metadata
dict
text
stringlengths
60
3.49M
{ "source": "johnnymetz/ClassicComputerScienceProblemsInPython", "score": 3 }
#### File: ClassicComputerScienceProblemsInPython/Chapter6/mj.py ```python from __future__ import annotations from typing import List from data_point import DataPoint from kmeans import KMeans class Album(DataPoint): def __init__(self, name: str, year: int, length: float, tracks: float) -> None: super().__init__([length, tracks]) self.name = name self.year = year self.length = length self.tracks = tracks def __repr__(self) -> str: return f"{self.name}, {self.year}" if __name__ == "__main__": albums: List[Album] = [ Album("Got to Be There", 1972, 35.45, 10), Album("Ben", 1972, 31.31, 10), Album("Music & Me", 1973, 32.09, 10), Album("Forever, Michael", 1975, 33.36, 10), Album("Off the Wall", 1979, 42.28, 10), Album("Thriller", 1982, 42.19, 9), Album("Bad", 1987, 48.16, 10), Album("Dangerous", 1991, 77.03, 14), Album("HIStory: Past, Present and Future, Book I", 1995, 148.58, 30), Album("Invincible", 2001, 77.05, 16), ] kmeans: KMeans[Album] = KMeans(2, albums) clusters: List[KMeans.Cluster] = kmeans.run() for index, cluster in enumerate(clusters): print( f"Cluster {index} Avg Length {cluster.centroid.dimensions[0]} Avg Tracks {cluster.centroid.dimensions[1]}: {cluster.points}\n" ) ``` #### File: ClassicComputerScienceProblemsInPython/Chapter8/minimax.py ```python from __future__ import annotations from board import Piece, Board, Move # Find the best possible outcome for original player def minimax( board: Board, maximizing: bool, original_player: Piece, max_depth: int = 8 ) -> float: # Base case – terminal position or maximum depth reached if board.is_win or board.is_draw or max_depth == 0: return board.evaluate(original_player) # Recursive case - maximize your gains or minimize the opponent's gains if maximizing: best_eval: float = float("-inf") # arbitrarily low starting point for move in board.legal_moves: result: float = minimax( board.move(move), False, original_player, max_depth - 1 ) best_eval = max( result, best_eval ) # we want the move with the highest evaluation return best_eval else: # minimizing worst_eval: float = float("inf") for move in board.legal_moves: result = minimax(board.move(move), True, original_player, max_depth - 1) worst_eval = min( result, worst_eval ) # we want the move with the lowest evaluation return worst_eval def alphabeta( board: Board, maximizing: bool, original_player: Piece, max_depth: int = 8, alpha: float = float("-inf"), beta: float = float("inf"), ) -> float: # Base case – terminal position or maximum depth reached if board.is_win or board.is_draw or max_depth == 0: return board.evaluate(original_player) # Recursive case - maximize your gains or minimize the opponent's gains if maximizing: for move in board.legal_moves: result: float = alphabeta( board.move(move), False, original_player, max_depth - 1, alpha, beta ) alpha = max(result, alpha) if beta <= alpha: break return alpha else: # minimizing for move in board.legal_moves: result = alphabeta( board.move(move), True, original_player, max_depth - 1, alpha, beta ) beta = min(result, beta) if beta <= alpha: break return beta # Find the best possible move in the current position # looking up to max_depth ahead def find_best_move(board: Board, max_depth: int = 8) -> Move: best_eval: float = float("-inf") best_move: Move = Move(-1) for move in board.legal_moves: result: float = alphabeta(board.move(move), False, board.turn, max_depth) if result > best_eval: best_eval = result best_move = move return best_move ```
{ "source": "johnnymillergh/home_guard", "score": 3 }
#### File: home_guardian/common/startup.py ```python from __future__ import annotations from enum import Enum, unique @unique class StartupMode(Enum): """ StartupMode is an enumeration of possible startup modes. """ # Detect and inspect DETECT = "detect" # Collect data COLLECT = "collect" # Train data TRAIN = "train" @staticmethod def value_of(value: str) -> StartupMode: for member in StartupMode: if member.value == value: return member raise ValueError(f"Unknown startup mode: {value}") ``` #### File: home_guardian/common/time.py ```python import time from loguru import logger def elapsed_time(fn): def decorator(*arg, **kwarg): start_time = time.time() return_value = fn(*arg, **kwarg) end_time = time.time() logger.info(f"Elapsed time of function {fn}:{round(end_time - start_time, 4)}s") return return_value return decorator ``` #### File: home_guardian/opencv/threading.py ```python from __future__ import annotations from threading import Lock, Thread from typing import Any import cv2.cv2 as cv2 from cv2.cv2 import VideoCapture from cv2.mat_wrapper import Mat from loguru import logger class VideoCaptureThreading: """ Class to capture video from a camera or a video file by Python threading. Inspired by https://github.com/gilbertfrancois/video-capture-async/blob/master/main/gfd/py/video/capture.py """ def __init__(self, src: int = 0, width: int = 640, height: int = 480): """ Initialize the video capture threading object. :param src: The source of the video. :param width: The width of the video. :param height: The height of the video. """ self._thread: Thread = Thread(target=self._thread_loop, args=()) self._src: int = src self._video_capture: VideoCapture = VideoCapture(self._src) self.set(cv2.CAP_PROP_FRAME_WIDTH, width).set(cv2.CAP_PROP_FRAME_HEIGHT, height) # `_grabbed` is a boolean indicating if the frame is available or not self._grabbed, self._frame = self._video_capture.read() self._started = False self._read_lock = Lock() logger.warning("Initialized {}", self) def set(self, property_id: int, value: Any) -> VideoCaptureThreading: """ Sets a property in the VideoCapture. :param property_id: The property id. :param value: The value of the property. :return: self """ self._video_capture.set(property_id, value) return self def start(self) -> VideoCaptureThreading: """ Start the thread to read frames from the video stream. :return: self """ if self._started: logger.warning( "Threaded video capturing has already been started! Cannot be started again." ) return self self._started = True self._thread.start() logger.debug("Started video capture thread. Thread: {}", self._thread) return self def _thread_loop(self) -> None: """ [Private] Loop over frames from the video stream. """ logger.warning("Started video capture loop. Thread: {}", self._thread) while self._started: grabbed, frame = self._video_capture.read() with self._read_lock: self._grabbed = grabbed self._frame = frame logger.warning("Stopped video capture loop. Thread: {}", self._thread) def read(self) -> tuple[bool, Mat]: """ Read the frame from the video stream. :return: `grabbed` is a boolean indicating if the frame is available or not """ with self._read_lock: grabbed = self._grabbed frame = self._frame.copy() return grabbed, frame def stop(self): """ Stop the thread and release video capture object. """ self._started = False self._thread.join() def __exit__(self, exec_type, exc_value, traceback): """ Release video capture object """ self._video_capture.release() logger.warning("Released {}", self) ``` #### File: home_guardian/repository/trained_face_repository.py ```python from datetime import datetime from loguru import logger from home_guardian.repository.model.trained_face import TrainedFace @logger.catch def save_or_update(username: str) -> TrainedFace: """ Save or update a trained face. :param username: The username of the trained face. :return: a new trained face. """ trained_face: TrainedFace = TrainedFace(username=username) try: trained_face.save() except Exception as e: logger.warning(f"Exception occurred while saving trained face. {e}") trained_face.update({TrainedFace.modified_time: datetime.now()}).where( TrainedFace.username == username ).execute() trained_face = TrainedFace.get_or_none(TrainedFace.username == username) return trained_face def get_by_id(_id: int) -> TrainedFace: """ Get a trained face by id. :param _id: The id of the trained face. :return: a trained face. """ return TrainedFace.get_by_id(_id) ```
{ "source": "johnnymillergh/python_boilerplate", "score": 3 }
#### File: python_boilerplate/messaging/sending_email.py ```python import datetime import logging import smtplib from email.header import Header from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from typing import List log = logging.getLogger("rotatingFileLogger") # Email constants mail_host: str = "smtp.sina.com" mail_user: str = "johnnys_rpi_3b" authorization_password: str = "<PASSWORD>" sender: str = f"{<EMAIL>" receivers: List[str] = ["<EMAIL>"] def build_message(receiver: str) -> MIMEMultipart: content: MIMEText = MIMEText( "This is a email from Python " + datetime.datetime.now().strftime("%Y-%m-%d %T"), "plain", "utf-8", ) message: MIMEMultipart = MIMEMultipart() message["Subject"] = Header( "Emergency Security Alert, at " + datetime.datetime.now().strftime("%Y-%m-%d %T"), "utf-8", ) message["From"] = Header(sender) message["To"] = Header(receiver) message["Cc"] = Header(sender) message.attach(content) return message def send_email(): smtp: smtplib.SMTP = smtplib.SMTP(mail_host, 25) smtp.connect(mail_host, 25) smtp.login(mail_user, authorization_password) for receiver in receivers: message: MIMEMultipart = build_message(receiver) try: log.info(f"Sending email. receiver: {receiver}") smtp.sendmail(sender, [receiver], message.as_string()) log.info( f"Sent email successfully. {smtp}. receiver: {receiver}, message: {message}" ) except smtplib.SMTPException: log.exception("Exception occurred while sending email!") smtp.quit() ```
{ "source": "JohnnyMoonlight/MacherdaachBadgeQueue-1", "score": 2 }
#### File: MacherdaachBadgeQueue-1/Software/main.py ```python from controller.controller import Controller def run(): Controller().startup_controller() if __name__ == '__main__': run() ```
{ "source": "johnnynetgevity/cardano-sl", "score": 3 }
#### File: python-api/explorer_python_api/explorer.py ```python import requests from requests.exceptions import ConnectionError import logging from datetime import datetime CODE = { 'NOT_ACCESSIBLE': -1, # can't ping explorer 'RESPONSE_ERROR': -2, # explorer returned "Left" 'WRONG_RESPONSE': -3, # some unexpected message in response 'CALL_EXCEPTION': -4, # python exception while requesting } class ExplorerClient(): def __init__(self, logger, url): self.logger = logger self.url = url def total_pages(self): return self.__req_right('blocks/pages/total') def slot(self, epoch, slot): return self.__req_right(f'epochs/{epoch}/{slot}') def range(self, startHash, endHash): return self.__req_right(f'blocks/range/{startHash}/{endHash}') def page(self): return self.__req_right(f'blocks/pages') def txs(self, hash): return self.__req_right(f'blocks/txs/{hash}?limit=5000') def tx(self, hash): return self.__req_right(f'txs/summary/{hash}') def __req_right(self, path): def processor(r): if 'Right' in r: return {'ok': r['Right']} if 'Left' in r: return {'error': f'Request returned error! {r}', 'code': CODE['RESPONSE_ERROR'], 'left': r['Left']} return {'error': f'Unexpected response format! {r}', 'code': CODE['WRONG_RESPONSE']} return self.__req(path, processor) def __req(self, path, result_processor): try: try: return result_processor(self.__reget(f'{self.url}/api/{path}')) except ConnectionError as e: self.__error(f"Explorer is not accessible trying remote! {e}") return {'error': msg, 'code': CODE['NOT_ACCESSIBLE']} except BaseException as e: msg = f'Explorer call has failed with an error! {e}' self.__error(msg) return {'error': msg, 'code': CODE['CALL_EXCEPTION']} def __reget(self, url): self.__debug(f'RE: {url}') json = requests.get(url).json() self.__debug(f'RP: {json}') return json def __debug(self, msg): self.logger.debug(msg) def __error(self, msg): self.logger.error(msg) ```
{ "source": "johnnynieves/Cisco_Network_Scripts", "score": 2 }
#### File: johnnynieves/Cisco_Network_Scripts/test2.py ```python from napalm import get_network_driver from napalm.base.exceptions import ConnectionException from getpass import getpass from netmiko import NetMikoAuthenticationException from os import system from Network_Menu import creds, get_driver_info driver = get_network_driver('ios') auth_error = 'Auth Error for ' cannot_connect = 'Could not connect to ' def set_configs(): driver_info = get_driver_info() for i in range(int(driver_info[1]), int(driver_info[2])+1): try: ip = driver_info[0] + str(i) device = driver(ip, creds()[0], creds()[1]) print(f'\nConnecting to {ip}') device.open() with open('config', 'r') as f: config = f.readlines() print('-' * 80) print(device.device.send_config_set(config)) print('-' * 80) except NetMikoAuthenticationException: print(auth_error, ip) print('-' * 80) except ConnectionException: print(cannot_connect, ip) print('-' * 80) f.close() if __name__ == "__main__": set_configs() ```
{ "source": "johnnynode/AI-LEARNING-MATERIAL", "score": 4 }
#### File: Basic-Python/code/password_generator.py ```python import random word_file = "words.txt" word_list = [] #fill up the word_list with open(word_file,'r') as words: for line in words: # remove white space and make everything lowercase word = line.strip().lower() # don't include words that are too long or too short if 3 < len(word) < 8: word_list.append(word) # Add your function generate_password here # It should return a string consisting of three random words # concatenated together without spaces def generate_password() : return random.choice(word_list) + random.choice(word_list) + random.choice(word_list) # test your function print(generate_password()) ``` #### File: code/test_file/7.py ```python def copyFun(src, target): # src 是源文件 target是目标文件 # 打开源文件 f1 = open(src, 'rb') f2 = open(target, 'wb') # 循环读取写入 content = f1.readline() while len(content) > 0: # print(content, end="") f2.write(content) content = f1.readline() # 关闭源和目标文件 f1.close() f2.close() copyFun('img/ccc.jpg', 'img/ddd.jpg') ``` #### File: code/test_file/file.py ```python ''' f=open('./a.txt', 'r') content = f.readline() while len(content) > 0: content = f.readline() print(content, end="") f.close() ''' ### 读取所有的行 readlines 试用于读取小文件 ''' f=open('./a.txt', 'r') flist = f.readlines() # 返回一个列表 for line in flist: print(line, end="") f.close() ''' ### 简单的文件写入操作 ''' f=open('./b.txt', 'w') # 清空写 f.write('Hello Java\n') f.write('Hello Java\n') f.close() ''' ### 批量写 ''' a=['Hello World\n', 'Hello Java\n', 'Hello Python\n'] f=open('./b.txt', 'w') # w是清空写,a是追加写 f.writelines(a) f.close() ''' ### 自定义文件复制函数 def myCopy(file1, file2): ''' file1 : 源文件 file2 : 目标文件 ''' # 1. 打开两个文件 f1 = open(file1, 'r') f2 = open(file2, 'w') # 2. 循环读取并写入实现复制内容 content = f1.readline() while len(content) > 0: f2.write(content) content = f1.readline() # 3. 关闭两个文件 f1.close() f2.close() # myCopy('./a.txt', './a_copy.txt') ### 关于图片,声音,视频,可执行程序等二进制文件读取 ''' 需要注意的是二进制文件读取时,模式要选择相应的b 如 rb 文档内容一般分为2种格式: 1. 字符(一般不需要处理) 2. 字节(二进制) 二进制的需要特殊处理: f1 = open(file1, 'rb') f2 = open(file2, 'wb') 此处不再举例 ''' ### 目录操作 ''' import os os.getcwd() # 获取当前工作目录 os.chdir('your dir') # 跳转到某个目录 os.listdir() # 列出当前目录下的文件 返回一个文件列表 举例: a = os.listdir() for i in a: print(i) os.mkdir('bb') # 创建一个目录 os.rename('bb', 'cc') # 把 bb 文件/文件夹 改名为 cc os.rmdir('cc') # 删除 cc 的文件夹 适合 空文件 os.rmdir('aa') # 如果aa目录中有文件,则会报错 os.stat('file.py') # 返回一个文件对象 举例: info=os.stat('file.py') info.st_size # 获取文件大小 info.其他属性 # 获取其他属性信息 系统命令 os.getenv('PATH') # 获取环境变量 os.putenv() os.exit() 退出当前执行命令,直接关闭当前操作 os.system() 执行系统命令 ''' ### 当前os模块的值 ''' os.curdir # 获取当前目录 os.name # 获取当前是什么系统 os.sep # 获取当前系统的分隔符 windows下是 \\ linux下是 / 常用,便于程序的移植性 os.extsep # 获取当前系统中文件名和后缀之间的分隔符号,所有系统都是 不常用 os.linesep # 获取当前系统的换行符号 不常用 ### os.path 模块 os.path.abspath('相对路径') # 将相对路径转换为绝对路径 os.path.basename('路径') # 获取路径中文件夹或文件名称 os.path.dirname('路径') # 获取路径中的路径部分 os.path.join('路径1','路径2') # 将2个路径合成1个路径 os.path.split('路径') # 将一个领切割成文件夹和文件名部分 os.path.splitext('文件名称') # 将一个文佳宁切成名字和后缀两个部分 返回值 元组(名称,后缀) os.path.getsize('路径') # 获取一个文件的大小 返回值 整数 只能是文件大小,不是目录大小 获取目录大小需要遍历 os.path.isfile('路径') # 检测一个路径是否是一个文件 返回值 布尔 os.path.exists('路径') # 检测文件是否存在 返回值 布尔 ''' ### 复制文件夹的函数 ''' import os def myCopy(file1, file2): ''' file1 : 源文件 file2 : 目标文件 ''' # 1. 打开两个文件 f1 = open(file1, 'r') f2 = open(file2, 'w') # 2. 循环读取并写入实现复制内容 content = f1.readline() while len(content) > 0: f2.write(content) content = f1.readline() # 3. 关闭两个文件 f1.close() f2.close() def copyDir(dir1, dir2): # 获取被复制目录中的所有文件信息 dlist = os.listdir(dir1) # 创建新的目录 os.mkdir(dir2) # 遍历所有文件,并执行文件复制 for f in dlist: # 为遍历的文件添加目录路径 file1 = os.path.join(dir1, f) # 源 file2 = os.path.join(dir2, f) # 目标 # 判断是否是文件 if os.path.isfile(file1): myCopy(file1, file2) # 调用自定义文件复制函数来复制文件 ## 判断是否是目录 if os.path.isdir(file1): copyDir(file1, file2) # 递归调用自己,来实现子目录的复制 ''' ### todo 使用文件和目录操作,定义一个递归统计目录大小的函数 ''' ^_^ ''' ``` #### File: Basic-Python/code/test_function.py ```python ''' def bb(m1, m2): print(m1 + m2) bb() ''' ### 带有默认值的函数 ''' def cc(name='jack', age=20, sex='man'): print(name) print(age) print(sex) cc() # 不传递参数 用默认值 cc('John') # 只传递一个 cc('Lily', 18, 'female') 传递参数,用参数 ''' ### 关键字参数 可以改变传递顺序 ''' def dd(name='jack', age=20, sex='man'): print(name) print(age) print(sex) # 可以有效防止参数传错 dd(sex="female", age=10, name="JJ") # 参数不通过参数的位置来决定,通过参数对应的关键字属性决定,不用考虑传递顺序 ''' ### 收集参数 #### 非关键字收集 ''' def demo(*arg): print(arg) # 以元组的方式 得到参数 sum=0 for i in arg: sum+=i print('final sum: ', sum) demo(10, 20, 30) ''' #### 关键字收集 注意用 2颗* ''' def demo(**arg): print(arg) demo(name="jack", age=10) # 调用后输出的是字典参数 输出:{'name':'jack', 'age':10} ''' ### 混合模式 ''' def demo(m, **arg): print(m) print(arg) demo(10, name="jack", age=10) # 调用后输出的是字典参数 输出:10, {'name':'jack', 'age':10} ''' ### 返回值的使用 #### 定义一个计算指定数值累加的函数 ''' def sum(m): # 在内部写注释 total=0 for i in range(0, m+1): total += i return total print(sum(100)) # 5050 ''' #### 两种方式查看文档函数 ''' help(sum) # 在终端下输出 sum.__doc__ # 在文档输出 ''' #### 局部变量和全局变量 ''' 1. 定义在函数内部的变量拥有一个局部作用域,定义在函数外的拥有全局作用于 2. 局部变量只能再起被声明的函数内部访问,而全局变量可以在整个程序范围内访问。 3. 调用函数时,所有在函数内声明的变量名称都精被加入到作用域中。 ''' ##### 函数外定义的称全局变量 ''' name = 'zhagnsan' def fun(): name='lisi' print(name) # 输出的是 lisi 局部变量 fun() print('函数外输出全局变量: name: ', name) # 函数外输出全局变量: name: zhagnsan ''' ##### 使用 global 使用全局变量 ''' name = 'zhagnsan' def fun(): global name print(name) # 输出的是 zhangsan name='lisi' # 此处修改了全局变量 fun() print('函数外输出全局变量: name: ', name) # 函数外输出全局变量: name: lisi ''' ### 匿名函数 lambda 表达式 ''' 1. 匿名函数:即不再使用def语句这样标准的形式定义一个函数 2. python 使用 lambda 来创建匿名函数 3. lambda 只是一个表达式,函数体比def简单很多 4. lambda 主体是一个表达式,而不是代码块,仅仅能在lambda表达式中封装有限的逻辑进去。 5. lambda 函数拥有自己的命名空间,且不能访问自己参数列表之外或全局命名空间里的参数。 6. 虽然lambda函数看起来只能写一行,却不等同于c或C++的内联函数,后者的目的是调用小函数时不占用栈内存从而增加运行效率。 7. 语法:lambda 函数的语法只包含一个语句,如:lambda [arg1, [arg2, ...argn]]:expression ''' ''' sum=lambda v1, v2: v1+v2 # 这个方式中 冒号前面的是参数,冒号后面的是最终return出去的 print(sum(1,2)) # 3 ''' ### 一些内置的函数 import math import random print(abs(10)) # 10 print(abs(-10)) # 10 print(max([10,20,30])) # 30 print(min(2,4,6)) # 2 print(round(4.56789)) # 5 print(round(4.56789, 2)) # 4.57 保留2位小数 print(math.ceil(4.0001)) # 5 天花板 print(math.floor(4.99999)) # 4 地板 print(random()) # 0.282323423423423 输出 0 ~ 1 之间的随机数 print(random.choice([10,20,30,40])) # 随机取出一个列表中的值 print(random.randrange(10)) # 随机一个 0 ~ 9 的整数 print(random.randrange(5, 10)) # 随机一个 5 ~ 9 的整数 print(random.randrange(0, 11, 2)) # 随机一个0~10的偶数 print(random.shuffle([10,20,30,40])) # 随机打乱一个列表 print(math.sin(90)) # 三角函数 0.8939966636005579 print(math.pi) # 圆周率 3.141592653589793 print(math.e) # 自然常数 2.718281828459045 ``` #### File: code/test_magic/3.py ```python class Person: name='zhangsan' age=20 p = Person() print(p) # <__main__.Person object at 0x10073e668> print('⭐️ ' * 20) class Stu: name='zhangsan' age=20 def __str__(self): return "name: %s; age: %d"%(self.name, self.age) s = Stu() print(s) # name: zhangsan; age: 20 ``` #### File: code/test_magic/4.py ```python class Demo: def __init__(self, x, y): self.x = x self.y = y def __str__(self): return "Demo(%d, %d)"%(self.x, self.y) def __add__(self, other): return Demo(self.x + other.x, self.y + other.y) # 返回一个实例对象 d1 = Demo(5, 8) d2 = Demo(9, -4) print(d1 + d2) # Demo(14, 4) 两个对象相加就会调用 __add__魔术方法 ``` #### File: code/test_property/3.py ```python class Rectangle: def __init__(self): self.width = 0 self.height = 0 def setSize(self, size): self.width, self.height = size # 注意:此处size可以是个元组、列表、集合 def getSize(self): return self.width, self.height r = Rectangle() r.setSize({100, 200}) print(r.width, r.height) # 100 200 print(r.getSize()) # (200, 100) ``` #### File: Projects/ImageClassifier/predict.py ```python import matplotlib.pyplot as plt import torch from torch import nn from torch import optim # 训练相关 import torch.nn.functional as F from torch.autograd import Variable from torch.utils.data import DataLoader import torchvision from torchvision import datasets, transforms import torchvision.models as models import json from tqdm import tqdm import numpy as np from PIL import Image import copy from collections import OrderedDict # 命令行相关 import argparse # input checkpoint parser = argparse.ArgumentParser() # 此处设置默认参数: input parser.add_argument("i", "input") # 此处设置默认参数: checkpoint parser.add_argument("cp", "checkpoint") # 设置可选参数: --top_k parser.add_argument("-t", "--top_k", type=int) # 设置可选参数: --category_names parser.add_argument("-cn", "--category_names") # 设置可选参数: --gpu parser.add_argument("-g", "--gpu", action="store_true") # 获取参数 args = parser.parse_args() # 声明变量 input = None; # 数据路径 checkpoint = None; # 保存检查点的路径 top_k = None; # 模型架构 category_names = None; # 学习速率 gpu = None; # 隐藏单元 # 通过参数更新数据 if args.input: input = args.input #print('args.input: ' , args.input) if args.checkpoint: checkpoint = args.checkpoint #print('args.checkpoint: ', args.checkpoint) if args.top_k: top_k = args.top_k #print('arags.top_k: ', args.top_k) if args.category_names: category_names = args.category_names #print('args.category_names', args.category_names) if args.gpu: gpu = args.gpu #print('args.gpu', args.gpu) # 开始加载检查点 def load_ckp(filepath): ckp = torch.load(filepath) model = ckp['model'] class_to_idx = ckp['class_to_idx'] return model, class_to_idx model, class_to_idx = load_ckp(checkpoint) # 图像处理 def process_image(image): im = Image.open(image) w, h = im.size if w < h: pair = (256, int(256/w * h)) else: pair = (int(256/h * w), 256) im = im.resize(pair) # 重新获取 w,h w, h = im.size # 你需要从图像的中心裁剪出 224x224 的部分 w_crop = (w - 224) / 2 h_crop = (h - 224) / 2 # (left, upper, right, lower) box = (w_crop, h_crop, w - w_crop, h - h_crop) # print('box', box) #裁剪 region = im.crop(box) # print(region.size) # 图片转np np_image = np.array(region) # 图片除255进行归一化 标准化 ave = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) np_image_norm = (np_image / 255 - ave) / std #print(np_image_norm) res = np_image_norm.transpose(2, 0, 1) return torch.from_numpy(res) #显示图片功能 def imshow(image, ax=None, title=None): if ax is None: fig, ax = plt.subplots() image = image.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) image = std * image + mean image = np.clip(image, 0, 1) ax.imshow(image) return ax # 显示图片 img_tensor = process_image(input) imshow(img_tensor) # 预测图片函数 def predict(image_path, model, topk=5): model.eval() # 处理图片 img_tensor = process_image(image_path) # 加一维数据,让它变成一个4-D的Tensor fourDTensor = img_tensor.unsqueeze(0) # .type(torch.FloatTensor) fourDTensor = fourDTensor.type(torch.cuda.FloatTensor) # target = Variable(fourDTensor) target = Variable(fourDTensor.cuda(), volatile=True) output = model(target) # pre = torch.exp(output).data pre = torch.exp(output) probs, index = pre.topk(topk) # 再次处理 probs = probs.cpu().detach().numpy().tolist()[0] index = index.cpu().detach().numpy().tolist()[0] res_index = [] for i in index: res_index.append(class_to_idx[i]) return probs, res_index # 标签映射 with open(category_names, 'r') as f: cat_to_name = json.load(f) # 预测图片 probs, classes = predict(input, model, top_k) names = [cat_to_name[item] for item in classes] print(probs) print(names) ```
{ "source": "johnnynode/d_shop", "score": 2 }
#### File: admin/views/orders.py ```python from django.shortcuts import render from django.http import HttpResponse from django.db.models import Q from django.core.paginator import Paginator from common.models import Goods,Users,Orders,Detail # Create your views here. def index(request,pIndex=1): '''浏览信息''' #获取订单信息 mod = Orders.objects mywhere=[] # 获取、判断并封装关keyword键搜索 kw = request.GET.get("keyword",None) if kw: # 查询收件人和地址中只要含有关键字的都可以 list = mod.filter(Q(linkman_contains=kw) | Q(address__contains=kw)) mywhere.append("keyword="+kw) else: list = mod.filter() # 获取、判断并封装订单状态state搜索条件 state = request.GET.get('state','') if state != '': list = list.filter(state=state) mywhere.append("state="+state) #执行分页处理 pIndex = int(pIndex) page = Paginator(list,5) #以5条每页创建分页对象 maxpages = page.num_pages #最大页数 #判断页数是否越界 if pIndex > maxpages: pIndex = maxpages if pIndex < 1: pIndex = 1 list2 = page.page(pIndex) #当前页数据 plist = page.page_range #页码数列表 # 遍历订单信息并追加 下订单人姓名信息 for od in list2: user = Users.objects.only('name').get(id=od.uid) od.name = user.name #封装信息加载模板输出 context = {"orderslist":list2,'plist':plist,'pIndex':pIndex,'maxpages':maxpages,'mywhere':mywhere} return render(request,"admin/orders/index.html",context) def detail(request,oid): ''' 订单详情信息 ''' try: # 加载订单信息 orders = Orders.objects.get(id=oid) if orders != None: user = Users.objects.only('name').get(id=orders.uid) orders.name = user.name # 加载订单详情 dlist = Detail.objects.filter(orderid=oid) # 遍历每个商品详情,从Goods中获取对应的图片 for og in dlist: og.picname = Goods.objects.only('picname').get(id=og.goodsid).picname # 放置模板变量,加载模板并输出 context = {'orders':orders,'detaillist':dlist} return render(request,"admin/orders/detail.html",context) except Exception as err: print(err) context = {'info':'没有找到要查看的信息!'} return render(request,"admin/info.html",context) def state(request): ''' 修改订单状态 ''' try: oid = request.GET.get("oid",'0') ob = Orders.objects.get(id=oid) ob.state = request.GET['state'] ob.save() context = {'info':'修改成功!'} except Exception as err: print(err) context = {'info':'修改失败!'} return render(request,"admin/info.html",context) ``` #### File: admin/views/type.py ```python from django.shortcuts import render from django.http import HttpResponse from django.shortcuts import redirect from django.core.urlresolvers import reverse from common.models import Types # 浏览商品类别信息 def index(request, pIndex=1): # 执行数据查询,并放置到模板中 list = Types.objects.extra(select = {'_has':'concat(path,id)'}).order_by('_has') # 遍历查询结果,为每个结果对象追加一个pname属性,目的用于缩进标题 for ob in list: ob.pname ='. . . '*(ob.path.count(',')-1) # print(list[0].__dict__) #封装信息加载模板输出 context = {"typeslist":list} return render(request,"admin/type/index.html",context) # 商品类别信息添加表单 def add(request,tid): # 获取父类别信息,若没有则默认为根类别信息 if tid == '0': context = {'pid':0,'path':'0,','name':'根类别'} else: ob = Types.objects.get(id=tid) context = {'pid':ob.id,'path':ob.path+str(ob.id)+',','name':ob.name} return render(request,'admin/type/add.html',context) #执行商品类别信息添加 def insert(request): try: ob = Types() ob.name = request.POST['name'] ob.pid = request.POST['pid'] ob.path = request.POST['path'] ob.save() context = {'info':'添加成功!'} except Exception as err: print(err) context = {'info':'添加失败!'} return render(request,"admin/info.html",context) # 执行商品类别信息删除 def delete(request,tid): try: # 获取被删除商品的子类别信息量,若有数据,就禁止删除当前类别 row = Types.objects.filter(pid=tid).count() if row > 0: context = {'info':'删除失败:此类别下还有子类别!'} return render(request,"admin/info.html",context) ob = Types.objects.get(id=tid) ob.delete() context = {'info':'删除成功!'} except Exception as err: print(err) context = {'info':'删除失败!'} return render(request,"admin/info.html",context) # 打开商品类别信息编辑表单 def edit(request,tid): try: ob = Types.objects.get(id=tid) context = {'type':ob} return render(request,"admin/type/edit.html",context) except Exception as err: print(err) context = {'info':'没有找到要修改的信息!'} return render(request,"admin/info.html",context) # 执行商品类别信息编辑 def update(request,tid): try: ob = Types.objects.get(id=tid) ob.name = request.POST['name'] ob.save() context = {'info':'修改成功!'} except Exception as err: print(err) context = {'info':'修改失败!'} return render(request,"admin/info.html",context) ``` #### File: admin/views/users.py ```python from django.shortcuts import render from django.http import HttpResponse from django.db.models import Q from django.core.paginator import Paginator from datetime import datetime from common.models import Users # Create your views here. def index(request,pIndex=1): '''浏览信息''' umod = Users.objects mywhere=[] # 获取、判断并封装关keyword键搜索 kw = request.GET.get("keyword",None) if kw: # 查询账户或真实姓名中只要含有关键字的都可以 list = umod.filter(Q(username__contains=kw) | Q(name__contains=kw)) mywhere.append("keyword="+kw) else: list = umod.filter() # 获取、判断并封装性别sex搜索条件 sex = request.GET.get('sex','') if sex != '': list = list.filter(sex=sex) mywhere.append("sex="+sex) #执行分页处理 pIndex = int(pIndex) page = Paginator(list,5) #以5条每页创建分页对象 maxpages = page.num_pages #最大页数 #判断页数是否越界 if pIndex > maxpages: pIndex = maxpages if pIndex < 1: pIndex = 1 list2 = page.page(pIndex) #当前页数据 plist = page.page_range #页码数列表 #封装信息加载模板输出 context = {"userslist":list2,'plist':plist,'pIndex':pIndex,'maxpages':maxpages,'mywhere':mywhere} return render(request,"admin/users/index.html",context) def add(request): '''加载添加页面''' return render(request,"admin/users/add.html") def insert(request): '''执行添加''' try: ob = Users() ob.username = request.POST['username'] ob.name = request.POST['name'] #获取密码并md5 import hashlib m = hashlib.md5() m.update(bytes(request.POST['password'],encoding="utf8")) ob.password = m.hexdigest() ob.sex = request.POST['sex'] ob.address = request.POST['address'] ob.code = request.POST['code'] ob.phone = request.POST['phone'] ob.email = request.POST['email'] ob.state = 1 ob.addtime = datetime.now().strftime("%Y-%m-%d %H:%M:%S") ob.save() context={"info":"添加成功!"} except Exception as err: print(err) context={"info":"添加失败"} return render(request,"admin/info.html",context) def delete(request,uid): '''删除信息''' try: ob = Users.objects.get(id=uid) ob.delete() context={"info":"删除成功!"} except Exception as err: print(err) context={"info":"删除失败"} return render(request,"admin/info.html",context) def edit(request,uid): '''加载编辑信息页面''' try: ob = Users.objects.get(id=uid) context={"user":ob} return render(request,"admin/users/edit.html",context) except Exception as err: context={"info":"没有找到要修改的信息!"} return render(request,"admin/info.html",context) def update(request,uid): '''执行编辑信息''' try: ob = Users.objects.get(id=uid) ob.name = request.POST['name'] ob.sex = request.POST['sex'] ob.address = request.POST['address'] ob.code = request.POST['code'] ob.phone = request.POST['phone'] ob.email = request.POST['email'] ob.state = request.POST['state'] ob.save() context={"info":"修改成功!"} except Exception as err: print(err) context={"info":"修改失败"} return render(request,"admin/info.html",context) def resetpass(request,uid): '''加载重置会员密码信息页面''' try: ob = Users.objects.get(id=uid) context={"user":ob} return render(request,"admin/users/resetpass.html",context) except Exception as err: context={"info":"没有找到要修改的信息!"} return render(request,"admin/info.html",context) def doresetpass(request,uid): '''执行编辑信息''' try: ob = Users.objects.get(id=uid) #获取密码并md5 import hashlib m = hashlib.md5() m.update(bytes(request.POST['password'],encoding="utf8")) ob.password = m.<PASSWORD>() ob.save() context={"info":"密码重置成功!"} except Exception as err: print(err) context={"info":"密码重置失败"} return render(request,"admin/info.html",context) ```
{ "source": "johnnynode/python-spider", "score": 3 }
#### File: contents/code/pro5.py ```python from requests.exceptions import RequestException from lxml import etree import requests import time,json def getPage(url): '''爬取指定url页面信息''' try: #定义请求头信息 headers = { 'User-Agent':'User-Agent:Mozilla/5.0(WindowsNT6.1;rv:2.0.1)Gecko/20100101Firefox/4.0.1' } # 执行爬取 res = requests.get(url,headers=headers) #判断响应状态,并响应爬取内容 if res.status_code == 200: return res.text else: return None except RequestException: return None def parsePage(content): '''解析爬取网页中的内容,并返回字段结果''' # =======使用xpath解析==================== # 解析HTML文档,返回根节点对象 html = etree.HTML(content) #获取网页中所有标签并遍历输出标签名 items = html.xpath('//div[@class="item"]') #遍历封装数据并返回 for item in items: yield { 'index':item.xpath('.//div/em[@class=""]/text()')[0], 'image':item.xpath('.//img[@width="100"]/@src')[0], 'title':item.xpath('.//span[@class="title"]/text()')[0], 'actor':item.xpath('.//p[@class=""]/text()')[0], 'score':item.xpath('.//span[@class="rating_num"]/text()'), #'time':item[4].strip()[5:], } def writeFile(content): '''执行文件追加写操作''' with open("./result.txt",'a',encoding='utf-8') as f: f.write(json.dumps(content, ensure_ascii=False) + "\n") #json.dumps 序列化时对中文默认使用的ascii编码.想输出真正的中文需要指定 ensure_ascii=False def main(offset): ''' 主程序函数,负责调度执行爬虫处理 ''' url = 'https://movie.douban.com/top250?start=' + str(offset) #print(url) html = getPage(url) #判断是否爬取到数据,并调用解析函数 if html: for item in parsePage(html): writeFile(item) # 判断当前执行是否为主程序运行,并遍历调用主函数爬取数据 if __name__ == '__main__': for i in range(10): main(offset=i*25) time.sleep(1) ``` #### File: fang_5i5j/spiders/fang.py ```python import scrapy from fang_5i5j.items import FangItem from scrapy_redis.spiders import RedisSpider class FangSpider(RedisSpider): name = 'fang' #allowed_domains = ['fang.5i5j.com'] #start_urls = ['https://fang.5i5j.com/bj/loupan/'] redis_key = 'fangspider:start_urls' def __init__(self, *args, **kwargs): # Dynamically define the allowed domains list. domain = kwargs.pop('domain', '') self.allowed_domains = filter(None, domain.split(',')) super(FangSpider, self).__init__(*args, **kwargs) def parse(self, response): #print(response.status) hlist = response.css("li.houst_ctn") for vo in hlist: item = FangItem() item['title'] = vo.css("span.house_name::text").extract_first() # print(item) yield item #pass ```
{ "source": "johnnyp2587/fx-drqn", "score": 3 }
#### File: johnnyp2587/fx-drqn/process_data.py ```python import numpy as np import pandas as pd import datetime def gen_cols(Pad, cur, lag): currency = list(np.sort(Pad['currency pair'].unique())) tmp = Pad[Pad['currency pair'] == cur].sort_values(by=['timestamp']) for i in range(1,lag+1): colname1 = 'bid_lag_' + str(i) colname2 = 'ask_lag_' + str(i) tmp[colname1] = np.log(tmp['bid price']) - np.log(tmp['bid price'].shift(i)) tmp[colname2] = np.log(tmp['ask price']) - np.log(tmp['ask price'].shift(i)) for ccy in currency: if ccy == cur: pass else: _tmp = Pad[Pad['currency pair'] == ccy].sort_values(by=['timestamp']) mid = pd.DataFrame(np.mean(np.asarray([_tmp['bid price'].values,_tmp['ask price'].values]), axis=0)) for i in range(1,lag+1): colname3 = ccy + '_lag_' + str(i) tmp[colname3] = np.log(mid) - np.log(mid.shift(i)) tmp['date'] = tmp['timestamp'].astype(str).str[0:10] tmp['dow'] = pd.to_datetime(tmp['date']).dt.dayofweek tmp['hh'] = tmp['timestamp'].astype(str).str[11:13] tmp['mm'] = tmp['timestamp'].astype(str).str[14:16] tmp['ss'] = tmp['timestamp'].astype(str).str[17:19] tmp['time_1'] = np.sin(np.pi*tmp['dow'].values/7) tmp['time_2'] = np.sin(np.pi*tmp['hh'].astype('int64').values/24) tmp['time_3'] = np.sin(np.pi*tmp['mm'].astype('int64').values/60) tmp['time_4'] = np.sin(np.pi*tmp['ss'].astype('int64').values/60) tmp = tmp.drop(['date', 'dow','hh','mm','ss'], axis=1) tmp = tmp.reset_index(drop=True) tmp = tmp[lag:] return tmp def CreateFeature(cur, lag, week_num): date_list = ['0201','0203','0204','0205', '0206','0207','0208','0210', '0211','0212','0213','0214', '0215','0217','0218','0219', '0220','0221','0222','0224', '0225','0226','0227','0228','0301'] train_week_1 = date_list[0:4] train_week_2 = date_list[4:8] train_week_3 = date_list[8:12] train_week_4 = date_list[12:16] train_week_5 = date_list[16:20] eval_week_1 = date_list[4:6] eval_week_2 = date_list[8:10] eval_week_3 = date_list[12:14] eval_week_4 = date_list[16:18] eval_week_5 = date_list[20:22] if week_num == 1: train_week = train_week_1 eval_week = eval_week_1 elif week_num == 2: train_week = train_week_2 eval_week = eval_week_2 elif week_num == 3: train_week = train_week_3 eval_week = eval_week_3 elif week_num == 4: train_week = train_week_4 eval_week = eval_week_4 elif week_num == 5: train_week = train_week_5 eval_week = eval_week_5 Pad_train = None Pad_eval = None for train_date in train_week: filename = '../pad/pad-' + train_date + '.csv' tmp = pd.read_csv(filename) if Pad_train is not None: Pad_train = Pad_train.append(tmp) else: Pad_train = tmp final_train = gen_cols(Pad_train,cur,lag) trainname = './data/train_' + cur + '_lag_' + str(lag) + '_week' + str(week_num) + '.csv' final_train.to_csv(trainname,index=False) for eval_date in eval_week: filename = '../pad/pad-' + eval_date + '.csv' tmp = pd.read_csv(filename) if Pad_eval is not None: Pad_eval = Pad_eval.append(tmp) else: Pad_eval = tmp final_eval = gen_cols(Pad_eval,cur,lag) evalname = './data/eval_' + cur + '_lag_' + str(lag) + '_week' + str(week_num) + '.csv' final_eval.to_csv(evalname,index=False) if __name__=='__main__': CreateFeature('EURUSD', 16, 1) ``` #### File: johnnyp2587/fx-drqn/utils.py ```python import numpy as np import pandas as pd from tqdm import tqdm np.random.seed(1) from itertools import count Pad = pd.read_csv('PadData_v2.csv') # Default T = 3617 m = 16 to_draw = np.sort(Pad['timestamp'].unique()) ccy = np.sort(Pad['currency pair'].unique()) min_history = 1000 # min episode length def generate_episode(n,cur): _max = to_draw.shape[0] _end = min(n+T, _max) timeframe = to_draw[n:_end] other_bid = np.zeros((timeframe.shape[0],ccy.shape[0]-1)) other_ask = np.zeros((timeframe.shape[0],ccy.shape[0]-1)) i = 0 for elem in ccy: tmp = Pad[Pad['currency pair'] == elem] if elem == cur: target_bid = tmp[tmp.timestamp.isin(timeframe)]['bid price'].values target_ask = tmp[tmp.timestamp.isin(timeframe)]['ask price'].values else: other_bid[:,i] = tmp[tmp.timestamp.isin(timeframe)]['bid price'].values other_ask[:,i] = tmp[tmp.timestamp.isin(timeframe)]['ask price'].values i += 1 return target_bid, target_ask, other_bid, other_ask def features(price_path,m): features = np.zeros((price_path.shape[0]-m,m)) for i in range(m): features[:,i] = (np.log(price_path) - np.log(np.roll(price_path, i+1)))[m:] return features def get_features(target_bid, target_ask, other_bid, other_ask, m): feature_span = features(target_bid,m) feature_span = np.append(feature_span, features(target_ask,m), axis = 1) for i in range(other_bid.shape[1]): feature_span = np.append(feature_span, features(other_bid[:,i],m), axis = 1) for j in range(other_ask.shape[1]): feature_span = np.append(feature_span, features(other_ask[:,j],m), axis = 1) return feature_span def draw_episode(m, cur, min_history): ''' Input: m, number of lag returns z_1,...z_m cur, currency pair that we target to trade min_history, min length of a valid episode ''' n = np.random.randint(to_draw.shape[0] - min_history) target_bid, target_ask, other_bid, other_ask = generate_episode(n,cur) feature_span = get_features(target_bid, target_ask, other_bid, other_ask, m) normalized = (feature_span-feature_span.mean())/feature_span.std() return target_bid, target_ask, normalized def draw_train_episode(m, cur, min_history): ''' Input: m, number of lag returns z_1,...z_m cur, currency pair that we target to trade min_history, min length of a valid episode ''' to_draw_train = to_draw[:int(to_draw.shape[0]*0.6)] n = np.random.randint(to_draw_train.shape[0] - min_history) target_bid, target_ask, other_bid, other_ask = generate_episode(n,cur) feature_span = get_features(target_bid, target_ask, other_bid, other_ask, m) normalized = (feature_span-feature_span.mean())/feature_span.std() return target_bid, target_ask, normalized ```
{ "source": "johnnyp2587/lstm-fx", "score": 3 }
#### File: lstm-fx/helpers/oanda_api_helpers.py ```python import oandapyV20 import oandapyV20.endpoints.orders as orders import oandapyV20.endpoints.trades as trades import oandapyV20.endpoints.accounts as accounts import oandapyV20.endpoints.positions as positions from oandapyV20.contrib.requests import MarketOrderRequest import json # TODO: make sure send_request checks if order is through on weekends and no order_book is created class TradingSession: # initiate objects def __init__(self, accountID, access_token): self.accountID = accountID self.access_token = access_token self.api = oandapyV20.API(access_token=access_token, environment="practice") self.order_book = self.oanda_order_book() # initiate methods def send_request(self, request): """ Sends request to oanda API. Returns oanda's response if success, 1 if error. """ try: rv = self.api.request(request) # print(json.dumps(rv, indent=2)) return rv except oandapyV20.exceptions.V20Error as err: print(request.status_code, err) return 1 def open_order(self, instrument, units): # check if position is already open if units < 0: if self.order_book[instrument]['order_type'] is (not None and -1): print('Short: {} (holding)'.format(instrument)) return 1 elif units > 0: if self.order_book[instrument]['order_type'] is (not None and 1): print('Long: {} (holding)'.format(instrument)) return 1 else: print('Units specified: 0') return 1 # define parameters, create and send a request mkt_order = MarketOrderRequest(instrument=instrument, units=units) r = orders.OrderCreate(self.accountID, data=mkt_order.data) request_data = self.send_request(r) # check if request was fulfilled and save its ID if request_data is not 1: instrument = request_data['orderCreateTransaction']['instrument'] self.order_book[instrument]['tradeID'] = request_data['lastTransactionID'] self.order_book[instrument]['order_type'] = -1 if units < 0 else 1 print('{}: {}'.format('Long' if units > 0 else 'Short', instrument)) return 0 else: return 1 def close_order(self, instrument): # check if position exist if self.order_book[instrument]['order_type'] is None: print('Position {} does not exist'.format(instrument)) return 1 # create and send a request r = trades.TradeClose(accountID=self.accountID, tradeID=self.order_book[instrument]['tradeID']) request_data = self.send_request(r) # check if request was fulfilled and clear it if request_data is not 1: instrument = request_data['orderCreateTransaction']['instrument'] self.order_book[instrument]['order_type'] = None self.order_book[instrument]['tradeID'] = None print('Closed: {}'.format(instrument)) return 0 else: return 1 def check_open_positions(self): r = positions.OpenPositions(self.accountID) return self.send_request(r) def check_account_summary(self): r = accounts.AccountSummary(self.accountID) return self.send_request(r) def oanda_order_book(self): """Synchronize open positions with this object's order_book""" order_book_oanda = self.check_open_positions() order_book = {'EUR_USD': {'order_type': None, 'tradeID': None}, 'AUD_JPY': {'order_type': None, 'tradeID': None}} for pos in order_book_oanda['positions']: try: trade_id = pos['long']['tradeIDs'] order_type = 1 except KeyError: trade_id = pos['short']['tradeIDs'] order_type = -1 order_book[pos['instrument']]['tradeID'] = trade_id order_book[pos['instrument']]['order_type'] = order_type return order_book def sync_with_oanda(self): self.order_book = self.oanda_order_book() def close_all_open_positions(self): """Close all opened positions""" # check oanda for open positions try: open_positions = self.check_open_positions()['positions'][0] except IndexError: self.order_book = self.oanda_order_book() print('No opened positions') return 0 # get ID's of open positions trade_ids = [] try: [trade_ids.append(x) for x in open_positions['short']['tradeIDs']] except KeyError: pass try: [trade_ids.append(x) for x in open_positions['long']['tradeIDs']] except KeyError: pass # close orders by ID [close_order_manually(self.accountID, self.access_token, x) for x in trade_ids] self.order_book = self.oanda_order_book() print('All positions closed') return 0 def close_order_manually(accountID, access_token, tradeID): """ Closes order manually using tradeID. """ api = oandapyV20.API(access_token=access_token, environment="practice") request = trades.TradeClose(accountID, tradeID) rv = api.request(request) print(json.dumps(rv, indent=2)) return 0 ```
{ "source": "johnnyp2587/transfer-learning", "score": 2 }
#### File: johnnyp2587/transfer-learning/utils.py ```python import pandas as pd import numpy as np import torch from empyrical import sharpe_ratio, max_drawdown, annual_return, annual_volatility from empyrical import sortino_ratio, downside_risk, value_at_risk, tail_ratio from scipy.stats import skew, kurtosis def calmar_ratio(x): return annual_return(x).values/-max_drawdown(x) def compute_performance_metrics(df_returns): ''' :param df_returns: :return: ''' # metrics to compute pf_metrics = [sharpe_ratio, calmar_ratio, max_drawdown, annual_return, annual_volatility, sortino_ratio, downside_risk, value_at_risk, tail_ratio, skew, kurtosis] pf_metrics_labels = ["SR", "CR", "MDD", "ANN_RET", "ANN_VOL", "SortR", "DownRisk", "VaR", "TailR", "Skew", "Kurt"] # compute performance metric df_metrics = pd.DataFrame(index=range(df_returns.shape[1]), columns=pf_metrics_labels) for (pf, pf_label) in zip(pf_metrics, pf_metrics_labels): df_metrics[pf_label] = np.array(pf(df_returns)) df_metrics.index = df_returns.columns return df_metrics def get_data(data_config, problem_config, model_config): ''' :return: ''' Xtrain_tasks, Xval_tasks, Xtest_tasks = {}, {}, {} for region in data_config["region"]: # pre-allocation region_task_paths = [t + "_all_assets_data.pkl.gz" for t in data_config[region]] Xtrain_tasks[region], Xval_tasks[region], Xtest_tasks[region] = {}, {}, {} for (tk_path, tk) in zip(region_task_paths, data_config[region]): # get data df = pd.read_pickle(data_config["data_path"] + tk_path) df_train = df.iloc[:-(problem_config["val_period"] + problem_config["holdout_period"])] if problem_config["val_period"] != 0: df_val = df.iloc[-(problem_config["val_period"] + problem_config[ "holdout_period"]):-problem_config["holdout_period"]] else: df_val = df.iloc[:-(problem_config["val_period"] + problem_config["holdout_period"])] df_test = df.iloc[-problem_config["holdout_period"]:] # transform in tensor Xtrain_tasks[region][tk] = torch.from_numpy(df_train.values).to(model_config["device"]) Xval_tasks[region][tk] = torch.from_numpy(df_val.values).to(model_config["device"]) Xtest_tasks[region][tk] = torch.from_numpy(df_test.values).to(model_config["device"]) print(region, tk, Xtrain_tasks[region][tk].size()) return Xtrain_tasks, Xval_tasks, Xtest_tasks def calc_tcosts(signal): slip = 0.0005 * 0.00 bp = 0.0020 * 0.00 tc = (torch.abs(signal[:, 1:, :] - signal[:, :-1, :]) * (bp + slip)) tc = torch.cat([torch.zeros(signal.size(0), 1, signal.size(2)).double(), tc], dim=1) return tc ```
{ "source": "JohnnyP88/penndjangosaml2", "score": 2 }
#### File: penndjangosaml2/penndjangosaml2/models.py ```python from django.db import models class LongGroupName(models.Model): group_name = models.TextField(blank=False, null=False) count = models.IntegerField(blank=False, null=False, default=0) create_date = models.DateTimeField(auto_now=True) last_update = models.DateTimeField(auto_now_add=True) def __str__(self): return "{} count: {} last updated: {})".format(self.group_name, self.count, self.last_update) ```
{ "source": "johnnypackard/python-intro", "score": 3 }
#### File: python-intro/hello_flask/app.py ```python from flask import Flask app = Flask("johnny") @app.route("/") def home(): return 'Hello, Curtis, you are lovely.' ```
{ "source": "johnny-pancake/PerpetualPoolsKeeperBot", "score": 2 }
#### File: PerpetualPoolsKeeperBot/src/pool_factory.py ```python import time from contract_utilities import fetch_build from web3 import Web3 from eth_account import Account ABI_FILE = "./artifacts/PoolFactory.json" class PoolFactory(object): def __init__(self, w3, address): self.w3 = w3 json = fetch_build(ABI_FILE) self.abi = json[0] self.contract = w3.eth.contract(address=address, abi=self.abi) self.address = address def numPools(self): return self.contract.functions.numPools().call() def pools(self,index): return self.contract.functions.pools(index).call() def getPools(self): pools = [] for i in range(self.numPools()): pools.append(self.pools(i)) return pools ```
{ "source": "JohnnyPeng18/cauldron", "score": 3 }
#### File: cli/commands/connect.py ```python import typing from argparse import ArgumentParser import requests from requests import exceptions as request_exceptions from cauldron import cli from cauldron import environ from cauldron.environ import Response NAME = 'connect' DESCRIPTION = """ Connect to a remote cauldron server and drive that server from this shell. """ def populate( parser: ArgumentParser, raw_args: typing.List[str], assigned_args: dict ): """ :param parser: :param raw_args: :param assigned_args: :return: """ parser.add_argument( 'url', type=str, default=None, help=cli.reformat( 'The URL of the remote cauldron server including port' ) ) parser.add_argument( '-f', '--force', dest='force', default=False, action='store_true', help=cli.reformat( """ When this option is included, the connection will be established without communicating with the remote cauldron instead to validate the connection. This should only be used in cases where you are absolutely confident that the connection is valid and accessible. """ ) ) def check_connection(url: str, force: bool) -> Response: """...""" response = Response() if force: return response ping = '{}/'.format(url) response.notify( kind='STARTING', code='CONNECTING', message='Establishing remote kernel connection to: {}'.format(url) ).console( whitespace_top=1 ) try: result = requests.get(ping) if result.status_code != 200: raise request_exceptions.ConnectionError() return response.notify( kind='CONNECTED', code='REMOTE_CONNECTION_ESTABLISHED', message='Remote connection established.' ).console(whitespace=1).response except request_exceptions.InvalidURL as error: return response.fail( code='INVALID_URL', message='Invalid connection URL. Unable to establish connection', error=error ).console( whitespace=1 ).response except request_exceptions.ConnectionError as error: return response.fail( code='CONNECTION_ERROR', message='Unable to connect to remote cauldron host', error=error ).console( whitespace=1 ).response except Exception as error: return response.fail( code='CONNECT_COMMAND_ERROR', message='Failed to connect to the remote cauldron host', error=error ).console( whitespace=1 ).response def _clean_url(url: str) -> str: """...""" return '{}{}{}'.format( '' if url.startswith('http') else 'http://', '127.0.0.1' if url.startswith(':') else '', url.strip().rstrip('/') ) def execute( context: cli.CommandContext, url: str = None, force: bool = False ) -> Response: """...""" url_clean = _clean_url(url) context.response.consume(check_connection(url_clean, force)) if context.response.failed: return context.response environ.remote_connection.url = url_clean environ.remote_connection.active = True return context.response.update( url=url_clean, remote_connection=environ.remote_connection ).notify( kind='SUCCESS', code='CONNECTED', message='Connected to "{}"'.format(url_clean) ).console( whitespace_bottom=1 ).response def autocomplete(segment: str, line: str, parts: typing.List[str]): """...""" return [] ``` #### File: commands/listing/discovery.py ```python import os from cauldron import environ from cauldron.environ import Response from cauldron.session.projects import specio def get_known_root_paths(): """...""" aliases = environ.configs.fetch('folder_aliases', {}) root_paths = list(set( [os.path.dirname(p) for p in environ.configs.fetch('recent_paths', [])] + [a['path'] for a in aliases.values()] )) index = 0 while index < len(root_paths): path = root_paths[index] children_paths = [ p for i, p in enumerate(root_paths) if index != i and p.startswith(path) ] for p in children_paths: root_paths.remove(p) index += 1 return list(sorted(root_paths)) def echo_known_projects(response: Response) -> Response: """...""" environ.configs.load() project_specs = specio.ProjectSpecsReader() for root in get_known_root_paths(): project_specs.add_recursive(root, root_path=root) spec_groups = project_specs.group_by('root_path') results = '\n\n'.join([ '{}\n{}'.format(root, specio.to_display_list(specs)) for root, specs in spec_groups.items() ]) return ( response .update( specs=project_specs.specs, spec_groups=spec_groups ) .notify( kind='FOUND', code='FOUND', message='The following projects:\n\n{}'.format(results) ) .console(whitespace=1) ).response ``` #### File: commands/listing/_lister.py ```python from cauldron import cli from cauldron import environ from cauldron.cli.commands.listing import _utils from cauldron.session.projects import specio def execute_list(context: cli.CommandContext) -> environ.Response: """ Executes the list action for the recent command according to the specified context object for the currently invoked command and returns a response object containing the listed projects. """ projects = _utils.get_recent_projects() if projects.specs: display = 'Recent Projects:\n\n{}'.format( specio.to_display_list(projects.specs) ) else: display = 'No recent projects found.' return ( context.response .update(projects=projects.specs) .notify( kind='RESULT', code='PROJECT_HISTORY', message=display ) .console(whitespace=1) .response ) ``` #### File: commands/steps/__init__.py ```python import typing from argparse import ArgumentParser import cauldron from cauldron import cli from cauldron.cli import sync from cauldron.cli.commands import sync as sync_command from cauldron.cli.commands.open import opener as project_opener from cauldron.cli.commands.steps import actions from cauldron.cli.commands.steps import removal from cauldron.cli.commands.steps import selection from cauldron.cli.interaction import autocompletion from cauldron.environ import Response from cauldron.session import projects NAME = 'steps' DESCRIPTION = """ Carry out an action on one or more steps within the currently opened project. The available actions are: * [add]: Creates a new step * [list]: Lists the steps within the currently opened project * [modify]: Modifies an existing step * [remove]: Removes an existing step from the project * [unmute]: Enables a step within the active project * [mute]: Disables a step within the active project """ def populate( parser: ArgumentParser, raw_args: typing.List[str], assigned_args: dict ): """...""" if len(raw_args) < 1: assigned_args['action'] = 'list' return action = raw_args.pop(0).lower() assigned_args['action'] = action if action == 'add': parser.add_argument( 'step_name', type=str, nargs='?', help=cli.reformat( """ The name of the step you want to create """ ) ) elif action not in ['list', 'clean']: parser.add_argument( 'step_name', type=str, help=cli.reformat( """ The name of the step on which to carry out the steps action """ ) ) if action in ['mute', 'unmute', 'select']: return if action in ['add', 'modify']: parser.add_argument( '-p', '--position', dest='position', type=str, default=None, help=cli.reformat( """ Specifies the index where the step will be inserted, or the name of the step after which this new step will be inserted. """ ) ) parser.add_argument( '-t', '--title', dest='title', type=str, default=None, help=cli.reformat( """ This specifies the title for the step that will be added or modified """ ) ) if action == 'modify': parser.add_argument( '-n', '--name', dest='new_name', type=str, default=None, help=cli.reformat( """ This new name for the step when modifying an existing one """ ) ) if action == 'remove': parser.add_argument( '-k', '--keep', dest='keep', default=False, action='store_true', help=cli.reformat( """ Whether or not to keep the source file when removing a step from a project """ ) ) def execute_remote( context: cli.CommandContext, action: str = None, step_name: str = None, position: str = None, title: str = None, new_name: str = None, keep: bool = False, ) -> Response: """...""" # modification_start_timestamp = time.time() if action in ['list', 'clean', 'select']: thread = sync.send_remote_command( command=context.name, raw_args=context.raw_args, asynchronous=False ) thread.join() response = thread.responses[0] return context.response.consume(response) status_response = sync.comm.send_request( endpoint='/sync-status', remote_connection=context.remote_connection ) if status_response.failed: return context.response.consume(status_response) source_directory = status_response.data['remote_source_directory'] if not project_opener.project_exists(context.response, source_directory): return context.response context.response.consume(execute( context=context, action=action, step_name=step_name, position=position, title=title, new_name=new_name, keep=keep, project=projects.Project(source_directory) )) if context.response.failed: return context.response sync_response = sync_command.execute(cli.make_command_context( name=sync_command.NAME, remote_connection=context.remote_connection )) sync_response.join() return context.response.consume(sync_response) def execute( context: cli.CommandContext, action: str = None, step_name: str = None, position: str = None, title: str = None, new_name: str = None, keep: bool = False, project: 'projects.Project' = None ) -> Response: """...""" response = context.response project = ( project if project else cauldron.project.get_internal_project() ) if not project: return response.fail( code='NO_OPEN_PROJECT', message='No project is open. Step commands require an open project' ).console( whitespace=1 ).response if not action or action == 'list': actions.echo_steps(response, project) return response if action == 'clean': return actions.clean_steps(response, project) if action == 'add' and not step_name: step_name = '' elif not step_name: return response.fail( code='NO_STEP_NAME', message='A step name is required for this command' ).console( whitespace=1 ).response step_name = step_name.strip('"') if action == 'add': return actions.create_step( response=response, project=project, name=step_name, position=position, title=title.strip('"') if title else title ) if action == 'modify': return actions.modify_step( response=response, project=project, name=step_name, new_name=new_name, title=title, position=position ) if action == 'remove': return removal.remove_step( response=response, project=project, name=step_name, keep_file=keep ) if action == 'unmute': actions.toggle_muting( response=response, project=project, step_name=step_name, value=False ) return response if action == 'mute': actions.toggle_muting( response=response, project=project, step_name=step_name, value=True ) return response if action == 'select': return selection.select_step( response=response, project=project, step_name=step_name ) def autocomplete(segment: str, line: str, parts: typing.List[str]): """ :param segment: :param line: :param parts: :return: """ action_names = [ 'add', 'list', 'remove', 'modify', 'select', 'unmute', 'mute', 'clean' ] if len(parts) < 2: return autocompletion.matches(segment, parts[0], action_names) action = parts[0] if action == 'list': return [] project = cauldron.project.internal_project if len(parts) < 3 or parts[-1].startswith(('--position=', '-p ')): prefix = parts[-1] for remove in ['--position=', '-p ']: if prefix.startswith(remove): prefix = prefix[len(remove):] break prefix = prefix.strip().strip('"') step_names = [x.definition.name for x in project.steps] return autocompletion.match_in_path_list( segment, prefix, step_names ) if parts[-1].startswith('-'): if action == 'list': return [] shorts = [] longs = [] if action == 'remove': shorts.append('k') longs.append('keep') else: shorts += ['p', 't'] longs += ['position=', 'title='] if action == 'modify': shorts.append('n') longs.append('name=') return autocompletion.match_flags( segment=segment, value=parts[-1], shorts=shorts, longs=longs ) return [] ``` #### File: commands/sync/__init__.py ```python from cauldron import cli from cauldron.cli import sync from cauldron.cli.commands.sync.syncer import do_synchronize from cauldron.environ.response import Response from cauldron.session.projects import specio NAME = 'sync' DESCRIPTION = """ Synchronizes the remote cauldron connection with the most recent versions of the locally stored project files. """ def _on_failure( context: cli.CommandContext, code: str, message: str ) -> Response: """Convenience function for handling failures.""" return ( context.response .fail(code=code, message=message) .console(whitespace=1) .response ) def execute(context: cli.CommandContext) -> Response: """Runs the sync command.""" if not context.remote_connection.active: return _on_failure( context, code='NO_REMOTE_CONNECTION', message='No active remote connection. Nothing to sync.' ) status_response = sync.comm.send_request( endpoint='/sync-status', method='GET', remote_connection=context.remote_connection ) source_directory = status_response.data.get('remote_source_directory') if status_response.failed or not source_directory: status_response.log_notifications() return context.response.consume(status_response) project_spec = specio.get_project_info(source_directory) if project_spec is None: return _on_failure( context, code='NO_PROJECT', message='No project exists locally at: {}'.format(source_directory) ) return context.response.consume(do_synchronize( remote_connection=context.remote_connection, source_directory=source_directory, newer_than=context.remote_connection.sync_timestamp, library_folders=project_spec.get('library_folders', ['libs']) )) ``` #### File: server/routes/ui_statuses.py ```python import flask from cauldron.cli.server import run as server_runner from cauldron.ui import arguments from cauldron.ui import statuses @server_runner.APPLICATION.route('/ui-status', methods=['POST']) def ui_status(): args = arguments.from_request() last_timestamp = args.get('last_timestamp', 0) force = args.get('force', False) results = statuses.get_status(last_timestamp, force) return flask.jsonify(results) ``` #### File: cauldron/environ/__init__.py ```python import time import typing import sys from collections import namedtuple from datetime import datetime from datetime import timedelta from cauldron.cli import threads from cauldron.environ import modes from cauldron.environ import paths from cauldron.environ import systems from cauldron.environ.configuration import Configuration from cauldron.environ.logger import blanks as log_blanks from cauldron.environ.logger import header as log_header from cauldron.environ.logger import log from cauldron.environ.logger import raw as log_raw from cauldron.environ.response import Response VersionInfo = namedtuple('VersionInfo', ['major', 'minor', 'micro']) class RemoteConnection: """Contains remote execution status information.""" def __init__(self, active: bool = False, url: str = None): self.active = active # type: bool self.url = url # type: typing.Optional[str] self.local_project_directory = None # type: typing.Optional[str] self._sync_timestamp = 0 # type: int self._sync_active = False # type: bool @property def sync_timestamp(self) -> float: """Last time the sync action to the remote source started.""" return max(0, self._sync_timestamp - 2) def serialize(self) -> dict: return { 'active': self.active, 'url': self.url, 'sync': { 'timestamp': self._sync_timestamp, 'active': self._sync_active, } } def reset_sync_time(self): """ Reverts the sync time to 0, which is needed when a sync state needs to be rewound, e.g. when closing a project. """ self._sync_timestamp = 0 def sync_starting(self): """...""" self._sync_active = True self._sync_timestamp = time.time() def sync_ending(self): """...""" self._sync_active = False remote_connection = RemoteConnection() start_time = datetime.utcnow() configs = Configuration().put( persists=False, directory=paths.INITIAL_DIRECTORY, ) package_settings = systems.get_package_data() version = package_settings.get('version', '0.0.0') notebook_version = package_settings.get('notebookVersion', 'v0') python_version = '{}.{}.{}'.format( sys.version_info.major, sys.version_info.minor, sys.version_info.micro, ) version_info = VersionInfo(*[int(x) for x in version.split('.')]) abort_thread = threads.abort_thread #: Holds information about open viewer (reader) files #: and is None when no such file has been opened for #: viewing. view = None # type: typing.Optional[dict] def run_time() -> timedelta: """...""" delta = start_time if start_time else datetime.utcnow() return datetime.utcnow() - delta ``` #### File: cauldron/cauldron/__init__.py ```python from cauldron import environ as _environ from cauldron import plotting # noqa from cauldron import session as _session from cauldron.session import display as _display from cauldron.session import spark as _spark from cauldron.session.caching import SharedCache as _SharedCache from cauldron.session.definitions import ExecutionResult from cauldron.session.reloading import refresh as _refresh # Version Information in commonly viewed formats __version__ = _environ.version # type: str version = _environ.version # type: str version_info = _environ.version_info # type: _environ.VersionInfo project = _session.project # type: _session.ExposedProject step = _session.step # type: _session.ExposedStep shared = _session.project.shared # type: _SharedCache display = _display refresh = _refresh mode = _environ.modes.ExposedModes spark = _spark def get_environment_info() -> dict: """ Information about Cauldron and its Python interpreter. :return: A dictionary containing information about the Cauldron and its Python environment. This information is useful when providing feedback and bug reports. """ data = _environ.systems.get_system_data() data['cauldron'] = _environ.package_settings.copy() return data def run_shell(): """ Starts the cauldron shell environment for console based interaction.""" from cauldron.cli.shell import CauldronShell CauldronShell().cmdloop() def run_server(port=5010, debug=False, **kwargs): """ Run the cauldron http server used to interact with cauldron from a remote host. :param port: The port on which to bind the cauldron server. :param debug: Whether or not the server should be run in debug mode. If true, the server will echo debugging information during operation. :param kwargs: Custom properties to alter the way the server runs. """ from cauldron.cli.server import run run.execute(port=port, debug=debug, **kwargs) def run_project( project_directory: str, output_directory: str = None, logging_path: str = None, reader_path: str = None, reload_project_libraries: bool = False, forget_project: bool = False, **kwargs ) -> ExecutionResult: """ Runs a project as a single command directly within the current Python interpreter. :param project_directory: The fully-qualified path to the directory where the Cauldron project is located :param output_directory: The fully-qualified path to the directory where the results will be written. All of the results files will be written within this directory. If the directory does not exist, it will be created. :param logging_path: The fully-qualified path to a file that will be used for logging. If a directory is specified instead of a file, a file will be created using the default filename of cauldron_run.log. If a file already exists at that location it will be removed and a new file created in its place. :param reader_path: Specifies a path where a reader file will be saved after the project has finished running. If no path is specified, no reader file will be saved. If the path is a directory, a reader file will be saved in that directory with the project name as the file name. :param reload_project_libraries: Whether or not to reload all project libraries prior to execution of the project. By default this is False, but can be enabled in cases where refreshing the project libraries before execution is needed. :param kwargs: Any variables to be available in the cauldron.shared object during execution of the project can be specified here as keyword arguments. :return: A response object that contains information about the run process and the shared data from the final state of the project. """ from cauldron.cli import batcher return batcher.run_project( project_directory=project_directory, output_directory=output_directory, log_path=logging_path, reader_path=reader_path, reload_project_libraries=reload_project_libraries, forget_project=forget_project, shared_data=kwargs ) ``` #### File: cauldron/render/__init__.py ```python import json as json_internal import math import os import random import re import textwrap import typing from datetime import datetime from datetime import timedelta from cauldron import environ from cauldron import templating from cauldron.render import encoding from cauldron.render import inspection from cauldron.render import syntax_highlighting from cauldron.render import utils as render_utils def elapsed_time(seconds: float) -> str: """Displays the elapsed time since the current step started running.""" environ.abort_thread() parts = ( '{}'.format(timedelta(seconds=seconds)) .rsplit('.', 1) ) hours, minutes, seconds = parts[0].split(':') return templating.render_template( 'elapsed_time.html', hours=hours.zfill(2), minutes=minutes.zfill(2), seconds=seconds.zfill(2), microseconds=parts[-1] if len(parts) > 1 else '' ) def list_grid( source: list, expand_full: bool = False, column_count: int = 2, row_spacing: float = 1 ): """ :param source: :param expand_full: :param column_count: :param row_spacing: :return: """ environ.abort_thread() max_width = 1400 if expand_full else 900 column_width = '{}px'.format( max(50, int(math.floor(max_width / column_count))) ) return templating.render_template( 'list_grid.html', items=['{}'.format(x) for x in source], css_modifier='full' if expand_full else 'limited', column_width=column_width, row_spacing=row_spacing ) def listing( source: list, ordered: bool = False, expand_full: bool = False ) -> str: """ :param source: :param ordered: :param expand_full: :return: """ environ.abort_thread() return templating.render_template( 'listing.html', type='ol' if ordered else 'ul', items=['{}'.format(x) for x in source], css_modifier='full' if expand_full else 'limited' ) def inspect(source: dict) -> str: """ :param source: :return: """ environ.abort_thread() out = inspection.inspect_data(source=source) return inspection.render_tree(out) def code_file( path: str, language: str = None, mime_type: str = None, is_code_block: bool = False ) -> str: """ :param path: :param language: :param mime_type: :param is_code_block: :return: """ environ.abort_thread() path = environ.paths.clean(path) if not os.path.exists(path): return 'File does not exist: {}'.format(path) source = None for encoding in ['utf-8', 'mac_roman', 'cp1250']: try: with open(path, 'r', encoding=encoding) as f: source = f.read() break except Exception: pass if source is None: return '' return code( source=source, language=language, filename=path, mime_type=mime_type, is_code_block=is_code_block ) def code( source: str, language: str = None, filename: str = None, mime_type: str = None, is_code_block: bool = False ) -> str: """ :param source: :param language: :param filename: :param mime_type: :param is_code_block: :return: """ environ.abort_thread() if not source: return '' cleaned = textwrap.dedent(source.strip('\n')) return syntax_highlighting.as_html( source=cleaned, language=language, filename=filename, mime_type=mime_type, is_code_block=is_code_block ) def code_block( block: str = None, path: str = None, language: str = None, title: str = None, caption: str = None ) -> str: """ :param block: :param path: :param language: :param title: :param caption: :return: """ environ.abort_thread() code_dom = ( code_file(path, language=language, is_code_block=True) if path else code(block, language=language, is_code_block=True) ) return templating.render_template( 'code-block.html', code=code_dom, title=title, caption=caption ) def header(contents: str, level: int = 1, expand_full: bool = False) -> str: """ :param level: :param contents: :param expand_full: :return: """ environ.abort_thread() classes = [ 'cd-Header', 'cd-Header--{}'.format('full' if expand_full else 'limited') ] return templating.render( """ <h{{ level }} class="{{ classes }}">{{ contents }}</h{{ level }}> """, level=level, contents=contents, classes=' '.join(classes) ) def image( rendered_path: str, width: int = None, height: int = None, justify: str = None ) -> str: """Renders an image block""" environ.abort_thread() return templating.render_template( 'image.html', path=rendered_path, width=width, height=height, justification=(justify or 'left').lower() ) def json(**kwargs) -> str: """ Adds the specified data to the the output display window with the specified key. This allows the user to make available arbitrary JSON-compatible data to the display for runtime use. :param kwargs: Each keyword argument is added to the CD.data object with the specified key and value. """ environ.abort_thread() return templating.render_template( 'json_include.html', data=json_internal.dumps(kwargs, cls=encoding.ComplexJsonEncoder) ) def html(content: str) -> str: """ A string containing a valid HTML snippet. :param content: The HTML string rendered for display. """ environ.abort_thread() return templating.render( '<div class="box">{{content}}</div>', content=content ) def plotly( data: list = None, layout: dict = None, scale: float = 0.5, figure: dict = None, static: bool = False ) -> str: """ Creates a Plotly plot in the display with the specified data and layout. :param data: The Plotly trace data to be plotted. :param layout: The layout data used for the plot. :param scale: The display scale with units of fractional screen height. A value of 0.5 constrains the output to a maximum height equal to half the height of browser window when viewed. Values below 1.0 are usually recommended so the entire output can be viewed without scrolling. :param figure: In cases where you need to create a figure instead of separate data and layout information, you can pass the figure here and leave the data and layout values as None. :param static: If true, the plot will be created without interactivity. This is useful if you have a lot of plots in your notebook. """ environ.abort_thread() try: import plotly as plotly_lib except ImportError: plotly_lib = None if plotly_lib is None: return templating.render_template( template_name='import-error.html', library_name='Plotly' ) source = figure if figure else {'data': data, 'layout': layout} dom = plotly_lib.offline.plot( figure_or_data=source, output_type='div', include_plotlyjs=False, config={'staticPlot': static, 'showLink': False} ) found = re.search(r'id="(?P<id>[^"]+)"', dom) dom_id = found.group('id') # Plotly < 4.0 requires manually inserting the static value. if static and dom.find('"staticPlot": ') < 0: # pragma: no cover insert_index = dom.index('"showLink":') dom = ''.join([ dom[:insert_index], '"staticPlot": {}, '.format('true' if static else 'false'), dom[insert_index:] ]) return templating.render_template( 'plotly-component.html', dom=dom, scale=scale, min_height=round(100.0 * scale), id=dom_id ) def table( data_frame, scale: float = 0.7, include_index: bool = False, max_rows: int = 500, sample_rows: typing.Optional[int] = None, formats: typing.Union[ str, typing.Callable[[typing.Any], str], typing.Dict[ str, typing.Union[str, typing.Callable[[typing.Any], str]] ] ] = None ) -> str: """ :param data_frame: :param scale: :param include_index: :param max_rows: :param sample_rows: :param formats: """ environ.abort_thread() table_id = 'table-{}-{}'.format( datetime.utcnow().strftime('%H-%M-%S-%f'), random.randint(0, 1e8) ) df_source = ( data_frame.to_frame() if hasattr(data_frame, 'to_frame') else data_frame ) df_source = ( df_source.sample(n=sample_rows) if sample_rows and sample_rows > 0 else df_source ) df_source = ( df_source.head(max_rows) if len(df_source) > max_rows else df_source ) if formats and not hasattr(formats, 'items'): formats = {name: formats for name in df_source.columns} if include_index: df_source = df_source.reset_index() df_source = df_source.assign(**{ name: df_source[name].map( getattr(format_definition, 'format', format_definition) ) for name, format_definition in (formats or {}).items() if name in df_source }) column_headers = ['"{}"'.format(x) for x in df_source.columns.tolist()] data = df_source.values.tolist() json_data = json_internal.dumps(data, cls=encoding.ComplexJsonEncoder) return templating.render_template( 'table.html', id=table_id, scale=min(0.95, max(0.05, scale)), data=json_data, column_headers=', '.join(column_headers) ) def whitespace(lines: float = 1.0) -> str: """ :param lines: :return: """ environ.abort_thread() pixels = round(12 * lines) return '<div style="height:{}px"> </div>'.format(pixels) def jinja(path: str, **kwargs) -> str: """ :param path: :param kwargs: :return: """ environ.abort_thread() return templating.render_file(path, **kwargs) def svg(svg_data: str) -> str: """ :param svg_data: :return: """ environ.abort_thread() return templating.render( '<div class="svg-box">{{ svg }}</div>', svg=svg_data ) def status( data: dict, values: bool = True, types: bool = True ) -> str: """ :param data: :param values: :param types: :return: """ environ.abort_thread() out = [] keys = list(data.keys()) keys.sort() for key in keys: value = data[key] value_type = getattr( value, '__class__', {'__name__': 'Unknown'} ).__name__ if hasattr(value, 'head'): try: value = value.head(5) except Exception: pass elif isinstance(value, dict): temp_value = [] for k, v in value.items(): temp_value.append('{}: {}'.format(k, v)) value = '\n'.join(temp_value) elif isinstance(value, (list, tuple)): value = '\n'.join(['{}'.format(v) for v in value]) value = '<pre>{}</pre>'.format( render_utils.html_escape('{}'.format(value))[:600] ) out.append(templating.render_template( 'status-variable.template.html', name=key, values=values, types=types, type=value_type, value=value )) return ''.join(out) ``` #### File: cauldron/session/definitions.py ```python import os import typing import warnings from cauldron import environ from cauldron.session import projects from cauldron.session import caching class ExecutionResult: """Data Structure for data returned by batched project runs.""" def __init__( self, command_response: 'environ.Response', project_data: 'caching.SharedCache' ): self._response = command_response self._shared = project_data @property def success(self) -> bool: """Whether or not the project execution succeeded.""" return self._response.success @property def failed(self) -> bool: """Whether or not the execution failed.""" return self._response.failed @property def response(self) -> 'environ.Response': """Command execution response""" return self._response @property def shared(self) -> 'caching.SharedCache': """Shared data from the final execution state of the project.""" return self._shared class FileDefinition(object): """...""" def __init__( self, data: typing.Union[dict, str]=None, project: 'projects.Project' = None, project_folder: typing.Union[typing.Callable, str]=None ): """ :param data: :param project: """ self.project = project self.project_folder = project_folder if isinstance(data, str): self.data = {'name': data} elif data is None: self.data = {} else: self.data = data @property def slug(self): folder = self.folder if not folder: return self.name return os.path.join(folder, self.name) @property def name(self): if 'name' not in self.data or not self.data['name']: return 'invalid-file-name' return self.data.get('name') @name.setter def name(self, value: str): if value is None: self.remove('name') return self.data['name'] = value @property def folder(self) -> typing.Union[str, None]: """ The folder, relative to the project source_directory, where the file resides :return: """ if 'folder' in self.data: return self.data.get('folder') elif self.project_folder: if callable(self.project_folder): return self.project_folder() else: return self.project_folder return None @folder.setter def folder(self, value: str): if value is None: self.remove('folder') return self.data['folder'] = value @property def title(self) -> str: return self.data.get('title', self.name) @title.setter def title(self, value: str): if value is None: self.remove('title') return self.data['title'] = value def remove(self, key): """ :param key: :return: """ if key in self.data: del self.data[key] def get(self, key, default_value=None): """ :param key: :param default_value: :return: """ if hasattr(self, key): warnings.warn( message='FileDefinition has a "{}" attribute'.format(key), category=DeprecationWarning ) return self.data.get(key, default_value) def serialize(self) -> typing.Union[dict, str]: """ :return: """ out = dict() for k, v in self.data.items(): if v is not None: out[k] = v keys = list(out.keys()) if len(keys) == 1 and keys[0] == 'name': return self.name return out ``` #### File: cauldron/session/naming.py ```python import os import re import typing def find_default_filename(existing_names: typing.List[str]) -> dict: other_names = [split_filename(n)['name'] for n in existing_names] index = 0 for i in range(1000): index += 1 name = '{}'.format(index) if name not in other_names: return name return None def split_filename(name: str) -> dict: """ :param name: :return: """ filename = os.path.basename(name) parts = filename.rsplit('.', 1) return dict( index=None, name=parts[0], extension=parts[1] if len(parts) > 1 else None ) def explode_filename(name: str, scheme: str) -> dict: """ Removes any path components from the input filename and returns a dictionary containing the name of the file without extension and the extension (if an extension exists) :param name: :param scheme: :return: """ if not scheme: return split_filename(name) replacements = { 'name': '(?P<name>.*)', 'ext': '(?P<extension>.+)$', 'index': '(?P<index>[0-9]{{{length}}})' } scheme_pattern = '^' empty_scheme_pattern = '' offset = 0 while offset < len(scheme): char = scheme[offset] next_char = scheme[offset + 1] if (offset + 1) < len(scheme) else None if char in r'.()^$?*+\[]|': addition = '\\{}'.format(char) scheme_pattern += addition empty_scheme_pattern += addition offset += 1 continue if char != '{': scheme_pattern += char empty_scheme_pattern += char offset += 1 continue if next_char != '{': scheme_pattern += char empty_scheme_pattern += char offset += 1 continue end_index = scheme.find('}}', offset) contents = scheme[offset:end_index].strip('{}').lower() if contents in replacements: scheme_pattern += replacements[contents] elif contents == ('#' * len(contents)): addition = replacements['index'].format(length=len(contents)) scheme_pattern += addition empty_scheme_pattern += addition else: addition = '{{{}}}'.format(contents) scheme_pattern += addition empty_scheme_pattern += addition offset = end_index + 2 match = re.compile(scheme_pattern).match(name) if not match: parts = split_filename(name) comparison = re.compile(empty_scheme_pattern.rstrip('-_: .\\')) match = comparison.match(parts['name']) if not match: return parts parts = match.groupdict() index = parts.get('index') index = int(index) if index else None return dict( index=index - 1, name=parts.get('name', ''), extension=parts.get('extension', 'py') ) def assemble_filename( name: str, scheme: str, extension: str = None, index: int = None ) -> str: """ :param name: :param scheme: :param extension: :param index: :return: """ if not name: name = '' if not extension: extension = 'py' if index is None: index = 0 if not scheme: return '{}.{}'.format(name, extension) out = scheme pattern = re.compile('{{(?P<count>[#]+)}}') match = pattern.search(scheme) if match: out = '{before}{replace}{after}'.format( before=out[:match.start()], replace='{}'.format(index + 1).zfill(len(match.group('count'))), after=out[match.end():] ) replacements = { '{{name}}': name, '{{ext}}': extension } for pattern, value in replacements.items(): out = out.replace(pattern, value) parts = split_filename(out) if not name: parts['name'] = parts['name'].rstrip('-_: .') return '{}.{}'.format(parts['name'].strip(), parts['extension']) ``` #### File: session/projects/project.py ```python import functools import hashlib import json import os import time import typing from collections import namedtuple from cauldron import environ from cauldron.session import definitions as file_definitions from cauldron.session import writing from cauldron.session.caching import SharedCache from cauldron.session.projects import definitions from cauldron.session.projects import steps from cauldron.session.report import Report DEFAULT_SCHEME = 'S{{##}}-{{name}}.{{ext}}' StopCondition = namedtuple('StopCondition', ['aborted', 'halt']) class Project: """...""" def __init__( self, source_directory: str, results_path: str = None, shared: typing.Union[dict, SharedCache] = None ): """ :param source_directory: :param results_path: [optional] The path where the results files for the project will be saved. If omitted, the default global results path will be used. :param shared: [optional] The shared data cache used to store project data when run """ source_directory = environ.paths.clean(source_directory) if os.path.isfile(source_directory): source_directory = os.path.dirname(source_directory) self.source_directory = source_directory self.steps = [] # type: typing.List[steps.ProjectStep] self._results_path = results_path # type: str self._current_step = None # type: steps.ProjectStep self.last_modified = None self.remote_source_directory = None # type: str def as_shared_cache(source): if source and not hasattr(source, 'fetch'): return SharedCache().put(**source) return source or SharedCache() self.stop_condition = StopCondition(False, False) # type: StopCondition self.shared = as_shared_cache(shared) self.settings = SharedCache() self.refresh() @property def uuid(self) -> str: """ The unique identifier for the project among all other projects, which is based on a hashing of the project's source path to prevent naming collisions when storing project information from multiple projects in the same directory (e.g. common results directory). """ return hashlib.sha1(self.source_path.encode()).hexdigest() @property def is_remote_project(self) -> bool: """Whether or not this project is remote""" project_path = environ.paths.clean(self.source_directory) return project_path.find('cd-remote-project') != -1 @property def library_directories(self) -> typing.List[str]: """ The list of directories to all of the library locations """ def listify(value): return [value] if isinstance(value, str) else list(value) # If this is a project running remotely remove external library # folders as the remote shared libraries folder will contain all # of the necessary dependencies is_local_project = not self.is_remote_project folders = [ f for f in listify(self.settings.fetch('library_folders', ['libs'])) if is_local_project or not f.startswith('..') ] # Include the remote shared library folder as well folders.append('../__cauldron_shared_libs') # Include the project directory as well folders.append(self.source_directory) return [ environ.paths.clean(os.path.join(self.source_directory, folder)) for folder in folders ] @property def asset_directories(self): """...""" def listify(value): return [value] if isinstance(value, str) else list(value) folders = listify(self.settings.fetch('asset_folders', ['assets'])) return [ environ.paths.clean(os.path.join(self.source_directory, folder)) for folder in folders ] @property def has_error(self): """...""" for s in self.steps: if s.error: return True return False @property def title(self) -> str: out = self.settings.fetch('title') if out: return out out = self.settings.fetch('name') if out: return out return self.id @title.setter def title(self, value: str): self.settings.title = value @property def id(self) -> str: return self.settings.fetch('id', 'unknown') @property def naming_scheme(self) -> str: return self.settings.fetch('naming_scheme', None) @naming_scheme.setter def naming_scheme(self, value: typing.Union[str, None]): self.settings.put(naming_scheme=value) @property def current_step(self) -> typing.Union['steps.ProjectStep', None]: if len(self.steps) < 1: return None step = self._current_step return step if step else self.steps[0] @current_step.setter def current_step(self, value: typing.Union[Report, None]): self._current_step = value @property def source_path(self) -> typing.Union[None, str]: directory = self.source_directory return os.path.join(directory, 'cauldron.json') if directory else None @property def results_path(self) -> str: """The path where the project results will be written""" def possible_paths(): yield self._results_path yield self.settings.fetch('path_results') yield environ.configs.fetch('results_directory') yield environ.paths.results(self.uuid) return next(p for p in possible_paths() if p is not None) @results_path.setter def results_path(self, value: str): self._results_path = environ.paths.clean(value) @property def url(self) -> str: """ Returns the URL that will open this project results file in the browser :return: """ return 'file://{path}?id={id}'.format( path=os.path.join(self.results_path, 'project.html'), id=self.uuid ) @property def baked_url(self) -> str: """ Returns the URL that will open this project results file in the browser with the loading information baked into the file so that no URL parameters are needed to view it, which is needed on platforms like windows """ return 'file://{path}'.format( path=os.path.join(self.results_path, 'display.html'), id=self.uuid ) @property def output_directory(self) -> str: """ Returns the directory where the project results files will be written """ return os.path.join(self.results_path, 'reports', self.uuid, 'latest') @property def output_path(self) -> str: """ Returns the full path to where the results.js file will be written :return: """ return os.path.join(self.output_directory, 'results.js') def select_step( self, step_name_or_index: typing.Union[str, int, 'steps.ProjectStep'] ) -> typing.Optional['steps.ProjectStep']: """ Selects the specified step by step object, step name or index if such a step exists and returns that step if it does. """ if isinstance(step_name_or_index, steps.ProjectStep): step = ( step_name_or_index if step_name_or_index in self.steps else None ) elif isinstance(step_name_or_index, int): index = min(len(self.steps) - 1, step_name_or_index) step = self.steps[index] else: step = self.get_step(step_name_or_index or '') if not step: return None for s in self.steps: s.is_selected = (s == step) return step def make_remote_url(self, host: str = None): """...""" clean_host = (host or '').rstrip('/') return '{}/view/project.html?id={}'.format(clean_host, self.uuid) def kernel_serialize(self): """...""" return dict( uuid=self.uuid, stop_condition=self.stop_condition._asdict(), last_modified=self.last_modified, remote_source_directory=self.remote_source_directory, source_directory=self.source_directory, source_path=self.source_path, output_directory=self.output_directory, output_path=self.output_path, url=self.url, remote_slug=self.make_remote_url(), title=self.title, id=self.id, steps=[s.kernel_serialize() for s in self.steps], naming_scheme=self.naming_scheme ) def refresh(self, force: bool = False) -> bool: """ Loads the cauldron.json definition file for the project and populates the project with the loaded data. Any existing data will be overwritten, if the new definition file differs from the previous one. If the project has already loaded with the most recent version of the cauldron.json file, this method will return without making any changes to the project. :param force: If true the project will be refreshed even if the project file modified timestamp doesn't indicate that it needs to be refreshed. :return: Whether or not a refresh was needed and carried out """ lm = self.last_modified is_newer = lm is not None and lm >= os.path.getmtime(self.source_path) if not force and is_newer: return False old_definition = self.settings.fetch(None) new_definition = definitions.load_project_definition( self.source_directory ) if not force and old_definition == new_definition: return False self.settings.clear().put(**new_definition) old_step_definitions = old_definition.get('steps', []) new_step_definitions = new_definition.get('steps', []) if not force and old_step_definitions == new_step_definitions: return True old_steps = self.steps self.steps = [] for step_data in new_step_definitions: matches = [s for s in old_step_definitions if s == step_data] if len(matches) > 0: index = old_step_definitions.index(matches[0]) self.steps.append(old_steps[index]) else: self.add_step(step_data) self.last_modified = time.time() return True def get_step(self, name: str) -> typing.Optional['steps.ProjectStep']: """Returns the step by name or None if no such step is found.""" for s in self.steps: if s.definition.name == name: return s return None def get_step_by_reference_id( self, reference_id: str ) -> typing.Union['steps.ProjectStep', None]: """Returns the step by its ID or None if no such step is found.""" for s in self.steps: if s.reference_id == reference_id: return s return None def index_of_step(self, name) -> typing.Union[int, None]: """ :param name: :return: """ name = name.strip('"') for index, s in enumerate(self.steps): if s.definition.name == name: return int(index) return None def add_step( self, step_data: typing.Union[str, dict], index: int = None ) -> typing.Union['steps.ProjectStep', None]: """ :param step_data: :param index: :return: """ fd = file_definitions.FileDefinition( data=step_data, project=self, project_folder=functools.partial( self.settings.fetch, 'steps_folder' ) ) if not fd.name: self.last_modified = 0 return None ps = steps.ProjectStep(self, fd) if index is None: self.steps.append(ps) else: if index < 0: index %= len(self.steps) self.steps.insert(index, ps) if fd.name.endswith('.py'): for i in range(self.steps.index(ps) + 1, len(self.steps)): self.steps[i].mark_dirty(True) self.last_modified = time.time() return ps def remove_step(self, name) -> typing.Union['steps.ProjectStep', None]: """ :param name: :return: """ step = None for ps in self.steps: if ps.definition.name == name: step = ps break if step is None: return None if step.definition.name.endswith('.py'): for i in range(self.steps.index(step) + 1, len(self.steps)): self.steps[i].mark_dirty(True) self.steps.remove(step) return step def save(self, path: str = None): """ :param path: :return: """ if not path: path = self.source_path self.settings.put( steps=[ps.definition.serialize() for ps in self.steps] ) data = self.settings.fetch(None) with open(path, 'w+') as f: json.dump(data, f, indent=2, sort_keys=True) self.last_modified = time.time() def write(self) -> str: """...""" writing.save(self) return self.url def status(self) -> dict: return dict( id=self.id, steps=[s.status() for s in self.steps], stop_condition=self.stop_condition._asdict(), last_modified=self.last_modified, remote_slug=self.make_remote_url() ) ``` #### File: writing/components/__init__.py ```python from cauldron.session import projects from cauldron.session.writing.components import bokeh_component from cauldron.session.writing.components import definitions from cauldron.session.writing.components import plotly_component from cauldron.session.writing.components import project_component from cauldron.session.writing.components.definitions import COMPONENT from cauldron.session.writing.components.definitions import WEB_INCLUDE def _get_components(lib_name: str, project: 'projects.Project') -> COMPONENT: if lib_name == 'bokeh': return bokeh_component.create(project) if lib_name == 'plotly': return plotly_component.create(project) # Unknown components will just return as empty components. There used # to be a shared component type that was removed in 1.0.0, but hadn't # been used for a long time before that. If that becomes interesting # again old code can be reviewed to see how shared components once # worked. return COMPONENT([], []) def get(step: 'projects.ProjectStep') -> COMPONENT: """...""" return definitions.merge_components( project_component.create_many(step.project, step.web_includes), *[ _get_components(name, step.project) for name in step.report.library_includes ], ) ``` #### File: cli/commands/test_ls.py ```python from unittest.mock import MagicMock from unittest.mock import patch from cauldron import environ from cauldron.test import support from pytest import mark SCENARIOS = [ {'active': False, 'project': None}, {'active': False, 'project': MagicMock()}, {'active': True, 'project': None}, {'active': True, 'project': MagicMock()}, ] @mark.parametrize('scenario', SCENARIOS) @patch('cauldron.cli.commands.ls.os.name', new='nt') @patch('cauldron.cli.commands.ls.os.path.exists') @patch('cauldron.environ.remote_connection') @patch('cauldron.project.get_internal_project') def test_ls( get_internal_project: MagicMock, remote_connection: MagicMock, os_path_exists: MagicMock, scenario: dict ): """Should list the contents of the specified directory.""" os_path_exists.return_value = True remote_connection.active = scenario['active'] get_internal_project.return_value = scenario['project'] path = environ.paths.resources('examples', 'hello_cauldron') response = support.run_command('ls "{}"'.format(path)) assert response.success, 'Expect ls to succeed.' data = response.data assert path == data['current_directory'], """ Expect the current directory to be the one specified in the command arguments. """ assert path.startswith(data['parent_directory']) assert data['shortened_directory'].endswith('hello_cauldron') assert 'hello_cauldron' == data['spec']['name'], """ Expect this to be a project directory and to load the project spec. """ assert {'step_tests'} == {d['folder'] for d in data['children']}, """ Expect one child directory named 'step_test'. """ expected = {'cauldron.json', 'S01-create-data.py', 'S02-plot-data.py'} assert expected == {f['name'] for f in data['current_files']}, """ Expect three specific files in the selected directory. """ offset = 1 if scenario['active'] or scenario['project'] else 0 assert 27 + offset == len(data['standard_locations']), """ Expect home directory, parent directory and one windows root drive location for each letter of the alphabet except Z. Also expect one for the project directory if a local or remote project is open. """ @patch('cauldron.cli.commands.ls.os.listdir') def test_ls_permissions_error(os_listdir: MagicMock): """Should fail to list directory due to lack of permissions.""" os_listdir.side_effect = PermissionError path = environ.paths.resources('examples', 'hello_cauldron') response = support.run_command('ls "{}"'.format(path)) assert support.has_error_code(response, 'PERMISSION_DENIED') ``` #### File: cli/commands/test_reload.py ```python from unittest.mock import patch from cauldron.test import support from cauldron.test.support import scaffolds class TestReload(scaffolds.ResultsTest): """...""" def test_reload(self): """Should reload the currently opened project.""" support.run_command('open @examples:hello_cauldron --forget') r = support.run_command('reload') self.assertFalse(r.failed, 'should not have failed') def test_no_open_project(self): """Should fail when no project is open.""" r = support.run_command('reload') self.assertTrue(r.failed, 'should have failed') self.assertEqual(r.errors[0].code, 'NO_PROJECT_FOUND') @patch('time.sleep') def test_missing_project_path(self, *args): """Should fail if the project directory does not exist.""" support.run_command('open @examples:hello_cauldron --forget') with patch('os.path.exists') as path_exists: path_exists.return_value = False r = support.run_command('reload') self.assertTrue(r.failed, 'should have failed') self.assertEqual(r.errors[0].code, 'MISSING_PROJECT_PATH') @patch('time.sleep') def test_initialize_failure(self, *args): """Should fail if cannot initialize project.""" support.run_command('open @examples:hello_cauldron --forget') with patch('cauldron.runner.initialize') as runner_initialize: runner_initialize.side_effect = FileNotFoundError('Fake Error') r = support.run_command('reload') self.assertTrue(r.failed, 'should have failed') self.assertEqual(r.errors[0].code, 'PROJECT_INIT_FAILURE') def test_reload_remote(self): """Should reload the currently opened project.""" support.run_command('open @examples:hello_cauldron --forget') r = support.run_remote_command('reload') self.assertFalse(r.failed, 'should not have failed') ``` #### File: cli/commands/test_show.py ```python from unittest.mock import MagicMock from unittest.mock import patch from pytest import mark import cauldron from cauldron import environ from cauldron.test import support lifecycle_fixture = support.make_project_lifecycle_fixture() @patch('webbrowser.open') def test_show_fail( web_browser_open: MagicMock, tester: support.ProjectLifecycleTester ): """Should fail to show when no project is opened.""" response = support.run_command('show') assert support.has_error_code(response, 'NO_OPEN_PROJECT'), """ Expect failure with no open project. """ assert 0 == web_browser_open.call_count @patch('webbrowser.open') def test_show( web_browser_open: MagicMock, tester: support.ProjectLifecycleTester ): """Should show local project.""" support.open_project(tester, '@examples:hello_cauldron') url = cauldron.project.get_internal_project().baked_url response = support.run_command('show') assert support.has_success_code(response, 'SHOWN'), """ Expect show to run without error. """ web_browser_open.assert_called_once_with(url) @patch('webbrowser.open') def test_show_remote( web_browser_open: MagicMock, tester: support.ProjectLifecycleTester ): """Should show remote url.""" support.open_project(tester, '@examples:hello_cauldron') project = cauldron.project.get_internal_project() remote_connection = environ.RemoteConnection( url='http://my-fake.url', active=True ) url = project.make_remote_url(remote_connection.url) response = support.run_remote_command( command='show', remote_connection=remote_connection ) assert support.has_success_code(response, 'SHOWN'), """ Expect show to run without error. """ web_browser_open.assert_called_once_with(url) @patch('subprocess.check_call') @patch('cauldron.cli.commands.show.os') @mark.parametrize('platform', ['darwin', 'linux2', 'win32']) def test_show_files( os_module: MagicMock, check_call: MagicMock, platform: str, tester: support.ProjectLifecycleTester ): """Should show local project files.""" support.open_project(tester, '@examples:hello_cauldron') with patch('sys.platform', new=platform): response = support.run_command('show files') assert support.has_success_code(response, 'SHOWN'), """ Expect show to run without error. """ assert 1 == (os_module.startfile.call_count + check_call.call_count) @patch('subprocess.check_call') @patch('cauldron.cli.commands.show.os') @mark.parametrize('platform', ['darwin', 'linux2', 'win32']) def test_show_files_remote( os_module: MagicMock, check_call: MagicMock, platform: str, tester: support.ProjectLifecycleTester ): """Should show local project files.""" support.open_project(tester, '@examples:hello_cauldron') with patch('sys.platform', new=platform): response = support.run_remote_command('show files') assert support.has_success_code(response, 'SHOWN'), """ Expect show to run without error. """ assert 1 == (os_module.startfile.call_count + check_call.call_count) ``` #### File: cli/commands/test_steps_insert.py ```python import cauldron from cauldron.test import support from cauldron.test.support import scaffolds class TestStepsInsert(scaffolds.ResultsTest): """...""" def test_before(self): """Should properly rename default filenames.""" support.create_project(self, 'candice') support.add_step(self) support.add_step(self, position='0') project = cauldron.project.get_internal_project() steps = project.steps self.assertTrue(steps[0].filename.startswith('S01')) self.assertTrue(steps[1].filename.startswith('S02')) def test_multiple_file_types(self): """Should properly rename default filenames.""" support.create_project(self, 'candy') support.add_step(self) support.add_step(self, name='.md', position='0') project = cauldron.project.get_internal_project() steps = project.steps self.assertTrue(steps[0].filename.startswith('S01')) self.assertTrue(steps[1].filename.startswith('S02')) def test_multiple_file_types_many(self): """Should properly rename default filenames.""" support.create_project(self, 'candy') support.add_step(self) support.add_step(self) support.add_step(self) support.add_step(self, name='.md', position='0') project = cauldron.project.get_internal_project() steps = project.steps self.assertTrue(steps[0].filename.startswith('S01')) self.assertTrue(steps[1].filename.startswith('S02')) self.assertTrue(steps[2].filename.startswith('S03')) self.assertTrue(steps[3].filename.startswith('S04')) def test_multiple_file_types_named(self): """Should properly rename customized filenames.""" support.create_project(self, 'candera') support.add_step(self, name='A') support.add_step(self, name='B') support.add_step(self, name='C') support.add_step(self, name='D.md', position='0') project = cauldron.project.get_internal_project() steps = project.steps self.assertTrue(steps[0].filename.startswith('S01-D')) self.assertTrue(steps[1].filename.startswith('S02')) self.assertTrue(steps[2].filename.startswith('S03')) self.assertTrue(steps[3].filename.startswith('S04')) ``` #### File: cli/interaction/test_interaction_query.py ```python from unittest import mock from cauldron.cli.interaction import query from cauldron.test.support import scaffolds class TestRenderTexts(scaffolds.ResultsTest): """...""" def test_choice(self): """ :return: """ with mock.patch('builtins.input', return_value=''): index, value = query.choice( title='Some input', prompt='Here are your choices', choices=['a', 'b', 'c', 'd'], default_index=2 ) self.assertEqual(index, 2) self.assertEqual(value, 'c') def test_confirm(self): """ :return: """ with mock.patch('builtins.input', return_value='y'): result = query.confirm( question='Ja order Nein', default=False ) self.assertTrue(result) with mock.patch('builtins.input', return_value='no'): result = query.confirm( question='Ja order Nein', default=False ) self.assertFalse(result) with mock.patch('builtins.input', return_value=''): result = query.confirm( question='Ja order Nein', default=False ) self.assertFalse(result) ``` #### File: routes/synchronize/test_status.py ```python import os import cauldron from cauldron.cli.server.routes.synchronize import status from cauldron.test import support from cauldron.test.support import scaffolds MY_PATH = os.path.realpath(__file__) MY_DIRECTORY = os.path.dirname(os.path.realpath(__file__)) class TestStatus(scaffolds.ResultsTest): def test_of_file_missing(self): """Should return empty result for file that does not exist.""" path = os.path.join(MY_DIRECTORY, 'fictional.file') result = status.of_file(path) self.assertEqual(result['modified'], -1) self.assertEqual(result['path'], path) def test_of_file(self): """Should return valid result for my file.""" result = status.of_file(MY_PATH) self.assertNotEqual(result['modified'], -1) self.assertEqual(result['path'], MY_PATH) def test_of_directory(self): """Should return status information for my directory.""" results = status.of_directory(MY_DIRECTORY) self.assertTrue('__init__.py' in results) self.assertTrue(os.path.basename(__file__) in results) for key, result in results.items(): self.assertNotEqual(result['modified'], -1) def test_of_project(self): """Should return information about the project.""" support.create_project(self, 'eric') project = cauldron.project.get_internal_project() results = status.of_project(project) self.assertEqual(len(results['libraries']), 3) self.assertEqual(len(results['project'].keys()), 2, """ Expect one entry for cauldron.json and one entry for the S01.py step created by default with a new project. """) ``` #### File: cli/server/test_server_execution.py ```python from collections import namedtuple from unittest.mock import MagicMock from unittest.mock import patch from cauldron.environ.response import Response from cauldron.test.support import flask_scaffolds class TestServerExecution(flask_scaffolds.FlaskResultsTest): """...""" def test_execute_sync(self): """Should execute command synchronously.""" opened = self.post('/command-sync', {'command': 'open', 'args': ''}) self.assertEqual(opened.flask.status_code, 200) def test_execute_get(self): """Should execute using get passed data """ opened = self.get('/command-sync?&command=open') self.assertEqual(opened.flask.status_code, 200) def test_execute_wait(self): """Should wait for execution to complete when synchronous.""" FakeThread = namedtuple('FakeThread_NT', ['uid', 'join', 'is_alive']) thread = FakeThread( uid='FAKE-UID', join=MagicMock(), is_alive=MagicMock(return_value=False) ) def execute_replacement(name, args, response: Response): response.thread = thread patch_target = 'cauldron.cli.commander.execute' with patch(patch_target, wraps=execute_replacement) as execute: opened = self.get('/command-sync?&command=open') self.assertEqual(execute.call_count, 1) self.assertEqual(opened.flask.status_code, 200) self.assertGreater(thread.join.call_count, 0) self.assertGreater(thread.is_alive.call_count, 0) self.assertFalse(opened.response.failed) def test_shutdown_not_running(self): """Should abort shutdown of non-running server.""" shutdown = self.get('/shutdown') self.assert_has_error_code(shutdown.response, 'NOT_RUNNING_ERROR') @patch('cauldron.cli.commander.execute') def test_execute_failure(self, execute: MagicMock): """Should fail when execution fails.""" execute.side_effect = RuntimeError('FAKE ERROR') opened = self.get('/command-sync?&command=open&args=+') self.assertEqual(opened.flask.status_code, 200) self.assert_has_error_code(opened.response, 'KERNEL_EXECUTION_FAILURE') def test_shutdown(self): """Should abort the running server.""" shutdown_func = MagicMock() shutdown = self.get( '/shutdown', environ_base={'werkzeug.server.shutdown': shutdown_func} ) shutdown_func.assert_called_once_with() self.assertFalse(shutdown.response.failed) def test_shutdown_failed(self): """Should abort the running server.""" shutdown_func = MagicMock() shutdown_func.side_effect = RuntimeError('FAKE ERROR') shutdown = self.get( '/shutdown', environ_base={'werkzeug.server.shutdown': shutdown_func} ) shutdown_func.assert_called_once_with() self.assert_has_error_code(shutdown.response, 'SHUTDOWN_ERROR') @patch('cauldron.cli.server.routes.execution.server_runner') def test_abort_not_a_response( self, server_runner: MagicMock, ): """Should ignore non-response entries during abort.""" server_runner.active_execution_responses = {'foo': None} self.get('/abort') @patch('cauldron.cli.server.routes.execution.server_runner') def test_abort_no_thread( self, server_runner: MagicMock, ): """Should work when no thread for active response.""" active_response = MagicMock() active_response.thread = None server_runner.active_execution_responses = {'foo': active_response} self.get('/abort') @patch('cauldron.cli.server.routes.execution.server_runner') def test_abort_cannot_stop( self, server_runner: MagicMock, ): """Should succeed even when thread could not be stopped.""" active_response = MagicMock() active_response.thread.abort_running.side_effect = ValueError server_runner.active_execution_responses = {'foo': active_response} self.get('/abort') ``` #### File: cli/sync/test_sync_comm.py ```python import os from unittest.mock import MagicMock from unittest.mock import patch import requests from requests import Response as HttpResponse from cauldron import environ from cauldron.cli.sync import comm from cauldron.test import support from cauldron.test.support import scaffolds class TestSyncComm(scaffolds.ResultsTest): """Test suite for the cauldron.cli.sync.sync_comm module""" def test_assemble_url_without_connection(self): """Should assemble url""" endpoint = '/some-endpoint' url_assembled = comm.assemble_url(endpoint) self.assertEqual( url_assembled, 'http://localhost:5010{}'.format(endpoint) ) def test_assemble_url_specified_connection(self): """Should assemble url using the specified remote connection data""" url = 'some.url:5451' endpoint = '/some-endpoint' remote_connection = environ.RemoteConnection(url=url, active=True) url_assembled = comm.assemble_url(endpoint, remote_connection) self.assertEqual(url_assembled, 'http://{}{}'.format(url, endpoint)) def test_assemble_url_global_connection(self): """Should assemble url using the specified remote connection data""" url = 'some.url:5451' endpoint = '/some-endpoint' support.run_command('connect {} --force'.format(url)) url_assembled = comm.assemble_url(endpoint) self.assertEqual(url_assembled, 'http://{}{}'.format(url, endpoint)) support.run_command('disconnect') @patch('requests.request') def test_send_request_invalid(self, request: MagicMock): """Should fail to send request.""" request.side_effect = requests.ConnectionError('Fake Error') response = comm.send_request('/fake', method='GET') self.assert_has_error_code(response, 'COMMUNICATION_ERROR') @patch('cauldron.cli.sync.comm.parse_http_response') @patch('requests.request') def test_send_request_valid( self, request: MagicMock, parse_http_response: MagicMock ): """Should successfully send request.""" request.return_value = HttpResponse() parse_http_response.return_value = environ.Response('test') response = comm.send_request( endpoint='/fake', method='post', data=dict(a=1, b=2) ) self.assertEqual(response.identifier, 'test') def test_parse_valid_http_response(self): """Should fail to send request.""" source_response = environ.Response().update(test='hello_world') def json_mock(*args, **kwargs): return source_response.serialize() http_response = HttpResponse() http_response.json = json_mock response = comm.parse_http_response(http_response) self.assertEqual( source_response.data['test'], response.data['test'] ) def test_parse_invalid_http_response(self): """Should fail to parse invalid http response""" http_response = HttpResponse() response = comm.parse_http_response(http_response) self.assert_has_error_code(response, 'INVALID_REMOTE_RESPONSE') self.assertEqual(http_response, response.http_response) @patch('requests.get') def test_failed_download(self, requests_get: MagicMock): """Should fail to download if the GET request raises an exception""" requests_get.side_effect = IOError('FAKE ERROR') path = self.get_temp_path('failed_download', 'fake.filename') response = comm.download_file('fake.filename', path) self.assert_has_error_code(response, 'CONNECTION_ERROR') self.assertFalse(os.path.exists(path)) @patch('requests.get') def test_failed_download_write(self, requests_get: MagicMock): """Should fail to download if the GET request raises an exception""" requests_get.return_value = dict() path = self.get_temp_path('failed_download', 'fake.filename') with patch('builtins.open') as open_func: open_func.side_effect = IOError('Fake Error') response = comm.download_file('fake.filename', path) self.assert_has_error_code(response, 'WRITE_ERROR') self.assertFalse(os.path.exists(path)) @patch('requests.get') def test_download(self, requests_get: MagicMock): """Should successfully download saved cauldron file""" def mock_iter_content(*args, **kwargs): yield from [b'a', b'b', b'', None, b'c'] http_response = HttpResponse() http_response.iter_content = mock_iter_content requests_get.return_value = http_response path = self.get_temp_path('failed_download', 'fake.filename') response = comm.download_file('fake.filename', path) self.assertTrue(response.success) self.assertTrue(os.path.exists(path)) with open(path, 'rb') as f: contents = f.read() self.assertEqual(contents, b'abc') ``` #### File: test/environ/test_logger.py ```python from unittest.mock import patch from unittest.mock import MagicMock from cauldron.environ import logger @patch('cauldron.environ.logger.log') def test_header_zero(log: MagicMock): """Should log a level zero header without modification""" logger.header('hello', level=0) args = log.call_args[0] assert 'hello' == args[0], 'Message should not be modified' @patch('cauldron.environ.logger.log') def test_header_infinity(log: MagicMock): """Should log a high level header without modification""" logger.header('hello', level=8) args = log.call_args[0] assert 'hello' == args[0], 'Message should not be modified' @patch('cauldron.environ.logger.raw') def test_log_with_kwargs(raw: MagicMock): """Should include kwargs in log output.""" message = logger.log('test', foo=42) assert 1 == raw.call_count assert 0 < message.find('foo: 42'), """ Expected to find the foo kwarg in the message. """ @patch('traceback.extract_tb') def test_get_error_stack_module(extract_tb: MagicMock): """Should nullify location when the location is module""" frame = MagicMock() frame.name = '<module>' extract_tb.return_value = [frame] result = logger.get_error_stack() assert result[0]['location'] is None, """ Expected a <module> value to be changed to `None`. """ @patch('traceback.extract_tb') def test_get_error_stack(extract_tb: MagicMock): """Should remove prefix when location is a remote shared library path""" frame = MagicMock() frame.name = '/tmp/cd-remote/__cauldron_shared_libs/test' extract_tb.return_value = [frame] result = logger.get_error_stack() assert result[0]['location'] == '/test', """ Expected the remote prefix to be removed. """ ``` #### File: test/environ/test_modes.py ```python import itertools import typing from unittest.mock import patch from cauldron.environ import modes from pytest import mark POSSIBILITIES = { 'is_ui': modes.UI, 'is_test': modes.TESTING, 'is_interactive': modes.INTERACTIVE, 'is_single_run': modes.SINGLE_RUN, 'is_server': modes.SERVER, } SCENARIOS = [ dict(combination) for combination in itertools.combinations_with_replacement(POSSIBILITIES.items(), 2) ] @mark.parametrize('scenario', SCENARIOS) def test_modes(scenario: typing.Dict[str, str]): """Should identify according to the expected results.""" em = modes.ExposedModes patch_path = 'cauldron.environ.modes._current_modes' with patch(patch_path, new=[]): for m in scenario.values(): modes.add(m) assert em.is_interactive() == ('is_interactive' in scenario) assert em.is_server() == ('is_server' in scenario) assert em.is_single_run() == ('is_single_run' in scenario) assert em.is_test() == ('is_test' in scenario) assert em.is_ui() == ('is_ui' in scenario) for m in scenario.values(): modes.remove(m) assert not modes._current_modes ``` #### File: test/render/test_render_encoding.py ```python import unittest import json import datetime import numpy as np import pandas as pd from cauldron.render.encoding import ComplexJsonEncoder class TestRenderEncoding(unittest.TestCase): def test_standard_types(self): """Should serialize bytes.""" source = dict(a='hello', b=True, c=3.14) output = json.dumps(source, cls=ComplexJsonEncoder) self.assertIsInstance(output, str) def test_bytes(self): """Should serialize bytes.""" source = dict(key=b'<KEY>') output = json.dumps(source, cls=ComplexJsonEncoder) self.assertIsInstance(output, str) def test_pandas_series(self): """Should serialize bytes.""" source = dict(key=pd.Series([1, 2, 3, 4, 5])) output = json.dumps(source, cls=ComplexJsonEncoder) self.assertIsInstance(output, str) def test_date(self): """Should serialize datetime.date.""" source = dict(key=datetime.date(2016, 1, 1)) output = json.dumps(source, cls=ComplexJsonEncoder) self.assertIsInstance(output, str) def test_datetime(self): """Should serialize datetime.datetime.""" source = dict(key=datetime.datetime(2007, 7, 16)) output = json.dumps(source, cls=ComplexJsonEncoder) self.assertIsInstance(output, str) def test_time(self): """Should serialize datetime.time.""" source = dict(key=datetime.time(8, 7, 16)) output = json.dumps(source, cls=ComplexJsonEncoder) self.assertIsInstance(output, str) def test_timedelta(self): """Should serialize datetime.timedelta """ delta = ( datetime.datetime(2016, 4, 4) - datetime.datetime(2014, 3, 12) ) source = dict(key=delta) output = json.dumps(source, cls=ComplexJsonEncoder) self.assertIsInstance(output, str) def test_ndarray(self): """Should serialize numpy.ndarray.""" source = dict(key=np.zeros([3, 3])) output = json.dumps(source, cls=ComplexJsonEncoder) self.assertIsInstance(output, str) def test_numpy_ints(self): """Should serialize numpy int types.""" source = dict( key8=np.int8(12), key16=np.int16(12), key32=np.int32(12), key64=np.int64(12) ) output = json.dumps(source, cls=ComplexJsonEncoder) self.assertIsInstance(output, str) def test_numpy_floats(self): """Should serialize numpy float types.""" source = dict( key16=np.float16(np.pi), key32=np.float32(np.pi), key64=np.float64(np.pi) ) output = json.dumps(source, cls=ComplexJsonEncoder) self.assertIsInstance(output, str) def test_odd_dates(self): """ Should convert to iso strings where numpy or pandas datetimes are found. """ dt64 = np.datetime64('2002-06-28T01:00:00') source = dict( datetime64=dt64, timestamp=pd.Timestamp(dt64) ) output = json.dumps(source, cls=ComplexJsonEncoder) self.assertIsInstance(output, str) self.assertEqual(2, output.count('2002-06-28T01:00:00')) ``` #### File: test/render/test_syntax_highlighting.py ```python from unittest import TestCase from pygments.lexers.python import Python3Lexer from cauldron.render import syntax_highlighting # Pygments has recently introduced Python2Lexer and made # PythonLexer the Python3Lexer. For maximum compatibility # of the test, the assertions will allow any of the lexers # to be used. # https://pygments.org/docs/lexers/#pygments.lexers.python.Python2Lexer PYTHON_LEXER_CLASS_NAMES = [ 'Python2Lexer', 'PythonLexer', 'Python3Lexer' ] class TestSyntaxHighlighting(TestCase): def test_source(self): """Should retrieve python lexer by source.""" with open(__file__, 'r') as f: contents = f.read() lexer = syntax_highlighting.fetch_lexer(contents) self.assertIn(lexer.__class__.__name__, PYTHON_LEXER_CLASS_NAMES) def test_language_python3(self): """Should retrieve python 3 lexer by language.""" lexer = syntax_highlighting.fetch_lexer('', 'python3') self.assertIsInstance(lexer, Python3Lexer) def test_filename_python(self): """Should retrieve python lexer by filename.""" lexer = syntax_highlighting.fetch_lexer('', 'fake', 'test.py') self.assertIn(lexer.__class__.__name__, PYTHON_LEXER_CLASS_NAMES) def test_mime_type_python(self): """Should retrieve python lexer by filename.""" lexer = syntax_highlighting.fetch_lexer( '', mime_type='application/x-python' ) self.assertIn(lexer.__class__.__name__, PYTHON_LEXER_CLASS_NAMES) def test_unknown_language(self): """Should retrieve a default lexer for an unknown language.""" lexer = syntax_highlighting.fetch_lexer('', 'lkjasdlkjsad') self.assertIsNotNone(lexer) def test_unknown_everything(self): """Should retrieve a default lexer for an unknown language.""" lexer = syntax_highlighting.fetch_lexer( source='asdlkasdj', language='lkjasdlkjsad', filename='test.qweoihwq', mime_type='fictional/lasdlkjad' ) self.assertIsNotNone(lexer) ``` #### File: session/writing/test_file_io_move.py ```python import os from unittest.mock import MagicMock from unittest.mock import patch import pytest from cauldron.session.writing import file_io @patch('os.path.exists') @patch('os.chdir') @patch('shutil.move') @patch('subprocess.run') @patch('time.sleep') def test_move_failure( time_sleep: MagicMock, subprocess_run: MagicMock, shutil_move: MagicMock, os_chdir: MagicMock, path_exists: MagicMock, ): """Should fail to move the file by any means.""" path_exists.return_value = True shutil_move.side_effect = FileExistsError subprocess_run.side_effect = [ MagicMock(stdout=b'foo', returncode=0), MagicMock(stdout=b'foo', returncode=0), ValueError, ValueError, MagicMock(check_returncode=MagicMock(side_effect=ValueError)) ] path = os.path.realpath(__file__) with pytest.raises(IOError): file_io.move(file_io.FILE_COPY_ENTRY( source=path, destination='{}.shouldnotexist'.format(path) )) assert 6 == time_sleep.call_count, """ Expect to sleep on all 6 failed retry attempts. """ assert 3 == shutil_move.call_count, """ Expect 3 attempts to move the file with shutil. """ assert 5 == subprocess_run.call_count, """ Expect 3 attempts to move the file with git and two calls to determine that the source and output locations are both under the same git project. """ assert 9 == os_chdir.call_count, """ Expect 3 calls to probe git version control and then 6 calls during the git move attempts. """ @patch('os.utime') @patch('os.path.exists') @patch('os.chdir') @patch('shutil.move') @patch('subprocess.run') @patch('time.sleep') def test_move_git( time_sleep: MagicMock, subprocess_run: MagicMock, shutil_move: MagicMock, os_chdir: MagicMock, path_exists: MagicMock, utime: MagicMock, ): """Should move the file using git.""" path_exists.return_value = True subprocess_run.side_effect = [ MagicMock(stdout=b'bar', returncode=0), MagicMock(stdout=b'bar', returncode=0), ValueError, MagicMock() # this attempt works ] path = os.path.realpath(__file__) file_io.move(file_io.FILE_COPY_ENTRY( source=path, destination='{}.shouldnotexist'.format(path) )) assert 1 == time_sleep.call_count, """ Expect to sleep once a the first git move attempt. """ assert 0 == shutil_move.call_count, """ Expect no attempts to move the file with shutil. """ assert 4 == subprocess_run.call_count, """ Expect 2 attempts to move the file with git and two calls to determine that the source and output locations are both under the same git project. """ assert 7 == os_chdir.call_count, """ Expect 3 calls to probe git version control and then 4 more calls during the git move attempts. """ assert 0 < utime.call_count, """ Expect that the moved file gets touched to a new uptime so that cauldron can see that the file has changed. """ @patch('os.utime') @patch('os.path.exists') @patch('os.chdir') @patch('shutil.move') @patch('subprocess.run') @patch('time.sleep') def test_move_no_git( time_sleep: MagicMock, subprocess_run: MagicMock, shutil_move: MagicMock, os_chdir: MagicMock, path_exists: MagicMock, utime: MagicMock, ): """Should move the file with shutil.move.""" path_exists.return_value = True shutil_move.side_effect = [ValueError, MagicMock()] subprocess_run.side_effect = [ MagicMock(stdout=b'foo', returncode=0), MagicMock(stdout=b'bar', returncode=0), ] path = os.path.realpath(__file__) file_io.move(file_io.FILE_COPY_ENTRY( source=path, destination='{}.shouldnotexist'.format(path) )) assert 1 == time_sleep.call_count, """ Expect to sleep once a the first shutil move attempt. """ assert 2 == shutil_move.call_count, """ Expect 2 attempts to move the file with shutil. """ assert 2 == subprocess_run.call_count, """ Expect 2 attempts to move the file with git and two calls to determine that the source and output locations are not under the same git project. """ assert 3 == os_chdir.call_count, """ Expect 3 calls to probe git version control. """ assert 0 < utime.call_count, """ Expect that the moved file gets touched to a new uptime so that cauldron can see that the file has changed. """ ``` #### File: test/support/functional.py ```python import tempfile import pytest import cauldron from cauldron import cli from cauldron import environ from cauldron.cli import commander from cauldron.cli.commands import close class ProjectLifecycleTester: def __init__(self): self.results_directory = None self.temp_directories = dict() def set_up(self): """Called before the test process begins.""" results_directory = tempfile.mkdtemp( prefix='cd-test-results-{}--'.format(self.__class__.__name__) ) self.results_directory = results_directory environ.configs.put(results_directory=results_directory, persists=False) self.temp_directories = dict() def tear_down(self): """Called after the test process is complete.""" # Close any open project so that it doesn't persist to the next test if cauldron.project.internal_project is not None: close.execute(cli.make_command_context('close')) environ.configs.remove('results_directory', include_persists=False) environ.systems.remove(self.results_directory) self.results_directory = None for key, path in self.temp_directories.items(): # pragma: no cover environ.systems.remove(path) if cauldron.environ.remote_connection.active: # pragma: no cover commander.execute('disconnect', '') def make_project_lifecycle_fixture(fixture_name: str = 'tester'): """...""" @pytest.fixture(name=fixture_name) def project_lifecycle_fixture(): tester = ProjectLifecycleTester() tester.set_up() yield tester tester.tear_down() return project_lifecycle_fixture ``` #### File: test/support/mocking.py ```python import builtins import typing from unittest.mock import MagicMock from unittest.mock import patch _reserved_import = builtins.__import__ def populate_open_mock(mocked_open: MagicMock) -> MagicMock: """ Populates the specified MagicMock configured for use in mocking an `open` object used as a ContextManager: with open('foo.file') as f: f.read() Such that it can be patched as: @patch('cauldron.path.to.file.open') def test_something(opener: MagickMock): populate_open_mock(opener) opener.mocked_file.read.return_value = 'foo' """ file = MagicMock(name='mocked_open.mocked_file') context = MagicMock(name='mocked_open.mocked_context') context.__enter__.return_value = file mocked_open.mocked_file = file mocked_open.mocked_context = context mocked_open.return_value = context return mocked_open class MockImporter: """Mocks the 'builtins.__import__ function.""" def __init__( self, error_on: typing.List[str] = None, error_message: str = 'Mock Import Error' ): self.error_on = error_on or [] self.error_message = error_message def __call__(self, *args, **kwargs): if args and args[0] in self.error_on: raise ImportError(self.error_message) return _reserved_import(*args, **kwargs) class ImportPatcher: """Patches the 'builtins.__import__ function with a MockImporter.""" def __init__(self): self.mock_importer = MockImporter([]) self._patch = patch( 'builtins.__import__', new=self.mock_importer ) def __enter__(self): self._patch.__enter__() return self.mock_importer def __exit__(self, *args, **kwargs): return self._patch.__exit__(*args) ``` #### File: test/support/server.py ```python import json import typing from flask import Response as FlaskResponse from cauldron import environ from cauldron.cli import server Responses = typing.NamedTuple('TestResponses', [ ('flask', FlaskResponse), ('response', 'environ.Response') ]) def create_test_app(): """...""" return server.server_run.APPLICATION.test_client() def get(app, endpoint: str, **kwargs) -> Responses: """ send get request to the test flask application.""" flask_response = app.get(endpoint, **kwargs) response = deserialize_flask_response(flask_response) return Responses(flask_response, response) def post(app, endpoint: str, data=None, **kwargs) -> Responses: """ send post request to the test flask application.""" args = json.dumps(data) if data else None flask_response = app.post( endpoint, data=args, content_type='application/json', **kwargs ) response = deserialize_flask_response(flask_response) return Responses(flask_response, response) def deserialize_flask_response( flask_response: FlaskResponse ) -> 'environ.Response': """...""" try: data = json.loads(flask_response.data.decode('utf-8', 'ignore')) response = environ.Response.deserialize(data) except Exception as error: response = environ.Response().fail( code='DESERIALIZE_FLASK_RESPONSE', message='Failed to deserialize flask response', error=error ) return response ``` #### File: cauldron/test/test_templating.py ```python import unittest from cauldron import templating from cauldron import environ class TestTemplating(unittest.TestCase): def test_id_filter(self): """...""" result = templating.render('{{ "test" | id }}') parts = result.split('-', 2) self.assertEqual( parts[0], 'cdi', msg='"{}" should start with "cdi"'.format(result) ) self.assertEqual( parts[1], 'test', msg='"{}" should match the prefix'.format(result) ) def test_latex_filter(self): """...""" result = templating.render('{{ "e = mc^2" | latex }}') self.assertNotEqual(result.find('katex'), -1, 'where is katex?') def test_render_template(self): """ :return: """ result = templating.render_template('unit_test.html', value='hello') self.assertEqual(result, 'hello') def test_render_file(self): """ :return: """ result = templating.render_file( environ.paths.package('resources', 'templates', 'unit_test.html'), value='hello' ) self.assertEqual(result, 'hello') ``` #### File: apis/executions/test_runner_abort.py ```python from unittest.mock import MagicMock from unittest.mock import patch from cauldron.ui.routes.apis.executions import runner @patch('cauldron.ui.routes.apis.executions.runner.ui_configs') @patch('cauldron.ui.routes.apis.executions.runner.redirection') @patch('cauldron.project.get_internal_project') def test_abort( get_internal_project: MagicMock, redirection: MagicMock, ui_configs: MagicMock, ): """Should carry out an abort process on the active response thread.""" active_response = MagicMock() active_response.thread.abort_running.side_effect = ValueError ui_configs.ACTIVE_EXECUTION_RESPONSE = active_response step = MagicMock() step.is_running = True project = MagicMock() project.current_step = step get_internal_project.return_value = project response = runner.abort() assert response.success assert redirection.disable.called assert redirection.restore_default_configuration.called assert not step.is_running, """ Expect the current step to be stopped given that it was running. """ ``` #### File: routes/apps/test_view.py ```python from unittest.mock import MagicMock from unittest.mock import patch import flask from cauldron.ui import configs from cauldron.ui.routes import apps from pytest import mark test_app = flask.Flask(__name__) test_app.register_blueprint(apps.blueprint) SCENARIOS = [ {'exists': True, 'endpoint': '', 'match': 'index.html'}, {'exists': True, 'endpoint': 'foo.js', 'match': 'foo.js'}, {'exists': False, 'endpoint': 'foo.js'}, ] @mark.parametrize('scenario', SCENARIOS) @patch('cauldron.ui.routes.apps.os.path.exists') @patch('cauldron.ui.routes.apps.flask.send_file') def test_view( flask_send_file: MagicMock, exists: MagicMock, scenario: dict, ): """Should return app file based on the scenario.""" flask_send_file.return_value = flask.Response() exists.return_value = scenario['exists'] client = test_app.test_client() response = client.get('{}/app/{}'.format( configs.ROOT_PREFIX, scenario['endpoint'] )) code = 200 if scenario['exists'] else 204 assert 1 == exists.call_count assert code == response.status_code, """ Expect the default success response to be returned. """ if scenario['exists']: path = flask_send_file.call_args[0][0] assert path.endswith(scenario['match']) else: assert not flask_send_file.called ``` #### File: routes/notebooks/test_get_remote_view.py ```python from unittest.mock import MagicMock from unittest.mock import patch from cauldron.ui.routes import notebooks @patch('cauldron.ui.routes.notebooks.flask') @patch('cauldron.ui.routes.notebooks.requests.request') def test_get_remote_view( requests_request: MagicMock, mock_flask: MagicMock, ): """Should retrieve remote view via request.""" remote_response = MagicMock() remote_response.raw.headers = {'foo': 'bar'} remote_response.content = 'hello' remote_response.status_code = 200 requests_request.return_value = remote_response response = notebooks._get_remote_view('foo.js') assert response is not None args = mock_flask.Response.call_args[0] assert 'hello' == args[0] assert 200 == args[1] assert ('foo', 'bar') in list(args[2]) ``` #### File: cauldron/ui/configs.py ```python import os import typing from cauldron import environ DEFAULT_PORT = 8899 LAUNCH_THREAD = None ACTIVE_EXECUTION_RESPONSE = None # type: typing.Optional[environ.Response] #: The root URL prefix for the UI ROOT_PREFIX = '/v1' #: UI Version UI_VERSION = [0, 0, 1, 1] UI_APP_DATA = dict( version=UI_VERSION, user=os.environ.get('USER'), test=1, pid=os.getpid() ) # Count of the number of consecutive UI get status failures. # Will reset to zero once a successful status response has # been returned. See cauldron/environ/response.py for details. status_failures = 0 def is_active_async() -> bool: """ Determines whether or not an async command execution is currently underway within the UI execution environment. """ r = ACTIVE_EXECUTION_RESPONSE return r is not None and r.thread and r.thread.is_alive() ``` #### File: cauldron/ui/launcher.py ```python import typing import socket import threading import time import webbrowser def _check_usage(host: str, port: int) -> bool: """ Checks to see whether or not the specified port is utilized and returns a boolean indicating whether it is or not. """ sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) return not bool(sock.connect_ex((host, port))) def find_open_port( host: str, ports: typing.Iterable[int] ) -> typing.Optional[int]: """ Finds the first open port on the specified host that is not currently being utilized from the iterable containing possible port options and returns that value. If none of the ports are available a None value is returned. """ return next((p for p in ports if not _check_usage(host, p)), None) class OpenUiOnStart(threading.Thread): """ Thread used to monitor the UI port for a point where the Flask web server is actively serving on the targeted port. When that occurs the UI is automatically opened in a new browser window. """ def __init__(self, host: str, port: int): super(OpenUiOnStart, self).__init__() self.host = host or '127.0.0.1' self.port = port self.retries = 0 @property def root_url(self) -> str: """URL of the UI to open when the UI app starts serving.""" return 'http://{host}:{port}/'.format(host=self.host, port=self.port) def run(self): """ Execution loop for the thread, which polls the UI port until it responds and then opens the UI in a web browser when that happens. The polling process will last up to 25 seconds after which it will give up. """ while self.retries < 100: if _check_usage(self.host, self.port): webbrowser.open_new(self.root_url) break else: self.retries += 1 time.sleep(0.25) ``` #### File: cauldron/ui/parsing.py ```python from argparse import ArgumentParser def create_parser( arg_parser: ArgumentParser = None, shell: bool = False ) -> ArgumentParser: """ Creates an argument parser populated with the arg formats for the server command. """ parser = arg_parser or ArgumentParser() parser.description = 'Cauldron kernel server' parser.add_argument( '-p', '--port', dest='port', type=int, default=None, help=( 'Port on which the UI should interact. If not specified ' 'an open port will be found and used instead.' ) ) parser.add_argument( '-n', '--name', '--host', dest='host', type=str, default=None ) parser.add_argument( '--public', default=False, action='store_true' ) if not shell: parser.add_argument( '-d', '--debug', dest='debug', default=False, action='store_true' ) parser.add_argument( '-v', '--version', dest='version', default=False, action='store_true' ) parser.add_argument( '-c', '--connect', '--connection', dest='connection_url' ) parser.add_argument( '--basic', action='store_true', help=""" When specified a basic Flask server will be used to serve the kernel instead of a waitress WSGI server. Use only when necessary as the Flask server isn't as robust. """ ) return parser ``` #### File: apis/executions/runner.py ```python import typing import flask import cauldron from cauldron import environ from cauldron.cli import commander from cauldron.environ.response import Response from cauldron.runner import redirection from cauldron.ui import arguments from cauldron.ui import configs as ui_configs ParsedCommand = typing.NamedTuple('COMMAND_CONTEXT', [ ('response', Response), ('command', str), ('args', list), ]) def parse_command_args() -> environ.Response: """ Parse arguments for command executions. :param response: The response object to modify with status or error data :return: A tuple where the first element is the name of the command to execute, and the second is a string representing the arguments to apply to that command. """ response = environ.Response() cmd = None parts = None name = None args = None request_args = arguments.from_request() try: cmd = request_args.get('command', '') parts = [x.strip() for x in cmd.split(' ', 1)] name = parts[0].lower() args = request_args.get('args', '') if not isinstance(args, str): args = ' '.join(args) args += ' {}'.format(parts[1] if len(parts) > 1 else '').strip() except Exception as err: return response.fail( code='INVALID_COMMAND', message='Unable to parse command', cmd=cmd if cmd else '', parts=parts, name=name, args=args, error=err, mime_type='{}'.format(flask.request.mimetype), request_data='{}'.format(flask.request.data), request_args=request_args ).response return response.returns(name, args) def execute(asynchronous: bool = False) -> environ.Response: """ :param asynchronous: Whether or not to allow asynchronous command execution that returns before the command is complete with a run_uid that can be used to track the continued execution of the command until completion. """ r = parse_command_args() if r.failed: return r cmd, args = r.returned try: r = commander.execute(cmd, args, r) if not r.thread: return r if not asynchronous: r.thread.join() # Watch the thread for a bit to see if the command finishes in # that time. If it does the command result will be returned directly # to the caller. Otherwise, a waiting command will be issued for _ in range(5): r.thread.join(0.25) if not r.thread.is_alive(): break if r.thread.is_alive(): ui_configs.ACTIVE_EXECUTION_RESPONSE = r return Response().update( run_log=r.get_thread_log(), run_status='running', run_uid=r.thread.uid, ) return r.update( run_log=r.get_thread_log(), run_status='complete', run_uid=r.thread.uid ) except Exception as error: return r.fail( code='KERNEL_EXECUTION_FAILURE', message='Unable to execute command.', cmd=cmd, args=args, error=error ).response def abort() -> environ.Response: response = ui_configs.ACTIVE_EXECUTION_RESPONSE ui_configs.ACTIVE_EXECUTION_RESPONSE = None should_abort = ( response is not None and response.thread and response.thread.is_alive() ) if should_abort: # Try to stop the thread gracefully first. response.thread.abort = True response.thread.join(2) try: # Force stop the thread explicitly if response.thread.is_alive(): response.thread.abort_running() except Exception: pass project = cauldron.project.get_internal_project() if project and project.current_step: step = project.current_step if step.is_running: step.mark_dirty(True) step.progress = 0 step.progress_message = None step.dumps(False) step.is_running = False # Make sure this is called prior to printing response information to # the console or that will come along for the ride redirection.disable(step) # Make sure no print redirection will survive the abort process regardless # of whether an active step was found or not (prevents race conditions) redirection.restore_default_configuration() return environ.Response() ``` #### File: ui/routes/__init__.py ```python import flask from cauldron.ui import configs as ui_configs blueprint = flask.Blueprint( name='roots', import_name=__name__, ) @blueprint.route('/') def hello(): return flask.redirect( '{}/app'.format(ui_configs.ROOT_PREFIX), code=302 ) ``` #### File: routes/notebooks/__init__.py ```python import mimetypes import os import cauldron import flask import requests from cauldron import environ from cauldron.ui import configs as ui_configs blueprint = flask.Blueprint( name='notebooks', import_name=__name__, url_prefix='{}/notebook'.format(ui_configs.ROOT_PREFIX) ) def _get_remote_view(route: str) -> flask.Response: endpoint = route.lstrip('/') request = flask.request response = requests.request( method=request.method, url='{}/view/{}'.format(environ.remote_connection.url, endpoint), headers={k: v for k, v in request.headers if k != 'Host'}, data=request.get_data(), cookies=request.cookies, allow_redirects=False ) excluded_headers = [ 'connection', 'content-encoding', 'content-length', 'transfer-encoding', ] headers = [ (name, value) for name, value in response.raw.headers.items() if name.lower() not in excluded_headers ] return flask.Response(response.content, response.status_code, headers) @blueprint.route('/<path:route>', methods=['GET', 'POST']) def notebook(route: str): """ Retrieves the contents of the file specified by the view route if it exists. """ is_remote = environ.remote_connection.active load_from_resources = ( route.startswith('assets') or ( is_remote and route in ['project.css', 'project.js'] ) ) if load_from_resources: # If a local version of the asset exists, send that from the # resources directory instead of the results directory. local_asset_path = environ.paths.resources('web', route) if os.path.exists(local_asset_path): return flask.send_file( local_asset_path, mimetype=mimetypes.guess_type(local_asset_path)[0], cache_timeout=-1 ) if is_remote: return _get_remote_view(route) project = cauldron.project.get_internal_project() results_path = project.results_path if project else None if not project or not results_path: return '', 204 path = os.path.join(results_path, route) if not os.path.exists(path): return '', 204 return flask.send_file( path, mimetype=mimetypes.guess_type(path)[0], cache_timeout=-1 ) ``` #### File: ui/statuses/_reconciler.py ```python import os from cauldron import environ from cauldron.ui import configs as ui_configs from cauldron.ui.statuses import _utils def _mark_dirty_after(step_data: dict, timestamp: float) -> dict: """ Modifies the step_data to mark it dirty if the step data is for a remote project and the remote file (on the local system) has been modified more recently than it has been synchronized to the kernel system. """ path = step_data.get('remote_source_path') status = step_data.get('status') if not path or not status: return step_data try: file_modified = os.path.getmtime(path) except FileNotFoundError: file_modified = 0 is_dirty = ( status.get('dirty', False) or not os.path.exists(path) or timestamp < file_modified ) step_data.update(dirty=is_dirty) status.update( dirty=is_dirty, is_dirty=is_dirty, file_modified=file_modified ) return step_data def localize_dirty_steps(project_data: dict) -> dict: """ Will mark steps as dirty, even if the remote status says they are not if the local files have been modified more recently than the remote sync timestamp, i.e. a step needs to be synced to the remote. :param project_data: Remote response kernel-serialized project data in which step data exists to localize. :return: The modified kernel-serialized project data. """ if not project_data: return project_data last_timestamp = environ.remote_connection.sync_timestamp project_data['steps'] = [ _mark_dirty_after(s, last_timestamp) for s in project_data.get('steps') or [] ] return project_data def merge_local_state(remote_status: dict, force: bool) -> dict: """ When proxying a remote status through a local cauldron process, it's necessary to merge in local state values as part of the proxy process given that not all remote state is the important state to be reporting to the UI. :param remote_status: The remote status payload to merge local state into. :param force: Whether or not to force the hash of the finalized status to ensure that the state is updated when returned to the UI. """ # Steps modified locally should be identified as dirty # or the status display. remote_status['data']['project'] = localize_dirty_steps( remote_status['data'].get('project') ) # We care about the local remote connection, which is active, # not the remote one. remote_status['data']['remote'] = environ.remote_connection.serialize() # We care about the local viewer, not the remote one. remote_status['data']['view'] = environ.view # We care about the local UI environment command executions. remote_status['data']['is_active_async'] = ui_configs.is_active_async() # We want the local UI server version to be included. remote_status['data']['ui_server_version'] = environ.version # We want the local UI python version to be included. remote_status['data']['ui_python_version'] = environ.python_version remote_status['hash'] = _utils.get_digest_hash(remote_status, force) return remote_status ``` #### File: cauldron/cauldron-web/deploy.py ```python import os import shutil MY_DIRECTORY = os.path.realpath(os.path.dirname(__file__)) def main(): """Copies the current dist directory into the cauldron Python package.""" print('\n\n=== DEPLOYING ====\n') dist_path = os.path.join(MY_DIRECTORY, 'dist') deploy_path = os.path.realpath(os.path.join( MY_DIRECTORY, '..', 'cauldron', 'resources', 'web' )) print(f'DIST PATH: {dist_path}') print(f'DEPLOY PATH: {deploy_path}') print(f'[INFO]: Removing existing deployed files.') shutil.rmtree(deploy_path) print(f'[INFO]: Copying dist files to deployment path') shutil.copytree(dist_path, deploy_path) print('[SUCCESS]: Deployment operation complete.') if __name__ == '__main__': main() ```
{ "source": "JohnnyPeng18/coach", "score": 2 }
#### File: rl_coach/architectures/embedder_parameters.py ```python from typing import List, Union from rl_coach.base_parameters import EmbedderScheme, NetworkComponentParameters MOD_NAMES = {'image': 'ImageEmbedder', 'vector': 'VectorEmbedder', 'tensor': 'TensorEmbedder'} class InputEmbedderParameters(NetworkComponentParameters): def __init__(self, activation_function: str='relu', scheme: Union[List, EmbedderScheme]=EmbedderScheme.Medium, batchnorm: bool=False, dropout_rate: float=0.0, name: str='embedder', input_rescaling=None, input_offset=None, input_clipping=None, dense_layer=None, is_training=False, flatten=True): super().__init__(dense_layer=dense_layer) self.activation_function = activation_function self.scheme = scheme self.batchnorm = batchnorm self.dropout_rate = dropout_rate if input_rescaling is None: input_rescaling = {'image': 255.0, 'vector': 1.0, 'tensor': 1.0} if input_offset is None: input_offset = {'image': 0.0, 'vector': 0.0, 'tensor': 0.0} self.input_rescaling = input_rescaling self.input_offset = input_offset self.input_clipping = input_clipping self.name = name self.is_training = is_training self.flatten = flatten def path(self, emb_type): return 'rl_coach.architectures.tensorflow_components.embedders:' + MOD_NAMES[emb_type] ``` #### File: rl_coach/environments/robosuite_environment.py ```python from typing import Union ,Dict, Any from enum import Enum, Flag, auto from copy import deepcopy import numpy as np import random from collections import namedtuple try: import robosuite from robosuite.wrappers import Wrapper, DomainRandomizationWrapper except ImportError: from rl_coach.logger import failed_imports failed_imports.append("Robosuite") from rl_coach.base_parameters import Parameters, VisualizationParameters from rl_coach.environments.environment import Environment, EnvironmentParameters, LevelSelection from rl_coach.spaces import BoxActionSpace, VectorObservationSpace, StateSpace, PlanarMapsObservationSpace # Importing our custom Robosuite environments here so that they are properly # registered in Robosuite, and so recognized by 'robosuite.make()' and included # in 'robosuite.ALL_ENVIRONMENTS' import rl_coach.environments.robosuite.cube_exp robosuite_environments = list(robosuite.ALL_ENVIRONMENTS) robosuite_robots = list(robosuite.ALL_ROBOTS) robosuite_controllers = list(robosuite.ALL_CONTROLLERS) def get_robosuite_env_extra_parameters(env_name: str): import inspect assert env_name in robosuite_environments env_params = inspect.signature(robosuite.environments.REGISTERED_ENVS[env_name]).parameters base_params = list(RobosuiteBaseParameters().env_kwargs_dict().keys()) + ['robots', 'controller_configs'] return {n: p.default for n, p in env_params.items() if n not in base_params} class OptionalObservations(Flag): NONE = 0 CAMERA = auto() OBJECT = auto() class RobosuiteBaseParameters(Parameters): def __init__(self, optional_observations: OptionalObservations = OptionalObservations.NONE): super(RobosuiteBaseParameters, self).__init__() # NOTE: Attribute names should exactly match the attribute names in Robosuite self.horizon = 1000 # Every episode lasts for exactly horizon timesteps self.ignore_done = True # True if never terminating the environment (ignore horizon) self.reward_shaping = True # if True, use dense rewards. # How many control signals to receive in every simulated second. This sets the amount of simulation time # that passes between every action input (this is NOT the same as frame_skip) self.control_freq = 10 # Optional observations (robot state is always returned) # if True, every observation includes a rendered image self.use_camera_obs = bool(optional_observations & OptionalObservations.CAMERA) # if True, include object (cube/etc.) information in the observation self.use_object_obs = bool(optional_observations & OptionalObservations.OBJECT) # Camera parameters self.has_renderer = False # Set to true to use Mujoco native viewer for on-screen rendering self.render_camera = 'frontview' # name of camera to use for on-screen rendering self.has_offscreen_renderer = self.use_camera_obs self.render_collision_mesh = False # True if rendering collision meshes in camera. False otherwise self.render_visual_mesh = True # True if rendering visual meshes in camera. False otherwise self.camera_names = 'agentview' # name of camera for rendering camera observations self.camera_heights = 84 # height of camera frame. self.camera_widths = 84 # width of camera frame. self.camera_depths = False # True if rendering RGB-D, and RGB otherwise. # Collision self.penalize_reward_on_collision = True self.end_episode_on_collision = False @property def optional_observations(self): flag = OptionalObservations.NONE if self.use_camera_obs: flag = OptionalObservations.CAMERA if self.use_object_obs: flag |= OptionalObservations.OBJECT elif self.use_object_obs: flag = OptionalObservations.OBJECT return flag @optional_observations.setter def optional_observations(self, value): self.use_camera_obs = bool(value & OptionalObservations.CAMERA) if self.use_camera_obs: self.has_offscreen_renderer = True self.use_object_obs = bool(value & OptionalObservations.OBJECT) def env_kwargs_dict(self): res = {k: (v.value if isinstance(v, Enum) else v) for k, v in vars(self).items()} return res class RobosuiteEnvironmentParameters(EnvironmentParameters): def __init__(self, level, robot=None, controller=None, apply_dr: bool = False, dr_every_n_steps_min: int = 10, dr_every_n_steps_max: int = 20, use_joint_vel_obs=False): super().__init__(level=level) self.base_parameters = RobosuiteBaseParameters() self.extra_parameters = {} self.robot = robot self.controller = controller self.apply_dr = apply_dr self.dr_every_n_steps_min = dr_every_n_steps_min self.dr_every_n_steps_max = dr_every_n_steps_max self.use_joint_vel_obs = use_joint_vel_obs self.custom_controller_config_fpath = None @property def path(self): return 'rl_coach.environments.robosuite_environment:RobosuiteEnvironment' DEFAULT_REWARD_SCALES = { 'Lift': 2.25, 'LiftLab': 2.25, } RobosuiteStepResult = namedtuple('RobosuiteStepResult', ['observation', 'reward', 'done', 'info']) # Environment class RobosuiteEnvironment(Environment): def __init__(self, level: LevelSelection, seed: int, frame_skip: int, human_control: bool, custom_reward_threshold: Union[int, float, None], visualization_parameters: VisualizationParameters, base_parameters: RobosuiteBaseParameters, extra_parameters: Dict[str, Any], robot: str, controller: str, target_success_rate: float = 1.0, apply_dr: bool = False, dr_every_n_steps_min: int = 10, dr_every_n_steps_max: int = 20, use_joint_vel_obs=False, custom_controller_config_fpath=None, **kwargs): super(RobosuiteEnvironment, self).__init__(level, seed, frame_skip, human_control, custom_reward_threshold, visualization_parameters, target_success_rate) # Validate arguments self.frame_skip = max(1, self.frame_skip) def validate_input(input, supported, name): if input not in supported: raise ValueError("Unknown Robosuite {0} passed: '{1}' ; Supported {0}s are: {2}".format( name, input, ' | '.join(supported) )) validate_input(self.env_id, robosuite_environments, 'environment') validate_input(robot, robosuite_robots, 'robot') self.robot = robot if controller is not None: validate_input(controller, robosuite_controllers, 'controller') self.controller = controller self.base_parameters = base_parameters self.base_parameters.has_renderer = self.is_rendered and self.native_rendering self.base_parameters.has_offscreen_renderer = self.base_parameters.use_camera_obs or (self.is_rendered and not self.native_rendering) # Seed if self.seed is not None: np.random.seed(self.seed) random.seed(self.seed) # Load and initialize environment env_args = self.base_parameters.env_kwargs_dict() env_args.update(extra_parameters) if 'reward_scale' not in env_args and self.env_id in DEFAULT_REWARD_SCALES: env_args['reward_scale'] = DEFAULT_REWARD_SCALES[self.env_id] env_args['robots'] = self.robot controller_cfg = None if self.controller is not None: controller_cfg = robosuite.controllers.load_controller_config(default_controller=self.controller) elif custom_controller_config_fpath is not None: controller_cfg = robosuite.controllers.load_controller_config(custom_fpath=custom_controller_config_fpath) env_args['controller_configs'] = controller_cfg self.env = robosuite.make(self.env_id, **env_args) # TODO: Generalize this to filter any observation by name if not use_joint_vel_obs: self.env.modify_observable('robot0_joint_vel', 'active', False) # Wrap with a dummy wrapper so we get a consistent API (there are subtle changes between # wrappers and actual environments in Robosuite, for example action_spec as property vs. function) self.env = Wrapper(self.env) if apply_dr: self.env = DomainRandomizationWrapper(self.env, seed=self.seed, randomize_every_n_steps_min=dr_every_n_steps_min, randomize_every_n_steps_max=dr_every_n_steps_max) # State space self.state_space = self._setup_state_space() # Action space low, high = self.env.unwrapped.action_spec self.action_space = BoxActionSpace(low.shape, low=low, high=high) self.reset_internal_state() if self.is_rendered: image = self.get_rendered_image() self.renderer.create_screen(image.shape[1], image.shape[0]) # TODO: Other environments call rendering here, why? reset_internal_state does it def _setup_state_space(self): state_space = StateSpace({}) dummy_obs = self._process_observation(self.env.observation_spec()) state_space['measurements'] = VectorObservationSpace(dummy_obs['measurements'].shape[0]) if self.base_parameters.use_camera_obs: state_space['camera'] = PlanarMapsObservationSpace(dummy_obs['camera'].shape, 0, 255) return state_space def _process_observation(self, raw_obs): new_obs = {} # TODO: Support multiple cameras, this assumes a single camera camera_name = self.base_parameters.camera_names camera_obs = raw_obs.get(camera_name + '_image', None) if camera_obs is not None: depth_obs = raw_obs.get(camera_name + '_depth', None) if depth_obs is not None: depth_obs = np.expand_dims(depth_obs, axis=2) camera_obs = np.concatenate([camera_obs, depth_obs], axis=2) new_obs['camera'] = camera_obs measurements = raw_obs['robot0_proprio-state'] object_obs = raw_obs.get('object-state', None) if object_obs is not None: measurements = np.concatenate([measurements, object_obs]) new_obs['measurements'] = measurements return new_obs def _take_action(self, action): action = self.action_space.clip_action_to_space(action) # We mimic the "action_repeat" mechanism of RobosuiteWrapper in Surreal. # Same concept as frame_skip, only returning the average reward across repeated actions instead # of the total reward. rewards = [] for _ in range(self.frame_skip): obs, reward, done, info = self.env.step(action) rewards.append(reward) if done: break reward = np.mean(rewards) self.last_result = RobosuiteStepResult(obs, reward, done, info) def _update_state(self): obs = self._process_observation(self.last_result.observation) self.state = {k: obs[k] for k in self.state_space.sub_spaces} self.reward = self.last_result.reward or 0 self.done = self.last_result.done self.info = self.last_result.info def _restart_environment_episode(self, force_environment_reset=False): reset_obs = self.env.reset() self.last_result = RobosuiteStepResult(reset_obs, 0.0, False, {}) def _render(self): self.env.render() def get_rendered_image(self): img: np.ndarray = self.env.sim.render(camera_name=self.base_parameters.render_camera, height=512, width=512, depth=False) return np.flip(img, 0) def close(self): self.env.close() class RobosuiteGoalBasedExpEnvironmentParameters(RobosuiteEnvironmentParameters): @property def path(self): return 'rl_coach.environments.robosuite_environment:RobosuiteGoalBasedExpEnvironment' class RobosuiteGoalBasedExpEnvironment(RobosuiteEnvironment): def _process_observation(self, raw_obs): new_obs = super()._process_observation(raw_obs) new_obs['obs-goal'] = None return new_obs def _setup_state_space(self): state_space = super()._setup_state_space() goal_based_shape = list(state_space['camera'].shape) goal_based_shape[2] *= 2 state_space['obs-goal'] = PlanarMapsObservationSpace(tuple(goal_based_shape), 0, 255) return state_space ```
{ "source": "JohnnyPeng18/growser", "score": 3 }
