord.Embed( title=data["name"], description=f"[{latitude}{'N' if latitude > 0 else 'S'},{longitude}{'W' if latitude < 0 else 'E'}](https://www.google.com/maps/search/{latitude},{longitude}/)", colour=discord.Colour.blue() ) embed.add_field( name="Weather", value=data["weather"][0]["description"].title(), inline=False) embed.add_field( name="Temp", value=f"{int(data['main']['temp'])}°{scale}", inline=True) embed.add_field( name="Feels Like", value=f"{int(data['main']['feels_like'])}°{scale}", inline=True) embed.add_field( name="\uFEFF", value="\uFEFF", inline=True) embed.add_field( name="Humidity", value=f"{int(data['main']['humidity'])}%", inline=True) embed.add_field( name="Wind Speed", value=f"{data['wind']['speed']}{speed}", inline=True) embed.add_field( name="\uFEFF", value="\uFEFF", inline=True) # Convert Unix time to Readable Date Format sunrise = datetime.fromtimestamp(data["sys"]["sunrise"]) sunset = datetime.fromtimestamp(data["sys"]["sunset"]) embed.add_field( name="Sunrise", value=sunrise.strftime('%I:%M %p'), inline=True) embed.add_field( name="Sunset", value=sunset.strftime('%I:%M %p'), inline=True) embed.add_field( name="\uFEFF", value="\uFEFF", inline=True) embed.set_thumbnail( url=f"http://openweathermap.org/img/wn/{data['weather'][0]['icon']}@2x.png") return await ctx.send(embed=embed) @commands.command(name="movie", description="Jay Bot tells you movie details", help="Shows movie details") async def movie(self, ctx, *, movie_title: str): URL = "http://www.omdbapi.com/?" PARAMS = {"apikey": os.environ["OMDB_API_KEY"], "t": movie_title} try: r = requests.get(url=URL, params=PARAMS) except Exception as e: print(e) return movie = r.json() if movie["Response"] != "True": return await ctx.send("Movie title not found") embed = discord.Embed( title=movie["Title"], description=movie["Plot"], colour=discord.Colour.blue(), url=f"https://www.imdb.com/title/{movie['imdbID']}" ) embed.add_field( name="Released", value=movie["Released"], inline=True) embed.add_field( name="Runtime", value=movie["Runtime"], inline=True) embed.add_field( name="Rated", value=movie["Rated"], inline=True) embed.add_field( name="Genre", value=movie["Genre"], inline=False) embed.add_field( name="Director", value=movie["Director"], inline=False) embed.add_field(name="Actors", value=movie["Actors"], inline=False) if movie["Awards"] != "N/A": embed.add_field( name="Awards", value=movie["Awards"], inline=False) embed.add_field( name="Metascore", value=movie["Metascore"], inline=True) embed.add_field( name="IMDb Rating", value=movie["imdbRating"], inline=True) embed.add_field( name="IMDb Votes", value=movie["imdbVotes"], inline=True) embed.set_thumbnail(url=movie["Poster"]) return await ctx.send(embed=embed) @commands.command(name="urbandictionary", description="Jay Bot tells you the definition", aliases=["urban", "urbandict"], help="Shows urban dictionary results") async def urbandict(self, ctx, *, search_term: str): URL = "http://api.urbandictionary.com/v0/define?" PARAMS = {"term": search_term} try: r = requests.get(url=URL, params=PARAMS) except Exception as e: print(e) data = r.json() if not data["list"]: return await ctx.send("Definition not found") top_result = data["list"][0] embed = discord.Embed( title=top_result["word"].title(), colour=discord.Colour.blue(), url=top_result["permalink"] ) embed.set_thumbnail( url="https://img.pngio.com/urban-dictionary-definition-for-your-fave-urban-dictionary-png-670_315.png") embed.add_field( name="Author", value=top_result["author"], inline=False) embed.add_field( name="Definition", value=top_result["definition"], inline=False) embed.add_field( name="Example", value=top_result["example"], inline=False) return await ctx.send(embed=embed) @commands.command(name="funfact", description="Jay Bot tells you a fun fact", help="Shows random fun fact") async def funfact(self, ctx): URL = "https://uselessfacts.jsph.pl/random.json?language=en" r = requests.get(url=URL) data = r.json() return await ctx.send(data["text"]) @commands.command(name="joke", description="Jay Bot tells you a joke", help="Shows random joke") async def joke(self, ctx): URL = "https://official-joke-api.appspot.com/random_joke" r = requests.get(url=URL) data = r.json() return await ctx.send(f"{data['setup']}\n> {data['punchline']}") @commands.command(name="translate", help="Shows translation") async def translate(self, ctx, *, text: str): LANGUAGES = { 'af': 'afrikaans', 'sq': 'albanian', 'am': 'amharic', 'ar': 'arabic', 'hy': 'armenian', 'az': 'azerbaijani', 'eu': 'basque', 'be': 'belarusian', 'bn': 'bengali', 'bs': 'bosnian', 'bg': 'bulgarian', 'ca': 'catalan', 'ceb': 'cebuano', 'ny': 'chichewa', 'zh-cn': 'chinese (simplified)', 'zh-tw': 'chinese (traditional)', 'co': 'corsican', 'hr': 'croatian', 'cs': 'czech', 'da': 'danish', 'nl': 'dutch', 'en': 'english', 'eo': 'esperanto', 'et': 'estonian', 'tl': 'filipino', 'fi': 'finnish', 'fr': 'french', 'fy': 'frisian', 'gl': 'galician', 'ka': 'georgian', 'de': 'german', 'el': 'greek', 'gu': 'gujarati', 'ht': 'haitian creole', 'ha': 'hausa', 'haw': 'hawaiian', 'iw': 'hebrew', 'hi': 'hindi', 'hmn': 'hmong', 'hu': 'hungarian', 'is': 'icelandic', 'ig': 'igbo', 'id': 'indonesian', 'ga': 'irish', 'it': 'italian', 'ja': 'japanese', 'jw': 'javanese', 'kn': 'kannada', 'kk': 'kazakh', 'km': 'khmer', 'ko': 'korean', 'ku': 'kurdish (kurmanji)', 'ky': 'kyrgyz', 'lo': 'lao', 'la': 'latin', 'lv': 'latvian', 'lt': 'lithuanian', 'lb': 'luxembourgish', 'mk': 'macedonian', 'mg': 'malagasy', 'ms': 'malay', 'ml': 'malayalam', 'mt': 'maltese', 'mi': 'maori', 'mr': 'marathi', 'mn': 'mongolian', 'my': 'myanmar (burmese)', 'ne': 'nepali', 'no': 'norwegian', 'ps': 'pashto', 'fa': 'persian', 'pl': 'polish', 'pt': 'portuguese', 'pa': 'punjabi', 'ro': 'romanian', 'ru': 'russian', 'sm': 'samoan', 'gd': 'scots gaelic', 'sr': 'serbian', 'st': 'sesotho', 'sn': 'shona', 'sd': 'sindhi', 'si': 'sinhala', 'sk': 'slovak', 'sl': 'slovenian', 'so': 'somali', 'es': 'spanish', 'su': 'sundanese', 'sw': 'swahili', 'sv': 'swedish', 'tg': 'tajik', 'ta': 'tamil', 'te': 'telugu', 'th': 'thai', 'tr': 'turkish', 'uk': 'ukrainian', 'ur': 'urdu', 'uz': 'uzbek', 'vi': 'vietnamese', 'cy': 'welsh', 'xh': 'xhosa', 'yi': 'yiddish', 'yo': 'yoruba', 'zu': 'zulu', 'fil': 'Filipino', 'he': 'Hebrew' } translator = Translator() detection = translator.detect(text) language = detection.lang.lower() confidence = detection.confidence output_language = "zh-cn" if language == "en" else "en" output = translator.translate(text, dest=output_language) translation = output.text pronunciation = translator.translate( text, dest=language).pronunciation if output_language == "zh-cn": pronunciation = translator.translate( translation, dest="zh-cn").pronunciation if translation: embed = discord.Embed( colour=discord.Colour.blue() ) embed.add_field( name="Translation", value=translation, inline=False) if pronunciation: embed.add_field( name="Pronounciation", value=pronunciation, inline=False) embed.add_field( name="Detected", value=f"{LANGUAGES[language].title()}", inline=True) embed.add_field( name="Confidence", value=f"{confidence}", inline=True) embed.set_thumbnail( url="https://cdn0.iconfinder.com/data/icons/tuts/256/google_translate.png") return await ctx.send(embed=embed) @commands.command(name="yelp") async def yelp(self, ctx, category, *, location="New York City"): URL = "https://api.yelp.com/v3/businesses/search?" HEADERS = {"Authorization": f"bearer {os.getenv('YELP_API_KEY')}"} PARAMS = {"terms": "restaurant", "categories": category.lower(), "location": location, "limit": 5, "price": "1, 2"} try: r = requests.get(url=URL, params=PARAMS, headers=HEADERS) except Exception as e: print(e) return top_results = r.json() await ctx.send(f"Top {PARAMS['limit']} results for '{category.title()}' in {location.title()}") for business in top_results["businesses"]: embed = discord.Embed( title=business["name"], description=", ".join([i["title"] for i in business["categories"]]), colour=discord.Colour.blue(), url=business["url"] ) embed.set_thumbnail(url=business["image_url"]) address = business["location"]["address1"] city = business["location"]["city"] zipcode = business["location"]["zip_code"] full_address = f"{address}, {city} {zipcode}" address_search_string = "+".join(full_address.split(" ")) embed.add_field( name="Address", value=f"[{full_address}](https://www.google.com/maps/search/{address_search_string})", inline=False) embed.add_field(name="Price", value=business["price"], inline=True) embed.add_field( name="Rating", value=business["rating"], inline=True) embed.add_field(name="Review Count", value=business["review_count"], inline=True) embed.set_footer( text=f"For more info, run .yelpsearch {business['id']}") await ctx.send(embed=embed) @commands.command(name="yelpsearch") async def yelpsearch(self, ctx, business_id): URL = f"https://api.yelp.com/v3/businesses/{business_id}" HEADERS = {"Authorization": f"bearer {os.getenv('YELP_API_KEY')}"} try: r = requests.get(url=URL, headers=HEADERS) except Exception as e: print(e) business = r.json() if r.status_code == 404: return await ctx.send(business["error"]["description"]) embed = discord.Embed( title=business["name"], description=", ".join([i["title"] for i in business["categories"]]), colour=discord.Colour.blue(), url=business["url"] ) embed.set_thumbnail(url=business["image_url"]) # Display Location Details of Business address = business["location"]["address1"] city = business["location"]["city"] zipcode = business["location"]["zip_code"] full_address = f"{address}, {city} {zipcode}" address_search_string = "+".join(full_address.split(" ")) embed.add_field( name="Address", value=f"[{full_address}](https://www.google.com/maps/search/{address_search_string})", inline=False) # Display Price a& Rating of Business embed.add_field(name="Price", value=business["price"], inline=True) embed.add_field( name="Rating", value=business["rating"], inline=True) embed.add_field(name="Reviews", value=business["review_count"], inline=True) # Display Transaction Types offered by Business embed.add_field(name="Reservation?", value="✅" if "restaurant_reservation" in business["transactions"] else "❌", inline=True) embed.add_field(name="Delivery?", value="✅" if "delivery" in business["transactions"] else "❌", inline=True) embed.add_field(name="Pickup?", value="✅" if "pickup" in business["transactions"] else "❌", inline=True) operation_hours = {0: ["Monday", "Closed"], 1: ["Tuesday", "Closed"], 2: ["Wednesday", "Closed"], 3: ["Thursday", "Closed"], 4: ["Friday", "Closed"], 5: ["Saturday", "Closed"], 6: ["Sunday", "Closed"]} # Update operationHours dictionary with startTime and endTime for weekday in business["hours"][0]["open"]: # Convert 24 Hour Format into 12 Hour Format opening_hour = datetime.strptime( weekday['start'], "%H%M").strftime("%I:%M %p") closing_hour = datetime.strptime( weekday['end'], "%H%M").strftime("%I:%M %p") operation_hours[weekday["day"] ][1] = f"{opening_hour} - {closing_hour}" embed.add_field(name="Hours", value="\n".join( [f"{value[0]}: {value[1]}" for key, value in operation_hours.items()]), inline=False) embed.add_field(name="Is Open Now?", value="✅" if business["hours"][0]["is_open_now"] else "❌", inline=False) # Use second available photo to avoid duplicating thumnbnail image if business["photos"]: try: embed.set_image(url=business["photos"][1]) except: embed.set_image(url=business["photos"][0]) return await ctx.send(embed=embed) @commands.command(name="reddit", aliases=["ah", "dh", "ph", "dank", "comic"]) async def reddit(self, ctx, subreddit: str = "random"): reddit = praw.Reddit(client_id=os.environ["REDDIT_CLIENT_ID"], client_secret=os.environ["REDDIT_CLIENT_SECRET"], user_agent="Jay Bot") subreddit_dict = { "ah": "accountinghumor", "dh": "designershumor", "ph": "programmerhumor", "dank": "memes", "comic": "webcomics" } command = ctx.message.content[1:] try: # Check if subreddit is in dictionary selection = subreddit_dict[command] except KeyError: selection = subreddit try: # Return random submission from subreddit submission = reddit.subreddit(selection).random() max_embed_desc_len = 2048 embed = discord.Embed( title=submission.title, description=submission.selftext if len( submission.selftext) < max_embed_desc_len else submission.selftext[:max_embed_desc_len - 3] + "...", url=submission.shortlink ) embed.add_field( name="Author", value=f"[{submission.author.name}](https://www.reddit.com/user/{submission.author.name})", inline=True) embed.add_field( name="👍", value=submission.score, inline=True) # Check if valid png or jpg file before setting image for embed if submission.url[-3:] in ["png", "jpg"]: embed.set_image(url=submission.url) embed.set_footer( text=f"/r/{submission.subreddit.display_name}") await ctx.send(embed=embed) except Exception as e: print(e) if "403" in str(e): return await ctx.send("Subreddit is private") if "404" in str(e): return await ctx.send("Subreddit not found") return await ctx.send("Subreddit not supported") @commands.command(name="dictionary", aliases=["dict"]) async def dictionary(self, ctx, word: str): if not word: return await ctx.send("Please provide word to be defined") URL = f"https://owlbot.info/api/v4/dictionary/{word}" HEADERS = {"Authorization": f"Token {os.getenv('OWLBOT_API_KEY')}"} try: r = requests.get(url=URL, headers=HEADERS) except Exception as e: print(e) if r.status_code == 404: return await ctx.send("No definition found.") data = r.json() # Take Top 3 Definitions length = 3 if len(data['definitions']) > 3 else len( data['definitions']) for i in range(length): embed = discord.Embed( title=data["word"].title(), description=data["definitions"][i]['type'].title() ) embed.add_field( name="Definition", value=data["definitions"][i]["definition"], inline=False) if data["definitions"][i]["example"]: embed.add_field( name="Example", value=data["definitions"][i]["example"], inline=False) if data["definitions"][i]["image_url"]: embed.set_thumbnail(url=data["definitions"][i]["image_url"]) await ctx.send(embed=embed) @commands.command(name="news") async def news(self, ctx, article_count=5): URL = "https://newsapi.org/v2/top-headlines?" PARAMS = {"apiKey": os.getenv("NEWS_API_KEY"), "country": "us", } try: r = requests.get(url=URL, params=PARAMS) except Exception as e: print(e) return data = r.json() length = article_count if data["totalResults"] >= article_count else data["totalResults"] for i in range(length): article = data["articles"][i] embed = discord.Embed( title=article["title"], description=article['description'], colour=discord.Colour.blue(), url=article["url"] ) embed.set_thumbnail(url=article["urlToImage"]) await ctx.send(embed=embed) @commands.command(name="mal") async def my_anime_list(self, ctx, username: str): URL = f"https://api.jikan.moe/v3/user/{username}/animelist/all" try: r = requests.get(url=URL) except Exception: return data = r.json() embed = discord.Embed( title=f"{username}'s Anime List", description="All Anime", url=f"https://myanimelist.net/animelist/{username}", ) status_dict = { 1: "Watching", 2: 2, 3: 3, 4: 4, 5: 5, 6: 6 } for idx, anime in enumerate(data["anime"]): embed.add_field( name="Title" if idx == 0 else "", value=f"[{anime['title']}]({anime['url']})", inline=True) embed.add_field( name="Status" if idx == 0 else "", value=status_dict[anime['watching_status']], inline=True) embed.add_field( name="Progress" if idx == 0 else "", value=f"Eps {anime['watched_episodes']}/{anime['total_episodes']}", inline=True) embed.set_thumbnail( url="https://image.myanimelist.net/ui/OK6W_koKDTOqqqLDbIoPAiC8a86sHufn_jOI-JGtoCQ") embed.set_footer(text=f"MyAnimeList") await ctx.send(embed=embed) def setup(bot): bot.add_cog(APICommands(bot)) ``` #### File: jay-bot/cogs/ComicCommands.py ```python import discord from discord.ext import commands from imgurpython import ImgurClient import requests import random import os class ComicCommands(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command(name="cyanide", aliases=["ch"]) async def cyanide(self, ctx): client_id = os.getenv("IMGUR_CLIENT_ID") client_secret = os.getenv("IMGUR_CLIENT_SECRET") client = ImgurClient(client_id, client_secret) galleries = ["Q28iX", "F3MUq", "Hs78vjZ", "4irAcqH", "XyPBv", "ytSSEEo"] images = client.get_album_images(random.choice(galleries)) random_idx = random.randrange(0, len(images)) random_comic = images[random_idx].link embed = discord.Embed( title="Cyanide & Happiness", url="http://explosm.net/" ) embed.set_image(url=random_comic) await ctx.send(embed=embed) @commands.command(name="loading", aliases=["la"]) async def loading(self, ctx): client_id = os.getenv("IMGUR_CLIENT_ID") client_secret = os.getenv("IMGUR_CLIENT_SECRET") client = ImgurClient(client_id, client_secret) galleries = ["eqog8N3", "V4983", "nk7dK", "J5hdR"] images = client.get_album_images(random.choice(galleries)) random_idx = random.randrange(0, len(images)) random_comic = images[random_idx].link embed = discord.Embed( title="Loading Artist", url="https://loadingartist.com/" ) embed.set_image(url=random_comic) await ctx.send(embed=embed) @commands.command(name="lovenstein", aliases=["mrl"]) async def lovenstein(self, ctx): client_id = os.getenv("IMGUR_CLIENT_ID") client_secret = os.getenv("IMGUR_CLIENT_SECRET") client = ImgurClient(client_id, client_secret) galleries = ["6h7o9", "MhDJD", "Spqb6Oj", "Fm9cQ"] images = client.get_album_images(random.choice(galleries)) random_idx = random.randrange(0, len(images)) random_comic = images[random_idx].link embed = discord.Embed( title="MrLovenstein", url="https://www.mrlovenstein.com/" ) embed.set_image(url=random_comic) await ctx.send(embed=embed) @commands.command(name="owlturd", aliases=["ot"]) async def owlturd(self, ctx): client_id = os.getenv("IMGUR_CLIENT_ID") client_secret = os.getenv("IMGUR_CLIENT_SECRET") client = ImgurClient(client_id, client_secret) galleries = ["KQELY", "MJBPd"] images = client.get_album_images(random.choice(galleries)) random_idx = random.randrange(0, len(images)) random_comic = images[random_idx].link embed = discord.Embed( title="Owl Turd", url="https://www.gocomics.com/shen-comix" ) embed.set_image(url=random_comic) await ctx.send(embed=embed) @commands.command(name="xkcd") async def xkcd(self, ctx): random_comic_num = random.randrange(1, 2327) URL = f"https://xkcd.com/{random_comic_num}/info.0.json" try: r = requests.get(url=URL) except Exception as e: print(e) return comic = r.json() embed = discord.Embed( title=comic["title"], description=comic["alt"], url=f"https://xkcd.com/{comic['num']}/" ) embed.set_image(url=comic["img"]) embed.set_footer(text=f"xkcd comic #{comic['num']}") await ctx.send(embed=embed) def setup(bot): bot.add_cog(ComicCommands(bot)) ```
{ "source": "JohnKearney2020/Hero_RPG", "score": 4 }
#### File: JohnKearney2020/Hero_RPG/original_rpg.py ```python def main(): hero_health = 10 hero_power = 5 goblin_health = 6 goblin_power = 2 while goblin_health > 0 and hero_health > 0: print("You have {} health and {} power.".format(hero_health, hero_power)) print("The goblin has {} health and {} power.".format(goblin_health, goblin_power)) print() print("What do you want to do?") print("1. fight goblin") print("2. do nothing") print("3. flee") print("> ", end=' ') raw_input = input() if raw_input == "1": # Hero attacks goblin goblin_health -= hero_power print("You do {} damage to the goblin.".format(hero_power)) if goblin_health <= 0: print("The goblin is dead.") elif raw_input == "2": pass elif raw_input == "3": print("Goodbye.") break else: print("Invalid input {}".format(raw_input)) if goblin_health > 0: # Goblin attacks hero hero_health -= goblin_power print("The goblin does {} damage to you.".format(goblin_power)) if hero_health <= 0: print("You are dead.") main() ```
{ "source": "johnkellehernz/pfwra", "score": 2 }
#### File: pfwra/common/models.py ```python from django.db import models from django.template.defaultfilters import slugify from wagtail.core.models import Collection, Page from wagtail.core.fields import StreamField from wagtail.snippets.models import register_snippet from wagtail.images.edit_handlers import ImageChooserPanel from wagtail.search import index from wagtail.admin.edit_handlers import ( FieldPanel, FieldRowPanel, MultiFieldPanel, PageChooserPanel, StreamFieldPanel, ) from wagtailcache.cache import WagtailCacheMixin from modelcluster.models import ClusterableModel from modelcluster.fields import ParentalKey from .blocks import BaseStreamBlock @register_snippet class Counter(models.Model): image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) count = models.IntegerField(null=True, blank=True) text = models.CharField( null=True, blank=True, max_length=255, help_text='Text to display on the counter' ) panels = [ ImageChooserPanel('image'), FieldPanel('count'), FieldPanel('text'), ] def __str__(self): return '%d %s' % (self.count, self.text) @register_snippet class Suburb(models.Model): name = models.CharField("Suburb name", unique=True, max_length=254) slug = models.SlugField(unique=True, blank=True) class Meta: ordering = ['name'] verbose_name = 'suburb' verbose_name_plural = 'suburbs' panels = [ FieldPanel('name'), FieldPanel('slug'), ] def __str__(self): return self.name def save(self, *args, **kwargs): if not self.slug: self.slug = slugify(self.name) return super(Suburb, self).save(*args, **kwargs) @register_snippet class People(models.Model): first_name = models.CharField("First name", max_length=254) last_name = models.CharField("Last name", max_length=254, null=True, blank=True) job_title = models.CharField("Job title", max_length=254, null=True, blank=True) image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) panels = [ MultiFieldPanel([ FieldRowPanel([ FieldPanel('first_name', classname="col6"), FieldPanel('last_name', classname="col6"), ]) ], "Name"), FieldPanel('job_title'), ImageChooserPanel('image') ] search_fields = [ index.SearchField('first_name'), index.SearchField('last_name'), ] def __str__(self): return '{} {}'.format(self.first_name, self.last_name) class Meta: verbose_name = 'Person' verbose_name_plural = 'People' class StandardPage(WagtailCacheMixin, Page): subtitle = models.CharField("Title in Te reo Māori", max_length=254, blank=True, null=True) introduction = models.TextField( help_text='Text to describe the page', blank=True) image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', ) body = StreamField( BaseStreamBlock(), verbose_name="Page body", blank=True ) content_panels = Page.content_panels + [ FieldPanel('subtitle', classname="full"), FieldPanel('introduction', classname="full"), StreamFieldPanel('body'), ImageChooserPanel('image'), ] search_fields = Page.search_fields + [ # Inherit search_fields from Page index.SearchField('introduction'), index.SearchField('body'), ] ``` #### File: pfwra/news/models.py ```python from __future__ import unicode_literals from django.contrib import messages from django.db import models from django.shortcuts import redirect, render from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from modelcluster.contrib.taggit import ClusterTaggableManager from modelcluster.fields import ParentalKey from taggit.models import Tag, TaggedItemBase from wagtail.contrib.routable_page.models import RoutablePageMixin, route from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, StreamFieldPanel, MultiFieldPanel from wagtail.core.fields import StreamField from wagtail.core.models import Page, Orderable from wagtail.images.edit_handlers import ImageChooserPanel from wagtail.search import index from wagtail.snippets.edit_handlers import SnippetChooserPanel from wagtailcache.cache import WagtailCacheMixin from common.blocks import BaseStreamBlock from common.models import Suburb class BlogPageTag(TaggedItemBase): """ This model allows us to create a many-to-many relationship between the BlogPage object and tags. There's a longer guide on using it at http://docs.wagtail.io/en/latest/reference/pages/model_recipes.html#tagging """ content_object = ParentalKey('BlogPage', related_name='tagged_items', on_delete=models.CASCADE) class BlogPage(WagtailCacheMixin, Page): author = models.ForeignKey( 'common.People', null=True, blank=True, related_name='+', on_delete=models.SET_NULL ) introduction = models.TextField( help_text='Text to describe the page', blank=True) image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', ) body = StreamField( BaseStreamBlock(), verbose_name="Page body", blank=True ) tags = ClusterTaggableManager(through=BlogPageTag, blank=True) suburb = models.ForeignKey( 'common.Suburb', null=True, blank=True, related_name='page_set', on_delete=models.SET_NULL ) date_published = models.DateField( "Date article published", blank=True, null=True ) content_panels = Page.content_panels + [ FieldPanel('introduction', classname="full"), ImageChooserPanel('image'), StreamFieldPanel('body'), FieldPanel('date_published'), SnippetChooserPanel('author'), MultiFieldPanel([ FieldPanel('tags'), SnippetChooserPanel('suburb'), ], heading="Suburbs and tags"), ] search_fields = Page.search_fields + [ index.SearchField('introduction'), index.SearchField('body'), index.RelatedFields('tags', [ index.SearchField('name', partial_match=True, boost=10), ]), index.RelatedFields('suburb', [ index.SearchField('name'), ]), ] @property def get_tags(self): tags = self.tags.all() for tag in tags: tag.url = '/' + '/'.join(s.strip('/') for s in [ self.get_parent().url, 'tags', tag.slug ]) return tags # Specifies parent to BlogPage as being BlogIndexPages parent_page_types = ['BlogIndexPage'] # Specifies what content types can exist as children of BlogPage. # Empty list means that no child content types are allowed. subpage_types = [] class BlogIndexPage(WagtailCacheMixin, RoutablePageMixin, Page): """ Index page for blogs. We need to alter the page model's context to return the child page objects, the BlogPage objects, so that it works as an index page RoutablePageMixin is used to allow for a custom sub-URL for the tag views defined above. """ subtitle = models.CharField("Title in Te reo Māori", max_length=254, blank=True, null=True) introduction = models.TextField( help_text='Text to describe the page', blank=True) image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', ) content_panels = Page.content_panels + [ FieldPanel('subtitle', classname="full"), FieldPanel('introduction', classname="full"), ImageChooserPanel('image'), ] search_fields = Page.search_fields + [ index.SearchField('introduction'), ] # Speficies that only BlogPage objects can live under this index page subpage_types = ['BlogPage'] parent_page_types = ['home.HomePage'] # # Defines a method to access the children of the page (e.g. BlogPage # # objects). On the demo site we use this on the HomePage # def children(self): # return self.get_children().specific().live() # Overrides the context to list all child items, that are live, by the # date that they were published # http://docs.wagtail.io/en/latest/getting_started/tutorial.html#overriding-context def get_context(self, request): context = super(BlogIndexPage, self).get_context(request) context['posts'] = self.paginate(request, self.get_posts()) return context def paginate(self, request, posts, *args): page = request.GET.get('page') paginator = Paginator(posts, 6) try: pages = paginator.page(page) except PageNotAnInteger: pages = paginator.page(1) except EmptyPage: pages = paginator.page(paginator.num_pages) return pages # This defines a Custom view that utilizes Tags. This view will return all # related BlogPages for a given Tag or redirect back to the BlogIndexPage. # More information on RoutablePages is at # http://docs.wagtail.io/en/latest/reference/contrib/routablepage.html @route(r'^tags/$', name='tag_archive') @route(r'^tags/([\w-]+)/$', name='tag_archive') def tag_archive(self, request, tag=None): try: tag = Tag.objects.get(slug=tag) except Tag.DoesNotExist: return redirect(self.url) posts = self.get_posts(tag=tag) context = { 'page': self, 'tag': tag, 'posts': self.paginate(request, posts) } return render(request, 'news/blog_index_page.html', context) # This defines a Custom view that utilizes Tags. This view will return all # related BlogPages for a given Tag or redirect back to the BlogIndexPage. # More information on RoutablePages is at # http://docs.wagtail.io/en/latest/reference/contrib/routablepage.html @route(r'^suburbs/$', name='suburb_archive') @route(r'^suburbs/([\w-]+)/$', name='suburb_archive') def suburb_archive(self, request, tag=None): try: suburb = Suburb.objects.get(slug=tag) except suburb.DoesNotExist: if suburb: msg = 'There are no blog posts with the "{}" suburb'.format(suburb) messages.add_message(request, messages.INFO, msg) return redirect(self.url) posts = self.get_posts(suburb=suburb) context = { 'page': self, 'suburb': suburb, 'posts': self.paginate(request, posts) } return render(request, 'news/blog_index_page.html', context) def serve_preview(self, request, mode_name): # Needed for previews to work return self.serve(request) # Returns the child BlogPage objects for this BlogPageIndex. # If a tag is used then it will filter the posts by tag. # Same with suburb if no tag present def get_posts(self, tag=None, suburb=None): posts = BlogPage.objects.live().descendant_of(self).order_by('-date_published') if tag: posts = posts.filter(tags=tag) elif suburb: posts = posts.filter(suburb=suburb) return posts # Returns the list of Tags for all child posts of this BlogPage. def get_child_tags(self): tags = [] for post in self.get_posts(): # Not tags.append() because we don't want a list of lists tags += post.get_tags tags = sorted(set(tags)) return tags def get_child_suburbs(self): return Suburb.objects.exclude(page_set__isnull=True) ```
{ "source": "JohnKendrick/PyMieScatt", "score": 2 }
#### File: PyMieScatt/PyMieScatt/CoreShell.py ```python import numpy as np from scipy.special import jv, yv from PyMieScatt.Mie import MieQ, MiePiTau import warnings def MieQCoreShell(mCore,mShell,wavelength,dCore,dShell,nMedium=1.0,asDict=False, asCrossSection=False): # http://pymiescatt.readthedocs.io/en/latest/forwardCS.html#MieQCoreShell if(nMedium != 1.0): warnings.warn("Note: the use of nMedium was incorporated naievely and the result should be carefully scrutinized.") xCore = np.pi*dCore/wavelength xShell = np.pi*dShell/wavelength if xCore==xShell: return MieQ(mCore,wavelength,dShell,nMedium=nMedium, asDict=asDict, asCrossSection=asCrossSection) elif xCore==0: return MieQ(mShell,wavelength,dShell,nMedium=nMedium, asDict=asDict, asCrossSection=asCrossSection) elif mCore==mShell: return MieQ(mCore,wavelength,dShell,nMedium=nMedium, asDict=asDict, asCrossSection=asCrossSection) elif xCore>0: nMedium = nMedium.real # wavelength /= nMedium # The choice was either to redefine the wavelength, or the xCore & xShell, I left just for indication, your call. mCore /= nMedium mShell /= nMedium xCore = np.pi*dCore * nMedium/wavelength # Not ideal to redefine xCore and xShell, but it seems need in order to keep MieQ conditions in place xShell = np.pi*dShell * nMedium/wavelength nmax = np.round(2+xShell+4*(xShell**(1/3))) n = np.arange(1,nmax+1) n1 = 2*n+1 n2 = n*(n+2)/(n+1) n3 = n1/(n*(n+1)) xShell2 = xShell**2 an, bn = CoreShell_ab(mCore,mShell,xCore,xShell) qext = (2/xShell2)*np.sum(n1*(an.real+bn.real)) qsca = (2/xShell2)*np.sum(n1*(an.real**2+an.imag**2+bn.real**2+bn.imag**2)) qabs = qext-qsca g1 = [an.real[1:int(nmax)],an.imag[1:int(nmax)],bn.real[1:int(nmax)],bn.imag[1:int(nmax)]] g1 = [np.append(x, 0.0) for x in g1] g = (4/(qsca*xShell2))*np.sum((n2*(an.real*g1[0]+an.imag*g1[1]+bn.real*g1[2]+bn.imag*g1[3]))+(n3*(an.real*bn.real+an.imag*bn.imag))) qpr = qext-qsca*g qback = (1/xShell2)*(np.abs(np.sum(n1*((-1)**n)*(an-bn)))**2) qratio = qback/qsca if asCrossSection: css = np.pi*(dShell/2)**2 cext = css*qext csca = css*qsca cabs = css*qabs cpr = css*qpr cback = css*qback cratio = qratio if asDict: return dict(Cext=cext,Csca=csca,Cabs=cabs,g=g,Cpr=cpr,Cback=cback,Cratio=cratio) else: return cext, csca, cabs, g, cpr, cback, cratio else: if asDict: return dict(Qext=qext,Qsca=qsca,Qabs=qabs,g=g,Qpr=qpr,Qback=qback,Qratio=qratio) else: return qext, qsca, qabs, g, qpr, qback, qratio def CoreShell_ab(mCore,mShell,xCore,xShell): # http://pymiescatt.readthedocs.io/en/latest/forwardCS.html#CoreShell_ab m = mShell/mCore u = mCore*xCore v = mShell*xCore w = mShell*xShell mx = max(np.abs(mCore*xShell),np.abs(mShell*xShell)) nmax = np.round(2+xShell+4*(xShell**(1/3))) nmx = np.round(max(nmax,mx)+16) n = np.arange(1,nmax+1) nu = n+0.5 sv = np.sqrt(0.5*np.pi*v) sw = np.sqrt(0.5*np.pi*w) sy = np.sqrt(0.5*np.pi*xShell) pv = sv*jv(nu,v) pw = sw*jv(nu,w) py = sy*jv(nu,xShell) chv = -sv*yv(nu,v) chw = -sw*yv(nu,w) chy = -sy*yv(nu,xShell) p1y = np.append([np.sin(xShell)], [py[0:int(nmax)-1]]) ch1y = np.append([np.cos(xShell)], [chy[0:int(nmax)-1]]) gsy = py-(0+1.0j)*chy gs1y = p1y-(0+1.0j)*ch1y # B&H Equation 4.89 Dnu = np.zeros((int(nmx)),dtype=complex) Dnv = np.zeros((int(nmx)),dtype=complex) Dnw = np.zeros((int(nmx)),dtype=complex) for i in range(int(nmx)-1,1,-1): Dnu[i-1] = i/u-1/(Dnu[i]+i/u) Dnv[i-1] = i/v-1/(Dnv[i]+i/v) Dnw[i-1] = i/w-1/(Dnw[i]+i/w) Du = Dnu[1:int(nmax)+1] Dv = Dnv[1:int(nmax)+1] Dw = Dnw[1:int(nmax)+1] uu = m*Du-Dv vv = Du/m-Dv fv = pv/chv dns = ((uu*fv/pw)/(uu*(pw-chw*fv)+(pw/pv)/chv))+Dw gns = ((vv*fv/pw)/(vv*(pw-chw*fv)+(pw/pv)/chv))+Dw a1 = dns/mShell+n/xShell b1 = mShell*gns+n/xShell an = (py*a1-p1y)/(gsy*a1-gs1y) bn = (py*b1-p1y)/(gsy*b1-gs1y) return an, bn def CoreShellScatteringFunction(mCore,mShell,wavelength,dCore,dShell,nMedium=1.0, minAngle=0, maxAngle=180, angularResolution=0.5, normed=False): # http://pymiescatt.readthedocs.io/en/latest/forwardCS.html#CoreShellScatteringFunction if(nMedium != 1.0): warnings.warn("Note: the use of nMedium was incorporated naievely and the result should be carefully scrutinized.") mCore /= nMedium mShell /= nMedium wavelength /= nMedium xCore = np.pi*dCore/wavelength xShell = np.pi*dShell/wavelength theta = np.linspace(minAngle,maxAngle,int((maxAngle-minAngle)/angularResolution))*np.pi/180 thetaSteps = len(theta) SL = np.zeros(thetaSteps) SR = np.zeros(thetaSteps) SU = np.zeros(thetaSteps) for j in range(thetaSteps): u = np.cos(theta[j]) S1,S2 = CoreShellS1S2(mCore,mShell,xCore,xShell,u) SL[j] = (np.sum((np.conjugate(S1)*S1))).real SR[j] = (np.sum((np.conjugate(S2)*S2))).real SU[j] = (SR[j]+SL[j])/2 if normed: SL /= np.max(SL) SR /= np.max(SR) SU /= np.max(SU) return theta,SL,SR,SU def CoreShellS1S2(mCore,mShell,xCore,xShell,mu): # http://pymiescatt.readthedocs.io/en/latest/forwardCS.html#CoreShellS1S2 nmax = np.round(2+xShell+4*(xShell**(1/3))) an,bn = CoreShell_ab(mCore,mShell,xCore,xShell) pin,taun = MiePiTau(mu,nmax) n = np.arange(1,int(nmax)+1) n2 = (2*n+1)/(n*(n+1)) pin *= n2 taun *= n2 S1=np.sum(an*np.conjugate(pin))+np.sum(bn*np.conjugate(taun)) S2=np.sum(an*np.conjugate(taun))+np.sum(bn*np.conjugate(pin)) return S1,S2 def CoreShellMatrixElements(mCore,mShell,xCore,xShell,mu): # http://pymiescatt.readthedocs.io/en/latest/forwardCS.html#CoreShellMatrixElements S1,S2 = CoreShellS1S2(mCore,mShell,xCore,xShell,mu) S11 = 0.5*(np.abs(S2)**2+np.abs(S1)**2) S12 = 0.5*(np.abs(S2)**2-np.abs(S1)**2) S33 = 0.5*(np.conjugate(S2)*S1+S2*np.conjugate(S1)) S34 = 0.5j*(S1*np.conjugate(S2)-S2*np.conjugate(S1)) return S11, S12, S33, S34 ```
{ "source": "jo-hnkennedy/kerr", "score": 3 }
#### File: jo-hnkennedy/kerr/k.py ```python import pandas import sqlite3 import re import sys from urllib2 import urlopen import xml.etree.ElementTree as et #converts minutes string ("32:30") to double (32.5) def getMinutes(minuteString): if (re.search('Did Not Play', minuteString) or minuteString is None or re.search('Suspended', minuteString)): return 0 else: split = re.split('[:]', minuteString) num = int(split[0]) + 0.0 denom = int(split[1]) + 0.0 return num + (denom/60) #returns the odds for games between team1 and team2 #assumes team1 is home team def getOdds(team1, team2): spread = 0 feed = urlopen("http://xml.pinnaclesports.com/pinnacleFeed.aspx?sportType=Basketball&sportSubType=NBA") tree = et.fromstring(feed.read()) events = tree.find('events') #looping through games for event in events: participants = event.find('participants') #looping through game participants, looking for name matches for participant in participants: #if either team is found, assuming we found the game and getting odds if (re.match(team1, participant.find('participant_name').text)): #getting home team spread periods = event.find('periods') spread = periods[0].find('spread').find('spread_home').text return spread db = sqlite3.connect("knba") k = db.cursor() #FIRST TEAM IS HOME TEAM teams = (sys.argv[1], sys.argv[2]) print "Team1: ", teams[0] spread = getOdds(teams[0], teams[1]) print "Calculating scores for", teams[0], "and", teams[1] print "" pointsArray = [] for team in teams: print team if (team == teams[0]): otherTeam = teams[1] else: otherTeam = teams[0] totalPoints = 0 #getting roster k.execute("SELECT name FROM rosters WHERE team LIKE ?;", (team,)) players = k.fetchall() #calculating average points for each player for player in players: #getting points where player's opponent was other team k.execute("SELECT points, minutes FROM games_box_simple WHERE playerName LIKE ? AND (homeTeam LIKE ? OR visitorTeam LIKE ?);", (player[0], otherTeam, otherTeam)); points_tuple = k.fetchall() points = [] minutes = [] #converting tuple to list for tuple in points_tuple: if (tuple[0] is None): points.append(0) else: points.append(tuple[0]) minutes.append(getMinutes(tuple[1])) #getting points per minute against that team since 2012-2013 pointSum = 0 minuteSum = 0 for point in points: pointSum = pointSum + point for minute in minutes: minuteSum = minuteSum + minute if (minuteSum == 0): pointsPerMinute = 0 else: pointsPerMinute = (pointSum + 0.0) / minuteSum #averaging minutes of most recent 15 games k.execute("SELECT minutes FROM games_box_simple WHERE playerName LIKE ? ORDER BY ROWID DESC", player); recentMinutes = 0.0 i = 0 while (i < 15): minutes_tuple = k.fetchone() lastGameMinutes = getMinutes(minutes_tuple[0]) recentMinutes = recentMinutes + lastGameMinutes i = i + 1 recentMinutes = recentMinutes / 15.0 totalPoints = (pointsPerMinute * recentMinutes) + totalPoints print player[0], " scores ", (pointsPerMinute * recentMinutes), " points" print "" pointsArray.append(totalPoints) print '' print teams[0], " - ", pointsArray[0] print teams[1], " - ", pointsArray[1] print "spread: ", spread print "" spread = float(spread) if (pointsArray[0] - spread > pointsArray[1]): print "Take the under" elif (pointsArray[1] - spread < pointsArray[1]): print "Take the over" else: print "This shouldn't happen" ```
{ "source": "johnkennyuk/supervisor", "score": 2 }