#### File: growser/growser/cmdr.py ```python from collections import Iterable from inspect import getmembers from types import FunctionType, GeneratorType, ModuleType from typing import Callable, Generic, List, TypeVar class Message: """Base class for both commands and domain events.""" class Command(Message): """Objects that mutate state.""" class Coordinator(Command): """Commands responsible for coordinating between multiple commands.""" class DomainEvent(Message): """Objects that result from state mutation.""" class Query(Message): """Objects for requesting data.""" #: Generic :class:`Command` type T = TypeVar('T') class Handles(Generic[T]): """Indicates that a class handles instances of type `T`. Example:: class SingleCommandHandler(Handles[SingleCommand]): def handle(cmd: SingleCommand): pass Classes can also handle multiple commands:: class MultiHandler(Handles[FirstCommand], Handles[SecondCommand]): def handle_first(cmd: FirstCommand): pass def handle_second(cmd: SecondCommand) pass """ def handles_decorator(): handlers = {} def wrapper(command): def inner(func): handlers[func] = command return func return inner wrapper.handlers = handlers return wrapper #: Decorator for registering command handlers handles = handles_decorator() class Handler: __slots__ = ['klass', 'func'] def __init__(self, klass: type, func: Callable): """A single callable used as a handler. This makes it easier to create instances of :attr:`klass` when the handler is a class method. :param klass: Class instance `func` is expecting. :param func: Callable responsible for handling commands of type `klass`. """ self.klass = klass self.func = func def __call__(self): func = self.func if self.klass: func = getattr(self.klass(), self.func.__name__) return func def __repr__(self): return "Handler<{} {}>".format(self.klass, self.func.__qualname__) class HandlerInvoker: __slots__ = ['klass', 'handler'] def __init__(self, klass: type, handler: Callable[..., FunctionType]): """Intermediary between the executing command bus and handler. :param klass: Type of class that is being executed :param handler: Callable that executes instance of this type """ self.klass = klass self.handler = handler def execute(self, command: Command): """Execute the command using the registered command handler. :param command: An instance of :attr:`klass`. """ results = self.handler(command) if isinstance(results, GeneratorType): results = list(results) return results def __repr__(self): return '<{} {} {}>'.format( self.__class__.__name__, self.klass.__name__, self.handler) class Registry: """Scans modules & classes for handlers used for `commands` and `queries`. Example:: registry = HandlerRegistry() registry.scan(growser.handlers.events) """ def __init__(self): self.handlers = {} def find(self, klass: type) -> Handler: """Return the handler assigned to `klass`.""" return self.handlers.get(klass, None) def scan(self, obj): """Register a module, class, or function as a handler. :param obj: Object to register as a handler. """ handlers = [] if isinstance(obj, ModuleType): handlers = scan_module(obj) elif isinstance(obj, type): handlers = scan_class(obj) elif isinstance(obj, FunctionType): handlers = scan_function(obj) for klass, handler in handlers: if issubclass(klass, Command) and klass in self.handlers: raise DuplicateHandlerError(klass, handler) self.handlers[klass] = handler if not len(handlers): raise TypeError('Invalid command handler') def __iter__(self): yield from self.handlers.items() def scan_module(module: ModuleType): """Scan a module for handlers.""" if type(module) != ModuleType: raise TypeError('Module required') rv = [] for obj in getmembers(module): if isinstance(obj[1], type) and issubclass(obj[1], Handles): rv += scan_class(obj[1]) if type(obj[1]) == FunctionType: rv += scan_function(obj[1]) return rv def scan_class(klass: type): """Scan a class for handlers.""" if not isinstance(klass, type): raise TypeError('Class required') # Commands via : Handles[T] expected = [] if hasattr(klass, '__parameters__'): expected = [k for k in klass.__parameters__ if issubclass(k, Command)] def is_func(f): return type(f) == FunctionType and f.__name__[0] != '_' rv = [] for func in [obj[1] for obj in getmembers(klass) if is_func(obj[1])]: rv += scan_function(func, klass) # Handlers declared by the class but not found commands = [cmd[0] for cmd in rv] missing = [cmd for cmd in expected if cmd not in commands] if len(missing): raise UnboundCommandError(missing) return rv def scan_function(obj, klass: type=None) -> List[tuple]: """Determine if a function or unbound class method is a handler. The class bound to the function is determined by either the presence of a type hint:: def handles(cmd: Klass): Or a decorator:: @handles(Klass) def handles(cmd): :param obj: Function to register as a handler. """ if type(obj) != FunctionType: raise TypeError('Expected FunctionType') rv = [] # Method type hints e.g. def name(command: Type) for param, param_type in obj.__annotations__.items(): if not isinstance(param_type, type) or param == 'return': continue if issubclass(param_type, Message): rv.append((param_type, Handler(klass, obj))) # Decorators using @handles(CommandType) if hasattr(handles, 'handlers') and obj in handles.handlers: if not any(cmd == handles.handlers[obj] for cmd, _ in rv): rv.append((handles.handlers[obj], Handler(klass, obj))) return rv class LocalCommandBus: """Experimental command bus for executing messages in the local context.""" def __init__(self, registry: Registry): self.registry = registry def execute(self, cmd: Command) -> None: """Execute a command""" handler = self.registry.find(cmd.__class__) if not handler: raise LookupError('No handler found for {}'.format(cmd.__class__)) invoker = HandlerInvoker(handler.klass, handler()) rv = invoker.execute(cmd) # Allow commands to return commands to execute - will be removed after # event listeners are integrated. if isinstance(rv, Iterable): for result in rv: if isinstance(result, Command): self.execute(result) if isinstance(result, DomainEvent): self.publish(result) return rv def publish(self, event: DomainEvent): pass class DuplicateHandlerError(Exception): """Command is bound to multiple handlers.""" def __init__(self, command: type, duplicate): super().__init__('Duplicate handler found for {}: {}'.format( command.__name__, duplicate)) class UnboundCommandError(Exception): """Handle[T] present but handler for `T` not found.""" def __init__(self, commands): super().__init__('Commands bound without handlers: {}'.format( ', '.join(map(lambda x: x.__name__, commands)))) ``` #### File: growser/growser/db.py ```python from collections import OrderedDict import datetime from typing import Iterator, List from flask_sqlalchemy import SQLAlchemy from psycopg2.extensions import QuotedString from sqlalchemy import Table #: Number of rows to insert per batch transaction BATCH_SIZE = 50000 class Column: def __init__(self, name: str, python_type: type): """Wrapper to cast Python values for use in ad-hoc SQL. Example:: columns = [Column('id', int), Column('amount', float)] :param name: Name of the column. :param python_type: Python type e.g. int, str, float. """ self.name = name self.python_type = python_type def escape(self, value) -> str: """Escape a value for use in a Postgres ad-hoc SQL statement.""" def to_str(val): if isinstance(val, bytes): val = val.decode('utf-8') return QuotedString(val).getquoted().decode('utf-8') func = self.python_type if isinstance(value, (datetime.datetime, datetime.date)): value = str(value) func = to_str if issubclass(self.python_type, str): func = to_str return func(value) def __eq__(self, b): return self.name == b.name and self.python_type == b.python_type def __repr__(self): return '{}<name={}, type={}>'.format( self.__class__.__name__, self.name, self.python_type.__name__) class ColumnCollection(OrderedDict): def __init__(self, columns: list): super().__init__([(c.name, c) for c in columns]) class BulkInsertFromIterator: def __init__(self, table, data: Iterator, columns: list, batch_size: int=BATCH_SIZE, header: bool=False): """Bulk insert into Postgres from an iterator in fixed-size batches. Example:: bulk = BulkInsertFromIterator( 'table.name', iter([[1, 'Python'], [2, 'PyPy', 3]]), [Column('id', int), Column('name', str)] ) bulk.execute(db.engine.raw_connection) :param table: Name of the table. :param data: Iterable containing the data to insert. :param columns: List of :class:`Column` objects. :param batch_size: Rows to insert per batch. :param header: True if the first row is a header. """ self.table = table self.data = data self.columns = columns self.batch_size = batch_size self.header = header if isinstance(self.data, list): self.data = iter(self.data) if not isinstance(self.data, Iterator): raise TypeError('Expected Iterator, got {}'.format( self.data.__class__)) if not self.columns: raise ValueError('Columns cannot be empty') if isinstance(self.columns[0], tuple): self.columns = [Column(*c) for c in self.columns] def batch_execute(self, conn): """Insert data in batches of `batch_size`. :param conn: A DB API 2.0 connection object """ def batches(data, batch_size) -> list: """Return batches of length `batch_size` from any object that supports iteration without knowing length.""" rv = [] for idx, line in enumerate(data): if idx != 0 and idx % batch_size == 0: yield rv rv = [] rv.append(line) yield rv columns = ColumnCollection(self.columns) if self.header: self.columns = [columns.get(h) for h in next(self.data)] columns = ColumnCollection(self.columns) total = 0 query = BulkInsertQuery(self.table, columns) for batch in batches(self.data, self.batch_size): total += query.execute(conn, batch) or 0 yield total def execute(self, conn): """Execute all batches.""" return max(list(self.batch_execute(conn))) class BulkInsertQuery: def __init__(self, table: str, columns: ColumnCollection): """Execute a multi-row INSERT statement. This does not take advantage of parameterized queries, but escapes string values manually in :class:`Column`. :param table: Name of the table being inserted into. :param columns: Columns required for type coercion. """ self.table = table self.columns = columns self.query = 'INSERT INTO {} ({}) VALUES '.format( table, ', '.join([c for c in columns])) def execute(self, conn, rows: list) -> int: """Execute a single multi-row INSERT for `rows`. :param conn: Function that returns a database connection :param rows: List of tuples in the same order as :attr:`columns`. """ if not len(rows): raise ValueError('No data provided') if len(self.columns) != len(rows[0]): raise ValueError('Expecting {} columns, found {}'.format( len(self.columns), len(rows[0]))) conn = conn() cursor = conn.cursor() try: cursor.execute(self.query + ', '.join(self.escape_rows(rows))) conn.commit() finally: cursor.close() conn.close() return len(rows) def escape_rows(self, rows: list): """Escape values for use in non-parameterized SQL queries. :param rows: List of values to escape. """ def to_tuple(values): rv = [] for column, value in zip(self.columns, values): rv.append(self.columns.get(column).escape(value)) return tuple(rv) for idx, row in enumerate(rows): rows[idx] = '({})'.format(', '.join(map(str, to_tuple(row)))) return rows def from_sqlalchemy_table(table: Table, data: Iterator, columns: list, batch_size: int=BATCH_SIZE, header: bool=False): """Return a :class:`BulkInsertFromIterator` based on the metadata of a SQLAlchemy table. Example:: batch = from_sqlalchemy_table( Rating.__table__, data, ['rating_id', 'repo_id', 'login_id', 'rating'] ) :param table: A :class:`sqlalchemy.Table` instance. :param data: An iterator. :param columns: List of column names to use. """ if not isinstance(table, Table): raise TypeError('Expected sqlalchemy.Table, got {}'.format(table)) wrapped = [] for name in columns: column = table.columns.get(name) wrapped.append(Column(str(column.name), column.type.python_type)) return BulkInsertFromIterator(table, data, wrapped, batch_size, header) def as_columns(columns) -> List[Column]: rv = [] for column in columns: if isinstance(column, Column): rv.append(column) if isinstance(column, tuple): rv.append(Column(*column)) if isinstance(column, str): rv.append(Column(column, str)) return rv def to_dict_model(self) -> dict: """Returns a single SQLAlchemy model instance as a dictionary.""" return dict((key, getattr(self, key)) for key in self.__mapper__.c.keys()) def to_dict_query(self) -> list: """Returns all SQLAlchemy records in a query as dictionaries.""" return [row.to_dict() for row in self.all()] class SQLAlchemyAutoCommit(SQLAlchemy): """By default ``psycopg2`` will wrap SELECT statements in a transaction. This can be avoided using AUTOCOMMIT to rely on Postgres' default implicit transaction mode (see this `blog post <http://bit.ly/1N0a7Lj>`_ for more details). """ def apply_driver_hacks(self, app, info, options): super().apply_driver_hacks(app, info, options) options['isolation_level'] = 'AUTOCOMMIT' ``` #### File: growser/growser/google.py ```python from collections import Sized from io import FileIO from itertools import chain import os from apiclient.discovery import build from apiclient.http import MediaIoBaseDownload from apiclient.errors import HttpError from httplib2 import Http from oauth2client.client import SignedJwtAssertionCredentials def _client(service_name, version, account_name, private_key, scope): auth = SignedJwtAssertionCredentials(account_name, private_key, scope) return build(service_name, version, http=auth.authorize(Http())) class BaseService: """Authentication required for all Google API services.""" service_name = None version = None scope = None def __init__(self, project_id, account_name, private_key): self.project_id = project_id self.account_name = account_name self.private_key = private_key self._client = None @property def client(self): if self._client is None: self._client = _client(self.service_name, self.version, self.account_name, self.private_key, self.scope) return self._client class BigQueryService(BaseService): """Wrapper over google-api-client for working with BigQuery.""" service_name = 'bigquery' version = 'v2' scope = 'https://www.googleapis.com/auth/bigquery' @property def jobs(self): return self.client.jobs() @property def tables(self): return self.client.tables() class CloudStorageService(BaseService): """Wrapper over google-api-client for working with Cloud Storage.""" service_name = 'storage' version = 'v1' scope = 'https://www.googleapis.com/auth/devstorage.full_control' @property def objects(self): return self.client.objects() @property def buckets(self): return self.client.buckets() class BaseJob: def __init__(self, api): self.api = api self.project_id = self.api.project_id self.id = '' class BigQueryJob(BaseJob): num_retries = 5 @property def info(self): if not self.id: raise JobNotCompleteException('Job not complete') return self._call('get', jobId=self.id) @property def is_complete(self): return self.info['status']['state'] == 'DONE' def query(self, body: dict): return self._call('query', body=body) def insert(self, body: dict): return self._call('insert', body=body) def _call(self, api: str, **kwargs): """Execute a request against the Google API.""" func = getattr(self.api.jobs, api)(projectId=self.project_id, **kwargs) rv = func.execute(num_retries=self.num_retries) if 'jobReference' in rv: self.id = rv['jobReference']['jobId'] if 'errors' in rv['status']: raise JobFailedException(rv['status']['errors']) return rv class ExecuteQuery(BigQueryJob): def run(self, query: str): """Execute a query and immediately return the results. :param query: Query to execute on BigQuery. """ results = self.query({'query': query}) return QueryResult(iter([results])) class ExecuteAsyncQuery(BigQueryJob): def run(self, query: str): """Execute a query in batch mode to be retrieved later. :param query: Query to run in batch mode. """ body = { 'configuration': { 'query': { 'query': query, 'priority': 'BATCH' } } } return self.insert(body) def results(self): return FetchQueryResults(self.api).run(self.id) class FetchQueryResults(BigQueryJob): def run(self, job_id: str): """Fetch all results from a query stored on BigQuery.""" self.id = job_id if not self.is_complete: raise JobNotCompleteException('Job is not complete') return QueryResult(self._pages()) def _pages(self): """Return all pages of results for the query.""" kwargs = {'jobId': self.id} has_token = True while has_token: rv = self._call('getQueryResults', **kwargs) has_token = 'pageToken' in rv if has_token: kwargs['pageToken'] = rv['pageToken'] yield rv class DeleteTable(BigQueryJob): def run(self, table: str): """Delete a table hosted on BigQuery. :param table: Name of the table to delete. """ try: self.api.tables.delete(**_table(self.project_id, table)).execute() except HttpError: return False return True @property def is_complete(self): """API has empty response, assume true.""" return True class PersistQueryToTable(BigQueryJob): """Execute a query and save the results to a table.""" def run(self, query: str, destination: str): DeleteTable(self.api).run(destination) body = { 'configuration': { 'query': { 'query': query, 'allowLargeResults': True, 'destinationTable': _table(self.project_id, destination) } } } return self.insert(body) class ExportTableToCSV(BigQueryJob): """Export a table to Google Cloud Storage as compressed CSV files.""" def run(self, source: str, destination: str): body = { 'configuration': { 'extract': { 'sourceTable': _table(self.project_id, source), 'destinationUris': [destination], 'destinationFormat': 'CSV', 'compression': 'GZIP' } } } return self.insert(body) class QueryResult(Sized): def __init__(self, pages): self._pages = pages self._first = next(self._pages) self.fields = [f['name'] for f in self._first['schema']['fields']] self.total_rows = int(self._first['totalRows']) def rows(self, as_dict: bool=False): def to_tuple(row): return list(map(lambda x: x['v'], row['f'])) def to_dict(row): return dict(zip(self.fields, to_tuple(row))) for response in chain([self._first], self._pages): transform = to_dict if as_dict else to_tuple yield from (transform(row) for row in response['rows']) def __len__(self): return self.total_rows class JobNotCompleteException(Exception): pass class JobFailedException(Exception): pass def _table(project_id, table): id1, id2 = table.split('.') return {'projectId': project_id, 'datasetId': id1, 'tableId': id2} class GoogleStorageJob(BaseJob): """Base for any job that runs against Google Cloud Storage.""" class DownloadFile(GoogleStorageJob): """Download a file from a Google Cloud Storage bucket to a local path.""" def run(self, bucket: str, obj: str, local_path: str): archive = self.api.objects.get_media(bucket=bucket, object=obj) filename = os.path.join(local_path, os.path.basename(obj)) with FileIO(filename, 'wb') as fh: downloader = MediaIoBaseDownload(fh, archive, chunksize=1024*1024) complete = False while not complete: _, complete = downloader.next_chunk() return filename class DeleteFile(GoogleStorageJob): """Delete a file from a Google Cloud Storage bucket""" def run(self, bucket: str, obj: str): try: self.api.objects.delete(bucket=bucket, object=obj).execute() return True except HttpError: # Error is returned if the object does not exist - can ignore return False class FindFilesMatchingPrefix(GoogleStorageJob): """Return a list of all files matching `prefix`.""" def run(self, bucket: str, prefix: str): response = self.api.objects \ .list(bucket=bucket, prefix=prefix).execute() return [i for i in response['items'] if int(i['size']) > 0] class DownloadBucketPath(GoogleStorageJob): """Download a Google Storage bucket to a local path.""" def run(self, bucket: str, bucket_path: str, local_path: str): archives = FindFilesMatchingPrefix(self.api).run(bucket, bucket_path) filenames = [] for file in archives: filenames.append(DownloadFile(self.api).run( bucket, file['name'], local_path)) DeleteFile(self.api).run(bucket, file['name']) return filenames ``` #### File: growser/tests/test_bigquery.py ```python import random import unittest from unittest.mock import MagicMock, Mock import uuid from apiclient.errors import HttpError from growser.google import _table from growser.google import DeleteTable from growser.google import ExecuteAsyncQuery from growser.google import ExecuteQuery from growser.google import ExportTableToCSV from growser.google import PersistQueryToTable from growser.google import QueryResult PROJECT_ID = "test_project_id" class BigQueryServiceTestCase(unittest.TestCase): def service(self): return MagicMock(project_id=PROJECT_ID) def test_DeleteTable(self): service = self.service() table = "table.to_delete" job = DeleteTable(service) success = job.run(table) service.tables.delete.assert_called_with(**_table(PROJECT_ID, table)) self.assertTrue(job.is_complete) self.assertTrue(success) def test_DeleteTable_not_exist(self): service = self.service() table = "table.to_delete" service.tables.delete = Mock(side_effect=HttpError('url', b'content')) job = DeleteTable(service) success = job.run(table) self.assertFalse(success) def test_ExecuteAsyncQuery(self): service = self.service() query = "SELECT * FROM ds.table LIMIT 100" ExecuteAsyncQuery(service).run(query) self.assertIn(query, str(service.mock_calls[0])) def test_ExecuteQuery(self): service = self.service() query = "SELECT * FROM ds.table LIMIT 100" ExecuteQuery(service).run(query) expected = {"body": {"query": query}, "projectId": PROJECT_ID} service.jobs.query.assert_called_once_with(**expected) def test_ExportTableToCSV(self): service = self.service() source = "source.table" destination = "gs://some-path/files.gz" ExportTableToCSV(service).run(source, destination) extract = service.mock_calls[0][2]['body']['configuration']['extract'] check1 = extract['sourceTable'] check2 = extract['destinationUris'] self.assertEqual(service.mock_calls[0][0], "jobs.insert") self.assertEqual(check1, _table(PROJECT_ID, source)) self.assertIn(destination, check2) def test_PersistQueryToTable(self): service = self.service() query = "SELECT * FROM ds.table LIMIT 100" table = "ds.export_table" PersistQueryToTable(service).run(query, table) body = service.jobs.insert.call_args_list[0][1]['body']['configuration']['query'] expected = _table(PROJECT_ID, table) service.tables.delete.assert_called_once_with(**expected) self.assertEqual(expected, body['destinationTable']) self.assertEqual(query, body['query']) def test_QueryResult(self): output = response_example(False) result = QueryResult(iter([output])) rows = list(result.rows()) rows_dict = list(result.rows(True)) expected_fields = ['repo_id', 'actor_id', 'event'] self.assertEqual(result.total_rows, len(output['rows'])) self.assertEqual(len(rows), len(output['rows'])) self.assertEqual(len(rows), len(result)) self.assertEqual(result.fields, expected_fields) for field in expected_fields: self.assertIn(field, rows_dict[0]) def response_example(token=False, errors=False): def random_rows(num): result = [] for i in range(num): result.append({'f': [ {'v': random.randint(1,1000)}, {'v': random.randint(1000,2000)}, {'v': random.choice(['WatchEvent', 'ForkEvent'])} ]}) return result rows = random_rows(random.randint(1, 10)) response = { 'cacheHit': False, 'jobComplete': True, 'jobReference': { 'jobId': 'job_K7wQRG0iaQbT4Y', 'projectId': PROJECT_ID }, 'kind': 'bigquery#queryResponse', 'rows': rows, 'schema': { 'fields': [ {'mode': 'NULLABLE', 'name': 'repo_id', 'type': 'INTEGER'}, {'mode': 'NULLABLE', 'name': 'actor_id', 'type': 'INTEGER'}, {'mode': 'NULLABLE', 'name': 'event', 'type': 'STRING'} ] }, 'status': {'state': 'DONE'}, 'totalBytesProcessed': '1234567', 'totalRows': len(rows) } if errors: response['status'] = {'errors': ["test"]} if token: response['pageToken'] = uuid.uuid4() return response ```
{ "source": "JohnnyPeng18/HiTyper", "score": 2 }
#### File: HiTyper/hityper/rej_typerule.py ```python from hityper.typeobject import TypeObject import hityper.tdg from hityper import logger from copy import copy, deepcopy logger.name = __name__ class Rej_TypingRule(object): def __init__(self): pass def check_failed(self, ori, rej): if len(ori) == len(rej): logger.warning("Rejection Typing rule faild, all types are rejected.") def act(self, outs, operands , op, func, attr, usertypes, iterable=False): #if not about iterable if not iterable: if len(operands) > 0: left = operands[0] else: left = None right = None if(len(operands)>1): right = operands[1] else: right = None if(left != None and (not isinstance(left, hityper.tdg.GraphBaseNode)) or (right != None and not isinstance(right, hityper.tdg.GraphBaseNode))): raise ValueError("Operands must be a graph node") if (op in ["and", "or"]): return self.norej_add(outs,operands) elif (op == "not"): return self.norej_add(outs,operands) elif (op in ["<", "<=", ">", ">="]): return self.norej_add(outs,operands) elif (op in ["==", "!=", "is", "isnot"]): return self.norej_add(outs, operands) elif (op == "+" and right != None): return self.binop_add(outs,operands) elif (op == "*"): return self.binop_mul(outs,left, right) elif (op in ["-", "/", "//", "%", "**", "pow"] and right != None): return self.binop_num_op(outs, left, right, op) elif (op in ["+", "-", "abs"] and right == None): return self.NumRemainSame(outs,left, right) elif (op in ["|", "^", "&", "<<", ">>"]): return self.binop_int_op(outs, left, right) elif (op == "~" and right == None): return self.unop_int_op(outs, left, right) elif (op in ["in", "not in"] ): return self.norej_add(outs, operands) elif (op == "forin" and right == None): return self.unop_forin(outs, left, right) elif (op == "append"): return self.binop_append(outs,left, right) elif (op == "Subscript_Write"): return self.norej_add(outs, operands) elif (op == "Subscript_Read"): return self.binop_subscript(outs,operands, func, attr, usertypes) elif (op == "=" and right == None): return self.unop_assign(outs,left, right) elif (op == "call"): return self.rej_call(outs, operands, func, attr, usertypes) elif (op == "List_Read"): return self.norej_add(outs, operands) elif( op == "List_Write"): return self.List_Write(outs,operands) elif(op == "Tuple_Read"): return self.norej_add(outs, operands) elif(op == "Tuple_Write"): return self.Add_tofirst(outs,operands) elif(op == "Set_Read"): return self.norej_add(outs, operands) elif(op =="Dict_Read"): return self.norej_add(outs, operands) elif(op == "JoinedStr"): return self.norej_add(outs, operands) elif(op=="."): return self.norej_add(outs, operands) elif(op=="ListComp"): return self.Add_tofirst(outs, operands) elif(op=="SetComp"): return self.Add_tofirst(outs,operands) elif(op=="DictComp"): return self.norej_add(outs, operands) elif(op=="GeneratorExp"): return self.Add_tofirst(outs, operands) else: #for unknown_op return self.unknown_op(outs,operands, op) #raise TypeError("Unknown Operation: " + op) def binop_and_or(self,outs,left,right): # since left and right can have arbitary types, no rej_type can be inferred ltypes = left.types rtypes = right.types rej_ltypes = deepcopy(left.rejtypes) rej_rtypes = deepcopy(right.rejtypes) rej_outs = outs.rejtypes return [rej_ltypes, rej_rtypes] def norej_add(self,outs,operands): # this function is for the arbitary input inputlen = len(operands) rej_list = [] for node in operands: rej_each = node.rejtypes rej_list.append(rej_each) return rej_list def binop_add(self, outs, operands): left = operands[0] ltypes = left.types if len(operands) > 1: right = operands[1] rtypes = right.types rej_rtypes = deepcopy(right.rejtypes) rej_ltypes = deepcopy(left.rejtypes) rej_outs = outs.rejtypes for t in rej_outs: # here we should divide the situation into 2: user-define or built-in rej_ltypes.append(t) rej_rtypes.append(t) rej_ltypes = TypeObject.removeRedundantTypes(rej_ltypes) rej_rtypes = TypeObject.removeRedundantTypes(rej_rtypes) return [rej_ltypes, rej_rtypes] def binop_mul(self,outs,left, right): #add rej_out into rej_left ltypes = left.types rtypes = right.types rej_ltypes = deepcopy(left.rejtypes) rej_rtypes = deepcopy(right.rejtypes) rej_outs = outs.rejtypes for t in rej_outs: rej_ltypes.append(t) rej_ltypes = TypeObject.removeRedundantTypes(rej_ltypes) return [rej_ltypes, rej_rtypes] def binop_num_op(self,outs, left, right, op): ltypes = left.types rtypes = right.types rej_ltypes = deepcopy(left.rejtypes) rej_rtypes = deepcopy(right.rejtypes) rej_outs = outs.rejtypes for t in rej_outs: # here we should divide the situation into 2: numbers or others if t.type not in ["bool", "int", "float", "complex"]: rej_ltypes.append(t) rej_rtypes.append(t) rej_ltypes = TypeObject.removeRedundantTypes(rej_ltypes) rej_rtypes = TypeObject.removeRedundantTypes(rej_rtypes) return [rej_ltypes, rej_rtypes] def NumRemainSame(self, outs, left, right): ltypes = left.types rej_ltypes = deepcopy(left.rejtypes) rej_outs = outs.rejtypes for t in rej_outs: rej_ltypes.append(t) rej_ltypes = TypeObject.removeRedundantTypes(rej_ltypes) return [rej_ltypes] def binop_int_op(self, outs, left, right): rej_outs = outs.rejtypes ltypes = left.types rej_ltypes = deepcopy(left.rejtypes) rtypes = right.types rej_rtypes = deepcopy(right.rejtypes) for t in rej_outs: rej_ltypes.append(t) rej_rtypes.append(t) rej_ltypes = TypeObject.removeRedundantTypes(rej_ltypes) rej_rtypes = TypeObject.removeRedundantTypes(rej_rtypes) return [rej_ltypes, rej_rtypes] def unop_int_op(self, outs, left, right): # add rej_out into left rej_ltypes = deepcopy(left.rejtypes) rej_outs = outs.rejtypes for t in rej_outs: rej_ltypes.append(t) rej_ltypes = TypeObject.removeRedundantTypes(rej_ltypes) # if there are more than 2 operands return [rej_ltypes] def unop_forin(self,outs, left, right): # no right here rej_ltypes = deepcopy(left.rejtypes) rej_outs = outs.rejtypes for t in rej_outs: rej_ltypes.append(t) rej_ltypes = TypeObject.removeRedundantTypes(rej_ltypes) return [rej_ltypes] def binop_append(self,outs,left, right): rej_ltypes = deepcopy(left.rejtypes) rej_rtypes = deepcopy(right.rejtypes) rej_outs = outs.rejtypes for t in rej_outs: rej_ltypes.append(t) rej_ltypes = TypeObject.removeRedundantTypes(rej_ltypes) return [rej_ltypes,rej_rtypes] def binop_subscript(self, outs,operands, func, attr, usertypes): if len(operands)==2: # no infer rej_list = [] for node in operands: rej_each = node.rejtypes rej_list.append(rej_each) return rej_list else: left = operands[0] rej_ltypes = deepcopy(left.rejtypes) rej_outs = outs.rejtypes for t in rej_outs: # here we should divide the situation into 2: user-define or built-in rej_ltypes.append(t) rej_ltypes = TypeObject.removeRedundantTypes(rej_ltypes) rej_list = [rej_ltypes] for n in range(1,len(operands)): rej_each = operands[n].rejtypes rej_list.append(rej_each) return rej_list def unop_assign(self, outs,left, right): # add rejout to left rej_ltypes = deepcopy(left.rejtypes) rej_outs = outs.rejtypes for t in rej_outs: rej_ltypes.append(t) rej_ltypes = TypeObject.removeRedundantTypes(rej_ltypes) return [rej_ltypes] def List_Write(self, outs,operands): left = operands[0] rej_ltypes = deepcopy(left.rejtypes) rej_outs = outs.rejtypes for t in rej_outs: # here we should divide the situation into 2: user-define or built-in rej_ltypes.append(t) rej_ltypes = TypeObject.removeRedundantTypes(rej_ltypes) rej_list = [rej_ltypes] for node in range(1, len(operands)): rej_each = node.rejtypes rej_list.append(rej_each) return rej_list def Add_tofirst(self, outs, operands): # add rej_out into operands[0] left = operands[0] rej_ltypes = deepcopy(left.rejtypes) rej_outs = outs.rejtypes for t in rej_outs: rej_ltypes.append(t) rej_ltypes = TypeObject.removeRedundantTypes(rej_ltypes) rej_list = [rej_ltypes] for n in range(1, len(operands)): rej_each = operands[n].rejtypes rej_list.append(rej_each) return rej_list def unknown_op(self,outs,operands,op): print("Unknown Operation: " + op) rej_list = [] for node in operands: rej_each = node.rejtypes rej_list.append(rej_each) return rej_list def rej_call(self, outs, operands, func, attr, usertypes): rej_outs = outs.rejtypes # if user-defined functions, no rej inference(because we don't know what they will do in the function) if func in usertypes: rej_list = [] for node in operands: rej_each = node.rejtypes rej_list.append(rej_each) return rej_list # not usertype, Widely used operation funcs, e.g. list.append() # it means there could be overload, but we just simply don't infer here else: if attr == None: # no infer rej_list = [] for node in operands: rej_each = node.rejtypes rej_list.append(rej_each) return rej_list # e.g def foo() / a = foo() elif func == "append" or func=="clear" or func=="copy" or func == "insert" or func == "pop" or func=="remove" or func=="discard" or func=="reverse" or func=="sort": #add rej_out into operands[0] ,other don't infer return self.Add_tofirst(outs, operands) elif func == "get" or func=="popitem" or func=="setdefault" or func=="update" or func=="center" or func=="zfill" or func=="expandtabs" or func == "join": return self.Add_tofirst(outs, operands) elif func == "ljust" or func=="lower" or func=="lstrip" or func=="removeprefix" or func=="removesuffix" or func =="rjust" or func=="replace": return self.Add_tofirst(outs, operands) elif func == "rstrip" or func=="strip" or func=="add" or func=="difference" or func=="difference_update" or func=="intersection" or func=="intersection_update" or func== "union": return self.Add_tofirst(outs, operands) elif func=="symmetric_difference" or func=="symmetric_difference_update" or func == "abs": return self.Add_tofirst(outs, operands) elif func=="count" or func == "index" or func == "bytes" or func =="int" or func == "float" or func == "str" or func == "tuple" or func == "list": return self.norej_add(outs, operands) elif func=="set" or func == "dict" or func == "type" or func=="fromkeys" or func=="values" or func=="encode" or func=="endswith" or func=="startswith": return self.norej_add(outs, operands) elif func=="find" or func=="rfind"or func=="partition" or func=="rpartition" or func=="rindex" or func=="rsplit" or func=="split" or func=="splitlines": return self.norej_add(outs, operands) elif func in ['isalnum', 'isalpha', 'isascii', 'isdecimal', 'isdigit', 'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper']: return self.norej_add(outs, operands) elif func=="isdisjoint" or func=="issubset" or func=="issuperset" or func =="all" or func == "any" or func == "bin" or func=="hex" or func == "oct" or func == "divmod" or func == "enumerate": return self.norej_add(outs, operands) elif func == "getattr" or func=="globals" or func=="hash" or func == "isinstance" or func == "len" or func == "map" or func == "max" or func=="min" or func == "pow" or func == "round" or func == "sorted": return self.norej_add(outs, operands) elif func == "sum": return self.norej_add(outs, operands) elif func == "extend": # add rej_out into all the operands rej_outs = outs.rejtypes rej_list = [] for node in operands: rej_types = deepcopy(node.rejtypes) for t in rej_outs: rej_types.append(t) rej_types = TypeObject.removeRedundantTypes(rej_types) rej_list.append(rej_types) return rej_list else: return self.norej_add(outs, operands) ``` #### File: HiTyper/hityper/tdg_generator.py ```python from hityper.tdg import * from hityper.typeobject import * from hityper import logger from hityper.stdtypes import builtin_method_properties, stdtypes, inputtypemap import ast from copy import deepcopy, copy import sys, getopt from pycg.pycg import CallGraphGenerator from pycg import formats from pycg.utils.constants import CALL_GRAPH_OP import json logger.name = __name__ # A map from ast nodes to op strings AST2Op = {} AST2Op[ast.Add] = "+" AST2Op[ast.Sub] = "-" AST2Op[ast.Mult] = "*" AST2Op[ast.Div] = "/" AST2Op[ast.FloorDiv] = "//" AST2Op[ast.Mod] = "%" AST2Op[ast.Pow] = "%" AST2Op[ast.LShift] = "<<" AST2Op[ast.RShift] = ">>" AST2Op[ast.BitOr] = "|" AST2Op[ast.BitXor] = "^" AST2Op[ast.BitAnd] = "&" AST2Op[ast.MatMult] = "@" AST2Op[ast.UAdd] = "+" AST2Op[ast.USub] = "-" AST2Op[ast.Not] = "not" AST2Op[ast.Invert] = "~" AST2Op[ast.And] = "and" AST2Op[ast.Or] = "or" AST2Op[ast.Eq] = "==" AST2Op[ast.NotEq] = "!=" AST2Op[ast.Lt] = "<" AST2Op[ast.LtE] = "<=" AST2Op[ast.Gt] = ">" AST2Op[ast.GtE] = ">=" AST2Op[ast.Is] = "is" AST2Op[ast.IsNot] = "isnot" AST2Op[ast.In] = "in" AST2Op[ast.NotIn] = "not in" def transformConstant(node): if not isinstance(node, ast.Constant): raise ValueError("Only Support Constant AST node.") if isinstance(node.value, str): return TypeObject("Text", 0) elif isinstance(node.value, bytes): return TypeObject("bytes", 0) elif isinstance(node.value, bool): return TypeObject("bool", 0) elif isinstance(node.value, float): return TypeObject("float", 0) elif isinstance(node.value, int): return TypeObject("int", 0) elif node.value == None: return TypeObject("None", 0) elif type(node.value) == type(Ellipsis): return None else: raise TypeError("Currently we do not suupport constant of type: " + str(type(node.value))) def Attribute2Str(node): if isinstance(node, ast.Attribute): return Attribute2Str(node.value) + "_@_" + node.attr elif isinstance(node, ast.Name): return node.id elif isinstance(node, ast.Constant): return transformConstant(node).type elif isinstance(node,ast.Call): return Attribute2Str(node.func) + "()" else: return "<Other>" def Attribute2Str_Call(node): temp1 = '' temp1 += Attribute2Str(node.func) + "(" for argsnode in node.args: temp1 += (Attribute2Str(argsnode)+"_&") temp1 += ")" return temp1 class AliasAnalyzer(ast.NodeVisitor): def __init__(self, aliasgraph): self.aliasgraph = aliasgraph self.curfunc = None self.curclass = None def visit_ClassDef(self, node): if self.curclass == None: self.curclass = node.name self.generic_visit(node) self.curclass = None def visit_FunctionDef(self, node): if self.curfunc == None: self.curfunc = node.name self.generic_visit(node) self.curfunc = None def visit_AsyncFunctionDef(self, node): self.visit_FunctionDef(node) #check the assignment like self.xxx = xxx or cls.xxx = xxx, which may create alias def visit_Assign(self, node): if self.curclass == None: classstr = "global" else: classstr = self.curclass if self.curfunc == None: funcstr = "global" else: funcstr = self.curfunc if type(node.value) == ast.Attribute: attrstr = Attribute2Str(node.value) if "<Other>" in attrstr: logger.warning("Failed to initialize attribute " + attrstr) else: p = self.aliasgraph.addAttribute(attrstr, classstr + "@" + funcstr) if "()" not in attrstr: for t in node.targets: targetstr = Attribute2Str(t) if "<Other>" not in targetstr: q = self.aliasgraph.addAttribute(targetstr, classstr + "@" + funcstr) q.alias.append(p) p.alias.append(q) elif type(node.value) == ast.Name: attrtargets = [] for t in node.targets: if type(t) == ast.Attribute or type(t) == ast.Name: attrtargets.append(t) attrstr = Attribute2Str(node.value) p = self.aliasgraph.addAttribute(attrstr, classstr + "@" + funcstr) if "()" not in attrstr: for t in attrtargets: targetstr = Attribute2Str(t) if "<Other>" not in targetstr: q = self.aliasgraph.addAttribute(targetstr, classstr + "@" + funcstr) q.alias.append(p) p.alias.append(q) self.generic_visit(node) def visit_AnnAssign(self, node): if node.value != None: if self.curclass == None: classstr = "global" else: classstr = self.curclass if self.curfunc == None: funcstr = "global" else: funcstr = self.curfunc if type(node.value) == ast.Attribute: attrstr = Attribute2Str(node.value) if "<Other>" in attrstr: logger.warning("Failed to initialize attribute " + attrstr) else: p = self.aliasgraph.addAttribute(attrstr, classstr + "@" + funcstr) if "()" not in attrstr: targetstr = Attribute2Str(node.target) if "<Other>" not in targetstr: q = self.aliasgraph.addAttribute(targetstr, classstr + "@" + funcstr) q.alias.append(p) p.alias.append(q) elif type(node.value) == ast.Name: attrstr = Attribute2Str(node.value) p = self.aliasgraph.addAttribute(attrstr, classstr + "@" + funcstr) if "()" not in attrstr: targetstr = Attribute2Str(node.target) if "<Other>" not in targetstr: q = self.aliasgraph.addAttribute(targetstr, classstr + "@" + funcstr) q.alias.append(p) p.alias.append(q) self.generic_visit(node) def visit_Attribute(self, node): attrstr = Attribute2Str(node) if "<Other>" in attrstr: logger.warning("Unsupported attribute: " + attrstr) if self.curclass == None: classstr = "global" else: classstr = self.curclass if self.curfunc == None: funcstr = "global" else: funcstr = self.curfunc p = self.aliasgraph.addAttribute(attrstr, classstr + "@" + funcstr) if p == None: logger.warning("Failed to initialize attribute ", attrstr) def run(self, node): self.visit(node) return self.aliasgraph class TDGGenerator(ast.NodeVisitor): def __init__(self, filename, optimize, locations, usertypes, alias = 0, repo = None): #usertypes self.usertypes = self.processUserTypes(usertypes) #type graph self.GlobalTG = GlobalTypeGraph(filename, self.usertypes) self.filename = filename self.tgstack = [] #stacks and corresponding cusors self.curfunc = -1 self.funcstack = [] self.curclass = -1 self.classstack = [] self.curop = -1 self.opstack = [] #variable maps self.localvar2id = [] self.lastlocalvar = [] self.globalvar2id = {} self.lastglobalvar = {} self.attribute2id = [] self.lastattribute = [] #other info self.modules = [] self.classnames = [] if isinstance(locations, list): self.locations = locations elif locations == None: self.locations = locations else: logger.error("Invalid locations for generating TDGs.") raise ValueError("Invalid locations for generating TDGs.") self.visitedfuncs = [] self.withitemnames = [] self.withpos = [] #flags self.asifcond = False self.subscriptwrite = False self.augassignread = False self.forin = False self.optimized = optimize self.alias = alias self.repo = repo logger.info("Handling file #"+ filename) def processUserTypes(self, usertype): usertypes = [] for t in usertype["direct"]: if t[2] not in usertypes: usertypes.append(t[2]) for t in usertype["indirect"]: if t[2] not in usertypes: usertypes.append(t[2]) for t in usertype["unrecognized"]: if t[2] not in usertypes: usertypes.append(t[2]) for t in usertype["init"]: if t not in usertypes: usertypes.append(t[0]) return usertypes def addNode(self, node): if self.curclass == -1 and self.curfunc == -1: self.GlobalTG.addNode(node) elif self.curfunc != -1: self.tgstack[self.curfunc].addNode(node) def searchNode(self, nodetype, nodename, nodepos): if self.curclass == -1 and self.curfunc == -1: for node in self.GlobalTG.globalnodes: if node.nodetype == nodetype and node.lineno == nodepos[0] and node.columnno == nodepos[1] and node.columnend == nodepos[2]: if nodetype == "TypeGen" and node.op == nodename: return node elif nodetype == "Symbol" and node.symbol == nodename: return node elif self.curfunc != -1: for node in self.tgstack[self.curfunc].nodes: if node.nodetype == nodetype and node.lineno == nodepos[0] and node.columnno == nodepos[1] and node.columnend == nodepos[2]: if nodetype == "TypeGen" and node.op == nodename: return node elif nodetype == "Symbol" and node.symbol == nodename: return node def extractTypeCondition(self, node, inverse = 1): ''' if type(node) == ast.BoolOp and type(node.op) == ast.And: return self.extractTypeCondition(node.values[0], inverse) + self.extractTypeCondition(node.values[1], inverse) elif type(node) == ast.UnaryOp and type(node.op) == ast.Not: return self.extractTypeCondition(node.operand, inverse * -1) ''' # type(x) == y if (type(node) == ast.Compare and type(node.left) == ast.Call and type(node.left.func) == ast.Name and node.left.func.id == "type" and len(node.left.args) == 1 and len(node.ops) == 1 and type(node.ops[0]) in [ast.Eq, ast.NotEq] and len(node.comparators) == 1 and type(node.comparators[0]) in [ast.Name, ast.Attribute]): branchnode = BranchNode([], [], None) self.opstack.append(branchnode) self.curop += 1 self.visit(node.left.args[0]) typestr = Attribute2Str(node.comparators[0]) if typestr in stdtypes["overall"]: typeobject = TypeObject(inputtypemap[typestr], 0) else: typeobject = TypeObject(typestr, 2) if type(node.ops[0]) == ast.NotEq: inverse = inverse * -1 if inverse == 1: branchnode.addTypes([typeobject, None]) else: branchnode.addTypes([None, typeobject]) self.opstack.pop(self.curop) self.curop -= 1 self.addNode(branchnode) return [branchnode] # x is y elif (type(node) == ast.Compare and (type(node.left) == ast.Name or type(node.left) == ast.Attribute) and len(node.ops) == 1 and type(node.ops[0]) in [ast.Is, ast.IsNot] and len(node.comparators) == 1 and type(node.comparators[0]) in [ast.Name, ast.Attribute, ast.Constant]): branchnode = BranchNode([], [], None) self.opstack.append(branchnode) self.curop += 1 self.visit(node.left) if type(node.comparators[0]) == ast.Constant: typeobject = transformConstant(node.comparators[0]) else: typestr = Attribute2Str(node.comparators[0]) if typestr in stdtypes["overall"]: typeobject = TypeObject(inputtypemap[typestr], 0) else: typeobject = TypeObject(typestr, 2) if type(node.ops[0]) == ast.IsNot: inverse = inverse * -1 if inverse == 1: branchnode.addTypes([typeobject, None]) else: branchnode.addTypes([None, typeobject]) self.opstack.pop(self.curop) self.curop -= 1 self.addNode(branchnode) return [branchnode] # isinstance(x,y) elif (type(node) == ast.Call and type(node.func) == ast.Name and node.func.id == "isinstance" and len(node.args) == 2 and type(node.args[1]) in [ast.Name, ast.Attribute]): branchnode = BranchNode([], [], None) self.opstack.append(branchnode) self.curop += 1 self.visit(node.args[0]) typestr = Attribute2Str(node.args[1]) if typestr in stdtypes["overall"]: typeobject = TypeObject(inputtypemap[typestr], 0) else: typeobject = TypeObject(typestr, 2) if inverse == 1: branchnode.addTypes([typeobject, None]) else: branchnode.addTypes([None, typeobject]) self.opstack.pop(self.curop) self.curop -= 1 self.addNode(branchnode) return [branchnode] else: if type(node) != ast.Constant: self.asifcond = True self.visit(node) self.asifcond = False return [] def visitfield(self, field): for node in field: if node != None: self.visit(node) def buildmergename(self, nodes): namestr = "" for n in nodes: if isinstance(n, SymbolNode): if n.scope == "local": namestr = namestr + str(n.symbol) + str(n.order) elif n.scope == "attribute": namestr = namestr + str(n.classname) + "." + str(n.symbol) + str(n.order) elif isinstance(n, MergeNode): namestr = namestr + "(" + str(n.mergevar) + ")" elif isinstance(n, BranchNode): namestr = namestr + "(" + "branch " +str(n.branchvar) + " )" else: namestr += n.name namestr += ", " namestr = namestr[: len(namestr) - 2] return namestr def clearlast(self): if self.curclass != -1: for key in self.lastattribute[self.curclass]: self.lastattribute[self.curclass][key] = None for key in self.lastglobalvar: self.lastglobalvar[key] = None def addMergeNodes(self): varusemap = {} if self.curfunc != -1 and len(self.tgstack[self.curfunc].loopbuffer) >= self.tgstack[self.curfunc].inloop: loopbuffer = self.tgstack[self.curfunc].loopbuffer[self.tgstack[self.curfunc].inloop - 1] elif self.curfunc != -1 and len(self.tgstack[self.curfunc].loopbuffer) < self.tgstack[self.curfunc].inloop: return elif len(self.GlobalTG.loopbuffer) >= self.GlobalTG.inloop: loopbuffer = self.GlobalTG.loopbuffer[self.GlobalTG.inloop - 1] else: return for n in loopbuffer: if isinstance(n, SymbolNode): if n.symbol not in varusemap: varusemap[n.symbol] = n elif n.order < varusemap[n.symbol].order: varusemap[n.symbol] = n #if first use is write, then do not add merge changed = True while(changed): changed = False for key in varusemap: if len(varusemap[key].ins) > 1: raise ValueError("Symbol nodes should not have more than 1 input nodes.") elif varusemap[key].ctx != "Load": del varusemap[key] changed = True break #add merge nodes for the first use for key in varusemap: if key in self.lastglobalvar: mergenode = MergeNode([varusemap[key].ins[0], self.lastglobalvar[key]], [varusemap[key]], self.buildmergename([varusemap[key].ins[0], self.lastglobalvar[key]])) varusemap[key].ins[0].addOuts(mergenode) varusemap[key].ins[0].outs.remove(varusemap[key]) self.lastglobalvar[key].addOuts(mergenode) elif self.curclass != -1 and key in self.lastattribute[self.curclass]: mergenode = MergeNode([varusemap[key].ins[0], self.lastattribute[self.curclass][key]], [varusemap[key]], self.buildmergename([varusemap[key].ins[0], self.lastattribute[self.curclass][key]])) varusemap[key].ins[0].addOuts(mergenode) varusemap[key].ins[0].outs.remove(varusemap[key]) self.lastattribute[self.curclass][key].addOuts(mergenode) elif self.curfunc != -1 and key in self.lastlocalvar[self.curfunc]: mergenode = MergeNode([varusemap[key].ins[0], self.lastlocalvar[self.curfunc][key]], [varusemap[key]], self.buildmergename([varusemap[key].ins[0], self.lastlocalvar[self.curfunc][key]])) varusemap[key].ins[0].addOuts(mergenode) varusemap[key].ins[0].outs.remove(varusemap[key]) self.lastlocalvar[self.curfunc][key].addOuts(mergenode) varusemap[key].ins = [mergenode] self.addNode(mergenode) def addMerge4Except(self): if self.curfunc != -1 and len(self.tgstack[self.curfunc].trybuffer) >= self.tgstack[self.curfunc].intry: trybuffer = self.tgstack[self.curfunc].trybuffer[self.tgstack[self.curfunc].intry - 1] elif self.curfunc != -1 and len(self.tgstack[self.curfunc].trybuffer) < self.tgstack[self.curfunc].intry: #self.tgstack[self.curfunc].trybuffer.append({}) return elif len(self.GlobalTG.trybuffer) >= self.GlobalTG.intry: trybuffer = self.GlobalTG.trybuffer[self.GlobalTG.intry - 1] elif len(self.GlobalTG.trybuffer) < self.GlobalTG.intry : #self.GlobalTG.trybuffer.append({}) return for key in trybuffer: nodes = trybuffer[key] if key in self.lastglobalvar and self.lastglobalvar[key] != None: nodes = [self.lastglobalvar[key]] + nodes mergenode = MergeNode(nodes, [], self.buildmergename(nodes)) self.lastglobalvar[key] = mergenode for n in nodes: n.addOuts(mergenode) elif self.curclass != -1 and key in self.lastattribute[self.curclass] and self.lastattribute[self.curclass][key] != None: nodes = [self.lastattribute[self.curclass][key]] + nodes mergenode = MergeNode(nodes, [], self.buildmergename(nodes)) self.lastattribute[self.curclass][key] = mergenode for n in nodes: n.addOuts(mergenode) elif self.curfunc != -1 and key in self.lastlocalvar[self.curfunc]: nodes = [self.lastlocalvar[self.curfunc][key]] + nodes mergenode = MergeNode(nodes, [], self.buildmergename(nodes)) self.lastlocalvar[self.curfunc][key] = mergenode for n in nodes: n.addOuts(mergenode) else: mergenode = MergeNode(nodes, [], self.buildmergename(nodes)) if self.curfunc != -1: self.lastlocalvar[self.curfunc][key] = mergenode elif self.curclass != -1: self.lastattribute[self.curclass][key] = mergenode else: self.lastglobalvar[key] = mergenode for n in nodes: n.addOuts(mergenode) self.addNode(mergenode) def addMerge4Finally(self): if self.curfunc != -1: exceptbuffer = self.tgstack[self.curfunc].exceptbuffer else: exceptbuffer = self.GlobalTG.exceptbuffer keys = [] for b in exceptbuffer: keys += b.keys() for key in keys: nodes = [] if key in self.lastglobalvar and self.lastglobalvar[key] != None: nodes.append(self.lastglobalvar[key]) elif self.curfunc != -1 and key in self.lastlocalvar[self.curfunc] and self.lastlocalvar[self.curfunc][key] != None: nodes.append(self.lastlocalvar[self.curfunc][key]) elif self.curclass != -1 and key in self.lastattribute[self.curclass] and self.lastattribute[self.curclass][key] != None: nodes.append(self.lastattribute[self.curclass][key]) for b in exceptbuffer: if key in b: nodes.append(b[key]) if len(nodes) == 1: if nodes[0].scope == "local": self.lastlocalvar[self.curfunc][key] = nodes[0] elif nodes[0].scope == "global": self.lastglobalvar[key] = nodes[0] elif nodes[0].scope == "attribute": self.lastattribute[self.curclass][key] = nodes[0] else: mergenode = MergeNode(nodes, [], self.buildmergename(nodes)) if self.curfunc != -1: self.lastlocalvar[self.curfunc][key] = mergenode elif self.curclass != -1: self.lastattribute[self.curclass][key] = mergenode else: self.lastglobalvar[key] = mergenode for n in nodes: n.addOuts(mergenode) self.addNode(mergenode) def visit_Import(self, node): for i in node.names: if i.asname != None: self.modules.append(i.asname) else: self.modules.append(i.name) def visit_ImportFrom(self, node): for i in node.names: if i.asname != None: self.modules.append(i.asname) else: self.modules.append(i.name) def visit_ClassDef(self, node): self.classstack.append(node.name) self.curclass += 1 self.attribute2id.append({}) self.lastattribute.append({}) #add classname as a type if len(self.classstack) == 1: self.classnames.append(node.name) self.visitfield(node.body) self.classstack.pop(self.curclass) self.attribute2id.pop(self.curclass) self.lastattribute.pop(self.curclass) self.curclass -= 1 def visit_FunctionDef(self, node): if len(self.classstack) != 0: funcname = node.name + "@" for c in self.classstack: funcname = funcname + c + "," funcname = funcname[: len(funcname) -1] else: funcname = node.name + "@global" if ((self.locations != None and funcname in self.locations) or self.locations == None) and funcname not in self.visitedfuncs: self.visitedfuncs.append(funcname) logger.debug("[3rd Pass: TDG Generation] Visiting Function #" + funcname + "# at Line: " + str(node.lineno)) self.funcstack.append(node.name) self.curfunc += 1 if self.curclass != -1: classname = self.classstack[self.curclass] else: classname = None tg = TypeGraph(funcname, self.usertypes, self.filename, classname, self.GlobalTG) tg.startlineno = node.lineno self.tgstack.append(tg) self.localvar2id.append({}) self.lastlocalvar.append({}) self.clearlast() self.visit(node.args) self.visitfield(node.body) self.clearlast() self.finalize(tg) self.GlobalTG.addTG(tg) self.funcstack.pop(self.curfunc) self.tgstack.pop(self.curfunc) self.localvar2id.pop(self.curfunc) self.lastlocalvar.pop(self.curfunc) self.curfunc -= 1 else: pass def visit_AsyncFunctionDef(self, node): self.visit_FunctionDef(node) def visit_arguments(self, node): self.visitfield(node.args) self.visitfield(node.kwonlyargs) if node.kwarg != None: self.visit(node.kwarg) if node.vararg != None: self.visit(node.vararg) if len(node.defaults) != 0: index_offset = len(node.args) - len(node.defaults) for i in range(0, len(node.args)): if i - index_offset >= 0: index = i-index_offset if type(node.defaults[index]) == ast.Constant and transformConstant(node.defaults[index]) != None: typenode = TypeNode([self.lastlocalvar[self.curfunc][node.args[i].arg]], transformConstant(node.defaults[index])) typenode.setNodePos(node.defaults[index].lineno, node.defaults[index].col_offset, node.defaults[index].end_col_offset) self.lastlocalvar[self.curfunc][node.args[i].arg].addIns(typenode) self.addNode(typenode) elif type(node.defaults[index]) == ast.Name: typegen = TypeGenNode("=", [], [self.lastlocalvar[self.curfunc][node.args[i].arg]]) typegen.setNodePos(node.defaults[index].lineno, node.defaults[index].col_offset, node.defaults[index].end_col_offset) self.opstack.append(typegen) self.curop += 1 self.visit(node.defaults[index]) self.opstack.pop(self.curop) self.curop -= 1 self.lastlocalvar[self.curfunc][node.args[i].arg].addIns(typegen) self.addNode(typegen) #we are not sure what initial value developers will give, it's rediculous elif type(node.defaults[index]) != ast.Constant: typegen = TypeGenNode("=", [], [self.lastlocalvar[self.curfunc][node.args[i].arg]]) typegen.setNodePos(node.defaults[index].lineno, node.defaults[index].col_offset, node.defaults[index].end_col_offset) self.opstack.append(typegen) self.curop += 1 self.visit(node.defaults[index]) self.opstack.pop(self.curop) self.curop -= 1 self.lastlocalvar[self.curfunc][node.args[i].arg].addIns(typegen) self.addNode(typegen) if len(node.kw_defaults) != 0: for i in range(0, len(node.kw_defaults)): if node.kw_defaults[i] != None: if type(node.kw_defaults[i]) == ast.Constant and transformConstant(node.kw_defaults[i]) != None: typenode = TypeNode([self.lastlocalvar[self.curfunc][node.kwonlyargs[i].arg]], transformConstant(node.kw_defaults[i])) typenode.setNodePos(node.kw_defaults[i].lineno, node.kw_defaults[i].col_offset, node.kw_defaults[i].end_col_offset) self.lastlocalvar[self.curclass][node.kwonlyargs[i].arg].addIns(typenode) self.addNode(typenode) elif type(node.kw_defaults[i]) == ast.Name: typegen = TypeGenNode("=", [], [self.lastlocalvar[self.curfunc][node.kwonlyargs[i].arg]]) typegen.setNodePos(node.kw_defaults[i].lineno, node.kw_defaults[i].col_offset, node.kw_defaults[i].end_col_offset) self.opstack.append(typegen) self.curop += 1 self.visit(node.kw_defaults[i]) self.opstack.pop(self.curop) self.curop -= 1 self.lastlocalvar[self.curfunc][node.kwonlyargs[i].arg].addIns(typegen) self.addNode(typegen) #we are not sure what initial value developers will give, it's rediculous elif type(node.kw_defaults[i]) != ast.Constant: typegen = TypeGenNode("=", [], [self.lastlocalvar[self.curfunc][node.kwonlyargs[i].arg]]) typegen.setNodePos(node.kw_defaults[i].lineno, node.kw_defaults[i].col_offset, node.kw_defaults[i].end_col_offset) self.opstack.append(typegen) self.curop += 1 self.visit(node.kw_defaults[i]) self.opstack.pop(self.curop) self.curop -= 1 self.lastlocalvar[self.curfunc][node.kwonlyargs[i].arg].addIns(typegen) self.addNode(typegen) def visit_arg(self, node): if node.arg != "self": self.localvar2id[self.curfunc][node.arg] = 0 symbol = SymbolNode([], [], node.arg + "(arg)", 0, ctx = "Arg") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastlocalvar[self.curfunc][node.arg] = symbol self.tgstack[self.curfunc].addNode(symbol) def visit_keyword(self, node): self.visit(node.value) def visit_Assign(self, node): #TypeGenNode typegen = TypeGenNode("=", [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 self.visit(node.value) self.visitfield(node.targets) self.opstack.pop(self.curop) self.curop -= 1 if self.curop != -1: typegen.addOuts(self.opstack[self.curop]) self.opstack[self.curop].addIns(typegen) self.addNode(typegen) def visit_AugAssign(self, node): typegen = TypeGenNode(AST2Op[type(node.op)], [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 self.augassignread = True self.visit(node.target) self.visit(node.value) self.augassignread = False self.opstack.pop(self.curop) self.curop -= 1 typegen2 = TypeGenNode("=", [typegen], []) typegen2.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen2) self.curop += 1 self.visit(node.target) self.opstack.pop(self.curop) self.curop -= 1 typegen.addOuts(typegen2) if self.curop != -1 and not self.asifcond: typegen2.addOuts(self.opstack[self.curop]) self.opstack[self.curop].addIns(typegen2) self.addNode(typegen) self.addNode(typegen2) def visit_AnnAssign(self, node): if node.value != None: typegen = TypeGenNode("=", [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 if node.value != None: self.visit(node.value) if node.target != None: self.visit(node.target) self.opstack.pop(self.curop) self.curop -= 1 if self.curop != -1: typegen.addOuts(self.opstack[self.curop]) self.opstack[self.curop].addIns(typegen) self.addNode(typegen) def visit_Call(self, node): asifcond = self.asifcond if self.asifcond: self.asifcond = False #Type Gen Node typegen = TypeGenNode("call", [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 #case 1: independent functions, such as func() if isinstance(node.func, ast.Name): typegen.setFunc(node.func.id) self.visitfield(node.args) self.visitfield(node.keywords) #case 2: property functions, such as a.append() elif isinstance(node.func, ast.Attribute): attrstr = Attribute2Str(node.func) if attrstr.count("_@_") > 1: typegen.setFunc(attrstr) self.visitfield(node.args) self.visitfield(node.keywords) else: typegen.setFunc(node.func.attr) if type(node.func.value) == ast.Name and node.func.value.id == "self": self.visit(node.func.value) typegen.attr = "self" else: self.visit(node.func.value) typegen.attr = Attribute2Str(node.func.value) self.visitfield(node.args) self.visitfield(node.keywords) if node.func.attr in builtin_method_properties["self-changable"]["overall"]: if isinstance(typegen.ins[0], SymbolNode): symbol = SymbolNode([typegen], [], typegen.ins[0].symbol, 0, classname=typegen.ins[0].classname, scope=typegen.ins[0].scope) symbol.setNodePos(typegen.ins[0].lineno, typegen.ins[0].columnno, typegen.ins[0].columnend) symbol.ctx = "Write" if self.curfunc != -1: if symbol.symbol in self.localvar2id[self.curfunc]: self.localvar2id[self.curfunc][symbol.symbol] += 1 else: self.localvar2id[self.curfunc][symbol.symbol] = 0 self.lastlocalvar[self.curfunc][symbol.symbol] = symbol symbol.order = self.localvar2id[self.curfunc][symbol.symbol] elif symbol.symbol in self.globalvar2id: self.globalvar2id[symbol.symbol] += 1 symbol.order = self.globalvar2id[symbol.symbol] self.lastglobalvar[symbol.symbol] = symbol self.addNode(symbol) typegen.addOuts(symbol) self.opstack.pop(self.curop) self.curop -= 1 if self.curop != -1 and not asifcond: typegen.addOuts(self.opstack[self.curop]) self.opstack[self.curop].addIns(typegen) self.addNode(typegen) def visit_Subscript(self, node): asifcond = self.asifcond if self.asifcond: self.asifcond = False subscriptwrite = self.subscriptwrite if self.subscriptwrite: self.subscriptwrite = False if (type(node.ctx) == ast.Store or subscriptwrite) and not self.augassignread: typegen = TypeGenNode("Subscript_Write", [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 if not subscriptwrite: self.visit(node.value) elif type(node.value) == ast.Subscript: pre_node = self.searchNode("TypeGen", "Subscript_Read", [node.value.lineno, node.value.col_offset, node.value.end_col_offset]) if pre_node != None: typegen.addIns(pre_node) pre_node.addOuts(typegen) else: self.visit(node.value) self.visit(node.slice) self.opstack.pop(self.curop) self.curop -= 1 if isinstance(typegen.ins[0], SymbolNode): symbol = SymbolNode([typegen], [], typegen.ins[0].symbol, 0, classname=typegen.ins[0].classname, scope=typegen.ins[0].scope) symbol.setNodePos(typegen.ins[0].lineno, typegen.ins[0].columnno, typegen.ins[0].columnend) symbol.ctx = "Write" if symbol.symbol in self.globalvar2id: self.globalvar2id[symbol.symbol] += 1 symbol.order = self.globalvar2id[symbol.symbol] self.lastglobalvar[symbol.symbol] = symbol elif self.curfunc != -1 and symbol.symbol in self.localvar2id[self.curfunc]: self.localvar2id[self.curfunc][symbol.symbol] += 1 symbol.order = self.localvar2id[self.curfunc][symbol.symbol] self.lastlocalvar[self.curfunc][symbol.symbol] = symbol elif self.curclass != -1 and symbol.symbol in self.attribute2id[self.curclass]: self.attribute2id[self.curclass][symbol.symbol] += 1 symbol.order = self.attribute2id[self.curclass][symbol.symbol] self.lastattribute[self.curclass][symbol.symbol] = symbol self.addNode(symbol) typegen.addOuts(symbol) elif isinstance(node.value, ast.Name) and node.value.id == "self": symbol = SymbolNode([typegen], [], "self", 0, classname=self.classstack[self.curclass], scope=self.funcstack[self.curfunc]) symbol.setNodePos(typegen.ins[0].lineno, typegen.ins[0].columnno, typegen.ins[0].columnend) symbol.ctx = "Write" if self.curclass != -1: if symbol.symbol in self.attribute2id[self.curclass]: self.attribute2id[self.curclass][symbol.symbol] += 1 symbol.order = self.attribute2id[self.curclass][symbol.symbol] self.lastattribute[self.curclass][symbol.symbol] = symbol else: self.attribute2id[self.curclass][symbol.symbol] = 0 symbol.order = 0 self.lastattribute[self.curclass][symbol.symbol] = symbol self.addNode(symbol) typegen.addOuts(symbol) else: self.opstack.append(typegen) self.curop += 1 self.subscriptwrite = True self.visit(node.value) self.opstack.pop(self.curop) self.curop -= 1 self.subscriptwrite = False if not asifcond and self.curop != -1: typegen.addIns(self.opstack[self.curop]) self.opstack[self.curop].addOuts(typegen) self.addNode(typegen) elif type(node.ctx) == ast.Load or self.augassignread: typegen = TypeGenNode("Subscript_Read", [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 self.visit(node.value) self.visit(node.slice) self.opstack.pop(self.curop) self.curop -= 1 if not asifcond and self.curop != -1: typegen.addOuts(self.opstack[self.curop]) self.opstack[self.curop].addIns(typegen) self.addNode(typegen) def visit_Slice(self, node): self.generic_visit(node) def visit_Index(self, node): self.visit(node.value) def visit_BinOp(self, node): asifcond = self.asifcond if self.asifcond == True: self.asifcond = False #Type Gen Node typegen = TypeGenNode(AST2Op[type(node.op)], [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 self.visit(node.left) self.visit(node.right) self.opstack.pop(self.curop) self.curop -= 1 if not asifcond and self.curop != -1: typegen.addOuts(self.opstack[self.curop]) self.opstack[self.curop].addIns(typegen) #typegen.performTypingRules() self.addNode(typegen) def visit_UnaryOp(self, node): asifcond = self.asifcond if self.asifcond: self.asifcond = False typegen = TypeGenNode(AST2Op[type(node.op)], [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 self.visit(node.operand) self.opstack.pop(self.curop) self.curop -= 1 if not asifcond and self.curop != -1: typegen.addOuts(self.opstack[self.curop]) self.opstack[self.curop].addIns(typegen) #typegen.performTypingRules() self.addNode(typegen) def visit_Constant(self, node): if self.curop != -1: typeobject = transformConstant(node) if typeobject != None: typenode = TypeNode([self.opstack[self.curop]], typeobject) typenode.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack[self.curop].addIns(typenode) self.addNode(typenode) def visit_Name(self, node): if (node.id in stdtypes["overall"] or node.id in self.classnames or node.id in self.classstack) and type(node.ctx) == ast.Load: if self.curop != -1: if node.id in stdtypes["overall"]: #typeobject = TypeObject(inputtypemap[node.id], 0) typeobject = TypeObject(node.id, 0) else: typeobject = TypeObject(node.id, 2) typenode = TypeNode([self.opstack[self.curop]], typeobject) typenode.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack[self.curop].addIns(typenode) self.addNode(typenode) elif node.id in stdtypes["errors"] or node.id in stdtypes["warnings"]: if self.curop != -1: typeobject = TypeObject(node.id, 0) typenode = TypeNode([self.opstack[self.curop]], typeobject) typenode.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack[self.curop].addIns(typenode) self.addNode(typenode) elif node.id == "self" and type(node.ctx) == ast.Load and not self.subscriptwrite: if self.curclass == -1: raise ValueError("self should be used within class.") typeobject = TypeObject(self.classstack[self.curclass], 2) typenode = TypeNode([self.opstack[self.curop]], typeobject) typenode.setNodePos(node.lineno, node.col_offset, node.end_col_offset) if self.curop != -1 and not self.asifcond: self.opstack[self.curop].addIns(typenode) self.addNode(typenode) elif type(node.ctx) == ast.Load or (self.augassignread and not self.forin): #case 1: global variable if (self.curclass == -1 and self.curfunc == -1) or node.id in self.globalvar2id: if node.id not in self.globalvar2id: if node.id in self.modules: if self.curop != -1 and not self.asifcond: symbol = SymbolNode([], [self.opstack[self.curop]], node.id, 0, scope = "module") else: symbol = SymbolNode([], [], node.id, 0, scope = "module") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) if self.curop != -1 and not self.asifcond: self.opstack[self.curop].addIns(symbol) self.addNode(symbol) else: if node.id.startswith("__") and node.id.endswith("__"): self.globalvar2id[node.id] = 0 if self.curop != -1 and not self.asifcond: symbol = SymbolNode([], [self.opstack[self.curop]], node.id, self.globalvar2id[node.id], scope = "global") else: symbol = SymbolNode([], [], node.id, self.globalvar2id[node.id], scope = "global") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastglobalvar[node.id] = symbol if self.curop != -1 and not self.asifcond: self.opstack[self.curop].addIns(symbol) self.addNode(symbol) else: self.globalvar2id[node.id] = 0 if self.curop != -1 and not self.asifcond: symbol = SymbolNode([], [self.opstack[self.curop]], node.id, self.globalvar2id[node.id], scope = "global") else: symbol = SymbolNode([], [], node.id, self.globalvar2id[node.id], scope = "global") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastglobalvar[node.id] = symbol if self.curop != -1 and not self.asifcond: self.opstack[self.curop].addIns(symbol) self.addNode(symbol) logger.warning(node.id + " variable is read but it is not previously defined!") else: self.globalvar2id[node.id] += 1 if self.curop != -1 and not self.asifcond: #the first time being read in a function if node.id not in self.lastglobalvar or self.lastglobalvar[node.id] == None: symbol = SymbolNode([], [self.opstack[self.curop]], node.id, self.globalvar2id[node.id], scope = "global") if self.curfunc != -1: self.GlobalTG.addNode(symbol) else: symbol = SymbolNode([self.lastglobalvar[node.id]], [self.opstack[self.curop]], node.id, self.globalvar2id[node.id], scope = "global") self.lastglobalvar[node.id].addOuts(symbol) else: #the first time being read in a function if node.id not in self.lastglobalvar or self.lastglobalvar[node.id] == None: symbol = SymbolNode([], [], node.id, self.globalvar2id[node.id], scope = "global") if self.curfunc != -1: self.GlobalTG.addNode(symbol) else: symbol = SymbolNode([self.lastglobalvar[node.id]], [], node.id, self.globalvar2id[node.id], scope = "global") self.lastglobalvar[node.id].addOuts(symbol) symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastglobalvar[node.id] = symbol if self.curop != -1 and not self.asifcond: self.opstack[self.curop].addIns(symbol) self.addNode(symbol) #case 2: local variable elif self.curfunc != -1: if node.id not in self.localvar2id[self.curfunc] or node.id not in self.lastlocalvar[self.curfunc]: if node.id in self.modules: if self.curop != -1 and not self.asifcond: symbol = SymbolNode([], [self.opstack[self.curop]], node.id, 0, scope = "module") else: symbol = SymbolNode([], [], node.id, 0, scope = "module") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) if self.curop != -1 and not self.asifcond: self.opstack[self.curop].addIns(symbol) self.addNode(symbol) elif node.id.startswith("__") and node.id.endswith("__"): self.localvar2id[self.curfunc][node.id] = 0 if self.curop != -1 and not self.asifcond: symbol = SymbolNode([], [self.opstack[self.curop]], node.id, self.localvar2id[self.curfunc][node.id]) else: symbol = SymbolNode([], [], node.id, self.localvar2id[self.curfunc][node.id]) symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastlocalvar[self.curfunc][node.id] = symbol if self.curop != -1 and not self.asifcond: self.opstack[self.curop].addIns(symbol) self.tgstack[self.curfunc].addNode(symbol) else: self.localvar2id[self.curfunc][node.id] = 0 if self.curop != -1 and not self.asifcond: symbol = SymbolNode([], [self.opstack[self.curop]], node.id, self.localvar2id[self.curfunc][node.id]) else: symbol = SymbolNode([], [], node.id, self.localvar2id[self.curfunc][node.id]) symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastlocalvar[self.curfunc][node.id] = symbol if self.curop != -1 and not self.asifcond: self.opstack[self.curop].addIns(symbol) self.tgstack[self.curfunc].addNode(symbol) logger.warning(node.id + " variable is read but it is not previously defined! Line: " + str(node.lineno)) else: self.localvar2id[self.curfunc][node.id] += 1 if self.curop != -1 and not self.asifcond: symbol = SymbolNode([self.lastlocalvar[self.curfunc][node.id]], [self.opstack[self.curop]], node.id, self.localvar2id[self.curfunc][node.id]) else: symbol = SymbolNode([self.lastlocalvar[self.curfunc][node.id]], [], node.id, self.localvar2id[self.curfunc][node.id]) symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastlocalvar[self.curfunc][node.id].addOuts(symbol) self.lastlocalvar[self.curfunc][node.id] = symbol if self.curop != -1 and not self.asifcond: self.opstack[self.curop].addIns(symbol) self.tgstack[self.curfunc].addNode(symbol) elif type(node.ctx) == ast.Del: #case 1: global variable if (self.curclass == -1 and self.curfunc == -1) or node.id in self.globalvar2id: if node.id not in self.globalvar2id: pass #raise ValueError( node.id + "does not exist.") else: del self.globalvar2id[node.id] del self.lastglobalvar[node.id] #case 2: local variable if self.curfunc != -1: if node.id not in self.localvar2id[self.curfunc]: raise ValueError( node.id + "does not exist.") else: del self.localvar2id[self.curfunc][node.id] del self.lastlocalvar[self.curfunc][node.id] elif type(node.ctx) == ast.Store: #case 1: global variable if (self.curclass == -1 and self.curfunc == -1) or node.id in self.globalvar2id: if node.id not in self.globalvar2id: self.globalvar2id[node.id] = 0 else: self.globalvar2id[node.id] += 1 symbol = SymbolNode([self.opstack[self.curop]], [], node.id, self.globalvar2id[node.id], scope = "global", ctx = "Write") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack[self.curop].addOuts(symbol) self.lastglobalvar[node.id] = symbol self.addNode(symbol) #case 2: local variables elif self.curfunc != -1: if node.id not in self.localvar2id[self.curfunc]: self.localvar2id[self.curfunc][node.id] = 0 else: self.localvar2id[self.curfunc][node.id] += 1 symbol = SymbolNode([self.opstack[self.curop]], [], node.id, self.localvar2id[self.curfunc][node.id], ctx = "Write") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastlocalvar[self.curfunc][node.id] = symbol self.opstack[self.curop].addOuts(symbol) self.tgstack[self.curfunc].addNode(symbol) else: raise ValueError("Do not support such Name node.") def visit_Attribute(self, node): attrstr = Attribute2Str(node) asifcond = self.asifcond if self.asifcond == True: self.asifcond = False if "<Other>" in attrstr: typegen = TypeGenNode(".", [], [], attr = node.attr) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 self.visit(node.value) self.opstack.pop(self.curop) self.curop -= 1 self.addNode(typegen) if not asifcond and self.curop != -1: typegen.addOuts(self.opstack[self.curop]) self.opstack[self.curop].addIns(typegen) #case 1: depth = 2 elif attrstr.count("_@_") == 1: if type(node.value) == ast.Constant: typegen = TypeGenNode(".", [], [], attr = node.attr) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 self.visit(node.value) self.opstack.pop(self.curop) self.curop -= 1 self.addNode(typegen) if not asifcond and self.curop != -1: typegen.addOuts(self.opstack[self.curop]) self.opstack[self.curop].addIns(typegen) elif type(node.value) == ast.Name and node.value.id == "self": if type(node.ctx) == ast.Load or self.augassignread: if self.curclass == -1: raise ValueError("self should be used within a class.") if node.attr not in self.attribute2id[self.curclass]: self.attribute2id[self.curclass][node.attr] = 0 if self.curop != -1 and not asifcond: symbol = SymbolNode([], [self.opstack[self.curop]], node.attr, self.attribute2id[self.curclass][node.attr], classname = self.classstack[self.curclass], scope = "attribute") else: symbol = SymbolNode([], [], node.attr, self.attribute2id[self.curclass][node.attr], classname = self.classstack[self.curclass], scope = "attribute") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastattribute[self.curclass][node.attr] = symbol if self.curop != -1 and not asifcond: self.opstack[self.curop].addIns(symbol) self.GlobalTG.addNode(symbol) if self.curfunc != -1: self.tgstack[self.curfunc].addNode(symbol) else: self.attribute2id[self.curclass][node.attr] += 1 if self.curop != -1 and not asifcond: #occur first time in else branch of if statement if node.attr not in self.lastattribute[self.curclass] or self.lastattribute[self.curclass][node.attr] == None: symbol = SymbolNode([], [self.opstack[self.curop]], node.attr, self.attribute2id[self.curclass][node.attr], classname = self.classstack[self.curclass], scope = "attribute") if self.curfunc != -1: self.GlobalTG.addNode(symbol) else: symbol = SymbolNode([self.lastattribute[self.curclass][node.attr]], [self.opstack[self.curop]], node.attr, self.attribute2id[self.curclass][node.attr], classname = self.classstack[self.curclass], scope = "attribute") self.lastattribute[self.curclass][node.attr].addOuts(symbol) else: if node.attr not in self.lastattribute[self.curclass] or self.lastattribute[self.curclass][node.attr] == None: symbol = SymbolNode([], [], node.attr, self.attribute2id[self.curclass][node.attr], classname = self.classstack[self.curclass], scope = "attribute") if self.curfunc != -1: self.GlobalTG.addNode(symbol) else: symbol = SymbolNode([self.lastattribute[self.curclass][node.attr]], [], node.attr, self.attribute2id[self.curclass][node.attr], classname = self.classstack[self.curclass], scope = "attribute") self.lastattribute[self.curclass][node.attr].addOuts(symbol) symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastattribute[self.curclass][node.attr] = symbol if self.curop != -1 and not asifcond: self.opstack[self.curop].addIns(symbol) self.addNode(symbol) elif type(node.ctx) == ast.Del: if node.attr not in self.attribute2id[self.curclass]: pass #raise ValueError(node.attr + "does not exist.") else: del self.attribute2id[self.curclass][node.attr] del self.lastattribute[self.curclass][node.attr] elif type(node.ctx) == ast.Store: if node.attr not in self.attribute2id[self.curclass]: self.attribute2id[self.curclass][node.attr] = 0 else: self.attribute2id[self.curclass][node.attr] += 1 symbol = SymbolNode([self.opstack[self.curop]], [], node.attr, self.attribute2id[self.curclass][node.attr], classname = self.classstack[self.curclass], scope = "attribute", ctx = "Write") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastattribute[self.curclass][node.attr] = symbol self.opstack[self.curop].addOuts(symbol) self.GlobalTG.addNode(symbol) if self.curfunc != -1: self.tgstack[self.curfunc].addNode(symbol) else: if ((type(node.ctx) == ast.Load or self.augassignread) and (attrstr not in self.globalvar2id or (attrstr in self.globalvar2id and attrstr not in self.lastglobalvar)) and (self.curfunc == -1 or (attrstr not in self.localvar2id[self.curfunc] or (attrstr in self.localvar2id[self.curfunc] and attrstr not in self.lastlocalvar[self.curfunc])))): typegen = TypeGenNode(".", [], [], attr = node.attr) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 self.visit(node.value) self.opstack.pop(self.curop) self.curop -= 1 self.addNode(typegen) if self.curfunc == -1: self.globalvar2id[attrstr] = 0 if self.curop != -1 and not asifcond: symbol = SymbolNode([typegen], [self.opstack[self.curop]], attrstr, 0, scope = "global") else: symbol = SymbolNode([typegen], [], attrstr, 0, scope = "global") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastglobalvar[attrstr] = symbol if self.curop != -1 and not asifcond: self.opstack[self.curop].addIns(symbol) self.GlobalTG.addNode(symbol) elif self.curfunc != -1: self.localvar2id[self.curfunc][attrstr] = 0 if self.curop != -1 and not asifcond: symbol = SymbolNode([typegen], [self.opstack[self.curop]], attrstr, 0) else: symbol = SymbolNode([typegen], [], attrstr, 0) symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastlocalvar[self.curfunc][attrstr] = symbol if self.curop != -1 and not asifcond: self.opstack[self.curop].addIns(symbol) self.tgstack[self.curfunc].addNode(symbol) typegen.addOuts(symbol) elif type(node.ctx) == ast.Store and attrstr not in self.globalvar2id and (self.curfunc == -1 or attrstr not in self.localvar2id[self.curfunc]): if self.curclass == -1 and self.curfunc == -1: self.globalvar2id[attrstr] = 0 symbol = SymbolNode([self.opstack[self.curop]], [], attrstr, 0, scope = "global", ctx = "Write") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastglobalvar[attrstr] = symbol self.opstack[self.curop].addOuts(symbol) self.GlobalTG.addNode(symbol) elif self.curfunc != -1: self.localvar2id[self.curfunc][attrstr] = 0 symbol = SymbolNode([self.opstack[self.curop]], [], attrstr, 0, ctx = "Write") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastlocalvar[self.curfunc][attrstr] = symbol self.opstack[self.curop].addOuts(symbol) self.tgstack[self.curfunc].addNode(symbol) elif attrstr in self.globalvar2id or self.curfunc == -1: if type(node.ctx) == ast.Load or self.augassignread: self.globalvar2id[attrstr] += 1 if self.curop != -1 and not asifcond: if self.lastglobalvar[attrstr] == None: symbol = SymbolNode([], [self.opstack[self.curop]], attrstr, self.globalvar2id[attrstr], scope = "global") if self.curfunc != -1: self.GlobalTG.addNode(symbol) else: symbol = SymbolNode([self.lastglobalvar[attrstr]], [self.opstack[self.curop]], attrstr, self.globalvar2id[attrstr], scope = "global") self.lastglobalvar[attrstr].addOuts(symbol) else: if self.lastglobalvar[attrstr] == None: symbol = SymbolNode([self.lastglobalvar[attrstr]], [], attrstr, self.globalvar2id[attrstr], scope = "global") if self.curfunc != -1: self.GlobalTG.addNode(symbol) else: symbol = SymbolNode([self.lastglobalvar[attrstr]], [], attrstr, self.globalvar2id[attrstr], scope = "global") self.lastglobalvar[attrstr].addOuts(symbol) symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastglobalvar[attrstr] = symbol if self.curop != -1 and not asifcond: self.opstack[self.curop].addIns(symbol) self.addNode(symbol) elif type(node.ctx) == ast.Del: del self.globalvar2id[attrstr] del self.lastglobalvar[attrstr] elif type(node.ctx) == ast.Store: self.globalvar2id[attrstr] += 1 symbol = SymbolNode([self.opstack[self.curop]], [], attrstr, self.globalvar2id[attrstr], scope = "global", ctx = "Write") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastglobalvar[attrstr] = symbol self.opstack[self.curop].addOuts(symbol) self.GlobalTG.addNode(symbol) elif attrstr in self.localvar2id[self.curfunc]: if type(node.ctx) == ast.Load or self.augassignread: self.localvar2id[self.curfunc][attrstr] += 1 if self.curop != -1 and not asifcond: symbol = SymbolNode([self.lastlocalvar[self.curfunc][attrstr]], [self.opstack[self.curop]], attrstr, self.localvar2id[self.curfunc][attrstr]) else: symbol = SymbolNode([self.lastlocalvar[self.curfunc][attrstr]], [], attrstr, self.localvar2id[self.curfunc][attrstr]) symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastlocalvar[self.curfunc][attrstr].addOuts(symbol) self.lastlocalvar[self.curfunc][attrstr] = symbol if self.curop != -1 and not asifcond: self.opstack[self.curop].addIns(symbol) self.tgstack[self.curfunc].addNode(symbol) elif type(node.ctx) == ast.Del: del self.localvar2id[self.curfunc][attrstr] del self.lastlocalvar[self.curfunc][attrstr] elif type(node.ctx) == ast.Store: self.localvar2id[self.curfunc][attrstr] += 1 symbol = SymbolNode([self.opstack[self.curop]], [], attrstr, self.localvar2id[self.curfunc][attrstr], ctx = "Write") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastlocalvar[self.curfunc][attrstr] = symbol self.opstack[self.curop].addOuts(symbol) self.tgstack[self.curfunc].addNode(symbol) #case 2: depth > 2 else: if type(node.ctx) == ast.Load or self.augassignread: #case 1: global variables if (self.curclass == -1 and self.curfunc == -1) or attrstr in self.globalvar2id: if attrstr not in self.globalvar2id: self.globalvar2id[attrstr] = 0 if self.curop != -1 and not asifcond: symbol = SymbolNode([], [self.opstack[self.curop]], attrstr, self.globalvar2id[attrstr], scope = "global") else: symbol = SymbolNode([], [], attrstr, self.globalvar2id[attrstr], scope = "global") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) if self.curop != -1 and not asifcond: self.opstack[self.curop].addIns(symbol) self.lastglobalvar[attrstr] = symbol self.GlobalTG.addNode(symbol) else: self.globalvar2id[attrstr] += 1 if self.curop != -1 and not asifcond: if self.lastglobalvar[attrstr] == None: symbol = SymbolNode([], [self.opstack[self.curop]], attrstr, self.globalvar2id[attrstr], scope = "global") if self.curfunc != -1: self.GlobalTG.addNode(symbol) else: symbol = SymbolNode([self.lastglobalvar[attrstr]], [self.opstack[self.curop]], attrstr, self.globalvar2id[attrstr], scope = "global") self.lastglobalvar[attrstr].addOuts(symbol) else: if self.lastglobalvar[attrstr] == None: symbol = SymbolNode([], [], attrstr, self.globalvar2id[attrstr], scope = "global") if self.curfunc != -1: self.GlobalTG.addNode(symbol) else: symbol = SymbolNode([self.lastglobalvar[attrstr]], [], attrstr, self.globalvar2id[attrstr], scope = "global") self.lastglobalvar[attrstr].addOuts(symbol) symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) if self.curop != -1 and not asifcond: self.opstack[self.curop].addIns(symbol) self.lastglobalvar[attrstr] = symbol self.addNode(symbol) #case 2: local variables elif self.curfunc != -1: if attrstr not in self.localvar2id[self.curfunc] or attrstr not in self.lastlocalvar[self.curfunc]: if attrstr not in self.localvar2id[self.curfunc]: self.localvar2id[self.curfunc][attrstr] = 0 else: self.localvar2id[self.curfunc][attrstr] += 1 if self.curop != -1 and not asifcond: symbol = SymbolNode([], [self.opstack[self.curop]], attrstr, self.localvar2id[self.curfunc][attrstr]) else: symbol = SymbolNode([], [], attrstr, self.localvar2id[self.curfunc][attrstr]) symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) if self.curop != -1 and not asifcond: self.opstack[self.curop].addIns(symbol) self.lastlocalvar[self.curfunc][attrstr] = symbol self.tgstack[self.curfunc].addNode(symbol) else: self.localvar2id[self.curfunc][attrstr] += 1 if self.curop != -1 and not asifcond: symbol = SymbolNode([self.lastlocalvar[self.curfunc][attrstr]], [self.opstack[self.curop]], attrstr, self.localvar2id[self.curfunc][attrstr]) else: symbol = SymbolNode([self.lastlocalvar[self.curfunc][attrstr]], [], attrstr, self.localvar2id[self.curfunc][attrstr]) symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastlocalvar[self.curfunc][attrstr].addOuts(symbol) if self.curop != -1 and not asifcond: self.opstack[self.curop].addIns(symbol) self.lastlocalvar[self.curfunc][attrstr] = symbol self.tgstack[self.curfunc].addNode(symbol) elif type(node.ctx) == ast.Del: #case 1: global variables if (self.curclass == -1 and self.curfunc == -1) or attrstr in self.globalvar2id: del self.lastglobalvar[attrstr] del self.globalvar2id[attrstr] #case 2: local variables elif self.curfunc != -1: del self.lastlocalvar[self.curfunc][attrstr] del self.localvar2id[self.curfunc][attrstr] elif type(node.ctx) == ast.Store: #case 1: global variables if (self.curclass == -1 and self.curfunc == -1) or attrstr in self.globalvar2id: if attrstr not in self.globalvar2id: self.globalvar2id[attrstr] = 0 else: self.globalvar2id[attrstr] += 1 symbol = SymbolNode([self.opstack[self.curop]], [], attrstr, self.globalvar2id[attrstr], scope = "global", ctx = "Write") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastglobalvar[attrstr] = symbol self.opstack[self.curop].addOuts(symbol) self.GlobalTG.addNode(symbol) #case 2: local variables if self.curfunc != -1: if attrstr not in self.localvar2id[self.curfunc]: self.localvar2id[self.curfunc][attrstr] = 0 else: self.localvar2id[self.curfunc][attrstr] += 1 symbol = SymbolNode([self.opstack[self.curop]], [], attrstr, self.localvar2id[self.curfunc][attrstr], ctx = "Write") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.lastlocalvar[self.curfunc][attrstr] = symbol self.opstack[self.curop].addOuts(symbol) self.tgstack[self.curfunc].addNode(symbol) def visit_IfExp(self, node): typegen = TypeGenNode("IfExp", [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 self.visit_If(node) self.opstack.pop(self.curop) self.curop -= 1 if self.curop != -1: typegen.addOuts(self.opstack[self.curop]) self.opstack[self.curop].addIns(typegen) self.addNode(typegen) def visit_JoinedStr(self, node): typegen = TypeGenNode("JoinedStr", [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 self.generic_visit(node) self.opstack.pop(self.curop) self.curop -= 1 if self.curop != -1: typegen.addOuts(self.opstack[self.curop]) self.opstack[self.curop].addIns(typegen) self.addNode(typegen) def visit_If(self, node): ###extract type conditions branchnodes = self.extractTypeCondition(node.test) attribute2id_ori = deepcopy(self.attribute2id) globalvar2id_ori = deepcopy(self.globalvar2id) localvar2id_ori = deepcopy(self.localvar2id) removed = [] for n in branchnodes: var = n.ins[0] if isinstance(var, SymbolNode): if var.scope == "global": self.lastglobalvar[var.name] = n n.brachvar = var.name + str(self.globalvar2id[var.name]) elif var.scope == "local": self.lastlocalvar[self.curfunc][var.name] = n n.branchvar = var.name + str(self.localvar2id[self.curfunc][var.name]) elif var.scope == "attribute": self.lastattribute[self.curclass][var.name] = n n.branchvar = var.name + str(self.attribute2id[self.curclass][var.name]) else: removed.append(n) for n in removed: if n in branchnodes: branchnodes.remove(n) if self.curfunc != -1: lastlocalvar_backup = copy(self.lastlocalvar[self.curfunc]) if self.curclass != -1: lastattribute_backup = copy(self.lastattribute[self.curclass]) lastglobalvar_backup = copy(self.lastglobalvar) for n in branchnodes: var = n.ins[0] if var.scope == "global": self.globalvar2id[var.name] += 1 symbol = SymbolNode([n], [], var.symbol, self.globalvar2id[var.name], scope = "global", extra = True) symbol.setNodePos(var.lineno, var.columnno, var.columnend) n.addOuts(symbol) self.lastglobalvar[var.name] = symbol self.addNode(symbol) elif var.scope == "local": self.localvar2id[self.curfunc][var.name] += 1 symbol = SymbolNode([n], [], var.symbol, self.localvar2id[self.curfunc][var.name], extra = True) symbol.setNodePos(var.lineno, var.columnno, var.columnend) n.addOuts(symbol) self.lastlocalvar[self.curfunc][var.name] = symbol self.addNode(symbol) elif var.scope == "attribute": self.attribute2id[self.curclass][var.name] += 1 symbol = SymbolNode([n], [], var.symbol, self.attribute2id[self.curclass][var.name], classname = var.classname, scope = "attribute", extra = True) symbol.setNodePos(var.lineno, var.columnno, var.columnend) n.addOuts(symbol) self.lastattribute[self.curclass][var.name] = symbol self.addNode(symbol) if isinstance(node.body, list): #for node: If self.visitfield(node.body) else: #for node: IfExp self.visit(node.body) if self.curfunc != -1: lastlocalvar_true = copy(self.lastlocalvar[self.curfunc]) if self.curclass != -1: lastattribute_true = copy(self.lastattribute[self.curclass]) lastglobalvar_true = copy(self.lastglobalvar) attribute2id_true = deepcopy(self.attribute2id) globalvar2id_true = deepcopy(self.globalvar2id) localvar2id_true = deepcopy(self.localvar2id) if self.curclass != -1: self.lastattribute[self.curclass] = copy(lastattribute_backup) if self.curfunc != -1: self.lastlocalvar[self.curfunc] = copy(lastlocalvar_backup) self.lastglobalvar = copy(lastglobalvar_backup) for n in branchnodes: var = n.ins[0] if var.scope == "global": self.globalvar2id[var.name] += 1 symbol = SymbolNode([n], [], var.symbol, self.globalvar2id[var.name], scope = "global", extra = True) symbol.setNodePos(var.lineno, var.columnno, var.columnend) n.addOuts(symbol) self.lastglobalvar[var.name] = symbol self.addNode(symbol) elif var.scope == "local": self.localvar2id[self.curfunc][var.name] += 1 symbol = SymbolNode([n], [], var.symbol, self.localvar2id[self.curfunc][var.name], extra = True) symbol.setNodePos(var.lineno, var.columnno, var.columnend) n.addOuts(symbol) self.lastlocalvar[self.curfunc][var.name] = symbol self.addNode(symbol) elif var.scope == "attribute": self.attribute2id[self.curclass][var.name] += 1 symbol = SymbolNode([n], [], var.symbol, self.attribute2id[self.curclass][var.name], classname = var.classname, scope = "attribute", extra = True) symbol.setNodePos(var.lineno, var.columnno, var.columnend) n.addOuts(symbol) self.lastattribute[self.curclass][var.name] = symbol self.addNode(symbol) if isinstance(node.orelse, list): #for node: If self.visitfield(node.orelse) else: #for node: IfExp self.visit(node.orelse) #TODO branch and merge cases for key in self.globalvar2id: #variable created in true body and used in false body if key not in lastglobalvar_backup and key in lastglobalvar_true and key in self.lastglobalvar: mergenode = MergeNode([self.lastglobalvar[key], lastglobalvar_true[key]], [], self.buildmergename([self.lastglobalvar[key], lastglobalvar_true[key]])) self.lastglobalvar[key].addOuts(mergenode) lastglobalvar_true[key].addOuts(mergenode) self.lastglobalvar[key] = mergenode self.GlobalTG.addNode(mergenode) if self.curfunc != -1: self.tgstack[self.curfunc].addNode(mergenode) #variable created in true body and not used in false body elif key not in lastglobalvar_backup and key in lastglobalvar_true and key not in self.lastglobalvar: self.lastglobalvar[key] = lastglobalvar_true[key] #variable created in false body elif key not in lastglobalvar_backup and key not in lastglobalvar_true: pass #variable created before if and used in both true and false body or used only in false body elif key in globalvar2id_true and globalvar2id_true[key] != self.globalvar2id[key] and self.lastglobalvar[key] != None and lastglobalvar_true[key] != None: mergenode = MergeNode([self.lastglobalvar[key], lastglobalvar_true[key]], [], self.buildmergename([self.lastglobalvar[key], lastglobalvar_true[key]])) self.lastglobalvar[key].addOuts(mergenode) lastglobalvar_true[key].addOuts(mergenode) self.lastglobalvar[key] = mergenode self.GlobalTG.addNode(mergenode) if self.curfunc != -1: self.tgstack[self.curfunc].addNode(mergenode) #varaible created before if and used only in true body elif key in globalvar2id_true and globalvar2id_true[key] == self.globalvar2id[key] and self.globalvar2id[key] > globalvar2id_ori[key] and key in lastglobalvar_backup and lastglobalvar_backup[key] != None and lastglobalvar_true[key] != None: mergenode = MergeNode([lastglobalvar_backup[key], lastglobalvar_true[key]], [], self.buildmergename([lastglobalvar_backup[key], lastglobalvar_true[key]])) lastglobalvar_backup[key].addOuts(mergenode) lastglobalvar_true[key].addOuts(mergenode) self.lastglobalvar[key] = mergenode self.GlobalTG.addNode(mergenode) if self.curfunc != -1: self.tgstack[self.curfunc].addNode(mergenode) if self.curfunc != -1: for key in self.localvar2id[self.curfunc]: #variable created in true body and used in false body if key not in lastlocalvar_backup and key in lastlocalvar_true and key in self.lastlocalvar[self.curfunc]: mergenode = MergeNode([self.lastlocalvar[self.curfunc][key], lastlocalvar_true[key]], [], self.buildmergename([self.lastlocalvar[self.curfunc][key], lastlocalvar_true[key]])) self.lastlocalvar[self.curfunc][key].addOuts(mergenode) lastlocalvar_true[key].addOuts(mergenode) self.lastlocalvar[self.curfunc][key] = mergenode self.tgstack[self.curfunc].addNode(mergenode) #variable created in true body and not used in false body elif key not in lastlocalvar_backup and key in lastlocalvar_true and key not in self.lastlocalvar[self.curfunc]: self.lastlocalvar[self.curfunc][key] = lastlocalvar_true[key] #variable created in false body elif key not in lastlocalvar_backup and key not in lastlocalvar_true: pass #variable created before if and used in both true and false body or used only in false body elif key in localvar2id_true[self.curfunc] and localvar2id_true[self.curfunc][key] != self.localvar2id[self.curfunc][key] and lastlocalvar_true[key] != None and self.lastlocalvar[self.curfunc][key] != None: mergenode = MergeNode([self.lastlocalvar[self.curfunc][key], lastlocalvar_true[key]], [], self.buildmergename([self.lastlocalvar[self.curfunc][key], lastlocalvar_true[key]])) self.lastlocalvar[self.curfunc][key].addOuts(mergenode) lastlocalvar_true[key].addOuts(mergenode) self.lastlocalvar[self.curfunc][key] = mergenode self.tgstack[self.curfunc].addNode(mergenode) #varaible created before if and used only in true body elif key in localvar2id_true[self.curfunc] and localvar2id_true[self.curfunc][key] == self.localvar2id[self.curfunc][key] and key in lastlocalvar_backup and self.localvar2id[self.curfunc][key] > localvar2id_ori[self.curfunc][key] and lastlocalvar_backup[key] != None and lastlocalvar_true[key] != None: mergenode = MergeNode([lastlocalvar_backup[key], lastlocalvar_true[key]], [], self.buildmergename([lastlocalvar_backup[key], lastlocalvar_true[key]])) lastlocalvar_backup[key].addOuts(mergenode) lastlocalvar_true[key].addOuts(mergenode) self.lastlocalvar[self.curfunc][key] = mergenode self.tgstack[self.curfunc].addNode(mergenode) if self.curclass != -1: for key in self.attribute2id[self.curclass]: #variable created in true body and used in false body if key not in lastattribute_backup and key in lastattribute_true and key in self.lastattribute[self.curclass]: mergenode = MergeNode([self.lastattribute[self.curclass][key], lastattribute_true[key]], [], self.buildmergename([self.lastattribute[self.curclass][key], lastattribute_true[key]])) self.lastattribute[self.curclass][key].addOuts(mergenode) lastattribute_true[key].addOuts(mergenode) self.lastattribute[self.curclass][key] = mergenode self.addNode(mergenode) #variable created in true body and not used in false body elif key not in lastattribute_backup and key in lastattribute_true and key not in self.lastattribute[self.curclass]: self.lastattribute[self.curclass][key] = lastattribute_true[key] #variable created in false body elif key not in lastattribute_backup and key not in lastattribute_true: pass #variable created before if and used in both true and false body or used only in false body elif key in attribute2id_true[self.curclass] and attribute2id_true[self.curclass][key] != self.attribute2id[self.curclass][key] and self.lastattribute[self.curclass][key] != None and lastattribute_true[key] != None: mergenode = MergeNode([self.lastattribute[self.curclass][key], lastattribute_true[key]], [], self.buildmergename([self.lastattribute[self.curclass][key], lastattribute_true[key]])) self.lastattribute[self.curclass][key].addOuts(mergenode) lastattribute_true[key].addOuts(mergenode) self.lastattribute[self.curclass][key] = mergenode self.addNode(mergenode) elif key in attribute2id_true[self.curclass] and attribute2id_true[self.curclass][key] == self.attribute2id[self.curclass][key] and key in lastattribute_backup and self.attribute2id[self.curclass][key] > attribute2id_ori[self.curclass][key] and lastattribute_backup[key] != None and lastattribute_true[key] != None: mergenode = MergeNode([lastattribute_backup[key], lastattribute_true[key]], [], self.buildmergename([lastattribute_backup[key], lastattribute_true[key]])) lastattribute_backup[key].addOuts(mergenode) lastattribute_true[key].addOuts(mergenode) self.lastattribute[self.curclass][key] = mergenode self.addNode(mergenode) #branch nodes should not exist in lastvar map for n in branchnodes: var = n.ins[0] if var.scope == "global" and self.lastglobalvar[var.name] == n: self.globalvar2id[var.name] += 1 symbol = SymbolNode([n], [], var.symbol, self.globalvar2id[var.name], scope = "global") symbol.setNodePos(var.lineno, var.columnno, var.columnend) n.addOuts(symbol) self.lastglobalvar[var.name] = symbol self.addNode(symbol) elif var.scope == "local" and self.lastlocalvar[self.curfunc][var.name] == n: self.localvar2id[self.curfunc][var.name] += 1 symbol = SymbolNode([n], [], var.symbol, self.localvar2id[self.curfunc][var.name]) symbol.setNodePos(var.lineno, var.columnno, var.columnend) n.addOuts(symbol) self.lastlocalvar[self.curfunc][var.name] = symbol self.addNode(symbol) elif var.scope == "attribute" and self.lastattribute[self.curclass][var.name] == n: self.attribute2id[self.curclass][var.name] += 1 symbol = SymbolNode([n], [], var.symbol, self.attribute2id[self.curclass][var.name]) symbol.setNodePos(var.lineno, var.columnno, var.columnend) n.addOuts(symbol) self.lastattribute[self.curclass][var.name] = symbol self.addNode(symbol) def visit_Try(self, node): if self.curfunc != -1: lastlocalvar_ori = copy(self.lastlocalvar[self.curfunc]) if self.curclass != -1: lastattribute_ori = copy(self.lastattribute[self.curclass]) lastglobalvar_ori = copy(self.lastglobalvar) if self.curfunc != -1: self.tgstack[self.curfunc].intry += 1 else: self.GlobalTG.intry += 1 self.visitfield(node.body) if self.curfunc != -1: lastlocalvar_try = copy(self.lastlocalvar[self.curfunc]) if self.curclass != -1: lastattribute_try = copy(self.lastattribute[self.curclass]) lastglobalvar_try = copy(self.lastglobalvar) if self.curfunc != -1: self.lastlocalvar[self.curfunc] = copy(lastlocalvar_ori) if self.curclass != -1: self.lastattribute[self.curclass] = copy(lastattribute_ori) self.lastglobalvar = copy(lastglobalvar_ori) self.addMerge4Except() if self.curfunc != -1: self.tgstack[self.curfunc].intry -= 1 if len(self.tgstack[self.curfunc].trybuffer) > self.tgstack[self.curfunc].intry: self.tgstack[self.curfunc].trybuffer.pop(self.tgstack[self.curfunc].intry) else: self.GlobalTG.intry -= 1 if len(self.GlobalTG.trybuffer) > self.GlobalTG.intry: self.GlobalTG.trybuffer.pop(self.GlobalTG.intry) self.visitfield(node.handlers) if self.curfunc != -1: self.lastlocalvar[self.curfunc] = copy(lastlocalvar_try) if self.curclass != -1: self.lastattribute[self.curclass] = copy(lastattribute_try) self.lastglobalvar = copy(lastglobalvar_try) self.visitfield(node.orelse) self.addMerge4Finally() self.visitfield(node.finalbody) if self.curfunc != -1: self.tgstack[self.curfunc].inexcept = 0 self.tgstack[self.curfunc].exceptbuffer.clear() else: self.GlobalTG.inexcept = 0 self.GlobalTG.exceptbuffer.clear() def visit_ExceptHandler(self, node): if self.curfunc != -1: lastlocalvar_ori = copy(self.lastlocalvar[self.curfunc]) if self.curclass != -1: lastattribute_ori = copy(self.lastattribute[self.curclass]) lastglobalvar_ori = copy(self.lastglobalvar) if node.name != None: symbol = SymbolNode([], [], node.name, 0) symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) typeobject = TypeObject("Exception", 0) symbol.types.append(typeobject) if self.curfunc != -1: self.localvar2id[self.curfunc][node.name] = 1 self.lastlocalvar[self.curfunc][node.name] = symbol else: self.globalvar2id[node.name] = 1 self.lastglobalvar[node.name] = symbol self.addNode(symbol) if self.curfunc != -1: self.tgstack[self.curfunc].inexcept += 1 else: self.GlobalTG.inexcept += 1 self.visitfield(node.body) if self.curfunc != -1: self.lastlocalvar[self.curfunc] = copy(lastlocalvar_ori) if node.name != None and node.name in self.localvar2id[self.curfunc]: del self.localvar2id[self.curfunc][node.name] deletekeys = [] for key in self.localvar2id[self.curfunc]: if key.startswith(node.name + "_@_"): deletekeys.append(key) for key in deletekeys: del self.localvar2id[self.curfunc][key] if self.curclass != -1: self.lastattribute[self.curclass] = copy(lastattribute_ori) self.lastglobalvar = copy(lastglobalvar_ori) if node.name != None and node.name in self.globalvar2id: del self.globalvar2id[node.name] deletekeys = [] for key in self.globalvar2id: if key.startswith(node.name + "_@_"): deletekeys.append(key) for key in deletekeys: del self.globalvar2id[key] def visit_AsyncFor(self, node): self.visit_For(node) def visit_For(self, node): if len(node.orelse) != 0: raise ValueError("Currently we do not support for loops with else statements.") typegen = TypeGenNode("forin", [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 self.visit(node.target) self.visit(node.iter) self.opstack.pop(self.curop) self.curop -= 1 attribute2id_ori = deepcopy(self.attribute2id) globalvar2id_ori = deepcopy(self.globalvar2id) localvar2id_ori = deepcopy(self.localvar2id) if self.curfunc != -1: lastlocalvar_ori = copy(self.lastlocalvar[self.curfunc]) if self.curclass != -1: lastattribute_ori = copy(self.lastattribute[self.curclass]) lastglobalvar_ori = copy(self.lastglobalvar) if self.curfunc != -1: self.tgstack[self.curfunc].inloop += 1 else: self.GlobalTG.inloop += 1 self.visitfield(node.body) #add merge nodes for vars after this loop if self.curfunc != -1: for key in self.localvar2id[self.curfunc]: if key in localvar2id_ori[self.curfunc] and key in lastlocalvar_ori and self.localvar2id[self.curfunc][key] > localvar2id_ori[self.curfunc][key]: mergenode = MergeNode([self.lastlocalvar[self.curfunc][key], lastlocalvar_ori[key]], [], self.buildmergename([self.lastlocalvar[self.curfunc][key], lastlocalvar_ori[key]])) self.lastlocalvar[self.curfunc][key].addOuts(mergenode) lastlocalvar_ori[key].addOuts(mergenode) self.lastlocalvar[self.curfunc][key] = mergenode self.addNode(mergenode) elif self.curclass != -1: for key in self.attribute2id[self.curclass]: if key in attribute2id_ori[self.curclass] and key in lastattribute_ori and self.attribute2id[self.curclass][key] > attribute2id_ori[self.curclass][key] and self.lastattribute[self.curclass][key] != None and lastattribute_ori[key] != None: mergenode = MergeNode([self.lastattribute[self.curclass][key], lastattribute_ori[key]], [], self.buildmergename([self.lastattribute[self.curclass][key], lastattribute_ori[key]])) self.lastattribute[self.curclass][key].addOuts(mergenode) lastattribute_ori[key].addOuts(mergenode) self.lastattribute[self.curclass][key] = mergenode self.addNode(mergenode) for key in self.globalvar2id: if key in globalvar2id_ori and key in lastglobalvar_ori and self.globalvar2id[key] > globalvar2id_ori[key] and self.lastglobalvar[key] != None and lastglobalvar_ori[key] != None: mergenode = MergeNode([self.lastglobalvar[key], lastglobalvar_ori[key]], [], self.buildmergename([self.lastglobalvar[key], lastglobalvar_ori[key]])) self.lastglobalvar[key].addOuts(mergenode) lastglobalvar_ori[key].addOuts(mergenode) self.lastglobalvar[key] = mergenode self.addNode(mergenode) #add merges for the first use of variables in this loop self.addMergeNodes() if self.curfunc != -1: self.tgstack[self.curfunc].inloop -= 1 if len(self.tgstack[self.curfunc].loopbuffer) > self.tgstack[self.curfunc].inloop: self.tgstack[self.curfunc].loopbuffer.pop(self.tgstack[self.curfunc].inloop) else: self.GlobalTG.inloop -= 1 if len(self.GlobalTG.loopbuffer) > self.GlobalTG.inloop: self.GlobalTG.loopbuffer.pop(self.GlobalTG.inloop) self.addNode(typegen) def visit_While(self, node): if len(node.orelse) != 0: raise ValueError("Currently we do not support for loops with else statements.") self.asifcond = True self.visit(node.test) self.asifcond = False attribute2id_ori = deepcopy(self.attribute2id) globalvar2id_ori = deepcopy(self.globalvar2id) localvar2id_ori = deepcopy(self.localvar2id) if self.curfunc != -1: lastlocalvar_ori = copy(self.lastlocalvar[self.curfunc]) if self.curclass != -1: lastattribute_ori = copy(self.lastattribute[self.curclass]) lastglobalvar_ori = copy(self.lastglobalvar) if self.curfunc != -1: self.tgstack[self.curfunc].inloop += 1 else: self.GlobalTG.inloop += 1 self.visitfield(node.body) #add merges for the first use of variables in this loop self.addMergeNodes() #add merge nodes for vars after this loop if self.curfunc != -1: for key in self.localvar2id[self.curfunc]: if key in localvar2id_ori[self.curfunc] and self.localvar2id[self.curfunc][key] > localvar2id_ori[self.curfunc][key]: mergenode = MergeNode([self.lastlocalvar[self.curfunc][key], lastlocalvar_ori[key]], [], self.buildmergename([self.lastlocalvar[self.curfunc][key], lastlocalvar_ori[key]])) self.lastlocalvar[self.curfunc][key].addOuts(mergenode) lastlocalvar_ori[key].addOuts(mergenode) self.lastlocalvar[self.curfunc][key] = mergenode self.addNode(mergenode) elif self.curclass != -1: for key in self.attribute2id[self.curclass]: if key in attribute2id_ori[self.curclass] and self.attribute2id[self.curclass][key] > attribute2id_ori[self.curclass][key] and self.lastattribute[self.curclass][key] != None and lastattribute_ori[key] != None: mergenode = MergeNode([self.lastattribute[self.curclass][key], lastattribute_ori[key]], [], self.buildmergename([self.lastattribute[self.curclass][key], lastattribute_ori[key]])) self.lastattribute[self.curclass][key].addOuts(mergenode) lastattribute_ori[key].addOuts(mergenode) self.lastattribute[self.curclass][key] = mergenode self.addNode(mergenode) for key in self.globalvar2id: if key in globalvar2id_ori and self.globalvar2id[key] > globalvar2id_ori[key] and lastglobalvar_ori[key] != None and self.lastglobalvar[key] != None: mergenode = MergeNode([self.lastglobalvar[key], lastglobalvar_ori[key]], [], self.buildmergename([self.lastglobalvar[key], lastglobalvar_ori[key]])) self.lastglobalvar[key].addOuts(mergenode) lastglobalvar_ori[key].addOuts(mergenode) self.lastglobalvar[key] = mergenode self.addNode(mergenode) if self.curfunc != -1: self.tgstack[self.curfunc].loopbuffer.pop(self.tgstack[self.curfunc].inloop - 1) self.tgstack[self.curfunc].inloop -= 1 else: self.GlobalTG.loopbuffer.pop(self.GlobalTG.inloop - 1) self.GlobalTG.inloop -= 1 def visit_Break(self, node): logger.warning("Break statement at line {} visited, it may change the data flow but currently HiTyper does not handle it.".format(node.lineno)) def visit_Continue(self, node): logger.warning("Continue statement at line {} visited, it may change the data flow but currently HiTyper does not handle it.".format(node.lineno)) def visit_With(self, node): self.withpos.append([node.lineno, node.col_offset, node.end_col_offset]) self.visitfield(node.items) self.visitfield(node.body) for item in self.withitemnames[len(self.withitemnames) - 1]: if self.curfunc != -1 and item in self.localvar2id[self.curfunc]: del self.localvar2id[self.curfunc][item] del self.lastlocalvar[self.curfunc][item] deletekeys = [] for key in self.localvar2id[self.curfunc]: if key.startswith(item +"_@_"): deletekeys.append(key) for key in deletekeys: del self.localvar2id[self.curfunc][key] if key in self.lastlocalvar[self.curfunc]: del self.lastlocalvar[self.curfunc][key] elif item in self.globalvar2id: del self.globalvar2id[item] del self.lastglobalvar[item] deletekeys = [] for key in self.globalvar2id: if key.startswith(item + "_@_"): deletekeys.append(key) for key in deletekeys: del self.globalvar2id[key] if key in self.lastglobalvar: del self.lastglobalvar[key] self.withitemnames.pop(len(self.withitemnames) - 1) self.withpos.pop(len(self.withpos) - 1) def visit_AsyncWith(self, node): self.visit_With(node) def visit_withitem(self, node): if node.optional_vars != None: typegen = TypeGenNode("=", [], []) index = len(self.withpos) - 1 typegen.setNodePos(self.withpos[index][0], self.withpos[index][1], self.withpos[index][2]) self.opstack.append(typegen) self.curop += 1 self.visit(node.context_expr) self.visit(node.optional_vars) self.withitemnames.append([Attribute2Str(node.optional_vars)]) self.opstack.pop(self.curop) self.curop -= 1 self.addNode(typegen) else: self.asifcond = True self.visit(node.context_expr) self.asifcond = False self.withitemnames.append([]) def visit_BoolOp(self, node): asifcond = self.asifcond if self.asifcond: self.asifcond = False typegen = TypeGenNode(AST2Op[type(node.op)], [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 if len(node.values) > 2: self.visit(node.values[0]) self.visit(node.values[1]) else: self.visitfield(node.values) self.opstack.pop(self.curop) self.curop -= 1 if len(node.values) > 2: prev_typegen = typegen for i in range(2, len(node.values)): curnode = node.values[i] more_typegen = TypeGenNode(AST2Op[type(node.op)], [prev_typegen], []) prev_typegen.addOuts(more_typegen) more_typegen.setNodePos(curnode.lineno, curnode.col_offset, curnode.end_col_offset) self.opstack.append(more_typegen) self.curop += 1 self.visit(curnode) self.opstack.pop(self.curop) self.curop -= 1 self.addNode(more_typegen) prev_typegen = more_typegen else: prev_typegen = typegen if self.curop != -1 and not asifcond: self.opstack[self.curop].addIns(prev_typegen) prev_typegen.addOuts(self.opstack[self.curop]) #typegen.performTypingRules() self.addNode(typegen) def visit_Compare(self, node): lastcompare = None i = -1 asifcond = self.asifcond if self.asifcond == True: self.asifcond = False for op in node.ops: i += 1 if lastcompare == None: typegen = TypeGenNode(AST2Op[type(op)], [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.addNode(typegen) self.opstack.append(typegen) self.curop += 1 self.visit(node.left) self.visit(node.comparators[0]) self.opstack.pop(self.curop) self.curop -= 1 # typegen.performTypingRules() lastcompare = typegen else: typegen = TypeGenNode(AST2Op[type(op)], [], []) typegen.setNodePos(node.comparators[i-1].lineno, node.comparators[i-1].col_offset, node.comparators[i-1].end_col_offset) self.addNode(typegen) self.opstack.append(typegen) self.curop += 1 self.visit(node.comparators[i-1]) self.visit(node.comparators[i]) self.opstack.pop(self.curop) self.curop -= 1 typegen2 = TypeGenNode("and", [lastcompare, typegen], []) lastcompare.addOuts(typegen2) typegen.addOuts(typegen2) typegen2.setNodePos(node.comparators[i].lineno, node.comparators[i].col_offset, node.comparators[i].end_col_offset) lastcompare = typegen2 # typegen2.performTypingRules() self.addNode(typegen2) if self.curop != -1 and not asifcond: lastcompare.addOuts(self.opstack[self.curop]) self.opstack[self.curop].addIns(lastcompare) def visit_List(self, node): if type(node.ctx) == ast.Store: typegen = TypeGenNode("List_Write", [self.opstack[self.curop]], []) self.opstack[self.curop].addOuts(typegen) else: typegen = TypeGenNode("List_Read", [], [self.opstack[self.curop]]) self.opstack[self.curop].addIns(typegen) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 self.generic_visit(node) self.opstack.pop(self.curop) self.curop -= 1 #typegen.performTypingRules(iterable=True) self.addNode(typegen) def visit_Tuple(self, node): if type(node.ctx) == ast.Store: typegen = TypeGenNode("Tuple_Write", [self.opstack[self.curop]], []) self.opstack[self.curop].addOuts(typegen) else: typegen = TypeGenNode("Tuple_Read", [], [self.opstack[self.curop]]) self.opstack[self.curop].addIns(typegen) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 self.generic_visit(node) self.opstack.pop(self.curop) self.curop -= 1 #typegen.performTypingRules(iterable=True) self.addNode(typegen) def visit_Set(self, node): typegen = TypeGenNode("Set_Read", [], [self.opstack[self.curop]]) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack[self.curop].addIns(typegen) self.opstack.append(typegen) self.curop += 1 self.generic_visit(node) self.opstack.pop(self.curop) self.curop -= 1 #typegen.performTypingRules(iterable=True) self.addNode(typegen) def visit_Dict(self, node): typegen = TypeGenNode("Dict_Read", [], [self.opstack[self.curop]], splitindex = len(node.keys)) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack[self.curop].addIns(typegen) self.opstack.append(typegen) self.curop += 1 self.visitfield(node.keys) self.visitfield(node.values) self.opstack.pop(self.curop) self.curop -= 1 #typegen.performTypingRules(iterable=True) self.addNode(typegen) def visit_Return(self, node): name = "Return_Value@" + self.funcstack[self.curfunc] if self.curclass != -1: name = name + "@" + self.classstack[self.curclass] symbol = SymbolNode([], [], name, 0, ctx = "Return") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(symbol) self.curop += 1 self.generic_visit(node) self.opstack.pop(self.curop) self.curop -= 1 self.addNode(symbol) def visit_Lambda(self, node): logger.warning("Lambda function at line {} visited, currently HiTyper does not support Lambda function, it may result in incorrect inference.".format(node.lineno)) typenode = TypeNode([self.opstack[self.curop]], TypeObject("Callable", 0)) typenode.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack[self.curop].addIns(typenode) self.addNode(typenode) def visit_Expr(self, node): if type(node.value) != ast.Constant: self.visit(node.value) def visit_Await(self, node): self.visit(node.value) def visit_comprehension(self, node): typegen = TypeGenNode("forin", [], []) typegen.setNodePos(node.iter.lineno, node.iter.col_offset, node.iter.end_col_offset) self.opstack.append(typegen) self.curop += 1 self.visit(node.iter) self.forin = True self.visit(node.target) self.forin = False self.opstack.pop(self.curop) self.curop -= 1 self.asifcond = True self.visitfield(node.ifs) self.asifcond = False self.addNode(typegen) def visit_DictComp(self, node): asifcond = self.asifcond if self.asifcond: self.asifcond = False typegen = TypeGenNode("DictComp", [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.visitfield(node.generators) self.opstack.append(typegen) self.curop += 1 self.visit(node.key) self.visit(node.value) self.opstack.pop(self.curop) self.curop -= 1 if not asifcond and self.curop != -1: self.opstack[self.curop].addIns(typegen) typegen.addOuts(self.opstack[self.curop]) self.addNode(typegen) def visit_ListComp(self, node): asifcond = self.asifcond if self.asifcond: self.asifcond = False typegen = TypeGenNode("ListComp", [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.visitfield(node.generators) self.opstack.append(typegen) self.curop += 1 self.visit(node.elt) self.opstack.pop(self.curop) self.curop -= 1 if not asifcond and self.curop != -1: self.opstack[self.curop].addIns(typegen) typegen.addOuts(self.opstack[self.curop]) self.addNode(typegen) def visit_SetComp(self, node): asifcond = self.asifcond if self.asifcond: self.asifcond = False typegen = TypeGenNode("SetComp", [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.visitfield(node.generators) self.opstack.append(typegen) self.curop += 1 self.visit(node.elt) self.opstack.pop(self.curop) self.curop -= 1 if not asifcond and self.curop != -1: self.opstack[self.curop].addIns(typegen) typegen.addOuts(self.opstack[self.curop]) self.addNode(typegen) def visit_GeneratorExp(self, node): asifcond = self.asifcond if self.asifcond: self.asifcond = False typegen = TypeGenNode("GeneratorExp", [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.visitfield(node.generators) self.opstack.append(typegen) self.curop += 1 self.visit(node.elt) self.opstack.pop(self.curop) self.curop -= 1 if not asifcond and self.curop != -1: self.opstack[self.curop].addIns(typegen) typegen.addOuts(self.opstack[self.curop]) self.addNode(typegen) def visit_Yield(self, node): typegen = TypeGenNode("yield", [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 if node.value != None: self.visit(node.value) self.opstack.pop(self.curop) self.curop -= 1 if len(self.opstack) == 0: name = "Return_Value@" + self.funcstack[self.curfunc] if self.curclass != -1: name = name + "@" + self.classstack[self.curclass] symbol = SymbolNode([typegen], [], name, 0, ctx = "Return") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) typegen.addOuts(symbol) self.addNode(symbol) else: self.opstack[self.curop].addIns(typegen) typegen.addOuts(self.opstack[self.curop]) self.addNode(typegen) def visit_YieldFrom(self, node): typegen = TypeGenNode("yield", [], []) typegen.setNodePos(node.lineno, node.col_offset, node.end_col_offset) self.opstack.append(typegen) self.curop += 1 if node.value != None: self.visit(node.value) self.opstack.pop(self.curop) self.curop -= 1 if len(self.opstack) == 0: name = "Return_Value@" + self.funcstack[self.curfunc] if self.curclass != -1: name = name + "@" + self.classstack[self.curclass] symbol = SymbolNode([typegen], [], name, 0, ctx = "Return") symbol.setNodePos(node.lineno, node.col_offset, node.end_col_offset) typegen.addOuts(symbol) self.addNode(symbol) else: self.opstack[self.curop].addIns(typegen) typegen.addOuts(self.opstack[self.curop]) self.addNode(typegen) def visit_Assert(self, node): logger.warning("Assert statement visited at Line {}, it may change the data flow of program, but HiTyper currently ignores it.".format(node.lineno)) def finalize(self, tg): if isinstance(tg, TypeGraph): for key in tg.symbolnodes: for n in tg.symbolnodes[key]: if len(n.ins) > 1: mergenode = MergeNode(n.ins, [n], self.buildmergename(n.ins)) for innode in n.ins: innode.outs[innode.outs.index(n)] = mergenode n.ins = [mergenode] self.addNode(mergenode) for n in tg.returnvaluenodes: if len(n.ins) > 1: mergenode = MergeNode(n.ins, [n], self.buildmergename(n.ins)) for innode in n.ins: innode.outs[innode.outs.index(n)] = mergenode n.ins = [mergenode] self.addNode(mergenode) else: for key in tg.globalsymbolnodes: for n in tg.globalsymbolnodes[key]: if len(n.ins) > 1: mergenode = MergeNode(n.ins, [n], self.buildmergename(n.ins)) for innode in n.ins: innode.outs[innode.outs.index(n)] = mergenode n.ins = [mergenode] self.addNode(mergenode) def canRemove(self, node): for i in node.ins: if isinstance(i, BranchNode): return False return True def optimize(self, tg): #remove redundant merge nodes (for which do not have output nodes) if isinstance(tg, TypeGraph): changed = True while(changed): removenodes = [] for n in tg.mergenodes: if len(n.outs) == 0 and self.canRemove(n): removenodes.append(n) changed = False for n in removenodes: for innode in n.ins: if n in innode.outs: innode.outs.remove(n) tg.mergenodes.remove(n) tg.nodes.remove(n) changed = True else: changed = True while(changed): removenodes = [] for n in tg.globalmergenodes: if len(n.outs) == 0 and self.canRemove(n): removenodes.append(n) changed = False for n in removenodes: for innode in n.ins: if n in innode.outs: innode.outs.remove(n) tg.globalmergenodes.remove(n) tg.globalnodes.remove(n) changed = True #remove redundant branch nodes (for which do not have output nodes) if isinstance(tg, TypeGraph): changed = True while(changed): removenodes = [] for n in tg.branchnodes: if (len(n.outs) == 0 and self.canRemove(n)) or (len(n.outs) == 1 and n.outs[0] == "PlaceHolder"): removenodes.append(n) changed = False for n in removenodes: for innode in n.ins: if n in innode.outs: innode.outs.remove(n) tg.branchnodes.remove(n) tg.nodes.remove(n) changed = True else: changed = True while(changed): removenodes = [] for n in tg.globalbranchnodes: if (len(n.outs) == 0 and self.canRemove(n)) or (len(n.outs) == 1 and n.outs[0] == "PlaceHolder"): removenodes.append(n) changed = False for n in removenodes: for innode in n.ins: if n in innode.outs: innode.outs.remove(n) tg.globalbranchnodes.remove(n) tg.globalnodes.remove(n) changed = True #refine branch nodes if isinstance(tg, TypeGraph): for n in tg.branchnodes: if len(n.outs) == 3 and n.outs[0] == "PlaceHolder": outs = [n.outs[2], n.outs[1]] n.outs = outs else: for n in tg.globalbranchnodes: if len(n.outs) == 3 and n.outs[0] == "PlaceHolder": outs = [n.outs[2], n.outs[1]] n.outs = outs def run(self, root): if self.alias > 0: logger.info("[1st Pass: Alias Analysis] Started...") a = AliasAnalyzer(self.GlobalTG.aliasgraph) self.GlobalTG.aliasgraph = a.run(root) logger.info("[1st Pass: Alias Analysis] Generated {0} attribute nodes, captured {1} aliases.".format(len(self.GlobalTG.aliasgraph.nodes), self.GlobalTG.aliasgraph.getAliasNum())) logger.info("[1st Pass: Alias Analysis] Finished!") else: logger.info("[1st Pass: Alias Analysis] Skipped...") if self.repo != None: logger.info("[2nd Pass: Call Analysis] Started...") cg = CallGraphGenerator([self.filename], self.repo, -1, CALL_GRAPH_OP) cg.analyze() formatter = formats.Simple(cg) output = formatter.generate() self.GlobalTG.callgraph = output num = 0 for key in output: num += len(output[key]) logger.info("[2nd Pass: Call Analysis] Captured {0} call relationships.".format(num)) logger.info("[2nd Pass: Call Analysis] Finished!") else: logger.info("[2nd Pass: Call Analysis] Skipped...") if self.alias <= 1: logger.info("[3rd Pass: TDG Generation] Started...") self.visit(root) self.GlobalTG.addClassname(self.classnames) if self.optimized: self.optimize(self.GlobalTG) for tg in self.GlobalTG.tgs: self.optimize(tg) logger.info("[3rd Pass: TDG Generation] Finished!") else: logger.info("[3rd Pass: TDG Generation] Skipped...") return self.GlobalTG ``` #### File: HiTyper/hityper/typeobject.py ```python import re from hityper.stdtypes import stdtypes, exporttypemap, inputtypemap, typeequalmap from hityper import logger logger.name = __name__ class TypeObject(object): def __init__(self, t, category, added = False): self.type = t #categories: 0 - builtins #1 - standard libraries #2 - user defined self.category = category self.compatibletypes = [t] self.startnodename = None self.startnodeorder = None self.added = added if t in ["bool", "int", "float", "complex"]: self.compatibletypes = ["int", "float", "complex", "bool"] self.elementtype = [] self.keytype = [] self.valuetype = [] def buildTuple(self, t): self.type = "Tuple" self.elementtype = t def buildDict(self, key, value): self.type = "Dict" self.elementtype = key self.keytype = key self.valuetype = value def buildList(self, t): self.type = "List" self.elementtype = t def buildSet(self, t): self.type = "Set" self.elementtype = t @property def getBuiltinTypes(self): #ref: https://docs.python.org/zh-cn/3/library/typing.html #ref: https://docs.python.org/3/library/stdtypes.html self.builintypes = {} self.builintypes["element"] = ["bool", "int", "float", "None", "Any", "Text", "type", "bytes"] self.builintypes["generic"] = [ "List", "Tuple", "Set", "Dict", "Union", "Optional", "Callable", "Iterable", "Sequence", "Generator"] self.builintypes["rare"] = ["complex", "bytearray", "Frozenset", "memoryview", "range"] return self.builintypes @staticmethod def isCompatible(l, r): for t in l.compatibletypes: if t == r.type: return True return False @staticmethod def existCompatible(l, listr): for r in listr: if TypeObject.isCompatible(l, r): return True if TypeObject.existSame(l, listr): return True return False @staticmethod def existNumbers(l, listr, exact = False): #now we conduct exact match if not exact: return False if l.type in ["int", "float"]: for r in listr: if r.type in ["int", "float"]: return True return False #l is x and optional[x] in listr will return true @staticmethod def existOptional(l, listr): for t in listr: if t.type.lower() == "optional" and len(t.elementtype) == 1 and typeequalmap[t.elementtype[0].type.lower()] == typeequalmap[l.type.lower()]: return True return False @staticmethod def existSame( l, listr): for r in listr: if isinstance(r, str): if r.startswith("<") and r.endswith(">"): continue if TypeObject.isSimilar(l, TypeObject(r,0)): return True elif TypeObject.isIdentical(l, r): return True return False @staticmethod def existSimilar(l, listr): for r in listr: if TypeObject.isSimilar(l,r): return True return False @staticmethod def findSame(l, listr): for r in listr: if isinstance(r, str) and TypeObject.isSimilar(l, TypeObject(r,0)): return r elif isinstance(r, TypeObject) and TypeObject.isIdentical(l,r): return r return None @staticmethod def isIdentical( l, r): if l.category != 0 and r.category != 0: if l.type == r.type: return True elif l.category == r.category and l.category == 2 and (l.type.split(".")[-1] == r.type.split(".")[-1]): return True else: return False if l.category == 0 and r.category == 0: if typeequalmap[l.type.lower()] == typeequalmap[r.type.lower()]: if l.type.lower() not in ["list", "tuple", "set", "iterable", "optional", "union", "sequence", "generator", "dict"]: return True else: if l.type.lower() == "dict" and TypeObject.isIdenticalSet(l.keytype, r.keytype) and TypeObject.isIdenticalSet(l.valuetype, r.valuetype): return True elif l.type.lower() in ["list", "tuple", "set", "iterable", "optional", "union", "sequence", "generator"] and TypeObject.isIdenticalSet(l.elementtype, r.elementtype): return True elif (l.type.lower() == "literal" and typeequalmap[r.type.lower()] <= 3) or (r.type.lower() == "literal" and typeequalmap[l.type.lower()] <= 3): return True elif (l.type.lower() == "iterable" and typeequalmap[r.type.lower()] <= 17 and typeequalmap[r.type.lower()] >= 11) or (r.type.lower() == "iterable" and typeequalmap[l.type.lower()] <= 17 and typeequalmap[l.type.lower()] >= 11): return True if l.category == 0 and r.category == 2 and l.type.lower() == "type" and len(l.elementtype) == 1: return TypeObject.isIdentical(l.elementtype[0], r) if r.category == 0 and l.category == 2 and r.type.lower() == "type" and len(r.elementtype) == 1: return TypeObject.isIdentical(r.elementtype[0], l) return False @staticmethod def isSimilar(l,r): if l.category == 0 and r.category == 0 and typeequalmap[l.type.lower()] == typeequalmap[r.type.lower()]: return True elif l.type.lower() == r.type.lower(): return True else: return False @staticmethod def isIdenticalSet( llist, rlist): invalidtypes = [] for l in llist: if not isinstance(l, TypeObject): invalidtypes.append(l) for r in rlist: if not isinstance(r, TypeObject): invalidtypes.append(r) for t in invalidtypes: if t in llist: llist.remove(t) for t in invalidtypes: if t in rlist: rlist.remove(t) for l in llist: if l.type.lower() == "any": return True if not TypeObject.existSame(l, rlist) and l.type.lower() != "any": return False for r in rlist: if r.type.lower() == "any": return True if not TypeObject.existSame(r, llist) and r.type.lower() != "any": return False return True @staticmethod def existType(t, listr): for r in listr: if isinstance(t, str): if (r.category == 0 and typeequalmap[t.lower()] == typeequalmap[r.type.lower()]) or (r.category == 2 and r.type == t): return True elif isinstance(t, TypeObject): if (r.category == 0 and t.category == 0 and typeequalmap[t.type.lower()] == typeequalmap[r.type.lower()]) or (t.type == r.type): return True return False @staticmethod def equal2type(t, typestr): if typeequalmap[t.type.lower()] == typeequalmap[typestr.lower()]: return True return False @staticmethod def equal2onetype(t, typestrs): for s in typestrs: if typeequalmap[t.type.lower()] == typeequalmap[s.lower()]: return True return False @staticmethod def combineTypes(listt): if len(listt) > 1: typeobject = TypeObject("Union", 0) typeobject.elementtype = listt return typeobject elif len(listt) == 1: return listt[0] else: return None @staticmethod def usertypeCompare(l, rlist): for r in rlist: if l.category == r.category and l.category == 2 and ((l.type.split(".")[-1] == r.type.split(".")[-1])): return True return False @staticmethod def existIncluded(l, rlist): for r in rlist: if TypeObject.isIncluded(l,r): return True return False #if l is included in r, for generic types, list[a] is included in list[a,b] @staticmethod def isIncluded(l, r): if r.type == "Optional" and len(r.elementtype) == 1 and l.type == r.elementtype[0].type: return True elif l.type != r.type: return False elif l.type == r.type and l.type in ["List", "Tuple", "Dict", "Set", "Iterable", "Optional", "Union", "Sequence", "Generator"]: if l.type == "Dict": for t in l.keytype: if not TypeObject.existSame(t, r.keytype) and not TypeObject.existOptional(t, r.keytype) and not TypeObject.existIncluded(t, r.keytype): return False for t in l.valuetype: if not TypeObject.existSame(t, r.valuetype) and not TypeObject.existOptional(t, r.valuetype) and not TypeObject.existIncluded(t, r.valuetype): return False return True else: for t in l.elementtype: if not TypeObject.existSame(t, r.elementtype) and not TypeObject.existOptional(t, r.elementtype) and not TypeObject.existIncluded(t, r.elementtype): return False return True @staticmethod def isSetIncluded(llist, rlist): for r in rlist: if TypeObject.existSame(r, llist) or TypeObject.existNumbers(r, llist) or TypeObject.usertypeCompare(r, llist): continue else: included = False for l in llist: if TypeObject.isIncluded(r, l): included = True break if included: continue return False return True @staticmethod def isSetIncluded2(llist, rlist): for r in rlist: if TypeObject.existSimilar(r, llist) or TypeObject.existNumbers(r, llist, exact = True) or TypeObject.usertypeCompare(r, llist): continue else: included = False for l in llist: if TypeObject.isIncluded(r, l): included = True break if included: continue return False return True @staticmethod def simplifyGenericType(t): if not isinstance(t, TypeObject): return t if t.type in ["Set", "Tuple", "List", "Awaitable", "Iterable", "Union"]: t.elementtype = TypeObject.removeInclusiveTypes(t.elementtype) elif t.type == "Dict": t.keytype = TypeObject.removeInclusiveTypes(t.keytype) t.valuetype = TypeObject.removeInclusiveTypes(t.valuetype) elif t.type == "Optional": t.elementtype = TypeObject.removeRedundantTypes(t.elementtype) rm = None for et in t.elementtype: if et.type == "None": rm = et break if rm != None and rm in t.elementtype: t.elementtype.remove(rm) return t @staticmethod def removeRedundantTypes(listt): outs = [] for t in listt: typeobj = TypeObject.simplifyGenericType(t) if not TypeObject.existSame(typeobj, outs): outs.append(typeobj) return outs #Example: if list[] and list[a] exists at the same time, then list[] is removed @staticmethod def removeInclusiveTypes(listt): outs = TypeObject.removeRedundantTypes(listt) removed = True while removed: removed = False for i in range(0, len(outs)): for j in range(0, len(outs)): if i != j and TypeObject.isIncluded(outs[i], outs[j]): removed = True target = outs[i] break if removed and target in outs: outs.remove(target) return outs @staticmethod def removeInvalidTypes(t): if isinstance(t, TypeObject): elementtype = [] for tt in t.elementtype: if isinstance(tt, TypeObject): elementtype.append(TypeObject.removeInvalidTypes(tt)) t.elementtype = elementtype keytype = [] for tt in t.keytype: if isinstance(tt, TypeObject): keytype.append(TypeObject.removeInvalidTypes(tt)) t.keytype = keytype valuetype = [] for tt in t.valuetype: if isinstance(tt, TypeObject): valuetype.append(TypeObject.removeInvalidTypes(tt)) return t def __str__(self): return TypeObject.resolveTypeName(self) @staticmethod def resolveTypeName(t): if isinstance(t, TypeObject): t = TypeObject.removeInvalidTypes(t) if t.category != 0: return t.type elif t.type.lower() not in exporttypemap: raise TypeError("Unknown type: " + t.type) typestr = exporttypemap[t.type.lower()] if t.type.lower() in ["dict", "callable"]: typestr = typestr + "[" if len(t.keytype) == 0: typestr += ", " elif len(t.keytype) == 1: typestr = typestr + TypeObject.resolveTypeName(t.keytype[0]) + ", " else: typestr += "typing.Union[" for n in t.keytype: typestr = typestr + TypeObject.resolveTypeName(n) + "," typestr = typestr[:-1] typestr += "], " if len(t.valuetype) == 0: pass elif len(t.valuetype) == 1: typestr = typestr + TypeObject.resolveTypeName(t.valuetype[0]) else: typestr += "typing.Union[" for n in t.valuetype: typestr = typestr + TypeObject.resolveTypeName(n) + "," typestr = typestr[:-1] typestr += "]" typestr += "]" elif t.type.lower() in ["set", "tuple", "list", "awaitable", "iterable", "sequence", "generator"]: typestr = typestr + "[" if len(t.elementtype) == 1: typestr = typestr + TypeObject.resolveTypeName(t.elementtype[0]) elif len(t.elementtype) == 2 and (t.elementtype[0].type == "None" or t.elementtype[1].type == "None"): typestr += "typing.Optional[" for i in t.elementtype: if i.type != "None": typestr = typestr + TypeObject.resolveTypeName(i) typestr += "]" elif len(t.elementtype) >= 2: typestr += "typing.Union[" for n in t.elementtype: typestr = typestr + TypeObject.resolveTypeName(n) + "," typestr = typestr[:-1] typestr += "]" typestr += "]" elif t.type.lower() == "optional": typestr += "[" if len(t.elementtype) > 1: typestr += "typing.Union[" for n in t.elementtype: typestr = typestr + TypeObject.resolveTypeName(n) + "," typestr = typestr[:-1] typestr += "]" elif len(t.elementtype) == 1: typestr = typestr + TypeObject.resolveTypeName(t.elementtype[0]) + "]" else: typestr += "]" elif t.type.lower() == "union": typestr += "[" if len(t.elementtype) == 0: typestr += "]" if len(t.elementtype) == 1: typestr = typestr + TypeObject.resolveTypeName(t.elementtype[0]) + "]" elif len(t.elementtype) > 1: for n in t.elementtype: typestr = typestr + TypeObject.resolveTypeName(n) + "," typestr = typestr[:-1] typestr += "]" return typestr else: raise TypeError("t should be a TypeObject.") @staticmethod def resolveTypeNames(tlist): typestr = "Possible Types {" if isinstance(tlist, list): for i, t in enumerate(tlist): typestr = typestr + " " + str(i+1) + "." + str(t.category) + "- " + TypeObject.resolveTypeName(t) else: raise TypeError("tlist must be a list of TypeObject.") return typestr + " }" @staticmethod def resolveTypeNames2(tlist): typestr = "Union[" if isinstance(tlist, list): for i, t in enumerate(tlist): typestr = typestr + TypeObject.resolveTypeName(t) + "," if typestr[-1] == ",": typestr = typestr[:len(typestr)-1] else: raise TypeError("tlist must be a list of TypeObject.") return typestr + "]" @staticmethod def checkType(typestr): typeobjs = TypeObject.Str2Obj(typestr) if len(typeobjs) == 0: return None elif typeobjs[0].category == 0 and len(typeobjs[0].elementtype) == 0 and len(typeobjs[0].keytype) == 0 and len(typeobjs[0].valuetype) == 0: return "simple" elif typeobjs[0].category == 0: return "generic" elif typeobjs[0].category == 2: return "user-defined" else: return None @staticmethod def Str2Obj(typestr): strobjs = [] typestr = typestr.replace(" ", "") typestr = typestr.replace("builtins.", "") typestr = typestr.replace("typing_extensions.", "typing.") if len(typestr) > 2 and typestr[0] == "[" and typestr[-1] == "]": typestr = typestr[1:len(typestr) - 1] if typestr == None or typestr == "": return strobjs if len(typestr) > 500: #logger.warning("Type name is too long.") return strobjs if typestr in ["Union", "typing.Union"] and "[" not in typestr: return strobjs elif typestr.lower() in inputtypemap: strobjs.append(TypeObject(inputtypemap[typestr.lower()], 0)) return strobjs elif "[" in typestr and "]" in typestr: typestr = typestr.replace("t.", "typing.") index1 = typestr.index("[") index2 = typestr.rfind("]") innerstr = typestr[index1 + 1:index2] if "Union" in typestr[:index1]: strs = innerstr.split(",") leftnum = 0 rightnum = 0 cur_str = "" for s in strs: cur_str += s leftnum += s.count("[") rightnum += s.count("]") if leftnum == rightnum: strobjs += TypeObject.Str2Obj(cur_str) cur_str = "" else: cur_str += "," return strobjs elif "Optional" in typestr[:index1] or "typing.Optional" in typestr[:index1]: strobjs += TypeObject.Str2Obj(innerstr) strobjs.append(TypeObject("None", 0)) return strobjs if typestr[:index1].lower() in inputtypemap: typeobj = TypeObject(inputtypemap[typestr[:index1].lower()], 0) if "Dict" in typestr[:index1] or "Mapping" in typestr[:index1] or "Callable" in typestr[:index1]: if "," in innerstr: commaindex = innerstr.split(",") leftnum = 0 rightnum = 0 cur_str = "" count = 0 for s in commaindex: cur_str += s leftnum += s.count("[") rightnum += s.count("]") if leftnum == rightnum: if count == 0: typeobj.keytype += TypeObject.Str2Obj(cur_str) else: typeobj.valuetype += TypeObject.Str2Obj(cur_str) count += 1 cur_str = "" else: cur_str += "," strobjs.append(typeobj) return strobjs else: return strobjs else: strs = innerstr.split(",") leftnum = 0 rightnum = 0 cur_str = "" for s in strs: cur_str += s leftnum += s.count("[") rightnum += s.count("]") if leftnum == rightnum: typeobj.elementtype += TypeObject.Str2Obj(cur_str) cur_str = "" else: cur_str += "," ''' if "[" in innerstr and "]" in innerstr: typeobj.elementtype = TypeObject.Str2Obj(innerstr) else: strs = innerstr.split(",") for s in strs: typeobj.elementtype += TypeObject.Str2Obj(s) ''' strobjs.append(typeobj) return strobjs else: typeobj = TypeObject(typestr.replace("[typing.Any]", ""), 2) strobjs.append(typeobj) return strobjs elif typestr.startswith("typing") and "[" not in typestr and typestr.lower() in inputtypemap: typeobj = TypeObject(inputtypemap[typestr.lower()], 0) strobjs.append(typeobj) return strobjs else: typeobj = TypeObject(typestr, 2) strobjs.append(typeobj) return strobjs @staticmethod def DumpObject(typeobj): print("Type: " + typeobj.type) print("Element Type:" + TypeObject.resolveTypeNames(typeobj.elementtype)) print("Key Type:" + TypeObject.resolveTypeNames(typeobj.keytype)) print("Value Type:" + TypeObject.resolveTypeNames(typeobj.valuetype)) @staticmethod def DumpOriObject(typeobj): elementtypestr = "" for t in typeobj.elementtype: elementtypestr += TypeObject.DumpOriObject(t) + " [SEP] " keytypestr = "" for t in typeobj.keytype: keytypestr += TypeObject.DumpOriObject(t) + " [SEP] " valuetypestr = "" for t in typeobj.valuetype: valuetypestr += TypeObject.DumpOriObject(t) + " [SEP] " return "@Type: {}, Element Type: [{}], Key Type: [{}], Value Type: [{}]@".format(typeobj.type, elementtypestr, keytypestr, valuetypestr) @staticmethod def DumpOriObjects(typeobjs): typestr = "" for i, obj in enumerate(typeobjs): typestr += "{} - {} \n".format(i, TypeObject.DumpOriObject(obj)) return typestr def dump(self): obj = {"type": self.type, "category": self.category, "added": self.added, "compatibletypes": self.compatibletypes, "startnodename": self.startnodename, "startnodeorder": self.startnodeorder} elementtype = [] for i in self.elementtype: elementtype.append(i.dump()) obj["elementtype"] = elementtype keytype = [] for i in self.keytype: keytype.append(i.dump()) obj["keytype"] = keytype valuetype = [] for i in self.valuetype: valuetype.append(i.dump()) obj["valuetype"] = valuetype return obj @staticmethod def load(dictobj): obj = TypeObject(dictobj["type"], dictobj["category"], added = dictobj["added"]) obj.compatibletypes = dictobj["compatibletypes"] obj.startnodename = dictobj["startnodename"] obj.startnodeorder = dictobj["startnodeorder"] for i in dictobj["elementtype"]: obj.elementtype.append(TypeObject.load(i)) for i in dictobj["keytype"]: obj.keytype.append(TypeObject.load(i)) for i in dictobj["valuetype"]: obj.valuetype.append(TypeObject.load(i)) return obj ``` #### File: HiTyper/hityper/typerule.py ```python from hityper.typeobject import TypeObject import hityper.tdg from hityper import logger from copy import copy, deepcopy from hityper.stdtypes import builtin_method_properties, special_types, builtin_method logger.name == __name__ class TypingRule(object): def __init__(self): pass def check_failed(self, ori, rej): if len(ori) == len(rej): logger.warning("All types are rejected.") def sub_act(self, operands , op, func, attr, usertypes, iterable=False, curnode = None): if not iterable: if len(operands) > 0: left = operands[0] else: left = None right = None if(len(operands)>1): right = operands[1] else: right = None if(left != None and (not isinstance(left, hityper.tdg.GraphBaseNode)) or (right != None and not isinstance(right, hityper.tdg.GraphBaseNode))): raise ValueError("Operands must be a graph node") if (op in ["and", "or"]): return self.binop_and_or(left, right) elif (op == "not"): return self.unop_not(left, right) elif (op in ["<", "<=", ">", ">="]): return self.binop_compare_neq(left, right) elif (op in ["==", "!=", "is", "is not"]): return self.binop_compare_eq(left, right) elif (op == "+" and right != None): return self.binop_add(operands) elif (op == "*"): return self.binop_mul(left, right) elif (op in ["-", "/", "//", "%", "**", "pow"] and right != None): return self.binop_num_op(left, right, op) elif (op in ["+", "-", "abs"] and right == None): return self.NumRemainSame(left, right) elif (op == "int" and right == None): return self.unop_int(left, right) elif (op == "float" and right == None): return self.unop_float(left, right) elif (op == "divmod"): return self.binop_divmod(left, right) elif (op in ["|", "^", "&", "<<", ">>"]): return self.binop_int_op(operands, func, attr, usertypes) elif (op == "~" and right == None): return self.unop_int_op(left, right) elif (op == "bytes" and right == None): return self.unop_bytes(left, right) elif (op == "str" and right == None): return self.unop_str(left, right) elif (op == "tuple" and right == None): return self.unop_tuple(left, right) elif (op == "list" and right == None): return self.unop_list(left, right) elif (op == "set" and right == None): return self.unop_set(left, right) elif (op == "dict" and right == None): return self.unop_dict(left, right) elif (op == "type" and right == None): return self.unop_type(left, right) elif (op in ["in", "not in"] ): return self.binop_in(left, right) elif (op == "forin" and right == None): return self.unop_forin(left, right) elif (op == "append"): return self.binop_append(left, right) elif (op == "Subscript_Write"): return self.triop_subscript(operands, func, attr, usertypes) elif (op == "Subscript_Read"): return self.binop_subscript(operands, func, attr, usertypes) elif (op == "=" and right == None): return self.unop_assign(left, right) elif (op == "call"): return self.call(operands, func, attr, usertypes, curnode) elif (op == "List_Read"): return self.List_Read(operands) elif( op == "List_Write"): return self.List_Write(operands) elif(op == "Tuple_Read"): return self.Tuple_Read(operands) elif(op == "Tuple_Write"): return self.Tuple_Write(operands) elif(op == "Set_Read"): return self.Set_Read(operands) elif(op =="Dict_Read"): return self.Dict_Read(operands) elif(op == "JoinedStr"): return self.JoinedStr(operands) elif(op=="."): return self.Attribution_Return(operands, existstype=None) elif(op=="ListComp"): return self.listcomp_Return(operands) elif(op=="SetComp"): return self.setcomp_Return(operands) elif(op=="DictComp"): return self.dictcomp_Retrun(operands) elif(op=="GeneratorExp"): return self.GeneratorExp_Return(operands) elif(op=="yield"): return self.yieldop(operands) elif(op=="IfExp"): return self.IfExp(operands) else: return self.unknown_op(operands, op) #raise TypeError("Unknown Operation: " + op) def act(self, operands , op, func, attr, usertypes, iterable=False, curnode = None): #if not about iterable res = self.sub_act(operands , op, func, attr, usertypes, iterable=False, curnode = curnode) if res==None: logger.warning("POSIIBLE NONE RETURN op is:", op) return res def unknown_op(self, operands, op): logger.warning("Unknown Operation: " + op) rej_types = [] outs = [] for i in operands: rej_types.append([]) return rej_types, outs def binop_and_or(self, left, right): #rule: left and right can have arbitary type #out: Union[left, right] #if one is user-defined, the return type can only be True/False ltypes = left.types rtypes = right.types rej_ltypes = [] rej_rtypes = [] outs = TypeObject.removeRedundantTypes(ltypes + rtypes) return [rej_ltypes, rej_rtypes], outs def unop_not(self, left, right): #rule: left can have arbitary type #out: bool(including user-defined) rej_ltypes = [] outs = TypeObject("bool", 0) return [rej_ltypes], outs def binop_compare_neq(self, left, right): #rule: left and right must have the same type, exclude user defined, type, callable #out: bool(including user-defined) ltypes = left.types rtypes = right.types rej_ltypes = [] rej_rtypes = [] outs = TypeObject("bool", 0) for t in ltypes: if (not TypeObject.existCompatible(t, rtypes)) or t.category != 0 or TypeObject.existSame(t, ["type", "Callable", "Dict", "None"]): rej_ltypes.append(t) for t in rtypes: if (not TypeObject.existCompatible(t, ltypes)) or t.category != 0 or TypeObject.existSame(t, ["type", "Callable", "Dict", "None"]): rej_rtypes.append(t) return [rej_ltypes, rej_rtypes], outs def binop_compare_eq(self, left, right): #rule: left and right can have arbitary type #out: bool(including user-defined) rej_ltypes = [] rej_rtypes = [] outs = TypeObject("bool", 0) return [rej_ltypes, rej_rtypes], outs def binop_add(self, operands): #rule: left and right must have the same type #out: left/right left = operands[0] right = operands[1] ltypes = left.types rtypes = right.types rej_ltypes = [] rej_rtypes = [] outs = [] # if ltypes or rtypes are None, add rej # if len(ltypes)==0: # rej_ltypes.append() for t in ltypes: if TypeObject.existSame(t, ["Tuple", "List"]): temp = TypeObject(t.type, 0) temp.elementtype += t.elementtype rexist = False for rt in rtypes: if rt.type == t.type: temp.elementtype += rt.elementtype rexist = True if rexist: outs.append(temp) elif ((not TypeObject.existSame(t, rtypes)) and (not TypeObject.existCompatible(t, rtypes))) or t.category != 0 or TypeObject.existSame(t, ["type", "Callable", "Set", "Dict", "None"]): rej_ltypes.append(t) elif (not TypeObject.existSame(t, outs)): outs.append(t) for t in rtypes: if ((not TypeObject.existSame(t, ltypes)) and (not TypeObject.existCompatible(t, ltypes))) or t.category != 0 or TypeObject.existSame(t, ["type", "Callable", "Set", "Dict", "None"]): rej_rtypes.append(t) elif not TypeObject.existSame(t, outs): outs.append(t) if len(operands)==2: return [rej_ltypes, rej_rtypes], outs elif len(operands)>2: rej = [] rej.append(rej_ltypes) rej.append(rej_rtypes) for i in range(2,len(operands)): rej.append([]) return rej,outs def binop_mul(self, left, right): #rule: one operand must be a number, the other can not be userdefined, type, callable #out: left (numbers need extra consideration) ltypes = left.types rtypes = right.types rej_ltypes = [] rej_rtypes = [] outs = [] if not TypeObject.existType("int", ltypes) and not TypeObject.existType("bool", ltypes): for t in rtypes: if not TypeObject.existSame(t, ["bool", "float", "int"]): rej_rtypes.append(t) if not TypeObject.existType("int", rtypes) and not TypeObject.existType("bool", rtypes): for t in ltypes: if not TypeObject.existSame(t, ["bool", "float", "int"]): rej_ltypes.append(t) for t in ltypes: if TypeObject.existSame(t, ["type", "Callable", "None", "Set", "Dict"]): rej_ltypes.append(t) for t in rtypes: if TypeObject.existSame(t, ["type", "Callable", "None", "Set", "Dict"]): rej_rtypes.append(t) #self.check_failed(ltypes, rej_ltypes) #self.check_failed(rtypes, rej_rtypes) if TypeObject.existType("float", ltypes) or TypeObject.existType("float", rtypes): outs.append(TypeObject("float", 0)) if (TypeObject.existType("int", ltypes) or TypeObject.existType("bool", ltypes)) and (TypeObject.existType("int", rtypes) or TypeObject.existType("bool", rtypes)): outs.append(TypeObject("int", 0)) if TypeObject.existType("int", ltypes) or TypeObject.existType("bool", ltypes): for t in rtypes: if (t not in rej_rtypes) and (not TypeObject.existSame(t, outs)): outs.append(t) if TypeObject.existType("int", rtypes) or TypeObject.existType("bool", rtypes): for t in ltypes: if (t not in rej_ltypes) and (not TypeObject.existSame(t, outs)): outs.append(t) return [rej_ltypes, rej_rtypes], outs def binop_num_op(self, left, right, op): #rule: left and right must be numbers #out: numbers #mention that False%True returns int #mention that % is also used in joinedstr. e.g. b = 'hello %s %s'%(a,a) ltypes = left.types rtypes = right.types rej_ltypes = [] rej_rtypes = [] outs = [] level = 0 # for joinedstr strtemp = TypeObject("Text",0) if op=='%' and TypeObject.existSame(strtemp,ltypes): outs = [TypeObject("Text", 0)] # left can only be Text for idx in range(len(ltypes)): if ltypes[idx].type!