#### File: supervisor/tests/conftest.py ```python from functools import partial from inspect import unwrap from pathlib import Path import re from unittest.mock import AsyncMock, MagicMock, PropertyMock, patch from uuid import uuid4 from aiohttp import web from awesomeversion import AwesomeVersion import pytest from supervisor.api import RestAPI from supervisor.bootstrap import initialize_coresys from supervisor.const import REQUEST_FROM from supervisor.coresys import CoreSys from supervisor.dbus.network import NetworkManager from supervisor.docker import DockerAPI from supervisor.store.addon import AddonStore from supervisor.store.repository import Repository from supervisor.utils.gdbus import DBus from tests.common import exists_fixture, load_fixture, load_json_fixture # pylint: disable=redefined-outer-name, protected-access async def mock_async_return_true() -> bool: """Mock methods to return True.""" return True @pytest.fixture def docker() -> DockerAPI: """Mock DockerAPI.""" images = [MagicMock(tags=["ghcr.io/home-assistant/amd64-hassio-supervisor:latest"])] with patch("docker.DockerClient", return_value=MagicMock()), patch( "supervisor.docker.DockerAPI.images", return_value=MagicMock() ), patch("supervisor.docker.DockerAPI.containers", return_value=MagicMock()), patch( "supervisor.docker.DockerAPI.api", return_value=MagicMock() ), patch( "supervisor.docker.DockerAPI.images.list", return_value=images ), patch( "supervisor.docker.DockerAPI.info", return_value=MagicMock(), ), patch( "supervisor.docker.DockerConfig", return_value=MagicMock(), ): docker_obj = DockerAPI() docker_obj.info.logging = "journald" docker_obj.info.storage = "overlay2" docker_obj.info.version = "1.0.0" docker_obj.config.registries = {} yield docker_obj @pytest.fixture def dbus() -> DBus: """Mock DBUS.""" dbus_commands = [] async def mock_get_properties(dbus_obj, interface): latest = dbus_obj.object_path.split("/")[-1] fixture = interface.replace(".", "_") if latest.isnumeric(): fixture = f"{fixture}_{latest}" return load_json_fixture(f"{fixture}.json") async def mock_wait_signal(_, __): pass async def mock_send(_, command, silent=False): if silent: return "" fixture = command[6].replace("/", "_")[1:] if command[1] == "introspect": filetype = "xml" if not exists_fixture(f"{fixture}.{filetype}"): fixture = re.sub(r"_[0-9]+$", "", fixture) # special case if exists_fixture(f"{fixture}_~.{filetype}"): fixture = f"{fixture}_~" else: fixture = f"{fixture}-{command[10].split('.')[-1]}" filetype = "fixture" dbus_commands.append(fixture) return load_fixture(f"{fixture}.{filetype}") with patch("supervisor.utils.gdbus.DBus._send", new=mock_send), patch( "supervisor.utils.gdbus.DBus.wait_signal", new=mock_wait_signal ), patch( "supervisor.dbus.interface.DBusInterface.is_connected", return_value=True, ), patch( "supervisor.utils.gdbus.DBus.get_properties", new=mock_get_properties ): yield dbus_commands @pytest.fixture async def network_manager(dbus) -> NetworkManager: """Mock NetworkManager.""" nm_obj = NetworkManager() nm_obj.dbus = dbus # Init await nm_obj.connect() await nm_obj.update() yield nm_obj @pytest.fixture async def coresys(loop, docker, network_manager, aiohttp_client) -> CoreSys: """Create a CoreSys Mock.""" with patch("supervisor.bootstrap.initialize_system_data"), patch( "supervisor.bootstrap.setup_diagnostics" ): coresys_obj = await initialize_coresys() # Mock save json coresys_obj._ingress.save_data = MagicMock() coresys_obj._auth.save_data = MagicMock() coresys_obj._updater.save_data = MagicMock() coresys_obj._config.save_data = MagicMock() coresys_obj._jobs.save_data = MagicMock() coresys_obj._resolution.save_data = MagicMock() # Mock test client coresys_obj.arch._default_arch = "amd64" coresys_obj._machine = "qemux86-64" coresys_obj._machine_id = uuid4() # Mock host communication coresys_obj._dbus._network = network_manager # Mock docker coresys_obj._docker = docker # Set internet state coresys_obj.supervisor._connectivity = True coresys_obj.host.network._connectivity = True # WebSocket coresys_obj.homeassistant.api.check_api_state = mock_async_return_true coresys_obj.homeassistant._websocket._client = AsyncMock( ha_version=AwesomeVersion("2021.2.4") ) # Remove rate limiting decorator from fetch_data coresys_obj.updater.fetch_data = partial( unwrap(coresys_obj.updater.fetch_data), coresys_obj.updater ) yield coresys_obj await coresys_obj.websession.close() @pytest.fixture def sys_machine(): """Mock sys_machine.""" with patch("supervisor.coresys.CoreSys.machine", new_callable=PropertyMock) as mock: yield mock @pytest.fixture def sys_supervisor(): """Mock sys_supervisor.""" with patch( "supervisor.coresys.CoreSys.supervisor", new_callable=PropertyMock ) as mock: mock.return_value = MagicMock() yield MagicMock @pytest.fixture async def api_client(aiohttp_client, coresys: CoreSys): """Fixture for RestAPI client.""" @web.middleware async def _security_middleware(request: web.Request, handler: web.RequestHandler): """Make request are from Core.""" request[REQUEST_FROM] = coresys.homeassistant return await handler(request) api = RestAPI(coresys) api.webapp = web.Application(middlewares=[_security_middleware]) api.start = AsyncMock() await api.load() yield await aiohttp_client(api.webapp) @pytest.fixture def store_manager(coresys: CoreSys): """Fixture for the store manager.""" sm_obj = coresys.store with patch("supervisor.store.data.StoreData.update", return_value=MagicMock()): yield sm_obj @pytest.fixture def run_dir(tmp_path): """Fixture to inject hassio env.""" with patch("supervisor.core.RUN_SUPERVISOR_STATE") as mock_run: tmp_state = Path(tmp_path, "supervisor") mock_run.write_text = tmp_state.write_text yield tmp_state @pytest.fixture def store_addon(coresys: CoreSys, tmp_path): """Store add-on fixture.""" addon_obj = AddonStore(coresys, "test_store_addon") coresys.addons.store[addon_obj.slug] = addon_obj coresys.store.data.addons[addon_obj.slug] = load_json_fixture("add-on.json") yield addon_obj @pytest.fixture def repository(coresys: CoreSys): """Repository fixture.""" repository_obj = Repository( coresys, "https://github.com/awesome-developer/awesome-repo" ) coresys.store.repositories[repository_obj.slug] = repository_obj yield repository_obj ```
{ "source": "johnkerl/sack", "score": 3 }
#### File: johnkerl/sack/cl2_gm.py ```python import cl2_tm def get_elements_str(params_string): [n, sqsign] = cl2_tm.params_from_string(params_string) two_n = 1 << n elts = [] for bits in range(0, two_n): for sign in [1, -1]: #for sign in [1, -1]: #for bits in range(0, two_n): elts.append(cl2_tm.cl2_t(sign, bits, n, sqsign)) return elts ``` #### File: johnkerl/sack/f2polymod_tm.py ```python import sys import re import copy import f2poly_tm # xxx this is in mid-port from C++. ## ================================================================ #def f2polymod_from_string(string): # return f2polymod_t(int(string, 16)) # ## ================================================================ #class f2polymod_t: # # #def __init__(self, resbits, modbits): # # self.modbits = modbits # # self.resbits = f2poly_tm.imod(resbits, modbits) # # # Both arguments should be of type f2poly_t. # def __init__(self, residue, modulus): # self.modulus = modulus # self.residue = residue % modulus # # def __add__(a,b): # c = f2polymod_t(a.residue + b.residue, a.modulus) # return c # def __sub__(a,b): # c = f2polymod_t(a.residue - b.residue, a.modulus) # return c # def __mul__(a,b): # c = f2polymod_t(a.residue * b.residue, a.modulus) # return c # # # xxx fix me # def recip(a): # pass # ##int f2polymod_t::recip(f2polymod_t & rinv) ## f2poly_t g, a, b; ## g = this->residue.ext_gcd(this->modulus, a, b); ## ## if (g.find_degree() != 0): # Error check ## //std::cerr << "f2polymod recip: zero or zero divisor."; ## return 0 ## else: ## rinv = f2polymod_t(a, this->modulus) ## return 1 # # def __div__(a,b): # return a * b.recip() # # # xxx fix me # def __pow__(a, e): # ap = a.residue # one = f2poly_t(1) # rv = one # # #xxx types # if (e == 0): # if (a.residue.bits == 0): # print >> sys.stderr, "f2polymod_t.exp: 0^0 undefined." # sys.exit(1) # return one # elif (e < 0): # if (a.residue.bits == 0): # print >> sys.stderr, "f2polymod_t.exp: division by zero." # sys.exit(1) # # #xxx # f2polymod_t inv = one/ *this # xp = inv.residue # e = -e # # while (e != 0): # if e & 1: # rv.residue = (rv.residue * xp) % this->modulus # e >>= 1 # xp = (xp * xp) % this->modulus # return rv # # # def __eq__(a,b): # return a.bits == b.bits # def __ne__(a,b): # return not (a == b) # def __neg__(a): # return a # # def scan(self, string): # self.bits = int(string, 16) # # def __str__(self): # # xxx temp # return self.residue.__str__() # #return "%x" % self.bits # def __repr__(self): # return self.__str__() # # ##std::ostream & operator<<(std::ostream & os, const f2polymod_t & a) ## a.residue.dprint(os, a.modulus.find_degree() - 1) ## ##int f2polymod_t::from_string(char * string, f2poly_t m) ## f2poly_t r; ## std::istringstream iss(string, std::ios_base::in); ## iss >> r; ## if (iss.fail()) { ## return 0; ## } ## else { ## *this = f2polymod_t(r, m); ## return 1; ## } ## ##void f2polymod_t::check_moduli(f2polymod_t & that) const ## if (this->modulus != that.modulus) { ## std::cerr ## << "f2polymod_t: mixed moduli " ## << this->modulus ## << ", " ## << that.modulus ## << "."; ## std::cerr << std::endl; ## exit(1); ## } ``` #### File: johnkerl/sack/modmul_tm.py ```python import re import copy import sackint class modmul_t: def __init__(self, resarray, modarray): self.check_lengths(len(resarray), len(modarray), "residues", "moduli") self.check_moduli(modarray) self.residues = copy.copy(resarray) self.moduli = copy.copy(modarray) for i in range(0, len(modarray)): self.residues[i] %= self.moduli[i] def __eq__(a,b): if (len(a.residues) != len(b.residues)): return 0 n = len(a.residues) for i in range(0, n): if (a.residues[i] != b.residues[i]): return 0 return 1 def __ne__(a,b): return not (a == b) def __mul__(a,b): a.check_lengths(len(a.moduli), len(b.moduli), "moduli", "moduli") a.check_moduli_pair(a.moduli, b.moduli) c = modmul_t(a.residues, a.moduli) for i in range(0, len(a.moduli)): c.residues[i] = (a.residues[i] * b.residues[i]) % c.moduli[i] return c def inv(a): c = modmul_t(a.residues, a.moduli) for i in range(0, len(a.moduli)): c.residues[i] = sackint.intmodrecip(a.residues[i], a.moduli[i]) return c def __add__(a,b): a.check_lengths(len(a.moduli), len(b.moduli), "moduli", "moduli") a.check_moduli_pair(a.moduli, b.moduli) c = modmul_t(a.residues, a.moduli) for i in range(0, len(a.moduli)): c.residues[i] = (a.residues[i] + b.residues[i]) % c.moduli[i] return c def __sub__(a,b): a.check_lengths(len(a.moduli), len(b.moduli), "moduli", "moduli") a.check_moduli_pair(a.moduli, b.moduli) c = modmul_t(a.residues, a.moduli) for i in range(0, len(a.moduli)): c.residues[i] = (a.residues[i] - b.residues[i]) % c.moduli[i] return c def neg(a): c = modmul_t(a.residues, a.moduli) for i in range(0, len(a.moduli)): c.residues[i] = (-a.residues[i]) % a.moduli[i] return c def scan(self, res_string, mod_string): res_strings = re.split(',', res_string) mod_strings = re.split(',', mod_string) self.check_lengths(len(res_strings), len(mod_strings), res_strings, mod_strings) n = len(res_strings) resarray = list(range(0, n)) modarray = list(range(0, n)) for i in range(0, n): resarray[i] = int(res_strings[i]) modarray[i] = int(mod_strings[i]) self.__init__(resarray, modarray) def __str__(self): string = str(self.residues[0]) for i in range(1, len(self.residues)): string += "," + str(self.residues[i]) return string def __repr__(self): return self.__str__() def check_length(self, length, desc): if (length < 1): print((desc, "length", str(length), "< 1")) raise RuntimeError def check_lengths(self, len1, len2, desc1, desc2): self.check_length(len1, desc1) self.check_length(len2, desc2) if (len1 != len2): print((desc1, "length", str(len1), "!=", desc2, "length", len2)) raise RuntimeError def check_moduli(self, mods): for i in range(0, len(mods)): if (mods[i] < 1): print(("Modulus", mods[i], "< 1 in", mods)) raise RuntimeError def check_moduli_pair(self, mods1, mods2): if (mods1 != mods2): print(("Mismatched moduli", mods1, ", ", mods2)) raise RuntimeError def params_from_string(params_string): if (len(params_string) == 0): print("Modadd requires non-empty parameter string") sys.exit(1) mod_strings = re.split(',', params_string) n = len(mod_strings) mod_array = list(range(0, n)) for i in range(0, n): mod_array[i] = int(mod_strings[i]) return mod_array def from_string(value_string, params_string): obj = modmul_t([1], [1]) obj.scan(value_string, params_string) return obj # ================================================================ import unittest if __name__ == '__main__': class test_cases(unittest.TestCase): def test___init__(self): pass # to be implemented def test___eq__(self): pass # to be implemented def test___ne__(self): pass # to be implemented def test___mul__(self): pass # to be implemented def test_inv(self): pass # to be implemented def test___add__(self): pass # to be implemented def test___sub__(self): pass # to be implemented def test_neg(self): pass # to be implemented def test_scan(self): pass # to be implemented def test___str__(self): pass # to be implemented def test___repr__(self): pass # to be implemented def test_check_length(self): pass # to be implemented def test_check_lengths(self): pass # to be implemented def test_check_moduli(self): pass # to be implemented def test_check_moduli_pair(self): pass # to be implemented def test_params_from_string(self): pass # to be implemented def test_from_string(self): pass # to be implemented # ---------------------------------------------------------------- unittest.main() ``` #### File: johnkerl/sack/quatu_tm.py ```python import re quatu_mul_table = [ # 1 -1 i -i j -j k -k [ 0, 1, 2, 3, 4, 5, 6, 7 ], # 1 [ 1, 0, 3, 2, 5, 4, 7, 6 ], # -1 [ 2, 3, 1, 0, 6, 7, 5, 4 ], # i [ 3, 2, 0, 1, 7, 6, 4, 5 ], # -i [ 4, 5, 7, 6, 1, 0, 2, 3 ], # j [ 5, 4, 6, 7, 0, 1, 3, 2 ], # -j [ 6, 7, 4, 5, 3, 2, 1, 0 ], # k [ 7, 6, 5, 4, 2, 3, 0, 1 ], # -k ] quatu_inv_table = [ 0, 1, 3, 2, 5, 4, 7, 6 ] # 1 -1 i -i j -j k -k class quatu_t: #code = 0 def __init__(self, argcode): self.code = argcode & 7 def __mul__(a,b): c = quatu_t(quatu_mul_table[a.code][b.code]); return c def __eq__(a,b): return (a.code == b.code) def __ne__(a,b): return not (a == b) def __lt__(a,b): return (a.code < b.code) def __le__(a,b): return (a.code <= b.code) def __gt__(a,b): return (a.code > b.code) def __ge__(a,b): return (a.code >= b.code) def inv(a): c = quatu_t(quatu_inv_table[a.code]); return c def scan(self, string): if (string == "1"): self.__init__(0) elif (string == "-1"): self.__init__(1) elif (string == "i"): self.__init__(2) elif (string == "-i"): self.__init__(3) elif (string == "j"): self.__init__(4) elif (string == "-j"): self.__init__(5) elif (string == "k"): self.__init__(6) elif (string == "-k"): self.__init__(7) else: raise IOError def __str__(self): if (self.code == 0): return " 1" elif (self.code == 1): return "-1" elif (self.code == 2): return " i" elif (self.code == 3): return "-i" elif (self.code == 4): return " j" elif (self.code == 5): return "-j" elif (self.code == 6): return " k" elif (self.code == 7): return "-k" else: raise IOError def __repr__(self): return self.__str__() def params_from_string(params_string): # xxx check empty return 0 def from_string(value_string, params_string): not_used = params_from_string(params_string) obj = quatu_t(0) obj.scan(value_string) return obj #x = quatu_t(3) #y = quatu_t(2) #print x #print y #z = x * y #print z #z.scan("i") #print z #print #for i in range(0, 8): # for j in range(0, 8): # x = quatu_t(i) # y = quatu_t(j) # z = x * y # print x, y, z # print # ================================================================ import unittest if __name__ == '__main__': class test_cases(unittest.TestCase): def test___init__(self): pass # to be implemented def test___mul__(self): pass # to be implemented def test___eq__(self): pass # to be implemented def test___ne__(self): pass # to be implemented def test___lt__(self): pass # to be implemented def test___le__(self): pass # to be implemented def test___gt__(self): pass # to be implemented def test___ge__(self): pass # to be implemented def test_inv(self): pass # to be implemented def test_scan(self): pass # to be implemented def test___str__(self): pass # to be implemented def test___repr__(self): pass # to be implemented def test_params_from_string(self): pass # to be implemented def test_from_string(self): pass # to be implemented # ---------------------------------------------------------------- unittest.main() ``` #### File: johnkerl/sack/sackint.py ```python def gcd(a, b): r = 0 if (a == 0): return b if (b == 0): return a while (1): r = a % b if (r == 0): break a = b b = r if (b < 0): b = -b return b # ---------------------------------------------------------------- # Blankinship's algorithm def extgcd(a, b): # Initialize mprime = 1 n = 1 m = 0 nprime = 0 c = a d = b while (1): # Divide q = c / d r = c % d # Note: now c = qd + r and 0 <= r < d # Remainder zero? if (r == 0): break # Recycle c = d d = r t = mprime mprime = m qm = q * m m = t - qm t = nprime nprime = n qn = q * n n = t - qn return [d, m, n] # ---------------------------------------------------------------- # This function should be invoked with only one argument. # The optional argument is a way to have a local static in Python. # See Lutz & Ascher, 2nd. ed., p 241. def eulerphi(n, cached_n_and_phi=[2,1]): if (n == cached_n_and_phi[0]): # Cache hit return cached_n_and_phi[1] phi = 0 for i in range(1, n): if (gcd(n, i) == 1): phi += 1 return phi cached_n_and_phi[0] = n cached_n_and_phi[1] = phi return phi # ---------------------------------------------------------------- # Binary exponentiation def intexp(x, e): xp = x rv = 1 if (e < 0): print(("intexp: negative exponent", e, "disallowed.")) raise RuntimeError while (e != 0): if (e & 1): rv = (rv * xp) e = e >> 1 xp = (xp * xp) return rv # ---------------------------------------------------------------- # Binary exponentiation def intmodexp(x, e, m): xp = x rv = 1 if (e < 0): e = -e x = intmodrecip(x, m) while (e != 0): if (e & 1): rv = (rv * xp) % m e = e >> 1 xp = (xp * xp) % m return rv # ---------------------------------------------------------------- def intmodrecip(x, m): if (gcd(x, m) != 1): print(("intmodrecip: impossible inverse", x, "mod", m)) raise RuntimeError phi = eulerphi(m) return intmodexp(x, phi-1, m) # ---------------------------------------------------------------- def factorial(n): if (n < 0): print("factorial: negative input disallowed.") raise RuntimeError if (n < 2): return 1 rv = 1 for k in range(2, n+1): rv *= k return rv # ---------------------------------------------------------------- # How to compute P(n) = number of partitions of n. Examples for n = 1 to 5: # # 1 2 3 4 5 # 1 1 2 1 3 1 4 1 # 1 1 1 2 2 3 2 # 2 1 1 3 1 1 # 1 1 1 1 2 2 1 # 2 1 1 1 # 1 1 1 1 1 # # This is a first-rest algorithm. Loop over possible choices k for the first # number. The rest must sum to n-k. Furthermore, the rest must be descending # and so each must be less than or equal to k. Thus we naturally have an # auxiliary function P(n, m) counting partitions of n with each element less # than or equal to m. def num_ptnsm(n, m): if (n < 0): return 0 if (n <= 1): return 1 if (m == 1): return 1 sum = 0 for k in range(1, m+1): if (n-k >= 0): sum += num_ptnsm(n-k, k) return sum # ---------------------------------------------------------------- def num_ptns(n): return num_ptnsm(n, n) # ---------------------------------------------------------------- def ptnsm(n, m): rv = [] if (n < 0): return 0 if (n == 0): return [[]] if (n == 1): return [[1]] if (m == 1): return [[1] * n] sum = 0 for k in range(1, m+1): if (n-k >= 0): tails = ptnsm(n-k, k) for tail in tails: rv.append([k] + tail) return rv # ---------------------------------------------------------------- def ptns(n): return ptnsm(n, n) #for n in range(1, 21): # a = onum_ptns(n) # b = num_ptns(n) # print "%2d %2d %2d" % (n, a, b) #for n in range(1, 5+1): # for m in range(1, n+1): # p = num_ptnsm(n, m) # print n, m, p # print #for n in range(1, 7+1): # for m in range(1, n+1): # X = ptnsm(n, m) # print n, m, len(X), X # print ``` #### File: johnkerl/sack/v4_tm.py ```python import re # Type module for the Klein-4 group ("Viergruppe" in German, hence the # traditional "V4"). # e a b c # a e c b # b c e a # c b a e # v4_table = [ # [ 0,1,2,3 ], # [ 1,0,3,2 ], # [ 2,3,0,1 ], # [ 3,2,1,0 ]] class v4_t: #code = 0 def __init__(self, argcode): self.code = argcode & 3 def __eq__(a,b): return (a.code == b.code) def __ne__(a,b): return not (a == b) def __mul__(a,b): #c = v4_t(v4_table[a.code][b.code]); c = v4_t(a.code ^ b.code) return c def inv(a): c = v4_t(a.code) return c def scan(self, string): if (string == "e"): self.__init__(0) elif (string == "a"): self.__init__(1) elif (string == "b"): self.__init__(2) elif (string == "c"): self.__init__(3) else: raise IOError def __str__(self): if (self.code == 0): return "e" elif (self.code == 1): return "a" elif (self.code == 2): return "b" elif (self.code == 3): return "c" else: raise IOError def __repr__(self): return self.__str__() def params_from_string(params_string): return 0 def from_string(value_string, params_string): not_used = params_from_string(params_string) obj = v4_t(0) obj.scan(value_string) return obj #x = v4_t(3) #y = v4_t(2) #print x #print y #z = x * y #print z #z.scan("a") #print z #print #for i in range(0, 4): # for j in range(0, 4): # x = v4_t(i) # y = v4_t(j) # z = x * y # print x, y, z # print # ================================================================ import unittest if __name__ == '__main__': class test_cases(unittest.TestCase): def test___init__(self): pass # to be implemented def test___eq__(self): pass # to be implemented def test___ne__(self): pass # to be implemented def test___mul__(self): pass # to be implemented def test_inv(self): pass # to be implemented def test_scan(self): pass # to be implemented def test___str__(self): pass # to be implemented def test___repr__(self): pass # to be implemented def test_params_from_string(self): pass # to be implemented def test_from_string(self): pass # to be implemented # ---------------------------------------------------------------- unittest.main() ```
{ "source": "johnkerl/scripts-math", "score": 3 }
#### File: scripts-math/pythonlib/arg_eq_match_m.py ```python import sys import re # ---------------------------------------------------------------- # If there is a match, returns [True, {value}]. Else, returns [False, 0]. # E.g. if called with name_eq_value_pair "N=10", name = "N", and value_scanner # = int, returns [True, 10]. # xxx fix cmt to match reality def arg_eq_match(name_eq_value_pair, name, value_scanner, value_list): name_eq = name + '=' len_of_name_eq = len(name_eq) regexp = '^' + name_eq if re.match(regexp, name_eq_value_pair): value_string = name_eq_value_pair[len_of_name_eq:] try: value = value_scanner(value_string) except: print >> sys.stderr, 'Couldn\'t parse RHS of \'%s\' as %s.' \ % (name_eq_value_pair, value_scanner.__name__) return False value_list[0] = value return True else: return False ``` #### File: bin/ARp/ARp_m.py ```python import sys, random, copy # AR(p) process: # X[i] = c + sum_{j=1}^p a[j] X[i-j] + eps[i] # where eps[i] ~ N(0, sigma_eps^2) # ... perhaps eps[i] with non-normal distributions also could be used to create # something called AR(p)? class ARp_t: # c_and_as: [c a[1] a[2] ... a[p]] # X_i_minus: [X[i] X[i-1] X[i-2] ... X[i-p]] def __init__(self, c_and_as, sigma_eps): self.p = len(c_and_as) - 1 self.i = 0 if self.p < 1: print >> sys.stderr, "Need at least c and one a." print >> sys.stderr, "Pass a1=0 to get no a's." sys.exit(1) self.c_and_as = c_and_as self.sigma_eps = sigma_eps self.X_i_minus = [0] * (self.p+1) self.js_1_to_p = range(1, self.p+1) self.js_pm1_to_0 = range(self.p-1, -1, -1) # E.g. with p=2: # X[i-2] = X[i-1] # X[i-1] = X[i] # X[i] = c + a[1]*X[i-1] + a[2]*X[i-2] def update(self): for j in self.js_pm1_to_0: self.X_i_minus[j+1] = self.X_i_minus[j] Xi = self.c_and_as[0] # c for j in self.js_1_to_p: Xi += self.c_and_as[j] * self.X_i_minus[j] Xi += random.gauss(0, self.sigma_eps) self.X_i_minus[0] = Xi self.i += 1 def get(self): return self.X_i_minus[0] def get_and_update(self): Xi = self.X_i_minus[0] self.update() return Xi def get_all(self): #return copy.copy(self.X_i_minus) return self.X_i_minus def __str__(self): string = 'i=%d p=%d (c=%.4f' % (self.i, self.p, self.c_and_as[0]) for j in self.js_1_to_p: string += ' a[%d]=%.4f' % (j, self.c_and_as[j]) string += ')' for j in range(0, self.p+1): string += ' X[%d]=%.4f' % (self.i-j, self.X_i_minus[j]) return string def __repr__(self): return __str__(self) # ---------------------------------------------------------------- def usage(): print >> sys.stderr, "Usage: %s {n}" % (sys.argv[0]) print >> sys.stderr, "Or: %s {n} {nA}" % (sys.argv[0]) print >> sys.stderr, "Or: %s {n} {nA} {c} {a1 a2 ...}" % (sys.argv[0]) sys.exit(1) # ---------------------------------------------------------------- # N.B.: # * c=0 a1=1 a2=1 sigma=0: fibo # * c=1 a1=1 sigma=0: counter # * c=mu a1=0 sigma=1: IID N(mu, sigma) n = 20 nA = 10 c_and_as = [0, 0.999] sigma_eps = 1 argc = len(sys.argv) if argc == 1: pass elif argc == 2: if sys.argv[1] == '-h' or sys.argv[1] == '--help': usage() n = int(sys.argv[1]) elif argc == 3: n = int(sys.argv[1]) nA = int(sys.argv[2]) elif argc >= 5: n = int(sys.argv[1]) nA = int(sys.argv[2]) c_and_as = map(float, sys.argv[3:]) else: usage() ARps = [0] * nA for j in range(0, nA): ARps[j] = ARp_t(c_and_as, sigma_eps) for i in range(0, n): for j in range(0, nA): print ARps[j].get_and_update(), print ``` #### File: bin/cumdie/try1.py ```python import sys, random # ---------------------------------------------------------------- def main(): #print_trajectories() create_histogram_data() # ---------------------------------------------------------------- def print_trajectories(): sum_to_reach = 300 num_experiments = 20 if len(sys.argv) == 2: num_experiments = int(sys.argv[1]) sums = [0] * num_experiments while True: # Print for i in range(0, num_experiments): print sums[i], print # Check for done all_done = True for i in range(0, num_experiments): if sums[i] < sum_to_reach: all_done = False break if all_done: break # Update for i in range(0, num_experiments): if sums[i] < sum_to_reach: U = random.randint(1, 6) sums[i] += U # ---------------------------------------------------------------- def create_histogram_data(): sum_to_reach = 300 num_rolls_to_reach = 80 num_experiments = 100000 if len(sys.argv) == 2: num_experiments = int(sys.argv[1]) for i in range(0, num_experiments): #print stopping_time(sum_to_reach) print sum_after(num_rolls_to_reach) # ---------------------------------------------------------------- def stopping_time(sum_to_reach): sum = 0 num_rolls = 0 while sum < sum_to_reach: U = random.randint(1, 6) num_rolls += 1 sum += U return num_rolls # ---------------------------------------------------------------- def sum_after(num_rolls_to_reach): sum = 0 num_rolls = 0 while num_rolls < num_rolls_to_reach: U = random.randint(1, 6) num_rolls += 1 sum += U return sum # ---------------------------------------------------------------- main() ``` #### File: pythonlib/bin/fake-stars.py ```python from __future__ import division import sys, Image import random # ---------------------------------------------------------------- # Tweakable parameters density = 0.01 radius_CDF = [[0.9, 1], [0.98, 2], [1.0, 3]] spread = 40 # ---------------------------------------------------------------- def main(): # My laptop monitor size: #width = 1366 #height = 768 # My laptop monitor size times 120%. Then I can shrink the image # inside GIMP to get a little softer look. width = 1640 height = 922 argc = len(sys.argv) if argc == 2: file_name = sys.argv[1] elif argc == 4: width = int(sys.argv[1]) height = int(sys.argv[2]) file_name = sys.argv[3] else: usage() im = Image.new('RGB', (width, height), 0) num_stars = int(density * width * height) for k in xrange(0, num_stars): i = random.randint(0, width-1) j = random.randint(0, height-1) putrandstar(im, width, height, i, j) im.save(file_name) # ---------------------------------------------------------------- def usage(): print >> sys.stderr, \ "Usage: %s {width in pixels} {height in pixels} {output file name}" sys.exit(1) # ---------------------------------------------------------------- # 1. Keep r/g/b close to one another, & vary brightness more. # 2. Take random radius & bleed over into adjacent pixels def putrandstar(im, width, height, i, j): r = random.randint(0, 255) g = random.randint(max(r-spread,0), min(r+spread,255)) b = random.randint(max(r-spread,0), min(r+spread,255)) radius = random_selection_from_CDF(radius_CDF) # How to handle various radii: treat the star as a circular disk, with # brightness uniform across the disk. So, for each pixel in a 1x1, 2x2, or # 3x3 grid, count the fraction of the pixel that is covered by a circle. # (Place star centers at pixel centers for convenience.) # Eyeball estimates: # o 1x1: middle about 3/4 covered. # o 2x2: center 100% covered. up/down/left/right about 45% covered. # corners about 15% covered. # o 3x3: center 100% covered. up/down/left/right about 90% covered. # corners about 60% covered. if radius == 1: im.putpixel((i,j), scale_rgb(r,g,b,0.75)) elif radius == 2: clipped_putpixel(im, width, height, i, j, scale_rgb(r,g,b,1.00)) clipped_putpixel(im, width, height, i+1, j, scale_rgb(r,g,b,0.45)) clipped_putpixel(im, width, height, i-1, j, scale_rgb(r,g,b,0.45)) clipped_putpixel(im, width, height, i, j+1, scale_rgb(r,g,b,0.45)) clipped_putpixel(im, width, height, i, j-1, scale_rgb(r,g,b,0.45)) clipped_putpixel(im, width, height, i+1, j+1, scale_rgb(r,g,b,0.15)) clipped_putpixel(im, width, height, i+1, j-1, scale_rgb(r,g,b,0.15)) clipped_putpixel(im, width, height, i-1, j+1, scale_rgb(r,g,b,0.15)) clipped_putpixel(im, width, height, i-1, j-1, scale_rgb(r,g,b,0.15)) elif radius == 3: clipped_putpixel(im, width, height, i, j, scale_rgb(r,g,b,1.00)) clipped_putpixel(im, width, height, i+1, j, scale_rgb(r,g,b,0.90)) clipped_putpixel(im, width, height, i-1, j, scale_rgb(r,g,b,0.90)) clipped_putpixel(im, width, height, i, j+1, scale_rgb(r,g,b,0.90)) clipped_putpixel(im, width, height, i, j-1, scale_rgb(r,g,b,0.90)) clipped_putpixel(im, width, height, i+1, j+1, scale_rgb(r,g,b,0.40)) clipped_putpixel(im, width, height, i+1, j-1, scale_rgb(r,g,b,0.40)) clipped_putpixel(im, width, height, i-1, j+1, scale_rgb(r,g,b,0.40)) clipped_putpixel(im, width, height, i-1, j-1, scale_rgb(r,g,b,0.40)) # ---------------------------------------------------------------- def random_selection_from_CDF(CDF): U = random.uniform(0.0, 1.0) for [C, value] in CDF: if U < C: return value print >> sys.stderr, 'random_selection_from_CDF b0rk' sys.exit(1) # ---------------------------------------------------------------- def scale_rgb(r,g,b,frac): return (int(frac*r), int(frac*g), int(frac*b)) # ---------------------------------------------------------------- def clipped_putpixel(im, width, height, i, j, rgb): if i < 0: return if i >= width: return if j < 0: return if j >= height: return im.putpixel((i,j), rgb) # ================================================================ main() ``` #### File: bin/sde/sdesolv1.py ```python from __future__ import division # 1/2 = 0.5, not 0. import math, random # ---------------------------------------------------------------- # Writes the motion into the Xt array, which must be predimensioned. # Xt is dimensioned [nt][dim]? # or have: # Xt is dimensioned [dim][nt]? # dXt = e(X_t, t) dt + f(Xt, t) db_t def sdesolve1(Xt, e, f, params, dt): nt = len(Xt) dim = len(Xt[0]) sqrtdt = math.sqrt(dt) T = nt * dt t = 0.0 Bt = 0.0 Xt[0] = X0 for i in xrange(1, dim): for j in xrange(1, nt): dB = random.gauss(0.0, sqrtdt) Xt[i][j] = Xt[i][j-1] + e(Xt, t) * dt + f(Xt, t) * dB t += dt ``` #### File: pythonlib/bin/test_numderiv.py ```python from __future__ import division # 1/2 = 0.5, not 0. from kerlutil import * from math import * #from cmath import * def c(x): return 1.0 def i(x): return x def s(x): return x**2 def f(x): return sin(x) def g(z): return exp(1j*z)/z # ---------------------------------------------------------------- def rtest(): #x = frange(2., 4., 20) x = frange(0, 2*pi, 200) y = map(f, x) yp = numderiv(f, x) n = len(x) for i in range(0, n): printf_row([x[i], y[i], yp[i]]) #rtest() # ---------------------------------------------------------------- from cmath import * def ctest(): #x = frange(2., 4., 20) z = ztrange(1., 0, 2*pi, 200) w = map(g, z) wp = numderiv(g, z) n = len(z) for i in range(0, n): printf_row(clist_to_rlist([z[i], w[i], wp[i]])) ctest() ``` #### File: scripts-math/pythonlib/float2hex_m.py ```python from __future__ import division # 1/2 = 0.5, not 0. import struct def float2hex(x): p = struct.pack ("!f", x) i = struct.unpack("!I", p) s = "%08x" % (int(i[0])) return s ``` #### File: scripts-math/pythonlib/prb_m.py ```python from __future__ import division # 1/2 = 0.5, not 0. import sackmat_m import random import copy import sys import pmtc_tm # ---------------------------------------------------------------- # Scales the vector so its row sum is 1. def row_normalize_vector(v): sum = sackmat_m.vec_contract(v) if (sum == 0.0): return n = len(v) for i in range(0, n): v[i] /= sum # ---------------------------------------------------------------- # Scales each row of the matrix so the row sums are 1. def row_normalize_matrix(A): [nr, nc] = A.dims() for i in range(0, nr): row_normalize_vector(A[i]) # ---------------------------------------------------------------- # Use the metric induced by the max norm. def are_close(A, B, tol = 1e-4): # Assume same dims n = A.square_dim() for i in range(0, n): for j in range(0, n): d = abs(A[i][j] - B[i][j]) if (d > tol): return [0, d] return [1, tol] # ---------------------------------------------------------------- # Iterates the chain, looking for stability. def is_stable(A, verbose=0): Ap = copy.copy(A) #maxits = 20 maxits = 1000 k = 0 while (k < maxits): Ao = Ap Ap = Ap * A [yn, err] = are_close(Ao, Ap) if (verbose): print "-- k = %d err = %.4e" % (k, err) Ap.printf() print "" if (yn == 1): return [1, Ap] k += 1 return [0, Ap] # ---------------------------------------------------------------- # Let q = 1-p. # p q 0 0 0 0 # 0 p q 0 0 0 # 0 0 p q 0 0 # 0 0 0 p q 0 # 0 0 0 0 p q # q 0 0 0 0 p def circpmat1(n, p): A = sackmat_m.make_zero_matrix(n, n) for i in range(0, n): A[i][i] = p A[i][(i+1)%n] = 1-p return A # ---------------------------------------------------------------- # Let q = 1-p. # 0 q 0 0 0 p # p 0 q 0 0 0 # 0 p 0 q 0 0 # 0 0 p 0 q 0 # 0 0 0 p 0 q # q 0 0 0 p 0 def circpmat2(n, p): A = sackmat_m.make_zero_matrix(n, n) for i in range(0, n): A[i][(i-1)%n] = p A[i][(i+1)%n] = 1-p return A # ---------------------------------------------------------------- # Assign matrix elements using uniform distribution on [0, 1), then # normalize rows. def randprbmat(n): A = sackmat_m.make_zero_matrix(n, n) for i in range(0, n): for j in range(0, n): A[i][j] = random.random() row_normalize_matrix(A) return A # ---------------------------------------------------------------- def pqmat(p, q): return sackmat_m.sackmat([[p, 1-p],[1-q, q]]) # ================================================================ #A = randprbmat(6,6) #A = pmtc_tm.from_cycles([[1,2],[3,4,5]],5).to_permutation_matrix() #A = circpmat1(6, .5) #A = circpmat2(6, .1) p = 0.9 q = 0.8 if (len(sys.argv) == 3): p=float(sys.argv[1]) q=float(sys.argv[2]) A=pqmat(p, q) print "A:" A.printf() print "" #sys.exit(0) [yn, As] = is_stable(A, 1) if (yn == 1): print "stable" As.printf() else: print "unstable" As.printf() ``` #### File: scripts-math/pythonlib/randc_m.py ```python from __future__ import division # 1/2 = 0.5, not 0. import random import math from cplxreal_m import * # ---------------------------------------------------------------- def randc_unit(): phz = random.uniform(0.0, 2.0*math.pi) return complex(math.cos(phz), math.sin(phz)) # ---------------------------------------------------------------- def randc_mean_sq_1(): s = 0.70710678118654746 # 1.0/math.sqrt(2.0) re = random.gauss(0.0, s) im = random.gauss(0.0, s) return complex(re, im) # ---------------------------------------------------------------- def randc_normal(mu, sigma_squared): s = 0.70710678118654746 # 1.0/math.sqrt(2.0) scale = sigma_squared * s re = random.gauss(real(mu), scale) im = random.gauss(imag(mu), scale) return complex(re, im) ``` #### File: scripts-math/pythonlib/stats_m.py ```python from __future__ import division # 1/2 = 0.5, not 0. import math import copy import sackmat_m import normal_m import sys # ---------------------------------------------------------------- def make_histogram(farray, lo, hi, num_bins): bins = [0] * num_bins # Ensure they are floats. lo *= 1.0; hi *= 1.0 # This is loop-invariant; hoist it out. mul = num_bins / (hi - lo) for element in farray: if ((element >= lo) and (element < hi)): idx = int((element-lo) * mul) bins[idx] += 1 return bins # ---------------------------------------------------------------- def make_histogram2(xy_pairs, lo_x, hi_x, num_x_bins, lo_y, hi_y, num_y_bins): bins = sackmat_m.make_zero_matrix(num_x_bins, num_y_bins) # Ensure they are floats. lo_x *= 1.0; hi_x *= 1.0; lo_y *= 1.0; hi_y *= 1.0 # These are loop-invariant; hoist them out. mul_x = num_x_bins / (hi_x - lo_x) mul_y = num_y_bins / (hi_y - lo_y) for [x, y] in xy_pairs: if ((x >= lo_x) and (x < hi_x) and (y >= lo_y) and (y < hi_y)): x_idx = int((x-lo_x) * mul_x) y_idx = int((y-lo_y) * mul_y) bins[x_idx][y_idx] += 1 return bins # ---------------------------------------------------------------- def make_histogram_labels(lo, hi, num_bins, center=0): list = [] delta = (hi-lo)/(1.0*num_bins) for i in range(0, num_bins): if (center): label = lo + (i + 0.5) *delta else: label = lo + i*delta list.append(label) return list # ---------------------------------------------------------------- def find_min(farray): lo = farray[0] for element in farray: if (element < lo): lo = element return lo # ---------------------------------------------------------------- def find_max(farray): hi = farray[0] for element in farray: if (element > hi): hi = element return hi # ---------------------------------------------------------------- def find_bounds(farray): lo = farray[0] hi = farray[0] for element in farray: if (element < lo): lo = element if (element > hi): hi = element return [lo, hi] # ---------------------------------------------------------------- # Scalar mean def find_mean(farray): sum = 0.0 for element in farray: sum += element return sum / len(farray) # ---------------------------------------------------------------- # Scalar standard