="Text": rej_ltypes.append(ltypes[idx]) return [rej_ltypes, rej_rtypes], outs for idx in range(len(rtypes)): if rtypes[idx].type=="bool": rtypes[idx] = TypeObject("int", 0) # raise the type elif not TypeObject.existSame(rtypes[idx], special_types["@number@"]): rej_rtypes.append(rtypes[idx]) elif special_types["@number@"].index(rtypes[idx].type.lower()) > level: level = special_types["@number@"].index(rtypes[idx].type.lower()) for idx in range(len(ltypes)): if ltypes[idx].type=="bool": ltypes[idx] = TypeObject("int", 0) # raise the type for t in ltypes: if not TypeObject.existSame(t, special_types["@number@"]): rej_ltypes.append(t) elif TypeObject.existSame(t, ["int", "float", "complex"]) and TypeObject.existSame(t, rtypes) and not TypeObject.existSame(t, outs): outs.append(t) elif TypeObject.existSame(t, ["int", "float", "complex"]) and not TypeObject.existSame(t, rtypes) and special_types["@number@"].index(t.type.lower()) > level and not TypeObject.existSame(t, outs): outs.append(t) for t in rtypes: if TypeObject.existSame(t, ["int", "float", "complex"]) and special_types["@number@"].index(t.type.lower()) == level and not TypeObject.existSame(t, outs): outs.append(t) if op == "/" and len(ltypes) > len(rej_ltypes) and len(rtypes) > len(rej_rtypes): outs = [TypeObject("float", 0)] return [rej_ltypes, rej_rtypes], outs def NumRemainSame(self, left, right): #rule: accept numbers #out: the original number type #not surport user-define ltypes = left.types rej_ltypes = [] rej_rtypes = [] outs = [] for t in ltypes: if not TypeObject.existSame(t, special_types["@number@"]): rej_ltypes.append(t) elif not TypeObject.existSame(t, outs): outs.append(t) return [rej_ltypes, rej_rtypes], outs def unop_int(self, left, right): # NO MORE USED ltypes = left.types rej_ltypes = [] outs = TypeObject("int", 0) for t in ltypes: if not TypeObject.existSame(t, ["int", "float", "complex", "bytes", "Text", "bool"]): rej_ltypes.append(t) return [rej_ltypes], outs def unop_float(self, left, right): #NO MORE USED ltypes = left.types rej_ltypes = [] outs = TypeObject("float", 0) for t in ltypes: if not TypeObject.existSame(t, ["int", "float", "complex", "bytes", "Text", "bool"]): rej_ltypes.append(t) return [rej_ltypes], outs def binop_divmod(self, left, right): # NO MORE USED #rule: just the combination of / and % in numbers #out: numbers #not support user-define # if both left and right are int => a//b , a%b int/int # if one is float =>math.floor(a / b), a % b float/float ltypes = left.types rtypes = right.types basic_type = TypeObject("int", 0) llevel = rlevel = 1 for lt in ltypes: if TypeObject.isCompatible(lt, basic_type): llevel = max(llevel, special_types["@number@"].index(lt.type.lower())) for rt in rtypes: if TypeObject.isCompatible(rt,basic_type): rlevel = max(rlevel, special_types["@number@"].index(rt.type.lower())) if llevel<2 and rlevel<2: rej_ltypes, rej_rtypes, outs = self.binop_num_op(left, right,"%") else: rej_ltypes, rej_rtypes, outs = self.binop_num_op(left, right,"/") finalouts = TypeObject("Tuple", 0) finalouts.buildTuple(outs) return [rej_ltypes, rej_rtypes], finalouts def binop_int_op(self,operands, func, attr, usertypes): #rule: can accept int and bool #out: int #not support user-define if len(operands)==2: left = operands[0] right = operands[1] ltypes = left.types rtypes = right.types rej_ltypes = [] rej_rtypes = [] outs = [] temp1 = TypeObject("int", 0) temp2 = TypeObject("bool", 0) for t in ltypes: if not TypeObject.existSame(t, ["int", "bool","Any", "Set"]) and t.category==0: rej_ltypes.append(t) for t in rtypes: if not TypeObject.existSame(t, ["int", "bool","Any", "Set"]) and t.category==0: rej_rtypes.append(t) if TypeObject.existSame(TypeObject("Set", 0), ltypes) and TypeObject.existSame(TypeObject("Set", 0), rtypes): outs.append(TypeObject.findSame(TypeObject("Set", 0), ltypes)) outs.append(TypeObject.findSame(TypeObject("Set", 0), rtypes)) outs += [temp1,temp2] if len(ltypes) == len(rej_ltypes) or len(rtypes) == len(rej_rtypes): return [rej_ltypes, rej_rtypes], [] else: return [rej_ltypes, rej_rtypes], outs elif len(operands)>2: temp1 = TypeObject("int", 0) temp2 = TypeObject("bool", 0) rej = [] for inode in operands: itypes = inode.types rej_types = [] for t in itypes: if not TypeObject.existSame(t, ["int", "bool","Any"]) and t.category == 0: rej_types.append(t) rej.append(rej_types) return rej,[temp1,temp2] def unop_int_op(self, left, right): #rule: can accept int and bool #out: int #not support user-define ltypes = left.types rej_ltypes = [] outs = TypeObject("int", 0) for t in ltypes: if not TypeObject.existSame(t, ["int", "bool"]): rej_ltypes.append(t) return [rej_ltypes], outs def unop_bytes(self, left, right): # No more use here ltypes = left.types rej_ltypes = [] outs = TypeObject("bytes", 0) for t in ltypes: if TypeObject.existSame(t, ["List", "Tuple", "Set"]): rej_elementtypes = [] if isinstance(t.elementtype, list): for it in t.elementtype: if not TypeObject.existSame(it, ["int", "bool"]): rej_elementtypes.append(it) elif not TypeObject.existSame(t.elementtype, ["int", "bool"]): rej_elementtypes.append(t.elementtype) rej_type = TypeObject(t.type, 0) rej_type.elementtype = rej_elementtypes rej_ltypes.append(rej_type) elif t.type == "Dict": rej_keytypes = [] if isinstance(t.keytype, list): for it in t.keytype: if not TypeObject.existSame(it, ["int", "bool"]): rej_keytypes.append(it) elif t.keytype not in ["int", "bool"]: rej_keytypes.append(t.keytype) rej_valuetypes = [] rej_type = TypeObject("Dict", 0) rej_type.keytype = rej_keytypes rej_type.valuetype = rej_valuetypes rej_ltypes.append(rej_type) elif not TypeObject.existSame(t, ["int", "bool"]): rej_ltypes.append(t) return [rej_ltypes], outs def unop_str(self, left, right): #rule: can accept any type #out: string(including user-define) rej_ltypes = [] outs = TypeObject("Text", 0) return [rej_ltypes], outs def unop_tuple(self, left, right): #rule: can accept iterable types #out: tuple # not support user-define ltypes = left.types rej_ltypes = [] outs = TypeObject("Tuple", 0) for t in ltypes: if not TypeObject.existSame(t, special_types["@iterable@"]): rej_ltypes.append(t) elif TypeObject.existSame(t, ["Dict"]): if isinstance(t.keytype, list): outs.elementtype += t.elementtype else: outs.elementtype.append(t.elementtype) elif TypeObject.existSame(t, ["Text"]): outs.elementtype.append(TypeObject("Text", 0)) else: if isinstance(t.elementtype, list): outs.elementtype += t.elementtype else: outs.elementtype.append(t.elementtype) return [rej_ltypes], outs def unop_list(self, left, right): #rule: can accept iterable types #out: list # not support user-define ltypes = left.types rej_ltypes = [] outs = TypeObject("List", 0) for t in ltypes: if not TypeObject.existSame(t, special_types["@iterable@"]): rej_ltypes.append(t) elif TypeObject.existSame(t, ["List"]): if isinstance(t.keytype, list): outs.elementtype += t.elementtype else: outs.elementtype.append(t.elementtype) elif TypeObject.existSame(t, ["Text"]): outs.elementtype.append(TypeObject("Text", 0)) else: if isinstance(t.elementtype, list): outs.elementtype += t.elementtype else: outs.elementtype.append(t.elementtype) return [rej_ltypes], outs def unop_set(self, left, right): #rule: can accept iterable types #out: set # not support user-define ltypes = left.types rej_ltypes = [] outs = TypeObject("Set", 0) for t in ltypes: if not TypeObject.existSame(t, special_types["@iterable@"]): rej_ltypes.append(t) elif TypeObject.existSame(t, ["Set"]): if isinstance(t.keytype, list): outs.elementtype += t.elementtype else: outs.elementtype.append(t.elementtype) elif TypeObject.existSame(t, ["Text"]): outs.elementtype.append(TypeObject("Text", 0)) else: if isinstance(t.elementtype, list): outs.elementtype += t.elementtype else: outs.elementtype.append(t.elementtype) return [rej_ltypes], outs def unop_dict(self, left, right): # NOUSE #rule: can accept list, tuple, dict and set #out: tuple # not support user-define ###TODO!!!! ltypes = left.types rej_ltypes = [] rej_rtypes = [] outs = TypeObject("Dict", 0) # 1. dict() -> new empty dictionary if(len(ltypes)==0): outs = TypeObject("Dict", 0) # 2. dict(**kwargs) return [rej_ltypes, rej_rtypes], outs def unop_type(self, left, right): # NOUSE #rule: can accept arbitary type #out: type(including user-define) ltypes = left.types rej_ltypes = [] outs = TypeObject("type", 0) return [rej_ltypes], outs def binop_in(self, left, right): #rule: right must be tuple, dict, list, set and string #out: bool # not support user-define rtypes = right.types rej_ltypes = [] rej_rtypes = [] outs = TypeObject("bool", 0) for t in rtypes: if not TypeObject.existSame(t, special_types["@iterable@"]): rej_rtypes.append(t) return [rej_ltypes, rej_rtypes], outs def unop_forin(self, left, right): #rule: left must be tuple, dict, list, set and string #out: element type of left ltypes = left.types rej_ltypes = [] outs = [] for t in ltypes: if not TypeObject.existSame(t, special_types["@iterable@"]): rej_ltypes.append(t) elif TypeObject.existSame(t, ["Text"]): outs.append(TypeObject("Text", 0)) elif TypeObject.existSame(t, ["Dict"]): if isinstance(t.keytype, list): outs += t.keytype else: outs.append(t.keytype) else: if isinstance(t.elementtype, list): outs += t.elementtype else: outs.append(t.elementtype) return [rej_ltypes], outs def binop_append(self, left, right): #rule: left must be list #out: list ltypes = left.types rtypes = right.types rej_ltypes = [] rej_rtypes = [] outs = TypeObject("List", 0) for t in ltypes: if not TypeObject.existSame(t, ["List"]): rej_ltypes.append(t) else: if isinstance(t.elementtype, list): outs.elementtype += t.elementtype else: outs.elementtype.append(t.elementtype) for t in rtypes: outs.elementtype.append(t) return [rej_ltypes, rej_rtypes], outs def triop_subscript(self,operands, func, attr, usertypes): #rule: target must be dict, list #index must be int (for list, tuple, set) and arbitary (for dict) #value can be arbitary #out: updated target #TODO slices if len(operands)==2: # the first one is target, the second one is not used target = operands[0] index = operands[1] ttypes = target.types itypes = index.types rej_ttypes = [] rej_itypes = [] outs = [] if TypeObject.existType("List", ttypes): for it in itypes: if not TypeObject.existSame(it, ["int", "bool"]): rej_itypes.append(it) for t in ttypes: if not TypeObject.existSame(t, ["Dict", "List"]): rej_ttypes.append(t) elif TypeObject.existSame(t, ["List"]): otype = TypeObject("List", 0) outs.append(otype) elif TypeObject.existSame(t, ["Dict"]): otype = TypeObject("Dict", 0) outs.append(otype) return [rej_ttypes, rej_itypes], outs elif len(operands)>2: target = operands[0] index = operands[1] value = operands[2] ttypes = target.types itypes = index.types vtypes = value.types rej_ttypes = [] rej_itypes = [] rej_vtypes = [] outs = [] if TypeObject.existType("List", ttypes): for it in itypes: if not TypeObject.existSame(it, ["int", "bool"]): rej_itypes.append(it) for t in ttypes: if t.type not in ["Dict", "List"] and t.category != 2: rej_ttypes.append(t) elif TypeObject.existSame(t, ["List"]): otype = TypeObject("List", 0) if isinstance(t.elementtype, list): otype.elementtype += t.elementtype else: otype.elementtype.append(t.elementtype) for vt in vtypes: if not TypeObject.existSame(vt, otype.elementtype): otype.elementtype.append(vt) outs.append(otype) elif TypeObject.existSame(t, ["Dict"]): otype = TypeObject("Dict", 0) if isinstance(t.keytype, list): otype.keytype += t.keytype else: otype.keytype.append(t.keytype) if isinstance(t.valuetype, list): otype.valuetype += t.valuetype else: otype.valuetype.append(t.valuetype) for it in itypes: if not TypeObject.existSame(it, otype.keytype): otype.keytype.append(it) for vt in vtypes: if not TypeObject.existSame(vt, otype.valuetype): otype.valuetype.append(vt) outs.append(otype) elif t.category == 2: outs.append(t) rej = [rej_ttypes, rej_itypes, rej_vtypes] for i in range(3,len(operands)): rej.append([]) return rej, outs def binop_subscript(self, operands, func, attr, usertypes): #rule: target must be dict, list, tuple, text and bytes #index must be int (for list, tuple) and arbitary (for dict) #out: elementtype if len(operands)==1: target = operands[0] # if just the target, we won't check the rest 2 target = operands[0] ttypes = target.types rej_ttypes = [] outs = [] for t in ttypes: if not TypeObject.existSame(t, special_types["@subscriptable@"]): rej_ttypes.append(t) elif TypeObject.existSame(t, ["Text", "bytes", "bytearray"]): outs.append(t) elif TypeObject.existSame(t, ["Dict"]): if isinstance(t.valuetype, list): outs += t.valuetype else: outs.append(t.valuetype) else: if isinstance(t.elementtype, list): outs += t.elementtype else: outs.append(t.elementtype) # we simplify this one outs = TypeObject.removeRedundantTypes(outs) return [rej_ttypes], outs elif len(operands)==2: target = operands[0] index = operands[1] ttypes = target.types itypes = index.types rej_ttypes = [] rej_itypes = [] outs = [] # if target is dict, just add [] to rej. if TypeObject.existType("Dict", ttypes): rej_itypes = [] elif TypeObject.existType("List", ttypes) or TypeObject.existType("Tuple", ttypes) or TypeObject.existType( "Text", ttypes): # to check the rest 1 or 2 for it in itypes: if not TypeObject.existSame(it, ["int", "bool"]): rej_itypes.append(it) for t in ttypes: if not TypeObject.existSame(t, special_types["@subscriptable@"]): rej_ttypes.append(t) elif TypeObject.existSame(t, ["Text", "bytes", "bytearray"]): outs.append(t) elif TypeObject.existSame(t, ["Dict"]): if isinstance(t.valuetype, list): outs += t.valuetype else: outs.append(t.valuetype) else: if isinstance(t.elementtype, list): outs += t.elementtype else: outs.append(t.elementtype) outs = TypeObject.removeRedundantTypes(outs) return [rej_ttypes, rej_itypes], outs elif len(operands)==3: target = operands[0] index = operands[1] index2 = operands[2] ttypes = target.types itypes = index.types itypes2 = index2.types rej_ttypes = [] rej_itypes = [] rej_itypes2 = [] outs = [] # if target is dict, just add [] to rej. if TypeObject.existType("Dict", ttypes): rej_itypes = [] rej_itypes2 = [] elif TypeObject.existType("List", ttypes) or TypeObject.existType("Tuple", ttypes) or TypeObject.existType( "Text", ttypes): # to check the rest 1 or 2 for it in itypes: if not TypeObject.existSame(it, ["int", "bool"]): rej_itypes.append(it) for it in itypes2: if not TypeObject.existSame(it, ["int", "bool"]): rej_itypes2.append(it) for t in ttypes: if not TypeObject.existSame(t, special_types["@subscriptable@"]): rej_ttypes.append(t) elif TypeObject.existSame(t, ["Text", "bytes", "bytearray"]): outs.append(t) elif TypeObject.existSame(t, ["Dict"]): if isinstance(t.valuetype, list): outs += t.valuetype else: outs.append(t.valuetype) else: if isinstance(t.elementtype, list): outs += t.elementtype else: outs.append(t.elementtype) outs = TypeObject.removeRedundantTypes(outs) return [rej_ttypes, rej_itypes,rej_itypes2], outs elif len(operands)==4: target = operands[0] index = operands[1] index2 = operands[2] index3 = operands[3] ttypes = target.types itypes = index.types itypes2 = index2.types itypes3 = index3.types rej_ttypes = [] rej_itypes = [] rej_itypes2 = [] rej_itypes3 = [] outs = [] # if target is dict, just add [] to rej. if TypeObject.existType("Dict", ttypes): rej_itypes = [] rej_itypes2 = [] rej_itypes3 = [] elif TypeObject.existType("List", ttypes) or TypeObject.existType("Tuple", ttypes) or TypeObject.existType( "Text", ttypes): # to check the rest 1 or 2 for it in itypes: if not TypeObject.existSame(it, ["int", "bool"]): rej_itypes.append(it) for it in itypes2: if not TypeObject.existSame(it, ["int", "bool"]): rej_itypes2.append(it) for it in itypes3: if not TypeObject.existSame(it, ["int", "bool"]): rej_itypes3.append(it) for t in ttypes: if not TypeObject.existSame(t, special_types["@subscriptable@"]): rej_ttypes.append(t) elif TypeObject.existSame(t, ["Text"]): outs.append(TypeObject("Text", 0)) elif TypeObject.existSame(t, ["Dict"]): if isinstance(t.valuetype, list): outs += t.valuetype else: outs.append(t.valuetype) else: if isinstance(t.elementtype, list): outs += t.elementtype else: outs.append(t.elementtype) outs = TypeObject.removeRedundantTypes(outs) return [rej_ttypes, rej_itypes,rej_itypes2,rej_itypes3], outs def unop_assign(self, left, right): if left!= None: ltypes = left.types rej_ltypes = [] return [rej_ltypes], ltypes else: logger.error("Cannot find the right value in assignment. This happens because you use a feature that is not supported by HiTyper.") raise ValueError("Cannot find the right value in assignment. This happens because you use a feature that is not supported by HiTyper.") def call(self, operands, func, attr, usertypes, curnode): #==================================================================== # case 1: Class instance and user-defined types #==================================================================== if attr==None and func in usertypes: rej_types = [] for i in range(0, len(operands)): rej_types.append([]) typeobject = TypeObject(func, 2) return rej_types, [typeobject] else: if func in usertypes: rej_types = [] for i in range(0, len(operands)): rej_types.append([]) typeobject = TypeObject(func, 2) return rej_types, [typeobject] #==================================================================== # case 2: built-in function #==================================================================== #==================================================================== # case 2.1: regular function #==================================================================== if func not in builtin_method_properties["self-changable"]["overall"] and func not in builtin_method_properties["special-return"]["overall"]: #member functions if attr != None: target = operands[0] rej_types = [] rej_target_types = [] rej_arg_types = [] outs = [] accpetable_targettypes = [] returntypes = [] for i in range(1, len(operands)): rej_arg_types.append([]) for k in builtin_method: if func in builtin_method[k]: accpetable_targettypes.append(k) for t in target.types: if TypeObject.existSame(t, accpetable_targettypes): rule = builtin_method[TypeObject.findSame(t, accpetable_targettypes)][func] if len(rule) == 2: if len(rule[0]) == 0: for o in operands: rej_types.append([]) if "@" not in rule[1]: returntypes = TypeObject.Str2Obj(rule[1]) else: logger.warning("Unhandled return value for built-in function {}".format(func)) elif len(rule[0]) < len(operands) - 1: rej_target_types.append(t) continue else: for index in range(1, len(operands)): if rule[0][index - 1][1] == "Any" or isinstance(rule[0][index - 1], list): rej_types.append([]) continue elif rule[0][index - 1][1].startswith("@") and rule[0][index - 1][1] in special_types: validtypes = [] for i in special_types[rule[0][index - 1][1]]: validtypes += TypeObject.Str2Obj(i) elif rule[0][index - 1][1] == "@elementtype@": validtypes = t.elementtype elif rule[0][index - 1][1] == "@keytype@": validtypes = t.keytype elif rule[0][index - 1][1] == "@valuetype@": validtypes = t.valuetype else: validtypes = TypeObject.Str2Obj(rule[0][index - 1][1]) for ot in operands[index].types: if not TypeObject.existType(ot, validtypes): rej_arg_types[index - 1].append(ot) if "@" not in rule[1]: returntypes = TypeObject.Str2Obj(rule[1]) else: logger.warning("Unhandled return value for built-in function {}".format(func)) elif len(rule) > 2: found = False for r in rule: if isinstance(r, list) and len(r) == len(operands) - 1: found = True for index in range(1, len(operands)): if r[index - 1][1] == "Any" or isinstance(r[index - 1], list): rej_types.append([]) continue elif r[index - 1][1].startswith("@") and r[index - 1][1] in special_types: validtypes = [] for i in special_types[r[index - 1][1]]: validtypes += TypeObject.Str2Obj(i) elif r[index - 1][1] == "@elementtype@": validtypes = t.elementtype elif r[index - 1][1] == "@keytype@": validtypes = t.keytype elif r[index - 1][1] == "@valuetype@": validtypes = t.valuetype else: validtypes = TypeObject.Str2Obj(r[index - 1][1]) rej_optypes = [] for ot in operands[index].types: if not TypeObject.existType(ot, validtypes): rej_arg_types[index - 1].append(ot) if "@" not in rule[-1]: returntypes = TypeObject.Str2Obj(rule[-1]) else: logger.warning("Unhandled return value for built-in function {}".format(func)) if found == False: for r in rule: if isinstance(r, list) and len(r) > len(operands) - 1: found = True for index in range(1, len(operands)): if r[index - 1][1] == "Any" or isinstance(r[index - 1], list): rej_types.append([]) continue elif r[index - 1][1].startswith("@") and r[index - 1][1] in special_types: validtypes = [] for i in special_types[r[index - 1][1]]: validtypes += TypeObject.Str2Obj(i) elif r[index - 1][1] == "@elementtype@": validtypes = t.elementtype elif r[index - 1][1] == "@keytype@": validtypes = t.keytype elif r[index - 1][1] == "@valuetype@": validtypes = t.valuetype else: validtypes = TypeObject.Str2Obj(r[index - 1][1]) rej_optypes = [] for ot in operands[index].types: if not TypeObject.existType(ot, validtypes): rej_arg_types[index - 1].append(ot) if "@" not in rule[-1]: returntypes = TypeObject.Str2Obj(rule[-1]) else: logger.warning("Unhandled return value for built-in function {}".format(func)) else: rej_target_types.append(t) rej_types = [rej_target_types] + rej_arg_types outs = returntypes return rej_types, outs #standalone functions else: if func in builtin_method["standalone"]: rej_types = [] outs = [] rule = builtin_method["standalone"][func] for i in range(0, len(operands)): rej_types.append([]) if len(rule) == 2: if len(rule[0]) < len(operands): rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs for i in range(0, len(operands)): if len(rule[0]) == 0 or rule[0][i][1] == "Any" or isinstance(rule[0][i], list): rej_types.append([]) continue elif rule[0][i][1].startswith("@") and rule[0][i][1] in special_types: validtypes = [] for t in special_types[rule[0][i][1]]: validtypes += TypeObject.Str2Obj(t) else: validtypes = TypeObject.Str2Obj(rule[0][i][1]) for ot in operands[i].types: if not TypeObject.existType(ot, validtypes): rej_types[i].append(ot) if "@" not in rule[-1]: returntypes = TypeObject.Str2Obj(rule[-1]) else: logger.warning("Unhandled return value for built-in function {}".format(func)) elif len(rule) > 2: found = False for r in rule: if isinstance(r, list) and len(r) == len(operands): found = True for i in range(0, len(operands)): if r[i][1] == "Any" or isinstance(r[i], list): rej_types.append([]) continue elif r[i][1].startswith("@") and r[i][1] in special_types: validtypes = [] for t in special_types[r[i][1]]: validtypes += TypeObject.Str2Obj(t) else: validtypes = TypeObject.Str2Obj(r[i][1]) for ot in operands[i].types: if not TypeObject.existType(ot, validtypes): rej_types[i].append(ot) if "@" not in rule[-1]: returntypes = TypeObject.Str2Obj(rule[-1]) else: logger.warning("Unhandled return value for built-in function {}".format(func)) if found == False: for r in rule: if isinstance(r, list) and len(r) > len(operands) - 1: found = True for i in range(0, len(operands)): if r[i][1] == "Any" or isinstance(r[i], list): rej_types.append([]) continue elif r[i][1].startswith("@") and r[i][1] in special_types: validtypes = [] for t in special_types[r[i][1]]: validtypes += TypeObject.Str2Obj(t) else: validtypes = TypeObject.Str2Obj(r[i][1]) for ot in operands[i].types: if not TypeObject.existType(ot, validtypes): rej_types[i].append(ot) if "@" not in rule[-1]: returntypes = TypeObject.Str2Obj(rule[-1]) else: logger.warning("Unhandled return value for built-in function {}".format(func)) outs = returntypes return rej_types, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs #==================================================================== # case 2.2: self-changable function #==================================================================== #list.append() elif func == "append": if attr!=None: failed = False rej_types = [] target = operands[0] rej_target_types = [] temp = TypeObject("List", 0) outs = [] for t in target.types: if not TypeObject.existSame(t, ["List"]): rej_target_types.append(t) elif TypeObject.existSame(t, ["List"]): for types_t in t.elementtype: temp.elementtype.append(types_t) if len(rej_target_types) == len(target.types): outs += target.types failed = True rej_types.append(rej_target_types) rej_target_types = [] for i in range(1, len(operands)): for t in operands[i].types: if not TypeObject.existType(t, temp.elementtype): temp.elementtype.append(t) rej_types.append(rej_target_types) if failed == False: outs.append(temp) return rej_types, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs #list,set,dict.clear() elif func=="clear": if attr!=None: # mention that it will remove all the existing types!!!!! #TODO how to deal with this situation? rej_types = [] target = operands[0] rej_target_types = [] outs = [] for t in target.types: if not TypeObject.existSame(t, ["List","Dict","set"]): rej_target_types.append(t) else: temp = TypeObject(t.type, 0) outs.append(temp) rej_types.append(rej_target_types) for i in range(1, len(operands)): rej_types.append([]) return rej_types, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs #list.extend() elif func == "extend": # only 2 operands if attr!=None: rej_types = [] target = operands[0] rej_target_types = [] temp = TypeObject("List", 0) outs = [] for t in target.types: if not TypeObject.existSame(t, ["List"]): rej_target_types.append(t) elif TypeObject.existSame(t, ["List"]): for types_t in t.elementtype: temp.elementtype.append(types_t) rej_types.append(rej_target_types) rej_target_types = [] for i in range(1, len(operands)): for t in operands[i].types: if not TypeObject.existSame(t, ["List"]): rej_target_types.append(t) for types_t in t.elementtype: if not TypeObject.existType(types_t, temp.elementtype): temp.elementtype.append(types_t) rej_types.append(rej_target_types) outs.append(temp) return rej_types, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs #list.insert() elif func == "insert": # 3 nodes here 1.list/2.int/3. obj if attr != None: rej_types = [] target = operands[0] rej_target_types = [] temp = TypeObject("List", 0) outs = [] for t in target.types: if not TypeObject.existSame(t, ["List"]): rej_target_types.append(t) elif TypeObject.existSame(t, ["List"]): for types_t in t.elementtype: temp.elementtype.append(types_t) rej_types.append(rej_target_types) # second one is int if len(operands) > 1: rej_target_types = [] sub_temp = operands[1] for t in sub_temp.types: if not TypeObject.existSame(t, ["int","bool"]): rej_target_types.append(t) rej_types.append(rej_target_types) rej_target_types = [] for i in range(1, len(operands)): for t in operands[i].types: if not TypeObject.existType(t, temp.elementtype): temp.elementtype.append(t) rej_types.append(rej_target_types) outs.append(temp) return rej_types, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs #list,set.dict.pop() elif func == "pop": #list1.pop(1) or just pop() # pop(key[,default]) if attr!=None: rej_types = [] target = operands[0] rej_target_types = [] outs = [] for t in target.types: if not TypeObject.existSame(t, ["List","Dict", "Set"]): rej_target_types.append(t) else: # here we don't change the possible types in it because it's hard to say outs.append(t) rej_types.append(rej_target_types) # the second one has to be int(for list),if there is for i in range(1, len(operands)): rej_types.append([]) return rej_types, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs #list,set.remove() elif func=="remove" or func=="discard": if attr!=None: #set.discard(value) #aList.remove('xyz'); rej_types = [] target = operands[0] rej_target_types = [] outs = [] temp = None for t in target.types: if not TypeObject.existSame(t, ["List", "Set"]): rej_target_types.append(t) else: # here we don't change the possible types in it because it's hard to say temp =deepcopy(t) outs.append(temp) rej_types.append(rej_target_types) # the second one has to be int(for list),if there is for i in range(1, len(operands)): rej_types.append([]) if temp!= None: outs.append(temp) else: outs= [] return rej_types, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func=="update": if attr!=None: # dict.update(dict2) # it is also possible that it's a user-defined function if len(operands)>0: rej_types = [] target = operands[0] rej_target_types = [] outs = [] temp = TypeObject("Dict",0) for t in target.types: if not TypeObject.existSame(t, ["Dict"]): rej_target_types.append(t) else: temp = deepcopy(t) rej_types.append(rej_target_types) # the second one has to be int(for list),if there is if len(operands) > 1: target = operands[1] rej_target_types = [] for t in target.types: if not TypeObject.existSame(t, ["Dict"]): rej_target_types.append(t) else: temp.keytype += t.keytype temp.valuetype += t.valuetype temp.elementtype = temp.keytype rej_types.append(rej_target_types) if len(operands)>2: for i in range(2, len(operands)): rej_types.append([]) if temp!= None: outs.append(temp) else: outs = [] return rej_types, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func=="intersection" or func=="intersection_update" or func== "union": #set.intersection(set1, set2 ... etc) #set.union(set1, set2...) if attr != None: rej_types = [] target = operands[0] rej_target_types = [] temp = None outs = [] for t in target.types: if not TypeObject.existSame(t, ["Set"]): rej_target_types.append(t) elif TypeObject.existSame(t, ["Set"]): temp = deepcopy(t) rej_types.append(rej_target_types) if func!="union": # TODO! maybe we can infer a more specific one? but too consuming now. if len(operands) > 1: for i in range(1, len(operands)): target = operands[i] rej_target_types = [] for t in target.types: if not TypeObject.existSame(t, ["Set"]): rej_target_types.append(t) rej_types.append(rej_target_types) if temp != None: outs.append(temp) else: outs = [] return rej_types, outs else: if len(operands) > 1: for i in range(1, len(operands)): target = operands[i] rej_target_types = [] for t in target.types: if not TypeObject.existSame(t, ["Set"]): rej_target_types.append(t) else: for eletype in t.elementtype: if not TypeObject.existType(eletype.type, temp.elementtype): temp.elementtype.append(eletype) rej_types.append(rej_target_types) if temp != None: outs.append(temp) else: outs = [] return rej_types, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func=="difference" or func=="difference_update": # z = x.difference(y) # it equals to x-y if attr != None: rej_types = [] target = operands[0] rej_target_types = [] temp = None outs = [] for t in target.types: if not TypeObject.existSame(t, ["Set"]): rej_target_types.append(t) elif TypeObject.existSame(t, ["Set"]): temp = deepcopy(t) rej_types.append(rej_target_types) target = operands[1] rej_target_types = [] for t in target.types: if not TypeObject.existSame(t, ["Set"]): rej_target_types.append(t) rej_types.append(rej_target_types) if len(operands)>2: for i in range(2,len(operands)): rej_types.append([]) if temp!= None: outs.append(temp) else: outs= [] return rej_types, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func=="add": #fruits.add("orange") if attr != None: rej_types = [] target = operands[0] rej_target_types = [] temp = None outs = [] for t in target.types: if not TypeObject.existSame(t, ["Set"]): rej_target_types.append(t) elif TypeObject.existSame(t, ["Set"]): temp = deepcopy(t) rej_types.append(rej_target_types) for i in range(1, len(operands)): rej_types.append([]) target = operands[i] # add the possible types in it for intypes in target.types: if temp!=None: if not TypeObject.existType(intypes,temp.elementtype): temp.elementtype.append(intypes) if temp!= None: outs.append(temp) else: outs= [] return rej_types, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func=="symmetric_difference" or func=="symmetric_difference_update": # set.symmetric_difference(set) if attr != None: rej_types = [] target = operands[0] rej_target_types = [] temp = None outs = [] for t in target.types: if not TypeObject.existSame(t, ["Set"]): rej_target_types.append(t) elif TypeObject.existSame(t, ["Set"]): temp = deepcopy(t) rej_types.append(rej_target_types) target = operands[1] rej_target_types = [] for t in target.types: if not TypeObject.existSame(t, ["Set"]): rej_target_types.append(t) else: for eletype in t.elementtype: if not TypeObject.existType(eletype.type,temp.elementtype): temp.elementtype.append(eletype) rej_types.append(rej_target_types) if len(operands) > 2: for i in range(2, len(operands)): rej_types.append([]) if temp != None: outs.append(temp) else: outs = [] return rej_types, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func=="popitem": # dict.popitem() if attr!=None: rej_types = [] target = operands[0] rej_target_types = [] outs = [] temp = TypeObject("Tuple",0) for t in target.types: if not TypeObject.existSame(t, ["Dict"]): rej_target_types.append(t) else: temp.elementtype += t.keytype temp.elementtype += t.valuetype rej_types.append(rej_target_types) # the second one has to be int(for list),if there is for i in range(1, len(operands)): rej_types.append([]) outs.append(temp) return rej_types, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func=="setdefault": # setdefault is similiar as get, but slitely different # a.setdefault('Sex', "Never") if attr!=None: rej_types = [] target = operands[0] rej_target_types = [] outs = [] for t in target.types: if not TypeObject.existSame(t, ["Dict"]): rej_target_types.append(t) else: for item in t.valuetype: if item!=None: outs.append(item) rej_types.append(rej_target_types) # the second one has to be int(for list),if there is if len(operands)==2: rej_types.append([]) elif len(operands)==3: rej_types.append([]) rej_types.append([]) for itypes in operands[2].types: if not TypeObject.existSame(itypes,outs): outs.append(itypes) else: for i in range(1, len(operands)): rej_types.append([]) return rej_types, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs #==================================================================== # case 2.3: special-return function #==================================================================== elif func=="copy": if attr!=None: rej_types = [] target = operands[0] rej_target_types = [] outs = [] for t in target.types: if not TypeObject.existSame(t, ["List", "Dict", "Set"]): rej_target_types.append(t) elif TypeObject.existSame(t, ["List", "Dict", "Set"]): outs.append(t) rej_types.append(rej_target_types) for i in range(1, len(operands)): rej_types.append([]) return rej_types, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func == "items": if attr != None: rej_types = [] target = operands[0] rej_target_types = [] outs = [] for t in target.types: if not TypeObject.existSame(t, ["Dict"]): rej_target_types.append(t) else: temp = TypeObject("set", 0) innerlist = TypeObject("List", 0) for k in t.keytype: for v in t.valuetype: innertuple = TypeObject("Tuple", 0) innertuple.elementtype.append(k) innertuple.elementtype.append(v) innerlist.elementtype.append(innertuple) temp.elementtype.append(innerlist) outs.append(temp) rej_types.append(rej_target_types) for i in range(1, len(operands)): rej_types.append([]) return rej_types, outs elif func == "keys": if attr != None: rej_types = [] target = operands[0] rej_target_types = [] outs = [] for t in target.types: if not TypeObject.existSame(t, ["Dict"]): rej_target_types.append(t) else: temp = TypeObject("set", 0) innerlist = TypeObject("List", 0) for k in t.keytype: innerlist.elementtype.append(k) temp.elementtype.append(innerlist) outs.append(temp) rej_types.append(rej_target_types) for i in range(1, len(operands)): rej_types.append([]) return rej_types, outs elif func == "values": if attr != None: rej_types = [] target = operands[0] rej_target_types = [] outs = [] for t in target.types: if not TypeObject.existSame(t, ["Dict"]): rej_target_types.append(t) else: temp = TypeObject("set", 0) innerlist = TypeObject("List", 0) for k in t.valuetype: innerlist.elementtype.append(k) temp.elementtype.append(innerlist) outs.append(temp) rej_types.append(rej_target_types) for i in range(1, len(operands)): rej_types.append([]) return rej_types, outs elif func == "abs": # as for NOTAttribute function, we have to make sure self.attr==None if attr == None: ltypes = operands[0].types rej_target_types = [] rej_ltypes = [] outs = [] for t in ltypes: if not TypeObject.existSame(t, special_types["@number@"]): rej_target_types.append(t) elif not TypeObject.existSame(t, outs): if t !=None: outs.append(t) rej_ltypes.append(rej_target_types) for i in range(1, len(operands)): rej_ltypes.append([]) return rej_ltypes, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func == "divmod": # as for NOTAttribute function, we have to make sure self.attr==None if attr == None: left = operands[0] right = operands[1] ltypes = left.types rtypes = right.types basic_type = TypeObject("int", 0) llevel = rlevel = 1 for lt in ltypes: if TypeObject.isCompatible(lt, basic_type): llevel = max(llevel, special_types["@number@"].index(lt.type)) for rt in rtypes: if TypeObject.isCompatible(rt, basic_type): rlevel = max(rlevel, special_types["@number@"].index(rt.type)) if llevel < 2 and rlevel < 2: [rej_ltypes, rej_rtypes], outs = self.binop_num_op(left, right, "%") else: [rej_ltypes, rej_rtypes], outs = self.binop_num_op(left, right, "/") finalouts = TypeObject("Tuple", 0) finalouts.buildTuple(outs) return [rej_ltypes, rej_rtypes], finalouts else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func == "enumerate": if len(operands) <= 2 and len(operands) >= 1: rej_types = [] outs = [] elementtype = [] for i in operands: rej_types.append([]) for t in operands[0].types: if not TypeObject.existSame(t, special_types["@iterable@"]): rej_types[0].append(t) elif TypeObject.existSame(t, ["Dict"]): elementtype += t.keytype elif TypeObject.existSame(t, ["Text", "bytes", "bytearray"]): elementtype.append(t) else: elementtype += t.elementtype if len(operands) == 2: for t in operands[1].types: if not TypeObject.existSame(t, ["bool", "int"]): rej_types[1].append(t) temp = TypeObject("Generator", 0) for e in elementtype: innertuple = TypeObject("Tuple", 0) innertuple.elementtype = [TypeObject("int", 0), e] temp.elementtype.append(innertuple) outs.append(temp) return rej_types, outs else: rej_types = [] outs = [] for i in range(0, len(operands)): rej_types.append([]) return rej_types, outs elif func == "round": if attr == None: # if one ,return int if len(operands)==1: ltypes = operands[0].types rej_target_types = [] rej_ltypes = [] temp = TypeObject("int", 0) outs = [] for t in ltypes: if not TypeObject.existSame(t, special_types["@number@"]): rej_target_types.append(t) rej_ltypes.append(rej_target_types) for i in range(1, len(operands)): rej_ltypes.append([]) outs.append(temp) return rej_ltypes, outs # if two ,return float (in this function naming is a problem, maybe fixed later :) ) elif len((operands))==2: ltypes = operands[0].types rtypes = operands[1].types rej_target_types = rej_rtarget_types=[] rej_ltypes = [] temp = TypeObject("float", 0) outs = [] for t in ltypes: if not TypeObject.existSame(t, special_types["@number@"]): rej_target_types.append(t) rej_ltypes.append(rej_target_types) for t in rtypes: if not TypeObject.existSame(t, ["bool", "int"]): rej_rtarget_types.append(t) rej_ltypes.append(rej_rtarget_types) outs.append(temp) return rej_ltypes, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func == "sorted": # the first has to be iterable # list debug ok , dict not debugging if attr == None: first = operands[0].types rej_target_types = [] rej_ltypes = [] temp = TypeObject("List", 0) outs = [] for t in first: if not TypeObject.existSame(t, special_types["@iterable@"]): rej_target_types.append(t) elif TypeObject.existSame(t, ["Dict"]): temp.elementtype += t.keytype elif TypeObject.existSame(t, ["Text", "bytes", "bytearray"]): temp.elementtype.append(t) else: if isinstance(t.elementtype, list): temp.elementtype += t.elementtype else: temp.elementtype.append(t.elementtype) rej_ltypes.append(rej_target_types) for i in range(1, len(operands)): rej_ltypes.append([]) outs.append(temp) return rej_ltypes, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func == "sum": if attr == None: # the first has to be iterable first = operands[0].types rej_target_types = [] rej_ltypes = [] isinitial = True outs = [] simplelevel_up = 0 for t in first: if not TypeObject.existSame(t, special_types["@iterable@"]): rej_target_types.append(t) for elet in t.elementtype: if isinitial: isinitial = False if TypeObject.existSame(elet, special_types["@number@"]): simplelevel_up = special_types["@number@"].index(elet.type) else: simplelevel_up = 0 else: if TypeObject.existSame(elet, special_types["@number@"]): simplelevel_up = max(special_types["@number@"].index(elet.type), simplelevel_up) else: simplelevel_up = max(1,simplelevel_up) temp = TypeObject(special_types["@number@"][simplelevel_up], 0) rej_ltypes.append(rej_target_types) for i in range(1, len(operands)): rej_ltypes.append([]) outs.append(temp) return rej_ltypes, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func == "tuple": # as for NOTAttribute function, we have to make sure self.attr==None if attr == None: if len(operands)==0: rej_ltypes = [] outs = TypeObject("Tuple", 0) return [], [outs] else: ltypes = operands[0].types rej_ltypes = [] outs = TypeObject("Tuple", 0) for t in ltypes: if not TypeObject.existSame(t, special_types["@iterable@"]): rej_ltypes.append(t) elif TypeObject.existSame(t, ["Dict"]): outs.elementtype = t.keytype elif TypeObject.existSame(t, ["Text", "bytes", "bytearray"]): outs.elementtype.append(t) else: outs.elementtype = t.elementtype return [rej_ltypes], outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func == "list": # as for NOTAttribute function, we have to make sure self.attr==None if attr == None: if len(operands)==0: rej_ltypes = [] outs = TypeObject("List", 0) return [], [outs] elif len(operands) == 1: ltypes = operands[0].types rej_ltypes = [] outs = TypeObject("List", 0) for t in ltypes: if not TypeObject.existSame(t, special_types["@iterable@"]): rej_ltypes.append(t) elif TypeObject.existSame(t, ["Dict"]): outs.elementtype = t.keytype elif TypeObject.existSame(t, ["Text", "bytes", "bytearray"]): outs.elementtype.append(t) else: outs.elementtype = t.elementtype return [rej_ltypes], outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func=="set": # as for NOTAttribute function, we have to make sure self.attr==None rej_ltypes = [] if attr == None: if len(operands)==0: outs = TypeObject("Set", 0) return [], [outs] elif len(operands)==1: ltypes = operands[0].types outs = TypeObject("Set", 0) for t in ltypes: if not TypeObject.existSame(t, special_types["@iterable@"]): rej_ltypes.append(t) elif TypeObject.existSame(t, ["Dict"]): outs.elementtype = t.keytype elif TypeObject.existSame(t, ["Text", "bytes", "bytearray"]): outs.elementtype.append(t) else: outs.elementtype = t.elementtype return [rej_ltypes], [outs] else: for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs else: for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func=="frozenset": # as for NOTAttribute function, we have to make sure self.attr==None rej_ltypes = [] if attr == None: if len(operands)==0: outs = TypeObject("frozenset", 0) return [], [outs] else: ltypes = operands[0].types outs = TypeObject("Set", 0) for t in ltypes: if not TypeObject.existSame(t, special_types["@iterable@"]): rej_ltypes.append(t) elif TypeObject.existSame(t, ["Dict"]): outs.elementtype = t.keytype elif TypeObject.existSame(t, ["Text", "bytes", "bytearray"]): outs.elementtype.append(t) else: outs.elementtype = t.elementtype return [rej_ltypes], [outs] else: for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func == "type": # as for NOTAttribute function, we have to make sure self.attr==None if attr == None: if len(operands) == 1: rej_types = [[]] outs = [] temp =TypeObject("type", 0) temp.elementtype = operands[0].types outs.append(temp) return rej_types, outs elif len(operands) == 3: rej_types = [[], [], []] outs = [] for t in operands[0].types: if not TypeObject.existSame(t, ["str"]): rej_types[0].append(t) for t in operands[1].types: if not TypeObject.existSame(t, ["tuple"]): rej_types[1].append(t) for t in operands[2].types: if not TypeObject.existSame(t, ["dict"]): rej_types[2].append(t) temp = TypeObject("type", 0) outs.append(temp) return rej_types, outs else: rej_types = [] outs = [] for i in range(0, len(operands)): rej_types.append([]) return rej_types, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func == "next": if attr == None: if len(operands) == 1: rej_types = [] outs = [] elementtype = [] for i in range(0, len(operands)): rej_types.append([]) for t in operands[0].types: if not TypeObject.existSame(t, ["Generator"]): rej_types[0].append(t) else: elementtype = t.elementtype outs += elementtype return rej_types, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func == "max" or func=="min": # the input can be iterable or some argument # if only one iterable e.g b = max([1,2,4]) / b = max({'a':1,'b':2}) if attr==None: ltypes = operands[0].types rej_target_types = [] rej_ltypes = [] outs = [] if len(operands)==1: temp = [] for t in ltypes: if not TypeObject.existSame(t, special_types["@iterable@"]): rej_target_types.append(t) elif TypeObject.existSame(t, ["Dict"]): if isinstance(t.keytype, list): outs += t.keytype else: outs.append(t.keytype) elif TypeObject.existSame(t, ["Text", "bytes", "bytearray"]): outs.append(t) else: if t.elementtype!=[]: if t.elementtype[0]!= None: outs.append(t.elementtype[0]) # for list/dict is also okay as it returns keytype rej_ltypes.append(rej_target_types) for i in range(1, len(operands)): rej_ltypes.append([]) # outs.append(temp) return rej_ltypes, outs # with many arguments e.g b = max(1,2,3.1) b = max([1,2],[0,4]) else: ifsimple = False first = operands[0] simplelevel_up =simplelevel_down = 0 isinitial = True for indexop in operands: for ftypes in indexop.types: if not TypeObject.existSame(ftypes, special_types["@iterable@"]): ifsimple = True if isinitial: isinitial = False if TypeObject.existSame(ftypes, special_types["@number@"]): simplelevel_up = simplelevel_down = special_types["@number@"].index(ftypes.type) else: simplelevel_up = simplelevel_down = 1 else: if TypeObject.existSame(ftypes, special_types["@number@"]): simplelevel_up = max(special_types["@number@"].index(ftypes.type),simplelevel_up) simplelevel_down = min(special_types["@number@"].index(ftypes.type), simplelevel_down) else: simplelevel_up = max(1,simplelevel_up) simplelevel_down = max(1,simplelevel_down) # if it's like b = max([1,2],[0,4]) elif TypeObject.existSame(ftypes, ["Dict"]): outs += ftypes.keytype for i in range(0, len(operands)): rej_ltypes.append([]) return rej_ltypes, outs else: if len(outs)==0: outs.append(ftypes) elif not TypeObject.existSame(ftypes,outs): outs.append(ftypes) # add all the possible types if ifsimple: for i in range(simplelevel_down,simplelevel_up+1): temp = TypeObject(special_types["@number@"][i],"0") outs.append(temp) for i in range(0, len(operands)): rej_ltypes.append([]) return rej_ltypes, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs elif func == "get": if attr!=None: # a.get('Sex', "Never") rej_types = [] target = operands[0] rej_target_types = [] outs = [] for t in target.types: if not TypeObject.existSame(t, ["Dict"]): rej_target_types.append(t) else: for item in t.valuetype: if item!=None: outs.append(item) rej_types.append(rej_target_types) # the second one has to be int(for list),if there is for i in range(1, len(operands)): rej_types.append([]) return rej_types, outs else: rej_ltypes = [] for i in range(0, len(operands)): rej_ltypes.append([]) outs = [] return rej_ltypes, outs #==================================================================== # case 3: inter-procedural Analysis #==================================================================== elif curnode.tg != None and curnode.tg.globaltg != None: rej_types = [] for i in range(0, len(operands)): rej_types.append([]) outs = [] for t in curnode.tg.globaltg.tgs: if t.classname == curnode.tg.classname and t.name == func and func != curnode.tg.name: returntype = t.getReturnType() if len(returntype) == 0: return rej_types, outs else: outs += returntype return rej_types, outs return rej_types, outs #==================================================================== # case 4: unrecognized functions #==================================================================== else: rej_types = [] for i in range(0, len(operands)): rej_types.append([]) outs = [] return rej_types, outs def List_Read(self, operands): # here we do not consider about userdefine first. e.g list1 = [1,'2',user-define instance] # mention that the depth here is 2 e.g List = [1,1,'2',[1,2,3,4],[1,2,'hello']] then the result out will # only be Typeobject(list) with elementtype [int, int, text, list, list] # we would not merge two same types together because it could help in the List_write inference e.g a= [1,2,'3'] [x,y,z] = a outs = [] temp = TypeObject("List",0) for i in range(len(operands)): # add the type not exists in the elementtype if isinstance(operands[i].types, list): temp.elementtype += operands[i].types else: temp.elementtype.append(operands[i].types) outs.append(temp) rej_types = [] for i in range(0, len(operands)): rej_types.append([]) return rej_types,outs def List_Write(self,operands): # input: operands output:[[]], [outs_types] # in this func, we first find the possible types from the input, then we add all the possible types into them # e.g. c= [1,'2',3] [a,a1,a2]= c # due to the reason that type pass after this node spreads, we will infer that out = [int,text] rej_types = [] outs = [] inputtypes = [] if len(operands) != 1: logger.error("The length of input nodes for ListWrite should be 1, we get {} here.".format(len(operands))) raise ValueError("The length of input nodes for ListWrite should be 1") ''' elif len(operands[0].outs) != 1: logger.error("The operand's out length should be 1, we get {} here.".format(len(operands[0].outs))) raise ValueError("The operand's out length should be 1") ''' for insnode in operands[0].ins: if isinstance(insnode, hityper.tdg.SymbolNode): if isinstance(insnode.types, list): # here we add all the elementtype rather than types for eacheletype in insnode.types: if not isinstance(eacheletype.elementtype, list): inputtypes.append(eacheletype.elementtype) elif isinstance(eacheletype.elementtype, list): inputtypes += eacheletype.elementtype outs = TypeObject.removeRedundantTypes(inputtypes) return [rej_types], outs def Tuple_Read(self,operands): # similiar to List Read outs = [] temp = TypeObject("Tuple", 0) for i in range(len(operands)): if isinstance(operands[i].types, list): temp.elementtype += operands[i].types else: temp.elementtype.append(operands[i].types) outs.append(temp) rej_types = [] for i in range(0, len(operands)): rej_types.append([]) return rej_types,outs def Tuple_Write(self,operands): # input: operands output:[[]], [outs_types] # in this func, we first find the possible types from the input, then we add all the possible types into them # e.g. c= (1,'2',3) (a,a1,a2)= c => we will infer out=[int, text]. rej_types = [] outs = [] inputtypes = [] if len(operands) != 1: logger.error("The length of input nodes for TupleWrite should be 1, we get {} here.".format(len(operands))) raise ValueError("The length of input nodes for TupleWrite should be 1") # here we do not constrain the out length because it can be like below: # for i, (setting_value, setting_type) in enumerate(zip(all_values, all_types)): # elif len(operands[0].outs) != 1: # raise ValueError("The operand's out length should be 1") if operands[0].name != "forin": for insnode in operands[0].ins: if isinstance(insnode, hityper.tdg.SymbolNode): if isinstance(insnode.types, list): # here we add all the elementtype rather than types for eacheletype in insnode.types: if not isinstance(eacheletype.elementtype, list): inputtypes.append(eacheletype.elementtype) elif isinstance(eacheletype.elementtype, list): inputtypes += eacheletype.elementtype elif isinstance(insnode, hityper.tdg.TypeGenNode): # like forin node if isinstance(insnode.types, list): # here we add all the elementtype rather than types for eacheletype in insnode.types: if not isinstance(eacheletype.elementtype, list): inputtypes.append(eacheletype.elementtype) elif isinstance(eacheletype.elementtype, list): inputtypes += eacheletype.elementtype outs = TypeObject.removeRedundantTypes(inputtypes) return [rej_types], outs # if it's realized by forin else: for insnode in operands[0].types: if isinstance(insnode, hityper.tdg.TypeObject): if not isinstance(insnode.elementtype, list): # here we add all the elementtype rather than types inputtypes.append(insnode.elementtype) elif isinstance(insnode.elementtype, list): inputtypes += insnode.elementtype outs = TypeObject.removeRedundantTypes(inputtypes) return [rej_types], outs def Set_Read(self,operands): # similiar to List Read rej_types = [] outs = [] temp = TypeObject("Set", 0) for i in range(len(operands)): if isinstance(operands[i].types, list): temp.elementtype += operands[i].types else: temp.elementtype.append(operands[i].types) outs.append(temp) rej_types = [] for i in range(0, len(operands)): rej_types.append([]) return rej_types,outs def Dict_Read(self,operands): # similiar to List Read,but add keytype and valuetype rej_types = [] outs = [] temp = TypeObject("Dict", 0) # according to the rules, the first half are keytypes and the left half are valuetypes if(len(operands)%2!=0): logger.warning('len(operands) is odd. case a: lambda case b: {**kw}' ) for i in range(int(len(operands)/2)): if isinstance(operands[i].types, list): temp.elementtype += operands[i].types else: temp.elementtype.append(operands[i].types) temp.keytype = temp.elementtype for i in range(int(len(operands)/2),len(operands)): if isinstance(operands[i].types, list): temp.valuetype += operands[i].types else: temp.valuetype.append(operands[i].types) outs.append(temp) rej_types = [] for i in range(0, len(operands)): rej_types.append([]) return rej_types,outs def JoinedStr(self,operands): rej_types = [] outs = [] for i in range(0, len(operands)): rej_types.append([]) outs = [TypeObject("Text", 0)] return rej_types, outs def Attribution_Return(self,operands,existstype=None): outs = [] ''' if existstype==None: # it means no existstype here temp = TypeObject("Any",0) outs.append(temp) ''' rej_types = [] for i in range(0, len(operands)): rej_types.append([]) return rej_types, outs def dictcomp_Retrun(self,operands): temp = TypeObject("Dict", 0) outs = [] rej_types = [] # there are 2 operands, one is the symbol of element, the other is the the symbol of value if len(operands) == 2: rej_target_types = [] # element types ltypes = operands[0].types if isinstance(ltypes, list): temp.elementtype += ltypes else: temp.elementtype.append(ltypes) temp.keytype = temp.elementtype rej_types.append(rej_target_types) # value types rej_target_types = [] ltypes = operands[1].types if isinstance(ltypes, list): temp.valuetype += ltypes else: temp.valuetype.append(ltypes) rej_types.append(rej_target_types) outs.append(temp) return rej_types, outs def listcomp_Return(self,operands): temp = TypeObject("List", 0) outs = [] rej_types = [] # there is 1 operand, one is the symbol of element, if len(operands) == 1: rej_target_types = [] # element types ltypes = operands[0].types if isinstance(ltypes, list): temp.elementtype += ltypes else: temp.elementtype.append(ltypes) rej_types.append(rej_target_types) # value types outs.append(temp) return rej_types, outs else: for i in range(len(operands)): rej_types.append([]) return rej_types, outs def setcomp_Return(self,operands): temp = TypeObject("Set", 0) outs = [] rej_types = [] # there is 1 operand, one is the symbol of element, if len(operands) == 1: rej_target_types = [] # element types ltypes = operands[0].types if isinstance(ltypes, list): temp.elementtype += ltypes else: temp.elementtype.append(ltypes) rej_types.append(rej_target_types) # value types outs.append(temp) return rej_types, outs else: for i in range(len(operands)): rej_types.append([]) return rej_types, outs def GeneratorExp_Return(self,operands): temp = TypeObject("Generator", 0) outs = [] rej_types = [] # there is 1 operand, one is the symbol of element, if len(operands) == 1: rej_target_types = [] # element types ltypes = operands[0].types if isinstance(ltypes, list): temp.elementtype += ltypes else: temp.elementtype.append(ltypes) rej_types.append(rej_target_types) # value types outs.append(temp) return rej_types, outs else: for i in range(len(operands)): rej_types.append([]) return rej_types, outs def yieldop(self, operands): temp = TypeObject("Generator", 0) outs = [] rej_types = [] for o in operands: for t in o.types: if not TypeObject.existSame(t, temp.elementtype): temp.elementtype.append(t) rej_types.append([]) outs.append(temp) return rej_types, outs def IfExp(self, operands): if len(operands) != 2: logger.warning("IfExp requires 2 arguements, currently get {}".format(len(operands))) raise ValueError("IfExp requires 2 arguements, currently get {}".format(len(operands))) outs = [] rej_types = [[], []] for o in operands: for i in o.types: if not TypeObject.existSame(i, outs): outs.append(i) return rej_types, outs ```
{ "source": "JohnnyPeng18/MatasanoCrypto", "score": 3 }
#### File: MatasanoCrypto/matasano/attacker.py ```python import abc import time import math import random import functools import itertools import collections import string import matasano.oracle import matasano.blocks import matasano.stats import matasano.prng import matasano.stream import matasano.util import matasano.hash import matasano.public import matasano.mac import matasano.math __author__ = 'aldur' class Attacker(object): """The generic, abstract, attacker.""" __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self, oracle: matasano.oracle.Oracle): self.oracle = oracle @abc.abstractmethod def attack(self) -> bool: """ Perform the attack against the oracle. The default implementation does nothing. :return: True if the attack was successful. """ return False class Eavesdropper(object): """The generic, abstract, eavesdropper.""" __metaclass__ = abc.ABCMeta @abc.abstractmethod def attack(self) -> bool: """ Perform the eavesdrop attack. The default implementation does nothing. :return: True if the attack was successful. """ return False class AttackerProfileForUser(Attacker): """ An admin-user forger. :param oracle: An instance of OracleProfileForUser. """ def __init__(self, oracle: matasano.oracle.OracleProfileForUser): super().__init__(oracle) """ A block, whose decryption ends perfectly with the last "=" of the kv string. """ self._base_user = None self._role = None def get_base_user_profile(self): """ Ask the oracle for a specific profile, such that it is of the form: user=...&uid=...&role= || ... As you can see, we want the role to be isolated on a single block. """ email_suffix = "@foo.com" fixed = sum( len(s) for s in ( "email", "uid", "role", # The keys of the string "&", "&", "=", "=", "=", # The meta characters "1", # The user ID (1-9 is fine) ) ) email = "a" * (32 - fixed - len(email_suffix)) + email_suffix assert len(email) + fixed == 32 email = email.encode("ascii") self._base_user = self.oracle.experiment(email)[0:32] def get_role_block(self): """ Ask the oracle for a block of the form: ... || admin | padding || ... We can provide the oracle only emails. Let's build an ad-hoc trap. """ fixed = sum( len(s) for s in ( "email", # The keys of the string "=", # The meta characters ) ) email = b"a" * (16 - fixed - len(b"@")) + b"@" assert len(email) + fixed == 16 email += matasano.blocks.pkcs_7(b"admin", 16) assert len(email) + fixed == 32 email += b".com" self._role = self.oracle.experiment(email)[16:32] def attack(self) -> bool: """ Perform the attack. Get the base block, add the role, and ask for result to the Oracle. """ assert self._base_user assert self._role user = self._base_user + self._role return self.oracle.guess(user) class AttackerBitFlippingCBC(Attacker): """ The attacker against the Bit Flipping CBC Oracle. Forge a byte buffer such that, once encrypted, will be manipulated in order to create a user having admin rights (i.e. containing the string ";admin=true;" ) We know for sure that the oracle escapes the meta characters ";" and "=". As a consequence, we won't use them, and we'll manipulate the CBC cipher-text. """ def __init__(self, oracle: matasano.oracle.OracleBitflipping): super().__init__(oracle) self.prefix_len = 32 # The len of the string prefixed def attack(self) -> bool: """ Perform the attack against the oracle. :return: True if the attack was successful. """ # The prefix string is exactly 32 bytes, # so we can simply ignore it # We'll use the first block in order to manipulate the next one. trap = b"\x00" * 16 # XOR the meta chars, in order to hide them trap += bytes((ord(";") ^ 1,)) # 1-st trap += b"admin" trap += bytes((ord("=") ^ 1,)) # 7-th trap += b"true" cipher = bytearray(self.oracle.experiment(trap)) for i in (0, 6): cipher[self.prefix_len + i] ^= 1 return self.oracle.guess(bytes(cipher)) class AttackerByteAtATimeEcb(Attacker): """ The attacker against the One Byte at a Time Ecb Oracle. The oracle holds an unknown string. The attacker's goal are: - guess the block size of encryption, as used by the oracle (16) - guess the AES encryption mode (ECB) - discover the unknown fixed string, one byte at a time. """ def __init__(self, oracle: matasano.oracle.OracleByteAtATimeEcb): super().__init__(oracle) self.block_size = -1 self.unhidden_string = b"" @staticmethod def get_fill_bytes_len(i: int, block_size: int, prefix_len: int = 0) -> int: """ We want the i-th byte after the input to be the last of a block. i.e. i equal to 0 means we want the first byte after the input, and that this byte is the last of a block. Return the number of bytes to send to the oracle, knowing that it will prefix them with prefix_len bytes. ... | fill_bytes | ....i || ... :param i: The index of the interested byte. :param block_size: The block size. :param prefix_len: The len of the string prefixed to the attacker's input. """ assert i >= 0 assert prefix_len >= 0 fill_bytes_len = \ block_size - (i % block_size) - 1 if prefix_len: fill_bytes_len -= prefix_len % block_size if fill_bytes_len < 0: fill_bytes_len %= block_size if not fill_bytes_len: fill_bytes_len += block_size assert 0 < fill_bytes_len <= 16, \ "Got wrong fill_bytes_len: {}".format(fill_bytes_len) return fill_bytes_len def attack(self) -> bool: """ Perform the attack against the oracle. :return: True if the attack was successful. """ self.discover_block_size() is_ecb = self.discover_encryption_mode() if not is_ecb: # We don't know how to do it! return False # The len of the hidden string. # Excluding padding. hidden_string_len = len( self.oracle.experiment(b"0" * self.block_size) ) - self.block_size for i in range(hidden_string_len): byte = self.byte_discovery(i) self.unhidden_string += byte self.unhidden_string = self.unhidden_string.rstrip(b"\x00") self.unhidden_string = matasano.blocks.un_pkcs_7( self.unhidden_string, self.block_size ) return self.oracle.guess(self.unhidden_string) def byte_discovery(self, i: int) -> bytes: """ Attack the oracle in order to know the ith byte of the hidden string. :param i: byte of interest position :return: The ith byte of the hidden string. """ assert self.block_size > 0, \ "Please discover the block size before calling me!" assert 0 <= i <= len(self.unhidden_string), \ "You're missing the string prefix!" """ The byte we want to discover, must be the last of a block. We need to submit at least a byte to the oracle. Thus we can prepend 1 to block_len bytes of buffer to be encrypted. """ """ The total number of bytes that we must supply to the oracle, for the byte at index i to be last of a block. """ fill_bytes_len = AttackerByteAtATimeEcb.get_fill_bytes_len( i, self.block_size ) """ The bytes that we will be comparing. """ slice_to_ith_block = matasano.blocks.bytes_to_block( self.block_size, matasano.blocks.ith_byte_block(self.block_size, i + 1) ) """ The string we will send the oracle while building the comparison map. """ trap = b"\x00" * fill_bytes_len + self.unhidden_string comparison = { self.oracle.experiment( trap + c )[slice_to_ith_block]: c for c in (bytes(chr(c), "ascii") for c in range(0, 128)) } """ Now we simply remove the already unhidden string from the trap. """ trap = b"\x00" * fill_bytes_len cipher = self.oracle.experiment( trap )[slice_to_ith_block] # assert cipher in comparison, \ # "Returned cipher is not in previous comparison dictionary. " \ # "Something went wrong!" # When we get to padding bytes, we can't decrypt anymore. return comparison.get(cipher, b"\x00") def discover_block_size(self) -> int: """ Discover the block size used by the oracle, by feeding it a byte at the time. When the size of the cipher will change, we'll have found our block size! :return: The block size used by the oracle. """ i = 1 b = b"A" * i block_size = len(self.oracle.experiment(b)) while True: i += 1 b = b"A" * i t_block_size = len(self.oracle.experiment(b)) if block_size != t_block_size: self.block_size = t_block_size - block_size return self.block_size def discover_encryption_mode(self) -> bool: """ Try guessing the encryption mode of the oracle. As usual, finding equal blocks means that the encryption mode is probably stateless (ECB). :return: True if the oracle is using ECB. """ assert self.block_size > 0, \ "Please discover the block size before calling me!" b = b"\x00" * self.block_size * 3 cipher = self.oracle.experiment(b) return matasano.blocks.any_equal_block(cipher) class AttackerHarderByteAtATimeEcb(AttackerByteAtATimeEcb): """ The attacker against the Harder One Byte at a Time Ecb Oracle. The oracle holds an unknown string. The attacker's goal are: - guess the block size of encryption, as used by the oracle (16) - guess the AES encryption mode (ECB) - discover the unknown fixed string, one byte at a time. It's harder respect to One Byte at a Time because the oracle, before encrypting, prefix the attacker's input with a Random, static string. """ def __init__(self, oracle: matasano.oracle.OracleHarderByteAtATimeEcb): super().__init__(oracle) self.prefix_len = -1 def discover_fixed_string_len(self) -> int: """ Discover the length of the fixed string prefix. First of all, discover the last block containing the prefix. How? Let the oracle encrypt to single bytes. The first block in which the encryption differ is the last one of the prefix. As a special case, the prefix length could be a multiple of the block size. We'll handle this case later. Now, we know the last block size. Start letting the oracle encrypt a growing number of bytes: 0, 00, 000, 0000, 00000 Confront the result. When we found that the current result for the last block, is equal to the previous one, we've found the length. ... || prefix | 0000 || ... == ... || prefix | 0000 || 0.. :return: The length of the fixed string prefix. """ assert self.block_size > 0, \ "Please discover the block size before calling me!" a = self.oracle.experiment(b"a") b = self.oracle.experiment(b"b") last_prefix_block = -1 # The prefix string lies in those blocks block_slice = None assert len(a) == len(b) for i in range(0, len(a) // self.block_size): block_slice = matasano.blocks.bytes_in_block(self.block_size, i) if a[block_slice] != b[block_slice]: last_prefix_block = i break assert last_prefix_block != -1, \ "Something went wrong while finding the last prefix block." previous = a for i in range(2, self.block_size + 1): new = self.oracle.experiment(b"a" * i) if previous[block_slice] == new[block_slice]: prefix_len = self.block_size - i + 1 break else: previous = new else: prefix_len = 0 prefix_len += self.block_size * last_prefix_block self.prefix_len = prefix_len return prefix_len def byte_discovery(self, i: int) -> bytes: """ Attack the oracle in order to know the ith byte of the hidden string. :param i: byte of interest position :return: The ith byte of the hidden string. """ assert self.block_size > 0, \ "Please discover the block size before calling me!" assert self.prefix_len > 0, \ "Please discover the prefix len before calling me!" assert 0 <= i <= len(self.unhidden_string), \ "You're missing the string prefix!" """ The byte we want to discover, must be the last of a block. We need to submit at least a byte to the oracle. Thus we can prepend 1 to block_len bytes of buffer to be encrypted. """ """ The total number of bytes that we must supply to the oracle, for the byte at index i to be last of a block. """ fill_bytes_len = AttackerByteAtATimeEcb.get_fill_bytes_len( i, self.block_size, self.prefix_len ) """ The bytes that we will be comparing. """ slice_to_ith_block = matasano.blocks.bytes_to_block( self.block_size, matasano.blocks.ith_byte_block( self.block_size, self.prefix_len + i + 1 ) ) """ The string we will send the oracle while building the comparison map. """ trap = b"\x00" * fill_bytes_len + self.unhidden_string comparison = { self.oracle.experiment( trap + c )[slice_to_ith_block]: c for c in (bytes(chr(c), "ascii") for c in range(0, 128)) } """ Now we simply remove the already unhidden string from the trap. """ trap = b"\x00" * fill_bytes_len cipher = self.oracle.experiment( trap )[slice_to_ith_block] # assert cipher in comparison, \ # "Returned cipher is not in previous comparison dictionary. " \ # "Something went wrong!" # When we get to padding bytes, we can't decrypt anymore. return comparison.get(cipher, b"\x00") def attack(self) -> bool: """ Perform the attack against the oracle. :return: True if the attack was successful. """ self.discover_block_size() is_ecb = self.discover_encryption_mode() if not is_ecb: # We don't know how to do it! return False self.discover_fixed_string_len() # The len of the hidden string. # Excluding padding. hidden_string_len = len( self.oracle.experiment(b"0" * self.block_size) ) - (self.prefix_len % self.block_size) - self.block_size for i in range(hidden_string_len): byte = self.byte_discovery(i) self.unhidden_string += byte self.unhidden_string = self.unhidden_string.rstrip(b"\x00") self.unhidden_string = matasano.blocks.un_pkcs_7( self.unhidden_string, self.block_size ) return self.oracle.guess(self.unhidden_string) class AttackerCBCPadding(Attacker): """ The attacker against the CBC padding oracle. The oracle holds an unknown string. The attacker's goal is to discover such string. The oracle provides a method to check whether the plaintext related to a given ciphertext has been correctly padded. This is a side-channel and we'll use it. """ def __init__(self, oracle: matasano.oracle.OracleCBCPadding): super().__init__(oracle) self.discovered_string = b"" def attack(self) -> bool: """ The oracle provides a padding check method. An attacker can exploit such method to discover the encrypted string, while ignoring the encryption key. How? For each block of the ciphertext, reveal bytes from last to first. To do this, create a custom IV, whose byte of interest is set to values from 0 to 255. Send the block and the IV to the decryption oracle and check if the padding is correct. If it is correct, then AES_CBC_D(block) ^ custom IV produces a correct padding. As a consequence, the byte of interest ^ its position (i.e. the padding) ^ the same byte of the previous block reveals the original plaintext. """ ciphertext, iv = self.oracle.challenge() previous = iv for b in range(len(ciphertext) // 16): discovered = [] # Store already discovered bytes of the block block = ciphertext[ matasano.blocks.bytes_in_block( 16, b ) ] for i in reversed(range(16)): padding_value = 16 - i trap = matasano.util.random_bytes_range(i) for j in range(256): _trap = trap + bytes((j,)) if padding_value > 1: suffix = bytes(( padding_value ^ previous_value for previous_value in discovered )) _trap += suffix assert len(_trap) == 16, \ "Got bad _trap len {}".format(len(_trap)) if self.oracle.experiment( _trap, block ): discovered.insert(0, j ^ padding_value) break else: raise Exception( "Something went wrong while attacking the padding oracle - " "block #{}, byte #{}".format(b, i) ) assert len(discovered) == 16 self.discovered_string += bytes(( previous[i] ^ v for i, v in enumerate(discovered) )) previous = block return self.oracle.guess(self.discovered_string) class AttackerFixedNonceCTR(Attacker): """ The attacker against the fixed nonce CTR oracle. The oracle holds a tuple of unknown strings. The attacker's goal is to discover such strings. """ def __init__(self, oracle: matasano.oracle.OracleFixedNonceCTR): super().__init__(oracle) self.discovered_strings = tuple() def attack(self) -> bool: """ Employ text analysis tools to discover the encrypted strings. All the strings have been encrypted by using the same key-space. So the attack methodology is similar to the one used against Vigenere. Specifically, split in buckets the oracle's challenge. Attack each bucket by guessing its XOR key char. Iterate until the result is satisfying (i.e. all chars are ASCII). """ buffers = self.oracle.challenge() buffers = [bytearray(b) for b in buffers] max_len = len(max(buffers, key=lambda b: len(b))) buckets = [ [ b[i] if len(b) > i else None # String len differs for b in buffers ] for i in range(max_len) ] # Guess the key key = [ tuple(( ord(c) for c in matasano.stats.most_likely_xor_chars( bytes([byte for byte in b if byte is not None]), 3 ) )) for b in buckets ] assert len(key) == len(buckets) k_used = { k: 0 for k in range(len(key)) } k = 0 while k < len(key): v = key[k] new_buffers = buffers[:] for buffer in new_buffers: if len(buffer) <= k: continue # Skip completed buffers buffer[k] ^= v[k_used[k]] if buffer[k] >= 128 and k_used[k] < len(v) - 1: k_used[k] += 1 break else: buffers = new_buffers k += 1 self.discovered_strings = tuple( bytes(b) for b in buffers ) return self.oracle.guess(self.discovered_strings) class AttackerMT19937Seed(Attacker): """ Guess the oracle's seed by brute-force. Try the possible combinations of seed/output after calling the oracle. :param oracle: The oracle to be attacked. """ def __init__(self, oracle: matasano.oracle.OracleMT19937Seed): super().__init__(oracle) self.discovered_seed = None def attack(self) -> bool: """ Guess the oracle's seed. :return: The attack result. """ start_time = int(time.time()) challenge = self.oracle.challenge() outputs = { matasano.prng.MT19937(seed).extract_number(): seed for seed in range( start_time + self.oracle.sleep_min, start_time + self.oracle.sleep_max + 1 ) } assert challenge in outputs, \ "Something went wrong, can't find challenge in outputs." self.discovered_seed = outputs[challenge] return self.oracle.guess(self.discovered_seed) class AttackerMT19937Clone(Attacker): """ Clone the MT PRNG hold by the Oracle, by inverting the tempering function for each of the values output by the oracle, and passing the result to a newly created MT clone. :param oracle: The oracle to be attacked. """ def __init__(self, oracle: matasano.oracle.OracleMT19937Clone): super().__init__(oracle) self.next_random_numbers = [] @staticmethod def untemper_one(y: int): """ Reverse the first tempering transformation: y = x ^ x >> 11 :param y: The tempering result. :return: The value x that produced y. """ prefix = (y >> 21) & 0x07ff # The first 11 MSB do not change middle = (y >> 10) & 0x07ff middle ^= prefix suffix = y & 0x03ff suffix ^= middle >> 1 x = 0x00 x |= prefix << 21 x |= middle << 10 x |= suffix return x @staticmethod def untemper_two(y: int): """ Reverse the second tempering transformation: y = x ^ x << 7 & 2636928640 :param y: The tempering result. :return: The value x that produced y. """ suffix = y & 0x7f # Last 7 bits are copied middle_one = (y >> 7) & 0x7f middle_one ^= ((2636928640 >> 7) & 0x7f) & suffix middle_two = (y >> 14) & 0x7f middle_two ^= ((2636928640 >> 14) & 0x7f) & middle_one middle_three = (y >> 21) & 0x7f middle_three ^= ((2636928640 >> 21) & 0x7f) & middle_two prefix = (y >> 28) & 0x0f prefix ^= ((2636928640 >> 28) & 0x0f) & middle_three x = 0x00 x |= prefix << 28 x |= middle_three << 21 x |= middle_two << 14 x |= middle_one << 7 x |= suffix return x @staticmethod def untemper_three(y: int): """ Reverse the second-last tempering transformation: y = x ^ x << 15 & 4022730752 :param y: The tempering result. :return: The value x that produced y. """ suffix = y & 0x7fff # Last 15 bits are copied middle = (y >> 15) & 0x7fff middle ^= ((4022730752 >> 15) & 0x7fff) & suffix prefix = middle & 0x03 # MSB bits of 4022730752 are set so & is ignored prefix ^= (y >> 30) & 0x03 x = 0x00 x |= prefix << 30 x |= middle << 15 x |= suffix return x @staticmethod def untemper_four(y: int): """ Reverse the last tempering transformation. y = x ^ x >> 18 :param y: The tempering result. :return: The value x that produced y. """ return y ^ (y >> 18) @staticmethod def untemper(y: int): """Invert the tempering function applied to n from the Oracle's PRNG. We're interested in finding x, given y. temper(x) = y untemper(y) = x :param y: The tempering result. :return: The value x that produced y. """ x = AttackerMT19937Clone.untemper_four(y) x = AttackerMT19937Clone.untemper_three(x) x = AttackerMT19937Clone.untemper_two(x) x = AttackerMT19937Clone.untemper_one(x) return x def attack(self) -> bool: """ Clone the oracle's PRNG. :return: True whether the attacks is successful. """ challenge = self.oracle.challenge() challenge = [ AttackerMT19937Clone.untemper(y) for y in challenge ] mt_prng = matasano.prng.MT19937(0) mt_prng.mt = challenge self.next_random_numbers = list( mt_prng.extract_number() for _ in range(10) ) return self.oracle.guess(self.next_random_numbers) class AttackerMT19937Stream(Attacker): """ Guess the oracle's seed (i.e. the encryption key). :param oracle: The oracle to be attacked. """ def __init__(self, oracle: matasano.oracle.OracleMT19937Stream): super().__init__(oracle) self.key = None def attack(self) -> bool: """ Clone the oracle's PRNG. :return: True whether the attacks is successful. """ challenge = self.oracle.challenge() for seed in range(0, 2 ** 16): if (matasano.stream.mt19937_stream( seed, challenge ))[-len(self.oracle.known_plaintext):] == self.oracle.known_plaintext: self.key = seed break else: raise Exception("Something went wrong while brute-forcing the seed.") return self.oracle.guess(self.key) class AttackerRandomAccessCTR(Attacker): """ Guess the Oracle's hidden plaintext. :param oracle: The oracle to be attacked. """ def __init__(self, oracle: matasano.oracle.OracleRandomAccessCTR): super().__init__(oracle) self.discovered_plaintext = None def attack(self) -> bool: """ Replace the plaintext with 0s. Once done, you get the exact key, and can recover the hidden plaintext. """ challenge = self.oracle.challenge() key = bytes( self.oracle.experiment(i, 0)[i] for i in range(len(challenge)) ) assert len(key) == len(challenge) self.discovered_plaintext = matasano.util.xor( challenge, key ) return self.oracle.guess(bytes(self.discovered_plaintext)) class AttackerBitFlippingCTR(Attacker): """ The attacker against the Bit Flipping CTR Oracle. Forge a byte buffer such that, once encrypted, will be manipulated in order to create a user having admin rights (i.e. containing the string ";admin=true;" ) We know for sure that the oracle escapes the meta characters ";" and "=". As a consequence, we won't use them, and we'll manipulate the CTR cipher-text. """ def __init__(self, oracle: matasano.oracle.OracleBitflipping): super().__init__(oracle) self.prefix_len = 32 def attack(self) -> bool: """ Perform the attack against the oracle. :return: True if the attack was successful. """ trap = bytearray(b"foo;admin=true") indexes = (trap.index(b";"), trap.index(b"=")) for i in indexes: trap[i] ^= 1 trap = bytes(trap) cipher = bytearray(self.oracle.experiment(trap)) for i in indexes: cipher[self.prefix_len + i] ^= 1 return self.oracle.guess(bytes(cipher)) class AttackerCBCKeyIV(Attacker): """ The oracle is using AES CBC. The IV is the same key. The attacker's goal is to discover the key. :param oracle: """ def __init__(self, oracle: matasano.oracle.OracleCBCKeyIV): super().__init__(oracle) def attack(self) -> bool: """ Acquire the challenge. Tamper it. Ask the oracle to decrypt and decode it. On error the oracle will raise a proper exception, containing the decoded plaintext. XORring two blocks of such plaintext will reveal the key. """ challenge = bytearray(self.oracle.challenge()) r = matasano.blocks.bytes_in_block(16, 1) for i in range(r.start, r.stop): challenge[i] = 0 r = matasano.blocks.bytes_in_block(16, 2) for i in range(r.start, r.stop): challenge[i] = challenge[i - 16 * 2] try: self.oracle.experiment( bytes(challenge) ) except matasano.oracle.BadAsciiPlaintextException as e: p = e.recovered_plaintext first = p[matasano.blocks.bytes_in_block(16, 0)] third = p[matasano.blocks.bytes_in_block(16, 2)] return self.oracle.guess( matasano.util.xor( first, third ) ) assert False, \ "Something went wrong while attacking the oracle." class AttackerKeyedMac(Attacker): """ Attack a MD-based keyed MAC. Ask the oracle for the MAC of a message. Clone the inner hash function status, and glue pad the message. Forge a new MAC for any new message whose prefix is the previously built string. :param oracle: The oracle to be attacked. :param hash_function: The hash function used to generate the MAC. :param padding_function: The function used to pad the message. :param hash_to_state: The function to retrieve the state from the hash digest. """ def __init__( self, oracle: matasano.oracle.OracleKeyedMac, hash_function, padding_function, hash_to_state ): super().__init__(oracle) self.hash_function = hash_function self.padding_function = padding_function self.hash_to_state = hash_to_state self.forged_message = None self.forged_mac = None def attack(self) -> bool: """ Attack the oracle by forging a MAc for an unseen string. :return: True if the attack succeeds. """ message = ( b"comment1=cooking%20MCs;userdata=foo;" b"comment2=%20like%20a%20pound%20of%20bacon" ) trap = b";admin=true" challenge = self.oracle.challenge(message) state = self.hash_to_state(challenge) # Get the padded message and add the trap suffix. padded_message = self.padding_function( b"0" * self.oracle.key_len + message ) padded_message += trap # Remove unknown key. self.forged_message = padded_message[self.oracle.key_len:] # Forge the MAC. self.forged_mac = self.hash_function( message=trap, state=state, fake_byte_len=len(padded_message) ) return self.oracle.guess( self.forged_message, self.forged_mac ) class AttackerSHA1KeyedMac(AttackerKeyedMac): """ Attack a SHA1-keyed-MAC oracle. """ def __init__(self, oracle: matasano.oracle.OracleSHA1KeyedMac): super().__init__( oracle, matasano.hash.SHA1, matasano.hash.sha1_pad, matasano.util.from_big_endian_unsigned_ints ) class AttackerMD4KeyedMac(AttackerKeyedMac): """ Attack a SHA1-keyed-MAC oracle. """ def __init__(self, oracle: matasano.oracle.OracleMD4KeyedMac): super().__init__( oracle, matasano.hash.MD4, matasano.hash.md4_pad, matasano.util.from_little_endian_unsigned_ints ) class AttackerRemoteSHA1HMac(Attacker): """ Exploit the timing of the remote server checks to brute-force the oracle's secret key. """ def __init__(self, oracle: matasano.oracle.OracleRemoteSHA1HMac): super().__init__(oracle) self.forged_mac = None def attack(self) -> bool: """ The oracle is up and running. We query the remote server and keep the byte whose average response time has been worst. This code is not perfect, but further improvements would be un-meaningful. """ message = b"a" self.forged_mac = bytearray( len( matasano.oracle.OracleRemoteSHA1HMac.mac_function(b"key", message) ) ) sleep_time = matasano.oracle.OracleRemoteSHA1HMac.sleep_time for i, _ in enumerate(self.forged_mac): times = dict() for b in range(256): self.forged_mac[i] = b start = time.time() self.oracle.experiment(message, self.forged_mac) stop = time.time() times[b] = stop - start times = { k: v for k, v in times.items() if v >= (i + 1) * sleep_time } while len(times) > 1: _times = dict() for b in times.keys(): self.forged_mac[i] = b start = time.time() self.oracle.experiment(message, self.forged_mac) stop = time.time() _times[b] = stop - start times = { k: v for k, v in _times.items() if v >= (i + 1) * sleep_time } time.sleep(5) self.forged_mac[i] = list(times.keys())[0] time.sleep(5) return self.oracle.guess( message, self.forged_mac ) class EavesdropperDH(Eavesdropper, matasano.public.DHEntity): """ MITM attack against an instance of the DH protocol. Replace Alice's and Bob's public keys with the default p. """ def __init__( self, alice: matasano.public.DHEntity, bob: matasano.public.DHEntity ): super(EavesdropperDH, self).__init__() self.alice, self.bob = alice, bob self.alice_pub, self.bob_pub = None, None self.eavesdropped_message = None def dh_protocol_respond(self, p: int, g: int, pub_a: int): """ The usual response to the DH protocol. Forward this response to Bob, after replacing the public key with p. :param p: The group modulo. :param g: A primitive root of p. :param pub_a: Alice's DH public key. """ self.alice_pub = pub_a self.bob_pub = self.bob.dh_protocol_respond(p, g, p) self._session_key = 0 return p def receive_and_send_back(self, ciphertext: bytes) -> bytes: """ Receive the message from Alice, forward it to Bob. :param ciphertext: The message from Alice to Bob. """ bob_answer = self.bob.receive_and_send_back(ciphertext) self.eavesdropped_message = matasano.public.DHEntity.decipher_received_message( matasano.public.DHEntity.session_key_to_16_aes_bytes(self._session_key), ciphertext ) return bob_answer def attack(self) -> bool: """ Trigger the protocol and perform the MITM attack. """ message = b"MessageInABottle" # Make sure it's a multiple of 16 assert len(message) % 16 == 0 self.alice.dh_protocol(self) self.alice.send_and_receive(self, message) return self.eavesdropped_message == message class EavesdropperAckDH(Eavesdropper, matasano.public.DHAckEntity): """ MITM attack against an instance of the DH protocol (with ACK). Replace the group parameter g with: * 1 * p * p -1 """ def __init__( self, alice: matasano.public.DHAckEntity, bob: matasano.public.DHAckEntity, g: int = 1 ): super(EavesdropperAckDH, self).__init__() self.alice, self.bob = alice, bob self.eavesdropped_message = None self.malicious_g = g def set_group_parameters(self, p: int, g: int): """ Replace the g parameter and forward to Bob. :param p: The group modulo. :param g: A primitive root of p. :return: True. """ self.bob.set_group_parameters(p, self.malicious_g) return super().set_group_parameters(p, g) def dh_protocol_respond(self, p: int, g: int, pub_a: int): """ The usual response to the DH protocol. Forward this response to Bob, after replacing the public key with p. :param p: The group modulo. :param g: A primitive root of p. :param pub_a: Alice's DH public key. """ pub_bob = self.bob.dh_protocol_respond(p, self.malicious_g, pub_a) if self.malicious_g == 1: # Both Public keys are always gonna be equal to 1. self._session_key = 1 elif self.malicious_g == p - 1: """ ((p - 1) ^ (a * b)) mod p can produce either 1 or -1. It depends on whether a * b is even or not. For the same reason, if pub_a == p - 1, then priv_a was not even. So all we need is to compare the public keys to discover the session key. """ self._session_key = p - 1 \ if pub_bob == p - 1 and pub_a == p - 1 \ else 1 elif self.malicious_g == p: # Both Public keys are always gonna be equal to 0. self._session_key = 0 else: assert False, \ "Something went wrong while MITMing Alice and Bob, bad G value." return pub_bob def receive_and_send_back(self, ciphertext: bytes) -> bytes: """ Receive the message from Alice, forward it to Bob. :param ciphertext: The message from Alice to Bob. """ bob_answer = self.bob.receive_and_send_back(ciphertext) self.eavesdropped_message = matasano.public.DHEntity.decipher_received_message( matasano.public.DHEntity.session_key_to_16_aes_bytes(self._session_key), ciphertext ) return bob_answer def attack(self) -> bool: """ Trigger the protocol and perform the MITM attack. """ message = b"MessageInABottle" # Make sure it's a multiple of 16 assert len(message) % 16 == 0 self.alice.dh_protocol(self, matasano.public.dh_nist_p, self.malicious_g) self.alice.send_and_receive(self, message) return self.eavesdropped_message == message class EavesdropperSimplifiedSRPServer( matasano.public.SimplifiedSRPServer, Eavesdropper ): """ Brute-force the client's signature in order to discover its password. """ def __init__(self): super(Eavesdropper, self).__init__() super(matasano.public.SimplifiedSRPServer, self).__init__(password=bytes()) self.b = 1 self.B = self.g self.u = 1 self._salt = matasano.util.bytes_for_int(256) self.A = -1 self.client_signature = None self.client_password = None def srp_protocol_one(self, A: int) -> tuple: """ Complete the phase one of the protocol, responding to the client. :param A: The client's public key. """ self.A = A return self._salt, self.B, self.u def srp_protocol_two(self, signature: bytes) -> bool: """ Return True. :param signature: The client's produced MAC. :return: Whether the signature is correct. """ self.client_signature = signature return True def attack(self) -> bool: """ Offline brute-force the client's password from the HMAC signature. """ for password in matasano.util.get_password_wordlist(): digest = matasano.hash.SHA256(self._salt + password) x = int.from_bytes(digest, 'little') v = pow(self.g, x, self.N) s = pow( self.A * pow(v, self.u, self.N), self.b, self.N ) self._K = matasano.hash.SHA256( matasano.util.bytes_for_int(s) ) if matasano.mac.hmac_sha256( self._K, self._salt ) == self.client_signature: self.client_password = password return True else: return False class AttackerRSABroadcast: """ Perform the Coppersmith's attack. https://en.wikipedia.org/wiki/Coppersmith%27s_Attack All the following ciphertexts are encryption of the same message. The public key value is fixed to 3. The modulus of each key is different from the others. :param ciphertext_one: The first encryption. :param pub_one: The first public key. :param ciphertext_two: The second encryption. :param pub_two: The second public key. :param ciphertext_three: The third encryption. :param pub_three: The third public key. """ def __init__( self, ciphertext_one: int, pub_one: matasano.public.RSA_Pub, ciphertext_two: int, pub_two: matasano.public.RSA_Pub, ciphertext_three: int, pub_three: matasano.public.RSA_Pub, ): self.c_0, self.n_0 = ciphertext_one, pub_one.n self.c_1, self.n_1 = ciphertext_two, pub_two.n self.c_2, self.n_2 = ciphertext_three, pub_three.n def attack(self) -> bytes: """ Perform the attack and return the discovered secret. :return: The discovered secret plaintext. """ m_s_0 = self.n_1 * self.n_2 m_s_1 = self.n_0 * self.n_2 m_s_2 = self.n_0 * self.n_1 n = self.n_0 * self.n_1 * self.n_2 result = sum([ self.c_0 * m_s_0 * matasano.math.modinv(m_s_0, self.n_0), self.c_1 * m_s_1 * matasano.math.modinv(m_s_1, self.n_1), self.c_2 * m_s_2 * matasano.math.modinv(m_s_2, self.n_2), ]) result %= n return matasano.util.bytes_for_int( int(math.ceil(pow(result, 1 / 3.0))) ) class AttackerUnpaddedRSARecovery(Attacker): """ Exploit RSA's homomorphic encryption property and trick the oracle into decrypting the secret. :param oracle: The oracle to be attacked. """ def __init__(self, oracle: matasano.oracle.OracleUnpaddedRSARecovery): super(AttackerUnpaddedRSARecovery, self).__init__(oracle) def attack(self) -> bool: """ Multiply the oracle's challenge with a new ciphertext (trap), whose plaintext value is known (s). After the oracle's decryption the resulting plaintext will be multiplied by s. :return: True if the attack is successful. """ cipher, pub = self.oracle.challenge() s = random.randint(1, pub.n - 1) inv_s = matasano.math.modinv(s, pub.n) trap = (pow(s, pub.e, pub.n) * cipher) % pub.n plaintext = self.oracle.experiment(trap) plaintext = int.from_bytes(plaintext, byteorder="little") plaintext = (plaintext * inv_s) % pub.n return self.oracle.guess( matasano.util.bytes_for_int( plaintext ) ) class AttackerRSAPaddedSignatureVerifier(Attacker): """ Forge a signature by creating a perfect cube, that respects the PKCS1.5 padding rules. :param oracle: The oracle's to be attacked. """ def __init__(self, oracle: matasano.oracle.OracleRSAPaddedSignatureVerifier): super(AttackerRSAPaddedSignatureVerifier, self).__init__(oracle) def attack(self) -> bool: """ Find a perfect cube that, when represented in binary form, has the prefix matching the expected padding. A working signature can be forged by using such cube. """ message, pub = self.oracle.challenge() assert pub.e == 3, \ "Can't attack if Oracle public key is not 3." pad_f = matasano.oracle.OracleRSAPaddedSignatureVerifier.pad_function hash_f = matasano.oracle.OracleRSAPaddedSignatureVerifier.hash_function block_size = matasano.oracle.OracleRSAPaddedSignatureVerifier.block_size byteorder = 'big' # Because we're messing with the suffix padded_message = pad_f( hash_f(message) ) padded_message += b"\x00" * block_size * 2 n = int.from_bytes(padded_message, byteorder=byteorder) forged_signature = matasano.math.integer_cube_root(n) + 1 forged_message = pow(forged_signature, 3) assert forged_message < pub.n forged_message = matasano.util.bytes_for_int( forged_message, length=len(padded_message), byteorder=byteorder ) assert padded_message[:block_size] == forged_message[:block_size] return self.oracle.guess(forged_signature) class AttackerDSA(Attacker): """ Generic DSA attacker. :param oracle: The oracle to be attacked. """ def __init__(self, oracle: matasano.oracle.OracleDSA): super().__init__(oracle) self.private_key_x = -1 @staticmethod def compute_private_key( public_key: matasano.public.DSA_Pub, signature: matasano.public.DSA_Signature, digest: int, r_inv: int, k: int ): """ Compute the private key given following parameters. :param public_key: The signer's public key. :param signature: A signature. :param digest: The digest of the message producing the signature. :param r_inv: The inverse mod q of the r value of the signature. :param k: The signature's nonce. :return: The private key. """ return (((signature.s * k) - digest) * r_inv) % public_key.q @staticmethod def is_private_key_valid( public_key: matasano.public.DSA_Pub, x: int ) -> bool: """ Check whether a computed private key is valid. :param public_key: The oracle's public key. :param x: A computed private key. :return: True if the computed private key is valid. """ return pow(public_key.g, x, public_key.p) == public_key.y def attack(self) -> bool: """ Subclasses should implement attack. """ return False class AttackerDSAKeyFromNonce(AttackerDSA): """ Recover the DSA private key by brute-forcing the nonce value. :param oracle: The oracle to be attacked. """ def __init__(self, oracle: matasano.oracle.OracleDSAKeyFromNonce): super(AttackerDSAKeyFromNonce, self).__init__(oracle) def attack(self) -> bool: """ Brute-force the nonce value and discover the Oracle's private key. """ oracle_type = type(self.oracle) y, p, q, g = self.oracle.public_key r, s = oracle_type.signature r_inv = matasano.math.modinv(r, q) digest = oracle_type.hash_to_int( oracle_type.hash_function(oracle_type.message) ) compute_private_key = functools.partial( type(self).compute_private_key, public_key=self.oracle.public_key, signature=oracle_type.signature, digest=digest, r_inv=r_inv ) for k in oracle_type.k_range: x = compute_private_key( k=k ) if type(self).is_private_key_valid( self.oracle.public_key, x ): break else: assert False, \ "Something went wrong while brute-forcing the nonce." self.private_key_x = x return self.oracle.guess(self.private_key_x) class AttackerDSAKeyFromRepeatedNonce(AttackerDSA): """ Recover the DSA private key by finding those signatures generated by using the same nonce more than once. :param oracle: The oracle to be attacked. """ def __init__(self, oracle: matasano.oracle.OracleDSAKeyFromRepeatedNonce): super().__init__(oracle) def attack(self) -> bool: """ Find duplicated nonces and discover the oracle's private key. """ signatures_and_messages = self.oracle.challenge() y, p, q, g = self.oracle.public_key for pair in itertools.combinations(signatures_and_messages, 2): first, second = pair k = ( ( (first.h - second.h) % q ) * ( matasano.math.modinv((first.s - second.s) % q, q) ) ) % q x = type(self).compute_private_key( self.oracle.public_key, signature=matasano.public.DSA_Signature(first.r, first.s), digest=first.h, r_inv=matasano.math.modinv(first.r, q), k=k ) if type(self).is_private_key_valid(self.oracle.public_key, x): break else: assert False, \ "Something went wrong while discovering the oracle's private key." self.private_key_x = x return self.oracle.guess(self.private_key_x) class AttackerRSAParity(Attacker): """ Exploit the parity function in order to apply a binary search on the message space. :param oracle: The oracle to be attacked. """ def __init__(self, oracle: matasano.oracle.OracleRSAParity): super().__init__(oracle) self.message = None def attack(self) -> bool: """ Attack the oracle by repeatedly checking the parity of a tampered ciphertext. """ cipher, public = self.oracle.challenge() e, n = public lower = 0 upper = 1 denominator = 1 multiplier = pow(2, e, n) for _ in range(n.bit_length()): half = upper - lower assert half >= 0, \ "Got bad half value {}.".format(half) lower *= 2 upper *= 2 denominator *= 2 cipher = (cipher * multiplier) % n if self.oracle.experiment(cipher): upper -= half else: lower += half self.message = matasano.util.bytes_for_int(n * upper // denominator) print(self.message) assert upper >= lower, \ "Something wrong while updating values ({} vs {}).".format( upper, lower ) return self.oracle.guess(self.message) class AttackerRSAPadding(Attacker): """ Exploit the RSA padding oracle in order to apply the Bleichenbacher [98] adaptive CC attack. (http://archiv.infsec.ethz.ch/education/fs08/secsem/bleichenbacher98.pdf) :param oracle: The oracle to be attacked. """ def __init__(self, oracle: matasano.oracle.OracleRSAPadding): super().__init__(oracle) self.message = None def attack(self) -> bool: """ Attack the oracle by repeatedly checking the parity of a tampered ciphertext. """ cipher, public = self.oracle.challenge() assert self.oracle.experiment(cipher) e, n = public immutable_slice = collections.namedtuple( "immutable_slice", ["start", "stop"] ) k = n.bit_length() B = pow(2, k - 16) B2 = 2 * B B3 = 3 * B s_i = -1 c0 = cipher M = {immutable_slice(B2, B3 - 1), } def _is_done() -> bool: """ Check whether the attack should stop. :return: True or false. """ if len(M) != 1: return False _M = M.copy() inner_slice = _M.pop() return inner_slice.start == inner_slice.stop def _update_m() -> set: """ After finding a new value for s_i, update the M set. """ new_m = set() for a, b in M: for r in range( matasano.math.int_division_ceil(a * s_i - B3 + 1, n), matasano.math.int_division_floor(b * s_i - B2, n) + 1 ): new_a = max(a, matasano.math.int_division_ceil(B2 + r * n, s_i)) new_b = min(b, matasano.math.int_division_floor(B3 - 1 + r * n, s_i)) if new_a <= new_b: new_m.add( immutable_slice( new_a, new_b ) ) return new_m def _iterate(s_minus_1: int) -> int: """ Iterate for a new round. :param s_minus_1: The previous s_i-1 value. :return: The new s_i value. """ assert len(M) != 0, \ "M should contain at least one element." if len(M) > 1: for inner_s in range(s_minus_1 + 1, n): if self.oracle.experiment(c0 * pow(inner_s, e, n)): return inner_s else: # len(M) == 1 a, b = M.copy().pop() for r in range( ((b * s_minus_1 - B2) * 2) // n, n ): for inner_s in range( (B2 + r * n) // b, ((B3 - 1 + r * n) // a) + 1 ): if self.oracle.experiment(c0 * pow(inner_s, e, n)): return inner_s assert False, \ "Something went wrong while finding s_i" # Initial round, for i == 1 for new_s in range(matasano.math.int_division_ceil(n, B3), n): if self.oracle.experiment(c0 * pow(new_s, e, n)): s_i = new_s M = _update_m() break else: assert False, \ "Something went wrong while finding s_1" while not _is_done(): s_i = _iterate(s_i) M = _update_m() a = M.pop().start self.message = matasano.util.bytes_for_int( a ) return self.oracle.guess(a) class AttackerCBCMacForge(Attacker): """ Forge a CBC-MAC by using a length extension attack. :param oracle: The oracle to be attacked. """ def __init__(self, oracle: matasano.oracle.OracleCBCMac): super().__init__(oracle) self.forged_mac = None self.message = None def attack(self) -> bool: """ Forge a valid MAC for an extended message as follows: - Get the original message and its MAC. - Ask the Oracle for a new MAC (m), for a valid message. - Now, apply length extension: m is going to be a valid MAC for the original message plus the exclusive OR between the original MAC and the first block of the attacker's message plus the remainder of the attacker's message. :return: True on success. """ message, mac = self.oracle.challenge() trap = b'from=0_E&tx_list=0_B:10;0_C:1000;0_E:10000000000' forged_mac = self.oracle.experiment(trap) trap = message + matasano.util.xor(mac, trap[0:16]) + trap[16:] self.forged_mac = forged_mac self.message = trap return self.oracle.guess(trap, forged_mac) class AttackerCBCMacHash(Attacker): """ Find a CBC-MAC as hash collision. :param oracle: The oracle to be attacked. """ def __init__(self, oracle: matasano.oracle.OracleCBCMacHash): super().__init__(oracle) self.message = None self.digest = None self.collision = None def attack(self) -> bool: """ Another length extension attack, done in reverse. Now we first get the extension, and then we append it to something we generated. This will result in a collision, because the CBC-MAC of the suffix will be the same of the whole. """ self.message, key, self.digest = self.oracle.challenge() trap = b"alert('Ayo, the Wu is back!'); //" # The // will let the JS engine ignore the rest. assert len(trap) % 16 == 0, len(trap) self.collision = trap + matasano.util.xor( matasano.mac.aes_cbc_mac(key, trap), self.message[0:16] ) + self.message[16:] return self.oracle.guess(self.collision) class AttackerCompress(Attacker): """ Retrieve a compressed and then encrypted session id. :param oracle: The oracle to be attacked. """ def __init__(self, oracle: matasano.oracle.OracleCompress): super().__init__(oracle) self.session_id = b'' def attack(self) -> bool: """ We have a compression oracle and we have partial knowledge of the transmitted plaintext. We can build a message that is exactly equal to the transmitted message, minus the session id inside the cookie. This way, each letter is going to end up being duplicated, except for those in the session id. Finding each letter thus reduces to finding those message that are compressed to the smallest size. In the second version of the challenge things get more complicated, because the oracle is using a block-cipher and thus we may have the real length of the message hidden behind a padding. In such case, we use additional characters (that we're sure to never appear inside the plaintext) until we find a unique candidate. """ charset = (string.ascii_letters + string.digits + "+/=").encode('ascii') padding = '!"#$%&\'()*,;<>?@[\\]^_`{|}~' # No Base64 and not inside the plaintext encrypted_s_id = self.oracle.challenge() for _ in range(len(encrypted_s_id)): for j in range(0, len(padding)): counts = collections.defaultdict(list) for c in charset: l = self.oracle.experiment( self.oracle.REQUEST_FORMATTER.format( (self.session_id.decode('ascii') + chr(c) + padding[:j]) * 3, len(self.session_id), self.session_id.decode('ascii') ).encode('ascii') ) counts[l].append(c) m = min(counts) if len(counts[m]) == 1: self.session_id += bytes([counts[m][0]]) break else: assert False, "Something went wrong while guessing next character" print(self.session_id) return self.oracle.guess(self.session_id) class AttackerRC4Cookie(Attacker): """ Retrieve a hidden cookie from the oracle, by knowing byte bias of the RC4 cipher. :param oracle: The oracle to be attacked. """ def __init__(self, oracle: matasano.oracle.OracleCompress): super().__init__(oracle) self.cookie = None def attack(self) -> bool: """ We know that the RC4 cipher's output has some fixed offset whose byte values are biased. We'll exploit it in order to find a hidden cookie suffixed by the oracle to every request we make. """ challenge = self.oracle.challenge() self.cookie = bytearray([0] * len(challenge)) # Sorry, this code is really really slow. # I've put it here more as a PoC than as a real attack. # A faster language is definitely advised. prefix = b'A' * (len(challenge) // 16) for i in range(0, (len(challenge) // 2) + 1): print("Progress: {}/{}.".format(i, (len(challenge) // 2) + 1)) prefix += b'A' bias_15 = collections.defaultdict(lambda: 0) bias_31 = collections.defaultdict(lambda: 0) for _ in range(2 ** 24): # should be something around 2 ** 30 cipher = self.oracle.experiment(prefix) assert len(cipher) >= 32 bias_15[cipher[15] ^ 240] += 2 bias_15[cipher[15] ^ 0] += 1 bias_15[cipher[15] ^ 16] += 1 bias_31[cipher[31] ^ 224] += 2 bias_31[cipher[31] ^ 0] += 1 bias_31[cipher[31] ^ 32] += 1 k = 15 - i - (len(challenge) // 16) - 1 if k >= 0: most_biased = sorted(bias_15, key=lambda k: bias_15[k], reverse=True) for b in most_biased: if chr(b).isalpha(): self.cookie[k] = b else: self.cookie[k] = most_biased[0] k = 31 - i - (len(challenge) // 16) - 1 most_biased = sorted(bias_31, key=lambda k: bias_31[k], reverse=True) for b in most_biased: if chr(b).isalpha(): self.cookie[k] = b else: self.cookie[k] = most_biased[0] self.cookie = bytes(self.cookie) return self.oracle.guess(self.cookie) ```
{ "source": "JohnnyPeng18/memsource-wrap", "score": 2 }
#### File: memsource/api_rest/job.py ```python import io import json import os import uuid from typing import Any, Dict, List from memsource import api_rest, constants, exceptions, models class Job(api_rest.BaseApi): # Document: https://cloud.memsource.com/web/docs/api#tag/Job def _create( self, project_id: int, target_langs: List[str], files: Dict[str, Any] ) -> List[models.JobPart]: """Common process of creating job. If returning JSON has `unsupportedFiles`, this method raise MemsourceUnsupportedFileException :param project_id: New job will be in this project. :param file_path: Source file of job. :param target_langs: List of translation target languages. :return: List of models.JobPart """ if isinstance(files["file"], tuple): # If value is tuple type, this function called from createFromText. # We need to create temporary file for to raise exception. file_name, text = files["file"] file_path = os.path.join("/", "tmp", file_name) else: file_name = file_path = files["file"].name job_create_extra_headers = { "Content-Type": "application/octet-stream", "Content-Disposition": "inline; filename=\"{}\"".format(file_name), "Memsource": json.dumps({"targetLangs": target_langs}) } self.add_headers(job_create_extra_headers) result = self._post("v1/projects/{}/jobs".format(project_id), { "targetLangs": target_langs, }, files) # unsupported file count is 0 mean success. unsupported_files = result.get("unsupportedFiles", []) if len(unsupported_files) == 0: return [models.JobPart(job_parts) for job_parts in result["jobs"]] if isinstance(files["file"], tuple): with open(file_path, "w+") as f: f.write(text) raise exceptions.MemsourceUnsupportedFileException( unsupported_files, file_path, self.last_url, self.last_params ) def create( self, project_id: int, file_path: str, target_langs: List[str] ) -> List[models.JobPart]: """Create a job. If returning JSON has `unsupportedFiles`, this method raise MemsourceUnsupportedFileException :param project_id: New job will be in this project. :param file_path: Source file of job. :param target_langs: List of translation target languages. :return: List of models.JobPart """ with open(file_path, 'r') as f: return self._create(project_id, target_langs, {'file': f}) def create_from_text( self, project_id: int, text: str, target_langs: List[str], file_name: str=None, ) -> List[models.JobPart]: """You can create a job without a file. See: Job.create If returning JSON has `unsupportedFiles`, this method raise MemsourceUnsupportedFileException :param project_id: New job will be in this project. :param text: Source text of job. :param target_langs: List of translation target languages. :param file_name: Create file name by uuid1() when file_name parameter is None. :return: List of models.JobPart """ return self._create(project_id, target_langs, { 'file': ('{}.txt'.format(uuid.uuid1().hex) if file_name is None else file_name, text), }) def list_by_project( self, project_id: int, page: int = 0, ) -> List[models.JobPart]: jobs = self._get("v2/projects/{}/jobs".format(project_id), {"page": page}) return [models.JobPart(job_part) for job_part in jobs["content"]] def pre_translate( self, project_id: int, job_parts: List[Dict[str, str]], translation_memory_threshold: float=constants.TM_THRESHOLD, callback_url: str=None, ) -> models.AsynchronousRequest: """Call async pre translate API. :param job_parts: Dictionary of job_part id with format `{"uid": string}`. :param translation_memory_threshold: If matching score is higher than this, it is filled. :return: models.AsynchronousRequest """ response = self._post("v1/projects/{}/jobs/preTranslate".format(project_id), { "jobs": [{"uid": job_part} for job_part in job_parts], "translationMemoryTreshold": translation_memory_threshold, "callbackUrl": callback_url, }) return models.AsynchronousRequest(response["asyncRequest"]) def get_completed_file_text(self, project_id: int, job_uid: str) -> bytes: """Download completed file and return it. :param job_uid: job UID. """ data_stream = self._get_stream( "v1/projects/{}/jobs/{}/targetFile".format(project_id, job_uid) ).iter_content(constants.CHUNK_SIZE) buffer = io.BytesIO() for chunk in data_stream: buffer.write(chunk) return buffer.getvalue() def get_segments( self, project_id: int, job_uid: str, begin_index: int=0, end_index: int=0, ) -> List[models.Segment]: """Call get segments API. NOTE: I don't know why this endpoint returns list of list. It seems always one item in outer list. :param project_id: ID of the project :param job_uid: UID of the job :param begin_index :param end_index :return: List of models.Segment """ segments = self._get("v1/projects/{}/jobs/{}/segments".format(project_id, job_uid), { "beginIndex": begin_index, "endIndex": end_index, }) return [ models.Segment(segment) for segment in segments["segments"] ] def get(self, project_id: int, job_uid: str) -> models.Job: """Get the job data. :param job_uid: ID of the job. :return: The retrieved job. """ response = self._get("v1/projects/{}/jobs/{}".format(project_id, job_uid)) return models.Job(response) def list(self, project_id: int) -> List[models.Job]: """Get the jobs data. :param project_id: ID of the project :return: The retrieved jobs. """ response = self._get("v2/projects/{}/jobs".format(project_id)) return [models.Job(i) for i in response["content"]] def delete( self, project_id: int, job_uids: List[int], purge: bool=False ) -> None: """Delete a job :param job_uids: ids of job you want to delete. :param purge: """ self._delete( path="v1/projects/{}/jobs/batch".format(project_id), params={"purge": purge}, data={"jobs": [{"uid": job_uid} for job_uid in job_uids]}, ) def set_status( self, project_id: int, job_uid: str, status: constants.JobStatusRest, ) -> None: """Update job status JobStatus: New, Emailed, Assigned, Declined_By_Linguist, Completed_By_Linguist, Completed, Cancelled :param job_part_id: id of job you want to update. :param status: status of job to update. Acceptable type is JobStatus constant. """ self._post("v1/projects/{}/jobs/{}/setStatus".format(project_id, job_uid), { 'requestedStatus': status.value }) def delete_all_translations( self, project_id: int, job_uids: List[int] ) -> None: """Delete all translations from a job :param job_part_ids: IDs of job_part for the jobs. """ self._delete("v1/projects/{}/jobs/translations".format(project_id), {}, { 'jobs': [{"uid": job_uid} for job_uid in job_uids], }) ``` #### File: memsource-wrap/memsource/memsource.py ```python from . import api from memsource.api_rest import ( auth, client, domain, language, term_base, project, job, bilingual, tm, analysis, ) class Memsource(object): def __init__(self, user_name=None, password=<PASSWORD>, token=None, headers=None, use_rest=False): if use_rest: self._init_rest( user_name=user_name, password=password, token=token, headers=headers, ) return """ If token is given, use the token. Otherwise authenticate with user_name and password, and get token. """ if user_name and password and not token and not headers: token = api.Auth().login(user_name, password).token # make api class instances self.auth = api.Auth(token, headers) self.client = api.Client(token, headers) self.domain = api.Domain(token, headers) self.project = api.Project(token, headers) self.job = api.Job(token, headers) self.translation_memory = api.TranslationMemory(token, headers) self.asynchronous = api.Asynchronous(token, headers) self.language = api.Language(token, headers) self.analysis = api.Analysis(token, headers) self.term_base = api.TermBase(token, headers) def _init_rest(self, user_name, password, token, headers): """ If token is given, use the token. Otherwise authenticate with user_name and password, and get token. """ if user_name and password and not token and not headers: token = auth.Auth().login(user_name, password).token # make api class instances self.auth = auth.Auth(token, headers) self.client = client.Client(token, headers) self.domain = domain.Domain(token, headers) self.project = project.Project(token, headers) self.job = job.Job(token, headers) self.translation_memory = tm.TranslationMemory(token, headers) self.language = language.Language(token, headers) self.analysis = analysis.Analysis(token, headers) self.term_base = term_base.TermBase(token, headers) self.bilingual = bilingual.Bilingual(token, headers) ``` #### File: JohnnyPeng18/memsource-wrap/setup.py ```python from setuptools import setup import memsource def parse_requirements(): with open('requirements.txt') as f: return [l.strip() for l in f.readlines() if not l.startswith('#')] def readme(): with open('README.rst') as f: return f.read() setup( name='Memsource-wrap', version=memsource.__version__, description=readme(), license=memsource.__license__, author=memsource.__author__, author_email='<EMAIL>', url='https://github.com/gengo/memsource-wrap', keywords='Memsource API', packages=('memsource', 'memsource.lib', 'memsource.api_rest'), install_requires=parse_requirements(), ) ``` #### File: test/api_rest/test_auth.py ```python import requests import unittest from unittest.mock import patch from memsource import models from memsource.api_rest import auth class TestAuth(unittest.TestCase): @patch.object(requests.Session, "request") def test_login(self, mock_request: unittest.mock): ms_response = unittest.mock.Mock(status_code=200) ms_response.json.return_value = { "user": { "lastName": "mock-last-name", "email": "<EMAIL>", "firstName": "mock-first-name", "id": "1234", "userName": "mock-tm", "role": "ADMIN", "uid": "QWERTY" }, "token": "mock-token", "expires": "2020-06-19T07:31:23+0000" } mock_request.return_value = ms_response response = auth.Auth().login(user_name="mock-user", password="<PASSWORD>") self.assertIsInstance(response, models.Authentication) self.assertIsInstance(response["user"], models.User) self.assertDictEqual(response["user"], { "lastName": "mock-last-name", "email": "<EMAIL>", "firstName": "mock-first-name", "id": "1234", "userName": "mock-tm", "role": "ADMIN", "uid": "QWERTY" }) ``` #### File: test/api_rest/test_bilingual.py ```python import os import requests import unittest import uuid from unittest.mock import patch, PropertyMock from memsource import constants, models from memsource.api_rest.bilingual import Bilingual class TestBilingual(unittest.TestCase): @patch("builtins.open") @patch.object(requests.Session, "request") def test_get_bilingual_file( self, mock_request: unittest.mock.Mock, mock_open: unittest.mock.Mock ): type(mock_request()).status_code = PropertyMock(return_value=200) mxliff_contents = ['test mxliff content', 'second'] mock_request().iter_content.return_value = [ bytes(content, 'utf-8') for content in mxliff_contents] project_id = 1234 job_uids = [1, 2] Bilingual(token="mock-token").get_bilingual_file( project_id, job_uids, "test.xlf" ) mock_request.assert_called_with( constants.HttpMethod.post.value, "https://cloud.memsource.com/web/api2/v1/projects/1234/jobs/bilingualFile", params={"token": "mock-token"}, json={"jobs": [{"uid": 1}, {"uid": 2}]}, timeout=60, ) @patch.object(requests.Session, "request") def test_get_bilingual_file_xml(self, mock_request): type(mock_request()).status_code = PropertyMock(return_value=200) mxliff_contents = ['test mxliff content', 'second'] mock_request().iter_content.return_value = [ bytes(content, 'utf-8') for content in mxliff_contents] project_id = 1234 job_uids = [1, 2] returned_value = Bilingual(token="mock-token").get_bilingual_file_xml(project_id, job_uids) self.assertEqual(''.join(mxliff_contents).encode(), returned_value) mock_request.assert_called_with( constants.HttpMethod.post.value, "https://cloud.memsource.com/web/api2/v1/projects/1234/jobs/bilingualFile", params={ "token": "<PASSWORD>", }, json={"jobs": [{"uid": 1}, {"uid": 2}]}, timeout=60, ) @patch.object(requests.Session, 'request') def test_get_bilingual_as_mxliff_units(self, mock_request): type(mock_request()).status_code = PropertyMock(return_value=200) mxliff_contents = ['test mxliff content', 'second'] mock_request().iter_content.return_value = [ bytes(content, 'utf-8') for content in mxliff_contents] base_dir = os.path.join(os.path.dirname(os.path.abspath(__file__))) with open(os.path.join(base_dir, '..', 'lib', 'mxliff', 'test.mxliff')) as f: mxliff = f.read().encode('utf-8') mock_request().iter_content.return_value = [ mxliff[i: i + 100] for i in range(0, len(mxliff), 100) ] project_id = 1234 job_uids = [1, 2] bi = Bilingual(token="mock-token") returned_value = bi.get_bilingual_as_mxliff_units(project_id, job_uids) self.assertEqual(len(returned_value), 2) self.assertIsInstance(returned_value[0], models.MxliffUnit) self.assertEqual(returned_value[0], { 'id': 'fj4ewiofj3qowjfw:0', 'score': 0.0, 'gross_score': 0.0, 'source': 'Hello World.', 'target': None, 'machine_trans': None, 'memsource_tm': None, 'tunit_metadata': [], }) self.assertIsInstance(returned_value[1], models.MxliffUnit) self.assertEqual(returned_value[1], { 'id': 'fj4ewiofj3qowjfw:1', 'score': 1.01, 'gross_score': 1.01, 'source': 'This library wraps Memsoruce API for Python.', 'target': 'このライブラリはMemsourceのAPIをPython用にラップしています。', 'machine_trans': 'This is machine translation.', 'memsource_tm': 'This is memsource translation memory.', 'tunit_metadata': [], }) mock_request.assert_called_with( constants.HttpMethod.post.value, "https://cloud.memsource.com/web/api2/v1/projects/1234/jobs/bilingualFile", params={ "token": "mock-token", }, json={"jobs": [{"uid": 1}, {"uid": 2}]}, timeout=60, ) @patch.object(uuid, "uuid1") @patch.object(requests.Session, "request") def test_upload_bilingual_file_from_xml( self, mock_request: unittest.mock.Mock, mock_uuid1: unittest.mock.Mock ): type(mock_request()).status_code = PropertyMock(return_value=200) xml = "<xml>this is test</xml>" mock_uuid1().hex = "test_file" Bilingual(token="mock-token").upload_bilingual_file_from_xml(xml) mock_request.assert_called_with( constants.HttpMethod.put.value, "https://cloud.memsource.com/web/api2/v1/bilingualFiles", params={"token": "mock-token"}, files={"file": ("test_file.mxliff", xml)}, timeout=constants.Base.timeout.value ) ```
{ "source": "JohnnyPolite/LODE", "score": 3 }
#### File: libraries/manual_scripts/NS.py ```python import pandas as pd df=pd.read_csv('/home/csis/codes/OpenTabulate/Libraries/NS_Libraries.csv') def strip_point(x): t=x.strip('(') t=t.rstrip(')') # t=t.strip(' (') print(t) return t.split() LONGS=[] LATS=[] for i in df.Location: a=str(i) if a !='nan': LONGS.append(strip_point(a)[1]) LATS.append(strip_point(a)[0]) else: LONGS.append('') LATS.append('') df["LONGITUDE"]=LONGS df["LATITUDE"]=LATS f_out='/home/csis/codes/OpenTabulate/pddir/raw/NS_Libraries.csv' df.to_csv(f_out) ``` #### File: libraries/manual_scripts/QC.py ```python import geopandas as gpd import pandas as pd #read shapefile with geopandas into geodataframe gdf=gpd.read_file('/home/csis/codes/OpenTabulate/Libraries/QC_Libraries.geoJSON') gdf=pd.DataFrame(gdf) def strip_point(x): t=x.strip('POINT (') t=t.rstrip(')') print(t) return t.split() LONGS=[] LATS=[] for i in gdf.geometry: a=str(i) LONGS.append(strip_point(a)[0]) LATS.append(strip_point(a)[1]) gdf["LONGITUDE"]=LONGS gdf["LATITUDE"]=LATS gdf['Adresse']=gdf['Adresse'].str.replace(',','') gdf.to_csv('/home/csis/codes/OpenTabulate/Libraries/QC_Libraries.csv') ``` #### File: HealthFacilities/manual_scripts/ON_Hospitals.py ```python import geopandas as gpd import pandas as pd #read shapefile with geopandas into geodataframe sc1=gpd.read_file('/home/csis/codes/shape_to_csv/MOH_SERVICE_LOCATION.shp') sc1=pd.DataFrame(sc1) print(sc1.SERV_TYPE.unique()) sc1=sc1.loc[(sc1["SERV_TYPE"]=="Hospital - Corporation") | (sc1["SERV_TYPE"]=="Hospital - Site")] #sc1=sc1.loc[sc1["SERV_TYPE"]==("Hospital - Site")] def strip_point(x): x=str(x) t=x.strip('POINT (') t=t.rstrip(')') print(t) return t.split() LONGS=[] LATS=[] for i in sc1.geometry: LONGS.append(strip_point(i)[0]) LATS.append(strip_point(i)[1]) sc1["LONGITUDE"]=LONGS sc1["LATITUDE"]=LATS print(sc1) sc1.to_csv('Ontario_hospitals.csv') ```
{ "source": "johnny-prnd/drf-yasg", "score": 2 }
#### File: drf-yasg/tests/test_get_basic_type_info_from_hint.py ```python import uuid import pytest from drf_yasg import openapi from drf_yasg.inspectors.field import get_basic_type_info_from_hint try: import typing from typing import Dict, List, Union, Optional, Set except ImportError: typing = None if typing: @pytest.mark.parametrize('hint_class, expected_swagger_type_info', [ (int, {'type': openapi.TYPE_INTEGER, 'format': None}), (str, {'type': openapi.TYPE_STRING, 'format': None}), (bool, {'type': openapi.TYPE_BOOLEAN, 'format': None}), (dict, {'type': openapi.TYPE_OBJECT, 'format': None}), (Dict[int, int], {'type': openapi.TYPE_OBJECT, 'format': None}), (uuid.UUID, {'type': openapi.TYPE_STRING, 'format': openapi.FORMAT_UUID}), (List[int], {'type': openapi.TYPE_ARRAY, 'items': openapi.Items(openapi.TYPE_INTEGER)}), (List[str], {'type': openapi.TYPE_ARRAY, 'items': openapi.Items(openapi.TYPE_STRING)}), (List[bool], {'type': openapi.TYPE_ARRAY, 'items': openapi.Items(openapi.TYPE_BOOLEAN)}), (Set[int], {'type': openapi.TYPE_ARRAY, 'items': openapi.Items(openapi.TYPE_INTEGER)}), (Optional[bool], {'type': openapi.TYPE_BOOLEAN, 'format': None, 'x-nullable': True}), (Optional[List[int]], { 'type': openapi.TYPE_ARRAY, 'items': openapi.Items(openapi.TYPE_INTEGER), 'x-nullable': True }), (Union[List[int], type(None)], { 'type': openapi.TYPE_ARRAY, 'items': openapi.Items(openapi.TYPE_INTEGER), 'x-nullable': True }), # Following cases are not 100% correct, but it should work somehow and not crash. (Union[int, float], None), (List, {'type': openapi.TYPE_ARRAY, 'items': openapi.Items(openapi.TYPE_STRING)}), ('SomeType', None), (type('SomeType', (object,), {}), None), (None, None), (6, None), ]) def test_get_basic_type_info_from_hint(hint_class, expected_swagger_type_info): type_info = get_basic_type_info_from_hint(hint_class) assert type_info == expected_swagger_type_info ```
{ "source": "Johnny-QA/Python_training", "score": 4 }
#### File: Python_training/Python tests/classes_objects.py ```python lottery_player_dict = { 'name': 'Rolf', 'numbers': (5, 9, 12, 3, 1, 21) } class LotteryPlayer: def __init__(self, name): self.name = name self.numbers = (5, 9, 12, 3, 1, 21) def total(self): return sum(self.numbers) player_one = LotteryPlayer('Rolf') player_one.numbers = (1, 2, 3, 6, 7, 8) player_two = LotteryPlayer('John') # print(player_two.total()) # print(player_one.numbers == player_two.numbers) ## class Student: def __init__(self, name, school): self.name = name self.school = school self.marks = [] def average(self): return sum(self.marks) / len(self.marks) anna = Student('Anna', 'MIT') anna.marks.append(18) anna.marks.append(10) anna.marks.append(33) anna.marks.append(51) print(anna.name, anna.school, anna.marks, anna.average()) ``` #### File: Python_training/Python tests/if_statement.py ```python def who_do_you_know(): people = input("Enter the names of people you know, separated by commas: ") people_list = people.split(",") normal_list = [person.strip().lower() for person in people_list] return normal_list # people_list_without_spaces = [] # for person in people_list: # people_list_without_spaces.append(person.strip()) # return people_list_without_spaces def ask_user(): person = input("Enter a name of someone you know: ") if person.lower() in who_do_you_know(): return print("You know {}!".format(person)) else: return print("You don`t know {}!".format(person)) ask_user() ```
{ "source": "johnny-richards/PyCandle", "score": 3 }
#### File: PyCandle/modules/layers.py ```python import numpy as np import pdb from modules.base import ModuleBase class Linear(ModuleBase): def __init__(self, input_dim, output_dim, bias=True): super(Linear, self).__init__() self.bias = bias self.W = np.random.randn(input_dim, output_dim) / np.sqrt(input_dim) self.params['weight'] = self.W if bias: self.b = np.zeros(output_dim) self.params['bias'] = self.b def forward(self, x): # check type assert isinstance(x, np.ndarray) # x: batch_size x input_dim batch_size = x.shape[0] y = np.dot(x, self.W) if self.bias: y += np.tile(self.b, (batch_size, 1)) self.results['x'] = x return y def backward(self, grad): # check type assert isinstance(grad, np.ndarray) # grad: batch_size x output_dim grad_input = np.dot(grad, self.W.T) # batch_size x input_dim # gradient of such layer x = self.results['x'] # batch_size x input_dim batch_size = x.shape[0] input_dim = x.shape[1] output_dim = grad.shape[1] x_unsqueeze = x.reshape((batch_size, input_dim, 1)) grad_unsqueeze = grad.reshape(batch_size, 1, output_dim) Wgrad = np.sum(np.array([np.dot(cur_x, grad_unsqueeze[idx]) for idx, cur_x in enumerate(x_unsqueeze)]), 0) # input_dim x output_dim if self.bias: bgrad = np.sum(grad, 0) # output_dim # save grad self.grads['weight'] = Wgrad if self.bias: self.grads['bias'] = bgrad # initialize result self.results = {} return grad_input class Sigmoid(ModuleBase): def __init__(self): super(Sigmoid, self).__init__() def forward(self, x): # x: batch_size x dim evalue = np.exp(-x) sigmoid = 1 / (1 + evalue) self.results['sigmoid'] = sigmoid return sigmoid def backward(self, grad): sigmoid = self.results['sigmoid'] grad_input = grad * sigmoid * (1 - sigmoid) self.results = {} return grad_input class Softmax(ModuleBase): def __init__(self): super(Softmax, self).__init__() def forward(self, x): # x: batch_size x dim xmax = np.max(x, 1) # batch_size xmax_expand = np.tile(xmax.reshape(x.shape[0], 1), (1, x.shape[1])) evalue = np.exp(x - xmax_expand) esum = np.sum(evalue, 1) esum_expand = np.tile(esum.reshape(x.shape[0], 1), (1, x.shape[1])) softmax = evalue / esum_expand # batch_size x dim self.results['softmax'] = softmax return softmax def backward(self, grad): softmax = self.results['softmax'] self.results = {} W1 = np.array([np.diag(q) for q in softmax]) # batch_size x dim x dim q = softmax.reshape(softmax.shape[0], softmax.shape[1], 1) # batch_size x dim x 1 qt = softmax.reshape(softmax.shape[0], 1, softmax.shape[1]) # batch_size x 1 x dim W2 = np.array([np.dot(q[k], qt[k]) for k in range(q.shape[0])]) # batch_size x dim x dim W = W1 - W2 grad_expand = grad.reshape(grad.shape[0], 1, grad.shape[1]) # batch_size x 1 x dim grad_input_expand = np.array([np.dot(grad_expand[k], W[k]) for k in range(grad.shape[0])]) # batch_size x 1 x dim grad_input = grad_input_expand.reshape(grad.shape[0], grad.shape[1]) # batch_size x dim return grad_input class Tanh(ModuleBase): def __init__(self): super(Tanh, self).__init__() def forward(self, x): # x: batch_size x dim evalue = np.exp(x) value = (evalue - 1 / evalue) / (evalue + 1 / evalue) self.results['tanh'] = value return value def backward(self, grad): value = self.results['tanh'] self.results = {} grad_input = grad * (1 - value ** 2) return grad_input class ReLU(ModuleBase): def __init__(self): super(ReLU, self).__init__() def forward(self, x): # x: batch size x dim mask = (x > 0.0).astype(np.float) y = mask * x self.results['mask'] = mask return y def backward(self, grad): grad_input = grad * self.results['mask'] self.results = {} return grad_input if __name__=='__main__': # check gradient input_dim = 8 output_dim = 5 batch_size = 2 # model linear = Linear(input_dim, output_dim) print('{}'.format(linear.__class__.__name__)) ```
{ "source": "JohnnyRyan1/parks-and-golf", "score": 3 }
#### File: parks-and-golf/scripts/3_centroid_golf_park_pop.py ```python import geopandas as gpd import pandas as pd import numpy as np import glob import os import math import scipy.spatial as spatial from shapely.ops import nearest_points # Define path path = '/home/johnny/Documents/Teaching/490_Geospatial_Data_Science_Applications/Applications/OSM_Parks_and_Golf/data/' # Import state codes codes = pd.read_csv(path + 'state_codes.csv') # Define parks and golf courses parks_list = sorted(glob.glob(path + 'parks_and_golf/*_parks.shp')) golf_list = sorted(glob.glob(path + 'golf_with_name/*_golf_courses.shp')) # Define urban areas bg_list = sorted(glob.glob(path + 'urban_block_groups/*.shp')) # Define population data pop_list = sorted(glob.glob(path + 'pop_by_block_group/*.csv')) def convert_wgs_to_utm(lon, lat): utm_band = str((math.floor((lon + 180) / 6 ) % 60) + 1) if len(utm_band) == 1: utm_band = '0'+utm_band if lat >= 0: epsg_code = '326' + utm_band else: epsg_code = '327' + utm_band return epsg_code for j in range(codes.shape[0]): # Get FIPS code fips = str(codes['FIPS'].iloc[j]).zfill(2) # Get state name state_name = codes['Name'].iloc[j].replace(' ', '_') if os.path.exists(path + 'state_stats/data_' + fips + '_' + state_name + '.shp'): print('Skipping... %.0f out of %.0f' %(j+1, codes.shape[0])) else: print('Processing... %.0f out of %.0f' %(j+1, codes.shape[0])) ####################################################################### # Get corresponding files ####################################################################### # Get park and golf course shapefiles matching_park = [s for s in parks_list if state_name + '_parks.shp' in s] matching_golf = [s for s in golf_list if state_name + '_golf_courses.shp' in s] # Get urban block groups shapefile matching_bg = [s for s in bg_list if fips + '_bg_urban.shp' in s] # Get block group population table matching_pop = [s for s in pop_list if '_' + fips in s] ####################################################################### # Read all files ####################################################################### park_gdf = gpd.read_file(matching_park[0]) golf_gdf = gpd.read_file(matching_golf[0]) bg_gdf = gpd.read_file(matching_bg[0]) pop_df = pd.read_csv(matching_pop[0]) # Dissolve and explode to remove overlapping polygons park_dissolve = park_gdf.dissolve() park_dissolve = park_dissolve.explode() # ============================================================================= # golf_dissolve = golf_gdf.dissolve() # golf_dissolve = golf_dissolve.explode() # ============================================================================= golf_dissolve = golf_gdf ####################################################################### # Convert everything to UTM coordinates ####################################################################### # Get UTM zone EPSG code of state lon_poly, lat_poly = park_dissolve[(park_dissolve['geometry'].geom_type == 'Polygon')]['geometry'].iloc[0].exterior.coords.xy utm_zone = convert_wgs_to_utm(lon_poly[0], lat_poly[0]) epsg = 'EPSG:' + utm_zone # Convert bg_gdf = bg_gdf.to_crs(epsg) park_dissolve = park_dissolve.to_crs(epsg) golf_dissolve = golf_dissolve.to_crs(epsg) # Compute area park_dissolve['area'] = park_dissolve['geometry'].area golf_dissolve['area'] = golf_dissolve['geometry'].area # Remove anything smaller than a football pitch park_dissolve = park_dissolve[park_dissolve['area'] > 7000] golf_dissolve = golf_dissolve[golf_dissolve['area'] > 7000] park_dissolve.reset_index(inplace=True) golf_dissolve.reset_index(inplace=True) # Compute centroids bg_gdf['centroid'] = bg_gdf['geometry'].centroid park_dissolve['centroid'] = park_dissolve['geometry'].centroid golf_dissolve['centroid'] = golf_dissolve['geometry'].centroid # Construct kd tree park_point_tree = spatial.cKDTree(np.vstack((park_dissolve['centroid'].x.values, park_dissolve['centroid'].y.values)).T) golf_point_tree = spatial.cKDTree(np.vstack((golf_dissolve['centroid'].x.values, golf_dissolve['centroid'].y.values)).T) # Calculate distance to parks and golf courses distance_park = [] distance_golf = [] name_golf = [] for i in range(bg_gdf.shape[0]): #print('%s... %.0f out of % .0f' %(state_name, i+1, bg_gdf.shape[0])) # Find nearest park to block group centroid dist1, idx1 = park_point_tree.query((bg_gdf['centroid'].x.iloc[i], bg_gdf['centroid'].y.iloc[i]), k=4) # Compute distance from block group centroid to park edge distances = [] for idx in range(len(idx1)): p1, p2 = nearest_points(park_dissolve.iloc[idx1[idx]]['geometry'], bg_gdf['centroid'].iloc[i]) distances.append(p1.distance(p2)) # Append to list distance_park.append(np.array(distances).min()) # Find nearest golf course to block group centroid dist2, idx2 = golf_point_tree.query((bg_gdf['centroid'].x.iloc[i], bg_gdf['centroid'].y.iloc[i]), k=1) # Compute distance from block group centroid to park edge p3, p4 = nearest_points(golf_dissolve.iloc[idx2]['geometry'], bg_gdf['centroid'].iloc[i]) # Append to list distance_golf.append(p3.distance(p4)) name_golf.append(golf_dissolve.iloc[idx2]['name']) """ note that it is possible that some parks and golf courses overlap. Right now they would both be counted. """ bg_gdf['park_dist'] = distance_park bg_gdf['golf_dist'] = distance_golf bg_gdf['golf_name'] = name_golf # Drop some columns so can export bg_gdf.drop(columns=['centroid'], inplace=True) # Export to shapefile bg_gdf.to_file(path + 'state_stats/data_' + fips + '_' + state_name + '.shp') ```
{ "source": "JohnnySn0w/BabbleBot", "score": 3 }
#### File: JohnnySn0w/BabbleBot/boomer.py ```python import random prefix = [ 'Look at you! ', 'Bless ', 'Bless! ', 'I heard about that! ', 'Amen!', 'You and the kids doing alright?', 'Miss ya\'ll!' ] suffix = [ '. Amen!', '. God bless america', '. God bless!', ' haha', '. love ya!', '. love ya\'ll!', ] def add_pre_suf(sentence): if random.randint(1,10) <= 6: if random.randint(1,10) <= 5: sentence = prefix[random.randint(0, len(prefix) - 1)] + sentence else: sentence += suffix[random.randint(0, len(suffix) - 1)] return sentence def add_elipses(sentence): words = sentence.split() for i in range(4, len(words), 5): if random.randint(1,10) <= 7: words[i] += "..." return " ".join(words) def boomer_caps(sentence): seed = random.randint(1, 10) sent_array = sentence.split() if seed in (1, 2, 3): return sentence elif seed in (4, 5): temp_sent = [] for x in sent_array: if random.random() < 0.25: x = x.upper() temp_sent.append(x) return " ".join(temp_sent) elif seed in (6, 7): temp_sent = [] for x in sent_array: if random.random() < 0.5: x = x.upper() temp_sent.append(x) return " ".join(temp_sent) elif seed in (8, 9): return sentence.title() elif seed == 10: return sentence.upper() ``` #### File: JohnnySn0w/BabbleBot/markov.py ```python import json import random BEGIN_TAG = "<START>" END_TAG = "<END>" DEFAULT_STATE_LEN = 1 def get_zip(words, state_len: int =DEFAULT_STATE_LEN): zip_list = [] for i in range(0, state_len + 1): zip_list.append(words[i:]) return zip_list def create_markov_model(corpus: str, delim: str = "\n", state_len: int =DEFAULT_STATE_LEN): model = {} for line in corpus.split(delim): # Split the sentence into words. Pad with a beginning and end tag. words = line.split() words.insert(0, BEGIN_TAG) words.append(END_TAG) # For every consecutive state_len + 1 words in the sentence, create or update a key/pair value. for tup in zip(*get_zip(words, state_len)): key = " ".join(tup[:-1]) if key not in model: model[key] = [] model[key] += [tup[-1]] return model def gen_sentence(model, state_len: int =DEFAULT_STATE_LEN): sentence = [] while not sentence: if state_len > 1: sentence = random.choice([key for key in model if key.split()[0] == BEGIN_TAG]).split() else: sentence = [random.choice(model[BEGIN_TAG])] while True: try: if state_len > 1: curr_word = random.choice(model[" ".join(sentence[-state_len:])]) else: curr_word = random.choice(model[sentence[-1]]) except KeyError: break if curr_word != END_TAG: sentence.append(curr_word) else: break if sentence[-1] == END_TAG: sentence = [] if state_len > 1: sentence.pop(0) return " ".join(sentence) if __name__ == "__main__": with open("197937757954375680.out", "r") as f: content = f.read() model = create_markov_model(content) for _ in range(10): print(gen_sentence(model)) with open('vidata.json', 'w', encoding='utf-8-sig') as f: json.dump(model, f) ```
{ "source": "johnnysnq/rdl", "score": 3 }
#### File: johnnysnq/rdl/rdl.py ```python import os import sys import redis import base64 import argparse __version__ = '1.2.0' PY2 = sys.version_info.major == 2 BUF_LIMIT = 1024 * 2 WRITE_MODE = 'wb' AWRITE_MODE = 'ab' if PY2: WRITE_MODE = 'w' AWRITE_MODE = 'a' def write_file(file_name, buf, initial=False): """ :param bytes buf: buffer to write, in python2 it's type would be str """ if initial: mode = WRITE_MODE if os.path.exists(file_name): print('==> Warning: {} will be covered!'.format(file_name)) else: print('==> Writing {}, chunk size {}'.format(file_name, len(buf))) mode = AWRITE_MODE with open(file_name, mode) as f: f.write(buf) def print_loop(loop, clear=True): s = '==> processed keys: {}'.format(loop) if clear: sys.stdout.write(s) sys.stdout.flush() sys.stdout.write(len(s) * '\b') else: print(s) def get_client(n, host=None, port=None, password=None): if hasattr(redis, 'StrictRedis'): client_class = redis.StrictRedis else: # Backward compatibility client_class = redis.Redis kwargs = {} if host: kwargs['host'] = host if port: kwargs['port'] = port if password: kwargs['password'] = password db = client_class(db=n, **kwargs) print('==> Use redis {}:{}/{}'.format(host or '<default host>', port or '<default port>', n)) # TODO show db info return db def dump(file_name, db, ignore_none_value=False): buf = b'' loop = 0 initial_write = True # NOTE KEYS may ruin performance when it is executed against large databases. # SCAN can be used in production without the downside of commands like KEYS for k in db.scan_iter(): # `k`is bytes for python3, str for python2 # dump() returns bytes for python3, str for python2 v = db.dump(k) if v is None: msg = 'got None when DUMP key `{}`'.format(k) if ignore_none_value: print('{}, ignore'.format(msg)) continue else: raise ValueError(msg) # form the line line = k + b'\t' + base64.b64encode(v) + b'\n' buf += line loop += 1 if loop % BUF_LIMIT == 0: write_file(file_name, buf, initial_write) print_loop(loop) # Clear buf buf = b'' initial_write = False # In case of not reach limit if buf: write_file(file_name, buf, initial_write) print_loop(loop, False) if not loop: print('Empty db, nothing happened') return def load(file_name, db, f): if f: print('==> Flush database!') db.flushdb() with open(file_name, 'r') as f: loop = 0 for line in f: k, v = tuple(line.split('\t')) v = base64.b64decode(v) try: db.restore(k, 0, v) except redis.exceptions.ResponseError: print k,v continue loop += 1 if loop % BUF_LIMIT == 0: print_loop(loop) print_loop(loop, False) def main(): parser = argparse.ArgumentParser(description="Redis dump-load tool.", add_help=False) parser.add_argument('action', metavar="ACTION", type=str, choices=['dump', 'load'], help="`dump` or `load`.") parser.add_argument('file_name', metavar="FILE", type=str, help="if action is dump, then its output file, if actions is load, then its source file.") parser.add_argument('-n', type=int, default=0, help="Number of database to process.") parser.add_argument('-h', '--host', type=str, help="Redis host") parser.add_argument('-p', '--port', type=int, help="Redis port") parser.add_argument('-a', '--auth', type=str, help="Redis password") parser.add_argument('-f', '--flushdb', action='store_true', help="Force or flush database before load") parser.add_argument('--ignore-none-value', action='store_true', help="Ignore None when dumping db, by default it will raise ValueError if DUMP result is None") parser.add_argument('--help', action='help', help="show this help message and exit") # --version parser.add_argument('--version', action='version', version='%(prog)s {version}'.format(version=__version__)) args = parser.parse_args() db = get_client(args.n, args.host, args.port, args.auth) if 'dump' == args.action: dump(args.file_name, db, args.ignore_none_value) else: # load load(args.file_name, db, args.flushdb) if __name__ == '__main__': main() ```
{ "source": "JohnnySun8/TextWorld", "score": 2 }
#### File: TextWorld/tests/test_sample_quests.py ```python import os from os.path import join as pjoin from subprocess import check_output from textworld.utils import make_temp_directory SCRIPTS_PATH = os.path.abspath(pjoin(__file__, "..", "..", "scripts")) def test_sample_quests(): with make_temp_directory(prefix="test_sample_quests") as tmpdir: game_file = pjoin(tmpdir, "game.ulx") command = ["tw-make", "custom", "--seed", "20181004", "--output", game_file] check_output(command).decode() script = pjoin(SCRIPTS_PATH, "sample_quests.py") command = ["python", script, "--nb-quests", "10", "--quest-length", "10", "--quest-breadth", "5", "--output", tmpdir, game_file] stdout = check_output(command).decode() assert len(stdout) > 0 assert os.path.isfile(pjoin(tmpdir, "sample_world.png")) assert os.path.isfile(pjoin(tmpdir, "sample_tree.svg")) assert os.path.isfile(pjoin(tmpdir, "sample_graph.svg")) ``` #### File: TextWorld/tests/test_tw-play.py ```python from subprocess import check_call import textworld from textworld.utils import make_temp_directory def test_playing_a_game(): for ext in [".ulx", ".z8"]: with make_temp_directory(prefix="test_tw-play") as tmpdir: options = textworld.GameOptions() options.file_ext = ext options.path = tmpdir options.nb_rooms = 5 options.nb_objects = 10 options.quest_length = 5 options.quest_breadth = 2 options.seeds = 1234 game_file, _ = textworld.make(options) command = ["tw-play", "--max-steps", "100", "--mode", "random", game_file] assert check_call(command) == 0 command = ["tw-play", "--max-steps", "100", "--mode", "random-cmd", game_file] assert check_call(command) == 0 command = ["tw-play", "--max-steps", "100", "--mode", "walkthrough", game_file] assert check_call(command) == 0 ``` #### File: challenges/spaceship/agent_design_a2c.py ```python from collections import defaultdict from os.path import join as pjoin from time import time from glob import glob from typing import Mapping, Any, Optional import re import numpy as np import os import gym import torch import torch.nn as nn import torch.nn.functional as F from torch import optim from textworld import EnvInfos import textworld.gym PATH = pjoin(os.path.dirname(__file__), 'textworld_data') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class ActorzCritic(nn.Module): eps = 0.01 def __init__(self, input_size, hidden_size): super(ActorzCritic, self).__init__() torch.manual_seed(42) # For reproducibility self.embedding = nn.Embedding(input_size, hidden_size) self.encoder_gru = nn.GRU(hidden_size, hidden_size) self.cmd_encoder_gru = nn.GRU(hidden_size, hidden_size) self.state_gru = nn.GRU(hidden_size, hidden_size) self.linear_1 = nn.Linear(2 * hidden_size, 2 * hidden_size) self.critic = nn.Linear(hidden_size, 1) self.actor = nn.Linear(hidden_size * 2, 1) # Parameters self.state_hidden = torch.zeros(1, 1, hidden_size, device=device) self.hidden_size = hidden_size def forward(self, obs, commands, mode, method): input_length, batch_size = obs.size(0), obs.size(1) nb_cmds = commands.size(1) embedded = self.embedding(obs) encoder_output, encoder_hidden = self.encoder_gru(embedded) state_output, state_hidden = self.state_gru(encoder_hidden, self.state_hidden) self.state_hidden = state_hidden state_value = self.critic(state_output) # Attention network over the commands. cmds_embedding = self.embedding.forward(commands) _, cmds_encoding_last_states = self.cmd_encoder_gru.forward(cmds_embedding) # 1*cmds*hidden # Same observed state for all commands. cmd_selector_input = torch.stack([state_hidden] * nb_cmds, 2) # 1*batch*cmds*hidden # Same command choices for the whole batch. cmds_encoding_last_states = torch.stack([cmds_encoding_last_states] * batch_size, 1) # 1*batch*cmds*hidden # Concatenate the observed state and command encodings. input_ = torch.cat([cmd_selector_input, cmds_encoding_last_states], dim=-1) # One FC layer x = F.relu(self.linear_1(input_)) # Compute state-action value (score) per command. action_state = F.relu(self.actor(x)).squeeze(-1) # 1 x Batch x cmds # action_state = F.relu(self.actor(input_)).squeeze(-1) # 1 x Batch x cmds probs = F.softmax(action_state, dim=2) # 1 x Batch x cmds if mode == "train": action_index = probs[0].multinomial(num_samples=1).unsqueeze(0) # 1 x batch x indx elif mode == "test": if method == 'random': action_index = probs[0].multinomial(num_samples=1).unsqueeze(0) # 1 x batch x indx elif method == 'arg-max': action_index = probs[0].max(1).indices.unsqueeze(-1).unsqueeze(-1) # 1 x batch x indx elif method == 'eps-soft': index = probs[0].max(1).indices.unsqueeze(-1).unsqueeze(-1) p = np.random.random() if p < (1 - self.eps + self.eps / nb_cmds): action_index = index else: while True: tp = np.random.choice(probs[0][0].detach().numpy()) if (probs[0][0] == tp).nonzero().unsqueeze(-1) != index: action_index = (probs[0][0] == tp).nonzero().unsqueeze(-1) break return action_state, action_index, state_value def reset_hidden(self, batch_size): self.state_hidden = torch.zeros(1, batch_size, self.hidden_size, device=device) class NeuralAgent: """ Simple Neural Agent for playing TextWorld games. """ MAX_VOCAB_SIZE = 1000 UPDATE_FREQUENCY = 10 LOG_FREQUENCY = 1000 GAMMA = 0.9 def __init__(self) -> None: self.id2word = ["<PAD>", "<UNK>"] self.word2id = {w: i for i, w in enumerate(self.id2word)} self.model = ActorzCritic(input_size=self.MAX_VOCAB_SIZE, hidden_size=128) self.optimizer = optim.Adam(self.model.parameters(), 0.00003) def train(self): self.mode = "train" self.method = "random" self.transitions = [] self.last_score = 0 self.no_train_step = 0 self.stats = {"max": defaultdict(list), "mean": defaultdict(list)} self.memo = {"max": defaultdict(list), "mean": defaultdict(list), "mem": defaultdict(list)} self.model.reset_hidden(1) def test(self, method): self.mode = "test" self.method = method self.model.reset_hidden(1) @property def infos_to_request(self) -> EnvInfos: return EnvInfos(description=True, inventory=True, admissible_commands=True, has_won=True, has_lost=True) def act(self, obs: str, score: int, done: bool, infos: Mapping[str, Any]) -> Optional[str]: # Build agent's observation: feedback + look + inventory. input_ = "{}\n{}\n{}".format(obs, infos["description"], infos["inventory"]) # Tokenize and pad the input and the commands to chose from. input_tensor = self._process([input_]) commands_tensor = self._process(infos["admissible_commands"]) # Get our next action and value prediction. outputs, indexes, values = self.model(input_tensor, commands_tensor, mode=self.mode, method=self.method) action = infos["admissible_commands"][indexes[0]] if self.mode == "test": if done: self.model.reset_hidden(1) return action self.no_train_step += 1 if self.transitions: reward = score - self.last_score # Reward is the gain/loss in score. self.last_score = score if infos["has_won"]: reward += 100 if infos["has_lost"]: reward -= 100 self.transitions[-1][0] = reward # Update reward information. self.stats["max"]["score"].append(score) self.memo["max"]["score"].append(score) if self.no_train_step % self.UPDATE_FREQUENCY == 0: # Update model returns, advantages = self._discount_rewards(values) loss = 0 for transition, ret, advantage in zip(self.transitions, returns, advantages): reward, indexes_, outputs_, values_ = transition advantage = advantage.detach() # Block gradients flow here. probs = F.softmax(outputs_, dim=2) log_probs = torch.log(probs) log_action_probs = log_probs.gather(2, indexes_) policy_loss = (log_action_probs * advantage).sum() value_loss = ((values_ - ret) ** 2.).sum() entropy = (-probs * log_probs).sum() loss += 0.5 * value_loss - policy_loss - 0.001 * entropy self.memo["mem"]["selected_action_index"].append(indexes_.item()) self.memo["mem"]["state_val_func"].append(values_.item()) self.memo["mem"]["advantage"].append(advantage.item()) self.memo["mem"]["return"].append(ret.item()) self.memo["mean"]["reward"].append(reward) self.memo["mean"]["policy_loss"].append(policy_loss.item()) self.memo["mean"]["value_loss"].append(value_loss.item()) self.stats["mean"]["reward"].append(reward) self.stats["mean"]["policy_loss"].append(policy_loss.item()) self.stats["mean"]["value_loss"].append(value_loss.item()) self.stats["mean"]["entropy"].append(entropy.item()) self.stats["mean"]["confidence"].append(torch.exp(log_action_probs).item()) if self.no_train_step % self.LOG_FREQUENCY == 0: msg = "{}. ".format(self.no_train_step) msg += " ".join("{}: {:.3f}".format(k, np.mean(v)) for k, v in self.stats["mean"].items()) msg += " " + " ".join("{}: {}".format(k, np.max(v)) for k, v in self.stats["max"].items()) msg += " vocab: {}".format(len(self.id2word)) print(msg) self.stats = {"max": defaultdict(list), "mean": defaultdict(list)} self.optimizer.zero_grad() loss.backward() nn.utils.clip_grad_norm(self.model.parameters(), 40) self.optimizer.step() self.optimizer.zero_grad() self.transitions = [] self.model.reset_hidden(1) else: # Keep information about transitions for Truncated Backpropagation Through Time. self.transitions.append([None, indexes, outputs, values]) # Reward will be set on the next call if done: self.last_score = 0 # Will be starting a new episode. Reset the last score. return action def _process(self, texts): texts = list(map(self._tokenize, texts)) max_len = max(len(l) for l in texts) padded = np.ones((len(texts), max_len)) * self.word2id["<PAD>"] for i, text in enumerate(texts): padded[i, :len(text)] = text padded_tensor = torch.from_numpy(padded).type(torch.long).to(device) padded_tensor = padded_tensor.permute(1, 0) # Batch x Seq => Seq x Batch return padded_tensor def _tokenize(self, text): # Simple tokenizer: strip out all non-alphabetic characters. text = re.sub("[^a-zA-Z0-9\- ]", " ", text) word_ids = list(map(self._get_word_id, text.split())) return word_ids def _get_word_id(self, word): if word not in self.word2id: if len(self.word2id) >= self.MAX_VOCAB_SIZE: return self.word2id["<UNK>"] self.id2word.append(word) self.word2id[word] = len(self.word2id) return self.word2id[word] def _discount_rewards(self, last_values): returns, advantages = [], [] R = last_values.data for t in reversed(range(len(self.transitions))): rewards, _, _, values = self.transitions[t] R = rewards + self.GAMMA * R adv = R - values returns.append(R) advantages.append(adv) return returns[::-1], advantages[::-1] def play(agent, path, max_step=50, nb_episodes=10, verbose=True): """ This code uses the cooking agent design in the spaceship game. :param agent: the obj of NeuralAgent, a sample object for the agent :param path: The path to the game (envo model) """ infos_to_request = agent.infos_to_request infos_to_request.max_score = True # Needed to normalize the scores. gamefiles = [path] if os.path.isdir(path): gamefiles = glob(os.path.join(path, "*.ulx")) env_id = textworld.gym.register_games(gamefiles, request_infos=infos_to_request, max_episode_steps=max_step) env = gym.make(env_id) # Create a Gym environment to play the text game. if verbose: if os.path.isdir(path): print(os.path.dirname(path), end="") else: print(os.path.basename(path), end="") # Collect some statistics: nb_steps, final reward. avg_moves, avg_scores, avg_norm_scores, seed_h = [], [], [], 4567 for no_episode in range(nb_episodes): obs, infos = env.reset() # Start new episode. env.env.textworld_env._wrapped_env.seed(seed=seed_h) seed_h += 1 score = 0 done = False nb_moves = 0 while not done: command = agent.act(obs, score, done, infos) obs, score, done, infos = env.step(command) nb_moves += 1 agent.act(obs, score, done, infos) # Let the agent know the game is done. if verbose: print(".", end="") avg_moves.append(nb_moves) avg_scores.append(score) avg_norm_scores.append(score / infos["max_score"]) env.close() msg = " \tavg. steps: {:5.1f}; avg. score: {:4.1f} / {}." if verbose: if os.path.isdir(path): print(msg.format(np.mean(avg_moves), np.mean(avg_norm_scores), 1)) else: print(avg_scores) print(msg.format(np.mean(avg_moves), np.mean(avg_scores), infos["max_score"])) agent = NeuralAgent() step_size = 750 print(" ===== Training ===================================================== ") agent.train() # Tell the agent it should update its parameters. start_time = time() print(os.path.realpath("./games/levelMedium_v1.ulx")) play(agent, "./games/levelMedium_v1.ulx", max_step=step_size, nb_episodes=2000, verbose=False) print("Trained in {:.2f} secs".format(time() - start_time)) print(' ===== Test ========================================================= ') agent.test(method='random') play(agent, "./games/levelMedium_v1.ulx", max_step=step_size) # Medium level game. save_path = "./model/levelMedium_v1_random.npy" if not os.path.exists(os.path.dirname(save_path)): os.mkdir(os.path.dirname(save_path)) np.save(save_path, agent) ``` #### File: batch/tests/test_batch_env.py ```python import gym import textworld import textworld.gym from textworld import EnvInfos from textworld.utils import make_temp_directory def test_batch_env(): batch_size = 4 max_episode_steps = 13 with make_temp_directory() as tmpdir: options = textworld.GameOptions() options.path = tmpdir options.seeds = 1234 options.file_ext = ".ulx" game_file1, game1 = textworld.make(options) options.seeds = 4321 options.file_ext = ".z8" game_file2, game2 = textworld.make(options) env_options = EnvInfos(inventory=True, description=True, admissible_commands=True) env_id = textworld.gym.register_games([game_file1, game_file1, game_file2, game_file2], request_infos=env_options, batch_size=batch_size, max_episode_steps=max_episode_steps, name="test-auto-reset", asynchronous=True, auto_reset=True) env = gym.make(env_id) env.reset() # env.close() del env print("OKAY") ``` #### File: textworld/generator/logger.py ```python import pickle import textwrap from collections import defaultdict __all__ = ["GameLogger"] def zero(): return 0 def empty_list(): return [] def update_bincount(arr, count): """ Update bincount in-place. """ if count >= len(arr): extend_size = count - len(arr) + 1 arr += [0] * extend_size arr[count] += 1 def merge_bincout(arr1, arr2): arr = [0] * max(len(arr1), len(arr2)) for i, v in enumerate(arr1): arr[i] += v for i, v in enumerate(arr2): arr[i] += v return arr class GameLogger: def __init__(self, group_actions=True): self.group_actions = group_actions # Stats self.n_games = 0 self.dist_obj_type = defaultdict(zero) self.dist_obj_type_count = defaultdict(empty_list) self.dist_cmd_type = defaultdict(zero) self.dist_final_cmd_type = defaultdict(zero) self.dist_quest_count = [] self.dist_quest_length_count = [] self.dist_obj_count = [] self.dist_inventory_size = [] self.quests = set() self.objects = set() # TODO: # Get statistic for: # - Avg. description length # - Avg. number of container/supporters # - Avg. number of items in container/on supporters # - Avg. number of free exits per world # - Avg. number of doors per world # - Avg. number of contiendoor per world # - Distribution of the commands type # - Distribution of the objects names # - Number of already seen environments # - Number of commands per game def collect(self, game): self.n_games += 1 # Collect distribution of nb. of commands. update_bincount(self.dist_quest_count, len(game.quests)) # Collect distribution of commands leading to winning events. for quest in game.quests: self.quests.add(quest.desc) for event in quest.win_events: actions = event.actions update_bincount(self.dist_quest_length_count, len(actions)) for action in actions: action_name = action.name if self.group_actions: action_name = action_name.split("-")[0].split("/")[0] self.dist_cmd_type[action_name] += 1 self.dist_final_cmd_type[action_name] += 1 # Collect distribution of object's types. dist_obj_type = defaultdict(lambda: 0) interactable_objects = game.world.objects inventory = game.world.get_objects_in_inventory() for obj in interactable_objects: self.objects.add(game.infos[obj.id].name) dist_obj_type[obj.type] += 1 nb_objects = 0 for type_ in game.kb.types: if type_ in ["I", "P", "t", "r"]: continue count = dist_obj_type[type_] nb_objects += count self.dist_obj_type[type_] += count update_bincount(self.dist_obj_type_count[type_], count) update_bincount(self.dist_obj_count, nb_objects) update_bincount(self.dist_inventory_size, len(inventory)) def display_stats(self): print(self.stats()) def stats(self): txt = textwrap.dedent("""\ Nb. games: {n_games} Quests count: {dist_quest_count} ({unique_quest_count} unique) Quest length count: {dist_quest_length_count} Objects: {dist_obj_count} ({unique_obj_count} unique) Inventory: {dist_inventory_size} Objects types overall: {dist_obj_type} Objects types per game: {dist_obj_type_count} Commands types [{nb_cmd_type}]: {dist_cmd_type} Final command types [{nb_final_cmd_type}]: {dist_final_cmd_type} """) def bincount_str(bincount): text = [] for i, c in enumerate(bincount): text.append(str(c)) if (i + 1) % 5 == 0 and (i + 1) < len(bincount): text.append("|") return " ".join(text) def frequencies_str(freqs): if len(freqs) == 0: return "" text = [] labels_max_len = max(map(len, freqs.keys())) total = float(sum(freqs.values())) for k in sorted(freqs.keys()): text += ["{}: {:5.1%}".format(k.rjust(labels_max_len), freqs[k] / total)] return "\n ".join(text) dist_quest_count = bincount_str(self.dist_quest_count) dist_quest_length_count = bincount_str(self.dist_quest_length_count) dist_inventory_size = bincount_str(self.dist_inventory_size) dist_cmd_type = frequencies_str(self.dist_cmd_type) dist_final_cmd_type = frequencies_str(self.dist_final_cmd_type) dist_obj_count = bincount_str(self.dist_obj_count) dist_obj_type = " ".join("{}:{}".format(k, self.dist_obj_type[k]) for k in sorted(self.dist_obj_type.keys())) dist_obj_type_count = "\n ".join(type_ + ": " + bincount_str(self.dist_obj_type_count[type_]) for type_ in sorted(self.dist_obj_type_count.keys())) txt = txt.format(n_games=self.n_games, dist_quest_count=dist_quest_count, unique_quest_count=len(self.quests), dist_quest_length_count=dist_quest_length_count, dist_cmd_type=dist_cmd_type, dist_final_cmd_type=dist_final_cmd_type, dist_obj_count=dist_obj_count, unique_obj_count=len(self.objects), dist_obj_type=dist_obj_type, dist_obj_type_count=dist_obj_type_count, dist_inventory_size=dist_inventory_size, nb_cmd_type=len(self.dist_cmd_type), nb_final_cmd_type=len(self.dist_final_cmd_type)) return txt def aggregate(self, other): assert self.group_actions == other.group_actions self.n_games += other.n_games for k, v in other.dist_obj_type.items(): self.dist_obj_type[k] += v for k, v in other.dist_obj_type_count.items(): self.dist_obj_type_count[k] = merge_bincout(self.dist_obj_type_count[k], v) for k, v in other.dist_cmd_type.items(): self.dist_cmd_type[k] += v for k, v in other.dist_final_cmd_type.items(): self.dist_final_cmd_type[k] += v self.dist_quest_count = merge_bincout(self.dist_quest_count, other.dist_quest_count) self.dist_quest_length_count = merge_bincout(self.dist_quest_length_count, other.dist_quest_length_count) self.dist_obj_count = merge_bincout(self.dist_obj_count, other.dist_obj_count) self.dist_inventory_size = merge_bincout(self.dist_inventory_size, other.dist_inventory_size) self.quests |= other.quests self.objects |= other.objects def save(self, filename): with open(filename, 'wb') as f: pickle.dump(self, f, protocol=2) @staticmethod def load(filename): with open(filename, 'rb') as f: return pickle.load(f) ``` #### File: generator/tests/test_init.py ```python import numpy.testing as npt from textworld.generator import make_world, make_small_map, make_world_with from textworld.logic import Variable, Proposition def test_make_world_no_rng(): world = make_world(1) assert world is not None def test_make_small_map_too_big(): # small maps have max size npt.assert_raises(ValueError, make_small_map, n_rooms=6) def test_make_small_map(): world = make_small_map(n_rooms=4) assert world is not None def test_make_world_with(): r1 = Variable("r_0", "r") P = Variable('P') world = make_world_with(rooms=[r1]) assert Proposition('at', [P, r1]) in world.facts ``` #### File: gym/envs/utils.py ```python from typing import Iterable, Any from numpy.random import RandomState def shuffled_cycle(iterable: Iterable[Any], rng: RandomState, nb_loops: int = -1) -> Iterable[Any]: """ Yield each element of `iterable` one by one, then shuffle the elements and start yielding from the start. Stop after `nb_loops` loops. Arguments: iterable: Iterable containing the elements to yield. rng: Random generator used to shuffle the elements after each loop. nb_loops: Number of times to go through all the elements. If set to -1, loop an infinite number of times. """ elements = [] for e in iterable: elements.append(e) yield e cpt = nb_loops while cpt != 0: cpt -= 1 rng.shuffle(elements) for e in elements: yield e ``` #### File: textworld/tests/test_core.py ```python import unittest from textworld.core import EnvInfos, GameState class TestEnvInfos(unittest.TestCase): @classmethod def setUpClass(cls): args = [(slot, True) for slot in EnvInfos.__slots__ if slot != "extras"] cls.env_empty = EnvInfos() cls.env_half = EnvInfos(**dict(args[::2]), extras=["extra1"]) cls.env_full = EnvInfos(**dict(args), extras=["extra1", "extra2"]) def test_eq(self): assert self.env_empty != self.env_half assert self.env_empty != self.env_full assert self.env_half != self.env_full def test_copy(self): for env in [self.env_empty, self.env_half, self.env_full]: copy = env.copy() assert id(copy) != id(env) assert id(copy.extras) != id(env.extras) assert copy == env class TestGameState(unittest.TestCase): @classmethod def setUpClass(cls): cls.state = GameState() cls.state["field_str"] = "value1" cls.state["field_int"] = 42 cls.state["field_float"] = 4.2 cls.state["field_list"] = ["str", -1, True, 1.2] def test_copy(self): state = self.state.copy() assert id(state) != id(self.state) assert state == self.state # Make sure it's a deepcopy. assert id(state["field_list"]) != id(self.state["field_list"]) ```
{ "source": "JohnnyTh/pytorch_multiproject", "score": 2 }
#### File: pytorch_multiproject/tests/mask_r_cnn_trainer_test.py ```python import os import sys ROOT_DIR = os.path.dirname(os.path.abspath(os.path.dirname('__file__'))) sys.path.append(ROOT_DIR) import torch from mock import MagicMock from mock import patch from trainers.mask_r_cnn_trainer import MaskRCNNTrainer device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class ModelTestMock: def __init__(self): self.training = True self.is_cuda = False def __call__(self, images, *args): if self.training: losses_dict = {'loss_box_reg': torch.rand(1)*10, 'loss_classifier': torch.rand(1)*10, 'loss_mask': torch.rand(1)*10, 'loss_objectness': torch.rand(1)*10, 'loss_rpn_box_reg': torch.rand(1)*10} return losses_dict else: dict_img_1 = {'boxes': torch.rand((100, 4)) * torch.randint(250, ((1), )), 'labels': torch.ones(100), 'masks': torch.randint(2, (100, 1, 250, 250)), 'scores': torch.FloatTensor(100).uniform_(0.6, 0.95)} dict_img_2 = {'boxes': torch.rand((100, 4)) * torch.randint(250, ((1),)), 'labels': torch.ones(100), 'masks': torch.randint(2, (100, 1, 250, 250)), 'scores': torch.FloatTensor(100).uniform_(0.6, 0.95)} return [dict_img_1, dict_img_2] def __next__(self): return self def to(self, device): return self def parameters(self): return self def train(self): self.training = True def eval(self): self.training = False def state_dict(self): pass def load_state_dict(self, *args, **kwargs): pass class DatasetMock: def __init__(self, n): self.n = n def __getitem__(self, item): img = torch.rand(3, 250, 250) target_dict = {'area': torch.rand(2) * 1000, 'boxes': torch.randint(250, (2, 4), dtype=torch.float32), 'image_id': torch.tensor([item], dtype=torch.int64), 'iscrowd': torch.zeros(2, dtype=torch.uint8), 'labels': torch.ones(2, dtype=torch.int64), 'masks': torch.randint(2, (2, 250, 250), dtype=torch.uint8)} return img, target_dict def __len__(self): return self.n class DataloaderTestMock: def __init__(self, n): self.n = n self.num = 0 self.dataset = DatasetMock(n) def __iter__(self): return self def __next__(self): return self.next() def next(self): # first out - source img, second - target img if self.num < self.n: cur, self.num = self.num, self.num + 1 img = (torch.rand(3, 250, 250), ) target_dict = {'area': torch.rand(2)*1000, 'boxes': torch.randint(250, (2, 4), dtype=torch.float32), 'image_id': torch.tensor([cur], dtype=torch.int64), 'iscrowd': torch.zeros(2, dtype=torch.uint8), 'labels': torch.ones(2, dtype=torch.int64), 'masks': torch.randint(2, (2, 250, 250), dtype=torch.uint8)} target = (target_dict, ) return tuple([img, target]) else: self.num = 0 raise StopIteration() def __len__(self): return self.n mock_optim = MagicMock() # we need to return lr since it is required by metric logger mock_optim.param_groups.__getitem__.return_value = {'lr': torch.rand(1).item()} test_data = { 'dataloaders': {'train': DataloaderTestMock(5), 'val': DataloaderTestMock(5)}, 'root': '/home', 'model': ModelTestMock(), 'criterion': None, 'optimizer': mock_optim, 'scheduler': MagicMock(), 'metrics': {}, 'epochs': 10, 'checkpoint': {'start_epoch': 6} } deserialize_data = { 'epoch': 5, 'model_state': 'chkpt_model', 'best_metrics': {}, 'optimizer': { 'name': mock_optim.__class__.__name__, 'state': 'chkpt_optim'}, 'scheduler': { 'name': MagicMock().__class__.__name__, 'state': 'chkpt_sched' } } @patch('os.mkdir') @patch('torch.Tensor.backward', return_value=None) @patch('utils.detection_evaluator.Image.Image.save') @patch('trainers.mask_r_cnn_trainer.warmup_lr_scheduler') @patch('trainers.mask_r_cnn_trainer.MaskRCNNTrainer._serialize', return_value=None) @patch('trainers.mask_r_cnn_trainer.MaskRCNNTrainer.write_log') @patch('trainers.mask_r_cnn_trainer.MaskRCNNTrainer.write_log') def test_train_run(self, _, __, ___, ____, _____, ______): trainer = MaskRCNNTrainer(dataloaders=test_data['dataloaders'], root=test_data['root'], model=test_data['model'], criterion=test_data['criterion'], optimizer=test_data['optimizer'], scheduler=test_data['scheduler'], metrics=test_data['metrics'], epochs=test_data['epochs']) trainer.train() @patch('os.mkdir') @patch('torch.Tensor.backward', return_value=None) @patch('torch.load', return_value=deserialize_data) @patch('utils.detection_evaluator.Image.Image.save') @patch('trainers.mask_r_cnn_trainer.MaskRCNNTrainer._serialize', return_value=None) @patch('trainers.mask_r_cnn_trainer.MaskRCNNTrainer.write_log') def test_train_deserialize_and_run(self, _, __, ___, ____, _____): # Assuming we trained the model from epoch 1 to 5, then saved it and now want to restart trainer = MaskRCNNTrainer(dataloaders=test_data['dataloaders'], root=test_data['root'], model=test_data['model'], criterion=test_data['criterion'], optimizer=test_data['optimizer'], scheduler=test_data['scheduler'], metrics=test_data['metrics'], epochs=test_data['epochs']) trainer._deserialize('/does_not_matter') assert trainer.start_epoch == 6 assert trainer.epochs == test_data['epochs'] + 6 trainer.train() @patch('os.mkdir') @patch('trainers.mask_r_cnn_trainer.save_image') @patch('torch.load', return_value=deserialize_data) @patch('trainers.mask_r_cnn_trainer.MaskRCNNTrainer.write_log') def test_test_run(self, _, __, ___): trainer = MaskRCNNTrainer(dataloaders=test_data['dataloaders']['val'], root=test_data['root'], model=test_data['model'], criterion=test_data['criterion'], optimizer=test_data['optimizer'], scheduler=test_data['scheduler'], metrics=test_data['metrics'], epochs=test_data['epochs']) trainer.test() ``` #### File: pytorch_multiproject/trainers/base_trainer.py ```python from abc import ABC, abstractmethod class BaseTrainer(ABC): @abstractmethod def _train_step(self, epoch): raise NotImplementedError @abstractmethod def train(self): raise NotImplementedError @abstractmethod def _serialize(self, epoch): raise NotImplementedError @abstractmethod def _deserialize(self, chckpt_path): raise NotImplementedError ``` #### File: pytorch_multiproject/trainers/generic_trainer.py ```python import os import logging import torch from trainers.base_trainer import BaseTrainer from abc import abstractmethod class GenericTrainer(BaseTrainer): def __init__(self, root, model, criterion, optimizer, scheduler, metrics, epochs, hyperparams=None, save_dir=None, checkpoint=None, change_lr=False): """ Generic trainer; implements train(), _serialize(), and _deserialize methods. root (str): project root directory. model (callable): an instance of custom neural network class inheriting from nn.Module class. criterion (callable): a loss function. optimizer (optimizer object): object implementing optimization algorithm. scheduler (lr_scheduler): learning rate scheduler object, changes lr of the optimizer every time step() method is called. metrics (dict): dict containing metrics, specific for every custom trainer implementation epochs (int): number of training epochs hyperparams (dict): various hyperparameters we might need inside GenericTrainer or its custom implementations save_dir (str): dir to save the trained models and generated images checkpoint (str, optional): checkpoint path to resume the training from change_lr (bool): if True, learning rate of the optimizer will be changed to provided value even if the model is restored from checkpoint. Uses self.hyperparams['lr'] value. """ self.logger = logging.getLogger('trainer') self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.root = root self.model = model.to(self.device) self.name = model.__class__.__name__ self.criterion = criterion self.optimizer = optimizer self.scheduler = scheduler self.best_metrics = metrics self.epochs = epochs if hyperparams is None: hyperparams = dict({}) self.hyperparams = hyperparams self.start_epoch = 1 self.generic_logger = logging.getLogger(os.path.basename(__file__)) self.change_lr = change_lr if save_dir is not None: self.save_dir = save_dir else: # if custom save dir not provided, save in project folder instead self.save_dir = os.path.join(self.root, 'saved') # create a directory for saving the output if not os.path.exists(self.save_dir): os.mkdir(self.save_dir) if checkpoint is not None: self._deserialize(checkpoint) @abstractmethod def _train_step(self, epoch): # this method is implemented in custom Trainers raise NotImplementedError def train(self): # training loop through epochs, saves the model if some criteria are satisfied during the training for epoch in range(self.start_epoch, self.epochs+1): res = self._train_step(epoch) if res['best_performance']: self._serialize(epoch) def _serialize(self, epoch): # save the model and some other parameters if self.scheduler is not None: sched_state = {'name': self.scheduler.__class__.__name__, 'state': self.scheduler.state_dict()} else: sched_state = None state = { 'epoch': epoch, 'model_name': self.name, 'model_state': self.model.state_dict(), 'optimizer': {'name': self.optimizer.__class__.__name__, 'state': self.optimizer.state_dict()}, 'scheduler': sched_state, 'best_metrics': self.best_metrics } chkpt = '{}_epoch_{}.pth'.format(self.name, epoch) file_path = os.path.join(self.save_dir, chkpt) torch.save(state, file_path) self.generic_logger.info('Saving the model at {}'.format(file_path)) def _deserialize(self, load_path): # restore the model and other parameters from the checkpoint file ('xxx.pth') checkpoint = torch.load(load_path) self.start_epoch = checkpoint['epoch'] + 1 self.epochs = self.epochs + self.start_epoch self.model.load_state_dict(checkpoint['model_state']) self.best_metrics = checkpoint['best_metrics'] # restore optimizer from checkpoint if checkpoint['optimizer']['name'] != self.optimizer.__class__.__name__: self.logger.warning("Warning: Given optimizer type is different from that of checkpoint. " "Optimizer parameters not being resumed.") else: self.optimizer.load_state_dict(checkpoint['optimizer']['state']) # manually adjust the lr of the optimizer if self.change_lr is True: try: # standard pytorch optimizer is an iterable iter(self.optimizer) for param_group in self.optimizer: param_group['lr'] = self.hyperparams.get('lr', 0.0002) # if we are using custom optimizer, it is not iterable except TypeError: if hasattr(self.optimizer, 'change_lr'): self.optimizer.change_lr(self.hyperparams.get('lr', 0.0002)) self.logger.info('Learning rate has been changed!') else: raise NotImplementedError('required method change_lr not implemented in provided optimizer object') # restore scheduler parameters from the checkpoint if checkpoint['scheduler'] is not None: if checkpoint['scheduler']['name'] != self.scheduler.__class__.__name__: self.logger.warning("Warning: Given scheduler type is different from that of checkpoint. " "Scheduler parameters not being resumed.") else: self.scheduler.load_state_dict(checkpoint['scheduler']['state']) self.logger.info('Resuming from checkpoint...') ``` #### File: pytorch_multiproject/utils/detection_evaluator.py ```python import os import logging import numpy as np from PIL import Image from PIL import ImageDraw class DetectionEvaluator: def __init__(self, save_dir): """ To calculate the object detection scores, we accumulate ground the images, ground truth labels (targets) and predictions of our model during the val phase, then compute the necessary metrics (e.g. bounding box mAP) Parameters ---------- save_dir (str): a path where the outputs of the class method self.save_bboxes_masks(..) will be saved. """ self.logger = logging.getLogger(os.path.basename(__file__)) self.data = [] self.save_dir = save_dir def accumulate(self, save_img, targets, predictions): """ Collects the data during the model operation in val phase for further processing. Parameters ---------- save_img (numpy.ndarray): an array of shape (H, W, C) representing the input image. targets (dict): contains ground truth coordinates of bounding boxes, segmentation mask values, etc. predictions (dict): contains predicted values of bounding boxes, segmentation masks, etc. """ self.data.append([save_img, targets, predictions]) def bbox_score(self, iou_threshold=0.5, non_max_iou_thresh=0.5, score_threshold=0.6): """ Calculates the bounding box score using the accumulated ground truth targets and respective predictions. Parameters ---------- iou_threshold (float, 0. to 1., optional): determines whether predicted bounding box is considered false positive (bbox IoU < iou_threshold) or true positive (bbox IoU > iou_threshold). non_max_iou_thresh (float, 0. to 1., optional): non-max suppression threshold, used to discard predicted bounding boxes that have IoU > threshold with any other predicted bbox. score_threshold (float, 0. to 1., optional): used to discard all bounding boxes with confidence < threshold. Returns ------- avg_precision (): mAP score. precision (float): accumulated precision based on predictions and targets on self.data. recall (float): accumulated recall based on predictions and targets on self.data. remaining_idx (list): indices of remaining bounding boxes for each element in self.data. """ remaning_idx = [] true_positive = np.array([]) false_positive = np.array([]) num_ground_truths = 0 for _, targets, predictions in self.data: bboxes_targets = targets['boxes'] bboxes_pred = predictions['boxes'] bboxes_pred_score = predictions['scores'] if not isinstance(bboxes_targets, np.ndarray): bboxes_targets = bboxes_targets.numpy() if not isinstance(bboxes_pred, np.ndarray): bboxes_pred = bboxes_pred.numpy() if not isinstance(bboxes_pred_score, np.ndarray): bboxes_pred_score = bboxes_pred_score.numpy() # apply non-max suppression to predictions bboxes_pred_suppr, _, idx = self.non_max_suppr_binary(bboxes_pred_score, bboxes_pred, score_threshold, non_max_iou_thresh) remaning_idx.append(idx) # since number of predicted boxes is usually different from the number of true boxes, we need # to create all the possible combinations of true and predicted bbox coordinates for iou calculations targets_predictions_comb = np.hstack([np.repeat(bboxes_pred_suppr, bboxes_targets.shape[0], axis=0), np.tile(bboxes_targets, (bboxes_pred_suppr.shape[0], 1))]) self.logger.debug(targets_predictions_comb) # compute ious for all the possible combinations of predcitions and targets iou = self.batch_iou(targets_predictions_comb[:, :4], targets_predictions_comb[:, 4:]) self.logger.debug(iou) # rearrange iou into separate groups - one group for each prediction # corresponding to ious of each prediction with all the ground truth (or target) bboxes iou = np.hsplit(iou, bboxes_pred_suppr.shape[0]) self.logger.debug(iou) # intermediate containers to accumulate true and false positives during one iteration # note that length of one container corresponds to the number of predictions true_pos_iter = np.zeros(len(iou)) false_pos_iter = np.zeros(len(iou)) # collect the number of ground truths in each target - prediction pair for recall calculation num_ground_truths += bboxes_targets.shape[0] # iterate trough groups in calculated ious. One group corresponds to ious of one prediction with all # the targets. guessed_bboxes = [] for group_idx, iou_group in enumerate(iou): guessed = False for target_idx, iou in enumerate(iou_group): if iou > iou_threshold and target_idx not in guessed_bboxes: guessed_bboxes.append(target_idx) true_pos_iter[group_idx] += 1 guessed = True # if the prediction guessed no bboxes and we are at the end of the list # count it as fp if guessed is False and target_idx == (len(iou_group) - 1): false_pos_iter[group_idx] += 1 self.logger.debug('guessed bboxes: ' + str(guessed_bboxes)) true_positive = np.append(true_positive, true_pos_iter) false_positive = np.append(false_positive, false_pos_iter) self.logger.debug('collected_tps:'+str(true_positive)) self.logger.debug('collected_fps:' + str(false_positive)) accum_tp = np.cumsum(true_positive) accum_fp = np.cumsum(false_positive) precision = np.divide(accum_tp, (accum_tp + accum_fp)) recall = accum_tp / num_ground_truths self.logger.debug('Precision :'+str(precision)) self.logger.debug('Recall :'+str(recall)) avg_precision, _, _ = self.get_average_precision(precision, recall) self.logger.debug('\n\n') return avg_precision, precision[-1], recall[-1], remaning_idx def mask_score(self): """ Calculates the mAP score for the generated masks. """ raise NotImplementedError def non_max_suppr_binary(self, bboxes_pred_score, bboxes_pred, score_threshold, iou_threshold): """ Binary classification version of non-max suppression Parameters ---------- bboxes_pred_score (numpy.ndarray[N]): confidence scores for each prediction. bboxes_pred (numpy.ndarray[N, 4]): predicted boxes in format [x1, y1, x2, y2], with values between 0 and H, 0 and W score_threshold (float, 0. to 1.): used to discard all bounding boxes with confidence < threshold. iou_threshold (float, 0. to 1.): non-max suppression threshold, used to discard predicted bounding boxes that have IoU > threshold with any other predicted bbox. Returns ------- out_bboxes (numpy.ndarray): bounding boxes after non-max suppression. out_scores (numpy.ndarray): confidence scores of bounding boxes after non-max suppression. out_idx (numpy.ndarray): indices of bounding boxes remaining after non-max suppression. """ remaining_idx = np.arange(bboxes_pred_score.shape[0]) # firstly we discard all bbox predictions where class prob < score_threshold selected_idx = np.argwhere(bboxes_pred_score > score_threshold).flatten() selected_bboxes = bboxes_pred[selected_idx] selected_scores = bboxes_pred_score[selected_idx] remaining_idx = remaining_idx[selected_idx] out_bboxes = np.empty((0, 4)) out_scores = np.array([]) out_idx = np.array([]) # continue iterations until the list of scores is depleted while len(selected_scores) > 0: highest_score_idx = np.argmax(selected_scores) top_score = selected_scores[highest_score_idx] top_bbox = selected_bboxes[highest_score_idx] top_idx = remaining_idx[highest_score_idx] selected_scores = np.delete(selected_scores, highest_score_idx) selected_bboxes = np.delete(selected_bboxes, highest_score_idx, axis=0) remaining_idx = np.delete(remaining_idx, highest_score_idx) # to prevent selected_bboxes matrix from collapsing into a vector if len(selected_bboxes.shape) == 1: selected_bboxes = np.expand_dims(selected_bboxes, 0) # if we pick the last item from selected_scores and boxes, add it directly to the results # since there are no items left to compare it against if len(selected_scores) > 0: duplicate_boxes_idx = [] for idx, remain_box in enumerate(selected_bboxes): iou = self.intersection_over_union(top_bbox, remain_box) if iou > iou_threshold: duplicate_boxes_idx.append(idx) # drop duplicate boxes with high intersection if any are found selected_scores = np.delete(selected_scores, duplicate_boxes_idx) selected_bboxes = np.delete(selected_bboxes, duplicate_boxes_idx, axis=0) remaining_idx = np.delete(remaining_idx, duplicate_boxes_idx) out_scores = np.append(out_scores, top_score) out_bboxes = np.append(out_bboxes, top_bbox.reshape(1, -1), axis=0) out_idx = np.append(out_idx, top_idx) return out_bboxes, out_scores, out_idx def save_bboxes_masks(self, epoch, bbox_width=2, selected_boxes_ind=None, mask_draw_precision=0.4, opacity=0.4): """ Draws bounding boxes and masks on top of the original image and saves the result. Parameters ---------- epoch (int): epoch number bbox_width (int, optional): the bbox line width, in pixels. selected_boxes_ind (list): a list of lists containing indexes of selected bounding boxes (after non-max suppression) for each image. mask_draw_precision (float, 0. to 1.): confidence score, above which the mask will be drawn (each pixel in predicted mask is assigned a confidence score ranging from 0 to 1) opacity (float, 0. to 1.): mask opacity, 0 - completely transparent, 1 - completely opaque """ image_prep_list = list(self.draw_bbox(bbox_width, selected_boxes_ind)) image_prep_list = list(self.generate_masked_img(image_prep_list, selected_boxes_ind, mask_draw_precision, opacity)) for idx, image in enumerate(image_prep_list): save_addr = os.path.join(self.save_dir, 'Test_img_{}_{}'.format(epoch, idx)) image.save(save_addr, 'PNG') def draw_bbox(self, bbox_width=2, selected_boxes_ind=None): """ Generator method. Draws bounding boxes on top of original image (green - ground truth, red - predicted bounding box). Yields resulting images Parameters ---------- bbox_width (int, optional): the bbox line width, in pixels. selected_boxes_ind (list, optional): a list of lists containing indices of bboxes remaining after non-max suppression. """ for idx, data in enumerate(self.data): image, targets, predictions = data pred_bboxes = predictions['boxes'] # select only bboxes remaining after suppression if selected_boxes_ind is not None: idx_group = selected_boxes_ind[idx] pred_bboxes = pred_bboxes[idx_group] targets_bboxes = targets['boxes'] if not isinstance(targets_bboxes, np.ndarray): targets_bboxes = targets_bboxes.numpy() image_prep = Image.fromarray(image) draw = ImageDraw.Draw(image_prep) for target_bbox in targets_bboxes: draw.rectangle((tuple(target_bbox[:2]), tuple(target_bbox[2:])), outline='green', width=bbox_width) for single_pred in pred_bboxes: draw.rectangle((tuple(single_pred[:2]), tuple(single_pred[2:])), outline='red', width=bbox_width) yield image_prep def generate_masked_img(self, image_prep_list, selected_boxes_ind=None, mask_draw_precision=0.4, opacity=0.4): """ Generator method. Overlays all the generated masks on top of the original image. Yields resulting images. Parameters ---------- selected_boxes_ind (list), mask_draw_precision (float, 0. to 1.), opacity (float, 0. to 1.). """ for idx, data in enumerate(self.data): image = image_prep_list[idx] masks = data[2]['masks'].mul(255).byte().numpy() # expand (H, W) masks if len(masks.shape) == 2: masks = masks[np.newaxis, np.newaxis, :, :] elif len(masks.shape) == 3: masks = masks[:, np.newaxis, :, :] if isinstance(image, np.ndarray): image_prep = Image.fromarray(image) elif isinstance(image, Image.Image): image_prep = image else: raise TypeError('The provided image type must be PIL image of numpy.ndarray') # add alpha channel to the original image image_prep.putalpha(255) if selected_boxes_ind is not None: idx_group = selected_boxes_ind[idx] if idx_group.dtype != int: idx_group = idx_group.astype(int) # pick only those masks that correspond to the bounding boxes after non-max suppression masks = masks[idx_group] for mask in masks: colors = self.generate_color_scheme() # firstly generate 3 color channels and alpha channel mask = np.repeat(mask, 4, axis=0) # replace ones at each color channel with respective color if mask probability > mask_draw_precision # and zero out the values below mask_draw_precision for channel in range(len(colors)): bool_mask_keep = mask[channel] >= int(255*mask_draw_precision) bool_mask_erase = mask[channel] < int(255*mask_draw_precision) mask[channel][bool_mask_keep] = colors[channel] mask[channel][bool_mask_erase] = 0 # fill alpha channel values using R channel as a reference mask[3, :, :][mask[0, :, :] > 0] = int(255*opacity) mask[3, :, :][mask[0, :, :] == 0] = 0 # convert the mask into H, W, C format mask = np.transpose(mask, (1, 2, 0)) # convert the prepared mask into PIL Image object mask_prep = Image.fromarray(mask) # combine the mask and the image image_prep = Image.alpha_composite(image_prep, mask_prep) yield image_prep @staticmethod def generate_color_scheme(): # generates a random color scheme to color the masks return np.random.choice(range(255), size=3) @staticmethod def get_average_precision(precision, recall): """ Computes mAP as approximated AUC of Precision x Recall curve. # More details here: https://github.com/rafaelpadilla/Object-Detection-Metrics Parameters ---------- precision (numpy.ndarray): precision values for all val dataset. recall (numpy.ndarray): recall values for all val dataset. Returns ------- avg_precision (float): mAP score. m_precision (numpy.ndarray): interpolated precision values. m_recall (numpy.ndarray): modified recall values used to calculate the interpolated precision. """ m_precision = list() m_precision.append(0) [m_precision.append(value) for value in precision] m_precision.append(0) m_recall = list() m_recall.append(0) [m_recall.append(value) for value in recall] m_recall.append(1) # interpolate precision by going backwards and overwriting all encountered precision values # with the largest found value for i in range(len(m_precision) - 1, 0, -1): m_precision[i - 1] = max(m_precision[i - 1], m_precision[i]) # locate indices of steps in recall value list (places where recall values change) recall_deltas_idx = [] for i in range(len(m_recall) - 1): if m_recall[1:][i] != m_recall[0:-1][i]: recall_deltas_idx.append(i + 1) # compute avg precision as an area of interpolated precision - recall squares avg_precision = 0 for i in recall_deltas_idx: avg_precision = avg_precision + (m_recall[i] - m_recall[i - 1]) * m_precision[i] return avg_precision, m_precision, m_recall @staticmethod def intersection_over_union(bbox_1, bbox_2): """ Calculates IoU for two bounding boxes. Parameters ---------- bbox_1 (array-like): coordinates of first bounding box in the format [x1, y1, x2, y2]. bbox_2 (array-like):coordinates of second bounding box in the format [x1, y1, x2, y2]. Returns ------- iou (float): IoU value. """ bbox_1_x0 = bbox_1[0] bbox_1_y0 = bbox_1[1] bbox_1_x1 = bbox_1[2] bbox_1_y1 = bbox_1[3] bbox_2_x0 = bbox_2[0] bbox_2_y0 = bbox_2[1] bbox_2_x1 = bbox_2[2] bbox_2_y1 = bbox_2[3] # determine the coordinates of the intersection rectangle x_left = max(bbox_1_x0, bbox_2_x0) y_top = max(bbox_1_y0, bbox_2_y0) x_right = min(bbox_1_x1, bbox_2_x1) y_bottom = min(bbox_1_y1, bbox_2_y1) if x_right < x_left or y_bottom < y_top: return 0.0 intersect_area = (x_right - x_left + 1) * (y_bottom - y_top + 1) bbox_1_area = (bbox_1_x1 - bbox_1_x0 + 1) * (bbox_1_y1 - bbox_1_y0 + 1) bbox_2_area = (bbox_2_x1 - bbox_2_x0 + 1) * (bbox_2_y1 - bbox_2_y0 + 1) iou = intersect_area / (bbox_1_area + bbox_2_area - intersect_area) return iou @staticmethod def batch_iou(bbox_array_1, bbox_array_2): """ Calculates IoU for batched pairs of bonding boxes Parameters ---------- bbox_array_1 (numpy.ndarray[N, 4]): array of coordinates of first bounding box group. bbox_array_2 (numpy.ndarray[N, 4]): array of coordinates of first bounding box group. Returns ------- iou (numpy.ndarray[N]): IoU scores. """ bbox_1_x0 = bbox_array_1[:, 0] bbox_1_y0 = bbox_array_1[:, 1] bbox_1_x1 = bbox_array_1[:, 2] bbox_1_y1 = bbox_array_1[:, 3] bbox_2_x0 = bbox_array_2[:, 0] bbox_2_y0 = bbox_array_2[:, 1] bbox_2_x1 = bbox_array_2[:, 2] bbox_2_y1 = bbox_array_2[:, 3] # determine the coordinates of the intersection rectangle x_left = np.maximum(bbox_1_x0, bbox_2_x0) y_top = np.maximum(bbox_1_y0, bbox_2_y0) x_right = np.minimum(bbox_1_x1, bbox_2_x1) y_bottom = np.minimum(bbox_1_y1, bbox_2_y1) width = x_right - x_left + 1 height = y_bottom - y_top + 1 width[width < 0] = 0 height[height < 0] = 0 intersect_area = height * width bbox_1_area = (bbox_1_x1 - bbox_1_x0 + 1) * (bbox_1_y1 - bbox_1_y0 + 1) bbox_2_area = (bbox_2_x1 - bbox_2_x0 + 1) * (bbox_2_y1 - bbox_2_y0 + 1) iou = intersect_area / (bbox_1_area + bbox_2_area - intersect_area) return iou ``` #### File: pytorch_multiproject/utils/gan_horses_dataset.py ```python import sys import os ROOT_DIR = os.path.dirname(os.path.abspath(os.path.dirname('__file__'))) sys.path.append(ROOT_DIR) import requests import zipfile data_root = os.path.join(ROOT_DIR, 'resources') def get_data(): url = 'https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/horse2zebra.zip' r = requests.get(url) local_file_path = os.path.join(data_root, 'horse2zebra_.zip') os.makedirs(os.path.dirname(local_file_path), exist_ok=True) with open(local_file_path, 'wb') as f: f.write(r.content) get_data() with zipfile.ZipFile(os.path.join(data_root, 'horse2zebra_.zip'), 'r') as zip_ref: zip_ref.extractall(path=data_root) ```
{ "source": "Johnnytjn/RNN_classify", "score": 2 }
#### File: Johnnytjn/RNN_classify/rnn.py ```python import tensorflow as tf import os import opennmt as onmt from utils.model_helper import (get_device_str, residual_rnn_cell, single_rnn_cell) from utils.rnn_cells import WeightTyingWrapper, WeightTyingLayer class RNN(object): """RNN model for text classify """ def __init__(self, hparams): self.hparams = hparams def build(self): self.setup_input_placeholders() self.setup_embedding() self.setup_rnn() self.setup_loss() if self.is_training(): self.setup_training() self.setup_summary() self.saver = tf.train.Saver(tf.global_variables()) def init_model(self, sess, initializer=None): if initializer: sess.run(initializer) else: sess.run(tf.global_variables_initializer()) def save_model(self, sess): return self.saver.save(sess, os.path.join(self.hparams.checkpoint_dir, "model.ckpt"), global_step=self.global_step) def restore_model(self, sess, epoch=None): if epoch is None: self.saver.restore(sess, tf.train.latest_checkpoint( self.hparams.checkpoint_dir)) else: self.saver.restore( sess, os.path.join(self.hparams.checkpoint_dir, "model.ckpt" + ("-%d" % epoch))) print("restored model") def setup_input_placeholders(self): self.source_tokens = tf.placeholder( tf.int32, shape=[None, self.hparams.seq_len], name='source_tokens') self.targets = tf.placeholder( tf.int32, shape=[None], name='class') self.batch_size = self.hparams.batch_size # for training and evaluation if self.hparams.mode in ['train', 'eval']: self.dropout_keep_prob = tf.placeholder( dtype=tf.float32, name='keep_prob') global_step = tf.Variable( initial_value=0, name="global_step", trainable=False, collections=[tf.GraphKeys.GLOBAL_STEP, tf.GraphKeys.GLOBAL_VARIABLES]) self.global_step = global_step def is_training(self): return self.hparams.mode == 'train' def setup_summary(self): self.summary_writer = tf.summary.FileWriter( self.hparams.checkpoint_dir, tf.get_default_graph()) tf.summary.scalar("train_loss", self.losses) tf.summary.scalar("accuracy_summary",self.accuracy) tf.summary.scalar("learning_rate", self.learning_rate) tf.summary.scalar('gN', self.gradient_norm) tf.summary.scalar('pN', self.param_norm) self.summary_op = tf.summary.merge_all() def setup_embedding(self): with tf.variable_scope("embedding") as scope: self.embedding = tf.get_variable(name='embedding', shape=[ self.hparams.vocab_size, self.hparams.embedding_size]) self.source_embedding = tf.nn.embedding_lookup( self.embedding, self.source_tokens) if self.is_training(): self.source_embedding = tf.nn.dropout( self.source_embedding, keep_prob=self.dropout_keep_prob) def setup_rnn(self): with tf.variable_scope("rnn") as scope: if not self.hparams.weight_tying: self.output_layer = tf.layers.Dense(self.hparams.vocab_size) else: self.output_layer = WeightTyingLayer(self.embedding,self.hparams.vocab_size) cell_list = [] residual_layers = self.hparams.residual_layers for i in range(self.hparams.num_layers): # Note: if we use weight_tying, then the num_units of the last layer of RNN should be equal to embedding size # This is also the independent embedding size and hidden size if self.hparams.weight_tying and i == self.hparams.num_layers - 1: rnn_cell = single_rnn_cell(self.hparams.rnn_cell_name, self.hparams.embedding_size, self.is_training(), self.hparams.dropout_keep_prob, self.hparams.weight_keep_drop, self.hparams.variational_dropout) else: rnn_cell = single_rnn_cell(self.hparams.rnn_cell_name, self.hparams.num_units, self.is_training(), self.hparams.dropout_keep_prob, self.hparams.weight_keep_drop, self.hparams.variational_dropout) if i >= self.hparams.num_layers - residual_layers: # Note: in weight_tying, the num_units of the last layer is different from others # we cannot add residual layer on it. if self.hparams.weight_tying and i == self.hparams.num_layers - 1: pass else: wrapper = residual_rnn_cell(self.hparams.residual_type) rnn_cell = wrapper(rnn_cell) if self.hparams.num_gpus > 1: device_str = get_device_str(i, self.hparams.num_gpus) rnn_cell = tf.contrib.rnn.DeviceWrapper( rnn_cell, device_str) cell_list.append(rnn_cell) if self.hparams.num_gpus > 1: device_str = get_device_str(i, self.hparams.num_gpus) rnn_cell = tf.contrib.rnn.DeviceWrapper( rnn_cell, device_str) cell_list.append(rnn_cell) if len(cell_list) > 1: self.final_cell = tf.contrib.rnn.MultiRNNCell(cells=cell_list) else: self.final_cell = cell_list[0] self.initial_state = self.final_cell.zero_state(self.batch_size,dtype=tf.float32) if self.hparams.self_attention: self.final_cell = tf.contrib.rnn.AttentionCellWrapper( self.final_cell, self.hparams.attn_len) outputs, _ = tf.nn.dynamic_rnn(cell=self.final_cell, inputs=self.source_embedding, dtype=tf.float32) outputs = tf.reduce_mean(outputs,axis=1) fc = tf.layers.dense(outputs, self.hparams.embedding_size, name = 'fc1') self.logits = tf.layers.dense(fc, self.hparams.vocab_size, name='fc2') def setup_loss(self): self.loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits+1e-10,labels=self.targets) self.losses = tf.reduce_mean(self.loss) self.prediction = tf.argmax(self.logits,1,output_type=tf.int32) correct_prediction = tf.equal(self.prediction,self.targets) self.correct_num=tf.reduce_sum(tf.cast(correct_prediction,tf.float32)) self.accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32),name="accuracy") def setup_training(self): # learning rate decay if self.hparams.decay_schema == 'exp': self.learning_rate = tf.train.exponential_decay(self.hparams.learning_rate, self.global_step, self.hparams.decay_steps, 0.96, staircase=True) else: self.learning_rate = tf.constant( self.hparams.learning_rate, dtype=tf.float32) opt = onmt.utils.optim.get_optimizer_class( self.hparams.optimizer)(self.learning_rate) params = tf.trainable_variables() get_total_param_num(params) # we need to enable the colocate_gradients_with_ops option in tf.gradients to parallelize the gradients computation. gradients = tf.gradients(self.losses, params, colocate_gradients_with_ops=True if self.hparams.num_gpus>1 else False) clipped_gradients, _ = tf.clip_by_global_norm( gradients, self.hparams.max_gradient_norm) self.gradient_norm = tf.global_norm(gradients) self.param_norm = tf.global_norm(params) self.train_op = opt.apply_gradients( zip(clipped_gradients, params), global_step=self.global_step) def feed_state(self, feed_dict, state): if self.hparams.self_attention: state, attns, attn_states = state feed_dict[self.initial_state[1]] = attns feed_dict[self.initial_state[2]] = attn_states if self.hparams.num_layers == 1: initial_state = tuple([self.initial_state[0]]) state = tuple([state]) else: initial_state = self.initial_state for i, (c, h) in enumerate(self.initial_state[0]): feed_dict[c] = state[i].c feed_dict[h] = state[i].h else: if self.hparams.num_layers == 1: initial_state = tuple([self.initial_state]) state = tuple([state]) else: initial_state = self.initial_state for i, (c, h) in enumerate(initial_state): feed_dict[c] = state[i].c feed_dict[h] = state[i].h return feed_dict def train_one_batch(self, sess, source, targets, state, run_info=False, add_summary=False): feed_dict = {self.dropout_keep_prob: self.hparams.dropout_keep_prob} feed_dict = self.feed_state(feed_dict, state) feed_dict[self.source_tokens]= source feed_dict[self.targets] = targets batch_size = self.batch_size if run_info: run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() _, batch_loss,accuracy, summary, global_step= sess.run( [self.train_op, self.losses,self.accuracy, self.summary_op, self.global_step], feed_dict=feed_dict, options=run_options, run_metadata=run_metadata) else: _, batch_loss,accuracy, summary, global_step= sess.run( [self.train_op, self.losses, self.accuracy, self.summary_op, self.global_step], feed_dict=feed_dict) if run_info: self.summary_writer.add_run_metadata( run_metadata, 'step%03d' % global_step) print("adding run meta for", global_step) if add_summary: self.summary_writer.add_summary(summary, global_step=global_step) return batch_loss, accuracy, global_step, batch_size def eval_one_batch(self, sess, source, targets, state): feed_dict = {self.dropout_keep_prob: 1.0} feed_dict = self.feed_state(feed_dict, state) feed_dict[self.source_tokens] = source feed_dict[self.targets] = targets batch_loss, accuracy= sess.run( [self.losses,self.accuracy ], feed_dict=feed_dict) return batch_loss,accuracy ``` #### File: RNN_classify/utils/weight_drop_lstm.py ```python import tensorflow as tf from tensorflow.python.util import nest from tensorflow.python.ops.rnn_cell_impl import _Linear class WeightDropLSTMCell(tf.contrib.rnn.BasicLSTMCell): def __init__(self, num_units, weight_keep_drop=0.7, mode=tf.estimator.ModeKeys.TRAIN, forget_bias=1.0, state_is_tuple=True, activation=None, reuse=None): """Initialize the parameters for an LSTM cell. """ self.weight_keep_drop = weight_keep_drop self.mode = mode super(WeightDropLSTMCell,self).__init__( num_units, forget_bias, state_is_tuple, activation, reuse) def call(self, inputs, state): """Long short-term memory cell (LSTM). Args: inputs: `2-D` tensor with shape `[batch_size x input_size]`. state: An `LSTMStateTuple` of state tensors, each shaped `[batch_size x self.state_size]`, if `state_is_tuple` has been set to `True`. Otherwise, a `Tensor` shaped `[batch_size x 2 * self.state_size]`. Returns: A pair containing the new hidden state, and the new state (either a `LSTMStateTuple` or a concatenated state, depending on `state_is_tuple`). """ sigmoid = tf.sigmoid # Parameters of gates are concatenated into one multiply for efficiency. if self._state_is_tuple: c, h = state else: c, h = tf.split(value=state, num_or_size_splits=2, axis=1) if self._linear is None: self._linear = _Linear([inputs, h], 4 * self._num_units, True) if self.mode == tf.estimator.ModeKeys.TRAIN: mask = tf.ones_like(self._linear._weights) mask_1, mask_2 = tf.split(mask,num_or_size_splits=2,axis=1) mask_2 = tf.nn.dropout(mask_2,keep_prob=self.weight_keep_drop) * self.weight_keep_drop mask = tf.concat([mask_1,mask_2],axis=1) self._linear._weights = self._linear._weights * mask # i = input_gate, j = new_input, f = forget_gate, o = output_gate i, j, f, o = tf.split( value=self._linear([inputs, h]), num_or_size_splits=4, axis=1) new_c = ( c * sigmoid(f + self._forget_bias) + sigmoid(i) * self._activation(j)) new_h = self._activation(new_c) * sigmoid(o) if self._state_is_tuple: new_state = tf.contrib.rnn.LSTMStateTuple(new_c, new_h) else: new_state = tf.concat([new_c, new_h], 1) return new_h, new_state ```
{ "source": "johnnytorres/crisis_conv_crosslingual", "score": 3 }
#### File: crisis_conv_crosslingual/model/embeddings.py ```python import os import logging import argparse import numpy as np import tensorflow as tf from keras_preprocessing.text import Tokenizer from tqdm import tqdm from data import DataLoader class EmbeddingsBuilder: def __init__(self, args): logging.info('initializing...') self.args = args self.dataset = DataLoader(self.args) self.embeddings_path = args.embeddings_path self.small_embeddings_path = os.path.splitext(self.embeddings_path)[0] + '_small.vec' logging.info('initializing...[ok]') def build_embedding(self, vocab_dict): """ Load embedding vectors from a .txt file. Optionally limit the vocabulary to save memory. `vocab` should be a set. """ num_words = len(vocab_dict) num_found = 0 with open(self.small_embeddings_path, 'w') as out_file: with tf.gfile.GFile(self.embeddings_path) as f: header =next(f) num_embeddings, embeddings_dim = header.split(' ') num_embeddings = int(num_embeddings) out_file.write(header) for _, line in tqdm(enumerate(f), 'loading embeddings', total=num_embeddings): tokens = line.rstrip().split(" ") word = tokens[0] if word in vocab_dict: num_found += 1 out_file.write(line) tf.logging.info("Found embeddings for {} out of {} words in vocabulary".format(num_found, num_words)) def run(self): self.dataset.load() X = self.dataset.X_train_labeled['moment'].values X = np.append(X, self.dataset.X_train_unlabeled['moment'].values, axis=0) X = np.append(X, self.dataset.X_test['moment'].values, axis=0) tokenizer = Tokenizer() tokenizer.fit_on_texts(X) self.build_embedding(tokenizer.word_index) if __name__ == '__main__': logging.basicConfig(format='%(asctime)s %(message)s', level=logging.DEBUG) logging.info('initializing task...') parser = argparse.ArgumentParser() parser.add_argument('--data-dir', default='data/claff-happydb') parser.add_argument('--embeddings-path', type=str, default=None) parser.add_argument('--num-unlabeled', type=int, default=1000) parser.add_argument('--use-allfeats', action='store_true', default=False) parser.add_argument('--predict', action='store_true', default=True) builder = EmbeddingsBuilder(args=parser.parse_args()) builder.run() logging.info('task finished...[ok]') ``` #### File: model/models/base.py ```python import numpy as np from gensim.models import Word2Vec class BaseModel: def __init__(self, task): self.args = task.args self.dataset = task.dataset def train(self, X, y): pass def predict(self, X): pass def build_fit_w2v(self, X_text): w2v_model = Word2Vec() w2v_model.build_vocab(X_text) w2v_model.train( X_text, total_examples=w2v_model.corpus_count, epochs=w2v_model.iter ) return w2v_model def transform_text_to_w2v(self, wv2_model, X_text): X_tmp = [] for sentence in X_text: embeddings = [] for word in sentence.split(): if word in wv2_model: embeddings.append(wv2_model[word]) if len(embeddings) == 0: emb_avg = np.zeros(wv2_model.vector_size) else: emb_avg = np.average(embeddings, axis=0) X_tmp.append(emb_avg) return np.array(X_tmp) ``` #### File: model/models/base_supervised.py ```python import numpy as np from sklearn.semi_supervised import LabelSpreading from tqdm import tqdm from models.base import BaseModel class SupervisedBaseModel(BaseModel): def fit_text(self, X_text, y=None): pass def transform_text(self, X_text): pass def augment_features(self, X_text, X_allfeats): return X_text def augment_instances(self, X_train, y_train): if self.args.num_unlabeled == 0: return X_train, y_train X_unlabeled = self.dataset.X_train_unlabeled y_unlabeled = self.dataset.y_train_unlabeled X_unlabeled = X_unlabeled.values y_unlabeled = y_unlabeled.values X_train_text = X_train[:, self.args.TEXT_COL] self.fit_text(X_train_text, y_train) X_train_rep = self.transform_text(X_train_text) X_train_rep = self.augment_features(X_train_rep, X_train) chunk_size = 1000 num_instances = X_unlabeled.shape[0] num_cols = y_train.shape[1] for row in tqdm(range(0, self.args.num_unlabeled, chunk_size), desc='spreading labels in rows', total=int(self.args.num_unlabeled / chunk_size)): end_row = row + chunk_size end_row = np.minimum(end_row, num_instances) for col in tqdm(range(num_cols), desc='spreading labels in cols', leave=False): X_unlabeled_rep = self.transform_text(X_unlabeled[row:end_row, self.args.TEXT_COL]) X_unlabeled_rep = self.augment_features(X_unlabeled_rep, X_unlabeled[row:end_row, :]) X_spread = np.append(X_train_rep, X_unlabeled_rep, axis=0) y_spread = np.append(y_train[:, col], y_unlabeled[row:end_row, col], axis=0) labeling = LabelSpreading() labeling.fit(X_spread, y_spread) y_unlabeled[row:end_row, col] = labeling.predict(X_unlabeled_rep) X_train = np.append(X_train, X_unlabeled[:row + chunk_size], axis=0) y_train = np.append(y_train, y_unlabeled[:row + chunk_size], axis=0) return X_train, y_train ``` #### File: model/models/supervised_cnn.py ```python from keras.preprocessing import sequence from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.layers import Embedding from keras.layers import Conv1D, GlobalMaxPooling1D from keras.datasets import imdb from models.supervised_fasttext import FastTextModel class CnnModel(FastTextModel): def __init__(self, task): super(CnnModel, self).__init__(task) # set parameters: #self.max_features = 4000 #self.max_len = 400 #self.batch_size = 32 self.filters = 500 self.kernel_size = 5 self.hidden_dims = 500 self.epochs = 10 def build_model(self): print('Build model...') model = Sequential() # we start off with an efficient embedding layer which maps # our vocab indices into embedding_dims dimensions weights = None if self.embeddings_matrix is None else [self.embeddings_matrix] model.add( Embedding( self.max_features, self.embeddings_dim, input_length=self.max_len, #mask_zero=True, weights=weights ) ) model.add(Dropout(0.5)) # we add a Convolution1D, which will learn filters # word group filters of size filter_length: model.add(Conv1D( self.filters, self.kernel_size, padding='valid', activation='relu', strides=1)) # we use max pooling: model.add(GlobalMaxPooling1D()) # We add a vanilla hidden layer: model.add(Dense(self.hidden_dims)) model.add(Dropout(0.5)) model.add(Activation('relu')) # We project onto a single unit output layer, and squash it with a sigmoid: model.add(Dense(self.num_labels)) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) return model if __name__ == '__main__': # set parameters: max_features = 5000 maxlen = 400 batch_size = 32 embedding_dims = 50 filters = 250 kernel_size = 3 hidden_dims = 250 epochs = 2 print('Loading data...') (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features) print(len(x_train), 'train sequences') print(len(x_test), 'test sequences') print('Pad sequences (samples x time)') x_train = sequence.pad_sequences(x_train, maxlen=maxlen) x_test = sequence.pad_sequences(x_test, maxlen=maxlen) print('x_train shape:', x_train.shape) print('x_test shape:', x_test.shape) print('Build model...') model = Sequential() # we start off with an efficient embedding layer which maps # our vocab indices into embedding_dims dimensions model.add(Embedding(max_features, embedding_dims, input_length=maxlen)) model.add(Dropout(0.2)) # we add a Convolution1D, which will learn filters # word group filters of size filter_length: model.add(Conv1D(filters, kernel_size, padding='valid', activation='relu', strides=1)) # we use max pooling: model.add(GlobalMaxPooling1D()) # We add a vanilla hidden layer: model.add(Dense(hidden_dims)) model.add(Dropout(0.2)) model.add(Activation('relu')) # We project onto a single unit output layer, and squash it with a sigmoid: model.add(Dense(1)) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test)) ``` #### File: model/models/unsupervised_kmeans_avg.py ```python import numpy as np from keras_preprocessing.text import Tokenizer from sklearn.cluster import KMeans from sklearn.decomposition import PCA from models.base_unsupervised import UnsupervisedBaseModel class UnsupervisedKmeansAvgBaseModel(UnsupervisedBaseModel): def __init__(self, task): super(UnsupervisedKmeansAvgBaseModel, self).__init__(task) self.num_clusters = 4 # combinations of social and agency self.clf_model = KMeans( init='k-means++', n_clusters=self.num_clusters, n_init=10, random_state=self.args.random_state ) def augment_features(self, X_text, X_all_feats): if not self.args.use_allfeats: return X_text X_all = np.concatenate( [X_text, X_all_feats[:, 2:]], axis=1) return X_all def train(self, X, y=None): X, y = self.augment_instances(X, y) #X_text = self.text_repr_model.fit_transform(X[:, self.args.TEXT_COL]) X_text = X[:, self.args.TEXT_COL] self.max_features = 4000 self.tokenizer = Tokenizer(num_words=self.max_features) self.tokenizer.fit_on_texts(X_text) X_text = self.tokenizer.texts_to_sequences(X_text) X_text = self.tokenizer.sequences_to_texts(X_text) self.text_rep_model = self.build_fit_w2v(X_text) X_text = self.transform_text_to_w2v(self.text_rep_model, X_text) X_all_feats = self.augment_features(X_text, X) pca = PCA( n_components=self.num_clusters, random_state=self.args.random_state ) pca.fit(X_all_feats) model = KMeans( init=pca.components_, n_clusters=self.num_clusters, n_init=1, random_state=self.args.random_state ) model.fit(X_all_feats) self.clf_model = model def predict(self, X): X_text = X[:, self.args.TEXT_COL] #X_text = self.text_rep_model.transform(X[:, self.args.TEXT_COL]) X_text = self.transform_text_to_w2v(self.text_rep_model, X_text) X_all_feats = self.augment_features(X_text, X) y_pred = self.clf_model.predict(X_all_feats) y = y_pred.astype(np.uint8) y = np.unpackbits(y) y = y.reshape(y_pred.shape[0],8) y = y[:, -2:] y = y[:, ::-1] return y ``` #### File: model/preprocessing/data_tokenizer.py ```python import os import csv import argparse import logging import unicodedata import nltk import pandas as pd import unidecode from tqdm import tqdm from nltk.stem import SnowballStemmer, WordNetLemmatizer from nltk.tokenize import wordpunct_tokenize, word_tokenize from nltk.tokenize import TweetTokenizer from preprocessor import tokenize, preprocess, clean import preprocessor # preprocessor.set_options( # preprocessor.OPT.URL, # preprocessor.OPT.SMILEY, # preprocessor.OPT.MENTION, # preprocessor.OPT.EMOJI, # preprocessor.OPT.NUMBER # ) class DataTokenizer: def __init__(self, args): self.args = args self.input_file = os.path.expanduser(args.input_file) self.output_file = os.path.expanduser(args.output_file) self.text_field = args.text_field self.lowercase = True self.tokenizer = args.tokenizer # 0: not tokenize, 1: word_tokenize, 2: punk tokenize, 3: twitter tokenizer self.stem = False self.lemmatize = False self.stemmer = SnowballStemmer("english") if self.stem else None self.lemmatizer = WordNetLemmatizer() if self.lemmatize else None self.tweetokenizer = TweetTokenizer(strip_handles=True, reduce_len=True) stopword_list = nltk.corpus.stopwords.words(args.language) if 'no' in stopword_list: stopword_list.remove('no') if 'not' in stopword_list: stopword_list.remove('not') self.stopword_list = stopword_list if self.tokenizer==3: self.tweet_tokenizer = TweetTokenizer() def tokenize_short_text(self, raw_short_text): short_text = raw_short_text short_text = short_text.strip() short_text = unidecode.unidecode(short_text) if self.lowercase: short_text = short_text.lower() if self.tokenizer > 0: if self.tokenizer == 1: uttterance_tokens = word_tokenize(short_text) if self.tokenizer == 2: uttterance_tokens = wordpunct_tokenize(short_text) if self.tokenizer == 3: uttterance_tokens = self.tweet_tokenizer.tokenize(short_text) if self.tokenizer == 4: short_text = clean(short_text) short_text = self.remove_accented_chars(short_text) uttterance_tokens = self.tweetokenizer.tokenize(short_text) uttterance_tokens = self.remove_duplicated_sequential_words(uttterance_tokens) uttterance_tokens = self.remove_stopwords(uttterance_tokens) if self.stem: uttterance_tokens = [list(map(self.stemmer.stem, sub)) for sub in uttterance_tokens] if self.lemmatize: uttterance_tokens = [[self.lemmatizer.lemmatize(tok, pos='v') for tok in sub] for sub in uttterance_tokens] short_text = " ".join(uttterance_tokens) return short_text def remove_stopwords(self, tokens): filtered_tokens = [token for token in tokens if token not in self.stopword_list] return filtered_tokens def remove_duplicated_sequential_words(self, uttterance_tokens): i = 0 while i < len(uttterance_tokens): j = i + 1 while j < len(uttterance_tokens): if uttterance_tokens[i] == uttterance_tokens[j]: del uttterance_tokens[j] else: break i += 1 return uttterance_tokens def remove_accented_chars(self, text): text = unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').decode('utf-8', 'ignore') return text def run(self): ds=pd.read_csv( self.input_file, parse_dates=['timestamp'], dtype={'id': object, 'conversation_id': object, 'in_reply_to_status_id': object} ) desc = os.path.split(self.input_file)[1] comments_tokenized = [] for i, row in tqdm(ds.iterrows(), 'tokenize {}'.format(desc), total=ds.shape[0]): comments_tokenized.append(self.tokenize_short_text(row[self.text_field])) ds[self.text_field] = comments_tokenized output_file = os.path.expanduser(self.output_file) ds.to_csv(output_file, index=False, quoting=csv.QUOTE_ALL) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--input-file') parser.add_argument('--output-file') parser.add_argument('--language', default='spanish') parser.add_argument('--text-field', type=str, default='text') parser.add_argument('--tokenizer', type=int, default=4) logging.basicConfig(format='%(asctime)s %(message)s', level=logging.DEBUG) builder = DataTokenizer(parser.parse_args()) builder.run() ```
{ "source": "johnnytorres/cwcontribution", "score": 3 }
#### File: cwcontribution/source/nlp_google.py ```python import sys import pandas as pd import numpy as np from google.cloud import language def print_result(annotations): score = annotations.sentiment.score magnitude = annotations.sentiment.magnitude for index, sentence in enumerate(annotations.sentences): sentence_sentiment = sentence.sentiment.score print('Sentence {} has a sentiment score of {}'.format( index, sentence_sentiment)) print('Overall Sentiment: score of {} with magnitude of {}'.format( score, magnitude)) return 0 print('Sentiment: score of {} with magnitude of {}'.format( score, magnitude)) return 0 def analyze(): """Run a sentiment analysis request on text within a passed filename.""" language_client = language.Client() #filename = '../dataset/wiki/aawd_annotated_sent.csv' filename = '../dataset/wiki/opinions_annotated_sent.csv' ds = pd.read_csv(filename) #ds['sentence'] = ds.text.apply(lambda t: t.replace('.', ' ').replace('\n', ' ').replace('\t', ' ')) #dat = ds[0:100].text.str.cat(sep='. ') if 'sent_score' not in ds.columns: ds['sent_score'] = np.nan ds['sent_magnitude'] = np.nan counter = 0 for i, row in ds.iterrows(): try: if not np.isnan(row['sent_score']): continue if row['lang'] == 'es': continue # Instantiates a plain text document. dat = row['text'] document = language_client.document_from_text(dat) # Detects sentiment in the document. annotations = document.annotate_text(include_sentiment=True, include_syntax=False, include_entities=False) ds.loc[i, 'sent_score'] = annotations.sentiment.score ds.loc[i, 'sent_magnitude'] = annotations.sentiment.magnitude counter += 1 print(f"sentence {i} score:{annotations.sentiment.score}") if counter > 1000: break except: print("Unexpected error:", sys.exc_info()[0]) ds.to_csv(filename, index=False) # Print the results # print_result(annotations) if __name__ == '__main__': analyze() ```
{ "source": "johnnytorres/recsys_twconv_s2s", "score": 2 }
#### File: twconvrecsys/data/datasets.py ```python import os import subprocess import keras def prepare_dataset(args): if args.data_dir.startswith('gs://') or os.path.exists(args.data_dir): expand_dirs(args) return fname = "{}.zip".format(args.data_dir) origin = "https://storage.googleapis.com/ml-research-datasets/twconv/{}".format(fname) cache_subdir = "datasets/{}".format(args.data_dir) fpath = keras.utils.get_file(fname, origin, cache_subdir=cache_subdir, extract=True) args.data_dir = os.path.split(fpath)[0] expand_dirs(args) def expand_dirs(args): data_dir = os.path.join(args.data_dir, args.data_subdir) if args.train_files: args.train_files = os.path.join(data_dir, args.train_files) args.eval_files = os.path.join(data_dir, args.eval_files) args.test_files = os.path.join(data_dir, args.test_files) args.predict_files = os.path.join(data_dir, args.predict_files) if args.predict_files else None args.vocab_path = os.path.join(data_dir, args.vocab_path) args.vocab_processor_path = os.path.join(data_dir, 'vocab_processor.bin') if args.embedding_path and args.embedding_enabled: args.embedding_path = os.path.join(args.data_dir, args.embedding_path) else: args.embedding_path = None if not args.job_dir: args.job_dir = os.path.join(data_dir, 'results', args.estimator) # get train size train_csvrecords = os.path.join(data_dir, 'train.csvrecords') args.train_size = wccount(train_csvrecords) def wccount(filename): print('counting lines in file {}'.format(filename)) out = subprocess.Popen( ['wc', '-l', filename], stdout=subprocess.PIPE, stderr=subprocess.STDOUT ).communicate()[0] print('TRAIN SIZE', out) num_instances=int(out.split()[0])-1 # minus header return num_instances ``` #### File: twconvrecsys/metrics/recall.py ```python import numpy as np class RecallEvaluator: @staticmethod def _calculate(y_true, y_pred, k=1): num_examples = len(y_true) num_correct = 0 for label, predictions in zip(y_true, y_pred): if label in predictions[:k]: num_correct+=1 return num_correct/num_examples @staticmethod def calculate(y_true, y_pred): y_pred = np.argsort(y_pred, axis=1) y_pred = np.fliplr(y_pred) num_elements = y_pred.shape[1] klist = np.array( [1, 2, 5, 10]) klist = klist[klist <= num_elements] metrics = [] for k in klist: r = RecallEvaluator._calculate(y_true, y_pred, k) print('recall@({}, {}): {}'.format(k, num_elements, r)) metrics.append(['recall', k, num_elements, r]) return metrics if __name__ == '__main__': labels = [1, 2, 2, 0] predictions = [ [1, 2, 3, 0], [1, 2, 3, 0], [2, 3, 1, 0], [0, 1, 2, 3] ] score = RecallEvaluator.calculate(labels, predictions) print ('done') ``` #### File: twconvrecsys/metrics/report.py ```python import os import argparse import pandas as pd from twconvrecsys.data.csvreader import DataHandler from twconvrecsys.metrics.ndgc import NdgcEvaluator from twconvrecsys.metrics.recall import RecallEvaluator from twconvrecsys.metrics.precision import PrecisionEvaluator def generate_benchmark(args): base_results_dir = args.job_dir base_results_dir = os.path.expanduser(base_results_dir) results_path = os.path.join(base_results_dir, 'benchmarking.csv') data_handler = DataHandler() test = data_handler.load_test_data(args) if os.path.exists(results_path): os.remove(results_path) print('processing...') benchmark_ds = None for d in os.walk(base_results_dir): results_dir = d[0] if not os.path.isdir(results_dir): continue path = os.path.join(results_dir, 'predictions.csv') if not os.path.exists(path): continue dataset, model = os.path.split(results_dir) _, dataset = os.path.split(dataset) print(f'{dataset.upper()} - {model.upper()}') ds = pd.read_csv(path, header=None) col_names = ['target_{}'.format(i) for i in ds.columns] ds.columns = col_names y_pred = ds.values y_true = test.label.values metrics = RecallEvaluator.calculate(y_true, y_pred) metrics_ds = pd.DataFrame(metrics, columns=['metric', 'k', 'N', 'value']) metrics = PrecisionEvaluator.calculate(y_true, y_pred) metrics_ds = metrics_ds.append(pd.DataFrame(metrics, columns=['metric', 'k', 'N', 'value']), ignore_index=True) metrics = NdgcEvaluator.calculate(y_true, y_pred) metrics_ds = metrics_ds.append(pd.DataFrame(metrics, columns=['metric', 'k', 'N', 'value']), ignore_index=True) metrics_ds['dataset'] = dataset metrics_ds['model'] = model benchmark_ds = metrics_ds if benchmark_ds is None else benchmark_ds.append(metrics_ds, ignore_index=True) cols = ['dataset', 'model', 'metric', 'k', 'N', 'value'] benchmark_ds[cols].to_csv(results_path, index=False) print('[OK]') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data-dir', type=lambda path: os.path.expanduser(path)) parser.add_argument('--data-subdir', type=lambda path: os.path.expanduser(path)) parser.add_argument('--job-dir', type=lambda path: os.path.expanduser(path)) generate_benchmark(parser.parse_args()) ``` #### File: twconvrecsys/models/random.py ```python import numpy as np from twconvrecsys.models.base import BaseConversationRecommender class RandomConversationRecommender(BaseConversationRecommender): def __init__(self): super().__init__() def _predict(self, source, targets): n_utt = len(targets) return np.random.choice(n_utt, n_utt, replace=False) ```
{ "source": "johnnyUCSF/hw3", "score": 2 }
#### File: hw3/hw3/optimize.py ```python from hw3 import io from hw3 import smith_waterman import random import copy ######### def byFirst(elem): return elem[0] def calc_total_scores(scoring_matrix,true_pos,true_neg,pen_gap_open,pen_gap_extend): ######note all pairs contains files; each file contains pairs all_pairs = [true_pos,true_neg] ##### for file in all_pairs: for pair in file: ###this contains just the scores output = smith_waterman.smith_waterman(pair[0],pair[1],scoring_matrix,pen_gap_open,pen_gap_extend) total_scores.append([output[2],pair]) return(total_scores) def calc_fitness(FPRs,scoring_matrix,true_pos,true_neg,pen_gap_open,pen_gap_extend): ######takes sum of TPRs for each; max = 4.0 ######note all pairs contains files; each file contains pairs all_pairs = [true_pos,true_neg] #####calculate alignments based on new scoring matrix total_scores = [] for file in all_pairs: for pair in file: ####calculate scores output = smith_waterman.smith_waterman(pair[0],pair[1],scoring_matrix,pen_gap_open,pen_gap_extend) total_scores.append([output[2],pair]) ##### total_scores.sort(key=byFirst,reverse=True) FP_limits = [] #####adjust values for FPR in FPRs: FP_limits.append(FPR * len(true_neg)) ####init TPR_sum = 0.0 ##### for FP_limit in FP_limits: TP = 0.0 FP = 0.0 P = float(len(true_pos)) N = float(len(true_neg)) ####sort biggest to smallest total_scores.sort(key=byFirst,reverse=True) ####scroll through and count TPs and FPs if FP_limit == 0: for alignment in total_scores: if alignment[1] in true_pos: TP += 1 else: break else: for alignment in total_scores: if FP >= FP_limit: break if alignment[1] in true_pos: TP += 1 else: FP += 1 ####save the TPR TPR_sum += (TP/P) return TPR_sum ######## ######### class Particle: ############ self_C = 0.1 swarm_C = 1.0 jitter = 0.5 ###this is a percentage jitter, jitters at percent of speed_init speed_init = 1.0 speed_limit = 10.0 fitness = 0.0 fitness_prevbest = 0.0 identities = [] x_curr = [[]] v_curr = [[]] x_prevbest = [[]] x_neighborbest = [[]] ##########initialize x positions by introducing some jitter def initialize_x(self): ## for row in range(len(self.x_curr)): for col in range(len(self.x_curr)): ####this maintains the symetrical property of matrix if col <= row: ####essentially move them by some amount between 0 and speed init sign = random.choice([True, False]) if sign == True: self.x_curr[row][col] = copy.deepcopy(self.x_curr[row][col]) + self.speed_init*random.uniform(0, 1) else: self.x_curr[row][col] = copy.deepcopy(self.x_curr[row][col]) - self.speed_init*random.uniform(0, 1) ####make symetrical tmp = copy.deepcopy(self.x_curr[row][col]) self.x_curr[col][row] = copy.deepcopy(tmp) return ##########give x_coordinates some jitter def jitter_x(self): for row in range(len(self.x_curr)): for col in range(len(self.x_curr)): ####this maintains the symetrical property of matrix if col <= row: ####essentially move them by some amount between 0 and speed init sign = random.choice([True, False]) if sign == True: self.x_curr[row][col] = copy.deepcopy(self.x_curr[row][col]) + self.jitter*(self.speed_init*random.uniform(0, 1)) else: self.x_curr[row][col] = copy.deepcopy(self.x_curr[row][col]) - self.jitter*(self.speed_init*random.uniform(0, 1)) ####make symetrical tmp = copy.deepcopy(self.x_curr[row][col]) self.x_curr[col][row] = copy.deepcopy(tmp) return ##########initialize velocity vector def initialize_speed(self): ## self.v_curr = copy.deepcopy(self.x_curr) ## for row in range(len(self.x_curr)): for col in range(len(self.x_curr)): ####this maintains the symetrical property of matrix if col <= row: sign = random.choice([True, False]) if sign == True: self.v_curr[row][col] = self.speed_init*random.uniform(0, 1) else: self.v_curr[row][col] = -(self.speed_init*random.uniform(0, 1)) ####make symetrical tmp = self.v_curr[row][col] self.v_curr[col][row] = tmp return ############split off first row from scoring matrix def format_identities(self): self.identities = copy.deepcopy(self.x_curr[0]) self.x_curr.pop(0) return ############rebuild scoring matrix def blosum(self): tmp = copy.deepcopy(self.x_curr) tmp.insert(0,copy.deepcopy(self.identities)) return(tmp) #############update position automatically def update_position(self): ###initialize random numbers random2 = random.choice([True, False]) random3 = random.choice([True, False]) ## term2 = 0 term3 = 0 ## if random2: #####calculate self movement vector term2 = subtract_symetrically(self.x_prevbest,self.x_curr,self.self_C) ## if random3: #####calculate best neighbor movement vector term3 = subtract_symetrically(self.x_neighborbest,self.x_curr,self.swarm_C) ## tmp = add_symetrically(term2,term3,1) v_new = add_symetrically(self.v_curr,tmp,1) ###assign velocity self.v_curr = copy.deepcopy(v_new) ###limit speed self.limit_velocity() ### x_new = add_symetrically(self.x_curr,v_new,1) ####assign self.x_curr = copy.deepcopy(x_new) #### return ##############limit velocity vector def limit_velocity(self): for row in range(len(self.v_curr)): for col in range(len(self.v_curr)): ##### if abs(self.v_curr[row][col]) > self.speed_limit: self.v_curr[row][col] = copy.deepcopy(self.speed_limit) return ############### def add_symetrically(x_curr,v_curr,multiplier): if x_curr == 0: return(v_curr) if v_curr == 0: return(x_curr) ####add symetrically for row in range(len(x_curr)): for col in range(len(x_curr)): ####this maintains the symetrical property of matrix if col <= row: ####add x_curr[row][col] = (x_curr[row][col]+v_curr[row][col])*multiplier ####make symetrical tmp = x_curr[row][col] x_curr[col][row] = tmp ######## return(x_curr) def subtract_symetrically(x_curr,v_curr,multiplier): if x_curr == 0: return(v_curr) if v_curr == 0: return(x_curr) ####add symetrically for row in range(len(x_curr)): for col in range(len(x_curr)): ####this maintains the symetrical property of matrix if col <= row: ####add x_curr[row][col] = (x_curr[row][col]-v_curr[row][col])*multiplier ####make symetrical tmp = x_curr[row][col] x_curr[col][row] = tmp ######## return(x_curr) ######### def particle_swarm(scoring_matrix,FPRs,pen_gap_extend,pen_gap_open,true_pos,true_neg,num_particles,k_max): ######initialize All_Particles = [] initial_fitness = calc_fitness(FPRs,scoring_matrix,true_pos,true_neg,pen_gap_open,pen_gap_extend) for i in range(num_particles): new_particle = Particle() ####start from current blosum matrix new_particle.x_curr = copy.deepcopy(scoring_matrix) ####split off first row of identities to allow for easy matrix operations new_particle.format_identities() ####save previous best position new_particle.x_prevbest = copy.deepcopy(new_particle.x_curr) new_particle.fitness_prevbest = copy.deepcopy(initial_fitness) ####introduce some jitter new_particle.initialize_x() ####randomize velocity matrix new_particle.initialize_speed() ####calc current fitness new_particle.fitness = calc_fitness(FPRs,new_particle.blosum(),true_pos,true_neg,pen_gap_open,pen_gap_extend) ####save All_Particles.append(new_particle) ###### k = 0 while k < k_max: ####new velocity matrix new_particle.initialize_speed() ####update previous best locations for each particle for particle in All_Particles: if particle.fitness > particle.fitness_prevbest: particle.fitness_prevbest = copy.deepcopy(particle.fitness) particle.x_prevbest = copy.deepcopy(particle.x_curr) ####find best particle in group max_fitness = -1.0 max_x_best = [] for particle in All_Particles: if particle.fitness > max_fitness: max_fitness = copy.deepcopy(particle.fitness) max_x_best = copy.deepcopy(particle.x_curr) print(k,max_fitness) ####memorize neighborbest to each particle for particle in All_Particles: particle.x_neighborbest = copy.deepcopy(max_x_best) ####for every three , change particle speed if k % 3 == 0: particle.initialize_speed() ####update particle positions for particle in All_Particles: ###particle.jitter_x() particle.update_position() particle.fitness = calc_fitness(FPRs,particle.blosum(),true_pos,true_neg,pen_gap_open,pen_gap_extend) print(particle.fitness) ### k += 1 ########return particle with best fitness max_fitness = -1.0 max_x_neighborbest = [] for particle in All_Particles: if particle.fitness > max_fitness: print('okay! ',particle.fitness,max_fitness) max_fitness = copy.deepcopy(particle.fitness) max_x_neighborbest = copy.deepcopy(particle.blosum()) return(max_fitness,max_x_neighborbest,All_Particles) ######## ```
{ "source": "JohnnyUtah-9/calculatorclassproject", "score": 2 }
#### File: calculatorclassproject/Calculator/Sqrt.py ```python def sqrt(a): return a ** .5 ``` #### File: calculatorclassproject/Decorator/decorator.py ```python def do_twice(func): def wrapper_do_twice(): func() func() return ``` #### File: calculatorclassproject/Stats/MeanPopu.py ```python from Calculator.Division import division def populationmean(num): try: num_values = len(num) total = sum(num) return division(total, num_values) except ZeroDivisionError: print("Error: Cannot Divide by 0") except ValueError: print("Check your data inputs") ``` #### File: calculatorclassproject/Stats/sdS.py ```python from Calculator.Sqrt import sqrt from Stats.VarP import variance def samplestddev(num): try: variance_float = variance(num) return round(sqrt(variance_float), 5) except ZeroDivisionError: print("Can't Divide by 0 Error") except ValueError: print("Please Check your data inputs") ```
{ "source": "JohnnyUtah-9/SidneyJohnsonCalculator", "score": 4 }
#### File: SidneyJohnsonCalculator/src/Calculator.py ```python from Addition import addition from Multiplication import multiplication from Square_Root import sqrt from Square import square from Division import division from Subtraction import subtraction class Calculator: result = 0 def __init__(self): self.result = 1 pass def add(self, a, b): self.result = addition(a, b) return self.result def subtract(self, a, b): self.result = subtraction(a, b) return self.result def multiply(self, a, b): self.result = multiplication(a, b) return self.result def divide(self, a, b): self.result = division(a, b) return self.result def square(self, a): self.result = square(a) return self.result def square_root(self, a): self.result = sqrt(a) return self.result ``` #### File: SidneyJohnsonCalculator/src/Square_Root.py ```python def sqrt(a): return int(a) ** .5 ```
{ "source": "johnnyvargast/django-model-logs", "score": 2 }
#### File: django-model-logs/model_log/apps.py ```python from django.apps import AppConfig class ModelLogConfig(AppConfig): name = 'model_log' def ready(self): from .setup import register_signals register_signals() ``` #### File: django-model-logs/model_log/middleware.py ```python try: from django.utils.deprecation import MiddlewareMixin except ImportError: MiddlewareMixin = object from . import _local class ModelLogMiddleware(MiddlewareMixin): """Expose request to the local variable. This middleware sets request as a local thread variable, making it available to the methods to allow tracking of the authenticated user making a change. """ def process_request(self, request): _local.request = request def process_response(self, request, response): if hasattr(_local, "request"): del _local.request return response ``` #### File: django-model-logs/model_log/models.py ```python from django.db import models class Log(models.Model): ACTIONS = ( ('C', "Created"), ('U', "Updated"), ('D', "Deleted") ) date_created = models.DateTimeField("Date created", db_index=True, auto_now_add=True, help_text="The date and time this changes was.") object_id = models.IntegerField(help_text="Primary key of the object under version control.") model = models.CharField(help_text="Model of the object under version control.", max_length=128) data = models.TextField(blank=True, null=True, help_text="The data being changed.") action = models.CharField("Action", choices=ACTIONS, help_text='created|updated|deleted', max_length=1) user = models.TextField(blank=True, null=True, help_text='ID of the user who makes the action') def __str__(self): text = "Changes on {} of {} at {}".format( self.object_id, self.model, self.date_created.strftime('%Y-%m-%d %H:%M')) return text @property def action_label(self): return dict(self.ACTIONS)[self.action] class Meta: ordering = ("-pk",) ``` #### File: django-model-logs/model_log/utils.py ```python from django.contrib.contenttypes.models import ContentType from .models import Log from . import _local def model_to_dict(instance): opts = instance._meta ignore_fields = getattr(instance, 'LOGGING_IGNORE_FIELDS', []) only_fields = getattr(instance, 'LOGGING_ONLY_FIELDS', []) if only_fields: field_names = [f.attname for f in opts.fields if f.name in only_fields] elif ignore_fields: field_names = [f.attname for f in opts.fields if f.name not in ignore_fields] else: field_names = [f.attname for f in opts.fields] data = {f: getattr(instance, f, None) for f in field_names} return data def diff(obj): d1 = obj.__attrs d2 = model_to_dict(obj) diffs = [(k, d2[k]) for k, v in d1.items() if v != d2[k]] return dict(diffs) def create_log(obj, action, db, data=None): user = _local.request.user.id if _local.request else "System User" if data or action == 'C': log_data = { 'object_id': obj.pk, 'model': ContentType.objects.get_for_model(obj._meta.model).model, 'action': action, 'data': data, 'user': user } Log.objects.using(db).create(**log_data) ```
{ "source": "johnnyvf24/kalah-alpha-zero", "score": 2 }
#### File: kalah_zero/worker/evaluate.py ```python import os from logging import getLogger from random import random from time import sleep from kalah_zero.agent.model_kalah import KalahModel from kalah_zero.agent.player_kalah import KalahPlayer from kalah_zero.config import Config from kalah_zero.env.kalah_env import KalahEnv, Winner, Player from kalah_zero.lib import tf_util from kalah_zero.lib.data_helper import get_next_generation_model_dirs from kalah_zero.lib.model_helpler import save_as_best_model, load_best_model_weight logger = getLogger(__name__) def start(config: Config): tf_util.set_session_config(per_process_gpu_memory_fraction=0.2) return EvaluateWorker(config).start() class EvaluateWorker: def __init__(self, config: Config): """ :param config: """ self.config = config self.best_model = None def start(self): self.best_model = self.load_best_model() while True: ng_model, model_dir = self.load_next_generation_model() logger.debug(f"start evaluate model {model_dir}") ng_is_great = self.evaluate_model(ng_model) if ng_is_great: logger.debug(f"New Model become best model: {model_dir}") save_as_best_model(ng_model) self.best_model = ng_model self.remove_model(model_dir) def evaluate_model(self, ng_model): results = [] winning_rate = 0 for game_idx in range(self.config.eval.game_num): # ng_win := if ng_model win -> 1, lose -> 0, draw -> None ng_win, white_is_best = self.play_game(self.best_model, ng_model) if ng_win is not None: results.append(ng_win) winning_rate = sum(results) / len(results) logger.debug(f"game {game_idx}: ng_win={ng_win} white_is_best_model={white_is_best} " f"winning rate {winning_rate*100:.1f}%") if results.count(0) >= self.config.eval.game_num * (1-self.config.eval.replace_rate): logger.debug(f"lose count reach {results.count(0)} so give up challenge") break if results.count(1) >= self.config.eval.game_num * self.config.eval.replace_rate: logger.debug(f"win count reach {results.count(1)} so change best model") break winning_rate = sum(results) / len(results) logger.debug(f"winning rate {winning_rate*100:.1f}%") return winning_rate >= self.config.eval.replace_rate def play_game(self, best_model, ng_model): env = KalahEnv().reset() best_player = KalahPlayer(self.config, best_model, play_config=self.config.eval.play_config) ng_player = KalahPlayer(self.config, ng_model, play_config=self.config.eval.play_config) best_is_white = random() < 0.5 if not best_is_white: black, white = best_player, ng_player else: black, white = ng_player, best_player env.reset() while not env.done: if env.player_turn == Player.black: action = black.action(env.board, env.player_turn, env.moves_made) else: action = white.action(env.board, env.player_turn, env.moves_made) env.step(action) ng_win = None if env.winner == Winner.white: if best_is_white: ng_win = 0 else: ng_win = 1 elif env.winner == Winner.black: if best_is_white: ng_win = 1 else: ng_win = 0 return ng_win, best_is_white def load_best_model(self): model = KalahModel(self.config) load_best_model_weight(model) return model def load_next_generation_model(self): rc = self.config.resource while True: dirs = get_next_generation_model_dirs(self.config.resource) if dirs: break logger.info(f"There is no next generation model to evaluate") sleep(60) model_dir = dirs[-1] if self.config.eval.evaluate_latest_first else dirs[0] config_path = os.path.join(model_dir, rc.next_generation_model_config_filename) weight_path = os.path.join(model_dir, rc.next_generation_model_weight_filename) model = KalahModel(self.config) model.load(config_path, weight_path) return model, model_dir def remove_model(self, model_dir): rc = self.config.resource config_path = os.path.join(model_dir, rc.next_generation_model_config_filename) weight_path = os.path.join(model_dir, rc.next_generation_model_weight_filename) os.remove(config_path) os.remove(weight_path) os.rmdir(model_dir) ```
{ "source": "johnnyvnr/ZapBot", "score": 3 }
#### File: ZapBot/zapbot/zapbot.py ```python from selenium import webdriver import time # Necesário estar instalado o Selenium e no PC e o ChromeWebDriver estar na pasta do ZapBot. # Substitua o Grupo de Exemplo1 e Grupo de Exemplo2 pelos grupos desejados. class zapBot: def __init__(self): self.message = "Bom dia família, to testando um bot aqui." self.groups = ["Grupo de Exemplo1", "Grupo de exemplo2"] options = webdriver.ChromeOptions() options.add_argument('lang=pt-br') self.driver = webdriver.Chrome(executable_path=r'./chromedriver.exe') def sendMsg(self): #<span dir="auto" title="Grupo de Exemplo1" class="xxxxx">Grupo de Exemplo1</span> #<div tabindex="-1" class="xxx"> #<span data-testid="send" data-icon="send" class=""> #É necessário trocar os códigos HTML pelos códigos presentes em seu PC self.driver.get('https://web.whattsapp.com') time.sleep(30) for group in self.groups: group = self.driver.find_element_by_xpath(f"//span[@title='{group}']") time.sleep(3) group.click() chatBox = self.driver.find_element_by_class_name('xxx') time.sleep(3) chatBox.click() chatBox.send_keys(self.message) sendButton = self.driver.find_element_by_xpath("//span[@data-icon='send']") time.sleep(3) sendButton.click() time.sleep(3) bot = zapBot() bot.sendMsg() ```
{ "source": "johnny-walker/FGVC", "score": 2 }
#### File: FGVC/onnx/grid_sampler.py ```python import torch import torch.nn.functional as F from mmcv.ops.point_sample import bilinear_grid_sample # sample input and grid x = torch.randn(1, 4, 10, 10) grid = 2*torch.rand(1, 8, 8, 2) - 1 # scale as (-1, 1) # reference output ref = F.grid_sample(x, grid, align_corners=False) # substitute output out = bilinear_grid_sample(x, grid, align_corners=False) # almost the same print(ref - out) # Toy model including blinear_grid_sampler class Sampler(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x, grid): return bilinear_grid_sample(x, grid, align_corners=False) torch.onnx.export( Sampler(), (x, grid), 'bilinear_sampler.onnx', verbose=True, input_names=['input', 'grid'], output_names=['output'] ) # validate the converted onnx operation import onnxruntime as ort sess = ort.InferenceSession('bilinear_sampler.onnx') outputs = sess.run(None, {'input': x.numpy(), 'grid': grid.numpy()}) out_onnx = outputs[0] # almost the same print(ref - out_onnx) ``` #### File: FGVC/onnx/onnx_RAFT.py ```python import os import sys import time sys.path.append(os.path.abspath(os.path.join(__file__, '..', '..'))) from RAFT import utils from RAFT import RAFT import torch import argparse print(torch.__version__) isONNX = True if isONNX: import onnx import onnxruntime as onnxrun else: from openvino.inference_engine import IECore from PIL import Image import numpy as np import glob DEVICE = 'cpu' def initialize_RAFT(args): """Initializes the RAFT model. """ model = torch.nn.DataParallel(RAFT(args)) model.load_state_dict(torch.load(args.model, map_location=torch.device(DEVICE)) ) model = model.module model.to(DEVICE) model.eval() return model def convert_to_ONNX(args): RAFT_model = initialize_RAFT(args) # set the model to inference mode RAFT_model.eval() dummy_input = (torch.randn(1, 3, 720, 1280, device=DEVICE), torch.randn(1, 3, 720, 1280, device=DEVICE)) input_names = ('image1', 'image2') output_names = ('flow') torch.onnx.export(RAFT_model, dummy_input , args.onnx_model, input_names = input_names, output_names = output_names, opset_version = 11) def check_model(args): model = onnx.load(args.onnx_model) onnx.checker.check_model(model) print(onnx.helper.printable_graph(model.graph)) def create_dir(dir): """Creates a directory if not exist. """ if not os.path.exists(dir): os.makedirs(dir) def read_frames(): # Loads frames. filename_list = glob.glob(os.path.join(args.path, '*.png')) + \ glob.glob(os.path.join(args.path, '*.jpg')) # debug, Obtains imgH, imgW and nFrame. #imgH, imgW = np.array(Image.open(filename_list[0])).shape[:2] #nFrame = len(filename_list) # Loads video. video = [] for filename in sorted(filename_list): frame = Image.open(filename) frame = np.array(frame).astype(np.float32) frame = np.transpose(frame, (2, 0, 1)) video.append(frame) video = np.stack(video, axis=0) return video, filename_list def infer_flow_onnx(args): video, filename_list = read_frames() create_dir(os.path.join(args.outroot+'_flow', '_flo')) create_dir(os.path.join(args.outroot+'_flow', '_png')) # inference sess = onnxrun.InferenceSession(args.onnx_model) #inputs = sess.get_inputs() input_image1 = sess.get_inputs()[0].name input_image2 = sess.get_inputs()[1].name if sess is not None: for idx in range(len(video)-1): start = time.time() filename = os.path.split(filename_list[idx])[-1] filename = os.path.splitext(filename)[0] #filename = + '%05d'%idx image1 = video[idx, None] image2 = video[idx+1, None] result = sess.run( None, { input_image1: image1, input_image2: image2 } ) print(time.time()-start) flow = result[0] flow = flow.reshape((-1, flow.shape[2], flow.shape[3])) flow = np.transpose(flow, (1, 2, 0)) flo_path = os.path.join(args.outroot+'_flow', '_flo', filename + '.flo') Image.fromarray(utils.flow_viz.flow_to_image(flow)).save(os.path.join(args.outroot+'_flow','_png', filename + '.png')) utils.frame_utils.writeFlow(flo_path, flow) def infer_flow_openvino(args): video, filename_list = read_frames() create_dir(os.path.join(args.outroot+'_flow', '_flo')) create_dir(os.path.join(args.outroot+'_flow', '_png')) # inference ie = IECore() net = ie.read_network(model=args.onnx_model) # Loading the network to the inference engine exec_net = ie.load_network(network=net, device_name="CPU") input_blobs = [] for item in net.input_info: input_blobs.append(item) net_outputs = list(net.outputs.keys()) if exec_net is not None: for idx in range(len(video)-1): filename = os.path.split(filename_list[idx])[-1] filename = os.path.splitext(filename)[0] #filename = + '%05d'%idx image1 = video[idx, None] image2 = video[idx+1, None] inputs = { input_blobs[0]: image1, input_blobs[1]: image2 } asyncInference = True start = time.time() if asyncInference: exec_net.requests[0].async_infer(inputs) request_status = exec_net.requests[0].wait() print(request_status) flow = exec_net.requests[0] else: # system hangs, not working outputs = exec_net.requests[0].infer(inputs) flow = outputs[net_outputs[0]] print(time.time()-start) flow = flow.reshape((-1, flow.shape[2], flow.shape[3])) flow = np.transpose(flow, (1, 2, 0)) flo_path = os.path.join(args.outroot+'_flow', '_flo', filename + '.flo') Image.fromarray(utils.flow_viz.flow_to_image(flow)).save(os.path.join(args.outroot+'_flow','_png', filename + '.png')) utils.frame_utils.writeFlow(flo_path, flow) if __name__ == '__main__': parser = argparse.ArgumentParser() # RAFT parser.add_argument('--model', default='weight/raft-things.pth', help="restore checkpoint") parser.add_argument('--small', action='store_true', help='use small model') parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision') parser.add_argument('--alternate_corr', action='store_true', help='use efficent correlation implementation') parser.add_argument('--onnx_model', default='weight_onnx/raft.onnx', help="saving onnx model name and path") parser.add_argument('--path', default='data/beach', help="soruce path") parser.add_argument('--outroot', default='data/beach', help="flo out path") args = parser.parse_args() if isONNX: if not os.path.exists(args.onnx_model) : # create folder folder = '' splits = os.path.split(args.onnx_model) for i in range(len(splits)-1): folder = os.path.join(folder, splits[i]) create_dir(folder) # convert to onnx convert_to_ONNX(args) check_model(args) infer_flow_onnx(args) # slow else: # already convreted .onnx file successfully, load directly infer_flow_openvino(args) ``` #### File: FGVC/onnx/pwc_openvino.py ```python import argparse import cv2 import os import time import glob import numpy as np from openvino.inference_engine import IECore import pwc_utils def create_dir(dir): if not os.path.exists(dir): os.makedirs(dir) def reshape_input(net, pair): # Call reshape, but PWCNet seems not working x = np.array([pair]) # padding for 64 alignment print('frame.shape:', x.shape) x_adapt, _ = pwc_utils.adapt_x(x) x_adapt = x_adapt.transpose((0, 4, 1, 2, 3)) # B2HWC --> BC2HW print('adapt.shape:', x_adapt.shape) print(f"Input shape: {net.input_info['x_tnsr'].tensor_desc.dims}") net.reshape({'x_tnsr': x_adapt.shape}) print(f"Input shape (new): {net.input_info['x_tnsr'].tensor_desc.dims}") def load_to_IE(model_xml, pair): model_bin = os.path.splitext(model_xml)[0] + ".bin" ie = IECore() net = ie.read_network(model=model_xml, weights=model_bin) #reshape_input(net, pair) exec_net = ie.load_network(network=net, device_name="CPU") print("IR successfully loaded into Inference Engine.") del net ''' for item in exec_net.input_info: print('input:', item) for key in list(exec_net.outputs.keys()): print('output:', key) ''' return exec_net def read_frames(args): filename_list = glob.glob(os.path.join(args.input, '*.png')) + \ glob.glob(os.path.join(args.input, '*.jpg')) video = [] for filename in sorted(filename_list): frame = cv2.imread(filename) frame = np.array(frame).astype(np.float32) / 255. # normalize to range (0.0, 1.0) #frame = np.transpose(frame, (2, 0, 1)) # HWC -> CHW video.append(frame) #video = np.stack(video, axis=0) # 1CHW return video def inference(args): ''' Performs inference on an input image, given an ExecutableNetwork ''' video = read_frames(args) exec_net = load_to_IE(args.model, video[0]) input_size = ( args.height, args.width ) video_size = video[0].shape[:2] # resize to input, padding for 64 alignment print('original frame shape:', video[0].shape) image1, x_unpad_info = pwc_utils.resize_to_fit(video[0], input_size) # return HWC print('adapt.shape:', image1.shape) image2 = None for idx in range(len(video)-1): image2, _ = pwc_utils.resize_to_fit( video[idx+1], input_size) # return HWC # Repackage input image pairs as np.ndarray x_adapt = np.array([(image1, image2)]) # --> B2HWC x_adapt = np.array([(video[idx], video[idx+1])]) #print (x_adapt.shape) x_adapt = np.array([[image1, image2]]) # --> B2HWC x_adapt = x_adapt.transpose((0, 4, 1, 2, 3)) # B2HWC --> BC2HW # inference start = time.time() y_hat = exec_net.infer({'x_tnsr':x_adapt}) print(time.time()-start) image1 = image2 # restore to orignal resolution, cut off the padding y_adapt = y_hat['pwcnet/flow_pred'] y_adapt = y_adapt.transpose((0, 2, 3, 1)) # BCHW --> BHWC flow = np.squeeze(y_adapt, axis=0) #BHWC --> HWC flow = pwc_utils.unpad_and_upscale(flow, x_unpad_info, video_size) print (flow.shape) dir = f'output_{args.height}x{args.width}' create_dir(dir) save_name = f'{dir}/{idx:05d}.png' cv2.imwrite(save_name, pwc_utils.flow_to_img(flow)) def get_args(): ''' Gets the arguments from the command line. ''' parser = argparse.ArgumentParser("Load an IR into the Inference Engine") model_desc = "location of the model XML file" input_desc = "location of the image input" parser.add_argument("--input", default='../data/tennis', help=input_desc) parser.add_argument("--model", default='../models/model_ir_384x640/pwc_frozen.xml', help=model_desc) parser.add_argument("--height", default=384, type=int, help='model input height') parser.add_argument("--width", default=640, type=int, help='model input width') args = parser.parse_args() conf = [{'model': '../models/model_ir_384x640/pwc_frozen.xml', 'height': 384, 'width': 640}, {'model': '../models/model_ir_448x768/pwc_frozen.xml', 'height': 448, 'width': 768 }, {'model': '../models/model_ir_640x832/pwc_frozen.xml', 'height': 640, 'width': 832 }, {'model': '../models/model_ir_768x1024/pwc_frozen.xml', 'height': 768, 'width': 1024 }, {'model': '../models/model_ir_768x1280/pwc_frozen.xml', 'height': 768, 'width': 1280 }, ] opt = 0 args.model = conf[opt]['model'] args.height = conf[opt]['height'] args.width = conf[opt]['width'] return args def main(): args = get_args() inference(args) if __name__ == "__main__": main() ``` #### File: SAT/pgm01/ObjRemover.py ```python import os import sys sys.path.append(os.path.abspath(os.path.join(__file__, '..', '..', '..'))) import argparse import os import cv2 import glob import numpy as np import torch import imageio from PIL import Image import scipy.ndimage import torchvision.transforms.functional as F import time from tool.get_flowNN import get_flowNN from tool.spatial_inpaint import spatial_inpaint from tool.frame_inpaint import DeepFillv1 import utils.region_fill as rf DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' from tool.cvflow import CVFlowPredictor print("cuda device not found, using cpu...") class VObjRemover(): args = None imgHeight = 720 imgWidth = 1280 nFrame = 0 video = [] mask = [] flow_mask = [] def __init__(self, args): self.args = args def create_dir(self, dir): """Creates a directory if not exist. """ if not os.path.exists(dir): os.makedirs(dir) def initialize_CVFlow(self): model = CVFlowPredictor() return model def infer_flow(self, mode, filename, image1, image2, imgH, imgW, model): if DEVICE == 'cpu': frame1 = image1.reshape((-1, imgH, imgW)).cpu().numpy() frame1 = np.transpose(frame1, (1, 2, 0)).copy() frame2 = image2.reshape((-1, imgH, imgW)).cpu().numpy() frame2 = np.transpose(frame2, (1, 2, 0)).copy() flow = model.predict(frame1, frame2) #model.write_viz(os.path.join(self.args.outroot, 'flow', mode + '_png', filename + '.png'), flow) else: # original uters = 12 _, flow = model(image1, image2, iters=int(self.args.iteration), test_mode=True) flow = flow[0].permute(1, 2, 0).cpu().numpy() return flow def calculate_flow(self, model, video): """Calculates optical flow. """ start = time.time() nFrame, _, imgH, imgW = video.shape FlowF = np.empty(((imgH, imgW, 2, 0)), dtype=np.float32) FlowB = np.empty(((imgH, imgW, 2, 0)), dtype=np.float32) FlowNLF = np.empty(((imgH, imgW, 2, 3, 0)), dtype=np.float32) FlowNLB = np.empty(((imgH, imgW, 2, 3, 0)), dtype=np.float32) mode_list = ['forward', 'backward'] for mode in mode_list: with torch.no_grad(): for i in range(nFrame): if mode == 'forward': if i == nFrame - 1: continue # Flow i -> i + 1 print("Calculating {0} flow {1:2d} <---> {2:2d}".format(mode, i, i + 1), '\r', end='') image1 = video[i, None] image2 = video[i + 1, None] flow = self.infer_flow(mode, '%05d'%i, image1, image2, imgH, imgW, model) FlowF = np.concatenate((FlowF, flow[..., None]), axis=-1) elif mode == 'backward': if i == nFrame - 1: continue # Flow i + 1 -> i print("Calculating {0} flow {1:2d} <---> {2:2d}".format(mode, i, i + 1), '\r', end='') image1 = video[i + 1, None] image2 = video[i, None] flow = self.infer_flow(mode, '%05d'%i, image1, image2, imgH, imgW, model) FlowB = np.concatenate((FlowB, flow[..., None]), axis=-1) print('Finish flow calculation. Consuming time:', time.time() - start) return FlowF, FlowB, FlowNLF, FlowNLB def complete_flow(self, corrFlow, flow_mask, mode): """Completes flow. """ if mode not in ['forward', 'backward']: raise NotImplementedError sh = corrFlow.shape nFrame = sh[-1] compFlow = np.zeros(((sh)), dtype=np.float32) for i in range(nFrame): print("Completing {0} flow {1:2d} <---> {2:2d}".format(mode, i, i + 1), '\r', end='') flow = corrFlow[..., i] if mode == 'forward': flow_mask_img = flow_mask[:, :, i] elif mode == 'backward': flow_mask_img = flow_mask[:, :, i + 1] if mode == 'forward' or mode == 'backward': flow[:, :, 0] = rf.regionfill(flow[:, :, 0], flow_mask_img) flow[:, :, 1] = rf.regionfill(flow[:, :, 1], flow_mask_img) compFlow[:, :, :, i] = flow return compFlow def convertData(self, video, masks): # Obtains imgH, imgW and nFrame. self.imgHeight, self.imgWidth = video[0].shape[:2] self.nFrame = len(video) # convert video frames self.video = [] for frame in video: # convert to CHW frm = torch.from_numpy(frame)[..., :3].permute(2, 0, 1).float() self.video.append(frm) self.video = torch.stack(self.video, dim=0) self.video = self.video.to(DEVICE) # convert masks. self.mask = [] self.flow_mask = [] for mask in masks: mask_img = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) self.mask.append(mask_img) # Dilate 15 pixel so that all known pixel is trustworthy flow_mask_img = scipy.ndimage.binary_dilation(mask_img, iterations=15) # Close the small holes inside the foreground objects flow_mask_img = cv2.morphologyEx(flow_mask_img.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((21, 21),np.uint8)).astype(bool) flow_mask_img = scipy.ndimage.binary_fill_holes(flow_mask_img).astype(bool) self.flow_mask.append(flow_mask_img) def inference(self, callback): begin = time.time() # Flow model. RAFT_model = self.initialize_CVFlow() # Calcutes the corrupted flow. corrFlowF, corrFlowB, _, _ = self.calculate_flow(RAFT_model, self.video) #print('\nFinish flow prediction.') start = time.time() # Makes sure video is in BGR (opencv) format. video = self.video.permute(2, 3, 1, 0).cpu().numpy()[:, :, ::-1, :] / 255. # mask indicating the missing region in the video. mask = np.stack(self.mask, -1).astype(bool) flow_mask = np.stack(self.flow_mask, -1).astype(bool) print('\nFinish filling mask holes. Consuming time:', time.time() - start) # Completes the flow. videoFlowF = corrFlowF videoFlowB = corrFlowB start = time.time() videoFlowF = self.complete_flow(corrFlowF, flow_mask, 'forward') videoFlowB = self.complete_flow(corrFlowB, flow_mask, 'backward') print('\nFinish flow completion. Consuming time:', time.time() - start) iter = 0 mask_tofill = mask video_comp = video nFrame = self.nFrame imgH = self.imgHeight imgW = self.imgWidth # Image inpainting model. deepfill = DeepFillv1(pretrained_model=self.args.deepfill_model, image_shape=[imgH, imgW]) # We iteratively complete the video. while(np.sum(mask_tofill) > 0): start = time.time() print('iteration:', iter) #self.create_dir(os.path.join(self.args.outroot, 'frame_comp_' + str(iter))) # Color propagation. video_comp, mask_tofill, _ = get_flowNN(self.args, video_comp, mask_tofill, videoFlowF, videoFlowB, None, None) print('\nFinish color propagation. Consuming time:', time.time() - start) for i in range(nFrame): mask_tofill[:, :, i] = scipy.ndimage.binary_dilation(mask_tofill[:, :, i], iterations=2) img = video_comp[:, :, :, i] * 255 # Green indicates the regions that are not filled yet. img[mask_tofill[:, :, i]] = [0, 255, 0] callback(img) #cv2.imwrite(os.path.join(self.args.outroot, 'frame_comp_' + str(iter), '%05d.png'%i), img) start = time.time() # do color propagation at most n+1 times if self.args.inpainting or iter >= self.args.nProgagating: mask_tofill, video_comp = spatial_inpaint(deepfill, mask_tofill, video_comp, nFrame) break else: mask_tofill, video_comp = spatial_inpaint(deepfill, mask_tofill, video_comp) iter += 1 print('Total consuming time:', time.time() - begin) finalname = os.path.split(self.args.path)[-1] self.create_dir(os.path.join(self.args.outroot, 'frame_comp_' + 'final')) video_comp_ = (video_comp * 255).astype(np.uint8).transpose(3, 0, 1, 2)[:, :, :, ::-1] # save mp4 filename = os.path.join(self.args.outroot, 'frame_comp_' + 'final', finalname+'.mp4') imageio.mimwrite(filename, video_comp_, fps=15, quality=8, macro_block_size=1) print('saved file:', filename) def loadData(args): # load data frames videoFrames = [] filename_list = glob.glob(os.path.join(args.path, '*.png')) + \ glob.glob(os.path.join(args.path, '*.jpg')) for filename in sorted(filename_list): frame = cv2.imread(filename) videoFrames.append(frame) # load mask maskFrames = [] filename_list = glob.glob(os.path.join(args.path_mask, '*.png')) + \ glob.glob(os.path.join(args.path_mask, '*.jpg')) for filename in sorted(filename_list): frame_mask = cv2.imread(filename) maskFrames.append(frame_mask) return videoFrames, maskFrames def callback(frame): print(frame.shape) if __name__ == '__main__': parser = argparse.ArgumentParser() # following args are required # video completion parser.add_argument('--mode', default='object_removal', help="modes: object_removal / video_extrapolation") parser.add_argument('--path', default='data/beach', help="dataset for evaluation") parser.add_argument('--path_mask', default='data/beach_mask', help="mask for object removal") parser.add_argument('--outroot', default='data/vc', help="output directory") parser.add_argument('--consistencyThres', dest='consistencyThres', default=np.inf, type=float, help='flow consistency error threshold') parser.add_argument('--alpha', dest='alpha', default=0.1, type=float) parser.add_argument('--Nonlocal', action='store_true', help='Whether use edge as guidance to complete flow') parser.add_argument('--deepfill_model', default='weight/imagenet_deepfill.pth', help="restore checkpoint") # extra optional args parser.add_argument('--inpainting', action='store_true', help='all the remaining unknown pixels apply inpainting') parser.add_argument('--nProgagating', default=2, help="do color progagating at most n+1 time") args = parser.parse_args() video, masks = loadData(args) print (video[0].shape, masks[0].shape) vObjRemover = VObjRemover(args) vObjRemover.convertData(video, masks) vObjRemover.inference(callback) ``` #### File: SAT/pgm01/ObjTracker.py ```python import argparse import os import time import glob from tkinter.constants import N import cv2 import numpy as np import torch from videoanalyst.config.config import cfg, specify_task #from videoanalyst.engine.monitor.monitor_impl.utils import (labelcolormap, mask_colorize) from videoanalyst.model import builder as model_builder from videoanalyst.pipeline import builder as pipeline_builder #from videoanalyst.utils.image import ImageFileVideoStream, ImageFileVideoWriter #from videoanalyst.utils.visualization import VideoWriter class VideoTracker: pipeline = None polygon_points = [] videoFrames = [] threshold = 0.5 def __init__(self, args): self.initModel(args) def initModel(self, args): root_cfg = cfg root_cfg.merge_from_file(args.config) # resolve config root_cfg = root_cfg.test task, task_cfg = specify_task(root_cfg) task_cfg.freeze() # build model tracker_model = model_builder.build("track", task_cfg.tracker_model) tracker = pipeline_builder.build("track", task_cfg.tracker_pipeline, model=tracker_model) segmenter = model_builder.build('vos', task_cfg.segmenter) # build pipeline self.pipeline = pipeline_builder.build('vos', task_cfg.pipeline, segmenter=segmenter, tracker=tracker) dev = torch.device('cpu') self.pipeline.set_device(dev) def initData(self, videoFrames, points, threshold=0.01): if self.pipeline is not None: self.videoFrames = videoFrames self.polygon_points = points self.threshold = threshold return True return False def segmentFrames(self, callback): # init box and mask init_mask = None init_box = None first_frame = self.videoFrames[0] np_pts = np.array(self.polygon_points) init_box = cv2.boundingRect(np_pts) zero_mask = np.zeros((first_frame.shape[0], first_frame.shape[1]), dtype=np.uint8) init_mask = cv2.fillPoly(zero_mask, [np_pts], (1, )) self.pipeline.init(first_frame, init_box, init_mask) frame_idx = 0 for frame in self.videoFrames: time_a = time.time() score_map = self.pipeline.update(frame) mask = (score_map > self.threshold).astype(np.uint8) * 255 time_cost = time.time() - time_a print("frame process, consuming time:", time_cost) three_channel = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) callback(three_channel, frame_idx) frame_idx += 1 ``` #### File: FGVC/tool/preprocess_mask_rcnn.py ```python from detectron2.utils.logger import setup_logger setup_logger() import argparse from pathlib import Path import numpy as np import cv2 from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg import matplotlib.image as mpimg def preprocess(args): images = sorted(args.vid_path.glob('*.jpg')) vid_name = args.vid_path.name vid_root = args.vid_path.parent out_mask_dir = vid_root / f'{vid_name}_maskrcnn' out_mask_dir.mkdir(exist_ok=True) cfg = get_cfg() # add project-specific config (e.g., TensorMask) here if you're not running a model in detectron2's core library cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model # Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as well cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") cfg.MODEL.DEVICE = 'cpu' predictor = DefaultPredictor(cfg) number_of_frames = len(images) for i in range(0,number_of_frames): # try: im = np.array(mpimg.imread(images[i])) outputs = predictor(im) if args.class_name == 'anything': try: mask = outputs["instances"].pred_masks[0].cpu().numpy() cv2.imwrite(f"{out_mask_dir}/%05d.png" % (i), mask * 255.0) except: cv2.imwrite(f"{out_mask_dir}/%05d.png" % (i), np.zeros((im.shape[0], im.shape[1]))) else: found_anything = False for j in range(len(outputs['instances'])): if predictor.metadata.thing_classes[(outputs['instances'][j].pred_classes.cpu()).long()]==args.class_name: # found the required class, save the mask mask = outputs["instances"].pred_masks[j].cpu().numpy() cv2.imwrite(f"{out_mask_dir}/%05d.png"%(i), mask * 255.0) found_anything = True break else: # found unneeded class print("Frame %d: Did not find %s, found %s"%(i,args.class_name,predictor.metadata.thing_classes[(outputs['instances'][j].pred_classes.cpu()).long()])) if not found_anything: cv2.imwrite(f"{out_mask_dir}/%05d.png" % (i), np.zeros((im.shape[0],im.shape[1]))) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Preprocess image sequence') parser.add_argument('--vid_path', type=Path, default=Path('./data/'), help='folder to process') parser.add_argument('--class_name', type=str, default='anything', help='The foreground object class') args = parser.parse_args() preprocess(args=args) ```
{ "source": "johnny-walker/SAT", "score": 3 }
#### File: SAT/pgm01/ProgramBase.py ```python import os import tkinter as tk from tkinter import messagebox from tkinter import filedialog from PIL import Image, ImageTk import cv2 class PgmBase(tk.Frame): canvas = None cvImage = None lblMsg = None btnOpen = None btnReset = None btnPlay = None btnPause = None btnSnap = None mouseLeftDown = False imgPosX = 0 imgPosY = 0 def __init__(self, root, width=640, height=480): super().__init__(root) self.root = root self.frame = self self.tkimage = None # configure window screen_width = root.winfo_screenwidth() screen_height = root.winfo_screenheight() center = True x = (screen_width - width)//2 if center else 0 y = 50 if center else 0 self.border = 2 self.padding = 2 self.title = 20 self.msgHeight = self.btnHeight = 20 self.root.width = width + self.padding*2 + self.border*2 self.root.height = height + self.msgHeight + self.btnHeight + self.border*2 + self.padding*2+ self.title geometry = '{0:d}x{1:d}+{2:d}+{3:d}'.format(root.width, root.height, x, y) root.geometry(geometry) # ex. root.geometry('600x400+250+50') root.resizable(False, False) self.root.title('Image Viewer') self.imageStartPos = (0, 0) self.imageClickPos = (0, 0) self.imgResize = (width, height) self.loadLayout() self.bindBtnEvents() def changeBtnStyle(self, widget, active): btn = None if widget == 'brush': btn = self.btnBrush elif widget == 'brush_add': btn = self.btnBrushAdd elif widget == 'brush_erase': btn = self.btnBrushErase elif widget == 'blend': btn = self.btnBlend if btn is not None: if active: btn.configure(foreground = 'purple') else: btn.configure(foreground = 'black') def changeCursor(self, style): self.canvas.config(cursor = style) def bindBtnEvents(self): self.root.protocol("WM_DELETE_WINDOW", self.onExit) self.root.bind("<Configure>", self.onResize) self.root.bind_all('<Key>', self.onKey) # pure virtual self.btnPrev['command'] = lambda : self.onPrev() # pure virtual self.btnNext['command'] = lambda : self.onNext() # pure virtual self.btnBrush['command'] = lambda : self.onBrush() # pure virtual self.btnBrushAdd['command'] = lambda : self.onBrushAdd() # pure virtual self.btnBrushErase['command'] = lambda : self.onBrushErase() # pure virtual self.btnBlend['command'] = lambda : self.onBlend() # pure virtual self.btnReset['command'] = lambda : self.onReset() # pure virtual self.btnSave['command'] = lambda : self.onSave() # pure virtual # mouse events self.root.bind('<Motion>', self.mouseMove) self.root.bind("<Button-1>", self.mouseLDown) self.root.bind("<ButtonRelease-1>", self.mouseLRelease) self.root.bind("<MouseWheel>", self.mouseWheel) def mouseMove(self, event): if event.widget == self.canvas: x, y = event.x, event.y #print('{}, {}'.format(x, y)) self.imgPosX = x-self.imageStartPos[0] self.imgPosY = y-self.imageStartPos[1] # show image pixel location msg = '({:d}, {:d})'.format(self.imgPosX, self.imgPosY) self.lblMsg['text'] = msg def mouseLDown(self, event): if event.widget == self.canvas: self.mouseLeftDown = True x, y = event.x, event.y self.imageClickPos = (x-self.imageStartPos[0], y-self.imageStartPos[1]) self.mouseLClick(event) def mouseLRelease(self, event): self.mouseLeftDown = False # virtual func def mouseLClick(self, event): print('mouseLClick') # virtual func def mouseWheel(self, event): print (event.delta) def hitTestImageRect(self, event,pt): if event.widget == self.canvas: x1, y1 = 0, 0 x2, y2 = x1+self.imgResize[0], y1+self.imgResize[1] x, y = pt if (x1 < x and x < x2): if (y1 < y and y < y2): return True return False def onResize(self, event): if event.widget == self.canvas: self.canvas.update() self.imgWidth = self.canvas.winfo_width() self.imgHeight = self.canvas.winfo_height() def onKey(self, event): if event.char == event.keysym or len(event.char) == 1: if event.keysym == 'space': print("Space") elif event.keysym == 'Escape': self.root.destroy() def onExit(self): if messagebox.askyesno("Exit", "Do you want to quit the application?"): self.root.destroy() def run(self): self.root.mainloop() def defineLayout(self, widget, cols=1, rows=1): for c in range(cols): widget.columnconfigure(c, weight=1) for r in range(rows): widget.rowconfigure(r, weight=1) def loadLayout(self): align_mode = 'nswe' self.imgWidth = self.root.width - self.padding*2 - self.border*2 self.imgHeight = self.root.height - self.btnHeight - self.msgHeight - self.padding*2 - self.border*2 self.canvas = tk.Canvas(self.root, width=self.imgWidth , height=self.imgHeight , bg='gray') divBtnArea = tk.Frame(self.root, width=self.imgWidth , height=self.btnHeight , bg='white') divMsg = tk.Frame(self.root, width=self.imgWidth , height=self.msgHeight , bg='black') self.canvas.grid(row=0, column=0, padx=self.padding, pady=self.padding, sticky=align_mode) divBtnArea.grid(row=1, column=0, padx=self.padding, pady=self.padding, sticky=align_mode) divMsg.grid(row=2, column=0, padx=self.padding, pady=self.padding, sticky=align_mode) self.defineLayout(self.root) self.defineLayout(self.canvas) self.defineLayout(divMsg) self.root.rowconfigure(0, weight=1) self.root.columnconfigure(0, weight=1) self.btnPrev = tk.Button(divBtnArea, text='prev') self.btnPrev.pack(side='left') self.btnNext = tk.Button(divBtnArea, text='next') self.btnNext.pack(side='left') self.btnBrush = tk.Button(divBtnArea, text='brush') self.btnBrush.pack(side='left') self.btnBrushAdd = tk.Button(divBtnArea, text=' + ') self.btnBrushAdd.pack(side='left') self.btnBrushErase = tk.Button(divBtnArea, text=' - ') self.btnBrushErase.pack(side='left') self.btnBlend = tk.Button(divBtnArea, text='blend') self.btnBlend.pack(side='left') self.btnReset = tk.Button(divBtnArea, text='reset') self.btnReset.pack(side='left') self.btnSave = tk.Button(divBtnArea, text='save') self.btnSave.pack(side='left') # label as message self.lblMsg = tk.Label(divMsg, text='show message here', bg='black', fg='white') self.lblMsg.grid(row=0, column=0, sticky='w') self.canvas.update() self.imgWidth = self.canvas.winfo_width() - self.padding * 2 self.imgHeight = self.canvas.winfo_height() - self.padding * 5 print("image size =", self.imgWidth, self.imgHeight) def showMessage(self, msg): self.lblMsg['text'] = msg # virtual func def onPrev(self): print('onPrev') # virtual func def onNext(self): print('onNext') # virtual func def onBrush(self): print('onBrush') # virtual func def onBrushAdd(self): print('onBrushAdd') # virtual func def onBrushErase(self): print('onBrushErase') # virtual func def onBlend(self): print('onBlend') def loadImage(self, path): img = cv2.imread(path) im = self.resize(img) self.showMessage("file {0:s} loaded".format(path)) return im # img : cv image def updateImage(self, img, forceCreate=False): img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) im = Image.fromarray(img) self.tkimage = ImageTk.PhotoImage(im) if forceCreate or not self.cvImage: if self.cvImage: self.canvas.delete(self.cvImage) self.cvImage = self.canvas.create_image(self.imageStartPos, image=self.tkimage, anchor = 'nw') else: self.canvas.itemconfig(self.cvImage, image = self.tkimage) def resize(self, img): self.imgResize = self.dimResize(img) return cv2.resize(img, self.imgResize) def dimResize(self, im): tar_ratio = self.imgHeight / self.imgWidth im_ratio = im.shape[0] / im.shape[1] if tar_ratio > im_ratio: # scale by width width = self.imgWidth height = round(width * im_ratio) else: # scale by height height = self.imgHeight width = round(height / im_ratio) X = (self.imgWidth - width )//2 + self.padding*2 Y = (self.imgHeight - height)//2 + self.padding*2 self.imageStartPos = (X, Y) #print(self.imageStartPos) return (width, height) if __name__ == '__main__': program = PgmBase(tk.Tk(), width=800, height=600) program.loadLayout() program.bindBtnEvents() # load image data cwd = os.getcwd() tiger = os.path.join(cwd, "data/tiger.jpeg") program.loadImage(tiger) program.run() ```
{ "source": "johnny-walker/tfoptflow", "score": 2 }
#### File: tfoptflow/tfoptflow/model_base.py ```python from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf import tensorflow.contrib.slim as slim from ckpt_mgr import BestCheckpointSaver from logger import OptFlowTBLogger from dataset_base import _DBG_TRAIN_VAL_TEST_SETS from lr import lr_multisteps_long, lr_multisteps_fine, lr_cyclic_long, lr_cyclic_fine from mixed_precision import float32_variable_storage_getter _DEBUG_USE_REF_IMPL = False class ModelBase: def __init__(self, name='base', mode='train_with_val', session=None, options=None): """Initialize the ModelBase object Args: mode: Must be in ['train_noval', 'val', 'train_with_val', 'test'] session: optional TF session options: see _DEFAULT_PWCNET_TRAIN_OPTIONS comments Mote: As explained [here](https://stackoverflow.com/a/36282423), you don't need to use with blocks if you only have one default graph and one default session. However, we sometimes create notebooks where we pit the performance of models against each other. Because of that, we need the with block. # tf.reset_default_graph() # self.graph = tf.Graph() # with self.graph.as_default(): """ assert(mode in ['train_noval', 'train_with_val', 'val', 'val_notrain', 'test']) self.mode, self.sess, self.opts = mode, session, options self.y_hat_train_tnsr = self.y_hat_val_tnsr = self.y_hat_test_tnsr = None self.name = name self.num_gpus = len(self.opts['gpu_devices']) self.dbg = False # Set this to True for a detailed log of operation if _DBG_TRAIN_VAL_TEST_SETS != -1: # Debug mode only if self.mode in ['train_noval', 'train_with_val']: self.opts['display_step'] = 10 # show progress every 10 training batches self.opts['snapshot_step'] = 100 # save trained model every 100 training batches self.opts['val_step'] = 100 # Test trained model on validation split every 1000 training batches if self.opts['lr_boundaries'] == 'multisteps': self.opts['lr_boundaries'] = [int(boundary / 1000) for boundary in self.opts['lr_boundaries']] self.opts['max_steps'] = self.opts['lr_boundaries'][-1] else: self.opts['cyclic_lr_stepsize'] = 50 self.opts['max_steps'] = 500 # max number of training iterations (i.e., batches to run) tf.reset_default_graph() self.graph = tf.Graph() with self.graph.as_default(): # Configure a TF session, if one doesn't already exist self.config_session(session) # Build the TF graph self.build_graph() ### # Session mgmt ### def config_session(self, sess): """Configure a TF session, if one doesn't already exist. Args: sess: optional TF session """ if sess is None: config = tf.ConfigProto() config.gpu_options.allow_growth = True #if self.dbg: # config.log_device_placement = True config.allow_soft_placement = True self.sess = tf.Session(config=config) else: self.sess = sess tf.logging.set_verbosity(tf.logging.INFO) ### # Training-specific helpers ### def config_train_ops(self): """Configure training ops. Override this to train your model. Called by the base class when building the TF graph to setup all the training ops, including: - setting up loss computations, - setting up metrics computations, - selecting an optimizer, - creating a training schedule. """ raise NotImplementedError def config_loggers(self): """Configure train logger and, optionally, val logger. """ if self.mode == 'train_with_val': self.tb_train = OptFlowTBLogger(self.opts['ckpt_dir'], 'train') self.tb_val = OptFlowTBLogger(self.opts['ckpt_dir'], 'val') elif self.mode == 'train_noval': self.tb_train = OptFlowTBLogger(self.opts['ckpt_dir'], 'train') ### # Checkpoint mgmt ### def init_saver(self): """Creates a default saver to load/save model checkpoints. Override, if necessary. """ if self.mode in ['train_noval', 'train_with_val']: self.saver = BestCheckpointSaver(self.opts['ckpt_dir'], self.name, self.opts['max_to_keep'], maximize=False) else: self.saver = tf.train.Saver() def save_ckpt(self, ranking_value=0): """Save a model checkpoint Args: ranking_value: The ranking value by which to rank the checkpoint. """ assert(self.mode in ['train_noval', 'train_with_val']) if self.opts['verbose']: print("Saving model...") # save_path = self.saver.save(self.sess, self.opts['ckpt_dir'] + self.name, self.g_step_op) save_path = self.saver.save(ranking_value, self.sess, self.g_step_op) if self.opts['verbose']: if save_path is None: msg = f"... model wasn't saved -- its score ({ranking_value:.2f}) doesn't outperform other checkpoints" else: msg = f"... model saved in {save_path}" print(msg) def load_ckpt(self): """Load a model checkpoint In train mode, load the latest checkpoint from the checkpoint folder if it exists; otherwise, run initializer. In other modes, load from the specified checkpoint file. """ if self.mode in ['train_noval', 'train_with_val']: self.last_ckpt = None if self.opts['train_mode'] == 'fine-tune': # In fine-tuning mode, we just want to load the trained params from the file and that's it... assert(tf.train.checkpoint_exists(self.opts['ckpt_path'])) if self.opts['verbose']: print(f"Initializing from pre-trained model at {self.opts['ckpt_path']} for finetuning...\n") # ...however, the AdamOptimizer also stores variables in the graph, so reinitialize them as well self.sess.run(tf.variables_initializer(self.optim.variables())) # Now initialize the trained params with actual values from the checkpoint _saver = tf.train.Saver(var_list=tf.trainable_variables()) _saver.restore(self.sess, self.opts['ckpt_path']) if self.opts['verbose']: print("... model initialized") self.last_ckpt = self.opts['ckpt_path'] else: # In training mode, we either want to start a new training session or resume from a previous checkpoint self.last_ckpt = self.saver.best_checkpoint(self.opts['ckpt_dir'], maximize=False) if self.last_ckpt is None: self.last_ckpt = tf.train.latest_checkpoint(self.opts['ckpt_dir']) if self.last_ckpt: # We're resuming a session -> initialize the graph with the content of the checkpoint if self.opts['verbose']: print(f"Initializing model from previous checkpoint {self.last_ckpt} to resume training...\n") self.saver.restore(self.sess, self.last_ckpt) if self.opts['verbose']: print("... model initialized") else: # Initialize all the variables of the graph if self.opts['verbose']: print(f"Initializing model with random values for initial training...\n") assert (self.mode in ['train_noval', 'train_with_val']) self.sess.run(tf.global_variables_initializer()) if self.opts['verbose']: print("... model initialized") else: # Initialize the graph with the content of the checkpoint self.last_ckpt = self.opts['ckpt_path'] assert(self.last_ckpt is not None) if self.opts['verbose']: print(f"Loading model checkpoint {self.last_ckpt} for eval or testing...\n") self.saver.restore(self.sess, self.last_ckpt) if self.opts['verbose']: print("... model loaded") # frozen and summary #tf.io.write_graph(self.sess.graph_def, "./models_frozen/", "unfrozen.pb", as_text=False) #tf.summary.FileWriter('./logs', graph=self.sess.graph_def) frozen = tf.graph_util.convert_variables_to_constants(self.sess, self.sess.graph_def, ["pwcnet/flow_pred"]) tf.summary.FileWriter('./logs', graph=frozen) tf.io.write_graph(frozen, "./models_frozen/", "frozen.pb", as_text=False) ### # Model mgmt ### def build_model(self): """Build model. Override this. """ raise NotImplementedError def set_output_tnsrs(self): """Initialize output tensors. Override this. """ raise NotImplementedError ### # Graph mgmt ### def config_placeholders(self): """Configure input and output tensors Args: x_dtype, x_shape: type and shape of elements in the input tensor y_dtype, y_shape: shape of elements in the input tensor """ # Increase the batch size with the number of GPUs dedicated to computing TF ops batch_size = self.num_gpus * self.opts['batch_size'] self.x_tnsr = tf.placeholder(self.opts['x_dtype'], [batch_size] + self.opts['x_shape'], 'x_tnsr') self.y_tnsr = tf.placeholder(self.opts['y_dtype'], [batch_size] + self.opts['y_shape'], 'y_tnsr') def build_graph(self): """ Build the complete graph in TensorFlow """ # with tf.device(self.main_device): # Configure input and output tensors self.config_placeholders() # Build the backbone network, then: # In training mode, configure training ops (loss, metrics, optimizer, and lr schedule) # Also, config train logger and, optionally, val logger # In validation mode, configure validation ops (loss, metrics) if self.mode in ['train_noval', 'train_with_val']: if self.opts['use_mixed_precision'] is True: with tf.variable_scope('fp32_vars', custom_getter=float32_variable_storage_getter): if self.num_gpus == 1: self.build_model() self.config_train_ops() else: self.build_model_towers() else: if self.num_gpus == 1: self.build_model() self.config_train_ops() else: self.build_model_towers() self.config_loggers() elif self.mode in ['val', 'val_notrain']: if self.opts['use_mixed_precision'] is True: with tf.variable_scope('fp32_vars', custom_getter=float32_variable_storage_getter): self.build_model() self.setup_metrics_ops() else: self.build_model() self.setup_metrics_ops() else: # inference mode if self.opts['use_mixed_precision'] is True: with tf.variable_scope('fp32_vars', custom_getter=float32_variable_storage_getter): self.build_model() else: self.build_model() # Set output tensors self.set_output_tnsrs() # Init saver (override if you wish) and load checkpoint if it exists self.init_saver() self.load_ckpt() ### # Sample mgmt (preprocessing and postprocessing) ### def adapt_x(self, x): """Preprocess the input samples to adapt them to the network's requirements Here, x, is the actual data, not the x TF tensor. Override as necessary. Args: x: input samples Returns: Samples ready to be given to the network (w. same shape as x) and companion adaptation info """ return x, None def adapt_y(self, y): """Preprocess the labels to adapt them to the loss computation requirements of the network Here, y, is the actual data, not the y TF tensor. Override as necessary. Args: y: training labels Returns: Labels ready to be used by the network's loss function (w. same shape as y) and companion adaptation inf """ return y, None def postproc_y_hat(self, y_hat): """Postprocess the predictions coming from the network. Override as necessary. Here, y_hat, is the actual data, not the y_hat TF tensor. Args: y_hat: predictions Returns: Postprocessed labels """ return y_hat ### # Learning rate helpers ### def setup_lr_sched(self): """Setup a learning rate training schedule and setup the global step. Override as necessary. """ assert (self.opts['lr_policy'] in [None, 'multisteps', 'cyclic']) self.g_step_op = tf.train.get_or_create_global_step() # Use a set learning rate, if requested if self.opts['lr_policy'] is None: self.lr = tf.constant(self.opts['init_lr']) return # Use a learning rate schedule, if requested assert (self.opts['train_mode'] in ['train', 'fine-tune']) if self.opts['lr_policy'] == 'multisteps': boundaries = self.opts['lr_boundaries'] values = self.opts['lr_values'] if self.opts['train_mode'] == 'train': self.lr = lr_multisteps_long(self.g_step_op, boundaries, values) else: self.lr = lr_multisteps_fine(self.g_step_op, boundaries, values) else: lr_base = self.opts['cyclic_lr_base'] lr_max = self.opts['cyclic_lr_max'] lr_stepsize = self.opts['cyclic_lr_stepsize'] if self.opts['train_mode'] == 'train': self.lr = lr_cyclic_long(self.g_step_op, lr_base, lr_max, lr_stepsize) else: self.lr = lr_cyclic_fine(self.g_step_op, lr_base, lr_max, lr_stepsize) ### # Debug utils ### def summary(self): model_vars = tf.trainable_variables() slim.model_analyzer.analyze_vars(model_vars, print_info=True) def print_config(self): """Display configuration values. Ref: - How to count total number of trainable parameters in a tensorflow model? https://stackoverflow.com/questions/38160940/how-to-count-total-number-of-trainable-parameters-in-a-tensorflow-model """ with self.graph.as_default(): print("\nModel Configuration:") for k, v in self.opts.items(): if self.mode in ['train_noval', 'train_with_val']: if self.opts['lr_policy'] == 'multisteps': if k in ['init_lr', 'cyclic_lr_max', 'cyclic_lr_base', 'cyclic_lr_stepsize']: continue if self.opts['lr_policy'] == 'cyclic': if k in ['init_lr', 'lr_boundaries', 'lr_values']: continue print(f" {k:22} {v}") print(f" {'mode':22} {self.mode}") # if self.mode in ['train_noval', 'train_with_val']: #if self.dbg: # self.summary() print(f" {'trainable params':22} {np.sum([np.prod(v.shape) for v in tf.trainable_variables()])}") ```
{ "source": "JohnnyWang1998/ukraineRussiaTweetsSentimentAnalysis", "score": 4 }
#### File: src/data/extract_media_data.py ```python from bs4 import BeautifulSoup import urllib import pandas as pd def get_media_dict(url: str) -> dict: """ Get a dictionary of media accounts from website url. @param url: website url return: a dictionary of media accounts """ soup = BeautifulSoup(urllib.request.urlopen(url).read()) media_account_dict = {} # get the table with media account information account_table = soup.findAll('table')[0].tbody for (i, row) in enumerate(account_table.findAll('tr')): # skip the table head if i == 0: continue # get name of each row user_name = row.findAll('td')[1].text real_name = row.findAll('td')[2].text # add names without @ media_account_dict[real_name] = user_name[1:] return media_account_dict def export_media_list(url: str): """ Export a list of media accounts from website url. @param url: website url """ media_account_dict = get_media_dict(url) # export to a csv file media_df = pd.DataFrame(list(zip(media_account_dict.keys(), media_account_dict.values())), columns=['real_name', 'user_name']) media_df.head() media_df.to_csv('../data/external/media_accounts.csv', index=False) ``` #### File: src/data/make_dataset.py ```python import pandas as pd from tqdm import tqdm import gzip import emoji import httpx from googletrans import Translator import time import ast def get_dataset(path, file_list): final_df = pd.DataFrame() # initiate a empty dataframe to append(concat) into with tqdm(total=len(file_list)) as pbar: # tqdm shows you the progress of looping for file in file_list: with gzip.open(path + '/' + file) as f: df = pd.read_csv(f) df.drop(['Unnamed: 0', 'acctdesc', 'location', 'tweetid', 'coordinates', 'extractedts'], axis=1, inplace=True) # drop useless columns df['usercreatedts'] = pd.to_datetime(df['usercreatedts']) # convert to datetime df = df[df['usercreatedts'].dt.year != 2022] # filter out accounts created recently in 2022 df = df.drop_duplicates(subset=['text'], keep='first') # drop duplicated retweets, keep first # filter out None English and Russian language tweets df = df[(df['language'] == 'en') | (df['language'] == 'ru')] # only keep accounts that have over 200 followers/totaltweets df = df[(df['followers'] >= 200) & (df['totaltweets'] >= 200)] final_df = pd.concat([final_df, df], ignore_index=True) # use concat because it's faster than append pbar.update(1) final_df = final_df.drop_duplicates(subset=['text'], keep='first') # drop retweets across daily borders final_df.reset_index(drop=True, inplace=True) # reset index return final_df def get_all_emoji(df, language): res = {} emoji_collection = emoji.UNICODE_EMOJI[language] for line in df.text.tolist(): for c in line: if c in emoji_collection: if c in res: res[c] += 1 else: res[c] = 1 return pd.DataFrame.from_dict({'emoji': list(res.keys()), 'UNICODE': [emoji.demojize(emo, language='en') for emo in list(res.keys())], 'count': list(res.values())}).sort_values('count', ascending=False).reset_index( drop=True) def count_hashtags(df): counts = {} for tags in df.hashtags.tolist(): for tag in tags: if tag in counts: counts[tag] += 1 else: counts[tag] = 1 return pd.DataFrame.from_dict(counts, orient='index', columns=['hashtag']).sort_values(['hashtag'], ascending=False) def run_translate(df): result = [] timeout = httpx.Timeout(10) # increase timeout to 10 sec translator = Translator(timeout=timeout) with tqdm(total=len(df.text.tolist())) as pbar: for i, line in enumerate(df.text.tolist()): try: res = translator.translate(line, src='ru', dest='en').text except TypeError: # Handle weird Json TypeError res = 'TypeError' result.append(res) if (i + 1) % 4 == 0: time.sleep(1) # limit api calls to under 5 per second pbar.update(1) return result def process_new_data(df): df.drop(['_type', 'url', 'renderedContent', 'id', 'replyCount', 'quoteCount', 'conversationId', 'source', 'sourceUrl', 'sourceLabel', 'outlinks', 'tcooutlinks', 'retweetedTweet', 'media', 'quotedTweet', 'inReplyToTweetId', 'inReplyToUser', 'mentionedUsers', 'coordinates', 'place', 'cashtags', 'Searh'], axis=1, inplace=True, errors='ignore') # drop useless columns df['hashtags'] = df['hashtags'].apply(lambda d: d if isinstance(d, str) else "[]") # impute NaN with string "[]" df['hashtags'] = df['hashtags'].apply(lambda x: ast.literal_eval(x)) # use literal_eval to turn str to list df['hashtags'] = df['hashtags'].map(lambda x: list(map(str.lower, x))) # hashtags to lower case df['user'] = df['user'].apply(lambda x: ast.literal_eval(x)) # turn str to dict from_list = ['created', 'friendsCount', 'followersCount', 'statusesCount', 'id', 'username'] to_list = ['usercreatedts', 'following', 'followers', 'totaltweets', 'userid', 'username'] for x, y in zip(from_list, to_list): df[y] = df['user'].apply(lambda z: z[x]) # extract features from 'user' column df.drop(['user'], axis=1, inplace=True) df.rename(columns={"date": "tweetcreatedts", "content": "text", "retweetCount": "retweetcount", "likeCount": "favorite_count", "lang": "language"}, inplace=True) # rename columns to match the original dataset df['usercreatedts'] = pd.to_datetime(df['usercreatedts']) df['usercreatedts'] = df['usercreatedts'].dt.tz_localize(None) df['tweetcreatedts'] = pd.to_datetime(df['tweetcreatedts']) df['tweetcreatedts'] = df['tweetcreatedts'].dt.tz_localize(None) # format time df = df[['userid', 'username', 'following', 'followers', 'totaltweets', 'usercreatedts', 'tweetcreatedts', 'retweetcount', 'text', 'hashtags', 'language', 'favorite_count']] # rearrange column order df.sort_values(by=['tweetcreatedts'], inplace=True) # sort by tweetcreatedts df.reset_index(inplace=True, drop=True) return df ``` #### File: src/models/ngram.py ```python import numpy as np def make_ngrams(tokens: list, n: int) -> list: """Creates n-grams for the given token sequence. Args: tokens (list): a list of tokens as strings n (int): the length of n-grams to create Returns: list: list of tuples of strings, each tuple being one of the individual n-grams """ n_grams = [] for token in tokens: word_list = token.split(" ") # split with whitespace # initialize index starting_index = 0 end_index = starting_index + n - 1 # use sliding window to append tuples of length n to n_grams while end_index < len(word_list): n_grams.append(tuple(word_list[starting_index: starting_index + n])) starting_index += 1 end_index += 1 return n_grams def train_ngram(content, n_gram): # Get the count of each word UNK = "<UNK>" word_count = {} for line in content: for word in line: if word in word_count.keys(): word_count[word] += 1 else: word_count[word] = 1 # Replace the words with <UNK> if count is < threshold(=1) UNK_count_dict = dict( filter(lambda elem: elem[1] == 1, word_count.items())) # get dictionary of words whose count == 1 word_count[UNK] = len(UNK_count_dict) # add UNK to word_count for temp_key in UNK_count_dict.keys(): # pop count == 1 words from word_count word_count.pop(temp_key, None) # make use of make_n_grams function n_gram_counts = {} for line in content: for ngram_tuple in make_ngrams(line, n_gram): if ngram_tuple in n_gram_counts.keys(): n_gram_counts[ngram_tuple] += 1 else: n_gram_counts[ngram_tuple] = 1 # Get the training data vocabulary vocab = list(word_count.keys()) # For n>1 grams compute n-1 gram counts to compute probability n_minus_1_gram_counts = {} if n_gram > 1: for line in content: for n_minus_1_gram_tuple in make_ngrams(line, n_gram - 1): if n_minus_1_gram_tuple in n_minus_1_gram_counts.keys(): n_minus_1_gram_counts[n_minus_1_gram_tuple] += 1 else: n_minus_1_gram_counts[n_minus_1_gram_tuple] = 1 return n_gram_counts, vocab, n_minus_1_gram_counts, word_count def generate_sentence(n_gram_counts, vocab, n_minus_1_gram_counts, word_count, n_gram=5, max_length=20): """Generates a single sentence from a trained language model using the Shannon technique. Returns: str: the generated sentence """ # Start with <s> and randomly generate words until we encounter sentence end # Append sentence begin markers for n>2 # Keep track of previous word for stop condition SENT_BEGIN = "<s>" SENT_END = "</s>" n = n_gram sentence = [SENT_BEGIN] if n > 2: for i in range(0, n - 2): sentence.insert(0, SENT_BEGIN) if n > 1: while sentence[-1:][0] != SENT_END and len(sentence) <= max_length: # Construct the (n-1) gram so far n_minus_one = tuple(sentence[-(n - 1):]) # Get the counts of all available choices based on n-1 gram choices_and_counts = {} for key in n_gram_counts: if n_minus_one == key[:n - 1]: choice = list(key[-1:])[0] count = n_gram_counts[key] choices_and_counts[choice] = count # Convert the counts into probability for random.choice() function temp_sum = sum(list(choices_and_counts.values())) for choice in choices_and_counts: choices_and_counts[choice] = (choices_and_counts[choice]) / temp_sum while True: word_generated = np.random.choice(list(choices_and_counts.keys()), 1, list(choices_and_counts.values())).astype(str) if word_generated != SENT_BEGIN: break sentence.append(word_generated[0]) # If <s> is generated, ignore and generate another word else: # In case of unigram model, n-1 gram is just the previous word and possible choice is whole vocabulary while sentence[-1:][0] != SENT_END: # Convert the counts into probability for random.choice() function temp_sum = sum(list(word_count.values())) for choice in word_count: word_count[choice] = word_count[choice] / temp_sum while True: word_generated = np.random.choice(list(word_count.keys()), 1, list(word_count.values())).astype(str) if word_generated != SENT_BEGIN: break sentence.append(word_generated[0]) # If <s> is generated, ignore and generate another word # Append sentence end markers for n>2 if n > 2: for i in range(0, n - 2): sentence.append(SENT_END) return ' '.join(word for word in sentence) ```
{ "source": "johnny-wang/indoor_mapping_robot", "score": 2 }
#### File: xbox_controller/scripts/controller_output.py ```python import rospy from std_msgs.msg import Float32 from sensor_msgs.msg import Joy def joy_callback(joy_data): left_updown = Float32() left_updown.data = joy_data.axes[1] pub_left_updown.publish(left_updown) left_leftright = Float32() left_leftright.data = joy_data.axes[0] pub_left_leftright.publish(left_leftright) right_updown = Float32() right_updown.data = joy_data.axes[3] pub_right_updown.publish(right_updown) right_leftright = Float32() right_leftright.data = joy_data.axes[2] pub_right_leftright.publish(right_leftright) def joy_xbox_controller(): global pub_left_updown, pub_left_leftright global pub_right_updown, pub_right_leftright topic_l_updown = 'xbox_controller/left_stick_updown' topic_l_leftright = 'xbox_controller/left_stick_leftright' topic_r_updown = 'xbox_controller/right_stick_updown' topic_r_leftright = 'xbox_controller/right_stick_leftright' pub_left_updown = rospy.Publisher(topic_l_updown, Float32, queue_size=10) pub_left_leftright = rospy.Publisher(topic_l_leftright, Float32, queue_size=10) pub_right_updown = rospy.Publisher(topic_r_updown, Float32, queue_size=10) pub_right_leftright = rospy.Publisher(topic_r_leftright, Float32, queue_size=10) rospy.Subscriber('/joy', Joy, joy_callback) rospy.init_node('XboxControllerOuput') rospy.spin() if __name__ == '__main__': joy_xbox_controller() ```
{ "source": "johnny-wang/staketaxcsv", "score": 3 }
#### File: src/osmo/api_historical.py ```python import logging import requests import time import urllib.parse OSMO_HISTORICAL_NODE = "https://api-osmosis.imperator.co" class OsmoHistoricalAPI: @classmethod def get_symbol(cls, ibc_address): uri = "/search/v1/symbol?denom={}".format(urllib.parse.quote(ibc_address)) data = cls._query(uri) if "symbol" in data: return data["symbol"] else: return None @classmethod def _query(cls, uri): url = "{}{}".format(OSMO_HISTORICAL_NODE, uri) logging.info("Querying url=%s...", url) response = requests.get(url) data = response.json() time.sleep(1) return data ``` #### File: src/osmo/make_tx.py ```python from common.make_tx import ( make_swap_tx, make_reward_tx, make_transfer_in_tx, make_transfer_out_tx, make_unknown_tx, make_unknown_tx_with_transfer, _make_tx_exchange ) from osmo import util_osmo def _edit_row(row, txinfo, msginfo): row.txid = txinfo.txid + "-" + str(msginfo.msg_index) if msginfo.msg_index > 0: row.fee = "" row.fee_currency = "" def make_osmo_tx(txinfo, msginfo, sent_amount, sent_currency, received_amount, received_currency, txid=None, empty_fee=False): tx_type = util_osmo._make_tx_type(msginfo) row = _make_tx_exchange( txinfo, sent_amount, sent_currency, received_amount, received_currency, tx_type, txid=txid, empty_fee=empty_fee) _edit_row(row, txinfo, msginfo) return row def make_osmo_simple_tx(txinfo, msginfo): row = make_osmo_tx(txinfo, msginfo, "", "", "", "") return row def make_osmo_swap_tx(txinfo, msginfo, sent_amount, sent_currency, received_amount, received_currency): row = make_swap_tx(txinfo, sent_amount, sent_currency, received_amount, received_currency) _edit_row(row, txinfo, msginfo) return row def make_osmo_reward_tx(txinfo, msginfo, reward_amount, reward_currency): row = make_reward_tx(txinfo, reward_amount, reward_currency) _edit_row(row, txinfo, msginfo) return row def make_osmo_transfer_out_tx(txinfo, msginfo, sent_amount, sent_currency, dest_address=None): row = make_transfer_out_tx(txinfo, sent_amount, sent_currency, dest_address) _edit_row(row, txinfo, msginfo) return row def make_osmo_transfer_in_tx(txinfo, msginfo, received_amount, received_currency): row = make_transfer_in_tx(txinfo, received_amount, received_currency) _edit_row(row, txinfo, msginfo) return row def make_osmo_unknown_tx(txinfo, msginfo): row = make_unknown_tx(txinfo) _edit_row(row, txinfo, msginfo) return row def make_osmo_unknown_tx_with_transfer(txinfo, msginfo, sent_amount, sent_currency, received_amount, received_currency, empty_fee=False, z_index=0): row = make_unknown_tx_with_transfer( txinfo, sent_amount, sent_currency, received_amount, received_currency, empty_fee, z_index) _edit_row(row, txinfo, msginfo) return row def make_osmo_lp_deposit_tx(txinfo, msginfo, sent_amount, sent_currency, lp_amount, lp_currency, empty_fee=False): row = make_osmo_tx(txinfo, msginfo, sent_amount, sent_currency, lp_amount, lp_currency, txid=None, empty_fee=empty_fee) return row def make_osmo_lp_withdraw_tx(txinfo, msginfo, lp_amount, lp_currency, received_amount, received_currency, empty_fee=False): row = make_osmo_tx(txinfo, msginfo, lp_amount, lp_currency, received_amount, received_currency, txid=None, empty_fee=empty_fee) return row def make_osmo_lp_stake_tx(txinfo, msginfo, lp_amount, lp_currency): row = make_osmo_tx(txinfo, msginfo, lp_amount, lp_currency, "", "") return row def make_osmo_lp_unstake_tx(txinfo, msginfo, lp_amount, lp_currency): row = make_osmo_tx(txinfo, msginfo, "", "", lp_amount, lp_currency) return row ``` #### File: src/osmo/processor.py ```python import logging import pprint from datetime import datetime from osmo.TxInfoOsmo import TxInfoOsmo, MsgInfo from osmo.handle_unknown import handle_unknown_detect_transfers from osmo.handle_general import ( handle_simple, handle_simple_outbound, handle_transfer_ibc, handle_failed_tx, handle_transfer ) from osmo.handle_staking import handle_staking from osmo.handle_swap import handle_swap from osmo import util_osmo from osmo import constants as co from osmo.handle_lp import ( handle_lp_deposit, handle_lp_stake, handle_lp_unstake, handle_lp_withdraw, handle_lp_deposit_partial) def process_txs(wallet_address, elems, exporter): for i, elem in enumerate(elems): process_tx(wallet_address, elem, exporter) def process_tx(wallet_address, elem, exporter): txinfo = _parse_tx(elem, wallet_address) # Detect failed transaction if elem["code"] > 0: handle_failed_tx(exporter, txinfo) return txinfo for msginfo in txinfo.msgs: _handle_message(exporter, txinfo, msginfo) return txinfo def _handle_message(exporter, txinfo, msginfo): try: msg_type = util_osmo._msg_type(msginfo) # simple transactions, that are typically ignored if msg_type in [co.MSG_TYPE_VOTE, co.MSG_TYPE_SET_WITHDRAW_ADDRESS, co.MSG_TYPE_BEGIN_UNLOCKING]: # 0 transfers handle_simple(exporter, txinfo, msginfo) elif msg_type in [co.MSG_TYPE_SUBMIT_PROPOSAL, co.MSG_TYPE_DEPOSIT]: # 1 outbound transfer handle_simple_outbound(exporter, txinfo, msginfo) elif msg_type in [co.MSG_TYPE_UPDATE_CLIENT, co.MSG_TYPE_ACKNOWLEDGMENT]: pass # staking rewards elif msg_type in [co.MSG_TYPE_DELEGATE, co.MSG_TYPE_REDELEGATE, co.MSG_TYPE_WITHDRAW_REWARD, co.MSG_TYPE_WITHDRAW_COMMISSION, co.MSG_TYPE_UNDELEGATE]: handle_staking(exporter, txinfo, msginfo) # transfers elif msg_type in [co.MSG_TYPE_IBC_TRANSFER, co.MSG_TYPE_MSGRECVPACKET]: handle_transfer_ibc(exporter, txinfo, msginfo) elif msg_type == co.MSG_TYPE_SEND: handle_transfer(exporter, txinfo, msginfo) # swaps elif msg_type == co.MSG_TYPE_SWAP_IN: handle_swap(exporter, txinfo, msginfo) # lp transactions elif msg_type == co.MSG_TYPE_JOIN_POOL: handle_lp_deposit(exporter, txinfo, msginfo) elif msg_type == co.MSG_TYPE_JOIN_SWAP_EXTERN_AMOUNT_IN: handle_lp_deposit_partial(exporter, txinfo, msginfo) elif msg_type == co.MSG_TYPE_EXIT_POOL: handle_lp_withdraw(exporter, txinfo, msginfo) elif msg_type == co.MSG_TYPE_LOCK_TOKENS: handle_lp_stake(exporter, txinfo, msginfo) else: handle_unknown_detect_transfers(exporter, txinfo, msginfo) except Exception as e: logging.error( "Exception when handling txid=%s, exception=%s", txinfo.txid, str(e)) handle_unknown_detect_transfers(exporter, txinfo, msginfo) return txinfo def _parse_tx(elem, wallet_address): txid = elem["txhash"] timestamp = datetime.strptime( elem["timestamp"], "%Y-%m-%dT%H:%M:%SZ").strftime("%Y-%m-%d %H:%M:%S") fee, fee_currency = _fee(elem) # Construct list of MsgInfo's msgs = [] for i in range(len(elem["logs"])): message = elem["tx"]["body"]["messages"][i] log = elem["logs"][i] transfers = util_osmo._transfers(log, wallet_address) msginfo = MsgInfo(message, transfers, i, log) msgs.append(msginfo) txinfo = TxInfoOsmo(txid, timestamp, fee, wallet_address, msgs) return txinfo def _fee(elem): fees = elem["tx"]["auth_info"]["fee"]["amount"] if len(fees) == 0: return "", "" first_fee = fees[0] fee_amount = float(first_fee["amount"]) / co.MILLION fee_currency = co.CUR_OSMO if not fee_amount: return "", "" return fee_amount, fee_currency ```
{ "source": "johnnywell/django-dynoforms", "score": 2 }
#### File: django-dynoforms/dynoforms/models.py ```python from django.conf import settings from django.db import models from django.db.models import permalink from django.contrib.postgres.fields import JSONField from django.core.serializers.json import DjangoJSONEncoder from django.utils.translation import ugettext_lazy as _ class BaseModel(models.Model): created = models.DateTimeField(_("Created at"), auto_now_add=True) updated = models.DateTimeField(_("Last update"), auto_now=True) owner = models.ForeignKey(settings.AUTH_USER_MODEL, help_text="Who created it") deleted = models.BooleanField(_('deleted'), default=False, editable=False) class Meta(object): abstract = True class Schema(BaseModel): name = models.CharField(_('name'), max_length=30, help_text=_('A name to identify the schema')) description = models.TextField( _('description'), help_text=_('A description to guide the form usage'), blank=True, ) fields = JSONField(_('fields'), encoder=DjangoJSONEncoder) def __str__(self): return self.name @permalink def new_entry_url(self): return ('dynoforms-new-entry', [self.pk]) class Entry(BaseModel): schema = models.ForeignKey(Schema) data = JSONField(_('data'), encoder=DjangoJSONEncoder, blank=True) @permalink def get_absolute_url(self): return ('dynoforms-entry-detail', [self.pk]) ``` #### File: django-dynoforms/dynoforms/views.py ```python from django.views.generic import ListView, DetailView, CreateView from django.shortcuts import get_object_or_404 from dynoforms.models import Schema, Entry from dynoforms.forms import DynoForm class Schemes(ListView): model = Schema template_name = 'dynoforms/schemes.html' context_object_name = 'schemes' class EntryDetail(DetailView): model = Entry tempalte_name = 'dynoforms/entry_detail.html' class NewEntry(CreateView): model = Entry form_class = DynoForm template_name = 'dynoforms/form.html' def get_context_data(self, **kwargs): context = {} context['schema'] = get_object_or_404(Schema, pk=self.kwargs['pk']) context.update(kwargs) return super(NewEntry, self).get_context_data(**context) def get_form_kwargs(self): kwargs = super(NewEntry, self).get_form_kwargs() if self.kwargs['pk']: kwargs.update({'schema': get_object_or_404( Schema, pk=self.kwargs['pk']) }) kwargs['owner'] = self.request.user return kwargs ```
{ "source": "johnnywell/liasis", "score": 3 }
#### File: liasis/core/event.py ```python from datetime import datetime from typing import NewType, Optional from uuid import UUID EventId = NewType('EventId', UUID) class EventMetaClass(type): def __new__(mcls, name, bases, attrs): return super().__new__(mcls, name, bases, attrs) @classmethod def __prepare__(mcls, name, bases, **kwargs): return super().__prepare__(mcls, name, bases, **kwargs) class Event(metaclass=EventMetaClass): def __init__(self, id: EventId, occurred_on: datetime, version: Optional[int] = None, ): self.id = id self.occurred_on = occurred_on self.version = version def __eq__(self, other): return self.id == other.id def __repr__(self): class_name = self.__class__.__name__ return f'<{class_name}: {self.id}>' ``` #### File: liasis/core/protocols.py ```python from abc import abstractmethod from functools import reduce from typing import List, Any, Dict, Type, Set, ClassVar, TypeVar, Union, Optional, Iterable from typing_extensions import Protocol from liasis.core.errors import InvalidEventError, InvalidEventVersionError, InvalidEventEntityError, NotHandledError from liasis.core.data import Response, Request from liasis.core.entity import EntityId, Entity from liasis.core.event import Event class Adapter(Protocol): following: Optional['Adapter'] @abstractmethod def can_handle(self, response: Response) -> bool: raise NotImplementedError @abstractmethod def handle(self, response: Response) -> Any: raise NotImplementedError def __call__(self, response: Response) -> Any: if self.can_handle(response): return self.handle(response) if self.following: return self.following(response) raise NotHandledError('The response was not handled by any adapter.', response) class Presenter: adapters = Iterable[Type[Adapter]] def __init__(self): self.chain = reduce(lambda f, n: n(f), self.adapters[::-1], None) def __call__(self, response: Response) -> Any: try: return self.chain(response) except NotHandledError: raise class UseCase(Protocol): presenter: Presenter def __call__(self, request: Request) -> Presenter: try: response = self.on_success(self.handle(request)) except Exception as error: response = self.on_error(error) finally: return self.respond(response) @abstractmethod def handle(self, request: Request) -> Response: raise NotImplementedError def on_success(self, response: Response) -> Response: return response def on_error(self, error: Exception) -> Response: return Response(error=error) def respond(self, response: Response) -> Presenter: return self.presenter(response) E = TypeVar('E') class Repository(Protocol[E]): """ A Repository is responsible for storing and retrieving entities. No matter where the data come from, it could be a database or a plain file. """ @abstractmethod def save(self, entity: E) -> E: ... @abstractmethod def get(self, id: EntityId) -> E: ... @abstractmethod def delete(self, id: EntityId) -> None: ... @abstractmethod def search(self, **kwargs) -> Union[E, List[E]]: ... class Service(Protocol): """ Services, different from repositories, do not handle storing and retrieval of entities state. It's more suitable for things like, e-mails sending. """ class Gateway(Protocol): """ Gateways are responsible for integrating with external sources and abstract implementation details from inner components like Repositories and Services. Examples of Gateways are, REST and SOAP API clients. """ class Listener(Protocol): """ Any object which need to listen to a event must implement the EventListener protocol. """ @abstractmethod def notify(self, event: Event): raise NotImplementedError ListenersMap = Dict[Type[Event], Set[Listener]] class Notifier(Protocol): """ Manages events subscription and dispatching for different types of events. """ listeners: ListenersMap def subscribe(self, event: Type[Event], listener: Listener): self.listeners.setdefault(event, set()).add(listener) def unsubscribe(self, event: Type[Event], listener: Listener): self.listeners.setdefault(event, set()).discard(listener) def notify(self, event: Event): for listener in self.listeners.setdefault(event.__class__, set()): listener.notify(event) class State(Protocol): """ Represents a state of an object, also handle state transition when receives a event. """ entity: Entity events: ClassVar[List[Event]] def on(self, event: Event): """ The public API for the event, it receives an event to be handled. :param event: Event """ self.validate_event(event) self.validate_version(event) self.validate_entity(event) return self.handle(event) @abstractmethod def handle(self, event: Event) -> Entity: """ The handle method should be implemented by each State subclass, so it can handle it's events list. :param event: Event :return: """ raise NotImplementedError def validate_event(self, event: Event): """ Check if the State can handle the incoming event. :param event: Event """ if event.__class__ not in self.events: raise InvalidEventError( f"{self.__class__.__name__} received a invalid event " f"{event.__class__.__name__}.") def validate_version(self, event: Event): """ Check if the incoming event has the right version. :param event: """ if event.version is not self.entity.version + 1: raise InvalidEventVersionError( f"{self.entity.__class__.__name__}(v{self.entity.version}) received a " f"invalid event {event.__class__.__name__}(v{event.version})") def validate_entity(self, event: Event): """ Validate if the Entity from the incoming Event is the same of State. :param event: """ if event.entity_id != self.entity.id: raise InvalidEventEntityError( f"{self.entity.__class__.__name__}(entity:{self.entity.id}) received a " f"invalid event {event.__class__.__name__}(entity:{event.entity_id})") def __repr__(self): return self.__str__() def __str__(self): return self.__class__.__name__ ``` #### File: liasis/scaffold/__init__.py ```python from typing import Text from pathlib import Path from shutil import copytree LIASIS_ROOT = Path(__file__).parent PROJECT_SKELETON = Path(str(LIASIS_ROOT) + '/project_skeleton') APP_SKELETON = Path(str(LIASIS_ROOT) + '/app_skeleton') def new_project(name: Text, directory: Text) -> None: path = Path('.' if directory is None else directory) destination = str(path.absolute()) + '/' + name if path.exists(): copytree(str(PROJECT_SKELETON.absolute()), destination) def new_app(name: Text, directory: Text) -> None: path = Path('./apps' if directory is None else directory) destination = str(path.absolute()) + '/' + name if path.exists(): copytree(str(APP_SKELETON.absolute()), destination) ```
{ "source": "Johnny-Wish/fake-news-detection-pipeline", "score": 3 }
#### File: fake-news-detection-pipeline/embedding_utils/embedding_getter.py ```python import pandas as pd import numpy as np import argparse import pickle as pkl import os from doc_utils import DocumentEmbedder, DocumentSequence from nltk.corpus import stopwords from string import punctuation def get_embeddings(input, output, column='title', model='d2v', vec_size=300, pretrained=None, win_size=5, min_count=5, dm=0, epochs=20, normalizer=None, scorer='count'): df = pd.read_csv(input) raw_docs = df[column].values docs = DocumentSequence(raw_docs, clean=True, sw=stopwords.words('english'), punct=punctuation) embedder = DocumentEmbedder(docs, pretrained_word2vec=pretrained) print('computing embeddings') model = model # type: str if model.lower() == 'd2v': out_name = "d2v(vecsize={}, winsize={}, mincount={}, {}, epochs={}).pkl".format( vec_size, win_size, min_count, "dm" if dm else "dbow", epochs ) embeddings = embedder.get_doc2vec(vectors_size=int(vec_size), window=int(win_size), min_count=int(min_count), dm=int(dm), epochs=int(epochs)) elif model.lower() == "nd2v": out_name = "nd2v(normalizer={}).pkl".format(normalizer) embeddings = embedder.get_naive_doc2vec(normalizer=normalizer) elif model.lower() == "onehot": out_name = "onehot(scorer={}).pkl".format(scorer) embeddings = embedder.get_onehot(scorer=scorer) elif model.lower() == "fasttext": out_name = "fasttext().pkl" embeddings = embedder._fast_text() # not yet implemented else: print("unrecognized model, using naive doc2vec as fallback") out_name = "nd2v(normalizer={}).pkl".format(normalizer) embeddings = embedder.get_naive_doc2vec(normalizer=normalizer) if isinstance(embeddings, list): # if the embeddings is in a list, stack them into a 2-D numpy array try: embeddings = np.stack(emb if isinstance(emb, np.ndarray) else np.zeros(vec_size) for emb in embeddings) except ValueError as e: print(e) print("embeddings will be saved in the form of a list") print("embeddings computed") # dump the embedding matrix on disk try: os.makedirs(output) except FileExistsError: print("Parent Dir Existent") finally: out_name = column + "-" + out_name out_path = os.path.join(output, out_name) with open(out_path, "wb") as f: print("storing embeddings in {}".format(out_path)) pkl.dump(embeddings, f) print("embeddings stored") if __name__ == '__main__': # control arguments parser = argparse.ArgumentParser() parser.add_argument("--input", required=True, help="path to read csv file") parser.add_argument("--output", required=True, help="dir to dump embeddings, NOT including filename, created if non-existent") parser.add_argument("--column", default="title", help="which column to select from the csv file, default is `title`") parser.add_argument("--model", default="d2v", help="model to use, must be one of [d2v, nd2v, onehot, fasttext], default is d2v") # hyperparameters for doc2vec parser.add_argument("--vec_size", default=300, help="size of vectors, default is 300, recommended to be left untouched") parser.add_argument("--pretrained", default=None, help="path to word2vec model pretrained on Google News, used if model is d2v or nd2v") parser.add_argument("--win_size", default=5, type=int, help="window size, used if model is d2v, default = 5") parser.add_argument("--min_count", default=5, type=int, help="min count for inclusion in dict, used if model is d2v, default = 5") parser.add_argument("--dm", action="store_true", help="whether to use DM or DBOW, used if model is d2v, default is DBOW") parser.add_argument("--epochs", default=20, type=int, help="number of epochs to train the model for, used if model is d2v, default = 20") # hyperparameters for naive doc2vec parser.add_argument("--normalizer", default=None, help="normalizer for naive doc2vec, either l2 or mean, default is None") # hyperparameters for one-hot parser.add_argument("--scorer", default="count", help="scorer function for one-hot, either tfidf or count, default is count") opt = parser.parse_args() print(opt) get_embeddings(opt.input, opt.output, column=opt.column, model=opt.model, vec_size=opt.vec_size, pretrained=opt.pretrained, win_size=opt.win_size, min_count=opt.min_count, dm=opt.dm, epochs=opt.epochs, normalizer=opt.normalizer, scorer=opt.scorer) ``` #### File: fake-news-detection-pipeline/embedding_utils/embedding_visualizer.py ```python import os import numpy as np import tensorflow as tf from tensorflow.contrib.tensorboard.plugins import projector def visualize_embeddings(embedding_values, label_values, embedding_name="doc_vec", texts=None, points_to_show=None): """ function for visualize embeddings with tensorboard. MUST run in command line "tensorboard --logdir visual/" and visit localhost:6006 to see the visualization :param embedding_values: np.ndarray, in the shape of [n_docs, n_dims] :param label_values: np.ndarray, in the shape of [n_docs] :param embedding_name: name for the embeddings, spaces are auto-deleted :param points_to_show: maximum number of points to show :return: None """ TENSORBOARD_ROOT = 'visual' # home directory for running tensorboard server embedding_name.replace(" ", "") # the `embedding_name` is later used as a tf.scope_name; it mustn't contain spaces METADATA_PATH = os.path.join(TENSORBOARD_ROOT, 'metadata.tsv') # place to save metadata assert isinstance(embedding_values, np.ndarray), "{} is not a npndarray".format(embedding_values) assert isinstance(label_values, np.ndarray), "{} is not a npndarray".format(label_values) if points_to_show is not None: points_to_show = min(points_to_show, len(embedding_values), len(label_values)) embedding_values = embedding_values[:points_to_show] label_values = label_values[:points_to_show] if texts is not None: texts = texts[:points_to_show] embedding_var = tf.Variable(embedding_values, name=embedding_name) # instantiate a tensor to hold embedding values summary_writer = tf.summary.FileWriter(TENSORBOARD_ROOT) # instantiate a writer to write summaries config = projector.ProjectorConfig() # `config` maintains arguments for write embeddings and save them on disk embedding = config.embeddings.add() embedding.tensor_name = embedding_var.name # Specify where you find the metadata embedding.metadata_path = "metadata.tsv" # XXX this step might introduce error, see the printed message below print("WARNING: potential error due to tensorboard version conflicts") print("currently setting metadata_path to {}. Due to tensorboard version reasons, if prompted 'metadata not found' " "when visiting tensorboard server page, please manually edit metadata_path in projector_config.pbtxt to {} " "or the absolute path for `metadata.tsv` and restart tensorboard".format(embedding.metadata_path, METADATA_PATH)) print("If your tensorboard version is 1.7.0, you probably should not worry about this") # call the following method to visualize embeddings projector.visualize_embeddings(summary_writer, config) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # initialize the `embedding_var` saver = tf.train.Saver() # instantiate a saver for this session saver.save(sess, os.path.join(TENSORBOARD_ROOT, "model.ckpt"), 1) # write metadata (i.e., labels) for emebddings; this is how tensorboard knows labels of different embeddings with open(METADATA_PATH, 'w') as f: f.write("Index\tLabel{}\n".format("" if texts is None else "\ttexts")) if texts is None: for index, label in enumerate(label_values): f.write("{}\t{}\n".format(index, label)) else: for index, label_and_text in enumerate(zip(label_values, texts)): f.write("{}\t{}\t{}\n".format(index, *label_and_text)) print("Embeddings are available now. Please start your tensorboard server with commandline " "`tensorboard --logdir visual` and visit http://localhost:6006 to see the visualization") if __name__ == '__main__': from .embedding_loader import EmbeddingLoader import pandas as pd loader = EmbeddingLoader("embeddings") visualize_embeddings(embedding_values=loader.get_d2v(corpus="text", win_size=23, dm=False, epochs=500), embedding_name="text", label_values=loader.get_label(), points_to_show=300, texts=pd.read_csv("fake_or_real_news.csv").title.values) visualize_embeddings(embedding_values=loader.get_d2v(corpus="title", win_size=23, dm=False, epochs=500), embedding_name="title", label_values=loader.get_label(), points_to_show=3000) ```
{ "source": "Johnnywoode/Python-Website-1", "score": 2 }