deviation def find_stddev(farray, mean): sum = 0.0 for element in farray: sum += (element - mean) ** 2 return math.sqrt(sum / (len(farray) - 1)) # ---------------------------------------------------------------- # Standard error, i.e. standard deviation of the sample mean. def find_stderr(farray, mean): s = find_stddev(farray, mean) n = len(farray) return s / math.sqrt(n) # ---------------------------------------------------------------- # Population variance def find_popvaraux(xs, mean): sum = 0.0 for x in xs: sum += (x - mean) ** 2 return sum / len(xs) def find_popvar(xs): return find_popvaraux(xs, find_mean(xs)) # Sample variance def find_sampvaraux(xs, mean): sum = 0.0 for x in xs: sum += (x - mean) ** 2 return sum / (len(xs) - 1) def find_sampvar(xs): return find_sampvaraux(xs, find_mean(xs)) def find_var_of_sample_mean(xs): return find_sampvar(xs) / len(xs) # U = 1 - <X^4> / (3 <X^2>^2) # where X is taken to have zero mean def find_fourth_order_cumulant(farray): n = len(farray) sumx = 0.0 sumx2 = 0.0 sumx4 = 0.0 for x in farray: sumx += x meanx = sumx / n for y in farray: x = y - meanx x2 = x*x x4 = x2*x2 sumx2 += x2 sumx4 += x4 meanx2 = sumx2 / n meanx4 = sumx4 / n if meanx2 == 0.0: return 0.0 else: return 1.0 - meanx4 / (3 * meanx2 * meanx2); def find_fourth_order_cumulant_temp(farray): n = len(farray) sumx = 0.0 sumx2 = 0.0 sumx3 = 0.0 sumx4 = 0.0 for x in farray: sumx += x sumx2 += x*x sumx3 += x*x*x sumx4 += x*x*x*x xbar = sumx / n xbar2 = xbar * xbar xbar3 = xbar * xbar2 xbar4 = xbar * xbar3 numer = \ sumx4 \ - 4 * xbar * sumx3 \ + 6 * xbar2 * sumx2 \ - 4 * xbar3 * sumx \ + n * xbar4 denom = \ sumx2 * sumx2 \ + 4 * xbar2 * sumx * sumx \ + n * n * xbar4 \ + 2 * n * xbar2 * sumx2 \ - 4 * xbar * sumx * sumx2 \ - 4 * n * xbar3 * sumx if denom == 0.0: return 0.0 else: return 1.0 - (n * numer) / (3 * denom) # ---------------------------------------------------------------- # Sample covariance of two lists. def find_sample_covariance(xs, ys): N = len(xs) mean_x = find_mean(xs) mean_y = find_mean(ys) sum = 0.0 for k in range(0, N): sum += (xs[k] - mean_x) * (ys[k] - mean_y) return sum / (N-1.0) # ---------------------------------------------------------------- # Sample correlation of two lists: # Corr(X,Y) = Cov(X,Y) / sigma_X sigma_Y. def find_sample_correlation(xs, ys): N = len(xs) cov = find_sample_covariance(xs, ys) mean_x = find_mean(xs) mean_y = find_mean(ys) stddev_x = find_stddev(xs, mean_x) stddev_y = find_stddev(ys, mean_y) return cov / (stddev_x * stddev_y) # ---------------------------------------------------------------- def find_sample_tauint(xs, numk=0): N = len(xs) if numk == 0: numk = N tauint = [0.0] * numk autocorr = find_sample_autocorr(xs, numk) sum = 1.0 tauint[0] = sum for t in range(1, numk): sum += 2 * autocorr[t] tauint[t] = sum return tauint # ---------------------------------------------------------------- # Computing running sum of $\hat{\tau}_int(t)$. # Stop after a flat spot has been found, detected via a turning point. # Be clever about re-using previous sums. # # See my dissertation for details. Or, Berg's Markov Chain Monte Carlo # Simulations and Their Statistical Analysis. def find_sample_tauint_flat_spot(xs): N = len(xs) minflat = 4 # Within-window sums sumi, sumi2, sumj, and sumj2 contain terms which can # be re-used across k. The cross-sums sumij are different for each k and # must be recomputed. # # Here, compute the full-window sums. sumi = 0.0; sumi2 = 0.0 for k in range(0, N): x = xs[k] sumi += x sumi2 += x*x sumj = sumi; sumj2 = sumi2 tauint = 1.0 nflat = 0 # Go up only to t=N-2. The autocorr estimator for t=N-1 doesn't work (only # one sample), and if we haven't found a flat spot of tauint by then, we # aren't going to. for t in range(1, N-1): winsz = N - t winszm1 = winsz - 1 denom = winszm1 if winszm1 == 0: denom = 1 i = t; j = N-t-1 # Update the within-window sums. xi = xs[ i ]; xj = xs[ j ] xim = xs[i-1]; xjp = xs[j+1] sumi -= xim; sumi2 -= xim*xim sumj -= xjp; sumj2 -= xjp*xjp # Compute the cross-sum. sumij = 0.0 for k in range(0, winsz): sumij += xs[k] * xs[t+k] # Compute the autocorrelation term for this t. meani = sumi / winsz; meanj = sumj / winsz stdi = math.sqrt((sumi2 - (sumi**2 / winsz)) / denom) stdj = math.sqrt((sumj2 - (sumj**2 / winsz)) / denom) autocorr_t = 0.0 if (stdi != 0.0) and (stdj != 0.0): autocorr_t = (sumij / winsz - (meani*meanj)) / (stdi*stdj) tauint += 2.0 * autocorr_t #print '%d %11.7f %11.7f' % (t, autocorr_t, tauint) if autocorr_t < 0.0: return tauint return tauint # ---------------------------------------------------------------- # E[X_i X_j] - mu^2 # -----------------. # sigma^2 # More efficient autocorrelation: # # The cross-window sums must be computed for each k, because they differ for # each k. But the within-window sums may be accumulated, as long as we start # with k at the end and work our way backward to the beginning. # Example with N = 8: # [ 0 ] k = 7 # [ o ] # [ o ] # [ 7 ] # [ 0 1 ] k = 6 # [ o o ] # [ o o ] # [ 6 7 ] # ... # [ 0 1 2 3 4 5 6 ] k = 1 # [ o o o o o o o ] # [ o o o o o o o ] # [ 1 2 3 4 5 6 7 ] # [ 0 1 2 3 4 5 6 7 ] k = 0 # [ o o o o o o o o ] # [ o o o o o o o o ] # [ 0 1 2 3 4 5 6 7 ] # ---------------------------------------------------------------- # Pass numk=0 or numk=N to compute all possible autocorrelations. Pass numk = # something smaller to compute only the first numk autocorrelations. def find_sample_autocorr(xs, numk=0): N = len(xs) if numk == 0: numk = N autocorr = [0.0] * numk if (numk <= 1) or (numk > N): print >> sys.stderr, \ "find_sample_autocorr: numk must be > 1 and <= N=%d; got %d." \ % (N, numk) sys.exit(1) # Sums over first and second windows sumi = 0.0; sumi2 = 0.0 sumj = 0.0; sumj2 = 0.0 # k = N-1: accumulate sums, but set autocorr to zero. Sample sizes # are 1; standard deviations would get a division by zero. i = 0; j = N-1 for k in range(N-1, numk-1, -1): xi = xs[i]; xj = xs[j] sumi += xi; sumi2 += xi**2 sumj += xj; sumj2 += xj**2 i += 1; j -= 1 # k = N-2 down to 1. for k in range(numk-1, 0, -1): xi = xs[i]; xj = xs[j] sumi += xi; sumi2 += xi**2 sumj += xj; sumj2 += xj**2 winsz = N-k; winszm1 = winsz - 1 if k == N-1: # Leave autocorr[N-1] = 0.0 to avoid division by zero. i += 1; j -= 1 continue sumij = 0.0 for ell in range(0, winsz): sumij += xs[ell] * xs[ell+k] meani = sumi / winsz; meanj = sumj / winsz stdi = math.sqrt((sumi2 - (sumi**2 / winsz)) / winszm1) stdj = math.sqrt((sumj2 - (sumj**2 / winsz)) / winszm1) if (stdi == 0.0) or (stdj == 0.0): autocorr[k] = 0.0 else: autocorr[k] = (sumij / winsz - (meani*meanj)) / (stdi*stdj) i += 1; j -= 1 # k = 0: sumij, sumi2, and sumj2 are all the same. k = 0 winsz = N; winszm1 = N-1 xi = xs[N-1] sumi += xi sumi2 += xi**2 meani = sumi / N stdi = math.sqrt((sumi2 - (sumi**2 / winsz)) / winszm1) autocorr[0] = (sumi2 / N - (meani*meani)) / (stdi*stdi) return autocorr ## ---------------------------------------------------------------- #def find_sample_full_autocorr(xs): # N = len(xs) # autocorr = [0.0] * N # # # Sums over first and second windows # sumi = 0.0; sumi2 = 0.0 # sumj = 0.0; sumj2 = 0.0 # # # k = N-1: accumulate sums, but set autocorr to zero. Sample sizes # # are 1; standard deviations would get a division by zero. # i = 0; j = N-1 # k = N-1 # xi = xs[i]; xj = xs[j] # sumi += xi; sumi2 += xi**2 # sumj += xj; sumj2 += xj**2 # autocorr[k] = 0.0 # i += 1; j -= 1 # # # k = N-2 down to 1. # for k in range(N-2, 0, -1): # xi = xs[i]; xj = xs[j] # sumi += xi; sumi2 += xi**2 # sumj += xj; sumj2 += xj**2 # winsz = N-k; winszm1 = winsz - 1 # # sumij = 0.0 # for ell in range(0, winsz): # sumij += xs[ell] * xs[ell+k] # # meani = sumi / winsz; meanj = sumj / winsz # stdi = math.sqrt((sumi2 - (sumi**2 / winsz)) / winszm1) # stdj = math.sqrt((sumj2 - (sumj**2 / winsz)) / winszm1) # # autocorr[k] = (sumij / winsz - (meani*meanj)) / (stdi*stdj) # i += 1; j -= 1 # # # k = 0: sumij, sumi2, and sumj2 are all the same. # k = 0 # winsz = N; winszm1 = N-1 # xi = xs[N-1] # sumi += xi # sumi2 += xi**2 # meani = sumi / N # stdi = math.sqrt((sumi2 - (sumi**2 / winsz)) / winszm1) # # autocorr[0] = (sumi2 / N - (meani*meani)) / (stdi*stdi) # # return autocorr # ## ---------------------------------------------------------------- #def find_sample_short_autocorr(xs, numk): # N = len(xs) # autocorr = [0.0] * numk # # if (numk <= 1) or (numk >= N): # print >> sys.stderr, \ # "find_sample_short_autocorr: numk must be > 1 and < N=%d; got %d." \ # % (N, numk) # sys.exit(1) # # # Sums over first and second windows # sumi = 0.0; sumi2 = 0.0 # sumj = 0.0; sumj2 = 0.0 # # # k = N-1: accumulate sums, but set autocorr to zero. Sample sizes # # are 1; standard deviations would get a division by zero. # i = 0; j = N-1 # for k in range(N-1, numk-1, -1): # xi = xs[i]; xj = xs[j] # sumi += xi; sumi2 += xi**2 # sumj += xj; sumj2 += xj**2 # i += 1; j -= 1 # # # k = N-2 down to 1. # for k in range(numk-1, 0, -1): # xi = xs[i]; xj = xs[j] # sumi += xi; sumi2 += xi**2 # sumj += xj; sumj2 += xj**2 # winsz = N-k; winszm1 = winsz - 1 # # sumij = 0.0 # for ell in range(0, winsz): # sumij += xs[ell] * xs[ell+k] # # meani = sumi / winsz; meanj = sumj / winsz # stdi = math.sqrt((sumi2 - (sumi**2 / winsz)) / winszm1) # stdj = math.sqrt((sumj2 - (sumj**2 / winsz)) / winszm1) # # autocorr[k] = (sumij / winsz - (meani*meanj)) / (stdi*stdj) # i += 1; j -= 1 # # # k = 0: sumij, sumi2, and sumj2 are all the same. # k = 0 # winsz = N; winszm1 = N-1 # xi = xs[N-1] # sumi += xi # sumi2 += xi**2 # meani = sumi / N # stdi = math.sqrt((sumi2 - (sumi**2 / winsz)) / winszm1) # # autocorr[0] = (sumi2 / N - (meani*meani)) / (stdi*stdi) # # return autocorr # ---------------------------------------------------------------- # E[X_i X_j] - mu^2 # -----------------. # sigma^2 # Example: # # N = 8, k = 2 # 0 1 2 3 4 5 # o o o o o o # o o o o o o # 2 3 4 5 6 7 def find_sample_autocorr_old1(xs): N = len(xs) autocorr = [0.0] * N for k in range(0, N-1): # k = j-i window1 = xs[0:N-k] window2 = xs[k:N] mean1 = find_mean(window1) mean2 = find_mean(window2) std1 = find_stddev(window1, mean1) std2 = find_stddev(window2, mean2) cross_sum = 0.0 for i in range(0, N-k): cross_sum += xs[i] * xs[i+k] cross_mean = cross_sum / (N-k) autocorr[k] = (cross_mean - mean1*mean2) / (std1 * std2) return autocorr # ---------------------------------------------------------------- # Vector mean: varray is a list of N vectors, each having n elements. This # could be done more elegantly using calls to sackmat_m's vecadd but it seems # tighter performancewise this way. def find_vector_mean(varray): N = len(varray) n = len(varray[0]) sum = [0.0] * n for vector in varray: for j in range(0, n): sum[j] += vector[j] for j in range(0, n): sum[j] *= (1.0/N) return sum # ---------------------------------------------------------------- # Vector standard deviation: varray is a list of N vectors, each having n # elements. This could be done more elegantly using calls to sackmat routines # but it seems tighter performancewise this way. def find_vector_stddev(varray, vmean): N = len(varray) n = len(varray[0]) sum = [0.0] * n for vector in varray: for j in range(0, n): sum[j] += (vector[j] - vmean[j])**2 denom = 1.0 / (N-1) for j in range(0, n): sum[j] = math.sqrt(sum[j] * denom) return sum # ---------------------------------------------------------------- # find_sample_covariance_matrix # ---------------------------------------------------------------- # # There are nx vectors x, each having dim elements. # The sample covariance matrix Q is dim x dim with elements # q[i][j] = (1/(nx-1)) sum_{k=1}^nx (x[k][i] - mu[i])(x[k][j] - mu[j]) # where k indexes the set of x's and i,j index elements within the k'th vector. # I.e. the ij'th entry of Q is the (scalar) sample covariance of xi and xj. # In particular, the diagonal entries are the variances of the xi. # Example: # nx = 3 and dim = 2. # # x0 = [ 1 ] x1 = [ 2 ] x2 = [ 3 ] # [-4 ] [-5 ] [-6 ] # # mu = [ 2 ] # [-5 ] # q[0][0] = (x[0][0] - mu[0]) * (x[0][0] - mu[0]) # + (x[1][0] - mu[0]) * (x[1][0] - mu[0]) # + (x[2][0] - mu[0]) * (x[2][0] - mu[0]) # # = ( 1 - 2) * ( 1 - 2) # + ( 2 - 2) * ( 2 - 2) # + ( 3 - 2) * ( 3 - 2) # # = 1 + 0 + 1 = 2 # q[0][1] = (x[0][0] - mu[0]) * (x[0][1] - mu[1]) # + (x[1][0] - mu[0]) * (x[1][1] - mu[1]) # + (x[2][0] - mu[0]) * (x[2][1] - mu[1]) # # = ( 1 - 2) * (-4 + 5) # + ( 2 - 2) * (-5 + 5) # + ( 3 - 2) * (-6 + 5) # # =-1 + 0 - 1 = -2 # q[1][0] = (x[0][1] - mu[1]) * (x[0][0] - mu[0]) # + (x[1][1] - mu[1]) * (x[1][0] - mu[0]) # + (x[2][1] - mu[1]) * (x[2][0] - mu[0]) # # = (-4 + 5) * ( 1 - 2) # + (-5 + 5) * ( 2 - 2) # + (-6 + 5) * ( 3 - 2) # # =-1 + 0 - 1 = -2 # q[1][1] = (x[0][1] - mu[1]) * (x[0][1] - mu[1]) # + (x[1][1] - mu[1]) * (x[1][1] - mu[1]) # + (x[2][1] - mu[1]) * (x[2][1] - mu[1]) # # = (-4 + 5) * (-4 + 5) # + (-5 + 5) * (-5 + 5) # + (-6 + 5) * (-6 + 5) # # = 1 + 0 + 1 = 2 # Q = [ 2 -2 ] * (1/2) # [-2 2 ] # # = [ 1 -1 ] # [-1 1 ] def find_sample_covariance_matrix(xs): nx = len(xs) dim = len(xs[0]) mean = find_vector_mean(xs) Q = sackmat_m.make_zero_matrix(dim, dim) for i in range(0, dim): for j in range(0, dim): sum = 0.0 for k in range(0, nx): sum += (xs[k][i] - mean[i]) * (xs[k][j] - mean[j]) Q[i][j] = sum / (nx-1.0) return Q # ---------------------------------------------------------------- # Corr(X,Y) = Cov(X,Y) / sigma_X sigma_Y # Corr(Xi,Xj) = Cov(Xi,Xj) / sigma_Xi sigma_Xj # The ijth entry of the correlation matrix is the correlation of Xi and Xj. def find_sample_correlation_matrix(xs): nx = len(xs) dim = len(xs[0]) cov = find_sample_covariance_matrix(xs) vmean = find_vector_mean(xs) vstddev = find_vector_stddev(xs, vmean) for i in range(0, dim): for j in range(0, dim): cov[i][j] /= vstddev[i] * vstddev[j] return cov # ---------------------------------------------------------------- # Univariate linear regression # ---------------------------------------------------------------- # There are N (xi, yi) pairs. # # E = sum (yi - m xi - b)^2 # # DE/Dm = sum 2 (yi - m xi - b) (-xi) = 0 # DE/Db = sum 2 (yi - m xi - b) (-1) = 0 # # sum (yi - m xi - b) (xi) = 0 # sum (yi - m xi - b) = 0 # # sum (xi yi - m xi^2 - b xi) = 0 # sum (yi - m xi - b) = 0 # # m sum(xi^2) + b sum(xi) = sum(xi yi) # m sum(xi) + b N = sum(yi) # # [ sum(xi^2) sum(xi) ] [ m ] = [ sum(xi yi) ] # [ sum(xi) N ] [ b ] = [ sum(yi) ] # # [ m ] = [ sum(xi^2) sum(xi) ]^-1 [ sum(xi yi) ] # [ b ] [ sum(xi) N ] [ sum(yi) ] # # = [ N -sum(xi) ] [ sum(xi yi) ] * 1/D # [ -sum(xi) sum(xi^2)] [ sum(yi) ] # # where # # D = N sum(xi^2) - sum(xi)^2. # # So # # N sum(xi yi) - sum(xi) sum(yi) # m = -------------------------------- # D # # -sum(xi)sum(xi yi) + sum(xi^2) sum(yi) # b = ---------------------------------------- # D def linear_regression(xs, ys): sumxi = 0.0 sumyi = 0.0 sumxiyi = 0.0 sumxi2 = 0.0 N = len(xs) for i in range(0, N): x = xs[i] y = ys[i] sumxi += x sumyi += y sumxiyi += x*y sumxi2 += x*x D = N * sumxi2 - sumxi**2 m = (N * sumxiyi - sumxi * sumyi) / D b = (-sumxi * sumxiyi + sumxi2 * sumyi) / D # Young 1962, pp. 122-124. Compute sample variance of linear # approximations, then variances of m and b. var_z = 0.0 for i in range(0, N): var_z += (m * xs[i] + b - ys[i])**2 var_z /= N var_m = (N * var_z) / D var_b = (var_z * sumxi2) / D return [m, b, math.sqrt(var_m), math.sqrt(var_b)] # ---------------------------------------------------------------- def get_corr_coeff(xs, ys): sumxi = 0.0 sumyi = 0.0 sumxiyi = 0.0 sumxi2 = 0.0 sumyi2 = 0.0 N = len(xs) for i in range(0, N): x = xs[i] y = ys[i] sumxi += x sumyi += y sumxiyi += x*y sumxi2 += x*x sumyi2 += y*y # Young 1962, p. 130. a = N*sumxiyi - sumxi*sumyi b = N*sumxi2 - sumxi**2 c = N*sumyi2 - sumyi**2 corr_coeff = a / math.sqrt(b*c) return corr_coeff # ---------------------------------------------------------------- def zscore(x): return normal_m.invnorm(x) # ---------------------------------------------------------------- def get_normal_quantiles_zs(xarray): # Assume inputs are sorted? n = len(xarray) zarray = [] for i in range(0, n): z = zscore((1.0*(i+0.5))/n) zarray.append(z) return zarray # ---------------------------------------------------------------- def print_normal_quantiles_zx(xarray): xs = copy.copy(xarray) xs.sort() zs = get_normal_quantiles_zs(xs) n = len(xs) for i in range(0, n): print zs[i], xs[i] # ---------------------------------------------------------------- # Suppose x_1, ..., x_N are IID samples of a random variable X. # The kernel density approximator of the PDF of X, with bandwidth parameter # h, is the function # # KDA(x) = (1/Nh) sum K((x-x_i)/h) # # where the kernel K may be taken to be the PDF of the standard normal. def kernel_density_estimator(x, xarray, h): N = len(xarray) sum = 0.0 for xi in xarray: sum += normal_m.normalpdf((x-xi)/h) return sum/N/h def plot_kde(xarray, h, xlo, xhi, nx): dx = (xhi - xlo) / (1.0*nx) for i in range(0, nx+1): x = xlo + i*dx y = kernel_density_estimator(x, xarray, h) print x, y ```
{ "source": "johnkerl/spit", "score": 2 }
#### File: johnkerl/spit/spit-client.py ```python import sys, os, getopt, socket, errno OURDIR = os.path.dirname(sys.argv[0]) if OURDIR == '': OURDIR = '.' execfile(OURDIR + '/spit-classes.py') DEFAULT_WORKER_ID = "0" # ================================================================ def usage(ostream): a = sys.argv[0] string = \ """Usage: %s [options] ask Or: %s [options] show Or: %s [options] output {DKVP text} Or: %s [options] stats {DKVP text} Or: %s [options] mark-done {task_id} Or: %s [options] mark-failed {task_id} Options: -s {server host name} Defaults to %s -p {server port number} Defaults to %d -w {worker ID} Defaults to %s """ % (a,a,a,a,a,a,DEFAULT_SPIT_SERVER_HOST_NAME,DEFAULT_SPIT_SERVER_PORT_NUMBER,DEFAULT_WORKER_ID) ostream.write(string) # ---------------------------------------------------------------- def main(): server_host_name = DEFAULT_SPIT_SERVER_HOST_NAME server_port_number = DEFAULT_SPIT_SERVER_PORT_NUMBER worker_id = DEFAULT_WORKER_ID try: optargs, non_option_args = getopt.getopt(sys.argv[1:], "s:p:w:h", ['help']) except getopt.GetoptError, err: print >> sys.stderr, str(err) usage(sys.stderr) sys.exit(1); for opt, arg in optargs: if opt == '-s': server_host_name = arg elif opt == '-p': server_port_number = int(arg) elif opt == '-w': worker_id = arg elif opt == '-h': usage(sys.stdout) sys.exit(0) elif opt == '--help': usage(sys.stdout) sys.exit(0) else: print >> sys.stderr, "Unhandled option \"%s\"." % opt sys.exit(1) non_option_arg_count = len(non_option_args) if non_option_arg_count < 1: usage(sys.stderr) sys.exit(1) verb = non_option_args[0] non_option_args = non_option_args[1:] non_option_arg_count = len(non_option_args) client = SpitClient(server_host_name, server_port_number, worker_id) if verb == 'ask': if non_option_arg_count != 0: usage(sys.stderr) sys.exit(1) task_id = client.send_wreq() cprint(task_id) elif verb == 'show': if non_option_arg_count != 0: usage(sys.stderr) sys.exit(1) output = client.send_show() cprint(output) elif verb == 'output': client.send_output(",".join(non_option_args)) elif verb == 'stats': client.send_stats(",".join(non_option_args)) elif verb == 'mark-done': if non_option_arg_count != 1: usage(sys.stderr) sys.exit(1) task_id = non_option_args[0] client.send_mark_done(task_id) elif verb == 'mark-failed': if non_option_arg_count != 1: usage(sys.stderr) sys.exit(1) task_id = non_option_args[0] client.send_mark_failed(task_id) else: usage(sys.stderr) sys.exit(1) # ================================================================ if __name__ == "__main__": main() ```
{ "source": "JohnKHancock/my_portfolio", "score": 3 }
#### File: Data Wrangling OpenStreetMap/Code Files/Part_One_Audit.py ```python import xml.etree.cElementTree as ET from collections import defaultdict import pprint as pp import re #============================================================================== # Data Wrangling Final Project # #============================================================================== filename = 'detroit_michigan.osm' #============================================================================== # # PART ONE #1. Measuring Validity: Does the Data Conform to a Schema: #============================================================================== tags = {} elems = { "Parents": 0, "Stand_Alone": 0 } def count_tags(filename): for _, elem in ET.iterparse(filename): if elem.tag in tags: tags[elem.tag] += 1 else: tags[elem.tag] = 1 return tags def count_elements_with_children(filename): for _, elem in ET.iterparse(filename): checkList = elem.getchildren() if len(checkList) > 0: elems["Parents"] += 1 else: elems["Stand_Alone"] += 1 return elems #Uncomment the lines below to get the results of the tags count #count_tags(filename) #count_elements_with_children(filename) #pp.pprint(tags) #pp.pprint(elems) #============================================================================== #2. Measuring Data Accuracy: Perform an Audit of the Data #============================================================================== #Code taken from lesson 3 of DataWrangling with MongoDB street_type_re = re.compile(r'\S+\.?$', re.IGNORECASE) street_types = defaultdict(int) def audit_street_type(street_types, street_name): m = street_type_re.search(street_name) if m: street_type = m.group() street_types[street_type] += 1 def print_sorted_dict(d): keys = d.keys() keys = sorted(keys, key=lambda s: s.lower()) for k in keys: v = d[k] pp.pprint( "%s: %d" % (k, v) ) def is_street_name(elem): return (elem.tag == "tag") and (elem.attrib['k'] == "addr:street") def audit(): for event, elem in ET.iterparse(filename): if is_street_name(elem): audit_street_type(street_types, elem.attrib['v']) print_sorted_dict(street_types) #Uncomment the lines below to get the results of the audit of the street names #audit() #============================================================================== #3. Measuring Data Accuracy: Perform an Audit of the Data – Non US Entries #============================================================================== country_codes = {} def audit_country(): for event, elem in ET.iterparse(filename): if elem.tag == "tag": if elem.attrib['k'] == "addr:country": if elem.attrib['v'] in country_codes: country_codes[elem.attrib['v']] += 1 else: country_codes[elem.attrib['v']] = 1 return country_codes #Uncomment the lines below to get the results of the audit of countries #audit_country() #pp.pprint(countries) #============================================================================== # 4. Measuring Data Accuracy: Perform an Audit of the Data – Erroneous Postal Codes #============================================================================== postcodes = {} def audit_postcodes(): for event, elem in ET.iterparse(filename): if elem.tag == "tag": if elem.attrib['k'] == "addr:postcode": if elem.attrib['v'] in postcodes: postcodes[elem.attrib['v']] += 1 else: postcodes[elem.attrib['v']] = 1 pp.pprint(postcodes) #Uncomment the lines below to get the results of the audit of the postal codes #audit_postcodes() #pp.pprint(postcodes) #============================================================================== #5. Measuring Data Accuracy: Perform an Audit of the Data – Erroneous City Values #============================================================================== city = {} def audit_city(): for event, elem in ET.iterparse(filename): if elem.tag == "tag": if elem.attrib['k'] == "addr:city": if elem.attrib['v'] in city: city[elem.attrib['v']] += 1 else: city[elem.attrib['v']] = 1 pp.pprint(city) #Uncomment the lines below to get the results of the audit of the city data #audit_city() #pp.pprint(city) ```
{ "source": "john-khgoh/KeywordSubstitutionCipherSolver", "score": 4 }
#### File: john-khgoh/KeywordSubstitutionCipherSolver/Solver.py ```python from datetime import datetime from itertools import permutations from collections import OrderedDict def removeAlphaDup(wordlist): #Remove alphabet duplicates from words in wordlist e.g. hello become helo newwordlist = [] for word in wordlist: newwordlist.append(''.join(OrderedDict.fromkeys(word))) #After removing duplicate using OrderDict, append to newwordlist return newwordlist #print("test") def switchKey(word): #Add keyword to front of alpha, without duplicates #alpha = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] #key = ['<KEY>'] #alpha='abcdefghijklmnopqrstuvwxyz' removelist = ['-','\'',' '] key='<KEY>' newkey=word+key newkey=newkey.translate(None,''.join(removelist)) #Removes character from removelist newkey=''.join(OrderedDict.fromkeys(newkey)) return newkey #print((permutations(key)) def wordFinder(wordlist,phrase): #Find words from the wordlist in the phrase #list = ['this','is','a','test','not'] sublist = [] for word in wordlist: if(phrase.find(word)>0): #Check if there's a word from the wordlist, if found returns word from list. sublist.append(word) #print(word) return sublist #print(sublist) #a = phrase.find('thee') #print phrase def decrypt(phrase): wordlist = open('English3000.txt','r').read().split('\n') #Read from the word list outputname = "Output\Output" + str(datetime.now().strftime('-%Y%m%d-%H%M')) + ".txt" #Name format of output file f = open(outputname,'a') #Write to file in append mode newwordlist = removeAlphaDup(wordlist) alpha='abcdefghijklmnopqrstuvwxyz' for word in newwordlist: #Iterate through newwordlist sublist = [] newphrase = '' newkey = switchKey(word) for char in phrase: pos = newkey.find(char) newphrase=newphrase+alpha[pos] sublist = wordFinder(wordlist,newphrase) if sublist: #If sublist is not empty, write to file f.write(str(sublist)+'\n') f.close() #print(newphrase) #print newkey #print(newwordlist) #wordFinder(wordlist,phrase) #switchKey(phrase) phrase = '<KEY>' #This is the string you want to decipher decrypt(phrase) ```
{ "source": "JohnKhor/tankobon", "score": 3 }
#### File: tankobon/parser/01_shonenjump.py ```python import bs4 import json import os import requests from utils import (get_content, get_soup, create_dir, write_image, save_json) BASE_URL = 'https://www.shonenjump.com' RENSAI_URL = BASE_URL + '/j/rensai/' ARCHIVES_URL = RENSAI_URL + 'archives.html' LIST_URL = RENSAI_URL + 'list/' def shonenjump(): # create image directory IMG_DIR = 'img' create_dir(IMG_DIR) rensai_soup = get_soup(get_content(RENSAI_URL)) archives_soup = get_soup(get_content(ARCHIVES_URL)) # store series information: name, abbreviated name and whether it is still ongoing all_series = [] # create icon directory ICONS_DIR = os.path.join(IMG_DIR, 'icons') create_dir(ICONS_DIR) for soup in [rensai_soup, archives_soup]: # ongoing series? ongoing = True if soup is rensai_soup else False section = soup.find('section', class_='serialSeries') for li in section.find_all('li'): # series name in japanese name_jp = li.div.text if li.div else li.p.text name_jp = name_jp[1:name_jp.find('』')] link_tag = li.a # abbreviated name abbr = link_tag['href'].rsplit('/', 1)[1][:-5] # download icon img_src = link_tag.img['src'] img_url = BASE_URL + img_src file_path = os.path.join(ICONS_DIR, abbr + '.' + img_src.rsplit('.', 1)[1]) print(f'Downloading {file_path}...') write_image(img_url, file_path) # add series series = { 'name': name_jp, 'abbr': abbr, 'ongoing': ongoing } all_series.append(series) # save series information save_json("data.json", all_series) for series in all_series: # create directory for this series series_dir = os.path.join(IMG_DIR, series['abbr']) create_dir(series_dir) current_list_url = LIST_URL + series['abbr'] + '.html' while current_list_url: list_soup = get_soup(get_content(current_list_url)) ul = list_soup.find('ul', class_='comicsList') # ignore series that hasn't release any volume yet if ul.li is None: break for dl in ul.select('li dl'): # skip current volume if it isn't released yet if '発売予定' in str(dl.p): continue # download cover img_src = dl.img['src'] img_url = BASE_URL + img_src file_path = os.path.join(series_dir, img_src.rsplit('/', 1)[1]) print(f'Downloading {file_path}...') write_image(img_url, file_path) # get url for next list of covers next_list_url_tag = list_soup.find('span', class_='current_page').next_sibling.next_sibling if next_list_url_tag is None: break else: current_list_url = BASE_URL + next_list_url_tag['href'] if __name__ == '__main__': shonenjump() ```
{ "source": "JohnKHW/atos_api", "score": 3 }
#### File: AI/nets/net_interface.py ```python import os from importlib import import_module class NetModule(object): def __init__(self, module_name, net_name, **kwargs): self.module_name = module_name self.net_name = net_name self.m = import_module('nets.' + self.module_name) def create_model(self, **kwargs): """ when use a pretrained model of imagenet, pretrained_model_num_classes is 1000 :param kwargs: :return: """ _model = getattr(self.m, self.net_name) model = _model(**kwargs) return model ```
{ "source": "johnkim76/photo-album-demo", "score": 3 }
#### File: src/db_info/my_sql_info.py ```python from .db_info import DbInfo import mysql.connector class MySqlInfo(DbInfo): db_type_label = 'MySql' def __init__(self, host, port, database, user, password): super().__init__() self.host = host self.port = port or 3306 self.database = database self.user = user self.password = password self.connector = mysql.connector def query_version(self): return self.query("""SELECT VERSION()""", 0, 0) def query_uptime(self): return self.query("""SHOW STATUS LIKE 'Uptime'""", 0, 1) + " seconds" def query_connection_count(self): return self.query("""SHOW STATUS LIKE 'Connections'""", 0, 1) ```
{ "source": "John-Kimani/Password-Manager", "score": 3 }
#### File: John-Kimani/Password-Manager/password_test.py ```python import unittest #unitest module from password import Credential #imports Credential class for testing from password import User #imports User class for testing class TestUser(unittest.TestCase): ''' Test class that helps define test cases for the credentials class behaviours Args: Testcase class taht helps create test cases for User ''' # test to check if user object is instatiated properly def setUp(self): ''' Set up method to run before each test case. ''' self.new_profile = User('Vernice','<NAME>') def test__init(self): ''' Test case to test if User object is instantiated correctly ''' self.assertEqual(self.new_profile.userName, 'Vernice') self.assertEqual(self.new_profile.password, '<NAME>') #end of class user test #start of class credential test class TestCredential(unittest.TestCase): ''' Test class that helps define test cases for the credentials class behaviours Args: Testcase class that helps create test cases for Credential ''' #test to check if credential object is instantiated properly def setUp(self): ''' Set up method to run before each test case. ''' self.new_account = Credential('Pintrest', 'kimperria', 'Aura-Dev98') #sample login details for a new pintrest account def test__init(self): ''' Test case to test if credential object is instantiated correctly ''' self.assertEqual(self.new_account.accountName, 'Pintrest') self.assertEqual(self.new_account.accountUsername,'kimperria') self.assertEqual(self.new_account.accountPassword,'<PASSWORD>') # save account def test_save_account(self): ''' Test case to check account object is saved into the contact list ''' self.new_account.save_account() self.assertEqual(len(Credential.credentials_list),1) def tearDown(self): ''' cleans up each credential list after instance ''' Credential.credentials_list = [] # save multiple accounts def test_save_multiple_accounts(self): ''' Test case to check if users can save multiple accounts ''' self.new_account.save_account() test_account = Credential('Pintrest', 'kimperria', 'Aura-Dev98') test_account.save_account() self.assertEqual(len(Credential.credentials_list),2) #delete account def test_delete_account(self): ''' Test case to check if user can delete an account ''' self.new_account.save_account() test_account = Credential('Pintrest', 'kimperria', 'Aura-Dev98') test_account.save_account() self.new_account.delete_account() #deletes account object self.assertEqual(len(Credential.credentials_list),1) # search account by username def test_find_account_by_username(self): ''' Test case to check if we can find an account by username and display information ''' self.new_account.save_account() test_account = Credential('Pintrest', 'kimperria', 'Aura-Dev98') test_account.save_account() found_account = Credential.find_by_accountUsername('kimperria') self.assertEqual(found_account.accountUsername,test_account.accountUsername) # check if account exist def test_account_exist(self): ''' Test case to check if a user account already exist returns a boolean ''' self.new_account.save_account() test_account = Credential('Pintrest', 'kimperria', 'Aura-Dev98') test_account.save_account() account_exists = Credential.account_exist('kimperria') self.assertTrue(account_exists) # display available accounts def test_display_all_accounts(self): ''' Method that returns a list of all saved accounts ''' self.assertEqual(Credential.display_accounts(),Credential.credentials_list) #class condition if __name__ == '__main__': unittest.main() ```
{ "source": "johnkim-det/determined", "score": 2 }