#### File: Python-Website-1/website/views.py ```python from flask import Blueprint, render_template views = Blueprint('views', __name__) @views.route('/') def home(): return render_template("home.html") ```
{ "source": "johnnyxh/PloverBot", "score": 3 }
#### File: bot/store/Datastore.py ```python import motor.motor_asyncio class Datastore: def __init__(self, connection_uri = 'mongodb://localhost:27017', db = 'hummingbot'): self.client = motor.motor_asyncio.AsyncIOMotorClient(connection_uri) self.db = self.client[db] async def insert_song(self, song, label = None): song_query = {'videoId': song.id} update_operations = {'$inc': { 'play_count': 1 } } song_entry = await self.db.songs.find_one_and_update(song_query, update_operations) if song_entry is None: song_entry = song.to_rest_dict() song_entry['play_count'] = 1 song_entry['skip_count'] = 0 song_entry['song_label'] = label await self.db.songs.insert_one(song_entry) async def update_song_skipped(self, song): song_query = {'videoId': song.id} update_operations = {'$inc': { 'skip_count': 1 } } song_entry = await self.db.songs.find_one_and_update(song_query, update_operations) ``` #### File: bot/store/Datastore_Test.py ```python import asyncio import unittest from unittest.mock import patch, MagicMock from store.Datastore import Datastore class AsyncMock(MagicMock): async def __call__(self, *args, **kwargs): return super(AsyncMock, self).__call__(*args, **kwargs) class DatastoreTest(unittest.TestCase): @patch('store.Datastore.motor.motor_asyncio') def test_initialization_default(self, motor_mock): datastore = Datastore() args, kwargs = motor_mock.AsyncIOMotorClient.call_args self.assertEqual(args, ('mongodb://localhost:27017',)) @patch('store.Datastore.motor.motor_asyncio') def test_initialization_uri(self, motor_mock): datastore = Datastore('mongodb://user:[email protected]:27017/some_db') args, kwargs = motor_mock.AsyncIOMotorClient.call_args self.assertEqual(args, ('mongodb://user:[email protected]:27017/some_db',)) @patch('store.Datastore.motor.motor_asyncio') def test_insert_new(self, motor_mock): song = MagicMock() mock_connection = { 'hummingbot': AsyncMock() } motor_mock.AsyncIOMotorClient.return_value = mock_connection song.to_rest_dict.return_value = { 'videoId': 'kUaAszRmBbQ', 'title': 'Partner' } mock_connection['hummingbot'].songs.find_one_and_update.return_value = None datastore = Datastore() loop = asyncio.get_event_loop() loop.run_until_complete(datastore.insert_song(song, 'piano')) args, kwargs = mock_connection['hummingbot'].songs.insert_one.call_args self.assertEqual(args, ({ 'videoId': 'kUaAszRmBbQ', 'title': 'Partner', 'play_count': 1, 'skip_count': 0, 'song_label': 'piano' },)) @patch('store.Datastore.motor.motor_asyncio') def test_insert_existing(self, motor_mock): song = MagicMock() song.id = 'kUaAszRmBbQ' mock_connection = { 'hummingbot': AsyncMock() } motor_mock.AsyncIOMotorClient.return_value = mock_connection datastore = Datastore() loop = asyncio.get_event_loop() loop.run_until_complete(datastore.insert_song(song)) args, kwargs = mock_connection['hummingbot'].songs.find_one_and_update.call_args self.assertEqual(args, ({'videoId': 'kUaAszRmBbQ'}, {'$inc': { 'play_count': 1 } },)) @patch('store.Datastore.motor.motor_asyncio') def test_update_song_skipped(self, motor_mock): song = MagicMock() song.id = 'kUaAszRmBbQ' mock_connection = { 'hummingbot': AsyncMock() } motor_mock.AsyncIOMotorClient.return_value = mock_connection datastore = Datastore() loop = asyncio.get_event_loop() loop.run_until_complete(datastore.update_song_skipped(song)) args, kwargs = mock_connection['hummingbot'].songs.find_one_and_update.call_args self.assertEqual(args, ({'videoId': 'kUaAszRmBbQ'}, {'$inc': { 'skip_count': 1 } },)) ``` #### File: bot/utils/Playlist.py ```python import asyncio import async_timeout import youtube_dl import functools import traceback from collections import deque from urllib.parse import urlparse from urllib.parse import parse_qs from utils.SongEntry import SongEntry from utils.Timer import Timer class Playlist: YOUTUBE_OPTS = { 'format': 'webm[abr>0]/bestaudio/best', 'prefer_ffmpeg': True, 'verbose': True, 'playlistrandom': True, 'ignoreerrors': True } PLAYLIST_PLAYING_RANGE = 2 PLAYLIST_DOWNLOAD_RANGE = 5 def __init__(self, bot): self.bot = bot self.player = None self.songs = deque() self.play_next_song = asyncio.Event() self.current_song = None self.current_song_timer = None async def add(self, message): try: await self.bot.join_channel(message) args = message.content.split() video_url = args[1] add_count = 1 if len(args) > 2: add_count = int(args[2]) playlist_count = await self._get_playlist_count(video_url)-1 ## Remove the use of _get_video_info here if playlist_count >= 0: await self.bot.add_reaction(message, '🔄') lower_bound = 0 opts = self.YOUTUBE_OPTS.copy() while lower_bound < playlist_count: upper_bound = lower_bound + self.PLAYLIST_DOWNLOAD_RANGE if upper_bound >= playlist_count: upper_bound = playlist_count opts['playlist_items'] = str(lower_bound) + '-' + str(upper_bound) info = await self._get_video_info(video_url, opts) if 'entries' in info: for entry in info['entries']: if entry is not None: # Temporary workaround for playlist case, this logic should move new_song = SongEntry(message.author, message.channel, entry.get('url')) await new_song.create(entry) self.songs.appendleft(new_song) await self.bot.add_reaction(message, '🐦') asyncio.ensure_future(self._play_next()) lower_bound = upper_bound+1 else: new_song = SongEntry(message.author, message.channel, video_url) await new_song.create() for songs in range(add_count): self.songs.appendleft(new_song) await self.bot.add_reaction(message, '🐦') await self._play_next() except Exception as err: raise(err) async def recommend(self, message): if await self._user_in_voice_command(message): recommend_count = 5 if self.current_song is None: return await self.bot.send_message(message.channel, 'You need to play something first') args = message.content.split() if len(args) > 1: recommend_count = int(args[1]) recommendations = await self.current_song.get_recommendations(self.bot.user, recommend_count) self.songs.extendleft(recommendations) async def skip(self, message): if await self._user_in_voice_command(message): try: args = message.content.split() if len(args) > 1: for x in range(int(args[1])-1): self.songs.pop() # Only mark the current song as skipped for now await self.bot.store.update_song_skipped(self.current_song) except IndexError as err: pass finally: if self.player is not None: self.player.stop() async def pause(self, message): if await self._user_in_voice_command(message): if self.player is not None and self.player.is_playing(): self.player.pause() self.current_song_timer.pause() async def resume(self, message): if await self._user_in_voice_command(message): if self.player is not None and not self.player.is_playing(): self.player.resume() self.current_song_timer.resume() async def clear(self, message): if await self._user_in_voice_command(message): if self.player is not None: self.songs.clear() self.player.stop() async def playing(self, message): song_list = list(self.songs) if len(song_list) <= 0 and self.current_song is None: return await self.bot.send_message(message.channel, 'There are no songs in the queue') if (len(song_list) - self.PLAYLIST_PLAYING_RANGE) > 0: await self.bot.send_message(message.channel, 'There are ' + str(len(song_list) - self.PLAYLIST_PLAYING_RANGE) + ' other songs in the queue') for song in song_list[len(song_list)-self.PLAYLIST_PLAYING_RANGE:]: await self.bot.send_message(message.channel, embed=song.get_embed_info('Coming up')) return await self.bot.send_message(message.channel, embed=self.current_song.get_embed_info('Now Playing - {}'.format(self.current_song_timer.get_current_timestamp()))) async def on_voice_state_update(self, before, after): if self.bot.voice is not None and len(self.bot.voice.channel.voice_members) <= 1: self.songs.clear() self.player.stop() await self.bot.voice.disconnect() def is_playing(self): return self.player is not None and self.player.is_playing() # Need to start rethinking this loop async def _play_next(self): if not self.is_playing() and self.current_song is None: while True: self.play_next_song.clear() self.current_song = None try: self.current_song = self.songs.pop() before_options = '-ss {} -reconnect 1 -reconnect_streamed 1 -reconnect_delay_max 2'.format(self.current_song.start_time) self.player = self.bot.voice.create_ffmpeg_player(self.current_song.url, before_options=before_options, after=self._finished) self.player.start() # These operations are not needed for the playlist loop, print exception # Keep the functionality going try: self.current_song_timer = Timer() self.current_song_timer.start() print('Playing: {}'.format(self.current_song.title)) await self.bot.send_message(self.current_song.request_channel, embed=self.current_song.get_embed_info('Now Playing')) await self.bot.store.insert_song(self.current_song) except : traceback.print_exc() finally: await self.play_next_song.wait() except : # An error, most likely from trying to pop an empty deque, should stop the playtlist loop # The next song added to the queue will restart the playlist loop return async def _user_in_voice_command(self, message): if message.author.voice_channel is not None: await self.bot.add_reaction(message, '🐦') return True else: await self.bot.send_message(message.channel, 'You should get in a voice channel first') return False async def _get_playlist_count(self, youtube_url): playlist_count = 0 youtube_qparams = parse_qs(urlparse(youtube_url).query) if 'list' in youtube_qparams: playlist_opts = self.YOUTUBE_OPTS.copy() playlist_opts['extract_flat'] = 'in_playlist' with youtube_dl.YoutubeDL(playlist_opts) as ydl: func = functools.partial(ydl.extract_info, youtube_url, download=False) flat_info = await self.bot.loop.run_in_executor(None, func) playlist_count = len(flat_info['entries']) return playlist_count async def _get_video_info(self, youtube_url, opts): with youtube_dl.YoutubeDL(opts) as ydl: func = functools.partial(ydl.extract_info, youtube_url, download=False) return await self.bot.loop.run_in_executor(None, func) def _finished(self): self.bot.loop.call_soon_threadsafe(self.play_next_song.set) ``` #### File: bot/utils/Time_Test.py ```python import unittest from unittest.mock import patch, MagicMock from utils.Timer import Timer from utils.Timer import TimerError class TimerTest(unittest.TestCase): @patch('utils.Timer.time') def test_initialization_default(self, time_mock): timer = Timer() self.assertEqual(timer.initial_start_time, 0) self.assertEqual(timer.start_time, 0) self.assertEqual(timer.pause_started, None) self.assertEqual(timer.amount_time_paused, 0) @patch('utils.Timer.time') def test_initialization_start_time(self, time_mock): timer = Timer(50) self.assertEqual(timer.initial_start_time, 50) self.assertEqual(timer.start_time, 0) self.assertEqual(timer.pause_started, None) self.assertEqual(timer.amount_time_paused, 0) @patch('utils.Timer.time') def test_start(self, time_mock): time_mock.time.return_value = 1525628158.745443 timer = Timer() timer.start() self.assertEqual(timer.start_time, 1525628158) @patch('utils.Timer.time') def test_start_already_started(self, time_mock): time_mock.time.return_value = 1525628158.745443 timer = Timer() timer.start() self.assertRaises(TimerError, timer.start) @patch('utils.Timer.time') def test_pause(self, time_mock): timer = Timer() time_mock.time.return_value = 1525628158.745443 timer.start() time_mock.time.return_value = 1525628188.142346 timer.pause() self.assertEqual(timer.pause_started, 1525628188) def test_pause_not_started(self): timer = Timer() self.assertRaises(TimerError, timer.pause) @patch('utils.Timer.time') def test_pause_already_paused(self, time_mock): time_mock.time.return_value = 1525628188.142346 timer = Timer() timer.start() timer.pause() self.assertRaises(TimerError, timer.pause) @patch('utils.Timer.time') def test_resume(self, time_mock): timer = Timer() time_mock.time.return_value = 1525628158.745443 timer.start() time_mock.time.return_value = 1525628188.142346 timer.pause() time_mock.time.return_value = 1525628198.142346 timer.resume() self.assertEqual(timer.amount_time_paused, 10) self.assertEqual(timer.pause_started, None) @patch('utils.Timer.time') def test_resume_not_paused(self, time_mock): timer = Timer() time_mock.time.return_value = 1525628158.745443 timer.start() self.assertRaises(TimerError, timer.resume) def test_resume_not_started(self): timer = Timer() self.assertRaises(TimerError, timer.resume) @patch('utils.Timer.time') def test_get_elapsed_seconds(self, time_mock): timer = Timer() time_mock.time.return_value = 1525628158.745443 timer.start() time_mock.time.return_value = 1525628188.142346 self.assertEqual(timer.get_elapsed_seconds(), 30) @patch('utils.Timer.time') def test_get_elapsed_seconds_initial_start_time(self, time_mock): timer = Timer(20) time_mock.time.return_value = 1525628158.745443 timer.start() time_mock.time.return_value = 1525628188.142346 self.assertEqual(timer.get_elapsed_seconds(), 50) @patch('utils.Timer.time') def test_get_elapsed_seconds_paused(self, time_mock): timer = Timer() time_mock.time.return_value = 1525628158.745443 timer.start() time_mock.time.return_value = 1525628188.142346 timer.pause() time_mock.time.return_value = 1525628198.142346 self.assertEqual(timer.get_elapsed_seconds(), 30) @patch('utils.Timer.time') def test_get_elapsed_seconds_with_pause(self, time_mock): timer = Timer() time_mock.time.return_value = 1525628158.745443 timer.start() time_mock.time.return_value = 1525628188.142346 timer.pause() time_mock.time.return_value = 1525628198.142346 timer.resume() time_mock.time.return_value = 1525628208.142346 self.assertEqual(timer.get_elapsed_seconds(), 40) def test_get_elapsed_seconds_not_started(self): timer = Timer() self.assertEqual(timer.get_elapsed_seconds(), 0) @patch('utils.Timer.time') def test_get_current_timestamp_not_started(self, time_mock): timer = Timer() self.assertEqual(timer.get_current_timestamp(), '00h:00m:00s') @patch('utils.Timer.time') def test_get_current_timestamp(self, time_mock): timer = Timer() time_mock.time.return_value = 1525628158.745443 timer.start() time_mock.time.return_value = 1525664910.142346 self.assertEqual(timer.get_current_timestamp(), '10h:12m:32s') ```
{ "source": "johnnyzhang295/MMGIS", "score": 3 }
#### File: auxiliary/rastertolegend/rastertolegend.py ```python import os import sys import subprocess from osgeo import gdal from pathlib import Path raster = sys.argv[1] splitfilenameR = os.path.splitext(raster) colorfile = sys.argv[2] splitfilenameC = os.path.basename(colorfile).split(".") discrete = "" values = [] if len(sys.argv) > 3: discrete = sys.argv[3] def colorRelief(raster, colorfile, discrete): exactOrNearest = "" if discrete == "-discrete": exactOrNearest = "-nearest_color_entry" input_file = str(Path(raster).absolute()) output_file = str(Path(splitfilenameR[0] + "_" + splitfilenameC[0] + splitfilenameR[1]).absolute()) colorfile_path = str(Path(colorfile).absolute()) if exactOrNearest == "": gdalDEMcr = ["gdaldem", "color-relief", input_file, colorfile_path, output_file] else: gdalDEMcr = ["gdaldem", "color-relief", exactOrNearest, input_file, colorfile_path, output_file] print("Running:", " ".join(gdalDEMcr)) process = subprocess.Popen(gdalDEMcr, stdout=subprocess.PIPE, stderr=subprocess.PIPE) process.wait() for output in process.stdout: print(output.decode()) for error in process.stderr: print(error.decode()) def colorToLegend(colorfile, min, max, discrete): legend = open(splitfilenameR[0] + "_" + splitfilenameC[0] + "_legend.csv", "w") legend.write("color,strokecolor,shape,value") cf = open(colorfile) percents = False for line in cf: split = line.split(" ", 1) value = split[0] if value[-1:] == "%": value = split[0][:-1] percents = True if value.lower() != "nv": values.append(float(value)) cf.close() cf = open(colorfile) highToLow = True if values[0] < values[1]: highToLow = False if discrete == "-discrete": if percents: j = 0 for v in values: values[j] = int(mapPercent(float(v)/100, min, max)) j += 1 i = 0 for line in cf: if i > 0 and i < len(values) - 1: value = str(values[i] - ((values[i] - values[i-1])/2)) + " - " + str(values[i] + ((values[i+1] - values[i])/2)) elif i == 0: sign = str(int(min)) + " - " if not percents: sign = "< " if highToLow: sign = str(int(max)) + " - " if not percents: sign = "> " value = sign + str((values[i+1] + values[i])/2) elif i == len(values) - 1: sign = " - " + str(int(max)) if not percents: sign = "> " if highToLow: sign = " - " + str(int(min)) if not percents: sign = "< " value = str((values[i] + values[i-1])/2) + sign if not percents: value = sign + str((values[i] + values[i-1])/2) split = line.split(" ", 1) if split[0].lower() != "nv": legend.write("\n" + rgb_to_hex(tuple(map(int, split[1].split()))) + ",black,square," + value) i += 1 else: for line in cf: split = line.split(" ", 1) value = split[0] if value[-1:] == "%": value = split[0][:-1] if split[0].lower() != "nv": legend.write("\n" + rgb_to_hex(tuple(map(int, split[1].split()))) + ",black,square," + str(int(mapPercent(float(value)/100, min, max)))) legend.close() cf.close() # helper functions def rgb_to_hex(rgb): return '#%02x%02x%02x' % rgb def mapPercent(p, min, max): return ((max - min) * p) + min r = gdal.Open(raster) # stats[0] is min, stats[1] is max stats = r.GetRasterBand(1).GetStatistics(1, 1) colorRelief(raster, colorfile, discrete) colorToLegend(colorfile, stats[0], stats[1], discrete) ``` #### File: private/api/BandsToProfile.py ```python # example: BandsToProfile.py MSL_DEM_v3_webgis.tif -4.66086473 137.36935616 [[0,7],9] # 2ptsToProfile.py MSL_DEM_v3_webgis.tif -4.67053145 137.36515045 -4.66086473 137.36935616 10 1 import sys import ast import re import math from osgeo import gdal from osgeo import osr from osgeo.gdalconst import * from osgeo import __version__ as osgeoversion try: from urllib.parse import unquote except ImportError: from urllib import unquote # Make gdal use exceptions instead of their own errors so that they can be caught gdal.UseExceptions() def getValueAtBand(b): try: # Get the band band = ds.GetRasterBand(b) value = band.ReadAsArray( pixelLatLonPair[0][0], pixelLatLonPair[0][1], 1, 1)[0][0] bandName = band.GetDescription() if isinstance(bandName, str): matchedName = re.findall(r"[-+]?\d*\.\d+|\d+", bandName) if len(matchedName) > 0: bandName = float(matchedName[0]) else: bandName = b else: bandName = b # check for nan if value != value: value = None bandName = None elif value == band.GetNoDataValue(): value = None except Exception as e: # -1100101 = (e)rror value = None bandName = None return [bandName, value] # Takes in a [[x,y],[x,y],[x,y],[x,y]...[x,y],[x,y]] # and returns an array of values on the raster at those points in order def getRasterDataValues(): valuesArray = [] for i in range(0, len(bands)): # an int or an array of int # if part needs work (safer to pass bands: "[[x,y]]" now) if(isinstance(bands[i], int)): value = getValueAtBand(bands[i]) print(value) valuesArray.append(value) else: # +1 for inclusivity for j in range(bands[i][0], bands[i][1] + 1): value = getValueAtBand(j) valuesArray.append(value) return valuesArray # Takes in a [[lat,lon],[lat,lon]...[lat,lon]] # and returns [[pixel,pixel][pixel,pixel]...[pixel,pixel]] # based on the predeclared ds (gdal.open(raster)) def latLonsToPixel(latLonPairs): # get georeference info transform = ds.GetGeoTransform() xOrigin = transform[0] yOrigin = transform[3] pixelWidth = transform[1] pixelHeight = transform[5] # Create a spatial reference object for the dataset srs = osr.SpatialReference() if int(osgeoversion[0]) >= 3: # GDAL 3 changes axis order: https://github.com/OSGeo/gdal/issues/1546 srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) srs.ImportFromWkt(ds.GetProjection()) # Set up the coordinate transformation object srsLatLong = srs.CloneGeogCS() ct = osr.CoordinateTransformation(srsLatLong, srs) # Go through all the point pairs and translate them to latitude/longitude pairings pixelPairs = [] for point in latLonPairs: # Change the point locations into the GeoTransform space (point[1], point[0], holder) = ct.TransformPoint(point[1], point[0]) # Translate the x and y coordinates into pixel values x = (point[1] - xOrigin) / pixelWidth y = (point[0] - yOrigin) / pixelHeight if math.isinf(x): x = 0 if math.isinf(y): y = 0 # Add the point to our return array pixelPairs.append([int(x), int(y)]) return pixelPairs # Get arguments raster = unquote(sys.argv[1]) # path lat = float(sys.argv[2]) # x lon = float(sys.argv[3]) # y if str(sys.argv[4]).isalnum(): type = str(sys.argv[4]) # xyorll bands = ast.literal_eval(unquote(sys.argv[5])) # bands latLonPair = [[lat, lon]] # Open the image ds = gdal.Open(raster, GA_ReadOnly) if ds is None: print("Could not open image") sys.exit(1) # Convert latlon to image space pixels if type == 'll': pixelLatLonPair = latLonsToPixel(latLonPair) else: pixelLatLonPair = latLonPair pixelLatLonPair[0][0] = int(pixelLatLonPair[0][0]) pixelLatLonPair[0][1] = int(pixelLatLonPair[0][1]) # Find the raster value at each of those points valueArray = getRasterDataValues() print(valueArray) ```
{ "source": "JohnnyZhang917/canmatrix", "score": 2 }
#### File: canmatrix/formats/dbc.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import copy import decimal import logging import math import re import typing from builtins import * import canmatrix logger = logging.getLogger(__name__) default_float_factory = decimal.Decimal def normalizeName(name, whitespaceReplacement): name = re.sub(r'\s+', whitespaceReplacement, name) if ' ' in name: name = '"' + name + '"' return name def format_float(f): s = str(f).upper() if s.endswith('.0'): s = s[:-2] if 'E' in s: tmp = s.split('E') s = '%sE%s%s' % (tmp[0], tmp[1][0], tmp[1][1:].rjust(3, '0')) return s.upper() def check_define(define): # check if define is compatible with dbc. else repace by STRING if define.type not in ["ENUM", "STRING", "INT", "HEX", "FLOAT"]: logger.warn("dbc export of attribute type {} not supported; replaced by STRING".format(define.type)) define.definition = "STRING" define.type = "STRING" def create_define(data_type, define, define_type, defaults): check_define(define) define_string = "BA_DEF_ " + define_type define_string += ' "' + data_type + '" ' define_string += define.definition + ';\n' if data_type not in defaults and define.defaultValue is not None: if define.type == "ENUM" or define.type == "STRING": defaults[data_type] = '"' + define.defaultValue + '"' else: defaults[data_type] = define.defaultValue return define_string def create_attribute_string(attribute, attribute_class, name, value, is_string): if is_string: value = '"' + value + '"' elif not value: value = '""' attribute_string = 'BA_ "' + attribute + '" ' + attribute_class + ' ' + name + ' ' + str(value) + ';\n' return attribute_string def create_comment_string(comment_class, comment_ident, comment, dbcExportEncoding, dbcExportCommentEncoding): if len(comment) == 0: return b"" comment_string = ("CM_ " + comment_class + " " + comment_ident + ' "').encode(dbcExportEncoding, 'ignore') comment_string += comment.replace('"', '\\"').encode(dbcExportCommentEncoding, 'ignore') comment_string += '";\n'.encode(dbcExportEncoding) return comment_string def dump(mydb, f, **options): # create copy because export changes database db = copy.deepcopy(mydb) dbcExportEncoding = options.get("dbcExportEncoding", 'iso-8859-1') dbcExportCommentEncoding = options.get("dbcExportCommentEncoding", dbcExportEncoding) writeValTable = options.get("writeValTable", True) compatibility = options.get('compatibility', True) whitespaceReplacement = options.get("whitespaceReplacement", '_') if whitespaceReplacement in ['', None] or set( [' ', '\t']).intersection(whitespaceReplacement): print("Warning: Settings may result in whitespace in DBC variable names. This is not supported by the DBC format.") if db.contains_fd or db.contains_j1939: if db.contains_fd: db.add_global_defines("BusType", "STRING") db.add_attribute("BusType", "CAN FD") elif db.contains_j1939: db.add_global_defines("ProtocolType", "STRING") db.add_attribute("ProtocolType", "J1939") db.add_frame_defines("VFrameFormat", 'ENUM "StandardCAN","ExtendedCAN","StandardCAN_FD","ExtendedCAN_FD","J1939PG"') for frame in db.frames: if frame.is_fd: if frame.arbitration_id.extended: frame.add_attribute("VFrameFormat", "ExtendedCAN_FD") else: frame.add_attribute("VFrameFormat", "StandardCAN_FD") elif frame.is_j1939: frame.add_attribute("VFrameFormat", "J1939PG") else: if frame.arbitration_id.extended: frame.add_attribute("VFrameFormat", "ExtendedCAN") else: frame.add_attribute("VFrameFormat", "StandardCAN") db.enum_attribs_to_keys() # free signals are in special frame in dbc... if len(db.signals) > 0: free_signals_dummy_frame = canmatrix.Frame("VECTOR__INDEPENDENT_SIG_MSG") free_signals_dummy_frame.arbitration_id = canmatrix.ArbitrationId(0x40000000, extended=True) free_signals_dummy_frame.signals = db.signals db.addFrame(free_signals_dummy_frame) # shorten long enviroment variable names for envVarName in db.env_vars: if len(envVarName) > 32: db.add_env_attribute(envVarName, "SystemEnvVarLongSymbol", envVarName) db.env_vars[envVarName[:32]] = db.env_vars.pop(envVarName) db.add_env_defines("SystemEnvVarLongSymbol", "STRING") header = "VERSION \"created by canmatrix\"\n\n\nNS_ :\n\nBS_:\n\n" f.write(header.encode(dbcExportEncoding)) # ECUs f.write("BU_: ".encode(dbcExportEncoding)) for ecu in db.ecus: # fix long ecu names: if len(ecu.name) > 32: ecu.add_attribute("SystemNodeLongSymbol", ecu.name) ecu.name = ecu.name[0:32] db.add_ecu_defines("SystemNodeLongSymbol", "STRING") f.write((ecu.name + " ").encode(dbcExportEncoding)) f.write("\n\n".encode(dbcExportEncoding)) if writeValTable: # ValueTables for table in sorted(db.value_tables): f.write(("VAL_TABLE_ " + table).encode(dbcExportEncoding)) for row in db.value_tables[table]: f.write( (' ' + str(row) + ' "' + db.value_tables[table][row] + '"').encode(dbcExportEncoding)) f.write(";\n".encode(dbcExportEncoding)) f.write("\n".encode(dbcExportEncoding)) output_names = collections.defaultdict(dict) for frame in db.frames: # fix long frame names if len(frame.name) > 32: frame.add_attribute("SystemMessageLongSymbol", frame.name) frame.name = frame.name[0:32] db.add_frame_defines("SystemMessageLongSymbol", "STRING") # fix long signal names for s in frame.signals: if len(s.name) > 32: s.add_attribute("SystemSignalLongSymbol", s.name) s.name = s.name[0:32] db.add_signal_defines("SystemSignalLongSymbol", "STRING") normalized_names = collections.OrderedDict(( (s, normalizeName(s.name, whitespaceReplacement)) for s in frame.signals )) # remove "-" from frame names if compatibility: frame.name = re.sub("[^A-Za-z0-9]", whitespaceReplacement, frame.name) duplicate_signal_totals = collections.Counter(normalized_names.values()) duplicate_signal_counter = collections.Counter() numbered_names = collections.OrderedDict() for signal in frame.signals: name = normalized_names[signal] if compatibility: name = re.sub("[^A-Za-z0-9]",whitespaceReplacement, name) duplicate_signal_counter[name] += 1 if duplicate_signal_totals[name] > 1: # TODO: pad to 01 in case of 10+ instances, for example? name += str(duplicate_signal_counter[name] - 1) output_names[frame][signal] = name # Frames for frame in db.frames: multiplex_written = False if frame.transmitters.__len__() == 0: frame.add_transmitter("Vector__XXX") f.write( ("BO_ %d " % frame.arbitration_id.to_compound_integer() + frame.name + ": %d " % frame.size + frame.transmitters[0] + "\n").encode(dbcExportEncoding)) duplicate_signal_totals = collections.Counter( normalizeName(s.name, whitespaceReplacement) for s in frame.signals ) duplicate_signal_counter = collections.Counter() for signal in frame.signals: if signal.multiplex == 'Multiplexor' and multiplex_written and not frame.is_complex_multiplexed: continue signal_line = " SG_ " + output_names[frame][signal] + " " if signal.mux_val is not None: signal_line += "m{}".format(int(signal.mux_val)) if signal.multiplex != 'Multiplexor': signal_line += " " if signal.multiplex == 'Multiplexor': signal_line += "M " multiplex_written = True startbit = signal.get_startbit(bit_numbering=1) if signal.is_signed: sign = '-' else: sign = '+' signal_line += (": %d|%d@%d%c" % (startbit, signal.size, signal.is_little_endian, sign)) signal_line += " (%s,%s)" % (format_float(signal.factor), format_float(signal.offset)) signal_line += " [{}|{}]".format(format_float(signal.min),format_float(signal.max)) signal_line += ' "' if signal.unit is None: signal.unit = "" signal_line += signal.unit signal_line += '" ' if signal.receivers.__len__() == 0: signal.add_receiver('Vector__XXX') signal_line += ','.join(signal.receivers) + "\n" f.write(signal_line.encode(dbcExportEncoding)) f.write("\n".encode(dbcExportEncoding)) f.write("\n".encode(dbcExportEncoding)) # second Sender: for frame in db.frames: if frame.transmitters.__len__() > 1: f.write(("BO_TX_BU_ %d : %s;\n" % (frame.arbitration_id.to_compound_integer(), ','.join(frame.transmitters))).encode(dbcExportEncoding)) # frame comments # wow, there are dbcs where comments are encoded with other coding than rest of dbc... for frame in db.frames: f.write(create_comment_string("BO_", "%d " % frame.arbitration_id.to_compound_integer(), frame.comment, dbcExportEncoding, dbcExportCommentEncoding)) f.write("\n".encode(dbcExportEncoding)) # signal comments for frame in db.frames: for signal in frame.signals: if signal.comment is not None and signal.comment.__len__() > 0: name = output_names[frame][signal] f.write(create_comment_string("SG_", "%d " % frame.arbitration_id.to_compound_integer() + name, signal.comment, dbcExportEncoding, dbcExportCommentEncoding)) f.write("\n".encode(dbcExportEncoding)) # ecu comments for ecu in db.ecus: if ecu.comment is not None and ecu.comment.__len__() > 0: f.write(create_comment_string("BU_", ecu.name, ecu.comment, dbcExportEncoding, dbcExportCommentEncoding)) f.write("\n".encode(dbcExportEncoding)) defaults = {} # write defines for (data_type, define) in sorted(list(db.frame_defines.items())): f.write(create_define(data_type, define, "BO_", defaults).encode(dbcExportEncoding, 'replace')) for (data_type, define) in sorted(list(db.signal_defines.items())): f.write(create_define(data_type, define, "SG_", defaults).encode(dbcExportEncoding, 'replace')) for (data_type, define) in sorted(list(db.ecu_defines.items())): f.write(create_define(data_type, define, "BU_", defaults).encode(dbcExportEncoding, 'replace')) for (data_type, define) in sorted(list(db.env_defines.items())): f.write(create_define(data_type, define, "EV_", defaults).encode(dbcExportEncoding, 'replace')) for (data_type, define) in sorted(list(db.global_defines.items())): f.write(create_define(data_type, define, "", defaults).encode(dbcExportEncoding, 'replace')) for define in sorted(defaults): f.write(('BA_DEF_DEF_ "' + define + '" ').encode(dbcExportEncoding) + defaults[define].encode(dbcExportEncoding,'replace') + ';\n'.encode(dbcExportEncoding)) # ecu-attributes: for ecu in db.ecus: for attrib, val in sorted(ecu.attributes.items()): f.write(create_attribute_string(attrib, "BU_", ecu.name, val, db.ecu_defines[attrib].type == "STRING").encode(dbcExportEncoding)) f.write("\n".encode(dbcExportEncoding)) # global-attributes: for attrib, val in sorted(db.attributes.items()): f.write(create_attribute_string(attrib, "", "", val, db.global_defines[attrib].type == "STRING").encode( dbcExportEncoding)) f.write("\n".encode(dbcExportEncoding)) # messages-attributes: for frame in db.frames: for attrib, val in sorted(frame.attributes.items()): f.write(create_attribute_string(attrib, "BO_", str(frame.arbitration_id.to_compound_integer()), val, db.frame_defines[attrib].type == "STRING").encode(dbcExportEncoding)) f.write("\n".encode(dbcExportEncoding)) # signal-attributes: for frame in db.frames: for signal in frame.signals: for attrib, val in sorted(signal.attributes.items()): name = output_names[frame][signal] if isinstance(val, float): val = format_float(val) f.write(create_attribute_string(attrib, "SG_", '%d ' % frame.arbitration_id.to_compound_integer() + name, val, db.signal_defines[attrib].type == "STRING").encode(dbcExportEncoding)) f.write("\n".encode(dbcExportEncoding)) for env_var_name, env_var in db.env_vars.items(): if "attributes" in env_var: for attribute, value in env_var["attributes"].items(): f.write(create_attribute_string(attribute, "EV_", "", value, db.env_defines[attribute].type == "STRING").encode(dbcExportEncoding)) # signal-values: for frame in db.frames: multiplex_written = False for signal in frame.signals: if signal.multiplex == 'Multiplexor' and multiplex_written: continue multiplex_written = True if signal.values: f.write( ('VAL_ %d ' % frame.arbitration_id.to_compound_integer() + output_names[frame][signal]).encode(dbcExportEncoding)) for attrib, val in sorted( signal.values.items(), key=lambda x: int(x[0])): f.write( (' ' + str(attrib) + ' "' + val + '"').encode(dbcExportEncoding)) f.write(";\n".encode(dbcExportEncoding)) # SIG_VALTYPE for frame in db.frames: for signal in frame.signals: if signal.is_float: if int(signal.size) > 32: f.write(('SIG_VALTYPE_ %d %s : 2;\n' % (frame.arbitration_id.to_compound_integer(), output_names[frame][signal])).encode( dbcExportEncoding)) else: f.write(('SIG_VALTYPE_ %d %s : 1;\n' % (frame.arbitration_id.to_compound_integer(), output_names[frame][signal])).encode( dbcExportEncoding)) # signal-groups: for frame in db.frames: for sigGroup in frame.signalGroups: f.write(("SIG_GROUP_ " + str(frame.arbitration_id.to_compound_integer()) + " " + sigGroup.name + " " + str(sigGroup.id) + " :").encode(dbcExportEncoding)) for signal in sigGroup.signals: f.write((" " + output_names[frame][signal]).encode(dbcExportEncoding)) f.write(";\n".encode(dbcExportEncoding)) for frame in db.frames: if frame.is_complex_multiplexed: for signal in frame.signals: if signal.muxer_for_signal is not None: f.write(("SG_MUL_VAL_ %d %s %s %d-%d;\n" % (frame.arbitration_id.to_compound_integer(), signal.name, signal.muxer_for_signal, signal.mux_val_min, signal.mux_val_max)).encode(dbcExportEncoding)) for envVarName in db.env_vars: envVar = db.env_vars[envVarName] f.write(("EV_ {0} : {1} [{2}|{3}] \"{4}\" {5} {6} {7} {8};\n".format(envVarName, envVar["varType"], envVar["min"], envVar["max"], envVar["unit"],envVar["initialValue"], envVar["evId"], envVar["accessType"], ",".join(envVar["accessNodes"])) ).encode(dbcExportEncoding)) def load(f, **options): dbcImportEncoding = options.get("dbcImportEncoding", 'iso-8859-1') dbcCommentEncoding = options.get("dbcImportCommentEncoding", dbcImportEncoding) float_factory = options.get('float_factory', default_float_factory) i = 0 class FollowUps(object): nothing, signalComment, frameComment, boardUnitComment, globalComment = list( range(5)) followUp = FollowUps.nothing comment = "" signal = None # type: typing.Optional[canmatrix.Signal] frame = None boardUnit = None db = canmatrix.CanMatrix() framesById = {} # type: typing.Dict[int, canmatrix.Frame] def hash_arbitration_id(arbitration_id): # type: (canmatrix.ArbitrationId) -> int return hash((arbitration_id.id, arbitration_id.extended)) def get_frame_by_id(arbitration_id): # type: (canmatrix.ArbitrationId) -> typing.Optional[canmatrix.Frame] try: return framesById[hash_arbitration_id(arbitration_id)] except KeyError: return None def add_frame_by_id(frame): # type: (canmatrix.Frame) -> None framesById[hash_arbitration_id(frame.arbitration_id)] = frame for line in f: i = i + 1 l = line.strip() if l.__len__() == 0: continue try: # if 1==1: if followUp == FollowUps.signalComment: try: comment += "\n" + \ l.decode(dbcCommentEncoding).replace('\\"', '"') except: logger.error("Error decoding line: %d (%s)" % (i, line)) if l.endswith(b'";'): followUp = FollowUps.nothing if signal is not None: signal.add_comment(comment[0:-2]) continue elif followUp == FollowUps.frameComment: try: comment += "\n" + \ l.decode(dbcCommentEncoding).replace('\\"', '"') except: logger.error("Error decoding line: %d (%s)" % (i, line)) if l.endswith(b'";'): followUp = FollowUps.nothing if frame is not None: frame.add_comment(comment[0:-2]) continue elif followUp == FollowUps.boardUnitComment: try: comment += "\n" + \ l.decode(dbcCommentEncoding).replace('\\"', '"') except: logger.error("Error decoding line: %d (%s)" % (i, line)) if l.endswith(b'";'): followUp = FollowUps.nothing if boardUnit is not None: boardUnit.add_comment(comment[0:-2]) continue decoded = l.decode(dbcImportEncoding).strip() if decoded.startswith("BO_ "): regexp = re.compile(r"^BO_ ([^\ ]+) ([^\ ]+) *: ([^\ ]+) ([^\ ]+)") temp = regexp.match(decoded) # db.frames.addFrame(Frame(temp.group(1), temp.group(2), temp.group(3), temp.group(4))) frame = canmatrix.Frame(temp.group(2),arbitration_id = int(temp.group(1)), size=int(temp.group(3)), transmitters=temp.group(4).split()) db.frames.append(frame) add_frame_by_id(frame) elif decoded.startswith("SG_ "): pattern = r"^SG_ +(\w+) *: *(\d+)\|(\d+)@(\d+)([\+|\-]) +\(([0-9.+\-eE]+),([0-9.+\-eE]+)\) +\[([0-9.+\-eE]+)\|([0-9.+\-eE]+)\] +\"(.*)\" +(.*)" regexp = re.compile(pattern) temp = regexp.match(decoded) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp_raw = regexp_raw.match(l) if temp: receiver = [b.strip() for b in temp.group(11).split(',')] extras = {} # if float_factory is not None: # extras['float_factory'] = float_factory tempSig = canmatrix.Signal( temp.group(1), start_bit=int(temp.group(2)), size=int(temp.group(3)), is_little_endian=(int(temp.group(4)) == 1), is_signed=(temp.group(5) == '-'), factor=temp.group(6), offset=temp.group(7), min=temp.group(8), max=temp.group(9), unit=temp_raw.group(10).decode(dbcImportEncoding), receivers=receiver, **extras ) if not tempSig.is_little_endian: # startbit of motorola coded signals are MSB in dbc tempSig.set_startbit(int(temp.group(2)), bitNumbering=1) frame.add_signal(tempSig) # db.frames.addSignalToLastFrame(tempSig) else: pattern = r"^SG_ +(.+?) +(.+?) *: *(\d+)\|(\d+)@(\d+)([\+|\-]) +\(([0-9.+\-eE]+),([0-9.+\-eE]+)\) +\[([0-9.+\-eE]+)\|([0-9.+\-eE]+)\] +\"(.*)\" +(.*)" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) receiver = [b.strip() for b in temp.group(12).split(',')] multiplex = temp.group(2) # type: typing.Union[str, int] is_complex_multiplexed = False if multiplex == 'M': multiplex = 'Multiplexor' elif multiplex.endswith('M'): is_complex_multiplexed = True multiplex = multiplex[:-1] if multiplex != 'Multiplexor': try: multiplex = int(multiplex[1:]) except: raise Exception('error decoding line',line) extras = {} # if float_factory is not None: # extras['float_factory'] = float_factory tempSig = canmatrix.Signal( temp.group(1), start_bit=int(temp.group(3)), size=int(temp.group(4)), is_little_endian=(int(temp.group(5)) == 1), is_signed=(temp.group(6) == '-'), factor=temp.group(7), offset=temp.group(8), min=temp.group(9), max=temp.group(10), unit=temp_raw.group(11).decode(dbcImportEncoding), receivers=receiver, multiplex=multiplex, **extras ) if is_complex_multiplexed: tempSig.is_multiplexer = True tempSig.multiplex = 'Multiplexor' if not tempSig.is_little_endian: # startbit of motorola coded signals are MSB in dbc tempSig.set_startbit(int(temp.group(3)), bitNumbering=1) frame.add_signal(tempSig) if is_complex_multiplexed: frame.is_complex_multiplexed = True elif decoded.startswith("BO_TX_BU_ "): regexp = re.compile(r"^BO_TX_BU_ ([0-9]+) *: *(.+);") temp = regexp.match(decoded) frame = get_frame_by_id(canmatrix.ArbitrationId.from_compound_integer(int(temp.group(1)))) for ecu_name in temp.group(2).split(','): frame.add_transmitter(ecu_name) elif decoded.startswith("CM_ SG_ "): pattern = r"^CM_ +SG_ +(\w+) +(\w+) +\"(.*)\";" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: frame = get_frame_by_id(canmatrix.ArbitrationId.from_compound_integer(int(temp.group(1)))) signal = frame.signal_by_name(temp.group(2)) if signal: try: signal.add_comment(temp_raw.group(3).decode( dbcCommentEncoding).replace('\\"', '"')) except: logger.error( "Error decoding line: %d (%s)" % (i, line)) else: pattern = r"^CM_ +SG_ +(\w+) +(\w+) +\"(.*)" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: frame = get_frame_by_id(canmatrix.ArbitrationId.from_compound_integer(int(temp.group(1)))) signal = frame.signal_by_name(temp.group(2)) try: comment = temp_raw.group(3).decode( dbcCommentEncoding).replace('\\"', '"') except: logger.error( "Error decoding line: %d (%s)" % (i, line)) followUp = FollowUps.signalComment elif decoded.startswith("CM_ BO_ "): pattern = r"^CM_ +BO_ +(\w+) +\"(.*)\";" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: frame = get_frame_by_id(canmatrix.ArbitrationId.from_compound_integer(int(temp.group(1)))) if frame: try: frame.add_comment(temp_raw.group(2).decode( dbcCommentEncoding).replace('\\"', '"')) except: logger.error( "Error decoding line: %d (%s)" % (i, line)) else: pattern = r"^CM_ +BO_ +(\w+) +\"(.*)" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: frame = get_frame_by_id(canmatrix.ArbitrationId.from_compound_integer(int(temp.group(1)))) try: comment = temp_raw.group(2).decode( dbcCommentEncoding).replace('\\"', '"') except: logger.error( "Error decoding line: %d (%s)" % (i, line)) followUp = FollowUps.frameComment elif decoded.startswith("CM_ BU_ "): pattern = r"^CM_ +BU_ +(\w+) +\"(.*)\";" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: boardUnit = db.ecu_by_name(temp.group(1)) if boardUnit: try: boardUnit.add_comment(temp_raw.group(2).decode( dbcCommentEncoding).replace('\\"', '"')) except: logger.error( "Error decoding line: %d (%s)" % (i, line)) else: pattern = r"^CM_ +BU_ +(\w+) +\"(.*)" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: boardUnit = db.ecu_by_name(temp.group(1)) if boardUnit: try: comment = temp_raw.group(2).decode( dbcCommentEncoding).replace('\\"', '"') except: logger.error( "Error decoding line: %d (%s)" % (i, line)) followUp = FollowUps.boardUnitComment elif decoded.startswith("BU_:"): pattern = r"^BU_\:(.*)" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) if temp: myTempListe = temp.group(1).split(' ') for ele in myTempListe: if len(ele.strip()) > 1: db.ecus.append(canmatrix.Ecu(ele)) elif decoded.startswith("VAL_ "): regexp = re.compile(r"^VAL_ +(\w+) +(\w+) +(.*);") temp = regexp.match(decoded) if temp: frame_id = temp.group(1) signal_name = temp.group(2) tempList = temp.group(3).split('"') if frame_id.isnumeric(): # value for Frame try: frame = get_frame_by_id(canmatrix.ArbitrationId.from_compound_integer(int(frame_id))) sg = frame.signal_by_name(signal_name) for i in range(math.floor(len(tempList) / 2)): val = tempList[i * 2 + 1] if sg: sg.add_values(tempList[i * 2], val) except: logger.error("Error with Line: " + str(tempList)) else: logger.info("Warning: enviroment variables currently not supported") elif decoded.startswith("VAL_TABLE_ "): regexp = re.compile(r"^VAL_TABLE_ +(\w+) +(.*);") temp = regexp.match(decoded) if temp: tableName = temp.group(1) tempList = temp.group(2).split('"') try: valHash = {} for i in range(math.floor(len(tempList) / 2)): val = tempList[i * 2 + 1] valHash[tempList[i * 2].strip()] = val.strip() except: logger.error("Error with Line: " + str(tempList)) db.add_value_table(tableName, valHash) else: logger.debug(l) elif decoded.startswith("BA_DEF_") and decoded[7:].strip()[:3] in ["SG_", "BO_", "BU_", "EV_"]: substring = decoded[7:].strip() define_type = substring[:3] substring = substring[3:].strip() pattern = r"^\"(.+?)\" +(.+);" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(substring) substring_line = l[7:].strip()[3:].strip() temp_raw = regexp_raw.match(substring_line) if temp: if define_type == "SG_": db.add_signal_defines(temp.group(1), temp_raw.group(2).decode(dbcImportEncoding)) elif define_type == "BO_": db.add_frame_defines(temp.group(1), temp_raw.group(2).decode(dbcImportEncoding)) elif define_type == "BU_": db.add_ecu_defines(temp.group(1), temp_raw.group(2).decode(dbcImportEncoding)) elif define_type == "EV_": db.add_env_defines(temp.group(1), temp_raw.group(2).decode(dbcImportEncoding)) elif decoded.startswith("BA_DEF_ "): pattern = r"^BA_DEF_ +\"(.+?)\" +(.+);" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: db.add_global_defines(temp.group(1), temp_raw.group(2).decode(dbcImportEncoding)) elif decoded.startswith("BA_ "): regexp = re.compile(r"^BA_ +\".+?\" +(.+)") tempba = regexp.match(decoded) if tempba.group(1).strip().startswith("BO_ "): regexp = re.compile(r"^BA_ +\"(.+?)\" +BO_ +(\d+) +(.+);") temp = regexp.match(decoded) get_frame_by_id(canmatrix.ArbitrationId.from_compound_integer(int(temp.group(2)))).add_attribute( temp.group(1), temp.group(3)) elif tempba.group(1).strip().startswith("SG_ "): regexp = re.compile(r"^BA_ +\"(.+?)\" +SG_ +(\d+) +(\w+) +(.+);") temp = regexp.match(decoded) if temp != None: get_frame_by_id(canmatrix.ArbitrationId.from_compound_integer(int(temp.group(2)))).signal_by_name( temp.group(3)).add_attribute(temp.group(1), temp.group(4)) elif tempba.group(1).strip().startswith("EV_ "): regexp = re.compile(r"^BA_ +\"(.+?)\" +EV_ +(\w+) +(.*);") temp = regexp.match(decoded) if temp != None: db.add_env_attribute(temp.group(2),temp.group(1),temp.group(3)) elif tempba.group(1).strip().startswith("BU_ "): regexp = re.compile(r"^BA_ +\"(.*?)\" +BU_ +(\w+) +(.+);") temp = regexp.match(decoded) db.ecu_by_name( temp.group(2)).add_attribute( temp.group(1), temp.group(3)) else: regexp = re.compile( r"^BA_ +\"([A-Za-z0-9\-_]+)\" +([\"\w\-\.]+);") temp = regexp.match(decoded) if temp: db.add_attribute(temp.group(1), temp.group(2)) elif decoded.startswith("SIG_GROUP_ "): regexp = re.compile(r"^SIG_GROUP_ +(\w+) +(\w+) +(\w+) +\:(.*);") temp = regexp.match(decoded) frame = get_frame_by_id(canmatrix.ArbitrationId.from_compound_integer(int(temp.group(1)))) if frame is not None: signalArray = temp.group(4).split(' ') frame.add_signal_group(temp.group(2), temp.group(3), signalArray) # todo wrong annotation in canmatrix? Id is a string? elif decoded.startswith("SIG_VALTYPE_ "): regexp = re.compile(r"^SIG_VALTYPE_ +(\w+) +(\w+)\s*\:(.*);") temp = regexp.match(decoded) frame = get_frame_by_id(canmatrix.ArbitrationId.from_compound_integer(int(temp.group(1)))) if frame: signal = frame.signal_by_name(temp.group(2)) signal.is_float = True # SIG_VALTYPE_ 0 float : 1; elif decoded.startswith("BA_DEF_DEF_ "): pattern = r"^BA_DEF_DEF_ +\"(.+?)\" +(.+?)\;" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: db.add_define_default(temp.group(1), temp_raw.group(2).decode(dbcImportEncoding)) elif decoded.startswith("SG_MUL_VAL_ "): pattern = r"^SG_MUL_VAL_ +([0-9]+) +([\w\-]+) +([\w\-]+) +([0-9]+)\-([0-9]+) *;" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: frameId = temp.group(1) signalName = temp.group(2) muxerForSignal = temp.group(3) muxValMin = int(temp.group(4)) muxValMax = int(temp.group(4)) frame = get_frame_by_id(canmatrix.ArbitrationId.from_compound_integer(int(frameId))) if frame is not None: signal = frame.signal_by_name(signalName) frame.is_complex_multiplexed = True signal.muxer_for_signal = muxerForSignal signal.mux_val_min = muxValMin signal.mux_val_max = muxValMax elif decoded.startswith("EV_ "): pattern = r"^EV_ +([\w\-\_]+?) *\: +([0-9]+) +\[([0-9.+\-eE]+)\|([0-9.+\-eE]+)\] +\"(.*?)\" +([0-9.+\-eE]+) +([0-9.+\-eE]+) +([\w\-]+?) +(.*);" regexp = re.compile(pattern) temp = regexp.match(decoded) varName = temp.group(1) varType = temp.group(2) min = temp.group(3) max = temp.group(4) unit = temp.group(5) initialValue = temp.group(6) evId = temp.group(7) accessType = temp.group(8) accessNodes = temp.group(9).split(",") db.add_env_var(varName, {"varType": varType, "min" : min, "max" : max, "unit" : unit, "initialValue" : initialValue, "evId" : evId, "accessType" : accessType, "accessNodes" : accessNodes}) # else: except: print ("error with line no: %d" % i) print (line) # Backtracking for env_var_name, env_var in db.env_vars.items(): if 'SystemEnvVarLongSymbol' in env_var.get("attributes", ""): long_name = env_var["attributes"]["SystemEnvVarLongSymbol"][1:-1] del(env_var["attributes"]["SystemEnvVarLongSymbol"]) db.env_vars[long_name] = db.env_vars.pop(env_var_name) for ecu in db.ecus: if ecu.attributes.get("SystemNodeLongSymbol", None) is not None: ecu.name = ecu.attributes.get("SystemNodeLongSymbol")[1:-1] ecu.del_attribute("SystemNodeLongSymbol") for frame in db.frames: if frame.attributes.get("SystemMessageLongSymbol", None) is not None: frame.name = frame.attributes.get("SystemMessageLongSymbol")[1:-1] frame.del_attribute("SystemMessageLongSymbol") # receiver is only given in the signals, so do propagate the receiver # to the frame: frame.update_receiver() # extended-flag is implicite in canid, thus repair this: #if frame.id > 0x80000000: # frame.id -= 0x80000000 # frame.extended = 1 for signal in frame.signals: if signal.attribute("SystemSignalLongSymbol") is not None: signal.name = signal.attribute("SystemSignalLongSymbol")[1:-1] signal.del_attribute("SystemSignalLongSymbol") for define in db.global_defines: if db.global_defines[define].type == "STRING": if define in db.attributes: db.attributes[define] = db.attributes[define][1:-1] for define in db.ecu_defines: if db.ecu_defines[define].type == "STRING": for ecu in db.ecus: if define in ecu.attributes: ecu.attributes[define] = ecu.attributes[define][1:-1] for define in db.frame_defines: if db.frame_defines[define].type == "STRING": for frame in db.frames: if define in frame.attributes: frame.attributes[define] = frame.attributes[define][1:-1] for define in db.signal_defines: if db.signal_defines[define].type == "STRING": for frame in db.frames: for signal in frame.signals: if define in signal.attributes: signal.attributes[define] = signal.attributes[define][1:-1] db.enum_attribs_to_values() for frame in db.frames: if "_FD" in frame.attributes.get("VFrameFormat", ""): frame.is_fd = True if "J1939PG" in frame.attributes.get("VFrameFormat", ""): frame.is_j1939 = True db.update_ecu_list() db.del_ecu("Vector__XXX") free_signals_dummy_frame = db.frame_by_name("VECTOR__INDEPENDENT_SIG_MSG") if free_signals_dummy_frame is not None and free_signals_dummy_frame.arbitration_id.id == 0x40000000: db.signals = free_signals_dummy_frame.signals db.del_frame(free_signals_dummy_frame) return db ``` #### File: canmatrix/tests/test_dbc.py ```python import io import textwrap import string import pytest import canmatrix.formats.dbc def test_long_signal_name_imports(): long_signal_name = u'FAILURE_ZELL_UNTERTEMPERATUR_ENTLADEN_ALARM_IDX_01' assert len(long_signal_name) > 32 dbc = io.BytesIO(textwrap.dedent(u'''\ BO_ 1 testFrame1: 1 TEST_ECU SG_ someShortenedDummyName: 1|2@0+ (1,0) [0|0] "" CCL_TEST BA_ "SystemSignalLongSymbol" SG_ 1 someShortenedDummyName "{}"; ''').format(long_signal_name).encode('utf-8')) matrix = canmatrix.formats.dbc.load(dbc) assert matrix.frames[0].signals[0].name == long_signal_name outdbc = io.BytesIO() canmatrix.formats.dump(matrix, outdbc, "dbc") long_name_found = False name_found = False for line in outdbc.getvalue().decode('utf8').split('\n'): if line.strip().startswith("SG_"): assert len(line.split()[1]) <= 32 name_found = True if line.strip().startswith("BA_ "): assert line.split()[5][1:-2] == long_signal_name long_name_found = True assert long_name_found is True assert name_found is True def test_create_define(): defaults = {} test_string = canmatrix.formats.dbc.create_define("my_data_type", canmatrix.Define('ENUM "A","B"'), "BA_", defaults) assert test_string == 'BA_DEF_ BA_ "my_data_type" ENUM "A","B";\n' def test_create_attribute_string(): test_string = canmatrix.formats.dbc.create_attribute_string("my_attribute", "BO_", "name", "value", True) assert test_string == 'BA_ "my_attribute" BO_ name "value";\n' test_string = canmatrix.formats.dbc.create_attribute_string("my_attribute", "BO_", "name", 1.23, False) assert test_string == 'BA_ "my_attribute" BO_ name 1.23;\n' def test_create_comment_string(): test_string = canmatrix.formats.dbc.create_comment_string("BO_", "ident", "some comment", "utf8", "utf8") assert test_string == b'CM_ BO_ ident "some comment";\n' def test_long_frame_name_imports(): long_frame_name = u'A_VERY_LONG_FRAME_NAME_WHICH_SHOULD_BE_SPLIT_SOMEHOW' assert len(long_frame_name) > 32 dbc = io.BytesIO(textwrap.dedent(u'''\ BO_ 1 shortendeFrameName: 1 someEcu SG_ someSignal: 1|2@0+ (1,0) [0|0] "" CCL_TEST BA_ "SystemMessageLongSymbol" BO_ 1 "{}"; ''').format(long_frame_name).encode('utf-8')) matrix = canmatrix.formats.dbc.load(dbc) long_name_found = False name_found = False assert matrix.frames[0].name == long_frame_name outdbc = io.BytesIO() canmatrix.formats.dump(matrix, outdbc, "dbc") for line in outdbc.getvalue().decode('utf8').split('\n'): if line.strip().startswith("BO_"): assert len(line.split()[2][:-1]) <= 32 name_found = True if line.strip().startswith("BA_ "): assert line.split()[4][1:-2] == long_frame_name long_name_found = True assert long_name_found is True assert name_found is True def test_long_ecu_name_imports(): long_ecu_name = u'A_VERY_LONG_ECU_NAME_WHICH_SHOULD_BE_SPLIT_SOMEHOW' assert len(long_ecu_name) > 32 dbc = io.BytesIO(textwrap.dedent(u'''\ BU_: SoMEShortenedEcuName BO_ 1 testFrame1: 1 SoMEShortenedEcuName SG_ someSignal: 1|2@0+ (1,0) [0|0] "" CCL_TEST BA_ "SystemNodeLongSymbol" BU_ SoMEShortenedEcuName "{}"; ''').format(long_ecu_name).encode('utf-8')) matrix = canmatrix.formats.dbc.load(dbc) long_name_found = False name_found = False assert matrix.ecus[0].name == long_ecu_name outdbc = io.BytesIO() canmatrix.formats.dump(matrix, outdbc, "dbc") for line in outdbc.getvalue().decode('utf8').split('\n'): if line.strip().startswith("BU_"): assert len(line.split()[1]) <= 32 name_found = True if line.strip().startswith("BA_ "): assert line.split()[4][1:-2] == long_ecu_name long_name_found = True assert long_name_found is True assert name_found is True def test_long_envvar_name_imports(): long_envvar_name = u'A_VERY_LONG_ENVIROMENT_NAME_WHICH_SHOULD_BE_SPLIT_SOMEHOW' assert len(long_envvar_name) > 32 dbc = io.BytesIO(textwrap.dedent(u'''\ BO_ 1 frameName: 1 someEcu SG_ someSignal: 1|2@0+ (1,0) [0|0] "" CCL_TEST EV_ someShortendEnvVar: 0 [0|0] "" 0 2 DUMMY_NODE_VECTOR0 Vector__XXX; BA_ "SystemEnvVarLongSymbol" EV_ someShortendEnvVar "{}"; ''').format(long_envvar_name).encode('utf-8')) matrix = canmatrix.formats.dbc.load(dbc) assert list(matrix.env_vars)[0] == long_envvar_name outdbc = io.BytesIO() canmatrix.formats.dump(matrix, outdbc, "dbc") long_name_found = False name_found = False for line in outdbc.getvalue().decode('utf8').split('\n'): if line.strip().startswith("EV_"): assert len(line.split()[1]) <= 32 name_found = True if line.strip().startswith("BA_ "): assert line.split()[3][1:-2] == long_envvar_name long_name_found = True assert long_name_found is True assert name_found is True def test_enum_with_comma(): dbc = io.BytesIO(textwrap.dedent(u'''\ BA_DEF_ "example0" ENUM "Val1",","; BA_DEF_ BO_ "example1" ENUM "Val 1","vector_leerstring",""," ","'","(",")","[","]","/","-","|","{","}",";",":","<",">",".","?","!","@","#","$","%","^","&","=","`","~"; BA_DEF_ SG_ "example2" ENUM "Val1",","; BA_DEF_ EV_ "example3" ENUM "Val1",","; BA_DEF_ BU_ "example4" ENUM "Val1",","; BA_DEF_DEF_ "example0" ","; BA_DEF_DEF_ "example1" ","; BA_DEF_DEF_ "example2" ","; BA_DEF_DEF_ "example3" ","; BA_DEF_DEF_ "example4" ","; ''').encode('utf-8')) matrix = canmatrix.formats.dbc.load(dbc, dbcImportEncoding="utf8") assert matrix.frame_defines[u'example1'].values == ["Val 1", "", ""] + list(" '()[]/-|{};:<>.?!@#$%^&=`~") assert matrix.signal_defines[u'example2'].values == ['Val1', ','] assert matrix.ecu_defines[u'example4'].values == ['Val1', ','] @pytest.mark.parametrize( 'character', [ ['{}'.format(c if c != '"' else '\\"')] for c in string.punctuation ], ) def test_enum_with_special_character(character): dbc = io.BytesIO(textwrap.dedent(u'''\ BA_DEF_ BO_ "example1" ENUM "Val 1","{}"; ''').format(character[0]).encode('utf-8')) matrix = canmatrix.formats.dbc.load(dbc, dbcImportEncoding="utf8") assert matrix.frame_defines[u'example1'].values == ["Val 1", character[0]] def test_export_of_unknown_defines(): db = canmatrix.CanMatrix() db.add_frame_defines("Receivable", 'BOOL False True') db.add_frame_defines("Sendable", 'BOOL False True') for (dataType, define) in db.frame_defines.items(): orig_definition = define.definition canmatrix.formats.dbc.check_define(define) assert orig_definition != define.definition db.add_signal_defines("LongName", 'STR') for (dataType, define) in db.signal_defines.items(): orig_definition = define.definition canmatrix.formats.dbc.check_define(define) assert orig_definition != define.definition frame = canmatrix.Frame("someFrame") signal = canmatrix.Signal("SomeSignal") signal.add_attribute("LongName", "EnableCalcIDCTrip Calc. IDC trip") frame.add_signal(signal) db.add_frame(frame) db.add_ecu_defines("someName", 'STRING') for (dataType, define) in db.ecu_defines.items(): orig_definition = define.definition canmatrix.formats.dbc.check_define(define) assert orig_definition == define.definition db.add_global_defines("someGlobaName", 'BOOL') for (dataType, define) in db.global_defines.items(): orig_definition = define.definition canmatrix.formats.dbc.check_define(define) assert orig_definition != define.definition outdbc = io.BytesIO() canmatrix.formats.dump(db, outdbc, "dbc") for line in outdbc.getvalue().decode('utf8').split('\n'): if line.startswith("BA_DEF_ "): assert line.endswith("STRING;") if line.startswith("BA_ "): assert line.endswith('";') def test_braces_in_attributes(): dbc = io.BytesIO(textwrap.dedent(u'''\ BO_ 20 frameName: 1 someEcu SG_ sometext: 1|2@0+ (1,0) [0|0] "" someOtherEcu BA_ "Signal Age [ms]" SG_ 20 sometext 5000; ''').encode('utf-8')) matrix = canmatrix.formats.dbc.load(dbc, dbcImportEncoding="utf8") def test_defines_with_spaces(): dbc = io.BytesIO(textwrap.dedent(u'''\ BU_: someOtherEcu BO_ 123 someFrame: 1 someOtherEcu EV_ someEnvVar: 0 [0|0] "" 0 2 DUMMY_NODE_VECTOR0 Vector__XXX; BA_DEF_ BU_ "Node Address" INT 0 255; BA_DEF_ BO_ "Period [ms]" INT 0 5000; BA_DEF_ BU_ "Description X" STRING; BA_DEF_ EV_ "some attrib" STRING; BA_ "Node Address" BU_ someOtherEcu 42; BA_ "Description X" BU_ someOtherEcu "Some Some Text"; BA_ "Period [ms]" BO_ 123 3000; BA_ "some attrib" EV_ someEnvVar "some space"; ''').encode('utf-8')) matrix = canmatrix.formats.dbc.load(dbc, dbcImportEncoding="utf8") assert matrix.ecu_defines["Node Address"].type == "INT" assert matrix.ecu_defines["Node Address"].min == 0 assert matrix.ecu_defines["Node Address"].max == 255 assert matrix.frame_defines["Period [ms]"].min == 0 assert matrix.frame_defines["Period [ms]"].max == 5000 assert matrix.frames[0].attributes["Period [ms]"] == '3000' assert matrix.env_vars["someEnvVar"]["attributes"]["some attrib"] == '"some space"' assert matrix.ecus[0].attributes["Description X"] == "Some Some Text" def test_writing_complex_multiplex(): db = canmatrix.CanMatrix() frame = canmatrix.Frame("someFrame") frame.is_complex_multiplexed = True signal = canmatrix.Signal("mx") signal.mux_val_max = 5 signal.mux_val_min = 1 signal.muxer_for_signal = 4 frame.add_signal(signal) db.add_frame(frame) outdbc = io.BytesIO() canmatrix.formats.dump(db, outdbc, "dbc") for line in outdbc.getvalue().decode('utf8').split('\n'): if "SG_MUL_VAL" in line: return True assert False def test_defines_with_special_cars(): dbc = io.BytesIO(textwrap.dedent(u'''\ BU_: someOtherEcu BO_ 123 someFrame: 1 someOtherEcu SG_ someSignal: 1|2@0+ (1,0) [0|0] "" CCL_TEST BA_DEF_ SG_ "Accuracy" STRING; BA_ "Accuracy" SG_ 123 someSignal "+/- 10.2 at 55.1%"; ''').encode('utf-8')) matrix = canmatrix.formats.dbc.load(dbc, dbcImportEncoding="utf8") assert matrix.frames[0].signals[0].attributes["Accuracy"] == "+/- 10.2 at 55.1%" def test_j1939_frametype(): dbc = io.BytesIO(textwrap.dedent(u'''\ BU_: someOtherEcu BO_ 2147483648 someFrame: 1 someOtherEcu SG_ someSignal: 1|2@0+ (1,0) [0|0] "" CCL_TEST BA_DEF_ BO_ "VFrameFormat" ENUM "StandardCAN","ExtendedCAN","J1939PG"; BA_ "VFrameFormat" BO_ 2147483648 2; ''').encode('utf-8')) matrix = canmatrix.formats.dbc.load(dbc, dbcImportEncoding="utf8") assert matrix.frames[0].is_j1939 == True # negative test dbc = io.BytesIO(textwrap.dedent(u'''\ BU_: someOtherEcu BO_ 2147483648 someFrame: 1 someOtherEcu SG_ someSignal: 1|2@0+ (1,0) [0|0] "" CCL_TEST BA_DEF_ BO_ "VFrameFormat" ENUM "StandardCAN","ExtendedCAN","J1939PG"; BA_ "VFrameFormat" BO_ 2147483648 0; ''').encode('utf-8')) matrix = canmatrix.formats.dbc.load(dbc, dbcImportEncoding="utf8") assert matrix.frames[0].is_j1939 == False ``` #### File: canmatrix/tests/test_j1939_decoder.py ```python import io import canmatrix.j1939_decoder import textwrap import collections def test_j1939_decoder(): dbc = io.BytesIO(textwrap.dedent(u'''\ BO_ 2566856834 CM_Requests: 9 CGW SG_ CM_Inlet_MotorRequest : 50|2@0+ (1,0) [0|3] "" CM SG_ CM_ChargeUnit_Request : 52|2@0+ (1,0) [0|3] "" CM SG_ CM_RTC_TimerValue : 47|8@0+ (1,0) [0|254] "min" CM SG_ CM_RTC_TimerRequest : 37|2@0+ (1,0) [0|3] "" CM SG_ CM_PlugLock_MotorRequest : 35|3@0+ (1,0) [0|7] "" CM SG_ CM_LED2_Request : 23|8@0+ (0.5,0) [0|100] "%" CM SG_ CM_LED1_Request : 15|8@0+ (0.5,0) [0|100] "%" CM SG_ CM_LED0_Request : 7|8@0+ (0.5,0) [0|100] "%" CM SG_ CM_HighSideOut4_Request : 39|2@0+ (1,0) [0|3] "" CM SG_ CM_HighSideOut3_Request : 25|2@0+ (1,0) [0|3] "" CM SG_ CM_HighSideOut2_Request : 27|2@0+ (1,0) [0|3] "" CM SG_ CM_HighSideOut1_Request : 29|2@0+ (1,0) [0|3] "" CM SG_ CM_HighSideOut0_Request : 31|2@0+ (1,0) [0|3] "" CM SG_ CM_ControlPilot_ChargeModeRe : 55|3@0+ (1,0) [0|7] "" CM ''').encode('utf-8')) matrix = canmatrix.formats.dbc.load(dbc, dbcImportEncoding="utf8") t = canmatrix.j1939_decoder.j1939_decoder() # BAM (type, signals) = t.decode(canmatrix.ArbitrationId(id = 0xec0000, extended= True), bytearray([0x20,10,0,1,0xff,0x66,0x1,0]), matrix) assert "BAM " in type # print (type, signals) # data 1 (type, signals) = t.decode(canmatrix.ArbitrationId(id = 0xeb0000, extended= True), bytearray([0x0,1,1,1,1,1,1,1]), matrix) assert "BAM data" in type #print (type, signals) # data 2 (type, signals) = t.decode(canmatrix.ArbitrationId(id = 0xeb0000, extended= True), bytearray([0x1,1,1,1,1,1,1,1]), matrix) assert "BAM last data" in type # print (type, signals) can_ids = [0x18ECFF82, 0x18EBFF82, 0x18EBFF82] can_data = [bytearray([0x20, 9, 0, 2, 0xff, 0x20, 0xff, 0]),bytearray([0x1, 0, 0, 0, 0, 0x80, 0x0, 0x80]),bytearray([0x2, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff])] # BA0x20, M for i in range(0,len(can_ids)): (type, signals) = t.decode(canmatrix.ArbitrationId(id=can_ids[i], extended=True), can_data[i], matrix) print ("-------- test data -------- ") test_frames = collections.OrderedDict ([ (0xcef27fd , "fffae1ff00ffff"), (0xcffcafd , "c0fffffffffff800"), (0xcf00203 , "cc00000000b812ff"), (0xfe4a03 , "fffcffffffffffff"), (0xc010305 , "ccfffaffff204e0a"), (0x0CF00400, "F4DEDE3028FFF0FF")]) expected = ["EEC1","TC1","ETC7","ETC1"] for arb_id, asc_data in test_frames.items(): (type, signals) = t.decode(canmatrix.ArbitrationId(id=arb_id, extended=True), bytearray.fromhex(asc_data), matrix) if type is not None and "J1939 known" in type: assert expected.pop() in type ``` #### File: canmatrix/tests/test_xls.py ```python import canmatrix.formats.xls import decimal def test_parse_value_name_collumn(): value_column = "1..5" (mini, maxi, offset, value_table) = canmatrix.formats.xls.parse_value_name_column(value_column, "5", 4, decimal.Decimal) assert maxi == 5 assert mini == 1 assert offset == 1 assert value_table == dict() value_column = "LabelX" (mini, maxi, offset, value_table) = canmatrix.formats.xls.parse_value_name_column(value_column, "5", 4, decimal.Decimal) assert maxi == 15 assert mini == 0 assert offset == 0 assert value_table == {5: "LabelX"} ```
{ "source": "johnofleek/Octave", "score": 2 }
#### File: Octave/edgeDebug/actionLog.py ```python import sys import time import re # Example "run" # logread -f | python actionLog.py action_id 876876 # logread -f | python actionLog.py usprxedge:l5f58e19c2ebc93700459b5ca,hmigauge:l5f58e19cda3994a414b567fd,hmisignalled:l5f58e19c2ebc93700459b5c4 # logread -f | python actionLog.py usp:l5f104a5ff936e13e915d6fb9 # Example raw logread OP # Sep 16 16:08:33 swi-mdm9x28-wp user.info Legato: INFO | actions[1123]/actionRunner T=Javascript | actionRunner_JS.c js_LogInfoHandler() 1007 | action_id:l5f58e19c2ebc93700459b5c4 | [1,14,0,0,0,15] actions = {} def index_in_list(a_list, index): print(index < len(a_list)) # print("\n".join(sys.argv)) ## match any action name info numberOfArgs = len(sys.argv) -1 idd = {} if (numberOfArgs == 1): # Expected list is ["thisScript", "typeoffilter" ] processidlist = sys.argv[1] idlist = processidlist.split(',') for ids in idlist: idss = ids.split(':') idd[idss[1]] = idss[0] # print idd elif (numberOfArgs == 2): # Expected list is ["thisScript", "typeoffilter", "filter" ] processidlist = sys.argv[1] processfilter = sys.argv[2] # process data from logread try: buff = '' while True: buff += sys.stdin.read(1) if buff.endswith('\n'): line = buff[:-1] #print line info = line.split('|') try: if ("action_id:" not in line ): pass else: timeofday = info[0].split() timeofday = timeofday[2] id = info[3].strip() id = re.sub('action_id:', '', id) # try and find a matching id name # for key in id.keys(): # if key consolelog = info[4].strip() idname = "xxxxxxxxxx" if id in idd: idname = idd[id] print timeofday.ljust(10)[:10], id.ljust(28)[:28], idname.ljust(18)[:18] , consolelog except Exception as e: print(e) buff = '' except KeyboardInterrupt: sys.stdout.flush() pass ```
{ "source": "johnofleek/OctaveOrp", "score": 2 }
#### File: OctaveOrp/Python2/runEmu.py ```python import os from json import dumps import logging from platform import platform from psutil import cpu_percent, virtual_memory from serial import Serial from time import sleep from sb_serial import Sensor, SbSerial # Change the serial port to suit the machine that this running on # and the OS #DEV = os.getenv('DEV', '/dev/ttyS0') #DEV = os.getenv('DEV', '/dev/tty.SLAB_USBtoUART') DEV = os.getenv('DEV', 'COM11') # Create serial object and use it to create SbSerial connection s = Serial(DEV) sbs = SbSerial(s) def json_measurement_handler(): # note python dict has bool True/False JSON true/False dictPayload = { "temperature": 123.2, "waterLevelHigh": True, "waterLevelLow": False, "Turbidity": 45, "DissolvedOxygen": 78, "Debris": True, "flowIn": 12.5, "flowOut": 11.8 } # return dictionary convert to JSON return dumps(dictPayload) def json_settings_handler(): # note python dict has bool True/False JSON true/False dictPayload = { "Fog_roller_OFF":300, "Fog_roller_ON":300, "Recirculation_OFF":90, "Recirculation_ON":10, "Service_pump_OFF":2550, "Service_pump_ON":90, "Solenoid_valve_OFF":2550, "Solenoid_valve_ON":120, "cleaningCycles":3, "unitOFF":2, "unitON":7 } # return dictionary convert to JSON return dumps(dictPayload) # Create sensor objects with SbSerial connection, callback, type, # resource path, and optionally unit of measure sensors = [ Sensor(sbs, json_measurement_handler, 'json', 'sensors/uplinkMeasured'), Sensor(sbs, json_settings_handler, 'json', 'sensors/controlSettings') ] [sensor.create_sensor() for sensor in sensors] # Run Forever while True: try: sleep(10) print("loop") except KeyboardInterrupt: exit(0) ``` #### File: Python2v300/octave_rp/protocol.py ```python SBR_PKT_RQST_INPUT_CREATE = 'I' # type[1] d_type[1] pad[2] path[] units[] SBR_PKT_RESP_INPUT_CREATE = 'i' # type[1] status[1] pad[2] SBR_PKT_RQST_OUTPUT_CREATE = 'O' # type[1] d_type[1] pad[2] path[] units[] SBR_PKT_RESP_OUTPUT_CREATE = 'o' # type[1] status[1] pad[2] SBR_PKT_RQST_DELETE = 'D' # type[1] pad[1] pad[2] path[] SBR_PKT_RESP_DELETE = 'd' # type[1] status[1] pad[2] SBR_PKT_RQST_HANDLER_ADD = 'H' # type[1] pad[1] pad[2] path[] SBR_PKT_RESP_HANDLER_ADD = 'h' # type[1] status[1] pad[2] SBR_PKT_RQST_HANDLER_REMOVE = 'K' # type[1] pad[1] pad[2] path[] SBR_PKT_RESP_HANDLER_REMOVE = 'k' # type[1] status[1] pad[2] SBR_PKT_RQST_PUSH = 'P' # type[1] d_type[1] pad[2] time[] path[] data[] SBR_PKT_RESP_PUSH = 'p' # type[1] status[1] pad[2] SBR_PKT_RQST_GET = 'G' # type[1] pad[1] pad[2] path[] SBR_PKT_RESP_GET = 'g' # type[1] status[1] pad[2] time[] data[] SBR_PKT_RQST_EXAMPLE_SET = 'E' # type[1] d_type[1] pad[2] path[] data[] SBR_PKT_RESP_EXAMPLE_SET = 'e' # type[1] status[1] pad[2] SBR_PKT_RQST_SENSOR_CREATE = 'S' # type[1] d_type[1] pad[2] path[] units[] SBR_PKT_RESP_SENSOR_CREATE = 's' # type[1] status[1] pad[2] SBR_PKT_RQST_SENSOR_REMOVE = 'R' # type[1] pad[1] pad[2] path[] SBR_PKT_RESP_SENSOR_REMOVE = 'r' # type[1] status[1] pad[2] SBR_PKT_NTFY_HANDLER_CALL = 'c' # type[1] d_type[1] pad[2] time[] path[] data[] SBR_PKT_RESP_HANDLER_CALL = 'C' # type[1] status[1] pad[2] SBR_PKT_NTFY_SENSOR_CALL = 'b' # type[1] pad[1] pad[2] path[] SBR_PKT_RESP_SENSOR_CALL = 'B' # type[1] status[1] pad[2] SBR_PKT_RESP_UNKNOWN_RQST = '?' # type[1] status[1] pad[2] # # Data type field - byte 1 # SBR_DATA_TYPE_TRIGGER = 'T' # trigger - no data SBR_DATA_TYPE_BOOLEAN = 'B' # Boolean - 1 byte: 't' | 'f' SBR_DATA_TYPE_NUMERIC = 'N' # numeric - null-terminated ASCII string, representing double SBR_DATA_TYPE_STRING = 'S' # string - null-terminated ASCII string SBR_DATA_TYPE_JSON = 'J' # JSON - null-terminated ASCII string, representing JSON SBR_DATA_TYPE_UNDEF = ' ' # not specified # # Variable length field identifiers # SBR_FIELD_ID_PATH = 'P' SBR_FIELD_ID_TIME = 'T' SBR_FIELD_ID_UNITS = 'U' SBR_FIELD_ID_DATA = 'D' # Variable length field separator SBR_VARLENGTH_SEPARATOR = ',' # # Packet type descriptions # ptypes = [ [ SBR_PKT_RQST_INPUT_CREATE, 'request create input' ], [ SBR_PKT_RESP_INPUT_CREATE, 'response create input' ], [ SBR_PKT_RQST_OUTPUT_CREATE, 'request create output' ], [ SBR_PKT_RESP_OUTPUT_CREATE, 'response create output' ], [ SBR_PKT_RQST_DELETE, 'request delete resource' ], [ SBR_PKT_RESP_DELETE, 'response delete resource' ], [ SBR_PKT_RQST_HANDLER_ADD, 'request add handler' ], [ SBR_PKT_RESP_HANDLER_ADD, 'response add handler' ], [ SBR_PKT_RQST_HANDLER_REMOVE, 'request remove handler' ], [ SBR_PKT_RESP_HANDLER_REMOVE, 'response remove handler' ], [ SBR_PKT_RQST_PUSH, 'request push' ], [ SBR_PKT_RESP_PUSH, 'response push' ], [ SBR_PKT_RQST_GET, 'request get' ], [ SBR_PKT_RESP_GET, 'response get' ], [ SBR_PKT_RQST_EXAMPLE_SET, 'request set example' ], [ SBR_PKT_RESP_EXAMPLE_SET, 'response set example' ], [ SBR_PKT_RQST_SENSOR_CREATE, 'request create sensor' ], [ SBR_PKT_RESP_SENSOR_CREATE, 'response create sensor' ], [ SBR_PKT_RQST_SENSOR_REMOVE, 'request remove sensor' ], [ SBR_PKT_RESP_SENSOR_REMOVE, 'response remove sensor' ], [ SBR_PKT_NTFY_HANDLER_CALL, 'handler call' ], [ SBR_PKT_RESP_HANDLER_CALL, 'handler ack' ], [ SBR_PKT_NTFY_SENSOR_CALL, 'sensor poll' ], [ SBR_PKT_RESP_SENSOR_CALL, 'sensor poll ack' ], [ SBR_PKT_RESP_UNKNOWN_RQST, 'unknown packet type' ], ] # # Status field # status_list = [ 'OK', 'NOT FOUND', 'NOT POSSIBLE', # deprecated 'OUT OF RANGE', 'NO MEMORY', 'NOT PERMITTED', 'FAULT', 'COMM ERROR', 'TIMEOUT', 'OVERFLOW', 'UNDERFLOW', 'WOULD BLOCK', 'DEADLOCK', 'FORMAT ERROR', 'DUPLICATE', 'BAD PARAMETER', 'CLOSED', 'BUSY', 'UNSUPPORTED', 'IO_ERROR', 'NOT IMPLEMENTED', 'UNAVAILABLE', 'TERMINATED' ] # # Data types # data_types = [ [ 'trig', SBR_DATA_TYPE_TRIGGER ], [ 'bool', SBR_DATA_TYPE_BOOLEAN ], [ 'num', SBR_DATA_TYPE_NUMERIC ], [ 'str', SBR_DATA_TYPE_STRING ], [ 'json', SBR_DATA_TYPE_JSON ] ] # # Syntax # syntax_list = [ ' create input|output|sensor trig|bool|num|str|json <path> [<units>]', ' delete resource|handler|sensor <path>', ' add handler <path>', ' push trig|bool|num|str|json <path> [<data>]', ' get <path>', ' example json <path> [<data>]' ] # # Usage # def print_usage(): print 'Usage:' for i in range(len(syntax_list)): print syntax_list[i] print # # Encode data type # def encode_dtype(data_type): field = '' dtype = data_type.lower() if dtype[0] == 't': field = field + SBR_DATA_TYPE_TRIGGER elif dtype[0] == 'b': field = field + SBR_DATA_TYPE_BOOLEAN elif dtype[0] == 'n': field = field + SBR_DATA_TYPE_NUMERIC elif dtype[0] == 's': field = field + SBR_DATA_TYPE_STRING elif dtype[0] == 'j': field = field + SBR_DATA_TYPE_JSON else: print 'Invalid data type' return return field # # Encode segment number and segment count # def encode_segment(): return '01' # # Encode path # def encode_path(path): return SBR_FIELD_ID_PATH + path # # Encode units # def encode_units(units): return SBR_FIELD_ID_UNITS + units # # Encode data # def encode_data(data): return SBR_FIELD_ID_DATA + data # # create input|output|sensor data-type path [units] # def encode_create(argc, args): packet = '' dtype = '' syntax = syntax_list[0] if argc < 3 : print 'Invalid number of arguments' print syntax_list[0] return if argc > 3 : what,data_type,path,units = args.split(' ') else: what,data_type,path = args.split(' ') units = None what = what.lower() if what[0] == 'i': packet = packet + SBR_PKT_RQST_INPUT_CREATE elif what[0] == 'o': packet = packet + SBR_PKT_RQST_OUTPUT_CREATE elif what[0] == 's': packet = packet + SBR_PKT_RQST_SENSOR_CREATE else: print 'Invalid request' print syntax_list[0] return dtype = encode_dtype(data_type) if dtype == '': return packet = packet + dtype packet = packet + encode_segment() packet = packet + encode_path(path) if units != None: packet = packet + SBR_VARLENGTH_SEPARATOR packet = packet + encode_units(units) return packet # # delete resource|handler|sensor path # def encode_delete(argc, args): packet = '' if argc < 2 : print 'Invalid number of arguments' print syntax_list[1] return what,path = args.split(' ') what = what.lower() # packet type if what[0] == 'r': packet = packet + SBR_PKT_RQST_DELETE elif what[0] == 'h': packet = packet + SBR_PKT_RQST_HANDLER_REMOVE elif what[0] == 's': packet = packet + SBR_PKT_RQST_SENSOR_REMOVE else: print 'Invalid request' print syntax_list[1] return packet = packet + '.' packet = packet + encode_segment() packet = packet + encode_path(path) return packet # # add handler path # def encode_add(argc, args): packet = '' if argc < 2 : print 'Invalid number of arguments' print syntax_list[2] return what,path = args.split(' ') what = what.lower() if what[0] != 'h': print 'Invalid request ' + what print syntax_list[2] return packet = packet + SBR_PKT_RQST_HANDLER_ADD # data type - ignored packet = packet + '.' packet = packet + encode_segment() packet = packet + encode_path(path) return packet # # push data-type path [data] # def encode_push(argc, args): packet = '' dtype = '' if argc < 2 : print 'Invalid number of arguments' print syntax_list[3] return print 'argc: ' + str(argc) if argc > 2 : data_type,path,data = args.split(' ', 2) else: data_type,path = args.split(' ') data = '' packet = packet + SBR_PKT_RQST_PUSH dtype = encode_dtype(data_type) if dtype == '': return packet = packet + dtype packet = packet + encode_segment() packet = packet + encode_path(path) if data != '': packet = packet + SBR_VARLENGTH_SEPARATOR packet = packet + encode_data(data) return packet # # get path # def encode_get(argc, args): packet = '' dtype = '' if argc < 1 : print 'Invalid number of arguments' print syntax_list[4] return packet = packet + SBR_PKT_RQST_GET # data type ignored packet = packet + '.' packet = packet + encode_segment() packet = packet + encode_path(args) return packet # # example data-type path [data] # def encode_example(argc, args): packet = '' dtype = '' if argc < 2 : print 'Invalid number of arguments' print syntax_list[5] return if argc > 2 : data_type,path,data = args.split(' ', 2) else: data_type,path = args.split(' ') data = '' packet = packet + SBR_PKT_RQST_EXAMPLE_SET dtype = encode_dtype(data_type) if dtype == '': return packet = packet + dtype packet = packet + encode_segment() packet = packet + encode_path(path) if data != '': packet = packet + SBR_VARLENGTH_SEPARATOR packet = packet + encode_data(data) return packet # # Parse command and build a request packet # def encode_request(request): if request.find(' ') < 0 : print_usage() return argc = len(request.split(' ')) - 1 # all commands take at least one argument if argc < 1 : print_usage() return request_type,args = request.split(' ', 1) request_type = request_type.lower() if request_type[0] == 'c': p = encode_create(argc, args) elif request_type[0] == 'd': p = encode_delete(argc, args) elif request_type[0] == 'a': p = encode_add(argc, args) elif request_type[0] == 'p': p = encode_push(argc, args) elif request_type[0] == 'g': p = encode_get(argc, args) elif request_type[0] == 'e': p = encode_example(argc, args) elif request_type[0] == 'r': p = args else: print_usage() return return p # # Decode and print contents of an incoming packet # def decode_response(response): resp = {} # Positional fields: ptype = response[0] status = response[1] seg_number = response[2] seg_count = response[3] # Labeled, variable length fields var_length = response[4:] for i in range(len(ptypes)): test = ptypes[i] if test[0] == ptype: resp['responseType'] = test[0] # Status is represented in ASCII, starting with '@' (0x40) for OK. # Subtract 0x40 to index into the table, above # i = ord(status[0]) - ord('\x40') resp['status'] = status_list[i] if len(var_length): var_fields = var_length.split(',') for i in range(len(var_fields)): field = var_fields[i] if field[0] == 'P': resp['path'] = field[1:] if field[0] == 'T': resp['timestamp'] = field[1:] if field[0] == 'D': resp['data'] = field[1:] return resp ``` #### File: octave_rp/PyCRC/CRC32.py ```python from ctypes import c_ulong class CRC32(object): crc32_tab = [] # The CRC's are computed using polynomials. Here is the most used # coefficient for CRC32 crc32_constant = 0xEDB88320 def __init__(self): # initialize the precalculated tables if not len(self.crc32_tab): self.init_crc32() def calculate(self, input_data=None): try: is_string = isinstance(input_data, str) is_bytes = isinstance(input_data, bytes) if not is_string and not is_bytes: raise Exception("Please provide a string or a byte sequence as \ argument for calculation.") crcValue = 0xffffffff for c in input_data: d = ord(c) if is_string else c tmp = crcValue ^ d crcValue = (crcValue >> 8) ^ int( self.crc32_tab[(tmp & 0x00ff)], 0) # Only for CRC-32: When all bytes have been processed, take the # one's complement of the obtained CRC value crcValue ^= 0xffffffff # (or crcValue = ~crcValue) return crcValue except Exception as e: print("EXCEPTION(calculate): {}".format(e)) def init_crc32(self): '''The algorithm use tables with precalculated values''' for i in range(0, 256): crc = i for j in range(0, 8): if (crc & 0x00000001): crc = int(c_ulong(crc >> 1).value) ^ self.crc32_constant else: crc = int(c_ulong(crc >> 1).value) self.crc32_tab.append(hex(crc)) ``` #### File: OctaveOrp/Python3/simpleData.py ```python import random random.seed() from json import dumps # import logging # from platform import platform # from psutil import cpu_percent, virtual_memory try: from serial import Serial import os #DEV = os.getenv('DEV', '/dev/ttyS0') DEV = os.getenv('DEV', 'COM11') print("using serial") except: from serialM import Serial DEV = "aPort" print("using pybv serial") from time import sleep import gc from octave_rp import OctaveRP from octave_rp import Output from octave_rp import Input from octave_rp import Sensor # Create serial object and use it to create SbSerial connection s = Serial(DEV) orp = OctaveRP(s) # Global data for simplicity # note python dict has bool True/False JSON true/False ''' measurementData = { "temperature": 123.2, "waterLevelHigh": True, "waterLevelLow": False, "Turbidity": 45, "DissolvedOxygen": 78, "Debris": True, "flowIn": 12.5, "flowOut": 11.8 } settingsData = { "Fog_roller_OFF":300, "Fog_roller_ON":300, "Recirculation_OFF":90, "Recirculation_ON":10, "Service_pump_OFF":2550, "Service_pump_ON":90, "Solenoid_valve_OFF":2550, "Solenoid_valve_ON":120, "cleaningCycles":3, "unitOFF":2, "unitON":7 } ''' downPath = "dwn/" Recirculation_OFF_str = "rof" ## this callback handler is called when Octave cloud sends some data that matches def Recirculation_OFF_cbh(data): print ("Recirculation_OFF_cbh", data) # mimic the settings dictionary but setting values from the cloud ## Register callback handler with Octave Recirculation_OFF_octave = Output(orp, Recirculation_OFF_cbh, 'num', (downPath + Recirculation_OFF_str)) Recirculation_OFF_octave.create_output() downPath = "dwn/" Recirculation_ON_str = "ron" ## this callback handler is called when Octave cloud sends some data that matches def Recirculation_ON_cbh(data): print ("Recirculation_ON_cbh", data) # mimic the settings dictionary but setting values from the cloud ## Register callback handler with Octave Recirculation_ON_octave = Output(orp, Recirculation_ON_cbh, 'num', (downPath + Recirculation_ON_str)) Recirculation_ON_octave.create_output() up={} # dictionary # note it seems paths must be alpha chars only # create the Octave inputs up["temperature"] = Input(orp, 'num' , 'sense/temperature', 'number') # we might want to simplify the text up["waterLevelHigh"] = Input(orp, 'bool', 'sense/waterLevelHigh','bool') up["waterLevelLow"] = Input(orp, 'bool', 'sense/waterLevelLow','bool') up["Turbidity"] = Input(orp, 'num' , 'sense/Turbidity','number') up["DissolvedOxygen"]= Input(orp, 'num' , 'sense/DissolvedOxygen','number') up["Debris"] = Input(orp, 'bool', 'sense/Debris','bool') up["flowIn"] = Input(orp, 'num' , 'sense/flowIn','number') up["flowOut"] = Input(orp, 'num' , 'sense/flowOut','number') for key in up: print("Creating", key) up[key].create_input() turbidity = 55 DissolvedOxygen = 22 # send values to Octave up["temperature"].send(42.2) up["waterLevelHigh"].send(True) up["waterLevelLow"].send(True) up["Turbidity"].send(turbidity) up["DissolvedOxygen"].send(DissolvedOxygen) up["Debris"].send(True) up["flowIn"].send(11.2) up["flowOut"].send(23) # Run Forever while True: try: sleep(10) turbidity = random.randrange(20,50,1) DissolvedOxygen = random.randrange(40,60,1) up["Turbidity"].send(turbidity) up["DissolvedOxygen"].send(DissolvedOxygen) except KeyboardInterrupt: exit(0) ```
{ "source": "JohnOmena/software-test-class", "score": 3 }
#### File: software-test-class/api/views.py ```python from django.contrib.auth.models import User from rest_framework import permissions, viewsets from api.serializers import TodoListSerializer, TodoSerializer, UserSerializer from lists.models import Todo, TodoList class IsCreatorOrReadOnly(permissions.BasePermission): """ Object-level permission to only allow owners of an object to edit it. Assumes the model instance has an `creator` attribute. """ def has_object_permission(self, request, view, obj): if request.method in permissions.SAFE_METHODS: return True if not obj.creator: return True return obj.creator == request.user class UserViewSet(viewsets.ModelViewSet): queryset = User.objects.all() serializer_class = UserSerializer permission_classes = (permissions.IsAdminUser,) class TodoListViewSet(viewsets.ModelViewSet): queryset = TodoList.objects.all() serializer_class = TodoListSerializer permission_classes = (IsCreatorOrReadOnly,) def perform_create(self, serializer): user = self.request.user creator = user if user.is_authenticated else None serializer.save(creator=creator) class TodoViewSet(viewsets.ModelViewSet): queryset = Todo.objects.all() serializer_class = TodoSerializer permission_classes = (IsCreatorOrReadOnly,) def perform_create(self, serializer): user = self.request.user creator = user if user.is_authenticated else None serializer.save(creator=creator) ```
{ "source": "JohnOmernik/jupyter_hive", "score": 2 }
#### File: jupyter_hive/hive_core/hive_base.py ```python import json import sys import os import time import pandas as pd from collections import OrderedDict import requests from integration_core import Integration from pyodbc_core import Pyodbc from IPython.core.magic import (Magics, magics_class, line_magic, cell_magic, line_cell_magic) from IPython.core.display import HTML #import IPython.display from IPython.display import display_html, display, Javascript, FileLink, FileLinks, Image import ipywidgets as widgets # Put any additional imports specific to your integration here: import pyodbc as po import jupyter_integrations_utility as jiu @magics_class class Hive(Pyodbc): # Static Variables # The name of the integration # The class name (Start) should be changed to match the name_str, but with the first letter upper cased. name_str = "hive" instances = {} # These are the ENV variables the integration will check when starting up. The integration_base prefix will be prepended in checking (that defaults to JUPYTER_) # So the following two items will look for: # JUPYTER_START_BASE_URL and put it into the opts dict as start_base_url # JUPYTER_START_USER as put it in the opts dict as start_user custom_evars = ["hive_conn_default"] # These are the variables in the opts dict that allowed to be set by the user. These are specific to this custom integration and are joined # with the base_allowed_set_opts from the integration base # The three examples here would be "start_base_url, start_ignore_ssl_warn, and start_verbose_errors # Make sure these are defined in myopts! custom_allowed_set_opts = ["hive_conn_default"] # These are the custom options for your integration myopts = {} # These are the custom options for your integration myopts = {} myopts['hive_max_rows'] = [1000, 'Max number of rows to return, will potentially add this to queries'] myopts['hive_conn_default'] = ["default", 'Default instance name for connections'] # Class Init function - Obtain a reference to the get_ipython() def __init__(self, shell, debug=False, *args, **kwargs): super(Hive, self).__init__(shell, debug=debug) self.debug = debug #Add local variables to opts dict for k in self.myopts.keys(): self.opts[k] = self.myopts[k] self.load_env(self.custom_evars) self.parse_instances() # def customDisconnect - In pyodbc # def customAuth - In pyodbc # def validateQuery - In pyodbc # def customQuery - In pyodbc # def customHelp - In pyodbc def retCustomDesc(self): return "Jupyter integration for working with Apache Hive via PyODBC based data sources" # This is the magic name. @line_cell_magic def hive(self, line, cell=None): if cell is None: line = line.replace("\r", "") line_handled = self.handleLine(line) if self.debug: print("line: %s" % line) print("cell: %s" % cell) if not line_handled: # We based on this we can do custom things for integrations. if line.lower() == "testintwin": print("You've found the custom testint winning line magic!") else: print("I am sorry, I don't know what you want to do with your line magic, try just %" + self.name_str + " for help options") else: # This is run is the cell is not none, thus it's a cell to process - For us, that means a query self.handleCell(cell, line) ```
{ "source": "JohnOmernik/jupyter_integration_template", "score": 2 }
#### File: jupyter_integration_template/integration_core/integration_base.py ```python import json import sys import os import time import pandas as pd from getpass import getpass from collections import OrderedDict from IPython.core.magic import (Magics, magics_class, line_magic, cell_magic, line_cell_magic) from IPython.core.display import HTML # Your Specific integration imports go here, make sure they are in requirements! Examples left in for hive import requests import socket from pyhive import hive as hivemod # BeakerX integration is highly recommened, but at this time IS optional, so we TRY beakerx, and then fail well if its not there. try: from beakerx import * from beakerx.object import beakerx except: pass #import IPython.display from IPython.display import display_html, display, Javascript, FileLink, FileLinks, Image import ipywidgets as widgets @magics_class class Integration(Magics): # Static Variables ipy = None # IPython variable for updating things session = None # Session if ingeration uses it connected = False # Is the integration connected passwd = "" # If the itegration uses a password, it's temp stored here last_query = "" name_str = integration debug = False # Enable debug mode # Variables Dictionary opts = {} # Option Format: [ Value, Description] # Pandas Variables opts['pd_display_idx'] = [False, "Display the Pandas Index with output"] opts['pd_replace_crlf'] = [True, "Replace extra crlfs in outputs with String representations of CRs and LFs"] opts['pd_max_colwidth'] = [50, 'Max column width to display'] opts['pd_display.max_rows'] = [1000, 'Number of Max Rows'] opts['pd_display.max_columns'] = [None, 'Max Columns'] opts['pd_use_beaker'] = [False, 'Use the Beaker system for Pandas Display'] opts['pd_beaker_bool_workaround'] = [True, 'Look for Dataframes with bool columns, and make it object for display in BeakerX'] pd.set_option('display.max_columns', opts['pd_display.max_columns'][0]) pd.set_option('display.max_rows', opts['pd_display.max_rows'][0]) pd.set_option('max_colwidth', opts['pd_max_colwidth'][0]) # Get Env items (User and/or Base URL) try: tuser = os.environ['JUPYTERHUB_' + name_str.upper() + '_USER'] except: tuser = '' try: turl = os.environ['JUPYTERHUB_' + name_str.upper() + '_BASE_URL'] except: turl = "" # Hive specific variables as examples opts[name_str + '_max_rows'] = [1000, 'Max number of rows to return, will potentially add this to queries'] opts[name_str + '_user'] = [tuser, "User to connect with - Can be set via ENV Var: JUPYTER_" + name_str.upper() + "_USER otherwise will prompt"] opts[name_str + '_base_url'] = [turl, "URL to connect to server. Can be set via ENV Var: JUPYTER_" + name_str.upper() + "_BASE_URL"] opts[name_str + '_base_url_host'] = ["", "Hostname of connection derived from base_url"] opts[name_str + '_base_url_port'] = ["", "Port of connection derived from base_url"] opts[name_str + '_base_url_scheme'] = ["", "Scheme of connection derived from base_url"] # Class Init function - Obtain a reference to the get_ipython() def __init__(self, shell, pd_use_beaker=False, *args, **kwargs): super(Integration, self).__init__(shell) self.ipy = get_ipython() self.session = None self.opts['pd_use_beaker'][0] = pd_use_beaker if pd_use_beaker == True: try: beakerx.pandas_display_table() except: print("WARNING - BEAKER SUPPORT FAILED") def connect(self, prompt=False): if self.connected == False: if prompt == True or self.opts[self.name_str + '_user'][0] == '': print("User not specified in JUPYTER_%s_USER or user override requested" % self.name_str.upper()) tuser = input("Please type user name if desired: ") self.opts[self.name_str + '_user'][0] = tuser print("Connecting as user %s" % self.opts[self.name_str'_user'][0]) print("") if prompt == True or self.opts[self.name_str + "_base_url'][0] == '': print("%s Base URL not specified in JUPYTER_%s_BASE_URL or override requested" % (self.name_str.capitalize(), self.name_str.upper())) turl = input("Please type in the full %s URL: " % self.name_str.capitalize()) self.opts[self.name_str + '_base_url'][0] = turl print("Connecting to %s URL: %s" % (self.name_str.capitalize(), self.opts['_base_url'][0])) print("") myurl = self.opts[self.name_str + '_base_url'][0] ts1 = myurl.split("://") self.opts[self.name_str + '_base_url_scheme'][0] = ts1[0] t1 = ts1[1] ts2 = t1.split(":") self.opts[self.name_str + '_base_url_host'][0] = ts2[0] self.opts[self.name_str + '_base_url_port'][0] = ts2[1] # Use the following if your data source requries a password # print("Please enter the password you wish to connect with:") # tpass = "" # self.ipy.ex("from getpass import getpass\ntpass = getpass(prompt='Connection Password: ')") # tpass = self.ipy.user_ns['tpass'] # self.passwd = <PASSWORD> # self.ipy.user_ns['tpass'] = "" result = self.auth() if result == 0: self.connected = True print("%s - %s Connected!" % (self.name_str.capitalize(), self.opts[self.name_str + '_base_url'][0])) else: print("Connection Error - Perhaps Bad Usename/Password?") else: print(self.name_str.capitalize() + "is already connected - Please type %" + self.name_str + " for help on what you can you do") if self.connected != True: self.disconnect() def disconnect(self): if self.connected == True: print("Disconnected %s Session from %s" % (self.name_str.capitalize(), self.opts[self.name_str + '_base_url'][0]) else: print("%s Not Currently Connected - Resetting All Variables" % self.name_str.capitalize()) self.session = None self.connected = False ##### Where we left off def auth(self): self.session = None result = -1 try: # To do, allow settings hive setting from ENV # self.session = hivemod.Connection(host=self.opts['base_url_host'][0], port=self.opts['base_url_port'][0], username=self.opts['user'][0]) result = 0 except: print("%s Connection Error!" % self.name_str.capitalize()) result = -2 return result def validateQuery(self, query): bRun = True bReRun = False if self.last_query == query: # If the validation allows rerun, that we are here: bReRun = True # Ok, we know if we are rerun or not, so let's now set the last_query self.last_query = query # Example Validation # Warn only - Don't change bRun # This one is looking for a ; in the query. We let it run, but we warn the user # Basically, we print a warning but don't change the bRun variable and the bReRun doesn't matter if query.find(";") >= 0: print("WARNING - Do not type a trailing semi colon on queries, your query will fail (like it probably did here)") # Warn and don't submit after first attempt - Second attempt go ahead and run # If the query doesn't have a day query, then maybe we want to WARN the user and not run the query. # However, if this is the second time in a row that the user has submitted the query, then they must want to run without day # So if bReRun is True, we allow bRun to stay true. This ensures the user to submit after warnings if query.lower().find("day = ") < 0: print("WARNING - Queries shoud have day = component to ensure you don't have to many map tasks") if bReRun == False: print("First Submission - Not Sending to Server - Run again to submit as is") bRun = False else: print("Query will be submitted ") # Warn and do not allow submission # There is no way for a user to submit this query if query.lower().find('limit ") < 0: print("ERROR - All queries must have a limit clause - Query will not submit without out") bRun = False return bRun def runQuery(self, query): mydf = None status = "-" starttime = int(time.time()) run_query = self.validateQuery(query) if run_query: if self.connected == True: try: mydf = pd.read_sql(query, self.session) status = "Success" except (TypeError): status = "Success - No Results" mydf = None except Exception as e: str_err = str(e) if self.opts['verbose_errors'][0] == True: status = "Failure - query_error: " + str_err else: msg_find = "errorMessage=\"" em_start = str_err.find(msg_find) find_len = len(msg_find) em_end = str_err[em_start + find_len:].find("\"") str_out = str_err[em_start + find_len:em_start + em_end + find_len] status = "Failure - query_error: " + str_out else: mydf = None status = "%d Not Connected" % self.name_str.capitalize() else: status = "ValidationError" mydf = None endtime = int(time.time()) query_time = endtime - starttime return mydf, query_time, status # Display Help must be completely customized, please look at this Hive example def displayCustomHelp(self): print("jupyter_hive is a interface that allows you to use the magic function %hive to interact with an Hive installation.") print("") print("jupyter_hive has two main modes %hive and %%hive") print("%hive is for interacting with a Hive installation, connecting, disconnecting, seeing status, etc") print("%%hive is for running queries and obtaining results back from the Hive cluster") print("") print("%hive functions available") print("###############################################################################################") print("") print("{: <30} {: <80}".format(*["%hive", "This help screen"])) print("{: <30} {: <80}".format(*["%hive status", "Print the status of the Hive connection and variables used for output"])) print("{: <30} {: <80}".format(*["%hive connect", "Initiate a connection to the Hive cluster, attempting to use the ENV variables for Hive URL and Hive Username"])) print("{: <30} {: <80}".format(*["%hive connect alt", "Initiate a connection to the Hive cluster, but prompt for Username and URL regardless of ENV variables"])) print("{: <30} {: <80}".format(*["%hive disconnect", "Disconnect an active Hive connection and reset connection variables"])) print("{: <30} {: <80}".format(*["%hive set %variable% %value%", "Set the variable %variable% to the value %value%"])) print("{: <30} {: <80}".format(*["%hive debug", "Sets an internal debug variable to True (False by default) to see more verbose info about connections"])) print("") print("Running queries with %%hive") print("###############################################################################################") print("") print("When running queries with %%hive, %%hive will be on the first line of your cell, and the next line is the query you wish to run. Example:") print("") print("%%hive") print("select * from `mydatabase`.`mytable`") print("") print("Some query notes:") print("- If the number of results is less than pd_display.max_rows, then the results will be diplayed in your notebook") print("- You can change pd_display.max_rows with %hive set pd_display.max_rows 2000") print("- The results, regardless of display will be place in a Pandas Dataframe variable called prev_hive") print("- prev_hive is overwritten every time a successful query is run. If you want to save results assign it to a new variable") # This is the function that is actually called. def displayHelp(self): self.displayCustomHelp() # This is the magic name. I left hive in for an example, this would equate to %hive @line_cell_magic def hive(self, line, cell=None): # Handle all Line items %hive item1 %hive item2 etc if cell is None: line = line.replace("\r", "") if line == "": self.displayHelp() elif line.lower() == "status": self.retStatus() elif line.lower() == "debug": print("Toggling Debug from %s to %s" % (self.debug, not self.debug)) self.debug = not self.debug elif line.lower() == "disconnect": self.disconnect() elif line.lower() == "connect alt": self.connect(True) elif line.lower() == "connect": self.connect(False) elif line.lower().find('set ') == 0: self.setvar(line) else: print("I am sorry, I don't know what you want to do, try just %" + self.name_str + "for help options") else: # This is run is the cell is not none, thus it's a cell to process - For us, that means a query cell = cell.replace("\r", "") if self.connected == True: result_df, qtime, status = self.runQuery(cell) if status.find("Failure") == 0: print("Error: %s" % status) elif status.find("Success - No Results") == 0: print("No Results returned in %s seconds" % qtime) else: self.myip.user_ns['prev_' + self.name_str] = result_df mycnt = len(result_df) print("%s Records in Approx %s seconds" % (mycnt,qtime)) print("") if mycnt <= int(self.opts['pd_display.max_rows'][0]): if self.debug: print("Testing max_colwidth: %s" % pd.get_option('max_colwidth')) if self.opts['pd_use_beaker'][0] == True: if self.opts['pd_beaker_bool_workaround'][0]== True: for x in result_df.columns: if result_df.dtypes[x] == 'bool': result_df[x] = result_df[x].astype(object) display(TableDisplay(result_df)) else: display(HTML(result_df.to_html(index=self.opts['pd_display_idx'][0]))) else: print("Number of results (%s) greater than pd_display_max(%s)" % (mycnt, self.opts['pd_display.max_rows'][0])) else: print(self.name_str.capitalize() + " is not connected: Please see help at %" + self.name_str + ") def retStatus(self): print("Current State of %s Interface:" % self.name_str.capitalize()) print("") print("{: <30} {: <50}".format(*["Connected:", str(self.connected)])) print("{: <30} {: <50}".format(*["Debug Mode:", str(self.debug)])) print("") print("Display Properties:") print("-----------------------------------") for k, v in self.opts.items(): if k.find("pd_") == 0: try: t = int(v[1]) except: t = v[1] if v[0] is None: o = "None" else: o = v[0] myrow = [k, o, t] print("{: <30} {: <50} {: <20}".format(*myrow)) myrow = [] print("") print("%s Properties:" % self.name_str.capitalize()) print("-----------------------------------") for k, v in self.opts.items(): if k.find(self.name_str + "_") == 0: if v[0] is None: o = "None" else: o = str(v[0]) myrow = [k, o, v[1]] print("{: <30} {: <50} {: <20}".format(*myrow)) myrow = [] def setvar(self, line): pd_set_vars = ['pd_display.max_columns', 'pd_display.max_rows', 'pd_max_colwidth', 'pd_use_beaker'] allowed_opts = pd_set_vars + ['pd_replace_crlf', 'pd_display_idx', self.name_str + '_base_url'] tline = line.replace('set ', '') tkey = tline.split(' ')[0] tval = tline.split(' ')[1] if tval == "False": tval = False if tval == "True": tval = True if tkey in allowed_opts: self.opts[tkey][0] = tval if tkey in pd_set_vars: try: t = int(tval) except: t = tval pd.set_option(tkey.replace('pd_', ''), t) else: print("You tried to set variable: %s - Not in Allowed options!" % tkey) ```
{ "source": "JohnOmernik/jupyter_mssql", "score": 2 }
#### File: jupyter_mssql/mssql_core/mssql_base.py ```python import json import sys import os import time import pandas as pd from collections import OrderedDict import requests from integration_core import Integration from pyodbc_core import Pyodbc from IPython.core.magic import (Magics, magics_class, line_magic, cell_magic, line_cell_magic) from IPython.core.display import HTML #import IPython.display from IPython.display import display_html, display, Javascript, FileLink, FileLinks, Image import ipywidgets as widgets import jupyter_integrations_utility as jiu # Put any additional imports specific to your integration here: import pyodbc as po @magics_class class Mssql(Pyodbc): # Static Variables # The name of the integration # The class name (Start) should be changed to match the name_str, but with the first letter upper cased. name_str = "mssql" instances = {} # These are the ENV variables the integration will check when starting up. The integration_base prefix will be prepended in checking (that defaults to JUPYTER_) # So the following two items will look for: # JUPYTER_START_BASE_URL and put it into the opts dict as start_base_url # JUPYTER_START_USER as put it in the opts dict as start_user custom_evars = ["mssql_conn_default"] # These are the variables in the opts dict that allowed to be set by the user. These are specific to this custom integration and are joined # with the base_allowed_set_opts from the integration base # The three examples here would be "start_base_url, start_ignore_ssl_warn, and start_verbose_errors # Make sure these are defined in myopts! custom_allowed_set_opts = ["mssql_conn_default"] # These are the custom options for your integration myopts = {} # These are the custom options for your integration myopts = {} myopts['mssql_max_rows'] = [1000, 'Max number of rows to return, will potentially add this to queries'] myopts['mssql_conn_default'] = ["default", 'Default instance name for connections'] # Class Init function - Obtain a reference to the get_ipython() def __init__(self, shell, debug=False, *args, **kwargs): super(Impala, self).__init__(shell, debug=debug) self.debug = debug #Add local variables to opts dict for k in self.myopts.keys(): self.opts[k] = self.myopts[k] self.load_env(self.custom_evars) self.parse_instances() # Overriding Custom Query to handle thrift errors and auto matic resubmit def customQuery(self, query, instance): mydf = None status = "" resubmit = False try: self.session.execute(query) mydf = self.as_pandas_DataFrame() if mydf is not None: status = "Success" else: status = "Success - No Results" except Exception as e: mydf = None str_err = str(e) if self.debug: print("Error: %s" % str_err) if str_err.find("Impala Thrift API") >= 0 and str_err.find("SSL_write: bad write retry") >= 0: if resubmit == False: # This is an old connection, let's just resubmit it (once) print("SSL_write Thrift error detected - Likely Stale Connection - Attempting 1 retry") try: resubmit = True # First we make sure we only resubmit once self.session.execute(query) mydf = self.as_pandas_DataFrame() if mydf is not None: status = "Success" else: status = "Success - No Results" except Exception as e1: mydf = None str_err1 = str(e1) final_err = "First Run: %s\nSecond Run: %s" % (str_err, str_err1) if self.debug: print("Second Run Error: %s" % str_err1) status = "Failure - query_error: " % final_err else: status = "Failure - query_error: " + str_err return mydf, status # def customDisconnect - In pyodbc # def customAuth - In pyodbc # def validateQuery - In pyodbc # def customQuery - In pyodbc # def customHelp - In pyodbc def retCustomDesc(self): return "Jupyter integration for working with MSSQL via PyODBC based data sources" # This is the magic name. @line_cell_magic def mssql(self, line, cell=None): if cell is None: line = line.replace("\r", "") line_handled = self.handleLine(line) if self.debug: print("line: %s" % line) print("cell: %s" % cell) if not line_handled: # We based on this we can do custom things for integrations. if line.lower() == "testintwin": print("You've found the custom testint winning line magic!") else: print("I am sorry, I don't know what you want to do with your line magic, try just %" + self.name_str + " for help options") else: # This is run is the cell is not none, thus it's a cell to process - For us, that means a query self.handleCell(cell, line) ```
{ "source": "JohnOmernik/jupyter_pyodbc", "score": 2 }
#### File: jupyter_pyodbc/pyodbc_core/pyodbc_base.py ```python import json import sys import os import time import pandas as pd from collections import OrderedDict import requests from integration_core import Integration from IPython.core.magic import (Magics, magics_class, line_magic, cell_magic, line_cell_magic) from IPython.core.display import HTML #import IPython.display from IPython.display import display_html, display, Javascript, FileLink, FileLinks, Image import ipywidgets as widgets import jupyter_integrations_utility as jiu # Put any additional imports specific to your integration here: import pyodbc as po @magics_class # Not sure about this, should pyodbc work by itself? Or should we class Pyodbc(Integration): # Static Variables # The name of the integration # The class name (Start) should be changed to match the name_str, but with the first letter upper cased. name_str = "pyodbc" instances = {} # These are the ENV variables the integration will check when starting up. The integration_base prefix will be prepended in checking (that defaults to JUPYTER_) # So the following two items will look for: # JUPYTER_START_BASE_URL and put it into the opts dict as start_base_url # JUPYTER_START_USER as put it in the opts dict as start_user custom_evars = ["pyodbc_conn_default"] # These are the variables in the opts dict that allowed to be set by the user. These are specific to this custom integration and are joined # with the base_allowed_set_opts from the integration base # The three examples here would be "start_base_url, start_ignore_ssl_warn, and start_verbose_errors # Make sure these are defined in myopts! custom_allowed_set_opts = ["pyodbc_conn_default"] # These are the custom options for your integration myopts = {} myopts['pyodbc_max_rows'] = [1000, 'Max number of rows to return, will potentially add this to queries'] myopts['pyodbc_conn_default'] = ["default", 'Default instance name for connections'] # Class Init function - Obtain a reference to the get_ipython() def __init__(self, shell, debug=False, *args, **kwargs): super(Pyodbc, self).__init__(shell, debug=debug) self.debug = debug #Add local variables to opts dict for k in self.myopts.keys(): self.opts[k] = self.myopts[k] self.load_env(self.custom_evars) self.parse_instances() # We use a custom disconnect in pyodbc so we try to close the connection before nuking it def customDisconnect(self, instance): try: self.instances[instance]['connection'].close() except: pass self.instances[instance]['connection'] = None self.instances[instance]['session'] = None self.instances[instance]['connected'] = False #self.instances[instance]['connect_pass'] = None # Should we clear the password when we disconnect? I am going to change this to no for now def req_password(self, instance): opts = None retval = True try: opts = self.instances[instance]['options'] except: print("Instance %s options not found" % instance) try: if opts['use_integrated_security'] == 1: retval = False except: pass return retval def customAuth(self, instance): result = -1 inst = None int_sec = False if instance not in self.instances.keys(): print("Instance %s not found in instances - Connection Failed" % instance) result = -3 else: inst = self.instances[instance] if inst is not None: try: if inst['options']['use_integrated_security'] == 1: int_sec = True except: pass kar = [ ["dsn", "DSN"], ["dbcname", "DBCNAME"], ["host", "Host"], ["port", "Port"], ["default_db", "Database"], ["authmech", "AuthMech"], ["usesasl", "UserSASL"], ["user", "UID"], ["enc_pass", "PWD"], ["usessl", "SSL"], ["allowselfsignedcert", "AllowSelfSignedServerCert"] ] top_level = ["user", "host", "port", "enc_pass"] var = [] conn_vars = [] for x in kar: if x[0] in top_level: if int_sec == True and x[0] in ["user", "enc_pass"]: # No need to put UID and PWD in connect string pass else: try: tval = inst[x[0]] except: tval = None tkey = x[1] if x[0] == "enc_pass": tval = self.ret_dec_pass(tval) inst['connect_pass'] = "" else: tval = self.checkvar(instance, x[0]) tkey = x[1] if tval is not None: conn_vars.append([tkey, tval]) conn_string = "" for c in conn_vars: conn_string += "%s=%s; " % (c[0], c[1]) conn_string = conn_string[0:-2] #conn_string = "DSN=%s; Host=%s; Port=%s; Database=%s; AuthMech=%s; UseSASL=%s; UID=%s; PWD=%s; SSL=%s; AllowSelfSignedServerCert=%s" % (var[0], var[1], var[2], var[3], var[4], var[5], var[6], var[7], var[8], var[9]) try: self.instances[instance]['connection'] = po.connect(conn_string, autocommit=True) self.session = self.instances[instance]['connection'].cursor() result = 0 except Exception as e: str_err = str(e) print("Unable to connect Error:\n%s" % str_err) result = -2 # Here you can check if the authentication on connect is successful. If it's good, return 0, otherwise return something else and show an error return result def validateQuery(self, query, instance): bRun = True bReRun = False if self.instances[instance]['last_query'] == query: # If the validation allows rerun, that we are here: bReRun = True # Ok, we know if we are rerun or not, so let's now set the last_query (and last use if needed) self.instances[instance]['last_query'] = query if query.strip().find("use ") == 0: self.instances[instance]['last_use'] = query # Example Validation # Warn only - Don't change bRun # This one is looking for a ; in the query. We let it run, but we warn the user # Basically, we print a warning but don't change the bRun variable and the bReRun doesn't matter if query.find(";") >= 0: print("WARNING - Do not type a trailing semi colon on queries, your query will fail (like it probably did here)") # Warn and don't submit after first attempt - Second attempt go ahead and run # If the query doesn't have a day query, then maybe we want to WARN the user and not run the query. # However, if this is the second time in a row that the user has submitted the query, then they must want to run without day # So if bReRun is True, we allow bRun to stay true. This ensures the user to submit after warnings if query.lower().find("limit ") < 0: print("WARNING - Queries shoud have a limit so you don't bonkers your DOM") # Warn and do not allow submission # There is no way for a user to submit this query # if query.lower().find('limit ") < 0: # print("ERROR - All queries must have a limit clause - Query will not submit without out") # bRun = False return bRun def customQuery(self, query, instance): mydf = None status = "" try: self.session.execute(query) mydf = self.as_pandas_DataFrame() if mydf is not None: status = "Success" else: status = "Success - No Results" except Exception as e: mydf = None str_err = str(e) if self.debug: print("Error: %s" % str(e)) status = "Failure - query_error: " + str_err return mydf, status # Display Help can be customized def customOldHelp(self): self.displayIntegrationHelp() self.displayQueryHelp("select * from mydatabase.mytable") def retCustomDesc(self): return "Jupyter integration for working with the PyODBC based data sources" def customHelp(self, curout): n = self.name_str mn = self.magic_name m = "%" + mn mq = "%" + m table_header = "| Magic | Description |\n" table_header += "| -------- | ----- |\n" out = curout qexamples = [] qexamples.append(["myinstance", "select * from mydatabase.mytable", "Run a sql query against myinstance"]) qexamples.append(["", "select * from mydatabase.mytable", "Run a sql query against the default instance"]) out += self.retQueryHelp(qexamples) return out def as_pandas_DataFrame(self): cursor = self.session try: names = [metadata[0] for metadata in cursor.description] ret = pd.DataFrame([dict(zip(names, row)) for row in cursor], columns=names) except: ret = None return ret # This is the magic name. @line_cell_magic def pyodbc(self, line, cell=None): if cell is None: line = line.replace("\r", "") line_handled = self.handleLine(line) if self.debug: print("line: %s" % line) print("cell: %s" % cell) if not line_handled: # We based on this we can do custom things for integrations. if line.lower() == "testintwin": print("You've found the custom testint winning line magic!") else: print("I am sorry, I don't know what you want to do with your line magic, try just %" + self.name_str + " for help options") else: # This is run is the cell is not none, thus it's a cell to process - For us, that means a query self.handleCell(cell, line) ```
{ "source": "JohnOmernik/jupyter_splunk", "score": 2 }
#### File: jupyter_splunk/splunk_core/splunk_base.py ```python import json import sys import os import time import pandas as pd from collections import OrderedDict import re from integration_core import Integration import datetime from IPython.core.magic import (Magics, magics_class, line_magic, cell_magic, line_cell_magic) from IPython.core.display import HTML # Your Specific integration imports go here, make sure they are in requirements! from splunklib import client as splclient import jupyter_integrations_utility as jiu #import IPython.display from IPython.display import display_html, display, Javascript, FileLink, FileLinks, Image import ipywidgets as widgets @magics_class class Splunk(Integration): # Static Variables # The name of the integration name_str = "splunk" instances = {} custom_evars = ['splunk_conn_default'] # These are the variables in the opts dict that allowed to be set by the user. These are specific to this custom integration and are joined # with the base_allowed_set_opts from the integration base # These are the variables in the opts dict that allowed to be set by the user. These are specific to this custom integration and are joined # with the base_allowed_set_opts from the integration base custom_allowed_set_opts = ["splunk_conn_default", "splunk_search_mode", "splunk_default_earliest_time", "splunk_default_latest_time", "splunk_parse_times"] myopts = {} myopts['splunk_max_rows'] = [1000, 'Max number of rows to return, will potentially add this to queries'] myopts['splunk_conn_default'] = ["default", "Default instance to connect with"] myopts["splunk_default_earliest_time"] = ["-15m", "The default earliest time sent to the Splunk server"] myopts["splunk_default_latest_time"] = ["now", "The default latest time sent to the Splunk server"] myopts["splunk_parse_times"] = [1, "If this is 1, it will parse your query for earliest or latest and get the value. It will not alter the query, but update the default earliest/latest for subqueries"] myopts["splunk_search_mode"] = ["normal", "The search mode sent to the splunk server"] myopts['splunk_output_mode'] = ["csv", "The output mode sent to the splunk server, don't change this, we rely on it being csv"] # Class Init function - Obtain a reference to the get_ipython() def __init__(self, shell, debug=False, *args, **kwargs): super(Splunk, self).__init__(shell, debug=debug) self.debug = debug #Add local variables to opts dict for k in self.myopts.keys(): self.opts[k] = self.myopts[k] self.load_env(self.custom_evars) self.parse_instances() def customAuth(self, instance): result = -1 inst = None if instance not in self.instances.keys(): result = -3 print("Instance %s not found in instances - Connection Failed" % instance) else: inst = self.instances[instance] if inst is not None: inst['session'] = None mypass = "" if inst['enc_pass'] is not None: mypass = self.ret_dec_pass(inst['enc_pass']) inst['connect_pass'] = "" try: inst['session'] = splclient.connect(host=inst['host'], port=inst['port'], username=inst['user'], password=mypass) result = 0 except: print("Unable to connect to Splunk instance %s at %s" % (instance, inst["conn_url"])) result = -2 return result def validateQuery(self, query, instance): bRun = True bReRun = False if self.instances[instance]['last_query'] == query: # If the validation allows rerun, that we are here: bReRun = True # Ok, we know if we are rerun or not, so let's now set the last_query self.instances[instance]['last_query'] = query # Example Validation # Warn only - Don't change bRun # Basically, we print a warning but don't change the bRun variable and the bReRun doesn't matter if query.find("search") != 0: print("This query doesn't start with search, if it fails, you may want to add that (it doesn't infer it like the Splunk UI)") print("") if query.find(" or ") >= 0 or query.find(" and ") >= 0 or query.find(" Or ") >= 0 or query.find(" And ") >= 0: print("Your query contains or, and, Or, or And - Splunk doesn't treat these as operators, and your results may not be what you want") print("") if query.find("[") >= 0 and query.find("]") >= 0: print("Based on your use of square brackets [], you may be running a search with a subquery") if self.opts['splunk_parse_times'][0] == 1: print("You are having me parse the queries and set defaults, so if all works, your earliest and latest are passed to the subquery. (If you passed them!)") else: print("It doesn't appear you are having me parse query times. Thus, the earliest and latest ONLY apply to outer most part of your query. Results will be inconsistent") print("") if query.find("earliest") < 0: print("Your query didn't contain the string earliest, and is likely using the default setting of earliest: %s" % (self.opts[self.name_str + "_default_earliest_time"][0])) print("") if query.find("latest") < 0: print("Your query didn't contain the string latest, and is likely using the default setting of latest: %s" % (self.opts[self.name_str + "_default_latest_time"][0])) print("") # Warn and do not allow submission # There is no way for a user to submit this query # if query.lower().find('limit ") < 0: # print("ERROR - All queries must have a limit clause - Query will not submit without out") # bRun = False return bRun def parseTimes(self, query): e_ret = None l_ret = None e_match = re.search(r"earliest ?= ?[\"\']?([^\s\'\"]+)[\s\"\']", query) if e_match: e_ret = e_match.group(1) l_match = re.search(r"latest ?= ?[\"\']?([^\s\'\"]+)[\s\"\']", query) if l_match: l_ret = l_match.group(1) return e_ret, l_ret def splunkTime(self, intime): # Converts the normal shitty splunk time to the other format it requires in the API m = re.search("\d{1,2}\/\d{1,2}\/\d{4}", intime) if m: tmp_dt = datetime.datetime.strptime(intime, "%m/%d/%Y:%H:%M:%S") outtime = tmp_dt.strftime("%Y-%m-%dT%H:%M:%S") else: outtime = intime return outtime def customQuery(self, query, instance, reconnect=True): e_val = None l_val = None if self.opts["splunk_parse_times"][0] == 1: if self.debug: print("Attempting to parse earliest and latest times") e_val, l_val = self.parseTimes(query) if self.debug: print("Value of Earliest parsed from query: %s" % e_val) print("Value of Latest parsed from query: %s" % l_val) if e_val is None: e_val = self.checkvar(instance, 'splunk_default_earliest_time') if l_val is None: l_val = self.checkvar(instance, "splunk_default_latest_time") e_val = self.splunkTime(e_val) l_val = self.splunkTime(l_val) kwargs_export = { "earliest_time": e_val, "latest_time": l_val, "search_mode": self.checkvar(instance, "splunk_search_mode"), "output_mode": self.checkvar(instance, "splunk_output_mode")} if self.debug: print("kwargs: %s" % kwargs_export) print("query: %s" % query) mydf = None status = "" str_err = "" try: results = self.instances[instance]['session'].jobs.export(query, **kwargs_export) if results is not None: mydf = pd.read_csv(results) str_err = "Success" else: mydf = None str_err = "Success - No Results" except Exception as e: mydf = None str_err = str(e) if str_err.find("Success") >= 0: pass elif str_err.find("No columns to parse from file") >= 0: status = "Success - No Results" mydf = None elif str_err.find("Session is not logged in") >= 0: # Try to rerun query if reconnect == True: self.disconnect(instance) self.connect(instance) m, s = self.customQuery(query, instance, False) mydf = m status = s else: mydf = None status = "Failure - Session not logged in and reconnect failed" else: status = "Failure - query_error: " + str_err return mydf, status # Display Help can be customized def customOldHelp(self): self.displayIntegrationHelp() self.displayQueryHelp('search term="MYTERM"') def retCustomDesc(self): return "Jupyter integration for working with the Splunk datasource" def customHelp(self, curout): n = self.name_str mn = self.magic_name m = "%" + mn mq = "%" + m table_header = "| Magic | Description |\n" table_header += "| -------- | ----- |\n" out = curout qexamples = [] qexamples.append(["myinstance", "search term='MYTERM'", "Run a SPL (Splunk) query against myinstance"]) qexamples.append(["", "search term='MYTERM'", "Run a SPL (Splunk) query against the default instance"]) out += self.retQueryHelp(qexamples) return out # This is the magic name. @line_cell_magic def splunk(self, line, cell=None): if cell is None: line = line.replace("\r", "") line_handled = self.handleLine(line) if self.debug: print("line: %s" % line) print("cell: %s" % cell) if not line_handled: # We based on this we can do custom things for integrations. if line.lower() == "testintwin": print("You've found the custom testint winning line magic!") else: print("I am sorry, I don't know what you want to do with your line magic, try just %" + self.name_str + " for help options") else: # This is run is the cell is not none, thus it's a cell to process - For us, that means a query self.handleCell(cell, line) ```
{ "source": "JohnOmernik/jupyter_taxii", "score": 2 }
#### File: jupyter_taxii/taxii_core/taxii_base.py ```python import json import sys import os import time import pandas as pd from collections import OrderedDict from integration_core import Integration from IPython.core.magic import (Magics, magics_class, line_magic, cell_magic, line_cell_magic) from IPython.core.display import HTML import taxii2client.v20 import stix2 import jupyter_integrations_utility as jiu #import IPython.display from IPython.display import display_html, display, Javascript, FileLink, FileLinks, Image import ipywidgets as widgets @magics_class class Taxii(Integration): # Static Variables # The name of the integration name_str = "taxii" instances = {} custom_evars = ['taxii_conn_default', 'taxii_group_collections', 'taxii_verify_ssl', 'taxii_suppress_https_warnings', 'taxii_path_to_certs'] # These are the variables in the opts dict that allowed to be set by the user. These are specific to this custom integration and are joined # with the base_allowed_set_opts from the integration base # These are the variables in the opts dict that allowed to be set by the user. These are specific to this custom integration and are joined # with the base_allowed_set_opts from the integration base custom_allowed_set_opts = ["taxii_conn_default", "taxii_verify_ssl", "taxii_suppress_https_warnings", "taxii_path_to_certs", "taxii_group_collections"] allowed_ops = ['=', '!=', 'in', '>', '<', '>=', '<=', 'contains'] myopts = {} myopts['taxii_conn_default'] = ["default", "Default instance to connect with"] myopts['taxii_verify_ssl'] = [True, "Verify SSL connection is valid"] myopts['taxii_suppress_https_warnings'] = [0, "Hide warnings about SSL issues"] myopts['taxii_path_to_certs'] = ["", "Path to custom SSL bundle for taxii connections"] myopts['taxii_group_collections'] = [0, "Group collections got query, if 0, we add fields: collection name and collection_id - May take longer"] # Class Init function - Obtain a reference to the get_ipython() def __init__(self, shell, debug=False, *args, **kwargs): super(Taxii, self).__init__(shell, debug=debug) self.debug = debug #Add local variables to opts dict for k in self.myopts.keys(): self.opts[k] = self.myopts[k] self.load_env(self.custom_evars) self.parse_instances() def customDisconnect(self, instance): self.instances[instance]['session'] = None self.instances[instance]['connected'] = False self.instances[instance]['server'] = None self.instances[instance]['api_root'] = None self.instances[instance]['taxii_collections'] = None def customAuth(self, instance): result = -1 inst = None breqAuth = False # JUPYTER_TAXII_CONN_URL_DEFAULT="https://cti-taxii.mitre.org/taxii" # %taxiiuser@https://cti-taxii.mitre.org:443?path=/taxii&useproxy=1&authreq=0 if int(self.opts['taxii_suppress_https_warnings'][0]) == 1 or self.opts['taxii_suppress_https_warnings'][0] == True: import warnings warnings.filterwarnings('ignore', "Unverified HTTPS request is being made") if instance not in self.instances.keys(): result = -3 print("Instance %s not found in instances - Connection Failed" % instance) else: inst = self.instances[instance] if inst is not None: if inst['options'].get('useproxy', 0) == 1: proxies = self.retProxy(instance) inst['proxies'] = proxies else: inst['proxies'] = None if 'authreq' in inst['options']: if inst['options']['authreq'] == True or inst['options']['authreq'] == 1: breqAuth = True if int(self.opts['taxii_verify_ssl'][0]) == 0 or self.opts['taxii_verify_ssl'][0] == False: myverify = False else: myverify = True if self.debug: print("myverify: %s" % myverify) myurl = inst['scheme'] + "://" + inst['host'] + ":" + str(inst['port']) + inst['options'].get('path', '/') inst['full_url'] = myurl if self.debug: print(inst['full_url']) inst['session'] = None if breqAuth: print("Taxii Auth not yet handled") else: try: inst['server'] = taxii2client.v20.Server(inst['full_url'], verify=myverify, proxies=inst['proxies']) inst['api_root'] = inst['server'].api_roots[0] # Maybe do multiple? inst['taxii_collections'] = [] for tc in inst['api_root'].collections: # inst['taxii_collections'].append(stix2.TAXIICollectionSource(tc)) inst['taxii_collections'].append(tc) if self.debug: print("Added %s (ID: %s) to collections" % (tc.title, tc.id)) result = 0 except Exception as e: print("Unable to connect to Taxii instance %s at %s" % (instance, inst["conn_url"])) print("Exception: %s" % e) result = -2 return result ######## Where I got def validateQuery(self, query, instance): bRun = True bReRun = False if self.instances[instance]['last_query'] == query: # If the validation allows rerun, that we are here: bReRun = True # Ok, we know if we are rerun or not, so let's now set the last_query self.instances[instance]['last_query'] = query curquery = self.formatQuery(query) for q in curquery: if q[1] not in self.allowed_ops: print("Query ['%s' '%s' '%s'] using an operator (%s) that is not supported (%s) - Query may fail or produce unwanted results" % (q[0], q[1], q[2], q[1], self.allowed_ops)) print("Query not submitted") bRun = False # Example Validation # Warn only - Don't change bRun # Basically, we print a warning but don't change the bRun variable and the bReRun doesn't matter # Warn and do not allow submission There is no way for a user to submit this query # if query.lower().find('limit ") < 0: # print("ERROR - All queries must have a limit clause - Query will not submit without out") # bRun = False return bRun def req_password(self, instance): bAuth = self.instances[instance]['options'].get('authreq', 0) if int(bAuth) == 0: bAuth = False if int(bAuth) == 1: bAuth = True return bAuth def req_username(self, instance): bAuth = self.instances[instance]['options'].get('authreq', 0) if int(bAuth) == 0: bAuth = False elif int(bAuth) == 1: bAuth = True return bAuth def formatQuery(self, query): retfilter = [] qlines = query.strip().split("\n") for ql in qlines: qi = ql.split(" ") qprop = qi[0].strip() qop = qi[1].strip() qval = " ".join(qi[2:]).strip() if self.debug: print("'%s' '%s' '%s'" % (qprop, qop, qval)) retfilter.append([qprop, qop, qval]) return retfilter def retQueryFilter(self, qlist): retval = [] for q in qlist: retval.append(stix2.Filter(q[0], q[1], q[2])) return retval def customQuery(self, query, instance, reconnect=True): mydf = None status = "" str_err = "" out_res_df = pd.DataFrame() inst = self.instances[instance] qlist = self.formatQuery(query) qfilter = self.retQueryFilter(qlist) try: if self.opts['taxii_group_collections'][0] == 1: searcher = stix2.CompositeDataSource() searcher.add_data_sources([stix2.TAXIICollectionSource(c) for c in inst['taxii_collections']]) tres = searcher.query(qfilter) for r in tres: try: tdf = pd.json_normalize(json.loads(r.serialize())) if len(tdf) > 0: out_res_df = pd.concat([out_res_df, tdf], ignore_index=True) except Exceptions as e: if self.debug: print("Error grouped: %s" % e) else: for c in inst['taxii_collections']: c_title = c.title c_id = c.id searcher = stix2.CompositeDataSource() searcher.add_data_sources([stix2.TAXIICollectionSource(c)]) tres = searcher.query(qfilter) for r in tres: try: tdf = pd.json_normalize(json.loads(r.serialize())) if len(tdf) > 0: tdf['collection_name'] = c_title tdf['collection_id'] = c_id out_res_df = pd.concat([out_res_df, tdf], ignore_index=True) except Exception as e: if self.debug: print("Error ungrouped: %s" % e) if len(out_res_df) == 0: mydf = None str_err = "Success - No Results" elif len(out_res_df) > 0: mydf = out_res_df str_err = "Success" except Exception as e: mydf = None str_err = str(e) if str_err.find("Success") >= 0: pass elif str_err.find("Session is not logged in") >= 0: # Need to fix this # Try to rerun query if reconnect == True: self.disconnect(instance) self.connect(instance) m, s = self.customQuery(query, instance, False) mydf = m status = s else: mydf = None status = "Failure - Session not logged in and reconnect failed" else: status = "Failure - query_error: " + str_err return mydf, status # Display Help can be customized def customOldHelp(self): self.displayIntegrationHelp() self.displayQueryHelp('external_references.external_id = T1134.001') def retCustomDesc(self): return "Jupyter integration for working with Taxii Servers" def customHelp(self, curout): n = self.name_str mn = self.magic_name m = "%" + mn mq = "%" + m table_header = "| Magic | Description |\n" table_header += "| -------- | ----- |\n" out = curout out += "## Taxii Queries/Syntax\n" out += "----------------\n" out += "A Taxii Filter is 'property' 'operator' value' as seen below in example\n" out += "- You may use multiple lines of filters, they are ANDed together\n" out += "- operator must be in %s\n" % self.allowed_ops out += "\n\n" qexamples = [] qexamples.append(["myinstance", "external_references.external_id = T1134.001", "Run a Taxii query on instance myinstance where the property is external_references.external_id, the operator is = and the value is T1134.001"]) qexamples.append(["", "external_references.external_id = T1134.001", "Run a Taxii query on the default where the property is external_references.external_id, the operator is = and the value is T1134.001"]) out += self.retQueryHelp(qexamples) return out def displayQueryHelp(self, q_example): n = self.name_str m = "%" + self.name_str mq = "%" + m print("") print("Running queries with %s" % mq) print("###############################################################################################") print("") print("When running queries with %s, %s will be on the first line of your cell, with an optional instance and the next line is the query you wish to run. Example:" % (mq, mq)) print("") print(mq) print(q_example) print("") print(mq + " myinstance") print(q_example) print("") print("Some query notes:") print("A Taxii Filter is 'property' 'operator' value' as seen above") print("- You may use multiple lines of filters, they are ANDed together") print("- operator must be in %s" % self.allowed_ops) print("- If the number of results is less than display_max_rows, then the results will be diplayed in your notebook") print("- You can change display_max_rows with %s set display_max_rows 2000" % m) print("- The results, regardless of being displayed will be placed in a Pandas Dataframe variable called prev_%s_<instance>" % n) print("- prev_%s_<instance> is overwritten every time a successful query is run. If you want to save results assign it to a new variable" % n) # This is the magic name. @line_cell_magic def taxii(self, line, cell=None): if cell is None: line = line.replace("\r", "") line_handled = self.handleLine(line) if self.debug: print("line: %s" % line) print("cell: %s" % cell) if not line_handled: # We based on this we can do custom things for integrations. if line.lower() == "testintwin": print("You've found the custom testint winning line magic!") else: print("I am sorry, I don't know what you want to do with your line magic, try just %" + self.name_str + " for help options") else: # This is run is the cell is not none, thus it's a cell to process - For us, that means a query self.handleCell(cell, line) ```
{ "source": "JohnOmernik/pimeup", "score": 3 }