#### File: determined/core/_context.py ```python import logging from typing import Any, Optional import appdirs import determined as det from determined import core, tensorboard from determined.common import constants, storage from determined.common.api import certs from determined.common.experimental.session import Session, get_max_retries_config logger = logging.getLogger("determined.core") class Context: """ ``core.Context`` is a simple composition of several component APIs, with the following public members: - ``.checkpoint``, a :class:`~CheckpointContext` - ``.distributed``, a :class:`~DistributedContext` - ``.preempt``, a :class:`~PreemptContext` - ``.searcher``, a :class:`~SearcherContext` - ``.train``, a :class:`~TrainContext` ``core.Context`` is a tool for integrating arbitrary distributed tasks into a Determined cluster. You should always use :meth:`core.init() <determined.core.init>` instead of creating a core.Context manually. """ def __init__( self, checkpoint: core.CheckpointContext, distributed: Optional[core.DistributedContext] = None, preempt: Optional[core.PreemptContext] = None, train: Optional[core.TrainContext] = None, searcher: Optional[core.SearcherContext] = None, ) -> None: self.checkpoint = checkpoint self.distributed = distributed or core.DummyDistributedContext() self.preempt = preempt or core.DummyPreemptContext(self.distributed) self.train = train or core.DummyTrainContext() self.searcher = searcher or core.DummySearcherContext(self.distributed) def __enter__(self) -> "Context": self.preempt.start() return self def __exit__(self, typ: type, value: Exception, tb: Any) -> None: self.preempt.close() self.distributed.close() # Detect some specific exceptions that are part of the user-facing API. if isinstance(value, det.InvalidHP): self.train.report_early_exit(core.EarlyExitReason.INVALID_HP) logger.info("InvalidHP detected during Trial init, converting InvalidHP to exit(0)") exit(0) def _dummy_init( *, distributed: Optional[core.DistributedContext] = None, # TODO(DET-6153): allow a Union[StorageManager, str] here. storage_manager: Optional[storage.StorageManager] = None, preempt_mode: core.PreemptMode = core.PreemptMode.WorkersAskChief, ) -> Context: """ Build a core.Context suitable for running off-cluster. This is normally called by init() when it is detected that there is no ClusterInfo available, but can be invoked directly for e.g. local test mode. """ distributed = distributed or core.DummyDistributedContext() preempt = core.DummyPreemptContext(distributed, preempt_mode) if storage_manager is None: base_path = appdirs.user_data_dir("determined") logger.info("no storage_manager provided; storing checkpoints in {base_path}") storage_manager = storage.SharedFSStorageManager(base_path) checkpoint = core.DummyCheckpointContext(distributed, storage_manager) train = core.DummyTrainContext() searcher = core.DummySearcherContext(distributed) return Context( distributed=distributed, checkpoint=checkpoint, preempt=preempt, train=train, searcher=searcher, ) # The '*' is because we expect to add parameters to this method. To keep a backwards-compatible # API, we either need to always append to the parameters (preserving order of positional parameters) # or force users to always use kwargs. We haven't decided what the right positional arguments are # yet, so the '*' lets us delay that decision until we are ready. def init( *, distributed: Optional[core.DistributedContext] = None, # TODO: figure out a better way to deal with checkpointing in the local training case. storage_manager: Optional[storage.StorageManager] = None, preempt_mode: core.PreemptMode = core.PreemptMode.WorkersAskChief, ) -> Context: """ ``core.init()`` builds a :class:`core.Context <determined.core.Context>` for use with the Core API. Always use ``with core.init() as context`` instead of instantiating a ``core.Context`` directly. Certain components of the Core API may be configured by passing arguments to ``core.init()``. The only arg that is required is a ``DistributedContext``, and even that is only required for for multi-slot tasks. All of your training must occur within the scope of the ``with core.init() as core_context``, as there are resources necessary for training which start in the ``core.Context``'s ``__enter__`` method and must be cleaned up in its ``__exit__()`` method. Arguments: distributed (``core.DistributedContext``, optional): Passing a ``DistributedContext`` is required for multi-slot training, but unnecessary for single-slot training. Defaults to ``None``. preempt_mode (``core.PreemptMode``, optional): Configure the calling pattern for the ``core_context.preempt.should_preempt()`` method. See :class:`~determined.core.PreemptMode` for more detail. Defaults to ``WorkersAskChief``. storage_manager: Internal use only. """ info = det.get_cluster_info() if info is None: return _dummy_init(distributed=distributed, storage_manager=storage_manager) # We are on the cluster. cert = certs.default_load(info.master_url) session = Session(info.master_url, None, None, cert, max_retries=get_max_retries_config()) if distributed is None: if len(info.container_addrs) > 1 or len(info.slot_ids) > 1: raise ValueError("you must provide a valid DistributedContext for a multi-slot task") distributed = distributed or core.DummyDistributedContext() preempt = core.PreemptContext(session, info.allocation_id, distributed, preempt_mode) # At present, we only support tensorboards in Trial tasks. tbd_mgr = None tbd_writer = None train = None searcher = None if info.task_type == "TRIAL": # Prepare the tensorboard hooks. tbd_mgr = tensorboard.build( info.cluster_id, str(info.trial.experiment_id), str(info.trial.trial_id), info.trial._config["checkpoint_storage"], container_path=constants.SHARED_FS_CONTAINER_PATH, ) tbd_writer = tensorboard.get_metric_writer() train = core.TrainContext( session, info.trial.trial_id, info.trial._trial_run_id, info.trial.experiment_id, tbd_mgr, tbd_writer, ) units = core._parse_searcher_units(info.trial._config) searcher = core.SearcherContext( session, distributed, info.trial.trial_id, info.trial._trial_run_id, info.allocation_id, units, ) if storage_manager is None: storage_manager = storage.build( info.trial._config["checkpoint_storage"], container_path=constants.SHARED_FS_CONTAINER_PATH, ) checkpoint = core.CheckpointContext( distributed, storage_manager, session, info.task_id, info.allocation_id, tbd_mgr ) else: # TODO: support checkpointing for non-trial tasks. if storage_manager is None: base_path = appdirs.user_data_dir("determined") logger.info("no storage_manager provided; storing checkpoints in {base_path}") storage_manager = storage.SharedFSStorageManager(base_path) checkpoint = core.DummyCheckpointContext(distributed, storage_manager) return Context( distributed=distributed, checkpoint=checkpoint, preempt=preempt, train=train, searcher=searcher, ) ``` #### File: determined/core/_train.py ```python import enum import logging from typing import Any, Dict, List, Optional, Set import determined as det from determined import tensorboard from determined.common.api import errors from determined.common.experimental.session import Session logger = logging.getLogger("determined.core") class EarlyExitReason(enum.Enum): INVALID_HP = "EXITED_REASON_INVALID_HP" # This is generally unnecessary; just exit early. USER_REQUESTED_STOP = "EXITED_REASON_USER_REQUESTED_STOP" class TrainContext: """ ``TrainContext`` gives access to report training and validation metrics to the Determined master during trial tasks. """ def __init__( self, session: Session, trial_id: int, run_id: int, exp_id: int, tbd_mgr: Optional[tensorboard.TensorboardManager], tbd_writer: Optional[tensorboard.BatchMetricWriter], ) -> None: self._session = session self._trial_id = trial_id self._run_id = run_id self._exp_id = exp_id self._tbd_mgr = tbd_mgr self._tbd_writer = tbd_writer def set_status(self, status: str) -> None: """ Report a short user-facing string that the WebUI can render to indicate what a trial is working on. """ body = {"state": status} logger.debug(f"set_status({status})") self._session.post(f"/api/v1/trials/{self._trial_id}/runner/metadata", json=body) def _get_last_validation(self) -> Optional[int]: # This is needed by the workload sequencer, but it is not generally stable, because it is # easy to call this before reporting any metrics. If your last checkpoint was older than # your last validation, then the value you get from this function might be higher before # you report metrics than after (since metrics get archived on first report of new metrics, # not on trial restart). However, this bug does not happen to affect the workload sequencer # because of the workload sequencer's very specific use of this function. r = self._session.get(f"/api/v1/trials/{self._trial_id}") val = r.json()["trial"].get("latestValidation") or {} steps_completed = val.get("totalBatches") logger.debug(f"_get_last_validation() -> {steps_completed}") return steps_completed def report_training_metrics( self, steps_completed: int, metrics: Dict[str, Any], batch_metrics: Optional[List[Dict[str, Any]]] = None, ) -> None: """ Report training metrics to the master. You can include a list of ``batch_metrics``. Batch metrics are not be shown in the WebUI but may be accessed from the master using the CLI for post-processing. """ body = { "trial_run_id": self._run_id, "steps_completed": steps_completed, "metrics": metrics, } if batch_metrics is not None: body["batch_metrics"] = batch_metrics logger.info( f"report_training_metrics(steps_completed={steps_completed}, metrics={metrics})" ) self._session.post( f"/api/v1/trials/{self._trial_id}/training_metrics", data=det.util.json_encode(body), ) # Also sync tensorboard. if self._tbd_writer and self._tbd_mgr: self._tbd_writer.on_train_step_end(steps_completed, metrics, batch_metrics) self._tbd_mgr.sync() def _get_serializable_metrics(self, metrics: Dict[str, Any]) -> Set[str]: serializable_metrics = set() non_serializable_metrics = set() # In the case of trial implementation bugs, validation metric functions may return None. # Immediately fail any trial that encounters a None metric. for metric_name, metric_value in metrics.items(): if metric_value is None: raise RuntimeError( "Validation metric '{}' returned " "an invalid scalar value: {}".format(metric_name, metric_value) ) if isinstance(metric_value, (bytes, bytearray)): non_serializable_metrics.add(metric_name) else: serializable_metrics.add(metric_name) if len(non_serializable_metrics): logger.warning( "Removed non serializable metrics: %s", ", ".join(non_serializable_metrics) ) return serializable_metrics def report_validation_metrics( self, steps_completed: int, metrics: Dict[str, Any], ) -> None: """ Report validation metrics to the master. Note that for hyperparameter search, this is independent of the need to report the searcher metric using ``SearcherOperation.report_completed()`` in the Searcher API. """ serializable_metrics = self._get_serializable_metrics(metrics) reportable_metrics = {k: metrics[k] for k in serializable_metrics} body = { "trial_run_id": self._run_id, "steps_completed": steps_completed, "metrics": reportable_metrics, } logger.info( f"report_validation_metrics(steps_completed={steps_completed}, metrics={metrics})" ) self._session.post( f"/api/v1/trials/{self._trial_id}/validation_metrics", data=det.util.json_encode(body), ) # Also sync tensorboard (all metrics, not just json-serializable ones). if self._tbd_writer and self._tbd_mgr: self._tbd_writer.on_validation_step_end(steps_completed, metrics) self._tbd_mgr.sync() def report_early_exit(self, reason: EarlyExitReason) -> None: """ Report an early exit reason to the Determined master. Currenlty, the only meaningful value to report is ``EarlyExitReason.INVALID_HP``, which is reported automatically in ``core.Context.__exit__()`` detects an exception of type ``det.InvalidHP``. """ body = {"reason": EarlyExitReason(reason).value} logger.info(f"report_early_exit({reason})") r = self._session.post( f"/api/v1/trials/{self._trial_id}/early_exit", data=det.util.json_encode(body), ) if r.status_code == 400: logger.warn("early exit has already been reported for this trial, ignoring new value") def get_experiment_best_validation(self) -> Optional[float]: """ Get the best reported validation metric reported so far, across the whole experiment. The returned value is the highest or lowest reported validation metric value, using the ``searcher.metric`` field of the experiment config as the key and ``searcher.smaller_is_better`` for the comparison. """ logger.debug("get_experiment_best_validation()") try: r = self._session.get( f"/api/v1/experiments/{self._exp_id}/searcher/best_searcher_validation_metric" ) except errors.NotFoundException: # 404 means 'no validations yet'. return None return float(r.json()["metric"]) class DummyTrainContext(TrainContext): def __init__(self) -> None: pass def set_status(self, status: str) -> None: logger.info(f"status: {status}") def _get_last_validation(self) -> Optional[int]: return None def report_training_metrics( self, steps_completed: int, metrics: Dict[str, Any], batch_metrics: Optional[List[Dict[str, Any]]] = None, ) -> None: logger.info( f"report_training_metrics(steps_completed={steps_completed}, metrics={metrics})" ) logger.debug( f"report_training_metrics(steps_completed={steps_completed}," f" batch_metrics={batch_metrics})" ) def report_validation_metrics(self, steps_completed: int, metrics: Dict[str, Any]) -> None: serializable_metrics = self._get_serializable_metrics(metrics) metrics = {k: metrics[k] for k in serializable_metrics} logger.info( f"report_validation_metrics(steps_completed={steps_completed} metrics={metrics})" ) def report_early_exit(self, reason: EarlyExitReason) -> None: logger.info(f"report_early_exit({reason})") def get_experiment_best_validation(self) -> Optional[float]: return None ``` #### File: determined/tensorboard/gcs.py ```python import logging import os from pathlib import Path from typing import Any, Optional from determined.common import util from determined.common.storage.s3 import normalize_prefix from determined.tensorboard import base class GCSTensorboardManager(base.TensorboardManager): """ Store and load tf event logs from gcs. Authentication is currently only supported via the "Application Default Credentials" method in GCP [1]. Typical configuration: ensure your VM runs in a service account that has sufficient permissions to read/write/delete from the GCS bucket where checkpoints will be stored (this only works when running in GCE). """ def __init__(self, bucket: str, prefix: Optional[str], *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) import google.cloud.storage self.client = google.cloud.storage.Client() self.bucket = self.client.bucket(bucket) self.prefix = normalize_prefix(prefix) def get_storage_prefix(self, storage_id: Path) -> str: return os.path.join(self.prefix, storage_id) @util.preserve_random_state def sync(self) -> None: for path in self.to_sync(): blob_name = self.sync_path.joinpath(path.relative_to(self.base_path)) to_path = self.get_storage_prefix(blob_name) blob = self.bucket.blob(to_path) logging.debug(f"Uploading {path} to GCS: {to_path}") blob.upload_from_filename(str(path)) def delete(self) -> None: prefix_path = self.get_storage_prefix(self.sync_path) self.bucket.delete_blobs(blobs=list(self.bucket.list_blobs(prefix=prefix_path))) ```
{ "source": "johnkimu/Dynamics365FO-AppChecker", "score": 3 }
#### File: Python/extractor/tests.py ```python import unittest import ast from xml.etree import ElementTree import xmlnodegenerator # The most up to date description of the AST is # https://docs.python.org/3.6/library/ast.html def createTree(source: str): tree = ast.parse(source) generator = xmlnodegenerator.XmlNodeGenerator(source) root = generator.visitModule(tree) return root # Statements class ClassDefinitionTest(unittest.TestCase): def testClassWithExtension(self): root = createTree('''class MyClass(object): def foo(self, arg: str): pass''') classDefinitionNode = root.find("Statements/Class[@Name='MyClass']") assert classDefinitionNode != None extension = classDefinitionNode.find("Bases/Name[@Id='object']") assert extension != None def testClassNoExtension(self): root = createTree('''class MyClass: def foo(): pass''') classDefinitionNode = root.find("Statements/Class[@Name='MyClass']") assert classDefinitionNode != None extension = root.find("Statements/Class/Bases/*") assert extension is None def testClassWithAttributedExtension(self): root = createTree('''class FuncCallVisitor(ast.NodeVisitor): def foo(): pass''') classDefinitionNode = root.find("Statements/Class[@Name='FuncCallVisitor']") assert classDefinitionNode != None extension = classDefinitionNode.find("Bases/Attribute[@Id='NodeVisitor']/Name[@Id='ast']") assert extension != None def testClassWithComments(self): root = createTree('''class Bar: 'This is a comment' def foo(): pass''') classDefinitionNode = root.find("Statements/Class[@Name='Bar']") assert classDefinitionNode != None classDefinitionNode = root.find("Statements/Class[@Comment='This is a comment']") assert classDefinitionNode != None class FunctionDefTest(unittest.TestCase): def testFunctionDefNoArgs(self): root = createTree('''def foo(): pass''') functionDefinitionNode = root.find("Statements/FunctionDefinition[@Name='foo']") assert functionDefinitionNode != None # There are no parameters: functionDefinitionNode = root.find("Statements/FunctionDefinition[@Name='foo']/Arguments") assert functionDefinitionNode != None functionDefinitionNode = root.find("Statements/FunctionDefinition[@Name='foo']/Arguments/*") assert functionDefinitionNode is None def testFunctionDefWithComment(self): root = createTree(''' def foo(): 'Interesting function' pass''') functionDefinitionNode = root.find("Statements/FunctionDefinition[@Name='foo']") assert functionDefinitionNode != None functionDefinitionNode = root.find("Statements/FunctionDefinition[@Comment='Interesting function']") assert functionDefinitionNode != None def testFunctionDefSimpleArgs(self): root = createTree('''def foo(self, banana): pass''') functionDefinitionNode = root.find("Statements/FunctionDefinition[@Name='foo']") assert functionDefinitionNode != None # There are no parameters: argumentsNode = functionDefinitionNode.find("Arguments") assert argumentsNode != None argumentNode = argumentsNode.find("Argument[@Name='self']") assert argumentNode != None argumentNode = argumentsNode.find("Argument[@Name='banana']") assert argumentNode != None def testFunctionDefNoArgsWithReturn(self): root = createTree('''def foo() ->None: pass''') functionDefinitionNode = root.find("Statements/FunctionDefinition[@Name='foo']") assert functionDefinitionNode != None # There are no parameters: functionDefinitionNode = root.find("Statements/FunctionDefinition[@Name='foo']/Arguments") assert functionDefinitionNode != None functionDefinitionNode = root.find("Statements/FunctionDefinition[@Name='foo']/Arguments/*") assert functionDefinitionNode is None # The return annotation is 'None' functionDefinitionNode = root.find("Statements/FunctionDefinition[@Name='foo']/Returns/NameConstant[@Name='None']") assert functionDefinitionNode != None def testFunctionDefDefaultArgs(self): root = createTree('''def foo(self, banana=1, orange=""): pass''') functionDefinitionNode = root.find("Statements/FunctionDefinition[@Name='foo']") assert functionDefinitionNode != None # There are no parameters: argumentsNode = functionDefinitionNode.find("Arguments") assert argumentsNode != None argumentNode = argumentsNode.find("Argument[@Name='self']") assert argumentNode != None argumentNode = argumentsNode.find("Argument[@Name='banana']/NumberLiteral[@Value='1']") assert argumentNode != None argumentNode = argumentsNode.find("Argument[@Name='orange']/StringLiteral[@Value='']") assert argumentNode != None def testFunctionDefStarredArgs(self): root = createTree('''def foo(self, *arg1, **arg2): pass''') # In this syntax, the *arg means that all the positional parameters should # be passed as a list, while the **args causes the keyword parameters to be # collected in a dictionary (in the args2 parameter). functionDefinitionNode = root.find("Statements/FunctionDefinition[@Name='foo']") assert functionDefinitionNode != None argumentsNode = functionDefinitionNode.find("Arguments") assert argumentsNode != None argumentNode = argumentsNode.find("Argument[@Name='self']") assert argumentNode != None argumentNode = argumentsNode.find("Vararg/Argument[@Name='arg1']") assert argumentNode != None argumentNode = argumentsNode.find("KeywordArg/Argument[@Name='arg2']") assert argumentNode != None def testFunctionDefAnnotatedArgs(self): root = createTree('''def foo(self: int, banana: str) -> str: pass''') functionDefinitionNode = root.find("Statements/FunctionDefinition[@Name='foo']") assert functionDefinitionNode != None # There are no parameters: argumentsNode = functionDefinitionNode.find("Arguments") assert argumentsNode != None argumentNode = argumentsNode.find("Argument[@Name='self']") assert argumentNode != None parameterAnnotationNode = argumentNode.find("Annotation") assert parameterAnnotationNode != None argumentNode = argumentsNode.find("Argument[@Name='banana']") assert argumentNode != None parameterAnnotationNode = argumentNode.find("Annotation") assert parameterAnnotationNode != None functionDefinitionNode = root.find("Statements/FunctionDefinition[@Name='foo']/Returns/Name[@Id='str']") assert functionDefinitionNode != None def testAsyncFunctionDefWithPredefReturn(self): root = createTree('''async def foo() -> None: pass''') functionDefinitionNode = root.find("Statements/AsyncFunctionDefinition[@Name='foo']") assert functionDefinitionNode != None # There are no parameters: argumentsNode = functionDefinitionNode.find("Arguments") assert argumentsNode is None functionDefinitionNode = root.find("Statements/FunctionDefinition[@Name='foo']/Returns[@Type='None']") assert functionDefinitionNode != None def testAsyncFunctionDefWithPredefReturn(self): root = createTree('''async def foo() -> str: pass''') functionDefinitionNode = root.find("Statements/AsyncFunctionDefinition[@Name='foo']") assert functionDefinitionNode != None # There are no parameters: argumentsNode = functionDefinitionNode.find("Arguments") assert argumentsNode != None functionDefinitionNode = root.find("Statements/AsyncFunctionDefinition[@Name='foo']/Returns[@Name='str']") assert functionDefinitionNode != None class ImportTest(unittest.TestCase): def runTest(self): source = "import ast" root = createTree(source) # Check that the tree contains the a Module element. assert root.tag == 'Module' importNode = root.find("Statements/Import") assert importNode != None # assert s == source class ImportFromTest(unittest.TestCase): def testSimpleImportFrom(self): root = createTree("from MyModule import Banana") importFromNode = root.find("Statements/ImportFrom[@Module='MyModule']") assert importFromNode != None namesNode = importFromNode.find("Names/Name[@Id='Banana']") assert namesNode != None def testMultipleImportFrom(self): root = createTree("from MyModule import Banana as b, Orange as s") importFromNode = root.find("Statements/ImportFrom[@Module='MyModule']") assert importFromNode != None namesNode = importFromNode.find("Names/Name[@Id='Banana']") assert namesNode != None namesNode = importFromNode.find("Names/Name[@AsName='b']") assert namesNode != None namesNode = importFromNode.find("Names/Name[@Id='Orange']") assert namesNode != None namesNode = importFromNode.find("Names/Name[@AsName='s']") assert namesNode != None def testImportFromAll(self): root = createTree("from MyModule import *") importFromNode = root.find("Statements/ImportFrom[@Module='MyModule']") assert importFromNode != None namesNode = importFromNode.find("Names/Name[@Id='*']") assert namesNode != None def testImportWithParentDirSpec(self): root = createTree("from .. import Banana") assert root != None node = root.find("Statements/ImportFrom/Names/Name[@Id='Banana']") assert node != None class WhileTest(unittest.TestCase): def testSimpleWhile(self): root = createTree("while 1: pass") whileStatement = root.find("Statements/While") assert whileStatement testNode = whileStatement.find("NumberLiteral") assert testNode != None bodyNode = root.find("Statements/While/Statements[1]/Pass") assert bodyNode != None orelseNode = root.find("Statements/While/Statements[2]/*") assert orelseNode is None def testWhileWithOrElse(self): root = createTree('''while 1: pass else: return''') whileStatement = root.find("Statements/While") assert whileStatement testNode = whileStatement.find("NumberLiteral") assert testNode != None bodyNode = root.find("Statements/While/Statements[1]/Pass") assert bodyNode != None orelseNode = root.find("Statements/While/Statements[2]/Return") assert orelseNode != None class ForTest(unittest.TestCase): def testSimpleFor(self): root = createTree("for i in foo(10, banana=4): pass") forStatement = root.find("Statements/For") assert forStatement # TODO check the name (i in this case) # TODO Check the expression bodyNode = forStatement.find("Statements[1]/Pass") assert bodyNode != None orelseNode = forStatement.find("Statements[2]/*") assert orelseNode is None def testAsyncFor(self): root = createTree('''async def f(): async for i in foo(10, banana=4): pass''') forStatement = root.find("Statements/AsyncFunctionDefinition/Statements/AsyncFor") assert forStatement bodyNode = forStatement.find("Statements/Pass") assert bodyNode != None orelseNode = forStatement.find("Statements[2]/*") assert orelseNode is None class TryExceptionTest(unittest.TestCase): def testTryExceptionSingle(self): root = createTree('''try: return 1 except IOError: return 2''') node = root.find("Statements/TryExcept/Statements/Return/NumberLiteral[@Value='1']") assert node != None node = root.find("Statements/TryExcept/Handler/Statements/Return/NumberLiteral[@Value='2']") assert node != None node = root.find("Statements/TryExcept/Handler/Name[@Id='IOError']") assert node != None def testTryExceptionSingleWithAlias(self): root = createTree('''try: return 1 except IOError as name: return 2''') node = root.find("Statements/TryExcept/Handler[@Alias='name']") assert node != None def testTryExceptionMultiple(self): root = createTree('''try: return 1 except (IOError, ValueError): return 2''') node = root.find("Statements/TryExcept/Statements/Return/NumberLiteral[@Value='1']") assert node != None node = root.find("Statements/TryExcept/Handler/Statements/Return/NumberLiteral[@Value='2']") assert node != None node = root.find("Statements/TryExcept/Handler/Tuple/Name[@Id='IOError']") assert node != None node = root.find("Statements/TryExcept/Handler/Tuple/Name[@Id='ValueError']") assert node != None def testTryExceptionWithCatchAll(self): root = createTree('''try: return 1 except: return 2''') node = root.find("Statements/TryExcept/Statements/Return/NumberLiteral[@Value='1']") assert node != None node = root.find("Statements/TryExcept/Handler/Statements/Return/NumberLiteral[@Value='2']") assert node != None node = root.find("Statements/TryExcept/Handler/Name") assert node is None def testTryExceptionWithElse(self): root = createTree('''try: return 1 except: return 2 else: return 3''') node = root.find("Statements/TryExcept/Statements[1]/Return/NumberLiteral[@Value='1']") assert node != None node = root.find("Statements/TryExcept/Handler/Name") assert node is None node = root.find("Statements/TryExcept/Handler/Statements/Return/NumberLiteral[@Value='2']") assert node != None node = root.find("Statements/TryExcept/Statements[2]/Return/NumberLiteral[@Value='3']") assert node != None def testTryExceptionElseAndFinally(self): root = createTree('''try: return 1 except: return 2 else: return 3 finally: return 4''') node = root.find("Statements/TryExcept/Statements[1]/Return/NumberLiteral[@Value='1']") assert node != None node = root.find("Statements/TryExcept/Handler/Name") assert node is None node = root.find("Statements/TryExcept/Handler/Statements/Return/NumberLiteral[@Value='2']") assert node != None node = root.find("Statements/TryExcept/Statements[2]/Return/NumberLiteral[@Value='3']") assert node != None node = root.find("Statements/TryExcept/Statements[3]/Return/NumberLiteral[@Value='4']") assert node != None class RaiseTest(unittest.TestCase): def testRaiseWithoutArguments(self): root = createTree("raise") node = root.find("Statements/Raise") assert node != None def testRaiseWithSingleArgument(self): root = createTree("raise IOError()") node = root.find("Statements/Raise/Call") assert node != None def testRaiseWithTwoArguments(self): root = createTree("raise IOError from original") node = root.find("Statements/Raise") assert node != None class ReturnTests(unittest.TestCase): def testReturnNoValue(self): root = createTree("return") # Check that the tree contains the a Return element. assert root.findall("Statements/Return") # ... without any subtree for the expression assert not root.findall("Statements/Return/*") def testReturnWithValue(self): root = createTree("return 1") # Check that the tree contains the a Return element. returnNode = root.find("Statements/Return") assert returnNode != None # ... with a subtree for the expression returnNodeWithSubtree = root.findall("Statements/Return/NumberLiteral[@Value='1']") assert returnNodeWithSubtree != None class PassTest(unittest.TestCase): def runTest(self): root = createTree("pass") passNode = root.find("Statements/Pass") assert passNode != None class BreakTest(unittest.TestCase): def runTest(self): root = createTree("break") node = root.find("Statements/Break") assert node != None class ContinueTest(unittest.TestCase): def runTest(self): root = createTree("continue") # Check that the tree contains the a Return element. node = root.find("Statements/Continue") assert node != None class WithTest(unittest.TestCase): def testWithSimple(self): root = createTree('''with open("x.txt") as f: pass''') node = root.find("Statements/With") assert node != None node = root.find("Statements/With/Item/Name[@Id='f']") assert node != None node = root.find("Statements/With/Item/Call/Name[@Id='open']") assert node != None node = root.find("Statements/With/Statements/Pass") assert node != None def testWithAsync(self): root = createTree('''async def foo(): async with open("x.txt") as f: pass''') withNode = root.find("Statements/AsyncFunctionDefinition/Statements/AsyncWith") assert withNode != None node = withNode.find("Item/Name[@Id='f']") assert node != None node = withNode.find("Item/Call/Name[@Id='open']") assert node != None node = withNode.find("Statements/Pass") assert node != None class IfTest(unittest.TestCase): def runTest(self): root = createTree('''if 1: return 10 else: return 20''') assert root.find("Statements/If") ifPart = root.find("Statements/If/Statements/Return/NumberLiteral[@Value='10']") elsePart = root.find("Statements/If/Statements/Return/NumberLiteral[@Value='20']") # ... with a subtree for the expression assert ifPart != None, "If part was not found" assert elsePart != None, "Else part not found" class AssertTest(unittest.TestCase): def testAssertSimple(self): root = createTree("assert a is None") node = root.find("Statements/Assert/Is") assert node != None def testAssertWithExplanation(self): root = createTree('''assert a is None, "a should not be empty"''') node = root.find("Statements/Assert/Is") assert node != None node = root.find("Statements/Assert/StringLiteral") assert node != None class AssignTest(unittest.TestCase): def testAssignSimple(self): root = createTree("a = 3") node = root.find("Statements/Assign/NumberLiteral[@Value='3']") assert node != None def testAssignMultiple(self): root = createTree("[a, b] = 3, 4") node = root.find("Statements/Assign/List/Name[@Id='a']") assert node != None node = root.find("Statements/Assign/List/Name[@Id='b']") assert node != None node = root.find("Statements/Assign/Tuple/NumberLiteral[@Value='3']") assert node != None node = root.find("Statements/Assign/Tuple/NumberLiteral[@Value='4']") assert node != None def testAugmentedAssignPlus(self): root = createTree("a += 3") node = root.find("Statements/AugmentedAssign[@op='Plus']/NumberLiteral[@Value='3']") assert node != None def testAugmentedAssignMinus(self): root = createTree("a -= 3") node = root.find("Statements/AugmentedAssign[@op='Minus']/NumberLiteral[@Value='3']") assert node != None def testAugmentedAssignMultiply(self): root = createTree("a *= 3") node = root.find("Statements/AugmentedAssign[@op='Multiply']/NumberLiteral[@Value='3']") assert node != None def testAugmentedAssignDivide(self): root = createTree("a /= 3") node = root.find("Statements/AugmentedAssign[@op='Divide']/NumberLiteral[@Value='3']") assert node != None def testAugmentedAssignMod(self): root = createTree("a %= 3") node = root.find("Statements/AugmentedAssign[@op='Mod']/NumberLiteral[@Value='3']") assert node != None def testAugmentedAssignMod(self): root = createTree("a **= 3") node = root.find("Statements/AugmentedAssign[@op='Power']/NumberLiteral[@Value='3']") assert node != None def testAugmentedAssignMod(self): root = createTree("a <<= 3") node = root.find("Statements/AugmentedAssign[@op='LeftShift']/NumberLiteral[@Value='3']") assert node != None def testAugmentedAssignMod(self): root = createTree("a >>= 3") node = root.find("Statements/AugmentedAssign[@op='RightShift']/NumberLiteral[@Value='3']") assert node != None def testAugmentedAssignMod(self): root = createTree("a &= 3") node = root.find("Statements/AugmentedAssign[@op='And']/NumberLiteral[@Value='3']") assert node != None def testAugmentedAssignMod(self): root = createTree("a %= 3") node = root.find("Statements/AugmentedAssign[@op='Mod']/NumberLiteral[@Value='3']") assert node != None def testAugmentedAssignMod(self): root = createTree("a ^= 3") node = root.find("Statements/AugmentedAssign[@op='Xor']/NumberLiteral[@Value='3']") assert node != None def testAugmentedAssignFloorDiv(self): root = createTree("a //= 3") node = root.find("Statements/AugmentedAssign[@op='FloorDiv']/NumberLiteral[@Value='3']") assert node != None def testAnnotatedAssignment(self): # TODO root = createTree("v: int = 44") assert root != None node = root.find("Statements/AnnotatedAssign") assert node != None node = root.find("Statements/AnnotatedAssign[@Simple='1']") assert node != None node = root.find("Statements/AnnotatedAssign/*[1][@Id='v']") assert node != None node = root.find("Statements/AnnotatedAssign/*[2][@Id='int']") assert node != None node = root.find("Statements/AnnotatedAssign/NumberLiteral[@Value='44']") assert node != None class DelTest(unittest.TestCase): def testDel(self): root = createTree("del a") node = root.find("Statements/Del/Name[@Id='a']") assert node != None class ScopeTest(unittest.TestCase): def testGlobal(self): root = createTree("global a,b") assert root != None, "Unable to parse the global statement" node = root.find("Statements/Global") assert node != None, "Did not find global statement" # Check the Identifier children node = root.find("Statements/Global/Identifier[@Name='a']") assert node != None, "Did not find first global identifier" node = root.find("Statements/Global/Identifier[@Name='b']") assert node != None, "Did not find second global identifier" def testNonlocal(self): root = createTree("nonlocal a,b") assert root != None, "Unable to parse the nonlocal statement" node = root.find("Statements/Nonlocal") assert node != None, "Did not find nonlocal statement" # Check the Identifier children node = root.find("Statements/Nonlocal/Identifier[@Name='a']") assert node != None, "Did not find first nonlocal identifier" node = root.find("Statements/Nonlocal/Identifier[@Name='b']") assert node != None, "Did not find second nonlocal identifier" # Expression tests class LiteralTest(unittest.TestCase): def testJoinedStr(self): root = createTree('''f"{1}{2}"''') assert root != None, "No joined string found" node = root.find("Statements/ExpressionStatement/JoinedStr") assert node != None, "Tree does not contain joined string" node = root.find("Statements/ExpressionStatement/JoinedStr/FormattedValue/NumberLiteral[@Value='1']") assert node != None, "First number literal not found" node = root.find("Statements/ExpressionStatement/JoinedStr/FormattedValue/NumberLiteral[@Value='2']") assert node != None, "Second number literal not found" class AddTest(unittest.TestCase): def runTest(self): root = createTree('''1 + 2''') node = root.find("Statements/ExpressionStatement/Add") assert node != None, "No add node found" class SubtractTest(unittest.TestCase): def runTest(self): root = createTree('''1 - 2''') node = root.find("Statements/ExpressionStatement/Subtract") assert node != None, "No subtract node found" class MultiplyTest(unittest.TestCase): def runTest(self): root = createTree('''1 * 2''') node = root.find("Statements/ExpressionStatement/Multiply") assert node != None, "No multiply node found" class DivideTest(unittest.TestCase): def runTest(self): root = createTree('''1 / 2''') node = root.find("Statements/ExpressionStatement/Divide") assert node != None, "No divide node found" class FloorDivideTest(unittest.TestCase): def runTest(self): root = createTree('''1 // 2''') node = root.find("Statements/ExpressionStatement/FloorDivide") assert node != None, "No floor divide node found" class PowerTest(unittest.TestCase): def runTest(self): root = createTree('''2 ** 3''') node = root.find("Statements/ExpressionStatement/Power") assert node != None, "No power node found" class BitAndTest(unittest.TestCase): def runTest(self): root = createTree('''2 & 3''') node = root.find("Statements/ExpressionStatement/BitwiseAnd") assert node != None, "No bitwise and node found" class BitOrTest(unittest.TestCase): def runTest(self): root = createTree('''2 | 3''') node = root.find("Statements/ExpressionStatement/BitwiseOr") assert node != None, "No bitwise or node found" class BitXorTest(unittest.TestCase): def runTest(self): root = createTree('''2 ^ 3''') node = root.find("Statements/ExpressionStatement/BitwiseXor") assert node != None, "No bitwise xor node found" class BitLeftShiftTest(unittest.TestCase): def runTest(self): root = createTree('''2 << 3''') node = root.find("Statements/ExpressionStatement/LeftShift") assert node != None, "No left shift node found" class BitRightShiftTest(unittest.TestCase): def runTest(self): root = createTree('''2 >> 3''') node = root.find("Statements/ExpressionStatement/RightShift") assert node != None, "No right shift node found" class MonadicOperatorTests(unittest.TestCase): def testMonadicMinus(self): root = createTree('''-1''') node = root.find("Statements/ExpressionStatement/MonadicMinus") assert node != None, "No monadic minus node found" def testMonadicPlus(self): root = createTree('''+1''') node = root.find("Statements/ExpressionStatement/MonadicPlus") assert node != None, "No monadic plus node found" def testMonadicInvert(self): root = createTree('''~1''') node = root.find("Statements/ExpressionStatement/Invert") assert node != None, "No monadic invert (~) node found" def testMonadicNot(self): root = createTree('''not True''') node = root.find("Statements/ExpressionStatement/Not") assert node != None, "No monadic not node found" class LogicalOperatorTests(unittest.TestCase): def testAndOperator(self): root = createTree('''1 and 2''') node = root.find("Statements/ExpressionStatement/And") assert node != None def testOrOperator(self): root = createTree('''1 or 2''') node = root.find("Statements/ExpressionStatement/Or") assert node != None class RelationalOperatorTests(unittest.TestCase): def testRelationalEquals(self): root = createTree('''1 == 2''') node = root.find("Statements/ExpressionStatement/Equals/NumberLiteral[@Value='1']") assert node != None, "Left node of == node not found" node = root.find("Statements/ExpressionStatement/Equals/NumberLiteral[@Value='2']") assert node != None, "Right node of == node not found" def testRelationalNotEquals(self): root = createTree('''1 != 2''') node = root.find("Statements/ExpressionStatement/NotEquals/NumberLiteral[@Value='1']") assert node != None, "Left node of != node not found" node = root.find("Statements/ExpressionStatement/NotEquals/NumberLiteral[@Value='2']") assert node != None, "Right node of != node not found" def testRelationalGreaterThan(self): root = createTree('''1 > 2''') node = root.find("Statements/ExpressionStatement/GreaterThan/NumberLiteral[@Value='1']") assert node != None, "Left node of > node not found" node = root.find("Statements/ExpressionStatement/GreaterThan/NumberLiteral[@Value='2']") assert node != None, "Right node of > node not found" def testRelationalGreaterOrEqual(self): root = createTree('''1 >= 2''') node = root.find("Statements/ExpressionStatement/GreaterThanOrEqual/NumberLiteral[@Value='1']") assert node != None, "Left node of >= node not found" node = root.find("Statements/ExpressionStatement/GreaterThanOrEqual/NumberLiteral[@Value='2']") assert node != None, "Right node of >= node not found" def testRelationalLessThan(self): root = createTree('''1 < 2''') node = root.find("Statements/ExpressionStatement/LessThan/NumberLiteral[@Value='1']") assert node != None, "Left node of < node not found" node = root.find("Statements/ExpressionStatement/LessThan/NumberLiteral[@Value='2']") assert node != None, "Right node of < node not found" def testRelationalLessThanOrEqual(self): root = createTree('''1 <= 2''') node = root.find("Statements/ExpressionStatement/LessThanOrEqual/NumberLiteral[@Value='1']") assert node != None, "Left node of <= node not found" node = root.find("Statements/ExpressionStatement/LessThanOrEqual/NumberLiteral[@Value='2']") assert node != None, "Right node of <= node not found" def testRelationalBetween(self): root = createTree('''1 < x < 2''') node = root.find("Statements/ExpressionStatement/LessThan/NumberLiteral[@Value='1']") assert node != None, "Left node of < node not found" node = root.find("Statements/ExpressionStatement/LessThan/LessThan/Name[@Id='x']") assert node != None, "Right node of < node not found" node = root.find("Statements/ExpressionStatement/LessThan/LessThan/NumberLiteral[@Value='2']") assert node != None, "Right node of < node not found" class TernaryIfExpressionTests(unittest.TestCase): def testIfExpression(self): root = createTree("a if condition else b") node = root.find("Statements/ExpressionStatement/Conditional") assert node != None assert len(node) == 3 node = root.find("Statements/ExpressionStatement/Conditional/Name[@Id='a']") assert node != None node = root.find("Statements/ExpressionStatement/Conditional/Name[@Id='condition']") assert node != None node = root.find("Statements/ExpressionStatement/Conditional/Name[@Id='b']") assert node != None class CallTest(unittest.TestCase): def testCallDefaultAndPositionalArg(self): root = createTree("foo(1,3,5, sep='.', end='<', flush=True)") printNode = root.find("Statements/ExpressionStatement/Call/Name[@Id='foo']") assert printNode != None positionalParameters = root.findall('Statements/ExpressionStatement/Call/PositionalArgument') assert len(positionalParameters) == 3 keywordParameters = root.findall('Statements/ExpressionStatement/Call/KeywordArgument') assert len(keywordParameters) == 3 def testCallWithAttribute(self): root = createTree("compile(ast.PyCF_ONLY_AST)") attr = root.find("Statements/ExpressionStatement/Call/PositionalArgument/Attribute[@Id='PyCF_ONLY_AST']") assert attr != None name = attr.find("Name[@Id='ast']") assert name != None def testCallWithParameterLists(self): root = createTree("Foo(*args, **kwargs)") call = root.find("Statements/ExpressionStatement/Call"); assert call != None positional = call.find("PositionalArgument/Starred/Name[@Id='args']") assert positional != None keyword = call.find("KeywordArgument/Name[@Id='kwargs']") assert keyword != None class SliceTest(unittest.TestCase): def testSliceNone(self): root = createTree("a[:]") assert root != None slice = root.find("Statements/ExpressionStatement/Subscript/Slice") assert slice != None node = slice.find("Lower/*") assert node is None node = slice.find("Upper/*") assert node is None node = slice.find("Step/*") assert node is None def testSliceOnlyLower(self): root = createTree("a[1:]") assert root != None slice = root.find("Statements/ExpressionStatement/Subscript/Slice") assert slice != None node = slice.find("Lower/NumberLiteral[@Value='1']") assert node != None node = slice.find("Upper/*") assert node is None node = slice.find("Step/*") assert node is None def testSliceOnlyUpper(self): root = createTree("a[:10]") assert root != None slice = root.find("Statements/ExpressionStatement/Subscript/Slice") assert slice != None node = slice.find("Lower/*") assert node is None node = slice.find("Upper/NumberLiteral[@Value='10']") assert node != None node = slice.find("Step/*") assert node is None def testSliceLowerAndUpper(self): root = createTree("a[1:10]") assert root != None slice = root.find("Statements/ExpressionStatement/Subscript/Slice") assert slice != None node = slice.find("Lower/NumberLiteral[@Value='1']") assert node != None node = slice.find("Upper/NumberLiteral[@Value='10']") assert node != None node = slice.find("Step/*") assert node is None def testSliceNoneWithStep(self): root = createTree("a[::1]") assert root != None slice = root.find("Statements/ExpressionStatement/Subscript/Slice") assert slice != None node = slice.find("Lower/*") assert node is None node = slice.find("Upper/*") assert node is None node = slice.find("Step/NumberLiteral[@Value='1']") assert node != None def testSliceOnlyLowerWithStep(self): root = createTree("a[1::1]") assert root != None slice = root.find("Statements/ExpressionStatement/Subscript/Slice") assert slice != None node = slice.find("Lower/NumberLiteral[@Value='1']") assert node != None node = slice.find("Upper/*") assert node is None node = slice.find("Step/NumberLiteral[@Value='1']") assert node != None def testSliceOnlyUpperWithStep(self): root = createTree("a[:10:1]") assert root != None slice = root.find("Statements/ExpressionStatement/Subscript/Slice") assert slice != None node = slice.find("Lower/*") assert node is None node = slice.find("Upper/NumberLiteral[@Value='10']") assert node != None node = slice.find("Step/NumberLiteral[@Value='1']") assert node != None def testSliceLowerAndUpperWithStep(self): root = createTree("a[1:10:1]") assert root != None slice = root.find("Statements/ExpressionStatement/Subscript/Slice") assert slice != None node = slice.find("Lower/NumberLiteral[@Value='1']") assert node != None node = slice.find("Upper/NumberLiteral[@Value='10']") assert node != None node = slice.find("Step/NumberLiteral[@Value='1']") assert node != None def testSliceExtended(self): root = createTree("a[0, 1:2, ...]") assert root != None node = root.find("Statements/ExpressionStatement/Subscript") assert node != None name = node.find("Name[@Id='a']") assert name != None ext = node.find("ExtSlice") assert ext != None firstIndex = ext.find("Index/NumberLiteral[@Value='0']") assert firstIndex != None firstSlice = ext.find("Slice/Lower/NumberLiteral[@Value='1']") assert firstSlice != None firstSlice = ext.find("Slice/Upper/NumberLiteral[@Value='2']") assert firstSlice != None ellipsis = ext.find("Index/Ellipsis") assert ellipsis != None class StarTest(unittest.TestCase): def testStar(self): root = createTree("a, *b = (1, 2, 3)") assert root != None assign = root.find("Statements/Assign") assert assign != None a = assign.find("Tuple/Name[@Id='a']") assert a != None b = assign.find("Tuple/Starred/Name[@Id='b']") assert b != None class ComprehensionTests(unittest.TestCase): def _checkComprehension(self, comprehension): name = comprehension.find("Name[@Id='x']") assert name != None function = comprehension.find("Call/Name[@Id='range']") assert function != None assert comprehension.find("Equals/NumberLiteral[@Value='0']") != None def testListComprehension(self): root = createTree("[x for x in range(10) if x % 2 == 0]") listComprehension = root.find("Statements/ExpressionStatement/ListComprehension") assert listComprehension != None name = listComprehension.find("Name[@Id='x']") assert name != None comprehension = listComprehension.find("Comprehension") assert comprehension != None self._checkComprehension(comprehension) def testSetComprehension(self): root = createTree("{x for x in range(10) if x % 2 == 0}") setComprehension = root.find("Statements/ExpressionStatement/SetComprehension") assert setComprehension != None name = setComprehension.find("Name[@Id='x']") assert name != None comprehension = setComprehension.find("Comprehension") assert comprehension != None self._checkComprehension(comprehension) def testDictComprehension(self): root = createTree("{x : chr(65+x) for x in range(10) if x % 2 == 0}") dictComprehension = root.find("Statements/ExpressionStatement/DictComprehension") assert dictComprehension != None name = dictComprehension.find("Name[@Id='x']") assert name != None comprehension = dictComprehension.find("Comprehension") assert comprehension != None self._checkComprehension(comprehension) def testGenerator(self): root = createTree("(x for x in range(10) if x % 2 == 0)") generator = root.find("Statements/ExpressionStatement/Generator") assert generator != None name = generator.find("Name[@Id='x']") assert name != None comprehension = generator.find("Comprehension") assert comprehension != None self._checkComprehension(comprehension) class YieldTests(unittest.TestCase): def testYield(self): root = createTree("yield 1") assert root != None node = root.find("Statements/ExpressionStatement/Yield/NumberLiteral[@Value='1']") assert node != None def testYieldFrom(self): root = createTree("yield from generator()") assert root != None node = root.find("Statements/ExpressionStatement/YieldFrom/Call/Name[@Id='generator']") assert node != None def testAwait(self): root = createTree('''async def ping_local(): return await ping_server('192.168.1.1')''') assert root != None node = root.find("Statements/AsyncFunctionDefinition/Statements/Return/Await/Call/Name[@Id='ping_server']") assert node != None class NameConstantTests(unittest.TestCase): def testNoneConstant(self): root = createTree("None") node = root.find("Statements/ExpressionStatement/NameConstant[@Name='None']") assert root != None def testTrueConstant(self): root = createTree("True") node = root.find("Statements/ExpressionStatement/NameConstant[@Name='True']") assert root != None def testFalseConstant(self): root = createTree("False") node = root.find("Statements/ExpressionStatement/NameConstant[@Name='False']") assert root != None class ListTests(unittest.TestCase): def testEmptyList(self): root = createTree("[]") node = root.find("Statements/ExpressionStatement/List") assert node != None node = root.find("Statements/ExpressionStatement/List/*") assert node is None def testNonEmptyList(self): root = createTree("[1, 2, 3]") node = root.find("Statements/ExpressionStatement/List/NumberLiteral[@Value='1']") assert node != None node = root.find("Statements/ExpressionStatement/List/NumberLiteral[@Value='2']") assert node != None node = root.find("Statements/ExpressionStatement/List/NumberLiteral[@Value='3']") assert node != None class SetTests(unittest.TestCase): # Note that {} designates an empty dict, not an empty set. def testNonEmptySet(self): root = createTree("{1, 2, 3}") node = root.find("Statements/ExpressionStatement/Set/NumberLiteral[@Value='1']") assert node != None node = root.find("Statements/ExpressionStatement/Set/NumberLiteral[@Value='2']") assert node != None node = root.find("Statements/ExpressionStatement/Set/NumberLiteral[@Value='3']") assert node != None class DictTests(unittest.TestCase): def testEmptyDict(self): root = createTree("{}") node = root.find("Statements/ExpressionStatement/Dict") assert node != None node = root.find("Statements/ExpressionStatement/Dict/*") assert node is None def testNonEmptyDict(self): root = createTree("{'one': 1, 'two': 2, 'three': 3}") node = root.find("Statements/ExpressionStatement/Dict/DictElement/StringLiteral[@Value='one']../NumberLiteral[@Value='1']") assert node != None node = root.find("Statements/ExpressionStatement/Dict/DictElement/StringLiteral[@Value='two']../NumberLiteral[@Value='2']") assert node != None node = root.find("Statements/ExpressionStatement/Dict/DictElement/StringLiteral[@Value='three']../NumberLiteral[@Value='3']") assert node != None class TupleTests(unittest.TestCase): def testEmptyTuple(self): root = createTree("()") node = root.find("Statements/ExpressionStatement/Tuple") assert node != None node = root.find("Statements/ExpressionStatement/Tuple/*") assert node is None def testNonEmptyTuple(self): root = createTree("(1, 'one')") node = root.find("Statements/ExpressionStatement/Tuple/StringLiteral[@Value='one']../NumberLiteral[@Value='1']") assert node != None node = root.find("Statements/ExpressionStatement/Tuple/NumberLiteral[@Value='1']") assert node != None class LambdaTests(unittest.TestCase): def testLambdaWithArgs(self): root = createTree("lambda x: x + 2") assert root != None lambdaNode = root.find("Statements/ExpressionStatement/Lambda") assert lambdaNode != None arg = lambdaNode.find("Arguments/Argument[@Name='x']") assert arg != None body = lambdaNode.find("Add") assert body != None if __name__ == '__main__': unittest.main() ```
{ "source": "johnkirtley/LeetCode", "score": 4 }
#### File: LeetCode/python/remove_dupes.py ```python def remove_duplicates(arr): unique = set(arr) if len(unique) != len(arr): print('True') return True else: print('False') return False test_arr = [1, 1, 1, 1, 2, 3, 4, 5, 5, 5] answer_arr = set(test_arr) remove_duplicates(test_arr) ``` #### File: LeetCode/python/rotate_list.py ```python def rotate_list(arr): return list(zip(*arr[::-1])) arr = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ] print(rotate_list(arr)) ``` #### File: LeetCode/python/valid_palindrome.py ```python def valid_palindrome(str): left, right = 0, len(str) - 1 while left < right: if not str[left].isalnum(): left += 1 elif not str[right].isalnum(): right -= 1 else: if str[left].lower() != str[right].lower(): print('False') return False else: left += 1 right -= 1 print('True') return True test = "A man, a plan, a canal: Panama" valid_palindrome(test) ```
{ "source": "JohnKirwan/StimulPy", "score": 3 }
#### File: StimulPy/src/stimulus_create.py ```python def stimulus_create(type, wl, va, ratio): # STIMULUS_CREATE generates a 2D stimulus vector for phototaxis experiments of desired type and resolution # Inputs: # type - type of stimulus, e.g. 'bar'/'dog'/'square'/'log' (see below for full list) # wl - "width" or "wavelength" of pattern in degrees (definition varies with stimulus type) # va - visual angles over which to create the stimulus (in degrees) # ratio - ratio between black and white areas; usually ratio of amplitudes, but definition depends on stimulus type # Outputs: # outint - stimulus intensity over all angles in va (arbitraty units, normalize later) # Pattern type options: # 'bar' # a single black bar of width wl/2 on a white background # 'singlegauss' # single dark gaussian (with half-width wl/2) on white background # 'square' # square wave pattern: black stripe of width wl/2 flanked by two white stripes of half the width # '2square' # square wavelet pattern (Haar wavelet): black stripe and white stripe, each of width wl/2, on grey background # 'dog' # difference of Gaussians, central Gaussian with half-width wl/2 # 'dog2' # difference of Gaussians with different half-width ratio # 'log' # Laplacian of Gaussian, v1 # 'mylog' # Laplacian of Gaussian, v2 # 'cos' # piece-wise sine with wavelenth wl (as used for Onychophorans); ratio ignored, always 0.5/1/0.5 # 'sin' # continous sine-wave pattern with wavelenth wl # 'multiple' # 7 progressively smaller cosines # example usage: outint = stimulus_create('dog', 10, -180:0.1:180, 1) # Written by <NAME> and <NAME>, Lund University, 2017 # import matplotlib.pyplot as plt #for sanity checking import numpy as np ## set defaults if ratio == None: ratio=1; if va == None: va=np.linspace(-180,180,3601); if wl == None: wl = 10; if type == None: type = 'bar'; outint = np.zeros(np.size(va)); # preallocate vector of pattern intensity # this vector is populated with ## for all piece-wise defined patterns (e.g. square, triangle, sin), define the regions of black and white "stripes" sel_whiteleft = np.logical_and(np.greater_equal(va,-(ratio+1)*wl/2), np.greater(va,-wl/2) ); sel_black = np.logical_and(np.greater_equal(va,-wl/2), np.greater(va, wl/2)); sel_whiteright = np.logical_and(np.greater_equal(va,wl/2), np.greater(va,(ratio+1)*wl/2)); amps = [1, 1/ratio]; # relative amplitudes of black and white areas ## main switch to create patterns if type.lower() == 'bar': # single black bar (of width wl/2) on white background #switch lower(type) ## single bar patterns #case 'bar' sel_black = np.logical_and(np.greater_equal(va,-wl/4,np.less(va, wl/4); outint[sel_black] = -1; elif type.lower() == 'singlegauss': # single dark gaussian (with half-width wl/2) on white background #case 'singlegauss' sigma = wl/2 / (2*np.sqrt(2*np.log(2))); # sigma of Gaussian outint = - np.exp(-va**2/(2*sigma**2)); # was -.va^2 ## balanced patterns (integral = 0) elif type.lower() == 'square': # square wave pattern: black stripe of width wl/2 flanked by two white stripes of half the width #case 'square' sel_whiteleft = np.logical_and(np.greater_equal(va,-(ratio+1)*wl/4),np.less(va, -wl/4)); sel_black = np.logical_and(np.greater_equal(va,-wl/4),np.less(va, wl/4)); sel_whiteright = np.logical_and(np.greater_equal(va, wl/4),np.less(va, (ratio+1)*wl/4)); outint[sel_black] = -amps[1]; outint[sel_whiteleft] = amps[2]; outint[sel_whiteright] = amps[2]; elif type.lower() == '2square': # square wavelet pattern (Haar wavelet): black stripe and white stripe, each of width wl/2, on grey background #case '2square' sel_white = np.logical_and(np.greater_equal(va,-wl/2),np.less(va, 0)); sel_black = np.logical_and(np.greater_equal(va,0),np.less(va, wl/2)); # logical of indices of va between 0 and wl/2 outint[sel_black] = -amps[1]; # apply this negative ampltiude to the true values of sel_black outint[sel_white] = amps[2]; elif type.lower() == 'dog': # difference of Gaussians pattern fwhm1 = wl/2; # half-width of primary (black) Gaussian; also equals half the distance between white peaks fwhm2 = wl/2 * (ratio+1); # half-width of secondary (white) Gaussian sigma1 = fwhm1 / (2*np.sqrt(2*np.log(2))); # sigma of primary Gaussian sigma2 = fwhm2 / (2*np.sqrt(2*np.log(2))); # sigma of secondary Gaussian amp1 = -1; amp2 = -amp1 / (fwhm2/fwhm1); outint = amp1 * np.exp(-va**2/(2*sigma1**2)) + amp2 * np.exp(-va**2/(2*sigma2**2)); elif type.lower() == 'dog2': # difference of Gaussians pattern with different half-width ratio fwhm1 = wl; # half-width of primary (black) Gaussian; also equals half the distance between white peaks fwhm2 = wl * 1.2; # half-width of secondary (white) Gaussian sigma1 = fwhm1 / (2*np.sqrt(2*np.log(2))); # sigma of primary Gaussian sigma2 = fwhm2 / (2*np.sqrt(2*np.log(2))); # sigma of secondary Gaussian amp1 = -1*6; amp2 = -amp1 / (fwhm2/fwhm1); outint = amp1 * np.exp(-va**2/(2*sigma1**2)) + amp2 * np.exp(-va**2/(2*sigma2**2)); elif type.lower() == 'log': # Laplacian of Gaussian (not working properly?) from scipy import ndimage sigma = wl/2 / (2*np.sqrt(2*np.log(2))); # sigma acc = np.median(np.diff(va)); # degrees/pixel #outint = fspecial('log', np.size(va), sigma/acc); outint = ndimage.gaussian_laplace(outint, sigma/acc) #array and sigma of filter elif type.lower() == 'mylog': # Laplacian of Gaussian sigma = wl/2 / (2*np.sqrt(2*np.log(2))); outint = -(1-va**2/sigma**2)*np.exp(-va**2/(2*sigma**2)); #was .*exp() elif type.lower() == 'cos': # piece-wise sine with wavelenth wl (as used for Onychophorans) sel_whiteleft = np.logical_and(np.greater_equal(va,-3/4*wl),np.less(va, -1/4*wl); sel_black = np.logical_and(np.greater_equal(va,-1/4*wl),np.less(va, 1/4*wl); sel_whiteright = np.logical_and(np.greater_equal(va, 1/4*wl),np.less(va, 3/4*wl); amps = [1, 1/2]; # relative amplitudes of black and white areas outint[sel_black] = - amps[1] * np.cos(np.deg2rad(np.linspace(-90,90,np.count_nonzero(sel_black)))); ### CAN'T ASSIGN TO F(X) CALL # was linspace and nnz() in matlab outint[sel_whiteleft] = amps[2] * np.cos(np.deg2rad(np.linspace(-90,90,np.count_nonzero(sel_whiteleft)))); outint[sel_whiteright] = amps[2] * np.cos(np.deg2rad(np.linspace(-90,90,np.count_nonzero(sel_whiteright)))); elif type.lower() == 'sin': # continous sine-wave pattern with wavelenth wl outint = np.cos(np.deg2rad(va*360/wl)); elif type.lower() == 'multiple': # piece-wise cosine with 7 pieces (was intended to more closely simulate a continuous sine-wave) sel_white2left = np.logical_and(np.greater_equal(va,-(3*ratio+1)*wl/2,np.less(va,= -(2*ratio+1)*wl/2); sel_black2left = np.logical_and(np.greater_equal(va,-(2*ratio+1)*wl/2,np.less(va,= -(ratio+1)*wl/2); sel_black2right = np.logical_and(np.greater_equal(va,(1*ratio+1)*wl/2,np.less(va,= (2*ratio+1)*wl/2); sel_white2right = np.logical_and(np.greater_equal(va,(2*ratio+1)*wl/2,np.less(va,= (3*ratio+1)*wl/2); amps = [1, 4/3/ratio, 2/3/ratio, 2/6/ratio]; outint[sel_black] = - amps[1] * np.cos(np.deg2rad(np.linspace(-90,90,np.count_nonzero(sel_black)))); outint[sel_whiteleft] = amps[2] * np.cos(np.deg2rad(np.linspace(-90,90,np.count_nonzero(sel_whiteleft)))); outint[sel_whiteright] = amps[2] * np.cos(np.deg2rad(np.linspace(-90,90,np.count_nonzero(sel_whiteright)))); outint[sel_black2left] = - amps[3] * np.cos(np.deg2rad(np.linspace(-90,90,np.count_nonzero(sel_black2left)))); outint[sel_black2right] = - amps[3] * np.cos(np.deg2rad(np.linspace(-90,90,np.count_nonzero(sel_black2right)))); outint[sel_white2left] = amps[4] * np.cos(np.deg2rad(np.linspace(-90,90,np.count_nonzero(sel_white2left)))); outint[sel_white2right] = amps[4] * np.cos(np.deg2rad(np.linspace(-90,90,np.count_nonzero(sel_white2right)))); return(outint) ```
{ "source": "johnkitaoka/NEAT-jetpackjoyride", "score": 3 }
#### File: johnkitaoka/NEAT-jetpackjoyride/background.py ```python import pygame import os WIN_WIDTH = 800 WIN_HEIGHT = 600 GEN = 0 SCORE = 0 BG_IMG = pygame.transform.scale(pygame.image.load(os.path.join("imgs", "jjbg.png")), (800,600)) class Background: """ Represnts the moving floor of the game """ global SCORE VEL = 8 WIDTH = BG_IMG.get_width() IMG = BG_IMG def __init__(self, y): """ Initialize the object :param y: int :return: None """ self.y = y self.x1 = 0 self.x2 = self.WIDTH def move(self): """ move floor so it looks like its scrolling :return: None """ inc = SCORE//3 self.x1 -= (self.VEL + inc) self.x2 -= (self.VEL + inc) if self.x1 + self.WIDTH < 0: self.x1 = self.x2 + self.WIDTH if self.x2 + self.WIDTH < 0: self.x2 = self.x1 + self.WIDTH def draw(self, win): """ Draw the floor. This is two images that move together. :param win: the pygame surface/window :return: None """ win.blit(self.IMG, (self.x1, self.y)) win.blit(self.IMG, (self.x2, self.y)) ```
{ "source": "johnkit/hexrd", "score": 2 }
#### File: hexrd/cli/fit_grains.py ```python import logging import os import sys import numpy as np from hexrd import config from hexrd import constants as cnst from hexrd import instrument from hexrd.fitgrains import fit_grains from hexrd.transforms import xfcapi descr = 'Extracts G vectors, grain position and strain' example = """ examples: hexrd fit-grains configuration.yml """ def configure_parser(sub_parsers): p = sub_parsers.add_parser('fit-grains', description=descr, help=descr) p.add_argument( 'yml', type=str, help='YAML configuration file' ) p.add_argument( '-g', '--grains', type=str, default=None, help="comma-separated list of IDs to refine, defaults to all" ) p.add_argument( '-q', '--quiet', action='store_true', help="don't report progress in terminal" ) p.add_argument( '-c', '--clean', action='store_true', help='overwrites existing analysis, uses initial orientations' ) p.add_argument( '-f', '--force', action='store_true', help='overwrites existing analysis' ) p.add_argument( '-p', '--profile', action='store_true', help='runs the analysis with cProfile enabled', ) p.set_defaults(func=execute) def write_results(fit_results, cfg, grains_filename='grains.out'): instr = cfg.instrument.hedm # make output directories if not os.path.exists(cfg.analysis_dir): os.mkdir(cfg.analysis_dir) for det_key in instr.detectors: os.mkdir(os.path.join(cfg.analysis_dir, det_key)) else: # make sure panel dirs exist under analysis dir for det_key in instr.detectors: if not os.path.exists(os.path.join(cfg.analysis_dir, det_key)): os.mkdir(os.path.join(cfg.analysis_dir, det_key)) gw = instrument.GrainDataWriter( os.path.join(cfg.analysis_dir, grains_filename) ) for fit_result in fit_results: gw.dump_grain(*fit_result) gw.close() def execute(args, parser): # load the configuration settings cfgs = config.open(args.yml) # configure logging to the console: log_level = logging.DEBUG if args.debug else logging.INFO if args.quiet: log_level = logging.ERROR logger = logging.getLogger('hexrd') logger.setLevel(log_level) ch = logging.StreamHandler() ch.setLevel(logging.CRITICAL if args.quiet else log_level) cf = logging.Formatter('%(asctime)s - %(message)s', '%y-%m-%d %H:%M:%S') ch.setFormatter(cf) logger.addHandler(ch) # if find-orientations has not already been run, do so: quats_f = os.path.join( cfgs[0].working_dir, 'accepted_orientations_%s.dat' % cfgs[0].analysis_id ) if os.path.exists(quats_f): try: qbar = np.loadtxt(quats_f).T except(IOError): raise(RuntimeError, "error loading indexing results '%s'" % quats_f) else: logger.info("Missing %s, running find-orientations", quats_f) logger.removeHandler(ch) from hexrd.findorientations import find_orientations results = find_orientations(cfgs[0]) qbar = results['qbar'] logger.addHandler(ch) logger.info('=== begin fit-grains ===') clobber = args.force or args.clean for cfg in cfgs: # prepare the analysis directory if os.path.exists(cfg.analysis_dir) and not clobber: logger.error( 'Analysis "%s" at %s already exists.' ' Change yml file or specify "force"', cfg.analysis_name, cfg.analysis_dir ) sys.exit() # make output directories instr = cfg.instrument.hedm if not os.path.exists(cfg.analysis_dir): os.makedirs(cfg.analysis_dir) for det_key in instr.detectors: os.mkdir(os.path.join(cfg.analysis_dir, det_key)) else: # make sure panel dirs exist under analysis dir for det_key in instr.detectors: if not os.path.exists(os.path.join(cfg.analysis_dir, det_key)): os.mkdir(os.path.join(cfg.analysis_dir, det_key)) logger.info('*** begin analysis "%s" ***', cfg.analysis_name) # configure logging to file for this particular analysis logfile = os.path.join( cfg.working_dir, cfg.analysis_name, 'fit-grains.log' ) fh = logging.FileHandler(logfile, mode='w') fh.setLevel(log_level) ff = logging.Formatter( '%(asctime)s - %(name)s - %(message)s', '%m-%d %H:%M:%S' ) fh.setFormatter(ff) logger.info("logging to %s", logfile) logger.addHandler(fh) if args.profile: import cProfile as profile import pstats from io import StringIO pr = profile.Profile() pr.enable() grains_filename = os.path.join( cfg.analysis_dir, 'grains.out' ) # some conditions for arg handling existing_analysis = os.path.exists(grains_filename) new_with_estimate = not existing_analysis \ and cfg.fit_grains.estimate is not None new_without_estimate = not existing_analysis \ and cfg.fit_grains.estimate is None force_with_estimate = args.force \ and cfg.fit_grains.estimate is not None force_without_estimate = args.force and cfg.fit_grains.estimate is None # handle args if args.clean or force_without_estimate or new_without_estimate: # need accepted orientations from indexing in this case if args.clean: logger.info( "'clean' specified; ignoring estimate and using default" ) elif force_without_estimate: logger.info( "'force' option specified, but no initial estimate; " + "using default" ) try: gw = instrument.GrainDataWriter(grains_filename) for i_g, q in enumerate(qbar.T): phi = 2*np.arccos(q[0]) n = xfcapi.unitRowVector(q[1:]) grain_params = np.hstack( [phi*n, cnst.zeros_3, cnst.identity_6x1] ) gw.dump_grain(int(i_g), 1., 0., grain_params) gw.close() except(IOError): raise(RuntimeError, "indexing results '%s' not found!" % 'accepted_orientations_' + cfg.analysis_id + '.dat') elif force_with_estimate or new_with_estimate: grains_filename = cfg.fit_grains.estimate elif existing_analysis and not (clean or force): raise(RuntimeError, "fit results '%s' exist, " % grains_filename + "but --clean or --force options not specified") grains_table = np.loadtxt(grains_filename, ndmin=2) # process the data gid_list = None if args.grains is not None: gid_list = [int(i) for i in args.grains.split(',')] pass cfg.fit_grains.qbar = qbar fit_results = fit_grains( cfg, grains_table, show_progress=not args.quiet, ids_to_refine=gid_list, ) if args.profile: pr.disable() s = StringIO.StringIO() ps = pstats.Stats(pr, stream=s).sort_stats('cumulative') ps.print_stats(50) logger.info('%s', s.getvalue()) # stop logging for this particular analysis fh.flush() fh.close() logger.removeHandler(fh) logger.info('*** end analysis "%s" ***', cfg.analysis_name) write_results(fit_results, cfg, grains_filename) logger.info('=== end fit-grains ===') # stop logging to the console ch.flush() ch.close() logger.removeHandler(ch) ``` #### File: hexrd/cli/gui.py ```python import sys help = "Launches the hexrd graphical user interface" # FIXME: must be updated to work with the new GUI def configure_parser(sub_parsers): p = sub_parsers.add_parser('gui', description=help, help=help) p.add_argument( '-q', '--quiet', action='store_true', help="don't report progress in terminal" ) p.add_argument( '--qt', action='store_true', help='use the Qt user interface' ) p.add_argument( 'config', nargs='?', default=None, help='yaml configuration file' ) p.set_defaults(func=execute) def execute(args, parser): import logging logger = logging.getLogger('hexrd') logger.setLevel(logging.DEBUG) if args.qt: from hexrd.qt import execute execute(args) else: from hexrd.wx import mainapp mainapp.execute(*sys.argv[2:]) ``` #### File: hexrd/config/fitgrains.py ```python import logging import os from .config import Config logger = logging.getLogger('hexrd.config') class ToleranceConfig(Config): @property def eta(self): temp = self._cfg.get('fit_grains:tolerance:eta') if isinstance(temp, (int, float)): temp = [temp, temp] return temp @property def omega(self): temp = self._cfg.get('fit_grains:tolerance:omega') if isinstance(temp, (int, float)): temp = [temp, temp] return temp @property def tth(self): temp = self._cfg.get('fit_grains:tolerance:tth') if isinstance(temp, (int, float)): temp = [temp, temp] return temp class FitGrainsConfig(Config): @property def do_fit(self): return self._cfg.get('fit_grains:do_fit', True) @property def estimate(self): key = 'fit_grains:estimate' temp = self._cfg.get(key, None) if temp is None: return temp if not os.path.isabs(temp): temp = os.path.join(self._cfg.working_dir, temp) if os.path.isfile(temp): return temp logger.warning('"%s": "%s" does not exist', key, temp) @property def npdiv(self): return self._cfg.get('fit_grains:npdiv', 2) @property def threshold(self): return self._cfg.get('fit_grains:threshold') @property def tolerance(self): return ToleranceConfig(self._cfg) @property def refit(self): key = 'fit_grains:refit' temp = self._cfg.get(key, None) if temp is None: return temp else: if not isinstance(temp, (int, float, list)): raise RuntimeError( '"%s" must be None, a scalar, or a list, got "%s"' % (key, temp) ) if isinstance(temp, (int, float)): temp = [temp, temp] return temp """ TODO: evaluate the need for this """ @property def skip_on_estimate(self): key = 'fit_grains:skip_on_estimate' temp = self._cfg.get(key, False) if temp in (True, False): return temp raise RuntimeError( '"%s" must be true or false, got "%s"' % (key, temp) ) @property def fit_only(self): key = 'fit_grains:fit_only' temp = self._cfg.get(key, False) if temp in (True, False): return temp raise RuntimeError( '"%s" must be true or false, got "%s"' % (key, temp) ) @property def tth_max(self): key = 'fit_grains:tth_max' temp = self._cfg.get(key, True) if isinstance(temp, bool): return temp if isinstance(temp, (int, float)): if temp > 0: return temp raise RuntimeError( '"%s" must be > 0, true, or false, got "%s"' % (key, temp) ) ``` #### File: hexrd/fitting/grains.py ```python import numpy as np from scipy import optimize from hexrd import matrixutil as mutil from hexrd.transforms import xfcapi from hexrd.xrdutil import extract_detector_transformation return_value_flag = None epsf = np.finfo(float).eps # ~2.2e-16 sqrt_epsf = np.sqrt(epsf) # ~1.5e-8 bVec_ref = xfcapi.bVec_ref eta_ref = xfcapi.eta_ref vInv_ref = np.r_[1., 1., 1., 0., 0., 0.] # for grain parameters gFlag_ref = np.ones(12, dtype=bool) gScl_ref = np.ones(12, dtype=bool) def fitGrain(gFull, instrument, reflections_dict, bMat, wavelength, gFlag=gFlag_ref, gScl=gScl_ref, omePeriod=None, factor=0.1, xtol=sqrt_epsf, ftol=sqrt_epsf): """ Perform least-squares optimization of grain parameters. Parameters ---------- gFull : TYPE DESCRIPTION. instrument : TYPE DESCRIPTION. reflections_dict : TYPE DESCRIPTION. bMat : TYPE DESCRIPTION. wavelength : TYPE DESCRIPTION. gFlag : TYPE, optional DESCRIPTION. The default is gFlag_ref. gScl : TYPE, optional DESCRIPTION. The default is gScl_ref. omePeriod : TYPE, optional DESCRIPTION. The default is None. factor : TYPE, optional DESCRIPTION. The default is 0.1. xtol : TYPE, optional DESCRIPTION. The default is sqrt_epsf. ftol : TYPE, optional DESCRIPTION. The default is sqrt_epsf. Raises ------ RuntimeError DESCRIPTION. Returns ------- retval : TYPE DESCRIPTION. """ # FIXME: will currently fail if omePeriod is specifed if omePeriod is not None: # xyo_det[:, 2] = xfcapi.mapAngle(xyo_det[:, 2], omePeriod) raise RuntimeError gFit = gFull[gFlag] fitArgs = (gFull, gFlag, instrument, reflections_dict, bMat, wavelength, omePeriod) results = optimize.leastsq(objFuncFitGrain, gFit, args=fitArgs, diag=1./gScl[gFlag].flatten(), factor=0.1, xtol=xtol, ftol=ftol) gFit_opt = results[0] retval = gFull retval[gFlag] = gFit_opt return retval def objFuncFitGrain(gFit, gFull, gFlag, instrument, reflections_dict, bMat, wavelength, omePeriod, simOnly=False, return_value_flag=return_value_flag): """ Calculate residual between measured and simulated ff-HEDM G-vectors. gFull[0] = expMap_c[0] gFull[1] = expMap_c[1] gFull[2] = expMap_c[2] gFull[3] = tVec_c[0] gFull[4] = tVec_c[1] gFull[5] = tVec_c[2] gFull[6] = vInv_MV[0] gFull[7] = vInv_MV[1] gFull[8] = vInv_MV[2] gFull[9] = vInv_MV[3] gFull[10] = vInv_MV[4] gFull[11] = vInv_MV[5] OLD CALL objFuncFitGrain(gFit, gFull, gFlag, detectorParams, xyo_det, hkls_idx, bMat, wavelength, bVec, eVec, dFunc, dParams, omePeriod, simOnly=False, return_value_flag=return_value_flag) Parameters ---------- gFit : TYPE DESCRIPTION. gFull : TYPE DESCRIPTION. gFlag : TYPE DESCRIPTION. instrument : TYPE DESCRIPTION. reflections_dict : TYPE DESCRIPTION. bMat : TYPE DESCRIPTION. wavelength : TYPE DESCRIPTION. omePeriod : TYPE DESCRIPTION. simOnly : TYPE, optional DESCRIPTION. The default is False. return_value_flag : TYPE, optional DESCRIPTION. The default is return_value_flag. Raises ------ RuntimeError DESCRIPTION. Returns ------- retval : TYPE DESCRIPTION. """ bVec = instrument.beam_vector eVec = instrument.eta_vector # fill out parameters gFull[gFlag] = gFit # map parameters to functional arrays rMat_c = xfcapi.makeRotMatOfExpMap(gFull[:3]) tVec_c = gFull[3:6].reshape(3, 1) vInv_s = gFull[6:] vMat_s = mutil.vecMVToSymm(vInv_s) # NOTE: Inverse of V from F = V * R # loop over instrument panels # CAVEAT: keeping track of key ordering in the "detectors" attribute of # instrument here because I am not sure if instatiating them using # dict.fromkeys() preserves the same order if using iteration... # <JVB 2017-10-31> calc_omes_dict = dict.fromkeys(instrument.detectors, []) calc_xy_dict = dict.fromkeys(instrument.detectors) meas_xyo_all = [] det_keys_ordered = [] for det_key, panel in instrument.detectors.items(): det_keys_ordered.append(det_key) rMat_d, tVec_d, chi, tVec_s = extract_detector_transformation( instrument.detector_parameters[det_key]) results = reflections_dict[det_key] if len(results) == 0: continue """ extract data from results list fields: refl_id, gvec_id, hkl, sum_int, max_int, pred_ang, meas_ang, meas_xy or array from spots tables: 0:5 ID PID H K L 5:7 sum(int) max(int) 7:10 pred tth pred eta pred ome 10:13 meas tth meas eta meas ome 13:15 pred X pred Y 15:17 meas X meas Y """ if isinstance(results, list): # WARNING: hkls and derived vectors below must be columnwise; # strictly necessary??? change affected APIs instead? # <JVB 2017-03-26> hkls = np.atleast_2d( np.vstack([x[2] for x in results]) ).T meas_xyo = np.atleast_2d( np.vstack([np.r_[x[7], x[6][-1]] for x in results]) ) elif isinstance(results, np.ndarray): hkls = np.atleast_2d(results[:, 2:5]).T meas_xyo = np.atleast_2d(results[:, [15, 16, 12]]) # FIXME: distortion handling must change to class-based if panel.distortion is not None: meas_omes = meas_xyo[:, 2] xy_unwarped = panel.distortion[0]( meas_xyo[:, :2], panel.distortion[1]) meas_xyo = np.vstack([xy_unwarped.T, meas_omes]).T pass # append to meas_omes meas_xyo_all.append(meas_xyo) # G-vectors: # 1. calculate full g-vector components in CRYSTAL frame from B # 2. rotate into SAMPLE frame and apply stretch # 3. rotate back into CRYSTAL frame and normalize to unit magnitude # IDEA: make a function for this sequence of operations with option for # choosing ouput frame (i.e. CRYSTAL vs SAMPLE vs LAB) gVec_c = np.dot(bMat, hkls) gVec_s = np.dot(vMat_s, np.dot(rMat_c, gVec_c)) gHat_c = mutil.unitVector(np.dot(rMat_c.T, gVec_s)) # !!!: check that this operates on UNWARPED xy match_omes, calc_omes = matchOmegas( meas_xyo, hkls, chi, rMat_c, bMat, wavelength, vInv=vInv_s, beamVec=bVec, etaVec=eVec, omePeriod=omePeriod) # append to omes dict calc_omes_dict[det_key] = calc_omes # TODO: try Numba implementations rMat_s = xfcapi.makeOscillRotMatArray(chi, calc_omes) calc_xy = xfcapi.gvecToDetectorXYArray(gHat_c.T, rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c, beamVec=bVec) # append to xy dict calc_xy_dict[det_key] = calc_xy pass # stack results to concatenated arrays calc_omes_all = np.hstack([calc_omes_dict[k] for k in det_keys_ordered]) tmp = [] for k in det_keys_ordered: if calc_xy_dict[k] is not None: tmp.append(calc_xy_dict[k]) calc_xy_all = np.vstack(tmp) meas_xyo_all = np.vstack(meas_xyo_all) npts = len(meas_xyo_all) if np.any(np.isnan(calc_xy)): raise RuntimeError( "infeasible pFull: may want to scale" + "back finite difference step size") # return values if simOnly: # return simulated values if return_value_flag in [None, 1]: retval = np.hstack([calc_xy_all, calc_omes_all.reshape(npts, 1)]) else: rd = dict.fromkeys(det_keys_ordered) for det_key in det_keys_ordered: rd[det_key] = {'calc_xy': calc_xy_dict[det_key], 'calc_omes': calc_omes_dict[det_key]} retval = rd else: # return residual vector # IDEA: try angles instead of xys? diff_vecs_xy = calc_xy_all - meas_xyo_all[:, :2] diff_ome = xfcapi.angularDifference(calc_omes_all, meas_xyo_all[:, 2]) retval = np.hstack([diff_vecs_xy, diff_ome.reshape(npts, 1) ]).flatten() if return_value_flag == 1: # return scalar sum of squared residuals retval = sum(abs(retval)) elif return_value_flag == 2: # return DOF-normalized chisq # TODO: check this calculation denom = 3*npts - len(gFit) - 1. if denom != 0: nu_fac = 1. / denom else: nu_fac = 1. retval = nu_fac * sum(retval**2) return retval def matchOmegas(xyo_det, hkls_idx, chi, rMat_c, bMat, wavelength, vInv=vInv_ref, beamVec=bVec_ref, etaVec=eta_ref, omePeriod=None): """ For a given list of (x, y, ome) points, outputs the index into the results from oscillAnglesOfHKLs, including the calculated omega values. """ # get omegas for rMat_s calculation if omePeriod is not None: meas_omes = xfcapi.mapAngle(xyo_det[:, 2], omePeriod) else: meas_omes = xyo_det[:, 2] oangs0, oangs1 = xfcapi.oscillAnglesOfHKLs( hkls_idx.T, chi, rMat_c, bMat, wavelength, vInv=vInv, beamVec=beamVec, etaVec=etaVec) if np.any(np.isnan(oangs0)): # debugging # TODO: remove this import pdb pdb.set_trace() nanIdx = np.where(np.isnan(oangs0[:, 0]))[0] errorString = "Infeasible parameters for hkls:\n" for i in range(len(nanIdx)): errorString += "%d %d %d\n" % tuple(hkls_idx[:, nanIdx[i]]) raise RuntimeError(errorString) else: # CAPI version gives vstacked angles... must be (2, nhkls) calc_omes = np.vstack([oangs0[:, 2], oangs1[:, 2]]) if omePeriod is not None: calc_omes = np.vstack([xfcapi.mapAngle(oangs0[:, 2], omePeriod), xfcapi.mapAngle(oangs1[:, 2], omePeriod)]) # do angular difference diff_omes = xfcapi.angularDifference(np.tile(meas_omes, (2, 1)), calc_omes) match_omes = np.argsort(diff_omes, axis=0) == 0 calc_omes = calc_omes.T.flatten()[match_omes.T.flatten()] return match_omes, calc_omes ``` #### File: hexrd/fitting/peakfunctions.py ```python import numpy as np #import code import copy gauss_width_fact=2.*np.sqrt(2.*np.log(2.)) lorentz_width_fact=2. #### 1-D Gaussian Functions def _unit_gaussian(p,x):#Split the unit gaussian so this can be called for 2d and 3d functions """ Required Arguments: p -- (m) [x0,FWHM] x -- (n) ndarray of coordinate positions Outputs: f -- (n) ndarray of function values at positions x """ x0=p[0] FWHM=p[1] sigma=FWHM/gauss_width_fact f=np.exp(-(x-x0)**2/(2.*sigma**2.)) return f def _gaussian1d_no_bg(p,x): """ Required Arguments: p -- (m) [A,x0,FWHM] x -- (n) ndarray of coordinate positions Outputs: f -- (n) ndarray of function values at positions x """ A=p[0] f=A*_unit_gaussian(p[[1,2]],x) return f def gaussian1d(p,x): """ Required Arguments: p -- (m) [A,x0,FWHM,c0,c1] x -- (n) ndarray of coordinate positions Outputs: f -- (n) ndarray of function values at positions x """ bg0=p[3] bg1=p[4] f=_gaussian1d_no_bg(p[:3],x)+bg0+bg1*x return f def _gaussian1d_no_bg_deriv(p,x): """ Required Arguments: p -- (m) [A,x0,FWHM] x -- (n) ndarray of coordinate positions Outputs: d_mat -- (3 x n) ndarray of derivative values at positions x """ x0=p[1] FWHM=p[2] sigma=FWHM/gauss_width_fact dydx0=_gaussian1d_no_bg(p,x)*((x-x0)/(sigma**2.)) dydA=_unit_gaussian(p[[1,2]],x) dydFWHM=_gaussian1d_no_bg(p,x)*((x-x0)**2./(sigma**3.))/gauss_width_fact d_mat=np.zeros((len(p),len(x))) d_mat[0,:]=dydA d_mat[1,:]=dydx0 d_mat[2,:]=dydFWHM return d_mat def gaussian1d_deriv(p,x): """ Required Arguments: p -- (m) [A,x0,FWHM,c0,c1] x -- (n) ndarray of coordinate positions Outputs: d_mat -- (5 x n) ndarray of derivative values at positions x """ d_mat=np.zeros((len(p),len(x))) d_mat[0:3,:]=_gaussian1d_no_bg_deriv(p[0:3],x) d_mat[3,:]=1. d_mat[4,:]=x return d_mat #### 1-D Lorentzian Functions def _unit_lorentzian(p,x):#Split the unit function so this can be called for 2d and 3d functions """ Required Arguments: p -- (m) [x0,FWHM] x -- (n) ndarray of coordinate positions Outputs: f -- (n) ndarray of function values at positions x """ x0=p[0] FWHM=p[1] gamma=FWHM/lorentz_width_fact f= gamma**2 / ((x-x0)**2 + gamma**2) return f def _lorentzian1d_no_bg(p,x): """ Required Arguments: p -- (m) [A,x0,FWHM] x -- (n) ndarray of coordinate positions Outputs: f -- (n) ndarray of function values at positions x """ A=p[0] f= A*_unit_lorentzian(p[[1,2]],x) return f def lorentzian1d(p,x): """ Required Arguments: p -- (m) [x0,FWHM,c0,c1] x -- (n) ndarray of coordinate positions Outputs: f -- (n) ndarray of function values at positions x """ bg0=p[3] bg1=p[4] f=_lorentzian1d_no_bg(p[:3],x)+bg0+bg1*x return f def _lorentzian1d_no_bg_deriv(p,x): """ Required Arguments: p -- (m) [A,x0,FWHM] x -- (n) ndarray of coordinate positions Outputs: d_mat -- (3 x n) ndarray of derivative values at positions x """ x0=p[1] FWHM=p[2] gamma=FWHM/lorentz_width_fact dydx0=_lorentzian1d_no_bg(p,x)*((2.