#### File: pimeup/animatronics/JO_sound3.py ```python import alsaaudio import wave import sys import time import struct import math channels = 2 rate = 44000 size = 1024 out_stream = alsaaudio.PCM(alsaaudio.PCM_PLAYBACK, alsaaudio.PCM_NORMAL, 'default') out_stream.setformat(alsaaudio.PCM_FORMAT_S16_LE) out_stream.setchannels(channels) out_stream.setrate(rate) out_stream.setperiodsize(size) file = open("whizzer.wav", "rb") SHORT_NORMALIZE = (1.0/32768.0) CHUNK = 1024 swidth = 2 thres = 30 mouthpos = 0.0 # instantiate PyAudio (1) def rms(frame): count = len(frame)/swidth format = "%dh"%(count) shorts = struct.unpack( format, frame ) sum_squares = 0.0 for sample in shorts: n = sample * SHORT_NORMALIZE sum_squares += n*n rms = math.pow(sum_squares/count,0.5); return rms * 10000 data = file.read(size) def moveMouth(sig): global mouthpos if mouthpos == 0.0: if sig >= thres: print("Opening Mouth") mouthpos = 0.5 if mouthpos == 0.5: if sig >= thres: print("Closing Mouth") mouthpos = 0.0 while data: out_stream.write(data) data = file.read(size) moveMouth(rms(data)) ``` #### File: animatronics/oldPWM/JO_Servo.py ```python from Adafruit_PWM_Servo_Driver import PWM import time import sys # =========================================================================== # Example Code # =========================================================================== # Initialise the PWM device using the default address pwm = PWM(0x40) # Note if you'd like more debug output you can instead run: #pwm = PWM(0x40, debug=True) servoMin = 150 # Min pulse length out of 4096 servoMax = 600 # Max pulse length out of 4096 def setServoPulse(channel, pulse): pulseLength = 1000000 # 1,000,000 us per second pulseLength /= 60 # 60 Hz print "%d us per period" % pulseLength pulseLength /= 4096 # 12 bits of resolution print "%d us per bit" % pulseLength pulse *= 1000 pulse /= pulseLength pwm.setPWM(channel, 0, pulse) pwm.setPWMFreq(60) # Set frequency to 60 Hz #little low = 150 # while True: u = raw_input("Set pulse (e to exit): ") if str(u) == "e": sys.exit(0) try: u = int(u) pwm.setPWM(3, 0, u) except: print("Not an int: %s - try again" % u) f = """ while (True): # Change speed of continuous servo on channel O pwm.setPWM(0, 0, servoMin) time.sleep(0.5) pwm.setPWM(1, 0, servoMin) time.sleep(0.5) pwm.setPWM(2, 0, servoMin) time.sleep(0.5) pwm.setPWM(0, 0, servoMax) time.sleep(0.5) pwm.setPWM(1, 0, servoMax) time.sleep(0.5) pwm.setPWM(2, 0, servoMax) time.sleep(0.5) """ ``` #### File: pimeup/hand_servo/JO_pwr_test.py ```python import Adafruit_PCA9685 import time import random import sys # Initialise the PCA9685 using the default address (0x40). pwm = Adafruit_PCA9685.PCA9685(0x40) pwm.set_pwm_freq(60) print("PWM Setup") SRV_OPTIONS = [] SRV_OPTIONS.append({"SRV": 0, "DESC":"Thumb", "RANGE_MIN": 275, "RANGE_MAX": 575}) SRV_OPTIONS.append({"SRV": 1, "DESC":"Pointer", "RANGE_MIN": 300, "RANGE_MAX": 575}) SRV_OPTIONS.append({"SRV": 2, "DESC":"Middle", "RANGE_MIN": 325, "RANGE_MAX": 575}) SRV_OPTIONS.append({"SRV": 3, "DESC":"Ring", "RANGE_MIN": 275, "RANGE_MAX": 550}) SRV_OPTIONS.append({"SRV": 4, "DESC":"Pinky", "RANGE_MIN": 300, "RANGE_MAX": 575}) SRV_OPTIONS.append({"SRV": 5, "DESC":"WristFlex", "RANGE_MIN": 300, "RANGE_MAX": 600}) SRV_OPTIONS.append({"SRV": 6, "DESC":"WristTurn", "RANGE_MIN": 135, "RANGE_MAX": 650}) power_brightness = "/sys/devices/platform/leds/leds/led1/brightness" def main(): sleeptime = 5 maxoff = 3 numoff = 0 runwell = True maxtimes = 100 numtimes = 0 print("Beginning Loop in starting fist") fistsalute() handlist = [ fistsalute, queenswave, naughty, pointy, comehere, rockon ] curidx = 0 while runwell: try: curtime = int(time.time()) curts = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(curtime)) with open(power_brightness) as read_state: curpwr = int(read_state.read()) curpwr = True numtimes += 1 #curidx = random.randint(0, len(handlist)-1) print("Picking: %s" % curidx) handlist[curidx]() if curidx == len(handlist) - 1: curidx = 0 else: curidx += 1 if curpwr == 0: numoff += 1 else: numoff = 0 if numoff >= maxoff: print("Power off for %s in a row @ %s - exiting" % (maxoff, curts)) runwell = False elif numtimes >= maxtimes and maxtimes > 0: print("Max times reached @ %s - Power: %s" % (curts, curpwr)) runwell = False else: print("Power Status @ %s: %s" % (curts, curpwr)) time.sleep(1) fistsalute() time.sleep(sleeptime) except KeyboardInterrupt: closeitdown() closeitdown() def closeitdown(): print("Closing it down") pwm.set_pwm(0, 4096, 0) pwm.set_pwm(1, 4096, 0) pwm.set_pwm(2, 4096, 0) pwm.set_pwm(3, 4096, 0) pwm.set_pwm(4, 4096, 0) pwm.set_pwm(5, 4096, 0) pwm.set_pwm(6, 4096, 0) sys.exit(0) #SRV_OPTIONS.append({"SRV": 0, "DESC":"Thumb", "RANGE_MIN": 275, "RANGE_MAX": 575}) #SRV_OPTIONS.append({"SRV": 1, "DESC":"Pointer", "RANGE_MIN": 300, "RANGE_MAX": 575}) #SRV_OPTIONS.append({"SRV": 2, "DESC":"Middle", "RANGE_MIN": 325, "RANGE_MAX": 600}) #SRV_OPTIONS.append({"SRV": 3, "DESC":"Ring", "RANGE_MIN": 275, "RANGE_MAX": 550}) #SRV_OPTIONS.append({"SRV": 4, "DESC":"Pinky", "RANGE_MIN": 300, "RANGE_MAX": 575}) #SRV_OPTIONS.append({"SRV": 5, "DESC":"WristFlex", "RANGE_MIN": 250, "RANGE_MAX": 650}) #SRV_OPTIONS.append({"SRV": 6, "DESC":"WristTurn", "RANGE_MIN": 225, "RANGE_MAX": 625}) #thumb: 275 in 575 out #pointer: 300 up 575 down #middle: 325 up 575 down #ring: 275 up 550 down #pinky: 300 up 575 down #wristflex: 300 forward 600 back #wristturn: 135 staight front of hand- rotate twoard thum 650 back of hand forward Past straight on. 620 straigh on with back of hand def rockon(): print("Party on!") makefist() pwm.set_pwm(0, 0, 575) pwm.set_pwm(1, 0, 300) pwm.set_pwm(4, 0, 300) time.sleep(4) def pointy(): print("That's the guy...") makefist() pwm.set_pwm(6, 0, 135) pwm.set_pwm(5, 0, 300) pwm.set_pwm(1, 0, 300) time.sleep(0.5) pwm.set_pwm(5, 0, 350) time.sleep(0.4) pwm.set_pwm(5, 0, 300) time.sleep(0.4) pwm.set_pwm(5, 0, 350) time.sleep(0.4) pwm.set_pwm(5, 0, 300) time.sleep(0.4) pwm.set_pwm(5, 0, 350) def comehere(): print("I beckon") makefist() pwm.set_pwm(6, 0, 620) pwm.set_pwm(5, 0, 600) time.sleep(0.5) pwm.set_pwm(1, 0, 300) time.sleep(0.5) pwm.set_pwm(1, 0, 575) time.sleep(0.5) pwm.set_pwm(1, 0, 300) time.sleep(0.5) pwm.set_pwm(1, 0, 575) time.sleep(0.5) pwm.set_pwm(1, 0, 300) time.sleep(0.5) pwm.set_pwm(1, 0, 575) def naughty(): print("Oh you filthy...") makefist() pwm.set_pwm(6, 0, 620) pwm.set_pwm(2, 0, 325) time.sleep(4) def makefist(): print("Fists!") pwm.set_pwm(0, 0, 275) pwm.set_pwm(1, 0, 575) pwm.set_pwm(2, 0, 600) pwm.set_pwm(3, 0, 550) pwm.set_pwm(4, 0, 575) time.sleep(0.4) def fistsalute(): makefist() print("Power to the People!") pwm.set_pwm(5, 0, 500) pwm.set_pwm(6, 0, 135) def queenswave(): print("Waving like the queen!") # Set Fingers open with thumb in pwm.set_pwm(0, 0, 275) pwm.set_pwm(1, 0, 375) pwm.set_pwm(2, 0, 300) pwm.set_pwm(3, 0, 325) pwm.set_pwm(4, 0, 375) #set wrist up time.sleep(0.2) pwm.set_pwm(5, 0, 500) time.sleep(0.2) pwm.set_pwm(6, 0, 135) time.sleep(1) pwm.set_pwm(6, 0, 160) time.sleep(1) pwm.set_pwm(6, 0, 136) time.sleep(1) pwm.set_pwm(6, 0, 160) time.sleep(1) pwm.set_pwm(6, 0, 135) time.sleep(1) pwm.set_pwm(6, 0, 160) time.sleep(1) def setServoPulse(channel, pulse): pulseLength = 1000000 # 1,000,000 us per second pulseLength /= 60 # 60 Hz print "%d us per period" % pulseLength pulseLength /= 4096 # 12 bits of resolution print "%d us per bit" % pulseLength pulse *= 1000 pulse /= pulseLength pwm.set_pwm(channel, 0, pulse) if __name__ == "__main__": main() ``` #### File: pimeup/hand_servo/JO_tester.py ```python import Adafruit_PCA9685 import time import random import sys import json # Initialise the PCA9685 using the default address (0x40). pwm = Adafruit_PCA9685.PCA9685(0x40) pwm.set_pwm_freq(60) SRV_OPTIONS = [] ACTIONS = {} STATUS="" thingfile = "/home/pi/pimeup/thingbox/thing.json" thingactionfile = "/home/pi/pimeup/thingbox/thingactions.json" def main(): global SRV_OPTIONS global ACTIONS global STATUS SRV_OPTIONS = loadfile(thingfile) ACTIONS = loadfile(thingactionfile) cur_finger = -1 ACT_SHORT = [] upact = "" downact = "" for x in ACTIONS: if x['KEY'] == "U": upact = x['ACTION'] if x['KEY'] == "P": downact = x['ACTION'] ACT_SHORT.append(x['KEY']) # processAction(upact) while True: if cur_finger == -1: print("Current Status: %s" % STATUS) printServos() printAction() print("") srv_sel = raw_input("Servo to move or action: ") int_srv = -1 if srv_sel == "e": print("Exiting!") break if srv_sel in ACT_SHORT: processAction(srv_sel) else: try: int_srv = int(srv_sel) except: print("Selected Servors must be an integer or action in this list:") printServos() printAction() continue for y in SRV_OPTIONS: if int_srv == y['IDX']: cur_finger = int_srv break if cur_finger == int_srv: continue else: print("Servo provided (%s) not in the following List: Please try again") printServos() else: for y in SRV_OPTIONS: if cur_finger == y['IDX']: mysrv = y break print("Currently working with Servo: %s - Press q to quit this" % cur_finger) printServo(mysrv) while True: mv = raw_input("Enter Servo Value: ") if mv == 'q': cur_finger = -1 break else: try: myval = int(mv) except: print("You must enter a integer") continue pwm.set_pwm(cur_finger, 0, myval) processAction(downact) time.sleep(2) pwm.set_pwm(0, 4096, 0) pwm.set_pwm(1, 4096, 0) pwm.set_pwm(2, 4096, 0) pwm.set_pwm(3, 4096, 0) pwm.set_pwm(4, 4096, 0) pwm.set_pwm(5, 4096, 0) pwm.set_pwm(6, 4096, 0) pwm.set_pwm(7, 4096, 0) pwm.set_pwm(8, 4096, 0) sys.exit(0) def printServos(): print("") print ("All Available Servos: ") print("==============================") for x in SRV_OPTIONS: printServo(x) print("") def printServo(s): print("Servo Number: %s - Desc: %s - Min Movement: %s - Max Movement: %s - Notes: %s" % (s['IDX'], s['DESC'], s['RANGE_MIN'], s['RANGE_MAX'], s['NOTES'])) def printAction(): print("") print("Available Actions: ") print("==============================") for x in ACTIONS: print("\t%s - %s - %s" % (x['KEY'], x['NAME'], x['DESC'])) print("") def loadfile(f): o = open(f, "rb") tj = o.read() o.close() pj = "" for line in tj.split("\n"): if line.strip() == "" or line.strip().find("#") == 0: pass else: pj += line.strip() + "\n" print(pj) return json.loads(pj) def processAction(actKey): global STATUS act = {} bfound = False for x in ACTIONS: if actKey == x['KEY']: act = x bfound = True if bfound == True: new_status = act['STATUS'] req_status = act['REQ_STATUS'] actStr = act['ACTION'] if req_status != "": if STATUS.find(req_status) < 0: print("Can't do it") print("STATUS: %s" % STATUS) print("req_status: %s" % req_status) return print("Running Action: %s" % act['NAME']) for action in actStr.split(","): tval = action.split(":") act = tval[0] val = tval[1] if act == "P": val = float(val) time.sleep(val) elif act == "A": shutdown = False try: val = int(val) if val == 0: shutdown = True except: shutdown = False if shutdown == True: for x in range(len(SRV_OPTIONS) - 1): pwm.set_pwm(x, 4096, 0) else: processAction(val) else: act = int(act) val = int(val) if val >= 0: pwm.set_pwm(act, 0, val) else: pwm.set_pwm(act, 4096, 0) if new_status != "": STATUS = new_status def setServoPulse(channel, pulse): pulseLength = 1000000 # 1,000,000 us per second pulseLength /= 60 # 60 Hz print "%d us per period" % pulseLength pulseLength /= 4096 # 12 bits of resolution print "%d us per bit" % pulseLength pulse *= 1000 pulse /= pulseLength pwm.set_pwm(channel, 0, pulse) if __name__ == "__main__": main() ``` #### File: pimeup/relay/relay_basic.py ```python import RPi.GPIO as GPIO import time #GPIO Mode (BOARD / BCM) GPIO.setmode(GPIO.BCM) #set GPIO Pins GPIO_RELAY = 16 #set GPIO direction (IN / OUT) GPIO.setup(GPIO_RELAY, GPIO.OUT) def main (): print("Setting to off") GPIO.output(GPIO_RELAY, False) print("Waiting 5 seconds") time.sleep(5) print("Setting to on") GPIO.output(GPIO_RELAY, True) print("Waiting 5 seconds") time.sleep(5) print("Setting to off") GPIO.output(GPIO_RELAY, False) if __name__ == '__main__': main() ``` #### File: pimeup/thingbox/thingbox.py ```python import Adafruit_PCA9685 import time import random import sys import socket import json from socket import error as socket_error import RPi.GPIO as GPIO import cwiid #GPIO Mode (BOARD / BCM) GPIO.setmode(GPIO.BCM) #set GPIO Pins GPIO_MODE= 12 #set GPIO direction (IN / OUT) GPIO.setup(GPIO_MODE, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) # Initialise the PCA9685 using the default address (0x40). pwm = Adafruit_PCA9685.PCA9685(0x40) pwm.set_pwm_freq(60) SRV_OPTIONS = [] ACTIONS = {} HOMENET = 0 NETWORK = 1 STATUS = "" wiimode = 0 if GPIO.input(GPIO_MODE) == 1: print("Wii mode is enabled! (Network and command line will not function)") wiimode = 1 elif GPIO.input(GPIO_MODE) == 0: print("Wii mode is not enabled") wiimode = 0 try: chknet = sys.argv[1] print("Chknet: %s" % chknet) if int(chknet) == 2: # No network command line interface NETWORK = 0 wiimode = 0 # We reset this back elif int(chknet) == 1 and wiimode == 0: # Use home net ip of 192.168.0.130 HOMENET = 1 except: if wiimode == 0: NETWORK = 1 else: NETWORK = 0 thingfile = "/home/pi/pimeup/thingbox/thing.json" thingactionfile = "/home/pi/pimeup/thingbox/thingactions.json" STATUS_OPT = [ 'LIDUP', 'HANDUPLIDUP', 'HANDDOWNLIDUP', 'HANDDOWNLIDDOWN' ] DEBUG = 1 BUT_DEBUG = 0 NET_DEBUG = 0 if HOMENET == 1: UDP_IP = '192.168.0.130' else: UDP_IP = '192.168.1.110' print("UDP IP is %s" % UDP_IP) UDP_PORT = 30000 UDP_BUFFER_SIZE = 5 rpt_mode = 0 wiimote = None connected = False rumble = 0 b_val = False status_chk = True def main(): global SRV_OPTIONS global ACTIONS global STATUS global wiimote global rumble global rpt_mode global connected global b_val global status_chk SRV_OPTIONS = loadfile(thingfile) ACTIONS = loadfile(thingactionfile) for x in SRV_OPTIONS: print(x) printActions() cur_finger = -1 ACT_SHORT = [] upact = "" downact = "" STATUS="HANDDOWNLIDDOWN" for x in ACTIONS: if x['KEY'] == "U": upact = x['ACTION'] if x['KEY'] == "P": downact = x['ACTION'] ACT_SHORT.append(x['KEY']) if NETWORK: print("Listening on %s:%s" % (UDP_IP, UDP_PORT)) sock = socket.socket(socket.AF_INET, # Internet socket.SOCK_DGRAM) # UDP sock.bind((UDP_IP, UDP_PORT)) if wiimode == 1: # Setup Wii remote print ("Press 1+2 to connect Wii") while not connected: try: wiimote = cwiid.Wiimote() print("Connected!") connected = True rumble ^= 1 wiimote.rumble = rumble time.sleep(2) rumble ^= 1 wiimote.rumble = rumble except: print("Trying Again, please press 1+2") time.sleep(2) # Now setup Wii Callback, Buttons, and Accelerometer wiimote.mesg_callback = callback # For Thing box mode we enable Button rpt_mode ^= cwiid.RPT_BTN # Enable the messages in callback wiimote.enable(cwiid.FLAG_MESG_IFC); wiimote.rpt_mode = rpt_mode try: while True: if NETWORK: data, addr = sock.recvfrom(UDP_BUFFER_SIZE) elif wiimode == 0: data = raw_input("Please Enter Raw Command: ") else: # This is wii mode time.sleep(0.5) continue if data: if DEBUG or NET_DEBUG: print("Recieved Data Update: %s" % data) if data == "PINGM" or data == "PINGA": pingtime = int(time.time()) response = data.replace("PING", "GOOD") sock.sendto(response, addr) if DEBUG or NET_DEBUG: print("Got ping at %s, sent pong" % pingtime) continue if data.find(":") >= 0: pass else: mdata = -10000 try: mdata = int(data) except: mdata = -10000 if mdata > -10000: data = "A:" + str(mdata) elif data == "i": for x in SRV_OPTIONS: print(x) printActions() continue elif len(data) == 1: data = "A:" + data else: print("I think its bad: %s" % data) continue tdata = data.split(":") cmdkey = tdata[0] cmdval = tdata[1] if str(cmdkey) == "A" and cmdval in ACT_SHORT: processAction(cmdval) elif str(cmdkey) == "C" and cmdval != "": if int(cmdval) == 0: status_chk = False elif int(cmdval) == 1: status_chk = True elif str(cmdkey) == "S" and cmdval != "": if cmdval in STATUS_OPT: STATUS = cmdval else: print("Status needs to be in %s" % STATUS_OPT) else: try: cmdkey = int(cmdkey) cmdval = int(cmdval) except: print("cmdkey must be A or an integer") continue setfingerperc(cmdkey, cmdval) except socket_error: exitGracefully() except KeyboardInterrupt: exitGracefully() def handle_buttons(buttons): global b_val global STATUS global SENSORS # The B (trigger) Button does cool things for us # When pressed that allows the glove sensors to be read and sent # It also changes what the other buttons do if (buttons & cwiid.BTN_B): b_val = True else: b_val = False if (buttons & cwiid.BTN_UP): if b_val == True: processAction("O") elif (buttons & cwiid.BTN_DOWN): if b_val == True: processAction("C") elif (buttons & cwiid.BTN_LEFT): processAction("W") elif (buttons & cwiid.BTN_RIGHT): if b_val == True: processAction("B") elif (buttons & cwiid.BTN_1): if b_val == False: processAction("M") else: processAction("S") elif (buttons & cwiid.BTN_2): if b_val == True: processAction("F") else: processAction("P") elif (buttons & cwiid.BTN_PLUS): processAction("G") elif (buttons & cwiid.BTN_MINUS): # Locks the wrist up processAction("L") elif (buttons & cwiid.BTN_A): # A will summon thing if B is not pressed, and put him a way if B is pressed if b_val == False: processAction("U") elif b_val == True: processAction("D") elif (buttons & cwiid.BTN_HOME): # Home Calms Servos processAction("A") def setfingerperc(cmdkey, cmdorigval, ignorestatus=False): global SRV_OPTIONS global STATUS global status_chk if STATUS.find("HANDUP") >= 0 or ignorestatus or not status_chk: if SRV_OPTIONS[cmdkey]["INVERT"] == True: cmdval = abs(cmdorigval - 100) else: cmdval = cmdorigval setval = (cmdval * (SRV_OPTIONS[cmdkey]['RANGE_MAX'] - SRV_OPTIONS[cmdkey]['RANGE_MIN']) / 100) + SRV_OPTIONS[cmdkey]['RANGE_MIN'] if DEBUG or NET_DEBUG: print("Setting Servo: %s (%s) to %s percent - (%s)" % (cmdkey, SRV_OPTIONS[cmdkey]['DESC'], cmdorigval, setval)) pwm.set_pwm(cmdkey, 0, setval) else: print("Will not preform commands due to STATUS: %s" % STATUS) def callback(mesg_list, time): global SENSORS global b_val global STATUS for mesg in mesg_list: if mesg[0] == cwiid.MESG_BTN: handle_buttons(mesg[1]) if BUT_DEBUG or DEBUG: print("Time: %s" % time) print 'Button Report: %.4X' % mesg[1] else: print 'Unknown Report' def printActions(): type_dict = {} type_dict['0'] = "Maintaining the Thing" type_dict['1'] = "Single Actions" type_dict['2'] = "Neat Actions" type_dict['3'] = "Addams Family Macros" for t in range(4): print("") print("------------------------------------------------") print("Type %s - %s" % (t, type_dict[str(t)])) for x in ACTIONS: if x['TYPE'] == t: print("\t%s - %s\t\t%s" % (x['KEY'], x['NAME'], x['DESC'])) print("") def processAction(actKey): global STATUS global status_chk act = {} bfound = False for x in ACTIONS: if actKey == x['KEY']: act = x bfound = True if bfound == True: new_status = act['STATUS'] req_status = act['REQ_STATUS'] actStr = act['ACTION'] if req_status != "": if STATUS.find(req_status) < 0 and status_chk: print("Can't do it") print("STATUS: %s" % STATUS) print("req_status: %s" % req_status) return print("Running Action: %s" % act['NAME']) for action in actStr.split(","): tval = action.split(":") act = tval[0] val = tval[1] if act == "P": val = float(val) time.sleep(val) elif act == "S": STATUS = val elif act == "A": shutdown = False try: val = int(val) if val == 0: shutdown = True except: shutdown = False if shutdown == True: for x in range(len(SRV_OPTIONS)): if x != 5 and x != 7: pwm.set_pwm(x, 4096, 0) else: processAction(val) else: act = int(act) val = int(val) if val == -10: pwm.set_pwm(act, 4096, 0) else: setfingerperc(act, val, True) if new_status != "": STATUS = new_status def loadfile(f): o = open(f, "rb") tj = o.read() o.close() pj = "" for line in tj.split("\n"): if line.strip() == "" or line.strip().find("#") == 0: pass else: pj += line.strip() + "\n" # print(pj) return json.loads(pj) def exitGracefully(): print("") print("ok Bye") pwm.set_pwm(0, 4096, 0) pwm.set_pwm(1, 4096, 0) pwm.set_pwm(2, 4096, 0) pwm.set_pwm(3, 4096, 0) pwm.set_pwm(4, 4096, 0) # pwm.set_pwm(5, 4096, 0) pwm.set_pwm(6, 4096, 0) # pwm.set_pwm(7, 4096, 0) pwm.set_pwm(8, 4096, 0) sys.exit(0) def setServoPulse(channel, pulse): pulseLength = 1000000 # 1,000,000 us per second pulseLength /= 60 # 60 Hz print "%d us per period" % pulseLength pulseLength /= 4096 # 12 bits of resolution print "%d us per bit" % pulseLength pulse *= 1000 pulse /= pulseLength pwm.set_pwm(channel, 0, pulse) if __name__ == "__main__": main() ``` #### File: pimeup/throne/throne.py ```python import time import random import sys import cwiid import json import gevent from collections import OrderedDict import cStringIO import alsaaudio import wave import requests import os import struct import math from dotstar import Adafruit_DotStar import socket WHATAMI = os.path.basename(__file__).replace(".py", "") WHOAMI = socket.gethostname() m = alsaaudio.Mixer('PCM') current_volume = m.getvolume() # Get the current Volume print("Cur Vol: %s " % current_volume) m.setvolume(100) # Set the volume to 70%. current_volume = m.getvolume() # Get the current Volume print("Cur Vol: %s " % current_volume) mesg = False rpt_mode = 0 wiimote = None connected = False rumble = 0 numpixels = 264 # Number of LEDs in strip # Here's how to control the strip from any two GPIO pins: datapin = 23 clockpin = 24 fire_colors = [ "#001100", "#005500", "#00FF00", "#33FFFF", "#FFFFFF" ] outtimes = {} mydelays = [0.001] #, 0.02, 0.03, 0.1, 0.15] heat = [] heat = [] for x in range(numpixels): heat.append(30) COOLING = 15 num_colors = 100 my_colors = [] colors_dict = OrderedDict() allcolors = [] fireplacestarttime = 0 soundstarttime = 0 curplay = 66 lasthb = 0 hbinterval = 30 fireplace = True fireplacestart = False soundstart = False soundplaying = False #Setting color to: 0xFF0000 # Green #Setting color to: 0xCC00CC # Bright Teal #Setting color to: 0x66CC00 # Orange #Setting color to: 0x33FFFF # Magenta #Setting color to: 0xFF00 # Red #Setting color to: 0x330099 # Lightish Blue #Setting color to: 0xFFFF00 # YEllow #Setting color to: 0xFF # Bright Blue #Setting color to: 0xFF9900 # YEllower Gren #Setting color to: 0x33 # Dark BLue strip = Adafruit_DotStar(numpixels, datapin, clockpin) strip.setBrightness(255) strip.begin() # Initialize pins for output def main(): global strip global allcolors global firecolors logevent("startup", "startup", "Just started and ready to run") for x in range(len(fire_colors)): if x == len(fire_colors) -1: pass else: print("Adding gradient for %s (%s) to %s (%s) with %s colors" % (fire_colors[x], hex_to_RGB(fire_colors[x]), fire_colors[x+1], hex_to_RGB(fire_colors[x+1]), num_colors)) gtmp = linear_gradient(fire_colors[x], fire_colors[x+1], num_colors) my_colors.append(gtmp['hex']) colors_dict[fire_colors[x] + "_2_" + fire_colors[x+1]] = gtmp['hex'] for x in colors_dict: for y in colors_dict[x]: # print("Color: %s" % hex_to_RGB(y)) allcolors.append(y) #Connect to address given on command-line, if present print 'Put Wiimote in discoverable mode now (press 1+2)...' global wiimote global rpt_mode global connected global rumble print("Trying Connection") print ("Press 1+2") while not connected: try: wiimote = cwiid.Wiimote() print("Connected!") connected = True rumble ^= 1 wiimote.rumble = rumble time.sleep(2) rumble ^= 1 wiimote.rumble = rumble logevent("wii", "connect", "Wii remote just synced up") except: print("Trying Again, please press 1+2") time.sleep(2) wiimote.mesg_callback = callback print("For LED we enable Button") rpt_mode ^= cwiid.RPT_BTN # Enable the messages in callback wiimote.enable(cwiid.FLAG_MESG_IFC); wiimote.rpt_mode = rpt_mode gevent.joinall([ gevent.spawn(normal), gevent.spawn(FirePlace), gevent.spawn(playSound), ]) def logevent(etype, edata, edesc): global WHOAMI global WHATAMI curtime = int(time.time()) curts = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(curtime)) outrec = OrderedDict() outrec['ts'] = curts outrec['host'] = WHOAMI outrec['script'] = WHATAMI outrec['event_type'] = etype outrec['event_data'] = edata outrec['event_desc'] = edesc sendlog(outrec, False) outrec = None def normal(): global strip global lasthb global hbinterval global soundstart global curplay global fireplacestart global fireplacestarttime global soundstarttime global heat global outtimes global soundplaying try: while True: curtime = int(time.time()) if curtime - lasthb > hbinterval: logevent("heartbeat", wiimote.state['battery'], "wii HB") lasthb = curtime gevent.sleep(0.001) except KeyboardInterrupt: print("Exiting") setAllLEDS(strip, [0x000000]) strip.setBrightness(0) strip.show() sys.exit() def playSound(): global soundstart global fireplacestart global soundplaying sounds = [0, 0, 0] channels = 2 rate = 44100 size = 1024 out_stream = alsaaudio.PCM(alsaaudio.PCM_PLAYBACK, alsaaudio.PCM_NORMAL, 'default') out_stream.setformat(alsaaudio.PCM_FORMAT_S16_LE) out_stream.setchannels(channels) out_stream.setrate(rate) out_stream.setperiodsize(size) soundreset = False soundfiles = ['/home/pi/tool_mantra.wav'] memsound = {} print("Loading Sound files to memory") for sf in soundfiles: f = open(sf, "rb") sfdata = f.read() f.close() memsound[sf] = cStringIO.StringIO(sfdata) while True: if soundstart == True: if soundreset == False: curfile = random.choice(soundfiles) memsound[curfile].seek(0) soundreset = True soundstart = False soundplaying = True fireplacestart = True data = memsound[curfile].read(size) while data: out_stream.write(data) data = memsound[curfile].read(size) gevent.sleep(0.001) soundreset = False soundplaying = False else: soundplaying = False gevent.sleep(0.001) def FirePlace(): global numpixels global COOLING global strip global allcolors global heat global fireplacestart global fireplace # Every cycle there will be some random cololing # Consider adding a degree of random whether a pixel cools try: while True: #If we see start then reset all to 255 if fireplacestart == True: for i in range(numpixels): heat[i] = 255 fireplacestart = False if fireplace == True: for i in range(numpixels): if random.randint(0, 255) < COOLING: tval = heat[i] - random.randint(0, ((COOLING * 10) / numpixels) + 2) heat[i] = tval gevent.sleep(random.choice(mydelays)) # This is supposed to be a diffusing effect I think # k = numpixels -3 # while k > 2: # if random.randint(0, 255) * 2 < COOLING: # tval = (heat[k-1] + heat[ k- 2 ] + heat[ k- 2] ) / 3 # heat[k] = tval # k = k - 1 # gevent.sleep(random.choice(mydelays)) # Now, actually set the pixels based on a scaled representation of all pixels for j in range(numpixels): if heat[j] > 255: heat[j] = 255 if heat[j] < 0: heat[j] = 0 newcolor = int((heat[j] * len(allcolors)) / 256) strip.setPixelColor(j, int(allcolors[newcolor].replace("#", ''), 16)) gevent.sleep(random.choice(mydelays)) strip.show() gevent.sleep(random.choice(mydelays)) else: gevent.sleep(0.001) except KeyboardInterrupt: print("") print("exiting and shutting down strip") setAllLEDS(strip, [0x000000]) sys.exit(0) def sendlog(log, debug): logurl = "http://hauntcontrol:5050/hauntlogs" try: r = requests.post(logurl, json=log) if debug: print("Posted to %s status code %s" % (logurl, r.status_code)) print(json.dumps(log)) except: if debug: print("Post to %s failed timed out?" % logurl) print(json.dumps(log)) def setAllLEDS(strip, colorlist): for x in range(numpixels): strip.setPixelColor(x, colorlist[0]) strip.show() def rms(frame): SHORT_NORMALIZE = (1.0/32768.0) CHUNK = 1024 swidth = 2 count = len(frame)/swidth format = "%dh"%(count) shorts = struct.unpack( format, frame ) sum_squares = 0.0 for sample in shorts: n = sample * SHORT_NORMALIZE sum_squares += n*n rms = math.pow(sum_squares/count,0.5); return rms * 10000 def color_dict(gradient): ''' Takes in a list of RGB sub-lists and returns dictionary of colors in RGB and hex form for use in a graphing function defined later on ''' return {"hex":[RGB_to_hex(RGB) for RGB in gradient], "r":[RGB[0] for RGB in gradient], "g":[RGB[1] for RGB in gradient], "b":[RGB[2] for RGB in gradient]} def linear_gradient(start_hex, finish_hex="#FFFFFF", n=10): ''' returns a gradient list of (n) colors between two hex colors. start_hex and finish_hex should be the full six-digit color string, inlcuding the number sign ("#FFFFFF") ''' # Starting and ending colors in RGB form s = hex_to_RGB(start_hex) f = hex_to_RGB(finish_hex) # Initilize a list of the output colors with the starting color RGB_list = [s] # Calcuate a color at each evenly spaced value of t from 1 to n for t in range(1, n): # Interpolate RGB vector for color at the current value of t curr_vector = [ int(s[j] + (float(t)/(n-1))*(f[j]-s[j])) for j in range(3)] # Add it to our list of output colors RGB_list.append(curr_vector) return color_dict(RGB_list) def handle_buttons(buttons): global heat global strip global soundstart global soundplaying if (buttons & cwiid.BTN_A): print("soundplaying in A: %s" % soundplaying) if soundplaying == False: soundstart = True logevent("index_change", "reset", "Reset the index to start loop again") gevent.sleep(0.001) def hex_to_RGB(hex): ''' "#FFFFFF" -> [255,255,255] ''' # Pass 16 to the integer function for change of base return [int(hex[i:i+2], 16) for i in range(1,6,2)] def RGB_to_hex(RGB): ''' [255,255,255] -> "#FFFFFF" ''' # Components need to be integers for hex to make sense RGB = [int(x) for x in RGB] return "#"+"".join(["0{0:x}".format(v) if v < 16 else "{0:x}".format(v) for v in RGB]) def callback(mesg_list, time): for mesg in mesg_list: if mesg[0] == cwiid.MESG_BTN: handle_buttons(mesg[1]) else: print 'Unknown Report' if __name__ == "__main__": main() ``` #### File: pimeup/torture2/torture2.py ```python import time import random import sys import alsaaudio import json import requests import os import socket from collections import OrderedDict WHOAMI = socket.gethostname() WHATAMI = os.path.basename(__file__).replace(".py", "") #m = alsaaudio.Mixer('PCM') #current_volume = m.getvolume() # Get the current Volume #print("Cur Vol: %s " % current_volume) #m.setvolume(100) # Set the volume to 70%. #current_volume = m.getvolume() # Get the current Volume #print("Cur Vol: %s " % current_volume) hbinterval = 30 lasthb = 0 def main(): logevent("startup", "startup", "Just started and ready to run") global lasthb global hbinterval sounds = [0, 0, 0] channels = 2 rate = 44100 size = 1024 out_stream = alsaaudio.PCM(alsaaudio.PCM_PLAYBACK, alsaaudio.PCM_NORMAL, 'default') # out_stream.setformat(alsaaudio.PCM_FORMAT_S16_LE) # out_stream.setchannels(channels) # out_stream.setrate(rate) # out_stream.setperiodsize(size) soundfiles = ['/home/pi/torture_audio.wav'] while True: curfile = random.choice(soundfiles) curtime = int(time.time()) if curtime - lasthb > hbinterval: logevent("heartbeat", "Working", "Cur Childhood sound file: %s" % curfile) lasthb = curtime curstream = open(curfile, "rb") data = curstream.read(size) while data: out_stream.write(data) data = curstream.read(size) curstream.close() sys.exit(0) def logevent(etype, edata, edesc): global WHOAMI global WHATAMI curtime = int(time.time()) curts = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(curtime)) outrec = OrderedDict() outrec['ts'] = curts outrec['host'] = WHOAMI outrec['script'] = WHATAMI outrec['event_type'] = etype outrec['event_data'] = edata outrec['event_desc'] = edesc sendlog(outrec, False) outrec = None def sendlog(log, debug): logurl = "http://hauntcontrol:5050/hauntlogs" try: r = requests.post(logurl, json=log) if debug: print("Posted to %s status code %s" % (logurl, r.status_code)) print(json.dumps(log)) except: if debug: print("Post to %s failed timed out?" % logurl) print(json.dumps(log)) if __name__ == "__main__": main() ``` #### File: pimeup/vault/vault.py ```python import cwiid import sys import gevent import time import datetime import atexit import json import requests import os from collections import OrderedDict import random from dotstar import Adafruit_DotStar import socket import cStringIO import alsaaudio import wave import struct import math WHOAMI = socket.gethostname() WHATAMI = os.path.basename(__file__).replace(".py", "") mesg = False rpt_mode = 0 wiimote = None connected = False rumble = 0 numpixels = 120 # Number of LEDs in strip lasthb = 0 hbinterval = 30 defaultColor = 0xFFFFCC defaultBright = 255 # Here's how to control the strip from any two GPIO pins: datapin = 23 clockpin = 24 strip = Adafruit_DotStar(numpixels, datapin, clockpin) strip.begin() # Initialize pins for output strip.setBrightness(255) # Limit brightness to ~1/4 duty cycle playsound = False normallight = True goldlight = False fire_colors = [ "#CCCCCC", "#33CC00", "#66CC00"] # "#FFFF00"] num_colors = 100 my_colors = [] colors_dict = OrderedDict() allcolors = [] pulse_colors = [] pulse_mod = 4 eventarray = [] eventarray.append({"playsound": False, "normallight": True, "goldlight": False}) eventarray.append({"playsound": True, "normallight": False, "goldlight": True}) eventidx = 0 #Setting color to: 0xFF0000 # Green #Setting color to: 0xCC00CC # Bright Teal #Setting color to: 0x66CC00 # Orange #Setting color to: 0x33FFFF # Magenta #Setting color to: 0xFF00 # Red #Setting color to: 0x330099 # Lightish Blue #Setting color to: 0xFFFF00 # YEllow #Setting color to: 0xFF # Bright Blue #Setting color to: 0xFF9900 # YEllower Gren #Setting color to: 0x33 # Dark BLue def main(): #Connect to address given on command-line, if present logevent("startup", "startup", "Just started and ready to run") print 'Put Wiimote in discoverable mode now (press 1+2)...' global wiimote global rpt_mode global connected global strip global rumble global allcolors global my_colors global fire_colors global pulse_colors global pulse_mod for x in range(len(fire_colors)): if x == len(fire_colors) -1: pass else: print("Adding gradient for %s (%s) to %s (%s) with %s colors" % (fire_colors[x], hex_to_RGB(fire_colors[x]), fire_colors[x+1], hex_to_RGB(fire_colors[x+1]), num_colors)) gtmp = linear_gradient(fire_colors[x], fire_colors[x+1], num_colors) my_colors.append(gtmp['hex']) colors_dict[fire_colors[x] + "_2_" + fire_colors[x+1]] = gtmp['hex'] for x in colors_dict: for y in colors_dict[x]: allcolors.append(y) ccnt = 0 for x in reversed(allcolors): ccnt += 1 pulse_colors.append(x) if ccnt > num_colors / pulse_mod: break print("Pulse colors has %s colors" % len(pulse_colors)) print("Trying Connection") print ("Press 1+2") while not connected: try: wiimote = cwiid.Wiimote() print("Connected!") connected = True rumble ^= 1 wiimote.rumble = rumble time.sleep(2) rumble ^= 1 wiimote.rumble = rumble logevent("wii", "connect", "Wii remote just synced up") except: print("Trying Again, please press 1+2") time.sleep(2) wiimote.mesg_callback = callback print("For LED we enable Button") rpt_mode ^= cwiid.RPT_BTN # Enable the messages in callback wiimote.enable(cwiid.FLAG_MESG_IFC); wiimote.rpt_mode = rpt_mode gevent.joinall([ gevent.spawn(normal), gevent.spawn(Lights), gevent.spawn(PlaySound), ]) def logevent(etype, edata, edesc): global WHOAMI global WHATAMI curtime = int(time.time()) curts = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(curtime)) outrec = OrderedDict() outrec['ts'] = curts outrec['host'] = WHOAMI outrec['script'] = WHATAMI outrec['event_type'] = etype outrec['event_data'] = edata outrec['event_desc'] = edesc sendlog(outrec, False) outrec = None def Lights(): global strip global normallight global goldlight global pulse_colors global all_colors goldon = False lighton = False while True: if normallight == True and lighton == False and goldlight == False: if goldon == True: setAllLEDS(strip, [0x000000]) goldon = False gevent.sleep(0.001) strip.setBrightness(defaultBright) setAllLEDS(strip, [defaultColor]) lighton = True gevent.sleep(0.001) elif goldlight == True and lighton == True and goldon == False: goldon = True for x in allcolors: setAllLEDS(strip, [int(x.replace("#", ''), 16)]) gevent.sleep(0.001) lighton = False elif goldlight == True and goldon == True and lighton == False: for x in pulse_colors: setAllLEDS(strip, [int(x.replace("#", ''), 16)]) if goldlight == False: break gevent.sleep(0.05) for x in reversed(pulse_colors): if goldlight == False: break setAllLEDS(strip, [int(x.replace("#", ''), 16)]) gevent.sleep(0.05) gevent.sleep(0.01) def PlaySound(): global strip global playsound print("start playsound") sounds = [0, 0, 0] channels = 2 rate = 44100 size = 1024 soundfiles = ['/home/pi/Madness_Vault_Whispers.wav'] out_stream = alsaaudio.PCM(alsaaudio.PCM_PLAYBACK, alsaaudio.PCM_NORMAL, 'default') out_stream.setformat(alsaaudio.PCM_FORMAT_S16_LE) out_stream.setchannels(channels) out_stream.setrate(rate) out_stream.setperiodsize(size) memsound = {} print("Loading Sound files to memory") for sf in soundfiles: f = open(sf, "rb") sfdata = f.read() f.close() memsound[sf] = cStringIO.StringIO(sfdata) soundreset = False while True: if playsound == True: print("Sound") if soundreset == False: curfile = random.choice(soundfiles) memsound[curfile].seek(0) soundreset = True data = memsound[curfile].read(size) gevent.sleep(0.001) while data and playsound == True: out_stream.write(data) data = memsound[curfile].read(size) gevent.sleep(0.001) playsound = False soundreset = False else: gevent.sleep(0.001) sys.exit(0) def sendlog(log, debug): logurl = "http://hauntcontrol:5050/hauntlogs" try: r = requests.post(logurl, json=log) if debug: print("Posted to %s status code %s" % (logurl, r.status_code)) print(json.dumps(log)) except: if debug: print("Post to %s failed timed out?" % logurl) print(json.dumps(log)) def normal(): global strip global wiimote global lasthb global hbinterval try: while True: curtime = int(time.time()) if curtime - lasthb > hbinterval: logevent("heartbeat", wiimote.state['battery'], "wii HB") lasthb = curtime gevent.sleep(0.001) except KeyboardInterrupt: print("Exiting") setAllLEDS(strip, [0x000000]) strip.setBrightness(0) strip.show() wiimote.close() sys.exit() def handle_buttons(buttons): global strip global eventarray global eventidx global playsound global normallight global goldlight changed = False if (buttons & cwiid.BTN_A): previdx = eventidx if eventidx == 0: eventidx += 1 changed = True if (buttons & cwiid.BTN_1): previdx = eventidx if eventidx != 0: eventidx = 0 changed = True if changed == True: curtime = int(time.time()) goldlight = eventarray[eventidx]["goldlight"] normallight = eventarray[eventidx]["normallight"] playsound = eventarray[eventidx]["playsound"] logevent("index_change", eventarray[eventidx], "Event list index changed from %s to %s" % (previdx, eventidx)) def rms(frame): SHORT_NORMALIZE = (1.0/32768.0) CHUNK = 1024 swidth = 2 count = len(frame)/swidth format = "%dh"%(count) shorts = struct.unpack( format, frame ) sum_squares = 0.0 for sample in shorts: n = sample * SHORT_NORMALIZE sum_squares += n*n rms = math.pow(sum_squares/count,0.5); return rms * 10000 #BTN_1', 'BTN_2', 'BTN_A', 'BTN_B', 'BTN_DOWN', 'BTN_HOME', 'BTN_LEFT', 'BTN_MINUS', 'BTN_PLUS', 'BTN_RIGHT', 'BTN_UP', def color_dict(gradient): ''' Takes in a list of RGB sub-lists and returns dictionary of colors in RGB and hex form for use in a graphing function defined later on ''' return {"hex":[RGB_to_hex(RGB) for RGB in gradient], "r":[RGB[0] for RGB in gradient], "g":[RGB[1] for RGB in gradient], "b":[RGB[2] for RGB in gradient]} def linear_gradient(start_hex, finish_hex="#FFFFFF", n=10): ''' returns a gradient list of (n) colors between two hex colors. start_hex and finish_hex should be the full six-digit color string, inlcuding the number sign ("#FFFFFF") ''' # Starting and ending colors in RGB form s = hex_to_RGB(start_hex) f = hex_to_RGB(finish_hex) # Initilize a list of the output colors with the starting color RGB_list = [s] # Calcuate a color at each evenly spaced value of t from 1 to n for t in range(1, n): # Interpolate RGB vector for color at the current value of t curr_vector = [ int(s[j] + (float(t)/(n-1))*(f[j]-s[j])) for j in range(3)] # Add it to our list of output colors RGB_list.append(curr_vector) return color_dict(RGB_list) def hex_to_RGB(hex): ''' "#FFFFFF" -> [255,255,255] ''' # Pass 16 to the integer function for change of base return [int(hex[i:i+2], 16) for i in range(1,6,2)] def RGB_to_hex(RGB): ''' [255,255,255] -> "#FFFFFF" ''' # Components need to be integers for hex to make sense RGB = [int(x) for x in RGB] return "#"+"".join(["0{0:x}".format(v) if v < 16 else "{0:x}".format(v) for v in RGB]) def callback(mesg_list, time): for mesg in mesg_list: if mesg[0] == cwiid.MESG_BTN: handle_buttons(mesg[1]) # print("Time: %s" % time) # print 'Button Report: %.4X' % mesg[1] else: print 'Unknown Report' def setAllLEDS(strip, colorlist): numcolors = len(colorlist) for x in range(numpixels): idx = x % numcolors strip.setPixelColor(x, colorlist[idx]) strip.show() if __name__ == "__main__": main() ```
{ "source": "JohnOmernik/pyjsonetl", "score": 2 }
#### File: JohnOmernik/pyjsonetl/pyjson.py ```python from confluent_kafka import Consumer, KafkaError import json import re import time import shutil import gzip import os import sys # Variables - Should be setable by arguments at some point envvars = {} # envars['var'] = ['default', 'True/False Required', 'str/int'] #Kafka envvars['zookeepers'] = ['', False, 'str'] envvars['kafka_id'] = ['', False, 'str'] envvars['bootstrap_brokers'] = ['', False, 'str'] envvars['offset_reset'] = ['earliest', False, 'str'] envvars['group_id'] = ['', True, 'str'] envvars['topic'] = ['', True, 'str'] envvars['loop_timeout'] = ["5.0", False, 'flt'] #Loop Control envvars['rowmax'] = [50, False, 'int'] envvars['timemax'] = [60, False, 'int'] envvars['sizemax'] = [256000, False, 'int'] # JSON Options envvars['json_gz_compress'] = [0, False, 'bool'] # Not supported yet envvars['filemaxsize'] = [8000000, False, 'int'] envvars['uniq_env'] = ['HOSTNAME', False, 'str'] # Data Management envvars['unknownpart'] = ['unknown', False, 'str'] envvars['partition_field'] = ['', True, 'str'] envvars['partmaxage'] = ['600', False, 'int'] envvars['remove_fields_on_fail'] = [0, False, 'int'] # If Json fails to import, should we try to remove_fields based on 'REMOVE_FIELDS' envvars['remove_fields'] = ['', False, 'str'] # Comma Sep list of fields to try to remove if failure on JSON import # Destination Options envvars['table_base'] = ['', True, 'str'] envvars['tmp_part_dir'] = ['.tmp', False, 'str'] envvars['write_live'] = [0, False, 'int'] # Debug envvars['debug'] = [0, False, 'int'] loadedenv = {} def main(): global loadedenv loadedenv = loadenv(envvars) loadedenv['tmp_part'] = loadedenv['table_base'] + "/" + loadedenv['tmp_part_dir'] loadedenv['uniq_val'] = os.environ[loadedenv['uniq_env']] if loadedenv['debug'] == 1: print(json.dumps(loadedenv, sort_keys=True, indent=4, separators=(',', ': '))) if not os.path.isdir(loadedenv['tmp_part']): os.makedirs(loadedenv['tmp_part']) # Get the Bootstrap brokers if it doesn't exist if loadedenv['bootstrap_brokers'] == "": if loadedenv['zookeepers'] == "": print("Must specify either Bootstrap servers via BOOTSTRAP_BROKERS or Zookeepers via ZOOKEEPERS") sys.exit(1) mybs = bootstrap_from_zk(loadedenv['zookeepers'], loadedenv['kafka_id']) else: if loadedenv['bootstrap_brokers'] == 'mapr': mybs = '' if loadedenv['debug'] >= 1: print (mybs) # Create Consumer group to listen on the topic specified c = Consumer({'bootstrap.servers': mybs, 'group.id': loadedenv['group_id'], 'default.topic.config': {'auto.offset.reset': loadedenv['offset_reset']}}) c.subscribe([loadedenv['topic']], on_assign=print_assignment) # Initialize counters rowcnt = 0 sizecnt = 0 lastwrite = int(time.time()) - 1 jsonar = [] part_ledger = {} curfile = loadedenv['uniq_val'] + "_curfile.json" # Listen for messages running = True while running: curtime = int(time.time()) timedelta = curtime - lastwrite try: message = c.poll(timeout=loadedenv['loop_timeout']) except KeyboardInterrupt: print("\n\nExiting per User Request") c.close() sys.exit(0) if message == None: # No message was found but we still want to check our stuff pass elif not message.error(): rowcnt += 1 # This is a message let's add it to our queue try: # This may not be the best way to approach this. val = message.value().decode('ascii', errors='ignore') except: print(message.value()) val = "" # Only write if we have a message if val != "": #Keep Rough size count sizecnt += len(val) failedjson = 0 try: jsonar.append(json.loads(val)) except: failedjson = 1 if loadedenv['remove_fields_on_fail'] == 1: print("JSON Error likely due to binary in request - per config remove_field_on_fail - we are removing the the following fields and trying again") while failedjson == 1: repval = message.value() for f in loadedenv['remove_fields'].split(","): print("Trying to remove: %s" % f) repval = re.sub(b'"' + f.encode() + b'":".+?","', b'"' + f.encode() + b'":"","', repval) try: jsonar.append(json.loads(repval.decode("ascii", errors='ignore'))) failedjson = 0 break except: print("Still could not force into json even after dropping %s" % f) if failedjson == 1: if loadedenv['debug'] == 1: print(repval.decode("ascii", errors='ignore')) failedjson = 2 if loadedenv['debug'] >= 1 and failedjson >= 1: print ("JSON Error - Debug - Attempting to print") print("Raw form kafka:") try: print(message.value()) except: print("Raw message failed to print") print("Ascii Decoded (Sent to json.dumps):") try: print(val) except: print("Ascii dump message failed to print") elif message.error().code() != KafkaError._PARTITION_EOF: print("MyError: " + message.error()) running = False break # If our row count is over the max, our size is over the max, or time delta is over the max, write the group to the json. if (rowcnt >= loadedenv['rowmax'] or timedelta >= loadedenv['timemax'] or sizecnt >= loadedenv['sizemax']) and len(jsonar) > 0: parts = [] for x in jsonar: try: p = x[loadedenv['partition_field']] except: print("Error: Record without Partition field - Using default Partition of %s" % loadedenv['unknownpart']) p = loadedenv['unknownpart'] if not p in parts: parts.append(p) if loadedenv['debug'] >= 1: print("Write JSON Ar to %s at %s records - Size: %s - Seconds since last write: %s - Partitions in this batch: %s" % (curfile, rowcnt, sizecnt, timedelta, parts)) for part in parts: partar = [] for x in jsonar: try: curpart = x[loadedenv['partition_field']] except: curpart = loadedenv['unknownpart'] if curpart == part: partar.append(x) if loadedenv['write_live'] == 1: base_dir = loadedenv['table_base'] + "/" + part else: base_dir = loadedenv['table_base'] + "/" + loadedenv['tmp_part_dir'] + "/" + part final_file = base_dir + "/" + curfile if not os.path.isdir(base_dir): try: os.makedirs(base_dir) except: print("Partition Create failed, it may have been already created for %s" % (base_dir)) if loadedenv['debug'] >= 1: print("----- Writing partition %s to %s" % (part, final_file)) fout = open(final_file, 'a') for x in partar: fout.write(json.dumps(x) + "\n") fout.close() cursize = os.path.getsize(final_file) ledger = [curtime, cursize, final_file] part_ledger[part] = ledger partar = [] jsonar = [] rowcnt = 0 sizecnt = 0 lastwrite = curtime removekeys = [] for x in part_ledger.keys(): l = part_ledger[x][0] s = part_ledger[x][1] f = part_ledger[x][2] base_dir = loadedenv['table_base'] + '/' + x if not os.path.isdir(base_dir): try: os.makedirs(base_dir) except: print("Partition Create failed, it may have been already created for %s" % (base_dir)) if s > loadedenv['filemaxsize'] or (curtime - l) > loadedenv['partmaxage']: new_file_name = loadedenv['uniq_val'] + "_" + str(curtime) + ".json" new_file = base_dir + "/" + new_file_name if loadedenv['debug'] >= 1: outreason = "" if s > loadedenv['filemaxsize']: outreason = "Max Size" else: outreason = "Max Age" print("%s reached - Size: %s - Age: %s - Writing to %s" % (outreason, s, curtime - l, new_file)) if loadedenv['json_gz_compress'] == 1: if loadedenv['debug'] >= 1: print("Compressing json files") with open(f, 'rb') as f_in: with gzip.open(f + ".gz", 'wb') as f_out: shutil.copyfileobj(f_in, f_out) os.remove(f) f = f + ".gz" new_file = new_file + ".gz" shutil.move(f, new_file) removekeys.append(x) for y in removekeys: del part_ledger[y] c.close() def print_assignment(consumer, partitions): if loadedenv['debug'] >= 1: print('Assignment of group to partitions %s' % partitions) def loadenv(evars): print("Loading Environment Variables") lenv = {} for e in evars: try: val = os.environ[e.upper()] except: if evars[e][1] == True: print("ENV Variable %s is required and not provided - Exiting" % (e.upper())) sys.exit(1) else: print("ENV Variable %s not found, but not required, using default of '%s'" % (e.upper(), evars[e][0])) val = evars[e][0] if evars[e][2] == 'int': val = int(val) if evars[e][2] == 'flt': val = float(val) if evars[e][2] == 'bool': val=bool(val) lenv[e] = val return lenv # Get our bootstrap string from zookeepers if provided def bootstrap_from_zk(ZKs, kafka_id): from kazoo.client import KazooClient zk = KazooClient(hosts=ZKs,read_only=True) zk.start() brokers = zk.get_children('/%s/brokers/ids' % kafka_id) BSs = "" for x in brokers: res = zk.get('/%s/brokers/ids/%s' % (kafka_id, x)) dj = json.loads(res[0].decode('utf-8')) srv = "%s:%s" % (dj['host'], dj['port']) if BSs == "": BSs = srv else: BSs = BSs + "," + srv zk.stop() zk = None return BSs if __name__ == "__main__": main() ```
{ "source": "JohnOmernik/raspfarm", "score": 3 }
#### File: JohnOmernik/raspfarm/farmqueue.py ```python import sys import os import time try: import farmradio except: print("farmradio not imported") try: import farmradio_usb except: print("farmradio_usb not imported") import random import socket import hashlib import threading import gevent from collections import OrderedDict def main(): print("Queue Testing") class FarmQueue(): fr = None send_queue = OrderedDict() recv_queue = OrderedDict() radio_conf = {} resend_delay = None myname = "" timeout = None debug = False def __init__(self, debug=False, timeout=1.0, resend_delay=5, send_prune_window=60, recv_prune_window=60, radio_conf={"radio_freq_mhz": 915.5, "radio_tx_pwr": 20, "radio_serial_port": "spi", "radio_mode": "lora", "radio_spread_factor": 7, "radio_crc": False, "radio_cr": 5, "radio_bw": 125, "radio_wdt": 0}): self.radio_conf = radio_conf self.recv_prune_window = recv_prune_window # Number of seconds to leave a processed message after the last ack in recv queue self.send_prune_window = send_prune_window # Number of seconds since first send (without an ack) to give up on message self.debug = debug self.timeout = timeout self.resend_delay = resend_delay self.myname = socket.gethostname().lower() if self.radio_conf['radio_serial_port'] == "spi": self.fr = farmradio.FarmRadio(debug=self.debug, timeout=self.timeout, radio_conf=self.radio_conf) else: self.fr = farmradio_usb.FarmRadio(debug=self.debug, timeout=self.timeout, radio_conf=self.radio_conf) def getmsg(self): queue = OrderedDict(self.recv_queue) for msg in queue.keys(): curtime = int(time.time()) if self.recv_queue[msg]['ts_proc'] == 0: self.recv_queue[msg]['ts_proc'] = curtime gevent.sleep(1) return self.recv_queue[msg]['msg'] elif self.recv_queue[msg]['ts_proc'] > 0: if curtime - self.recv_queue[msg]['ts_lastack'] >= self.recv_prune_window: del self.recv_queue[msg] gevent.sleep(1) return None def sendmsgs(self): while True: if self.debug: print("_______________________________________________________Send Queue: %s" % len(self.send_queue.keys())) queue = OrderedDict(self.send_queue) for msghash in queue.keys(): if self.debug: print("processing: %s" % msghash) curtime = int(time.time()) if (self.send_queue[msghash]['ack'] == False and self.send_queue[msghash]['require_ack'] == True) or self.send_queue[msghash]['last_send'] == 0: if curtime - self.send_queue[msghash]['last_send'] > self.resend_delay: if self.send_queue[msghash]['first_send'] == 0: self.send_queue[msghash]['first_send'] = curtime self.fr.send_raw(self.send_queue[msghash]['msg']) self.send_queue[msghash]['last_send'] = curtime print("Sending %s - %s - Ack Required: %s" % (msghash, self.send_queue[msghash]['msg'], self.send_queue[msghash]['require_ack'])) if curtime - self.send_queue[msghash]['first_send'] >= self.send_prune_window: print(">>>>> !!!!!!! >>>>> !!!!! - Message %s was first sent %s and it's now %s, longer then the send_prune_window(%s): Removing" % (msghash, self.send_queue[msghash]['first_send'], curtime, self.send_prune_window)) del self.send_queue[msghash] elif self.send_queue[msghash]['require_ack'] == False: del self.send_queue[msghash] elif self.send_queue[msghash]['ack'] == True: del self.send_queue[msghash] gevent.sleep(0.5) gevent.sleep(0.5) def recvmsgs(self): while True: if self.debug: print("_______________________________________________________Recv Queue: %s" % len(self.recv_queue.keys())) curtime = int(time.time()) msg, snr = self.fr.recv_raw() if msg != "" and msg is not None: msgar = msg.split("~") if len(msgar) == 5: try: msgts = msgar[0] msgto = msgar[1].lower() msgfrom = msgar[2].lower() msgack = int(msgar[3]) msgstr = msgar[4] except: print("----- Message did not split into 5 parts: %s" % msg) msgto = None if msgto.lower() == self.myname.lower(): # If the dest address is the same as me, then accept the messages if self.debug: print("##### Got a FQ message at %s signal: %s" % (msg, snr)) if msgstr.find("ack:") >= 0: # Check to see if this is an acked message msghash = msgstr.split(":")[1] if self.debug: print("@@@@@@ Recv ACK for message %s" % msghash) if msghash in self.send_queue: self.send_queue[msghash]['ack'] = True else: print("@!@!@ Message ack sent, but we don't have this message in queue") # this is a Message ack else: # Normal message msghash = hashlib.md5(msg.encode("UTF-8")).hexdigest() if msghash in self.recv_queue: # We've already gotten this, so let's not re process it, but we will resend ack if needed if msgack == 1: self.sendack(msgfrom, msghash) self.recv_queue[msghash]['ts_lastack'] = curtime else: self.recv_queue[msghash] = {'from': msgfrom, 'ts_recv': curtime, 'ts_proc': 0, 'ts_lastack': 0, 'msg': msg} if msgack == 1: self.sendack(msgfrom, msghash) self.recv_queue[msghash]['ts_lastack'] = curtime else: pass #print("!!!>> Message not for me: %s vs. %s" % (msgto.lower(), self.myname.lower())) else: print("Odd message: %s" % msg) gevent.sleep(0.5) #msg: ts~recp~sender~require_ack (0 or 1), msg # Ack a message we have recieved def sendack(self, msgto, msghash): if self.debug: print("@@@@@ Sending msgack to %s for %s" % (msgto,msghash)) mymsg = "ack:%s" % (msghash) self.sendmsg(msgto, mymsg, False) def sendmsg(self, msgto, base_msg, require_ack): curtime = int(time.time()) if require_ack == True: msgack = 1 else: msgack = 0 strmsg = "%s~%s~%s~%s~%s" % (curtime, msgto, self.myname, msgack, base_msg) msghash = hashlib.md5(strmsg.encode("UTF-8")).hexdigest() if self.debug: print("##### Putting msg %s in send_queue: %s" % (msghash, strmsg)) self.send_queue[msghash] = {'to': msgto, 'msg': strmsg, 'last_send': 0, 'first_send': 0, 'require_ack': require_ack, "ack": False} if __name__ == "__main__": main() ``` #### File: JohnOmernik/raspfarm/farmradio_usb.py ```python import time import sys import socket import serial import binascii import random import io class FarmRadio(): radio_freq_mhz = None radio_tx_pwr = None radio_serial_port = None radio_mode = None radio_spread_factor = None radio_crc = None radio_cr = None radio_bw = None radio_wdt = None timeout = None myname = None spi = None rfm9x = None ser = None prev_packet = None radio_conf={} debug = None def __init__(self, debug=False, timeout=2.0, radio_conf={"radio_freq_mhz": 915.5, "radio_tx_pwr": 20, "radio_serial_port": "/dev/ttyUSB0", "radio_mode": "lora", "radio_spread_factor": 7, "radio_crc": False, "radio_cr": 5, "radio_bw": 125, "radio_wdt": 0}): self.debug = debug self.timeout = timeout self.radio_conf = radio_conf self.radio_freq_mhz = radio_conf['radio_freq_mhz'] self.radio_tx_pwr = radio_conf['radio_tx_pwr'] self.radio_serial_port = radio_conf['radio_serial_port'] self.radio_mode = radio_conf['radio_mode'] self.radio_spread_factor = str(radio_conf['radio_spread_factor']) self.radio_crc = bool(radio_conf['radio_crc']) self.radio_wdt = radio_conf['radio_wdt'] if self.radio_crc: str_radio_crc = "on" else: str_radio_crc = "off" self.radio_cr = radio_conf['radio_cr'] str_radio_cr = "4/%s" % self.radio_cr self.radio_bw = radio_conf['radio_bw'] # Configure LoRa Radio print("Init - Radio") print("------------") print("Frequency: %s" % self.radio_freq_mhz) print("TX Power: %s" % self.radio_tx_pwr) print("Port: %s " % self.radio_serial_port) print("Packet Timeout: %s" % timeout) print("") self.ser = serial.Serial(self.radio_serial_port, '57600', timeout=self.timeout) self.myname = socket.gethostname().lower() print(self.send_cmd('mac pause', 1)) time.sleep(0.1) print(self.send_cmd('radio set mod %s' % self.radio_mode, 1)) print(self.send_cmd('radio set sync 12', 1)) print(self.send_cmd('radio set freq %s' % int((self.radio_freq_mhz * 1000000)), 1)) print(self.send_cmd('radio set pwr %s' % self.radio_tx_pwr, 1)) print(self.send_cmd('radio set sf sf%s' % self.radio_spread_factor, 1)) print(self.send_cmd('radio set crc %s' % str_radio_crc,1)) #print(self.send_cmd('radio set iqi off',1)) print(self.send_cmd('radio set cr %s' % str_radio_cr,1)) print(self.send_cmd('radio set wdt %s' % self.radio_wdt,1)) #print(self.send_cmd('radio set sync 12',1)) print(self.send_cmd('radio set bw %s' % self.radio_bw,1)) print("Radio Init Complete") def send_cmd(self, cmd, echo=0): btx = False if echo == 1: print(cmd) if cmd.find("radio tx") >= 0: btx = True self.ser.write(('%s\r\n' % cmd).encode('UTF-8')) time.sleep(0.3) retval = self.ser.readline().decode('UTF-8').replace("\r\n", "") if btx == False: pass else: if retval == "ok": retval = self.ser.readline().decode('UTF-8').replace("\r\n", "") elif retval == "busy": retrycnt = 0 while retval != "ok" and retrycnt < 10: retrycnt += 1 self.ser.write(('%s\r\n' % cmd).encode('UTF-8')) time.sleep(0.2) retval = self.ser.readline().decode('UTF-8').replace("\r\n", "") return retval def recv_raw(self): packet = None snr = None self.send_cmd('radio rx 0') packet = self.ser.readline() snr = self.send_cmd("radio get snr") packet_text = "" data = packet.decode('UTF-8').strip() if data == "radio_err": packet_text = None elif data.find("radio_rx ") == 0: mydata = data.replace("radio_rx ", "").strip() mydata = mydata[8:] try: tpacket = binascii.unhexlify(mydata) packet_text = str(tpacket, "utf-8") except: print("error: %s" % mydata) tpacket = b"decode_error" packet_text = str(tpacket, "utf-8") self.prev_packet = packet_text else: print("Unknown: %s" % data) return packet_text, snr def send_raw(self, msg): if len(msg) > 250: print("Message to large: Not sent") return -1 mymsg = msg.encode("UTF-8") sendmsg = "radio tx " + "FFFF0000" + mymsg.hex() result = self.send_cmd(sendmsg) print(result) return 0 def main(): print ("Radio Testing") if __name__ == "__main__": main() ``` #### File: JohnOmernik/raspfarm/queue_radio_test.py ```python import sys import os import time import farmqueue import random import gevent import json import socket conf = {} fq = None conf = "" myname = "" senders = [] def main(): global fq global myname global conf global senders f = open("farmradio.cfg", 'r') rawconf = f.read().strip() conf = json.loads(rawconf) f.close() myname = socket.gethostname().lower() print("Radio Type is %s" % conf['radiotype']) print("Server is %s" % conf['servername']) if myname.lower() == conf['servername'].lower(): conf['server'] = True print("Looks like we are the server!") else: conf['server'] = False if conf['debug'] == 1: print("Debug is true") conf['debug'] = True else: conf['debug'] = False fq = farmqueue.FarmQueue(debug=conf['debug'], timeout=conf['timeout'], resend_delay=conf['resend_delay'], radio_conf=conf) print("Hello - Testing Radio Sending and Queing") gevent.joinall([ gevent.spawn(procmsg), gevent.spawn(fq.recvmsgs), gevent.spawn(fq.sendmsgs) ] ) def procmsg(): global fq global conf global myname global senders while True: try: # if conf['debug']: # print("top of main loop") msg = fq.getmsg() if msg is not None: try: armsg = msg.split("~") sender = armsg[2].lower() print("<<<<< Message In: %s" % msg) if sender not in senders: senders.append(sender) except: print("<!<!< - Odd Message: %s" % msg) else: pass #print("***** - No Data") gevent.sleep(1) except KeyboardInterrupt: print("!!!!!!!!!!!!!!! Keyboard Exit") sys.exit(0) gevent.sleep(1) if random.randint(1,6) <= 2: if conf['server'] == False: require_ack = True print(">>>>> Sending message to server, require ack: %s" % require_ack) fq.sendmsg(conf['servername'], "A worker message to the server from %s to %s" % (myname, conf['servername']), require_ack) else: if len(senders) > 0: thissender = random.choice(senders) require_ack = True print(">>>>> Sending message from server to %s" % thissender) fq.sendmsg(thissender, "A message from the server", require_ack) else: pass #print("***** No Senders yet - Server not sending message") gevent.sleep(0.5) gevent.sleep(0.5) if __name__ == "__main__": main() ``` #### File: JohnOmernik/raspfarm/radio_test_usb.py ```python import sys import os import time import farmradio_usb import random def main(): fr = farmradio_usb.FarmRadio() print("Hello - Testing Radio Sending") while True: try: raw_data = fr.recv_raw(5.0) if raw_data is not None: print("Data: %s" % ( raw_data)) time.sleep(0.5) else: print("No Data") except KeyboardInterrupt: print("Keyboard Exit") sys.exit(0) if random.randint(1,6) == 1: curmsg = int(time.time()) print("Random Send: %s" % curmsg) fr.send_raw("Hey, how's it going - %s" % curmsg) time.sleep(0.5) time.sleep(0.1) if __name__ == "__main__": main() ```
{ "source": "JohnOmernik/solarpi", "score": 3 }
#### File: JohnOmernik/solarpi/sample_data.py ```python import json import datetime import smbus import socket import time from collections import OrderedDict from pysolar import solar import pytz import os.path MYLAT = 1000.0 MYLNG = 1000.0 STRTZ = "" ENV_FILE = "env.list" if not os.path.isfile(ENV_FILE): print("ENV_FILE at %s not found - exiting") sys.exit(1) e = open(ENV_FILE, "r") lines = e.read() e.close() for line in lines.split("\n"): myline = line.strip() if myline.find("#") == 0: pass elif myline != "": arline = myline.split("=") if arline[0] == "MYLAT": MYLAT = float(arline[1]) if arline[0] == "MYLNG": MYLNG = float(arline[1]) if arline[0] == "STRTZ": STRTZ = arline[1] if MYLAT == 1000.0 or MYLNG == 1000.0 or STRTZ == "": print("ENV Values not found please check your env.list file to ensure valid values exist for MYLAT, MYLNG, and STRTZ") sys.exit(1) print("==================") print("Starting with values:") print("MYLAT: %s" % MYLAT) print("MYLNG: %s" % MYLNG) print("STRTZ: %s" % STRTZ) print("=================") print("") # Get I2C bus busloc = 0x68 # Default for the MPU-6000 - Shouldn't need to change this. bus = smbus.SMBus(1) myhostname = socket.gethostname() def main (): global bus global busloc initsensor(bus, busloc) timezone = pytz.timezone(STRTZ) # Open File curtime = datetime.datetime.now() curday = curtime.strftime("%Y-%m-%d") mystrtime = curtime.strftime("%Y-%m-%d %H:%M:%S") fileday = curday myfile = "./solardata_%s_%s.json" % (myhostname, fileday) fh = open(myfile, "a") failcnt = 0 while True: # Setup time vars curtime = datetime.datetime.now() curday = curtime.strftime("%Y-%m-%d") mystrtime = curtime.strftime("%Y-%m-%d %H:%M:%S") epochtime = int(time.time()) mydate = timezone.localize(curtime) # Get Readings curalt, curaz = get_alt_az(mydate) try: xa, ya, za = getreading(bus, "accel", busloc) xg, yg, zg = getreading(bus, "gyro", busloc) except: failcnt += 1 if failcnt >= 10: print("Failure count is at or over 10, trying to reinit the sensor") initsensor(bus, busloc) time.sleep(5) continue failcnt = 0 # Check to see if day changed so we can change the file if curday != fileday: fh.close() fileday = curday myfile = "./solardata_%s_%s.json" % (myhostname, fileday) fh = open(myfile, "a") myrec = OrderedDict() myrec["ts"] = mystrtime myrec["epochts"] = epochtime myrec["array"] = myhostname myrec["accel_x"] = xa myrec["accel_y"] = ya myrec["accel_z"] = za myrec["gyro_x"] = xg myrec["gyro_y"] = yg myrec["gyro_z"] = zg myrec["alt"] = curalt myrec["az"] = curaz fh.write(json.dumps(myrec) + "\n") fh.flush() time.sleep(5) def initsensor(bus, busloc): # Initialize things: # Select gyroscope configuration register, 0x1B(27) # 0x18(24) Full scale range = 2000 dps bus.write_byte_data(busloc, 0x1B, 0x18) # MPU-6000 address, 0x68(104) # Select accelerometer configuration register, 0x1C(28) # 0x18(24) Full scale range = +/-16g bus.write_byte_data(busloc, 0x1C, 0x18) # MPU-6000 address, 0x68(104) # Select power management register1, 0x6B(107) # 0x01(01) PLL with xGyro referenc bus.write_byte_data(busloc, 0x6B, 0x01) # time.sleep(0.8) def get_alt_az(dt): alt = solar.get_altitude(MYLAT, MYLNG, dt) az = solar.get_azimuth(MYLAT, MYLNG, dt) return alt, az def getreading(bus, src, busloc): # src is accel or gyro if src == "accel": srcval = 0x3B elif src == "gyro": srcval = 0x43 else: srcval = 0x00 print("Invalid src") return (0,0,0) data = bus.read_i2c_block_data(busloc, srcval, 6) x = convertreading(data[0], data[1]) y = convertreading(data[2], data[3]) z = convertreading(data[4], data[5]) return x, y, z def convertreading(val1, val2): retval = val1 * 256 + val2 if retval > 32767: retval -= 65536 return retval if __name__ == '__main__': main() ``` #### File: JohnOmernik/solarpi/solarpi.py ```python import json import datetime import smbus import socket import math import time from collections import OrderedDict from pysolar import solar import pytz import os.path import sys from dual_g2_hpmd_rpi import motors, MAX_SPEED #480 is Positive 100% voltage #-480 is Negative 100% voltage #240 is Positive 50% voltage #-240 is Negative 50% voltage #0 is Stop MYLAT = 1000.0 MYLNG = 1000.0 EAST_POS=0.0 WEST_POS=0.0 EAST_ANGLE=0.0 WEST_ANGLE=0.0 axis_azi = 0.0 axis_tilt = 0.0 MOVE_INTERVAL=600 NIGHT_POS=0.0 STRTZ = "" ENV_FILE = "env.list" if not os.path.isfile(ENV_FILE): print("ENV_FILE at %s not found - exiting") sys.exit(1) e = open(ENV_FILE, "r") lines = e.read() e.close() for line in lines.split("\n"): myline = line.strip() if myline.find("#") == 0: pass elif myline != "": arline = myline.split("=") if arline[0] == "MYLAT": MYLAT = float(arline[1]) if arline[0] == "MYLNG": MYLNG = float(arline[1]) if arline[0] == "STRTZ": STRTZ = arline[1] if arline[0] == "WEST_ANGLE": WEST_ANGLE = float(arline[1]) if arline[0] == "EAST_ANGLE": EAST_ANGLE = float(arline[1]) if arline[0] == "WEST_POS": WEST_POS = float(arline[1]) if arline[0] == "EAST_POS": EAST_POS = float(arline[1]) if arline[0] == "AXIS_AZI": axis_azi = float(arline[1]) if arline[0] == "AXIS_TILT": axis_tilt = float(arline[1]) if arline[0] == "MOVE_INTERVAL": MOVE_INTERVAL = int(arline[1]) INVERT_SENSOR = True # We installed our sensor apparently "upside down" therefore we need to invert the reading to align with the solar function ECONV = EAST_POS / EAST_ANGLE WCONV = WEST_POS / WEST_ANGLE if MYLAT == 1000.0 or MYLNG == 1000.0 or STRTZ == "" or EAST_ANGLE == 0.0 or WEST_ANGLE == 0.0 or WEST_POS == 0.0 or EAST_POS == 0.0 or axis_azi == 0.0 or axis_tilt == 0.0: print("ENV Values not found please check your env.list file to ensure valid values exist for EAST and WEST_POS, EAST and WEST_ANGLE, AXIS_AZI, AXIS_TILE, MYLAT, MYLNG, and STRTZ") sys.exit(1) print("==================") print("Starting with values:") print("MYLAT: %s" % MYLAT) print("MYLNG: %s" % MYLNG) print("STRTZ: %s" % STRTZ) print("AXIS_AZI: %s" % axis_azi) print("AXIS_TILT: %s" % axis_tilt) print("EAST_ANGLE: %s" % EAST_ANGLE) print("WEST_ANGLE: %s" % WEST_ANGLE) print("EAST_POS: %s" % EAST_POS) print("WEST_POS: %s" % WEST_POS) print("ECONV: %s" % ECONV) print("WCONV: %s" % WCONV) print("MOVE_INTERVAL: %s" % MOVE_INTERVAL) print("INVERT_SENSOR: %s" % INVERT_SENSOR) print("=================") print("") # Get I2C bus busloc = 0x68 # Default for the MPU-6000 - Shouldn't need to change this. bus = smbus.SMBus(1) myhostname = socket.gethostname() def main(): global bus global busloc global axis_tilt global axis_azi initsensor(bus, busloc) timezone = pytz.timezone(STRTZ) motors.enable() motors.setSpeeds(0, 0) RUNNING = True last_set_val = 0 last_set_time = 0 while RUNNING: curtime = datetime.datetime.now() curday = curtime.strftime("%Y-%m-%d") mystrtime = curtime.strftime("%Y-%m-%d %H:%M:%S") epochtime = int(time.time()) mydate = timezone.localize(curtime) curalt, curaz = get_alt_az(mydate) cur_r = mydeg(get_pos()) track_err = False if curalt > 0: # We only check if there is a track error if the sun is up, no point in correcting all night long if math.fabs(math.fabs(cur_r) - math.fabs(last_set_val)) > 2.0: print("%s - Track error, going to set track_err to true: cur_r: %s - last_set_val: %s" % (mystrtime, cur_r, last_set_val)) track_err = True sun_r = getR(curalt, curaz, axis_tilt, axis_azi) if INVERT_SENSOR: sun_r = -sun_r print("%s - Sun is up! - Sun Alt: %s - Sun Azi: %s - Cur Rot: %s - Potential Sun Rot: %s" % (mystrtime, curalt, curaz, cur_r, sun_r)) NEW_SET_VAL = None if sun_r <= EAST_ANGLE and sun_r >= WEST_ANGLE: print("%s - Potential new val: %s - cur: %s" % (mystrtime, sun_r, cur_r)) NEW_SET_VAL = sun_r elif sun_r > EAST_ANGLE and (last_set_val != EAST_ANGLE or track_err == True): print("%s - Sun Rot (%s) is Beyond East(%s), and array needs to move there" % (mystrtime, sun_r, EAST_ANGLE)) NEW_SET_VAL = EAST_ANGLE elif sun_r < WEST_ANGLE and (last_set_val != WEST_ANGLE or track_err == True): print("%s - Sun Rot (%s) is Beyond West(%s), and array needs to move there" % (mystrtime, sun_r, WEST_ANGLE)) NEW_SET_VAL = WEST_ANGLE if epochtime - last_set_time >= MOVE_INTERVAL and NEW_SET_VAL is not None: print("%s Setting New val: %s from %s" % (mystrtime, NEW_SET_VAL, cur_r)) last_set_time = epochtime last_set_val = NEW_SET_VAL goto_angle(NEW_SET_VAL) else: if last_set_val != NIGHT_POS: print("%s - Sun is down setting to %s for the night" % (mystrtime, NIGHT_POS)) goto_angle(NIGHT_POS) last_set_val = NIGHT_POS last_set_time = epochtime time.sleep(60) def getR(sun_alt, sun_azi, axis_tilt, axis_azi): # Return in Degrees sun_zen = 90 - sun_alt x_1 = (math.sin(math.radians(sun_zen)) * math.sin(math.radians(sun_azi) - math.radians(axis_azi))) x_2 = (math.sin(math.radians(sun_zen)) * math.cos(math.radians(sun_azi) - math.radians(axis_azi)) * math.sin(math.radians(axis_tilt))) x_3 = (math.cos(math.radians(sun_zen)) * math.cos(math.radians(axis_tilt))) x_4 = x_2 + x_3 X = x_1 / x_4 if X == 0.0 or (X > 0 and (sun_azi - axis_azi) > 0) or (X < 0 and (sun_azi - axis_azi) < 0): mypsi = math.radians(0.0) elif X < 0 and (sun_azi - axis_azi) > 0: mypsi = math.radians(180.0) elif X > 0 and (sun_azi - axis_azi) < 0: mypsi = math.radians(-180.0) else: print("awe crap") mypsi = 0 R = math.atan(X) + mypsi return math.degrees(R) def goto_angle(setangle): global ECONV global WCONV global motors CONV = 0.0 if setangle < 0: CONV = WCONV elif setangle > 0: CONV = ECONV TARGET_POS = CONV * setangle # Get Current Location curcnt = 0 cursum = 0.0 failcnt = 0 for x in range(10): try: xa, ya, za = getreading(bus, "accel", busloc) curcnt += 1 cursum += xa except: failcnt += 1 if failcnt > 20: break print("Reading Fail!!") else: continue CURRENT_POS = get_pos() print("The current location is %s and you want to go to %s (%s in angle form)" % (CURRENT_POS, TARGET_POS, setangle)) finished = False if CURRENT_POS > TARGET_POS: # We want to move west motor_dir = -480 elif CURRENT_POS < TARGET_POS: motor_dir = 480 else: motor_dir = 0 finished = True print("No change!") motors.motor1.setSpeed(motor_dir) tcnt = 0 while finished == False: tcnt += 1 NEW_POS = get_pos() if motor_dir < 0: if NEW_POS <= TARGET_POS: motors.motor1.setSpeed(0) finished = True elif motor_dir > 0: if NEW_POS >= TARGET_POS: motors.motor1.setSpeed(0) finished = True elif tcnt >= 1200: print("It has taken over 5 minutes of waiting and we didn't get to where you want, we are giving up at at %s" % NEW_POS) finished = True time.sleep(0.5) print("Finished setting position") #motors.motor1.setSpeed(-480) def mydeg(pos): retval = 0 if pos > 0: retval = pos / ECONV elif pos < 0: retval = pos / WCONV return retval def get_pos(): global bus global busloc curcnt = 0 cursum = 0.0 failcnt = 0 for x in range(5): try: xa, ya, za = getreading(bus, "accel", busloc) curcnt += 1 cursum += xa except: failcnt += 1 if failcnt > 20: break print("Reading Fail!!") else: continue return cursum / curcnt def initsensor(bus, busloc): # Initialize things: # Select gyroscope configuration register, 0x1B(27) # 0x18(24) Full scale range = 2000 dps bus.write_byte_data(busloc, 0x1B, 0x18) # MPU-6000 address, 0x68(104) # Select accelerometer configuration register, 0x1C(28) # 0x18(24) Full scale range = +/-16g bus.write_byte_data(busloc, 0x1C, 0x18) # MPU-6000 address, 0x68(104) # Select power management register1, 0x6B(107) # 0x01(01) PLL with xGyro referenc bus.write_byte_data(busloc, 0x6B, 0x01) # time.sleep(0.8) def getreading(bus, src, busloc): # src is accel or gyro if src == "accel": srcval = 0x3B elif src == "gyro": srcval = 0x43 else: srcval = 0x00 print("Invalid src") return (0,0,0) data = bus.read_i2c_block_data(busloc, srcval, 6) x = convertreading(data[0], data[1]) y = convertreading(data[2], data[3]) z = convertreading(data[4], data[5]) return x, y, z def convertreading(val1, val2): retval = val1 * 256 + val2 if retval > 32767: retval -= 65536 return retval def get_alt_az(dt): alt = solar.get_altitude(MYLAT, MYLNG, dt) az = solar.get_azimuth(MYLAT, MYLNG, dt) return alt, az if __name__ == '__main__': main() ``` #### File: JohnOmernik/solarpi/test_pysolar.py ```python from pysolar import solar import time import datetime import pytz import os.path MYLAT = 1000.0 MYLNG = 1000.0 STRTZ = "" ENV_FILE = "env.list" if not os.path.isfile(ENV_FILE): print("ENV_FILE at %s not found - exiting") sys.exit(1) e = open(ENV_FILE, "r") lines = e.read() e.close() for line in lines.split("\n"): myline = line.strip() if myline.find("#") == 0: pass elif myline != "": arline = myline.split("=") if arline[0] == "MYLAT": MYLAT = float(arline[1]) if arline[0] == "MYLNG": MYLNG = float(arline[1]) if arline[0] == "STRTZ": STRTZ = arline[1] if MYLAT == 1000.0 or MYLNG == 1000.0 or STRTZ == "": print("ENV Values not found please check your env.list file to ensure valid values exist for MYLAT, MYLNG, and STRTZ") sys.exit(1) print("==================") print("Starting with values:") print("MYLAT: %s" % MYLAT) print("MYLNG: %s" % MYLNG) print("STRTZ: %s" % STRTZ) print("=================") print("") def main(): timezone = pytz.timezone(STRTZ) #date = datetime.datetime(2018, 10, 22, 13, 20, 10, 130320) while True: date = datetime.datetime.now() mydate = timezone.localize(date) mystrtime = mydate.strftime("%Y-%m-%d %H:%M:%S") curalt, curaz = get_alt_az(mydate) print("%s - Alt: %s - Az: %s" % (mystrtime, curalt, curaz)) time.sleep(10) def get_alt_az(dt): alt = solar.get_altitude(MYLAT, MYLNG, dt) az = solar.get_azimuth(MYLAT, MYLNG, dt) return alt, az if __name__ == '__main__': main() ```
{ "source": "JohnOmernik/tempiture", "score": 2 }
#### File: JohnOmernik/tempiture/gas.py ```python import time import sys import json # Initialise the PCA9685 using the default address (0x40). #from adafruit_servokit import ServoKit #from adafuit_motor import servo from adafruit_motor import servo import os import board import busio import adafruit_pca9685 # Begin ENV Load try: gas_debug = bool(int(os.environ["APP_GAS_DEBUG"])) except: print("APP_GAS_DEBUG either not provided or not 0 or 1, defaulting to 0 (false)") gas_debug = False try: tmp_servo_hat_clock = os.environ["APP_SERVO_HAT_CLOCK"] servo_hat_clock = eval(tmp_servo_hat_clock) except: print("APP_SERVO_HAT_CLOCK not provided, using board.SCL") servo_hat_clock = eval("board.SCL") try: tmp_servo_hat_data = os.environ["APP_SERVO_HAT_DATA"] servo_hat_data = eval(tmp_servo_hat_data) except: print("APP_SERVO_HAT_CLOCK not provided, using board.SDA") servo_hat_data = eval("board.SDA") try: servo_hat_freq = int(os.environ["APP_SERVO_HAT_FREQ"]) except: print("APP_SERVO_HAT_FREQ not probided or not valid integer - Defaulting to 200") servo_hat_freq = 200 try: servo_hat_chan = int(os.environ["APP_SERVO_HAT_CHAN"]) except: print("APP_SERVO_HAT_CHAN not provided or not a valid integer - Defaulting to 0") servo_hat_chan = 0 try: servo_min = int(os.environ["APP_SERVO_MIN"]) except: print("APP_SERVO_MIN not prvided using somewhat sane default of 600") servo_min = 600 try: servo_max = int(os.environ["APP_SERVO_MAX"]) except: print("APP_SERVO_MIN not prvided using somewhat sane default of 1305") servo_max = 1305 #### END ENV Load i2c = busio.I2C(servo_hat_clock, servo_hat_data) hat = adafruit_pca9685.PCA9685(i2c) hat.frequency = servo_hat_freq GAS_SERVO = servo.Servo(hat.channels[0], min_pulse=servo_min, max_pulse=servo_max) #kit = ServoKit(channels=16) #GAS_SERVO.set_pulse_width_range(servo_min, servo_max) #GAS_SERVO.actuation_range = 100 def main(): cur_perc = 0 initial_min = servo_min initial_max = servo_max cur_min = servo_min cur_max = servo_max GAS_SERVO.set_pulse_width_range(cur_min, cur_max) while True: print("Current min_pulse: %s - Current max_pulse: %s" % (cur_min, cur_max)) tval = input("Set percentage, u to set max pulse, d to set min pulse, or q to quit (Currently: %s Percent): " % cur_perc) if tval == "q": print("Quiting, have a nice day!") GAS_SERVO.angle = None time.sleep(1) sys.exit(0) elif tval == "u" or tval == "d": if tval == "u": sval = "max" else: sval = "min" pval = input("Set %s pulse value: " % sval) try: pval = int(pval) except: print("Value must be integer") continue if tval == "u": cur_max = pval else: cur_min = pval GAS_SERVO.set_pulse_width_range(cur_min, cur_max) else: try: myval = int(tval) except: print("Non int value sent") continue cur_perc = myval GAS_SERVO.angle = myval if myval <= 2 or myval >= 98: time.sleep(4) GAS_SERVO.angle = None if __name__ == "__main__": main() ```
{ "source": "johnomics/tapestry", "score": 2 }
#### File: tapestry/tapestry/contig.py ```python import os, re, warnings from statistics import mean from collections import Counter, defaultdict from intervaltree import Interval, IntervalTree from .alignments import Alignments # Define process_contig at top level rather than in class so it works with multiprocessing def process_contig(contig): contig.process() return contig def get_ploidy(contig, ploidy_depths=None): contig.ploidys = contig.get_ploidys(ploidy_depths) contig.ploidy_pc = contig.get_ploidy_pc() return contig class Contig: def __init__(self, cid, rec, telomeres, filenames): self.id = cid self.name = rec.id self.rec = rec self.telomeres = telomeres self.filenames = filenames def report(self, assembly_gc): report = f"{self.name}" report += f"\t{len(self)}" report += f"\t{self.gc:.1f}" report += f"\t{self.median_read_depth:.1f}" report += f"\t{self.tel_start}" report += f"\t{self.tel_end}" report += f"\t{self.mean_start_overhang}" report += f"\t{self.mean_end_overhang}" report += f"\t{self.unique_bases}" report += f"\t{self.unique_pc:.0f}" report += "\t" + ','.join([f"{p}:{self.ploidy_pc[p]:.2f}" for p in sorted(self.ploidy_pc)]) return report def json(self): return { 'id': self.id, 'group': 'None', 'name' : self.name, 'length': len(self), 'gc': f"{self.gc:.2f}", 'median_read_depth': int(self.median_read_depth), 'tel_start': self.tel_start, 'tel_end': self.tel_end } def __len__(self): return len(self.rec.seq) def __lt__(self, other): return len(self) < len(other) def contig_alignments_json(self): plot_row_ends = [] alignments = [] for a in sorted(self.contig_alignments, key=lambda a: a.begin): contig, contig_start, contig_end = a.data if contig == self.name and (a.begin <= contig_end and a.end >= contig_start): continue alignments.append((a.begin, a.end, self.contig_ids[contig], contig_start, contig_end)) return alignments def process(self): # Alignments added here for multithreading self.alignments = Alignments(self.filenames['alignments'], self.windowsize) self.gc = self.get_gc() self.read_depths = self.alignments.depths('read', self.name) self.median_read_depth = self.median_depth(self.read_depths) self.contig_alignments, self.contig_coverage = self.get_contig_alignments() self.mean_start_overhang, self.mean_end_overhang = self.get_read_overhangs() self.region_depths = self.get_region_depths() self.unique_bases = self.get_unique_bases() self.unique_pc = self.get_unique_pc() self.tel_start, self.tel_end = self.num_telomeres() self.read_alignments = self.plot_read_alignments() # Alignments work is done; they cannot be pickled, so clean up before return del(self.alignments) def completeness(self): completeness = '' if self.tel_start > 0 and self.mean_start_overhang is not None and self.mean_start_overhang < 250: completeness += 'L' if self.tel_end > 0 and self.mean_end_overhang is not None and self.mean_end_overhang < 250: completeness += 'R' if completeness == 'LR': completeness = 'C' return completeness if completeness else '-' def get_gc(self): # Calculate directly because Biopython GC does not account for gaps basefreqs = Counter(self.rec.seq) for base in "ACGT": if base not in basefreqs: basefreqs[base] = 0 gc_bases = sum([basefreqs[b] for b in "GC"]) acgt_bases = sum([basefreqs[b] for b in "ACGT"]) gc = 0 if acgt_bases > 0: gc = (sum([basefreqs[b] for b in "GC"]) / sum([basefreqs[b] for b in "ACGT"])) * 100 return gc def median_depth(self, depths): return depths['depth'].median() if depths is not None else 0 def get_read_overhangs(self): aligned_length = min(20000, len(self)*0.9) start_overhangs = self.alignments.get_start_overhangs(self.name, 1, min(2000, len(self)), aligned_length) end_overhangs = self.alignments.get_end_overhangs(self.name, max(len(self)-2000, 1), len(self), aligned_length) mean_start_overhang = int(mean(start_overhangs)) if start_overhangs else None mean_end_overhang = int(mean(end_overhangs)) if end_overhangs else None return mean_start_overhang, mean_end_overhang def num_telomeres(self): start_matches = end_matches = 0 if self.telomeres: for t in self.telomeres: for s in t, t.reverse_complement(): start_matches += len(list(s.instances.search(self.rec[:1000].seq))) end_matches += len(list(s.instances.search(self.rec[-1000:].seq))) return start_matches, end_matches def get_contig_alignments(self): alignments = IntervalTree() alignments_by_contig = defaultdict(IntervalTree) alignments[1:len(self)] = (self.name, 1, len(self)) for self_start, self_end, contig, contig_start, contig_end in self.alignments.contig_alignments(self.name): alignments[self_start:self_end+1] = (contig, contig_start, contig_end) alignments_by_contig[contig][self_start:self_end+1] = 1 coverage = defaultdict(int) for contig in alignments_by_contig: alignments_by_contig[contig].merge_overlaps() coverage[contig] = sum([i.end-i.begin for i in alignments_by_contig[contig]]) return alignments, coverage def get_region_depths(self): alignments = self.contig_alignments regions = alignments.copy() regions.split_overlaps() region_depths = IntervalTree() for region in regions: region_depths[region.begin:region.end] = len(alignments[region.begin:region.end]) return sorted(region_depths) def get_unique_bases(self): unique_bases = len(self) for region in self.region_depths: if region.data > 1: unique_bases -= region.end - region.begin # No need to -1 because end is beyond upper limit return unique_bases def get_unique_pc(self): return self.unique_bases/len(self) * 100 def get_ploidys(self, ploidy_depths): empty_ploidys = [0] * len(self.read_depths) if sum(ploidy_depths) == 0: return empty_ploidys ploidys = [] for d in self.read_depths['depth']: window_ploidy = 0 min_ploidy_diff = None for p, pd in enumerate(ploidy_depths): ploidy_diff = abs(d-pd) if min_ploidy_diff is None or ploidy_diff < min_ploidy_diff: window_ploidy = p min_ploidy_diff = ploidy_diff ploidys.append(window_ploidy) return ploidys def get_ploidy_pc(self): ploidy_pc = defaultdict(float) for p in self.ploidys: ploidy_pc[p] += 1/len(self.ploidys) return ploidy_pc def get_neighbour_details(self, neighbour_contig): neighbour_id = -1 neighbour_type = 'L' # Loose if neighbour_contig is not None: neighbour_id = self.contig_ids[neighbour_contig] if neighbour_contig == self.name: neighbour_type = 'S' # Self else: neighbour_type = 'C' # Connection return neighbour_id, neighbour_type def plot_read_alignments(self): read_alignments = [] if not self.readoutput or self.alignments.read_alignments(self.name) is None: return read_alignments plot_row_ends = [] for i, a in self.alignments.read_alignments(self.name).iterrows(): # Only use neighbour distances if contig is the same; # if contigs are different, want to show full clips even if the clip aligns elsewhere start_distance, end_distance = a.left_clip, a.right_clip if a.pre_contig == self.name: start_distance = max(a.pre_distance, 0) # Ignore overlapping alignments with negative distances if a.post_contig == self.name: end_distance = max(a.post_distance, 0) start_position = a.ref_start - start_distance end_position = a.ref_end + end_distance assigned_row = None for r, row in enumerate(plot_row_ends): if row < a.ref_start: assigned_row = r plot_row_ends[r] = a.ref_end break if assigned_row is None: assigned_row = len(plot_row_ends) plot_row_ends.append(end_position) pre_contig_id, pre_type = self.get_neighbour_details(a.pre_contig) post_contig_id, post_type = self.get_neighbour_details(a.post_contig) # int conversion required because Pandas uses numpy int64, which json doesn't understand read_alignments.append([int(x) for x in [start_position, # read start including left clip or pre distance a.ref_start, # contig alignment start a.ref_end, # contig alignment end end_position, # read end including right clip or post distance a.mq, # mapping quality assigned_row+1, # y position on plot pre_contig_id, post_contig_id ]]) read_alignments[-1].append(pre_type) read_alignments[-1].append(post_type) return read_alignments ```
{ "source": "johnomotani/optionsfactory", "score": 3 }
#### File: optionsfactory/optionsfactory/optionsfactory.py ```python from copy import copy, deepcopy from ._utils import _checked, _options_table_string from .withmeta import WithMeta class OptionsFactory: """Factory to create Options instances""" def __init__(self, *args, **kwargs): """Define the members of Options instances that this factory will create Parameters ---------- *args : dicts of {key: [Withmeta, value or expression]} These dicts are combined with the kwargs to create the default values for this object. Intended to allow collecting defaults from contained objects. For example, if we have a class A, with members from classes B and C which each have an OptionsFactory, we could have something like: class A: options_factory = OptionsFactory( B.options_factory.defaults, C.options_factory.defaults, extra_option1 = 1, extra_option2 = 2, ) It is an error for any keys in *args to be repeated or be the same as any in **kwargs. **kwargs : key=[WithMeta, value or expression] Keys are the names of the members of the Options that the factory will create. If a value is passed, that is used as the default for this key. If an expression is passed, it should take one argument, and can access values of other Options members from that argument. WithMeta allows values or expressions to be passed with extra metadata. For example, factory = OptionsFactory( a=1, b=lambda options: options.c + options.a c=lambda options: 3*options["a"] d=WithMeta( 4, doc="option d", value_type=int, allowed=[4, 5, 6] ) e=WithMeta( lambda options: options.a + options.b + options.c + options.d, doc="option e", value_type=float, checks=lambda x: x > 0.0 ) ) """ self.__defaults = {} for key, value in kwargs.items(): if isinstance(value, OptionsFactory): self.__defaults[key] = value else: self.__defaults[key] = WithMeta(value) # Add defaults from *args for a in args: if not isinstance(a, OptionsFactory): raise ValueError( f"Positional arguments to OptionsFactory.__init__() must be " f"OptionsFactory instances, was passed a {type(a)}" ) for key, value in a.defaults.items(): if key in self.__defaults: if value != self.__defaults[key]: raise ValueError( f"{key} has been passed more than once with different " f"values" ) if isinstance(value, OptionsFactory): self.__defaults[key] = value else: self.__defaults[key] = WithMeta(value) @property def defaults(self): """Get the default values defined for this OptionsFactory""" return deepcopy(self.__defaults) @property def doc(self): """Get the documentation for the options defined for this OptionsFactory""" return {key: value.doc for key, value in self.__defaults.items()} def add(self, **kwargs): """Create a more specific version of the factory with extra options. For example, may be useful for a subclass like class Parent: options_factory = OptionsFactory(...) class Child: options_factory = Parent.options_factory.add( an_extra_option="used only by Child" ) Parameters ---------- **kwargs : key=[WithMeta, value or expression] The new options to add, these override the ones in the parent factory if key already exists, but keep the doc, allowed and checks if the option is just a new value/expression (not a new WithMeta) """ new_default_values = deepcopy(self.__defaults) for key, value in kwargs.items(): if key in new_default_values and isinstance( new_default_values[key], OptionsFactory ): if isinstance(value, OptionsFactory): raise ValueError( f"Updating the section {key} in OptionsFactory, but was passed " f"an OptionsFactory. This is forbidden as options from the new " f"OptionsFactory might unexpectedly overwrite metadata in the " f"existing section. Pass a dict instead to update {key}." ) new_default_values[key] = new_default_values[key].add(**value) elif isinstance(value, OptionsFactory): if key in new_default_values: raise ValueError( f"Passing an OptionsFactory to OptionsFactory.add() creates a " f"new section, but the option {key} already exists" ) new_default_values[key] = value elif isinstance(value, WithMeta): new_default_values[key] = value elif key in new_default_values: # just update the default value or expression new_default_values[key].value = value else: new_default_values[key] = WithMeta(value) # Use type(self) so that OptionsFactory returns an OptionsFactory but # MutableOptionsFactory returns a MutableOptionsFactory return type(self)(**new_default_values) def __contains__(self, key): return key in self.__defaults def create(self, values=None): """Create an Options instance The members of the created Options are defined by this OptionsFactory instance. Any values passed in the values argument are used, and the rest are set from defaults, which can be expressions depending on other members. Parameters ---------- values : dict or Options, optional Non-default values to be used """ return self.__create_immutable(values) def create_from_yaml(self, file_like): """Create an Options instance from an input YAML file Parameters ---------- file_like : file handle or similar to read from File to read from """ return self.create(self._load_yaml(file_like)) def _load_yaml(self, file_like): import yaml return yaml.safe_load(file_like) def __create_mutable(self, values=None, parent=None): if values is None: values = {} # do not modify passed-in values values = deepcopy(dict(values)) # ignore values for keys not in the list of keys defined in the factory for key in list(values): if key not in self.__defaults: del values[key] # Return new MutableOptions instance return OptionsFactory.MutableOptions( values, self.__defaults, self.doc, parent=parent ) def __create_immutable(self, values=None): # Create MutableOptions instance: use to check the values and evaluate defaults mutable_options = self.__create_mutable(values) # Return new Options instance return OptionsFactory.Options(mutable_options) class MutableOptions: """Provide access to a pre-defined set of options, with default values that may depend on the values of other options """ def __init__(self, data, defaults, doc, parent=None): self.__defaults = { key: value if not isinstance(value, OptionsFactory) else None for key, value in defaults.items() } self.__cache = {} self.__parent = parent # don't modify input data data = copy(data) self.__data = {} # Add subsections first for subsection in self.get_subsections(): if subsection in data: subsection_data = data[subsection] del data[subsection] else: subsection_data = {} self.__data[subsection] = defaults[ subsection ]._OptionsFactory__create_mutable(subsection_data, parent=self) # Add values in this section second - now 'data' contains only values, not # subsections for key, value in data.items(): self.__data[key] = _checked(value, meta=self.__defaults[key], name=key) self.__doc = doc @property def doc(self): return self.__doc @property def parent(self): return self.__parent def as_table(self): """Return a string with a formatted table of the settings""" return _options_table_string(self) def to_dict(self, with_defaults=True): """Convert the MutableOptions object to a dict Parameters ---------- with_defaults : bool, default True Include the default values in the returned dict? """ if with_defaults: return { key: value if not isinstance(value, OptionsFactory.MutableOptions) else value.to_dict(with_defaults) for key, value in self.items() } else: return { key: value if not isinstance(value, OptionsFactory.MutableOptions) else value.to_dict(with_defaults) for key, value in self.items() # Use 'is not True' so we include subsections, for which # self.is_default(key) returns a dict if self.is_default(key) is not True } def to_yaml(self, file_like, with_defaults=False): """Save the options to a YAML file Save only the non-default options unless with_defaults=True is passed Parameters ---------- file_like : file handle or similar File to write to with_defaults : bool, default False Save all the options, including default values """ import yaml return yaml.dump(self.to_dict(with_defaults), file_like) def get_subsections(self): """ Iterator over the subsections in this MutableOptions """ for key, value in self.__defaults.items(): # None marks subsections in self.__defaults - all other values are # WithMeta objects if value is None: yield key def __clear_cache(self, is_child=False): if self.__parent is None or is_child: # Once we have found the root MutableOptions object, follow the tree, # clearing the cache of each MutableOptions section or subsection. self.__cache = {} for subsection in self.get_subsections(): self[subsection].__clear_cache(True) else: # Go up until we find the root MutableOptions object, which has # (self.parent is None) self.__parent.__clear_cache() def __getitem__(self, key): if key not in self.__defaults: raise KeyError(f"This Options does not contain {key}") # If key is already in __cache, then it has a definite value if key in self.__cache: return self.__cache[key] # Check if option was in user-set values try: value = self.__data[key] except KeyError: pass else: self.__cache[key] = value return value # When setting default values, detect circular definitions if not hasattr(self, "_MutableOptions__key_chain"): chain_start = True self.__key_chain = [key] else: if key in self.__key_chain: # Found a circular definition # Tidy up object state key_chain = self.__key_chain del self.__key_chain # Tell the user where the circular definition was index = key_chain.index(key) raise ValueError( f"Circular definition of default values. At least one of " f"{key_chain[index:]} must have a definite value" ) chain_start = False self.__key_chain.append(key) self.__cache[key] = self.__defaults[key].evaluate_expression(self, name=key) if chain_start: # Tidy up temporary member variable del self.__key_chain return self.__cache[key] def __setitem__(self, key, value): if key not in self.__defaults: raise KeyError( f"Tried to set {key}={value} but {key} is not one of the defined " f"options" ) # Default values may change, so reset the cache self.__clear_cache() self.__data[key] = _checked(value, meta=self.__defaults[key], name=key) def __delitem__(self, key): if key not in self.__defaults: raise KeyError( f"Tried to unset {key} but {key} is not one of the defined options" ) if key in self.__data: # Default values may change, so reset the cache self.__cache = {} del self.__data[key] # Otherwise 'key' is a valid option but was not set, so nothing changes def __getattr__(self, key): if key == "_MutableOptions__defaults": return super(OptionsFactory.MutableOptions, self).__getattr__(key) if key in self.__defaults: return self.__getitem__(key) raise AttributeError(f"This MutableOptions has no attribute {key}.") def __setattr__(self, key, value): if hasattr(self, "_MutableOptions__defaults") and key in self.__defaults: return self.__setitem__(key, value) super(OptionsFactory.MutableOptions, self).__setattr__(key, value) def __delattr__(self, key): if key in self.__defaults: return self.__delitem__(key) super(OptionsFactory.MutableOptions, self).__delattr__(key) def is_default(self, key): if key not in self.__defaults: raise KeyError(f"{key} is not in this Options") value = self[key] if isinstance(value, OptionsFactory.MutableOptions): return {k: value.is_default(k) for k in value} return key not in self.__data def __contains__(self, key): return key in self.__defaults def __len__(self): return len(self.__defaults) def __iter__(self): return iter(self.keys()) def keys(self): return self.__defaults.keys() def values(self): for key in self: yield self[key] def items(self): return zip(self.keys(), self.values()) def __str__(self): string = "{" for key in self.__defaults: value = self[key] string += f"{key}: {value}" # Using 'is True' here means we only append ' (default)' to options, not # sections: if 'key' is a section then self.is_default(key) will return # a dict if self.is_default(key) is True: string += " (default)" string += ", " if len(string) > 1: # remove trailing ", " string = string[:-2] string += "}" return string class Options: """Provide access to a pre-defined set of options, with values fixed when the instance is created """ __frozen = False def __init__(self, mutable_options): self.__data = {} for key, value in mutable_options.items(): if isinstance(value, OptionsFactory.MutableOptions): self.__data[key] = OptionsFactory.Options(mutable_options[key]) else: self.__data[key] = deepcopy(value) self.__doc = deepcopy(mutable_options.doc) # make a dict of the explicitly-set (non-default) values self.__is_default = { key: mutable_options.is_default(key) for key in mutable_options } # Set self.__frozen to True to prevent attributes being changed self.__frozen = True @property def doc(self): return deepcopy(self.__doc) def as_table(self): """Return a string with a formatted table of the settings""" return _options_table_string(self) def to_dict(self, with_defaults=True): """Convert the MutableOptions object to a dict Parameters ---------- with_defaults : bool, default True Include the default values in the returned dict? """ if with_defaults: return { key: value if not isinstance(value, OptionsFactory.Options) else value.to_dict(with_defaults) for key, value in self.items() } else: return { key: value if not isinstance(value, OptionsFactory.Options) else value.to_dict(with_defaults) for key, value in self.items() # Use 'is not True' so we include subsections, for which # self.is_default(key) returns a dict if self.is_default(key) is not True } def to_yaml(self, file_like, with_defaults=False): """Save the options to a YAML file Save only the non-default options unless with_defaults=True is passed Parameters ---------- file_like : file handle or similar File to write to with_defaults : bool, default False Save all the options, including default values """ import yaml return yaml.dump(self.to_dict(with_defaults), file_like) def get_subsections(self): """ Iterator over the subsections in this Options """ for key, value in self.__data.items(): if isinstance(value, OptionsFactory.Options): yield key def __getitem__(self, key): try: return deepcopy(self.__data.__getitem__(key)) except KeyError: raise KeyError(f"This Options does not contain {key}") def __setitem__(self, key, value): raise TypeError("Options does not allow assigning to keys") def __getattr__(self, key): if key == "_Options__data": # need to treat __data specially, as we use it for the next test return super(OptionsFactory.Options, self).__getattr__(key) if key in self.__data: return self.__getitem__(key) try: return super(OptionsFactory.Options, self).__getattr__(key) except AttributeError: raise AttributeError(f"This Options has no attribute {key}.") def __setattr__(self, key, value): if self.__frozen: raise TypeError("Options does not allow assigning to attributes") super(OptionsFactory.Options, self).__setattr__(key, value) def __getstate__(self): # Need to define this so that pickling with dill works return vars(self) def __setstate__(self, state): # Need to define this so that pickling with dill works vars(self).update(state) def is_default(self, key): try: return self.__is_default[key] except KeyError: raise KeyError(f"{key} is not in this Options") def __contains__(self, key): return key in self.__data def __len__(self): return len(self.__data) def __iter__(self): return iter(self.keys()) def keys(self): return self.__data.keys() def values(self): for v in self.__data.values(): yield deepcopy(v) def items(self): return zip(self.keys(), self.values()) def __str__(self): string = "{" for key in self.__data: string += f"{key}: {self[key]}" # Using 'is True' here means we only append ' (default)' to options, not # sections: if 'key' is a section then self.is_default(key) will return # a dict if self.is_default(key) is True: string += " (default)" string += ", " if len(string) > 1: # remove trailing ", " string = string[:-2] string += "}" return string class MutableOptionsFactory(OptionsFactory): """Factory to create MutableOptions or Options instances""" def create(self, values=None): """Create a MutableOptions instance The members of the created MutableOptions are defined by this MutableOptionsFactory instance. Any values passed in the values argument are used, and the rest are set from defaults, which can be expressions depending on other members. Parameters ---------- values : dict or Options, optional Non-default values to be used """ return self._OptionsFactory__create_mutable(values) def create_immutable(self, values=None): """Create an Options instance (which is immutable) The members of the created Options are defined by this MutableOptionsFactory instance. Any values passed in the values argument are used, and the rest are set from defaults, which can be expressions depending on other members. Parameters ---------- values : dict or Options, optional Non-default values to be used """ return self._OptionsFactory__create_immutable(values) def create_from_yaml(self, file_like): """Create a MutableOptions instance from an input YAML file Parameters ---------- file_like : file handle or similar to read from File to read from """ return self.create(self._load_yaml(file_like)) def create_immutable_from_yaml(self, file_like): """Create an Options instance (which is immutable) from an input YAML file Parameters ---------- file_like : file handle or similar to read from File to read from """ return self.create_immutable(self._load_yaml(file_like)) ``` #### File: optionsfactory/optionsfactory/_utils.py ```python def _checked(value, *, meta=None, name=None): if ( (meta is not None) and (meta.value_type is not None) and (not isinstance(value, meta.value_type)) ): raise TypeError( f"{value} is not of type {meta.value_type}" f"{'' if name is None else ' for key=' + str(name)}" ) if meta.allowed is not None: if value not in meta.allowed: raise ValueError( f"{value} is not in the allowed values {meta.allowed}" f"{'' if name is None else ' for key=' + str(name)}" ) if meta.check_all is not None: for check in meta.check_all: if not check(value): raise ValueError( f"The value {value}" f"{'' if name is None else ' of key=' + str(name)} is not " f"compatible with check_all" ) if meta.check_any is not None: success = False for check in meta.check_any: if check(value): success = True if not success: raise ValueError( f"The value {value}" f"{'' if name is None else ' of key=' + str(name)} is not " f"compatible with check_any" ) return value def _options_table_string(options): """Return a string containing a table of options set""" formatstring = "{:<50}| {:<27}\n" defaultformat = "{:<15} (default) " # Header result = ( "\nOptions\n=======\n" + formatstring.format("Name", "Value") + "=" * 80 + "\n" ) def _options_table_subsection(options, subsection_name): result = "" # subsection header if subsection_name is not None: result += ( "-" * 80 + "\n" + "{:<80}\n".format(subsection_name) + "-" * 80 + "\n" ) # Row for each value that is not a subsection for name, value in sorted(options.items()): if name in options.get_subsections(): continue valuestring = str(value) if options.is_default(name): valuestring = defaultformat.format(valuestring) result += formatstring.format(name, valuestring) for name in options.get_subsections(): result += _options_table_subsection( options[name], f"{str(subsection_name) + ':' if subsection_name is not None else ''}" f"{name}", ) return result result += _options_table_subsection(options, None) return result ``` #### File: optionsfactory/optionsfactory/withmeta.py ```python from collections.abc import Sequence from ._utils import _checked class WithMeta: """Type for passing metadata with options value or expression into OptionsFactory""" def __init__( self, value, *, doc=None, value_type=None, allowed=None, check_all=None, check_any=None, ): """ Parameters ---------- value : expression, value, str, or WithMeta - If a callable expression is passed, evaluate expression(options) for the default value - If a value is passed, used as default value for this option - If (i) a str is passed and (ii) it is not in the allowed values for this option, and (iii) it is the name of another option, then set the default for this option as the value of the other option - If a WithMeta object is passed, check no other arguments were set and copy all attributes from value doc : str, optional Docstring for this option value_type : type, optional Type that this option should have allowed : value or sequence of values, optional When the option is set, it must have one of these values. Cannot be set if 'checks' is given. check_all : expression or sequence of expressions, optional When a value is set for this option, all the expressions must return True when called with that value. Cannot be set if 'allowed' is given, but can be combined with check_any. check_any : expression or sequence of expressions, optional When a value is set for this option, at least one of the expressions must return True when called with that value. Cannot be set if 'allowed' is given, but can be combined with check_all. """ if isinstance(value, WithMeta): if ( (doc is not None) or (value_type is not None) or (allowed is not None) or (check_all is not None) or (check_any is not None) ): raise ValueError( f"doc={doc}, value_type={value_type}, allowed={allowed}, " f"check_all={check_all}, and check_any={check_any} should all be " f"None when value is a WithMeta" ) self.value = value.value self.doc = value.doc self.value_type = value.value_type self.allowed = value.allowed self.check_all = value.check_all self.check_any = value.check_any return self.value = value self.doc = doc if isinstance(value_type, Sequence): value_type = tuple(value_type) self.value_type = value_type if (allowed is not None) and (check_all is not None or check_any is not None): if check_any is None: raise ValueError("Cannot set both 'allowed' and 'check_all'") elif check_all is None: raise ValueError("Cannot set both 'allowed' and 'check_any'") else: raise ValueError( "Cannot set both 'allowed' and 'check_all' or 'check_any'" ) if allowed is not None: if (not isinstance(allowed, Sequence)) or isinstance(allowed, str): # make allowed values a sequence allowed = (allowed,) self.allowed = tuple(allowed) else: self.allowed = None if check_all is not None: if (not isinstance(check_all, Sequence)) or isinstance(check_all, str): # make check_all expressions a sequence check_all = (check_all,) self.check_all = tuple(check_all) for check in self.check_all: if not callable(check): raise ValueError( f"{check} is not callable, but was passed as a check to " f"check_all" ) else: self.check_all = None if check_any is not None: if (not isinstance(check_any, Sequence)) or isinstance(check_any, str): # make check_any expressions a sequence check_any = (check_any,) self.check_any = tuple(check_any) for check in self.check_any: if not callable(check): raise ValueError( f"{check} is not callable, but was passed as a check to " f"check_any" ) else: self.check_any = None def __eq__(self, other): if not isinstance(other, WithMeta): return False return ( self.value == other.value and self.doc == other.doc and self.allowed == other.allowed and self.check_all == other.check_all and self.check_any == other.check_any ) def __str__(self): return self.__repr__() def __repr__(self): return ( f"WithMeta({self.value}, doc={self.doc}, value_type={self.value_type}), " f"allowed={self.allowed}, check_all={self.check_all}, " f"check_any={self.check_any})" ) def evaluate_expression(self, options, *, name=None): # Value may be expression or value. Try evaluating as an expression using # options first default_maybe_expression = self.value try: default_value = default_maybe_expression(options) except TypeError: # Try evaluating as name of another option, if default_maybe_expression is a # str and could not be the value of the option if ( # Can only be a name if self.value is a str isinstance(default_maybe_expression, str) # Check value_type is set and does not include str, otherwise a string # might be the value of the option and (self.value_type is not None) and (self.value_type is not str) and not ( isinstance(self.value_type, Sequence) and str in self.value_type ) ): try: default_value = options[default_maybe_expression] except KeyError: raise KeyError( f"The default {default_maybe_expression}" f"{' for '+str(name) if name is not None else ''} is not in " f"the options" ) else: default_value = default_maybe_expression return _checked(default_value, meta=self, name=name) ```
{ "source": "johnomotani/xarray", "score": 2 }
#### File: xarray/tests/test_plugins.py ```python from unittest import mock import pkg_resources import pytest from xarray.backends import common, plugins class DummyBackendEntrypointArgs(common.BackendEntrypoint): def open_dataset(filename_or_obj, *args): pass class DummyBackendEntrypointKwargs(common.BackendEntrypoint): def open_dataset(filename_or_obj, **kwargs): pass class DummyBackendEntrypoint1(common.BackendEntrypoint): def open_dataset(self, filename_or_obj, *, decoder): pass class DummyBackendEntrypoint2(common.BackendEntrypoint): def open_dataset(self, filename_or_obj, *, decoder): pass @pytest.fixture def dummy_duplicated_entrypoints(): specs = [ "engine1 = xarray.tests.test_plugins:backend_1", "engine1 = xarray.tests.test_plugins:backend_2", "engine2 = xarray.tests.test_plugins:backend_1", "engine2 = xarray.tests.test_plugins:backend_2", ] eps = [pkg_resources.EntryPoint.parse(spec) for spec in specs] return eps @pytest.mark.filterwarnings("ignore:Found") def test_remove_duplicates(dummy_duplicated_entrypoints): with pytest.warns(RuntimeWarning): entrypoints = plugins.remove_duplicates(dummy_duplicated_entrypoints) assert len(entrypoints) == 2 def test_broken_plugin(): broken_backend = pkg_resources.EntryPoint.parse( "broken_backend = xarray.tests.test_plugins:backend_1" ) with pytest.warns(RuntimeWarning) as record: _ = plugins.build_engines([broken_backend]) assert len(record) == 1 message = str(record[0].message) assert "Engine 'broken_backend'" in message def test_remove_duplicates_warnings(dummy_duplicated_entrypoints): with pytest.warns(RuntimeWarning) as record: _ = plugins.remove_duplicates(dummy_duplicated_entrypoints) assert len(record) == 2 message0 = str(record[0].message) message1 = str(record[1].message) assert "entrypoints" in message0 assert "entrypoints" in message1 @mock.patch("pkg_resources.EntryPoint.load", mock.MagicMock(return_value=None)) def test_backends_dict_from_pkg(): specs = [ "engine1 = xarray.tests.test_plugins:backend_1", "engine2 = xarray.tests.test_plugins:backend_2", ] entrypoints = [pkg_resources.EntryPoint.parse(spec) for spec in specs] engines = plugins.backends_dict_from_pkg(entrypoints) assert len(engines) == 2 assert engines.keys() == set(("engine1", "engine2")) def test_set_missing_parameters(): backend_1 = DummyBackendEntrypoint1 backend_2 = DummyBackendEntrypoint2 backend_2.open_dataset_parameters = ("filename_or_obj",) engines = {"engine_1": backend_1, "engine_2": backend_2} plugins.set_missing_parameters(engines) assert len(engines) == 2 assert backend_1.open_dataset_parameters == ("filename_or_obj", "decoder") assert backend_2.open_dataset_parameters == ("filename_or_obj",) backend = DummyBackendEntrypointKwargs() backend.open_dataset_parameters = ("filename_or_obj", "decoder") plugins.set_missing_parameters({"engine": backend}) assert backend.open_dataset_parameters == ("filename_or_obj", "decoder") backend = DummyBackendEntrypointArgs() backend.open_dataset_parameters = ("filename_or_obj", "decoder") plugins.set_missing_parameters({"engine": backend}) assert backend.open_dataset_parameters == ("filename_or_obj", "decoder") def test_set_missing_parameters_raise_error(): backend = DummyBackendEntrypointKwargs() with pytest.raises(TypeError): plugins.set_missing_parameters({"engine": backend}) backend = DummyBackendEntrypointArgs() with pytest.raises(TypeError): plugins.set_missing_parameters({"engine": backend}) @mock.patch( "pkg_resources.EntryPoint.load", mock.MagicMock(return_value=DummyBackendEntrypoint1), ) def test_build_engines(): dummy_pkg_entrypoint = pkg_resources.EntryPoint.parse( "cfgrib = xarray.tests.test_plugins:backend_1" ) backend_entrypoints = plugins.build_engines([dummy_pkg_entrypoint]) assert isinstance(backend_entrypoints["cfgrib"], DummyBackendEntrypoint1) assert backend_entrypoints["cfgrib"].open_dataset_parameters == ( "filename_or_obj", "decoder", ) @mock.patch( "pkg_resources.EntryPoint.load", mock.MagicMock(return_value=DummyBackendEntrypoint1), ) def test_build_engines_sorted(): dummy_pkg_entrypoints = [ pkg_resources.EntryPoint.parse( "dummy2 = xarray.tests.test_plugins:backend_1", ), pkg_resources.EntryPoint.parse( "dummy1 = xarray.tests.test_plugins:backend_1", ), ] backend_entrypoints = plugins.build_engines(dummy_pkg_entrypoints) backend_entrypoints = list(backend_entrypoints) indices = [] for be in plugins.STANDARD_BACKENDS_ORDER: try: index = backend_entrypoints.index(be) backend_entrypoints.pop(index) indices.append(index) except ValueError: pass assert set(indices) < {0, -1} assert list(backend_entrypoints) == sorted(backend_entrypoints) ```
{ "source": "johnomotani/xBOUT-0.1-backup", "score": 2 }
#### File: xbout/tests/test_load.py ```python from pathlib import Path import re import pytest import numpy as np from xarray import DataArray, Dataset, concat from xarray.tests.test_dataset import create_test_data import xarray.testing as xrt from natsort import natsorted from xbout.load import (_check_filetype, _expand_wildcards, _expand_filepaths, _arrange_for_concatenation, _trim, _infer_contains_boundaries, open_boutdataset, _BOUT_PER_PROC_VARIABLES) from xbout.utils import _separate_metadata def test_check_extensions(tmpdir): files_dir = tmpdir.mkdir("data") example_nc_file = files_dir.join('example.nc') example_nc_file.write("content_nc") filetype = _check_filetype(Path(str(example_nc_file))) assert filetype == 'netcdf4' example_hdf5_file = files_dir.join('example.h5netcdf') example_hdf5_file.write("content_hdf5") filetype = _check_filetype(Path(str(example_hdf5_file))) assert filetype == 'h5netcdf' example_invalid_file = files_dir.join('example.txt') example_hdf5_file.write("content_txt") with pytest.raises(IOError): filetype = _check_filetype(Path(str(example_invalid_file))) class TestPathHandling: def test_glob_expansion_single(self, tmpdir): files_dir = tmpdir.mkdir("data") example_file = files_dir.join('example.0.nc') example_file.write("content") path = Path(str(example_file)) filepaths = _expand_wildcards(path) assert filepaths[0] == Path(str(example_file)) path = Path(str(files_dir.join('example.*.nc'))) filepaths = _expand_wildcards(path) assert filepaths[0] == Path(str(example_file)) @pytest.mark.parametrize("ii, jj", [(1, 1), (1, 4), (3, 1), (5, 3), (12, 1), (1, 12), (121, 2), (3, 111)]) def test_glob_expansion_both(self, tmpdir, ii, jj): files_dir = tmpdir.mkdir("data") filepaths = [] for i in range(ii): example_run_dir = files_dir.mkdir('run' + str(i)) for j in range(jj): example_file = example_run_dir.join('example.' + str(j) + '.nc') example_file.write("content") filepaths.append(Path(str(example_file))) expected_filepaths = natsorted(filepaths, key=lambda filepath: str(filepath)) path = Path(str(files_dir.join('run*/example.*.nc'))) actual_filepaths = _expand_wildcards(path) assert actual_filepaths == expected_filepaths def test_no_files(self, tmpdir): files_dir = tmpdir.mkdir("data") with pytest.raises(IOError): path = Path(str(files_dir.join('run*/example.*.nc'))) actual_filepaths = _expand_filepaths(path) @pytest.fixture() def create_filepaths(): return _create_filepaths def _create_filepaths(nxpe=1, nype=1, nt=1): filepaths = [] for t in range(nt): for i in range(nype): for j in range(nxpe): file_num = (j + nxpe * i) path = './run{}'.format(str(t)) \ + '/BOUT.dmp.{}.nc'.format(str(file_num)) filepaths.append(path) return filepaths class TestArrange: def test_arrange_single(self, create_filepaths): paths = create_filepaths(nxpe=1, nype=1, nt=1) expected_path_grid = [[['./run0/BOUT.dmp.0.nc']]] actual_path_grid, actual_concat_dims = _arrange_for_concatenation(paths, nxpe=1, nype=1) assert expected_path_grid == actual_path_grid assert actual_concat_dims == [None, None, None] def test_arrange_along_x(self, create_filepaths): paths = create_filepaths(nxpe=3, nype=1, nt=1) expected_path_grid = [[['./run0/BOUT.dmp.0.nc', './run0/BOUT.dmp.1.nc', './run0/BOUT.dmp.2.nc']]] actual_path_grid, actual_concat_dims = _arrange_for_concatenation(paths, nxpe=3, nype=1) assert expected_path_grid == actual_path_grid assert actual_concat_dims == [None, None, 'x'] def test_arrange_along_y(self, create_filepaths): paths = create_filepaths(nxpe=1, nype=3, nt=1) expected_path_grid = [[['./run0/BOUT.dmp.0.nc'], ['./run0/BOUT.dmp.1.nc'], ['./run0/BOUT.dmp.2.nc']]] actual_path_grid, actual_concat_dims = _arrange_for_concatenation( paths, nxpe=1, nype=3) assert expected_path_grid == actual_path_grid assert actual_concat_dims == [None, 'y', None] def test_arrange_along_t(self, create_filepaths): paths = create_filepaths(nxpe=1, nype=1, nt=3) expected_path_grid = [[['./run0/BOUT.dmp.0.nc']], [['./run1/BOUT.dmp.0.nc']], [['./run2/BOUT.dmp.0.nc']]] actual_path_grid, actual_concat_dims = _arrange_for_concatenation( paths, nxpe=1, nype=1) assert expected_path_grid == actual_path_grid assert actual_concat_dims == ['t', None, None] def test_arrange_along_xy(self, create_filepaths): paths = create_filepaths(nxpe=3, nype=2, nt=1) expected_path_grid = [[['./run0/BOUT.dmp.0.nc', './run0/BOUT.dmp.1.nc', './run0/BOUT.dmp.2.nc'], ['./run0/BOUT.dmp.3.nc', './run0/BOUT.dmp.4.nc', './run0/BOUT.dmp.5.nc']]] actual_path_grid, actual_concat_dims = _arrange_for_concatenation( paths, nxpe=3, nype=2) assert expected_path_grid == actual_path_grid assert actual_concat_dims == [None, 'y', 'x'] def test_arrange_along_xt(self, create_filepaths): paths = create_filepaths(nxpe=3, nype=1, nt=2) expected_path_grid = [[['./run0/BOUT.dmp.0.nc', './run0/BOUT.dmp.1.nc', './run0/BOUT.dmp.2.nc']], [['./run1/BOUT.dmp.0.nc', './run1/BOUT.dmp.1.nc', './run1/BOUT.dmp.2.nc']]] actual_path_grid, actual_concat_dims = _arrange_for_concatenation( paths, nxpe=3, nype=1) assert expected_path_grid == actual_path_grid assert actual_concat_dims == ['t', None, 'x'] def test_arrange_along_xyt(self, create_filepaths): paths = create_filepaths(nxpe=3, nype=2, nt=2) expected_path_grid = [[['./run0/BOUT.dmp.0.nc', './run0/BOUT.dmp.1.nc', './run0/BOUT.dmp.2.nc'], ['./run0/BOUT.dmp.3.nc', './run0/BOUT.dmp.4.nc', './run0/BOUT.dmp.5.nc']], [['./run1/BOUT.dmp.0.nc', './run1/BOUT.dmp.1.nc', './run1/BOUT.dmp.2.nc'], ['./run1/BOUT.dmp.3.nc', './run1/BOUT.dmp.4.nc', './run1/BOUT.dmp.5.nc']]] actual_path_grid, actual_concat_dims = _arrange_for_concatenation(paths, nxpe=3, nype=2) assert expected_path_grid == actual_path_grid assert actual_concat_dims == ['t', 'y', 'x'] @pytest.fixture() def bout_xyt_example_files(tmpdir_factory): return _bout_xyt_example_files def _bout_xyt_example_files(tmpdir_factory, prefix='BOUT.dmp', lengths=(6, 2, 4, 7), nxpe=4, nype=2, nt=1, guards={}, syn_data_type='random', grid=None, squashed=False): """ Mocks up a set of BOUT-like netCDF files, and return the temporary test directory containing them. Deletes the temporary directory once that test is done. """ save_dir = tmpdir_factory.mktemp("data") if squashed: # create a single data-file, but alter the 'nxpe' and 'nype' variables, as if the # file had been created by combining a set of BOUT.dmp.*.nc files ds_list, file_list = create_bout_ds_list(prefix=prefix, lengths=lengths, nxpe=1, nype=1, nt=nt, guards=guards, syn_data_type=syn_data_type) ds_list[0]['nxpe'] = nxpe ds_list[0]['nype'] = nype else: ds_list, file_list = create_bout_ds_list(prefix=prefix, lengths=lengths, nxpe=nxpe, nype=nype, nt=nt, guards=guards, syn_data_type=syn_data_type) for ds, file_name in zip(ds_list, file_list): ds.to_netcdf(str(save_dir.join(str(file_name)))) if grid is not None: xsize = lengths[1]*nxpe ysize = lengths[2]*nype grid_ds = create_bout_grid_ds(xsize=xsize, ysize=ysize, guards=guards) grid_ds.to_netcdf(str(save_dir.join(grid + ".nc"))) # Return a glob-like path to all files created, which has all file numbers replaced # with a single asterix path = str(save_dir.join(str(file_list[-1]))) count = 1 if nt > 1: count += 1 # We have to reverse the path before limiting the number of numbers replaced so that the # tests don't get confused by pytest's persistent temporary directories (which are also designated # by different numbers) glob_pattern = (re.sub(r'\d+', '*', path[::-1], count=count))[::-1] return glob_pattern def create_bout_ds_list(prefix, lengths=(6, 2, 4, 7), nxpe=4, nype=2, nt=1, guards={}, syn_data_type='random'): """ Mocks up a set of BOUT-like datasets. Structured as though they were produced by a x-y parallelised run with multiple restarts. """ file_list = [] ds_list = [] for i in range(nxpe): for j in range(nype): num = (i + nxpe * j) filename = prefix + "." + str(num) + ".nc" file_list.append(filename) # Include guard cells upper_bndry_cells = {dim: guards.get(dim) for dim in guards.keys()} lower_bndry_cells = {dim: guards.get(dim) for dim in guards.keys()} ds = create_bout_ds(syn_data_type=syn_data_type, num=num, lengths=lengths, nxpe=nxpe, nype=nype, xproc=i, yproc=j, guards=guards) ds_list.append(ds) # Sort this in order of num to remove any BOUT-specific structure ds_list_sorted = [ds for filename, ds in sorted(zip(file_list, ds_list))] file_list_sorted = [filename for filename, ds in sorted(zip(file_list, ds_list))] return ds_list_sorted, file_list_sorted def create_bout_ds(syn_data_type='random', lengths=(6, 2, 4, 7), num=0, nxpe=1, nype=1, xproc=0, yproc=0, guards={}): # Set the shape of the data in this dataset t_length, x_length, y_length, z_length = lengths mxg = guards.get('x', 0) myg = guards.get('y', 0) x_length += 2*mxg y_length += 2*myg shape = (t_length, x_length, y_length, z_length) # calculate global nx, ny and nz nx = nxpe*lengths[1] + 2*mxg ny = nype*lengths[2] nz = 1*lengths[3] # Fill with some kind of synthetic data if syn_data_type is 'random': # Each dataset contains unique random noise np.random.seed(seed=num) data = np.random.randn(*shape) elif syn_data_type is 'linear': # Variables increase linearly across entire domain data = DataArray(-np.ones(shape), dims=('t', 'x', 'y', 'z')) t_array = DataArray((nx - 2*mxg)*ny*nz*np.arange(t_length, dtype=float), dims='t') x_array = DataArray(ny*nz*(xproc*lengths[1] + mxg + np.arange(lengths[1], dtype=float)), dims='x') y_array = DataArray(nz*(yproc*lengths[2] + myg + np.arange(lengths[2], dtype=float)), dims='y') z_array = DataArray(np.arange(z_length, dtype=float), dims='z') data[:, mxg:x_length-mxg, myg:y_length-myg, :] = ( t_array + x_array + y_array + z_array ) elif syn_data_type is 'stepped': # Each dataset contains a different number depending on the filename data = np.ones(shape) * num elif isinstance(syn_data_type, int): data = np.ones(shape)* syn_data_type else: raise ValueError('Not a recognised choice of type of synthetic bout data.') T = DataArray(data, dims=['t', 'x', 'y', 'z']) n = DataArray(data, dims=['t', 'x', 'y', 'z']) ds = Dataset({'n': n, 'T': T}) # BOUT_VERSION needed so that we know that number of points in z is MZ, not MZ-1 (as # it was in BOUT++ before v4.0 ds['BOUT_VERSION'] = 4.3 # Include grid data ds['NXPE'] = nxpe ds['NYPE'] = nype ds['NZPE'] = 1 ds['PE_XIND'] = xproc ds['PE_YIND'] = yproc ds['MYPE'] = num ds['MXG'] = mxg ds['MYG'] = myg ds['nx'] = nx ds['ny'] = ny ds['nz'] = nz ds['MZ'] = 1*lengths[3] ds['MXSUB'] = lengths[1] ds['MYSUB'] = lengths[2] ds['MZSUB'] = lengths[3] ds['ixseps1'] = nx ds['ixseps2'] = nx ds['jyseps1_1'] = 0 ds['jyseps1_2'] = ny ds['jyseps2_1'] = ny//2 - 1 ds['jyseps2_2'] = ny//2 - 1 ds['ny_inner'] = ny//2 one = DataArray(np.ones((x_length, y_length)), dims=['x', 'y']) zero = DataArray(np.zeros((x_length, y_length)), dims=['x', 'y']) ds['zperiod'] = 1 ds['ZMIN'] = 0. ds['ZMAX'] = 2.*np.pi ds['g11'] = one ds['g22'] = one ds['g33'] = one ds['g12'] = zero ds['g13'] = zero ds['g23'] = zero ds['g_11'] = one ds['g_22'] = one ds['g_33'] = one ds['g_12'] = zero ds['g_13'] = zero ds['g_23'] = zero ds['G1'] = zero ds['G2'] = zero ds['G3'] = zero ds['J'] = one ds['Bxy'] = one ds['zShift'] = zero ds['dx'] = 0.5*one ds['dy'] = 2.*one ds['dz'] = 0.7 ds['iteration'] = t_length ds['t_array'] = DataArray(np.arange(t_length, dtype=float)*10., dims='t') return ds def create_bout_grid_ds(xsize=2, ysize=4, guards={}): # Set the shape of the data in this dataset mxg = guards.get('x', 0) myg = guards.get('y', 0) xsize += 2*mxg ysize += 2*myg shape = (xsize, ysize) data = DataArray(np.ones(shape), dims=['x', 'y']) ds = Dataset({'psixy': data, 'Rxy': data, 'Zxy': data, 'hthe': data}) return ds # Note, MYPE, PE_XIND and PE_YIND not included, since they are different for each # processor and so are dropped when loading datasets. METADATA_VARS = ['BOUT_VERSION', 'NXPE', 'NYPE', 'NZPE', 'MXG', 'MYG', 'nx', 'ny', 'nz', 'MZ', 'MXSUB', 'MYSUB', 'MZSUB', 'ixseps1', 'ixseps2', 'jyseps1_1', 'jyseps1_2', 'jyseps2_1', 'jyseps2_2', 'ny_inner', 'zperiod', 'ZMIN', 'ZMAX', 'dz', 'iteration'] class TestStripMetadata(): def test_strip_metadata(self): original = create_bout_ds() assert original['NXPE'] == 1 ds, metadata = _separate_metadata(original) assert original.drop(METADATA_VARS + _BOUT_PER_PROC_VARIABLES, errors='ignore').equals(ds) assert metadata['NXPE'] == 1 # TODO also test loading multiple files which have guard cells class TestOpen: def test_single_file(self, tmpdir_factory, bout_xyt_example_files): path = bout_xyt_example_files(tmpdir_factory, nxpe=1, nype=1, nt=1) actual = open_boutdataset(datapath=path, keep_xboundaries=False) expected = create_bout_ds() xrt.assert_equal(actual.load(), expected.drop(METADATA_VARS + _BOUT_PER_PROC_VARIABLES, errors='ignore')) def test_squashed_file(self, tmpdir_factory, bout_xyt_example_files): path = bout_xyt_example_files(tmpdir_factory, nxpe=4, nype=3, nt=1, squashed=True) actual = open_boutdataset(datapath=path, keep_xboundaries=False) expected = create_bout_ds() xrt.assert_equal(actual.load(), expected.drop(METADATA_VARS + _BOUT_PER_PROC_VARIABLES, errors='ignore')) def test_combine_along_x(self, tmpdir_factory, bout_xyt_example_files): path = bout_xyt_example_files(tmpdir_factory, nxpe=4, nype=1, nt=1, syn_data_type='stepped') actual = open_boutdataset(datapath=path, keep_xboundaries=False) bout_ds = create_bout_ds expected = concat([bout_ds(0), bout_ds(1), bout_ds(2), bout_ds(3)], dim='x', data_vars='minimal') xrt.assert_equal(actual.load(), expected.drop(METADATA_VARS + _BOUT_PER_PROC_VARIABLES, errors='ignore')) def test_combine_along_y(self, tmpdir_factory, bout_xyt_example_files): path = bout_xyt_example_files(tmpdir_factory, nxpe=1, nype=3, nt=1, syn_data_type='stepped') actual = open_boutdataset(datapath=path, keep_xboundaries=False) bout_ds = create_bout_ds expected = concat([bout_ds(0), bout_ds(1), bout_ds(2)], dim='y', data_vars='minimal') xrt.assert_equal(actual.load(), expected.drop(METADATA_VARS + _BOUT_PER_PROC_VARIABLES, errors='ignore')) @pytest.mark.skip def test_combine_along_t(self): ... def test_combine_along_xy(self, tmpdir_factory, bout_xyt_example_files): path = bout_xyt_example_files(tmpdir_factory, nxpe=4, nype=3, nt=1, syn_data_type='stepped') actual = open_boutdataset(datapath=path, keep_xboundaries=False) bout_ds = create_bout_ds line1 = concat([bout_ds(0), bout_ds(1), bout_ds(2), bout_ds(3)], dim='x', data_vars='minimal') line2 = concat([bout_ds(4), bout_ds(5), bout_ds(6), bout_ds(7)], dim='x', data_vars='minimal') line3 = concat([bout_ds(8), bout_ds(9), bout_ds(10), bout_ds(11)], dim='x', data_vars='minimal') expected = concat([line1, line2, line3], dim='y', data_vars='minimal') xrt.assert_equal(actual.load(), expected.drop(METADATA_VARS + _BOUT_PER_PROC_VARIABLES, errors='ignore')) def test_toroidal(self, tmpdir_factory, bout_xyt_example_files): path = bout_xyt_example_files(tmpdir_factory, nxpe=3, nype=3, nt=1, syn_data_type='stepped', grid='grid') actual = open_boutdataset(datapath=path, geometry='toroidal', gridfilepath=Path(path).parent.joinpath('grid.nc')) # check dataset can be saved save_dir = tmpdir_factory.mktemp('data') actual.bout.save(str(save_dir.join('boutdata.nc'))) def test_salpha(self, tmpdir_factory, bout_xyt_example_files): path = bout_xyt_example_files(tmpdir_factory, nxpe=3, nype=3, nt=1, syn_data_type='stepped', grid='grid') actual = open_boutdataset(datapath=path, geometry='s-alpha', gridfilepath=Path(path).parent.joinpath('grid.nc')) # check dataset can be saved save_dir = tmpdir_factory.mktemp('data') actual.bout.save(str(save_dir.join('boutdata.nc'))) @pytest.mark.skip def test_combine_along_tx(self): ... _test_processor_layouts_list = [ # No parallelization (0, 0, 1, 1, {'x': True, 'y': True}, {'x': True, 'y': True}), # 1d parallelization along x: # Left (0, 0, 3, 1, {'x': True, 'y': True}, {'x': False, 'y': True}), # Middle (1, 0, 3, 1, {'x': False, 'y': True}, {'x': False, 'y': True}), # Right (2, 0, 3, 1, {'x': False, 'y': True}, {'x': True, 'y': True}), # 1d parallelization along y: # Bottom (0, 0, 1, 3, {'x': True, 'y': True}, {'x': True, 'y': False}), # Middle (0, 1, 1, 3, {'x': True, 'y': False}, {'x': True, 'y': False}), # Top (0, 2, 1, 3, {'x': True, 'y': False}, {'x': True, 'y': True}), # 2d parallelization: # Bottom left corner (0, 0, 3, 4, {'x': True, 'y': True}, {'x': False, 'y': False}), # Bottom right corner (2, 0, 3, 4, {'x': False, 'y': True}, {'x': True, 'y': False}), # Top left corner (0, 3, 3, 4, {'x': True, 'y': False}, {'x': False, 'y': True}), # Top right corner (2, 3, 3, 4, {'x': False, 'y': False}, {'x': True, 'y': True}), # Centre (1, 2, 3, 4, {'x': False, 'y': False}, {'x': False, 'y': False}), # Left side (0, 2, 3, 4, {'x': True, 'y': False}, {'x': False, 'y': False}), # Right side (2, 2, 3, 4, {'x': False, 'y': False}, {'x': True, 'y': False}), # Bottom side (1, 0, 3, 4, {'x': False, 'y': True}, {'x': False, 'y': False}), # Top side (1, 3, 3, 4, {'x': False, 'y': False}, {'x': False, 'y': True}) ] _test_processor_layouts_doublenull_list = [ # 1d parallelization along y: # Bottom (0, 0, 1, 4, {'x': True, 'y': True}, {'x': True, 'y': False}), # Lower Middle (0, 1, 1, 4, {'x': True, 'y': False}, {'x': True, 'y': True}), # Upper Middle (0, 2, 1, 4, {'x': True, 'y': True}, {'x': True, 'y': False}), # Top (0, 3, 1, 4, {'x': True, 'y': False}, {'x': True, 'y': True}), # 2d parallelization: # Bottom left corner (0, 0, 3, 4, {'x': True, 'y': True}, {'x': False, 'y': False}), (1, 0, 3, 4, {'x': False, 'y': True}, {'x': False, 'y': False}), # Bottom right corner (2, 0, 3, 4, {'x': False, 'y': True}, {'x': True, 'y': False}), (0, 1, 3, 4, {'x': True, 'y': False}, {'x': False, 'y': True}), (1, 1, 3, 4, {'x': False, 'y': False}, {'x': False, 'y': True}), (2, 1, 3, 4, {'x': False, 'y': False}, {'x': True, 'y': True}), (0, 2, 3, 4, {'x': True, 'y': True}, {'x': False, 'y': False}), (1, 2, 3, 4, {'x': False, 'y': True}, {'x': False, 'y': False}), (2, 2, 3, 4, {'x': False, 'y': True}, {'x': True, 'y': False}), # Top left corner (0, 3, 3, 4, {'x': True, 'y': False}, {'x': False, 'y': True}), (1, 3, 3, 4, {'x': False, 'y': False}, {'x': False, 'y': True}), # Top right corner (2, 3, 3, 4, {'x': False, 'y': False}, {'x': True, 'y': True}) ] class TestTrim: def test_no_trim(self): ds = create_test_data(0) # Manually add filename - encoding normally added by xr.open_dataset ds.encoding['source'] = 'folder0/BOUT.dmp.0.nc' actual = _trim(ds, guards={}, keep_boundaries={}, nxpe=1, nype=1) xrt.assert_equal(actual, ds) def test_trim_guards(self): ds = create_test_data(0) # Manually add filename - encoding normally added by xr.open_dataset ds.encoding['source'] = 'folder0/BOUT.dmp.0.nc' actual = _trim(ds, guards={'time': 2}, keep_boundaries={}, nxpe=1, nype=1) selection = {'time': slice(2, -2)} expected = ds.isel(**selection) xrt.assert_equal(expected, actual) @pytest.mark.parametrize( "xproc, yproc, nxpe, nype, lower_boundaries, upper_boundaries", _test_processor_layouts_list) def test_infer_boundaries_2d_parallelization( self, xproc, yproc, nxpe, nype, lower_boundaries, upper_boundaries): """ Numbering scheme for nxpe=3, nype=4 y 9 10 11 ^ 6 7 8 | 3 4 5 | 0 1 2 -----> x """ ds = create_test_data(0) ds['jyseps2_1'] = 0 ds['jyseps1_2'] = 0 ds['PE_XIND'] = xproc ds['PE_YIND'] = yproc actual_lower_boundaries, actual_upper_boundaries = _infer_contains_boundaries( ds, nxpe, nype) assert actual_lower_boundaries == lower_boundaries assert actual_upper_boundaries == upper_boundaries @pytest.mark.parametrize( "xproc, yproc, nxpe, nype, lower_boundaries, upper_boundaries", _test_processor_layouts_doublenull_list) def test_infer_boundaries_2d_parallelization_doublenull( self, xproc, yproc, nxpe, nype, lower_boundaries, upper_boundaries): """ Numbering scheme for nxpe=3, nype=4 y 9 10 11 ^ 6 7 8 | 3 4 5 | 0 1 2 -----> x """ ds = create_test_data(0) ds['jyseps2_1'] = 3 ds['jyseps1_2'] = 11 ds['ny_inner'] = 8 ds['MYSUB'] = 4 ds['PE_XIND'] = xproc ds['PE_YIND'] = yproc actual_lower_boundaries, actual_upper_boundaries = _infer_contains_boundaries( ds, nxpe, nype) assert actual_lower_boundaries == lower_boundaries assert actual_upper_boundaries == upper_boundaries @pytest.mark.parametrize("xproc, yproc, nxpe, nype, lower_boundaries, upper_boundaries", _test_processor_layouts_list) def test_infer_boundaries_2d_parallelization_by_filenum( self, xproc, yproc, nxpe, nype, lower_boundaries, upper_boundaries): """ Numbering scheme for nxpe=3, nype=4 y 9 10 11 ^ 6 7 8 | 3 4 5 | 0 1 2 -----> x """ filenum = yproc*nxpe + xproc ds = create_test_data(0) ds['jyseps2_1'] = 0 ds['jyseps1_2'] = 0 ds.encoding['source'] = "folder0/BOUT.dmp." + str(filenum) + ".nc" actual_lower_boundaries, actual_upper_boundaries = _infer_contains_boundaries( ds, nxpe, nype) assert actual_lower_boundaries == lower_boundaries assert actual_upper_boundaries == upper_boundaries @pytest.mark.parametrize("xproc, yproc, nxpe, nype, lower_boundaries, upper_boundaries", _test_processor_layouts_doublenull_list) def test_infer_boundaries_2d_parallelization_doublenull_by_filenum( self, xproc, yproc, nxpe, nype, lower_boundaries, upper_boundaries): """ Numbering scheme for nxpe=3, nype=4 y 9 10 11 ^ 6 7 8 | 3 4 5 | 0 1 2 -----> x """ filenum = yproc*nxpe + xproc ds = create_test_data(0) ds['jyseps2_1'] = 3 ds['jyseps1_2'] = 11 ds['ny_inner'] = 8 ds['MYSUB'] = 4 ds.encoding['source'] = "folder0/BOUT.dmp." + str(filenum) + ".nc" actual_lower_boundaries, actual_upper_boundaries = _infer_contains_boundaries( ds, nxpe, nype) assert actual_lower_boundaries == lower_boundaries assert actual_upper_boundaries == upper_boundaries def test_keep_xboundaries(self): ds = create_test_data(0) ds = ds.rename({'dim2': 'x'}) # Manually add filename - encoding normally added by xr.open_dataset ds.encoding['source'] = 'folder0/BOUT.dmp.0.nc' ds['jyseps2_1'] = 8 ds['jyseps1_2'] = 8 actual = _trim(ds, guards={'x': 2}, keep_boundaries={'x': True}, nxpe=1, nype=1) expected = ds # Should be unchanged xrt.assert_equal(expected, actual) def test_keep_yboundaries(self): ds = create_test_data(0) ds = ds.rename({'dim2': 'y'}) # Manually add filename - encoding normally added by xr.open_dataset ds.encoding['source'] = 'folder0/BOUT.dmp.0.nc' ds['jyseps2_1'] = 8 ds['jyseps1_2'] = 8 actual = _trim(ds, guards={'y': 2}, keep_boundaries={'y': True}, nxpe=1, nype=1) expected = ds # Should be unchanged xrt.assert_equal(expected, actual) @pytest.mark.parametrize("filenum, lower, upper", [(0, True, False), (1, False, True), (2, True, False), (3, False, True)]) def test_keep_yboundaries_doublenull_by_filenum(self, filenum, lower, upper): ds = create_test_data(0) ds = ds.rename({'dim2': 'y'}) # Manually add filename - encoding normally added by xr.open_dataset ds.encoding['source'] = 'folder0/BOUT.dmp.'+str(filenum)+'.nc' ds['jyseps2_1'] = 3 ds['jyseps1_2'] = 11 ds['ny_inner'] = 8 ds['MYSUB'] = 4 actual = _trim(ds, guards={'y': 2}, keep_boundaries={'y': True}, nxpe=1, nype=4) expected = ds # Should be unchanged if not lower: expected = expected.isel(y=slice(2, None, None)) if not upper: expected = expected.isel(y=slice(None, -2, None)) xrt.assert_equal(expected, actual) def test_trim_timing_info(self): ds = create_test_data(0) from xbout.load import _BOUT_PER_PROC_VARIABLES # remove a couple of entries from _BOUT_PER_PROC_VARIABLES so we test that _trim # does not fail if not all of them are present _BOUT_PER_PROC_VARIABLES = _BOUT_PER_PROC_VARIABLES[:-2] for v in _BOUT_PER_PROC_VARIABLES: ds[v] = 42. ds = _trim(ds, guards={}, keep_boundaries={}, nxpe=1, nype=1) expected = create_test_data(0) xrt.assert_equal(ds, expected) ```
{ "source": "johnoneil/arib", "score": 3 }
#### File: arib/mpeg/ts.py ```python import os import sys import argparse import struct # memorymap file on 64 bit systems import mmap class ES: """ very minimalistic Elementary Stream handling """ STREAM_ID_INDEX = 3 @staticmethod def pes_packet_check_formedness(payload): """ Check formedness of pes packet and indicate we have the entire payload """ b1 = ord(payload[0]) b2 = ord(payload[1]) b3 = ord(payload[2]) b4 = ord(payload[3]) if b1 != 0 or b2 != 0 or b3 != 1: return False return True @staticmethod def get_pes_stream_id(payload): return ord(payload[ES.STREAM_ID_INDEX]) @staticmethod def get_pes_packet_length(payload): if len(payload)<6: return 0 # we add 6 for start code, stream id and pes packet length itself return struct.unpack('>H', payload[4:6])[0] + 6 @staticmethod def get_pes_flags(payload): return struct.unpack('>H', payload[6:8])[0] @staticmethod def get_pes_header_length(payload): # 6 is initial prefix, streamid and then pes packet length # 3 is for header flags and header size value # value at byte 8 gives the remaining bytes in the header including stuffing if len(payload) < 9: return 0 return 6 + 3 + ord(payload[8]) @staticmethod def get_pes_payload_length(payload): return ES.get_pes_packet_length(payload) - ES.get_pes_header_length(payload) @staticmethod def get_pes_payload(payload): payload_start = ES.get_pes_header_length(payload) return payload[payload_start:] @staticmethod def pes_packet_complete(payload): pes_packet_len = ES.get_pes_packet_length(payload) payload_len = len(payload) return pes_packet_len == payload_len class TS(object): """ very minimalistic Transport stream handling """ PACKET_SIZE = 188 # Sync byte SYNC_BYTE_INDEX = 0 SYNC_BYTE = 'G' # Transport Error Indicator (TEI) TEI_INDEX = 1 TEI_MASK = 0x80 # Payload Unit Start Indicator (PUSI) PUSI_INDEX = 1 PUSI_MASK = 0x40 #Packt ID (PID) PID_START_INDEX = 1 PID_LENGTH_BYTES = 2 PID_MASK = 0x1fff # Transport Scrambling Control (TSC) TSC_INDEX = 3 TSC_MASK = 0xc0 # Adaptation field control ADAPTATION_FIELD_CONTROL_INDEX = 3 ADAPTATION_FIELD_CONTROL_MASK = 0x30 NO_ADAPTATION_FIELD = 0b01 ADAPTATION_FIELD_ONLY = 0b10 ADAPTATION_FIELD_AND_PAYLOAD = 0b11 ADAPTATION_FIELD_RESERVED = 0b00 # Continuity counter CONTINUITY_COUNTER_INDEX = 3 CONTINUITY_COUNTER_MASK = 0x0f # Adaptation field data (if present) ADAPTATION_FIELD_LENGTH_INDEX = 4 ADAPTATION_FIELD_DATA_INDEX = 5 # Program Clock Reference (PCR) # Present flag tagged in ADAPTATION_FIELD_DATA_INDEX byte PCR_FLAG_MASK = 0x10 PCR_START_INDEX = 6 PCR_SIZE_BYTES = 6 @staticmethod def next_packet(filename, memorymap=True): """ Generator to remove a series of TS packets from a TS file """ with open(filename, 'rb') as f: #memory map the file if necessary (prob requires 64 bit systems) _file = f if memorymap: _file = mmap.mmap(f.fileno(), 0, prot=mmap.PROT_READ) while True: packet = _file.read(TS.PACKET_SIZE) if packet: # first byte SHOULD be the sync byte # but if it isn't find one. if packet[0] != TS.SYNC_BYTE: start_byte = 0 print packet[0] for i in range(start_byte, TS.PACKET_SIZE): if packet[i] == TS.SYNC_BYTE: start_byte = i break # didn't find a new start? FAIL if start_byte == 0: raise Exception("failure to find sync byte in ts packet size.") continue remainder = _file.read(TS.PACKET_SIZE - start_byte) packet = packet[start_byte:] + remainder yield packet else: break @staticmethod def check_packet_formedness(packet): """Check some features of this packet and see if it's well formed or not """ if len(packet) != TS.PACKET_SIZE: raise Exception("Provided input packet string not of correct size") if packet[0] != TS.SYNC_BYTE: raise Exception("Provided input packet does not begin with correct sync byte.") @staticmethod def get_transport_error_indicator(packet): return (ord(packet[TS.TEI_INDEX]) & TS.TEI_MASK) != 0 @staticmethod def get_payload_start(packet): return (ord(packet[TS.PUSI_INDEX]) & TS.PUSI_MASK) != 0 @staticmethod def get_pid(packet): """Given a stringified MPEG TS packet, extract the PID value and return it as a simple integer value. Do this as quickly as possible for performance """ return ((ord(packet[TS.PID_START_INDEX]) & 0x1f)<<8) | ord(packet[TS.PID_START_INDEX+1]) @staticmethod def get_tsc(packet): """get value of Transport Scrambling Control indicato """ return (ord(packet[TS.TSC_INDEX]) & TS.TSC_MASK) >> 6 @staticmethod def get_adaptation_field_control(packet): """ get the adaptation field control value for this packet """ return (ord(packet[TS.ADAPTATION_FIELD_CONTROL_INDEX]) & TS.ADAPTATION_FIELD_CONTROL_MASK) >> 4 @staticmethod def get_continuity_counter(packet): """ Get the continuity counter value for this packet """ return ord(packet[TS.CONTINUITY_COUNTER_INDEX]) & TS.CONTINUITY_COUNTER_MASK @staticmethod def get_adaptation_field_length(packet): """ Get the length of the adaptation field for this packet. Can return 0 if none is present. """ if TS.get_adaptation_field_control(packet) == TS.NO_ADAPTATION_FIELD: return 0 #we add one byte here for the adaptation field length data itself return ord(packet[TS.ADAPTATION_FIELD_LENGTH_INDEX]) + 1 @staticmethod def adaptation_field_present(packet): return TS.get_adaptation_field_control(packet) != TS.NO_ADAPTATION_FIELD @staticmethod def get_pcr(packet): """ Get the Program Clock Reference for this packet if present. Can return 0 if data not present. """ if not TS.adaptation_field_present(packet): return 0 if not ord(packet[TS.ADAPTATION_FIELD_DATA_INDEX]) & TS.PCR_FLAG_MASK: return 0 b1 = struct.unpack('>L', packet[TS.PCR_START_INDEX:TS.PCR_START_INDEX+4])[0] b2 = struct.unpack('>H', packet[TS.PCR_START_INDEX+4:TS.PCR_START_INDEX+6])[0] base = (b1 << 1) | (b2 >> 15) # 33 bit base extension = b2 & 0x1ff # 9 bit extension # TODO: proper extension handling as per the spec # returning the base gives us good results currently #return base * 300 + extension return base @staticmethod def pcr_delta_time_ms(pcr_t1, pcr_t2, offset = 0): """Return a floating point time in milliseconds representing the Difference in time between two PCR timestamps """ return float(pcr_t2-pcr_t1)/90000.0 + offset @staticmethod def get_payload_length(packet): """Payload length from an 188 byte ts packet """ adaptation_field_len = TS.get_adaptation_field_length(packet) return 188 - 4 - adaptation_field_len @staticmethod def get_payload(packet): """ return a byte array deep copy of 188 byte ts packet payload """ #payload_len = get_payload_length(packet) adaptation_field_len = TS.get_adaptation_field_length(packet) header_size = 4 + adaptation_field_len return packet[header_size:] def __init__(self, filename): self._filename = filename self._total_filesize = os.path.getsize(filename) self._read_size = 0 self.Progress = None self.OnTSPacket = None self.OnESPacket = None self.OnTSPacketError = None self.OnESPacketError = None self._elementary_streams = {} def Parse(self): """ Go through the .ts file, and invoke a callback on each TS packet and ES packet Also invoke progress callbacks and packet error callbacks as appropriate """ prev_percent_read = 0 for packet in TS.next_packet(self._filename): #check_packet_formedness(packet) pei = TS.get_transport_error_indicator(packet) pusi = TS.get_payload_start(packet) pid = TS.get_pid(packet) tsc = TS.get_tsc(packet) # per .ts packet handler if self.OnTSPacket: self.OnTSPacket(packet) # Update a progress callback self._read_size += TS.PACKET_SIZE percent_read = ((self._read_size / float(self._total_filesize)) * 100) new_percent_read = int(percent_read * 100) if new_percent_read != prev_percent_read and self.Progress: self.Progress(self._read_size, self._total_filesize, percent_read) prev_percent_read = new_percent_read adaptation_field_control = TS.get_adaptation_field_control(packet) continuity_counter = TS.get_continuity_counter(packet) # put together PES from payloads payload = TS.get_payload(packet) if pusi == True: if not ES.pes_packet_check_formedness(payload): if pid in self._elementary_streams: self._elementary_streams[pid] = None continue pes_id = ES.get_pes_stream_id(payload) self._elementary_streams[pid] = payload else: if pid in self._elementary_streams: # TODO: check packet sequence counter if not self._elementary_streams[pid]: self._elementary_streams[pid] = "" self._elementary_streams[pid] += payload else: # TODO: throw. this situaiton means out of order packets pass if pid in self._elementary_streams and ES.pes_packet_complete(self._elementary_streams[pid]): # TODO: handle packet contents here (callback) es = self._elementary_streams[pid] if self.OnESPacket: header_size = ES.get_pes_header_length(es) self.OnESPacket(pid, es, header_size) # GLOBALS TO KEEP TRACK OF STATE initial_timestamp = 0 elapsed_time_s = 0 def OnProgress(bytes_read, total_bytes, percent): """ Callback method invoked on a change in file progress percent (not every packet) Meant as a lower frequency callback to update onscreen progress percent or something. :param bytes_read: :param total_bytes: :param percent: :return: """ sys.stdout.write("progress: %.2f%% \r" % (percent)) sys.stdout.flush() def OnTSPacket(packet): """ Callback invoked on the successful extraction of a single TS packet from a ts file :param packet: The entire packet (header and payload) as a string :return: None """ global initial_timestamp #pcr (program count record) can be used to calculate elapsed time in seconds # we've read through the .ts file pcr = TS.get_pcr(packet) current_timestamp = pcr initial_timestamp = initial_timestamp or current_timestamp delta = current_timestamp - initial_timestamp elapsed_time_s = float(delta)/90000.0 def OnESPacket(current_pid, packet, header_size): """ Callback invoked on the successful extraction of an Elementary Stream packet from the Transport Stream file packets. :param current_pid: The TS Program ID for the TS packets this info originated from :param packet: The ENTIRE ES packet, header and payload-- which may have been assembled from multiple TS packet payloads. :param header_size: Size of the header in bytes (characters in the string). Provided to more easily separate the packet into header and payload. :return: None """ pass def main(): parser = argparse.ArgumentParser(description='Draw CC Packets from MPG2 Transport Stream file.') parser.add_argument('infile', help='Input filename (MPEG2 Transport Stream File)', type=str) args = parser.parse_args() infilename = args.infile if not os.path.exists(infilename): print 'Input filename :' + infilename + " does not exist." os.exit(-1) ts = TS(infilename) ts.Progress = OnProgress ts.OnTSPacket = OnTSPacket ts.OnESPacket = OnESPacket ts.Parse() if __name__ == "__main__": main() ```
{ "source": "johnoneill98/idem-azurerm", "score": 2 }
#### File: azurerm/compute/virtual_machine_extension.py ```python from __future__ import absolute_import import logging # Azure libs HAS_LIBS = False try: import azure.mgmt.compute.models # pylint: disable=unused-import from msrestazure.azure_exceptions import CloudError HAS_LIBS = True except ImportError: pass __func_alias__ = {"list_": "list"} log = logging.getLogger(__name__) async def create_or_update( hub, ctx, name, vm_name, resource_group, location, publisher, extension_type, version, settings, **kwargs, ): """ .. versionadded:: 2.0.0 The operation to create or update the extension. :param name: The name of the virtual machine extension. :param vm_name: The name of the virtual machine where the extension should be created or updated. :param resource_group: The name of the resource group. :param location: Resource location. :param publisher: The publisher of the extension. :param extension_type: Specifies the type of the extension; an example is "CustomScriptExtension". :param version: Specifies the version of the script handler. :param settings: A dictionary representing the public settings for the extension. This dictionary will be utilized as JSON by the SDK operation.. CLI Example: .. code-block:: bash azurerm.compute.virtual_machine_extension.create_or_update test_name test_vm test_group test_loc \ test_publisher test_type test_version test_settings """ result = {} compconn = await hub.exec.azurerm.utils.get_client(ctx, "compute", **kwargs) try: paramsmodel = await hub.exec.azurerm.utils.create_object_model( "compute", "VirtualMachineExtension", location=location, settings=settings, publisher=publisher, virtual_machine_extension_type=extension_type, type_handler_version=version, **kwargs, ) except TypeError as exc: result = { "error": "The object model could not be built. ({0})".format(str(exc)) } return result try: extension = compconn.virtual_machine_extensions.create_or_update( vm_extension_name=name, vm_name=vm_name, resource_group_name=resource_group, extension_parameters=paramsmodel, ) extension.wait() result = extension.result().as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("compute", str(exc), **kwargs) result = {"error": str(exc)} return result async def delete(hub, ctx, name, vm_name, resource_group, **kwargs): """ .. versionadded:: 2.0.0 The operation to delete the extension. :param name: The name of the virtual machine extension. :param vm_name: The name of the virtual machine where the extension should be deleted. :param resource_group: The name of the resource group. CLI Example: .. code-block:: bash azurerm.compute.virtual_machine_extension.delete test_name test_vm test_group """ result = False compconn = await hub.exec.azurerm.utils.get_client(ctx, "compute", **kwargs) try: extension = compconn.virtual_machine_extensions.delete( vm_extension_name=name, vm_name=vm_name, resource_group_name=resource_group ) extension.wait() result = True except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("compute", str(exc), **kwargs) result = {"error": str(exc)} return result async def get(hub, ctx, name, vm_name, resource_group, **kwargs): """ .. versionadded:: 2.0.0 The operation to get the extension. :param name: The name of the virtual machine extension. :param vm_name: The name of the virtual machine containing the extension. :param resource_group: The name of the resource group. CLI Example: .. code-block:: bash azurerm.compute.virtual_machine_extension.get test_name test_vm test_group """ result = {} compconn = await hub.exec.azurerm.utils.get_client(ctx, "compute", **kwargs) try: extension = compconn.virtual_machine_extensions.get( vm_extension_name=name, vm_name=vm_name, resource_group_name=resource_group ) result = extension.as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("compute", str(exc), **kwargs) result = {"error": str(exc)} return result async def list_(hub, ctx, vm_name, resource_group, **kwargs): """ .. versionadded:: 2.0.0 The operation to get all extensions of a Virtual Machine. :param vm_name: The name of the virtual machine containing the extension. :param resource_group: The name of the resource group. CLI Example: .. code-block:: bash azurerm.compute.virtual_machine_extension.list test_vm test_group """ result = {} compconn = await hub.exec.azurerm.utils.get_client(ctx, "compute", **kwargs) try: extensions = compconn.virtual_machine_extensions.list( vm_name=vm_name, resource_group_name=resource_group ) extensions_as_list = extensions.as_dict().get("value", {}) for extension in extensions_as_list: result[extension["name"]] = extension except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("compute", str(exc), **kwargs) result = {"error": str(exc)} return result ``` #### File: azurerm/graphrbac/client.py ```python import logging # Azure libs HAS_LIBS = False try: from azure.graphrbac import GraphRbacManagementClient HAS_LIBS = True except ImportError: pass log = logging.getLogger(__name__) def __virtual__(hub): """ Only load when Azure SDK imports successfully. """ return HAS_LIBS async def get(hub, ctx, **kwargs): """ .. versionadded:: 2.4.0 Load the Graph RBAC Management client and return a GraphRbacManagementClient object. """ ( credentials, subscription_id, cloud_env, ) = await hub.exec.azurerm.utils.determine_auth(ctx, **kwargs) graph_client = GraphRbacManagementClient( credentials=credentials, tenant_id=credentials._tenant ) return graph_client ``` #### File: azurerm/monitor/diagnostic_setting.py ```python from __future__ import absolute_import import logging # Azure libs HAS_LIBS = False try: import azure.mgmt.monitor.models # pylint: disable=unused-import from msrest.exceptions import SerializationError from msrestazure.azure_exceptions import CloudError from azure.mgmt.monitor.models import ErrorResponseException HAS_LIBS = True except ImportError: pass __func_alias__ = {"list_": "list"} log = logging.getLogger(__name__) async def create_or_update( hub, ctx, name, resource_uri, metrics, logs, workspace_id=None, storage_account_id=None, service_bus_rule_id=None, event_hub_authorization_rule_id=None, event_hub_name=None, **kwargs, ): """ .. versionadded:: 1.0.0 Create or update diagnostic settings for the specified resource. At least one destination for the diagnostic setting logs is required. Any combination of the following destinations is acceptable: 1. Archive the diagnostic settings to a stroage account. This would require the storage_account_id param. 2. Stream the diagnostic settings to an event hub. This would require the event_hub_name and event_hub_authorization_rule_id params. 3. Send the diagnostic settings to Log Analytics. This would require the workspace_id param. :param name: The name of the diagnostic setting. :param resource_uri: The identifier of the resource. :param metrics: A list of dictionaries representing valid MetricSettings objects. If this list is empty, then the list passed as the logs parameter must have at least one element. Valid parameters are: - ``category``: Name of a diagnostic metric category for the resource type this setting is applied to. To obtain the list of diagnostic metric categories for a resource, first perform a GET diagnostic setting operation. This is a required parameter. - ``enabled``: A value indicating whether this category is enabled. This is a required parameter. - ``time_grain``: An optional timegrain of the metric in ISO-8601 format. - ``retention_policy``: An optional dictionary representing a RetentionPolicy object for the specified category. The default retention policy for a diagnostic setting is {'enabled': False, 'days': 0}. Required parameters include: - ``days``: The number of days for the retention in days. A value of 0 will retain the events indefinitely. - ``enabled``: A value indicating whether the retention policy is enabled. :param logs: A list of dictionaries representing valid LogSettings objects. If this list is empty, then the list passed as the metrics parameter must have at least one element. Valid parameters are: - ``category``: Name of a diagnostic log category for the resource type this setting is applied to. To obtain the list of diagnostic log categories for a resource, first perform a GET diagnostic setting operation. This is a required parameter. - ``enabled``: A value indicating whether this category is enabled. This is a required parameter. - ``retention_policy``: An optional dictionary representing a RetentionPolicy object for the specified category. The default retention policy for a diagnostic setting is {'enabled': False, 'days': 0}. Required parameters include: - ``days``: The number of days for the retention in days. A value of 0 will retain the events indefinitely. - ``enabled``: A value indicating whether the retention policy is enabled. :param workspace_id: The workspace (resource) ID for the Log Analytics workspace to which you would like to send Diagnostic Logs. :param storage_account_id: The resource ID of the storage account to which you would like to send Diagnostic Logs. :param service_bus_rule_id: The service bus rule ID of the diagnostic setting. This is here to maintain backwards compatibility. :param event_hub_authorization_rule_id: The resource ID for the event hub authorization rule. :param event_hub_name: The name of the event hub. If none is specified, the default event hub will be selected. CLI Example: .. code-block:: bash azurerm.monitor.diagnostic_setting.create_or_update test_name test_uri test_metrics test_logs \ test_destination """ result = {} moniconn = await hub.exec.azurerm.utils.get_client(ctx, "monitor", **kwargs) try: diagmodel = await hub.exec.azurerm.utils.create_object_model( "monitor", "DiagnosticSettingsResource", metrics=metrics, logs=logs, workspace_id=workspace_id, storage_account_id=storage_account_id, service_bus_rule_id=service_bus_rule_id, event_hub_authorization_rule_id=event_hub_authorization_rule_id, event_hub_name=event_hub_name, **kwargs, ) except TypeError as exc: result = { "error": "The object model could not be built. ({0})".format(str(exc)) } return result try: diag = moniconn.diagnostic_settings.create_or_update( name=name, resource_uri=resource_uri, parameters=diagmodel ) result = diag.as_dict() except (CloudError, ErrorResponseException) as exc: await hub.exec.azurerm.utils.log_cloud_error("monitor", str(exc), **kwargs) result = {"error": str(exc)} return result async def delete(hub, ctx, name, resource_uri, **kwargs): """ .. versionadded:: 1.0.0 Deletes existing diagnostic settings for the specified resource. :param name: The name of the diagnostic setting. :param resource_uri: The identifier of the resource. CLI Example: .. code-block:: bash azurerm.monitor.diagnostic_setting.delete test_name test_uri """ result = False moniconn = await hub.exec.azurerm.utils.get_client(ctx, "monitor", **kwargs) try: diag = moniconn.diagnostic_settings.delete( name=name, resource_uri=resource_uri, **kwargs ) result = True except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("monitor", str(exc), **kwargs) result = {"error": str(exc)} return result async def get(hub, ctx, name, resource_uri, **kwargs): """ .. versionadded:: 1.0.0 Gets the active diagnostic settings for the specified resource. :param name: The name of the diagnostic setting. :param resource_uri: The identifier of the resource. CLI Example: .. code-block:: bash azurerm.monitor.diagnostic_setting.get test_name test_uri """ result = {} moniconn = await hub.exec.azurerm.utils.get_client(ctx, "monitor", **kwargs) try: diag = moniconn.diagnostic_settings.get( name=name, resource_uri=resource_uri, **kwargs ) result = diag.as_dict() except (CloudError, ErrorResponseException) as exc: await hub.exec.azurerm.utils.log_cloud_error("monitor", str(exc), **kwargs) result = {"error": str(exc)} return result async def list_(hub, ctx, resource_uri, **kwargs): """ .. versionadded:: 1.0.0 Gets the active diagnostic settings list for the specified resource. :param resource_uri: The identifier of the resource. CLI Example: .. code-block:: bash azurerm.monitor.diagnostic_setting.list test_uri """ result = {} moniconn = await hub.exec.azurerm.utils.get_client(ctx, "monitor", **kwargs) try: diag = moniconn.diagnostic_settings.list(resource_uri=resource_uri, **kwargs) values = diag.as_dict().get("value", []) for value in values: result[value["name"]] = value except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("monitor", str(exc), **kwargs) result = {"error": str(exc)} return result ``` #### File: azurerm/network/local_network_gateway.py ```python from __future__ import absolute_import import logging try: from six.moves import range as six_range except ImportError: six_range = range # Azure libs HAS_LIBS = False try: import azure.mgmt.network.models # pylint: disable=unused-import from msrestazure.tools import is_valid_resource_id, parse_resource_id from msrest.exceptions import SerializationError from msrestazure.azure_exceptions import CloudError HAS_LIBS = True except ImportError: pass __func_alias__ = {"list_": "list"} log = logging.getLogger(__name__) async def create_or_update( hub, ctx, name, resource_group, gateway_ip_address, **kwargs ): """ .. versionadded:: 1.0.0 Creates or updates a local network gateway object in the specified resource group. :param name: The name of the local network gateway object to be created or updated. :param resource_group: The name of the resource group associated with the local network gateway. :param gateway_ip_address: IP address of the local network gateway. CLI Example: .. code-block:: bash azurerm.network.local_network_gateway.create_or_update test_name test_group test_ip """ if "location" not in kwargs: rg_props = await hub.exec.azurerm.resource.group.get( ctx, resource_group, **kwargs ) if "error" in rg_props: log.error("Unable to determine location from resource group specified.") return { "error": "Unable to determine location from resource group specified." } kwargs["location"] = rg_props["location"] netconn = await hub.exec.azurerm.utils.get_client(ctx, "network", **kwargs) try: gatewaymodel = await hub.exec.azurerm.utils.create_object_model( "network", "LocalNetworkGateway", gateway_ip_address=gateway_ip_address, **kwargs, ) except TypeError as exc: result = { "error": "The object model could not be built. ({0})".format(str(exc)) } return result try: gateway = netconn.local_network_gateways.create_or_update( local_network_gateway_name=name, resource_group_name=resource_group, parameters=gatewaymodel, ) gateway.wait() gateway_result = gateway.result() result = gateway_result.as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("network", str(exc), **kwargs) result = {"error": str(exc)} except SerializationError as exc: result = { "error": "The object model could not be parsed. ({0})".format(str(exc)) } return result async def get(hub, ctx, name, resource_group, **kwargs): """ .. versionadded:: 1.0.0 Gets the details of a specific local network gateway within a specified resource group. :param name: The name of the local network gateway. :param resource_group: The name of the resource group. CLI Example: .. code-block:: bash azurerm.network.local_network_gateway.get test_name test_group """ netconn = await hub.exec.azurerm.utils.get_client(ctx, "network", **kwargs) try: gateway = netconn.local_network_gateways.get( resource_group_name=resource_group, local_network_gateway_name=name ) result = gateway.as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("network", str(exc), **kwargs) result = {"error": str(exc)} return result async def delete(hub, ctx, name, resource_group, **kwargs): """ .. versionadded:: 1.0.0 Deletes the specified local network gateway. :param name: The name of the local network gateway that will be deleted. :param resource_group: The name of the resource group. CLI Example: .. code-block:: bash azurerm.network.local_network_gateway.delete test_name test_group """ result = False netconn = await hub.exec.azurerm.utils.get_client(ctx, "network", **kwargs) try: gateway = netconn.local_network_gateways.delete( resource_group_name=resource_group, local_network_gateway_name=name ) gateway.wait() result = True except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("network", str(exc), **kwargs) return result async def list_(hub, ctx, resource_group, **kwargs): """ .. versionadded:: 1.0.0 Lists all local network gateways within a resource group. :param resource_group: The name of the resource group. CLI Example: .. code-block:: bash azurerm.network.local_network_gateway.list test_group """ result = {} netconn = await hub.exec.azurerm.utils.get_client(ctx, "network", **kwargs) try: gateways = await hub.exec.azurerm.utils.paged_object_to_list( netconn.local_network_gateways.list(resource_group_name=resource_group) ) for gateway in gateways: result[gateway["name"]] = gateway except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("network", str(exc), **kwargs) result = {"error": str(exc)} return result ``` #### File: azurerm/postgresql/database.py ```python from __future__ import absolute_import import logging # Azure libs HAS_LIBS = False try: import azure.mgmt.rdbms.postgresql.models # pylint: disable=unused-import from msrestazure.azure_exceptions import CloudError from msrest.exceptions import ValidationError HAS_LIBS = True except ImportError: pass log = logging.getLogger(__name__) async def create_or_update( hub, ctx, name, server_name, resource_group, charset=None, collation=None, **kwargs ): """ .. versionadded:: 2.0.0 Creates a new database or updates an existing database. :param name: The name of the database. :param server_name: The name of the server. :param resource_group: The name of the resource group. The name is case insensitive. :param charset: The charset of the database. Defaults to None. :param collation: The collation of the database. Defaults to None. CLI Example: .. code-block:: bash azurerm.postgresql.database.create_or_update test_name test_server test_group test_charset test_collation """ result = {} postconn = await hub.exec.azurerm.utils.get_client(ctx, "postgresql", **kwargs) try: database = postconn.databases.create_or_update( database_name=name, server_name=server_name, resource_group_name=resource_group, charset=charset, collation=collation, ) database.wait() result = database.result().as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("postgresql", str(exc), **kwargs) result = {"error": str(exc)} return result async def delete(hub, ctx, name, server_name, resource_group, **kwargs): """ .. versionadded:: 2.0.0 Deletes a database. :param name: The name of the database. :param server_name: The name of the server. :param resource_group: The name of the resource group. The name is case insensitive. CLI Example: .. code-block:: bash azurerm.postgresql.database.delete test_name test_server test_group """ result = False postconn = await hub.exec.azurerm.utils.get_client(ctx, "postgresql", **kwargs) try: database = postconn.databases.delete( database_name=name, server_name=server_name, resource_group_name=resource_group, ) database.wait() result = True except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("postgresql", str(exc), **kwargs) result = {"error": str(exc)} return result async def get(hub, ctx, name, server_name, resource_group, **kwargs): """ .. versionadded:: 2.0.0 Gets information about a database. :param name: The name of the database. :param server_name: The name of the server. :param resource_group: The name of the resource group. The name is case insensitive. CLI Example: .. code-block:: bash azurerm.postgresql.database.get test_name test_server test_group """ result = {} postconn = await hub.exec.azurerm.utils.get_client(ctx, "postgresql", **kwargs) try: database = postconn.databases.get( database_name=name, server_name=server_name, resource_group_name=resource_group, ) result = database.as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("postgresql", str(exc), **kwargs) result = {"error": str(exc)} return result async def list_by_server(hub, ctx, server_name, resource_group, **kwargs): """ .. versionadded:: 2.0.0 List all the databases in a given server. :param server_name: The name of the server. :param resource_group: The name of the resource group. The name is case insensitive. CLI Example: .. code-block:: bash azurerm.postgresql.database.list_by_server test_server test_group """ result = {} postconn = await hub.exec.azurerm.utils.get_client(ctx, "postgresql", **kwargs) try: databases = await hub.exec.azurerm.utils.paged_object_to_list( postconn.databases.list_by_server( server_name=server_name, resource_group_name=resource_group ) ) for database in databases: result[database["name"]] = database except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("postgresql", str(exc), **kwargs) result = {"error": str(exc)} return result ``` #### File: azurerm/redis/operations.py ```python from __future__ import absolute_import import logging # Azure libs HAS_LIBS = False try: import azure.mgmt.network.models # pylint: disable=unused-import from msrest.exceptions import SerializationError from msrestazure.azure_exceptions import CloudError HAS_LIBS = True except ImportError: pass __func_alias__ = {"list_": "list"} log = logging.getLogger(__name__) async def check_name_availability(hub, ctx, name, **kwargs): """ .. versionadded:: 2.0.0 Checks that the redis cache name is valid and is not already in use. :param name: The name of the Redis cache to check the availability of CLI Example: .. code-block:: bash azurerm.redis.operations.check_name_availability test_name """ result = False redconn = await hub.exec.azurerm.utils.get_client(ctx, "redis", **kwargs) try: avail = redconn.redis.check_name_availability( name=name, type="Microsoft.Cache/redis", ) if avail is None: result = True except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("redis", str(exc), **kwargs) result = {"error": str(exc)} return result async def create( hub, ctx, name, resource_group, location, sku, redis_configuration=None, enable_non_ssl_port=False, tenant_settings=None, shard_count=None, minimum_tls_version=None, subnet_id=None, static_ip=None, zones=None, **kwargs, ): """ .. versionadded:: 2.0.0 Create or replace (overwrite/recreate, with potential downtime) an existing Redis cache. :param name: The name of the Redis cache. :param resource_group: The name of the resource group. :param location: The geo-location where the resource lives. :param sku: A dictionary representing the SKU of the Redis cache to deploy. Required parameters include: - ``name``: The type of Redis cache to deploy. Possible values include: 'Basic', 'Standard', and 'Premium'. - ``family``: The SKU family to use. Possible values include 'C' for Basic/Standard and 'P' for Premium. - ``capacity``: The size of the Redis cache to deploy. Possible values include 0, 1, 2, 3, 4, 5, and 6 for the C (Basic/Standard) family and 1, 2, 3, and 4 for the P (Premium) family. :param redis_configuration: A dictionary of string key-value pairs that represent all Redis Settings. Some possible keys include: rdb-backup-enabled, rdb-storage-connection-string, rdb-backup-frequency, maxmemory-delta, maxmemory-policy, notify-keyspace-events, maxmemory-samples, slowlog-log-slower-than, slowlog-max-len, list-max-ziplist-entries, list-max-ziplist-value, hash-max-ziplist-entries, hash-max-ziplist-value, set-max-intset-entries, zset-max-ziplist-entries, zset-max-ziplist-value, and more. :param enable_non_ssl_port: Specifies whether the non-ssl Redis server port (6379) is enabled. Defaults to False. :param tenant_settings: A dictionary of tenant settings. :param shard_count: The number of shards to be created on a Premium Cluster Cache. :param minimum_tls_version: The specified TLS version (or higher) that clients are required to use. Possible values include: '1.0', '1.1', and '1.2'. :param subnet_id: The full resource ID of a subnet in a virtual network to deploy the Redis cache in. Example format: /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/Microsoft.