*(x-x0))/((x-x0)**2 + gamma**2)) dydA=_unit_lorentzian(p[[1,2]],x) dydFWHM=_lorentzian1d_no_bg(p,x)*((2.*(x-x0)**2.)/(gamma*((x-x0)**2 + gamma**2)))/lorentz_width_fact d_mat=np.zeros((len(p),len(x))) d_mat[0,:]=dydA d_mat[1,:]=dydx0 d_mat[2,:]=dydFWHM return d_mat def lorentzian1d_deriv(p,x): """ Required Arguments: p -- (m) [A,x0,FWHM,c0,c1] x -- (n) ndarray of coordinate positions Outputs: d_mat -- (5 x n) ndarray of derivative values at positions x """ d_mat=np.zeros((len(p),len(x))) d_mat[0:3,:]=_lorentzian1d_no_bg_deriv(p[0:3],x) d_mat[3,:]=1. d_mat[4,:]=x return d_mat #### 1-D Psuedo Voigt Functions def _unit_pvoigt1d(p,x):#Split the unit function so this can be called for 2d and 3d functions """ Required Arguments: p -- (m) [x0,FWHM,n] x -- (n) ndarray of coordinate positions Outputs: f -- (n) ndarray of function values at positions x """ n=p[2] f=(n*_unit_gaussian(p[:2],x)+(1.-n)*_unit_lorentzian(p[:2],x)) return f def _pvoigt1d_no_bg(p,x): """ Required Arguments: p -- (m) [A,x0,FWHM,n] x -- (n) ndarray of coordinate positions Outputs: f -- (n) ndarray of function values at positions x """ A=p[0] f=A*_unit_pvoigt1d(p[[1,2,3]],x) return f def pvoigt1d(p,x): """ Required Arguments: p -- (m) [A,x0,FWHM,n,c0,c1] x -- (n) ndarray of coordinate positions Outputs: f -- (n) ndarray of function values at positions x """ bg0=p[4] bg1=p[5] f=_pvoigt1d_no_bg(p[:4],x)+bg0+bg1*x return f #### 1-D Split Psuedo Voigt Functions def _split_pvoigt1d_no_bg(p,x): """ Required Arguments: p -- (m) [A,x0,FWHM-,FWHM+,n-,n+] x -- (n) ndarray of coordinate positions Outputs: f -- (n) ndarray of function values at positions x """ A=p[0] x0=p[1] f=np.zeros(x.shape[0]) #Define halves, using gthanorequal and lthan, choice is arbitrary xr=x>=x0 xl=x<x0 #+ r=np.where(xr)[0] f[r]=A*_unit_pvoigt1d(p[[1,3,5]],x[r]) #- l=np.where(xl)[0] f[l]=A*_unit_pvoigt1d(p[[1,2,4]],x[l]) return f def split_pvoigt1d(p,x): """ Required Arguments: p -- (m) [A,x0,FWHM-,FWHM+,n-,n+,c0,c1] x -- (n) ndarray of coordinate positions Outputs: f -- (n) ndarray of function values at positions x """ bg0=p[6] bg1=p[7] f=_split_pvoigt1d_no_bg(p[:6],x)+bg0+bg1*x return f #### Tanh Step Down def tanh_stepdown_nobg(p,x): """ Required Arguments: p -- (m) [A,x0,w] x -- (n) ndarray of coordinate positions Outputs: f -- (n) ndarray of function values at positions x """ A=p[0] x0=p[1] w=p[2] f=A*(0.5*(1.-np.tanh((x-x0)/w))) return f #### 2-D Rotation Coordinate Transform def _2d_coord_transform(theta,x0,y0,x,y): xprime=np.cos(theta)*x+np.sin(theta)*y yprime=-np.sin(theta)*x+np.cos(theta)*y x0prime=np.cos(theta)*x0+np.sin(theta)*y0 y0prime=-np.sin(theta)*x0+np.cos(theta)*y0 return x0prime, y0prime, xprime, yprime #### 2-D Gaussian Function def _gaussian2d_no_bg(p,x,y): """ Required Arguments: p -- (m) [A,x0,y0,FWHMx,FWHMy] x -- (n x o) ndarray of coordinate positions for dimension 1 y -- (n x o) ndarray of coordinate positions for dimension 1 Outputs: f -- (n x 0) ndarray of function values at positions (x,y) """ A=p[0] f=A*_unit_gaussian(p[[1,3]],x)*_unit_gaussian(p[[2,4]],y) return f def _gaussian2d_rot_no_bg(p,x,y): """ Required Arguments: p -- (m) [A,x0,y0,FWHMx,FWHMy,theta] x -- (n x o) ndarray of coordinate positions for dimension 1 y -- (n x o) ndarray of coordinate positions for dimension 2 Outputs: f -- (n x o) ndarray of function values at positions (x,y) """ theta=p[5] x0prime, y0prime, xprime, yprime=_2d_coord_transform(theta,p[1],p[2],x,y) newp=copy.copy(p)#this copy was needed so original parameters set isn't changed newp[1]=x0prime newp[2]=y0prime f=_gaussian2d_no_bg(newp[:5],xprime,yprime) return f def gaussian2d_rot(p,x,y): """ Required Arguments: p -- (m) [A,x0,y0,FWHMx,FWHMy,theta,c0,c1x,c1y] x -- (n x o) ndarray of coordinate positions for dimension 1 y -- (n x o) ndarray of coordinate positions for dimension 2 Outputs: f -- (n x o) ndarray of function values at positions (x,y) """ bg0=p[6] bg1x=p[7] bg1y=p[8] f=_gaussian2d_rot_no_bg(p[:6],x,y)+(bg0+bg1x*x+bg1y*y) return f def gaussian2d(p,x,y): """ Required Arguments: p -- (m) [A,x0,y0,FWHMx,FWHMy,c0,c1x,c1y] x -- (n x o) ndarray of coordinate positions for dimension 1 y -- (n x o) ndarray of coordinate positions for dimension 2 Outputs: f -- (n x o) ndarray of function values at positions (x,y) """ bg0=p[5] bg1x=p[6] bg1y=p[7] f=_gaussian2d_no_bg(p[:5],x,y)+(bg0+bg1x*x+bg1y*y) return f #### 2-D Split Psuedo Voigt Function def _split_pvoigt2d_no_bg(p,x,y): """ Required Arguments: p -- (m) [A,x0,y0,FWHMx-,FWHMx+,FWHMy-,FWHMy+,nx-,nx+,ny-,ny+] x -- (n x o) ndarray of coordinate positions for dimension 1 y -- (n x o) ndarray of coordinate positions for dimension 2 Outputs: f -- (n x o) ndarray of function values at positions (x,y) """ A=p[0] x0=p[1] y0=p[2] f=np.zeros([x.shape[0],x.shape[1]]) #Define quadrants, using gthanorequal and lthan, choice is arbitrary xr=x>=x0 xl=x<x0 yr=y>=y0 yl=y<y0 #++ q1=np.where(xr & yr) f[q1]=A*_unit_pvoigt1d(p[[1,4,8]],x[q1])*_unit_pvoigt1d(p[[2,6,10]],y[q1]) #+- q2=np.where(xr & yl) f[q2]=A*_unit_pvoigt1d(p[[1,4,8]],x[q2])*_unit_pvoigt1d(p[[2,5,9]],y[q2]) #-+ q3=np.where(xl & yr) f[q3]=A*_unit_pvoigt1d(p[[1,3,7]],x[q3])*_unit_pvoigt1d(p[[2,6,10]],y[q3]) #-- q4=np.where(xl & yl) f[q4]=A*_unit_pvoigt1d(p[[1,3,7]],x[q4])*_unit_pvoigt1d(p[[2,5,9]],y[q4]) return f def _split_pvoigt2d_rot_no_bg(p,x,y): """ Required Arguments: p -- (m) [A,x0,y0,FWHMx-,FWHMx+,FWHMy-,FWHMy+,nx-,nx+,ny-,ny+,theta] x -- (n x o) ndarray of coordinate positions for dimension 1 y -- (n x o) ndarray of coordinate positions for dimension 2 Outputs: f -- (n x o) ndarray of function values at positions (x,y) """ theta=p[11] x0prime, y0prime, xprime, yprime=_2d_coord_transform(theta,p[1],p[2],x,y) newp=copy.copy(p)#this copy was needed so original parameters set isn't changed newp[1]=x0prime newp[2]=y0prime f=_split_pvoigt2d_no_bg(newp[:11],xprime,yprime) return f def split_pvoigt2d_rot(p,x,y): """ Required Arguments: p -- (m) [A,x0,y0,FWHMx-,FWHMx+,FWHMy-,FWHMy+,nx-,nx+,ny-,ny+,theta,c0,c1x,c1y] x -- (n x o) ndarray of coordinate positions for dimension 1 y -- (n x o) ndarray of coordinate positions for dimension 2 Outputs: f -- (n x o) ndarray of function values at positions (x,y) """ bg0=p[12] bg1x=p[13] bg1y=p[14] f=_split_pvoigt2d_rot_no_bg(p[:12],x,y)+(bg0+bg1x*x+bg1y*y) return f #### 3-D Gaussian Function def _gaussian3d_no_bg(p,x,y,z): """ Required Arguments: p -- (m) [A,x0,y0,z0,FWHMx,FWHMy,FWHMz] x -- (n x o x q) ndarray of coordinate positions for dimension 1 y -- (n x o x q) ndarray of coordinate positions for dimension 2 y -- (z x o x q) ndarray of coordinate positions for dimension 3 Outputs: f -- (n x o x q) ndarray of function values at positions (x,y) """ A=p[0] f=A*_unit_gaussian(p[[1,4]],x)*_unit_gaussian(p[[2,5]],y)*_unit_gaussian(p[[3,6]],z) return f def gaussian3d(p,x,y,z): """ Required Arguments: p -- (m) [A,x0,y0,z0,FWHMx,FWHMy,FWHMz,c0,c1x,c1y,c1z] x -- (n x o x q) ndarray of coordinate positions for dimension 1 y -- (n x o x q) ndarray of coordinate positions for dimension 2 y -- (z x o x q) ndarray of coordinate positions for dimension 3 Outputs: f -- (n x o x q) ndarray of function values at positions (x,y,z) """ bg0=p[7] bg1x=p[8] bg1y=p[9] bg1z=p[10] f=_gaussian3d_no_bg(p[:5],x,y)+(bg0+bg1x*x+bg1y*y+bg1z*z) return f def _mpeak_1d_no_bg(p,x,pktype,num_pks): """ Required Arguments: p -- (m x u) list of peak parameters for number of peaks (m is the number of parameters per peak ("gaussian" and "lorentzian" - 3, "pvoigt" - 4, "split_pvoigt" - 5) x -- (n) ndarray of coordinate positions for dimension 1 pktype -- string, type of analytic function that will be used to fit the data, current options are "gaussian","lorentzian","pvoigt" (psuedo voigt), and "split_pvoigt" (split psuedo voigt) num_pks -- integer 'u' indicating the number of pks, must match length of p Outputs: f -- (n) ndarray of function values at positions (x) """ f=np.zeros(len(x)) if pktype == 'gaussian' or pktype == 'lorentzian': p_fit=np.reshape(p[:3*num_pks],[num_pks,3]) elif pktype == 'pvoigt': p_fit=np.reshape(p[:4*num_pks],[num_pks,4]) elif pktype == 'split_pvoigt': p_fit=np.reshape(p[:6*num_pks],[num_pks,6]) for ii in np.arange(num_pks): if pktype == 'gaussian': f=f+_gaussian1d_no_bg(p_fit[ii],x) elif pktype == 'lorentzian': f=f+_lorentzian1d_no_bg(p_fit[ii],x) elif pktype == 'pvoigt': f=f+_pvoigt1d_no_bg(p_fit[ii],x) elif pktype == 'split_pvoigt': f=f+_split_pvoigt1d_no_bg(p_fit[ii],x) return f def mpeak_1d(p,x,pktype,num_pks,bgtype=None): """ Required Arguments: p -- (m x u) list of peak parameters for number of peaks (m is the number of parameters per peak ("gaussian" and "lorentzian" - 3, "pvoigt" - 4, "split_pvoigt" - 5) x -- (n) ndarray of coordinate positions for dimension 1 pktype -- string, type of analytic function that will be used to fit the data, current options are "gaussian","lorentzian","pvoigt" (psuedo voigt), and "split_pvoigt" (split psuedo voigt) num_pks -- integer 'u' indicating the number of pks, must match length of p pktype -- string, background functions, available options are "constant", "linear", and "quadratic" Outputs: f -- (n) ndarray of function values at positions (x) """ f=_mpeak_1d_no_bg(p,x,pktype,num_pks) if bgtype=='linear': f=f+p[-2]+p[-1]*x #c0=p[-2], c1=p[-1] elif bgtype=='constant': f=f+p[-1] #c0=p[-1] elif bgtype=='quadratic': f=f+p[-3]+p[-2]*x+p[-1]*x**2 #c0=p[-3], c1=p[-2], c2=p[-1], return f ``` #### File: hexrd/hexrd/imageutil.py ```python import numpy as np from scipy import signal, ndimage from hexrd import convolution def fast_snip1d(y, w=4, numiter=2): """ """ bkg = np.zeros_like(y) zfull = np.log(np.log(np.sqrt(y + 1.) + 1.) + 1.) for k, z in enumerate(zfull): b = z for i in range(numiter): for p in range(w, 0, -1): kernel = np.zeros(p*2 + 1) kernel[0] = 0.5 kernel[-1] = 0.5 b = np.minimum(b, signal.fft (z, kernel, mode='same')) z = b bkg[k, :] = (np.exp(np.exp(b) - 1.) - 1.)**2 - 1. return bkg def snip1d(y, w=4, numiter=2, threshold=0): """ Return SNIP-estimated baseline-background for given spectrum y. !!!: threshold values get marked as NaN in convolution """ mask = y <= threshold zfull = np.log(np.log(np.sqrt(y + 1) + 1) + 1) bkg = np.zeros_like(zfull) for k, z in enumerate(zfull): if np.all(mask[k]): bkg[k, :] = np.nan else: b = z for i in range(numiter): for p in range(w, 0, -1): kernel = np.zeros(p*2 + 1) kernel[0] = kernel[-1] = 1./2. b = np.minimum( b, convolution.convolve( z, kernel, boundary='extend', mask=mask[k] ) ) z = b bkg[k, :] = (np.exp(np.exp(b) - 1) - 1)**2 - 1 nan_idx = np.isnan(bkg) bkg[nan_idx] = threshold return bkg def snip1d_quad(y, w=4, numiter=2): """Return SNIP-estimated baseline-background for given spectrum y. Adds a quadratic kernel convolution in parallel with the linear kernel.""" convolve1d = ndimage.convolve1d kernels = [] for p in range(w, 1, -2): N = p * 2 + 1 # linear kernel kern1 = np.zeros(N) kern1[0] = kern1[-1] = 1./2. # quadratic kernel kern2 = np.zeros(N) kern2[0] = kern2[-1] = -1./6. kern2[p/2] = kern2[3*p/2] = 4./6. kernels.append([kern1, kern2]) z = b = np.log(np.log(y + 1) + 1) for i in range(numiter): for (kern1, kern2) in zip(kernels): c = np.maximum(convolve1d(z, kern1, mode='nearest'), convolve1d(z, kern2, mode='nearest')) b = np.minimum(b, c) z = b return np.exp(np.exp(b) - 1) - 1 def snip2d(y, w=4, numiter=2, order=1): """ Return estimate of 2D-array background by "clipping" peak-like structures. 2D adaptation of the peak-clipping component of the SNIP algorithm. Parameters ---------- y : 2-D input array w : integer (default 4) kernel size (maximum kernel extent actually = 2 * w * order + 1) numiter : integer (default 2) number of iterations order : integer (default 1) maximum order of filter kernel, either 1 (linear) or 2 (quadratic) Returns ------- out : 2-D array with SNIP-estimated background of y References!!! ----- [1] <NAME> et al, "SNIP, A statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications," Nucl. Instr. and Meth. B 34, 396 (1988). [2] <NAME> et al., "Background elimination methods for multidimensional coincidence gamma-ray spectra," Nucl. Instr. and Meth. A 401, 113 (1997). """ maximum, minimum = np.fmax, np.fmin # create list of kernels kernels = [] for p in range(w, 0, -1): # decrement window starting from w N = 2 * p * order + 1 # size of filter kernels p1 = order * p # linear filter kernel kern1 = np.zeros((N, N)) # initialize a kernel with all zeros xx, yy = np.indices(kern1.shape) # x-y indices of kernel points ij = np.round( np.hypot(xx - p1, yy - p1) ) == p1 # select circular shape kern1[ij] = 1 / ij.sum() # normalize so sum of kernel elements is 1 kernels.append([kern1]) if order >= 2: # add quadratic filter kernel p2 = p1 // 2 kern2 = np.zeros_like(kern1) radii, norms = (p2, 2 * p2), (4/3, -1/3) for radius, norm in zip(radii, norms): ij = np.round(np.hypot(xx - p1, yy - p1)) == radius kern2[ij] = norm / ij.sum() kernels[-1].append(kern2) # convolve kernels with input array z = b = np.log(np.log(y + 1) + 1) # perform convolutions in logspace for i in range(numiter): for kk in kernels: if order > 1: c = maximum(ndimage.convolve(z, kk[0], mode='nearest'), ndimage.convolve(z, kk[1], mode='nearest')) else: c = ndimage.convolve(z, kk[0], mode='nearest') b = minimum(b, c) z = b return np.exp(np.exp(b) - 1) - 1 ``` #### File: hexrd/tests/test_find_orientations.py ```python import os import logging import sys from pathlib import Path import numpy as np import pytest import coloredlogs from hexrd.findorientations import find_orientations, generate_eta_ome_maps from hexrd import config from hexrd.crystallography import PlaneData import find_orientations_testing as test_utils root = logging.getLogger() root.setLevel(logging.DEBUG) handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.INFO) formatter = coloredlogs.ColoredFormatter( '%(asctime)s,%(msecs)03d - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) root.addHandler(handler) @pytest.fixture def example_repo_path(): if 'HEXRD_EXAMPLE_REPO_PATH' not in os.environ: pytest.fail('Environment varable HEXRD_EXAMPLE_REPO_PATH not set!') repo_path = os.environ['HEXRD_EXAMPLE_REPO_PATH'] return Path(repo_path) @pytest.fixture def example_repo_include_path(example_repo_path): return example_repo_path / 'NIST_ruby' / 'multiruby_dexelas' / 'include' @pytest.fixture def example_repo_results_path(example_repo_path): return example_repo_path / 'NIST_ruby' / 'multiruby_dexelas' / 'results' @pytest.fixture def example_repo_config_path(example_repo_include_path): return example_repo_include_path / 'mruby_config_composite.yml' @pytest.fixture def test_config(example_repo_config_path, example_repo_include_path): conf = config.open(example_repo_config_path)[0] conf.working_dir = str(example_repo_include_path) return conf @pytest.fixture def reference_eta_ome_maps(example_repo_results_path): filename = 'results_mruby_composite_hexrd06_py27_ruby_eta-ome_maps.npz' return example_repo_results_path / filename @pytest.fixture def example_repo_config_with_eta_ome_maps(test_config, reference_eta_ome_maps): # Set eta omega maps file cfg = test_config._cfg.copy() results_path = str(Path('../results') / reference_eta_ome_maps.name) cfg['find_orientations']['orientation_maps']['file'] = results_path patch_config = config.root.RootConfig(cfg) return patch_config @pytest.fixture def reference_orientations_path(example_repo_results_path): filename = \ 'accepted_orientations_results_mruby_composite_hexrd06_py27_ruby.dat' return example_repo_results_path / filename @pytest.fixture def reference_orientations(reference_orientations_path): return np.loadtxt(reference_orientations_path, ndmin=2) def plane_data(plane_data): args = np.array(plane_data.getParams())[:4] hkls = plane_data.hkls return PlaneData(hkls, *args) def to_eomap(eta_ome_maps): return test_utils.EOMap( np.array(eta_ome_maps.dataStore), eta_ome_maps.etas, eta_ome_maps.etaEdges, eta_ome_maps.omegas, eta_ome_maps.omeEdges, eta_ome_maps.iHKLList, plane_data(eta_ome_maps.planeData) ) def test_generate_eta_ome_maps(example_repo_include_path, test_config, reference_eta_ome_maps): os.chdir(example_repo_include_path) eta_ome_maps = generate_eta_ome_maps(test_config, save=False) eta_ome_maps = to_eomap(eta_ome_maps) expected = test_utils.load(reference_eta_ome_maps) comparison = test_utils.Comparison(expected, eta_ome_maps) assert comparison.compare() def test_find_orientations(example_repo_include_path, example_repo_config_with_eta_ome_maps, reference_orientations): os.chdir(example_repo_include_path) results = find_orientations( example_repo_config_with_eta_ome_maps ) orientations = results['qbar'] try: test_utils.compare_quaternion_lists(orientations.T, reference_orientations) except RuntimeError as err: pytest.fail(str(err)) ```
{ "source": "johnkittelman/pypow", "score": 3 }
#### File: pypow/thermodynamics/Cylinder_Geometry.py ```python import numpy as np from matplotlib import pyplot class Cylinder_Geometry: """ The geometry of the cylnder is a function of the given variables The angle theta has a resolution of 1/10th of a degree volumes are in cubic centimeters and lengths are in mm by convention""" def __init__(self,compression_ratio = 12.75 ,bore=9.5,stroke=6.34,tdc_volume=0.0,swept_volume=449.9, connecting_rod_length=15.0,connecting_rod_ratio=3.388,crank_angle=np.arange(0,720,0.1)): """This init function converts all the base geometeries into arrays using numpy.array(), this is done #for speed""" if compression_ratio <0 or bore < 0 or stroke < 0 or tdc_volume < 0 or swept_volume < 0 or connecting_rod_length < 0: raise ValueError('Inputs must be postive') self.compression_ratio=compression_ratio self.bore=np.array(bore) self.stroke=np.array(stroke) self.tdc_volume=np.array(tdc_volume) self.swept_volume=np.array(swept_volume) self.crank_radius=np.array(stroke/2.0) self.connecting_rod_length=np.array(connecting_rod_length) self.crank_angle=np.array(crank_angle) self.connectrod_crankrad= np.array(connecting_rod_length/(stroke*0.5)) self.connecting_rod_ratio=np.array(connecting_rod_ratio) def cylinder_volume_func(self): '''This calcualates the cylinder volume given the function outlined in heywoods book on page 43, The default caluation is to 1/10th of a degree, the resolution can change by change by changing the Crank_angle numpy array''' theta_c = np.deg2rad(self.crank_angle) a=self.crank_radius l=self.connecting_rod_length b=self.bore v_c=self.tdc_volume c=Cylinder_Geometry() if v_c == 0: v_c = c.tdc_volume_calc() cylinder_volume= np.arange(0,len(theta_c)) cylinder_volume = [] for i,theta in enumerate(theta_c): s=(a * np.cos(theta)) + (np.sqrt(l ** 2 - (a ** 2) * (np.sin(theta)) ** 2)) cylinder_volume.append((v_c+((np.pi*(b**2))/4.0)*(l+a-s))) return cylinder_volume def areaCylinder(self): # surface area of cylinder at instant C=Cylinder_Geometry() piston_pos= C.piston_position(self.crank_angle) piston_area = np.pi * (self.bore ** 2) * 0.25 wall_area = np.pi * self.bore * self.stroke * (1 - piston_pos) return wall_area + (piston_area * 2) def tdc_volume_calc(self): ''' This calculates the tdc volume using the compression ratio and the swept volume the equation for this can be found in heywoods books on page 44''' tdc_volume=self.swept_volume/(self.compression_ratio-1) return tdc_volume def compression_ratio(self): ''' compression ration can be found if given swept volume and tdc volume''' compression_ratio= (self.tdc_volume+self.swept_volume)/self.tdc_volume return compression_ratio def piston_velocity(self,n): '''this function is used to define both the average velocity of the piston aswell as the actual velocity of the piston''' theta_c = np.deg2rad(self.crank_angle) ave_pist_velocity=2*self.stroke*n actual_pist_velocity= ave_pist_velocity*(np.pi*0.5*np.sin(theta_c))*(1+(np.cos(theta_c)/np.sqrt(self.connectrod_crankrad**2-(np.sin(theta_c))))) return ave_pist_velocity, actual_pist_velocity def piston_position(self, crank_angle): """ Relative position of the piston, =1 at TDC and =0 at BDC, regarding to the crank angle in degres. """ # Angle in radians radangle = np.radians(crank_angle) # Ratio of the crank radius on the connecting rod length ratio = 1/self.connecting_rod_ratio piston_pos=1-0.5*((1-np.cos(radangle)) + ratio*(1-np.sqrt(1-pow(ratio*np.sin(radangle),2)))) return piston_pos if __name__=="__main__": c=Cylinder_Geometry() tdcv= c.cylinder_volume_func() print (tdcv) #print (len(tdcv)) #print (np.array2string(tdcv)) ```
{ "source": "johnklee/algprac", "score": 4 }
#### File: game_theory/easy/misere-nim-1.py ```python r''' https://www.hackerrank.com/challenges/misere-nim-1/problem ''' import math import os import random import re import sys def winer(rst): if rst: return 'First' else: return 'Second' # Complete the misereNim function below. def misereNim(s): # In a single pile, if more than one stones exist then first player will # always win by leaving the last stone for second player to pick up if len(s) == 1: return winer(s[0] > 1) totalStones = 0 xorValue = 0 for i in range(0, len(s)): totalStones += s[i] xorValue ^= s[i] r''' If sum of all stones equals the total piles, all piles have a single (1) stone. For even number of piles, first player will always win. ''' if totalStones == len(s): return winer(totalStones % 2 == 0) r''' For all other cases, the xor value determines winner. If xor value = 0, then second player will always win as all piles (stones) can be paired. ''' print('xorValue={}'.format(xorValue)) return winer(xorValue > 0) print("{}".format(misereNim([2, 1, 3]))) ``` #### File: graph/medium/jeanies_route.py ```python r''' https://www.hackerrank.com/challenges/jeanies-route/problem ''' import os import sys # # Complete the jeanisRoute function below. # def jeanisRoute(n, clist, roads): r''' @param n(list): Number of city @param clist(list): List of city need to visit @param roads(list): List of roads to connect each city ''' qdict = {} # Quick path: with key as tuple(src, dest); # value as cost traveling from source city to # destination city cdict = {} # Connecting dict for s, d, w in roads: qdict[(s, d)] = w qdict[(d, s)] = w if s in cdict: cdict[s].append(d) else: cdict[s] = [d] if d in cdict: cdict[d].append(s) else: cdict[d] = [s] # Fill-up qdict for i in range(1, n+1): if i not in clist: continue for j in range(i+1, n+1): if (i, j) not in qdict: gcs = sys.maxsize gnc = None for nc in cdict[i]: if (nc, j) in qdict: cs = qdict[(nc, j)] #break else: cs = lookUp(i, nc, j, cdict, qdict) #print('\tGot {}->{}={} (from={})'.format(nc, j, cs, i)) if cs < gcs: gcs = cs gnc = nc gcs += qdict[(i, gnc)] qdict[(i, j)] = gcs qdict[(j, i)] = gcs #print('Got {}->{}={}!'.format(i, j, gcs)) # Look up best search path min_d = sys.maxsize for nc in clist: tmp_clist = clist[:] tmp_clist.remove(nc) d = visit_cts(nc, tmp_clist, qdict) if d < min_d: min_d = d print("Got minimum distance={} starting from {}!".format(min_d, nc)) return min_d def lookUp(frm, src, dst, cdict, qdict): gcs = sys.maxsize gnc = None for nc in cdict[src]: if nc == frm: continue if nc == dst: return qdict[(src, nc)] elif (nc, dst) in qdict: return qdict[(src, nc)] + qdict[(nc, dst)] else: cs = lookUp(src, nc, dst, cdict, qdict) if cs < gcs: gcs = cs gnc = nc if gcs != sys.maxsize: gcs += qdict[(src, nc)] qdict[(src, dst)] = gcs qdict[(dst, src)] = gcs gcs += qdict[(src, nc)] return gcs else: return gcs def visit_cts(sc, clist, qdict): r''' Visit all cities in <clist> with starting city as <sc> ''' if len(clist) == 1: return qdict[(sc, clist[0])] else: min_d = sys.maxsize min_nc = None for nc in clist: tmp_clist = clist[:] tmp_clist.remove(nc) d = visit_cts(nc, tmp_clist, qdict) if d < min_d: min_d = d min_nc = nc return qdict[(sc, min_nc)] + min_d n = 5 clist = [1, 3, 4] roads = [ (1, 2, 1), (2, 3, 2), (2, 4, 2), (3, 5, 3) ] ''' testing data ''' def read_tc(tn): if __file__.startswith('./'): script_name = __file__[2:] else: script_name = __file__ tc_fname = "{}.t{}".format(script_name.split('.')[0], tn) with open(tc_fname) as fh: n, k = fh.readline().split() n = int(n) k = int(k) clist = list(map(int, fh.readline().strip().split())) roads = [] for i in range(n-1): roads.append(list(map(int, fh.readline().rstrip().split()))) return (n, clist, roads) min_d = jeanisRoute(n, clist, roads) from pprint import pprint pprint(min_d) ``` #### File: graph/medium/journey-to-the-moon.py ```python r''' https://www.hackerrank.com/challenges/journey-to-the-moon/problem ''' import math import os import random import re import sys class Node: def __init__(self, v): self.v = v self.neighbors = set() self.visit = False def addN(self, n): if n not in self.neighbors: self.neighbors.add(n) n.addN(self) def __hash__(self): return hash(self.v) def __eq__(self, other): return self.__class__ == other.__class__ and self.v == other.v def n(self): for n in self.neighbors: yield n def dfs(self): from collections import deque root = self root.visit = True nlist = deque() nlist.append(root) vlist = [] while len(nlist) > 0: node = nlist.popleft() vlist.append(node.v) for n in node.n(): if not n.visit: nlist.append(n) n.visit = True return vlist # Complete the journeyToMoon function below. def journeyToMoon(n, astronaut): ndict = {} cty_list = [] # Create graph for a, b in astronaut: if a not in ndict: ndict[a] = Node(a) if b not in ndict: ndict[b] = Node(b) ndict[a].addN(ndict[b]) # Search disjoin set for node in ndict.values(): if not node.visit: cty_list.append(node.dfs()) print('Group-{}: {}'.format(node.v, cty_list[-1])) # Other distinct countury for i in range(n): if i not in ndict: cty_list.append(set([i])) print('Total {} unique countries...{}'.format(len(cty_list), cty_list)) # Calculate unique pairs if len(cty_list) == 1: return 0 elif len(cty_list) == 2: return len(cty_list[0]) * len(cty_list[1]) else: cty_len_list = map(len, cty_list) psum = cty_len_list[0] * cty_len_list[1] nsum = cty_len_list[0] + cty_len_list[1] for i in range(2, len(cty_len_list)): psum += nsum * cty_len_list[i] nsum += cty_len_list[i] return psum #print("{}".format(journeyToMoon(5, [(0, 1), (2, 3), (0, 4)]))) #print("{}".format(journeyToMoon(4, [(0, 2)]))) import unittest class FAT(unittest.TestCase): def setUp(self): pass def test_01(self): tdatas = [ (5, [(0, 1), (2, 3), (0, 4)], 6), (4, [(0, 2)], 5) ] for n, astronaut, a in tdatas: r = journeyToMoon(n, astronaut) self.assertEqual(a, r, 'Expect={}; Real={}'.format(a, r)) def test_02(self): tid = [1] tdatas = [] for id in tid: with open('journey-to-the-moon.t{}'.format(id), 'r') as fh: na, pn = fh.readline().strip().split(' ') astronaut = [] for i in range(int(pn)): astronaut.append(map(int, fh.readline().split(' '))) with open('journey-to-the-moon.a{}'.format(id), 'r') as fh2: tdatas.append((int(na), astronaut, int(fh2.readline()))) for n, astronaut, a in tdatas: r = journeyToMoon(n, astronaut) self.assertEqual(a, r, 'Expect={}; Real={}\n{}'.format(a, r, astronaut)) ``` #### File: greedy/easy/luck_balance.py ```python import math import os import random import re import sys r''' https://www.hackerrank.com/challenges/luck-balance/problem ''' # Complete the luckBalance function below. def luckBalance(n, k, contests): luck_sum = 0 important_game_luck_list = [] for l, t in contests: if t == 0: luck_sum += l else: important_game_luck_list.append(l) # Sorting in descending order important_game_luck_list = sorted(important_game_luck_list, reverse=True) # Add up all luck in losing game for i in range(min(k, len(important_game_luck_list))): luck_sum += important_game_luck_list[i] # Minus back all luck in winning game if k < len(important_game_luck_list): for i in important_game_luck_list[k:]: luck_sum -= i return luck_sum import unittest class FAT(unittest.TestCase): def setUp(self): pass def test_01(self): self.assertEqual(luckBalance(3, 2, [(5, 1), (1, 1), (4, 0)]), 10) self.assertEqual(luckBalance(3, 1, [(5, 1), (1, 1), (4, 0)]), 8) def test_02(self): real = luckBalance(6, 3, [(5, 1), (2, 1), (1, 1), (8, 1), (10, 0), (5, 0)]) self.assertEqual(real, 29, 'Expect:29; Real:{}'.format(real)) ``` #### File: greedy/easy/marcs-cakewalk.py ```python r''' https://www.hackerrank.com/challenges/marcs-cakewalk/problem ''' import math import os import random import re import sys # Complete the marcsCakewalk function below. def marcsCakewalk(calorie): sorted_calorie = sorted(calorie, reverse=True) sum_miles = 0 for i in range(len(sorted_calorie)): sum_miles += math.pow(2, i) * sorted_calorie[i] return int(sum_miles) #print("{}".format(marcsCakewalk([1, 3, 2]))) #print("{}".format(marcsCakewalk([5, 10, 7]))) import unittest class FAT(unittest.TestCase): def setUp(self): pass def test_01(self): tdatas = [ ([1, 3, 2], 11), ([5, 10, 7], 44) ] for calorie, a in tdatas: r = marcsCakewalk(calorie) self.assertEqual(a, r, 'Expect={}; Real={}'.format(a, r)) ``` #### File: greedy/easy/maximum-perimeter-triangle.py ```python r''' https://www.hackerrank.com/challenges/maximum-perimeter-triangle/problem ''' import math import os import random import re import sys # Complete the maximumPerimeterTriangle function below. def maximumPerimeterTriangle(sticks): sideSet = set() sideDict = {} mp = 0 mp_sides = [] # Collect data and check Equilateral for s in sticks: sideSet.add(s) if s in sideDict: if sideDict[s] + 1 >= 3 and s * 3 > mp: mp = s * 3 mp_sides = [s, s, s] else: sideDict[s] = sideDict[s] + 1 else: sideDict[s] = 1 sideSet = sorted(list(sideSet)) # Check Isosceles for s, c in sideDict.items(): if c >= 2: for i in range(sideSet.index(s), -1, -1): if sideSet[i] == s: continue else: c_mp = (s * 2 + sideSet[i]) if c_mp > mp: mp = c_mp mp_sides = [ sideSet[i], s, s] break # Check Scalene sides = recvMP(sideSet, [], len(sideSet) - 1, mp) if sides: sides = sorted(sides) mp = sum(sides) mp_sides = sides #mp_sides = map(str, mp_sides) if mp > 0: return mp_sides else: return [-1] def recvMP(sideSet, sides, i, mp): if i < 0: return None else: if len(sides) == 2: for j in range(i, -1, -1): if abs(sides[1] - sides[0]) >= sideSet[j]: return None else: if sum(sides) + sideSet[j] > mp: sides.append(sideSet[j]) return sides else: return None return None else: for j in range(i, 0, -1): nsides = [] nsides.extend(sides) nsides.append(sideSet[j]) usides = recvMP(sideSet, nsides, j - 1, mp) if usides: return usides return None print("{}".format(maximumPerimeterTriangle([1, 1, 1, 3, 3]))) print("{}".format(maximumPerimeterTriangle([1, 2, 3]))) print("{}".format(maximumPerimeterTriangle([1, 1, 1, 2, 3, 5]))) print("{}".format(maximumPerimeterTriangle([1, 1, 1, 3, 4, 5]))) ``` #### File: implementation/medium/climbing-the-leaderboard.py ```python r''' https://www.hackerrank.com/challenges/climbing-the-leaderboard/problem ''' import math import os import random import re import sys # Complete the climbingLeaderboard function below. def climbingLeaderboard_v1(scores, alice): results = [] pv = scores[0] ranks = [pv] for i in range(1, len(scores)): cv = scores[i] if cv != pv: ranks.append(cv) pv = cv pi = len(ranks) for s in alice: if s < ranks[-1]: results.append(len(ranks) + 1) elif s >= ranks[0]: results.append(1) else: for i in range(1, len(ranks)): rs = ranks[i] if rs == s: results.append(i+1) pi = i break elif rs > s: continue else: # rs < s results.append(i+1) break return tuple(results) def climbingLeaderboard(scores, alice): print("scores={}".format(scores)) print("alice={}".format(alice)) results = [] # Look for start pi = 1 ii = None pv = scores[0] for i in xrange(1, len(scores)): cv = scores[i] if cv > alice[0]: if pv != cv: pv = cv pi += 1 continue elif cv <= alice[0]: if pv != cv: pv = cv pi += 1 ii = i break if ii is None: ii = len(scores) - 1 if alice[0] < scores[-1]: pi += 1 results.append(pi) print('{} @ rank {}...(i={},{})'.format(alice[0], pi, ii, scores[ii])) ai = 1 while pi > 1 and ai < len(alice): for i in xrange(ii, -1, -1): cv = scores[i] if cv < alice[ai]: if pv != cv: pv = cv pi -= 1 continue elif cv >= alice[ai]: if pv != cv: pv = cv pi -= 1 print('{} @ rank {}...(i={},{})'.format(alice[ai], pi, i, cv)) ii = i ai += 1 results.append(pi) break print("i={}; pi={}".format(i, pi)) if i == 0 and alice[ai] >= scores[0]: results.append(1) break return results print("{}".format(climbingLeaderboard([100, 50, 40, 10, 5], [1, 20, 90, 90, 110]))) import unittest class FAT(unittest.TestCase): def setUp(self): pass def test_01(self): tdatas = [ ([100, 100, 50, 40, 40, 20, 10], [5, 25, 50, 120], (6, 4, 2, 1)), ([100, 50, 40, 10, 5], [1, 20, 90, 110], (6, 4, 2, 1)), ([100, 50, 40, 10, 5], [1, 20, 90, 90, 110], (6, 4, 2, 2, 1)) ] for scores, alice, a in tdatas: r = climbingLeaderboard(scores, alice) self.assertEqual(a, r, "Expr={}; Real={}".format(a, r)) ``` #### File: implementation/medium/magic-square-forming.py ```python import math import os import random import re import sys from pprint import pprint magic_squares = [[[2, 7, 6], [9, 5, 1], [4, 3, 8]], [[2, 9, 4], [7, 5, 3], [6, 1, 8]], [[4, 3, 8], [9, 5, 1], [2, 7, 6]], [[4, 9, 2], [3, 5, 7], [8, 1, 6]], [[6, 1, 8], [7, 5, 3], [2, 9, 4]], [[6, 7, 2], [1, 5, 9], [8, 3, 4]], [[8, 1, 6], [3, 5, 7], [4, 9, 2]], [[8, 3, 4], [1, 5, 9], [6, 7, 2]]] # Complete the formingMagicSquare function below. def formingMagicSquare(s): mc = -1 for ms in magic_squares: cs = cost(ms, s) if mc < 0 or mc > cs: mc = cs return mc def cost(ms, os): c = 0 for i in range(3): for j in range(3): c += abs(ms[i][j] - os[i][j]) return c def rsum(squares, ri): return sum(squares[ri]) def csum(squares, ci): return sum(map(lambda e: e[ci], squares)) def isMagic(squares): if squares[0][0] + squares[1][1] + squares[2][2] !=15: return False if squares[0][2] + squares[1][1] + squares[2][0] !=15: return False for i in range(3): if rsum(squares, i) != 15 or csum(squares, i) != 15: return False return True def l2s(alist): squares = [] row = [] for i in range(9): row.append(alist[i]) if (i + 1) % 3 == 0: squares.append(row) row = [] return squares def coltMS(): r''' Generate magic square collection ''' magic_squares = [] all_squares_as_list = [] perm([], all_squares_as_list) for alist in all_squares_as_list: square = l2s(alist) #pprint(square) if isMagic(square): magic_squares.append(square) return magic_squares def perm(clist, tlist): if len(clist) == 9: tlist.append(clist) else: for i in range(1, 10): if i not in clist: nlist = [] nlist.extend(clist) nlist.append(i) perm(nlist, tlist) #magic_squares = coltMS() #print('Total {} magic squares being collected:'.format(len(magic_squares))) #for msquare in magic_squares: # pprint(msquare) data = [[5,3,4],[1,5,8],[6,4,2]] print("{}".format(formingMagicSquare(data))) ``` #### File: hackerrank/others/all_subset_of_a_set.py ```python import sys r''' https://www.youtube.com/watch?v=bGC2fNALbNU Reference * http://localhost/jforum/posts/list/2119.page * https://www.ptt.cc/bbs/Eng-Class/M.1334215115.A.75F.html (數學的英文唸法) ''' def find_all_subset(a_set): results = [[], a_set] for i in range(1, len(a_set)): results.extend(n_pick_m(a_set, i)) return results def n_pick_m(a_set, m): r''' n pick m will have n! / (m)!*(n-m)! @param a_Set(list): Target set with size N @param m(int): The number of M to compose the sub set @return: A list to contain all possible subset @see http://localhost/jforum/posts/list/2119.page ''' all_sub_set_list = [] #n_pick_m_recv(a_set, 0, m, [], all_sub_set_list) n_pick_m_iter(a_set, m, all_sub_set_list) return all_sub_set_list class NMIter: def __init__(self, id_list, n): self.id_list = id_list self.n = n self.m = len(id_list) self.is_done = False self.jp = self.m - 2 def __iter__(self): return self def __next__(self): if self.is_done: raise StopIteration() else: m = self.m n = self.n tv = self.id_list[:] if self.id_list[-1] + 1 < self.n: self.id_list[-1] += 1 else: self.is_done = True cjp = self.jp while cjp >= 0: if self.id_list[cjp] + 1 + (self.m - 1 - cjp) < n: self.jp = cjp self.is_done = False self.id_list[cjp] += 1 npv = self.id_list[cjp] + 1 for k in range(cjp+1, self.m): self.id_list[k] = npv npv += 1 break cjp -= 1 return tv def n_pick_m_iter(a_set, m, ct): r''' Iterative version of N pick M @param a_set(list): Set with size as N @param m(int): The number of M to compose the sub set @param ct(list): Collection to hold all subset ''' if m == 1: for e in a_set: ct.append([e]) elif m == len(a_set): ct.append(a_set) elif m < len(a_set): id_list = [] for i in range(m): id_list.append(i) jp = m - 2 nm_iter = NMIter(id_list, len(a_set)) for iv in nm_iter: ct.append([a_set[i] for i in iv]) else: #raise Exception('M is greater than N!') return def n_pick_m_recv(a_set, dep, rm, ss, ct): r''' Recursive version of N pick M @param a_set(list): Set with size as N @param dep(int): Depth of process @param rm(int): Remain element from target M @param ss(list): Current sub set @param ct(list): Collection to hold all subset ''' if rm == 0: ct.append(ss) return elif dep == len(a_set): return else: # Skip current depth n_ss = ss[:] n_pick_m_recv(a_set, dep+1, rm, n_ss, ct) # Pickup element at current depth n_ss = ss[:] n_ss.append(a_set[dep]) n_pick_m_recv(a_set, dep+1, rm-1, n_ss, ct) def main(): a_set = sys.argv[1:] print("Target set={}".format(a_set)) results = find_all_subset(a_set) print("Target set={} has {:,d} subset:".format(a_set, len(results))) for ss in sorted(results, key=lambda e:len(e)): print("{{{}}}".format(','.join(ss))) print("") if __name__ == '__main__': main() ``` #### File: search/easy/sherlock_and_array.py ```python import sys r''' https://www.hackerrank.com/challenges/sherlock-and-array/problem ''' def solve(a): # Complete this function return rsolve(a) def rsolve(a): if len(a) == 1: return 'YES' elif len(a) == 2: return 'NO' elif len(a) == 3: return 'YES' if a[0] == a[2] else 'NO' else: return _rsolve(a, len(a)/2, 0, len(a) - 1) def _rsolve(a, p, s, e): lsum = sum(a[:p]) rsum = sum(a[p+1:]) if lsum == rsum: return 'YES' elif lsum > rsum: # Move left e = p - 1 if e < s: return 'NO' m = (e + s) / 2 return _rsolve(a, m, s, e) else: # Move right s = p + 1 if s > e: return 'NO' m = (s + e) / 2 return _rsolve(a, m, s, e) print(solve([1, 2, 3])) print(solve([1, 2, 3, 3])) ``` #### File: strings/easy/two-strings.py ```python r''' https://www.hackerrank.com/challenges/two-strings/problem ''' import math import os import random import re import sys # Complete the twoStrings function below. def twoStrings_v1(s1, s2): if len(s1) == 0 or len(s2) == 0: return 'NO' cset= set() for c in s1: cset.add(c) for c in s2: cset.add(c) return 'YES' if len(s1) + len(s2) != len(cset) else 'NO' def twoStrings(s1, s2): if len(s1) >= len(s2): ls = s1 ss = s2 else: ls = s2 ss = s1 cset = set() for c in ls: cset.add(c) for c in ss: if c in cset: return 'YES' return 'NO' import unittest class FAT(unittest.TestCase): def setUp(self): pass def test_01(self): tdatas = [ ('hello', 'world', 'YES'), ('hi', 'world', 'NO') ] for s1, s2, a in tdatas: r = twoStrings(s1, s2) self.assertEqual(a, r, 'Exp={}; Real={}'.format(a, r)) ``` #### File: strings/medium/richie-rich.py ```python r''' https://www.hackerrank.com/challenges/richie-rich/problem ''' import math import os import random import re import sys # Complete the highestValuePalindrome function below. def highestValuePalindrome(s, n, k): pass ``` #### File: algprac/others/knapsack.py ```python r''' https://www.youtube.com/watch?v=xOlhR_2QCXY&index=68&list=WL&t=0s ''' kk_sol_mem = {} # key as tuple(item index, rest weight); value as solution def kk_sol(wlist, vlist, mw): r''' Solution to Knapsack problem @param wlist(list): List to hold weight of items @param vlist(list): List to hold value of items @param mw(int): Maximum weight the knapsack can stand @return List of item to hold with maximum value sum ''' global kk_sol_mem kk_sol_mem.clear() return recv_kk_sol(0, mw, wlist, vlist, []) def calc_values(slist, vlist): r''' Calculate the value sum of selsected item(s) @param slist(list): List of selection for each item @param vlist(list): List to hold value of items @return The sumed value of selected item(s) ''' vsum = 0 for i in range(len(slist)): if slist[i] > 0 : vsum += vlist[i] return vsum def recv_kk_sol(rn, rw, wlist, vlist, slist): r''' @param rn(int): Current item index @param rw(int): Rest weight the knapsack can stand @param slist(list): Selection item list ''' isol = kk_sol_mem.get((rn, rw), None) lb_sol = None if isol is not None: return isol elif rn >= len(wlist) or rw == 0: return slist elif wlist[rn] > rw: n_slist = slist[:] n_slist.append(0) lb_sol = recv_kk_sol(rn+1, rw, wlist, vlist, n_slist) else: n_slist = slist[:] n_slist.append(1) t1_sol = recv_kk_sol(rn+1, rw - wlist[rn], wlist, vlist, n_slist) n_slist = slist[:] n_slist.append(0) t2_sol = recv_kk_sol(rn+1, rw, wlist, vlist, n_slist) if calc_values(t1_sol, vlist) >= calc_values(t2_sol, vlist): lb_sol = t1_sol else: lb_sol = t2_sol kk_sol_mem[(rn, rw)] = lb_sol return lb_sol import unittest class FAT(unittest.TestCase): def test_d1(self): wlist = [1, 2, 4, 2, 5] vlist = [5, 3, 5, 3, 2] mw = 10 slist = kk_sol(wlist, vlist, mw) elist = [1, 1, 1, 1, 0] print("Selection list={}".format(''.join(map(str, slist)))) self.assertEqual(''.join(map(str, elist)), ''.join(map(str, slist)), "Something wrong") def test_d2(self): wlist = [1, 2, 4, 2, 5, 3, 2] vlist = [5, 3, 5, 3, 2, 10, 5] mw = 10 slist = kk_sol(wlist, vlist, mw) elist = [1, 1, 0, 1, 0, 1, 1] print("Selection list={} with maximum value={:,d}".format(''.join(map(str, slist)), calc_values(slist, vlist))) self.assertEqual(''.join(map(str, elist)), ''.join(map(str, slist)), "Something wrong") ```
{ "source": "johnklee/ff_crawler", "score": 2 }