{Network|ClassicNetwork}/VirtualNetworks/vnet1/subnets/subnet1 :param static_ip: Static IP address. Required when deploying a Redis cache inside an existing Azure Virtual Network. :param zones: A list of availability zones denoting where the resource needs to come from. CLI Example: .. code-block:: bash azurerm.redis.operations.create test_name test_rg test_location test_sku """ redconn = await hub.exec.azurerm.utils.get_client(ctx, "redis", **kwargs) try: paramsmodel = await hub.exec.azurerm.utils.create_object_model( "redis", "RedisCreateParameters", sku=sku, location=location, redis_configuration=redis_configuration, enable_non_ssl_port=enable_non_ssl_port, tenant_settings=tenant_settings, shard_count=shard_count, minimum_tls_version=minimum_tls_version, subnet_id=subnet_id, static_ip=static_ip, zones=zones, **kwargs, ) except TypeError as exc: result = { "error": "The object model could not be built. ({0})".format(str(exc)) } return result try: cache = redconn.redis.create( name=name, resource_group_name=resource_group, parameters=paramsmodel ) result = cache.result().as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("redis", str(exc), **kwargs) result = {"error": str(exc)} except SerializationError as exc: result = { "error": "The object model could not be parsed. ({0})".format(str(exc)) } return result async def delete(hub, ctx, name, resource_group, **kwargs): """ .. versionadded:: 2.0.0 Deletes a Redis cache. :param name: The name of the Redis cache. :param resource_group: The name of the resource group. CLI Example: .. code-block:: bash azurerm.redis.operations.delete test_name test_rg """ result = False redconn = await hub.exec.azurerm.utils.get_client(ctx, "redis", **kwargs) try: cache = redconn.redis.delete(name=name, resource_group_name=resource_group) result = True except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("redis", str(exc), **kwargs) return result async def export_data( hub, ctx, name, resource_group, prefix, container, file_format=None, **kwargs ): """ .. versionadded:: 2.0.0 Export data from the redis cache to blobs in a container. :param name: The name of the Redis cache. :param resource_group: The name of the resource group. :param prefix: The prefix to use for exported files. :param container: The name of the container to export to. :param file_format: An optional file format. CLI Example: .. code-block:: bash azurerm.redis.operations.export_data test_name test_rg test_prefix test_container """ result = {} redconn = await hub.exec.azurerm.utils.get_client(ctx, "redis", **kwargs) # Create a ExportRDBParameters object try: paramsmodel = await hub.exec.azurerm.utils.create_object_model( "redis", "ExportRDBParameters", prefix=prefix, container=container, format=file_format, ) except TypeError as exc: result = { "error": "The object model could not be built. ({0})".format(str(exc)) } return result try: cache = redconn.redis.export_data( name=name, resource_group_name=resource_group, parameters=paramsmodel ) result = cache.result().as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("redis", str(exc), **kwargs) result = {"error": str(exc)} return result async def force_reboot( hub, ctx, name, resource_group, reboot_type, shard_id=None, **kwargs ): """ .. versionadded:: 2.0.0 Reboot specified Redis node(s). This operation requires write permission to the cache resource. There can be potential data loss. :param name: The name of the redis cache. :param resource_group: The name of the resource group. :param reboot_type: Which Redis node(s) to reboot. Depending on this value data loss is possible. Possible values include: 'PrimaryNode', 'SecondaryNode', 'AllNodes'. :param shard_id: If clustering is enabled, the ID of the shard to be rebooted. CLI Example: .. code-block:: bash azurerm.redis.operations.force_reboot test_name test_rg test_type test_id """ result = {} redconn = await hub.exec.azurerm.utils.get_client(ctx, "redis", **kwargs) try: cache = redconn.redis.force_reboot( name=name, resource_group_name=resource_group, reboot_type=reboot_type, shard_id=shard_id, ) result = cache.as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("redis", str(exc), **kwargs) result = {"error": str(exc)} return result async def get(hub, ctx, name, resource_group, **kwargs): """ .. versionadded:: 2.0.0 Gets a Redis cache (resource description). :param name: The name of the Redis cache. :param resource_group: The name of the resource group. CLI Example: .. code-block:: bash azurerm.redis.operations.get test_name test_rg """ result = {} redconn = await hub.exec.azurerm.utils.get_client(ctx, "redis", **kwargs) try: cache = redconn.redis.get(name=name, resource_group_name=resource_group) result = cache.as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("redis", str(exc), **kwargs) result = {"error": str(exc)} return result async def import_data( hub, ctx, name, resource_group, files, file_format=None, **kwargs ): """ .. versionadded:: 2.0.0 Import data into Redis cache. :param name: The name of the Redis cache. :param resource_group: The name of the resource group. :param files: A list of strings that represent the names of files to import. :param file_format: An optional file format. CLI Example: .. code-block:: bash azurerm.redis.operations.import_data test_name test_rg test_files """ result = {} redconn = await hub.exec.azurerm.utils.get_client(ctx, "redis", **kwargs) try: cache = redconn.redis.import_data( name=name, resource_group_name=resource_group, files=files, format=file_format, ) result = cache.result().as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("redis", str(exc), **kwargs) result = {"error": str(exc)} return result async def list_(hub, ctx, **kwargs): """ .. versionadded:: 2.0.0 Gets all Redis caches in the specified subscription. CLI Example: .. code-block:: bash azurerm.redis.operations.list """ result = {} redconn = await hub.exec.azurerm.utils.get_client(ctx, "redis", **kwargs) try: caches = await hub.exec.azurerm.utils.paged_object_to_list(redconn.redis.list()) for cache in caches: result[cache["name"]] = cache except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("redis", str(exc), **kwargs) result = {"error": str(exc)} return result async def list_by_resource_group(hub, ctx, resource_group, **kwargs): """ .. versionadded:: 2.0.0 Lists all Redis caches in a resource group. :param resource_group: The name of the resource group. CLI Example: .. code-block:: bash azurerm.redis.operations.list_by_resource_group test_rg """ result = {} redconn = await hub.exec.azurerm.utils.get_client(ctx, "redis", **kwargs) try: caches = await hub.exec.azurerm.utils.paged_object_to_list( redconn.redis.list_by_resource_group(resource_group_name=resource_group,) ) for cache in caches: result[cache["name"]] = cache except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("redis", str(exc), **kwargs) result = {"error": str(exc)} return result async def list_keys(hub, ctx, name, resource_group, **kwargs): """ .. versionadded:: 2.0.0 Retrieve a Redis cache's access keys. This operation requires write permission to the cache resource. :param name: The name of the Redis cache. :param resource_group: The name of the resource group. CLI Example: .. code-block:: bash azurerm.redis.operations.list_keys test_name test_rg """ result = {} redconn = await hub.exec.azurerm.utils.get_client(ctx, "redis", **kwargs) try: keys = redconn.redis.list_keys(name=name, resource_group_name=resource_group) result = keys.as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("redis", str(exc), **kwargs) result = {"error": str(exc)} return result async def list_upgrade_notifications(hub, ctx, name, resource_group, history, **kwargs): """ .. versionadded:: 2.0.0 Gets any upgrade notifications for a Redis cache. :param name: The name of the Redis cache. :param resource_group: The name of the resource group. :param history: A float representing how many minutes in past to look for upgrade notifications. CLI Example: .. code-block:: bash azurerm.redis.operations.list_upgrade_notifications test_name test_rg test_history """ result = {} redconn = await hub.exec.azurerm.utils.get_client(ctx, "redis", **kwargs) try: notifications = redconn.redis.list_upgrade_notifications( name=name, resource_group_name=resource_group, history=history ) result = notifications.as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("redis", str(exc), **kwargs) result = {"error": str(exc)} return result async def regenerate_key(hub, ctx, name, resource_group, key_type, **kwargs): """ .. versionadded:: 2.0.0 Regenerate Redis cache's access keys. This operation requires write permission to the cache resource. :param name: The name of the Redis cache. :param resource_group: The name of the resource group. :param key_type: The Redis access key to regenerate. Possible values include: 'Primary' and 'Secondary'. CLI Example: .. code-block:: bash azurerm.redis.operations.renegerate_key test_name test_rg test_type """ redconn = await hub.exec.azurerm.utils.get_client(ctx, "redis", **kwargs) try: keys = redconn.redis.regenerate_key( resource_group_name=resource_group, name=name, key_type=key_type, **kwargs ) result = keys.as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("redis", str(exc), **kwargs) result = {"error": str(exc)} return result async def update( hub, ctx, name, resource_group, sku=None, redis_configuration=None, enable_non_ssl_port=False, tenant_settings=None, shard_count=None, minimum_tls_version=None, **kwargs, ): """ .. versionadded:: 2.0.0 Update an existing Redis cache. :param name: The name of the Redis cache. :param resource_group: The name of the resource group. :param sku: A dictionary representing the SKU of the Redis cache to deploy. Required parameters include: - ``name``: The type of Redis cache to deploy. Possible values include: 'Basic', 'Standard', and 'Premium'. - ``family``: The SKU family to use. Possible values include 'C' for Basic/Standard and 'P' for Premium. - ``capacity``: The size of the Redis cache to deploy. Possible values include 0, 1, 2, 3, 4, 5, and 6 for the C (Basic/Standard) family and 1, 2, 3, and 4 for the P (Premium) family. :param redis_configuration: A dictionary of string key-value pairs that represent all Redis Settings. Some possible keys include: rdb-backup-enabled, rdb-storage-connection-string, rdb-backup-frequency, maxmemory-delta, maxmemory-policy, notify-keyspace-events, maxmemory-samples, slowlog-log-slower-than, slowlog-max-len, list-max-ziplist-entries, list-max-ziplist-value, hash-max-ziplist-entries, hash-max-ziplist-value, set-max-intset-entries, zset-max-ziplist-entries, zset-max-ziplist-value, and more. :param enable_non_ssl_port: Specifies whether the non-ssl Redis server port (6379) is enabled. Defaults to False. :param tenant_settings: A dictionary of tenant settings. :param shard_count: The number of shards to be created on a Premium Cluster Cache. :param minimum_tls_version: The specified TLS version (or higher) that clients are required to use. Possible values include: '1.0', '1.1', and '1.2'. CLI Example: .. code-block:: bash azurerm.redis.operations.update test_name test_rg test_location test_sku """ redconn = await hub.exec.azurerm.utils.get_client(ctx, "redis", **kwargs) try: paramsmodel = await hub.exec.azurerm.utils.create_object_model( "redis", "RedisUpdateParameters", sku=sku, redis_configuration=redis_configuration, enable_non_ssl_port=enable_non_ssl_port, tenant_settings=tenant_settings, shard_count=shard_count, minimum_tls_version=minimum_tls_version, **kwargs, ) except TypeError as exc: result = { "error": "The object model could not be built. ({0})".format(str(exc)) } return result try: cache = redconn.redis.update( name=name, resource_group_name=resource_group, parameters=paramsmodel ) result = cache.as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("redis", str(exc), **kwargs) result = {"error": str(exc)} except SerializationError as exc: result = { "error": "The object model could not be parsed. ({0})".format(str(exc)) } return result ``` #### File: azurerm/resource/deployment.py ```python from __future__ import absolute_import from json import loads, dumps import logging # Azure libs HAS_LIBS = False try: import azure.mgmt.resource.resources.models # pylint: disable=unused-import from msrest.exceptions import SerializationError from msrestazure.azure_exceptions import CloudError HAS_LIBS = True except ImportError: pass __func_alias__ = {"list_": "list"} log = logging.getLogger(__name__) async def operation_get(hub, ctx, operation, deployment, resource_group, **kwargs): """ .. versionadded:: 1.0.0 Get a deployment operation within a deployment. :param operation: The operation ID of the operation within the deployment. :param deployment: The name of the deployment containing the operation. :param resource_group: The resource group name assigned to the deployment. CLI Example: .. code-block:: bash azurerm.resource.deployment.operation_get testoperation testdeploy testgroup """ resconn = await hub.exec.azurerm.utils.get_client(ctx, "resource", **kwargs) try: operation = resconn.deployment_operations.get( resource_group_name=resource_group, deployment_name=deployment, operation_id=operation, ) result = operation.as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("resource", str(exc), **kwargs) result = {"error": str(exc)} return result async def operations_list(hub, ctx, name, resource_group, result_limit=10, **kwargs): """ .. versionadded:: 1.0.0 List all deployment operations within a deployment. :param name: The name of the deployment to query. :param resource_group: The resource group name assigned to the deployment. :param result_limit: (Default: 10) The limit on the list of deployment operations. CLI Example: .. code-block:: bash azurerm.resource.deployment.operations_list testdeploy testgroup """ result = {} resconn = await hub.exec.azurerm.utils.get_client(ctx, "resource", **kwargs) try: operations = await hub.exec.azurerm.utils.paged_object_to_list( resconn.deployment_operations.list( resource_group_name=resource_group, deployment_name=name, top=result_limit, ) ) for oper in operations: result[oper["operation_id"]] = oper except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("resource", str(exc), **kwargs) result = {"error": str(exc)} return result async def delete(hub, ctx, name, resource_group, **kwargs): """ .. versionadded:: 1.0.0 Delete a deployment. :param name: The name of the deployment to delete. :param resource_group: The resource group name assigned to the deployment. CLI Example: .. code-block:: bash azurerm.resource.deployment.delete testdeploy testgroup """ result = False resconn = await hub.exec.azurerm.utils.get_client(ctx, "resource", **kwargs) try: deploy = resconn.deployments.delete( deployment_name=name, resource_group_name=resource_group ) deploy.wait() result = True except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("resource", str(exc), **kwargs) return result async def check_existence(hub, ctx, name, resource_group, **kwargs): """ .. versionadded:: 1.0.0 Check the existence of a deployment. :param name: The name of the deployment to query. :param resource_group: The resource group name assigned to the deployment. CLI Example: .. code-block:: bash azurerm.resource.deployment.check_existence testdeploy testgroup """ result = False resconn = await hub.exec.azurerm.utils.get_client(ctx, "resource", **kwargs) try: result = resconn.deployments.check_existence( deployment_name=name, resource_group_name=resource_group ) except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("resource", str(exc), **kwargs) return result async def create_or_update( hub, ctx, name, resource_group, deploy_mode="incremental", debug_setting="none", deploy_params=None, parameters_link=None, deploy_template=None, template_link=None, **kwargs, ): """ .. versionadded:: 1.0.0 Deploys resources to a resource group. :param name: The name of the deployment to create or update. :param resource_group: The resource group name assigned to the deployment. :param deploy_mode: The mode that is used to deploy resources. This value can be either 'incremental' or 'complete'. In Incremental mode, resources are deployed without deleting existing resources that are not included in the template. In Complete mode, resources are deployed and existing resources in the resource group that are not included in the template are deleted. Be careful when using Complete mode as you may unintentionally delete resources. :param debug_setting: The debug setting of the deployment. The permitted values are 'none', 'requestContent', 'responseContent', or 'requestContent,responseContent'. By logging information about the request or response, you could potentially expose sensitive data that is retrieved through the deployment operations. :param deploy_params: JSON string containing name and value pairs that define the deployment parameters for the template. You use this element when you want to provide the parameter values directly in the request rather than link to an existing parameter file. Use either the parameters_link property or the deploy_params property, but not both. :param parameters_link: The URI of a parameters file. You use this element to link to an existing parameters file. Use either the parameters_link property or the deploy_params property, but not both. :param deploy_template: JSON string of template content. You use this element when you want to pass the template syntax directly in the request rather than link to an existing template. Use either the template_link property or the deploy_template property, but not both. :param template_link: The URI of the template. Use either the template_link property or the deploy_template property, but not both. CLI Example: .. code-block:: bash azurerm.resource.deployment.create_or_update testdeploy testgroup """ resconn = await hub.exec.azurerm.utils.get_client(ctx, "resource", **kwargs) prop_kwargs = {"mode": deploy_mode} prop_kwargs["debug_setting"] = {"detail_level": debug_setting} if deploy_params: prop_kwargs["parameters"] = deploy_params else: if isinstance(parameters_link, dict): prop_kwargs["parameters_link"] = parameters_link else: prop_kwargs["parameters_link"] = {"uri": parameters_link} if deploy_template: prop_kwargs["template"] = deploy_template else: if isinstance(template_link, dict): prop_kwargs["template_link"] = template_link else: prop_kwargs["template_link"] = {"uri": template_link} deploy_kwargs = kwargs.copy() deploy_kwargs.update(prop_kwargs) try: deploy_model = await hub.exec.azurerm.utils.create_object_model( "resource.resources", "DeploymentProperties", **deploy_kwargs ) except TypeError as exc: result = { "error": "The object model could not be built. ({0})".format(str(exc)) } return result try: validate = await hub.exec.azurerm.resource.deployment.validate( ctx=ctx, name=name, resource_group=resource_group, deploy_mode=deploy_mode, debug_setting=debug_setting, deploy_params=deploy_params, parameters_link=parameters_link, deploy_template=deploy_template, template_link=template_link, **kwargs, ) if "error" in validate: result = validate else: deploy = resconn.deployments.create_or_update( deployment_name=name, resource_group_name=resource_group, properties=deploy_model, ) deploy.wait() deploy_result = deploy.result() result = deploy_result.as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("resource", str(exc), **kwargs) result = {"error": str(exc)} except SerializationError as exc: result = { "error": "The object model could not be parsed. ({0})".format(str(exc)) } return result async def get(hub, ctx, name, resource_group, **kwargs): """ .. versionadded:: 1.0.0 Get details about a specific deployment. :param name: The name of the deployment to query. :param resource_group: The resource group name assigned to the deployment. CLI Example: .. code-block:: bash azurerm.resource.deployment.get testdeploy testgroup """ resconn = await hub.exec.azurerm.utils.get_client(ctx, "resource", **kwargs) try: deploy = resconn.deployments.get( deployment_name=name, resource_group_name=resource_group ) result = deploy.as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("resource", str(exc), **kwargs) result = {"error": str(exc)} return result async def cancel(hub, ctx, name, resource_group, **kwargs): """ .. versionadded:: 1.0.0 Cancel a deployment if in 'Accepted' or 'Running' state. :param name: The name of the deployment to cancel. :param resource_group: The resource group name assigned to the deployment. CLI Example: .. code-block:: bash azurerm.resource.deployment.cancel testdeploy testgroup """ resconn = await hub.exec.azurerm.utils.get_client(ctx, "resource", **kwargs) try: resconn.deployments.cancel( deployment_name=name, resource_group_name=resource_group ) result = {"result": True} except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("resource", str(exc), **kwargs) result = {"error": str(exc), "result": False} return result async def validate( hub, ctx, name, resource_group, deploy_mode=None, debug_setting=None, deploy_params=None, parameters_link=None, deploy_template=None, template_link=None, **kwargs, ): """ .. versionadded:: 1.0.0 Validates whether the specified template is syntactically correct and will be accepted by Azure Resource Manager. :param name: The name of the deployment to validate. :param resource_group: The resource group name assigned to the deployment. :param deploy_mode: The mode that is used to deploy resources. This value can be either 'incremental' or 'complete'. In Incremental mode, resources are deployed without deleting existing resources that are not included in the template. In Complete mode, resources are deployed and existing resources in the resource group that are not included in the template are deleted. Be careful when using Complete mode as you may unintentionally delete resources. :param debug_setting: The debug setting of the deployment. The permitted values are 'none', 'requestContent', 'responseContent', or 'requestContent,responseContent'. By logging information about the request or response, you could potentially expose sensitive data that is retrieved through the deployment operations. :param deploy_params: JSON string containing name and value pairs that define the deployment parameters for the template. You use this element when you want to provide the parameter values directly in the request rather than link to an existing parameter file. Use either the parameters_link property or the deploy_params property, but not both. :param parameters_link: The URI of a parameters file. You use this element to link to an existing parameters file. Use either the parameters_link property or the deploy_params property, but not both. :param deploy_template: JSON string of template content. You use this element when you want to pass the template syntax directly in the request rather than link to an existing template. Use either the template_link property or the deploy_template property, but not both. :param template_link: The URI of the template. Use either the template_link property or the deploy_template property, but not both. CLI Example: .. code-block:: bash azurerm.resource.deployment.validate testdeploy testgroup """ resconn = await hub.exec.azurerm.utils.get_client(ctx, "resource", **kwargs) prop_kwargs = {"mode": deploy_mode} prop_kwargs["debug_setting"] = {"detail_level": debug_setting} if deploy_params: prop_kwargs["parameters"] = deploy_params else: if isinstance(parameters_link, dict): prop_kwargs["parameters_link"] = parameters_link else: prop_kwargs["parameters_link"] = {"uri": parameters_link} if deploy_template: prop_kwargs["template"] = deploy_template else: if isinstance(template_link, dict): prop_kwargs["template_link"] = template_link else: prop_kwargs["template_link"] = {"uri": template_link} deploy_kwargs = kwargs.copy() deploy_kwargs.update(prop_kwargs) try: deploy_model = await hub.exec.azurerm.utils.create_object_model( "resource.resources", "DeploymentProperties", **deploy_kwargs ) except TypeError as exc: result = { "error": "The object model could not be built. ({0})".format(str(exc)) } return result try: local_validation = deploy_model.validate() if local_validation: raise local_validation[0] deploy = resconn.deployments.validate( deployment_name=name, resource_group_name=resource_group, properties=deploy_model, ) result = deploy.as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("resource", str(exc), **kwargs) result = {"error": str(exc)} except SerializationError as exc: result = { "error": "The object model could not be parsed. ({0})".format(str(exc)) } return result async def export_template(hub, ctx, name, resource_group, **kwargs): """ .. versionadded:: 1.0.0 Exports the template used for the specified deployment. :param name: The name of the deployment to query. :param resource_group: The resource group name assigned to the deployment. CLI Example: .. code-block:: bash azurerm.resource.deployment.export_template testdeploy testgroup """ resconn = await hub.exec.azurerm.utils.get_client(ctx, "resource", **kwargs) try: deploy = resconn.deployments.export_template( deployment_name=name, resource_group_name=resource_group ) result = deploy.as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("resource", str(exc), **kwargs) result = {"error": str(exc)} return result async def list_(hub, ctx, resource_group, **kwargs): """ .. versionadded:: 1.0.0 List all deployments within a resource group. CLI Example: .. code-block:: bash azurerm.resource.deployment.list testgroup """ result = {} resconn = await hub.exec.azurerm.utils.get_client(ctx, "resource", **kwargs) try: deployments = await hub.exec.azurerm.utils.paged_object_to_list( resconn.deployments.list_by_resource_group( resource_group_name=resource_group ) ) for deploy in deployments: result[deploy["name"]] = deploy except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("resource", str(exc), **kwargs) result = {"error": str(exc)} return result ``` #### File: azurerm/network/load_balancer.py ```python from __future__ import absolute_import from dict_tools import differ import logging import re log = logging.getLogger(__name__) TREQ = { "present": { "require": [ "states.azurerm.resource.group.present", "states.azurerm.network.public_ip_address.present", "states.azurerm.network.virtual_network.present", "states.azurerm.network.virtual_network.subnet_present", ] }, } async def present( hub, ctx, name, resource_group, sku=None, frontend_ip_configurations=None, backend_address_pools=None, load_balancing_rules=None, probes=None, inbound_nat_rules=None, inbound_nat_pools=None, outbound_nat_rules=None, tags=None, connection_auth=None, **kwargs, ): """ .. versionadded:: 1.0.0 Ensure a load balancer exists. :param name: Name of the load balancer. :param resource_group: The resource group assigned to the load balancer. :param sku: The load balancer SKU, which can be 'Basic' or 'Standard'. :param tags: A dictionary of strings can be passed as tag metadata to the load balancer object. :param frontend_ip_configurations: An optional list of dictionaries representing valid FrontendIPConfiguration objects. A frontend IP configuration can be either private (using private IP address and subnet parameters) or public (using a reference to a public IP address object). Valid parameters are: - ``name``: The name of the resource that is unique within a resource group. - ``private_ip_address``: The private IP address of the IP configuration. Required if 'private_ip_allocation_method' is 'Static'. - ``private_ip_allocation_method``: The Private IP allocation method. Possible values are: 'Static' and 'Dynamic'. - ``subnet``: Name of an existing subnet inside of which the frontend IP will reside. - ``public_ip_address``: Name of an existing public IP address which will be assigned to the frontend IP object. :param backend_address_pools: An optional list of dictionaries representing valid BackendAddressPool objects. Only the 'name' parameter is valid for a BackendAddressPool dictionary. All other parameters are read-only references from other objects linking to the backend address pool. Inbound traffic is randomly load balanced across IPs in the backend IPs. :param probes: An optional list of dictionaries representing valid Probe objects. Valid parameters are: - ``name``: The name of the resource that is unique within a resource group. - ``protocol``: The protocol of the endpoint. Possible values are 'Http' or 'Tcp'. If 'Tcp' is specified, a received ACK is required for the probe to be successful. If 'Http' is specified, a 200 OK response from the specified URI is required for the probe to be successful. - ``port``: The port for communicating the probe. Possible values range from 1 to 65535, inclusive. - ``interval_in_seconds``: The interval, in seconds, for how frequently to probe the endpoint for health status. Typically, the interval is slightly less than half the allocated timeout period (in seconds) which allows two full probes before taking the instance out of rotation. The default value is 15, the minimum value is 5. - ``number_of_probes``: The number of probes where if no response, will result in stopping further traffic from being delivered to the endpoint. This values allows endpoints to be taken out of rotation faster or slower than the typical times used in Azure. - ``request_path``: The URI used for requesting health status from the VM. Path is required if a protocol is set to 'Http'. Otherwise, it is not allowed. There is no default value. :param load_balancing_rules: An optional list of dictionaries representing valid LoadBalancingRule objects. Valid parameters are: - ``name``: The name of the resource that is unique within a resource group. - ``load_distribution``: The load distribution policy for this rule. Possible values are 'Default', 'SourceIP', and 'SourceIPProtocol'. - ``frontend_port``: The port for the external endpoint. Port numbers for each rule must be unique within the Load Balancer. Acceptable values are between 0 and 65534. Note that value 0 enables 'Any Port'. - ``backend_port``: The port used for internal connections on the endpoint. Acceptable values are between 0 and 65535. Note that value 0 enables 'Any Port'. - ``idle_timeout_in_minutes``: The timeout for the TCP idle connection. The value can be set between 4 and 30 minutes. The default value is 4 minutes. This element is only used when the protocol is set to TCP. - ``enable_floating_ip``: Configures a virtual machine's endpoint for the floating IP capability required to configure a SQL AlwaysOn Availability Group. This setting is required when using the SQL AlwaysOn Availability Groups in SQL server. This setting can't be changed after you create the endpoint. - ``disable_outbound_snat``: Configures SNAT for the VMs in the backend pool to use the public IP address specified in the frontend of the load balancing rule. - ``frontend_ip_configuration``: Name of the frontend IP configuration object used by the load balancing rule object. - ``backend_address_pool``: Name of the backend address pool object used by the load balancing rule object. Inbound traffic is randomly load balanced across IPs in the backend IPs. - ``probe``: Name of the probe object used by the load balancing rule object. :param inbound_nat_rules: An optional list of dictionaries representing valid InboundNatRule objects. Defining inbound NAT rules on your load balancer is mutually exclusive with defining an inbound NAT pool. Inbound NAT pools are referenced from virtual machine scale sets. NICs that are associated with individual virtual machines cannot reference an Inbound NAT pool. They have to reference individual inbound NAT rules. Valid parameters are: - ``name``: The name of the resource that is unique within a resource group. - ``frontend_ip_configuration``: Name of the frontend IP configuration object used by the inbound NAT rule object. - ``protocol``: Possible values include 'Udp', 'Tcp', or 'All'. - ``frontend_port``: The port for the external endpoint. Port numbers for each rule must be unique within the Load Balancer. Acceptable values range from 1 to 65534. - ``backend_port``: The port used for the internal endpoint. Acceptable values range from 1 to 65535. - ``idle_timeout_in_minutes``: The timeout for the TCP idle connection. The value can be set between 4 and 30 minutes. The default value is 4 minutes. This element is only used when the protocol is set to TCP. - ``enable_floating_ip``: Configures a virtual machine's endpoint for the floating IP capability required to configure a SQL AlwaysOn Availability Group. This setting is required when using the SQL AlwaysOn Availability Groups in SQL server. This setting can't be changed after you create the endpoint. :param inbound_nat_pools: An optional list of dictionaries representing valid InboundNatPool objects. They define an external port range for inbound NAT to a single backend port on NICs associated with a load balancer. Inbound NAT rules are created automatically for each NIC associated with the Load Balancer using an external port from this range. Defining an Inbound NAT pool on your Load Balancer is mutually exclusive with defining inbound NAT rules. Inbound NAT pools are referenced from virtual machine scale sets. NICs that are associated with individual virtual machines cannot reference an inbound NAT pool. They have to reference individual inbound NAT rules. Valid parameters are: - ``name``: The name of the resource that is unique within a resource group. - ``frontend_ip_configuration``: Name of the frontend IP configuration object used by the inbound NAT pool object. - ``protocol``: Possible values include 'Udp', 'Tcp', or 'All'. - ``frontend_port_range_start``: The first port number in the range of external ports that will be used to provide Inbound NAT to NICs associated with a load balancer. Acceptable values range between 1 and 65534. - ``frontend_port_range_end``: The last port number in the range of external ports that will be used to provide Inbound NAT to NICs associated with a load balancer. Acceptable values range between 1 and 65535. - ``backend_port``: The port used for internal connections to the endpoint. Acceptable values are between 1 and 65535. :param outbound_nat_rules: An optional list of dictionaries representing valid OutboundNatRule objects. Valid parameters are: - ``name``: The name of the resource that is unique within a resource group. - ``frontend_ip_configuration``: Name of the frontend IP configuration object used by the outbound NAT rule object. - ``backend_address_pool``: Name of the backend address pool object used by the outbound NAT rule object. Outbound traffic is randomly load balanced across IPs in the backend IPs. - ``allocated_outbound_ports``: The number of outbound ports to be used for NAT. :param connection_auth: A dict with subscription and authentication parameters to be used in connecting to the Azure Resource Manager API. Example usage: .. code-block:: yaml Ensure load balancer exists: azurerm.network.load_balancer.present: - name: lb1 - resource_group: group1 - location: eastus - frontend_ip_configurations: - name: lb1_feip1 public_ip_address: pub_ip1 - backend_address_pools: - name: lb1_bepool1 - probes: - name: lb1_webprobe1 protocol: tcp port: 80 interval_in_seconds: 5 number_of_probes: 2 - load_balancing_rules: - name: lb1_webprobe1 protocol: tcp frontend_port: 80 backend_port: 80 idle_timeout_in_minutes: 4 frontend_ip_configuration: lb1_feip1 backend_address_pool: lb1_bepool1 probe: lb1_webprobe1 - tags: contact_name: <NAME> - connection_auth: {{ profile }} """ ret = {"name": name, "result": False, "comment": "", "changes": {}} action = "create" if not isinstance(connection_auth, dict): if ctx["acct"]: connection_auth = ctx["acct"] else: ret[ "comment" ] = "Connection information must be specified via acct or connection_auth dictionary!" return ret if sku: sku = {"name": sku.capitalize()} load_bal = await hub.exec.azurerm.network.load_balancer.get( ctx, name, resource_group, azurerm_log_level="info", **connection_auth ) if "error" not in load_bal: action = "update" # tag changes tag_changes = differ.deep_diff(load_bal.get("tags", {}), tags or {}) if tag_changes: ret["changes"]["tags"] = tag_changes # sku changes if sku: sku_changes = differ.deep_diff(load_bal.get("sku", {}), sku) if sku_changes: ret["changes"]["sku"] = sku_changes # frontend_ip_configurations changes if frontend_ip_configurations: comp_ret = await hub.exec.azurerm.utils.compare_list_of_dicts( load_bal.get("frontend_ip_configurations", []), frontend_ip_configurations, ["public_ip_address", "subnet"], ) if comp_ret.get("comment"): ret["comment"] = '"frontend_ip_configurations" {0}'.format( comp_ret["comment"] ) return ret if comp_ret.get("changes"): ret["changes"]["frontend_ip_configurations"] = comp_ret["changes"] # backend_address_pools changes if backend_address_pools: comp_ret = await hub.exec.azurerm.utils.compare_list_of_dicts( load_bal.get("backend_address_pools", []), backend_address_pools ) if comp_ret.get("comment"): ret["comment"] = '"backend_address_pools" {0}'.format( comp_ret["comment"] ) return ret if comp_ret.get("changes"): ret["changes"]["backend_address_pools"] = comp_ret["changes"] # probes changes if probes: comp_ret = await hub.exec.azurerm.utils.compare_list_of_dicts( load_bal.get("probes", []), probes ) if comp_ret.get("comment"): ret["comment"] = '"probes" {0}'.format(comp_ret["comment"]) return ret if comp_ret.get("changes"): ret["changes"]["probes"] = comp_ret["changes"] # load_balancing_rules changes if load_balancing_rules: comp_ret = await hub.exec.azurerm.utils.compare_list_of_dicts( load_bal.get("load_balancing_rules", []), load_balancing_rules, ["frontend_ip_configuration", "backend_address_pool", "probe"], ) if comp_ret.get("comment"): ret["comment"] = '"load_balancing_rules" {0}'.format( comp_ret["comment"] ) return ret if comp_ret.get("changes"): ret["changes"]["load_balancing_rules"] = comp_ret["changes"] # inbound_nat_rules changes if inbound_nat_rules: comp_ret = await hub.exec.azurerm.utils.compare_list_of_dicts( load_bal.get("inbound_nat_rules", []), inbound_nat_rules, ["frontend_ip_configuration"], ) if comp_ret.get("comment"): ret["comment"] = '"inbound_nat_rules" {0}'.format(comp_ret["comment"]) return ret if comp_ret.get("changes"): ret["changes"]["inbound_nat_rules"] = comp_ret["changes"] # inbound_nat_pools changes if inbound_nat_pools: comp_ret = await hub.exec.azurerm.utils.compare_list_of_dicts( load_bal.get("inbound_nat_pools", []), inbound_nat_pools, ["frontend_ip_configuration"], ) if comp_ret.get("comment"): ret["comment"] = '"inbound_nat_pools" {0}'.format(comp_ret["comment"]) return ret if comp_ret.get("changes"): ret["changes"]["inbound_nat_pools"] = comp_ret["changes"] # outbound_nat_rules changes if outbound_nat_rules: comp_ret = await hub.exec.azurerm.utils.compare_list_of_dicts( load_bal.get("outbound_nat_rules", []), outbound_nat_rules, ["frontend_ip_configuration"], ) if comp_ret.get("comment"): ret["comment"] = '"outbound_nat_rules" {0}'.format(comp_ret["comment"]) return ret if comp_ret.get("changes"): ret["changes"]["outbound_nat_rules"] = comp_ret["changes"] if not ret["changes"]: ret["result"] = True ret["comment"] = "Load balancer {0} is already present.".format(name) return ret if ctx["test"]: ret["result"] = None ret["comment"] = "Load balancer {0} would be updated.".format(name) return ret else: ret["changes"] = { "old": {}, "new": { "name": name, "sku": sku, "tags": tags, "frontend_ip_configurations": frontend_ip_configurations, "backend_address_pools": backend_address_pools, "load_balancing_rules": load_balancing_rules, "probes": probes, "inbound_nat_rules": inbound_nat_rules, "inbound_nat_pools": inbound_nat_pools, "outbound_nat_rules": outbound_nat_rules, }, } if ctx["test"]: ret["comment"] = "Load balancer {0} would be created.".format(name) ret["result"] = None return ret lb_kwargs = kwargs.copy() lb_kwargs.update(connection_auth) load_bal = await hub.exec.azurerm.network.load_balancer.create_or_update( ctx=ctx, name=name, resource_group=resource_group, sku=sku, tags=tags, frontend_ip_configurations=frontend_ip_configurations, backend_address_pools=backend_address_pools, load_balancing_rules=load_balancing_rules, probes=probes, inbound_nat_rules=inbound_nat_rules, inbound_nat_pools=inbound_nat_pools, outbound_nat_rules=outbound_nat_rules, **lb_kwargs, ) if "error" not in load_bal: ret["result"] = True ret["comment"] = f"Load balancer {name} has been {action}d." return ret ret["comment"] = "Failed to {0} load balancer {1}! ({2})".format( action, name, load_bal.get("error") ) if not ret["result"]: ret["changes"] = {} return ret async def absent(hub, ctx, name, resource_group, connection_auth=None, **kwargs): """ .. versionadded:: 1.0.0 Ensure a load balancer does not exist in the resource group. :param name: Name of the load balancer. :param resource_group: The resource group assigned to the load balancer. :param connection_auth: A dict with subscription and authentication parameters to be used in connecting to the Azure Resource Manager API. """ ret = {"name": name, "result": False, "comment": "", "changes": {}} if not isinstance(connection_auth, dict): if ctx["acct"]: connection_auth = ctx["acct"] else: ret[ "comment" ] = "Connection information must be specified via acct or connection_auth dictionary!" return ret load_bal = await hub.exec.azurerm.network.load_balancer.get( ctx, name, resource_group, azurerm_log_level="info", **connection_auth ) if "error" in load_bal: ret["result"] = True ret["comment"] = "Load balancer {0} was not found.".format(name) return ret if ctx["test"]: ret["comment"] = "Load balancer {0} would be deleted.".format(name) ret["result"] = None ret["changes"] = { "old": load_bal, "new": {}, } return ret deleted = await hub.exec.azurerm.network.load_balancer.delete( ctx, name, resource_group, **connection_auth ) if deleted: ret["result"] = True ret["comment"] = "Load balancer {0} has been deleted.".format(name) ret["changes"] = {"old": load_bal, "new": {}} return ret ret["comment"] = "Failed to delete load balancer {0}!".format(name) return ret ``` #### File: azurerm/storage/account.py ```python from __future__ import absolute_import from dict_tools import differ import logging log = logging.getLogger(__name__) TREQ = {"present": {"require": ["states.azurerm.resource.group.present",]}} async def present( hub, ctx, name, resource_group, sku, kind, location, custom_domain=None, encryption=None, network_rule_set=None, access_tier=None, https_traffic_only=None, is_hns_enabled=None, tags=None, connection_auth=None, **kwargs, ): """ .. versionadded:: 2.0.0 Ensure a storage account exists in the resource group. :param name: The name of the storage account being created. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :param resource_group: The name of the resource group that the storage account belongs to. :param sku: The name of the storage account SKU. Possible values include: 'Standard_LRS', 'Standard_GRS', 'Standard_RAGRS', 'Standard_ZRS', 'Premium_LRS', 'Premium_ZRS', 'Standard_GZRS', and 'Standard_RAGZRS'. :param kind: Indicates the type of storage account. Possible values include: 'Storage', 'StorageV2', 'BlobStorage'. :param location: Gets or sets the location of the resource. This will be one of the supported and registered Azure Geo Regions (e.g. West US, East US, Southeast Asia, etc.). The geo region of a resource cannot be changed once it is created, but if an identical geo region is specified on update, the request will succeed. :param custom_domain: User domain assigned to the storage account. Valid parameters are: - ``name``: Required. Gets or sets the custom domain name assigned to the storage account. Name is the CNAME source. To clear the existing custom domain, use an empty string for this property. - ``use_sub_domain_name``: Indicates whether indirect CName validation is enabled. Default value is false. This should only be set on updates. :param encryption: Provides the encryption settings on the account. If left unspecified the account encryption settings will remain the same. The default setting is unencrypted. :param network_rule_set: A dictionary representing a NetworkRuleSet object. :param access_tier: The access tier is used for billing. Required for when the kind is set to 'BlobStorage'. Possible values include: 'Hot' and 'Cool'. :param https_traffic_only: Allows https traffic only to storage service if set to True. The default value is False. :param is_hns_enabled: Account HierarchicalNamespace enabled if set to True. The default value is False. :param tags: A dictionary of strings can be passed as tag metadata to the storage account object. :param connection_auth: A dict with subscription and authentication parameters to be used in connecting to the Azure Resource Manager API. Example usage: .. code-block:: yaml Ensure storage account exists: azurerm.storage.account.present: - name: my_account - resource_group: my_rg - sku: 'Standard_LRS' - kind: 'Storage' - location: 'eastus' - tags: contact_name: <NAME> - connection_auth: {{ profile }} """ ret = {"name": name, "result": False, "comment": "", "changes": {}} action = "create" if not isinstance(connection_auth, dict): if ctx["acct"]: connection_auth = ctx["acct"] else: ret[ "comment" ] = "Connection information must be specified via acct or connection_auth dictionary!" return ret account = await hub.exec.azurerm.storage.account.get_properties( ctx, name, resource_group, **connection_auth ) if "error" not in account: action = "update" tag_changes = differ.deep_diff(account.get("tags", {}), tags or {}) if tag_changes: ret["changes"]["tags"] = tag_changes if sku != account.get("sku").get("name"): ret["changes"]["sku"] = {"old": account.get("sku").get("name"), "new": sku} if kind != account.get("kind"): ret["changes"]["kind"] = {"old": account.get("kind"), "new": kind} if https_traffic_only is not None: if https_traffic_only != account.get("enable_https_traffic_only"): ret["changes"]["enable_https_traffic_only"] = { "old": account.get("enable_https_traffic_only"), "new": https_traffic_only, } if is_hns_enabled is not None: if is_hns_enabled != account.get("is_hns_enabled"): ret["changes"]["is_hns_enabled"] = { "old": account.get("is_hns_enabled"), "new": is_hns_enabled, } if network_rule_set: rule_set_changes = differ.deep_diff( account.get("network_rule_set", {}), network_rule_set or {} ) if rule_set_changes: ret["changes"]["network_rule_set"] = rule_set_changes if encryption: encryption_changes = differ.deep_diff( account.get("encryption", {}), encryption or {} ) if encryption_changes: ret["changes"]["encryption"] = encryption_changes # The Custom Domain can only be added on once, so if it already exists then this cannot be changed if custom_domain: domain_changes = differ.deep_diff( account.get("custom_domain", {}), custom_domain or {} ) if domain_changes: ret["changes"]["custom_domain"] = domain_changes if access_tier: if access_tier != account.get("access_tier"): ret["changes"]["access_tier"] = { "old": account.get("access_tier"), "new": access_tier, } if not ret["changes"]: ret["result"] = True ret["comment"] = "Storage account {0} is already present.".format(name) return ret if ctx["test"]: ret["result"] = None ret["comment"] = "Storage account {0} would be updated.".format(name) return ret else: ret["changes"] = { "old": {}, "new": { "name": name, "resource_group": resource_group, "sku": sku, "kind": kind, "location": location, }, } if tags: ret["changes"]["new"]["tags"] = tags if access_tier: ret["changes"]["new"]["access_tier"] = access_tier if custom_domain: ret["changes"]["new"]["custom_domain"] = custom_domain if encryption: ret["changes"]["new"]["encryption"] = encryption if network_rule_set: ret["changes"]["new"]["network_rule_set"] = network_rule_set if https_traffic_only is not None: ret["changes"]["new"]["enable_https_traffic_only"] = https_traffic_only if is_hns_enabled is not None: ret["changes"]["new"]["is_hns_enabled"] = is_hns_enabled if ctx["test"]: ret["comment"] = "Storage account {0} would be created.".format(name) ret["result"] = None return ret account_kwargs = kwargs.copy() account_kwargs.update(connection_auth) account = await hub.exec.azurerm.storage.account.create( ctx=ctx, name=name, resource_group=resource_group, tags=tags, sku=sku, kind=kind, location=location, custom_domain=custom_domain, encryption=encryption, network_rule_set=network_rule_set, access_tier=access_tier, https_traffic_only=https_traffic_only, is_hns_enabled=is_hns_enabled, **account_kwargs, ) if "error" not in account: ret["result"] = True ret["comment"] = f"Storage account {name} has been {action}d." return ret ret["comment"] = "Failed to {0} storage acccount {1}! ({2})".format( action, name, account.get("error") ) if not ret["result"]: ret["changes"] = {} return ret async def absent(hub, ctx, name, resource_group, connection_auth=None, **kwargs): """ .. versionadded:: 2.0.0 Ensure a storage account does not exist in the resource group. :param name: The name of the storage account being deleted. :param resource_group: The name of the resource group that the storage account belongs to. :param connection_auth: A dict with subscription and authentication parameters to be used in connecting to the Azure Resource Manager API. Example usage: .. code-block:: yaml Ensure storage account does not exist: azurerm.storage.account.absent: - name: my_account - resource_group: my_rg - connection_auth: {{ profile }} """ ret = {"name": name, "result": False, "comment": "", "changes": {}} if not isinstance(connection_auth, dict): if ctx["acct"]: connection_auth = ctx["acct"] else: ret[ "comment" ] = "Connection information must be specified via acct or connection_auth dictionary!" return ret account = await hub.exec.azurerm.storage.account.get_properties( ctx, name, resource_group, **connection_auth ) if "error" in account: ret["result"] = True ret["comment"] = "Storage account {0} was not found.".format(name) return ret if ctx["test"]: ret["comment"] = "Storage account {0} would be deleted.".format(name) ret["result"] = None ret["changes"] = { "old": account, "new": {}, } return ret deleted = await hub.exec.azurerm.storage.account.delete( ctx, name, resource_group, **connection_auth ) if deleted: ret["result"] = True ret["comment"] = "Storage account {0} has been deleted.".format(name) ret["changes"] = {"old": account, "new": {}} return ret ret["comment"] = "Failed to delete storage account {0}!".format(name) return ret ``` #### File: azurerm/storage/container.py ```python from __future__ import absolute_import from dict_tools import differ import logging log = logging.getLogger(__name__) TREQ = { "present": { "require": [ "states.azurerm.resource.group.present", "states.azurerm.storage.account.present", ] } } async def present( hub, ctx, name, account, resource_group, public_access=None, metadata=None, tags=None, connection_auth=None, **kwargs, ): """ .. versionadded:: 2.0.0 Ensure a blob container exists. :param name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :param account: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :param resource_group: The name of the resource group within the user's subscription. The name is case insensitive. :param public_access: Specifies whether data in the container may be accessed publicly and the level of access. Possible values include: 'Container', 'Blob', 'None'. Defaults to None. :param metadata: A dictionary of name-value pairs to associate with the container as metadata. Defaults to None. :param tags: A dictionary of strings can be passed as tag metadata to the container object. :param connection_auth: A dict with subscription and authentication parameters to be used in connecting to the Azure Resource Manager API. Example usage: .. code-block:: yaml Ensure blob container exists: azurerm.storage.container.present: - name: my_container - account: my_account - resource_group: my_rg - public_access: 'Blob' - tags: contact_name: <NAME> - connection_auth: {{ profile }} """ ret = {"name": name, "result": False, "comment": "", "changes": {}} action = "create" if not isinstance(connection_auth, dict): if ctx["acct"]: connection_auth = ctx["acct"] else: ret[ "comment" ] = "Connection information must be specified via acct or connection_auth dictionary!" return ret container = await hub.exec.azurerm.storage.container.get( ctx, name, account, resource_group, **connection_auth ) if "error" not in container: action = "update" tag_changes = differ.deep_diff(container.get("tags", {}), tags or {}) if tag_changes: ret["changes"]["tags"] = tag_changes metadata_changes = differ.deep_diff( container.get("metadata", {}), metadata or {} ) if metadata_changes: ret["changes"]["metadata"] = metadata_changes if public_access and public_access != container.get("public_access"): ret["changes"]["public_access"] = { "old": container.get("public_access"), "new": public_access, } if not ret["changes"]: ret["result"] = True ret["comment"] = "Blob container {0} is already present.".format(name) return ret if ctx["test"]: ret["result"] = None ret["comment"] = "Blob container {0} would be updated.".format(name) return ret else: ret["changes"] = { "old": {}, "new": { "name": name, "account": account, "resource_group": resource_group, }, } if tags: ret["changes"]["new"]["tags"] = tags if public_access: ret["changes"]["new"]["public_access"] = public_access if metadata: ret["changes"]["new"]["metadata"] = metadata if ctx["test"]: ret["comment"] = "Blob container {0} would be created.".format(name) ret["result"] = None return ret container_kwargs = kwargs.copy() container_kwargs.update(connection_auth) if action == "create": container = await hub.exec.azurerm.storage.container.create( ctx=ctx, name=name, account=account, resource_group=resource_group, tags=tags, public_access=public_access, metadata=metadata, **container_kwargs, ) else: container = await hub.exec.azurerm.storage.container.update( ctx=ctx, name=name, account=account, resource_group=resource_group, tags=tags, public_access=public_access, metadata=metadata, **container_kwargs, ) if "error" not in container: ret["result"] = True ret["comment"] = f"Blob container {name} has been {action}d." return ret ret["comment"] = "Failed to {0} blob container {1}! ({2})".format( action, name, container.get("error") ) if not ret["result"]: ret["changes"] = {} return ret async def immutability_policy_present( hub, ctx, name, account, resource_group, immutability_period, if_match=None, tags=None, connection_auth=None, **kwargs, ): """ .. versionadded:: 2.0.0 Ensures that the immutability policy of a specified blob container exists. The container must be of account kind 'StorageV2' in order to utilize an immutability policy. :param name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :param account: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :param resource_group: The name of the resource group within the user's subscription. The name is case insensitive. :param immutability_period: The immutability period for the blobs in the container since the policy creation, in days. :param if_match: The entity state (ETag) version of the immutability policy to update. It is important to note that the ETag must be passed as a string that includes double quotes. For example, '"8d7b4bb4d393b8c"' is a valid string to pass as the if_match parameter, but "8d7b4bb4d393b8c" is not. Defaults to None. :param tags: A dictionary of strings can be passed as tag metadata to the container object. :param connection_auth: A dict with subscription and authentication parameters to be used in connecting to the Azure Resource Manager API. Example usage: .. code-block:: yaml Ensure immutability policy exists: azurerm.storage.container.immutability_policy_present: - name: my_container - account: my_account - resource_group: my_rg - immutability_period: 10 - tags: contact_name: <NAME> - connection_auth: {{ profile }} """ ret = {"name": name, "result": False, "comment": "", "changes": {}} action = "create" if not isinstance(connection_auth, dict): if ctx["acct"]: connection_auth = ctx["acct"] else: ret[ "comment" ] = "Connection information must be specified via acct or connection_auth dictionary!" return ret policy = await hub.exec.azurerm.storage.container.get_immutability_policy( ctx, name, account, resource_group, if_match, **connection_auth ) if "error" not in policy: action = "update" tag_changes = differ.deep_diff(policy.get("tags", {}), tags or {}) if tag_changes: ret["changes"]["tags"] = tag_changes if immutability_period != policy.get( "immutability_period_since_creation_in_days" ): ret["changes"]["immutability_period_since_creation_in_days"] = { "old": policy.get("immutability_period_since_creation_in_days"), "new": immutability_period, } if not ret["changes"]: ret["result"] = True ret[ "comment" ] = "The immutability policy of the blob container {0} is already present.".format( name ) return ret if ctx["test"]: ret["result"] = None ret[ "comment" ] = "The immutability policy of the blob container {0} would be updated.".format( name ) return ret else: ret["changes"] = { "old": {}, "new": { "name": name, "account": account, "resource_group": resource_group, "immutability_period_since_creation_in_days": immutability_period, }, } if tags: ret["changes"]["new"]["tags"] = tags if if_match: ret["changes"]["new"]["if_match"] = if_match if ctx["test"]: ret[ "comment" ] = "The immutability policy of the blob container {0} would be created.".format( name ) ret["result"] = None return ret policy_kwargs = kwargs.copy() policy_kwargs.update(connection_auth) policy = await hub.exec.azurerm.storage.container.create_or_update_immutability_policy( ctx=ctx, name=name, account=account, resource_group=resource_group, tags=tags, if_match=if_match, immutability_period=immutability_period, **policy_kwargs, ) if "error" not in policy: ret["result"] = True ret[ "comment" ] = f"The immutability policy of the blob container {name} has been {action}d." return ret ret[ "comment" ] = "Failed to {0} the immutability policy of the blob container {1}! ({2})".format( action, name, policy.get("error") ) if not ret["result"]: ret["changes"] = {} return ret async def absent( hub, ctx, name, account, resource_group, connection_auth=None, **kwargs ): """ .. versionadded:: 2.0.0 Ensures a specified blob container does not exist. :param name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :param account: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :param resource_group: The name of the resource group within the user's subscription. The name is case insensitive. :param connection_auth: A dict with subscription and authentication parameters to be used in connecting to the Azure Resource Manager API. Example usage: .. code-block:: yaml Ensure blob container is absent: azurerm.storage.container.absent: - name: my_container - account: my_account - resource_group: my_rg - connection_auth: {{ profile }} """ ret = {"name": name, "result": False, "comment": "", "changes": {}} if not isinstance(connection_auth, dict): if ctx["acct"]: connection_auth = ctx["acct"] else: ret[ "comment" ] = "Connection information must be specified via acct or connection_auth dictionary!" return ret container = await hub.exec.azurerm.storage.container.get( ctx, name, account, resource_group, **connection_auth ) if "error" in container: ret["result"] = True ret["comment"] = "Blob container {0} was not found.".format(name) return ret if ctx["test"]: ret["comment"] = "Blob container {0} would be deleted.".format(name) ret["result"] = None ret["changes"] = { "old": container, "new": {}, } return ret deleted = await hub.exec.azurerm.storage.container.delete( ctx, name, account, resource_group, **connection_auth ) if deleted: ret["result"] = True ret["comment"] = "Blob container {0} has been deleted.".format(name) ret["changes"] = {"old": container, "new": {}} return ret ret["comment"] = "Failed to delete blob container {0}!".format(name) return ret async def immutability_policy_absent( hub, ctx, name, account, resource_group, if_match=None, connection_auth=None, **kwargs, ): """ .. versionadded:: 2.0.0 Ensures that the immutability policy of a specified blob container does not exist. :param name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :param account: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :param resource_group: The name of the resource group within the user's subscription. The name is case insensitive. :param if_match: The entity state (ETag) version of the immutability policy to update. It is important to note that the ETag must be passed as a string that includes double quotes. For example, '"8d7b4bb4d393b8c"' is a valid string to pass as the if_match parameter, but "8d7b4bb4d393b8c" is not. Defaults to None. :param connection_auth: A dict with subscription and authentication parameters to be used in connecting to the Azure Resource Manager API. Example usage: .. code-block:: yaml Ensure immutability policy is absent: azurerm.storage.container.absent: - name: my_container - account: my_account - resource_group: my_rg - if_match: '"my_etag"' - connection_auth: {{ profile }} """ ret = {"name": name, "result": False, "comment": "", "changes": {}} if not isinstance(connection_auth, dict): if ctx["acct"]: connection_auth = ctx["acct"] else: ret[ "comment" ] = "Connection information must be specified via acct or connection_auth dictionary!" return ret policy = await hub.exec.azurerm.storage.container.get_immutability_policy( ctx, name, account, resource_group, if_match, **connection_auth ) if "error" in policy: ret["result"] = True ret[ "comment" ] = "The immutability policy of the blob container {0} was not found.".format( name ) return ret if ctx["test"]: ret[ "comment" ] = "The immutability policy of the blob container {0} would be deleted.".format( name ) ret["result"] = None ret["changes"] = { "old": policy, "new": {}, } return ret if not if_match: if_match = policy.get("etag") deleted = await hub.exec.azurerm.storage.container.delete_immutability_policy( ctx, name, account, resource_group, if_match, **connection_auth ) if deleted: ret["result"] = True ret[ "comment" ] = "The immutability policy of the blob container {0} has been deleted.".format( name ) ret["changes"] = {"old": policy, "new": {}} return ret ret[ "comment" ] = "Failed to delete the immutability policy of the blob container {0}!".format( name ) return ret ``` #### File: azurerm/resource/test_group.py ```python import idem_azurerm.exec.azurerm.resource.group as group import pytest @pytest.mark.asyncio async def test_get(mock_hub): """ """ # await group.get(mock_hub, "name") # mock_hub.exec.utils.azurerm.log_cloud_error.assert_called_once_with("resource") ```
{ "source": "johnopana/Flask-Blogh", "score": 3 }
#### File: app/main/views.py ```python from flask import render_template,url_for,request,abort,redirect from ..models import Blogpost,User,Comments from .import main from .forms import CommentForm,PostForm,UpdateProfile from flask_login import login_required,current_user from app import db @main.route('/') def index(): '''a function to take a user to the home page''' posts=Blogpost.query.all() title="Welcome To New Post-Blogh App" return render_template('index.html',title=title,posts=posts) @main.route('/user/<uname>') def profile(uname): user = User.query.filter_by(username = uname).first() if user is None: abort(404) return render_template("profile/profile.html", user = user) @main.route('/user/<uname>/update',methods = ['GET','POST']) @login_required def update_profile(uname): user = User.query.filter_by(username = uname).first() if user is None: abort(404) form = UpdateProfile() if form.validate_on_submit(): user.bio = form.bio.data db.session.add(user) db.session.commit() return redirect(url_for('.profile',uname=user.username)) return render_template('profile/update.html',form =form) @main.route('/post',methods=['GET','POST']) @login_required def post(): form=PostForm() if form.validate_on_submit(): title=form.title.data content=form.content.data new_post=Blogpost(title=title,content=content) new_post.post_save() return redirect(url_for('main.index')) title='make a new blog here' return render_template('post.html',title=title,postform=form) @main.route('/comment/<int:id>') def view_comment(id): post=Blogpost.query.get(id) title='posts' return render_template('comment.html',title=title,post=post) @main.route('/post/new_comment/<int:id>',methods=['GET','POST']) def new_comment(id): post=Blogpost.query.get(id) form=CommentForm() if form.validate_on_submit(): content=form.content.data new_comment=Comments(content=content,blogpost=post) new_comment.comment_save() return redirect(url_for('main.view_comment',id=post.id)) title='make a new comment here' return render_template('new_comment.html',title=title,post=post,commentform=form) @main.route('/post/comment/delete/<int:id>') def delete_comment(id): post=Blogpost.query.get(id) pass ```
{ "source": "johnopana/Istagram-App", "score": 3 }
#### File: Istagram-App/photos/tests.py ```python from django.test import TestCase from .models import Profile, Image, User, Comments class ProfileTest(TestCase): def setUp(self): self.new_user = User(username='John', email='<EMAIL>', password='<PASSWORD>') self.new_user.save() self.new_profile = Profile(photo='image.png', bio='generous', user=self.new_user) def test_instance(self): self.assertTrue(isinstance(self.new_profile, Profile)) def test_save_method(self): self.new_profile.save_profile() profile = Profile.objects.all() self.assertTrue(len(profile)>0) def test_delete_method(self): self.new_profile.save_profile() self.new_profile.delete_profile() profile = Profile.objects.all() self.assertTrue(len(profile)==0) # def test_update_profile(self): # self.new_profile.save_profile() # self.new_profile.update_bio(self.new_profile.id,'mySelf') # updated_bio = Profile.objects.filter(bio="mySelf") # self.assertTrue(len(updated_bio)>0) class ImageTest(TestCase): def setUp(self): self.new_user = User(username='John', email='<EMAIL>', password='<PASSWORD>') self.new_user.save() self.new_profile = Profile(photo='image.png', bio='generous', user=self.new_user) self.new_profile.save() self.new_image = Image(name='Moringa', image='moringa.jpg', caption='wonderful place to be', profile=self.new_user, like_add=0) def test_instance(self): self.assertTrue(isinstance(self.new_image,Image)) def test_save_image(self): self.new_image.save_image() image = Image.objects.all() self.assertTrue(len(image)>0) def test_delete_image(self): self.new_image.save_image() self.new_image.delete_image() image = Image.objects.all() self.assertTrue(len(image)==0) class CommentsTest(TestCase): def setUp(self): self.new_user = User(username='John', email='<EMAIL>', password='<PASSWORD>') self.new_user.save() self.new_image = Image(name='Moringa', image='moringa.jpg', caption='wonderful place to be', profile=self.new_user, like_add=0) self.new_image.save() self.new_comment = Comments(comment='This is a beautiful place',image=self.new_image,user=self.new_user) def test_instance(self): self.assertTrue(isinstance(self.new_comment, Comments)) def test_save_comment(self): self.new_comment.save_comment() comment = Comments.objects.all() self.assertTrue(len(comment)>0) def test_delete_comment(self): self.new_comment.save_comment() self.new_comment.delete_comment() comment = Comments.objects.all() self.assertTrue(len(comment)==0) ```
{ "source": "johnopana/Rental_App", "score": 3 }
#### File: Rental_App/houses/tests.py ```python from django.test import TestCase from .models import Profile,House,Owner class ProfileTestClass(TestCase): #Set up method def setUp(self): self.new_profile = Profile(user_id=2,name="Titus",bio="just testing", email='<EMAIL>',profile_pic="image.jpeg") # Testing instance def test_instance(self): self.assertTrue(isinstance(self.new_profile,Profile)) def test_save_method(self): self.new_profile.save_profile() profile = Profile.objects.all() self.assertTrue(len(profile)>0) def test_delete_method(self): self.new_profile.save_profile() self.new_profile.delete_profile() profile = Profile.objects.all() self.assertTrue(len(profile)==0) def tearDown(self): Profile.objects.all().delete() class HouseTestClass(TestCase): def setUp(self): self.new_owner=Owner(first_name='Peter',last_name='Okumu',address="mwmama", email="<EMAIL>",phone='0789456765', owner_pic='owner.png') self.new_owner.save() self.new_house=House(house_no='3F',registry_no="938348H",house_location="lavington",house_pic='image.png',house_type="rental", no_of_rooms=5, price=22000, owner=self.new_owner) def test_instance(self): self.assertTrue(isinstance(self.new_house,House)) def test_save_house(self): self.new_house.save_house() house = House.objects.all() self.assertTrue(len(house)>0) def test_delete_house(self): self.new_house.save_house() self.new_house.delete_house() house = House.objects.all() self.assertTrue(len(house)==0) def test_update_house_type_method(self): self.new_house.save_house() new_name = 'rental' update = self.new_house.update_house(self.new_house.id,new_name) self.assertEqual(update,new_name) def test_find_method(self): self.new_house.save_house() house = self.new_house.find_house(self.new_house.id) self.assertEqual(house.house_location,'lavington') def tearDown(self): House.objects.all().delete() class OwnerTestClass(TestCase): def setUp(self): self.new_owner=Owner(first_name='Peter',last_name='Okumu',address="mwmama", email="<EMAIL>",phone='0789456765', owner_pic='owner.png') def test_instance(self): self.assertTrue(isinstance(self.new_owner,Owner)) def test_save_owner(self): self.new_owner.save_owner() owner = Owner.objects.all() self.assertTrue(len(owner)>0) def test_delete_owner(self): self.new_owner.save_owner() self.new_owner.delete_owner() owner = Owner.objects.all() self.assertTrue(len(owner) is 0) def tearDown(self): Owner.objects.all().delete() ``` #### File: Rental_App/houses/views.py ```python from django.shortcuts import render,redirect from .models import * from django.contrib.auth.decorators import login_required from .forms import ProfileForm def index(request): return render(request, 'main/index.html') @login_required(login_url='/accounts/login/?next=/') def houses(request): houses = House.objects.all return render(request,'main/houses.html', {'houses':houses}) @login_required(login_url='/accounts/login/?next=/') def profile(request): current_user = request.user profile = Profile.objects.filter(user=current_user).first() return render(request, 'main/profile.html', { "profile": profile, 'current_user':current_user}) def update_profile(request): user_profile = Profile.objects.get(user=request.user) if request.method == "POST": form = ProfileForm(request.POST,request.FILES,instance=request.user.profile) if form.is_valid(): form.save() return redirect('profile') else: form = ProfileForm(instance=request.user.profile) return render(request,'main/update_profile.html', {'form':form}) @login_required(login_url='/accounts/login/?next=/') def details(request,id): house = House.objects.get(id=id) # owner = house.owner_set.all return render(request, 'main/details.html', {'house':house}) def search_results(request): if 'house' in request.GET and request.GET["house"]: search_term = request.GET.get("house") searched_houses = House.search(search_term) message = f'{search_term}' return render(request, 'search.html',{"message":message, "houses":searched_houses}) else: messsage = "You haven't searched for any term" return render(request, 'search.html', {"message":message}) ```
{ "source": "johnoseni1/Diamond-Programming-language", "score": 2 }
#### File: johnoseni1/Diamond-Programming-language/rundiamond.py ```python import functions as modulefunctions def run_function(index, python_funcs_and_vars, lines, line, _functions, variables): line = line.split(' ') func_name = line[0] del line[0] modulefunctions.execute_code( func_name, line, variables, index, lines, _functions, python_funcs_and_vars ) def run_main(line, variables, index, lines, _functions_dict, python_funcs_and_vars): run_function(line, variables, index, lines, _functions_dict, python_funcs_and_vars) del lines[index] ```
{ "source": "JohnOSu/sylph", "score": 3 }
#### File: src/sylph_proj/data_obj.py ```python import json import enum from json import JSONDecodeError from requests import Response class SylphDataGenerator(enum.Enum): AUTOMATION_CODE = "automation" API_REQUEST = "api_request" APP_UI_INSPECTION = "app" class SylphDataDict(dict): data_generator: SylphDataGenerator def __init__(self, data_source: SylphDataGenerator, data: dict): super().__init__() self.data_generator = data_source for keyname in data.keys(): self[keyname] = data[keyname] class SylphObjectInitException(Exception): pass class SylphDataObject: data_generator: SylphDataGenerator def __init__(self, response: Response = None, data: SylphDataDict = None): # Store init arg in self._src. If arg is response, transform into a dict. if response is not None and data is not None: raise SylphObjectInitException("Must be either a Response or a SylphDataDict") if response is None: if data is None: # must be defining function calls self._src = [] self.data_generator = SylphDataGenerator.AUTOMATION_CODE else: if not hasattr(data, 'data_generator'): raise SylphObjectInitException("If data is provided, it must be a SylphDataDict") self._src = data self.data_generator = data.data_generator else: self.data_generator = SylphDataGenerator.API_REQUEST self._src = json.loads(response.content.decode('utf-8')) def dump_data(self): data = {} for key in self._src.keys(): data[key] = self._src[key].dump_data() if issubclass(type(self._src[key]), SylphDataObject) else self._src[key] return data class SylphCollectionDataObject(SylphDataObject): def __init__(self, response: Response = None, data: SylphDataDict = None): super().__init__(response, data) self._items = [] def __getitem__(self, idx): return self._items[idx] @property def items(self) -> []: return self._items @property def count(self): return len(self._items) class ResponseError(SylphDataObject): def __init__(self, response: Response = None, data: SylphDataDict = None): try: super().__init__(response=response, data=data) except JSONDecodeError: self._src = {} self._src['errorCode'] = response.status_code if hasattr(response, 'status_code') else None self._src['errorMessage'] = response.reason if hasattr(response, 'reason') else None self.ok: bool = False self.error_code = self._src['errorCode'] if 'errorCode' in self._src else None self.error_message = self._src['errorMessage'] if 'errorMessage' in self._src else None if not self.error_message: self.error_message = response.text if hasattr(response, 'text') else None self.status_code = response.status_code if hasattr(response, 'status_code') else self.error_code self.reason = response.reason if hasattr(response, 'reason') else None class ContractViolation(SylphDataObject): def __init__(self, response: Response = None, data: SylphDataDict = None): super().__init__(response=response, data=data) self.dto_name = self._src['dto_name'] self.dto_path = self._src['dto_path'] self.dto_exc = self._src['dto_exc'] ``` #### File: src/sylph_proj/pages.py ```python import time import logging from abc import ABCMeta, abstractmethod from appium.webdriver.webdriver import WebDriver as AppiumDriver from selenium.webdriver.remote.webdriver import WebDriver as SeleniumDriver from .sylphsession import SylphSessionConfig from .wrappers import WebTestWrapper from .wrappers import MobileTestWrapper class BasePage(metaclass=ABCMeta): log: logging.Logger config: SylphSessionConfig SWIPE_UP = 'up' SWIPE_DOWN = 'down' SWIPE_LEFT = 'left' SWIPE_RIGHT = 'right' def __init__(self, tw): self.config = tw.config self.log = tw.log self.page_name = self.__class__.__name__ @abstractmethod def _locator(self, *args): pass def _is_done_loading(self, locator_elem) -> bool: self.log.info(f'{self.page_name} is loading...') is_ready = self.is_element_available(locator_elem, name=self.page_name) if is_ready: self.log.info(f'{self.page_name} is available') return is_ready def is_element_available(self, elem, wait=30, name=None) -> bool: """Repeated safe check for the specified wait time (seconds) until the element is displayed and enabled. If not found, return false. Args: :param elem: A lambda function that returns a webelement. :param wait: (Default:10) The wait time in seconds for the process to complete. :param name: (Optional) A name describing the webelement for logging purposes. Returns: True if element is displayed. """ e = None beginning = time.time() for w in range(0, wait): try: e = elem() action_displayed = e.is_displayed action_enabled = e.is_enabled if action_displayed() and action_enabled() is True: break except: pass time.sleep(1) since = time.time() span = self.span(since, beginning) span_msg = f'Elapsed seconds: {span}' wait_msg = f'Waiting for {name}' wait_msg = f'{wait_msg}: {name} | {span_msg}' if name else f'{wait_msg}. | {span_msg}' self.log.debug(wait_msg) if span >= wait: wait_msg = f'{name} not found' if name else 'Element not found' self.log.debug(wait_msg) return False msg = 'Found Element' self.log.debug(f'{msg}: {e.id}' if e else msg) return True def wait_for_condition(self, condition, wait=10): """Process an action repeatedly for the specified wait time (seconds) until it returns true. Args: :param condition: A function that returns a bool. :param wait: The wait time for the process to complete. Throws: TimeoutError if the action is not true within the specified wait time (seconds) """ beginning = time.time() for w in range(0, wait): try: if condition() is True: break except: pass time.sleep(1) since = time.time() span = self.span(since, beginning) action_name = condition.__name__ if hasattr(condition, '__self__'): container_name = condition.__self__.__class__.__name__ self.log.debug(f'Waiting for {container_name}.{action_name}() | Elapsed seconds: {span}') else: self.log.debug(f'Waiting for {action_name}() | Elapsed seconds: {span}') if span >= wait: self.log.debug(f'Condition was not met: Elapsed seconds: {span}') raise TimeoutError('The condition was not met within the expected time span.') def span(self, since, beginning): """Calculate an integral span. Args: :param since: The end point since beginning. :param beginning: The beginning. Returns: The absolute span between two numbers as an integer. """ span = beginning - since return abs(int(f"{span:.0f}")) class BasePageWeb(BasePage): driver: SeleniumDriver def __init__(self, tw: WebTestWrapper, locator_elem, with_validation): self._tw = tw super().__init__(tw) self.driver = tw.driver if with_validation and not self._is_done_loading(locator_elem): raise Exception("Web.PAGE_LOAD") class BasePageMobile(BasePage): driver: AppiumDriver def __init__(self, tw: MobileTestWrapper, locator_elem, with_validation): self._tw = tw super().__init__(tw) self.driver = tw.driver if with_validation and not self._is_done_loading(locator_elem): raise Exception("App.PAGE_LOAD") def try_find_element(self, locator, max_swipes=6, swipe_dir=BasePage.SWIPE_UP, name=None): """Repeated swipe action (default:up) for the specified number of attempts or until the element is found. If not found, no consequences. Args: :param locator: A lambda function that returns a webelement. :param max_swipes: The max number of swipes to attempt :param swipe_dir: 'up' to reveal elements below, 'down' to reveal elements above :param name: (Optional) A name describing the webelement for logging purposes. """ located = self.is_element_available(lambda: locator(), 2, name) attempts = 0 while not located: attempts +=1 self.log.info(f'Swiping: {swipe_dir}') if swipe_dir is BasePage.SWIPE_UP: self.swipe_up() elif swipe_dir is BasePage.SWIPE_DOWN: self.swipe_down() elif swipe_dir is BasePage.SWIPE_LEFT: self.swipe_left() else: self.swipe_right() located = self.is_element_available(lambda: locator(), 2, name) if attempts >= max_swipes: break def swipe_up(self): if self.config.is_ios: self.driver.swipe(50, 350, 50, 310, 400) else: self.driver.swipe(100, 1000, 100, 845, 400) def swipe_down(self): if self.config.is_ios: self.driver.swipe(50, 310, 50, 350, 400) else: self.driver.swipe(100, 845, 100, 1000, 400) def swipe_left(self): if self.config.is_ios: self.driver.swipe(300, 250, 80, 250, 400) else: self.driver.swipe(600, 800, 500, 800, 400) def swipe_right(self): if self.config.is_ios: self.driver.swipe(80, 250, 300, 250, 400) else: self.driver.swipe(500, 800, 600, 800, 400) ```
{ "source": "johnowhitaker/days_of_code", "score": 3 }
#### File: days_of_code/days_of_code/abc.py ```python __all__ = ['parse_tune', 'get_tune', 'set_up_threads'] # Cell def parse_tune(tune_content): t = { 'Title': tune_content.text.split('\nT: ')[1].split('\n')[0], 'Type':tune_content.text.split('\nR: ')[1].split('\n')[0], 'Meter':tune_content.text.split('\nM: ')[1].split('\n')[0], 'Length':tune_content.text.split('\nL: ')[1].split('\n')[0], 'Key':tune_content.text.split('\nK: ')[1].split('\n')[0], 'Notes':''.join(tune_content.text.split('\nK: ')[1].split('\n')[1:],) } return t # Cell def get_tune(tune_url, savefile='data/all_tunes.csv'): tune_page = requests.get('https://thesession.org'+tune_url) tune_soup = BeautifulSoup(tune_page.text, 'html5lib') tune_content = tune_soup.find('div', {"class": "notes"}) # Just the first arrangement tune = parse_tune(tune_content) with csv_writer_lock: with open(savefile, mode="a") as f1: review_writer = csv.writer(f1, delimiter=",") review_writer.writerow(tune.values()) return tune def set_up_threads(urls): with ThreadPoolExecutor(max_workers=10) as executor: return executor.map(get_tune, urls, timeout = 60) ```
{ "source": "johnowhitaker/ds_portfolio", "score": 2 }
#### File: dashboards/multiple_apps/index.py ```python import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output from app import app from apps import gbv_app, diabetes_app app.layout = html.Div([ dcc.Location(id='url', refresh=False), html.Div(id='page-content') ]) @app.callback(Output('page-content', 'children'), [Input('url', 'pathname')]) def display_page(pathname): # We could make a separate 'homepage app' if pathname == "/": home = html.Div([ dcc.Link('Go to diabetes app', href='/apps/diabetes_app'), html.P(), dcc.Link('Go to gbv app', href='/apps/gbv_app') ]) return home elif pathname == '/apps/gbv_app': return gbv_app.layout elif pathname == '/apps/diabetes_app': return diabetes_app.layout else: return '404' if __name__ == '__main__': app.run_server(debug=True, port=8051, host='localhost') ```
{ "source": "johnowhitaker/swoggle", "score": 3 }
#### File: swoggle/swoggle/ai.py ```python __all__ = ['RandomAgent', 'BasicAgent', 'win_rates', 'swoggle_to_state_vector', 'action_from_number'] # Cell from .core import * import random class RandomAgent: """ Given a swoggle board on which it is a player, make a random valid move """ def __init__(self, player): self.player = player def move(self, board, dice_roll): # If in jail, try to escape if self.player in board.jail: board.move(self.player, (0, 0), (0, 0), dice_roll, False, False) return 'escape' # Get start_loc start_loc = (9, 9) for row in board.board: for cell in row: if cell.player == self.player: start_loc = (cell.y, cell.x) if start_loc == (9, 9): return None # Make a random move within reach move = () count = 0 while True: count += 1 end_x = random.choice(range(8)) end_y = random.choice(range(8)) drone = random.choice([True, False]) powerjump = random.choice([True, False]) valid = board.is_valid_move(self.player, start_loc, (end_x, end_y), dice_roll, drone=drone, powerjump=powerjump) move = () if valid: move = ((self.player, start_loc, (end_x, end_y), dice_roll, drone, powerjump)) # print(f'{self.player} took {count} tries to guess a random move') break board.move(*move) return move # Cell class BasicAgent: """ Given a swoggle board on which it is a player, make a sensible move """ def __init__(self, player): self.player = player def move(self, board, dice_roll): # If in jail, try to escape if self.player in board.jail: board.move(self.player, (0, 0), (0, 0), dice_roll, False, False) return 'escape' # Get start_loc start_loc = (9, 9) for row in board.board: for cell in row: if cell.player == self.player: start_loc = (cell.y, cell.x) if start_loc == (9, 9): return None # If bases in range, take them for row in board.board: for cell in row: if cell.player == None and cell.base != None and cell.base != self.player: # Normal move move = (self.player, start_loc, (cell.x, cell.y), dice_roll, False, False) if board.is_valid_move(*move): board.move(*move) return (move) if cell.base != None and cell.base != self.player: # Drone attack move = (self.player, start_loc, (cell.x, cell.y), dice_roll, True, False) if board.is_valid_move(*move): board.move(*move) return (move) # If on base and player in range, take or powerjump them if board.board[start_loc[0]][start_loc[1]].base == self.player: for row in board.board: for cell in row: if cell.player != None and cell.player != self.player: # try normal move move = (self.player, start_loc, (cell.x, cell.y), dice_roll, False, False) if board.is_valid_move(*move): board.move(*move) return (move) # Try powerjump move = (self.player, start_loc, (cell.x, cell.y), dice_roll, False, True) if board.is_valid_move(*move): board.move(*move) return (move) # If players in range and takeable, take them for row in board.board: for cell in row: if cell.player != None and cell.player != self.player: # Normal take move = (self.player, start_loc, (cell.x, cell.y), dice_roll, False, False) if board.is_valid_move(*move): board.move(*move) return (move) # Drone take move = (self.player, start_loc, (cell.x, cell.y), dice_roll, True, False) if board.is_valid_move(*move): board.move(*move) return (move) # TODO: If player close to your base and base reacheable, go back to base # Else move randomly # Make a random move within reach move = () count = 0 while True: count += 1 end_x = random.choice(range(8)) end_y = random.choice(range(8)) drone = random.choice([True, False]) powerjump = random.choice([True, False]) valid = board.is_valid_move(self.player, start_loc, (end_x, end_y), dice_roll, drone=drone, powerjump=powerjump) move = () if valid: move = ((self.player, start_loc, (end_x, end_y), dice_roll, drone, powerjump)) # print(f'{self.player} took {count} tries to guess a random move') break board.move(*move) return move # Cell from IPython.display import clear_output def win_rates(n, agents): wins = {} for i in range(n): rounds = 0 sr = Swoggle(agents, verbose=False) while True: sr.move_agents() rounds += 1 players = [] for row in sr.board.board: for cell in row: if cell.player != None: players.append(cell.player) if len(players) <= 1: clear_output(wait=True) print("Winner:", players, rounds) if len(players) == 1: if players[0] in wins: wins[players[0]] += 1 else: wins[players[0]] = 1 break return wins # Cell import numpy as np def swoggle_to_state_vector(sr, player, dice_roll): board = sr.board spa = board.jail # The player locations (192 = 3*8*8) players = np.concatenate([np.array([c.player == p for c in np.array(sr.board.board).flatten()]).astype(int) for p in range(1, 5) if p != player]) # The base locations of the other players (192 = 3*8*8) bases = np.concatenate([np.array([c.base == p for c in np.array(sr.board.board).flatten()]).astype(int) for p in range(1, 5) if p != player]) # The drones (64 = 8*8) drones = np.array([c.drone for c in np.array(sr.board.board).flatten()]).astype(int) # Player location and base (64 each) player_loc = np.array([c.player == player for c in np.array(sr.board.board).flatten()]).astype(int) base = np.array([c.base == player for c in np.array(sr.board.board).flatten()]).astype(int) # dice (6) dice = np.array([int(i==dice_roll) for i in range(1, 7)]) # Spa (3) prisoners = np.array([p in spa for p in range(1, 5) if p != player]).astype(int) return np.concatenate([players, bases, player_loc, base, drones, dice, prisoners]) # Cell def action_from_number(move, player, sw, dice_roll): """ Takes the output of the network, samples from the probs, does the move if possible, returns move_type, the move itself and the move number""" board = sw.board move_number = move * 1 # Start by getting player's current loc start_loc = (9, 9) for row in board.board: for cell in row: if cell.player == player: start_loc = (cell.y, cell.x) if start_loc == (9, 9): # Player action = (player, (9, 9),(9, 9), dice_roll, False, False) return 'dead', action, 0 drone, pj = False, False move_type = '' if move//64 == 0: # Normal Move move_type = 'normal' elif move//64 == 1: move -= 64 pj=True move_type = 'powerjump' else: move -= 128 drone = True move_type = 'drone' x = move//8 y = move%8 action = (player, start_loc, (x, y), dice_roll, drone, pj) return move_type, action, move_number ```
{ "source": "johnowl/python-studies", "score": 3 }
#### File: hello/service/validator_service_test.py ```python from src.main.python.com.johnowl.hello.service.validator_service import ValidatorService from src.main.python.com.johnowl.hello.service.validator_service import ValidationError import unittest class HelloServiceTest(unittest.TestCase): def test_when_validate_without_body_and_with_valid_data_should_return_true(self): service = ValidatorService() headers = { "Application-Id": "273ab84d-0c7d-434a-a9f7-3004eabf54a4", # random uuid v4 "Digest": "sha256=e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855" # empty string hash } result = service.is_valid(headers) self.assertEqual(result, True) def test_when_validate_without_body_and_with_invalid_application_id_should_return_error(self): service = ValidatorService() headers = { "Application-Id": "273ab84d-0c7d-434a-a9f7-3004eabf54", # invalid uuid v4 "Digest": "sha256=e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855" # empty string hash } result = service.is_valid(headers) self.assertIsInstance(result, ValidationError) self.assertEqual(result.kind, "application_id_invalid") self.assertEqual(result.message, "Application-Id inválido.") def test_when_validate_without_body_and_with_invalid_digest_should_return_error(self): service = ValidatorService() headers = { "Application-Id": "273ab84d-0c7d-434a-a9f7-3004eabf54a4", # random uuid v4 "Digest": "sha256=e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b856" # invalid hash } result = service.is_valid(headers) self.assertIsInstance(result, ValidationError) self.assertEqual(result.kind, "digest_invalid") self.assertEqual(result.message, "Digest inválido.") def test_when_validate_without_body_and_with_invalid_format_digest_should_return_error(self): service = ValidatorService() headers = { "Application-Id": "273ab84d-0c7d-434a-a9f7-3004eabf54a4", # random uuid v4 "Digest": "sha256=e3b0c44298fc1c149afbf4c8996fb924?7ae41e4649b934ca495991b7852b856" # invalid format hash } result = service.is_valid(headers) self.assertIsInstance(result, ValidationError) self.assertEqual(result.kind, "digest_invalid") self.assertEqual(result.message, "Digest inválido.") def test_when_validate_with_valid_data_should_return_true(self): service = ValidatorService() headers = { "Application-Id": "273ab84d-0c7d-434a-a9f7-3004eabf54a4", # random uuid v4 "Digest": "sha256=5e2bf57d3f40c4b6df69daf1936cb766f832374b4fc0259a7cbff06e2f70f269" # valid hash } result = service.is_valid(headers, body="lorem ipsum") self.assertTrue(result) def test_when_validate_without_body_and_with_empty_application_id_should_return_error(self): service = ValidatorService() headers = { "Application-Id": "", "Digest": "sha256=e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855" # empty string hash } result = service.is_valid(headers) self.assertIsInstance(result, ValidationError) self.assertEqual(result.kind, "application_id_not_found") self.assertEqual(result.message, "Application-Id não encontrado.") def test_when_validate_without_body_and_with_empty_digest_should_return_error(self): service = ValidatorService() headers = { "Application-Id": "273ab84d-0c7d-434a-a9f7-3004eabf54", # invalid uuid v4 "Digest": "" # empty string hash } result = service.is_valid(headers) self.assertIsInstance(result, ValidationError) self.assertEqual(result.kind, "digest_not_found") self.assertEqual(result.message, "Digest não encontrado.") def test_when_validate_without_body_and_without_digest_should_return_error(self): service = ValidatorService() headers = { "Application-Id": "273ab84d-0c7d-434a-a9f7-3004eabf54" # invalid uuid v4 } result = service.is_valid(headers) self.assertIsInstance(result, ValidationError) self.assertEqual(result.kind, "digest_not_found") self.assertEqual(result.message, "Digest não encontrado.") def test_when_validate_without_body_and_without_application_id_should_return_error(self): service = ValidatorService() headers = { "Digest": "sha256=e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855" # empty string hash } result = service.is_valid(headers) self.assertIsInstance(result, ValidationError) self.assertEqual(result.kind, "application_id_not_found") self.assertEqual(result.message, "Application-Id não encontrado.") ```
{ "source": "JohnOyster/Computer-Vision", "score": 3 }
#### File: Computer-Vision/HOG/hog.py ```python from enum import Enum import os.path import cv2 import numpy as np # ---------------------------------------------------------------------------- # Define Test Images def test_images(): """Generator to return test images. :return: Test Image Filename :rtype: str """ test_directory = './NICTA/TestSet/PositiveSamples' test_set = [ 'item_00000000.pnm' ] for image, _ in enumerate(test_set): yield os.path.join(test_directory, test_set[image]) def gamma_correction(image, gamma=1.0): """Power-Law (Gamma) Transformation of grayscale image. :param image: Original Image :type: numpy.ndarray :param gamma: Gamma value to apply :type: float :return: gamma transformed image file :rtype: numpy.ndarray """ bits_per_pixel = np.iinfo(image.dtype).max norm_image = image / np.max(image) new_image = bits_per_pixel * np.power(norm_image, gamma) new_image = new_image.astype(np.uint8) return new_image def compute_gradients(image, is_signed=False): """ - Cellsize[8 8] - Blocksize[16 16] - Gradient operators: Gx = [-1 0 1] and Gy = [-1 0 1]T - Number of orientation bins = 9 :param is_signed: :param image: :return: """ kernel_prewitt = np.array([[1, 1, 1], [0, 0, 0], [-1, -1, -1]]) gradient_x = cv2.filter2D(image, -1, kernel_prewitt) gradient_y = cv2.filter2D(image, -1, np.transpose(kernel_prewitt)) orientation_size = 360 if is_signed else 180 magnitude = np.sqrt(np.square(gradient_x) + np.square(gradient_y)) angle = np.arctan2(gradient_y, gradient_x) * (orientation_size / np.pi) return gradient_x, gradient_y, magnitude, angle def calculate_histogram(magnitudes, angles, bin_count=9, is_signed=False): """Calculate the localized histogram of each cell. :param magnitudes: The maginitude of each cell :type: np.ndarray :param angles: The angle of each cell :type: np.ndarray :param bin_count: The bins of each cell :type: int :param is_signed: Should angular data be signed? :type: bool :return: Histogram of cell :rtype: np.array """ cell_size_x, cell_size_y = magnitudes.shape orientation_size = 360 if is_signed else 180 bin_width = orientation_size // bin_count cell_histogram = np.zeros(bin_count) for row in range(cell_size_x): for col in range(cell_size_y): orientation = angles[row][col] histogram_bin = int(orientation // bin_width) cell_histogram[histogram_bin] += magnitudes[row][col] return cell_histogram / np.product(magnitudes.shape) def compute_weighted_vote(gradient, cell_size=(8, 8), bin_count=9, is_signed=False): """Compute the weighted vote of each cell. :param gradient: Gradient value of each cell :type: np.ndarray :param cell_size: 2D cell size :type: tuple :param bin_count: number of bins :type: int :param is_signed: is the orientatinos signed or not :type: bool :return: weighted histgram :rtype: np.ndarray """ gradient_x = gradient[0] gradient_y = gradient[1] gradient_magnitudes = gradient[2] gradient_angles = gradient[3] grad_size_x, grad_size_y = gradient_magnitudes.shape cell_size_x, cell_size_y = cell_size cell_count_x = int(grad_size_x / cell_size_x) # Number of cells in x axis cell_count_y = int(grad_size_y / cell_size_y) # Number of cells in y axis #print("[INFO] Cell counts: x={} y={}".format(cell_count_x, cell_count_y)) hog_cells = np.zeros((cell_count_x, cell_count_y, bin_count)) prev_x = 0 # Compute HOG of each cell for row in range(cell_count_x): prev_y = 0 for col in range(cell_count_y): magnitudes_cell = gradient_magnitudes[prev_x:prev_x + cell_size_x, prev_y:prev_y + cell_size_y] angles_cell = gradient_angles[prev_x:prev_x + cell_size_x, prev_y:prev_y + cell_size_y] hog_cells[row][col] = calculate_histogram(magnitudes_cell, angles_cell, bin_count, is_signed) prev_y += cell_size_y prev_x += cell_size_x #print("[DEBUG] Cells array shape: {}".format(hog_cells.shape)) return hog_cells, (cell_count_x, cell_count_y) def contrast_normalize(vector, epsilon=1e-5): """Performt the L2-norm on block. :param vector: The input :type: np.ndarray :param epsilon: That CYA value :type: float :return: Normalized block :rtype" np.ndarray """ #print("[DEBUG] What am I normalizing?: {}".format(vector.shape)) return vector / np.sqrt(np.linalg.norm(np.square(vector), 2) + np.square(epsilon)) def normalize_blocks(cells, cell_size=(8, 8), block_size=(16, 16), bin_count=9): """Normalize all the things! :param cells: Input cell :type: np.ndarray :param cell_size: 2D tuple :type: tuple :param block_size: 2D tuple :type: tuple :param bin_count: Number of bins :type: bin :return: Array of normalized blocks :rtype: np.ndarray """ cell_size_x, cell_size_y = cells.shape[:2] block_size_x, block_size_y = block_size block_count_x = cell_size_x - 1 block_count_y = cell_size_y - 1 cells_per_block_x = int(block_size_x // cell_size[0]) cells_per_block_y = int(block_size_y // cell_size[1]) #print("[INFO] Block counts: x={} y={}".format(block_count_x, block_count_y)) normalized_blocks = np.zeros((block_count_x, block_count_y, cells_per_block_x*cells_per_block_y*bin_count)) # Normalize HOG by block for row in range(block_count_x): for col in range(block_count_y): xrange = row+cells_per_block_x yrange = col+cells_per_block_y #print("[DEBUG] Row={} Col={}\n\t Getting cells {} and {}".format(row, col, xrange, yrange)) hog_block = cells[row:row + cells_per_block_x, col:col + cells_per_block_y].ravel() normalized_blocks[row, col] = contrast_normalize(hog_block) return normalized_blocks, (block_count_x, block_count_y) if __name__ == '__main__': for my_image in test_images(): # Step 1 - Input Image # Load in the test image, resize to 64x128, and convert to grayscale print("[INFO] Loading test image {}".format(my_image)) test_image = cv2.imread(my_image) test_image = cv2.resize(test_image, (64, 128)) test_image = cv2.cvtColor(test_image, cv2.COLOR_RGB2GRAY) # Step 2 - Normalize gamma and color gamma_value = 1.0 test_image = gamma_correction(test_image, gamma_value) # Step 3 - Compute gradients test_gradient = compute_gradients(test_image) TEST_GRADIENT = True if TEST_GRADIENT: gx, gy = test_gradient[0], test_gradient[1] gheight = gx.shape[1] * 4 gwidth = gx.shape[0] * 4 gx = cv2.resize(gx, (gheight, gwidth)) gy = cv2.resize(gy, (gheight, gwidth)) output_stack = np.hstack((gx, gy)) cv2.imshow('Filter results', output_stack) cv2.waitKey(0) # Step 4 - Weighted vote into spatial and orientation cells cell_histograms, _ = compute_weighted_vote(test_gradient) # Step 5 - Contrast normalize over overlapping spatial blocks hog_blocks, _ = normalize_blocks(cell_histograms) # Step 6 - Collect HOG's over detection window print(hog_blocks.ravel().shape) # Step 7 - Linear SVM cv2.destroyAllWindows() ```
{ "source": "johnp418/lumohacks2017", "score": 2 }
#### File: sleepee/diary/views.py ```python from diary.models import Diary, Nap, Patient, Physician from django.shortcuts import get_object_or_404 from diary.serializers import DiarySerializer, UserSerializer from django.http import Http404 from rest_framework import viewsets, status from rest_framework.response import Response # Create your views here. class DiaryViewSet(viewsets.ViewSet): def list(self, request): queryset = Diary.objects.all() serializer = DiarySerializer(queryset, many=True) return Response(serializer.data) def retrieve(self, request, pk): try: queryset = Diary.objects.get(id=pk) except Diary.DoesNotExist: raise Http404 serializer = DiarySerializer(queryset) return Response(serializer.data) def create(self, request): serializer = DiarySerializer(data=request.data) print('creating diary') if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) # def update(self, request, pk): # pass def partial_update(self, request, pk): try: queryset = Diary.objects.get(id=pk) except Diary.DoesNotExist: raise Http404 serializer = DiarySerializer(queryset, data=request.data, partial=True) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_200_OK) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def destroy(self, request, pk): try: queryset = Diary.objects.get(id=pk) except Diary.DoesNotExist: raise Http404 queryset.delete() return Response("deletion successful", status=status.HTTP_202_ACCEPTED) class UserViewSet(viewsets.ViewSet): # def retrieve(self, request, pk): # try: # queryset = Diary.objects.get(id=pk) # except Diary.DoesNotExist: # raise Http404 # serializer = DiarySerializer(queryset) # return Response(serializer.data) def create(self, request): serializer = UserSerializer(data=request.data) print(request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def partial_update(self, request, pk): try: queryset = Diary.objects.get(id=pk) except Diary.DoesNotExist: raise Http404 serializer = DiarySerializer(queryset, data=request.data, partial=True) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_200_OK) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def destroy(self, request, pk): try: queryset = Diary.objects.get(id=pk) except Diary.DoesNotExist: raise Http404 queryset.delete() return Response("deletion successful", status=status.HTTP_202_ACCEPTED) ```
{ "source": "JohnPapagiannakos/shortestpathsinpolygons", "score": 3 }
#### File: JohnPapagiannakos/shortestpathsinpolygons/graphs.py ```python import math from collections import deque class Node: def __init__(self, fid, face, link=None): # Face id self.fid = fid self.face = face # Coordinates of node, [x, y] self.coords = face.getCentroid() # Pointer to other node in the graph self.link = list() self.visited = False def makeLink(self, toNode): # Distance between nodes p = self.getCoordinates() q = toNode.getCoordinates() distance = math.sqrt(math.pow((q[0] - p[0]), 2) + math.pow((q[1] - p[1]),2)) self.link.append(Link(self, toNode, distance)) def getId(self): return self.fid def getCoordinates(self): return self.coords class Link: def __init__(self, origin, tail, distance): # Points to the origin node self.origin = origin # Points to the tail node self.tail = tail # Eucl. distance between two nodes self.distance = distance def getTail(self): return self.tail class Graph: def __init__(self, fid=None, node=None): self.head = None self.list_nodes = list() self.num_nodes = 0 def sortById(self): self.list_nodes = sorted(self.list_nodes, key=lambda x: (x.fid)) def addNode(self, newNode, fid): newNode = Node(fid, newNode, None) self.list_nodes.append(newNode) if self.head is None: self.head = newNode self.num_nodes += 1 return newNode def makeLink(self, n1, n2): n1 = self.list_nodes[n1.getId() - 1] n2 = self.list_nodes[n2.getId() - 1] # link n1->n2 && n2->n1 n1.makeLink(n2) n2.makeLink(n1) def getNodeByFaceId(self, fid): return self.list_nodes[fid - 1] def DFS(self, path, end): last_visited = path[-1] for e in last_visited.link: t = e.getTail() if t.visited == False: t.visited = True path.append(t) if t == end: return path if self.DFS(path, end): return path path.pop() return # Depth-First Search Non-Recursive Function <=> Breadth-First Search # https://stackoverflow.com/questions/8922060/how-to-trace-the-path-in-a-breadth-first-search # In python iterative approach performs better than reccursive. def BFS(self, start, end): # maintain a queue of paths queue = [] # push the first path into the queue queue.append([start]) while queue: # get the first path from the queue path = queue.pop(0) # get the last node from the path node = path[-1] # path found if node == end: return path # enumerate all adjacent nodes, construct a new path and push it into the queue for adjacent in node.link: t = adjacent.getTail() if t.visited == False: t.visited = True new_path = list(path) new_path.append(t) queue.append(new_path) def startTraversal(self, start, end): print("Starting to find shortest path ...") start.visited = True path = [start] if start == end: return None path = self.BFS(start, end) print(len(path)) print("Found shortest path!") print("\n") return path ``` #### File: JohnPapagiannakos/shortestpathsinpolygons/project_libs.py ```python import os import sys from osgeo import gdal, osr, ogr from dcel import * # Compute Distance using Haversine formula def haversineDistance(point1, point2): R = 6371 # mean(Earth radius) dLat = math.radians(point2.y) - math.radians(point1.y) dLon = math.radians(point2.x) - math.radians(point1.x) a = math.sin(dLat/2) * math.sin(dLat/2) + math.cos(math.radians(point1.y)) * math.cos(math.radians(point2.y)) * math.sin(dLon/2) * math.sin(dLon/2) return R * 2 * math.atan2(math.sqrt(a), math.sqrt(1-a)) # Fetch the schema information for this layer (https://pcjericks.github.io/py-gdalogr-cookbook/vector_layers.html). def addGeometryToLayer(input_layer, input_polygon): featureDefn = input_layer.GetLayerDefn() outFeature = ogr.Feature(featureDefn) outFeature.SetGeometry(input_polygon) input_layer.CreateFeature(outFeature) outFeature = None # Create the polygon from dataset def createPolygon(dataset, starting_point, ending_point): Polygon = None layer = dataset.GetLayer() for feature in layer: geom = feature.GetGeometryRef() if geom.Contains(starting_point): if not geom.Contains(ending_point): print("There exists no path between the two given points!") return # Convert a geometry into well known binary format. wkb = geom.ExportToWkb() Polygon = ogr.CreateGeometryFromWkb(wkb) return Polygon # Implementation of Funnel Algorithm and miscellaneous functions. # based on link[2] https://github.com/mmmovania/poly2tri.as3/blob/master/src/org/poly2tri/utils/NewFunnel.as # link[3] https://gamedev.stackexchange.com/questions/68302/how-does-the-simple-stupid-funnel-algorithm-work/68305 # # Computes and returns the Euclidean distance between points a and b. def vdistsqr(a, b): x = b.x - a.x y = b.y - a.y return math.sqrt(math.pow(x, 2) + math.pow(y, 2)) # Boolean function. Returns true if |a - b| < 1e-6 \approx "0" def vequal(a, b): eq = math.pow(0.001, 2) return vdistsqr(a, b) < eq # Computes and returns the cross_product(u,v), where u = b-a, v = c-a, # or equivalently the Area A of a triangle \Delta(a,b,c) times 2. def triAreaX2(a, b, c): ax = b.x - a.x ay = b.y - a.y bx = c.x - a.x by = c.y - a.y return (bx * ay - ax * by) def funnel(starting_point, ending_point, diagonal_list): if diagonal_list is None: path = [starting_point, ending_point] return path leftList = list() rightList = list() for e in diagonal_list: origin = e.getOrigin() op = point(origin.getCoordinates()[0], origin.getCoordinates()[1]) tail = e.getTail() tp = point(tail.getCoordinates()[0], tail.getCoordinates()[1]) leftList.append(op) rightList.append(tp) leftList.append(ending_point) rightList.append(ending_point) path = [starting_point] rightNode = rightList[0] leftNode = leftList[0] leftIdx = 0 rightIdx = 0 apex = starting_point i = 0 while i<len(diagonal_list): i += 1 nextRight = rightList[i] nextLeft = leftList[i] # Update right vertex. if triAreaX2(apex, rightNode, nextRight) <= 0: if vequal(apex, rightNode) or triAreaX2(apex, leftNode, nextRight) > 0: # Tighten the funnel. rightNode = nextRight rightIdx = i else: # Right over left, insert left to path and restart scan from portal left point. path.append(leftNode) apex = leftNode apexIndex = leftIdx # Reset funnel leftNode = apex rightNode = apex rightIdx = apexIndex # Restart scan. i = apexIndex continue # Update left vertex if triAreaX2(apex, leftNode, nextLeft) >= 0: if vequal(apex, leftNode) or triAreaX2(apex, rightNode, nextLeft) < 0: # Tighten the funnel. leftNode = nextLeft leftIdx = i else: # Left over right, insert right to path and restart scan from portal right point. path.append(rightNode) # Make current right the new apex. apex = rightNode apexIndex = rightIdx # Reset portal. leftNode = apex rightNode = apex leftIdx = apexIndex rightIdx = apexIndex # Restart scan. i = apexIndex continue path.append(ending_point) return path # Finds and returns the intersected diagonals. def findIntersectedDiagonals(Dcel, shortest_path): intersectedDiagonals = list() for ii in range(0, len(shortest_path) - 1): face = Dcel.faces[shortest_path[ii].fid] s = face.getOuterEdge() if s.getTwin().getFace().getId() == shortest_path[ii + 1].fid: intersectedDiagonals.append(s) e = s.getNext() while e != s: if e.getTwin().getFace().getId() == shortest_path[ii + 1].fid: intersectedDiagonals.append(e) break e = e.getNext() return intersectedDiagonals # ---Main Routine--- # Given two points inside a polygon, this function returns the shortest path # between the two points, lying inside the polygon. # Input: * input_starting_point, the given starting point in format (x,y). # * input_ending_point, the given ending point in format (x,y). # * inputFileName, the input shape file (.shp). # * outputFileName, a list of the output shape files (.shp). # (can be an empty list) # * driverName, the shapefile format. # * outputDataDir, the directory where the produced files will be saved. # Output: void def findShortestPathInPolygon(input_starting_point, input_ending_point, inputFileName, outputFileName, driverName, outputDataDir): if inputFileName is None: sys.exit("Empty inputFileName!") if len(outputFileName) > 5: print('Ignoring extra filenames') if len(outputFileName) < 5: print('Using default output filenames') outputFileName = list() for i in range(5): outputFileName.append('output_' + str(i) + '.shp') starting_point = ogr.Geometry(ogr.wkbPoint) starting_point.AddPoint(input_starting_point.x, input_starting_point.y) ending_point = ogr.Geometry(ogr.wkbPoint) ending_point.AddPoint(input_ending_point.x, input_ending_point.y) # Open the specified shape file dataset = gdal.OpenEx(inputFileName, gdal.OF_VECTOR) if not dataset: sys.exit("Specified project directory does not exist or is empty! Terminating...") else: print("Data files have been read successfully!") # Create Polygon from dataset Polygon = createPolygon(dataset, starting_point, ending_point) if Polygon is None: print("Empty Polygon! There is no polygon that contains input starting-ending points.") return # Close dataset dataset = None drv = ogr.GetDriverByName(driverName) outputFileName[0] = os.path.join(outputDataDir, outputFileName[0]) if os.path.exists(outputFileName[0]): drv.DeleteDataSource(outputFileName[0]) outDataSource = drv.CreateDataSource(outputFileName[0]) outLayer = outDataSource.CreateLayer(outputFileName[0], geom_type=ogr.wkbPolygon) addGeometryToLayer(outLayer, Polygon) # Build the dcel structure from the polygon newDcel = Dcel() newDcel.buildFromPolygon(Polygon) # Monotonize Polygon P (this step is used only to visualize Monotonized P separetelly...) print("Monotonizing : Polygon P") newDcel.makeMonotone() # Create a new shapefile... # Write the monotonized polygons... outSHPfn = os.path.join(outputDataDir, outputFileName[1]) if os.path.exists(outSHPfn): drv.DeleteDataSource(outSHPfn) outDataSource = drv.CreateDataSource(outSHPfn) outLayer = outDataSource.CreateLayer(outSHPfn, geom_type=ogr.wkbPolygon) for i in range(1, newDcel.num_faces): poly = getPolygonByFace(newDcel.faces[i]) addGeometryToLayer(outLayer, poly) #### # Replace prev shapefile newDcel = Dcel() newDcel.buildFromPolygon(Polygon) # Triangulate the monotonized polygon print("Monotonizing + Triangulating : Polygon P") newDcel.makeMonotone() newDcel.triangulate() # Create a new shapefile... # Write the triangulated & monotonized polygons... outSHPfn = os.path.join(outputDataDir, outputFileName[2]) if os.path.exists(outSHPfn): drv.DeleteDataSource(outSHPfn) outDataSource = drv.CreateDataSource(outSHPfn) outLayer = outDataSource.CreateLayer(outSHPfn, geom_type=ogr.wkbPolygon) for i in range(1, newDcel.num_faces): poly = getPolygonByFace(newDcel.faces[i]) if poly.Contains(starting_point): start_face = newDcel.faces[i] if poly.Contains(ending_point): end_face = newDcel.faces[i] addGeometryToLayer(outLayer, poly) # Find the shortest path between the given starting and end points extractedGraph = newDcel.extractGraph() starting_node = extractedGraph.getNodeByFaceId(start_face.getId()) ending_node = extractedGraph.getNodeByFaceId(end_face.getId()) shortest_path = extractedGraph.startTraversal(starting_node, ending_node) outSHPfn = os.path.join(outputDataDir, outputFileName[3]) if os.path.exists(outSHPfn): drv.DeleteDataSource(outSHPfn) outDataSource = drv.CreateDataSource(outSHPfn) outLayer = outDataSource.CreateLayer(outSHPfn, geom_type=ogr.wkbLineString) # Create a LineString path_line = ogr.Geometry(ogr.wkbLineString) for p in shortest_path: path_line.AddPoint(p.getCoordinates()[0], p.getCoordinates()[1]) addGeometryToLayer(outLayer, path_line) # Find the intersected diagonals. intersectedDiagonals = findIntersectedDiagonals(newDcel, shortest_path) # Funnel Algorithm actual_path = funnel(input_starting_point, input_ending_point, intersectedDiagonals) outSHPfn = os.path.join(outputDataDir, outputFileName[4]) if os.path.exists(outSHPfn): drv.DeleteDataSource(outSHPfn) outDataSource = drv.CreateDataSource(outSHPfn) outLayer = outDataSource.CreateLayer(outSHPfn, geom_type=ogr.wkbLineString) # Create a LineString path_line = ogr.Geometry(ogr.wkbLineString) # Calculate total distance of shortest path (Ellipsoidal formula) distance = 0 idx = 0 for p in actual_path: path_line.AddPoint(p.x, p.y) if idx > 0: distance += haversineDistance(actual_path[idx-1], actual_path[idx]) idx+=1 addGeometryToLayer(outLayer, path_line) print("Total length (Cartesian) " + " = " + " {:.2f} deg".format(path_line.Length())) print("Total length (Ellipsoidal)" + u" \u2248 " + " {:.1E} km".format(distance)) ```
{ "source": "johnpappas/task_queue", "score": 3 }
#### File: johnpappas/task_queue/property_utils.py ```python PROJECT_FILE_NAME='APP_NAME' DELIMITER='_' def get_app_name_prefix(): with open(PROJECT_FILE_NAME, 'r') as myfile: app_name=myfile.read().replace('\n', '') return app_name + DELIMITER ``` #### File: johnpappas/task_queue/task_httpReqContentToQueue.py ```python import requests import RedisUtils import time #Q_RESULT_PUT_QUEUE = RedisUtils.RedisQueue('result_put_queue') def count_words_at_url(url, qname): put_queue = RedisUtils.RedisQueue(qname) resp = requests.get(url) #return len(resp.text.split()) put_queue.put(resp.text) #Q_RESULT_PUT_QUEUE.put(resp.text) #return resp.text ```
{ "source": "JohnPaquete/deck-wolf", "score": 2 }
#### File: JohnPaquete/deck-wolf/app.py ```python from bottle import Bottle, run, template, static_file, request, redirect from src.bottle_sqlite import SQLitePlugin from src.models import Schema from src.service import DeckMakerService app = Bottle() sqlite_plugin = SQLitePlugin(dbfile='data/test.db') app.install(sqlite_plugin) # The home page @app.route('/') def index(db): return DeckMakerService().index(db) # Card index page @app.route('/cards') @app.route('/cards/') def card_index(): return DeckMakerService().card_index() # Random card page @app.route('/cards/random') @app.route('/cards/random/') def card_random(db): return DeckMakerService().card_random(db) # Card page by id @app.route('/cards/:item') def card(item, db): return DeckMakerService().card(db, item) # Posting of the collection form on card pages @app.route('/cards/:item', method='POST') def card_post(item, db): DeckMakerService().card_post(db, item, request.forms) redirect(f"/cards/{item}") # Card page by oracle id @app.route('/cards/oracle/:item') def oracle_card(item, db): return DeckMakerService().oracle_card(db, item) # Sets index page @app.route('/sets') @app.route('/sets/') def sets_index(db): return DeckMakerService().sets_index(db, request.query) # Sets card list page by set code @app.route('/sets/:item') def sets_card_list(item, db): return DeckMakerService().sets_card_list(db, request.query, item) # Collection index page @app.route('/collection') @app.route('/collection/') def collection(db): return DeckMakerService().collection(db, request.query) # Collection post from collection index @app.route('/collection/:item', method='POST') def collection_post(item, db): DeckMakerService().collection_post(db, item, request.forms) redirect("/collection") # Binders index page @app.route('/collection/binders') @app.route('/collection/binders/') def binders_index(db): return DeckMakerService().binders_index(db, request.query) # Binder create @app.route('/collection/binders', method='POST') @app.route('/collection/binders/', method='POST') def binders_create(db): DeckMakerService().binders_post(db, request.forms) redirect("/collection/binders/") # Binder view page by id @app.route('/collection/binders/:item') @app.route('/collection/binders/:item/') def binders(db, item): return DeckMakerService().binders(db, request.query, item) # Binder delete and edit by id @app.route('/collection/binders/:item', method='POST') @app.route('/collection/binders/:item/', method='POST') def binders_edit(db, item): DeckMakerService().binders_post(db, request.forms, item=item) if request.forms.get('redirect') is not None: redirect(request.forms.get('redirect')) else: redirect("/collection/binders/") # Deck index page @app.route('/decks') @app.route('/decks/') def decks(db): return DeckMakerService().decks_index(db, request.query) # Deck creation form page @app.route('/decks/create') @app.route('/decks/create/') def decks_create(): return DeckMakerService().decks_create() # Deck creation form post @app.route('/decks/create', method='POST') @app.route('/decks/create/', method='POST') def decks_create_post(db): DeckMakerService().decks_post(db, request.forms) redirect("/decks") # Deck edit form by id @app.route('/decks/edit/:item') @app.route('/decks/edit/:item/') def decks_edit(db, item): return DeckMakerService().decks_edit(db, item) # Deck edit form post @app.route('/decks/edit/:item', method='POST') @app.route('/decks/edit/:item/', method='POST') def decks_edit_post(db, item): DeckMakerService().decks_post(db, request.forms, item=item) redirect(f"/decks/{item}") # Deck view page by id @app.route('/decks/:item') @app.route('/decks/:item/') def decks_view(db, item): return DeckMakerService().decks(db, request.query, item) # Deck delete by id @app.route('/decks/:item', method='POST') @app.route('/decks/:item/', method='POST') def decks_delete(db, item): DeckMakerService().decks_post(db, request.forms, item=item) redirect("/decks/") # Search index page @app.route('/search') @app.route('/search/') def search(db): return DeckMakerService().search(db, request.query) # Search index page @app.route('/search', method='POST') @app.route('/search/', method='POST') def search(db): DeckMakerService().search_post(db, request.query, request.forms) redirect('/search/?' + request.query_string) # Advanced search page @app.route('/advanced-search') @app.route('/advanced-search/') def card_random(db): return DeckMakerService().advanced_search(db) # Bout page @app.route('/about') @app.route('/about/') def card_random(db): return template('about') # Static file for assets @app.route('/assets/<filepath:path>') def asset(filepath): return static_file(filepath, root='./assets') # Endpoint for card autocomplete @app.route('/api/card_autocomplete/', method='POST') @app.route('/api/card_autocomplete', method='POST') def card_autocomplete(db): return DeckMakerService().card_autocomplete(db, request.json) # 404 page @app.error(404) @app.error(405) def error404(error): return template('card_404') if __name__ == "__main__": Schema() run(app, host='localhost', port=8080, debug=True, reloader=False) ``` #### File: deck-wolf/tests/test_viewtilities.py ```python import unittest import src.viewtilities as util class TestViewtilities(unittest.TestCase): def test_legality(self): self.assertEqual("Legal", util.legality("legal")) self.assertEqual("Not Legal", util.legality("not_legal")) self.assertEqual("Restricted", util.legality("restricted")) self.assertEqual("Banned", util.legality("banned")) self.assertEqual("NO ENTRY", util.legality(None)) self.assertEqual("NO ENTRY", util.legality(15)) self.assertEqual("NO ENTRY", util.legality("Error")) def test_legality_bg(self): self.assertEqual("table-success", util.legality_bg("legal")) self.assertEqual("table-secondary", util.legality_bg("not_legal")) self.assertEqual("table-warning", util.legality_bg("restricted")) self.assertEqual("table-danger", util.legality_bg("banned")) self.assertEqual(None, util.legality_bg(None)) self.assertEqual(None, util.legality_bg(15)) self.assertEqual(None, util.legality_bg("Error")) def test_rarity(self): self.assertEqual("Common", util.rarity("common")) self.assertEqual("Uncommon", util.rarity("uncommon")) self.assertEqual("Rare", util.rarity("rare")) self.assertEqual("Mythic", util.rarity("mythic")) self.assertEqual("NO ENTRY", util.rarity(None)) self.assertEqual("NO ENTRY", util.rarity(15)) self.assertEqual("NO ENTRY", util.rarity("Error")) def test_curency(self): self.assertEqual("$0.12", util.currency(0.12, "$")) self.assertEqual("$0.12", util.currency("0.12", "$")) self.assertEqual("0.12", util.currency("0.12", None)) self.assertEqual("--", util.currency(None, "$")) self.assertEqual("0.12", util.currency(0.12, None)) ```
{ "source": "JohnParken/pycorrector", "score": 3 }
#### File: pycorrector/seq2seq_attention/infer.py ```python import os import sys sys.path.append('../..') from pycorrector.seq2seq_attention import config from pycorrector.seq2seq_attention.model import Seq2SeqModel from pycorrector.seq2seq_attention.data_reader import load_word_dict def plot_attention(attention, sentence, predicted_sentence, img_path): """ Plotting the attention weights :param attention: :param sentence: :param predicted_sentence: :param img_path: :return: """ import matplotlib.pyplot as plt import matplotlib.ticker as ticker from matplotlib import font_manager my_font = font_manager.FontProperties(fname="/Library/Fonts/Songti.ttc") fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(1, 1, 1) ax.matshow(attention, cmap='viridis') fontdict = {'fontsize': 12} ax.set_xticklabels([''] + sentence, fontdict=fontdict, fontproperties=my_font) # rotation=90, ax.set_yticklabels([''] + predicted_sentence, fontdict=fontdict, fontproperties=my_font) ax.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) # plt.show() plt.savefig(img_path) print("save attention weight image to :", img_path) plt.clf() def infer(model, sentence, attention_image_path=''): result, sentence, attention_plot = model.evaluate(sentence) print('Input: %s' % (sentence)) print('Predicted translation: {}'.format(result)) attention_plot = attention_plot[:len(result.split(' ')), :len(sentence.split(' '))] if attention_image_path: try: plot_attention(attention_plot, sentence.split(' '), result.split(' '), attention_image_path) except Exception as e: print(e) pass if __name__ == "__main__": if config.gpu_id > -1: os.environ["CUDA_VISIBLE_DEVICES"] = str(config.gpu_id) else: os.environ["CUDA_VISIBLE_DEVICES"] = '-1' inputs = [ '以 前 , 包 括 中 国 , 我 国 也 是 。', '我 现 在 好 得 多 了 。', '这几年前时间,', '歌曲使人的感到快乐,', '会能够大幅减少互相抱怨的情况。' ] source_word2id = load_word_dict(config.save_src_vocab_path) target_word2id = load_word_dict(config.save_trg_vocab_path) model = Seq2SeqModel(source_word2id, target_word2id, embedding_dim=config.embedding_dim, hidden_dim=config.hidden_dim, batch_size=config.batch_size, maxlen=config.maxlen, checkpoint_path=config.model_dir, gpu_id=config.gpu_id) for id, i in enumerate(inputs): img_path = os.path.join(config.output_dir, str(id) + ".png") infer(model, i, img_path) # result: # input:由我起开始做。 # output:我开始做。 # input:没有解决这个问题, # output:没有解决的问题, # input:由我起开始做。 ``` #### File: pycorrector/test/pycorrector_test.py ```python import pycorrector #@profile 内存监测 def test(path, result_path): count, count_all = 0,0 #_badcase = open('../../positive_badcase.txt','w', encoding='utf-8') with open(path, 'r', encoding='utf-8') as file, open(result_path,'w',encoding='utf-8') as wfile: line = file.readline() while line != None and line != '': count_all += 1 # 用于测试sighan数据的部分代码 index, origin_string = line.strip().split(' ')[0], line.strip().split(' ')[1] #if count_all == 4: # break # 用于测试笔录数据的部分代码 """ origin_string = line.strip().split(',')[0] if len(line.strip().split(',')) > 1: origin_string += line.strip().split(',')[1] corr_string, detail = pycorrector.correct(origin_string) if str(detail) == "[]": count += 1 else: #wfile.write('{}\t{}\n'.format(corr_string, detail)) wfile.write('{}\t{}\t{}\n'.format(index, corr_string, detail)) print('{} / {}'.format(count, count_all)) """ idx = index.strip().split('=')[1].strip(')') idx,corr_string, detail = pycorrector.correct(idx,origin_string) wfile.write('{}\t{}\t{}\n'.format(index, corr_string, detail)) line = file.readline() if __name__ == '__main__': path = './corpus/sighan15.txt' result_path = './corpus/sighan15_result.txt' test(path, result_path) ``` #### File: pycorrector/tests/eval_test.py ```python import sys sys.path.append("../") import os from pycorrector.utils.eval import eval_bcmi_data, get_bcmi_corpus, eval_sighan_corpus pwd_path = os.path.abspath(os.path.dirname(__file__)) bcmi_path = os.path.join(pwd_path, '../pycorrector/data/cn/bcmi.txt') clp_path = os.path.join(pwd_path, '../pycorrector/data/cn/clp14_C1.pkl') sighan_path = os.path.join(pwd_path, '../pycorrector/data/cn/sighan15_A2.pkl') cged_path = os.path.join(pwd_path, '../pycorrector/data/cn/CGED/CGED16_HSK_TrainingSet.xml') def test_get_bcmi_data(): s = '青蛙是庄家的好朋友,我们要宝((保))护它们。' print(get_bcmi_corpus(s)) def test_eval_bcmi_data(): rate, right_dict, wrong_dict = eval_bcmi_data(bcmi_path, True) print('right rate:{}, right_dict:{}, wrong_dict:{}'.format(rate, right_dict, wrong_dict)) # right count: 104 ;sentence size: 383, right rate:0.271 def test_clp_data(): rate = eval_sighan_corpus(clp_path, True) print('right rate:{}'.format(rate)) # rate:1.6 def test_sighan_data(): rate = eval_sighan_corpus(sighan_path, True) print('right rate:{}'.format(rate)) # rate:1.53 ```
{ "source": "john-parton/django-ltree-utils", "score": 2 }
#### File: django-ltree-utils/django_ltree_utils/forms.py ```python from django import forms def move_node_form_factory(manager): class Form(forms.ModelForm): position = forms.ChoiceField(choices=manager.Position.choices) relative_to = forms.ModelChoiceField( queryset=manager.all(), required=False ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.instance and self.instance.path: self.fields['relative_to'].queryset = manager.exclude( **{f'{manager.path_field}__descendant_of': getattr(self.instance, manager.path_field)} ) position, relative_to = manager._get_relative_position(self.instance) self.fields['position'].initial = position self.fields['relative_to'].initial = relative_to class Meta: model = manager.model exclude = [manager.path_field] def clean(self, *args, **kwargs): cleaned_data = super().clean(*args, **kwargs) position = cleaned_data['position'] relative_to = True if manager.Position(position) == manager.Position.ROOT else cleaned_data['relative_to'] moves = manager._resolve_position( self.instance, { position: relative_to } ) self.cleaned_data['_moves'] = moves def save(self, *args, **kwargs): manager._bulk_move(self.cleaned_data['_moves']) return super().save(*args, **kwargs) return Form ``` #### File: django-ltree-utils/django_ltree_utils/position.py ```python import typing from django.db import models from django.utils.translation import gettext_lazy as _ from .paths import Path, PathFactory class RelativePosition(models.TextChoices): CHILD = 'child_of', _("Child of") FIRST_CHILD = 'first_child_of', ("First child of") # Same functionality as child_of LAST_CHILD = 'last_child_of', _("Last child of") # These could be "before" and "after" BEFORE = 'before', _("Before") AFTER = 'after', _("After") # Right-most root element ROOT = 'root', _("Last root") # Consider just making its own functions # Or put back on manager or something @classmethod def resolve(cls, kwargs, path_field: str, path_factory: PathFactory) -> typing.Tuple[Path, typing.Optional[int]]: """ Parse kwargs and normalize relative position to always be tuple = (parent_path, nth-child) """ # Path field is used to unwrap/duck-type models that have a path attribute positions: typing.Dict['RelativePosition', typing.Any] = {} for position in cls: try: positions[position] = kwargs.pop(position.value) except KeyError: continue if len(positions) != 1: raise TypeError(f"Could not resolve position: {positions!r}") position, relative_to = positions.popitem() if position == cls.ROOT: if relative_to is not True: raise ValueError(f"Expected kwarg root=True, got root={relative_to!r}") return [], None # Duck-type model instances # Might want to use isinstance instead? if hasattr(relative_to, path_field): relative_to = getattr(relative_to, path_field) # TODO Better error handling here? # Convert strings to lists? if not isinstance(relative_to, list): relative_to = relative_to.split('.') # last_child_of is a more verbose alias for child_of if position in {cls.CHILD, cls.LAST_CHILD}: return relative_to, None elif position == cls.FIRST_CHILD: return relative_to, 0 elif position in {cls.BEFORE, cls.AFTER}: parent, child_index = path_factory.split(relative_to) if position == cls.AFTER: child_index += 1 return parent, child_index else: # Should never get here raise Exception class SortedPosition(models.TextChoices): CHILD = 'child_of', _("Child of") SIBLING = 'sibling', _("Sibling of") ROOT = 'root', _("Root") @classmethod def resolve(cls, kwargs, path_field: str, path_factory: PathFactory) -> typing.Tuple[Path, typing.Optional[int]]: """ Parse kwargs and normalize relative position to always be tuple = (parent_path, nth-child) """ # Path field is used to unwrap/duck-type models that have a path attribute positions: typing.Dict['SortedPosition', typing.Any] = {} for position in cls: try: positions[position] = kwargs.pop(position.value) except KeyError: continue if len(positions) != 1: raise TypeError(f"Could not resolve position: {positions!r}") position, relative_to = positions.popitem() if position == cls.ROOT: if relative_to is not True: raise ValueError(f"Expected kwarg root=True, got root={relative_to!r}") return [], None # Duck-type model instances # Might want to use isinstance instead? if hasattr(relative_to, path_field): relative_to = getattr(relative_to, path_field) # TODO Better error handling here? # Convert strings to lists? if not isinstance(relative_to, list): relative_to = relative_to.split('.') # last_child_of is a more verbose alias for child_of if position == cls.CHILD: return relative_to, None elif position == cls.SIBLING: parent, child_index = path_factory.split(relative_to) return parent, None else: # Should never get here raise Exception ```
{ "source": "john-parton/django-simple-history", "score": 2 }
#### File: simple_history/tests/admin.py ```python from __future__ import unicode_literals from django.contrib import admin from simple_history.admin import SimpleHistoryAdmin from simple_history.tests.external.models import ExternalModelWithCustomUserIdField from .models import ( Book, Choice, ConcreteExternal, Document, Employee, FileModel, Paper, Person, Planet, Poll, ) class PersonAdmin(SimpleHistoryAdmin): def has_change_permission(self, request, obj=None): return False class ChoiceAdmin(SimpleHistoryAdmin): history_list_display = ["votes"] class FileModelAdmin(SimpleHistoryAdmin): def test_method(self, obj): return "test_method_value" history_list_display = ["title", "test_method"] class PlanetAdmin(SimpleHistoryAdmin): def test_method(self, obj): return "test_method_value" history_list_display = ["title", "test_method"] admin.site.register(Poll, SimpleHistoryAdmin) admin.site.register(Choice, ChoiceAdmin) admin.site.register(Person, PersonAdmin) admin.site.register(Book, SimpleHistoryAdmin) admin.site.register(Document, SimpleHistoryAdmin) admin.site.register(Paper, SimpleHistoryAdmin) admin.site.register(Employee, SimpleHistoryAdmin) admin.site.register(ConcreteExternal, SimpleHistoryAdmin) admin.site.register(ExternalModelWithCustomUserIdField, SimpleHistoryAdmin) admin.site.register(FileModel, FileModelAdmin) admin.site.register(Planet, PlanetAdmin) ```
{ "source": "john-parton/mailchimp-asyncio", "score": 2 }
#### File: mailchimp_marketing_asyncio/models/account_contact.py ```python import pprint import re # noqa: F401 import six class AccountContact(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'company': 'str', 'addr1': 'str', 'addr2': 'str', 'city': 'str', 'state': 'str', 'zip': 'str', 'country': 'str' } attribute_map = { 'company': 'company', 'addr1': 'addr1', 'addr2': 'addr2', 'city': 'city', 'state': 'state', 'zip': 'zip', 'country': 'country' } def __init__(self, company=None, addr1=None, addr2=None, city=None, state=None, zip=None, country=None): # noqa: E501 """AccountContact - a model defined in Swagger""" # noqa: E501 self._company = None self._addr1 = None self._addr2 = None self._city = None self._state = None self._zip = None self._country = None self.discriminator = None if company is not None: self.company = company if addr1 is not None: self.addr1 = addr1 if addr2 is not None: self.addr2 = addr2 if city is not None: self.city = city if state is not None: self.state = state if zip is not None: self.zip = zip if country is not None: self.country = country @property def company(self): """Gets the company of this AccountContact. # noqa: E501 The company name for the account. # noqa: E501 :return: The company of this AccountContact. # noqa: E501 :rtype: str """ return self._company @company.setter def company(self, company): """Sets the company of this AccountContact. The company name for the account. # noqa: E501 :param company: The company of this AccountContact. # noqa: E501 :type: str """ self._company = company @property def addr1(self): """Gets the addr1 of this AccountContact. # noqa: E501 The street address for the account contact. # noqa: E501 :return: The addr1 of this AccountContact. # noqa: E501 :rtype: str """ return self._addr1 @addr1.setter def addr1(self, addr1): """Sets the addr1 of this AccountContact. The street address for the account contact. # noqa: E501 :param addr1: The addr1 of this AccountContact. # noqa: E501 :type: str """ self._addr1 = addr1 @property def addr2(self): """Gets the addr2 of this AccountContact. # noqa: E501 The street address for the account contact. # noqa: E501 :return: The addr2 of this AccountContact. # noqa: E501 :rtype: str """ return self._addr2 @addr2.setter def addr2(self, addr2): """Sets the addr2 of this AccountContact. The street address for the account contact. # noqa: E501 :param addr2: The addr2 of this AccountContact. # noqa: E501 :type: str """ self._addr2 = addr2 @property def city(self): """Gets the city of this AccountContact. # noqa: E501 The city for the account contact. # noqa: E501 :return: The city of this AccountContact. # noqa: E501 :rtype: str """ return self._city @city.setter def city(self, city): """Sets the city of this AccountContact. The city for the account contact. # noqa: E501 :param city: The city of this AccountContact. # noqa: E501 :type: str """ self._city = city @property def state(self): """Gets the state of this AccountContact. # noqa: E501 The state for the account contact. # noqa: E501 :return: The state of this AccountContact. # noqa: E501 :rtype: str """ return self._state @state.setter def state(self, state): """Sets the state of this AccountContact. The state for the account contact. # noqa: E501 :param state: The state of this AccountContact. # noqa: E501 :type: str """ self._state = state @property def zip(self): """Gets the zip of this AccountContact. # noqa: E501 The zip code for the account contact. # noqa: E501 :return: The zip of this AccountContact. # noqa: E501 :rtype: str """ return self._zip @zip.setter def zip(self, zip): """Sets the zip of this AccountContact. The zip code for the account contact. # noqa: E501 :param zip: The zip of this AccountContact. # noqa: E501 :type: str """ self._zip = zip @property def country(self): """Gets the country of this AccountContact. # noqa: E501 The country for the account contact. # noqa: E501 :return: The country of this AccountContact. # noqa: E501 :rtype: str """ return self._country @country.setter def country(self, country): """Sets the country of this AccountContact. The country for the account contact. # noqa: E501 :param country: The country of this AccountContact. # noqa: E501 :type: str """ self._country = country def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(AccountContact, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, AccountContact): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ``` #### File: mailchimp_marketing_asyncio/models/api_health_status.py ```python import pprint import re # noqa: F401 import six class APIHealthStatus(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'health_status': 'str' } attribute_map = { 'health_status': 'health_status' } def __init__(self, health_status=None): # noqa: E501 """APIHealthStatus - a model defined in Swagger""" # noqa: E501 self._health_status = None self.discriminator = None if health_status is not None: self.health_status = health_status @property def health_status(self): """Gets the health_status of this APIHealthStatus. # noqa: E501 This will return a constant string value if the request is successful. Ex. \"Everything's Chimpy!\" # noqa: E501 :return: The health_status of this APIHealthStatus. # noqa: E501 :rtype: str """ return self._health_status @health_status.setter def health_status(self, health_status): """Sets the health_status of this APIHealthStatus. This will return a constant string value if the request is successful. Ex. \"Everything's Chimpy!\" # noqa: E501 :param health_status: The health_status of this APIHealthStatus. # noqa: E501 :type: str """ self._health_status = health_status def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(APIHealthStatus, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, APIHealthStatus): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ``` #### File: mailchimp_marketing_asyncio/models/body1.py ```python import pprint import re # noqa: F401 import six class Body1(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'schedule_time': 'datetime', 'timewarp': 'bool', 'batch_delivery': 'BatchDelivery' } attribute_map = { 'schedule_time': 'schedule_time', 'timewarp': 'timewarp', 'batch_delivery': 'batch_delivery' } def __init__(self, schedule_time=None, timewarp=None, batch_delivery=None): # noqa: E501 """Body1 - a model defined in Swagger""" # noqa: E501 self._schedule_time = None self._timewarp = None self._batch_delivery = None self.discriminator = None self.schedule_time = schedule_time if timewarp is not None: self.timewarp = timewarp if batch_delivery is not None: self.batch_delivery = batch_delivery @property def schedule_time(self): """Gets the schedule_time of this Body1. # noqa: E501 The UTC date and time to schedule the campaign for delivery in ISO 8601 format. Campaigns may only be scheduled to send on the quarter-hour (:00, :15, :30, :45). # noqa: E501 :return: The schedule_time of this Body1. # noqa: E501 :rtype: datetime """ return self._schedule_time @schedule_time.setter def schedule_time(self, schedule_time): """Sets the schedule_time of this Body1. The UTC date and time to schedule the campaign for delivery in ISO 8601 format. Campaigns may only be scheduled to send on the quarter-hour (:00, :15, :30, :45). # noqa: E501 :param schedule_time: The schedule_time of this Body1. # noqa: E501 :type: datetime """ if schedule_time is None: raise ValueError("Invalid value for `schedule_time`, must not be `None`") # noqa: E501 self._schedule_time = schedule_time @property def timewarp(self): """Gets the timewarp of this Body1. # noqa: E501 Choose whether the campaign should use [Timewarp](https://mailchimp.com/help/use-timewarp/) when sending. Campaigns scheduled with Timewarp are localized based on the recipients' time zones. For example, a Timewarp campaign with a `schedule_time` of 13:00 will be sent to each recipient at 1:00pm in their local time. Cannot be set to `true` for campaigns using [Batch Delivery](https://mailchimp.com/help/schedule-batch-delivery/). # noqa: E501 :return: The timewarp of this Body1. # noqa: E501 :rtype: bool """ return self._timewarp @timewarp.setter def timewarp(self, timewarp): """Sets the timewarp of this Body1. Choose whether the campaign should use [Timewarp](https://mailchimp.com/help/use-timewarp/) when sending. Campaigns scheduled with Timewarp are localized based on the recipients' time zones. For example, a Timewarp campaign with a `schedule_time` of 13:00 will be sent to each recipient at 1:00pm in their local time. Cannot be set to `true` for campaigns using [Batch Delivery](https://mailchimp.com/help/schedule-batch-delivery/). # noqa: E501 :param timewarp: The timewarp of this Body1. # noqa: E501 :type: bool """ self._timewarp = timewarp @property def batch_delivery(self): """Gets the batch_delivery of this Body1. # noqa: E501 :return: The batch_delivery of this Body1. # noqa: E501 :rtype: BatchDelivery """ return self._batch_delivery @batch_delivery.setter def batch_delivery(self, batch_delivery): """Sets the batch_delivery of this Body1. :param batch_delivery: The batch_delivery of this Body1. # noqa: E501 :type: BatchDelivery """ self._batch_delivery = batch_delivery def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(Body1, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Body1): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ``` #### File: mailchimp_marketing_asyncio/models/campaign_content.py ```python import pprint import re # noqa: F401 import six class CampaignContent(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'variate_contents': 'list[CampaignContentVariateContents]', 'plain_text': 'str', 'html': 'str', 'archive_html': 'str', 'links': 'list[ResourceLink]' } attribute_map = { 'variate_contents': 'variate_contents', 'plain_text': 'plain_text', 'html': 'html', 'archive_html': 'archive_html', 'links': '_links' } def __init__(self, variate_contents=None, plain_text=None, html=None, archive_html=None, links=None): # noqa: E501 """CampaignContent - a model defined in Swagger""" # noqa: E501 self._variate_contents = None self._plain_text = None self._html = None self._archive_html = None self._links = None self.discriminator = None if variate_contents is not None: self.variate_contents = variate_contents if plain_text is not None: self.plain_text = plain_text if html is not None: self.html = html if archive_html is not None: self.archive_html = archive_html if links is not None: self.links = links @property def variate_contents(self): """Gets the variate_contents of this CampaignContent. # noqa: E501 Content options for multivariate campaigns. # noqa: E501 :return: The variate_contents of this CampaignContent. # noqa: E501 :rtype: list[CampaignContentVariateContents] """ return self._variate_contents @variate_contents.setter def variate_contents(self, variate_contents): """Sets the variate_contents of this CampaignContent. Content options for multivariate campaigns. # noqa: E501 :param variate_contents: The variate_contents of this CampaignContent. # noqa: E501 :type: list[CampaignContentVariateContents] """ self._variate_contents = variate_contents @property def plain_text(self): """Gets the plain_text of this CampaignContent. # noqa: E501 The plain-text portion of the campaign. If left unspecified, we'll generate this automatically. # noqa: E501 :return: The plain_text of this CampaignContent. # noqa: E501 :rtype: str """ return self._plain_text @plain_text.setter def plain_text(self, plain_text): """Sets the plain_text of this CampaignContent. The plain-text portion of the campaign. If left unspecified, we'll generate this automatically. # noqa: E501 :param plain_text: The plain_text of this CampaignContent. # noqa: E501 :type: str """ self._plain_text = plain_text @property def html(self): """Gets the html of this CampaignContent. # noqa: E501 The raw HTML for the campaign. # noqa: E501 :return: The html of this CampaignContent. # noqa: E501 :rtype: str """ return self._html @html.setter def html(self, html): """Sets the html of this CampaignContent. The raw HTML for the campaign. # noqa: E501 :param html: The html of this CampaignContent. # noqa: E501 :type: str """ self._html = html @property def archive_html(self): """Gets the archive_html of this CampaignContent. # noqa: E501 The Archive HTML for the campaign. # noqa: E501 :return: The archive_html of this CampaignContent. # noqa: E501 :rtype: str """ return self._archive_html @archive_html.setter def archive_html(self, archive_html): """Sets the archive_html of this CampaignContent. The Archive HTML for the campaign. # noqa: E501 :param archive_html: The archive_html of this CampaignContent. # noqa: E501 :type: str """ self._archive_html = archive_html @property def links(self): """Gets the links of this CampaignContent. # noqa: E501 A list of link types and descriptions for the API schema documents. # noqa: E501 :return: The links of this CampaignContent. # noqa: E501 :rtype: list[ResourceLink] """ return self._links @links.setter def links(self, links): """Sets the links of this CampaignContent. A list of link types and descriptions for the API schema documents. # noqa: E501 :param links: The links of this CampaignContent. # noqa: E501 :type: list[ResourceLink] """ self._links = links def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(CampaignContent, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CampaignContent): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ``` #### File: mailchimp_marketing_asyncio/models/campaign_report.py ```python import pprint import re # noqa: F401 import six class CampaignReport(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'str', 'campaign_title': 'str', 'type': 'str', 'list_id': 'str', 'list_is_active': 'bool', 'list_name': 'str', 'subject_line': 'str', 'preview_text': 'str', 'emails_sent': 'int', 'abuse_reports': 'int', 'unsubscribed': 'int', 'send_time': 'datetime', 'rss_last_send': 'datetime', 'bounces': 'Bounces', 'forwards': 'Forwards', 'opens': 'Opens', 'clicks': 'Clicks', 'facebook_likes': 'FacebookLikes', 'industry_stats': 'IndustryStats1', 'list_stats': 'ListStats', 'ab_split': 'ABSplitStats', 'timewarp': 'list[CampaignReports1Timewarp]', 'timeseries': 'list[CampaignReports1Timeseries]', 'share_report': 'ShareReport', 'ecommerce': 'ECommerceReport1', 'delivery_status': 'CampaignDeliveryStatus', 'links': 'list[ResourceLink]' } attribute_map = { 'id': 'id', 'campaign_title': 'campaign_title', 'type': 'type', 'list_id': 'list_id', 'list_is_active': 'list_is_active', 'list_name': 'list_name', 'subject_line': 'subject_line', 'preview_text': 'preview_text', 'emails_sent': 'emails_sent', 'abuse_reports': 'abuse_reports', 'unsubscribed': 'unsubscribed', 'send_time': 'send_time', 'rss_last_send': 'rss_last_send', 'bounces': 'bounces', 'forwards': 'forwards', 'opens': 'opens', 'clicks': 'clicks', 'facebook_likes': 'facebook_likes', 'industry_stats': 'industry_stats', 'list_stats': 'list_stats', 'ab_split': 'ab_split', 'timewarp': 'timewarp', 'timeseries': 'timeseries', 'share_report': 'share_report', 'ecommerce': 'ecommerce', 'delivery_status': 'delivery_status', 'links': '_links' } def __init__(self, id=None, campaign_title=None, type=None, list_id=None, list_is_active=None, list_name=None, subject_line=None, preview_text=None, emails_sent=None, abuse_reports=None, unsubscribed=None, send_time=None, rss_last_send=None, bounces=None, forwards=None, opens=None, clicks=None, facebook_likes=None, industry_stats=None, list_stats=None, ab_split=None, timewarp=None, timeseries=None, share_report=None, ecommerce=None, delivery_status=None, links=None): # noqa: E501 """CampaignReport - a model defined in Swagger""" # noqa: E501 self._id = None self._campaign_title = None self._type = None self._list_id = None self._list_is_active = None self._list_name = None self._subject_line = None self._preview_text = None self._emails_sent = None self._abuse_reports = None self._unsubscribed = None self._send_time = None self._rss_last_send = None self._bounces = None self._forwards = None self._opens = None self._clicks = None self._facebook_likes = None self._industry_stats = None self._list_stats = None self._ab_split = None self._timewarp = None self._timeseries = None self._share_report = None self._ecommerce = None self._delivery_status = None self._links = None self.discriminator = None if id is not None: self.id = id if campaign_title is not None: self.campaign_title = campaign_title if type is not None: self.type = type if list_id is not None: self.list_id = list_id if list_is_active is not None: self.list_is_active = list_is_active if list_name is not None: self.list_name = list_name if subject_line is not None: self.subject_line = subject_line if preview_text is not None: self.preview_text = preview_text if emails_sent is not None: self.emails_sent = emails_sent if abuse_reports is not None: self.abuse_reports = abuse_reports if unsubscribed is not None: self.unsubscribed = unsubscribed if send_time is not None: self.send_time = send_time if rss_last_send is not None: self.rss_last_send = rss_last_send if bounces is not None: self.bounces = bounces if forwards is not None: self.forwards = forwards if opens is not None: self.opens = opens if clicks is not None: self.clicks = clicks if facebook_likes is not None: self.facebook_likes = facebook_likes if industry_stats is not None: self.industry_stats = industry_stats if list_stats is not None: self.list_stats = list_stats if ab_split is not None: self.ab_split = ab_split if timewarp is not None: self.timewarp = timewarp if timeseries is not None: self.timeseries = timeseries if share_report is not None: self.share_report = share_report if ecommerce is not None: self.ecommerce = ecommerce if delivery_status is not None: self.delivery_status = delivery_status if links is not None: self.links = links @property def id(self): """Gets the id of this CampaignReport. # noqa: E501 A string that uniquely identifies this campaign. # noqa: E501 :return: The id of this CampaignReport. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this CampaignReport. A string that uniquely identifies this campaign. # noqa: E501 :param id: The id of this CampaignReport. # noqa: E501 :type: str """ self._id = id @property def campaign_title(self): """Gets the campaign_title of this CampaignReport. # noqa: E501 The title of the campaign. # noqa: E501 :return: The campaign_title of this CampaignReport. # noqa: E501 :rtype: str """ return self._campaign_title @campaign_title.setter def campaign_title(self, campaign_title): """Sets the campaign_title of this CampaignReport. The title of the campaign. # noqa: E501 :param campaign_title: The campaign_title of this CampaignReport. # noqa: E501 :type: str """ self._campaign_title = campaign_title @property def type(self): """Gets the type of this CampaignReport. # noqa: E501 The type of campaign (regular, plain-text, ab_split, rss, automation, variate, or auto). # noqa: E501 :return: The type of this CampaignReport. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this CampaignReport. The type of campaign (regular, plain-text, ab_split, rss, automation, variate, or auto). # noqa: E501 :param type: The type of this CampaignReport. # noqa: E501 :type: str """ self._type = type @property def list_id(self): """Gets the list_id of this CampaignReport. # noqa: E501 The unique list id. # noqa: E501 :return: The list_id of this CampaignReport. # noqa: E501 :rtype: str """ return self._list_id @list_id.setter def list_id(self, list_id): """Sets the list_id of this CampaignReport. The unique list id. # noqa: E501 :param list_id: The list_id of this CampaignReport. # noqa: E501 :type: str """ self._list_id = list_id @property def list_is_active(self): """Gets the list_is_active of this CampaignReport. # noqa: E501 The status of the list used, namely if it's deleted or disabled. # noqa: E501 :return: The list_is_active of this CampaignReport. # noqa: E501 :rtype: bool """ return self._list_is_active @list_is_active.setter def list_is_active(self, list_is_active): """Sets the list_is_active of this CampaignReport. The status of the list used, namely if it's deleted or disabled. # noqa: E501 :param list_is_active: The list_is_active of this CampaignReport. # noqa: E501 :type: bool """ self._list_is_active = list_is_active @property def list_name(self): """Gets the list_name of this CampaignReport. # noqa: E501 The name of the list. # noqa: E501 :return: The list_name of this CampaignReport. # noqa: E501 :rtype: str """ return self._list_name @list_name.setter def list_name(self, list_name): """Sets the list_name of this CampaignReport. The name of the list. # noqa: E501 :param list_name: The list_name of this CampaignReport. # noqa: E501 :type: str """ self._list_name = list_name @property def subject_line(self): """Gets the subject_line of this CampaignReport. # noqa: E501 The subject line for the campaign. # noqa: E501 :return: The subject_line of this CampaignReport. # noqa: E501 :rtype: str """ return self._subject_line @subject_line.setter def subject_line(self, subject_line): """Sets the subject_line of this CampaignReport. The subject line for the campaign. # noqa: E501 :param subject_line: The subject_line of this CampaignReport. # noqa: E501 :type: str """ self._subject_line = subject_line @property def preview_text(self): """Gets the preview_text of this CampaignReport. # noqa: E501 The preview text for the campaign. # noqa: E501 :return: The preview_text of this CampaignReport. # noqa: E501 :rtype: str """ return self._preview_text @preview_text.setter def preview_text(self, preview_text): """Sets the preview_text of this CampaignReport. The preview text for the campaign. # noqa: E501 :param preview_text: The preview_text of this CampaignReport. # noqa: E501 :type: str """ self._preview_text = preview_text @property def emails_sent(self): """Gets the emails_sent of this CampaignReport. # noqa: E501 The total number of emails sent for this campaign. # noqa: E501 :return: The emails_sent of this CampaignReport. # noqa: E501 :rtype: int """ return self._emails_sent @emails_sent.setter def emails_sent(self, emails_sent): """Sets the emails_sent of this CampaignReport. The total number of emails sent for this campaign. # noqa: E501 :param emails_sent: The emails_sent of this CampaignReport. # noqa: E501 :type: int """ self._emails_sent = emails_sent @property def abuse_reports(self): """Gets the abuse_reports of this CampaignReport. # noqa: E501 The number of abuse reports generated for this campaign. # noqa: E501 :return: The abuse_reports of this CampaignReport. # noqa: E501 :rtype: int """ return self._abuse_reports @abuse_reports.setter def abuse_reports(self, abuse_reports): """Sets the abuse_reports of this CampaignReport. The number of abuse reports generated for this campaign. # noqa: E501 :param abuse_reports: The abuse_reports of this CampaignReport. # noqa: E501 :type: int """ self._abuse_reports = abuse_reports @property def unsubscribed(self): """Gets the unsubscribed of this CampaignReport. # noqa: E501 The total number of unsubscribed members for this campaign. # noqa: E501 :return: The unsubscribed of this CampaignReport. # noqa: E501 :rtype: int """ return self._unsubscribed @unsubscribed.setter def unsubscribed(self, unsubscribed): """Sets the unsubscribed of this CampaignReport. The total number of unsubscribed members for this campaign. # noqa: E501 :param unsubscribed: The unsubscribed of this CampaignReport. # noqa: E501 :type: int """ self._unsubscribed = unsubscribed @property def send_time(self): """Gets the send_time of this CampaignReport. # noqa: E501 The date and time a campaign was sent in ISO 8601 format. # noqa: E501 :return: The send_time of this CampaignReport. # noqa: E501 :rtype: datetime """ return self._send_time @send_time.setter def send_time(self, send_time): """Sets the send_time of this CampaignReport. The date and time a campaign was sent in ISO 8601 format. # noqa: E501 :param send_time: The send_time of this CampaignReport. # noqa: E501 :type: datetime """ self._send_time = send_time @property def rss_last_send(self): """Gets the rss_last_send of this CampaignReport. # noqa: E501 For RSS campaigns, the date and time of the last send in ISO 8601 format. # noqa: E501 :return: The rss_last_send of this CampaignReport. # noqa: E501 :rtype: datetime """ return self._rss_last_send @rss_last_send.setter def rss_last_send(self, rss_last_send): """Sets the rss_last_send of this CampaignReport. For RSS campaigns, the date and time of the last send in ISO 8601 format. # noqa: E501 :param rss_last_send: The rss_last_send of this CampaignReport. # noqa: E501 :type: datetime """ self._rss_last_send = rss_last_send @property def bounces(self): """Gets the bounces of this CampaignReport. # noqa: E501 :return: The bounces of this CampaignReport. # noqa: E501 :rtype: Bounces """ return self._bounces @bounces.setter def bounces(self, bounces): """Sets the bounces of this CampaignReport. :param bounces: The bounces of this CampaignReport. # noqa: E501 :type: Bounces """ self._bounces = bounces @property def forwards(self): """Gets the forwards of this CampaignReport. # noqa: E501 :return: The forwards of this CampaignReport. # noqa: E501 :rtype: Forwards """ return self._forwards @forwards.setter def forwards(self, forwards): """Sets the forwards of this CampaignReport. :param forwards: The forwards of this CampaignReport. # noqa: E501 :type: Forwards """ self._forwards = forwards @property def opens(self): """Gets the opens of this CampaignReport. # noqa: E501 :return: The opens of this CampaignReport. # noqa: E501 :rtype: Opens """ return self._opens @opens.setter def opens(self, opens): """Sets the opens of this CampaignReport. :param opens: The opens of this CampaignReport. # noqa: E501 :type: Opens """ self._opens = opens @property def clicks(self): """Gets the clicks of this CampaignReport. # noqa: E501 :return: The clicks of this CampaignReport. # noqa: E501 :rtype: Clicks """ return self._clicks @clicks.setter def clicks(self, clicks): """Sets the clicks of this CampaignReport. :param clicks: The clicks of this CampaignReport. # noqa: E501 :type: Clicks """ self._clicks = clicks @property def facebook_likes(self): """Gets the facebook_likes of this CampaignReport. # noqa: E501 :return: The facebook_likes of this CampaignReport. # noqa: E501 :rtype: FacebookLikes """ return self._facebook_likes @facebook_likes.setter def facebook_likes(self, facebook_likes): """Sets the facebook_likes of this CampaignReport. :param facebook_likes: The facebook_likes of this CampaignReport. # noqa: E501 :type: FacebookLikes """ self._facebook_likes = facebook_likes @property def industry_stats(self): """Gets the industry_stats of this CampaignReport. # noqa: E501 :return: The industry_stats of this CampaignReport. # noqa: E501 :rtype: IndustryStats1 """ return self._industry_stats @industry_stats.setter def industry_stats(self, industry_stats): """Sets the industry_stats of this CampaignReport. :param industry_stats: The industry_stats of this CampaignReport. # noqa: E501 :type: IndustryStats1 """ self._industry_stats = industry_stats @property def list_stats(self): """Gets the list_stats of this CampaignReport. # noqa: E501 :return: The list_stats of this CampaignReport. # noqa: E501 :rtype: ListStats """ return self._list_stats @list_stats.setter def list_stats(self, list_stats): """Sets the list_stats of this CampaignReport. :param list_stats: The list_stats of this CampaignReport. # noqa: E501 :type: ListStats """ self._list_stats = list_stats @property def ab_split(self): """Gets the ab_split of this CampaignReport. # noqa: E501 :return: The ab_split of this CampaignReport. # noqa: E501 :rtype: ABSplitStats """ return self._ab_split @ab_split.setter def ab_split(self, ab_split): """Sets the ab_split of this CampaignReport. :param ab_split: The ab_split of this CampaignReport. # noqa: E501 :type: ABSplitStats """ self._ab_split = ab_split @property def timewarp(self): """Gets the timewarp of this CampaignReport. # noqa: E501 An hourly breakdown of sends, opens, and clicks if a campaign is sent using timewarp. # noqa: E501 :return: The timewarp of this CampaignReport. # noqa: E501 :rtype: list[CampaignReports1Timewarp] """ return self._timewarp @timewarp.setter def timewarp(self, timewarp): """Sets the timewarp of this CampaignReport. An hourly breakdown of sends, opens, and clicks if a campaign is sent using timewarp. # noqa: E501 :param timewarp: The timewarp of this CampaignReport. # noqa: E501 :type: list[CampaignReports1Timewarp] """ self._timewarp = timewarp @property def timeseries(self): """Gets the timeseries of this CampaignReport. # noqa: E501 An hourly breakdown of the performance of the campaign over the first 24 hours. # noqa: E501 :return: The timeseries of this CampaignReport. # noqa: E501 :rtype: list[CampaignReports1Timeseries] """ return self._timeseries @timeseries.setter def timeseries(self, timeseries): """Sets the timeseries of this CampaignReport. An hourly breakdown of the performance of the campaign over the first 24 hours. # noqa: E501 :param timeseries: The timeseries of this CampaignReport. # noqa: E501 :type: list[CampaignReports1Timeseries] """ self._timeseries = timeseries @property def share_report(self): """Gets the share_report of this CampaignReport. # noqa: E501 :return: The share_report of this CampaignReport. # noqa: E501 :rtype: ShareReport """ return self._share_report @share_report.setter def share_report(self, share_report): """Sets the share_report of this CampaignReport. :param share_report: The share_report of this CampaignReport. # noqa: E501 :type: ShareReport """ self._share_report = share_report @property def ecommerce(self): """Gets the ecommerce of this CampaignReport. # noqa: E501 :return: The ecommerce of this CampaignReport. # noqa: E501 :rtype: ECommerceReport1 """ return self._ecommerce @ecommerce.setter def ecommerce(self, ecommerce): """Sets the ecommerce of this CampaignReport. :param ecommerce: The ecommerce of this CampaignReport. # noqa: E501 :type: ECommerceReport1 """ self._ecommerce = ecommerce @property def delivery_status(self): """Gets the delivery_status of this CampaignReport. # noqa: E501 :return: The delivery_status of this CampaignReport. # noqa: E501 :rtype: CampaignDeliveryStatus """ return self._delivery_status @delivery_status.setter def delivery_status(self, delivery_status): """Sets the delivery_status of this CampaignReport. :param delivery_status: The delivery_status of this CampaignReport. # noqa: E501 :type: CampaignDeliveryStatus """ self._delivery_status = delivery_status @property def links(self): """Gets the links of this CampaignReport. # noqa: E501 A list of link types and descriptions for the API schema documents. # noqa: E501 :return: The links of this CampaignReport. # noqa: E501 :rtype: list[ResourceLink] """ return self._links @links.setter def links(self, links): """Sets the links of this CampaignReport. A list of link types and descriptions for the API schema documents. # noqa: E501 :param links: The links of this CampaignReport. # noqa: E501 :type: list[ResourceLink] """ self._links = links def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(CampaignReport, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CampaignReport): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ``` #### File: mailchimp_marketing_asyncio/models/campaign_settings4.py ```python import pprint import re # noqa: F401 import six class CampaignSettings4(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'subject_line': 'str', 'preview_text': 'str', 'title': 'str', 'from_name': 'str', 'reply_to': 'str', 'use_conversation': 'bool', 'to_name': 'str', 'folder_id': 'str', 'authenticate': 'bool', 'auto_footer': 'bool', 'inline_css': 'bool', 'auto_tweet': 'bool', 'auto_fb_post': 'list[str]', 'fb_comments': 'bool', 'template_id': 'int' } attribute_map = { 'subject_line': 'subject_line', 'preview_text': 'preview_text', 'title': 'title', 'from_name': 'from_name', 'reply_to': 'reply_to', 'use_conversation': 'use_conversation', 'to_name': 'to_name', 'folder_id': 'folder_id', 'authenticate': 'authenticate', 'auto_footer': 'auto_footer', 'inline_css': 'inline_css', 'auto_tweet': 'auto_tweet', 'auto_fb_post': 'auto_fb_post', 'fb_comments': 'fb_comments', 'template_id': 'template_id' } def __init__(self, subject_line=None, preview_text=None, title=None, from_name=None, reply_to=None, use_conversation=None, to_name=None, folder_id=None, authenticate=None, auto_footer=None, inline_css=None, auto_tweet=None, auto_fb_post=None, fb_comments=None, template_id=None): # noqa: E501 """CampaignSettings4 - a model defined in Swagger""" # noqa: E501 self._subject_line = None self._preview_text = None self._title = None self._from_name = None self._reply_to = None self._use_conversation = None self._to_name = None self._folder_id = None self._authenticate = None self._auto_footer = None self._inline_css = None self._auto_tweet = None self._auto_fb_post = None self._fb_comments = None self._template_id = None self.discriminator = None self.subject_line = subject_line if preview_text is not None: self.preview_text = preview_text if title is not None: self.title = title self.from_name = from_name self.reply_to = reply_to if use_conversation is not None: self.use_conversation = use_conversation if to_name is not None: self.to_name = to_name if folder_id is not None: self.folder_id = folder_id if authenticate is not None: self.authenticate = authenticate if auto_footer is not None: self.auto_footer = auto_footer if inline_css is not None: self.inline_css = inline_css if auto_tweet is not None: self.auto_tweet = auto_tweet if auto_fb_post is not None: self.auto_fb_post = auto_fb_post if fb_comments is not None: self.fb_comments = fb_comments if template_id is not None: self.template_id = template_id @property def subject_line(self): """Gets the subject_line of this CampaignSettings4. # noqa: E501 The subject line for the campaign. # noqa: E501 :return: The subject_line of this CampaignSettings4. # noqa: E501 :rtype: str """ return self._subject_line @subject_line.setter def subject_line(self, subject_line): """Sets the subject_line of this CampaignSettings4. The subject line for the campaign. # noqa: E501 :param subject_line: The subject_line of this CampaignSettings4. # noqa: E501 :type: str """ if subject_line is None: raise ValueError("Invalid value for `subject_line`, must not be `None`") # noqa: E501 self._subject_line = subject_line @property def preview_text(self): """Gets the preview_text of this CampaignSettings4. # noqa: E501 The preview text for the campaign. # noqa: E501 :return: The preview_text of this CampaignSettings4. # noqa: E501 :rtype: str """ return self._preview_text @preview_text.setter def preview_text(self, preview_text): """Sets the preview_text of this CampaignSettings4. The preview text for the campaign. # noqa: E501 :param preview_text: The preview_text of this CampaignSettings4. # noqa: E501 :type: str """ self._preview_text = preview_text @property def title(self): """Gets the title of this CampaignSettings4. # noqa: E501 The title of the campaign. # noqa: E501 :return: The title of this CampaignSettings4. # noqa: E501 :rtype: str """ return self._title @title.setter def title(self, title): """Sets the title of this CampaignSettings4. The title of the campaign. # noqa: E501 :param title: The title of this CampaignSettings4. # noqa: E501 :type: str """ self._title = title @property def from_name(self): """Gets the from_name of this CampaignSettings4. # noqa: E501 The 'from' name on the campaign (not an email address). # noqa: E501 :return: The from_name of this CampaignSettings4. # noqa: E501 :rtype: str """ return self._from_name @from_name.setter def from_name(self, from_name): """Sets the from_name of this CampaignSettings4. The 'from' name on the campaign (not an email address). # noqa: E501 :param from_name: The from_name of this CampaignSettings4. # noqa: E501 :type: str """ if from_name is None: raise ValueError("Invalid value for `from_name`, must not be `None`") # noqa: E501 self._from_name = from_name @property def reply_to(self): """Gets the reply_to of this CampaignSettings4. # noqa: E501 The reply-to email address for the campaign. # noqa: E501 :return: The reply_to of this CampaignSettings4. # noqa: E501 :rtype: str """ return self._reply_to @reply_to.setter def reply_to(self, reply_to): """Sets the reply_to of this CampaignSettings4. The reply-to email address for the campaign. # noqa: E501 :param reply_to: The reply_to of this CampaignSettings4. # noqa: E501 :type: str """ if reply_to is None: raise ValueError("Invalid value for `reply_to`, must not be `None`") # noqa: E501 self._reply_to = reply_to @property def use_conversation(self): """Gets the use_conversation of this CampaignSettings4. # noqa: E501 Use Mailchimp Conversation feature to manage out-of-office replies. # noqa: E501 :return: The use_conversation of this CampaignSettings4. # noqa: E501 :rtype: bool """ return self._use_conversation @use_conversation.setter def use_conversation(self, use_conversation): """Sets the use_conversation of this CampaignSettings4. Use Mailchimp Conversation feature to manage out-of-office replies. # noqa: E501 :param use_conversation: The use_conversation of this CampaignSettings4. # noqa: E501 :type: bool """ self._use_conversation = use_conversation @property def to_name(self): """Gets the to_name of this CampaignSettings4. # noqa: E501 The campaign's custom 'To' name. Typically the first name [audience field](https://mailchimp.com/help/getting-started-with-merge-tags/). # noqa: E501 :return: The to_name of this CampaignSettings4. # noqa: E501 :rtype: str """ return self._to_name @to_name.setter def to_name(self, to_name): """Sets the to_name of this CampaignSettings4. The campaign's custom 'To' name. Typically the first name [audience field](https://mailchimp.com/help/getting-started-with-merge-tags/). # noqa: E501 :param to_name: The to_name of this CampaignSettings4. # noqa: E501 :type: str """ self._to_name = to_name @property def folder_id(self): """Gets the folder_id of this CampaignSettings4. # noqa: E501 If the campaign is listed in a folder, the id for that folder. # noqa: E501 :return: The folder_id of this CampaignSettings4. # noqa: E501 :rtype: str """ return self._folder_id @folder_id.setter def folder_id(self, folder_id): """Sets the folder_id of this CampaignSettings4. If the campaign is listed in a folder, the id for that folder. # noqa: E501 :param folder_id: The folder_id of this CampaignSettings4. # noqa: E501 :type: str """ self._folder_id = folder_id @property def authenticate(self): """Gets the authenticate of this CampaignSettings4. # noqa: E501 Whether Mailchimp [authenticated](https://mailchimp.com/help/about-email-authentication/) the campaign. Defaults to `true`. # noqa: E501 :return: The authenticate of this CampaignSettings4. # noqa: E501 :rtype: bool """ return self._authenticate @authenticate.setter def authenticate(self, authenticate): """Sets the authenticate of this CampaignSettings4. Whether Mailchimp [authenticated](https://mailchimp.com/help/about-email-authentication/) the campaign. Defaults to `true`. # noqa: E501 :param authenticate: The authenticate of this CampaignSettings4. # noqa: E501 :type: bool """ self._authenticate = authenticate @property def auto_footer(self): """Gets the auto_footer of this CampaignSettings4. # noqa: E501 Automatically append Mailchimp's [default footer](https://mailchimp.com/help/about-campaign-footers/) to the campaign. # noqa: E501 :return: The auto_footer of this CampaignSettings4. # noqa: E501 :rtype: bool """ return self._auto_footer @auto_footer.setter def auto_footer(self, auto_footer): """Sets the auto_footer of this CampaignSettings4. Automatically append Mailchimp's [default footer](https://mailchimp.com/help/about-campaign-footers/) to the campaign. # noqa: E501 :param auto_footer: The auto_footer of this CampaignSettings4. # noqa: E501 :type: bool """ self._auto_footer = auto_footer @property def inline_css(self): """Gets the inline_css of this CampaignSettings4. # noqa: E501 Automatically inline the CSS included with the campaign content. # noqa: E501 :return: The inline_css of this CampaignSettings4. # noqa: E501 :rtype: bool """ return self._inline_css @inline_css.setter def inline_css(self, inline_css): """Sets the inline_css of this CampaignSettings4. Automatically inline the CSS included with the campaign content. # noqa: E501 :param inline_css: The inline_css of this CampaignSettings4. # noqa: E501 :type: bool """ self._inline_css = inline_css @property def auto_tweet(self): """Gets the auto_tweet of this CampaignSettings4. # noqa: E501 Automatically tweet a link to the [campaign archive](https://mailchimp.com/help/about-email-campaign-archives-and-pages/) page when the campaign is sent. # noqa: E501 :return: The auto_tweet of this CampaignSettings4. # noqa: E501 :rtype: bool """ return self._auto_tweet @auto_tweet.setter def auto_tweet(self, auto_tweet): """Sets the auto_tweet of this CampaignSettings4. Automatically tweet a link to the [campaign archive](https://mailchimp.com/help/about-email-campaign-archives-and-pages/) page when the campaign is sent. # noqa: E501 :param auto_tweet: The auto_tweet of this CampaignSettings4. # noqa: E501 :type: bool """ self._auto_tweet = auto_tweet @property def auto_fb_post(self): """Gets the auto_fb_post of this CampaignSettings4. # noqa: E501 An array of [Facebook](https://mailchimp.com/help/connect-or-disconnect-the-facebook-integration/) page ids to auto-post to. # noqa: E501 :return: The auto_fb_post of this CampaignSettings4. # noqa: E501 :rtype: list[str] """ return self._auto_fb_post @auto_fb_post.setter def auto_fb_post(self, auto_fb_post): """Sets the auto_fb_post of this CampaignSettings4. An array of [Facebook](https://mailchimp.com/help/connect-or-disconnect-the-facebook-integration/) page ids to auto-post to. # noqa: E501 :param auto_fb_post: The auto_fb_post of this CampaignSettings4. # noqa: E501 :type: list[str] """ self._auto_fb_post = auto_fb_post @property def fb_comments(self): """Gets the fb_comments of this CampaignSettings4. # noqa: E501 Allows Facebook comments on the campaign (also force-enables the Campaign Archive toolbar). Defaults to `true`. # noqa: E501 :return: The fb_comments of this CampaignSettings4. # noqa: E501 :rtype: bool """ return self._fb_comments @fb_comments.setter def fb_comments(self, fb_comments): """Sets the fb_comments of this CampaignSettings4. Allows Facebook comments on the campaign (also force-enables the Campaign Archive toolbar). Defaults to `true`. # noqa: E501 :param fb_comments: The fb_comments of this CampaignSettings4. # noqa: E501 :type: bool """ self._fb_comments = fb_comments @property def template_id(self): """Gets the template_id of this CampaignSettings4. # noqa: E501 The id of the template to use. # noqa: E501 :return: The template_id of this CampaignSettings4. # noqa: E501 :rtype: int """ return self._template_id @template_id.setter def template_id(self, template_id): """Sets the template_id of this CampaignSettings4. The id of the template to use. # noqa: E501 :param template_id: The template_id of this CampaignSettings4. # noqa: E501 :type: int """ self._template_id = template_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(CampaignSettings4, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CampaignSettings4): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ``` #### File: mailchimp_marketing_asyncio/models/campaign_tracking_options.py ```python import pprint import re # noqa: F401 import six class CampaignTrackingOptions(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'opens': 'bool', 'html_clicks': 'bool', 'text_clicks': 'bool', 'goal_tracking': 'bool', 'ecomm360': 'bool', 'google_analytics': 'str', 'clicktale': 'str', 'salesforce': 'SalesforceCRMTracking', 'capsule': 'CapsuleCRMTracking1' } attribute_map = { 'opens': 'opens', 'html_clicks': 'html_clicks', 'text_clicks': 'text_clicks', 'goal_tracking': 'goal_tracking', 'ecomm360': 'ecomm360', 'google_analytics': 'google_analytics', 'clicktale': 'clicktale', 'salesforce': 'salesforce', 'capsule': 'capsule' } def __init__(self, opens=None, html_clicks=None, text_clicks=None, goal_tracking=None, ecomm360=None, google_analytics=None, clicktale=None, salesforce=None, capsule=None): # noqa: E501 """CampaignTrackingOptions - a model defined in Swagger""" # noqa: E501 self._opens = None self._html_clicks = None self._text_clicks = None self._goal_tracking = None self._ecomm360 = None self._google_analytics = None self._clicktale = None self._salesforce = None self._capsule = None self.discriminator = None if opens is not None: self.opens = opens if html_clicks is not None: self.html_clicks = html_clicks if text_clicks is not None: self.text_clicks = text_clicks if goal_tracking is not None: self.goal_tracking = goal_tracking if ecomm360 is not None: self.ecomm360 = ecomm360 if google_analytics is not None: self.google_analytics = google_analytics if clicktale is not None: self.clicktale = clicktale if salesforce is not None: self.salesforce = salesforce if capsule is not None: self.capsule = capsule @property def opens(self): """Gets the opens of this CampaignTrackingOptions. # noqa: E501 Whether to [track opens](https://mailchimp.com/help/about-open-tracking/). Defaults to `true`. # noqa: E501 :return: The opens of this CampaignTrackingOptions. # noqa: E501 :rtype: bool """ return self._opens @opens.setter def opens(self, opens): """Sets the opens of this CampaignTrackingOptions. Whether to [track opens](https://mailchimp.com/help/about-open-tracking/). Defaults to `true`. # noqa: E501 :param opens: The opens of this CampaignTrackingOptions. # noqa: E501 :type: bool """ self._opens = opens @property def html_clicks(self): """Gets the html_clicks of this CampaignTrackingOptions. # noqa: E501 Whether to [track clicks](https://mailchimp.com/help/enable-and-view-click-tracking/) in the HTML version of the campaign. Defaults to `true`. # noqa: E501 :return: The html_clicks of this CampaignTrackingOptions. # noqa: E501 :rtype: bool """ return self._html_clicks @html_clicks.setter def html_clicks(self, html_clicks): """Sets the html_clicks of this CampaignTrackingOptions. Whether to [track clicks](https://mailchimp.com/help/enable-and-view-click-tracking/) in the HTML version of the campaign. Defaults to `true`. # noqa: E501 :param html_clicks: The html_clicks of this CampaignTrackingOptions. # noqa: E501 :type: bool """ self._html_clicks = html_clicks @property def text_clicks(self): """Gets the text_clicks of this CampaignTrackingOptions. # noqa: E501 Whether to [track clicks](https://mailchimp.com/help/enable-and-view-click-tracking/) in the plain-text version of the campaign. Defaults to `true`. # noqa: E501 :return: The text_clicks of this CampaignTrackingOptions. # noqa: E501 :rtype: bool """ return self._text_clicks @text_clicks.setter def text_clicks(self, text_clicks): """Sets the text_clicks of this CampaignTrackingOptions. Whether to [track clicks](https://mailchimp.com/help/enable-and-view-click-tracking/) in the plain-text version of the campaign. Defaults to `true`. # noqa: E501 :param text_clicks: The text_clicks of this CampaignTrackingOptions. # noqa: E501 :type: bool """ self._text_clicks = text_clicks @property def goal_tracking(self): """Gets the goal_tracking of this CampaignTrackingOptions. # noqa: E501 Deprecated # noqa: E501 :return: The goal_tracking of this CampaignTrackingOptions. # noqa: E501 :rtype: bool """ return self._goal_tracking @goal_tracking.setter def goal_tracking(self, goal_tracking): """Sets the goal_tracking of this CampaignTrackingOptions. Deprecated # noqa: E501 :param goal_tracking: The goal_tracking of this CampaignTrackingOptions. # noqa: E501 :type: bool """ self._goal_tracking = goal_tracking @property def ecomm360(self): """Gets the ecomm360 of this CampaignTrackingOptions. # noqa: E501 Whether to enable e-commerce tracking. # noqa: E501 :return: The ecomm360 of this CampaignTrackingOptions. # noqa: E501 :rtype: bool """ return self._ecomm360 @ecomm360.setter def ecomm360(self, ecomm360): """Sets the ecomm360 of this CampaignTrackingOptions. Whether to enable e-commerce tracking. # noqa: E501 :param ecomm360: The ecomm360 of this CampaignTrackingOptions. # noqa: E501 :type: bool """ self._ecomm360 = ecomm360 @property def google_analytics(self): """Gets the google_analytics of this CampaignTrackingOptions. # noqa: E501 The custom slug for [Google Analytics](https://mailchimp.com/help/integrate-google-analytics-with-mailchimp/) tracking (max of 50 bytes). # noqa: E501 :return: The google_analytics of this CampaignTrackingOptions. # noqa: E501 :rtype: str """ return self._google_analytics @google_analytics.setter def google_analytics(self, google_analytics): """Sets the google_analytics of this CampaignTrackingOptions. The custom slug for [Google Analytics](https://mailchimp.com/help/integrate-google-analytics-with-mailchimp/) tracking (max of 50 bytes). # noqa: E501 :param google_analytics: The google_analytics of this CampaignTrackingOptions. # noqa: E501 :type: str """ self._google_analytics = google_analytics @property def clicktale(self): """Gets the clicktale of this CampaignTrackingOptions. # noqa: E501 The custom slug for [Click Tale](https://mailchimp.com/help/additional-tracking-options-for-campaigns/) tracking (max of 50 bytes). # noqa: E501 :return: The clicktale of this CampaignTrackingOptions. # noqa: E501 :rtype: str """ return self._clicktale @clicktale.setter def clicktale(self, clicktale): """Sets the clicktale of this CampaignTrackingOptions. The custom slug for [Click Tale](https://mailchimp.com/help/additional-tracking-options-for-campaigns/) tracking (max of 50 bytes). # noqa: E501 :param clicktale: The clicktale of this CampaignTrackingOptions. # noqa: E501 :type: str """ self._clicktale = clicktale @property def salesforce(self): """Gets the salesforce of this CampaignTrackingOptions. # noqa: E501 :return: The salesforce of this CampaignTrackingOptions. # noqa: E501 :rtype: SalesforceCRMTracking """ return self._salesforce @salesforce.setter def salesforce(self, salesforce): """Sets the salesforce of this CampaignTrackingOptions. :param salesforce: The salesforce of this CampaignTrackingOptions. # noqa: E501 :type: SalesforceCRMTracking """ self._salesforce = salesforce @property def capsule(self): """Gets the capsule of this CampaignTrackingOptions. # noqa: E501 :return: The capsule of this CampaignTrackingOptions. # noqa: E501 :rtype: CapsuleCRMTracking1 """ return self._capsule @capsule.setter def capsule(self, capsule): """Sets the capsule of this CampaignTrackingOptions. :param capsule: The capsule of this CampaignTrackingOptions. # noqa: E501 :type: CapsuleCRMTracking1 """ self._capsule = capsule def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(CampaignTrackingOptions, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CampaignTrackingOptions): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ``` #### File: mailchimp_marketing_asyncio/models/ecommerce_promo_rule2.py ```python import pprint import re # noqa: F401 import six class EcommercePromoRule2(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'title': 'str', 'description': 'str', 'starts_at': 'datetime', 'ends_at': 'str', 'amount': 'float', 'type': 'str', 'target': 'str', 'enabled': 'bool', 'created_at_foreign': 'datetime', 'updated_at_foreign': 'datetime' } attribute_map = { 'title': 'title', 'description': 'description', 'starts_at': 'starts_at', 'ends_at': 'ends_at', 'amount': 'amount', 'type': 'type', 'target': 'target', 'enabled': 'enabled', 'created_at_foreign': 'created_at_foreign', 'updated_at_foreign': 'updated_at_foreign' } def __init__(self, title=None, description=None, starts_at=None, ends_at=None, amount=None, type=None, target=None, enabled=None, created_at_foreign=None, updated_at_foreign=None): # noqa: E501 """EcommercePromoRule2 - a model defined in Swagger""" # noqa: E501 self._title = None self._description = None self._starts_at = None self._ends_at = None self._amount = None self._type = None self._target = None self._enabled = None self._created_at_foreign = None self._updated_at_foreign = None self.discriminator = None if title is not None: self.title = title if description is not None: self.description = description if starts_at is not None: self.starts_at = starts_at if ends_at is not None: self.ends_at = ends_at if amount is not None: self.amount = amount if type is not None: self.type = type if target is not None: self.target = target if enabled is not None: self.enabled = enabled if created_at_foreign is not None: self.created_at_foreign = created_at_foreign if updated_at_foreign is not None: self.updated_at_foreign = updated_at_foreign @property def title(self): """Gets the title of this EcommercePromoRule2. # noqa: E501 The title that will show up in promotion campaign. Restricted to UTF-8 characters with max length of 100 bytes. # noqa: E501 :return: The title of this EcommercePromoRule2. # noqa: E501 :rtype: str """ return self._title @title.setter def title(self, title): """Sets the title of this EcommercePromoRule2. The title that will show up in promotion campaign. Restricted to UTF-8 characters with max length of 100 bytes. # noqa: E501 :param title: The title of this EcommercePromoRule2. # noqa: E501 :type: str """ self._title = title @property def description(self): """Gets the description of this EcommercePromoRule2. # noqa: E501 The description of a promotion restricted to UTF-8 characters with max length 255. # noqa: E501 :return: The description of this EcommercePromoRule2. # noqa: E501 :rtype: str """ return self._description @description.setter def description(self, description): """Sets the description of this EcommercePromoRule2. The description of a promotion restricted to UTF-8 characters with max length 255. # noqa: E501 :param description: The description of this EcommercePromoRule2. # noqa: E501 :type: str """ self._description = description @property def starts_at(self): """Gets the starts_at of this EcommercePromoRule2. # noqa: E501 The date and time when the promotion is in effect in ISO 8601 format. # noqa: E501 :return: The starts_at of this EcommercePromoRule2. # noqa: E501 :rtype: datetime """ return self._starts_at @starts_at.setter def starts_at(self, starts_at): """Sets the starts_at of this EcommercePromoRule2. The date and time when the promotion is in effect in ISO 8601 format. # noqa: E501 :param starts_at: The starts_at of this EcommercePromoRule2. # noqa: E501 :type: datetime """ self._starts_at = starts_at @property def ends_at(self): """Gets the ends_at of this EcommercePromoRule2. # noqa: E501 The date and time when the promotion ends. Must be after starts_at and in ISO 8601 format. # noqa: E501 :return: The ends_at of this EcommercePromoRule2. # noqa: E501 :rtype: str """ return self._ends_at @ends_at.setter def ends_at(self, ends_at): """Sets the ends_at of this EcommercePromoRule2. The date and time when the promotion ends. Must be after starts_at and in ISO 8601 format. # noqa: E501 :param ends_at: The ends_at of this EcommercePromoRule2. # noqa: E501 :type: str """ self._ends_at = ends_at @property def amount(self): """Gets the amount of this EcommercePromoRule2. # noqa: E501 The amount of the promo code discount. If 'type' is 'fixed', the amount is treated as a monetary value. If 'type' is 'percentage', amount must be a decimal value between 0.0 and 1.0, inclusive. # noqa: E501 :return: The amount of this EcommercePromoRule2. # noqa: E501 :rtype: float """ return self._amount @amount.setter def amount(self, amount): """Sets the amount of this EcommercePromoRule2. The amount of the promo code discount. If 'type' is 'fixed', the amount is treated as a monetary value. If 'type' is 'percentage', amount must be a decimal value between 0.0 and 1.0, inclusive. # noqa: E501 :param amount: The amount of this EcommercePromoRule2. # noqa: E501 :type: float """ self._amount = amount @property def type(self): """Gets the type of this EcommercePromoRule2. # noqa: E501 Type of discount. For free shipping set type to fixed. # noqa: E501 :return: The type of this EcommercePromoRule2. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this EcommercePromoRule2. Type of discount. For free shipping set type to fixed. # noqa: E501 :param type: The type of this EcommercePromoRule2. # noqa: E501 :type: str """ allowed_values = ["fixed", "percentage"] # noqa: E501 if type not in allowed_values: raise ValueError( "Invalid value for `type` ({0}), must be one of {1}" # noqa: E501 .format(type, allowed_values) ) self._type = type @property def target(self): """Gets the target of this EcommercePromoRule2. # noqa: E501 The target that the discount applies to. # noqa: E501 :return: The target of this EcommercePromoRule2. # noqa: E501 :rtype: str """ return self._target @target.setter def target(self, target): """Sets the target of this EcommercePromoRule2. The target that the discount applies to. # noqa: E501 :param target: The target of this EcommercePromoRule2. # noqa: E501 :type: str """ allowed_values = ["per_item", "total", "shipping"] # noqa: E501 if target not in allowed_values: raise ValueError( "Invalid value for `target` ({0}), must be one of {1}" # noqa: E501 .format(target, allowed_values) ) self._target = target @property def enabled(self): """Gets the enabled of this EcommercePromoRule2. # noqa: E501 Whether the promo rule is currently enabled. # noqa: E501 :return: The enabled of this EcommercePromoRule2. # noqa: E501 :rtype: bool """ return self._enabled @enabled.setter def enabled(self, enabled): """Sets the enabled of this EcommercePromoRule2. Whether the promo rule is currently enabled. # noqa: E501 :param enabled: The enabled of this EcommercePromoRule2. # noqa: E501 :type: bool """ self._enabled = enabled @property def created_at_foreign(self): """Gets the created_at_foreign of this EcommercePromoRule2. # noqa: E501 The date and time the promotion was created in ISO 8601 format. # noqa: E501 :return: The created_at_foreign of this EcommercePromoRule2. # noqa: E501 :rtype: datetime """ return self._created_at_foreign @created_at_foreign.setter def created_at_foreign(self, created_at_foreign): """Sets the created_at_foreign of this EcommercePromoRule2. The date and time the promotion was created in ISO 8601 format. # noqa: E501 :param created_at_foreign: The created_at_foreign of this EcommercePromoRule2. # noqa: E501 :type: datetime """ self._created_at_foreign = created_at_foreign @property def updated_at_foreign(self): """Gets the updated_at_foreign of this EcommercePromoRule2. # noqa: E501 The date and time the promotion was updated in ISO 8601 format. # noqa: E501 :return: The updated_at_foreign of this EcommercePromoRule2. # noqa: E501 :rtype: datetime """ return self._updated_at_foreign @updated_at_foreign.setter def updated_at_foreign(self, updated_at_foreign): """Sets the updated_at_foreign of this EcommercePromoRule2. The date and time the promotion was updated in ISO 8601 format. # noqa: E501 :param updated_at_foreign: The updated_at_foreign of this EcommercePromoRule2. # noqa: E501 :type: datetime """ self._updated_at_foreign = updated_at_foreign def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(EcommercePromoRule2, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, EcommercePromoRule2): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ``` #### File: mailchimp_marketing_asyncio/models/ecommerce_store.py ```python import pprint import re # noqa: F401 import six class EcommerceStore(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'str', 'list_id': 'str', 'name': 'str', 'platform': 'str', 'domain': 'str', 'is_syncing': 'bool', 'email_address': 'str', 'currency_code': 'str', 'money_format': 'str', 'primary_locale': 'str', 'timezone': 'str', 'phone': 'str', 'address': 'Address1', 'connected_site': 'ConnectedSite2', 'automations': 'Automations', 'list_is_active': 'bool', 'created_at': 'datetime', 'updated_at': 'datetime', 'links': 'list[ResourceLink]' } attribute_map = { 'id': 'id', 'list_id': 'list_id', 'name': 'name', 'platform': 'platform', 'domain': 'domain', 'is_syncing': 'is_syncing', 'email_address': 'email_address', 'currency_code': 'currency_code', 'money_format': 'money_format', 'primary_locale': 'primary_locale', 'timezone': 'timezone', 'phone': 'phone', 'address': 'address', 'connected_site': 'connected_site', 'automations': 'automations', 'list_is_active': 'list_is_active', 'created_at': 'created_at', 'updated_at': 'updated_at', 'links': '_links' } def __init__(self, id=None, list_id=None, name=None, platform=None, domain=None, is_syncing=None, email_address=None, currency_code=None, money_format=None, primary_locale=None, timezone=None, phone=None, address=None, connected_site=None, automations=None, list_is_active=None, created_at=None, updated_at=None, links=None): # noqa: E501 """EcommerceStore - a model defined in Swagger""" # noqa: E501 self._id = None self._list_id = None self._name = None self._platform = None self._domain = None self._is_syncing = None self._email_address = None self._currency_code = None self._money_format = None self._primary_locale = None self._timezone = None self._phone = None self._address = None self._connected_site = None self._automations = None self._list_is_active = None self._created_at = None self._updated_at = None self._links = None self.discriminator = None if id is not None: self.id = id if list_id is not None: self.list_id = list_id if name is not None: self.name = name if platform is not None: self.platform = platform if domain is not None: self.domain = domain if is_syncing is not None: self.is_syncing = is_syncing if email_address is not None: self.email_address = email_address if currency_code is not None: self.currency_code = currency_code if money_format is not None: self.money_format = money_format if primary_locale is not None: self.primary_locale = primary_locale if timezone is not None: self.timezone = timezone if phone is not None: self.phone = phone if address is not None: self.address = address if connected_site is not None: self.connected_site = connected_site if automations is not None: self.automations = automations if list_is_active is not None: self.list_is_active = list_is_active if created_at is not None: self.created_at = created_at if updated_at is not None: self.updated_at = updated_at if links is not None: self.links = links @property def id(self): """Gets the id of this EcommerceStore. # noqa: E501 The unique identifier for the store. # noqa: E501 :return: The id of this EcommerceStore. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this EcommerceStore. The unique identifier for the store. # noqa: E501 :param id: The id of this EcommerceStore. # noqa: E501 :type: str """ self._id = id @property def list_id(self): """Gets the list_id of this EcommerceStore. # noqa: E501 The unique identifier for the list that's associated with the store. The `list_id` for a specific store can't change. # noqa: E501 :return: The list_id of this EcommerceStore. # noqa: E501 :rtype: str """ return self._list_id @list_id.setter def list_id(self, list_id): """Sets the list_id of this EcommerceStore. The unique identifier for the list that's associated with the store. The `list_id` for a specific store can't change. # noqa: E501 :param list_id: The list_id of this EcommerceStore. # noqa: E501 :type: str """ self._list_id = list_id @property def name(self): """Gets the name of this EcommerceStore. # noqa: E501 The name of the store. # noqa: E501 :return: The name of this EcommerceStore. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this EcommerceStore. The name of the store. # noqa: E501 :param name: The name of this EcommerceStore. # noqa: E501 :type: str """ self._name = name @property def platform(self): """Gets the platform of this EcommerceStore. # noqa: E501 The e-commerce platform of the store. # noqa: E501 :return: The platform of this EcommerceStore. # noqa: E501 :rtype: str """ return self._platform @platform.setter def platform(self, platform): """Sets the platform of this EcommerceStore. The e-commerce platform of the store. # noqa: E501 :param platform: The platform of this EcommerceStore. # noqa: E501 :type: str """ self._platform = platform @property def domain(self): """Gets the domain of this EcommerceStore. # noqa: E501 The store domain. The store domain must be unique within a user account. # noqa: E501 :return: The domain of this EcommerceStore. # noqa: E501 :rtype: str """ return self._domain @domain.setter def domain(self, domain): """Sets the domain of this EcommerceStore. The store domain. The store domain must be unique within a user account. # noqa: E501 :param domain: The domain of this EcommerceStore. # noqa: E501 :type: str """ self._domain = domain @property def is_syncing(self): """Gets the is_syncing of this EcommerceStore. # noqa: E501 Whether to disable automations because the store is currently [syncing](https://mailchimp.com/developer/marketing/docs/e-commerce/#pausing-store-automations). # noqa: E501 :return: The is_syncing of this EcommerceStore. # noqa: E501 :rtype: bool """ return self._is_syncing @is_syncing.setter def is_syncing(self, is_syncing): """Sets the is_syncing of this EcommerceStore. Whether to disable automations because the store is currently [syncing](https://mailchimp.com/developer/marketing/docs/e-commerce/#pausing-store-automations). # noqa: E501 :param is_syncing: The is_syncing of this EcommerceStore. # noqa: E501 :type: bool """ self._is_syncing = is_syncing @property def email_address(self): """Gets the email_address of this EcommerceStore. # noqa: E501 The email address for the store. # noqa: E501 :return: The email_address of this EcommerceStore. # noqa: E501 :rtype: str """ return self._email_address @email_address.setter def email_address(self, email_address): """Sets the email_address of this EcommerceStore. The email address for the store. # noqa: E501 :param email_address: The email_address of this EcommerceStore. # noqa: E501 :type: str """ self._email_address = email_address @property def currency_code(self): """Gets the currency_code of this EcommerceStore. # noqa: E501 The three-letter ISO 4217 code for the currency that the store accepts. # noqa: E501 :return: The currency_code of this EcommerceStore. # noqa: E501 :rtype: str """ return self._currency_code @currency_code.setter def currency_code(self, currency_code): """Sets the currency_code of this EcommerceStore. The three-letter ISO 4217 code for the currency that the store accepts. # noqa: E501 :param currency_code: The currency_code of this EcommerceStore. # noqa: E501 :type: str """ self._currency_code = currency_code @property def money_format(self): """Gets the money_format of this EcommerceStore. # noqa: E501 The currency format for the store. For example: `$`, `£`, etc. # noqa: E501 :return: The money_format of this EcommerceStore. # noqa: E501 :rtype: str """ return self._money_format @money_format.setter def money_format(self, money_format): """Sets the money_format of this EcommerceStore. The currency format for the store. For example: `$`, `£`, etc. # noqa: E501 :param money_format: The money_format of this EcommerceStore. # noqa: E501 :type: str """ self._money_format = money_format @property def primary_locale(self): """Gets the primary_locale of this EcommerceStore. # noqa: E501 The primary locale for the store. For example: `en`, `de`, etc. # noqa: E501 :return: The primary_locale of this EcommerceStore. # noqa: E501 :rtype: str """ return self._primary_locale @primary_locale.setter def primary_locale(self, primary_locale): """Sets the primary_locale of this EcommerceStore. The primary locale for the store. For example: `en`, `de`, etc. # noqa: E501 :param primary_locale: The primary_locale of this EcommerceStore. # noqa: E501 :type: str """ self._primary_locale = primary_locale @property def timezone(self): """Gets the timezone of this EcommerceStore. # noqa: E501 The timezone for the store. # noqa: E501 :return: The timezone of this EcommerceStore. # noqa: E501 :rtype: str """ return self._timezone @timezone.setter def timezone(self, timezone): """Sets the timezone of this EcommerceStore. The timezone for the store. # noqa: E501 :param timezone: The timezone of this EcommerceStore. # noqa: E501 :type: str """ self._timezone = timezone @property def phone(self): """Gets the phone of this EcommerceStore. # noqa: E501 The store phone number. # noqa: E501 :return: The phone of this EcommerceStore. # noqa: E501 :rtype: str """ return self._phone @phone.setter def phone(self, phone): """Sets the phone of this EcommerceStore. The store phone number. # noqa: E501 :param phone: The phone of this EcommerceStore. # noqa: E501 :type: str """ self._phone = phone @property def address(self): """Gets the address of this EcommerceStore. # noqa: E501 :return: The address of this EcommerceStore. # noqa: E501 :rtype: Address1 """ return self._address @address.setter def address(self, address): """Sets the address of this EcommerceStore. :param address: The address of this EcommerceStore. # noqa: E501 :type: Address1 """ self._address = address @property def connected_site(self): """Gets the connected_site of this EcommerceStore. # noqa: E501 :return: The connected_site of this EcommerceStore. # noqa: E501 :rtype: ConnectedSite2 """ return self._connected_site @connected_site.setter def connected_site(self, connected_site): """Sets the connected_site of this EcommerceStore. :param connected_site: The connected_site of this EcommerceStore. # noqa: E501 :type: ConnectedSite2 """ self._connected_site = connected_site @property def automations(self): """Gets the automations of this EcommerceStore. # noqa: E501 :return: The automations of this EcommerceStore. # noqa: E501 :rtype: Automations """ return self._automations @automations.setter def automations(self, automations): """Sets the automations of this EcommerceStore. :param automations: The automations of this EcommerceStore. # noqa: E501 :type: Automations """ self._automations = automations @property def list_is_active(self): """Gets the list_is_active of this EcommerceStore. # noqa: E501 The status of the list connected to the store, namely if it's deleted or disabled. # noqa: E501 :return: The list_is_active of this EcommerceStore. # noqa: E501 :rtype: bool """ return self._list_is_active @list_is_active.setter def list_is_active(self, list_is_active): """Sets the list_is_active of this EcommerceStore. The status of the list connected to the store, namely if it's deleted or disabled. # noqa: E501 :param list_is_active: The list_is_active of this EcommerceStore. # noqa: E501 :type: bool """ self._list_is_active = list_is_active @property def created_at(self): """Gets the created_at of this EcommerceStore. # noqa: E501 The date and time the store was created in ISO 8601 format. # noqa: E501 :return: The created_at of this EcommerceStore. # noqa: E501 :rtype: datetime """ return self._created_at @created_at.setter def created_at(self, created_at): """Sets the created_at of this EcommerceStore. The date and time the store was created in ISO 8601 format. # noqa: E501 :param created_at: The created_at of this EcommerceStore. # noqa: E501 :type: datetime """ self._created_at = created_at @property def updated_at(self): """Gets the updated_at of this EcommerceStore. # noqa: E501 The date and time the store was last updated in ISO 8601 format. # noqa: E501 :return: The updated_at of this EcommerceStore. # noqa: E501 :rtype: datetime """ return self._updated_at @updated_at.setter def updated_at(self, updated_at): """Sets the updated_at of this EcommerceStore. The date and time the store was last updated in ISO 8601 format. # noqa: E501 :param updated_at: The updated_at of this EcommerceStore. # noqa: E501 :type: datetime """ self._updated_at = updated_at @property def links(self): """Gets the links of this EcommerceStore. # noqa: E501 A list of link types and descriptions for the API schema documents. # noqa: E501 :return: The links of this EcommerceStore. # noqa: E501 :rtype: list[ResourceLink] """ return self._links @links.setter def links(self, links): """Sets the links of this EcommerceStore. A list of link types and descriptions for the API schema documents. # noqa: E501 :param links: The links of this EcommerceStore. # noqa: E501 :type: list[ResourceLink] """ self._links = links def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(EcommerceStore, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, EcommerceStore): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ``` #### File: mailchimp_marketing_asyncio/models/events1.py ```python import pprint import re # noqa: F401 import six class Events1(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'subscribe': 'bool', 'unsubscribe': 'bool', 'profile': 'bool', 'cleaned': 'bool', 'upemail': 'bool', 'campaign': 'bool' } attribute_map = { 'subscribe': 'subscribe', 'unsubscribe': 'unsubscribe', 'profile': 'profile', 'cleaned': 'cleaned', 'upemail': 'upemail', 'campaign': 'campaign' } def __init__(self, subscribe=None, unsubscribe=None, profile=None, cleaned=None, upemail=None, campaign=None): # noqa: E501 """Events1 - a model defined in Swagger""" # noqa: E501 self._subscribe = None self._unsubscribe = None self._profile = None self._cleaned = None self._upemail = None self._campaign = None self.discriminator = None if subscribe is not None: self.subscribe = subscribe if unsubscribe is not None: self.unsubscribe = unsubscribe if profile is not None: self.profile = profile if cleaned is not None: self.cleaned = cleaned if upemail is not None: self.upemail = upemail if campaign is not None: self.campaign = campaign @property def subscribe(self): """Gets the subscribe of this Events1. # noqa: E501 Whether the webhook is triggered when a list subscriber is added. # noqa: E501 :return: The subscribe of this Events1. # noqa: E501 :rtype: bool """ return self._subscribe @subscribe.setter def subscribe(self, subscribe): """Sets the subscribe of this Events1. Whether the webhook is triggered when a list subscriber is added. # noqa: E501 :param subscribe: The subscribe of this Events1. # noqa: E501 :type: bool """ self._subscribe = subscribe @property def unsubscribe(self): """Gets the unsubscribe of this Events1. # noqa: E501 Whether the webhook is triggered when a list member unsubscribes. # noqa: E501 :return: The unsubscribe of this Events1. # noqa: E501 :rtype: bool """ return self._unsubscribe @unsubscribe.setter def unsubscribe(self, unsubscribe): """Sets the unsubscribe of this Events1. Whether the webhook is triggered when a list member unsubscribes. # noqa: E501 :param unsubscribe: The unsubscribe of this Events1. # noqa: E501 :type: bool """ self._unsubscribe = unsubscribe @property def profile(self): """Gets the profile of this Events1. # noqa: E501 Whether the webhook is triggered when a subscriber's profile is updated. # noqa: E501 :return: The profile of this Events1. # noqa: E501 :rtype: bool """ return self._profile @profile.setter def profile(self, profile): """Sets the profile of this Events1. Whether the webhook is triggered when a subscriber's profile is updated. # noqa: E501 :param profile: The profile of this Events1. # noqa: E501 :type: bool """ self._profile = profile @property def cleaned(self): """Gets the cleaned of this Events1. # noqa: E501 Whether the webhook is triggered when a subscriber's email address is cleaned from the list. # noqa: E501 :return: The cleaned of this Events1. # noqa: E501 :rtype: bool """ return self._cleaned @cleaned.setter def cleaned(self, cleaned): """Sets the cleaned of this Events1. Whether the webhook is triggered when a subscriber's email address is cleaned from the list. # noqa: E501 :param cleaned: The cleaned of this Events1. # noqa: E501 :type: bool """ self._cleaned = cleaned @property def upemail(self): """Gets the upemail of this Events1. # noqa: E501 Whether the webhook is triggered when a subscriber's email address is changed. # noqa: E501 :return: The upemail of this Events1. # noqa: E501 :rtype: bool """ return self._upemail @upemail.setter def upemail(self, upemail): """Sets the upemail of this Events1. Whether the webhook is triggered when a subscriber's email address is changed. # noqa: E501 :param upemail: The upemail of this Events1. # noqa: E501 :type: bool """ self._upemail = upemail @property def campaign(self): """Gets the campaign of this Events1. # noqa: E501 Whether the webhook is triggered when a campaign is sent or cancelled. # noqa: E501 :return: The campaign of this Events1. # noqa: E501 :rtype: bool """ return self._campaign @campaign.setter def campaign(self, campaign): """Sets the campaign of this Events1. Whether the webhook is triggered when a campaign is sent or cancelled. # noqa: E501 :param campaign: The campaign of this Events1. # noqa: E501 :type: bool """ self._campaign = campaign def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(Events1, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Events1): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ``` #### File: mailchimp_marketing_asyncio/models/file_manager.py ```python import pprint import re # noqa: F401 import six class FileManager(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'files': 'list[GalleryFile]', 'total_file_size': 'float', 'total_items': 'int', 'links': 'list[ResourceLink]' } attribute_map = { 'files': 'files', 'total_file_size': 'total_file_size', 'total_items': 'total_items', 'links': '_links' } def __init__(self, files=None, total_file_size=None, total_items=None, links=None): # noqa: E501 """FileManager - a model defined in Swagger""" # noqa: E501 self._files = None self._total_file_size = None self._total_items = None self._links = None self.discriminator = None if files is not None: self.files = files if total_file_size is not None: self.total_file_size = total_file_size if total_items is not None: self.total_items = total_items if links is not None: self.links = links @property def files(self): """Gets the files of this FileManager. # noqa: E501 A list of files and images in an account. # noqa: E501 :return: The files of this FileManager. # noqa: E501 :rtype: list[GalleryFile] """ return self._files @files.setter def files(self, files): """Sets the files of this FileManager. A list of files and images in an account. # noqa: E501 :param files: The files of this FileManager. # noqa: E501 :type: list[GalleryFile] """ self._files = files @property def total_file_size(self): """Gets the total_file_size of this FileManager. # noqa: E501 The total size of all File Manager files in bytes. # noqa: E501 :return: The total_file_size of this FileManager. # noqa: E501 :rtype: float """ return self._total_file_size @total_file_size.setter def total_file_size(self, total_file_size): """Sets the total_file_size of this FileManager. The total size of all File Manager files in bytes. # noqa: E501 :param total_file_size: The total_file_size of this FileManager. # noqa: E501 :type: float """ self._total_file_size = total_file_size @property def total_items(self): """Gets the total_items of this FileManager. # noqa: E501 The total number of items matching the query regardless of pagination. # noqa: E501 :return: The total_items of this FileManager. # noqa: E501 :rtype: int """ return self._total_items @total_items.setter def total_items(self, total_items): """Sets the total_items of this FileManager. The total number of items matching the query regardless of pagination. # noqa: E501 :param total_items: The total_items of this FileManager. # noqa: E501 :type: int """ self._total_items = total_items @property def links(self): """Gets the links of this FileManager. # noqa: E501 A list of link types and descriptions for the API schema documents. # noqa: E501 :return: The links of this FileManager. # noqa: E501 :rtype: list[ResourceLink] """ return self._links @links.setter def links(self, links): """Sets the links of this FileManager. A list of link types and descriptions for the API schema documents. # noqa: E501 :param links: The links of this FileManager. # noqa: E501 :type: list[ResourceLink] """ self._links = links def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(FileManager, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, FileManager): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ``` #### File: mailchimp_marketing_asyncio/models/gallery_file.py ```python import pprint import re # noqa: F401 import six class GalleryFile(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'int', 'folder_id': 'int', 'type': 'str', 'name': 'str', 'full_size_url': 'str', 'thumbnail_url': 'str', 'size': 'int', 'created_at': 'datetime', 'created_by': 'str', 'width': 'int', 'height': 'int', 'links': 'list[ResourceLink]' } attribute_map = { 'id': 'id', 'folder_id': 'folder_id', 'type': 'type', 'name': 'name', 'full_size_url': 'full_size_url', 'thumbnail_url': 'thumbnail_url', 'size': 'size', 'created_at': 'created_at', 'created_by': 'created_by', 'width': 'width', 'height': 'height', 'links': '_links' } def __init__(self, id=None, folder_id=None, type=None, name=None, full_size_url=None, thumbnail_url=None, size=None, created_at=None, created_by=None, width=None, height=None, links=None): # noqa: E501 """GalleryFile - a model defined in Swagger""" # noqa: E501 self._id = None self._folder_id = None self._type = None self._name = None self._full_size_url = None self._thumbnail_url = None self._size = None self._created_at = None self._created_by = None self._width = None self._height = None self._links = None self.discriminator = None if id is not None: self.id = id if folder_id is not None: self.folder_id = folder_id if type is not None: self.type = type if name is not None: self.name = name if full_size_url is not None: self.full_size_url = full_size_url if thumbnail_url is not None: self.thumbnail_url = thumbnail_url if size is not None: self.size = size if created_at is not None: self.created_at = created_at if created_by is not None: self.created_by = created_by if width is not None: self.width = width if height is not None: self.height = height if links is not None: self.links = links @property def id(self): """Gets the id of this GalleryFile. # noqa: E501 The unique id of the file. # noqa: E501 :return: The id of this GalleryFile. # noqa: E501 :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this GalleryFile. The unique id of the file. # noqa: E501 :param id: The id of this GalleryFile. # noqa: E501 :type: int """ self._id = id @property def folder_id(self): """Gets the folder_id of this GalleryFile. # noqa: E501 The id of the folder. # noqa: E501 :return: The folder_id of this GalleryFile. # noqa: E501 :rtype: int """ return self._folder_id @folder_id.setter def folder_id(self, folder_id): """Sets the folder_id of this GalleryFile. The id of the folder. # noqa: E501 :param folder_id: The folder_id of this GalleryFile. # noqa: E501 :type: int """ self._folder_id = folder_id @property def type(self): """Gets the type of this GalleryFile. # noqa: E501 The type of file in the File Manager. # noqa: E501 :return: The type of this GalleryFile. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this GalleryFile. The type of file in the File Manager. # noqa: E501 :param type: The type of this GalleryFile. # noqa: E501 :type: str """ allowed_values = ["image", "file"] # noqa: E501 if type not in allowed_values: raise ValueError( "Invalid value for `type` ({0}), must be one of {1}" # noqa: E501 .format(type, allowed_values) ) self._type = type @property def name(self): """Gets the name of this GalleryFile. # noqa: E501 The name of the file. # noqa: E501 :return: The name of this GalleryFile. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this GalleryFile. The name of the file. # noqa: E501 :param name: The name of this GalleryFile. # noqa: E501 :type: str """ self._name = name @property def full_size_url(self): """Gets the full_size_url of this GalleryFile. # noqa: E501 The url of the full-size file. # noqa: E501 :return: The full_size_url of this GalleryFile. # noqa: E501 :rtype: str """ return self._full_size_url @full_size_url.setter def full_size_url(self, full_size_url): """Sets the full_size_url of this GalleryFile. The url of the full-size file. # noqa: E501 :param full_size_url: The full_size_url of this GalleryFile. # noqa: E501 :type: str """ self._full_size_url = full_size_url @property def thumbnail_url(self): """Gets the thumbnail_url of this GalleryFile. # noqa: E501 The url of the thumbnail preview. # noqa: E501 :return: The thumbnail_url of this GalleryFile. # noqa: E501 :rtype: str """ return self._thumbnail_url @thumbnail_url.setter def thumbnail_url(self, thumbnail_url): """Sets the thumbnail_url of this GalleryFile. The url of the thumbnail preview. # noqa: E501 :param thumbnail_url: The thumbnail_url of this GalleryFile. # noqa: E501 :type: str """ self._thumbnail_url = thumbnail_url @property def size(self): """Gets the size of this GalleryFile. # noqa: E501 The size of the file in bytes. # noqa: E501 :return: The size of this GalleryFile. # noqa: E501 :rtype: int """ return self._size @size.setter def size(self, size): """Sets the size of this GalleryFile. The size of the file in bytes. # noqa: E501 :param size: The size of this GalleryFile. # noqa: E501 :type: int """ self._size = size @property def created_at(self): """Gets the created_at of this GalleryFile. # noqa: E501 The date and time a file was added to the File Manager in ISO 8601 format. # noqa: E501 :return: The created_at of this GalleryFile. # noqa: E501 :rtype: datetime """ return self._created_at @created_at.setter def created_at(self, created_at): """Sets the created_at of this GalleryFile. The date and time a file was added to the File Manager in ISO 8601 format. # noqa: E501 :param created_at: The created_at of this GalleryFile. # noqa: E501 :type: datetime """ self._created_at = created_at @property def created_by(self): """Gets the created_by of this GalleryFile. # noqa: E501 The username of the profile that uploaded the file. # noqa: E501 :return: The created_by of this GalleryFile. # noqa: E501 :rtype: str """ return self._created_by @created_by.setter def created_by(self, created_by): """Sets the created_by of this GalleryFile. The username of the profile that uploaded the file. # noqa: E501 :param created_by: The created_by of this GalleryFile. # noqa: E501 :type: str """ self._created_by = created_by @property def width(self): """Gets the width of this GalleryFile. # noqa: E501 The width of the image. # noqa: E501 :return: The width of this GalleryFile. # noqa: E501 :rtype: int """ return self._width @width.setter def width(self, width): """Sets the width of this GalleryFile. The width of the image. # noqa: E501 :param width: The width of this GalleryFile. # noqa: E501 :type: int """ self._width = width @property def height(self): """Gets the height of this GalleryFile. # noqa: E501 The height of an image. # noqa: E501 :return: The height of this GalleryFile. # noqa: E501 :rtype: int """ return self._height @height.setter def height(self, height): """Sets the height of this GalleryFile. The height of an image. # noqa: E501 :param height: The height of this GalleryFile. # noqa: E501 :type: int """ self._height = height @property def links(self): """Gets the links of this GalleryFile. # noqa: E501 A list of link types and descriptions for the API schema documents. # noqa: E501 :return: The links of this GalleryFile. # noqa: E501 :rtype: list[ResourceLink] """ return self._links @links.setter def links(self, links): """Sets the links of this GalleryFile. A list of link types and descriptions for the API schema documents. # noqa: E501 :param links: The links of this GalleryFile. # noqa: E501 :type: list[ResourceLink] """ self._links = links def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(GalleryFile, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, GalleryFile): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ``` #### File: mailchimp_marketing_asyncio/models/list_location.py ```python import pprint import re # noqa: F401 import six class ListLocation(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'country': 'str', 'cc': 'str', 'percent': 'float', 'total': 'int' } attribute_map = { 'country': 'country', 'cc': 'cc', 'percent': 'percent', 'total': 'total' } def __init__(self, country=None, cc=None, percent=None, total=None): # noqa: E501 """ListLocation - a model defined in Swagger""" # noqa: E501 self._country = None self._cc = None self._percent = None self._total = None self.discriminator = None if country is not None: self.country = country if cc is not None: self.cc = cc if percent is not None: self.percent = percent if total is not None: self.total = total @property def country(self): """Gets the country of this ListLocation. # noqa: E501 The name of the country. # noqa: E501 :return: The country of this ListLocation. # noqa: E501 :rtype: str """ return self._country @country.setter def country(self, country): """Sets the country of this ListLocation. The name of the country. # noqa: E501 :param country: The country of this ListLocation. # noqa: E501 :type: str """ self._country = country @property def cc(self): """Gets the cc of this ListLocation. # noqa: E501 The ISO 3166 2 digit country code. # noqa: E501 :return: The cc of this ListLocation. # noqa: E501 :rtype: str """ return self._cc @cc.setter def cc(self, cc): """Sets the cc of this ListLocation. The ISO 3166 2 digit country code. # noqa: E501 :param cc: The cc of this ListLocation. # noqa: E501 :type: str """ self._cc = cc @property def percent(self): """Gets the percent of this ListLocation. # noqa: E501 The percent of subscribers in the country. # noqa: E501 :return: The percent of this ListLocation. # noqa: E501 :rtype: float """ return self._percent @percent.setter def percent(self, percent): """Sets the percent of this ListLocation. The percent of subscribers in the country. # noqa: E501 :param percent: The percent of this ListLocation. # noqa: E501 :type: float """ self._percent = percent @property def total(self): """Gets the total of this ListLocation. # noqa: E501 The total number of subscribers in the country. # noqa: E501 :return: The total of this ListLocation. # noqa: E501 :rtype: int """ return self._total @total.setter def total(self, total): """Sets the total of this ListLocation. The total number of subscribers in the country. # noqa: E501 :param total: The total of this ListLocation. # noqa: E501 :type: int """ self._total = total def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ListLocation, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ListLocation): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ``` #### File: mailchimp_marketing_asyncio/models/member_notes.py ```python import pprint import re # noqa: F401 import six class MemberNotes(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'int', 'created_at': 'datetime', 'created_by': 'str', 'updated_at': 'datetime', 'note': 'str', 'list_id': 'str', 'email_id': 'str', 'links': 'list[ResourceLink]' } attribute_map = { 'id': 'id', 'created_at': 'created_at', 'created_by': 'created_by', 'updated_at': 'updated_at', 'note': 'note', 'list_id': 'list_id', 'email_id': 'email_id', 'links': '_links' } def __init__(self, id=None, created_at=None, created_by=None, updated_at=None, note=None, list_id=None, email_id=None, links=None): # noqa: E501 """MemberNotes - a model defined in Swagger""" # noqa: E501 self._id = None self._created_at = None self._created_by = None self._updated_at = None self._note = None self._list_id = None self._email_id = None self._links = None self.discriminator = None if id is not None: self.id = id if created_at is not None: self.created_at = created_at if created_by is not None: self.created_by = created_by if updated_at is not None: self.updated_at = updated_at if note is not None: self.note = note if list_id is not None: self.list_id = list_id if email_id is not None: self.email_id = email_id if links is not None: self.links = links @property def id(self): """Gets the id of this MemberNotes. # noqa: E501 The note id. # noqa: E501 :return: The id of this MemberNotes. # noqa: E501 :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this MemberNotes. The note id. # noqa: E501 :param id: The id of this MemberNotes. # noqa: E501 :type: int """ self._id = id @property def created_at(self): """Gets the created_at of this MemberNotes. # noqa: E501 The date and time the note was created in ISO 8601 format. # noqa: E501 :return: The created_at of this MemberNotes. # noqa: E501 :rtype: datetime """ return self._created_at @created_at.setter def created_at(self, created_at): """Sets the created_at of this MemberNotes. The date and time the note was created in ISO 8601 format. # noqa: E501 :param created_at: The created_at of this MemberNotes. # noqa: E501 :type: datetime """ self._created_at = created_at @property def created_by(self): """Gets the created_by of this MemberNotes. # noqa: E501 The author of the note. # noqa: E501 :return: The created_by of this MemberNotes. # noqa: E501 :rtype: str """ return self._created_by @created_by.setter def created_by(self, created_by): """Sets the created_by of this MemberNotes. The author of the note. # noqa: E501 :param created_by: The created_by of this MemberNotes. # noqa: E501 :type: str """ self._created_by = created_by @property def updated_at(self): """Gets the updated_at of this MemberNotes. # noqa: E501 The date and time the note was last updated in ISO 8601 format. # noqa: E501 :return: The updated_at of this MemberNotes. # noqa: E501 :rtype: datetime """ return self._updated_at @updated_at.setter def updated_at(self, updated_at): """Sets the updated_at of this MemberNotes. The date and time the note was last updated in ISO 8601 format. # noqa: E501 :param updated_at: The updated_at of this MemberNotes. # noqa: E501 :type: datetime """ self._updated_at = updated_at @property def note(self): """Gets the note of this MemberNotes. # noqa: E501 The content of the note. # noqa: E501 :return: The note of this MemberNotes. # noqa: E501 :rtype: str """ return self._note @note.setter def note(self, note): """Sets the note of this MemberNotes. The content of the note. # noqa: E501 :param note: The note of this MemberNotes. # noqa: E501 :type: str """ self._note = note @property def list_id(self): """Gets the list_id of this MemberNotes. # noqa: E501 The unique id for the list. # noqa: E501 :return: The list_id of this MemberNotes. # noqa: E501 :rtype: str """ return self._list_id @list_id.setter def list_id(self, list_id): """Sets the list_id of this MemberNotes. The unique id for the list. # noqa: E501 :param list_id: The list_id of this MemberNotes. # noqa: E501 :type: str """ self._list_id = list_id @property def email_id(self): """Gets the email_id of this MemberNotes. # noqa: E501 The MD5 hash of the lowercase version of the list member's email address. # noqa: E501 :return: The email_id of this MemberNotes. # noqa: E501 :rtype: str """ return self._email_id @email_id.setter def email_id(self, email_id): """Sets the email_id of this MemberNotes. The MD5 hash of the lowercase version of the list member's email address. # noqa: E501 :param email_id: The email_id of this MemberNotes. # noqa: E501 :type: str """ self._email_id = email_id @property def links(self): """Gets the links of this MemberNotes. # noqa: E501 A list of link types and descriptions for the API schema documents. # noqa: E501 :return: The links of this MemberNotes. # noqa: E501 :rtype: list[ResourceLink] """ return self._links @links.setter def links(self, links): """Sets the links of this MemberNotes. A list of link types and descriptions for the API schema documents. # noqa: E501 :param links: The links of this MemberNotes. # noqa: E501 :type: list[ResourceLink] """ self._links = links def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(MemberNotes, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, MemberNotes): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ``` #### File: mailchimp_marketing_asyncio/models/member_tags.py ```python import pprint import re # noqa: F401 import six class MemberTags(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'tags': 'list[MemberTag]', 'is_syncing': 'bool' } attribute_map = { 'tags': 'tags', 'is_syncing': 'is_syncing' } def __init__(self, tags=None, is_syncing=None): # noqa: E501 """MemberTags - a model defined in Swagger""" # noqa: E501 self._tags = None self._is_syncing = None self.discriminator = None self.tags = tags if is_syncing is not None: self.is_syncing = is_syncing @property def tags(self): """Gets the tags of this MemberTags. # noqa: E501 A list of tags assigned to the list member. # noqa: E501 :return: The tags of this MemberTags. # noqa: E501 :rtype: list[MemberTag] """ return self._tags @tags.setter def tags(self, tags): """Sets the tags of this MemberTags. A list of tags assigned to the list member. # noqa: E501 :param tags: The tags of this MemberTags. # noqa: E501 :type: list[MemberTag] """ if tags is None: raise ValueError("Invalid value for `tags`, must not be `None`") # noqa: E501 self._tags = tags @property def is_syncing(self): """Gets the is_syncing of this MemberTags. # noqa: E501 When is_syncing is true, automations based on the tags in the request will not fire # noqa: E501 :return: The is_syncing of this MemberTags. # noqa: E501 :rtype: bool """ return self._is_syncing @is_syncing.setter def is_syncing(self, is_syncing): """Sets the is_syncing of this MemberTags. When is_syncing is true, automations based on the tags in the request will not fire # noqa: E501 :param is_syncing: The is_syncing of this MemberTags. # noqa: E501 :type: bool """ self._is_syncing = is_syncing def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(MemberTags, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, MemberTags): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ``` #### File: mailchimp_marketing_asyncio/models/opens.py ```python import pprint import re # noqa: F401 import six class Opens(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'opens_total': 'int', 'unique_opens': 'int', 'open_rate': 'float', 'last_open': 'datetime' } attribute_map = { 'opens_total': 'opens_total', 'unique_opens': 'unique_opens', 'open_rate': 'open_rate', 'last_open': 'last_open' } def __init__(self, opens_total=None, unique_opens=None, open_rate=None, last_open=None): # noqa: E501 """Opens - a model defined in Swagger""" # noqa: E501 self._opens_total = None self._unique_opens = None self._open_rate = None self._last_open = None self.discriminator = None if opens_total is not None: self.opens_total = opens_total if unique_opens is not None: self.unique_opens = unique_opens if open_rate is not None: self.open_rate = open_rate if last_open is not None: self.last_open = last_open @property def opens_total(self): """Gets the opens_total of this Opens. # noqa: E501 The total number of opens for a campaign. # noqa: E501 :return: The opens_total of this Opens. # noqa: E501 :rtype: int """ return self._opens_total @opens_total.setter def opens_total(self, opens_total): """Sets the opens_total of this Opens. The total number of opens for a campaign. # noqa: E501 :param opens_total: The opens_total of this Opens. # noqa: E501 :type: int """ self._opens_total = opens_total @property def unique_opens(self): """Gets the unique_opens of this Opens. # noqa: E501 The total number of unique opens. # noqa: E501 :return: The unique_opens of this Opens. # noqa: E501 :rtype: int """ return self._unique_opens @unique_opens.setter def unique_opens(self, unique_opens): """Sets the unique_opens of this Opens. The total number of unique opens. # noqa: E501 :param unique_opens: The unique_opens of this Opens. # noqa: E501 :type: int """ self._unique_opens = unique_opens @property def open_rate(self): """Gets the open_rate of this Opens. # noqa: E501 The number of unique opens divided by the total number of successful deliveries. # noqa: E501 :return: The open_rate of this Opens. # noqa: E501 :rtype: float """ return self._open_rate @open_rate.setter def open_rate(self, open_rate): """Sets the open_rate of this Opens. The number of unique opens divided by the total number of successful deliveries. # noqa: E501 :param open_rate: The open_rate of this Opens. # noqa: E501 :type: float """ self._open_rate = open_rate @property def last_open(self): """Gets the last_open of this Opens. # noqa: E501 The date and time of the last recorded open in ISO 8601 format. # noqa: E501 :return: The last_open of this Opens. # noqa: E501 :rtype: datetime """ return self._last_open @last_open.setter def last_open(self, last_open): """Sets the last_open of this Opens. The date and time of the last recorded open in ISO 8601 format. # noqa: E501 :param last_open: The last_open of this Opens. # noqa: E501 :type: datetime """ self._last_open = last_open def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(Opens, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Opens): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ``` #### File: mailchimp_marketing_asyncio/models/problem_detail_document.py ```python import pprint import re # noqa: F401 import six class ProblemDetailDocument(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'type': 'str', 'title': 'str', 'status': 'int', 'detail': 'str', 'instance': 'str' } attribute_map = { 'type': 'type', 'title': 'title', 'status': 'status', 'detail': 'detail', 'instance': 'instance' } def __init__(self, type=None, title=None, status=None, detail=None, instance=None): # noqa: E501 """ProblemDetailDocument - a model defined in Swagger""" # noqa: E501 self._type = None self._title = None self._status = None self._detail = None self._instance = None self.discriminator = None self.type = type self.title = title self.status = status self.detail = detail self.instance = instance @property def type(self): """Gets the type of this ProblemDetailDocument. # noqa: E501 An absolute URI that identifies the problem type. When dereferenced, it should provide human-readable documentation for the problem type. # noqa: E501 :return: The type of this ProblemDetailDocument. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this ProblemDetailDocument. An absolute URI that identifies the problem type. When dereferenced, it should provide human-readable documentation for the problem type. # noqa: E501 :param type: The type of this ProblemDetailDocument. # noqa: E501 :type: str """ if type is None: raise ValueError("Invalid value for `type`, must not be `None`") # noqa: E501 self._type = type @property def title(self): """Gets the title of this ProblemDetailDocument. # noqa: E501 A short, human-readable summary of the problem type. It shouldn't change based on the occurrence of the problem, except for purposes of localization. # noqa: E501 :return: The title of this ProblemDetailDocument. # noqa: E501 :rtype: str """ return self._title @title.setter def title(self, title): """Sets the title of this ProblemDetailDocument. A short, human-readable summary of the problem type. It shouldn't change based on the occurrence of the problem, except for purposes of localization. # noqa: E501 :param title: The title of this ProblemDetailDocument. # noqa: E501 :type: str """ if title is None: raise ValueError("Invalid value for `title`, must not be `None`") # noqa: E501 self._title = title @property def status(self): """Gets the status of this ProblemDetailDocument. # noqa: E501 The HTTP status code (RFC2616, Section 6) generated by the origin server for this occurrence of the problem. # noqa: E501 :return: The status of this ProblemDetailDocument. # noqa: E501 :rtype: int """ return self._status @status.setter def status(self, status): """Sets the status of this ProblemDetailDocument. The HTTP status code (RFC2616, Section 6) generated by the origin server for this occurrence of the problem. # noqa: E501 :param status: The status of this ProblemDetailDocument. # noqa: E501 :type: int """ if status is None: raise ValueError("Invalid value for `status`, must not be `None`") # noqa: E501 self._status = status @property def detail(self): """Gets the detail of this ProblemDetailDocument. # noqa: E501 A human-readable explanation specific to this occurrence of the problem. [Learn more about errors](/developer/guides/get-started-with-mailchimp-api-3/#Errors). # noqa: E501 :return: The detail of this ProblemDetailDocument. # noqa: E501 :rtype: str """ return self._detail @detail.setter def detail(self, detail): """Sets the detail of this ProblemDetailDocument. A human-readable explanation specific to this occurrence of the problem. [Learn more about errors](/developer/guides/get-started-with-mailchimp-api-3/#Errors). # noqa: E501 :param detail: The detail of this ProblemDetailDocument. # noqa: E501 :type: str """ if detail is None: raise ValueError("Invalid value for `detail`, must not be `None`") # noqa: E501 self._detail = detail @property def instance(self): """Gets the instance of this ProblemDetailDocument. # noqa: E501 A string that identifies this specific occurrence of the problem. Please provide this ID when contacting support. # noqa: E501 :return: The instance of this ProblemDetailDocument. # noqa: E501 :rtype: str """ return self._instance @instance.setter def instance(self, instance): """Sets the instance of this ProblemDetailDocument. A string that identifies this specific occurrence of the problem. Please provide this ID when contacting support. # noqa: E501 :param instance: The instance of this ProblemDetailDocument. # noqa: E501 :type: str """ if instance is None: raise ValueError("Invalid value for `instance`, must not be `None`") # noqa: E501 self._instance = instance def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ProblemDetailDocument, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ProblemDetailDocument): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ``` #### File: mailchimp_marketing_asyncio/models/subscriber_in_automation_queue2.py ```python import pprint import re # noqa: F401 import six class SubscriberInAutomationQueue2(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'str', 'workflow_id': 'str', 'email_id': 'str', 'list_id': 'str', 'list_is_active': 'bool', 'email_address': 'str', 'next_send': 'datetime', 'links': 'list[ResourceLink]' } attribute_map = { 'id': 'id', 'workflow_id': 'workflow_id', 'email_id': 'email_id', 'list_id': 'list_id', 'list_is_active': 'list_is_active', 'email_address': 'email_address', 'next_send': 'next_send', 'links': '_links' } def __init__(self, id=None, workflow_id=None, email_id=None, list_id=None, list_is_active=None, email_address=None, next_send=None, links=None): # noqa: E501 """SubscriberInAutomationQueue2 - a model defined in Swagger""" # noqa: E501 self._id = None self._workflow_id = None self._email_id = None self._list_id = None self._list_is_active = None self._email_address = None self._next_send = None self._links = None self.discriminator = None if id is not None: self.id = id if workflow_id is not None: self.workflow_id = workflow_id if email_id is not None: self.email_id = email_id if list_id is not None: self.list_id = list_id if list_is_active is not None: self.list_is_active = list_is_active if email_address is not None: self.email_address = email_address if next_send is not None: self.next_send = next_send if links is not None: self.links = links @property def id(self): """Gets the id of this SubscriberInAutomationQueue2. # noqa: E501 The MD5 hash of the lowercase version of the list member's email address. # noqa: E501 :return: The id of this SubscriberInAutomationQueue2. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this SubscriberInAutomationQueue2. The MD5 hash of the lowercase version of the list member's email address. # noqa: E501 :param id: The id of this SubscriberInAutomationQueue2. # noqa: E501 :type: str """ self._id = id @property def workflow_id(self): """Gets the workflow_id of this SubscriberInAutomationQueue2. # noqa: E501 A string that uniquely identifies an Automation workflow. # noqa: E501 :return: The workflow_id of this SubscriberInAutomationQueue2. # noqa: E501 :rtype: str """ return self._workflow_id @workflow_id.setter def workflow_id(self, workflow_id): """Sets the workflow_id of this SubscriberInAutomationQueue2. A string that uniquely identifies an Automation workflow. # noqa: E501 :param workflow_id: The workflow_id of this SubscriberInAutomationQueue2. # noqa: E501 :type: str """ self._workflow_id = workflow_id @property def email_id(self): """Gets the email_id of this SubscriberInAutomationQueue2. # noqa: E501 A string that uniquely identifies an email in an Automation workflow. # noqa: E501 :return: The email_id of this SubscriberInAutomationQueue2. # noqa: E501 :rtype: str """ return self._email_id @email_id.setter def email_id(self, email_id): """Sets the email_id of this SubscriberInAutomationQueue2. A string that uniquely identifies an email in an Automation workflow. # noqa: E501 :param email_id: The email_id of this SubscriberInAutomationQueue2. # noqa: E501 :type: str """ self._email_id = email_id @property def list_id(self): """Gets the list_id of this SubscriberInAutomationQueue2. # noqa: E501 A string that uniquely identifies a list. # noqa: E501 :return: The list_id of this SubscriberInAutomationQueue2. # noqa: E501 :rtype: str """ return self._list_id @list_id.setter def list_id(self, list_id): """Sets the list_id of this SubscriberInAutomationQueue2. A string that uniquely identifies a list. # noqa: E501 :param list_id: The list_id of this SubscriberInAutomationQueue2. # noqa: E501 :type: str """ self._list_id = list_id @property def list_is_active(self): """Gets the list_is_active of this SubscriberInAutomationQueue2. # noqa: E501 The status of the list used, namely if it's deleted or disabled. # noqa: E501 :return: The list_is_active of this SubscriberInAutomationQueue2. # noqa: E501 :rtype: bool """ return self._list_is_active @list_is_active.setter def list_is_active(self, list_is_active): """Sets the list_is_active of this SubscriberInAutomationQueue2. The status of the list used, namely if it's deleted or disabled. # noqa: E501 :param list_is_active: The list_is_active of this SubscriberInAutomationQueue2. # noqa: E501 :type: bool """ self._list_is_active = list_is_active @property def email_address(self): """Gets the email_address of this SubscriberInAutomationQueue2. # noqa: E501 The list member's email address. # noqa: E501 :return: The email_address of this SubscriberInAutomationQueue2. # noqa: E501 :rtype: str """ return self._email_address @email_address.setter def email_address(self, email_address): """Sets the email_address of this SubscriberInAutomationQueue2. The list member's email address. # noqa: E501 :param email_address: The email_address of this SubscriberInAutomationQueue2. # noqa: E501 :type: str """ self._email_address = email_address @property def next_send(self): """Gets the next_send of this SubscriberInAutomationQueue2. # noqa: E501 The date and time of the next send for the workflow email in ISO 8601 format. # noqa: E501 :return: The next_send of this SubscriberInAutomationQueue2. # noqa: E501 :rtype: datetime """ return self._next_send @next_send.setter def next_send(self, next_send): """Sets the next_send of this SubscriberInAutomationQueue2. The date and time of the next send for the workflow email in ISO 8601 format. # noqa: E501 :param next_send: The next_send of this SubscriberInAutomationQueue2. # noqa: E501 :type: datetime """ self._next_send = next_send @property def links(self): """Gets the links of this SubscriberInAutomationQueue2. # noqa: E501 A list of link types and descriptions for the API schema documents. # noqa: E501 :return: The links of this SubscriberInAutomationQueue2. # noqa: E501 :rtype: list[ResourceLink] """ return self._links @links.setter def links(self, links): """Sets the links of this SubscriberInAutomationQueue2. A list of link types and descriptions for the API schema documents. # noqa: E501 :param links: The links of this SubscriberInAutomationQueue2. # noqa: E501 :type: list[ResourceLink] """ self._links = links def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(SubscriberInAutomationQueue2, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SubscriberInAutomationQueue2): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other ```
{ "source": "JohnPaton/airbase", "score": 3 }
#### File: airbase/airbase/util.py ```python import datetime from .resources import ( LINK_LIST_URL_TEMPLATE, CURRENT_YEAR, DATE_FMT, ALL_SOURCES, ) def string_safe_list(obj): """ Turn an (iterable) object into a list. If it is a string or not iterable, put the whole object into a list of length 1. :param obj: :return list: """ if isinstance(obj, str) or not hasattr(obj, "__iter__"): return [obj] else: return list(obj) def countries_from_summary(summary): """ Get the list of unique countries from the summary. :param list[dict] summary: The E1a summary. :return list[str]: The available countries. """ return list({d["ct"] for d in summary}) def pollutants_from_summary(summary): """ Get the list of unique pollutants from the summary. :param list[dict] summary: The E1a summary. :return dict: The available pollutants, with name ("pl") as key and pollutant number ("shortpl") as value. """ return {d["pl"]: d["shortpl"] for d in summary} def pollutants_per_country(summary): """ Get the available pollutants per country from the summary. :param list[dict] summary: The E1a summary. :return dict[list[dict]]: All available pollutants per country. """ output = dict() for d in summary.copy(): country = d.pop("ct") if country in output: output[country].append(d) else: output[country] = [d] return output def link_list_url( country, shortpl=None, year_from="2013", year_to=CURRENT_YEAR, source="All", update_date=None, ): """ Generate the URL where the download links for a query can be found. :param str country: The 2-letter country code. See AirbaseClient.countries for options. :param str shortpl: (optional) The pollutant number. Leave blank to get all pollutants. See AirbaseClient.pollutants_per_country for options. :param str year_from: (optional) The first year of data. Can not be earlier than 2013. Default 2013. :param str year_to: (optional) The last year of data. Can not be later than the current year. Default <current year>. :param str source: (optional) One of "E1a", "E2a" or "All". E2a (UTD) data are only available for years where E1a data have not yet been delivered (this will normally be the most recent year). Default "All". :param str|datetime update_date: (optional). Format "yyyy-mm-dd hh:mm:ss". To be used when only files created or updated after a certain date is of interest. :return str: The URL which will yield the list of relevant CSV download links. """ shortpl = shortpl or "" if int(year_from) < 2013: raise ValueError("'year_from' must be at least 2013") year_from = str(int(year_from)) if int(year_to) > int(CURRENT_YEAR): raise ValueError("'year_to' must be at most " + str(CURRENT_YEAR)) year_to = str(int(year_to)) if isinstance(update_date, datetime.datetime): update_date = update_date.strftime(DATE_FMT) update_date = update_date or "" if source is not None and source not in ALL_SOURCES: raise ValueError("'source' must be one of: " + ",".join(ALL_SOURCES)) source = source or "" return LINK_LIST_URL_TEMPLATE.format( country=country, shortpl=shortpl, year_from=year_from, year_to=year_to, source=source, update_date=update_date, ) def extract_csv_links(text): """Get a list of csv links from the download link response text""" links = text.replace("\r", "").split("\n") links.remove("") return links ```
{ "source": "JohnPaton/blackjack", "score": 4 }
#### File: python/blackjack/deck.py ```python import random class Card(): """A playing card. Attributes: suit (str): the suit of the card value (int): the value of the card (2-11) str (str): the card, e.g. CK or H9 """ def __init__(self, suit, value): """Create a playing card. Args: suit (str): one of 'S','H','C','D' value (str or int): one of 2-10 or 'J','Q','K','A' """ self.suit = suit self.str = str(suit) + str(value) try: val = int(value) except: if value in ['J', 'Q', 'K']: val = 10 elif value == 'A': val = 11 self.value = val def __str__(self): return self.str class Deck(): """A deck of cards. Attributes: cards (list): Cards to be drawn drawn (list): Cards that have been drawn Methods: shuffle: shuffle the cards draw: draw a card """ suits = ['S', 'D', 'C', 'H'] values = list(range(2, 11)) + ['J', 'Q', 'K', 'A'] def __init__(self): self.cards = [Card(s, v) for v in self.values for s in self.suits] self.drawn = [] def shuffle(self, reset=False): """Shuffle the cards. Reset all cards to be back in the pile if requested. """ if reset: self.__init__() random.shuffle(self.cards) return self def draw(self): """Draw a card.""" card = self.cards.pop(0) self.drawn.append(card) return card ``` #### File: python/blackjack/player.py ```python class Player(): """A blackjack player. Attributes: cards (list): The current cards in the player's hand deck (Deck): The deck in play standing (bool): Whether the player has stood this round Methods: draw: draw a card reset: empty hand and stop standing score: score of the player's current cards turn: take a turn (hit or stand) """ def __init__(self, deck): self.deck = deck self.cards = [] self.standing = False def draw(self): """Draw a card into the player's hand.""" card = self.deck.draw() self.cards.append(card) return card def score(self): """The score of the player's current hand.""" if self.cards: values = [card.value for card in self.cards] total = sum(values) else: total = 0 for value in values: # Aces (value 11) can be worth 1 if the score is above 21 if value == 11 and total > 21: total -= 10 return total def turn(self): """Take a turn (if not already standing).""" move = '' # can't take a turn if standing while move not in ['hit', 'h', 'stand', 's'] and not self.standing: move = input('(h)it or (s)tand? ').lower() if move in ['hit', 'h']: self.draw() else: self.standing = True def reset(self): """Return cards and stop standing.""" self.cards = [] self.standing = False class Dealer(Player): """A blackjack dealer. Inherits from Player. Attributes: standing (bool): Whether the dealer is standing Methods: turn: hit if score is <= 16, else stand. """ def turn(self): """Take a turn.""" if self.score() <= 16 and not self.standing: self.draw() else: self.standing = True ```
{ "source": "JohnPaton/huawei-hg659", "score": 3 }
#### File: JohnPaton/huawei-hg659/client.py ```python import re import json import requests from bs4 import BeautifulSoup from . import util class HG659Client: _response_data_rx = re.compile(r"/\*(.*)\*/$") def __init__(self, host, username, password): """ A client for the Huawei HG659 router. :param host: The IP of the router, e.g. "192.168.1.1" :param username: The login username :param password: The login password """ self.host = host self.username = username self.password = password self._csrf_param = None self._csrf_token = None # Always use session to maintain cookies self._session = requests.Session() # init csrf state self._refresh_csrf() def login(self): """ Log the client in to the router. While logged in, the same user cannot log in to the web interface. Call .logout() to log back out and unblock the web interface again :return: The response data from the login attempt """ self._refresh_csrf() data = self._auth_data() response = self._post("/api/system/user_login", json=data) output = self._extract_json(response.text) assert output, f"Error logging in. Response content: {response.text}" return self._extract_json(response.text) def logout(self): """ Log the client out of the router :return: The response status of the logout request """ data = self._csrf_data() response = self._post("/api/system/user_logout", json=data) return response.status_code def get_devices(self): """ List all devices known to the router :return: A list of dicts containing device info """ response = self._get("/api/system/HostInfo") output = self._extract_json(response.text) assert output, f"Error getting devices. Response content: {response.text}" return output @property def password(self): return self._password @password.setter def password(self, value): self._password = util.base64(util.sha256(value)) def _request(self, method, path, **kwargs): url = f"http://{self.host}/{path.lstrip('/')}" kwargs.setdefault("timeout", 2) response = self._session.request(method, url, **kwargs,) response.raise_for_status() param, token = self._extract_csrf(response.text) if param and token: self._csrf_param = param self._csrf_token = token return response def _get(self, path, **kwargs): return self._request("GET", path, **kwargs) def _post(self, path, **kwargs): return self._request("POST", path, **kwargs) def _refresh_csrf(self): self._get("/", timeout=1) @staticmethod def _extract_csrf(response_text): """Extract the csrf tokens from an HTML response""" param, token = None, None soup = BeautifulSoup(response_text, features="html.parser") param_elem = soup.find("meta", attrs={"name": "csrf_param"}) if param_elem: param = param_elem.attrs.get("content") token_elem = soup.find("meta", attrs={"name": "csrf_token"}) if token_elem: token = token_elem.attrs.get("content") return param, token @classmethod def _extract_json(cls, response_text): """Extract the json data from an api response""" match = cls._response_data_rx.search(response_text) if not match: return None return json.loads(match.group(1)) def _encode_password(self): return util.sha256( self.username + self.password + self._csrf_param + self._csrf_token ) def _csrf_data(self): return dict(csrf=dict(csrf_param=self._csrf_param, csrf_token=self._csrf_token)) def _auth_data(self): data = self._csrf_data() data.update( dict(data=dict(UserName=self.username, Password=self._encode_password())) ) return data def __del__(self): try: self.logout() except requests.exceptions.HTTPError as e: if str(e).startswith("404"): # Weren't logged in, no worries pass ``` #### File: JohnPaton/huawei-hg659/device_tracker.py ```python import logging import voluptuous as vol from homeassistant.components.device_tracker import ( DOMAIN, PLATFORM_SCHEMA as PARENT_PLATFORM_SCHEMA, DeviceScanner, ) from homeassistant.helpers.device_registry import format_mac from homeassistant.const import CONF_HOST, CONF_PASSWORD, CONF_USERNAME import homeassistant.helpers.config_validation as cv from .client import HG659Client _LOGGER = logging.getLogger(__name__) PLATFORM_SCHEMA = PARENT_PLATFORM_SCHEMA.extend( { vol.Required(CONF_HOST): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Required(CONF_USERNAME): cv.string, } ) def get_scanner(hass, config): _LOGGER.info("Setting up HG659DeviceScanner") scanner = HG659DeviceScanner(config[DOMAIN]) _LOGGER.info("HG659DeviceScanner connected") return scanner class HG659DeviceScanner(DeviceScanner): def __init__(self, config): super().__init__() _LOGGER.debug("Initiating HG659 client") self.client = HG659Client( host=config[CONF_HOST], username=config[CONF_USERNAME], password=config[CONF_PASSWORD], ) _LOGGER.debug("HG659 client initiated") self._devices = dict() def scan_devices(self): try: _LOGGER.debug("Logging in to router") output = self.client.login() _LOGGER.debug(f"Logged in, output: {output}") _LOGGER.debug(f"Getting devices") devices_router = self.client.get_devices() _LOGGER.debug(f"Got {len(devices_router)} active + inactive devices") finally: # Don't forget to logout since otherwise the web interface # will be blocked for the user status = self.client.logout() _LOGGER.debug(f"Logged out (status: {status})") devices_hass = [ dict( id=format_mac(d["MACAddress"]), source_type="router", is_connected=d["Active"], ip_address=d["IPAddress"], mac_address=d["MACAddress"], hostname=d["HostName"], ) for d in devices_router if d["Active"] # only include active devices ] _LOGGER.debug(f"{len(devices_hass)} devices were active") self._devices = {d["mac_address"]: d for d in devices_hass} return list(self._devices.keys()) def get_device_name(self, device: str): d = self._devices.get(device) if d: return d["hostname"] def get_extra_attributes(self, device: str): return self._devices.get(device) ```
{ "source": "JohnPaton/nbviewerbot", "score": 3 }
#### File: nbviewerbot/nbviewerbot/resources.py ```python import os import re import logging import pickle import dotenv import praw # Relevant directories SRC_DIR = os.path.dirname(__file__) RESOURCES_DIR = os.path.join(SRC_DIR, "resources.d") PROJECT_DIR = os.path.realpath(os.path.join(SRC_DIR, "..")) # Logging LOGFILE_PATH = os.path.join(PROJECT_DIR, "nbviewerbot.log") LOGGER = logging.getLogger("nbviewerbot") # Reddit auth info from PROJECT_DIR/.env DOTENV_PATH = os.path.join(SRC_DIR, ".env") dotenv.load_dotenv(DOTENV_PATH) # Reddit authentication def get_reddit_auth_kwargs(): """Get the authentication kwargs for praw.Reddit from the environment. Requires the following environment variables to be set: * CLIENT_ID : the ID of your script application * CLIENT_SECRET : the secret of your script application * USERNAME : the username of your bot's Reddit account * PASSWORD : the password of your bot's Reddit account See https://github.com/reddit-archive/reddit/wiki/OAuth2-Quick-Start-Example for more details. """ kwargs = dict() kwargs["client_id"] = os.environ.get("CLIENT_ID") kwargs["client_secret"] = os.environ.get("CLIENT_SECRET") kwargs["username"] = os.environ.get("USERNAME") kwargs["password"] = os.environ.get("PASSWORD") kwargs["user_agent"] = "python:nbviewerbot:v0.1.0 (by /u/jd_paton)" for key, value in kwargs.items(): if value is None: raise KeyError( "{} not found in environment variables. " "Have you filled in your .env file?".format(key.upper()) ) return kwargs def load_reddit(): """ Get the authentication kwargs from the environment and authenticate with Reddit. Returns ------- praw.Reddit : the authenticated Reddit client See also: utils.get_reddit_auth_kwargs """ kwargs = get_reddit_auth_kwargs() reddit = praw.Reddit(**kwargs) LOGGER.info( "Successfully authenticated with Reddit as {}".format( reddit.user.me().name ) ) return reddit # Templates (for use with string.format) # TODO: Convert these all to string.Template NBVIEWER_URL_TEMPLATE = "https://nbviewer.jupyter.org/url/{}" BINDER_URL_TEMPLATE_NO_FILEPATH = "https://mybinder.org/v2/gh/{}/{}" BINDER_URL_TEMPLATE_WITH_FILEPATH = ( "https://mybinder.org/v2/gh/{}/{}?filepath={}" ) _comment_footer = """ ------ ^(I am a bot.) [^(Feedback)](https://www.reddit.com/message/compose/?to=jd_paton) ^(|) [^(GitHub)](https://github.com/JohnPaton/nbviewerbot) ^(|) [^(Author)](https://johnpaton.net/) """ COMMENT_TEMPLATE_SINGLE = ( """ I see you've posted a GitHub link to a Jupyter Notebook! GitHub doesn't render large Jupyter Notebooks, so just in case, here is an [nbviewer](https://nbviewer.jupyter.org/) link to the notebook: {} Want to run the code yourself? Here is a [binder](https://mybinder.org/) link to start your own Jupyter server and try it out! {} """ + _comment_footer ) COMMENT_TEMPLATE_MULTI = ( """ I see you've posted GitHub links to Jupyter Notebooks! GitHub doesn't render large Jupyter Notebooks, so just in case here are [nbviewer](https://nbviewer.jupyter.org/) links to the notebooks: {} Want to run the code yourself? Here are [binder](https://mybinder.org/) links to start your own Jupyter server! {} """ + _comment_footer ) # Regexes _url_rx = "^http.*" URL_RX = re.compile(_url_rx) # Subreddit lists SUBREDDITS_TEST = [ "testingground4bots", "bottestingplace", "bottesting", "bottest", ] SUBREDDITS_RELEVANT_PATH = os.path.join(RESOURCES_DIR, "subreddits.txt") with open(SUBREDDITS_RELEVANT_PATH, "r") as h: _raw = h.readlines() # strip whitespace and drop empty lines SUBREDDITS_RELEVANT = [sub.strip() for sub in _raw] SUBREDDITS_RELEVANT = [sub for sub in SUBREDDITS_RELEVANT if sub] SUBREDDITS_RELEVANT += SUBREDDITS_TEST SUBREDDITS_ALL = ["all"] ``` #### File: nbviewerbot/nbviewerbot/utils.py ```python import urllib import logging import pickle from queue import Full from bs4 import BeautifulSoup from nbviewerbot import resources def parse_url_if_not_parsed(url): """ Return the urllib.parse.ParseResult for URL if it is not already parsed. Parameters ---------- url : str or urllib.parse.ParseResult Returns ------- urllib.parse.ParseResult : The parsed URL """ if type(url) is urllib.parse.ParseResult: return url else: return urllib.parse.urlparse(url) def is_github_jupyter_url(url): """ Test if a url is a github jupyter url Parameters ---------- url : str or urllib.parse.ParseResult Returns ------- True if the host is 'github' and the path contains '.ipynb', else False """ parsed = parse_url_if_not_parsed(url) return "github" in parsed.netloc.lower() and ".ipynb" in parsed.path.lower() def get_notebook_path(url): """ Convert a full URL into a path. Removes http(s):// and www. if present. Parameters ---------- url : str or urllib.parse.ParseResult Returns ------- str : the path Examples -------- >>> nbviewerbot.utils.get_notebook_path( ... 'https://www.github.com/JohnPaton/numpy-neural-networks/blob/' ... 'master/01-single-layer-perceptron.ipynb' ... ) 'github.com/JohnPaton/numpy-neural-networks/blob/master/01-single-layer-perceptron.ipynb' """ parsed = parse_url_if_not_parsed(url) return parsed.netloc.replace("www.", "") + parsed.path def get_github_info(url): """ Get the repo, branch and (optional) filepath from a github url Parameters ---------- url Returns ------- repo, branch, filepath (if present) """ parsed = parse_url_if_not_parsed(url) assert "github" in parsed.netloc.lower(), "Must be a github url" assert len(parsed.path.split("/")) >= 3, "Must be at least a path to a repo" path_elements = parsed.path.split("/") # drop the first slash repo = "/".join(path_elements[1:3]) branch = "master" filepath = None if len(path_elements) >= 5: branch = path_elements[4] if len(path_elements) >= 6: filepath = "/".join(path_elements[5:]) return repo, branch, filepath def get_all_links(html): """ Parse HTML and extract all http(s) hyperlink destinations Parameters ---------- html : str Returns ------- list[str] : the found URLs (if any) """ soup = BeautifulSoup(html, features="html.parser") links = soup.find_all("a", attrs={"href": resources.URL_RX}) return [link.get("href") for link in links] def get_github_jupyter_links(html): """ Parse HTML and exract all links to Jupyter Notebooks hosted on GitHub Parameters ---------- html : str Returns ------- list[str] : the found URLs (if any) See also: utils.is_github_jupyter_url """ links = get_all_links(html) return [link for link in links if is_github_jupyter_url(link)] def get_comment_jupyter_links(comment): """Extract jupyter lins from a comment, if any""" html = comment.body_html jupy_links = get_github_jupyter_links(html) return jupy_links def get_submission_jupyter_links(submission): """Extract jupyer links from a submission, if any""" jupy_links = [] if submission.selftext_html is not None: # self post, read html html = submission.selftext_html jupy_links += get_github_jupyter_links(html) if is_github_jupyter_url(submission.url): jupy_links += [submission.url] # dedupe jupy_links = list(dict.fromkeys(jupy_links)) return jupy_links def setup_logger(console_level=logging.INFO, file_level=logging.DEBUG): """ Set up the nbviewerbot with a level for console logging and a level for file logging. If either level is None, do not log to that destination. Parameters ---------- console_level : int or None The log level for the console file_level : int or None The log level for the file Returns ------- logger """ logger = logging.getLogger("nbviewerbot") logger.setLevel(logging.DEBUG) fmt = logging.Formatter( "%(asctime)s %(levelname)s(%(threadName)s) - %(message)s" ) if console_level is not None: sh = logging.StreamHandler() sh.setLevel(console_level) sh.setFormatter(fmt) logger.addHandler(sh) if file_level is not None: fh = logging.FileHandler(resources.LOGFILE_PATH) fh.setLevel(file_level) fh.setFormatter(fmt) logger.addHandler(fh) return logger def praw_object_type(praw_obj): """Return the type of the praw object (comment/submission) as a lowercase string.""" return type(praw_obj).__name__.lower() def raise_on_exception(e): """Raises exception e""" raise e def load_queue(queue, iterable, stop_event=None): """Put items from iterable into queue as they become available Stops when stop_event is set if provided, else continues forever. If the item is None, it will be skipped. This can be used to more regularly check for stop_event being set (pass None though the iterator to check the event and then continue iterating). """ while not stop_event.is_set(): for i in iterable: if i is None or stop_event.is_set(): break while not stop_event.is_set(): try: queue.put(i, timeout=1.0) resources.LOGGER.debug("Queued item {}".format(i)) break except Full: resources.LOGGER.warn("Destination queue is full") resources.LOGGER.info("Stop signal received, stopping") ``` #### File: nbviewerbot/tests/test_resources.py ```python from nbviewerbot import resources import dotenv import os import pytest TEST_DIR = os.path.join(os.path.dirname(__file__)) DOTENV_PATH = os.path.join(TEST_DIR, ".env_test") class TestGetRedditAuthKwargs: def test_reads_environ(self): dotenv_path = DOTENV_PATH # make local for output dotenv.load_dotenv(dotenv_path, override=True) kwargs = resources.get_reddit_auth_kwargs() assert kwargs["username"] == "username" assert kwargs["password"] == "password" assert kwargs["client_id"] == "client_id" assert kwargs["client_secret"] == "client_secret" def test_raises_if_missing(self): dotenv_path = DOTENV_PATH # make local for output required_env_vars = [ "USERNAME", "PASSWORD", "CLIENT_ID", "CLIENT_SECRET", ] for key in required_env_vars: dotenv.load_dotenv(dotenv_path, override=True) os.environ.pop(key) with pytest.raises(KeyError): resources.get_reddit_auth_kwargs() class TestSubredditsRelevant: def test_has_subs(self): assert len(resources.SUBREDDITS_RELEVANT) > 0 def test_no_empty_strings(self): assert "" not in resources.SUBREDDITS_RELEVANT ```
{ "source": "JohnPaton/ratelimitqueue", "score": 4 }
#### File: ratelimitqueue/examples/example_workers.py ```python import ratelimitqueue import multiprocessing.dummy import time import random def make_call_to_slow_api(url): time.sleep(random.uniform(1, 2)) print("Calling:", url) LIST_OF_URLS = ["https://example.com/{}".format(i) for i in range(25)] rlq = ratelimitqueue.RateLimitQueue(calls=3, per=2) n_workers = 4 def worker(rlq): """Makes API calls on URLs from queue until it is empty.""" while rlq.qsize() > 0: url = rlq.get() make_call_to_slow_api(url) rlq.task_done() # load up the queue for url in LIST_OF_URLS: rlq.put(url) # make the calls with multiprocessing.dummy.Pool(n_workers, worker, (rlq,)) as pool: rlq.join() ``` #### File: ratelimitqueue/ratelimitqueue/utils.py ```python import time import queue def get_time_remaining(start, timeout=None): if timeout is None: return None else: time_elapsed = start - time.time() return timeout - time_elapsed ``` #### File: ratelimitqueue/tests/test_ratelimitqueue.py ```python import pytest from unittest import mock from .utils import almost from ratelimitqueue.ratelimitqueue import RateLimitQueue, RateLimitException from ratelimitqueue.ratelimitqueue import RateLimitLifoQueue, RateLimitGetMixin from ratelimitqueue.ratelimitqueue import RateLimitPriorityQueue from queue import Empty import time import random # take randomness out of fuzzing random.uniform = mock.Mock(side_effect=lambda a, b: a + (b - a) / 2) class GetMixinTester: # tests of __init__() def test_no_calls(self): rlq = self.QueueClass() del rlq.calls rlq.put(1) with pytest.raises(AttributeError): rlq.get() def test_no_per(self): rlq = self.QueueClass() del rlq.per rlq.put(1) with pytest.raises(AttributeError): rlq.get() def test_no_fuzz(self): rlq = self.QueueClass() del rlq.fuzz rlq.put(1) with pytest.raises(AttributeError): rlq.get() def test_no__call_log(self): rlq = self.QueueClass() del rlq._call_log rlq.put(1) with pytest.raises(AttributeError): rlq.get() def test_no_get(self): class DummyParent: fuzz = 0 per = 0 calls = 0 _call_log = 0 class DummyChild(RateLimitGetMixin, DummyParent): pass dc = DummyChild() with pytest.raises(AttributeError): dc.get() def test_maxsize(self): rlq = self.QueueClass(0) assert rlq.maxsize == 0 rlq = self.QueueClass(3) assert rlq.maxsize == 3 def test_calls_not_less_than_1(self): with pytest.raises(ValueError): rlq = self.QueueClass(1, 0, 10) with pytest.raises(ValueError): rlq = self.QueueClass(1, -1, 10) # tests of get() def test_timeout_not_less_than_0(self): rlq = self.QueueClass() rlq.put(1) with pytest.raises(ValueError): rlq.get(timeout=-1) def test_item_in_queue(self): rlq = self.QueueClass() rlq.put(1) assert rlq.get() == 1 def test_first_put_fast(self): rlq = self.QueueClass() start = time.time() rlq.put(1) rlq.get() assert almost(0, time.time() - start) def test_default_rate_limit(self): rlq = self.QueueClass() start = time.time() rlq.put(1) rlq.put(1) rlq.get() rlq.get() assert almost(1, time.time() - start) def test_rate_limit_calls(self): rlq = self.QueueClass(calls=2) start = time.time() rlq.put(1) rlq.put(1) rlq.put(1) rlq.put(1) rlq.get() rlq.get() rlq.get() assert almost(1, time.time() - start) rlq.get() assert almost(1, time.time() - start) def test_rate_limit_per(self): rlq = self.QueueClass(per=0.5) start = time.time() rlq.put(1) rlq.put(1) rlq.put(1) rlq.get() rlq.get() rlq.get() assert almost(1, time.time() - start) def test_rate_limit_calls_per(self): rlq = self.QueueClass(calls=2, per=0.5) start = time.time() rlq.put(1) rlq.put(1) rlq.put(1) rlq.put(1) rlq.get() rlq.get() rlq.get() assert almost(0.5, time.time() - start) rlq.get() assert almost(0.5, time.time() - start) def test_not_block_raises_rate_limit(self): rlq = self.QueueClass(calls=1, per=3) rlq.put(1) rlq.put(1) rlq.get() with pytest.raises(RateLimitException): rlq.get(block=False) def test_not_block_raises_empty(self): rlq = self.QueueClass(calls=1, per=0) with pytest.raises(Empty): rlq.get(block=False) def test_timeout_on_rate_limit_raises_rate_limit(self): rlq = self.QueueClass(per=10) rlq.put(1) rlq.put(1) rlq.get() with pytest.raises(RateLimitException): rlq.get(timeout=1) def test_timeout_on_queue_size_raises_empty(self): rlq = self.QueueClass(maxsize=1, per=0) with pytest.raises(Empty): rlq.get(timeout=0.001) def test_timeout_on_queue_size_timing(self): rlq = self.QueueClass(maxsize=1, per=0) with pytest.raises(Empty): start = time.time() rlq.get(timeout=0.5) assert almost(0.5, time.time() - start) def test_no_fuzz_when_at_rate_limit(self): rlq = self.QueueClass(per=0.5) rlq.put(1) rlq.get() rlq.fuzz = 1000 start = time.time() rlq.put(1) rlq.get() assert almost(0.5, time.time() - start) def test_fuzz(self): rlq = self.QueueClass(per=0.5, fuzz=1) start = time.time() rlq.put(1) rlq.get() end = time.time() assert almost(0.5, end - start) def test_fuzz_less_than_timeout(self): rlq = self.QueueClass(fuzz=10000) start = time.time() rlq.put(1) rlq.get(timeout=0.5) end = time.time() elapsed = end - start assert almost(0.5, elapsed) class TestRateLimitQueue(GetMixinTester): QueueClass = RateLimitQueue def test_fifo(self): rlq = self.QueueClass(per=0) rlq.put(1) rlq.put(2) assert rlq.get() == 1 assert rlq.get() == 2 class TestRateLimitLifoQueue(GetMixinTester): QueueClass = RateLimitLifoQueue def test_lifo(self): rlq = self.QueueClass(per=0) rlq.put(1) rlq.put(2) assert rlq.get() == 2 assert rlq.get() == 1 class TestRateLimitPriorityQueue(GetMixinTester): QueueClass = RateLimitPriorityQueue def test_priority(self): rlq = self.QueueClass(per=0) rlq.put((4, "fourth")) rlq.put((2, "second")) rlq.put((1, "first")) rlq.put((3, "third")) assert rlq.get() == (1, "first") assert rlq.get() == (2, "second") assert rlq.get() == (3, "third") assert rlq.get() == (4, "fourth") ```
{ "source": "john-patterson/wavvy", "score": 3 }
#### File: wavvy/datalayer/models.py ```python from wavvy import app from flask_sqlalchemy import SQLAlchemy db = SQLAlchemy(app) __all__ = ['User', 'Adjustment'] class User(db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(80), unique=True, nullable=False) password = db.Column(db.String(100), nullable=False) team = db.Column(db.String(25), nullable=True) def __init__(self, *, username, password, team=None): self.username = username self.password = password self.team = team def __repr__(self): return '<User %r>' % self.username class Adjustment(db.Model): id = db.Column(db.Integer, primary_key=True) old_temp = db.Column(db.Float) new_temp = db.Column(db.Float) outside_temp = db.Column(db.Float) room_temp = db.Column(db.Float) timestamp = db.Column(db.DateTime) adjuster_id = db.Column(db.Integer, db.ForeignKey('user.id')) adjuster = db.relationship('User', backref=db.backref('accounts', lazy='dynamic')) def __init__(self, *, old_temp, new_temp, outside_temp, room_temp, timestamp, adjuster): self.old_temp = old_temp self.new_temp = new_temp self.outside_temp = outside_temp self.timestamp = timestamp self.adjuster = adjuster self.room_temp = room_temp def __repr__(self): return '<Adjustment {}>'.format(repr(self.id)) ``` #### File: wavvy/datalayer/weather.py ```python import requests __all__ = ['OpenWeather'] class OpenWeather: base_url = 'http://api.openweathermap.org/data/2.5/' def __init__(self, key): self.key = key def kelvin_by_zip(self, zipcode): payload = { 'zip': zipcode, 'APPID': self.key } return requests.get(self.base_url + '/weather', params=payload).json()['main']['temp'] ``` #### File: wavvy/datalayer/wrapper.py ```python from wavvy.datalayer.models import db __all__ = ['DB'] class DB: def __enter__(self): return db.session def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is not None: db.session.rollback() return False db.session.commit() return True ```
{ "source": "johnpaulada/face-recognition-graphql-server", "score": 3 }
#### File: johnpaulada/face-recognition-graphql-server/add_face.py ```python import os import numpy as np from image_tools import base64_to_embedding def add_face(name, image_data): embedding = base64_to_embedding(image_data) add_name(name) add_embedding(embedding) def add_name(name): with open('names.txt', 'a') as names_file: names_file.write(name) names_file.write('\n') def add_embedding(embedding): if (not os.path.exists('embeddings.npy')): np.save('embeddings.npy', [embedding]) else: embeddings = np.load('embeddings.npy') embeddings = np.concatenate((embeddings, [embedding])) np.save('embeddings.npy', embeddings) ```
{ "source": "johnpaulbin/banana", "score": 2 }
#### File: banana/banana_dev/package.py ```python from .generics import run_main, start_main, check_main # Generics def run(api_key, model_key, model_inputs, strategy = {}): out = run_main( api_key = api_key, model_key = model_key, model_inputs = model_inputs, strategy = strategy, ) return out def start(api_key, model_key, model_inputs, strategy = {}): out = start_main( api_key = api_key, model_key = model_key, model_inputs = model_inputs, strategy = strategy, ) return out def check(api_key, task_id): out_dict = check_main( api_key = api_key, task_id = task_id ) return out_dict ```
{ "source": "johnpaulbin/LibreASR", "score": 2 }
#### File: johnpaulbin/LibreASR/api-client.py ```python import argparse import random import logging import sys import grpc import torchaudio import numpy as np import interfaces.libreasr_pb2 as ap import interfaces.libreasr_pb2_grpc as apg DEMO_AUDIO = "./demo/3729-6852-0035.flac" CHUNK_DURATION = 0.08 # secs PORT = 50052 def load_demo(): data, sr = torchaudio.load(DEMO_AUDIO) data = data[0][None] data = torchaudio.transforms.Resample(sr, 16000)(data) sr = 16000 data = data.numpy().astype(np.float32).tobytes() return data, sr def grab_audio(): data, sr = load_demo() return ap.Audio(data=data, sr=sr) def grab_audio_stream(secs): data, sr = load_demo() slice_sz = int(secs * sr) * 4 l = len(data) // slice_sz # [start] zero yield ap.Audio(data=bytes([0] * slice_sz), sr=sr) for i in range(l): chunk = data[i * slice_sz : (i + 1) * slice_sz] # pad with zeros chunk = chunk + bytes([0] * (slice_sz - len(chunk))) assert len(chunk) % 4 == 0 # [mid] yield ap.Audio(data=chunk, sr=sr) # [end] zero frames mark end for _ in range(10): yield ap.Audio(data=bytes([0] * slice_sz), sr=sr) def test_asr(stub): print("Transcribe:") audio = grab_audio() print("-", stub.Transcribe(audio).data) print("TranscribeStream:\n- ", end="") audio_stream = grab_audio_stream(secs=CHUNK_DURATION) for transcript in stub.TranscribeStream(audio_stream): print(transcript.data, end="") print() def run(args): with grpc.insecure_channel(f"localhost:{PORT}") as channel: stub = apg.ASRStub(channel) test_asr(stub) if __name__ == "__main__": logging.basicConfig() # parse args parser = argparse.ArgumentParser(description="Process some integers.") parser.add_argument( "--source", choices=["file", "stream"], type=str, default="file", help="audio source", ) parser.add_argument( "--mode", choices=["all", "chunks"], default="all", type=str, nargs="+", help="transcription mode (stream implies chunks)", ) parser.add_argument( "--file", type=str, default=DEMO_AUDIO, help="if mode==file: what file to transcribe", ) args = parser.parse_args() run(args) ``` #### File: libreasr/lib/config.py ```python import os from functools import partial from importlib import import_module import collections.abc from pathlib import Path import torch import yaml from libreasr.lib.utils import n_params, what, wrap_transform from libreasr.lib.language import get_language from libreasr.lib.builder import ASRDatabunchBuilder from libreasr.lib.data import ASRDatabunch from libreasr.lib.models import Transducer, CTCModel from libreasr.lib.learner import ASRLearner from libreasr.lib.lm import load_lm def update(d, u): "from: https://stackoverflow.com/questions/3232943/update-value-of-a-nested-dictionary-of-varying-depth" for k, v in u.items(): if isinstance(v, collections.abc.Mapping): d[k] = update(d.get(k, {}), v) else: d[k] = v return d def open_config(*args, path="./config/testing.yaml", **kwargs): path = Path(path) if not os.path.exists(path): path = ".." / path with open(path, "r") as stream: try: obj = yaml.safe_load(stream) return obj except yaml.YAMLError as exc: print(exc) def parse_transforms(conf, inference): mod = import_module("libreasr.lib.transforms") tfms = [] if inference: conf_tfms = [ conf["transforms"]["x"], conf["transforms"]["stream"], conf["transforms"]["y"], ] else: conf_tfms = [conf["transforms"]["x"], conf["transforms"]["y"]] for i, conf_one_var in enumerate(conf_tfms): tfms_one_var = [] for j, conf_one_tfm in enumerate(conf_one_var): args = conf_one_tfm.get("args", {}) is_partial = conf_one_tfm.get("partial", False) is_wrap = conf_one_tfm.get("wrap", False) func = getattr(mod, conf_one_tfm["name"]) if is_partial: func = partial(func, **args) if is_wrap: func = wrap_transform(func) tfms_one_var.append(func) tfms.append(tfms_one_var) return tfms def apply_cuda_stuff(conf): if conf["cuda"]["enable"]: if torch.cuda.is_available(): torch.cuda.set_device(int(conf["cuda"]["device"].split(":")[1])) torch.backends.cudnn.benchmark = conf["cuda"]["benchmark"] else: raise Exception("cuda not available") def check_vocab_sz(conf): a = conf["model"]["vocab_sz"] b = conf["wanted_vocab_sz"] if a != b: raise Exception(f"vocab sizes don't match: wanted={b}, current={a}") def check_db(db): tpl = db.one_batch() X, Ym, _, _ = tpl[0] Y, Y_lens, X_lens = tpl[1] what(X), what(X_lens), what(Y), what(Y_lens) assert X_lens.size(0) == Y_lens.size(0) def parse_and_apply_config(*args, inference=False, **kwargs): # open config conf = open_config(*args, **kwargs) # override config for inference + language overrides = [] if inference: overrides.append("inference") lang = kwargs.get("lang", "") lang_name = lang if len(lang) > 0: overrides.append(lang) for override in overrides: update(conf, conf["overrides"][override]) # torch-specific cuda settings apply_cuda_stuff(conf) # grab transforms tfms = parse_transforms(conf, inference=inference) if not inference: # grab builder builder_train = ASRDatabunchBuilder.from_config(conf, mode="train") builder_valid = ASRDatabunchBuilder.from_config(conf, mode="valid") # grab language + sanity check try: lang, _ = get_language(model_file=conf["tokenizer"]["model_file"]) except: builder_train.train_tokenizer( model_file=conf["tokenizer"]["model_file"], vocab_sz=conf["model"]["vocab_sz"], ) lang, _ = get_language(model_file=conf["tokenizer"]["model_file"]) check_vocab_sz(conf) if not inference: # grab databunch + sanity check db = ASRDatabunch.from_config(conf, lang, builder_train, builder_valid, tfms) check_db(db) # load lm lm = None if inference and conf["lm"]["enable"]: try: lm = load_lm(conf, lang_name) print("[LM] loaded.") except: print("[LM] Failed to load.") # grab model m = Transducer.from_config(conf, lang) # print(n_params(m)) if inference: # load weights from libreasr.lib.model_utils import load_asr_model load_asr_model(m, lang_name, lang, conf["cuda"]["device"], lm=lm) m.lm = lm m.lang = lang # eval mode m.eval() return conf, lang, m, tfms else: # grab learner learn = ASRLearner.from_config(conf, db, m) return conf, lang, builder_train, builder_valid, db, m, learn ``` #### File: libreasr/lib/decoders.py ```python from itertools import groupby from operator import itemgetter import torch import torch.nn as nn import torch.nn.functional as F def remove_duplicates(l): return list(map(itemgetter(0), groupby(l))) def remove_blanks(l, blank=0): return list(filter(lambda x: x != blank, l)) def ctc_decode_greedy(acts, denumericalize_func, blank=0): """ acts: output activations of the model (shape [N x T x V] or [T x V]) blank: the blank symbol returns: a list of denumericalized items """ if len(acts.shape) == 2: acts = acts[None] results = [] for batch in acts: # batch is of shape [T x V] # greedy idxes = batch.argmax(dim=-1).cpu().numpy().tolist() # decode idxes = remove_duplicates(idxes) idxes = remove_blanks(idxes, blank=blank) # denumericalize results.append(denumericalize_func(idxes)) if len(results) == 1: return results[0] return results if __name__ == "__main__": print("ctc:") l = [0, 1, 1, 1, 2, 2, 1, 0, 3, 0, 3] print(l) l = remove_duplicates(l) print(l) l = remove_blanks(l) print(l) ``` #### File: lib/layers/custom_rnn.py ```python import math import random import torch from torch.nn import Parameter, ParameterList import torch.nn as nn import torch.nn.functional as F from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence from IPython.core.debugger import set_trace ZONEOUT = 0.01 DEVICES = ["CPU", "GPU"] RNN_TYPES = ["LSTM", "GRU", "NBRC"] USE_PYTORCH = True def get_rnn_impl(device, rnn_type, layer_norm=False): assert device in DEVICES assert rnn_type in RNN_TYPES if device == "GPU": if rnn_type == "LSTM": if layer_norm: # from haste_pytorch import LayerNormLSTM as RNN from torch.nn import LSTM as RNN else: # from haste_pytorch import LSTM as RNN from torch.nn import LSTM as RNN if rnn_type == "GRU": # from haste_pytorch import GRU as RNN from torch.nn import GRU as RNN if rnn_type == "NBRC": raise Exception("NBRC GPU not available") if device == "CPU": if rnn_type == "LSTM": if layer_norm: # from .haste import LayerNormLSTM as RNN from torch.nn import LSTM as RNN else: # from .haste import LSTM as RNN from torch.nn import LSTM as RNN if rnn_type == "GRU": # from .haste import GRU as RNN from torch.nn import GRU as RNN if rnn_type == "NBRC": from .haste import NBRC as RNN return RNN def get_weight_attrs(rnn_type, layer_norm): attrs = [ "kernel", "recurrent_kernel", "bias", ] if rnn_type == "GRU" or rnn_type == "NBRC": attrs += [ "recurrent_bias", ] if layer_norm: attrs += [ "gamma", "gamma_h", "beta_h", ] return attrs def copy_weights(_from, _to, attrs): for attr in attrs: setattr(_to, attr, getattr(_from, attr)) def get_initial_state(rnn_type, hidden_size, init=torch.zeros): if rnn_type == "LSTM": h = nn.Parameter(init(2, 1, 1, hidden_size)) tmp = init(2, 1, 1, hidden_size) else: h = nn.Parameter(init(1, 1, 1, hidden_size)) tmp = init(1, 1, 1, hidden_size) return h, tmp class CustomRNN(nn.Module): def __init__( self, input_size, hidden_size, num_layers=1, batch_first=True, rnn_type="LSTM", reduction_indices=[], reduction_factors=[], reduction_drop=True, rezero=False, layer_norm=False, utsp=0.9, ): super().__init__() self.batch_first = batch_first self.hidden_size = hidden_size self._is = [input_size] + [hidden_size] * (num_layers - 1) self._os = [hidden_size] * num_layers self.rnn_type = rnn_type # reduction assert len(reduction_indices) == len(reduction_factors) self.reduction_indices = reduction_indices self.reduction_factors = reduction_factors # learnable state & temporary state self.hs = nn.ParameterList() for hidden_size in self._os: h, tmp = get_initial_state(rnn_type, hidden_size) self.hs.append(h) # state cache (key: bs, value: state) self.cache = {} # norm (BN or LN) self.bns = nn.ModuleList() for i, o in zip(self._is, self._os): norm = nn.BatchNorm1d(o) # norm = nn.LayerNorm(o) self.bns.append(norm) # rezero self.rezero = rezero # percentage of carrying over last state self.utsp = utsp def convert_to_cpu(self): return self def convert_to_gpu(self): return self def forward_one_rnn( self, x, i, state=None, should_use_tmp_state=False, lengths=None ): bs = x.size(0) if state is None: s = self.cache[bs][i] if self.cache.get(bs) is not None else None is_tmp_state_possible = self.training and s is not None if is_tmp_state_possible and should_use_tmp_state: # temporary state pass else: # learnable state if self.hs[i].size(0) == 2: s = [] for h in self.hs[i]: s.append(h.expand(1, bs, self._os[i]).contiguous()) s = tuple(s) else: s = self.hs[i][0].expand(1, bs, self._os[i]).contiguous() else: s = state[i] if self.rnn_type == "LSTM" or self.rnn_type == "GRU": # PyTorch if lengths is not None: seq = pack_padded_sequence( x, lengths, batch_first=True, enforce_sorted=False ) seq, new_state = self.rnns[i](seq, s) x, _ = pad_packed_sequence(seq, batch_first=True) return (x, new_state) else: return self.rnns[i](x, s) else: # haste return self.rnns[i](x, s, lengths=lengths if lengths is not None else None) def forward(self, x, state=None, lengths=None): bs = x.size(0) residual = 0.0 new_states = [] suts = random.random() > (1.0 - self.utsp) for i, rnn in enumerate(self.rnns): # reduce if necessary if i in self.reduction_indices: idx = self.reduction_indices.index(i) r_f = self.reduction_factors[idx] # to [N, H, T] x = x.permute(0, 2, 1) x = x.unfold(-1, r_f, r_f) x = x.permute(0, 2, 1, 3) # keep last # x = x[:,:,:,-1] # or take the mean x = x.mean(-1) # also reduce lengths if lengths is not None: lengths = lengths // r_f # apply rnn inp = x x, new_state = self.forward_one_rnn( inp, i, state=state, should_use_tmp_state=suts, lengths=lengths, ) # apply norm x = x.permute(0, 2, 1) x = self.bns[i](x) x = x.permute(0, 2, 1) # apply residual if self.rezero: if torch.is_tensor(residual) and residual.shape == x.shape: x = x + residual # store new residual residual = inp new_states.append(new_state) if self.training: if len(new_states[0]) == 2: self.cache[bs] = [ (h.detach().contiguous(), c.detach().contiguous()) for (h, c) in new_states ] else: self.cache[bs] = [h.detach() for h in new_states] return x, new_states class CustomGPURNN(CustomRNN): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._args = args self._kwargs = kwargs RNN = get_rnn_impl("GPU", self.rnn_type, kwargs["layer_norm"]) self.rnns = nn.ModuleList() for i, o in zip(self._is, self._os): # r = RNN(i, o, batch_first=self.batch_first, zoneout=ZONEOUT) r = RNN(i, o, batch_first=self.batch_first) self.rnns.append(r) def convert_to_cpu(self): if USE_PYTORCH: return self.to("cpu") dev = next(self.parameters()).device inst = CustomCPURNN(*self._args, **self._kwargs) attrs = get_weight_attrs(self.rnn_type, self._kwargs["layer_norm"]) for i, rnn in enumerate(self.rnns): grabbed_rnn = inst.rnns[i] copy_weights(rnn, grabbed_rnn, attrs) return inst.to("cpu") class CustomCPURNN(CustomRNN): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._args = args self._kwargs = kwargs RNN = get_rnn_impl("CPU", self.rnn_type, kwargs["layer_norm"]) self.rnns = nn.ModuleList() for i, o in zip(self._is, self._os): # r = RNN(i, o, batch_first=self.batch_first, zoneout=ZONEOUT) r = RNN(i, o, batch_first=self.batch_first) self.rnns.append(r) def convert_to_gpu(self): dev = next(self.parameters()).device if USE_PYTORCH or self.rnn_type == "NBRC": return self.to(dev) inst = CustomGPURNN(*self._args, **self._kwargs) attrs = get_weight_attrs(self.rnn_type, self._kwargs["layer_norm"]) for i, rnn in enumerate(self.rnns): grabbed_rnn = inst.rnns[i] copy_weights(rnn, grabbed_rnn, attrs) return inst.to(dev) ``` #### File: layers/haste/base_rnn.py ```python import torch import torch.nn as nn __all__ = ["BaseRNN"] class BaseRNN(nn.Module): def __init__( self, input_size, hidden_size, batch_first, zoneout, return_state_sequence ): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.batch_first = batch_first self.zoneout = zoneout self.return_state_sequence = return_state_sequence def _permute(self, x): if self.batch_first: return x.permute(1, 0, 2) return x def _get_state(self, input, state, state_shape): if state is None: state = _zero_state(input, state_shape) else: _validate_state(state, state_shape) return state def _get_final_state(self, state, lengths): if isinstance(state, tuple): return tuple(self._get_final_state(s, lengths) for s in state) if isinstance(state, list): return [self._get_final_state(s, lengths) for s in state] if self.return_state_sequence: return self._permute(state[1:]).unsqueeze(0) if lengths is not None: cols = range(state.size(1)) return state[[lengths, cols]].unsqueeze(0) return state[-1].unsqueeze(0) def _get_zoneout_mask(self, input): if self.zoneout: zoneout_mask = input.new_empty( input.shape[0], input.shape[1], self.hidden_size ) zoneout_mask.bernoulli_(1.0 - self.zoneout) else: zoneout_mask = input.new_empty(0, 0, 0) return zoneout_mask def _is_cuda(self): is_cuda = [tensor.is_cuda for tensor in list(self.parameters())] if any(is_cuda) and not all(is_cuda): raise ValueError( "RNN tensors should all be CUDA tensors or none should be CUDA tensors" ) return any(is_cuda) def _validate_state(state, state_shape): """ Checks to make sure that `state` has the same nested structure and dimensions as `state_shape`. `None` values in `state_shape` are a wildcard and are not checked. Arguments: state: a nested structure of Tensors. state_shape: a nested structure of integers or None. Raises: ValueError: if the structure and/or shapes don't match. """ if isinstance(state, (tuple, list)): # Handle nested structure. if not isinstance(state_shape, (tuple, list)): raise ValueError( "RNN state has invalid structure; expected {}".format(state_shape) ) for s, ss in zip(state, state_shape): _validate_state(s, ss) else: shape = list(state.size()) if len(shape) != len(state_shape): raise ValueError( "RNN state dimension mismatch; expected {} got {}".format( len(state_shape), len(shape) ) ) for i, (d1, d2) in enumerate(zip(list(state.size()), state_shape)): if d2 is not None and d1 != d2: raise ValueError( "RNN state size mismatch on dim {}; expected {} got {}".format( i, d2, d1 ) ) def _zero_state(input, state_shape): """ Returns a nested structure of zero Tensors with the same structure and shape as `state_shape`. The returned Tensors will have the same dtype and be on the same device as `input`. Arguments: input: Tensor, to specify the device and dtype of the returned tensors. shape_state: nested structure of integers. Returns: zero_state: a nested structure of zero Tensors. Raises: ValueError: if `state_shape` has non-integer values. """ if isinstance(state_shape, (tuple, list)) and isinstance(state_shape[0], int): state = input.new_zeros(*state_shape) elif isinstance(state_shape, tuple): state = tuple(_zero_state(input, s) for s in state_shape) elif isinstance(state_shape, list): state = [_zero_state(input, s) for s in state_shape] else: raise ValueError("RNN state_shape is invalid") return state ``` #### File: layers/haste/lstm.py ```python import torch import torch.nn as nn import torch.nn.functional as F from .base_rnn import BaseRNN __all__ = ["LSTM"] # @torch.jit.script def LSTMScript( training: bool, zoneout_prob: float, input, h0, c0, kernel, recurrent_kernel, bias, zoneout_mask, ): time_steps = input.shape[0] batch_size = input.shape[1] hidden_size = recurrent_kernel.shape[0] h = [h0] c = [c0] Wx = input @ kernel for t in range(time_steps): v = h[t] @ recurrent_kernel + Wx[t] + bias i, g, f, o = torch.chunk(v, 4, 1) i = torch.sigmoid(i) g = torch.tanh(g) f = torch.sigmoid(f) o = torch.sigmoid(o) c.append(f * c[t] + i * g) h.append(o * torch.tanh(c[-1])) if zoneout_prob: if training: h[-1] = (h[-1] - h[-2]) * zoneout_mask[t] + h[-2] else: h[-1] = zoneout_prob * h[-2] + (1 - zoneout_prob) * h[-1] h = torch.stack(h) c = torch.stack(c) return h, c class LSTM(BaseRNN): """ Long Short-Term Memory layer. This LSTM layer offers a fused, GPU-accelerated PyTorch op for inference and training. Although this implementation is comparable in performance to cuDNN's LSTM, it offers additional options not typically found in other high-performance implementations. DropConnect and Zoneout regularization are built-in, and this layer allows setting a non-zero initial forget gate bias. See [\_\_init\_\_](#__init__) and [forward](#forward) for general usage. See [from_native_weights](#from_native_weights) and [to_native_weights](#to_native_weights) for compatibility with PyTorch LSTMs. """ def __init__( self, input_size, hidden_size, batch_first=False, forget_bias=1.0, dropout=0.0, zoneout=0.0, return_state_sequence=False, ): """ Initialize the parameters of the LSTM layer. Arguments: input_size: int, the feature dimension of the input. hidden_size: int, the feature dimension of the output. batch_first: (optional) bool, if `True`, then the input and output tensors are provided as `(batch, seq, feature)`. forget_bias: (optional) float, sets the initial bias of the forget gate for this LSTM cell. dropout: (optional) float, sets the dropout rate for DropConnect regularization on the recurrent matrix. zoneout: (optional) float, sets the zoneout rate for Zoneout regularization. return_state_sequence: (optional) bool, if `True`, the forward pass will return the entire state sequence instead of just the final state. Note that if the input is a padded sequence, the returned state will also be a padded sequence. Variables: kernel: the input projection weight matrix. Dimensions (input_size, hidden_size * 4) with `i,g,f,o` gate layout. Initialized with Xavier uniform initialization. recurrent_kernel: the recurrent projection weight matrix. Dimensions (hidden_size, hidden_size * 4) with `i,g,f,o` gate layout. Initialized with orthogonal initialization. bias: the projection bias vector. Dimensions (hidden_size * 4) with `i,g,f,o` gate layout. The forget gate biases are initialized to `forget_bias` and the rest are zeros. """ super().__init__( input_size, hidden_size, batch_first, zoneout, return_state_sequence ) if dropout < 0 or dropout > 1: raise ValueError("LSTM: dropout must be in [0.0, 1.0]") if zoneout < 0 or zoneout > 1: raise ValueError("LSTM: zoneout must be in [0.0, 1.0]") self.forget_bias = forget_bias self.dropout = dropout self.kernel = nn.Parameter(torch.empty(input_size, hidden_size * 4)) self.recurrent_kernel = nn.Parameter(torch.empty(hidden_size, hidden_size * 4)) self.bias = nn.Parameter(torch.empty(hidden_size * 4)) self.reset_parameters() def to_native_weights(self): """ Converts Haste LSTM weights to native PyTorch LSTM weights. Returns: weight_ih_l0: Parameter, the input-hidden weights of the LSTM layer. weight_hh_l0: Parameter, the hidden-hidden weights of the LSTM layer. bias_ih_l0: Parameter, the input-hidden bias of the LSTM layer. bias_hh_l0: Parameter, the hidden-hidden bias of the LSTM layer. """ def reorder_weights(w): i, g, f, o = torch.chunk(w, 4, dim=-1) return torch.cat([i, f, g, o], dim=-1) kernel = reorder_weights(self.kernel).permute(1, 0).contiguous() recurrent_kernel = ( reorder_weights(self.recurrent_kernel).permute(1, 0).contiguous() ) half_bias = reorder_weights(self.bias) / 2.0 kernel = torch.nn.Parameter(kernel) recurrent_kernel = torch.nn.Parameter(recurrent_kernel) bias1 = torch.nn.Parameter(half_bias) bias2 = torch.nn.Parameter(half_bias.clone()) return kernel, recurrent_kernel, bias1, bias2 def from_native_weights(self, weight_ih_l0, weight_hh_l0, bias_ih_l0, bias_hh_l0): """ Copies and converts the provided PyTorch LSTM weights into this layer. Arguments: weight_ih_l0: Parameter, the input-hidden weights of the PyTorch LSTM layer. weight_hh_l0: Parameter, the hidden-hidden weights of the PyTorch LSTM layer. bias_ih_l0: Parameter, the input-hidden bias of the PyTorch LSTM layer. bias_hh_l0: Parameter, the hidden-hidden bias of the PyTorch LSTM layer. """ def reorder_weights(w): i, f, g, o = torch.chunk(w, 4, dim=-1) return torch.cat([i, g, f, o], dim=-1) kernel = reorder_weights(weight_ih_l0.permute(1, 0)).contiguous() recurrent_kernel = reorder_weights(weight_hh_l0.permute(1, 0)).contiguous() bias = reorder_weights(bias_ih_l0 + bias_hh_l0).contiguous() self.kernel = nn.Parameter(kernel) self.recurrent_kernel = nn.Parameter(recurrent_kernel) self.bias = nn.Parameter(bias) def reset_parameters(self): """Resets this layer's parameters to their initial values.""" hidden_size = self.hidden_size for i in range(4): nn.init.xavier_uniform_( self.kernel[:, i * hidden_size : (i + 1) * hidden_size] ) nn.init.orthogonal_( self.recurrent_kernel[:, i * hidden_size : (i + 1) * hidden_size] ) nn.init.zeros_(self.bias) nn.init.constant_( self.bias[hidden_size * 2 : hidden_size * 3], self.forget_bias ) def forward(self, input, state=None, lengths=None): """ Runs a forward pass of the LSTM layer. Arguments: input: Tensor, a batch of input sequences to pass through the LSTM. Dimensions (seq_len, batch_size, input_size) if `batch_first` is `False`, otherwise (batch_size, seq_len, input_size). lengths: (optional) Tensor, list of sequence lengths for each batch element. Dimension (batch_size). This argument may be omitted if all batch elements are unpadded and have the same sequence length. Returns: output: Tensor, the output of the LSTM layer. Dimensions (seq_len, batch_size, hidden_size) if `batch_first` is `False` (default) or (batch_size, seq_len, hidden_size) if `batch_first` is `True`. Note that if `lengths` was specified, the `output` tensor will not be masked. It's the caller's responsibility to either not use the invalid entries or to mask them out before using them. (h_n, c_n): the hidden and cell states, respectively, for the last sequence item. Dimensions (1, batch_size, hidden_size). """ input = self._permute(input) state_shape = [1, input.shape[1], self.hidden_size] state_shape = (state_shape, state_shape) h0, c0 = self._get_state(input, state, state_shape) h, c = self._impl(input, (h0[0], c0[0]), self._get_zoneout_mask(input)) state = self._get_final_state((h, c), lengths) output = self._permute(h[1:]) return output, state def _impl(self, input, state, zoneout_mask): return LSTMScript( self.training, self.zoneout, input.contiguous(), state[0].contiguous(), state[1].contiguous(), self.kernel.contiguous(), F.dropout(self.recurrent_kernel, self.dropout, self.training).contiguous(), self.bias.contiguous(), zoneout_mask.contiguous(), ) ``` #### File: libreasr/lib/lm.py ```python import torch import torch.quantization import torch.nn as nn import torch.nn.functional as F from libreasr.lib.utils import standardize, maybe_quantize ALPHA = 0.1 THETA = 1.0 MIN_VAL = -10.0 DEBUG = False class LM(nn.Module): def __init__(self, vocab_sz, embed_sz, hidden_sz, num_layers, p=0.2, **kwargs): super(LM, self).__init__() self.embed = nn.Embedding(vocab_sz, embed_sz, padding_idx=0) self.rnn = nn.LSTM(embed_sz, hidden_sz, batch_first=True, num_layers=num_layers) self.drop = nn.Dropout(p) self.linear = nn.Linear(hidden_sz, vocab_sz) if embed_sz == hidden_sz: # tie weights self.linear.weight = self.embed.weight def forward(self, x, state=None): x = self.embed(x) if state: x, state = self.rnn(x, state) else: x, state = self.rnn(x) x = self.drop(x) x = self.linear(x) x = F.log_softmax(x, dim=-1) return x, state class LMFuser: def __init__(self, lm): self.lm = lm self.lm_logits = None self.lm_state = None self.has_lm = self.lm is not None def advance(self, y_one_char): if self.has_lm: self.lm_logits, self.lm_state = self.lm(y_one_char, self.lm_state) standardize(self.lm_logits) self.lm_logits[:, :, 0] = MIN_VAL def fuse(self, joint_out, prob, pred, alpha=ALPHA, theta=THETA): lm_logits = self.lm_logits if self.has_lm and torch.is_tensor(lm_logits): standardize(joint_out) joint_out[:, :, :, 0] = MIN_VAL if DEBUG: print( "lm:", lm_logits.shape, lm_logits.mean(), lm_logits.std(), lm_logits.max(), ) print( "joint:", joint_out.shape, joint_out.mean(), joint_out.std(), joint_out.max(), ) fused = alpha * lm_logits + theta * joint_out prob, pred = fused.max(-1) return fused, prob, pred return joint_out, prob, pred def reset(self): self.lm_logits = None self.lm_state = None def load_lm(conf, lang): # create model lm = LM(**conf["lm"]) lm.eval() # load model lm.load_state_dict(torch.load(conf["lm"]["path"])) lm.eval() # quantize lm = maybe_quantize(lm) lm.eval() return lm ``` #### File: libreasr/lib/models.py ```python import operator import time import random from queue import PriorityQueue import torch from torch import nn import torch.nn.functional as F import numpy as np from fastai2.vision.models.xresnet import xresnet18 from fastai2.layers import Debugger, ResBlock from fastai2.torch_core import Module from fastai2.learner import CancelBatchException from IPython.core.debugger import set_trace from libreasr.lib.utils import * from libreasr.lib.layers import * from libreasr.lib.lm import LMFuser class ResidualAdapter(Module): """ ResidualAdapter according to https://ai.googleblog.com/2019/09/large-scale-multilingual-speech.html?m=1 """ def __init__( self, hidden_sz, projection="fcnet", projection_factor=3.2, activation=F.relu ): self.hidden_sz = hidden_sz self.activation = activation() self.layer_norm = nn.LayerNorm(hidden_sz) if projection == "conv": pass else: bottleneck_sz = int(hidden_sz / projection_factor) # find next multiple of 8 for performance bottleneck_sz = bottleneck_sz + (8 - bottleneck_sz % 8) self.down = nn.Linear(hidden_sz, bottleneck_sz) self.up = nn.Linear(bottleneck_sz, hidden_sz) def forward(self, x): inp = x # layer norm x = self.layer_norm(x) # down projection x = self.down(x) x = self.activation(x) # up projection x = self.up(x) # residual connection return x + inp class Encoder(Module): def __init__( self, feature_sz, hidden_sz, out_sz, dropout=0.01, num_layers=2, trace=True, device="cuda:0", layer_norm=False, rnn_type="LSTM", use_tmp_state_pcent=0.9, **kwargs, ): self.num_layers = num_layers self.input_norm = nn.LayerNorm(feature_sz) self.rnn_stack = CustomCPURNN( feature_sz, hidden_sz, num_layers, rnn_type=rnn_type, reduction_indices=[], # 1 reduction_factors=[], # 2 layer_norm=layer_norm, rezero=False, utsp=use_tmp_state_pcent, ) self.drop = nn.Dropout(dropout) if not hidden_sz == out_sz: self.linear = nn.Linear(hidden_sz, out_sz) else: self.linear = nn.Sequential() def param_groups(self): return [p for p in self.parameters() if p.requires_grad] def forward(self, x, state=None, lengths=None, return_state=False): x = x.reshape((x.size(0), x.size(1), -1)) x = self.input_norm(x) x, state = self.rnn_stack(x, state=state, lengths=lengths) x = self.drop(x) x = self.linear(x) if return_state: return x, state return x class Joint(Module): def __init__(self, out_sz, joint_sz, vocab_sz, joint_method): self.joint_method = joint_method if joint_method == "add": input_sz = out_sz elif joint_method == "concat": input_sz = 2 * out_sz else: raise Exception("No such joint_method") self.joint = nn.Sequential( nn.Linear(input_sz, joint_sz), nn.Tanh(), nn.Linear(joint_sz, vocab_sz), ) def param_groups(self): return [p for p in self.parameters() if p.requires_grad] def forward(self, h_pred, h_enc): if self.joint_method == "add": x = h_pred + h_enc elif self.joint_method == "concat": x = torch.cat((h_pred, h_enc), dim=-1) else: raise Exception("No such joint_method") x = self.joint(x) return x class Predictor(Module): def __init__( self, vocab_sz, embed_sz, hidden_sz, out_sz, dropout=0.01, num_layers=2, blank=0, layer_norm=False, rnn_type="NBRC", use_tmp_state_pcent=0.9, ): self.vocab_sz = vocab_sz self.num_layers = num_layers self.embed = nn.Embedding(vocab_sz, embed_sz, padding_idx=blank) if not embed_sz == hidden_sz: self.ffn = nn.Linear(embed_sz, hidden_sz) else: self.ffn = nn.Sequential() self.rnn_stack = CustomCPURNN( hidden_sz, hidden_sz, num_layers, rnn_type=rnn_type, layer_norm=layer_norm, utsp=use_tmp_state_pcent, ) self.drop = nn.Dropout(dropout) if not hidden_sz == out_sz: self.linear = nn.Linear(hidden_sz, out_sz) else: self.linear = nn.Sequential() def param_groups(self): return [p for p in self.parameters() if p.requires_grad] def forward(self, x, state=None, lengths=None): x = self.embed(x) x = self.ffn(x) x, state = self.rnn_stack(x, state=state, lengths=lengths) x = self.drop(x) x = self.linear(x) return x, state class Transducer(Module): def __init__( self, feature_sz, embed_sz, vocab_sz, hidden_sz, out_sz, joint_sz, lang, l_e=6, l_p=2, p_j=0.0, blank=0, joint_method="concat", perf=False, act=F.relu, use_tmp_bos=True, use_tmp_bos_pcent=0.99, encoder_kwargs={}, predictor_kwargs={}, **kwargs, ): self.encoder = Encoder( feature_sz, hidden_sz=hidden_sz, out_sz=out_sz, **encoder_kwargs, ) self.predictor = Predictor( vocab_sz, embed_sz=embed_sz, hidden_sz=hidden_sz, out_sz=out_sz, **predictor_kwargs, ) self.joint = Joint(out_sz, joint_sz, vocab_sz, joint_method) self.lang = lang self.blank = blank # TODO: dont hardcode self.bos = 2 self.perf = perf self.mp = False self.bos_cache = {} self.use_tmp_bos = use_tmp_bos self.use_tmp_bos_pcent = use_tmp_bos_pcent self.vocab_sz = vocab_sz self.lm = None @staticmethod def from_config(conf, lang, lm=None): m = Transducer( conf["model"]["feature_sz"], conf["model"]["embed_sz"], conf["model"]["vocab_sz"], conf["model"]["hidden_sz"], conf["model"]["out_sz"], conf["model"]["joint_sz"], lang, p_e=conf["model"]["encoder"]["dropout"], p_p=conf["model"]["predictor"]["dropout"], p_j=conf["model"]["joint"]["dropout"], joint_method=conf["model"]["joint"]["method"], perf=False, bs=conf["bs"], raw_audio=False, use_tmp_bos=conf["model"]["use_tmp_bos"], use_tmp_bos_pcent=conf["model"]["use_tmp_bos_pcent"], encoder_kwargs=conf["model"]["encoder"], predictor_kwargs=conf["model"]["predictor"], ).to(conf["cuda"]["device"]) m.mp = conf["mp"] return m def param_groups(self): return [ self.encoder.param_groups(), self.predictor.param_groups(), self.joint.param_groups(), ] def convert_to_cpu(self): self.encoder.rnn_stack = self.encoder.rnn_stack.convert_to_cpu() self.predictor.rnn_stack = self.predictor.rnn_stack.convert_to_cpu() return self def convert_to_gpu(self): self.encoder.rnn_stack = self.encoder.rnn_stack.convert_to_gpu() self.predictor.rnn_stack = self.predictor.rnn_stack.convert_to_gpu() return self def start_perf(self): if self.perf: self.t = time.time() def stop_perf(self, name="unknown"): if self.perf: t = (time.time() - self.t) * 1000.0 print(f"{name.ljust(10, ' ')} | {t:4.2f}ms") def grab_bos(self, y, yl, bs, device): if self.training and self.use_tmp_bos: r = random.random() thresh = 1.0 - self.use_tmp_bos_pcent cached_bos = self.bos_cache.get(bs) if torch.is_tensor(cached_bos) and r > thresh: # use end of last batch as bos bos = cached_bos return bos # store for next batch # is -1 acceptable here? try: q = torch.clamp(yl[:, None] - 1, min=0) self.bos_cache[bs] = y.gather(1, q).detach() except: pass # use regular bos bos = torch.zeros((bs, 1), device=device).long() bos = bos.fill_(self.bos) return bos def forward(self, tpl): """ (x, y) x: N tuples (audios of shape [N, n_chans, seq_len, H], x_lens) y: N tuples (y_padded, y_lens) """ # unpack x, y, xl, yl = tpl if self.mp: x = x.half() # encoder self.start_perf() x = x.reshape(x.size(0), x.size(1), -1) encoder_out = self.encoder(x, lengths=xl) self.stop_perf("encoder") # N: batch size # T: n frames (time) # H: hidden features N, T, H = encoder_out.size() # predictor # concat first bos (yconcat is y shifted right by 1) bos = self.grab_bos(y, yl, bs=N, device=encoder_out.device) yconcat = torch.cat((bos, y), dim=1) self.start_perf() # yl here because we want to omit the last label # in the resulting state (we had (yl + 1)) predictor_out, _ = self.predictor(yconcat, lengths=yl) self.stop_perf("predictor") U = predictor_out.size(1) # expand: # we need to pass [N, T, U, H] to the joint network # NOTE: we might want to not include padding here? M = max(T, U) sz = (N, T, U, H) encoder_out = encoder_out.unsqueeze(2).expand(sz).contiguous() predictor_out = predictor_out.unsqueeze(1).expand(sz).contiguous() # print(encoder_out.shape, predictor_out.shape) # joint & project self.start_perf() joint_out = self.joint(predictor_out, encoder_out) self.stop_perf("joint") # log_softmax only when using rnnt of 1ytic joint_out = F.log_softmax(joint_out, -1) return joint_out def decode(self, *args, **kwargs): res, log_p, _ = self.decode_greedy(*args, **kwargs) return res, log_p def transcribe(self, *args, **kwargs): res, _, metrics, _ = self.decode_greedy(*args, **kwargs) return res, metrics def decode_greedy(self, x, max_iters=3, alpha=0.005, theta=1.0): "x must be of shape [C, T, H]" # keep stats metrics = {} extra = { "iters": [], "outs": [], } # put model into evaluation mode self.eval() self.encoder.eval() self.predictor.eval() self.joint.eval() # check shape of x if len(x.shape) == 2: # add channel dimension x = x[None] # reshape x to (1, C, T, H...) x = x[None] # encode full spectrogram (all timesteps) encoder_out = self.encoder(x)[0] # predictor: BOS goes first y_one_char = torch.LongTensor([[self.bos]]).to(encoder_out.device) h_t_pred, pred_state = self.predictor(y_one_char) # lm fuser = LMFuser(self.lm) # iterate through all timesteps y_seq, log_p = [], 0.0 for h_t_enc in encoder_out: iters = 0 while iters < max_iters: iters += 1 # h_t_enc is of shape [H] # go through the joint network _h_t_pred = h_t_pred[None] _h_t_enc = h_t_enc[None, None, None] joint_out = self.joint(_h_t_pred, _h_t_enc) # decode one character joint_out = F.log_softmax(joint_out, dim=-1) extra["outs"].append(joint_out.clone()) prob, pred = joint_out.max(-1) pred = int(pred) log_p += float(prob) # if blank, advance encoder state # if not blank, add to the decoded sequence so far # and advance predictor state if pred == self.blank: break else: # fuse with lm joint_out, prob, pred = fuser.fuse(joint_out, prob, pred) y_seq.append(pred) y_one_char[0][0] = pred # advance predictor h_t_pred, pred_state = self.predictor(y_one_char, state=pred_state) # advance lm fuser.advance(y_one_char) # record how many iters we had extra["iters"].append(iters) # compute alignment score # better if distributed along the sequence align = np.array(extra["iters"]) _sum = align.sum() val, cnt = np.unique(align, return_counts=True) d = {v: c for v, c in zip(val, cnt)} _ones = d.get(1, 0) alignment_score = (_sum - _ones) / (_sum + 1e-4) metrics["alignment_score"] = alignment_score return self.lang.denumericalize(y_seq), -log_p, metrics, extra def transcribe_stream( self, stream, denumericalizer, max_iters=10, alpha=0.3, theta=1.0 ): """ stream is expected to yield chunks of shape (NCHANS, CHUNKSIZE) """ # put model into evaluation mode self.eval() # state to hold while transcribing encoder_state = None predictor_state = None # current token y_one_char = torch.LongTensor([[self.bos]]) h_t_pred = None # sequence of the hole stream y = [] # lm fuser = LMFuser(self.lm) def reset_encoder(): nonlocal encoder_state encoder_state = None def reset_predictor(): nonlocal y_one_char, h_t_pred, predictor_state # initialize predictor # blank goes first y_one_char = torch.LongTensor([[self.bos]]) h_t_pred, predictor_state = self.predictor(y_one_char) def reset_lm(): fuser.reset() def reset(): reset_encoder() reset_predictor() reset_lm() # reset at start reset() # iterate through time # T > 1 is possible blanks = 0 nonblanks = 0 for chunk in stream: # in case we get a None, just continue if chunk is None: continue # -> [1, T, H, W] chunk = chunk[None] # forward pass encoder self.start_perf() if encoder_state is None: encoder_out, encoder_state = self.encoder(chunk, return_state=True) else: encoder_out, encoder_state = self.encoder( chunk, state=encoder_state, return_state=True ) h_t_enc = encoder_out[0] self.stop_perf("encoder") self.start_perf() # loop over encoder states (t) y_seq = [] for i in range(h_t_enc.size(-2)): h_enc = h_t_enc[..., i, :] iters = 0 while iters < max_iters: iters += 1 # h_enc is of shape [H] # go through the joint network _h_t_pred = h_t_pred[None] _h_t_enc = h_enc[None, None, None] # print(_h_t_pred.shape) # print(_h_t_enc.shape) joint_out = self.joint(_h_t_pred, _h_t_enc) # decode one character joint_out = F.log_softmax(joint_out, dim=-1) prob, pred = joint_out.max(-1) pred = int(pred) # if blank, advance encoder state # if not blank, add to the decoded sequence so far # and advance predictor state if pred == self.blank: blanks += 1 break else: # fuse with lm joint_out, prob, pred = fuser.fuse(joint_out, prob, pred) y_seq.append(pred) y_one_char[0][0] = pred # advance predictor h_t_pred, predictor_state = self.predictor( y_one_char, state=predictor_state ) # advance lm fuser.advance(y_one_char) nonblanks += 1 # add to y y = y + y_seq yield y, denumericalizer(y_seq), reset self.stop_perf("joint + predictor") class CTCModel(Module): def __init__(self): layer = nn.TransformerEncoderLayer(128, 8) self.encoder = nn.TransformerEncoder(layer, 8) self.linear = nn.Linear(128, 2048) def convert_to_gpu(self): pass def param_groups(self): return [p for p in self.parameters() if p.requires_grad] @staticmethod def from_config(conf, lang): return CTCModel() def forward(self, tpl): x, y, xl, yl = tpl x = x.view(x.size(1), x.size(0), -1).contiguous() x = self.encoder(x) x = self.linear(x) x = F.log_softmax(x, -1) return x ``` #### File: libreasr/lib/model_utils.py ```python import tarfile from pathlib import Path import os import hashlib import glob from IPython.core.debugger import set_trace import torch from fastai2.learner import load_model from libreasr.lib.utils import maybe_quantize _PATH_ARCHIVE = Path("libreasr-model.tar.gz") _PATH_TOKENIZER = Path("tokenizer.yttm-model") _PATH_MODEL = Path("model.pth") _PATH_DEST = Path("./tmp") def add(tar, p_archive, p_real): tar.addfile(tarfile.TarInfo(str(p_archive)), str(p_real)) def save_asr_model( lang, path_tokenizer=_PATH_TOKENIZER, path_model=_PATH_MODEL, path_archive=_PATH_ARCHIVE, ): """ Bundles - tokenizer.yttm-model (tokenizer model) - model.pth (PyTorch model) into a single .tar.gz :path_archive: """ p_base_real = _PATH_DEST / Path(lang) p_base_arc = Path(lang) tar = tarfile.open(path_archive, mode="w:gz") add(tar, p_base_arc / path_tokenizer, p_base_real / path_tokenizer) add(tar, p_base_arc / path_model, p_base_real / path_model) tar.close() def extract_tars(paths_archive=None, path_dest=_PATH_DEST): """ extract .tar.gz file """ if paths_archive is None: paths_archive = glob.glob("./libreasr-model-*.tar.gz") for arc in paths_archive: tar = tarfile.open(arc) tar.extractall(path=path_dest) def load_asr_model( model, lang_name, lang, device="cpu", lm=None, path_tokenizer=_PATH_TOKENIZER, path_archive=_PATH_ARCHIVE, ): """ Loads an asr model from a given .tar.gz file """ # delete attrs model.lang = None model.lm = None # model try: load_model( str(Path(_PATH_DEST / Path(lang_name) / "model.pth")), model, None, with_opt=False, device=device, ) except Exception as e: print("Unable to load_model(...)") raise e # quantize model # we need to this before loading our model # as the saved model is quantized ??? model = maybe_quantize(model) return model ```