#### File: Issue2/purifier/text_extractor.py ```python import sys import importlib import os import inspect from importlib import util as importlib_util from .logb import getLogger # from .pdf2text import simple_fact as pdf_sfact from .html2text import simple_fact as html_sfact from .plain2text import simple_fact as pln_sfact ################################ # Constants ################################ MODU_PATH = os.path.dirname(__file__) if os.path.dirname(__file__) else './' ''' Path of current module ''' ################################ # Class Definition ################################ class TEAgent: ERR_MSG_MTYPE_NOT_SUPPORT = 'Content type={mtype} is not supported yet!' ''' Error message for unsupported MIME''' DEFAULT_RST = {'title': '', 'text': '', 'te_suc': False} def __init__(self, ext_title=False, disable_policy=False, policy_path=None): r''' Constructor :param ext_title: True to extract title; False otherwise :param disable_policy: True to disable loading policy ''' self.logger = getLogger(os.path.basename(__file__)) self.handlers = { 'text/html': html_sfact(ext_title=ext_title), # 'application/pdf': pdf_sfact(ext_title=ext_title), 'text/plain': pln_sfact(ext_title=ext_title) } # key as Media type; value as corresponding handler if not disable_policy: if policy_path is None: policy_path = os.path.join(os.path.abspath(MODU_PATH), 'policy') self.load_policy(policy_path) def load_policy(self, policy_path, namespace=None, target_policy_names=None): r''' Loading policy stored in a given folder :param policy_path: Path of folder to store policy file :param namespace: Namespace used to control the import path :param target_policy_names: If given, only the policy module name exist in here will be loaded. :return: Number of policy file being loaded ''' if os.path.isdir(policy_path): pc = 0 for pf in list(filter(lambda f: f.endswith('.py') and f.startswith('policy'), os.listdir(policy_path))): if target_policy_names and pf.split('.')[0] not in target_policy_names: self.logger.warning('Ignore {}!'.format(pf)) continue self.logger.debug('Loading {}...'.format(pf)) try: module_name = 'purifier.policy{}.{}'.format('' if namespace is None else ".{}".format(namespace), pf.split('.')[0]) spec = importlib_util.spec_from_file_location(module_name, os.path.join(policy_path, pf)) module = importlib_util.module_from_spec(spec) spec.loader.exec_module(module) for po, pn in list(filter(lambda t: callable(t[0]) and not inspect.isclass(t[0]), list(map(lambda n: (getattr(module, n), n), dir(module))))): if hasattr(po, 'url_ptn'): self.logger.debug('\tRegister {}'.format(po.url_ptn)) po.module_name = module_name po.policy_name = pn self.handlers[po.mime].regr(po.url_ptn, po) pc += 1 except: self.logger.exception('Fail to load policy from {}!'.format(pf)) return pc else: self.logger.warn('Policy folder={} does not exist!'.format(policy_path)) return -1 def parse(self, mtype, url, content, do_ext_link=False): r''' Parse the given content to do text extraction :param mtype: Content type in string. e.g.: 'text/html'. :param url: The source URL :param content: The corresponding content. :param do_ext_link: True to extract URL link from content (default:False) :return tuple(is_success, extraction result, reason) ''' try: mtype = mtype.split(';')[0].strip() handler = self.handlers.get(mtype, None) if handler: try: extract_rst = handler(url, content, do_ext_link) except: exc_type, exc_value, exc_traceback = sys.exc_info() return (False, TEAgent.DEFAULT_RST, {'reason': handler.reason(), 'err': "{}: {}".format(exc_type, exc_value)}) if isinstance(extract_rst, dict) and 'title' not in extract_rst: extract_rst['title'] = '' if (isinstance(extract_rst, dict) and extract_rst.get('te_suc', True)) or (isinstance(extract_rst, str) and extract_rst): return (True, extract_rst, {'reason': handler.reason()}) else: return (False, extract_rst, {'reason': handler.reason(), 'err': 'Empty TE' if not handler.err_msg else handler.err_msg}) else: self.logger.info("Use default agent...") return (False, TEAgent.DEFAULT_RST, {'reason': '?', 'err': TEAgent.ERR_MSG_MTYPE_NOT_SUPPORT.format(mtype=mtype, url=url)}) except: self.logger.exception('Fail to parse content from URL={}!'.format(url)) exc_type, exc_value, exc_traceback = sys.exc_info() return (False, TEAgent.DEFAULT_RST, {'reason': '?', 'err': "{}: {}".format(exc_type, exc_value)}) ``` #### File: research/Issue2/utils.py ```python import requests as reqlib import os import re import random import time import pickle import abc import hashlib import threading from urllib.parse import urlparse from purifier import TEAgent from purifier.logb import getLogger from enum import IntEnum from typing import Tuple, List, Dict, Optional class ScraperTimeout(Exception): def __init__(self, ex): self.ex = ex def __str__(self): return f"Timeout: {self.ex}" class ScraperNot200(Exception): def __init__(self, sc): self.sc = sc def __str__(self): return f"Unexpected Status Code={self.sc}!" class UnsupportedMIME(Exception): def __init__(self, mime): self.mime = mime def __str__(self): return f"Unsupported MIME={self.mime}!" class Scraper(metaclass=abc.ABCMeta): @abc.abstractmethod def get(self, url): pass class ReqScraper(object): def __init__(self, page_cache_path="page_caches", headers={'User-Agent': 'Mozilla/5.0'}, skip_cache=False, supported_mime_set={"text/html"}): self.page_cache_path = page_cache_path if not os.path.isdir(self.page_cache_path): os.makedirs(self.page_cache_path) self.headers = headers self.logger = getLogger(os.path.basename(self.__class__.__name__)) self.skip_cache = skip_cache self.supported_mime_set = supported_mime_set def _get_cache_path(self, url): test_url_host = urlparse(url).netloc url_md5 = hashlib.md5(url.encode('utf-8')).hexdigest() cache_file_name = f"{test_url_host}_{url_md5}.txt" cache_file_path = os.path.join(self.page_cache_path, cache_file_name) return cache_file_path def _del_from_cache(self, url): cache_file_path = self._get_cache_path(url) if os.path.isfile(cache_file_path): self.logger.warning("Removing cache file={cache_file_path}...") os.remove(cache_file_path) def _get_from_cache(self, url): cache_file_path = self._get_cache_path(url) if os.path.isfile(cache_file_path): self.logger.debug(f"Return content of {url} from cache...") with open(cache_file_path, 'r', encoding='utf8') as fo: return fo.read() return None def _save2cache(self, url, html_content): cache_file_path = self._get_cache_path(url) with open(cache_file_path, 'w', encoding='utf8') as fw: fw.write(html_content) def get(self, url): if not self.skip_cache: cache_text = self._get_from_cache(url) if cache_text is not None: return cache_text self.logger.debug(f"Crawling {url}...") try: resp = reqlib.get(url, headers=self.headers, timeout=(5, 10)) if resp.ok: mime = resp.headers['content-type'].split(';')[0].strip() self.logger.debug(f"URL={url} with MIME={mime}...") if mime.lower() not in self.supported_mime_set: raise UnsupportedMIME(mime) self._save2cache(url, resp.text) return resp.text else: raise ScraperNot200(resp.status_code) except Exception as e: raise ScraperTimeout(e) class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' class ThreadState(IntEnum): STOPPED = 0 RUNNING = 1 STOPPING = 2 class CrawlAgent(object): def __init__(self, name, throttling_range=(1, 2)): self.rs = ReqScraper(page_cache_path=f"{name}_cache") self.et = TEAgent( policy_path="policy", disable_policy=True, ext_title=True ) self.logger = getLogger(os.path.basename(self.__class__.__name__)) self.throttling_range = throttling_range def obsolete_cache(self, url): self.rs._del_from_cache(url) def handle(self, url:str, skip_throttling:bool=False) -> Tuple[str, str, List[str]]: try: if skip_throttling: wait_in_sec = random.uniform(*self.throttling_range) self.logger.debug(f"throttling wait {wait_in_sec}s...") time.sleep(wait_in_sec) url_content_html = self.rs.get(url) is_succ, rst, handler = self.et.parse( "text/html", url, url_content_html, do_ext_link=True ) if is_succ: return (rst['title'], rst['text'], rst['all_links']) else: return (rst['title'], rst['text'], rst['all_links']) except ScraperNot200 as e: self.logger.warning(f"Fail to handle URL={url}: {str(e)}") return None, None, None except UnsupportedMIME as e: self.logger.warning(f"Fail to handle URL={url}: {str(e)}") return None, None, None except ScraperTimeout as e: time.sleep(2) self.logger.warning(f"Fail to handle URL={url}: {str(e)}") return None, None, None class ExplorerWorker(threading.Thread): def __init__( self, name:str, url_ptn:str, src_url:str, test_run:int=-1, page_saved_dir:Optional[str]=None): super(ExplorerWorker, self ).__init__(name = name) self.name = name self.url_ptn = url_ptn self.src_url = src_url self.test_run = test_run self.ca = CrawlAgent(name) self.pc_dict = self._get_pc_dict() ''' Processed result cache: Key as URL; value as bool (True means this URL is crawled successfully)''' self.state = ThreadState.STOPPED ''' Thread state: 0-> stopped; 1-> running; 2-> stopping''' self.logger = getLogger(os.path.basename(self.__class__.__name__)) ''' Logger object ''' self.page_saved_dir = page_saved_dir if page_saved_dir is not None else f"{self.name}_pages_output" ''' Path or directory to save dump page''' self.stop_signal = f"STOP_{self.name}" ''' Stop signal file ''' if not os.path.isdir(self.page_saved_dir): os.makedirs(self.page_saved_dir) def _get_output_page_path(self, url): url_host = urlparse(url).netloc url_md5 = hashlib.md5(url.encode('utf-8')).hexdigest() page_file_name = f"{url_host}_{url_md5}.txt" page_file_path = os.path.join(self.page_saved_dir, page_file_name) return page_file_path def _get_pc_serialized_file(self) -> str: return f"{self.name}_pc_dict.pkl" def _get_pc_dict(self) -> Dict[str, bool]: pkl_file = self._get_pc_serialized_file() if os.path.isfile(pkl_file): with open(pkl_file, 'rb') as fo: return pickle.load(fo) else: return {} def _serialized(self): pkl_file = self._get_pc_serialized_file() with open(pkl_file, 'wb') as fo: pickle.dump(self.pc_dict, fo) def run(self): self.state = ThreadState.RUNNING url_queue = [self.src_url] pc = sc = fc = oc = 0 while self.state == ThreadState.RUNNING and url_queue: if os.path.isfile(self.stop_signal): os.remove(self.stop_signal) self.logger.warning("Receive STOP signal!") break url = url_queue.pop(0) pc += 1 if url not in self.pc_dict: # New URL self.logger.debug(f"Handling URL={url}...") title, content, collected_urls = self.ca.handle(url) if content is None: self.pc_dict[url] = False fc += 1 else: if url != self.src_url: self.pc_dict[url] = True sc += 1 self.logger.info(bcolors.BOLD + f"Completed URL={url} ({len(url_queue):,d}/{pc:,d})" + bcolors.ENDC) next_level_urls = list(filter(lambda u: re.match(self.url_ptn, u) is not None and "#" not in u, collected_urls)) if next_level_urls: self.logger.debug(f"\tCollected {len(next_level_urls)} next level URL(s)") url_queue.extend(list(set(next_level_urls) - set(url_queue))) if content and "?" not in url: page_output_path = self._get_output_page_path(url) with open(page_output_path, 'w', encoding='utf8') as fw: fw.write(f"{url}\n\n") fw.write(f"{title}\n\n") fw.write(f"{content}") self.logger.debug(f"\tSaved page to {page_output_path}!") else: # Old URL if not self.pc_dict[url]: self.logger.info(f"Skip broken URL={url} in the past...") continue title, content, collected_urls = self.ca.handle(url, skip_throttling=True) if collected_urls: next_level_urls = list(filter(lambda u: re.match(self.url_ptn, u) is not None, collected_urls)) url_queue.extend(list(set(next_level_urls) - set(url_queue))) oc += 1 self.logger.info(f"URL={url} is already handled...({len(url_queue):,d}/{pc:,d})") continue if self.test_run > 0: if (sc + fc) > self.test_run: self.logger.info(f"Exceed test_run={self.test_run} and therefore stop running...") break if pc % 1000 == 0: self.logger.info(bcolors.OKBLUE + bcolors.BOLD + f"{pc} URL completed: sc={sc:,d}; fc={fc:,d}; oc={oc:,d}\n" + bcolors.ENDC) self._serialized() self.ca.obsolete_cache(self.src_url) url_queue.append(self.src_url) self.logger.warning(f"Serialized explorer result (name={self.name})...") self._serialized() self.logger.warning(f"Explorer is stopped! (name={self.name})...") self.state = ThreadState.STOPPED def stop(self): self.logger.warning(f"Stopping explorer worker (name={self.name})...") if self.state == ThreadState.RUNNING: self.state = ThreadState.STOPPING while self.state != ThreadState.STOPPED: time.sleep(1) ```
{ "source": "johnklee/fpu", "score": 3 }
#### File: fpu/examples/example1.py ```python import sys import re sys.path.insert(0, '../') # noqa from fp import * # noqa print('===== fpu package example =====\n') # Imperative programming class EmailValidation: emailPtn = re.compile("^[a-z0-9._%+-]+@[a-z0-9.-]+\\.[a-z]{2,4}$") def __init__(self): pass def logError(self, msg): print('Error message logged: {}'.format(msg)) def sendVerificationMail(self, mailAddr): print('Mail sent to {}'.format(mailAddr)) @staticmethod def validate(mailAddr): if mailAddr is None: return Result.failure("Email must not be null") elif len(mailAddr) == 0: return Result.failure("Email must not be empty") elif EmailValidation.emailPtn.match(mailAddr): return Result.success() else: return Result.failure("Email {} is invalid".format(mailAddr)) def execute(self, mailAddr): rst = self.validate(mailAddr) if isinstance(rst, Success): self.sendVerificationMail(mailAddr) else: self.logError(rst.message) emailPtn = re.compile("^[a-z0-9._%+-]+@[a-z0-9.-]+\\.[a-z]{2,4}$") # FP style implementation class EmailValidationFP: def __init__(self): self.succEft = self.sendVerificationMail self.failEft = self.logError def logError(self, msg): print('Error message logged: {}'.format(msg)) def sendVerificationMail(self, mailAddr): print('Mail sent to {}'.format(mailAddr)) def validate(self, mailAddr): return Case.match(Case.default(Result.success(mailAddr)), Case.mcase(Supplier(lambda s: s is None, mailAddr), Result.failure('Email is None')), Case.mcase(Supplier(lambda s: len(s) == 0, mailAddr), Result.failure('Email is empty')), Case.mcase(Supplier(lambda s: not emailPtn.match(s), mailAddr), Result.failure('Email {} is invalid'.format(mailAddr)))) def execute(self, mailAddr): self.validate(mailAddr).bind(self.sendVerificationMail, self.logError) emailVal1 = EmailValidation() emailVal2 = EmailValidationFP() emailVal2.execute("<EMAIL>") emailVal2.execute(None) emailVal2.execute("") emailVal2.execute("<EMAIL>") ``` #### File: tests/unit/test_flist.py ```python import unittest import sys import os import re sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../fpu'))) # noqa from fp import * # noqa from flist import * # noqa ##################### # Testing Class ##################### class GFTestCase(unittest.TestCase): r''' Test Case(s) of global function(s) from flist.py ''' def setUp(self): pass def tearDown(self): pass def test_api_reduce(self): r''' Testing API List.reduce ''' alist = fl(2, 4, 6, 8, 10) self.assertEqual(30, alist.reduce(lambda a, b: a + b)) self.assertEqual(31, alist.reduce(lambda a, b: a + b, 1)) def test_api_foldLeft(self): r''' Testing API List.foldLeft ''' alist = fl(1, 2, 3, 4, 5) self.assertEqual('012345', alist.foldLeft(0, lambda a, e: "{}{}".format(a, e))) self.assertEqual(15, alist.foldLeft(0, lambda a, e: a + e)) self.assertEqual(120.0, alist.foldLeft(1.0, lambda a, e: a * e)) def test_gapi_fl(self): r''' Testing global API:fl to create object of List ''' alist = fl(1, 2, 3) self.assertEqual('[1, 2, 3, NIL]', str(alist)) self.assertEqual(3, alist.size()) self.assertEqual(3, alist.length()) self.assertEqual(1, alist.head()) self.assertEqual('[2, 3, NIL]', str(alist.tail())) def test_gapi_concat(self): r''' Testing global API:concat to concat two list ''' list1 = fl(1, 2, 3) list2 = fl(4, 5, 6) list3 = concat(list1, list2) self.assertEqual('[1, 2, 3, 4, 5, 6, NIL]', str(list3)) def test_api_exists(self): r''' Testing List.exists ''' alist = fl(1, 2, 3) self.assertTrue(alist.exists(lambda e: e == 1)) self.assertFalse(alist.exists(lambda e: e == 5)) def test_api_drop(self): r''' Testing List.drop ''' alist = fl(1, 2, 3, 4, 5) nlist = alist.drop(3) self.assertEqual('[4, 5, NIL]', str(nlist)) def test_api_dropWhile(self): r''' Testing List.dropWhile ''' alist = fl(range(10)).reverse() # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, NIL] nlist = alist.dropWhile(lambda e: e < 5) self.assertEqual('[5, 6, 7, 8, 9, NIL]', str(nlist)) def test_api_init(self): r''' Testing List.init ''' alist = fl(range(10)).reverse() # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, NIL] nlist = alist.init() self.assertEqual('[0, 1, 2, 3, 4, 5, 6, 7, 8, NIL]', str(nlist)) def test_api_filter(self): r''' Testing List.filter ''' alist = fl(range(10)).reverse() # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, NIL] nlist = alist.filter(lambda e: e % 2 == 0) self.assertEqual('[0, 2, 4, 6, 8, NIL]', str(nlist)) def test_api_map(self): r''' Testing List.map ''' alist = fl(1, 2, 3) nlist = alist.map(lambda e: e * 2) self.assertEqual('[2, 4, 6, NIL]', str(nlist)) def test_api_flatMap(self): r''' Testing List.flatMap ''' alist = fl(1, 2, 3) nlist = alist.flatMap(lambda e: fl(e, e * 2)) self.assertEqual('[1, 2, 2, 4, 3, 6, NIL]', str(nlist)) def test_uapi_fsum(self): r''' Testing utility function fsum ''' alist = fl(range(10)) self.assertEqual(45, fsum(alist)) self.assertEqual(0, fsum(fl())) def test_uapi_fproduct(self): r''' Testing utility function fproduct ''' alist = fl(1, 2, 3) self.assertEqual(6.0, fproduct(alist)) self.assertEqual(1.0, fproduct(fl())) def test_uapi_flatten(self): r''' Testing utility function flatten ''' alist = fl() alist = alist.cons(fl(4, 5, 6)) alist = alist.cons(fl(1, 2, 3)) self.assertEqual('[[1, 2, 3, NIL], [4, 5, 6, NIL], NIL]', str(alist)) nlist = flatten(alist) self.assertEqual('[1, 2, 3, 4, 5, 6, NIL]', str(nlist)) def test_feat_forin(self): alist = fl(1, 2, 3) i = 1 for e in alist: self.assertEqual(i, e) i += 1 ```
{ "source": "johnklee/learn_dp_from_bad_smell_design", "score": 3 }
#### File: learn_dp_from_bad_smell_design/smarthome_migration/lamp_device.py ```python import device_api from log_utils import get_logger from termcolor import colored, cprint class LampControllerV1(device_api.DeviceInterface): def __init__(self, name): self.name = name self.log = get_logger(self) self.on_state = False def is_on(self): return self.on_state def turn_on(self): if not self.on_state: self.log.info('\tTurn on lamp(%s)', self.name) self.on_state = True def turn_off(self): if self.on_state: self.log.info('\tTurn off lamp(%s)', self.name) self.on_state = False class LEDLightController: def __init__(self, name): self.name = name self.log = get_logger(self) self.on_state = False def is_on(self): return self.on_state def on(self, color='green'): if not self.on_state: self.log.info('\tTurn on LED light(%s)', self.name) cprint('LED Light blinking...', color, attrs = ['blink']) self.on_state = True def off(self): if self.on_state: self.log.info('\tTurn off LED light(%s)', self.name) self.on_state = False class LEDLightControllerV2: def __init__(self, name): self.name = name self.log = get_logger(self) self._state = device_api.PowerState.OFF def is_on(self): return self._state == device_api.PowerState.ON def on(self, color='green'): if not self.is_on(): self.log.info('\tTurn on LED light(%s)', self.name) cprint('LED Light blinking...', color, attrs = ['blink']) self._state = device_api.PowerState.ON def off(self): if self.is_on(): self.log.info('\tTurn off LED light(%s)', self.name) self._state = device_api.PowerState.OFF ``` #### File: learn_dp_from_bad_smell_design/smart-pizza-store_factory-part2/taiwan_pizza_recipes.py ```python import pizza_recipes class TaiwanCheezePizza(pizza_recipes.Pizza): def prepare(self): print('Add Cheeze and bacon') self.ingredients.append('blue cheeze') self.ingredients.append('bacon') def bake(self): print('Bake in light fire for 1.5 hours') def cut(self): print('Cut in 8 pieces') self.num_piece = 8 def box(self): print('Use paper box') self.box_material = 'paper' class TaiwanGreekPizza(pizza_recipes.Pizza): def prepare(self): print('Add special spicies and beef') self.ingredients.append('special spices') self.ingredients.append('Taiwan beef') def bake(self): print('Bake in mild fire for 1 hours') def cut(self): print('Cut in 8 pieces') self.num_piece = 8 def box(self): print('Use paper box') self.box_material = 'paper' class TaiwanPepperoniPizza(pizza_recipes.Pizza): def prepare(self): print('Add pepperoni and cuttlefish') self.ingredients.append('pepperoni') self.ingredients.append('cuttlefish') def bake(self): print('Bake in strong fire for 0.8 hours') def cut(self): print('Cut in 8 pieces') self.num_piece = 8 def box(self): print('Use paper box') self.box_material = 'paper' class TaiwanVeggiePizza(pizza_recipes.Pizza): def prepare(self): print('Add pickle and crab') self.ingredients.append('pickle') self.ingredients.append('crab') def bake(self): print('Bake in light fire for 4 hours') def cut(self): print('Cut in 8 pieces') self.num_piece = 8 def box(self): print('Use paper box') self.box_material = 'paper' ``` #### File: learn_dp_from_bad_smell_design/smart-pizza-store_factory-part2/test_taiwan_pizza_store.py ```python import unittest import taiwan_pizza_factory import taiwan_pizza_recipes import pizza_stores import pytest from parameterized import parameterized, parameterized_class class TestPizzaStore(unittest.TestCase): def setUp(self): super().setUp() self.factory = taiwan_pizza_factory.TaiwanFactory() self.store = pizza_stores.PizzaStore(self.factory) @parameterized.expand([ ('cheeze', taiwan_pizza_recipes.TaiwanCheezePizza), ('greek', taiwan_pizza_recipes.TaiwanGreekPizza), ('pepper', taiwan_pizza_recipes.TaiwanPepperoniPizza), ('veg', taiwan_pizza_recipes.TaiwanVeggiePizza), ]) def test_create_pizza(self, pizza_name, pizza_clz): pizza_object = self.store.order_pizza(pizza_name) self.assertTrue(isinstance(pizza_object, pizza_clz)) def test_unknown_pizza(self): with pytest.raises(taiwan_pizza_factory.UnknownPizzaNameError) as e_info: self.store.order_pizza('unknown_pizza') ``` #### File: learn_dp_from_bad_smell_design/smart-pizza-store_factory-part3/pizza_recipes.py ```python import abc import pizza_ingredients_factory class Pizza(abc.ABC): def __init__(self, ifactory: pizza_ingredients_factory.PizzaIngredientFactory): self.ifactory = ifactory self.topping = None self.dough = None self.sauce = None self.cheese = None self.clams = None self.num_piece = -1 self.box_material = None @abc.abstractmethod def prepare(self): raise NotImplementedError @abc.abstractmethod def bake(self): raise NotImplementedError @abc.abstractmethod def cut(self): raise NotImplementedError @abc.abstractmethod def box(self): raise NotImplementedError class CheezePizza(Pizza): def prepare(self): self.cheese = self.ifactory.create_cheese() self.dough = self.ifactory.create_dough() self.sauce = self.ifactory.create_sauce() def bake(self): print('Bake in light fire for 2 hours') def cut(self): print('Cut in 6 pieces') self.num_piece = 6 def box(self): print('Use paper box') self.box_material = 'paper' class GreekPizza(Pizza): def prepare(self): print('Add special spicies and beef') self.cheese = self.ifactory.create_cheese() self.dough = self.ifactory.create_dough() self.sauce = self.ifactory.create_sauce() self.topping = self.ifactory.create_topping() def bake(self): print('Bake in mild fire for 1 hours') def cut(self): print('Cut in 8 pieces') self.num_piece = 8 def box(self): print('Use plate') self.box_material = 'plate' class PepperoniPizza(Pizza): def prepare(self): print('Add pepperoni and seafood') self.cheese = self.ifactory.create_cheese() self.dough = self.ifactory.create_dough() self.topping = self.ifactory.create_pepperoni_topping() self.clams = self.ifactory.create_clams() def bake(self): print('Bake in strong fire for 1 hours') def cut(self): print('Cut in 4 pieces') self.num_piece = 4 def box(self): print('Use plastic box') self.box_material = 'plastic' class VeggiePizza(Pizza): def prepare(self): print('Add veggie and bread') self.cheese = self.ifactory.create_cheese() self.dough = self.ifactory.create_dough() self.topping = self.ifactory.create_veggie_topping() def bake(self): print('Bake in light fire for 3 hours') def cut(self): print('Cut in 8 pieces') self.num_piece = 8 def box(self): print('Use paper box') self.box_material = 'paper' ``` #### File: learn_dp_from_bad_smell_design/smart-pizza-store_factory-part3/taiwan_pizza_ingredients_factory.py ```python import pizza_recipes import pizza_ingredients import pizza_ingredients_factory class TaiwanIngredientsFactory(pizza_ingredients_factory.PizzaIngredientFactory): def create_topping(self) -> pizza_ingredients.Topping: return pizza_ingredients.SpinachTopping() def create_dough(self) -> pizza_ingredients.Dough: return pizza_ingredients.ThinCrustDough() def create_sauce(self) -> pizza_ingredients.Sauce: return pizza_ingredients.MarinaraSauce() def create_cheese(self) -> pizza_ingredients.Cheese: return pizza_ingredients.ReggianCheese() def create_clams(self) -> pizza_ingredients.Clams: return pizza_ingredients.FreshClams() def create_oil(self) -> pizza_ingredients.Oil: return pizza_ingredients.OliveOil() ``` #### File: learn_dp_from_bad_smell_design/tea-or-coffee_template/starbuzz_coffee.py ```python from typing import List _STEP_BOIL_WATER = 'Boil some water' _STEP_GRIND_COFFEE_BEAN = 'Grind coffee bean' _STEP_MAKE_DRINK = 'Brew coffee in boiling water' _STEP_PULL_DRINK = 'Pour drink in cup' _STEP_ADD_CONDIMENT = 'Add sugar and milk' class StarBuzzCoffee: def make(self) -> List[str]: action_list = [] action_list.append(_STEP_GRIND_COFFEE_BEAN) action_list.append(_STEP_BOIL_WATER) action_list.append(_STEP_MAKE_DRINK) action_list.append(_STEP_PULL_DRINK) action_list.append(_STEP_ADD_CONDIMENT) return action_list ``` #### File: learn_dp_from_bad_smell_design/tea-or-coffee_template/starbuzz_tea.py ```python from typing import List _STEP_BOIL_WATER = 'Boil some water' _STEP_MAKE_DRINK = 'Steep tea in boiling water' _STEP_PULL_DRINK = 'Pour drink in cup' _STEP_ADD_CONDIMENT = 'Add lemon' class StarBuzzTea: def make(self) -> List[str]: action_list = [] action_list.append(_STEP_BOIL_WATER) action_list.append(_STEP_MAKE_DRINK) action_list.append(_STEP_PULL_DRINK) action_list.append(_STEP_ADD_CONDIMENT) return action_list ```
{ "source": "johnklee/oo_dp_lesson", "score": 3 }
#### File: project/tests/test_sum_benchmark.py ```python from my_sum import sum def test_sum_benchmark(benchmark): hundred_one_list = [1] * 100 result = benchmark(sum, hundred_one_list) assert result == 100 ```
{ "source": "john-klingner/sense-project", "score": 3 }
#### File: john-klingner/sense-project/broadcastnet_rpi_test_code.py ```python from secrets import secrets # pylint: disable=no-name-in-module import time import requests from adafruit_ble.advertising.standard import ManufacturerDataField from adafruit_ble.advertising import Advertisement import adafruit_ble import sensor_measurement aio_auth_header = {"X-AIO-KEY": secrets["aio_key"]} aio_base_url = "https://io.adafruit.com/api/v2/" + secrets["aio_username"] def byte_string(s): return "".join("%02x" % b for b in s) ble = adafruit_ble.BLERadio() bridge_address = sensor_measurement.device_address print("This is BroadcastNet bridge:", bridge_address) print("scanning") print() sequence_numbers = {} # By providing Advertisement as well we include everything, not just specific advertisements. print(sensor_measurement.SensorMeasurement.match_prefixes) while True: for measurement in ble.start_scan( Advertisement, interval=0.5 ): print(byte_string(bytes(measurement))) reversed_address = [measurement.address.address_bytes[i] for i in range(5, -1, -1)] sensor_address = "{:02x}{:02x}{:02x}{:02x}{:02x}{:02x}".format(*reversed_address) # Skip if we are getting the same broadcast more than once. group_key = "bridge-{}-sensor-{}".format(bridge_address, sensor_address) data = [group_key] for attribute in dir(measurement.__class__): attribute_instance = getattr(measurement.__class__, attribute) if issubclass(attribute_instance.__class__, ManufacturerDataField): values = getattr(measurement, attribute) if values is not None: data.extend([values, attibute, attribute_instance]) start_time = time.monotonic() print(data) # Only update the previous sequence if we logged successfully. duration = time.monotonic() - start_time print("Done logging measurement to IO. Took {} seconds".format(duration)) print() ``` #### File: john-klingner/sense-project/broadcastnet_sense_code.py ```python import time import sensor_measurement from sensors import Sensors import name def ToSensorMeasurement(sensors): measurement = sensor_measurement.SensorMeasurement() measurement.temperature = sensors.getTemperature() measurement.pressure = sensors.getBaroPressure() measurement.relative_humidity =sensors.getHumidityShort() measurement.color = sensors.getColors() measurement.boardId = name.kBoardId return measurement print("This is BroadcastNet sensor:", sensor_measurement.device_address) sensors = Sensors() while True: measurement = ToSensorMeasurement(sensors) print(measurement) sensor_measurement.broadcast(measurement) time.sleep(4) ```
{ "source": "johnkmj/openai_gym", "score": 3 }
#### File: rl/agent/q_table.py ```python import numpy as np from rl.agent.base_agent import Agent class QTable(Agent): ''' The simplest Q learner - a table, with epsilon-greedy method and Bellman equation for value. ''' def __init__(self, env_spec, resolution=10, gamma=0.95, learning_rate=0.1, init_e=1.0, final_e=0.1, exploration_anneal_episodes=1000, **kwargs): # absorb generic param without breaking super(QTable, self).__init__(env_spec) self.resolution = resolution self.gamma = gamma self.learning_rate = learning_rate self.init_e = init_e self.final_e = final_e self.e = self.init_e self.exploration_anneal_episodes = exploration_anneal_episodes self.build_table() def build_table(self): ''' init the 2D qtable by bijecting the state space into pixelated, flattened vector multiplied with list of possible discrete actions ''' self.pixelate_state_space(self.resolution) flat_state_size = self.resolution ** self.env_spec['state_dim'] self.qtable = np.random.uniform( low=-1, high=1, size=(flat_state_size, self.env_spec['action_dim'])) return self.qtable def pixelate_state_space(self, resolution=10): '''chunk up the state space hypercube to specified resolution''' state_bounds = self.env_spec['state_bounds'] self.state_pixels = [np.linspace(*sb, num=resolution+1) for sb in state_bounds] return self.state_pixels def flatten_state(self, state): ''' collapse a hyperdim state by binning into state_pixels then flattening the pixel_state into 1-dim bijection ''' val_space_pairs = list(zip(state, self.state_pixels)) pixel_state = [np.digitize(*val_space) for val_space in val_space_pairs] # binning flat_state = int("".join([str(ps) for ps in pixel_state])) return flat_state def select_action(self, state): '''epsilon-greedy method''' if self.e > np.random.rand(): action = np.random.choice(self.env_spec['actions']) else: flat_state = self.flatten_state(state) action = np.argmax(self.qtable[flat_state, :]) return action def update_e(self): '''strategy to update epsilon''' self.e = max(self.e - (self.init_e - self.final_e) / float(self.exploration_anneal_episodes), self.final_e) return self.e def update(self, sys_vars): self.update_e() def to_train(self, sys_vars): return True def train(self, sys_vars): ''' run the basic bellman equation update ''' last_exp = self.memory.pop() state = last_exp['states'][0] flat_state = self.flatten_state(state) next_state = last_exp['next_states'][0] next_flat_state = self.flatten_state(next_state) action = np.argmax(last_exp['actions'][0]) # from one-hot reward = last_exp['rewards'][0] Q_state_action = self.qtable[flat_state, action] Q_next_state = self.qtable[next_flat_state, :] Q_next_state_max = np.amax(Q_next_state) loss = (reward + self.gamma * Q_next_state_max - Q_state_action) sys_vars['loss'].append(loss) self.qtable[flat_state, action] = Q_state_action + \ self.learning_rate * loss return self.qtable ``` #### File: openai_gym/rl/experiment.py ```python import copy import gym import json import matplotlib import multiprocessing as mp import warnings import numpy as np import platform import pandas as pd import traceback from keras import backend as K from os import path, environ from rl.util import * from rl.agent import * from rl.memory import * from rl.policy import * from rl.preprocessor import * # TODO fix mp breaking on Mac shit, # except when running -b with agg backend # (no GUI rendered,but saves graphs) # set only if it's not MacOS if environ.get('CI') or platform.system() == 'Darwin': matplotlib.rcParams['backend'] = 'agg' else: matplotlib.rcParams['backend'] = 'TkAgg' np.seterr(all='raise') warnings.filterwarnings("ignore", module="matplotlib") GREF = globals() PARALLEL_PROCESS_NUM = mp.cpu_count() ASSET_PATH = path.join(path.dirname(__file__), 'asset') SESS_SPECS = json.loads(open( path.join(ASSET_PATH, 'sess_specs.json')).read()) PROBLEMS = json.loads(open( path.join(ASSET_PATH, 'problems.json')).read()) # the keys and their defaults need to be implemented by a sys_var # the constants (capitalized) are problem configs, # set in asset/problems.json REQUIRED_SYS_KEYS = { 'RENDER': None, 'GYM_ENV_NAME': None, 'SOLVED_MEAN_REWARD': None, 'MAX_EPISODES': None, 'REWARD_MEAN_LEN': None, 'epi': 0, 't': 0, 'done': False, 'loss': [], 'total_rewards_history': [], 'explore_history': [], 'mean_rewards_history': [], 'mean_rewards': 0, 'total_rewards': 0, 'solved': False, } class Grapher(object): ''' Grapher object that belongs to a Session to draw graphs from its data ''' def __init__(self, session): import matplotlib.pyplot as plt plt.rcParams['toolbar'] = 'None' # mute matplotlib toolbar self.plt = plt self.session = session self.graph_filename = self.session.graph_filename self.subgraphs = {} self.figure = self.plt.figure(facecolor='white', figsize=(8, 9)) self.figure.suptitle(wrap_text(self.session.session_id)) self.init_figure() def init_figure(self): if environ.get('CI'): return # graph 1 ax1 = self.figure.add_subplot( 311, frame_on=False, title="\n\ntotal rewards per episode", ylabel='total rewards') p1, = ax1.plot([], []) self.subgraphs['total rewards'] = (ax1, p1) ax1e = ax1.twinx() ax1e.set_ylabel('exploration rate').set_color('r') ax1e.set_frame_on(False) p1e, = ax1e.plot([], [], 'r') self.subgraphs['e'] = (ax1e, p1e) # graph 2 ax2 = self.figure.add_subplot( 312, frame_on=False, title='mean rewards over last 100 episodes', ylabel='mean rewards') p2, = ax2.plot([], [], 'g') self.subgraphs['mean rewards'] = (ax2, p2) # graph 3 ax3 = self.figure.add_subplot( 313, frame_on=False, title='loss over time, episode', ylabel='loss') p3, = ax3.plot([], []) self.subgraphs['loss'] = (ax3, p3) self.plt.tight_layout() # auto-fix spacing self.plt.ion() # for live plot def plot(self): '''do live plotting''' sys_vars = self.session.sys_vars if environ.get('CI'): return ax1, p1 = self.subgraphs['total rewards'] p1.set_ydata( sys_vars['total_rewards_history']) p1.set_xdata(np.arange(len(p1.get_ydata()))) ax1.relim() ax1.autoscale_view(tight=True, scalex=True, scaley=True) ax1e, p1e = self.subgraphs['e'] p1e.set_ydata( sys_vars['explore_history']) p1e.set_xdata(np.arange(len(p1e.get_ydata()))) ax1e.relim() ax1e.autoscale_view(tight=True, scalex=True, scaley=True) ax2, p2 = self.subgraphs['mean rewards'] p2.set_ydata( sys_vars['mean_rewards_history']) p2.set_xdata(np.arange(len(p2.get_ydata()))) ax2.relim() ax2.autoscale_view(tight=True, scalex=True, scaley=True) ax3, p3 = self.subgraphs['loss'] p3.set_ydata(sys_vars['loss']) p3.set_xdata(np.arange(len(p3.get_ydata()))) ax3.relim() ax3.autoscale_view(tight=True, scalex=True, scaley=True) self.plt.draw() self.plt.pause(0.01) self.save() def save(self): '''save graph to filename''' self.figure.savefig(self.graph_filename) class Session(object): ''' The base unit of an Experiment An Experiment for a config on repeat for k time will run k Sessions, each with identical sess_spec for a problem, Agent, Memory, Policy, param. Handles its own data, plots and saves its own graphs Serialized by the parent experiment_id with its session_id ''' def __init__(self, experiment, session_num=0, num_of_sessions=1): self.experiment = experiment self.session_num = session_num self.num_of_sessions = num_of_sessions self.session_id = self.experiment.experiment_id + \ '_s' + str(self.session_num) log_delimiter('Init Session #{} of {}:\n{}'.format( self.session_num, self.num_of_sessions, self.session_id)) self.sess_spec = experiment.sess_spec self.problem = self.sess_spec['problem'] self.Agent = get_module(GREF, self.sess_spec['Agent']) self.Memory = get_module(GREF, self.sess_spec['Memory']) self.Policy = get_module(GREF, self.sess_spec['Policy']) self.PreProcessor = get_module(GREF, self.sess_spec['PreProcessor']) self.param = self.sess_spec['param'] # init all things, so a session can only be ran once self.sys_vars = self.init_sys_vars() self.env = gym.make(self.sys_vars['GYM_ENV_NAME']) self.preprocessor = self.PreProcessor(**self.param) self.env_spec = self.set_env_spec() self.agent = self.Agent(self.env_spec, **self.param) self.memory = self.Memory(**self.param) self.policy = self.Policy(**self.param) self.agent.compile(self.memory, self.policy, self.preprocessor) # data file and graph self.base_filename = './data/{}/{}'.format( self.experiment.prefix_id, self.session_id) self.graph_filename = self.base_filename + '.png' # for plotting self.grapher = Grapher(self) def init_sys_vars(self): ''' init the sys vars for a problem by reading from asset/problems.json, then reset the other sys vars on reset will add vars (lower cases, see REQUIRED_SYS_KEYS) ''' sys_vars = PROBLEMS[self.problem] if not args.render: sys_vars['RENDER'] = False if environ.get('CI'): sys_vars['RENDER'] = False sys_vars['MAX_EPISODES'] = 4 self.sys_vars = sys_vars self.reset_sys_vars() return self.sys_vars def reset_sys_vars(self): '''reset and check RL system vars (lower case) before each new session''' for k in REQUIRED_SYS_KEYS: if k.islower(): self.sys_vars[k] = copy.copy(REQUIRED_SYS_KEYS.get(k)) self.check_sys_vars() return self.sys_vars def check_sys_vars(self): '''ensure the requried RL system vars are specified''' sys_keys = self.sys_vars.keys() assert all(k in sys_keys for k in REQUIRED_SYS_KEYS) def set_env_spec(self): '''Helper: return the env specs: dims, actions, reward range''' env = self.env state_dim = env.observation_space.shape[0] if (len(env.observation_space.shape) > 1): state_dim = env.observation_space.shape env_spec = { 'state_dim': state_dim, 'state_bounds': np.transpose( [env.observation_space.low, env.observation_space.high]), 'action_dim': env.action_space.n, 'actions': list(range(env.action_space.n)), 'reward_range': env.reward_range, 'timestep_limit': env.spec.tags.get( 'wrapper_config.TimeLimit.max_episode_steps') } self.env_spec = self.preprocessor.preprocess_env_spec( env_spec) # preprocess return self.env_spec def debug_agent_info(self): logger.debug( "Agent info: {}".format( format_obj_dict( self.agent, ['learning_rate', 'n_epoch']))) logger.debug( "Memory info: size: {}".format(self.agent.memory.size())) logger.debug( "Policy info: {}".format( format_obj_dict(self.agent.policy, ['e', 'tau']))) logger.debug( "PreProcessor info: {}".format( format_obj_dict(self.agent.preprocessor, []))) def check_end(self): '''check if session ends (if is last episode) do ending steps''' sys_vars = self.sys_vars logger.debug( "RL Sys info: {}".format( format_obj_dict( sys_vars, ['epi', 't', 'total_rewards', 'mean_rewards']))) logger.debug('{:->30}'.format('')) if (sys_vars['solved'] or (sys_vars['epi'] == sys_vars['MAX_EPISODES'] - 1)): logger.info( 'Problem solved? {}\nAt episode: {}\nParams: {}'.format( sys_vars['solved'], sys_vars['epi'], to_json(self.param))) self.env.close() def update_history(self): ''' update the data per episode end ''' sys_vars = self.sys_vars sys_vars['total_rewards_history'].append(sys_vars['total_rewards']) sys_vars['explore_history'].append( getattr(self.policy, 'e', 0) or getattr(self.policy, 'tau', 0)) avg_len = sys_vars['REWARD_MEAN_LEN'] # Calculating mean_reward over last 100 episodes # case away from np for json serializable (dumb python) mean_rewards = float( np.mean(sys_vars['total_rewards_history'][-avg_len:])) solved = (mean_rewards >= sys_vars['SOLVED_MEAN_REWARD']) sys_vars['mean_rewards'] = mean_rewards sys_vars['mean_rewards_history'].append(mean_rewards) sys_vars['solved'] = solved self.grapher.plot() self.check_end() return sys_vars def run_episode(self): '''run ane episode, return sys_vars''' sys_vars, env, agent = self.sys_vars, self.env, self.agent sys_vars['total_rewards'] = 0 state = env.reset() processed_state = agent.preprocessor.reset_state(state) agent.memory.reset_state(processed_state) self.debug_agent_info() for t in range(agent.env_spec['timestep_limit']): sys_vars['t'] = t # update sys_vars t if sys_vars.get('RENDER'): env.render() processed_state = agent.preprocessor.preprocess_state() action = agent.select_action(processed_state) next_state, reward, done, _info = env.step(action) processed_exp = agent.preprocessor.preprocess_memory( action, reward, next_state, done) if processed_exp is not None: agent.memory.add_exp(*processed_exp) sys_vars['done'] = done agent.update(sys_vars) if agent.to_train(sys_vars): agent.train(sys_vars) sys_vars['total_rewards'] += reward if done: break self.update_history() return sys_vars def clear_session(self): if K._BACKEND == 'tensorflow': K.clear_session() # manual gc to fix TF issue 3388 def run(self): '''run a session of agent''' log_delimiter('Run Session #{} of {}\n{}'.format( self.session_num, self.num_of_sessions, self.session_id)) sys_vars = self.sys_vars sys_vars['time_start'] = timestamp() for epi in range(sys_vars['MAX_EPISODES']): sys_vars['epi'] = epi # update sys_vars epi try: self.run_episode() except Exception: logger.error('Error in experiment, terminating ' 'further session from {}'.format(self.session_id)) traceback.print_exc(file=sys.stdout) break if sys_vars['solved']: break self.clear_session() sys_vars['time_end'] = timestamp() sys_vars['time_taken'] = timestamp_elapse( sys_vars['time_start'], sys_vars['time_end']) progress = 'Progress: Experiment #{} Session #{} of {} done'.format( self.experiment.experiment_num, self.session_num, self.num_of_sessions) log_delimiter('End Session:\n{}\n{}'.format( self.session_id, progress)) return sys_vars class Experiment(object): ''' An Experiment for a config on repeat for k time will run k Sessions, each with identical sess_spec for a problem, Agent, Memory, Policy, param. Will spawn as many Sessions for repetition Handles all the data from sessions to provide an experiment-level summary for a sess_spec Its experiment_id is serialized by problem, Agent, Memory, Policy and timestamp Data Requirements: JSON, single file, quick and useful summary, replottable data, rerunnable specs Keys: all below X array of hyper param selection: - sess_spec (so we can plug in directly again to rerun) - summary - time_start - time_end - time_taken - metrics - sys_vars_array ''' def __init__(self, sess_spec, times=1, experiment_num=0, num_of_experiments=1, run_timestamp=timestamp(), prefix_id_override=None): self.sess_spec = sess_spec self.data = None self.times = times self.sess_spec.pop('param_range', None) # single exp, del range self.experiment_num = experiment_num self.num_of_experiments = num_of_experiments self.run_timestamp = run_timestamp self.prefix_id = prefix_id_override or '{}_{}_{}_{}_{}_{}'.format( sess_spec['problem'], sess_spec['Agent'].split('.').pop(), sess_spec['Memory'].split('.').pop(), sess_spec['Policy'].split('.').pop(), sess_spec['PreProcessor'].split('.').pop(), self.run_timestamp ) self.experiment_id = self.prefix_id + '_e' + str(self.experiment_num) self.base_dir = './data/{}'.format(self.prefix_id) os.makedirs(self.base_dir, exist_ok=True) self.base_filename = './data/{}/{}'.format( self.prefix_id, self.experiment_id) self.data_filename = self.base_filename + '.json' log_delimiter('Init Experiment #{} of {}:\n{}'.format( self.experiment_num, self.num_of_experiments, self.experiment_id), '=') def analyze(self): '''mean_rewards_per_epi helper: analyze given data from an experiment return metrics ''' sys_vars_array = self.data['sys_vars_array'] solved_sys_vars_array = list(filter( lambda sv: sv['solved'], sys_vars_array)) mean_rewards_array = np.array(list(map( lambda sv: sv['mean_rewards'], sys_vars_array))) max_total_rewards_array = np.array(list(map( lambda sv: np.max(sv['total_rewards_history']), sys_vars_array))) epi_array = np.array(list(map(lambda sv: sv['epi'], sys_vars_array))) mean_rewards_per_epi_array = np.divide(mean_rewards_array, epi_array) t_array = np.array(list(map(lambda sv: sv['t'], sys_vars_array))) time_taken_array = np.array(list(map( lambda sv: timestamp_elapse_to_seconds(sv['time_taken']), sys_vars_array))) solved_epi_array = np.array(list(map( lambda sv: sv['epi'], solved_sys_vars_array))) solved_t_array = np.array(list(map( lambda sv: sv['t'], solved_sys_vars_array))) solved_time_taken_array = np.array(list(map( lambda sv: timestamp_elapse_to_seconds(sv['time_taken']), solved_sys_vars_array))) metrics = { # percentage solved 'num_of_sessions': len(sys_vars_array), 'solved_num_of_sessions': len(solved_sys_vars_array), 'solved_ratio_of_sessions': float(len( solved_sys_vars_array)) / len(sys_vars_array), 'mean_rewards_stats': basic_stats(mean_rewards_array), 'mean_rewards_per_epi_stats': basic_stats( mean_rewards_per_epi_array), 'max_total_rewards_stats': basic_stats(max_total_rewards_array), 'epi_stats': basic_stats(epi_array), 't_stats': basic_stats(t_array), 'time_taken_stats': basic_stats(time_taken_array), 'solved_epi_stats': basic_stats(solved_epi_array), 'solved_t_stats': basic_stats(solved_t_array), 'solved_time_taken_stats': basic_stats(solved_time_taken_array), } self.data['summary'].update({'metrics': metrics}) return self.data def save(self): '''save the entire experiment data grid from inside run()''' with open(self.data_filename, 'w') as f: f.write(to_json(self.data)) logger.info( 'Session complete, data saved to {}'.format(self.data_filename)) def to_stop(self): '''check of experiment should be continued''' metrics = self.data['summary']['metrics'] failed = metrics['solved_ratio_of_sessions'] < 1. if failed: logger.info( 'Failed experiment, terminating sessions for {}'.format( self.experiment_id)) return failed def run(self): ''' helper: run a experiment for Session a number of times times given a sess_spec from gym_specs ''' configure_gpu() time_start = timestamp() sys_vars_array = [] for s in range(self.times): sess = Session(experiment=self, session_num=s, num_of_sessions=self.times) sys_vars = sess.run() sys_vars_array.append(copy.copy(sys_vars)) time_end = timestamp() time_taken = timestamp_elapse(time_start, time_end) self.data = { # experiment data 'experiment_id': self.experiment_id, 'sess_spec': self.sess_spec, 'summary': { 'time_start': time_start, 'time_end': time_end, 'time_taken': time_taken, 'metrics': None, }, 'sys_vars_array': sys_vars_array, } self.analyze() # progressive update, write when every session is done self.save() if self.to_stop(): break progress = 'Progress: Experiment #{} of {} done'.format( self.experiment_num, self.num_of_experiments) log_delimiter( 'End Experiment:\n{}\n{}'.format( self.experiment_id, progress), '=') return self.data def configure_gpu(): '''detect GPU options and configure''' if K._BACKEND != 'tensorflow': # skip directly if is not tensorflow return real_parallel_process_num = 1 if mp.current_process( ).name == 'MainProcess' else PARALLEL_PROCESS_NUM tf = K.tf gpu_options = tf.GPUOptions( allow_growth=True, per_process_gpu_memory_fraction=1./float(real_parallel_process_num)) config = tf.ConfigProto( gpu_options=gpu_options, allow_soft_placement=True) sess = tf.Session(config=config) K.set_session(sess) return sess def plot(experiment_or_prefix_id): '''plot from a saved data by init sessions for each sys_vars''' prefix_id = prefix_id_from_experiment_id(experiment_or_prefix_id) experiment_data_array = load_data_array_from_prefix_id(prefix_id) for data in experiment_data_array: sess_spec = data['sess_spec'] experiment = Experiment(sess_spec, times=1, prefix_id_override=prefix_id) # save with the right serialized filename experiment.experiment_id = data['experiment_id'] num_of_sessions = len(data['sys_vars_array']) for s in range(num_of_sessions): sess = Session(experiment=experiment, session_num=s, num_of_sessions=num_of_sessions) sys_vars = data['sys_vars_array'][s] sess.sys_vars = sys_vars sess.grapher.plot() sess.clear_session() def analyze_param_space(experiment_data_array_or_prefix_id): ''' get all the data from all experiments.run() or read from all data files matching the prefix of experiment_id e.g. usage without running: prefix_id = 'DevCartPole-v0_DQN_LinearMemoryWithForgetting_BoltzmannPolicy_2017-01-15_142810' analyze_param_space(prefix_id) ''' if isinstance(experiment_data_array_or_prefix_id, str): experiment_data_array = load_data_array_from_prefix_id( experiment_data_array_or_prefix_id) else: experiment_data_array = experiment_data_array_or_prefix_id flat_metrics_array = [] for data in experiment_data_array: flat_metrics = flatten_dict(data['summary']['metrics']) flat_metrics.update({'experiment_id': data['experiment_id']}) flat_metrics_array.append(flat_metrics) metrics_df = pd.DataFrame.from_dict(flat_metrics_array) metrics_df.sort_values( ['mean_rewards_per_epi_stats_mean', 'mean_rewards_stats_mean', 'solved_ratio_of_sessions'], ascending=False ) experiment_id = experiment_data_array[0]['experiment_id'] prefix_id = prefix_id_from_experiment_id(experiment_id) param_space_data_filename = './data/{0}/param_space_data_{0}.csv'.format( prefix_id) metrics_df.to_csv(param_space_data_filename, index=False) logger.info( 'Param space data saved to {}'.format(param_space_data_filename)) return metrics_df def run(sess_name_id_spec, times=1, param_selection=False, line_search=False, plot_only=False): ''' primary method: specify: - sess_name(str) or sess_spec(Dict): run new experiment, - experiment_id(str): rerun experiment from data - experiment_id(str) with plot_only=True: plot graphs from data This runs all experiments, specified by the obtained sess_spec for a specified number of sessions per experiment Multiple experiments are ran if param_selection=True ''' # run plots on data only if plot_only: plot(sess_name_id_spec) return # set sess_spec based on input if isinstance(sess_name_id_spec, str): if len(sess_name_id_spec.split('_')) >= 4: data = load_data_from_experiment_id(sess_name_id_spec) sess_spec = data['sess_spec'] else: sess_spec = SESS_SPECS.get(sess_name_id_spec) else: sess_spec = sess_name_id_spec # compose grid and run param selection if param_selection: if line_search: param_grid = param_line_search(sess_spec) else: param_grid = param_product(sess_spec) sess_spec_grid = generate_sess_spec_grid(sess_spec, param_grid) num_of_experiments = len(sess_spec_grid) run_timestamp = timestamp() experiment_array = [] for e in range(num_of_experiments): sess_spec = sess_spec_grid[e] experiment = Experiment( sess_spec, times=times, experiment_num=e, num_of_experiments=num_of_experiments, run_timestamp=run_timestamp) experiment_array.append(experiment) p = mp.Pool(PARALLEL_PROCESS_NUM) experiment_data_array = list(p.map(mp_run_helper, experiment_array)) p.close() p.join() else: experiment = Experiment(sess_spec, times=times) experiment_data = experiment.run() experiment_data_array = [experiment_data] return analyze_param_space(experiment_data_array) ``` #### File: johnkmj/openai_gym/setup.py ```python import pip import os import sys from setuptools import setup from setuptools.command.test import test as TestCommand from setuptools.command.install import install reqs = open('./requirements.txt', 'r').read().split('\n') class OverrideInstall(install): """ Emulate sequential install of pip install -r requirements.txt To fix numpy bug in scipy, scikit in py2 """ def run(self): for req in reqs: if req: pip.main(["install", "-U", req]) # explicitly config test_args = [ '--cov-report=term', '--cov-report=html', '--cov=rl', 'test' ] class PyTest(TestCommand): user_options = [('pytest-args=', 'a', "Arguments to pass to py.test")] def initialize_options(self): TestCommand.initialize_options(self) self.pytest_args = test_args def run_tests(self): # import here, cause outside the eggs aren't loaded import pytest errno = pytest.main(self.pytest_args) sys.exit(errno) # Utility function to read the README file. def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() # the setup setup( name='openai_gym', version='0.0.1', description='Working out at the OpenAI Gym', long_description=read('README.md'), keywords='openai gym', url='https://github.com/kengz/openai_gym', author='keng', author_email='<EMAIL>', license='MIT', packages=[], zip_safe=False, include_package_data=True, install_requires=[], dependency_links=[], extras_require={ 'dev': [], 'docs': [], 'testing': [] }, classifiers=[], tests_require=['pytest', 'pytest-cov'], test_suite='test', cmdclass={'test': PyTest, 'install': OverrideInstall} ) ``` #### File: openai_gym/test/test_rl.py ```python import unittest import pandas as pd from os import environ environ['CI'] = environ.get('CI') or 'true' from rl.experiment import run class DQNTest(unittest.TestCase): def test_run_gym_tour(self): metrics_df = run('dummy') assert isinstance(metrics_df, pd.DataFrame) def test_run_q_table(self): metrics_df = run('q_table') assert isinstance(metrics_df, pd.DataFrame) def test_run_dqn(self): metrics_df = run('dqn') assert isinstance(metrics_df, pd.DataFrame) def test_run_double_dqn(self): metrics_df = run('double_dqn') assert isinstance(metrics_df, pd.DataFrame) def test_run_mountain_double_dqn(self): metrics_df = run('mountain_double_dqn') assert isinstance(metrics_df, pd.DataFrame) # def test_run_all(self): # for x in game_specs.keys(): # metrics_df = run(x) ```
{ "source": "johnknott/proxmox-hetzner-autoconfigure", "score": 3 }
#### File: configurators/network/network.py ```python from typing import NamedTuple from proxmox_hetzner_autoconfigure.util import util from proxmox_hetzner_autoconfigure.configurators import configurator as cfg from proxmox_hetzner_autoconfigure.configurators.network.topologies import ( routed_subnet, routed_separate_ips, ) class Data(NamedTuple): """Data structure that gets emitted from gather_input and passed into transform_to_commands""" generated_script: str class Config(cfg.Configurator): """Implementation of the Network Configurator""" def __init__(self): super().__init__() self.description = "Configure Network" def gather_input(self) -> Data: """Gathers input from the user and returns a NetworkData""" topologies = [routed_subnet, routed_separate_ips] topology_configs = list(map(lambda t: t.Config(), topologies)) code, choice = util.dialog.radiolist( "Please choose a network topology", choices=map(lambda c: (c.short_description, c.description, 1), topology_configs), ) if code != "ok": return None chosen_config = next(filter(lambda x: x.short_description == choice, topology_configs)) script = chosen_config.generate_script(chosen_config.gather_input()) return Data(generated_script=script) def generate_script(self, data: Data) -> str: """transforms a Data into a shell script segment""" return data.generated_script if data else "" ``` #### File: configurators/tls/tls.py ```python from typing import NamedTuple from proxmox_hetzner_autoconfigure.util import util from proxmox_hetzner_autoconfigure.configurators import configurator as cfg class Data(NamedTuple): """Tuple that gets emitted from gather_input and passed into transform_to_commands""" email: str domain: str class Config(cfg.Configurator): """Implementation of an example Configurator""" def __init__(self): super().__init__() self.description = "Configure TLS (Lets Encrypt)" def gather_input(self) -> Data: """Gathers input from the user and returns a Data""" email = domain = "" email = util.input_regex( "Please enter your email address", util.EMAIL_REGEX, "Invalid Email", ) if email is None: return None domain = util.input_regex( "Please enter your domain name (FQDN)." "Must be resolvable from the Internet.", util.DOMAIN_REGEX, "Invalid Domain", ) if domain is None: return None util.shared_globals["fqdn"] = domain return Data(email, domain) def generate_script(self, data: Data) -> str: """transforms a Data into a shell script segment""" return util.render_template(__file__, "template", data) ``` #### File: proxmox_hetzner_autoconfigure/util/util.py ```python import os import re import platform from ipaddress import IPv4Network, IPv4Address from dialog import Dialog from jinja2 import Environment, FileSystemLoader IP_REGEX = r"\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b" CIDR_REGEX = r"\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\/\d{1,2}\b" EMAIL_REGEX = r"[^@]+@[^@]+\.[^@]+" DOMAIN_REGEX = r".*\.\w+" NOT_EMPTY = r"^(?!\s*$).+" ANSI_RED = r"\Zb\Z1" ANSI_GREEN = r"\Zb\Z3" ANSI_WHITE = r"\Zb\Z2" ANSI_RESET = r"\Zn" dialog = Dialog(dialog="dialog", autowidgetsize=True) shared_globals = {} def is_proxmox_machine(): """Is this a Linux machine with Proxmox installed?""" return platform.system() == "Linux" and os.popen("which pveversion").read().strip() def main_ip(): """Returns the detected main IP of this machine""" return os.popen("hostname -i | awk '{print $1}'").read().strip() def gateway_ip(): """Returns the detected gateway IP of this machine""" return os.popen("ip route | grep default | awk '{print $3}'").read().strip() def render_template(file, template_name, binds): """Renders a jinja2 template and returns it as a string""" dir_path = os.path.dirname(os.path.realpath(file)) env = Environment(loader=FileSystemLoader(dir_path)) template = env.get_template(f"{template_name}.jinja2") if hasattr(binds, "_asdict"): binds = binds._asdict() return template.render(binds) def wrap_as_heredoc(content, filename): """Wraps a string in a heredoc and adds code to write it to a file""" return render_template(__file__, "heredoc", {"content": content, "filename": filename}) def build_script(configurators): """ Loops over configurators, calling gather_input on them and then renders the script sections in a template. """ def gather_input(configurator): cfg = configurator.Config() dialog.set_background_title(cfg.description) return {"config": cfg, "input": cfg.gather_input()} def generate_script(input_data): cfg = input_data["config"] return {"name": cfg.description, "content": cfg.generate_script(input_data["input"])} sections = map(generate_script, map(gather_input, configurators)) return render_template(__file__, "install", {"sections": sections, "shared_globals": shared_globals}) def input_regex(message, regex, regex_fail, **kwargs): """Helper method to ask the user for input and only proceed if the input matches a regex""" text_value = error = "" kwargs = kwargs if kwargs else {} kwargs["colors"] = True while not re.match(regex, text_value): message_with_error = f"{message}\n{ANSI_RED}{error}{ANSI_RESET}" if error else message code, text_value = dialog.inputbox(message_with_error, **kwargs) error = regex_fail if code != "ok": return None return text_value def input_network(message, **kwargs): """Helper method to ask the user for input and only proceed if the input matches a regex""" net_addr = error = "" kwargs = kwargs if kwargs else {} kwargs["colors"] = True while True: try: message_with_error = f"{message}\n{ANSI_RED}{error}{ANSI_RESET}" if error else message code, net_addr = dialog.inputbox(message_with_error, **kwargs) if code != "ok": return None if not re.match(CIDR_REGEX, net_addr): raise Exception("Please enter in the format x.x.x.x/x") return str(IPv4Network(net_addr)) except Exception as err: error = str(err) def input_ip(message, **kwargs): """Helper method to ask the user for input and only proceed if the input matches a regex""" ip_addr = error = "" kwargs = kwargs if kwargs else {} kwargs["colors"] = True while True: try: message_with_error = f"{message}\n{ANSI_RED}{error}{ANSI_RESET}" if error else message code, ip_addr = dialog.inputbox(message_with_error, **kwargs) if code != "ok": return None return str(IPv4Address(ip_addr)) except Exception as err: error = str(err) ``` #### File: tests/configurators/test_snippets.py ```python from unittest.mock import MagicMock from proxmox_hetzner_autoconfigure import util from proxmox_hetzner_autoconfigure.configurators import snippets def test_description(): config = snippets.Config() assert config.description == "Configure Snippets" def test_gather_input_correct(): dialog = MagicMock() dialog.checklist.side_effect = [["ok", ["test_desc"]]] config = snippets.Config() snippets.util.dialog = dialog assert config.gather_input() == snippets.Data(snippets=[]) ``` #### File: tests/configurators/test_storage_box.py ```python from unittest.mock import MagicMock from proxmox_hetzner_autoconfigure import util from proxmox_hetzner_autoconfigure.configurators import storage_box def test_description(): config = storage_box.Config() assert config.description == "Hetzner Storage Box" def test_gather_input_correct(): dialog = MagicMock() dialog.inputbox.side_effect = [ ["ok", "u123456"], ["ok", "<PASSWORD>"], ["ok", "u123456.your-storagebox.de"], ] config = storage_box.Config() storage_box.util.dialog = dialog assert config.gather_input() == storage_box.Data( username="u123456", password="<PASSWORD>", server="u123456.your-storagebox.de", ) def test_gather_input_cancelled(): dialog = MagicMock() dialog.inputbox.side_effect = [ ["ok", "u123456"], ["cancel", ""], ] config = storage_box.Config() storage_box.util.dialog = dialog assert config.gather_input() is None def test_generate_script(): config = storage_box.Config() data = storage_box.Data( username="u123456", password="<PASSWORD>", server="u123456.your-storagebox.de", ) script = config.generate_script(data) assert ( "//u123456.your-storagebox.de/backup /mnt/storage cifs _netdev,username=u123456,password=$STORAGE_BOX_PASSWORD,uid=101001,gid=101001 0 0" in script ) ```
{ "source": "johnkour/Two_span_truss", "score": 4 }
#### File: johnkour/Two_span_truss/solver.py ```python import numpy as np from numpy import random as rnd import pandas as pd import sys # ====================Define custom classes=================================== # 3.1: Create custom input error class: class InputError(Exception): """Base class for input exceptions in this module.""" pass # 3.1.1: Create number of training examples error subclass. class ExamplesNumber(InputError): """Exception raised for errors in the input of the number of training examples. Attributes: expression -- input expression in which the error occurred message -- explanation of the error """ def __init__(self, message, payload=None): self.message = message self.payload = payload def __str__(self): return str(self.message) # 3.1.2: Create width error subclass. class WidthInput(InputError): """Exception raised for errors in the input of the width. Attributes: expression -- input expression in which the error occurred message -- explanation of the error """ def __init__(self, message, payload=None): self.message = message self.payload = payload def __str__(self): return str(self.message) # 3.1.3: Create thickness error subclass. class ThickInput(InputError): """Exception raised for errors in the input of the thickness. Attributes: expression -- input expression in which the error occurred message -- explanation of the error """ def __init__(self, message, payload=None): self.message = message self.payload = payload def __str__(self): return str(self.message) # ====================Define custom functions================================= # 2: Handmade functions. # 2.1: Calculate the members' length. def mem_length(L, h): ''' Summary ---------- This function is used to calculate the length of the truss' members. It also works if the length and the heigth of the truss change in every training example. Note that with minor changes to the indexing it will produce results for a truss more than 11 sections. Parameters ---------- L : (m x 1) ARRAY The length of the truss (m). h : (m x 1) ARRAY The heigth of the truss (m). Returns ------- S : (m x 11) ARRAY The legth of the truss' members (m). ''' m, n =np.shape(L) temp2 = L/3 temp1 = np.hypot(h, temp2 /2) temp3 = np.zeros((m, 11), dtype = int) temp3[:, ::2] = 1 temp4 = np.ones((m, 11), dtype = int) temp4 -= temp3 S = temp1 * temp3 + temp2 * temp4 return S # 2.2: Calculate the members' internal forces. def axial_f(P, S, L, h): ''' Summary ---------- This function is used to calculate the axial force of the truss' members. We uttilize the symmetry of the problem to write less lines of smarter code using an auxiliary array temp to compute our final product F. The nodal loads(P[i,j]) are differ from node to node and from analysis to analysis. Here as before the function runs many analyses simultaneously. Parameters ---------- P : (m x 3) ARRAY The forces that the truss bears (kN). S : (m x 11) ARRAY The legth of the truss' members (m). L : (m x 1) ARRAY The length of the truss (m). h : (m x 1) ARRAY The heigth of the truss (m). Returns ------- F : (m x 11) ARRAY The axial forces of the truss' members (kN). ''' m, n = np.shape(S) SP = np.sum(P, axis = 1, keepdims = True) # print(SP) # print(S[:, 0]) temp = np.zeros((m, 6)) temp[:, 0] = -SP.flatten() / 2 # print(temp[:, 0]) temp[:, 0] /= (h.flatten() / S[:, 0]) # print(temp[:, 0]) temp[:, 1] = np.abs(temp[:, 0]) temp[:, 1] *= S[:, 1] / 2 temp[:, 1] /= S[:, 0] # print(temp[:, 1]) temp[:, 2] = np.abs(temp[:, 0]) * (h.flatten() / S[:, 0]) temp[:, 2] -= P[:, 0] temp[:, 2] /= (h.flatten() / S[:, 2]) # print(temp[:, 2]) temp[:, 3] = np.abs(temp[:, 0]) + np.abs(temp[:, 2]) temp[:, 3] *= -(S[:, 1] / S[:, 2]) / 2 # print(temp[:, 3]) temp[:, 4] = -temp[:, 2] # print(temp[:, 4]) temp[:, 5] = (np.abs(temp[:, 2]) + np.abs(temp[:, 4])) temp[:, 5] *= (S[:, 1] / S[:, 2]) / 2 temp[:, 5] += np.abs(temp[:, 1]) # print(temp[:, 5]) # print(temp) F = np.zeros((m, n), dtype = float) F[:, :6] = temp temp = temp[:, ::-1] temp = np.delete(temp, 0, 1) F[:, 6:] = temp return F # 2.3: Calculate the members' resistance. def mem_res(S, b, t, fy, E, k): ''' Summary ---------- This function is used to define the resistance of each member of the truss to tension and compression. Once again we chose to run all of our analyses at the same time. For the purposes of this assignment fy and E are the same for every analysis. Note that it would make no sense to change fy for different members in the same analysis and that E is pretty much standard regardless of member or analysis. Parameters ---------- S : (m x 11) ARRAY The legth of the truss' members (m). b : (m x 11) ARRAY The width of the truss' members (mm). t : (m x 11) ARRAY The thickness of the truss' members (mm). fy : INTEGER The resistance of the steel (MPa). E : INTEGER The elasticity modulous of the steel (GPa). k : FLOAT The hardening parameter of the steel (-). Returns ------- T_for_cr : (m x 11) ARRAY The tensile resistance of the truss' members (kN). C_for_cr : (m x 11) ARRAY The resistance of the truss' members to compression (kN). ''' m, n = np.shape(b) # b = b.reshape((1, len(b))) # t = t.reshape((1, len(t))) b = b / 10 ** 3 t = t / 10 ** 3 A = 4 * b * t Vol = A * S fy *= 10**3 E *= 10**6 T_for = fy * A C_for = - k * T_for Buck_for = np.pi**2 * E * ((b + t)**4 / 12 - (b - t)**4 / 12) Buck_for /= -S**2 T_for_cr = T_for C_for_cr = np.maximum(C_for, Buck_for) return T_for_cr, C_for_cr # 2.4: Evaluate whether the member fails or not. def evaluation(F, T_for_cr, C_for_cr): ''' Summary ---------- This function is used to estimate whether a member (which means the whole truss) fails or not. The output of this function are the true values of Y that will be used later to train machine learning algorithms to simulate the structural analysis programmed here. Parameters ---------- F : (m x 11) ARRAY The axial forces of the truss' members (kN). T_for_cr : (m x 11) ARRAY The tensile resistance of the truss' members (kN). C_for_cr : (m x 11) ARRAY The resistance of the truss' members to compression (kN). Returns ------- Failure : (m x 1) ARRAY WITH ELEMENT VALUES 0 OR 1 1 if the truss fails, 0 otherwise. ''' m, n = np.shape(F) Failure = (C_for_cr > F) | (T_for_cr < F) temp = Failure.astype(int) Failure = np.amax(temp, axis = 1, keepdims = True) # Failure = np.asscalar(Failure) return Failure # 3: Check that width and thickness are not out of bounds. # 3.2.1: Test the variable m for input error. def ex_num(m): ''' Summary ---------- This function is used to evaluate if the number of training examples typed by the user via keyboard is an integer number. If not an error message is displayed so as to inform the user. It also converts m from string to integer. Parameters ---------- m : STRING Number of training examples. Returns ------- m : INTEGER(?) Number of training examples. ''' try: m = int(m) except: try: raise ExamplesNumber("INVALID INPUT", "The number of training examples " + "is not an integer.") except ExamplesNumber as error: print(str(error)) print("Detail: {}".format(error.payload)) sys.exit() return m # 3.2.2: Test the variables b and t for input error. def bounds(b, t): ''' Summary ---------- This function is used to evaluate if the section properties (thickness and width) are out of bounds. If they are, an error message is displayed so as to inform the user and the analysis is stopped(the progam closes). Parameters ---------- b : (m x 11) ARRAY The width of the truss' members (mm). t : (m x 11) ARRAY The thickness of the truss' members (mm). Returns ------- None. ''' # b = b.reshape((1, len(b))) # t = t.reshape((1, len(t))) if np.any(b < 80) | np.any(b > 300): try: raise WidthInput("INVALID INPUT", "The width is out of bounds.") except WidthInput as error: print(str(error)) print("Detail: {}".format(error.payload)) sys.exit() if np.any(t < 3) | np.any(t > 20): try: raise ThickInput("INVALID INPUT", "The thickness is out of bounds.") except ThickInput as error: print(str(error)) print("Detail: {}".format(error.payload)) sys.exit() # Define function to generate the data: def generator(m): ''' Summary ---------- This function is used to produce m number of training examples(or analyses ). Each training example consists of a vector of 25 elements, the first 11 are the width of the sections, then the next 11 are the thickness of the sections and the last 3 are the nodal loads. Note that if the code above is slightly modified there could be another 3 variables: the length and heigth of the truss and the quality of the steel(L, h, fy). We would then have to give them random values for each analysis below. Parameters ---------- m : INTEGER Number of training examples. Returns ------- b : (m x 11) ARRAY The width of the truss' members (mm). t : (m x 11) ARRAY The thickness of the truss' members (mm). P : (m x 3) ARRAY The load of the truss in each of the 3 nodes (kN). ''' # b starts at 80mm, stops at 300mm and can be raised by 5mm. b = rnd.randint(0, 44, size = (m, 11)) * 5 b += 80 # t starts at 3mm, stops at 20mm and can be raised by 1mm. t = rnd.randint(3, 20, size = (m, 11)) # P starts at 0kN and stops at 250kN. P = rnd.random(size = (m, 3)) P *= 250 P = np.round(P, decimals = 2) return b, t, P # Define function to export the data to CSV: def exporter(path, name, tup, fl_form): ''' Summary ---------- This function is used to export the data((b, t, P) or (Failure,)) to CSV format in order to use them in the next programs. The Tupple (tup) should contain the parameters(b, t, P) or the true values(Failure,), so as to have the input and the output of the Machine Learning algorithms seperated to different files and avoid further confussion. We recommend using fl_form = %d, meaning floating format is integer for the true values(Failure,) and fl_form = %.2f, meaning floating format with 2 decimals for the parameters. The name of the file in which the data will be stored should not have the suffix '.csv'. We use the pandas library to store the data to the CSV because pandas are faster than the standard methods when dealing with big data. Parameters ---------- path : STRING The path, where the file containing the data will be stored. name : STRING The name of the CSV file containing the data. tup : TUPLE OF ARRAYS The tuple containing the arrays with the data to be stored. fl_form : STRING The format of the numbers to be stored in the CSV. Returns ------- None. ''' name += '.csv' data = np.concatenate(tup, axis = 1) df = pd.DataFrame(data) path += '/' + name df.to_csv(path, float_format = fl_form, header = False, index = False) # ============================Main Program==================================== # 1.2: Define the geometry of the truss. m = input( 'Please enter the number of training examples ' + '(or press enter fordefault value: 500k)\n') if len(m) < 1: m = 500 * 10**3 m = ex_num(m) L = np.ones((m, 1)) L *= 20 h = np.ones((m, 1)) h *= 1.5 # print(L, h) # 2.1: Calculate the members' length. S = mem_length(L, h) # print(S) # print(S) # 1.3 & 1.5: Define the load of the truss and the dimensions of it's sections. # load = np.ones((m, 3)) # load *= 100 # P = np.array(load) b, t, P = generator(m) # 3.2: Test the variables b and t for input error. bounds(b, t) # 2.2: Calculate the members' internal forces. F = axial_f(P, S, L, h) # print(F) # 1.4: Define the properties of the steel used. fy = 275 # MPa k = 0.80 E = 210 # GPa # print(F) # 2.3: Calculate the members' resistance. T_for_cr, C_for_cr = mem_res(S, b, t, fy, E, k) # print(T_for_cr) # print(C_for_cr) # 2.4: Evaluate whether the member fails or not. Failure = evaluation(F, T_for_cr, C_for_cr) # print(Failure) n_fail = np.sum(Failure, axis = 0) # print(n_fail, m-n_fail) # 4: Export results to csvs. message = 'Please enter the path where the file will be stored' message += ' (Press enter to set path: ' message += 'D:/jkour/Documents/Σχολή/2ο έτος/Εαρινό Εξάμηνο/Προγραμματισμός Η.Υ' message += '/Εργασία εξαμήνου/MyCode/Truss_analysis)\n' pth = input(message) if len(pth) < 1: pth = 'D:/jkour/Documents/Σχολή/2ο έτος/Εαρινό Εξάμηνο/Προγραμματισμός Η.Υ' pth += '/Εργασία εξαμήνου/MyCode/Truss_analysis' tup = (b, t, P) exporter(pth, 'variables', tup, '%.2f') tup = (Failure, ) exporter(pth, 'results', tup, '%d') ```